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FOREWORD

To honour the memory of Claude Itzykson, who passed away on May 22, 1995,
the Service de Physique Théorique at Saclay organised a conference entitled
The Mathematical Beauty of Physics. It took place in Saclay on June 5-7, 1996
and was attended by more than 140 participants. It is intended to be the first
of a series of annual meetings, dedicated to the memory of our distinguished
friend and colleague.

The variety of interests of Claude Itzykson was reflected in the broad range
of topics from mathematical physics and mathematics covered during the con-
ference. The meeting consisted of seventeen lectures, fifteen of which are
presented here. The order of presentation follows that of the proceedings.
J. Frohlich was unfortunately unable to provide us with written versions of his
beautiful lecture. The proceedings also contain a contribution from E. Witten,
who could not attend the conference, but kindly provided a text written in
collaboration with N. Seiberg.

The organisors want to express their gratitude to all those who made
this conference possible. We would like to thank Monsieur Robert Dautray,
Haut Commissaire & I’Energie Atomique, who presided over the meeting and
opened the first session of the conference. We also thank Madame C. Cesarsky,
Directeur of the Direction des Sciences de la Matiére, for her support of the
project. The success of the conference was of course in large part due to
the beautiful presentations. We would thus like to wholeheartedly thank all
the invited speakers, together with N. Seiberg and E. Witten. Finally we
want to thank the staff of the Service de Physique Théorique, A.-M. Arnold,
J. Delouvrier, L. Dumets, M. Féron, B. Savelli and S. Zaffanella for the
smooth running of the conference and M. Gingold for the preparation of these
proceedings.

J.-M. Drouffe and J.-B. Zuber
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Claude Itzykson
1938-1995

Claude Itzykson died of cancer on 22 May 1995 in Paris. French theoretical
physics has lost one of its leaders and most flamboyant representatives.

He was born on 11 April 1938 in Paris. After the death of his father in
a concentration camp during the Second World War, he was educated in an
orphan’s institution near Paris. His devouring passion for reading already
impressed his friends there. Brilliant studies at the Lycée Condorcet, Paris,
opened for him the doors to the Ecole Polytechnique, which he entered at
the age of 19. There he graduated from the prestigious Corps des Mines.
Having thus the opportunity of being elevated to a post in the higher french
Civil Service, he declined and followed his passion for basic science joining the
Commissariat & ’Energie Atomique, where he became a member of the Saclay
theory group in 1963.

Itzykson'’s first research works, under the guidance of Maurice Jacob and
Raymond Stora, dealt with particle physics, in the framework of the SU(3)
symmetry and of current algebra, leading to a thesis (1967) on non leptonic
hyperon decays. Very quickly he demonstrated his deep knowledge of group
theory, writing an article on the representations of unitary groups (still a very
useful reference) and two beautiful papers on hidden symmetries of the hy-
drogen atom. In quantum electrodynamics he studied the problem of bound
states and pair creation in a strong field. In a way quite characteristic of his
style, these works start from a practical physical problem, and develop the
appropriate mathematical framework in the most elegant manner.

From the middle of the seventies on, his work united in the most fruitful way
concepts of quantum field theory and statistical mechanics. He immediately
realized the fundamental and practical importance of the lattice discretization
of gauge theories proposed by Wilson, exploring its implications by a variety of
methods; mean field approximation and high and low temperature expansions.
Simultaneously he investigated other non-perturbative approaches to quantum
field theory: finding a characterization of large order behaviour in quantum
electrodynamics and producing his seminal work on the “large N limit” of
matrix field theory which was to pave the way for a major breakthrough, ten
years later, in the understanding of {wo-dimensional quantum gravity.

Itzykson’s active interest in disordered systems covered the geometry of
random lattices and random surfaces, field theory on a random lattice, the
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localization problem, the density of states and supersymmetry properties of
electrons in a strong magnetic field in the presence of impurities. The com-
parison between spectra of chaotic and integrable systems lead him, also, to
questions in number theory.

Most of his activity in the last ten years was focused on the study of
conformal invariant quantum field theories in two dimensions and related math-
ematical issues. There he made numerous contributions to the classification
of universality classes of two-dimensional systems, and to the study of the
conformal (Virasoro) algebra, and its representations and extensions. He re-
cently returned to integrals over large matrices, applying them to problems as
diverse as classical integrable systems, the fractional quantum Hall effect and
questions in “enumerative geometry”, a branch of nineteenth century mathe-
matics in which modern quantum field theory has recently led to unexpected
and spectacular progress.

The majority of his more than 150 papers were written in collaborations
in which he was always a major driving force, and in which his impetus and
enthusiasm played a decisive role.

Itzykson’s wide ranging knowledge and interests, and his passionate abil-
ity to communicate to students and young researchers, produced the classic
text-book “Quantum Field Theory”, McGraw Hill, a standard reference to al-
most a generation of young theorists. This was later complemented by the
two volumes of “Statistical Field Theory”, Cambridge University Press, which
presented applications of field theory to statistical mechanics. Throughout his
life he lectured in innumerable french and foreign institutions, and for this
he was awarded the title of Chevalier de ’Ordre des Palmes Académiques.
Itzykson was also awarded the Prix Langevin (1972) and Robin (1988) of the
Société Francaise de Physique and the Prix Ampére (1995) of the Académie
des Sciences.

The importance, elegance and depth of his work, as well as the diversity of
themes are what make his contribution to science so remarkable. His vast sci-
entific knowledge and intuition alongside his brilliant technical ability enabled
him to find fruitful relationships between problems that at first sight seemed
far apart. He also played a major role in bringing the French physical and
mathematical communities closer together. His interests also included history
and literature: he was particularly fond of eighteenth century French writers.
Claude Itzykson was a man of immense scientific talent and great integrity,
with a warm and charming personality, who inspired respect and admiration
to the whole physics community. He will be greatly missed.



The Mathematical Beauty of Physics
in memory of Claude Itzykson

Saclay, 5-7 June 1996

Wednesday June 5th, 1996

Chairman M. Jacob
9:30 Opening session, in memory of Claude Itzykson
10:30 Pause
10:45 E. Brézin, (Physique Théorique, E.N.S. Paris) Random matrices in an ezternal matriz
source

11:45 Ph. Di Francesco, (SPhT, Saclay) Meanders
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14:30 R. Stora, (LAPP, Annecy) Ezercises of equivariant cohomology and topological models
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10:30 J. Cardy, (Oxford) Renormalisation group approach to reaction-diffusion problems
11:30 Pause
11:45 B. Derrida, (Physique Statistique, E.N.S. Paris) Ezact solution of one-dimensional
growth models

Chairman I Singer
14:30 A. Beauville, (Mathématiques, E.N.S. Paris) Towards a Verlinde formula for non
simply connected groups
15:30 M. Bauer, (SPhT, Saclay) Would Galois have biked conformal field theories?
16:30 Pause
16:45 L. Alvarez-Gaumé, (Cern) Softly broken N = 2 Quantum Chromodynamics

Friday June 7th, 1996

Chairman D. Zwanziger
9:30 J.-M. Luck, (SPhT, Saclay) From rational polygons to self-similar tilings of the plane
10:30 M. Gutzwiller, (IBM, New York) Physics and Arithmetic Chaos in the Fourier Trans-
form
11:30 Pause
11:45 M. Berry, (Bristol) Arithmetic optics: the Talbot effect

Chairman C. De Dominicis
14:30 H. Saleur, (USC, Los Angeles) Quantum impurity problems in 1+1 dimensions
15:30 M. Kontsevich, (IHES, Bures-sur-Yvette) On Lyapunov ezponents and Hodge theory
16:30 Pause
16:45 J. Frohlich, (ETH, Zurich) What light and (non-relativistic) matter teach us about
renormalization, differential topology and differential geometry.
17:45 Conclusion



DYSON’S UNIVERSALITY IN GENERALIZED ENSEMBLES
OF RANDOM MATRICES

E. BREZIN
Laboratoire de Physique Théorique, Ecole Normale Supérieure
24 rue Lhomond 75231, Paris Cedex 05, Francé

"To Claude, the physicist, the unforgettable friend, with grief

We consider generalisations of ensembles of random matrices in which the Hamil-
tonian H is the sum of a deterministic part Hp and of a Gaussian random potential
V. The standard methods of the theory of random matrices, such as the method
of orthogonal polynomials, are not available for such cases. We first analyse the
density of levels; then the level correlations and verify that, at short distance, they
are independent of the spectrum of Ho. This is another aspect of the universality
discussed by Dyson (for zero Hp) who conjectured that these correlations were
independent of the probability distribution of V. We follow in this work a method
introduced by Kazakov, relying on the Itzykson-Zuber integral, which leads to a
representation of the correlation functions for finite N x N matrices in terms of
contour integrals over a finite number of variables. This article is based on joint
work with Hikami®.

1 Imntroduction

Let us first recall the results for the correlations between two eigenvalues for the
simple unitary ensemble, in which the full Hamiltonian is treated as random. In
the simplest Gaussian ensemble (GUE) one considers N x N random Hermitian
matrices H with probability distribution

-~ P(H) = %exp(—%'l‘rﬂz) (1)

The density of eigenvalues and the two-level correlation function are defined
as

p(A) =< %T'ré(/\ - H)> )

and
2D, p) =< %’I‘r&(,\ - H)%Tr&(p -H)> (3)

The correlation function, when A and g are arbitrary, has a complicated os-
cillatory behavior, even for the simplest Gaussian distribution. It simplifies

3Unité propre du Centre National de la Recherche Scientifique, Associée a1’Ecole Normale
Supérieure et a 1'Université de Paris-Sud
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when A — p is small, NV is large, and the scaling variable

1
z =N = p)p(5(A + p)) (4)
is held finite. Then one finds
1 sin’z
PO p) =~ N = B)p(A) — p(A)p(1) 2

sin’[*N () — atp
= G- wp) - T G
p(Y) =< L Tx6(A — H) > (6)
and 1 1
PP 4) =< T\ - H) - Teb(u — H) > ()

For a non-Gaussian probability distribution for H, the density of eigenvalues is
no longer given by a semi-circle law; for the correlations between two levels two
kinds of universal correlations between eigenvalues are known to be present : a)
a short-distance universal oscillatory behavior; b) a finite distance universality
of smoothed correlations.

Let us review these two properties. a) in the scaling regime defined by
(4) one recovers universally the result (5). b) Away from this short-distance
region, for arbitrary A and g, the correlations simplify only if one ”smooths”
the oscillations. This is what one usually does, if one lets N go to infinity first
in the resolvent, before returning to the real axis. The result, which is known
to be universal, is 73

1 1 -2
A0 = g i e O

where a is an end point of the support.

Thereé are many equivalent derivations of the property b). They are based
either on orthogonal polynomials’, or on summing over planar diagrams 5,
or solving an integral equation ®7; however the property a) is known only
through the orthogonal polynomials approach 3. For the generalization that
we have in mind here, in which the ”"unperturbed” part of the Hamiltonian is
deterministic, if again for b) a diagrammatic approach still works *%:%:° we are
not aware of any method which would allow us to study whether a) still holds.
To this effect we shall generalize a method, introduced by Kazakov?, to the
study of correlation functions. It consists of introducing an external matrix
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source. It leads to an exact representation of the correlation function for finite
N in terms of contour integrals over two variables!. From now on we shall
consider a Hamiltonian H = Hg + V, where Hj is deterministic and V is a
random N x N matrix. The Gaussian distribution P is given by

P(H) = %e—¥“v’

1 2 2
— e~ S TIX(H? - 2HoH+H}) (9)

We are thus simply dealing with a Gaussian unitary ensemble modified by
a matrix source Hg. Up to a factor the probability distribution for H is thus

P(H) = —exp(——TrH2 + NTYHoH) (10)

2 Density of states

Let us first show how one deals with the density of states p(A) . It is the
Fourier transform of the average ”evolution” operator

Ut) =< %m“ff > (11)
and p(A) is
o YO dt i
W= [ gretue (12)

We integrate first over the unitary matrix w which diagonalizes H, and without
loss of generality we may assume that Hp is a diagonal matrix with eigenvalues

(€1,-++,€n) - This is done by the well-known Itzykson-Zuber integral '?,
ty — det(exp(a;bj)) 1
/dwexp(TrAwBu ) __A(A)A(B) (13)

where A(A) is the Van der Monde determinant constructed with the eigenval-
ues of A:

N
A(4) = [](ai - a5) (14)
i<j
We are then led to
—_ itAy
Ut) = H)NZ/d’\‘ cdAnet* Ay, -, AN)

X exp(—? Zz\f + NZe,-/\,-) (15)
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The normalization is

U©)=1 (16)

The integration over the A\; may be done easily, if we note that

[ dr---dANAQy,- --,/\N)exp(——JZ! Y X+ NY a)
= A(al,---,aN)e%,—za‘? (17)

If we use this, with
it
a; =€ + Tv—isa,:’ (18)

we obtain

U() = E H ( — &+ N) 6—7';,+izsa (19)

a—l yHa &

The sum over N terms may be replaced by a contour-integral in the complex

u plane,
&y + }LVt_ itu— A
zt f 27rz ( U — €y ¢ - (20)

The contour of integration encloses all the eigenvalues ¢,. Note that we would
recover the simple Wigner ensemble if we let all the €, go to zero; we then
obtain

1 t3 du . it
— — 3N BadadiP 117 " \N
Uo(t) 7° f?m’e 1+ Nu) (21)

From this exact representation (21) for finite N, it is immediate to recover
all the well-known properties, the semi-circle law, or the more subtle edge
behavior of the density of states. Let us do that here as simple preliminary
exercices.

Semi circle law.
For large N, finite t, Up(t) has the limit:

27rz

UO( ) - f du ztu+— (22)

l.e.

1 [t"da ;. ..
. o7 pilat2itcosa
Uo(t) = / s (23)

-T



From there we obtain immediately

+00 +x o
po(/\):/ dt Up(t)e ™ = / ; e “O(\ — 2cosa) (24)

-00 -
We thus recover the semi-circle law

po(A) = %9(4 /1 - A4—2 (25)

Edge cross-over.

We can easily recover from the above representation the behaviour of the den-
sity of eigenvalues near the edge of the semi-circle. In (25) N has gone to
infinity first and po vanishes outside the semi-circle. This limit is approached
with exponentially small corrections, of the type eV, for A2 > 4, and with
1/N2-corrections for A2 < 4. Near the edge, A = 2 for instance, there is a
cross-over region of size N~2/3 between these two regimes. The characteriza-
tion of this cross-over is obtained easily with (21) which leads to

dt 1 du
) = —1itA ztu—m 1 . 2

o) = [ e § o (14 1o, (26)

We change t to N¢, then t to ¢ + 7u, and find

dpo(A) _ di e—NS
dx 21r (27)
with . )
it

S§=%+ % +ith—ud - Log(D). (28)
The large N limit is thus given by a saddle-point in the ¢-u plane; however it
is easy to see that for A = 2, two saddle-points merge at u = 1,£ = —1 and the

expansion near the saddle-point has to go beyond Gaussian order. Defining

A=2+ N"2/3
u=1+ N—1/3;
t=—i4 N3 (29)

we find that the result is proportional to the square of an Airy function:

00 3
__d,,;?) — N3 /O %2 costoz + TNt =-NTPUE)? . (30)



Large N limit of the density of states

For arbitrary Hy, the density of state p()) was first found, in the large N limit,
by Pastur®. The result may be easily recovered by summing planar diagrams,
which are here simple”rainbow” diagrams. It follows immediately that the self-
energy is proportional to the Green function itself in the large N limit*, and
this leads at once to Pastur’s result. From the contour-integral representation
(20), let us show how to recover this result . The average resolvent G(z) is

written in terms of the evolution operator as

1.1

< NTI'Z s >
+o0 .

= i / dte=*2 U (1)
0

We substitute (20) for U(t) and replace the product

=1 7=1

G(2)

by its leading term in the large N limit, namely

N

it 1
exp( 5y > — €7)

=1

If we define the density of states of the unperturbed matrix Hy

1 X
po(€) = D _é(e—ea)
a=1
we may write this expression (32) as
exp(it / defo_(fl)
u—c¢

We then easily obtain

8G }{
2riu+ Gg(u) -z

(1)

(32)

(33)

(34)

(35)

(36)

We have now to specify the contour of integration in the complex u-plane.
It surrounds all the eigenvalues of Hy and we have to determine the location
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of the zeroes of the denominator with respect to this contour. Let us return
to the discrete form for the equation

u+Go(u) =z (37)

1.e.

u+—z:u_€ = (38)

which possesses (N + 1) real or complex roots in the u-plane. For z real and
large, N of these roots are close to the ¢; and one, which will be denoted #(z),
goes to infinity with z as

1 1
i) =:-1+0(%) (39)

Therefore, for large z, the contour encloses all the roots of (38) except
%(z). When z decreases the contour should not be crossed by any other root
of the equation, therefore it is defined by the requirement that only one root
remains at its exterior. Therefore it is easier to calculate the integral (36) by
taking the residues of the singularities outside of the contour, rather than the
N poles enclosed by this contour. There are two of them outside; one is i(z)
and the other one is at infinity (since for large u, Go(u) vanishes). Taking
these two singularities we obtain

oG 1
= = 1-—
0z 1+ 3y du(z)
- da(z)
= 1- 1 (40)
The integration gives
G(x) = z - i(2) (41)

(there is no integration constant since G(z) vanishes for z large; note that it
does behave as it should as + for z large). This combined with (37) gives
Pastur’s self-consistent relation

G(z) = Go(z — G(2)) (42)
3 Two-level correlation function

For the two-level correlation function, p(2)(), i) is obtained from the Fourier
transform U (ty,12),

dt,
(2) /\ ”) // 27:1;22 —:tl,\ "”‘U(tl,h) (43)
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where U(t;,t2) is
U(ty,ta) =< %’I‘re“‘H%Tw“’H > (44)

The normalization conditions are

U(tl,tg) = U(tz,tl)
U(tl,O) = U(t;)
Uuow)=1 (45)

Dealing with U(¢;,12) is also simple. After performing the Itzykson-Zuber in-
tegral over the unitary group as in (13), we obtain through the same procedure,

U(z)(tl,tg) - Z /Hdr’ AA((HT) e—N Z(%r?+r.‘e.‘)+i(hra,+t2ra2) (46)

ala; 1

After integration over the r;, we obtain

i 'ei_€.+m6'01_6'01 +i_t26iag—6'a2
Utnyte) = L 3 Mess =6 % F o = 0 + 5 Bies = )

N? ~ [Ticj(ei —€5)
12 12 4
x e~ H1€a; ~ita€a; — 3 — 3/ — 2 by 0n (47)

The terms of this double sum in which a; = a3 are written as a single contour
integral and their sum is simply U (t1 +t2) of (19). The Fourier transform
of this term becomes

N(ew )2/ / dirdtre AR (1) 4 1) = TH - we(d)  (48)

The remaining part, after the subtraction of the disconnected part, becomes

1 dudv _i_-‘i_it u—itav 1
Ue(t,t2) N2 (27”')28 N (u—v-{—%})(u—'v- thvz)
N it it
% (1 + 1 1+ 2 ) 49
N0+ 7= 7p-o) “

where the contours are taken around u = ¢, and v = ¢,. If we include also
the contour-integration around the pole, v = u + ﬂ’- this gives precisely the
term U(t; + t2) of (27), which contributes to the delta—function part. This
coincidence had already been noticed for the Laguerre ensemble ?



4 Dyson’s universality

We now consider the correlation function in the large N limit for nearby levels.
In the integral representation (49) we may neglect the terms t2/N in the large
N limit and replace the products as in (35). This gives the large N limit of
U(ty,t,) as

1 dudv 1 —~ity(ut [ 2242 g6y i1 (v [ 22D
Ut =~ § G R 0

Noting that
8? 1 da da
lnl [
821029 n[a(z1) = #(z)} = (a(21) — u(z2))? dz; dzy
we obtain, through identical steps, the connected two-particle Green function
1 1 1 1

(51)

(2) = — —
G (21, 22) < Ntr . NtrZQ—H >e
_ 1 32
= -3 7.0 ln[u(zl) — i(z2)] (52)

This result was derived earlier by diagrammatic methods 4, and was used to
show that the singularity of the correlations, obtained when z; and 23 approach
the real axis with opposite imaginary parts, is universal.

However if we want to study the correlation function in the short-distance
limit, we cannot use the resolvent any more (since we need to let the imaginary
parts of z1, z2 go to zero before N goes to infinity).

Returning then to (28), and making the shifts, t; — t; + iuN, and t; —
ty + 2vN, the two-level correlation function is remarkably factorized since,

dt &+ % o= Ho? =k —itada-
peOude) = [E42 H( ;_e”) e FIm I it
N
dts e+ 'R 1 xS oaaoNua
x/?ﬂ' 21rzl;I(u—e-, )u+—z ’ i
= —KnN(A1, A2) Bn (A2, M) (53)

This kernel Ky ()1, A2) is further simplified by the shift ¢, — ¢ +1wN,

dv 1 it 2 .,
Kn(Xi, X)) = B\ —dg—ivt—ita+Nu(A—A2)
v (A1, A2) / }{21” zi N(v—a.,))e 3

(54)
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Note that Ky (A1, A1) reduces to the density of states. We replace again the
product in (53) by its large N limit, neglect % and integrate over t, leading to

OKn _ 1 du 1 —uy
oA WI“‘}{ 271 u + Go(u) — A + i€ (55)
with y = N(JA; — A2). Therefore
0Ky 1. dd _ 505 i)
R W
- Lo (e-yﬁ(*l—"‘)) (56)
Ty O\
Since, from (41),
'&(Al - I€) =X — RCG(AI) - in(Al) (57)
we obtain 1
Kn(D1,22) = '-;;C—y['\’—Rgc('\’,)]sm[”yp()\l ) (58)

Repeating this calculation for Ky (A2, ;) we end up, in the large N, finite y
limit, with

1 . AL+ A
pe(A, Xa) = = sin’ [mp( =5y (59)

Note that this result is independent of Hy (apart from the scale factor present
in the densitty of states). In the case in which Hp vanishes it is also independent
of the probability distribution of V' 3.

It is thus natural to conjecture that Dyson’s short-distance universality
with respect to the probability distribution of V' remains true for Hyp non-zero
as well, but we do not know how prove it.
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MEANDERS

P. Di FRANCESCO,
O. GOLINELLI
and

E. GUITTER¥,

CFEA/Saclay, Service de Physique Théorique
F-91191 Gif sur Yvette, France

1. Introduction

The meander problem is one of these apparently very simple problems which resist all
attempts to solve them. A fascinating problem which could not go unnoticed with Claude
Itzykson. He indeed kept encouraging us at the early stage of this work, even providing us
with some mathematical references which were the real starting point of our study. This
note is intended as an account of the earlier and latest developments towards a solution of

‘ the problem, yet to be invented.

The meander problem is a simply stated combinatorial question: count the number
of configurations of a closed non-self-intersecting road crossing an infinite river through
a given number of bridges. Despite its apparent simplicity, this problem still awaits a
solution, if only for asymptotics when the number of bridges is large. The problem emerged
in various contexts ranging from mathematics to computer science [1]. In particular, Arnold
re-actualized it in connection with Hilbert’s 16th problem, namely the enumeration of ovals
of planar algebraic curves [2], and it also appears in the classification of 3-manifolds [3].

Remarkably, the meander problem can be rephrased in the physical language of critical
phenomena, through its equivalence with a particular problem of Self-Avoiding Walks: the
counting of the compact foldings of a linear chain.

Several techniques have been applied to this problem: direct combinatorial approaches
[4] [5), random matrix model techniques {6] [7] [8], an algebraic approach using the
Temperley-Lieb algebra and Restricted Solid-On-Solid models [9].

* e-mails: philippe,golinel,guitter@spht.saclay.cea.fr
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This note is organized as follows. In Sect.2, we define precisely the meander (resp.
semi-meander) counting problems, arising in the context of closed (resp. open) chain-
folding, and solve them in some simple cases. Sect.3 is an overview of various reformu-
lations of the problem in physical or mathematical terms: the matrix model formulation,
which provides us with a complete recursive scheme to compute the meander and semi-
meander partition functions, including their higher genus generalizations; the symmetric
group formulation, which eventually leads to some compact expressions in terms of the sym-
metric group characters; the Temperley-Lieb algebra formulation, which gives yet another,
completely algebraic viewpoint on the problem. Sect.4 is dedicated to a more direct enu-
merative approach and a thorough analysis of its results in the spirit of critical phenomena.
The semi-meander problem is generalized to include the case of several non-intersecting
but possibly interlocking roads with a weight ¢ per road, and crossing the river through
a total of n bridges. The corresponding generating functions are analyzed as functions
of g, through large n extrapolations, and through their large ¢ asymptotic expansion in
powers of 1/q, for n — oc. Evidence is given for a phase transition for semi-meanders at a
value of ¢ = ¢, ~ 2 between a low-g and a large-q regimes, discriminated by the relevance
of winding of the roads around the source. The large-¢ expansion provides an accurate
description of the whole ¢ > ¢, phase. We gather conclusions and a few conjectures in
Sect.5.

2. The meander problem
2.1. Definitions, observables

A meander of order n is a planar configuration of a non-self-intersecting loop (road)
crossing a line (river), through a given number 2n of points (bridges). We consider as
equivalent any two configurations which may be continuously deformed into each other,
keeping the river fixed (this is therefore a topological equivalence). The number of in-
equivalent meanders of order n is denoted by M,,. For instance, we have M, = 1, My = 2,
M3 = 8... More numbers can be found in [6] [7] [12].

We stumbled on the meander problem by trying to enumerate the distinct compact
folding configurations of a closed polymer, i.e. the different ways of folding a closed chain
of 2n identical constituents onto itself. The best image of such a closed polymer is that

of a closed strip of 2n identical stamps, attached by their edges, serving as hinges in the
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(a) (b)

Fig. 1: The mapping between compactly folded closed strip of stamps and
meanders. We display a compact folding configuration (a) of a closed strip
with 2n = 6 stamps. To transform it into a meander, first draw a (dotted)
line through the centers of the stamps and close it to the left of the picture.
Then cut the bottom right hinge (empty circle) and pull its ends apart as
indicated by the arrows, so as to form a straight line (b): the straight line
forms the river, and the dashed line the road of the resulting meander.

folding process: a compactly folded configuration of the strip is simply a folded state in
which all the stamps are piled up on top of one of them.

Such a compactly folded configuration is easily identified with a meander configuration
as depicted in Fig.1. Draw a closed line (road) passing though the centers (bridges) of all
the piled-up monomers, then open one hinge of the polymer (we choose to always open
the bottom right one) and pull the stamps apart so as to form a straight line: the latter
is identified with the river, whereas the distorted line becomes the road of the resulting

Fig. 2: The 4 inequivalent foldings of a strip of 3 stamps. The fixed stamp
is indicated by the empty circle: it is attached to a support (shaded area).
The other circles correspond to the edges of the stamps.

When the strip of stamps is open (see Fig.2), we decide to attach the first stamp to a
support, preventing the strip from winding around it, while the last stamp has a free ex-
tremal edge. In this case, a slightly generalized transformation maps any compactly folded
open configuration of (n — 1) stamps to what we will call a semi-meander configuration of

order n, in the following manner.
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(a) (b) (©)

Fig. 3: The mapping of a compactly folded configuration of 4 stamps onto
a semi-meander of order 5. (a) draw a (dashed) curve through the pile of
stamps and the (shaded) support. (b) pull the free edge of the last stamp to
form a half-line (the river with a source). (c) the result is a semi-meander
configuration of order 5, namely that of a road, crossing a semi-infinite river
through 5 bridges (the source of the river, around which the road is free to
wind, is indicated by an asterisk).

As shown in Fig.3, draw a curve (road) though the (n — 1) centers (bridges) of all the
piled-up stamps, then close this curve across the support (this last intersection is the n-th
bridge), and pull the free edge of the last stamp in order to form a straight half-line (river
with a source). The resulting picture is a configuration of a road (the curve) crossing a
semi-infinite river (stamps and support) through n bridges: this is called a semi-meander
configuration of order n. Note that the road in a semi-meander may wind freely around
the source of the river, and that consequently the number of bridges may be indifferently
even or odd, as opposed to meanders. The number of distinct semi-meanders of order n is
denoted by M,,. For instance, we have M; = 1, M, = 1, M3 = 2, My = 4... More numbers
can be found in [4] {7] and in appendix A.

Through its compact folding formulation, the semi-meander problem is a particular
reduction of the two-dimensional self-avoiding walk problem, in which only topological
constraints are retained. It is therefore natural to define, by analogy with self-avoiding
walks the connectivity R per stamp and the configuration exponent v which determine the

large n behavior of the semi-meander numbers as follows’

. Rr
Mn ~ C FI- (21)

! That the semi-meander numbers M, actually have these leading asymptotics may be proved

by deriving upper and lower bounds on R. See [7] for further details.
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(@) (b)

Fig. 4: The “end-to-end distance” of the folded strip of stamps (a) is the
number (w = 1 here) of stamps to be added to the strip (the added stamp
is represented in dashed line), so that the new free end (empty circle) is in
contact with the infinity to the right. This coincides with the “winding” of
the corresponding semi-meander (b), namely the number of bridges to be
added if we continue the river to the right of its source (dashed line).

The connectivity R may be interpreted as the average number of possibilities of adding
one stamp to the folded configurations. The exponent < is characteristic of the (open)
boundary condition on the strip of stamps.

A natural observable for self-avoiding walks is the end-to-end distance. The corre-
sponding notion for a compactly folded open strip of stamps is the “distance” between
the free end of the strip and, say the support. This distance should also indicate how far
the end of the strip is buried inside the folded configuration. It is defined as the minimal
length w of a strip of stamps to be attached to the free end, such that a resulting folding
with n — 1 4+ w stamps has its free end outside of the folding, namely can be connected to
the infinity to the right of the folding by a half-line which does not intersect any stamp.
Indeed, the infinity to the right can be viewed as the nearest topological neighbor of the
support, hence w measures a distance from the free end of the strip to the support. This
is illustrated in Fig.4(a), with » = 5 and w = 1. In the semi-meander formulation (see
Fig.4(b)), this distance w is simply the winding of the road around the source of the river,
namely the number of bridges to be added if we continue the river to the right of its
source. By analogy with self-avoiding walks, we expect the average winding over all the
semi-meanders of order n to have the leading behavior

— 1 v 2 2
wh = A semi—mzeandersw o *2)
where v is some positive (end-to-end) exponent 0 < v < 1, as w is always smaller or equal

to n.
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In this language, 2 meander of order n is simply a semi-meander of order 2n with
winding w = 0. By analogy with closed (as compared to open) self-avoiding walks, we
expect the asymptotics

M, ~ c—— (2.3)
where the connectivity per bridge R is the same as that for semi-meanders (2.1), R = R,
and the copﬁguration exponent a # 7 is characteristic of the closed boundary condition

on the strip of stamps.

In the following, we will mainly focus our study on the semi-meander numbers.

2.2. Arches and connected components

<+

Fig. 5: A semi-meander viewed as a particular meander: the semi-infinite
river must be opened up as indicated by the arrows. This doubles the number
of bridges in the resulting meander, hence the order is conserved (n = 5
here). By construction, the lower arch configuration of the meander is always
a rainbow arch configuration of same order.

Any semi-meander may be viewed as a particular meander by opening the semi-infinite
river as indicated by the arrows on Fig.5. In the process, the number of bridges is doubled,
hence the order is conserved. The resulting meander however is very peculiar. Note that
in general a meander is made of an upper (resp. lower) configuration consisting of non-
intersecting arches (arcs of road) connecting the bridges by pairs above (resp. below) the
river. In the present case the lower configuration is fixed: it is called the rainbow arch
configuration of order n (the bridge 1 is connected to the bridge (2n —i+1),: = 1,2,...,n).
On the other hand, the upper arch configuration may take any of the M, values leading
to semi-meanders of order n.

There are however
(2n)!

nl(n+ 1)} (2:4)

Ch =
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distinct arch configurations of order n [7], as is readily proved by recursion (ch,41 =
EOSJ'SH CjCn—j, With co = 1, hence ¢, = 1, ¢ = 2, c3 = 5, ¢4 = 14,...: the ¢, are
called the Catalan numbers). Hence not all upper arch configurations, once supplemented
by a lower rainbow arch configuration of same order, lead to an opened semi-meander
(M, < c¢,). This is because, in general, the corresponding object will have k¥ > 1 con-
nected components: we call it 2 semi-meander of order n with k connected components.
Indeed, if the river is folded back into a semi-infinite one, we are simply left with a col-
lection of k possibly interlocking semi-meanders of respective orders n,, ns,..., ng, with
ny + N2 + ...+ ng = n. We always have 1 < k < n, and k = n only for the superposition of
an upper and a lower rainbow configurations, leading to 2n concentric circles in the open
river picture. We denote by M) the number of inequivalent semi-meanders of order n
with k connected components. In particular, we have M{") = M, and M) = 1 for all n.

The direct numerical study of the asymptotics of the numbers MY turns out to be
delicate, as the natural scaling variable of the problem is the ratio z = k/n, which depends
on n and takes only a discrete set of values. To circumvent this problem, we will study
the generating function 7,(g) for these numbers, also referred to as the semi-meander

polynomaial.

n
ma(g) = D q¢* MY (2.5)
k=1

This quantity makes it possible to study the large n asymptotics of the M® ina global way,
by use of extrapolation techniques for all real values of ¢. The semi-meander polynomial
(2.5) may be viewed as the partition function of a statistical assembly of multicomponent
semi-meanders of given order n, with a fugacity ¢ per connected component. As such, it
is expected to have an extensive large n behavior, namely
R(g)”

n7(@)

mn(q) ~ &(9) (26)

where R(q) is the partition function per bridge, ¥(q) is a possibly varying exponent and
t(g) a function independent of n. For ¢ — 0 (k = 1), we must recover the connected

semi-meanders, namely that 7, (g)/g = M, i.e.
Rig)»R @)=+ eg/g—~c (2.7)

(cf. (2.1)). The notion of winding is well-defined for multi-component semi-meanders as
well, as the sum of the individual windings of each connected component, namely the total



19

number of times the various roads forming the semi-meander wind around the source of

the river. Therefore we define

Wh(a) = s 3wt~ @ (28)

where v(g) is the generalized winding exponent for multi-component semi-meanders, sat-
isfying 0 < v(gq) < 1.

Analogously, we define multi-component meanders of order n, as configurations of k
non-intersecting roads (1 < k < n) crossing the river through a total of 2n bridges, and

denote by *) their number. We also define the meander polynomial

n
ma(g) = D¢t MY (29)
k=1

This is nothing but the restriction of (2.5) with n — 2n, to semi-meanders with zero

winding w = 0. We therefore expect the asymptotics for large n

R(g)*"

na(q)

ma(g) ~ c(q) (2.10)

In this estimate, the partition function per bridge R(q) is expected to be identical to that
of semi-meanders R(q) only if the winding is irrelevant, namely if I{q) is strictly less than
1

R(q) = R(g) iff v(g)<1 (211)

Otherwise, the fraction of semi-meanders with zero winding may be exponentially small,
and we only expect that R(q) < R(q) if v(q) = 1.
2.3. Ezact results for large numbers of connected components (q = o)

For very large ¢, we simply have
ma(g) ~ ¢" (2.12)

as the meander polynomial is dominated by the k = n term, corresponding to the unique
semi-meander of order n made of n concentric circular roads, each crossing the semi-infinite
river only once. The winding of this semi-meander is clearly w = n, hence we have, for
g— 00

Rig)—~q 7@ =0 &g —+1 v —1 (213)



As to meanders, the only way to build 2 meander of order n with the maximal number
n connected components is that each component be a circle, crossing the river exactly twice.
This is readily done by taking any upper arch configuration and completing it by reflection
symmetry w.r.t. the river. This leads to M® =, (c.f. (2.4)) meanders with n connected

components. By Stirling’s formula, we find that when ¢ -+ co the meander polynomial

behaves as
mnu{g) ~ cn q"
1 (29) (2.14)
~ N
hence, when ¢ = co
R(q) + 2§  alg) =+3/2  c(9) =+ 1/V7 (2.15)

This confirms the abovementioned property (2.11) that R(q) < R(q) when v(q) = 1, as
2,/q < g for large q.

2.4. Ezact results for random walks on @ half-line (g =1)

When ¢ = 1 in (2.5), M, (1) simply counts all the multi-component semi-meanders,
irrespectively of their number of connected components. This simplifies the problem dras-
tically, as we are simply left with a purely combinatorial problem which can be solved
exactly. The multicomponent semi-meanders are obtained by superimposing any arch
configuration of order »n with the rainbow of order n, hence

1 4

by use of Stirling’s formula for large n. This gives the values
R(y=4 ~1)=3/2 1)=1/V/7 (2.17)

The study of the winding at ¢ = 1 is more transparent in the formulation of arch
configurations of order n as random walks of 2n steps on a semi-infinite line. For each arch
configuration of order n, let us label by 1, 2,...,2n — 1 each segment of river in-between two
consecutive bridges, and O the leftmost semi-infinite portion, 2n the rightmost one. Let
h(1),1 = 0,1, ..., 2n denote the number of arches passing at the vertical of the corresponding
segment i. By definition, 2(0) = h(2n) = 0. More generally, going along the river from



21

0 12 3 45678 9 1011 12 1314 1516 1718

Fig. 6: A walk diagram of 18 steps, and the corresponding arch configuration
of order 9. Each dot corresponds to a segment of river. The height on the
walk diagram is given by the number of arches intersected by the vertical
dotted line.
left to right, we have k(i) = h(i — 1) + 1 (resp. h(i) = h(i — 1) — 1) if an arch originates
from the bridge 7 (resp. terminates at the bridge :).

The function h satisfies h(i) > 0, for all i, and may be interpreted as a “height”
variable, defined on the segments of river, whose graph is nothing but a walk of 2n steps
as shown in Fig.6. This may be seen as the two-dimensional extent of a brownian motion
of 2n steps on a half-line, originating and terminating at the origin of the line. This
interpretation makes the leading behavior ¢, ~ 22" of (2.16) clear: it corresponds to the
2 possible directions (up or down) that the motion may take at each step. The exponent
3/2 in (2.16) is characteristic of the boundary condition, namely that the motion is closed
and takes place on a half-line (other boundary conditions would lead to different values of
7, e.g. for a closed walk on a line, we would have a behavior (2':‘) ~ 22 [ /7).

In this picture, the winding is simply given by the height w = h(n) of the middle point.
Let us evaluate more generally the average height of a point 1 over the arch configurations

of order n. It is given by

( '))n = _ZhAnl (2.18)

Cn h>0

where A, ;(h) denotes the number of arch configurations of order n such that h(i) = h. A
simple calculation [9] shows that

o = () D) -( 50 e
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as the A, ;(h) walks are simply obtained by gluing two independent walks of ¢ and 2n — 1
steps linking the origin to the height A.

In the case of the winding, w = h(f = n), (2.18) leads to a more compact formula,
according to the parity of n

2p 2
n=2p (w)g,,:Q——l
2 (2.20)
e |
n=2p+1: (Wpp = 2-2—F -1
C2p+1

For large n, this gives the following expansion

(whn = 2\/;— 1+ F + 0(1/n%?)

(2.21)
irrespectively of the parity of n. This implies that
vig=1) = 1/2 (2.22)

This is the well-known result for the Brownian motion, for which the extent of the path
scales like n'/2 for large n. It is instructive to note that, thanks to (2.21), the observable
w + 1 is less sensitive than w to the finite size effects at ¢ = 1. This will be useful in
the forthcoming numerical estimates for arbitrary ¢ where we observe that the numerical
extrapolations are improved by considering w + 1 instead of w. Using (2.19), we may now
compute the probability distribution P,(w) for an arch configuration of order n to have
winding h(n) = w, which takes for large n the scaling form

Pa(w) = Ann(w) ~ ﬁf (J—)) (2.23)

with a scaling function f independent of n for large n, readily obtained by use of Stirling’s
formula, upon writing w = 24/n/w £ for large n. This gives

32 4,2
f(&) = 7'_—2'526_75

(2.24)

forall ¢ > 0.
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The meanders of order n are the semi-meanders of order 2n with winding w = h(2n) =

0. They are therefore built as the juxtaposition of two independent walks of length 2n.

Hence
m(l)—(c)2~l£: 2.25
n(1) = (en o (2-25)
or, in other words
R1)=R(1)=4 «a(l)=3 c(1)=1/n (2.26)

This is again in agreement with (2.11), as #(1) = 1/2 < 1, i.e. the winding is irrelevant at
g=1.

3. Various formulations of the meander problem

This section is an overview of some very different formulations of the meander problem,
each resorting to different mathematical objects (graphs, groups, algebras). The subse-

quent section will be devoted to yet another approach, dealing with direct enumeration.

3.1. Matriz model

Field theory, as a computational method, involves expansions over graphs weighted
by combinatorial factors. In this subsection, we present a particular field theory which
precisely generates planar graphs with a direct meander interpretation. The planarity of
theses graphs is an important requirement, which ensures that the arches of the meander
do not intersect each other, when drawn on a planar surface. The topology of the graphs
is best taken into account in matrix models, where the size N of the matrices governs a
topological expansion in which the term of order N2~2% corresponds to graphs with genus
h. The planar graphs (with 2~ = 0) are therefore obtained by taking the large N limit of
matrix models (see for instance [14] for a review on random matrices).

The enumeration of (planar) meanders is very close to that of 4-valent (genus 0)
graphs made of two self-avoiding loops (say one black and one white), intersecting each
other at simple nodes [6]. The white loop stands for the river, closed at infinity. The black
loop is the road. Such a graph will be called a black and white graph. An example is
given in Fig.7. The fact that the river becomes a loop replaces the order of the bridges by
a cyclic order, and identifies the regions above the river and below it. Hence the number

of meanders M, is 2 x 2n (2 for the up/down symmetry and 2n for the cyclic symmetry)
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Fig. 7: A sample black and white graph. The white loop is represented in
thin dashed line. There are 10 intersections.

Fig. 8: A particular black and white graph with 6 intersections, and its two
associated meanders. The automorphism group of the black and white graph
is Zs.

times that of inequivalent black and white graphs with 2n intersections, weighed by the
symmetry factor 1/|Aut(I')| (the inverse of the order of the symmetry group of the graph).
The same connection holds between M{") and the black and white graphs where the black
loop has k connected components.

For illustration, we display a particular black and white graph I" in Fig.8, together with
its two corresponding meanders of order 3. The automorphism group of this black and
white graph is Zs, with order Aut(I') = |Z¢| = 6. The two meanders come with an overall
factor 1/(2 x 6), hence contribute a total 2 x 1/12 = 1/6, which is precisely the desired
symmetry factor.

A simple way of generating black and white graphs is the use of the multi-matrix
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integral (with m + n hermitian matrices of size N denoted by B and W)

1 o - o
Z(m,n,e,N) = — / [ a8 [ aw @ e P(B,w®) (3.1)
N

a=1l p=1

where the matrix potential reads

(@)y2 B2
P(B@,W®) = T (32 ) +Z(W2 )" _ S BOW@BEW (32

a 8 a,fp

The measure of integration is the usual Haar measure for hermitian matrices, and the
normalization constant xy is such that Z(m,n,c =0, N) = 1. In the following, the o and

B indices will be referred to as color indices.

5
i 1, 27 1,
a: —e—, H
i k Av
i HH J
8 Sjx S’ /N l‘lj: sy ,—<—!i:“’

Ay
id b j4

i1 S;x 8p,p"/N ,
' Nedi,j,8i,.5,85,.58i,.5,92,2'5B,B

Fig. 9: The Feynman rules for the black and white matrix model. Solid
(resp. dashed) double-lines correspond to black (resp. white) matrix ele-
ments, whose indices run along the two oriented lines. An extra color index o
(resp. () indicates the pumber of the matrix in its class, B(®), o =1,2,...,m
(resp. W® g =1,2,..,n). The only allowed vertices are 4-valent, and have
alternating black and white edges: they describe simple intersections of the
black and white loops.

The logarithm of the function (3.1) can be evaluated pertubatively as a power series
of c. A term of order V in this expansion is readily evaluated as 2 Gaussian multi-matrix
integral. It can be obtained as a sum over 4-valent connected graphs (the logarithm
performs the necessary subtractions to go from disconnected to connected graphs), whose

V vertices have to be connected by means of the two types of edges

black edges ([B)];;{B ) = ‘silii"—am,

white edges (W], [(W#),) = ﬁ%‘ji%ﬁ'

(3:3)
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which have to alternate around each vertex. The corresponding Feynman rules are sum-
marized in Fig.9. This is an exact realization of the desired connected black and white
graphs, except that any number of loops? of each color is allowed. In fact, each graph
receives a weight

N272h oV b g (3.4)

where we have identified the Euler characteristic of the graphas2 —2h =V — E+ L (V
vertices with weight N each, E edges with weight 1/N each and L loops over which we
have to sum the matrix indices, resulting in a weight N each) and b (resp. w) denote the
total numbers of black (resp. white) loops.
A simple trick to reduce the number of say white loops w to one is to send the number
n of white matrices W to 0, and to retain only the contributions of order 1 in n. Hence
f(m,e,N) = '51_% %Log Z(m,n,c,N) = Z N2—2h Vb IA_“:(—IW (3.5)

b.&ew. conn. graphs T

with one w loop

If we restrict this sum to the leading order N2, namely the genus O contribution

(h = 0), we finally get a relation to the meander numbers in the form

fo(m,c) Nﬁ_r:loo Flz-f(m,c,N)

2p

o= P & (k) ok

=1 k=1

(3.6)

where the abovementioned relation between the numbers of black and white graphs and
multi-component meanders has been used to rewrite the expansion (3.5).

The particular form of the matrix potential (3.2) allows one to perform the exact
integration over say all the W matrices (the dependence of P on W is Gaussian), with the
result

hid ()2
Z(m,n,c,N) = ei / [ B det T@ 1 BE) t g B /2-NTrE 5
N a=] a

(3.7)

2 The reader must distinguish between these loops, made of double-lines of a definite color,
from the oriented loops along which the matrix indices run.
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where I stands for the N x N identity matrix, ® denotes the usual tensor product of
matrices, and the superscript ¢ stands for the usual matrix transposition. The prefactor
Oy is fixed by the condition Z(m,n,c = 0, N) = 1. With this form, it is easy to take the
logarithm and to let n tend to 0, with the result

m (a)y2
f(m,e,N) = —2—;;/ [ 4B Tr(Log[I® I~} B @ B@])e~¥NTr L, e
a=1 a
oo &P m
=Y 2—(1&(2 B@® 1@ B))P)gaus
=1 a=1
2. P
= ;— Z (IT‘I'(B(G‘)...B(Q'))Iz)Gauss
p=1 P 1<ay,...,ap<m

(3.8)
where we still use the notation (...)Gauss for the multi-Gaussian average over the matrices
B, o = 1,2,..,m. The modulus square simply comes from the hermiticity of the

matrices B(®), namely

T([[ B ) = (] B9 *) = (] B¢)" (3.9)

Taking the large N limit (3.6), it is a known fact [14] that correlations should factorize,
namely
<|m1p'[ B[ )Ganes — |<mfI B(®)))Gauss | (3.10)
u auss Neroo u Gauss .
By parity, we see that only even p’s give non—vanishing contributions, and comparing with
(3.6) we find a closed expression for the meander numbers of order n with k¥ connected

components

n

1 2n
Sufmt = | i Bl

k=1 1€ay,...,az.<m

(3.11)

This expression is only valid for integer values of m, but as it is a polynemial of degree n in
m (with vanishing constant coefficient), the n first values m = 1,2,...,n of m determine it
completely. So we only have to evaluate the rhs of (3.11) for these values of m to determine
all the coefficients M{*).
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Fig. 10: The connected toric meander of order 1: it has only 1 bridge.

The relation (3.11) suggests to introduce higher genus meander numbers, denoted
by MFYR), with M{P[0] = M) (note that the indexation is now by the number of

intersections, or bridges), through the generating function

M8

iM,S")[h]m"N"“”‘ = Y (m(f[ BE)[*)Gauss
i=1

h=0 k=1 1<ay,...,ap<m

Il

(3.12)

which incorporates the contribution of all genera in the Gaussian averages. Note that the
genus A is that of the corresponding black and white graph and not that of the river or
the road alone. In particular, the river (resp. the road) may be contractible or not in
meanders of genus 2 > 0. As an example the M 1(1) = 1 toric meander is represented in

Fig.10.

Fig. 11: A typical graph in the computation of the rhs of (3.12). The two
p-valent vertices corresponding to the two traces of words are represented
as racks of p double legs (p = 10 here). The connected components of the
resulting meander (of genus 2 = 0 on the example displayed here) correspond
to loops of matrices B(). This is indicated by a different coloring of the
various connected components. Summing over all values of ¢; yields a factor
m per connected component, hence m3 here.
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The relation (3.12) can also be proved directly as follows. Its rhs is a sum over
correlation functions of the traces of certain words (products of matrices) with themselves.
More precisely, using the hermiticity of the matrices B(®), the complex conjugate of the

trace Tr(J],<; <2, B®") can be rewritten as

( ] B = Tr( J[[ Bler+-9) (3.13)
1<i<2n 1<i<2n

i.e. in the form of an analogous trace, with the order of the B’s reversed. According
to the Feynman rules of the previous section in the case of only black matrices, such a
correlation can be computed graphically as follows. The two traces correspond to two
p-valent vertices, and the Gaussian average is computed by summing over all the graphs
obtained by connecting pairs of legs (themselves made of pairs of oriented double-lines)
by means of edges. Re-drawing these vertices as small racks of p legs as in Fig.11, we
get a sum over all multi-component, multi-genera meanders. More precisely, the edges
can only connect two legs with the same matrix label @, which can be interpreted as a
color: indeed, we have to sum over all colorings of the graph by means of m colors. But
this coloring is constrained by the fact that the colors of the legs of the two racks have
to be identified two by two (the color of both first legs is aj,...,of both p-th legs is ap).
This means that each connected component of the resulting meander is painted with a
color o € {1,2,...,m}. A graph of genus h comes with the usual weight N>~2%  Summing
over all the indices o, ...,ap = 1,2,...,m, we get an extra factor of m for each connected

component of the corresponding meander, which proves the relation (3.12).
In the genus 0 case, we must only consider planar graphs, which correspond to genus
0 meanders by the above interpretation. Due to the planarity of the graph, the two racks
of p = 2n legs each are connected to themselves through n edges each, and are no longer
connected to each other: they form two disjoint arch configurations of order n. This
explains the factorization mentioned in eq.(3.10), and shows that the genus 0 meanders
are obtained by the superimposition of two arch configurations. The beauty of eq.(3.11)
is precisely to keep track of the number of connected components % in this picture, by the

m—coloring of the connected components.



This last interpretation leads to a straightforward generalization of (3.12) to semi-

meanders, in the form

k=1 1<ay,...,an<m

lim - (Te(B) B, B Blen) Bonms) BED)) gy,

N—ooo

(3.14)

To get this expression, we have used the m—coloring of the matrices to produce the correct
rainbow-type connections between the loops of matrices.

All the above expressions for the various meander and semi-meander numbers reduce
to the computation of multi-matrix Gaussian averages of traces of words, i.e. of products
of matrices. This is readily done by using the so-called loop equations for the Gaussian
matrix model (see [7] for all the details), with the following result.

The most general average of trace of word in m matrices in the large N limit is denoted

by
4(m) -

P1.P2,---\Pmk

.1 (3.15)
Jim - (Tr(BW)PH (B (B)pm(BO ot (Bt )) e
In the above, some powers p; may be zero, but no m consecutive of them vanish (otherwise
the word could be reduced by erasing the m corresponding pieces). Of course 2p = Y. p;
has to be an even number for (3.15) to be non-zero, by parity. For m = 1, we easily
compute

. 1 chn ifp=2n
P — o) _ n P
Nh_.moo N (TrB%)Gaws = 757 = { 0 otherwise (3.16)

where c,, is the catalan number (2.4). If w = exp(2im/m) denotes the primitive m—th root
of unity, then we have the following recursion relation between large N averages of traces

of words, for m > 2

mk—1
71(":1)’1.---,11".& = - Z w"y}(":-)--m;‘ 7;?-31,~--.Pm5
j=1
(3.17)

When j is not a multiple of m, it is understood in the above that the multiplets (p,, ..., p;)
and (pj41,---,Pkm) have to be completed by zeros so as to form sequences of m-uplets.
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. . ® _ B _ 0 . .
For instance, we write ¥3° = 7350 = 7¥,0,3- Note also that if only 7 < m matrices
are actually used to write a word, the corresponding (™) can be reduced to a (") by

erasing the spurious zeros (for instance, 7;33,,0 = §"). Together with the initial condition

7t():'.‘.).,0,2n+l,0,...,0 = 781)-&-1 = 0and 7((,7':?,0'2,,,0,.__'0 = -yS,) = ¢,, this gives a compact recursive
algorithm to compute all the large N averages of traces of words in any multi-Gaussian

matrix model, and henceforth to evaluate the meander and semi-meander numbers.

3.2. Symmetric group

Each arch configuration of order n is naturally labelled by permutation z € S,,, the
symmetric group over 2n objects, in such a way that if we label the bridges of the arch
configuration 1, 2, ..., 2n, the permutation 4 indicates the pairs of bridges linked by arches,
namely, for any ¢ = 1,2, ..., 2n, u(1) is the bridge linked to ¢ by an arch. By definition, u is
made of n cycles of length 2, it is therefore an element of the class [2"] of S;,,. Note that
an element of this class generally does not lead to an arch configuration, because the most
general pairing of bridges has intersecting arches. A permutation pz € [2"] will be called
admissible if it leads to an arch configuration.

m@@\f@-.

Fig. 12: An arch configuration of order 3 and the corresponding interpreta-
tion as a ribbon graph, with V' = 1 six-valent vertex and £ = 3 edges. On
the intermediate diagram, the arches have been doubled and oriented. These
oriented arches indicate the pairing of bridges, i.e. represent the action of
p. Similarly, the oriented horizontal segments indicate the action of the shift
permutation o. Each oriented loop corresponds to a cycle of the permutation
ow.

Let us write the admissibility condition explicitly. This condition states that arches do
not intersect each other, namely that the ribbon graph (see Fig.12) with only one 2n-valent
vertex (the 2n bridges), whose legs are connected according to the arch configuration, is
planar, i.e. of genus h = 0. This graph has V = 1 vertex, and E = n edges (arches). Let
us compute its number L of oriented loops in terms of the permutation x. Let o denote
the “shift” cyclic permutation, namely o(i) = i +1, 1 = 1,2,..,2n — 1 and o(2n) = 1.

Then an oriented loop in the ribbon graph is readily seen to correspond to a cycle of the
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permutation ou. Indeed, the total number of loops is L = cycles(ou), the number of cycles
of the permutation ou. The admissibility condition reads

x =2=L-E+V

1 — n + cycles(ou)
(3.18)
&  cycles(op) = n+1

Note that if we demand that the ribbon graph be of genus &, the above condition becomes
cycles(op) = n+1-2h (3.19)

Given an admissible permutation g € [2"], let us now count the number of connected
components of the corresponding semi-meander of order n. Let 7 be the “rainbow” per-
mutation 7(¢) = 2n + 1 — i. Note that 7 changes the parity of the bridge label. On the
other hand, the admissible permutation g is readily seen to also change the parity of the
bridge labels. As a consequence, the permutation 74 preserves the parity of bridge labels.
In other words, even bridges are never mixed with odd ones. The successive iterations of
the permutation 7u describe its cycles. The corresponding meander will be connected iff
these cycles are maximal, namely g has two cycles of length n (one for even bridges, one
for odd bridges), i.e. 7u € [r?]. We get a purely combinatorial expression for connected

semi-meander numbers

M, = card{u € [2"] | cycles(op) = n+ 1, and i € [2?]}

(3.20)

More generally, the semi—-meander corresponding to p will have k connected compo-
nents iff 74 has exactly k pairs of cycles of equal length (one over even bridges, one over
odd ones).

The above conditions on various permutations are best expressed in terms of the
characters of the symmetric group. Denoting by [i*/] the class of permutations with v;
cycles of length i, and labelling the representations of Sa, by Young tableaux Y with 2n

boxes as custorary, the characters can be expressed as

X () = det (raes(@)] (3.21)
t,
where the Young tablean has ¢; boxes in its i-th line, counted from the top, t, = [I; %;,

Pm(6.) is the m-th Schur polynomial of the variables 4,, 4;,...

ki
pm(6) = Y H% , (3.22)

k;20,i=1,2,...
Tik;=m
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and we used the symbol f(8 )|, for the coefficient of the monomial []; %:} in the polynomial
f(8.). As group characters, the xy’s satisfy the orthogonality relation

S e (6D = R S (3.23)
where the sum extends over all Young tableaux with 2n boxes, [A] denotes the class of a

permutation A € S»,, and |[A]| the order of the class. The order of the class [¢*i] is simply

i __ (2n)!
I[t ]I - H.‘i"‘Vi!

The orthogonality relation (3.23) provides us with a means of expressing any condition on

(3.24)

classes of permutations in terms of characters. It leads to the following compact expression
for the connected semi-meander numbers

M, > 2 Seun Sy

litiles,, ne€(2"]
BA;=n+1

2711 1% 121}
["*%Eszn pGZS;,, Y,);Y" ((2”)')3

x xy (D xy (2" Dxy ([oaDxy (X Dy (edxy » ()

(3.25)

Analogous expressions hold for (higher genus) semi~meanders with k connected com-
ponents and for meanders as well.
3.3. Temperley-Lieb algebra

The Temperley-Lieb algebra of order n and parameter g, denoted by T'L,,(¢), is defined

through its n generators 1,e,,é€s, ...,e,—1 subject to the relations

(£) e? = qe; i=1,2,..,n—1
(#3) [ei,e5] = 0 i Ji—j|>1 (3.26)
(141) eieizr1ei = € 1=1,2,..,n—1

This definition becomes clear in the “braid” pictorial representation, where the generators

act on n paralle] strings as follows:

i+l [
1 = n e = (3.27)
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and a product of elements is represented by the juxtaposition of the corresponding braid
diagrams, like dominos. The relation (ii) expresses the locality of the e’s, namely that

the e's commute whenever they involve distant strings. The relations (i) and (iii) read

respectively

>0 i e X e D)

i 2 H :

3 e = =q = qe;

@ e 029)

: i : i
PG EC i+l D C i
(ifi) e; e & = - = - = ¢

In the relation (i), the loop has been erased, but affected the weight g. The relation (iii)
is simply obtained by stretching the (i + 2)-th string.

The algebra T'L, (g) is built out of arbitrary products of generators e;. Up to numerical
factors depending on ¢, any such product can be reduced by using the relations (i)-(iii).
The algebra T'Ln(gq), as a real vector space, is therefore naturally endowed with the basis-
formed by all the distinct reduced elements of the algebra. For illustration, the reduced
elements of T'L3(g) read

.. BP9..bd
o = DT e - 25d

(3.29)

gé di m
s NN/~

1 123 456789 101112 13)4 15161718
19

CE NS NN

Fig. 13: The transformation of a reduced element of TLg(q) into an arch
configuration of order 9. The reduced element reads ezesezeseze;eseqer.
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Let us now show that the reduced elements of T'L,,(q) are in one to one correspondence
with arch configurations of order n. This is most clearly seen by considering the braid
pictorial representation of a reduced element. Such a diagram has no internal loop (by
virtue of (i)), and all its strings are stretched (using (iii)). As shown in Fig.13, one can
construct a unique arch configuration of order n by deforming the diagram so as to bring
the (2n) ends of the strings on a line. This deformation is invertible, and we conclude that,

as a vector space, T'L,(g) has dimension
dim(TLA(g)) = cn (3.30)

This identification allows us to denote the elements of the basis of reduced elements

of TL,(q) by the corresponding arch configurations a of order n.

Fig. 14: The trace of an element ¢ € T Lg(g) is obtained by identifying
the left and right ends of its strings (dashed lines). In the arch configuration
picture, this amounts to closing the upper configuration by a rainbow of
order 6. 'Ia‘ he corresponding semi-meander has 3 connected components, hence
Tr(e) = ¢°.

A scalar product on T L,(q) is defined as follows. First one introduces a trace over
T Ln(g). From the relation (i) of (3.26), we see that in any element of T'L,(q) each closed
loop may be erased and replaced by a prefactor ¢g. Taking the trace of a reduced basis
element a corresponds to identifying the left and right ends of each string as in Fig.14, and

assigning an analogous factor to each closed loop, which results in a factor
Tr(a) = ¢° (3.31)

where ¢(a) is precisely the number of connected components of the closure of a by a rainbow

of order n: indeed, the rainbow connects the i-th bridge to the (2n + 1 — 1)-th, which
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exactly corresponds to the above identification of string ends. This makes the connection
with meander problems clear. In particular, this permits to identify the semi-meander
polynomial as

ma(g) = Y. @ =T( Y o (3.32)

arch configs. a red. basis
We also define the transposition on T L,(g), by its action on the generators e! = e;,
and the relation (ab)! = b'a’ for any a,b € TL,(g). In the arch configuration picture, this
corresponds to the reflection ¢ — (2n + 1 — 7} of the bridges. It may also be viewed as the

eeda /\
» O N M
fesbd

AN

reflection w.r.t. the river.

Fig. 15: The scalar product (e, f) is obtained by first multiplying e with
f*, and then identifying the left and right ends of the strings (by the dashed
lines). Here we have (e, f) = ¢3. The corresponding meander is obtained
by superimposition of the upper arch configuration a corresponding to e and
lower arch configuration b corresponding to f (the transposition of f is crucial
to recover b as lower arch configuration). Here the meander has c(a,b) =
c(e, f) = 3 connected components.

For any two elements e and f € T'L,(g), the scalar product is defined as
(e,f) = Tr(ef") (3.33)
This has a simple interpretation in terms of meanders. We have indeed
(e, f) = g* = go&t) (3.34)

where c(e, f) = ¢(a,b) is the number of connected components of the meander obtained by
superimposing the s and b arch configurations corresponding respectively to e and f (see
Fig.15 for an example).

The Gram matrix G,(q) of the reduced basis of T'L,(q) is the ¢, x ¢, symmetric
matrix with entries equal to the scalar products of the basis elements, namely

[6n(0)],, = Tx(ab) = ¢

(3.35)
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For instance, G3(g) reads, in the basis (3.29), with the order (eze;,e; ez, e2,€1,1):
3 2 2 2

¢ ¢ ¢ q q
@ ¢ q ¢ g
Gi(q) = [ ¢ ¢ ¢ ¢* ¢ (3.36)
¢ ¢ ¢ ¢ ¢
¢ q ¢ ¢ ¢

The meander and semi-meander polynomials are easily expressed in terms of the Gram
matrix. Arranging the elements of basis 1 by growing winding (in particular, the unit 1 is
the last eleinent), and defining the c,-dimensional vectors

@ = (1,1,1,---,1) 7 = (0,0,---,0,1) (3.37)

we have

mn(g) = 7-Gn(9)@
where Z - § denotes the ordinary Euclidian scalar product of IR°". Moreover, we also have
ma(q?) = tr(Ga(g)?) (3.39)

The Gram matrix G, (¢) contains therefore all the information we need about meanders

()

mn(q) =
(3.38)

and semi-meanders. In [10], using the representation theory of the Temperley-Lieb algebra
[15]), we have computed exactly the determinant of the Gram matrix (3.35), with the simple
result

det (Ga(9)) = [ Ui}~

() =20 )+ ()
(3.40)

where U;(q) are the Chebishev polynomials of the second kind (U,(z) = zUj-i(z) —
Uj-2(z), Us(z) = 1, Ur(2) = z). We have also used the convention that (J) = 0if j < 0.
For instance, the determinant of the matrix G3(g) (3.36) reads

Ds(q) = Ui(9)* U2(9)* Us(g) = ¢°(¢° - 1)*(¢* - 2) (3.41)

A remarkable fact is that D,(q) has only real zeros z, with |z| < 2. Actually, the
representation theory of T'L,(g) enables one to orthogonalize the Gram matrix (3.35)

Dn(q)

Qn i

explicitly. This in turn translates into new "RSOS-type” expressions for the semi-meander
and meander polynomials through (3.38) and (3.39) (see [10] for details). These expressions
display drastic differences according to whether |g| is larger or smaller than 2, a critical
value which will re-emerge in the subsequent section. Hopefully these will enable one to
study the large n asymptotics of the corresponding polynomials.
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4. Exact enumeration and its analyses: the winding transition

In this section, we present results of an exact enurneration of M¥) for small n (n < 29),
and analyze their large n extrapolation. The enumeration is performed by implementing
on a computer a recursive algorithm which describes all the semi-meanders up to some
given order. Clearly, the complexity is proportional to the Catalan numbers (¢, ~ 4")
hence the limitation on n.

This data is then used to derive a large ¢ expansion of the semi-meander polynomial
large n asymptotics, thanks to some remarkable property of the semi-meander numbers
with large number of connected components.

The main result of this study is a strong evidence for a winding transition from a
low-g < g. phase of irrelevant winding to a large-g > ¢. phase of relevant winding for

semi-meanders.

4.1. The main recursion relation

We derive now a recursion relation generating all the semi-meanders of order (n + 1)

from those of order n.

AN e, DS m,@

Ry n n

()]

{In

Fig. 16: The construction of all the semi-meanders of order n + 1 with arbi-
trary number of connected components from those of order n. Process (I): (i)
pick any exterior arch and cut it (ii) pull its edges around the semi-meander
and paste them below. The lower part becomes the rainbow configuration
Rn41 of order n + 1. This process preserves the number of connected com-
ponents k — k. Process (II): draw a circle around the semi-meander of order
n. This process adds one connected component & — k + 1.
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We start from any semi-meander of order n with k connected components, in the
open-river picture. We may construct a semi-meander of order (n + 1) in either following
way (denoted (I) or (II)), as illustrated in Fig.16

(I) Pick any exterior arch, i.e. any arch with no other arch passing above it. Cut
it and pull its ends all the way around the others (in. order to add two bridges), and
reconnect them below, by creating an extra concentric lower arch for the rainbow. In this
process, we‘ have n = n + 1, but the number of connected components has not changed:
k — k. Another way of picturing this transformation is the following: one simply has
pulled the exterior arch all the way around the semi-meander and brought it below the
figure, creating two new bridges along the way. As no cutting nor pasting is involved, the
number of connected components is clearly preserved.

(I1) Draw a circle around the semi-meander. This adds a lower concentric semi-circle
which increases the order of the rainbow to (n+1), and also adds one connected component
to the initial semi-meander k£ — & + 1.

These two possibilities exhaust all the semi-meanders of order (n + 1), as the trans-
formation is clearly invertible, by pulling back up the lower external arch of the rainbow.
Note that by construction, there are as many possibilities for the process (I) as exterior

arches, and the transformation is therefore one-to-many.

iI /ew\@
RS 7

|
{n -@{“) @y @ @ -@1— @
/4 \ ) (I)/ \ an /,)/ \(,, ay \(n)

@@@@@@@@@@@@@@

Fig. 17: The tree of semi-meanders down to order » = 4. This tree is
constructed by repeated applications of the processes (I) and (II) on the semi-
meander of order 1 (root). We have indicated by small vertical arrows the
multiple choices for the process (I), each of which is indexed by its number.
The number of connected components of a given semi-meander is equal to
the number of processes (II) in the path going from the root to it, plus one
(that of the root).



We may now construct a tree of all the semi-meanders, generated recursively from
that of order 1 (root), as displayed in Fig.17. Note that we have adopted the open-river
formulation to represent them.

Keeping track of the connected components, this translates into the following relation

between the semi-meander polynomials

Mn41(9) = Mn(g){ext.arch.),(q) + gma(q) (4.1)

where we denoted by (ext.arch.),(q) the average number of exterior arches in a semi-
meander of order n, weighed by ¢*, k its number of connected components. In (4.1), the
first term corresponds to all the processes (I), whereas the second term corresponds to (II).

Taking the large n limit in (4.1), this permits to interpret
R(q) —g = (ext.arch.)oo(g) (4.2)

as the limit when n — oo of the average number of exterior arches in semi-meanders of

order n, weighed by an activity ¢ per connected component. For large ¢, we get the limit
R(g)-¢ — 1 (4.3)

as the corresponding leading semi-meander has only one exterior arch. We also find for
g = 1 that there is an average of 3 = 4 — 1 exterior arches in arbitrary arch configurations
of order n. Finally, for ¢ = 0, the partition function per bridge R(0) is interpreted as the

average number of exterior arches in connected semi-meanders.

4.2. Numerical analysis

By implementing the above recursion on a c‘omputer, we have been able to enumerate
the semi-meander numbers up to n = 29 bridges, and the expectation values of various
observables up to n = 24 bridges. Many of these results can be found in [7] [10]. For
illustration, we give below a typical Fortran program, usable on any computer, for the

enumeration of the connected semi-meanders.



a1

PARAMETER (nmax = 14)
INTEGER A(-nmax-+1:nmax)
INTEGER Sm(nmax)

maximal order
arch representation
semi-meander counter

INTEGER n current depth (or order)
INTEGER j next branch to visit
DATA n, Sm /0, nmax*0/ n and Sm initialized to 0
A(0) =1 single-arch semi-meander
A(l)=0

2n=n+1 ! a new node is visited
Sm(n) = Sm(n) + 1
j=-mn+1 ! leftmost (exterior) arch

1 IF((n.EQ.nmax).OR.(j.EQ.n+1)) GOTO 3 ! up or down ?

A(A()) =nH1 ! go down with process (I)
A(n+1) = AQ)
A(j) =n
A 1,}) =j
GOTO 2
3 A(A(n+1)) = A(n ! going up
A(A(n)) = A(-n+1
Jj=A(m)+1 ! next arch to break

o Gr. 1) GoTo 1
IED&{%\IT (i3, 115)’, (n, Sm(n), n = 1, nmax)

This program lists the numbers Sm(n) = M, forn = 1, ..., nmaz .

This data was further analyzed by large n extrapolation, and we now present a few
results.

The results for R(q) and R(g) are displayed in Fig.18. The two functions are found
to coincide in the range 0 < ¢ < g. with ¢ ~ 2, and to split into R(g) > R(g) for q > ¢..
As explained before, the comparison between R(q) and R(g) determines directly whether
v(q) is 1 or not. The result of Fig.18 is therefore the signal of a phase transition at ¢ = g.
between a low-g regime where the winding is essentially irrelevant (v(¢) < 1} and a large-q
phase with relevant winding (v(g) = 1).

This is compatible with the direct extrapolation for v(g) displayed in Fig.19, which
is however less reliable in the region around ¢ = 2, due to its sub-leading (and probably
discontinuous) character.

The configuration exponent for semi-meanders v(g) is represented in Fig.20, for two
different orders in our extrapolation scheme. The extrapolation proves to be stable for
0 < g < 2. For ¢ > 2, it develops oscillations around a mean value, estimated to vanish

(7(q) ~ 0) for g large enough.
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Fig. 18: The functions R(g) and R(g) for 0 < ¢ < 4 as results of large n
extrapolations. The two curves coincide for 0 < ¢ < 2 and split for ¢ > 2
with R(g) > R(g). Apart from the exact value R( ) = R(1) = 4, we find the
estimates R(0) = 3.50(1), R(2) = 4.44(1), R(3) = 4.93(1) and R(4) = 5.65(1).

By analogy with critical phenomena, in addition to the scaling behaviors (2.6), (2.10)
and (2.8) involving the critical exponents y(g), «(g) and r(q), we expect to find more
refined scaling laws involving scaling functions. A particular example of such scaling
functions has been derived for ¢ = 1 (2.23), for the probability distribution P,(w) of the
winding w among arch configurations of order n. It involves the scaling function (2.24).
For ¢ = 0 we expect the same behavior for the corresponding probability distribution

Vi)
PO (w) = M"ff)"’) (4.4)

of winding w among connected semi-meanders of order n. We expect the scaling behavior

PO(w) ~ (4.5)

a0’ (@)

This is precisely what we observe in Fig.21, where we plot {w + 1),(0) P (w) as a
function of the reduced variable £ = (w +1)/{w + 1),,(0) for different values of n. Indeed,
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Fig. 19: The winding exponent v(gq) for 0 < ¢ < 8, as obtained from a
large n extrapolation. We observe a drastic change of behavior between low
¢’s and large ¢’s, with an intermediate regime where the extrapolation fails,
hence is not reliable. The dashed line indicates a possible scenario for the
exact function v(g), compatible with a transition at gc ~ 2. Apart from the
exact value v(1) = 1/2, we read v(0) = 0.52(1).

as already explained in the g = 1 case, we have taken the variable (w + 1) instead of w to
improve the convergence. All the data accumulate on a smooth curve, which represents the
scaling function f(%(¢). The shape of this function is reminiscent of that of the end-to-end
distribution for polymers. By analogy, we expect a certain power law behavior for small ¢

fOE ~ ¢ (4.6)
where @ satisfies the relation
a—vy = v(1+96) (4.7)
obtained by identifying
©) 1oL
P (0) x nyf (n" (4.8)
to )
M2_,,_1(0) = Yoy pre (4.9)
Mz(,,) M:n

For large ¢, we expect a behavior f ©)(g) ~ exp(—const. £%) with a possible Fisher-law
behavior 6§ = 1/(1 — v). The observed function of Fig.21 is compatible with these limiting

behaviors, although we cannot extract reliable estimates of the exponents & and 4.
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Fig. 20: The configuration exponent y(q) for 0 < ¢ < 4, from two different
large n extrapolations. Apart from the exact value (1) = 3/2, we estimate

¥(0) ~ 2.
4.3. Large q asymptotic expansions

In the previous subsection, we have observed two regimes for the semi-meander poly-
nomials, namely a low-g regime in which the winding is irrelevant and a large-g regime
where the winding is relevant, separated by a transition at a value of g = g. >~ 2. On the
other hand, we have already exhibjted an exact solution of the problem at g = oo (2.13),
and a first correction thereof for large ¢ in (4.3). It is therefore tempting to analyze the
large ¢ phase by a systematic expansion in 1/gq.

Let us write the large g expansion of the semi-meander polynomial 7, (g) of eq.(2.5)

—’sn—l) Mrsn—Q)

q g?

involving the semi-meander numbers in the form MR k=01, 2,... Remarkably, these

ma(g) = ¢ (M + +-4) (4.10)

numbers display some polynomial structure.

When k = 0, there is a unique semi-meander of order n with n connected compo-
nents, namely that made of » concentric circular roads, each intersecting the river through
one bridge, and therefore winding once around the source. Hence we identify the first
polynomial pg of degree 0 as

po(n) = M = 1 (4.11)
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Fig. 21: Plot of (w + 1),(0) P,so)(w) as a function of the reduced variable
& = (w+1)/(w+1),(0) for n = 2,3, ..., 24. The points accumulate to a smooth
scaling function f(©(¢). The erratic points correspond to small values of 7,
which have not reached the asymptotic regime.

When k = 1, all semi-meanders of order n with n — 1 connected components are made of
n — 2 concentric circles intersecting the river once each, plus one loop, drawn in-between
two consecutive circles, which intersects the river through two bridges and has no winding.

There are n — 1 available positions for this extra loop, resulting in
p(n) = MY = p—1 (4.12)

where we have identified the result as a polynomial p; of degree 1 in n.

More generally, using the recursive construction of the previous section, one can prove
the following proposition: the number MR s equal to a polynomial pg(n) of degree k&
in n, for all ¥ > 0 and n > 2k — 1. The proof is purely combinatorial, and to just give
a flavor of it let us compute the leading coefficient of pi(rn). The M"~*) semi-meanders
of order n with n — k components are generated in the tree 17, starting from the root,
by exactly k applications of the process (I) and » — 1 — k applications of the process
(I). This leads to ("}') ~ n¥/k! ~ pi(n) possible choices for n >> k. The choices
are however not independent, as consecutive applications of the process (I} may lead to

more possibilities. Those are included in the lower order coefficients of px(n), gathering
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lower order combinatorial factors. When n < 2k — 2, some non-polynomial corrections
emerge, signaling the break-down of the large ¢ phase of semi-meanders. In the latter, the

polynomial m,(g) is asymptotic to the series

oo

" Y pe(n)g (4.13)
k=0

which must display an asymptotic behavior of the form (2.6). This induces strong con-

straints on the polynomials pi(n), which allow for their complete determination up to

k = 18, out of their first values for small n, which were enumerated exactly up to n = 27

(the polynomials p; are listed in [10] for k¥ = 0,1, ...,18). In turn, these values of p; yield

the following large ¢ expansions of R(g) and &(q)

2 2 4 8 12 10 4 12 46
R g+1+ = + e~ + =+ =
(@) = q ¢© ¢ ¢ 7 ¢ ¢ g0 ¢
154 124 10 102 20 64

? =t tos et o O

g2 B T g4 T g5 g8 T g7 g
) =1 L_4_4 14 44 56 28 8 250 388
g ¢ ¢ ¢ ¢ ¢ ¢ ¢ g° gM

588 772 620 1494 5788 7580 690

T m gttt T wt (qF)

)

(4.14)

Moreover, due to the intrinsic polynomial character of the large g expansion (4.13), we
find that

1(g) =

(4.15)

This result is expected to hold as long as the corrections to the polynomial behavior of the
M"® are negligible. This condition defines precisely the large g phase ¢ > g.. Therefore
the exponent y(g) vanishes identically over the whole phase ¢ > ¢..

It is interesting to compare the result of these large ¢ expansions to the previous
direct large n extrapolations. As far as B(g) is concerned, we find a perfect agreement for
the values ¢ > 2, down to ¢ = 2, where we find R(2) ~ 4.442(1) using (4.14), in perfect
agreement with the previous estimate. The precision of (4.14) increases with ¢, leading to
far better estimates than before: R(3) ~ 4.92908(1), R(4) ~ 5.6495213(1)...

As to v(g), our prediction that y(g) =0 for all ¢ > 2 is compatible with the previous
extrapolation of Fig.20, where this value is represented in dashed line (indeed, the large ¢
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expansions give precise results down to ¢ ~ 2 where the extrapolations become dubious).
We therefore expect v(g) to have a discontinuity at ¢ = 2, where it goes from a non-zero
(g = 27) value to zero.

This is further confirmed by a refined analysis of the average winding (2.2) in the large
g phase. This requires a refined study of the semi-meander numbers M,(,"_k) (w) with fixed
winding w, which display a similar polynomial structure as the M8, Asa result, we
find that

(win(9) = Mg)n +u(g)

(4.16)

hence v(g) = 1 throughout the large ¢ phase, and the coefficients A(g) and p(g) have the
following large ¢ expansions up to order 14 in 1/q

,\(q)—12 2,2,2 .2 10 6 14 10
g ¢ ¢ ¢ ¢ ¢ ¢ ¢ q°
22 8 58 222 118 1
+;,To PEE T v (q?
(q)_2+10+g+g 134 246 622 1434 3178
# g ¢ ¢ q¢* ¢ ¢ q’ g8 q°
6834 13786 30834 66590 140582 1
q'° gt q12 + PIg PID (q?
(4.17)
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Fig. 22: The series A(q) (4.17) of 1/g up to order 14, for 1 < g < 8. The
curve seems to vanish precisely at ¢ = 2.



The plot of the function A(g) is displayed in Fig.22. Remarkably, this coefficient seems
to vanish at the point ¢ = 2 with an excellent precision. Since this coefficient must be
positive, we deduce that our large g formulas break down for ¢ < 2. We interpret this as
yet another evidence of the drastic change of behavior of the average winding (w), which
is no longer linear in n below ¢., and we find g. = 2 with an excellent precision.

In conclusion, we gave strong evidence for the existence of a winding transition of the
semi-meander partition function in the large n limit, taking place at a value ¢ = 2 which

we conjecture to be exact. The order parameter for this transition is clearly

L1 _ fAq) for ¢>gq.
nllrn;o n(w),, - { 0 for q < q.

(4.18)

which vanishes for ¢ < ¢. (irrelevant winding, i.e. v(¢) < 1) and is nonzero for ¢ > ¢,
(relevant winding, i.e. ¥(g) = 1). With the order parameter (4.18), the transition is found
to be continuous, as the leading coefficient A(g) (4.17) vanishes at ¢ = ¢g.. As argued
before, The low-g phase is characterized by a meander-type behavior of the semi-meander
polynomial, where R(q) = R(g). The smooth character of the transition is also visible
from the fact that R(g) approaches R(g) tangentially at ¢ = ¢, (c.f. Fig.18).

5. Conclusion

We must admit that none of the compact expressions (matrix model and symmetric
group) for the meander and semi-meander numbers, although conceptually interesting
(beautiful?), give an efficient way of computing them. There is always some lengthy process
involved, such as evaluating Gaussian averages of traces of words or writing the group
characters, which render the evaluation in fact untractable. The Temperley-Lieb algebra
connection is maybe one of the most promising approaches towards exact asymptotics, but
we have no definite answer to this day.

In the direct enumerative approach, we have analyzed the meander problem in the
language of critical phenomena, by analogy with Self-Avoiding Walks. In particular, we
have displayed various scaling behaviors, involving both scaling exponents and scaling
functions. We have presented strong evidence for the existence of a phase transition for

semi-meanders weighed by a factor ¢ per connected component (road).
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In a large-q regime (¢ > g.), the winding is found to be relevant, with a winding
exponent »(g) = 1, while the configuration exponent ¥(¢) = 0. In this regime, the partition
function per bridge for semi-meanders R(g) is strictly larger than that of meanders R(q).
The particular form of its large ¢ series expansion in 1/¢ (4.14) with slowly alternating
integer coefficients, which furthermore grow very slowly with the order, suggests a possible
re-expression in terms of modular forms of ¢, yet to be found. It is striking to notice that
our numerical estimate for R(2) agrees up to the third digit with the value

(4k)?

2 = a4 ———2—— = 4.4428... 5.1
i ,g(4k+1)(4k—1) (5.1)

suggesting maybe an infinite product form for R(g), which is still to be found.

In a low-q regime ¢ < g., R(g) and R(q) coincide, in agreement with an irrelevant
winding v(q) < 1. The exponent «(g) is no longer 0, but a strictly positive function of
q. We have estimated the value of the transition point g. =~ 2 with an excellent precision,
and we conjecture that g. = 2 exactly. This special value of ¢ has actually been singled
out in the algebraic study of the meander problem, in connection with the Temperley-Lieb
algebra as sketched in Sect.3.3. Indeed, as shown in [9], one can re-express the meander and
semi-meander partition functions as that of some Restricted Solid-On-Solid model, whose
Boltzmann weights are positive precisely iff ¢ > 2, indicating very different behaviors for
g<2andg>2.

There still remains to find the varying exponents v(¢) and v(g) in the ¢ < 2 regime, as
well as the precise value of R(g) = R(g). Although we improved our numerical estimates,
we are limited to conjectures. For ¢ = 0, we confirm a previous conjecture [7] that vy = 2,
and that [6] @ = 7/2. We also conclude from the numerical analysis that (0) =~ 0.52(1) is
definitely not equal to the trivial random-walk exponent 1/2.
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EXERCISES IN EQUIVARIANT COHOMOLOGY AND
TOPOLOGICAL THEORIES

R. STORA
Laboratosire de Physique Théorique ENSLAPP®, B.P. 110,
F-74941 Annecy-le- Vieuz Cedex, France
and
Theory Division, CERN, CH-1211, Geneva 28, Switzerland.

Equivariant cohomology is suggested as an alternative algebraic framework for the
definition of topological field theories constructed by E. Witten circa 1988. It also
enlightens the classical Faddeev Popov gauge fixing procedure.

1 Imtroduction

Before going into the subject of this talk, I would like to describe some concrete
exercises done by Claude and I which represent a very small portion of the
numerous discussions we had, mostly by exchange of letters. We happened to
be both guests of the CERN theory division during the academic year 1972-
1973.

The perturbative renormalization of gauge theories was still a hot subject,
and, whereas most of our colleagues considered the problem as solved we were
both still very innocent. I happened to be scheduled for a set of lectures for
the ” Troisiéme cycle de la Suisse Romande” in the spring 1973, on the subject
”Models with renormalizable Lagrangians: Perturbative approach to symme-
try breaking”, and I decided to conclude those lectures with a summary of the
known constructions related to gauge theories, mostly at the classical level,
except for a heuristic derivation of the now called! Slavnov Taylor identities,
taking seriously the Faddeev Popov ghost and antighost as local fields. What
had to be done was indicated in A. Slavnov’s preprint which I had remarked:
perform a gauge transformation of parameter m~1¢ where m is the Faddeev
Popov operator and £ the source of the antighost field. That strange trick was
due to E.S. Fradkin and I.V. Tyutin as indicated in Slavnov’s preprint. At
the time, I was not aware of J.C. Taylor’s paper which came to my attention
much later. Anyway, Claude and I carried out that calculation whose result is
reported in the notes, with details in an appendix for which the authors (A.
Rouet and I) thank Claude Itzykson for generous help 2. It is that form of the
identity which, a few months later drew Carlo Becchi and Alain Rouet’s atten-

*URA 1436 du CNRS, associée a I'Ecole Normale Supérieure de Lyon et a I'Université de
Savoie.
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tion, leading them to the remark that the gauge fixed Faddeed Popov action
possesses a symmetry naturally called the Slavnov symmetry. A year later,
when the paper by E.S. Fradkin and G.A. Vilkovisky on the quantization of
canonical systems with constraints came out, Claude and I had a conversation
on the telephone and we found we had both noticed that paper. I suggested
that the action they proposed possessed a Slavnov symmetry. A couple of days
later, Claude called me back and gave me the formula -at least in the case of
gauge constraints- which I immediately forgot. When I met E.S. Fradkin in
Moscow in the fall 1976, I told him about Claude’s finding, and there followed
the first article by I.A. Batalin and G.A. Vilkovisky who unfortunately thank
me for suggesting the problem, and do not mention Claude at all.

These are only two examples of the innumerable discussions we had on
physics and other things as well, mostly in writing, because life did not make
our trajectories intersect so often. The last long series of discussions I had with
him took place in Turku, Finland, at the meeting of the spring 1991. Almost
every evening, we were ambulating around the big lawn in front of the dining
room, trying to reconstruct, at his request, the arguments which produce the
existence of 27 straight lines on an unruled third degree surface. That was a
prelude to his later work on enumerative geometry.

Generous, he was; intelligent he was; cultivated he was; we remain deprived
of patiently gathered wisdom, a rather rare item.

Returning to technicalities I will now try to describe a few facts about
the Lagrangian formulation of topological -more precisely cohomological- field
theories, constructed by E. Witten from 1988 on, in as much as they are
relevant to our poor understanding of gauge theories. That is to say I will
insist on the field theory aspects in particular, the distinction between fields
and observables, even though a host of beautiful results and conjectures have
been obtained otherwise.

Equivariant cohomology is roughly forty five years old, and yet, does
not belong to most theoretical physicists’ current mathematical equipment.
The easy parts, namely, definitions, terminology, elementary properties are
described in the appendix whose content is freely used throughout the text.

Section 2 is devoted to a reminder on dynamical gauge theories and a
formal description of the Faddeev Popov gauge fixing procedure in terms of

notions belonging to the theory of foliations3.

Section 3 describes some aspects of ” cohomological” topological theories
with emphasis on some of the features which distinguish them from dynamical
theories at the algebraic level provided by the Lagrangian descriptions.



2 Formal aspects of dynamical gauge theories

Here are a few considerations on formal aspects of the Faddeev Popov gauge
fixing procedure which allowed to handle, thanks to the very strong conse-
quences of locality, the ultraviolet difficulties found in the perturbative treat-
ment of theories of the Yang Mills type. This can be found in most textbooks
and usually proceeds via factoring out of the relevant functional integral the
infinite volume of the gauge group produced by the gauge invariance of the
functional measure. There is a more satisfactory strategy sketched in J. Zinn
Justin’s book * which avoids this unpleasant step, and fits more closely math-
ematical constructions now classical in the theory of foliations3.

The set up is as follows:

M, is a smooth space time manifold, which one may choose compact with-
out boundary, in euclidean field theory. P(M,G) is a principal G bundle over
My, J (Ui x G) modulo glueing maps above U; N U;, where {U;} is an open

covering of M). G is a compact Lie group referred to as the structure group.
A is the set of principal connections a on P(M, G) (Yang Mills fields). On M,

ap = Y _aj(z)dz"e, e, : basis of Lie G (1)
a
On P(M,G), locally,
a=g 'ay g+9 'dg (z,9) local coordinates in U x G (2)
1
F(a) = da+ 5[a,a] 3)

is the curvature of a (the field strength).

A is acted upon by G, the gauge group, i.e. the group of vertical automor-
phisms of P(M,G) (”gauge transformations”). Upon suitable restrictions, .A
is a principal G bundle over A/G, the set of gauge orbits.

Dynamical gauge theories are models in which the fields are the a’s (and,
possibly matter fields), and the observables are gauge invariant functions of
the a’s (or functions on A/G).

For historical as well as technical reasons related to locality, one chooses
models specified by a local gauge invariant action

SYM(a) = é/M trF A xF. (4)

Heuristically, one considers the G invariant measure on A

QYM = C_SYM(a) A 6(1 (5)
Da



If {X,} denotes a basis of fundamental vertical vector fields representing
the action of Lie G on A, one constructs the Ruelle Sullivan® current

Qps = i(z(} Xo)v M (6)
which is closed and horizontal, therefore basic: (cf. Appendix A)
prs = 0
i(Xa)2rs = O (M
hence
€ Xa)rs =0 (8)

It follows in particular that Qgg is invariant under field dependent gauge
transformations.

Given a gauge invariant observable O(a), the question is to integrate it
against QQggs, or rather to integrate its image as a function on .A/G against the
image of Qgs as a top form on A/G.

A/G
Choose a local section ¥ (transverse to the fibers) with local equations

g9(a) =0 9)
and corresponding local coordinates a so that a local parametrization of A is
given by

a=a’ (10)

i.e. all a’s are, locally gauge transforms of points on the chosen transversal
manifold.

One can represent the transverse measure associated with the chosen sec-
tion as follows:

<0>n=/0(d)93512 = /O(ﬁ)ﬂﬂsm/ 6(g9) A dg
by p fiber

=1 '
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= /O(a)QRs 6(g)detm(Ag™'6g9)  (11)

where the volume Ag~16g is chosen so that

i(AdXd)(Ag_lég) =1 (12)
and m is given by
og
m= EDG (13)
Thus

Q}zs(/\g—lﬁg) =Qvar (14)

and the result follows:
<O >q= / O(a) 8(g) det m Qyar (15)

This, of course only holds if O(a) has its support inside the chosen chart.
By construction, the result is independent of the choice of a local section, two
local sections differing by a field dependent gauge transformation.

The final outcome is to replace Qy s by

Qymaen = Qvm Qen (16)

where
Qen = / D DuwDb #<4:9(a)>+<@.mu> (17)

where we have used the Stueckelberg Nakanishi Lautrup Lagrange multiplier &,
the Faddeev Popov fermionic ghost w, the Faddeev Popov fermionic Lagrange
multiplier (antighost) @. The modern reading of the exercise done with Claude
is that not only Qy a4y is invariant under the operation s

sa = —Dgw

swoo= —%[w,w] 55=0

s = -—tb

sb = 0 (18)

but, thanks to the introduction of the b-field,

i<bg>+<a,mw>=s(—<,9>) (19)



This allows to discuss perturbative renormalization using all the power of
locality. The useful part involves the local cohomology of Lie G in terms of
which the observables can be defined and which also classifies obstructions to
gauge invariance due to quantum deformations (i.e. anomalies).

We shall see in the next section that the cohomology involved in topological
theories is different !

Of course the above discussion is local over orbit space, and a constructive
procedure to glue the charts is missing. This is the Gribov problem.

3 Cohomological Theories

E. Witten’s 1988 paper ® contains several things. First, invoking ”twisted
N =2 supersymmetry” E. Witten gets an action S(a, ¥, ¢;...) where 1 resp ¢
is a 1 resp 0 form with values in Lie G and the dots represent a collection of
Lagrange multiplier fields. Then it is observed that

QS=0 (20)
with
Qa=1y infinitesimal
QY = Dy Q? = gauge transformation (21)
Qp=0 of parameter ¢

Furthermore there is an identity of the form

/trF AF=5-Qx(a, ¢, p;..) (22)

where x is gauge invariant.
The observables are classified according to the gauge invariant cohomology
of @, with the example

Qir FANF = —dir2Fy
Qir2FyY = —dir (Y AY+2Fp)
Q tr(¥nd +2FY) = —d(29yp)
Qtr2yvp = —ditrp®
Qtrp* = 0 (23)

It follows that integrating the polynomials exhibited in these descent equa-
tions over cycles of the correct dimensions yields (non trivial !) elements of
the cohomology of @ whose correlation functions are conjectured to reproduce
Donaldson’s polynomials.
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Very soon after the appearance of E. Witten’s article, L. Baulieu and
I.M. Singer  remarked that Eq.(22) can be rewritten as

S = /tr FAF+Qx(a,¥,¢;...) (24)

so that this action looks like the gauge fixing of a topological invariant. Fur-
thermore, at the expense of introducing a Faddeev Popov ghost w, @ can be
replaced by s:

sa = Yv—Dyw

s = —DQ+[pw] s2=0
sw o= Q- %[w,w]

Q= —w,Q

(25)

(For homogeneity in the notations, we have replaced ¢ by Q).

This has however a defect, namely, s has no cohomology and therefore is
not adequate to describe the physics of the model.

Inspired by an article by J. Horne 8, devoted to a supersymmetric formu-
lation of this model, S. Ouvry, R. S. and P. van Baal °® solved that difficulty
by phrasing J. Horne’s observation as follows: S and x are not only gauge
invariant but also are independent of w !

In other words they are invariant under

I(X), L(X), A€ lLieG
IAw = A I()) other =0 (26)
L(Mw = [A,w] L(A) other = infinitesimal gauge
transformation of parameter A
and, one can verify that
L) = [I(M), sl (27)

The cohomology that defines the physics of the model is the basic coho-
mology of s for the operation {I(A), L(A)}. This is not empty and coincides
with that of Q. Looking into that direction was suggested during a semi-
nar by P. Braam at the CERN theory division in the spring 1988. There it
was stated that the subject was the equivariant cohomology of A (restricted to
F = xF). Further geometrical interpretations of 9w were given by L. Baulieu
and .M. Singer” and the general set up was precisely phrased in terms of equiv-
ariant cohomology by J. Kalkman ! who developed the algebraic equipment
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further. Two general types of equivariant cohomology classes are involved in
the present models:

- Mathai Quillen ! representatives of Thom class of vector bundles (Gaus-
sian deformations of covariant é functions). Those occur in the action.

- Equivariant characteristic classes of vector bundles. They are expressed
in terms of an arbitrary invariant connection'?. They provide the known topo-
logical observables. In the case where the manifold to be quotiented is a princi-
pal bundle, Cartan’s ”theorem 3”3 transforms equivariant cohomology classes
into basic cohomology classes, by the substitution w — @, — Q, where w is
a connection and 2 its curvature. It is expressible in terms of another iden-
tity in which integral representation of both bosonic and fermionic é functions
provides other terms in the action:

/ DwDQ §(w — &) (R —-Q) =1 (28)

This can only be understood if w is introduced, although it does not always
appear in the action.

We shall now illustrate these general recipes in the case of topological Yang
Mills theories (Y M;%).

The observables are constructed as universal cohomology classes of A/G
as follows: consider the G bundle P(M,G) x A and, on it, the G invariant G
connection a (a zero form on A, a one form on P(M, G)).

The equivariant curvature of a, in the intermediate scheme (see appendix
A) is

int = F(a)+ 9 +Q (29)
with
P = ba. (30)
In the Weil scheme, we are interested in
R} =F(a)+ ¢ +Q (31)
with
Y =éa+ Dyw. (32)

This is the object first considered by L. Baulieu, [.M. Singer ".
The equivariant characteristic class tr(RES")? fulfills

(d+ 6) tr(RSI)? =0 (33)

which provides the descent equations (Eq.23). Replacing w by w, Q by €1, where
w is a G connection on A, provides a basic form on P(M,G) x A.



One may choose 7 !

1
;méa (34)
provided reducible connections are excluded.

Let now O;(a, ¥, w,2) be equivariant classes of A obtained by integration
over cycles in M with the proper dimension. We want to find an integral
representation in terms of fields of the form on A/G corresponding to a basic
form O = [[; O; and, in the case of a form of maximal degree (”top form”) of
its integral.

Let a be coordinates of a local section ¥

5=-D

i bg.. bg - o _
9(@) =0 ééa = i(lp — D@) =0 (35)

We have
0((1111))‘:))6)‘2 =0 (&,6&+ D&‘D|E;D]Exé|2) (36)

This defines a cohomology class on .A/G, independently of the choice of %,
because of the basicity of O. The expression at hand can be expressed through
the introduction of a collection of é-functions.

First, in the case of Y M}, one has to restrict to F = *F, which goes
through a é function or a smeared gaussian thereof according to the Mathai
Quillen formula (cf. Ref!! and appendix A).

The replacement w — & © — ) can be carried out using the § functions
of Eq.(28):

/ §(w — 5)5(Q — Q) DwDQ
= / Do DADWDN 5 +8)(Hw-3) (37)

where s is extended to
Q= o-[WwqQ
s = [Q,9Q] - [w,] (38)
If & is the solution of a local equation e.g.
D¥ = Di(6a+ Do) (39)

this can be rewritten, thanks to the cancellation of determinants, as:

/ DwDODGDN *OD7F) (40)
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Other local choices can be made, e.g. the flat connection determined by the
local section X4, but, in this case, a change of local section produces a change
of representative in the cohomology class under consideration due to the asso-
ciated change of connection.

Finally, the restriction to X goes via the insertion of the é function identity

/ 6(a —a)é(y — ¥)DaDy = 1 (41)
This can be rewritten as
/ DaDy / DaDy eC+O#(a-3) — 4 (42)
with
sp = a-[w, 9]
sa = [9,9]~w,a] (43)

Integrating over all a’s and ¥’s yields a field theory representation of forms
on orbit space, as advocated in ref!?. Integrating over the superfiber (the
tangent bundle of a fiber with Grassmann variables on the vectorial part)
yields a formal field theory representation of the integral over orbit space of a
basic top form. In terms of the local equations Eq.(35), this can be rewritten
as

/ DaDy / DaDy *(19(9) = | (44)
with
sy = Btw-y
s = -Q-3+wp (45)

where the dot denotes the action of G on the bundle over A of which g is a
section.

If O is a top form, integration transforms the integration over the fiber,
in Eqgs (42, 43) into integration over .4, after localizing O inside the domain
of X. The result is then a functional integral of the exponential of an action
of the form sx. If this representation involves ultraviolet problems one may
conjecture that, besides the necessity to include in x all terms consistent with
power counting the gauge fixing term in Eq.(44) has to be written in the
form sWyx where W is another operation which anticommutes with s and
involves a Faddeev Popov ghost field, its graded partner, and the corresponding
antighosts. This however is still waiting for confirmation.
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In support of the relevance of these constructions, one may give a few
examples:

1) The equivariant curvature Eq.(31),(33) precisely yields the observables
constructed by E. Witten via the interpretation given by L. Baulieu, I.M. Singer.
The same method yields the observables constructed by C. Becchi, R. Col-
lina, C Imbimbo* in the case of 2-d topological gravity (see also L. Baulieu,
I.M. Singer 7).

ii) Recent work by M. Kato!® and collaborators remarking the equivalence
of some pairs of topological conformal models through similarity transforma-
tions of the form e® is interpretable by R = ip(w), in J. Kalkman’s language'°.

ili) The identification in topological actions of terms which fix a choice of
connection is an additional piece of evidence 8,4,

4 Conclusion

The formalism of equivariant cohomology provides an elegant algebraic set
up for topological theories of the cohomological type. Its relationship with
N = 2 supersymmetry via twisting is still mysterious and may still require
some refinements before it provides some principle of analytic continuation. At
the moment, it is still a question whether topological theories can be treated
as field theories according to strict principles!* or whether the formal integral
representations they provide can at best suggest mathematical conjectures to
be mathematically proved or disproved.
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Appendix A

Equivariant Cohomology

Example 1.

M is a smooth manifold with a smooth action of a connected Lie group
G;Q*(M) is the exterior algebra of differential forms on M, dps the exterior
differential; A € Lie G is represented by a vector field A € Vect M.ipr(A) = i(A)
operates on Q2*(M) by contraction with }A; the Lie derivative is defined by

e () =£(Q) = [i(Q), dul+ (46)
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One has
[im(A),ie(AN)]+ = 0
[ (M) i (N)- = im([AX])
[l (M), ba(X)]- = em([AA]) (47)
Forms w € Q*(M) such that
iM(A)w=0 Vielieg (48)
are called horizontal.
Forms w € Q*(M) such that
y(MDw =0 Vi€elieg (49)

are called invariant.

Forms which are both horizontal and invariant are called basic.

The basic de Rham cohomology is the cohomology of das restricted to
basic forms.

Generalization.

E is a graded commutative differential algebra with differential dg and
two sets of graded derivations ig(A) (of grading -1) £g()) (of grading 0) ful-
filling Eq.(47), with M replaced by E. The notions of horizontal and invariant
elements similarly generalize as well as that of basic cohomology.

Example 2: The Weil algebra of G : W(G).

W(G) = A(Lie G)* ® S ((Lie G)*) (50)

whose factors are generated by w, of grading 1, 2 of grading 2, with values in
Lie G. We define the differential d,, by

dww = Q-— %[w,w]
dw Q@ = [w,9Q] (51)
tw(A), tw(A) by
tw(d) = [iw(A),dw]y:
O = Dol
w (A2 = [A9Q] (52)
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Definition: The equivariant cohomology of M is the basic cohomology of
W(G)®Q" (M) for the differential dw +dar and the action i (A)+iar (A), bw (A)+
Lu(N)-

This is the Weil model of equivariant cohomology.

One can define the intermediate model according to J. Kalkman'® by ap-
plying the algebra automorphism

z— e MWy (53)
which transforms the differential into
dint = dw +dpr + €y (W) — im () (54)
and the operation into

i,’ng(/\) = iw(/\)
line(A) Cw (A) + eamr(A) (55)

From this one easily sees that the equivariant cohomology is that of [Q*(M)®
S ((Lie G)*)]° with the differential

de = dy — in(Q) (56)

where the superscript G denotes G-invariant elements. This is the Cartan
model 3,19 If M is a principal G bundle with a connection &, the mapping

w—-o Q=0 (57)

where € is the curvature of &, maps isomorphically the equivariant cohomology
of M into its basic cohomology, independently of the choice of @. This is
Cartan’s theorem 313

There are two standard ways to produce non trivial equivariant cohomol-
ogy classes:

1) 12 If the action of G can be lifted to a principal bundle P(M, K) with
structure group K, and T is a G invariant connection on P(M, K'), the inter-
mediate equivariant curvature is defined as

n

R, (T) = Din:T + %[I‘, I'l= R(T) —ip(Q)T (58)
One has

0
A R (V)] (59)

iint(’\) R:Zz(r)
lint(N) RSY

int



It follows that any K invariant polynomial of Lie K, P;,, yields an equiv-
ariant ”characteristic” cohomology class. This can be written in the Weil
model using Kalkman’s automorphism and is at the root of the construction
of topological observables ¢, 14.

i) If E(X,V) is a vector bundle over the manifold X, reducible to G, one
may write

E(X,V)=P(X,6)®g V (60)

where P is the associated frame bundle.
There is a basic cohomology class, the universal Thom class obtained as

follows!!:

10 = 8(v) Adv = No / db dw ' <Pv>+<d,dv> (61)

for some normalization constant Ny where b and @ € V*, the dual of V, [ dw
means Berezin integration, and <, > denotes the duality pairing. Introducing
s by

sv = dvtwrv=vY 4wy

sdv = —-Qu+wdy

sw = Q- %[w,w]

sQ = —[w,9

sw = —ib—dw

sib = —ibw +oQ (62)

One may write

10 = 6(v)(Adv) = Ny /db do e*<@V> (63)

It is easy to prove that
r= Ny / db d *l<@w>-i(@4)] (64)

where (@, b)is 2 G invariant bilinear form on G*, is an equivariant class of V,
with fast decrease. Replacing w by @, a connection on P(X,G), yields a basic
class of E(X, V), once written in the Weil scheme (1w ;i = dv — wv, whereas
Yint = dv). The extension of the s-operation to the integration variables brings
a substantial simplification to the original calculations.

The substitution of v by a section v(z) transforms r into the cohomology
class associated with the submanifold of X defined by v(z) = 0.
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Formula 64 gives the Mathai Quillen representative of the Thom class of
E(X,V) and leads to a gaussianly spread Dirac current of the submanifold in
question.

As a last example, used in the text, let us describe the Ruelle Sullivan3?
class associated with an invariant closed form w on M:

wprs = H(Aa€a)w (65)

where e, is a basis of Lie G.
That wpgs is both closed and invariant follows from the closedness and
invariance of w, and horizontality is trivial (i(e4)i(eq) = 0).
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N =2 SUPERCONFORMAL FIELD THEORIES IN 4
DIMENSIONS AND A-D-E CLASSIFICATION
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Making use of the exact solutions of the N = 2 supersymmetric gauge theories
we construct new classes of superconformal field theories (SCFTs) by fine-tuning
the moduli parameters and bringing the theories to critical points. In the case of
SCFTs constructed from pure gauge theories without matter N = 2 critical points
seem to be classified according to the A-D-E classification as in the two-dimensional
SCFTs.

Recently there have been some major advancements in our understanding
of the strong coupling dynamics of 4-dimensional supersymmetric gauge theo-
ries ™%, In the case of N = 2 supersymmetry exact results for the low-energy
effective Lagrangians have been obtained for a large class of gauge groups and
matter couplings #3515 It turned out that the prepotential of the effective
theory develops singularities in the strong coupling region when some of the
solitons become massless. The behavior of the theory around the strong cou-
pling singularities can be determined by rewriting the theory in terms of the
dual 'magnetic’ variables. Information on the strong coupling behavior of the
theory together with its known behavior in the weak coupling region leads to
a complete determination of the prepotential in the whole range of the moduli
space.

In this paper we make use of these exact solutions of N = 2 supersym-
metric gauge theories and construct systematically new classes of N = 2 su-
perconformal field theories (SCFTs) in 4-dimensions. We use the approach of
refs 1617 where the parameters of the moduli space of the theory (expectation
values of the scalar field of the N = 2 vector multiplet) and masses of matter
hypermultiplets are adjusted so that massless solitons with mutually non-local
charges coexist. When solitons of mutually non-local charges are present, the
system is necessarily at a critical point and one obtains a superconformal field
theory.

* Address after September 1996: Department of Physics, University of California, Berke-
ley, CA 94720
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a complete determination of the prepotential in the whole range of the moduli
space.

In this paper we make use of these exact solutions of N = 2 supersym-
metric gauge theories and construct systematically new classes of N = 2 su-
perconformal field theories (SCFTs) in 4-dimensions. We use the approach of
refs.'617 where the parameters of the moduli space of the theory (expectation
values of the scalar field of the N = 2 vector multiplet) and masses of matter
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system is necessarily at a critical point and one obtains a superconformal field
theory.
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In the following we first describe our recent work 8 and discuss in detail
the SU(N) gauge theories coupled with matter hypermultiplets and find new
classes of non-trivial SCFTs. We locate superconformal points and determine
the critical exponents of scaling operators. We shall see that the nature of the
SCFTs is controlled by the unbroken sub-group of SU(N) and the global flavor
symmetry. We then study SCFTs based on SO(N), Sp(2N) gauge theories.

It turns out that in the case of pure gauge theories without matter hy-
permultiplets SCFTs constructed from SU(N + 1), SO(2N + 1) and Sp(2N)
gauge theories are identical and form a single universality class. On the
other hand, SCFTs constructed from SO(2N) are distinct and form another
universality class. We call these as Ay-type and Dy-type SCFTs, respec-
tively. Critical exponents of their scaling fields are expressed by a formula
2(e; +1)/(h+2), i =1,2,---,N where e; and h are Dynkin exponents and
dual-Coxeter numbers of Ay and Dy algebras, respectively.

This suggests the possibility of the A— D — F classification of N = 2 four-
dimensional SCFTs. As for the case of the Ey gauge theories, we will analyze
their critical behaviors by making use of the string-theoretic construction given
recently in 2! which reproduces elliptic curves and differential forms of known
N = 2 gauge theories starting from K3-fibered Calabi-Yau manifolds. In the
case of SCFTs based on En groups we again find the formula for their critical
exponents 2(e; + 1)/(h + 2) where e; and h represent the Dynkin exponents
and dual-Coxeter numbers of Eg, E7 and Eg algebras.

Thus we conjecture that there exists a A — D — E classification behind
the N = 2 4-dimensional SCFTs: the classification originates from that of
the degeneration of K3 surfaces which appear in the Kj-fibered Calabi-Yau
manifolds in the study of heterotic-type II string duality 2°:22:23,

SCFTs from gauge theories coupled to matter

Let us first briefly recall the results of ref!” on SU(2) gauge theory. In the
case of the gauge group SU(2) it is possible to introduce matter hypermultiplets
(in the vector representation) up to Ny = 4 without loosing the asymptotic
freedom. In 17 authors considered the case of a common mass m = m; (=
1,--+,Ny) for all Ny flavors. This is the case when the highest criticality
is reached for each value of N;. Parameters of the theory are then given
by u = %Trqﬁz and m where ¢ denotes the scalar field of the N = 2 vector
multiplet.

Let us discuss the case of N; = 2 for the sake of illustration. We first
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recall that the exact solution of the theory is described using an elliptic curve

2
C: yzz(rz—u+£\8—)2—A2(r+m)2, (1)

where A 1s the dynamical mass scale of the theory. The discriminant of the
curve is given by

A= %A"(sz —8u+ A?)2A,,, (2)
Ay = (8u — 8Am + A?)(8u + 8Am + A?). (3)

The power 2 of the factor 8m2 — 8u + A? in A means that the singularity at
u = u* = m? + A?/8 has a multiplicity 2 and belong to the 2 representation of
the flavor symmetry group SU(N; = 2). When the mass m becomes large, this
zero of the discriminant moves out to co as u & m? and becomes the massless
squark singularity with its bare mass +m being canceled by the vacuum value
a = xm of the scalar field ¢. Let us call such a singularity as the squark singu-
larity although in the strong coupling region it represents a massless solitonic
state carrying a magnetic charge.

In order to locate the superconformal point one first sets the value of u at
the squark singularity u*. Then the curve and A,,; become

¥ =(z+m)}(z—m—A)z—m+A), An=4A*2m+A)?(2m—A)%. (4)

One then adjusts the value of m at m* = £A/2 so that A,, vanishes. Then
the squark singularity collides with the singularity of the monopole (or dyon)
and we generate a critical behavior
A 3A

v =(z% 5)3(1' ¥35) (5)
It is straightforward to analyze perturbations around this critical point and
determine scaling dimensions [u], [m] of the parameters u, m given by [m] =
2/3,[u] = 4/3. Results of ref!” are summarized in Table 1.

Nf m u Cg Cs
1 4/5 | 6/5
2 2/3 | 4/3 2
3 172 | 3/2 2 3

Table 1: Universality Classes of N = 2 SCFTs based on SU(2) Gauge Theory

We note that in the cases Ny > 2 there appear Casimir operators Cj
associated with the global flavor symmetry group SU(N;) with the dimensions

[Ci]l=J.



70

Let us now turn to the case of the SU(N,) theory and start presenting
our results. We consider the case of Ny matter hypermultiplets in vector
representations with a common mass m. (We may add extra flavors with
different masses, however, at critical points this amounts only to shifting the
rank N, of the group). The curve is given by °

C: y? = C(z)? - G(z), (6)
2N.—-N .
C(z):IN°+323N‘_2+*--+5NC+A I Z sz Nc—l( "V'f )mt’
=0 !
(M
G(z) = A2N==N1 (z + m)Nr | (8)

where the terms proportional to A2V<=Ns in C(z) are absent in the case N; <
N.. The meromorphic 1-form is given by

C-y
A=zdlo . 9
8Ty (9)
Expectation values of the scalar field ¢ are obtained by integrating the 1-form
around suitable homology cycles of the curve.

When N; > 2, it is possible to show that the discriminant of the curve C
has a factorized form

A=AAp, (10)
A, = (Clz = -m)™ (11)

((10),(11) may be shown in the following way. In the case of even flavors
N{, = 2n we can split the curve as y? = y;(z)y-(z) with y+(z) = C(z) £
AVe=m(z 4+ m)”. Then the discriminant becomes A = (resultant(y4,y-))? x
resultant(yy, y,) x resultant(y—,y_). Here ' means the derivative in z. If one
.uses the formula resultant(y4,y-) = C(—m)", one recovers (11). The N;y=odd
case may be treated in a similar way). The factor A, carries the power Nj
and represents the squark singularity. In our search for superconformal points
let us first set A, = 0. This fixes the value of sy, at s}, = —(—m)Ne —
s3(~m)Ne=2... The function C(z) becomes divisible by z + m and expressed
as C(z) = (z +m)Ci(z) with a polynomial C;(z) of order N — 1. The curve

becomes y? = (z + m)? (C’;(:c)2 — ANe=Ny (g 4 m)Nf'z). It turns out that

the value of A, at sy = s} factors as A; Ay, where A, is (a power of)
the resultant of Ci(z) and z + m. We next set A; = 0 by adjusting the
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parameter sy_j to its critical value s};_;. Ci(z) then becomes divisible by
z + m and is written as C1(z) = (z + m)Cs(z) with a polynomial Cz(z) of
order N — 2. The curve now has a 4-th order degeneracy at z = —m, y? =
(z + m)*(Ca(z)? — A2Ne=Nr(z + m)Ns—*) and describes a critical theory.

We can iterate this procedure. We extract powers of z + m from C(z) by
adjusting parameters sy,snN—_1,SN—2, - -- successively and bring the curve to
higher criticalities. As far as the extracted power £ of z + m from C(z) does
not exceed Ny /2, the order of degeneracy of C(z)? is lower than that of G(z)
and the curve acquires a degeneracy of order 2¢,y% ~ (z + m)%.

When £ becomes greater than N;/2, the order of degeneracy of C(z)?
exceeds that of G(z) and one can not necessarily increase the criticality of the
curve by extracting higher powers out of C(z). As we shall see below, when
Nj;=odd, the highest criticality of the curve is given by Ny, y? ~ (z + m)™’
while in the case of even flavor Ny = 2n it is given by N.+n, y? = (z4m)Vetn,

We classify critical points of SU(N,) theories into 4 groups;

2<2n—-2, Ny=2n

1. 2= (z+m)%, { < 2 NIt (12)
2. ¥ = (z+m)M; Ny=2n+1 (13)
3. ¥ (z+ml, Ny =2n (14)
4. ¥ = (z+m)Pths, 0<p<N.—n, Ny=2n (15)

It turns out that theories of the class 1 above are free field theories. In order
to construct non-trivial theories we have to bring the criticality of the curve
at least as high as N; as in (13),(14),(15). We first analyze the SCFTs of the
class 1 above and then turn to the discussion of the non-trivial SCFTs given
by the classes 2, 3 and 4.

Class 1

In these theories the G(z) term in the curve (6) has a higher criticality
than C(z)? and may be ignored when we analyze the theory at the critical
point. We may also ignore terms with higher power of z + m in C(z) than
(z + m)t. Then y? ~ C(z)? = (z + m)?*. We apply perturbations to this
critical point as

C(z) = (z+m)' —tj(z +mY, 0<j<e-1 (16)

Perturbation splits the ¢-fold zeros of C(z) at £ = —m into j-fold zeros. In
order to describe the removal of the degeneracy we make a change of variable

q:_—.—-m+t,-?%fz. (17)
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Then
C(z) =t; 77 (24 = 29). (18)

Integration contours of the 1-form are given by the paths connecting (¢ — j)-
th roots of unity in the complex z-plane. It is possible to show that the term
dlog(C—y)/(C+y) in A (9) does not produce a factor dependent on ¢;. Only a
power of t; appears from the factor z in front of dlog(C —y)/(C +y) under the
change of variable (16). Thus periods behave as a;,aP ~ tjﬁ. By requiring
the dimensions of the periods to be unity'?, we find that [t;] = £ — j. Integral
values of the dimensions indicate that this is a free field theory.

In addition to the above perturbations removing the degeneracy of the
roots of C(z) we may consider perturbations which remove the degeneracy of
the masses m;, i = 1,-- -, Ny of the hypermultiplets. Under perturbation G(z)
is replaced by

Ny
A2Ne—Ny ((:z:+m)N! +ZCi(x+m)N/—"), (19)

=2

Proceeding as in the previous case we can easily determine the exponents of
the fields Ci(z + m)Ns % as

[Ci] =1, 1=2,---, Nj. (20)

These are in fact the Casimir operators of the SU(N;) flavor symmetry.

A basic feature of the superconformal points of the class 1 is that the value
of the mass m is left arbitrary at the critical point and the critical values of the
tuned parameters s};_,sk__;, -, Sh._s41 Decome simultaneously large as the
mass m 1s increased. Values of the other parameters sa,- - -, sn§. ¢ are not fixed
at the critical point and we may also take them to be large. Thus the critical
points of class 1 stretch out to the “exterior region” of the moduli space.
When the values of the moduli parameters are all much larger than A, we
may adopt the semi-classical reasoning. If we ignore instanton effects and put
A = 0, the curve becomes classical y? = C(z)? = (2™ + 5222 4+ ... + sy)?
and its discriminant is given by a classical expression. Then the condition
of degeneracy of the function C(z) ~ (z + m)* becomes the condition of the
degeneracy of the eigenvalues of the field ¢, i.e. £ of the eigenvalues of ¢ have
to coincide. This implies that the SU(€) sub-group of SU(N.) is left unbroken
at class 1 superconformal points.

Thus near the region of the critical points of the class 1 theories we have
effectively an SU(#) gauge theory coupled with N; hypermultiplets. Since
2¢ < Ny, the theory is in the asymptotically non-free regime. We expect that
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class 1 theories are at trivial fixed points. Let us denote the class 1 theory
with the behavior y? ~ (z + m)% as Mg’.

Class 2

Let us now turn to the class 2 theories which are intrinsic to the odd flavor
case Ny = 2n+ 1. Class 2 theories are obtained by further extracting powers
of z+m from the function C(z). Once the extracted power £ exceeds n, C(z)?
term becomes irrelevant at the critical point and the curve is dominated by
the term G(z), ¥*> ~ (z + m)™’ . The perturbations on the eigenvalues of ¢ are
given by

y2'—‘((z+m)t"tj(l’+m)j)z——AZN“-N’(:z:—i-m)N/ (21)
= t?(z + m)2j _ AZNC—NJ (:L’ + m)N!’ 0<j< Nf/z (22)

By making a change of variable as
z=-m+t; L z (23)

and using the fact that C' & y, we find that again the only power of ¢; comes
from the factor z in front of the 1-form. The scaling dimensions are given by

N . .
[t,-]:Tf-J, i=0,1,---,n. (24)
These fields have half-integral dimensions. If one restricts oneself to relevant
fields, there exist only two [t,] = 1/2, [t,_1] = 3/2.
There also exist Casimir operators associated with the SU(N;) symmetry
and the operators carry integral dimensions

(Csl=3 (25)

as in the class 1 case.

The special feature of the class 2 theories is that these superconformal
points do not depend on N, so far as 2N, > N;. In fact the dimensions of the
relevant operator 1/2,3/2 are exactly the same as in the case of N, = 2 (see
Table 1). Thus they represent a universality class of N = 2 SCFTs with the
global SU(N; = odd) symmetry. We denote this universality class as Mg,':i‘ll

As in class 1 theories class 2 conformal points extend to the semi-classical
regions of the moduli space, i.e. all the adjusted parameters grow as m in-
creases. (The case Ny = 2N. — 1 is an exception. In this case the value of m
is fixed to be in the strong coupling region m* =~ A). The same argument as
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in the class'1 theories applies and we have effectively an SU(£) gauge theory
interacting with Ny matter multiplets. In the present case, however, 2¢ > N;
and the system is in the asymptotically free regime. Thus the class 2 theories
are non-trivial and are interacting superconformal models.

Class 3

Let us now go to class 3 theories of even flavors Ny = 2n. These theories are
obtained by further adjusting the parameters of class 1 theories so that a power
(z + m)” is extracted from C(z). C(z) is written as C(z) = (z + m)"Cn(z)
with an (N, — n)-th order polynomial Cyn(z) and the curve becomes

y? = (z +m)* (Ca(z)” — A7), (26)

Without further tuning parameters the curve has the behavior y? ~ (z +m)?".

Class 3 theories also extend to the semi-classical regions {s;},m > A. At
the class 3 critical point the unbroken subgroup is SU(n) which is exactly the
gauge group whose beta function vanishes in the presence of Ny = 2n flavors.
Class 3 theories are therefore expected to be in the same universality class
as the known N = 2 SCFT %1112 of SU(n) gauge theory with 2n massless
matter multiplets. In fact we may decompose each of the squark superfields
Q% a=1,2,...,2n (belonging to the vector representation of SU(N.)) into a
sum of vector and singlet representations of SU(n). Then the bare masses of
the squark superfields of the vector representation of SU(n) are exactly can-
celed by the vacuum expectation values of the field ¢ (which has n degenerate
eigenvalues —m). Thus there exist 2n massless squarks belonging to the vec-
tor representation of SU(n). Hence the class 3 theories belong to the same
universality class as the massless N = n, Ny = 2n theory. We denote this
universality class as M27.

Class 4

Let us now turn to class 4 theories of even flavors Ny = 2n. We start from
the curve of the class 3 theory (26) and enhance its criticality by adjusting the
parameters of C,,(z). We first note that the right-hand-side of (26) is given
by a product of factors, (z + m)?® and C,(z)? — A2Ne=Ns_ The first factor
describes the curve of the M27 theory and the second factor describes that of
the pure Yang-Mills theory of gauge group SU (N, —n) (without matter fields).
Thus class 4 theories are interpreted as the coupled model of M2? and pure
Yang-Mills theories.
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Let us rewrite the curve as
¥’ = (z + m)**(Ca(z) + AV7")(Cn(z) ~ AN-"™) (27)

and expand C,h(z) in powers of (z + m), Cn(z) = (z + m)Ne=" — Nm(z +
m)Nemm=1 4 Sy(z + m)¥em"2 4 ... 4 Gy, _n. We can successively adjust the
parameters as §j__, = —ANe"", 5%, | = 0 etc. and bring the curve to
higher criticalities. The number of available parameters is N, — n and hence
the highest criticality is given by 3% ~ (z + m)M<*". The parameters of the
most singular curve are all fixed inside the strong coupling region and hence
it represents an inherently strongly coupled field theory (at a lower criticality
there are parameters which are left undetermined). We denote the universality
class represented by a curve y*> = (z + mPP*?* (0 <p < N, —n) as M7 .

Let us next analyze the perturbations of the most critical theory M K{: +n-
Properties of perturbations of other theories are similar. The critical value of
the mass m* vanishes in M}7, and we may set m = 0 from the start. (The
case Ny = 2n — 2 is an exception. In this case m* is non-zero and is of the
order of A). Then it is easy to locate the critical point

S, =0,8N._1 =0, -, sh_p = AV s =0,53=0. (28)
(XNy > Ne, sin.-N, = —A2Ne=Ny /4). The curve reads as y? = gVetn (gNe=n—
2A2N=Np),

We then apply perturbations of the form t;z7 to C(z),
v~ (2N —tjzd)2"”, 0<j<N.—1. (29)
If we make a change of variable
= tjml‘_J z, (30)
we find y & (VAN SN 6 2/ MeDom and | < [CL
The 1-form behaves as
A = zdlog(l ~ y/C)/(1 + y/C) ~ —2xd(y/C) ~ 1= +2-/2WNe=d) (1)
Hence the dimensions are given by

2(Nc _.7)

, <j<N,.—1. 32
N.+2-n 0<ys (32)

[t;] =

Class 4 theories are strongly coupled conformal theories and the dimensions of
the scaling fields (32) could become arbitrary small as N. is increased.
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It is easy to repeat the computation in the case of lower critical points
Mm2zn 4o with p < N, — n and we find that the dimensions of the perturbations
are given by (32) with N, — n being replaced by p. In fact the lower critical
point of an SU(N,) gauge theory corresponds exactly to the most critical one
of the gauge theory of a lower rank SU(N/, = n + p).

In summary, we have obtained the list of universality classes of Table 2.

class name dimensions

1 My %< {;§3 Nfe
Lo {hiboon
P {%:iz‘f"’i,;;,"

Table 2: Universality Classes of N = 2 SCFTs based on SU(N.) Gauge Theory

In the second row of dimensions in each universality class exponents of the
Casimir operators of the global flavor symmetry are listed. Note that a part
of the scaling dimensions of the Mz,,_,_,, theory (2, j = 2,---,p) agree with
those given by the pure SU(p) gauge theory.

Let us next discuss SCFTs based on N = 2 gauge theories with gauge
groups SO(N,.) and Sp(2N.) coupled with matter in vector representations.

We first recall that the curves of SO(N.) and Sp(2N.) theories are given
by 781213

P2

SO(?r) . y2 — C(z)2 _ A2(2r—2—N1)I4(x2 _ mz)Ny, (33)
C(z) =z + 52222 4 -+ -+ 59, 022% + &2,

SO(2r+1):  y* = C(z)? — A2Cr=1=Nng2(g? — m?)Ns, (34)
C(z) =¥ + 528”2 4 .- + 593,22 + 53,,

Sp(2r):  &?y? = C(z)® — A2CCHD=N (g2 _ m2)Ns (35)
C(-’B) = 22r+2 + 32221' 4+ S2":1:2 +A2(r+1)—meN,‘

(There is an extra term P(z) which is a polynomial of order 2Ny — (N, — 2)
in z and m for Ny > N./2 —2(N; > N./2 —3/2) in SO(N. = even)



(SO(N. = odd)) theories). The 1-forms read as

C—y
= zdl ) SO(N. )
zdlog 5 (Ne) (36)
_ C—zy.
A= zlegC+zy' Sp(2N.). (37)

We can again adjust the moduli parameters and extract powers of £2—m?2 from
C(z) and bring theories to superconformal points. Depending on the power £
of (2 — m?)? extracted from C(z) and the parity of N; we can construct the
analogues of the class 1-4 theories.

It is easy to argue generally that the SCFTs built on SO(N.), Sp(2N.)
gauge theories with m* # 0 are identical to those we have just constructed
for SU(N.) gauge symmetry. In fact at the critical point 2 & m*2? # 0 extra
factors of z* and z? in (47)-(49) beome irrelevant and the curves and the 1-
forms become exactly the same as those of the SU(N.) case. Thus the scaling
dimensions of the theories are identical to those listed in Table 2.

We may also note that when the m* # 0, the global flavor symmetry
of the theory is SU(Ny) irrespective of the gauge groups. Moreover, when
C(z) is divisible by (z? — m?)¢, the unbroken subgroup of the gauge group is
given by SU(£). (The scalar field ¢ possesses £ pairs of degenerate eigenvalues
m, —m which breaks the gauge groups SO(2r), Sp(2r) down to SU(¥), £ <
r). Thus the flavor group and the effective gauge group coincide with those
of the SU(N.) theory and the SCFTs built on SO(N.), Sp(2N,) agree with
those of SU(N.). Note that, however, SCFTs based on SO(N,) and Sp(2N.)
gauge theories with m* = 0 have flavor symmetries Sp(2N;) and SO(2Ny),
respectively 12 and belong to different universality classes.

SCFTs constructed from pure gauge theories

So far we have assumed that Ny > 2 so that we can distinguish squarks
from other singularities. Let us now turn to the discussion of the pure gauge
case Ny = 0 and its universality classes. As we shall see below, SO(2r + 1)
and Sp(2r) theories have critical points at £ = z* # 0 and their SCFTs belong
to the same universality as the SU(r + 1) theory. On the other hand, SO(2r)
theories have critical points at £ = £* = 0 and provide new universality classes.

In the case of SU(r + 1) and SO(2r) one can easily locate the highest
criticality of pure N = 2 Yang-Mills theories: y* = z"*+! for SU(r + 1) and
y? = £2"+2 for SO(2r). The moduli parameters are tuned to be of the order A
and these are strongly coupled SCFTs. Let us denote their universality classes
as M A, and M D, respectively. Scaling dimensions are given by 2;/(r+3) (j =
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2,3,---,7+1) for MA, and j/r (j =2,4,---,2r — 2,r) for M D,, respectively.
On the other hand, in the case of groups SO(2r+1) and Sp(2r) it is not easy to
locate the highest criticality explicitly. By counting the number of parameters,
however, we find that the singularity is of the form y? = (z? — »2)"™* (b # 0
is of order A) and their SCFTs belong to the same universality class as M A,.
In summary, in Table 3 we present a list of universality classes in N = 2 pure
Yang-Mills theories with classical gauge groups.

name gauge groups dimensions

e+1 e=1,2,---,r

h+2 h=r+1

e+1 e=13,--,2r-3,r—-1
h+2 h=2r-2

MA, SU(r+1),50(2r+1),Sp(2r) 2

MD, S0(2r)

Table 3: SCFTs based on N = 2 pure Yang-Mills theories

We explicitly write down the dimensions for lower rank theories:

rank 2: MA, 4/5, 6/5
rank 3: MA; 2/3, 1, 4/3
MA, 4/7, 6/7, 8/7, 10/7
{ MD, 1/2, 1, 3/2, 1
Note that there exist unique universality classes in rank 2 and 3 theories
and they coincide with the SU(2) gauge theory with Ny = 1 and Ny = 2

flavors, respectively (see Table 1). At rank 4, there appear two universality
classes and one of them, M Dy, coincides with the N; = 3, SU(2) theory.

rank 4:

E,, Gauge Theories

In the above we have seen that the SCFTs based on pure gauge theories
with gauge groups SU(r+1), SO(2r+1), Sp(2r) coincide and give a universality
class M A, of SCFTs while those based on SO(2r) are different and provide
another universality class M D,.. Critical exponents of both series are expressed
as

e; +1
2
h+2’
where e; and h are the Dynkin exponents and dual-Coxeter numbers of the
algebras A, and D,. This result suggets the possibility of an A — D — E type
classification of N = 2 SCFTs.

t=1,2,---,r (38)
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We would like to now discuss critical behaviors of E,, gauge theories in or-
der to test the idea of the A-D-E classification. At the moment an explicit so-
lution of E,, gauge theories is not known although a method for their construc-
tion has been suggested in°. In the following we adopt a different approach
making use of a string-theoretic derivation of the 4-dimensional Yang-Mills
theories 2021, In 2! authors have streamlined the derivation of (hyperelliptic)
curves and differential forms of the N = 2 Yang-Mills theory by considering
the Calabi-Yau manifolds with a K3 fibration 22:22:23, For instance, we start
from a Calabi-Yau hypersurface in a weighted projective space WP}, 55,

W:L

1 1 1
24(13?4 + 37%4) + —léz + 312 + §$§ + 1/)0(111321231415)
1 1
'l'—'//1(1'719"'2:'3:3)6 12(1112)12 =0. (39)

(39) is known to describe the SU(3) pure gauge theory in the field theory limit
20 By introduing new parameters a = —1/;0/1/)1, b=152, ¢=—/9? and
change of variables z,/z3 = C'i‘fb'é", 2 =zol1s 12, W is rewritten as

1 b 1 1
W(, a,b,c)= ﬁ(C+E+2)x52+l2xé2+3x4+ 5+6\/_(xox3)6+(f)610x3x415

(40)
For each fixed value of z, W = 0 describes a K3 surface (we choose a patch
To — 1).
Discriminant of the Calabi-Yau manifold (40) is given by
A (b—1)((1-c)? = bcA)(((1 — a)® — ) - bc?) (41)

The field theory limit is achieved by taking
= —2cu¥2/3v/3, b=e2A%, c=1- e(—2u?3/3v/3 +v) (42)

and letting ¢ = (a’)3/? — 0. Here u,v are gauge invariant Casimirs of SU(3).
After a suitable change of variables W takes the form

6
W==z+ A—+QC’A,(:L',u,v)+.‘>‘2 +w? (43)
z

where Ca,(z,u,v) = % — uz — v.
Now one considers the period integral of the holomorphic 3-form on the

Calabi-Yau manifold
dz ds A\dzx
w= / Q= / W (44)

6ww°
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In the case of the A, singularity

ow
Sw

=22+ A%/z+ 2Ca,(z,u, v) + 52. (45)

w=0
The integral over s is trivial and equals 27. The boundary of the s-integration
is given by
A6
z+7+2C'A,(:z:,u,v)=0 (46)

which describes the spectral curve?4'°. If one shifts z — y— Ca,, one recovers
the hyperelliptic curve

v = Ca,(z,u, v)2 — AS, (47)

The period is rewritten as

d(y d(y — Ca,) 2 _ __AS
w_w/ Adz =7 (y Cay) ' Yy =Ca,— A

= wfxdlog(y —Ca,) = Ef:z:dlog % (48)

which reproduces (9).

In the above we have considered the case when K3 surface (ALE space) de-
generates to have an Aj-type singularity. We may generalize this construction
and consider the case when K3 surface degenerates into more general types of
ADE singularities. In the case of E, singularities one can no longer perform
the s-integral and reduce w to an integral over a Riemann surface. It turns
out, however, we can still analyze the critical behavior of w and determine the
exponents of the F,, gauge theories.

Let us first discuss the Fg theory,

AS
W=z+—+ 2CE,(z, s) + w?,
Ce (z,5) = z* + s® + u 2?5 + uazs + usz? + urs + ug + uyy  (49)
where u; are the perturbations of the F singularity. The period is given by

w:/EA ds Adzx (50)
z \/z + 42 4 2Cg,(z, )

The critical point is located at

=0, s* =0, 2" =A% u}, = —2A% (51)
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Let us first determine the exponent of the parameter u;. By perturbing away
from the critical point

2= AS+tMAN325 gz =t g s =11/35 wu, =114, (52)
we have
ds A\ dZ
s t1/2'1/2+1/4+1/3/d2 A ~ 17/12 53
VZ2+ 28+ 8B +u 225 (53)

By introducing the unit of mass p we find
t #12/7’ uy & #2/7_ (54)

Thus the perturbation u; has the exponent 2/7. We can similarly determine
the exponents of the parameters u; (i = 4,5,7,8,11). They read as

2(e; + 1)

1 =1,4 1
1 i=145781 (55)

and hence again fit to the formula 2(e; + 1)/(h + 2) where the dual-Coxeter
number h of Es is 12.

We may also compute exponents for the F; and Fs gauge theories. Sin-
gularities are described by the polynomials

Cg,(z,5) = 23+ 25° + wis* + uss® + urzs + ugs® + uniz

+u13s + ui7, (56)
Cry(z,5) = 2° 4 5% + u12%5 + uzz?s 4 uy12° + uiazs + w7z’
+uy198 + u23x + ugg. (57)

We find that their critical exponents are given by

2(_6%1) i=1,5,7,9,11,13,17 forE;  (58)
&3;—1) i=1,7,11,13,17,19,23,29  forEs (59)

(58) (59) again fit to the formula (38).

It is easy to check that the above construction reproduces the exponents of
Table 3 in the case of A, and D, singularities. Thus we have some considerable
evidence for the A-E-D classification of SCFTs originating from pure N =
2 gauge theories. The pattern of the classification follows from that of the
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degenéraion of K3 surfaces which appear in the heterotic-type II duality based
on K3-fibered Calabi-Yau manifolds. More details will be discussed elsewhere.
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The Selberg trace formula on a Riemann surface X connects the discrete spectrum of
the Laplacian with the length spectrum of the surface, that is, the set of lengths of the
closed geodesics of on X. The connection is most strikingly expressed in terms of the
Selberg zeta function, which is a meromorphic function of a complex variable s that is
defined for R(s) > 1 in terms of the length spectrum and that has zeros at all s € C
for which s(1 — s) is an eigenvalue of the Laplacian in L?(X). We will be interested in
the case when X is the quotient of the upper half-plane H by either the modular group
T; = SL(2,Z) or the extended modular group I' = GL(2,Z), where v = (|, ®) € T acts
on X by z ++ (az + b)/(cz + d) if det(y) = +1 and z ++ (e¢Z + b)/(cZ + &) if det(y) =
In this case the length spectrum of X is given in terms of class numbers and units of
orders in real quadratic fields, while the eigenfunctions of the Laplace operator are the
non-holomorphic modular functions usually called Maass wave forms. (Good expositions
of this subject can be found in [6] and [7]).

A striking fact, discovered by D. Mayer [4, 5] and for which a simplified proof will be
given in the first part of this paper, is that the Selberg zeta function Zp(s) of #/I" can
be represented as the (Fredholm) determinant of the action of a certain element of the
quotient field of the group ring Z[T'] on an appropriate Banach space. Specifically, let V be
the space of functions holomorphic inD = {2 € C| |z — 1| < £} and continuous in D. The
semigroup {7 € T'| 7(D)) C D} acts on the right by m (% 5) f(2) = (cz + d)~2f(225). In
particular, for all n > 1 the element (? ,‘. ), which can be written in terms of the generators

o= (i?) and p = (‘; i) of T as 0"~ !p, acts on V. It turns out (cf. §2) that the formal
expression

=(1-a)"=3 [in (1)

defines an operator L, = w (L) of trace class on V (first for R(s) > i, and then by

analytic continuation to all s). This implies that the operator 1 — L, has a determinant
in the Fredholm sense; and the result then is:

Theorem 1. The Selberg zeta function of H[T is given by
Zp(s) =det(1 — Ly). (2)
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degeneraion of K3 surfaces which appear in the heterotic-type II duality based
on Ks-fibered Calabi-Yau manifolds. More details will be discussed elsewhere.
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The Selberg trace formula on a Riemann surface X connects the discrete spectrum of
the Laplacian with the length spectrum of the surface, that is, the set of lengths of the
closed geodesics of on X. The connection is most strikingly expressed in terms of the
Selberg zeta function, which is a meromorphic function of a complex variable s that is
defined for R(s) > 1 in terms of the length spectrum and that has zeros at all s € C
for which s(1 — s) is an eigenvalue of the Laplacian in L?(X). We will be interested in
the case when X is the quotient of the upper half-plane # by either the modular group
Iy = SL(2,Z) or the extended modular group I' = GL(2,Z), where v = (: :) € I' acts
on H by z — (az + b)/(cz + d) if det(y) = +1 and z — (az + b)/(cz + d) if det(y) = —1.
In this case the length spectrum of X is given in terms of class numbers and units of
orders in real quadratic fields, while the eigenfunctions of the Laplace operator are the
non-holomorphic modular functions usually called Maass wave forms. (Good expositions
of this subject can be found in [6] and [7]).

A striking fact, discovered by D. Mayer [4, 5] and for which a simplified proof will be
given in the first part of this paper, is that the Selberg zeta function Zr(s) of #/I' can
be represented as the (Fredholm) determinant of the action of a certain element of the
quotient field of the group ring Z[I'}on an appropriate Banach space. Specifically, let V be
the space of functions holomorphic in D = {z € C | |z—1| < £} and continuous in D. The

semigroup {y € I' | 7(D) C D} acts on the right by =, ( :)f(z) =(cz+ d)""‘f(%). In

particular, for all n > 1 the element (t: : ), which can be written in terms of the generators

o= (i?) and p = (? :) of T as o~ !p, acts on V. It turns out (cf. §2) that the formal
expression

L=0-0""o=3 [in (1)

defines an operator Ly, = m,(L) of trace class on V (first for ®(s) > , and then by

analytic continuation to all s). This implies that the operator 1 — L has a determinant
in the Fredholm sense; and the result then is:

Theorem 1. The Selberg zeta function of H/T is given by
Zp(s) =det(1 - L,). (2)
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(Actually, Mayer’s result is that the Selberg Zeta function of #/T'y equals det(1 — L2),
but everything works in much the same way for the two groups I' and I'; . We will discuss
both cases, but in our exposition have given precedence to the larger group I'.)

On the other hand, as we already mentioned, the function Zr(s) has a meromorphic
continuation with zeros corresponding to the eigenvalues of even Maass wave forms on
SL(2,Z). Formally, equation (2) says that these zeros correspond to the fixed points of
Ly, ie., to the functions h € V such that h(z) = Y ne,(z + 2)"2*h(1/(z + n)). Adding
2~25h(1/2) to both sides we find that h(z) + z=2°h(1/z) = h(z — 1), or equivalently, that
the shifted function ¥(z) = h(z — 1) satisfies the three-term functional equation

W(z) =Pz + 1)+ 272 ¢(1 +1/2). (3)
It is therefore natural to ask whether there is a direct connection between the spectrum of
the Laplace operator A on H/T" and the solutions of the three-term functional equation.
Such a connection was discovered (independently of Mayer’s work) in [2], whose main
result, in a slightly strengthened form, can be stated as follows:

Theorem 2. Let s be a compler number with 0 < R(s) < 1. Then there is a canonical
bijection between square integrable solutions of Au = s(1 — s)u in H /T and holomorphic
solutions of (3) in the cut plane C' = T~ (—o00, 0] satisfying the growth condition ¢(z) =
O(1/z) as z — oo.

The formula for the correspondence 4 ++ 1 in [2] was completely explicit (eq. (12) below),
but its proof was indirect and did not make the reasons for its properties at all transparent.
Other proofs and several other formulas for ¢ in terms of u were found in [3], where it was
also observed that this correspondence is exactly analogous to the relationship between
a holomorphic modular form and its period polynomial in the sense of Eichler, Shimura,
and Manin. We will call the function (z) the period function of the wave form u.

Taken together, these two theorems give another point of view on the Selberg trace for-
mula: Theorem 1 relates the “length spectrum” definition of the Selberg zeta function to
the fixed points of the operator L, and hence, by implication, to the solutions of the func-
tional equation (3), and Theorem 2 relates the solutions of (3) to the “discrete spectrum
of the Laplacian” definition of Zr. In this paper {(which, except for the simplifications in
the proof of Theorem 1, is mostly expository) we will discuss both aspects. Part I uses
reduction theory to establish the connection between the Selberg zeta function and the
operator L, . In §1 we outline a proof of Theorem 1. The details (e.g. the proofs of vari-
ous assertions needed from reduction theory, verification of convergence, etc.) are filled in
in §2, while the following section gives various complements: the modifications when I'
is replaced by I';, a reformulation of some of the ideas of the proof in terms of group
algebras, and a brief description of Mayer’s original approach via the symbolic dynamics
of the continued fraction map. Part II describes the connection between the solutions
of the functional equation (3) and the eigenfunctions of the Laplacian in #/T'. We will
give several formulas for the ¥ « 9 correspondence, sketch some the ideas involved in the
proof, describe the analogy with the theory of periods of modular forms, and discuss some
other properties of solutions of (3) on €’ or on R*. Here we will give fewer details than
in Part I and omit all proofs, referring the reader to [2] and [3] for more information.
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PART I. REDUCTION THEORY AND THE SELBERG ZETA FUNCTION

§1. The formal calculation. The basic conjugacy invariants of an element « € T" are the
numbers Tr(v), det(vy), and A(y) = Tr(y)? — 4det(y) (trace, determinant, discriminant).
We will call v hyperbolic if A(7)is positive and (to distinguish between 4 and —v, which
act in the same way on H) also Tr(y) > 0. If v is hyperbolic, we set

Tr(y) + A}

2 %—s -5
N = (FEBEY e < M A

A(y)F  1—det(y) N(y)—"

(se9

and define k(v) as the largest integer k such that v = +% for some «o € I' (which is then
hyperbolic and primitive, i.e. k(7o) = 1). The Selberg zeta function Zr(s) for I' is defined
by
oo
()= JI [I0-de(n™Nn)™™™)  (R(s)>1),
{¥}inT m=0
4 primitive
where the notation “ {7} in I'” means that the product is taken over all (primitive hyper-
bolic) elements of I" up to I'-conjugacy. That the function Zr(s) extends meromorphically
to all complex values of s is one of the standard consequences of the Selberg trace formula,
which expresses its logarithmic derivative as a sum over the eigenvalues of the (hyperbolic)
Laplacian in #/T.
For ®(s) > 1 we have the simple computation

oo

~logZr(s)= Y, .3 %det(’y)""' N (y)~*(e+m)

{y}inT m=0 k=1
v primitive

1 N
2 X R T da( A

{v}in I k=1
¥ primitive
Z ﬁ Xs(7) (4)
{+}inT

+ hyperbolic

where the last step just expresses the fact that every hyperbolic element of I' can be
written uniquely as v* with v primitive and k¥ > 1.

To get further we use a version of reduction theory. This theory is usually presented
for quadratic forms, but is translatable into the language of matrices by the standard
observation that there is a 1:1 correspondence between conjugacy classes of matrices of
trace ¢t and determinant n and equivalence classes of quadratic forms of discriminant
t2 — 4n. We define the set of reduced elements of I" by

Red={(‘: 3)er| 0< a<bec< d},
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i.e. matrices with non-negative entries which are non-decreasing downwards and to the
right. (We will explain in §3B where this definition comes from.) Then we have the
following facts, whose proofs will be indicated in §2:

(I) Every reduced matrix can be written uniquely as a product ((: ,:1) .- (? ,,ll
ny,...,ne > 1 for a unique positive integer £ = £(v).

(II) Every conjugacy classes of hyperbolic matrices in I' contains reduced representa-
tives ; they all have the same value of £(y) and there are £(7y)/k(y) of them.

(III) If v is reduced, then the operator m,(vy) is of trace class and Tr w,(y) = xs(7)-

) with

Combining these assertions with (4), we find

—log Zr(s) (I"—;) Z 2-(%3)(-(7)

v€Red
ain (TGZM ﬁ "’(7)>
5 r(E:E ) ©

and this is equivalent to (2) by the definition of £ and the Fredholm determinant formula
log det(1 — L,) = — 152, Tr(LE)/2.

§2. Details. In this section we verify the assertions (I)—(III) and establish the validity of
the formal calculations of §1 for ®(s) > 1; (2) then holds for all s by analytic continuation.

A. Proof of (I). Suppose that v = ({ :) € Red. If a = 0 then vy = (T :,) with d > 1
and we are already finished with £(y) = 1. If a > 0, we set n = [d/b] ~ 1 (i.e. n is the
unique integer n < d/b < n + 1). One easily checks that this is the only n € Z for which
v = (? :, )v* with 4* € Red. Moreover, the sum of the entries of v* is smaller than that of

v, so we can assume by induction that 4* has the form claimed, and then so does v with
ty) =&r")+1.

B. Proof of (II). This is essentially equivalent to the theory of periodic continued

fractions: to each hyperbolic matrix y = (: :) we associate the roots 5%@ of
vz = z, which are quadratic irrationalities; two <’s are conjugate if and only if the
corresponding roots are I'-equivalent; each quadratic irrationality has a continued fraction
expansion 1/(m; + 1/(m2 + 1/--.)) which is eventually periodic; and if the fixed point
of v has a continued fraction expansion with period (ni,...,n;) then v is conjugate to
the reduced matrix (? nll) ce- (? nll) with n;,...,n¢ > 1. However, one can also do the
reduction procedure directly on the matrix level. We define a conjugacy class preserving
map F from the set of hyperbolic matrices to itself by v = (% 3) = F(y) = (: ) )—'7(?;

where n is the unique integer for which the interval 7,7 + 1] contains both d/b and c/a.
{This definition must be modified slightly if a = 0.) Notice that if v is reduced then this

is the same n as was used in the proof of (I) and F(v) is simply +* (? '1‘) in the notation
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above. The effect of F on a reduced matrix y = (; ,,ll (i ,) is thus simply to replace

it by the cyclically permuted product F(y) = (?,:z . l,,‘)(1 ny ). It is clear that

under this “internal conjugation” the exact period of v will be the number £(vy)/k(7y).
(Proof. If 4 is the kth power of another matrix 4’ with k > 1, then v’ is also reduced and

hence also a product of matrices (1 ), and the cycle (n,...,7n¢) for v is just the k-fold

concatenation of the cycle for 4'; and conversely if the cycle of v is a k-fold concatenation
then v is a kth power. Hence £(v)/k(7) is the exact period of the sequence of integers
{n:}.) The assertion of (II) is thus proved if we show that (i) iterating F often enough
eventually sends an arbitrary hyperbolic element of I" to an element of Red, and (ii) two
elements of Red are I'-conjugate only if they are already “internally” conjugate, i.e., if and
only if one is mapped to the other by a power of F. Both steps are proved by a series
of elementary inequalities which show that each application of F' “improves things” (i.e.
either makes a non-reduced matrix more nearly reduced in the sense that some positive
integer measuring the failure of the inequalities defining Red gets smaller, or else reduces
the size of the entries of the matrix conjugating one reduced + into another). We omit
the details, which are exactly parallel to the proofs of the corresponding assertions in the
usual reduction theory of quadratic forms as carried out in standard books, e.g. in §13
of [8].

C. Proof of (III). If v is reduced, then v maps the closed interval —5, 5] into the
half-open interval (0,2] and hence maps the closed disk D into the open disk I». Standard
results from the theory of composition operators on spaces of holomorphic functions (cf. [5],
Thm. 7.9 and Lemma 7.10 and the papers cited there) then imply that the operator 74(g)
is of trace class and that its trace equals x,(g).

D. Verification of convergence. The operator L, = n,(£) sends h € V to

(Lsh)(2) = Z (z+ )% z_|l_n) .

Since A is holomorphic at 0, the sum converges absolutely for s in the half-plane R(s) > 1
to a function which again belongs to V, and the absolute convergence also implies that
this operator is of trace class. We have to show that in the smaller half-plane R(s) > 1
all of the steps of the calculations in (4) and (5) are justified. But this follows from the
calculations themselves: The absolute convergence of the product defining Zr(s) (and
hence of the sum defining its logarithm) for ®(s) > 1 is well-known, and since in (4) and
(5) all terms are replaced by their absolute value when s is replaced by its real part, the
various interchanges in the order of summation are automatically justified. The validity
of the last line of the proof also follows, since the formula 3 Tr(A4%)/¢ = —log det{1 — A4)
is true for any trace class operator A for which 3 |Tr(A¢)/¢| converges. We can also run
the calculation backwards (and hence verify the convergence of the infinite product for
Zr(s) in the half-plane ®(s) > 1) by showing directly that the sum M, := 3°_ Red Ix+(7)I
is convergent for R(s) > 1. Indeed, we have

of (ke JE=E\ RO G (k+/PED) RO
Z P —4 + Z ,

2
> VEk2+4 2

k>3
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with ¢t = # {7 € Red | Tr(y) = ¥, det(y) = £1}, and the required convergence follows
from the estimate ¢ « k'** (Ve > 0), which is obtained by straightforward estimates
using the divisor function.

§3. Complements. In this section we discuss some further aspects of the proof given in
the last two sections.

A. The Selberg zeta function for SL(2,Z). In this subsection we treat the case
when the group I' = GL(2,Z) is replaced by its subgroup Iy = SL(2,Z), the usual
modular group. We denote by Z(s) the Selberg zeta function for I'y, which is defined
for R(s) > 1 by the same product expansion as before but with the product running
over I'j-conjugacy classes of primitive hyperbolic elements of I';. As mentioned in the
introduction, the statement of Theorem 1 for I'; is the identity

Z(s) = det(1 - L?). (6)
We indicate the changes that have to be made in the proof of §§1-2 in order to prove this.

The calculation (4) is unchanged except that now the summation is over I';-conjugacy
classes and the number (v) must be replaced by %;(v), the largest integer n such that v
is the nth power of an element in I';. For the first line of (5) we needed that

£(v)
el = "€Red |y ~ = —, 7
v #{r eRed |7 27} = 35 ™
which followed from Statement (II). This must now be replaced by
()
r, = '€ Red [ ~ = , 8
vel #{1 €Red |7 ~ v} % (1) (8)
which we will prove in a moment. The first line in (5) then becomes
2
—log Z(s) = —xs{v), 9
gZ(s)= Y, T Q)

v€r NRed
and the restriction 4 € I'; implies that in the last line of (5) we sum only over even £.

It remains to prove (8). Write v = 4% where k > 0 and 7o is primitive in T, and set
Lo = £(0). Then k() = k, () = kéo, and (7) expresses the fact that the I'-conjugates to
v in Red correspond to the £p possible “internal conjugates” of a reduced representative
of this conjugacy class. We now distinguish two cases. If det(yo) = +1, then ki(y) = &
(because o € T, and is clearly primitive there), but £, is even and the number of 4’ € Red
which are I';-conjugate to v is £o/2, because half of the £, “internal” conjugations in our
cycle are conjugations by elements of determinant —1 and hence are no longer counted. If
on the other hand det(y5) = —1, then k is even and k:1(v) = k/2, because the element 42 is
now primitive in I';, but to make up for it the number of v' € Red which are T';-conjugate
to v is now the full number £y, because there is no longer any distinction between internal
conjugacies by elements of determinant +1 or —1. (Conjugating by the product of the
first r matrices (? ,l,) of the cycle of v is the same as conjugating by the product of the
last o — r of them, and r and £, — r have opposite parities.) This establishes (8) in both
cases.



89

B. Identities in the group ring. In this subsection we redo part of the calculation
in §1 in a slightly different way in which the elements of Red are built up out of powers of
a finite rather than an infinite sum; this also helps us to understand the structure of Red
and permits us to make sense of the formal expressions in (1).

Recall that o = (: (:) and p = ((: :) These elements generate T', but of course not at

all freely: e.g. one has (671p)2 = (672p?)® = 1. On the other hand, the subsemigroup
Q of T generated by p and o is the free semigroup generated by these two elements, i.e.
its elements are all words in ¢ and p and all such words distinct. In fact, the set Q is
contained in the larger sub-semigroup P of I" consisting of all matrices with non-negative

entries, which is easily seen to be the semigroup generated by the two elements x = (? ;)
and o, subject to the unique relation x2 = 1. Since p = ok, every element of P is either
a word in p and o or else x times such a word, so P = QU kQ (disjoint union). This
says that Q \ {1} = oP, the subset of P consisting of words in x and ¢ which begin with
a o, or equivalently of matrices (. :) satisfying ¢ > a > 0,d > b > 0. In turn, the
subset of Q consisting of words in ¢ and p which end in a p is the subset of those elements
satisfying the additional inequalities b > a > 0, d > ¢ > 0, i.e. precisely our set Red. This
shows again that the elements of Red are uniquely expressible as products of the matrices
o""lp = (? :) with n > 1. We define () for any v € Q as the number of p’s in the
representation of v as a word in p and o; this agrees with our previous definition on the
subset Red = Qp.

Let Q, be the subset of Q consisting of words in p and o of length n. The recursive
description Qo = {1} and Qn41 = QnoUQn p implies the identity 3°_ q [7] = ([o]+[eD)"
in the group ring Z[I']. More generally, if we introduce a variable v and define

Ko =[o]+vld]=[}3] +v[]1] € ZICIY},

then we have K," =3, q v!(") [y]. On the other hand, Q = Ui~ Qn, so to deal with
all of Q (or Red) we must work with infinite sums of elements of I'. In particular, let

oo
L, = (1-wo)™p = Y w'[],].
n=1

This reduces to our previous formal expression £ at w = 1, but now makes sense as an
element in the ring Z[I'][[w]] of formal power series in one variable over the group ring
Z[T), or as an element of {(I'] if w € C, |w| < 1. Then we have the identities

K7 = Y o7 ] and L= Y w0y,

v€Red v€Red
n(y)=n ty)=t

where n(vy) for v € Q denotes the length of v as a word in ¢ and p. Combining, we get

(-wk) 7o) = L (Q—vwiy) = Y - tyr 01y
'yeRed
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Integrating with respect to v gives the identity

i)

~log(1-vwLy) = Y. w*™ 4],

v€Red t

and the content of §1 can now be summarized by saying that we computed —log Zr(s) as
the trace of 7, of this sum on V in the limit v = w = 1.

C. The Selberg zeta function and the dynamics of the Gauss map. The proof
of equation (6) given originally by Mayer is parallel in many ways to the one given above,
but was expressed in terms of ideas coming from symbolic dynamics. Specifically, he used
the connection between closed geodesics on #/I"; and periodic continued fractions to
relate the Selberg zeta function to the dynamics of the “continued fraction map” (Gauss
map) F :[0,1) — [0,1) which maps z to the fractional part of 1/z (and, say, to 0 if z = Q).
We give a very brief outline of the argument.

To a “dynamical system” F : X — X and a weight function & : X — C one associates
for each integer n > 1 a partition function

Zo(F,h)= > h(z) h(Fz)h(F’z) --- h(F""'z)
z€X, Frr=z<

(sum over n-periodic points). In our case, X = [0,1), F is the continued fraction map, and
we take for A(z) the function h,(z) = z** where s € C with ®(s) > 1 (to make the series
defining Z, converge). Using the technique of “transfer operators” and Grothendieck’s
theory of nuclear operators, Mayer shows that

Za(F,hy) = T(LD) - (-1)" T(L2,,) (Va2 0). (10)
On the other hand, the definition of the Selberg zeta function can be written Z(s) =
oo
Il ¢sr(s+k)™!, where {sr(s) (the letters “SR” stand for Smale-Ruelle) is defined as the
k=0
product over all closed primitive geodesics in #/T'; of (1 — e~**), A being the length of
the geodesic. The connection between closed geodesics and periodic continued fractions
leads to the equation (sr(s) = exp( ) %Zg,,(F, h,)). (Here only even indices occur

n=1

because the map z + z~! — m implicit in the definition of F corresponds to a matrix
of determinant —1, so that only even iterates of F’ correspond to the action of elements

of I';.) Together with (10) and the determinant formula exp(— 020: -::Tr(A" )) = det(1—-4)
n=1

det(1 — L2,))
det(l — L2)
A similar proof, of course, works also for equation (2), but now using all the Z, (F, hs).
This version of Mayer’s theorem was developed by Efrat [1]. To connect this to the
discussion in A above, we rewrite (9) slightly as

1 4 det(y)
~log Z(s) = ———xs(7),»
B T

this gives (sr(s) = and hence finally Z(s) = det(1 — L?).
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or equivalently as the factorization Z(s) = Z(s)-Z_(s) where Z4(s) = 3 geq x,,('y)/l('y)
and Z_(8) = Y peadet(7)xs(7)/€(v). The first factor is Zr(s) by the calculation in
Sections 1 and 2, so its zeros correspond to even Maass wave forms, while the zeros of the
second factor Z_(s) correspond to the odd wave forms. See §5B for more on this.

PART II. PERIOD FUNCTIONS OF MAASS WAVE FORMS

§4. Various descriptions of the period correspondence. We explained in the in-
troduction how the identity (2) should lead one to expect some sort of correspondence
between eigenfunctions of the Laplacian in #/T" and holomorphic solutions of the three-
term functional equation (3). In this section we give several descriptions of this “period
correspondence,” each of which puts into evidence certain of its properties. There does
not seem to be any single description which exhibits all aspects of the correspondence
simultaneously.

We first recall some basic facts about Maass wave forms and fix terminology. The Maass
wave forms for the modular group I'y = SL(2,Z) are the non-constant I';-invariant eigen-
functions of the hyperbolic Laplacian A = —y? (5’;’1 + 3%’1) which are square-integrable
on the modular surface #/T";. The space of these forms breaks up under the action of the
involution ¢ : z — —Z into the spaces of even (invariant) and odd (anti-invariant) forms.
In particular, the even forms are the eigenfunctions of A on #/T', since T' is generated by
T; and ¢. We will always use the letter 4 to denote a Maass form and the letter s for its
spectral parameter, i.e. for the complex number s such that the eigenvalue of 4 under A is
5(1 — 5). (Note that the number 1 — s is an equally good spectral parameter for u, but to
describe the period correspondence s + % we must fix the choice of s since the functional
equation (3) depends on s. However, this dependence is very simple because it is known
that s always has real part % and hence 1 — s = 3, so that the map %(z) — WE) maps the
space of solutions of (3) for one choice of s to the corresponding choice for the other.) The
invariance of ¥ under the translation map T : z — 2 +1 and the conjugation map ¢ implies
that u(z + iy) has a cosine expansion with respect to z, and the square-integrability of u
and differential equation Au = s(1 — s) » imply that this expansion has the form

u(z +1y) = /¥ Z an ,_1(27rny) cos(2nnz), (11)

n=1
where K, is a modified Bessel function.

A. Description of the period correspondence via integral transforms. A
number of formulas for the period correspondence u ++ 3 were given in [2]. A particularly
direct one is the integral formula

P(z) =1z / G—z—f_’% dt (R(2) > 0). (12)

This was obtained after a number of intermediate steps. One of the most striking is that
there is an an entire function g(w) which is related to u by

g(x2min) = L (2mn)~*+/2q, (n=1,2,3,...) (13)



92

(i.e., g is a “holomorphic interpolation” of the Fourier coefficients of ) and to 3 by

10 = FeHTp 0 k=012.) (14)

(so that the Taylor coefficients of g at 0 and 3 at 1 determine each other). The function
¢ in turn is obtained from another intermediate function ¢ which is defined by

$(w) = v /00 \/uWJ,_%(wt) u(it) dt (15)
o
(Hankel transform) and defines ¢ by
P(z) = /w p(w)w e~ duw (16)

(Laplace transform). Substituting (15) into (16) gives (12), while substituting the Fourier
expansion (11) into (15) and integrating term by term leads to the formula

bw) = w Z (2mn)~"*1%a,

w2 + (27rn.)2

In particular, ¢(w) has simple poles of residue (27n)~*+'/2a, at w = x2rin and no
other poles, so the function g(w) := (1 — e~%)¢(w) is entire and satisfies (13), while on
the other hand, once one has proved that y(z) satisfies the three-term functional equation
(3) one immediately gets

‘/:o gzw)w? e v dw =272 [$(z7!) — P (27! +1)] = 9(2),

and (14) follows easily. No single one of these formulas permits one to deduce in a direct
way the properties of ¥(2) (i.e., the analytic continuability to C' = C \ (—o00,0] and the
functional equation (3)) from the fact that u is a Maass form, and the proof of this in 2]
is quite complex. On the other hand, they do give explicit ways to get from u to % and
back: the forward direction is given by (12), while (13) and (14) determine the Fourier
coefficients of u as special values of the power series g(w) = 3, ¥*) (1)uw* [k!T(25s + k).

We refer to [2] and [3] for a more detailed discussion of these ideas and of other related
approaches, including one based on a summation formula of Ferrar and another in terms
of the Helgason automorphic boundary form of u, which are also important aspects of the
story and provide useful perspectives.

B. Description in terms of Fourier expansions. The integral representation (12)
makes visible the analyticity of 4(z) in a neighborhood of the positive real axis, but does
not make it clear why 3 satisfies the three-term functional equation. In [3] a different
description of 3 was given in which the functional equation becomes obvious and the key
point is the continuability of i across the positive real axis. The starting point is the
following simple algebraic fact.

Lemma. Ify : C\R — C is any function satisfying the three-term functional equation (3)
then the function f: H — C defined by

f(z) = ¢(2) + e (~2) (17)
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is 1-periodic (i.e. T-invariant). Conversely, if f : H — C is any 1-periodic function, then
the function ¢ : C\ R - C defined by

f(z2) =27 f(-1/2) ifS(z)>0
272 f(1/2) - f(-2) ifS(2)<0
satisfies the functional equation (3). Moreover, if s € Z then the correspondences (17) and

(18) between I-periodic functions in H and solutions of (3) in C\ R are inverse maps to
each other up to @ non-zero scalar factor 1 — e~2%%",

wo) = { as)

Then we have the following very elegant description of the period correspondence.

Theorem 3. Let u be an even Maass wave form with spectral parameter s and Fourier
ezpansion given by (11), and f : H — C the I-periodic holomorphic function defined by

f(z)= i n°~ % a, e2%inz (ze ). (19)

n=1

Then the function ¥ defined by (18) exztends holomorphically from C~\R to C' and is
bounded in the right half-plane. Conversely, if s is a complez number with R(s) > 0,
¥ : €' — C a holomorphic solution of (3) which is bounded in the right half-plane,
f: H — C the 1-periodic holomorphic function defined by (17), and {a,} the coefficients
defined by the Fourier ezpansion (19), then the function u : H — C defined by the Fourier
series (11) is an even Maass wave form with spectral parameter s.

The proof of this theorem, given in [3], relies essentially on the properties of L-series. It
is well-known that the L-series L(p) = ), an/n” of a Maass wave form has a holomorphic
extension to all complex values of p and satisfies a functional equation under p — 1 — p,
and conversely that these properties of the coefficients a, imply the I'-invariance of the
function u defined by (11). The L-series can be represented as the Mellin transform of
the restrictions to the imaginary axis of either u or f (with different gamma-factors).
We can now use the inverse Mellin transform to write the function 3 defined by (18)
in the uppper and lower half-planes as integral transforms of L(p), and the functional
equation of L turns out to be just what is needed in order that these two formulas agree
and define a holomorphic function in all of C’'. Conversely, if u is defined by (11) and f
by (19) for some coefficients a, (satisfying a growth condition), and if 9 is the function
defined by (18), then the Mellin transforms of the restrictions of 3 to the positive and
the negative imaginary axes are both linear combinations of L(p) and L(1 - p). Now if ¢
extends holomorphically across R and satisfies the growth condition, we can rotate the
two paths of integration to R, and the equality of these two linear combinations then
gives the functional equation of the L-series.

This argument makes clear which properties of 4 correspond to which properties of ¥: if
{an} is any collection of coefficients (of not too rapid growth), then the function u defined
by (11) is a T-invariant eigenfunction of the Laplacian with eigenvalue s(1 ~ s), while the
function 9 defined by (19) and (18) is a holomorphic solution of the functional equation
(3) in the upper and lower half-planes; this gives a bijection between translation-invariant
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even eigenfunctions of A and functions ¢ on C\ K satisfying (3), and under this bijection
the eigenfunctions which are invariant under z +— —1/z correspond to the functions
which extend holomorphically across the positive real axis.

C. Unfolding from the positive real axis. In this subsection we state a result
from [3] to the effect that the restriction map from the space of holomorphic solutions of
(3) in €' to the space of analytic solutions of (3) on R, which is obviously injective, is
in fact bijective under suitable growth conditions. This complements the results of the
two preceding subsections: in A we described how to get from u to ¥|R4 via an integral
transform and how to get the Fourier coefficients of 4 from the Taylor expansion of 3 at
1 € K4, and in B we explained how to get the values of 3 off the real axis from u and
vice versa.

Theorem 4. Let s be a complez number with R(s) > 0. Then any bounded real-analytic
solution of the functional equation (3) on the positive real azis extends to @ holomorphic
solution of (3) in the whole cut plane which is bounded in the right half-plane.

The proof of this theorem is by a kind of “bootstrapping”: by repeated applications of
the functional equation (3) one successively extends 3 to larger and larger neighborhoods
of R4 C €', while preserving the growth conditions. In fact, the growth conditions can
be relaxed, e.g. if R(s) = 1 then the assumption ¥(z) = o(1/z) as z — 0 already implies
that % continues to a holomorphic function in €’ and is bounded in R(z) > 0, which
together with Theorem 3 implies that s is the spectral parameter associated to a Maass
wave form. This is especially surprising because it turns out that any smooth solution
of the functional equation on R4 is O(1/z) as £ — 0 and that these solutions form an
uncountable-dimensional vector space for any s, whereas the Maass forms exist only for
special values of s and then form a finite-dimensional space.

§5. Complements. In the final section of the paper we give various examples of solutions
of the functional equation (3), especially the polynomial solutions for negative integral
values of s which give the link to the classical theory of periods of modular forms, and
also indicate the changes that must be made when T is replaced by its subgroup TI';.

A. Examples and equivalent forms of the three-term functional equation. If
we relax the growth conditions on the function ¢, then there are many more solutions of
the functional equation (3). For example, an infinite class of solutions for any s is given
by ¥(z) = f(z) + 2=2* f(1/z) for any odd and l-periodic entire function f. There are
also more interesting examples which nearly satisfy the growth conditions of Theorem 3
and which correspond to the zeros of the Selberg zeta function other than the spectral
parameters coming from Maass wave forms. These zeros occur at s = 1 and at the zeros
of ¢(2s), where ¢ is the Riemann zeta function (cf. [7], pp. 48-49). The solution of (3) for
s = 1is given by 9(z) = 1/z. The solutions corresponding to the trivial zeros of ((2s) at
s = —1, =2, ... will be discussed in the next section. The solutions corresponding to the
non-trivial zeros arise as follows. For R(s) > 1 define

¥Pe(z) = ((29) (l + z_2’) +2 z (mz+4n)"%,

m,n>1
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a kind of “half-Eisenstein-series.” The series converges absolutely and it is easy to check
that it satisfies the functional equation (3). On the other hand, the shifted function
hs(2) = ¥s(2 + 1) is not a fixed point of the Mayer operator L,; instead, as one checks
in a straightforward way, one has (L,h,)(2) = h(2) — {(25). It follows that the (easily
obtained) analytic continuation of A, gives a fixed point of (the analytic continuation of)
L at the zeros of ((2s).

We also mention two equivalent forms of the period functional equation, as a sample
of the algebraic character of the theory. The first is the equation

Y =G+ ) [w() + ¢(2+ D]

Written in the language of the group algebra Z[T], this says that 7,(K)y = ¢, where
K is the element K; = [0] + [p] of §3B and is related to the Mayer element £ by the
equation £(1 — £)~! = (1 = K)~}[p]. The second says that ¥ is fixed by the operator
7s(En>olP” o]). Written out, this is the infinitely-many-term functional equation

_ > 1 Fo 224+ F,_,
1/’(2)_"2::‘ (Fn2+ )2, (

F.z2+ F, n+1
where { F, } are the Fibonacci numbers. Note that this series, unlike the one defining the
Mayer operator L,, is rapidly convergent if R®(s) > 0 and ®(z) > —(1 + V5)/2.

B. Even and odd Maass wave forms. We now consider the modular group I';
instead of I". As mentioned at the beginning of §4, the Maass wave forms for I} break up
into two kinds, the even ones (which are invariant under the map u(z) — u(—2) and hence
under all of I') and the odd ones (for which u(z) = —u(—z)). The spectral parameters
corresponding to both kinds of Maass forms are zeros of the Selberg zeta function Z(s) of
Ty, with the ones corresponding to even forms being zeros of Zr(s). On the other hand,
as we saw in Part I, Zr(s) is the determinant of the operator 1 — L,, while Z(s) is the
determinant of 1— L2 = (1—L,)(1+L,). The odd Maass forms should therefore correspond
to the solutions in V of Lsh = —h and hence, after the same shift ¥(z) = h(z — 1) as in
the even case, to the solutions of the odd three-term functional equation

W) =(1+2) - (14 3), (20)

instead of the even functional equation (3). This is in fact true and, as one would expect,
the description and properties of this “odd period correspondence” are very similar to
those in the even case. The Fourier cosine expansion (11) is naturally replaced by the
corresponding sine series. The integral transform (12), which must obviously be modified
since u(iy) is now identically zero, is replaced by

o= [ GEaa (®e)>o0),

Fn+l

a . .
where 4, = é {2 = z + iy). The algebraic correspondence described in the Lemma in

§4B is true with appropriate sign changes (change the sign of the second term in (17) and
of both terms in the second line of (18)), and Theorem 3 then holds mutatis mutandum.
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Examples of non-Maass solutions of the odd functional equation are the function 1—z—2*
(or more generally f(z)—2z"2*f(1/z) with f even and 1-periodic) for all s and #(z) = log z
for s = 0. The example 3,(z) discussed in Subsection A has no odd analogue. (The
analogous fact about Selberg zeta functions is that all the zeros of Z_(s) = Z(s)/Zr(s)
correspond to the odd spectral parameters, whereas the zeros of Zr(s) correspond both to
even Maass forms and to zeros of the Riemann zeta function.) The two alternate forms of
the even functional equation given at the end of A have the obvious odd analogues (replace
K, by Ks,—1 and ano ‘II’IP"a by Enzo(_l)n‘f"|p"e))~

Finally, one can give a uniform description of the period functions associated to Maass
forms, without separating into the even and odd cases. These functions should correspond
to the fixed points of L2 on V, and this leads (after the usual shift (z) = h(z — 1)) to
the “master functional equation”

z
z+1

We will call a solution of (21) a period function. Since the involution ¥(z) — z=2°9(1/2)
preserves this equation, every period function decomposes uniquely into an even (in-
variant) and odd (anti-invariant) part, and one checks easily that the even and odd
period functions are precisely the solutions of (3) or (20), respectively. The descrip-
tion of the period correspondence given in §4B is now modified as follows. Any 1-
periodic eigenfunction of A with eigenvalue s(1 — s) has a Fourier expansion of the form
8(z + iy) = /¥ 50 90 K,_1(27|n|y)e?™*"=. We then define a 1-periodic holomorphic
function f on €~ R by two different Fourier series, using the a, with n > 0 in the upper
half-plane and the a, with » < 0 in the lower half-plane. In each half-plane there is a
1:1 correspondence between the space of 1-periodic functions and the space of solutions
of (21) given by the (up to a scalar factor, inverse) transformations

f(2) = ¥(2) = f(2) — 272 f(-1/2), Y(2) = f(2) = P(2) + 272 P(=1/z).

Then, just as before, the invariance of ¥ under z = —1/z is equivalent (under suitable
growth conditions) to the analytic continuability of 4(z) across the positive real axis.

Y(z) =9z +1) + (2 + 1) y(

). (21)

C. Integral values of s and classical period theory. Let s be a negative integer,
which we write in the form 1 — k& with k¥ > 2. The factor z~2* in the master functional
equation (21) (or in its even or odd versions (3) or (20)) now becomes a monomial and
we can look for polynomial solutions 3, which we will then call period polynomials. The
degree of such a polynomial must be < 2k — 2, so the problem of finding all solutions for a
given k is just a matter of finite linear algebra. For k = 2, 3, 4 and 5 we find that the only
polynomial solution is z2*=2—1 (which is an odd polynomial but an even period function),
but for & = 6 there are three linearly independent solutions z!° — 1, 23 — 326 4 324 — 22,
and 4z° — 2527 4 42z° — 2523 4 4z. This has to do with the fact that for X = 6 the space
Sox of cusp forms of weight 2k on the modular group has a non-trivial element for the
first time, namely the discriminant function

o0

A(Z) = e?tiz ﬁ(l — e2tinz) = Z ‘r(n) e21n'nz .

n=1 n=1
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Associated to this cusp form is its Eichler integral A(z) = 3, n=''7(n)e?*** which is not
quite modular (of wexght 2 -2k = —10) but instead satisfies (cz +d)'°A(22}) = A(z) +

P,(2) for any v = ( d) € I'; with P, a polynomial of degree < 10, and the 3-dimensional
space of penod polynomials is generated by the odd and even parts of the polynomial P,
for vy = (x o ) together with the polynomial z!° — 1. In general, if one associates to any

cusp form f(z) = " Ane?**"* € Sy its Eichler integral f(z) = 3" n—2*+14, 2% then

the difference f(z) — 22*=2f(—1/z) is a polynomial P = Py of degree < 2k — 2 which
satisfies the period conditions

P(z) +*~2P(— L) = P(z) + 2%~ 21>(1--)+(z 1)2*—2p($)=o,

and the period theory of Eichler, Shimura and Manin tells us that this space has dimension
2dim Szx—2 + 1 and is spanned by z%*~2 — 1 and by the even and odd parts of the
polynomials P;. But an elementary calculation shows that polynomials satisfying the
period conditions are precisely the polynomial solutions of (21) with s = 1—k (and further
that this space breaks up into the direct sum of its subspaces of odd and even polynomials
and that these are precisely the polynomial solutions of (3) and of (20) respectively). This
fits in very well with our picture since it is known that s = 1 — k is a zero of Zp(s) of
multiplicity dx := dim S2x and a zero of Z(s) of multiplicity 26, + 1. What’s more, one
can get directly from cusp forms of weight 2k to nearly I';-invariant eigenfunctions of the
Laplace operator with eigenvalue k(1 — k). For instance, the eigenfunction defined by (11)
with s = —5 and a, = 7(n)/n!}? is not only invariant under the translation T and the
reflection ¢, but is nearly invariant under z — —1/z, the difference u(—1/z) — u(z) being a
polynomial in z, y and 1/y with coefficients which are closely related to those of the odd
period polynomial 4z° — 2527 + 422° — 2522 4 42z above.
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Abstract
I present here some results on the statistical behaviour of large ran-
dom matrices in an ensemble where the probability distribution is not a
function of the eigenvalues only. The perturbative expansion can be cast
in a closed form and the limits of validity of this expansion are carefully
analyzed. A comparison is done with a similar model with quenched
disorder, where the solution can be found by using the replica method.
Finally I will apply these results to a model which should describe the

liquid-glass transition in high dimensions.

1 Introduction

I cannot work on random matrices without thinking to Claude Itzykson. I
started to study this subject with him together with Edouard Brézin and Jean-
Bernard Zuber!. 1 enjoyed very much to work in this group. I had collaborated
before with each of them separately, but it was the first time I was working
with all of them together. It was a very interesting and pleasant experience.
I feel still nostalgia for the long afternoons spent observing my friends doing
long and difficult computations at the blackboard practically without doing
mistakes.

After that work our roads partially separated. My friends remained inter-
ested in the field 23, while I started to be interested in spin glasses. Claude
and Jean-Bernard started to study the case with two interacting matrices and
produced after much struggle the wonderful paper on the unitary integrals 2.
At that time I had frequent discussions with Claude; he was explaining me the
difficulties they met with their problem and I was telling him those I had with
spin glasses. We tried to make some progresses together.

This friendly exchange was quite fruitful *. Let me quote two examples.

%] use this opportunity to acknowledge an other debt I have with Claude. I was strongly
influenced by his old paper with Abarbanel on the eikonal 4. I read that paper when I
was starting to work in physics. I learned from it the power of the functional method and
the relation among classes of diagrams and the solution of the Schroedinger equation in a
random Gaussian field. That paper was quite present in my mind when ten years later we

started to work on what we called quenched gauge theories®.
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The interpretation of the breaking of replica symmetry in terms of many
pure states was also triggered by Claude’s observation that

ZQ, _ Zk,-(Hi:l,s ok,)? 1

ab — N3 . ( )
b

A that time this relation was quite mysterious but it turned out to be a crucial

step for later developments®7.

During one of my visits to Saclay I found a simple derivation of a result
of Bessis ® on orthogonal polynomials. 1 showed it to Claude, who was very
interested and started immediately to derive some of the formulae needed to
cast the result in a more compact way. I was too busy with spin glasses so I
didn’t write it. The results were finally incorporated in the paper on the unitary
integrals 2 and fortunately in this way they were saved from the oblivion.

Two years ago, when with Marinari and Ritort we started to apply the
replica method to non random systems °, it was a real pleasure for me to
read again the paper of Claude and Jean-Bernard 2, which contained crucial
results for our aims. At that time I was thinking that one day I will come to
Saclay to explain our results to Claude and that I will hear his comments and
suggestions, but sadly that day will never come.

The problem I will study here is the natural extension of that work of
fifteen years ago! and it can be formulated as follows'°. We have an N x N
symmetric matrix M and we associate to it the following Hamiltonian:

H(M) = NTr(h(N~Y2M)) + %Zf(Mi,k). (2)
ik

When N goes to infinity, the Hamiltonian becomes a quantity of order N.
We will consider the expectation values of intensive observables A(M), which
have a well defined limit when N — oo, e.g. they have the same form as the
Hamiltonian apart from a factor N.

We are interested in the computation of the equilibrium quantities

_ [ dM exp(~BH(M))A(M)
AN = T A exp(— BE (M)

®3)

in the limit where N — oo.
We can also define dynamical expectation values: we introduce the Lan-

gevin equation
dM; i 0H

— = — 1); 4

7 aars T Wik (4)

)
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where 7 is a random Gaussian distributed noise, uncorrelated for different pairs
of indices, such that

MY aTE)iE = ga(tl ~1y). 5)

Here the bar denotes the average over different realizations of the noise.
The dynamical expectation values are defined as

(A)p = tlirg)Nlim A(M(t)). (6)
The order of the limits matters. Indeed a well known theorem states that
(A) = Nlim tlim A(M(1)). (7)

If the two limits do not commute when A is the energy density, metastable
states are present. While metastable states with strictly infinite mean life
cannot be present in systems with a short range interaction, the study of
infinite range models where metastable states do exist, may be quite useful for
understanding real systems in which there are metastable states with finite,
but extremely large, mean life.

There are many motivations for studying this problem.

The problem is interesting per se. It is a non-trivial generalization of
the original problem of random matrices! with the extra difficulty that the
probability distribution of the matrices is no more invariant under the rotation
group O(N). This invariance was a crucial tool in the previous investigations
and it is not present here.

In these models at low temperature the averages in the dynamic approach
may not coincide with those of the equilibrium approach. Systems for which
the two limits (infinite volume and time respectively) cannot be exchanged
have a strong interest !' and their properties may be investigated using the
replica method 2.

While there are no real doubts that in the dynamic approach the limit
(N — o0) of intensive quantities is unique, it is possible (and in my opinion
it is quite likely) that one can finds two (or more) different sequences N, (i.e.
N, — oo when r — 00) such that the limit of the equilibrium quantities at low
temperatures along the sequence depends on the sequence. In similar cases the
low temperature behaviour of equilibrium properties becomes linked with the
solution of arithmetic problems %13,

The techniques we will use to study the model are based on the replica
method. The possibility of applying the replica method to non random systems



101

is very interesting, especially because we hope that this extension may be useful
in studying real glass.

Finally there is a model which is very interesting from the physical point:
N interacting particles constrained to move on a sphere in N dimension 4.
This model is the simplest non trivial model for interacting particles which
should have a liquid-glass transition and (hopefully) can be solved.

This paper (which is based on the results of %:1%14) is organized as follows:
in section 2 we present a diagrammatical analysis of the perturbative expansion
which can be resummed in a compact way. In section 3 we present a model
where the Hamiltonian is random (quenched disorder). Its properties coincide
with those of our original model in the high temperature phase; the model
can be solved analytically using the replica method. In section 4 we discuss
the relations of the random model with our original model and we present
and disprove some conjectures. In section 5 we present a physically motivated
model 4 of interacting particles which can be written in the form given by eq.
(2). Finally in section 6 we present some tentative conclusions.

2 The perturbative expansion

In this section we consider the perturbative expansion for the following model
1 gE'I&'(M‘*
L

This Hamiltonian corresponds to the choice

1
h(z) = (5 +C)2? + goa’,
f(z) = —Cx? + grz*. 9
The value of C is arbitrary, indeed

Te(M?) = MZ,. (10)
ik

The same term in the previous equation can be represented in both forms. In
the rest of the paper we will use C = 0; in this section we will make the choice
Bg=1

Our aim is to investigate at the diagrammatical level if there are some
simplifications when N — oco. Indeed in this limit where f = 0 (i.e. gr = 0)
only planar diagrams survive. Here the situation is more complicated.
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A careful diagrammatical analysis shows the following !° results.

Let us consider the contributions to a connected Green function and let
us exclude diagrams containing self energy corrections. In this case there are
no mixed terms and the result is the sum of two functions, depending only on
gr and g1, respectively.

If we consider the self energy corrections in the internal lines, mixed terms
may appear. Indeed the two point function has only one possible form, ir-
respectively from the type of vertices which contribute to it (in other words,
there is only one quadratic invariant).

If we denote by G the value of the propagator (I do not indicate the
dependance on the indices), we find that any Green function (I') can be written
as

I' =Tg(9s,G) + I'rlgL, G). (11)

The same conclusion is valid for the self energy diagrams, which can be
written as

EZEE(gEaG)+EL(gL10)' (12)
The propagator is thus given by

1
T 14 EE(gE, G)+ EL(gL,G)‘

The solution of this equation gives the value of the propagator G and from it
we can reconstruct the other properties of the model.
These diagrammatical findings can be summarized in the following elegant
way which generalizes to matrices the representation found in® for vectors.
We introduce two N x N matrices B and 2. The total Hamiltonian for
these two matrices is

H(B,z) =Tr (Nh(BN'l/z) + %BZ) +> (f(zi,k) + %zﬁk) , o (14)

G

(13)

ik
where
RL= 1+2L(9L,G)! RE :Z;E(gLaG) (15)
The previous conditions become now
1
e 2 = .2 = —_—_
G= (Bz,k) (zl,k) RL + RE (16)

The expectation value of the energy in the original model can be finally
written as

E= (Tt (NA(BN™Y%) + 3 f(zi4)) (17)

ik
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More generally

(Tr (Nd(MN"Y2)) + 3 drp(Mi) =
i,k

(Tr (Ndg(BN™/%)) + 3" di(2i4)) (18)
ik

Under this form the result is quite compact and it can be generalized to other
interactions which have higher powers of M.

Both the integrations on B and z can be done explicitly: The B integra-
tion can be done using the standard techniques, because the integrand is now
rotational invariant. The z integration factorizes in the product of N2 inde-
pendent integrals. The values of Ry and of Rg can be found by solving the
two equations (16) in two unknowns. All computations can be done explicitly.

In the nutshell the final formula corresponds to a Hartree-Fock type ap-
proximation or, better, to two parallel spherical approximations: the local
interaction (f) in the eigenvalue representation (B) has the only effects of
modifying the quadratic term and viceversa. This formula generalizes well
known results:

o If f = 0, the probability distribution of a given matrix element of the
matrix M is Gaussian.

o If h = 0, the probability distribution of the eigenvalues is the same as in
the Gaussian model.

However we have not been able (with reasons) to obtain this result in a
compact way. We may speculate that the result is not valid beyond perturba-
tion theory. Indeed, if such a general result would be correct, there should be
a non-diagrammatical proof.

Generally speaking a perturbative result may break for two different rea-
sons:

o There are non analytic terms, e.g. of the form exp(—C/(gegL)).
o There is a first order phase transition® at a non zero value of gggr.

We shall see later that the second possibility is exactly what happens. However,
before finding the limitations of this perturbative result, it is convenient to
consider an other case in which the same result is obtained.

%In this context we say that a phase transition is of first order if no precursor signs are
present, i.e. its presence cannot be predicted by finding susceptibilities which diverges when
approaching the transition.
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3 A Random equivalent model

It is interesting to investigate if there are other models for which the previous
formulae are exact and can be proved in a compact way. The model can be
found among those with random quenched disorder. We consider the following
Hamiltonian:

Ho(z) = H(z, B(z)) = NTx (h(BN‘l/"')) +3 f(z), (19)
ik
where z is an N x N matrix, B(z) is a short notation for
Bix = Z Oi k3,125 1 (20)
ji=1N

and O is an N% x N? orthogonal matrix, where each pair of indices (i.e. i,k
and j,!) plays the role of one index.

The Hamiltonian depends on O via the constraint in eq. (20). When the
matrix O is the identity, we recover the previous model.

Here we consider the case in which O is a random orthogonal symmetric
matrix. Our aim is to compute the following quantity in the large N limit

~NBF(B) = /dp(O)ln(/dz exp(—fHo(z)). (21)

To this end it is convenient to consider the quantity

—nNBF®) = In ( / du(0) ( / dz exp(—ﬂHo(z)>n> : (22)

It is trivial to check that
lim F™)(8) = F(B). (23)
The replica method consists in computing F(*) for integer n and eventually

continuing analytically the result to n = 0.
The first step consists in writing

/dz exp(—BHo(z)) = /dded/\

J=1,N

exp (—ﬂH(Z,B) +iZ /\g,k(B."k - Z Ogyk;j,IZjJ)) . (24)
i,k
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Now, a symmetric orthogonal matrix can be written as
O =VDV* (25)

where D is a diagonal matrix (in the generic case about half of the diagonal
elements are equal to 1, the other to -1) and V is a generic orthogonal matrix.
Using the formulae of reference ? the integral over V can be done (if n remains
finite when N — o0). In this way the constraint is integrated over and we
remain with two separate integrals®.

After a long computation, one finds that F(*) is given by the stationary
point of F(*)(RL, Rg). Here the R’s are n x n matrices and

exp (—nNF(")(RL,RE)) = /ddeexp(—ﬂHeff(z,B,RL,RE)),
BHess(z,B,Ri,Rg) = Y BH(z*,B%)+  (26)
a=1,n

(R§*Tr(222") + Trin(Re + Ri) + Rg”ﬁ(B“B"))

a,b=1,n

N —

In the perturbative region where at least one of the two functions f and
h is small, the matrices R’s are diagonal and we recover the formulae of the
previous chapter by looking to the stationary point of the free energy.

At low temperatures many new phenomena may appear. One of the most
interesting is replica symmetry breaking. In this situation the saddle point is
no more symmetric under the action of the replica group. The computations in
the broken replica region are technically difficult, but they seem to be feasible
and work in this direction is in progress 6.

It is interesting to recall that the original model is one of those we are
considering here, i.e. it corresponds to O = 1.

4 A bold conjecture

4.1 A nawve conjecture

The simplest conjecture would be to assume that the original formulae are
always valid. In order to test this conjecture, we could study the model in

¢The Itzykson-Zuber formula applies in the case of integral over unitary matrices for all
N. Here we only need the leading term when N goes to infinity and we can this apply their
final expression to orthogonal matrices; in both case only planar diagrams survive. The two
results differ only to a crucial factor 2, which can be checked at the first non trivial order.
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some limiting case. It is convenient to consider a very simple non trivial case,
i.e. matrices M constrained to have matrix elements of modulus 1;

M; = +1 (27)
This can be realized in the previous setting by using a function f, such that

exp(—f(z)) = 8(z* - 1) (28)

We can now set g = 1 and write the partition function of the model as

) exp(—%n(M‘*)). 29)

M; =%1

According to the previous considerations, we have to study an auxiliary model
with partition function

/ dB exp <—R’I‘r(32) - 75—1\:(34)) (30)

where R has been chosen in such a way that (B?,) = 1. In other words the
spherical and the Ising model coincide in the high temperature region.

The solution of this problem can be found directly using the formulae of?!
for small positive 3 and their extension to the case of non-connected support
of the eigenvalue distribution for large 3.

Is this solution correct?

Certainly not for negative 3. As noticed by Zinn-Justin, in this case we
recover some form of Z, lattice gauge theory. For negative 8 the unconfining
solution (i.e. M;; = 1) gives an energy proportional to N2. This is not a
serious contradiction, as far also the corresponding model eq. (30) does not
exist for negative 3.

The most serious troubles appear when  becomes large and positive. Here
we can compute the free energy of the model F(3) and from it we can recover
other thermodynamical quantities. It is possible to compute the entropy.

One finds (as expected in a spherical model) that the entropy density S(3)
behaves at large (3 as

S(B) = —In(B) + const (31)

The entropy becomes negative at sufficiently high 3. Thisis impossible; the
spherical and the Ising model cannot coincide in the low temperature region.
Consequently, the solution of this soluble model must be wrong, in the same
way as in the Sherrington-Kirkpatrick model 8.
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Something better must be devised. Numerical simulations of the model
show a perfect agreement for not too large values of 3. The deviations appears
suddenly at a value of 3 at which the specific heat is nearly discontinuous,
strongly suggesting the presence of a phase transition.

4.2 The simplest reasonable conjecture

A better conjecture, which does not go against the positivity of the entropy,
consists in assuming that the model with O = 1 coincides with the one with
random O also in the low temperature phase. It is quite evident that in the case
of random O the entropy cannot be negative and this observation is enough to
remove the entropy crisis.

This conjecture may be extended also to the dynamic averages, which can
now be computed by using an appropriate formulation of the replica method
12

In this context, the analytic continuation of the free energy from the high
temperature region has the meaning of the annealed value of the free energy,
ie. F(O(B).

In principle, we can solve the random model by using the analytic formulae
of the previous section. This is rather hard from the technical point of view.
Detailed computations are in slow progress.

A trivial bound,

B(B) > 1, (32)

comes from the inequality
NTH(M*) > (Tr(M2))". (33)

The same inequality tells us that £ = 1 only if Tr(M?).

However, some information can be obtained in a simple way: the annealed
free energy is a lower bound to the quenched free energy and the entropy is
non negative. In this way one finds that

E(B) > 1.06 (34)
An approximation which is often quite good for these systems !5, consists

in assuming that the entropy is given by
max(Sa(5),0), (39)

where S,(f3) is the annealed free energy. In the framework of this approxima-
tion the previous bound is exact.
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4.3 A counterezample

Can we test if the previous conjecture consequently is valid for all large N?
Alas, yes and the answer is negative, at least for some N.

Indeed, if N = 2% for some integer k, it is possible to find a matrix M
whose elements are all equal to =1 and which is the square root of the identity.
This proves that (at least for this sequence of N) the energy E(3) is equal to
1 at low temperature. The same result may be proved for many other values
of N, but it is unclear what happens for the generic N 17.

In a related model 12 it seems that quite different results are obtained
depending on the arithmetic properties of N and that there is a way of taking
the infinite N limit (i.e. a sequence of appropriate values of N going to infinity)
such that the model becomes equal to the random model.

The possibility of more than one thermodynamic limit for the same model
(depending on the sequence) is quite interesting, but it is clear that there exist
at least one way in which the conjecture we have proposed is not valid.

4.4 A more refined conjecture

The physical origin of the difference in the equilibrium properties of the random
and of the original model is related to the existence of "small” regions in the
phase space of low energy. On the contrary, it is quite likely that the dynamical
averages do coincide with those of the random model. These configurations
(Ci k) have such a low energy (they correspond in some sense to a crystal) that
they cannot be reached in the natural evolution of a system arriving from the
high temperature region due to the presence of infinitely high barriers. '

At low temperature the equilibrium properties of this model have not
been carefully studied. Here we follow the natural choice of generalizing the
conjectures which have been done in a similar context on a simpler model
which can be studied in a more effective way %13,

We suppose that the dynamic expectations values are the same as those
in the random model (no contradiction is present). On the contrary the equi-
librium expectations are definitely different from those of the random model.
We suppose the system has a real first order transition (with latent heat) at
some temperature T¢c. At temperatures higher than T¢ the two models are
equivalent. At temperatures lower than T the phase equivalent to the random
model still survive as a metastable phase.

We may think to stabilize this phase by adding a new term in the Hamil-
tonian, which has zero effect on the properties of the system in the random
phase, but it strongly increases the energy of the crystal phase. An example
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of such a term could be

N8} _((Mik = Ci)* — ) (36)
ik
With an appropriate choice of C,r and g, it may be possible to kill the transition
to the crystal phase without affecting the free energy in the other phase. We
can thus modify the model adding a small perturbation to the Hamiltonian in
such a way that its free energy coincides with the free energy of the random
model at all temperatures.

5 Hard spheres on a sphere

In this section we show the existence of a physically interesting model which
can be put in the form eq. (2). In this way we prove there is (at least) one
non-trivial application of the considerations presented here.

Let us consider the following Hamiltonian

H= Y V(zi—zx)= Y W(zi-z), (37)

i k=N i,k=N

where the z’s are N D-dimensional vectors which are confined on the surface
of a sphere 4 of radius R. The quantity V is the interparticle potential as
function of the distance squared and

W(S) = V(AR* - S)) (38)

is the potential as function of the scalar product.

The usual partition function of interacting particles in a D —1 dimensional
flat space is obtained by sending R — oo, N — oo at fixed density p =
NR-(P=1) We may hope that for large dimensions the model will be soluble.
Here we will study the case in which N, D and R go to infinity together (and
also V' depends on D).

Generally speaking we can write the partition function under the following
form

/dp(S)exp - Z W(Six) |, (39)
i,k=N

where S is an N x N matrix and

du(S) = [J(dz:) [T 6(Six = 2: - z1). (40)
b3 i,k

4We could also put the particle in cubic box, but we choose a sphere for technical reasons.
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We can now substitute the hard constraint |z;| = R with a term in the proba-
bility distribution of the z proportional to exp(—w|z;|?/2), where w is chosen
in such a way that (|z;|?) = R2.

The final model is slightly different from the previous one

Z:/H(dz,-)exp —BH(z) —w/2 Z EAE (41)

i=1,N

In sufficiently high dimensions the two models (37 and 41) should be the same,
the measure on z should become concentrated on a sphere of fixed radius which
depends on w.

Now the measure p(S) becomes

#(S) :/H(d:i)Hé(S,-,k—:c; -zp)exp | —w/2 Z lz:% }, (42)
i ik

i=1,N

which is invariant under O(N) rotations as can be seen by an explicit compu-
tation.

The model is thus reduced to the original form eq.(2), we have just to
obtain the correct scaling for large N. In other words we have to choose the
dependance of the various terms on N is such a way to obtain the needed
result.

It is possible to prove by an explicit computation that the right scaling is
obtained when N — oo and D — oo together at fixed @« = N/D. The potential
V should also scale in an appropriate way in this limit.

After doing the appropriate computations one arrives to a model which
can be explicitly solved in the low density case and that behaves in a quite
similar model to the M; i = +1. The details of the computation can be found
on the original paper 4.

6 Conclusions

We can summarize these findings in the following way.
o The matrix model is soluble in the high temperature phase.

o In the high temperature phase the matrix model is equivalent to a random
model which displays a replica breaking transition to a glassy phase.

o The random model describes the equilibrium and the dynamical proper-
ties of the model both in the high temperature phase and in the glassy
phase.
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o For some values of N there is a transition to a crystal phase at low tem-
perature. The properties of the crystal phase cannot easily investigated:
they depend on the arithmetic properties of N.

e It may be possible to destroy the crystal phase with a small perturbation
which does not affect the properties in the other phase.

Some of these results are only conjectural, some have a more solid basis and
some have been numerically verified in simpler models®. At the present mo-
ment we have a coherent picture of the behaviour of the model. It would
be extremely interesting to find out if we can collect more evidence for its
correctness.
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RENORMALISATION GROUP APPROACH TO
REACTION-DIFFUSION PROBLEMS

JOHN CARDY
All Souls College and
Department of Physics, Theoretical Physics, 1 Keble Road,
Ozford OX1 3NP, England

We describe how the methods of quantum field theory and the renormalisation
group may be applied to classical stochastic particle systems which appear in non-
equilibrium statistical mechanics. An emphasis is placed on the similarities and
differences between these methods and more conventional applications of quantum
field theory. Some simple applications are discussed.

1 Introduction

Reaction-diffusion problems are simple examples of non-equilibrium statistical
systems. While it has long been recognised that the methods of quantum field
theory extend far beyond their original domain of application in elementary
particle physics, to, for example, many body quantum systems in condensed
matter physics, and to the theory of both the statics and dynamics of critical
behaviour in equilibrium statistical mechanics, it is less well appreciated that
they also provide a powerful tool for analysing classical statistical systems
far from equilibrium. This application is certainly not new 23 but it is only
relatively recently that the full formalism of the renormalisation group has been
brought to bear %€ in a very similar manner to that employed in equilibrium
critical behaviour.

Reaction-diffusion problems are examples of classical stochastic particle
systems. These particles are in general labelled by their species A, B, ...,
which may be thought of as corresponding to different chemical reactants.
Their dynamics consists of two elements: first, the particles diffuse according
to some kind of Brownian motion, with diffusion constants D,,Dp,.... In
a simulation, this might be described by random walks on a lattice. Second,
they undergo reactions, for example A + B — C, at prescribed rates ’\ng
whenever they meet. It is important that these processes are diffusion-limited,
that is, the particles have to diffuse around before they find each other and
react. In a chemical system this would mean that the reactants should not be
stirred. In practice this may be realised by allowing the reactants to diffuse in
a gel, or on a substrate. It is important to realise that these reactions are not
usually reversible, and indeed the most interesting cases occur when they are
completely irreversible.
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The potential applications of these ideas to systems in chemistry, biology
and physics are limited only by the imagination of the reader, and this is not
the place to discuss them. Rather, we shall focus on some general features as
illustrated by some rather simple examples. In general, from some random ini-
tial state, these systems will evolve in time towards a steady state described by
some stationary probability distribution. Since the dynamics does not satisfy
detailed balance, this is not in general a Gibbs measure. In some very simple
cases, the steady state is trivial. For example, in the simplest system of all,
with a single species of particle A undergoing the pure annihilation reaction
A + A —inert (the inert particles not influencing the reaction further), the
steady state has no particles, and hence no fluctuations since it is a classical
vacuum. But it turns out that the approach to this steady is critical in the
sense that it exhibits universal scaling behaviour, critical exponents, and so
on. This may be understood, and the universal features computed, within the
quantum field theoretic renormalisation group approach to be described.

A second class of critical phenomena corresponds to a non-equilibrium
phase transition in the steady state, as some parameter of the dynamics is var-
ied. For example, if to the annihilation reaction described above the branching
process A — (m + 1)A at rate o is added, it turns out that under some cir-
cumstances there can be a transition at some finite value of & to a non-trivial
stationary state with a finite density of particles3?8. The universality class of
this transition turns out to depend on the parity of m. As with equilibrium
critical behaviour, the symmetries of a system are seen to play an important
role in determining its universality class.

The layout of this paper is as follows. In the next section we describe the
general formalism and illustrate it with the annihilation reaction A + A —
inert. We comment on the similarities and the differences with ordinary
many-body quantum theory, and on the connections between this approach
to non-equilibrium behaviour and others via the Fokker-Planck equation and
the Langevin equation. In Sec. 3 we discuss the renormalisation group ap-
proach to the A + A — inert reaction in more detail, and finally in Sec. 4 we
consider the more difficult problem of when the branching process is added.

2 Formalism

The dynamics of such a stochastic particle system is described by a master e-
quation governing the time evolution of the probabilities p(c; ) that the system
be in a given microstate a. For a system of particles on a lattice, for example,
the as might label the occupation number basis (n;, ns, .. .), corresponding to
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having n; particles at site j. The master equation takes the form

dp(a;t)/dt =Y Rp—.ap(B;t) = Y Racupp(a;i). (1)
8 B8

Here Rq—p is the rate for transitions from state « into @; for a reaction
diffusion-problem these are determined by the diffusion constants and the re-
action rates.

Such classical particle problems have two features in common with rel-
ativistic many-body problems which renders a ‘second-quantised’ formalism
particularly useful. First, particle numbers are not, in general, conserved:
they are created and destroyed by the dynamics. Second, and more importan-
t, the master equation and the Schrodinger equation share the properties of
being linear and first order in time. It is therefore not surprising that such a
formalism is similarly successful for these stochastic problems.

The first step i1s to construct a Fock space from annihilation and creation
operators satisfying the usual commutation relationships [a.v,afj] = &;;, and
define the state vector

() = 3 p(n1, g, 5t)aly oty o). @)

Note that this is not normalised in the conventional manner, and what plays
the role of a probability amplitude in quantum mechanics now is a probability.
We have also chosen a bosonic representation, corresponding to the case when
multiple occupancy of the sites is allowed. In simulations it is often more con-
venient to restrict the values of the n; to 0 or 1, in which case a representation
in terms of Pauli operators is more appropriate. This leads to quantum spin
models rather than immediately to quantum field theories, which, in some one-
dimensional cases, turn out to be integrable. In fact there is a some very elegant
mathematics in this branch of the subject® For example the quantum group
symmetry of certain spin chains appears very naturally from this perspective.
However, from the point of view of understanding the renormalisation group
approach and generalising to noninteger dimensions, the bosonic formulation
is more useful. In any case, as long as we are studying problems where the
average particle density is low, the probability of multiple occupation should
be small and there should be no difference between the physical results of the
two approaches.

The statement is now that the master equation (1) is completely equivalent
to a Schrodinger-like equation for the state vector

d|¥(t))/dt = —H|¥(2)), (3)
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where the ‘hamiltonian’ H is simply expressed in terms of the as and the als.
For example, for the reaction-diffusion problem A + A — inert, one finds that

H=DY (ali — al;)(ai — a;) = A 3" (a? — ol a?). ()
(i7) i

The simple hopping form of the first term (where the sum is over nearest
neighbour pairs (%, j)), which corresponds to pure diffusion, is not surprising,
but the second term may require some explanation. To understand its form,
consider the simpler problem of the reaction at a single site. If p(n;?) is
probability of finding n particles at this site, the master equation is simply

dp(n;t)/dt = X(n + 2)(n + 1)p(n + 2;1) — An(n — 1)p(n;?), (5)

where the factors of (n + 2)(n + 1) reflect the number of ways of choosing

the pair of reacting particles. Defining [¥) = " p(n;t)ajn|0) as above, its
equation of motion is

dw)/dt = A3 ((n+2)(n +1)p(n +2) — n(n — Dp(n))al"j0)  (6)
= 23X (a?p(n+2)at™ — a’a%p(m)al ™) 0) (7)
= Md® - afzaz) Zp(n)aTHIO). (8)

The second term in the reaction part of (4) therefore corresponds to the sec-
ond term in the master equation (1), and is required by the conservation of
probability.

From the lattice hamiltonian (4) we may, if interested in long wavelength
properties, proceed to the formal continuum limit

H= / [D(Val)(Va) - Ma® — aTzaz)]ddx, (9)

and thence to a representation as a path integral over fields a(z,t) and a*(z,t)
with a weight exp(—S[a, a*]), with an action

S= / [a*da + D(Va*)(Va) — X(a? — a*?a?)] dtd’% . (10)
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2.1 Differences from quantum mechanics

There are two immediately apparent differences from ordinary quantum field
theory: first, there is no factor of ¢ in the Schrodinger equation (3) - but this is
familiar from euclidean formulations of conventional quantum theories; second,
the hamiltonian is not hermitian. In many cases it will turn out that, never-
theless, its eigenvalues are real. (Complex eigenvalues correspond to oscillating
states which are known to occur in some chemical reactions.) However, the
most important difference is one of interpretation: expectation values of ob-
servables O are not given by (¥|O|¥), since this would be bilinear, rather than
linear, in the probabilities p(a;t). Instead, for an observable which is diagonal
in the occupation number basis, its expectation value is of course

0=> 0({n;Hp({n;};1), (11)
{n;}

and 1t is straightforward to show that this may be expressed as

0 = (0] ¥ 0 e Ht|%(0)), (12)

since the state (0 ezi % is a left eigenstate of all the al i, with unit eigenvalue.
J g

Conservation of probability then requires that (0|ez:‘ “H = 0. This is
equivalent to the requirement that H should formally vanish when every at j

is set to unity. The appearance of the state (0|czi %/ may complicate some of

the subsequent calculations, since the interaction part of the hamiltonian is not
normal ordered with respect to it, and therefore the usual formalism of time-
dependent perturbation theory and Wick’s theorem do not immediately apply.

This problem may be avoided by first commuting the factor of ezi % through
the operators @ and H in (12). This has the effect of shifting af - 14 aT,
since edal = 1+ aT)e". The factor e2os % acting on the initial state |¥(0)) is
usually something simple, and the operators are now normal ordered.

Note that such a shift is convenient only if we are interested in what (in the
language of particle physics) may be termed ‘inclusive’ probabilities, for exam-

ple the expectation value of the local density n; = aT]- aj. After the shift, we
see that in fact #; = (a;), where {-) denotes the usual QFT expectation value.

For so-called exclusive quantities, for example the probability &n.1 [;.: 6nj0

a;

that there is only one particle in the system, at site ¢, the factor ezi simply

reduces to a; in the correlation function, and no shift is necessary.
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2.2 Relation to other formalisms

Of course, there are several other important ways of formulating stochastic
processes, through either the Langevin equation or its related Fokker-Planck
equation. It is interesting to see how these emerge in the present formalism
for the simple example under consideration. If we make the shift a* =1+ a
in the path integral, we find an action

Sla,a] = / [8:a + D(Va)(Va) + 2)aa? + Aa’a?]dtd%. (13)

The non-linear terms in @ may be disentangled in terms of a Gaussian trans-
formation

e~ ra%" = / ™" P(n)dn, (14)

where P(n) is a suitable Gaussian distribution. The path integral over @ may
now be performed, yielding a functional delta function equivalent to the equa-
tion

dia = DVZ%a — 2xa? + 9(z, ). (15)

Neglecting the last term, this is just the so-called rate equation which one
might write down as a first approximation to the equation of motion for the
density (note that we have argued above that the expectation value of a is the
density.) The rate equation approximation assumes that the annihilation rate,
which is proportional to the probability of finding two particles at the same
point, is simply given by the square of the density. This approximation clearly
neglects the correlations between the particles, and is on the same footing as
the mean field approximation in equilibrium critical behaviour. In this sense
(15) looks very much like a Langevin equation, with a noise term 7. However,
such equations are usually derived from the master equation through some
kind of approximate coarse-graining, and the exact form of the noise term is
often unclear, especially when the dynamics does not constrain this through
detailed balance. By contrast, the correlations of the noise here are completely
explicit

(n(z, (", 1)) = —Aa?8(z — 2')5(t — ). (16)

That the noise should depend on a is expected, since there can be no noise
when the density is zero. But the minus sign is surprising. It implies that the
noise 7 is pure imaginary, so that the solution of (15) is complex!

This curious result may be traced to the fact that, although the ‘quantum
mechanical’ average (a) is the mean density 7, this is not true of higher mo-
ments. For example, the mean square density n? is given by the average of
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<+ =X+ O+

Figure 1: Vertices and renormalisation for A + A — inert.

(a']'a)2 = anza2 +ala. The operators at give unity acting to the left on the
state (0e®, so that in fact n2 = (a?) + (a). In general, one may show that, if
a has a Gaussian distribution, as it would in the case of pure diffusion, then
the density n would have a pure Poisson distribution. This is to be expected,
since a simple random walk will have Poissonian statistics. The effect of the
reactions is to modify this. In a sense the ‘noise’ 77 in (15) represents only that
part of the physical noise which originates in the discreteness of the reaction
process. Since, however, this cannot truly be disentangled from the diffusion
noise, there is no need for its correlations to be positive.

The hamiltonian approach we have described above should be distin-
guished from another based on the Fokker-Planck equation. The latter begins
from a coarse-grained Langevin description of the problem, and describes the
time evolution of the probability distribution of the solution of this equation.
Like the master equation, it is linear and first order in time, so may be cast in
a hamiltonian formalism (in this case more usually called the liouvillean.) But
the Fokker-Planck equation describes the diffusion in phase space and cannot
easily accommodate processes where particles are continually being created
and destroyed. It is therefore less useful for these types of problem.

3 Renormalisation group analysis

The field theory described by the action (13) is extremely simple. The bare
propagator (—iw + Dg?)~! is simply the Green function for the diffusion equa-
tion, and it may be represented by a directed line moving forward in time (con-
ventionally from right to left.) The vertices are shown in Fig. 1. Immediately
we see that, since the number of particles in a given intermediate state cannot
increase as we move from right to left through a diagram, there can be no
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loop corrections to the propagator, hence no wave function renormalisation for
the fields a or a. The only non-trivial renormalisation is that of the coupling
constant A, which may be seen through the loop corrections either to the ver-
tex I'>! (shown in Fig. 1) or to ['>2. (The fact that these renormalise in the
same way is a consequence of probability conservation, which relates the un-

truncated Green functions (OIa(t,z)at2(0,0)|0) and (0|az(t,z)at2(0,0)|0). It
is interesting to note that probability conservation is not expressed through a
Noether symmetry in this formalism.) The diagramsin Fig. 1 correspond to a
simple inclusion-exclusion argument for the probability of finding two particles
at the same point given that they have not reacted in the past. They may be
simply summed, with the result that the one-loop renormalisation group beta
function is exact:

B(gr) = —egr + by}, (17)

where gg is the dimensionless renormalised coupling, b is a positive constant,
and e=2—d.

For d > 2, then, gg is irrelevant in the infrared, and the rate equation
(15) with no noise term is asymptotically valid, while for d < 2 it flows to a
non-trivial fixed point ¢* = O(¢). The consequences of this may be explored
by writing down and solving the Callan-Symanzik equation in the usual way.
Consider, for example, the mean density n(t), which depends in principle on the
initial density ny and the rate A, expressed through gr and the normalisation
scale tp. (We work in units where the diffusion constant D = 1.) Then

n(t, No, IR, to) = (t/i())_'d/2 n(to, no(t/to)dlz,g}z(i/to), to) (18)

where the running coupling §r — g* as t/to — co. The simple exponent in the
prefactor on the right hand side reflects the lack of any anomalous dimensions
for the density. The right hand side may now be evaluated as a power series
in g* (the lowest order being simply the mean field result), which is converted
into a power series in €. Term by term, one may show that the result is in fact
independent of the initial density no, so that in fact the whole expression is a
universal function of € only. The result is n(t) ~ A/t%? wheré

1 2In87r -5
Tme + “l6r + O(e). (19)

Universal forms for correlation functions may be derived in a similar manner.
The result is that the whole probability distribution for fluctuations becomes
universal in the late time regime.
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4 Branching and annihilating random walks

A more interesting type of critical behaviour emerges if to the annihilation
reaction A+ A — inert we add the branching process A — (m+ 1)A, with rate
o. Here m is a positive integer. In the rate equation approximation, the mean
density now satisfies

dn/dt = omn — An?, (20)

which would suggest that, for any o > 0, the steady state has a non-zero density
of particles (it is ‘active’ in the language of catalysis.) In fact, simulations
suggest that this is only true in sufficiently high dimensions d > 2. For d < 2
the fluctuations need to be taken into account, and this may be done using the
formalism described above.

In one dimenston, with m = 2, this model may be interpreted as a dynamic
Ising model, where the particles play the role of domain walls!® In that case the
processes of diffusion and annihilation are generated by single spin flips (these
are assumed to occur at zero temperature so that pair creation of domain
walls is suppressed), and the branching process A — 3A is associated with
spin exchange (assumed to occur at infinite effective temperature). Since this
model has two ‘temperatures’, it does not satisfy detailed balance and the
stationary state is not Gibbsian. For that reason the model may undergo a
nontrivial ordering transition, even in one dimension.

The additional term in the hamiltonian has the form

Hy = a/[afmﬂa ~ ata]d’. (21)

Note that there is a difference depending on the parity of m. If it is even, then
the number of particles is locally conserved modulo 2 by both the annihila-
tion and the branching process, while for m odd the latter violates this. For
m even this is manifested in the formal symmetry of the hamiltonian under
(a,aT) — (—a, —aT). Note that if we make the shift af — 1+ @ in order to
develop the perturbative expansion for ‘inclusive’ processes, this symmetry be-
comes hidden. If we further make an expansion of the hamiltonian in powers of
@, and drop higher orders on the grounds of irrelevance by power counting, the
symmetry is completely lost. This is evidently a dangerous thing to do, since
it is well known that symmetries play a very important role in influencing uni-
versality classes of critical behaviour. Fortunately the renormalisation group
behaviour of the theory should be independent of which type of correlation
functions we choose to study, and therefore may be computed in the unshifted
theory where the symmetry is manifest.
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4.1 Case of even m

The first question to be addressed'! is whether the branching rate o is relevant
at the pure annihilation fixed point, that is, in the beta function 8, = —yo +
O(o?), is y > 07 If so, then as soon as o # 0 it will flow away in the infrared
into what is presumably the fixed point controlling the active phase. For
d > 2, the pure annihilation reaction is controlled by the gaussian fixed point,
so simple power counting suffices. This yields y = 2, consistent with the
simulation results. For d < 2, the annihilation fixed point is accessible within
the ¢ = 2 — d expansion, and so y may be computed only perturbatively. The
result is that'?

y=2—1im(m +1)e+ O(e?). (22)

Notice that the O(e) corrections are large in d = 1, but no conclusion may be
drawn from this since the higher terms have been neglected.

Fortunately it is possible to compute y exactly in d = 1.!! There are several
ways of doing this, but the simplest is to realise that in this limit it becomes a
kind of a free fermion problem. This is because going to the annihilation fixed
point gr — g¢* corresponds to taking the limit of the bare coupling A — oo. In

that case the term /\anza2 in (9) corresponds to an infinite hard core repulsion,
so that the particles behave in one dimension like free fermions, at least in those
periods of time evolution during which the other terms in the hamiltonian do
not play a role. (For this reason the problem is not completely equivalent to
free fermions.) In that limit, it does not make sense to create the new particles
at the same lattice site. The best one can do is to distribute them between m
neighbouring sites, so that the corresponding term in the lattice hamiltonian
has the form

i+2
O'E H cticj) (23)
7 isi-g

where cf,' and ¢; are now anticommuting operators. In the continuum limit,

we may make a Taylor expansion of each cti about ¢ = j, in powers of the
lattice spacing b. The lowest surviving term has the form

& / cfactyaety.. . (9mct) cd, (24)

where & = gb™™+1)/2 is now the effective expansion parameter in the con-
tinuum limit. This extra factor modifies the dimensional analysis, which then
implies that

y=2-lm(m+1). (25)
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Thus the O(¢) result in (22) appears to be exact for d = 1. We have no simple
explanation of this, as we have also computed explicitly the O(e?) terms and
find them to be non-zero.

However, this does imply that the branching is irrelevant at the pure anni-
hilation fixed point for d = 1, and hence the infrared or late time behaviour for
sufficiently small o should be that of the pure annihilation process, with finite-
ly renormalised parameters (for example, the diffusion constant.) It may also
be shown that, even if the original branching process does not allow for m = 2
processes, these will inevitably be generated under renormalisation, and, since
this coupling is the most relevant, it controls the late time behaviour. Physi-
cally both these effects may be understood as follows. In pure annihilation, the
surviving particles become strongly anticorrelated in space. This is because
each sweeps out a region around itself: for d < 2, every test particle placed
within that region has probability one of eventually annihilating with it. (For
d > 2 the test particle may escape.) When a small branching rate is turned on,
the single particles occasionally branch into bunches of 3,5, ... particles but
these stay close together, and almost always annihilate with their siblings be-
fore visiting other bunches. The effect is therefore of diffusing bunches, which
behave in many ways like single particles with a reduced diffusion constant.
Clearly even if branchings only with m > 2 are allowed, the pair annihilation
process will generate an effective m = 2 branching rate.

For larger values of the branching rate o there should be a transition to
the active state, which should correspond to some nontrivial fixed point of
the renormalisation group. But it seems to be very difficult to analyse this
within any perturbative renormalisation group scheme. This is because the
problem has two critical dimensionalities: d = 2 associated with the nontrivial
nature of the annihilation, and d =~ g- where the value of y changes sign, and
therefore no systematic e-expansion is possible. So far we have not been able
to find another small parameter, and the best we can do is a truncated loop
expansion in fixed number of dimensions. This leads to the expected fixed
point, but the estimated values for the critical exponents are far from those
measured in simulations.

4.2 Case of odd m

Although the above analysis might suggest that for m = 1 the branching rate
is relevant even when d = 1, so that there is no nontrivial transition, this is
not the case, since now there is no conservation law modulo 2, and the process
A — 0 is immediately generated under renormalisation. This has eigenvalue
2 and corresponds to the generation of a mass gap in the theory. In fact
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one may show that for small branching rates the mean density should decay
exponentially to zero. This conclusion is valid even when d = 2: although in
this case the annihilation rate which generates the new term is irrelevant, it is
only logarithmically vanishing, and meanwhile the rate for the process A — 0 1is
growing under the renormalisation group. Once again, for sufficiently large o,
there should be a transition to the active state. In this case it is rather easier
to analyse. On including the effective term A(a — ata) in the hamiltonian,
corresponding to A — 0, and making the shift al = 1+ a, one finds an
interaction hamiltonian of the form

Hipe = /[6ﬁa + l‘laaz - /‘262‘1 +-- ']ddxz (26)

where p; and ps are positive constants, and § may change sign (as it does
at the mean field transition.) The omitted terms are of higher order, and
their neglect is, this time, justified, since there is no symmetry relating them
to the lower order terms. This is a well-known theory!? which describes the
universality class known as directed percolation (DP), although it was first
studied by particle physicists in the context of reggeon field theory. Generically,
any dynamical phase transition from an inactive state, with no noise, to an
active one, is in the DP universality class, and this has been verified for a
number of models. The branching and annihilating random walks for m even
and d = 1 are therefore an interesting exception to this general rule. They
evade it because they possess an additional conservation law. This is of course
quite a familiar idea from equilibrium critical behaviour.

5 Conclusions

These simple examples I hope illustrate the point that quantum field theo-
ry still has many unexplored applications, which are not limited to quantum
systems nor to equilibrium critical behaviour. Perhaps we are not yet at the
stage when the mathematical beauty of such applications is apparent, but the
richness of the subject is such that I believe that this may well emerge in the
years to come.
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ZERO TEMPERATURE GLAUBER DYNAMICS OF THE 1d
POTTS MODEL

B. DERRIDA
Laboratoire de Physique Statistique, ENS,
24 rue Lhomond, 75005 Paris, France

For the zero temperature Glauber dynamics of the one dimensional Potts model,
the analogy with a voter model can be used to write the exact expressions of the
correlation functions between an arbitrary number of spins. This allowes one to
obtain the exact distribution of domain sizes in the long time limit and to calculate
exactly the exponent characteristic of the decay of the density of persistent spins.

This paper is dedicated to Claude Itzykson who was for so many years a friend
as well as a colleague. Along with many others in Saclay, I have benefited greatly
Jrom his enthusiasm, his generosity end his experience. Beyond the outstand-
ing achievements he left behind, Claude will also remain for us an example of a
scientist driven by the purest motivations.

1 Imtroduction

The 1d Ising or Potts model evolving according to Glauber dynamics at zero
temperature is one of the simplest systems which exhibits coarsening!. Al-
though some quantities such as the pair correlations can be calculated easily
using the analogy with voter models 23 %% and non-intersecting random walks,
several properties characteristic of the long time regime of this coarsening phe-
nomenon (like for example the distribution of domain sizes) have remained for
a long time more difficult to obtain.

The goal of the present lecture is to review a few exact results obtained re-
cently 78 in collaboration with Vincent Hakim, Vincent Pasquier and Reuven
Zeitak. These results include both the exact expression of the distribution of
domain sizes in the long time limit and of the exponent 8 characterising the
decay of the density of persistent spins (i.e. of the spins which never flip up to
time ¢). They are all derived from exact expressions of correlation functions
for an arbitrary large number of spins.

2 Distribution of domain sizes

The system considered throughout this work is a g-state Potts model evolving
according to a continuous time zero temperature Glauber dynamics. Initially
each spin o;(0) at site 7 of an inifinite one dimensional lattice is assigned one
of the ¢ possible values at random. According to Glauber dynamics at zero
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temperature, each time a spin of a 1d chain is updated, it takes the common
value of its two neighbors if these two neighbors are in the same state and it
chooses at random the value of one of its two neighbors, if these neighbors are
in different states. In other words, during every infinitesimal time interval At,
each spin in the system is updated according to

oi(t) with probability 1 — 2A¢
oi(t + At) = { oi—1(t) with probability At (1)
giy1(t) with probability At

Clearly, the dynamics tends to align neighboring spins and to eliminate domain
walls giving rise to a coarsening phenomenon with fewer and fewer domains of
increasing sizes. From (1) it is easy to see that the probability Az 4(t) that two
sites at positions z and y are in the same state at time ¢ satisfies the following
evolution equation for z < y

dAz (1)

TR Azy1y(t) + Az1,y(t) + Az y41(t) + Asy1(t) — 2 Az y(2)  (2)

and A; -(t) = 1. This equation together with the initial condition

g—1

1
Az,y(0) = 2 + 0z,y

determines the two point correlation function Az y(t) at any later time and the
solution is for z < y

g—11 x sin @sin(y — )0 —4(1-cos8)t
=1-—"- df ——8M™M8M8— :
Azg(t) =1 q 27/, 1—cos8

()

This can be rewritten as

g-1

Apy(t)=1-— Cz,y(t) 4)
where cz y(t) is the probability that two walkers starting at positions z and
y do not meet up to time ¢ (during every infinitesimal time interval At, each
walker hops to its right with probability At, to its left with probability At and
does move with probability 1 — 2At). These ¢, 4(t) satisfy the same evolution
equation as the Az ,(t)

dez g (t)

dt Cetly () + com1,y(t) + Coy41(8) + czy-1(t) —d ez y(t)  (5)
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with the obvious boundary conditions
czs() =0 5 coy(0)=1-6sy .

The solution is given for z < y by

1 [ . sinfsin{y—z)8 _._
Czy = cT.y(t) = El'-_/ do _T—((;zs—ﬁ). e 4(1—cos8)t (6)

The key to the calculation of the distribution of domain sizes is that (4) can be
generalised to give arbitrary equal time correlation functions in terms of the
matrix ¢z . For example, if 2; < 23 < z3 < z4, the probability Az, -, .,(%)
that o2, (t) = 02,(t) = 0,(t), and the probability Az, ¢, z,,2,(t) that o, (t) =
02,(t) = 02,(t) = 04,(t), are given by®

—1 -1\?
Az, ,50,25(1) = 1 — qq2 [czy,z2 + Cza,0a] — <qT) Czy,25 (7)

and

2 2
—-1\" -1)°
Az 20,2324 (1) = 1" e [crx 22HCoy 23 Czs 2] (q_") crx.’i"'%c&;:).n,za.n

q
(8)
where c(fl),,,_,,_,‘ is the probability that there is no intersection up to time ¢
between four random walkers starting at positions z; < 23 < £3 < 4. Because

one can represent non-intersecting random walkers by free fermions, cg),“.,s,,,
is a Pfaffian and has the following expression in terms of the matrix c; 4

(2)

Cry\72,53,24 — C21,23Cz3,24 + Czy,2,C23,25 — Czq,55Czq,24 - (9)

More generally, for z; < z3 < ... < z,, the probability A;, z,..z.(f) that
0z, (t) = 05y(t) = ... = axn(t) is given by 8

2)
Az zq.2.(t)=1—p E €z, zn TH E c:(r. VT4 1,T5,F 541
i=1 i<j

— 3 (3)
H Z cr-.f-+x.-=;‘,¥j+|,=~.xk+| +--
i<j<k -

2
-A {#czl,r.,. - /‘2 Z cg:l),z. Tip1:8n + /-‘3 Z C(z?;),z.,;.“ T, Tjp1,%En } (10)

i<y
where
A=g—1 (11)
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g—1
12
pe (12)

and c(,’i),,,,,_,z,,‘ is the probability that there is no intersection up to time ¢

among 2k walkers starting at positions £; < z3 < ... < z9;. This probability

c(,li),,,-,,,.,z,,‘ is a Pfaffian given by

l[:

1
E —
c:(r:?_x:,u-.hk-:,fzk ~ 9k k!-z E(a) CT,1)%a(a) " 'cra(zk-n).%(:k) (13)
(4
where the sum runs over all the permutations o of the indices {1,2,---, 2k},

€(o) is the signature of the permutation o and the matrix c;, -, is given by (6)
for z; < z; and is antisymmetrized

Cr =—cCg;e; <0 when z;>z;.

0T

One can easily check the validity of (7,8,9,10,13) by writing the evolution
equations similar to (2,5) that Az, 7, 5.(t) or c(,’i?t,'_,,,,,,_,,,,, should sat-
isfy and by verifying that they are satisfied with the right boundary conditions.

One can also derive these expressions from the fact that non-intersecting ran-
dom walkers in 1d can be described as free fermions "8

Remark: other correlation functions than the probability that n spins are
in the same state can be calculated from the knowledge of the matrix ¢z, s;.
In fact one can express arbitrary correlation functions between n spins in term
of the pair correlations only. For example in the Ising case (¢ = 2), if one
defines Ising spins with S; = +1 when o; = 1 and S; = —1 when o; = 2, one
has

(SeSy) =1—czy

and one can show that all the higher correlation functions can be expressed in
terms of the two point function (S;Sy): for z; < 23 < z3 < z4,

(53'151'251'351'4) = (Sl'lsl'z)(srasfq) + (53151'4)(83'253'3) - (51'151'5)(5-72 S”d)

and more generally for 2, < z3 < ... < z2n, the 2n-point function {Sz, S¢,...Sz,.)
is a Pfaffian (13).

In the long time limit, the expression (6) becomes a scaling form of the re-
duced variable (y — z)/v/t

cey(t)=F (y\;t_”) (14)
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where

2/VB
F(z) = 72-_;/0/ ey (15)

and consequently all the correlation functions become scaling functions of the
distances divided by v/%.
In particular, for large ¢, the probability A; y(t) that o (t) = o (t) becomes

g—1 2 [l-=l/ vavt
¢ V7o
showing that there is a characteristic length in the system increasing like ¢

The density of domain walls (which is also the inverse of the average size (I)
of the domains) is of course 1 — A; ;4+1(t) and from (16), one finds that for

large ¢ .
~ 19
=1z Azz41(t) — g - 1\/2_7“/{ ()
The whole distribution of domain sizes is more difficult to obtain as it requires
the knowledge of correlations between an arbitrary number of sites.
Expression (10) is exact and can be used to calculate the probability ¥n
that n consecutive spins are in the same state (i.e. that n consecutive spins
are in the same domain). Then one can obtain the distribution p(!) of domain

sizes via + 1
—-n
P = ZP(I)

>n

Az y(t) =1— e du (16)

1/2.

or equivalently
p() = (1) [¥1 — 29141 + hi42]

In the long time limit, the %, become scaling functions of the ratio n/v/t. Thus
the distribution p(!) of domain sizes scales also in the same way and takes the

form .
P =9 (1) (18)

where the function g,(z) will be normalised such that

| @iz = [ g2z =1

For ¢ — oo, one can see from (10) that ¥, = 1 —¢; , and this allowes one
to obtain the following exact expression of goo(z)

Joo(T) = % z e " Tt (19)
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For other values of ¢, as n increeases, there are more and more terms in (10)
which contribute to the 1, and g,(z) becomes an infinite series in powers of .
However, when (14) and (15) are used into (10), one can obtain the expansion
of ¥ in powers on n/v/f and this leads® to the small z expansion of 9q(2)

2 3 2 3 5

T4, .. T & 3. T _T 4 T 14 5
94(2) 2e-1" B8 @-13° toag-0:° teag-1s"
¢ e ™ ¢ g ™ (3423 .
120 (¢ —1)6~ 768(g—1)7 ' 26880 (q— 1)8

™ ¢ 2° + 0(z'%) (20)
12288 (g — 1)° '

3

+

One can also write (10) as a determinant "8 and the large z behavior of g4(z)
can be obtained from the theory of Toeplitz determinants. One finds for large
z that

94(2) = exp[—A(q)z + B(g)] (21)
where the coefficients A(q) and B(gq) are given in terms of p = 9:,1
e Forg<2
_l ¢ S@wr
1 oo (4[1-)" n-1 1
B(q)—2log A(q) = += { ™+
4m ngz n p=1 p(n - p)
(23)
e Forqg>2
_qJT 1 ¢ =@pr

q- (4p) «
B(q) —2log A(q) = —T+
47 22 n Z \ /p(n —
—log4 -1lo logdpu) — 2 / dve
g( & /“ Z n\/_ —-nlog4u
(25)
In the limit ¢ — oo, expression (24) gives A(g) — oo and this confirms the

decay (19) faster than exponential. For ¢ = 2, one finds that A(2) ~ 1.3062..
and B(2) ~ 517.. .
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The two expressions (22,24) and (23,25) of A(¢) of B(g¢) valid for ¢ < 2
and ¢ > 2 look different. However, they are analytic continuations of each
other and therefore they represent the same function of ¢. This can be seen,
in the case of A(g), by writing for ¢ < 2 the expression (22) as

1 *° 2
Aq) = W qz—l . dklog(1l — 4pe*") .
As ¢ — 2, the parameter u tends to 1/4 and two complex zeros of the integrand
+iko(g) = +i/—log4u approach the real axis. The analytic continuation (24)
corresponds to an exchange of these two zeros (or equivalently to a deformation
of the integration contour over k to prevent these two zeros from crossing the
contour as ¢ crosses 2). The same kind of reasoning can be used to show that
(23) and (25) are two different expressions of the same function 8.

Remark: a priori, in the Potts model, the number of states ¢ is an inte-
ger and so the case ¢ < 2 is of little interest. Here however, it is easy to check,
that if one considers the zero temperature dynamics of an Ising chain where
the spins are initially uncorrelated but with a non-zero magnetization m, the
distribution of the sizes of domains of + spins is exactly the same as for the

g-state Potts model when 0

1= Tim
For m # 0, there is no symmetry and the distributions of sizes of + domains
and of — domains are different. They are given by g,(z) for ¢ = 2/(1+ m) and

g = 2/(1 — m) respectively.

Remark: It is interesting to note that the only way that the matrix c;
enters in the expressions of (22,23,24,25) is through (14) with a function F'
given by (15). If instead of (15), a different function F' was used in (14), the
large z behavior of the normalised distribution of sizes g4(z) would remain
of the form (21) with new expressions of A(q) and B(g). For example the
expression (22) of A(g) would become for ¢ < 2

- 1 q ® OO ikz ot
A(q)__47rF’(0)q—1/°°dklog(1 2/4/ dze'** F'(|z]) | .

- -0
3 The number of persistent spins on an infinite line

The long time limit of a coarsening phenomenon, when it leads to a scaling
regime, is in many respects similar to a critical point describing a second order
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phase transition. This scaling regime is characterized by universal exponents
(here (17) the typical size of domains grows with time like t1/2) as well as
universal scaling functions such as g,(z). It turns out that this scaling regime
is characterised by other exponents than 1/2: it was found first numerically®
that the fraction r(t) of spins which never flip up to time ¢ decays like

r(t) ~ %) (26)

where the exponent 8(q) depends on g. The exact value of the exponent 8(q)
can be determined by a calculation rather similar to the one which gave the
distribution of domain sizes (in fact the worke® on the distribution of domain
sizes followed the calculation of the exponent 6(g) ®7). The result was that

6(q) 1s given by ,
R

which gives 6(2) ~ .375, 6(3) ~ .5379508..., 8(5) ~ .6928365..., 6(10) ~
.8310356... It is remarkable that for all integer values of ¢ except ¢ = 2, 6(q) is
irrational. The expression (27) has been obtained by two different approaches:
the first one 7, summarized in this section, is based on a calculation done di-
rectly on the infinite line; the second one® uses exact properties of finite lattices
and finite size scaling as described in the next section.

To calculate the probability r(t) that a spin never flips. up to time £, one
can consider n different times 1 < 7 < ... < 7, and try to calculate the
probability that a given spin o;(t) takes the same value at these n different
times. Then taking the limit (n — oo) of a set of times 7, 73...7, dense between
0 and ¢ gives in principle r(2).

To obtain r(t) we used this idea for a semi-infinite system for which the
spin oo at the origin is updated according to

_ J op(t) with probability 1 — At
oo(t +At) = { o1(t) with probability At (28)
If ¢(m1,72..7) is the probability that oo(n) = oo(m2) = ...00(7), the prob-

ability r(t) that a spin of an infinite chain never flips up to time ¢ is given
by

2
r(t) = [lim ¢(7'1,‘r2..r,..)] (29)
1 — 00
where as n — oo, the times 7, 7...7, become dense between 0 and t. To un-

derstand (29), one should notice that if a spin o; of an infinite chain never flips
up to time ¢, the dynamics of the spins at its left are completely decorrelated
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from the spins at its right. Thus the two sides of the spin o; can be considered
as two independent semi-infinite chains.

As for equal time correlation functions (see section 2), the probability
¢(T1 ’ T2..T,,) that
0o(71) = 0o(72) = ...00(a) can be expressed in terms of the matrix c,, r; where
Cr;,r; is the probability that two random walkers starting at the origin of a
semi-infinite chain at times ¢ — 7; < t — 7; do not meet up to time ¢. For
1 <T2<...< Ty,
-1

d(rm)=1-1

Cri,ma

$(r,ra,mg)=1-1

-1 -1\?
2 [cfl."‘: + c?:,fa] - (gq_) Cry,13

T1,72,73,7T4

2
-1\’ -1
(11,72, 73, 74) = 1— 2 [cfl r2HCry 7y FCry 10— (q ) cf1.74+(q 3 ) 2
q q q
and more generally,

2 2
#(r1, T2, TR)=1—p Z Criteqr TH Z c(f.)f.+1,fj.rj+l
i=l i<y

3
—H E:cf r+.r,r,+|rkr.+l+"'
i<j<k

3
—A {ucrlv’lh - # Z cfl'f- Ti4+1,Tn + H Z cs'::?fnfl-i-l,"j.fjd-l.fn - } (30)

i<j

These expressions for ¢(m, 72, ...7,) are exactly the same as those (4,7,8,10) of
Az, z,,.5, and as in section 2, the c(,lf?,,,,,,,,‘ are Pfaffians (9,13). The only
difference is in the expression of the matrix ¢, .- which is still antisymmetric

and which is given here for r < 7 by

Crr = —cor= . B, T)p(y, ™) ~ plz, 7)P(y, T)
0<z<y

where p(z,t) is the probability of finding, on site z at time ¢, a random walker
which starts at the origin of a semi-infinite chain at ¢t = 0

p(z,t) = %r_ /021r df [ cos(z6) + cos((z + 1)8) ] exp[—2(1 — cos 8)1]

Remark: instead of replacing the problem of a peristent spin on an infinite
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line by the same problem on two independent semi-infinite lines, one could
try to write directly for the infinite line an expression similar to (30). This
expression would however be more complicated: the simplicity of the semi-
infinite line comes from the fact that if there are n non-intersecting walkers
starting at the origin at timest — 7, < t — 7,~1 < ..t — 71, the positions of
these walkers remain for ever in the same order z, < 5 < ..z,. One can then
easily represent these walkers by free fermions. One can also express the prob-
abilities of all the meeting events between coalescing random walkers starting
at timest — 7, < t—Th-1 < ...t~ 7 in terms of the matrix ¢, ;s 7. If we
had worked directly on an infinite chain, the positions z;,z,, ...z, of walkers
starting at a given site at times t — 7, <t — 7,3 < ...t — 7 could appear in
many different orders and this would make the calculation of the probabilities
of meeting events between coalescing random walkers much more difficult than
for a semi-infinite line.

The last step to calculate the exponent 6(gq) in (26) is to estimate the large
n and large t behavior of ¢(m, T, ...7s) (when the times m,72,..7, become
dense) (29,30). For large 7 and 7/, ¢, ,» becomes a scaling function of the ratio

/7

Crpt = —Crie = f (%) (31)
where
_ 4 a1
f(2) = ;_-tan Pl 1. (32)

As for the distribution of domain sizes (see section 2), one can rewrite (30)
as a determinant and use the theory of of Toeplitz determinants to show that
when the ¢, ,+ have the form (31), the large t and n behavior of ¢(71, 72, ...7a)
is given by

é(m1, T2y .. Tp) ~ ¢80

with
[ee] (>}
6(q) = — i/ dk log [1+2p/ kv ev f’(e")dv]
27 J_ o

- 00
and when f(z) is given by (32), this leads to (27).
The exact expression (27) is in fact in good agreement with the numerical
estimates which had been previously obtained either by MonteCarlo simula-
tions %10 or by finite size scaling !!.
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4 Persistent spins on a finite lattice

Another way of calculating the exponent 8(q) is to consider the zero-temperature
Glauber dynamics on a finite lattice of L sites® with random initial conditions
and to calculate the probability pr(g) that any given spin never flips between
t = 0 and t = co. The size of the domains increases as ¢t!/2 for an infinite
system and one expects that the dynamics on the finite system will stop at a
time t ~ L2?. Thus one expects

pr(g) ~ L= (33)

The calculation of pr(g) is rather easy for small systems. For example for
a system of two sites with periodic boundary conditions, there is a probability
1/q that initially the two spins are identical, in which case the two spins will
never flip, and a probability (¢ — 1)/¢ that the two spins are initially different,
in which case one of the two spins moves once and then the dynamics stops.

Therefore 11 1 +1
q— g
pAg) =+ 5—=— 34
2(9) T2, % (34)
The same kind of reasoning can be used to obtain for lattices with periodic

boundary conditions

£ (‘I) =1
na) = L=
2

pa(g) = ?i%:fi

8¢ +23¢2 +12¢+ 1
p4(‘1) = 4443

62¢* + 224¢3 + 176¢% + 329 + 1
ps(q) = 495¢4

912¢% + 3864¢* + 3983¢3 + 1135¢% + 81¢ + 1
pela) = 9976¢°

250864¢° + 119732¢° + 150210¢* + 58176¢3 + 675642 + 200¢ + 1
prla) = 360161

and so on.

Initially !! this exact calculation of pz (¢) was done on lattices up to L = 14
and these expressions analyzed by a finite size scaling method based on (33)
gave the following estimates for the exponent #(q):

6(2) = 3750+ .0001 ; 6(3) = .5379+.0002 ; 6(5)= 6928 + .0003
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to be compared with the exact values given by (27)

6(2) = .3750 ; 6(3) = .5379508... ; 6(5) = .6928365...

Later ®, in collaboration with Vincent Hakim and Vincent Pasquier, we
could derive the general expression of py(¢q) for arbitrary L and ¢. Again
pr(g) can be written in the same form as (10) or (30)

L-1
2 2) 3
pr{@)=1—p ciin+p Ex+1,j,j+1 Z o .+1,, JHLkk+l T
i=1 1<j i<j<k
2 P (3)
—A {Fcl L= 201 nie1,L T Clii+l,ji4+1,L } (35)
i<j

where the matrix ¢; ; is a L x L antisymmetric matrix satisfying for i < j the
following-equation
Cit1,j +Ci—1j tCij+1+cij—1—4c; =0 (36)
with the boundary conditions that for all 1 <i < L
ci=0 ; coi=cr=1

This matrix c; ; can be reinterpreted as the probability that two random walk-
ers starting at positions ¢ and j with 1 <7 < j < L will not meet before one
of them hits one of the two boundaries 0 or L + 1. This gives
for L =2

C12= 1/2

for L=13
61,2262'323/7 H 01,3:5/7

for L =4
C1,2 =C34— 18/44 y €C1,3=C24= 28/44 y C23= 14/44 y C1a= 36/44
and more generally for ¢ < j and arbitrary L

8sin ka sin k' (sin ki sink’ja — sinkjo sink’ia)
S Lt
(L+1)? (cosk'ac — coska) (2~ coska — cosk'a)

k even k'‘odd

witha=n/(L+1),2<k<L, 1<k <L
Here also, the pr(g) can be written as a determinant ® and the large L
behavior of this determinant leads to the same expression of #(g) as in (27).
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5 Conclusion

For the growth of ferromagnetic domains induced by the zero temperature
Glauber dynamics of the 1d Potts model, one can calculate exactly several
properties characteristic of the long time regime beyond the pair correlation
function: the distribution of domains sizes and the exponent 6(¢) characteris-
tic of the decay of the persistent spins. These results are obtained from the
knowledge of the exact expressions of correlation functions for an arbitrarily
large number of spins (10,30,35). It is remarkable that different quantities are
given by three identical expressions (10,30,35) with only a different matrix ¢ for
each case. A difficult, though essential, step (which can be found in"8) in the
derivation of the results summarised here is the calculation of the asymptotics
of (10,30,35), once they are written as determinants.

One interest in the exponent 6(qg) is that it seems to be one of the simplest
non trivial exponents one can measure in statistical mechanics. One can write
very simple programs to measure 6(q) accurately. Of course, one can try
to predict 6(g) in higher dimension %2, for various lattices and ask natural
questions as the degree of universality of this exponent or the existence of an
upper critical dimension. These questions remain up to now unsolved and so
far only approximate schemes to determine 6(g) have been developped !3.

With the restricted definition of r(t) (the fraction of spins which never
flip up to time t), it is clear that as soon as the temperature is non zero,
thermal noise makes r(t) decay exponentially. Still, in d > 1, if a system is
quenched into a coexistence phase, one can observe the growth of ferromagnetic
domains. When the size of the domains becomes larger than the equilibrium
correlation length, one can tell which region of space is in a given phase. Then
it becomes meaningful to define r(t) as the fraction of space which remains in
the same phase up to time ¢. One difficulty in measuring r(t) in a simulation at
non zero temperature is to distinguish the growing domains from the thermal
fluctuations. There is a way !* of overcoming this difficulty by comparing two
systems (system A with a random initial condition where coarsening takes
place and system B with a fully ordered initial configuration which serves as
a reference). By using the same noise for the two systems, one can define r(t)
as the fraction of spins which remain identical up to time ¢ in systems A and
B. With this definition of r(t) one can eliminate flips due thermal fluctuations
(as they occur in the same way in the two systems A and B) and measure
flips due to the motion of the domain walls while the system coarsens. This
possibility of measuring @ at finite temperature should give useful informations
on the degree of universality of §. In particular, one can try to see whether
the presence of anisotropy due to the lattice 1> may affect 6.
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The exponent & which can be thought as the exponent characteristic of a
first passage problem can be defined and measured in several other contexts:
gaussian processes 1617, directed percolation !, Ginsburg Landau equations
19 soap froth 2°, critical dynamics?!, driven diffusive systems 22 and even in
experiments 2324, For one dimensional systems, the problem of the persistent
spins can be thought as a two species reaction diffusion model 25:26.27.28; the
domain walls diffuse and coalesce or annihilate whereas the persistent spins are
motionless particles which are annihilated by the domain walls. The calculation
described in section 3 can be extended, at least in a pertubative way, to treat
the case of reaction diffusion systems where both species move ?°.
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THE VERLINDE FORMULA FOR PGL,
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Introduction

The Verlinde formula expresses the number of linearly independent conformal
blocks in any rational conformal field theory. I am concerned here with a quite
particular case, the Wess-Zumino-Witten model associated to a complex semi-simple
group? G. In this case the space of conformal blocks can be interpreted as the
space of holomorphic sections of a line bundle on a particular projective variety, the
moduli space Mg of holomorphic G-bundles on the given Riemann surface. The
fact that the dimension of this space of sections can be explicitly computed is of
great interest for mathematicians, and a number of rigorous proofs of that formula
(usually called by mathematicians, somewhat incorrectly, the “Verlinde formula”)
have been recently given (see e.g. [F], [B-L], [L-S]).

These proofs deal only with simply-connected groups. In this paper we treat
the case of the projective group PGL, when r is prime.

Our approach is to relate to the case of SL, , using standard algebro-geometric
methods. The components Mgy, (0 < d < r) of the moduli space MpgL, can
be identified with the quotients M?/J, , where M¢ is the moduli space of vector
bundles on X of rank r and fixed determinant of degree d, and J, the finite group
of holomorphic line bundles @ on X such that a®" is trivial. The space we are
looking for is the space of J,-invariant global sections of a line bundle £ on M¢;
its dimension can be expressed in terms of the character of the representation of
J, on HO(MZ, L). This is given by the Lefschetz trace formula, with a subtlety for
d =0, since M? is not smooth. The key point (already used in [N-R]) which makes
the computation quite easy is that the fixed point set of any non-zero element of

1 Partially supported by the European HCM project “Algebraic Geometry in Europe” (AGE).
2 This group is the complexification of the compact semi-simple group considered by physicists.
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J, is an abelian variety — this is where the assumption on the group is essential.
Extending the method to other cases would require a Chern classes computation
on the moduli space My for some semi-simple subgroups H of G this may be
feasible, but goes far beyond the scope of the present paper. Note that the case of
M},GL2 has been previously worked out in [P] (with an unfortunate misprint in the
formula).

In the last section we check that our formulas agree with the predictions
of Conformal Field Theory, as they appear for instance in [S-Y]. Note that our
results are slightly more precise (in this particular case): we get a formula for
dimH°(Mg.¢y, ,£) for every d, while CFT only predicts the sum of these dimen-

sions (see Remark 4.3).

1. The moduli space MpgL,

(1.1) Throughout the paper we denote by X a compact (connected) Riemann
surface, of genus g > 2; we fix a point p of X . Principal PGL,-bundles on X
correspond in a one-to-one way to projective bundles of rank r—1 on X, i.e.
bundles of the form P(E), where E is a rank r vector bundle on X ; we say that
P(E) is semi-stable if the vector bundle E is semi-stable. The semi-stable projective
bundles of rank r —1 on X are parameterized by a projective variety, the moduli
space Mpgr, -

Two vector bundles E, F give rise to isomorphic projective bundles if and
only if F is isomorphic to E® a for some line bundle @ on X. Thus a projec-
tive bundle can always be written as P(E) with detE = Ox(dp), 0 < d < r; the
vector bundle E is then determined up to tensor product by a line bundle a with
a” = Ox . In particular, the moduli space Mpgy, has r connected components
Mg, (0<d<r). Let us denote by M¢ the moduli space of semi-stable vector
bundles on X of rank r and determinant Ox(dp), and by J, the kernel of the
multiplication by r in the Jacobian JX of X; it is a finite group, canonically iso-
morphic to H'(X,Z/(r)) . The group J, acts on M?, by therule (o, E) = E® a;
it follows from the above remarks that the component MdPGL,. is isomorphic to the
quotient MZ/J, .

(1.2) We will need a precise description of the line bundles on Mpgy, . Let

me first recall how line bundles on M? can be constructed [D-N}]: a simple way is
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to mimic the classical definition of the theta divisor on the Jacobian of X (i.e. in
the rank 1 case). Put § = (r,d); let A be a vector bundle on X ofrank r/é and
degree (r(g — 1) —d)/é. These conditions imply x(E® A)=0 for all E in M¢;
if A is general enough, it follows that the condition H°(X,E ® A) # 0 defines a
(Cartier) divisor @4 in MZ. The corresponding line bundle £, := @(©,) does
not depend on the choice of A, and generates the Picard group Pic(M¢).

(1.3): The quotient map g¢:M¢ > Mggr. induces a homomorphism
¢ PiC(MdPGL,) — Pic(M?), which is easily seen to be injective. Its image is deter-
mined in [B-L-S]: it is generated by £ if r is odd, by £ if r is even.

(1.4) Let L' be a line bundle on Mf.gy . The line bundle £ :=g¢*L’ on
M¢ admits a natural action of J, , compatible with the action of J, on M? (this is
often called a J,-linearization of £). This action is characterized by the property
that every element a of J, acts trivially on the fibre of £ at a point of M? fixed
by a. In the sequel we will always consider line bundles on M¢ of the form ¢*L’,
and endow them with the above J,-linearnzation.

This linearization defines a representation of J, on the space of global sections;
essentially by definition, the global sections of £’ correspond to the J,-invariant
sections of L. Therefore our task will be to compute the dimension of the space of
invariant sections; as indicated in the introduction, we will do that by computing,

for any a € J, of order r, the trace of a acting on HO(MY, ).

2. The action of J, on H°(M?, LK)
We start with the case when r and d are coprime, which is easier to deal with

because the moduli space is smooth.

Proposition 2.1 .— Assume r and d are coprime. Let k be an integer; if r is
even we assume that k is even. Let a be an element of order r in JX. Then the
trace of a acting on HO(MZ, LX) is (k + 1)r=Dle—1)

Proof. The Lefschetz trace formula reads [A-S]
Tr(a [ HOMZ, £5)) = [ Todd(Te) ANeyz, )™ H(Lhyp,a)
P

Here P is the fixed subvariety of «; whenever F is a vector bundle on P and ¢

a diagonalizable endomorphism of F, so that F is the direct sum of its eigen-sub-



144

bundles F, for A € C, we put

ch(F,p) =Y Ach(Fa) ; MF,¢)=]]D (-MPch(AF3).

A p20

We have a number of informations on the right hand side thanks to [N-R]:
(2.1 @) Let x:X — X be the étale r-sheeted covering associated to
a;put £ =a"""1/2 € JX. The map L = =,(L) identifies any component of the
fibre of the norm map Nm : J¥X — J¥X over £(dp) with P. In particular, P is
isomorphic to an abelian variety, hence the term Todd(Tp) is trivial.

(2.1 b)) Let 8 € H2(P,Z) be the restriction to P of the class of the principal
polarization of J9X . The term A(Np Mz, @) is equal to rr(g-De~re

(2.1 ¢) The dimension of P is N = (r —1){g - 1), and the equality [, %P:- =r9-1
holds.

With our convention the action of a on L% jp is trivial. The class ¢1(Lqyp)
is equal to rf: the pull back to P of the theta divisor ©4 (1.2) is the divisor of
line bundles L in P with HO(L ® n*A) # 0; to compute its cohomology class we
may replace 7*A by any vector bundle with the same rank and degree, in particular
by a direct sum of r line bundles of degree r(g — 1) — d, which gives the required
formula.

Putting things together, we find

Tr(a | HO(MZ, £X)) = / T Derekré — (f 4 DD | g
P

We now consider the degree 0 case:

Proposition 2.2 .— Let k be a multiple of r, and of 2r if r is even; let a be
an element of order r in JX. Then the trace of a acting on HO(M?, LK) s
(f_ + 1)=De-1)

Proof: We cannot apply directly the Lefschetz trace formula since it is manageable
only for smooth projective varieties; instead we use another well-known tool, the
Hecke correspondence (this idea appears for instance in [B-S]). For simplicity we
write My instead of M¢. There exists a Poincaré bundle £ on X x M, , i.e. a vec-
tor bundle whose restriction to X x {E}, for each point E of M, , is isomorphic to
E. Such a bundle is determined up to tensor product by a line bundle coming from
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M, ; we will see later how to normalize it. We denote by £, the restriction of £ to
{p} x M1, and by P the projective bundle P(£;) on M;. A point of P is a pair
(E, ) where E is a vector bundle in M; and ¢ : E — C, a non-zero homomor-
phism, defined up to ascalar; the kernel of ¢ is then a vector bundle F € M, , and we
can view equivalently a point of P as a pair of vector bundles (F,E) with F € Mg,
E € M; and F C E. The projections ps on My (d = 0,1) give rise to the “Hecke

diagram”
P
2N
M, Mo -
Lemma 2.3 .— The Poincaré bundle £ can be normalized (in a unique way) so

that det&, = L, ; then Op(1) = pyLo .

Proof Let E € M. The fibre p;'(E) is the projective space of non-zero linear
forms £: E, = C, up to a scalar. The restriction of p{Lo to this projective space
is @(1) (choose a line bundle L of degree g —1 on X; if E is general enough,
HO9(X,EQ® L) is spanned by a section s with s(p) # 0, and the condition that the
bundle F corresponding to £ belongs to O, is the vanishing of £(s(p)) ). Therefore
phLo is of the form Op(1) ® p}N for some line bundle N on M, . Replacing &
by £ ® N we ensure Op(1) 2 pyLy .

An easy computation gives Kp = p{L7! @ pyL;" ([B-L-S], Lemma 10.3). On
the other hand, since P = P(£;), we have Kp = pj(Km, ®det £,) ® Op(—1) ; us-
ing Km, = L72 [D-N], we get deté, =L;. =

We normalize £ as in the lemma; this gives for each k¥ > 0 a canonical iso-
morphism p1.pyLE = S"E,,. Let o be an element of order r of JX. It acts on the
various moduli spaces in sight; with a slight abuse of language, I will still denote by
@ the corresponding automorphism. There exists an isomorphism o' > £Q® a,
unique up to a scalar ([N-R], lemma 4.7); the induced isomorphism u: a*f, — &,
induces the action of @ on P. Imposing v = Id determines » up to a r-th root of

unity, hence determines completely S*4 when & is a multiple of r. Since the Hecke
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diagram is equivariant with respect to «, it gives rise to a diagram of isomorphisms

HO(P Pock

/\

HO(M,, S*E, HO(Mo, £§)

which is compatible with the action of «;in particular, the trace we are looking for
is equal to the trace of @ on HO(M;,S*&,).

We are now in the situation of Prop. 2.1, and the Lefschetz trace formula gives:

'I\‘(alHo(Ml,S"Sp)) = ‘/PTodd(Tp) /\(Np/M,,or)‘l c~h(S"£p|p,a) .

The only term we need to compute is &(S"EP p,a). Let A be the re-
striction to X x P of a Poincaré line bundle on X x J!X; let us still denote by
m:X x P— X x P the map 7 x Idp . The vector bundles m, (V) and £xxp have
the same restriction to X x {7y} for all v € P, hence after tensoring A by a line
bundle on P we may assume they are isomorphic ([R], lemma 2.5). Restricting to

{p} x P weget &p = (6)9 Ny, with Ng = Njggyxp -
m(q)=p

We claim that the A, ’s are the eigen-sub-bundles of &£, p relative to a. By
(2.1 a), a pair (E,F) € P is fixed by « if and only if E=n,L, F =L’ with
Nm(L) = €(p), Nm(L’) = £; because of the inclusion F C E we may take L' of the
form L(—gq) , for some point ¢ € 7~ (p). In other words, the fixed locus of a acting
on P is the disjoint union of the sections (04)qen-1(p) of the fibration ' (P)>P
characterized by o,(m.L) = (m,L, m,(L(—q))) . Viewing P as P(£;p), the section
o, corresponds to the exact sequence

0 = m(N(=0) gpyxp — TN p}xp = Ej(ppxp — Ng = 0.

Therefore on each fibre P(E,), for E € P, the automorphism a has exactly r
fixed points, corresponding to the r sub-spaces A(qg) for ¢ € #~1(p); this proves
our claim.

The line bundles N, for ¢ € X are algebraically equivalent, and therefore have
the same Chern class. We thus have ¢;,(£,p) = rc1(N;). On the other hand we
know that det&, = £; (lemma 2.3), and that ¢,(£,p) = ré (proof of Prop. 2.1).
By comparison we get ¢1(N,) = 6. Putting things together we obtain

ch(s*&,p, a) = /P Tr kD, ek0r—rlg=1) ré
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where D, is the diagonal r-by-r matrix with entries the r distinct r-th roots of
unity.
Lemma 2.4.— The trace of S*D, is 1 if r divides k and 0 otherwise.
Consider the formal series s(T):=» T'TrS'z and A(T):=) T TrA'u
i>0 i>0
The formula s(T)A(—=T) = 1 is well-known (see e.g. [Bo], § 9, formula (11)). But

r

M-T) =) (-T)TrAu= J[[Q-¢T)=1-T",

i=0 (r=1

hence the lemma. Using (2.1 ¢) the Proposition follows. =

3. Formulas

In this section I will apply the above results to compute the dimension of the
space of sections of the line bundle L% on the moduli space Mf gy, . Let me first
recall the corresponding Verlinde formula for the moduli spaces M? . Let § = (r,d);
we write L4 = D"/ | with the convention that we only consider powers of D which
are multiple of r/d (the line bundle P actually makes sense on the moduli stack
M? , and generates its Picard group). We denote by p, the center of SL, , i.e. the
group of scalar matrices (I, with {" =1.

Proposition 3.1 .— Let Ty be the set of diagonal matrices ¢t = diag(ty,...,1,) in
SL,(C) with t; #t; for i #j, and t*+" € p_; for t € Ti, let 8(t) = [[(ti — ;).

i<j
Then

dmeo(Md D" =9k + r)(r_l)(g_l) Z —((—1)"1t"+")‘d
s 6022
teTL/S,
Proof: According to [B-L], Thm. 9.1, the space HO(M¢, D¥) for 0 < d < r is canon-
ically isomorphic to the space of conformal blocks in genus g with the representation
Viw,_, of SL, with highest weight kw,_; inserted at one point. The Verlinde
formula gives therefore (see [B], Cor. 9.81):

r—d

O,

Tr t
dim HO(M:_i, Di‘) - rg_l(k + r)(r—l)(g_l) Z Viw ( ) )

teTa /S,

1 There is a misprint in the first equality of that corollary, where one should read T8 /W instead
of T8 ; the second equality (and the proof!) are correct.
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this is still valid for d = 0 with the convention w, = 0.
The character of the representation Vig,_, is given by the Schur formula (see

e.g. [F-H], Thm. 6.3):

tk+r—1 tk+r—1 tl‘+'—1

t):c+r—2 t§+r—2 tl:e+r—2
] : : :
Ty 0 = fHd gk k+d
Vl.w'_d( ) J(t) t&—l ta—l t;—-l
1 2 r
1 1 1
Writing  t**" =(l, € u,, the Dbig determinant reduces to

¢r4(=1)4C - det(tg“‘) , and finally, since [Jt: =1, to ((—1)""%¢)~96(t), which

gives the required formula. =

Corollary 3.2 .— Let T} be the set of matrices t = diag(ty,...,t,) in SL,(C)
with t; #t; if i# 35, and t**" = (=1)""11, . Then

r—1
1
. omd Pk — 9 (r=1)(g-1) - .
dE dimH°(M?,D%) = r9(k + 1) E :‘ 16()[29—2
=0 teT, /S,

We now consider the moduli space Mpgr, . We know that the line bundle
D* on M? descends to Mpgy, = M¢/J, exactly when k is a multiple of r if r
is odd, or of 2r if r is even (1.3). When this is the case we obtain a line bundle
on Mfgy, , that we will still denote by D ; its global sections correspond to the
J,-invariant sections of HO(MZ, D¥).

We will assume that r is prime, so that every non-zero element a of J, has
order r. Then Prop. 2.1 and 2.2 lead immediately to a formula for the dimension
of the J,-invariant subspace of HO(M¢, D*) as the average of the numbers Tr(a)
for a in J, . Using Prop. 3.1 we conclude:

Proposition 3.3 .— Assume that r 1is prime. Let k be a multiple of r; if r=2

assume 4| k. Then
dim BO(Mb gy, D*) = r~20 dim HO(M, D*) + (1—r=20)(% 4 1y¢-De-»
" r

_ k _ _ _ ( -1 r—ltk+r —d
=y 29(:+ 1)r—Dte=1 (,.r(y 1) Z ( |6)(t)|29"2) + r29 - 1) .
teTL/S,



149
Summingover d and pluggingin Cor. 3.2 gives the following rather complicated
formula:
Corollary 3.4 .—
k v 1
- HO(M D5y = #1-20 (5 1\ =1(e-1) ( r(g—1) S S )
dim B*(Mpcr,, D) = r =% (=+1) r Z~ 13(2)[29-2 +re-1).
tET, /S,
As an example, if k is an integer divisible by 4, we get
1

(sin ,"%)29—2

. _ k
(35) dmeO(MpGL,, Dk) =91 2g(§ + l)g_l( Z + 229 _ 1) .

! odd
0<i<k+2

4. Relations with Conformal Field Theory
(4.1) According to Conformal Field Theory, the space H'(Mpgt,, D*) should

be canonically isomorphic to the space of conformal blocks for a certain Conformal
Field Theory, the WZW model associated to the projective group. This implies
in particular that its dimension should be equal to };|So;|>~29, where (S;;) is a
unitary symmetric matrix. For instance in the case of the WZW model associated

to SL,, we have
sin —;—-—("-“)"
+2 ,with 0<j<k,

Soj; \/%_:I
where the index j can be thought as running through the set of irreducible repre-
sentations S!,...,$* of SLy (or equivalently SU,), with S/ := §7(C2).
We deduce from (3.5) an analogous expression for PGLg : we restrict ourselves

to even indices and write
So; = 2 So; for jeven <k/2 ; Ss.%m = Ss'g_(,) =So

In other words, we consider only those representations of SL2 which factor through
PGL, and we identify the representation $% with s*~% , doubling the coefficient
Soj when these two representations are distinct, and counting twice the representa-
tion which is fixed by the involution (this process is well-known, see e.g. [M-S]).
(4.2) The case of SL, is completely analogous; we only need a few more

terminology from representation theory (we follow the notation of [B]). The primary



150

fields are indexed by the set P, of dominant weights A with A(Hy) < k, where Hy
A+p

r
identify the Cartan algebra of diagonal matrices with its dual using the standard

is the matrix diag(1,0,...,0,—1). For A € Pi, we put ) = exp2m

(we

bilinear form); the map A > t) induces a bijection of Px onto T;/&, ([B], lemma
9.3 ¢)). In view of Prop. 3.1, the coefficient Sgy for A € Py is given by

Sy = 4(tx) _
= Vrlk + )02

Passing to PGL, , we first restrict the indices to the subset P} of elements
A € Pi such that ty belongs to T} ; this means that A belongs to the root
lattice, i.e. that the representation V), factors through PGL,. The center pn,
acts on T, by multiplication; this action preserves T} , and commutes with the

action of &,. The corresponding action on Pj is deduced, via the bijection

A 2:‘: , from the standard action of u, on the fundamental alcove A with ver-
tices {0,w1,...,wr—1}.1

We identify two elements of P} if they are in the same orbit with respect to
this action. The action has a unique fixed point, the weight ép , which corresponds
to the diagonal matrix D, (2.4); we associate to this weight r indices »(1), ..., ¥("),
and put

k .
Sor=rSox for A€ Pi/u, , /\#;_-p; Sé,.u(.-)=So,.§p fori=1,...,r.

From Cor. 3.4 follows easily the formula dim H*(Mpgy,,, D¥) = 3~ |S4,|>729, where
A runs over Pi/p, U{v®, . .. v(D}.

Remark 4.3.— It is not clear to me what is the physical meaning of the space
HO(M‘,i,GLr, D*y | in particular if its dimension can be predicted in terms of the S-
matrix. It is interesting to observe that the number N(g) given by Prop. 3.3, which
is equal to dim HO(M‘,‘,GLF, D*) for g > 2, is not necessarily an integer for g = 1:

k r—1 _
GRS Ve

for d =0 we find N(1) = 2

, which is not an integer unless r? | k.

1 The element exp @) of the center gives the rotation of A which maps 0 to =1, @1 to w2,

.., and @3 to O.
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GALOIS ACTIONS FOR GENUS ONE RATIONAL
CONFORMAL FIELD THEORIES

M. BAUER
CEA/Saclay, Service de Physique Théorique
F-91191 Gif-sur- Yvette Cedez, France

We describe a conjectural Galois action on representations of the modular group
arising in rational conformal field theories on the torus : the Galois action is by
automorphisms and we propose an explicit formula for the Galois action on S and

T, the generators of SL» (Z) We prove our conjecture for Wess—Zumino-Witten
models on simply connected groups.

A le mémoire de Claude Itzykson

1 Introduction.

1.1 The purpose of these notes is to describe a conjectural universal Galois
action on the representations of the modular group of the torus SL,(Z) that
arise in rational conformal field theories.

1.2 The plan of these notes is the following.

Basic definitions are given in section 2.

Section 3 starts with a reminder on a theorem due to Coste and Gannon!?,
and continues with a preliminary discussion of our conjecture on Galois actions.
Using properties of the restricted characters as modular functions, we show
how, in special cases, the conjecture fits into the framework of modular function
fields for principal congruence subgroups. Then we discuss some rationality
properties, relating the conjecture with the theorem of Coste and Gannon.

In the rest of the paper, we forget about modular functions, and study a
particular class of representations of SL3(Z) from the point of view of alge-
braic number theory. We apply the results to an interesting class of rational
conformal field theories.

Quadratic structures and the representations of the modular group that
they underlie are introduced in section 4. This construction is related to the
metaplectic representation in mathematics.

Section 5 contains the proof that representations of the modular group
associated to quadratic structures satisfy the conjectures on Galois actions
made in section 3.

A discrete version of quantum mechanics is used in section 6 to analyse
representations of the modular group associated to quadratic structures.
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Section 7 is of more general nature. We prove that representations of the
modular group which satisfy the conjecture on Galois actions form a category
stable under direct sums, tensor products, sub- and quotient representations.

Physical applications are given in section 8. We show how to go from
representations associated to quadratic structures to representations arising in
Wess-Zumino-Witten models on simply-connected groups. We also show how
to deal with certain cosets and orbifolds, but we certainly cannot claim that
this exhausts all possibilities.

Appendices A and B give a short reminder on Galois theory. Appendix
C establishes some arithmetic properties of quadratic structures and of the
associated representations of the modular group.

1.3 It is more than appropriate here to stress the influence that Claude
Itzykson had not only on these notes, but on the whole subject. He prophesied
very early that Galois theory had to play a role to study SL.(Z) actions in
conformal field theory, and especially modular invariant partition functions.
His handwritten notes on the famous proof of the ADE classification ? already
contain observations and computations in this direction. Two years later, while
computing the (non necessarily positive) modular invariants for SU(N) Wess-
Zumino—Witten models, he foresaw again a manifestation of Galois theory
when the commutant with integral coefficients turned out to be as large as the
commutant with complex coefficients. In fact our conjecture, to be discussed
below, gives a natural explanation for this. After that, his enthousiasm for
Galois actions found another playground : the theory of “dessins d’enfants”

34 a theme that is surprisingly closely related to the present discussion 5.

1.4 I had the immense luck and pleasure to discuss with him day after day
during those years, first as a student and then as a collaborator®. I learned a lot
from him, from a technical, a conceptual and last but not least a human point
of view. Claude was one of the few scientists I know with a deep and broad
understanding of physics and mathematics : he was an “honnéte homme” ® as
we use to say in French, a language he cherished and used so elegantly.

I would also like to stress how wonderful he was as a thesis advisor. A few
months after I began, we became used to chat every day, Claude patiently and
gently spending time to correct my mistakes, to help me understand points I
missed, to suggest me other possible ways to attack a problem. We always used

%He gave me that “title” at some point.

bAlthough there is no question about Claude’s honesty, the use of “honnéte homme” here
is to stress how cultured he was, with interests not only in science, but in any noble human
activity.



154

a blackboard and made detailed computations. But he also kept me informed
of what was going on in other areas of physics. He shared his insights with
me. He was right most of the time and it was hard for me to convince him
that he was wrong , in the very rare cases when it happened ¢. It usually took
more than an hour of sharp discussion. But when he was convinced, suddenly
he was very happy, and I could see that he was proud of me, just like a father
can be proud of his child.

I have the feeling sometimes that he still there, behind me, looking over my
shoulder with a smile on his face, just the way he used to do when he entered
my office and I was not aware of his presence. It is a wonderful sensation...as
long as it lasts.

1.5 It is a real pleasure to thank Daniel Altschuler for discussions, Arnaud
Beauville for help with metaplectic representations, Antoine Coste for expla-
nations of his work with Terry Gannon' and remarks on the modular group,
Pascal Degiovanni for discussions and for friendly communication of his com-
putations on orbifolds of holomorphic conformal field theories, Gareth Jones
for sharing with me his knowledge of outer automorphism groups of finite quo-
tients of the modular group, Terry Gannon for bringing ® (and especially the
relevance of chapter 6. for our conjectures) to my knowledge, Philippe Ruelle
for discussions, early checks of the conjecture and for a careful reading of the
manuscript, and finally Jean-Bernard Zuber for help with fixed point resolu-
tions. Without their kind encouragements, those notes would not be the same.
Last but not least, I thank Jean—Michel Drouffe and Jean-Bernard Zuber for
giving me this opportunity to express my deep gratitude to Claude.

2 Definitions.

2.1 The modular group SLy(Z) plays a central role in what follows. It is
the group of 2 by 2 matrices with integral entries and determinant 1. It is
generated by the matrices

0 -1 11
s=(0 ) mar=( 1),

The relations are S*T = T'5%, §* =1, (ST)® = S2. We set

-1 0
CcC=5= .
S 0 -1
¢I also tried to convince him that he was wrong in several instances when he was right.

But Claude didn’t mind. He even delayed the publication of one of his articles once because
of some unfounded criticism of mine.
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We shall also make frequent use of the principal congruence subgroups of
SLa(Z). If n is a positive integer, the principal congruence subgroup of level
n, denoted by I'y,, is the (invariant) subgroup of SLZ(Z) formed by matrices
equal to the identity modulo n. Its index in SL;(Z) is finite. Note that I'y
is SL2(Z) itself. The quotient ', /T, = I', is isomorphic to SLy(Z,). By an

abuse of notation we use the same letters S and T for the generators of SLy(Z)
and their class in the quotient I',,.

2.2 Any rational conformal field theory comes with a certain number of data.
First, there is a chiral algebra (with central charge ¢) and its associated
primary fields ¢, i € I, of conformal weight h;, indexed by a finite set I. We
assume that ¢o is the identity operator (so that hg = 0).
Second there is a representation of the modular group SL,(Z) by matrices
with rows and columns indexed by I. This representation is fixed once one

knows the matrices S and 7 representing S and T'. The matrix 7 is diagonal
and Ty = e2in(hi—c/24)

2.3 To the primary field ¢; is associated a representation R; of the chiral
algebra. If the (so called restricted) character

Xi(T) =Tr Rlezin(Lo—c/'24)

is a well defined holomorphic function in the upper half plane $) for any i € I,
then xi(—1/7)=3_; S;jix;j(7) and (by construction) x;(7 + 1) = Ej Tiix; (7).

When the restricted characters are linearly independent (this covers a num-
ber of interesting cases, for instance the A(ll) and Virasoro minimal models,
but is relatively rare) the above two equations define § and 7', which build a
representation of PSL2(Z) (C is trivial). Otherwise, one has to use a more
refined (and, as far as the author understands, not totally straightforward to
implement) prescription.

The fact that modular transformations of restricted characters do not de-
fine S in general will reappear in several places in these notes and makes it
difficult to find a systematic approach to our problem.

3 Facts and conjectures.

3.1 A lot is known 7 about the action of Galois transformations on the
matrix elements of the matrix S (representing the transformation r — —1/7
on characters). This is because S diagonalises a set of commuting matrices with
integral entries, the matrices of fusion rules. This is the celebrated Verlinde
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formula, which remains conjectural when stated in full generality, but for which
there is such an overwhelming evidence that we shall take it as true.

Theorem 1 (Coste and Gannon, after De Boer and Goere) !+7

The field K obtained by extending Q with the matriz elements of S is an
Abelian extension of Q. There is a unique representation of GalK/Q as a
group of permutations of the set I indering the rows (or columns) of S ¢ and
a unique map € from GalK/Q x I to {—1,1} such that

0(Sij) = €5(3)Ss(i); for 0 € Gal K/Q

3.2 Our approach is a tentative to deal with the full modular group (or equiv-
alently with S and 7') at the same time. It turns out that a nice conjectural
picture emerges. This picture has not produced any spectacular application
yet.

Our conjecture is :

Conjecture 2 Let S and T be the matrices implementing the iransformatzons
T — —1/7 and 7 — 7+ 1 on the characters of a rational conformal field theory.
Let n be the order of T. Then the field of definition of the representation of the
modular group is Q[eZi'/"]. If 04 1s the action of the element a of the Galois
group % on the representation and b is its inverse, then

0o(T) =T  04,(8) =ST'ST*ST?S™ 1.

We have no complete proof of this (if so, it would be a theorem) but there
is some evidence that it is completely general. We shall give two completely
different arguments and also check the consistency of this conjecture with the
result of Coste and Gannon.

3.3 The first type of argument uses the fact that the restricted characters are
modular functions. It breaks down when they are not linearly independent.

Lemma 3 Let f;, i € I be a finite number of linearly independent holomorphic
functions on §) which carry a linear representation of PSLo(Z) whose kernel
T has finite indez in PSLy(Z). Let I' = PSLy(Z)/T be the quotient, which
acts faithfully. Assume furthermore that the functions f; are meromorphic
at infinily (so the functions f; are modular functions for '), and that their
ezpansion at infinity has rational coefficients. Then the matriz elements (in the
basis f;) of the representation of the modular group generate a Galois extension
of Q end Galois transformations act by automorphisms of T

4 And we use the same notation for both.
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There is an immediate corollary.

Corollary 4 If the restricted characters of a rational conformal field theory
are well defined and linearly independent, and the modular group acts by a
finite quotient I‘ then the matriz elements of the representation of the modular
group generate a finite Galois ertension of Q and Galois transformations act
by automorphisms of T'.

This is much weaker than the conjecture (which states that the Galois
action is by automorphisms in any rational conformal field theory and gives the
explicit Galois action) but already slightly non-trivial. A physicist derivation
can be found in®, and we just give the idea of the proof :

The functions f; have rational coefficients, so that the polynomial relations
among them and with the modular invariant j are defined over (Q, i.e. they
can be expanded as linear combinations of Q-polynomial relations ¢. These
relations define a Riemann surface (with punctures) which is the quotient of
the upper half plane §) by I'. All the automorphism of this Riemann surface
fixing j are by construction given by elements of I acting linearly on the f;’s
Those linear transformations act on the polynomial relations. Start with a Q-
polynomial relation, act by an element of I' and re-expand on Q-polynomials.
Then act on both sides with a Galois transformation. On one side the Galois
transformation changes the matrix elements of I'. On the other side it changes
the coefficients of the expansion but does not touch (Q-polynomial relations.
This means that the Galois transform of an element of I' is again an automor-
phism, fixing j. So it has to be an element of the finite group T again. This
shows that by adding the matrix elements of the representation of I' to Q gives
a finite Galois extension, and that the Galois group of this extension acts by
automorphims on I.

The main feature of this argument for a physicist is that it does not depend
on the Verlinde formula. Its conclusions are very modest when compared to
theorem 1.

3.4 We can get more if we make more restrictive hypotheses. The results
of this paragraph are motivated by a discussion with Terry Gannon/, and
Philippe Ruelle.

©This is just because to check a polynomial relation among the f; and j one can expand
in the parameter at infinity and check the vanishing term by term : this constraints the
coefficients of the polynomial by linear equations defined over Q The same kind of argument
will reappear in the next paragraph

fWho first realised that standard properties of modular function fields (see® chapter 6.)
are equivalent to special cases of our conjecture.
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Clearly the statement that
0a(T)=T%  04(S) =ST'ST*STtS™?!

induces automorphisms of I' can be used to get elements of I', the kernel of the
representation of SL2(Z) given by the rational conformal theory under study.

For instance, the above automorphisms make sense for I'y = SL2(Z,,) :
for a € Z}, with inverse b the automorphism of SLy(Z,) changing T to T°
and S to ST®ST®ST*S! is

P q (P a
(r s)ESLZ(Z") (br s)’
This automorphism is inner if and only if a is a square in Z;.

Now observe that if we view SL2(Z,) as a subgroup of GLy(Z,,) the above
automorphisms extend an become inner :

P q p ag\_(10 P q 10
(r s)EGLZ(Z")_'(br s )—(0 b)(r s)(O a))'
3.1)
This remains true if one divides by the invariant subgroup {I,—1I}.

The appearance of this group is very natural in the theory of modular
functions. We refer to® chapter 6. for background. We start with
Lemma 5 The quotient $)/T'y, is a Riemann surface with punctures. There is
a canonical way to fill the punctures and get a compact Riemann surface $)/Tp,.
Its field of meromorphic functions, F,, ¢, is a Galois extension of C(j) 9 with
Galois group SLy(Z,,).

There exist nice generators for the extension F,, ¢/F| c, the so-called
Fricke functions fr(7), r,s € Zy, (r,s) # (0,0). If P(z,7) denotes the stan-
dard Weierstrass function associated to the lattice C with generators 1 and
7, frs(7) is P(z,7) at z = T (a division point of order n), times a known
function of 7 (but independent of n, r and s) needed to make f. ;(7) a homoge-
neous function of degree 0 on the set of lattices in C. The Fricke functions are
invariant under 7 — 7 + n so they can be expanded in powers of e2*7/? We
call this the g-expansion at infinity, by analogy with characters of conformal
field theories. One can prove
Lemma 6 The Fricke functions are invariant under I', and meromorphic at
the punctures, F,, ¢ = Fy c(fr,s)r,s- The Galois group SLy(Zn) permutes the

9The function j(7) is the standard modular invariant, a generator of F, ¢, the function

field of $)/T;.
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Fricke functions : it acts on the right on the row vector (r,s). The coefficients
in the g-ezpansion of the Fricke functions at the punctures are in Z[e**/™).

This last property makes it possible to get finer information. Define Fl,@ =

Q(j) and F, g = F; @(fr,s)r,s- This is the so-called modular function field of
level n.
Lemma 7 The modular function field of level n is a Galois extension of F o-
The Galois group is GL2(Z,)/ £ I. It permutes the Fricke functions : it acts
on the right on the row vector (r,s). The intersection of the modular function
field of level n with C is Q[e%*/]. The Galois group acts on n**-roots of unity
by the determinant homomorphism GLZ(Z,,)/ + 19 Z,.

We have now the necessary information to get a more precise version of

lemma 3 and corollary 4.
Lemma 8 Suppose that a familly of functions f; satisfying the hypotheses of
lemma 3, is such that furthermore there is a positive integer n for which T' con-
tains T,/ + 1. Then T is a quotient of SLy(Zn). The matriz elements (in the
basis f;) of the representation of the modular group generate an Abelian ezten-
sion of Q and Galois transformations act by automorphisms of I' as predicted
by our conjecture.

with the immediate corollary
Corollary 9 For a conformal field theory whose restricted satisfy the hypothe-
ses of corollary 4, with the further assumption that there is a positive integer
n such that ' contains ',/ £ I, conjecture 2 is true.

The proof starts with two remarks.

By hypothesis, the functions f;, i € I belong to F,, . We use the fact that
their g-expansion at infinity has rational coefficients to show that the do in
fact belong to F, Q Try to write f; as a quotient of two polynomials P; and
Q; with varlables 7 and the Fricke functions of level n. The equality P; = f;Q;
is satisfied if and only if it becomes an identity when g-expansions at infinity
are substituted on both sides. So the coefficients of P; and @Q; have to satisfy
linear equations defined over Q[e?**/"]. We know that they have a solution in
C so they have a solution in Q[e%”/"], which means that f; belongs to F.Q
Let us observe that as the functions f; have no poles away from the punctures,
one can take @; to be 1.

Now, we claim that the matrix elements of the representation of SL2(Z)
in the basis f; are in Q[e?*/"]. The argument is analogous : write f; = P; as
above. A modular transformation on the left side gives a linear combination
of the fj = P;. On the right side, a modular transformation permutes the
Fricke functions. Then, we expand both sides around infinity : the matrix
coefficients of the representation are constrained by linear equations defined
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over Q[e**/"]. They have a unique solution in C because the functions f; are
linearly independent. So this solution has to be in Q[e%"/"].

After these preliminaries, let us act on the functions f; with an arbitrary
element M of the Galois group GLy(Z,)/ + I. We can write

(10 N_ (1 0
M‘M’(o detM)_(O detM)M"

The matrices M; and M, are in SLy(Zy). Acting on f; with the first decompo-
sition, only M) acts because the other factor is a Galois transformation on the
coefficients of the ¢ expansion of f; at infinity, and this involves only rationals.
Acting on f; with the second decomposition, M, expands f; in terms of the f;.
Then the second factor acts only on the coefficients of this expansion (because
as above it acts trivially on f;) as a standard Galois transformation. By linear
independence of the functions f;, this proves that the Galois transform of the
matrix representing M, on the f; by det M is the matrix representing M; on
the fi, giving exactly the transformation (3.1). This finishes the proof.

Under the hypotheses of 4, it has been observed long ago in concrete
examples that if n is the order of 7 in the conformal field theory, I', and I are
closely related. However, I';, does not always act trivially. Sometimes, some
characters carry a non-trivial one dimensional representation of I',. However,
there may be a nice generalisation of the above arguments to cover such cases.

It should be interesting to study the following family of groups. For any
positive integer n, let G, be the groups given by generators and relations as
follows. The generators are S, T, and M, for a € Z?,. Now come the relations.
First the subgroup of G, generated by S and T is a quotient of SLy(Z), and
T" = 1. Second, S? is central. Third, the map a — M, from Z?, to G,
is a one to one group homomorphism. Fourth, for a € Z},, with inverse b,
SM, = M,ST*ST*ST*S~! and TM, = M,T°.

By construction, the map

0 -1 1 1 1 0
s-(19) (1) m=(s2)
extends to a group homomorphism from G, to GLy(Z,), and this homomor-
phism is onto.
A simpler presentation of G, would be desirable. Simplicity suggest that
Gn might be a finite central extension of GL3(%.,,).
It would also be nice to know if G, appears naturally as a Galois group of

an extension of Q(j) or a more intricate object related to modular forms may
be.
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Anyway, the relationship between I',, and I" will enter our discussion again
in section 6 on finite quantum mechanics. The plausibility of this relationship
is enhanced by theorem 1. In fact, the elements of I', invariant under the
automorphisms (3.1) are the diagonal matrices, and those are exactly of the
form 04(S)S~!. In a representation of ', having the same properties as the
ones we attribute to I', the representative of cra(S)S‘l, a Galois invariant,
should have rational entries. Theorem 1 says that in the conformal field theory
context ¢(S)S~! is just a signed permutation matrix, so has (very special)
rational entries. This analogy suggests that the matrices M(0)i; = €4(i)do(i),;
are the only rational matrices in the representation of I'.

3.5 A modular invariant partition functions is associated to a matrix A with
(non-negative) integral coefficients commuting with S and 7. Such a matrix N/
is fixed by Galois transformations and commutes with any Galois transform of
S (resp. T) if it commutes with S (resp. 7). Thus our conjecture does not say
anything new for modular invariant partition functions. This is disappointing.

On the other hand, we observe that if the conjecture is correct, the question
of commuting with the action of the modular group can always be expressed
by linear equations with rational coefficients. If U is an element of SL2(Z), U
its representative and a € Z}, (where n is the order of 7) an element of the
Galois group, we know that o,(2) also represents an element of SL2(Z). So a
matrix H commuting with the action of SLy(Z) commutes with

U(q)E Z eZi:rqa/na,a(u)
an;

for any ¢ € Z,,. But obviously U(q) is Galois invariant, so has rational entries.
Conversely, as

_ 1 —~2irg/n
U=—- D ¢ U(q)
q€Zn

it is clear that the commutation with the action of SLy(Z) is equivalent to
the commutation with rational matrices. This is the explanation for the obser-
vation made by Claude Itzykson and mentioned in the introduction : why is
the commutant over the rationals as large as the commutant over the complex
numbers 7

Let us note that we do not use the explicit formula of the Galois action :
we use that the extension is Abelian (also known to be true from theorem 1)
and that the Galois action is by automorphisms (which we know how to prove
under the hypotheses of corollary 4).
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3.6 The second argument is our main point and occupies the rest of the paper.
It involves the description of a long known explicit family of representations
(related to the so-called metaplectic representations) of the modular group for
which the conjecture is true. Then we argue that this family is large enough to
establish the main conjecture for rational conformal field theories associated
to the Wess—Zumino—Witten models for simply connected semi-simple groups.
Our line of attack works for certain coset models and orbifolds as well as well,
but the situation is much more complicated. We have been forced to this
because of the problem of degeneracy of restricted characters. .

It is part of the standard lore that all rational conformal field theories are
obtained from Wess—Zumino—Witten models by clever combinations of coset
and orbifold constructions. So our results are already encouraging, but a uni-
form proof instead of our case by case approach would be highly desirable. A
first step in this direction has been accomplished by Degiovanni. He has proved
our conjecture for orbifolds of holomorphic rational conformal field theories 8
and hopefully general orbifolds are tractable as well.

This is the evidence we have for the validity of the main conjecture.

4 A class of representations of SL,(Z).

4.1 This section is devoted to the construction of a family of representations
of SLy(Z) that we use in the sequel.

Let M be a finite Abelian group, and m be theexponent of M, that is, the
smallest positive integer such that

mz=0Vz e M.

Let ¢ be a primitive 2m*® root of unity and set £ = ¢2. Let B be a map from
M t0 Zigp and (| ) a map from M x M to Z,, such that

1. B is a quadratic form i.e. B(az) = a?B(z) Vz € M,Va € Z.

2. (| ) is symmetric and bilinear i.e. (z|y) = (y|z) and (z|y + z) = (z]y) +
(z|2)Vz,y,z€ M.

3. The functions {x;}zem from M to C defined by x.(y) = £G1¥) are the
characters of M.

4. B(z+y)— B(z)- B(y) =2(zly) Vz,ye M

Definition 10 The data {M, B,( | ),{} will be called a quadratic structure in
the sequel.
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4.2 .To any such quadratic structure, one can associate a representation of
the modular group SLQ(Z) as follows. We start with a finite dimensional
Hilbert space H with an orthonormal basis {€z}zcar indexed by the elements
of M. We define two endomorphisms of H, § and 7 represented by unitary
symmetric matrices

Szy = o (=) Tey=a T, , =a"¢B®g,, (4.1)

IMII/

where a is a fixed cube root of

|M|1/2 Z ¢F®). (4.2)

TeM

It is not obvious that 8 # 0 (which is needed to define 7). Once this is proved,
we build a representation of the modular group with generators S and 7. Note
that S is a finite Fourier transform.
Lemma 11 The number 8 is a root of unity. The map S — S and T — T
extends to a representation of SLy(Z).

For this we have to check the relations.

First a simple computation shows that (§%)_ = = 6;,—y. So §* =1, and as
B(—z) = B(z), 8% commutes with 7. Note that S is symmetric and unitary.
Now repeated application of B(z + y) — B(z) — B(y) = 2(z|y) shows that

-\3 1
(57) = s 25,6707 =557

Taking the determinant of both sides, we see that 3 is a root of unity because
S and T are of finite order. As 7 is normalised by a38 = 1 the map S — S,
T — T extends to a representation of SLy(Z).

The order of S divides 4 and the order of 7 divides 2m so we have shown
that the order of 8 divides 4m|M|. But this bound is very poor. Later, we
shall prove that 8% = «?* = 1. But to do that, we need further arithmetic
properties of the representation of SL2(Z) associated to a quadratic structure.
Anyway, given S, there are three possible values for a® and we fix one of them.

4.3 This construction has a property analogous to the so-called arithmetic
functions : if m can be decomposed as m = pg were p and ¢ are relatively
prime integers, there is a corresponding decomposition of the quadratic form,

"In the context of rational conformal field theorie, this amounts to the possibility of
tensoring with the Wess-Zumino-Witten model Eg at level 1.
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the scalar product and the representation of SL2(Z). We describe this factori-
sation explicitly in appendix C, and use it in the next paragraph to show that

88 =1.

4.4 We already know that 8 is a root of unity, but the proof that its order
divides 8 is a little bit complicated.

To build the argument, we use the splitting properties explicated in ap-
pendix C. They make clear that the property 4% = 1 will be true for any m
if it is true whenever m is odd or a power of 2. So we only prove those two
special cases.

Lemma 12 Ifm is odd, 8* = 1.

If m is odd, multiplication by 2 is an automorphism of M so

B= |M|1/2 Z CB(zx) |M|1/2 Z Ez(a:h:)

TeEM

This is nothing but the trace of the matrix S associated to the new quadratic
structure (M, B,( | ),—¢%)*. But S is of order 4 so its trace is in Z[i]. Thus
B* = 1if m is odd.

Lemma 13 If m is a power of 2, 8% =1.

If m is a power of 2, then so is |[M|/. Hence, the order of 3, which divides
8m|M]|, is a power of 2 as well. Also /2 = e%"/8 4 ¢2"/8 Now Galois theory
comes into the game. Let a be an odd integer. Raising the roots of unity
involved in the equation defining 3 to the a*® power is a Galois transformation.
Assume that @ is the square of an odd integer. Then @ = 1 mod 8 so the action

2 is trivial. Moreover, in the sum 3 ./ ¢ B(2) ¢ can be re-absorbed in
the definition of z, so the sum is invariant. Hence 8% = § whenever a is the
square of an odd integer. This implies that 4% = 1 if m is a power of 2 (take
for instance a = 9).

Using arithmetic factorisation we get the following

Corollary 14 For any quadratic structure, 8% = o?* = 1.

‘Because m is odd, —¢2 is a primitive 2m*" root of unity, then (—¢2)? = £2 .

7 This comes from the structure theorem for finite Abelian groups, due to Kroenecker. But
an elementary argument goes as follows : we show that any prime r dividing |M| divides
m or equivalently that |[M] divides a certain power of m. Set Mo = M. Suppose we have
constructed M; for i = 0,---,r and z; for ¢t = 1, ,7. If M; is the trivial group, we stop. If
not we choose a non-zero element z;1; € M, and define M,;, as the quotient of M, by the
subgroup generated by z-41. As M;4; is a proper quotient of M; this process terminates
after a finite number of steps, say s. As m annihilates M = My, m annihilates M; for
i+ =1,---,s. Thus the order of z; divides m for i = 1,---,s. So [M;| divides m|M;4| for
t=0,.--,5 — 1 and finally |[M| divides m°.
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5 Galois transformations

In this section, we show that the conjecture 2 is true for representations asso-
ciated to quadratic structure. More precisely we prove

Lemma 15 For any quadratic structure {M, B, (| ),¢} and for any choice of
a, the mairiz elements of the associated representation of the modular group
belong to Q[e2*/™] where n is the order of T. If 0, is the Galois transformation
associated to a € Z}, with inverse b then

0a(T) =T  04(S) = ST ST*STt S 1.

Let n be the order of 7 and n’ a common multiple of 24 and 2m. The
matrix elements of § and 7 can be expressed in terms of «, which is such
that a?* = 1 and (, a primitive 2m*® root of unity. For instance, formula
(4.2) expresses |M|*/? in terms of & and (. All the matrix elements of the
representation are obtained from products of § and 7, so that the extension
K of Q generated by the matrix elements of the representation is contained
in Qfei*/ "'] In particular, any Galois transformation of the matrix elements
can be represented (usually in more than one way) by an element a of Z2,,
acting on the roots of unity involved by raising to the a*» power. We denote
by o, the Galois transformation corresponding to a. Let b be the inverse of a
in Z%.

We start with the computation of ST*ST*S7T2S~!. The case when a =
b = 1 has already been considered in the previous section. By repeated use of
B(z +y) — B(z) — B(y) = 2(z|y) one finds that

(STbSTaSTb) Z £ (u|x+by)<bB(u+y av)

:r.'y |Ml3/2

We take v and w = u + y + av as independent variables and set

bB(z)

By = 72 Z ¢
|M| / zeM

Then the right-hand side of the above equality is just
aa+2b,8b61,—\by .

Hence

(8T°ST°ST'S7Y),, =a™®7% (Z Cw(z)) i —_ga(=ly)

zeM
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It is easy to apply o to the right-hand side. For instance

Al
5 bB(z)y _ 8?B(z) _ MIY/2a3
os( Y PP = Y ¢EO) = | M|V e

zeM zeM
where in the last equality we have used the quadratic property of B. Finally

op(E7E=)y = g~ (=lv),
Putting all this together, we see that

oy (ST'STeST'S™Y), = a®1=¥)s,,.

Now b is prime to 24, so b2 —1 = 0 mod 24% and a2(1=%") = 1. This proves
that
0o (Szy) = (ST"ST“ST”S“)W )

The right-hand side is unchanged if ¢ and b are changed by a multiple of n, the
order of 7. Moreover it is plain that 04 (7zy) = (7¢),,. This means that the

matrix elements of S are in Q[e?**/"] (if not, the above Galois transformations
could not be exhaustive) and that the representations of SL;(Z) (correspond-
ing to the possible values of ) associated to a quadratic structure satisfy the
conjecture.

6 Finite quantum mechanics

6.1 The purpose of this section is to emphasise the close relationship between
representations of SLy(Z ) associated to quadratic structures and principal con-
gruence subgroups. This gives an alternative way to interpret Galois actions.

6.2 We start from a quadratic structure {M, B,( | ),(}, and the Hilbert
space H with basis {e;}zenp indexed by the elements of M. The notation
are as in paragraph 4.1 and 4.2. We define a discrete analog of the canonical
commutation relations of quantum mechanics : the momenta {P*};cp and
positions { Q% } ;¢ i are two families of unitary operators on H representing M.
Their action on H is given by

PTey = €rhy Q%e, =&~ (I0)e, (6.1)

kClaude Itzykson enjoyed this elementary fact and used it in several instances, see e.g.>.
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and they satisfy
P:Q, = (W, P, (6.2)

The operators {P*Q¥}; yem form an orthonormal basis of End H for the
trace. First Tt P* QY is easily seen to be 0 unless £ = y = 0 and then the trace
is dim H = [M|. Then the cyclic property of the trace gives

Tr Q ¥P~2P= Qv = |M|65% 6vY'.

6.3 It is obvious that 7 commutes with position operators and a simple
computation shows that 7-1P*T = (~B(=)P=Q%. As in ordinary quantum
mechanics, the finite Fourier transform & exchanges the momentum and po-
sition representations so S~!Q%S = P and S~1P*S = Q~*. Putting things
together

T-1p=QVT = (~B@prgety  §-lprQug —¢Glpyrg-=.  (6.3)

6.4 On the other hand, there is a canonical right action of SLy(Z)on M x M
given by (z,y) — (z,y)U for (z,y) € M x M and u € SLy(Z). We transfer
this action on End (End H) by acting on the exponents of P*QY. We denote
this action by (P*Q¥)y : for

a b
U= ( c d ) € SLy(Z) (6.4)
we have
('P: Qy)U — pa:+cy Qb:+dy. (65)
we observe the striking analogy with the action of the modular group on Fricke

functions, recalled in paragraph 3.4.

6.5 The interesting fact is that this action coincides up to phases with the
adjoint action associated to the quadratic structure. So if U € SL2(Z) is
represented by U on the quadratic structure then

U PTQYU « (PTQY)y (6.6)

It is sufficient to check this on the generators S and T and this is just the
content of equation (6.3).
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6.6 The proportionality factor Coc(U, (z,y)) is a cocycle, which means that
Coc(U, (z,y))Coc(V, (z,y)U) = Coc(UV, (z,y)).

If U belongs to Aut H, we denote by £(U) the element of End (End H) which
is conjugation by U. We restrict now to the case when U is the action of some
U € SLy(Z) on H. Then £U) gives a right action of SL2(Z) on End H, and

we have

LUYPTQY) = Coc(U, (z,9))(P*Q¥)v (6.7)

There is a trick to compute the cocycle. It is to do as if ¢(*1¥) were a
well-defined quantity (only its square is). This is because [z, y] = (~(I")p= Q¥
transforms formally without any phase under the adjoint action of S and 7.
This leads to guess that

u—lprgyu — C—abB(r)—ch(y)ﬁ— “—‘H';Ll—(rly)rpur+cy Qbr-i-dy‘ (68)

One can check that this phase works for § and 7, and has the cocycle property,
so the above formula is correct.

6.7 The above formula is rather remarkable, because in general it is very hard
to reconstruct the action of a generic element of SLy(Z) starting only from the
action of S and T'. In particular, we see that if U belongs to T'y,, the principal
congruence subgroup of level m, & commutes or anti-commutes with PTQV. If
U belongs to 'y, U is in the center of End H so it is a scalar matrix. There
is a reciprocal. If U is represented by a scalar matrix, then first U belongs
to Iy and second ¢~90B(=)-cdBW)¢-*H3=2(lv) = | for any z,y € M. The
first condition implies the second if and only if the quadratic form B is even
(that is B(z) € 2Z,,, for any ¢ € M). If m is odd, B is always even. If
m is even and B odd, let T, be the invariant subgroup of SL2(Z) made of
matrices in I'y, with off-diagonal entries equal to 0 modulo 2m (and not only
mod m). We conclude that U is represented by a scalar matrix if and only if
either B is even and U € I'y, or m is even, B is odd and u € I'j,. Thus T,
the group acting effectively (i.e. the quotient of SL,(Z) by the kernel of the
representation associated to the quadratic structure), is a central extension of
L or Iy, depending on M and B, a connection announced in paragraph 3.4.
The relationship could be made more precise, but there is no need for this in
the sequel.

! This means that the cocycle is formally trivial, in fact it is trivial up to signs.
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6.8 We are now in position to do Galois theory using finite quantum me-
chanics. The matrix elements of momenta are integers. The matrix elements
of positions are 0 off diagonal and roots of unity on the diagonal. So Galois
transformations don’t act on momenta and act on positions by raising to a
power. We act on both sides of equation (6.8) with ¢,, raising all roots of
unity involved to the power r. The outcome is

or(u—l_)fprero,r(u) - c—rabB(a:)—rch(y)g—rﬂi;‘—"(rIy)fpa:z+cerbx+rdy.
R £6.9)
Now, we recall that the adjoint action £(&/) descends to Iz, and write U for
the projection of U. Let o, be the inverse of 0 and set z = ry (so y = sz) to
get )
Lo, U))(PTQ?) = Coc(o,(U), (r,y))(’P”Qy)ar(U) (6.10)

where o, (U) is defined by

- a b ~ a rb
U—( . d)—»a,.(U):(sc d ) (6.11)
as announced in paragraph 3.4.

Of course, this is slightly weaker than the results from the previous section,
because finite quantum mechanics works up to phases.

7 Generalisations

7.1 Up to now, we have only been dealing with representations of SL,(Z)
associated to quadratic structures. The purpose of this section is to work in the
category ‘R of representations of SLy(Z) that have the conjectured behaviour
under Galois transformations and see that it is closed under a certain number of
constructions. First YR contains the one-dimensional representations of SL, (Z)
as well as the ones associated to quadratic structures. Second fR is stable under
direct sums and and tensor products, under duals, and under passing to sub-
or quotient representations.
A certain familiarity with appendix B is useful to read this section.

7.2 Before we give a precise definition of R, let us make a few remarks. Up
to now, we have given explicit bases in the representations of SLy(Z) we have
been dealing with. But as far as our conjecture is concerned, nothing would
have changed under a change of basis with coefficients in Q. This is a sign
of the flexibility of our computations and we shall use it in the sequel. But
it is also a drawback because the situation is more rigid in conformal field
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theory : there is a prefered basis anyway, given by the characters and in which
the representation is unitary. For instance in theorem 1 the fact that Galois
transformations permute rows of S is of course not true after a base change in
general. This explains why we don’t insist on unitarity, symmetry and all that
in the sequel.

7.3 A member of *R is made of a QQ-vector space V, a cyclotomic extension of
K = Q[e**/"] (where n is a positive integer) and a representation R of SL2(Z)
onVEk =V ®Q K™ such that Gal K/Q acts on 7 and S (representing T and
S on VX)) as predicted in conjecture 2 i.e. as follows : n is the order of 7 and
(denoting by o, the element of Gal K/Q sending e2**/" to ¢%7%/" for a € Z2,
with inverse b)

0a(T) =T  04(S) =ST’ST*ST'S™". (7.1)

The following elementary observation turns out to be useful because in
general the order of the representative of T' is affected by the constructions
leaving R stable. Suppose we have a representation of SL2(Z) on VK’ where
K’ = Q[e**/'] and that the formule (7.1) hold for any mteger a prime to
n'. Let n be the order of 7. As o4 is periodic of period n’ whereas powers
of T are periodic of period n, the only possibility is that n’ is a multiple of
n. Moreover, if some matrix element (in any basis made of elements of V') of
7 and S were not in K = Q[e?"/"], formulae (7.1) could not reproduce all
the Galois transformations. Thus, SL2(Z) acts on V¥ to give an element of
SR. So one can freely relax the condition n = n’ to the condition that n’ is a
multiple of n in the definition of YR. That’s what we do in the sequel.

7.4 We start with
Lemma 16 One-dimensional representations of SLy(Z) are in ‘K.

This is established by a simple direct calculation. If V is one-dimensional
End V¥ is canonically isomorphic to K so there is no choice of basis to make.
We start from numbers ¢ and s (representing T" and S). They commute so
they have to satisfy s = ¢72 and s* =t~12 = 1. So ¢ is a root of unity and s
belongs to (Q[t]. We take n’ = 12. A given Galois transformation on ¢ can be
represented by an integer prime to 12, say a. Then a is its own inverse. We
have to check that s® = st®st®st®s~!. The right hand side is s%t3% = s2-9,
which is s because a is odd and s* = 1.

It is clear from the results of section 5 that

™Remember that Galois transformations m Gal K/ Q act on the tensor product by acting
on K, leaving V pointwise fixed.
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Lemma 17 Representations of SLZ(Z) associated to quadratic structures be-
long to *R.

7.5 We turn to direct sums and tensor products.

Lemma 18 Let (Vi,n}, R;), : = 1,2 be two members of R. Let n’ be « common
multiple of n} and nY,. Then the direct sum (V1®V2,n', Ri®R;) and the tensor
product (V1Q® Va,n’, Ry ® R3) are again in ‘R.

As K = Q[e%"/'] is just the compositum of Q[e%*/"1] and Q[CZ‘”/";], the
direct sum and tensor product representations are realised in (V; @ Vo)X and
nhe 15 " respectively. A given Galois transformation can be implemented
on both representations by an integer a prime to n’. Formula (7.1) for the
direct sum and tensor product representation are then direct consequences of
the membership of the original representations to YR. Note that the order n of
7 is the least common multiple of n, and n, in the direct sum. But in general,
for a tensor product the order n of 7 simply divides the least common multiple
of n; and na.

It is clear that Galois transformations commute with transposition and
inversion of matrices so it is clear that

Lemma 19 The category ‘R is stable under duals.

7.6 The stability of R for sub-representations and quotient representation is
again essentially seen by manipulating definitions. We have
Lemma 20 If (V,n’, R) is a member of R, K = Q[e2*/"'] and V, is a sub-
space of V such that VOK is an invariant subspace for R then (Vo,n’,RIVox)
and (V/Vo,n', R/Rjyx) are again members of R.

We let Endg V' be the space of endomorphisms of V' sending V; into V.
As recalled in paragraph B.5, the action of Gal K/k commutes with the pro-
jections Endg VX — End V€ and Endo VK — End (V/VQ)K. So the elements
of Gal K/k act as predicted by formule (7.1) on the sub- and quotient repre-
sentation. Again this implies that, although the order of the representative of
T may be different in the sub- or quotient representation and in the original
representation, we end up with members of *R.

This finishes the proof that R is stable under sub- and quotient represen-
tations.

8 Applications to conformal field theories

8.1 In this last section, we illustrate the above constructions on concrete
conformal field theories. We start with su(n); and make some remarks on
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models for which the fusion rules are the algebra of representations of a finite
Abelian group. Then we deal with Wess~Zumino-Witten models for simply-
connected groups. We finish with examples of the coset constructions and
remarks on fixed point resolutions.

8.2 Quadratic structures apply directly to the SU(/N); model. Basic references

are %1%, This theory contains N characters x;, i =0---N — 1. The restricted

characters x; and xn-; are equal for i = 1,---, N — 1 because of complex

conjugation. The central charge is c = N — 1 and the conformal weights are
_i(N —1)

hi= o2

2N

The defines the action of T :
73'7: = 6jkez"7(ﬂgﬁil_h,2:l )

The action of S is given by a finite Fourier transform :

Six = N1/262i1jk/N.

To make contact with quadratic structures, we identify the elements of
{0, -+, N—1} with their representatives in Z y which we take to be M. Som =
N. We choose B(i) = i(N — i) = (N ~ 1)i mod 2N ™ and (i|j) = —ij mod N.
Taking ¢ = /N and a = (¥ =1)/12 we associate to this quadratic structure
the representation of the modular group for sit(n);. So 5it(n); theories satisfy
conjecture 2.

8.3 Taking tensor products for different values of N, we see that any finite
Abelian group M can appear in a conformal field theory, but with a very spe-
cial choice of quadratic form and scalar product. However, it is unlikely that
any quadratic structure can appear in conformal field theories®. On the other
hand, representations of SLy(Z) associated to quadratic structures share a lot
of properties with those appearing in rational conformal field theories. They
are unitary , S is symmetric, the matrix elements Sy, are real and positive so
one can take the 0 element of M to play the role of the identity operator, and

"Because B has values in Z2N and not simply in ZN, one has to check that B is indeed
well defined and quadratic. This is a trivial computation in this case.

°A study of this question requires a classification of quadratic structures first. We shall
not embark on this problem here, although it looks tractable, and is likely to be part of
standard mathematics.
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the fusion rules are just addition in M so they define an associative algebra
with integral non-negative entries. Thus it seems that even if conjecture 2 is
true for all rational conformal field theories, the behaviour under Galois trans-
formations is not enough to characterise the representations of the modular
group coming from conformal field theories.

8.4 In this paragraph, we prove that if ﬁ is a complex simple Lie algebra, the

representation of SLy(Z) carried by the characters of the integrable represen-

tations of the associated affine algebra g at level k (a non-negative integer) is

in R. The proof for the twisted case would follow the same pattern with slight

additional complications. We refer to®, especially Chapter 13, for background.
o

The starting point is a lattice L? in a real vector space j of dimension
£, endowed with a positive definite bilinear form ( | ) making L an integral
even lattice. This means that (a|b) € Z and (ala) € 2Z for any a,b € L. Let

o
L* = {z €h,(a|z) € Z Va € L} be the dual of L with respect to ( | ). Then
L is a sub-lattice of L*. Choose a positive integer k. Define My = L*/kL, a
finite quotient of L*. Let m; be the least positive integer such that m; L* C L
and set my = km;. We have

Lemma 21 The integer myg is the exponent of My, t.e. the least positive
integer m such that mM; = 0.

The fact that my My = 0 is clear. For the reciprocal, observe that if m is
an integer, mM; = 0 is equivalent to mL* C kL. Choose a basis for L and
take the dual basis as a basis for L*. The matrix of ( | ) in the basis of L
and in the dual basis of L* are inverse of each other. Let A be the matrix of
(|) in the basis of L. By definition A has integral entries. Then mM; = 0 if
and only if mA~! = kB for a certain matrix B with integral entries. Taking
the determinant on both sides, we get that a power of the rational m/k is an
integer. So m/k itself is an integer and k divides m. So (m/k)L* C L and m
is a multiple of my.

Now we define a quadratic structure {Mx, B, (| )k), e!*/™*} as follows.
For z,y € L*, consider (z|y)z, the residue class modulo m; of mi(z|y), and
By(z), the residue class modulo 2my of my(z|z). For a € kL, m(aly) belongs
to miZ and m; [(ala) + 2(alz)] belongs to 2m; Z (here, we use that L is even).
So (| ) and Bg both descend to M}, and we keep the same notation for those
projections. It is plain that the polarisation of By is (| ), so the only thing
that remains is to show that ( | ), is non-degenerate. Equivalently, we have to

PDenoted by M in?, but we want to avoid confusion with the finite group of a quadratic
structure.
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prove that if z € L* is such that (z|y) is a multiple of k£ for any y € L* then
z € kL. But this is obvious. Thus we have shown that

Lemma 22 For any positive integer k, {Mx, Bx, (| )x), &™/™*} (defined above)
15 a quadratic structure.

Definition 23 The quadratic structure {My, B, (| )i), e!*/™*} is denoted by
{L,(|)}& in the sequel.

As usual (and again® is a nice self-contained reference) one can associate a
family of functions {95,!‘)};,E L~ to L and k : they are the so-called classical theta

functions of level k. One shows that ©) and ng) coincide if z — y € kL and
that these are the only linear relations (over the complex numbers) among the
classical theta functions of level k. So we have a family of linearly independent
functions 9(:) indexed by elements of M. Of course, eﬁ,") depends on certain
variables. What we need to know here is that one of those is a parameter
T € 5. Let v be a collective notation for the other variables. Second, there is
a function v'(v, 7) such that the following formulae hold : for any z € M,

OB (=1/r,v") = (—ir)"? Y SOK)(r, v)
YEM;

and _
0¥ (r + 1,v) = TWOE) (1, v)

where S*) and 7(*) are the matrices associated to the quadratic structure
{L, (1)}e = {Mg, Be, (| ), e/™}

as defined in 4.2. This is the well-known fact that modular transformations of
theta functions are related to the finite Fourier transform.

We can now come to the heart of the matter. Suppose L is the lattice
correspondmg to t,he affine algebra g assocmted to the complex simple Lie

algebra g Then [) is a Cartan subalgebra of g and W, the (finite) Weyl
group of g acts on L and L* as a group of isometries. Moreover, WE, the
o

o
affine Weyl group, acts on fj as the semi-direct product of ¥ and kL. By
a choice of simple roots, one determines an open simplex Sf, whose closure

o
is a fundamental domain for the action of W* on ). For ¢ € L, one defines
anti-invariant classical theta functions

AR = Z E(w)@w(x)
wEW
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Their linear span is denoted by Th; . For any w € W(¥) one has A

w(r)

£(w)AY) and these are the only linear relations among the anti-invariant clas-
sical theta functions. In particular, AP = 0 if z is fixed by an element of
W* because by Chevalleys lemma, the stabilizer of z, if non-trivial, contains
reflections. The first result is

Lemma 24 (Kac) °

Let BV be the dual Cozeter number ofﬁ. Let k be a positive integer. If
k < hY then S% contains no point of L*. If k = kY, S* contains a single point
of L* denoted by p. The space Thy is trivial for k < hY and I-dimensional
for k=h".

This makes it.natural to translate £k by AY. From now on, k is a non-
negative integer. We define Pf, = S_’,‘,’”‘v N L* and P¥ = P¥_ — p.The
following theorem is crucial.

Theorem 25 (Kac) °

The set P_’; is the set of highest weights of integrable representations of
g at level k. The anti-invariant classical theta functions AS(‘_:: = P}
form a basis of Thi, ;v and the characterx of the highest weight integrable
representation of g at level k of highest weight A is

X8 = A 4G,

[
As W maps L into L, its action descends to My v, and this action pre-
v v
serves ( | Je4av and Bk+hv For instance, S(k:(';)) = S(k_'t?y))z Moreover, it

is harmless to identify P. _,, and P§ with their images in M. From this one
concludes that for z € P¥ iy

AE (1 r ) = (—in)2 Y0 ST e(w)SUER D Ak (1, 0)
wev;’ yEP.t_,,

and
AFFRI (7 4 1,07) = TR 4G+ (1 0),

In particular for £k = 0 one can simplify the above formule :
APV =1/7, ) = (=in) 3 (=i) A+ APV (7, 0)

and .
AP (1 + 1,0) = 7 Ame/12 () (7 )
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o
where | &+ | is the number of positive roots of g and we have used the “strange
formula” 12(p|p) = A" dim @. Finally, for A € P

qA E+hY
GV DT Ll D DI ) N O o )

wew AP
and
k ~1£k+hAV) k
XA (T +1,0) = 22X (r, ).
Tp,p

This is more than enough to prove the result we were after :
Lemma 26 The representation of SLy(Z) carried by the characters of the
integrable highest weight representations of @ at level k is obtained from a
representation of SLy(Z) associated to the quadratic structure {L,( | )} first
by going to the sub-representation of anti-invariant classical theta functions
(defined over Q) and then by tensoring with a 1-dimensional representation.
In particular, this representation is in R

8.5 We want to make a few remarks about the coset construction. The most
common version is about cosets of Wess—Zumino—-Witten models, but Witten
proposed a vast abstract generalisation of the notion in !!. Very briefly, if
the chiral algebra A of a conformal field theory (with stress tensor T4 of
central charge c4) contains a chiral subalgebra B that contains a stress tensor
Ts (of central charge cg) such that T4 restricted to the primary fields of
B and T coincide, then the set of fields in A that have no short distance
singularities with B is again a chiral algebra denoted by .A/B (with stress
tensor Ta/p = Ta — Tp of central charge c4/5 = ca — cg). Clearly, A/B
intertwines between A and B.

This means that if B is the chiral algebra of another rational conformal field
theory, and if [ is an irreducible representation of A, one can decompose H; =
>~ My ®M; where the sum runs over the finite set of irreducible representations
of B and H} is a representation of A/B.

The most favorable situation is when M} describes the set of irreducible
representations of .A/B when I and ¢ describe the sets of irreducible represen-
tations of A and B respectively. Let us call this the naive situation. Then
the representation of the modular group for .A/B is the tensor product of the
representation for A4 and the dual representation for B. So we see that
Lemma 27 In the naive situation, the representation of SLy(Z) associated
to the coset algebra A/B is in R whenever the representations of SLo(Z)
associated to A and B are in R.
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On the other hand, even if the naive situation is generic (which is by no
means clear), many (most ?!) interesting examples are not naive. The spaces
H% need not be irreducible or distinct. The case when they are irreducible
and exhaust the possible representations of A but with redundancy is not too
bad. We call it the semi-naive case. Essentially one has to identify some
representations, and this means going to a quotient representation of the naive
representation. The identifications do not introduce any new irrationality, so
again we have

Lemma 28 In the semi-naive situation, the representation of SLy(Z) associ-
ated to the coset algebra A/B is in R whenever the representations of SLy(Z)
associated to A and B are in ‘R.

Let us note that getting the Virasoro minimal models as cosets of SU(2) falls
in this class. In fact a direct argument from the explicit form of S and 7 is
not difficult : again, it is a simple folding of a finite Fourier transform. More
generally, because the cyclic symmetry of the Dynkin diagrams of type su(n)
for n > 2, their is always a cyclic group Z.,, of automorphisms acting on the
cosets ﬂ%‘%ﬂﬁh For this case the label I is a pair of integrable highest
weights, one for level I and one for level I, whereas the label i is for an integrable
highest weight at level k +!. When k and ! have no common factors with n,
this symmetry leads simply to identifications. But in the presence of common
factors, the Z, symmetry acts with fixed points. This leads us to the more
complicated situation.

The case when the H} are not all irreducible, but every representation of
A/B appears in the decomposition, is very interesting and very hard. Again
the fact that the % are not all distinct is not essential. The fact that the H}
is not irreducible implies that the naive representation is not enough because
the true S has to be invertible (even unitary) so it has to distinguish between
the different pieces ’H’} may contain. This is a problem very close to what
is known as the problem of resolution of fixed points mentioned above. This
phenomenon appears in many other contexts, for instance orbifolds and simple
currents. There has been substantial recent progress to deal with fixed points
13 and this has also led to a proposal for the § matrix of most cosets of Wess-
Zumino—Witten models. We have not yet tried to check our conjecture for
those cases, because the proposal is not totally straightforward to manipulate.
So we shall only make a few remarks in the next and last paragraph.

8.6 We start from a rational conformal field theory with chiral algebra A,
and irreducible representations V,, indexed by a € A with restricted characters
Xa- The unitarity of the representation of SLy(Z) carried by the characters
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implies that

Z IXaI2

acA

is modular invariant.
Sometimes one can construct other sesquilinear modular invariants. For
instance there is a partition A = Upep A such that

Y1) xal?

bEB a€Ay

is again modular invariant. In such cases it is tempting to define a new chi-
ral algebra B extending .4 and such that its irreducible representations are
indexed by B with restricted characters ng) = D ac4, Xa- Indeed, this can
always be done !2. The modular transformations of the new characters are
easily obtained from the transformations of the original ones, and they are
automatically unitary.

On the other hand, more intriguing situations may appear. For instance,
it may happen that for some positive integers m

Znew = Zmbl Z Xa'z

beB a€Ay,

is modular invariant. Very often, the value of m;|Ay| doesn’t depend on b,
so it is tempting to see the partition A = UyepAp as a set of orbits, with
multiplicities appearing due to fixed points, a justification for the name given
to those phenomena. Again, this leads to hope that there is some kind of new
extended symmetry, but this time, modular transformations are unitary on
m;/z ZaeAb Xa, DOt on EaeA,, Xa- However, unless m; is a perfect square for
any b, the first expression cannot be a candidate for a restricted character. The
only way out of this dilemma is that in the new theory, the same restricted
characters may appear more than once, which means that one has to split
my in pieces which can only be distinguished with complete characters 7. But
then, real new work is needed to get the modular transformations of the new
characters : 7 is not a problem, but only sum rules are known for the new
S matrix. Moreover, nothing guarantees a priori that there is a unique way
of splitting. In fact, the answer to this questions requires extra information,
for instance, the consistency of fusion rules derived from S with the Verlinde

9The situation is analogous to a situation met in algebraic geometry : at singular points,
some branches meet, and a resolution of singularities is needed to separate those branches.
Hence the name fixed point resolution.
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formula. This makes any check of our conjecture difficult for the new theory,
even if we know that it is correct for the original one.

On the other hand, we have seen above that when the restricted characters
are linearly independent, our conjectures can be attacked using the standard
theory of modular forms. Even if Wess—Zumino-Witten models give examples
of two- or threefold degeneracy of the restricted chatacters, it is clear that fixed
point resolutions offer a much richer structure of degeneracy to confront our
ideas with. So progress in this direction is crucial.

Anyway, the outcome of the computations in concrete examples often re-
veals the following structure.

1. The set B can be partitioned as B = U;ec B, in such a way that the new
characters are indexed by b and by another index whose range depends
on the class of b. So for any ¢ € C and any b € B, we have a set

Xb,i & ZGEAb Xa, 1 € L.

2. The new § matrix can be expressed in terms of the old § matrix (re-
stricted to the sub-representation responsible for the modular invariance
of Z™¢*) and on a family of matrices §¢, ¢ € C acting on a vector space
with a basis indexed by b € B.. The complete formula involves projec-
tors in the space of 7 indices and looks complicated, but all the irrational
numbers are in $%¢ and in the various S¢ matrices, so S™¢¥ looks simply
like a direct sum from our point of view. This gives rise to a represen-
tation of SLy(Z) if T¢ (the restriction of 7°¢ to B.) and S° build a
representation of SLy(Z).

3. The representation build by §° and 7°¢ is the tensor product of a one
dimensional representation of SL(Z) and a representation coming from
a rational conformal field theory.

To resume, in certain cases, resolution of fixed points leads to a direct sum
representation of SLz(Z). So if one can show that the components satisfy our
conjecture, then the full new theory satisfies it as well. The third observation
above is encouraging because the components come from simpler conformal
field theories : again this leads to hope that our conjecture can be proved
starting from simple examples. Far from satisfactory as it is, this is nevertheless
an appropriate point to close our discussion.
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Appendices
A Galois theory on a post-stamp.

Al In this section, we mention very briefly the basics of Galois theory and
the results we use in the rest of the paper. For a pedagogical and elementary
account, we recommend 4 ; the more general and abstract presentation of 15
is also valuable.

As far as Galois theory is concerned in this paper, we shall only deal with
zero characteristic”.

A2 Let k be a field contained in a larger field K. We say that K is
an extension of k. We denote this situation by K/k although no quotient is
involved here.

If K/k is an extension, K is a vector space over k, whose dimension [K : k]
is called the degree of the extension. If [K : k] < co we say that the extension
K /k is finite. Then the elements of K are algebraic over k because the only
a finite number of powers of an element z € K can be linearly independent
so that x has to be a zero of some polynomial with coefficients in k. We shall
mostly concentrate on finite extensions in the sequel.

A3  According to Steinitz’s theorem, any field k has an algebraic closure k¢,
unique up to isomorphism. This means first that k¢ 1s an algebraic extension of
k (k¢ contains k, and any element of k€ is a zero of a polynomial with coefficients
in k) and second that any non constant polynomial with coefficients in k¢ splits
as a product of linear factors. In other words, k€ is an algebraic extension of
k that admits no non-trivial algebraic extensions.

In general, k¢ is not a finite extension of k. But k° contains a subfield
isomorphic to any given finite (or algebraic) extension. From two algebraic
extensions K; and K2 of k given as subfields of k¢, we define the compositum
K of K, and K3 as the smallest subfield of k¢ containing K; and K.

A4  Wesay that K/k is a Galois extension if every polynomial in k[X] with
a zero in K splits in K *, the“ one root in, all roots in” property. For example,
k¢ is a Galois extension of k. Thus every algebraic extension is contained in a
Galois extension. In fact, any finite algebraic extension is contained in a finite
Galois extension.

"So that a Galois extension and a normal extension are the same.
?I.e. is a product of linear factors in K.
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A5 Let Aut K'/k be the subgroup of the automorphism group of K that
fixes every element of k.

The set of elements of K fixed by Aut K/k is a field ' with k C ¥' C K.
If K is a Galois extension of k then k = k’. To rephrase, if K/k is a Galois
extension, to check that £ € K is an element of k it is sufficient to check that
z is fixed by K /k. There is a reciprocal for finite extensions : if K /k is finite
and k = k' then K/k is Galois.

The automorphism group Aut K/k of a Galois extension is also denoted
by Gal K /k.

Galois extension have other characterisations that show their usefulness.
For instance, if K is obtained from & by adding all the roots of a family of
polynomials with coefficients in k, then K/k is a Galois extension. Moreover,
this gives all Galois extensions.

A6 The fundamental result of Galois theory is the Galois correspondence :
if L/k is a finite Galois extension, there is a one to one inclusion reversing
correspondence between intermediate fields and subgroups of Gal L/k. To an
intermediate field K (k C K C L) is associated Aut L/K and to a subgroup of
Gal L/k is associated its fixed field. Those two maps are inverse of each other.
Moreover, if K is an intermediate field, K/k is Galois if and only if Aut L/K
is an invariant subgroup of Gal L/k. In this case, Gal K/k is isomorphic to the
quotient of Gal L/k by Aut L/K.

Let us mention that any algebraic (resp. any finite) extension K/k is
contained in a (resp. a finite) Galois extension L/k, so that the Galois corre-
spondence gives another criterion for Galois extensions : it is easy to check that
K [k is Galois if and only if any element of Gal L/k maps K into itself. If this
is the case, there is a (restriction) homomorphism from Gal L/k to Gal K/k,
and this homomorphism is onto.

A7 Especially relevant for us are Abelian extensions. They are the Galois
extensions such that Gal K/k is Abelian. By the Galois correspondence, any
extension contained in a finite Abelian extension is again an Abelian extension.

The field Q[e?"/"] obtained by adding e**/™* to Q is a Abelian extension
of Q. The corresponding Galois group is isomorphic to Z,.

Let K be an extension of Q such that Q ¢ K ¢ Q[e?"/*] for a certain
n. Because the restriction homomorphism is onto, any element of Gal K/ can
be represented (usually in more than one way) as an element of Z;,. This is

h h

tOr any other primitive nt”-root of unity, because primitive n**-roots of unity are powers

of each other.
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a property that proves very useful : a (deep) result by Kroenecker and Weber
asserts that any Abelian extension of Q is contained in Q[e%"/"] for a certain
n.

AS8 Later we shall almost only encounter Galois extensions and very often
even Abelian extensions. So it is worth giving an example of an extension that
is not Galois. Let z be the real cube root of 2. Let K be QQ vector space with
basis 1,z,z2, seen as a subset of R. Using Bezout’s theorem, one can check
easily that K is a subfield of R. It contains exactly one cube root of 2 (the
other two are complex), so K/Q is not a Galois extension.

B Galois actions on representations

B1 In this appendix, we recall some useful facts about Galois actions in
linear algebra. In the main text, we use explicit bases most of the time, but
here we prefer a more canonical approach.

B2 It is possible to extend parts of Galois theory to vector spaces. If V
is a (finite dimensional in all applications) vector space over k and K is an
extension of k we define VX to be the tensor product V ®; K. There is a
natural inclusion V — V* sending v € V to v ® 1.

B3 If k ¢ K C L is a family of field extensions, there is no ambiguity in
writing VL because V®; L and VX ® L are canonically isomorphic. Moreover,
for analogous reasons, if Vj is a subspace of V and W is another k-vector space,
one can write either (V/V5)X or VK /VE for quotients, (V*)X or (VE)* for
duals, (VW)X or VE@WX for sums, ((Homy (V, W))¥ or Homg (VE, WK)
for homomorphisms and (V ®; W)X or VK @k WX for tensor products.

B4 An automorphism o € Aut K/k acts canonically on V¥ by acting on
the second factor : for v € V and X € K,

o(v®A) =v®o(A).

B5  If V,is a subspace of V we denote by Endg V' the set of linear maps from
V to V sending Vg to V. There is of course a restriction map from Endg V' to
End V4 and it is onto because vector subspaces are summands. There is also a
natural projection map from Endg V' to End V/V;. Those operations commute
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with Galois transformations. Explicitly for o € Aut K/k the diagrams

Endo VX — Endo V¥ Endo VE - Endo VE
EndVZ& — EndVf End (V/Vo)® — End(V/Vo)¥

commute. This is obvious if we take a basis for 4, complete it to get a basis of
V and look at matrix elements : an element of Endy V¥ has a block structure

( g g ) This induces A on End V¥ and D on End (V/V,)X.

B6 Let K be an extension of k and V’ be a K-vector space. A subset
I of End V' is said to be defined over k if there is a k-vector space V and
an isomorphism VX = V'’ such that I is in the image of EndV under the
composition

EndV — End VX — End V’.

This means exactly that there is a basis for V'’ such that the matrix elements
of the members of I in this basis are all in k.

In particular, if G is a group with a representation on V’, it makes sense
to ask whether this representation is defined over k£ or not. Of course if the
answer is yes, the character takes its values in k. The reciprocal is in general
wrong, although the two problems are closely related 6.

C Arithmetic factorisation

C1 We keep the notations of section 4. The construction of quadratic
structures and representations of SLy(Z) starting from a finite Abelian group
M share a common property with the so-called arithmetic functions : if m can
be decomposed as m = pg were p and ¢ are relatively prime integers, there is
a corresponding decomposition of the quadratic form, the scalar product and
the representation of SL2(Z).

Suppose that m = pq with p and g as above. At least one of p and ¢ is
odd, so we can assume without loss of generality that ¢ is odd. We fix a pair
of integers (u, v) solution of Bezout’s equation 2up + vq = 1%.

“If m is even the factor 2 is crucial. If m is odd, the factor 2 is irrelevant. Its presence
makes it possible to deal with all values of m at once.



184

C2 For any € M, 2upzr + vgz = z. So x can be written as a sum
z = py + gz with y = 2uz and z = vz. Moreover if pz = 0 (resp. gz = 0),
z can be written as qy (resp. pz) and if pr = gz = 0, £ = 0. The converse
statements are obvious because m = pq annihilates any element of M.

Define My, = {z € M, pz = 0} = {qz}zem and M, = {z € M, qz =
0} = {pz}sem, which are obviously subgroups of M. We can rephrase the
above properties by saying that M = M, & M,. Let z = z, + z, denote the
decomposition of a generic element of M.

C3 This is an orthogonal decomposition because
(zplzg) = 2up(zp|zy) + va(2p[2g) = 2u(pzp|z4) + v(Zple2,) = 0.

Hence (zp|z,) = 0 and B(z) = B(z,) + B(z,).

Moreover 2pB(x,) = 0 = ¢B(&,). The first equality is because by polarisa-
tion 2B(z,) = 2(z,|zp) so 2pB(z,) = 2(pzplz,) = 0. For the second equality,
we use that ¢ is odd to define z, = >z, which is such that z, = 2z, so
B(z,) = 4B(z,) and then the argument is the same as for p.

C4 The Hilbert space H splits as a tensor product H = H, ® H, with
ez = ez, ® ey,. We look for quadratic structures {My, By, ( | )p,{p} and
{My, By, (| )q,¢q} such that the representation splits. Explicitly, we want that
forz,ye M

¢Bz) = Cfp(zy)ch(wq) £Gly) = ﬁ;(‘zrh/r)r{gqu!lq)q_

We show that {, and {; can be chosen arbitrarily, and that once fixed, the
quadratic structure on M, and M, satisfying the tensor product property exist
and are unique. As a change in ¢, or ¢, can be re-absorbed in the normalisation
of the quadratic forms and scalar products, we can assume without loss of
generality that (; = ¢? and (, = (P. Then the above conditions become

B(z) = ¢Bp(zp) +pBy(z4) (z|ly) = 4($P'yp)p + p(24]Yq)q- (C1)

C5 Take z,y € Mp (so z4 = y; = 0) and multiply both equations by wv.
This gives

vB(zp) = (1 = 2up)Bp(zp)  v(zplyp) = (1 — 2up)(Zplth)p-

So the only possibility is that B, (resp. ( | )p) is the restriction of vB (resp.
v( | )) to M, projected modulo 2p (resp. modulo p).



185

Now we take z,y € M, and multiply the above conditions by 2u. This
gives

2uB(z,) = (1 — vq)By(z4) 2u(zqlyg) = (1 — vg)(2q1¥q)q-

Observe that because ¢ is odd, ¢B, = 0 in Z, (set zq = %zq S0 g = 2z, :
By(zq) = 4B,(2z) is 0 modulo 2). So again the only possibility is that B,
(resp. (| )q) is the restriction of 2uB (resp. 2u( | )) to M, projected modulo
2q (resp. modulo ¢). This proves the uniqueness of the solution if there is one

and gives explicitly the only candidate.

C6 To show that this candidate passes the test, we observe that B, and
B, are quadratic, that ( | ), and ( | ), are bilinear symmetric, and that the
polarisation identities hold. To show non-degeneracy, it is enough to show that
£@ly) = g{Frl¥rdrg(Fal¥ade v This is equivalent to part of formule (C.1), and we
have to prove this anyway. In qu

vq(Zp|yp) + 2up(4lyg) = (2plYp) + (zqlyq)

9(zplyp)p + P(24lyg)e =
= (zly) = (zplyg) — (z4lwp) = (zly)-

Now, in Zzpq

qBp(zp) + pBy(zy) = wvgB(zp)+2upB(z,) = B(zp) + B(z,)
= B(z) - 2z /2y) = B(z).

In those two arguments we use the orthogonality of M, and M, and its conse-
quences (see paragraph C.3).

CT7 This terminates the proof that the representations of SL,(Z) associated
to quadratic structures have arithmetic factorisation, a useful fact to show that
B =1 in paragraph 4.4.
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We analyze the possible soft breaking of N = 2 supersymmetric Yang-Mills theory
with and without matter flavour preserving the analiticity properties of the Seiberg-
Witten solution. We present the formalism for an arbitrary gauge group and obtain
an exact expression for the effective potential. We describe in detail the onset of the
confinement description and the vacuum structure for the pure SU(2) Yang-Mills
case and also some general features in the SU(N) case. A general mass formula is
obtained, as well as explicit results for the mass spectrum in the SU(2) case.

1 Introduction and Conclusions.

In two remarkable papers 12, Seiberg and Witten obtained exact information
on the dynamics of N = 2 supersymmetric gauge theories in four dimensions
with gauge group SU(2) and Ny < 4 flavour multiplets. Their work was ex-
tended to other groups in %%, One of the crucial advantages of using N = 2
supersymmetry is that the low-energy effective action in the Coulomb phase
up to two derivatives (i.e. the Kahler potential, the superpotential and the
gauge kinetic function in N = 1 superspace language) are determined in terms
of a single holomorphic function called the prepotential 7. In references 12,
the exact prepotential was determined using some plausible assumptions and
many consistency conditions. For SU(2) the solution is neatly presented by
associating to each case an elliptic curve together with a meromorphic differ-
ential of the second kind whose periods completely determine the prepotential.
For other gauge groups ® the solution is again presented in terms of the period
integrals of a meromorphic differential on a Riemann surface whose genus is
the rank of the group considered. It was also shown in 2 that by soft breaking
N = 2 down to N = 1 (by adding a mass term for the adjoint N = 1 chiral
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multiplet in the N = 2 vector multiplet) confinement follows due to monopole

condensation 8.

For N = 1 theories exact results have also been obtained ° using the
holomorphy properties of the superpotential and the gauge kinetic function,
culminating in Seiberg’s non-abelian duality conjecture 0.

With all this new exact information it is also tempting to obtain exact
information about ordinary QCD. The obvious problem encountered is super-
symmetry breaking. A useful avenue to explore is soft supersymmetry break-
ing. The structure of soft supersymmetry breaking in N = 1 theories has been
known for some time 1!. In 1213 soft breaking terms are used to explore N = 1
supersymmetric QCD (SQCD) with gauge group SU(N.) and Ny flavours of
quarks, and to extrapolate the exact results in ? concerning the superpotential
and the phase structure of these theories in the absence of supersymmetry.
This leads to expected and unexpected predictions for non-supersymmetric
theories which may eventually be accessible to lattice computations. In some
cases however for instance when Ny > N.) it is known in the supersymmetric
case that the origin of moduli space is singular, and therefore some of the as-
sumptions made about the Kahler potential for meson and baryon operators
are probably too strong. Since the methods of 12 provide us with the effective
action up to two derivatives, the kinetic and potential term for all low-energy
fields are under control, and therefore in this paper we prefer to explore in
which way we can softly break N = 2 SQCD directly to N = 0 while at the
same time preserving the analyticity properties of the Seiberg-Witten solution.
This is a very strong constraint and there is, essentially, only one way to ac-
complish this task: we make the dynamical scale A of the N = 2 theory a
function of an N = 2 vector multiplet which is then frozen to become a spu-
rion whose F' and D-components break softly N = 2 down to N = 0. If we
want to interpret physically the spurion, one can recall the string derivation of
the Seiberg-Witten solution in %!® based on type II-heterotic duality. In the
field theory limit in the heterotic side (in order to decouple string and gravity
loops) the natural scaling is taken to be Me*S = A, where M is the Planck
mass, S is the dilaton (in the low-energy theory S = 6/2x +4mi/g¢?, with g the
gauge coupling constant and & the CP-violating phase), and A the dynamical
scale of the gauge theory which is kept fixed while M — o0 and iS — oo.
Since the dilaton sits in a vector multiplet of N = 2 when the heterotic string
is compactified on K3 x T3, this is precisely the field we want to make into a
spurion, and procedure is compatible with the Seiberg-Witten monodromies.
In this way we obtain a theory at N = 0 with a more restricted structure that
those used in 1213,

As soon as the soft breaking terms are turned on monopole condensation



189

appears, and we get a unique ground state (near the massless monopole point of
1,2). Furthermore, in the Higgs region we can compute the effective potential,
and we can verify that this potential drives the theory towards the region
where condensation takes place. When the supersymmetry breaking parameter
is increased, the minimum displaces to the right along the real u-axis. At
the same time, the region in the u-plane in which the monopole condensate
is energetically-favoured expands. Near the massless dyon point of 1.2, we
find that dyon condensation is energetically favourable but, unlike monopole
condensation, it is not sufficiently-strong an effect to lead to another minimum
of the effective potential. Eventually, when the soft supersymmetry breaking
parameter is made sufficiently large, the regions where monopole and dyon
condensation are favoured begin to overlap. At this point, it is clear that our
methods break down, and new physics is needed to deseribe the dynamics of
these mutually-nonlocal degrees of freedom.

One advantage of this method of using the dilaton spurion to softly break
supersymmetry from N = 2 to N = O is its universality. It works for any gauge
group and any number of massive or massless quarks. We work out the general
structure of soft breaking by the dilaton spurion in an arbitrary gauge group
paying special attention to the monodromies and the properties of the spurion
couplings, and we find the general features of the vacuum structure for the case
of SU(N). We also study the evolution of the mass eigenvalues in the case
of the SU(2) and also show in general that with this soft breaking procedure
there is a general sum rule satisfied by the masses of all the multiplets.

The organization of this paper is as follows: In section-one we present the
general formalism for the breaking of supersymmetry due to a dilaton spurion
for a general gauge group, and we study the symplectic transformations of
the various quantities involved. The results agree with the general structure
derived in ® concerning the modification of the symplectic transformations of
special geometry in the presence of background N = 2 vector superfields. In
section three we study the effective potential and vacuum structure. In section
four we particularize the formalism to the case of SU(2) where the analysis
can be made more explicit. In section five we analyze in some detail the case
for SU(N) without hypermultiplets. Finally in section six we present a gen-
eral mass sum rule for the general case, and also obtain explicit results of the
masses in the SU(2) case. It is clear that for the moment we cannot take the
supersymmetry decoupling limit due to the fact that as the supersymmetry
breaking parameter increases we find that regions where mutually non-local
operators acquire vacuum expectation values overlap. This raises the fascinat-
ing issue that in order to reach the real QCD limit we have to understand the
dynamics of the Argyres-Douglas phases 17.
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2 Breaking N =2 with a dilaton spurion: general gauge group

In this section we present the generalization of the procedure introduced in
21 to N = 2 Yang-Mills theories with a general gauge group G of rank r and
massless matter hypermultiplets.

The low energy theory description of the Coulomb phase ! involves r
abelian N = 2 vector superfields A%, i = 1,---,r corresponding to the un-
broken gauge group U(1)". The holomorphic prepotential F(A?,A) depends
on the = superfields A and the dynamically generated scale of the theory, A.
The low energy effective lagrangian takes the form (in N = 1 notation)!:

oOF —a 1 0% F . .
4 2 i
[,/d GOA‘ _2—/d 06A‘6Ai W"’WGJ]’ (1)

We define the dual variables, as in the SU(2) case, by

_OF
ap; = % (22)
The Kahler potential and effective couplings associated to (2.1) are:
e - ]' -1
K(a,a) = Elmal),;a‘,
2F
i = ai0al 23)
and the metric of the moduli space is given accordingly by:
0%F
2
(ds)* = M %a ]da da’ . (2.4)

We introduce now a complex space C2" with elements of the form

v= ( “f,»* ) . (2.5)

The metric (2.4) can then be written as

(ds)? = ——E(dal), a — dap ;da’)

_%(dap,.- da*) (_01 (1)) ( dgg,."’ ) (2.6)
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which shows that the transformations of v preserving the form of the metric
are matrices I' € Sp(2r,Z). They verify TTQL = Q, where Q is the 2r x 2r
matrix appearing in (2.6), and can be written as:

(48) @

where the r x r matrices A, B, C, D satisfy:
AT™D-C"B=1,, ATC=C"4, B*D=D"B. (2.8)
The vector v transforms then as:
ap ap _ Aap + Ba
(a )_*F(a )_<CGD+D¢1)' (2.9)

From this we can obtain the modular transformation properties of the prepo-
tential F(a?) (see!%). Since

0F dai. OF ; . .
3k = ot oa - (C*ro + D) (Aan + Byyo?)
: OF dap, ;
= (D"B)id + (DT A5 + (CTB oL d
T 8GD‘p
+ (CTAyY —=Lap ;, (2.10)

using the properties (2.8) of the symplectic matrices we can integrate (2.10)
to obtain:

1 o1 :
Fr = F+ §ak(DTB)k]-aJ + §aD,,c(CTA)W apj

+ d*(BTC)ap ;. (2.11)

Starting with (2.11) we can prove that the quantity F~1/23". a’ap ; is a mon-

odromy invariant, and evaluating it asymptotically, one obtains the relation
18,19,20.

F - %Xi:aiapi = —47mibyu, (2.12)

where b; is the coefficient of the one-loop beta function (for SU(N,) with Ny
hypermultiplets in the fundamental representation, 8, = (2N, — N,)/167r2)
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and u = (Tré?). With the normalization for the electric charge used in? and
S, the r.h.s. of (2.12) is —2miby u.

As in the SU(2) case, presented in??, we break N = 2 supersymmetry down
to N = 0 by making the dynamical scale A a function of a background vector
superfield S, A = ¢*5. This must be done in such a way that s, sp = 8F/0s be
monodromy invariant. To see this, we will derive a series of relations analogous
to the ones in the SU(2) case?!, starting with the following expression for the
prepotential in terms of local coordinates:

F= Z a*d fij(a' JA), (2.13)

where we take fi; = f;i. We define now a (r+ 1) x (r + 1) matrix of couplings

including the dilaton spurion a° = s:

&F

Tap = 6(1—0’(15' (214)

Greek indices a, # go from 0 to r, and latin indices 7, j from 1 to ». We obtain:

apyx = 2Za‘fik + KZa’a’fij,k,
3 i7
Tij —2f1] Aza (fll:,] +f:7k :)+ (1 a fkl‘l]’

TO:—__Za] (2fijpe + fiks) — AZ Za’a af]kh’

Ikl
Too_——Za da kf,Jk— Za ala*a fij ki, (2.15)
ijk ijki
and the dual spurion field is given by:
OF 1 i s
= G =R L @19

ijk
The equations (2.15) and (2.16) give the useful relations:

O07oi . 67‘:]

Toi — i(aD,,- -_ E (1‘77}',')J 67 = -1 6
J
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g:’: = iTok — Zaiaj%. (2.17)

Using now (2.12) one can prove that sp is a monodromy invariant,

%—f = z‘(2}' - E a‘ap,i) = 8wbyu (2.18)

and from (2.17) and (2.18) we get

0
Toi = 87r516—::,~,
Too = 8mib; (2u — at 'gf;) (2.19)

Now we will present the transformation rules of the gauge couplings 7;; under
a monodromyy matrix I' in Sp(2r,Z). In terms of the local coordinates a} =
C*ap p(a’?,s) + Dja? we have the couplings

02F
iy = —r 2.20
*p 6ag6a{" (2.20)
The change of coordinates is given by the matrix:
dai.  dat.
R I e e T
8 B ’ '
8al  Os
with inverse
o ou
60{\ 0s -1 : _ D)1 : kp
_{ (cr+p )j ((C‘r+ ) )kc o |
2 s 0 ]
Ba{- Os
(2.22)

Therefore we have:
0 _ 1) 0
(ﬁ) I’'—basis - ((CT + D) )j Oa*’
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i} i} £ 0
—_ = —— Dy 1 —: .
(63 ) F-basis Os (Cr+D) CT] 0 fat’ (2.23)
which lead to the transformation rules for the couplings:
-1 j
r _ . -1
5 = (ar+B)(cr+D) Lo = (€cr+ D)),
"'go = Too — Toi [(CT + D)-lc"']o- (2.24)

3 Effective potential and vacuum structure

In this section we will obtain, starting from the formalism developed in the
previous section, the effective potential in the Coulomb phase of the softly
broken N = 2 theory, for a general group of rank r.

To break N = 2 down to N = 0 we freeze the spurion superfield to a
constant. The lowest component is fixed by the scale A, and we only turn
on the auxiliary F? (i.e. we take D° = 0). We must include in the effective
lagrangian r + 1 vector multiplets, where r is the rank of the gauge group:

A® =A% AN, I=1,---r (3.1)

There are submanifolds in the moduli space where extra states become massless
and we must include them in the effective lagrangian. They are BPS states
corresponding to monopoles or dyons, so we introduce ng hypermultiplets near
these submanifolds in the low energy description:

(Mi, M), i=1,--,ng (3.2)

We suppose that these BPS states are mutually local, hence we can find a
symplectic transformation such that they have U(1)" charges (¢f, —¢f) with
respect to the I-th U(1) (we follow the N = 1 notation). The full N = 2
effective lagrangian contains two terms:

L =Lvm+ Lawm, (3.3)

where Ly is given in (2.1), and
Lum = Z/d“ﬂ(l\/f,’e%’vaf + A’,‘f:e—zqi’v“)]\’;ﬂ)

+ ; ( / d?6v2A gl M M; + h.c.) (3.4)
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The terms in (3.3) contributing to the effective potential are
V = b FIF 4+ 8 (FOF + F°FT) + boo| FO)?
+ 5brsD' DY 4 D gl (lmal? — |Ful?) + |, |2 + 1 F5
+ \/E(qu,-]m,'ﬁz,' +alq,-lm,~F;;“ + al gl Fp, +h.c.), (3.5)

where all repeated indices are summed and b,g = Im7,g/47r. We eliminate
the auxiliary fields and obtain:

D' = —(b~ ) gf (Imsl? — |7s?),
FI = (b1 by FO — V2(b 1) of ;7
Frp, = —V2@'¢/7, Fm, = —V/2a'¢!m,. (3.6)

We denote (gi,9;) = > p; ‘I!(b_l)”‘b[’ (gi,60) = 2y, 6 (071) b0y, a-qi =
So;afql. Substituting in (3.5) we obtain:

5 S as,a3)ral? = 17 ) (s = 175 1) + 2 3 (g, g5 )mams 7

ij iy

vV

+ 23 Ja- gl + |7 ?) + VEY (g5, bo) (FOmiis + F i)

detbog
detbys’

where detbog/detbrs = boo — bor(b=)’bos is the cosmological term. This
term in the potential is a monodromy invariant. To prove this it is sufficient
to prove invariance under the generators of the symplectic group Sp(2r, Z):

(‘3 (ATO)_,) ., A€GlrZ),

1 4 0 1
To:(o 1), 0;; €Z, Q:(——l 0) (3.8)

Invariance under Ty and the matrix involving only A is obvious, and for £ one
can check it easily.

The vacuum structure is determined by the minima of (3.7). As in?
first minimize with respect to m;, m;:

v 3
o > (g, 45)(Im51* — |7 *)m; + 2la - g;|*m;
1 .
J

— (PP (3.7)

1 we

+ 2 (g, q5)mimm; + V2F (gs, bo)im; = 0, (3.9)
J
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ov o )
el JZ(qs, 43)(=Imj 2 + 17[?); + 2la - qi[ 27
+ 23 (i, a5)m;m;m + VI (g5, bo)ms = 0. (3.10)
J

Multiplying (3.9) by 7, (3.10) by ; and substracting, we get

D (@i, gi)(Imj1* = 17 12)(Ima® + |7:]?) + 2l - gil *(Ims]? — |7 ]?) = 0. (3.11)
J
Suppose now that, for some indices i € I, |m;|? +|m;|? > 0. Multiplying (3.11)
by |m;|? — |m;|? and summing over i we obtain

2|a-q,-|2 ~

2 2 — .12 .12)2

2 (g gl = )i =15 ) = =32 o el = )
(3.12)

The matrix (b~ is positive definite, and if the charge vectors ¢/ are linearly
independent it follows that the matrix (¢;, ¢;) is positive definite too. Then the
Lh.s. of (3.12) is > 0 while the r.h.s. is < 0. The only way for this equation
to be consistent is if

I)IJ

Imil=|ﬁli|, i:l,---,nH. (3.13)
In this case we can write the equation (3.9), after absorbing the phase of
FO = foe'" in m,, as:
20a- gil*mi +2) (g, 95)mi;mi +V2fo(g, bo)i = 0. (3.14)
j
Multiplying by m; and summing over ¢, we obtain
2> la-qil®lmil* + V2fo D (g, bo)mimi = =2 _(qi, gj)m;mmsm;m;, (3.15)
i i ij
hence v2fo 3°;(gi, bo)Tim; is real. We can insert in (3.7) and get the following
expression for the effective potential:

detb B8 —~ =
= —f2 detba %;(q,-, g; )ymjTm;mim;. (3.16)

If (3.13) holds, we can fix the gauge in the U(1)" factors and write

m; =p;, ;= piet® (3.17)
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and (3.14) reads:
o 0 80) _ig,
pF(la- gl + Y (as, g;)pfei® %) + %‘Qe ) =o. (3.18)
J

Apart form the trivial solution p; = 0, we have:

ooy folaisbo) _ig.
ol + (Qi,Qj)P?e'(¢’"¢‘)+%2o)e i =0 (3.19)
i

and we can have a monopole (or dyon) VEV in some regions of the moduli
space. Notice that for groups of rank r > 1 there is a coupling between the
different U(1) factors and one needs a numerical study of the equation above
once the values of the charges g/ are known. In addition, the moduli space is
in that case very complicated and explicit solutions for the prepotential and
gauge couplings of the N = 2 theory are difficult to find. However we still can
have some qualitative information in many cases under some mild assumptions,
as we will see.

4 Vacuum structure of the SU(2) Yang-Mills theory

4.1 The Setberg- Witten Solution

In! Seiberg and Witten obtained the structure of the quantum moduli space
of the N = 2 SU(2) Yang-Mills theory and also the exact solution for the
prepotential F including all the non-perturbative corrections. Some of the
properties of this solution are:

i) The moduli space M, is parametrized by u = (Tr¢?) and can be un-
derstood as the complex u-plane. The SU(2) symmetry is never restored, and
the theory stays in the Coulomb phase throughout the moduli space.

ii) M, has a symmetry u — —u (the non-anomalous subset of the U(1)r
group), and at the points u = A%, —A? singularities in the holomorphic pre-
potential F develop. Physically they correspond respectively to a massless
monopole and dyon with charges (¢¢,gm) = (0,1), (—1,1). Hence near u = AZ,
—A? the correct effective action should include together with the photon vector
multiplet monopole or dyon hypermultiplets.

iii) The vector v = (ap, a) defines a flat SL,(Z) vector bundle over the
moduli space M,,. Its properties are determined by the singularities and the
monodromies around them. Since §2F/8a® or dap/da is the coupling con-
stant, these data are obtained from the J-function in the three patches: large-
u, the Higgs phase, the monopole and the dyon regions. From the BPS mass
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formula?%?3 the mass of a BPS state of charge (qe, ¢m) (With ge, ¢m coprime
for the charge to be stable) is:

M= \/§|qea+qmaD|. (4.1)

If at some point ug in My, M(uo) = 0, the monodromy around this point is

given by 1:%:6
ap ap
( . ) — M(qe,qm) ( a ) , (4.2)

_ 1+ 29eqm 292

Also for large u, F is dominated by the perturbative one loop contribution,
obtained from the one loop A-function:

; 2

PP

— — 4.4
yie In A (4.4)
Hence we also have monodromy at infinity. The three generators of the mon-
odromy are therefore:

-1 2 -1 2
Moo'—"( 0 _1>, MA3:<_12 ?), M—A?=<_2 3); (45)

and they satisfy:

F —loop(a) =

Moo = Mp2M_pa. (4.6)

These matrices generate the subgroup I's C SL27Z of 2 x 2 matrices congruent
to the unit matrix modulo 2.
We learn from (4.1)-(4.3) that in the Higgs, monopole and dyon patches,

the natural independent variables to use are respectively al*) = @, a(™ = —ap,
a(? = ap — a. Thus in each patch we have a different prepotential:
FPM(a), F (™), F(aD). (4.7)

iv) The explicit form of a(u), ap(u) is given in terms of the periods of a
meromorphic differential of the second kind on a genus one surface described
by the equation:

y? = (e - A%)(z - w), (4.8)

describing the double covering of the plane branched at +A2, u, co. We choose
the cuts {—AZ% A?}, {u, 00}. The correctly normalized meromorphic 1-form is:

Ao A V2dzyz —u/AT (4.9)

27 z2 ~1



Then: /3 p
_AV2 di\Ju/A? —t
alw) = A / Vi-g

f/"/A dt\/uf/AZ —1
\/1—»:2 )

ap(u) = A

Using the hypergeometric representation of the elliptic functions 24:

K(k) = %F(l/?, 1/2,1;k2); K'(k) = K(k');

(k) = TF(-1/2,1/2,1;k%); E'(F)=E(), K+ =1,

we obtain :
k2 — 2 k’2 — u— Az
1+ u/A2’ ut A2’
__4A __4A E'(k) — K'(k)
a(u) = % E(k), ap(u)= -

Using the elliptic function identities:

dE _E-K dK 2

&k ' dE kk’z(E FK),

dF’ k . dK’
W - ——k/—Z‘(EI - I‘/), d_k = kk/2 (E, kzl{,),

the coupling constant becomes:

o Oap dap/dk iK'
7 %a T dafdk T K’

which is indeed the period matrix of the curve (4.8).

4.2 Vacuum structure of the softly broken SU(2) theory
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(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

When we softly break the N =2 SU(2) Yang-Mills theory we obtain an effec-
tive potential including the couplings 701 and 790. In the normalization of !,

and with b, = 1/472, the spurion-induced couplings are

01 = —373 T00 = —

ot
S !

(4.18)
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The monodromy transformations of the couplings (2.24) have a simple expres-
sion in the SU(2) case:

r _ am+p r_ 7o
m = T T T
Y11 +6 Y11 + 6
2
r RALY
e R £ W 4.19
00 o0 Y111+ 6 ( )

From the exact Seiberg-Witten solution (4.10), (4.11) and the previous equa-
tions we can compute the couplings 7;; in the Higgs and monopole region.
i) Higgs region:

(y _4AE -K' ) 4A
W =T o= g EK,
MO SO (T N (3 _&A(E-K 1
K’ o1 = rp Too = - ( R +2)4 (4.20)
ii) Monopole region:
(m)_ﬂ (m)__ﬂEl—Kl
aD = rk E(k), a = iﬂ- —k s
) K (m) _ 2iA Am) _ 8iA2 , E' 1
™ K,: To1 = W’ Too = — = (W - E) . (421)

In the analysis of the effective potential (3.7) we must first minimize with
respect to the monopole (or dyon) field. For r = 1 the equation for the VEV
(3.19) is
bore™*? fo

VZ

and the last term must be real so e¢ = ¢ = +1. The charge is ¢ = 1 in
the SU(2) Yang-Mills theory, both in the monopole and in the dyon regions.
Apart from the solution p = 0 we can have

bor€fo
V2
Note that b;; = #Im 711 is always positive, and therefore (4.23) determines a

region in the u-plane where the monopoles acquire a VEV. Depending on the
sign of by, we choose the sign of €. In fact we can replace (4.23) by:

2 +byal® + =0, (4.22)

p2 = —b11|a|2 - > 0. (4.23)

1
pr = —b11|a|2 + 7§|b01|fo >0 (4.24)
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Figure 1: Effective potential, V(*), (4.26).

and fo is always measured in units of A. Thus for the numerical plots we set
A = 1. From (3.16) we get the effective potential:

2 4 detb
bt T biy

V=- 12 (4.25)
This is good news. It implies that the region where the monopoles acquire
a VEV is energetically favored, and we have a first order phase transition to
confinement. Depending on the sign of by, m and m are either aligned or
antialigned. The SU(2)r symmetry of N = 2 supersymmetry is broken by the
explicit off-diagonal term boymm/by1; in (3.7) and by the VEV p # 0.

Where p? — 0, the potential maps smoothly onto the potential for the
Higgs region,

detb(®
*® = _ o) 12 (4.26)
bll

where, we recall, detb/b1; is monodromy-invariant. In the monopole region,
a nonzero monopole VEV is favoured, and the effective potential is given by
(4.25) and written in terms of magnetic variables:

4

2, detd(™

yim) — _ pt—
57 b7

f2 (4.27)

where b(*), b(™) are given in (4.20), (4.21).

In the Higgs region, the effective potential is given by (4.26) and we plot it
in fig. 1. It has no minimum outside the monopole region near u = A? (where,
as we shall see, the energy can be further lowered by giving the monopoles a
VEV). One sees that the shape of the potential makes the fields roll towards the
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7
-0.005 -0\005

Figure 2: Effective potential, V(?), (4.26) (top) and, V(™), (4.27) (bottom) along the real
axis (left) and for » = A?(1 + iy) (right). Both are plotted for fo = 0.3A.

Figure 3: Monopole expectation value Figure 4: Monopole expectation value
p? for fo = 0.1A on the u-plane. p? for fo = 0.3A on the u-plane.

monopole region. In fig. 2, we plot slices of the potential V(* along the real u-
axis and parallel to the imaginary u-axis with Re(u) = A%. For comparison, we
also plot V(™). Note that they agree in the Higgs region (where the monopole
VEV vanishes), and that V(™) lowers the energy (and smooths out the cusp
in V(") at u = A?) in the monopole region.

Next we look at the monopole region (4.24). a (i.e. a(™) is a good
coordinate in this region vanishing at u = A?. As soon as f; is turned on
monopole condensation and confinement occur. In figs. 3,4 we plot p? in the
u-plane for values of fo = 0.1A, 0.3A; and in figs. 5,6 the effective potential
(4.27) for the same values of the supersymmetry breaking parameter fo.

One can see that the minimum is stable and that the size of the monopole
VEV is ~ fg. There are two features worth noticing. The first is that the
absolute minimum occurs along the real u-axis. This is seen numerically and
also as a consequence of the reality properties of the elliptic functions. Second,
as fo is increased, the region where (4.24) holds becomes wider. This is seen in
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Figure 5: Effective potential (4.27) for
fo = 0.1A.

0.07

0.06

0.05

-1 1 2 3

Figure 7: Plot of p? along the real u-
axis, for fo/A = (from bottom to top)
0.1, 0.3, 0.5, 1.0.

Figure 6: Effective potential (4.27) for
fo = 0.3A.

N

Figure 8: V{m)/ {2 along the real u-axis
for fo = 0.1A (top), 0.5A (middle) and
A (bottom).
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fig. 7, where p? is plotted along the real u-axis as a function of fy. Accordingly,
the minimum of the effective potential moves to the right along the real u-axis,
as one can see in fig. 8, where V(™)/f2 is plotted for three increasing values of
fo (we have divided by fZ to fit the three potentials on the same graph).

Finally, we turn to the dyon region. To understand what happens in
the dyon region, we study the transformation rules of the 7;; couplings under
the residual Zg C U(1)r symmetry whose generator acts on the u-plane as
u +— —u. The reason why we need to analyze in general the behavior under Zg
is because the representation we have chosen for the Seiberg-Witten solution
in sections 2,3 is well adapted to study the monopole region. Naively applying
them to the dyon region, we may encounter some discontinuities due to the
position of the cuts. Outside the curve of marginal stability one can write the
prepotential as!:

_ ¢ 2
7-'—2—a log—+a ch( ) . (4.28)
k21
If w = €2*¥/8 is the generator of the Zg symmetry, it is easy to show that the
couplings 7;; transform according td:
a— ia, ap — i(ap — a),
T11 /> T11 — l, T01 — iT01, Too M/ —T00- (429)

So the relation between the dyon and monopole variables is:
O =ia™(-w),  aPw) =i (af () ~ o™ (-w), (4.30)
=P -1 P =i (), 5P = ) (),

with aD) = —ap. Using the expressions for the monopole couplings in (4.21),
which are well-behaved near u = A2, we obtain expressions for the dyon
couplings which are well-behaved near u = —A2. The analysis of (4.24)
changes crucially once these rules are implemented. Near the monopole re-

gion a{™) ~ i(u — A?), hence ré;") ~ i is purely imaginary. In (4.27) although

bThere is one more aspect of the Zg transformation rules worth noticing. If we implement
these rules we find that the condensate moves to the dyon region, and one might be tempted
to conclude that with this choice it is the dyon that conclenses This is not the case. Using

the one-loop B-function, we know that A* ~ exp(— + i8). The action of Zg amounts to
the change A — tA or what is the same, § — 8 + 21r. Using the relation found in 25, when
we make this change the massless state at © = —A? (before supersymmetry breaking) has

zero electric charge, while the state at « = A2 acquires charge one. Thus we find again a
monopole condensate, in a way consistent with the Z;-symmetry.
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Figure 9: Dyon expectation value p(zd) Figure 10: Dyon expectation value p(d)
for fo = 0.3A on the u-plane. for fo = A on the u-plane.

0.1015%
0.1015

s.10145

0.2 -0.1 6.1 6.2
0.10138

Figure 11: Plot of V(®) (u) (top) and V(9 (u) (bottom) versus Im(u) for Re(u) = —A2 and
) = A.

b1y diverges at u = A? the divergence is cancelled by the vanishing of a(™) at

the same point. Since Imré;") > 0 as soon as fy # 0 the monopoles condense.
Using (4.30), however, we see that a{®) ~ (u+A?) with a real coefficient. Thus

ImTél) = 0 at u = —A? and we conclude from (6.21) that the dyon condensate

vanishes along the real u-axis. Nevertheless, a dyon condensate is energetically
favoured in a pair of complex-conjugate regions in the u-plane centered about
u=—A2% We plot p(zd), for two different values of fy in figs. 9,10.

Unlike the monopole VEV, the magnitude of the dyon VEV is tiny on
the scale of V(»). Tt therefore makes an all-but-negligible contribution to the
effective potential (fig. 11). In particular, V(¥ does not have a minimum in
the dyon region. The only minimum of the full effective potential is the one
we previously found in the monopole region.

As we have already noted, the monopole region (in which p 75 0) ex-
pands as fo is increased. Eventua.lly, for fo ~ 1.3A, it reaches the dyon region
(in which p( ) # 0). At this point, it is clear that our whole approximation of
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including just the monopole field (or just the dyon field) in the effective action
breaks down.

What are the other limitations of our approximations? First, we have ne-
glected certain soft supersymmetry breaking terms which arise when we derive
the soft breaking terms from spontaneously broken N = 2 supergravity. These
additional terms scale to zero in the rigid limit, that is, they are suppressed
by powers of IOng?Ap_. or MLPI and, for our purposes are negligible. We have also
neglected higher-spinor-derivative corrections to the Seiberg-Witten effective
action. These clearly cannot affect the vacuum structure in the supersymmet-
ric limit. They also, by definition must be supersymmetric; otherwise they lead
to explicitly hard supersymmetry breaking terms, which is an entirely different
matter from the soft supersymmetry breaking we are considering. Neverthe-
less, once supersymmetry is broken, they can, in principle, lead to corrections
to the scalar potential suppressed by higher powers of fZ/A2. For the moderate
values of fp that we are considering, these corrections are numerically rather
small, and do not affect the qualitative features of the solutions we have found.
A prior, if the higher spinor derivative terms in the Seiberg-Witten effective
action were known, we could systematically improve our approximations by
going to higher order in f3 /A%

However, the fundamental obstacle to pushing our approximation to larger
values of the soft supersymmetry breaking parameters would remain. The mu-
tual non-locality of the monopoles and dyons leads to our inability to calculate
the effective potential where the monopole and dyon regions overlap. Since
this is, at least initially, far from the monopole vacuum, we expect that the
monopole vacuum persists, at least as metastable minimum, even beyond the
critical value of fy. But we do not know when (or if) a new, lower minimum
develops once the monopole and dyon regions overlap. If a new vacuum does
appear there, then we would have a first order phase transition to this new con-
fining phase ©. This raises the exciting possibility that the correct description
of the QCD vacuum requires the introduction of mutually non-local monopoles
and dyons. Phases of this nature have been shown to arise in the N = 2 moduli
space for gauge group SU(3) 7. Perhaps the way to approach the true QCD
vacuum in the correct phase is to start with one of these N = 2-superconformal
field theories and turn on a relevant, soft supersymmetry-breaking perturba-
tion.

€An explicit realization of this phase transition due to the overlapping of monopole and
dyon regions occurs in the softly broken SU(2) theory with one massless hypermultiplet 26
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5 Vacuum structure of the SU(N) Yang-Mills theory

The moduli space of vacua of the N = 2 SU(N) Yang-Mills can be parametrized
in a gauge-invariant way by the elementary symmetric polynomials s;, [ =
2,---, N in the eigenvalues of (¢), ¢;. The vacuum structure of the theory is
associated to the hyperelliptic curve 3:

y2 — P(I)z _ AZN,

P(2) = jdet(z - (8)) = 3 [T(= — 49, (5.1)

where A is the dynamical scale of the SU(N) theory and P(z) can be written
in terms of the variables s; as P(z) = 1/2)_,(—1)'s;z¥~!. Once the hyperel-
liptic curve is known, one can compute in principle the metric on the moduli
space and the exact quantumn prepotential, but explicit solutions are difficult
to find (they have been obtained in* for the SU(3) case). But as in the SU(2)
case one expects that the minima of the effective potential for the SU(N) the-
ory are near the N = 1 points (at least for a small supersymmetry breaking
parameter). The physics of the N = 1 points in SU(N) theories has a much
simpler description because it involves only small regions of the moduli space,
and has been studied in ®>. The N = 1 points correspond to points in the
moduli space where N — 1 monopoles coupling to each U(1) become massless
simultaneously. From the point of view of the hyperelliptic curve this corre-
sponds to a simultaneous degeneration of the N — 1 a-cycles, associated to
monopoles. This means in turn that the polynomial P(z)2 — A% must have
N -1 double zeros and two single zeros. If we set A = 1, this can be achieved
with the Chebyshev polynomials

P(x) = cos(Na.rccos%), (5.2)
and the corresponding eigenvalues are ¢; = 2cosw(i — 3)/N. The other N —1
points, corresponding to the simultaneous condensation of N — 1 mutually
local dyons, are obtained with the action of the anomaly-free discrete subgroup
Z4sn C U(1)r- One can perturb slightly the curve (5.2) to obtain the effective
lagrangian (or equivalently, the prepotential) at lowest order. What is found
is that, in terms of the dual monopole variables ap 1, the U(1) factors are
decoupled and r}?, ~ éry77. Near the N = 1 point where N — 1 monopoles
become massless one can then simplify the equation (3.19) for the monopole
VEVs, because ¢/ = 67, (b67')" = §77b;'. The equation reduces then to
r = N —1 SU(2)-like equations, and in particular the phase factors e~*#’ must
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be real. We then set ™%’ = ¢;, ¢y = +1. The VEVs are determined by:

bore
P? = —b1|aD,1|2 - fo_\/o_;!_, I=1,---,r. (5.3)

The effective potential (3.16) reads:
b2 1
V= —fg(boo _Zb%[) —2256' (5.4)
I

The quantities that control, at least qualitatively, the vacuum structure of the
theory, are bor and bgo. If bor # 0 at the N = 1 points, we have a monopole
VEV for p; around this point. If bgy = 0, we still can have a VEV, as it
happens in the SU(2) case in the dyon region, but we expect that it will be
too tiny to produce a local minimum. When one has monopole condensation
at one of these N = 1 points in all the U(1) factors, the value of the potential
at this point is given by

V = —f2boo, (5.5)

and if the local minimum is very near to the N = 1 point, we can compare
the energy of the different N = 1 points according to (5.5) and determine the
true vacuum of the theory. Hence, to have a qualitative picture of the vacuum
structure, and if we suppose that the minima of the effective potential will
be located near the N = 1 points, we only need to evaluate bor, boo at these
points. This can be done using the explicit solution in ® and the expressions
(2.19).

To obtain the correct normalization of the constant appearing in (2.18) we
can evaluate ) ;ap,rda/du —adap r/du in the N = 1 points, obtaining the
constant value 4wib;. The value of the quadratic Casimir at the N = 1 point
described by (5.2} is

— 1 2
u = (Trg?) _42 M= 12 _ (5.6)
and the values at the other N = 1 points are given by the action of ZN (u bas
charge 4 under U(1)gr): u¥) = 2w¥* N, w = e™/2N with k =0, - —1. To
compute 7oy we must also compute du/dap ;. Using the results of 5, we have:
du .. wl
daps = —4zsmﬁ, (5.7)

and using b; = 2N/1672, we obtain

Ou 2Ni . «lI
Bapr - x sin—-. (5.8)

Tor = 47h,
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At the N =1 point where N — 1 monopoles condense, ap ; = 0, therefore
9
T00 = 8miu = —zNz. (59)
.o

(5. 8) indicates that monopoles condense at this point in all the I/ (1) factors,
but with different VEVs. This is a consequence the spontaneous breaking of
the Sy symmetry permuting the U(1) factors®.

To study the other N = 1 points we must implement the Zx symmetry
in the u-plane. The local coordinates af,k) vanishing at these points are given
by a Sp(2r,Z) transformation acting on the coordinates ay, ap,r around the

monopole point. The Zy symmetry implies that

7/
™ (,,)( u®) =W 2 (u), (5.10)

1

and then we get

k 1 k N k 7rI
ng) = —Im‘r&) = "5z OSSN

2

b — 1 lmr) = 5 (g) cosg—:[—k- (5.11)
The first equation tells us that genenca.lly we will have dyon condensation at all
the N =1 points, and the second equation together with (5.5) implies that the
condensate of N — 1 monopoles at u = 2N is energetically favoured, and then
it will be the true vacuum of the theory. Notice that the ZN symmetry works
in such a way that the size of the condensate, given by ]cos |, corresponds to
an energy given by —cosl}{—,’-‘-. as one should expect, the bigger the condensate
the smaller its energy. In fact, for N even the N = 1 point corresponding to
k = N/2 has no condensation. In this case the energy is still given by (5.5),
as the effective potential equals the cosmological term with bg; = 0, and is the
biggest one.

6 Mass formula in softly broken N = 2 theories

6.1 A general mass formula

In some cases the mass spectrum of a softly broken supersymmetric theory
is such that the graded trace of the square of the mass matrix is zero as 1t
happens in supersymmetric theories 2. We will see in this section that this
is also the case when we softly break N = 2 supersymmetry with a dilaton
spurion.
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We will then compute the trace of the squared mass matrix which arises
from the effective lagrangian (3.3), once the supersymmetry breaking param-
eter is turned on. The fermionic content of the theory is as follows: we have
fermions 1!, A coming from the N = 2 vector multiplet A (in N = 1 lan-
guage, ¥/ comes from the N = 1 chiral multiplet and A/ from the N = 1
vector multiplet). We also have “monopolinos” ¥, ¥, from the ny matter
hypermultiplets. To obtain the fermion mass matrix, we just look for fermion
bilinears in (3.3). From the gauge kinetic part and the Kahler potential in

Lvm we obtain:
-16—F°8 M + ——F Batryp 9. (6.12)

where F° = fy and the auxiliary fields ! are given in (3.6). From the kinetic
term and the superpotential in Lyp we get:

V2 gi - AM(Mithm; — ity )
- Vi), (o G¥m ¥z, + - 05 mi + 0 P, i)  (6:13)

If we order the fermions as (/\,1/),1/),,.',1/);'_) and denote u!J = iF*8,1r5/4m,

i1 = iF 871y /4w, the “bare” fermionic mass matrix reads:
/2 0 W2lm;  —iv2¢
0 2/2 —V2¢lmi  —V2¢Im;
= . ~ ! ) .14
Mz n/iq,—"n—i —V2¢} 0 —V2a - g¢; (6.14)
—-ivV2¢{m; ~V2¢im; —V2a-q 0

but we must take into account the wave function renormalization for the
fermions A, ¥! and consider

-2 0 0 0
0 Y2 g o0

My =2ZM,y2, Z= 0 6 1 0 (6.15)
0 0 01

The trace of the squared fermionic matrix can be easily computed:
1 - Ay =1y —
TeMy oMY, = ZTr[pb‘lﬁb Ly ab e
+ 4) la-gil* +8) (¢, )(Imil® + [7s]?). (6.16)
i i
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The scalars in the model are the monopole fields m;, m; and thehlow&st com-
ponents of the N = 1 chiral superfields in the A?, al. To compute the trace of
the scalar mass matrix we need
o’v 2 _ |z 2 2 ~ 12 2
B O = Z(q;,q:)(lmzl = Iml®) + (g5, g)(lmi|” + 217 %) + 2a - g%,
1
1

v
—_— == (qi,‘II)(lml|2 - |'711|2) + (‘Ii,qi)(2|mi|2 + |T~7’1i|2 +2la - ¢|?,
o~ 2 )+ 2l gl
O’V _ 2 8%(bo,bo) (gt 0)  ~ =
dalda; fo—tam dalda, 2 £ aalaﬁ]—mkmkmlml

+ 23 qigi (Ime | + 17kl
k

9? (‘Ika bo) ~ - =
+ \/—Z 5aloa, —===fo(mrmy + TEmy). (6.17)
In the last expression we used that, due to the holomorphy of the couplings
Taf, afjba[, = 0. If we assume that we are in the conditions of section 2, at
the minimum we have |m;| = |m;|, and the trace of the squared scalar matrix
is

ME =6 (g0, g)(Imal® + [Fal®) +8Y la- gil* + 207" oV (6.18)
7 ! 7 6&1361 ’

where we have included the wave function renormalization for the scalars a’.
The mass of the dual photon is given by the monopole VEV through the
magnetic Higgs mechanism:

TM] =2 (¢, ¢)(Imal® + |a?). (6.19)

Taking into account all these contributions, the graded trace of the squared
matrix is:

- 1 a1 4 ap—1Te
Z(——l)z’(%—{-l)TrM?:—ETr[pb mt 4 pb T b
i

+2f3Trb™108(bo, bo) + 4 > _ Trb™03(qx, qt)m T
k!

+2V2 ) Trb='88(qk, bo) fo(my Mk + Txmmiy). (6.20)
k
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To see that this is zero, we write the bilinears in the monopole fields in terms
of the auxiliary fields F?, -FI, using (3.6):

- 1
Imim; = ——=(brs F? + bor fo). 6.21
z‘:q i «/5( rs F* + bor fo) (6.21)

Then we can group the terms in (6.20) depending on the number of FT, -I'T'I,
and check that they cancel separately. For instance, for the terms with two
auxiliaries, we have from the first term in (6.20):

—oFIF + F F)0rbarn (b~)VP 85bpo(b1)9M (6.22)
and from the third term
2FI-FJaMbJN(b—1)NP%_bPI(b—l)QM
—J - -
+ 2FTF Onmbpr (v~ )N P o5bsn (671N, (6.23)
Taking into account the holomorphy of the couplings and the Kahler geometry,
we have Opbpr = 9rbpum, %b_uv = Oybgn, so (6.22) and (6.23) add up to

zero. With a little more algebra one can verify that the terms with one F!

(and their conjugates with -FI) and without any auxiliaries add up to zero too.
The result is then: )
> o (=1¥ i+ 1)TeM? = 0. (6.24)

i
6.2 Mass spectrum in the SU(2) case

In the SU(2) case we can obtain much more information about the mass matrix
and also determine its eigenvalues. First we consider the fermion mass matrix.
Taking into account that at the minimum of the effective potential m = m = p,
m = em, we can introduce the linear combination:
S (6.25)
nﬂ: ha \/‘—2- m m)- .

With respect to the new fermion fields (X, n4, %, n-), the bare fermion mass
matrix reads:

1 —jgp 0 0
| —2p —V2a 0 0

0 0 2ip —V2¢a
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Notice that, in the SU(2) case, the auxiliary field F is real and g = f.
Ml/gMI/Z can be easily diagonalized . From (6.26) it is easy to see that

the squared fermion mass matrix is block-diagonal with the same 2 x 2 matrix
in both entries:

( SITHE[/4+ 4107 —eb Y up+ 2v/2ap )

_ 6.27
_€b113/217P + 2v2ap 467, p* + 2|a|? ( )

Hence there are two different eigenvalues doubly degenerated. In terms of the
determinant and trace of (6.27),

_ F Fy2 1 _ 8
a = (my)’+(my)’= 4—1,5## +2lal® + ™ ?
B = (mh)(mf) = i 1 4p? + apl?, (6.28)

the eigenvalues are:
Fyv_ a 1
m = -3
( 1,2) 2 2
The computation of the scalar mass matrix is more lengthy. First we must
compute the second derivatives of the effective potential, evaluated at the min-
imum. To obtain more simple expressions, we can use the identities (2.19) to
express all the derivatives of the couplings in terms only of 8b1,/8a, 82b,,/0a?.
The results are:

a? —4p. (6.29)

v 3, 2 a2 , 0 1,
Bmaﬁ - bllp +2|al ’ a V/am - aﬁiz - 'bl_lp )
PV € 4, Vb PV e ,
Omdm bnp + b11 fo, dmom b11p

0v i 1 2

dmda 2”[“_ (b1 55 5,7 (lel _T“f")]

62V . b2 2‘/5 2

B2 - 11(__)f0(af0+ ielal®)

b“(t? b )(afo+\/—zc|a| )2,

PV _ BV BV _ @V BV _ PV
Omba ~  Omba’ Omba Omda’ Hmba Omda’
8%V

1
— 2
gada ~ ¥ T M (6-30)
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Figure 12: Fermion masses (6.29) (top Figure 13: Masses of the scalars in
and bottom) and photon mass (6.19) softly broken SU(2) Yang-Mills, as a
(middle) in softly broken SU(2) Yang- functionof 0 < fo < 1.

Mills, as a functionof 0 < fo < 1.

and the rest of the derivatives are obtained through complex conjugation. In
the last line we used the result of the previous section. To obtain the bosonic
mass matrix we must take into account the wave-function renormalization of
the a, @ variables, as in (6.18). Its eigenvalues are as follows: we have a zero
eigenvalue corresponding to the Goldstone boson of the spontaneously broken
U(1) symmetry. There is also an eigenvalue with degeneracy two given by:

) = J"T‘/?‘ fobor. (6.31)

A
omdm  Om?

Notice that this is always positive if we have a non-zero VEV for p. The other
three eigenvalues are best obtained numerically, as they are the solutions to a
third-degree algebraic equation.

As an application of these general results, we can plot the mass spectrum
as a function of the supersymmetry breaking parameter f, in the SU(2) Yang-
Mills case, where the minimum corresponds to the monopole region and € = —1.
We have only to compute the derivatives of the magnetic coupling, with the
result:

3T1('1")
alm)

2 k Bzfl('ln) _om K
8

3E
e~ 2 __ L2 hadnadil
FIEB pam? 32 g ( ). (632)

These derivatives diverge at the monopole singularity u = 1, and we may
think that this can give some kind of singular behaviour there. In fact this
is not so. The position of the minimum, ug, behaves almost linearly with
respect to fo, ug — 1 ~ fo, and this guarantees that the behaviour very near
to u = 1 (corresponding to a very small fo) is perfectly smooth, as one can see
in the figures. In fig. 12 we plot the fermion masses (6.29) (top and bottom)
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the photon mass given in (6.19) (middle). In fig. 13 we plot the masses

of the scalars, where the second one from the top corresponds to the doubly
degenerated eigenvalue (6.31).

Acknowledgments

One

of us (L. A.-G.) would like to thank J.M. Drouffe and J.B. Zuber for the

opportunity to present this work at the conference in honour of C. Itzykson
“The Mathematical Beauty of Physics”. We would also like to thank J. Distler

and

C. Kounnas for an enjoyable collaboration.

References

N =

. N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19, hep-th/9407087.

. N. Seiberg and E. Witten, Nucl. Phys. B431 (1994) 484, hep-
th/9408099.

. A. Klemm, W. Lerche. S. Theisen and S. Yankielowicz, Phys. Lett.

B344 (1995) 169, hep-th/9411048;

P.C. Argyres and A.E. Faraggi, Phys. Rev. Lett. 74 (1995) 3931, hep-

th/9411057.

A. Klemm, W. Lerche. and S. Theisen, Int. J. Mod. Phys. A11 (1996)

1929, hep-th/9505150.

. M. Douglas and S.H. Shenker, Nucl. Phys. B447 (1995) 271, hep-

th/9503163.

A. Brandhuber and K. Landsteiner, Phys. Lett. B358 (1995) 73, hep-

th/9507008;

U.H. Danielsson and B. Sundborg, Phys. Lett. B358 (1995) 273, hep-

th/9504102;

A. Hanany and Y. Oz, Nucl. Phys. B452 (1995) 283, hep-th/9505075;

P.C. Argyres, M.R. Plesser and A.D. Shapere, Phys. Rev. Lett. 75

(1995) 1699, hep-th/9505100.

. B. de Wit and A. Van Preeyen, Nucl. Phys. B245 (1984) 89;

see also P. Fré and P. Soriani, “The N = 2 Wonderland”, World Scientific,

1995, for a complete set of references.

G. ‘t Hooft, 1976, in “High Energy Physics”, edited by A. Zichichi,

Palermo, 1976;

S. Mandelstam, Phys. Rep. C23 (1976) 245.

I. Affleck, M. Dine and N. Seiberg, Nucl. Phys. B241 (1984) 493; B256

(1985) 557;

D. Amati, G.C. Rossi, G. Veneziano, Nucl. Phys. B249 (1985) 1; D.



216

10.

11.

12.

13.

14.
15.

16.
17.

18.
19.

20.

21.

22.

23.
24.

Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Phys.
Rep. 162 (1988) 169;

T.R. Taylor, G. Veneziano and S. Yankielowicz, Nucl. Phys. B218
(1982); G. Veneziano and S. Yankielowicz, Phys. Lett. 113B (1982)
231;

N. Seiberg, Phys. Lett. B318 (1993) 469, hep-ph/9309335; Phys. Rev.
D49 (1994) 6857, hep-th/9402044;

K. Intriligator, R. Leigh and N. Seiberg, Phys. Rev. D50 (1994) 1052,
hep-th/9403198;

K. Intriligator, Phys. Lett. B336 (1994) 409, hep-th/9407106;

K. Intriligator and N. Seiberg, Nucl. Phys. B431 (1994) 551, hep-
th/9408155.

N. Seiberg, Nucl. Phys. B435 (1995) 129, hep-th/9411149;

P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, Nucl. Phys. B461
(1996) 71, hep-th/9511154.

L. Girardello and M.T. Grisaru, Nucl. Phys. B194 (1982) 65.

O. Aharony, J. Sonnenschein, M.E. Peskin and S. Yankielowicz, Phys.
Rev. D52 (1995) 6157, hep-th/9507013.

N. Evans, S.D.H. Hsu and M. Schwetz, Phys. Lett. B355 (1995) 475,
hep-th/9503186;

N. Evans, S.D.H. Hsu, M. Schwetz, S.B. Selipsky, Nucl. Phys. B456
(1995) 205, hep-th/9508002.

S. Kachru and C. Vafa, Nucl. Phys. B450 (1995) 69, hep-th/9505105.
S. Kachru, A. Klemm, W. Lerche, P. Mayr, and C. Vafa, Nucl. Phys.
B459 (1996) 537, hep-th/9508155.

B. de Wit, hep-th/9602060.

P.C. Argyres and M. Douglas, Nucl. Phys. B448 (1995) 166, hep-
th/9505062.

M. Matone, Phys. Lett. B357 (1995) 342, hep-th/9506102.

J. Sonnenschein, S. Theisen and S. Yankielowicz, Phys. Lett. B367
(1996) 145, hep-th/9510129.

T. Eguchi and S.-K. Yang, Mod. Phys. Lett. A1l (1996) 131, hep-
th/9510183.

L. Alvarez-Gaumé, J. Distler, C. Kounnas and M. Marifio, hep-
th/9604004.

M.K. Prasad and C.M. Sommerfield, Phys. Rev. Lett. 35 (1975) 760;
E.B. Bogomolny, Sov. J. Nucl. Phys. 24 (1976) 449.

E. Witten and D. Olive, Phys. Lett. B78 (1978) 97.

I.S. Gradshteyn and I.M. Ryzhik, “Tables of series, products and inte-
grals”, Academic Press.



217

25. E. Witten, Phys. Lett. B86 (1979) 283.
26. L. Alvarez-Gaumé and M. Mariiio, to appear.
27. S. Ferrara, L. Girardello and F. Palumbo, Phys. Rev. D20 (1979) 403.



218

POLYGONAL BILLIARDS AND APERIODIC TILINGS

J.M. LUCK
CFEA /Saclay, Service de Physique Théorique,
F-91191 Gif-sur-Yvette Cedex, France

This is an overview of several topics related to polygons and triangles, including
the spectrum of the Laplace operator in a polygonal domain (functional deter-
minant, spectral zeta function, arithmetical degeneracies of integrable cases), and
self-similar structures in discrete geometry, namely aperiodic chains and tilings,
built from deterministic inflation rules (geometrical characteristics, relationship to
quasicrystals, nature of diffraction spectrum).

Preamble

Very simple objects, such as the hydrogen atom, the harmonic oscillator or
Platonic solids, have been the cornerstone of some of the most celebrated
papers by Claude Itzykson. Simplicity thus appears as one of the facets of the
mathematical beauty of Physics in Claude’s work.

This contribution is devoted to yet another class of simple objects that also
amazed and intrigued Claude quite much, namely polygons, and especially
triangles. Section 1 deals with the spectrum of the Laplace operator in a
polygonal domain of the plane. I have been one of those who shared Claude’s
enthusiasm on this subject. As far as the second part (Section 2) is concerned,
i.e., aperiodic chains and tilings, I wish to recall what Claude told me once
in the early days of quasicrystals about the origins of his interest for group
theory. As a young boy he was fascinated by the crystals he saw in museums.
Much later he got involved in group theory in order to unravel, among other
things, the mathematical beauty... of crystals.

1 Polygonal billiards

This section is a review of various properties of the spectrum of the Laplace
operator V2 in a bounded domain D of the plane. The eigenvalue equation

(vz + E,,)¢n(x) =0, (1)

with, for definiteness, Dirichlet boundary conditions (¢»(x) = 0 for x € D),
has an infinite sequence of positive eigenvalues (E; < E2 < ---). In the
following D will most often be a polygon, and especially a triangle.
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1.1 Polygonal billiards in Classical and Quantum Mechanics

Consider the free motion of a point particle in a domain D, with reflecting
boundary. The billiard so defined is a prototypical dynamical system. In
Classical Mechanics, the particle moves with a constant velocity and bounces
elastically on the boundary. The quantum-mechanical problem is defined by
the stationary Schrodinger equation, which is of the form (1).

For a generic domain D, the classical billiard is expected to behave as
a typical chaotic system. The quantum-mechanical billiard is expected to
exhibit quantum chaos, i.e., features of quantum systems which are chaotic
in the classical limit, such as level repulsion! The same holds for a polygonal
billiard with generic angles, incommensurate to 7.

A different dynamical behavior takes place in a rational polygonal billiard,
whose inner angles are all commensurate to 7. Let us write them as {ra;},
where i

YT @
is an irreducible fraction. P. Richens and M. Berry have qualified these billiard
systems as pseudointegrable? The classical motion takes place on invariant
surfaces, which, however, have in general a topology different from that of a
torus, which is characteristic of integrable systems3

To be more specific, let us focus on rational triangles. The vertices of a
triangle are labeled as i = 0,1, 0o, the corresponding angles being denoted as
wme;, as in Eq. (2), and ag + a3 + @ = 1. If @ denotes the least common
multiple of the three denominators g¢;, there is a way of gluing 2@} copies of
the triangular billiard together, so as to form a closed invariant surface. The
Riemann surface constructed in this way is characterized by its genus

s=1+3 ¥ 2o, ®

i=0,1,00 **

The connection between these Riemann surfaces and algebraic curves has been
investigated by E. Aurell and C. Itzykson*® A classification of the rational
triangular billiards is thus obtained (see Table 1).

The genus ¢ = 1 corresponds to a torus. The classical and the quantum-
mechanical motion are then integrable. There are three cases of integrable
triangular billiards, which tile the plane under the Coxeter group of reflections
with respect to their edges. Their properties will be illustrated in Section
1.3, on the example of the equilateral triangle. C. Itzykson has generalized the
above construction, obtaining a classification of the irreducible integrable poly-
hedral billiards in any space dimension, in correspondence with Lie algebras®
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Table 1: Classification of rational triangular billiards, according to the genus of the associated
invariant surfaces. The Lie algebrasin correspondence with the integrable cases (genus g = 1)
are given in the last column (after Ref. 4).

genus | po/qo | P1/q91 | Po/qeo | 2Q | triangle algebra
1 1/3 1/3 1/3 6 | equilateral As
1/2 1/4 1/4 8 | rectangular-isosceles | B3
1/2 1/3 1/6 12 | drawer’s square G,

2 2/5 2/5 1/5 10 | Robinson’s P
3/5 1/5 1/5 10 | Robinson’s @
2/3 1/6 1/6 12
1/2 | 3/8 | 1/8 |16
1/2 1/5 3/10 | 20
1/2 2/5 1/10 | 20

etc.

The genus g = 2 of the double torus is already generic. The first two of the
six cases listed in Table 1 correspond to Robinson’s P and @ triangles, which
will play a role in Section 2. Figure 1 shows how to assemble ten Robinson’s
@ triangles, so as to form a double torus.

1.2 Spectral zeta functions and functional determinants

The eigenfunctions of the Laplace operator in a domain D, obeying Eq. (1),
enter the calculation of partition functions which show up in various areas
of Quantum Field Theory, such as string theories or conformal field theories.
Consider a free scalar field ¢(x) living in D, with Dirichlet boundary conditions.
The associated partition function is defined as

2o = [[ase] exp (-5 [ x(v9?). (4)

It is formally equal to the inverse square-root of the functional determinant of
(minus) the Laplace operator V2, namely

—1/2
Zp = [det(-v?)] V/? = (H En) (5)
n>1

The above infinite-product representation is divergent, so that a ultraviolet
regularization is needed in order to make sense of Eq. (5). To be more specific,
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Figure 1: Construction of the Riemann surface associated with a triangular billiard: a double
torus is obtained by gluing ten Robinson’s Q triangles (the second case with genus g = 2 in
Table 1) (after Ref. 4).

the counting function N(FE), defined as being the number of eigenvalues E, of
Eq. (1) less than E, admits the following asymptotic estimate for large E:

N(E) = a—l;(AE - PEY?), (6)

with A and P being the area of the domain D and the perimeter of its boundary,
respectively. The area term in Eq. (6) is referred to as the Weyl term. The
counting function exhibits (possibly unbounded) oscillations with respect to
its mean behavior (6), which have been explained by R. Balian and C. Bloch
in terms of classical trajectories®

A first and very commonly used way of regularizing Eq. (5) consists in
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introducing the spectral zeta function”®

(n(s) = tr[(-V?)~*] = Y E;°, (7)

n>1

in analogy with the definition of the Riemann zeta function of Number Theory.
The estimate (6) ensures that the sum in Eq. (7) converges for Re s > 1. The
spectral zeta function {p(s) usually has a meromorphic continuation to the
whole s-plane, with poles at s = 1 and s = 1/2, corresponding to both terms
in Eq. (6). It is analytic near s = 0, so that we have formally

Zp = exp (-% dIn E,,) = exp (%C’D(O)) . (8)

n>1

This expression is considered to be the definition of Zp, within the zeta-
function regularization scheme.

An alternative way of evaluating the partition function (4) consists in using
discretization on a square lattice as a ultraviolet regulator. If a denotes the
lattice spacing, the partition function Z(a) behaves as follows in the continuum
limit (@ — 0):

OLT: (;‘%)(D(o) exp (~fo% ~ :i) , (9)

where

e the exponential contains the contributions of the area A and of the
perimeter P of the domain. The corresponding specific free energies,
fo and fy, are non-universal;

e the power of the area leads to the interpretation of (p(0) as the anoma-
lous dimension of vacuum in the domain D;

e the absolute prefactor z is universal. It is considered as the lattice-
regularized partition function.

An instructing example of a domain is the torus T, for which both regular-
izations can be compared to each other. The zero mode Ey = 0 of the Laplace
operator on the torus, corresponding to the constant ¢(x) = 1, is supposed
not to be included in the infinite-product representation (5). The partition
function (4) on a torus, viewed as a rectangle consisting of M x N sites with
periodic boundary conditions, has been calculated by B. Duplantier and F.
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David? In the asymptotic regime (M and N large), their result is of the gen-
eral form (9). The area free energy reads fo = 2G/w, with G being Catalan’s
constant, while f; cannot be defined, since the torus has no boundary. The
anomalous dimension is {(T(0) = —1/2, while the lattice-regularized partition
function reads

z = 1 3
t1/2q1/12(P(q))

(10)
with t = M/N, q = exp(—2wt) is the modular parameter of the torus, and

Pg)=[J1-q") (11)

n>1

is Euler’s product. The expression (10) is a modular invariant, as it should. On
the other hand, the partition function of a free field on the torus has been eval-
uated using the zeta-function regularization by C. Itzykson and J.B. Zuber1°
As compared to the lattice calculation, this approach does not yield the non-
universal contribution involving fo. Its prediction for the zeta-function regu-
larized partition function z is in full agreement with Eq. (10). This example
suggests to make use of the zeta-function regularization, since the calculations
involved are simpler in general.

Let us turn to the spectral zeta function of triangles. C. Itzykson, P.
Moussa, and the author have derived a sequence of sum rules for the spectrum
of the triangular billiard, i.e., integral expressions for (p(n), with n > 2 being
an integer!! These sum rules yield, among other things, a sequence of lower
bounds for the ground-state energy FE;. This property has been exploited
in other contexts, such as billiards embracing an Aharonov-Bohm flux® The
starting point of our work is to observe that the Green’s function of the Laplace
operator reads

z—-7

G, t) = %Reln (12)

z—2
In this expression, a complex co-ordinate ¢ € D is used to describe the triangle,
the bar denotes complex conjugation, and z (respectively 2’) is the image of ¢
(respectively t') by the Schwarz-Christoffel mapping, whose inverse maps the
upper half-plane (Im z > 0) onto the inside of the triangle D, according to

¢ dy . 1- 1-
z»—+t=/—, with p(y) =y ~*°(1 —y) ", 13
L P(y) (¥) (1-9) (13)
so that 0 — tg = 0, 1 — t; = T'(ag)T(21)/T(1 — 0), and 00 — te =
exp(irag)T(ao)T (@0 )/T(1 — a1). The inner angle at the vertex i is wma;, while
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the area of D, namely

[(a;
‘% H (1(fc)y, (14)

=0,1

provides a natural scale, which will enter several formulas in the following.
The sum rules thus obtained'! have the following n-fold complex integral
expressions

A "/' = d?z 2k — Zk41
= (2 _ L% Reln T ki1 >92), (15
¢oln) <A0> Im 22 >0 g (21r|p(zk)|2 zg — zz;+1) (n22), (15)

with the convention 2,41 = 21. An adaptation of this procedure leads to an
explicit formula for the finite part of the spectral zeta function at its rightmost
pole at s = 1, corresponding to the Weyl term in Eq. (6), i.e.,

1

CD(S)z%r(l— 4A ——+7e+ Z [ax¢(at) (1—ai)y(1— ai)])! (16)

i=0,1,00

with vz being Euler’s constant, and ¢ being the logarithmic derivative of
Euler’s gamma function.

The calculation of the zeta-function regularized partition function (8) for
a triangular domain turned out to be more difficult. Extending earlier ideas
of A. Polyakov on conformal invariance!? W. Weisberger calculated the zeta-
function regularized functional determinant of the Laplace operator in a disk
and in an annulus, with Dirichlet or Neumann boundary conditions!3 This
appealing method could, however, not be extended to polygons, because of
their following peculiar feature. For any domain P with a smooth boundary,
the anomalous dimension reads

to(0) = (1)

It is therefore invariant under a smooth deformation of the domain. To the
contrary, for a polygonal domain with inner angles {ra;}, we have the expres-

sion 1 1
o0 =5 (5-a), (18)

which depends continuously on the angles. This dependence induces loga-
rithmic ultraviolet divergences in calculations based on conformal invariance,
which are difficult to master.
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Figure 2: Integrability of the equilateral triangular billiard. (a) Classical Mechanics: six

copies of the triangle build a torus, so that trajectories are lifted as straight lines. (b)

Quantum Mechanics: eigenfunctions are indexed by points of the dual lattice of the torus
(after Ref. 16).

Using more traditional heat-kernel techniques d la Sommerfeld, E. Aurell
and P. Salomonson derived an explicit expression for (5 (0) in an arbitrary
polygonal domain of the plane!* In the case of a triangle, their result reads

, A
0 =On =+ 3 J(@), (19)
0 =01,
with
1 /1 1 /1
J(a) = 15 (;—a) (ve —In2) — o (;+3+a>lna
* dy 1 y y 1 /1

1.3 Arithmetical degeneracies of integrable billiards

It has been recalled in section 1.1 that there are only three integrable trian-
gular billiards. These triangles, corresponding to genus g = 1 in Table 1, are
characterized by the property that the numerators of their angles read p; = 1 in
Eq. (2). Such a triangle tiles the plane under the Coxeter group of reflections
with respect to its edges. The classical and quantum-mechanical motions are
integrable. The spectrum of the Laplace operator usually exhibits arithmetical
degeneracies!5'® All these properties will be illustrated on the example of the
equilateral triangle.

Let A be the equilateral triangle of side a. Figure 2a shows that six
copies of A build a torus, which tiles the plane under a lattice of translations.
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Integrability at the classical level follows at once, since trajectories are lifted
as straight lines in this plane. Integrability at the quantum-mechanical level is
less obvious. The eigenfunctions of Eq. (1) in A seem to have been first found
by Lamé, in the context of vibrations of elastic sheets!” and re-discovered
many times since then. The eigenfunctions are superpositions of 2Q) = 6 plane
waves, with symmetry-related wavevectors, according to the Lie algebra A of
the group SU(3). The energy eigenvalues are indexed by two integers, (m, n),
which parametrize the dual of the lattice of translations mentioned above, as
shown in Figure 2b. They read explicitly

ar\ 2
Ea(m,n) = <£) Na(m,n), Na(m,n)=m?’4+mn4n® (m>0, n>0).

(21)
We shall consider in parallel the spectrum of the Laplace operator in the square
O of side b. In this case it is an elementary exercise to find the eigenfunctions
and eigenvalues. The latter are still indexed by two integers, (m, n), according
to

Eo(m,n) = (§) No(m,n), Ao(m,m)=m®+n> (m>0,n>0). (22)

The structure of the above formulas is general: the energy levels of polyhedral
integrable billiards are given, in suitably chosen units, by quadratic forms in
integers® The number of independent integer quantum numbers involved is
equal to the dimension of the polyhedron, namely two in the present cases.

One of the most remarkable features of these integrable spectra is the
occurrence of arithmetical degeneracies, which were noticed by Lord Rayleigh 18
in the case of a rectangle with commensurate sides a and b, before being revived
by M. Berry*%, and investigated in detail by C. Itzykson and the author!® For
the equilateral triangle and the square, the first degeneracies of order two and
four in the spectra (21) and (22) are

7= Na(1,2) = Na(2, 1),

5= Na(1,2) = Na(2,1),

91 = Na(1,9) = Na(9,1) = Na(5,6) = Na(6,5),

65 = Na(1,8) = Np(8,1) = Na(4,7) = Na(7,4). (23)

The twofold degeneracies, corresponding to exchanging m and n, are a conse-
quence of the presence of axes of symmetry. The occurrence of larger multiplic-
ities is not physically intuitive, since it cannot be explained by any symmetry
of the problem. There is a profound connection between these degeneracies and
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Number Theory. Indeed, let us denote by da(N') the multiplicity of the integer
N in the spectrum (21) of the equilateral triangle (plus one, if N is a perfect
square), and by da(AN') the multiplicity of the integer A in the spectrum (22)
of the square (again plus one, if N is a perfect square). The latter quantity is
nothing but the number of ways A can be written as a sum of two squares.
This celebrated number-theoretical problem has received contributions from
Diophantus, Fermat, and Jacobi!®2%:22 The four representations of 65 given
in the last line of Eq. (23) were known to Diophantus!®

The multiplicities da (N) and dg(N) have the following general expres-
sions. Factor the integer N over the primes as

N = 3ch;1.'Hq;’j :2C'Hp;a'.'Hq}b;', (24)
i 3j i j

where the p; (respectively, the ¢;) are the primes equal to 1 (respectively, to
—1) modulo 3, and the p; (respectively, the ¢}) are the primes equal to 1
(respectively, to —1) modulo 4. One has

—1)b
da =[Ta+a [T (),

—1)%
da(N) =[]0 + a)H<#) (25)

i
Many results have been derived from these remarkable expressions!®

First, the spectral zeta functions of the two integrable domains read

3 2s b 2s
()= (3) koI -) @@ =(3) [ - ).
(26)
In these formulas, {(s) is the Riemann zeta function, and La(s) and Lg(s) are
the Dirichlet characters

La(s)=)_[Bn+1)"* = (3n+2)7°],
n>0

La(s) =) [(4n+1)"" — (4n +3)~°]. 27

n>0

The result (26) provides explicit checks of the general expressions (16), (18),
(19). We have in particular

W=

¢a(0) = =, CD(O):%, (28)
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Second, the arithmetical degeneracies are responsible for the occurrence of
anomalous fluctuations in the spectra of integrable polygonal billiards. Their
statistical properties have been investigated by looking at the asymptotic be-
havior as N’ — oo of the average of various powers of the multiplicities da (N)
and dg(N). In the following, we denote by (2(N')) the following Cesaro average
of a function z(N') defined over the integers

(a(0)=1In (@(0) =1In (29)

N

() = 1 3 =N (30)

N'=1

The various moments of the multiplicity functions da(N) and dg(N) have

been evaluated in closed form both domains®

o the averages of the multiplicities themselves, i.e.,
T
3v3’

yield the mean density of states of the Laplace operator in each domain.
These constants agree with the Weyl term in Eq. (6).

N

(da) ~ (do) = - (31)

4)

e the averages of the zero-th powers of the multiplicities, which give a
measure of the support of the spectra, decay according to

(d%) = Aa(InA)"Y2 (dQ) = An(In N)~V/2, (32)

where

-1/2
Ap = (2\/§H(1 - q;2)) = 0.638909,
i

-1/2
Ap = (2 I - q;.‘2)> = 0.764224, (33)
i

with the notations introduced in Eq. (24). The spectrum of the Laplace
operator in either domain is thus asymptotically concentrated on a small
subset of the integers, whose density falls off very slowly, on a logarithmic
scale.
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e the averages of higher powers of the multiplicities diverge according to
(d%) = Bia(In M), (d¥) ~ By o(In N)™*), (34)

with
(k) =251 — 1. (35)

The remarkable feature of this result is that the exponent r(k) bears a
non-trivial dependence on the index k, and grows faster than any power
of k. This phenomenon is one of the manifestations of multifractalityfs24
[see section 2.7]. The spectra of integrable polygonal billiards in two
dimensions are thus characterized by a multifractal distribution of de-
generacies, having a purely number-theoretical origin.

2 Aperiodic chains and tilings

This section is devoted to self-similar geometrical objects in one and two di-
mensions, namely chains and tilings, built from deterministic inflation rules.
The first motivation to these investigations is the experimental discovery of
quasicrystals, recalled below.

A broader line of thought consists in viewing incommensurate structures
and quasicrystals as the first two steps of a whole hierarchy of intermediate
structures in condensed matter, with novel kinds of order, between the periodic
state (crystals) and the randomly disordered one (glasses, amorphous mate-
rials). The chains and tilings presented in the following provide examples of
such intermediate types of order; they also illustrate earlier ideas of S. Aubry
on weak periodicity?®

2.1 Quasicrystals: ezperimental facts

In 1984, D. Shechtman, I. Blech, D. Gratias, and J. Cahn report on the un-
usual diffraction properties of a rapidly quenched sample of AIMn alloy2® Such
materials have soon been called quasicrystals by D. Levine and P. Steinhardt 27
The historical quasicrystalline binary alloys could only be produced by rapid
quenches, i.e., far from equilibrium. More recently, several aluminum-based
ternary alloys, such as AIMnPd, AlCuFe, AIMnSi, have been shown to possess
thermodynamically stable quasicrystalline phases.

Figure 3 is an experimental pattern, obtained by electron diffraction, show-
ing a two-dimensional section of the diffraction spectrum of quasicrystalline
AlMnSi. As usual in solid-state physics, the only observable quantity in diffrac-
tion spectra is the Fourier intensity, 1.e., the squared modulus of the Fourier
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Figure 3: Electron diffraction pattern of the icosahedral phase of AIMnSi, in a plane per-
pendicular to a fivefold axis (courtesy of C.E.C.M.-C.N.R.S., Vitry-sur-Seine, France).

transform. In particular the symmetry of a structure is, by definition, the sym-
metry of its Fourier intensity. A quantitative description of diffraction spectra
will be given in section 2.7.

The graph shown in Figure 3 illustrates the main characteristic features of
quasicrystals:

e Long-range order

The pattern consists of sharp spots, referred to as Bragg peaks, which
are only broadened by instrumental resolution. Their presence is the
signature of a perfect long-range order.

o Crystallographic versus non-crystallographic symmetry

Another remarkable feature of Figure 3 is the presence of ten equivalent
brightest spots, testifying fivefold symmetry. There are altogether six
fivefold axes, so that the full three-dimensional diffraction pattern has
the symmetry of the icosahedron, or equivalently of its dual the dodeca-
hedron. Most quasicrystalline phases have icosahedral symmetry.

This feature also shows up at the macroscopic scale, e.g. in growth
shapes. Figure 4 shows almost perfectly dodecahedral growing grains of
a quasicrystalline phase.
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Table 2: Classification of crystallographic point symmetries in two dimensions, in terms of
solutions to Eq. (36).

N | m | lattice

3 | -1 | hexagonal
4 square

6

1 | triangular

Figure 4: Dodecahedral growth shapes of icosahedral AlCuFe (courtesy of C.E.C.M.-
C.N.R.S., Vitry-sur-Seine, France).

Icosahedral symmetry is forbidden by crystallography. This means that
no structure can have both icosahedral point symmetry and a lattice of
translations. The icosahedral phase is therefore necessarily an aperiodic
structure. This statement is easier to prove in two dimensions. Consider
a lattice £ in the Euclidean plane, with N-fold point symmetry. This
means that £ is invariant under a rotation by an angle § = 2x/N. Let
e be any of the shortest lattice vectors, and ey the vectors obtained by
rotating e by +6. Their sum s = e; +e_ = 2cosf eis a lattice vector par-
allel to e, hence s = me, with m being an integer. The two-dimensional
crystallographic symmetries thus obey the Diophantine condition

2
QCOSFW:mEZ. (36)
The non-trivial solutions of this equation are listed in Table 2. It is worth
noticing that the smallest non-trivial point symmetry which is absent
from this list is precisely N = 5, characteristic of icosahedral symmetry.
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o Self-similarity

The diffraction pattern in Figure 3 also exhibits self-similarity. The
bright Bragg peaks can be joined together in several ways, so as to form
e.g. regular pentagons of various sizes. The scaling factor of the struc-
ture, namely the ratio between the side lengths of two successive sizes of
pentagons, is the irrational number
_ 9 T 1+ V5
T=2c08 ;= ——.
This number, which obeys the equation 7° = 7 + 1, is referred to as
the golden mean. It was already known to the Ancients for its aesthetic
properties, and used e.g. in architecture.

(37)

2

2.2 Quasicrystal models and superspace formalism

Quasicrystals have been a very active field of research over the past decade.
The reader is invited to consult the overviews on this subject28:29:30,31 We
first present an introduction to the geometry of quasicrystals, viewed from the
standpoint of the superspace formalism, before we turn to our main topic, i.e.,
self-similar chains and tilings. A more extensive presentation has been given
elsewhere by the author32

Let us begin with a brief introduction to almost-periodicity and quasiperi-
odicity. Let f(z) be a function of one real variable, and let

G@Q) = / f(z) exp(—iQz)dz (38)

be its Fourier transform. The function f is said to be almost-periodic, according
to H. Bohr33 if its Fourier transform G(Q) is discrete, namely

G@Q) =) Cib(@-9) (39)

gEM

The delta functions are referred to as Bragg peaks, or Bragg diffractions. Their
positions form the discrete support of the Fourier transform. This support, or
rather the module over the integers spanned by it, is denoted by M, and called
the Fourier module of the function f. A quantitative description of diffraction
spectra will be given in section 2.7.

The following particular cases of almost-periodicity are of interest:

e Periodicity: the Fourier module

M =L =qZ (40)
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is a lattice. The function f is periodic, with primitive period a = 27/qq,

ie., f(z) = f(z + a).
o Quastperiodicity: the Fourier module

is the sum of n lattices of the form L, = ¢gmZ (m =1, - - -, n), with the
generators g, being linearly independent over the integers. The module
M is finitely generated, so that any Bragg diffraction Q = k;q1 + -+ +
kngqn is indexed by n integers {k,}. The function f can be viewed as
a suitable incommensurate section of a function on the torus T", i.e., a
function of n real variables, separately periodic in each of them.

e Limit-periodicity: the Fourier module

M= ] @ ™L) (42)

m>0

is the union of all the scaled copies of a given lattice £, the scaling factors
b~™ being the inverse powers of an integer basis b > 2.

Quasicrystals are an extension of usual crystals, just as quasiperiodic func-
tions are an extension of periodic ones. To be more specific, a quasicrystal in
dimension d is usually modeled as a section of a periodic structure S, living in
an n-dimensional superspace R™ with n > d, so that

R" = El g E*, (43)

where Ell is the d-dimensional physical (or parallel) space, also called the cut,
in which the quasicrystal lives, while E* is the internal (or perpendicular)
space, whose dimension, n — d, is called the co-dimension of the structure.
This framework has been developed to describe incommensurate modulated
structures3* The choice of the superspace and of the cut is often guided by
group-theoretical considerations3®36:37 In the case of icosahedral quasicrys-
talline phases, R® shows up naturally, because the smallest crystallographic
representation I's of the icosahedral group Y has dimension 6. Being reducible
as a real representation, I's has two three-dimensional representation spaces,
to be identified with Ell and E*.

Structural models of quasicrystals are most commonly based on either of
the following algorithms:



Figure 5: Cut-and-project algorithm for the canonical one-dimensional quasicrystal, built
from a two-dimensional superspace.

e Cut and projection

This approach, first investigated by N. de Bruijn3® has had a great im-
portance in the early days of quasicrystals39:4%41 Figure 5 illustrates this
method in the simplest case of a one-dimensional quasicrystal built from
a two-dimensional superspace. The cut Ell makes an angle § with the
horizontal axis. A strip € is obtained by sweeping the unit square along
ENl. The atomic positions are the orthogonal projections onto Ell of the
points of the lattice Z2 contained in §2. Notice that these points can be
joined by a unique infinite broken line. A binary chain covering El is
thus obtained: the distances between neighboring atoms take either of
the two values cos 6 or sin §. A quantitative description of this canonical
one-dimensional quasicrystal is given below.

e Atomac surfaces

An equivalent construction of the above structure, illustrated in Figure
6, consists in decorating the vertices of the lattice Z2 by identical straight
line segments contained in perpendicular space E+, with a suitably cho-
sen length. Nowadays most structural models for quasicrystals are built
along these lines. In the simplest case a bounded, flat (n— d)-dimensional
domain A C E*, called an atomic surface, or an acceptance domain, is
attached to every vertex of an appropriate lattice £ C R™. The super-
space structure is thus a periodic array of atomic surfaces, of the type
S = L& A. The intersection S N Ell consists in discrete points, giving
the atomic positions in the quasicrystal.
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RN

Figure 6: Atomic surfaces of the canonical one-dimensional quasicrystal, built from a two-
dimensional superspace.

There are more complicated situations: the lattice £ can be different
from Z™; several atomic surfaces can be used in order to describe the
different chemical species; yet other models involve finite decorations of
the lattice £, such as centerings.

Atomic surfaces can be viewed as closed surfaces, with the topology of
a torus T"~ 93243 This property has the physical consequence that the
atoms only hop over bounded distances if the cut Ell differs from flat
space by a localized, smooth deformation. The corresponding degrees of
freedom, that may become dynamical in some quasicrystals, are called
phasons.

We close up this section by giving a quantitative description of the canon-
ical one-dimensional quasicrystal*4:32:45 namely the binary chain whose con-
struction has been shown in Figures 5 and 6. If ¢ = tan 6 denotes the slope
of Ell| the strip Q is defined by the inequalities 0 < y —tz < t+ 1. As a
consequence, the co-ordinates of the n-th point of Z2 along the broken line
read

M; =n—1-Int(w), M, =1+ Int{nw), (44)

where Int(z) is the integer part of a real number z, and

Y= t sin 8
T t4+ 1 sind +cosé

(45)

is the incommensurability ratio. If t = p/q (irreducible fraction) is rational,
then w = p/(p + ¢) is also rational, and the structure is periodic, with p+ ¢
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atoms in a cell. To the contrary, if ¢, or equivalently w, is irrational, the binary
chain is a genuine one-dimensional quasicrystal.

By projecting (44) onto Ell, we obtain an explicit expression for the ab-
scissa of the n-th point of the structure, i.e.,

U, = na + gn, (46)
where
e nais the average lattice of the structure, characterized by a mean inter-
atomic distance 1

@= sinf + cos @’ (47)

® g, is the modulation, or fluctuation, of the structure with respect to its
average lattice. In the present case it reads

gn = 7(nw), (48)

where 7 is the modulation function, or hull function, of the structure. It
is a periodic function, with unit period, namely

v(z) = (cosd — sin ) (Frac(z) — 1), (49)
with Frac(z) = z — Int(z) being the fractional part of a real number z.

The Fourier transform of the structure is formally defined as

G(Q) =) exp(~iQuy). (50)

The above results (46)-(49) on the atomic positions yield
_N 6 (2% ik
G(Q) = ]zk: Cj 6 (27r j kw) : (51)

It is advantageous to put this result in perspective with the superspace for-
malism. Let Q = 2n(J, K) be a vector of the reciprocal superspace lattice
L = (2nZ)2. Its projections onto the spaces Ell and E+ are

Q! = 2x(J cos 0 + Ksinf), Q* = 2n(K cosf — Jsin#). (52)

The positions of the Bragg peaks in Eq. (51) coincide with QI up to the
identification j = K — J, k = J. The corresponding amplitudes read

oL L
Cix=C(QY) = S—i exp (%—) sin (%) ) (53)
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The above results illustrate general features of the superspace description
of quasicrystals. The Fourier module M is the projection of the reciprocal su-
perspace lattice £ onto the cut Ell, and the amplitudes of the Bragg diffractions
are given by an amplitude function C(Q%), which is the Fourier transform of
a single atomic surface A C E'| in suitable units.

This last property underlines a major difference between quasicrystals and
other aperiodic objects, such as incommensurate modulated structures. In the
case of an incommensurate structure, the hull function is usually regular (ana-
lytic), so that the amplitudes of the Bragg peaks exhibit a strong hierarchical
ordering, with main diffractions and satellites. To the contrary, in the case of
quasicrystals, the atomic surfaces have a sharp boundary. The hull functions,
which can be used to describe quasicrystals with co-dimension one (n = d+1),
are discontinuous. In any case the Fourier amplitudes fall off slowly, so that
there is no way of distinguishing between main diffraction and satellites in
quasicrystalline diffraction patterns, such as that shown in Figure 3. In the
above example, the hull function y(z) of Eq. (49) is discontinuous, and the
amplitude function C(Q*) of Eq. (53) has a slow power-law decay, as 1/|Q*|.

2.3 The Penrose tiling

The Penrose tiling is a two-dimensional analogue of icosahedral quasicrystals.
It shares their most salient features: quasiperiodicity, fivefold point symmetry,
scale invariance by a factor equal to the golden mean 7. This tiling of the plane,
shown in Figure 7, is made of two species of triangles, namely Robinson’s P
and @, already defined in section 1.2. It can alternatively be described in terms
of darts (D = 2P) and kites (K = 2Q), or in terms of the Penrose rhombs: the
fat one, L = 2P + 2Q, with inner angles 2 and 3, and the skinny one, S = 2P,
with inner angles 1 and 4 (in units of w/5). This tiling has had a considerable
historical importance. It admits several definitions, and several construction
algorithms46:47:48

Here we wish to put the emphasis on the construction of the Penrose tiling
by means of inflation rules, which ensure the self-similarity of the structure.
Figure 8 shows how the Robinson triangles can be combined so as to form
similar triangles, r times larger. This procedure, referred to as inflation, can
be iterated in order to generate an infinite tiling. To be complete, one has to
distinguish between left and right triangles?8:4°.

If we forget for a while about geometry, and only keep track of the numbers
of pieces involved, the inflation rules illustrated in Figure 8 can be written as

follows:
|P—-2P+Q,

Prle-P+Q. (54)
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Such a formal transformation is referred to as a substitution3® It acts on ab-
stract symbols called letters. Define the associated couniing mairiz as

Mp = (# of P’sin op(P) # of P’sin ap(Q)) _ (? }) (55)

#of Qs inop(P) # of Q’s inop(Q)
The characteristic polynomial of Mp is
OA)=det(A1 —Mp) =A*-3A+1=(A-73)(A—-7"%).  (56)
The leading (Perron-Frobenius) eigenvalue 72 has a simple interpretation:  is
the linear scaling factor of the inflation rules, so that 72 describes the scaling
factor of areas. The subleading eigenvalues of the substitution matrices asso-
ciated with self-similar structures will play an important role in the following.
We end up by an observation, which seems to have been first made by L.
Levitov®! It has been already noticed that fivefold symmetry is the first non-
trivial point symmetry which is absent from Table 2, i.e., non-crystallographic.
The Penrose tiling provides an example of a quasiperiodic structure with five-
fold symmetry and scale invariance by a factor r.
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(3)
(1)(1) - AN PN

Figure 8: Inflation rules of the Penrose tiling in terms of Robinson’s triangles. The numbers
in parentheses give inner angles, in units of w/5.

Table 3: Classification of point symimetries of self-similar binary tilings of the plane.

N z structure

5 | (V5—1)/2=r"' | Penrose

8 V2 octagonal
10 (\/5 +1)/2=1r | decagonal
12 V3 dodecagonal

More generally, which are the point symmetries of self-similer binary tilings of
the plane?

This question can be answered as follows. Consider a structure with N-
fold symmetry, built from a substitution acting on two letters. The associated
Perron-Frobenius eigenvalue ), a quadratic algebraic integer, reads A = u?,
with u being the linear scaling factor. Furthermore, it can be argued that u

and 0
s
r = 2cos W (57)

are rationally related. Notice the similarity between Eqs. (36) and (57). But it
is known from the theory of cyclotomic fields that z is an algebraic integer, with
degree ®(N)/2, where ®(N) is Euler’s function, counting how many integers
are smaller than N and prime to N. The answer to our question is thus
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given by the condition ®(N) = 4, that easily yields the classification of Table
3. The remarkable feature of this list is that it exactly contains the point
symmetries of all the quasicrystelline phases observed so far. In other words,
quasicrystals are a realization of the next level of complexity after crystals,
with quadratic algebraic integers as scaling factors, instead of natural integers.
The smallest integer that is absent from both Tables 2 and 3 is N = 7. Tilings
of the plane with sevenfold point symmetry have been investigated 3253 The
irrational z = 2 cos(2n/7), naturally associated with these structures, is a cubic
integer (it obeys z3 4+ z? — 2z - 1 = 0).

2.4 The Fibonacci chain

The Fibonacei chain is a one-dimensional analogue of the Penrose tiling and of
icosahedral quasicrystals, sharing their quasiperiodicity and their self-similarity
involving the golden mean r. It is also the simplest example of a self-similar
object, which we shall use for illustrating general techniques.

In the 13th century, Fibonacci introduced the following model for the
growth of a population of rabbits. During a year, each adult (A) gives birth
to a baby (B), whereas babies become adults. The population thus evolves
according to deterministic rules, in the form of the following substitution:

A— AB,

OF B — A.

(58)

The associated counting matrix

MF:<1 é) (59)

is a square-root of the Penrose matrix (55). Its eigenvalues are A\; = r and
Ay = —r7 1,

By acting iteratively with the Fibonacci substitution or on the initial
letters A and B, we generate words Ay = of(A), Br = of(B), which obey the
concatenation relations

Agq1 = ApBg, Bii1 = Ag. (60)

In the particular case of the Fibonacci substitution, it is possible to consider
the words A only, which obey the recursion

Ak+2 = Ak+1Ak (A_l = B, Ao = A) (61)
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Let v{! and vP denote the numbers of letters of the words Az and By. They
obey the linear recursion formula

(Vf'f-l ) M (”i}q ) (VA VB 1) (62)
= F = = 5
v E+1 ve ’ ’

where MF is the Fibonacci matrix (59). It follows that the word Ay = By,
consists of Fi, letters, Fi,; of them being A’s, and F of them being B’s. In
these expressions, the F} are the Fibonacci numbers, which obey the recursion

Fryoa=Fpn+Fr (Fo=0, 1 =1), (63)

and are given by
Fy = —————Tk - (—T—l)k (64)
75 )
in terms of the eigenvalues of the Fibonacci matrix.
The Fibonacci sequence is the limit of the words Ay, i.e.,

A = ABAABAABABAABABAABAABABAABAABABAABAB - .-
(65)
The Fibonacci chain is the binary structure obtained by “stringing beads”
according to this sequence: pointlike atoms are placed at abscissas u,, with
ug = 0, so that the bond lengths assume two values, namely

by =ty —up_y = £4 or £5, (66)

depending on the type of the n-th letter in the sequence (65). Both the se-
quence and the chain are self-similar, with the irrational scaling factor r. The
quasiperiodicity of these objects will be demonstrated in a while.

To close up, we mention that the Fibonacci chain coincides with the canon-
ical one-dimensional quasicrystal, whose construction is shown in Figures 5 and
6, if the slope of the cut Ell is t = 1, so that the incommensurability ratio
is w = 7=2. More generally, for any irrational slope ¢, the binary structure
generated by the cut-and-project algorithm can be described by concatenation
rules #454.55.:45 The construction involves the continued fraction ezpansion of

the slope t. Assuming 0 < t < 1 for definiteness, ¢t can be uniquely expanded
a0

t = = [al:aZaa31“']y (67)
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where the integers a;x > 1 are called the guotients of the continued fraction
expansion. The binary sequence encoding the canonical quasicrystal (A for
a long bond of length ¢4 = cosf, B for a short bond of length ¢Z = sing)
is then obtained as the limit of a sequence of words {W;}, which obey the
concatenation rule

_ W Wi_, (k even) _ B
We= {WHW,:':1 (k odd) (W-1 =B, W, = A). (68)

The inverse golden mean 7~! is the simplest irrational number: all its quo-
tients read ar = 1. As a consequence, the rules (68) amount to the Fibonacci
substitution (58), up to a different choice of origin. This provides an elemen-
tary proof of the quasiperiodicity of the Fibonacci chain. More generally, we
shall say that the canonical quasicrystal is self-similar if the rules (68) amount
to a fixed substitution. This occurs if, and only if, the quotients are eventually
periodic, i.e., @y = a4, for k large enough, with a fixed period s. This is equiv-
alent to saying that the slope ¢ is a quadratic algebraic number2?® Quadratic
numbers thus appear once more to play a special role in discrete geometry.

2.5 A classtfication of self-similar structures

We turn to the classification of self-similar structures in discrete geometry,
i.e., chains and tilings generated by inflation rules, such as (54) or (58). This
classification concerns geometrical characteristics of structures, as well as their
diffraction spectrum. The following definition will play a central part:

A substitution has the Pisot-Vijayaraghavan property (or Pisot for short) if its
counting matriz M has all its eigenvalues A, ---, An smaller than unity in
modulus, except the Perron-Frobenius eigenvalue Ay > 1.

In the case of an irreducible counting matrix, whose characteristic polyno-
mial cannot be factorized over the integers, our definition coincides with the
statement that the Perron-Frobenius eigenvalue A; is a Pisot-Vijayaraghavan
number, namely an algebraic integer, real and greater than unity, so that all
its conjugates are smaller than unity in modulus®¢:57

In order to motivate the classification given below, we first consider the
modulation g,, of self-similar chains with respect to their average lattice, in the
sense of Eq. (46). We restrict ourselves to binary chains, for definiteness. Let
o be a substitution acting on two letters, A and B. Consider the words A; and
By, defined as above. The total numbers of letters V,‘: and V,f contained in
these words obey the recursion relation (62). The lengths of the finite patches
of the chain associated with these words according to the rule (66), denoted
by ££ and €2, also obey (62), albeit with different initial values, i.e., £§ = ¢4,
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0§ = £8. As a consequence, the modulations of the words Ax and By behave
as

gt =€ —vfa~gf =08 —vfan~ i, (69)
where A2 is the second eigenvalue of the counting matrix M. The role of ), is
thus underlined.

Second, we consider the Fourier transform of self-similar structures. Tak-
ing the example of the Fibonacci chain for simplicity, we introduce the Fourier
amplitudes G£(Q) and G2(Q) of the finite patches of the chain described by
the words A and By, according to Eq. (80) below. The concatenation rule
(60) implies the existence of recursion relations between the Fourier ampli-
tudes, which read, in matrix form

(%(@) - (1 e (@)

GZn(Q) 0 G¢(Q)

The structure of the above equations is quite general: Fourier amplitudes are
determined iteratively from linear recursion relations involving known phase
factors54:35,58,59,60,45,32,61 The ipitial conditions encode the decoration of the
structure, i.e., the details on the distribution of matter under consideration. In
the present case of pointlike atoms, we have G£(Q) = exp(—iQ¢4), GF(Q) =
exp(—iQZB ) Now comes the key question:

Which self-similar structures in discrete geomelry possess Bragg peaks in their
diffraction spectrum?

E. Bombieri and J. Taylor have addressed it first, in the case of chains®?
They noticed that linear recursions of the form (70) produce a Bragg peak
under the generic circumstances that all the phase factors involved in these
relations go asymptotically to unity. These conditions are, roughly speaking,
of the form

zA¥ 50 (mod. 1), (71

where X1 > 1 is the Perron-Frobenius eigenvalue of the substitution, and =
is proportional to the wavevector Q). The condition (71) has been studied by
Pisot 3¢ Its non-trivial solutions are classified as follows: \; is a Pisot number,
defined above, while z belongs to AM(};), a known module over the integers,
depending only on A;.

The above arguments on the modulation and on the Fourier transform of
self-similar chains and tilings are quite general. They have led to the following
classification of self-similar structures generated by inflation rules, in terms
of the eigenvalues of the counting matrix 5839453261 [et us emphasize that
the statements which follow are generic, in the sense that they admit many
particular cases, and many exceptions.
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e Pisot structures (|Az| < 1)

* The modulation of Pisot chains with respect to their average lattice is
bounded.

* Pisot structures generically have a purely discrete Fourier spectrum: they
are almost-periodic. A more detailed classification is as follows:

— det M = %1: Such a structure is generically quasiperiodic, with a
Fourier module spanned by n linearly independent vectors, with n
being the number of types of letters (bonds, tiles) in the structure.
The atomic surfaces of its superspace description are generically
complicated objects, with fractal boundaries**®3 Ezample: octago-
nal tiling®? [see section 2.6).

— det M # %1 and A, € Z: Such a structure is limit-periodic, with a
basis b = A;. Ezamples: the L-tiling and the sphinx tiling®64:52,

— det M # %1 and A; ¢ Z: Such a structure is limit-quasiperiodic, a
term due to F. Gahler’!.

o Non-Pisot structures (|Az| > 1)

* The modulation of non-Pisot chains with respect to their average lattice
generically exhibits a power-law divergence, of the form

gn ~ nﬁ’ (72)
where the wandering ezponent reads

_injy)
ﬂ_ lIlA] ’

(73)

with A, being the second largest eigenvalue in modulus of the counting
matrix. The power law (72), which agrees with the estimate (69), is
usually multiplied by an oscillatory prefactor, of the form P(lnn/1n A1),
where P is a periodic function of its argument, with unit period, that is
fractal, i.e., continuous but nowhere differentiable®s In the case of tilings,
there is no obvious lattice to which the structure is to be compared.
Counting the vertices of a tiling contained in a domain of fixed shape and
growing size can be misleading. Indeed, the seemingly simple problem of
counting the points of the square lattice in a disk of radius R is essentially
equivalent to the number-theoretical topic of sums of squares, described
in section 1.3. In order to circumvent this difficulty, it is preferable to

weigh the vertices with a smooth test function5®
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* The diffraction spectra of non-Pisot structures do not contain any (non-
trivial) Bragg peak. Their Fourier intensities are generically purely singu-
lar continuous measures, with multifractal statistics®®5° Ezample: the
fivefold binary tiling of C. Godréche and F. Langon®?8:53 [see section
2.7].

o Marginally non-Pisot structures (|A2| = 1)

This marginal situation encompasses several kinds of exceptional cases.
Ezample: circle-map sequences®9:343% these are quasiperiodic sequences
with a weakly unbounded fluctuation, while the associated chains accord-
ing to the rule (66) usually have a singular continuous Fourier spectrum.

2.6 Octagonal tilings

According to the above classification, self-similar chains and tilings, gener-
ated by inflation rules with Pisot property and unit determinant, are generi-
cally quasiperiodic. The analysis of their superspace description has revealed
an unexpected complexity in the morphology of their atomic surfaces, which
generically possess a fractal boundary, and often infinitely many connected
components 5:63

Self-similar chains have been investigated in a systematic way, in connec-
tion with counting systems?> In the case of binary chains, every atomic surface
A generically consists of an infinity of segments of the line £+, whose bound-
ary is a self-similar, fractal Cantor set, with a non-trivial dimension dy,, with
0 < d, < 1. As a consequence, the intensities of the Bragg diffractions fall off
slower than (53), namely

lc@4)[ ~ @[T (74)

The only known examples of chains with a smooth atomic surface correspond
to the canonical quasicrystals described in section 2.2, with a quadratic slope.
In the case of chains generated by substitutions acting on n > 3 letters, atomic
surfaces are (n — 1)-dimensional objects, with fractal boundaries as a general
rule, and often infinitely many connected components. No single example is
known with a smooth atomic surface.

The atomic surfaces of self-similar quasiperiodic tilings of the plane have
only been investigated in some examples. A characteristic case is provided by
the three tilings with eightfold symmetry, shown in Figure 9% These tilings
are made of the same two species of tiles, the square S and the 45°-rthomb K.
It is advantageous to consider the square as being made of two rectangular-
isosceles triangles T'. As far as counting properties are concerned, the three
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Figure 10: Inflation rules of the octagonal tilings shown in Figure 9: A (top), B (left), C
(right).

Both tiles R and 7T occur with the same frequencies in the three tilings,
p® =12 -1 and pT = 2 — /2. Each tiling, however, is defined by its own
arrangement of original tiles inside the inflated ones, shown in Figure 10, which
leads to specific local environments.

These quasiperiodic tilings admit a four-dimensional superspace descrip-
tion, with a common lattice £ = Z*. Their two-dimensional atomic surfaces,
shown in Figure 11, are also specific to each tiling53

e A-tiling: this is the celebrated Ammann octagonal tiling!®. Its atomic
surface A4 1s an octagon: it has a smooth boundary, and possesses the
full eightfold symmetry of the tiling.

e B-tiling: its atomic surface Apg is a connected domain, with only fourfold
symmetry. The full superspace structure is obtained by hanging a copy
of the surface Ap at each even vertex of the lattice Z*, and a copy of
Ap rotated by 45° at each odd vertex: this is a simple example of a
centering, mentioned in section 2.2. The boundary of the atomic surface
Ap is a fractal closed curve, with dimension

In3

B= In(1+v2)

= 1.246477. (77)
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Figure 11: Boundaries of the atomic surfaces of the octagonal tilings shown in Figure 9: A
(top), B (left), C (right).

o C-tiling: its atomic surface A¢ consists of an infinity of connected com-
ponents. It has fourfold symmetry, and the centering procedure of the
B-tiling still applies. The boundary of Ac¢ is afractal set of closed curves,
with altogether a dimension

"~ In(1+2)

2.7 Non-Pisot structures and their diffraction spectra

V10)
do = VIO ) o e000. (78)

According to the classification of section 2.5, self-similar chains and tilings,
generated by non-Pisot substitutions, generically have an unbounded fluctua-
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Figure 12: Fivefold binary tiling investigated in Ref. 67. Dark patterns are (up) the crown
C and (down) the box B.

tion with respect to their average lattice, and a singular continuous, multifrac-
tal diffraction spectrum. In this section we shall illustrate the above general
statements, and make them more precise.

We first describe a characteristic example of a non-Pisot structure, namely
the binary tiling with fivefold symmetry investigated by C. Godréche and F.
Langon%7:68:53 This tiling, shown in Figure 12, consists of the same rhombs L
and S as the Penrose tiling described in section 2.3. It is self-similar, since
it can be constructed by means of inflation rules, shown in Figure 13, which
transform the fat rhomb L into a crown C = 3L + S, and the skinny one S
into a box B = L +2S. The associated counting matrix

M = (il* ;) (79)

has both its eigenvalues A\; = 247 and A2 = 3— 7 larger than unity. This tiling
is therefore a non-Pisot structure. Its wandering exponent reads # = 0.251574,
according to Eq. (73).

Let us turn to a general description of the diffraction spectra of non-Pisot
structures. In the following, we focus onto the one-dimensional case, again for
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(®) (2)
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Figure 13: Inflation rules of the fivefold binary tiling shown in Figure 12. The numbers in
parentheses give inner angles, in units of x/5.

the sake of simplicity. Consider an aperiodic chain, made of pointlike atoms
situated at abscissas {u,}. In order to make the definition (50) more precise,
with the first N atoms we associate the Fourier amplitude

N
GN(Q) = Zexp(—iQun), (80)

n=1

and the Fourier intensity

N
Sn(Q) = %IGN(Q)IZ = % Z exp (iQ(um — un)). (81)

mn=1

The latter quantity usually has a limit for an infinite sample, referred to as the
(static) structure factor, which reads formally

5@) = <Zexp(ic2(un - uo))> , (82)

where the brackets denote a sliding average over the origin 0. In the case of
structures with configurational disorder, an equivalent procedure consists in
averaging over the quenched randomness in the atomic positions.
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The structure factor S(Q) is observable, with some limited resolution, by
the diffraction of various probes, such as electrons or X-rays. It must, however,
be emphasized that S(Q) is a generalized function (distribution). Indeed, in
a mathematically rigorous setting, the Fourier intensity is a positive measure,
referred to as the Fourier (intensity) measure, entirely characterized by its
distribution function

Q
fmw=A S(@)4Q'. (83)

The Fourier measures of aperiodic substitutional structures usually obey
scaling laws in @Q-space, both locally and globally, which reflect their self-
similarity in real space, albeit in a much more intricate way.

e Local scaling

For some value Qg of the wavevector @}, the Fourier amplitude may obey
a finite-size scaling law, which is most often a power law of the form

GN(Qo) ~ N7, (84)

where v is a local scaling exponent, depending on the wavevector Qq. It
can then be argued that the Fourier measure has a local singularity of
the form

H(Qo % €) — H(Qo) ~ %e°, (85)

with
a=2(1-7). (86)

One has ¥ <1 and o > 0, by construction. The structure factor S(Qo)
has a peak, i.e., it is divergent (o < 1), whenever v > 1/2.

The scaling law (84) has an illuminating geometrical interpretation, in-
spired by number-theoretical investigations’® and referred to as the Fres-
nel representation>®32 It consists in plotting the successive amplitudes
of Eq. (80), namely Gg = 0, G1 = exp(—iQu;1), G2 = exp(—iQu;) +
exp(—iQuz), and so on, as points in the complex plane. A Fresnel walk,
consisting of unit steps, is formed by joining these points. The power

law (84) means that the dimension of this walk reads

1
dwalk = —. 87
alk v ( )

In some examples the Fresnel walk is a nice, strictly self-similar fractal

curve in the plane35:32
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o Global scaling (multifractality)

Global aspects of the scaling behavior of the Fourier intensity’® are
best described in terms of multifractal analysis?324 Roughly speaking, a
diffraction spectrum is multifractal if the distribution function H(Q) can
be attributed a singularity of the form (85) for every value of the wavevec-
tor @, with a local exponent «(Q), and moreover if, for any given « in
some range [amin, Omax), the set S, of wavevectors @ so that a(Q) = «

is a fractal set, with a dimension
dim S(a) = f(a). (88)

The function f(a) is referred to as the multifractal spectrum of the in-
tensity measure.

From a practical viewpoint, and especially for the purpose of a numerical
evaluation, the curve f(a) is determined by means of the following ther-
modynamical formalism?23:24 The measure is first regularized at the scale
€, by considering the intensities {w, } supported by intervals of length ¢,

ie.,
ne

wn = H(ne) — H((n — 1)e) = / S(Q)dQ. (89)

(n=1)e

These weights are then tested by considering the partition function

Nmax

Z(q,€) = Z wi. (90)

In this formula, q i1s a real parameter, analogous to inverse temperature
in Statistical Mechanics, and the total range Qmax = nmax€ is kept fixed.
Multifractality manifests itself in the form of the scaling law

Z(g,€) ~e™@ (e —0). (91)

It is worth noticing that the scaling laws (34) and (91) are similar, up to
the identification k = ¢ and 1/¢ = InN.

The scaling exponent 7(q) yields, via the relation
7(g) = (¢ — 1) Dy, (92)

the spectrum of Rény: dimensions D, of the intensity measure, which
generalize the dimension Dy of its topological support, the dimension of
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Figure 14: Qualitative sketch of the multifractal spectrum of the Fourier intensity of a typical
non-Pisot chain. Particular values are described in the text.

information D;, and so on. Furthermore, the functions r(¢) and f(a)
are the Legendre transforms of each other, namely

d d
M) +f@=ga a=T 0= (93)

Figure 14 shows a schematical plot of the multifractal spectrum of the
Fourier intensity of a typical non-Pisot chain. The following characteris-
tic values are of interest 58,5932

— the bounds @min = Dyeo and amax = D_ determine the range
of local scaling exponents a which show up with a “reasonable”
probability in the diffraction spectrum;

— the abscissa ag of the top of the curve, corresponding to ¢ = 0,
represents the local exponent at a generic value of the wavevector
Q. We have f(ag) = Dy = 1, since the topological support of the
intensity measure is the full Q-line;

— the value dp = f(1) represents the dimension of the set of peaks in
the diffraction spectrum, in the general sense of singular scattering,
exposed above.
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Table 4: ‘Scaling behavior of Fourier intensity: local exponents, dimension of Fresnel walk,
type of intensity, measure-theoretical component.

v «a dwaix | Fresnel walk | intensity | measure

1 0 1 ballistic Bragg discrete
1/2 1 2 Brownian diffuse abs. cont.
€]1/2,1[ | €]0,1] | €]1,2[ | fractal singular | sing. cont.

For a non-trivial multifractal diffraction spectrum, such as that of a
generic non-Pisot self-similar chain or tiling, the particular values de-
scribed above, and shown schematically in Figure 14, obey the inequali-
ties

0 < amin <o) <dp <1< ag < max- (94)

Finally, the three measure-theoretical components of the Fourier inten-
sity, according to the Lebesgue decomposition theorem, can be heuristically

described in terms of the local and global scaling properties described above
(see Table 4)58,59,68,32

e Bragg peaks (discrete component): Bragg peaks are characterized by the
maximal value ¥ = 1 of the local scaling exponent. They correspond to
delta functions, i.e., a discrete component in the Fourier measure. The
Fresnel walk at Bragg peaks is ballistic. According to the classification
of section 2.5, the Fourier intensity of almost-periodic structures consists
of Bragg peaks: it is purely discrete.

o Diffuse scattering (absolutely continuous component): diffuse scattering
is typically observed in amorphous structures, such as glasses, which
have configurational entropy, and randomness in their atomic positions.
The structure factor S(Q) is a smooth function, corresponding to the
absolutely continuous component of the Fourier measure. For a generic
wavevector @, the Fresnel walk is a Brownian motion, whose dimension
dwaixk = 2 is a manifestation of the statistical law of large numbers.

o Singular scattering (singular continuous component): singular scattering
corresponds to local scaling exponents in the range 1/2 < v < 1. It
therefore appears as an intermediate kind of behavior between Bragg
peaks and diffuse scattering. According to the classification of section
2.5, non-Pisot self-similar structures generically have a purely singular
continuous Fourier intensity, with a non-trivial multifractal spectrum.
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PHYSICS AND ARITHMETIC CHAOS
IN THE FOURIER TRANSFORM

M.C. GUTZWILLER
IBM, T.J. Watson Research Center
Yorktown Heights, NY 10598

The Sinai billiard is the archetype of a classically chaotic system. It can be greatly
generalized in two ways: i) replace the original square boundary with an arbitrary
parallelogram and periodic boundary conditions, ii) replace the circular hard wall
of radius R at the center by any circularly symmetric system, compact or non-
compact. At a fixed energy E, both the classical trajectory and a propagating
wave alternate between two regimes: i) constant direction of motion 6, ii) constant
angular momentum L, which are complementary in quantum mechanics. The
physics in either region is integrable and to a large extent arbitrary. Any chaos
in the combined system is due to the transition from one to the other, through
a Fourier transform F' in quantum mechanics, which is discrete and finite of di-
mension = 2v2mER/h. The spectrum of F is highly degenerate, with
eigenvalues X1 in the real form (cosine or sine transform) occurring in almost the
same multiplicity (with differences of 1 according as odd dimension). The matrix
Fcan be simplified to a row of 2 by 2 blocks along the diagonal with the help of
elementary number theory. But the directions of the eigenvectors in each block are
shown to be distributed on the unit circle in an apparently uncorrelated manner.
Are the two eigenspaces randomly oriented independently of the way they were
calculated?

1 Imntroduction

Quantum mechanics is full of surprises that may provoke different responses in
different people. As soon as a new problem is approached, and several inves-
tigators get busy trying to find a solution, they will concentrate on different
aspects as the crucial ingredient for their method. Although the endresult is
bound to be the same, the various explanations might sound quite different.
This diversity may look strange to an outsider, but it is quite natural partic-
ularly in quantum mechanics where it appears built into the system from the
very beginning and at a very deep level.

The purpose of this article is to point out yet another feature that enters
into some typical problems and can be blamed for the some of our difficulties
in finding a good base for understanding the solution. We like to invoke the
idea of chaos every time we find ourselves unable not so much to obtain some
numerical answer as to see through the numbers and comprehend where they
come from. We call nature itself chaotic, although very often it is just one
special step in our theory that seems to contradict our expectations of orderly
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and rational behavior.

The special step to be called chaotic in this paper is the finite discrete
Fourier transform. It causes, in my individual interpretation, all the trouble
that makes a whole class of simple-looking problems hard to solve. This class
starts from a model in classical mechanics that was first discussed by Sinai
in 19680 he succeeded in calculating the Kolmogoroff entropy which turned
out to be positive as expected from more intuitive arguments. This entropy is
defined to agree with Botzmann’s original expression for the thermodynamic
entropy as a measure for the (negative) logarithm of the probability for a
particular arrangment of molecules. Evidently, the larger the entropy the more
disorderly the arrangement, or, in our more recent manner of speaking, the
more chaotic the classical motion.

The quantum-mechanical Sinai-billiard was first treated in a 1981 paper by
Berry 2 that proposes many clever and useful ideas, and offers some numerical
results about the energy levels. This special problem, a particle moving freely
inside a unit-square with a circular obstacle of radius R at the center, can be
generalized in many ways. Both, Sinai’s proof of a positive entropy and Berry’s
method of calculating the spectrum, can be carried over without any change.
The chaos seems to arise from the transition between the two complementary
symmetries, conserved angular momentum in the neighborhood of the circular
obstacle and conserved direction of motion inside the square.

In its quantum-mechanical version, this transition requires a finite discrete
Fourier transform, i.e., the linear unitary transformation F where a complex
vector-space of 2L + 1 dimensions is tranformed by the matrix,

1 Im
Fem —2L+1exp( w7r12L+1), (1)

where w and L are positive integers. The value of L depends only on the mass
mo and the energy E of the particle as well as the radius R of the circular
obstacle independently of its precise nature. If we define a wave number k =
V2myE /%, then we can choose L < kR provided we put w = 2 in (1). The
indices £ and m designate angular momenta in multiples of &, and the upper
limit comes from the fact that a classical particle with angular momentum
larger than kR cannot penetrate into the circular obstacle.

1.1  Qutline of this article

This paper consists of a somewhat sketchy first part where the physical argu-
ments for the presence of chaos are presented. Its main purpose is to show
that even if the shape of the square is changed appropriately and the circular
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obstacle at the center is modified, neither Sinai’s result nor Berry’s calcula-
tions will undergo any significant change. The Fourier transform will remain
the cause of our difficulties.

The second part is a more careful, but elementary discussion of the Fourier
transform, quite independently of its physical cricumstances. The main prob-
lem is purely mathematical: Can we diagonalize the matrix (1), not only by
finding its spectrum which is fairly easy, but also by determining its eigen-
vectors? Remarkably, I have found almost no literature concerning the last
point, except for some learned hints from a colleague at the IBM TJ Watson
Research Center, Ephraim Feig, who has been very helpful and encouraging.

The matrix (1) will first be reorganized by renumbering its rows and
columns with the help of the ”discrete logarithm modulo 2L 4 1”. Then F
can be broken up into two by two blocks along the diagonal using a finite
discrete Fourier transform in a space of L dimensions. Each block contains
two eigenvectors with different eigenvalues, either +1 or +i, and it is trivial
to calculate their orientation. But the corresponding angles follow no recog-
nizable pattern, and seem distributed on the unit-circle without any apparent
correlations.

Several conclusions will be drawn from this excercise in number theory
related to the Fourier transform, all of them in the form of general questions
or even challenges to the theoreticians. Most obviously, can the statistics
of energy levels, in the Sinai billiard and its generalizations, be understood
in terms of the apparent random behavior in the spectrum of the Fourier
transform? More generally in quantum mechanics, since the Fourier transform
describes the transition between non-commuting observables such as the kinetic

and the potential energy in Schroedinger’s equation, can this analysis be of any
help?

1.2 Finite Quantum-Mechanics

A short note was published in the Comptes Rendus of the French Academy of
Sciences of 1986 by Balian and Itzykson! on a system that leads almost exactly
to the same mathematical problem as our view of the Sinai billiard. M.L.
Mehta® then published a paper where he acknowledges Itzykson as suggesting
the problem to find the eigenvalues and the eigenvectors of the finite Fourier
transform. Since this meeting is dedicated to the memory of Claude Itzykson it
gives me great satisfaction to rephrase his work in the present context although
I discovered this connection only recently.

Let the wave function in the neighborhood of the circular obstacle be
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written 1n the form,
L
1 2itg
- E : , 9
f(¢) \/2—77 — ae ( )

where we can think of ¢k as the angular momentum of the outgoing wave, and
¢ as the angular coordinate. The factor 2 in the exponential was inserted to
take into account the center of symmetry, which remains even when the square
boundary is replaced by a parallelogram.

The most highly localized wave-function of this kind, the equivalent of
Dirac’s é-function, would be sin(2L + 1)¢/1/2x(2L + 1)sin ¢. If we test our
wave function f(¢) with 2L+ 1 such é-functions that are evenly spaced around
the circle, at 2w /(2L + 1), the result would be a vector (f-z,..., fo,..., fL).
This vector can be directly expressed in terms of the amplitudes a, by trans-
forming the vector (a—z,...,ap,...,ar) by the above Fourier transform with
w=2.

In the nomenclature of Balian and Itzykson, each basis vector in the vector-
space of the f’s is an eigenvector of the operator Q, with the eigenvalue w*
where w = exp(2iw/(2L+1)). Indeed, these are the locations of the test-points
that were chosen on the rim of circular obstacle. The (angular) momentum
operator P shifts one basis vector to the next higher one in a circular manner;
it has the same eigenvalues, w*, and its eigenvectors in the f-space are given
by fi = w™®.

Balian and Itzykson investigate the Heisenberg group which is obtained
by the multiplication of the operators P, @, and wI. They construct a unitary
representation of this group as well as for the canonical group which is related to
its automorphisms. Although I have not been able to understand the details,
the formulas contain all the number-theoretical tools that I will use in the
second part of this paper. All this leads to the diagonalization of the Fourier
matrix (1) which is also my goal, and I can only assume that my results are the
same although my calculations are quite elementary. The present article seems
to go further by numerically evaluating the relevant formulas, and pointing
out their apparent chaos. Mehta’s work on the hand gives a very different
construction; but he does not obtain a set of orthonormal eigenvectors.

2 The Many Versions of the Sinai Billiard

2.1 Different Shapes and Phase factors

The original billiard of Sinai was designed to imitate, in the most simple-
minded manner, a gas of hard spherical balls which bounce around inside
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a finite enclosure. The formidable technical difficulties of this fundamental
problem were boiled down to the shape of a square for the enclosure, and the
collisions between the balls were reduced to a single point particle hitting a
circular hard wall at the center of the enclosure.

The particle was allowed to take advantage of periodic boundary conditions
in the square. The formulas simplify thereby because the particle maintains
its direction of motion as long as it stays away from the circular obstacle.
Nothing changes in this respect if the square is replaced by any parallelogram
with the basic vectors & and 7, as long as the circular obstacle fits inside
without touching the boundaries.

The quantum-mechanical analog allows for one more generalization which
has some importance in calculating the band-structure in crystals, a connection
that was already pointed out in Berry’s paper. The wave function of the
particle in the parallelogram may correspond to an overall crystal-momentum
hE. When the particle leaves the parallelogram through the side 7 in the
direction of &, then its wave function acquires a factor exp i([? ,0), and similarly
with the sides & and T interchanged.

The crystal-momentum can vary in the whole two-dimensional plane, but
its variation can be limited to one Brillouin zone, i.e., without loss of generality
one can impose the limits 0 < (K,&) < 27 and 0 < (K, 7) < 2w. The crystal
momentum AK is simply one more conceivable parameter in the generalized
Sinai billiard in quantum mechanics. Its presence in the problem, however,
will break the reflection symmetry at the origin.

2.2 An Assortement of Circular Obstacles

The hard circular wall of radius R has the effect of spreading the motion of the
particle of mass mg into different directions, called defocusing for simplicity’s
sake. Consider two trajectories that hit the critical circle in the same place, but
at angles differing by 60. On the average, the particle will travel a distance
D = (Area of parallelogram)/2R before hitting the circle again. By this
time the two trajcetories will be a distance d = D60 away from each other.
Therefore, the difference in their direction of motion after the second collision
will increase to 60 = d/R = (Area/R?)66.

This argument seems somewhat paradoxical because it suggests that the
smaller the circular obstacle the more effective it is in defocusing the classical
trajectories. If we estimate the increasing divergence of the trajectories per unit
length of trajectory, and divide 6O by the average travel-distance D between
collisions, the divergence 66 is found to increase at a rate inversely proportional
to R, i.e., the smaller circle the bigger the chaos! Of course, quantum mechanics
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does not allow this conclusion because the obstacle does not scatter any longer
when its radius becomes smaller than the de Broglie wave-length 27 /k of the
particle. '

This superficial explanation for the chaos in the Sinai billiard remains
valid if the obstacle is replaced by all kinds of different contraptions as long as
the circular symmetry is preserved. Instead of a hard wall, one can think of
any potential that depends only on the distance from the center of the circle,
e.g., an attractive Coulomb field. The particle will penetrate into the inside
of the critical circle where it follows along the appropriate ellipse, parabola,
or hyperbola according as its energy E. Eventually it will emerge again at a
different place, but with the same angular momentum M. There might actually
be bound states that are modified by the presence of the parallelogram.

The main difference with the Sinai billiard is the shift w(E, M) in the angle
from the place where the particle hits the circle to the place where it energes
back into the parallelogram. The angular momentum M is the same before
and after the interlude inside the circular obstacle. Therefore, the change in
the direction of motion is again symmetric with respect to the local radius,
exactly as in the hard collision of the Sinai billiard, but with the additional
complication of the shift w(E, M).

This picture can be further modified in the following manner which has
been discussed at some length by the author® The inside of the critical circle
can be replaced by an exponential horn or a pseudosphere so that the particle
continues its motion on such a two-dimensional surface of circular symmetry.
It is convenient to choose a surface of constant, negative Gaussian curvature
—1/R? because the classical trajectories can be obtained by elementary con-
structions, and the solutions of Schroedinger’s equation are no worse than
Legendre functions for which many convenient expansions are known.

Since the inside of the critical circle is no longer compact, it may happen
that the particle does not return to the inside of the parallelogram at all. It
may escape from the parallelogram provided its angular momentum M allows
it to do so. For instance in the case of the exponential horn M =0, i.e., only
the particle hitting exactly along the local radius is able to escape through the
horn.

A pseudosphere of area 27 R? can be joined to a cylindrical pipe of radius
smaller than R, whereas a pseudosphere of the full area 47 R? can be joined to
an open Euclidean plane. The idea of the Sinai billiard can then be inverted:
the particle approaches an obstacle in one or two dimensions, and gets caught
inside a parallelogram; it will emerge again in quantum mechanics with a
well-defined phase-shift (£, M) depending on energy and angular mementum,
although in classical mechanics the phenomenon is more complicated.
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This last version of the Sinai billiard is expected to yield a phase-shift
that is completely different from the results of the usual potential scattering
in quantum mechanics. It should resemble quite closely the author’s calcu-
lations  of scattering on the punctured torus (leaky torus), ie., a torus of
constant negative curvature with an exceptional point. In the simplest case,
the scattering phase-shift 5(E,0), since only particles with M = 0 escape, is
given by the logarithm of the Riemann zeta-function on the line in the com-
plex plane parallel to the critical line, but with the real part equal to 1. The
amazing properties of this almost-periodic function were discussed again by
the author$

2.3 Quantum Mechanics Near the Circular Obstacle

The purpose of this section is to remind the reader of the method for calculating
the spectrum in problems of this kind. Many of the details can be found in
the papers by Berry? and the author?®

The easy part is the solution of the stationary Schroedinger equation just
outside of the circular obstacle in polar coordinates (r,8). For each angular mo-
mentum M = £h, one has an outgoing and an incoming wave which are Hankel
functions of the first and the second kind of index ¢ and argument kr, where
the wave number is always k = /2mgE/h. Both are multiplied by exp(:¢6)
for their angular dependence. The complete wave-function is expanded in the

form,
“+o0

$= [acHP(kr) +beHP (kr)]e™®, (3)

£L=—o00

where the coefficients a, and b, are complex numbers.

The exact nature of the circular obstacle determines the ratio a,/b, for
each £. In the usual Sinai billiard the wave function ¢ has to vanish for r = R,
so that a;/b, = —Ht(z)(kR)/Hl(l)(kR). This ratio has the absolute value 1;
when kR becomes larger than the absolute value of ¢, this ratio becomes equal
to 1.

More generally, we can say that the vectors a’ = (...,a_1,a0,a4,...) and
O =(...,b-1,b0,b41,...) are tied to each other through the unitary matrix D,

a = -—Db, Du = exp(—2i6¢(E)), Dtm = 0, (4)

for £ # m. The phase angle §,(F) in the diagonal elements is usually called
the phase-loss; it tells us all we have to know about the wave’s penetration
into the circular obstacle.
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If this obstacle is non-compact, as in the case of the exponential horn or
the pseudosphere, some of these diagonal elements may contain other param-
eters while their value is still on the unit circle. As shown in author’s work?
the element Dy depends on the ratio of the amplitudes o and g for the in-
coming and the outgoing waves of angular momentum 0 very far out on the
exponential horn. In the nomenclature at the end of the preceding section,

a/B = exp(in(E,0).

2.4 The Waves in the Parallelogram

The discussion of the waves leaving the circular obstacle, and eventually re-
turning to it after being scattered by the boundaries of the parallelogram, is
more involved. Only the essential points will be mentioned, and the reader is
referred again to the work of Berry ? and the author (1993 and in preparation).
Our language will sound as if the wave propagates in time: ”the outgoing wave
leaves the obstacle, gets reflected off the boundaries of the parallelogram, and
returns as an incoming wave to the obstacle.” Of course, the interpretation of
these words is purely symbolic and formal because everything is assumed to
happen at a constant energy E.

The boundary conditions are enforced by following construction. The same
outgoing wave, ), cth(l)(kr) exp(i£8), is produced simultaneously by all the
equivalent obstacles in the complete lattice for the parallelogram, i.e., from
all the points with coordinates ¥ = ué + v7 where u and v run through the
integers from —oo to +0o0. These waves come from the lattice points outside
the origin. They have to be expanded in the neighborhood of the origin with
the help of the addition theorem for Bessel functions. Finally, they have to be
disentangled into incoming and outgoing waves as shown in (3).

Both the vector a and the vector b in (3) can be expressed in terms of the
assumed vector ¢ quite formally as

2aP7me = /([ +1iY), 20’ = /(I — iY), (5)
where [ is the identity, or unit matrix. The matrix Y has the elements
Yim = 3 Yeom(ky)ei ™, ®)
Y#0

where the Bessel function Y,_n,(k7y) is real for real values of its argument.
The reflexion symmetry of the lattice with respect to the origin shows that
Yi—m = 0 for odd £ — m.

These relations are purely formal because the matrix-elements Y, are
given by an expansion over the lattice sites ¥ that converges conditionally.
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The above formulas and their consequences can be made rigorous, as will be
shown in a forthcoming paper by the author. It will also be proved that all
the matrices can be truncated, as mentioned earlier, for the absolute values of
£ and m exceeding some bound like 2kR. After eliminating the vector ¢ from

(5),
b=-Ta,T="—= (7

where the matrix T is again unitary since Y is basically real and symmetric.
Notice that T' transforms even (odd) numbered components of a into even
(odd) numbered components of b.

Formula (6) shows explicitly that the matrix T is a Toeplitz matrix, i.e.,
it has the same value for all elements along a parallel to the diagonal, where
£—m is constant. Therefore, T" can be diagonalized by a Fourier transform F'.
Since the even and odd numbered components are completely independent,
let us only look at the even ones. The Fourier transform of a vector ¢ =
(---,9-2,90,9+2,.--) is a function f(x) of period 7 of an angle x. The matrix
T can, therefore, be written in the form,

where we have used the Dirac §-function. The function ©(x, £) depends on
the angle x and on the energy F in a rather complicated way which reflects
the resonances of the parallelogram.

2.5 Calculation of the spectrum

The spectrum of the generalized Sinai-billiard results from combining the con-
ditions (4) and (7) into the secular equation,

det(I-U)=0,U=TD=F"'OFD, (9)

where only the diagonal matrices © and D depend on E. Since there are no
further parameters if the obstacle is compact, and the determinant is presum-
ably a smooth function of E, this equation yields a discrete set of eigenvalues
E;. If the obstacle is not compact, external parameters, such as the ratio a/3
appear in U besides E. Equation (8) then gives this ratio, or equivalently the
phase shift n(E,0), as a function of the energy.

The Fourier transformation F' can be truncated for practical purposes in
the manner indicated in (1). The value w = 2 in (1) comes directly from the
matrix Y in (6) which does not mix even and odd angular momenta. Although
the truncation depends on E if we set L 2 kR = /2mgE R/H, it really arises
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automatically from the diagonal matrices D and ©. Also the truncation of F
to an odd number of components is natural because there is a natural pairing
of positive and negative angular momenta.

It 1s now evident that all the physics is hidden in the diagonal unitary
matrices D and ©. At the same time, we can claim with some justification
that the chaos in the generalized Sinai-billiard does not come from either of
these matrices (or their classical equivalents). Each matrix describes a differ-
ent and unrelated, perfectly integrable problem, i.e., on one hand, the waves
inside a circularly symmetric, compact or non-compact enclosure, and on the
other hand, the waves inside an arbitrary parallelogram with periodic bound-
ary conditions (including some phase conditions as in a crystal).

The chaotic features in the solutions of the Sinai billiard arise from combin-
ing these two integrable problems with complementary symmetries, conserved
angular momentum and conserved direction of motion. The Fourier transform
F is the ”glue” that holds these two discrepant ingredients together in one
physical problem. If F' could be decomposed into its eigenspaces in a sim-
ple and intuitively appealing procedure, then we would not have to invoke
chaos for understanding the spectrum of the Sinai billiard in any of its many
realizations.

The second part of this paper will try to show that the Fourier transform
as given by the matrix F' cannot be thrown into a form where its effect in the
Sinai billiard is easily understood. Sofar, the tricks of mathematicians have
not provided the physicists with any help toward a better idea than staring at
the results of numerical computations. Statistics seems to be our only available
future!

3 The Diagonalization of the Discrete Finite Fourier Transform

3.1 The Real and Imaginary Part of the Complex DFFT

The matrix F in (1) is unitary, i.e., if multiplied by its Hermitian conjugate it
yields the identity. Therefore, its eigenvalues lie on the unit-circle. Moreover, it
can be checked that its fourth power is also the identity, so that its eigenvalues
can only be +1 or +:. The first question is concerned with the multipicities of
these eigenvalues.

The (2L + 1)-dimensional complex vector-space with a typical vector a’ =
(a-z,---,a0,...,a+r) gets transformed into the vector f' = (f-r,..., fo,..., f+L)
in the usual manner f = Fa.

Let us define the (L + 1)-dimensional vector-space of the even components
b = (bo,...,br) where by = ap and by, = (a_m + a+m)/\/§, and the L-



268

dimensional vector-space of the odd components ¢’ = (¢c1,...,cr) where ¢, =
(@4m —a—_m)/V?2. And let us represent in exactly the same manner the vector
f in terms of its even components g and its odd components h.

Then we have for the even components ¢ = Cb in terms of the matrix,

Im
Cim = cos(2w7r—m), (10)

2
V2L +1
for £ > 0 and m > 0, along with Coo = 1/v/2L+1 and Cy = Com =
V2/v2L +1. Similarly, for the odd components A = iSc in terms of the

matrix,
Im

2 .
\/2L_+Tsm(2w7r2L+ 1). (11)

Both of the matrices are real and orthogonal so that their eigenvalues
are again on the unit circle. But moreover, they are symmetric so that their
eigenvalues are real. Therefore, their eigenvalues are +1. There are L + 1
eigenvalues 31 corresponding to the even components and L eigenvalues +i in
F corresponding to the odd components. The next question is concerned with
the degeneracies in C and in S.

Stm =

8.2 Decomposition of the 2L+1 into Prime Factors

Suppose that we can decompose 2L + 1 = (2L; + 1)(2L2 + 1) where the two
factors are prime to each other. The integer £ running from —L to 4L can then
be represented by a couple (¢, ¢;) where ¢ = £ modulo 2L, + 1 and £, = £
modulo 2L, + 1; we can again choose —L; < ¢; < +L; and —Ls < £ < +Ls.

The solution of these two Diophantine equations is guaranteed by the
Chinese remainder-theorem. First, the two equations u; = 1 modulo 2L; + 1,
and u; = 0 modulo 2L, + 1 are solved for u; where clearly, vy = v1 (2L + 1).
Second, the two equations us = 1 modulo 2L; + 1, and us = 0 modulo 2L, +1
are solved for uy where us = v5(2Ly + 1). Then we can put £ = fyuy + fpup =
£1v1(2L2 + 1) + £,v2(2Ly + 1) modulo 2L + 1, and check our conditions in the
preceding paragraph.

This expression along with the similarone, m = myv1(2L2+1) + mava(2L1+
1) modulo 2L + 1, can be inserted into matrix elements of the Fourier matrix
(1). In this manner we find that,

2miwlm 2miwlymy

2mwiwlomy
—) = 2L,+1 2 2
2L +1 ) exp( 2Ll + 1 vl( 2+ )) exp(

exp( 2L2+1 02(2L1+1))’ (12)

so that the matrix decays into a Cartesian product of two similar matrices,
2L1+1by2L; +1and 2Ly +1 by 2Ly + 1. The important feature to observe,
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however, is the new factor vZ(2L3 + 1) in the exponent of the first matrix, and
the factor v2(2L; + 1) in the second. Factors of this kind cannot be removed.

The decomposition of 2L + 1 into prime factors simplifies the diagonaliza-
tion of the Fourier matrix (1), but one cannot avoid the appearance of factors
like w in (1), even if w = 1 for the Fourier matrix before the decomposition
of 2L + 1 into prime factors. They are the left-overs from the decomposition,
and can have any arbitrary value depending on the circumstances, as long as
w is prime to 2L + 1.

3.8 The Multiplicities of the Eigenvalues in the DFFT

After the decomposition into even and odd components, all we have to do now
is to compute the trace of the matrix F. Therefore, we write

Trace(F) = G(w,2L+1),

1 i exp(w 2FE - 1 a3)
VL 11,4~ P T AL
where the second expression follows immediately because (—£)% = £2 = (2L +
1 —£)? modulo 2L + 1, and the second line defines the Gauss sum.

The explicit evaluation of G(w,2L + 1) is one of the marvels of number
theory, and can be found in many advanced textbooks. It involves the theory
of quadratic residues, i.e., the problem of solving the Diophantine equation
z2 = w modulo 2L + 1. Its solution requires the computation of the Legendre
symbol (w/p) for any prime that divides 2L + 1. The Legendre symbol equals
1 if the equation has a solution, 0 if p divides w, and -1 if the equation has
no solution. (w/p) can be computed with relative ease by using the quadratic-
recipocity law of Euler-Legendre-Gauss-Jacobi.

Evidently, this route is not so simple to travel, and it would be far too
long for any detailed discussion. Therefore, we quote only the results of direct
interest in the present context. If L = 4k + A, we get the simple formulas,

G(1,2L+1) =¥ VAL ¥1, G(2,2L+ 1) = i *V2L + 1. (14)

According to these formulas for the Gauss sums, the unit-vectors in (13) add
up as if they were oriented at random, since the absolute value of their sum is
equal to the sqare root of their number. Nevertheless, they have a well defined
phase which gave even Gauss a lot of trouble.

Concerning the spectrum of the Fourier matrix (1), we conclude that its
four eigenvalues, +1 and =¢, occur essentially with the same multiplicities.
More precisely, the multiplicities of three of them are equal, and the multiplicity
of the fourth differs by +1 depending on the value of L modulo 4. The formula
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(14) can also be applied to find the multiplicities of the eigenvalues for the
matrix (10) of the cosine transform and (11) of the sine transform.

It should mentioned that the same statements about multiplicities were
derived without the help of number theory by McClellan and Parks ” in the
IEEE Transactions on Audio and Electroacoustics as well as by Dickinson
and Steiglitz 3 in the IEEE Transactions on Acoustics, Speech, and Signal
Processing. Although their arguments are closer to everybody’s mathematical
training, I don’t find them any simpler, and to some extent more arbitrary.
Also, they do not adress the problem of finding the eigenspaces which is our
main interest.

3.4 Renumbering the Rows and Columns tn the Fourier matriz F

All the further discusssion will be based on the two following assumptions: i)
the number of dimensions 2L + 1 cannnot be decomposed into prime factors,
i.e., there is a prime number p such that 2L + 1 = p* with & a positive integer;
ii) in all the explicit calculations we will set « = 1. The first assumption seems
umavoidable, and not very drastic because the decomposition of the number
of dimensions into prime factors is straightforward. The second assumption
simplifies the notations and computations, and the generalization to x > 1
follows the same method as k = 1.

As far the applications to the Sinai billiard is concerned, the number of
dimensions 2L + 1 increases with the energy F. Our assumptions restrict,
therefore, this number to increase somewhat haphazardly by picking only the
prime numbers p. While this feature is not quite satisfactory, it constitutes
a vast improvement over the practice of using ”Fast Fourier Transform” algo-
rithms whose dimensions have to be an integer power of 2. In other words,
there are many more prime numbers than powers of 2; it would be impossible
to understand any of the underlying physics if we had jump from one power
of 2 to the next.

The center column in F' as well as its center row, both numbered 0 in our
nomenclature, have all their matrix elements equal to 1. The four L by L
matrices in the corners have a total of 412 = (p — 1)? matrix elements whose
values depend on the product fm modulo p where both £ and m differ from
0. According to a basic theorem in number theory, which probably goes back
to Fermat and was first proved by Euler, there are exactly p — 1 combinations
(¢, m) whose product modulo p is a fixed integer in the interval from 1 to p—1.

The basic trick in diagonalizing F' consists in renumbering the rows and
columns so that the matrix elements are arranged according as the sums of
their indices rather than according as their products. This conversion can be
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achieved by introducing the idea of a generator g in the multiplicative group
of integers (1,2,...,p — 1) modulo p. Again, Fermat and Euler have provided
all the required details so that we can represent any integer of this group in
the form,

£ = ¢* modulop, (15)

where X is ordinarily made to vary in the additive group of integers (1,2,...,p—
1) modulo p—1, where p—1 assumes the role of 0 according to Fermat’s "little
theorem”.

Formula (15) provides a one-to-one map from the integers 1 < £ < p—1
into themselves. Jacobi published the first comprehensive table of this map for
the primes up to 1000, but nowadays such tables are easily generated even with
the simplest program such as BASIC on DOS. Going from A to £ represents a
kind of discrete exponential function, whereas going from £ to X is called the
discrete logarithm modulo p. The traditional notation is A = I(£), the index
function modulo p for a fixed generator g.

This one-to-one map is profoundly chaotic to the point where it is the most
common tool for the generation of random numbers as well as the key in many
cryptographic enterprises. Moreover, there seem to exist unsolved mysteries in
the nature of the smallest generator g for a given prime, although their number
is easy to figure out. Given any one of them, the others are obtained with the
help of (15) where A runs through all the integers that are prime relative to
p—1.

The required renumbering of the rows and colummns in F' is accomplished
by a permutation matrix. It leaves the center row and the center column
untouched so that one can ignore them for the time being. The new p — 1
by p — 1 matrix has the row indices A and the column indices u. Its matrix
elements depend only on the sum A + g modulo p — 1, i.e., most emphatically,
the same matrix elements are not arranged along the lines parallel to the main
diagonal, but to the cross diagonal. This is not a Toeplitz matrix.

Nevertheless, an ordinary Fourier transform of this p — 1 by p — 1 matrix
almost succeeds in the diagonalization. As will be shown in the next section,
the full p by p matrix is reduced thereby to a set of 2 by 2 matrices along
the main diagonal. Each ”box” of this kind contains a pair of eigenvalues,
either +1 or 47, and the corresponding eigenvectors are trivial to compute
in terms of a rotation angle. The chaos resides in the distribution of these
angles, and it is reasonable to suspect that this chaos is a direct consequence
of the renumbering. The trouble remains serious, however, as long as no other
scheme for the diagonalization of the Fourier transform is available.
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8.5 Ezplicit Construction of the Eigenvectors

The most straightforward method to find the eigenspaces of F' is to define the
following orthonormal base: a vector 1o with the components ()¢ = 8¢9, and
the remaining p — 1 vectors given by the formula,

27rsz (t’)

(Br)o =0, (p)e = Z=g exp( T2 for £ 0, (16)
where 1 < p < p—1 = 2L. For the time being —L < £ < +L, whereas
0 < p < 2L. Notice that the vectors 9, and ¢ar_, are complex conjugate to
each other.

Since g¥ = —1 modulo p (a necessary condition for g to be a generator!),
it follows that gZ+* = —g* = —f. Therefore, I(—f) = L + I(£) always with
L = (p—1)/2, so that (1,)_¢ is (—1)? times the complex conjugate of (,)e.
The vectors ), for even p are associated with eigenvectors of the cosine trans-
form, whereas for odd p they are associated with the eigenvectors of the sine
transform.

The following computations are elementary,

L gos 21 el L., an

Fipo = —1ho + Yp-1, Fipp_1 = N/ 75

VP VP
Fipp=Dptpar—pforl <p<2L—-1=p-2, (18)
with the definition,

A, =

II M;

1 N .pI(n)
\/_ xp(2w1rzp) exp(2mi o ), (19)
where the prime on the sum symbol implies that n = 0 is left out.

Therefore, the vectors v, and 31—, are coupled by the Fourier transform
quite generally for 0 < p < 2L = p— 1. But there are two special cases: i) p =
0 with p = 2L where (17) gives an explicit 2 by 2 matrix with real entries and
the determinant —1, so that the eigenvalues are +1 and we can immediately
find the two corresponding eigenvectors. ii) p = L = (p—1)/2 which is coupled
to itself, 1.e., ¥ is already an eigenvector of F' with the eigenvalue A given
by (19).

For the remaining values of p, again an elementary computation shows
that
A = (=1)Dzp—p. (20)
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Therefore, the determinant of the unitary 2 by 2 matrix that couples ¥, with
¥2r—, equals —1 for even p and yields a pair of eigenvectors, one each for +1.
For for odd p, however, the determinant is +1 and yields a pair of eigenvectors,
one for each +i. These conclusions rest on the fact that the absolute value of
A, equals 1, whose direct proof requires one more elementary but rather tricky
computation.

The eigenvectors from 1o and 1,_, are

+vp— 1o + (/P £ 1)thp_y for 1. (21)

The eigenvectors of F' and their eigenvalues for even p are,

Dby £9ar—pfor £1, (22)
while the eigenvectors for odd p and their eigenvalues are,

A;VJP F itpap—p for L. (23)
That leaves the eigenvector iy whose eigenvalue is Ay, whose sign contains
the whole mystery of the phase in the Gauss sum.
3.6 Changing the Generator g modulo p

Consider two generators g; and g modulo p with the corresponding index
functions I)(n) and I2(n), and assume that the second generator can be rep-
resented in terms of the first through,

g2 = ¢1" modulo p, (24)
where h is any integer that is prime to p — 1. It follows that
Ii(n) = hI(n) modulop — 1. (25)

Let the vectors x, be generated by the same formula (16) as the vectors
¥p, With g2, I2(£), o replacing g = g1, 11(£) = I(£), p. The main question is:
how are the vectors x, and 1, related to each other? Again, an elementary
calculation shows that

Xo = Y,iffo = hpmodulop — 1. (26)

Similarly, the two A-functions, Af,z) with respect to the generator g, and AS,‘)
with respect to the generator g;, are related through,

AP = AM where ¢ = hp modulop — 1. (27)
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The eigenvectors of F' remain in the same pairing if the generator is changed
from g; to g2, and the formulas (22) and (23) are invariant under such a change.
It can happen for a fixed change of generators h, however, that o = 2L — p
(and 2L — o = p) for some particular values of p, but not for all of them. The
formulas (22) and (23) remain the same, of course, but we find that,

A% _p2r—p £ ¥p = (AFYp + Y2r1-p), (28)

for even p, while for odd p,
A;L—p¢2L—p F i, = ii(A;"pp + i¢2L—p)- (29)

There is no invariant way to distinguish 1, and t27_,. The vectors 3, don’t
change at all when the generator is changed according to (26), nor do the A
functions according to (27). Since the the absolute value of the A, is 1, only
its phase angle is required for determining the eigenvectors. Because of the
indeterminacy with respect to p and 2L — p, however, that phase angle can
either refer to A, or to Azr—, = A%. Therefore, we will always take this angle
to be in the upper half of the unit circle.

A short remark concerns the dependence of the eigenvectors on the special
factor w in the Fourier transform F in (1). The eigenvectors are given by (16)
independently of w, and their transformation by F leads to (18) with (19).
The factor w in the exponent of the first factor in (19), however, can be shifted
to the second factor, and appears eventually as factor exp(—2wipI(w)/(p—1))
in front of A, as computed with w = 1. In other words, the phase angle of A,
gets decreased by 2wpI(w)/(p — 1). Of course, such a shift will not affect the
more complicated correlations between the points A, on the upper unit circle.

3.7 Computing the Eigenvectors of the DFFT

Formulas (22) and (23) as well as the discussion in the preceding section show
that the eigenvectors of the DFFT require only the knowledge of the phase a,
in A, = exp(z+ia,) where 0 < a, < 7 . Formula (19) can be simplified for
the explicit calculation at the price of having slightly different expressions for
even and odd values of p.

With the help of I(—~n) = L+ I(n) with L = (p— 1)/2 (as pointed out at
the beginning of 3.5) we find that for even p,

L
2 .n pI(n .
A, = = E cos(2w7rz;) exp(?m;—i—l)—) = exp(tia,), (30)

n=1
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whereas for odd p,

( )

Ay, = ‘/_Z sm(2wm—) exp(27rz ) = iexp(%iB,) = A,, (31)

where the expression defines §, again in the range 0 < 8, < 7.

The real and imaginary parts of A, are now obtained by decomposing
exp(?wi%’-é—';l) into cosine and sine. The whole calculation becomes elementary
provided a simple routine for computing the index function I(n) is available;
but that requires no more than the mod-function”. A valuable check for
large primes p comes from the absolute of value of A, equal to 1. Even the
generator g can be obtained by trial and error in a simple routine that checks
whether ¢ = —1 modulo p. The BASIC interpreter which is part of every
DOS operating system does all these things, and has been used for all the data
to be discussed.

The most convenient choice of a generator g for numerical calculations is
the smallest, usually a single-digit integer, although some strange things can
happen. Of the 167 prime numbers below 1000, only 13 require a double-digit
smallest generator; the first of these is 191 with 19 as the smallest generator;
the next four primes are 193, 197, 199 with the smallest generators 5, 2, 3. In
enumerating the pairs of eigenvectors we will use the index p belonging to the
smallest generator.

The L + 1 eigenvalues %1 contain one trivial pair which follows from (21)
for p = 0. It is not very interesting and will not be part of the data because
its direction in the (%o, %p—1) space converges to +x/4 for large primes p. As
a general rule, there is also an isolated eigenvalue which is +1 for even L, and
+i for odd L. That leaves [(L — 1)/2] non-trivial pairs +1 and [L/2] pairs of
+1, where the symbol [X] indicates the largest integer that does not exceed X.

If we set w = 1 for simplicity’s sake, according to (14) for even L, i.e.,
p = 1 modulo 4, there is a single eigenvalue +1 plus L/2 pairs of each, *+1
and +: eigenvalues. For odd L, however, i.e., p = 3 modulo 4, there is a
single eigenvalue +i plus (L + 1)/2 pairs of +1 pairs and (L — 1)/2 pairs of
+i eigenvalues. The data will list the angles a, or 3, for each set of pairs
separately.

3.8 The distribution of a’s and B’s

The points on the unit circle representing A, for even p = 2, 4,..., 2L-2, and
A, for odd p = 1, 3,..., 2L-1 may not be randomly distributed. Indications of
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some residual order can be seen when the following sums are computed,

3 8= \/iﬁ(l +(p — 1) cos(2muw/p)), (32)
%Ap = p\;}_)l sin(2rw/p)). (33)

Obviously, for large values of p the sum over the points with even index grows
as /p, while sum over the points with odd index goes to 0 as 27w/, /p.

Nevertheless, both of these behaviors are consistent with a random dis-
tribution on the unit circle, because the real value for the sum of these unit
vectors is dictated by the symmetry of the distribution with respect of the real
axis. The fixed value of the sum as function of p, however, indicates a certain
degree of correlation. But it seems hard to discover any subtle order simply
by looking at the numerical data, e.g., in the two tables that are given at the
end of this paper.

Both tables were calculated for the discrete finite Fourier transform (DFFT)
of the prime dimension p = 199, and with w = 1 in (1). This particular choice
was made because p is large enough to justify an effort toward some statis-
tical analysis, and yet small enough to present the results in detail. With L
= 99 = 3 modulo 4, the formula (14) for the Gauss sum indicates 50 pairs of
eigenvalues =1 and 49 pairs of eigenvalues +: with an isolated eigenvalue +:.
Table 1 gives the angles a, from (30) for the 49 non-trivial pairs of the cosine
transform, while Table 2 gives the angles 5, from (31) for the 49 pairs plus the
isolated eigenvalue of the sine transform.

The upper third of each table lists the increasing values of the a’s and #8’s
in ordinary degrees from 0° to 180%. The middle third of each table lists the
differences between the consecutive angles as they appear in the upper third,
again in ordinary degrees; the first angle in the upper table is again found at
the head of the middle table. The last value in the middle table gives the angle
that is needed to return from the last value of the upper table to the first one.
Finally the lower table list the differences in the middle table in increasing
order. Table 2 lists the isolated eigenvalue +1 for the sine transform with
the angle .003°, which is the result of the calculation and gives an idea of the
numerical precision in general.

At the end of the line between the upper and the middle table, the location
for the sum of all 98 unit vectors A, for even p is given, resp. for the 99 unit
vectors A, ko for odd p. The line between the middle and the lower table gives
some additional information: first as a check, the sum of all the differences in
the middle and lower table is seen to be 180; then the number of entries in each
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table is divided into 180 to give the average distance between the points on the
unit circle. Finally, a measure for the mean-square deviation is offered: (sum
of angular differences squared / sum of angular differences) - average angular
difference.

A simple model for the statistics is to assume that the points on the unit
circle are located as if thrown there independently by a pure random-process.
Then the distribution of the distances between nearest neighbors is a Poisson
distribution. The meaurements of length in the interval from 0 to 180 are
normalized to the average distance, which we assume to be 180/50 = 3.6 for
simplicity’s sake. The probability for finding the nearest neighbor on the way
up a distance z away in an interval of length dz is given by exp(—=z)dz.

For a simple test we divide the distances into bins of a length equal to
half the average distance, i.e., 1.8 starting at 0. The most probable numbers
in the first 10 bins are then given by the series 19.67, 11.93, 7.24, 4.39, 2.66,
1.61, .98, .59, .36, .22. The corresponding numbers from the Table 1 for the
even eigenvalue-pairs are 18, 14, 4, 5, 4, 2, 1, 1, 0, 0, whereas for the odd
eigenvalue-pairs one finds 19, 11, 8, 5, 4, 1, 0, 2, 0. At this primitive level
of statistical analysis one can hardly avoid the conclusion that the angles are
independently distributed.

3.9 Some Conclusions

The main claim of this article is a statement concerning the spectrum of the
discrete finite Fourier transform (DFFT): It is well known that not only the
multiplicities of the eigenvalues, but also the eigenspaces can be constructed
explicitly with the help of relatively simple results of number theory. This con-
struction eventually boils down to diagonalizing many unitary 2 by 2 matrices,
each of which is characterized by an angle. The striking result for these angles
is that they are apparently distributed like so many independent points on the
unit circle.

As long as there does not exist any other construction for the spectrum
and the eigenspaces of the DFFT, one can say with some justification that the
Fourier transform is responsible for the chaos in problems like the generalized
Sinai billiard. One can further venture the claim that this kind of chaos is un-
avoidable in quantum mechanics where the interplay between complementary
quantities, such as the direction of motion and the angular momentum in the
Sinai billiard, is essential. It would be interesting to investigate to what extent
the mild symptoms of chaos in quantum mechanics (in contrast t6 the more

virulent symptoms in classical mechanics) can be reduced to the trouble in the
DFFT.
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A suggestion for a large field of future work is the generalization of the
Sinai billiard to three dimensions where the same dichotomy is prevalent: con-
served direction of motion for one part of the motion, and conserved angular
momentum for the other. In either part we have a large choice of possibilities,
all of them integrable and represented by diagonal unitary matrices in quantum
mechanics. Again they are tied together by a Fourier transform, which occurs
on a sphere this time, however; but the questions concerning its spectrum may
be even more difficult because we are now dealing with a non-commutative
group of transformations, whereas the group of rotations of a circle is Abelian.

Finally, I am not sure to what extent the effects of this apparent chaos
in the DFFT can be tracked down in number theory. Most of the arithmetic
in the second part of this paper can be found in any textbook of algebra that
treats the study of the cyclotomic fields (cf. Rademacher®). Actually, the idea
of these fields and most of the above arithmetic goes back two centuries, to
Lagrange and Gauss who was thereby led to his famous construction of the
hepta-dekagon. Nevertheless, are there in number theory the kind of statistical
features that seem rather obvious in the DFFT ?
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6.406
6.654
9.986
10.616
11.557
12.544
14.701
15.922
17.665
20.029
6.406
.248
3.332
.630
.940
.987
2.157
1.221
1.743
2.364
5.631
180
.075
.191
.248
324
373
471
.630
.663
.684
.925

Table 1: The Angles « of the Cosine Transform

25.660
30.112
31.996
32.680
32.755
39.360
40.023
40.948
46.996
56.989

4.452
1.884
.684
.048
6.605
.663
925
6.048
9.994
3.529
49
.940
.987
1.028
1.144
1.221
1.233
1.670
1.743
1.879
1.884

60.518
63.663
67.520
67.991
69.135
70.162
72.854
76.241
79.333
84.441

3.145
3.857
471
1.144
1.028
2.692
3.387
3.092
5.108
12.509
3.673
2.157
2.364
2.364
2.504
2.692
3.092
3.145
3.332
3.387
3.405

96.950

100.440
109.745
118.110
126.018
133.112
134.344
137.750
140.253
142.618

3.489
9.306
8.365
7.908
7.093
1.233
3.405
2.504
2.364
.324

2.894
3.490
3.529
3.857
4.452
4.656
5.108
5.475
5.631
6.048
6.605

142.941
150.741
152.620
157.276
157.649
163.124
163.315
176.340
178.067
0
14.09985
7.799
1.879
4.656
373
5.475
191
13.082
1.670
8.339

0

7.093
7.799
7.908
8.340
8.365
9.306
9.993
12.509
13.082
0
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Table 2: The Angles 8 of the Sine Transform

.003 28.959 74.332 123.946 146.731
2.291 28.987 78.142 125.632 146.808
5.342 32.501 79.039 127.279 148.498

12.182 36.579 79.998 128.228 150.060
13.571 44.118 82.289 129.341 155.906
14.247 44.431 86.200 129.348 157.726
19.960 49.499 94.160 132.148 161.645
24.132 52.481 104.536 132.605 164.702
26.048 65.996 106.341 140.558 172.240
27.826 71.727 110.737 145.806 178.003

.003 1.44332
2.288 .028 3.810 1.686 077
3.050 3.514 .897 1.647 1.690
6.840 4.077 .959 .949 1.561
1.390 7.540 2.290 1.112 5.846
676 313 3.912 .007 1.820
5.713 5.068 7.959 2.799 3.919
4.172 2.982 10.377 458 3.057
1.915 13.515 1.8056 7.953 7.538
1.778 5.731 4.395 5.248 5.763
1.133 2.605 13.209 925 2.000
180 50 3.6 2.72466

.007 1.112 1.915 3.810 5.763
.028 1.133 2.000 3.912 5.846
077 1.390 2.288 3.919 6.840
313 1.561 2.290 4.077 7.538
458 1.647 2.605 4.172 7.540
676 1.686 2.799 4.395 7.953
.897 1.690 2.982 5.068 7.959
925 1.778 3.050 5.248 10.376
.949 1.805 3.057 5.713 13.209

.959 1.820 3.514 5.731 13.515
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QUANTUM AND OPTICAL ARITHMETIC AND FRACTALS

M.V. BERRY
H. H. Wills Physics Laboratory,
Tyndall Avenue, Bristol BS8 1TL, UK

Three waves depend on a common mathematical structure. The waves are light
beyond a diffraction grating with sharp-edged slits, initially transversely uniform
microwaves propagating along a strip guide, and the evolving probability ampli-
tude for a quantum particle in a one-dimensional box where the initial state is a
constant. The mathematical structure is the indefinite integral over ¢ of

(=]
1 1\2
K@em= 3, exp{i“ [2f (r+3)-7(»+3) ]}
n= =00

which is a theta function {Gauss sum) on its natural boundary. For rational 7,
the integral is piecewise constant and describes fractional quantum revivals and
the fractional Talbot effect. For irrational 7, the graph of the wave intensity as a
function of £ is a fractal with dimension 3/2. As a function of 7, the graph has di-
mension 7/4. On some diagonal lines (space-time sections in quantum mechanics),
e.g. £ = (1 — 7)/2, the dimension is 5/4.

1 Introduction

Claude Itzykson excelled in finding physical applications for sophisticated
concepts and techniques from number theory. I think he would have enjoyed
the physics described here, in which arithmetic and fractal geometry appear in
a way that was surprising at first and then gave new insights into the simplest
quantum time-dependence and the distribution of light in a waveguide and
beyond a diffraction grating. I will give only a brief description; details and
generalizations can be found in two recent papers®:2.

My aim is to describe geometrical structures in the sum

V(== Z ( 1) cos{21r{(n+%)}exp{—iwr(n-}—%)z} (1)

In afirst interpretation, this satisfies the time-dependent Schrodinger equation

10, (6,7) = — 100 (6,7) @

with the boundary condition
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[==]
1 1\2
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1 Introduction

Claude Itzykson excelled in finding physical applications for sophisticated
concepts and techniques from number theory. I think he would have enjoyed
the physics described here, in which arithmetic and fractal geometry appear in
a way that was surprising at first and then gave new insights into the simplest
quantum time-dependence and the distribution of light in a waveguide and
beyond a diffraction grating. I will give only a brief description; details and
generalizations can be found in two recent papers®:2.

My aim is to describe geometrical structures in the sum

w(e,r) = Z (= 1)% s{27r§ (n+%>}exp{—i7rr (n+%)2} (1)

In a first interpretation, this satisfies the time-dependent Schrédinger equation

1
10, W (§,7) = — -0 (§,7) (2)

with the boundary condition



‘Il(:t%,r) =0 (3)

and the initial condition

(€,0) = %g-((n;il;—)cos{‘brf (w%)}: 1 (|§1< %) (4)

It follows that ¥ describes what is perhaps the simplest nonstationary quantum
bound state, where an initially spatially constant wavefunction evolves inside
a unit box (infinite potential well). Taken together, (3) and (4) imply that
the initial state is discontinuous at the walls £ = +1/2, a fact that will have
interesting consequences.

A different interpretation of (2) is as the paraxial wave equation in two-
dimensions, with 7 as a longitudinal spatial variable and ¢ the transverse vari-
able. This gives solutions to the Helmholtz equation with wavenumber k and
wavelength A = 27 /k, namely

B2+ 02+ k) ¢(z,2)=0 (5)

with the variables related by

z=af, z=2zrr, ¢(z,z)~exp(ikz)¥({,7)
, (6)
where zr = 5- and a is a length
Here, the approximation is paraxial, that is it describes waves travelling close
to the z axis, in a sense that will be made more precise later. With this
reinterpretation, (1) describes the wave propagating inside a waveguide in the
form of a unit strip with Dirichlet boundary conditions at the edges ¢ = +a/2,
where the wave is spatially uniform as it enters the guide.
A further interpretation is provided by the wave

W (6,7) = 3 1+ (26,4)] )

which also satisfies (2) and with (5) and (6) can be interpreted as a paraxial
wave in the half-plane (0 < z < 00), (—00 < z < 00). This is periodic in £ with
period 1, and satisfies the condition



¥, (£,0) = 1 (if |¢ mod 1| < i) (8)

0 (if |émod 1| > %)

It follows that ¥, describes the paraxial propagation of a plane wave of light,
initially travelling in the ¢ direction, after passage at ( = 0 through a diffrac-
tion grating with period A€ = 1, that is Az = a, consisting of opaque and
transparent strips with equal widths; this is called a Ronchi grating.

In what follows, repeated use will be made of the following obvious sym-
metries of the wave (1):

V(E,-r)=¥"(&,7); Y 7+ 1) =exp{—in/4} ¥ (£, T);

ie W(£,1—7)=exp{—in/4} U* (¢, 1);
U(—€m)=V(Er);¥(E+1,m)=-V(T); (9)
ie. W(l-¢,71)=-¥(,7)

2 Revivals and Talbot images

It follows from (9) that at integer times 7 the probability density

P, 7)= ¥ () (10)

repeatedly reconstructs its initially constant form. This is the simplest example®
of the much more general phenomenon of guantum revivals®®, in which a wide
class of initial quantum states (for example, representing electrons in atoms)
get approximately reconstructed at integer multiples of a time that depends
on the spectrum and the form of the initial state.

For the diffraction grating wave (7), the analogous statement is

¥, ({,-r+1)=-;-[1—'ll(2{,4r)]=‘111 (64—%,7') (11)

Therefore at integer multiples p of the distance zt in (6), the grating profile
(8) is reconstructed by the diffracted light, with a half-period shift if p is odd.
This repeated self-imaging is the Talbot effect®®, and zt is the Talbot distance.
The Talbot effect is also a more general phenomenon that is embodied in (7),
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because (paraxially) perfect imaging occurs not only for the Ronchi grating
(8) but for any profile.

Now consider the quantum wave ¥ at rational times 7 = p/q, where p and
g are mutually prime integers. It is helpful to write this as the integral over
the propagator K for the particle in a box. Thus

1/2
¥, ) = / deoK (€ — o, 7),
-1/2
where K (§,7) = i: exp {ivr [2{ <n+ %) -7 (n + %) 2] } (12)

Now set 7 = p/q, and split the sum into groups of ¢ terms by defining®

n=1lg+s (—o0o<l<00,1<s5<q) (13)

The crucial observation is that the exponential involving {2 can be simpli-
fied, because

exp { —inpgl®} = exp {—imge,!}
where e, = 1(p even) or 0 (p odd) (14)

This enables the sum over ! to be evaluated as a series of é functions, to
give, after some reduction,

(62) =g B (L (o) 2)oree 00

q
An(9,p) = %em {ivr <% + %” + %) } ’gl exp {1% ((2n+qep) s — psz)}

When combined with the integral (12), this result shows that the wave
for these rational times is the (piecewise constant) superposition of ¢ shifted
overlapping copies (labelled by n) of the initial wave in the box (set equal
to zero outside). These are fractional guantum revivals®*. The nature of the
superposition is determined by the A, , which are easily shown to be pure phase
factors, that is
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An (g,p) = exp {i®, (¢, p)} (16)

The phases ®,, can be evaluated by recognizing the formula for A, in (15) as
a variant of the Gauss sum of number theory; explicit formulae can be found
elsewhere® 29,

Figure 1 shows fractional revivals of the probability density for increasing
g, as 7 = p/q takes values given by successive approximations to the golden
mean. These were computed as the sum of ¢ shifted copies with the phases ®,,.
Confirmation of the correctness of the analysis was obtained by computing ¥
for the same T with the eigenfunction series (1), which gave exactly the same
pictures (apart from Gibbs oscillations smoothing the discontinuities, caused
by truncating the series).

The optical analogues of the fractional revivals are the fractional Talbot
images'® 1! at distances z = zr p/q from the grating. In each unit cell
(e.g. 0 < z < a), these images are superpositions, with phases &,, of ¢ copies
of the grating, with amplitudes reduced by 1/1/q. The above-mentioned explicit
formulae for the phases considerably facilitate the calculation of these images.

3 Fractal waves

Rational values of T are special. For typical (i.e. irrational) =, and, more
generally, as a function of the variables £ and 7, the Schrodinger wave ¥ defined
by (1) - and also the diffraction grating wave ¥, defined by (7) - possesses rich
fractal properties. These are conveniently described by the fractal dimensions
of the graphs of the probability density (10) along lines in spacetime, that is,
in the &, 7 plane.

In calculating the various fractal dimensions'?, I will apply to (£, 7) a
result for Fourier series

f(w)= Z @m exp {imu} 17

where the a,, have random or pseudorandom phases. If the power spectrum
|am|? has the asymptotic form
lam|? ~ |m|™? as|m| — oo, where 1 < 8 < 3, (18)

then the graphs of Ref and Imf are continuous but nondifferentiable, with
fractal dimension

D= (5-) (19)
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Thus # = 3 corresponds to a (just) differentiable curve with Df = 1, and
B = 1 would correspond to an area-filling curve with Dr = 2. Equation (17)
can be obtained (by simple dimensional analysis) from the result!? that if
f has dimension D; the mean square increment of f(u) over a infinitesimal
distance Awu is proportional to (Au)"ZDf ; for a straightforward derivation of
this result, see’4. This applies when Ds represents the capacity dimension, but
in the present context I expect it to hold for the Hausdorff and other fractal
dimensions as well'>. Elsewhere? I have argued that the fractal dimension of
the graph of | f(u)|? is, almost always, also Ds. Therefore the fractal properties
of Re ¥ and Im ¥ are inherited by the probability density P(¢, 7).

At irrational times 7, when quantum revivals do not occur, the quantum
wave WU, regarded as a function of position & in the box, has the form (17),
with Fourier components m = (n+1/2) and pseudorandom phases mrm?. The
power spectrum is, from (1), proportional to m~2, so that 8 = 2 in (18) and,
from (19), the fractal dimension of the probability density is D¢ = 3/2. The
same argument gives the dimension of the graph of wave intensity across the
strip waveguide, and of the light intensity beyond a Ronchi grating in almost
all planes, where z/z7 is irrational and there are no fractional Talbot images.

Figure 1 shows how the spatial quantum fractal for r = ¢ = (3 — /5)/2
emerges as the limit of sequences of fractional revivals corresponding to the
continued-fraction (Fibonacci) approximants to 7g. Figure 2 shows the spatial
fractal for 7 = 1/27 in greater detail, and a magnification illustrating the self-
similarity. Pictures for other irrational 7, and for the Talbot image intensity
|¥,)2, are similar.

Now consider ¥ as a function of time 7, at fixed position £. As has been
explained, the probability density derived from the wave (1) is periodic in
7. Its Fourier series contains longitudinal frequencies restricted to the values
m = (n+1/2)%. For such a lacunary series, the power spectrum is |an|?dn/dm,
which is proportional to m~3/2. In the argument following (17) we now have
B = 3/2, giving the unexpected fractal dimension D, = (5 — f)/2 = 7/4. This
is not restricted to rational £, and indeed we think the probability density is
a fractal function of time everywhere, except at the walls & = +1/2. Figure
3 shows one of these time fractals, and a magnification illustrating its self-
similarity. The greater fractal dimension, reflected in the greater irregularity
of these curves in comparison with those in figure 2, is clear.

The time and space fractals can be seen together in figure 3, which is
a landscape plot of P(§, 7). Evidently this is not an amorphous fractal, but
contains much additional structure. In particular, unanticipated diagonal lines
can be discerned, corresponding to particular spacetime slices through the
P landscape (one is visible issuing from the rear right of the picture; with
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other views of the landscape?, more are visible). As I have described in detail
elsewhere? | these form part of an infinite set of lines, namely

E:mr+n+%(m3&0), E:(m—k%)r—k%n (m,n integer)  (20)
on which partial destructive interference between the terms in (1) reduces the
fractal dimension to Dgijag = 5/4. One of these spacetime fractals is shown
in figure 5; it is noticeably less irregular than either of the previous fractals,
reflecting its smaller dimension. The lines (20) also appear as 'canals’ in the
analogous computations for Gaussian wavepackets>.

Further analysis of the sum (1) may reveal more fractal treasures, for
example spacetime lines (not necessarily straight) on which more complicated
interference between groups of terms leads to fractal probability densities with
dimensions different from D;, D¢, or Dyjag-

4 Discussion.

In the wave behind a diffraction grating, several of the phenomena so far
discussed, namely the Talbot images for rational z/zr, the transverse frac-
tals with dimension 3/2, for irrational z/zrt, and the ’longitudinal’ fractals
with dimension 7/4, as z varies for fixed &, have been observed in a recent
experiment!. At first it seems surprising that it is possible to see the transverse
fractal dimension 3/2, because any misorientation of the plane of observation,
such as must surely occur in reality, ought to give a light intensity pattern
whose fractal dimension is that of a generic section, namely the larger value
7/4. That the transverse fractal can in fact be seen is the result of a curious
combination of two circumstances, and could hold a more general message for
the interpretation of experiments involving fractals.

The first is that the Talbot fractals possess infinitely fine detail only
in the limit of perfect paraxiality, unlike the quantum fractals that are exact
solutions of Schrodinger’s equation. A detailed analysis! shows that this is the
limit A/ea — 0. Finite values of A/a give rise to postparaxial blurring of the
transverse and longitudinal detail in the fractals (and the edges of the rational
Talbot images) according to the same function that gives diffraction smoothing
of the cusp caustic of geometrical optics. (This echo of geometrical asymptotics
is curious - albeit mathematically unsurprising - in view of the fact that the
sharp detail that is being postparaxially blurred is itself the result of (paraxial)
wave interference).
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The second circumstance is that the natural 'unit cell’ of the Talbot
effect, namely A, = a, Az = 27, is enormously elongated relative to the di-
mensionless unit cell A{ = 1, A7 = 1 (by a factor a/A, which in the experiment
reported in ! was 803). This effect causes any misorientation of the observa-
tion plane in z,z space to be greatly reduced in &, 7 space, often to such a
degree that it falls within the postparaxial = blurring. So, paradoxically, the
transverse fractal is rendered observable because fine detail in the longitudinal
fractal is obscured. The same argument suggests -again paradoxically- that the
elongation of the natural cell should make it more difficult to see the dimension-
ally dominant longitudinal fractal; nevertheless, observation was possible, by
careful alignment exploiting the symmetry of the Talbot images about £ = 0.

The Talbot fractals are not restricted to Ronchi gratings, but will occur,
with the same dimensions Dy = 3/2 and Dt = 7/4, whenever the transmission
function has discontinuities in its amplitude and phase.

For the quantum fractals, the situation described here can be generalized
enormously?, to quantum waves evolving in arbitrary D-dimensional enclosures
with D — 1 dimensional boundaries, from arbitrary initial states with discon-
tinuities. It would seem that the chaology of geodesics (trivially integrable
in a one-dimensional box) might dominate the fractal geometry of the evolu-
tion, since fine detail depends on high-lying eigenstates, that is on semiclassical
asymptotics. But in fact the results have a wider universality: whatever the
chaology, the graph of the probability density as a function of time at a fixed
position is a fractal curve with dimension 7/4, and the graph as a function of
position for fixed time is a D + 1/2 dimensional fractal hypersurface. These
results do not apply if the boundary of the enclosure is itself a fractal, with
dimension D — 1 + 4 (where 0 < 7 < 1); then, a physical argument suggests
that the time fractal dimension is (7 + v)/4, and the space fractal dimension
is D + (1 + v)/2. Further generalizations can easily be envisaged.

The simple wave ¥ (£, ) (equation 1) is the indefinite integral (cf. 12) of
a Jacobi theta function (infinite Gauss sum)!®, on the natural boundary of
its domain of convergence: if 7 had a small negative imaginary part, the sum
in (12) would converge. Although the theta function does not converge, the
singular behaviour on its natural boundary is reflected in the rich structure
of fractals and quantum revivals in its integral ¥, which does converge. The
theta functions themselves would arise in the evolution of quantum waves from
a é-function initial condition, or from a grating of infinitely narrow slits. In
the optical case there are two principal effects that would make the analogue of
the sum converge. First, there is non-paraxiality, mentioned already. Second,
there is the effect of the finite number N of slits in any real grating, giving rise
to a wave described by a finite Gauss sum. As N — oo, the wave in irrational
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planes z/zr gets infinitely complicated, in a way that can be fully described
by a chaotic renormalization transformation!?.

Finally, it is worth remarking how different are the superficially analogous
problems involving the heat equation, obtained by analytic continuation of 7 to
the negative imaginary axis. Then (1) describes the evolution of temperature
in a bar where the initial temperature is constant and the ends are maintained
at a different constant temperature. In this situation the sum (1), and the
associated theta function, converge exponentially, and there are no revivals
and no fractals.
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Figure 1. Probability density P(&,7)=l¥ (5.1’)I2 for a particle in a box,
at the indicated times 7, approximating the golden mean 16=(3-V5)/2 =

0.381966 (=144/377+3.15x10-6), showing fractional quantum revivals
accumulating to give the spatial fractal, with dimension D¢ =3/2.



Figure 2. Quantum spatial fractal for t=1/e. (a): over the irreducible
range 0<E<1/2, and (b): magnified to show the self-similarity.
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Figure 3. Quantum time fractal. with dimension D ;=7/4. for £=0.25;
(a): over the irreducible range 0<7<1/2, and (b): magnified to show the
self-similarity.



Figure 4. llluminated landscape plot of the fractal probability density
P(&,7) in time and space for a particle in a box.
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Figure 5. Quantum diagonal fractal, with dimension Ddjag=5/4. for
the spacetime slice E=(57+1)/2; (a): over the range 0<t<1/2, and (b):
magnified to show the self-similarity.



CORRELATIONS AND TRANSPORT IN
ONE DIMENSIONAL QUANTUM IMPURITY PROBLEMS
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We review a set of exact results about correlations and transport in one dimensional
quantum impurity problems that we have obtained in the last three years . These include
the spin two-point function in the double well problem of dissipative quantum mechanics
(or equivalently the anisotropic Kondo problem), the DC conductance and noise and the
AC conductance for the tunneling between edges in the fractional quantum Hall effect.
Few technical details are given; rather, we try to outline the principles of the methods,
the nature of the results, and to explain what makes some questions more difficult than
others.

1. Introduction.

One dimensional quantum impurity problems have been for many years a prominent
subject in theoretical and mathematical physics. The reason is that these problems exhibit
very non trivial physical features, have experimental applications, and present big technical
challenges, whose solution however appears possible. Important theoretical steps in the
study of these problems include the renormalization group analysis [1], [2], the Bethe ansatz
solution [3], and, more recently, the application of conformal field theory [4].

In this paper, we review the results we have obtained on these problems in the last
three years, in collaborations including P. Fendley, A. Ludwig, S. Skorik and N. Warner.
Our main focus has been on the exact computation of correlation functions and related
dynamical properties, all the way from small to large distances. The Bethe ansatz had led
so far only to the computation of thermodynamical quantities [3]. The use of conformal field
theory had led to interesting results but only in the vicinity of the small and large distance
conformal invariant fixed points [4]. Even numerical studies had, until very recently, not
been completely satisfactory (see however [5], [6], [7] for recent progress). On the other
hand, correlation functions are the most interesting physical quantities: for instance, in
the Kondo problem, the question of the screening cloud [8] is directly related with the spin
one point function, in the double well problem of dissipative quantum mechanics [9] the

transition from coherent to incoherent regime is signalled by the behaviour of the spin two
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point function, and, in the most recent quantum impurity problem - the edge tunneling in
the fractional quantum Hall effect - the only quantities of interest are transport properties
[10].

We have been concerned with three physical problems: the (anisotropic) Kondo prob-
lem, dissipative quantum mechanics, and edge tunneling in the fractional quantum Hall

effect. These problems are all based on a hamiltonian of the form :

1
8mg

H—1 0d 8wgIl? 90} + B
_5/_°°I[Wg + (0:9)°] + B. (1.1)

The model is defined on the negative axis and has interaction at £ = 0. We will use the

euclidian coordinates z = = + iy and z = z — iy with y = —it (Fig. 1).

linm

Fig. 1: Geometry of the problem.

Here the boundary term B describes the interaction of the fields with a boundary

degree of freedom, which we chose to be a spin :
B=2)\ [a.*_e""’(o)/z + a_e"""’(o)/z] , (1.2)

where 0. are taken in a representation of su(2), with g = ¢'™9 :

qo'; _q—'o'z

T (1.3)

[0:,04] = 2204, [a+v‘7—] =

At first sight, this choice of boundary term might seem unnatural, but it reduces to well
known cases with different choices of representations. For example, the spin 1/2 repre-
sentation of su(2), is isomorphic to that of su(2) and the previous hamiltonian therefore

describes the usual anisotropic Kondo model. Higher spin have little physical interest, but
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their formal consideration can be quite useful. When g is rational, and a cyclic represen-
tation is chosen, it is possible to map the system on the massless boundary sine-Gordon
model [11] with :

B = 2X cos ¢(0)/2. (1.4)

Instead of a free boson, one could consider a more complicated theory in the bulk.

Such problems can also be of physical interest - for instance a theory with central charge

3
2

here.

¢ = 2 would correspond to the two channel Kondo problem - but we will not discuss this

Under a renormalisation group transformation, the coupling constant flows according

to:

20~ (- g, (15)
which shows that for ¢ < 1 the perturbation is relevant, while it is irrelevant for g > 1. In
the following we restrict ourselves to 0 < ¢ < 1. In the simplest case of a spin 1/2, the
system flows from a free spin in the UV to a screened spin in the IR. For the boundary
sine-Gordon model, the flow is from Neumann boundary condition on the field ¢ in the
UV to Dirichlet boundary conditions in the IR. The problem is to compute the properties,
including the correlation functions, for all couplings .

Before launching into technical details, we would like to stress that the hamiltonian
(1.1) has also a fundamental interest [12]. It leads to a quantum field theoretic version of the
“gquantum monodromy operator”, well known in the theory of the Yang Baxter equation,
and is therefore deeply related to the integrable structure of conformal field theories. To
understand that, we first observe that in the massless case, one can easily “unfold” the
system. Instead of having a boundary where right movers are transformed into left movers,
one can think of the system as having no boundary, but instead an impurity at z = 0,
through which say left movers scatter. Then, consider the partition function Z; of this
problem on a cylinder of circumference § = 1/T. The hamiltonian (1.1) (or its unfolded
version) corresponds to a propagation in the y direction. We can alternatively compute
the same partition function within a modular transformed point of view, by considering
propagation in the z direction instead. Then, the hamiltonian is simply the free boson one
defined on a circle, and the term B in (1.1) becomes a simple impurity at z = 0. In other

words, the partition function can be written

Z; =< oltr e™FLo= Li(A)[0 >, (1.6)
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where

. YT ) .
Li()) =10; {e"P""'Pexp [q-—I/?,\/ dy (e-?'h Wgo:/25, + ez'“(")q_"‘pa_)] } ,
o

(1.7
where ¢ is the left component of the field ¢, P is the momentum operator in the canon-
ical decomposition of ¢. II; indicates that the spin operators are taken in the spin-j/2
representation, P indicates path ordering, and the exponentials are normal-ordered.

The operator L;(A) acts both on the degrees of freedom of the external spin and on
the degrees of freedom of the free boson. If one thinks of the former as “horizontal” and
the latter as “vertical”, it is clear that L; is a continuum limit of the usual monodromy
operator in the XXZ chain [13]. By working out this analogy a little more closely [12],

[14], one shows in particular that it solves the Yang Baxter equation
R ()L (N Lyp(8) = Lt (W) LR (A, 1), (1.8)

where R’ is the usual R-matrix solution of the Yang Baxter equation, acting in the tensor
product of spin j and spin j' representations [13]. In particular, we see that the coupling X is
now interpreted as a spectral parameter. It is well known how the monodromy operator in
the XXZ case is related with the conserved quantities and the whole integrable structure.
Similarly, L; here is deeply related with the integrable structure of the conformal field
theory, so quantum impurity problems provide a “probe” of this structure.

The determination of correlation functions in these problems had been outstanding
for many years. Our (partial) success comes from the combination of several techniques
and ideas that were evolved only recently, within the spectacular developments in the field
of integrable systems (for progress on correlation functions in other problems, and using
different ideas, see [15]).

A standard approach to the problem is perturbation theory [2]. Within an imaginary
time formalism, it is easily checked that the partition function is the same as that of a
Coulomb gas with positive and negative charges interacting on a circle. The charges can
take any relative positions for the boundary sine- Gordon model, but they have to be
alternating for the spin 1/2 Kondo problem. While this reformulation was well known, it
involves very impressive Coulomb integrals that were usually considered as untractable.
Thanks to recent developments in the theory of symmetric polynomials [16], we have
actually been able [17], [11] to obtain these integrals in “closed form” - more precisely in
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the form of infinite series of rational functions of gamma functions. This allows extremely
quick numerical evaluations of the thermodynamical quantities for any ¢ and A\. More
interestingly, this allows a control on the amalytical behaviour of these quantities as a
function of ¢ - even a formal continuation of quantitites beyond ¢ = 1, which is of key
importance in the study of “duality”. Finally, although we do not completely understand
why, these series have natural generalizations that readily provide some of the dynamical
properties,. for instance the voltage dependent conductance in the tunneling problem.

The other approach is based on integrability. That the hamiltonian (1.2) is integrable
has of course been known for a long time ((1.4) became of interest more recently [18]). So
far however, the integrability had been used mostly to compute therrnodynamic properties.
To address correlation functions and transport properties , an easy but important step is
to realize that integrability allows to describe the system in a new basis (plane waves
behave in a very complicated way at the boundary). This basis is made of quasi particle
states, the quasi particles being massless solitons/anti-solitons ! and breathers, that scatter
non trivially [19]. This scattering is conveniently encoded in the Fadeev-Zamolodchikov
relations [20] :

Z(6,)2°%(8:) = S (01 ~ 02)2(62) 24 (61)

Z?(01)2:,(02) = Seiei (61 — 02) 22, (62) 27 (61) (1.9)
Z(61)2:,(62) = 5551 (61 — 62) 2 2%(61) +270538(61 — 82),

where S is a solution of the Yang-Baxter equation, ¢ is the rapidity parametrizing energy
and momentum (see below) and Z¢ (resp. Z;) the annihilation (resp. creation) operator
of a particle of type ¢ . In this basis the boundary interaction is then simply given by
a reflection matrix R¢'. This R matrix has in turn to solve the boundary Yang-Baxter
equation.

This description could have been used many years ago [19]. One has however to
overcome a slight conceptual difficulty: while L and R moving massless particles will scatter
trivially because the theory is massless , the L particles (and similarly the R) will have a
non trivial scattering. Since two such particles are both moving in the same direction at
the speed of light, their “scattering” is difficult to imagine physically. In fact, the S matrix

has to be interpreted as giving the monodromy properties of the wave function, and an

! We sometimes designate these by kink and antikink.
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approach based on massless particles would not make much sense if the theory was not
integrable.

In a first series of papers, we have generalized the Landauer-Biittiker transport theory
[21] (that deals usually with free massless electrons) to massless particles with factorized
scattering This allowed us to determine exactly DC transport properties in the tunneling
problem: the DC conductance [22], [23], the DC noise [24], [25], both out of equilibrium
(with a voltage).

The massless basis can also be used to compute time and space dependent correlators
(this was actually done first, in the slightly different context of lows between bulk theories,
in [26]). Indeed, the matrix elements of physical operators in this basis can also be deter-
mined using the tools of integrable systems: in fact they follow easily from computations
done previously in the massive case [27]. Because the theory is truly interacting, there
are infinitely many such matrix elements to take into account: for instance, the current
acting on the vacuumn can create any neutral state, with an arbitrary number of massless
particles. Fortunately, few of these matrix elements are enough to obtain the correlators
with arbitrary accuracy all the way from small to large distances. In a second series of
papers [28],[29], we have used this method to determine, for instance, the T = 0 spin
correlator in the dissipative quantum mechanics problem, the ' = 0 screening cloud in
the anisotropic Kondo problem, the T = 0 AC conductance in the tunneling problem. All
these quantities were determined without magnetic field (voltage). The consideration of
the correlators at T # 0 and (or) with a magnetic field (a voltage) is more difficult. We
have recently obtained results [30] for the AC noise at T = 0 out of equilibrium in the
tunneling problem.

Before proceeding, we would like to comment on our use of the word ”exact”. We
usually call exact result the expression of a physical quantity either in terms of a small
number of known functions, or in terms of the solutions of a small number of integral or
differential equations. In that respect, all the DC results obtained by the combination of
TBA and the Landauner Biittiker approach are exact. We have also used the vocable exact
for the AC properties. This is stretching its meaning a bit, since an exact expression for the
correlators would involve an infinite number of terms. More precisely, our result is that we
have an expression involving a small number of integrals, which provides arbitrary accuracy
all the way from small to large distances. This is to be contrasted with perturbation theory

where more and more terms are necessary to get accurate results at large coupling. For
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this reason, the perturbative approach is not exact. However, we call exact the expressions
for the Coulomb gas integrals in terms of series of gamma functions. In our opinion, they
deserve this label because the sums can be very quickly evaluated to an arbitrary accuracy,
and because these sums give access to non trivial information - eg the continuation beyong
g=1/20rg=1.

In the following, we set e = h = 1.

2. The Physical problems.
2.1. v=1/3 Hall effect.

Edge excitations are one of the most exciting aspects of the fractional quantum Hall
effect. For the sake of the discussion, let us limit ourselves to the “simple” filling fractions
v = 1/t with ¢t an odd integer. When we place ourselves on a plateau, the Hall law and
current conservation hold classically. These classical equations can be derived from an

action principle, thus leading to an effective action for the electromagnetic potential A :
v
S(A) = —/ ANdA, (2-1)
2Js

with J the 2+1 space bounded by the sample geometry. The presence of finite geometry
generates an anomaly under gauge transformations and one is forced to add a boundary
term to cancel this anomaly[31], [32]. This is where the boundary currents come into the

picture. They are described by a relativistic action, which in a bosonised form looks like :
1 (o =]
56)= g5 | dz 087 + @17 (22)

If we choose a geometry with currents emanating from reservoirs at the top and bottom
of the sample (see Fig. 2) we have two such actions describing the right and left moving
currents at the bottom and top respectively. In that picture the creation and destruction

of Hall quasiparticles are described by operators of the form :
Om(z) = ™) (2.3)

for charges @,, = vm, thus m = 1 correspond to the Laughlin quasi-particle. Now we can
define the tunneling problem we wish to address [33]: Imagine a Hall system to which we
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add an obstruction at z = 0. Then there is a possibility for transfer of charges by the
quasiparticles at that point (Fig. 2), which is modelled by a term of the form :

oo
B= Z Am emBLO=620) 4 cc. (2.4)

m=1
here each term describes the transfer of a quasiparticle of charge ¥m from one edge to
the other. It turns out that for the specific choice, » = 1/3, only the transfer of Laughlin

quasi-particles of charge @ = 1/3 is a relevant perturbation [10].

x=0
Fig. 2: Sketch of the tunneling experiment.

So the system we are trying to describe has the following hamiltonian :
had 1
H= %/ dz [4mvI? + Zﬂ_—y(aﬂp)?] + Ad(z) cos(pL — ¥r), (2.5)

where the L and R components depend on z,t as ¢ (z + t), pr(z — t). It was shown in
[22] how by using even and odd field basis, this problem can be mapped on a problem on a
half line with only the odd field interacting with the impurity. The odd hamiltonian then
reads :

H=L " [sro(mey? L (8.6°)2+ 25 ! o 2.6
=5 oo + G (0e8")F ]+ Ao(o) cos 50°, (26)

and in the following we will write ¢ = ¢° and g instead of ». Thus, for this problem,
B = Acos1¢(z = 0,t). The problem now is of the form (1.1). Without the impurity, the
charges Q1 and Qg were conserved individually on each edge. Now, transfer of charge is
possible and Qr + Q. is conserved but not AQ = QL — Qr. But these expressions are
just the charges for the even and odd bosons used in the transformation (up to a factor of
V2). Thus the even field, which has no interaction will not play any role in the following
whereas the odd field contains all the information about the backscattering current created
by the impunty: Ig.

Experimentally there will be resonances controlled by the gate voltage V, at z = 0,
where the conductance will be G = 1/32. Then changing the gate voltage takes the

2 We have put an additional factor 2 in our definition of the conductance so that it takes this
simple form, even with the convention A = 1.
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system off resonance by an amount V, — Vy o A: this thus provides an experimental
setting for (1.4). Of course, quantum field theory gives control of the universal results
only. This means that one has to look for experimental values of the physical temperature
and V, - V; as small as possible, and to build universal curves as a function of scaled
variables, for instance (V, —V;)¥?/T (for g = 1/3). Quantities of physical interest include
the DC and AC conductance and noise.

2.2. The Kondo problem, and the double well problem.

We will assume that the reader is well aware of the physics of the (anisotropic) Kondo
problem itself. We just recall that it is originally a three dimensional problem; however
only s waves couple to the impurity, and this allows reduction to one dimension, the radial
coordinate.

We will mostly discuss the dissipative quantum mechanics version of this problem:
the double well system with Ohmic dissipation [9] 3. This dissipation is created by the
environment, and one is interested in dynamical properties of the double well. An archetype
hamiltonian to describe this system is :

A € p2 1 C 2
H=-— = < = 2 - 2 . 7
2 0= + 5+ +Za: [2”‘0 + 3 Mata (:z:a — a,) (2.7)

In this expression, the Pauli matrices o,, 0, act on the two dimensional space of states. A is
a tunnelling matrix element and ¢ denotes a bias between the two states. Dissipation comes
from the coupling of this two states system to an environment of oscillators described by
the last part of the hamiltonian. Each of these individual oscillators has a different mass,
frequency and coupling to the two states. It was shown [9] that the system can be mapped,
in the so called ohmic dissipation case, to an anisotropic Kondo model. In that case the

oscillators are chosen so that :

a“a

T C? —w/w
JW) = 3 Y i — wa) = we ™/, (2.8)

with w, a cut-off. The conduction electrons in the latter play the role of dissipation and
the z value of the spin is associated with the two states. The bias, ¢ would correspond to a

magnetic field in the Kondo problem. The parameter in the Kondo model is proportional

3 The boundary sine-Gordon problem also describes a dissipative quantum mechanics problem,

this time of a particle moving in a “washboard” potential [34].
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to the strength of the dissipation ¢ < 7. The coupling to the impurity, is related to the
tunelling term in (2.7), the precise relations given in [9].

The question of interest is the coherence between the two states as a function of the
strenght of the dissipation, or as a function of ¢ in (1.1). When g > 1 the system is
localised in one of the wells. When ¢ < 1, then if the state is initially in the “up” position,
it will relax to an equal probability to be in either states as a function of time. There
are two possibilities: it can either relax monotically, or decay in an oscillatory fashion. A

mean to study the relaxation is to look at the following correlator :
1
C(t) = 5 <[S:(1), 5. (0)] > . (2.9)
It describes the probability to be in a state S.(t) given that the system was in state S;(0)

at t = 0. By means of a simple transformation, this correlator can be related to a current

correlation.

3. A perturbative approach.

All orders in perturbation theory can actually be computed in these problems, for
several quantities, thanks to the theory of symmetric polynomials.

The partition function at finite temperature can be deduced from the form of the two
point function :

(40 2e=i00612) = | EsinfaT(y — )], (3.1)

where & is a cut-off. Then at each order in perturbation theory, there is a contribution I,
which is given by the Boltzmann weight of a 2D Coulomb gas on a circle with an equal
number of positive and negative charges [17] :

' 129

2 swi i i

du; du’ |II;<,; 4sin St sin L
Bl i) = [ [[ e | e 2 (32)

° m IL; ; 2sin ——+
In these notations the partition function is just given by :
oo

Zpse =1+ Z 2" by, (3-3)

n=1
with £ = A/T(27T/x)? an effective coupling. Remarkably, while the integrals (3.2) had
been outstanding for many years, they can in fact be computed after some few manipula-
tions using Jack polynomials. One ends up with the result :

— Fio)-2n ST [L0m +9(n =i +1))]7
o =ro S [ e wn) - @

m =1



Here m = (my, m3,...,m,) is a partition with at most n rows.
A similar perturbative approach is also well known for the anisotropic Kondo model.
The main difference is the presence of the o4 in the boundary term, which constrains
the charges to be alternating on the circle [2]. The resulting integrals are then ordered
and the method based on Jack polynomials fails. However, one can use the integrability
of the problem by means of fusion relations. Using that the tensor product of a cyclic
representation with a spin 1/2 is a sum of two cyclic representations, one finds the following
relation between the partition functions of the Kondo and boundary sine-Gordon model
11}
ZBsc(9r) + Zpsc(9”'7)
Zpsa(z) ’

with = the effective coupling constant. Thus at each order, the coefficient of the Kondo

Z(g-97N)z] =

(3.5)

problem are determined by those of the boundary sine-Gordon model. Equivalently, or-
dered integrals can be expressed in terms of unordered ones, a result which is easy to
understand at lower orders.

A pessimistic reader might object that (3.4) is not so excii:ing since after all what
we have been doing is simply replace a multidimensional integral by a multidimensional
sum. In fact, although the coefficients (3.4) have a rather bulky expression, they lead to
very quick numerical evaluation (infinitely quicker than Monte Carlo computation of the
integrals). Moreover, while the integrals are well defined only for g < 1/2, the expression
(3.4) can be continued beyond g = 1/2, leading to a dimensionally regularized version
of the theory, with no UV cut-off. In fact, the expressions (3.4) can even be continued
beyond g = 1, providing a dimensionally regularized version of irrelevant perturbation
theory. This is very useful to address the intriguing issue of duality.

Let us illustrate this in the simplest case [35]. Take the second cumulant of F =
—Tlog Zpscg, then the sum can be done explicitely and we find :

_T(-29)

e

(3.6)
This term is finite all the way to ¢ = 1 apart from a pole at ¢ = 1/2 and there is no
branch point anywhere. Thus the analytic continuation is perfectly well defined. This
generalises to the higher terms, one can check that in the term £ f,, there is a pole at
g =1 - 1/(2n) with known residue. These poles result in logarithmic terms of the form
(=1)"Tg/(27nT)log T /T in the free energy, where Tp is a boundary energy scale (see
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next section). (3.6) vanishes at g = 1, and is well defined for ¢ > 1 by analytic continuation
of the Gamma function.

As we observed earlier, thermodynamic properties are not the most interesting ones.
For the boundary sine-Gordon case, the most important quantity would be the non equi-
librium DC conductance. To evalate it, a possible approach would be to handle the model
out of equilibrium using the Keldysh formalism. We have not done so, but we have found
a remarkable formula for this conductance (whose validity we checked against other ap-
proaches) that indicates deep simplifications. Introduce the quantity Zgsg(V) defined as
in (3.3) but with V dependent integrals

n

]%(V) — P(g)—ZnZHr[mi +g(n —t+ 1)]P[P+mg +g(n —i+ 1)] (3'7)

T[mi+1+g(n—9)T[p+m: +1+g(n—i)]’

=]

where :'Z,rl = 2wp. Then we have found [17],[35] the following expression for the conduc-
tance
G(I N V) =49 -

tgmT 8 a ( Zgsa(V) (3.8)

2 8(V/2T)dz  \Zpsc(-V))~
Hence, a bit mysteriously, equilibrium quantities lead very simply to non equilibrium ones.
Since for the moment we do not completely understand why (3.8) holds, we need a more
reliable method to evaluate this conductance as well as other quantities.

4. A new basis.

The hamiltonian (1.1) describes free bosons interacting with an impurity. While
plane waves solve the bulk problem readily, their interaction with the impurity is very
complicated. Instead, we will think of the free boson as a limit of the sine-Gordon theory :

0

0
= % /_ N dz [8mwgll® + Sflr—g(a,¢)2]+ A / Oocosq&(z), (4.1)

when the bulk coupling A (hence also the mass) goes to zero. The spectrum of the sine-
Gordon model, which is a quantum integrable theory, is well known [20]. In the limit A — 0,
one simply obtains right and left moving massless solitons/anti-solitons and breathers. The

energy and momentum of solitons for example, is described in terms of a rapidity by :

e=zxp=pe (4.2)
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with 4 an arbitrary energy scale. The scattering between left or right movers is the same
as the massive scattering, ie it is given by Zamolodchikov’'s S-matrix for the sine-Gordon
model. The scattering between left and right movers is a constant phase taken to be one
in the following.

This somewhat artificial method to describe a free theory is very convenient in the
presence of the boundary interaction. The latter translates simply into a reflection matrix
which is a solution of the massless boundary Yang-Baxter equation, R¢ (p/Ts). This
matrix includes a scale, Tp = pe?® describing the impurity strength Tg o< AY(1=9)_ [n
that picture, Tp = O corresponds to the UV fixed point, and T3 — oo to the IR fixed
point. In this massless case, one can as well “unfold” the system, and instead of boundary
scattering, deal with impurity scattering [36}, [37]. In fact, the reflection matrix is closely
related with higher spin solutions of the Yang Baxter equation of the type SY21 ja higher
su(2), spin.

5. DC transport properties
5.1. Linear conductance

Let us consider tunmneling in the quantum Hall effect. Of physical interest is the
linear conductance in the presence of the point contact. From a field theory point of view,
one usually needs to compute the two point function of the currents in order to find the
conductance. A standard way of representing it at zero temperature is through the Kubo
formula :

1 L ] e tw . -
Glum) = _W/_L dz dz [_m dy e'“MY < j(z,y)j(z',0) >, (5.1)

where wys is a Matsubara frequency, y is imaginary time, y = it. One gets back to real
physical frequencies by letting war = —iw. In (5.1), j is the physical current in the unfolded
system, ; = 8y(¢L — ¢r). Without impurity, the AC conductance of the Luttinger liquid
is frequency independent, G = g. When adding the impurity, it becomes G = § + AG.

After some simple manipulations using the folding, one finds :

O

1 0 ! tw
AGM) = gl /_L drdz /:m dye (5.2)

[< 6,43(1:, y)ai’¢(zly0) > + < 6,—¢(z,y)0,,¢(r’,0) >]|
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where z = = + iy. Then the DC conductance is found by taking the limit w — 0. A
finite temperature computation for the DC conductance can be done along similar lines
by working on a cylinder.

This previous formulation using correlation functions will be useful in the next sub-
section when computing finite frequency properties, but there is a much simpler method
to compute the DC conductance in the finite temperature case: it will be computed from
a rate, or Boltzmann, equation.

The starting point is the reflection matrix for the solitons and anti-solitons. Scattering
of a single kink by the point contact is described by a one-particle R matrix with elements
R}(p/Ts) = RZ(p/Ts) for kink — kink, and antikink — antikink, as well as R (p/Ts) =
R*(p/Tg) for kink — antikink, and vice versa. These were derived exactly in [18] :

T)(1/9)—1
Ri(p/Ts) = Mw explicg (p/Tp)]

Ty olics ¢/ o))

(5.3)
R (p/Ts) =

where a4 is a phase. If we go back to the original theory, there are charges on each edge
with a possibility of transfer at £ = 0. The description used here is in term of a “folded”
theory. The total charge of the system, @1 +Qr is conserved but difference AQ = Qr—Q;
is not conserved because of the boundary. Every time a soliton is reflected into an anti-
soliton, the corresponding physical process is the transfer of charge at the point contact,
or tunneling. Without tunneling, the (dimensionless) conductivity is G = 1/3, but in the
presence of charge transfer, there is going to be a tunneling current described by :
1

V2

where Q° denotes the odd field charge. The presence of a voltage provides a chemical

Is = 8,(;4Q) = 8:(—=Q°), (5.4)

potential difference for solitons and anti-solitons. A positive voltage implies that there
will be more solitons, and when scattering on the impurity, there will be more solitons
turning into anti-solitons than the inverse process. Since the scattering is elastic, it is
possible to describe the charge transport at the impurity in terms of the probabilities of
finding solitons and anti-solitons at momentum p at the point contact and the transition
probability |R¥|?. Let us now define by ny (p) the allowed orbitals at momentum p or the
density of states and by f4(p) the occupation number for the solitons and anti-solitons at

that same momentum. Then since the solitons have charge +1 and the anti-solitons -1 in



our normalisations, we have that :
(AQ)v a
B = [ o mv(p) U5,V - -5,V (5.5)
0
where L is the length of the system. The backscattering current then follows from a
rate (Boltzmann) equation. The number of kinks of momentum p which scatter into
antikinks per unit time is given by |R} [*ny fi[1 — f_]; the factor [1 — f_]f} accounts for
the probabilities of the initial state being filled and the final state being open. The rate
at which antikinks scatter to kinks is likewise proportional to [1 — f,]f-, so the charge
changes at a rate proportional to [1 — f_]f4 —[1 — f4]}f— = f4 — f—. Using (5.4) and (5.5)

we have :

Is(V) = / dpny (p) vr|R; (0/Ts) 2 [f5(p,V) = f—(p, V)] (5.6)

we obtain the desired backscattering contribution to the linear-response conductance:
1 e 2
Gp = lim (V)= -2 [ dp no(p)IS4—(p/Te)*0v f4(p, V)], —o- (5.7
-0V 0

The density of states ny(p) has been evaluated at V = 0 because f(p,V) — f_(p,V) is
already proportional to V. The total conductance is thus G = v + Gp.

The only thing left is the computation of the state densities and occupation numbers.
This is the standard thermodynamic Bethe ansatz (TBA) [38]: in this picture, away from
the impurity we have a “gas” of massless solitons/anti-solitons and breathers, with Yang-
Baxter scattering, and the requirement of a periodic boundary condition results in an

equation which relates the densities n, and f, of all these quasiparticles :
ns(p) =1+ 7 5 / dp' &1 (/8 )i () S (), (5.8)

where &, (p) = —i(d/dInp)ln Si'*(p) (the impurity would change these equations by
terms of order 1/L which are negligible for the conductance). For v = 1/3 there is only

one breather (b) and we have :

Pos(z) = 2B44(2) = 284—(2) = — 5

41> + 8z

B4 (z) = Boll/2) = ——

b



310

where the others follow from the symmetry + + —.

One defines an auxiliary pseudoenergy variable ¢, to parametrize f; via f; = 1/(1 +
exp(e;, — #,/T)), where the y; are the chemical potentials: py = —pu_ = V/2; yp =0. By
demanding that the free energy at temperature T (expressible in terms of f; and »;) be

minimized, we find an equation for ¢; in terms of the (known) bulk S matrix elements:
SOV = 2= [ 2 (/) all + /T TYIDL (59)
’ ! T —~ Jo 2mp 7

Solving this equation for €, gives the functions f,. Even though the breather does not
appear in (5.7), it interacts with the kink and antikink and affects the calculation of fy.

We can now evaluate the conductance explicitly, After a few manipulations one finds :

©0 ‘8 T,0)8
G=_/ ip— Pt 9+(p/T,0) 9/ (p)
pt+ T} dp ¢4
0o 1
=/ dz z° 4(Ts/T) - ,
o @ + T5/T)F 1+ e+0

with the variable £ = p/T. The resulting conductance is compared on Fig. 3 to the Monte

(5.10)

Carlo computations of [10] and to the experiment where this measurement was done [39].
One can see that the curve agrees reasonably well with the experiment and very well with

the numerical results.

Conductance
1 T T
01 .
N
Y
= 001 exact curve —— % 4
(G Monte Carlo O
experimental dala x
1
0.001 ¢ L 4
1 . x.l
0.01 0.1 1 10

Fig. 3: Conductance for g = 1 /3.x='74313(T‘Wm)
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In the limit Tp /T — 00, G « (T/Tg)* as expected from [33]. It should be stressed that
the universal form of the curve is heavily dependent on the Luttinger liquid behaviour of
the system, and therefore, it is a signature of the Laughlin quasi-particle transfer between
the edges.

Observe that to obtain G we need to solve for the ¢;’s. While this is rather easy for
g = 1/t, the TBA system becomes considerably involved for g a rational number, and
depends on. the decomposition of g in continued fractions. The perturbative formula (3.8)
is easier to use in that case. Even if the problem is of little interest in the context of the
quantum Hall effect at g generic, (5.7) also describes the mobility for a particle in the
washboard potential, where ¢ can be arbitrary [34].

It is instructive to compare our result with the one for free fermions. Formula (5.7) is
actually well known and derives from the Landauer Biittiker approach to transport. The
main difference with free fermions is in the filling fractions: the pseudo-energy ¢ is not the
bare energy, but a complicated function, solution of integral equations.

The previous computation can easily be extended out of equilibrium, ie in the presence
of a finite Hall voltage [23].

5.2. DC noise

This is not to say that the difference with free fermions is only in the filling fractions.
More differences appear when we look at more complicated quantities. For instance one
can consider the DC noise. It will involve not only the shot noise at the impurity, but the
populations fluctuations in the bulk. These can be obtained by looking around the TBA
saddle point, and take a rather complicated form. As an example, at zero temperature,
the following relation holds [24]:

I
(1% = 2(1__9_ P vy o = 2___(19_ g)(VG— I). (5.11)
More complicated formula are available for T' # 0 [25].

Contrary to the current, the noise provides a measure of the charge of the carriers.

One checks from (5.11) that it is indeed Laughlin quasi-particles which tunnel at weak

backscattering, and electrons at strong backscattering.

5.3. Duality?

The zero temperature limit becomes much simpler becaunse the integral equations are
linear. This lead to an explicit solution for the conductivity in that limit [23]. Using this
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solution one can prove an exact duality between the IR and the UV limit, if we express

the conductivity as :
0o TB 2n(1—g)
G=g+) Gunl9) (?) (5.12)
n=1

in the UV and as :

T 2n(1/9-1)
) ’ (5.13)

G=;K2n(g) (E

in the IR (with Ty proportional to Tp), it is possible to show that Kzn(g9) = G2.(1/g)-
Physically, this is a duality between Laughlin quasi-particles UV and electrons in the IR.

There are strong indications that such a duality extends to finite temperature (for
instance, by using the perturbative expressions of section 3 continued beyond g > 1, one
can check it at the first few orders), but no proof yet. The standard arguments [40] rely
on an instanton expansion, where fluctuations are neglected. The existence of the duality

means that this instanton expansion has to be in fact exact, for some yet unknown reason.

6. Dynamical Properties.

The difference with free fermions becomes even more dramatic when one considers
time dependent properties. For instance, as already mentioned in the introduction, the
current operator acting on the ground state can, for generic g, create any state that is
neutral, ie made of an arbitrary number of breathers, and soliton/antisoliton pairs. Clearly,
the resulting expressions will bear very little resemblance with the ones of the Landauer
Biittiker transport theory (the DC case was more favorable because, for massless relativistic
particles, DC properties are the same as global, space integrated properties, and the x-
integral of the current is the charge, which behaves in much the same way for free fermions
and for our solitons/antisolitons). There is no choice then but to evaluate the correlators

in (5.2) by: (i) inserting a complete set of states,

1= Z Z/ BB 15 B Serroren 0 < B, (6.1)

s (2m)”n!

(#%) computing each matrix element - the so called form-factors, (iii) performing the cor-
responding infinite sum [41],[42].
The form-factors can easily be derived from previous work on the massive sine-Gordon

model (27] ( we recall they follow from the solution of a set of axioms dependent on the
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S-matrix. See also [41]). The infinite sum would be a priori a terrible obstacle. However,
for g not too close to 1, it turns out that this sum converges extremely fast, and only a
few form-factors (ie a few intermediate states in (6.1)) are necessary to obtain the current-
correlator with arbitrary precision, all the way from the UV to the IR. We note that
a similar observation was made for massive theories in [43], and for flows between bulk
theories in [26]. In the present case, one can quantify this convergence rather easily [29]:
unfortunately, one finds that more and more terms will be needed as g — 1.

We now illustrate the method in the case of the double well problem of dissipative
quantum mechanics. The bulk theory is the same as before and the main difference with
the tunneling problem described previously lies in the reflection matrices. In this case the
boundary preserve charge and the reflection matrices are given by :

r

RE(9) =l:a.nh(§ -3

). (6.2)
Another difference is that we are interested in the behaviour of the spin at the boundary as
a function of time. This is a priori puzzling, because the massless description is based on
the IR fixed point where the spin is screened. So it does not appear at all in the integrable
description. But when looking at the perturbative expansion in imaginary time for the

spin-spin correlation one can find the following relation :

(0" (¥)o™(0)) — 1 = (I(1)1(0))15 — (I (¥)1(0))o, (6.3)

with the subscript in the correlators denoting the boundary interaction in which they are

taken and [ given by :
0
Io)= [ ds aco(z0). (64)
-0

Thus, the problem of computing spin correlations is reduced to a problem of current
correlators where we can use the exact same technique as we did in the previous section
(apart from the new reflection matrices). As we have mentionned in the introduction, we
are interested in the coherence of the dissipative system which is probed by the spin-spin

function or its Fourier transform :
x"(w) = 4L7r / dt e![o*(t), 0% (0)]. (6.5)

Let us first give the result for g = 1/2 which is straightforward since only the two particle
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form factor is non zero. One finds :
7 _ iT_B_ 1 w+1Tp
X'(w) = 2w Imw + 2:Tp iTs
1 4T} 1 TE + u? 1 W
= T uZ 14T [51“( TZ ) TR T

We observe that this is strictly decreasing in w and therefore has no maximum away from

(6.6)

w=0.

For other values of g, all expressions are rather complicated and can be found in [29].
Here, we just give some curves for the standard quantity S(w) = x"(w)/w at different
values of g. Physically [9] at ¢ = 1 one expects a peak centered at w = 0 describing a
localized system. At the opposite point, g = 0, the so called classical limit, there are two
peaks away from zero describing the oscillations. We found that the peaks g = 1/3. In
Fig. 4 we show the spectral function S(w) for different values of g as computed from form
factors. These curves have been confirmed numerically in [7].

0.001 - L
0.001 0.01 0.9 1 10

Fig. 4: Spectral function for Tg = 0.1. "

Similar results are available for the conductance G(w) at T =0 and V = 0.

7. Conclusions.

We have used the form-factors technique for two other problems of interest: the

/
equivalent of the Friedel oscillations caused by an impurity in a Luttinger liquid [44] at
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T = 0 (or, in close relation, the screening cloud problem in the anisotropic Kondo problem
[8]) [45), and the AC noise at T = 0 in the presence of a voltage [46],[30].

One might have a slight discomfort in using a Landauer Biittiker type of approach
with integrable quasi particles. Ideally, we would like to recover the DC results only via
solid quantum field theory methods and the Keldysh formalism. We hope this is possible,
but we have not yet done so. As a step in that direction, we would like to mention that the
formula for the linear conductance obtained in section 5 through the Landauer Biittiker
approach can actually be recovered using the Kubo formula and form-factors.

At the present time, what is lacking to have a complete set of results is a way to
compute dynamical properties at T # 0. To solve this problem, one has presumably to
understand more deeply integrable quantum field theories at finite temperature. Some
preliminary results in this direction have been obtained in [47].
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LYAPUNOV EXPONENTS AND HODGE THEORY

M. KONTSEVICH
IL.H.E.S., Bures-sur-Yuvette, France

Claude Itzykson was fascinated (among other things) by the mathemat-
ics of integrable billiards (see [AI]). My talk is devoted to new results about
the chaotic regime. These results were obtained in collaboration with Anton
Zorich.

We started from computer experiments with simple one-dimensional er-
godic dynamical systems, and quite unexpectedly ended with topological string
theory. The result is a formula connecting fractal dimensions in one dimensional
“conformal field theory” and explicit integrals over certain moduli spaces. Also
a new analogy arose between ergodic theory and complex algebraic geometry.

We will finish the preface with a brief summary of what is left behind the
scene. Our moduli spaces are close relatives of those arising in Seiberg-Witten
approach to the supersymmetric Yang-Mills theory. The integrals in the main
formula can also be considered as correlators in a topological string theory with
¢ = 1. Probably, there 1s way to calculate them in terms of a matrix model
and an integrable hierarchy. In the derivation we use some identity in Kahler
geometry which looks like a use of N = 2 supersymmetry.

1. Interval exchange transformations

Let us consider a classical mechanical system with the action of a quasi-
periodic external force. Mathematically such a system can be described as a
symplectic manifold (X,w) and a closed l-form « on it. The Hamiltonian of
the system is a multivalued function H such that d # = a. Branches of H differ
from each other by additive constants. One can write the equations of motions
dF(z(1))/dt = {F,H}(z(t)), F € C>(X), as usual. In contrast with the case
of globally defined Hamiltonians, the system does not have first integrals in
general. More precisely, one still can make a reduction to codimension 1 near
local minima or maxima of H. Nevertheless, the dynamics on an open part of
X is expected to be ergodic.

Many physical systems produce after averaging multivalued Hamiltonians.
Examples include celestial mechanics, magnetic surfaces, motions of charged
particles on Fermi surfaces in crystals etc. (see the survey by S. P. Novikov
[Nov]).

We consider the simplest case of 2-dimensional phase space. Thus we have
a closed oriented surface ¥ with an area element w € Q?(Z) and an area-
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preserving vector field €:
iew =0 € QY(T), da=0, Lie(w)=0

The main feature of the 2-dimensional case is that the system depends es-
sentially on a finite number of parameters. Generically, the surface splits into a
finite number of components filled with periodic trajectories and a finite num-
ber of minimal components, where every trajectory is dense. We can associate
with every minimal component a so-called interval ezchage transformation T
(see [CFS])).

First of all, we choose an interval I on ¥ transversal to the vector field
. The transformation T is defined as the first return map (the Poincaré map)
from I to itself. The form o« defines a measure dz and an orientation on I.
The map T preserves both dz and the orientation. Also, it is easy see that
generically T has a finite number of discontinuity points ay,...ar_; where k
is the number of intervals of continuity of 7. Thus we can identify I with an
interval in R and write T as follows:

IZ[O,G]CR, D=ap<a;<as...<ag-1<a=ag

T(z)=z+b; for a; <z <ai+1

where b; € R, i = 0,...,k — 1 are some constants. Moreover, intervals
(ao, a1), (a1,az), ..., (ax—1, ax) after the application of this map will be situated
on I in an order described by a permutation o € S; and without overlapping.
Thus numbers b; can be reconstructed uniquely from the numbers a; and the
permutation o.

We did not use the area element on the surface ¥ in this construction.
Everything is defined in terms of a closed 1-form o and an orientation on T.
Thus it is enough to have an oriented foliation with a transversal measure
(and with finitely many singularities) on an oriented surface. It is easy to go
back from interval exchange transformations to oriented surfaces with measured
foliations. The systems which we will get by the inverse construction correspond
to multivalued Hamiltonians H without local minima and maxima.

Also we can consider possibly non-orientable foliations with transversal
measures on possibly non-orientable surfaces. This leads to the consideration
of mechanical systems with various additional symmetries. The first return
map is defined on an interval in an appropriate ramified double covering of the
surface.

The permutation o is called irreducible if, for any j, 1 < j <k —1, one
has

o({L,2,..,i) #{1,2,...,j} and o(j +1)£0o(j) +1

First return maps for ergodic flows give irreducible permutations.
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Theorem (H. Masur [M], W. Veech [V1], 1982). Let us consider the
interval exchange map T for an irreducible permutation o and generic values
of continuous parameters a; (generic with respect to the Lebesgue measure on
the parameter space RY = {(a1,...,a;)}). Then the map T is ergodic with
respect to the Lebesgue measure dz. The entropy of the map T is 0.

An analogous result is true for non-orientable measured foliations on or:-
entable surfaces. The case of non-orientable surfaces is always degenerate.
In such case foliatious almost always have non-trivial families of closed leaves
(see [N]). Presumably, the interesting (ergodic) part is always reduced to mea-
sured foliations on orientable surfaces. In order to simplify the exposition we
will mainly consider here the case when both the surface and the foliation are
orientable.

2. Error terms: first results and computer experiments

Several years ago A. Zorich began the study of the error term in the ergodic
theorem for the map T. Let z be a generic point on I and let (y1,y2) be a
generic subinterval of I. Since the map T is ergodic (for generic values of
lengths of subintervals) we have the following equality

#{i:1<i< N, Tz) € (y1,¥2)} = (¥2 — y1)N + o(N)

as N— + oco. It was first observed in computer experiments (see [Z1]) that
this error term (denoted above by o(N)) typically has the growth of a power
of N,

error term = O(N™) .

Here A < 1 is an universal exponent depending only on the permutation o (see
[Z2] for the proof of the related statement).

In the case of 2 or 3 intervals, one has A = 0. In these cases the genus
of the surface is 1 and the transformation itself is equivalent to the generic
irrational rotation of a circle.

In the case of 4 intervals for all irreducible permutations one has

A = 0.33333+ ~ (107°)
In the case of 5 intervals for all irreducible permutations one has
A = 0.50000+ ~ (10~°)

These two cases correspond to surfaces of genus 2.
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If we have 6 intervals (surfaces of genus 3), then the number ) depends on
the permutation:
A=0,6156... or 0.7173...

These two numbers are probably irrational.

Also computer experiments show (see [Z1]) that a generic closed 1-form
on a surface ¥ defines a filtration on H, (X, R) (“fractal Hodge structure”) by
subspaces

H(Z,R)DFY D...DF* 3 FY 50, g= genus of £, dim(F*)=j

where 1 = Ay > A3 > ...A; > 0 are some universal constants depending only
on the permutation. The number A which gives the error term in the ergodic
theorem is the second exponent Xs. The highest term of the filtration F*s is a
Lagrangian subspace of H,(XZ, R).

One can see numbers A; geometrically. Let us consider a generic trajectory
of the area-preserving vector field € on ©. We consider a sequence of pieces of
this trajectory z(t) of lengths [;— 400, j =1,2,...such that z(l;) is close to
the starting point z£(0). We connect two ends of these pieces by short intervals
and get a sequence of closed oriented curves C; on %. Homology classes of
curves C; are elements v; = [C}] in the group H,(X, Z).

Vectors v; at the first approximation are close to a one-dimensional space,

Vj = ulj + O(lj)

where u is a non-zero element of H;(X, R). Homology class u is Poincaré dual
to the cohomology class [a] of the 1-form «. The lowest non-trivial term in
Zorich’s filtration is
F'=F=R-u .

After the projection to the quotient space H,(E, R)—H; (3, R)/R - u we get
again a sequence of vectors. It turns out that for large j these vectors are
again close to a 1-dimensional subspace £. Also these vectors mostly will have
size (1;)*21°(1). We define 2-dimensional space F*? C Hi(Z, R) as the inverse
image of the l-dimensional space £. We can repeat the procedure g times.
On the last step we get a chaotic sequence of vectors of bounded length in the
g-dimensional quotient space H,(X, R)/F*s (see also [Z3]).

There is, presumably, an equivalent way to describe numbers A;. Namely,
let ¢ be a smooth function on X. Assume for simplicity that the multi-valued
Hamiltonian has only non-degenerate (Morse) singularities. Then, for generic

trajectory z(t), we expect that the number f(')r @(z(t))dt for large T with high

probability has size T*+%T) for some i € {1,...,g}. Exponent A\, = 1 appears
for all functions with non-zero average value,

/Edzw¢0 .
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The next exponent, As, should work for functions in a codimension 1 subspace
in C®(X) ete.

We discovered in computer experiments (more than 100 cases) that the
sum of numbers }; is rational,

A+...+2,€Q .

For example, if genus of ¥ is 3 and we have 4 simple saddle points for the
foliation, then

Also, our observation explains why the case of genus 2 is exceptional. If
we have two numbers first of which is equal to 1 and the sum is rational, then
the second number is rational too.

3. Moduli spaces

We want to study the renormalization procedure for interval exchange
maps. For example, we can define a map from the space of parameters

{(a1,...,a1;0)} = R x 5,

to itself considering the first return map of the half [0, a/2] of the original inter-
val I = [0,a]. There are also other ways, but the most elegant is the one which
we describe at the end of this section. In order to do it we introduce, following
W. Veech certain moduli space.

The space Q2,,,,,(X)/Dif f(X) of equivalence classes of closed 1-forms on
a surface ¥ is non-Hausdorf. In order to cure it we consider a “doubling” of this
space consisting of the space of closed complex-valued 1-forms ac satisfying
the condition

Rea A Imey, >0

for almost all points £ € X. The notion of positivity here is well-defined because
the surface T is oriented.

The real-valued 1-form a whose leaves we considered before is the real
part, Reac, of the complex-valued form ac. First of all, we should be sure
that we didn’t restrict ourselves to some special class of closed 1-forms. It
follows from results E. Calabi (see [C]), or from resluts of A. Katok (see [K])
that, for any closed real 1-form o giving an ergodic foliation, there exists at
least one closed 1-form a’ # 0 such that @ A o’ > 0 everywhere except points
where o vanishes. Thus we have a complex valued closed 1-form ac = a +ic’.
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Any such complex-valued 1-form defines a complex structure on . Locally
outside of zeroes of ac there is a complex-valued coordinate z : ¥«—C such
that d2 = cac. Holomorphic functions are defined as continuous functions
holomorphic in coordinate z. Also, there is a canonical flat metric (Reac)? +
(Imoz(;)2 on ¥ with singularities at zeroes of ac.

Let us fix a sequence of non-negative integers d = (d;,...,d,) such that
>;di = 29 — 2 where g > 2 is the genus of the surface. We denote by Mg the
moduli space of triples (C;p1,...,pn; @c) where C is a smooth complex curve
of genus ¢, p; are pairwise distinct points of C, and ac is a holomorphic 1-form
on C which vanishes up to order d; at p; and is non-zero at all other points
of C. From this definition it is clear that Mgq is a Hausdorf complex analytic
(and algebraic) space (see [V3]).

First of all, Mq is a complex orbifold of dimension 2g — 1 + k. Let
us consider the period map from a neighborhood of a point (C, ac) of Mg
into the cohomology group H(C,{p1,...,pn}; C). Closed form ac defines
an element into the relative cohomology group H'(C,{p1,...,ps}; C) by in-
tegration along paths connecting points p;. In a neighborhood of any point
C, (pi), @c) of Mg, we can identify cohomology groups HX(C’,{p},...,PL}; C)
with HY(C, {p1,...,pn}; C) using the Gauss-Manin connection.

Thus we get a map (the period map) from this neighborhood into a vector
space. An easy calculation shows that the deformation theory is not obstructed
and we get locally a one-to-one correpondence between Mg and an open do-
main in the vector space H(C, {p1,...,pn};C).

We claim that Mg has structures 1),2),3),4) listed below.

1) a holomorphic affine structure on Ma modelled on the vecior space
HYC,{p1,.-.,Pa}; C),

2) a smooth measure p on Mg,

3) a locally quadratic non-holomorphic function A: Mq—R,,

4) a non-holomorphic action of the group GL,(2,R) on Mg.

The first structure we already defined using the period map.

The tangent space to Mg at each point contains a lattice,

HY(C,{p1,.-.,;};C)= HY(C,{p1,...,;:}; R®iR) D

D HYC, {p1,...,;:};Z)®i- HY(C, {p1,...,;:};Z).

The Lebesgue measure (= the Haar measure) on the tangent space to Mg can

be uniquely normalized by the condition that the volume of the quotient torus

is equal to 1. Thus we defined the density of a measure p at each point of Maq.
We define the function 4 : Mg— R, by the formula

A(C,ac) = % fc ac Aac. In other terms, it is the area of C for the flat metric

associated with cc.
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The group GL,(2,R) of 2 x 2-matrices with positive determinant acts
by linear transformations with constant coefficients on the pair of real-valued
1-forms (Re(ac), Im(ac)). In the local affine coordinates, this action is the
action of GL,(2,R) on the vector space

HYC,{p1,. - -,Pn};C)~CQH(...;R)~R*Q H!(.. ;R)

through the first factor in the tensor product. From this description it is clear
that the subgroup SL(2, R) preserves the measure p and the function A.

On the hypersurface Mg{!) = A=1(1) (the level set of the function A) we
define the induced measure by the formula

Ll

-
K dA

The group SL(2,R) acts on Mg preserving p(1).

Theorem (H. Masur, W. Veech). The total volume of Mq!) with respect
to the measure u(1) s finite.

Let us denote by M any connected component of Mg and by M) its
intersection with Mg,

Theorem (H. Masur, W. Veech). The action of the 1-parameter group
{diag(e',e~*)} C SL(2,R) on (M), sV} is ergodic.

The action in this theorem is in fact the renormalization group flow for in-
terval exchange maps. Another name for this flow is the “Teichm’ueller geodesic
flow” because it gives the Euler-Lagrange equations for geodesics for the Te-
ichmiller metric on the modulispace of complex curves. Notice that this metric
is not a Riemannian metric, but only a Finsler metric.

The intuitive explanation of the ergodicity is that the group {diag(e*,e~*)}
expands leaves of the foliation by affine subspaces parallel to H!(...,R) and
contracts leaves of the foliation by subspaces parallel to H!(...,zR).

4. Topology of the moduli space

In the last theorem from the pervious section we consider connected com-
ponents of the moduli space Mqy. From the first glance it seems to be not
necessary because normally moduli spaces are connected. It is not true in
our case. W. Veech and P. Arnoux discovered by direct calculations in terms
of permutations that there are several connected components. The set of ir-
reducible permutations is decomposed into certain equivalence classes called
Rauzy classes. These classes correspond to connected components of spaces
Mgq. For a long time the geometric origin of non-connectedness was not clear.
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Recently we have obtained the complete classification of connected com-
ponents. First of all, there are two series of connected components of My
consisting of hyperelliptic curves such that the set of singular points is invari-
ant under the hyperelliptic involution. The first series corresponds to curves
with one singular point, d = 2¢g — 2 for g > 2. The second series correponds to
curves of genus g > 2 with two singular points, d = (g — 1,9 — 1).

If all orders of zeros are even numbers, we have a spin structure on C given
by a half.of the canonical divisor

S = Z %[p,-] € Pic(C) .

It is well-known that spin structures have a topological characteristic (par-
ity) which doesn’t change under continuous deformations (see [A]). The parity
of a spin-structure is the parity of the dimension of the space of global sections
of the corresponding holomorphic line bundle.

Classification theorem. There are hyperelliptic and non-hyperelliptic con-
nected components of the moduli space of holomorphic 1-forms. For non-
hyperelliptic components there are two cases: the vector d is divisible by 2, or
not. If d is divisible by 2 then there are two components corresponding to even
and odd spin structures. There are exceptional cases when we get an empty
set: 1) for ¢ = 2: all non-hyperelliptic strata; 2) for g = 3: non-hyperelliptic
strata with d divisible by 2 and even spin structure.

We have analogous results for the moduli space of quadratic differentials.
At the moment we do not know anything about the topology of connected
components except for the hyperelliptic locus.

Conjecture. Each connected component M of My has homotopy type
K(w, 1), where 7 is a group commensurable with some mapping class group.

5. Lyapunov exponents

We recall here the famous multiplicative ergodic theorem.

Theorem (V. Oseledets [O]). Let T : (X, u)—(X,pu), t € Ry, be an
ergodic flow on a space X with finite measure pu; let V be an R, -equivariant
measurable finite-dimensional real vector bundle. We also assume that a (non-
equivariant) norm | | on V is chosen such that, for allt € R,

/ log(1 +|T; : Vx———>VT‘(x)|)u <400 .
X
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Then there are real constants Ay > Aa > ... > A and an equivarinat filtration
of the vector bundle V

V=v>...oV* D0
such that, for almost all z € X and all v € V; \ {0}, one has
Ti(o)] = M0, 1— 4 oo

where j is the maximal value for which v € (V*i),. The filtration V*/ and
numbers A; do not change if we replace norm | | by another norm | |’ such
that

/X log (maz,ev, (o) (maz(|ol/|o], [o]'/]2]))) 1 < +oo

Analogous statement is true for systems in discrete time Z ..

Numbers A; are called Lyapunov exponents of the equivariant vector bun-
dle V. Usually people formulate this theorem using language of matrix-valued
1-cocycles instead of equivariant vector bundles. This is equivalent to the
formulation above because any vector bundle on a measurable space can be
trivialized on the complement to a subset of measure zero.

If our system is reversible, we can change the positive direction of the
time. Lyapunov exponents will be replaced by negative Lyapunov exponents.
A new filtration will appear. This new filtration is opposite to the previous
one, and they together define an equivariant splitting of V' into the direct sum
of subbundles.

Lyapunov exponents are, in general, very hard to evaluate other than nu-
merically. We are aware only about two examples of explicit formulas. One
example is the geodesic flow on a locally symmetric domain and V being a
homogeneous vector bundle. In this case one can explicitly construct the split-
ting of V. The second example is the multiplication of random independent
matrices whose entries are independent equally distributed gaussian random
variables. In this case one can calculate Lyapunov exponents using rotational
invariance and the Markov property.

Our calculation seems to be the first calculation of Lyapunov exponents
in a non-homogeneous situation. As the reader will see later, our proof uses a
replacement of a deterministic system by a Markov process.

Let us define a vector bundle H! over M by saying that its fiber at point
(C,ac) is the cohomology group H!(C,R). We apply the multiplicative er-
godic theorem to the action of {diag(c!,e~ ")} on M(*) and to the bundle H!.
The action of the group on this bundle is defined by the lift using the natural
flat connection (Gauss-Manin connection). We will not specify for a moment
the norm on H! because all natural choices are equivalent in the sense specified
in our formulation of the multiplicative ergodic theorem.



The structure group of the bundle H! is reduced to
Sp(29,R) C GL(2¢g,R). One can see easily that in this case Lyapunov expo-
nents form a symmetric subset of R. Also, in all experiments we do not have
degenerate Lyapunov exponents, i.e. the picture is

A >A22> .., >202Ay+1:—/\g >> ... 2 hy ==X

Theorem (A. Zorich). 1) The highest Lyapunov exponent ), is equal to
1 and has multiplicity one. The corresponding 1-dimensional subbundle is
Re(a)R C H'. 2) The second Lyapunov exponent Ay governs the error term in
the ergodic theorem for interval exchange maps. 3) The filtration on H' related
with the positive time dynamics depends locally only on the cohomology class
[Rea] € HY(Z,{p1,---,pn}; R).

The first part is quite easy. At least, the growth of the norm for the
1-dimensional bundle Re(a)R C H! is exponential with the rate 1.

The second part looks more mysterious. We compare two different dynam-
ical systems, the original flow on the surface and the renormalization group flow
on the moduli space. The time in one system is morally an exponent of the
time in another system. The technical tool here is a mixture of the ordinary
(additive) and the multiplicative ergodic theorem for an action of the group
Aff(R!) of affine transformation of line. We are planning to write in a future
a detailed proof. A rather technical proof of related statement can be found in
[Z2].

The third part is not hard, but surprising. In fact, the positive-time filtra-
tion on H! coincides with the filtration for real-valued closed 1-forms described
in section 2. Thus it is independent on the choice of the imaginary part.

In computer experiments we observed that the spectrum of Lyapunov ex-
ponents is simple. In the rest of the paper wee will assume for simplicity that
the non-degeneracy holds always. The general reason to beleive in it is that
there is no additional symmetry in the system which can force the Lyapunov
spectrum to be degenerate.

6. Analogy with the Hodge theory

We see that our moduli space locally is decomposed into the product of
two manifolds

H'(..;R)x H'(...;iR) .

More precisely, we have two complementary subbundles in the tangent bundle
satisfying the Frobenius integrability condition. This is quite analogous the
geometry of a complex manifold. If N is an almost complex manifold, then we
have two complementary subbundles 7% and T%! in the complezified tangent
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bundle Ty ® C. The integrability condition of the almost-complex structure is
equivalent to the formal integrability of distributions 7!'° and T%!.

Also, if we have a family of complex manifolds X;, b € B, paramertized
holomorphically by a complex manifold B, then for every integer k& we have
a holomorphic vector bundle over B with the fiber H* (X3; C). This bundle
carries a natural flat connection, and a holomorphic filtration by subbundles
coming from the standard spectral sequence.

This picture (variations of Hodge structures, see [G]) is parallel to the
situation in the multiplicative ergodic theorem applied to a smooth dynamical
system. Let M denote the underlying manifold of the system. The tangent
bundle Ty is an equivariant bundle. Thus, in the case of ergodicity and con-
vergence of certain integrals we get a canonical measurable splitting of Ty
into the direct sum of subbundles indexed by Lyapunov exponents. It is well
known in many cases (and is expected in general) that these subbundles, and
also all terms of both filtrations are integrable, i.e. they are tangent to leaves
of (non-smooth) foliations on M. Two most important foliations (expanding
and contracting foliations) correspond to terms of filtrations associated with
all positive or all negative exponents. It is known that if the invariant measure
is smooth then the sum of positive exponents is equal to the entropy of the
system (Pesin formula).

7. Formula for the sum of exponents

The main result of our work is an explicit formula for the sum of positive
Lyapunov exponents A; + ...+ A, for the equivarinat bundle H! over the
connected component M of moduli spaces of curves with holomorphic 1-forms.

We want to warn the reader that this equivariant bundle is not the whole
tangent bundle Thq. Lyapunov exponents for Taq can be calculated easily
through numbers A;. The entropy of the Teichmiiller geodesic flow is equal
by the Pesin formula to the complex dimension of M. In short, what we are
computing there is more delicate information than the entropy of the system.

Hypersurface M) is isomorphic to the quotient space M/R? , where R
is identified with subgroup {diag(e’,e*)} of GL4(2,R). We denote by M2
the quotient space

MM /SO2,R) ~ M/C* .

This space 1s a complex algebraic orbifold.

Orbits of the group GL,(2,R) define a 4-dimensional foliation on M.
It induces a 3-dimensional foliation on M) by orbits of SL(2,R), and a 2-
dimensional foliation F on M(?). Leaves of F are complex curves in M(2), but
the foliation itself is not holomorphic.
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3-dimensional foliation on M(!) carries a natural transversal measure.
This measure is the quotient of u(!) by the Haar measure on SL(2,R). The
transversal measure on M(?) induces a transversal measure on M. We have
natural orientations on M(?) and on leaves of F arising from complex struc-
tures. Thus we can construct differential form 3 such that

g € QimrMP -2\ () 43 =0, Kerf=F .

The natural projection M—M(?) is a holomorphic C*-bundle with a Her-
mitean metric given by the function A. Thus we have a natural curvature form
71 € Q3 (M), dy; = 0 representing the first Chern class ¢,(M— M),
This form is given locally by the formula

1 _
7= %66 log (A(s))

where s is a non-zero holomorphic section of the line bundle M—AM(?),

We also have another holomorphic vector bundle on M(?). The fiber of
this bundle (denoted by H(:0)) is equal to H°(C, QL), the term of the Hodge
filtration in H! ® C. This holomorphic bundle carries a natural hermitean
metric coming from the polarization in Hodge theory. The formula for the
metric is

1 _
|w|2 :%Aw /\w, w EF(Cfﬂ}lOI)

This metric defines again a canonical closed 2-form v representing the charac-
teristic class ¢; (H(1:9)).

Main Theorem. [
BA v
' T Juw BAT

In this formula, we can not go directly to the cohomology, because the
orbifold M(?) is not compact. In order to overcome this difficulty, we con-

structed a compactification MP of M@ with toroidal singularities. All three
differential forms 3, 71,72 in the formula seem to be smooth on ﬂ(z). Both

71 and v, represent classes in H 2(ﬂ(z),Q). It seems that 3 also represents
a rational cohomology class although we don’t have a proof yet. In the case
of one critical point of 1-form « it is true because, by invariance reasons,
the form 3 is proportional to a power of 7;. Another possible explanation of
rationality is that [§] is proportional to a rational class because the part of

Hd’m‘z(ﬂ( ), R) consisting of classes vanishing on boundary divisors, can be
one-dimensional. In any case, we almost explained the rationality of Zgzl A
observed in experiments.
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8. Proof of the formula

Any leaf of the foliation F carries a natural hyperbolic metric. The generic
leave is a copy of the upper half-plane SL(2,R)/SO(2,R). We are studying
the behavior of the monodromy of the Gauss-Manin connection in H! along
a long geodesic going in a random direction on a generic leave of F. It was
an old idea of Dennis Sullivan to replace the walk along random geodesic by a
random walk on the hyperbolic plane (the Brownian motion). The trajectory
of the random walk goes to infinity in a random direction with approximately
constant speed.

The meaning of the sum A;+. .. A is the following. We move using the par-
allel transport a generic Lagrangian subspace L in the fiber of H! and calculate
the average growth of the volume element L associated with the Riemannian
metric on L induced from the natural metric (polarization) on H!.

As we discuss above, we can replace the geodesic flow by the Brownian
motion. We will approximate the random walk by a sequence of small jumps
of a fixed length in random uniformly distributed directions on the hyperbolic
plane.

Identity. Fix z € M®) and identify the leaf F, of F passing through z with
the model of the Lobachevsky plane in unit disc {z € C| |z| < 1} in such a way
that z ~— z = 0. Also, we trivialize the vector bundle H! over F, using the
Gauss-Manin connection. Then, for any Lagrangian subspace L C H}, and for
any ¢, 0 < e < 1 the following identity holds:

2
1 3 volume on L, for metric in H!,
— [ df log << =
27
0

volume on L, for metric in H}

62
J (W> " -

disc |z|<e

The proof of this identity follows. Let us choose a locally constant basis
li,...,1y of L and a basis v1(z),...,v4(z) in H}° depending holomorphically
on z € F;. Then we have

_ (11/\.,./\Ig/\’()l/\.../\‘Uy)®(ll/\..,/\lg/\"(-)—lf\.../\ﬁg)

LA AL =
Ih g VA AV ATIA.. . AT)Q(ViA...ANVATIA...AT
9 g 9 9

where the numerator and the denominator are considered as elements of the
one dimensional complex vector space (A29(H§ ® C))®2.
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If we apply the Laplace-Beltrami operator A = (1/2m4) x 8,8, to the
logarithms of both sides of the formula from above, we get that

Alog(lh A... A4 [2) =

A(holomorphic function) + A(antiholomorphic function) + vz,

Application of the simple formula

2%
1 ; 1 AP -
o [feeyas = ;0= 5 [ g (——,le)azaz(f)dmdz vfecC
0

lzl<e

gives the main identity.

The mean value on the disc {z] |z| < €} of the function z + log (¢2/]z]?) is
equal to 1. The main identity implies that the average growth of the volume on
L depends not on L but only on the position of the point z € M(?). Because
of ergodicity we can average over the invariant probability measure Z=1 x u(2),
where Z = [, 4P is the total volume of M(?). The invariant measure u(?
is proportional to # A ;. This explains the denominator in the formula for
A+ .+ ’\g~

9. Generalizations

In our proof we treat the higher-dimensional moduli space M(?) as a “curve
with hyperbolic metric”. In general, in many situations ergodic foliations with
transversal measures and certain differential-geometric structures along leaves
can be considered as virtual manifolds with the same type of geometric struc-
ture. Also, ergodic actions of groups can be considered as virtual discrete
subgroups (Mackey’s philosophy).

Our proof works literally in a different situation. Let C be a complex curve
of genus g > 0 parametrizing polarized Abelian varieties A;, z € C of complex
dimension G.

We endow C with the canonical hyperbolic metric and consider the geode-
sic flow on it. It gives us an ergodic dynamical system. For the equivariant bun-
dle we will take the symplectic local system H' over C with fibers H!(A.,R).
Again, the sum of positive Lyapunov exponents is rational:

_ deg(H'?)
AM+...+ A = 29— 2
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We study the compactification and dimensional reduction of four-dimensional N = 2 super-
symmetric gauge theories to three dimensions. The vacuum structure can be determined
quite precisely. Compactification on a circle of radius R gives a theory that interpolates
in an interesting way between the four-dimensional result for R —+ oo and the three-
dimensional result for R — 0.

1. Introduction

In [1,2], the dynamics of the Coulomb branch of N = 2 super Yang-Mills theory
was analyzed using general constraints of supersymmetry and low energy effective field
theory - extended, crucially, by allowing for the possibility of duality transformations.
The purpose of the present paper is to study the same theory compactified or reduced to
three dimensions.

Compactification to three dimensions means that one formulates the quantum theory
on R? x S}, where S}, is a circle of circumference 27 R. For R —+ co one should recover
the four-dimensional solution of [1,2].

Dimensional reduction means instead that at the classical level, one takes the fields
to be independent of the fourth dimension, and then one quantizes the resulting three-
dimensional theory. Intuitively, one would expect that this three-dimensional theory should
be equivalent to the small R limit of compactification. After all, the energetic cost of
excitations that carry non-zero momentum along S} diverges as R — 0.

In section two of this paper, the Coulomb branch of the three-dimensional theory
will be analyzed, for gauge groups SU(2) and U(1). In fact, drawing upon ideas of [3,4],
results on this subject have been inferred recently from string theory [5]. Here we will
show what can be learned about the problem using some simple arguments of field theory,
and in particular we recover many of the results of [5]. In section three, we analyze the
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four-dimensional quantum theory on R® x Sk using some simple field theory arguments,
among other things verifying that the large R limit gives back the four-dimensional theory
while the small R limit gives the three-dimensional theory. In section four we recover and

explain results of section three from the standpoint of string theory.

2. The Three-Dimensional Theory
2.1. The Problem

We will here be discussing three-dimensional supersymmetric gauge theories which
have N = 4 supersymmetry in the three-dimensional sense (corresponding to N = 2 in
four dimensions). They can be constructed by dimensional reduction of six-dimensional
N =1 super Yang-Mills theory to three dimensions. This is a convenient starting point in
understanding the field content and symmetries of the models. First we consider the pure
gauge theories, without matter hypermul.tiplets.

In six dimensions, the fields are the gauge field A and Weyl fermions ¥ m the adjoint
representation of the gauge group G. There is an SU(2)r symmetry that acts only on the
fermions; the fermions and supercharges transform as doublets of SU(2)r.

Upon dimensional reduction to three dimensions — that is, taking the fields to be

independent of three coordinates z%5

- one obtains a theory with the following additional
structures. The last three components of A become in three dimensions scalar fields ¢;, 1 =
1,2,3, in the adjoint representation. These scalars transform in the vector representation

456, we will call the double cover of this group

under the group of rotations of the =
SU(2)n. Note that in reduction to four dimensions, only two such scalars appear, and
instead of SU(2)n, one gets only a U(1) symmetry of rotations of the z*¢ plane. This
symmetry is often called U(1)r, and has an anomaly involving four-dimensional instantons.
In three dimensions, because the group SU(2)w is simple, there is no possibility of such an
anomaly. Finally, three dimensional Euclidean space R? has a group of rotations whose
double cover we will call SU(2)g.

Under SU(2)r x SU(2)ny x SU(2)g, the fermions transform as (2,2,2), as do the
supercharges (so that SU(2)n is a group of R symmetries just like SU(2)r), while the
scalars transform as (1,3,1).

Now to formulate the problem of the Coulomb branch, the starting point is the po-
tential energy for the scalars. This arises by dimensional reduction from the F? kinetic



energy of gauge fields in six dimensions, and is

V= 2‘1;2- Z'IY[% ¢ (2.1)
1<)

where e is the gauge coupling. For the classical energy to vanish, it is necessary and
sufficient that the ¢; should commute. One can consequently take them to lie in a maximal
commuting subalgebra of the Lie algebra of G. If G has rank r, the space of zeroes of V, up
to gauge transformation, has real dimension 3r. A generic set of commuting ¢; breaks G to
an Abelian subgroup U(1)". In addition to the ¢;, there are then r massless photons. Since
a photon is dual to a scalar in three space-time dimensions, there are in all 4r massless
scalars — 3r components of ¢; and r duals of the photons.

Are these 4r scalars really massless in the quantum theory? The N = 4 supersymme-
try makes it impossible to generate a superpotential, so there are only two rather special
ways to have masses. One possibility is to include a three-dimensional Chern-Simons in-
teraction, with a quantized integer-valued coupling k. For non-zero k, the modes described
above do indeed get masses, and the problem we will pose in this paper of studying the
Coulomb branch does not arise. (There is an interesting question of whether the the-
ory with k # O has a supersymmetric vacuum; at least for large k, the answer can be
seen to be “yes” by using perturbation theory in 1/k.) If the gauge group G has U(1)
factors, it is possible to include Fayet-Iliopoulos D-terms (transforming as (3,1,1) under
SU(2)r x SU(2)n x SU(2)g), again giving mass to some modes. In this paper, we will
mainly consider the case that G is semi-simple, so that D-terms are impossible; but even
when we consider G = U(1), we will focus on the case that the D-terms are absent.

With these restrictions, then, the 4r scalars are really massless and parametrize a fam-
ily of vacuum states. (This is also true later when we include hypermultiplets.) Moreover,
by considering the region of large ¢:, we know that for a generic vacuum in this family,
the physics is free in the infrared and can be described by a conventional low energy ef-
fective field theory. The most general low energy effective action for 4r massless scalars in
three dimensional N = 4 supersymmetry is a sigma model with a target space that is a
hyper-K&hler manifold of quaternionic dimension r. Thus, the moduli space M of vacua
is to be understood as such a hyper-Kahler manifold.

In this paper, we will only consider in detail the cases G = SU(2) and G = U(1), for
which r = 1, and M is simply a hyper-Kahler manifold of real dimension four. Moreover,
this manifold has a non-trivial action of SU(2)y, which highly constrains the problem; the
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hyper-Kahler manifolds we need are (with one easy exception, the reason for which will
emerge) to be found in the classification in [6] of certain four-dimensional hyper-Kahler
manifolds with SO(3) symmetry.

So far we have discussed the pure gauge theories. It is also possible to include matter
hypermultiplets. For G = SU(2), we will consider in some detail the case of matter
hypermultiplets in the doublet or two-dimensional representation of G. The basic such
object is a multiplet that contains four real scalars that transform as (2,1,1,2) under
SU(2)r x SU(2)n x SU(2)g x G, along with fermions transforming as (1,2, 2,2). For
somewhat quirky reasons, such a multiplet is sometimes called a half-hypermultiplet. In
(1], the G = SU(2) theory was studied (in four dimensions) with any number Ny of doublet
hypermultiplets, or in other words 2Ny half-hypermultiplets. With this notation, it appears
that we should allow for the case in which Ny is a half-integer rather than an integer, but
at this point some subtleties involving global anomalies intervene. In four dimensions,
given the fermion content of the half-hypermultiplet, the theories with half-integral Ny are
simply inconsistent because of a Z, global anomaly [7]. In three dimensions, the situation
is somewhat different. The theories with half-integral Ny exist, but for those theories the
Chern-Simons coupling k cannot vanish, and the Coulomb branch that we will be studying
in this paper does not exist. In fact, because of a global anomaly (see p. 309 of [8]), k is
congruent to Ny modulo Z, and can vanish only if Ny is integral.> So we will only consider
integer Ny in this paper.

For the other case G = U(1), we will consider the behavior with an arbitrary number
M of hypermultiplets of charge one.

Until further notice, all of our hypermultiplets will have zero bare mass. After under-
standing the case of zero bare mass, we will make brief remarks on the role of the bare

masses.

2.2. Behavior At Infinity

The starting point of the analysis is to understand what happens in the semi-classical

3 In terms immediately relevant to this paper, the global anomaly pointed out in [8] would
show up as follows. If Ny is half-integral, then the number of fermion zero modes in 2 monopole
field would be odd. This appears to lead to a contradiction as amplitudes in a monopole field
would change sign under a 27 rotation. The resolution of the paradox is not that the theory does
not exist, but that when Ny is odd, k is half-integral and in particular non-zero; as non-zero k

gives the photon a mass, finite action monopoles do not exist.
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region of large |¢}.
For the potential energy V to vanish means that the ¢; commute and so can be

simultaneously diagonalized by a gauge transformation. This means for SU(2) that one

can take
o=(% %) (22

for some a;. The a; are defined up to a Weyl transformation, which exchanges the two
eigenvalues of the ¢;, and so acts as a; —+ —a;. The space of zeroes of V is thus a copy of
R3/Z,. For a complete description of the moduli space of vacua, one must also include an
extra circle, parametrizing a fourth scalar o which is dual to the photon. The Weyl group
(which acts by charge conjugation) multiplies also the fourth scalar by —1. So the space
of vacua at the classical level is (R® x S')/Z2, where the Z; multiplies all four coordinates
by ~1. The classical metric on the moduli space is a flat metric

ds? = elz 3 dg? + e2do?. (2.3)

The factor of 1/e2 for the ¢; reflects the fact that (like the whole classical Lagrangian) the
¢ kinetic energy is of order 1/e2. The photon kinetic energy is likewise of order 1/e?, but
after duality this turns into e*? for o. (Some constants in (2.3), omitted in this section
for simplicity, are worked out in detail in section three.)

For G = U(1), there is no Weyl group and the classical moduli space is simply R3 x
U(1). For simplicity and to treat the two cases in parallel, we will postpone dividing by
the Weyl group until the end of the discussion, and formulate the following as if classically
one is on R® x S!. The region at infinity in R® is homotopic to a two-sphere. Thus,
topologically we have at infinity a product S? x S! at the classical level. As one goes to
infinity, the S? grows (radius proportional to |¢|) but the S! has a fixed circumference of
order e. The S2 is visible classically, but the S*, which appears via duality, is a more subtle
part of the quantum story. The possibility exists that in the quantum theory, instead of a
product S2 x S! at infinity, one has an S' fiber bundle over S2. In fact, to describe such
a fiber bundle, as noted in [5], the classical metric should be changed to something like

dsg = Lz ) " d¢? + e*(do — 1Bi($)dg')?, (2-4)

where here B is the Dirac monopole U(1) gauge field over S?, and a priori s is any integer.
Because (2.4) differs from the classical metric only in terms of order e?, quantum loop
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corrections can be responsible for changing (2.3) to (2.4) and so for generating s # 0.
In fact, if A is the undualized U(1) gauge field, then the integer s would show up prior
to duality in an interaction se*** Aje;;x$'8,¢’8, #*, where ¢ = ¢'/(¢ - $)%; because it
multiplies no power of e, this interaction could arise as a one-loop effect.

The integer s could thus, as was proposed in {5], be computed from a one-loop diagram.
We will instead compute it mainly by counting fermion zero modes in a monopole field.

Non-Trivial S' Bundles Over S?

As background, and to help in interpreting the results, let us recall the detailed de-
scription of non-trivial S! bundles over S2. An S! bundle over any base B (with oriented
fibers) is classified topologically by the Euler class of the bundle, which takes values in
H?(B,Z); as H?(S% Z) = Z, the possible bundles over S? are labeled by an integer s,
which was introduced in (2.4). For B = S2, the possible non-trivial bundles may be
described in the following standard fashion.

The basic example is simply the three-sphere, regarded as a fiber bundle over S2. Let
Be, @ = 1,2 be two complex numbers with

lus? + Juz|* = 1. (2.5)
The possible u, parametrize a copy of S3. If we set
fi = Uou, (2.6)

with & the usual Pauli o matrices, then in a standard fashion one can show by consequence
of (2.5) that 72 = 1. Thus the map from u to 7 is a map from S® to S2. All 7i’s arise, and

for given 7, u is unique up to a U(1) transformation
Ug =+ eu,, 0<0< 2w (2.7)

Thus the space of u’s for given # is a copy of U(1) = S!; the map from S to S? exhibits
S? as a fiber bundle over S? with fiber S'.

To introduce an arbitrary integer s, we begin now with S® x S!, labeling the S! by
an angle ¢ (0 < ¢ < 2w), and divide by a U(1) group that acts by

Uo =+ Py, P — P+ 6. (2.8)
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Let L, be the quotient (S® x S')/U(1) with the given U(1) action. Then L, maps to S2
by forgetting 1; as we have noted above, the quotient of u-space by u — e*?u is S2. The
fiber of the map to S? is a circle, so L, is a circle bundle over S2, for any s.

Let us next work out the topology of L,. We note that Ly is the trivial bundle S2 x S!;
in this case, the U(1) in (2.8) does not act on the second factor in S* x S!, and dividing
by it projects the first factor to S®. In general, L_; is mapped to L; by ¥ — —, so they
have the same topology. Finally, for any s > 0, L, is isomorphic to the “lens space” S%/Z,
obtained by dividing S? by ua — e***/%u,, k = 0,1,...,5 — 1. One sees this by using the
@ in (2.8) to “gauge away” 9, leaving a residual Z, gauge symmetry that acts on u.

The lens space L, has a manifest SU(2) x U(1) symmetry, where the SU(2) acts in
the standard fashion on the u, and the U(1) acts by 9 — % + constant. Any circle bundle
over S? with SU(2) x U(1) symmetry will be equivalent to L, with some value of s; we
want a practical way to determine s. Suppose one is sitting at some point on $2, say
i = (0,0,1). In a standard basis of the Pauli matrices, this corresponds to u, = (1,0).
The point 7 = (0,0, 1) is invariant under a U(1) subgroup of SU(2), consisting of rotations
about the third axis; on the u, this acts by

i 3 3
J = 5 (‘ulg—l— - 1&&;) . (2.9)
The 1/2 is present because the u, are in the spin one-half representation of SU(2), and is
consistent with the fact that e/ = 1 in acting on 7. Sitting at the point u = (1,0), that

transformation is equivalent (modulo a “gauge transformation” (2.8)) to that generated
by
J=—c—. (2.10)

So we get our criterion for determining the value of s: a rotation around a given point
P € S? acts with charge —3/2 on the S! fiber over P. In particular, such a rotation shifts
¥ by s, so that SU(2) acts faithfully on L, if s is odd, but SU(2)/Z, = SO(3) acts if s
is even.

Since, in the case of gauge group G = SU(2), we are interested in dividing by the
Weyl group, we should also discuss S! bundles over RP? = S2/Z,. The transformation

i — ~fi corresponds in terms of u, to
o 24 (ul,ug) — (ﬁg, —ﬂl). (2.11)

In the quantum field theories we want to study, the Weyl group also acts on ¥ (the dual of
the photon) by a() = —+ (and this is in any case needed for consistency with the “gauge
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invariance” (2.8)), so the circle bundles M, over RP? that we want are obtained simply
by dividing Ls by a Z, that acts as (2.11) on u and multiplies 9 by —1. We recall that in
turn L, = S®/Z;, where Z, is generated by § : u, —+ e2"¥/sy,. So M, is the quotient of
S3 by the group generated by o and 8. There is no loss of generality in assuming that s
is even, say s = 2k, since if s is odd, by replacing the group generators « and # by o and
af, one can reduce to the even s case (the point being that if 8 is of odd order, then of is
of even order). The group generated by a and f is then a dihedral group I'x characterized
by the relations

a?=g%=-1

2.12
af =g 'a, (2.12)

where in the first relation —1 (which in our realization of the group acts by u, —+ —u,) is
understood as a central element of I'x. In the correspondence between finite subgroups of
SU(2) and the A — D — E series of Lie groups, the group I'; corresponds to Dy 42, that is,
to SO(2k + 4).

2.3. Behavior In A Monopole Field

One of the key aspects of 2 + 1 dimensional gauge theories is that, as first explained
by Polyakov twenty years ago [9], magnetic monopoles in unbroken U(1) subgroups of the
gauge group can appear as instantons.

The contribution of such an instanton is obviously proportional to e~f, where I is the
action of the instanton. A more subtle fact is that [9] if o is the scalar dual to the U(1)
gauge field, then the instanton contribution also has a factor of e~*“, incorporating in the
dual description the long range fields of the instanton. Beyond these general factors of
e~ (I+i9) there may be additional factors coming, for instance, from fermion zero modes.
For example [10], in N = 2 super Yang-Mills theory, with the instanton being a solution of
the Bogomol’nyi-Prasad-Sommerfeld (BPS) monopole equation, the instanton is invariant
under half of the four supercharges; the others generate two fermion zero modes. The field
I +io is the bosonic part of a chiral superfield. The effect of the fermion zero modes is that
the function e~(/+¢) must be integrated over chiral superspace, and is a superpotential
rather than an ordinary potential.

In the present context of N = 4 super Yang-Mills theory, there are eight supercharges,
of which half annihilate a supersymmetric instanton. As in [11,12], a supersymmetric solu-

tion in such a context will (if additional fermion zero modes are absent or can be absorbed)
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generate a correction to the metric on moduli space, rather than a superpotential. We first
consider the minimal N = 4 theory, without hypermultiplets, in which the fermion zero
modes are generated entirely by the unbroken supersymmetries.

As usual in instanton physics, it is essential to analyze the symmetries of the instanton
amplitude. We recall that the N = 4 gauge theory in three dimensions has a symmetry
group SU(2)gr x SU(2)n x SU(2)Eg, with the supercharges transforming as (2,2,2). The
BPS monopole is invariant under the rotation group SU(2)g (mixed with a gauge trans-
formation) and under SU(2)r (which only acts on fermions). However, the choice of a
vacuum expectation value of the ¢; breaks SU(2)n to a subgroup U(1)y even before one
considers monopoles; the BPS monopole is constructed using only a single real scalar in
the adjoint, which can be chosen to be the field with an expectation value at infinity, and
so is invariant under U(1)n.

Under the unbroken group SU(2)r x SU(2)g x U(1)n, the supercharges transform as
(2,2)!/2 @ (2, 2)~ /2, where the superscript is the U(1)n charge, which takes half integral
values on the supercharges because they transform as spin one-half under SU(2) 5. The
BPS monopole is invariant under half of the supercharges in an SU(2)r x SU(2)g x
U(1) n-invariant fashion, so the unbroken supersymmetries must be, if we pick the sign

1/2

of the U(1)y generator appropriately, the piece transforming as (2,2)~!/2. The fermion

zero modes therefore have the quantum numbers (2,2)%/2.

schematically

The instanton amplitude is

bpypyp e~ 1+, (2.13)
where the ’s are fermions of U(1)y = 1/2. Note that if we consider antimonopoles instead
of monopoles, the zero modes transform as (2,2)~ /2, and (2.13) is replaced by

P eI, (2.14)
with 1-/; being fermions of U(1)y = —1/2.

The ¥y vertex carries U(1)y charge 4 - (1/2) = 2. One might be tempted to
conclude that there is an anomaly in U(1)y conservation in a monopole field, but this is
impossible as U(1)n is a subgroup of the simple group SU(2)x. Rather, we must assign a
transformation law to ¢ so that the instanton amplitude is invariant. Clearly, this means
that the U(1)ny generator must act on ¢ as +28/80, meaning that in the notation (2.10)
(including the factor of 1/2 present there), s = —4 for the pure N = 4 gauge theory. The
moduli space of the pure N = 4 theory therefore does not look at infinity like S? x S! but

like the lens space L_4 described in the last subsection.
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Now, let us determine the value of s if one includes hypermultiplets in the two-
dimensional representation of SU(2). A doublet half-hypermultiplet in a monopole field
has a single fermion zero mode (for the relevant index theorem see [13]), with the opposite
sign of U(1)y from that of the vector multiplet zero modes. So with Ny hypermultiplets
(2N half-hypermultiplets), there are 2Ny zero modes, giving?*

s = —4+2Ny. (2.15)

For future use, we can also now work out the value of s for a U(1) theory with
hypermultiplets. There are no monopoles in the pure U(1) gauge theory, but by thinking
of s as the coefficient of a one-loop amplitude, and the fields of the U(1) theory as a subset
of the fields of an SU(2) theory, one can infer the result for U(1) from that for SU(2). The
U(1) theory without hypermultiplets is free, so the vector multiplet contributes nothing.
The hypermultiplet contribution in the SU(2) theory with doublet hypermultiplets can be
inferred from a one-loop diagram with the hypermultiplet running around the loop and
external fields being vector multiplets. If we simply restrict the external fields to be in
a U(1) subalgebra, then the SU(2) diagram with the internal fields being a doublet half-
hypermultiplet turns into the U(1) diagram with the internal fields being a hypermultiplet
of charge one. (In particular, if we embed U(1) in SU(2) so that the doublet of SU(2)
has U(1) charges +1, then a half-hypermultiplet of SU(2) reduces to an ordinary charge
one hypermultiplet of U(1).) The value of s for a U(1) theory with M hypermultiplets of
charge 1 is thus obtained by replacing 4 by 0 and 2Ny by M in (2.15):

s=M. (2.16)

Going back to the SU(2) theory, we see from (2.15) that s is always even. This means
(as noted following (2.10)) that it is not SU(2)y but SU(2)y/Z2, which we will call
SO(3)n, that acts faithfully on the moduli space M of vacua. Furthermore, s # 0 except

4 It is curious that in four-dimensional N = 2 super Yang-Mills theory, the analogous counting
of zero modes in an instanton field gives a factor of —8+ 2Ny, instead of —4 + 2Ny. The difference
arises because the half-hypermultiplet has the same number of fermion zero modes in a three-
dimensional monopole or four-dimensional instanton, but the vector multiplet has twice as many
zero modes in the four-dimensional case - four generated by ordinary supersymmetries that have
an analog in the three-dimensional problem, and four more by superconformal symmetries that

do not.
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for Ny = 2. When s # 0, SO(3)n acts non-trivially on the scalar ¢ that is dual to the
photon. This means that the generic SO(3)y orbit is three-dimensional. Also, because
SU(2)n is a group of R symmetries, the three complex structures of the hyper-Kahler
manifold M are rotated by the SO(3)y action. In [6], four-dimensional hyper-Kihler
manifolds with an SO(3) action that rotates the complex structures and has generic three-
dimensional orbits were classified. From what has just been said, all of our metrics will

appear on their list except for Ny = 2.

2.4. The Metric On Moduli Space

Before comparing to results of [6], and to expectations from string theory, let us ask
what sort of metrics we expect on the moduli space M, for various Ny. First we consider
the case of gauge group SU(2). The starting point is the classical answer, the flat metric on
(R?® x S)/Z,. There is then a one loop correction to the structure at infinity, for Ny # 2.
The effect of this correction is that “infinity” for Ny # 2 looks not like (S? x S')/Z, but
like L,/Z,, with s = 2Ny — 4.

Perturbation corrections to the metric on M are entirely determined by the one-loop
correction plus the non-linear terms in the Einstein equations. (This is analogous to the
fact that in four dimensions, perturbative corrections beyond one loop are forbidden by
holomorphy.) This may be proved as follows. A “new” k-loop correction to the metric
would be a self-dual solution of the linearized Einstein equations on AL (since hyper-
Kahler metrics automatically obey the Einstein equations and are self-dual) and would
be SU(2)n x U(1) invariant (since perturbation theory has this symmetry). Imposing
the U(1) (which acts by translation of o, the dual of the photon) gives a dimensional
reduction of the Einstein equations to three-dimensional scalar-Maxwell equations on R3,
with SU(2)n acting by rotations. The only rotationally-invariant mode of the Maxwell field
in three dimensions is the “magnetic charge,” the integer s that we already encountered
at one loop. The s-wave mode of the scalar is related by self-duality of the metric to the
“magnetic charge” so is likewise determined at one loop. Thus, the whole perturbation
series is determined by the one-loop term plus the equations of hyper-Kahler geometry.

As in four dimensions, however, there can be instanton corrections to the metric, the
relevant instantons here being BPS monopoles. For Ny = 0, it is clear that instantons
contribute to the metric. In fact, the non-derivative ¥ype— I+ vertex described above
is part of the supersymmetric completion of a correction to the metric. So there is a one-
instanton contribution to the metric for Ny = 0. What happens for Ny > 07 There will
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be hypermultiplet zero modes in a monopole field, so that the one-instanton field gives
a vertex Piy?N1e~(I+) (3 being fermion components of the hypermultiplet, of opposite
U (1) n charge from %), which has too many fermions to be related by supersymmetry to the
metric on M. A correction to the metric still might arise from an r-instanton contribution
with r > 1. Since the U(1) x4 charge carried by vector or hypermultiplet zero modes could be
determined from an index theorem and is proportional to r, an r-instanton contribution
will give in the first instance a vertex y* x2 N¥7e="(I+i¢)  However, in integrating over
bosonic collective coordinates and computing various quantum corrections, 9 and x zero
modes of opposite charge might pair up and be lifted. This process might generate a vertex
ye~"(I+i9) _ which would be related by supersymmetry to a correction to the metric — if

2rNj = 4r — 4 or in other words
1

r= m (2.17)
But we also need r to be a positive integer, since BPS monopoles only exist for such values
of r. (Considering anti-monopoles instead of monopoles reverses all quantum numbers and
leads to the same restriction on r; in fact, since the metric is real, there is an anti-monopole
contribution if and only if there is a monopole contribution.) So the only cases are Ny =0
and r = 1, or Ny = 1 and r = 2.5 (The fact that only one value of r appears we take
to mean that the exact metric is determined by this one contribution together with the
non-linear Einstein equations.)

In sum, then, for Ny = 0 we expect a metric with a perturbative contribution that
gives s = —4, plus monopole corrections, and for Ny = 1 we expect a metric with a
perturbative correction that gives s = —2, plus monopole corrections. For Ny = 2, the
perturbative and monopole corrections both vanish, and the quantum metric should very
plausibly coincide with the classical metric, that is, the flat metric on (R® x S$!)/Z,. For
Ny > 2, there is a perturbative correction at infinity, with s = 2Ny — 4, and the monopole

corrections vanish.

String Theory And Field Theory

5 For Ny > 0, there is a symmetry reason that only even r can contribute to the metric. The

relevant symmetry is the one that changes the sign of just one of the half-hypermultiplets (and
so extends SO(2N;) to O(2Ny)). Since in a one-monopole field the fermion zero mode measure
is odd under this symmetry, the symmetry must be defined to shift & by #. The x zero modes
are odd under this Z; for odd r and N; > 0, implying that they cannot be lifted.



Let us now recall the expectations from string theory [5]:
(1) For Ny = 0,1, the metric on moduli space is expected to be complete and smooth.
(2) For Ny > 2, one expects the metric to have a Dy, singularity.

To clarify the meaning of the second statement, recall that for Ny > 2, the Dy,
singularity is the singularity obtained by dividing C? by the dihedral group I'y,—. This
group was introduced earlier and is generated by elements o, 8 with o? = gN/—=2 = —1
(the symbol —1 simply denotes a central element of the group), and af = ~1a. For
Ny = 2, something special happens: D is the same as 4, x Ay, or SU(2) x SU(2), so0 a
D, singularity should be simply a pair of A, singularities, that is, Z, orbifold singularities.

Let us now make a preliminary comparison of the string theory statements with what
we have learned from field theory. For Ny > 2 we have found that topologically the moduli
space M looks near infinity like C?/T'y,_2. (The metric near infinity on M does not look
like the obvious flat metric on C2/T'y,.2.) We actually want to express the singularity
near the origin rather than the behavior at infinity in terms of I'y,_2; we will do this
momentarily. Likewise, for Ny = 2, the moduli space that we claim, namely (R* x S')/Z.,
indeed has a pair of Z, orbifold singularities (from the two Z; fixed points on R3 x S!) as
expected.

For N¢ = 2, a more precise comparison of the string theory and field theory results
is possible. In fact, from string theory one can see why the moduli space should be
(R® x 8!}/Z, with the flat metric, just as we have found from field theory. There are
many possible approaches to this result, but a quick way is to compactify M-theory on
R7 x K3 and consider a two-brane whose world-volume fills out R*® x {p}, where R is
a linear subspace of R” and p is a point in K3. Consider the quantum field theory on
the world-volume of this two-brane. The moduli space of vacua of this theory is the K3
manifold itself, which parametrizes the choice of p. By arguments as in [5], in various
limits in which heavier modes decouple, this theory will reduce at low energy to the three-
dimensional N = 4 super Yang-Mills theory with gauge group SU(2). In particular, in K3
moduli space, there is a locus in which the K3 looks like (T2 x S!)/Z; with the flat metric.
Taking the T to be large and restricting to a neighborhood of a Z, fixed point in T2, one
gets a piece of the K3 that looks like a flat (R® x S!)/Z,. In this piece of the K3, there
are two A; singularities, giving on R7 a gauge symmetry SU(2) x SU(2) = SO(4), which
will be observed as a global symmetry along the two-brane world-volume. The global

symmetry means that the world-volume theory is the Ny = 2 theory, and by construction
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its moduli space is (R? x S!)/Z, with flat metric, as was claimed above.

Comparison To Ezact Metrics

To learn more, we compare now to what is known [6] about four-dimensional hyper-
Kahler manifolds with an SO(3) symmetry of the appropriate kind. Assuming that one
wants a metric with at most isolated singularities, the possibilities are extremely limited.
For a smooth manifold with these properties, there are only two possibilities. One (some-
times called the Atiyah-Hitchin manifold; it was studied in [6] because of its interpretation
as the two-monopole moduli space) is a complete hyper-Kahler manifold A/, with funda-
mental group Z,. Topologically, A looks like a two-plane bundle over RPZ2. The structure
at infinity looks like L_4/Z2, corresponding to a one-loop correction with s = —4. The
other possibility, which we will call N, is the simply-connected double cover of A; it is
topologically a two-plane bundle over S?, and the structure at infinity looks like L._»/Z,,
corresponding to a one-loop correction with s = —2. Since we found s = —4 and s = —2
for the two cases - Ny = 0,1 - for which we expect a smooth metric, we propose that the
Ny = 0 theory has moduli space A, and the Ny = 1 theory has moduli space N.& We will
discuss in more detail the fundamental group and its physical interpretation later.

Now let us discuss the possible singular metrics. According to [6], a hyper-Kahler
metric with the requisite sort of symmetry and only isolated singularities is severely con-
strained. Such a manifold is topologically C?/T", where I is a cyclic or dihedral subgroup
of SU(2) (or if the metric is flat, I' may be any finite subgroup). As for the metric on
C?/T, it may be flat, but there is a more general possibility. As the space at infinity looks
like S3/T", which is an S! bundle over S? or RP?, one can have a metric — a variant of
the Taub-NUT metric - in which the S! approaches at infinity an arbitrary radius R.” R
can be varied simply by multiplying the metric by a constant; the flat metric on C2?/T is

% The extra Z, symmetry of AV which we mod out by to get A is the global symmetry of the
microscopic Ny = 1 theory, mentioned earlier, that prevents a one-monopole correction to the
metric for Ny = 1. That this symmetry acts freely on the moduli space - even in the strong
coupling region — is related to the discussion of confinement that we give later.

7 There are a few subtleties here relative to assertions in [6] that come reflect the fact that
the authors of [6] wanted smooth metrics with an SO(3)n action, rather than SU(2)n. They
therefore construct the Taub-NUT metric with a Z; orbifold singularity, and do not make explicit
that it has a smooth double cover (acted on by SU(2)n instead of SO(3)n) that can be divided
by any cyclic or dihedral group I" (the quotient is acted on by SO(3)n except in the case that T’
is cyclic of odd order). We here need these slight generalizations.
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obtained in the R — oo limit. In the present problem, we want R of order e, since that is
the circumference of the circle obtained by dualizing the photon.

Given that the SU(2) gauge theory with Ny > 2 hypermultiplets has moduli space
C?/T for some T, all that really remains is to identify I'. But we have determined that at
infinity the structure looks like Ss/l"N,_z, so I' = T'y,-. Hence the moduli space has a
I'y,—2 orbifold singularity at the origin. Since, in the association of subgroups of SU(2)
with A — D — E groups, SO(2Ny) = Dy corresponds to I'y,_2, we have confirmed from
field theory the string theory claim [5] that the theory with N, hypermultiplets has a Dy,
singularity.

It is easy to consider U(1) gauge theories in a similar way. We saw that the U(1)
gauge theory with M charge one hypermultiplets has a one-loop correction with s = M,
and that the moduli space at infinity looks like C2/Zys. Hence in this case, I' = Zps, and
there is a Zps orbifold singularity at the origin. This confirms the claim [5] that the U(1)
theory with M charge one hypermultiplets has a Zps (or Apr—) singularity in the strong
coupling region. For M = 1, this means that the moduli space is completely smooth. The
metric for M =1 is uniquely determined by the symmetries, smoothness, and asymptotic
behavior to be the smooth Taub-NUT metric.

The Taub-NUT-like metrics on C?/T" have a very simple structure. They are given
by an elementary closed formula ([6], p. 76). In fact, in addition to the SO(3) symmetry,
the Taub-NUT metrics have an extra U(1) symmetry that acts by translation of the scalar
o which is dual to the photon; this is a precise statement of the absence of monopole
corrections. On the other hand, the metric on A or its double cover, while exponentially
close to a Taub-NUT type metric at infinity, has ([6], p. 77) exponentially small corrections
which violate the extra U(1) and which we interpret as monopole corrections.

It may seem somewhat odd that the metric for Ny > 1 is so different from what it is
for Ny < 1. It is perhaps comforting, therefore, that ([6], p. 56) in a sense, the manifold
N is a kind of analytic continuation of the Dy, space to Ny = 1. In fact, as a complex
manifold, the Taub-NUT space for Dy, is described by the equation

y? = 2%y — N1, (2.18)

This has a Dy, singularity at y = z = v = 0, for Ny > 2, and two A, singularities (at
y=v =0,z = =*1) for Ny = 2. If one simply sets Ny = 1, the same formula does give the
complex structure of N - though there is no longer a singularity. We will return to this

formula for the complex structure in section three.



348
2.5. Some Physical Properties

We will use these results to discuss some physical properties of these models.

First we consider symmetry breaking. For any Ny # 2, on the generic orbit SO(3)n§
is broken to a finite subgroup. (For Ny = 2, the generic unbroken group is O(2).) What
happens in the strong coupling region? For Ny > 2, the SO(3)y is completely restored
at the strong coupling orbifold points. For Ny = 0,1, this is not so. The most degenerate
SO(3)n orbit in A is a copy of RP?; in N the most degenerate orbit is a copy of S2. So
the maximal unbroken subgroup of SO(3)n is O(2) or SO(2) for Ny = 0 and Ny = 1.

We now turn to consider the significance of the fundamental group of M and N.

The Ny = 0 theory has no fields with half-integral gauge quantum numbers, so it can
be meaningfully probed with external charges in such a representation. Let us consider
the fields that would be produced by such a charge. In terms of the photon, an external
charge produces in 2 + 1 dimensions an electric field varying as 1/r; to be more precise,
in Cartesian coordinates z,, a = 1,2 with r = \/z'f_+z?,f, the electric field is E, ~ z,/r?.
After performing a duality transformation, the external charge becomes a vortex for the
dual scalar o; that is, o jumps by 27 in circumnavigating the external charge. The energy
of such a vortex has a potential logarithmic infinity both at short distances and at large
distances. The behavior at short distances should be cut off for our present purposes, but
the behavior at long distances is physically significant; it reflects logarithmic confinement
of electric charge in weakly coupled 2 + 1-dimensional QED.

To describe this situation in a more general language, we can say that along a circle
that runs around the external charge, the fields make a loop in the moduli space M of
vacua. If this loop is trivial in 7;(M), then even in the low energy theory one can see
that the “vorticity” produced by the external charge is not really conserved, and that the
external charge can be screened. If the loop is non-trivial in 7;(M), then the external
charge cannot be screened in the low energy theory, though it is still conceivable that it
can be screened by massive modes that have been integrated out in deriving the low energy
theory.

For Ny = 1, the loop produced by an external charge is automatically trivial in
(M) since in fact M = N is simply connected. This is in accord with the fact that the
N¢ = 1 theory has isospin one-half fields, so that external charges can be screened. For
Ny > 1, in order to make this argument, one has to decide how a low energy physicist
would understand the singularities. However, at least for Ny > 2 where the moduli space
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(being a cone C?/T") is contractible, it is plausible that a physicist knowing only the low
energy structure would determine that the external charges can be screened.

For Ny = 0, however, the answer is quite different. The loop C produced by an
external charge is the generator of m;(N), as we will see momentarily, so the external
charge cannot be screened either in the low energy theory or microscopically. In showing
that C is the generator of m(N), the point is that in the analysis in chapter nine of [6],
the fundamental group at infinity in the moduli space is generated by two circles, defined
respectively by one-forms that were called o1 and 0,. (Loops wrapping once around these
circles give our standard generators o and 8 of the fundamental group at infinity, which
for M is what we called I';.) Moreover, the metric was described in terms of functions a, b,
and c. Since at infinity in the moduli space, b approaches a limit and and g and ¢ diverge,
it is the circle defined by o, that corresponds in the semi-classical region to the photon
and so to the loop C. On the other hand, on the exceptional RP? orbit, a = 0 and b # 0.
Hence the o, circle can be contracted in the interior of A/, and the o2 circle — that is the
loop produced by the external charge - survives as the generator of 7;(AN), as we wanted
to show.®

One might ask, for Ny = 0, what sort of confinement is observed in this theory.
As long as the vacua parametrized by A are precisely degenerate, the energy of a pair
of external charges separated a distance p will grow only as log p, since the energy of a
vortex configuration of massless fields has only a logarithmic divergence in the infrared;
such a vortex configuration will form between the two external charges. However, suppose
that one makes a generic small perturbation of the Ny = 0 theory that lifts enough of the
vacuum degeneracy so that a loop that generates r; (A) cannot be deformed into the space
of exact minima of the energy. (It does not matter whether the perturbation preserves
some supersymmetry.) Then the fields on a contour that encloses one external charge but
not the other cannot be everywhere at values that exactly minimize the energy. In such
a situation, a sort of string will form between the external charges (one might think of it
as a domain wall ending on them), and the energy will grow linearly in p. Thus, like the
four-dimensional N = 2 theory [1] with Ny = 0, the three-dimensional N = 4 theory with

Ny = 0 does not have linear confinement but gives linear confinement after a generic small

$ This also means that the Z; symmetry of N/, by which one would divide to get A/, is a 7
shift of the scalar & dual to the photon; as explained in connection with (2.17), this symmetry

must be accompanied by a sign change of one half-hypermultiplet.
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perturbation.

Finally, note that the association here of confinement with m;(A) is somewhat anal-
ogous to the association in some four-dimensional SO(N) gauge theories of confinement
with 7, of a moduli space [14].

Another issue of physical interest stems from 7, of the moduli spaces. Since these
groups are non-trivial, the low energy theory on the moduli spaces can have solitons.
There is no reason to expect these solitons to be BPS-saturated at the generic vacuum on
the moduli space. Furthermore, their detailed properties can depend on higher dimension
operators which are not considered in this paper. Nevertheless, the topology of the moduli
spaces supports solitons which are localized excitations in the three-dimensional theory.
Their interest is related to the fact that most of the global symmetry of the theory does
not act on the Coulomb branch of the moduli space. For example, all the light fields are
invariant under the global SU(N;) symmetry of the U(1) gauge theories or the SO(2Ny)
of the SU(2) gauge theories. We claim that these solitons are in the adjoint representations
of these groups. This is easiest to establish using the string theory viewpoint [3-5]. The M-
theory two-brane can wrap non-trivial two cycles to yield zero-branes which are SU(Ny)
or SO(2Ny) gauge bosons. Our solitons can be interpreted as bound states of such a gauge
boson with a two brane at a generic point in its moduli space. From a three-dimensional
viewpoint, these solitons are bound states of the elementary hypermultiplets. They are
bound by the logarithmic Coulomb forces to neutral composites. This situation is similar
to current algebra in four dimensions. There, the non-trivial m3 of the moduli space leads
to solitons. Their topological charge is identified with the global U(1) baryon number
[15,14], which exists in the microscopic theory. In both situations the global symmetry of
the microscopic theory manifests itself through the topology of the moduli space.

2.6. Incorporation Of Bare Masses

We will now try to discuss the incorporation of bare masses for the hypermultiplets.

In four dimensions, the bare mass of a hypermultiplet is a complex parameter, with
two real components, while in three dimensions a third parameter appears. This arises as
follows. In four dimensions, the group that we have called SO(3) y is reduced to an SO(2)
group, usually called U(1)r. A complex hypermultiplet mass parameter carries U(1)g
charge, or equivalently, its real and imaginary parts transform as a vector of SO(2). In three
dimensions, as the SO(2) is extended to SO(3)y, the mass vector gets a third component

to fill out the vector representation of SO(3)n. It is easy to reach the same conclusion
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by viewing the masses as expectation values of background fields in vector multiplets that
gauge some of the flavor symmetries [16]. Since all the bosons in the vector multiplets
originate from gauge fields in six dimensions and since the masses are scalars in three
dimensions, they must be in a vector representation of SO(3)y. This interpretation also
makes it obvious that they are in the adjoint representation of the flavor group SO(2Njy)
(SU(Ny) in the U(1) gauge theory). Requiring that the background fields should preserve
supersymmetry means that they can all be gauged to a common maximal torus of the
flavor group, and this is why there are precisely Ny triplets of mass parameters.

In general, in four-dimensional N = 2 theories, the moduli space of the Coulomb
branch of vacua parametrizes [1] a family of complex tori. The total space of the family
is a complex manifold M’ with a holomorphic two-form w, and, according to section 17 of
[2], the dependence of M’ on the masses is determined by the requirement that the periods
of w vary linearly in the masses.

The moduli space M of vacua in three dimensions is a hyper-Kahler manifold which in
fact is the analog of M’; this relation will be elucidated in the next section. The analogs of
w are the three covariantly constant two-forms w,, 2 = 1,2, 3 of the hyper-Kahler manifold
M (two of which correspond to the real and imaginary parts of w). These transform in
the vector representation of SO(3)y. We normalize them in the semi-classical region of
large ¢ to be independent of the hypermultiplet bare masses.

The natural three-dimensional analog of the four-dimensional statement that the peri-
ods of w vary linearly in the masses is then a three-dimensional statement that the periods
of the w, should vary linearly with the masses. Notice that such an assertion is compatible
with SO(3)w, as both the mass parameters and the two-forms transform as SO(3)n vec-
tors. A direct field theory justification of this principle in three-dimensional N = 4 models
is not clear at the moment. ® We will here simply accept this principle and discuss its
implementation for the SU(2) theory with Ny doublets.

First we consider the case Ny = 0. The moduli space A that we proposed is homo-
topic to the two-manifold RP2. As this is unorientable, the two-dimensional homology

of this manifold has rank zero, and a closed two-form has no periods. Thus, there is no

9 But note that for those three-dimensional N = 4 models that have been related to string
theory [5], which include those studied in detail in this paper, the fact that the periods of w, vary
linearly in the masses follows from the fact that the periods of the w, are the natural coordinates

parametrizing hyper-Kahler metrics on K3.
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way to perturb this model to include mass parameters. That is just as well, since no
hypermultiplets are present in the model.

Now consider Ny = 1. The moduli space A is homotopic to S2; a closed two-form
on this manifold has a single period, the integral over S2. Thus, a single “mass vector”
can be introduced, compatible with the fact that the model has Ny = 1. In fact, the
hyper-Kahler metric that is the appropriate deformation of A to include masses has been
described explicitly by Dancer [17]. Dancer constructs a deformation W; of the hyper-
Kahler manifold A’ depending on an SO(3)y vector X. That the periods of & vary linearly
with X is a consequence of Dancer’s construction of Ni as a U(1) hyper-Kahler quotient
(of a hyper-Kahler eight-manifold) with X as the constant term in the moment map. We
will return to Dancer’s manifold in section three.

For Ny > 1, the real homology of the resolution of the Dy, singularity is known to
have two-dimensional homology of rank Ny, so that Ny mass vectors can be introduced.

It is now by the way clear, even without solving for hyper-Kahler metrics as in [6],
that for Ny > 2 the metric on the moduli space of vacua must be singular. An SO(3)
action with three-dimensional orbits on a four-manifold constrains the topology so much
that there could not be Ny > 2 independent two-cycles, unless some or all are collapsed
at a singularity.

Even though we have not determined the metric, it is easy to see how the masses affect
the singularity of the moduli space. First, physically, we expect that if only £ < N; masses
vanish the singularity should be Di. Furthermore, if n masses are equal and non-zero we
expect an A,_; singularity (classically, upon adjusting the Higgs field to cancel the bare
mass of some of the fields, we get a U(1) gauge theory with n massless hypermultiplets,
which gives an A,_; singularity, from which a Higgs branch emanates). This is exactly
the behavior after the Dy, singularity is blown up. The N; mass parameters are the
parameters labeling the blow-up of the singularity.

3. Field Theory On R? x S}

In the remainder of this paper, we will mainly be studying four-dimensional N = 2
super Yang-Mills theory formulated on a space-time R3 x S}, where S} is a circle of
circurnference 2mR. We focus on the case of gauge group G = SU{(2), with Ny < 4
matter hypermultiplets in the two-dimensional representation. (The upper bound on Ny,

which has no analog in three dimensions, ensures a non-positive beta function in the four-
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dimensional theory.) We recall that the bosonic fields of the theory are the SU(2) gauge
field and a complex scalar ¢ in the adjoint representation.

To begin with, we consider what happens for R much greater than the natural length
scale of the four-dimensional theory (which is set by an appropriate bare mass, order pa-
rameter, or by the scale parameter A introduced in quantizing the theory). In this regime,
one can borrow four-dimensional results. The moduli space of vacua in four dimensions is
[1,2] the complex u plane, where u = Tr ¢? is the natural order parameter. The massless
bosons are u and an Abelian photon, which we will call A. The effective action for A, in
four dimensions, looks like

16
3272

1 -~
L= / dizc (@F,,,FP" + F,..,F"") . (3.1)
Here p,v = 1...4 are space-time indices, Fj,, = 9,4, — 8,4,, and i‘,,., = LepvapForf. e
and 4 are functions of u and were determined in [1,2]. A key point in computing them
was to interpret e and 6 as determining the complex structure of an elliptic curve E. The
most natural convention in defining £, in the case Ny # 0, was explained on pp. 487-8 of

[2]. E is the complex torus with 7 parameter

4 8mi
T==4—.
T e?

(3.2)
E is isomorphic in other words to C/I", where I' is the lattice in the complex plane generated
by the complex numbers 1 and 7. For Ny = 0, one can also conveniently use, as in [1], an
isogenous elliptic curve with r replaced by 7/2, but this is awkward if one wishes to let
Ny vary.

Once we work on R® x SL, there is a small subtlety about defining the theory in
the Ny = 0 case. In quantizing a gauge theory, one must divide by the group of gauge
transformations. But precisely what gauge transformations do we want to divide by? Do
we want to consider gauge transformations which, in going around the S}, are single-
valued in SU(2), or gauge transformations that would be single-valued only in SO(3)?
For Ny # 0, since there are fields that are not invariant under the center of SU(2), the
gauge transformations that are single-valued only in SO(3) are not symmetries, so cne is
forced to divide only by the smaller group. For Ny = 0, one is free to divide by either the
larger or the smaller group; the two choices give slightly different (but obviously closely
related) quantum theories, the moduli space of vacua of one being a double cover of the
moduli space of vacua of the other. To obtain results that vary smoothly with Ny, in
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quantizing the Ny = 0 theory, we will divide only by the “small” gauge group, the gauge
transformations that are single-valued in SU(2). It will be seen, as one might expect, that
this choice will agree with (3.2), while the other choice has the effect of replacing 7 by 7/2.

To determine what happens in compactification on R® x S}, for very large R, we
simply expand (3.1) in terms of fields that are massless in the three-dimensional sense.
These are the fourth component A4 of the gauge field and also a three-dimensional photon
Ai, 1 =1,...,3 which is dual to another scalar o. First of all, the gauge field A in (3.1) is
normalized (see the discussion of eqn. (3.12) in [1]) so that fields in the two-dimensional
representation of SU(2) have half-integral charges, and the magnetic flux of a magnetic
monopole is 47. Because of the first assertion, and the fact that we are only dividing by the
gauge transformations that are single-valued in SU(2), fs}a A is gauge-invariant modulo
4m. We therefore write the massless scalar coming from A4 as

b

M=TR

(3.3)

where b is an angular variable, 0 < & < 2.

The effective action becomes in terms of b and the three-dimensional photon

i0
L= / &’z ( Tz |96 + 5 2F2 + —ev*za,a,‘b) (3.4)

The next issue is to dualize the three-dimensional photon. To do so, introduce a two-

form B;; with (in addition to standard gauge invariance A; — A; + 8;w) an extended
gauge-invariance

A; =& Ai + C;, Bij = Bi; +06,C; - 8;C; (3.5)
where C is an arbitrary connection on a line bundle, and introduce also a scalar field ¢
with 0 < ¢ < 2w. Replace the F-dependent part of (3.4) by

/ d*z ( ~ By + ’: €% (F;; — B;j)ob + —e'J"B.,aw) (3.6)

The point of this is that if one first integrates over o, then o serves as a Lagrange multiplier,
enabling one to set B = 0 modulo an extended gauge transformation (3.5); in this way one
reduces (3.6) to the relevant part of (3.4). On the other hand, one can use the extended
gauge invariance (3.5) to set F' = 0, whereupon after integrating over B one gets a dual
description with a massless scalar o. The dual formula for the low energy action is in fact

-~ 1 e? 6 |2
— 3 . 2, - -
L= /d P (7rRe2 |db]? + TRET) do — —db ) ; (3.7)
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This is a sigma model in which the target space is a two-torus E with the 7 parameter
given in (3.2). (Had we chosen to divide by the “big" group of gauge transformations,
6 would have been replaced by 4/2, and 7 by 7/2, giving formulas related to the other
description of the Ny = 0 theory.)

Moreover, the area Vg of F is

1

Ve(R) = 167R’

(38)

An overall multiplicative constant in (3.8) depends on exactly how one writes the effective
action of a sigma model in terms of the metric of the target space, but the R dependence
of Vg is significant. We see immediately that near four dimensions, that is for R — oo,
the torus E is small.

One can likewise work out other terms in the effective action of the theory on R3 x S};.

For instance, on R*, the effective action for u is given by an expression
/ d'z g,zdudg, (3.9)

where g, is a metric on the u plane computed in [1]. After compactification on S},
one gets the three-dimensional effective action, in the large R approximation, simply by
integrating over S}, giving

/ d*z 27 R g,zdu di. (3.10)

3.1. First Look At The Moduli Space

Now we can describe the moduli space M of vacua of the N = 2 theory compactified
on R3® x Sk, at least for large R. The vacua are labeled by the order parameter u,
together with, for every u, an additional complex torus E,. From what we have just seen,
the relevant family of tori is the same family of tori that controls the u dependence of
the gauge couplings in four dimensions. So we can immediately borrow results from [2].
With 7 normalized as in (3.2), the appropriate family of tori is described by the algebraic
equation

3

V¥ =2 - g?u+ . (3.11)

Therefore, the moduli space of the three-dimensional theory, for large R, is given by (3.11).
Actually, there are a few imprecisions here. A minor one is that the equation (3.11),

for given u, does not describe a compact torus; one point on the torus is at £ = y = oo. This
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was not very important in the four-dimensional story, where only the complex structure
of E,, which can still be detected even if a point is projected to infinity, was of interest.
But after compactification to three dimensions, every point on E,, including the point
Z = y = 00, is an observable vacuum state of the theory. So if we want to be more precise,
we should extend r and y to a set of homogeneous coordinates z,y, and 2z, and write the

equation for E, in its homogeneous form:

2y? = 2% — 25%u + 2%z (3.12)

We will omit this except when it is essential.

A more far-reaching point is that while in four-dimensions it suffices to describe T—y—u
space as a complek manifold (since the complex structure of E, is all that one really needs),
once one is in three dimensions, the moduli space M has a hyper- Kahler metric, and merely
describing it as a complex manifold, as in (3.12), does not suffice. We must complete the
description by finding the metric. We know the large R limit of the hyper-Kahler metric,
from (3.7) and (3.10). Let us examine some aspects of that result with the aim of giving
a formulation that makes sense for arbitrary R.

Note that, as the R dependence of (3.10) is inverse to that of (3.7), the volume form
on the moduli space of three-dimensional vacua is independent of R, at least in the ap-
proximation of dimensional reduction from four dimensions. That volume form is in fact
a constant multiple of db A do A g,zdu A d%. This can be put in a more convenient form as
follows. The differential form dz /y is invariant under translations on FE, so it is a linear
combination of db and dg, with u-dependent coefficients. Hence |dz/y|? = dbAdo- f(u, ),
for some function of . But in fact f(u,%) = g,z. For this, recall from [1] that

Guw = 2Im (% %f’) (3.13)
where da/du and dap/du are the periods of dz/y. On the other hand, from the Riemann
relations

/;7 |dz /y|*> = 2Im (%%) . (3.14)
The conclusion, then, is that in terms of the holomorphic two-form
w= dz A du

Y
on M, the volume form, at least for large R, is just

(3.15)

O=wAw. (3.16)
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3.2. R Dependence Of The Metric

Let us now go back to four dimensions as a starting point, and ask, from that point of
view, what happens to the dynamics of the N = 2 theory when one compactifies from R* to
R?® x SL? One still has ordinary, localized four-dimensional instantons. The main novelty
is that one has in addition a new kind of instanton, namely a magnetic monopole (or a
dyon) that wraps around Sk. The action of such an instanton, for large R, is = 2rRM,
where M is the mass of the monopole in the four-dimensional sense.

The moduli space M of vacua is a hyper-Kahler manifold. In one of its complex
structures, the one exhibited in (3.12), M is elliptically fibered over the complex u plane.
Let us call this the distinguished complex structure.

In the distinguished complex structure, M is not a holomorphic function (rather, it
is the absolute value of the holomorphic function ap 4 na where n is the dyon charge).
Therefore, it is impossible for monopoles to correct the distinguished complex structure
of the moduli space. However, monopoles do contribute to the metric on M. In fact,
for R = 0 these contributions were discussed in the last section, and the case R # 0 can

10 Changing the metric on M without changing the distinguished

be treated similarly.
complex structure means that the other complex structures on M will change.

So far, we have just given a heuristic reason in terms of monopoles that the distin-
guished complex structure of M is independent of R. Two more fundamental reasons
for this can be given. (1) Picking the distinguished complex structure selects an N =1
subalgebra of N = 2 supersymmetry. This V = 1 algebra relates R to a three-dimensional
vector that comes from the components gi4, 3+ = 1,...,3 of the space-time metric tensor
g; that vector is dual to a scalar . N = 1 supersymmetry would require the complex
structure of M to depend on 7 if it depends on R, but the zero mode of 7 deceuples
in flat space quantum field theory. (It might not decouple in the field of a gravitational
instanton!) (2) The string theory approach [4,5], as we will explain in section four, makes
it clear that there is R dependence in the Kahler metric of M but not in the distinguished
complex structure.

There is actually a natural rationale for a change in the metric of M due to monopoles.
The complex manifold M is smooth for Ny = 0 as one can verify from (3.12). But, as
was discussed in [12] in a related context, the metric obtained by dimensional reduction as

10 14 section two, we found in three dimensions that there were no monopole contributions for

't > 1, but this depended on a symmetry that is absent at R > 0.
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in (3.7) and (3.10} is not smooth; there are singularities at points where the fiber E, has
a singularity. Those are points at which the monopole mass goes to zero and monopole
corrections cannot be ignored; it was proposed in [12] that the effect of the monopole
corrections would be to eliminate the singularities and produce a smooth hyper-Kahler
metric. For Ny > 2, M has orbifold singularities in its complex structure, as we will
review below; in that case, one would propose that with monopole corrections included,
the hyper-Kahler metric is smooth except for the orbifold singularities present in the
complex structure.

So at this point, we know one complex structure on M, and we need a recipe to
determine the smooth hyper-Kahler metric (or hyper-Kahler metric with orbifold singu-
larities) for given R. Yau's theorem on existence of Ricci-flat Kdhler metrics has analogs
in the non-compact case [18]. The basic idea is that to determine a hyper-Kahler metric,
given a complex structure, one needs (i) the non-degenerate holomorphic two-form w, (ii)
a two-dimensional class that should be the Kahler class of the metric, (iii) a specification
of the desired behavior at infinity.

In the present case, we propose that these data should be as follows. (i) We take w
to be w = dz A du/y, as introduced above. We ask that the hyper-Kahler metric should
have w A @ as its volume form. (ii) We specify the Kihler class of the metric by stating
that the area of E, is (as in (3.8)) Vg(R) = 1/16m R and that other periods of the Kahler
form, if any, are independent of R. (iii) Infinity in M is the region of large u; we specify
the metric in this region by asking that it should reduce to what was obtained in (3.7) and
(3.10).

We will assume that with an appropriate non-compact version of Yau's theorem, (i),
(i1}, and (iii} suffice to determine a unique smooth hyper-Kihler metric on M (or a hyper-
Kahler metric with only orbifold singularities forced by the complex structure). The most
delicate question for physics is whether (i) and (ii), which we found in the large R limit,
are actually exact statements about the quantum field theory. In the next section, we will
use string theory to argue that this is so, but for now we take it as a plausible assumption.
In particular, we assume, according to (ii), that the area of F, diverges for R — 0; we will

now see that this has interesting and verifiable consequences.

3.3. Comparison To Three Dimensions

In the last subsection, a proposal was made for the description of the hyper-Kahler

moduli space M that arises in compactification of the N = 2 theory on S}, for any positive
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R. Formally speaking, as R — 0, this should go over to the purely three-dimensional N = 4
theory, analyzed in section two. Qur next goal is to make this connection.

Since we claim that the area of E, is 1/167 R, something must diverge in the limit
R — 0; the E, cannot remain compact. We earlier exhibited the compactness of E,’s for

Ny = 0 by writing the equation in the homogeneous form
z2y? = ® - 20%u + 2%, (3.17)

This compactness will have to disappear for R — 0, if our formula for the area is correct.

Here is another reason that the compactness must be lost. At R = 0, the moduli
space has an SO(3)y symmetry which was extensively discussed in section two. Since
SO(3)n rotates the complex structures, the full SO(3)x will not be manifest once one
picks a distinguished complex structure. However, a U(1) subgroup, which preserves the
distinguished complex structure, should be visible. In fact, one should see a C* that
preserves the complex structure, of which the U(1) subgroup preserves the metric. But
the complex surface (3.17) does not have a non-trivial C* action; such a group would have
to map each E, to another E,. (because the holomorphic function u would have to be
constant on the image of E,) and hence to itself (since the different E, have different
J-invariants), but a torus E, does not have a non-trivial C* action. So something must
be deleted in order to find the C* action.

Suppose that we throw away the points with z = 0. After that we can scale 2z to 1
and reduce to affine coordinates £,y. This gives back the original description in which the

points at £ = y = 0o are omitted:
¥ =z ~gu+z. (3.18)

Let v = z — u, giving

v* = v+ 1. (3.19)

Suddenly a C* action, with weights 1,2, -2 for y,z,v, is apparent. Moreover,!! (3.19)
gives the complex structure of the Atiyah-Hitchin manifold A/, which we have proposed as
the moduli space of the Ny = 0 theory in three dimensions!

11 According to p. 20 of [6], A7 is the complex surface Y2 = X2V 4 1, and V is the quotient by
the freely acting Z, symmetry X — —X.Y — —Y,V — V. To take the quotient, we introduce
the Z,-invariant independent variables £ = X2, y = XY (we need not introduce Y? since it equals
XW+1= zV +1). In terms of £, y, and v = V, the equation Y2 = X2V +1 implies y? = z%v +=,
which then describes V.
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Thus, we propose that what must be deleted when R — 0 and the area of E, — oo
are simply the points z = y = 0.1 We will now give many checks showing how a similar
story works for Ny > 0. We first consider the case of zero hypermultiplet bare mass, and
then incorporate the bare mass for Ny = 1.

For Ny =1, in affine coordinates, the result obtained in [2] was

v =2 —%u 41 (3.20)
After substituting v = £ — u, we get
v =z%v 41, (3.21)

which has the expected C* action with weights 0,1, —2 for y,z,v. Moreover ([6], p. 20),
(3.21) does give the complex structure of A, the double cover of the Atiyah-Hitchin man-
ifold which was proposed in section two as the moduli space of the Ny = 1 theory in three
dimensions.

For N; = 2, the result obtained in [2] was

¥ = (22 - 1)(z — u). (3.22)
After the substitution v = £ — u, we get
y? = (2% - 1)v, (3.23)

with the expected C* action (weights 1,0,2 for y,,v) and the two A, singularities (at
y = v =0, z = 1) expected for the three-diinensional Ny = 2 theory.
For Ny = 3, the result of 2] was

¥ = 2% (z - u) + (z — u)?. (3.24)

The substitution v = £ — u gives
y? = 2% + 2, (3.25)

which is a standard form of the A3 or equivalently Dj singularity, as expected.

2 Those points must be deleted before one can make the change of variables from z and u to
z and ». In fact, in homogeneous coordinates a similar substitution v = z — uz fails to be an

invertible change of coordinates at z = 0, where z and v fail to be independent.
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Finally, for the Ny = 4 theory with zero bare mass, cne has
¥¥ = (T — equ)(z — e2u)(T — e3u). (3.26)

After linear transformations of z and u (that is replacing z and u by certain linear com-

binations that will be called £ and v}, this can be put in the form
y? = g2 + o°, (3.27)

which is a standard form of the D, singularity. (This D4 singularity — and the associated
configuration of two-spheres after deformation of the singularity - is actually closely related
to the way Dy triality was exhibited in section 17 of [2].)

Note that all of these results depend on changes of variables — mixing z and u — that
would be unnatural in four dimensions (where u is a physical field and z is a somewhat
mysterious mathematical abstraction) but are natural in three dimensions where z and u
are on the same footing.

Finally, let us consider the Ny = 1 theory with a bare mass m. According to [1,2],

the appropriate object in four dimensions is described by the equation
y? =2% - z%u 4+ 2mz + 1. (3.28)

We proposed at the end of section two that the three-dimensional Ny = 1 theory should
be described by Dancer’s manifold, whose complex structure (see the second paper cited
in [17]) is

¥y’ =z 4+idz+ 1. (3.29)

These agree after the usunal change of variables v = £ — u and an obvious identification of

A and m.

3.4. Soft Breaking To N =1

One of the main tools in [1] was to consider what happens what one adds to the theory
a superpotential AW = eu, softly breaking the N = 2 supersymmetry to N = 1. The result
was to produce two vacua with monopole condensation, a mass gap, and confinement.

‘We now want to ask what happens if one makes the same perturbation after compact-
ification to three dimensions on Sk. A priori, because of the mass gap in four dimensions,
one should find the same two vacua after compactification on S}, at least if R is big

enough.
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To investigate this, we look for critical points of the superpotential
W= )\(y2 -3 +a:2u—:c) + €u, (3.30)

where the chiral superfield A is introduced as a sort of Lagrange multiplier to enforce the
constraint F = 0, where F = y? — £3 4+ 1?u — z is the quantity whose vanishing is the
defining condition of E,. The equations for a critical point of W are

8F OF OF
_oF_2oF =0. (3.31)

9y o8z ou
The equations (3.31) are conditions for a singularity of the fiber E,. They are precisely
the conditions found in [1] for a vacuum state in the presence of the eu perturbation. They
have two solutions, at y = 0, u = £2, £ = u/2. So we see that the two vacua found in [1]
indeed persist after compactification on Sk.

In the limit, though, of R — 0, a puzzle presents itself. In three dimensions, the
AW = ¢u perturbation breaks N = 4 supersymmetry to N = 2, giving bare masses to
fields that are not in the N = 2 vector multiplet. But the minimal N = 2 theory generates
a superpotential [10]. It is uniquely determined by the symmetries of the theory to be

W=e? (3.32)

where @ is an N = 2 chiral superfield which originates by duality from the massless vector
multiplet. The superpotential (3.32) does not have a stationary point and therefore the
theory does not have a vacuum - it runs off to infinity. How is this fact consistent with
the above construction?

To resolve this point, we should be more precise about some of the above formulas,
restoring the dependence on the four-dimensional gauge-coupling g4(x:) and the renormal-
ization point yu (the scale parameter A is determined by A* = u?exp(—8n?/gs(1)?)). In
the equation y2 — z° + z2u — £ = 0, the term linear in r is an instanton effect. To restore
the dependence on g4, we should write

¥ = 2% — o2u + o exp(-8n2/g4(1)?). (3.33)

Now we introduce the three-dimensional gauge coupling, defined classically by 1/¢2 =
R/g2. (Corrections to that formula hopefully do not matter for the qualitative remarks
that we are about to make.) In terms of g3, {3.33) becomes

y? = 2% — ?u + 9, (3.34)
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where n = p* exp(—8#x2/Rg3). If we are going to compare to [10], we should keep g5 fixed
as R — 0; this means taking  — 0. That is clear intuitively; the three-dimensional theory
does not have four-dimensional instantons, so in some sense the instanton factor n should
be dropped as R — 0. On the other hand, we do not want to simply discard the linear
term in (3.34), as this would not give the Atiyah-Hitchin manifold. Instead we make a
change of variables £ — 4 = v, £ = 5T, y = 07, and get the Atiyah-Hitchin manifold

7 =Tv+73. (3.35)
Now the superpotential AW = eu is in the new variables AW = ¢(nZ — v). So, as in

(3.30), we study
W =n?A (7 - 5% - F) + (% - v). (3.36)

Solving 8W/9)\ = OW /0y = dW/dv = 0 for A, ¥ and v we find an effective superpotential
for T
.1
Wers = €(nZ + ). (3.37)

The critical points are at T = +7~/2

. So for every non-zero n there are two vacua, but
as 7 — 0, the vacua run away to infinity. In fact, our analysis leads to a new derivation of

(3.32) for 1 = 0, if we identify e~% = ¢/Z.

4. String Theory Viewpoint

In this concluding section, we will use the string theory viewpoint {3-5] to explain
some crucial points that entered in sections two and three:

(1) If one compactifies from four to three dimensions on S}, then varying R does
not change the distinguished complex structure of MM, which is the one in which M is
elliptically fibered over the complex u plane. On the other hand, varying R does change
the Kahler metric of M, in such a way that the area of the fibers is a multiple of 1/R.

(2) In three dimensions, the hypermultiplet bare masses correspond to periods of the
covariantly constant two-forms w, on the moduli space.

The starting point is to consider M-theory compactification on R7 x K3. Then one
considers a two-brane whose world-volume is R® x {p}, where R? is a signature — + +
flat subspace of R7, and p is a point in K3. The quantum field theory on the two-brane
world-volume is a 2 + 1-dimensional theory. The moduli space of vacua of this theory is a

copy of K3, since p could be any point in K3.
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On the other hand, this theory is dual to the Type I or heterotic string compactified
on R7 x T3. Under the duality, the M-theory two-brane corresponds to a Type I five-brane
wrapped over the T? (to give a two-brane in R7). On the five-brane world-volume there
is an SU(2) gauge symmetry. Therefore, suitable limits of this theory can look like SU(2)
or (in the event of some high energy symmetry breaking) U(1) gauge theories in 2 + 1
dimensions.

The moduli space of M-theory on K3 is a product of two factors. One, a copy of R,
parametrizes the K3 volume and corresponds to the heterotic or Type I coupling constant.
The other factor is as follows. The two-dimensional integral cohomology of K3 is an even
self-dual lattice of signature (19,3); we denote it as I''®3. The remaining factor in the
M-theory moduli space is the choice of a three-dimensional positive definite real subspace
V7 of R1%3 = I''%3 @, R. The choice of V't is equivalent to a choice of the periods of
the covariantly constant two-forms w* in the hyper-Kahler metric on K3. By the time one
gets to a limit in which one sees 2 + 1-dimensional SU(2) gauge theory, a piece of the K3
is interpreted as the moduli space M of vacua [5], and the mass parameters correspond to

periods that can be measured in M; that is the basic reason for (2) above.

As for the heterotic string on T?, it has a Narain lattice [''*%, and the moduli space
is the space of three-dimensional positive definite subspaces V+ of R'%3 interpreted as

the space of right-moving momenta.

If we want to see four-dimensional quantum field theory on R*! x S!, we should split
the T2 as S! x T2, in such a way that the Wilson lines and B-field all live only on the T2
factor. Then we will see a five-brane compactified on T? to R? x S!; by tuning the moduli
of the T? appropriately, we can get four-dimensional SU(2) gauge theory on R? x S!,
with various numbers of hypermultiplets. Splitting the T2 in the indicated fashion means
splitting the Narain lattice as I''®® = ' @I''®2, in a way compatible with V+; that is V+
is the direct sum of a one-dimensional subspace of R"! and a two-dimensional subspace
of R18:2,

In terms of M-theory on K3, this splitting can be accomplished by specializing to
K3's that are elliptically fibered (over P!) with a section. For such a K3, the fiber F and
section Sobey FF- F =0, F-S=1,5-5 = -2, and generate a I'"! subspace of the
cochomology. On such a K3, there is a distinguished complex structure, the one in which
the K3 is elliptically fibered. In any limit in which a piece of the K3 turns into the moduli
space M of a field theory, M will inherit a distinguished complex structure in which it is



elliptically fibered, explaining part of point (1) above.

In terms of K3, the compatibility of V+ with the splitting I''%3 = I':1 § I"'8:2 means
that the K&hler form is an element of R1! (while the real and imaginary parts of the holo-
morphic two-form w lie in I''#:2). The Kahler form is therefore dual to a linear combination
of F and S, leaving two parameters of which one can be regarded as the overall volume of
K3, while the second is the area of the fiber F. In the constructions of [3-5], the volume
of the K3 (or heterotic string coupling constant) does not correspond to an interesting
modulus of the 2 4 1-dimensional or 3 + 1-dimensional field theories, so we just fix it. The
remaining moduli are then the area of F' (which is varied while keeping fixed the volume)
and the choice of the complex structure of the elliptic fibration, which is equivalent to the
choice of the linear subspace generated by w € I'*2 ®z C.

In the duality between M-theory on K3 and the heterotic string on S! x T2, if we want
the S! radius to go to infinity, we must take the area of F to zero. The remaining moduli
are then only the choice of w. That is why, once one gets to four-dimensional quantum
field theory, with M being a piece of K3, one sees precisely a complex structure on M in
which M is elliptically fibered and no other data.

If, however, one want to get quantum field theory on R?® x S?, with a finite radius of
S!, one is free to vary the area of F, while keeping fixed the volume form and complex
structure. So, as stated in (1) above, the extra modulus one gets upon compactification
on S} is the ability to vary the area of the elliptic fiber in the hyper-Kahler metric, while
keeping fixed the volume form and distinguished complex structure on the moduli space.

The relation between the radius of S}, and the area of the fiber F' can be worked out
as follows. In the duality between M-theory on K3 and the heterotic string on S! x T2, the
wrapping number of two-branes on F is dual to the nomentum along the S!. A two-brane
wrapped on F has an energy which is a multiple of the area of F', while a massless particle
with minimum non-zero momentum along S' has energy 1/R. So under the duality, the

area of F' is mapped to a constant times 1/ R, explaining the last assertion in (1) above.
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