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This book is the first systematic and rigorous account of continuum percolation.
The authors treat two models, the Boolean model and the random connection
model, in detail, and discuss a number of related continuum models. Where
appropriate, they make clear the connections between discrete percolation and
continuum percolation.

All important techniques and methods are explained and applied to obtain
results on the existence of phase transitions, equality of certain densities, con-
tinuity of critical densities with respect to distributions, uniqueness of the un-
bounded component, covered volume fractions, compression, rarefaction and
so on. The book is self-contained, assuming only familiarity with measure
theory and basic probability theory. The approach makes use of simple ergodic
theory, but the underlying geometric ideas are always made clear.
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Preface

This is the first book completely devoted to continuum percolation. The idea
to write this book came up after we noticed that even specialists working in the
larger area of spatial random processes were unaware about the current state of
the art of continuum percolation. Although stochastic geometers have exten-
sively studied the Boolean model, which is one of the most common models of
continuum percolation, their focus has been on geometric and statistical aspects
rather than on percolation-theoretical issues.

Initially, we planned to write a review article, but itbecame clear very quickly
that it would be impossible to cover even the most basic results in such a review.
Also it became apparent that it would be impossible to include in one volume
all available results of a subject this size and still expanding. Therefore, we
decided on a book which would give attention to all major issues and techniques
without necessarily pushing them to the frontier of today’s knowledge. When
there is more to say on a specific subject than is found here, we provide the
appropriate references for further reading.

Continuum percolation models are easily described verbally, but unlike dis-
crete percolation models, their formal mathematical construction is not com-
pletely straightforward. In fact, many people (the authors included) have been
quite careless with these constructions in the literature. The setup we have cho-
sen in this book is probably the simplest rigorous construction which allows us
to use all the ergodic theory we want. Perhaps some people will be bothered by
the fact that we define ergodicity in terms of discrete group actions rather than
as a continuum, but we prefer to avoid measure-theoretical nightmares in a book
which is supposed to be on percolation theory and in which ergodicity is just
a tool to work with. This rigorous construction is more for the mathematical
completeness of the book. The reader may easily understand the book with just
the geometric notion of the models in mind.
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If we compare the results in this book to well-known results in discrete
percolation models, we can roughly distinguish three classes of results. The
first class of results consists of those for which there is a natural analogue in
discrete percolation. For this class of results, the reader will notice that there are
usually extra technical complications because we work in the continuum. These
complications are often topological in nature or have something to do with the
dependency structure in the models. As a result, statements are usually not
quite the same as their discrete counterpart. Examples in this class are the non-
triviality of phase transitions, the RSW lemma, the uniqueness of unbounded
components and the equality of certain critical densities in random connection
models. The second class of results consists of those whose discrete counterpart
is either false or unknown. Examples in this class are the fact that the two most
natural critical densities in certain Boolean models are not equal, the possible
non-uniqueness of the unbounded component in certain cases and some limit
results in continuum fractal percolation. And then, of course, there is a class
of results which do not have a discrete analogue at all and which are special
features of continuum models. This class, fortunately, is quite large and contains
all high-density results like compression and rarefaction, results on the covered
volume fraction, continuity of the critical densities when the radii distributions
converge weakly in Boolean models, scaling properties and complete coverage
results. In discrete models, the ‘dual’ structure plays an important role and can
be described independently of the original structure. In continuum models, the
vacancy structure plays arole similar to that of the dual, but the vacancy structure
can only be described through the occupancy structure as its complement.

We have tried to make the book as self-contained as possible. It helps if
the reader is familiar with discrete percolation theory, but this is not really
necessary. The reader should feel comfortable with measure theory and basic
probability theory, including branching processes. In order to avoid references
scattered throughout the text, we conclude each chapter with notes which con-
tain background information and references to related material.

Finally, we would like to thank Olle Higgstrém, Remco van der Hofstad, Karin
Nelander, Mathew Penrose, Anish Sarkar and Jeffrey Steif for many comments
on drafts of this book varying from correcting language to pointing out serious
mathematical mistakes. Several visits of Rahul Roy to The Netherlands were
partly financed by The Dutch Organisation of Scientific Research (N.W.0.).
Ronald Meester would like to thank the people in the Indian Statistical Institute
in New Delhi for their hospitality during several visits.

October 1995 Ronald Meester
Rahul Roy
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Introduction

1.1 Motivation for continuum models

Many phenomena in physics, chemistry and biology can be modelled by spatial
random processes where the randomness is in the geometry of the space rather
than in the random behaviour or motion of an object in a deterministic setting.
As typical examples of the phenomena we have in mind, consider the spread
of a disease in an orchard where the trees are arranged in a grid, and where the
disease spreads from an infected tree to its neighbouring trees. In this example,
the owner of the orchard is interested in the probability that a particular disease
will eventually kill all the trees in the orchard. Another example is the process
of the ground getting wet during a period of rain. The randomness here is the
place where the raindrops fall on the ground and the size of the wetted region
per raindrop. Finally, consider the spread of a disease in a forest. The infection
is transmitted from one tree to another, which need not be in the vicinity of the
infected tree. This is more likely to happen when the trees are closely spaced
than when they are far apart. The collection of infected trees forms a random
subset of trees in the forest.

The geometric structure of the first example is discrete, whereas in the next
two examples, although the number of raindrops or trees is countable, the po-
sition of either is in the continuous space. A rigorous mathematical model to
describe the first example is the standard discrete percolation model. This model
has been studied extensively in the last three decades and an excellent reference
on the mathematical aspects of this model is the book by Grimmett (1989). The
second and third examples are usually described by a continuum percolation
model; such models are the subject of this book.

Some geometric aspects of the continuum percolation model have been stud-
ted in the context of stochastic geometry. In the language of stochastic geometry,
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the continuum percolation model is usually referred to as a coverage process
or a Boolean model.

To get an idea of the kind of questions addressed in a percolation-theoretic
study, we elaborate the examples of rainfall and the spread of a disease in a
forest. Before the rain starts, the ground is assumed to be completely dry. Ata
point where a raindrop falls, the ground soaks up the water and a circular wet
patch is formed. When the first raindrops fall, we see small wet regions inside a
large dry region. The wet region grows when more raindrops reach the ground
and at some instant, so many raindrops have reached the ground that the picture
suddenly changes from wet ‘islands’ inside a large dry region to dry ‘islands’
inside a large wet region. This phenomenon of a sudden drastic change in the
global spatial structure is called a phase transition. Typically, the parameter of
the model is not the time, but the density of raindrops on the ground. So for
instance, we say that the phase transition takes place at a given density of the
raindrops, rather than at a given time. The nature of such phase transitions is
an important subject in the percolation-theoretic study of Boolean models. In
the example of the spread of an infection in a forest, a question of interest is
whether the infection of one particular tree may result in the infection being
transmitted to a tree far away. This is of course more likely when the density of
the trees in the forest is high. Based on the density of the trees, a phase transition
formulation may be obtained for this model too.

The focus of this book is on mathematically rigorous results in models of
continuum percolation. In this context, we remark that there are many results
available in the applied literature which have yet to be mathematically verified.

1.2 Discrete percolation

Before we introduce continuum percolation models we present a short treatment
of discrete models. There are several reasons for doing this. First, independent
percolation on the integer lattice (to be defined below) was the first percolation
model studied and many of the ideas in the theory of this model can be used in
the study of continuum models as well; many of the results in the continuum are
analogues of discrete results. Secondly, discrete percolation models are in some
sense the simplest percolation models to describe and they are suitable for the
reader to get a feeling for the types of problems which are involved. Finally, an
important technique in the theory of continuum percolation is to approximate
the continuum model by a discrete one. In these instances, we need to know
something about discrete percolation. Our treatment of discrete percolation is
concise, and we refer the reader to Grimmett (1989) for a detailed discussion
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of discrete percolation. For proofs which are not given here we refer to either
Grimmett (1989) or the references in the notes.

The setup is as follows. Each element of the d-dimensional integer lattice
Z9 is a vertex, where d > 1. Two vertices at a Euclidean distance one apart
are called neighbours. Each pair of neighbours has an edge between them. The
graph obtained this way is, with a slight abuse of notation, denoted by Z¢. An
edge is ofien called a bond, and the set of all bonds is denoted by E. Bonds
can be either open or closed. A path is a finite or infinite alternating sequence
(z1, e, z2, €2, ...) of vertices z; and bonds e; such that z; # z; and e; # e;
whenever | # j and such that e; is the bond between the neighbours z; and z; 1,
for all i. The length of a path is the number of bonds it contains. A circuit is a
finite path, the only difference being that it starts and ends at the same vertex.
An open (closed) path is a path whose bonds are all open (closed). Two vertices
are said to be connected if there is a finite open path from one to the other. An
open cluster is a set of connected vertices which is maximal with respect to this
property. Of course, clusters can be either finite or infinite. The open cluster
containing the origin is denoted by C(0).

Next we introduce probability. For 0 < p < 1, we equip the space Q =
{0, 1}E with the natural product measure P,, which is defined via P,(w(e) =
1) = p for all e € E. For any realisation w € 2, the bond e is said to be open
if w(e) = 1 and closed otherwise. Thus each bond is open with probability p
independently of all other bonds.

This is the basic percolation model on the d-dimensional integer lattice. We
are interested in unbounded clusters, so here are some natural definitions:

Definition 1.1 The percolation function 89 is defined by
0(p) = Pp(card(C(0)) = o).
We define the function x @) (p) by
xD(p) = Ep(card(C(0))),

where E, is the expectation operator corresponding to Py, and card(.) denotes
cardinality.

Much of the theory of discrete percolation is concerned with the behaviour
of these functions. It seems obvious that both 64 and x ) are non-decreasing
in p. In Chapter 2 it will become clear how to prove this. Based on ‘@ and
x“” we can define the following critical probabilities:
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Definition 1.2 The critical probability p.(d) is defined by
pe(d) = inf(p : 6 (p) > 0}.

The critical probability pr(d) is defined by

pr(d) = inf{p : x¥(p) = oo}.

The two critical probabilities just defined are quite natural. There is a third criti-
cal probability which may not seem that natural at first sight but which turns out
to be very useful. To define this critical probability, let 6,((n1, na2, ..., na), i)
be the probability that the box [0, n1] X [0, n2] x - - - X [0, ng] contains an open
path connecting two opposite faces in the i-th direction.

Definition 1.3 Ford > 2, the critical probability ps(d) is defined by

ps(d) =inf{p : limsupo,((n,3n,3n,...,3n),1) =0}.
n—00
Itis obvious that pr(d) < p.(d) forall d.1tis also clear that p.(1) = pr(1) =
1. Other properties of these critical probabilities are not so easy to obtain:

Theorem 1.1 Foralld > 2we have 0 < p.(d) < 1.

Theorem 1.2 Forall d > 2 we have p.(d) = pr(d) = ps(d).

Actual values are known only in one and two dimensions. It is obvious that
pc(1) = 1 and we also know that p.(2) = % This last result is far from trivial!
The proof of Theorem 1.2 is very hard and we do not give it here. Theorem 1.1
lies at the very heart of percolation theory. It establishes the existence of a
phase transition; i.e. the macroscopic behaviour of the system is very different
for values of p below and above the critical probability p.(d). If an infinite
cluster exists we say that percolation occurs. The idea behind the proof of
Theorem .1 will be used a few more times in this book, so we present the
proof here:

Proof of Theorem 1.1 The inequality p.(d) > 0 is very simple. Indeed,
the number of distinct paths of length n starting at the origin is at most
2d(2d — 1)*~!. (For the first bond, we have 2d possibilities; after that we have
atmost 2d — 1 possibilities for each new bond because we are not allowed to go
back to where we came from.) Each of these paths has probability p” to be open.
Thus the expected number of open paths of length n starting at the origin is at
most 2d(2d — 1"~ p". If p < (2d—1)"' then 332, 2d(2d - 1)"~! p" < o0,
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and hence the expected number of open edges in the component C(0) is finite.
This necessarily means that the probability that the component C(0) is finite
is equal to 1 and hence 69 (p) = 0if p < (2d — 1)~ 1. Thus we obtain that
pe(d) = 2d — 7.

For the other inequality we observe that it suffices to prove it for the case
d = 2 as p.(d) is clearly non-increasing in d. We need to introduce the dual
graph Z2*_ This is the graph obtained from Z? by shifting it by the vector (3, 3).
The set of edges of the dual graph is denoted by E*. Each edge of E now crosses
exactly one edge in E*. We declare an edge in E* to be open if and only if the
edge it crosses in E is open, and closed otherwise. It is intuitively obvious and a
well-known fact in graph theory (Whitney 1933) that there is a closed circuit in
Z%* surrounding the origin if and only if C(0) is finite. Now we can perform a
counting argument as in the first part of this proof. There are at mostn3”" distinct
circuits of length n surrounding the origin. (This is a rather crude bound: such
a circuit has to contain at least one vertex on the x-axis. There are at most n
possibilities for this. Starting at this vertex, we have only three possibilities
for each new bond.) If for some N > 0 (i) all bonds in [N, N] x [N, N]
are open and (ii) there is no closed circuit in the dual surrounding [— N, N] x
[—N, N1, then C(0) is infinite. The event in (i) certainly has positive probability.
Furthermore, a circuit surrounding [— N, N]x [—N, N]has lengthatleast4N.
Hence, if p > % we can choose N so large that Y o2 ,» n3"(1 — p)" < 1 and
for such p and N, the event in (ii) also has positive probability. Because the
events in (i) and (ii) depend on disjoint sets of edges, they are independent, and
we conclude that p.(2) < % a

Now that we have established the existence of infinite open clusters for p >
Pe» the question arises of just how many infinite open clusters exist. There is
a remarkable answer to that question. First observe that the existence of an
infinite open cluster does not depend on the state of any finite set of bonds.
Hence it follows from Kolmogorov’s 0 — 1 law that the existence of an infinite
open cluster has probability either zero or one. This, of course, corresponds to
the different phases of the percolation model: for p < p.(d) there is no infinite
open cluster a.s. and for p > p.(d), the probability of having an infinite open
cluster is positive and hence equal to 1. What happens at the critical probability
is known in twb dimensions and in dimension higher than 19 only: there is no
infinite cluster a.s. in these cases. The remarkable fact referred to above is the
following:

Theorem 1.3 There is at most one infinite open cluster a.s.

This result is referred to as the uniqueness of the infinite cluster.
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We continue the discussion with some basic inequalities which are very
useful in the analysis of models of this type. For this, we need to introduce
some terminology. There is a natural partial order on = {0, E: 0 < o
if and only if w(e) < @'(e) for all ¢ € E. An event 4 in  (we assume
that Q is equipped with the usual Borel o-field) is said to be increasing if its
indicator function is increasing (a real-valued function f on £ is increasing if
f(w) < f(o) whenever @ < ). An event 4 is said to be decreasing if its
complement is increasing. A typical example of an increasing event is the event
that two distinct vertices are connected to each other by an open path.

More generally, we can consider a product space ; = {0,1,...,k}%,
where T is a countable set, and equip £, with product measure P, =
{Po. P1, - -, pi}*, where Zf-;op,- = 1. There is a natural partial order on
€ and the notions of increasing and decreasing events generalise easily. Writ-
ing P, and E,, for probabilities and expectations with respect to p, we have the
following important inequality:

Theorem 1.4 (FKG inequality) Ler fi and f> be both increasing or both
decreasing functions. Then

Epfif22 EpfLEp fo.

Taking f\ and f> to be the indicator functions of two increasing (or two de-
creasing) events A and B, respectively, this inequality reduces to

Pp(AN B) = P,(A) Pp(B).

This result is not surprising: if there exists an open path connecting two different
vertices, another path connecting two other vertices becomes more likely as it
can ‘use’ the bonds of the first path.

Sometimes we need an inequality which goes in the opposite direction. Given
the existence of an open path connecting two vertices, we can make it *harder’
for other connections to exist by requiring them to be disjoint from the first
connection. This motivates the following definition. Suppose 4 and B are in-
creasing events which depend only on the state of finitely many bonds. We
define A O B to be the set of all configurations @ for which there exist disjoint
sets of open bonds with the property that the first such set guarantees the oc-
currence of 4 and the second guarantees the occurrence of B. More precisely,
A O B is the set of all configurations w for which there exist finite and disjoint
sets of bonds K 4 and K g such that any configuration «’ with w'(e) = 1, for all
¢ € K4, isin 4, and any configuration w” with @”(e) = 1,forall e € K3, is
in 8.
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Theorem 1.5 (BK inequality) Let A and B be two increasing events which
depend on the state of only finitely many bonds. Then

P,(AT B) < Pp(A)Py(B).

The requirement that 4 and B are allowed to depend on only finitely many bonds
has a technical reason. As we shall see, this will not be important in applications.
In the next chapter, we shall derive continuum analogues of Theorems 1.4
and 1.5.

Next, we discuss a method for estimating the rate of change of P,(4) as a
function of p, for increasing events 4. Again, we assume that 4 depends on the
state of finitely many edges only. For this, we need yet another definition. A bond
e is said to be pivotal for 4 if 1 4(w) # 1 4(w,), Where w, is the configuration
obtained from @ by changing the value at e; i.e. we(e) = 1 — w(e). In words, a
bond is pivotal for 4 if the occurrence or non-occurrence of 4 depends crucially
on the state of the bond e. It is intuitively clear that the rate of change of P, (A4)
as a function of p is related to the number of pivotal bonds.

Theorem 1.6 (Russo’s formula) Let A be an increasing event which depends
on only finitely many bonds. Then
d

= Pp(A) =} Pyleis pivoral for 4).
p ecE

In the discussion so far, we assumed that bonds were either open or closed
with certain probabilities. There was no randomness in the vertices at all. This
1s the reason that we call this model bond percolation. But we could as well
declare vertices instead of edges to be open or closed with probability p and
1 — p respectively, obtaining a site model. The discussion of this site model is
similar to the discussion of the bond model above. All results in this section
have a natural analogue in the site setting, although the value of the critical
probability for independent site percolation on the two-dimensional integer
lattice is not known. We shall use these results in the site setting freely with a
possible reference to the result in the bond setting.

As mentioned before, discretisation is an important technique in the theory
of continuum percolation. Sometimes we end up with a more complicated dis-
crete lattice structure than the nearest-neighbour integer lattice. Also it might
be the case that there are different types of sites which are open with different
probabilities. Take the d-dimensional integer lattice and draw an edge between
any two vertices v and w for which |[v — w| < 2L, where L is some posi-
tive constant. The graph obtained this way is denoted by G;. We can perform
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independent site percolation on this new graph, and this leads to the critical
values pc(GL), pr(GL) and ps(Gp).

This site-percolation model can also be extended to a multi-parametric set-
ting. For example, consider a ‘two-layered graph’ G, ,, 1,) which is defined as
follows. We place a copy of G, ‘above’ G;, and we draw an edge between
veg, andw e Gy, ifd(v, w) < L1 + L2 (here we abuse notation: v and w
are viewed as elements of IR9). Thus avertex v € § L, andavertex w € Gy, are
adjacent if and only if d(v, w) < Ly + Lz. Now we perform multi-parameter
independent site percolation on G, 1,y by declaring a site in G, to be open
with probability p; and a site in G;, to be open with probability pz. Rather
than a critical point, in this model we can define a region inside the unit square
where percolation occurs:

pc‘(g(Ll,Lz)) = {(ph PZ) . [)(pl.pz)(c(o) = w) > 0}7

where C(0) is the union of the open clusters of the origins in G;, and Gy,. The
regions pr(Ger,,1,)) and ps(G(L,,1,)) are defined similarly. The result which
we shall need is a generalisation of Theorem 1.2:

Theorem 1.7 In the setting just described it is the case that p.(Gr) = pr(Gr)
= ps(GL), and pc(GL,.Ly)) = prGL,.Ly)) = Ps(Giw,.Ly)-

We end this section with a short discussion on mixed bond/site models. In
such a model, both the sites and bonds of the integer lattice are either open or
closed with certain probabilities. In its most general form, we have a parameter
p and for each bond or vertex, w say, there is a non-decreasing function f,
such that w is open with probability f,,(p), independently of all other bonds
and vertices. Many of the results quoted thus far have their analogues in the
mixed setting. In particular, Theorem 1.2 is still true in this setting, Here is a
version of Russo’s formula for this particular setting which we shall need in
Chapter 6:

Theorem 1.8 (Russo’s formula)  Consider a mixed bond/site model and let A
be an increasing event which depends on the state of only finitely many vertices
and bonds. Suppose in addition that there are non-decreasing differentiable
Sfunctions fy, such that the bond or vertex b is open with probability fy(p)

independently of all other vertices and bonds. Then
d d
—P,(4) = P, (e is pivotal for A)— fo(p)
=20 for ) e

d
+ Y Py(vis pivotal forA)a—l; £o(p).

vezd



1.3 Stationary point processes 9

1.3 Stationary point processes

In the discrete percolation model of the previous section, the vertices of the
random graph under consideration were non-random; they were formed by the
elements of the d-dimensional integer lattice. In models for continuum perco-
lation, this is no longer the case. The positions of the vertices themselves are
random, and they are formed by the occurrences of a starionary point process.
In this section, we introduce point processes, derive some basic properties and
give some examples.

One can think of a point process as a random set of points in space. But of
course, this is not a very mathematical definition, and we have to make precise
what we mean by ‘random’ here. A natural way to do this is the following.
Denote the o-algebra of Borel sets in IR? by BY, and denote by N the set of all
counting measures on B¢ which assign finite measure to bounded Borel sets and
for which the measure of a point is at most 1. In this way, N can be identified
with the set of all configurations of points in IR without limit points. We equip
N with the o -algebra N generated by sets of the form

{fne N :n(d) =k}

where 4 € B? and k is an integer. A point process can now be defined as
follows:

Definition 1.4 A point process X is a measurable mapping from a probability
space (Q, F, P) into (N, N).

The distribution of X is the measure u on A induced by X; i.e. u is defined
through the equation u(G) = P(X~'(G)), for all G € N. The definition
of A allows us to count the number of points in a set 4 € B%: the mapping
f4: N — N defined by f4(n) = n(A) is measurable by the very construction
of A, Hence the composition f4 o X : @ — N is a random variable which
we denote by X(4). In words, X(A) represents the random number of points
inside 4.

In continuum models, we do not have a nice periodic structure as in discrete
percolation models. The requirement that the lattice in discrete percolation is
periodic is replaced by the requirement that the point process X is stationary.
Let 7; be the translation in IR? over the vector ¢: T,(s) =t +s,foralls € R9.
Then T; induces a transformation S; : N — N through the equation

(Sm)(4) = n(T,”1 (1)), (1.1

forall 4 € BY. Ona higher level, S; induces a transformation S‘, on measures
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u on N through the equation
(S:)(G) = u(S7'G), (1.2)

for all G € M. Now we can define stationarity:

Definition 1.5 The point process X is said to be stationary if its distribution
is invariant under S; forallt € IR%.

Definition 1.6 The finite-dimensional (fidi) distributions of a point process
X are the joint distributions, for all finite families of bounded Borel sets
At, ..., Ay, of the random variables X(Ay), ..., X(4).

Standard methods (see e.g. Daley and Vere-Jones 1988) show that the distri-
bution of a point process X is completely determined by its fidi distributions.
The fidi distributions are thus one way of specifying a point process. In Chap-
ter 7, we shall introduce a completely different way of specifying a stationary
point process, namely via curting and stacking. For now, we just note that a point
process X with distribution  is stationary if and only if the fidi distributions
of i coincide with the fidi distributions of S (x), for all € RY.

Percolation theory is concerned with infinite objects and hence only makes
sense on infinite graphs. We require therefore that our percolation models are
based on point processes with the property that X (JR?) = co. This, however,
basically is a consequence of stationarity as we now show.

Proposition 1.1 Let X be a stationary point process for which
P(X(R%) =0) = 0.
Then P(X(R%) = 00) = 1.

Proof Suppose that there exists an integer k such that P(X(R?) = k) > 0.
Then there must also exist an integer b such that

P (X(By) > §k X(RI\By) < 1K) = € >0,

where By is the set [—b, b]9. Let r € Z9 be a vector with integer-valued
coordinates and let br = (bry, ..., bry). Consider the events

= X (Bo) > 3k, X(Th (ROBy)) < ).

It follows from the stationarity of X that P(E,) = ¢, forall r € Z4. But the
events £, are disjoint for distinct r, and this is the required contradiction. O
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Before giving some examples of point processes, we state a few definitions.

Definition 1.7 The density of a stationary point process X is defined as
E(X([0, 119)), where E is the expectation operator corresponding to P.

Definition 1.8 Two point processes X| and X, defined on the same probability
space are said to be independent if

P(X1(4) = ki, ..., X1(4p) =kn, X2(B) =11, ..., X2(Bp) =lm)
= P(XI(AI) :kl,---,Xl(An) =kn)
X P(X2(By) =11,..., X2(Bw) = lm),

forevery n,m > 1, I;, kj non-negative integers and Borel sets A; and B;.

Definition 1.9 The superposition of two point processes Xy and X defined
on the same probability space (2, F, P) is the point process X defined by

X(A)(w) = X1(4)(w) + X2(4)(w),

for all Borel sets A. We write X = X1 % Xa or p = p1 * ua, where ju, b and
2 are the distributions of X, X| and X, respectively.

Next we give some examples of point processes.

Example 1.1 Let U be a random d-dimensional vector defined on (2, F, P)
which is uniformly distributed in [0, 1)¢. Identifying a counting measure y with
the set {x € R? : p({x}) = 1}, we define a point process X via the equation
X(w) = U(w)+ Z%. Hence we just shift the d-dimensional integer lattice over
a random vector, and it is not hard to see, using fidi distributions, that X is
stationary.

Example 1.2 (The Poisson process) The point process X is said to be a
Poisson process with density A > 0 if (i) and (ii) below are satisfied:

(i) For mutually disjoint Borel sets Aj, ..., A, the random variables
X(A,), ..., X(4;) are mutually independent.
(ii) For any bounded Borel set A4 € B¢ we have for every k > 0

e~ M) Meat

P(X(4) = k) = .

(1.3)

where £(-) denotes Lebesgue measure in RY.
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Note that we specified the distribution of a Poisson process by its fidi distri-
butions. Condition (ii) guarantees that a Poisson process is stationary. Also, we
have that E(X([0, 1])) = A, and hence the fact that we called A the density of
the process is consistent with Definition 1.7.

Example 1.3 (The non-homogeneous Poisson process) The point process
X is said to be a non-homogeneous Poisson process if (i) and (ii) below are
satisfied:

(i) For mutually disjoint Borel sets 4, ..., Ak, the random variables
X(A4y), ..., X(Ay) are mutually independent.

(ii) There exists a measurable function A : R? - [0, 00), the intensity
Junction of the process, such that for any bounded Borel set 4 € B we
have

o= A dx (4 Ax) dx)

k! )
We obtain a Poisson process by taking A(x) = A. Clearly, this is the only case
in which we obtain a stationary process here.

P(X(A) =k = 14

We remark that condition (i) in Example 1.2 and Example 1.3 is in fact redun-
dant. (This is aresult of Renyi; see Daley and Vere-Jones 1988, Theorem 2.3.1.)
In this book, however, we use the independence property frequently and that is
the reason to highlight condition (i) in both examples.

Suppose that we have a sequence of bounded Borel sets 4, C IR? which
increases to 4, where we do not require 4 to be bounded. Obviously, the events
{X(A4,) > k} increase to {X(A4) > k} when n — 00, and hence P(X(A,) =
k) = P(X(4) = k). It follows from monotone convergence that

P(X(4) = k)

lim P(X(4,) =k
n—>00

—f amax Uy, AQ)dx)*
lim e /4 =
n—>00 k!

[ A dx)k
—f Axydx (J 4 A(x) dx)
= e A _—
k!

where the last expression is to be interpreted as zero when [, A(x) dx = oo.

We end this section with some properties of the Poisson process. This process
is of particular interest, and four chapters of this book are concerned with
percolation models based on a Poisson process.

In the physics literature, people often use phrases like ‘consider infinitely
many points uniformly distributed in space’. In fact, they refer to a Poisson
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process in such a case, and the property they isolate in that phrase should be
interpreted as in the following proposition.

Proposition 1.2  Let X be a Poisson process and A be a Borel set with bounded
positive Lebesgue measure. Then, for all measurable B C A, we have

k LB\ B k
nimamaenin ()8 (5)

Proof This follows from straightforward calculations. a

Another useful property of the Poisson process is the following: suppose
we condition on the event that there is a point at x, for some x € /R?. The
independence property of the Poisson process now implies that, apart from
the given point at x, the probabilistic structure of the conditioned process is
identical with that of the original process. Writing u for the distribution of our
Poisson process, i for the process conditioned to have a point at x, and §, for
the distribution of an independent process having only one point at x a.s., we
can write this property as

Ux = Hh * Ox. (L.5)

The distribution . is called the Palm distribution of w. For the tedious technical
details, we refer to Daley and Vere-Jones (1988). If we condition on the event
that there is a point at the origin, we still obtain, apart from that point at the
origin, a Poisson process.

The third property we discuss is that the superposition of two independent
Poisson processes X, and X, with density A1 and A7, respectively, is again
a Poisson process with density A; + A2. The reason for this is that if we take
the sum of two independent random variables with Poisson distribution with
parameters A and A1, respectively, we obtain a random variable with Poisson
distribution with parameter A; + A». Hence, in the obvious notation:

Xoy * Xy = Xoy4ag- (1.6)

Finally, we show how one can obtain a non-homogeneous Poisson process
from an ordinary Poisson process in a probabilistic way. We assume that the
probability spate is rich enough for our purposes here. Let X be a Poisson
process with density A, and let g : IR — [0, 1] be a measurable mapping.
We consider a realisation X(w) of X. If there is a point at x, we take the point
away with probability 1 — g(x) and leave it where it is with probability g(x),
independently of all other points of the Poisson process. The ensuing point
process is denoted by X. Thus, X is a thinning of the original process X.
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Proposition 1.3  The point process X is a non-homogeneous Poisson process
with intensity function Ag.

Proof The independence property is immediate from the construction. The
fidi distribution of X can be computed as follows:

PX(A) =k) = Z P(X(4) = i)P(X(A4) = k| X(4) = i).
i=k

We have from Proposition 1.2 that given the event { X(4) = i}, the i points of
X in A are uniformly distributed over A. Thus

PX(A) =11 XA) =1 =24)"" f gx)dx,
A

and more generally,
P(X(4) =kl X(4) = i) = (;)(e(A)*‘ f g(x)ydx)*[1 — ()™
A

X f g(x) dx] %,
A

Hence
k
oy B Ja gISC) dx)”
© (LA — &) [, g(x)dxT)
X2 (i —k)!

P(X(A)=k) =

i=k
_ oree) @ L 8@ A0 aeari—eayt [, s
k!
k
O 4 gg) dx)’ [, g dx.

Note that if g is a constant function then we obtain a homogeneous Poisson
process with lower density than the original process.

1.4 The Boolean model

The first model of continuum percolation which we introduce in this chapter is
the Poisson blob model, or the Boolean model as we shall call it throughout the
book. In this section we give the formal mathematical construction and we fix
notation for this model.
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Figure 1.1. A realisation of a Boolean model; the shaded region is C, the darker shaded
region is W, while V' is empty here. Finally, x 5 yin 4.

Before giving the mathematical details, let us try to say in words what this
model is all about. We start with some stationary point process X, as introduced
in the previous section. We say that the model is drivern by X. Each point of X is
the centre of a closed ball (in the usual Euclidean metric) with a random radius
in such a way that radii corresponding to different points arc independent of
each other and identically distributed. The radii are also independent of X. In
this way, the space is partitioned into two regions, the occupied region, which is
the region covered by at least one ball, and the vacan: region, which is just the
complement of the occupied region. (See Figure 1.1.) The occupied region is
denoted by C. Both the occupied and vacant regions consist of connected com-
ponents, and almost all results in this book have to do with these components.
The connected components in the occupied region will be called occupied com-
ponents. Similarly, the connected components in the vacant region are called
vacant components. For A C IR?, we denote by W (4) the union of all occupied
components which have non-empty intersection with 4. When 4 = {0}, we
write W = W ({0}). We call W the occupied component of the origin. In the
case of vacancy, all definitions are similar, using the symbol ¥ instead of W .
We say that V' is the vacant component of the origin. Note that either V' or W
is empty but not both. The ball centred at x is denoted by S(x) or by S(x, r),
where r denotes the (random) radius of the ball.
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If two points x and y are in the same occupied component, we say that they
are connected in the occupied region, and we write x ~ y(or y ~» x of course).
Connectedness in the vacant region is defined similarly, and denoted by x ~» y.
If x and y are in the same occupied (vacant) component of C N 4 (C° N A) for
some 4 C IR?, we write x ~> yin A4 (x s yin A).

There are various instances in this book where the probability space on which
the whole model is defined is important, and the description above does not
suffice in such cases. So our first task is to construct the Boolean model on
some probability space. In discrete percolation models this is straightforward,
but here we have to be careful.

Perhaps the first construction that comes to mind is to order the points of
X linearly according to some previously determined rule and to construct on
one probability space the point process X and i.i.d. positive random variables
Y1, Ya, ... and construct a realisation by assigning radius ¥; to the i-th point
of X. The problem with this setup is that the ordering of the points of X is not
preserved if we shift the configuration in space, and therefore this construction
is not good enough to apply ergodic theorems (see the next chapter).

Another approach is to consider uncountably many random variables {Y,)
indexed by IR? and assign radius Y, to the point of X at x if it exists. The
problem with this setup is that even the simplest events will not be measurable.

We shall now describe a construction based on only countably many random
variables in such a way that we can define shifts. Let X be defined on some prob-
ability space (2), Fy, P1). Let 2 be the product space [,y [1,e22[0, 0)
and equip Q2 with the usual product o-field and product measure P> with all
marginals being 1, where u is a probability measure on [0, 00). An element
wy € Q0 is sometimes denoted by w;(n, 2). Finally, we set Q = Q1 x 3 and
equip Q with product measure P = Py x P, and the usual product o -algebra.
A Boolean model is a measurable mapping from € into N x , defined by
(w1, w2) = (X(w1), w2), where N is as defined in Section 1.3. The configura-
tion of balls in space corresponding to (w;, w2) is obtained as follows. Consider
binary cubes

d
K@,z :=[]@2™ @+12™") forallneNandzeZ’.

i=1

We call this a binary cube of order n. Each point x € X is contained in a
unique binary cube of order n, K (n, z(n, x)) say, and with P;-probability 1,
for each point x € X there is a unique smallest number ng = ng(x) such that
K(ng, z(ng, x)) contains no other points of X. The radius of the ball centred at
x is now defined 10 be wa (ng, z(no. x)).
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The product structure of € implies that the radii are independent of the point
process, and the product structure of 27 implies that different points have balls
with independent, identically distributed radii. It is natural to denote this model
by (X, it). In most cases, however, we have a certain random variable p with
distribution & and we think of this random variable as governing the radii of
the balls: the radii of the balls are random and are distributed as p. The model is
then denoted by (X, p). In the case where X is a Poisson process with density A
we shall write P = Py = P ) to emphasise the dependence on the parameter.
Also, the probability of anevent A is denoted by either P(A) or P{A4} depending
on the circumstances.

Let the unit vectors in IR? be denoted by e, ..., eq. The translation T, :
R? > R defined by x — x + ¢; from the previous section induces a trans-
formation U, on Q; through the equation

Ugan)(n, 2) = w2(n, z — &). (1.7
As before, S,, is defined on  via the equation
(Se01)(4) = w (T, 4). (1.8)
Hence 7, induces a transformation 7~"e,- on Q = Q) x Q5 defined by
T (@) = (Sg01, Ug2). (1.9)

The transformation Te,. corresponds to a translation by the vector e; of a con-
figuration of balls in space. As such, it will play a crucial role in the discussion
of ergodicity in the next chapter.

In percolation theory, one is mainly interested in unbounded objects. In the
present setting, this means that we are interested in unbounded occupied and
vacant components. The most basic question one can ask about unbounded
components concerns their existence. Given a certain Boolean model (X, p), is
there a positive probability that the occupied or vacant component of the origin
is unbounded? (The fact that we take the origin here is of no importance. From
the stationarity of X and the independence of the radii, we cannot distinguish
between different points of the space probabilistically.) For a given Boolean
model (X, p), this question is usually very hard to answer. Instead, one considers
a whole family of Boolean models and then proves that certain members of the
family do not allow unbounded components, but others do. To whet the reader’s
appetite, let us look as an example at occupied components in Boolean models
driven by Poisson processes. A Boolean model driven by a Poisson process with
density A and radius random variable p is denoted by (X, p, &), and we call it
a Poisson Boolean model. We denote by 8,(A) = 0(X) the probability that the
origin is an element of an unbounded occupied component. In other words, if
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d(A4) denotes the diameter of aset 4 C R (i.e. d(4) = sup, L4 Ix — ),
#(2) is the probability that d(W) = oo. The function 6 is called the percolation
function. It seems obvious (but try to prove this!) that 8 is non-decreasing in A,
and for the moment we assume this. A rigorous proof of this fact using coupling
is given in Section 2.2. We can define the critical density i, = A.(p) as follows:

Ae(p) = inf{A > 0 : 6,(A) > O}. (1.10)

In Chapter 3, we shall prove that A is non-trivial in all reasonable cases; i.e.
Ac is strictly positive and finite. This fact is at the heart of percolation theory,
and it immediately implies that for A > A., unbounded occupied components
do indeed exist with positive probability. For A < A, the origin has probabil-
ity zero to be contained in an unbounded occupied component and it follows
immediately from the stationarity of the process that so has any other point.
But any unbounded occupied component should contain at least one point with
rational coordinates of which there are only countably many. Hence, no un-
bounded occupied components can exist with positive probability for A < A.
When A < A, we say that the system is in the subcritical phase; when A > A,
the system is said to be supercritical. At the critical density A, the system is
said to be critical.

We can define critical densities for unbounded vacant components in a similar
manner. We write 67(2) for the probability that d(¥') = oo and the critical
density A} = A%(p) is defined as

AX(p) =sup{A>0: 9;(A) > 0}. (1.11)

In Chapters 3, 4 and 5 the Poisson Boolean model is studied extensively.
Boolean models driven by general point processes are treated in Chapter 7.

1.5 The random-connection model

Given a stationary point process X, there is another natural way of constructing
unbounded random objects and this section is concerned with this second model.
Again, we first introduce the model in an informal way.

In a Boolean model, the second characteristic of the model (the first is of
course the point process X) is a random variable p which governs the behaviour
of the radii of the balls. In a random-connection model (RCM), the second char-
acteristic is a so-called connection function, which is a non-increasing function
from the positive reals into [0, 1]. Given a connection function g, the rule is as
follows: for any two points x; and x; of the point process X, we insert an edge
between x; and x; with probability g(|x; —x2[), independently of all other pairs
of points of X, where || denotes the usual Euclidean distance. The edge between
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0 .

Figure 1.2. A realisation of a random-connection model. Here, /¥ contains the points
{0,a,b,c}.

two points x| and x; is denoted by the unordered pair {x1, x2}, and we say that
x| and x are the end vertices of {x1, x2}. Two points x and y of the process are
said to be connected if there exists a finite sequence (x =: x1, X2, ..., X, := y)
such that the edge {x;, x;,} is inserted foralli = 1,...,n — 1. A component
can now be defined in the usual graph-theoretical way: a component is a set
of points such that any two points of this set are connected to each other, and
which is maximal with respect to this property. The occupied component of the
origin is denoted by . Of course for # to be non-empty, we need to condition
the process to have a point at the origin (see Figure 1.2). This is the natural ana-
logue of the occupied components in Boolean models. There is no analogue of
vacant components in random-connection models. We again say that the RCM
is driven by X, and the model is denoted by (X, g).

We remark that ordinary nearest-neighbour bond percolation on Z%isa spe-
cial case of a random-connection model. To see this, just take the point process
of Example 1.1 in Section 1.3; i.e. we shift the d-dimensional integer lattice over
a random vector. For the connection function g we can take g(x) = plx|<1)-
In this sense, a random-connection model is more general than ordinary discrete
percolation.

Here is a formal mathematical construction of a random-connection model
(X, g); it is quite similar to the one of a Boolean model. The notation will
be basically the same as in the Boolean model, but this will not cause any
confusion, as it is always clear which model is under consideration. First we
assume that the point process X is defined on a probability space (21, F1, P1).
Next we consider a second probability space €2, defined as

Q=[] 1w

{K(n.z).K(m.z")}
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where the product is over all unordered pairs of binary cubes. An element
w2 € K is wiritten as wy({(n, 2), (m, 2')}). We equip Q> with product
measure Py such that all marginals are Lebesgue measure on [0, 1]. As be-
fore, we set @ = ©; x Q2 and we equip Q with product measure P = Py x P».
A random-connection model is a measurable mapping from Q into N x Q; de-
fined by (w1, w2) — (X(w1), wz). The realisation corresponding to (wy, w3) is
obtained as follows: for any two points x and y of X(w), consider the binary
cubes K(ng(x), z(no(x), x)) and K (no(y), z(no(y), »)) defined in the previous
section. We connect x and y if and only if w,({(no(x), z(ng(x), x)), (no(y),
z(no(»), YD < g(x — y|). The transformations U,, on 2 and fe, on £ can
now be defined similar to (1.7) and (1.9) respectively. The transformation T, e
again corresponds to shifting a realisation of the RCM by the vector e; in space.

1.6 Notes

Continuum percolation models have been extensively studied by physicists. Most of
their results are based on Monte Carlo simulations supported by heuristic arguments.
The non-triviality of the critical probabilities in Theorem 1.1 goes back to Broadbent
and Hammersley (1957). Theorem 1.2 was proved independently by Menshikov (1986)
and Aizenman and Barsky (1987). The fact that p.(2) = } is due to Kesten (1980). The
uniqueness of the infinite cluster was proved by Harris (1960) in two dimensions and
by Aizenman, Kesten and Newman (1987) in all dimensions. See Meester (1994) for a
review on uniqueness in percolation theory. The FKG inequality goes back to Fortuin,
Kasteleyn and Ginibre (1971), and the BK inequality was obtained for increasing
events by v.d. Berg and Kesten (1985) and in general by Reimer (1994). Russo’s
formula is due to Russo (1978). It seems that continuum percolation models appeared
for the first time in Gilbert (1961), in a very applied fashion.
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Basic methods

In this chapter we present a few basic results which will be used repeatedly in
the subsequent development of the subject. The last few sections of this chapter
will be devoted to obtain some inequalities, which are the continuum version of
similar theorems in the discrete percolation models. Some proofs here will be
obtained by a suitable discretisation and approximation, thus we will be making
use of the corresponding results in discrete percolation. The first two sections
are devoted to the concepts of ergodicity, coupling and scaling. The techniques
of the proof's are hardly needed in the rest of the book, so it is quite possible to
read the statements of the main results and move on to the next chapter.

2.1 Ergodicity

In this section, we review some results from classical ergodic theory and apply
this theory to stationary point processes. The account on ergodic theory will
be fairly short; we restrict ourselves to those results which we need in this
book. More information about ergodicity and stationary point processes can be
found in the book of Daley and Vere-Jones (1988). For a general account on
ergodic theory, we refer to the books by Krengel (1985) and Petersen (1983).
1t will be very convenient here to use a slightly different notation than in the
rest of the book in order to clearly see stationary point processes from the
viewpoint of measure-preserving transformations (which we introduce in the
next paragraph).

Consider a probability space (2, F, u) andlet T : Q —  be an invertible
measure-preserving (m.p.) transformation, that is, u(T ' F) = u(F), for all
F e F. We call the quadruple (2, F, u, T) an m.p. dynamical system. An
clement F € F is said to be T-invariant if T~' F = F. Clearly, the set of all

21
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T-invariant sets in F forms a o -algebra, which we denote by Z. The classical
one-dimensional ergodic theorem is as follows:

Proposition 2.1 Let (2, F, i, T) be an m.p. dynamical system and let f be
a p-integrable real function on Q. Then

n-1

1 &« .
=2 [T@) = E(fI D), @1
0

j==

u-a.s. when n — 00.

To apply this proposition to stationary one-dimensional point processes, it is
convenient toidentify the space (N, N') with (2, F), so that any element w € Q
represents a counting measure in JR? and any measure 4 on F is identified with
a stationary point process. Let 7; be the shift by a distance ¢ to the right in R.
Then T; induces a transformation §; : 2 — € through the equation

(Siw)(4) = o(T' 4), 22)

where A is a measurable subset of IR.

Lemma 2.1 If u is stationary, then S; is measure preserving, for allt € R.

Proof For a bounded measurable set 4 C IR and k € N, let F be the
set {w : w(4) = k} € F. Then we have u(F) = puflw : w(4) =k} =
plw : w(T,_l(A)) = k} by stationarity of w. Using (2.2), this is equal to
plow : (Sw)(4) = k} = u(S; 1 F). The desired equality is then also true for
sets of the form N]_, {w : w(4;) = k;} where 4; is bounded and measurable
for all i. Hence we have shown the necessary equality for a generating 7 -system
of F and the proof is complete. m]

Taking t = —1 for convenience, we now have an m.p. dynamical system
(2, F, u, S_1) and we can apply (2.1) as follows. Consider a point process
with finite density and let f' () := w(0, 1). Obviously, we have f(S% @) =
w(i, i + 1}, and hence it follows that Z;’;Ol f(St 1(@)) = (0, n]. It follows
from (2.1) that

n~'w(,n] —> E(f|Ii)(w), as. (2.3)

for n — oo, where Z; is the o-algebra of S_;-invariant events. Note that n is
an integer here. We can strengthen the conclusion to arbitrary intervals using
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the following inequalities, where |¢ | denotes the largest integer smaller than or
equal to ¢:

] @, (1] - (0, £] - lL+1 (0, [t +1]]
t L] - t - t e +1]
We conclude that
w0, 1] » E(f1T1)(w) as. (2.4)
when t — 00.

Before we continue with the higher-dimensional case, we make the following
remark. Let Z be the o-algebra of events which are invariant under all trans-
lations S, t € IR. Of course we have that Z C Z;. Now note that for a fixed
positive number #o we have a.s.

lim 7' (S,@)(0, 1] = lim ¢~ (w(—tg, 0] + (0, ¢ — 1g])
=00 =00
= lim " 'w(0,1],
=00

so that the right-hand side in (2.4) is invariant under translations and hence
measurable with respect to Z. But then we have a.s.

E(f|T) = E(E(f1IDID)

= E(f1D),
and we finally obtain the important formuia
7' w(0, 1] > E(f|T)(w) as. (2.5)

fort — occ.

Next we consider the higher-dimensional case. As before, (2, F, u) is a
probability space, but now we consider d invertible, commuting, measurable
and m.p. transformations Tj, ..., Ty from Q into itself, where d > 1. Let 7
be the o-field of events in F which are invariant under all transformations
Ti, ..., Ty. The composition T l’ L. T ;" is a transformation which we denote
by T(,.....iq). In this way the set {T, : z € Z%} forms a group and is called a
Z4-actionon (Q, F, ). We also say that Z? acts on Q via the transformations
T\, ..., T;. The classical higher-dimensional ergodic theorem is as follows:

Proposition 2.2 . Let (Q, F, ) be a probability space and suppose Z° acts
on Qvia Ty, ..., Ty (which are supposed to be measure preserving). Let f be
ua real j-integrable function on Q. Then

1 n—1 n—1 ; ;
=Y LS T @) > ESITD@), as

i1=0  ig=0

when n — 00,
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This proposition may now be applied to d-dimensional stationary point pro-
cesses with finite density. For this, let x € R and let T be the translation over
the vector x. For ease of notation, we define 7; to be the shift over the i-th unit
vector in IR? and S, is defined by the higher-dimensional analogue of (2.2).
The same reasoning as above yields the higher-dimensional analogue of (2.5):

=4 w(0, 1) > E(f]T)(w) as. (2.6)

where 7 is the o-algebra of events which are invariant under all transformations
{Sx : x € R, and f(w) = w(0, 1)%.

Up to this point, we have been able to apply ‘discrete time’ ergodic theorems
to obtain conclusions in continuous time like (2.5) and (2.6). Point processes
are random measures in a continium, and therefore the most natural ergodic
theorems associated with them are ergodic theorems which are concerned with
a group of transformations indexed by IR rather than Z%. An R?-action {S, -
x € IRY} is a group of invertible, commuting, m.p. transformations acting
measurably on a probability space (2, F, ) and indexed by R?. Our final
ergodic theorem is the following:

Proposition 2.3 Let (2, F, w) be a probability space and let {Sy : x € R%)
be an R%-action on Q. Let f be a real measurable and pi-integrable function
on Q. Then,

1
— f f(S(@))dx — E(f|I)(w)as. (27
(]

Jort — oo, where T is the o-algebra of events which are invariant under the
whole group (S, : x € R?).

The conditional expectations which appear in all ergodic theorems above may
not be so easy to deal with in general. A very important special case occurs when
the o -algebra of invariant events is trivial, i.e. any invariant event has measure
either zero or one.

Definition 2.1 An m.p. dynamical system (2, F, u, T) is said to be ergodic
if the c-algebra of T-invariant events is trivial. An IR®-action or Z%-action is
said to be ergodic (or to act ergodically) if the o -algebra of events invariant
under the whole group is trivial.

In the rest of this section, Ty is the translation in R? by the vector x, and
Sy is the corresponding operator on the probability space (2, F, u) defined
via (2.2).
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Definition 2.2 A stationary point process | is said to be ergodic if {Sx : x €
R%} acts ergodically on (Q, F, ).

H p is an ergodic point process, then the o-algebra of invariant events Z in
(2.6) is trivial and hence E(f|Z) = Ef as. and the limit in (2.6) is an as.
constant. When f(®) = (0, 114, this constant is equal to the density of the
point process. Hence we can immediately write down the following proposition.

Proposition 2.4  For a stationary ergodic point process with finite density, the
average number of points per unit volume in [0, 114 converges fort = 00 a.s.
to the density of the point process.

It is not hard to show, using this proposition and a ‘thinning argument’, that
a corresponding statement holds for infinite-density point processes. In such
cases, the limit is infinity a.s.

In general it is very difficult to determine whether or not a given point process
isergodic. The following result can be of some help as it characterises ergodicity.

Proposition 2.5 The group (S, : x € IR%)} acts ergodically on (Q, F, p) if
and only if, for all E, F € F we have

1
lim — u(SxEN F)dx = p(E)p(F). (2.8)
=00t Jio,

Proof Suppose that (2.8) holds and let E be an invariant event. This implies
that u(Sy E N E) = u(E), and it follows from (2.8) that

1

2
7 {nB) - (BN} dx — 0,

for t — 00, Thus we have w(E) = (u(E))? and we are done.
Conversely, suppose that any invariant event has measure 0 or 1. Then (2.7)
iakes the form

‘ '1,7 / f(Sc(w))dx — Ef, as. (2.9)
2 Jio.d

Now take E, F € F and take f(w) = | g(w) so that Ef = pu(E). Then (2.9)
yiclds

,—IJ/ ) 1 (Sx(w))dx — u(E), as. (2.10)
[0,1]
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The assertion now follows from the following equalities, using Fubini’s theo-
rem, (2.10) and bounded convergence:

lim ¢~¢ f f 15 (Sx(w))d pu(w)dx
=00 [O.I]d F

t—>00

= lim f 4 f 1£(Sx (w))dxd u(w)
F [0,1)4

= / w(Eydu(w)
F
= w(E)u(F). a

This proposition is often used by checking that the group {S, : x € R4}
satisfies an even stronger property than (2.8), namely the mixing property:

Definition 2.3 An m.p. dynamical system (2, F, u, T) is said to be mixing if
forall E,F € F, u(T"ENF) — u(E)u(F) = 0, forn — oco. An R¥-action
{S¢ : x € R?) is said to be mixing if for all E, F € F we have

u(SxENF) - u(E)u(F) -0, (2.11)
when |x| — o¢. For a Z4_action the definition is similar.

It is clear from this definition and (2.8) that a mixing point process is also
ergodic. It is now easy to prove the following result:

Proposition 2.6 A Poisson point process is ergodic.

Proof We prove the stronger statement that a Poisson process is mixing.
When E and F are events which depend only on the realisation of the point
process inside a bounded set, then (2.11) follows immediately because of the
independence property of the Poisson process. For arbitrary events E and F,
one approximates £ and F by events which depend only on the realisation of
the point process inside a bounded set, and the result follows easily. a

Let 1 be a Poisson process with parameter A. We can now apply Proposi-
tion 2.4 to 1 and conclude that
t~%w(0,1] - 1, as. @2.12)

when t — o0. For the Poisson process, however, we do not really need the
ergodic theorem to derive (2.12). The result also follows from the classical
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strong law of large numbers, because the number of points in disjoint sets is
independent.

Consider an ergodic point process w. By definition, this means that any event
which is invariant under the whole group of transformations {Sx : x € IR}
has measure zero or one. This fact, a priori, does not give any information
about the question of whether or not a particular transformation Sy, gives rise
to an ergodic m.p. dynamical system (2, F, u, Sx,). (Of course, the reverse is
much simpler: if Sy, is ergodic, then the o-algebra Z, of Sy,-invariant events
is trivial. The o -algebra of events invariant under the whole group is contained
in 7, and hence also trivial.) Sometimes we need to find a particular ergodic
transformation when the group acts ergodically. For this, we need the following
classical result:

Proposition 2.7 Suppose that IR® acts ergodically on a probability space
(2, F, u) via the group {Sx : x € Rd}, and suppose that the o-algebra F is
countably generated. Then there exists a countable set of hyperplanes (where
a hyperplane is not assumed to contain the origin) such that for all elements
x € IR? which are not contained in any of these hyperplanes, the m.p. dynamical
system (2, F, p, Sx) is ergodic.

Note that we can safely apply this result to point processes: the o-algebra
F is generated by sets of the form {w : w(4) = k}, where 4 C R is a
rectangle with rational coordinates and & an integer. The corresponding problem
for mixing point processes is trivial. It follows immediately from Definition 2.3
that for a mixing point process u, any element x € IR? gives rise to a mixing
m.p. dynamical system.

Finally, we discuss the ergodicity of Boolean models and random-connection
models. The construction of the Boolean model and the random-connection
model is such that it only makes sense to consider translations by integer-
valued vectors. Therefore a Boolean model is said to be ergodic if the group
{ fz rze 2 d} acts ergodically. For a random-connection model, the definition
is similar. The following result shows that ergodicity of a point process carries
over to a Boolean model or RCM driven by that process:

Proposition 2.8 Suppose X is ergodic. Then any Boolean model (X, p) or
RCM (X, g) is also ergodic.

Proof We give the proof for the Boolean model. From Proposition 2.7 we
have that there exists a fo € R? with |tg| = | such that (Qq, Fi, Py, Sp) is
an ergodic m.p. dynamical system. In the construction of the Boolean model,
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we can rotate the coordinate axes in such a way that fp becomes one of the
unit vectors. It is therefore no loss of generality to assume that fp = e;. It is
obvious that (S22, F2, P, Uy, ) is a mixing system, and it is a classical result in
ergodic theory (see e.g. Petersen 1983, Theorem 6.1) that this implies that the
product transformation f‘el is ergodic. Hence (22, F, P, f‘el) is an ergodic m.p.
dynamical system and it follows that {7, : z € Z¢} acts ergodically. a

We end this section with an application of Proposition 2.8.

Theorem 2.1 Suppose that the Boolean model (X, p) or the RCM (X, g)
is driven by an ergodic point process X. In the Boolean model, the number
of unbounded occupied components is a constant a.s. and the same is true
for the number of unbounded vacant components. In the RCM, the number of
unbounded components is a constant a.s.

Proof Again, we give the proof in the case of a Boolean model. Denote the
(random) number of unbounded occupied (or vacant) components by N. It is
clear that the event { N = k} is invariant under the group (T, : z e Z%, for
all £ > 0. This implies, by the ergodicity of the Boolean model, that the event
has probability either O or 1. As a result, we conclude that N is an a.s. constant
(which can be infinity). o

Note that this result immediately implies that unbounded components exist a.s.
in the supercritical regime, because P(N > 1) is positive and there must be
some 1 <k < oo for which P(N=k) = 1.

2.2 Coupling and scaling

In this section we introduce two important concepts in the theory of continuum
percolation. As we shall see, coupling and scaling are strongly related to each
other.

It is not so easy to give a concise and clear definition of coupling. Maybe
one could say that coupling is the construction of different models on the same
probability space in some sensible way, in order to compare the two models
directly. This ‘definition’ is somewhat vague, and this is why we think that the
best way of introducing coupling is by means of some examples. Let us first
give an example which has nothing to do with percolation theory, but which is
quite instructive. Suppose there are two players, inevitably called A and B, who
each have a coin. The coin of player A has probability p4 of heads coming up;
for player B, this probability is pg. Suppose now that p4 > pp, and suppose
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that we are interested in the expected number of tosses needed by either of
the two players to see heads five times. It is intuitively clear that the expected
number for A is no larger than the expected number for B. It is not hard to prove
this by doing the right calculations, but we give a more elegant method based
on coupling. Let U;, fori = 1,2, ..., be an i.i.d. sequence of uniform-(0, 1)
distributed random variables. We model the experiments above by saying that
heads comes up for player A at the i-th toss if and only if U; < p4. For B the
requirement is that U; < ppg. In this way, the tosses of the players are coupled
and no longer independent. This, however, does not affect the expected number
we are interested in. It is clear from the construction that player A sees heads
five times no later than B surely, and hence the expected number of tosses to see
heads five times for A cannot be larger than the corresponding quantity for B.
The coupling described here enables us to compare different players directly.
After this warm-up, we give a percolation application of coupling. We prove
the claim made in Chapter 1 that the percolation function 8 in the Poisson
Boolean model (X, p, A) is non-decreasing in A, the density of the process.

Proposition 2.9 If\ < A2 and p| < py a.s. then 05, (1) < 0p,(X2).

Proof To begin with, let p; = p3 = p a.s. and consider a Boolean model
(X, p, 22). We thin this process as described in Proposition 1.3: each point of X
is taken away (together with its associated ball) with probability 1 — A, (A2) .
It follows from Proposition 1.3 that the ensuing point process is again Poisson
with density A;. We remove all balls centred at the deleted points and leave the
other points and balls unchanged. It is easy to see that the ensuing model is a
Poisson Boolean model (X, p, ;). However, it is clear from the construction
that we have coupled the two processes in such a way that the occupied region in
(X, p, A1) is a subset of the occupied region in (X, p, A2). Hence the existence
of an unbounded occupied component in (X, p, A1) implies the existence of an
unbounded occupied component in (X, p, A2). The case when p; and p3 are
different is treated similarly. m|

Another example of coupling which we shall use frequently is described in
Figure 2.1. Here we place a Poisson point process X with density A. Centred
at each point we place two balls, one of radius p(w) and the other of radius
ap(w). Thus we define two Boolean models (X, p, A) and (X, ap, A) on the
same probability space and compare them.

Related to the concept of coupling is the concept of scaling. It is again not
casy to give a precise definition, but we can say that scaling involves changing
the unit of length in the model in order to compare two different percolation
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Figure 2.1. Coupling of the models (X, p, X) (solid balls) and (X, ap, A) (dashed
balls) fora > 1.

processes, It is often used in combination with coupling. An example works
much better than any attempt to describe the concept, so here is a simple but
important example.

Proposition 2.10  Consider Poisson Boolean models in R®. Let, for r > 0,
Ac(r) denote the critical density in the case where p = r a.s. Then it is the case
that

Ac(r)rd = rc(ra)rd, (2.13)

where ry, ry > 0.

Proof We discuss two approaches. First, consider the Boolean model (X, py,
A), where p; = r; a.s. This means that the expected number of points of the
point process inside the unit cube is equal to A. Now we rescale the model by
doing the following: instead of looking at unit cubes, we tile the space with
cubes of side length 7| /r2. The volume of such a cube is (r/ r2)? and hence the
expected number of points of X inside such a cube is A(r;/ r2)?. Furthermore,
the relative length of the radii compared to the side length of the new cubes
is equal to 7| (r2/r)) = r2. If we declare as our new unit of length the size of
the new cubes (= r| (r2)~ 1), then we see in fact a Boolean model with density
Alr/ r2)¢ and where the radii of the balls are equal to 7; a.s.; i.e. we see the
model (X, o2, A(ry/ r2)4), where of course o, takes the value > a.s. Note that
we have not changed one single point or ball, we just look at the realisation
from a different point of view. It follows that if (X, py, A) is supercritical, then
s0 is (X, p2, A(r1/r2)?), and if the former is subcritical, so is the latter. Hence,
Ae(r2) = Ae(r1)(ry /rz)d, and we are done.
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Figure 2.2. Scaling by a factor 2.

The second approach is to consider a realisation of the model (X, py, 1)
and apply the transformation x — (r3/r1)x on the d-dimensional space. We
then end up with a realisation of a Boolean model where all balls have radius
r2 and where the points form a Poisson process with density A(r1/ r)? (see
Figure 2.2). Note that the structure of the configuration is not affected by this
transformation: in the new model, the same balls overlap as in the original
model. This means that if the first model is subcritical, so is the second and vice
versa. The conclusion now follows as before. O

As follows from the proof of Proposition 2.10, the models (X, ry, A1) and
(X, r2, Ap) are related if Xp = A1 (ry /r2)d in the sense that the two models can
be seen as scaled versions of each other. Any property in one of these models
can be reformulated by a suitable scaling in the other model. This property is
by no means restricted to Boolean models with fixed-size balls. The proof of
the next proposition is similar to the proof of Proposition 2.10 and we omit it.

Proposition 2.11 In any d-dimensional Poisson Boolean model we have, for
anya > 0,

Ai@p) = i (p)a™?
and

Ae(@p) = re(p)a™.

2.3 The FKG inequality

There is a natural definition of increasing and decreasing events in the present
continuum setting. Consider two realisations @ and ' of a Poisson Boolean
model. We define a partial ordering ‘<’ as w < o' if and only if every ball
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S(x;, p;) present in w is also present in &'; i.e. @' can be obtained from w by
adding points (and associated balls).

An event 4 € Q is said to be increasing (respectively decreasing) if for
every w < o, 1 4(w) < 14(’) (respectively 1 4(w) > 14(o')), where 14 is
the indicator function of the event 4.

Theorem 2.2 (FKG inequality) If Ay and A7 are both increasing or both de-
creasing events in a Poisson Boolean model, then P(A1NA42) > P(A41)P(42).

Proof Consider the lattice L, = "2y x 27"2). For any k =
ki, ..., ks) € Z® and s € Z, let C(k, s5) denote the cell {(x,r) € RYx R, :
(s—=1)27" <r<s2™and (k; —1)27" < x; < ;2 " foreveryi = 1, ...,d},
where x = (x1, ..., xq). Thus for distinct (k, ), the cells C(k, s) are disjoint
and also U C(k,s) = IRY x IR, where the union is over all £ € Z¢ and
s € Z,. Given any cell C = C(k, s), consider the random variable N,(C)
which is defined as the number of Poisson points in ]'I:-1=1 (ki — 1277, k277
whose associated ball has radius in ((s — 1)2~7", s27"]. Let ¥, be the o -algebra
generated by the random variables {N,(C) : Cisacellin ZL,}. Then for any
event 4, {E(] 4|F,), n > 1} is amartingale with respect to F,, whence, by the
martingale convergence theorem, we have

EQu|F) > 1lgas. asn — 0. (2.19)

For fixed n it is not hard to see that the random variables {N,(C)} are all
independent. Also, E(1 4|F,)(w) is a function of { N, (C)}c. As such, we easily
see that if 4 is an increasing event, then E (1 4|F) is an increasing function.
Thus, forany w < ', E(1 4|F) (@) < E(1 41F,)(w'). Now for two increasing
events 41 and 42, we have by the standard FKG inequality (Theorem 1.4),

\

E{E( 4, |F) EQ 4\ Fn)} = E{E(1 4| F)}E{E(1 4,1 FR)}
= E(14,)E(14,). 2.15)

Letting n tend to infinity and applying Lebesgue’s dominated convergence the-
orem, we have from (2.14)

E{E(14,|F) E( 4| Fn)} = E{l4,14,)}-

Thus from (2.15) we have P(4; N A3) > P(4)P(4>). This completes the
proof of the theorem. m]

As an application of the FKG inequality we give two examples.
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Example 2.1 Let B C IR? be a bounded measurable set containing the
origin. For m > 0 consider the following events in the Poisson Boolean model
(X, p, A):

E={dW(B)=m}, F={BcC}

where, as defined in Chapter 1, W (B) denotes the union of all occupied com-
ponents which intersect B, d(W (B)) denotes the diameter sup{d(x, y} : x, y €
W (B)} and C the occupied region. Clearly, £ and F are both increasing events,
s0 by the FKG inequality we have P\(E N F) > P, (E) P, (F). Thus

P{d(W)=m} = P(ENF)
B (E)P.(F)
CQ, B)P{d(W (B)) = m},

v

where C(A, B) = P,(F) > 0 because B is a bounded region. Thus we have
the inequality

Ex(d(W(B)) = K(A, BYEA(d(W)), (2.16)

for any bounded region B containing the origin and a positive constant K (A, B).
For the vacant case, a similar application of the FKG inequality yields

Ex@dV (B))) < K*(., BYEr(@d(V)), (2.17)

for any bounded region B containing the origin and a positive constant K* (A, B),
where as in Chapter 1, V' (B) denotes the union of all vacant components which
intersect B and V' denotes the vacant component of the origin.

Example 2,2 We first define crossing probabilities of a box. Consider the
d-dimensional box B := [0, ;] x --+ x [0, I;1and let Bo(i) :=[0, ;] x --- x
[0,7;i1] x {0} x [0, [iy1] x - - x [0, lg] and By () := {0, /1] x - - - x [0, 1;—1] x
{I;} x [0, li41] x -+ x [0, ;] be two faces of the box B.For 1 <i < d, we
define the occupied crossing probability in the i-th direction as

o((1,-..,12), A, i) := P,{there is a continuous curve y in B such that
\ @ ycCnB
() yNBy(i) #Bandy N By(i) #8}.  (2.18)
In two dimensions, for i = 1, the event in the parentheses in (2.18) is called a

left-right (L—R) occupied crossing of the rectangle [0, /1] x [0, [2],and for i = 2
itis called a top-bottom (T-B) occupied crossing of the rectangle [0, /11x [0, /2].
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The vacant crossing probabilities are defined similarly. For 1 < < d, we
define the vacant crossing probability in the i-th direction as

o*((h,...,12), A, i) := P, {there is a continuous curve y* in B such that
@) y*nC=90
(i) ¥* N By(i) # @ and y* N B1G) # B). (2.19)

In two dimensions, for i = 1, the event in the parentheses in (2.19) is called a
left-right (L-R) vacant crossing of the rectangle [0, /11 x [0, /2], and for i = 2
it is called a top—bottom (T-B) vacant crossing of the rectangle {0, /1] x [0, I].

By an application of the FKG inequality we have P{there exists an L-R
occupied and a T-B occupied crossing of [0, /1] x [0, ]} = P{there exists
an L-R occupied crossing of [0, /;] x [0, /2]} P{there exists a T-B occupied
crossing of [0, /1]1x{0, /»1}. A similar statement can be made for vacant crossings
and in higher dimensions.

2.4 The BK inequality
In this section we shall prove a result which is the analogue of the BK inequality
for discrete percolation. The inequality will in some sense be dual to the FKG
inequality. In order to state the result we need some definitions. Any w € Q
corresponds to a countable set of pairs S(w) = {(x;, r;)} where the x;’s denote
the points of the point process and 7; is the radius of the ball centred at x;. For
any bounded Borel set U C IR?, we define
wy = {(xi, 1) : (xi, 7)) € S(w), x; € U}
The event [wy] is defined as

[wy] = {' : there exists w” < &’ such that of; = wy}.

In words, this is the event that the configuration inside U is larger than wy. We
say that an increasing event 4 is an event on U if w € 4 and ' € [wy) imply
that ' € A. A rational rectangle is an open d-dimensional cube with rational
coordinates.

Definition 2.4 Let A and B be two increasing events on a bounded Borel
set U. Then

AD B = |w : there are disjoint sets V and W such that V
and W are finite unions of rational rectangles
and [wy] C 4, [ww] C B}.

When A Q B occurs, we say that A and B occur disjointly.
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The fact that we only consider unions of rational rectangles in the definition
has to do to with measurability problems but is otherwise unimportant. If a set
V satisfies [wy] C 4, then any set containing ¥ has the same property, and it
is easy to see that there is also a subset of V' with the same property. Hence no
‘minimal set’ with the required properties exists. Note also that this definition
of A O B is equivalent to requiring the existence of two disjoint sets of points of
the point process (in U) such that any configuration which agrees with w on the
first set of points (including the associated balls) is in 4, and any configuration
which agrees with w on the second set of points is in B. Before proceeding we
clarify the definition with an example.

Example 2.3  Consider a Boolean model in two dimensions and suppose that
the radii are bounded from above by R > 0. Consider arectangle [0, /1] x [0, L;].
Let A4 be the event that there is an L-R occupied crossing of the rectangle, and
let B be the event that there is an occupied T-B crossing. Then 4 and B are
increasing events on [—R, I} + R] x [—R, l» + R}, and 4 O B is the event that
there exist both an L-R crossing and a T-B crossing in such a way that the balls
used for the L—R crossing are different than the balls used for the T-B crossing.
Note that the balls in one crossing are allowed to (and in this case certainly will)
intersect balls in the other crossing.

Theorem 2.3 (BK inequality)  Suppose U is a bounded measurable set in
R?. For any two increasing events A and B on U in a Poisson Boolean model
we have

P(A4 0 B) < P(A)P(B).

The key to the proof of this theorem is an ‘exchanging technique’. To explain
this, consider two sets U and x 4+ U in [R?, where U is bounded and x is chosen
such that the two sets are disjoint. What we want to do is, given a realisation
of the Boolean model, exchange the configurations on U and x + U in the
sense that all balls centred in U are moved to x + U and vice versa. For our
purposes it suffices to restrict ourselves to points x with integer coordinates.
For such x we define, forw € €, TxU (w) to be the configuration obtained from
w by (i) translating all points of the point process in U by x and all points in
x + U by —x, and (ii) for all points y of the point process in U, we interchange
the values of the random variables corresponding to K (no(y), z(ng, y)) and
K (ng(»), z(np, ¥)) + x, and for all points of the process in U + x we inter-
change the values of the random variables corresponding to K (no(y), z(ng, ¥))
and K (no(y), z(no, y)) — x. (Recall that K (ng(y), z(ng, y)) is the binary cube
whose associated random variable gives the radius of the ball centered at y.) In
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the realisation corresponding to w, this comes down to exchanging points and
balls in U and x + U, as anticipated previously. For any event A, TxU(A) is
defined as {TY (w) : @ € A}.Inwords, T (4) is the event that 4 would occur
if we were to interchange the realisations on U and x + U.

The following lemma relates P(4 O B) to P(A O TV (B)). The second event
can be described as the event that 4 occurs, and if we were to interchange the
realisations on U and x + U, B would occur. Thus the event 4 can ‘use’ U,
and the event B can ‘use’ T.U (U). This fact should make it easier for 4 and B
to occur disjointly, and the next lemma is the first step in this direction.

Lemma2.2 Let M be abounded Borel set, U C M and x a vector with integer
coordinates such that M N (x + U) = (. For increasing events A and B on M
we have

P(A0 B) < P(AOTY(B)) + P(X(U) > 2).

Proof We define, for all bounded Borel sets U, the set @y = {wy : @ € Q).
For any subset I' C Qy, we define [I'] = Uy erj[y]. For disjoint Borel sets
U and U’, we write (wy, wy,) for the element in Qyyy» which agrees with
w on U and with @’ on U’. Also, for y € Qp and ¥V C M we write [yly
to mean [y, ] for any ¥’ € Q with ¥}, = y. For a € Qun\v let 4(a) be the
set {0 € Qu :thereexist V. W Cc M,V NW =@, W c M\U such that
[(a, 0)]y € A and [(¢, 0)]w C B}. (Here we assume again that ¥ and W are
finite unions of rational rectangles.) The event B(w) is defined similarly with
the roles of 4 and B interchanged. In words, 4(«) is the set of configurations
in Qu which make 4 O B to occur in such a way that the set W corresponding
to B is outside U. The event B(er) can be described similarly.

Now let w € 4 O B. If it is impossible to choose ¥ and # in such a way
that they have non-empty intersection with U, then it follows, using the fact
that both 4 and B are increasing events, that X(U) > 2. Hence either wy €
A{lwm\U), oy € Blwny) or X(U)(w) = 2. Writing P’ for the conditional
probability measure given wjs\y we thus find a.s.

P'(40 B) = P'([4(om\))) + P ([Blwa\v)))

— P ([ A0 \0)1 N [Blwm\v)]) + P/(X(U) = 2)

P' ([ A0\ )D) + P ([B(om\0)])

— P'([A(om\0)D P ([Blwm\))) + P/(X(U) > 2), (220)

IA

where the last inequality follows from the FKG inequality. Note that we can
apply the FKG inequality because the events involved are increasing and not
affected by the conditioning.
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Furthermore, if wy € A(wp\v) then, according to the definitions, w €
A O B in such a way that the set W corresponding to B can be taken outside
U. Hence after interchanging the configurations on U and x + U, B still occurs
whence w € 4 O T (B).

If wx+v € TV (B(wym\y)) then after interchanging U and x + U, B(wy\v)
occurs, which means that after interchanging, 4 O B occurs in such a way that
the set ¥ corresponding to 4 is outside U. This implies that w € 4 O TxU(B).

From the last two paragraphs it follows that a.s.

P40 Tl (B) = P'[Alwm)) + P (TY (Blwmu)D)
— P'([A(om\ )] N TY ([Bwsn\0)D)
= P'({A(om\)) + P(TY ((Blwm)))
— P ([A(m)) P (T ([Blomw)])
= P'([A(@m\)D) + P ((B(om)))
— P ([ Ao )D P (T [ Bom\u)D),  (2.21)

where the first equality follows from independence and the second from sta-
tionarity. From (2.20) and (2.21) we find

P'(40B) < P(40TY(B)) + P(X(U) > 2)

from which the lemma follows after integrating out the conditioning on was\y .
0

Proof of Theorem 2.3 Using a simple scaling argument, we can assume with-
out loss of generality that 4 and B are increasing events on the unit cube
I = [0, 1}%. Choose any x with integer coordinates such that (x + 1) N ] = @.
Fix an integer » and partition / into 27 hinary cubes S, .. ., Syna. Define the
events B® fork = 1,...,2™ as follows: BO = B, B*+D = 15«1 gy,
for k = 0,...,2"¢ — 1. Note that with this definition, B®") = T/(B).
Applying Lemma 2.2 2™ times (the k-th time with B replaced by B%~1),
M=UU{x+S1U---US,_1)} and U = ), we obtain

P(AOB) = P40 BY) < P40 By + P(X(S)) =2)
< < P(40B¥) 12 P(X(8)) > 2)
< P(A)P(B) +2" (27"
= P(4)P(B) + A227"4,

As n is arbitrary, we now take the limit for n — oo and the proof is complete.
O



38 Basic methods

We give a typical application of the BK inequality which we shall need later
on,

Theorem 2.4 Consider a Poisson Boolean model (X, p, A) where p satisfies
0 < p < R for some R < oo. If E(d(W)) < oo then there exist constants
C1, C2 > 0, depending on X\ and the dimension d such that

Pi(0~5 (Bp)®) < Cre=om.

Proof It follows from Example 2.1 that E(d(W (B)) < oo for any bounded
set B and it will be enough to show that under this condition P(B > (Bm )6) <
C1e—C2™, We partition the space with cubes of the form

d
Br(@) =[[@Rz - R, 2Rz + R],

where z € 2¢. Since E (d(W (Bg(0))) < oo we can choose M so large that
EWy) < %3“1, where Wy is the number of cubes By (z) outside By which
intersect W (Br(0)). Now choose L so large that the set U)jz>2—1 Br(2) is
disjoint from By, where ||z|| = max; z;. Then choose m so large that B, D
Ulizti<L+1 Br(2). Observe that if {Br(0) & (Bn)¢} occurs, then there is some
z with ||z|]| = L for which {Bg(0) ~» D(z)} and {Br(z) ~ (Bm)°} occur
disjointly, where D(z) is defined to be the set D(z) = Uj;—,/j=1 Br (z'). It then
follows from the BK inequality that

< P(BR(0) ~ D(2), Br(z) ~> (Bm)°)
{z:|lzl|=L})

P(BR(0) ~> (Bm)°)

A

< max P(B & (Bi)) x
R g (Br(z) ~ (Bw)")

x Y P(BR(0)~> D(z))
(zliall=L}

< max P(Br(z) ~> (Bn))3*E(Wy),

{z:]|zl|=L}

where the last inequality follows from the fact that any cube is contained in at
most 39 sets D(z) with ||z|| = L. It follows that

P(BR(0) > (Bn)°) < %{ max P(BR(2) > (Bn)°). (2.22)
2:)2|{=

To estimate the right-hand side of (2.22), suppose that m is so large that
Uiz|lz=2’)1=2) C Bm. Then the same argument as above shows that for all
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zwith ||zl = L,

P(Br@) > (Bn)) =3, max  P(BRE)~> (Bp)°).

Repeating this argument now leads to the desired conclusion. m]

2.5 Notes

Proposition 2.7 is from Pugh and Shub (1971). The FKG inequality for continuum
percolation appears in Roy (1988). The proof of the BK inequality given here is due to
v.d. Berg (1995), and is in fact a proof of the BK inequality for marked point processes.
In Roy and Sarkar (1993), a more restricted version of the BK inequality is proved
for certain classes of increasing events. Also in Bezuidenhout and Grimmett (1991), a
version of the continuum BK inequality appears. Coupling methods are very old and
have become quite popular in recent years. The scaling relations in Proposition 2.11
appear in Zuev and Sidorenko (1985).
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Occupancy in Poisson Boolean models

The percolation-theoretical study of the Boolean model confines itself primar-
ily to the study of the geometric and probabilistic properties of the occupied
and vacant clusters. In this chapter we shall study the occupied region in a Pois-
son Boolean model (X, p, A). Throughout this chapter (X, p, A) will denote a
Poisson Boolean model arising from an underlying Poisson point process X of
density A and radius random variable p. As usual we shall assume that centred
at points xy, x2,... of X are spheres S(x1), S(x2), ... of radius o1, p2,...,
respectively, where py, p2, . .. are independent and identically distributed and
are also independent of the underlying point process X. Let p denote a random
variable independent of p{, 02, ... and also independent of the process X and
whose distribution is identical to that of p;. With a slight abuse of notation
we shall let P, denote the probability measure governing this Poisson Boolean
model.

3.1 Introduction

Itis quite possible that the Boolean model is such that the space R¢ is completely
covered. To this end, we first give the following elementary result:

Lemma3.1 Supposethat Ep? < 0o. Then the number of balls which intersect
S(0, t) (the ball with radius t centred at the origin) has a Poisson distribution
with finite parameter

A/ P(p > |x| — t)dx. 3.1
R4

Proof 1t follows immediately from Proposition 1.3 and the independence
of the radii and the point process that the random variable in question has a

4an
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Poisson distribution with parameter given by (3.1). We need only show that this
parameter is finite. For this, we have, writing F, for the distribution function
of the radius random variable p, and for some positive constants C and C’:

o0
f P(p > |x| —t)dx = cf P > r — t)dr
R4 0

[0 ¢) 00

C f rd-1 f dF,(y)dr
0 r—t
0o py+t

cf f r‘=Ydrd F, (y)
0 0

[0 ¢)
= c’f +1%dF,(y) < 0. o
0

I

Taking ¢+ = 0, we see that the expected number of balls which intersect the
origin is equal to A {4 P(p > |x|)dx. The following argument shows that this
is equal to the expected number of Poisson points in the random ball around
the origin (assuming that the point process is conditioned to have a point at the
origin):

A fm Doz ixDdx = E (Zlism,p.-)n{maém)
i
=E <Z 1(x,~eS(o.p,~)}>
i
=k (Z ltxieS(o.p)})
i

= g Ep, (3.2)

where m; denotes the volume of a d-dimensional ball with unit radius, and
where the last equality follows from conditioning on p. We conclude that the
probability that the origin is not covered is equal to

P(W = @) = e maEo” (3.3)
The question of complete coverage is settled in the next proposition.

Proposition 3.1 Ina Poisson Boolean model (X, p, A) on IR?, the whole space
is covered a.s. if and only if Ep? = 0.
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Proof Let us denote the vacant region inside the unit cube [0, 119 by V'. We
then have, by (3.3) and Fubini’s theorem,

E(Z(V/)) = E/ 1{x is not covered) dx
fo.1¢

- d
e AngEp .

Hence if Ep? < 00, then E(€(V’)) > 0 and thus P(¢(V’) > 0) > 0. Us-
ing Proposition 2.8 and Proposition 2.2 with 7; the translation over the i-th
unit vector and f(w) = £(V')}(w), we see that the space is almost surely not
completely covered.

Conversely, if Ep? = oo, then the vacancy in the unit cube has expected
Lebesgue measure zero. We distinguish between two possible cases.

Suppose first that any bounded region is intersected by only finitely many
balls a.s. We then cover the space with countably many overlapping open sets
of the form %z +(0,1)¥ =: D(2),forz € Z%. The vacancy inside D(z) is an
open set which has measure zero a.s. There is only one such open set, the empty
set, and we conclude that the whole space is covered a.s.

Next suppose that there is a # > 0 such that S(0, ¢) is intersected by infinitely
many balls with positive probability. If this happens then there exists a half-
line ! starting at the origin and a sequence (xj, X2, ...) of points of the point
process X such that each of the balls S(x;) intersects S(0, #), and such that the
angle between / and the line passing through the origin and x; tends to zero
as i tends to infinity. However, since we must have |x;| — oo as i — 00,
this implies that there is a half-space which is completely covered by balls. By
rotation invariance, all transformations S, act ergodically. (The notation is as
in Chapter 2.) Consider random variables ¥, and Z,,, n € Z defined as follows:
if [0, 119! x [n,n+ 1] s completely covered by balls, then ¥, = 1, otherwise
Y = 0;if [n, n+ 1] x [0, 1]~ ! is completely covered then Z, = 1, otherwise
Z, = 0.If ahalf-space is completely covered by balls, then one of the following
possibilities occurs:

(i) Y, = 1for all n large enough or ¥, = 1 for all —n large enough,

(il) Z, =1 for all n large enough or Z,, = 1 for all —» large enough.

Suppose (i) occurs. If f := 119 1)¢ is completely covered) 1t follows from the
ergodicity of S, and Proposition 2.1 that Ef = 1, which implies that the unit
cube is completely covered almost surely, which in turn implies by stationarity
that the whole space is covered by balls a.s. If (ii) occurs the result follows
similarly. O
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In view of this proposition we restrict our study to those random variables p
for which

Epd < 0Q. 3.4)

Suppose (3.4) holds. We define a stochastic process { X} as follows:

1 if the point (n, 0, ..., 0) is not covered in (X, p, A),
Xy = .
0  otherwise.

The translation by the vector e is ergodic, and (3.3) together with Proposition
2.1 gives that P(X,, = 11i.0.) = 1. This yields

Corollary 3.1 If (3.4) holds for a Poisson Boolean model (X, p, ) on IR?,
then, foranyn > 1, P.((B,)° S W) =0.

3.2 One-dimensional triviality

Itis quite easy to provide a complete description of the percolation phenomenon
in one-dimensional Boolean models. Indeed, from Corollary 3.1 we trivially
have:

Theorem 3.1 For a Poisson Boolean model (X, p, A) on IR, with p satisfying
(3.4) for d = 1, unbounded components do not occur a.s.

Thus for a one-dimensional Poisson Boolean model, irrespective of the den-
sity of the underlying driving process, either there is complete coverage or
no unbounded component, depending on the distribution of the radius random
variable.

At this stage of the development of this chapter, we point out the importance
of the geometric structure of the random shape at each point of the driving
process. Let

n2 . .
i
S= [i —@n?+D7Y, -+ @er?+ 1)-1]
o ln n
i=-n
forn > 1. Let xy, x2, ... be an enumeration of the points of a Poisson point

process on /R and let S(x;) = x; + S; be the shape centred at the point x;, where
the distribution of S; is given by

6
PSi =S8, = ;n—2 forn > 1.
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We also assume that S, S, . .. are i.i.d. and independent of the driving process.
Observe that £(S,) = 2 for every n > 1, so that £(S(x;)) = 2 forevery i > 1,
and hence

E€(S(x;)) =2 forall x; € X. (3.5)

Note the condition (3.4) for d = 1 for Poisson Boolean models on IR is similar
to (3.5) in the sense that both guarantee that the expected Lebesgue measure of
the associated shape S(x;) is finite. We will show that each random shape S; is
intersected by infinitely many other random shapes almost surely.

Consider an interval (—a, a) fora > 0. Let Ny, N, ... be 1.1.d. random
variables defined by N; = k if and only if S; = x; + Sj forevery i > 1 and
k > 1. We note that whenever |x;| < kand ¥ > [1/2a]+ 1 (where [x] denotes
the smallest integer greater than or equal to x), the shape x; + S has non-empty
intersection with the interval (—a, a). Hence, if

Pi(lxil < Niio) =1, (3.6)

then, with probability 1, infinitely many shapes have non-empty intersection
with (—a, a). This would, of course, prove our contention that each random
shape is intersected by infinitely many random shapes with probability 1. To
prove (3.6), we define, for every integer j,

Ej:={x; e (j—1,j)forsomei > land j < N;}.
Now,
PA(Ej) > Px;i € (- l,j) for some i > 1}P.(j < Np)

6o~ 5
= (1= exp(-2)=> n~>,

n=j
50 3 72 Pi(Ej) = 0o. Thus by the Borel-Cantelli lemma
Pu(Ejio.) = L.
However,
Pi(Ix;l < Niio) = Pi(Eji0),

which shows that (3.6) holds.
This example shows that if we allow different shapes then the natural analogue
of Theorem 3.1 need not hold.
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3.3 Critical phenomena

In two and higher dimensions, we cannot provide a complete description as in
Theorem 3.1.

Theorem 3.2 Let (X, p, A) be a Poisson Boolean model on IR?, ford > 2,
with p satisfying (3.4). There exists A9 > 0 such that the expected num-
ber of balls in the component W which contains the origin is finite whenever
0 <A < Ao ifandonlyif

Ep¥ < . 3.7

Proof Suppose Ep?? < oo and first assume that p takes only non-negative
integer values. We shall employ an argument based on a comparison with a
suitable branching process model to provide an upper bound on the expected
number of balls contained in a component. The branching process we construct
below is of multi-type (see Athreya and Ney 1972, chap. V, for the necessary
theory). Suppose there is a ball S of radius i centred at x. Let n; denote the
(random) number of balls of radius j which intersect S. Since the Boolean
model (X, p, A) can be thought of being the superposition of the independent
Boolean models {(Xj, j,AP(p = j)); j=0,1,2,...} wehave thatn, na, ...
is an independent sequence of random variables with each ; having a Poisson
distribution with mean

Mi,j := Ex(number of balls of radius j centred in
{z:lz—x| =i+ jD
= AP(o = j)mali + j)°, 3.8)

where 7 is the d-dimensional volume of a unit ball. In our branching process
n; will represent the number of children of x of type j. More specifically, the
member of the 0-th generation of the branching process is taken to be the origin.
Here we place a ball S of random radius g, where pg and p are independent
and have the same distribution. Now consider independent Poisson processes
X1,0, X1,1, X1,2, ... with X; ; of density AP(p = j), j = 0,1,2,.... Let
{x1,jk}, k=0,1,2,...,n;, be all the points of X7, ; such that a ball of radius
J centred at x;_ ;& has non-empty intersection with S. The points {x j; k =
0,1,2,...,n; j=0,1,2,...} are taken to be members of the first generation,
where there are n; members {x; jx;k =0,1,2,...,n;} of type j. Since the
superposition of the processes {X),;; j > 1} yields a Boolean model with
radius random variable o, Lemma 3.1 tells us that the total number of balls of
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all these processes which intersect a given bounded region is finite almost surely.
Therefore, ) 72 n; is finite a.s. Also, as argued earlier, forall j =0, 1,2,...,

Ex(njlpo = i) = AP(p = pmaGi + j)*
= Wi j.

Inductively, let x|, x2, ..., x, be the members of the n-th generation. Con-
sider the member x;, and suppose it is of type i. The members of the (n + 1)-th
generation which are children of x; are obtained by placing independent Poisson
processes Xo, X1, X2, ...of densitiesAP(p =0), AP(p =1),AP(p = 2),..
respectively and these Poisson processes are also independent of all other ran-
dom processes already constructed. The children of x; of type j are all those
points of the process X such that aball of radius j centred at any of these points
will have non-empty intersection with a ball of radius i placed at x;, where i
was assumed to be the type of x;. Thus given that x; is of type i, the expected
total number of children of x; of type j, for j =0, 1,2,...1s pu;, ;.

Let v;”) be the expected number of members of the n-th generation of type

j and let v denote the infinite vector whose j-th entry is v}”). Also let M be
the matrix with an infinite number of rows and an infinite number of columns,
whose (i, j)-th entry is u; j. By the theory of multi-type branching processes
(see sec. 1.6 of Mode 1971) conditioned on the member of the 0-th generation
being of type i, the evolution of the process is given by

v® = iM", (3.9)

where i denotes the infinite unit row vector whose i-th entry is 1 and all other
entries are 0.

Let ,uf"j) denote the (i, j)-th entry of the matrix M". Conditioned on the
0-th generation member being of type i, from (3.9) we have that the expected
number of members of the n-th generation is

o0 o
S
j=0 j=0

and the total expected number of members, y;, in the entire branching process
is

o 00 o o (
w=3 T =3 Tun

n=0 j=0 n=0 j=0
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Now, for all i, j > 1, i + )? < 2%[max(i, HN)¢ < 2¢i%j%; thus, taking
C =29y,
CAP(p = j)i%j? fori,j>1

Mij < CrP(p = j)j? fori =0
CAP(p = 0)i? for j = 0.

Hence, the (i, j)-th entry ;L(z) of M? satisfies, fori, j > 1,
@ _ %
wdl =" piam
=0

o0
< Y CA % P(o = j)P(p = 1)

= %4 P(p = DEp*,
while, fori = 0,
#,(2} < CW2jeP(p = j)Ep™
and, for j =0,
(2) < CZ}‘.Z dP(p O)EpZd
Inductively, it is easy to see that
(CA (Ep*y=1idjdpp=j) fori,j>1
w < § CV"EMY ! P(o=j)  fori=0
(CA (Epdy=1id p(p = 0) for j = 0.
Since EpZd < 00, we have fori > 1,
o0 o0
wi < 1+i4Y (g [P(p =0+ joP(p= j)] (3.10)
n=1 Jj=1
and fori =0,

wi < 14 ) (Cn(Ep*)! [P(p =0+) jP(p= j)] . GID

n=1 J=1

Thus if CAEp?? < 1, then u; < 00.
Comparing this branching process to the Boolean model, the expected num-
ber of balls in the Boolean model which are in the component containing the
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ball at the origin is at most the total number of members in the branching pro-
cess. Consequently, if A < (297, Ep*)~!, then the expected number of balls
comprising a component is finite.

In case the radius random variable takes values other than integers, then we
consider the Boolean model (X, pin:, A), Where p;,,; = [ p] denotes the smallest
integer larger or equal than p. Clearly, Ep% < oo implies Ep,zft < 00. By
a coupling argument, it is immediate that the expected number of balls in a
component of the model (Xp;,,, A) is at least that in a component of the model
(X, p, 1), thereby proving the necessary part of the theorem.

To show the sufficiency part of the theorem, we assume that

Ep¥ = o, (3.12)

and prove that in the resulting Boolean model the expected number of balls in
a component is infinite for every A > 0. As before, we assume that the radius
random variable p takes only non-negative integer values. The general case can
be dispensed with by observing that if p;,, = |p] denotes the largest integer
smaller than or equal to p, then Ep?® = oo implies that Epizrf’t = o0, and the
expected number of balls in a component of the model (X, pjn¢, A) is at most
that in a component of the model (X, p, A).

Again, as before, let S be a ball of radius i centred at x and let n; be the
(random) number of balls of radius ; in the Boolean model (X, p, A) whlch
intersect S. As in the argument leading to (3.8), we have that ny, n, ...

a sequence of independent random variables with each »; having a P01sson
distribution with mean given by (3.8). Let M = max{;j : n; > 0} and define
M= —lifnj=0forall j > 0. Now

{M=m}={ny >0andn; =0forall j >m+ 1}, (3.13)

so the event {M = m} depends only on the Boolean models {(.X;, j,
AP(p = j)); j = m). Thus the events {M = m} and {M > m} are inde-
pendent of the Boolean models {(X;, j,AP(p = j)); j=0,1,2,...,m—1}.
Let ko = min{j > 1 : P(p = j) > 0}. Given S, a ball of radius i, and given
M > ko + 1, let S’ be a ball of radius M which has non-empty intersection
with S. Then we have

E; (number of balls in the component containing S)
o0

= Y PM=m

m=ko+1
x E; (number of balls of radius k¢ intersecting S'| M = m). (3.14)
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The last term can be bounded easily, observing that from the independence
property described earlier, given M = m and m > ko + 1, the number of balls
of radius k¢ which intersect S’ has a Poisson distribution with mean AP(p =
ko)ra(m + ko)?. Also,

P(M =m) = P(ny >0)P(n; =0forall j >m+1)

= P(tm >0) [| P(n;=0)
jzm+1

(1 — exp(—pi,m)) €Xp (' Z Mi,j) .

j=m+1

IV

Thus, from (3.14),

E) (number of balls in the component containing S)

o o
Z (1 — exp(—uim)) exp (— Z m,;) AP(p = ko)ma(m + ko)®

d
m=ko+1 j=m+1
o0
> Y AmaP(p = ko)(m + ko) (1 = exp(—pui,m))
m=ko+1

X exp (—Z p,i,]) . (3.15)
j=0

However, since Epd < 0%,

(=] o0
Y wij <MY G+ NP =) < oo, (3.16)
J=0 =0

and, from (3.16)

1 — exp(—im) = Wim eXP(—Him)

o0
AP(p = m)mm? exp (—Z m,j)
=0

> Co(Mm?P(p =m), (3.17)

v

where C; () and C(A) are positive constants.



50 Occupancy in Poisson Boolean models

In view of our assumption (3.12), combining the bounds obtained in (3.14),
(3.15), (3.16) and (3.17), we have

E; (number of balls in the component containing §)
oo

>Cn) Y, m¥Pp=m)
m=ko+1
=0

where C (1) is a positive constant. This completes the proof of the theorem. O

While (3.7) is necessary and sufficient for the finiteness of the expected
number of balls in a component for sufficiently small densities, the following
theorem asserts that (3.7) is not necessary for the component to be finite with
probability 1.

Theorem 3.3 For a Poisson Boolean model (X, p,2) on R?, for d > 2,
if Ep®@~1 < 00, then there exists 0 < ko such that for all 0 < A < Ay,
P, (number of balls in any occupied component is finite) = 1.

Proof  As in the previous theorem, we shall construct a multi-type branching
process to estimate the number of balls in a component. However, we have to
be more careful in the construction to enable us to obtain a better estimate.
Also as before, it suffices to assume that p takes only positive integer values.
Indeed, if p;,y = [p] denotes the smallest integer larger than or equal to p,
then E(p?~") < oo implies E(p2™") < 00 .

In the new construction, the children of type j of an initial ball S of type i
are all those balls of radius j which have non-empty intersection with § and
which are not completely contained in S. The number r; of such balls is clearly
a Poisson random variable with mean

pij = AP(p = pmal + j)? — {max(0,i — )], (3.18)

and ny, ny, . .. are independent. Using this construction we will obtain an upper
bound for the expected number of balls which make up the boundary of the
component of S.

As in the proof of Theorem 3.2, we construct a branching process with this
type distribution; the only difference is that the associated ball of a child cannot
be completely covered by its immediate forebear. Thus we obtain the equation
(3.9) for this branching process, where v = (vf") , vé"), ..Jand M = ((ui, ;)
with v}") being the expected number of members in the n-th generation of type
J/ in this branching process and ;, ; is as defined in (3.18).
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Now observe that, fori < j,
G+ )? = max{0, (i = N = (i + j)?
<245
while, fori > j,

d
G + j)? —max{0, (i — H)¥ = Z(k) ok jk Z( 1)"() i

k=0 k=0

£

24+ltd ‘_]d,

where the last inequality holds because 34 _, (§) = 2¢.
Using the preceding inequalities, we have from (3.18), forevery i, j > 1,

i < CAP(p = j)i¢™! j*,

A

where C is a positive constant.
Performing a calculation as in the previous theorem, we see that

2
N,(j) ZIMZNI/

< Yo CWA A PG = jyPGo =)
1=0

o
=Y W% 2 P(p = Ep¥,
1=0
and a simple induction argument yields

ui'j < (CLEp™™YY P(p = jyit~! j4. (3.19)

Note that at this stage of the calculations in the previous theorem, we had the
term Ep?“ in (3.10) and (3.11) instead of the term Ep24~! a5 in (3.19).
Hence, from (3.19),

Hi = ZZM(”)

n=0 j=0
i ‘Z(cwp“ 1)"ZJdP(P_.I)
].—

Thus, if CAEp??~! < 1, ie., if A is sufficiently small, we have that the ex-
pected number of balls which make up the boundary of the component of an

II\
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arbitrary ball of radius i is finite. In particular, the number of boundary balls is
finite a.s. From Corollary 3.1 we see that if a component is unbounded, then also
the number of boundary balls must be infinite. We conclude that all components
are bounded a.s. O

REMARK: It follows from Theorem 3.3 that if Ep?~! < oo then for all
positive A small enough, there are no unbounded occupied components a.s, We
complement this result by showing that under the weakest possible condition,
namely P(p = 0) < 1, we do get unbounded components when A is large
enough. To see this, choose € > Osothat P(p > €) >eand 1 — € > p.(d)is
the critical probability for independent site percolation in d dimensions, Next
we choose 8 > 0 so small that if we partition the space by cubes with side
length 8, any two points in neighbouring cubes are at a distance at most 2¢ from
each other. Next we choose N so large that(l — (1 — e)V)(1 — €) > pe(d),
and finally we choose A so large that the probability to have at least N Poisson
points in a cube with side length & is at least 1 — €.

We call a cube open if it contains at least one point of the point process witha
ball of radius at least €. The choice of our parameters implies that the probability
that a cube is open is larger than p.(d). Also, distinct cubes are independently
open or closed. Identifying the cubes with the vertices of the d-dimensional
integer lattice, we see that the union of all open cubes contains an unbounded
component. Thus the Boolean model percolates.

The above two theorems have an interesting consequence:

Corollary 3.2 If the radius random variable p of a Poisson Boolean model
(X, p,A) on R4, Jord > 2, satisfies

(i) Ep™-! < oo,

(ii) Ep* =00
then there exists Lo such that, for all 0 < A < Ao, with probability 1 no

component contains an infinite number of Poisson points, whereas the expected
number of Poisson points in the component containing the origin is infinite.

REMARK: Such a dichotomy does not occur in the standard percolation
models on the discrete lattice.

3.4 Critical densities

In the previous section we noticed that depending on the density of the un-
derlying Poisson process, the Boolean model is either subcritical — that is, the
occupied component of the origin contains a finite number of Poisson points
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almost surely — or supercritical ~ that is, the occupied component of the origin
contains an infinite number of Poisson points with positive probability. We also
noticed the existence of two other phases of the Boolean model; the expected
number of Poisson points in the occupied component containing the origin is
finite in one such phase and infinite in the other phase. To formalise this phase
transition we define the critical densities

Ag = inf{d : P{X(W) = o0} > 0} (3.20)
and
Ay :=inf{A : E; X(W) = oo). (3.21)

For a Poisson Boolean model (X, o, A), Theorem 3.2 states that Ay > O if and
only if Ep?? < oo, while if Ep??~! < oo then Theorem 3.3 states that Ag > 0.
In Corollary 3.2 we showed that if Ep%?~! < o0 and Ep?? = oo then we have
0= A.N < A.#.

In Examples 2.1 and 2.4 , we have used another notion of the size of the
component, namely d(W) = sup{d(x, y) : x,y € W}. According to this
notion of the size of W, we have the critical densities

Ac:i=inf{A : P {d(W) = o0} > 0} (3.22)
and
Ap =inf{A : Exd(W) = o0}. (3.23)

Another notion of size which is very natural is the Lebesgue measure £(W) of
W . This leads to the critical densities

Ag :=inf{A : P{¢(W) = o0} > 0} (3.24)

and
Ar =inf{A: E3e(W) = oo} (3.25)
We remark here that all these critical densities depend on the underlying distri-
bution of the radius random variable p. Thus if there is any scope for confusion
we will write A 7 (o) instead of A i to emphasise the underlying radius random
variable. In a similar fashion, we express the dependence on p for the other
critical densities whenever there is any chance of confusion. Our first concern

is to show that the notion of size does not affect the critical densities when p is
bounded. We show

Theorem 3.4 In a Poisson Boolean model (X, p, \) with
0<p<Ras forsomeR >0, (3.26)
we have (a) Ay = Ao = Ay and (b) Ay = Ap = AT.
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Proof First suppose A > Ag. Then, for some § > 0, P {X(W) = o0} =
8 > 0. Now for every m > 0 the box B,, = [—m,m}¢ contains at most a
finite number of Poisson points a.s., thus P {X(W N BS) = oo} = § > 0. But
X(W N By = oo implies that X(W N B;,) > 0; i.e., d(W) > m. Hence we
have P\{d(W) > m} = é > 0. This being true for all m > 0, we have A > A,.
To show that A4 < A, we note that d(W) < 2RX (W), where R is as in (3.26).
Thus X (W) < oo implies d(W) < oc. This proves Ay = A.

To show A, = Ay, we observe that €(W) < (d(W))%; ie., if d(W) < o0,
then £(W) < o0. This shows that A, < Ay.

To show the reverse inequality we distinguish between two cases.

CASE 1: Suppose there exists some n > 0 such that p > n a.s. If for some
integer N, d(W) > N, then there must be at least N/2R disjoint balls in the
component # and so &(W) > (N/2R)2r4n%. Thus A, > Ay.

CASE 2: Suppose there does not exist any 7 with p > n a.s. Since p > 0
a.s.and P(p = 0) = 0, forany 8 > 0, we can find O < ¢ < 8 and rg such that

Plp<ry)=a <. (3.27)

Now take A > A, = A.(p) and choose 8 = (A — A;)/A. Let o < B satisfy
(3.27) for this choice of B. Define A by @ = (A — A)/A. Since 0 < @ < B, we
have A, < A < A, Thus, if we set 4 = A — A, we have

Po < ro) = % (3.28)

Since we shall use the technique of this proof more than once, we present
the main idea of the proof before going into the details. We shall de-
compose the process (X, p,A) into two independent processes such that
(X, p, A) is the superposition of these two processes. One of these pro-
cesses will be chosen such that it has density A with an associated radius
distribution p; which is equivalent in law to p given p > rg. The other
process is now determined from the choice of the first process and, as we
shall see shortly, it turns out to be a process with density u and radius
random variable p; which is equivalent in law to p given o < ro. Now
observe that the first process with density A and radius p) ‘dominates’ a
process with density A and radius o, thereby guaranteeing that the first
process is supercritical in terms of the diameter of the occupied cluster.
However, p; is bounded below by rop > 0 and thus by Case 1, this pro-
cess is also supercritical in terms of the Lebesgue measure of the occupied
cluster, Hence the superposition of this process with any other process will
remain supercritical. In particular (X, p, A), which is one such superposition,
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is supercritical in terms of the volume of the cluster. We now present the details
of this idea.

Introduce two independent Poisson processes X1 and X, on the same prob-
ability space as our Boolean model with densities A and g, respectively. Also,
let p; and p; be two positive random variables with distributions given by

P(pr 2r) = P(p=rlp=ro)

P(p=r)
—— forr>nry
={ Plp=ro) (3.29)
1 for r < rg,
and
P(ppz7) = P(p =rlp <ro)
P
Pr=p<r) . _ ro
= P(p < ro) (3.30)
0 forr > rg.

Now consider the Boolean models (X7, py, A) and (X2, p2, it). The superposi-
tion of these two Boolean models is a Boolean model with density A + o = A.
Moreover, forall x, P(x € Xilx € Xj%X3) = (A—u)/A, sothe radiusrandom
variable associated with the superposed model of density A is p. Let (X, o, A)
denote this superposed model. If W and W’ denote the occupied components
of the origin in the Boolean models (X1, p1,A) and (X', p, 1), respectively,
then

wyCcw, (3.31)
Now let (X, p, 1) be a Poisson Boolean model independent of all the random
quantities defined as yet, and let ¥ denote the occupied component of the origin
in this Boolean model. From (3.29) we have P(o; > r) > P(p > r), which

yields, by a coupling argument,
P d(W) = 00) < P;(d(W}) = 00). (3.32)

But k > A.(0); ie.,

Ps(dW) =00) > 0, (3.33)
sofrom (3.32) we have P; (d(W)) = o¢) > 0.However, from (3.29), o1 > ro >

0 a.s., so the first case of this proof applied to the Boolean model (Xi, p1, &)
yields from (3.33)

P; (£(W}) = 00) > 0.
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Thus from (3.31), we have P,(£(W') = 00) > 0, i.e., A > Ag. This proves (a)
of the theorem.

To prove (b), it is easy to observe that the proofs in both the first and second
case above go through when we consider Ar instead of Ay and A p instead of
A and take expectations instead of probabilities. This yields Ap = A7.

Thus to complete the proof of the theorem we need to show that Ay =
A7. For this we observe that £(W) < my RiX (W), where my is, as usual, the
d-dimensional volume of a unit ball. Thus if £3 X(W) < oo then E; (£(W)) <
0. This shows that Ay < Ar. To show Ay > A7, we again consider two
cases.

CASE 1: Suppose there exists n > 0 such that p > 5 a.s. We partition
R4 by the integer lattice Z 4 and let I be a cell in this lattice. Let X 7¢ denote
the realisation of the Poisson process X outside the cell 7, Let W denote the
occupied component containing the origin in the ‘Boolean model” (Xj«, o, A).
(Note here that if / contains the origin, then for W, to be non-empty, there
must be a Poisson point outside / whose associated ball covers the origin.) Let
8(x) denote the (random) Euclidean distance from the paint x to W c. For all
cells / at a distance at least R from the origin, we have

Ex(X(W 0 Di(Xye, p, 1))

= ZkPk{X(W NI)=k|(Xse, p, A)}
k=1

o0
< Y kP{X(I) = k and at least one of these k points
k=1

has a ball which intersects Wye|(X;e, p, A)}. (3.34)

Of course, these inequalities and all the subsequent inequalities in this proof
which use conditional probability or expectation are ‘almost sure’ statements.
To calculate the sum in the last inequality of (3.34) we observe that for & >
24 —1,

PX(Dzk) =€t —

o )
T [ Y
2P(X(I) = k). (3.35)

IA
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Using the independence of the Poisson process X and the radius distribution,
we have from (3.34) and (3.35)

Ex(X(W N DI(Xfe, p, 1))

< ZkP(X(I)Zk)Il— (/IP(p <8(x1))dx1) X -n

k=1
x (/ Pp < S(xk))dxk)}
I
[2A~1]
< Z kP(X(I)>k) {k -k (f P(p < 8(x))dx)}
k=1 1
[o.¢]
+ ) 2%kP(X() =k [k-—k(f P(p < 8(x))dx)l
k=[27—1]+1 1

1A

@2r —1)? mi:u ( f P(o > 8(x))dx)
j >

k=1

[o )
+2 0y %kze'u" ( fl P(pZS(x))dx)
k=[20—1]+1
=C() f P(o > 8(x))dx, (3.36)
1

for some positive constant C(A) > 0. Here we have used Proposition 1.2 at
the first inequality and the inequality 1 — []7_;a; < Y7_;(1 —a;) for 0 <
ay,az,...,a, <1 atthe second inequality. Since every ball has a radius of at
least 7, a ball centred in a cell will cover a d-dimensional volume of at least
min{1, (1/29)7;n%)} inside the cell. Thus we have

Ex(€W O\ DI(Xper s 1) = f vexp(—AP(p = S(x)dx,  (3.37)
I

where v = min{l, (1/2%)m4n%}. So, from (3.36) and (3.37), for any cell [ at a
distance at least R from the origin, we obtain

Ex(X(W O D[ (Xje, p, 1))
c)

= Jexp—ir AEF N DIXre, o 2)). (3.38)

For a cell / at a distance less than R from the origin we have the trivial bound
ExX(WN1I) < EyX(I) = A Now taking expectations on both sides of (3.38)
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and summing over all cells / of the lattice we have

d C(A)
ExX(W) < AM2R)* + exp (R EeW).

This shows that Ly < Ay in this case.

CASE2: Suppose there does not exist any 7 > O such that p > 7 a.s. Asin
case (ii) of part (a), for A < Ar and 8 = (A7 — A)/Ar, thereexist) < o < 8
and ro with P(p < rg) = a. Let A > A be such that @ = (A — A)/A. Since
0 <a < B,wehave A < A < Ar. Thus, if we set u = A — A,

u

Plo <rg) = gy (3.39)
Now let (X1, p1, A) and (X2, p2, ) be two independent Poisson Boolean mod-
els defined on the same probability space, where po; and p; are chosen as in
(3.29) and (3.30). As in part (a) a little calculation shows that the superposition
of these Boolean models is another Boolean model with density A and radius
random variable p. Let (X, p, A) be this superposed model. If W and W’
denote, as before, the occupied components of the origin in (X1, o1, A) and
(X', p,A) respectively, then we have

wLcw' (3.40)

Now let (X, p, A) be a Poisson Boolean model independent of ail the random
quantities defined as yet, and let W denote the occupied component containing
the origin in this model. Since A < Ar(p), we have Ex(&(W)) < oo. But
(X, p, A) and (X", p, A) are equivalent in law, so E(&(W')) < oo. Thus, by
(3.40), E;(L(W)) < E;(£(W")) < o0. But py; > rg a.s., soby Case 1 we have
E; X(W) < 00. Since A < A, we have by a coupling argument £, X (W) < oo
and consequently A < Ay. This completes the proof of the theorem. o

Before we end this section we introduce another critical density based on
the crossing probabilities introduced in Example 2.2. Recall the definition of
o((n,3n,...,3n), A, 1) as the probability of the existence of an occupied cross-
ing in the shortest direction of the rectangle [0, n] x [0, 3n] x --- x [0, 3n].
Since the size of the rectangle increases in »n in all directions, we do not have
monotonicity of o ((n, 3n, . .., 3n), A, 1) in n. However, we can define the fol-
lowing:

As = As(p) = inf{Xx : limsupo((n,3n,...,3n),A, 1) > O}. 3.41)

n—00

Proposition 3.2 In any Poisson Boolean model we have g < A,.



3.5 Equality of the critical densities 59

Proof For ease of notation we restrict ourselves to two dimensions. The proof
for higher dimensions proceeds along the same lines.

Consider the box B, = [-n,n] x [-n,n]. If AL > A, then P [d(W) =
o0} > 0 and so at least one of the following events occurs with probability at
least § P {d (W) = oo}:

(i) there is an L-R occupied crossing of the rectangle [n, 3n] x [—3n, 3n],
(ii) thereis an L-R occupied crossing of the rectangle [—3n, —n]x[—3n, 3n],
(iii) there is a T-B occupied crossing of the rectangle [—3n, 3n] x [n, 3n],
(iv) there is a T-B occupied crossing of the rectangle [—3n, 3n] x [-3n, —n].

This implies by translation and rotation invariance of the model that o ((2n, 6n),
A > % Py (d(W) = 0). This being true for all n, the proposition follows.
0

3.5 Equality of the critical densities

In this section we show that in dimensions 2 or more, if the radius random
variable is bounded, then the critical densities A., Ap and Ag are all equal.
Note that some condition on the radius random variable is necessary, because it
follows from Corollary 3.2 that the result cannot be true in general. The proof
we present uses a lattice approximation and the scaling relation Proposition 2,11
to show first that in case the balls are all of a fixed size, the equality holds. In
case the radius random variable p takes on finitely many distinct values, the
approximating lattice we need is a multi-parametric one. Finally, a general p
is approximated from below and above by random varniables U, and V,, each
of which take finitely many values and this approximation yields the desired
equality.

Theorem 3.5 For a Poisson Boolean model (X, p, A) on IR, d > 2, with p
bounded almost surely, we have A.(p) = Ap(p) = As(0).

Proof

CASE 1: First we consider the case when p is a fixed constant. It can be
easily seen that Proposition 2.11 holds for both A p and A in addition to that
for A as stated. As such, it suffices to consider p = 1 and prove the equality
of the critical densities in this case.

Consider a discrete percolation model described as follows. Let V, be the set
of vertices of the lattice I, := ((1/n)Z)¢ and for a vertex v = (v, v, ...,
Vd) € Vn, let Ky (v) = [v1 — (1/2n), v1 + (1/2n)) X - -+ x [va — (1/2n), vg +
(1/2n)) be the cell containing v. Let G, be the graph with vertices V, and
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edges constructed by joining all pairs of vertices v and w of V,, with d (K, (v),
Ky(w)) < 2, where d(4, B) = inf{d(a,b) : a € A,b € B} for any two
regions 4, B C IR? and d(a, b) being the Euclidean distance between a and b.
A vertex of this graph is open with probability p and closed with probability
1 — p independently of all other vertices. This graph is clearly isomorphic to
the one-parametric site-percolation graph described in the paragraphs preceding
Theorem 1.7 for a suitable L. Returning to our graph G,, we may define the
critical values p.(Gn), pr(Gn) and pg(G,) as in Section 1.2 and Theorem 1.7

Pe(Gn) = pr(Gn) = ps(Gn). (3.42)

We now incorporate the continuum model (X, 1, A) in this site-percolation
model on G,,. On IR? we place the graph §,, and for any x € R?, let v(x) denote
the vertex v in G, such that x € K,(v). A vertex v is open if X(K,(v)) > 1
and it is closed if X(K,(v)) = 0; i.e., a vertex v is open if and only if there
is at least one Poisson point in the cell containing v. Clearly, P (v is open) =
1 — exp(—=A/n?) = pn(A) (say) and Py (v is closed) = 1 — p, () for every
v € V,; moreover, v is open or closed independently of other vertices. This is
indeed the same site-percolation problem as described in the previous paragraph
and is governed by the same set of critical values.

If x and y are two Poisson points of X such that d(x, y) < 2,ie. S(x, 1) N
S(y, 1) # @, then either v(x) = v(y) or v(x) and v(y) are adjacent in the
sense that there is an edge in G, connecting v(x) and v(y). Thus if there is an
unbounded occupied cluster in the continnum model, then there is an unbounded
open cluster in its approximating site-percolation model on G,;i.e.,if A > Ao(1),
then p,(A) > pu(Gy). This shows that p,(A.(1)) > py(G,) forevery n > 1.
Since p,(A) is increasing in A, we can take the inverse of the function p, and
restate the inequality we just obtained as

Ae() 2 P (pH(GA)). (3.43)

Now we scale the radius of the continuum model by a factor I, := 1+./d/n and
consider the model (X, {,,, 1). Notice that if v and w are two adjacent vertices in
Gy thensup{d(x, y) : x € K,(v), y € Kp(w)} < 2+2\/d/n = 2l,,and so if v
and w are two adjacent open vertices and x and y are two Poisson points in X, (v)
and K, (w), respectively, thend(x, y) < 2/,. Thusifthere is anunbounded open
cluster in G,, then there is an unbounded occupied cluster in (X, I,,, A); i.e., if
p > pc(Gy) then P,,_l(p) > Ac(ly). This gives us A.(,) < P,,_'(Pc(gn)), and
in conjunction with (3.43) we have

Aelln) < Py (1 (Gn)) < Ac(1). (3.44)
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A similar argument yields

Ap(l) < py(pr(Ga) < Ap(1) (3.45)
and
AsUn) < pyt(ps(Gn)) < As(D). (3.46)

Now the scaling relations (Proposition 2.11) and its equivalent version for
the other critical densities imply that A.(I,) — A.(1), A7 () = A7(1) and
As(ly) = is(l) as n — oo. The equality of the critical densities now follows
from this observation, the equality (3.42) and the inequalities (3.44), (3.45)
and (3.46).

CASE 2: Now suppose p takes only k distinct values ry, ..., ry. Instead
of the single-parameter site-percolation model we considered in the previous
case, we now consider a graph G, which consists of & layers as described in
the paragraph preceding Theorem 1.7 for k = 2. The i-th layer consists of the
vertices of the lattice IL,, and the edges constructed by connecting any pair of
vertices v and w in this layer if and only if d(K,(v), K, (w)) < 2r;. A vertex
v in the i-th layer and a vertex w in the j-th layer (i # j) are connected by an
edge if d(K,(v), Kn(w)) < r; 4+ r;. The graph G, consists of all the vertices
of the different layers and all the edges we have described. We define a site-
percolation model where a vertex v of the i-th layer is open with probability p;,
where py + - - - 4+ pr = | independently of all other vertices in all the layers.
As in Theorem 1.7, we get the equality (3.42) of the critical regions described
by pc(Gn), pr(Gr) and ps(Gp).

To connect the continuum model (X, p, A) with this site-percolation model
on the graph G,, we call a vertex v of the i-th layer open if and only if on an
embedding of the i-th layer in R?, the cell K, (v) contains at least one Poisson
point of X with an associated ball of radius r;. A similar application of the
scaling relations and comparison with this approximating graph G, will yield
the desired equality of the critical densities in this case.

CASE 3: Next we consider the case where the support of p is contained in
an interval [a, a + R] with a, R > 0. Let n > 0 and consider the set of points
fa+ k27", k=0,...,[2"R]} and define

a+(k+ 1)2—"}

k =
" mi‘%‘nm[ a+ k2

O<k<

It is easy to see that lim,_, k(n) = 1. We define, on the same probabi-
lity space as the Boolean model, the random variable ¥, as follows: if
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a+k27" < p <a+ (k+ 1)27", then we put ¥V, = a + k27", Note that it
follows from these definitions that

Ve < p S k(m)Vy. (3.47)
It follows from (3.47) and Proposition 2.11 that
Ac(k(M)Vn) = Ae(Vak(n) ™

and a simple coupling argument gives A.(V,) > A.(p). Putting these things
together we find

Ae(V) = he() = k(n) ™ Ac (V). (3.48)
In a similar way we obtain

Ap(Fn) = Ap(p) = k() “Ap(Va) (3.49)
and

As(Va) = As(p) = k(m) ™ As(Va). (3.50)

It follows from Case 2 that all critical densities for ¥, are equal. Now note
that A.(¥},) is non-increasing in n, whence lim, _, oo A (V) exists. Hence we
have from (3.48), (3.49), (3.50) and the fact that lim,_, o, k() = 1 that all of
Ac(p), Ap(p) and Ag(p) are equal to lim,,_, oo 2. (V). This completes the proof
for this case.

CASE 4: Finally we remove all restrictions on o (apart from it being
bounded). Let ¢ > 0O and choose @ = a(e) so small that P(p < a) < e.
Let p? be a random variable with distribution equal to the conditional distri-
bution of p conditioned on p > a. Similarly, let o, be a random variable with
distribution equal to the conditional distribution of p conditioned on p < a.
Then we have by a simple coupling argument that A.(0%) < Ac(0).

Consider two independent models (X, 0%, A) and (X2, pg, Al), where [ is
chosen such that /(1 +I)~! = P(p < a);ie.

_Plp=<a) < €
T Pp>a) " 1—¢€

3.51)

The superposition of the two models is equivalent in law to a process (X, p,
Al +1)). Thusif A > A.(0%), then certainly this superposition is supercritical
and hence A(1 +1) > Ac(p);ie. Ac(p?)(1 + 1) > Ac(p). Hence

Ae(p) = Ac(p™)] = 13e(6°) < T—2clp), (3.52)
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where we have used (3.51). Because A.(p) < 00, we see that A.(p*©)) —
Ac(0) when € tends to zero. In a similar fashion, we find that As(p“(‘)) —
As(p) and Ap(p?®) — Ap(p) when € — 0. From Case 3 it follows that
Ae(p%©y = Ap(p?©) = A5(p?©) for all € > 0 and the proof is complete.

[

3.6 Uniqueness

We already concluded in Chapter 2 that in the supercritical regime, i.e. if A >
Ac(p), then unbounded occupied components exist almost surely and that the
number of such components is an almost sure constant (which could be infinity).
As we shall see now, in the case of a Poisson Boolean model there can be at
most one unbounded occupied component a.s. In Chapter 7, we will prove a
uniqueness result for Boolean models driven by arbitrary point processes.

Theorem 3.6 In a Poisson Boolean model (X, p, M), there can be at most one
unbounded occupied component a.s.

The rest of this section is devoted to a proof of this result. It is quite involved and
requires some preliminary results, We start with a combinatorial result which
turns out to be of great value and will be used a couple of times throughout the
book.

Lemma 3.2 Let S be asetand let R be a non-empty finite subset of S. Suppose
that

(a) for all r € R, we have a family (Cﬁl), Cr(z), C£3)) of disjoint non-
empty subsets (which we shall call branches) of S, not containing r,
and card(CSi)) > K, for all i and r, where card(-) denotes the cardi-
nality of a set,

(b) for all , ¥ € R, one of the following events occurs, writing C, for

U, c?,

i) (rivc)H)n{riucy) =90 ] ‘
(i) there existi, j such that C > ('} U C,\CY and € > (r} U
c\c.

Then card(S) > K(card(R) + 2) + card(R), where card(-) denotes the cardi-

nality of a set.

Proof First we claim that there exist ro € R and ip € {1, 2, 3} such that

ClONR=0. (3.53)



64 Occupancy in Poisson Boolean models

To see this choose any »; € Rand i1 € (1,2, 3}. If Cff‘) N R = @) we are done.
If not, then there is an element »» € Cf:') N R. For this r» we have that
r2 € ({rjy Cr.) N{r} U Cq)-

Hence it must be the case that for some j; and j> we have

(UG \CYY c ¢
and

{r} UC,\C c V. (3.54)
Using the fact that », € Cff‘) we conclude from (3.54) that j; = #;. Hence
C,Z\sz’z) C C{™. This means that there must be some k; # j» for which
¥ ¢ 1t follows that Cg‘” NRC Ci',‘) N R and this inclusion is strict
because r; is an element of the right-hand side but not of the left-hand side.
Hence

card(C,(fZ) NR) < card(Cf:l) N R).

We can repeat this procedure only finitely many times because R is a finite set.
It follows that eventually we find 7y and ip as in (3.53).

Next we remove rg and Cg°) from our set. Thus we put R’ := R\{rp} and
§' = S\C”. We claim that for §' and R’ properties (a) and (b) still hold,
where R is replaced by R’ and S by §’. To prove this claim, let r € R'. If
Cy N C, = B, nothing has been changed in C,. If not, then there are j and jo
such that

(iU C\CR < ¢
and

(rruc,\c¥ c ¢
The element {r} is still in S” and hence it follows from the last inclusion that
Jo # io. This means that at least two branches of {r} are unaffected by the
removal of {ry} and C,((')"). So for each r € R’, only one branch, Cf” say, may

have been changed into Cﬁ”\Cg"). If this happens, it implies that C£;°) cch
and hence there exist ¥ and k¢ such that

{ro}U C o \CE c ¢ (3.55)
and
{rHuC\C® c co, (3.56)

If k # 1in (3.55), then ko has to be ip. But then it would follow from (3.56) that
{r} has two branches in Cf(',°), which is impossible by the observation above.
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Thus k = 1 and kg # io. From (3.55) it then follows that C{" contains at least
one branch of {ry} different from C,(;") and hence even after removing {ro} and
Cﬁé") it is still the case that card(Cr(l)) > K. This shows that (a) still holds. The
inclusions in (b) remain true because for each r € R’ we remove points in at
most one branch of r’.

Finally, we repeat this procedure of taking away points in R and associated
branches not containing points in R until only one element in R remains. This
means that we do this step card(R) — 1 times, and each time we take away
at least K + 1 points. In the end, we are left with at least 3K + 1 points,
namely the remaining point in R together with its branches, each of which
still contains at least K points. Hence the original set S contained at least
3K + 1+ (K + 1)(card(R) — 1) points, proving the lemma. O

Here is the first step towards a uniqueness result:

Proposition 3.3 In a Poisson Boolean model, the number of unbounded oc-
cupied components is equal to either zero, one or infinity almost surely.

Proof Ttfollows from the discussion on ergodicity in Chapter 2 that a Poisson
Boolean model is ergodic (Proposition 2.6) and that the number of unbounded
occupied components in such a model is an a.s. constant (Theorem 2.1).

First, we consider the case where the support of p is unbounded. The
proof proceeds by contradiction, so we suppose that the number of un-
bounded occupied components is a.s. equal to K > 2, say. If B, is the
box [—n, n]d as usual, it is clear that for n large enough, there is a posi-
tive probability that all X unbounded occupied components have non-empty
intersection with B, and, in addition, X(B,) = 1. Also, given any enumer-
ation {xi, x2, ...} of the points of X according to a fixed rule (for instance
the absolute value), there is an index m such that the event E := {all un-
bounded components intersect By, x,, € B,} has positive probability. (Note
that neither n nor m are random.) From the fact that p has unbounded sup-
port, it follows that the event E* = E N {p, > 2n+/d} also has positive
probability, where p,, is the radius of the ball centred at x,,. On E*, how-
ever, the number of unbounded occupied components is equal to 1, because
the ball S(x,, pm) connects all K formerly unbounded components. This is
the desired contradiction. Note that we have not used the fact that X is a
Poisson process so far.

1t remains to prove the lemma in the case where the support of p is bounded.
The idea here is the same as in the previous case, but the procedure to connect
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together different components is a little more involved. First, we find M > 0
such that

(i) P(p>M)=0,
(i) P(IM—n<p < M)>0,foranyn > 0.

Now suppose (X, p, A) admits K > 2 unbounded occupied components a.s.
If we remove all the balls centred inside a box B, then the resulting configura-
tion should contain at least K unbounded components a.s. Let, for 4 C R4,
C[ A] denote the region Uy, e 4S(x;, p;); that is, C[A4] is the occupied region
formed by points of X in A. Given a box B and € > 0, consider the event
A(B,¢€) := {d(U, B) < M — ¢ for any unbounded occupied component U
in C[B¢]}. Partition the box into cubic cells with edge length a > 0 and let
Cq = {Gy, ..., Gy} denote the collection of all the cells which are adjacent to
the boundary of B. Clearly, forabox Bande > 0, wecanfinda = a(B,¢) > 0
and n = 7n(a) > 0 such that for any point x & B withd(x, B) < M — (¢/2),
there existsacell G = G(x) € C, for which we have SUP e d{x,y) < M-2n.
This means that, if we centre in each cell of C, a ball with radius between M —n
and M, then the region {x ¢ B : d(x, B) < M — ¢/2} will be completely cov-
ered by these balls.

Let E = E(a, n) be the event that each cell in C, contains at least one Poisson
point with an associated ball of radius between M — 7 and M. Since E depends
on the configuration inside the box B and 4(B, €) depends on the configuration
outside the box B, and the radii are independent of the Poisson process, we have

P(A(B,e)NE) = P(A(B,€))P(E).

If both A(B, €) and E occur, then there is only one unbounded occupied com-
ponent. Now P(E) > 0, soin orderto arrive at a contradiction, we need to show
that there exista box B .and ane > Osuchthat P(A(B, €)) > 0. Since (X, p, 1)
admits K > 2 unbounded occupied components, we can find a box B so large
that, with positive probability, d(U, B) < M for every unbounded component
U of C. Also, the radius of any ball is at most M, so, with positive probability,
d(U, B) < M for every unbounded occupied component U in C[ B€]. Thus for
this B we can find € > 0 such that 4(B, €) occurs with positive probability.

=

Proof of Theorem 3.6  According to Proposition 3.3 it suffices to rule out
the possibility of having infinitely many unbounded occupied components, so
we again proceed by assuming the contrary and then derive a contradiction.
Suppose there are infinitely many unbounded occupied components a.s. Define
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!

Figure 3.1, The branches of C’ are the connected regions outside the box.

for each integer n and z = (21, ..., 2z4) € 4l
BZ := BY + (z1, ..., 2a),

where of course B,? = [—n, n}?. (Note that in this notation, B, = B,?.) As in
the proof of Proposition 3.3 we can find an N such that C[ B}, ] contains at least
three unbounded occupied components which can be connected to each other
via extra balls centred in By . It follows from this that for some N, the following
event has positive probability n (say):

E%(N) = {there is an unbounded occupied component C’ with the prop-
erty that C’ N (BY)° contains at least three unbounded components and
such that there is at least one Poisson point in C’ N B }.

We shall call the unbounded components in C’' N (B?v)c branches (see Fig-
ure 3.1). Next we choose K very large, we shall see at the end of the proof
exactly how large. Given K, we choose M so large that the following event has
probability at least %n:

E%(N, M) := E°(N) N {all three branches of B}, contain at least X
Poisson points in 324 N\B10v}~

The events E*(N) and E?(N, M) are defined by translating E%N) and
E°(N, M) over the vector z. It follows that if R is the set

R:={ze2Z': B} c BY, E*N*(N, M) occurs},
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then, for any L > 0,

E(card(R)) > §nL9. (3.57)
For z € R, if we denote by CS), ;2) and C§3) the set of all Poisson points in
each of its three branches contained in Bﬁ}ﬁ ,then C§’) nC §’ ) = @fori # j,and

card(Cgi)) > K foralli. Furthermore, forz, z’ € R,z # 2/, if weidentify z and

z' with a Poisson point in B2? N C' (which exists according to the definition

of EO(N)), itis not difficult to check that (i) in Lemma 3.2 occurs if the points
of Xin B,%,N ? are in a different component of C N BY, than the points of X

in BIZVN z’, and that (ii) occurs otherwise. Hence, we conclude from Lemma 3.2
and (3.57) that

EX(By)) = K (g L+ 2) . (3.58)
To see that this leads to a contradiction, note that
E(X(BLn)) = A2LN). (3.59)
Hence we find from (3.58) and (3.59) that for L large enough,
N,a d
K (4L + 2) <AQLNY,

which gives the desired contradiction if we choose X large. O

3.7 Exponential decay

We now prove a result which allows us to give bounds on the growth of the
occupied cluster of the origin in the subcritical regime. Consider a Poisson
Boolean model (X, p, A) with 0 < o < R. Recall that 6 ((Ny, ..., Ng), A,
i) = P, {there exists an occupied crossing in the i-th direction of the rectangle
[0, Ni]1 x -+~ x [0, Ng41).

Lemma3.3 Consider a Boolean model withp < Ra.s. Letkg = (e3d)‘”d".
Ifo(BN1,...,3N;—1, Ni, 3Ny, ..., 3N, A, Q) < kg foralli = 1,...,d
and for some Ny, ..., Ny with N; > R forall 1 < j < d, then, foralla
sufficiently large, we have

Py(d(W) > a) < Cyexp(—Caa) (3.60)
and
Py((W) > a) < Cyexp(—Caa) (3.61)

Sor some positive constants Cy, Ca, Cy and Cy.
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Proof Considerthe integer lattice Z4 with vertices (v Is++-sVg)and (wy, ...,
wy) adjacent if and only if max{|v; — w;},i =1,...,d} = 1. Avertex z € Z¢
is open if and only if there exists a connected component A of the covered
region C of the Boolean model (X, p, A) such that

ANz Ni,(zp + 1)N1) x -+ X [24Ng, (za + 1)Ng)) # @ (3.62)
and
A0 ([(z1 — DNy, (z1 +2)Np) % -+
x [(za = D N4, (za + 2)N2))° # 0, (3.63)

where Ny, Na, ..., Ny are as in the lemma. The vertex z is closed if it is not
open. Clearly we have constructed a dependent site percolation process where
the state of a vertex z depends on the configuration of the Boolean model
(X, p, A) in the region

[z1=DNi =R, (21 +2)N1 + R) x -+
X[(za — 1)Ng = R, (za +2)Na + R)
Sz —2)Ny, (21 +3)Np) x -+
X [(zd — 2)Na, (z4 + 3)Na).

Thus if z and z’ are vertices of Z¢ such that max{|z; — z}|; i = 1,...,d} > 5
then the states of the vertices z and z’ are independent of each other. Also
observe that for a vertex z to be open the Boolean model must admit an occupied
crossing in the i-th direction of a suitable translate of the rectangle [0, 3N} x
-+ x[0,3N;-1]1 %[0, N;}x10,3N; 1] x+--x[0,3N ] forsomei =1,...,d.
Thus, by the hypothesis of the lemma,

p = Pi(zis open)
d
< 220((31\]1,---q3Ni—1-M,3Ni+l,---y3Nd),)~,i)
i=|
< 2dxy. (3.64)
Now suppose d(W) > a. Since, forany z € Z%,

d(W N ([z1N1, (z1 + DNy % -+ x [2gNg, (24 + DN)))
<d(ziN, z1 + DNy x - -- x [24Na, (24 + 1) Ng))

<JN2+.. + N3



70 Occupancy in Poisson Boolean models

and

dW N ([(zi — DN, (21 +2)Ny) x -+ X [(za — D) Na, (za + 2)Na)))
<d(([(z1 = DN, (21 + 2)N1) x -+ x [(za — DNa, (24 +2)Na))

<3,/N24... 4+ N2,

there must be at least a(Nl2 R o fo)“l/2 vertices z € Z¢ such that (3.62)

holds. Also, if a is such thata > 3,/N? + .- + N2, then each of the a(N? +
o+ N 3)"1/ 2 vertices z in Z¥ satisfies (3.63). Moreover, for z = 0, the origin,

both (3.62) and (3.63) hold whenever d(W) > a, thus we have that card(C’) >
a(N? +.--+N2)"1/2 wheneverd(W) > a,a > 3 [N? + ...+ N2, where C’

is the open cluster of the origin in the lattice Z¢ (with the adjacency structure
given above).

A similar argument yields that for a > 39Nj - - - Ny, whenever £(W) > a,
we must have card(C’) > a(Ny --- Ny~ L.

Thus for a large enough,

P.d(W) > a) < P(card(C") = a(NZ +--- + N)H~V?) (3.65)
and
P,(E(W) > a) < P(card(C") > a(N;--- Ng)™ D). (3.66)

Now given a set S, of n vertices of Z¢, since the states of two vertices z and
2z’ are independent whenever max{|z; — z;|; i = 1,...,d} > 5, we have that
S, must contain at least n11~¢ vertices whose states are independent of each
other. Thus

Py (all vertices of S, are open) < p/ 1 3.67

where p is as defined in (3.64).
Hence from (3.67) we have

Pi(card(Cy=n) = ) _ Pi(C' = S,)
Sn
< by p"MY, (3.68)

where the sum is over all connected sets S, of n vertices of Z¢ containing the
origin and b, is the total number of such sets S,. Combining (3.68) with (3.65)
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and using the estimate b, < (e39)" (Kesten 1982, Lemma 5.1), we have

Pid(W) = a) < > Py(card(C") = n)
nza(N12+...+N3)—1/2

< Z b,,p"/”d
nza(NZ24-+N3=172
< > (e3%y" pn/1?
nza(N12+...+N3)—l/2
< Crexp(—Cya), (3.69)
where
Cr = (1 — e34(e3kp) ) !
and
c 1 +dlog3 1+dlog3 log ko
2=~

2 2 2 2 2 2
JNZ4- 4+ NE 14 /NE 4+ NF 114 /NE 4 4 N

which is positive by our choice of k. This proves (3.60). Combining (3.68)
with (3.66) and performing similar calculations as in (3.69) yields (3.61). This
proves the lemma. O

3.8 Continuity of the critical density and the percolation function

The Boolean model (X, p, A) has two parameters A and p. In this section we
investigate to what extent quantities like Ac(0) and 6, (1) are continuous with
respect to these parameters. For continuity with respect to p we need to choose
a notion of convergence, and we shall use weak convergence throughout. The
first question we want to answer is whether or not A.(px) converges to A.(p)
when p; = p, where ‘=’ denotes weak convergence. In fact we already know
that this can not be true in general. In Proposition 3.1 we already proved that
if Ep? = oo then Ac(p) = 0, while it follows easily from Theorem 3.3 that
if we take p to be an a.s. positive constant, then A.(p) > 0. Combining these
two facts, we can take a sequence p1, 2, ... converging weakly to p such that
Ep,‘f = oo and p is an a.s. constant: in such a case, Ac(or) 2 A:(p).

The next theorem gives a sufficient condition on the radii random variables
to guarantee convergence of the critical density.

Theorem 3.7 Let px and p be random variables such that for some R > 0
we have 0 < p < Rand 0 < pp < Ras. forallk > 1. If oy = p then
)»(-(Pk) — Ac(0).
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Our strategy will be to approximate the radii p and p; by radii which take
only finitely many values. For ease of notation, we shall restrict ourselves to
two dimensions. The proof for higher dimensions is similar.

Lemma 3.4 LetQ <r <r <:---<ry <00 andlet p and p’ be random
variables taking values r; with probability p; and p:, respectively, for i =
1,2,....n, where Y |_, pi = Y iz P; = L. Suppose that there exist 1 < j <
| < nsuchthatforalli # jorlandi=1,...,n, pi = p} and p; and p; are
both positive. Then,

Ae(r1)

|Ac(P) = Ae(p)] € ————=
min{p1, p;}

\pj = Pjl. (3.70)

Proof  Suppose first that p; > p;.. We shall use a coupling argument to prove
that

Ae(0) = Ac(p)). (3.71)

To see this, consider n independent Poisson processes X1, X2, ..., X, of den-
sities piA, p2A, ..., Pj—1A, p}l, Pj+1A, ..., pak, Tespectively. At each point
of the process X; we centre a ball of radius ;. Now consider another inde-
pendent Poisson process X’ of density A(p; — p;.). Note that if at each point
of this process X’ we centre a ball of radius r; then the superposition of the
models (X1, 71, piA), (X2,72, p2A), ..oy (Xj—1,7j-1, Pj=1A), (Xj, 1), PG,
(Xj+], Fjtl1, pj+|)»), ooy (Xuyn, pnr) and (X’,rj, (pj — p;-))») is a Pois-
son Boolean model (X, p,A) where X is the superposition of X’ and X,
i = 1,...,n. I instead, at the points of the process X’ we centre a ball
of radius »; and then superpose all the models, we obtain a Poisson Boolean
model (X, p’, A). Since r; < ry, the occupied region in (X, p, A) will be con-
tained in the occupied region in (X, p, A). Hence the existence of an unbounded
component in the model (X, p, A) will imply the existence of an unbounded
component in the model (X, p’, A) which implies inequality (3.71). We have
explained this in detail because we shall be using this kind of coupling results
very often later without going into the details of the proof.

Now choose A > A.(p"). Consider the models (X;, ri, Al;), fori = 1, ..

AR ]

I —1,1+1,...,n,where the [;’s are chosen such that
Ap; + M;
—t =y, i=1...,1-1141,...,n, 3.72
A1+ L) Di { + n ( )

for L ==l 4+ -+l_1+1lj41 +---+1,. The system of linear equations (3.72)
can be explicitly solved to yield I; = (p[)"(p,'p} - plp;) > 0. Next, let
(X, o', %) be a Boolean model independent of the models (X;, r;, Al;) and
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consider the superposition of (X, p',») and (X;,ri, M), i = 1,...,1 =1,
I +1,...n to obtain a model equivalent in law to (X, p, A(1 + L)) where
X=Xi%- % Xj1 % Xjp1 %% Xy, % X and = denotes superposition. (To see
that the radius random variable in this superposition is p, just use (3.72).) Since
A > Ac(p"), the model ()2' , ©', A) is supercritical and hence the superposition is
certainly supercritical. Thus

A1+ L) > A(0).
The above inequality holds for all A > A.(p’), so we have
(@Y + L) = Ac(p).

We have from (3.72) and some elementary calculations L = (p;)~!( pji — p}).

The result now follows since A.(0") < A.(ry). 0
Forthe case p; < p}, we just reverse the roles of o and o’. A similar argument
as above yields (3.70). 0O

Lemma 3.5 Let0 <ry < --- < ry, and let p be a random variable taking
values r; with probability p; fori = 1,2,...,n, where y_;_, pi = 1. Suppose
that p, > 0. Forallk = 1,2, ... define the random variables py, taking values
r; with probability p; foralli = 1,...,n, where Y ;_; pri = | forall k. If
Dk,i — pi for alli whenk — o0, then Ac(pr) — Ae(p).

Proof We have assumed that p, > 0 so we can pick 0 < § < p,. Take ko
so large that Z?’;ll lprei — pil < %8 for all £ > kg. Then, of course, we have
Pin > L8 forallk > k. For/ = 1,...,n — Land k > ko let £ be the
random variable defined by
Dri fori=1,...,1,
P(S,f”:r,-): Di fori=1+1,...,n—1,
Pnt Yo (pi — pri)  fori=n.

Clearly, S,E"—l) has the same distribution as o and we define S,fo) = p.
According to Lemma 3.4, for/ = 1,...,n — 1, we have

e €LY = A€ < 26700 r) o1 — PRl

Adding the previous inequalities over all /, and using the triangle inequality,
we obtain

n—1
IAe(or) = Ae()] < 267" 0cr)) D 11 = prals
I=1

for all k > kq. This proves the lemma. 0
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Next we drop the assumption that p, should be positive:
Lemma 3.6 Let0O <ry <--- <ry,and fork > 1, let p and py be random
variables taking values r; with probability p; and px; fori = 1,2,...,n,

where Y 1 pi =Y 1 Pki = LI pri > piask > ocoforalll <i <n
then Ao(pr) = he(p) as k — o0.

Proof Inview of Lemma 3.5, we need to prove this lemma for the case when
there exists 1 <m < n — 1 such that

Pm>0and pyy1=...=p, =0. (3.73)

First we show that it suffices to prove the lemma for the case m = n — 1. Let
the random variables &; and £;’ be defined by

Pk fori=1,...,m,
P& =r)=30 fori=m+1,...,n—1,
diem (i — pri)  fori=n,
and
DPr,i fori=1,...,m,
PE =r)= YiempBi— i) fori=m+1,
0 fori=m+1,...,n,

then we clearly have

Ac(f]i) < Aclox) = )\c(E]g)-

So it suffices to show that A.(or) converges to A.(p) when the p;’s take at most
one value larger than r,,, with positive probability. Thus we henceforth assume
thatm = n — 1;1e. p,—1 > O and p, = 0.

Next let p,'( be a random variable taking values ry, ..., r, with probabilities
Pls P2,y Pn=2s Py _y> Phn» respectively, where p; | := pu—1 — P
For k large enough, since p,—) > Oand py, — O ask — 00,50 p; ,_; > 0.
We shall now prove

lim Ac(0p) = Ac(p). (3.74)
k—o0
We observe from our choice of g}, that

Ac(pg) < Ac(0).

So to prove (3.74) we need to show that lim infz _, oo Ac(0}) = Ac(p). Suppose
there exists a A such that lim infz 00 Ac(0;) < A < Ac(p). Since A < Ac(p),
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for k¢ as in Lemma 3.3 and using Theorem 3.5, we can find an N such that the
crossing probability in (X, p, A) satisfies

a((N,3N), A, 1) < 3xo. (3.75)

Now we construct independent Poisson Boolean models (X, r;, Alg,;) fori =
1,2,...,n — 2, n and another independent Poisson Boolean model (X’, p, 1)
so as to yield the model (X, ox, A(1 + Lg)) when all the models are superposed,
where X = X'« Xy % % Xpox Xyand Ly =g 1+ + g n—2+ Ik . For
this, we choose Ig.1..._. Ik n—2, In to satisfy the following relations:

4+ e
’;'IL"]; —p fori=1,....n—2, (3.76)
and
I,
ﬁnfk = Pin- (3.77)

The system of linear equations (3.76) and (3.77) can be explicitly solved to
yield

’
-1 — -
i = ('p”—,—pk—""—l> pi>0 fori=1,...,n—2,

pk.n—l
and
Pn—1
lk,n = ’ pk.n Z 0‘
k,n—1

Clearly, foreveryi =1,...,n —2and i = n, l; — 0 when k¥ — oc. Thus,
we can choose % large enough such thatforalli = 1,...,n —~2and i = n, we
have

Pup i (Xi(I=R, N+ R] x [-R,3N + RD) = 1) < xo/2n, (3.78)

where «g is as chosen before.

The superposition of the Poisson Boolean models (X, r;, Aly ;) for all i =
l,....,n —2,n and (X', p,A) is equivalent in law to the Poisson Boolean
model (X, p,", A(1 + Lg)). For k large enough, (3.75) and (3.78) imply that
o((N,3N),A(1 + Lp), 1) < kg, and thus it follows from Lemma 3.3, that
the superposed model is subcritical. However, by the choice of A, (X, o}, ) is
supercritical, hence so is (X, p;, A(1 + Lg)) which is the desired contradiction.

Finally, to complete the proof of the lemma, we construct 5,51) as in the
previous lemma, where E,ﬁ"_]) has the same distribution as o and S,fo) = p.
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This method shows that

n—2
IAe(or) = Ao < 2(pn-1)""Aer1) D _ | pri — pil,

and the lemma follows. O

Proof of Theorem3.7  First we suppose that the supports of both p and pg, k =
1,2, ... are contained in an interval [a, R], where a > 0. The distribution
function of p is denoted by F, and the distribution function of p; by F. We can
assume that both @ and R are continuity points of F. Take a sequence {7} of
partitions of [a, R], whichwe writeas 7, = {a=y5 <y/ <--- < i, = R}
The partitions are chosen in such a way that 77,4 refines 7, all points ;" are
continuity points of F and such that 7,| := max)<i<¢, {¥/" — 7 ,} = 0 when
n — 00. Now define, for all n > 1, the random variables o™ and p,) by the
requirement that if p € (3, "], then o™ = v and pimy = ¥, . It follows
from a simple coupling argument that Ac(o™) < Aclp) < Ac(pmy) < Ac(a).
Also, it is easy to see that A.(0™) is increasing and A, (o)) is decreasing in
n. Now write ‘

n

Vi

|7n
o i= max —— <14 -2,

T 1<ighk, Y a

which tends to 1 when n — oo, Hence p™ < a,p(,), which implies that
Ae(p™) > Ac(@npmy) = a2 Ac(p(ny) and thus

Ae(0™) < Ac(p) < @A (p™).

We can now write

) Imal)? (n)
Acp) = Ac(pM) = l+—a— — 1| Ac(0™)

[( ‘”n|)2 ]
<|{1+ —1|Ac(a) =: By (say). (3.79)

a

The previous calculation can also be done for p; instead of p and we obtain, in
the obvious notation

Ae(ok) = Ae(o™) < Bn. (3.80)

Now given any € > 0, take n so large that 8, < €. Observe that p takes
the value y" with probability F(y]") — F(y/".,) and p” takes the value p”
with probability Fi (y") — Fi(y/_,). Hence by the choice of the partitions, the

fact that oy = p and Lemma 3.6, we see that [A.(p™) — Ac(p,f"))l < € for
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k sufficiently large. Together with (3.79) and (3.80) this proves the theorem in
this case.

Next we drop the assumption that the supports are bounded from below by
some positive number. Let § > 0 be a continuity point of F and let n > 0 be
such that P 5)(p > 8) > n. Since pr = p, we have P (o > 8) > 1
for k sufficiently large. Certainly, if (X’, 8, nA) is supercritical, so is (X, ok, A)
and it follows that if nA > A.(8) then A > A.(ox), or

1
Aclor) < ;)\c(‘s)- (3.81)

Now let € > 0 and choose a to be a continuity point of F such that F(a) < e,
and choose kg so large that Fi(a) < € for all k > ko. Let p? be a random
variable with distribution equal to the conditional distribution of p, given that
p = a. Similarly, let p, be a random variable with distribution equal to the
conditional distribution of p given p < a. Then we have A.(0%) < A:(p).
Consider the model (X7, p?, A) and (X2, 04, Al), where [ is chosen such that
I(1+1)~! = Py p)(p < a). This means that
_ F(a)
T 1-F@’
The superposition of the two models is equivalent in law to a process (X, o,
A(1 + D). The following formula is obtained as in (3.52):
€ €
1- n(l —e)
When pr = p, then pf = p“ and from the case already proved we conclude
that

(3.82)

[Ae(or) — Ae(op)| < p Acpg) < Ac(8). (3.83)

IAc(og) — 2(pT)| < € (3.84)
for k large enough. The result now follows from (3.52), (3.83) and (3.84). 0O

The obvious question arises as to whether or not the percolation probabilities
also converge when the radii are uniformly bounded and p; = p. Note that
pointwise convergence of the percolation function does not imply convergence
of the critical densities.

Theorem 3.8 Let py and p be random variables such that for some R > 0
we have 0 < p < Rand0 < pp < Ras. forallk > 1. If py = p, then
Opi (A) = B, (A) for all A # Ac(p).

In the proof of this theorem we shall need the fact that 8, (1) is, for fixed p, a
continuous function of A, for A # A.(p).
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Theorem 3.9 In a Poisson Boolean model (X, p, 1), the percolation function
6, is a continuous function of A for all . # A.(p).

Proof of Theorem 3.9  First we show that 0 is continuous from the right. The
event {d(W) = oc) is the decreasing limit of the events E, = {0 ~» 3(B,))
where B, = [—n, n]¢. We claim that P,(E,) is continuous in A. To see this,
first note that it follows from Lemma 3.1 that if we let § — 0, the probability
that in the Boolean model (X, p, 8) there is a ball intersecting B, tends to zero.
Thus if we couple two Boolean models with densities A and A + & respectively
on the same probability space as usual, the probability that {0 ~» 3(B,)} in one
model but not in the other tends to 0 when § — 0. Thus we obtain that 8 is
a decreasing limit of a sequence of non-decreasing and continuous functions.
This implies that it is continuous from the right.

Continuity from the left requires more work. Fix X9 > A:(p) and take any
A € (Ac(p), Ao). Let @ := (A/10)'/? and scale (X, p, A) by « to obtain the
model (& X, ap, Ao). It follows immediately from the scaling that 6y, (Ao) =
8,(1). Now define

V(@) := Gap(Ao) = 6, (hoa®).

It is enough to prove that ¥ is continuous from the left at 1, and this is what we
shall do.

We couple all processes (X, @p, Ag), 0 < & < 1 in the (by now) obvious
way and we denote by W, the occupied component of the origin in (X, ap, Ag).
In this coupling we clearly have W, € W, whenever a1 < a. It suffices to
prove

PAW)) =00,d(Wy) <ooforalla <1)=0. (3.85)

In order to prove (3.85) we need to show that for almost all configurations
for which d(W1) = oo, there exists a 8 < 1 (depending on the configuration!)
such that also d(Wg) = oo. First we claim that in any Boolean model (X, p, A),
the probability that two balls have exactly one point in common is zero. To see
this, let pp be the radius of the ball centred at the origin and first condition
on pp = s, say. Then the probability that the ball centred at the point x has
exactly one point in common with the ball centred at the origin is equal to
P(p = |x| — s). According to Proposition 1.3, the number of such balls is
Poisson distributed with parameter A fps P(0 = |x| — s)dx. The integrand,
however, is almost surely equal to zero and the claim now follows by integrating
over s.

Now suppose that d(W|) = oc and let @ < 1 be as defined previously. For
this choice of & we have 6,,(Ao) = 6,(A) > 0. We know from Theorem 3.6
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thatin (X, ap, Ag) there is almost surely exactly one unbounded occupied com-
ponent Uy, say, which must be contained in # by the coupling. If the origin is
contained in U, we are done, so suppose it is not. In that case there exists a.s.
a sequence (0 = xg, x1, ..., Xp—1, X») Of points of the point process such that

() xp € Uy.
(ii) d(xi,xi+1) < r; + rix.1, where r; is the radius of the ball centred at x;.
(The strict inequality here follows from the claim above.)

Now choose &’ < 1 such that d(x;, x;+1) < &' (i + riyy) forall i =

0,...,n — 1 and let 8 := max{a, a’}. It is clear from the construction that
d(Wg) = o¢ and the proof is complete. o

REMARK: In Chapter 4 we shall prove that, in two dimensions, the perco-
lation function 6, is also continuous at criticality when the balls are bounded.
The necessary machinery for this will be developed in Chapter 4.

For the proof of Theorem 3.8, we first note from Theorem 3.7 that if A <
Ac(p), then for n large A < Ac(pn). S0 6,(2) = 6,,(A) = O for n large and
A < Ac. Thus weneed only consider A > A.(p). As in the proof of Theorem 3.7,
we shall approximate the radius random variable by random variables which
take only finitely many values. The approximation techniques used to prove
this theorem are similar to those used to prove Theorem 3.7.

Lemma 3.7 LetO <rj <ry <.+ <r, <00andlet p and p' be random
variables taking values r; with probability p; and p|, respectively, for i =
I,....,n, where Y i, pi = 3 ;_, p} = 1. Suppose that there exist 1 < j <
I < n such that p; = p; foralli # j,| and where p; and p; are both positive.
Then,

A
6 < 0., <0,(r(] 1. — p')).
p<1+(P;)_l|Pj—p}|>— (V) < 6,(M(1 + (p)” "By = PG

Proof  Suppose first that p; > p}. By a coupling argument as before we
obtain

6p(X) < 6,(2). (3.86)
As in the proof of Lemma 3.4, we consider the models (X, r;, Al;), for i =
l,...,1=1,1+41,...,n, where the [;’s are chosen as in (3.72). Next, consider

the superposition of (X, o/, A) and (X;,r;, M), i=1,....,01—1,1+1,...,n
to obtain a model equivalent in law to (X, o, A(1 + L)) where L =1, +--- +
li—1 + li+1 + - - - + 1. By a coupling argument we obtain

8,(A(1 + L)) 2 6, (1). (3.87)
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Now L = (p)~!(p; — p;.) and thus we have
8o(A(1 + L)) > 6, (M) = 6,(2) > 6,(A/(1 + L)),

where L' = (pp)~lp; — p}l and the last inequality follows by the non-
decreasingness of the percolation function.

In case p; < p} we can repeat the argument starting with a density A’ =
A/ + L") with the roles of o and o’ interchanged. O

Lemma 3.8 LetO <ry < .-+ < r,, and let p be a random variable taking
values r; with probability p; fori = 1,...,n, where Y ;_, pi = 1. Suppose
that p, > 0. Forallk = 1,2, ..., define the random variables py taking values
r; with probability py i, foralli = 1,...,n, where Y |_, pri = | forall k.
If pri — piask — oo for all i, then 6, (A) — 6,(A) as k - o0 for all
A > Ac(p).

Proof Theproof of this lemma is similar to that of Lemma 3.5. We first choose
0 < & < p, and take ko solargethatz Ypri — pil < 58 for all k > ko.

Then, of course, we have pg , > 58 for all k > ko. So, by using Lemma 3.7,

we obtain,

1 i n—1 o
(AH( M)) <6,R) <6, (A [1 (1_}_2]_1)5_,3_[)11))

Thus,

16 (1) — 8o (A)]

<6, (Aﬁ(l+M>) 9,,(1]:[1( 2'—”1"——"11)).

Now, by continuity of 8, (%) for A > A.(p) (Theorem 3.9), we have

- 22 -

i=] i=

ask — oo. (]

Lemma 3.9 LetO < ry < --- < ry and for k > 1, suppose p and py are
random variables taking value r; with probability p; and py.;, respectively, for
alll <i <n where Y} i\ pi =Y pi = L. If px; = pi as k — oo, for
alll <i <n, then A .(pr) = Ae(p)ask — oo.
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Proof We need to prove this lemma for the case when there exists 1 <m <
n — 1 such that

pm >0and ppy1=---=p, =0.
The same argument as in the proof of Lemma 3.6 shows that we may assume
thatm = n — 1;ie. p,—; > O and p, = 0. Using the same idea as before, it
is enough to prove the result in case pg; = p; foralli =1,2,...,n — 2 for
each £ > 1. Also we may assume that py , decreases to zero as &k — 0.

Now, let Byy = [ M, M]d and 9(B)s) be the boundary of Bj,. Then, for
every k > 1, it is not hard to see that

P03 3(Ba)) 4 8, (A) as M — oc.
Similarly,
P05 3(Bu)) | 8,(A) as M — oo.
Fix an M > 1. We claim that
Jim Po (0~ 8(Bi)) = Pap© > B(Byr)). (3.88)
Clea.uy, for each &k > 1, we have
Poupy 0~ 3(Ba)) = Poa, oy 1) (0~5 8(Bar)) = Py (0~ 3(Byp)).

Hence

Jim Po py(©~> 8(Bu) 2 Pap©~> 8(Bum)).  (389)

Given € > 0 we choose k large such that 1 — exp(—A(2M)? py.») < €. Now
we consider »n independent Poisson processes Xi, X2, ..., X, with densities
APr, Ap2, ...y APn—2, APk n—1, APk n respectively. Ateach pointof X;, 1 <i <
n — 1, we centre a ball of radius r;. For the n-th process X,, we distinguish two
cases: (1) at each point of the process X, we centre a ball of radius r, and (ii)
at each point of the process X, we centre a ball of radius r,_. In case (i) we
obtain the Poisson Boolean model (X, px, A), while in case (ii) we obtain the
Poisson Boolean model (X, p, A). Thus by this coupling, we obtain,

Pi.py (0~ 3(Ba)) — P, 0y (0 ~> 3(Bag))
P(X,([-M, M%) > 1)

IA

1 — exp(—A2M)° pi.n)
< €.

This proves (3.88).
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Now consider the double sequence { P, ) (0 A 3(By))} in k and M. Note
that the sequence is decreasing in both M and k. Hence both the iterated limits
exist and are equal. Hence,

Jim 65 (A) = lim lim Po (0 & 3(Bu))
—>00

k—>00 M—00

. . o
= W0l P 07 8B
= i S
Jim Po.p)(0 ~ 3(By))

= 0,(%). (3.90)

Proof of Theorem 3.8  First we assume that for some a > 0,
a>Osuchthata < p, o < Rforall k> 1. 3.9

Our strategy is to approximate the random variables p and p; by random
variables which take only finitely many values. Let the distribution functions
of p and p; be denoted by F and Fj respectively. We can assume that both
a and R are continuity points of F. Take a sequence {m,} of partitions
of [a, R], which we write as 7, = {a = y§ <y <--- <y, = RL
We choose the partitions in such a way that m,,; is a refinement of m,.
Also assume that all points y are continuity points of F and |m,| :=
maxlsisk"{yi" - y,."_l} — 0, as n - 00. Now define, for all n > 1, the
random variables o™ and p(ny by the requirement that if p € (¥, ¥/},
then p™ =y and pgy = ¥ ;. It follows from a simple coupling argument
that 65, (1) < 6,(2) < Bp(n) (A). Now for each k > 1, define the random
variables py,(»y and p,g") as follows: if pp € (¥, ¥], then pr () = ¥,
and p,ﬁ") = y/". Clearly, for each n > 1 and k > 1, we have 6,, , (A) <
B (V) < 07" (A,
Now, given € > 0, choose
Ae(P) <di <A <Az (3.92)

such that
0,(A2) — Op(A1) < €. (3.93)

(Note that here we use the continuity of 6, w.r.t. A.) As before, let for each
n>1,
n

Vi

{72n
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which tends to 1 as n — 00. Note that p™ < a, p(,). Applying a change of
scale to (X, p(ny, Ao), we obtain the model (o, X,, ap p(n), (an)‘dko). Since
o™ < &, p(ny, We have for any Ag > 0

B (A0) = By piy (@) ™ R0) = B0 (@) ™ Rp). (3.94)

Choose n large such that (a,)~9A > A, and (@,)?A < A;. Now, by the choice
of the partitions and the fact that p = p we note that the random variables
p,&”) and p™ satisfy the conditions of Lemma 3.9. Thus applying the lemma,
we obtain that there exists X such that for £ > K

lgp(n)()») - 9p(n)()»)| < €, (3.95)
k
For k > K, we may now write

O (X)) — 6,(2) < epi”) ) —6,()

< 6,m(A) + € — 6,(2) by (3.95)
B (@21) + € — B,(1) by (3.94)
< 0,(@fr) e —0,(0)

< 6p(X2) +€—60,(1)

< 2e,

A

IA

where the last inequality follows from (3.92) and (3.93).
Similarly, for fixed n we can choose K so large that for k > K, we have

8,(A) — 6, (1) < 2.

This proves the theorem in case (3.91) holds.

Now let p have support (0, R]. Here again, givene > 0,choose A} < A < A3
such that (3.93) holds. Let a be a continuity point of F, the distribution function
of p. Let p? be a random variable with distribution equal to the conditional
distribution of p, given that p > a. Similarly, let p, be a random variable with
distribution equal to the conditional distribution of p given p < a. Then we have
6,(A) < B0 (1). Alsodefine pf as the random variable having distribution equal
to the conditional distribution of pg, given that p; > a and pi , as the random
variable having the distribution function equal to the conditional distribution of
Pk, given p; < a. Note that 8,,(A) < 9,,;: ).

For any Ag > 0, consider the models (X1, p%, Ag) and (X3, pg, Aol), where
lissuch that I(1 + 1)~! = F(a); i.e.,

/= F(a)

“1-F@ (3.96)
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The superposition of these two models is equivalent in law to the model (X, p,
Ao(1 +1)). Thus, we obtain

0, (Ao(1 + 1)) = 0pa(Ap). (3.97)

The same calculations may be carried out for p; withly = Fi(a)/(1— Fi(a)),
giving
8oy (o1 +110) = 6,8 (o). (398)
Now, asa — 0, F(a) — 0. Thus we may choose a small enough so that
Al +1) < Apand A/(1 + 1) > A;. Now, for this a, we have Fi(a) = F(a)
as k — oo. Choose K3 large so that A(1 + Jg) < Az and A/(1 + I}) > A, for
k > Kj.
Now, the random variables of and p? are bounded below by a. Also, pf = p°

as px = p and a is a continuity point of F. Hence by the first part of the
argument, we may choose K large so that for k > K4 we have

1008 (1) = Opa (A)] < € (3.99)
and
|9p:()»1) —8pa(A1)| < €. (3.100)
Thus, we have from (3.93), (3.98) and (3.100) with Ag = A/(1 + i),
gp()t) - gpk ) < gp()t) - gp,‘: A/ + 1)
< 0p(0) — B (M)
< 0o(A) —Bpa(Xy) + €
< 0,(A) —60,(A1) +e€

< 2,
and using (3.93), (3.97) and (3.99) with A¢ = A,

O (1) = 6p(A) < 62 (A) — 6, (A)
S 6 (A) —6p(V) + €
S 6,1 +1)—6,) +e
< 6,(A2) —0p(A) + €

< 2e.

This completes the proof of the theorem. ]
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3.9 Bounds on 1. and asymptotics for the cluster size

Consider a Boolean model (X, 1, A) in two dimensions. We have the following
explicit bounds for the critical density:

Theorem 3.10 For a Poisson Boolean model (X, 1, 1) on IR? we have,

0.174 < A, < 0.843.

Proof First we show that A, > 0.174 and for this we employ a multi-type
branching process argument as in Theorem 3.2. The types we consider now are
distributed over all real numbers in (0, 2), unlike in the earlier cases when the
types assumed non-negative integer values.

Let xj, x2, ... be the points of the Poisson process X of density A and fix
x| to be the initial member of the O-th generation of the branching process.
We take another Poisson process X of density A, independent of X and let
X115 X[.2 - - - » X1,n, be all the points of X which lie in the ball S(x},2) = {y:
|y — x1} < 2}. The children of x, in this branching process are these points
XU,1,X1,20 0+ 0 XLny-

Letxk 1. Xk2, . ., Xk.n; be the members of the k-th generation of the branch-
ing process. To obtain the children of x ;, we consider a Poisson point process
X;+1.; of density A on IR?, where X4, is independent of all the processes
described as yet. The children of x4 ; are those points of the process Xj41,
which fall in the region S(xg,;, 2)\S(xx—1,;, 2), where xi— | ; is the parent of
xx.;. The type of a child xg+ s of xk; is t := |xk,; — xx+1,1] € (0, 2). Clearly,
the distribution of the number and types of children of x; ; depend only on xy,;
and its type. Indeed, the distribution of the number of children of x; ; whose
types lie in (a, b), 0 < a < b < 2 depends only on the area of the region

(SCekis D\S(xk—1,5» ) N {y 1 1y — xxil € (a, B)},

and this area depends on x¢ -1, j only through the distance |xx,; —x;_1, j|, which
is precisely the type of x; ;. Also, the distribution of the number and types of
children of an individual x; does not depend on its generation k.

Given that x ; is of type u, i.e. [xx,; —Xk—1,j| = u, let g(viu) be the length of
the curve given by (S(xk,;, 2)\S(¥k-1,;, 2)) N{y : |y — xx.i| = v}). A precise
expression for g(v|u) follows from an elementary trigonometric calculation,
which yields

2

4—y?—
2vcos_1——u—v— f2—u<v<2
gvlu) = 2uv (3.101)

0 f0<v<2—u
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Recalling our earlier discussion on the independence properties of the off-
spring distribution, we easily see that the expected number of children whose
types lie in (a, b) of an individual whose type is u is given by [ ab Ag(lu)dv.
Moreover, given that an individual is of type u, the expected total number of
grandchildren of this individual whose types lie in (a, b) is given by

2 b
f (/ Azg(vlw)dv) g(w|u)dw. (3.102)
0 a

In other words, if we let

2
g1(viu) :=‘/(; glviw)g(wluw)dw,

the integral in (3.102) reduces to

b
AZ/ g1 (v|u) dv.
a

Thus defining recursively,

2
g (vl = fo go1 (v]) glwlu) dw,

we easily see that the expected number of members of the #-th generation having
types in (a, b) coming from a particular individual of type u as an ancestor n
generations previously is given by

b
A" / gn(viu) dv.

Hence the expected total number of individuals in the branching process if we
start off with an individual of type u is

00 2
oA / g (v|u) dv. (3.103)
n=1 0

To show that (3.103) converges for sufficiently small A, we use an estimate
based on the theory of Hilbert—Schmidt operators (see Dunford and Schwartz
1958, chap. XI, sec. 6). For all complex-valued, square integrable functions f
defined on the interval (0, 2), consider the linear operator Ty defined by

2
Tr(u) = /0 S(w)glu)dv.

It is easy to see that

2
'/(; gn(wlu)dv = T (u)
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Figure 3.2. The triangular lattice with the ‘flower’ as described in the text.

where 1(v) = 1 forall v € (0, 2). Thus to show that (3.103) converges for
sufficiently small A we need to know that

S AT W) (3.104)
n=1

converges for sufficiently small A. This is indeed true for A < ||T 1=, where
[IT|| denotes the usual operator norm of T, i.e. |[|T|| = sup{||T7||2 : f square
integrable, complex-valued functions on (0, 2) with || f]l < 1} and || f]2
denotes the L, norm of f. Hence we need to estimate ||7']].

It can be seen that, for g as in (3.101) the operator T is compact and positive;
thus if ¢ is the largest eigenvalue of T, then o = ||T'|]. Hence (3.104) (and
thereby (3.103)) converges forall A < a~!. The standard numerical methods of
calculating eigenvalues show thate > 5.718 and thus, if A < 1/5.718 = 0.174,
then (3.103) converges.

Comparing the branching process as in Theorem 3.2 with the Boolean model,
it is obvious that the expected number of balls in a component is at most the
cxpected total number of members in this branching process. Thusif A < 0.174,
then the expected number of balls in a component is finite; i.e. A, > 0.174.

To obtain the upper bound, we compare the Boolean model with a site-
percolation model on the triangular lattice. Consider the triangular lattice as
in Figure 3.2 with each edge being of unit length. Each site of the lattice is
enclosed in a ‘flower” which is formed by the six arcs of circles, each of unit
radius and centred at the midpoints of the six edges adjacent to the site. A site
will be called occupied if there is a point of the Poisson process X situated inside
the interior of the associated flower of the site. It is clear that if there are two
adjacent sites both occupied, then each of the flowers of these two sites must
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contain the centre of at least one ball, and because of the size of the flower,
the balls centred at these flowers of radius 1 must have pairwise non-empty
intersection. Thus if site percolation of the triangular lattice occurs (i.e., if there
is an infinite chain of adjacent occupied sites), then percolation occurs in the
Boolean model.

Now, by the construction of the site-percolation model, since the occupancy
of a site depends on the realisation of the Poisson process X inside the interior of
its associated flower, and for two different sites, the interiors of their respective
flowers are disjoint, the occupancy of a site is independent of the occupancy of
other sites and the probability that a site is occupied is p := 1 — exp(—A4),
where A4 denotes the area of a flower.

We know from the theory of discrete percolation (see Kesten 1982, p. 52)
that if p > % then with positive probability there is percolation in the site
percolation model on the triangular lattice. Thus if 4. > log2, then there
is percolation with positive probability in the Boolean model. An elementary
calculation shows that 4 = 0.8227, thus we have that A, < 0.843. O

It is clear that computations like this become completely untractable in higher
dimensions. However, it is often easier to obtain asymptotic results for important
quantities in high dimensions than to perform explicit computations in, say, two
dimensions. The reason for this is that most estimates using branching processes
become more and more precise when the dimension gets higher, because there
is less dependency between the branches of the process in high dimensions. We
shall illustrate this idea with asymptotic results on the cluster-size distribution.
See the notes for more information on the asymptotics of the critical density.
The following lemma is what makes high dimensions ‘special’:

Lemma 3.10 Suppose that X(d) and Y (d) are independent and uniformly
distributed on the unit ball in R®. Then we have

dl_i)n;oP{lX(d)l > g.} =1, (3.105)
lim [ sup {P{IX(d) — x| < 1}}] =0, (3.106)
d—o0 | (x(>3/4
and
Jim PX@) - Y@ =<1} =0. (3.107)

Proof Equation (3.105)is obvious. For (3.106), we write | X (d) —x|? = |x|2+
| X(d) |2 —2|X(d)-x|. Using (3.105), it is not hard to see that it suffices to prove
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that X(d) - x converges to zero in probability, uniformly on {x : % <x <2}
Writing X (d) for the first coordinate of X(d), we see that it suffices to show
that | X;(d)} converges to zero in probability. This follows from the fact that
E(1X1(d)}*) < 1/d. Equation (3.107) follows by conditioning on Y (d) and
using (3.105) and (3.106). ]

It will be convenient to assume that we always have a point at the origin.
Also, we reparametrise the model writing the density as A(mrg)~! rather than A,
where 7ty denotes the volume of a ball in d dimensions with radius 1. In high
dimensions it is convenient to consider the Boolean model with fixed radius 5
rather than with radius 1. The reason for this will become clear in the proof of
the following theorem.

Theorem 3.11 Consider a Boolean model (X, %, A(g)™Y) in d dimensions.
Denote by fi(L) the probability that a Galton—Watson branching process with
Poisson-\ offspring distribution has total progeny k. Then, writing Wy for the
component containing the origin in d dimensions, we have

Jim Pyt (X ) =) = fi Q).

Proof The important tool to use here is a stochastic process which is called a
branching random walk (BRW). This is arandomprocess {Z9; n =0, 1,2, ...}
such that Z§ consists of just the origin and Z_, is obtained from Z¢ by replac-
ing each point y € Z¢ by an independent Poisson-A number of points uniformly
distributed in S(p, 1), i.e. the unit ball centred at y. The set Z,'f is referred to as
the n-th generation of the BRW, We can order all points in this BRW as follows:
all members of an earlier generation precede all members of a later generation,
and the members of any particular generation are ranked in increasing distance
to the origin. Let x1, x2, .. . be the ordering of the points of the BRW.

We modify the BRW according to the following algorithm: having checked
X1, ..., Xk, we discard x4 if (a) it is a descendant of a point previously dis-
carded or (b) Xk+1 € U2} S(x;, 1), where [ is such that x; is the immediate
forbear of xg.y. It is not hard to see that the remaining points of the BRW have
the same spatial distribution as the Poisson points forming the occupied com-
ponent of the origin in the Boolean model with density A (7r7) ~!. This coupling
shows that

k k
Y Py (XFD =) =Y fih) =0, (3.108)

Jj=1 j=lI
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for all £ > 1. The left-hand side in (3.108) is the probability that in the con-
struction above, (i) the BRW has total progeny greater than k, and (ii) after
modifying the BRW as indicated, we are left with at most & points. Denote
by E,‘f the event that none of the first k£ points in the ordering of the BRW is
thrown away. It suffices to prove that limg_, oo P(E,‘f ) = 1 for all k. To do this,
let x; be the i-th point in the BRW and write Fid for the event that (i) none
of the offspring of x; lies in U};}S(xj, 1), (ii) no two points of this offspring
are separated by a distance less than 1 and (iii) each point of this offspring is
outside S(x;, 3/4). It is not hard to see that N*_! F# ¢ E¥. From Lemma 3.10
it follows easily that both P(Fld ) and P(F,f | F,f_l) tend to 1 when d tends to
infinity, and the proof is complete. O

3.10 Notes

The question of complete coverage of a region 4 € RR¥ by a Boolean model is one of
the oldest problems in stochastic geometry, more details of which may be obtained in
Hall (1988).

The material of Sections 3.2 and 3.3 and the bounds for A, in two dimensions in
Section 3.9 are contained in Hall (1985), which is one of the first mathematical papers
devoted exclusively to the study of continuum percolation. The results in Sections 3.4
and 3.7 are from Roy (1990), which also contains the equality result of Section 3.5
but for two dimensions only. The d-dimensional equality result is a combination of
results of Zuev and Sidorenko (1985), Menshikov (1986) and Meester, Roy and Sarkar
(1994). It may be pointed out here that the results of Zuev and Sidorenko (1985) and
Menshikov (1986) establish the equality only in the case when the radins random
variable is bounded from below by a strictly positive quantity. The result of Meester,
Roy and Sarkar (1994) is used here to extend this case to an arbitrary bounded positive
radius random variable.

The uniqueness result of Section 3.6 is from Meester and Roy (1994). Continuity
and convergence results of Section 3.8 are from Meester, Roy and Sarkar (1994) and
Sarkar (1994). It may be noted that Penrose (1995c) generalised some of these results
to a wider class of radii distributions, using resuits of Tanemura (1993). The latter
paper contains a continuum version of a renormalisation technique of Grimmett and
Marstrand (1990) for discrete nearest-neighbour percolation models. The asymptotics
in Section 3.9 are taken from Penrose (1995b). The method using the branching random
walk can be pushed much further. In the same paper, Penrose shows that the critical
density Aﬁd) in dimension d, satisfies limy_, o0 nd)»gd) = 1. This means that if the
expected number of balls intersecting the unit ball at the origin is larger than 1, the
model percolates with positive probability in high dimensions. This corresponds with
positive survival probability of a Galton-Watson branching process when the expected
number of offspring is larger than 1.
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Vacancy in Poisson Boolean models

In this chapter we discuss the properties of the vacant components in the Poisson
Boolean model. Unlike the occupied components in the Poisson Boolean model,
where the structure of the occupied regions arises because of placing balls
around the Poisson points, the vacancy structure arises in the negative sense,
i.e., in the absence of any ball covering a point. This lack of a structure to
describe directly the vacancy configuration is a limitation due to which it is
often harder to establish results concerning vacancy.

In the study of percolation on discrete graphs, the vacancy configuration is
usually thought of as the ‘dual’ of the occupancy structure. In that sense we shall
occasionally refer to the vacant region as the dual of the occupied region. This
nomenclature is more informal than exact, because in the discrete percolation
models, the dual structure has a legitimate construct of its own, rather than
being just an appendage of the occupied structure,

We shall define critical densities via vacancy and show that in two dimen-
sions, when the radii are bounded, A}, = A}, where these notations have the
same meaning in the vacancy as they had (without the superscript) in the occu-
pancy. In addition, we shall show that in two dimensions, the critical densities
arising from the occupancy agree with that arising from vacancy. We shall also
establish a uniqueness result for the vacant component as in Section 3.6 of
Chapter 3. This will show that in two dimensions for A < A., with proba-
bility 1, there is exactly one unbounded vacant component and no unbounded
occupied component, andfor A > A, with probability 1, there is exactly one un-
bounded occupied component and no unbounded vacant component. For three
and higher dimensions, we do not have a result establishing the equality of 1%,
and A%, although it is expected to be true. We also do not have any result to
show the co-existence of unbounded vacant and occupied components - i.e.,

~a
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AH < A} —in three or higher dimensions as suggested by simulation studies
in physics.

To prove the equality in two dimensions, we establish an RSW lemma for
the Poisson Boolean model. Russo (1978) and Seymour and Welsh (1978)
independently proved that in a Z? lattice-percolation model, if the crossing
probabilities of suitable rectangles in either direction are larger than 8, then the
crossing probability of a bigger rectangle is larger than f(8), where the function
f depends only on the ratio of the size of the larger and the smaller rectangle.
The idea of their proof is to connect a left—right crossing of a rectangle [0, /1] x
[0, /2] and a left—right crossing of another rectangle (/1/2, 311 /2] x [0, 2] by
a top—bottom crossing of a suitable rectangle to yield a left—right crossing of
the rectangle [0, 3/, /2] x [0, /2]. Using similar ideas and employing a lattice
approximation of the continuum model, we prove the RSW lemma for vacant
crossings in our Poisson Boolean model. However, we need some additional
construction to take care of the dependency structure of our model. As we shall
see later, this involves modifying the Poisson Boolean model in a small region
near the intersection of the lowest vacant left-right crossing of [0, /] x [0, /2]
with the right edge of the rectangle [0, /1] x [0, ;] to obtain a dependence
structure where we can apply the FKG inequality.

4.1 Critical densities

As in the case of the occupied region, the size of a vacant cluster can be measured
by either its diameter or its Lebesgue measure. The notion of measuring the size
of an occupied cluster by the number of Poisson points comprising the cluster
does not have any analogue in vacancy. Thus we have the critical densities:

Ax = sup{r: P {d(V) = oo} > 0},

Ap = sup{r: Ex(d(V)) = o0},

Ay = sup{A : B {e(V) = oo} > 0},
{

A5 = sup{r: Ex(€(V)) = o0},

where V is the vacant component of the origin as defined in Section 1.4.
In addition to the above four critical densities, we have the critical density
defined through vacant crossings:

A5 :=sup{A : limsupo*((n,3n,...,3n),4, 1) > 0},
n—>oc
where *((n, 3n, ..., 3n), A, 1) is the probability, under Pj, of the existence

of a vacant crossing in the short direction of the rectangle [0, n] x [0, 3n] x
. x [0, 3n] as defined in Section 2.3.
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Our first goal is to show that, when p is bounded, the critical densities corre-
sponding to the two different notions of measuring the size of a vacant cluster
are equal.

Theorem 4.1 For a Poisson Boolean model (X, p, )) on IR? with p bounded

almost surely, we have (a) A, = A}, and (b) A}, = AT

Unlike the proof of the analogous result for the occupancy (Theorem 3.4), for
the proof of Theorem 4.1 we need a bound on the growth of the vacant cluster
V when the probability of a vacant crossing is very small. The following lemma
can be proved as Lemma 3.3.

Lemma 4.1 Let (X, p, ) be a Poisson Boolean model on IR® with0 < p <
R a.s. for some R > 0. There exists kg > 0 such that, if for some N =
(Ni,...,Ng)with Nj > R, forall 1 < j <d, we have

o*(3N1, ..., 3N;i—1, Ni, 3Ni41, ..., 3Na), A, §) < ko, (4.1)
foralll <i < d, then
P {d(V) Z a} < C; exp(—C2a) (4.2)
and
P{e(V) = a} < C3exp(—Cya), (4.3)
for all a > 0, where Cy, C2, C3 and C4 are positive constants independent
ofa.
An immediate consequence of this lemmais that for a Poisson Boolean model
with a bounded radius random variable, we have
Ap <Ay and A} <A% (4.4)
Proof of Theorem 4.1  For ease of notation we shall present the proof only
for two dimensions. As can be seen from the proof, the extension to higher
dimensions is straightforward.
First we show (b) A}, = A%.. Let Bor(i) = (0, i4R) + Byp foralli > 0. Ob-

serve that an L—R vacantcrossing of the rectangle [0, 3] x [0, 3¥+1] necessitates
the existence of a vacant region starting from the left edge of [0, 3"] x [0, 3"“]
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which has a diameter at least 3¥. Hence we have, for anyk>1,

0,*((3/6’ 3k+1)’ A., 1)
3k+l/4R
s Al U Wo@=ro) =3
i=0
3k+l/4R

Y. Pl (Bar)) = 3)
i=0

3k+l
< ('ﬁ + 1) P {d(V (B2r(0))) = 3%). 4.5)

In the preceding inequalities we have assumed, without any loss of generality,
that 3¥*1/4R is an integer.
If A > A7, then Ej(d(V)) < oo and thus
[o.0]
Y 3 pEr) 234 < CLEL(EX)) < oo, (4.6)
k=t

1A

where C is a positive constant. Now as in Example 2.1 of Section 2.3, from
(4.6) we have

o0
Y FPEW (B () 2 3% < CLEA AV (Br(0))) < 00,  (4.7)
k=1

for some constant C3 > 0. Thus from (4.7) and (4.5) we have

o0

Y o335, 4, 1) < o0 (4.8)

k=1
Hence, for some integer kg > 0 we have o*((3%, 3%*1), 1, 1) < ko for all
k > ko, where kg is as in Lemma 4.1. Thus applying that lemma, we obtain
A = AY.. This shows that A} < A7,

To complete the proof of (b) we need to show that A}, < A%.. We use an
argument based on scaling. We first show this in the case when there exists
n > Osuch that p > 5 as. Fix A < A}, and consider the Poisson Boolean
models (X, ap, ), for 0 < a < 1. We couple these models on the same
probability space and thus, letting ¥, denote the vacant cluster of the origin in
(Xg,ap, L), wehave Vp C V,forall0 < a < b < 1. Moreover, if x € Vj,
then, for any 0 < a < 1, the open ball centred at x of radius (1 — a)n will be
completely contained in ¥, and so

%

_ 2 diy)
W) 2 =@ -am’ 55—
Cla)d(Vy),
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for some constant C(a) > 0. Hence, if d(¥') = oo then £(V,) = oo. This
implies that whenever A < A7,(p) we have

A < A}(ap), foralla > 0. 4.9)

However, from Proposition 2.11 we have A}.(ap) = 1}.(p) /a?, so (4.9) yields
the desired inequality.

For general p we use an argument similar to the one used in Case 2 of the
proof of (a) in Theorem 3.4, and as such we omit it.

Next we show (a) A} = A},. We note that for A < A%, and forany m > 0,

P{d(V) = 00} = lim PA(V N B, # @)

> lim P{eV) 2 2m)’)
> Pi{e(V) = oo}.

Thus, if A < A}, then A < A7.

Now suppose A < A};ie., P {d(V) = oo} > 0. We partition the space
with boxes of the form B2"? = 2mz + B,,, where z € Z*. Consider the event
F, = {B,%,’”z is completely contained in an unbounded vacant component}. It is
clearthat P(F) is positive and independent of z. The translation over the vector
2me is ergodic, and it follows by the ergodic theorem that P(F; i.0.) = 1. But
then, using the uniqueness of the unbounded component (see Section 4.8) we
conclude that for all z for which F, occurs, the box B,%,'”z is contained in the
same unbounded component ¥’ It follows that £(V’) = oo, whence A < Ay
This establishes that A} = A},. 0

REMARK: It is possible to prove the last step of the preceding proof; i.e.
A% < A%, along the same lines as the proof of (b); this proof does not involve
uniqueness. However, the preceding proof is presented for its elegance and
because it does not use the boundedness of the radii.

4.2 RSW - notation and definition

Consider a Poisson Boolean model (X, p, A) on IR%. We define a continuous
curve y to be a vacant path if y C C°, the vacant region. A continuous curve y
1s said to be an occupied path if y C C. A vacant path y is said to be a vacant
left—right (L—R) crossing of the rectangle [0, /1] x [0, [2] if y N ({0} x [0, [2]) #
W,y N ({hh} x [0,12]) # B and, except for its end points, y is contained in
(0, 1) x (0, I3). Similarly, we define a vacant top—bottom (T-B) crossing by
requiring that the end points of y lie on the top and bottom edges of the rectangle,
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respectively. We assume that all curves under consideration do not have any
self-intersections.

Let IL, be the lattice a, Z x ay Z, where {a, ) is a sequence of positive numbers
decreasing to zero when n tends to infinity. Suppose /; and /; are positive integer
multiples of a,. By a cell in this lattice we mean a set [a,21, anz1 + an] x
[anz2, anza +ay] for zy, z2 € Z. Note here that we include the perimeter of the
cell in the definition. Two cells in the lattice are said to be adjacent if they have
an edge in common. A cell Cyp in IL, is called vacant (respectively, occupied) if
Co N (U;>15(x)) = @ (respectively, Co N (Ui 1S(xi)) # ). An IL,-pathis a
sequence of disjoint adjacent cells. A vacant (occupied) IL,-path is an IL,-path
which consists of only vacant (occupied) adjacent cells. An L-R IL,-crossing
[ of the rectangle [0, /}] x [0, /2] is an IL,-path such thatI" C [0, /] x [0, /2],
LN {0} x[0,L]) # @, T n{l} x 10,]) # @ and, in addition, each of
' N ({0} x [0, ]) and T N ({/;} x [0, I2]) consists of a single edge. We define
T-B L ,-crossings, vacant/occupied L-R IL,-crossings and vacant/occupied
T-B L,-crossings in a similar fashion. The crossing probabilities (see (2.19))
are denoted as follows:

o (U1, h), 2, 1)
= P, {there exists a vacant L-R crossing of [0, /}] x [0, 2]},

o*((h,2), *,2)
= P, {there exists a vacant T-B crossing of {0, /1] x [0, I2]}.

The RSW lemma states the following:

Theorem 4.2 (RSW lemma) Let (X, p, A) be a Poisson Boolean model in two
dimensions with

O<p<Ras. 4.10)
for some R > Q. If there exist constants 81 > 0 and 53 > 0 such that
o*((h, 1), 2, 1) = & 4.11)
and
6*((l3, 1), 2, 2) = 8, 4.12)
for somely > 4R and 2R < I3 < 31, /2, then for any integer k,
o*((kly, 12), A, 1) = Cx(, R) fk (81, &2), (4.13)
where Cy(X. R) > 0 is independent of 8\ and 83 and fi (81, 82) > 0.
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The proof of this theorem is presented in the next three sections and applica-
tions can be found in Section 4.6. The main step of the proof is to obtain an RSW
result for a discrete approximation of the Boolean model. This, however, does
not follow from the discrete percolation results because in any discretisation of
the Boolean model, the dependency structure of the model remains. We have
to warn the reader that the proof of the RSW lemma is very technical; one can
safely skip the next three sections without disturbing the flow of the book.

4.3 RSW - construction
We take n so large that

I > 4R + ay. 4.14)

Let Iy, = |ly/4a,)4a, and 5, = |l3/ap]a, + a,, where for any x €
R, |x] denotes the largest integer less than or equal to x. Clearly, both /),
and /3, are integer multiples of a,. By the monotonicity property of crossing
probabilities, o *((/1, 12), A, 1) = o*((I1, L), A, 1) and 0*((l34, 12), A, 2) >
o*((l3, I2), A, 2). Moreover, as a, — 0, l1, — [} and I3, — I3 and it is easy
to check that also o*(([1,, I2), A, 1) = o*((I1, 1), A, 1) and 6*((/3n, [2), A, 2)
— o*((l3, 1), A, 2). Since in our calculations we later let a, — 0, we may
replace ), by /) and I3, by /3 and thus for the sake of simplicity in notation, we
assume that in addition to (4.14) the following also holds:

R/4,1,/4, 15 and [3 are all integer multiples of ay,. 4.15)

On the lattice IL, of ‘size a,” we fix an L-R self-avoiding (i.e. all cells in
the path are different) IL,-crossing r which consists of cells Cp, Cy, ..., Cp
of [0,/ — R] x [0,[2] with Co N ({0} x [0,]) # B, C, N ({{; — R} x
(0, ) # 6, {C1,....Cu—1} € (0,1 — R) x [0,/2] and C; and C;| are
adjacent for all i = 0,...,m — 1. We now consider different pieces of the
IL,-crossing r. Suppose 0 < i} < i < --- < i}y < m are all indices such
that C; N ({/1/4) x [0, 1)) # @ and C; < [I;/4,1; — R] x [0, l]. In other
words Cy;, j = 1,2,...,1(r) are all the cells of r which are adjacent to the
line {/, /4} x [0, 2] and lie on the right side of this line. By our choice of
notation, Ci, 1s the ‘last intersection’ of r with {[; /4} x [0, 1], ie., C; C
(I1/4,1y — R] x [0, 3] for all j > ij. Let F(r) := (Ci,(,), Ci,(,)+1, e s Cm)
be the piece of r after this last intersection. Let ry := (Cy, Cypyy -+ -5 Cipy))
forallk=1,...,I) — 1. Alsolet]l < iy < o< --- < jpy <I(r) — L be
suchthatr; € [/1/4,1) — R]1x [0, [z]ifandonly if j € {ji, j2, ..., Jon}. Thus
F(r) is the piece of r lying completely in the rectangle [I;/4,1) — R] x [0, I2]
and on the right of the line {/; /4} x [0, I}, with one of its end cells adjacent to
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0 1,/4 1,-R

Figure 4.1. The paths ry, r3 and 5 are the paths ry,, r;, and ry,.

3

0

Figure 4.2. The shaded path is r, the blackened, I, and the dotted region, 4.

the line {/,/4} x [0, I2]. Also, forevery 1 < i < b(r) — 1, rj; has both its end
cells adjacent to the line {/y/4} x [0, /2] and lies completely in the rectangle
[{1/4, 11 — R1x [0, I2]. (Figure 4.1 depicts this notation.) Let the corner vertices
of the cell Cy be (0, ), (an,a) (a,, @ + ay) and (0, @ + @,) and the corner
vertices of thecell C,,, be (I) — R, B), (1 — R—ayu, B), (1 — R —a,, B+ay,)
and (I} — R, B+ax). Let T, be an IL,-path defined as follows (see Figure 4.2):
I, is the collection of cells in the region

@ (h—R—a,, h —RIX[B,B+R+2a,)U([h — R, h1 x [B+ R+
an, B+ R+2a,)if B <l — R —2a,,

) h —R—an, i — Rl x [B,LH Ul — R, 1] x [l — ap, 2]) if
B>l —R-2a,.

The IL,-pathr U T, is an IL,-crossing of [0, /;] x [0, ] (see Figure 4.2).
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0 R 1

Figure 4.3. The shaded region is J|'.

0 14 ;-R 1 L+R T4 2

Figure 4.4. The shaded region is J,'.

For any set of cells s in [0, /] x [0, 5], let ref(s) be the reflection of s in
{l1} x [0, I2). Then (F(r) UT,) U (ref(F(r) UT,)) is an L-R IL,-crossing of
[/1/4,7711/4] x [0, I]. Next we define the region (see Figure 4.3)

Jl+(r) = {(x,») €[0,1 — R1 x [0,15]: (x, y) can be connected to
[0, 1} — R] x {I2} by a continuous curve y such that
Yy €10, — Rl x [0, b]and y N r = @}.
This is the part of [0,/; — R] x [0, I5] which lies above r. We also define the
regions (see Figures 4.4 and 4.5)
L) == {(x,y) € l1/4,71/4] x [0, 2] : (x, y) can be connected to
[71/4,711/4] x {2} by a continuous curve y such that
y S1h/4,7L/4]1 x [0, 1]
and y N ((rU ) U (ref(F(r) UT,))) = 0).



100 Vacancy in Poisson Boolean models

0 1,/4 1;-R 1% 1}, +R 7,/4 2L

Figure 4.5. The shaded region is J;".

J3+(r) = {(x,») € [11/4,71;/4] x [0, 2] : (x, y) can be connected to
[{1/4, 711 /4] x {2} by a continuous curve y such that
y € [h/4,71/4] x [0, 2] and
Yy NF@OUT) U (ref(F@r) UT,))) = 0}

The difference between J2Jr (r) and J3+ (r) is that J2+ (r) is the region in
[11/4,711/4] x [0, I2] which lies above the path (r U T,) U (ref(F(r) U I,)),
while J;r () is the region in [l /4,711 /4] x [0, I2] which lies above the path
(Fr)UTH U (ref(Fr)y UT,)).

Let J7 () := ([0, ; — R] x [0, 12])\J1+(r). We observe that r C J| (r) and
J1+ (r) is a connected region, while J;r (r) is connected if 8 < I — R — 2a,.
For any region A4, let A denote the closure of 4, and int(4) the interior.

For r as above let A, be the region ([/{ — 2R —ay, Iy + Rl x {8, B+ 2R +
2a,]) N0 (J|+ MU — R,0) x R)U (IR x [I2,00))) (see Figure 4.2). We
introduce the following events:

4, = {X(4)) =0},

E, := {ris vacant},

L, := {any L-R IL,-crossing s of [0, I; — R] x [0, 2] such that
s #rands C J| (r) is not vacant,

Ds(r) := {there exists a vacant IL,-path s = (Cg, Cl{, cees C:) such that

s S UF @), Con(Uh/4,7h/4] x (D) # 6,
C.N(F(r)UT,) # @ and
Ce N (11174, Th /4] x (LY U (F(H UT,)) = 8,
forallk=1,...,v—1)},



4.3 RSW ~ construction 101
Ds(r) 1= {there exists a vacant LL,-path s’ := (C}, Ci, ..., C,)

such thats’ € J;F (r), Cj N (U11/4, 711 /4] x {I2)) # 0,

C;L N(F@r)UT,) # @ and

Cy N ((Th/4,7Th /4] x (RPU(FOUT,) =0

forallk=1,...,u—1},

D(r) := {there exist disjoint vacant IL,-paths 54, ..., 5, for some

q €{1,...,b(r)} with s := (Cox, ..., Cuy,k) forall

k=1,...,q, such that

i) CoaNli/4,Th /8 x l2) # 0, Cpyq N(FWUTY) #£ 8,

(ii) Cix CJ () foralli=1,...,p; — 1 and for all
k=1,....q,

(i) forallk=1,...,q9 — 1, Cy, i licsonr;, and Co x4 lies
onr;,, where ik, iy € {j1,..., joqn} and iy is such that
either iy = iy, or there exists a set of indices ®; in
{/1, .-, Jbn} such thatry, can be connected to ry,
by a continuous path y which lies completely in
int [(Usea,r:) N ([11/4, T /4] x [0, D1}

In words, D3(r) is the event that there is a vacant IL,-path in J;r (r) which
connects the top edge of the rectangle [/, /4, 71, /41 %[0, /2] to the path F(r)UT,;
Dy (r) is the event that there is a vacant IL,-path in J2Jr (r) which connects the top
edge of the rectangle [1) /4, 71, /4] x [0, I2] to the path F(r) UT', and D(r) is the
event that there are vacant IL,,-paths in [/; /4, 711 /4] x [0, /2] connecting some of
the r;’s adjacent to the boundary of J2+ (r), and two other vacant IL,-paths, one
connecting one such #; to the path F(r) U T, and the other connecting another
such r; to the top edge of the rectangle [/1/4, 71 /4] x [0, [2] (see Figures 4.6
and 4.7).

Given two L-R IL,-crossings ry and r2 of [0, a1] x [0, a2] (for some positive
numbers a; and a3) we define ry < rp if J1+(r2) C JIJr (r1). For any two
L-R L,-crossings r; and rp, there is an L-R I ,-crossing s in r; U r, of
[0, ay] x [0, a2] such that J;¥ (s) = J;* () U J;* (r2) and sos < ry ands < r,.
In particular if r; and rp are such that r} < r; then s = ) satisfies s < r
and s < r. However, if neither ry < r; norro < ry hold, thenry Nry # B. If
we consider the L-R IL,-crossing 7’ of [0, a1] x [0, a2] which is the ‘lower’
part of r; U r2 then it is not hard to believe that for s = r’ the following
is satisfied: rhere exists a L-R IL,-crossing s of [0, a1] x [0, a2] such that
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/rﬁ
C
-

0 1,/4

Figure 4.6. The thick line is the path r, the thin line is the path s with segments sy, sz
and s3 as in the event D(r).

el

CI T PP P L TP Td] ]
1,74

Figure 4.7. The black line is a portion of r, the segments 1, 2 and 3 are §4, 541 and
Sk+2, respectively, and the segments @, b and c are ry, r;, and 1y, .

(a)s S riUr, (b)s <rforall L-R IL,-crossingsr of [0,a;] x [0, az] with
r C ry Ur;. Thus for the finite collection C = {all vacant L-R IL,-crossings of
the rectangle [0, a1 ] x [0, a2]}, we can define the lowest vacant LR IL, -crossing
of [0, a1] x [0, az] as the L-R IL,,-crossing r of {0, a1] x [0, @3] such thatr < s
for every s € C and r € Ugecs. Note that all IL,-cells comprising Usecs are
vacant, and hence the L-R IL,-crossing r is also a vacant L-R I ,-crossing of
[0,a] x [0, a2] and thus r € C. The existence of such a lowest vacant L-R



4.4 RSW — preliminary results 103

IL,-crossing is intuitively clear; however a formal proof is quite technical and
we refer the reader to Lemma 1 of Kesten (1982). Let Do(r) = D2(r) U D(r).
We observe:

Lemma 4.2 The following hold:

(i) E,N L, = {ris the lowest vacant L-R IL,-crossing of [0,]) — R] x
[0, L1},
(i) D3(r) N E, = Do(r) N E,.

Proof The statement of the lemma is quite easy to see from the definitions
but because of the topological aspects very messy to write. We refrain from
spelling out the details. a

4.4 RSW - preliminary results

In this section we shall use the FKG inequality and a conditional independence
property, obtained from our choice of I, to derive some preliminary inequali-
ties. It is to have this conditional independence that we introduced the path I,
instead of using an L-R crossing of [0, {1] x [0, /2] directly.

Let R denote the (random) lowest vacant L-R I ,-crossing of [0, /] — R] X
[0, 1] in the Poisson Boolean model (X, p, A) and r a fixed self-avoiding L-R
IL,~crossing of [0, /1 — R] x [0, I2].

Lemmad4.3 Pi(4,0 Do@)IR =r) = Pu(4;) PA(D3(r)).

Proof First, we show that given E,, the events L, and A4, N Dy(r) are
conditionally independent. Indeed, any ball centred in Jx+ (r) which intersects
Ji(r) must also intersect r. On E, no such ball can exist. Moreover, for
« as chosen in Section 4.3 and for any x € A4, U ([—R,0] x [a, 00)),
d(x,r) = d(x, J (r)), where R is as in (4.10). So, any ball centred in
A,U([—R, 0] x [a, o0)) which intersects J; (r) must also intersect r. Also,
any ball of radius at most R centred in ((—oo, —R) x RR) U ((/1, 00) X
R)U (R x (—00, —R)) does not intersect J; (r). Thus given E,, the event
L, depends on the Poisson points in the region A, := J; () U ([—R, 0] x
|- R, a))V({l1 — R, h1x[—R, BHU(0, ;) x[—R, 0]), where 8 is as defined
in Section 4.3.

We now show that, given E,, no ball with centre in A, can influence
the occurrence of Dg(r). Indeed, any ball of radius at most R centred in
J, (r) which intersects J2+(r) must intersect r. Also, no ball of radius at
most R centred in either [—R, 0] x [—-R, @] or [0, /;] x [— R, 0] can intersect
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J,"(r) without intersecting r. Now, for any y € [} — R,]}] x [-R, 8],
diy,r) < d(y, J2+(r)), so any ball of radius at most R with centre in

[/1 — R, ;] x [—R, B] which intersects J2+ (r) must intersect r. Again, on
E, no such ball can exist and therefore no ball in A, can influence the
occurrence of Dg(r). Thus, conditioned on E,, the event L, depends on
the Poisson points inside the region A,, while (4,N Dy(r)) depends on the
Poisson points outside A,. Hence, given E,, the events L, and (A4, N Dy(r))
are independent. It follows that

P (4, N Dy(r)|R =)

Py(4, N Do(NIE- N Ly)

_ P4, N Do(®) N Ly Ey)

- PA(LrlEr)

_ P4, N Do) Er) Py (L | Ey)
Py (L,|E,)

Now using (ii) of Lemma 4.2 and noting that all the three events 4,, E, and
D3 (r) are decreasing, we obtain from the FKG inequality,

Pi.(4, 0 Do(n)|Ep) = Pi(4y) P(D3(r)). (4.16)

O

We let the cell size of the lattice IL,, go to zero along a sequence {dn}n>)
such that (4.15) holds for every n > 1. Define the IL,-crossing probabilities as
follows:

oy ((h, 1), A, 1)
:= P, {there exists a vacant L-R IL,-crossing of [0, /] x [0, [»]},

o, (1, 1), 1, 2)
:= P, {there exists a vacant T-B I ,-crossing of [0, /] x [0, [»]}.
Now suppose (4.11) and (4.12) hold. For i = 1,2 let {§;(n)},> be a se-
quence such that 8;(n) — & asn — oo and o ((l1,12), A, 1) = 8i(n)
and o, ((3,5),%,2) = 6&(n). This is possible since o, ((/;, 12),A,1) —
o*((1, ), A, 1) and 0, ((3,12), A, 2) — o*((l3,12),1,2) as n — oo. We
will now provide a lower bound for P, (D3 (r)). Consider the event
tef (D3(r)) := {there exists a vacant L,-paths” = (Cg, ..., C)
such that Co N ([1,/4, 711 /4] x {l}) # 8,
Cp N (ref(Fr)UT,)) # @,5” C J;7(r) and
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CyN (/4,7 /A x (L)) U (ref(F(r) U T,)))) =@
forallk=1,...,u—1}

Clearly,
Pu(D3(r)) = Py (ref(D3(r))). 4.17)

Also

P (D3(r) U (ref(D3(r)))) = Py{3L,-path§ = (Cy, ..., Ci) forak > 1
such that (él, ceey ék) C J3+(r),

Co N (/4,71 /4] x {h}) # B and

Ci N[(F@) UT) U (ref(F(r) UT,)] # )
o, ((13,12), 4, 2)

> 8a(n),

v

and hence, from (4.17), we have

P (D3(r)) = 82(n)/2. (4.18)

Now let s’ := (C}, ..., C.) be a self-avoiding L-R L,-crossing of [0, 7} —
R] x [0, ] with Cy N ({0} x [0, l2]) # @, C, 0 ({l1 — R} x [0,12]) # @ and
(Cly--nCl_)) S (0,1 —R) x [0, [7]. Let C{W) be, as defined earlier, the ‘last
intersection’ of s’ with {/;/4} x [0, I,]. Let Y (s’) denote the second coordinate
of the centre point of the cell C {W). We define the following events:

H) = {there exists a vacant L-R IL,-crossing s of [0, /1 — R} x [0, /2]
with Y (s) < I2/2},

H, := {there exists a vacant L-R IL,-crossing s of [0, /y — R] x [0, I»]
with Y(s) > [/2}.

Clearly, P, (H)) = P.(H>) and P, (H, U Hy) = P, {there exists a vacant L-R
IL,,-crossing s of [0, /1 — R] x [0, /2]}. Thus P,(H}) > 8,(n)/2. But, H; C
|R exists and Y (R) < I5/2}, so

Pi(R exists and Y (R) < b/2} > 81(n)/2. (4.19)
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4.5 RSW - proof

Now we are in a position to prove the RSW lemma.

Proof of the RSW lemma  First we show that

P, {there exists a vacant L-R IL,-crossing r’ of [0, ;] x [0, [] with
Y(r') < I/2 and there exists a vacant IL,-path s’ with
S'ONF(rYy+#8,s' € L @)yand s’ N ([11/4,71/4] x {I2}) # B}
= Ci(x, R)81(n)82(n)/4, (4.20)
where C (A, R) = exp{—A(BR + a,)(2R + 2a,)}. Here F'(r') denotes the
piece of r’ after the last intersection of r’ with the line {/;/4} x [0, /3] and
J3+ (r") is the closure of the region J3+ (r"), which is defined as in the definition
of J3+ (r) in Section 4.3 with F’(r’) instead of F(r) UT, and ref(F’(r')) instead
of ref(F(r) UT,).
To this end we observe that foran L-R I, -crossing r of [0, /] — R] x [0, [5],

{(R=r}NA, C{R =r,T,isvacant}. 4.21)

Indeed, if there are no balls centred in A4, and no balls intersecting r then there
cannot be any ball intersecting [',. Moreover, for the L-R IL,-crossing r UT,
of [0, 1] x [0, I»], we have F'(rUT,) = F(r) UT,.

Thus from (ii) of Lemma 4.2, Lemma 4.3, (4.18), (4.19) and (4.21) we obtain

P, {there exists a vacant L-R IL,-crossing r’ of [0, [}] x [0, I;] with
Y(r') < /2 and there exists a vacant IL,-path s’ with

SNF @) #0,s C L) ands’' 0 ([1/4,71/4] x (L) # B}

> P {R exists , Y(R) < /2, 'y is vacant and D3(R) occurs}

=P ( U {R =r, T, is vacant and Dy(r) 0ccurs}>
{r:Y(n=<lh/2}

= Z P {R =r, T, is vacant and Dqy(r) occurs}

> Y PAR =r}N 4N Do(r))

=Y PR =rh P4, N Dy@I{R =1}

> Y P({R =r)Pi(4) P (D3(r)

> Y "3 P({R = rhsa(n) exp{—A(3R + a,) (2R + 2a,)}

> 181(n)82(n) exp(—A(3R + a,) 2R + 2a,)). (4.22)
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(In the calculations above, U, and ), are, respectively, the union and sum over
all L-R IL,-crossings r of [0, ]} — R] x [0, ;] with Y (r) < I;/2.) This proves
(4.20).

Now, for any L-R crossing ¥ of [0, /1] x [0, I2], let F'(y) denote the piece
of y after its last intersection with the line {/,/4} x [0, L2]. Also, let Y(y) :=
inf(y : (/1/4, y) € F'(y)N{l1/4} x [0, 2]} and J5' () the closure of J;" (y) :=
{(x, ) € /4, 711/41x [0, 1] : (x, y) canbe connected to {I1 /4, 71, /4] x {I2}
by a continuous curve y lying in [/,/4,7l;/4] x [0,12] and 7 N (F'(y) U
ref(F'(v))) = @}, where ref(F’(y)) is the reflection of F/(y) in {I1} x [0, [2].
Now making the lattice finer and taking limits in (4.22) along the sequence {a, }
chosen earlier, we obtain,

P {there exists a vacant L—-R crossing ¥, of [0, I1] x [0, [5] with
Y (y11) < I2/2 and there exists a vacant path y;r with
it NF'(inr)#98, vir © mand
vir N (L /4,71 /4] x {R)) # 0}
> [818, exp(—6AR%)]/4. (4.23)

An iterative procedure will now complete the proof. Suppose the event de-
scribed in (4.23) occurs; then y1; U y|r contains a vacant path ¢ connecting
{h/4} x [0,12/2] to [11/4, 711 /4] x {I2}. If for some M > 0, { contains any
point in the region [(/1/4) + M, 00) x [0, I5], then y1L U y11 provides a vacant
L-R crossing of [0, (//4) + M] x [0, [>]. Otherwise, if £ C ([0, ({;/4)+ M] x
[0, 2]), then consider a vacant L-R crossing y,; of [I;/4, (I1/4) + M]x [0, I;]
with Y2(y2r) = [2/2, where Y2(y21) is the second coordinate of the initial
point y2; 1.e., y2r N ({11/4} x [0, L]) = (I1/4, Y2(y2L)). Since ¢ connects
{11/4} x [0,1/2} to [1; /4,71, /4) x {I2} and lies in [0, (/,/4) + M] x [0, L2],
we have yo; N ¢ # @. Thus y17 U y17 U y21 provides an L-R crossing of
[0, (11/4) + M] x [0, I;]. Hence, applying the FKG inequality, we have

P, {there exists a vacant L-R crossing of [0, (/1/4) + M] x [0, I2}}
> P, {the event in (4.23) occurs and there exists a vacant L-R
crossing vz, of [[1/4, (I1/4) + M1 x [0, L] with Y2(y21) = [2/2}
> 8187 exp{—6AR*} P (V1) /4, (4.24)

where V| = {there exists a vacant L-R crossing y2 of [} /4, ({1/4) + M] x
[0, la] with Y2(y2.) > I2/2}. Clearly

Pi(V1) 2 0™ ((M, 1), 2, 1)/2, (4.25)
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and (4.24) and (4.25) yield

a* (1L /8) + M, 1), A, 1) > 8183 exp{—6AR?}o*((M, k), A, 1)/8. (4.26)
Taking M = My := [} in (4.26),

o*((5h /4, ), A, 1) > 8182 exp{—6AR*}o* (11, k), A, 1)/8
> 528, exp{—61R?)/8. (4.27)

Again, from (4.26), taking M = M) := My + 1 /4, we have
o*((311/2, h), A, 1) > 8152 exp(—6AR?)a* (511 /4, 1), 1, 1)/8,

which after applying (4.27) yields a lower bound on ¢*((3/1/2, I), A, 1). Re-
peating this procedure, we obtain

o*((Mj41, h), A, 1) = 8182 exp{—6AR2}o* (M, bp), X, 1)/8,

where M; = +£l 1, forevery j = 1. Thus, forevery k > 1, we canrecursively
obtain the lower bound for o*((k/y, ), A, 1). This completes the proof of the
theorem. . 0

4.6 Equality of the critical densities

In this section we show that, in two dimensions, the various critical densities
defined in this chapter are all equal. Unfortunately, the higher dimensional
analogue of this result is not known.

The vacancy structure in the continuum model corresponds to the ‘dual’ struc-
ture of the discrete percolation mode] on lattices. However, this correspondence
is rather rough, in the sense that while the ‘dual’ structure of a discrete model
can be defined without any reference to the original percolation model, the va-
cancy structure in the continuum arises as the complement of the occupancy
structure. It is for this reason that analysing the ‘dual’ of a suitable discrete
percolation model will not give us the equality of the critical densities defined
through the vacancy structure as we were able to do in Theorem 3.4 for the
critical densities defined through the occupancy structure.

The proof of the equality of the critical densities defined through the vacancy
structure relies on the RSW theorem and as such the two-dimensional restriction
of the RSW theorem carries through. However, a bonus of this proof is that we
obtain a sharp transition in two dimensions; i.e., we obtain that A, = A%. Thus,
in two dimensions, for A < A, we have a regime where there is no unbounded
occupied component and there is at least one unbounded vacant component,
while for A > A., no unbounded vacant components exist and there is at least
one unbounded occupied component. Of course, this statement is probabilistic
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and holds only with probability 1. Together with the results from Section 3.6
and the results in the next section, we see that in either of these regimes there
is almost surely exactly one unbounded component of the appropriate type. We
show the following:

Theorem 4.3  For a two-dimensional Poisson Boolean model (X, p, \) with
p bounded almost surely, we have A} = A} = A%,

Theorem 4.4  For a two-dimensional Poisson Boolean model (X, p, A) with
p bounded almost surely, we have A, = A

Before we prove the theorems, we first state and prove a preliminary result. This
lemma allows us to give a lower bound of the probability of the existence of an
occupied crossing of a rectangle in terms of the probability of the existence of
an occupied crossing of a bigger rectangle which is however of the same length
in the direction of the crossing as that of the smaller rectangle.

Lemma 4.4 Let n and k be positive integers and let 1 > 0 be such that
o*((n, (1 4+ 26)n), 2, 1) > n; (4.28)
then, for any t > 0 and for some f(t,k,n) > 0,
o*((n, (1 +20m), 1, 1) > f(t, k, n). (4.29)
(The point here is that f does not depend on n.)
Proof If t > k then the lemma holds trivially. Otherwise, we set H, :=
{0} x [(1+&)n, (1+2k)n], Hy := {0} x [kn, (1 +k)n]and Hp := {0} x [0, kn}
and for j = u,m or b we define the events 4; := {there is an L-R vacant
crossing s of the rectangle [0, n] x [0, (1 + 2k)n] with s N H; # @}, Clearly,
AyUApmUAp = {there exists an L-R vacant crossing of [0, n] x [0, (14-2k)n]}.

Moreover, since 4y, A,, and A4 are all decreasing events, applying the FKG
inequality and noting that P, (A4,) = Py (Ap), we have

1—0*((n, (1+2k)n), 2, 1) = P(4;N 47, N 47)
> Pi(A4]) P(45) P (45)
= (1= Pi(4m))(1 — Pr(4p))%.
Thus at least one of the following (4.30) and (4.31) holds:
PA(Am)

\%

1— (1 —o*((n, (1 4+ 26n), A, 1H'/3
11— -3 =y (say), (4.30)

(A
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(1+2k)n (1+2k)n
J (1+k)n /\\ (1+k)n
kn ) n \/
0 n 0 n 0 n
(a) ()] ©)

Figure 4.8. The three possibilities By, By, and By.

Pi(4p) > 1= (1 —0*((n, (1 +2k)n), A, 1)'/3. (4.31)
Suppose first (4.30) holds. We observe that 4,, £ B, U By, U By, where

B, := {there exists a vacant L-R crossing of [0, #] x [kn, (1 + 2k)n]},
By, := {there exists a vacant T-B crossing of [0, n] x [kn, (1 + k)n]},
By := {there exists a vacant L-R crossing of [0, n] x [0, (1 + k)n]}

(see Figure 4.8). Since B,, By, and Bj, are all decreasing events, (4.30) and an
application of the FKG inequality yields

1—74 > P(BSNBE N BY)
> (1= Bu(Bx))(1 — Pu(Bp))*.
Thus at least one of the following (4.32) and (4.33) must hold:
P(Bn)=1-(1-n)'3, (432)

P(By)=1—-(1 -3, (4.33)

Next, suppose that (4.31) holds. We observe that 4, C B,, U Bp and so an
application of the FKG inequality implies that at least one of (4.32) and (4.33)
is true. In either case (i.e., (4.32) or (4.33)), the monotonicity of the crossing
probabilities yields that

o*((n, A +kn), A, 1) >1—-(1-y)/3. (4.34)

Now take kp = k in (4.34) and define k; := ko/2. Then we have o*((n,
(142k)n), A, 1) = 1 —(1 —no)' 73, where g := 1= (1 = o*((n, (1 + 2ko)n),
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A, 1))1/3.Deﬁning successively k; := kj_1/2for j > 1, weseethato™*((n, (14
2kjn), A, 1) = 1=(1—0*((n, (1 +2kj-1)n), A, 1))'/3.Sincekj $ 0asj 1 oo,
this iterative procedure yields (4.29) for a suitable (¢, k, n) > O. a

Proof of Theorems 4.3 and 4.4  Throughout this proof we assume that
0<p<R, (4.35)
for some R > 0, and that the Poisson Boolean model is defined on IR2, First
we list some of the inequalities we obtain quite easily. It is clear that
AL <A (4.36)
Moreover, by (4.4),
Ap < A% (4.37)
In view of (4.36) and (4.37), to prove Theorem 4.3 and 4.4, it suffices to show
that
Ae A%, (4.38)
and
AL < e (4.39)

To show (4.38), let A < A, and note that if instead of vacancy we consider
occupancy in the proof of part (b) of Theorem 4.1 we obtain

o0
> (35,38, 1) < . (4.40)
k=1

However, o ((3F, 3%t1), &, 1)+ o*((3%, 3%+1), A, 2) = 1 because, if an occu-
pied crossing does not exist in the horizontal direction then, almost surely, there
must exist a vacant crossing in the vertical direction and vice versa. Hence, from
(4.40) and the Borel-Cantelli lemma we have
P, {there is a vacant T-B crossing #;, of [0, 3%] x [0, 3k+1]
for all large £} = 1. (4.41)

The rotation invariance allows us to restate (4.41) as

P, {there is a vacant L-R crossing / of [0, 3¥*2] x [0, 3¥+!]
for all large £} = 1. (4.42)
Now a vertical crossing # of [0, 3¥] x [0, 3*+!] and a horizontal crossing Iy

of 10, 3¥+2] x [0, 3**!] must intersect. Also #4] and /; must intersect. Thus
the vacant crossings # and /x defined in (4.41) and (4.42) combine to give an
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unbounded vacant component in the first quadrant. Hence, using the fact that
vacant components are open, we obtain

P {d(V (x)) = oo for some x € Q2} =1,
where Q? is the set of all points in JR? with rational coordinates. Since

P {d(V (x)) = oo for some x € 0%}
< ) R{d(V(x)) = oo},

xeQ?

we have by translation invariance P,{d(V) = oo} > 0. Thus A < A% and this
completes the proof of (4.38).

Finally, to prove (4.39), we show that for A < A%, there are infinitely many
annuli around the origin, each annulus containing a vacant circuit with a prob-
ability larger than a positive constant. Thus a Borel-Cantelli argument would
show that, with probability 1, there exist infinitely many circuits surrounding
the origin and hence both d(W) and £(W) are finite. To this end we introduce
another critical density:

i’g := sup{X : thereexists0 <n; <ny.--withng + coask 4 oo,
such that, for every k > 1 and for some § > 0, the following
hold:

() Snog—1 > dnyy,
(i) o*((mak—1,m2%), 2, 1) >8>0,
(iii) o*((5nax—1/4,n21), 2, 2) > 8 >0}

We first show that
A< A% (4.43)

Let A < A%. Then there exists an increasing sequence {my }¢>1 of positive num-
bers, withmy 1 o0 as k 4 oo, and some # > Osuchthato™((mg, 3my), A, 1) >
n for each k > 1. Now, for every £ > 1, we take ny—) = Smy/6 and
n2x = my. Applying first the monotonicity property of the crossing probabilities
and Lemma 4.4, we have 0*((nak—1, n2x), », 1) > § and o*((Snax—1/4, nu),
A,2) > §forsome 0 < § < n and for every £k > 1. Thus A < i’g and
consequently A% < A%. This proves (4.43).

Next suppose that for some § > 0 and for every k > 1, ny; and ny— are
such that (i), (i) and (iii) in the definition of ig hold. For every k > 1, we put

my =ny-1 and mg = myg+ ny.
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o \g/\i/\g//

my

i

\/_\_/\\%/ ™
- T /

Figure 4.9. The events 4], A, B and B, .

We also assume that the sequence {n}>1 is chosen so that

migy1 > 3my + 2R. 4.44)

Consider the rectangles
Ay = [=3mi, 3mg] x Img, ],
A, = [=3my, 3my] x [—rrg, —mg],
B = [my, mi] x [=3my, 3my],
By = [—rg, —my] x [=3my, 3my].

Also, for € = + or —, we let
,Zf( = {there exists an L-R vacant crossing of A4}}
and
Bf = {there exists a T-B vacant crossing of Bf}.
For an illustration of these events, see Figure 4.9. By the invariance properties

of the model,

P.(AD) = P(4}) = Pu(B) = Pu(B}) = 0*((6n2k—1,n2), A, 1).
(4.45)
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By the RSW lemma, we have
o*((6n2k—1,n2%), 2, 1) = K (&, R)g(8), (4.46)

for some K (A, R) > 0 and g(6) > 0. For both ¢ = + or —, the events /i; and
,Z; are decreasing, so we have, from (4.45) and (4.46) and the FKG inequality,

v

P4 N4y N BN BY) = PuAD)PuAD) PUBHPA(BY)

> {o*((6n2k—1, n2k), », DY
> {K(2, R)g(®))*. (4.47)

But A} N 4; N B N By € Gy, where Gy := {there exists a vacant circuit in
the annulus ([0, 7715] x [0, mx])\([0, mx] x [0, m;])} (see Figure 4.9 and note
that by our choice of mj and rig, 3my > mg). Thus, from (4.47), we have

[o] o]

D PUGH = ) (KA, R)g®)) = o0.

k=1 k=1
However, (4.44) guarantees that {G )¢~ is a sequence of independent events,
so that the Borel-Cantelli lemma yields that P, { G occurs infinitely often} = 1.
But P, {there are infinitely many vacant circuits around the origin} > Py {Gy
occurs infinitely often} = 1, whence

P {d(W) = 00} = 0. (4.48)

Now, if A < i’g, then there exists a § > 0 and a sequence {ny}x>1 satisfying
(i), (ii) and (iii) in the definition of ifg and consequently, from (4.48), A < A..
This, along with (4.43), proves (4.39) and completes the proof of Theorems 4.3
and 4.4. O

An immediate consequence of this theorem is that, in two dimensions, for
A > Ae, 0%((n,3n),A,1) -> Oasn — oo and thus o((n,3n),1,2) — 1
as n — oo, while for A < Ac, 0((n,3n),A,1) —> 0Oasn — oo and thus
o*((n,3n),x,1) - 1asn — oo. This argument can be easily generalised
along the lines of the proof of Lemma 4.4 to yield

Corollary 4.1 Consider a Poisson Boolean model (X, p, A) in two dimensions
with p bounded. For A > A, we have o ((kn,n),A,1) - lasn — oo for
every k > 1, and for A < k., we have o*((kn,n), A, 1) — lasn — oo for
everyk > 1.

Theorem 4.5 Consider the Poisson Boolean model (X, p, ) on RR? with
0 < p < Rforsome R > 0. Ford = 2, we have P, _{d(W) = o0} = 0.
However, foranyd > 2, E; (d(W)) = oc.
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Proof Suppose P, {d(W) = oo} > 0. We shall show that this implies that
o*((n,3n),A;, 1) = Oasn — oo. (4.49)

Indeed, if (4.49) does not hold, then there exist § > 0 and an infinite sequence
ny, n2, ... such that, foralli > 1, o*((n;, 3n;), A, 1) > 8. Without loss of
generality we may assume that, for all i > 1,

6n;+1 =9n; +2R. 4.50)
The RSW lemma implies that there exist 0 < §g < & such that foralli > 1,
o*((18n;,3n;), Ae, 1) = So. (4.51)

As in the proof of the previous theorem, for every i > 1, the FKG inequal-
ity together with (4.51) allows us to construct vacant circuits in the annulus
Bign;\ Bisn; With a probability larger than §3. Thus, for E; := {there exists a
vacant circuit in the annulus Big,, \ By5,,; ), we have

00

D Pu(E) =0

i=1

By our choice (4.50) of n;, E|, Ea, ... is a sequence of independent events;
thus an application of the Borel-Cantelli lemma yields

P, {E; occurs infinitely often} = 1,

and it follows that P, .{d(W) = oo} = 0. This contradiction establishes (4.49).
To complete the proof of the first part of the theorem, note that (4.49) implies
that, for some N > 0,

o*((N,3N), A, 1) < kg, (4.52)

where «q is as in Lemma 4.1. As in Chapter 3, since the event {there is a vacant
L-Rcrossing of the rectangle [0, N]x [0, 3NV ]} depends on the bounded rectan-
gle[-R, N+ R1x[—-R,3N+ R], c*((N, 3N), A, 1) is a continuous function
of A. Thus from (4.52) we have that for some A < A,

o*((N,3N), A, 1) < «g. (4.53)

Howeyver, (4.53) implies from Lemma 4.1 that, for this A, P, {d(V) = o0} = 0.
This contradicts the fact that A, = A} and thus proves the first part of the
theorem.,

To show the second part of the theorem, observe that if E,_(d(W)) < oo,
then from Theorem 2.4, we have that

P {d(W(B)) = a} < Cie7%¢2 (4.54)
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for some positive constants Cy and C2. Now let Dy = k + B fork € z4,
Clearly, for the existence of an occupied crossing in the shorter direction of the
rectangle {0, n] x {0, 3n] x - - - X [0, 3n], there must be an occupied component
of diameter at least n from some Dy with k = (ky,...,kz), k1 = 0 and
0 < k; < 3n.Hence,

o((n,3n,3n,...,3n), A 1)
< P {d(W(Dy)) 2 n for some k = (k1, ... kg)

withk; =0and 0 < k; < 3n)
_<_ (3m)d_1C]e—nC2
— Qasn —> o 4.55)

where the last inequality follows from (4.54). For n sufficiently large, (4.55)
yields that
o((n,3n,3n,...,3n), 2., 1) < . (4.56)
A continuity argument as in the previous part yields, for some A > A,
o({(n,3n,3n,...,3n),A, 1) <«yg.

This along with Lemma 3.3 shows that for this A, P, {d(W) = oo} = 0, which
contradicts the fact that A > A.. This completes the proof of the theorem. O

4.7 Uniqueness

In Section 3.6, it was shown that in a Poisson Boolean model, there can be
at most one unbounded occupied component. This section is devoted to the
analogous result for the vacant region. As in the occupancy case, the result
holds in its most general form:

Theorem 4.6 In a Poisson Boolean model (X, p, ), there can be at most one
unbounded vacant component a.s.

According to Proposition 3.1 we can with no loss of generality assume in
this section that

Ep? < 0. 4.57

The idea of the proof is similar to that in Section 3.6. There is, however,
one extra difficulty. In the proof for occupancy, we used the fact that different
occupied components contain different points of the process and that the density
of such points is finite. We can not use such a direct argument here. We have
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to find other objects which have finite density and which can not be ‘shared’
by different vacant components. To this end, we state the following geometric
result:

Lemma 4.5 If k d-dimensional balls intersect the unit cube [0, 1)4 then the
vacant region inside the unit cube has at most cak? connected components,
where ¢4 is a constant which depends only on the dimension.

Proof For ease of exposition, we first give the proof for the case d = 3.
Without loss of generality we can assume that no ball is contained in the union
of the others, since adding this particular ball would not affect the number of
vacant components. So we consider three balls, none of which is contained in
the union of the other two. We claim that the intersection of the boundaries of
these balls consist of at most two points. To see this, note that if the intersection
of the boundaries of the first two balls is not empty, it is the boundary y of
some circle. Denote the plane containing this circle by H. The intersection of
all three boundaries can be larger than two points only if the intersection of the
third ball with H is y. It is easy to check that in this case there is a ball which
is contained in the other two, a contradiction. We call a point in the intersection
of three boundaries a triple point. Now each vacant component in [0, 1]¢ which
does not intersect the boundary of the cube contains at least one triple point on
its boundary, and a triple point can belong to only one vacant component. Hence
there are at most 2(13‘) vacant components which do not intersect the boundary
of the unit cube. Next, we look at the intersection of vacant components with
the faces of the cube. The intersection of a three-dimensional ball with a face is
a two-dimensional ball. Any vacant component which intersects a face of the
unit cube but does not intersect any of its edges must contain at least one point
of intersection of two such two-dimensional balls. For each face therefore there
can be at most 2(§) such vacant components, giving a total number of at most
12(’2‘) for all the faces of the cube. Finally, an analogous argument shows that
the number of vacant components which intersect an edge is at most 12(k + 1).
Hence, the total number of vacant components is bounded by c3k3 for a suitable
constant ¢3. The argument in higher dimensions is essentially the same and is
omitted. O

A random variable which has a Poisson distribution has finite moments of
all orders. Combining Lemma 3.1, Lemma 4.5 and the fact that the box B, is
contained in the ball S(0, n4/d), we conclude:

Proposition 4.1 In a Poisson Boolean model, the number of connected com-
ponents in V N By has finite expectation for all n.
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As in the occupancy case, we first show that the number of unbounded vacant
components can be only zero, one or infinity:

Proposition4.2  Ina Poisson Boolean model, the number of unbounded vacant
components equals either zero, one or infinity a.s.

Proof Usingergodicity as before, we see that the number of unbounded vacant
components is an a.s. constant. Suppose that this number is equal to X > 2. For
any region A C IR?, we denote by V[ 4] the vacant region which we obtain after
we remove all points (and associated balls) in the complement A€ of 4. Using
the assumption that the model admits X unbounded vacant components, Lemma
3.1, and the obvious fact that the number of vacant unbounded components can
not increase by removing finitely many balls, we conclude that for all n, V[ Bg)
contains no more that K unbounded vacant components a.s. For all positive
integers n, let E, be the event that all unbounded vacant components in V' [B¢]
have non-empty intersection with B,,. For n large enough, we have P(E,) > 0.
Since only finitely many balls intersect B, there are integers L; and L such
that the event

E, N {there are at most L balls which intersect
B, and all these balls have radius at most L;}
has positive probability. Now consider the annulus B,.;, \ B,. We partition this
annulus using the integer lattice and let C be the (finite) collection of cells in
this lattice. Since C is finite, we can choose non-random cells Wy, ..., Wy, in
C such that for W := W, U---U W, the event
F,, := {all unbounded vacant components in V{(B, U W)€]
have non-empty intersection with B, and all balls with
non-empty intersection with B, are centred in B, U W}

has positive probability. Note that F,, depends only on the points of the point
process outside B, U W and their associated balls. Hence,

P(F, N {X(B, UW)=0}) = P(E)P(X(B,UW)=0) > 0.
Butif F, N {X(B, U W) = 0} occurs, then there is only one unbounded vacant

component. This is the desired contradiction and completes the proof. O

Proof of Theorem 4.6 The idea of the proof is similar to that in the proof of
Theorem 3.6. However, the application of Lemma 3.2 is much easier here for
reasons which will be explained below.
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According to Proposition 4.2 we need to rule out the possibility of having
infinitely many unbounded vacant components. As before, we proceed by as-
suming that there are infinitely many such components and we want to derive
a contradiction. It follows from the proof of Proposition 4.2 that we can find
boxes B, C B, such that with positive probability n, say, B, is completely
contained in a vacant unbounded component ¥’ such that ¥/ N B, contains
at least three disjoint unbounded components. If this is the case, we call By,
an encounter box, and By, its central box. The three unbounded components of
V' 0\ B, are again called branches. Translating this event over the vector 2mz,
for z € Z9, gives the requirement for B2™ to be an encounter box. For all L,
the expected number of encounter boxes of the form B2 contained in the box
By is equal to nL?. Now any branch of an encounter box in By, intersects
AL = Bpm(L+1y\ BmL and hence contains at least one component of C¢ N B2™?
for some z € Z4 such that B,z,,”'z C Ap. (Recall that C¢ is the vacant region
in space.) We choose one such component for each branch b and call it V.
Now we want to apply Lemma 3.2. For this, let R be the set of all central boxes
corresponding to encounter boxes in B, ;. For r € R, the sets C,(i) are defined
as follows. Choose a branch b of the encounter box to which » belongs. Take
all central boxes of other encounter boxes which are contained in b, together
with ¥ which is chosen before. Together these elements form one of the sets
C,(i )1t is obvious that card(Cfi)) > 1forall r and . Let S consist of all central
boxes and the union of all sets Cf), r € R. Applying Lemma 3.2 with K =1
then yields the conclusion that card(S) > 2card(R) + 2. Hence the number
of components ¥ must be at least card(R) + 2 since S consists of the union
of these components together with card(R) other elements. Thus the expected
number of vacant components of the form C°1 B2™? contained in 4, is at least
nLd. However, it follows from Proposition 4.1 that this expected number can be
at most ¢L4~! for some constant ¢ > 0, and this gives the desired contradiction
for L sufficiently large. O

REMARK: It is instructive to compare this proof to the proof of Theorem 3.6.
The reason that the application of Lemma 3.2 is so much easier here is the fact
that in our definition, a branch in the occupancy case need not contain points
in the annulus 4; . For a vacant branch b, the component ¥}, defined above has
1o exist. This means that the volume-boundary argument is much easier in the
latter case.

4.8 Continuity of the percolation function

In this section we investigate to what extent we can prove analogues of Theo-
rem 3.9 and Theorem 3.7 for vacancy. For this, we define the vacant percolation
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function 9; (A) as the probability that in (X, p, A) the vacant component of the
origin is unbounded. The corresponding critical density is A%(p), which can
now be written as A% (o) = sup{A : 9’;(A) > 0}.

It was shown in Theorem 4.4 that whenever p is bounded almost surely and the
dimension is 2, A%(p) = Ac(p). In conjunction with Theorem 3.7 this trivially
gives that in dimension 2, A%(or) — A%(p) whenever all radii are uniformly
bounded and p = p. Note, however, that in the proof of Theorem 3.7 we used
the fact that A5 = A.. The corresponding statement for vacancy is only known
in two dimensions (Theorem 4.3).

‘What we can show in full generality is the continuity of the vacant percolation
function as a function of A, at least for A # A%(p):

Theorem 4.7 In a Poisson Boolean model (X, p, 1), the vacant percolation
function 0} is a continuous function of . for all A # A7(p).

Proof  As in the proof of Theorem 3.9, {d(V') = oo} is the decreasing limit
of the events F,, := {0 & 3(By)} and P, (F,) is continuous in A. Hence 9; is
the decreasing limit of a sequence of non-increasing continuous functions and
is therefore continuous from the left.

For continuity from the right we fix A9 < A%. As in the proof of Theorem 3.9
we couple all processes (X, ap, Ag) on the same probability space, this time for
all @ > 1. Writing ¥, for the vacant component of the origin in (X, ap, Ag),
we need to show that

PAV1) =00,d(Vy) < ocoforalla > 1)=0.

In words, if d(¥}) is infinite, then there is an o > 1 such that if we multiply
all radii by «, the vacant component of the origin remains unbounded. From
scaling as in the proof of Theorem 3.9 we observe that for @ > 1 small enough,
8o (A0) > 0 and for this choice of &, there exists exactly one unbounded vacant
component U, say (Theorem 4.6). It follows that U,, is contained in V1. This
implies that there exists a bounded, closed curve ¥ C ¥ connecting the origin
to Uy. At this point, the argument is different from the occupancy case. From
Lemma 3.1 and the fact that E((p)?) < oo by assumption, we see that there
are a.s. only finitely many balls in (X, ap, Ag) which intersect y and none of
these balls intersect y when the radius is reduced to the original value. It follows
that for some value of ¢ > 1, noball in (X, ap, Ag) intersects ¥ and the proof
is complete. O
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4.9 Notes

The first seven sections of this chapter are from Roy (1990), the uniqueness result of
Section 4.8 is from Meester and Roy (1994), and the continuity result of Section 4.9
is from Sarkar (1995). The RSW lemma is an analogue of the RSW lemma of discrete
percolation obtained by Russo (1978) and Seymour and Welsh (1978). One of the
first applications of this result in discrete percolation was by Kesten (1980) to show
e = 3. Subsequently, it has been used to obtain a variety of results in two-dimensional
discrete percolation. One of the main open questions in percolation theory is to obtain
a higher-dimensional analogue of the RSW lemma. The difficulty in this arises from
the fact that a crossing in one direction of a cube may not intersect a crossing in another
direction of the cube. Although, in three dimensions, if we consider a sheet crossing in
one direction and another sheet crossing in another direction, then they will intersect.
A suitable higher-dimensional analogue of this may also be formulated. The RSW
theorem for this will go through; however, for the full import of the result in higher
dimensions, we need line crossings.

In the discrete case, the notion of the lowest crossing was introduced and conditioned
on the lowest crossing; the configuration ‘above’ the crossing and the configuration
‘below’ the crossing are independent. In the continuum case, this independence does
not exist and, as such, the term Cx (A, R) enters the picture. The independence structure
of discrete percolation allows one to formulate a stronger RSW lemma for the discrete
than the continuum version we have here. In particular, in the discrete percolation
setup, it may be shown that if the crossing probability of a smaller rectangle tends to
1 then the crossing probability of the larger rectangle also tends to 1. Here, however,
the term Cr(A, R) prevents such a strong result.

More recently, Alexander (1994) has obtained an RSW lemma for occupied cross-
ings with fixed sized balls. The proof of this result also proceeds through a lowest
crossing argument. The difficulty here lies in the definition of a lowest occupied cross-
ing. Alexander has an ingenious way of defining the lowest occupied crossing to obtain
enough conditional independence between the region above and the region below the
conditioned lowest crossing. The steps of this proof are significantly different from
that of the RSW lemma for vacant crossings given in this chapter. The dependency
structure persists here too and this brings in a term Ci(A, R) in the formulation of
the RSW result in the occupied case. Thus the statement of the result is quite similar
to the RSW lemma for vacant crossings, the only difference being that o* has to be
replaced by o. This theorem will also provide the vacant counterpart of the first part
of Theorem 4.5 to yield that PA: {d(V) = o} = 0in two dimensions. However, the
second part of this theorem needs a vacancy version of Theorem 2.4 which is not
known to be true.
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Distinguishing features of the Poisson Boolean
model

The title of this chapter needs some explanation. The word ‘distinguishing’
refers to two facts. In the first place, we are going to describe some fundamental
differences between Boolean models with balls of a fixed radius and balls with
random radii. These differences have to do with the so-called covered volume
fraction and with the phenomena of compression and rarefaction. These notions
will be introduced shortly. In the second place, the phenomena described in this
chapter do not have natural analogues in the discrete setting.

5.1 The covered volume fraction

Loosely speaking, the covered volume fraction (CVF) is supposed to be the
‘fraction’ of space which is covered by balls. In order to give a more precise
definition, let us first recall from (3.3) that the probability that the origin is
covered in the Poisson Boolean model (X, p, 1) is equal to 1 — e B
then follows easily from Fubini’s theorem that the expected Lebesgue measure
of the occupied region in the unit cube is equal to the same number. The ergodic
theorem now guarantees that if By, is the box [—#, n]¢ as usual, then the limit
lim 6;11-)78(8,, NnC) G

n—»00

exists a.s. and equals 1 — e Eo’ The limit in (5.1) is taken as the definition
of the CVF:

Definition 5.1 The covered volume fraction of a Poisson Boolean model
(X, p, 1) is defined as the almost sure limit

. 1
nlir%o Wt(B,, noe)

and is therefore equal to 1 — e~ Eo?,

122
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We remark that in case Ep? = 0o, the CVF is equal to 1.

Definition 5.2 The critical CVF of a Poisson Boolean model (X, p, ) is
defined as

Ac(p):=1-— e_lc(P)ﬂdEpd'

Thus A4.(p) is the fraction of space covered at criticality. Now consider two
Boolean models, one with balls of a fixed radius r; and the other with balls of a
fixed radius r;, and denote their critical CVF by A.(ry) and 4.(r2) respectively.
It follows immediately from Definition 5.2 and Proposition 2.10 that

Ac(r1) = Ac(r2).

Hence in any Poisson Boolean model with balls of a fixed radius, the fraction of
space covered at criticality is a constant depending only on the dimension and
which we denote by 4, = Agd). A natural quantity to investigate is the critical
CVF if the balls do not have a fixed radius. We shall show that the critical CVF
is certainly not a universal constant among all possible Boolean models.

Theorem 5.1 Consider Boolean models (X, p, A) in R4, There exists a ran-
dom variable p taking values a > 0 and b > O with probability pand 1 — p
respectively, wherea # b, 0 < p < 1 such thar

A:(p) > 4D, (5.2)

Proof For ease of notation we give the proof for the case d = 2 and we
write 4, = A§2). The higher-dimensional case uses the same argument, but the
notation becomes rather tedious to handle. Let 0 < r; < 7, < 00 be arbitrary
positive numbers. Fix €, § > 0 such that

Q—€-8A4,—(1—e)(1-8)4% > 4,. (5.3)

The expression in (5.3) will become clear in a moment. Next we choose A3 <
Ac(r2) such that the CVF of (X, ra, A2) is equal to (1 — €)A4.. Also choose
Al < Ac(r1) such that the CVF of (X, rq, A1) is equal to (1 — §)4.. Note
that both processes are subcritical. Next we consider the superposition of these
processes. We claim that the CVF of this superposition is strictly larger than 4.
To see this, note that the probability that the origin is covered in the superposition
of the two processes is just the left-hand side of (5.3) and the claim follows.
Now consider the process (X, r1, A1) and scale it by a factor & < 1 to obtain
a process which is equivalent in law to (X, ary, @~2A1). In other words, if
(X, r1, A1) consists of the points {x], x2, ...}, with associated balls of radius
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r1, then the scaled model consists of the points {ax], axs, ...} with associated
balls of radius cery. (Note that in this way, we couple all processes together for
o < 1) The CVF of (X, ary, @~2A;) does not depend on a, whence it follows
from (5.3) that the CVF of the superposition of (X, 2, A2) and (X, ary, & 2A)
is strictly larger than A4.. Our goal now is to show that this superposition is
subcritical for ¢ sufficiently small.

Fix a0 < « < kg where «g is as in Lemma 3.3. Since A5 < A.(r2), The-
orem 3.5 implies that Ay < Ag(rz) and we can thus find a number N so large
that

o((N,3N), A2, 1) < i«

If there is no occupied L-R crossing in [0, N1 x [0, 3N], then there is a vacant
T-B crossing defined in the obvious way. In other words, there is at least one
componentin ([0, N]x [0, 3N])NV intersecting the top and bottom sides of the
rectangle. We can order these components from left toright, say, and the leftmost
component is called L. Only finitely many balls intersect [0, N] x [0, 3N]
a.s. and hence the boundary 9L of L has only finitely many components a.s.
Hence, for n large enough, the event E, := {L exists and all components of
8L Nint([0, N] x [0, 3N]) have distance at least n~! from each other} has
probability at least 1 — %x. We fix ng such that

Pogr)(Eng) > 1 — k. (5.4

Next we turn again to (X, r1, A1). Since A < A.(r1), it follows from Lemma 3.3

and the application of the FKG-inequality (Example 2.1) thatfor B = [—1, 12,
Poy.m)(@(W(B)) 2 b) < C3e™4,

for all b > 0, where C3 and Cy4 are again positive constants independent of b.
Scaling down by a factor ¢ < 1 yields

P(a“zll,arl)(d(W(Ba)) >ab) < C3e_c4b,

where B, = [—a, ). Taking @ = m~! for some large integer m, and b =
(2ang)~! (with ng as in (5.4)), we obtain

Py m-tr) @V (B,-1)) > 2n0)™") < Cae™Com/2m0, (5.5)

Now we combine the conclusions obtained in (5.4) and (5.5). Divide [0, N} x
[0,3N] into 3N2m? boxes with side length m~!, and denote these boxes
by B!, B2, ..., B3 Then, from (5.5), the probability that in the model
(X, m=1r, m2)q) the event

3INZm?
Fp= |J @w By = 2no™'}

i=]
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Figure 5.1. The superposition of the two processes. The small balls do not cross the
gap left by the big balls. Hence no L-R crossing of the rectangle exists.

occurs has probability at most 3N2m?C3e~C4m/2%  which tends to zero for
m — 00. We now fix an mg such that this probability is at most %K. If E,, oc-
curs in (X, r2, A2) and Fpg® does not occur in (X, malrl, m%)q), then it follows
that there is no occupied L-R crossing in [0, N] x [0, 3N ] in the superposition
of the two processes; see Figure 5.1. This superposition is in fact the model
X, 0,72 + m(z,kl), where p is a random variable taking values ry and m g L
with probability Az(m3A; + A2)~! and m2Ai(m3A;1 + A2)7!, respectively.
Hence, the probability of an occupied L-R crossing of [0, N] x [0,3N]
in (X, p, A2 + m(z,)q) is at most %K + %K < k. According to Lemma 3.3,
this implies that this model is subcritical and this proves the theorem. 0O

The following continuity result follows immediately from Definition 5.2 and
Theorem 3.7. Together with Theorem 5.1 it also provides us with a class of
radius distributions for which the strict inequality in (5.2) holds.

Theorem 5.2 Let py and p be random variables such that for some R > 0
wehave 0 < p < Rand 0 < py < Ras. forallk > 1. If pr = p then
A2 (o) —> A4 (p).

5.2 Compression

In this section we investigate the structure of bounded components in a high-
density Poisson Boolean model. Clearly, for any fixed £ > 0, B {X(W) = k} is
very small for large A. Moreover, in the case when the balls are all of a fixed-size
r, for the occurrence of the event { X (#) = k} the component obtained by the
k balls constituting # should be surrounded by a fence of a vacant region. The
only way this is possible is if the region formed by placing balls of radius 2~ at
each of these k points does not contain any point of the Poisson process other
than these £. It is easy to observe that the volume of this region is less when the
k points are close together than when the £ points are quite separated from each
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other. Indeed the volume is minimized when all the k points are co-incident
with each other. Thus one possible way the event {X(W) = k} can occur is
when all the k points are clustered very close to each other and around these k&
points there is an ‘annulus’ of width approximately 2r where there is no Poisson
point. In case the density of the Boolean model is large, then having k& points
very close to each other is quite feasible, although having the annulus free of
Poisson points is very unlikely. However, any other situation for the occurrence
of { X (W) = k} involves a larger volume left free of Poisson points and placing
k points in a larger volume and this would have an even lower probability of
occurrence than in the situation described previously. Thus in a high-density
Boolean model {X(W) = k} is a ‘rare event’, and if it occurs then it is quite
likely that it is due to the first scenario of k points being very close to each other
and an annulus around these points of width 2» being free of Poisson points. In
the rest of this section we make these heuristics rigorous.

Here the Poisson process X we consider will be conditioned to have a point
at the origin, i.e. 0 € X, where 0 is the origin. Also, the radius of the balls
comprising the Boolean model will be of a fixed radius ». Since X will always
contain a point at the origin, instead of components of the origin W with & Pois-
son points, for ease of calculation, we shall subsequently consider components
with £ + 1 points.

Before we state and prove the main result, we introduce some notation, One
possible situation whereby the first scenario described eatlier could occur is to
have k points besides the point at the origin in a ball of radius o and outside this
ball is an annulus of width 2 where there are no Poisson points. The probability
of this is clearly

(Mtdad)k
k!

_ (mrgad)*
TR

cxp(—kndad) exp(—A[mq (o + 2r)d - rrdad])

exp(—Amg(a + 2r)%). (5.6)

An easy calculation shows that as a function of «, the expression on the right
side of the equality (5.6) is maximized at @ = a/; where o, denotes the positive
solution of the equation T

a@+2r1= 2 G.7)
Ty
Let
d\k
p(h, k) = sup M exp(—Amg(a + 2r)d).

a>0 k!
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In case ax/» is so small that the balls of radius » at the k Poisson points constitute
a connected set, then clearly

P{X(W) =k+1} = pA, k).

We shall show that p(}, k) is quite close to P, {X(W) = k + 1} for large A.

In this connection a quantity to study is the relative density of the component
W with respect to the ambient density A of the underlying Poisson process.
For any region C C RR¥ containing at least one Poisson point, let diam(C)
denote the largest distance between any pair of Poisson points lying in C; i.e.
diam(C) := sup{d(x, x') : x, x’ Poisson points in C}. In case C contains only
one Poisson point, diam(C) is taken to be 0. Thus, for a bounded component
W, a ball centred at any Poisson point of W and of radius diam(W) contains
all the Poisson points of the component ¥ and it also contains the convex hull
Wy of the Poisson points of W. We define the density of the component W
as X(W)/£(Wy). Thus the ratio ¢ (1) := X(W)/A(Wy) defines the relative
density of the component W with respect to the ambient density A. We observe
that

X(W)
P = g (@iam(F ) (5.8)

Theorem 5.3 As ). — oo, for a fixed k > 1, we have
@) arpx — 0,

A
(i) PUX(W)=k+1} = exp(-[md(zr)d + @~ Dklog  + 0(1)]).
Moreover, givenanye > O and M > 0, there exist 0 <a < b < o0
(depending only on €) and )" < 00 such that, for all ). > 3/,

(i) Pk[a <GP xowy =k + 1} >1—¢,
k/n
(iv) Bl = MXW)=k+1}=21-¢.

Statement (iv) says that typically a bounded component in a high-density
Boolean model is formed by the Poisson points constituting the component
being very close to each other. The density of the component is of a larger order
than the ambient density of the process. This is known as the phenomenon of
compression.

We note, from (5.7), ayx — 0 as A — 00 and this proves (i) of the theorem.
Also, for any A > 0, there exists v, > 0 such that vy — 0 as A — o¢ and

k

Tratn + 20T = = TrondT ¢
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This shows that for large A, ¢/, is approximately k/\a(2r)?=1. For the
remainder of the proof we need to do much more work. Since we make ex-

tensive use of Stirling’s formula, we state the version we use (see Feller 1978,
pp. 52-54).

Stirling’s formula

H n!
Sy [agnntl/2g—n
Moreover, for every n > 1,

V2an™ 1 2¢=m exp(1/(12n + 1)) < n!

<<
< V2ran" 12" exp(1/(12n)).
We begin with an easy lower bound for P\ {X(W) =k +1}.

Lemma 5.1 There exists Mg < o0 such that, for . > Ay
P{X(W)=k+1}

A

> exp (— [And(2r)d +(d — Dklog P
k2

+d - Dk log(end(2r)d) +C T +C logk]) ,
for positive constants Cy and C; independent of A.
Proof Let Sdenote the unit ball centred at the origin and, forar > 0, oS denote

the ball of radius o centred at the origin. If A is so large that k/Amg(2d)¢~! <

2r, then all the Poisson points in the ball (k/knd(Zd)d‘l)S are in the same
component and thus we have

P;‘{X(W) =k+ 1}
k
2 PA {X(WS) =k and

k k
(= +2)\ mma) =9}
1 k d k 1
TP (’”" (Am(zr)d-l) )[M" (Aw(zr)d-l) ]
k d k N
A (“M" [(And(zr)d-‘ " 2’) B (And(2r>d~') ]) |
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Now using Stirling’s formula in this expression, we have for positive constants
Cj and C; independent of & or A,

P{XW)=k+1}

1 1 ¢ rpyd-17"
= Jank [””’(mzr)d-') <X> ]

1 k2
—la ) d - d—1 Ci =
P exp( [ 7 (2r)¢ +dmg (nd(2r)d‘1) kr + Cy Iy ])

> exp (— [)er(2r)d +d- l)klog%

2
+(d — Dkloglema(2r)?) + C1]~;— +Cylog k]) . (5.10)

|

Note that the last three terms in the exponential of the lower bound in
Lemma 5.1 contribute exp(—[(d — 1)k log(emng 2r)?) + C1(k2/2) + C3 log k])
which, for fixed £ > 1 and as A — 00, is of the order of exp(—O(1)). In other
words, the bound obtained in (5.10) is the expression we required in (ii) of the
theorem. Thus to complete the proof of the theorem we need to show that the
k + 1 Poisson points forming the component # cannot be separated any more
than required to compute (5.10). We prove this in a sequence of lemmas. The
first lemma considers the case when the component W is bounded and has a
large diameter.

Lemma 5.2 For every B < o0, there exist| < o0 and .1 < oo such that for
A > X1 we have

P{l <d(W) < 00} < exp(—-2B).

Proof The proof proceeds by a lattice approximation. Suppose ! < d(W) <
0o. Consider a lattice IL of width a with 0 < a < r/4. Since d(W) > |,
there must exist a connected component do(#) (say) of the boundary §(W')
such that §o(W) encloses the origin and its diameter d(5o(W)) is at least /. Let
8.(W) be the collection of cells of the lattice IL which intersects 8y(#). Since
d(80(W)) = I, the number of cells in §.(W) is at least / /a and also Uces, i) C
is a connected set. Moreover, by our choice of the lattice width a, no Poisson
point can lie on any cell in §.(#).

Now for every n > | consider the set K, of all collections C of cells of the
lattice L such that (i) the number of cells in C is n, (ii) UcecC is a connected
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set, and (iii) UcecC contains a (d — 1)-dimensional surface which encloses the
origin. (In other words, the set K, contains all collections C of cells which have
cardinality n and which arise as a collection §.(/) of a bounded component
W.) A counting argument as in Theorem 1.1 yields that the cardinality «, of
K, is at most ¢” for some constant ¢ > 1 which depends on the dimension d.
Thus,

P <dW) <o} = Y D P(X(UcecC) =0)
n>l/a CeKy

< Z " exp(—Ana?). (5.1

n>l/a
Now given 8 < 00 choose / such that 8 = la?~11og(2b'/%); then, for A such
that 1 — cexp(—Aa?) > 1/2, we have anl Ja "t exp(—knad) < exp(—AB).
This along with (5.11) proves the lemma. O
REMARK: Under the conditions of Lemma 5.2 we also obtain
P {l < diam(W) < oo} < exp(—AB). (5.12)

Now we turn our attention to components of smaller diameter. The next
lemma will be repeatedly applied in the subsequent lemmas.

Lemma 5.3 Let i > 1 and define, for y > 0,

_12r)7!
V() = ’—'1—‘(4’—)—)’ — log(emgudy?).

There exists a constant C3 = C3(u, r) such that for y(k/\) < C3, we have
P {X(W) =k+1, yz < diam(W) < ,u,y];i]

< exp (— [And(Zr)d +(d — Dklog % + kwu(y):D . (5.13)

Proof Let W, denote the set of all Poisson points of X (including the origin)
in the ball uy(k/A)S. Define

= o) =

ko k
B = [y—): < diam(Wp) < 'qu] .
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If wy(k/)) < 2r, we have

k k
P, {X(W) =k+1, y-)—; < diam(#) < ,qu]
k . k
=E (P I1XW)=k+1, y—): < diam(W) < [,Lylep

= £ (PA {X(UweWPS(w, 2r)\,uy§S) = 0|W,,} 1A13), (5.14)

where as usual S(w, 2r) denotes the ball of radius 2r centred at w.

To estimate the last term in (5.14), we need to estimate the Lebesgue measure
of Uyew, S(w, 2r). Let w; and w be two points of W), such that wy and w are
farthest apart among all pairs of points of Wp; i.., d (w1, w2) = diam(W),). Let
Hj and H- be hyperplanes through w; and w» respectively, both of which are
perpendicular to the line L passing through w; and w». Clearly all points of W,
lie in the slab T between the two hyperplanes Hy and H,. Let wg be the point
of W, which lies farthest (in terms of the perpendicular distance) from the line
L, and let Hy be the hyperplane passing through wo and which is perpendicular
to the shortest line joining wo to L. Clearly each of the hyperplanes Hy, H and
Hy divides the space IR? into a pair of distinct half-spaces such that one of each
pair H;', H2+ and H(;* (say) contains no point of W,. The Lebesgue measure
of Uyew, S(w, 2r) is clearly larger than the sum of the Lebesgue measures of

(i) a semisphere centred at wy of radius 2r and lying completely in H1+
(region I in Figure 5.2)

(ii) a semisphere centred at wo of radius 2r and lying completely in H2+
(region II in Figure 5.2) and

(iii) the region in the slab T enclosed by the semisphere centred at wg of
radius 2r and lying completely in H; (region III in Figure 5.2).

Thus,
E(Unew, S(w, 2r))
> L(HF N S(wy, 2r) + L(HS O S(wa, 27)) + £(T N HF 0 S(wo, 2r))
= 1a(2r)? + (T N Hy N S(wo, 2r)). (5.15)

To estimate £(T N Hy N S(wp, 2r)), we first give an argument in two di-
mensions. A Pythagorean calculation gives that in two dimensions, the disc

S(wy, 2r) centred at wo makes an intercept of length at least ,/(2r)? — (y%)?
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Wy Wo

H)
Hy

Figure 5.2. Regions I, Tl and III.

with each of the two lines H) and ;. Thus, if diam(W,) > y%, then TnHg n
S(wo, 2r) contains a rectangle of dimension \/(2r)% — (y£)? x y(k/A). Hence,
for A large enough £(T' N Hy N S(wo, 2r)) = 2rp(k/4M).

In general, for higher dimensions, the intercepts on each of the hyperplanes
H| and H, will be (d — 1)-dimensional semispheres of (d — 1)-dimensional

Lebesgue measure at least mq(\/(2r)? — (y")z)d_l Thus, if diam(#,) >
y(k/)), then T N Ho N S(wo, 2r) contains a d-dimensional semi- cylmder
whose base is a (d — 1)-dimensional semisphere and whose height is y 1- Thus,
we have, for large A,

&T N Hy 0 S(wo, 27)) = w1 (2r)*! (5.16)

T

We now use independence obtained from the fact that the event A4 de-
pends only on the configuration inside the ball ,uy%S, whereas the event
{X(Uyew,S(w, 2r)\puy(k/1)S) = 0} depends only on the configuration out-
side the ball pyk/AS, to have from (5.15) and (5.16),

E, (110A {X(UweWpS(w, 2r)\,u,y§5> = 0|W,,} 1,,1,,)
k
< £ (B2 (vuem S 20\ s) =0, 1)
exp (— [nd(zr) @yl (uy— ) ) Pu(4)

IA

4X

k d
exp | —A [n @r? +ma_12rty Y5~ (uyx) ])
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Dyt ~M( 5)"
X p d\ 1y

< exp (—— [And(Zr)d +@d-1) log% +k1[/u(y)]) , 5.17)

where we have used Stirling’s formula in the last inequality. From (5.14) and
(5.17), we see that the lemma holds for any Cs5 with uC3 < 2r. O

We now use the counting method of Lemma 5.2 and the geometric argument
of Lemma 5.3 to study the case when the component is of ‘medium’ size.

Lemma 5.4 For every0 < § andl < oo, there exist constants C4 > 0 and
Ay < 00 such that for A = A,

Pi{8 < diam(W) < I} < exp(—Alma(2r)? + Cal).

Proof Asinthe geometric argument given in Lemma 5.3, here, if diam(#') >
§, then we require that two semispheres of radius 2r each separated by a distance
of at least 8 and a region formed by the intersection of a semisphere and a slab
of thickness at least 8 have to be free of Poisson points. Let this region be
denoted by A. Clearly A4 C [—] ~ 2r,1 + 2r]. The argument given to justify
(5.16) yields in this case that the Lebesgue measure of the region 4 satisfies
LA) > ma2r)? + c1ma—1(2r)3-'8, for some constant 0 < ¢; < 1. (Note
that here § plays the role of y(k/A) of the previous lemma.) Introducing a
lattice approximation as in Lemma 5.2 with a lattice IL of widtha > 0, we
have the inner lattice approximation 4, of 4 given by 4, := U{C : C a cell
of the lattice IL and C C A}. For a < c¢; where ¢ > O is a sufficiently
small constant, we obtain a constant ¢3 > 0 depending on ¢ and ¢3 such that
£(Ag) > ma(2r) + c38. Now A, C [~ — 2r,1 + 2r)?; thus for a fixed a,
there are only finitely many possible choices of A4,. Hence a summation over
all possible 4,’s yields

Pi{8 < diam(W) <1} <) Pr{4, contains no Poisson point}, ~ (5.18)
4

where the summation is over all A4,’s such that A4,’s are unions of cells of
the lattice L and €(A4,) > mq(2r)¢ + c38. Let Ny(= N,(l, 8, 7)) be the total
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number of such choices of 4, possible. From (5.18) we have

P8 < diam(W) <1} < Y exp(—Alma(2r)’ + c38])
Aq

< Npexp(-Ama2r)? + 38D, (5.19)

Taking C4 = ¢38/2, we obtain A < 00 such that for A > A,
exp(—Xic3d + log N,(1, 8, r)) < exp(—ACy). (5.20
Combining (5.19) and (5.20) yields the lemma. |

In the next lemma we apply Lemma 5.3 to take care of small components.

Lemma 5.5 Given B < 00, there exist Cs > 0, § > 0 (depending only on B)
and A3 such that, for A > A3, we have

P, {X(W) =k+ 1,C5-f: < diam(W) < 8]

< exp (-— [And(Zr)d +d- l)klog% + ﬁk]) .

Proof Firstwefix u > 1 and obtain the constant C3 asin Lemma 5.3, Now we
fix 8§ < C3. Observe that the function ¥, of Lemma 5.3 satisfies ¥, (y) — 00
as y — 00, so that we may choose a constant Cs such that the following two
conditions hold:

Yu(Cs) > B +log2, .21

[o.¢]

> exp(—k[¥u(Csp/) — Yu(Cs)D < 1. (5:22)

Jj=1
Let A3 < oo be such that Cs(k/A) < & and for some j > 1,8 < Csu/ (k/A) <
C3 whenever A > A3. We now partition the interval [Cs(k/A), §] by intervals
of the type [Csu/(k/A), Cspu/t (k/M)], j = 0,1,.... Let N be the small-
est integer such that [Cs(k/2), 8] € UN_([Csp/ (k/A), Csp/*! (k/1)). Since
Csu/ (k/r) — oo as j —> oo for fixed A, we have that N is finite. Now observe
that

Py {X(W) =k+1, C5§ <diam(W) < 8}

N
<2 h [ Xy =k +1, Cspl% < diam(b) < csuf“f] . (5.23)
= A A
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Applying Lemma 5.3 to each of the terms inside the summation of (5.23) we
have, for A > A3,

P {X(W) =k+1, c5§ < diam(W) < a}
N A .
< ,go exp (- [).nd(2r)d +(d - Dklog 7 + ku/fﬂ(csuf)])
<exp (— [md(zr)" +d- l)klog% + k\/fu(C5):|>
+ ZN; exp (— [)er(Zr)d +(d - Dklog % + kl/f,,,(C5;Lj):|)
iz

< 2exp (— [Ma@r)“ +(d - l)klog% + kxlfu(Cs)])

< exp (— [m(zr)" +d -k log% + ﬁk]) , (5.24)

where the last two inequalities follow from (5.22) and (5.21). This completes
the proof of the lemma. a

In the last four lemmas, we have covered the case when diam (W) > Cs(k/A).
The next lemma considers the case when the component is very small,

Lemma 5.6 Given any B < 00, there exist Cg > 0 and 4 < 0o such that,
for & > A4, we have Cg(k/\) < 8 and

P, {X(W) =k+ 1, diam(W) < ng}
< exp (— [).J'td(Zr)d + (d - Dklog -2;— + ﬁk:l) .

Proof The proof of this lemma is similar to that of the previous lemma and
as such we just sketch the proof. Here we observe that ¥, (y) - coas y — 0.
Thus we have to choose Cg < Cjs sufficiently small such that

Yu(Ce) > B +log?2, (5.25)

Y exp(—k[WulCop™) = Yu(Co)) < 1, (5.26)
=1
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where p > 1 is a previously fixed quantity. Also, we may choose A4 large
such that Cs(k/A) < C3 for all A > A4 and that ensures that we may ap-
ply Lemma 5.3. Covering the interval (0, C¢(k/A)] by intervals of the type
[Cep=tD(k/2), Cen=7(k/A)), j = 0,1,..., we obtain an inequality as
in (5.23)

P, [X(W) =k+1, diam(W) < Cs-;c-}

00 k .
<) P {X(W) =k+1, Ceu~UtD I < diam@) < C5u’1£] .
A calculation similar to (5.24) using (5.26) and (5.25) completes the proof of
the lemma. (m]

Proof of Theorem 5.3  First observe that taking uo = Cs/Cg, where Cs and
Cg are as in Lemmas 5.5 and 5.6, we have j9 > 1. Also, from Lemma 5.3, for
As large enough such that Cs(k/A) < C3(ug, r) for all A > As, we have

k k
P, [X(W) =k+1, C6X < diam(W) < CS'):}

< exp (- [md(zr)d +(d- l)klog% + kwuo(c6)]) . (2

Now let us collect all our observations. Fix g such that

B> wg(2r)? and 1+ exp(—pgk) <exp (%k) (5.28)
(the need for this choice will be apparent later), and accordingly obtain 0 < /(=
1(B)) as in Lemma 5.2, 0 < §(= §(B)) and C5(= Cs5(B)) < oo as in Lemma
5.5and 0 < Cg(= C¢(B)) < Cs as in Lemma 5.6. For X(W) = k + 1, we see
that, if A > max{A1, A, A3, Ag, As),

(i) (5.12) accounts for the case when diam(#") > [ for some /,

(i) Lemma 5.4 accounts for the case when § < diam(W) </,
(iii) Lemma 5.5 accounts for the case when Cs(k/)) < diam(W) < §,
(iv) Lemma 5.6 accounts for the case when diam(W) < Cg(k/A),

(v) (5.27) accounts for the case when Cg(k/A) < diam(W) < Cs(k/A).

Thus we have accounted for the entire possible range of diam(W#'). Moreover,
the upper bound on the probability obtained in each of these cases is at most
exp(—[Ama2r)? + (d — 1)k log(A/ k) + O(1)1). Thus, we have obtained

PUXW)=k+1} <exp (— [md(zr)d +(d- 1)klog% + 0(1)})
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as A — 0. This along with the lower bound obtained in Lemma 5.1 proves (ii)
of the theorem.

The choice of B comes in to prove (iii). From Lemma 5.2, Lemma 5.4 and
Lemma 5.5, for all sufficiently large A,

P, {X(W) =k+1, diam(#) > csﬂ

< exp (— [)Jtd(Zr)d +(d -1k log% + %k:D (5.29)

and from Lemma 5.6

P, {X(W) =k+1, diam(W) < C6-§]

<exp (— [M’d(Zr)d +d - 1)k log% + ﬂk]) . (5.30)

Combining the lower bound obtained in Lemma 5.1 with (5.29) and (5.30), and
using the second part of (5.28) in the choice of 8, we obtain for all sufficiently
large A
P {X(W)=k+1, diam(W) < Cg(k/2) or diam(W) > Cs(k/1)}
P{X(W)=k+1}

< exp (— [md(zr)d +@=Dklog + %"])

X exp ([).Jtd(Zr)d +(d - Dk log%

k2
+(d— l)klog(en'd(Zr)d) + C;—A— + Ca logk])

< exp (— [%’f —(d - l)klog(end(Zr)d)

k2
+C17 +C210gk]> . (5.31)

Given € > 0, we choose 8 such that (5.28) is satisfied and

exp (— [%IE —(d- l)klog(en'd(Zr)d) + Clg-z + Cy logk]) <€ (5.32)

for all A sufficiently large. Without loss of generality suppose that this A is so
large that k/(2Ams(2r)?~1) < k/(Ama(vy + 2r)?~1), where v, is as in (5.9).
Now choose

a=Ceng(2r)?™" and b=2Csmy(2r)? !, (5.33)
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according to this choice of . For B satisfying (5.28) and (5.32) and a and b as
in (5.33), from (5.30) we have
di
PA{a < JanF) <b|X(W)=k+1} >1—c¢,
44
and this proves (iii).
To show the compression phenomenon we first observe that (5.9) and (iii)
yield that, for all sufficiently large A, with P, probability at least 1 — € we have

k k
>
Ay diam(W) ~

7]
k
bany (Aﬂd @r -1 )

Given € > 0 and M > 0, we may choose A so large that the term on the right
side of the above expression is larger than M and this, along with (5.8), proves
(iv) of the theorem. (]

5.3 Rarefaction

In the previous section the compression phenomenon was obtained by consid-
ering balls of a fixed radius r. A natural question is what happens when we have
varying radius, and in this section we investigate this.

We shall assume throughout this section that the radius random variable p is
non-degenerate and takes exactly two different values;i.e.for0 < r < R < oo,
we have

for some 0 < p < 1. Throughout this section, big balls will always refer to
balls of radius R and small balls will always refer to balls of radius r.

Before we present the formal details, we give some intuitive ideas about the
structure of a bounded component in the Boolean model (X, p, A) when the
density A is very large and p satisfies (5.34). The Boolean model (X, p, 1) is
assumed to include a Poisson point at the origin.

In case the Poisson point at the origin accommodates a big ball and the
component /¥ consists of & big balls (besides the ball centred at the origin) and
I small balls, then a possible structure of the component W is that the centres
of the k big balls and the big ball at the origin are all clustered near the origin,
while the small balls are distributed ‘uniformly’ in the region formed by the
big balls such that none of the smail balls protrude outside the region formed
by the big balls. In this case an annulus of width 2r around the region formed
by the big balls has to be devoid of Poisson points which are centres of small
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balls, and an annulus of width 2 R around the region formed by the big balls has
to be devoid of Poisson points which are centres of big balls. A little thought
shows that it is this structure which would minimize the volume of the annular
region which needs to be free of Poisson points.

In the argument above, we assumed that the origin is the centre of a big ball.
However, if the origin is the centre of a small ball and component # contains
exactly k big balls and / small balls (besides the ball centred at the origin), then,
provided k > 1, the structure of the component W will not be vastly different
from that described in the previous paragraph. Indeed what could happen is that
the centres of the big balls are all clustered together (which need not be around
the origin) and the / + 1 small balls (including the small ball at the origin) are
uniformly distributed in the region formed by the big balls such that none of
the small balls protrude outside this region. Thus the difference between the
structure of the cluster obtained in this case and that obtained in the previous
paragraph involves just a change in the position of the origin.

In case the component ¥ consists of k£ + 1 big balls and there is no small
ball centred in W, then as in the previous section, we will have a compression
phenomenon with all the Poisson points (besides the origin) compressed in a
small region around the origin. A similar phenomenon will be observed when
the component W consists of / + 1 small balls and no big ball is centred in .

Returning to the situation when the component W contains both big and
small balls and a big ball is centred at the origin, we see that the / small balls are
distributed in the region formed by the k + 1 big balls. This region formed by
the £ + 1 big balls contains a spherical region inside it of Lebesgue measure at
least 7, R?. The centres of the small balls may be placed anywhere inside this
region at a distance at least » from the boundary of the region to guarantee that
the small balls do not protrude out of this region. This means that the small balls
may be centred in a region whose Lebesgue measure is at least m;(R — r)9.
Thus looking at the whole picture we see that the k + / + 1 Poisson points
forming the component ¥ are distributed in a region of Lebesgue measure
at least 7;(R — r)? with k + 1 of these points compressed together while
the remaining / are distributed uniformly in this region. This would yield a
rarefaction phenomenon as A — 00, because a region of Lebesgue measure at
least 74 (R — )¢ should typically accommodate A (R — r)? Poisson points.

In this section we will state and prove the result only for the case when the
origin is the centre of a big ball and there is at least one small ball present in
the component W . The case when the component contains at least one big ball
and the origin is the centre of a small ball should follow after tedious technical
details from the previous case and it involves conditioning on the position of a
big ball. We shall omit this case. The details of the case when the component
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W consists only of big balls or only of small balls are similar to those described
in the previous section and as such we omit this case too.

Before we introduce the relevant notation, it may be observed that the intuitive
reasoning given above needs the existence of at least two different sized balls.
Thus the reasoning is valid for any general non-degenerate bounded random
variable p. However, the technical details of the result extend only to non-
degenerate p which has supportin [r, R] for some 0 < r < R < c0. We do not
venture to prove the result for p other than that satisfying (5.34).

Let (Y, R, Ap) be a Poisson Boolean model conditioned to have a point at
the origin and (Z, r, A(1 — p)) be another Poisson Boolean model, where r, R
and p are as in (5.34) and (¥, R, Ap) and (Z, r, A(1 — p)) are independent
processes. The superposition of these two Boolean models is a Boolean model
which is equivalent in law to a Poisson Boolean model of density A and radius
random variable o conditioned to have a point at the origin with a ball of
radius R. Throughout this section 0, y;, )2, ... represent points of the point
process Y and z, 23, . . . represent points of the point process Z. Let Wy and Wz
denote the occupied components of the originin (Y, R, Ap) and (Z, r, A(1 - p)),
respectively, and let W denote the occupied component of the origin in the
superposition of these models. Clearly W 2 Wy U Wz.

Forl>1,k>0,let

{#W = (k, D)} .= {the origin is the centre of a big ball and W contains
exactly £ 4+ 1 points of ¥ and / points of Z}.

As a measure of the size, for any set S containing the origin, let

rad(S) = sup{d(0,x) : x isapointof Y * Z in S},
rady (S) = sup{d(0, y) : yis a point of Y in S},
radz(S) = sup{d(0, z) : z is a point of Z in S},

where d(-, ) denotes the Euclidean distance on R?.

Theorem 5.4 Let (X, p, A) be a Boolean model with p as in (5.34). Forl > 0
and k > 1 fixed, all functions a()) with a(L) —> 0 as A — o0 and for every
€ > 0, we have, as . — oo,

1) P.(#W = (k, I)|the origin is the centre of a big ball)
=exp(—AmgE(p + R)? + (I — (d — Dk)logr + O(1))
(i) Pi(rad(W) > a(\)|#W = (k, 1),
the origin is the centre of a big ball) — 1,
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(i) Pr(@(2) < €l#W = (k,]),
the origin is the centre of a big ball) — 1,

where ¢ (L) is the relative density as introduced in the previous section.

The proof proceeds as in the last section. In the first lemma we obtain a lower
bound, while in the subsequent lemmas we obtain an upper bound. In all the
lemmas, we shall be working on the superposed model (Y, R, Ap) * (Z, r,
A(1 = p)) and as such P, will incorporate the condition that there is a big ball

at the origin. As in the previous section, S denotes the unit ball centred at the
origin,

Lemma 5.7 For k and | fixed, as ). — 00,

P\(#W = (k, D}
> exp(—AmE(p + R)? + (I ~ (d — DDk) log A + O(1)).

Proof Given that there is a big ball at the origin, if the remaining & big balls
are placed in the region a(k/A)S where & = (pmg(2R)?~1)~!, and A is so
large that ae(k/A) < 2R, then the k big balls, together with the ball at the origin,
are in the same component. (Note, as obtained in the previous section, a(k/A)
corresponds to the optimal diameter of the Poisson points in the component W
when the Boolean model consists only of big balls; i.e. p = 1.) Now centre
the / small balls in the region (R — )S. If an annular region of width R of the
component Wy formed by the k + 1 big balls is free of Poisson points of Y and
an annular region of width r is free of Poisson points of Z, then W = Wy and
#W = (k,1). Thus

P#W = (k, D}

> P {Y(a%S) =k, Z(R-1S) =],

y <<2R +a§) s\afs) =0,
z (((R +r)+a§) s\ - r)S) = o}

d
= exp (-—A [p:rd (a-g) + (1 = pra(R — r)d])

y [Apra(atk/2))?1% (A(1 = p)a(R — r)d)
k! Il
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d d
X exp (—Apnd [(ZR +a-§) - (af) ])
k d
X exp (—-A(l - P [(R +r4+ aX) - (R- ,)d])

= exp(—Ama[pQRY + (1 — p)(R + r)?])

d ¥
X exp (-—).erpz (d) (af) (2R)d—j)
RS

d J .
X exp (——)Jtd(l - p)z (‘Ji) (ag) (R+r)d—1)

=

, Dpra(a (/W) (A1 — p)ma(R = )Y
k! It

= exp(—Aa E(p + R)?)

d J
 exp (—mz () (£) 20 +R>d—f)
j=l

. Ao (e (k/M)) 1 (AL = p)ma(R ~r)?)
k! N )

Using Stirling’s formula for k! and /!, and noting that the quantity

d j )
Amg Z (d) (af) E(p+ R)d"
=AY
is O(1) as . — 00, we have

P#W = (k, 1))

> exp (—MrdE(p +R¥ +(d -~ l)klog-l)%

A(l —
+llog ( ] P)

+ llog(emy (R — r)?) + 0(1))

> exp (—).JtdE(p + R+ (—-@d—-Dk) logf.- + 0(1)) . a

As in the previous section, we shall show an upper bound on the probability
of obtaining ## = (k, /). In the next two lemmas we show that the probability
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that there is a Poisson point of either Y or Z at a distance at least R away from
the origin is significantly smaller than the lower bound obtained in Lemma 5.7.

Lemma 5.8 For some positive constants Cy, Cz, C3 and C4, we have
P, (#W = (k, 1), rady (W) > 2R}

A R\
< exp (—)erE(p + R)d - Eprrd (—2—> + Cik + Czl) (5.35)

and

P (#W = (k,]), radz(W) > R +r}
A
<exp (—MdE(p + R~ 5(1 — pP)1d (5

d
2) + Cak + c41) . (5.36)

Proof Let

A; = {Y(2R)S) =i} fori=0,1...,k,
B .= {Z(R+r)S)=j} forj=0,1,...,L

Since the origin is the centre of a big ball, if #% = (k, [) and rady (W) > 2R
there can be at most k£ — 1 points of ¥ besides the origin in the ball (2R)S, while
at most / small balls can be accommodated in the ball (R + r)S. Also if ymax
is the point of Y in W which is farthest from the origin, then | ymax| > 2R and
the hyperplane passing through ymax and perpendicular to the line joining the
origin to ymax divides the space into two half-spaces such that the ball (2R)S
and all the Poisson points of Y in W lie on one half-space H; (say) and in the
other half-space H, (say) there is no point of ¥ which is at a distance less than
2R from ymax. This means that there must be a semisphere I'(ymax) of radius
2R centred at ymax and lying in H, which contains no points of Y.
To make this formal, we need a conditioning argument. First note that

Py (#W = (k,1), rady (W) > 2R}
k!
<Y P#W =(kI), mR < rady(W) < (m+ D)R).

m=2

To estimate the summands, we condition on W), the position of the Poisson
points of both Y and Z in the ball (m + 1)RS. Let ymax be the farthest point of
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Y in W, which is connected to the origin in #,. From our discussion

P, {(#W = (k,1), mR < rady(W) < (m + )R}
k-1 I

s > E(AUY (T Gmax)\(m + DRS) = 0} 4; O B;|W))
=0 j=
k=1 1
=Y > Ex(P({Y(T (max)\(m + 1)RS) = 0}|Wp)14,13))
i=0 j=0
k=1 1
< exp(—Apma(R/2)%) Y Y~ P(4) Pr(B)). (537)
i=0 j=0

In the last inequality above we have used the fact that the events 4; and B; are
independent and that the distribution of the Poisson process outside (m 4+ 1)RS
is independent of Wp.

Now

k—1 |
Y Pu(4) Pu(B))

i=0 j=0
= exp(—Amg E(p + R)%)

=1 ! di — d
Sy [Apnd(zk) I A1 p)ﬂjd'(R 0V 538
i=0 j=0 .

Let ¢; > 1 and ¢; > 1 be constants such that

R\ R\
<2R>d5%(—2-) and (1—p>(R+r>dsf43p(5) .

With this choice of ¢ and ¢;, we see that

"Z‘f Z’: [ApmgRRYT [AM(1 — p)ma(R +r)?V
i=0 j=0 ' ']'

L Apmget B2 (prac B2V
5 I Aprgcer >
<y ,.
i=0 j=0 : :

&0 ApT TapmasV
SC{tCéZZ[p dT] [pdT]

i1 i1
=0 j=0 " J:

= c’l‘clz exp(Apnde). (5.39)
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Combining (5.37), (5.38) and (5.39) we obtain (5.35) with appropriate positive
constants C and C».

The proof of (5.36) is similar and as such we present only an outline of it.
Since the origin is the centre of abig ball, if #% = (k,[) andradz (W) > R+r
there can be at most / — 1 small balls centred in (R + r) S and, besides the ball
at the origin, at most & big balls centred in (2R)S. As in the previous part, we
obtain a point zy,x and a semisphere T”(Zmax) of radius 2r which is free of
Poisson points of Z. Eventually, choosing ¢3 > 1 and ¢4 > 1 to satisfy

pery < 2a-p(5) ma @ent <L)

we obtain the desired inequality (5.36). O

Lemma 5.9 There exist positive constants Cs, Cg, C7 and Cy such that

P {#W = (k, 1), R < rady(W) < 2R}
< exp(—AgE(p + R = ACsmg_ 1 R® + Cgl) (5.40)

and

Py (#W = (k,]), R < radz(W) < R +r}
< exp(—Amg E(p + R)? — ACima_1r? + Cgk). (5.41)

Proof Throughout this proof, with a slight abuse of notation, we shall write
Y N C for the set of all points of Y in a region C C IR?. First observe that if
rady (W) > R then diam(Y N W) > R, where diam denotes the diameter of
a set as introduced in the previous section. If W, denotes the position of the
Poisson points of both Y and Z in 2RSS, we can find two points y; and y; in
Y O Wp which are the farthest apart among all pairs of points in ¥ N W), and let
Yo be the point in ¥ N W, which is farthest from the line joining y; and y2. As
in the proof of Lemma 5.3, we obtain half-spaces H), Hz and Hp, such that H,
and H, are disjoint and there exist two semispheres of radius 2 R centred at y;
and y, respectively and also a region in Hy formed by a semisphere of radius
2R and bounded in the slab lying between the half-spaces H; and H, which are
all free of Poisson points of Y. If d(yy, y2) > R, then (as justified in the proof
of Lemma 5.3) the last region described above will have a Lebesgue measure
at least Ry (2R)4~! for some constant 0 < ¢ < 1. Moreover, since there
is a big ball at the origin, there can be at most / small balls centred in (R +7) S.
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A conditioning argument as in the previous lemma yields

P, #W = (k,]), R < rady(W) < 2R}
(A pR)?)*

< exp(—Ama p(2R)?) x

exp(—Aicrg—_; Rd)

I Aa(l — p)(R + r)?Y
x Yexp(—imy(l = p)(R -+ ) FHCZDEL DL,
Jj=0 !

Now choosing positive constants Cs and Cg suitably as in the previous lemma,
we obtain (5.40).
The proof of (5.41) is similar and we omit it. O

In the next lemma we consider the case when the big balls are centred in the
optimal cluster region (a(k/A))S for the big balls where « is as in the proof of
Lemma 5.7.

Lemma 5.10 There is a constant Cy > 0 such that

Py I#W = (k, 1), rady(W) < a%, radz(W) < R]
<exp(—AmgE(p+ R + (I — (d — Dk)logh + Cok),  (5.42)

where @ = (prg(2R)?"1)~L.
Proof

Py [#W = (k,]), rady (W) < a%, radz(W) < R}

k k
<P, [Y(aKS> =k Y((ZR)S\aXS> =0,

Z(RS)=1, Z(R +r)S\RS) = 0}

d kyd1k _ dyl
SGXP(_AW (ailg) _ m_me,,) [hpma@§)'F (A1~ p)maRY]

k! I!
k d
X exp (—m [p ((2R)d - (ax> )

+U=pR+r)? - Rd)]). (5.43)
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The lemma follows from (5.43) by an application of Stirling’s formula for a
suitable Cog. 0

To take care of medium-sized clusters, we need aresult similar to Lemma 5.3.

Lemma 5.11 Let i > 1 and define, for y > 0,

i-1(2R)?!
Yu(y) = E—d—l-gz—)—y — log(epman®y?).

There exists a constant C1g > 0 such that, for A large with uy(k/)) < 2R, we
have

k k
Py [#W = (k, 1), yx < I'adY(W) < [Lyx and radz(W) < R}
< exp(=AmaE(p+ R + (I = (d = D) log A — kv, (3) + Cro(k)).
Proof The proof closely follows the proof of Lemma 5.3. Let
A

Ny =YnN (;Ly-li) S, MNz:=ZNRS
and let
A:= [Yﬂ (M;) S =k], B:={Z(RS)=1}.
Fora > 0 let

Sy (@) := Uyemip\iop SO @), Sz(a) := Uzen; S(z, a).

If uy(k/L) < 2R, then all the big balls are in the same component, and so, as
in (5.14), we have

k
P, {#W = (k, 1), yx < rady(W) < ;Lyéz- and radz (W) < R]

k k
=E, (PA {#W = (k, 1), yy < rady(W) < my

and radz(W) < R|I1y, Tz})

= E, (mm [ Y ((SY(zR) USzR+mM\ (uyf) S) =0,

Z((Sy(R +r)U Sz(2R)\RS) = O[Ty, nz]). (5.44)
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Since there is a big ball at the origin, £(Sy (R +r)\RS) > ma((R +r)? — R%).
Also, ifrady > y(k/A), then exactly the same argument as used to justify (5.15)
and (5.16) yields

k k k\¢
¢ (Sy<2R>\ (uyx> s) > 7aQR)? + 141 QR y i — 74 (uyx) :

Combining this observation with (5.44) and using independence properties we
have

P {#W =&k, D y% < rady(W) < //,y; andradz (W) < R} (5.45)

k d
< exp (—)»pmz (uyx> - AM1- p)zrde>

 Ppra(uy (/) A — p)waRYY
k! I

k k\¢
X exp (—)»p [nd(ZR)d + nd_1(2R)d‘1y4—)‘ -y ("W) ])

x exp(—Ama(1 — P((R+r)* — RY))
< exp(—AmgE(p + R)? + (I — (d — Dklogh
— k() + Crok), (5.46)

for some positive constant Cjg, where we have used Stirling’s formula in the
last inequality. O

We use the previous lemma to take care of medium-sized components.

Lemma 5.12 There exists B < o0, a positive constant Cy1 and ho < 00 such
that, for A > A,

k
P {#W = (k, 1), ﬂx < rady(W) < R, radz(W) < R}
< exp(—AmgE(p+ R + (I = (d — Dk)log A + Cy1k).

Proof Fix p > 1 and choose B large such that ¥, (u/B) > j forevery j > 1.
(Note, the function v, admits such achoice.) Let Ag be such that, forall 1 > A,

k k
ﬂ/,l,x < r and, forsome j > 1, R < ,B;fo < 2R. (5.47)



5.3 Rarefaction 149

Let N := min{;j : B’k > R}.From(5.47), N > 1. As in Lemma 5.5 we cover
the interval (Bu(k/X), R] by intervals of the type Bud ~V(k/A), Bud (k/1)],
j=0,1,..., N — 1, and apply Lemma 5.11 to obtain, for £ > 1,

k
P, [#W = (k, 1), 'B_): < rady(W) < R, radz < R}

N-1
< E Py [#W = (k. D), ,BMJE < rady(W) < Bu/*' =, radz(W) < R}

N—-1
< Y exp(—AmgE(p+ R + (I — (d - 1)k) log X
j=0

—kYu(Bu’) + Crok)
< exp(=AmgE(p + R + (I — (d — 1)k)logA + Cyok)
N-1

x 3 exp(—k¥u(Bu))
j=0

< exp(—Amg E(p + R + (I — (d — k) logx + Ciok)
o0
x D exp(=kj)
e

< 2exp(—=AmgE(p + R + (I — (d — )k) log A + Cyok).

This proves the lemma. 0O

Proof of Theorem 5.4  To begin with, we observe that Lemmas 5.8—5.12
obtain upper bounds for all possible radii of the component W except the case
when a(k/A) < rady(W) < B(k/A) (if @ < B) and radz (W) < R. For this
case, we may apply Lemma 5.11 with 4 = 8/« > 1 to obtain

k
Py [#W = (&, 1), a% < rady(W) < ,Bx, radz < R}

< exp(—AmgE(p + R + (I — (d - 1)k) log A
— k(@) + Cr2k), (5.48)
where Cyz is a positive constant depending on u.

‘The upper bounds obtained in (5.48), Lemmas 5.8,5.9, 5.10 and 5.12 together
with the lower bound obtained in Lemma 5.7 prove (i) of the theorem.
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To prove (ii), we observe that, for 0 < a(A) < R —r,
P rad(W) > aQ)[#W = (k, D}
< P, {radz(W) > aQV)|#W = (k,D)}. (5.49)

Since a big ball is placed at the origin, if radz (W) < R, the small balls may be
centred uniformly in (R — r)S without affecting the component. Thus,

a(x) >dl

—r

P radz(W) > aQ)#W = (k, ), radz(W) <R} >1-— (
(5.50)

Now choose a(A) such thata(A) — 0 as A — o0, to obtain, from (5.49), (5.50),
(5.36), (5.41) and (i) of the theorem,

Pifrad(W) > a(L)|#W = (k, 1)} = las . — oo.

Finally,
k+1+1 o _kt1+1
MWy) ~ Amg(rad(W))¢’

In (ii) if we choose a()) such that a(A) — 0 and Aa(A)? — o0 as A — o0,
then we have, as A — 00,

Q) =

Py [¢(A) < k+l+},|#W = (k,l)} - 1.

mara(l)
This proves (iii). 0o

5.4 Notes

Kertesz and Vicsek (1982) conjectured, based on simulations, that the critical covered
volume fraction should be a universal constant for all Poisson Boolean models. In
Phani and Dhar (1984) a heuristic argument was given showing that this is not the
case, and finally the conjecture was disproved (Theorem 5.1 above) in Meester, Roy
and Sarkar (1994). The results in Section 5.2 are due to Alexander (1991), and the
results in Section 5.3 are taken from Sarkar (1994).
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The Poisson random-connection model

A random-connection model (RCM) which is driven by a Poisson process with
density X and connection function g will be denoted by (X, g, 1). In this chapter
we will always assume that X has a point at the origin. In Section 1.5, we defined
g as a function from R into [0, 1], and two points x; and x; of X are connected
to each other with probability g(|x; — x21). It will be convenient however, to
define g as a function from R into [0, 1] with the following restrictions:

g(x) = g(y) whenever |x| =1y,

and

g(x) < g(y) whenever |x] > |y|.

The only reason for this different point of view is that the notation and formulae
will be somewhat simpler.

As in Boolean models, some restrictions on g are necessary in order to obtain
a non-trivial model, i.e. a model with a non-trivial phase transition. The first
section of this chapter is devoted to that problem. In the second section, we shall
derive some useful but technical results concerning the connection function g. In
the third section, we shall demonstrate that unlike the Boolean model, equality
of the two most important critical densities is always true here. Further topics
in this chapter are uniqueness and high-density processes.

Unfortunately, the proofs in the RCM tend to be quite technical. To some
extent, this is the price we have to pay for allowing a large class of connection
functions. The ideas behind the various proofs, however, are very often not so
hard to grasp, and we shall always try to give the reader an idea of what is
going on. Some words about the notation: we denote by W (x) the component
containing the point x of X, and W denotes the component containing the
origin, The cardinality of a component W is denoted by | W |. The origin itself is
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as earlier denoted by 0. The probability measure in the model will be denoted
by Pu.g = P. = P, when no confusion is possible and the corresponding
expectation operator will be denoted by E,,g) = Ey = E.

6.1 Non-triviality of the model

It is not hard to see that for certain functions g, no finite components exist
a.s. For this, we just take a look at Proposition 1.3. If ¥ denotes the (random)
number of points of X which are connected directly to the origin, then we see
that

¢ Jpa 80 dx O fe i (!x)_dx)k .
Hence, if [, g(x) dx = oo, then P(Y = k) = O for all k£ and the conclusion
is that Y = oo a.s. This is true for all A > 0, and it implies that percolation
occurs for all positive values of A. So in order for the model to become more
interesting, we need the condition

P(Y =k) = (6.1)

0 </ g(x)dx < o0. 6.2)
R4

Our first result shows that this necessary condition is also sufficient for the occur-
rence of a non-trivial phase transition. We write 6g(1) = 0(A) = Py g(IW| =
oo) and x (M) = xg(A) = Eq g (IW)).

Theorem 6.1 Consider a Poisson RCM (X, g,A) in R?, ford > 2. If g
satisfies (6.2), then there exist two densities 0 < Ar(g) < Au(g) < 00 such
that

(1) x(A) < ocoforr < Ar(g), and x (1) = oo for A > Ar(gQ).
(2) 6(A) =0for . < Ag(g) andB(X) > O for » > Ag(g).

Proof Using coupling as before, we see that both x and 6 are non-decreasing
in A, whence it is clear that A7(g) and A 5 (g) with the properties in (1) and (2)
exist and that A7 (g) < Ag(g). It suffices therefore to show that A7 (g) > Oand
that Ay (g) < oo.

We need to show then, that for A sufficiently small (but positive) the expected
size of W is finite. We tackle this problem with a branching process argument to-
gether with coupling. The branching process argument is quite similar to that in
Chapter 3. As we saw in (6.1), the expected number of points connected directly
to the origin is equal to A [ g(x) dx. More precisely, the points connected
directly to the origin form a non-homogeneous Poisson process with intensity
function Ag(x). We denote this point process by Xo. We are going to ‘build’ a
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Poisson process as the superposition of many non-homogeneous Poisson pro-
cesses as follows. Suppose that the points of Xg are given by x1, x2, ..., x,. We
call this the points of the first generation. To construct the second generation
we proceed as follows. Take the first point, xj, of the first generation, and su-
perpose it with a non-homogeneous Poisson process X’ ll with intensity function
A(l — g(x))g(x — x1) and which is independent of Xj. The occurrences of X 11
are the second generation points coming from x) and they represent all points
which are connected to x; (and possibly to x3, ..., x,) but not to the origin.
For x2, we take another non-homogeneous Poisson process X 12 with intensity
function A(1 — g(x))(1 —g(x —x1))g(x —x2), independent of Xy and X 11 . These
are the points of the second generation coming from x2 and they represent all
points which are connected to x2 but not to the origin and x;. We continue this
procedure in the obvious way, obtaining non-homogeneous Poisson processes
X{,..., X which are all independent of each other. For each i, the intensity
function of X { contains the factor g(x — x;) and therefore X { can be coupled to
independent non-homogeneous Poisson processes X 1’ with intensity functions
Ag(x — x;) such that the occurrences of X 1’ are a subset of the occurrences
of X f . The total number of points of X 1’ is a random variable with a Poisson
distribution with parameter A fjps g(x —x;) dx = A [pa g(x) dx. Hence, in the
coupling just described, the total number of points in the second generation is
bounded from above by the total number of points in the second generation of
an ordinary Galton—-Watson branching process with expected offspring equal
to A frs &(x) dx. In general, the number of points in the n-th generation is
bounded from above by the number of points in the n-th generation of such
a branching process. It is well known (see e.g. Grimmett and Stirzaker 1992,
Lemma 5.4.2) that the expected number of points in the n-th generation of an
ordinary Galton—Watson branching process with expected offspring u is equal
to 1. Hence, the expected number of points in W satisfies

o0 n
IXUOEDD (x [, dx) . ©63)
n=1

Thus, if g satisfies (6.2) we can choose A < (fps g(x) dx)“1 to make the sum
in (6.3) finite. This shows that A7 (g) > (/s g(x) dx)™" > 0.

For the second part of the theorem we need to show that for A sufficiently
large, we have |W| = oo with positive probability. For this, we use the notion
of the Lebesgue set of a function g. This is defined as the set of points y € IR?
such that

lim(2¢) ¢ / 18(x) — g(y)ldx =0, (6.4)
€0 yi R,
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where B = [—¢, €]? and y + B denotes the set {(y +x : x € Be). Itis
well known (see Rudin 1970, Theorem 8.8) that the Lebesgue set of g has
full Lebesgue measure. Hence we can select d linearly independent points
Y1+ .. yd which are all in the Lebesgue set of g and for which g(3;) > 0,1 =
1,...,d.From (6.4) it follows that we can find § > 0 such that for all ; and for
all boxes B with side length at most § containing some y;,

_/B g(x)dx > 14(B)g(). (6.5)

for all i. At the same time, § can be taken so small that all sets of the form
myi +---+ngyqa + Bs =: Bs(my,...,nq), my,...,ng € Z, are mutually
disjoint.

For any edge e in Z9 between vertices (11, ..., ng) and (my, ..., mg) with
Zf':l In; —m;| = 1, we place an independent Poisson process X, with density
(2d)~ ! 1 onthe boxes Bs(nj, ..., ng) and Bs(mi, ..., mg).Onthe complement

of the union of all these sets, we place a Poisson process X* with density A,
independent of all other processes. The superposition of X* with X, for all
edges e yields a homogeneous Poisson process X with density A on IR,

Letn = (n1,...,ng)andm = (my, ..., my) be such that Z}i:l Ini—m;| =
1 and let e be the edge between n and m. Then B (m) canbe written as Bs(n)+y;
for suitable i, Given a point x of X in the box Bj(n), the probability that x is
not connected to any point of X, in Bs(m) is then equal to

exp (—A(zd)" f gy - x)dy)
B;

< exp (-1 S o) g)
= exp (—2ad) ™! @8 0) ©6)

where Bs = Bs(my,...,my) and where we have used (6.5). Now we can
perform independent bond percolation on Z¢ as follows. The cluster C of
the origin in this discrete percolation model is built in steps. We start with C
consisting of the origin only, and define xp to be the origin. In an inductive
fashion, assume that C consists of a finite number of vertices such that for
each n € C, we have chosen a point x, of X inside the box Bjs(n). Next we
consider an edge e between » and m which has not been considered before,
such that n belongs to C, but m does not. If no such edge exists we stop,
but if it exists we check whether or not there is a point of X, in Bs(m)
which is connected to x,. If such a point exists we choose one, denote it
by xm and add m to C.
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It follows from the construction and (6.6) that the cluster C obtained by this
procedure can be seen as the cluster of the origin in discrete bond percolation
with parameter at least miny<;<g{1 — e~*) "' @800} Hence for A suffi-
ciently large, the probability that the cluster of the origin is infinite (which
means that the inductive procedure above does not stop) is positive. But if C is
infinite, then certainly the component W in the underlying RCM is unbounded.
This observation completes the proof of the theorem. mi

6.2 Properties of the connection function

In this section we collect some technical results which will be used later. At
this stage, the idea behind the various definitions might not be so clear, but
the readability of the subsequent section certainly increases if we isolate all
technical lemmas. Readers not interested in technical details may just note the
statements of the results and move on to the next section.

First, we define three functions based on the connection function g.

Definition 6.1 For L > 0, the function g1 : R? — [0, 1] is defined as

gr(x) =1— []( - gx+2L2)). (6.7)

zezd

Definition 6.2 Fory, x1, ..., xx € IR?, let &1(y; x1, ..., xi) be the prob-
ability that in the random graph with (non-random) vertices y,x, ..., Xk
and connection function g, the point y is not isolated. Furthermore, g»(x,

..y Xk) is defined 1o be the probability that the graph with vertices x1, ..., Xk
and connection function g is connected.

It is clear from the definition that g7 (x) = g(x) for all L and x. Here are some
further properties of g and gj.:

Proposition 6.1

(i) For every L, the function g1 is continuous almost everywhere (with
respect to Lebesgue measure).

(ii) Forall € > 0, we have, for all L large enough, g1 (x) — g(x)} < €, for
allx € By.

(i) imy voo [, 8100V dv = [iou (x) dx.
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Proof (i) As g is a non-increasing function of the absolute value, its set of
discontinuities has Lebesgue measure zero. Hence, we can restrict our attention
to those x for which g is continuous at all points of the formx + 2Lz, z € z4.

First suppose x is such that g(x +2Lz) = 1 forsome z € Z 4 Then of course
g1 (x) = 1. For any sequence {xy,} converging to x we have that g(x, +2L.z) —
1 and it follows that also g7 (x,) — 1.

Now suppose g(x + 2Lz) < 1 for all z. This implies that g(x + 2Lz) is
bounded away from 1. Furthermore, if {x,} converges to x, it follows from
the continuity of g at all points x + 2Lz and the fact that g(z) tends to zero
whenever |z| tends to infinity, that g(x,, + 2Lz) is uniformly bounded away
from 1, for all z and for all n large enough. We now have — log(1 — g, (x)) =
Y sezd —log(l — g(x + 2L2)). It is enough to show that we can interchange
limit and sum in the expression limp—, 00 3, z¢ — log(l — g(x, + 2Lz)). This
is not hard, we write, for large K:

> —log(1 - glxs +2L2))

|lz|>K
= Z log((1 — g(xn +2L2))™YH
|z]> K
=D log (1 + Y (glxn + 2Lz))k) -
lzi>K k=1

This is bounded from above by

g(x, +2L2)
———<C g(x, +2L2),
ik 1 — g(x, +2L2) |Z|Z>:K

for some constant C. This tends to zero uniformly in n when K — 00, using
condition (6.2).

For (ii), let x € By, be arbitrary. For any € > 0, we can take L large enough
so that

[T ¢ ~-gtx+2L2)
zeZ9\0
>1- Y glx+2L2)
2eZ9\0

zl—/ gydy=1—e
RI\By_

(Here we use the integrability condition (6.2).) For such L, we thus find that
1 —gr(x) = (1 — €)1 — g(x)), which implies that gz (x) — g(x) < €. As
g1 (x) = g(x) for all x, the result follows.
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For (iii) we write

g =1-[[a-gx+2L2) < Y glx +2L2).

zeZ4 zeZ4
Thus, on the one hand,
/ gL(x)dx < f 3 gtx +2L2) d
By By ,cz4
= Z/ glx+2Lz)dx
zeZ9 By
= / g(x)dx.
Ré
On the otherhand, f B, gL(x)dx = f BL g(x)dx, which convergesto f Ra 8(x)dx
when L — oo. (]

The next result explains why g; and g are defined the way they are:

Proposition 6.2 Consider a Poisson RCM (X, g, A) in IR4. It is the case that

Ak_l
P(W =k,WCB)=———/ 20, x1, ..., x¢-1)
d " e = 1) Jp,xxB,

X exp <—A'./;zdgl(y; 0,x1"°-sxk—-1)dy) d(xl,...,xk_l). (68)

Proof Wedenoteby E(k, n) theeventthat |W| = kand W C B,.Conditioned
on the event that X(B,) = m, form > k — 1, we know from Proposition 1.2
that the m points of X in B, are uniformly distributed on B,. This implies that
(remember that the origin always belongs to W)

P(E(k,n)| X(By) =m) = ( " 1)<2n)—""'

k
x/ / PPW =1{0,x1,....,xk-1)dx1---dxm, (6.9)

where P’ denotes the probability measure of a RCM where we superpose the
origin 0 and the points xj, ..., X, —1 With a Poisson process with density A on
the complement of B,,, and connect any two points according to the connection
function g as usual.

The probability that a point y is connected to at least one of the points
10, %), ...y xg—q) 08 g103 0, xq, ... xx—1) by definition. Hence the probability
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that no point of the Poisson process with density A on the complement of B, is
connected to any of the points 0, xi, ..., xk is equal to

ex —)./ (;O,x,...,x_)d).
P( M\B,,gly 1 k—1)ay

From the definition of g> we then obtain

PW ={0,x,....,%-1) = 20, x1,...,xk1)

X €eXp (—lf a1y O,X1,...,Xk—1)dy)
R4\ B,
m
x [0 = 2163 0, %1, ., 3ie-)).
i=k

This we substitute into (6.9) to obtain

P(E(k,n) N (X(B,) = m)) = e @ am ((k _ 1)1m — (k — 1))~

X/ 20, x1,..., Xk—1)
n By

X exp (—l/ g O,xx,...,xk-l)dJ')
RI\B,
m—(k—1)
x ( ( —gl(z;O,xl,‘-..xk—n))dZ) dxy - -dxg-1.
Ba

Summing this last expression over m > k — 1 yields

e—M2n) 3 k-1
PEG ) = S f fgz(O Xl 5te)

X €Xp {lfB (1—g1(z;0,x1,...,x-1))dz

—A/ gl(y;O.xn.-..,xk_l)dy} dxl---dxk_l
RA\B,

e—r2@n) 3 k-1
T T k=D -/;?-“./); 2200, xy,...,x-1)

X exp[—Afdgl(y;o,x,,...,xk_l)dy+A/ dz]
R n

dxy -+ -dxp-q



6.3 Equality of the critical densities 159

Ak—l
= (k_l)"/l; -..'/.B gz(o,xl,...,xk_l)

X CXP{—Afmdgl(y;O,m,---.xk—l)dY} dxy - dxg-.

()
Finally, we shall need the following result:
Proposition 6.3 Suppose that g has bounded support. Then we have
l}illli%f 1A~ fmd |g(x + h) — g(x)|dx > 0. (6.10)

Proof It is easy to see that

/ (g(x — h) — g(x))xdx = h/ g(x)dx.
R4 R4

Hence it follows that

/ Ix|-lgx — h) — g(x)|dx > IhI/ g(x)dx.
R4 R4

We can find a number r > 0 such that g(x) = 0, whenever |x| > r. If |h| < 1,
then both g(x — &) and g(x) are zero for x satisfying |x{ > r + 1. It follows
that for & with (4] < 1 we have

|h|/ gy dx < (r+1)f Ig(x — h) — g(¥)] dx,
y: 4 R4

which implies the desired result because | R &x)dx > 0. (]

6.3 Equality of the critical densities

The critical densities A y (g) and A1 (g) defined in Section 6.1 satisfy the obvious
inequality A7 (g) < Ag(g). It is a very natural question as to whether or not
these densities are actually the same. In Chapter 3 we proved that this need not
be the case in a Boolean model. The reason for this latter fact is that one ball can
give rise to a very large volume. This phenomenon does not occur in random
connection models and we can prove the following result:

Theorem 6.2 For every connection function g we have

Au(g) = Ar(g).
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As far as condition (6.2) is concerned, note that if |, Rd 8x)dx = oo, then
Au(g) = Ar(g) = Oandin case [ps g(x)dx = 0, then Ay (g) = Ar(g) = c0.
Note that Theorem 6.2 implies the corresponding statement in Boolean models
with fixed-size balls, i.e. in the case where g(x) = [{x<,) for some positive
r. As in the proof for the Boolean model, the proof which we shall give here
uses discrete approximation of the model. It is easy to get completely lost in
the proof of Theorem 6.2, so it pays to take a moment to explain the strategy of
the proof.

The first step of the proof is to introduce an extra parameter 0 < ¥ < 1inthe
model, in such a way that the original model can in some sense be viewed as the
limit for y — 0. In the second step, the new model (with the extra parameter y)
is then approximated by a discrete percolation model in a finite box. Here we
encounter a difficulty. It is necessary to have a notion of stationarity also in
the model in a finite box. This is not automatically the case, because different
points have different positions with respect to the boundary of the box. Hence
we adapt our model to this end. It is here where we use the map g; defined
previously. In the third step, we derive two fundamental differential inequalities
governing the behaviour of the important quantities in the discrete model in the
finite box. The next two steps consist of limit procedures: one to go from the
discrete model at finite volume to the continuum model at finite volume, and
the other from the continuum model at finite volume to the continuum model
on /R?. Finally, we are left with two differential inequalities in the model with
the extra parameter y and then it is not hard to prove that these inequalities
imply the desired result.

STEP 1: Let us start then with the introduction of the extra parameter y.
Consider a realisation of the point process X. We label each point of X with
probability y, where y is assumed to be strictly between O and 1. The (random)
set of labelled points is denoted by G. The idea behind the labelled points is
to see them as surrogates for ‘the point at infinity’. If we denote by 6(%, ¥)
the probability that the component of the origin W contains a labelled point,
then by taking y smaller and smaller, it is likely that # should be larger and
larger in order to contain a labelled point. In a similar fashion, x (A, ) denotes
the expectation of |7} on the event that W does not contain a labelled point:
x4, v) = E(IW!] - lywng=a). It is in the following sense that the original
model is retrieved by taking the limit for y — 0.

Lemma 6.1

() limy,08(A, y) = 6(A),
(ii) limy0 x (A, ) = E(W| - 1w <oo))-
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Proof If |W| = oo, then with probability one W contains at least one labelled
point. The labelling is independent of the percolation structure and hence we
can write

O, y) =1=) P(WNG=0||W|=n)P(W|=n)

n=1

[e.¢]
= 1= (0 =y)"P(¥|=n).
n=|\
This is a power series in (1 — y) with radius of convergence at least 1, and we
can take the limit for y — 0 to obtain (i). For the second result, we write

X(.y) =3 nPWNG=0|W|=n)P(W|=n)

n=l
o0
=Y n(l—y)"P(W|=n).
n=]
Taking the limit for y — 0 gives (ii). m]

It is therefore natural to define 8 (A, 0) = 6(1) and x (%, 0) = x/ (1), where
x” (1) is the expected size of the component of the origin on the event that it is
finite.

STEP2: We continue with the second part of our programme, the approxima-
tion of the model by a discrete percolation model in a finite box. One important
feature of this discrete model is that both vertices and edges are randomly cho-
sen to be either open or closed. In order to define the approximating models, we
choose two parameters L and n, both integers. Let B; be the box [—L, L) and
divide this box into little boxes of side length 27". Put a vertex in the middle
of each of these boxes. A vertex v is said to be open if the Poisson process
has at least one point in the small box containing v; otherwise v is said to be
closed. Note that the state of a vertex is independent of the states of all other
vertices. Next we consider connections between these vertices. We want to ob-
tain a notion of stationarity at finite volume. In order to achieve this, we use the
connection function gy rather than g. Recall that g; is defined as follows:

g =1- [T~ gt +2L2). (6.11)
zezd

Note that gy is translation invariant in the box B, see Figure 6.1. We connect
any two vertices v and v’ in B; with probability gz (v' — v), independently of
anything else. When v and v’ are connected, we say that the edge between them
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Figure 6.1. The bold line square is B . The probability that a and b are connected
with the connection function g; is the probability that b is connected to any of the
points ay, a2, . .. when the connection function is g.

is open; otherwise it is closed. Note that an open edge can have zero, one or
two closed end points. Also note that the probability for a vertex to be open
depends on the density of the Poisson process, but the probability for an edge
to be open is independent of the Poisson process (and hence also independent
of A).

It will be convenient to define C7 (v), the component of a vertex v, as the
set of all vertices v’ in By, for which there exists an alternating sequence (v =
v, €1, U1, €2, U2, . .., €y, Up = V') Of vertices and edges such that e, connects
vn—1 2nd v, and which are all open, excepr possibly v itself. According to this
definition, v € C7(v) whether v is open or not. In this discrete model, we
again label each vertex with probability y, independently of all other vertices.
Note that closed vertices may also be labelled. The component of the origin is
denoted by C7, the set of labelled sites by G, and the relevant functions are

67 (A, ¥) = P(C] NG # D), (6.12)
x1 (A, v) = E(CL| - Liczngr=g))- (6.13)

STEP3: The third step in the proof is to derive the two differential inequal-
ities.



6.3 Equality of the critical densities 163

Lemma 6.2 Let M7 denote the expected number of open edges with one end
point at the origin. For A > 0 and 0 < y < 1 it is the case that

n
L <2707 .7 - M},

067
ax

(i) 67 < M2 4 ond (227 _ )gn

ay

Proof  For (i), first note that the labelling procedure is independent of every-
thing else and hence, given a set of vertices I' in By,

P(CINT #£B|G} =T) = P(C} NT #9),
whence
07 (L. y) =Y _ P(G} =T)P(C} NT #0),
r

where the sum is over all possible subsets I of vertices in B;. But P(G}; =T)
does not depend on A and hence, writing 47 (I') for {C}] NT # @} we obtain

207
- ZPA(G -r) < PA(A7(T).

Next we use Russo’s formula Theorem 1.8. The probability for a vertex to be
open is equal to 1 —exp(—A27"%), while the probability for an edge to be open
is independent of A. Hence we obtain
n
%9)% = ; PGF =1) ; P(v is pivotal for 47 (') and closed).
(6.14)
Let the closure cl(C7) of C} be the set of vertices and edges consisting of

(i) all vertices in C7,
(ii) all edges (open and closed) with at least one end point in C7,
(iii) all closed neighbours of C7, where two vertices are said to be neighbours
if the edge between them is open.

Note that conditioned on {C] = X, cl(C}) = X*}, the configuration of open
and closed vertices and edges outside ¢/(C7) is still unconditioned and chosen
according to the appropriate product measure. Now let {C] = X, cl(C]) =
¥} = E(XZ, T*), where T and T* aresuchthat 0 € X, v € T butv € T*.
Then

P(v is pivotal for 47 (T") and closed)

= Y PCINT =0.C}5.()NT # 6, E(T, ),
(X.x*)
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where C} () is the cluster of v if we restrict ourselves to the graph where
we first delete all vertices (other than v) and edges in £* and the sum is over
all X € Z*suchthat0 € X, v ¢ X, v € T*. Hence, BGZ/BA can be written as

273" N S PCINT =0,CF5u(w) NT 5 6,
v (£,% I
E(Z, T*)PG: =T)
=273 N N P(CINT =6,Cf5. ) NT # 8,
v (2,2 T
E(E,$*,G% =T)
=273 " 3" P(CING} =0,C;5.()NGY #0,
v (X%
E(Z, ")
=273 N P(C]NG} =0,Cl 5 ()NG # 0|
v (2.5%)
E(E, Z%)P(E(Z, ).

Given the event E(Z, X*), the event {C] N G = @)} is independent of the
event {C7 /5 (v) NG7, # 0}. Hence we obtain

367
_aTL =273 3" P(C]NG] =0|ET, T*)P(E(E, =)
v (5,5

x P(C} /5. () NG} # 8| E(Z, T%)

< 273" 6] P(C} NG, =B, v is a closed neighbour of C7)
v
<2791 > "N P(CE NG =6,v e C],
Vo ovi#y
v is a closed neighbour of v")
=297 Y " 3" PC} NG} = 0,0 € C}, visclosed)
v v#y
x P(v is a neighbour of v")
<271 "N P(CINGy =0,V eC])
v oy

x P(v is a neighbour of v)
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0 0 0
() (ii) (iii)
Figure 6.2. Some situations concerning double connectedness. The vertices g and g’

are in C} N G7.In (i), v is doubly connected to G7, in (ii), 0 is doubly connected and
in (iii), v is doubly connected in such a way that one of the paths consists of v only.

=27"; > P(C} NG} =0,V €C])
vl
x Z E (1(v is a neighbour of v’})
v#V
= 279N . yn . MP.
The proof of (ii) is based on the BK-inequality. We write 67 as follows:

6} = P(IC' NG = 1) + P(C} NG| = 2). (6.15)

The first term in (6.15) is easily computed:

o0 B aen
PACI NG =)= Y ky(l =y I P(CY = k) = 2—x} = y =L,
= 1—-y ay
k=1
where the last equality is an easy consequence of the definitions. If [C7 NG | >
2, then it is not hard to see (but quite hard to prove!) that

(i) There exist two edge/site disjoint paths (apart from the origin) connect-
ing the origin to two vertices in G;. (We say that the origin is doubly
connected to G} )

(ii) There exists an open vertex v such that if we close v, C] NG, becomes
empty and v is doubly connected to G} using no vertices in C7 .

We refrain from proving this assertion and refer to Figure 6.2 instead. Hence
the second term in (6.15) can be estimated from above by the sum of the prob-
abilities of these events. The probability of the event in (i) is bounded by (01':)2
by the BK-incquality. For (ii). we write 4, for the event {C] (v) N G} # ).
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Then the probability of this event is bounded from above by

Z P(v is open)

—————— P(C] NG, =0, vis aclosed neighbour of C7,
L P(uis closed) (Cy 1 v is a closed neighbour of C;

4,04, outside cl(C}))

=@ -nY. ¥ PCInG, =9,
v (5.2

4,04, outside T*|E(T, T*)) P(E(Z, =)
@™ - Y PCINGL=0|EES, £Y)

v (Z,Z%)
x P(4,04, outside Z*|E(Z, Z*)) P(E(Z, T*))

<@ -8y Y P(4,,C} NG} =0 E(T, =)
v (2.5

x P(E(Z, T))

<2 ey ZP(G'; =T)
x Z P(v is pivotal for 47 (T") and closed)2 ™4,

and it follows from (6.14) that this expression is equal to the desired bound.
a

STEP4: The next step in our argument is the limit from the finite discrete
model to a continuum model in a finite box. Formally, we have not as yet
defined a finite volume RCM, so here are the definitions. The model consists
of a Poisson process in the box By, and any two points of the point process are
connected to each other according to the connection function gy rather than
2. Each point is again labelled with probability y. The component containing
the origin is denoted by W], and the set of labelled vertices by G 1. Of course,
we define 67 (A, y) as the probability that Wy N G # @, and xz (A, y) as the
expected size of W on the event that Wi N G; = @. Here are the required
limits:

Lemma 6.3 The function 61 (A, y) is differentiable with respect to both A > 0
and y € (0, 1). Furthermore, we have that

(1) lim 92 =46,
=00
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267 a6y
® lim, ar 8’
(@) lim 27" M7} = / g1 (x) dx.
n—> 00 BL

Proof For (1), we write

1-67 =Y (1=y)P(CI = k), (6.16)
k=1
and
1-6,=Y (1= pIPOWL| = ). 6.17)
k=1

Tt suffices to prove that P(|C7 | = k) = P(|C.| = k), for all k. The probability
that there are two points x and y of the point process X for which x — y is a
point of discontinuity of gy, is zero, by Proposition 6.1. Hence it follows that

P(ICL) = k| X(BL) =1) » P(ICL| = k| X(BL) =),
for all /, which proves (1). From (6.16) and (6.17) we also get that

a67 i
L= ka -yt p(cy =k,
ay k=1

and
a0,

o —Zk(l—y)""P(lcu k).

Hence, also (2) follows from the previous argument. (Note that the differentia-
bility of 81, with respect to y is no problem as it is a power series in (1 — y).)

Next, we want to show that 8; can be differentiated with respect to A. The
right-hand side of (6.16) is just a finite sum because there are only finitely
many vertices in Bj. Hence the derivative of the right-hand side of (6.16)
is just the sum of the term-by-term derivatives. Therefore, to show that 6z
is differentiable with respect to A, together with (3), it suffices to prove that
Y52, (1 — y)¥(d/dr)P(IC}| = k) converges locally uniformly in A for n —
oo. For this, we again use Russo’s formula. The event {|C]| = k} is not
increasing, but it can be written as the difference of two increasing events:
P(CT| = k) = P(IC]| = k) — P(|C}| = k +1). We first compute, according
to Russo’s formula:

d
T PUCI 2 h0 = 2 "exp(=A27")

x E(number of pivotal vertices for {|C]| > k}).
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Let us now pause for a moment to realise what we are trying to do. We are
approximating the continuum model by a discrete model. In a continuum model,
we can define pivotal points in the obvious way, but the notion of closed pivotal
points does not make sense. Hence we are interested in open pivotal vertices in
the discrete model. The state of a vertex is independent of its pivotality and we
can write
2—nd exp(—AZ‘"d )

1 — exp(—xr2—nd)

d n
aP(ICLI =k =

o0
X Z E(number of open pivotal vertices for
I1=0

{ICLi = k} | X(BL) =D P(X(BL) =1).

Now we use Proposition 1.2 to conclude that the expected number of open
pivotal vertices for {{C}| > k} given {X(Br) = I} is independent of A, and,
because there are only / points in By, trivially bounded from above by /. This
quantity is denoted by f7 (k,/, n). Using once more the almost everywhere
continuity of g, (Proposition 6.1), it is obvious that lim,_, f(k, , n) exists
and is equal to the corresponding quantity in the continuous model. Finally, we
can now write

)

d
i z — = ny _.
nhm k=1(1 y) Y P(C}l =

2-"dexp( x2-nd)
exp(—A2-nd)

= llm exp(— )»IBLI)

(e(BL)A !
x Z(1~y)"Z(fL(k L) = fulh o+ 1,1, my S
=] 1=0
Using the convergence of fi(k, I, n) and the fact that f; (%, I, n) is bounded
from above by /, for all k and n, this expression is easily seen to converge locally
uniformly in A, forn — oc.
It remains to prove (4). This is easy though, as we can write

27M} =27 g (v), (6.18)
v

where the sum is over all non-zero vertices in the box By, in the n-th approxi-
mating lattice model. But the right-hand side of (6.18) is just a Riemann sum
which converges to f B, 8L(x)dx. a

STEPS: Inthis step, we take the so-called infinite volume limit, which means
that we let L tend to infinity.
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Lemma 6.4 For) > 0andy € (0, 1), it is the case that
() lim 9y =86,
L—>oo
38 a6

2) lim — = —.
@ L-l->moo ay ay

Proof Tt suffices to prove that
lim P(Wy | =k) = P(W|=k). (6.19)
Lo

First, we decompose the event {|¥| = k} into {|W| =k, W C B,}U (W] =
k, W ¢ B,}, and similarly for Wy, where L > n. From Proposition 6.2 (and its
proof) we easily deduce that

Ak-l

W;| = W; B)) = —— s X1y ooy Xk—
P(\WL| = k, WL C By) (k—l)!/s,,x...xs,,gL’Z(o xi Xk—1)

-A 10,%1 000 Xk—1) 4.
e fBLgL,l(y X1 Xg-1)dy

x d(xy, ..., Xk=1), (6.20)

where g 1 and gy 2 are the analogues of gy and g; for the connection function
gL- As a consequence of Proposition 6.1, for (x1, ..., Xt—1) € By X +-- X By,
it is the case that

gL,Z(O! Xlyovn 1xk—l) i g2(09 Xlyeeo 9xk—1),

as L — oo. Furthermore, for fixed y and x, ..., x¢, it follows that 15, () -
g1 0, x1, .., xk—1) = 21(1 0, %1, ..., xk—-1), for L — oc. In order to
use dominated convergence for the integrals in the exponents of (6.8) and (6.20),
we write

k-1

gL 0,x1, .., xk—1) £ ZgL(y — Xi),

i=0

where xg is just the origin. Furthermore,

k—1 k-1
/ ZgL(Y‘xi)dy < ZZ‘[ g(y —x; +2Lz)dy
BL =0 By

i=0 ze2d

k-1
= Zf gy —x)dy < oo,
i=0 J R

according to (6.2). From this it follows that (6.20) converges to (6.8) for L —
no. Finally, we show that P(|W;| = k, W, ¢ B,) can be made arbitrarily
small uniformly for all /. large enough, by taking » fixed but large enough. For
0< N <M< L, let E;(N, M) hbe the cvent that in the finite volume model
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in By there is at least one direct connection from a point inside By to a point
outside Bys. For any non-negative integer-valued random variable ¥ we have
P(Y > 1) < EY, and this implies here that

P(EL(N, M)) < Xz[ f gL(y—x)dydx
By VB \Bm

< sz f gy —x)dydx,
By Rd\BM

where the last inequality follows from arguments as in the proof of (1). Note
that this estimate is uniform in L and hence P(E (N, M)) is small uniformly
in L for M large.

Next let € > 0 and take boxes B,, C -+ C By,_, such that the following
events Ay, ..., Ar~1 all have probability at most ¢, uniformly in L:

Ay = {the origin is connected to a point outside B,, },
Ay = {there is a point inside B,,_, connected to a point outside By},

for! =2,...,k— 1. Now take n = nx—1. If {{WL] = k, W, ¢ B,} occurs
then there is a point outside B, connected to the origin in less than k steps. This
means that U;:,’ A must occur. However, this has probability at most (k — 1)e
for all L and this proves the lemma. a

STEP 6: Finally we are able to prove the desired result. The reader should
note that from now on the argument is completely analytic. Let Ag < Ay and
suppose that x (Ag) = co. We write f.(y) = 61(Ro, ¥) and f(y) = 68(ho, ¥).
If we first combine the two conclusions in Lemma 6.2 and then take the limit
for n = oo (Lemma 6.3) we obtain

d d

fosr v rea-n (f gL<x)dx) (0?22,
dy By dy

From Lemma 6.4 and Proposition 6.1 we then find, taking the limit for L — oo,

af af
v

f5yg—+f2+(1—y) (f g(x)dx)kof2 (6.21)
14 Ré Y

We have f(y) — 0 for y — 0, because of Lemma 6.1(i) and the fact that
Ao < Ay. Also,
o
14

for y — 0, where we use Lemma 6.1 again, the mean value theorem and the
fact that x (ko) = oo. Now let 4 be the inverse function of f and substitute

0o (6.22)
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(5)-(5)

y=f(y)and

in (6.21) to obtain

where C is a constant depending on Xg. Using (6.22) we see that dh/dy is
bounded on an interval (0, ) for some » > 0 and hence there is a positive
constant 8 such that

for 0 < y < b. Integrating this expression from 0 to x with x < b yields
1 P
[—h(y)] < Bx
y 0
and it follows from this and the fact that A(y)/y — 0 when y — 0 (use (6.21))
that for small enough y,
)= Cly, (6.23)

where C' is a positive constant depending on Ag.
We let n — o0 in Lemma 6.2 and obtain, using Lemma 6.3,

a0y 96,
6 <y— 0r A —
1 < Vay + 00 + Lo
Rewrite this inequality as
39 K
0< @) ' T 3 7 Lo 06 =),

which can be integrated over [e, 8] x [Ag, Ay] (wWhere Ay < Ag) to obtain
6L (2, 8)
6L (Ao, €)
Now we use Lemma 6.4 and take the limit for L — oo, which means that we

can remove all subscripts L from (6.24). Divide by log(8/¢), let € go to zero
and use (6.23) to find

0< (A —2o)log ( ) 4+ (M0, (A1, 8) — A1 + Xo) log (g) . (6.24)

0 < 5(A1 — A0) + M18(A1,8) — Ay + Ao.

If we take the limit for § — O here, it follows that8(1|) = (A, 0) > 0, which
is the desired contradiction because Ay < Ay, a
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6.4 Uniqueness

In view of the uniqueness results in Boolean models, we may expect the un-
bounded component in the Poisson RCM to be unique. This is indeed the case:

Theorem 6.3 In a Poisson RCM (X, g, )), there is at most one unbounded
component a.s.

The proof of this result is not very different from the corresponding proof
in the Boolean model. It is again the ergodicity of the model which guarantees
that the number of unbounded components is an a.s. constant. As before, we
first show that this number cannot be any finite number apart from zero or one:

Lemma 6.5 The number of unbounded components in a Poisson RCM is equal
a.s. to either zero, one or infinity.

Proof To derive a contradiction, let us suppose that this number is a.s. equal
to K > 2. This means that there is a box B, such that there is a positive
probability that B, intersects all of them. Choose M < o0 so that g(x) = 0
whenever |x| > M, noting that M can take the value infinity. Next we partition
B, into at least K cubic cells G; in such a way that for two neighbouring
cells G| and G, we have d(x, y) < M for all x € G and y € G;. For any
subset 4 C IR?, we write (X4, g, 1) for the RCM obtained by removing all
Poisson points outside 4 and all connections leading to such points. By taking
smaller cells if necessary and a possible renumbering of the cells, we can find K

cells Gy, ..., Gk such that the following event has positive probability, writing
— 11K .
G =U,_,G::
E = {(Xcu(B,):» g A) contains exactly X unbounded
components C1, ..., Cx such that C; has exactly one
Poisson point x; in G;, fori =1, ..., K}.

Obviously, the following event F also has positive probability:

F .= {each of the cells G, in B, outside G contains
exactly one Poisson point x;}.

Now observe that £ and F are independent, because they depend on disjoint
regions in space. Hence,

P(ENF)= P(E)P(F) > 0.
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But given the event £ N F, we can, with positive probability, connect the points
x; and x; if the cells G; and G, share a face, i.e. if they are neighbours, because of
the choice of the cell size. However, after doing that, the resulting configuration
contains only one unbounded component and this is the desired contradiction.
Note that in case M = 00, there is no need to consider the event F at all. In
that case we can directly connect all points xi, ..., xk. g

Proof of Theorem 6.3 It remains to rule out the case of infinitely many

unbounded components. This, however, can be done in exactly the same way

as in the proof of Theorem 3.6. As such, we do not repeat the argument here,
a

In Chapter 7 we shall discuss a uniqueness result for random-connection
models driven by general stationary point processes.

6.5 High density

One of the features of continuum percolation models which they do not share
with discrete percolation models is the possibility to consider the model at
arbitrary high density. When the density A of the underlying point process
tends to infinity, one expects several things to happen. In the first place, larger
A implies that there are on the average more points per unit volume, so it must
be easier for the origin to be contained in an infinite component. This should
imply that

Jim 65(1) = 1. (6.25)

In fact, a proof of (6.25) is not hard. We shall, however, prove a much stronger
result below. In addition to the probability of the origin being in an infinite
component, one can consider the distribution of finite components. It seems
reasonable to guess that the probability for a point to be isolated (i.e. not con-
nected to any other point) given the fact that its component is finite converges
to 1 for A — oc. In other words, ‘most’ finite components should consist of
only one point. We shall prove the following theorem:

Theorem 6.4 Suppose g satisfies (6.2). Then we have
—log(l — 6,4(2)) _

6.
Y S re 8(x) dx (6.26)

Before giving the proof of this result, let us spend a few words on it. In fact,
the assertion of the theorem implies that 1 — 6g(X) ~ exp(—2 fmd g(x)dx),
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which is equal to the probability that the origin is isolated. So not only does
Theorem 6.4 imply (6.25), it also asserts that the rate at which 0(A) = 6g(A)
tends to 1 corresponds to the rate at which the probability of being isolated
tends to zero. The proof of Theorem 6.4 is based on the following lemma.

Lemma 6.6 Suppose that g has bounded support. Then we have

L A-6,09) _
Amoo P(W|=1)

Before giving the proof of Lemma 6.6, we demonstrate how Theorem 6.4
follows from it. Let g satisfy (6.2), and let g(x) := g(x)1{xj<r}. A simple
coupling argument shows that

1 —6,(A) < 1~ 64 ().

From the fact that 1 — 6g(3) > Py g (IW| = 1) and Lemma 6.6 we thus find

1— 8,01 1A 1—6,(x 1/
1 < liminf (——&) < limsup (———L-)

i—voo \ Po (W] =1) oo \Pug(Wl=1)
-6, \"*

< limsup (———g’(—))

oo \Pag(W=1)
A 1))”A

A—00 P(A,g,)(lWl =1) P(l,g)(lwl =1)

1/2

, exp(—1 [y, g0 A0\ swds
= lim sup = oJll>r

Ao \ €Xp(—A fpa g(x)dx)

Letting » — co, we obtain

_ 1/
lim (J"A —1.
oo \ (W= 1)

Taking logarithms completes the proof of Theorem 6.4. It remains therefore to
prove Lemma 6.6. We write g () for P,(|W | = k). In this notation we need
to show that

1 o0
lim —— Y g(A) =1
Jmr 00 g1 (M) ;q"

or

i B -
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We partition the event that || = k as follows. Let § > O and let (6Z )4 be the
lattice of points of the form 8z for z € Z%. We denote by F : R? — 8Z¢ the
map which sends each point of IR to the closest point of (8Z)?. This map is well
defined for almost all points in R4 . In particular, the image S = S5 = F3(W)
is well defined with probability 1. We may now write

1 o0
o) = P(W|=k,1S, : 6.27
q1(}) ,;qk( )= q (A) Z Z 2(W) =k, |Ss] = m) 6.27)

m=1 k=
It therefore suffices to prove the three following propositions:

Proposition 6.4 Suppose g has bounded support. For § > O sufficiently small
we have

Jim (x) ZPA(|W| =k ISl=1) =

Proposition 6.5 Suppose g has bounded support. For § > O sufficiently small,
there exists an mq such that

ALooql(A) Z ZPA(|W| k,|Ssl=m)=0

m=mo k=

Proposition 6.6 Suppose g has bounded support. For § > 0 sufficiently small
we have for each fixed m,

A—>oo

00
ZPA(IWI =k 18| =m)=0
k

Of course, Proposition 6.6 is stronger than Proposition 6.4, but the latter will
be used in the proof of the former.

Proof of Proposition 6.4 We define q,f (A) = P.(Ss| =1, |W]| = k). When
no confusion can arise, we drop sub- and superscripts. When || = 1, | S| can
be 1 only if all points of # are concentrated in Bj/2. Hence from Proposition 6.2
we find

Ak A [ g 813021 xk-1) dy
qlf()») ) st,z"'fgs/ze S dxy---dxp_

) exp(—=X fpa g(») dy)

)"k—l
= X —'A-f ( l( ;O’xly"'!xk—l)
(k - D! ./l‘fhg -/l:fA/Z p( R4 sy

- g(_\'))(/y) dyy - dxg .
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From the definition of g and g, g1(»; 0, x1, . . ., Xk—1) — g(») equals the prob-
ability that if we take a graph with non-random vertices 0, x1, ..., X;—1 and y,
the vertex y is not isolated but not connected directly to O (all with connection
function g of course). This expression is therefore bounded from below, for all
i,by g(y—x:)(1—g(») = gy —x) - gg(y—xi) = (gy—xi) — g™,
where f* = max{f, 0} denotes the positive part of the function f. It follows
from Proposition 6.3 that

f gy —x:) — g(M)tdy = } / Ig(y — x:) — g()ldy
R? R4
> clxil forallx; € Ba/z,
for a suitable positive constant ¢;. We thus find, writing B; 2 C (R%)*-1 for
the set {x1, ..., xe—1 € (Bs2)*~! ¢ Ix;] > max;y x;l},
gm _ 5 !
a®y = & E-1)

/ CemMalild(xy, L xemn)
52

Ak—l /- rerla|
= e MMd(xy, ..., Xkm)
(k—2)' B;/z
A=t dk—2_ eyl
= (malx|*) e M1 dxy,
(k - 2)' -/;,;/2

where 7  is the volume of the unit ball in /R?. Note that the integrand is a
function of |x;| and we can change variables to obtain

LI /“/"-ﬁ’ M e
Q) - k- 2)!
for a positive constant ¢3. Thus,

) / V) A pd=1 (Ama)*~ ()2
A Y d
ém =, Z e

rd(k—l)—lng-Zdr

3/2Vd)
= A / rd=lgrmar?=ewr g, (6.28)
0

We can take § so small that for all r < 8/(2+/d) we have myr? < Jcir and
thus the right-hand side of (6.28) is bounded from above by

8/(2v/d) 00
CZA/ e~ rar/2,4-14, < cz()t)'(d'l)f eC1s25d=1 g
0 0

The result follows immediately from this. a
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Proof of Proposition 6.5 We give the proof for the two-dimensional case. It
will be clear that a similar proof works in any dimension, but the details become
very lengthy to write down. We start by choosing R and 8 such that

(i) g(x) = Oforall x with [x| > R,
i) 8 < IR,
(iii) g(3R +38) > 4.

Consider the component W of the origin. If we place a ball S(x, %R)
with radius %R around each point x of W, then, using (i) above, the set
Fw i= Ugew S(x, %R) is a connected set. Denote by Fy the union of~all
squares of the form [n, 8(n + 1)] x [6m,8(m + 1)] which intersect Fy,
where n and m are integers. Then Fy is a bounded set whenever || < o0.
We denote by 9 Fiy the exterior boundary of Fy. The boundary y = 3 Fy
consists of a number of edges of length §, and the number of such edges is
denoted by |y|. We want to estimate the probability that 3 Fy is a particular
curve y. For such a curve y, let y5 be the set of points in the plane which
are at a distance at most § from y. We denote by int (y5) the set of points
which are in the interior of y but not in y;. Suppose now that dFy = y.
We claim that W Nys = @ as. To see this, suppose that there is a point
x € W, and a point y € y such that |x — y| < §. With probability 1, each
point in 8 Fy is not in Fw and hence ye Fw as. But because of (i),
this is impossible and the claim follows.

Let W, be the component of the origin obtained from points in int (y5) and
all edges between these points. We define the event E;,, = {|W,| = &,
dFw, = y), and the event that there is no direct edge between any point in
vs and W, is denoted by E,'C,y. Using Proposition 1.3 we have

P(E;, | Exy) = exp (—’» f g1 (¥ Wy)dy)- (6.29)
Vs

Let y be in ys. If Ey , occurs, then each point on the boundary y of Fi,
must be closer than 24 to a point of F w, - Hence each point of ys must be closer
than 36 to F w, . Thus, each y € ys must be closer than 35 + %R to a point in
W, and it follows from (iii) that g; (y; #,) > §. Also, the volume of y; can be
estimated using the observation that each edge of y has a square of side length
%8 centered at the midpoint of the edge and which are disjoint for different
cdges. Thus, the Lebesgue measure €(y;) is at least [y 152/4. We now obtain
from (6.29):

P(E; , | Evy) < exp(=Aly|8/4).
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It follows that

00 o0

S P(W =k 8Fy =y) < exp(—AlyI8/4) ) P(Eiy)

k=1 k=1
exp(—Aly183/4). (6.30)

1A

The rest of the argument consists of classical counting arguments. We need
two facts here: the area enclosed by a curve y, which in our case is piecewise
linear, is at most some constant ¢ (independent of ¥) times |y |2, and the number
of closed curves y with |y| = m along edges of the square lattice and which
encloses the origin is at most ¢}’ for some positive constant c;; see the proof of
Theorem 1.1. We may now write

A

(2] 00
Y P(WI=kISI 2 mo) <Y PUW|=k |yl = cimy’®)
k=1 =

Yo D PUWI=klyl=m)

mzcm(')’z k=1

Y P(WI=k 8Fc =)

mzclm:)/z k=1 y:ly|l=m
< Y exp(—ams/4)cy,
mzclm(l)/2

using (6.30). Now using the fact that

q1(A) = exp (—l / g(x)dx)
IR

= exp(—c3A), say

we find

p (x) Z ZP(IWI k. 15| = mo)

m=mg k=1

< c3hy . —A83j4vm
< Zme (c2e™74)

mzqmo

172
< o (2 EXP(=A8> /4))1™0
- (1 —c2exp(—2r83/4))
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When %83clm(l)/ 2> c3, this tends to zero for A — oo, proving the proposi-
tion. ]

Proof of Proposition 6.6  Again, we shall give the proof for the two-dimen-
sional case, as the higher-dimensional case can be proved similarly. From the
fact that g has bounded support, it follows that there are only finitely many
configurations for S such that |S] = m. So it is enough to show that for any
finite subset 7 of 8Z2, we have

Jim —S (A)ZP(IWI k. S=n)=0.

We have to introduce some more notation. We denote by #; the component
of the origin after removing all points outside Fs_l () (and the edges leading to
such points). We denote by E; ; the event that |W,| = k and that F5(W;) = n.
Furthermore, H,) is defined to be the event that no point of the point process X
in R?\F, 5_' () is connected to any point in ;. Then,

{IWl=k S=n}= {Er/,k N Hy}.

We want to estimate the probability of /; given E, ;. Let §; be so small that
the conclusion of Proposition 6.4 holds for 26y. Define 7, as the highest first
coordinate of a pointin n: 7, = max{x; : (x1,x2) € n}. The points/, and #,, are
defined similarly for the lowest first coordinate and highest second coordinate,
respectively. The set 4, C IR? is defined as {(x1, x2) : x; > ry+ %8}.
Furthermore, 4; := {(xi,x2) : x1 < I — 36} and 4; := {(x;,x2) : x2 >
ty+ %8}. Note that 4, and 4, are disjoint. Given the event E, 4, the probability
that H, occurs is (using Proposition 1.3)

exp —A/ sy Wdy]. (6.31)
RA\F7 ()

Let & > 0 be much smaller than 8;. If £ & occurs, then there is at least one
point (x1, x3) € W, for which |x; — ry| < %8 and we have

/ gi(y; Wp)dy > / g(y)dy,
Ar 6,00)x R
and similarly,
/ a1y Wn)dyz/ g(y)dy.
A (—00,-8)x R

So,

/ s Wdy / g(y)dy—/ g(»dy. (6.32)
A, K? (--8.8)x R
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Let A} = (0,8) x (8,00) and A_ = (-8, 0) x (8, 00) and take § so small
that

/ gyydy = / g(y)dy > / gydy+c
A As (=8.8)x R

for some positive c|. If both the width r, — I, and the height (defined similarly)
of n are smaller than 28, we are done by Proposition 6.4. So without loss of
generality, we may assume that the width r,, — /) is at least 25,. If £, 4 occurs,
then there is at least one point (x1, x2) € W), such that |t, — x2| < 18. Either
Ay + (0, x3) or A_ + (0, x2) is contained in RZ\F{I(n) and hence we find,
using (6.31) and (6.32),

P Ew > [ srdyre 633)
Thus
S paw = S=1) = A fpa 89y B H
Y PUW =k S=n)=e"Ir Y P(Eyi N Hy)
ql()") k=2 k=2
o0
<Y P(Epp)e™,
k=2
This tends to zero when A — oo. O
6.6 Notes

The material in Sections 6.1 and 6.5 is taken from Penrose (1991). Proposition 6.1
is from Meester (1995) and Propositions 6.2 and 6.3 are taken from Penrose (1991).
The equality of the critical densities is due to Meester (1995), but also Sarkar (1994)
obtained the equality for a restricted class of connection functions. The argument given
here is a continuum version of the argument given by Aizenman and Barsky (1987) for
discrete percolation. The uniqueness of the unbounded component appears in Burton
and Meester (1993).
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Models driven by general processes

The case in which the driving point process is Poisson has been studied exten-
sively in the previous chapters. It is natural to investigate what happens when
the underlying process is not necessarily Poisson. Many of the results obtained
for Poisson processes seem to depend heavily on the independence structure of
such processes. However, sometimes it turns out that it is stationarity rather than
independence which makes an argument work. In such cases, the assumption of
independence obscures the picture of what is really happening. The assumption
that a point process be stationary is, in fact, very weak. It turns out that many
proofs require, in addition to stationarity, that the point process also be ergodic.
The class of ergodic point processes is much smaller than the class of stationary
ones, so this seems to be a real loss of generality. However, in the first section
we shall treat an interesting technique which makes it possible to carry over
results for ergodic models to stationary ones. In this chapter, unless we specify
that a Boolean model is Poisson or ergodic, it will only be assumed that it is
stationary.

7.1 Ergodic decomposition

Consider a measurable space (2, F) and let T be a transformation from € into
itself. We denote by M7 the set of all probability measures x on (€2, F) which
make (2, F, u, T) into a measure-preserving dynamical system, Our aim here
is to show that the ergodic measures in M are very special in the following
sense:

Proposition 7.1 The set My is convex and the ergodic measures (w.rt. T)
are exactly the extremal points of M.
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Proof For convexity we need to show that whenever u, and u» are in Mr,
soisap; + (1 —a)us forall 0 < o < 1, where (ep; + (1 — @)u2)(E) =
aui(E) + (1 — a)ua(E) for all E € F. This, however, follows immediately
from the definition of measure-preserving transformations.

To prove the second assertion of the proposition, suppose that £ € M7 isnot
ergodic. This means that the o -algebra of T'-invariant sets is not trivial. Hence
there exists a T-invariant measurable set E such that 0 < u(£) < 1. We can
define two probability measures (1 and u2 such that for every 4 € F we have

w(ANE) u(4nN ES)
mi(4) 2(E) and  p2(4) ()
Because
-1 -1 -1
gy - BTTUANE)  p(T7l4NT E)
@A A(E) w(E)
_ (T Y4NE) pANnE) _ A)
T T

it follows that T is measure-preserving w.r.t. ;1. (We also say that u, is 7-
invariant in such a case.) A similar argument is valid for p,. Note that 1 =
w1(E) # pua(E) = 0 whence u) # u2. But we have

w(4) = w(E)pu1(4) + (1 — p(E))uz(4)

and hence p is not an extremal point of M 7. Conversely, suppose that w is not
extremal but ergodic. Then u = ap; + (1 — a)uz forsome 0 < & < 1 and
“1 # w2 both in M. This of course implies that ) is absolutely continuous
w.r.t. i, whence the Radon-Nikodym theorem guarantees the existence of a
p-integrable function f such that

() = fA fdu (1)

for all 4 € F. Both py and w; are T-invariant and it follows easily that f is
T-invariant also, i.e. f(T) = f u-as. It is well known (see e.g. Petersen 1983
Proposition 4.1, p. 42) that this implies that f is an a.s. constant, which in turn
implies by (7.1) that f = 1 as. Hence u = u; and hence either & = 1 or
1 = p2, a contradiction in either case. m]

Given the structure of a convex set of invariant measures, the extremal points
of which are exactly the ergodic ones, it should not come as a surprise that it is
possible to ‘decompose’ any T-invariant measure into ergodic ones. We make
this precise in a moment, but first let us return to stationary point processes and
start with an elementary example of such a decomposition.
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Consider two independent Poisson point processes X and X, on IR with
densities A and A, respectively, where Ay # A;. Let X be the point process
defined to be equal to X; with probability % and equal to X, with probability
%. In other words, with probability % X(4) = X;(A) forall 4 C R? simul-
taneously, and with probability %, X(4) = Xo(A) for all 4 C R?. Then X is
a stationary point process which is nor ergodic. To see the latter fact, consider
the event E = {lim/_ 00 1 "¢ X ({0, }¢) = A1}. According to Proposition 2.4
and 2.6 and the fact that A; # A3, the probability of E is % It is an easy mat-
ter to check that E is translation invariant and hence X cannot be ergodic. In
the notation of Chapter 2, if u is the measure on (2, ) corresponding to X
and uy and py the measures corresponding to Xj and X>, respectively, then
(Q,F, u, St) is not an ergodic m.p. dynamical system, but it is the case that
U= %,ul + %#2- Furthermore (2, F, u;, 8;), i = 1, 2, are ergodic systems
(Proposition 2.6).

The following proposition shows that this construction can be carried through
inmuch greater generality than the example above. For a proof of the proposition
we refer to Denker, Grillenberger and Sigmund (1976, section 13).

Proposition 7.2 Let (Q, F, u, T') be an m.p. dynamical system and let f be
a real, p-integrable function on Q. There is a set E € F with u(E) = 0 such
that for all w € Q\E, there exists an ergodic measure [y, on (2, F, T) such
that w — [q fdpe is F-measurable, f is p-integrable and

ffdu=/ ffduwdu(w)- (7.2)
Q Q\E JQ

The family of measures (4w)weo\ £ is called the ergodic decomposition of
w. (There is a certain uniqueness of the ergodic decomposition, that is why
we call it the ergodic decomposition. We will not be concerned with this here
though.) Note that we do not require that the u,,’s be different for different
values of w. Indeed, in the example given, 1, = 17 whenever w is such that
X(4) = X (4) for all 4, and u,, = u, otherwise. As a special case of (7.2),
consider the case where f = 14 for some 4 € F. Then (7.2) reduces to

M(A)=/ Ho(A)du(w). (7.3)
Q\E

Note that by taking 4 = Q in (7.3), we see that for almost all w € Q\ E we
have

W, () =1, (7.4
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As an application of (7.3), consider a Boolean model (2, F, P), where
Q= Q) xand P = P; x P as in Chapter 1. What form does the er-
godic decomposition of this Boolean model have? For this, consider the point
process P defined on (21, 7)) (the notation is as in Chapter 2, Section 2.1).
As already observed in Chapter 2, we may assume that an ergodic point process
is ergodic under translation by e;. This point process has, according to (7.3),
an ergodic decomposition (P o, )w e\ £, Where E € F satisfies P (E) = 0.
From (7.4) it follows that (21, 7, Py ,) is an (ergodic) point process. From
Proposition 2.8 we know that any Boolean model driven by an ergodic point
process is ergodic. Hence the Boolean model (21, F1, Py,y,,) X (2, F2, P) is
ergodic. We conclude that (P », X P2)we\E is the ergodic decomposition
of the Boolean model P; x P». In particular, the distribution of the radii is
the same for all ergodic components of the decomposition. A similar remark
applies to random-connection models; the connection function is the same in
almost all components of the ergodic decomposition.

Returning specifically to Boolean models, suppose we can show that for all
ergodic Boolean models with a certain property Q, an event 4 occurs almost
surely and that we are faced with the problem of extending this result to sta-
tionary Boolean models. Given any stationary Boolean model with property
Q, we use (7.3) and conclude that whenever P,(4) = 1 for all w € E, then
also P(A4) = 1, provided that almost all elements in the ergodic decomposition
of P satisfy property Q. (We emphasize the latter statement because this is a
necessary part of the argument which is sometimes forgotten in the literature.)
Ergodic decomposition, therefore, provides a technique to extend results from
ergodic models to general stationary models, but care is needed throughout this
procedure.

7.2 Basic facts on coverage

Before we investigate percolation properties of general models, we prove some
facts which are either interesting in themselves or which will be useful in later
sections. The first result is a generalisation of a result which we already proved
for Poisson Boolean models in Proposition 3.1.

Proposition 7.3  Consider a Boolean model (X, p) in R®. If Ep? = 00 then
the whole space is covered by balls a.s.

Proof As noticed in the previous section, the ergodic components of (X, p)
under T, say, all have the same radius distribution p and we can henceforth
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assume that the model is ergodic with respect to T, (which implies ergodicity
under the group of all translations).

If X has infinite density, we can ‘thin’ the process in some stationary way so
as to obtain a finite density process. If we prove the proposition for this process,
then it is certainly true for the original infinite density process. Therefore, we
may assume that the density A (X) of X is finite and is equal to 1. Let C,, be the
ball centred at the origin and with radius 2*/4,n € N. (C, is non-random.) Note
that £(Cps1) = cq2"H1 = 2¢(C,), where cg is a constant depending only on the
dimension. From Proposition 2.4 we have that for n large enough (depending
on the realisation) 2V, < X(C,) < 2V,, where ¥, = £(C,). Now we write,
for large enough n, X(Cp11\Cy) = X(Crs1) — X(Cp) = %Vn-}'l - %Vn =
% Vi— % Vp = % ¥, .Hence, forn large enough the ‘annulus’ C,\ C,,—1 contains at
least 5,2"*! points of the point process, where by is another constant depending
only on the dimension,

Now let E, be the event that Cy is not completely covered by a ball which is
centred in C,\C,.-1. Furthermore, let 4,, be the event that m is the first index
such that X(C,\Cn_1) > bg2"*+! for all n > m. It follows from the above that
up to a set of measure 0, the 4,,’s form a partition of the probability space.
Write

(e

IA

o0
P( (") (all balls centred in C;\Cy-1 have
k=m

radius at most 2479 + 1) | A,,,)

o0
[1 Pt <24 + 2™,

k=m

IA

where the last inequality follows from the independence of the radii and the
point process. It suffices to show that this expression equals zero. For k large
enough, 2¢/¢ +1 < 2%*+1/d 56 if we replace k + 1 by £, for k large, each term
in the product is at most P(p < 2k/d )bdzk. Now, for m large enough, we find

00 00
[] Pt < 2% = TT P(o? < 2%

=m k=m
(2]

< [T{rPw’ <2 Peo? <2+ 1.
k=m

b
,)(pll < 2k+| _ l)] d



186 Models driven by general processes

00 ba
= [ [T Pe&? sk)]

k=2m

00 2]
=lH(1~P(pd>k))] .

k=2
This expression is zero if and only if Y52 ,m P(0? > k) = oo, which is
equivalent to Ep? = 00, proving the proposition. a

The converse of the last proposition is not true in general (but it is in the
Poisson case, see Chapter 3). It is not hard to show, using the same argument as
in (3.2), that if Ep? < 0o and A(X) < o0, then the expected number of balls
intersecting a bounded region is finite. Of course the condition that the density
of X be finite is necessary: if the density of X is infinite, then the expected
number of points in a bounded region is infinite and so is the expected number
of balls intersecting this bounded region. However, if we only want the number
of intersecting balls to be finite a.s. then we do not need the finite-density
assumption:

Proposition 7.4  Consider an ergodic Boolean model (X, p) in IR such that
the probability that the whole space is completely covered is strictly smaller
than 1 (and hence equal to O by ergodicity). Then any bounded region in IR? is
intersected by only finitely many balls a.s.

Proof It suffices to consider the unit circle as the bounded region, so sup-
pose that infinitely many balls have non-empty intersection with the unit circle
with positive probability. Look at the proof of Proposition 3.1 and observe that
the only properties of the Poisson process we have used there are the fact that
the Poisson process is locally finite and the ergodicity of the transformations
Se;. The former is a property shared by all point processes and the latter can be
generalised too: it follows from Proposition 2.7 that we can choose an orthonor-
mal base (ey, ..., eg) of IR? such that all transformations Se; act ergodically.
(Again, the notation is as in Chapter 2.) Consider random variables Y, and Z,,
n € Z, defined as in the proof of Proposition 3.1 but now with respect to this
new base. It then follows from that proof that the whole space is covered a.s.,
which is the required contradiction. ul

Note that the requirement that the process is ergodic in the last proposition
is necessary: the conclusion is false for stationary processes. To see this, take a
mixture of two ergodic processes, one where vacancy exists a.s. and one where
bounded regions are intersected by infinitely many balls a.s.
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7.3 Unbounded components in Boolean models

We consider a Boolean model (X, p) where X is a stationary point process in
R? and p is the radius random variable of the model. Our aim here is to provide
a classification of the possible topological structure of unbounded components
in this model. In this section, C denotes a component which can be either
occupied or vacant. Often, we consider the complement of a component C and,
in particular, we are interested in the connected components of this complement
in the usual topological sense. The latter components have nothing to do with the
components in the Boolean model, so in order to avoid any confusion, we shall
refer to these connected components as connected sets. Thus, the complement
of a (vacant or unbounded) component of the Boolean model is the union of its
connected sets.

Definition 7.1 Let C be a component of the Boolean model. Then the interior
of C is defined as
int (C) := U{K; K is a bounded connected set in R®\C}).
The closure is defined as
cl(C) := C U int(C),
and the exterior is defined as

ext(C) := U{K; K is an unbounded connected set in Rd\C}.

If for two components Cy and C; we have
Cy C cl(Cr),

we say that C is enclosed by C2 and we write C; < C3. The relation ‘<’
defines a partial ordering on the set of all components.

Lemma 7.1 The maximal components with respect to the ordering ‘<’ are
exactly all unbounded components a.s.

Proof Itis enough to prove the lemma for all ergodic components of (X, p) so
we can assume ergodicity of the Boolean model. If R? is completely covered by
balls, we are done, so suppose it is not. From Proposition 7.4 we have that only
finitely many balls intersect any bounded area a.s. This implies that any bounded
occupied component has strictly positive distance to the nearest other occupied
component a.s. In particular, for any bounded occupied component C there is
some € > () (depending on ) such that the distance from C to the nearest other
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occupied component is at least 2¢, say. (Note that both C and € depend on the
configuration.) This means that the set {x € R? : 0 < d(x,cl(C)) < €} is
completely vacant. Moreover, this set is connected and is a subset of a vacant
component C’. It follows that C < C’ and C is not maximal indeed. If C is a
bounded vacant component, then the boundary of c1(C) belongs to one occupied
component and hence C is not maximal,

It is clear from the definitions that an unbounded component has to be max-
imal. |

A realisation is said to be complete if for each component C, there exists
an unbounded component C’ such that C < C’. A realisation is said to be an
infinite cascade if each component is bounded. As an example of an infinite
cascade, consider a Poisson Boolean model with fixed radii in two dimensions
at criticality. It follows from Theorem 4.5 and the last paragraph in the Notes to
Chapter 4 that in this situation, no unbounded vacant or occupied components
exist a.s.

It is quite possible to construct a realisation which is neither complete nor an
infinite cascade. However, we have the following result:

Proposition 7.5 In any Boolean model, the probability of a realisation which
is neither complete nor an infinite cascade is zero.

Proof If the result is true in all ergodic components of the Boolean model
we are done, so we again assume ergodicity. Suppose that with positive prob-
ability, there exists an infinite sequence of (bounded) components C; < Cz <
C3 < ---. It will be enough to show that U, cl(C;) = IR?. For this, take any
x € IR? and fix some y € C1. f x € C, for some n we are done. Otherwise,
we draw the straight line segment [ from y to x and we take a box B, which
contains the line segment /. We shall colour / with two colours, red and blue, as
follows. First, y is coloured red. We move along / in the direction of x and we
change colour as soon as we enter a different component C;. We move farther
along /, changing colour again as soon as we enter yet another component and
so on. Note that it is quite possible to enter the same component more than once.
If the colour changes infinitely often before we reach x then it must be the case
that / goes through infinitely many balls. (Here we use the fact that the balls are
convex.) But that would imply that infinitely many balls intersect the box B,
and this has probability zero according to Proposition 7.4. So with probability 1,
only finitely many changes of colour are possible. Now m changes of colour
means that the line segment / could have gone to at most C,,+;. In that case,
x € cl(Cm41). Since x is arbitrary, the proof is complete. 0
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It is clear from the definition that being complete is a translation-invariant
property. So if the Boolean model is ergodic, then either almost all realisations
are complete or almost all realisations are an infinite cascade. From now on we
assume that all Boolean models under consideration are complete.

Definition 7.2 An N-branch of the occupied component W of the origin is a
maximal unbounded connected subset of W 0\ (By)°.

Before we state the main results of this section we take a closer look at the
realisations of Boolean models in two dimensions. Consider three disjoint boxes
Bji(:= By +z),i = 1,2,3, where z; € 2NZ2. Suppose that in a realisation
of (X, p), fori = 1, 2, 3, the vacant component ¥; containing z; is unbounded
and that ext(¥;) consists of (at least) three unbounded connected sets which
we denote by CJ’ Jj = 1,2, 3. By taking N larger if necessary (and assuming
that the boxes are so far apart that this increase in size causes no intersection
among them) we can find points rj’: € C}: N By; for all i and j and continuous
polygonal curves yjf from z; to rj’. such that the curve y} is contained (except
its end point rj) in ¥; N B} and such that yj’ n y}, = z; whenever j # j'. We
then have the following result, needed later on.

Lemma 7.2 In a two-dimensional Boolean model it is the case that, in the
situation just described, the set
3
S:=(J{Ci, Ch, Ciy
i=1

has cardinality at most 1.

Proof The proof proceeds by contradiction, using the well-known result on
planar graphs by Kuratowski. So suppose that S contains at least two elements
C and C’, say. This means that we can find ji, j> and j3 such that C = Ci
for i = 1,2,3 and ki, k, and k3 such that C' = C}. for i = 1,2,3. This
implies that we can find continuous polygonal curves y1 from r/ to r? and
y, from r].z2 to rg which are completely contained in C. Let s}2 denote the last
point (starting from rj22) these curves have in common. Similarly, we can find
continuous polygonal curves y{ from r} to r?, and y, from rZ, to r, which
are completely contained in C’. Let s,f2 denote the last point (starting from rjz2

these curves have in common. For ease of notation, we denote by r}l the point
in{rl,ri.rl Nr}. 74 ). The points r,z2 and r,33 are defined in a similar fashion.
Next we consider the hipartite graph G defined as follows. The vertices of G
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are {z1, 23, z3} U {s2 Sia» sk2 r,z} The edges are imbedded in the plane along the
curves constructed above as follows:

(i) z; is connected to s? along yjll and 3,

(i) z; is connected to s , along ykl and y|,
(ili) > is connected to 57, 57, and r? along V2, ¥4, and yZ, respectively,
(iv) 23 is connected to 57, along ng and 3,

(v) z3 is connected to s, along y,?s and ;.

The construction of the edges of G is such that two edges can intersect only at
vertices of G. Now suppose that it is possible to connect rf, with r}, and r}, by
arbitrary disjoint curves o and g which do not intersect any of the previously
constructed curves (apart from the point r,22 of course). This would imply that
z) and z3 are connected to r122 along VI: and o, respectively, yg and B. Thus
this would create a new graph G’ which is isomorphic to the complete bipartite
graph K3 3. It is a well-known result in graph theory, due to Kuratowski, that
K3, 3 cannot be imbedded in the plane without non-trivial intersections between
the edges. Hence curves o and B do not exist. But this implies that not all
three points r,l , r,z2 and r133 are contained in the exterior of the Jordan curve J
122 r3,z, g, s,%z, r,ﬁl , 21) along edges of G. Thus at least
one of these three points, r,‘l say, is contained in the interior of J. However, |
is contained in the unbounded occupied component C,'I and hence there exists a
continuous polygonal curve from r,'l to infinity which is completely contained in
C,'l . This curve then has to intersect an edge of G, but this is impossible because
all edges of G are contained in vacant components or occupied components
disjoint from C; . m|

connecting (z, r

Here are our main results. The first (occupancy) result is true in any dimen-

sion, but for the corresponding result for vacancy we need the dimension to
be 2.

Theorem 7.1 Let W denote the occupied component containing the origin.
Then for any N > Q, the probability that W has more than two N-branches is
equal to zero.

Theorem 7.2 Consider a Boolean model in two dimensions and let V be
the vacant component which contains the origin. The probability that ext(V)
consists of more than two connected sets is equal to zero.
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Before we prove these results, let us look at the consequences in two dimen-
sions. In two dimensions, the fact that any unbounded occupied component
C has at most two N-branches implies that ext(C) consists of at most two
connected sets. So in two dimensions the exterior of any unbounded compo-
nent, vacant or occupied, contains at most two connected sets. Each of these
connected sets gives rise to one ‘neighbouring’ unbounded component of the
opposite type, and we conclude that each unbounded component has at most two
‘neighbouring’ unbounded components. With the convention that oo - 00 = 0,
this immediately yields:

Theorem 7.3 Ina Boolean model in two dimensions, the number of unbounded
occupied components and the number of unbounded vacant components differ
by at most one a.s.

In the last section of this chapter, we shall construct, for any integer X, a
Boolean mode! with X unbounded occupied and K + 1 unbounded vacant
components. The proof of Theorem 7.1 resembles the proof of uniqueness
of unbounded components in Poisson Boolean models. In that proof we al-
ready used the idea of branches. In the next section we shall see that Theo-
rem 7.3 can be used to prove uniqueness results for Boolean models driven
by general point processes under certain conditions on the radius random
variable.

Trying to use the ideas of Chapter 3 creates problems similar to those in
Chapter 4. We do not want to assume that the density of the point process is
finite, and this is crucial in the proof of Theorem 3.6. In the proof of Theo-
rem 4.6, the way out was to look at vacant components inside little cubes. Here,
we can do something similar:

Lemma 7.3 Consider a Boolean model (X, p, \) and choose K < 00 such
that P(p > K) > 0. Let A C IR? be a convex set with diameter at most K. Let
C[ A} denote the (random) region

cidl = | S, o0);
x;€A4

that is, C[A] is the occupied region formed by points in A. Then the number of
connected components in ANC[ A], to be denoted by Y 4, has finite expectation.

Proof The set A is convex, and hence its intersection with any ball, if not
empty, consists of one component exactly. Hence Y4 is at most & if X(4) = &.
This would complete the proof if the density of X were finite. To treat the
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general case, note that Y4 can be larger than 1 only if all balls centred in 4 have

radius at most K. Now condition on the number of points in A4 to obtain

o0
E(Y4|X(A) =k} = ) nP(Y4=n|X(4) =k)

n=1

k
P(Ya=11X(4) =k + ) n{Pp =< K

n=2

IA

< 1+ Lk + D{P(p < K)}*.
Hence
(o]
EYy <) (1 + H+ DIPG < F) PXW =B, (15)
k=0
and this sum is finite because P(p < K) < 1 by assumption. (]

Proof of Theorem 7.1 1t is clear from the discussion on ergodic decompo-
sition in Section 7.1 that it suffices to prove the theorem for ergodic Boolean
models. Suppose that ¥ has more than two N-branches with positive proba-
bility for some N. The event that # has more than two N-branches is denoted
by EO(N). Choose € > 0 so small that P(p > 2e+/d) > 0. A local component
is a connected set in C[B2¢?] = Uy, e g2 (SCxi p1) N B2¢%), for some z € Z%.
From Lemma 7.3, it follows that the expected number of local components in
B is finite. As in Chapter 3, we choose a number K large. Given K, we choose
M > N and define the event E%(N, M) := E®(N) N {all N-branches of W
contain balls centred in at least K different boxes B2¢Z C BY,, \BY} N (B is
covered by aball centred in B.}. Itis clear that this event has positive probability
n, say, if € is small enough. The event E#(N, M) is defined by translating this
event over the vector z.

1t follows from Proposition 2.7 that we can choose € such that all translations
T 2¢e; are ergodic. (It might be necessary to rotate the coordinate axes for this.)
As in the proof of Theorem 3.6, it follows that the expected cardinality of the
set

R = {z eZ¢ . B}ﬁf C BgN, EzNz(N, M) occurs]

is equal to nL¥. For z € R, we have Y g2v: = 1 by definition. Furthermore, for

z € R, we denote by c§" ,C. §2) and C?) the set of all local components in each
of the first three N-branches (which can be thought of as being ordered in some
arbitrary way) contained in BZ\:\B3"?, then cnc? =pfori # j,and
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card(Cii) ) = K foralli. Finally, for z € R, we identify z with the only local
component of BZN Z_The rest of the proof now proceeds exactly as in the proof
of Theorem 3.6, using local components instead of points of the point process.

O

REMARK: The reader should note that the only place in the proof of Theo-
rem 7.1 where we used the independence of the radii and the point process was
to derive the fact that the expected number of local components in B is finite.
The fact that we put balls around each point rather than some other shape is
only relevant as far as this affects the expected number of local components.
This means that if we consider any stationary point process and put shapes
around each point in a stationary way such that the expected number of local
components is finite, the proof above goes through without difficulty.

Proof of Theorem7.2 Inorderto arrive ata contradiction, suppose thatext(¥')
consists of at least three (unbounded) connected sets with positive probability.
By looking at the boundary of these connected sets we see that there are at
least three unbounded occupied components with positive probability. Hence
there is a non-random box By such that By intersects these three unbounded
occupied components with positive probability. We now perform the following
trick: consider the two-dimensional lattice 2NZ? = {2Nz : z € Z2}, As in
Chapter 1, we can create a stationary point process Y by ‘shifting’ this lattice
over a random vector which is chosen uniformly on By. Now consider the
superposition of X and Y, where X and Y are chosen to be independent. It is easy
to check that the superposition of two independent stationary point processes
is again stationary. The points which come from the process Y will not be the
centre of a ball with random radius. Instead we do the following: for every point
y of the point process ¥ we check whether or not the square B;‘(, has at least
three occupied N-branches in the model (X, p); i.e. we check whether or not
the complement of BJ{, contains at least three unbounded occupied components
which intersect the boundary of B},. If this is not the case, we do not put any
shape around y. If this is the case, however, then with probability %, we centre
a square with side length 2N — 8 at y where § is a small positive number,
and with probability % we do nothing. The model obtained is stationary, even
though the configuration of squares depends on the realisation of the original
mode! (X, p).

We do not change the balls which are centred at the points of X. As we
already saw above, for € > 0 small enough, the expected number of lo-
cal components in B, in the Boolean model (X, p) is finite. If, in addition,
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2¢ < 2N — §, then the extra squares coming from points of the process Y can
increase the number of local components in B, by at most one, because once a
point of Y is centred in B, the whole box B, is covered by the square centred
at this point. We conclude from the remark preceding this proof that the new
superposed model has all the properties which make the proof of Theorem 7.1
work. Thus, in this superposed model, for any NV, there cannot be more than two
N-branches in the occupied component of the origin a.s. However, we already
concluded that for the Boolean model (X, p) there exists a number N such that
each box By, intersects three unbounded occupied components with positive
probability. There is a positive probability that y is the centre of a square with
side length 2N — 4. For § small enough, there is a positive probability that this
square intersects all three unbounded occupied components and that the square
is contained in By. According to Lemma 7.2, for N large enough, there are only
finitely many boxes B3, y € Y which have a non-empty intersection with more
than one of the three unbounded occupied components of (X, p) which intersect
By and whose complement contains at least three N-branches. With positive
probability, no point of ¥ in one of these boxes is the centre of a square and
hence with positive probability, these unbounded components remain disjoint
outside By. The conclusion is that we have constructed in the superposed
model an unbounded occupied component with three N-branches. According
to Theorem 7.1 and the remark preceding this proof, this is impossible and the
proof is complete. 0

7.4 Uniqueness in Boolean models

In Chapters 3 and 4 we proved that in a Poisson Boolean model both the un-
bounded occupied and unbounded vacant component are unique a.s. We can-
not expect this to be true in general Boolean models. Here is a very simple
counterexample in two dimensions. Consider the following point process in
the spirit of Example 1 in Section 1.2: we translate the points of the lattice
{(z1,222) : z1,z2 € Z} over a random (uniform) vector in {0, 1] x [1,2].
Thus the horizontal distance between two points is 1, and the vertical distance
between two points is 2. Let p be such that P(p = %) = 1. In this Boolean
model it is easy to see that we get infinitely many unbounded occupied and va-
cant components a.s. Hence certain conditions are necessary in order to obtain
uniqueness. The sufficient conditions which we obtain are conditions concem-
ing the support of the radius random variable p and moment conditions on the
point process X.
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Theorem 7.4 Consider a Boolean model (X, p) in IR%. If for every M > 0
we have

Plp>M)>0 (7.6)

then there is at most one unbounded occupied component a.s.

The situation for vacant components is not quite as nice as this. In two
dimensions however, we have the following result.

Theorem 7.5 Considera Boolean model (X, p) in two dimensions. If for every
€ > 0 we have

Plp<e)>0 a.Dn

then there is at most one unbounded vacant component a.s.

To obtain uniqueness for vacancy in higher dimensions, we have to impose
further conditions on the point process X. Butitis easy to rule out all possibilities
except zero, one and infinity:

Theorem 7.6 For an ergodic Boolean model (X, p) in any dimension, if (7.7)
holds, the number of unbounded vacant components is either zero, one or infinity
a.s.

The last result of this section gives a condition to rule out the case of infinitely
many unbounded vacant components.

Theorem 7.7 Consider a Boolean model in dimension d > 3. Suppose that
(7.7) holds and that, in addition,

E((X(Bn))?) < 00 (7.8)

for all n and that the support of p is bounded. Then there is at most one
unbounded vacant component a.s.

Proof of Theorem 7.4  First we remark that it suffices to prove the result for
ergodic Boolean models. This is clear from the discussion of ergodic decom-
position in Section 7.1 and the fact that the distribution of the radii is the same
in almost all ergodic components; see the discussion just before the end of
Section 7.1.

In an ergodic Boolean model, the number of unbounded occupied com-
ponents is an a.s. constant according to Theorem 2.1. We have to show
that this constant is either zero or one. To this end, suppose first that it is
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at least three (which covers the case of infinitely many). This implies that
there is a box B, such that the following event E has positive probability:
E := {there are at least three unbounded occupied components intersecting
B, and X(B,) > 1}. A contradiction arises as follows. We choose a point
of X in B, and we increase the radius of the ball centred at this point until
this ball intersects at least three unbounded occupied components. Leaving
the rest of the realisation as it is, we create in this way a realisation with an
unbounded occupied component with three M-branches for some large M.
Also, this has positive probability because of the independence of the radii
and the point process and the fact that the support of the radii is unbounded.
This then contradicts Theorem 7.1.

Next we suppose that the number of unbounded occupied components is finite
but larger than one. (Note that there is overlap with the previous case.) Then
there exists a number K > 2 such that the number of unbounded occupied
components is equal to K a.s. The argument is almost the same as above:
there exists a box By, such that this box intersects at least two unbounded
occupied components and at the same time contains at least one point of X with
positive probability. By increasing the radius of a ball centred in this box, we
can connect two different unbounded components. In the resulting realisation,
we have strictly less than K unbounded occupied components, and all this
occurs with positive probability. This contradicts the fact that the number of
unbounded occupied components is X a.s. 0O

Proof of Theorem 7.5  Again, by the same reason as above, it suffices to
prove the theorem for ergodic Boolean models. The proof is similar to the
proof of Theorem 7.4, though a little more care is needed. Suppose first
that the number of unbounded vacant components is at least three. Then
there exist boxes B, and By with n < N such that with positive prob-
ability B, intersects at least three unbounded vacant components and at
the same time, all balls centred in B, are contained in By. The fact that
the balls can be arbitrarily small now allows us to reduce the radii of all
balls centred in B, until the intersection between any two such balls is
empty. All unbounded components in the original realisation which inter-
sected B, are now connected to each other through the vacancy in B, but
the configuration outside By remains unchanged. Thus no new unbounded
vacant components can arise by this procedure. But now we have created
an unbounded vacant component whose exterior consists of at least three
unbounded connected sets, and this contradicts Theorem 7.2. The case in
which the number of unbounded vacant components is finite but larger than
one is treated similarly and we omit the proof. O
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Proof of Theorem 7.6  In fact the proof of this theorem has been given already
in the proof of Theorem 7.5. It is shown in that proof that we may connect any
finite number of unbounded vacant components by reducing the radii of certain
balls. So if we first assume that the number of unbounded vacant components
(an almost sure constant by ergodicity) is K, say, then by connecting them we
see that there is also a strict positive probability of having strictly less than K
such components, a contradiction. 0

It remains to prove Theorem 7.7.

Proof of Theorem 7.7 1t follows from the ergodic decomposition in (7.2)
that (in the notation of (7.2)) if a random variable Y has finite expectation
fQ Ydu, then almost all expectations me Ydu,, are also finite. As before, the
radius distribution is the same in almost all ergodic components of the Boolean
model. Hence we can again assume that the model is ergodic.

We see from (7.8), the boundedness of the balls and Lemma 4.5 that the
expected number of vacant components in the unit cube is finite. Check the
proof of Theorem 7.1 and observe that if we redefine a local component as
a connected vacant component in a cube, the proof goes through completely.
Thus we have shown that if ¥ denotes the vacant component of the origin, for
any N > 0, the probability that } has more than two N-branches is zero.

The rest of the argument is as in Theorem 7.5. According to Theorem 7.6
we only need to rule out the possibility to have infinitely many unbounded
vacant components. Indeed, if more than three unbounded vacant components
exist with positive probability, we can connect them by reducing the radii of
certain balls, thereby obtaining an unbounded vacant component with three
N-branches for some N, which is a contradiction. O

7.5 Uniqueness in random-connection models

We already proved in Chapter 6 that in a Poisson random-connection model,
only one unbounded component can exist a.s. The fact that the driving point
process is Poisson was used in two places only. First of all, we used the fact that
one can ‘add’ points to an existing configuration. However, we already noted
at the end of the proof of Lemma 6.5 that in case the connection function g has
infinite range (i.e. satisfies M = oo in the notation of Chapter 6) we do not
need to add these points at all.

The second fact about Poisson point processes we used was that it has finite
density. So without any work, we conclude that if the RCM is such that X has
finite density and g has infinite range, there can be at most one unbounded
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component. The assumption for g to have infinite range cannot be omitted. It
is easy to construct an RCM with finite-range connection function for which
there are infinitely many unbounded components. In fact, the example at the
beginning of the previous section can serve here as well, noting that a Boolean
model with fixed-radius balls is in fact an RCM too. But we shall see now that
it is possible to remove the assumption that the density of X be finite:

Theorem 7.8 Let (X, g) be an RCM such that g has infinite range. Then there
can be at most one unbounded component a.s.

As noted before, the proof of Lemma 6.5 goes through without difficulty if g
has infinite range. Hence we need only to rule out the case of having infinitely
many unbounded components. Here we follow the usual strategy and we first
deal with the analogue of Lemma 7.3:

Lemma 7.4 Consider an RCM (X, g) and denote by G the (a.s. finite) graph
obtained from this RCM by taking all points of X in B, and all connections
between them. Then the expected number of connected components in G is
bounded from above by (g(2n/d))™! < ooc.

Proof First we condition on the event that X(B,) = k and we shall obtain a
bound which is independent of k. We denote the points of Xin B, by xy, ..., x.
Let for i = 1,...,k G; be the graph which we obtain by only taking into
account the points xi, ..., x; and the connections between these points, so
that Gx = G. Denote by C; the number of connected components in G;. We
obviously have that EC; = 1. To estimate ECy,.1, we note that adding a vertex
Xp+1 to {x1, ..., x,} and possible connections between x,+) and {xy, ..., x,}
only can increase the number of connected components if x,+ is not connected
to any of the previous points. Hence,

ECh1 < [](1 = gGnsr — x0)) (EC + 1)

i=1

+ (l — [T - gasi - xi))) EC,

i=1

= EC, + ]"[ (1 — glxns1 — X))

i=1

1A

EC,+(1-p),
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where p := (g(2n+/d))~!. Hence it follows that

n
ECii <) (1-p)f <p
i=0

for all n. This bound is independent of k and the proof is complete. (m]

Proof of Theorem 7.8 Using the argument in the proof of Lemma 6.5 in
Chapter 6 we see that if infinitely many unbounded components exist then, for
some N, the component of the origin has with positive probability more than
two (disjoint) N-branches, where a branch is defined as in Definition 7.2. If we
redefine a local component as a component of the graph obtained by considering
the RCM in a box Bi,N % only (as in Lemma 7.4), we can now copy the proof
of Theorem 7.1 to show that this leads to a contradiction. This completes the
proof. (m]

7.6 Cutting and stacking

Stationary and ergodic point processes were introduced in Chapter 1. Some
examples were given, but no mechanism was provided to obtain stationary and
ergodic point processes in a constructive way. In the examples given in the next
section we need a certain type of point processes and the goal of this section is to
introduce these point processes. It is quite possible to describe the construction
of these processes at a heuristic level. To prove, however, that this construction
gives rise to stationary and ergodic point processes, more rigour is needed.

We explain the construction in detail for the two-dimensional case, the higher-
dimensional case being a straightforward generalisation of this. The probability
space involved is the cube € := [0, 1)3 with ordinary Lebesgue measure which
we shall denote by P here. An element w € Q is denoted by w = (u, x), where
u € [0,1)? and x € [0, 1). The method is such that any suitable (to be made
precise later) subset 4 of Q gives rise to a stationary and ergodic point process
X 4 defined on Q.

Suppose that (u, x) and (u + v, x) are both in Q. Then we set

Sy, x) = u+u,x). 1.9)

Thus we have defined the transformation S,/ on a subset of 2. Next, we want
to extend this definition to a larger subset of 2. To this end, we perform the
so-called cutting and stacking procedure. We subdivide €2 into four slices

k k+1

—), k=0,1,2,3.

A% =10, 1)% x [Z‘ n
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I‘E

Figure 7.1. The cutting and stacking procedure.

‘We now rearrange these slices as follows. Let €2 be the set [0, 2)2 x [0, %) and
define the ‘stacking function’ f] : Q@ — 2 as follows

(a,1+b,x) for (a, b,x) € AO,
1+a,1+b,x—l for (a, b, x) € A},
fita by =1 | o @9,x) )
(@ b,x-3) for (a, b, x) € A5,
(l+a,b,x—%) for(a,b,x)eAf.

Thus the function f] just stacks the slice A’l‘ to fi (A’l‘) which is one of the four
blocks making up ,; see Figure 7.1. Now we can define S,/ on a larger subset
of Q as follows: if both (u, x) and (u + ’, x) are in Q we set

Sw(f7 u, x)) = 7w+, x). (7.10)

Note that this is really an extencion of S,,. If S,/ was already defined in (7.9) it
coincides with (7.10).
This procedure can be repeated. We divide §2; into four slices

k okl
A’2‘:=[0,2)2X[E,—1-%——), k=0,1,2,3.

Putting 5 := [0, 4) x [0, 11—6) we define the stacking function f> : Q1 — 3
as the function which stacks the slice A’é to fz(Alé), where f> (A’é) is one of the
four blocks making up €23, so

£(4D) =10,2) x [2,4) x [0,
£(43) = [2,4) x [2,4) x [0,
f2(4%) = [0,2) x [0,2) x [0,
f(43) = [2,4) x [0,2) x [0,

-

F- = = A~
~
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If (u, x) and (u + u’, x) are both in £ we set

Su((fro iy T, x)) = (fro i) Hu + o, x). (7.11)

We continue in the obvious way, obtaining sets 2, and maps f : Qn—1 = Q2
for all n > 1 (where Qp = 2). At each step we extend the definition of S,.
We claim that the subset of points (u, x) of Q for which S, is defined for all
u' € IR? has Lebesgue measure 1. To see this, let E) be the set of points (u, x)
for which S, is defined for all #’ € IR? with |u/| < M. Furthermore, we put

Ey i ={weQ:d({(fao fam10-0 fi)(w), () = M},

where 3(-) denotes the boundary of a set. Then itis easy to see that £}, C E "MH
and that Ep = U2 E%,. But P(E%) = (1/2")(2" —2M)% — lasn — oo.
Hence P(E ) = 1 for all M and the claim follows.

Now we can define the point process X,4. For any measurable B C IR?
consider the set

Up(w):={ue B : S,(w) € A}. (7.12)

If 4 is such that U g (w) is almost surely finite for every measurable and bounded
set B then we define X4 by the relation

X 4(B)(w) = card(Up(w)); (7.13)

i.e. there is a point at x if and only if Sx(w) € 4.

Proposition7.6 Let A C Q2 be suchthat X 4(B)(w) is a.s. finite for all bounded
sets B C IR%. Then X 4 is a stationary and ergodic point process.

Proof It is an easy matter to check that {S, : u € IR?} is an IR?-action
on Q equipped with Lebesgue measure (for the definition of R¥-actions, see
Chapter 2). In particular, each transformation S, is measure preserving. Also,
for x € IR? and writing T for the translation in JR? over the vector x we have
P(X4(B)) = ki, ..., Xa(Bp) =ky)
= P(S; (X4(B) = kis..., X4(Bn) = kn))
P(XA(T—xB1) =k1,..., Xa(T—xBy) = kn)

and hence the stationarity of X 4 follows from the measure-preservingness of
the group {S, : u € R?}.

For ergodicity we need to show that {S, : u € IR?} acts ergodically on
Q. This can be done as follows. Suppose that there exists a set E C  with
0 < P(E) < 1 and which is invariant under all transformations (S, : u € R?).
This would imply that P(S, ' E) = P(E) for all u. According to Lebesgue’s
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Figure 7.2. The generalised cutting and stacking.
Ve

density theorem, for all € > 0 it is the case that for almost all x € FE, there
exists a k large enough so that the box By ; of the form [I, [| + 47 %] x [, [ +
4K x (13, 3 +47F) containing x and where /; is of the form n;4~* for integers
n; satisfies £(E N By x)/€(Bx k) = 1 — €. This implies that for & large, the set
Qi contains two little cubes with side length 4% such that E covers the first
cube more than half, and E€ covers the second cube more than half. Now note
that the ‘thickness’ of 2 is exactly 4% Thus we can find a transformation S,
such that S, (E°) N E has positive measure, a contradiction. O

Here are some examples of stationary and ergodic point processes obtained
this way.

Example 7.1 If the set 4 is a countable collection of points, then X 4 satisfies
X 4(IR%) = 0 as. This is certainly a stationary and ergodic point process.

Example 7.2 Suppose that 4 is a set of the form 4 = (x1, x2) x [0, 1] for
some 0 < x1, x2. The point process obtained this way is just the point process
of Example 1.1 in Section 1.3. As already explained in Chapter 1, we can think
of this process as the integer lattice Z2 translated over a random vector which
is uniformly distributed over the unit square.

The construction up to this point is not flexible enough for our purposes.
Here is a generalisation: Choose a sequence {c,} of positive numbers with the
requirement that o, grows at most polynomially in n. (This assumption is too
strong but enough for our purposes.) Instead of rearranging the slices next to
each other as above, we now construct a ‘frame’ around the slices of width ay,
at the n-th iteration; see Figure 7.2. To this end, we define for each » mutually
disjoint subsets I'; C IR3 which are also disjoint from 2. We shall see in a
moment that we can take each ', to be a finite union of disjoint blocks of a
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certain size. The stacking function fj in the first construction is replaced by a
map gi : QUT; — R3, which on € is defined as

g4 =10,1) x [1,2) x [0, 1) + (@1, | + 2e1,0)
g4} = [1,2) x [1,2) x [0, 1) + (1 +2a1, 1 + 2, 0)
g1(43) =[0,1) x [0, 1) x [0, 1) + (a1, @1, 0)

g1(43) = [1,2) x [0, 1) x [0, 1) + (1 + 21, 1, 0).

At this point we choose I' in such a way that we can define g; on I'j such that
g1 is measure preserving and

g1 (1) = {[0,2 + 321 1* x [0, HN\g1().

One can think of g; acting on I'y as taking blocks from I'y and rearrang-
ing them so as to form a frame of width «; around the four slices coming
from 2. As such g; is still piecewise linear on U I';. On U2,T;, which
will be defined in a moment, we shall define g; to be the identity. We write
Q) == g(QUT) = [0,2+ 3] x [0, §). As before, if both (u, x) and
(u+ ', x) are in | we set

S (g w, %)) = gl + o', x) (7.14)

as in (7.10). This procedure is repeated. We cut €2 into four slices which we
rearrange with a frame of width a7 around it, where the frame is constructed
from a rearrangement of blocks which form the set I';  IR3. The map which
accomplishes this stacking is the analogue of stacking function f; above and
is denoted by g». Hence g is a piecewise linear map from ; UT'; — ;. On
U2, T, we define g3 to be the identity. i (u, x) and (v + ', x) are both in €
we set

Se((@og) ™ %)) =(2og) '+ u,x) (7.15)

as before. We continue in the obvious way, obtaining maps g, : 2,—1 U
ux.ri - Q, as analogues of the stacking maps f, above. We put I' :=
U T, and the probability space on which we define our point processes is
just & U T with normalised Lebesgue measure P as to have P(QUT) = 1.
Note that it is here where we use the fact that the sequence {«, } does not grow
too fast: it is an easy matter to check that the Lebesgue measure of I is finite
under our assumptions, i.e. the total volume of the framework added is finite.
As before, for almost all w € Q U T, the map S, (w) is defined for all u € IR?.

Ergodic point processes X4, for 4 € Q U T for which (7.12) is finite for
every measurable and bounded set B C IR? can now be defined as in (7.13).
Examples of this construction will be given in the next section.
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Figure 7.3. The bold line segments form the set 7 (B;). The large square is the front
face of 2,.

7.7 Examples

The cutting and stacking procedure of the previous section can be used as a
‘counter-example machine’. We shall construct some examples which can be
used to show that certain conditions in results of this chapter can not be omitted.
We freely use the notation of the previous section.

Example 7.3 (A stationary tree) Consider the generalised cutting and stack-
ing procedure of the previous section and take o, = 1 for all n. If we define
d, via 2, = [0,d,]* x [0, (%)"), we see that d, satisfies the recurrence re-
lation dy, 4+ = 2d, + 3, which is readily solved under the boundary condition
do = 1, giving that d, = 2"+2 — 3 for all . In order to describe a point process
X4 we need to specify a set 4. In fact, in order to specify 4 it is enough to
specify sets of the form g, o --- o gi(4) N 2, =: A, for all n and this is
what we shall do. It is convenient to first describe a set B, C €2, and then
explain how 4, can be obtained from it. The first thing to remark is that if =
denotes projection on the plane {(xy, x2,x3) : x3 = 0}, B, and A, will be
such that 7~ 1x(B,) N, = B, and n~'w(4,) N, = 4, respectively. It
is therefore enough to describe the projections 7 (B,) and =(A4,) for all n. A
picture is worth more than a thousand words, so the set x(B;) is defined to
be the union of a finite number of straight line segments and is depicted in
Figure 7.3.

The next iteration gives the set B, and 7w (B3) is depicted in Figure 7.4, It
should be clear by now how the sets B, for n > 3 are defined. This procedure
yields a stationary (and ergodic) imbedding of a tree-like structure in the plane.
The set 7 (A4,) can now be obtained from 7 (B,) by replacing the straight line
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Figure 7.4. The bold line segments form the set 7 ( B,).

Figure 7.5. The set (A1) is obtained from 7(B;) by replacing the straight line seg-
ments by evenly spaced points.

segments which make up 7(B,) by points evenly spaced having distance € to
each neighbouring point; see Figure 7.5 for the case n = 1.

The question may arise where the origin is in this construction and what the
actual point process X 4 looks like. Well, take n so large that w € €2,,, and denote
by 0 the projection 7 (w) of w. From the fact that 7~ (4,) N Q, = Ay, we see
that Sy (w) € A4, if and only if S, (0) € 7 (4,).Soonce w € Q,, the projections
m(Ay) tell it all and the points which make up 7 (4,) are the actual points of
the point process X 4. Once w is in €2,, each further iteration determines the
points of the point process in a larger box containing the origin.
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Figure 7.6. The second iteration in the construction of two disjoint stationary trees
with a positive distance from each other.

Example 7.4 (Intertwined trees) Once we have the example of the stationary
tree above, it is quite easy to come up with some variations on the same theme.
Instead of one tree we can construct two trees simultaneously in the same spirit
as in Example 7.1. It is not necessary to repeat the whole construction, we
just give the picture (Figure 7.6) which is the analogue of Figure 7.4. In this
construction we obtain two intertwined trees with a positive distance from each
other. Of course, in the point process which we construct from this, we replace
all straight line segments by evenly spaced points as in the first example.

Example 7.5 (Multiple trees) The construction in Example 7.4 cannot be
extended to any finite number of trees. Here is a way to construct any finite
number of stationary trees using the cutting and stacking procedure. We depict
the first iteration of a construction in Figure 7.7, as it will be clear how to
continue.

After these examples we discuss the relevance to percolation theory. From
Theorem 7.4 we know that whenever the radii of the balls are unbounded,
there can be at most one unbounded occupied component. Furthermore, in
two dimensions, if the radii can be arbitrary small, there can be at most one
unbounded vacant component (Theorem 7.5). In an RCM, we know from The-
orem 7.8 that infinite range models have at most one unbounded component a.s,
As already noticed, it is not hard to find examples of a Boolean model or RCM
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Figure 7.7. The first iteration in the construction of two stationary ‘parallel’ trees. It
is clear how to generalise this to any finite number of trees.

where infinitely many unbounded components arise a.s. The point of the exam-
ples above is that they give rise to Boolean models or RCMs with multiple but
finitely many unbounded components.

First, consider the construction in Example 7.5. Suppose that the distance be-
tween successive points on the trees is € > 0 and that the distance between the
different trees is § with § > €. Consider a Boolean model driven by this point
process, and where the radius random variable p satisfies P(p =€) = 1. It is
then clear that each tree in the construction gives rise to exactly one unbounded
vacant component and also that the unbounded components corresponding to
different trees are disjoint. Hence we have created a Boolean model with two
unbounded occupied components. Generalisation to any finite number of un-
bounded components is clear. We remark that a Boolean mode! with fixed radii
is in fact an RCM too. Thus this also gives an example of an RCM with two
unbounded components.

A small variation of the construction in Example 7.4 may be used to create
an example of a Boolean model where the radii are bounded from above but
not from below, such that the model has two unbounded occupied components
a.s. (and, according to Theorem 7.5, only one unbounded vacant component).
The idea is the following. The trees have line segments of increasing lengths
I1,12, ... say. Depending on the precise distribution of p we put, on each line
segment with length [, so many points (evenly spaced) that the probability that
the whole line segment is contained in the union of all balls centred at these
points is at least | — 27", Starting at an arbitrary point on a tree there is a unique
sequence of line segments along which we can radiate to infinity starting at that
point. Denote this sequence by I, [5,, .... From the Borel-Cantelli lemma
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it follows that with probability 1, all line segments I,, are covered by balls
for k sufficiently large. Thus each tree gives rise to at least one unbounded
component. A little thought reveals the conclusion that each tree can give rise
to at most one unbounded component and we conclude that, in this Boolean
model, exactly two unbounded occupied components exist a.s.

7.8 Notes

The material in Section 7.2 is taken from Meester and Roy (1994). The topological
structure of unbounded components in two dimensions is based on Burton and Keane
(1989, 1991). The results in Section 7.4 are improved versions of results in Meester
and Roy (1994), and the results in Section 7.5 are taken from Burton and Meester
(1993). Cutting and stacking goes back to Rudolph (1979), and the examples con-
structed using this technique are from Meester and Roy (1994).
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Other continuum percolation models

This chapter is devoted to amiscellany of random processes related to the models
discussed so far. Some of these models have been studied quite extensively but
others are new. Consequently, there are many open questions in these models
and we hope that this small survey will initiate research in this direction.

8.1 Continuum fractal percolation

There is a natural way to construct fractal like sets with countably many
Boolean models. Take A > 0 and consider the two-dimensional Boolean mod-
els (Xi,2'7%,4%1)), fork = 1,2, . ... The reason for this particular choice
of the parameters will become clear as we proceed, but note at this stage that
the covered volume fraction (CVF) of all these Boolean models is the same.
(For the definition of the CVF, see Chapter 5.) Now denote by ¥, the vacancy
which remains after the superposition of the first n Boolean models. We denote
this superposition by (¥, pn, A,). Obviously, wehave V1 2V, D V3 D ---
and we define the limit by

o0
Voo = m Vi.
k=1

It is not at all clear at first sight that ¥, can possibly be non-empty. In-
deed, the CVF of a model is equal to the probability that a particular point
in the plane is covered. If we denote the CVF of an individual Boolean model
(Xk, 2'7%, 4%=11) by e, then the probability that the origin is in ¥, is equal
to (1 — @)"; see Chapter 5. Thus the probability that the origin is in Vy, is
zero, But now we cannot, as in the proof of Proposition 3.1, conclude that the
whole plane is covered a.s. The point is that this time infinitely many balls are
centred in the unit square a.s. and as such we do not have local finiteness and

L YZVAN
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the argument in the proof of Proposition 3.1 breaks down. In fact, as we shall
see now, if X is sufficiently small, the vacant region is nor empty a.s.

Proposition 8.1 If). > 4log4, thenVy, =B a.s.

log4
Proposition 8.2 If A < %gs—, then Voo # 0 a.s.

Proof of Proposition 8.1  The proof proceeds by a simple branching process
argument. Consider the unit square /2, say, and divide I? into four smaller
squares with side length % The 0-th generation is just I2, and the first genera-
tion of our branching process are those squares S among the four subsquares for
which X(S) = 0. Note that whenever X(S) > 1, the whole square § is cov-
ered. Hence the union of the squares in the first generation contains the vacant
region in (X, A, 1). Note also that the probability that a particular subsquare
is in the first generation is equal to exp(—A/4).

Each of the subsquares in the first generation is now divided into four
further subsquares with side length ;11-. Such a further subsquare § is in the
second generation if and only if X2(S) = 0. This happens with probability
exp(—4A/16) = exp(—A/4). It is clear that different squares in the first gen-
eration give birth to members in the second generation independently of each
other. Thus we have constructed a branching process in such a way that when-
ever this process becomes extinct, there is no vacancy left in the original model.
Extinction takes place a.s. whenever the expected number of members in the
first generation is less than 1; i.e. if 4exp(—A/4) < 1,ie. ifA >4log4. O

Proof of Proposition 8.2  This result can also be proved by a branching pro-
cess argument. This time we shall construct a branching process in such a way
that if this process survives, then V, # @. To this end, consider again the unit
square 72 and suppose that X (I%) = X,(I2) = 0. This happens with positive
probability. As before, the O-th generation of our branching process consists of
I? only. The first generation consists of those squares among [0, ;11-] x [0, ;11-],
[0, ;1{] X [%, 1], [%, 1] x [0, 71] and [%, 1] x [%, 1] (1.e. all ‘corner subsquares’ of
I%) which are not intersected by any ball coming from X3 or X4. The probability
that e.g. [0, ;11-] x [0, %] is in the first generation is at least as large as the
probability that there is no point of X3 and X3 in (-1, %] X ['"41‘1' %]. This
probability is equal to exp(—16)tl%) exp(—64)t%) = exp(—451). The other
corner squares are in the first generation with the same probability.

Now each of the squares of the first generation is divided into 16 subsquares
and the second generation consists of those ‘corner squares’ among these which
are not intersected by any ball coming from X5 or X¢. The probability that this
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happens is the same as in the corresponding event described above. Also note
that members of the first generation give birth to members of the second gen-
eration independently of each other. We continue in the obvious way. Now
observe that if this branching process survives, we have a non-increasing se-
quence 4; 2 Az 2 --- of non-empty compact sets such that 4, € V), for
all n. This implies that Vo D M,>14, # @ by Cantor’s intersection theo-
rem. Survival is possible with positive probability if 4exp(—451) > 1, i.e.
A < log4/45. A reader concerned with details will notice that in the statement
of the proposition we claim that Vg is not empty a.s. To see that this stronger
statement is also true, we divide the plane into unit squares and consider a
sequence Iy, I, ... of such squares such that d(;, I;) > 4 forall j # k (to
guarantee independence). Now P(Voo N I; # ) is positive and independent of
jwhence P(Voo #0)=1. a

From a percolation point of view we are interested in the existence of large
connected components of V. So our next task is to show that large components
do indeed exist. To this end, we define a new critical density A s (the *f” refers
to ‘fractal’) as follows:

Definition 8.1 Let 67(1) be the probability that Vo N [0, 112 contains a con-
nected component which intersects the left and right sides of [0, 112. Define X f
as

Ap=inf{A : B7(A) =0}

Note that Ay is defined in terms of crossing probabilities like A5 and A% in
Chapters 3 and 4. We shall see later that A/ is strongly related to the classical
critical densities in the ordinary Poisson Boolean model. Our first task is to
show that A ¢ is not equal to zero.

Theorem 8.1 Ay > 0.

Proof Theidea of the proof is related to the proof of the well-known extinction
theorem for branching processes. First we define the notion for the unit square
1% to be m-good, for all m > 0. We assume that X;(1%) = X»2(1%) = X3(I?) =
X4(I%) = 0, something which happens with positive probability. We divide the
unit square into 256 subsquares which we shall call level-1 squares. We say that
I? is 0-good if at least 255 of these level-1 squares do not contain any point of
Xs, X6, X7 and Xg. A level-1 square which does not contain any such point will
be called empty. We further divide each empty level-1 square into 256 level-2
squares. An empty level-1 square is called 0-good if at least 255 of its level-2
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subsquares do not contain any point of X9, X1, X11 and X12. The unit square is
said to be 1-good if it contains at least 255 0-good level-1 squares. Inductively,
the unit square is called m-good if at least 255 of its 256 level-1 subsquares
are (m — 1)-good. We denote the probability that the unit square is m-good by
Om (A).

The idea behind these definitions is the following. If the unit square is 0-good,
then it is an easy matter to check that each side of the unit square touches at
least five level-1 squares which are completely vacant (with respect to Yg). (Note
that the diameter of the balls associated with X5 is %.) The same statement,
properly scaled, is true for 0-good level-1 squares. Two squares are said to be
adjacent if they share a side. A path of squares is a finite sequence of squares
S1, 82, ..., S such that §; and §;+1 are adjacent foralli =1,...,k — 1. If
both [0, 1]% and [1, 2] x [0, 1] are 0-good, then there exists a connection from
{0} x [0, 1] to {2} x [0, 1] (inside the rectangle) of adjacent vacant (w.r.t. ¥3)
level-1 squares. It is now easy to show inductively that if the unit square is
m-good, then there is a path of vacant (with respect to Y4(n2)) level-m squares
connecting the left and right sides of the unit square. Thus if 72 is m-good for
all m = 1,2, ..., then we can find a non-increasing sequence of connected
compact sets 4, with the properties that (i) A, < V), and (ii) 4,, intersects
the left and right sides of I2. It follows immediately that Vo, # @ in such a
case. It therefore suffices to show that if A is sufficiently small then

lim 8, (1) > 0. (8.1)
m-—>00

To prove this, let p := exp(—85A) be the probability that a level-m square
is empty (i.e. does not contain a point of X4, 41, Xam42, Xamy3 and X3 14.).
Writing 6,, as a function of p rather than of A we obtain by definition:

Om(p) = 256p" (1 — P)Om-1(p))™ +
+ pP(256(0m-1(p) > (1 = On—1 (D)) + Om-1(P)*®,
form > 1, and
fo(p) = p*° +256p*(1 — p).

Define ¢,(x) = p*33x235(256 — 255 px). It then follows that

Om(p) = ¥y (1),

for all m > 0. It is easy to check that ¥,(x) is increasing in both p and x. It
follows that lim, - o0 6, () is equal to the largest fixed point of ¥, in [0, 1].
We need only to show now that for p sufficiently large but smaller than 1 (which
means for A sufficiently small but positive) the largest fixed point of ¥ in [0, 1]
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is larger than zero. This, however, follows from the fact that (1) = 1 and
d/dx)1(x)x=1 = 0. u

We shall now formulate a relation between ‘ordinary’ Poisson Boolean mod-
els and the fractal model of this section. Fix some n > 0 and consider the
(independent) Poisson Boolean models

(X1gimtyn, 27078 40G=Dmpy

fori = 1,2,..., defined on the same probability space. The i-th model will
be denoted by Z;(n) and when there is any chance of confusion the probabil-
ity measure in that model will be denoted by Pz, (). Note that Z; (n) is just
(X1, 1, X) for all n. Also observe that Z;,.| (n) can be obtained from Z;(n) by
scaling with a factor 27", We shall denote the vacant region in Z; (n) by V;(n).
Instead of looking at V,, we now concentrate on

(Vi) =: V().
i=|

The reason for doing so is that when » gets larger, Z) (n) will be more and more
dominant so that ¥ (n) will be more and more like V1 (1). But V1 (1) isequivalent
in law to the vacant region in the Boolean model (X, 1, 1) and this will give
the relation between the critical densities for fractal percolation and A%(1). To

make this precise, let 6 }”) (A) be the probability of a vacant L-R crossing of the
unit square in ¥ (n), and define

Ar(n) = inf{x : 67() = 0}.
Theorem 8.2 lim,_, o Ar(n) = A%(1) (= A.(1)).

Proof First we prove that
Ap(n) < Ae(1) (8.2)

for all n. Recall that o((m,m), A, 1) is the probability of an occupied L-R
crossing of the square {0, m]? in the Poisson Boolean model (X, 1, A). Fix
A > A.(1). From Corollary 4.1 we have that

lim o ((m,m), 1, 1)=1. (8.3)

Consider the event E; = {there is an L-R occupied crossing of the unit square
in Z;(n)}. A simple scaling argument gives

P(E;) = o((2U~Dn 20=-Dmy 5 1y,
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From (8.3) and the indepehdence of the events E; we have that

P(limsup E;) = 1.
1->00

By symmetry, this is also true if we consider T-B occupied crossings instead
of L-R crossings. So infinitely many models Z; (n) (for fixed n) have occupied
T-B crossings of the unit square a.s. and consequently 9}") =0

The other inequality is harder, and we concentrate first on the ordinary Pois-
son Boolean model (X, 1, ). Fix some A < A.(1), let Ry, be the rectangle
[0, 3M] x [0, M] and let Dy be the square [0, M 2. Using the FKG inequality
and Corollary 4.1 we see that for all ¢; > 0, the following event E 37 , = {there
is a path of vacant squares of side length # crossing Ry from left to right and
two such T-B crossings in Djs and Dys + (2M, 0), respectively} satisfies

P(Epmy) > 1—€1, (8.4)

for M sufficiently large and 7 sufficiently small. Next we choose n so large
that 27" < 5 and such that 2" = (2k, + 1) M for some integer k,. We divide
D5~ into squares of side length M and we denote by IL s, the set of vertices
{(M/2, M/2) + 2Mi,2Mj)}, where i, j € Z. We connect any two vertices v
and v"in IL y , if and only if d (v, v") = 2M. We now perform bond percolation
on the ensuing lattice (also to be denoted by IL 4 ,), declaring a bond to be open
if the event Ey ;, properly translated and rotated, occurs in the union of the
three squares which intersect the bond. If this is not the case, the bond is said
to be closed. This is not an independent percolation model, but two bonds
which do not have an end point in common are independent. Now let Fis ,
be the event that there is an L-R crossing of Do» in Lz, of open bonds,
i.e. a crossing from a vertex in {(i, j)) € Ly, : i = M/2} to a vertex in
(G, e Ly, :i=Q2"/M)— (M/2)}. Itis clear from the construction that
the occurrence of the event Fys , implies that there is an L-R vacant crossing of
Dyn in the underlying Poisson Boolean model (X, 1, 1). To estimate P(Fjs )
we introduce the dual lattice l‘,{m which is just the lattice L,y , translated
over the vector (M, M). Each bond in the dual lattice intersects one bond of
the original lattice and a bond in the dual is declared open if and only if the
intersecting bond is open, and closed otherwise. Now Fj,, does not occur if
and only if there a closed T-B crossing of [M, 2" — M] x [—M, 2" + M]in the
dual (see Section 1.2 in Chapter 1). The probability of the latter event can be
estimated by counting arguments as in Chapter 1: each such T-B crossing starts
from any of the (2" — M) /(2 M) vertices at the bottom and must contain at least
(2" + M)/(2M) bonds. Furthermore, the number of distinct paths of length &
is at most 3. Finally, the state of a bond in the dual depends on the state of
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only six other bonds in the dual and the geometry of this dependence structure
is such that any path of length £ in the dual contains at least [ k/4| bonds which
are mutually independent. Putting these observations together gives

2 - M
P(Fu,) > 1— Yo e
M k>2"+M
=TIM

\%

2" — M (3e)/H@HM/2M)
2M (1 -3¢’

=1- (8.5)
Now we return to the fractal model. Recall that we have chosen A < A.(1). It
suffices to show that for all n sufficiently large ¥ (n) contains an L-R crossing
of the unit square with positive probability.
Assume that [0, 1]? is completely vacant in ¥;. This happens with positive
probability and is just for convenience. Scaling (8.4) and (8.5) yields

Pzimy(Epgyati-vm gjaa-im) > 1 — €1 (8.6)
and

Pz,(n)(there is a vacant L-R crossing of the unit square)
m_ M (361'/4)(2"+M)/(2M)

2M (1 -3¢/’
=1 — hpn(€r), say. 8.7

>1-

The lattice construction above can also be carried out, suitably scaled, in
any of the models Z;(n). Suppose vacant paths as in the definition of the event
Eyor n/2n exist, and let G3(n) be the event that inside these paths, there is a path
of vacant squares of side length 1/2%" crossing R my2n from left to right after
the model Z3(n) has been ‘placed’. To estimate P(G3(n) | Epr/2n) we perform
a similar discretisation as above, suitably scaled. For the counting argument,
note that the path in the event Epyn,,/2n consists of at most 3M? squares.
There are, on either side of the path, at most 3M2[(2" — M)/(2M)] vertices
in the dual which are adjacent to an edge in the dual crossing an edge of the
path. In order for G'3(n) not to occur, one of these vertices in the dual has to be
the starting point of a path of at least (2" + M)/(2M) closed edges. A similar
calculation as above now yields

-M (3611/4)(2"+M)/(2M)
M a -3¢’
1 ~ gu.n(€1), say. (8.8)

1 —3M22"

P(G3(n) | Epmpanyyom)

v
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Hence from (8.6) we find
P(G3(n))

v

(- — gm.nler))
> 1 —e1— gmnler)
= 1-e.

So the probability that in the superposition of Z(n) and Z3(n) there is a vacant
crossing of Rys/2» by squares of side length 227 is atleast 1 —es. This statement
can be scaled properly so as to yield a similar statement about the superposition
of Z;(n) and Z; 1) (n) and suitable crossings in suitable rectangles. Define G (n)
as the event that in the superposition of Z;(n), Z3(n), ..., Zx(n) there exists a
path of vacant squares of side length 2&=Dn crossing Ry o» from left to right.
Choosing

€k+1 := €1 + gum.n(€r)
for all £ > 1 we conclude that
P(Gr(n)) = 1 — g 8.9

for all £ > 2. Thus the probability of a vacant LR crossing of the unit square
in Vi(n), given that the unit square is contained in V| is bounded from below
by the expression obtained from the right-hand side of (8.7) if we replace ¢
by €.

To complete the proof we again perform an iterative procedure. Take € such
that 3(2¢;)!/* < 1. Now choose some M and » and choose n so large that
gMm.n(2€61) < €1 and such that hy ,(2¢1) < 1. (The reader may check easily
that this can be done.) The function gu, , is non-decreasing and so is the function
Y(x) := €1 + gp.n(x). Note that

€k+1 = Y (€k)

for all £ > 1. From the choice of €, we have that ¥ (€]) > €; and ¥ (2€)) <
2¢;, whence ¥ has a fixed point in the interval (e}, 2¢;). It follows that € :=
lim_, o0 €4 exists and is contained in (€1, 2€1). Hence ¥ (n) contains a vacant
LR crossing of the unit square with probability at least 1 — A, (2€1) > O.
0

8.2 Percolation of level sets in random fields

Imagine a hilly landscape and a certain level A, say. The level & is supposed to
represent the level to which the landscape has been filled with water. Typically,
one expects that if 4 is sufficiently small, then there are only bounded lakes of
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water and an infinite land mass; if A is large enough, then there should be only
bounded islands in an infinite ocean.

To formulate this model mathematically, we consider a stationary, ergodic,
a.s. continuous random field {¢r(x) : x € R?}. We shall always assume that
E¥(x) = O for all x € IRY. We define level sets as follows:

Sp={x : ¥(x)=h},
and
S<h={x : ¥x) < h},

for all h € IR. As usual, we say that a subset of R4 percolates if it contains
an unbounded connected component. In analogy with the percolation models
discussed in this book we may define

he = he(¥r) = inf{h : S<; percolates with positive probability}.

Note that if S<; percolates with positive probability it percolates almost surely
by ergodicity.

First we shall give a condition under which A.(yr) is bounded away from
infinity. This is the analogue of Theorem 1.1 in Chapter 1 and, as we shall see,
the proof proceeds very much along the same line. In order to formulate the
condition for non-triviality of k., we discretise IR? in the usual way: the space
is partitioned into unit cubes By, B3, ..., where B; = z; + (—%, %]d, for an
enumeration {z;} of the vertices in Z9.

Theorem 8.3 Suppose that there exists a non-increasing functiong : R — IR
such that g(h) | 0as h — oo and a constant ¢ = c(h) > O such that for any
subset {By,, Bi,, ..., Bi,} of unit cubes

k
P (ﬂ [ max y(x) 2 h}) < c)ig®)*. (8.10)

j=l iy
Then ho(Y¥r) < oo.
Proof Consider the random field {¢(2) : z € Z?} defined as
¢ (z;) = max ¥(x).
x€B;

We say that a vertex z is h-open if ¢(z) < h and h-closed otherwise. If we
can show that for 4 large enough, there is (discrete) site percolation of A-open
vertices, then it follows from the a.s. continuity of  that A.(¥) < oo,
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It follows from (8.10) that for every finite subset {z;, ..., z} of vertices

k
P (ﬂ{«»(m > h}) < c(igm). (8.11)
i=1
To show that this implies that 2-open percolation occurs in ¢ for A sufficiently
large, we need to introduce the notion of so-called *-connections in Z4. This
is the analogue of the dual graph in bond percolation (see Chapter 1). Two
vertices z and z’ are *-neighbours if |z — z/| < J/d. Note that each vertex
has 3¢ — 1 #-neighbours. We can define *-paths and x-clusters in the obvious
way with this new connection rule. Now it can be seen that there is no h-
open percolation if and only if there are infinitely many disjoint, #-closed *-
connected sets ‘surrounding’ the origin. (Here ‘surrounding’ means that the
origin is cut off from infinity from the percolation point of view.) Now we
perform a counting argument as in the proof of Theorem 1.1. Let E, be the
event that there is a #-closed *-connected set of n vertices surrounding the
origin. For each such set of n vertices, the probability that it is h-closed is
at most c(h){g(h)}", using (8.11). There are at most n(3% — 2n — 1 such
sets whence P(E,) < n(3¢ — 2)*"'c(h){g(h)}". Now choose % so large that
g(h) < (37 —2)~1. Then ¥, P(E,) < 0o and h-open percolation occurs a.s.
a

This result may be applied to a number of special cases. The most obvious
special case is a random field with finite correlation radius. This means that
there exists an R > 0 such that for any collection 4i,..., 4, of bounded
measurable sets with inf{d(x, y) : x € 4;, y € 4j} > R whenever i # j, the
o -algebras generated by the values of ¥ (x) on these sets are independent.

Corollary 8.1 A stationary random field \r with finite correlation radius has
he(yr) < oo.

Proof Let F be the distribution function of max,¢p, ¥ (x). From the conti-
nuity of ¢ we have that F(x) — 1 as x — oo. Any collection of & disjoint
unit cubes contains at least £/ (2R + 3)? cubes whose o -fields are independent.
Now apply Theorem 8.3 with c(#) = 1 and g(h) = (1 — FyVers?’ g

Another application of Theorem 8.3 can be found in the theory of stationary
Gaussian random fields. If the correlations in such a field decay sufficiently
fast, then it is possible to show that (8.10) holds. The correlation function R in
a random field v is defined as R(x) := E(¥(0)¢¥r (x)). We give the next result
without proof.
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Theorem 8.4 Let  be a stationary Gaussian field and suppose there exists
a non-increasing function f : R — R satisfying [;° x?~! f(x)dx < 00 such
that for some positive constants c;

() 1RGO < f(xD), 1gradR(x)| < 1 /G,
i) “

3R
<
B, | = c2 f(x),

1
(iii) |1 — R(x)| < log™@+® o7 for some 8 > 0 and forall |x| < 1.
pe

Then (8.10) is satisfied for suitable g and hence h.(¥) < oo.

We continue the discussion with a different class of random fields in two
dimensions. Let G denote either the square lattice or the triangular lattice (see
the last section of Chapter 3) with bonds of length 1. Let {x; : i = 1,2,...} be
the set of vertices of G. Let {4; : i = 1,2, ...} be a sequence of i.i.d. random
variables with zero mean. Finally, let ¢ : R — R satisfy [ x¢(x)dx < oo.
The latter condition is just to guarantee that the model is non-trivial. Now define
a random field ¥ on IR? as

o0
Yx) =Y Aip(lx —xi - U, (8.12)
i=1

where U is a random vector uniformly distributed over a particular face of G.
(The vector U is only there to make sure that y is stationary and it has no effect
on the important features of the realisations.) This type of random fields has
received some attention in the physics literature; see the references in the Notes.
Apart from questions concerning the non-triviality of 4.(y), the behaviour in
the subcritical regime has been an object of research. Here some interesting
phenomena can occur. In Boolean models with bounded radii we showed that
the phase transition is sharp in the sense that if there is no percolation, then
the distribution function of the size of the components of the origin goes down
exponentially fast. It turns out that this need not be the case here. To describe
this, we specialise to the case in which P(4; = 1) = P(4; = -1) = 1
and ¢ is a smooth, strictly decreasing and strictly convex function with support
{o, % + €] with ¢(0) = 1, where € > 0 is chosen such that balls centred at the
sites of G with radius % + € intersect only pairwise.

Theorem 8.5 If G is the triangular lattice, we have

he(¥) = 20(3),
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and for all h with |h| < h.() we have
P(d(Sp) > t19(0) = h) > ci (W)™,

for positive constants c)(h) and a where a does not depend on h and d(-)
denotes diameter of a set. If G is the square lattice, we have

he(y) =0,
and for all h # 0,
PA(Sp) > t|¥(0) = h) < cpe™,

for positive constants ¢y and cs.

The different behaviour for the triangular and square lattice is due to the
different geometry of the lattices: in discrete percolation on the triangular lattice,
a finite open cluster is surrounded by a closed circuit. On the square lattice,
however, a finite open cluster is surrounded by a closed *-cluster, as noted in
the proof of Theorem 8.3.

Partial proof of Theorem 8.5 Consider first the case where G is the triangular
lattice. The critical probability for independent site percolation on the triangular
lattice is % and there is no percolation at criticality (see Kesten 1982) whence the
origin is surrounded by infinitely many disjoint open and infinitely many disjoint
closed circuits. We can perform independent site percolation by declaring the
site x; to be open if and only if 4; = 1 and closed otherwise. Note that it
follows from the convexity of ¢ that for any bond b connecting two plus sites
(i.e. sites x; with 4; = 1), inf,ep ¥ (x) = 2¢(%). This implies immediately that
forh < 2¢(%), S<j cannot cross an open circuit and hence does not percolate.
Conversely, each face of the lattice contains a region where ¥ (x) = 0, and it is
not hard to see thatif 4 > 2¢ (%), then any two such regions in adjacent faces
are connected in S<j. This implies that ko () = 2¢ ().

To prove the corresponding result when G is the square lattice, we note that
it is known that the critical probability p, for independent site percolation on
the square lattice is strictly larger than %, and that the critical probability p}
for x-percolation satisfies p. + p¥ = | (see Notes). This means that there are
infinitely many *-circuits of either type surrounding the origin, but only finitely
many ordinary circuits of either type. Now let # < 0. Given a plus x-circuit we
can, by transforming the bonds slightly so as to avoid balls centred at minus
vertices, find a curve through the same faces and vertices as the %-circuit such
that ¥ (x) > 0 on the curve. The sets S<; cannot cross such curves and hence
S<p does not percolate. Conversely, it is not hard to see that a component of Sy
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can only be bounded if it is surrounded by a plus or minus circuit in the lattice.
As observed above, there are only finitely many such circuits surrounding the
origin and we conclude that Sp, and thus also S<q percolates.

To give the idea behind the proof of the two remaining statements, note that %
is critical for independent site percolation on the triangular lattice, but subcritical
for independent site percolation on the square lattice. As a result of this, if C
denotes the cluster of the origin in either model (so depending on the state of
the origin, C is a plus or a minus cluster), the function P(|C| > n) goes down
(when n — 00) only polynomially in the triangular lattice, but exponentially
in the square lattice. The idea of the proof is now to relate the size of the level
set of the origin to the cluster C in the coupled discrete percolation model. For
the square lattice this is quite simple, as for 4 # 0, the level set Sy (g which
contains the origin is contained in Uy, ec, S(x:, % +¢). For the triangular lattice,
the proof is a little more involved and we do not give it here. (See references in
the Notes.) O

8.3 Dependent Boolean and random-connection models

In the standard Poisson Boolean model, each point of a Poisson point process X
with density A > 0 is the centre of a ball with random radius. Radii of different
balls are independent of each other and all radii are independent of X. In this
section, we introduce a stationary (and ergodic) model where the radii are no
longer independent of each other and the point process.

We start with a Poisson process in IR with density X. In the model the density
turns out to be irrelevant (as can be seen by a simple scaling argument) and we
take it to be equal to 1. Choose an integer k > 1, the parameter of the model.
The configuration of balls in space is constructed dynamically as follows. At
time 0, all points of X are the centre of a ball with radius 0. Then, as time
t evolves, the radius of each ball grows linearly in ¢, and all radii grow with
the same speed. Balls start intersecting each other while growing and each ball
remembers with how many balls it has non-empty intersection. As soon as a
ball hits the £-th ball, it stops growing forever. Thus at each time ¢ the space is
partitioned into a region which is occupied by balls and its complement which
we call the vacant region. Let C,d (k) be the occupied region at time . We are
interested in the limiting configuration C? (k) defined as

¢y = | Jclh.
=0

Note that it is not completely obvious that this model exists, in the sense that
C¥ (k) can actually be constructed this way for all values of 7. The problem is
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that at any time, a ball might need ‘information from infinity’ to decide whether
or not it can continue growing. Actually, the argument in Case 2 in the proof of
Theorem 8.6 below can easily be modified as to obtain an existence proof. We
do not elaborate this here and refer to the references in the Notes.

From a percolation point of view we are interested in the existence of un-
bounded connected components in C4 (k). If these exist, we say that C 4 (k)
percolates. Let us define the critical £ as kc(d) := min{k > 1 : C4k) perco-
lates with positive probability}. The parameter space in this model is discrete
and this gives us some hope that k,(d) might be computed explicitly. We shall
prove the following estimate:

Theorem 8.6 Foralld > 2, it is the case that

2 < k.(d) < o0.

The fact that k.(d) < o¢ follows from Theorem 8.7 below. Therefore we
only prove the first inequality here. From now on, £ = 1 and we shall prove
that C% (1) does not percolate a.s. The argument will be dimension free, so we
write C := C4(1) and C; := C?(1) from now on.

It will be convenient to define a graph T as follows. The vertices of T are
the occurrences of X and two points x and y are neighbours (to be denoted
by x ~ y) if the balls centred at x and y are tangent (or, equivalently, have
non-empty intersection). To say that C percolates is the same as to say that T
contains an infinite component (in the usual graph-theoretical sense). We say
that the point x is smaller than y (notation: x < y) if the ball centred at x has
smaller radius than the ball centred at y. We define the relation ‘<’ between
points of X in the obvious way.

Lemma 8.1 With probability 1, each point x of X has at most one neighbour
y for which y < x.

Proof The only way for a ball to get a neighbour with the same radius is to hit
each other while both are still growing. This obviously implies that a ball can
have at most one such neighbour and in such case has no smaller neighbours.
The only way for a ball to get a smaller neighbour is tohit a ball which already
stopped growing before. Hence it suffices to show that it is a.s. impossible that
a growing ball hits two or more balls simultaneously. This is quite obvious and
one way of seeing this is the following. Select two points x and y of X and wait
until they both stop growing. Suppose this happens at time 9. Consider the union
of the components in Cy, containing x and y and denote this union by . Given
W, the point process X outside the region W’ := {x € R?: |x —W| < 1) is
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still unconditioned. But all potential balls which might hit W at two different
balls at the same time are centred outside #’. Note that W consists of the union
of finitely many balls and the set of points outside W’ which have the same
distance to two or more balls of W has Lebesgue measure zero. Hence the
probability that the balls associated with x and y are hit simultaneously by a
larger ball is zero. O

Itfollows from Lemma 8.1 that T is almost surely a forest, i.e. its components
are a.s. trees. To see this, note that if T contains a circuit, then this circuit has to
contain a largest point (i.e. a point with largest associated radius), which leads
to a contradiction if we consider the two neighbours of this point in the circuit.
Furthermore, two tangent balls in C have the same radius if and only if they
stop growing at the same time, i.e. when they hit each other. We call two such
balls a root. It follows from Lemma 8.1 that any component in C can contain at
most one root a.s. To see this, suppose there is a component with two roots. It
is obvious that the two roots have different associated radii a.s. The balls in the
larger root can, according to Lemma 8.1, only have larger neighbours and such
a neighbour can again only have larger farther neighbours and so on. Hence a
path to the smaller root cannot exist a.s.

Proof of Theorem 8.6 We shall derive a contradiction by assuming that C
percolates with positive probability. An unbounded component in C either
contains a root or does not contain one. We rule out both possibilities sepa-
rately:

CaSE I: Suppose that with positive probability (and hence with proba-
bility 1 by ergodicity) C contains an unbounded component # with a root.
As remarked above, W contains exactly one root a.s. in such a situation.
We call the point of intersection between two balls of a root contained
in an unbounded component an encounter point. If encounter points exist,
then there has to be a density u > 0, say, of such points in space. Then,
for all K > 0 there exists a number Ng such that the following event E
has probability at least u/2: E := {the unit box B)/> contains an encounter
point and the associated unbounded component contains at least K points
in By, ), where B, denotes the box [—n,n). For z € Z9, the event E(z) is
defined by replacing B2 and By, by z+ B2 and z+ By, respectively. It
follows from the ergodic theorem that for M sufficiently large (depending
on the realisation) the box Bys contains at least (1/4)(2M)? cubes of the
form z + B);; for which E(z) occurs and for which z + By, € By. How-
ever, the sets of K points associated with the different encounter points are



224 Other continuum percolation models

mutually disjoint whence
X(By) = L @M)".

On the other hand, the ergodic theorem implies that for all A large enough
X(Bu) < 22M)*

(remember that A = 1 throughout). Taking K > 8u~! now gives the required
contradiction.

CASE 2: Next we rule out the possibility of unrooted unbounded compo-
nents. First note that an unrooted component cannot contain a smallest point
as this point would be one of a root. Also, a point cannot have only neighbours
which are ali strictly larger than the point itself. Hence every point has at least
one neighbour which is strictly smaller than the point itself, and we conclude
that any unbounded unrooted component contains an infinite sequence of tan-
gent balls with strictly decreasing radii. The radii in such a sequence approach
a limit ¢, say, which is random. Note however that the set I" of possible limits
is non-random by ergodicity. We now show that I" has to be empty.

First suppose that 0 € I'. This would imply that for every € > 0, the
standard Poisson Boolean model with balls of fixed radius € percolates for
A = 1. However, for € sufficiently small A = 1 is subcritical (see Chapter
3) and we have a contradiction. Next suppose that for some S > 0 we
have B € I'. We can assume that there is a Poisson point at the origin.
Then, for all € > O there is a positive probability that the raditis of the
ball at the origin is in (8, 8 + €) and that this ball is one of an infinite
chain of tangent balls with decreasing radii which are all at least 8. We
shall now prove with a branching process argument that this is impossible.
Denote the ball centred at x with radius r by S(x,r). First, we choose
€ > 0 so small that the annulus 4(28, 2¢) := S(0, 28 + 2¢)\S(0, 28) has
d-dimensional Lebesgue measure less than 1. We are going to construct
a Poisson process with density 1 in IRY step by step as follows. First
consider a Poisson process X} with density 1 restricted to A(28, 2¢). The
expected number of points of X is at most one by construction. If there
are no points we stop, otherwise denote the points by xi,..., x,. Now we
concentrate on x; first and consider a Poisson process X> (independent of
X1) with density 1 in (x; + 4(28,2¢))\ 4(28, 2¢). The points of X, are
denoted by x,1,...,¥1,s,. As before, the expected number of such points
is less than 1. Next, we examine the point x, and put a Poisson process X3
with density 1 in xp + 4(28, 2e)\(4(28, 2¢) U (x| + A(28, 2¢))) and denote
the points of this process by x21....,x2,,. We continue in the obvious
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way, each time adding a Poisson process in a region which is disjoint from
all regions inspected so far. It is clear from the construction that if this
branching process dies out, the origin cannot be in a chain with decreasing
radii all of which are at least 8. But by construction, the branching process
dies out a.s. and the proof is complete. o

We continue with a ‘dependent RCM’ in the same spirit as the previous
example. The setup is the same: take a Poisson process in RY with density 1
(as in the first model of this section, the density is irrelevant). Now we connect
each point x of X with the m points of X nearest to x. Again, m > 1 is the
parameter of the model and we can define m.(d) as the smallest m for which
percolation occurs in this model. For m.(d), we have the same bounds as for
k.(d) above:

Theorem 8.7 For every d > 2 it is the case that

2<m.d) <o0.

The proof of the lower bound in Theorem 8.7 proceeds by a branching process
argument as in the proof of Theorem 8.6 above and we do not give it here. We
shall now show that m.(d) is bounded away from infinity. The bound we obtain
is very crude and the conjecture, based on simulations, is that m.(2) = 3 and
mq(d) =2foralld > 3.

Proof of Theorem 8.7 For ease of exposition, we will give the proof for
the case d = 2 only, the generalisation to higher dimensions being completely
straightforward. Let p, denote the critical value for site percolation on the square
lattice. As noted before, the density A of the Poisson process is irrelevant for
the occurrence of infinite clusters, so we can pick A so large that the probability
of seeing no point in the square [0, ;]2 satisfies

172 1 — pc

P(X([O,;] ) _o) <5

Let E(’),Obctheeventthatfori,j=0,...,6wehavethat
i i+1 Jj j+1 ]

(55 [357]) =0

i.e., Ej is the event that we see at least one point in each of the 72 basic
subsquares (of the form [i/7, (i + 1)/7] x [j/7, (j + 1)/7)) of the unit square
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[0, 1]2. We have

1 1
P(E6y0)>1—72( p‘)— + P

2.72 ) 2

Now pick m so large that the probability of seeing more than m /7% points in
the square [0, .1,] satisfies

177 m 1~ pc
Let E’&O be the event that for i, j =0, ..., 6 we have
i i+l joj+1 m
X X R =% T <_1
([7 7 ]X[7 7 )7

i.e., that we see at most m /72 points of X in each of the 7° basic subsquares.
We have

1- 1
P(ELo) > 1—72( p”) =t

2.72 )] 2

Let Ey o be the event given by Egp = E(’)‘0 N EE')"O, andforl,n € Z,let Ej
be the obvious analogous event for the square [/, [ + 1] x [#, n + 1]. We have
that the events { E; »}; ncz are independent with probabilities

P(Ein) = P(Egp) > 1 — (1= P(Ep ) — (1 — P(E§g)) = Pe.

Fori =0,...,7 let S; denote the square [£2, 1341 x [3, 4] and note that S
and $7 are centred at the same points as the squares [0, 1]* and [1, 2] x [0, 1],
respectively. Suppose now that the events Eg o and E) ¢ occur. We then have
that no point of X in US_, S; has more than m points within distance 3. Two
points x and y in S; and ;. are at distance at most +/5/7 from each other.
Since +/5 < 3, this implies that for all x € S;, y € Si1), there is an edge
between x and y. This in turn implies that for all x € Sp, y € .57, there is a path
from x to y. Similar statements hold whenever two events Ej , and E;1 » (or
E1 n and Ej ,41) occur. A simple comparison with independent site percolation
on the square lattice now shows that there is an infinite cluster a.s. a

8.4 Stationary spanning forests

Suppose we are given a finite set of points § = {x1, ..., x,} in d-dimensional
Euclidean space. A tree 7 with vertex set S is called a spanning tree for S
if each vertex of S is incident to at least one edge of 7. A minimal spanning
tree (MST) for § is a spanning tree such that the sum of the edge lengths is
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minimal among all spanning trees. If S is such that the distances |x; — x;| are
all different, then there is a unique MST for S and this tree can be constructed
as follows. Start with an arbitrary vertex, x; say, and define 7}(x;) = {x}.
Choose the point in § closest to xy, x; say, draw the edge between x; and
x; and define To(x1) = {x1, x2}. Inductively, after having defined T} (x;) for
some 1 < k& < n — 1, choose the vertex of S\7;(x|) closest to any point in
T (xy), draw the edge between these two points and add the new point to T} (x))
to obtain Ty 1(x1). This algorithm is called the greedy algorithm for obvious
reasons and it can be shown that 7,,(x;) is the same forall 1 <i <n.

We are now going to describe an infinite and stationary version of this proce-
dure. Note that the notion of a spanning tree (or a spanning forest, i.e. a graph
with no circuits but not necessarily connected) still makes sense on an infinite
set of vertices, but the notion of a minimal spanning tree typically does not.
The greedy algorithm itself can still be applied in an infinite set of points. Take
a Poisson process X in IR? with density 1 (the value of the density is unimpor-
tant). For any point x € X we can apply the greedy algorithm described above.
This yields, for any integer n > 1, a tree T,,(x). We write

Too(x) = | Tn(x).
n=1

Definition 8.2 The (random) graph F is the graph with vertex set all points
of X and which contains the (undirected) edge e = (x;, x;) if and only if e is
an edge in either Too(x;) or Too(x;).

It is clear that F is stationary in the sense that the distribution of the graph
structure is invariant under translations. We are interested in the geometry of F
and we shall discuss both local and global properties of F.

Theorem 8.8 The graph F is a.s. a forest and all components of F are un-
bounded.

Proof Suppose that F contains a circuit (xy, x2, ..., x,, x;) with all x;’s
different. Suppose that the maximal edge length in this circuit is attained by
the edge e = (x,, x1), say. Observe that To,(x1) cannot contain e because the
greedy algorithm would first have added all other edges of the circuit. Similarly,
Too(x,) cannot contain e. It follows that F does not contain e, a contradiction.

Next we show that F contains only unbounded components. We claim that
if £ = (xy, x2) is an edge of To(x) for some x € X, then f € F. This claim is
enough since it implies that the component of F which contains x also contains
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Too(x). To prove the claim, suppose that f is an edge of T (x) and that x;
is added to Too(x) before x; by the greedy algorithm. If f is not an edge of
Too(x1), then Too(x1) contains only edges which are shorter than |x; — x2|. But
then, f will never be added to Too(x) which is a contradiction. Hence f is an
edge of T, (x1) and thus also of F. |

The obvious question to be answered here is whether or not F is a tree.
One might guess that a tree is obtained, but this is not so clear, especially if
we take into account some results of Pemantle (1991). He shows that ‘uniform
spanning forests’ on the d-dimensional integer lattice can be a.s. trees or forests
depending on the dimension.

We end the section with two local properties of F which could be of some
help in understanding the model.

Proposition 8.3 Suppose without loss of generality that the origin is a point
of X and let D be the degree of the origin in F. Then there is a constant ¢4,
depending on the dimension only, such that D < ¢4. Furthermore, ED =2, in
any dimension.

Proof ltis easy to see that in any minimal spanning tree, two edges sharing a
vertex cannot make an angle of less then 60 degrees. So for any vertex x there
is a uniform bound (in dimension 2 this bound is 6) on the number of edges
in Tso(x) which have x as an end vertex. Denote these edges by ey, ..., ek,
where ¢; = (x, x;). In addition to these edges, x can also be the end vertex
of an edge (x, y) in G for which (x, y) is an edge of T (y). Denote these
edges by fi,..., f» where f; = (x, y;). We claim that for all i # j, f; and
J; make an angle of at least 60 degrees. To see this, suppose not and suppose
that d(x, y;) > d(x, y:), say. Thend(y;, y;) < d(y;, x) and it follows that also
(yj, yi) and f; are edges in Too(y;). This is a contradiction because Too(y;)
cannot contain a circuit. Finally we claim that f; and e; cannot make an angle
of less than 60 degrees for any i and j. This follows as in the proof of the first
claim after noting that d (x;, x) < d(y;, x).

It remains to show that E.D = 2. The proof is based on a typical volume-
boundary argument. Consider the box B; = [—L, L]? as usual. Let F; be
the number of components in the graph which we obtain from G if we only
look at points of X in B; and the connections between them. Let G; be
the number of edges which cross the boundary of By, i.e. all edges which
have exactly one end point in By. (Note that there are a.s. no points of X
on the boundary of B;.) Finally, we denote by /(x) the degree of the vertex
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x in G. We now claim that

Y (h(x)—2)=GL —2F,. (8.13)
xeXNBy

This formula seems somewhat mysterious, but it is easy to prove by induction:
if X has only one point in By, the left and right sides of (8.13) are both equal to
—2. If we add a point of X in Bj, both sides decrease by 2; if we add an edge
between two points in By, then this edge has to be between different components
(G is a forest!) and both sides increase by 2; if we add an edge between a point
in B; and a point outside B; both sides increase by 1.

We want to take expectations in (8.13). To thisend we observe that EX(B;) =
(2L)? and it is not hard to show with the theory of Palm measures (and intu-
itively obvious) that E (3, xnp, #(x)) = (2L)? E D. Hence we obtain

_ EGL)  E(FL)

ICIACNNvIAth

Using the fact that all components of G are unbounded we see that F; < G
and it suffices therefore to show that E(G 1) = o(L%) for L — 0. For this, let
D, denote the number of edges at the origin in G with length at least ». Now
G counts edges crossing the boundary of B; and by considering separately
those edges with end point in By \ B;_, and those with end point in B; _, we
have, using Proposition 8.3,

ED -2

EGp <cal(BL\BL—») + Q(L —r))?ED,

whence limsup; , .. EB./(2L)? < ED,. Now let » — o0, and the proof is
complete. O

8.5 Percolation of Poisson sticks

The strength and brittleness of a metal object depends on the fractures present
in the material. Typically, the fractures are represented as cracks of varying
length and orientation present randomly in the object. In a larger scale, such
fractures are also present in geological objects, e.g. fault lines in the study
of earthquakes. Although in the first case, the material may be assumed to
have homogeneous composition, the geological study will not admit such an
assumption of homogeneity. Nonetheless, a simple model used to study such
phenomenon is the Boolean model with ‘sticks’ instead of balls.

Consider a Poisson point process X on IR? and suppose that each point of
the process is the centre of a one-dimensional line (stick) of random length
and of random oricntation # with respect to the x-axis. These sticks represent
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the cracks. Again we assume that the different sticks have an i.i.d. distribution.
More precisely, our model consists of points xy, x2, ... of a Poisson point
process with density A on /R? and one-dimensional line segments Ly, Lz, ...
centred at xy, x7, . . . respectively, where L; has length /y and orientation 8; with
respect to the x-axis. We assume thatly, I, ... arei.id., 6y, 6,, ... arei.i.d. and,
forall 1 <, j,/; and §; are independent of each other. For this model we may
define the critical quantities A., A7 and Ag as in the ‘ordinary’ Boolean model.

Clearly if 9) has a degenerate distribution, i.e. all sticks are oriented in the
same direction, then no two sticks will intersect a.s. ard so percolation will
never occur almost surely. Thus for any meaningful study of this model we
need to assume that 6 has a non-degenerate distribution.

As a simple example let us study the case where

0 with probability p,
6 = ) . (8.14)
1/(2mw)  with probability 1 — p,
and
Iy =1 with probability 1. (8.15)

Let Lo be a stick of unit length centred at the origin and with orientation 0.
Let L;,, Li,,..., L; be sticks which intersect Lg. Clearly, with probability
1, all these sticks are perpendicular to Ly and are centred in the box By, =
[—%, %] x [—%, %]. Thus k has a Poisson distribution with mean A(1 — p). We
call these sticks the first generation sticks. The second generation sticks are all
the sticks, except the stick Lg, which intersect the first generation sticks. In
a similar fashion we define the (n + 1)-th generation sticks as all the sticks,
except the sticks which have already been considered in previous generations,
which intersect a stick of the n-th generation. Clearly, the expected number of
sticks which lie in the component containing Lg equals the sum of the expected
number of sticks at each of the generations. We shall obtain an upper bound of
this quantity by placing an independent Poisson process for each stick of the
n-th generation and computing the expected number of sticks from this process
which intersect the given stick. Adding this expected number over all the sticks
of the n-th generation, we obtain an upper bound of the expected number of
sticks of the (n + 1)-th generation.

Given a stick L of the n-th generation, by placing an independent Poisson
process of intensity A with the orientation and length of sticks given by (8.14)
and (8.15) respectively, we have

Ap if n is odd

E; (number of sticks intersecting L) < o
A(l — p) if niseven.
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Thus, if the n-th generation consists of sticks L, ..., Lj,, then

E; (number of sticks in the (n + 1)-th generation|L;,, ..., L;

m

are all the sticks of the n-th generation)

< Xm: E) (number of sticks intersecting L, [Lj, is a stick
:)f lthe: n-th generation)
mip if n is odd
= [ mi(l — p) ifniseven.
Now the number of sticks, m, in the n-th generation is a random variable, and
an induction argument assuming that

Ey(m) < Ap)"?( (1 — p))"/? if n is even

m

PEZ 1 ape-020 - p)®+2 i niis odd
< OQ

yields, on an application of Wald’s equation,

E; (number of sticks in the (n + 1)-th generation)
()" (A (1 — p))n/D+1 if n is even
<
T | GpV201 = py)@D2if s odd.

Hence the expected number of sticks in all generations is at most

3 Ip)" 3 — p)" + @ap) (1 — p)" T
n=0

= (1+ A = p)Y_*p(1 — p))"
n=0

[ 1
<OOifA.< s |
p(l1—p)

Thus A, > +/1/(p(1 — p)). In particular, when p = %, we have A, > 2.
In general, we assume that

0 <!} <R, (8.16)
for some R > 0, and
6, has a uniform [0, 1] distribution. 8.17)

Under these conditions, not only can we prove the equality of the critical den-
sities A., A7 and Ag, we may also define the critical densities via the vacancy
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structure A%, A7 and A and prove their equality. As in Theorems 3.5 and 4.3
we have

Theorem 8.9 For the Poisson stick model on the two-dimensional plane, if
(8.16) and (8.17) hold then A, = Ay = s = A} = A} = A,

For higher dimensions, if we consider one-dimensional lines satisfying (8.16)
and (8.17) in a higher-dimensional Poisson setting, then it is easy to see that two
lines will almost surely never intersect and thus we will not have any percolation.
The appropriate analogy will consist of bounded (d — 1)-dimensional rectangles
in a d-dimensional Poisson setting.

8.6 Notes

The results in Section 8.1 are due to Meester and Sarkar (forthcoming) and motivated by
anumber of papers on discrete fractal percolation (Chayes, Chayes and Durrett, 1988;
Chayes and Chayes, 1989; Dekking and Meester, 1990). Theorem 8.3 and Theorem 8.4
are from Molchanov and Stepanov (1983), and Theorem 8.5 is due to Alexander and
Molchanor (1994). The equality p. + p} = 1 is from Russo (1978). The material
in Section 8.3 is taken from Higgstrom and Meester (1995), where it is shown that
m(d) = 2 for all 4 sufficiently large. The basic reference for Section 8.4 is Aldous
and Steele (1992). Alexander (1994) has shown, using the occupied version of the
RSW theorem, that F is a tree a.s. in two dimensions. The results of Section 8.5 are
taken from Roy (1991).
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