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PREFACE

Markov random fields is a new branch of probability theory that promises to
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also to acknowledge the support of Kiewit Computation Center at Dartmouth
College.

We were assisted by Robert Beck and William Myers in the writing of com-
puter programs. We are very grateful to Marie Slack for a fine job of typing the
material in a form suitable for a sometimes friendly and sometimes less-than-friendly
computer.
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MARKOV RANDOM FIELDS AND THEIR APPLICATIONS
Ross Kindermann
J. Laurie Snell

1. THE ISING MODEL

In recent years, a new type of stochastic process, called a
Markov random field, has been introduced in the theory of
probability. The motivation for looking at such processes came
originally from statistical physics, but it is clear that these
processes form a natural generalization of Markov processes in
which a time index is replaced by a space index.

The foundations of the theory of Markov random fields may be
found in Preston (1974) or Spitzer (1971). The purpose of this
work is +to present this subject at a level which will make the
material available to people outside of mathematics, as well as
to discuss certain of its applications to other areas. It would
seem that Markov fields should enjoy the same wide variety of
applications that Markov chains have.

The concept of a Markov random field came £from attempts to
put into a general probabilistic setting a very specific model
named after the German physicist Ernst 1Ising. Ising was a
student of Lenz and wrote his doctoral thesis on a model now
called the Ising model. He tried to explain, using this model,
certain empirically observed facts about ferromagnetic materials.
When Ising (1925) published a summary of his results, he stated
that the model was suggested by Lenz. A paper written by Lenz

(1920) gives a very sketchy idea of the model. For an
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interesting historical discussion of the origins and development
of the Ising model see Brush (1967).

The first formulation given by 1Ising is as follows:
consider a sequence, O0,1,2,..,n of points on the 1line. At each
point, or site, there is a small dipole or "spin" which at any

given moment is in one of two positions, "up" or "down". It is
customary now to indicate the spins in the form of a

configuration as shown in Figure 1.

FIGURE 1
Following Ising, we are going to put a probability measure
on the set of all possible configurations. Such a measure is

called a random field. Using current probability notation we

choose as sample space the space o of all sequences

w = (Wgrwyrees w)
where wy = + or - with "+" indicating a spin up and "-" a spin
down. Then we can think of the spin oy as a function defined
on §© such that oj(w) =1 1if wj =+ and -1 1if wj = -, 1Ising
defined a probability measure on 0 as follows. To each
configuration w an energy U(w) 1is assigned by
(1) U(w) = -JZ oi(w)o. (w) - mHZo. (w).
. . 3 C 1
1,] p i

Here the first sum is taken over all pairs i,j of points which
are one unit apart. (We count each pair only once.) The first

term represents the energy caused by the interaction of the
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spins. Ising made the simplifying assumption that only
interactions between neighboring spins need be taken into
account. The constant J is a property of the material being

considered. The case J > O 1is called the attractive case. The

reason for this is that the interaction tends to keep neighboring
spins aligned the same. The case J < 0 is called the repulsive
case since it tends to reinforce pairs in which the spins are of
opposite orientation. The second term represents the effect of
an external magnetic field of intensity H. The constant m > O
is a property of the material. 1In the attractive case, the first
term contributes minimum energy when all of the spins are lined
up in the same direction. The second term contributes minimum
energy when all the spins are in the same direction as the
external field.

Ising then assigned probabilities to configurations w

proportional to

1
(2) e" ﬁ U(w)

where T is the temperature and k is a wuniversal constant.
The probability measure on £ is thus given by

1

ﬁU (w)

(3) P(w) = -=

where the normalizing constant %, defined by
—i—TU(w)

w

is called the partition function.

A useful way to think of this measure is the following. Let ’

us associate with each point i an energy Ui equal to
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J

U,(w) = - 5 2 0. (w)o. (w) - mHo, (w)
i 2|j—i|=1 i j i
Then
1
- == U, (w)

P(w) = % T e kT 71 .

i

Thus the relative probability of a configuration is simply
obtained by taking a product over all the points and using the
energy at each point to determine the weight of that point.

We note that we could equally well have considered the spins
located on a set of lattice points in 2 or more dimensions. A
point i is then replaced by a point with two coordinates (i,j)
where 1 and 3j are integers. A typical configuration in a two
dimensional lattice is shown in Figure 2. The energy defined by
(1) allows interaction between a point and its neighbors and the
probability measure 1is defined in exactly the same way by (2),
(3), and (4). Note that in two dimensions a point will normally
have 4 neighbors unless it is on the boundary, when it will have

2 or 3.

+ + - + + - +
- + + + + - 4+
+ - + + + - +
- + - + = - +
+ + - + - + 3
+ = + + - + -
- + + = = - 4+
FIGURE 2

While Ising discussed only the magnetic interpretation, the
same model has since been found applicable to a number of other

physical and biological systems such as gases, binary alloys, and
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cell structures. A sociologically oriented application has been
suggested by Weidlich (1971). Here one considers a groﬁp of
people, each of whom at a given moment is a "conservative" ("up")
or a "liberal" ("down"). The energy (1) might better be called
"tension". The first term in (1) is the tension caused by people
interacting. The external field represents, for example, the
current state of the government, liberal or conservative.
Minimum tension (maximum boredom) occurs if all people agree and
agree with the government. Of course in such an application we
would want to drop the restriction to a regular lattice and
specific neighbors but we shall see that this generalization can
be made. Such applications will be discussed in more detail in
the final section.

A probability measure of the form (3) defined by an energy

function U is called a Gibbs measure. It is, of course,

natural to ask why this particular measure should be interesting.
There are two explanations. The first is in terms of entropy and
probably led to the use of these measures in statistical
mechanics.

For any probability measure p (w) on a finite space £, the
the entropy S(p) 1is defined by

(5) S(p) = -Zp(w) log p(w).
w

The entropy of a measure may be interpreted as the amount of
uncertainty in the outcome. For example, if @ has n points,
the measure with greatest entropy 1is the measure which assigns
all outcomes equal probability.

In the typical application of the Ising model, one is trying
to assign a probability measure to a sample space © which

represents outcomes which cannot be observed. 1In practice, only
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very broad properties of the system can be observed. Assume that
we could estimate at least the expected value of the energy,
E(U) = a. Then the Gibbs measure defined by (3) is the measure
which maximizes entropy among all measures which make the
expected energy agree with our estimated value a. This will be
discussed further in Section 3. Thus we have chosen the measure
which has the greatest uncertainty, as measured by entropy, arnong
all possible measures with given expected energy. A more
detailed discussion of this approach may be found in Jaynes
(1957) .

A second and more important characterization, from the point
of view of probability theory, is the following. We shall show
in Section 2 that the Gibbs measure with nearest neighbor
interaction has the following property in terms of conditional
probability. Let Nj be the set of neighbors of a vertex j,

that is, all points which are one unit away. Then
(6) P(aj = a Iok, k¥ j) = P(oj = a|ok, k in Nj).

Property (6) 1is in fact a Markov type property, i.e., the
probability of a certain spin at the point Jj, given the spin
values at all the other points of the lattice, is the same as the
probability of that spin at point Jj, given only the spin values
at the neighbors of the point Jj. A measure with property (6) is

called a Markov random field. The probabilities expressed in (6)

are called 1local characteristics. 1In the one-dimensional case,

this 1is a generalization of a two-state Markov chain. The
measure determined by such a Markov chain has property (6) when
we interpret the time points as sites. Of course in two
dimensions we cannot interpret the sites as time but we can

consider measures defined by (3) or measures with property (6) as
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generalizations of Markov processes to spatial situations. Not
only does a Gibbs measure have property (6) but conversely, any
strictly positive measure with property (6) can be represented as
a Gibbs measure with a suitable choice of energy function. We
shall in fact see that this is true if we replace a lattice by an
arbitrary finite graph.

As an introduction to some of the new problems encountered
in the study of Markov fields, we return to Ising's work and ask
what he hoped to establish. Basically, he was interested in the
case of no exterior field. It was thought that for sufficiently
low temperatures, even if the spins were random to begin with,
they would tend to move to a state of lower energy, i.e., mostly
up or mostly down, forming a magnet. Thus, in equilibrium, if
n+(w) is the number of up spins and n_(w) is the number of down

spins, the total magnetization
M(w) = n (w) - n_(w)

would be expected to have a distribution with two peaks as in
Figure 3. This would result in "spontaneous magnetization”,

i.e., the spins would tend to be either mostly + or mostly - .

FIGURE 3

Ising remarked that this did not occur and then went on to
consider the case of two dimensions. Here he made a mistake
which held back the development of his model for many years. He

argued that this magnetic effect would be even more noticeable if
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in two dimensions he allowed different attractive forces Jl and

J2 for the two possible directions. He in fact considered the
case where the force J2 in the vertical direction went to
infinity and remarked that then all rows would be forced to

conform to each other as in Figure 4.

+ 4+ - 4+ - +

+ + - + - +

+ + - + - 4+

+ + - + - o+

+ + - + - o+

+ + - + - %
FIGURE 4

He then could apply his one-dimensional result and was again
led to a unimodal distribution for the magnetization M. Thus he
came to the conclusion that his model was too crude to explain
magnetization. Ising was forced to leave Germany in 1936 and was
cut off from the scientific¢ community and unable to pursue his
work. About the only immediate attention given to his paper was
by Heisenberg (1928) who used the apparent failure as a reason to
introduce a more complicated model. However, interest in the
Ising model was revived by Bethe (1935) and others interested in
applications such as formation of binary alloys. Peierls (1936)
developed a method to show that in two or more dimensions the
"spontaneous magnetization effect" could be seen to occur in the
Ising model. His proof was not quite rigorous and careful proofs
were given later by Griffiths (1964) and Dobrushin (1965)
independently. However, the method introduced by Peierls 1is
still a major tool in the study of the Ising model and so we

shall discuss his technique in some detail. It is amusing that
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by 1936 Peierls assumed that the Heisenberg model was the better
one and remarked that the Ising model is therefore "now only of
mathematical interest."” While both models are still important,
the 1Ising model continues to enjoy great success in a wide
variety of applications.

We return now to the one dimensional case. The total
magnetization with n spins is a random variable Mn and Ising
was interested in the distribution of M. If we had in fact no
interaction and zero exterior field, then all configurations
would have the same probability and we would have independent

trials with "+" occurring with probability 1/2 and "-" with

probability 1/2. The law of large numbers would say that

M
P(| 2| >ad -->o0

as n tends to infinity for any d > 0. Furthermore the central
limit theorem would say that Mn’ properly scaled, would be

approximately normally distributed. Assume now that we do allow

interaction but no exteriér field. Then our Gibbs measure has
the form
J
o 0. (w) o (w)
P =3 1,5 & )

We can rewrite this as

J
1 _FT (Me(@) = ng(e)

Plw) = 7

where ne(w) is the number of even bonds (pairs of adjacent spins
of the same sign) and no(w) is the number of odd bonds (pairs of
adjacent spins of opposite sign). If n, is the total number of
bonds we can rewrite this as

J

: = (n_(0) - 2n_(w))
Plw) = 3 T P o,
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Finally, since nb(w) is a constant we can write our probability

measure in the form

P = Lo 0
Z
where b = %% and 2 is a new constant. Assume now that a

probability measure on the space £ of possible configurations
of n spins is assigned in an apparently very different way.
Specifically, assume that it 1is assigned as if the spins were

generated by a two state Markov chain with transition matrix

P
1 P p .

We assume the 1initial state 1is chosen at random. Then the

probability P(w) for a specific sequence of spins, for example,

w= (+,-,-,+,—-,...,+) ,
is
n_(w) n_(w)
P =2p°  (1-p)
n_-n_(w) n_ {w)
=3p? (1-p) ©
-n_(w)
=2 (& °
P

with 2 a constant. But now we see that our Gibbs measure and

our Markov chain measure are exactly the same measures. We need
b_ p .

only choose b so that e~ = ip ° Thus, since the law of large

numbers and the central limit theorem are valid for these Markov
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chains, Ising could not expect a double-humped curve, and
presumably he had something similar in mind when he said that
there would be a single maximum. The same kind of comparisocon
with Markov chains, and hence the same conclusions, can be made
if there is an exterior field.

We shall later see that the double-humped distribution that
Ising desired can occur in two dimensions. First we shall
illustrate the difference between one and two dimensions in terms
of a simpler property of Markov chains. Consider the measure
defined on a finite number of spins Oqr0yreesr0y in one
dimension. Since this measure may be viewed as a measure
determined by a two state Markov chain, it follows from Markov
chain theory that

lim P(oN

= 1leog = 1) = lim P(oy =1|a = -1)
N->00 N->00

N 0

In terms of the magnet, this may be interpreted as saying that
the value of a spin has little effect on the value of spins far
away. This basic property of Markov chains need not hold for
Markov random fields in two dimensions. We shall now use the
argument of Griffiths and Peierls to make this more precise.

We begin by considering a lattice 1in which we fix all the
points on the outside to have a "+" orientation. These points

will be <called boundary points. The remaining points, or

interior points, interact and change Jjust as 1in Ising's

formulation. A typical configuration is shown in Figure 5.
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+ |- -]+ +
+ |- =+ +
+ o+ |-+ +
P P +
+ + |-+ +
+ + |-+ + + |-+
+ |-+ + + + + o+

+ + + o+ o+ o+ 4+

FIGURE 5

We have drawn 1lines separating spins of opposite signs, or

odd bonds. We assign our probability measure by (3), and obtain

Do (@ag(w) + ’%; a; (@)

J
Z—1 ekT i,J i .

(7) P(w) =
As we did in one dimension, we can rewrite this in terms of the
number of odd bonds no(w) and the magnetization Mn(w), which
is equal to the difference between the number of +'s and -'s

in w, as follows:

e—bno (w) + th (w)
Z

(8) P(w) =

where b = %% and h = %% . For 2zero external field, h = O,
the energy depends only on the number of odd bonds. But we
notice that the number of odd bonds no(w) is just the total
length of all the 1lines in Figure 5. This was the essential
device introduced by Peierls to study P.

In Figure 5 we fixed all boundary points to be "+" spins.
We could equally well have fixed all the boundary points to have

"-" gpins. In either case we can ask for probabilities relating

to the center points for very large lattices. We shall show that
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if the temperature 1is low enough (b lérge enough), the
probabilities near the center obtained for the two different
boundaries differ by a positive amount, no matter how large the
square is. This means that, in this case, the points far from O,
the boundary points, have an influence on the center no matter
how far away they are.

We shall look now at P(a0 = -1) when we put all + spins

on the boundary. Here o is a spin in the center of the box.

(0]

For a configuration with ¢. = -1, when we draw our borders as in

o
Figure 5, this configuration will have a closed curve c¢ that
includes O. Let us call this curve a circuit and denote its
length by L. All points inside this circuit have negative spins.
Let « denote an arbitrary configuration which has the same
circuit c around O, With such an w we associate a new
configuration w' which agrees with o except that all the - spins
inside the <circuit are changed to +. This has the effect of

removing the circuit and decreases the number of odd bonds by L.

That is,
no(w') = no(E) - L.

Then the probability that the circuit ¢ around O occurs is

e—bno(a)

€4

(9) P(circuit ¢} = ———F—
e—bno (w)

€ ™

If we limit the number of terms in the denominator of (9) we can

only increase the fraction. Thus,
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e—bno (w)

P(circuit ¢c) { ———F,
e bno(w )

€™ €|

Ee-bno(w)

w

ze-bno(w) +bL

Since every configuration w with ao(w) = -] contains a circuit c,

Plog(w) = -1) < % r(L)e [P

T L=4,6,..
where r(L) is the number of configurations w with circuits of
length L. Consider such a circuit. This circuit must have each
point a distance no more than % from the point 0. There are
at most L2 ways to choose a starting point for this circuit.
Having chosen a starting point there are at most 4 ways to choose
the next point and 3 ways to choose each succeeding point moving

2,L

around the circuit. Thus there are at most 4L°3 circuits of

length L containing 0. That is

(10) Plog= -1) < = an?3te7PL
L=4,6,..
= T ar? (3e™ )L |
L=4,6,..
But since, for |x| < 1, it is true that s12xE < oo, we
L

can certainly make the right side of (10) 1less than 1/3 by
choosing b=b0 large enough. Of course by symmetry if we had
started with all negative spins on the boundary points we would
have been led to P(a0 = 1) < 1/3, and therefore

P(a0 = =1) > 2/3. Thus the effect of the boundary is felt at the

center no matter how far away it is, our first indication that
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the model in two dimensions is really different from the model in
one dimension, contrary to Ising's claim.

The very simple argument of Griffiths and Peierls showing
the effect of the boundary has been very much improved in recent
years. In fact it has been shown that in two dimensions there is

a value bc called the critical value such that, for O < b < bc'

the boundary loses its effect and, for b > bc it does not. The
critical value is about .88. The corresponding value for

temperature is called the critical temperature.

Our limit laws for Markov chains are theorems that relate to
repeating the experiment indefinitely. From just the knowledge
of the initial probability vector and the transition matrix we
can uniquely determine a probability measure on the infinite

sequence of possible outcomes

w= (+,-,+,...)

appropriate for continuing the process indefinitely. This
measure is determined by the probabilities of the cylinder sets.
These cylinder sets are sets consisting of points w with the
first n outcomes specified.

In two dimensions we would want, in a similar way, to
determine a measure on the space of all infinite configurations
w. Such a configuration is now an assignment to each lattice
point of a + or a -. We would expect this measure to be
determined by the probabilities of cylinder sets where a cylinder
set is a set of configurations with prescribed spins on a finite
box. However, unlike the case of Markov chains, it is no longer
clear how to consistently assign probabilities to boxes. With a
Markov chain, time served as a direction and we could start at

the initial point and build up the probability by our initial
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probability vector and P. We can assign a probability measure
by assigning a Gibbs measure with parameters b and h to boxes
if we specify the values on the boundary of the box. We might
expect to obtain a probability measure on the infinite
configurations by taking limits of these measures.

Assume for example that we take a sequence of boxes with +

spins on the boundary. Then for any point a in the box

P(a_ = +|ok, k#a) = P(oa = +|o

a k in Na).

K’
If the point a does not have any neighbors which are boundary
points, then the right side of this equation will not depend upon
the values fixed on the boundary. Thus, if we choose a sequence
of such measures, they will all have the same local
characteristics at the point a, and we can expect the limiting
measure to have these same 1local characteristics. These
characteristics are the same at each point and are determined by
b and h. We now consider such a sequence. We show the first

two boxes in Figure 6.

+ 4+ 4+ + ++ ++ 4+ 4+ + 4+ + + +

r +
+ "2 +
+ +
+ + + + + + + + +
+ + N +
+ + v, + +
+ + a, + +
+ + 0 N +
+ + . + +
+ + " +
+ + + +
+ + + +
+ + 4+ + 4+ + + + + ¢ +
+ +
+ +
+ +

+ + ++++++ +++++++

FIGURE 6

Since we are in the attractive case, the positive values on
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the boundary will tend to make the spin at the center positive.

The influence of the boundary of the box V2 must be passed

through the points of the boundary of Vl' Thus since Vl has all

boundary points +, it is quite intuitive that the probability

of a + spin at O under the measure determined by V2 is less than

that under the measure determined by Vl' More generally, as
VirVyre.. increase in size, the probabilities P(n)(oo=l) for
Vn decrease to a limiting value P+(oo=l). This will be proved

in Appendix 1. The same argument applies to P(n)(oa=l,o =1l). 1In

b
this way we obtain a limiting probability for any events of the

form

P+(oa=l,ob=l,...,os=l)

These probabilities determine all probabilities relating to the

state of a finite set of points. For example,
P+(oa=l,ob=—l) = P+(oa=l)—P+(oa=l,ob=l).

Other probabilities are determined in a similar fashion.
Thus by the limiting procedure using only finite Gibbs

measures we can construct probabilities of the form

P+(oa=l,ob=l,...,os=l)

for any finite number of lattice points a,b,...,s. These
probabilities in turn determine a unique measure on the set of
all infinite configurations, and this measure will be shown to be
stationary in Appendix 1. As we have observed, it will have
local characteristics depending only on the energy parameters.
All of the previous discussion applies equally if we put
-1's on the boundaries of the finite boxes. Again we get the

same local characteristics, but we have seen that if the
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temperature is low enough we will get a different P_(oo=l) for
the probability that oo=l. Thus we will have, for sufficiently
low temperatures, two measures which will both have the same
local characteristics. The two measures obtained by + and -
boundary conditions are called pure phases. If these two
measures are different the process will be said to have a phase
transition. It has been proven that for b > 0 and h # 0O these
two measures are the same and represent the only possible measure
with given local characteristics determined by b and h. Further
for h =0 and 0<b < bc, where bC is the critical value,
there is also only one such measure. For b > bc' P+ #P_, i.e.,
there are two pure phases. Finally, any measure with 1local
characteristics determined by these parameters is a convex
combination of these two pure phases. That is, if P 1is any
measure with local characteristics the same as P, and P_, there
is a number t, where 0 < t < 1, such that probabilities

relating to P can be obtained from P, and P_ by

P(oa=—1,ob=l,...,ou=—l,ov=l)
= tP+(oa=—1,ob=l,...,0u=—l,ov=l)

+(l—t)P_(oa=—l,ob=l,...,ou=—l,ov=l).

The fact that P, and P_ determine all Gibbs measures has only
recently been proven by Aizenman (1979) and Higuchi (1979). This
result does not hold in three dimensions.

In addition to the positive and negative boundary we shall

discuss the free boundary and the periodic boundary. For the

free boundary we treat the boundary points the same as any other
point. They will of course have fewer neighbors. The periodic
boundary will be defined in Section 3. For these boundaries the

finite Gibbs measures on the boxes V, approach a measure P
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with P = .5P, + .5P_. If the temperature is low enough so that
P, # P_, we can see for these boundaries that the behaviour
Ising sought should occur. If we take a large area, the density
of + spins will, with probability 1/2, be as predicted by P,
i.e., greater than 1/2. With probability 1/2 the density will be
as predicted by P_, i.e., less than 1/2. It is this fact
which suggests a double-humped distribution for the magnetization
Mn when the magnet is a large two-dimensional set. Thus, below
the critical temperature, it is reasonable to expect the system
to have a majority of one type of spin, i.e., to be a magnet.

So far we have assumed that there is no exterior field. As

we have remarked, for the case of exterior field h # O, it will

always be the case that P, = P_ so that there will be only one
measure Ph' However, there 1is another version of spontaneous
magnetization which may be described as follows: for values of

b > bc as h tends to O through positive values, the measures Ph

approach the measure P As h approaches O through negative

-
values these measures approach the different measure P_. This is
often described by saying that if we impose a very sméll field
below the critical temperature, we can make a positive magnet no
matter how small the field is. We cannot do this above the
critical temperature.

The measures P, and P_ have an important property called
stationarity. This means that if we compute the probability for
a specific configuration, this probability will be the same as
for the same configuration shifted by a fixed amount. This
property holds also for our Markov measure in one dimension when
the chain is started in equilibrium. It might be expected that

this should always be the case, but if b < 0, so that we are in

the repulsive case, this need not be true, as we will now show.
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A pair of lattice coordinates (i,j) is called even if i+j
is an even number. It is called odd if i+j is odd. For a
finite lattice we shall associate with each configuration w a
new configuration w as follows. To obtain from w we
simply reverse the spins at the odd points. In Figure 7 we show
the result of starting with a 5 x 5 configuration with positive

boundary and reversing the spins at the odd points.

+ + + + + - + - + -
+ + - + + - + - + + + - - =
+ - 4+ - - + + + + + + - - +
+ + - + + - + - + + + - - -
+ - - + + + + + + - - + - +
+ + - + - + + - + + + + + -
+ + + + + - + - 4+ -
FIGURE 7

The important property of this transformation is that it
changes even bonds into odd bonds and odd bonds into even bonds.
Thus if no(w) is the number of odd bonds in w out of a total

of n(w) bonds, then
n (@) = nlw) -n_(w).

Now every w corresponds to exactly one w. Thus if we put a
probability measure on the space of w's we obtain a measure on
the space 2 of all configurations. Assume that h =0 and b < 0.
We define a Gibbs measure Q by

_ 1 —bno(w)
Qw) = 7 e
o

-b(n(w)-n_(w))
e o

ST

o —
_ -]; ebno (w)
Z
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In the last step we have absorbed the constant term involving
n{w) into the 2. We then put b = -b and define P by

—bno(w)

(11) P(w) = e

(S

This means that P(w) is a Gibbs measure with zero external
field and an attractive interaction. We recall that b was
negative so b 1is positive. We shall now use our information
about P as an attractive measure to obtain information about
Q. We know that for b > bc as the lattice size (n x n)
increases, Pin) approaches P+ and an) approaches P_, where P,

and P_ are measures on the space of all configurations and are

not the same measures even though they have the same 1local

characteristics. Let us denote by Qin) the measure corresponding
to Pin) under the transformation and an) the measure
obtained from an). Then Qin) approaches a limiting measure Q,

and an) approaches a limiting measure Q_, with Q, and Q_ two

different measures. Also we know that
P_(w, =+) < P_(w =+),

where Wy represents the value given to the point a by the

configuration w. If a 1is an even site then
0, (w =+) = P, (w_=+)

but if a 1is an odd site then

Qulw =) = P_(w =+).
Thus if we define EE = - b_, we see that for b < Ec the measure
Q, is not a stationary measure. By symmetry the same 1is true
for the measure Q_. For 0 > b > b, the measures Q, and Q_

are the same measures since P+ and P are the same for 0 < b
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If we choose b < Ec and leave the boundary free, then from
b b

the fact that for >

(n)

it follows that the distributions Q will converge to

1
+§-Q.
By symmetry it is clear that Q is now a stationary measure.
Recall that in the attractive case with free boundary and zero
external field, the 1limiting measure P was unstable in the

following sense: if we impose an external field h and let h go

to zero through positive values, the measures P converge to

h
P+, but if we let h go to zero through negative values these
measures converge to P_. This characterizes spontaneous
magnetization. The corresponding fact for the repulsive case

becomes the following: if we impose a very small positive field
on the even points and a very small negative field on the odd
points the resulting measure will be near Q- If we impose a very
small positive field on the odd points and an equal negative
field on the even points the measure will be close to Q_.

The results stated here for the two~dimensional Ising model
represent the research of a large number of physicists and
mathematicians. The value bc or the critical temperature
Tc = l/bc was established by the pioneering work of Onsager
(1944), (1949) and Yang (1952). They discussed phase transition
in more analytic terms. Onsager considered the case where the
horizontal interaction parameter Jl and the vertical
interaction parameter J2 may be different. For any fixed Jl

and J he showed that, below a critical temperature Tc which

2
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depends on Jq and Y phase transition occurs. If J is

1
held fixed and J, is allowed to tend to oo, Tc approaches
0. Thus, in a sense, Ising was correct about this limiting case
but it was not the place to look for a phase transition. The
description in terms of the measures P, and P_ represent more
recent work inspired by the approach of Dobrushin
(1968a), (1968b), (1968¢c), and Lanford and Ruelle (1969). A proof
that P, # P_ for the case J; # J, for sufficiently high

temperature may be found for example in Malysev (1979). We shall

give a more detailed historical discussion in Section 3.
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2. MARKOV FIELDS ON GRAPHS

So far we have dealt mostly with lattice points in the
plane. Following Preston (1974) we shall now generalize this and
carry out our discussion in the context of a graph G = (T,E)
where T is the finite set of vertices of the graph, and E is
the set of edges of the graph. The following is a picture of a

typical graph.

FIGURE 1

Two points will be <called neighbors if there 1is an edge
connecting them. The set of all points which are neighbors of a
point t will be denoted by Nt'

We will assign to each point in the graph one of a finite
set S of 1labels. Such an assignment will be called a

configuration. We shall assign probability measures to the set

2 of all possible configurations w. We denote by wy the value

given to the point t by the configuration w. We use W to

represent the configuration w restricted to the subset A of T.

We can think of w, as a configuration on the smaller graph

restricting T to points of A. The local characteristics of a

probability measure P defined on @ are the conditional

probabilities of the form

P(wtl )

Yot

that is, the probability that the point t 1is assigned the value
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w given the values at all other points of the graph. As in

tl
earlier sections, a probability measure will be said to define a

Markov random field if the local characteristics depend only on

the knowledge of the outcomes at neighboring points, i.e., if for

every w

P(wtle_t) = P(wtle ).

t
This class of processes includes Markov processes but 1is also
much more general as it applies to an arbitrary graph.

In previous sections we have discussed the relation between
Gibbs measures and entropy. We next relate the Gibbs measure to
the Markov property. Recall that a Markov process has the Markov
property described as follows: the probability of an outcome at
time n+l given all previous outcomes depends only on the
outcome at time n. These latter probabilities are called

transition probabilities. To determine a specific Markov process

we need a starting distribution and these transition
probabilities. The Markov property stated above lacks symmetry
in time, since it refers to the probability of of future outcomes
given the past. However, a Markov process has a more symmetric
property. This may be stated as follows: the probability that a
particular outcome occurs at time n given all previous and all
future outcomes depends only on the outcomes at times n-1 and
n+l. The advantage of the more symmetric form for the Markov
property is that it generalizes immediately to any graph. This
generalization is the notion of Markov random field defined
above.

We shall now examine the sense in which every Markov random
field is a Gibbs distribution. We note that in the lattice

example, U(w) was the sum of energies which depend upon the
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states of single points or of two points. Given an arbitrary
graph we shall say that a set of points C is a clique if every
pair of points in C are neighbors. We include the empty set as
a clique. In the lattices we have considered, only the empty
set, single points, and pairs of points are cliques. We could of

course construct a lattice of triangles as in Figure 2.

FIGURE 2

In this case, the empty set, single points, pairs of neighboring
points, and triangles are cliques.

We now generalize the notion of energy. A potential \Y
will be a way to assign a number VA(w) to every subconfiguration
w, of a configuration w. Given a potential we shall say that it

A
defines an energy U(w) on the set of all configurations w by

U(w) = -ZV_{(w)
A A
where for fixed w the sum is taken over all subsets A of T
including the empty set.

The Gibbs measure induced by U is defined by

e—U (w)

(1) Pl = %

where

e—U (w)
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is called the partition function.

A potential V is called a nearest neighbor Gibbs potential

if VA(w) = O whenever A is not a clique. When we refer to a
Gibbs measure we shall mean a measure induced by a nearest
neighbor Gibbs potential. More general Gibbs potentials are
studied but we shall not need these.

Note that this definition agrees with our definition of a
nearest neighbor energy for a lattice. Points and pairs of
adjacent points contribute to the energy, and these are the only
cliques other than the empty set. If we had considered a lattice
with triangles we would have had to allow an energy contribution
for triangles in order to have the most general nearest neighbor
potential. The inclusion of all cliques in assigning energies
for Gibbs measures is necessary to establish the equivalence
between Gibbs measures and Markov random fields. This result was
proved first for lattices by Averintsev (1970) and extended to
graphs by Preston (1974), Grimmett (1973), and Griffeath (1973).

We now proceed to prove that a nearest neighbor Gibbs
measure determines a Markov random field.

Let P (w) be a probability measure determined on © by a

nearest neighbor Gibbs potential V, that is
T Vc(w)

(2) Plw) = —;'e c

where the sum is taken over all cliques on the graph G. Then
P(wtle_t)

P(w)
T P(w")

wl

where w' 1is any configuration which agrees with w at all
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points except possibly t.

Thus
ZV,, (w)
e ©
z eC
wl
For any clique C that does not contain ¢t, Vc(w) = Vc(w').

Thus terms that correspond to cligues that do not contain ¢t
cancel from both the numerator and denominator of (3) and
therefore this probability depends only on the values at t and
its neighbors. Thus P 1is a Markov random field.

The proof that a Markov random field determines a nearest
neighbor Gibbs measure is much more involved and may be found in
Preston (1974), Grimmett (1973) or in the contribution of
Griffeath to Kemeny, Snell, and Knapp (1976). We note that there
is not a unique potential function. However, there is a unique

canonical potential which is singled out in the following manner:

the states are renumbered 0,1,2,...,r with O playing the role of

a preferred state. The potential is then said to be a canonical

potential if Vc(w) = O when w assigns the value O to at least

one site in C. It is then proved that there is a unique canonical

potential for a given Markov random field. We shall now show how
A

this canonical potential is described. Denote by w the

configuration which agrees with w on A but assigns the value 0

at all sites outside of A. For the empty set ¢ we define
V¢(w) = 0. For A # @ we define
(1) v (@ = z (-1) 2 Bliog p (B
A
BcA

where |A-B| is the number of elements in A-B. The potential

VA(w) can be obtained also from the formula
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(49 vy = z (-1 2Bl

1n P(wz |wi XENa)
BcA

where a is any point in A. Then the energy U(w) 1is given by

Ulw) = -ZV,(w). Using this energy
C
=U (w)
(5) Plw) = ®oru .
Z
Formula 4' shows that the measure P (w) is determined by its

local characteristics.

Let us now return for a moment to the Markov chain example
discussed in Section 1. We start this with the equilibrium
vector (1/2,1/2). Using (4) we shall actually construct the
Gibbs potential for this Markov chain. Before we do this, let us
note that it is often convenient to look at such a chain in two
different ways. The first is where the states are O and 1
(as in coin tossing where we are looking at the number of heads).
In this case the probability of a configuration is given by
(using sj to represent the outcomé at time j)

v,Z s.S. v_Z s, v_Z s
P(w) = % e 11,5 + %x<i<n ¥ + ©%i=o,n

Here the first term in the exponent represents all cliques
containing two points and the other terms represent the one-point
cliques. On the other hand we may want to look at the states as
+1 and -1 (spins) instead, in which case we will use oj for
the value at point j instead of Sj' Then the probability of a

configuration w becomes
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The transformation

—
[+,]
~—
Q
[l
[\S}
0]
]
=

when substituted into the above formulas makes it possible to go
between the two formulations easily enough. Using (6) we can
compute that in terms of v_, 56 and v,

+v 2v_+v
ViV o

(7) bo =

and in terms of bo’ h, and h,

v, = 4bo, vy = 2h - 4bo,vo = 2h —2bo.

The following observation will be important for later work.
Assume that we use 1 and -1 for the states and assign a
measure using bo’ h and h. Then h = 0 corresponds to the
important special case of no exterior field. If we convert our
measure to the measure using Vor vy and 56 , then in one
dimension h = 0 corresponds to Vg = TVye

We now compute the canonical potential V for our Markov

chain example.

We write the transition matrix in the form

s 1l-s
P= o)
Let w = (wo, wl) be the fixed vector for P, i.e., wp = W,
Then
_ 1-t
Yo T TI=s)+(1-t)
w 1l-s

1~ (I-s)+(1-t)



SEC. 2 MARKOV FIELDS ON GRAPHS 31

Let O = (000...0) be the configuration with O at all

sites. By (5)

Z = - log P(0)
= - log wosn
Next,
v
e ©
P (1000...000) = 7
Thus

<
]

log P(100...000) + log Z

[

log wl(l—t)sn_l - log wosn

- (1-5) ,q_,yn-1 _ (1-t)s”
= log 2-s—t(1 t)s log >t
- l-s
= log =

Continuing in this manner we can compute

(8) v_ = log 2=8)(1-t)
o 2
s
and
_ st
(9) vy = 109 agyTo)
We see that it is easy to determine a Markov field if we
have a nearest neighbor potential. If we have a Markov random

field on a finite graph, then the local characteristics do
uniquely determine this measure. In fact the canonical potential
can be determined from these local characteristics by the formula
(4'), and the canonical potential determines the measure.

However, we cannot just choose any set of local characteristics
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and be sure that there 1is a measure consistent with these
characteristics. Certain consistency conditions have to be
satisfied and these might be difficult to check.

The difficulty of choosing appropriate local characteristics
would suggest that the concept of the potential function may be
the key in studying Markov fields. We have seen that we can
assign measures with the Markov field property to configurations
on infinite graphs. In the Ising model we obtained these as
limits of finite measures. We can define such Markov measures

directly. The natural definition would require that
P(wa=x|ws, s#a) = P(wa=x|ws, SENa) .

The first of these conditional probabilities is technically
difficult to define. However, we can use the equivalent

definition
P(wa=x|ws, seA) = P(wa=x|ws, SENa)

for any finite set A which contains N, and not the point a.
As the 1Ising model shows, on infinite graphs there may be more
than one measure with the same local characteristics. When this
happens we can conclude that probabilities relating to a fixed
finite set will be affected by the knowledge of the outcome
arbitrarily far from this set. This, in turn, tells us that the
same would be true for large finite models which the infinite
models approximate.

It is of course important to know when such a '"phase
transition” (more than one measure with the same local
characteristics) will not occur.

A condition for the absence of a phase transition has been

given by Dobrushin (1968). He considers the more general problem
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of random fields without assuming the Markov property. We shall
give his result for the Markov case,.

Assume the possible states at each point of the graph are
from a finite set S. Define a distance between any two

probability measures p and p on S by

d(p,p) = max|p(A) - p(A)
AcS
This distance is also equal to

ap,B) =3 = Ip - B .
xeS

If we specify the values wn of w on the neighbors Na

a
of a, then the local characteristics give a measure a, on
N

S. Define a

Ra’u = zax = d(q“’N ‘ q;N )

N_'"N a a
a a
where wn and ;N differ only at the point u in N, - Then
a a

Dobrushin proved that there is a unique Markov random field with
the same local characteristics as gq, if there is a number w <

1 such that

for all a.
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3. FINITE LATTICES.

As we have indicated, some of the really surprising aspects
of the 1Ising model show up as limiting results of finite
lattices. In this section we shall give some exact results for
finite lattices and indicate the limiting results. We shall
consider square lattices in two dimensions. It will be

convenient to describe an n x n lattice as the set of points of

the form (i,j) with 1 < i< nandl <3j <n. If we add a
boundary, the boundary points will be the points (0,3), (n+l,3)
1<j< n and (i,0), (i, n+l) for 1 < i < n. For example,

in Figure 1 we show a typical configuration for a 4 x 4 lattice
with boundary points fixed at +.
+ + + +

+ + + + - +

+
+
[+
I
+
+

+ BO®E -+
+ + [E] + + +

+ + o+ o+

FIGURE 1

We have indicated a typical interior point and its
neighbors.

One boundary condition that we shall examine is the free

boundary. This is one of the boundaries that Ising studied in
one and two dimensions. In this case we, in effect, have no

boundary. The outer points of the square are simply assumed to
have less than four neighbors. For example, again for the 4 x 4
case, a typical configuration with free boundary is shown in

Figure 2.
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+ - = +
H + + -
om - +
H - + +
FIGURE 2 '

The point (1,2) has only three neighbors, and a corner point such
as (4,4) has only two neighbors.
We shall now describe the other boundary considered by

Ising, the periodic boundary. As with the free boundary, we do

not fix any boundary points. Instead we make every point have
four neighbors as follows: For an n x n lattice a point of the
form (i,n), 1 < i < n, has neighbors (i-1,n), (i,n-1), (i+1l,n)
and (i,1). Similarly a point of the form (n,j) with

1l < j < n has neighbors (n-1,3j), (n,3-1), (n,3+1) and (1,3).
A corner point, say (1,1), has neighbors (1,2), (2,1), (1,n)
and (n,1). Thus an extreme row or column sees the opposite
extreme row or column as neighbors. Figure 3 shows a 5 x 5

lattice.

+ - - + +
+ + - + =
- + + +
®8 + - B
=+ - + -
FIGURE 3

The points in squares are boundary points for the circled point.
The periodic boundary is important because, in a pioneering
work, Onsager (1944) showed that in two dimensions using periodic

boundary one can solve problems relating to finite 1lattices
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analytically and then obtain 1limiting results from this.
Properties of lattices with free boundary are very similar to
those of lattices with periodic boundary, and in this section we
shall find it convenient to use the free boundary instead of the
periodic boundary. In later sections we shall prefer to use the
periodic boundary.

We see from (7) of Section 1, taking J =m = 1, that if
b = %T , the Gibbs measure with parameters b and H can be
written in the form

b(iZ’Jj oi(w)oj(w) + HMn(w))

P(w) = %— e

n
where the sum is over nearest neighbors. If we have fixed
boundary values, we let 1i,j range over the boundary points, but
Mn(w) counts only the spins on the interior. The parameter b
determines the strength of the interaction and H represents the

strength of the exterior field. The partition function Zn for

the n x n lattice is defined by

b(i§j oi(w)oj(w) + HM_ (@)

Zn =z e
w

We consider first the finite lattice with a negative
boundary, i.e., negative spins at all boundary points. Then Mn
represents the magnetization on the interior of the lattice. If
b = 0 (temperature infinity), then the spins are independent with
each spin being + with probability 1/2 and - with
probability 1/2. In this case, the classical 1limit laws apply
to Mn' For example the law of large numbers states that the
magnetization will, with probability one, approach 0. Letting
o(Mn) denote the standard deviation of Mn, the central limit

theorem states that the distribution of
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M =
n o (Mn)

will approximate a bell-shaped normal curve for large enough n.
This central limit theorem has been shown to hold for all
temperatures above the critical temperature (Malysev 1975). As
the temperature gets close to the critical temperature, however,
the denominator goes to infinity, thus the normalization becomes
quite severe. Later in this section, we will give physical
interpretations of some of these quantities.

Assume now that H = 0 but b > 0. As we have stated
earlier, if we fix the boundary points of a lattice to be all
negative and let the size of the lattice tend to infinity we
obtain a limiting measure, P_, which is a "pure state"
associated with the parameters b, 0. Similarly, if we put all
+ wvalues on the boundary we obtain a possibly different "pure

state" P associated with the same parameters. We stated that

P_=P, if b<b_, where b_* .88 is the critical value. If

b > bc, P_# P+ and we have two different pure phases. Each of

these pure states acts very much like the measure corresponding

to independent trials. For example there is a "law of large
numbers" for P,. This states that for the positive boundary
M
+
—% —> a [(b),
n

. _ + . .
as n tends to infinity. Here a (b) 1is a constant depending
only on b. Also for the measure P_, corresponding to negative
boundaries,

Ml’l _
—2 —> a (b) ’
n

as n tends to infinity, where a (b) 1is a constant depending
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on b. A proof of these assertions may be found in Georgii
(1970) .

The function a (b) which originated in the work of Onsager
(1949) and Yang (1952, is given by

1 1/8
—— if b >
(sinh b)

\Y4
o

(1) a (b) = - (1 -

N
o

By symmetry the values of a+(b) are given by -a (b).

b, = 88

- 2
2 4 & 3/1 12 14 16 18 2

T, S

4 x4
6 x6°

-1 -8B =6 -4 =2

[

FIGURE 4

Expected magnetization per site as a function of b for lat-
tice sizes 3 x 3,4 x 4,5 x 5,6 » 6 with negative bound-
ary and zero external field.

In Figure 4 we have graphed the function (1) together with
M

|

the expected value of with zero field and b between -1
n

and 2, for 3 x 3, 4 x

&N

, 5 x5 and 6 x 6 lattices. We note
that for negative values of b, the expected proportion of +
spins is slightly larger than O. This is caused by the repulsive
effect of the boundary which has all - spins. For positive
values of b we see that E(gg) drops off quite fast as b
increases. By the limiting resﬁlts we know that the curves for

these finite lattices should approach the 1limiting curve a (b)

as n tends to infinity. We see that they have a 1long way to
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go! 1In physical applications it is reasonable to assume that the

lattice size is of the order of 22O X 220 so that it 1is
probably true that by this time the approximation is reasonable.
For H=0 and b > bc, we have noted that the states P+

and P_ are distinct. For these pure states, the random
variables Mn satisfy the central 1limit theorem and law of large
numbers. When H# O or b< b, and P, = P_, the same
theorems hold. A discussion of this theorem and further
references may be found in Gallavotti and Jona-Lasinio (1975).

In Figure 5 we have plotted the distribution of M (the 6 x 6

6

case) for a sequence of b values from O to 1.

Probability

FIGURE § FIGURE 6
Distributions of the magnetization per site M”/n2 in the Graph of variance per site of the magnetization for free
6 x 6 lattice with negative boundary for b values between  boundary, zero external field as a function of b for lattice
0and 1. sizes 3 x 3,4 %x4,5x5,6x6.

We see that for b = 0 to .7 the curves are bell-shaped and then
as b passes through .8 the distribution becomes quite
concentrated at the configuration with all spins negative. The
limit theorems for the pure states refer to b # bc being fixed
and letting n tend to infinity. We see that even for the small
lattice we have a bell-shaped distribution for b < b

C

(temperature above the critical temperature). Note that as b
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decreases towards b_, the distributions have increasing
variances.

For the central limit theorem to hold, we would want the

limit
V(Mn)
5 —> c(b)
n
to exist, where V(Mn) denotes the variance of Mn' Then c(b)

would be used to normalize Mn' This 1limit exists, but c(b)

becomes infinite as b approaches bc from either side. 1In

V(M )
Figure 6, we have plotted g for H=0 as a function of
n
b for n=3,4,5, and 6. We see that the maximum values are

increasing and the values of b for which they occur are moving
toward bc.

Let us return now to the case H= 0 but with a free
boundary. This was the case that interested Ising. He was
looking for a distribution for Mn which had two maximum values
corresponding to the fact that the interactions alone should, for
temperatures low enough, cause most of the spins to be 1in the
same direction.

With H = O, the basic probability measure can be written
in the form

—bno(w)
e

N'I—'

Pl(w) =
n

as in (8) of Section 1.

In this case, if we reverse all the spins for a
configuration w, we obtain a confiquration w with the same
number of odd bonds. This symmetry means that the distribution

of Mn will have the property

P(Mn= i) = P(M_= =-1i).
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Recall that, for the attractive case with free boundary, the
finite Gibbs measures converge to a limiting measure P as the
size of the lattice increases indefinitely. If b < bc then
P, =P_, and P is equal to this common measure.

When H # O or when H =0 and b < bc’ the magnetization
Mn will again satisfy the law of large numbers and the central
limit theorem. As for the negative boundary, the variance of Mn

increases as b increases to bc. In fact, for H = 0, above

the critical temperature

Var(Mn)
3 —> c(b)
n
independent of the boundary condition and c(b) —>oo0 as b

increases to bc. Thus, above the critical temperature, we will
have a single maximum for the magnetization, but large variation
in the magnetization can be expected near the critical

temperature. If b > bc then the measure P 1is given by

This may be interpreted as follows. For a large lattice,
to compute P (w) we can assume that we choose P+ or P_ by
the toss of a coin, and then if P+ is obtained let P(w) =
P,(w), and if P_ is obtained let P(w) = P_(w). For b > b the

law of large numbers will no longer be true. 1In fact we will

have

where W is a random variable which takes on the value a+(b) with
probability 1/2 and a (b) with probability 1/2. Similarly the
distribution of Mn/n2 will approach a mixture of two

distributions which are bell-shaped about the points a (b) and
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a+(b). Hence we can indeed expect, as Ising wished to have, a
distribution with two maximum values for b > bc. In Figure 7 we

have plotted the distribution of —% for the 6 x 6 lattice
n

with free boundary for values of b from O to 1.2. We see
that as b passes through .8 the curves change from bell-shaped
curves to curves with a double maximum, as predicted, even for

this small value of n.

1( PUE Sy T N T 1 La A a2 A 4 % 2 4
n 2 ) & a 1
B K . B 1.2 1.4 1.6 1.8 2
2
n —
b,= .88
FIGURE 7 FIGURE 8

Distribution of the magnetization per site for Mi/n2 a  Variance per spin of the energy U, as a function of b for
6 x 6 lattice with free boundary, zero external field and 3 x 3,4 x 4, 5 x 5 and 6 x 6 lattices with free bound-
attractive interaction, ary and no external field.

Of course for any finite lattice in either one or two
dimensions we would expect that, as b tends to infinity, the
distribution would have two maxima, one at each of the values
corresponding to a configuration with all spins the same. The
fundamental difference between one and two dimensions is that,
for any fixed b, in one dimension the distribution will have a
single maximum for large enough n, but in two dimensions the
double maximum will persist for arbitrarily large boxes when
b > bc.

In the case of zero external field, the energy Un(w) is

—no(w). For b = 0, each bond will have an equal probability of
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being even or odd and the bonds are independent. Hence the

classical limit theorems would apply to Un

Assume now that H =0 but b > O. Theg for b < bc’ the
law of large numbers applies to H% , and —% —> U(b) where
U(b) 1is a constant depending only gn b. Fog b > bc’ as with
magnetization, the law of large numbers fails and H% —> U where
U= U, with probability 1/2 and U_ with prgbability 1/2.
Here U, is the limit computed with the + boundary and U_
the limit computed with the - boundary. For b < bc, the
central limit theorem holds but we need to normalize with
lim V(Ug) = v(b). For b # bc, this limit exists, but as was

n—>00 n
the case for the magnetization, v(b) tends to infinity as
v(U_)
n
2
n
as a function of b for several lattice sizes. We note that

b —> bc from either side. In Figure 8 we have graphed

even for these small lattice sizes, the maximum occurs near bc.

vV(U_)
The fact that vn(b) = 2“ approaches infinity as the
n
lattice size approaches infinity suggests that, for b =b , a

c
limit law for the distribution of this quantity would be of a
different form than the central 1limit theorem. ©No limit theorem
has been proven for b = bc.

We turn now to the situation in which we have an exterior
field. We consider only the attractive case. If H # 0 the
measure P and P_ are always the same measure Py- Thus the
presence of an exterior field is sufficient to cause the boundary
influence to disappear as the size of the lattice increases
indefinitely. This is in contrast to the case of zero field and
b > bc. The law of large numbers and the central limit theorem
apply for the magnetization Mn using the limiting measure PH'
To emphasize the limitation of looking onéy at finite

lattices, we show in Figure 9 the distribution of —% for values
n
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of b from O to 1.2 for h = .05. We note that, just as in
the zero field case, we obtain two maxima for values of b
sufficiently high. However, for any fixed b, as n increases,
Mn normalized to have mean O and variance leill tend to a
normal distribution. The expected value of the —% will tend to

n
a positive value corresponding to the fact that the exterior

field has caused positive magnetization.

Aap

Probability

FIGURE 9 Ficure 10

Distribution of the magnctization per site M, /n? with a Expected value of magnetization per site as a function of
positive exterior ficld (f = .05) for the 6 x 6 lattice with  exterior field H for b =10, 5,1, 15.
free boundary.
We now describe another very surprising limiting result. 1In
M

Figure 10 we have graphed the expected value of —% in the 6 x 6
n

lattice for wvalues of H ranging from -.5 to .5 for three
values of b. We see that as b increases, the slope of the
curves near H = O 1increases. Again, for fixed b and H, a
limiting result has been proven by Martin-L8&f (1973). This
states that
M
E(—) —> a(b,H)

n

where a(b,H) has a graph as indicated in Figure 11, 1if b is
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fixed with o < b < b,. However if b > b_ the limiting curve

has the form shown in Figure 12.

a(b, H) a(b, H)
FIGURE 11 FI1GURE 12
As indicated, if Db > bc the limit, a (b), of E(—f) as H
n

approaches O through negative field values is different than
the limit a+(b) as H approaches O through positive values.
The limit a“ (b) has the values given by (1). This fact is
interpreted as "spontaneous magnetization".

So far we have illustrated our basic descriptive quantities
in terms of exact calculations. Basically, exact calculations
are only possible for quite small lattices or for the periodic
boundary conditions. To compute moments of our descriptive
quantities for more general situations we need new methods. A
technique that has been found quite wuseful in theoretical

computations uses the function defined by

_ -1
fn(b,H) = -b 1n Zn .

The function fn(b,H) is called the free energy. We shall
now show how the function fn(b,H) can be used to obtain the
descriptive quantities that we have already discussed relating to

the Gibbs measure. For example,
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b(.Z., 0. (w)o.(w) + HM_(w))
I bM_ (w)e >3 1 J n
n w n

1
bZ

= E(Mn)

Thus from the knowledge of fn(b,H) we can obtain the expected

value of M. Similarly from the second derivative of fn’ we
can obtain the variance of Mn' Specifically,
2
1 s!
vViM) = - = — £ (b,H).
n b de n

If we recall that the energy of the configuration w is denoted

by
Un(w) = - .E. oi(w)oj(w) - HMn(w) ,
1,3
then
_a ._ _d
E(u)) = 1) (-1n Zn) = 3B (bfn(b,H))
and
2 2
I S«
V(Un) = 5;5 (-1n Zn) = de (bfn(b,H)) .

In the physical literature, susceptibility Xn is defined
as the rate of change of the expected magnetization with respect

to H. Thus

- — fn(b,H) = bV(Mn)

Similarly, the variance of the energy is closely related to the

thermodynamic quantity specific heat. Specific heat is defined

as the rate of change of the energy with respect to T. For
finite systems, we use the expected value of the energy. Thus,

the specific heat Cn is
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C, = g B = 22 mf_m,m)
= - kb? —9; (bf_ (b, H))
db
= - V) .
Recall that b = E%' . Next we note that these concepts tie up

very nicely with the entropy as defined in Section 1. If pl(w)

is the Gibbs measure on the n x n lattice, then

_ 1 —bUn(w)
p(w) = 7 € .
n

Therefore

1n plw) = -bU (w) - 1n 2
and

S(p) = - z p(w) 1n p(w) = P p(w)(bUn(w) + 1n Zn)
= bE(Un) + 1ln Zn .

Thus £ (b,H) = E(U_ ) - b—ls(E). This shows that the entropy is

closely related to the free energy. In fact, using the previous
fact, it is not hard to show that given an energy function
Un(w), the Gibbs measure p associated with this energy can be
characterized as the measure which minimizes free energy where we

define the free energy of the measure p by
£(p) = E_(U_) - b~ Is(p)
P 'n )

Thus, by the previous formula, the Gibbs measure maximizes
uncertainty as measured by entropy among all measures having the
same expected value for the energy as p.

Since in physical applications one 1is interested in very

large systems, much of the attention in this literature centers
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around the thermodynamic limit of these quantities defined as

fn(b'H)
f(b,H) = 1lim —
n—>00 n
E(M_)
M = lim =
2
n—>00 n
E(U)
U = lim n
2
n—>00 n
X V(M)
X = lim —r2‘=b11m n
n—>00 n n—->00 n
C v(U_)
C = lim g = kb2 lim g

n—>00 n n—>00 n

These limits are functions of b and H though we have
indicated this only for the case of the free energy. If H # O,

all these 1limits exist as finite 1limits and are related in the

same manner as for the finite systems. Thus, M = - H% f(b,H),
2
U=-3 bto,m), x=-9M=- 9 f@mp,H, and
db dH 2
2 dH
c=2u=-mw L wirmm.
db

We have seen that a "phase transition” occurs if P+ £ P_.
Historically a phase transition was first discussed in terms of
the physical concepts of free enerqgy, specific heat,
susceptibility and spontaneous magnetization. Of course to the
physicist, these are still the interesting quantities. A brief
account of the history of these ideas will put our discussion in
a better perspective.

In 1944 Onsager presented a calculation of the partition
function for the case of a zero exterior field and periodic
boundary which enabled him to obtain a closed form expression for

the limiting value C of the specific heat per site —% . This
n

function has a singularity at T = Tc or b = bc. Its graph as

a function of b has the form shown in Figure 13.
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For finite lattices no such singularities occur, and indeed
the the graphs of Cn/n2 will look essentially the same as those
for the variance of the number of odd bonds shown in Figure 6.
Recall that these quantities are simply related. They have

maximum values near bc

C(b)

b b

c

FIGURE 13
The spontaneous magnetization was defined by

M

M = lim lim E(—%) = lim  lim E(o,)
H—>0+ n—>o00 n H—->0+ n—>o00

A direct calculation of M would require calculation of the
type carried out by Onsager for the case H>0. Neither Onsager
nor anyone since has been able to carry out direct computation as
Onsager did for H # O. However, in a meeting at Cornell in

1948, Onsager wrote down his famous formula
1 1/8

—7)
(sinh b)*
derivation of this formula but it appeared in print in Onsager

M= (1 - for b > bc. Onsager never published a
(1947). C. N. Yang (1952) gave a derivation of this formula
using periodic type boundary conditions and letting H go to
zero by setting H = % for fixed a. Montroll, Potts, and Ward
(1963) showed that the same formula for M can be obtained from
zero field calculations alone. They show that for zero field and

periodic boundary values the limits
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E (oi = lim E(oi)
p n—>o00
and
E (oio.) = 1lim E(oio.)
p J n—>00 J
exist. These values correspond to the infinite measure obtained

by taking limits

that

lim E _(o.0.) =

j—>o00

where M
this must have been

obvious that these

using the periodic boundary.

is again given by Onsager's formula.

They then showed

2 _ 2
0% (Ep(oo)) =M

They suggest that
the way Onsager found the formula. It is not

two calculations should give the same result

but we can now see this as follows. If for H=0 we calculate
E,(0,0.) = 1lim E(o.0,) using + boundary values and
o1 n—>o00 T 7
E_(oioj) = lim E(oioj) using - boundary values, we would get
n—->o00

the same result by symmetry. Since Pp = %P+ + %P_ we see that
Ep(oioj) also has this common value. Now since P+ is extreme
for all b and H

%1m E+(oooj - E+(00)E+(oj) =0 .

J—>00
Thus if we let H—>0+ we should obtain, at o field,
lim E(ooo.) = M2 with M= 1lim E+(oo). The appropriate
j—>o00 J H—>0+

limits with +
and Martin L&8f

give the same

characterized by the fact that P+ = P_

boundary conditions were carried

results.

out by Abraham

(1973) and they showed that the two methods do

Their proofs also show that Tc is

for t > Tc and P+ # P_
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for t < T_.
c
The presence of the critical temperature shows up also in
the concept of susceptibility., Recall that
V(Mn)

b lim 5
n—>00 n

>
1

E(oioj) - E(oi)E(oj)
2

= b lim z
n—>00 i,j n

i

b ? (Ep(o

2
- E (06.)7)
i PO

o"j)

Thus the behavior of X at H=0 can be determined if we know
the behavior of the correlation functions Ep(oooj). These have

the following asymptotic properties. For .T fixed, E(oooR) is
1/2 e_R/c as R —>oo if T >
2 e—2R/c
if T =T _, and equal to M + c¢' =¥—u5p—ro
c R2
if T < Tc’ where ¢, c¢', and ¢" are constants depending only

asymptotically equal to c"R”
T., equal to rR174
on T. These results are due to Wu (1966) and Cheng and Wu
(1967). Additional analytic results may be found in McCoy and Wu
(1973). These results can be used to show that X gets very
large near the critical temperature as n —>00. In fact X is
infinite for T = Tc and increases without bound to either side
of that point. An intuitive way of looking at this phenomenon is
the following. As the temperature gets close to the critical
temperature, the correlations between spins (determined by the
constants above) become large for spins arbitrarily far away and
since the susceptibility is a sum of these correlation functions,
it also becomes very large. Since susceptibility is the amount

of change produced in the magnetization by a small change in the

field H, we see that near the critical temperature this change
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will be large. For the behavior of the spin correlation near
T,» see Wu, McCoy, Tracy and Barouch (1976). For a survey of
these results, see Traéy (1978) .

It would seem natural that the finiteness of the
susceptibility should imply the central 1limit theorem for the
magnetization. Newman (1979) has shown that this is the case if
in addition the FKG inequalities are valid. These inequalities
hold valid for the 1Ising model with attractive potential (see
Appendix 1).

Finally, we mention still one more way to determine the
critical temperature in the two-dimensional Ising model.
Consider a Gibbs measure on the infinite lattice. For a given
configuration, we can look at sets of plus spins connected
through bonds of the lattice. Maximal such sets are called
clusters. Consider the event: "the origin belongs to an
infinite cluster." Let p be its probability. Then if p>O,
one says that percolation occurs. It was proven by Coniglio,
Nappi, Peruggi, and Russo (1977) that for H=0 percolation will
occur in P, if and only if T < Tc' Again it seems reasonable
that the 1long range dependence which occurs below the critical
temperature should come through the presence of large clusters.
However, it is not believed that this same result holds in three
dimensions. It is believed that percolation first takes place at
a temperature T below T,-

We next consider a quite different way of 1looking at Gibbs
measures on finite lattices. The technique that we will now look
at will further serve as an introduction to the next chapter on
dynamic models.

The use of Gibbs measures in physical applications arose

from attempts to give a physical description of a system of spins
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in a magnet or molecules of a gas in an equilibrium state. This
means that, while there are chance fluctuations, exterior
conditions that effect the system have been held constant and
enough time has passed so that the effect of special initial
conditions has worn off. For example, if the magnet starts with
random orientations for the spins and a positive exterior field
is imposed, it might take some time for this field to have an
effect and during this time we can expect the distribution to
change from random orientation to one with a higher probability
for positive orientation (the equilibrium distribution).

While it 1is generally believed that Gibbs measures are
appropriate for the equilibrium distributions, the process by
which this distribution is reached is 1less well understood.
However, a method introduced by Glauber (1963) for a physical
system in one dimension has been generalized to give a class of
processes which have Gibbs measures as equilibrium distributions.
We shall describe these processes now.

First, let us state some basic facts about Markov chains.
Consider a finite Markov chain with state space S and
transition matrix P. The Markov chain is called regular if it
is possible to go between any two states i and j 1in some fixed
number N of steps. For any regular Markov chain there is a
unique probability measure w defined on S which is invariant
in the sense that wP = w. For any starting distribution w(o)
for the chain, the distribution after time n, w(n), will
approach w. That is, Wg represents the long range prediction
for finding the process in state s. The law of 1large numbers
for reqular chains states that the average number of times the

process will be in state s in the long run will be given by
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W - Some, but not all, regular chains have the special property
of being reversible. This means that when the process is in

equilibrium, or started with the fixed vector w,

P(X .y = j|xn= i) = P(x ;= j|Xn= i).

That is, in equilibrium the process looks the same forward as it
does backwards; hence the name reversible. A regular chain is

reversible if and only if
(2) wSP(s,t) = th(t,s)

for all s,t in S.

Further, if P 1is regular and w 1is any probability vector
that makes (2) wvalida, P is reversible with limiting vector
W.

Consider now a finite graph G on which a Gibbs measure

p(x) = % eV ()

is assigned. We assume that each component of x is a +1 or a
-1 and use the terminology "spin up" or "spin down." We shall
form a Markov chain with states the possible configurations x
on G. We define the transition matrix R as follows. We
choose an arbitrary strictly positive probability measure q(s)
defined on G. If at any time we find the process in state x,
we choose a site by g. Let x be the configuration obtained
from x by reversing the spin at site s. We compute the energy
difference U(x)-U(x). If U(x)-U(x) < O, the chain makes a
transition from x to xX. If U(X)-U(x) > O it makes this

U)-UX)  1f ¢ does not make a

transition with probability e
transition to X it remains in its original state. Thus the

transition probabilities are given by
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(a) If U(X)-U(x) <O
P(x,x) = g(s)
(b) If U(X)-U(x) >0

P(x,X) = q(S)eU(x)-U(g)

Note that, 1in this chain, only one spin can change during one
step. Then P 1is a regular chain with equilibrium measure P (x).

To see this we need only verify (2), i.e.,

-U (x) _ -U(x)
e - P(x,%x) = £ = P (X,x)
or
— -U (X) -
P(x,x) _ e _ U(x)-u(x)
(3) === "—gm = °
P (x,Xx) e
Consider first the case U(x)-U(x) > O. Then U(x)-U(x) < O.
Thus
P(x,X) = q(s)eU(X)_U(X)
P(x,x) = g(s)
and (3) is satisfied. Similarly if U(Xx)-U(x) < O then
U(x)-U(x) > O and
P(X,x) = q(s)eU(X)—U(x)
P(x,X) = q(s) .
Thus, in both cases, (3) 1is satisfied, and p (x) is the

equilibrium distribution for P.

We have given one choice for the transition matrix P which
yields a reversible Markov chain with fixed vector a given Gibbs
measure. This choice is by no means unique. A different choice
will be given in the next section.

It is very difficult to compute the properties of a Gibbs



56 MARKOV RANDOM FIELDS SEC. 3

measure p(x) on a lattice if the size of the lattice is larger
than 6 x 6. The fact that we can obtain p(x) as the limiting

distribution has been used to find random configurations

distributed according to p(x) as follows: given the parameters
and the boundary conditions that determine p{x), we construct
the Markov chain with limiting measure p(x). We choose g to

be the egquiprobable measure. Then we run this Markov chain for a
large number of trials and look at the configuration. This
represents a sample chosen at random according to p(x),
assuming that our Markov chain has reached equilibrium. If a
certain property is very likely to occur under p(x), we can
expect to see this property in our sample.

As our first example, we return to the familiar question
asked by Ising. Can we expect that if the temperature is low
enough a substance will become a magnet as a result of
interactions only? To consider this, we would want to choose a
Markov chain with no boundary effect and no exterior field but a
number of sites relatively large. We simulate the Markov chain
corresponding to a 50 x 50 lattice with periodic boundary
condition, no external field. We start with a distribution with
the orientations chosen independently to be + or - with equal
probability. We have had the computer draw contour lines around
groups with like spins. A convention is adopted which chooses
:—_Jrj_'- instead of :ﬂlf— and —3% instead of i_'Jri . For random
choice (no interaction) there are no large areas having the same
spin orientation. In Figure 14 we show the result of 500,000
iterations for T = .7Tc. Recall that T = 1/b. We see that we
have obtained a positive magnet. This was achieved without the
use of any exterior field. In Figure 15 we show the result after

500,000 iterations when we choose T = Tc' We now have quite
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irregular regions of a variety of sizes. 1In Figure 16 we show

the result after 500,000 iterations when T = 1.5T .
c
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Simulation for T = 7T, with periodic boundary condi- Simulation for T = T, with periodic boundary condition
tion after 500,000 iterations. after 500,000 iterations.
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S.imulatlon for T = 1.5T, with periodic boundary condi- Simulation with T = 97T, and boundary condition, top
tion after 500,000 iterations. half + and bottom hall —,after 500,000 1terations.
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Now we have a great deal of irregularity and the picture is
similar to that one obtains by purely random choices, i.e. no
interaction. Of course in each case we have considered only one
sample. However, these do represent "typical" configurations for
these three choices of temperature.

As a second example, consider the following question. Let
us take a sgquare lattice and fix the top half of the boundary to
be + spins and the bottom half to be - spins. Then 1if we
draw contour lines we will obtain one line which goes between the
two boundary points which separate the + and - boundary

spins. We call this a surface contour. All other contours will

be closed regions. We <choose h =0 and T = .9Tc. In Figure
17 we show the result of the simulation after 500,000 iterations.
We see that we have a rather long surface 1line and in the top
half we have mostly positive spins and the bottom we have mostly
negative spins as might be expected.

As usual, our finite results do not tell us what will happen
if we keep b fixed and increase the size of the lattice
indefinitely. It was proven by Messager and Miracle-Sole (1975)
that when this is done we obtain a limiting measure which is the
same as that obtained for the free boundary, namely the average
of P, and P_. This is rather surprising since it says that,
in the limit, the probability of finding a + spin at, for
example, one unit above the center is the same as at the center.
Since Aizenman (1979) has shown that every Gibbs measure in two
dimensions is a convex combination of P, and P_ we see that
the separation of phases that we might expect can, in fact, never
occur in two dimensions. The corresponding result in three
dimensions 1is quite different. In this case as the cube

increases indefinitely, a limiting measure P 1s obtained which,
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for b sufficiently large, is not spatially homogeneous. More
specifically Dobrushin (1973) has shown that there is a b such
that for b > b the probability of a + spin is not the same at
all sites. For example, the probability under P of finding a
+ spin at one unit above the center of the cube is now greater
than at the center. A simplified proof of Dobrushin's result may
be found in van Beijeren (1975). Dobrushin only proved that the
phases can be separated below a temperature T < Tc' It is
conjectured that this result will in fact only hold for T less
than some Té < Tc‘

It is also of some interest to observe quantities relating
to a Markov process as it changes with time. In Figure 18 we
give a graph which plots the proportion of + spins for a 6 x 6
lattice every 1000 steps for 100,000 iterations. We have assumed
b = .88, i.e., around the critical value, no exterior field, and

periodic boundary. We see that the fluctuations are very great.

Indeed the graph shows that most of the time we would have almost

all spins up or all spins down.

FIGURE 18 e

L=}

Magnetization every 1,000 steps for ::
simulation with 500,000 steps 6 x 6 [

lattice with periodic boundary condi-
tion. -0.3

This stochastic Ising model has also been used to study
quantities like susceptibility and specific heat. As we have

seen, these quantities represent variances of the magnetization
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and energy computed with respect to the Gibbs measure.

To see how this may be achieved, we first recall the law of
large numbers for regular Markov chains. If f(i) is any
function defined on the state space of such a chain, the law of
x(l), x(2),

large numbers states that, if ... are the outcomes

for the chain,

fxy + £y & ..+ £x™)

n

_— Ex(f)

where Ex(f) = % x(1)£f(i) 1is the expected value of f computed

i
using the equilibrium measure x. The reliability of this

estimate will be determined by the 1limiting variance of the

averade. b, = 88
0 2 4 6 8 1 1.2 1.4 1.6 1.8 2
20 x 20
AN N Exact
2tk Y ~.
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G
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FIGURE 19 Expected magnetization per site as a function of b for
lattice sizes 3 x 3,4 x 4,5 x 5,6 x 6 (exact calcula-
Spectfic heat per site for a 6 x 6 lattice with free bound- tions) and 6 x 6, 10 x 10,20 x 20 by Monte-Carlo
ary exact and by Monte-Carlo. estimates. Negative boundary and zero external field.
Consider the problem of determining the specific heat for an
nxn lattice with free boundary. If Un(x) is the number of

. 2
odd bonds in  x, we want E(U ") computed with respect to the
Gibbs measure. By the law of large numbers, we can estimate this
by averaging this quantity over a large number of iterations of

our stochastic Ising model. 1In Figure 19, we show the result of



SEC. 3 FINITE LATTICES 61

doing this for b =0 to 2 for a 6 x 6 lattice. We have
v(U_)
plotted the specific heat per site. That is, —% = b2 2n .
n n

We can use our 6 x 6 exact calculation to compare with our
simulation. We see the fit is quite good.

By choosing a - boundary we can, by simulation, extend our
graphs for the magnetization shown in Figure 4. In Figure 20, we
show the result of the 6 x 6, 10 x 10, and 20 x 20 together
with our previous exact values. Again we see that the 6 x 6 fit
is quite good, but the 20 x 20 lattice 1is still far from the

limiting case.
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4., DYNAMIC MODELS

We consider now a broad class of Markov processes which will
include dynamic Ising models similar to those that we have
already encountered.

We have, at each lattice point in Rn, an object which, at
any moment, is in one of a finite number of states. The object
may be an automaton, a voter, a neuron, or even a tree. The

state of the voter might be "yes" or "no", the state of the
neuron "firing" or "not firing", the state of the tree "diseased”
or "not diseased". We shall often use the neutral term lamps.
The Russian school initiated a systematic study of these
processes. We shall, for simplicity, consider the case of only
two possible states, off (0) and on (1).

We consider these processes both in discrete time and
continuous time. In discrete time our model may be described as
follows. Each lamp has a finite set N of neighbors (possibly
including itself). At each time unit each of the lamps observes
the state of its neighbors. We then toss a coin to decide
whether the lamp will be on or off at the next time unit. The
particular coin used depends upon the state of its neighbors,
thus 2|N| coins may be necessary. All the tosses occur
simultaneously and are independent of each other. The whole
system 1s invariant under translations. That 1is, if the
neighbors of the lamp at a are N_ then the neighbors of the
lamp at a + b are Na + b. For the lamp at a and a + b, we
will use the same kind of coin if the states of their neighbors
are the same.

One of the first classes of models studied consisted of
models for neuron firing. We put a 1 if the neuron is firing

and a 0 1if not. For this model we assume that a threshold
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number m is given. The neuron at a will fire next time if
the number of its neighbors that are presently firing is > m. 1In
addition there is a probability o that it will fire
spontaneously independent of the state of its neighbors. A
special case which has been studied extensively is the Stavskaya
model (Stavskaya, Pyateskii-Shapiro (1968)). Here we are in one
dimension and have a lamp at each integer positive or negative.
The neighbors of the lamp at a are the lamps at a and

a + 1.

The threshold value is m = 2. Thus the transition rules
are as follows. If a and a+ 1 are on, the lamp at a is
necessarily on at the next time. If either of these lamps is off
then the 1lamp will be on with probability @ at the next time.

Thus p(ll) = 1 and p(00)

p(0l) = p(lo) = 8.
Assume that initially all the lamps are off. Let pn(e) be
the probability that the lamp at the point O is on at time n.

We shall show later in this section:

(a) pn(e) is increasing in n and hence has a limit
p(e),
(B) pn(e) increases with o,
() if © 1is sufficiently small p(8) < 1, and if it
is sufficiently large p(8) = 1.
Thus there will be a critical value 8 such that for © < 8,
p(®) < 1 and for ® > 8, p(®) = 1. In the latter case, the
probability that any finite set of lamps are all on will approach
l. If we start with any of the lamps on we would only make
pn(e) greater than it is starting with all the lamps off. Thus
if pn(e) approaches 1 starting with all the lamps off, the same

will be true for any initial configuration. Therefore for
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® > 8 the long range predictions are independent of the initial
state. This is an ergodic type behaviour which we now describe a
bit more carefully. A more detailed discussion of ergodicity for
this model may be found in Shnirman (1968).

Let x(g) be the state of lamp a at time n. Assume that

we choose the initial states by a measure m(o). When there are
only two outcomes, 0O and 1, this measure will be determined
by the measure of cylinder sets of the form
(0] (0] (0]
(=1, xO= 1, L, %92y

1 az r
These probabilities and our transition rules determine a measure
m(1) o)

for the outcomes at time 1. The measure is

determined by its value on cylinder sets of the form

PV, M=, o, Py

1 2 r

From our assumptions, these probabilities depend only on the
state of a finite set of lamps at time O (the lamps which are
neighbors of lamps aqrdyreeey ar). Thus we need only use our
cylinder measures at time O to calculate the measure of cylinder
sets at time 1. We shall indicate this transformation by
m(l) = m(O)P where P 1is a transition operator. P acts as a
transition matrix as in finite chains. Indeed, if we had only a
finite number of lamps we could consider our process as a finite
Markov chain with state at time n the configuration
(0, 1, o0,1, ..., 1) giving the state of each lamp. Then P
would be the transition matrix for this chain.

If m is a measure such that m = mP, we say that m 1is an

invariant measure. For our processes there is always at least

one such measure. If there is only one such measure m we say

the process 1is ergodic. In this case, for any initial measure
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m(o) , m(n) = m(O)Pn will converge to m in the sense that the

measure of cylinder sets computed by m(n) converges to the
measure of these sets as determined by m.

In the Stavskaya model, if we start with all lamps on, they
will stay on for all time. Thus an invariant measure 1is the
measure which assigns probability one to the sequence of all 1's.
If © > ©® this is the only such measure. If © < 8, 1in
addition +to this measure, the limiting measure obtained by
starting with all O0's will be invariant. Any convex combination
of these measures will be invariant. For © small enough it has
been proven (see Vasilfev (1970)) that these are the only
invariant measures.

We now briefly describe the way in which one proves the
existence of the critical value ® for the Stavskaya model. We
shall first calculate the probability Py that the O lamp is off
at time 4 when we start with all lamps off at time 0. We first
note that this probability depends only on the 1lamps in the
triangle 1in Figure 1. We introduce an auxiliary process as
follows. At each point of our triangle in Figure 1,
corresponding to time between 1 and 4, we assign a 1 with
probability © and a O with probability 1 - 8. We put a 0 at

all points corresponding to time O.

4 )
3 -0 1
time 2 -1 <0 -1
1 1 -0 -0 -1
(0] 0 e ) -0 -0
(0] 1 2 3 4

lamp

FIGURE 1
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These outcomes will be used for the spontaneous firing when
appropriate. Thus at any point where there is a 1 the lamp will
go on. Of course, the 1lamp can also go on when the auxiliary
process assigns a O because of the threshold effect. Now we
claim that the O lamp will be off at time 4 if and only if,
in the auxiliary process, there 1is a path of O's going down
from the top to level 1 (and hence, also to 1level O©0). For a
rath we are allowed to move vertically down or diagonally down
and to the right. To see this, we note that if the O lamp is
off at time 4 we must have a O at the top in the auxiliary
process. Then one of the two auxiliary outcomes at level 3
must be a 0, for if they were both 1, 1lamps O and 1 would
be on at time 3 and lamp O would be on at time 4. Thus we
have our path from 1level 4 to level 3. Now at level 3 one
of the lamps O or 1 must be off or the O lamp would be on
at time 4. Thus we can repeat the argument for this point and
the two points below it to extend our path from level 3 to
level 2 and then again from level 2 +to level 1. Thus if the
o] lamp is off at time 4, there will be such a path.
Conversely, assume that such a path exists. Then at level 1
the lamp on the path will be off since the auxiliary process is
0 and both lamps below it are off. At level 2, the lamp on the
path must be off because the auxiliary process is O and one
lamp below it is off. Continuing this way we see that the lamps
must all be off along the path.

Thus the problem of determining the probability that the
lamp O is off at time 4 and more generally at time n 1is
reduced to a problem purely in terms of the auxiliary process.
The problem is to find the probability that fhere will be a path

of O's from level 1 and, hence, also from the bottom of our
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triangle to the top. This can be viewed as a "percolation
problem” as follows. Let us "wet" all the sites at level 0. We
will then let 1liquid flow vertically up or diagonally up and to
the left if this leads to a O in the auxiliary process. If
there is a 1, 1liquid cannot flow to this point. That is, a 1
"blocks" the flow of water into a point, and so it does not
become wet. Thus in our example, the points which would be wet

are as in Figqure 2.

4 o0
3 e -1 e is wet
time 2 -1 e0 -1 * is dry

O €0 e0 80 €0 80
o] 1 2 3 4
lamp
FIGURE 2
Recall that pn(e) is the probability that the 1lamp at O
is on at time n when we start with all lamps off. In terms of
our percolation process, qn(e) = l-pn(e) is the probability
that water will reach the top when we wet all the bottom points.
It 1is <clear from the percolation interpretation that qn(e)
decreases with n and increases with 6. We want to show (a)
for © 1large enough qn(e) —> 0 as n—>oo, and (b) for © small
enough qn(e) —> b(®) > 0. In terms of the lamps, this means
that for © 1large enough, the probability that the lamp at O
is on at time n tends to 1 and for © small enough, this
probability tends to a limit < 1.
First we prove (a). There are 2" possible paths on which

water can flow to the top. The probability that any one of these
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paths is open is (1-e)™. Thus the probability that there is at
least one path open is < Zn(l—e)n. Therefore if 6 > % , this
probability approaches o] and (a) is established. More
sophisticated arguments have established that the same 1is true
for e > .318. (Gray, Wierman and Smythe (1979))

The proof of (b) uses a contour argument similar to the

Griffiths-Peierls argument for the Ising model. We next sketch

this proof.

LE B X

XX XXX XX x

FIGURE 3 FIGURE 4

Simulation of the percolation process for the Stavskaya The blocking path for the simulation shown in Figure 3.
model with m =20 and = 45. The points * are

wetted.

In Figure 3 we show the result of simulating our percolation
process for n = 20 and © = .,45. We note that water did not
reach the top. Now when this happens we can draw a closed

contour as follows. We add new points to our space time diagram
located at the same levels but midway between the original points
and to the left of the points corresponding to position 0. Our
contour will be obtained by connecting certain of these points.
We start at the point (-.5, n+l) at the top of our triangle.
We are allowed to move diagonally down ahd to the right,
horizontally to the left, and vertically upwards. We want our

contour to return to the starting point and have the property
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that each horizontal segment passes through a point which blocks
water. It can be shown that such a contour always exists. 1In
Figure 4 we show the contour for our example in Figure 3. Now
any such contour has the same number of unit line segments of
each of the three types (else it would not get back to the
starting point). Thus 1if the contour has 1length 3K the

probability that this contour will occur is < o (since it must

pass through K blocked points). The number of these contours
of length K is at most 33K (since at each move it must make
one of at most three choices for direction). Thus the

probability that water does not get to the top is bounded by

Therefore, if 6 < E% the probability that water does not reach
the top will be 1less than b < 1 for all n. This establishes
(b).

We have seen that the Stavskaya model can be non-ergodic.
The presence of a trap (all 1's) makes this a rather special
kind of non-ergodicity. The question arises whether one can have
non-ergodicity if none of the coin probabilities are zero or one.
We shall see later that the dynamic Ising model will, for low
enough temperature, be non-ergodic in two or more dimensions. It
will be ergodic in one dimension for all temperatures. This is
not surprising since we will define this model, as we did in the
finite case, in such a way that the Gibbs measures will be the
invariant measures. We know that in one dimension this measure
is unique but not necessarily in two or more dimensions.

It would be natural to conjecture that lamp processes with
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positive probabilities for each outcome should be ergodic in one
dimension but not in two or higher dimensions. Toom (1974) has
given examples in two dimensions that are not ergodic. Kurdyumov
(see Gach, Kurdyumov and Levin (1978)) has announced a
counter-example to the conjecture in one dimension but it is very
complicated and the details have not been published.

A non-ergodic example in two dimensions is the following.
We first apply to each point a deterministic transformation D
defined as follows. The neighbors of (0,0) are the points
(o,1), (1,0), (-1,0), (0,-1). The transformation D turns lamp
(0,0) on if either both lamps (0,1) and (1,0) are on or if both
(-1,0) and (0,-1) are on. It turns the lamp off if either both
(0,1) and (-1,0) are off or both (1,0) and (0,~-1) are off. 1If
none of these cases happens, it leaves the lamp unchanged. After
D is applied the result is changed (error occurs) with
probability q, independent of the neighbors. In this scheme the
configurations of all O's and of all 1l's are fixed points for
the deterministic transformation. If the initial configuration
is all O's, Toom proved that, for small enough g, the
probability that the lamp at (0,0) is on is less than r < % for
all n. By symmetry, if we start with all 1's the probability
will be greater than 1l-r > % and hence the process will not be
ergodic.

A somewhat more natural model, called the voter model, is
generally thought to behave in much the same way. 1In this model,
the neighbors of a point are the point itself and the points a
unit distance from it. The deterministic transformation is
simply a majority vote. After this vote, the voter switches his
vote with a small probability q independent of the position of

his neighbors. Again the configurations of all 1's and all
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O's are fixed points for the deterministic transformation. This
example is believed to be non-ergodic in 2 dimensions and ergodic
in one dimension.

Gach, Kurdyumov and Levin (1978) have suggested that simple
counterexamples to ergodicity in one dimension might be obtained
as follows. Find a deterministic transformation D with the
following properties. First it has two fixed points, say the
configurations of all O's and all 1's. Next require that D
"wash out islands" in the following sense: if a configuration
has only a finite number of 1's then after a finite number of
iterations of D all the one's will disappear. Similarly, if
there are only a finite number of O0's , D should wash these
out in a finite time. One example of such transformation is the
following. If the lamp at a is on it looks at the lamps at a,
a+l, and a+3 and takes a majority vote. If it is off it does
the same but the vote is among the lamps a, a-1, and a-3. We

shall call this the unsymmetric voter model. Gach, Kurdyumov,

and Levin provide computer simulations to support the claim that
this process with sufficiently small random error is non-ergodic.

The role of computer simulations in the question of
ergodicity raises an important point. When we simulate our
infinite process we must use a finite number of lamps. Thus we
will have a finite Markov chain and if all coin probabilities are
non-zero, the chain will certainly be ergodic. When the
corresponding infinite model is non-ergodic, these finite models
will take a very long time to reach equilibrium. Thus examples
where the finite models take a very 1long time to reach
equilibrium are natural candidates for non-ergodic infinite
models. Since it has been suggested that the symmetric voter

model is ergodic and the unsymmetric model not, it is interesting
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to compare the time required to reach equilibrium in these two
models. We shall examine this by looking at the proportion of
1's after time n when we start our finite chain with all O's.

By symmetry, in equilibrium, the distribution of this quantity

will be symmetric about %. In Figure 5 we show the result of
simulating these two models for gq = .02. We have assumed 1000

voters and run the process 10,000 times. We note that the
symmetric voter model has reached equilibrium but that this is

not the case in the non-symmetric voter model.

Symmetric Voter Model

Unsymmetric Voter Model

RAAAAA A A ANS AL\ AP

-] 2000 4000 6000 28000 10000
Number of iterations

FIGURE 5

Proportion of ones after n iterations with 1000 voters starting with 2% ones.

We consider next continuous time models. We again have a
lamp at each lattice point. Each lamp is, at any time t,
either on or off. We shall denote by x a typical configuration

which specifies the state of each 1lamp. We denote by X the

state of lamp a in such a configuration. If we are looking at

the state of the lamps at time t we shall indicate these

quantities by xt and xg . We associate with each lamp a

clock. This clock has an alarm set to go off at an exponential

time with mean l/ca(x). Thus, loosely speaking, ca(x)dt is the
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probability that the clock will ring in a short time dt when
the configuration is X. We shall, as usual, assume there is a
finite set of neighbors Na associated with a. We assume that
ca(x) depends only on x through the states of N, When the
alarm at a goes off, this lamp switches its state and we have a
new configuration X. When this happens the clock at any point
b which has a as a neighbor changes its rate to cb(§) to
take into account the new configuration X. If we have a finite
number of lamps we can construct a continuous time Markov chain
to represent this process. The states would be configurations x

and the infinitesimal matrix Q(x,y) would be determined by

Q(x,x) = c, (x) if x=x except at a
=0 x and x differ at two or more sites
Q(x,x) = - _2Q(x,X) .
X#X
Then Pt = th and we can analyze our process by standard Markov

chain methods. We could obtain our infinite process as a limit
of these Markov chains. Other methods have been developed to
define the infinite processes directly. See Liggett (1977) for a
review of these methods. It 1is possible in certain classes of
examples to avoid some of the technical difficulties of defining
these infinite processes by means of a graphical representation
due to Harris (1978). A general description of this method and
its application to a number of models may be found in Griffeath
(1979). We next briefly describe this method.

With each point of our lattice we associate a finite
collection of exponential clocks. With the ith clock we
associate a labeled directed graph Gi' The points of the graph
Gi are a finite set of lattice points. Directed means that we

draw an arrow between certain of these points. Labeled means
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that we label certain of these points with a D or a B. When
the ith clock goes off we attach the graph Gi to our space time
diagram at the time point corresponding to the times that the
clock goes off. For example, assume that the graph Gi is on

the points a,a+l and has the form

a a+l

D<

Then if the clock goes off at rate 1/2 we would attach an arrow
with a D at the tip from a+l to a at each of a sequence of
time points over the point a generated by exponential random
variables with mean 2.

When we have done this for all our points and clocks, we
have a random graph with D's, B's and arrows, as 1in Figure 6.

Such a graph is called a percolation structure. Note that these

rules allow D's to come at either end of the arrows. 1In our
percolation interpretation, we will wet a certain number of the
points at time O and all the points (s,tn) which have been
labeled B (these are spontaneous springs). Water will flow up
the lines. If it comes to a D, it is blocked from flowing up.
If it comes to the foot of an arrow, it will flow along this

arrow and then up the line at the tip of the arrow. We say that

there is a path from (a,s) to (b,t) if there is a way to
move from (a,s) to (b,t) going up the 1lines or horizontally

along the arrows without passing vertically through a D. Then
water will reach the point (a,t) if there is a path from a
point (b,0) which was wet or a path from a point (b,s) which
was labeled with a B. We shall define a Markov process xt
with state space consisting of configurations of O's and 1's.

The initial configuration x° will be the points which are wet
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at time 0. Then xZ = 1 if water can reach a at time t and
0 otherwise.

We illustrate this first in terms of a voter model. In this
model each voter has, at any time, one of two positions on a
particular issue, "for" (denoted by 1) or "against" (denoted by
0). A voter's neighbors are the points one unit away. At
exponential times the voter switches his position. The rate for
the voter change is equal to the proportion of his neighbors who
hold an opinion opposite +to his. For this model, in one
dimension we use the following percolation structure. With each
point a, we have two clocks. Each clock goes off at
exponential rate 1/2. The graphs associated with these points

are on the set of points a-1l,a,a+l. They are

a-1 a a+l
Gl DL——
G2 —>D

Thus if the first clock goes off at time s, we put a D at

point (a,s) and draw an arrow from (a+l,s) to (a,s). If the
second clock goes off at time t, we put a D at (a,t) and
draw an arrow from (a-l,t) to (a,t). This results in a graph as

shown in Figqure 6.

If there is a 1 at point a at time s, then the
probability that this changes to a 0 in a short time dt is
the probability that the next <c¢lock that rings is a clock
%ndt where n is
the number of O neighbors. Similarly, if the state at a at

associated with a 0 neighbor, and this is

time s 1is O, then this will change to a 1 in a short time
dt if the next clock to go off is from a neighbor which has a

1. This happens with probability %ndt if n neighbors are 1.
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result of choosing an initial

auxiliary graph of Figure 6 to

time t.

distribution for the voters at time

case, it is sufficient to compute
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initial configuration these points
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A typical percolation structure for the voter model.

The dual of our graph in Figure 6 is the graph in Figure 8.

the dual

top with a

the same rules as our original process moved up.

graph, we associate a

configuration of O's

The percolation paths for the percolation structure of
Figure 6.

With
new process which starts at the

and 1l's and moves down with

Note that there
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is a path from (b,s) to (a,t) in the original graph if and
only if there is a path from (a,0) to (b,t-s) in the dual
graph.

In Figure 9, we show the result of choosing an initial
configuration and using the graph of Figure 8 to determine the

distribution at time ¢t.

T=0
D>
Dl—»
1 of— I
o— O}—n 0 (_—l.’o
— ]
—10 Bhe—i
0 4—{0
T=t¢ $T T=¢r 1 O 8 1 0 0 0 O
FIGURE 8 FIGURE 9

The percolation structure for the dual of the voter model The percolation paths (top to bottom) resulting from
simulation shown in Figure 6. percolation structure of Figure 8.

In our voter example, the dual process turns out to be
easier to study than the original. Whenever we come to an arrow
in the dual graph we move one unit to the left or to the right.
We arrive at arrows at exponential rate 1 and then have
probability % of going to the right and probability % of
going to the left. Thus, paths in the dual graph from a point
(a,t) can be viewed as paths of a continuous time random walk.

Consider now P(x: = 1). 1In our original process, this is
the probability that there is a path which starts at a point
(b,0) with a one and ends at the point (a,t). In the dual

process, this is the probability that our random walk starting at

(a,0) and moving down will, after time ¢, be at a point b
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which was assigned a 1 in the 1initial configuration for the
original process. While this probability is well defined for any
t, the limit as t—> 00 may not exist.

As an example where this limit does exist, assume that
initially all voters on the positive integers have opinion 1
and those at the negative integers and O have opinion O. Then
the only change that can occur is in the boundary of the O's
and 1's. The position of this boundary will again be a
continuous time random walk. Thus the probability that any

finite set of voters will be to the right of the border at time
L
2

However, the boundary will be infinitely often to the right of

t and, hence, all have position 1 approaches as t —>oo0.
these voters, and at these times they will all have opinion O.
It will also be infinitely often to the left, and at these times
they will have position 1. Thus while we can expect after a
long time to find consensus for any finite group, the position of
the consensus will keep changing.

Clifford and Sudbury (1973) remark that if the initial

configuration 1is such that the proportion of 1's in the

interval from -N to N approaches p as N —>o0o, then the
limit of P(xg =1,..., x: = 1) as t—>00 will also exist
1 r

and be equal to p.

Assume next that the initial configuration is chosen by
assigning the positions at random with probability p for a 1.
Let us consider the probability that x: = 1, By the dual
argument this is the probability that our random walk path,
starting t units above the point a and moving down, ends at
a point with a 1. But, wherever it ends, this point was

assigned a 1 with probability p independent of any of the

path constructions. Thus P(x:=l) = p.
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Assume now that we look at two voters a and b and wish
to find the probability that at time 't both a and b have
position 1. Then we look at the dual graph and trace their
random paths back to time 0. These paths are not independent
random walks since if they ever meet, they continue on as a
single path representing a single random walk. In one and two
dimensions the probability that two random walks meet approaches
1 as t tends to infinity. Thus the limiting probability that
a and b are both 1 1is the same as the probability that a's
final position is a 1. Thus, again the probability in the long
run that both a and b have position 1l is P- More
generally, the probability that any finite number of voters all

have position 1 tends to p.

This means that if our assignments are independent
initially, the measure after time t for our configuration will
approach a measure which assigns probability P to a
configuration of all 1l's and probability 1-p to a
configuration of all O's., Thus we have seen two initial

configurations which lead to the same consensus prediction. The
measure which assigns probability one to the configuration of all
1's 1is an invariant measure for the voter model. The same is
true for the measure which assigns probability one to the
configuration of all O's. Holley and Liggett (1975) showed that
in one and two dimensions any invariant measure must be a convex
combination of these two measures. Thus any limiting measure for
the voter model in one and two dimensions must be a mixture of
these two pure measures, and, in general, we can expect
consensus.

In three dimensions, the probability that two random walks

meet tends, as t—>oo0, to a 1limit less than one. Thus the
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limiting consensus that we obtained in one and two dimensions
will no longer hold for three dimensions. 1In this case Holley
and Liggett showed that if the initial distribution for the
voters is random, with probability p for 1, there will be a

limiting measure m(p)

which assigns a positive probability for
every possible opinion for any finite number of voters. While
the voter opinions are no 1longer perfectly correlated in the
limit as they were in the one or two dimensional cases, they will
have strong correlations. These correlations can be calculated
since they involve the probability that two random walks will
meet and this has been studied in some detail. Using results of
Spitzer about random walks, Griffeath and Bramson (1979) showed

that, in terms of the measure m(p),

g

|E(xr-xo) - E(xr)E(xo)| = =

as r —>oo where ¢ 1is a known constant. This non-exponential
decay of the correlations suggests that the c¢lassical central
limit theorem should not hold. Indeed, Griffeath and Bramson
showed that if Sn is the number of 1 voters 1in a cube
centered at O with side n, then the distribution of
Sn - E(Sn)

n572
tends to a normal distribution. They also proved a
renormalization theorem exhibiting the dependence between large
non-overlapping boxes.

A second model where this percolation structure applies is
the process studied initially by Harris (1974). This is a model
for the spread of a disease, say, in a forest. The states are,
as usual, O and 13y O means a well tree and 1 a diseased

tree. We shall illustrate this model in one dimension. Assume
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that each tree a has two neighbors a-1 and a+l. A diseased
tree recovers at a constant rate 1. A well tree becomes
infected at a rate nc where n 1s the number of neighbors
which are diseased. To form the percolation structure for this
process, we associate with each point a three clocks. The

graphs associated with these clocks and their rates are

a-1 a a+l rate

D
Gl . 1
G2 . c
G3 . >, C

The first clock goes off at rate 1. Thus if this clock goes off
at time s we put a D at the point (a,s). The second clock
has rate c¢. If this clock goes off at time +t, we put an arrow
from (a+l,t) to (a,t). The third clock also goes off at rate
c. If this clock goes off at time u, we put an arrow from
(a-1,u) to (a,u). This process is called a contact process.

Assume that we start with all 1's, in other words all trees
infected. Let pt(c) be the probability that the O tree is
infected after time t. In the percolation interpretation, this
is the probability that water will get to 0O at time t. 1In
Figure 10 we show a typical percolation structure for the contact
process. Figure 11 shows a typical initial configuration and the
paths which permit water to rise to the points at time t.

Assume that s < t. Then for water to get to O in time t
it must get to level +t-s and then in time s get to O. Thus
Pi(c) £ ps(c) since ps(c) is the probability that O will be
wet after time s if we start with all sites wet. Thus pt(c)
has a limit p(c) as t tends to infinity. Also, pt(c) will

be increasing in c¢. Thus we again have the possibility for a
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critical value ¢ such that for ¢ < ¢, plc) =0 and for

¢ >¢c, plc) > 0. The existence of this ¢ was demonstrated by
Harris (1974). We shall indicate a way to prove that ¢ > 1.
The proof that ¢ < oo  is much more difficult. The first proof
due to Harris gave no easily computable upper bound. Holley and
Liggett (1975) showed that ¢ < 2. For a more complete

discussion of these and other estimates, see Griffeath

(1979),(1980) .
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FIGURE 10 FiGgure 11
A typical percolation structure for the contact process. The percolation paths for the contact process with ran-
dom initial configuration using the percolation structure
of Figure 10.
The study of this model again makes use of the dual process.
In the dual process 1if we start at (a,t) and move down the

graph, when we come to an arrow, we can now continue down the
path and also move horizontally. We shall regard this as a
branching process thinking of a particle moving down the graph
and splitting into two particles when it meets an arrow. If it
meets a D, it dies. If two particles come together they
continue together as a single particle. Thus the dual process is
a continuous time branching process in which the particles

coalesce when they come together.
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Recall that pt(c) is the probability that the point O
will be a 1 at time t when the contact process is started
with all 1's. In the dual process this is the probability that a
particle starting at O at time t will in time ¢t reach a
point that was initially a 1. But since we started with all
1's this is simply the probability that the dual process does
not die out in time +t. This process, in a short time dt, will
die with probability dt or will split into two particles with
probability cdt. Since even without coalescing such a process
will die out if ¢ < 1, we see that for ¢ small enough the dual
process will die out. In the original process this means that
plc) =0 for such a c. To prove that pl(c) > 0 for c
sufficiently large, we would have to show that there is positive
probability that the coalescing branching process grows
indefinitely for ¢ sufficiently large. This is of course true
with coalescing but more difficult to prove) We have not drawn
the dual graphs because the contact process is self-dual in the
sense that when we form the dual process, we obtain a process of
exactly the same probabilistic structure as the original. Thus
the original process as illustrated in Figure 10 represents a
coalescing branching process.

A variation in the voter model, the biased voter model,

studied by Schwartz (1977), has recently been shown to have
application to cell growth processes. For the biased voter model

it is assumed that a voter switches opinions with rates

ca(x) proportion of the neighbors that are O when xa=1

1]

ca(x) k + proportion of the neighbors that are 1

when xa=0

where k > 1. Thus "for" voters have more influence than
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"against" voters.

To construct this process by a percolation structure, we
proceed as follows: With each point we associate four clocks.
The graphs associated with these <clocks are all on the set of

points a-1l, a, atl. The graphs and the rates are:

a-1 a a+l rate

Gl D.< . 1/2
k-1

G3 . >.D 1/2
k-1

G4 —. 5=

If we start the dual process at a point a moving down from
level t, then when it reaches an arrow with a D, it will act
like our random walk. If it reaches an arrow without a D, it
acts like a branching process. Both processes are coalescing
since they act as only one particle if they come together. While
this is a more complicated dual process, the study of the model
has made heavy use of the dual process.

We consider next certain cell growth models related to these

voter models.

Williams and Bjerknes (1972) and Richardson (1973)
considered a number of models for cell growth. We can Dbest
describe these models 1in our setting as follows. For the

Williams and Bjerknes model, at each lattice point in two
dimensions, we have a O or a 1., a 1 stands for a bad
(cancerous) cell and a O for a good cell. At exponential
times, each cell splits into two cells. When the split occurs
one cell remains at the same site and the other cell occupies a
randomly chosen neighboring site and replaces the cell that was

there. The rate at which a good cell splits is 1 and the rate at



SEC. 4 DYNAMIC MODELS 85

which a bad cell splits is k > 1. This is easily seen to be the
same as the biased voter model.

Richardson (1973) studied several different models in which
only the bad cells can split. He was interested in showing that
under fairly general conditions there would be an asymptotic
shape for the growth of the bad cells. He showed, in particular,
that this is true for the Williams and Bjerknes model for the
limiting case k = oo. This model had already been considered
by Eden (1961) who had conjectured a circular growth for the bad
region. Richardson also showed that there is an asymptotic shape
for a discrete time model defined as follows: at each time unit
each of the good cells becomes a bad cell with probability p if
there is at least one bad neighbor. If there is no such neighbor
the cell does not change. He called this the Gp model.

For a class of models which includes these two models,
Richardson proved that, if we start with a single cell, the cell
growth will have an asymptotic shape in the following sense. The
shape will be a circle determined by a distance d(x,y), where a
"circle" with center O, wusing this distance, is the set of all
lattice points x such that 4(x,0) < r. Then r is the radius
of the c¢ircle. One choice for this distance would be the
Fuclidean distance which would give familiar circles. A second
choice might be the length of the shortest path from x to vy
passing through lattice points. With this distance, "circles"”
are diamonds. Richardson's results do not say what the distance
is. They do say that in terms of the distance, the cell grows,
as t increases, like a circle at a linear rate. More
precisely, for any small b > O, the probability that the growth
includes a circle with a radius ¢t-tb and is included in a

circle with radius t+tb tends to 1 as t—>oo0. That is, if
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A, is the s:t of points that are 1 at time t, then the set
of points EE' will approach a circle using the distance d
associated with the growth process being modeled.

The shape of the original Eden growth model is still not
known. Much simulation has been carried out for this model. For
this simulation, it 1is easier to think of the original Eden
formulation. We start with a unit square and add a square at
random to one of the available faces. We continue this
procedure. For example, 1if after we have added two new squares

and we have the configuration

7

4 3
then the next square will be put in position 1 with probability

2/7 and the other six positions with probability 1/6 each. 1In
our simulation, we consider the squares centered at the latter
points and put a dot at this point if the square 1is present in

the growth. In Figure 12 we show a growth with 6000 squares.

" FIGURE 12 FIGURE 13
One simulation of the Eden growth model with 6000 The points that occurred 20 or more times in 50 simula-
points. tions of the Eden growth model, each simulation had

6000 points.
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We see that the boundary of a single growth has a great deal of
irregularity. To see if we can get a more regular region, we
have repeated this simulation 50 times and plotted the points
which occurred in 20 or more of these simulations. The results
are shown in Figure 13. We have drawn a circle around the
boundary. This would seem to support Eden's conjecture that the
asymptotic shape is a circle.

The one growth model for which results about the shape have
been proven 1is Richardson's Gp model. Richardson simulated the
model for different wvalues of p and conjectured that as p
varies from 1 to O, the shape changes from a diamond to a
circle. Success with this model has come from identifying the
growth with a percolation process, Cox (1979), and as a contact
process, Durrett and Liggett (1979). Durrett and Liggett obtain

a contact process by watching the growth along the 45 degree

lines Ln consisting of the set of points (i,j) with i+j = n
for successive vwvalues of n. The growth can reach Ln in n
generations but no further. A point (i,]) on Ln will be

infected at time n, with probability p, 1if one or both of the
points (i-1,3), (i,j+1) on Ln-l are infected at time n-1l.
Thus the growth along the lines Ln represents a Markov process
which is like the contact process we have described earlier.
There is a critical values P such that for p > P this
contact process does not die out, and for p < p it does. In

(o]

the former case, Holley and Liggett showed that the unit circle

Cp contains a segment containing the point (1/2,1/2). For
P < Pgs they showed that Cp does not intersect the line
x+y = 1. The critical value P, is not known but it follows

from results of Gray, Wierman and Smythe (1979) that P, < .688.

We have also simulated this model. In Figure 14 we show the
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results of a single simulation for the case p = .9 and the
diamond shape is very evident. 1In Figure 15 we show the result
of a single simulation for p = .l. Now we again have a quite
irregular region. We have tried again our smoothing process for
values of p = .1, .2, .3 and .6. In each case, we have plotted
the points that occur 20 or more times in 50 simulations. 1In
each simulation, the growth is allowed to reach 5000 points. The

results are shown in Figure 1l6.

FIGURE 14 FIGURE 15

A single simulation of the Gp model with p = .9 and A single simulation of the Gp model with p = .1 and
5000 points. 5000 points.

For the lower values of p, we have tried to fit a circle. The
results of Cox and Durrett and Liggett verify the first half of
Richardson's conjecture and these simulations suggest that the
second part may also be true. (The programs for the simulation
for these growth models were written by Linda Gundal and Andrew
M. Drexler.)

Using the fact that the Williams-Bjerknes model is the same
as the biased voter model, Griffeath and Bramson (1979) have
exfended Richardson's results to the general Williams-Bjerknes

model (the biased voter model). We have simulated a discrete
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p=.2 p=-.1

FiIGURE 16

The points that occurred 20 or more times in 50 simulations of the Gp model for
p = .6, .3, .2,.1. Each simulation had 5000 points.
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time version of this model. Here, at each time unit, each good
cell changes to a bad cell with probability % where Jj 1is the
number of neighbors of opposite type and each bad cell changes to
a good cell with probability k-% with k < 1. 1In Figures 17,18
we show the results of simulating the discrete time version of
the Williams and Bjerknes model for k = .7. As usual, the

single simulation 1is irregular but a circle fits the smoothed

simulation quite well.

FIGURE 17 FIGURE 18

Discrete time Williams-Bjerknes model with k = .7 a The points that occurred at least twenty times in 50
good cell changes to a bad cell with probability j/4 and simulations of discrete time Williams-Bjerknes model
a bad cell changes to a good cell with probability k(j/4) with k = .7.

with j = number of neighbors of opposite type.

Discrete time models very similar to the above voter models
have been studied by Sawyer (1976), (1979a,b) in connection with
genetics models. Sawyer studied a model called the stepping
stone model of Malécot (1948,1975) and Kimura and Weiss (1964)
for migration in population genetics. The stepping stone model
is a dgeneralization of the well-known Fisher-Wright (Fisher
1930) (Wright 1931) model for generation fixation. This model, in
its simplest form, may be described as follows. We have an urn
with n balls each of which is white or red. For each

generation, we choose n balls from the urn, choosing each time
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with replacement. The balls chosen represent the gene types
present at the next generation. The proportion ;E of red balls
at time n represents a finite state Markov chain with O and
1 as absorbing states. It is also a martingale so the process
will eventually reach either O or 1 and the probability of
reaching 1 1is equal to the proportion of red balls initially in
the urn. For the stepping stone model, we imagine one such urn
situated on a finite number of points or colonies. In choosing
the balls for the next generation, the ith colony again chooses
n balls again with replacement, but now on each draw the ball is

chosen from the urn at colony Jj with a probability P to

ij
represent possible migration. The number of balls of each type
in each of the urns again form a finite Markov chain and even if
we allow more than two colors for the balls, eventually one color
will win out. A simple example of the stepping stone model that
is interesting to simulate is the following. Assume that, at
each lattice point on an nxn square, we have a single colored
ball with k different colors possible. For the next
generation, each ball is replaced by a random choice from the
five balls consisting of +this ball and those at the four
neighboring points. (Assume a periodic boundary.) Simulating
this model on your home computer with color graphics makes an
interesting set of patterns and, with a random initial choice of
colors, takes a very long time before one color wins out.

In Sawyer's model there are a denumerable number of
different species of an animal and these animals occupy a
denumerable number of colonies. During each generation the
population undergoes random mating, and all individuals of the
new generation replace the o0ld and independently migrate to other

colonies. The motion of a representative group of N animals in
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each colony is studied. We again illustrate this model in terms
of a special case. We assume that colonies are located on the
integer lattice points. We also assume that there is only one
element in each colony. At each time unit, the animals migrate
to one of the two neighboring points. We observe the species of
one animal in each colony. Then this animal at time n+l comes,
with equal probability, from each of the two neighboring points.
Thus the probability that it is of species j 1is equal to the
proportion of animals of this species at neighboring points at
time n. This corresponds to the voter model where the voter can

have a denumerable number of positions on the issue at hand.

N
AV /

ANV

FIGURE 19 FIGURE 20
A typical percolation structure for stepping stone model A percolation structure for the dual of the stepping
(discrete time voter model) stone model. (dual of Figure 19).

The graphical structure for this discrete time process can

be described as follows: at each time n and for each point a,

we draw an arrow elther from (n-1,a) to (n,a) or from
(n-1,a-1) to (n-l,a). These two possibilities occur with equal
probability. A typical graph is shown in Figure 19. For our

percolation interpretation, we can think of the point being wet

initially with different colored fluid. The fluid then moves up
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and along the arrows as before, coloring the points it passes
through. The pfobability that a particular point a 1is of color
j (species j) at time n 1is the probability that in our
random graph there is a path from a point colored j at time O
to the point (n,a). The dual structure is again obtained by
reversing all the arrows. The dual of the graph in Figure 19 is
shown in Figure 20.

The dual process again corresponds to coalescing random
walk. The walks now can be identified by their colors. It
follows, just as in the voter model, that if we start with any
initial colors, the probability that a partigular group of points
will be all the same color tends to one as n tends to infinity.
This result will be true 1in one and two dimensions but not in
three dimensions. On the other hand, any one particular color
will eventually die out. To see this, let Xn be the number of
points of color j at time n. Then each such point colors O,
1, or 2 points on the next generation with probabilities 1/4,
1/2, 1/4 respectively. Thus the expected number of particles
that it colors 1is one. Thus Xn is a martingale. Since it is
non-negative, it converges, with probability one, to a finite
limit. Since it is integer valued, this limit must be O. Thus,
while any finite set of points will with high probability be the
same color, this color will keep changing. A discussion of these
and many other interesting properties of this model can be found
in the papers of Sawyer.

As our next example of a dynamic process, we return to the
dynamic Ising model. Recall that we used such a model to
generate typical configurations of a Gibbs measure on a finite

e—bU(x)

lattice. If p(x) = % was our Gibbs measure, we formed

a reversible discrete time Markov chain with states the possible
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configurations x. We needed only to require that the transition
matrix P{x,X) satisfy
p(x)P(x,X) = p(x)P(X,x) .

For our simulations, we accomplished this by first choosing at

random a spin to consider changing, letting X be the
configuration x with this spin flipped. If U(X) < U(x), we
flipped it. If U(x) > U(x), it was flipped with probability

e_b(U(X)-U(x)). A more symmetric choice would be to choose a

spin at random and flip it resulting in X with probability

e—bU(x) 1

eb(U(I)—U(x))

e—bu(i) -bU (x)

+ e 1 +

Note that in both cases the probability that the chosen site is
changed depends only on its state and that of its neighbors.
Thus our Markov chain process differs from our lamp problems only
in the fact that we choose only one point at a time to change.
If we were to have them all attempt to change with these
probabilities, we would £find that p(x) is no longer an
invariant measure. The trouble is that we would be basing our
transition probabilities on energy changes which would not be the
true energy change if two neighboring points were to change. On
the other hand, if we consider a continuous time process, we can

achieve our lamp format. For these processes we need
p(x)Q(x,X) = p(X)Q(X,x)

where Q 1is the infinitesimal matrix. We can achieve this if,
following our first model, we assume that each spin will flip at

a rate
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c, (x) 1 if U(x) < U(x)

= o PU)-UX)) iy vise

or following our second model if

ca(x) = 1 .

b (U (x) =U(x))

l+e

We need now only extend these finite continuous time chains
to processes on infinite configurations. We can no longer use

our graphical technique and so the construction of the infinite

process 1is more difficult. There are a number of ways to
proceed. The simplest to explain is that carried out by
Dobrushin (1971). He obtained the infinite process as a limit of

finite processes associated with a given potential U. He showed
the following. Starting with any infinite configuration x, let
A Dbe a square centered at O, and let X be x restricted to
A, Consider a finite Markov chain determined by the potential U
as described above. Here x restricted to the boundary of a
gives boundary values. The boundary values remain fixed. Let
L N DY RRRNL . be points in A. Consider, for fixed ¢, the

cylinder probabilities

where Xp is the initial configuration. Dobrushin showed that
as A is increased to the whole space, these probabilities

coverge to a limit
P (xa =+, x =+, . . ., X = +)

which depends only on the initial choice x and not on the
choice of the boundary values on the boxes. This defines, for
each t, a measure on the cylinder sets and hence on the set of

all infinite configurations. This in turn determines a family
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t . . . .
Px of measures which represents the continuous time Markov chain

associated with the given potential U.

While the construction of the Ising model is more difficult,
the study of this model has been greatly enhanced by the
understanding of the theory of Gibbs measure. In constructing

P we used the "attractive" nature of the Ising model when

n
b > 0. 1In particular, we said that if we were trying to find the
probability of a + at 0 for given boundary points, this
probability is only increased by increasing the number of +'s
on the boundary. The same reasoning suggests that in the dynamic
model, if we consider the cylinder probability for all +'s at a
finite number of sites
(1) Px(x: = +, X, = +,00., X = +)
1 2 r

this probability should be a maximum when the x is the
configuration of all +'s. Further, this probability should
decrease to a limit as t—>00. This would show that the
measures after time t would converge to a limiting measure as
t—>00 if we start with x having all +'s. Similarly if we
start with all - spins, we obtain a limiting measure. These
measures will be Gibbs measures for U. Assume now that there is
only one such Gibbs measure. Then these two measures will be the
same. For any other initial configurations, the probability (1)
will fall\ between those for "all +" and "all -" starting
configurations. Hence, it will also converge to the same limit.
Holley (1972) followed this approach to prove that if U
determines only one infinite Gibbs measure, then the Ising model
is ergodic. Dobrushin (1971) used a condition similar to that
which he used to prove uniqueness of a Gibbs measure to show that

if the attraction is weak enough (temperature above a certain



SEC. 4 DYNAMIC MODELS 97

value t), then the process is ergodic and the convergence to a
limiting measure is exponential. The temperature t is well above
the critical temperature. Whether or not this stronger result
holds down to the critical temperature is not known. The method
of duality exploited by Holley and Stroock (1976) leads +to a
similar result. This latter method can be discussed by
percolation structures (see Griffeath (1979)).

While it 1is easy to check that every Gibbs measure
associated with U is an invariant measure for the process, it
is by no means obvious that these are the only invariant
measures. An important tool in studying this problem has been
the concept of free energy.

Consider any finite state continuous time Markov chain such

m(t) t

that mP- —> m where m is the unique invariant

measure. Then Renyi (1961) showed that one could prove

convergence by the use of relative entropy with respect to m of

o ()

the measure defined by

m(t)
z m!t)ln = .
. i —

m,
i
In particular, he showed that this quantity was monotone in ¢
and increasing to O, indicating that the process 1is getting
closer to the equilibrium distribution as time increases. Now if

we apply this to our Ising chain, we have that

n{® (x) 1n

™

m(t)(x)
% e—bU(x)

=) n e ¢ 2™ b)) + 1n 7.
x x

But the first two terms are the free energy determined by

m(t), and we have indicated this is a minimum and equal to

o ()

- 1In 72 when is the Gibbs measure. Thus, this shows that



98 MARKOV RANDOM FIELDS SEC. 4

our measure m(t) should converge to a Gibbs measure. Holley

(1971) extended this result to infinite processes to show that if
the initial measure is translation invariant, then the process
will converge to a Gibbs measure. Holley and Stroock (1977)
showed that in one and two dimensions, all invariant measures for
the stochastic Ising model are Gibbs measures. Since all such
measures are now known to be translation invariant for b > O,
this means that all invariant measures in one and two dimensions
are translation invariant. In three dimensions, there are
non-translation invariant Gibbs measures. Even the question of
whether all invariant measures for the Ising model are Gibbs
measures in three or more dimensions remains open.

What happens below the <critical temperature? Here Holley
(1974) has shown results which are associated with some aspects
of phase transition. For example, suppose we have no external
field and we start our Ising process with a Gibbs measure with
temperature above the critical temperature. After the process
has run for a time long enough to reach equilibrium, we lower the
temperature to a temperature below the critical temperature.
Then Holley proved that there will be a limiting measure and this
limiting measure will be the measure % P, + % P_ . Next assume
that we start with a temperature below the critical temperature
and a positive exterior field. Then after the process has run a
long time, we turn off the field. Then Holley showed that the
process would converge to the distribution P+. It will converge
to P~ if we start with a negative external field and then turn
it off. Holley and Stroock have established a number of other
interesting results in the dynamic Ising model. A survey of
their work can be found in Stroock (1978). Much of the work on
dynamic models was inspired by the paper of Spitzer (1970). See

Durrett (1980) for a more complete review.
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5. THE TREE MODEL

The Ising model is by far +the most important example of a
Markov random field. However, as we have stated before it is very
difficult to prove some of the basic results. An example which
is mathematically much easier to understand is obtained when one
takes the basic graph to be a tree rather than the set of all
lattice points. This model is often called the Cayley tree
model. Our discussion of the model will be based on the work of
Preston (1973), Spitzer (1974), and Moore and Snell (1979). The
model actually had its origins in the early work of Bethe (1935)
as an approximation to the Ising model.

As the name suggests, the basic graph for the Cayley tree
model can be shown by a tree diagram. An example is shown in

Figure 1.

FIGURE 1

The root r 1is called the Oth level. From the root we
have g branches (g = 2 in our example). The points at the
ends of these branches are called the points of the '1lst level.
From each point of this level there are g new branches whose
endpoints constitute the 2nd level, etc. We shall carry out the
discussion for the case g = 2. The case q =1 is the same as

the one-dimensional Markov chain which we have already studied.
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The basic results for g > 2 are essentially the same as for
g = 2. As in the Ising model, we shall start with a finite graph
(tree) and then go to the infinite graph (tree) as a limiting
case. A configuration w on a tree of n levels will be an
assignment of a + or a - to each point. The nth level will
constitute the boundary. We define the energy U(w) Jjust as in
the Ising model. That is,

(1) Ulw) = -7 ?ljoi(w)oj(w) - mHioi(w)
where, as usual, the sum in the first term is taken over nearest
neighbors and counts each pair only once. The pairs including
boundary points are counted. The second sum may be taken over
only the interior points when the boundary is fixed. The
resulting Gibbs measure is then defined by

1
- == U(w)
e kT

P(w) = —_— -

We shall again make the substitution b = E% and h = E% and

write our Gibbs measure as
-bn_ (w)+hM (w)
P(w)=!Z'-e °©
where no(w) is the number of odd bonds in w and M(w) 1is the
magnetization.

When all boundary points are fixed as + we have the

positive boundary and when they are fixed as - we have the

negative boundary. The free boundary corresponds to treating the

boundary points like all other points and, in this case, the
second sum in (1) is over all points.
We begin by considering the first question for the Ising

model: will the positive and negative boundaries give different
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probabilities for a + at the root as the tree grows
indefinitely?

In looking at the Cayley tree with n 1levels, we divide the

partition function Z(n) into two sums
z(n) = z(n) + z(n)
- +
where
-bn_ (w)+hM (w)
an) = e °
w ==
and
(n) _ -bno(w)+hM(w)
Z+ = e .
w_=+
Thus an) sums over all configurations which assign - to

:n) sums over all configurations which assign +.

the root, and 2
We now compute the ratio of the probability of a - at the root
to the probability of a + at the root. This ratio, of course,

determines the probability of a + at the root since the sum of

the two probabilities is 1. We define

z_(“)

If we can find the 1limit of u, as n tends to infinity, we
will find the limiting ratio for the probability of a - to the
probability of a + at the root.

We consider the possibilities for the first level of our
simple tree with a + at the root. There are now only three

essentially different possibilities as shown in Figure 2.
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- - + -+ +
V VY
(@ ®) ©)
FIGURE 2

The cases (a) and (c) can occur in 1 way and (b) in 2 ways.

Thus we can write

(n-1)

2
b

z (M) _ e—2b+h(z£n—1))2 + 2e-bth zfn-l)zin—l)

h
+ + e (Z

- eh(e-b z_(n—l)+ zin—l))z
Similarly,

2 (M) - by (n=1)

(2 + e—b Zin-l))Z .
Thus
P(n)(wr=—) an)
(3) NG NN )
P n (wr=+) Z_"n
i e-zh (zfn—l) + e—bzin—l))Z
(e—bzfn—l) + zin-l))z
Then from (3) we have
(un_1 + e-b)2
u =
n 2h, -b 2
e” (e Tu _,+1)

The value uy may be obtained by considering a tree of

height 1. With positive boundary
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Similarly, with negative boundary

u, = e2b—2h .
We can then compute u, for n > 1 by using the fact that
Yn = f(un—l)
where
_ (x+e—b)2
£x) = Sr— 2 -
e" (e Tx+l)

For the free boundary, we can start with a one point tree and

obtain

We then ask if the sequence u, a tends to limit wu, and,
if so, does this limit depend upon the value of ul?
It is not hard to show by simple calculus arguments that in

the attractive case (b > 0), u has a limit. We note that if

there is a u such that u, —> u, then we must have that
u= £f(uw, 1i.e., u is a fixed point of f. This follows from
the fact that £ is continuous and u = f(un-l)' Again by

standard calculus arguments, one can show that for
0<b< 1ln 9/2, f(x) has only one fixed point, and the values
of u, converge to this fixed point. If b > 1ln 9/2, then
there will be a interval of h wvalues, including h = 0O such
that £f(x) = x has three fixed points Xq 1%y e Xg.

In certain special cases, two of these points coincide. It
is easy to show graphically (see Figure 3) that if 0 < U, < X)

u will be monotone increasing to Xg the smallest fixed

point.
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FIGURE 3

For values x, < u, < Xor Uy will decrease monotonically to Xq-

1 0
For x, < uy < X3 they will increase monotonically to X3.
Finally if X3 < Uq the values of u, decrease monotonically to
Xq- The smallest fixed point gives the limiting probability

ratio for the positive boundary. The largest fixed point gives
the 1limiting probability ratio for the negative boundary. It
would be nice if the middle value corresponded +to the free
boundary. This 1is not true in general, but it is true for the
case of no external field. 1In this case u, = 1 . We need only

check that Ug = 1 is a solution of x = f(x) when h = 0, and
this is easily seen to be true.

If, in the case of the free boundary, we impose a small
positive exterior field, the ratio of the probability of a - to
that of a + at the root will approach the 1lower fixed point.
If we impose a small negative field it will approach the higher
fixed point. These measures correspond to the positive and
negative boundaries respectively. Thus we again have the effect
of spontaneous magnetization as in the Ising model.

Note that, in contrast to the Ising model, it is not

necessary to have the exterior field O to have a phase
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transition, but, just as in the case of the Ising model, we
obtain more than one limiting value for the probability of a +
at the root if b is sufficiently large (temperature
sufficiently 1low). For values of b between O and 1ln 9
there 1is a unique 1limit, corresponding to having no phase
transition for temperatures sufficiently high.

The limits of the sequences u, have been proven to exist.
From (3) we see that this proves that P(n)(wr = -) tends to a
limit as n tends to infinity for a Cayley tree. From this point
it would be natural to prove that there is a limiting probability
for any specified configuration on a fixed finite subgraph. This
would serve as the probability of a cylinder set for the infinite
tree and these probabilities would serve as a basis for a measure
on the set of all infinite configurations on the infinite tree.
One can prove by limiting processes similar to that which we
have employed that these limiting probabilities do exist and that
the cylinder measures do not depend upon the location of the
starting point. Such a measure is called by Spitzer homogeneous.
This properfy plays the role of stationarity in the 1lattice
models. Furthermore, these 1limiting measures (at most three)
have a very simple form. They belong to the class of measures on
the tree constructed as follows:

Choose a transition matrix

with fixed vector w. For a finite tree we define a measure as
follows. We form a product starting at the root with w.. Then
for each branch going out the tree we multiply by the appropriate

factor Pab’ for example:
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- + = w_(1l-s)stts(1l-s)
N
\\\ w_(l-s)"s"t".

The resulting measure is easily checked to be a Markov

field. It is also easy to see that the measures obtained on the
finite trees are consistent and form measures for cylinder sets,
determining a measure on the infinite tree. This measure does
not depend upon the particular choice of a point for the root and
hence is homogeneous.

To identify the Markov <chain that goes with a specific
limiting measure, say Py it is only necessary to calculate the

ratios of cylinder set probabilities
+ -

A \/ n(\/])

T+ F#y +

(/) ( W[N]

The first ratio is l%E and the second = .

and t, and hence P, are determined.

From these s

We shall call measures constructed by P Markov measures.

The measures corresponding to P+ and P_ represent pure phases
in the sense that they cannot be written as a convex combination
of other measures. The existence of these two measures occurs
below the c¢ritical temperature Tc. When there is no external
field the third Markov chain, which we shall call the middle
chain, is obtained from a free boundary condition. In contrast
to the Ising model in two dimensions, it is not a convex
combination of P+ and P_. On the other hand, it also does not

necessarily represent a pure phase. We will now consider some of

the properties of these Markov measures. We follow here Moore
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and Snell (1979).

We observe first that there is no long-range order, that is,

llw, = 1) — w

P (w n 1

m

and

P(wrn llw = 0) — w1 R

n

as m goes further out on the tree from n. This follows from
the fact that a Markov measure P, restricted to any path in the
tree isomorphic to the integers, 1is an ordinary 2-state Markov
chain with transition matrix P.

The limit theorems for the Markov measures are best studied
as examples of multitype branching processes. We consider first
the "law of large numbers" for a Markov measure. For a tree of

height n there are 1+2+22+...+2n = 2n+1_

1 points. Then the law
of large numbers would state that the average number of + spins

in n levels,

S(n)(w)
- —x3 I
2n+1
converges to a constant. We shall show that this is true by

using a well-known theorem from the theory of multitype branching
processes. We shall only need to use a two-type branching
process and so shall describe the result for this case.

We are given a particle which is one of two types, a or
b. If it is of either ¢type it can produce, for the next
generation, particles of both types. We denote by Pa(i,j) the
probability that a particle of type a produces 1 particles of
type a and j particles of type b. Pb(i,j) is defined
similarly, but starting with a particle of type b. The

particles produced by the initial particle represent the first
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generation. Each particle in the first generation independently
produces particles according to the distributions Pa(i,j) and
Pb(i,j). These particles form the second generation. This
process continues through n generations. The behavior of the
process depends very much on the expected number of each type of

particle produced by a given type. These numbers are

Maa = L i Pa(i’j)
i,]

Map = 2 J Pa(i’j)
1i,]

= £ 1P (i,3)

mba i,3 b

mp = 2, 3 Ppd.d).
i,]

Let M be the matrix

Maa Mab
M= .
™sa M™bb
We assume that M 1is a strictly positive matrix. Then

there is a largest positive eigenvalue e with eigenvectors u

and v such that

uM = eu

Mv = ev.

Here u is a positive row vector and v 1is a positive column

(n)

a be the total number of particles of type

vector. Now let X
a in the nth generation and Xén) be the total number of
particles of type b in this generation. A basic theorem then

states that if e > 1 the random vector

(n) (n)

X(n)_ ( Xa Xb )
n n ' n

e e e

converges to a vector in the direction of the vector u. The sum
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(n) (n)
vaXa + vab

n
e

converges to a random variable with expected value uv. A proof

of these results may be found in Harris (1963).

We shall now apply this theorem to our Markov measures. A

particle will be a point in the tree. Thus each particle

produces exactly two particles. The distribution Po(i,j) is
2
P,(0,2) = P5;
Po(l,l) = 2P,5P01
2
PO(2,O) = POO'
Thus
m. . = 2P P . + 2P2 = 2P
(6] 00 "0l (e]e] (o]0
= 2 _
mo1 = 2POOP01 + 2P01 = 2P01 .
Similarly
Mo = 2P0
My = 2Py
and

_ Poo Po1
M=2(, p .
10 11

The largest eigenvalue for M is e = 2 with eigenvectors

w = (wo,wl) and v = ( i ). Now X(n) will be the number of -'s on

(n)

+ the number of +'s on the nth level.

the nth 1level and X

The branching theorem then states that

(n) (n)
(n) - X

2

)

n
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converges to a vector in the direction w = (wo,wl). Since
PUMLY
=1
on

this limiting vector must in fact be w.

This proves that for a Markov measure the proportion of +'s
on the top of the tree approaches the component wy of the fixed
vector w for the Markov chain matrix P that determines the
measure. We are interested in the number Sn of +'s over the

entire tree. The fact that if

(n)
X,

2

n

converges, then

(n)
5,

2n+1

converges follows from standard results on summing series.

1f we let z (™) = xi“) - x'm M , then M_ is the total

magnetization at the top of the tree. In this case if r is the

second largest eigenvalue for M, then if r2 < 2, limit
theorems of Kesten and Stigum (1966) imply that
Mn - E(Mn)
=
2R 2
converges in distribution to a normal law. For r2 = 2, we

instead will have convergence of
Mn - E(Mn)
——7
(2n)n 2

to a normal law. In the case r2 > 2,

Mn - E(Mn)
n
r

converges to a limiting random variable which depends wupon the

starting state and the transition matrix P. The phenomenon
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observed here 1leads to the existence of a critical temperature
Tc at which the central limit theorem breaks down (noting that
the relationship between r and T is monotone). Computer
calculations suggest that for T < Tc, Mn has 1limiting
distribution which is bimodal.

If we analyze this Markov chain as we did when considering
the Ising model we are led to a critical temperature TC below
which it is possible to have two different measures P+ and P_,

with the same local characteristics. It is interesting to note

that these two critical temperatures are not the same ( Tc is
slightly higher than Tc). The measure corresponding to the
middle Markov chain is quite different from the other measures,
for example, the case r2 > 2 described above will only occur in
dealing with this measure. MUller-Hartmann and Zittartz (1974)
have in fact shown that for this measure there 1is a sequence of
temperatures T =T, <T; <T,< ... at which qualitative
changes take place. See Moore and Snell (1979) for a more
detailed treatment of this subject.

For the repulsive case b < 0, the equation x = f(x)} has
only one fixed point. This means that any homogeneous boundary

conditions will lead to the same Markov measure. Spitzer (1975)

showed that if this Markov measure is determined by

S 1-s

then providing that s + t > 3/2, there will be non-homogeneous
measures with the same local characteristics determined by a pair
of 2-state Markov chain matrices P and P with the property

that

(4) w_P =

£

bea
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for any a, b. Call the points on levels 0,2,4,... even points
and those on the levels 1,3,5,... odd points. The measure is
then assigned as before but using P for transitions from even to
odd points and P for transitions from odd +to even points.
Condition (4) 1is necessary to insure that the measure does not

depend upon the starting point.
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6. ADDITIONAL APPLICATIONS

It has been mentioned previously that we believe that Markov
random fields should enjoy a wide range of applicability. We
will now conclude by giving a few examples of various ways in
which these processes have already been applied. One important
point to keep in mind ‘throughout the following discussion is the
equivalence of Markov and Gibbs measures. Thus if we wish our
measure on a lattice or graph to have the Markov property, we are
required to choose a Gibbs type measure. The models we shall
consider may be assumed to be on an arbitrary graph unless
otherwise stated.

We will first consider an application to economics due to
Hans F&llmer (1973). The problem he considers is one introduced
by W. Hildenbrand (1971) in which the stabilization of an economy
composed of independent agents 1is examined. The independence of
the agents leads to the existence of a law of large numbers, thus
making stabilization possible. F8llmer allows interaction
between the agents thereby leading to a more natural situation.
We shall now describe his model.

He considers a countably infinite set A of economic agents
(as in physical examples the number of agents considered is often
quite large and so we consider the infinite case to approximate
such situations), each being in a state s specified by his
preferences and resources. He then allows interaction between
the different agents in the following manner.

First, the environment e of the economic agent a is a
configuration on A-{a} which specifies the states of the other
agents. The collection of local (microeconomic) characteristics

of the form ra(s|e) can then be given as the conditional
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probability that a is in the state s given the environment
e. Then any probability measure ©Q which possesses the local
characteristics given by r 1is called a global phase of the
economy.

A price is next defined as a vector p = (pl,...,pk). Then,
based on some maximization scheme using the agent's preferences,

a well-defined individual excess demand d{(w(a),p) 1is determined.

The individual's excess demand is to be thought of as the
difference between his demand and what he already has. The price
p 1is said to stabilize the global phase £ of the economy E
if
(1) 1lim 1}1\_F r d(w(a),p) =0
n aEAn
whenever An is an increasing sequence of finite subsets of A
which exhausts A. Equation (1) is interpreted as having the per
capita excess demand going to 0. The questions then considered
are
(a) Whether a given phase of the economy can
be stabilized.
(b) Whether stabilization can be based on the
microeconomic data, i.e., local characteristics
and states of agents, irrespective of the
phase which may prevail.

In order to consider these questions the Markov assumption,

e) =r_(.]e") whenever e and e' agree on

that is, «r_(.
a

a

N(a), 1is introduced.
What is needed here is an ergodic theorem stating that every
pure phase on a general graph is ergodic, i.e., partial sums of

the averages defined by (1) converge as n goes to infinity.

F8llmer observes that in the case of the k-dimensional lattice
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this is 1indeed the case, and thus any pure phase can be
stabilized. The problem then is reduced to one of when there is
a phase transition, which we know does not occur for k=1 or
for values of the interaction parameter less than bc' F&llmer
shows that for the 1Ising model, if there are two pure phases
there is no price which makes (1) true. Since this is true even
for the Ising model, we would also expect that it is not always
possible to stabilize the economy in more general models.

Various types of applications of Markov fields are to be
found in sociology, where they are used to describe polarization
phenomena in society, as in Weidlich (1971). The simplest setup
here is that people can take one of two basic stands on an issue,
thus we could think of them as having one of two "spins", as we
have remarked before, where there are parameters Jij
representing the effect of interaction on the people and there is
an external field parameter h (e.g., degree to which one

attitude is preferred by all individuals). In the most general

formulation, the energy of a configuration would be given by

Ulw) = - T Jij oi(w)oj(w) -hz ai(w)
i,J i
which would allow interactions of wvarious strengths between
different people. More generalized potentials such as these are
discussed by Dobrushin (1970). However, it 1is frequently
reasonable to make the assumption that Jij =J for all i,j in
which case the probability of a configuration would be given by
T U
P{w) = 2 e '
where U would now be defined as in Section 1. The system is

allowed to change by a dynamic method as discussed in Section 4.

The parameter T 1is a "climate parameter" describing whether the
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society 1is of a more liberal or +totalitarian nature. A
totalitarian system would correspond to temperature that is below
the critical wvalue and thus would admit phase transition,
producing the phenomenon that one attitude by chance happens to
take hold and then takes over the whole society with only a few
individuals left to oppose it. Similarly the 1liberal system in
which thinking is much more independent, i.e., less "long range
order", would correspond to high temperature, and the critical
temperature, a point in between the two, would produce a highly
polarized society with large clusters of people with opposing
attitudes.

Various generalizations could be introduced into the system,
for instance: a graph rather than 1lattice type structure,
individual field parameters (prejudices) hi’ more than two
possible attitudes on a subject, or a tradition effect taking
into account past states as well. Results on such models could
then be obtained by computer simulation. Note that the last
generalization need no longer be Markovian.

Along similar lines, we shall next describe a few models of
voting behavior. Here the parameters have analagous
interpretations to those of the preceding discussion. The
following three models have been proposed:

(a) Martin and May (1970). Each voter is initially assumed

or "no", 1i.e., no

to have probability 1/2 of voting yes

external field. Then the relative probability that a voter votes

"yes" is increased multiplicatively by the factor eD/2 for each
neighbor who votes "yes" and decreased by the factor e-D/2 for
each neighbor who votes "no".

(b) Smukler (1971). A dynamic model. Assume that we are

given an interaction at time +t. At time t+1 we choose a voter
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at random. This voter will then be of the same opinion that the
majority of his neighbors (including the voter himself) had at
time t with probability 1 - x, where O < x < 1 is given. Note
that as 1long as we adhere to the lattice interpretation there
always is a majority.

(c) Xindermann (1973). A model in which at time t+1 each
voter says "yes" with probability

a
m

ma+mb

where m is a constant and a 1is the number of his neighbors

which said '"yes" at time t and b is the number which said

no

A modification of (a) has also been examined (Martin and
May) in which all neighbors are allowed to affect a given voter's
probability of voting "yes" but this turns out not to be a Markov
field. The one-dimensional periodic boundary case has been
examined for each of the above models with the following results:
model (a) determines a nearest neighbor Gibbs measure and thus is
a Markov field, model (b) is a case of a "birth and death"
process and so is a time-reversible Markov process with limiting
distribution of the number of "yes" votes being essentially
binomial as x — % and essentially "all or none" as x —> 0,
and model (c) is an example of a synchronous process, i.e., a
process in which each voter makes his choice independent of what
choices the others are making at that time. Most studies of
these processes have been restricted by assuming that the
decision for a site to change depends only on the values at its

neighbors and that we want a reversible process. In this case

Dawson (1974) has proven that the limiting measure, while it need
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not be a Markov random field, will have the property that its
local characteristics depend on sites at most two steps away.

That is, for the limiting measure

Plow, = r|wb, b e T-a)

(20,

= P(w =r|wb, b e a

a

(2)

where N is the éet of all points which can be reached from
a by following one or two edges in the graph. Such a measure is
called a 2-Markov field. Therefore +the invariant measure for
example (c¢) 1is a 2-Markov field. It is interesting to note that
in model (c) the 2-Gibbs potential depends only on bonds between
neighbors separated by one and not upon nearest neighbors.
Another sociological application of Markov random fields
comes out of work done by Holland and Leinhardt (1977) and
further developed by Wasserman (1977). They use probability
measures and stochastic processes to study social networks,
considering a directed graph G, where the vertices (a,b,...)
represent individuals. The directed edges between the vertices
specify relationships between the individuals, for instance, a—>b

may mean "a influences b",

a admires b", "a knows b", etc.

An example of such a graph is shown in Figure 1.

h — » ¢

FIGURE 1

Each such graph corresponds to an adjacency matrix which, for our

example, is
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a b c

a 0 1 1

X = b 1 0 1
c 1 0 0

The problem of finding an appropriate probability measure for the
set X of all possible graphs or adjacency matrices x is then

considered. The probability measure

v.n (x)+2vana+(x)+2van (x)

1'm +a
py (x) = (1/cle
is proposed, where nm(x) is the number of mutual edges, na+(x)
is the number of edges coming out of point a, n+a(x) is the
number of edges coming into a, ¢ 1is a normalizing constant,

and VirVar and Va are parameters. This measure can be shown to
specify a Markov random field (see Kindermann and Snell (1979)).
Dynamic models in which the networks change in time have also
been considered and can be analyzed using the voter model of
Section 4.

People, however, are not the only creatures +to which
theories of this type can be applied. Callen and Shapero (1974)
apply the Ising model to fish aligned in schools as they swimn.
Here the states can be two directions, e.g., north and south, in
which the fish can swim, In this model the "temperature"
parameter would affect the amount of order or disorder in the
system, disorder corresponding to high temperature. Near the
critical value response to a change in the "field" (for example,
water turbulence} would be the greatest. It is amazing to note
that if one actually watches fish swimming in schools, the whole

school tends to change direction with amazing rapidity. Similar
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phenomena have also been observed in the synchrony of fireflies
as they flash on and off in swarms.

We have already, in Section 4, mentioned a number of cell
growth models and a neuron firing model. Another biological
model deals with diffusion across membranes. This model deals
with the transport of neutral molecules between two Dbaths
separated by a symmetrical membrane. The membrane consists of
units which may be in one of two states, one in which the unit is
susceptible to reaction with the molecules, and the other 1in
which it is not. There are also cooperative effects which arise
from interactions between the units which introduce a dependence
on the conformation of these units. Thus we see another case in
which the idea of random fields can be used. Hill and Chen
(1970) discuss some of the dynamic aspects of this model. Other
references may also be found in this article.

We shall conclude our discussion of applications with two
other models. The first, of which we have previously discussed a

special case, is known as a contact process and might serve as a

model for an epidemic. Here a site is either "infected" or
"susceptible". If it is susceptible at time t, then it has
probability ckdt + 0(dt) of being infected at time t + 4t if
k of its nearest neighbors were infected at time t, where the
ck's are constants. If a site is infected at time t, it has
probability ddt + 0(dt) of being removed and replaced by a new
susceptible element by time t + dt, where d 1is a constant. A
reasonable application for such a model would be the spreading of
insect pests or disease in a tree orchard, and the equilibrium
measure would represent a distribution on what the final state of

the orchard will be after the disease has had sufficient time to

progress. A detailed study of processes of this kind has been
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made by Harris (1974).

The second model is due to Holley and Liggett (1975) and is

a bit more complicated. It is referred to as a proximity
process. Here the set of sites I is countably infinite or

finite and each site may take on the values O or 1. To each

site 1 1is assigned a collection of sets {Ni k}’ k > 0, where
, Z

Ni 0= @, and a probability distribution fi(k), k > O on the
, Z

nonnegative integers. Then the probability P; of a 1 at

time t+1 at site i is given by

where the set D includes O as well as all integers k such

that at time t the set N contained at least one element

ik
which was a 1. The interpretation of such a model would be that
the site considers various subsets of its environment and for
each of these subsets which contains a 1, a certain quantity,
fi(k), is added to its probability of being a 1 at time t+1.
At time t+1 all sites then change to their new states, each
making the choices independently of others, thus creating a
synchronous process. Such a model might again depict a type of
contagion process in which a member is more likely to catch the
disease from certain members than from others.

Of course in order to use any of these models one would have
to do some experimentation with the parameters to see which
parameter values best describe reality. Often this may be rather
difficult, depending on how easy 1t is to separate various
features of the system. For instance, in the sociological
context, it might be rather hard to separate the influences of
government from interactive influences. 0f course, the

observation of general characteristics of the system will be a
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great aid in limiting the range of parameters that needs to be
considered. Once a workable model has been obtained, then the
results of Sections 1~5 can be applied, or where they are not
applicable, computer simulation (see Sections 3 and 4) can be

employed to examine interesting properties of the system.
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APPENDIX 1

In this appendix we shall discuss certain basic inequalities
and show how they apply to prove that in the Ising model the
measures P and P_ are well defined and stationary.

We are going to use a dynamic model similar to the one
introduced in Section 3. We shall, however, consider a slightly
more general situation. We shall assume that we have a finite
graph and configurations on the graph consist of the assignment
of one of the outcomes 0,1,...,n to each of the points. We also
assume that on the space © of all possible configurations we have
a Markov random field P (w).

As in Section 3 we shall form a Markov chain in which the
state space is Q. We shall allow a transition from w to @ only
if w = w or if they differ at only one site t and at this site
lo, - @

t tI

w = (i e) to represent the configuration with state i at the

= 1. When we pick a particular site we shall use

site chosen and configuration e at the other sites. We can then
write the transition probabilities as R(i e,i+l e),R{i e,i-~1 e),
or R(i e,i e) corresponding to the possible changes or no change

at all. Recall that we must define R in such a way that
(1) P(w)R(w,w) = P(w)R(w,w)

whenever transition from w to w is possible.
There are many ways to achieve this. One method is the

following: Define

R{(i e,i+l e) = ¢ for i =0,1,2,...,n-1.
. . _ P(i-1 e) s
R{i e,i-1l e) = ¢ (I e) for i =1,2,...,n.

If neither transition takes place the state remains the
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same. The constant c is chosen to make the sum of the
transition probabilities from a given state less than or equal to
1. The resulting Markov chain is ergodic and condition (1) is

satisfied since

P(i e)R(i e,i+l e) = c P(i e)

P(i e)
P(i+l e) °

P(i+l e)R(i+l e,i e) = P(i+l e) c
We now use the Markov chain determined above to prove
certain inequalities basic to the study of random fields. To do

this, we shall need to form a new type of Markov chain called a

coupled chain. We start with a space Q@ = {w} of configurations

on a graph. We say that w > « if w, > ;t for all t. We form a
new state space U consisting of the set of all pairs (w,w) where
w and w are in © and w > «. The elements of U will be the state
space for the coupled chain. We are going to allow transitions
between states only when they have a site at which w and w have
values which differ by at most one. We allow a transition by
changing such a site according to the following transition

probabilities where P, and P, are any two random fields:

1 2

R((i e,i e),(i+l e,i+l €)) = ¢
B B P,(i-1 @) P, (i-1 e)
R((i e,i e),(i e,i-1 &)) =¢c X——— - ¢c —
P2(i e) Pl(i e)
_ _ P (i-1 e)
R((i e,i e),(i-1 e,i-1 e)) = ¢c ————
Pl(i e)
R((i e,i-1 e),(i e, i &) = c
_ _ P, (i-1 e)
R((i e,i-1 e),(i~]1 e,i-l1 e)) = ¢ ———m—
Pl(i e)

Note that we again put the site which is changed first. Note
also that the environment of these sites may differ but we

will have e > e since w > @.
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THEOREM (Holley (1974)). Let Pl(w) and Pz(w) be two
random fields defined on Q2. Assume that
P, (i e) P,(i e)
(2) _l;____ > _3____i_
Py (i-1 e) P2(1—l e)
whenever e > e. Then there is a measure P defined on the space

U of all pairs (w,w) with w > @ such that

Py(w) = Z Plw,)
w

P,(w) = ZP(w,w) .
w

Proof.

To prove the theorem, we form the above coupled Markov
chain. Then this chain is an ergodic Markov chain and there is a
measure P(w,w) such that P(w,w) represents the average time in
the limit spent in the state (w,w). Now watch the chain only
when the first component changes. Then a transition from
w = (1 e) to (i+l e) can only occur when the original chain goes
from a state of the form (i e, i e) to (i+l e,i+l e). This has
probability ¢ independent of e. A transition from w = (i e)
to (i-1 e) can occur in one of two ways. The original process

could be in a state (i e, i e) and move to (i-~1 e,i-1 e) with

Pl(i—l e) _
probability ¢ z—=———— or it could be in a state (i e,i-1 e)
Pl(l e)
and move to (i-1 e,i-1 e) with the same probability. Thus

watching only the first component we have a Markov chain with

transition probabilities

]
Q

R(i e,i+l e)

Pl(i—l e)

1]
Q

R(i e,i-1 e)
Pl(i e)
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As we have seen above, this process has Pl(w) as a limiting
measure. Since Pl(w) represents the proportion of time the first

component is in state w, P;(w) = I P(w,0).
w

A similar argument shows that the original process watched
only when the second component changes is a Markov chain with
P,(w) as stationary measure. Hence P,(w) = Z P{w,w).

We now state two important corollarieswof this theorem, If
f is a function defined on a space Q = {w} of configurations, we

say that f 1is increasing if f(w) > f(w) whenever w > w.

Corollary 1. Let Pl(w) and Pz(w) be random fields satisfying

(2). Let f be an increasing function defined on Q. Then
El(f) > Ez(f).

Proof: Let R be constructed as in the theorem. Then
El(f) =3 f(w)Pl(w)

w

2  f{w)R(w,w)

€
v
€1

2 f(w)R(w,w)

Y%
€

v
€l

= 32 f(w)P, (@)
o 2
= E,(f).

The following corollary is usually called the FKG
inequalities and is due to Fortuin, Kasteleyn, and Ginibre

(1971).
Corollary 2. Let P be a random field such that

P(i e) 5 PG e)
P(i-1 e) ~ P(i-1 e)
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when e > e for i= 1,2,...,n. Then if f and g are two
increasing functions on Q,

E(fg) > E(f) E(qg).

Proof: Let

- 9(w)P(w)
Pl(w) = W .
Then if e > e
P el g e)p(i e , Plie . P &)
P, (i-1 e) g(i~1 e)P(i-1 e) =~ P(i-l1 e) ~ P(i-1 e)

Thus by the Corollary 1 applied to Pl and P

g L)g@IPlw) 5 5e(4)p(w)
w E(q) w

or
E(fg) > E(f) E(9).

We shall now show how our inequalities can be used to prove

a basic result in the theory of the Ising model. This result is

the following: 1In the case of an attractive potential with

positive boundary, Pin) converges +to a limiting measure P
(n)

Recall that P+ is the measure obtained from an nx n

+°

lattice with positive boundary.

Before proving this we shall prove a lemma which follows
easily from the inequalities proven above.

Lemma 1. Let L be an n x n lattice. Let P and Q be
two Gibbs measures assigned to L with the same local
characteristics and an attractive potential. P is determined by

fixing a subset R of the boundary to have value 1 and Q is
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determined by fixing a subset S to have value 1, with R ¢ S.

Then for any subset A of L
P(wa= l, aen) < Q(wa= 1, a € A).

Proof: We note first that P and Q satisfy the conditions of
Corollary 2.

In fact, if s 1is a site with k interior neighbors 1 and
kX boundary neighbors 1,

p(l,e) _ VotViktVik

P(0,e) € ‘

Using the measure Q this ratio will be the same or greater. It
will be greater only if there is a boundary point of s in S
but not in R thus increasing the value of k. Recall that

v, > 0. Let f be a set function defined on subsets of sites of

1
L. as follows:

f(c) =1 if A e C

O otherwise.
Then f 1is an increasing function and hence by Corollary 1
EP(f) < EQ(f).

But

EP(f) P(wa= 1, a € A)

EQ(f) Q(wa= 1, a € A)

and thus the lemma is proven.

We now formulate our basic result. We have a sequence of
n xXxn lattices centered at 0= (0,0). Let P(n) be the
sequence of measures determined by putting all 1's on the

boundary (positive boundary) and all having the same local
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characteristics determined by Vor Vis and with vy > 0.

Let A be a finite subset of lattice points. Then, for
sufficiently large N, A will be a subset of Ln (n x n
lattice) for n > N. For each P ™) the probabilities P(n)(wA)
are defined, where wp is a subconfiguration on A. Then we
want to show that P(n)(wA) tends to a limit P+(wA). Specifying

the outcomes on a finite subset A describes a cylinder set in

the set of all infinite configurations, namely, all infinite w

which agree with Wp -+ Then if the probabilities of +the form
P+(wA) are consistent, they uniquely determine a probability
measure P on the infinite lattice. The consistency will

+

P(n)

follow from the fact that the are consistent. Our main

job is to prove that P(n)(wA) converges.
We note first that it is sufficient to prove this result for

certain special namely those which assign a 1 to each

wA,
point of A. We denote these subconfigurations by lA' To see

this consider the following two set functions f and g defined

on subsets of lattice sites of Ln:

£a) = 2w, = 1,0, =0 )
n n
g =p™ ) .
Then
g(a) = z £(B)
AcB

Thus by the Moebius inversion formula

£@a) = 3z (-1) B2l

AcB

g(B).

Thus the values of f(A) are determined by knowing g. But
f(A) is simply the probability of a specific configuration where

we specify that the 1's are on A and other sites are O.
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Thus if we can prove that P(n)(lA) tends to a limit for all

finite A we will have shown that P(n)(wA) tends to a limit for

finite A.
We shall prove in fact that P(n)(lA) is monotone
decreasing for fixed A as n tends to infinity. This will

follow from the next lemma.

Lemma 2. Let L and M be two lattices which contain A
and such that L is a sublattice of M. Let Q and P be the
respective Gibbs measures with the same local characteristics

obtained by assigning positive boundary values. Then

P(1,) < Q(1,)

Proof: P(lA) =z P(lA, wM-L)
“M-L
=3 P(1A|wM_L)P(wM_L)
“M-L
=3 P(lAle)P(wM_L)
“M-1,
where B is the boundary of L. But Q 1is the measure

determined on L Dby putting 1 at each boundary point. Thus
P(lAle) < Q(lA)’
and so

P(1) <2 QU1 )P(wy ;)
“M-L,
= Q(1,)

as was to be proved.

Thus for any finite set A, P(n)(lA) is monotone decreasing
in n and tends to a limit P+(lA)' As remarked earlier this
proves more dJenerally that P(n)(wA) tends to a limit P+(wA).

These limiting values represent the measure of cylinder sets for
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the measure P,. Had we put O's on the boundaries we would

have obtained the result that P(n)

(lA) is monotone increasing
to a limit P_(1,). This determines the measure P_. The proof

also shows that P_ < P A phase transition occurs if P_ # P+.

+*
It is clear from these constructions that both P_ and P, have
the same local characteristics.,

Next we shall prove that the limiting measure P obtained
from lattices with positive boundaries is a stationary measure.
For this, we need to prove that for any finite set A and lattice
point t = (tl’tz) then P(A) = P(t+A) where t +A are the
lattice points obtained by adding t to points of A.

To prove this result we shall construct lattices alternately

centered at O and t each containing the previous lattice (see

Figure 1).
+ o+ o+ 4 + o+ o+ 4+
+
+ + + o+ 4
+ + +
A+t +
+ + o+ o+ o+ 4
+
+ +|+ + ! I
0. + |+
+ +|+ +
+ +|+ Li |+ L, [t
+
. N +
+ |+
+
Y T+ + + + 7+ .
+
. +
L, .
+

+ + + + + 4+ + + + o+ o+ 4+

+

FIGURE 1

Here Ll is an n, xn, lattice centered at O which
contains A, L2 is an n, X n, lattice centered at t large
enough to include Ly and A+ t, and finally Ly is an

ny X n, lattice centered at O containing L2. Let Pl' P2 and



132 MARKOV RANDOM FIELDS APPENDIX 1

P3 be the Gibbs measures determined on Ll’ L2, L3 with

positive boundaries. Then by Lemma 2
Pl(lA) > P2(1

a+t) 2 P3(1p)-

Forming a sequence of triples in this way and passing to the

limit, we see that

P(1,) > P(l,,.) > P(1,).

A+t

Hence P(lA) = P(1 ) as was to be proven.

A+t
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