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Preface

This text has evolved from lecture notes for a one-semester course which I have
taught 5 times in the last 8 years as an introduction to the ideas of algebraic
geometry using the theory of algebraic curves as a foundation.

There are two broad aims for the book: to keep the prerequisites to a bare
minimum while still treating the major theorems seriously; and to begin to con-
vey to the reader some of the language of modern algebraic geometry.

In order to present the material of Algebraic Curves to an initially relatively
unsophisticated audience I have taken the approach that Algebraic Curves are
best encountered for the first time over the complex numbers. Therefore the
book starts out as a primer on Riemann surfaces, with complex charts and mero-
morphic functions taking center stage. In particular, one semester of graduate
complex analysis should be sufficient preparation, and it is not assumed that the
reader has any serious background in either algebraic topology or commutative
algebra. But I try to stress that the main examples (from the point of view
of algebraic geometry) come from projective curves, and slowly but surely the
text evolves to the algebraic category, culminating in an algebraic proof of the
Riemann-Roch theorem. After returning to the analytic side of things for Abel’s
theorem, the progression is repeated again when sheaves and cohomology are
discussed: first the analytic, then the algebraic category.

The proof of Riemann-Roch presented here is an adaptation of the adelic
proof, expressed completely in terms of solving a Mittag-Lefller problem. This
is a very concrete approach, and in particular no cohomology or sheaf theory is
used. However, cohomology groups clandestinely appear (as obstruction spaces
to solving Mittag-Leffler problems), motivating their explicit introduction later
on.

The other goal is to begin to convey, as much as possible, the language of
modern algebraic geometry to the student. This language is that of rational
functions, divisors, bundles, sheaves, cohomology, and the Zariski topology, to
name some of the highlights presented here. I hope that a student who has
read the later chapters of this book will be prepared to understand at least the
first few minutes of a modern colloquium talk discussing algebraic curves and

Xix



xx PREFACE

algebraic geometry. I consider the treatment of sheaves and cohomology given
here to be rather gentle; for example, most of the sheaves which are used as
the initial examples were introduced in a natural way much earlier in the text.
Hence by the time a sheaf is even defined the reader will actually have a decent
understanding of what the technicalities entail. In addition, the zero-th and first
cohomology groups will already have been seen in the proof of the Riemann-Roch
theorem (without them being called that of course).

The first three chapters are introductory, discussing the basic definitions of
Riemann surfaces and holomorphic maps between them. Of the 12 sections in
these chapters, 5 are devoted entirely to examples of one sort or another. The
main theorems here are that the sum of the orders of a meromorphic function on
a compact Riemann surface is zero, and Hurwitz’s Formula relating the genera
of compact Riemann surfaces given a map between them. The fourth chapter
on integration is meant to get to the Residue Theorem in a direct manner.

Chapters 5-8 form the technical heart of the text. Divisors and how they are
used to organize forms, functions, and maps are introduced in Chapter 5, and
in Chapter 6 the Riemann-Roch Theorem and Serre Duality are proved, after
introducing the concept of an algebraic curve, which is defined here as a compact
Riemann surface whose field of global meromorphic functions separates points
and tangents. Chapter 7 is devoted to applications of Riemann-Roch. Here is
found the classification of curves of low genus, Clifford’s Theorem, the analysis
of the canonical map, and Riemann’s count of 3g — 3 parameters for curves of
genus at least two. A section on the degree of a projective curve culminates in
Castelnuovo’s bound on the genus. It is here most of all that the reader will
feel an urge to learn more algebraic geometry, and in particular some higher-
dimensional theory. The final section concerns inflection points of linear systems
and Weierstrass points in particular. In Chapter 8 Abel’s Theorem is proved;
along the way the algebraic proof of the Residue Theorem is indicated. The final
section discusses the group law on a smooth cubic curve.

The last three chapters introduce sheaves and Cech cohomology. Initially the
classical topology is used, focusing in on the standard sheaves of holomorphic
and meromorphic functions and forms. The Zariski topology and the algebraic
sheaves are brought into the picture next, and the obstruction space for solving
a Mittag-Leffler problem (seen in the proof of the Riemann-Roch Theorem) is
here realized as an H! of an algebraic sheaf.

The last chapter is organized around the Picard group of an algebraic curve
and its many manifestations: as the group of divisors modulo linear equivalence,
as the group of line bundles modulo isomorphism, as the group of invertiblé
sheaves modulo isomorphism, as the first cohomology group with values in the
nowhere zero regular functions, and as the Jacobian (extended by Z). Here there
is an opportunity to explain why H! is useful to classify locally trivial objects in
general, and the text closes with first-order deformations, with Riemann’s count
of 3g — 3 parameters enjoying a reprise.



PREFACE xxi

At the end of each chapter I have included some suggestions for further read-
ing. These are not meant to be completely comprehensive, but simply indicate
some of the sources that I am aware of which I have found illuminating.

I would like to thank Bruce Crauder, David Hahn, Luisa Paoluzzi, John
Symms, and Caryn Werner for commenting on various sections; also I am greatly
indebted to Ciro Ciliberto and Peter Stiller who each read through substantial
portions of the text and offered many valuable suggestions.

It has been my great privilege to have been given the opportunity to study
algebraic geometry in my professional life. There is no doubt that the theory of
algebraic curves is the richest and deepest of the field’s various roots, and I hope
I have conveyed some of the special pleasure obtained in visiting this material,
which serves simultaneously as one of the great jewels of classical mathematics
and one of the most vital areas of modern research.

Rick Miranda
October 199/
Fort Collins, Colorado



Chapter 1. Riemann Surfaces: Basic Definitions

1. Complex Charts and Complex Structures

The basic idea of a Riemann surface is that it is a space which, locally, looks
just like an open set in the complex plane. In this section we make this precise.

Complex Charts. Let X be a topological space. In order to make X look,
locally, like an open set in the complex plane, we want to have a local complex
coordinate at every point of the space; this local coordinate can then be used to
define all the local notions of functions of one complex variable. Now a coordinate
on a space is simply a function from the space to the standard space, in this case
the complex plane. This leads to the following definition.

DEFINITION 1.1. A complex chart, or simply chart, on X is a homeomorphism
¢:U -V, where U C X is an open set in X, and V C C is an open set in
the complex plane. The open subset U is called the domain of the chart ¢. The
chart ¢ is said to be centered at p € U if ¢(p) = 0.

We think of a chart on X as giving a local (complex) coordinate on its domain,
namely z = ¢(z) for z € U.

EXAMPLE 1.2. Let X = R?, and let U be any open subset. Define ¢y (z,y) =
z + iy from U (considered as a subset of R?) to the complex plane. This is a
complex chart on R2.
ExAMPLE 1.3. Again let X = R2. For any open subset U, define
Y

z
oulz,y) = +1 .
(=) 1+vz2+y? 14+ /22+92

These are also complex charts on R2.

EXAMPLE 1.4. Let ¢ : U — V be a complex chart on X. Suppose that
Uy C U is an open subset of U. Then ¢|y, : Uy — ¢(Uh) is a complex chart on
X. This restriction of ¢ is called a sub-chart of ¢.
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EXAMPLE 1.5. Let ¢ : U — V be a complex chart on X. Suppose that
¥ : V — W is a holomorphic bijection between two open sets of the complex
plane. Then the composition ¥ 0 ¢ : U — W is a complex chart on X. If we
think of ¢ as giving a complex coordinate on U, we can view this operation as a
change of coordinates.

We do not want to think of a simple change of coordinates as imposing an
essentially different structure on the open set in question. In other words, with
the above notation, the two charts ¢ and ) o ¢ should not produce different
answers when we gef around to asking questions about local functions and forms
on the domain. A careful analysis of the “difference” between these two charts
leads us to the following definition.

DgFINITION 1.6. Let ¢ : Uy — Vi and ¢ : Uz — V5 be two complex charts
on X. We say that ¢, and ¢, are compatible if either Uy N U, = §, or

$20 91" 1 1 (U1 NU) — ¢o(Ur NU2)
is holomorphic.

Note that the definition is symmetric: if ¢20¢] " is holomorphic on ¢, (U1NU3),
then ¢; o ¢2”1 will be holomorhic on ¢2(U; NU;). The function T = ¢, o ¢1‘1
is called the transition function between the two charts; it is a bijection in any
case. Transition functions enjoy the following property.

LEMMA 1.7. Let T be a transition function between two compatible charts.
Then the derivative T' is never zero on the domain of T

ProoOF. Let S denote the inverse to T, so that S o T' is the identity on the
domain of T, i.e., S(T(w)) = w for all w. Taking the derivative of this equation
gives §'(T(w))T'(w) = 1, so that T'(w) cannot be zero. [J

Suppose that T is the transition function between the charts ¢ and 1, with
a point p in their common domain. Denote by 2 = ¢(z) and w = ¥(z) the two
local coordinates, with z, = ¢(p) and wy = ¥ (p). The above lemma implies
that the power series expansion of the transition function T' = ¢ o ¢~! (which
eXPresses z as a power series in w) must be of the form

2z =T(w) =z + Zan(w —wp)”,
n>1
with ai 75 0.
ExaMPLE 1.8. Referring to the situation of Example 1.5, let ¢ : U — V be
a complex chart on X, and let ¥ : V — W be a holomorphic bijection between

two open sets of the complex plane. Then the charts ¢ and 1’0 ¢ are compatible.
Moreover, 1 o ¢ will be compatible with any chart which is compatible with ¢.

EXAMPLE 1.9. Any two sub-charts of a complex chart are compatible.
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ExaMPLE 1.10. Any two charts in Example 1.2 are compatible.
EXAMPLE 1.11. Any two charts in Example 1.3 are compatible.

EXAMPLE 1.12. No chart of Example 1.2 is compatible with any chart of
Example 1.3 (unless the domains are disjoint).

A more serious example is given by the following,.
EXAMPLE 1.13. Let S? denote the unit 2-sphere inside R?, i.e.,
5? = {(z,y,w) eR® | 2% +y* + w? = 1}.

Consider the w = 0 plane as a copy of the complex plane C, with (z,y,0) being
identified with z = = +14y. Let ¢; : % — {(0,0,1)} — C be defined by projection
from (0,0, 1). Specifically,

Y

+i—.

¢1($,y,w)=m - w

The inverse to ¢; is

2Re(z) 2Im(z) |2]* -1

o7 (2) = .
) (|z|2+1’|z|2+17|z|2+1

Define ¢ : §2 — {(0,0,—1)} — C by projection from (0,0, 1) followed by a
complex conjugation:

r o _,_Y
1+w 1+w

¢2 (.’L‘, Y, ’lU) =
The inverse to ¢; is

2Re(z) —2Im(z) 1- |z|?
2P +1 2 +1 7 |2 +1

¢7'(2) = ( ).

The common domain is $% — {(0,0,%1)}, and is mapped by both ¢; and ¢,
bijectively onto C* = C — {0}. The composition ¢, o ¢7'(z) = 1/2, which is
holomorphic. Thus the two charts are compatible.

Complex Atlases. Note that in Example 1.13, every point of the sphere lies
in at least one of the two complex charts. Therefore we have a local complex
coordinate at each point of the sphere. This, of course, is our ultimate goal.

For X to look locally like the complex plane everywhere, we must have com-
plex charts around every point of X. Moreover, we want these charts to be
compatible. This is the notion of a complez atlas.

DEFINITION 1.14. A complex atlas (or simply atlas) A on X is a collection

A = {¢o : Uy — V,} of pairwise compatible complex charts whose domains
cover X, ie, X =, Ua.
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Note that the charts defined in Example 1.2 form a complex atlas on R?, as
do the charts in Example 1.3. Also, the two charts defined on the 2-sphere in
Example 1.13 define a complex atlas on S2.

ExAMPLE 1.15. If A = {¢, : Uy, — V,} is an atlas on X, and Y C X is
any open subset, then the collection of sub-charts Ay = {¢4|yrv, : Y NUs —
$a(Y NU,)} is an atlas on Y.

It may well be the case that two different atlases give the same local notions
of complex analysis on a Riemann surface; in particular, this will happen when
every chart of one atlas is compatible with every chart of the other atlas. This
notion gives an equivalence relation on atlases:

DEFINITION 1.16. Two complex atlases A and B are equivalent if every chart
of one is compatible with every chart of the other.

Note that two complex atlases are equivalent if and only if their union is also |
a complex atlas. An easy Zorn’s lemma argument will show that every complex
atlas is contained in a unique maximal complex atlas; moreover, two atlases are
equivalent if and only if they are contained in the same maximal complex atlas.

DEFINITION 1.17. A comples structure on X is a maximal complex atlas on
X, or, equivalently, an equivalence class of complex atlases on X.

Note that any atlas on X determines a unique complex structure. This is the
usual way that complex structures are defined: by giving an atlas.

The Definition of a Riemann Surface. Recall that a topological space
X is said to be Hausdorff if, for every two distinct points x, ¥ in X, there are
disjoint neighborhoods U and V of z and y, respectively. X is said to be second
countable if there is a countable basis for its topology.

DEFINITION 1.18. A Riemann surface is a second countable connected Haus-
dorff topological space X together with a complex structure.

The second countability condition is a technical one, meant to exclude certain
pathological examples; any Riemann surface found “in nature” (i.e., as a subset of
C™ for example) will be second countable. In particular, if the complex structure
may be defined by a countable atlas, then X must be second countable.

EXAMPLE 1.19. Let X be C itself, considered topologically as R?, with the
complex structure induced by the atlas of Example 1.2. This Riemann surface
is called the complex plane.

EXaMPLE 1.20. Let X be the 2-sphere, with complex structure given by the
two-chart atlas of Example 1.13. Note that the sphere is Hausdorff and con-
nected. This Riemann surface is called the Riemann Sphere. Note that if one
chart of the Riemann Sphere has as coordinate z, then the other chart has the
coordinate 1/z, and there is only one point which is not in the z-chart. The
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Riemann Sphere is often written as Cy, or C U oo, with the complex plane C
representing one chart, with the “point at infinity” oo being the single extra
point. The Riemann Sphere is a compact Riemann surface.

EXAMPLE 1.21. Any connected open subset of a Riemann surface is a Rie-
mann surface; use the atlas on the subset as described in Example 1.15.

Real 2-Manifolds. The reader who has seen some of the theory of manifolds
will recognize in every detail the definitions and constructions. In essence, a
Riemann surface is simply a connected complex manifold of dimension one (this
is one complez dimension, remember).

It is convenient to sometimes “forget” the complex structure of a Riemann
surface, and to consider it simply as a 2-manifold. Let us then briefly recall the
relevant definitions. Let X be a Hausdorff topological space.

DEFINITION 1.22. An n-dimensional real chart on X is a homeomorphism
¢:U — V, where U C X is an open set in X, and V C R™ is an open set in
R™. Two such real charts ¢; and ¢, are C®-compatible if either the intersection
of their domains is empty, or

p2 097! g1 (U1 NTU2) — ¢2(Uy NU:)

is a C*° diffeomorphism, i.e., it and its inverse have partial derivatives of all
orders at every point. A C* atlas on X is a collection of real charts on X, which
are pairwise C*°-compatible, and whose domains cover X. Two such atlases are
equivalent if their union is an atlas. A C* structure on X is an equivalence class
of C> atlases. A C* real manifold is a second countable connected Hausdorff
space X together with a C* structure.

Since holomorphic maps of a complex variable z = x + iy are C* in the
real variables z and y, we immediately see that every Riemann surface is a 2-
dimensional C* real manifold (which we often abbreviate and refer to simply as
a “2-manifold”).

Let us make a few remarks concerning the topology of Riemann surfaces.
Firstly, for manifolds, connectedness and path-connectedness are equivalent; thus
we have that every Riemann surface is path-connected.

Next, note that a holomorphic map between two subsets of the complex plane
preserves the orientation of the plane. Indeed, the familiar conformal property of
holomorphic functions implies that all local angles are preserved by holomorphic
maps, and in particular right angles are preserved; therefore the local notions of
“clockwise” and “counterclockwise” for small circles are preserved. Since giving
an orientation on a surface can be viewed as equivalent to having consistent local
choices for “clockwise”, holomorphic maps preserve the orientation of the plane.

Therefore, if we induce a local orientation at each point of a Riemann surface
by “pulling back” the orientation via some complex chart containing that point,
this local orientation is well defined, independent of the choice of complex chart.
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These local orientations induce a global orientation on the Riemann surface;
hence we have that every Riemann surface is orientable. The reader may consult
[Armstrong83], [Munkres84], or [Massey67| for further details concerning
orientation.

The Genus of a Compact Riemann Surface. These remarks are enough
to completely determine compact Riemann surfaces, as far as their C*° struc-
ture goes. For this we appeal to the classification of compact orientable 2-
manifolds; each of these is a g-holed torus for some unique integer g > 0. (See
[Armstrong83], [Massey67], or [Sieradski92] for example.) When g = 0,
we have no holes and the surface is topologically the 2-sphere. When g = 1,
there is one hole, and the surface is a simple torus, topologically homeomorphic
to 8! x §'. For g > 2, the surface is obtained by attaching ¢ “handles” to a
2-sphere. This integer g is called the topological genus of the compact Riemann
surface, and is a fundamental invariant. Thus:

ProPosITION 1.23. Ewvery Riemann surface is an orientable path-connected 2-
dimensional C*° real manifold. Every compact Riemann surface is diffeomorphic
to the g-holed torus, for some unique integer g > 0.

We have only seen one example so far of a compact Riemann surface, namely
the Riemann Sphere (Example 1.20). It has topological genus 0.

Complex Manifolds. As was seen above, the definition of a Riemann surface
and the definition of a C* real manifold are in all ways parallel. The reader
should also be aware that higher-dimensional analogues of Riemann surfaces
also exist, defined in exactly the same spirit. Here we just give the definitions,
since we will rarely need to work with complex manifolds of higher dimension.

DEFINITION 1.24. Let X be a Hausdorff topological space. An n-dimensional
complex chart on X is a homeomorphism ¢ : U — V| where U C X is an open
set in X, and V € C™ is an open set in C™. Two such n-dimensional complex
charts ¢; and ¢, are compatible if either the intersection of their domains is
empty, or

$a0 7 i 1 (Ur NU2) — (U NU)

is holomorphic, i.e., is holomorphic in each of the n variables separately at every
point. An n-dimensional complexr atlas on X is a collection of n-dimensional
complex charts on X, which are pairwise compatible, and whose domains cover
X. Two such atlases are equivalent if their union is an atlas. An n-dimensional
complex structure on X is an equivalence class of n-dimensional complex atlases.
An n-dimensional complex manifold is a connected Hausdorff space X together
with an n-dimensional complex structure.
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Problems 1.1

A. Let ¢; : U; — V;, 1= 1,2, be complex charts on X with U;NU; # @. Suppose
that ¢ 0 (;51_1 : 01(Ur NU,) — ¢2(Uy NU,) is holomorphic. Show that it is
bijective, with inverse ¢; o ¢; ' : ¢2(Us NU2) — ¢1(Ur N Us), proving that
¢10¢5" is also holomorphic.

B. Let ¢ : U — V be a complex chart on X, and let ¢ : V — W be a
holomorphic bijection between two open sets in C. Show that o : U - W
is a complex chart on X. Show that ) o ¢ is compatible with any chart on
X which is compatible with ¢.

C. Verify that any two sub-charts of a complex chart are compatible (Example

1.9 of the text).

Verify that any two charts in Example 1.2 are compatible.

. Verify that any two charts in Example 1.3 are compatible.

Check that no chart of Example 1.2 is compatible with any chart of Example

1.3 of the notes.

G. In Example 1.13, where an atlas of the Riemann Sphere is defined, check
that indeed ¢ o ¢7 ! sends z to 1/z as stated.

H. Show that equivalence of complex atlases is an equivalence relation.

I. Equivalent atlases may be partially ordered by inclusion. Show that any
atlas is equivalent to a unique maximal atlas.

J. Show that holomorphic bijections between open sets in the complex plane
preserve the local orientation.

MmUY

2. First Examples of Riemann Surfaces

In this section we’ll present some easy examples of Riemann surfaces, espe-
cially of compact Riemann surfaces. These include the projective line, complex
tori, and smooth plane curves.

A Remark on Defining Riemann Surfaces. To define a Riemann surface,
it would appear that one needs to start with a topological space X, second
countable, connected and Hausdorff, and then define a complex atlas on it; in
other words, one needs to have the topology first, and then one can impose the
complex structure. This is not completely accurate; one can often use the data
defining an atlas to also define the topology.

This observation is based on the following remark: if an open cover {U,} of
a topological space X is given, then a subset U C X is open in X if and only if
each intersection U N U, is open in Ul,.

More generally, if any collection {U,} of subsets of a set X is given, and
topologies are given for each subset U,, then one can define a topology on X by
declaring a set U to be open if and only if each intersection U N U, is open in
U,.

Now suppose we are given a collection of subsets {U, } of a set X, which cover
X (so that X =|JU,), and a set of bijections ¢4 : Uy — V, where each V, is
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an open subset of C. Each V,, has its topology as a subset of C, and so using
the ¢, we can transport this topology to every U,: we simply declare a subset
U of U, to be open if and only if ¢,(U) is open in V,, (or, equivalently, open in
C).
Now we can define a topology on all of X, again by declaring a set U to be
open in X if and only if each intersection U N U, is open in U,.

This prescription gives a topology on X such that each U, is an open set
if and only if for each o and (3, the subset U, N Uz is open in U,. From the
definition of the topology on the U, ’s, this condition is equivalent to asking that
$a(Us NUp) is open in V, (or, equivalently, open in C).

Thus we may take the following route to define a Riemann surface:

e Start with a set X.

¢ Find a countable collection of subsets {U,} of X, which cover X.

o For each «, find a bijection ¢, from U, to an open subset V, of the
complex plane.

¢ Check that for every a and 3, ¢o(U, NUp) is open in V,,. At this point
we have, by the above remarks, a topology defined on X, such that each
U, is open; moreover by definition, each ¢, is a complex chart on X.

e Check that the complex charts ¢, are pairwise compatible.

e Check that X is connected and Hausdorff.

The Projective Line. Let CP! denote the complex projective line, that is,
the set of 1-dimensional subspaces of C 2. If (z,w) is a nonzero vector in C?, its
span is a point in CP!; we will denote the span of (z,w) by [z : w]. Note that
every point of CP! can be written in this form, as [z : w], with z and w not
both zero; moreover,

[z :w] = Az : Aw]
for any nonzero A € C*.

We will use the method outlined above for defining a complex structure on
CP!l.

Let Uy = {[z: w] | 2 # 0}, and Uy = {[z : w] | w # 0}. Note that Uy and U;
cover CP!. Define ¢y : Uy — C by ¢o[z : w] = w/z; similarly define ¢ : Uy — C
by é1]z : w] = z/w. Both ¢y and ¢, are bijections, so we have the data required
above. Note that ¢;(Uy N U;) = C*, which is open in C. The composition
¢1 0 ¢y’ sends s to 1/s, and therefore these two charts are compatible. Since
both Uy and U; are connected, and have nonempty intersection, their union CP!
is connected. Finally we show CP! is Hausdorff. Take two points p and ¢ in
CP!. If both p and g are in either Uy or U;, we can separate them by open
sets, since the U; are Hausdorff. Therefore we may assume that p € Uy — U
and q € U; — Up; this forces p = [1: 0] and ¢ = [0 : 1]. These are separated by
¢y (D) and ¢7'(D), where D is the open unit disc in C.

We will usually denote CP! by simply P1; it is called the complex projective
line. Note that P! is the union of the two closed sets ¢, ' (D) and ¢7 ' (D), where
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D is the closed unit disc in C. Since D is compact, we see that the projective
line is compact.

Complex Tori. Fix w; and w, to be two complex numbers which are linearly
independent over R. Define L to be the lattice

L =7Zuw + Zw,y = {m1w1 + Maws | my,ma € Z}.

The lattice L is a subgroup of the additive group of C. Let X = C/L be the
quotient group, with projection map m : C — X. Note that via 7, we can impose
the quotient topology on X, namely, a set U C X is open if and only if #~1(U)
is open in C. This definition makes w continuous, and since C is connected, so
is X.

Every open set in X is the image of an open set in C, since if U is open in X,
U = n(x~}(U)). A more serious remark is that 7 is an open mapping, that is, 7
takes any open set of C onto an open set in X. Indeed, if V is open in C, then
to check that 7(V) is open in X we must show that 7=1(n(V)) is open in C; but

@) = [ Jw+V)
wel
is a union of translates of V', which are all open sets in C.
For any z € C, define the closed parallelogram

P, = {z+ M uw + dowz | X € [0,1]}.

Note that any point of C is congruent modulo L to a point of P,. Therefore the
projection map 7 maps P, onto X. Since P, is compact, so is X.

The lattice L is a discrete subset of C, so there is an € > 0 such that |w| > 2e¢
for every nonzero w € L. Fix such an ¢, and fix a point z9 € C. Consider the
open disc D = D(z, €) of radius € about zy. This choice of € insures that no two
points of D(z, €) can differ by an element of the lattice L.

We claim that for any zj, and for any such ¢, the restriction of the projection
7 to the open disc D maps D homeomorphically onto the open set 7(D). Clearly
7|p : D — w(D) is onto, continuous, and open (since = is). Therefore we need
only check that it is 1-1; this follows from the choice of €.

We are now ready to define a complex atlas on X. Again fix € as above. For
each 29 € C, let D, = D(2,¢€), and define ¢,, : 7(D,,) — D,, to be the inverse
of the map 7|p, . By the above claim, these ¢’s are complex charts on X,

To finish the construction, we must check that these charts are pairwise com-
patible. Choose two points z; and 2;, and consider the two charts ¢1 = ¢,, :
n(D,,) = D,, and ¢ = ¢,, : m(D,,) — D,,. Let U = n(D,,) Nw(D,,). fU
is empty, there is nothing to prove. If U is not empty, let T(z) = ¢2(¢7 (2)) =
$2(m(2)) for z € ¢1(U); we must check that T is holomorphic on ¢1(U). Note
that #(T'(z)) = w(2) for all z € ¢1(U), so T(z) — z = w(z) € L for all z € ¢1(U).
This function w : ¢, (U) — L is continuous, and L is discrete; hence w is locally
constant on ¢ (U). (It is constant on the connected components of U.) Thus,
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locally, T(z) = 2z + w for some fixed w € L, and is therefore holomorphic. Hence
the two charts ¢; and ¢, are compatible, and the collection of charts {¢, | z € C}
is a complex atlas on X.

Hence X is a compact Riemann surface. In fact it has topological genus one;
topologically, X is a simple torus. This is most easily seen by considering X
as the image of the parallelogram Fp; under the map |p,, the opposite sides
are identified together, and no other identifications are made, giving the familiar
construction of the torus. These Riemann surfaces (which depend of course on
the lattice L) are called complex tori.

Graphs of Holomorphic Functions. Let V C C be a connected open
subset of the complex plane, and let ¢ be a holomorphic function defined on all
of V. Consider the graph X of g, as a subset of C?2:

X ={(2,9(2)) | z€ V}.

Give X the subspace topology, and let 7 : X — V be the first projection; note
that 7 is a homeomorphism, whose inverse simply sends the point z € V to the
ordered pair (z,9(z)). Thus 7 is a complex chart on X, whose domain covers
all of X. Hence we have a complex atlas on X, composed of a single chart; this
gives X the structure of a Riemann surface.

This example can be immediately generalized to any finite collection of holo-
morphic functions g,...,g, on V; simply take X to be the graph in C™+!:

X ={(z,91(2),...,9:(2)) | z € V}.

Smooth Affine Plane Curves. This is a further generalization of the graph
construction introduced above. We would like to consider a locus X C C?2 which
is locally a graph, but perhaps not globally. The most natural way to do this is
to define a locus X by requiring a complex polynomial of two variables f(z,w)
to vanish. Morally speaking, this should cut the complex dimension down by
one, and we have a chance of producing a Riemann surface this way.

One needs a mild condition on the polynomial f for this to work, essentially
insuring that X is locally a graph. This condition is based on the Implicit
Function Theorem:

THEOREM 2.1 (THE IMPLICIT FUNCTION THEOREM). Let f(z,w) € C [z, w]
be a polynomial, and let X = {(z,w) € C? | f(z,w) = 0} be its zero locus. Let
p = (20, wo) be a point of X, i.e., p is a root of f. Suppose that Of /Ow(p) # 0.
Then there exists a function g(z) defined and holomorphic in a neighborhood of
20, such that, near p, X is equal to the graph w = g(z). Moreover ¢’ = —%Zi/gé
near 2.

Of course, if 8f/0w(p) = 0, it may still be true that 8f/0z(p) # 0, and X
will still be, locally, a graph near p, using the other variable. This motivates the
following.
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DEFINITION 2.2. An affine plane curve is the locus of zeroes in C? of a poly-
nomial f(z,w). A polynomial f(z,w) is nonsingular at a root p if either partial
derivative 0f /02 or Of /0w is not zero at p. The affine plane curve X of roots
of f is nonsingular at p if f is nonsingular at p. The curve X is nonsingular, or
smooth, if it is nonsingular at each of its points.

We can obtain complex charts on a smooth affine plane curve by using the
Implicit Function Theorem to conclude that the curve is locally a graph, and
then making the construction analogously to that for a graph.

Specifically, let X be a smooth affine plane curve, defined by a polynomial
f(z,w). Let p = (20, wo) € X. If 8f/0w(p) # 0, find a holomorphic function
gp(2) such that in a neighborhood U of p, X is the graph w = g,(z). Thus the
projection 7, : U — C {mapping (z,w) to z) is a homeomorphism from U to its
image V', which is open in C. This gives a complex chart on X.

If instead Of/8z(p) # 0, then we make the identical construction using the
other projection my,, sending (z,w) to w near p.

Since X is smooth, at least one of these partials must be nonzero at each
point, and so the domains of these complex charts cover X.

Let us check that any two of these charts are compatible. Suppose first that
both charts are obtained using #,. Then, if there is nonempty intersection with
their domains, the composition of the inverse of one with the other is the identity,
which is certainly holomorphic. The same holds if both charts are obtained using
T

Therefore assume that one chart is 7, and the other is 7,. Choose a point
P = (25, wp) in their common domain U. Assume that near p, X is locally of the
form w = g(z) for some holomorphic function g. Then on m,(U) near zj, the
inverse of . sends z to (z, g(z)). Thus the composition 7, o of 7, with the
inverse of 7, sends z to g(z), which is holomorphic.

This completes the proof that any two of the charts are compatible, and gives
a complex atlas on X.

The space X is certainly second countable and Hausdorff, as a subspace of C 2.
Thus to see that X is a Riemann surface, we must only check that it is connected.
This is net automatic; for example, if the polynomial f defining X is the product
of two linear factors with the same slope (e.g., f(z,w) = (2 +w)(z+w—1)) then
X is the union of two complex lines which do not meet; each line is a Riemann
surface itself (being a graph), but the union is not connected.

One possible assumption on the polynomial f for X to be connected is that
f(z,w) be an irreducible polynomial; that is, that f cannot be factored nontriv-
ially as f = g(z,w)h(z,w), where both g and h are nonconstant polynomials:

THEOREM 2.3. If f(z,w) is an irreducible polynomial, then its locus of roots
X is connected. Hence if f is nonsingular and irreducible, X is a Riemann
surface.
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The locus of roots of an irreducible polynomial f(z,w) is called an irreducible
affine plane curve.

The proof of the connectedness of X if f is irreducible is not elementary, but
requires some of the machinery of algebraic geometry. We will not present a
proof here; see [Shafarevich77], for example. Granting this, we see that: every
smooth irreducible affine plane curve is a Riemann surface.

EXAMPLE 2.4. Let h(z) be a polynomial in one variable which is not a perfect
square. Then the polynomial f(z,w) = w?—h(z) is irreducible. Moreover, if h(2)
has distinct roots, then f is nonsingular, and its locus of roots X is a Riemann
surface. (Prove this for yourself: Problem G below.)

A slight generalization will be useful later, If f(z, w) is an irreducible poly-
nomial, then the points on its locus of roots X where f is singular forms a finite
set. (This is nontriviall But let’s go on.) If we delete these points, then the
resulting open subset of X is a Riemann surface, using the same charts as given
above. This is referred to as the smooth part of the affine plane curve X, and in
general, if f is an irreducible polynomial, the smooth part of its zero locus is a
Riemann surface.

No affine plane curve is compact: as a subset of C2 = R*, it is not a bounded
set, since for any fixed zg, there will be roots w to the polynomial f(z5,w) = 0.

Problems 1.2

A. Verify that if any collection of subsets {U,} of a set X are given, and topolo-
gies are given for each subset U,, then a topology can be defined on X by
declaring that a subset U C X is open in X if and only if U NU, is open in
U, for every a.

B. Suppose, in problem A, that each U, is connected. Form a graph with one
vertex (called v,) for each U,, and with vertex v, connected by an edge to
vg if and only if U, NUs # 0. Prove or disprove: X is connected if and only
if the graph is connected.

C. Check that the function from P! to S? sending [z : w] to

(2Re(wz), 2 Im(w?), lw|* — |21*)/(jw]* + |2|?)

is a homeomorphism onto the unit sphere in R3. Therefore the projective
line is a compact Riemann surface of genus zero.

D. Show that any lattice L = Zuwy + Zw, in C with w; and ws linearly indepen-
dent over R is a discrete subset of C.

E. Show that a complex torus has topological genus one by constructing an
explicit homeomorphism to the product S! x S of two circles.

F. Show that the group law of a complex torus X is divisible: for any point
p € X and any integer n > 1 there is a point ¢ € X with n - ¢ = p. Indeed,
show that there are exactly n? such points q.
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G. Show that the polynomial f(z,w) = w? — h(z) is an irreducible polynomial

if and only if h(z) is a polynomial which is not a perfect square. Show that
f(z,w) is a nonsingular polynomial if and only if h(z) has distinct roots.

H. Let X be an affine plane curve of degree 2, that is, defined by a quadratic
polynomial f(z,w). (Such a curve is called an affine conic.) Suppose that
f(z,w) is singular. Show that in fact f factors as the product of two linear
polynomials, so that X is therefore the union of two intersecting lines. Give
an example of a smooth affine plane conic.

I. Give an example of a smooth irreducible affine plane curve of arbitrary de-
gree. Make sure you check the irreducibility!

J. Let ¢ be holomorphic in a neighborhood of p € C. Assume that ¢'(p) # 0.
Prove (using the Implicit Function Theorem) that there exists a neighbor-
hood U of p such that ¢|y is a chart on C.

3. Projective Curves

The Projective Line P! is the first in a series of examples which encompass the
most important and interesting compact Riemann surfaces. These are surfaces
which are embedded in projective space. We first discuss the case of projective
plane curves.

The Projective Plane P2. We will make a construction very similar to that
made for the projective line P!.

DEFINITION 3.1. The projective plane P2 is the set of 1-dimensional subspaces
of C3.

If (z,y,2) is a nonzero vector in C3, its span is denoted by [z : y : 2] and is a
point in the projective plane; every point in the projective plane may be written
in this way. Note that

[x:y:z]=[Az: Ay A2]

for any nonzero number ); indeed, P2 can be viewed as the quotient space of
C? - {0} by the multiplicative action of C*. In this way it inherits a Hausdorff
topology, which is the quotient topology coming from the natural map from
C? - {0} onto P2.

The entries in the notation [z : y : 2] are called the homogeneous coordinates of
the corresponding point in the projective plane. The homogeneous coordinates
are not unique, as noted above; however whether they are zero or not is well
defined.

The space P? can be covered by the three open sets

Uo=A{lz:y:2l|z# 0V ={lz:y: 2] |[y# 0K Uz ={[z:y: 2] |z #0}

Each open set U; is homeomorphic to the affine plane C2. The homeomorphism
on Uy is given by sending [z : y : z] € P2 to (y/z, z/x) € C?; its inverse sends
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(a,b) € C2to[l:a:b] € P2, On the other two open sets the map is similar,
dividing by y for Uy and by z for Us.

We note here that the projective plane is compact: it may be covered by three
compact sets, namely the closed unit poly-disks in the three open sets U; above.

Smooth Projective Plane Curves. A polynomial F is homogeneous if
every term has the same degree in the variables; this degree is the degree of the
homogeneous polynomial. For example, z?y — 2zyz + 32° is homogeneous of
degree 3 in the variables z,y, 2. :

Let F(z,y,z) be a homogeneous polynomial of degree d. It does not make
sense to evaluate F' at a point of the projective plane; if [xo : yo : z0] € P2, then
F(z9,y0,20) is not well defined, because the homogeneous coordinates zq, yo,
and zp are themselves not well defined. In particular, one sees easily that

F(Azo, Mo, Az0) = A F(Zo. Yo, 20)

but as noted above [Azg : Ayo : Azg] and [zg : yo : 2o] are the same point in the
projective plane. However this computation shows that whether F is zero or not
does make sense. Therefore the locus

X={z:y:2] €P?| F(z,y,2) =0}

is well defined. Moreover it is a closed subset of P2. The intersection X; of X
with the open sets U; is exactly an affine plane curve when transported to C?2.
For example, in Uy where z # 0, we have after transporting to C? that

Xo =X NUp = {(a,b) € C* | F(1,a,b) = 0}

which is the affine plane curve described by the polynomial f(a,b) = 0, where
fla,b) = F(1,a,b).

We want to show that under a nonsingularity assumption on F, the locus X
is a Riemann surface. In any case X is called the projective plane curve defined
by F.

DEFINITION 3.2. A homogeneous polynomial F(z,y, z) is nonsingular if there
are no common solutions to the system of equations
OF OF OF _ 0

(3.3) ab T e

in the projective plane P2,

This condition is equivalent to requiring that there be no nonzero solutions
to the above system in C3.

Before proceeding, we note that any homogeneous polynomial F' (in any num-
ber of variables x;) satisfies Euler’s Formula:

1 oF
4 = _ § Rttt
(3 ) ) F d p i 8.7)7; ’
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where d is the degree of F'. To see this, it suffices to prove it when F is a
monomial, since both sides are additive; for a monomial it is trivial.

LEMMA 3.5. Suppose that F(x,y,2) is a homogeneous polynomial of degree d.
Then F is nonsingular if and only if each X, is a smooth affine plane curve in

c2.

PROOF. Suppose first that one of the X; is not smooth; we may assume by
symmetry that Xy is not smooth. Define f{u,v) = F(1,u,v), so that Xq is
defined by f = 0 in C2. Since X; is not smooth, there is a common solution
(up,v0) € C? to the set of equations

oo,

T du v

We claim then that [1 : ug : vg] is @ common solution to the system (3.3), and
thus F is singular. For this we note that

f

Fll:ug:vg] = f(uo,v9) =0,
66—[; tug vl = g—z(uo,vo) =0,
aa—i tugtv] = %(UO,UO) =0, and
g—i l:ug:vg] = (dF—uO%—vog—f)[l:uo:vo]:U,

where the last computation of 0F/0x uses Euler’s formula (3.4).
We leave the converse, which follows the same lines of computation, to the
reader. [J

Now suppose we do have that F(z,y, z) is a nonsingular homogeneous polyno-
mial, defining the projective plane curve X. It is a basic theorem, again a little
deeper than what we can do here, that a nonsingular homogeneous polynomial
is automatically irreducible. Let us simply accept this, and then note that each
of the three open subsets X; of X are smooth irreducible affine plane curves, and
hence are Riemann surfaces by Theorem 2.3. Recall that the coordinate charts
on the X; are simply the projections, which in our case are easy to describe:
they are the functions y/z and z/z for Xy, and are ratios of the other variables
for the other pieces.

Thus to see that the complex structures given on the X; separately are com-
patible, one needs to check statements like the following. Consider a point p € X
which is in both X and X1: p= [z : y: z] with z,y # 0. Suppose that ¢g = y/z
is a chart near p for Xy, and ¢, = z/y is a chart near p for X;. We must show
that ¢, 0@ * is holomorphic. Now ¢5 ' (w) = [1 : w : h{w)] for some holomorphic
function h (locally, X is the graph of k). Hence ¢, o ¢5 ' (w) = h{w)/w which is
holomorphic since w # 0 (p is in X1).
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Similar checks with all other possible chart combinations show that the com-

plex structures on the X; are all compatible, and thus induce a complex structure
on X.

PROPOSITION 3.6. Let F(z,y,2) be a nonsingular homogeneous polynomial.
Then the projective plane curve X which is its zero locus in P? is a compact
Riemann surface. Moreover at every point of X one can take as a local coordinate
a ratio of the homogeneous coordinates.

We have indicated above why X is a Riemann surface; we need only show
that it is compact. However it is a closed subset of P2, which is compact. Such a
Riemann surface is called a smooth projective plane curve; its degree is the degree
of the defining polynomial.

Higher-Dimensional Projective Spaces. The opportunity exists to find
Riemann surfaces in higher-dimensional projective space, which we now briefly
describe.

DEFINITION 3.7. The set of 1-dimensional subspaces of C"*! is called pro-
Jjective n-space and is denoted by P™.

The span of the vector (zg,z1,...,2,) € C™"*! is denoted by [z] = [zq : z; :
- : Tp); these are the homogeneous coordinates of the corresponding point of
P™. We have

P" = (C™! - {0})/C"

which induces a Hausdorff topology on projective space.
Projective n-space is covered by the n + 1 open sets

Ui = {lz] | = # 0}

fori =0,...,n. Each U; is isomorphic to C™, via the map sending the n+1 ho-
mogeneous coordinates [zg : 1 : -+ : Zp| to the n-tuple (zo/z;, 21 /i, . .., Tn/Ts)
(with z;/z; deleted). These maps from U; to C™ are n-dimensional complex
charts on P ™, and together they form an n-dimensional complex atlas, inducing
an n-dimensional complex structure on P". Therefore P™ is an n-dimensional
complex manifold.

It is easy to see that P™ is compact, either by mapping the unit sphere in
C™*+! onto it, or by writing it as the union of the n + 1 compact sets in each U;
where all of the coordinates are at most 1.

If F(xg,...,z,) is a homogeneous polynomial, then its values in P™ are not
well defined, but whether F' is zero or not is; the locus of zeroes of F' is called a
hypersurface in P™,
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Complete Intersections. Since P™ is a complex manifold of dimension n,
it is locally isomorphic to an open set in C™. Every time we impose an equation,
we intuitively cut down the complex dimension by one. Thus to find a Riemann
surface in projective n-space P™ one would first look at the common zeroes
of n — 1 homogeneous polynomials, that is, one would try to intersect n — 1
hypersurfaces. In order to obtain a Riemann surface this way, one needs to have
the analogue of the nonsingularity condition.

This is based (as in the original case of plane curves) on a higher-dimensional
version of the Implicit Function Theorem. Without going into the details, we
will just state the final result.

DEFINITION 3.8. Let F1,..., F,,_1 be n—1 homogeneous polynomials in n+1
variables zg,...,z,. Let X be their common zero locus in P"*. We say X is a
smooth complete intersection curve in P™ if the (n—1) x (n+1) matrix of partial
derivatives (0F;/8z;) has maximal rank n — 1 at every point of X.

PROPOSITION 3.9. A smooth complete intersection curve in P™ is a compact
Riemann surface. Moreover at every point of X one can take as a local coordinate
a ratio z;/z; of the homogeneous coordinates.

The condition on the matrix of partials is the hypothesis of the multi-variable
Implicit Function Theorem, which insures that X is locally the graph of a set
of n — 1 holomorphic functions. Charts on X are then afforded by the ratios of
appropriate coordinates.

Local Complete Intersections. Not all Riemann surfaces which one finds
in projective n-space are smooth complete intersection curves. One example is
the image of the function H : P! — P3 sending [z : 3] to [z° : 22y : zy? : 3.
The image is a curve X in P3 which requires not 2 but 3 equations to cut it out.
The three equations are

Tox3 = T1T2, Tory =23, and zz3= x%

This is the twisted cubic curve in P3. It is not easy to see that it is not a complete
intersection curve, but let us leave that off for the moment.

The way to see that X is a Riemann surface is to notice that at any point of
the curve, only two of the three equations are actually necessary; for example,
near [1:0:0: 0], the curve is cut out by the two equations

ToT3z =T1T2 and Tgxrg = zf

since the third equation z,z3 = 22 is a consequence of these two if one assumes
that zy # 0, which it is not near this point.
The problem is that no single pair of the three will work at every point of X.
This situation then motivates the following definition.
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DEFINITION 3.10. A local complete intersection curve in projective n-space is
a locus X C P™ given by the vanishing of a set {F,} of homogeneous polyno-
mials, such that near each point p € X, X is actually described by n — 1 of the
polynomials

Fo =F,, =--=F =0

Qpn—1

satisfying the nonsingularity condition that the (n—1) x (n+1) matrix of partial
derivatives (8Fy,/0z;) has maximal rank n — 1 at the point p.

Since the charts on a complete intersection curve are locally defined by the
Implicit Function Theorem, this local condition on the common zeroes of a set
of homogeneous polynomials is enough to insure that the curve is a Riemann
surface:

PROPOSITION 3.11. Every connected local complete intersection curve X in
P™ is a compact Riemann surface. Moreover at every point of X one can take
as a local coordinate a ratio z;/x; of the homogeneous coordinates.

It is an interesting and important theorem in algebraic geometry that every
Riemann surface which is holomorphically embedded in projective space is a
local complete intersection curve. (We will define “holomorphically embedded”
a bit later!)

Problems 1.3

A. Let ¢; : U, — C2 for 4 = 0,1,2 be the maps described in the text, e.g.,
dolz 1y 2] = (y/z,z/z) and similarly for ¢; and ¢o. Show that the
¢i’s are homeomorphisms, where U; has its subspace topology from P2,
whose topology is given by the quotient topology from C3. Show that P2
is Hausdorff. Show further that P2 is covered by the three compact sets
¢ (D), where D = {(z,w) | ||zl < 1 and |w| < 1}, and is therefore
compact.

B. Show that the locus of zeroes of a homogeneous polynomial F(z,y, z) in the
projective plane is well defined.

C. Prove Euler’s formula for a homogeneous polynomial F'(z) of degree d in any

number of variables z = (zg,zy,...,Zn):
1~ OF
F(z) = 1 _ %O—xl

1=0

D. Prove the other half of Lemma 3.5: if a homogeneous polynomial F(z,y, 2)
is singular, then at least one of the affine plane curves X; is not smooth.

E. A degree one curve in the projective plane, defined by a homogeneous poly-
nomial in z,y, z of degree one, is called a line. Any such polynomial F is of
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the form az + by + cz. One may write this polynomial in vector form as

F(z,y,z) =az+by+czc=RV=(a b ¢

N @ 8

where R is the row vector of coefficients and V is the column vector of
variables. Use this description to prove that any two distinct lines in the
projective plane meet at a unique point. Give a formula for the point of
intersection in terms of the coefficients of the lines.

F. Show that the curve in P? defined by the two equations z¢z; = 1z, and
z2 + 7% + 22 + 23 = 0 is a smooth complete intersection curve. What is its
topological genus?

G. Show that no pair of the three equations given in the text which define the
twisted cubic curve X suffice to define X. Show however that near any
point of X, X is defined (locally) by two equations. Hence it is a local
complete intersection curve and a compact Riemann surface. What is its
topological genus?

Further Reading

It will come as no surprise that the subject of Riemann surfaces goes back
to Riemann [Riemann1892]; Klein’s exposition [Klein1894] followed in the
last century. The first modern treatment of Riemann surfaces dates from Weyl’s
landmark text [Weyl55], first published in 1913. The third edition, published in
1955, was reworked considerably, and Weyl’s approach there was foreshadowed
by Chevalley a few years earlier [Chevalley51].

The literature on Riemann surfaces is often referred to as “vast”, but this
word is almost an understatement. For the basic definitions [Springer57],
[Pfluger57], [Bers58], and [AS60] are still useful; these are in a slightly older
style but have especially strong treatments of the topological issues. More re-
cent are |Gunning66), [S-N70], [G-N76|, [Gunning76], [FK80], [Forster81],
[Griffiths89], [Reyssat89], [Yang91l], [Buser92], and [Narasimhan92], all
of which are solid and relatively complete in what they do. As an excellent
survey the reader may wish to consult [Shokurov94]. The texts [Beardon84],
[JS87) and [Kirwan92] are somewhat more elementary. Especially delightful is
Clemens’ scrapbook [Clemens80], which is informal yet. substantial.

We have downplayed the topological questions which arise in the study; the
reader could consult any number of good texts for the basic material on man-
ifolds. In the text are mentioned [Massey67], [Massey91], [Munkres75],
[Armstrong83|, [Munkres84|, and [Sieradski92]; the analysis on manifolds
is very well done in [Munkres91], and [Buser92| has a solid discussion of the
topological questions arising specifically for Riemann surfaces.

As to preliminary material, namely the basics on functions of one complex
variable, the author has taught or taken courses using [Ahlfors66], [Conway78],
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[Lang85], and [Boas87] as texts, and all have their strengths.
Complex manifolds of higher dimension is the subject of [K-MT1].



Chapter II. Functions and Maps

1. Functions on Riemann Surfaces

Let X be a Riemann surface, p a point of X, and f a function on X defined
near p. To check whether f has any particular property at p (for example
to check/define f being holomorphic at p), one would use complex charts to
transport the function to the neighborhood of a point in the complex plane, and
check the property there. In this section we make this precise for a variety of
properties.

The only thing to be careful of is that the property one is checking must be
independent of coordinate changes, so that it does not matter what chart one
uses to check the property.

Holomorphic Functions. Let X be a Riemann surface, let p be a point of
X, and let f be a complex-valued function defined in a neighborhood W of p.

DEFINITION 1.1. We say that f is holomorphic at p if there exists a chart
¢ : U — V with p € U, such that the composition f o ¢~! is holomorphic at
¢(p). We say [ is holomorphic in W if it is holomorphic at every point of W.

We have some immediate remarks, which are embodied in the following.

LeEMMA 1.2. Let X be a Riemann surface, let p be a point of X, and let f be
a complex-valued function defined in a neighborhood W of p. Then:

a. [ is holomorphic at p if and only if for every chart ¢ : U — V with
p € U, the composition fo ¢~ is holomorphic at ¢(p);

b. f is holomorphic in W if and only if there exists a set of charts {¢; :
U; — Vi} with W C |J, Us, such that fog; ' is holomorphic on ¢;(WNU;)
for each i;

c. if f 1s holomorphic at p, f is holomorphic in a neighborhood of p.

PRrROOF. To prove the first statement, let ¢; and ¢2 be two charts whose
domains contain p, and suppose that f o ¢; ' is holomorphic at ¢, (p). We must
check that f o ¢5! is holomorphic at ¢4(p). But

fogr' =(foor)o(p1007")

21
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which shows that f o ¢ ! is the composition of holomorphic functions, and is
therefore holomorphic.

The second statement follows immediately from the first. The third statement
follows from the corresponding statement for functions on open sets in C. [

The reader should check that the following examples all give holomorphic
functions as claimed.

EXAMPLE 1.3. Any complex chart, considered as a complex-valued function
on its domain, is holomorphic on its domain.

ExXAMPLE 1.4. Let f be a complex-valued function on an open set in C. Then
the above definition of holomorphic (considering C as a Riemann surface, see
Example 1.19) agrees with the usual definition.

EXAMPLE 1.5. Suppose f and g are both holomorphic at p € X. Then f 4 ¢
and fg are holomorphic at p. If g(p) # 0, then f/g is holomorphic at p.

EXAMPLE 1.6. Let f be a complex-valued function on the Riemann Sphere
Cyo defined in a neighborhood of co. Then f is holomorphic at oo if and only
if f(1/z) is holomorphic at z = 0. In particular, if f is a rational function
f(2) = p(2)/q(z), then f is holomorphic at oo if and only if deg(p) < deg(q).

EXAMPLE 1.7. Consider the projective line P! with homogeneous coordinates
[2 : w]. Let p(z,w) and q(z, w) be homogeneous polynomials of the same degree.
Assume that ¢(29,wg) # 0. Then f([z : w]) = p(z,w)/q(z,w) is a well defined
holomorphic function in a neighborhood of [z : wo).

ExAMPLE 1.8. Consider a complex torus C/L, with quotient map = : C —
C/L. Let f : W — C be a complex-valued function on an open subset W C C/L.
Then f is holomorphic at a point p € W if and only if there is a preimage z of
p in C such that f o« is holomorphic at z. In addition, f is holomorphic on W
if and only if f o7 is holomorphic on 7=}(W).

EXAMPLE 1.9. Let X be an affine plane curve which is defined by a nonsin-
gular polynomial f(z,w) = 0. Then the two projections (onto the 2- and w-
axes) are holomorphic functions on X. Any polynomial function g(z,w), when
restricted to the smooth affine plane curve X, is a holomorphic function.

ExXAMPLE 1.10. Let X be a projective plane curve which is defined by a non-
singular polynomial F(z,y,z) = 0. Let p = [zo : yo : 2] be a point on X with
zo # 0. Then the two ratios y/z and z/z are holomorphic functions on X at p.
Any polynomial function g(y/z,z/x), when restricted to the smooth projective
plane curve X, is a holomorphic function at p. Note that such a polynomial
function may be written as a ratio G(z,y, z)/x¢, where G is the homogenization
of the polynomial g, of degree d. More generally, if G(z,¥, z) is a homogeneous
polynomial of degree d, and H(z,y, z) is a homogeneous polynomial of the same
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degree d which does not vanish at p, then the ratio G/H is a holomorphic func-
tion on X at p.

EXAMPLE 1.11. The previous example generalizes immediately to smooth lo-
cal complete intersection curves X inside P™. In particular, if G(zo,...,Zs)
is a homogeneous polynomial of degree d, and H(zy,...,z,) is a homogeneous
polynomial of the same degree d which does not vanish at p € X, then the ratio
G/H is a holomorphic function on X at p.

It is useful to introduce the following notation.

DEeFINITION 1.12. If W C X is an open subset of a Riemann surface X, we
will denote the set of holomorphic functions on W by Ox (W) (or simply O(W)):

Ox(W)=0W)={f:W — C| f is holomorphic }.
We note that O(W) is a C-algebra.

Singularities of Functions; Meromorphic Functions. Let X be a Rie-
mann surface, let p be a point of X, and let f be a complex-valued function
defined and holomorphic in a punctured neighborhood of p. (A punctured neigh-
borhood of a point p is a set of the form U — {p}, where U is a neighborhood of p.)
The concept of the type of singularity (removable, pole, essential) for functions
of a single complex variable extends readily to functions on a Riemann surface.

DEFINITION 1.13. Let f be holomorphic in a punctured neighborhood of p €
X.

a. We say f has a removable singularity at p if and only if there exists a
chart ¢ : U — V with p € U, such that the composition f o ¢~! has a
removable singularity at ¢(p).

b. We say f has a pole at p if and only if there exists a chart ¢ : U — V
with p € U, such that the composition f o ¢~! has a pole at ¢(p).

c. We say f has an essential singularity at p if and only if there exists a
chart ¢ : U — V with p € U, such that the composition f o ¢! has an
essential singularity at ¢(p).

We have the following analogue of Lemma 1.2, which we leave to the reader.

LEMMA 1.14. With the above notations, f has a removable singularity (re-
spectively pole, essential singularity) if and only if for every chart ¢ : U — V
with p € U, the composition f o ' has removable singularity (resp. pole, es-
sential singularity) at ¢(p).

We note that if f is defined and holomorphic in a punctured neighborhood of
p, then one can decide which kind of singularity f has at p by investigating the
behaviour of f(z) for z near p.
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a) If |f(x)| is bounded in a neighborhood of p, then f has a removable
singularity at p. Moreover, in this case the limit lim,_,, f(z) exists, and
if we define f(p) to be this limit, f is holomorphic at p.

b) If |f(z)| approaches co as z approaches p, then f has a pole at p.

¢) If |f(z)| has no limit as = approaches p, then f has an essential singu-
larity at p.

DEFINITION 1.15. A function f on X is meromorphic at a point p € X if it
is either holomorphic, has a removable singularity, or has a pole, at p. We say f
is meromorphic on an open set W if it is meromorphic at every point of W.

As was the case with the examples of holomorphic functions, we leave to the
reader to check that the following examples all give meromorphic functions as
claimed.

EXAMPLE 1.16. Let f be a complex-valued function on an open set in C.
Then the above definition of meromorphic (considering C as a Riemann surface,
see Example 1.19) agrees with the usual definition.

EXAMPLE 1.17. Suppose f and g are both meromorphic at p € X. Then
f £ g and fg are meromorphic at p. If g is not identically zero, then f/g is
meromorphic at p.

EXaMPLE 1.18. Let f be a complex-valued function on the Riemann Sphere
Co defined in a neighborhood of co. Then f is meromorphic at oo if and only
if f(1/z) is meromorphic at z = 0. In particular, any rational function f(z) =
p(2)/q(z) is meromorphic at oo; indeed, any rational function is meromorphic
on all of the Riemann Sphere.

ExAMPLE 1.19. Let f and g be holomorphic functions on a Riemann surface
X at p. Then the ratio f/g is a meromorphic function at p, as long as ¢ is
not identically zero in a neighborhood of p. Indeed, any function h which is
meromorphic at a point p € X is locally the ratio of two holomorphic functions.

EXAMPLE 1.20. Consider the projective line P! with homogeneous coordi-
nates [z : w]. Let p(z,w) and ¢(z,w) be homogeneous polynomials of the same
degree (with ¢ not identically zero). Then f([z : w]) = p(z,w)/q(z,w) is a well
defined meromorphic function on P?!.

ExamPLE 1.21. Consider a complex torus C/L, with quotient map 7 : C —
C/L. Let f : W — C be a complex-valued function on an open subset W C C/L.
Then f is meromorphic at a point p € W if and only if there is a preimage z
of p in C such that f o7 is meromorphic at z. In addition, f is meromorphic
on W if and only if f o 7 is meromorphic on 7=}(W). Note that ¢ = f o7 is
always L-periodic, that is, g(z + w) = g(z) for every z € C and every w € L;
in fact, there is a 1-1 correspondence between functions on C/L and L-periodic
functions on C. A meromorphic L-periodic function on C is called an elliptic
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function. Thus the above correspondence induces a 1-1 correspondence between
elliptic functions on C and meromorphic functions on C/L.

ExXAMPLE 1.22. Let X be a projective plane curve which is defined by a non-
singular polynomial F(z,y, z) = 0. Let G(z,y, 2) be a homogeneous polynomial
of degree d, and H(z, y, z) a homogeneous polynomial of the same degree d which
does not vanish identically on X . Then the ratio G/H is a meromorphic function
on X.

EXAMPLE 1.23. Again the previous example generalizes to smooth local com-
plete intersection curves X inside P™. In particular, if G(xo,...,z,) is a homo-
geneous polynomial of degree d, and H(xy,...,z,) is a homogeneous polynomial
of the same degree d which does not vanish identically on X, then the ratio G/H
is a meromorphic function on X.

DEeFINITION 1.24. If W C X is an open subset of a Riemann surface X,

we will denote the set of meromorphic functions on W by Mx (W) (or simply
M(W)):

Mx (W)= M(W)={f: W — C| f is meromorphic }.

Laurent Series. Let f be defined and holomorphic in a punctured neigh-
borhood of p € X. Let ¢ : U — V be a chart on X with p € U. Thinking of
z as the local coordinate on X near p, so that z = ¢(z) for z near p, we have
that f o ¢! is holomorphic in a neighborhood of zy = ¢(p). Therefore we may
expand fo ¢! in a Laurent series about zy:

(1.25) F@7H=)) =D enlz —20)"™

This is called the Laurent Series for f about p with respect to ¢ (or with respect
to the local coordinate z). The coefficients {c, } of the Laurent series are called
the Laurent coefficients.

The Laurent series definitely depends on the choice of local coordinate, that
is, the choice of chart ¢.

One can use Laurent series however to check the nature of the singularity of
f at p. This is just based on the usual criterion for functions of one complex
variable, and we leave it to the reader:

LEMMA 1.26. With the above notation, f has a removable singularity ot p if
and only if any one of its Laurent series has no negative terms. The function f
has a pole at p if and only if any one of its Laurent series has finitely many (but
not zero) negative terms. The function f has an essential singularity at p if and
only if any one of its Laurent series has infinitely many negative terms.
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The Order of a Meromorphic Function at a Point. Not only can one
decide the nature of a singularity from a Laurent series, but, for meromorphic
functions, one can extract the order of the zero or pole from any Laurent series.

DEFINITION 1.27. Let f be meromorphic at p, whose Laurent series in a local
coordinate z is ), ¢n(z — 29)”. The order of f at p, denoted by ord,(f), is the
minimum exponent actually appearing (with nonzero coefficient) in the Laurent
series:

ord,(f) = min{n | ¢, # 0}.

We need to check that ord,(f) is well defined, independent of the choice of
local coordinate used to define the Laurent series.

Suppose that ¥ : U’ — V' is another chart with p € U’, giving local coor-
dinate w = ¢(z) for x near p. Suppose further that 1 (p) = wy. Consider the
holomorphic transition function T'(w) = ¢ o 9~!, which expresses z as a holo-
morphic function of w. Since T is invertible at wg, we must have T"(wg) # 0
(Chapter I, Lemma 1.7). If we write the power series for T', it will therefore be
of the form

z=T(w) =2z + Z an(w—wy)",
n>1
with the linear term coefficient a; # 0.

Suppose now that cn,(z — 20)™ + (higher order terms) is the Laurent series
for f at p in terms of the coordinate z, with ¢,, # 0, so that the order of f
computed via z is ng. To obtain the Laurent series for f in terms of w, we
simply compose the above Laurent series with the above power series expression
2=z = 3,51 @n(w — wp)". We see immediately that the term of lowest possible
order in the variable w—wyq of the composition is ¢n, a7 (w — wy)™. Since neither
Cno NOT a1 I8 zero, this term is actually present and the order of f computed via
w is also ng. Thus the order of f at p is well defined.

We have the following, which we leave to the reader.

LEMMA 1.28. Suppose f is meromorphic at p. Then f is holomorphic at p if
and only if ordy(f) > 0. In this case f(p) =0 if and only if ord,(f) > 0. f has
a pole at p if and only if ord,(f) < 0. f has neither a zero nor a pole at p if and
only if ord,(f) = 0.

We say that f has a zero of order n at p if ord,(f) =n > 1. We say f has a
pole of order n at p if ord,(f) = —n < 0.

The order function behaves well with respect to products, but is more unruly
with respect to sums:

LEMMA 1.29. Let f and g be nonzero meromorphic functions atp € X. Then:

a. ord,(fg) = ord,(f) + ord,(g).
b. ord,(f/g) = ordy(f) — ordy(g).
c. ord,(1/f) = —ordy(f).
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d. ordy(f £ g) > min{ord,(f),ordy(g)}-

Again we leave these simple computations to the reader.

Any rational function f(z) can be considered as a meromorphic function on
the Riemann Sphere {Example 1.18). The order of such functions at any point
can be obtained quite readily; we leave the details as a problem for the reader.

EXAMPLE 1.30. Let f(z) = p(2)/q(z) be a nonzero rational function of z,
considered as a meromorphic function on the Riemann Sphere as in Example
1.18. We may factor p and ¢ completely into linear factors and write f uniquely
as

$@) =e[] =2,

where ¢ is a nonzero constant, the A;’s are distinct complex numbers, and the
exponents e; are integers. Then ord =y, (f) = e; for each i. Moreover, orde(f) =
deg(q) —deg(p) = — Y, €;. Finally, ord;(f) = 0 unless £ = oo or z is one of the
points z = A;. Note that

> ord,(f) =0,

zeX

which as we will see is a general phenomenon for meromorphic functions on
compact Riemann surfaces.

C* Functions. A real-valued function of a complex variable z = x +1iy is C*°
at a point zq if, as a function of x and ¥, it has continuous partial derivatives of
all orders at z;. A complex-valued function of z is C* if its real and imaginary
parts are. This concept transfers immediately to a Riemann surface using the
same construct as for holomorphic functions: a function f defined on a Riemann
surface X is C*° at a point p if there is a chart ¢ : U — V on X with p € U such
that f o ¢! is C* at ¢(p). To check that a function is C*°, any chart can be
used. If f is defined on all of X, then for f to be C® it suffices to check locally
using any atlas of charts on X.

Harmonic Functions. Harmonic functions play a central role in the analytic
theory of Riemann surfaces. Although we will not stress this point of view, it is
good to know what that aspect of the theory is about.

DEFINITION 1.31. A real-valued C* function h(x,y) of two real variables
and y defined on an open set V C R? is harmonic if

0*h  0*h
— 4+ —=0
0z? = Oy’
identically on V. A complex-valued function is harmonic if and only if its real
and imaginary parts are harmonic.
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The real and imaginary parts of any holomorphic function of z = = + iy are
harmonic as functions of z and y; this follows immediately from the Cauchy-
Riemann equations. Hence holomorphic functions are harmonic.

We transport harmonicity to a Riemann surface X via charts in the usual
way. Suppose h is a C* at a point p on X. We say that h is harmonic at p if
there is a chart ¢ : U — V with p € U such that h o ¢! is harmonic near ¢(p).

This is independent of the choice of chart in fact:

LEMMA 1.32. Suppose h is a C*® function defined near p € X. Let ¢, and ¢2
be two charts near p. Then ho @' is harmonic near ¢, (p) if and only if ho ¢,
is harmonic near ¢2(p).

PrOOF. Let z = z + 1y be the local coordinate for ¢, and let w = u + v be
the local coordinate for ¢o. We know that the change of coordinates function
w = T(2) = ¢3(¢7"(2)) is holomorphic; writing this as v = u(z,y) and v =
v(z,y), we conclude that these functions satisfy the Cauchy-Riemann equations
Uy = vy and uy = —v,.

Suppose hy = hoy ! is harmonic in u and v. We must show that h; = hog] !
is harmonic in z and y; this will suffice, by symmetry. But

hi(z,y) = (97" (2,9)) = k(95 (ulz,y), v(z,1))) = ha(u(z,y),v(z,v));
so the chain rule gives
(h1), = (ha),us — (h2),uy and (h1), = (h2),uy + (h2),us
using the Cauchy-Riemann equations. Then
(hl)zz = (hZ)uuui - (hZ)uvuzuy + (hz)uumz - (h‘?)vuuyuz + (hz)vvu’j - (h2)vuyza
and
(hl)yy = (hz)uuu:lz; + (h2)uvuyu.’t + (h2)uuyy + (h2)vuumuy + (hz)vvu.’% + (h2)vuzy-
Therefore
(h‘l)zz + (h‘l)yy = ((h‘z)uu + (hz)vv)(ui + ugzl) + (hz)u(um; + uyy)‘

In the above expression, the first term is zero since hg is harmonic as a function
of u and v, and the second term is zero since u is harmonic as a function of z
and y. O

Theorems Inherited from One Complex Variable. Certain theorems
concerning holomorphic and meromorphic functions are inherited immediately
from the corresponding theorems concerning functions defined on open sets in
the complex plane. We collect some of them here.



1. FUNCTIONS ON RIEMANN SURFACES 29

THEOREM 1.33 (DISCRETENESS OF ZEROES AND POLES). Let f be a mero-
morphic function defined on a connected open set W of a Riemann surface X.

If f is not identically zero, then the zeroes and poles of f form a discrete subset
of W.

The above theorem has an immediate implication for compact surfaces.

COROLLARY 1.34. Let f be a meromorphic function on a compact Riemann
surface, which is not identically zero. Then f has a finite number of zeroes and
poles.

THEOREM 1.35 (THE IDENTITY THEOREM). Suppose that f and g are two
meromorphic functions defined on a connected open set W of a Riemann surface
X. Suppose that f = g on a subset S C W which has a limit point in W. Then
f=gonW.

THEOREM 1.36 (THE MAXIMUM MODULUS THEOREM). Let f be holomor-
phic on a connected open set W of a Riemann surface X. Suppose that there is
a point p € W such that |f(z)| < |f(p)| for all z € W. Then f is constant on
w.

We have the following corollary of the Maximum Modulus Theorem, which is
a theorem truly about Riemann surfaces, in that there is no precise counterpart
for functions on complex domains.

THEOREM 1.37. Let X be a compact Riemann surface. Suppose that f is
holomorphic on all of X. Then f is a constant function.

PROOF. Since f is holomorphic, its absolute value | f| is a continuous function;
therefore, since X is compact, |f| achieves its maximum value at some point of
X. By the Maximum Modulus Theorem, f must then be constant on X, since
X is connected. O

The closest thing to the above theorem for functions on complex domains
is Liouville’s Theorem, which states that a bounded entire function must be
constant. This can in fact be reformulated in terms of functions on the Riemann
Sphere.

Harmonic functions also satisfy a maximum principle; the statement is prac-
tically the same as for holomorphic functions.

THEOREM 1.38. Suppose that f is harmonic on a connected open set W of a
Riemann surface X. Suppose that there is a pointp € W such that | f(z)| < | f(p)|
for all x € W. Then f is constant on W. In particuler, if X is a compact
Riemann surface then any harmonic function on X is constant.



30 CHAPTER II. FUNCTIONS AND MAPS

Problems I1.1

A. Check that all of the functions of Examples 1.3 through 1.11 are holomorphic

as claimed.

B. Check that all of the functions of Examples 1.16 through 1.23 are meromor-

phic as claimed.

C. Let L be a lattice in C and let X be the torus C/L. Let # : C — X be the
quotient map. Show that a function f on X is meromorphic if and only if
the composition f7 is a meromorphic function on C.

Prove Lemma 1.26.

Prove Lemma 1.28.

Prove Lemma 1.29.

Verify all of the statements of Example 1.30.

Prove Liouville’s Theorem (that a bounded entire function on C is constant)
by showing that a bounded entire function extends to a holomorphic function
on the (compact) Riemann Sphere C.

Prove without invoking the Maximum Modulus Theorem that any rational
function which is holomorphic at every point of the Riemann Sphere C,, is
in fact a constant.

mQamEY

i

2. Examples of Meromorphic Functions

Meromorphic Functions on the Riemann Sphere. We have seen in
Example 1.18 that any rational function r(z) = p(z)/q(z) is meromorphic on the
whole Riemann Sphere. In fact, the converse is true:

THEOREM 2.1. Any meromorphic function on the Riemann Sphere is a ratio-
nal function.

PROOF. Let f be a meromorphic function on the Riemann Sphere C,. Since
Coo is compact, it has finitely many zeroes and poles. Let {A;} be the set of zeroes
and poles of f in the finite complex plane C, and assume that ord,—»,(f) = e;.
Consider the rational function

r(z) = H (z = N)™

which has the same zeroes and poles, to the same orders, as f does, in the finite
plane (see Example 1.30). Let g(z) = f/r(z); ¢ is a meromorphic function on
Co, with no zeroes or poles in the finite plane. Therefore, as a function on C,
it is everywhere holomorphic, and has a Taylor series

9(z) =Y caz”
n=0
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which converges everywhere on C. Note however that g is also meromorphic at
z = 00; in terms of the coordinate w = 1/z at 0o, we have

g(w) = Z cow "

n=0

and so for this to be meromorphic at w = 0 it must be the case that g has only
finitely many terms, that is, g is a polynomial in z.

If the polynomial ¢ is not constant, then it will have a zero in C, which is a
contradiction. Hence the ratio f/r is constant, and f is a rational function. [

COROLLARY 2.2. Let f be any meromorphic function on the Riemann Sphere.
Then

> ordy(f) =0.
1]

PROOF. We have already seen in Example 1.30 that this is true for rational
functions. Since any meromorphic function on C., is rational by the above
theorem, we are done. []

Recall that for a meromorphic function f, the order is positive at the zeroes
and negative at the poles. Therefore the statement above that the sum of the
orders is zero says exactly that f has the same number of zeroes and poles, if
we count them according to their order. This is a recurring theme in the theory:
one gets very nice answers to formulas which count things (like the number of
zeroes, etc.) if one “counts properly”. In this case, counting properly means
counting according to the order.

Meromorphic Functions on the Projective Line. Let P! be the projec-
tive line. We have claimed in Example 1.20 that ratios of homogeneous poly-
nomials of the same degree give meromorphic functions on P!. This example is
important enough to go through the details in the text, which we will now do.

Note that we can view P! as the quotient space

P! =(C? - {o})/C",

where A € C* acts on a nonzero vector (z,w) € C? by sending it to (\z, \w).
The orbit of (z,w) is exactly the point [z : w] € P!. Thus to construct functions
on P! we try to define functions on C? which are invariant under the action of
C*; such a function will descend to the quotient P!, and we can check at the
end whether or not it is meromorphic. One such function is the function sending
{(z,w) to z/w. This is the prototype for all the examples, in fact.

A polynomial p(z,w) is said to be homogeneous if each of its terms has the
same total degree; this degree is the degree of p. Thus a homogeneous polynomial
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of degree d can be written uniquely as

d

p(z,w) = Z a; 2wt

i=0

Note that if p(z, w) is a homogeneous polynomial of degree d, then p(\z, \w) =
Ap(z,w). Hence p is not invariant under the action of C*, but at least it
transforms in a very controlled way.

What is now obvious is that if p(z,w) and q(z,w) are both homogeneous
polynomials of the same degree, with ¢ not identically zero, then the ratio
r(z,w) = p(%,w)/q(z, w) will be invariant under the action of C*.

Indeed, consider the special function v = z/w, which is C*-invariant. Let
r(u) be any rational function of u; then r is also C*-invariant. If we multiply
the numerator and denominator of r by the appropriate power of w, we will
obtain a ratio of homogeneous polynomials of the same degree.

LEMMA 2.3. If p(z,w) and q(z,w) are homogeneous of the same degree, with
q not identically zero, then r(z,w) = p(z,w)/q(z, w) descends to a meromorphic
function on P,

PROOF. Let ¢ : {w # 0} — C be one of the two standard charts of P!, so
that ¢([z : w]) = z/w. Note that ¢~ (u) = [u : 1]. To check that the function
r([z : w]) = p(z,w)/q(z, w) is meromorphic on {w # 0}, we must show that
70 ¢~! is meromorphic on C. But

(¢~ (w) = r([u: 1]) = p(u,1)/q(u, 1)

is a rational function of u, and is certainly meromorphic. The same computation
for the other chart (sending [z : w] to w/z) finishes the computation. [J

Every homogeneocus polynomial of positive degree in z, w factors completely
into linear factors; homogeneous polynomials in two variables behave like or-
dinary polynomials in a single variable in this respect. Therefore a ratio of
homogeneous polynomials of the same degree can always be written in the form

(2.4) r(z,w) = H (biz — a;w)*,

i

where we may assume the different factors are relatively prime. It is easy to see
that with this notation, ord[al:b‘.](r) = e; when we consider r as a meromorphic
function on P!. With this remark, it is easy to show the following analogue of
Theorem 2.1; moreover the proof is essentially the same.

THEOREM 2.5. Every meromorphic function on P! is a ratio of homogeneous
polynomials in z,w of the same degree.
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PROOF. Let f be a meromorphic function on P! which is not identically zero.
Since P! is compact, f has finitely many zeroes and poles, which we may list as
{[a; : b;]}. Assume that ords,.,)(f) = e;, and consider the ratio

r(z,w) =w" H (biz — a;w)*

where n is chosen simply to make r a ratio of homogeneous polynomials of the
same degree: n = — 3 .e;. The ratio g = f/r has no zeroes or poles, except
possibly at the point [1 : 0] where w = 0. We would like to show that g is
constant.

If g has a pole at [1 : (], then since g has no zeroes, 1/¢ has no poles. Hence
1/g is constant since P! is compact; but 1/g has a zero at [1 : 0], which gives a
contradiction since 1/g = r/f is not identically zero.

Therefore we may assume that g does not have a pole at [1 : 0]. Hence g is
holomorphic on all of P!, so g is constant since P! is compact. J

Note that since r is a ratio of polynomials of the same degree, when we write
T as in (2.4) we have ) _, e; = 0; therefore we see that, as with rational functions
on the Riemann Sphere, we have ) ord,(r) = 0. By the above theorem, every
meromorphic function on P! is of this form. Therefore:

COROLLARY 2.6. Let f be any nonconstant meromorphic function on P!
Then

D ordy(f) =0.

Meromorphic Functions on a Complex Torus. Fix 7 in the upper half-
plane, and consider the lattice L = Z + Zr. Form the complex torus X = C/L.

Just like P!, C/L is a quotient space, and so one may construct meromorphic
functions on C/L by taking L-periodic meromorphic functions on C. One’s first
instinct is to build such functions by taking ratios of L-periodic holomorphic
functions on C. The problem is that there are (essentially) no such things: any
L-periodic holomorphic function on € would descend to a holomorphic function
on C/L, which would then be constant because C/L is compact.

Therefore we fall back to relying on ratios of holomorphic functions which are
not separately L-periodie, but which transform in a highly controlled manner
upon translation by lattice points. By a careful choice of the numerator and
denominator, we can arrange the extra factor to cancel and obtain a true L-
periodic function. A

The entire story from this point of view is similiar to the construction of mero-
morphic functions on P!, as ratios of homogeneous polynomials. The homoge-
neous polynomials are not invariant under the action of C*, but transform very
nicely (p(z,w) of degree d transforms under the action of A € C* to Ap(z,w)).
A homogeneous polynomial is a product of homogeneous linear polynomials,
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and the analogue of homogeneous linear polynomials in our torus situation is
the theta-function.
Fix a 7 with Im(7) > 0, and define

oo

9(2;)2 Z e‘lr'i[n21'+2nz].

n=—oc

This series converges absolutely and uniformly on compact subsets of C.
Hence 6(z) is an analytic function on all of C.

Note that 8(z + 1) = 6(z) for every z in C, so that 6 is periodic. (The series
given above is its Fourier series.) We need to investigate how # transforms under
translation by 7. An easy series computation shows that

0(z + T) — e—wi[T+2z]9(z)

for every z in C.

It follows directly that z; is a zero of 8 if and only if 29 + m + n7 is a zero of
6 for every m and n in Z. Moreover the order of zero of 6 at z; is the same as
the order of zero at zg + m + nr.

An integral computation easily shows that the only zeroes of # are at the
points (1/2) + (7/2) + m + nr, for integers m and n, and that these zeroes are
all simple.

Consider then the translate

0 (2) = 8(z - (1/2) - (7/2) - x)
which has simple zeroes at the points z + L. Note that
0 (z+1) = 6@ (2) and 0 (2 + 7) = —e~ 2"z 2)g(2) (3),

Now consider a ratio

IL o= (2)

R(z) = =*———.
(2) T, 6%)(z)
This function R(z) is certainly meromorphic on C, and is periodic, i.e., R(z+1) =
R(z). Therefore it will be L-periodic if and only if R(z + 7) = R(z). But

' _ | g(zi)(z +7)
RE+T) = I 0w+
—n H:ll e—27ri(z—z,-)0(z,-)(z)

= (—1) H?:l e—27ri(z~yj)0(yj)(z)

_ (_1)m_ne—2ﬂ-i[(m——n)z+2j yj—zi z,]R(Z)

Thus we need the extra factor

(_l)m—ne—2m’[(m—n)z+2j y,-—zt_ z5)
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to be identically 1 for all z. This forces m = n, and if so, this number is 1 if and

in —Zyj € 7.
? J

We have therefore proved the following.

only if

PROPOSITION 2.7. Fix a positive integer d, and choose any two sets of d com-
plex numbers {z;} and {y;} such that 3_, z;—)_; y; is an integer. Then the ratio
of translated theta functions

I 64 (2)
R(Z) = H]' 9(91)(Z)

is a meromorphic L-periodic function on C, and so descends to a meromorphic
function on C/L.

We note that since #(*) has a simple zero at each of the points of x + L, the
above ratio R has zeroes at the points z; + L and poles at the points y; + L of
C/L.

We will be able to prove later that every meromorphic function on C/L is of
this form, namely a ratio of translated theta-functions. Moreover in the next
section we will see that every lattice L may be put into the form Z + Zr, so this
seemingly special case is in fact the general one.

Meromorphic Functions on Smooth Plane Curves. Let f(z,y) = 0
define a smooth affine plane curve X ¢ C2. We have seen in Example 1.11
that the coordinate functions z and y are both holomorphic functions on X, and
hence so is any polynomial g(z,y). Therefore any ratio of polynomials r(z,y) =
g(z,y)/h(z,y) is a meromorphic function on X, as long as the denominator
h(z,y) does not vanish identically on X.

If the defining polynomial f(z,y) divides this denominator h(z, y), then clearly
h will vanish everywhere on X. A basic theorem of polynomial algebra and al-
gebraic geometry guarantees that this is the only case when h could vanish
identically on X. This is Hilbert’s Nullstellensatz, and for our purposes it can
be stated as follows:

THEOREM 2.8 (HILBERT’S NULLSTELLENSATZ). Suppose h is a polynomial
vanishing everywhere an irreducible polynomial f vanishes. Then f divides h.

See [Shafarevich77], for example. Therefore the only condition on a ratio
of polynomials g/h to obtain a meromorphic function on the affine plane curve
described by f = 0 is that f not divide the denominator h.

The situation is very similar in the projective case. Here we have homogeneous
coordinates [z : y : 2], with the plane curve X defined by the vanishing of an
irreducible nonsingular homogeneous polynomial F(z,y, z).

We no longer can take ratios of holomorphic functions, since there are no
nonconstant holomorphic functions on X. But we may still take ratios: if
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G(z,y,2) and H(z,y,z) are both homogeneous of the same degree, then the
ratio R(z,y,2) = G/H is a well defined complex-valued function everywhere in
the plane P? away from the zeroes of H.

We claim that such a ratio determines a meromorphic function on the smooth
projective plane curve X defined by F = 0, as long as the denominator H does
not vanish identically. Moreover, an easy extension of Hilbert’s Nullstellensatz
says that this can happen only if F' divides H.

Indeed, since a projective plane curve has the same charts as a smooth affine
curve, we may check that such a ratio R is meromorphic by checking on the
affine charts of P?. To check it for example on the C? where z # 0, we simply
set z = 1 in the equation F to obtain the affine equation f(z,y) = F(x,y,1) for
X, and also set z = 1 in the homogeneous polynomials G and H. Thus we see
that the function R is, in this C2 where z # 0, equal to the ratio of ordinary
polynomials g(z,y)/h(z,y) = G(z,y,1)/H(z,y,1). Hence it is meromorphic at
all points of X in this C?, since it is a ratio of holomorphic functions there.

Similar arguments in the other two C?’s of P? show that R is meromorphic
on all of X.

Therefore:

PROPOSITION 2.9. Let X be a smooth affine plane curve defined by an ir-
reducible nonsingular polynomial f(z,y) = 0. Then any ratio of polynomials
r = g(z,y)/h{z,y) is a meromorphic function on X as long as f does not divide
the denominator h.

In the projective case, let X be a smoaoth projective plane curve defined by an
irreducible nonsingular homogeneous polynomial F(z,y,2) = 0. Then any ratio
of homogeneous polynomials R = G(z,y,z)/H(z,y,z) where G and H have the
same degree is a meromorphic function on X as long as F' does not divide the
denominator H.

Smooth Projective Curves. It is time to make a proper definition of a
general Riemann surface found in a higher-dimensional projective space. The
idea is exactly motivated by the requirement that the above Proposition still be
true, namely that the ratios of homogeneous polynomials will give meromorphic
functions.

DEFINITION 2.10. Let X be a Riemann surface, which is a subset of a pro-
jective space P™. We say that X is holemorphically embedded in P" if for every
point p on X there is a homogeneous coordinate z; such that:

a. z; # 0 at p;
b. for every k, the ratio zx/z; is a holomorphic function on X near p; and
c. there is a homogeneous coordinate z; such that the ratio z;/z; is a local
coordinate on X near p.
A Riemann surface which is holomorphically embedded in projective space is
called a smooth projective curve.
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Let X be a smooth projective curve. If we fix a point p on X, and let z;
be the homogeneous coordinate with the above properties near p, then note
that any ratio of homogeneous coordinates z;/z; is meromorphic at p, since
zi/zx = (2:/25)/(2x/%;) is a ratio of holomorphic functions defined near p. (This
works at least when the coordinate zx is not identically zero on X.) Since the
ratios of the coordinates are meromorphic functions on X, so will any rational
function of these ratios. A rational function of these ratios can always be written
itself as a ratio of homogeneous polynomials of the same degree, by clearing
denominators; therefore we have immediately the statement corresponding to
the previous Proposition:

PROPOSITION 2.11. Let X be a smooth projective curve in P". Then any
ratio of homogeneous polynomials R = G(z, 21, ..., 2n)/H(20, 21, . .., 2,) where
G and H have the same degree is a meromorphic function on X as long as the
denominator H does not vanish identically on X.

It is easy to verify that all of the examples of Riemann surfaces which we have
found in projective space so far are holomorphically embedded:

PROPOSITION 2.12. The projective line P! is a smooth projective curve. Any
smooth projective plane curve X C P2 is a smooth projective curve. Any com-
plete intersection curve, and more generally any local complete intersection curve,
s a smooth projective curve.

PRrROOF. Suppose X is a local complete intersection curve in P™. Fix a point
p on X. Then near p, X is locally the graph of a set of n — 1 holomorphic
functions of a complex variable 2z, and therefore we may write X as the locus

[1:2:g2(2): - :gn(2)]

near p (after rearranging the coordinates if necessary). Here the homogeneous
coordinate z, is nonzero at p, and the ratio z = 21 /2 is a local coordinate at p;
finally all the ratios z; /2 are holomorphic at p. Since this is true for all points
p, X is holomorphically embedded. O

For a Riemann surface X to be holomorphically embedded in P" is essentially
equivalent to the above local form, namely that X is locally a graph of n — 1
holomorphic functions. Indeed, if we fix a point p, and for example assume that
2o is the homogeneous coordinate which is nonzero at p, with the ratio z = 23 /2
being a local coordinate on X near p, then it is clear that near p, X is the graph

1:2:92(2) -+ : gn(2)]

where gx(2) = 2 /2o is holomorphic.

There are essentially two ways to find smooth projective curves X. The
first we have seen: find X as the locus of common zeroes of a suitable set of
homogeneous polynomials, This leads to the local complete intersection idea,
which we have introduced earlier. The second we will see a bit later: take
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a known Riemann surface X and find a suitable map from X into projective
space.

Problems II1.2

A. Consider the projective line P!. Fix a point p € P!, and a finite set § C P!
with p ¢ S. Show that there exists a meromorphic function f on P! with a
simple zero at p and no zeroes or poles at any of the points of S.

B. Show that the series defining the theta-function converges absolutely and

uniformly on compact subsets of C.

. Show that 6(z + 1) = 6(z) for every z in C.

. Show that 8(z 4+ 7) = e~ ™[7+22lg(2) for every z in C.

. Show that 2y is a zero of 8 if and only if zg + m + n7 is a zero of § for every
m and n in Z. Moreover the order of zero of € at z; is the same as the order
of zero at zg + m + nr.

F. Show that the only zeroes of # are at the points (1/2) + (17/2) + m + nr, for
integers m and n, and that these zeroes are simple. (Hint: integrate 6'/6
around a fundamental parallelogram.)

G. Let {p;} and {g;} be two sets of d points on a complex torus X = C/L
(repetitions are allowed). Show that there exist numbers {z;} and {y;} in
C such that 7(z;) = p; and 7(y;) = ¢; for every ¢ with Y, z; = >, y; if and
only if °.p; = ). ¢; in the quotient group law of X.

H. Consider the complex torus X = C/L. Fix a point p € X, and a finite set
S C X with p ¢ S. Show that there exists a meromorphic function f on X
with a simple zero at p and no zeroes or poles at any of the points of S.

moa

3. Holomorphic Maps Between Riemann Surfaces

The Definition of a Holomorphic Map. Modern geometric philosophy
holds firmly to the notion that the first thing one does after defining the objects
of interest is to define the functions of interest. In our case the objects are
Riemann surfaces, and we have already addressed complex-valued functions on
Riemann surfaces. However “functions” are to be taken also in the sense of
mappings between the objects; once we define such mappings, we will have a
category of Riemann surfaces.

In the case of Riemann surfaces, which have local complex coordinates, the

" natural property of a mapping is to be holomorphic. Let X and Y be Riemann
surfaces.

DEFINITION 3.1. A mapping F': X — Y is holomorphic at p € X if and only
if there exists charts ¢y : U; — Vi on X withpe Uy and ¢ : Uy - Vo onY
with F(p) € Uy such that the composition ¢z o F o ¢]* is holomorphic at ¢1(p).
If F is defined on an open set W C X, then we say F is holomorphic on W if
F is holomorphic at each point of W. In particular, F is a holomorphic map if
and only if F is holomorphic on all of X.
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EXAMPLE 3.2. The identity mapping id : X — X is holomorphic for any
Riemann surface X.

As is the case with holomorphic functions, one can check the holomorphicity
of a map with any pair of charts. Specifically, we have the following.

LEMMA 3.3. Let F: X — Y be a mapping between Riemann surfaces.

a. F is holomorphic at p if and only if for any pair of charts ¢; : Uy —
Vi on X withp € Uy and ¢2 : Uy — Vo on'Y with F(p) € Us, the
composition ¢y o F o ¢! is holomorphic at ¢, (p).

b. F is holomorphic on W if and only if there are two collections of charts
{67 : U9 S v} on X with W c U, U and {6 : UY) - v}
on Y with F(W) < U, U such that ¢ o F o ¢{) " is holomorphic
for every i and j where it is defined.

EXAMPLE 3.4. If Y is the complex plane C, then a holomorphic map F' : X —
Y is simply a holomorphic function on X.

Holomorphic maps behave quite well with respect to composition. We leave
the following to the reader.

LEMMA 3.5.

a. If F' is holomorphic, then F is continuous and C*.

b. The composition of holomorphic maps is holomorphic: «f F : X - Y
and G :' Y — Z are holomorphic maps, then GoF : X — Z is a
holomorphic map.

c. The composition of a holomorphic map with a holomorphic function is
holomorphic: if F : X — Y s holomorphic and g is a holomorphic
function on an open set W C Y, then go F is a holomorphic function
on F~Y(W).

d. The composition of a holomorphic map with a meromorphic function is
meromorphic: if ' : X — Y is holomorphic and g is a meromorphic
function on an open set W C Y, then go F is a meromorphic function
on F~Y(W). (There is one mild proviso here: the image F(X) must not
be a subset of the set of poles of g.)

The second property, along with Example 3.2, insures that Riemann surfaces,
with holomorphic mappings, form a category.

The last properties above are often expressed as follows. Let F: X — Y bea
holomorphic map between Riemann surfaces. Then for every open set W C Y,
F induces a C-algebra homomorphism

F* : Oy (W) — Ox(F~Y(W))
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defined by composition with F: F*(g) = go F. We have the same notion for
meromorphic functions, and the map is also called F™*:

F* : My (W) - Mx(F~1(W))

is again defined as composition with F', if F' is not constant.
IfF:X —->Y and G:Y — Z are holomorphic maps, then it is trivial that
F*oG*=(GoFY.

Isomorphisms and Automorphisms. When are two Riemann surfaces to
be considered the same? The answer is of course the natural one.

DEFINITION 3.6. An isomorphism (or biholomorphism) between Riemann sur-
faces is a holomorphic map F : X — Y which is bijective, and whose inverse
F~1:Y — X is holomorphic. A self-isomorphism F' : X — X is called an
automorphism of X. If there exists an isomorphism between X and Y, we say
that X and Y are isomorphic (or biholomorphic). '

LEMMA 3.7. The Riemann Sphere Co and the projective line P! are isomor-
phic.

PROOF. The function from P! to the Riemann Sphere sending [z : w] to
(2Re(zw), 2Im(2d), [2* — Juf*)/(|2]" + |uf*) € §°
is an isomorphism onto Co,. O

Easy Theorems about Holomorphic Maps. Several theorems concerning
holomorphic maps are immediate consequences of the corresponding theorems
concerning holomorphic functions. We collect some of them here.

The first is the Open Mapping Theorem for holomorphic maps.

PROPOSITION 3.8 (OPEN MAPPING THEOREM). Let F : X — Y be a non-
constant holomorphic map between Riemann surfaces. Then I is an open map-
ping.

Next is the fact that the inverse of a holomorphic map is automatically holo-
morphic.

ProprosiTION 3.9. Let FF: X — Y bé a 1-1 holomorphic map between Rie-
mann surfaces. Then F is an isomorphism between X and its image F(X).

We have the analogue of the Identity Theorem.

ProrosiTION 3.10 (IDENTITY THEOREM). Let F' and G be two holomorphic
maps between Riemann surfaces X andY. If F = G on a subset S of X with a
limit point in X, then F = G.

The next proposition has no analogue in the theory of holomorphic functions,
since it deals with holomorphic maps with compact domain.
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PROPOSITION 3.11. Let X be a compact Riemann surface, andlet FF: X — Y
be a nonconstant holomorphic map. Then'Y 1is compact and F is onto.

Proor. Since F' is holomorphic and X is open in itself, F'(X) is open in Y
by the open mapping theorem. On the other hand, since X is compact, F(X) is
compact; since Y is Hausdorff, F(X) must be closed in Y. Hence F(X) is both
open and closed in Y, and since Y is connected, it must be all of Y. Thus F' is
onto, and Y is compact. []

PROPOSITION 3.12 (DISCRETENESS OF PREIMAGES). Let F' : X — Y be a
nonconstant holomorphic map between Riemann surfaces. Then for everyy €Y,
the preimage F~'(y) is a discrete subset of X. In particular, if X and Y are
compact, then F~'(y) is a nonempty finite set for every y € Y.

ProOoF. Fix a local coordinate z centered at y € Y, and for a point z €
F~1(y) choose a local coordinate w centered at z. Then the map F, written in
terms of these local coordinates, is a nonconstant holomorphic function z = g(w);
moreover g has a zero at the origin, since z (which is w = 0) goes to y (which is
z = (). Since zeroes of nonconstant holomorphic functions are discrete, we see
that, in some neighborhood of z, z is the only preimage of y. This proves that
F~1(y) is a discrete subset of X. The second statement follows since F' must be
onto (Proposition 3.11) and discrete subsets of compact spaces are finite. [

Meromorphic Functions and Holomorphic Maps to the Riemann
Sphere. We have noted above in Example 3.4 that any holomorphic function f
on a Riemann surface X can be viewed as a holomorphic map to the complex
plane C. A similar construction may be made for meromorphic maps.

Let f be a meromorphic map on X. The values which f can take are complex
numbers, away from the poles of f. At a pole of f, the natural “value” is co. To
make this precise, we define a function F' : X — C by

f(z) € C if z is not a pole of f
F(z) =
00 if z is a pole of f.

It is easy to see that this mapping F' is a holomorphic map. Moreover, we
have the following correspondence, which we leave to the reader to verify.

PRroPOSITION 3.13. The above construction induces a 1-1 correspondence be-
tween

F: X ->Cq,

which are not identically oo

meromorphic functions f
on X

holomorphic maps
} nd

Of course, the constant functions correspond to the constant maps.

Since C is isomorphic to P!, there is of course a correspondence between
meromorphic functions and maps to P!; it should be clear what the precise
statement is. Let us simply write down the formula.
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Suppose that f is a meromorphic function on X, and consider a point p €
X. In a neighborhood of p, f may be written as the ratio of two holomorphic
functions f = g/h. The corresponding map to P!, in this neighborhood of p,
sends a point z to [g(z) : h(z)].

A meromorphic function cannot be globally written as a ratio of holomorphic
functions in general, so this representation for the map to P! is generally possible
only locally, in a neighborhood of each point. However we do see that any
holomorphic map to P! can be locally written in this form: z goes to [g(z) : h(z)],
where g and h are holomorphic functions.

This correspondence between meromorphic functions and holomorphic maps
to the Riemann Sphere makes it possible to make geometric arguments (namely,
arguments about maps between Riemann surfaces) in order to draw conclusions
about holomorphic and meromorphic functions. This is in fact a central tool in
the theory.

Meromorphic Functions on a Complex Torus, Again. Let us give an
example of the kind of arguments which are possible by exploiting the correspon-
dence between meromorphic functions and holomorphic maps to the Riemann
Sphere. In particular, let us prove the analogue to Corollary 2.6 for meromorphic
functions on a complex torus.

LEMMA 3.14. Let f be any nonconstant meromorphic function on a compler
torus X = C/L. Then

Zordp(f) =0.

Proor. We'll give a proof.in the case that L = Z + Z7, with Im(7) > 0; this
is in fact the general case (see Problem K below).

Let f be a meromorphic function on X. The statement says that, counting via
order, f has exactly as many zeroes as poles. Suppose this is false; by replacing
f by 1/f if necessary we may assume that f has more poles than zeroes. Let
P1,...,Pn be the zeroes of f, and let ¢y, ..., qn be the poles of f, with n < m;
repetitions are allowed in these lists if the zero or pole is of order higher than
one.

Add pnyi,...,Pm to the list of zeroes in an arbitrary way, with the only
condition that Y p; = Y ¢; in the quotient group law of X. Lift each p; to
z; € C and each ¢; to y; € C, in such a way that Y z; = Yy in C. (See
Problem 11.2,G.) Form the ratio of translated theta-functions as in Proposition
2.7: R(z) =[], G(Ii)(z)/l—[j 6(:)(2). Since R is meromorphic and L-periodic,
we may consider R as a meromorphic function on X = C/L. As such, it has
zeroes exactly at the p;’s and poles at the g;’s, for every i =1,...,m.

Therefore the ratio ¢ = R/f has no poles, with only zeroes at the points
Dn+ls---,Pm- But X is compact; therefore ¢ is constant. Since g has zeroes, it
must be identically zero, which is nonsense since R is not.

This contradiction proves the lemma. O
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We will be able to give a proof of the above statement for an arbitrary compact
Riemann surface shortly, along slightly different lines.

Problems I1.3

A. Verify Example 3.4: if Y is the complex plane C, prove that a holomorphic
map F': X — Y is simply a holomorphic function on X.

B. Prove all the statements of Lemma 3.5.

C. Show that under the isomorphism between P! and the Riemann Sphere C,
the points [z : 1] are sent to the finite points z, and the point [1 : 0] is sent
to oco.

D. Explicitly write down the inverse holomorphic map to the isomorphism from
P! to C.. given in the proof of Lemma 3.7. Check everything necessary.

E. Let 7 : C —» X = C/L be the natural projection map defining a complex
torus X. Let Y be a Riemann surface. Show that amap FF : X — Y is
holomorphic if and only if o7 : C — Y is holomorphic. Deduce that the
projection map 7 is a holomorphic map.

F. Let f(z,w) and g¢{z,w) be homogeneous polynomials of the same degree
with no common factor, and not both identically zero. Show that the map
F :P! — P! defined by sending [z : w] to [f(z,w) : g(z,w)] is well defined
and holomorphic. What if f and g have a common factor?

G. Let A= (i Z) be an invertible 2-by-2 matrix over C. Show that the map

F4:P! - P! sending [2 : w] to [az + bw : cz + dw| is an automorphism of
P!. For which matrices A is F4 the identity? Show that Fug = F4 o Fp.
H. Show that after identifying P! with C, the automorphism F4 defined above
takes 2z € Cy, t0 (az+b)/{cz+ d); hence it is a linear fractional transforma-
tion.
I. Let X be a compact Riemann surface and f a nonconstant meromorphic
function on X. Show that f must have a zero on X, and must have a pole
on X.
J. Prove that, given a meromorphic function f on a Riemann surface X, the
associated map F': X — C, is holomorphic. Verify the 1-1 correspondence
of Proposition 3.13.
K. Recall that a lattice L C C is an additive subgroup generated (over Z) by two
complex numbers w; and wy which are linearly independent over R. Thus
L = {mw; + nwy | m,n € Z}.
1. Suppose that L C L’ are two lattices in C. Show that the natural map
from C/L to C/L’ is holomorphic, and is biholomorphic if and only if
L="L.
2. Let L be a lattice in C and let a be a nonzero complex number. Show
that aL is a lattice in C and that the map

¢:C/L— C/(aL)
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sending the coset z + L to (az) + (al) is a well defined biholomorphic
map.

3. Show that every torus C/L is isomorphic to a torus which has the
form C/(Z + Zr), where T is a complex number with strictly positive
imaginary part.

4. Global Properties of Holomorphic Maps

Local Normal Form and Multiplicity. It may seem strange to have the
first part of a section on global properties dealing with a completely local con-
cept. However, most global properties actually state that some function of local
invariants is constant. This is the case in our situation, and so we must introduce
the local invariant before proceeding.

A holomorphic map between two Riemann surfaces has a standard normal
form in some local coordinates: essentially, every map looks like a power map.
This we now present.

ProrosiTION 4.1 (LocAL NORMAL FORM). Let F: X — Y be a holomor-
phic map defined at p € X, which is not constant. Then there is a unique integer
m > 1 which satisfies the following property: for every chart ¢ : Uy — Vo onY
centered at F(p), there exists a chart ¢1 : Uy — V1 on X centered at p such that
$2(F (97" (2))) = 2™

PROOF. Fix a chart ¢; on Y centered at F(p), and choose any chart 1 :
U — V on X centered at p. Then the Taylor series for the function T'(w) =
$2(F (¢~ (w))) must be of the form

[ee]
T(w) = Z cow'

with ¢,, # 0, and m > 1 since T(0) = 0. Thus we have T{w) = w™S(w) where
S(w) is a holomorphic function at w = 0, and S(0) # 0. In this case there
exists a function R(w) holomorphic near 0 such that R(w)™ = S(w), so that
T(w) = (wR(w))™. Let n{w) = wR(w); since 1’ (0) # 0, we see that near 0
the function 7 is invertible (by the Implicit Function Theorem), and of course
holomorphic. Hence the composition ¢; = o4 is also a chart on X defined and
centered near p. If we think of 1 as defining a new coordinate z (via z = n(w)),
we see that z and w are related by z = wR(w). Thus

$2(F (91 (2))) S (F(Y~ (n7(2)))
T(n~'(2))
= T(w)
(wR(w))™

= 2™
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The uniqueness of m comes from noticing that, if there are local coordinates
at p and F(p) such that the map F has the form z — 2™, then near p, there
are exactly m preimages of points near F'(p). Thus this exponent m can be
detected solely by studying the topological properties of the map F' near p, and
is therefore independent of the choices of the local coordinates. [

DEFINITION 4.2. The multiplicity of F' at p, denoted mult,(F), is the unique
integer m such that there are local coordinates near p and F(p) with F' having
the form z — 2™,

EXAMPLE 4.3. Let ¢ : U — V be a chart map for X, considered as a holo-
morphic map to C. Then ¢ has multiplicity one at every point of U.

Note that mult,(F) > 1 always. There is a simple way to compute the
multiplicity without having to find local coordinates which put the map F' into
local normal form, or even to have local coordinates which are centered at the
point in question and its image. Take any local coordinates z near p and w near
F(p); say that p corresponds to 2o and F(p) to wp. In terms of these coordinates,
the map F may be written as w = h(z) where h is holomorphic. Then of course
Wy = h(Zo).

LEMMA 4.4. With the above notation, the multiplicity mult,(F) of F' at p is
one more than the order of vanishing of the derivative h'{z) of h at zy:

mult,(F) = 1 + ord,, (dh/dz).

In particular, the multiplicity is the exponent of lowest strictly positive term of
the power series for h: if h(z) = h(zo) + Y oo, ci(2 — 20)" with m > 1 and
tm # 0, then mult,(F) = m.

PrROOF. We saw in the proof of the Local Normal Form Proposition 4.1 that
the multiplicity was the lowest term appearing in the power series T for F' when
centered local coordinates are used at p and at the image point F(p). With the
above notation, z — z; and w — wy are such centered local coordinates; therefore
since w — wg = h(2) — h(zy), we see that the multiplicity is the lowest term
appearing in the power series expansion for h(z) — h(2p) about z = z;. By
Taylor’s Theorem, this is one more than the order of the derivative of h at zg,
as stated. O

The above lemma shows that the points of the domain where F' has multiplic-
ity at least two form a discrete set. Indeed, such points correspond to zeroes of
the derivative of a local formula h for F', and since h is holomorphic, the zeroes
of its derivative are discrete. One can also check this by the local normal form.

DEFINITION 4.5. Let F : X — Y be a nonconstant holomorphic map. A
point p € X is a ramification point for F' if mult,(F) > 2. A point y €Y is a
branch point for F if it is the image of a ramification point for F'.
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Thus the ramification points and branch points for a holomorphic map form
discrete subsets of the domain and range respectively.

Let us do an example concerning smooth plane curves. Suppose that X is a
smooth affine plane curve defined by f(z,y) = 0. Define 7 : X — C by projection
onto the r-axis: 7(z,y) = . We claim that 7 is ramified at p = (zo,y0) € X if
and only if (3f/0y)(p) = 0.

Suppose first that (3f/8y)(p) # 0. Then = is a chart map for X near p, and
so certainly has multiplicity one.

Conversely, suppose that (8f/dy)(p) = 0. Then since X is smooth at p,
we must have (8f/0z)(p) # 0, and so the function y is a chart map for X
near p. By the Implicit Function Theorem, near p, X is locally the graph of a
holomorphic function g(y). Hence f(g(y), y) is identically zero in a neighborhood
of yo. Taking the derivative with respect to y, we see that (8f/3x)g’ (y)+(0f/dy)
is identically zero near p. By assumption the second term is zero at p, and so
since (8f/0z)(p) # 0, we must have ¢'(yy) = 0. »

But g(y) is exactly the local formula for the map . Hence by the derivative
criterion Lemma 4.4, 7 is ramified at p.

The same remark holds for a smooth projective plane curve X. Suppose that
X is defined by a homogeneous polynomial F(z,y,z) = 0. Consider the map
G : X — P! defined by projection to the y = 0 line: Gz :y: z] = [z : z]. Then
G is ramified at p € X if and only if (3F/8y)(p) = 0. This follows directly from
the above analysis, only noting that locally, X is the affine plane curve defined
by f(z,y) = F(z,y,1) = 0. (One has to check the chart where z = 1 also; one
gets the same answer.)

These statements will be useful enough to collect them below:

LEMMA 4.6. Let X be a smooth affine plane curve defined by f(z,y) = 0.
Define 7 : X — C by n(z,y) = z. Then 7 is ramified at p € X if and only if
(8f/0y)(p) = 0. '

Let X be a smooth projective plane curve defined by a homogeneous polynomial
F(z,y,2z) = 0; consider the map G : X — P! defined by Gz : y : 2] = [z : 2].
Then G is ramified at p € X if and only if (OF/0y)(p) = 0.

Finally let us remark on a relationship between the multiplicity (which is
defined for a holomorphic map between Riemann surfaces) and the order (which
is defined for a meromorphic function). There ought to be some relationship, by
the correspondence given in Proposition 3.13. Let f be a meromorphic function
on a Riemann surface X, and let F : X — C,, be the associated holomorphic
map to the Riemann Sphere.

Suppose p € X is not a pole of f; let zg = f(p). Then the function f — zy has
a zero at p, and by Lemma 4.4, we see that mult,(F) = ord,(f — f(p)).

Suppose that p is a pole of f; then the order of f at p is negative, and p is a
zero of 1/ f; we obviously have mult,(F) = —ord,(f) in this case. Let us collect
these remarks in the following.
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LEMMA 4.7. Let f be a meromorphic function on a Riemann surface X, with
assaciated holomorphic map F: X — C.
a. If p€ X is a zero of f, then mult,(F) = ord,(f).
b. If p is a pole of f, then mult,(F) = — ord,(f).
c. If p is neither a zero nor a pole of f, then mult,(F) = ord,(f — f(p))-

The Degree of a Holomorphic Map between Compact Riemann Sur-
faces. Holomorphic maps between compact Riemann surfaces exhibit several
beautiful properties, of which the most important is the following.

ProrosITION 4.8. Let F : X — Y be a nonconstant holomorphic map be-
tween compact Riemann surfaces. For each y € Y, define dy(F) to be the sum
of the multiplicities of F' at the points of X mapping to y:

dy(F)= Y mult,(F).

pEF~1(y)

Then d,(F) is constant, independent of y.

PROOF. The idea of the proof is to show that the function y — dy(F) is
a locally constant function from Y to the integers Z. Since Y is connected, a
locally constant function must be constant, and we will be done.

Before proceeding, consider the open unit disc D = {z € C | ||2|| < 1} and
the map f: D — D given by f(z) = z™ for some integer rn > 1. This map f
is of course holomorphic and onto; the only ramification point for f is at z = 0,
where the multiplicity is m. All other points have multiplicity one. For any
w € D, if w # 0 there are exactly m preimages (the m m®”* roots of w), each of
multiplicity one; if w = 0, the only preimage is z = 0, which has multiplicity m.
Therefore this local normal form map f satisfies the constancy condition above:
the sum of the multiplicities of the preimage points is constantly m.

Clearly if one has a disjoint union of such maps, that is, a map from the
disjoint union of several such disks to D (each possibly with a different power
m), the constancy condition is still satisfied. Our goal is then to show that for
any holomorphic nonconstant map F as in the Proposition, F' is locally (above
a neighborhood of any point y in the target) exactly a disjoint union of these
power maps.

Fix then a point ¥ € Y, and let {z,...,2,} be the inverse image of y under
F. Choose a local coordinate w on Y centered at y. By the Local Normal Form
Proposition 4.1, we may choose coordinates {z;} on X, with z; centered at z;
for each i = 1,...,n, such that in a neighborhood of x; the map F sends z; to
w = z["*. Therefore, if we look at these neighborhoods of the z;, we have exactly
the desired disjoint union description of F'.

What is left to prove is that, near y, there are no other preimages left unac-
counted for which are not in the neighborhoods of the z;’s. This is where we use
the compactness of X.
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Suppose that, arbitrarily close to y, there are preimages which are not in any
of the above neighborhoods of the z;’s. With this assumption we may find a
sequence of points of X, none of which lie in any of the neighborhoods of the
x;'s, such that the images of these points under F converge to y € Y. Since X
is compact, we may extract a convergent subsequence, say {p,}; this sequence
then has the property that it converges (say to a point z € X) and the sequence
of images F(p,) converges to y. Since F' is continuous, the limit point r must
lie over y: F(z) = y. Hence by assumption z is one of the x;’s; and so we obtain
a contradiction, since none of the p,’s lie in the neighborhoods of the z;’s.

This proves that there are no other unaccounted preimages in a neighborhood
of y, and finishes the proof. O

The above Proposition motivates the following definition.

DEFINITION 4.9. Let F': X — Y be a nonconstant holomorphic map between
compact Riemann surfaces. The degree of F, denoted deg(F'), is the integer d, (F)
foranyy €Y.

This is another example of how “counting properly” gives a nice formula.
Here we are counting preimages for holomorphic maps, and Proposition 4.8 says
that if we count with multiplicity, the number of preimages is constant, equal to
the degree of the map (by definition).

Note that when F has degree one, then it is 1-1. Therefore we obtain the
following immediately from Proposition 3.9:

COROLLARY 4.10. A holomorphic map between compact Riemann surfaces is
an isomorphism if and only if it has degree one.

For example, suppose that X is a compact Riemann surface, p is a point of
X, and f is a meromorphic function on X with a simple pole at p and no other
poles. Then the corresponding map F : X — C,, has multiplicity one at p, and
p is the only point mapping to oo; hence F' has degree one, and is, by the above
Corollary, an isomorphism. Therefore we have shown the following simple but
useful fact:

PROPOSITION 4.11. If X is a compact Riemann surface having a meromor-
phic function f with a single simple pole, then X is isomorphic to C.

Suppose that F': X — Y is a nonconstant holomorphic map between compact
Riemann surfaces. If we delete the branch points (in Y) of F', and all of their
preimages (in X), we obtain a map F : U — V between 2-manifolds which is
a covering map in the sense of topology: every point of the target V has an
open neighborhood N C V such that the inverse image of N under F breaks
into a disjoint union of open sets M; C U with the map F' sending each M,
homeomorphically onto N.
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Because of this, a map F' as above is sometimes called a branched covering. It
is a covering map away from finitely many points (the branch points), and over
these branch points the map has a very controlled behaviour.

The Sum of the Orders of a Meromorphic Function. We are now
in a position to prove the general statement concerning the sum of the orders
of a nonconstant ‘meromorphic function on a compact Riemann surface. This
generalizes what we have already seen for functions on the Riemann Sphere
(Corollary 2.6) and functions on a complex torus (Lemma 3.14). In these cases,
the proofs were based on the ready availability of a wealth of meromorphic
functions (rational functions in the case of the Riemann Sphere, and ratios of
translated theta-functions in the case of a complex torus).

Now we can give a proof in general based on the theory of the degree.

PROPOSITION 4.12. Let f be a nonconstant meromorphic function on a com-
pact Riemann surface X. Then

Y ordy(f) =0.

ProOOF. Let F : X — C be the associated holomorphic map to the Riemann
Sphere. Let {z;} be the points of X mapping to 0, and let {y;} be the points of
X mapping to oo; the z;’s are exactly the zeroes of f, and the y;’s are its poles.
Let d be the degree of the mapping F'.

By the definition of the degree, we have that

d= Zmultzi(F) and d= Zmultyj(F).

7

Now the only points of X where f has nonzero order are at its zeroes and
poles, which are these points {z;} and {y;}. By Lemma 4.7, we have that

mult,, (F) = ordg, (f) and mult, (F) = —ord,,(f).

Hence

doordy(f) = D orda,(f) + 3 ordy, (f)
> mult,, (F) - ) mult, (F)

= 0

since both sums are equal to the degree d. [
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Meromorphic Functions on a Complex Torus, Yet Again. As an ap-
plication of the degree theory for a holomorphic map, we can now characterize
all meromorphic functions on a complex torus.

ProposITION 4.13. Any meromorphic function on a complex torus is given
by a ratio of translated theta-functions.

PrOOF. Let X be a complex torus, and f a nonconstant meromorphic func-
tion on X. We have seen that f has as many zeroes as poles (Lemma 3.14); let
{p:}, i = 1,...,n be the zeroes and {¢;}, ¢ = 1,...,n be the poles of f, with
repetitions allowed for zeroes and poles of higher order.

We will show below that in fact ). p; = >, ¢; in the quotient group law of
X. If this is true, then we may finish the argument by lifting each p; to z; € C
and each ¢; to y; € C with 3=, z; = 3", y; (see Problem I1.2,G). Then the ratio of
translated theta-functions R(z) = [], (=) (2)/ I1; 6(%)(z) has the same zeroes
and poles as f does, to the same orders. Hence f/R has no zeroes or poles, so
must be constant since X is compact.

Now suppose that >_,p; # >, ¢ in the quotient group law of X. Choose
points pp and go in X such that 7 p; = Y0 ;¢ in X. Form the ratio
of translated theta-functions R(z) = [\, 8% (2)/ [T;—¢ 6@ (2) as above, and
consider the meromorphic function ¢ = R/f on X. Note that g has exactly one
zero (at po) and one pole (at qg), both of order one, since all other zeroes and
poles are cancelled away.

Let G : X — C4 be the holomorphic map to the Riemann Sphere which
corresponds to the meromorphic function g. Since ¢ has a single simple zero,
and a single simple pole, we see that as a holomorphic map, G has degree one.
Hence G is an isomorphism, by Corollary 4.10. But X has genus one and the
Riemann Sphere has genus zero; there certainly can be no isomorphism between
them.

This contradiction shows that we must have had ), p; = >_, ¢; in the quotient
group law of X after all, completing the proof. [

The Euler Number of a Compact Surface. Let S be a compact 2-
manifold (possibly with boundary). A triangulation of S is a decomposition
of § into closed subsets, each homeomorphic to a triangle, such that any two
triangles are either disjoint, meet only at a single vertex, or meet only along a
single edge.

DEFINITION 4.14. Let S be a compact 2-manifold, possibly with boundary.
Suppose a triangulation of S is given, with v vertices, e edges, and ¢ triangles.
The Euler number of S (with respect to this triangulation) is the integer e(S) =
v—e+t.

Please forgive the double use of the notation e; no confusion will arise if the
reader is awake.
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The main fact about Euler numbers is that they do not depend on the par-
ticular triangulation one uses to compute them. These ideas properly belong to
a course in topology, and we will only sketch the proof of the following.

PROPOSITION 4.15. The Euler number is independent of the choice of trian-
gulation. For a compact orientable 2-manifold without boundary of topological
genus g, the Euler number is 2 — 2g.

PROOF. [Sketch] First we must introduce the notion of a refinement of a
triangulation. Suppose one has a triangulation of a surface; let T be one of the
triangles. One obtains a “finer” triangulation by adding a vertex somewhere
in the interior of T, and adding three edges from that new vertex to the three
original vertices of T. This essentially replaces T with three triangles, adding a
net of one vertex, three edges, and two triangles. Note that the Euler number is
unchanged by this operation.

Another way to refine the triangulation is to take two neighboring triangles
which meet along a common edge E. Then one adds a vertex somewhere in the
interior of F, and two edges to each of the opposite vertices of the two triangles.
This essentially bisects each of the two triangles, adding a net of one vertex,
three edges, and two triangles again.

If the 2-manifold has a boundary, one may simply bisect a single triangle along
an edge which forms part of the boundary. This adds a net of one vertex, two
edges, and one triangle.

These three operations are called elementary refinements; note that none of
them change the Euler number. A general refinement is obtained by making a se-
quence of elementary refinements. Therefore a triangulation and any refinement
give the same Euler number for the surface.

Now comes the main theorem concerning triangulations: any two triangula-
tions of a compact 2-manifold (even with boundary} have a common refinement.
(To see this, simply superimpose both triangulations on the surface, then add
lots of vertices and edges to make the union a triangulation; finally note that
doing this is a refinement of either one.)

This is now enough to show that the Euler number is well defined: since the
Euler number is constant under refinement, and any two triangulations have
a common refinement, we see that any two triangulations give the same Euler
number.

Now make a specific computation with any triangulation you wish, and dis-
cover that a sphere has Euler number 2; this is the genus zero case. Also check
that a cylinder has Euler number 0, and that a closed disk has Euler number 1.

Now to increase the genus of a surface by one, one removes two disks, and
attaches a cylinder along the two bounding circles. Removing the two disks
drops the Euler number by one each, so by two total; adding the cylinders does
not change the Euler number. Therefore the Euler number decreases by two if
the genus increases by one.
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Since the Euler number of a sphere (with genus zero) is 2, by induction we
see that a surface of genus g has Euler number 2 — 2g. O

Note that we have swept under the rug an important theorem concerning
compact Riemann surfaces: they can all be triangulated. This we leave to the
reader to either look up or prove by induction.

Hurwitz’s Formula. The constancy of the degree for a holomorphic map
between compact Riemann surfaces, combined with the theory of the Euler num-
ber, gives an important formula relating the genera of the domain and range with
the degree and ramification of the map. This is known as Hurwitz’s formula,
and its use is ubiquitous in the theory of compact Riemann surfaces.

THEOREM 4.16 (HURWITZ'S FORMULA). Let F : X — Y be a nonconstant
holomorphic map between compact Riemann surfaces. Then

29(X) — 2 = deg(F)(29(Y) — 2) + Y _ [mult, (F) — 1].
peX

PRrROOF. Note that since X is compact, the set of ramification points is finite,
so that the sum (which may be restricted to the ramification points of F) is a
finite sum.

Take a triangulation of Y, such that each branch point of F is a vertex.
Assume there are v vertices, e edges, and t triangles. Lift this triangulation to
X via the map F, and assume there are v’ vertices, ¢’ edges, and ¢’ triangles on
X. Note that every ramification point of F' is a vertex on X.

Since there are no ramification points over the general point of any triangle,
each triangle of Y lifts to deg(F') triangles in X. Thus t' = deg(F)t. Similarly
e/ = deg(F)e. Now fix a vertex ¢ € Y. The number of preimages of q in X is
|F~1(q)|, which we can rewrite as

IFigl = > 1
PEF~1(q)

deg(F)+ > [1— mult,(F)].

pEF~1(q)

Therefore the total number of preimages of vertices of Y, which is the number
v’ of vertices of X, is

v = Z (deg(F) + 2 (1 — mult, (F)])

vertex ¢ of v peF~1(q)

= deg(Flv— > > [mult,(F) - 1]

vertex ¢ of Y pEF~1(q)

= deg(F)v - Z [mult, (F) — 1].

vertex p of X
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Therefore

29(X)-2 = —-e(X)

= —’Ul + e/ _ t/
= —deg(Fyv+ > [mult,(F)— 1]+ deg(F)e — deg(F)t

vertex p of x

= —deg(F)e(Y)+ Z [mult,,(F) — 1]

vertex p of x

= deg(F)(29(Y) - 2)+ Y _ [mult,(F) — 1],
peEX

the last equality holding because every ramification point of F' is a vertex of

X.

O

We may view this proof as resolving two different ways of computing preim-

ages. If we “count properly”, we take into account the ramification of the map
and all of the multiplicities. If we count “naively”, we get a computation of the
Euler number. Putting these two things together gives Hurwitz’s formula.

Problems I1.4

A,

Verify the statement in Example 4.3 that chart maps have constant multi-
plicity one. Is the converse true? (l.e., is every holomorphic map from an
open set in X to an open set in C with constant multiplicity one, a chart
map?)

. Let F' be a holomorphic map between Riemann surfaces. Prove that the set

of points p with mult,(F) > 2 forms a discrete subset of the domain by using
the Local Normal Form.

Let F: X - Y and G:Y — Z be two nonconstant holomorphic maps
between Riemann surfaces. Show that if p € X, then mult,(G o F) =
mult,(F) mult g, (G). Show that if f is a meromorphic function on Y, then
ord,(f o F') = multy,(F) ordppy (f)-

. Explicitly triangulate the sphere, the disk, and the cylinder and verify that

they have Euler numbers 2, 1, and 0 respectively.

. Show that if f is a holomorphic function at p, and mult,(f) = 1 (considering

f as a holomorphic map locally to C), then f is a local coordinate function
at p. '

. Let f be a global meromorphic function on a compact Riemann surface X.

Show that f is a local coordinate at all but finitely many points of X.

. Let f(2) = 23/(1 — 2?), considered as a meromorphic function on the Rie-

mann Sphere C. Find all points p such that ord,(f) # 0. Consider the
associated map F' : Coo — C,. Show that F' has degree 3 as a holomorphic
map, and find all of its ramification and branch points. Verify Hurwitz’s
formula for this map F.
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H. Let f(z) = 42%(z — 1)2/(2z —1)?, considered as a meromorphic function
on the Riemann Sphere C,. Find all points p such that ord,(f) # 0.
Consider the associated map F : Coo — Cy. Show that F has degree 4 as a
holomorphic map, and find all of its ramification and branch points. Verify
Hurwitz’s formula for this map F.

I. Let F: X — Y be a nonconstant holomorphic map between compact Rie-
mann surfaces.
1. Show that if Y =2 P!, and F has degree at least two, then F' must be
ramified.
2. Show that if X and Y both have genus one, then F is unramified.
3. Show that g(Y) < ¢g(X) always.
4. Show that if g(Y) = g(X) > 2, then F is an isomorphism.

J. Let X be the projective plane curve of degree d defined by the homogeneous
polynomial F(z,y,z) = % + y? + z%. This curve is called the Fermat curve ‘
of degree d. Let 7: X - P! be given by [z : y: 2] = [z : y].

Check that the Fermat curve is smooth.

Show that 7 is a well defined holomorphic map of degree d.

Find all ramification and branch points of .

Use Hurwitz’s formula to compute the genus of the Fermat curve: you

should get

W =

o) = (d—1)2(d—2)‘

K. Let U be the affine plane curve defined by z? = 3+ 10t + 3t%. Let V be the
affine plane curve defined by w? = 2® —1. Show that both curves are smooth.
Show that the function F' : U — V defined by z = (1 +¢2)/(1 — t2) and
w=2z/(1- 152)3 is holomorphic and nowhere ramified whenever ¢ # 1.

Further Reading

The basic material on singularities of complex functions is standard fare in all
texts on complex variables; each of the texts mentioned at the end of Chapter I
have plenty on this, and also sections on harmonic functions, which are sometimes
given short shrift in a first course.

Many authors introduce meromorphic functions on a torus {also known as
elliptic functions) via the Weierstrass P-function; this is the approach taken for
example in [Ahlfors66], [JS87], [Lang85], and [Lang87]. We have taken the
approach of theta-functions, to emphasize the analogy between ratios of theta-
functions (on a torus) and ratios of homogeneous polynomials (on the projective
line); this is also the approach of [Clemens80]. For (much) more depth on
theta-functions, see [R-F74], [Gunning76], and [Mumford83].

We have mentioned Shafarevich’s text [Shafarevich77] for the Nullstellen-
satz; there are many other references, many in texts in algebra, for example,
[Z-S60], [AM69], [Hungerford74], and [Lang84]; students just starting out
may find the treatment in [Artin91] less steep. The Nullstellensatz is at the
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heart of algebraic geometry, and it is mentioned in all elementary texts, but of-
ten not proved; see [Fulton69], [Mumford76], [Hartshorne77|, [Kendig77],
[Reid88|, [Harris92], and [C-L-092] for variety.

The Hurwitz Formula is a fundamental result, surely the centerpiece of this
chapter. Another proof may be had without the topological arguments, using
differential forms; with this approach the formula is a consequence of Riemann-
Roch. It is sometimes referred to as the Riemann-Hurwitz Formula. The ap-
proach we have taken is similar to that in [Reyssat89], [JS87], and [Kirwan92],
while [Narasimhan92] and [Forster81] take the differential forms route.



Chapter III. More Examples of Riemann Surfaces

1. More Elementary Examples of Riemann Surfaces

Lines and Conics. Special examples of smooth projective plane curves are
the curves of low degree. Curves of degree one are lines, curves of degree two
are conics, curves of degree three are cubics, etc.

Lines are relatively easy to understand:

LEMMA 1.1. Any line in P? is nonsingular and is isomorphic to P'.

PROOF. Let [z : y : 2] be the homogeneous coordinates of P2. Then any line
X is given by an equation F(z,y,z) = az + by + ¢z = 0, where the coeflicients
a,b, ¢ are not all zero. These coefficients are exactly the three partial derivatives
of F, and therefore F' is nonsingular.

To see that X is isomorphic to P!, we may assume that a # 0. Then an
isomorphism from P! to X is given by sending [r : s] to [—(br+cs)/a:7:s]. O

Conics are more interesting, and of course have been one of the favorite objects
of study for geometers for millenia. Conics are defined by quadratic equations
of the form

F(z,y,z) = az® + 2bzy + 2cxz + dy® + 2eyz + f2°,

where a,b,c,d, e, f are complex constants, not all zero. We have inserted the
factor of 2 in the coefficients so that we may write F' conveniently in matrix
form

a b ¢ T
Fz,y,2)=(c y 2)[b d e||y|=VT4ry,
c e f z

where V is the column vector of variables. We see that F' determines and is
determined by a 3-by-3 symmetric matrix Ag.

LEMMA 1.2. The quadratic polynomial F is nonsingular if and only if the
matriz Ap 1s invertible.

57
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PRroOF. The vector of 3 partial derivatives of F' is exactly 24ArV. Hence for
F to be singular there must exist a point, in P? (represented by a nonzero column
vector V) such that 24V, = 0. This happens if and only if A is a singular
matrix. [

Now suppose that T is a nonsingular 3-by-3 matrix. Let F4 be the quadratic
equation defined by the symmetric matrix A. Note that B = T AT is also
symmetric; let Fp be the quadratic equation defined by B.

LEMMA 1.3. The map T, defined by sending V to TV, gives an isomorphism
from the curve Xp defined by Fg to the curve X4 defined by Fj.

Proo¥. Clearly if the point V lies on Xg, so that V' (TTAT)V = 0, then
(TV)T A(TV) = 0, so that the point TV lies on the curve X4. Therefore T
maps Xp to X4, and by symmetry the inverse map 7! maps X4 back onto
XB5. One now checks that T is holomorphic to complete the proof; we leave this
to the reader. O

Now we appeal to some linear algebra: over the complex numbers, any in-
vertible symmetric matrix 4 may be factored as A = T T for some invertible
T. We conclude the following:

COROLLARY 1.4. Any smooth projective plane conic is isomorphic to the conic
defined by the identity matriz, which is the conic given by 2% +y° + 22 = 0. In
particular, any two smooth projective plane conics are isomorphic. Moreover,
there is an isomorphism of the form V w— TV, where T is an invertible 3-by-3
matriz.

Thus to study conics up to isomorphism, we can pick any one and study it. It
is convenient to pick the conic X defined by F = xz — y2, which is nonsingular.
Define a map G : P! — X by sending [r : s] to [r? : s : s%]; check that this
is a holomorphic map. Moreover it is an isomorphism: the inverse map sends
[z:y:z] on X to the point [z : y] in P! (if one of z or y is nonzero) or to the
point [y : z] (if one of y or z is nonzero). Note that this is well defined: if both
conditions are satisfied, then [z : y] = [y : 2] in P!, since 2z = 3. Therefore:

COROLLARY 1.5. Any smooth projective plane conic is isomorphic to P*. In
particular, it has topological genus zero.

The isomorphism described above is actually geometrically inspired. Let L
be the line in the plane defined by z = 0, and let p be the point [0 : 0 : 1] which
is on the conic X (but not on the line L). For any point £ € L, one can form the
line M, joining £ to p; this line will meet X at p and at one other point z,. The
map sending £ to x¢ is G.

Conversely, given = # p on the conic X, form the line joining x to p, and
intersect that with L; this gives the map H from the conic back to the line.
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One usually hears this isomorphism as being given by “projection from a point
on the conic”.

Now let us use a bit more symmetric linear algebra; the precise statement we
need is that two symmetric matrices A and B are related by an invertible matrix
T with B = T'7 AT if and only if they have the same rank. Therefore quadratic
equations are classified (up to these changes of coordinates given by the action
of the matrix T) simply by the rank, which can be 0, 1, 2, or 3. The rank zero
case is a bit silly: it means that the matrix A is identically zero, and therefore
s0 is the equation F4. In the case of rank one, the equation can be put into the
form F = z?, and in general F is the square of a linear form. One calls this kind
of conic a double line: the linear form defines a line, and the “double” structure
comes from the squaring. In the case of rank two, the equation can be put into
the form F' = xy, and in general F' is the product of two distinct linear forms.
One says that this conic consists of two lines. Finally the case of rank three is
the case of a smooth conic which we have described above.

Glueing Together Riemann Surfaces. The preferred method to describe
a Riemann surface is to give a set or space Z and then give the charts, whose
domains are then subsets of Z. The chart domains are themselves Riemann
surfaces, being open sets in Z. We may a posteriori think of Z as the union of
the chart domains.

In several circumstances it is convenient to be able to give the open subsets
abstractly, without defining the entire set Z all at once at the beginning of the
process. Such a method would then start by taking a collection of Riemann
surfaces (which are intended ultimately to be open subsets of the final Riemann
surface) and “glue” these individual Riemann surfaces together.

The topologists have thought about these things already for us, and have
provided us with the proper notion of glueing. Let us briefly describe this, in the
special case where just two subsets are glued together. Suppose that X and Y
are topological spaces, with open subsets U € X and V C Y. Suppose further
that a homeomorphism ¢ : U — V is given.

Form the disjoint union X [[Y, and partition this disjoint union into the
following three types of subsets:

e Singleton sets {x} where z € X — U;

e Singleton sets {y} where y € Y —V;

¢ Doubleton sets {u, ¢(u)} where u € U.
Let Z be the set of these subsets; thus there is one point of Z for every point
of X — U and for every point of Y — V, and one point of Z for every pair of
corresponding points of U and V. Clearly there is an onto map from X [[Y to
Z, sending a point (in either X or Y') to the subset which it is in. If one gives Z
the quotient topology for this map 7, which declares a subset W C Z to be open
if and only if 7~}(W) is open in X [[Y, we obtain a topological space which
is the glueing of X and Y along U and V via ¢. The space Z is denoted by
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XI1Y/¢.

Note that the natural inclusions of X and Y into Z are continuous. Moreover,
if A ¢ X is an open set, then its image in Z is also open; indeed, the image is
homeomorphic to A under the inclusion.

Our interest is when all the spaces in sight are Riemann surfaces, and the
map ¢ is an isomorphism; we conclude under a mild hypothesis that the glueing
is a Riemann surface.

PROPOSITION 1.6. Let X and Y be Riemann surfaces. Suppose that U C X
and V C Y are nonempty open sets, and there is given an isomorphism ¢ : U —
V' between them. Then there is a unique complex structure on the identification
space Z = X ][Y/¢ such that the natural inclusions of X and Y into Z are
holomorphic. In particular, if Z is Hausdorff, it is a Riemann surface.

Proor. Define a complex structure on Z as follows. Let jx : X — Z and
Jjv : Y — Z be the natural inclusions. For every chart 9 : U, — ¥(U,) on
X, take the open set jx(U,) C Z, and define a chart map on jx(U,) by using
Po j)“(l. Make similar charts on Z for the charts of Y. This gives a set of charts
whose domains cover Z, which are easily checked to be pairwise compatible.
Hence we have an induced complex structure on Z.

If we desire the natural inclusions of X and Y into Z to be holomorphic,
these charts are forced on us; hence the complex structure is unique with this
condition.

Finally, since X and Y are both connected, so is Z; therefore Z is a Riemann
surface if it is Hausdorff. O

One can construct the Riemann Sphere C,, by glueing together two copies
of the complex plane C. Welet X =Y =C, U =V = C*, and the map ¢ is
defined by ¢(z) = 1/z.

Hyperelliptic Riemann Surfaces. Let h(z) be a polynomial of degree 2¢g+
1 + €, where € is either 0 or 1, and assume that h(z) has distinct roots. Form
the smooth affine plane curve X by the equation y* = h(z). Let U = {(z,y) €
X |z #0}; U is an open subset of X.

Let k(z) = 22972h(1/2); note that k(z) is a polynomial in z, and also has
distinct roots since h does. Form the smooth affine plane curve Y by the equation
w? = k(z). Let V = {(z,w) € Y | 2 # 0}; V is an open subset of Y.

Define an isomorphism ¢ : U — V by

o(z,y) = (z,w) = (1/z,y/z91").

Let Z be the Riemann surface obtained by glueing X and Y together along U
and V via ¢.

LeEmMA 1.7. With the above construction, Z is a compact Riemann surface
of genus g. The meromorphic function x on X extends to a holomorphic map
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7 : Z — Co which has degree 2. The branch points of m are the roots of h (and
the point co if b has odd degree).

ProOF. One checks readily that Z is Hausdorff, and hence is a Riemann
surface. Z is compact, since it is the union of the two compact sets

{(z,y) € X | |l«]] <1} and {(z,w) € Y [ [|z]| < 1}.

The map 7 obviously has degree 2, and so the inverse image of any point under
7 is either two points with multiplicity one, or one point with multiplicity two.
The latter type gives a ramification point, and occurs exactly over the 2g + 2
roots of h (if h has even degree), or over the 2g+1 roots of h and over oo (if h has
odd degree). Such a point contributes 1 to the sum in the Hurwitz formula; thus
the total contribution to the sum in the Hurwitz formula is 2¢g + 2. Therefore we
see that

29(Z) -2 = deg(m)(29(Coc) —2) + (29 +2)
= 2(-2)+29+2=2¢—-2.

Thus g(Z) = g as claimed. O

DEFINITION 1.8. A compact Riemann surface constructed in this way is called
a hyperelliptic Riemann surface.

Note that any hyperelliptic surface Z defined by y? = h(z) has an automor-
phism o : Z — Z, namely

o(z,y) = (z,-y).

Note that ¢ is an involution, that is, 0 o 0 = id. This involution is called the
hyperelliptic involution on X. It commutes with the projectionmap 7: X — C,
is the sense that oo = 7.

Meromorphic Functions on Hyperelliptic Riemann Surfaces. Using
the hyperelliptic involution o, we can describe all meromorphic functions on a
hyperelliptic Riemann surface X, defined by an equation y? = h(z).

For any meromorphic function f on X, the pullback function o*f = foo is
also meromorphic on X, since o is a holomorphic map. Since 0 = id, the sum
f+o*f is o*-invariant: ¢*(f+0*f) = f+0*f.

Now the basic example of a g*-invariant function is one which is pulled back
from C,,. This is a function g of the form g = 7#*r = rox for some meromorphic
function 7 on Cy. The next lemma shows that these are in fact all of the
o*-invariant functions on X.

LEMMA 1.9. Let g be a meromorphic function on X such that c*g = g. Then
there is a unique meromorphic function r on Co, such that g=7*r =rom.
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PROOF. One simply defines r(p) for p € C,, by choosing a preimage q € X
for p (so that n(q) = p) and setting r(p) = g(q). The o*-invariance of ¢ implies
that r is well defined; then one needs to check that r is meromorphic, which is
straightforward, and is left as an exercise. [J

Therefore, given any meromorphic function f on X, the o*-invariant part
fT =(1/2)(f + o*f) is pulled back from a function 7 on Coo: ft =rom.

Note that of the two coordinate functions z and y on X, the function x is
o*-invariant, and the function y is not. However y does enjoy an anti-invariance:
o*y = —y. This anti-invariance holds for the function f~ = (1/2)(f — ¢*f)
also, for any meromorphic function f on X. Therefore the ratio f~/y is again
o*-invariant, and we conclude that there exists a meromorphic function s on C,
such that f~ = ys.

Since f = fT + f, and all meromorphic functions on C,, are rational by
Theorem 2.1 of Chapter IT, we have the following. ‘

PROPOSITION 1.10. Every meromorphic function f on a hyperelliptic Rie-
mann surface X defined by y* = h(z) can be written uniquely as

f=r(z)+ys(z),
where r(z) and s(x) are rational functions of x.

Maps Between Complex Tori. Suppose that L and M are lattices in C,
defining complex tori X = C/L and Y = C/M. Fix any complex number
a € C, and consider the translation map z — z + a. This map descends to a
holomorphic map T, : Y — Y; moreover, T, depends only on ¢ mod M, which
is a point ¢ € Y, and T, is an automorphism of Y with inverse T_,. Such an
automorphism, which is usually denoted simply by T, is called a translation of
Y: it sends y € Y to y + ¢ (where the sum is understood to be that of the
quotient group law in Y).

Now let F: X — Y be a holomorphic map. By composing F with a suitable
translation on Y we may assume that F(0) = 0.

Note that F' is unramified by Hurwitz’s formula. Hence F : X —» Y is a
covering map in the sense of topology, and hence so is the composition F o 7 :
C —» X — Y. Since the domain is simply connected, this must be isomorphic as
a covering to the universal covering of Y, which is 7 : C — Y. Therefore there
is amap G : C — C and a commutative diagram

G

C =5 C
ml Lz
x 5 vy

Note that the map G must be holomorphic, since all other maps in the diagram
are holomorphic and unramified. Moreover, since F(0) = 0, G must send 0 to
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a lattice point; we may assume in fact that G(0) = 0, since composing with
translation by a lattice point does not affect the projection map 7.

Now G is a holomorphic map which must send the lattice L to the lattice
M. Indeed, for any complex number z, and any element ¢ € L, we must have
G(z+£) = G(z) mod M; hence there is a lattice point w(z,£) € M such that
w(z,£) = G(z+¢) —G(z). But M is a discrete set, and C is connected; therefore
for fixed £ we see that w(z, £) is independent of z.

Taking the derivative with respect to z, we have that «/(2,£) = 0. But
this says that G'(z + £) = G'(z), so that the derivative G’ is invariant under
translation by lattice points. Hence the values of G’ all occur in a fundamental
parallelogram for L; since such a parallelogram is compact, the values of G’ are
bounded. Therefore G is a bounded entire function; hence it is constant, and so
G is linear. Since G{0) = 0, there is a complex constant 7 such that G(z) = vz.

Since G sends the lattice L into the lattice M, we must have that yL C M.
This implies in particular that the induced map F is a group homomorphism.
Therefore we have shown the following:

PRrROPOSITION 1.11. Let X andY be two complex tori given by lattices L and
M respectively. Then any holomorphic map F : X — Y is induced by a linear
map G : C — C of the form G(z) = vz + a, where v s a constant such that
¥L C M. The constant a may be taken to be zero if and only if F sends 0 to
0; in this case the map F is a homomorphism of groups. The holomorphic map
F s an isomorphism if and only if YL = M. In general, the degree of F is the
index |M/vL| of vL inside M.

Only the last two statements require any more argument, but the first is
rather obvious; if YL = M, then y"!M = L, and so the map H(z) =y 1(z —a)
induces a holomorphic map from Y to X which is an inverse for F. We leave
the final statement to the reader as an exercise.

Using these ideas we may easily determine all of the automorphisms of a
complex torus. Again we assume that an automorphism F : X — X sends 0 to
0 (else we may compose with a translation to achieve this). F' is then induced
by a linear map G of the form G(z) = vz, for some 7 such that vL = L.

This forces ||v|| = 1, and in fact v must be a root of unity. We see the
obvious values v = +1 as possibilities; these correspond to F' being the identity
map and the inverse map, respectively. Every complex torus has these two
automorphisms.

Assume then that 7 is not real. Let £ be a number of minimal length in
L — {0}; then so is 74, and £ and £ must generate L over Z.

Now 72£ is also in L, and so we may write y2¢ = m~£+n/ for some integers m
and n. Dividing by £ we see that +y satisfies the quadratic equation 2> —mz—n =
0. The only roots of unity which satisfy quadratic equations are the 4* and 6"
roots of unity. Therefore we may assume that 4 = ¢ or that v = exp(7¢/3). In the
first case the lattice L is a square lattice (which has orthogonal generators of the
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same length) and in the second case L is an hexagonal lattice (with generators
of the same length separated by an angle of 7/3).
Let us summarize:

PROPOSITION 1.12. Let X = C/L be a complez torus. Then any holomorphic
map F : X — X fixing 0 is induced by multiplication by some v € C, and is
therefore a homomorphism of the group structure on X. Moreover if F is an
automorphism, then either:

a. L is a square lattice and 7y is a 4'* root of unity;
b. L is an hezagonal lattice and v is a 6** root of unity; or
c. L is neither square nor heragonal and v = £1.

Therefore if we set Auto(X) to be the automorphisms of X fixing 0, we have
that

Auto(X) = Z/4 if L issquare;
Auto(X) = Z/6 if L is hexagonal;
Auto(X) = Z/2 otherwise.

In particular: the complex torus defined using a square lattice is not iso-
morphic to a complex torus defined using an hexagonal lattice. Thus there
are nonisomorphic complex tori (and hence nonisomorphic Riemann surfaces of
genus one)! Of course two Riemann surfaces with different genera cannot be iso-
morphic, but the complex tori have given us the first example of nonisomorphic
Riemann surfaces with the same genus.

We will be able to show later that every Riemann surface of genus zero is
isomorphic to P!, so our first chance at finding this phenomenon is in genus one.
In fact for every genus g > 1 there are nonisomorphic Riemann surfaces (and
lots of them).

We can be a bit more precise in the case of complex tori using the methods
above. First we note that every complex torus is isomorphic to a complex torus
X defined by a lattice L, generated by 1 and 7, where 7 is a complex number
with positive imaginary part. Indeed, if L is generated by w; and ws, then using
v = 1/wi maps L into the lattice generated by 1 and wy/w;. If this ratio is in
the upper half-plane, then this is 7; otherwise we may take T = —w;/w; equally
well as a generator.

Now we ask the question: when are X, and X+ isomorphic? For this we must
have a complex number «y such that vL, = L,/; this is equivalent to having the
two numbers v and 7 generating L,.. In order that they lie in L,/, there must
be integers a, b, ¢, and d such that v = ¢+ dr’ and 77 = a + br’. Eliminating
from these equations gives that T = (a + b7")/(c + dr’). Moreover for v and 1
to generate L., we must have the determinant ad — bc equal to £1. In fact it
must equal 1, since both 7 7’ lie in the upper half-plane. These conditions are
also clearly sufficient, and we have proven the following:
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PROPOSITION 1.13. Two complez tori X.. and X, are isomorphic if and only

if there is a matrix (Z 2) in SLy(Z) such that T = (a +b7')/(c +d7’).

The group SL2(Z) acts on the upper half-plane H (the matrix sends 7 to
(a + br')/(c + dr’)) and so we see that isomorphism classes of complex tori
are in 1-1 correspondence with points of the orbit space H/ SL,(Z). This orbit
space is in fact isomorphic to the complex numbers, via the so-called j-function.
The interested reader should consult [Serre73| or [Lang87| for rather complete
treatments. But in any case we see that there are uncountably many isomorphism
classes of complex tori, and that they vary with essentially one parameter (the
lattice generator 7).

Problems III.1

A. Verify that the isomorphism 7" between two conics described in the text is
indeed a holomorphic map. Verify that the map from P! to the conic 7z = y?
sending [r : $] to [r? : rs : s?] is a holomorphic map.

B. Check that the charts on the glueing space Z = X [[Y/¢ defined in the
proof of Proposition 1.6 are pairwise compatible.

C. Show that if one glues together C and C along C* and C* via the glueing
map ¢(z) = z, the resulting space is not Hausdorff.

D. Let h{z) be a polynomial of degree 2g+1+¢ {(with € € {0,1}) having distinct
roots and let U = {(z,y) € C? | y*> = h(x) and = # 0}. As in the text let
k(z) = 2%9%2h(1/2) and let V = {(z,w) € C? | w? = k(z) and 2z # 0}.
Show that the mapping ¢ : U — V defined by (z,w) = (1/z,y/z9*!) is an
isomorphism of Riemann surfaces.

E. Check that the function r defined in the proof of Lemma 1.9 is meromorphic.

F. Let X be the compact hyperelliptic curve defined by 2% = 3 + 10t* + 3¢5.
Let Y be the compact hyperelliptic curve defined by w? = 26 — 1. Let U
and V be the corresponding affine plane curves, which are the complements
in X and Y respectively of the points at infinity. Show that the function
F:U — V defined by z = (1 +t2)/(1 — t2) and w = 2tz /(1 — 2)° extends
to a holomorphic map from X to Y of degree 2, which is nowhere ramified.
What is the genus of X and of Y'?

G. Let X be a complex torus. Show that any translation map of X, which is
induced from a translation in the complex plane, is a holomorphic map.

H. Let X be a complex torus. Show that the full group of automorphisms of X
is a semidirect product of the group of translations with the group Autg(X)
of automorphisms fixing 0.

I. Let X be a complex torus, and let F' be a nontrivial automorphism of X.
Show that if F is not a translation, then F' has a fixed point.

J. Let X and Y be complex tori defined by lattices L and M respectively, and
F: X — Y be a holomorphic map induced by a linear map G(2) = vz +a
with vL C M. Show that the degree of F is the index of L inside M.
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2. Less Elementary Examples of Riemann Surfaces

Plugging Holes in Riemann Surfaces. If one takes a Riemann surface
and deletes one point, one still has a Riemann surface, albeit with a “hole” in it.
The process can be reversed if we define a “hole” properly. Defining something
which isn‘t supposed to be there requires some care, but is not too troublesome
after all.

DEFINITION 2.1. Let X be a Riemann surface. A hole charton X is a complex
chart ¢ : U — V on X such that V contains an open punctured disc Dy =
{210 < ||z—20]| < €} with the closure in X of ¢~*(Dy) inside U, and this closure
is transported via ¢ to the punctured closed disc D; = {z | 0 < ||z — z|| < €}.

In other words, a hole chart has a hole in it: the closure of Dy in C has zg
in it, but the closure of the corresponding open set ¢~ (Dp) in X does not have
any point corresponding to zp.

Now suppose that X is a Riemann surface with a hole chart ¢ : U — V on
it. Let Dy be the open punctured disc as above, and let D be simply the open
disc D = {z | ||z — z0]| < €}. Note that D is a Riemann surface in its own
right, and Dy is an open subset of D, which is isomorphic to the open subset
¢~ }(Dg) C X via the chart map ¢ suitably restricted. Form the identification
space Z = X [[ D/¢; the assumption on the closure of ¢—!(Dy) exactly implies
that Z is Hausdorff. Thus Z is a Riemann surface, which we refer to as the
surface obtained from X by plugging the hole in the hole chart ¢.

Compactifications of certain Riemann surfaces may be effected by means of
plugging holes. Suppose that X is a Riemann surface with a finite number
of disjoint hole charts ¢; : U; — V;. Let G, be the open subset cf)i_l(DO) in
X. Suppose that X — U;G; is compact. Then the surface obtained from X by
plugging the holes in these hole charts is compact, since it can be decomposed
as the union of finitely many compact sets (namely X — U;G; and the closures
of the discs which are glued in to plug the holes).

The simplest example of this is the compactification of C to the Riemann
Sphere Coo. The hole chart on C is the function ¢(z) = 1/z, defined for z # 0.

A more sophisticated example is the compactification of the smooth affine
plane curve given by the hyperelliptic equation y? = h(z), where h is a poly-
nomial with distinct roots. We have already produced a compactification above
by glueing together two such Riemann surfaces. However we can also obtain the
same compact Riemann surfaces by plugging the holes.

Assume first that h has odd degree 2g + 1. Then the chart ¢ defined by
d(x,y) = y/x9*! is defined for ||z|| large, and is a hole chart on X; the “hole” is
the point at infinity. Plugging this hole gives a compact Riemann surface.

If h has even degree 2g + 2, then we know that X has two points at infinity.
As z approaches oo, y/x9t! approaches one of the two square roots of a =
lim;—, 0 h(z)/z%9*2. (The number o is just the top coefficient of h.) The two
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hole charts are ¢; i = 1,2, where ¢;(z,y) = 1/x for both 7, but ¢; is defined
for ||z|| large and y/z9*! near ++/a, and ¢, is defined for ||z|| large and y/z9+!
near —y/a. Plugging these two holes gives a compact Riemann surface.

Nodes of a Plane Curve. Certain types of plane curves which are not
smooth everywhere (and hence are not Riemann surfaces) can give rise to Rie-
mann surfaces with the following construction. First assume that X is an affine
plane curve given by f(z,w) = 0, such that at all but finitely many points of
X, at least one of the partials 3f/8z or 8f/0w is nonzero. Therefore if we
delete these finitely many points, where f = 0f/9z = 0f /8w = 0, we obtain a
Riemann surface using charts afforded by the Implicit Function Theorem as in
Chapter 1, Section 2.

The deletion of these points gives a Riemann surface with holes in it, and
under some mild hypotheses it is not hard to discover the hole charts.

DEFINITION 2.2. A point p on an affine plane curve X defined by f(z,w) =0
is called a node of the plane curve X if p is a singular point of X (i.e., f(p) =
0f/0z(p) = Of /Ow(p) = 0), but the Hessian matrix of second partials

0%f/0z? 32f/323w)
(32f/3w3z 0% f | dw?

is nonsingular at p, i.e.,

8f, & 8 2
L gt ) # (o))

In terms of the coeflicients for f, this condition means that if we expand
f about the point p = (29, wo), the constant term is zero (since f(p) = 0), the
linear terms are zero (since 8f/9z(p) = 8f/dw(p) = 0), and the quadratic terms
are of the form

a{z — 20)* + b(z — 20)(w — wo) + e(w — wg)?

where the homogeneous quadratic equation ax? + bxy + cy? factors into distinct
homogeneous linear factors £;(x, y)f(x,y).

The Tmplicit Function Theorem applied to a smooth point of f{z,w) = 0 can
be interpreted as saying that near a smooth point, the locus of roots X of f looks
very much like the tangent line to X at p. In other words, if f(p) = 0 and one
of the derivatives of f is not zero at p, then X is locally the graph of a function,
which of course is locally like its tangent line. Note that the tangent line at a
point is exactly the zeroes of the linear part of f, expanded about that point.

The same principle can be applied here, to one higher order: if X has a node
at p, then locally near p the curve should look like the zeroes of its quadratic
part. We can make this precise as follows:
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LEMMA 2.3. Suppose the locus of roots X of f(z,w) has a node at p =
(z0,wo). Factor the quadratic term of f as above, writing

Flz,w) = 1(z — 20, w — wp)l2(z — 2o, w — wg) + higher order terms,

where the ¢; are distinct homogeneous linear polynomials. Then as a power
series, [ itself factors as f = gh, where

g(z,w) = {2 — 29, w — wp) + higher order terms, and

h{z,w) =¥ (zl—— 29, w — W) + higher order terms.

PrROOF. This is a simple version of a general factoring principle known as
Hensel’s Lemma: if the lowest order terms of a power series factors into distinct
factors, then the entire power series factors compatibly.

In this special case the lemma is easy to see. For sanity change coordinates
tox = £1(2 - 29, w —wo) and y = £3(z — 29, w ~ wp), and write

1=3

where f; is homogeneous of degree ¢ in x and y. We seek power series g =
T+ 5,9 and h=y+ 3, h; such that f = gh, where we have g; and h;
homogeneous of degree :. We note first that imposing f = gh forces

i—2
(24) fz = whi_l + ygi—1 + Zgjhi_j

=2

for each 7 > 3. For ¢ = 3, this requires simply that f3 = zhy + yg2, and clearly
for any f3 of degree 3 one can solve this for g, and ho.

One now proceeds by induction on ¢. Suppose that all g; and h; have been
found for j < i—1, and we want to determine g;_, and h;_;. Then the constraint
(2.4) gives the condition that

i—2
zh;_y +ygi_1 = fi — Zgjhi—ja
=2

and the right-hand side is, by induction, a known homogeneous polynomial of
degree i. Clearly one can solve for g;_; and h;_; in this case. This recursive
procedure produces the power series g and h, factoring f. O
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Resolving a Node of a Plane Curve. It is an easy exercise to show that
these power series g and h must converge near the node point p, since f does (f
is a polynomial, after all). Thus near p, the locus X of zeroes of f is the locus
of zeroes of gh, which is simply the union of the locus X, of zeros of g and the
locus X}, of zeroes of h.

These separate loci X, and X, are, near p, Riemann surfaces! Using the
change of coordinates as in the proof above, we see for example that

g(z,y) =z + (higher order terms in z and y)

and so dg/0z(p) = 1 # 0. Therefore the Implicit Function Theorem gives that
near p, X, is the graph of a function of y, and so is a Riemann surface. The
same remarks hold of course for Xj.

Now let us return to the singular curve X defined by f = 0 at p, and delete the
point p, producing a Riemann surface Y (at least near p). This surface Y, near
D, is equal to the union of Xy, —{p} and X, —{p}. Let U, and U, be the open sets
on Y which are equal separately to X, — {p} and X, — {p}, respectively. Then
Y has two obvious hole charts on it: one is the composition of the isomorphism
of Uy with Xy — {p} with a chart on X near p, and the other is the same for
U,. Plugging these two hole charts is called resolving the node of X at p.

This entire process is really local to the singularity at p. It can be performed
equally well on a projective plane curve with nodes; after all, a projective plane
curve is locally an affine plane curve, and the concept of a node transfers im-
mediately. Since a projective plane curve, whether singular or not, is certainly
compact (it is a closed subset of the projective plane, which is compact), the
result of resolving the nodes of a projective plane curve is a compact Riemann
surface, if it is connected. As with affine plane curves, the resolution is connected
if and only if the homogeneous polynomial defining the projective plane curve is
irreducible. Therefore:

PROPOSITION 2.5. Let F(z,y,z) be an irreducible homogeneous polynomial
of degree d, defining the locus of roots X C P2. Assume that at all but finitely
many points of X, F is a nonsingular polynomial, that is, at least one of its first
partials is nonzero. Assume further that these finitely many singular points are
nodes of X. Then the Riemann surface obtained by resolving these nodes of X
s a compact Riemann surface.

The Genus of a Projective Plane Curve with Nodes. We have seen in
previous examples that smooth projective plane curves of degree either one or
two (i.e., lines and conics) have genus zero. Moreover, the Fermat curve of degree
d (defined by z¢ + y¢ + 2 = 0) has genus g = (d — 1)(d — 2)/2. (Problem I1.4,
G.) This is indeed the formula in general for a smooth projective plane curve of
degree d, although it is a bit beyond us now to prove this.

There are two approaches to the proof which can be outlined now, although
neither can be executed just yet. The first isto write down a suitable meromor-
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phic function on the curve X, say a ratio of linear homogeneous polynomials.
Considering this function as a holomorphic map F to P!, one then tries to com-
pute the ramification and degree of F, and then apply the Hurwitz formula. In

other words, one does the same computation as was done in the special case of
" the Fermat curve, for the general smooth curve.

The second is to show that the genus does not change when one varies the
coefficients of the homogeneous polynomial: essentially one wants to show that
the genus is locally constant as a function of the coefficients. Then one shows
that the space of coefficients for smooth plane curves is connected. Since the
formula is true for the Fermat curve, the result follows.

There are other approaches, which involve the theory of algebraic surfaces,
but thesé require more theory than can be stated concisely at this point.

What about a projective plane curve whose only sihgularities are nodes? Let
us argue in the spirit of the second approach, and consider “nearby” curves
whose coefficients differ only slightly from that of the nodal curve. At a node,
we locally have a curve of the form xy = 0; the nearby curve looks locally like
zy = t for some small parameter ¢t. Topologically, as t approaches zero, a small
circle (homeomorphic to $') is becoming contracted to the node point. Therefore
the Euler number of the nearby smooth curve and the Euler number of the nodal
curve differs by exactly one, which is the difference between the Euler number
of a circle (0) and of the nodal point (1). Thus after resolving the node (which
replaces one point by two), we see that the resolution curve has an Euler number
which is two greater than that of the nearby smooth curve.

This same analysis holds at each node; hence if there are n nodes to the curve,
the Euler number increases by 2n in going from the nearby smooth curve to the
resolution of the nodes. Since the Euler number is equal to 2 — 2g, an increase
of 2n in the Euler number implies a decrease of n in the genus. We therefore
arrive at the formula for the genus of a projective plane curve with nodes, which
is called Pliicker’s formula:

PROPOSITION 2.6 (PLUCKER'S FORMULA). Let X be a projective plane curve
of degree d with n nodes and no other singularities. Then the genus g of X is

9=(d-1)(d—2)/2-n.

We will return to Pliicker’s formula and give a proper proof later, along the
lines of the first approach described above.

The point of bringing this all up now is simply to point out that every Riemann
surface can be obtained as a projective plane curve with nodes. Indeed, if a
Riemann surface of genus g is not hyperelliptic, then it can be obtained as a
projective plane curve of degree 29 — 2 with exactly 2¢g° — 8¢+ 6 nodes! This too
is beyond us now, but it feels good to have at least a minimal understanding of
every Riemann surface.
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Resolving Monomial Singularities. It is a basic fact of plane curve ge-
ometry that any type of singularity can be suitably resolved. Although a general
analysis of plane curve singularities is not appropriate now, there is a type of
singularity which is very similar to the node, whose resolution involves really no
further ideas, and which will come up shortly. These are singularities which are
locally of the form 2™ = w™, for positive integers n and m.

What does it mean for a singularity to be locally of this form? Consider the
plane curve f(z,y) = 0, and assume that it is singular at the origin.

DEFINITION 2.7. The singularity of f{z,y) = 0 at the origin is said to be
(n, m)-monomial if there are power series g(x,y) and h(z,y), each having no
constant term, and having linearly independent linear terms, such that f(z,y) =
g(z,y)" — h{z,y)™ as power series in two variables.

First note that if either n or m is 1, then the curve is not singular at the
origin. Hence we may assume that both n and m are at least two.

Note that a node is a (2, 2)-monomial singularity; if it is given by zy = 0
locally, when we set g = (z +y)/2 and h = (z — y)/2, we have zy = g% — h%.

Now let us turn to resolving a monomial singularity. The existence of the
power series g and h gives a second pair of local analytic coordinates z = g(x,y)
and w = h{z,y) on the plane. Therefore we may consider the equation 2™ = w™
as the prototype.

First assume that n and m are relatively prime; choose integers a and b
such that an + bm = 1. Consider the function r(t) = (z,w) = (t™,t"); define
s(z,w) = t = 2>w®. Note that r and s are inverse maps between a neighborhood
of t = 0 and a neighborhood of the monomial singularity on the singular curve.
This function s then gives a hole chart on the curve with the singular point
deleted; plugging this one hole resolves the singularity.

Next assume that n = m. If we let { = exp(2mi/n) be a primitive nt®

root of
unity, then the equation z™ — w™ factors completely into linear factors:

n—1
2t —wt = H(z - ¢'w).
i=0
Each of the factors obviously defines a smooth curve; they just all pass through
the origin, which is of course the singular point. Therefore removing the origin
gives a space which decomposes into n smooth curves, each with a hole in it.
Plugging these n holes resolves the singularity in this case.
Finally assume that n < m and (n,m) = k with 1 < k < n. The resolution of
this singularity simply combines features of the previous two cases. Write n = ka
and m = kb; then (a,b) = 1. Note now that if { = exp(27i/k), the equation now

factors as
k—1

Mt = () - (@) = [[ 0 - ).

=0
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Each of the factors we know how to resolve; this was our first case, up to a
harmless constant, and we have seen that there is one hole to plug for each
factor. Doing this for each factor gives a resolution of the curve with k plugged
holes.

Summarizing, we have:

LEMMA 2.8. A plane curve singularity which is (n,m)-monomial is resolved
by the above process, which involves removing the singular point and plugging the
resulting k = (n, m) holes.

Special names are traditionally given to certain monomial singularities. We
have already seen that a (2, 2)-monomial singularity is a node. A (2,3)-monomial
singularity is an ordinary cusp. A (2,4)-monomial singularity is a tacnode.
A (2,5)-monomial singularity is called a higher-order cusp, as are all (2,m)-
monomial singularities with m > 5 and odd. A (2,6)-monomial singularity is
called a higher-order tacnode, as are all (2, m)-monomial singularities with m > 6
and even. In general, a (2, m)-monomial singularity is said to be of type am—;.
A (3,3)-monomial singularity is an ordinary triple point, or of type ds. A (3,4)-
monomial singularity is said to be of type eg. A (3,5)-monomial singularity is
said to be of type eg. A (3,6)-monomial singularity is an infinitely near triple
point.

A (n,n)-monomial singularity is an ordinary n-fold point. It is only a special
type of one, however:

DEFINITION 2.9. A plane curve singularity f(z,y) = 0 at the origin is an
ordinary n-fold point if the lowest term of f is the degree n term, and this term
(which is a homogeneous polynomial of degree n in z and y) factors completely
into distinct linear factors.

The n-fold analogue of Hensel’'s Lemma then insures that the entire polyno-
mial f(z,y) factors compatibly into n power series, each of which is smooth at
the origin. Therefore we can resolve an ordinary n-fold point by removing the
singular point and plugging the n holes in the resulting n factors.

Finally, suppose that the polynomial f(x,y) locally factors as f = gh, with
each of the curves ¢ = 0 and h = 0 having a monomial singularity. Then we
see immediately how to resolve the singularity of f: remove the singular point,
and separately plug the holes in the ¢ = 0 and h = 0 curves. Examples of this
are the singularities of type d,,, n > 4, which have local equations of the form
f(z,y) = z(y?* — z"2). (Note that when n = 3 this is just a tacnode and when
n = 4 this is an ordinary triple point.) Also the missing singularity of type e;
has the equation z(z? — y®).

The singularities of types a,, (n > 1), d, (n > 4), and e, (n = 6,7, 8) are called
simple plane curve singularities; they are important especially in the theory of
algebraic surfaces.
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Cyclic Coverings of the Line. There is a construction which is very sim-
ilar in spirit to the construction of hyperelliptic surfaces, and gives many new
examples of Riemann surfaces with especially simple equations describing them.
These are the cyclic coverings of a line. Choose an integer d and a polynomial
h(z) of degree k with distinct roots. Consider the affine plane curve X defined
by the equation

y* = h(z);

the assumption that h has distinct roots implies that X is smooth.

Let us show that X has finitely many holes at infinity; when these holes are
plugged, we will obtain a compact Riemann surface Y.

We attempt the same sort of change of coordinates which was used in the
hyperelliptic analysis. Let x = 1/z, so that y¢ = h(1/z). Write k = df — e,
where 0 < € < d, and multiply the equation through by z% to obtain (yz )d =
2#h(1/2) = 2(z%h(1/2)).

Now we let w = yz¢ and g(z) = 2¥h(1/2); note that g is a polynomial with
a nonzero constant term ¢, and near * = co the curve X is described by the
equation w? = 2¢g(z) with z near 0.

If € = 0, as z approaches 0 we see that w can approach any of the d d** roots
of the constant term c. Moreover the projection to z gives d hole charts on X
near x = oo; plugging these gives a compact Riemann surface Y.

If € # 0 then as z approaches 0, so does w. By choosing an €t® root of g(z) we
may absorb the function g into the z¢, and note that the curve is then described
by a monomial singularity equation w? = z¢. This we have seen how to resolve to
produce a Riemann surface in the previous section: we must remove the singular
point (if € > 2) and plug the resulting (d, €) holes.

This completes the analysis; we have compactified X to a compact Riemann
surface Y by plugging certain holes at £ = co; moreover we have been led to
resolving certain monomial singularities.

Now however we see that the assumption that h(z) has distinct roots was
unnecessary: if h has a multiple root at = = zo, then one simply obtains a
monomial singularity, which we are prepared to resolve. To see this, assume for
simplicity that z¢g = 0, so that h has a root of order n at 0. Then the equation
for X is y* = z™r(x), where r has a nonzero constant term. Taking the n‘" root
of r and absorbing this into the #™ factor, we see the monomial form y¢ = z".
We simply resolve this, and any other singularities of X coming from multiple
roots of h in a similar way, to produce the compact Riemann surface Y (after
plugging the holes at z = o0).

Any Riemann surface obtained this way, by resolving and compactifying a
plane curve defined by y? = h(z), is called a cyclic covering of the line.

There is a natural projection map m : ¥ — P! induced by sending (z,y) to z;
this is of course a holomorphic map.

The “cyclicity” of these curves comes from the existence of an automorphism
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o generalizing the hyperelliptic involution. Choose a d** root of unity ¢, and
consider the map o : X — X sending (z,y) to (z,{y). This map is of order 4,
and extends to an automorphism of order d of the compact Riemann surface Y.
Moreover o commutes with the projection map , in the sense that mo o = 7.

Problems II1.2

A

C.

D.

Let X be the smooth affine plane curve defined by the equation y* = h(z),
where h(z) is a polynomial of degree 2¢g + 1 with distinct roots. Show that
the map é(z,y) = y/z9*" defines a hole chart on X for ||z|| large.

. Convince yourself that the “difference” (topologically speaking) between the

locus zy = t and the locus £y = 0 for small ¢, near the origin, is exactly that
the node of zy = 0 is deforming into a circle. (Remember that this is all
happening in C? = R*!)

Use Plucker’s formula to show that a projective plane curve of degree 2g — 2
with exactly 2g* — 8¢ + 6 nodes has a resolution of genus g. :
Let Y be the Riemann surface defined by the equation ¥* = h(z), a cyclic
covering of the line. Let 7 be the projection map and ¢ the cyclic automor-
phism.

1. Show that 7 is a holomorphic map of degree d from Y to P!.

2. Check that the cyclic map o of a cyclic covering of the line is an au-
tomorphism of the compact Riemann surface Y as claimed. Show that
every fiber of the projection map 7 : Y — P! is an orbit of o.

3. Show that above a root of h of order n, there are (d,n) points of Y,
each of multiplicity d/(d,n) for the projection map =.

4. Given the degree of h and the orders of its roots, give a formula for the
genus of Y using Hurwitz’s formula.

Let Y be the Riemann surface defined by the equation y¢ = h(z), a cyclic
covering of the line. Let 7 be the projection map and o the cyclic automor-
phism; let ¢ = exp(27i/d) be a primitive d'* root of unity.
Note that given any meromorphic function f on Y, the composition ¢* f =
f o o is also meromorphic. For each i =0,...,d — 1, let M; be the space of
those meromorphic functions f on Y such that o* f = ¢*f.

1. Show that r € My and y € M;.

2. Show that every f in My is of the form 7*r, for some meromorphic
function r on C.

3. Show that every f in M, is of the form yin*r, for some meromorphic
function r on C,,.

4. Show that every meromorphic function f can be written uniquely in
the form f = 3", f;, where f; € M; for each i.

5. Conclude that the field of meromorphic functions on Y is the field of
all functions of the form
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where r;(x) is a rational function of z for each i.
3. Group Actions on Riemann Surfaces

A basic construction for Riemann surfaces is to take a known Riemann surface
and divide it by the action of a group. In this section we develop the first ideas
of this theory.

Finite Group Actions. Let G be a group and X a Riemann surface. We
will assume that G is a finite group for most of this section; at the end we will
make some remarks about the infinite case.

An action of G on X is a map G x X — X, which we will denote by (g,p) —
g - p, which satisfies

a. (gh)-p=g-(h-p)for g,h € Gand p€ X, and
b. e-p=pfor pe X, where e € G is the identity.

Technically, this is called a left action of G on X. To denote that G acts on
X, we write G : X.

Note that if we fix ¢ € G, the map sending p to ¢ - p is a bijection; its inverse
is the map sending p to g~ - p.

The orbit of a point p € X istheset G-p={g-p|g€ G}. If AC X is any
subset, we denote by G - A the set of orbits of points in A: G-A={g-a|g€
G and a € A}. ‘

The stabilizer of a point p € X is the subgroup G, = {g € G| g-p = p}. The
-stabilizer is often called the isotropy subgroup of p.

Note that points in the same orbit have conjugate stabilizers: indeed, Gg4., =
9Gpg~!. Moreover if G is a finite group, then the order of the orbit times the
order of the stabilizer equals the order of the group:

|G- pl |Gpl = |G|

The kernel of an action of G on X is the subgroup K = {g € G| g-p =
p for all p € X}. It is the intersection of all stabilizer subgroups. It is not hard
to see that the kernel is a normal subgroup of G, and that the quotient group
G/K acts on X with trivial kernel and identical orbits to the G action. Therefore
we usually may assume that the kernel is trivial; this is called an effective action.

The action is continuous, respectively holomorphic, if for every g € G, the
bijection sending p to g - p is a continuous, respectively holomorphic, map from
X to itself. If it is holomorphic, it will necessarily be an automorphism of X

The quotient space X/G is the set of orbits. There is a natural quotient map
m : X — X/G sending a point to its orbit. We give a topology to X/G by
declaring a subset U C X/G to be open if and only if 77!(U) is open in X; this
is the quotient topology on X/G. Clearly the quotient map 7 is continuous; it is
an open mapping if the action is continuous, in particular, if it is holomorphic.

Our goal is to put a complex structure on X/G so that the quotient map = is
a holomorphic map.



76 CHAPTER III. MORE EXAMPLES OF RIEMANN SURFACES

Stabilizer Subgroups. The first step in the process is to understand the
stabilizers more precisely.

PROPOSITION 3.1. Let G be a group acting holomorphically and effectively on
a Riemann surface X, and fix a point p € X. Suppose that the stabilizer subgroup
Gp is finite. Then in fact G, s a finite cyclic group.

In particular, if G is finite, all stabilizer subgroups are finite cyclic subgroups.

PROOF. Fix a local coordinate z centered at p. For any g € G, write g(2) =
S 1 an(g)z™; this power series has no constant term since g(p) = p. Moreover
note that a;(g) # 0, since g is an automorphism of X and hence has multiplicity
one at every point, in particular at p.

Consider the function a; : G, — C*. Note that it is a homomorphism of
groups: a1(gh) is calculated by computing the power series for g(h(z)). and this

18

g(h(z)) = 90> an(h)e")

S an(@)[3 an(h)")]

= ai(g)ai(h)z+ higher order terms

m

so that a;(gh) = a1(g)a1(h).

To finish the proof, we will show that this homomorphism is 1-1. This suffices,
since the only finite subgroups of C* are cyclic.

To see that a; is 1-1, consider a group element g in the kernel of a;. This
means that g(z) = z + higher order terms. In order to show that the kernel is
trivial, we must show that in fact g(z) = z, i.e., that all higher order terms of g
are zero.

Suppose not; let m > 2 be the exponent of the first nonzero higher order term
of g. Therefore g(z) = 2z + az™ mod 2™*?! with a # 0.

Now it is elementary to check, by induction, that g*(z) = z+kaz™ mod 2™+!.
But since the stabilizer subgroup is finite, this element g must have finite order.
Hence for some k, ¢* is the identity, i.e., g*(z) = z. Therefore for some k, ka
must be zero, forcing a = 0. This contradiction shows that in fact g is the
identity, and completes the proof. [J

PROPOSITION 3.2. Let G be a finite group acting holomorphically and effec-
tively on a Riemann surface X. Then the points of X with nontrivial stabilizers
are discrete.

PROOF. Suppose that there is a sequence {p,} converging to p such that
each p; has a nontrivial element g; fixing it. Since G is finite, we may pass to
a subsequence and assume that each p; is fixed by the same nontrivial element
g. Since g is continuous, it must fix the limit point p also. However, since g is
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a holomorphic automorphism of X, the Identity Theorem implies that g is the
identity. This contradiction proves that points with nontrivial stabilizers cannot
accumulate, and in particular they form a discrete set. [

The Quotient Riemann Surface. In order to put a complex structure on
the quotient surface X/G, we must find complex charts. The following proposi-
tion is fundamental.

PROPOSITION 3.3. Let G be a finite group acting holomorphically and effec-
tively on a Riemann surface X. Fiz a point p € X. Then there is an open
neighborhood U of p such that:

(a) U is invariant under the stabilizer Gp, i.e., g-u € U for every g € G,
and u € U;

(b) UN(g-U) =0 for every g ¢ Gp;

(c) the natural map o : U/G, — X/G, induced by sending a point in U to
its orbit, is a homeomorphism onto an open subset of X/G;

(d) no point of U except p is fized by any element of Gy.

Proor. Let G — G, = {g1,.-., 9.} be the elements of G not fixing p. Since
X is Hausdorff, for each i, we may find open neighborhoods V; of p and W; of
g;-p with V; nW; = . Note that g, - W; is an open neighborhood of p for each
i. Let R, = V;n(g; ! - W;), let R =, Ri, and let

U=()g-R

9€Gyp

Clearly each R; is an open neighborhood of p, and hence so is R and U.
Moreover g - U = U for g € Gyp; the terms of the intersection defining U are
simply permuted upon applying g. This proves (a).

To prove (b), note that R; N (g; - B;) C ;N W, = @; hence RN (g; - R) =0
and U N (g; - U) = O for each i.

Finally, the map o : U/G, — X/G is obviously 1-1. It is continuous and open
since the composition with the quotient map from U to U/G,, gives the quotient
map 7|y, which is continuous and open. Hence it is a homeomorphism onto its
image in X/G.

Finally, (d) follows by the discreteness of the set of points with nontrivial
isotropy: simply shrink U if necessary. [J

The above Proposition points the way towards defining charts on X/G: we
define charts on U/G,, and transport these to X/G via the map a.

Choose a point § € X /@, and suppose that 7 is the orbit of a point p € X.
Suppose first that |G| = 1, so that the stabilizer of p is trivial. Then Proposition
3.3 implies that there is a neighborhood U of p such that |y : U — W C X/G
is a homeomorphism onto a neighborhood W of p. By shrinking U if necessary,
we may assume that U is the domain of a chart ¢ : U — V on X. We take as
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a chart on X/G the composition ¥ = ¢ o 7| : W — V. Since both ¢ and 7|y
are homeomorphisms, this is a chart on X/G.

In order to form a chart near a point p with m = |G,| > 2, we must find an
appropriate function from a neighborhood of p to C. Again using Proposition
3.3, choose a Gp-invariant neighborhood U of p such that the natural map o :

.U/G, - W C X/G is a homeomorphism onto a neighborhood W of 5. Moreover
we may assume that the map U — U/G,, is exactly m-to-1 away from the point
D.

We seek a mapping ¢ : W — C to serve as a chart near p. The composition

of such a map with a and the quotient map from U to U/G, would be a Gp-

invariant function h : U — U/Gp, 5 W % C on a neighborhood of p. We will
find ¢ by first finding this function h.

Let z be a local coordinate centered at p. For each g € G,, we have the
function g(z), which has multiplicity one at p. Define

wz) = ] o62)
9€Gy,
Note that h has multiplicity m = |G,| at p, and is defined in some Gp-invariant
neighborhood of p; we may shrink U to this neighborhood if necessary, and
assume that h is defined on U.

Clearly h is holomorphic and Gp-invariant: applying an element of G, simply
permutes the factors in the definition of h. Therefore h descends to a continuous
function h : U/G, — C. Moreover, since h is open, so is h.

Finally we claim that h is 1-1. This is simply because the holomorphic map
h has multiplicity m, and hence is m-to-1 near p; so is the map from U to U/G,
away from p. Therefore h is 1-1.

Since h is 1-1, continuous, and open, it is a homeomorphism; composing it
with the inverse of a : U/G, — W gives a chart map ¢ on W:

6w SUje, Ve

Note that the first case of multiplicity one is really a special case of the second
case: if m = 1, then h(z) = z, and we recover the charts described in the first
case.

THEOREM 3.4. Let G be a finite group acting holomorphically and effectively
on a Riemann surface X. Then the above construction of complex charts on X/G
makes X/G into a Riemann surface. Moreover the quotient map 7 : X — X/G
is holomorphic of degree |G|, and mult,(r) = |G,| for any point p € X.

PROOF. These complex charts certainly cover X/G. We must check that they
are all compatible, and give a complex atlas on X, and hence a complex structure.
Since the points with nontrivial stabilizers are discrete, we may assume that no
two chart domains, constructed in the m > 2 case, meet; hence there is nothing
to check there.
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Suppose next that the two charts are both constructed in the m = 1 case.
Then they are compatible, since the original charts on X are compatible.

Finally suppose that we have one chart ¢, : U; — Vi constructed in the
m =1 case, and one ¢y : Uy — V, constructed in the m > 2 case. Let I/; and
U, be the open sets in X used to construct these charts. Choose a point 7 in the
intersection U; N5 of the domains of the two charts; lift 7 to r in U NU,. (IfU;
and U, do not intersect, replace U; by a translate under the group which does
intersect Us.} Let w be the local coordinate in U; and z the local coordinate in
U,. The local coordinate in U is also w, and the local coordinate in U is h(2),
constructed as above. Since h is a holomorphic function, and since z and w are
themselves compatible, we see that ¢, and ¢, are compatible.

Since G is finite and X is Hausdorff, so is X/G; since X is connected and
n: X — X/G is onto, X/G is also connected. Therefore these charts make X/G
into a Riemann surface.

That 7 is holomorphic is immediate from the definitions of the charts on X/G.
Clearly the degree of 7 is the order of the group |G|. Finally, the multiplicity of
7 at a point p is exactly the multiplicity of the function h(z) constructed above,
and this is precisely |G,|. O

The above analysis gives the following interesting Corollary for the way a
finite group can act on a Riemann surface, locally. It may be thought of as a
version of the Local Normal Form.

COROLLARY 3.5 (LINEARIZATION OF THE ACTION). Let G be a finite group
acting holomorphically and effectively on a Riemann surface X. Fiz a point
p € X with nontrivial stabilizer of order m. Let g € G, generate the stabilizer
subgroup. Then there is a local coordinate z on X centered at p such that g(2) =
Az, where A is a primitive mth root of unity. (By replacing g by a different
generator of G, we may obtain A = exp(2mi/m).)

PROOF. Choose a local coordinate w on X/G near G - p. The Local Normal
Form Proposition 4.1 gives the existence of a local coordinate z on X near p such
that w = z™ is the formula for 7 in these coordinates. The preimages of points
corresponding to small nonzero values of w exactly differ by m?* roots of unity
in the z-coordinate. However these preimages are also orbits under the action
of elements of the stabilizer subgroup G,. Therefore, for small z, this Gp-orbit
consists of exactly the points {exp(2nik/m)z | 0 < k < m ~ 1}. This forces
g(2) = Az for some A\ = exp(27mik/m) as stated. []

Ramification of the Quotient Map. Let G be a finite group acting holo-
morphically and effectively on a compact Riemann surface X, with quotient
Y = X/G. Suppose that y € Y is a branch point of the quotient map 7 : X — Y.
Let z3,...,zs be the points of X lying above y; they form a single orbit for the
action of G on X. Since the x;’s are all in the same orbit, they all have conjugate
stabilizer subgroups, and in particular each stabilizer subgroup is of the same
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order, say r. Moreover the number s of points in this orbit is the index of the
stabilizer, and so is equal to |G|/r. These remarks prove the following.

LEMMA 3.6. Let G be a finite group acting holomorphically and effectively on
a compact Riemann surface X, with quotient map m : X — Y = X/G. Then for
every branch point y € Y there is an integer r > 2 such that 7=1(y) consists of
ezactly |G|/r points of X, and at each of these preimage points © has multiplicity
T

We therefore have the following, applying Hurwitz’s formula (Theorem 4.16)
for the genus:

COROLLARY 3.7. Let G be a finite group acting holomorphically and effec-
tively on a co’}npact Riemann surface X, with quotient map 7 : X — Y = X/G.
Suppose that there are k branch points yq,...,yx n'Y, with © having multiplicity
i at the |G|/r; points above y;. Then

29(X) -2

1GI(29(X/G) - +E'

e NPT 3 (L

r;
=1 ¢

The quantity Zle(l - rl) is clearly of some importance in studying actions
of finite groups on compact Riemann surfaces. In particular, the value of 2
is interesting, given the above formula. The following Lemma is completely
elementary, and we leave it to the reader.

LEMMA 3.8. Suppose that k integers rq,...,7x with r; 2 2 for each i are
given. Let R = Z 1——;)
k=1, any ry;
k=2, any ry,rg; or
k=3,{r:} ={2,2, anyrs}; or
k=3,{ri} ={2,3,3},{2,3,4}, or {2,3,5}.

k=3,{r:} ={2,3,6},{2,4,4}, 3,3,3};
(b) R=2<k,{r;} = Arad =1{2.3,6},{2,4,4}, or {3,3,3}; or
k= 4) {Ti} = {2’2)272}

(c) If R > 2 then in fact R > 2%

(a) R<2 <=k, {r;} =

Let us apply these results towards computing the possible finite groups which
can act on the Riemann Sphere. Suppose then that G is a finite group acting
holomorphically and effectively on C. Since C, has genus zero, so must C /G,
and so the Hurwitz formula in this case says that

-2=|G|[-2+R],
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where as above R = Zle[l - rl,) In particular, we see that if G # {1} then
R # 0 and there must be ramification, i.e., k& > 1; in addition we must have
R < 2, and solving for |G| we see that
2
G1=—®

Note that we cannot have k = 1 in fact. Just numerically, this makes R =
1-1/rforsomer>2,s00<R<1land2>2—R>1;hence [G|=2/(2- R)
will not be an integer.

A more topological argument is that if k = 1, there is only one branch point
for the quotient map w. Hence 7 is unramified over Co, — one point, which is
simply connected and has no nontrivial coverings. Therefore 7 would have to
have degree one, which it does not.

Not all of the possibilities of Lemma 3.8(a) in case k = 2 can occur, either.
In fact if £ = 2 then r; and r, must be equal. To see this suppose that the
branch points are at 3 and y,. Consider a small loop 7 in Co, /G around y,
which starts and ends at a point yo. This loop v may be lifted to a curve in Co
starting at any of the |G| points in the fiber of = over yy. The permutation of
this fiber of 7 given by sending a point p in the fiber to the endpoint of the Iift
of 4 which starts at p, is of order r;.

Similar considerations apply to a small loop around y,, giving a permutation
which is of order ro. However since Co,/G = Cy, these two loops are homotopic;
hence the permutations must have the same order, so r; = ro = r, say. Note
that |G| = 2/(2 — R) = r in this case. Indeed, this case is achieved by a cyclic
group of order 7, acting on C,, by multiplying the coordinate 2 by r** roots of
unity.

In case k = 3, we see that:

if {ri}=2,2,7, then |G|=2r
if {r;} =2,3,3, then |G]=12;
if {r;} =2,3,4, then |G|=24
if {r;}=2,3,5, then |G|=60.

The first case is achieved by the action of a dihedral group. The latter cases
are achieved by actions of A4, S4, and As. These are the famous “platonic solid
actions”, which are groups acting on the sphere leaving either a tetrahedron (the
2,3, 3 case), a cube and an octahedron (the 2,3, 4 case), or a dodecahedron and
an icosahedron (the 2, 3,5 case) invariant.

Let us finish this subsection by briefly mentioning finite group actions on
Riemann surfaces of genus one. Suppose X has genus one, and G is a finite group
acting holomorphically and effectively on X. Then X/G has genus at most one.
If X/G has genus one, then we see from Corollary 3.7 that 0 = |G|R, so R =0
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and there is no ramification for the map 7. Hence none of the automorphisms
of X given by the action of group elements of G have any fixed points. This
forces them all to be translations of X, and so G is a finite abelian group of
translations of X.

If X/G has genus 0, then we see that 0 = |G|(—2 + R), so R = 2 and we have
the four cases of Lemma 3.8(b) for the ramification possibilities.

Hurwitz’s Theorem on Automorphisms. For Riemann surfaces of genus
2 or more, Corollary 3.7 leads to a bound on the order of the group G which
can act holomorphically and effectively. This was first proved by Hurwitz, and
is known as Hurwitz’ Theorem.

THEOREM 3.9 (HURWITZ’ THEOREM). Let G be a finite group acting holo-
morphically and effectively on a compact Riemann surface X of genus g > 2.
Then

G| < 84(g - 1).
PRrROOF. Corollary 3.7 gives that
29— 2 = |Gl[29(X/C) 2 + R),

where as above R =Y ",(1 — 1/r;).

Suppose first that g(X/G) > 1. If R = 0, so there is no ramification to the
quotient map, then g(X/G) > 2, which implies that |G| < g — 1. If R # 0, this
forces R > 1/2. Then 2g(z/G) — 2+ R > 1/2, so we have |G| < 4(g — 1). This
finishes the case that g(X/G) > 1.

Assume then that g(X/G) = 0. Then the above reduces to

29_ 2= |G|[_2+R]a

which forces R > 2. Lemma 3.8(c) then implies that R — 2 > 1/42. Therefore
|G| < 84(g — 1) as claimed. O

In fact, the group of all automorphisms of a compact Riemann surface of
genus at least two is a finite group. This is a bit beyond us now; but it implies
that for such a Riemann surface, we have

| Aut(X)| < 84(g(X) - 1)

since the full group Aut(X) of automorphisms certainly acts holomorphically
and effectively on X. We will prove the finiteness in Chapter VII.

Infinite Groups. In the above discussion we have concentrated on the ac-
tions of finite groups; however the reader should be aware that the construction
of the complex structure on X/G can be easily made for a certain class of actions
of infinite groups.
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DEFINITION 3.10. Let G be a discrete group acting effectively on a Hausdorff
space X. We say that G acts properly discontinuously if for each pair of points
(p,q) in X there exist neighborhoods U and V of  and y respectively such that
{g€G|(g-U)ynV # 0} is finite.

This forces the quotient space to be Hausdorff. Moreover, if X is a Riemann
surface and G acts properly discontinuously on X, then points of X with non-
trivial stabilizers form a discrete set, and all stabilizers are finite cyclic groups.

Indeed the analogue of Proposition 3.3 holds verbatim. (See [tomDieck87,
Chapter I, Section 3] for the basic theory.) This allows one to put a complex
structure on X /G in the same manner as outlined above.

The first example of the case of an infinite group action is the action of Z X Z
on C given by translation in two linearly independent directions. The quotient
space is a complex torus.

The second and primary example is a discrete group of automorphisms of the
complex disc. This is of fundamental importance, since the universal covering
of any compact Riemann surface of genus at least two is the disc, so the deck
transformations of the universal covering give a holomorphic and effective action
of a discrete group, with quotient the given compact Riemann surface. A recent
introduction to this can be found in [JS87, Chapter 5| and [FK80, Chapter IV].

Problems II1.3

A. Let G be a finite group, acting on a set X. For p € X, show that the order
of the orbit of p times the order of the stabilizer subgroup of p equals the
order of the group G:

G -pl |Gyl =G|

B. Show that the kernel K of an action of G on X is a normal subgroup of G,
and that the quotient group G/K acts on X with trivial kernel and identical
orbits to the G action.

C. Assume that G acts continuously on X. Show that the quotient map = :
X — X/G is an open mapping.

D. Suppose that g(2) = 2z + az™ mod 2™*! with a # 0. Check that g*(z) =
2+ kaz™ mod 2™+

E. Let G C C* be a finite subgroup of order n. Show that G consists of exactly
the n nt"-roots of unity: G = {exp(2mik/n) |0 < k<n-—1}.

F. Let G act continuously on a topological space X, and let Y be a topological
space. Show that amap o : X/G — Y is continuous if and only if aor : X —
Y is continuous and G-invariant. Show that there is a 1-1-correspondence

between
' . G-invariant
{ continuous maps } and continuous maps
a: X/G-Y 8. XY

which associates to o the map § = a o .
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G. Prove Lemma 3.8. With the notation of that Lemma, show that R = 24—12 if
and only if k = 3 and {r;} = {2,3,7}.

H. Show that the group of automorphisms of C,, generated by the two au-
tomorphisms sending z to exp(2mi/r)z and sending z to 1/z is a dihedral
group of order 2r, which acts holomorphically and effectively on Cy. Show
that there are three branch points to the quotient map, with ramification
numbers 2,2, r.

I. Define holomorphic and effective actions of A4, Si, and A; on Co such
that the quotient map has 3 branch points with ramification numbers 2, 3, 3,
2,3,4, and 2,3, 5 respectively. Compute the ramification points, and show
that when they are represented as points on the two-sphere S? C R?, one of
the three orbits form the vertices of a regular solid.

J. Define holomorphic and effective actions of finite groups on Riemann surfaces
of genus one which have genus zero quotient, and realize the four cases of
Lemma 3.8(b). ’

K. Show that the “Klein curve” X defined by zy® + y2% + 22® = 0 is a smooth
projective plane curve. Since it has degree 4, X has genus 3. Show that it
realizes the Hurwitz bound by finding 168 automorphisms of X,

4. Monodromy

In this section we will introduce the concept of monodromy for a holomorphic
map between compact Riemann surfaces, and show how the monodromy may be
used to recover the map itself. We will assume that the reader is familiar with the
basic ideas about the fundamental group of a real manifold, and the relationship
between the fundamental group and covering spaces. There are many good refer-
ences for this elementary material; see for example [Munkres75|, [Massey67],
or [Armstrong83].

We will at least define everything so there is no confusion about terminology.

Covering Spaces and the Fundamental Group. Let V be a connected
real manifold, and fix a base point ¢ € V. A path on V is a continuous map
v :[0,1] — V. A loop based at ¢ is a path on V such that v(0) = (1) = q.
Two loops v; and v, are said to be homotopic if there is a continuous map
G : [0,1] x [0,1] — V such that G(0,t) = y1(¢) and G(1,t) = ¥,(¢) for all ¢, and
G(s,0) = G(s,1) = q for all s. Homotopy is an equivalence relation on the set of
all loops based at q. The fundamental group of V is the set of homotopy classes of
loops based at ¢, and is denoted by m;(V, ¢). The operation of concatenation of
loops gives a group structure to m(V, ¢q). A connected space is simply connected
if its fundamental group is trivial.

A covering space of V is a continuous map F': U — V such that F is onto, and
for each point v € V there is a neighborhood W of v in V such that F'~!(W) con-
sists of a disjoint union of open sets U,,, each mapping via F' homeomorphically
onto W.



4. MONODROMY 85

A covering space F' : U — V enjoys the path-lifting property: for any path
v : [0,1] — V and any preimage p of y(0) there is a path 7 on U such that
~4(0) = p and F o4 = 7. In other words, one can lift the path ~ to a path on U,
starting at any preimage of the starting point of .

There is a straightforward notion of isomorphism of covers: two covers Fj :
U, — Vand F, : Uy — V are isomorphic if there is a homeomorphism G : U; —
U, such that Fp o G = F}.

There exists a universal covering space Fy : Uy — V such that U is simply
connected; moreover Fy : Uy — V is unique up to isomorphism. The universal
property of the universal cover is that if F* : U — V is any other connected
covering space of V, then F factors through Fy uniquely, in the sense that there
is a unique covering map G : Uy — U such that [y = Fo G.

The fundamental group m,(V, q) acts on the universal cover Fy : Uy — V as
follows. Fix a point p € Uy which maps to the base point ¢ € V. Choose a loop
v on V based at ¢, and a point u € U. Choose a path o on U starting at u and
ending at p. Then Fy o a is a path on V| starting at Fy(u) and ending at q. Its
reverse, —Fy o, starts at g and ends at Fy(u). Consider the unique lift 4 of the
loop v which starts at p, and the unique lift 3 of the reverse path — F o @ which
starts at the endpoint 4(1) of 4. The endpoint (1) of this last path 3 lies over
the point Fy(u).

There is a lot to check here, but the bottom line is that this point 3(1) depends
only on the point u and the homotopy class [] of the loop v; call the point [v]-u.
This gives an action of m;{V,¢) on the universal cover Fy : Uy — V, and the
action preserves the fibers of the covering map Fy. Moreover, the orbit space
Up/m1(V, q) is naturally homeomorphic to the original space V.

Given any subgroup H C m(V, q) of the fundamental group, the above action
may be restricted to an action of H on the universal cover. The orbit space Up/ H
maps to V, and is a covering space of V. Moreover every connected covering
space of V occurs this way; two such orbit spaces are isomorphic (as coverings
of V) if and only if the subgroups are conjugate subgroups of the fundamental
group. Therefore there is a 1-1 correspondence

isomorphism classes of conjugacy classes
connected coverings — of subgroups
F:U-V HCm(V,q)

As noted above, given the subgroup H C m1(V,q), the covering is obtained
by taking the orbit space Uy/H, where Uy is the universal covering space. Con-
versely, given a connected covering F : U — V, choose a point p € U lying over
the base point ¢, and take the subgroup H C m(V,q) to be those homotopy
classes [y] such that [y] - p = p. This subgroup depends on the point p, but its
conjugacy class does not. The degree of the covering (that is, the number of
preimages of a point of V') is exactly the index of the subgroup H inside the
fundamental group.
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EXAMPLE 4.1. Let X = C/L be a complex torus. Then the natural quotient
map 7 : C — X is the universal cover of X. The fundamental group of X is a
free abelian group on two generators, isomorphic to the lattice L. The action of
L on the universal cover C is by translation.

EXAMPLE 4.2. Let V be the punctured unit disc {z € C |0 < |2] < 1}. Let
H be the upper half plane {z € C | Im(2) > 0}. The map F : H — V defined
by F(z) = exp(2miz) is the universal cover of V. The fundamental group of V
is an infinite cyclic group, generated by any loop in V with winding number one
about the origin. The action of the fundamental group on the universal cover H
is by translation by integers; z is sent to z + n for an integer n.

If we identify the fundamental group m;(V,q) with Z, we see that the only
subgroups are those generated by a nonnegative integer N > 0: NZ. When
N =0, we have the trivial subgroup, and this corresponds to the universal cover
H — V, which has infinite degree. When N = 1, we have the entire fundamental
group, and this corresponds to the trivial covering of V by itself (via the identity).
For N > 2, the covering space corresponds to the quotient of the universal cover
H by the translation z — 2 + N; this quotient is also a punctured disc Dy,
and the quotient map 7y : H — Dy sends z to exp(2miz/N). If we denote the
coordinate in the disc Dy by wy, we see that the covering map may be expressed
as wy = exp(2miz/N), where z is the coordinate in H. In particular the original
coordinate in the space V is wi, and the covering Fy : Dy — V is given by

"w; = w¥. Therefore these intermediate coverings are simply the punctured disc
again, and the covering map is a power map, of degree N.

The Monodromy of a Finite Covering. Let FF: U — V be a connected
covering space of finite degree d, so that all points have exactly d preimages. If
F corresponds to a subgroup H C m1(V, ¢), then the degree d is the index of the
subgroup H.

Consider the fiber F~!(q) over q. Denote the d points in this fiber by
{z1,...,74}. Every loop v in V based at q can be lifted to d paths 7y, ...,7a,
where ¥; is the unique lift of v which starts at x;. In other words, %;(0) = z; for
every i.

Next consider the endpoints 4;(1); these also lie over ¢, and indeed form the
entire preimage set £~ !(g). Hence each is an z; for some j; we denote ¥;(1) by
wa(i).

This function o is a permutation of the indices {1,...,d}, and it is easy to see
that it depends only on the homotopy class of the loop 7. Therefore we have a
group homomorphism

p:m(V,q) — Sq

where S; denotes the symmetric group of all permutations on d indices.

DEFINITION 4.3. The monodromy representation of a covering map F : U —
V of finite degree d is the group homomorphism p : 71 (V, q) — S4 defined above.
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The connectedness of the domain U gives the following property to the mon-
odromy representation. We say that a subgroup H C S; is transitive if for any
pair of indices i and j there is a permutation ¢ in the subgroup H which sends
ito j: ofi) = 3.

LEMMA 4.4. Let p : m1(V,q) — S, be the monodromy representation of a
covering map F : U — V of finite degree, with U connected. Then the image of
p 15 a transitive subgroup of S4.

PROOF. With the notation introduced above, fix two indices i and j, and
consider the two points z; and z; in the fiber of F' over ¢. Since U is connected,
we may find a path 4 on U starting at z; and ending at x;. Let v = F o# be
the image of 4 in V; note that - is a loop in V based at g, since both z; and z;
map to g under F. Then by construction we have that p([4]) is a permutation
which sends ¢ to 5. O

EXAMPLE 4.5. Let my : Dy — V = D; be the covering map of punctured
unit discs given by the N** power map: if w; is the coordinate in D; then the
map is given by w; = wY). Let ¢ = 1/2" be the base point in D;. If we let
¢ = exp(27i/N) be a primitive N** root of unity, then the preimages of q are the
points z; = ¢*/2, for i = 1,..., N. The generator + for the fundamental group
711(V, q) is given by the loop wy(t) = exp(2mit)/2N for t € [0,1]. This loop lifts
to the loops #; given by wx(t) = (*exp(2wit/N)/2 for t € [0,1], whose starting
point is at (*/2 and whose ending point is at (*T!/2. Therefore the monodromy
representation p for this covering sends the generator [y] of the fundamental
group to the cyclic permutation which sends ¢ to ¢ + 1 (modulo N) for each 4.

The Monodromy of a Holomorphic Map. Let us apply this theory of
covering spaces, the fundamental group, and monodromy representations to the
case of a holomorphic nonconstant map F : X — Y between compact Riemann
surfaces. Because of ramification, F is not in general a covering map. Let R C X
be the finite set of ramification points of F, and let B = F(R) C Y be the finite
set of branch points. Let V =Y — B and let U = X — F~!(B). Note that we
are removing all of the branch points from Y, and all of the ramification points
from X; but in addition from X we are also removing any point which maps to
a branch point, that is, any point in the same fiber of F as a ramification point.
These need not all be ramification points.

Note that for any v € V, the preimage set F~!(v) consists of d distinct
points, each having multiplicity one for the holomorphic map F. Therefore the
restriction F|y : U — V is a true covering map, of degree d.

This covering therefore has a monodromy representation p : 71(V,q) — Sg; it
is called the monodromy representation of the holomorphic map F. Since X is

connected, so is the open subset U, and hence the image is a transitive subgroup
of Sd.
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For each branch point b € Y, choose a small open neighborhood W of b in Y,
the punctured open set W — {b} is an open subset of V, isomorphic to a small
punctured disc. Denote by wuq,...,ur the k preimages of b in X; the number &
will be less than the degree d of F since b is a branch point, so that at least one
of the u;’s are ramification points.

We choose W small enough so that F~!(W) decomposes as a disjoint union of
open neighborhoods Uy, ..., Uy of the points uy,...,u; respectively. Set m; =
mult,;(F') to be the multiplicity of F' at these preimage points; by the Local
Normal Form, there are coordinates z; on the U;’s and z on W so that the map
F has the form z = 27 on U;.

Now consider U; — {u;}; U; — {u;} is isomorphic to a punctured disc, and the
map F sends U; — {u;} to W — {b} via the m* power map. Choose a path o
from the base point ¢ to a point go in W — {b}, and a loop 3 in W — {b} based at
go with winding number one around the branch point b. Then the path o~ !Sa
(composing paths from right to left) is a loop v on V based on q. We call such
a loop on V' a small loop on V' around b.

In analyzing how the small loop ~ lifts to the covering F': U — V, it is clear
that traversing the path « simply gives an identification of the fiber of F' over
g with the fiber of F over go; following the reverse path a1 gives the inverse
identification. Therefore the permutation o of the fiber of F' over ¢ which is
induced (via the monodromy representation p) by the small loop v around b is
actually determined up to this identification by the loop § around the branch
point b.

Above the open set W — {b} we have k punctured discs U; — {u;}, each
mapping to W — {b} via a power map. This situation was analyzed in Example
4.5; the monodromy for each cover U; — {u;} — W — {b} is a cyclic permutation
of those m; preimages of go which lie in U;. In fact the loop § induces a cyclic
permutation of these points, and therefore the loop v also maps to a cyclic
permutation of the corresponding identified points in the fiber above the base
point g. Therefore we know the cycle structure of the permutation o, and we
have proved the following.

LEMMA 4.6. Suppose that above the branch point b € Y there are k preim-

ages ui,...,ux, with mult, ,(F) = m;. Then with the above notation the cycle
structure of the permutation o representing a small loop around b (after the
identification via the path a) is (mq,...,mg).

Coverings via Monodromy Representations. Suppose a connected real
manifold V' is given, with a chosen base point q. Suppose further that we have
a group homomorphism p : m(V,q) — Sy, from the fundamental group of V
to a symmetric group Sy, with a transitive image. Fix an index, say 1. Let
H C 7m1(V, q) be the subgroup consisting of those homotopy classes [y] such that
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p([]) fixes the index 1:

H={emV,glp(W)(1) =1}

Then H has index d in 7,(V, ¢), and by the general theory induces a connected
covering space F, : U, — V. Moreover this covering has the property that its
monodromy representation is exactly the given homomorphism p of course.

This process essentially gives an inverse to the mapping which sends a covering
to its monodromy representation; the only caveat is that this only works for
coverings of finite degree. Hence we have the following: for a connected real
manifold V, there is a 1-1 correspondence

isomorphism classes of group homomorphisms
connected coverings o p:m(V,q) — Sq
F.U-V with transitive image
of degree d (up to conjugacy in Sy)

The reason for the conjugacy in Sy is easy to see: this simply reflects a
relabeling of the points in the fiber of the covering over the base point.

Now further assume that V is a Riemann surface. It is a general principle that
coverings of Riemann surfaces are Riemann surfaces. We have seen this principle
at work before in discussions concerning complex tori; chart maps on the covering
space are given by composing the covering map with chart functions on the target
Riemann surface. Moreover this way of putting charts on the covering space is
forced if you want the covering map to be holomorphic. Therefore:

LEMMA 4.7. Let F : U — V be a connected covering map of a Riemann
surface V. Then there is a unique compler structure on U such that F is a
holomorphic map.

If the reader is interested he or she may supply the details of the proof of the
lemma quite easily. In particular the universal cover of any Riemann surface is
a Riemann surface.

Combining this with the previous 1-1 correspondence gives us the following.

COROLLARY 4.8. LetV be a Riemann surface. Then there is a 1-1 correspon-
dence

isomorphism classes of group homomorphisms
unramified holomorphic maps - p:71(V,q) — Sq
F:U->V with transitive image

of degree d (up to conjugacy in Sg)
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Holomorphic Maps via Monodromy Representations. We want to ap-
ply the constructions given above to construct branched coverings of Riemann
surfaces, that is, holomorphic maps with ramification. Of course such a map is
not a covering map in the sense of topology, so we must finesse this somehow.

Let Y be a compact Riemann surface, and let B C Y be a finite subset. Let
V =Y — B be the complement of B, which is an open subset of Y and is also
a Riemann surface. Fix a base point ¢ € V. Suppose that one has a group
homomorphism p : 7, (V,q) — Sq, with transitive image. Let F,, : U, — V be
the covering map induced by p; the space U, is a Riemann surface and the map
F, is a holomorphic map of degree d, by the previous discussion.

Let us focus attention on a point b € B which has been removed from Y to
create the open set V. Let W be a small open neighborhood of b in Y, so that
W — {b} is isomorphic to a punctured disc. If W is small enough, the preimage

~1(W — {b}) will decompose into a disjoint collection U; of covers of W — {b}.
Now recall that finite degree covers of a punctured disc have been classified: they
are all punctured discs, and the covering map is a power map. We may therefore
suppose that each U is a punctured disc also, and that the map F), restricted
to U is a power map; say that the power for the domain U is m;.

We may further shrink W if necessary and assume that W is completely
contained in a chart domain for Y. Then we see that on each Uj we have a hole
chart for U,,, since Uj is isomorphic to a punctured disc. Hence we may plug each
of these holes in U,; moreover when we do this (for each branch point and for
each hole chart) the resulting surface X, maps holomorphically to Y, extending
the covering map F), : U, — V. The reason for the existence of the extension is
simple: on each Uj the map F), is the m;»h power map from Uj to W — {b}, and
the power map from one punctured disc to another extends to the unpunctured
discs. Therefore if the disc which plugs the hole of U; is denoted by U;, we have
a unique extension of the holomorphic map F, from U; to W. These all combine
to extend the map F, toamap F,: X, -~ Y.

Note lastly that the Riemann surface X, obtained by plugging all these holes
is compact. Indeed, if we delete each W from Y we obtain a compact subset,
and its preimage Z in X, is also compact (a finite covering of a compact set is
compact). Since X, is the union of Z and the closures of all of the U;’s (over all
of the branch points), we see that X, is a union of finitely many compact sets
and is therefore compact.

Finally note that if we remove B from Y and its preimage from X,, we obtain
a covering map with monodromy representation p.

Note that F, : X, — Y has as its branch points at most the finite set B: at
all other points F, is unramified. We may compute the multiplicities of F), at
the points lying above a point b € B by considering the cycle structure of a small
loop 7 in V around b constructed as in the proof of Lemma 4.6. Such a loop v
must be of the form o~ !Ba, where a is a path from the base point ¢ to a point
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near b, and 3 is a small loop winding once around b. Then if the cycle structure
of p([y]) is (m1,...,my), then there are k preimages u,...,u; of b in X,, and
mult,,; (F,) = m;.

We see that it is not necessary that each point b of B be a branch point for
the map F,: in particular, if the cycle structure above is (1,1,...,1), then above
b we will have d preimages, each having multiplicity one, and so there will be no
ramification above b.

Summarizing, we have the following.

PROPOSITION 4.9. Let Y be a compact Riemann surface, let B be a finite
subset of Y, and let q be a base point of Y —B. Then there is a 1-1 correspondence

isomorphism classes of
holomorphic maps
F: XY
of degree d
whose branch points lie in B

group homomorphisms
p:m(Y —B,q) — Sq

with transitive image

(up to conjugacy in Sg)

Moreover at a point b € B, if v is a small loop in Y — B around b based at ¢, and
if p([7]) has cycle structure (mq,...,my), then there are k preimages uq,. .., uk
of b in the corresponding cover F, : X, — Y, with mult, (F,) = m; for each j.

Holomorphic Maps to P!. The previous proposition is especially useful in
constructing Riemann surfaces together with holomorphic maps to the projective
line P!. Fix n points by,...,b, in P! and a base point ¢ (which is not one of
the b;’s). Let V. =P! — {b;,...,b,}; V is a Riemann surface, and since P! is
topologically a sphere, we have that the fundamental group of V is a free group
on n generators [y1],. .., [yx], subject to the single relation that

mllyel - [l =1

in 7,(V, q). Indeed, each [v;] is the homotopy class of a small loop on V around
b;.

Therefore a group homomorphism p : m1(V, q) — Sy is determined by choosing
n permutations o; = p([y;]), subject only to the condition that

01020 =1

in S3. The image of p will be the subgroup generated by the o;’s.
Applying Proposition 4.9, we have the following.
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COROLLARY 4.10. Fiz a finite set B = {by,...,b,} C P'. Then there is a
1-1 correspondence

( isomorphism classes of ) ( conjugacy classes of n-tuples )
holomorphic maps (01,...,00) of permutations in Sy
F:X P! such that o1 -0, =1
of degree d 9 and the subgroup
whose branch points generated by the o;’s
{ lie in B ) { 1s transitive )
Moreover if o; has cycle structure (my,...,mg), then there are k preimages
U1, ..., Uk of b; in the corresponding cover F' : X — Y, with mult,, (F) =my
for each j.

Hyperelliptic Surfaces. Recall that a hyperelliptic curve is a compact Rie-
mann surface X defined by an equation of the form y? = h(z), where h is a
polynomial with distinct roots. The coordinate function x induces a holomor-
phic map F : X -» P! which has degree 2.

Using the monodromy theory developed above, we can prove a sort of converse
to this statement:

PROPOSITION 4.11. Let X be a compact Riemann surface. Suppose that F :
X — P! is a holomorphic map of degree 2. Then X is a hyperelliptic curve.

PROOF. Let g be the genus of X; by Hurwitz's formula we have that the
number of branch points of F' is 2g+2, and since the degree of F is 2, each branch
point has as its preimage a single ramification point with multiplicity two. Let
B = {by,...,bag12} be the set of branch points of F, and let V = P! — B; the
monodromy representation for F is a group homomorphism p : 7 (V) — S, and
we denote by o; the image under p of the homotopy class of a small loop in V
around b;.

Since there is one point of multiplicity two lying above b; for each i, the cycle
structure of o; must be (2) for each 4; this forces o; to be the transposition (12) €
S, for each i. Hence once the branch points {b;,...,bzg+2} are chosen, there is
no choice for the permutations ¢;, and the Riemann surface X is determined up
to isomorphism by the branch points alone.

On the other hand, if z is an affine coordinate on P!, and none of the branch
points b; is the point at infinity, then the hyperelliptic curve Y defined by the
equation y? = [[97?(z - b;) also covers P! with the same branch points by a
map of degree 2 (given by the function z). Therefore this covering 2z : ¥ — P!
has the same branch points and the same monodromy as does the given map
F:X — P! By the 1-1 correspondence, we must have that these coverings are
isomorphic, and so X Y.

If one of the branch points, say bz, 2, is the point at infinity, simply consider
instead the hyperelliptic curve defined by the equation y? = Hff{l(z —b;); the
argument proceeds in the same manner. []
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This Proposition is often used as the defining property of a hyperelliptic curve:
a hyperelliptic curve is one which has a map of degree two onto the projective
line.

Problems I11.4

A. Let L be alattice in C and let 7 : C — X = C/L be the natural quotient map.
Show that if M C L is a sublattice of L, then the covering of X corresponding
to the subgroup M is the complex torus C/M, and the covering map is the
natural map sending C/M to C/L.

B. Let L be a lattice generated by 1 and 7, with Im(7) > 0. Let H be the
subgroup of L generated by 1; that is, H is the integers. Show that the
covering of X = C/L corresponding to the subgroup H is isomorphic to C*,
and write down the covering maps.

C. Let V = C*. Show that the universal covering of V is C, and find the
universal covering map. Show that the fundamental group of V is infinite
cyclic. Determine all connected coverings of V up to isomorphism.

D. Suppose that a connected covering F, : U, — V is defined via a group
homomorphism p : 7 (V, ¢) — S4 with transitive image as in the text. Show
that the monodromy representation of F), is p.

E. Prove Lemma 4.7.

F. Suppose that a holomorphic map F : X — P! of degree d is defined by the
correspondence of Corollary 4.10, that is, a set of branch points {b;,...,b,}
in P! are chosen, and a set of corresponding permutations o1, ...,0, in Sy
are given, which generate a transitive subgroup of S; and whose product is
1. Suppose that the permutation ¢; is a product of k; disjoint cycles. Show
that the genus g of the compact Riemann surface X is

(n—2)d— > ki
3 .

G. Let f(z) = 2%/(1 — 2?) define a holomorphic map of degree 3 from P! to
itself. Find all of the branch points, and the corresponding permutations in
Ss.

H. Let f(z) = 42%(2 — 1)*/(22 — 1)2 define a holomorphic map of degree 4 from
P! to itself. Show that there are three branch points, and that the three
corresponding permutations in Sy are oy = (12)(34), o2 = (13)(24), and
o3 = (14)(23) up to conjugacy.

I. Let X denote the Fermat curve of degree d in P2, defined by the homo-
geneous polynomial ¢ + y® + 2% = 0. Let F : X — P! be defined by
F(lz:y:z]) = [z : y]. Show that F has d branch points, and find the d
corresponding permutations.

J. Let G be the dihedral group of order 2r acting on P!, with three branch
points by, by, b3 for the quotient map n : P! — P!; moreover assume that for
each ¢ = 1,2,3 the map 7 has multiplicity r; at each of 2r/r; points lying
above b;, with {r;} = {2,2,r}. Find the three corresponding permutations
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in SZ'r~
K. Do the same computation as above, for the groups of order 12, 24, and 60
which act on P!; here the {r;} numbers are {2,3,3}, {2,3,4}, and {2,3,5}

respectively.
L. Let Y be a Riemann surface of genus ¢ > 1. The fundamental group of Y
is a free group on 2g generators ai,...,a4,b1,...,b, subject to the single

relation that

aybia] by tagbaa; thy ! ---agbgag_lb;1 =1
Therefore an unramified covering F' : X — Y of degree two is determined by
giving 2¢g permutations in S, satisfying the above relation, which generate a
transitive subgroup. For the permutations to generate a transitive subgroup
is easy: not all of the permutations should be the identity. Show that the
number of nonisomorphic unramified coverings of Y is 229 — 1. In the case
of g = 1, assume that Y is a complex torus given by a lattice L in C; find
the three sublattices of L corresponding to the three nonisomorphic covers.

5. Basic Projective Geometry

In this section we will develop somewhat further the basic notions of projective
n-space P,

Homogeneous Coordinates and Polynomials. Recall that P is the set
of 1-dimensional subspaces of C"**!. If (xy,...,z,) is a nonzero vector in C"*1,
its span, which is a 1-dimensional subspace, is denoted by [zg : --- : z,] € P™
Every point of P” may be written in this way; moreover

[To:- -1 xp]=[Axg:-: Axy] forany A€ C,A # 0

and if [zg : -+ : Zn] = [yo : -+ : yn] then there is a nonzero complex number X
such that y; = Az; for each 1.

The x;’s are called the homogeneous coordinates on P™. We note that their
values are not determined at a point p € P™, but whether x; is zero or not does
make sense.

Similarly, suppose that F(zy,...,Z,) is a homogeneous polynomial. Then we
cannot evaluate F' at a point p € P™ (by writing p=[ag : - -+ : a,] and forming
the number F(p) = F(ao,...,a,)) but again whether this number F(p) is zero
or not does make sense.

A projective space may be constructed from any finite-dimensional complex
vector space V, by taking the 1-dimensional subspaces of V. This is called the
projectivization of V, and is denoted by PV. If v € V is a nonzero vector, then
its span is a point of PV, denoted by [v]. If V has dimension n + 1, and one
chooses a basis for V, (which essentially gives an explicit isomorphism of V with
Cn*1), then we see that PV is “isomorphic” to P™.
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Projective Algebraic Sets. The subsets of projective space which we are
most interested in are the smooth projective curves. We have mentioned pre-
viously that every such subset is a local complete intersection curve, defined
by the vanishing of a set of homogeneous polynomials (with the extra Jacobian
condition). We take this idea as the definition of an “algebraic” subset of P ™:

DEFINITION 5.1. A subset Z C P™ is an algebraic set if there is a set of ho-
mogeneous polynomials {F,} such that Z = {p € P" | F,,(p) = 0 for every a}.

Denote by k[z] the ring of polynomials k[zy, ..., z,]. If S is a set of homoge-
neous polynomials, we will denote by Z(S) the set of common zeroes in P” of
the polynomials in S.

The two “extreme” cases of projective algebraic sets are the largest ones and
the smallest ones. Intuitively speaking, the largest ones should be the common
zeroes of the smallest sets of polynomials: the singletons. A hypersurface. in
P™ is an algebraic subset which is the zeroes of a single polynomial F), i.e., an
algebraic subset of the form Z({F}). It is obvious that every algebraic set is
an intersection of hypersurfaces, and indeed that a subset of P™ is an algebraic
subset if and only if it is an intersection of hypersurfaces.

At the other extreme, the smallest possible algebraic subset would be a single
point, and it is true that a single point is an algebraic set. To see this, suppose
that p=[ag : - -+ : ay] € P"; then p is the only common zero of the set of linear
polynomials Fj; = a;x; — a;x;. Alternatively, suppose that ag = 1 (which we
may assume by reordering the variables and scaling the coordinates); then p is
the only common zero of the set of linear polynomials G; = x; — a;xo.

In fact, any finite subset of P" is algebraic; this is a consequence of the
following lemma, which we leave to the reader.

LEMMA 5.2. Any intersection of algebraic subsets of P™ is an algebraic subset.
Any finite union of algebraic subsets of P™ is an algebraic subset.

We see therefore that one has a topology on P™ whose closed sets are the
algebraic subsets; this topology is called the Zariski topology on P™.

Linear Subspaces. Probably the most important algebraic subsets other
than the hypersurfaces and the finite sets are the linear subspaces of P™. These
are exactly the subsets described by a set of homogeneous polynomials, which
all have degree one.

An alternate way of viewing a linear subspace is afforded by considering the
original vector space C™*1. Suppose that W C C"*! is a vector subspace. Then
the 1-dimensional subspaces of W forms a linear subspace of P", and every linear
subspace of P™ is obtained in this way, for a unique vector subspace.

This is nicely expressed without coordinates: if PV is the projectivization of
a vector space V, and W C V is a vector subspace, then PW C PV is a linear
subspace of PV.
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Note that the intersection of any collection of linear subspaces is a linear
subspace.

The dimension of a linear subspace L C P™ is defined to be one less than the
dimension of the vector subspace W to which L = PW corresponds:

dim PW =dimW - 1.

Note that with this convention, the empty set (which is P{0}) has dimension
-1.

Linear subspaces of dimension zero are the points; a linear subspace of di-
mension one is called a line. In general, a linear subspace of dimension k is
called a k-plane. A hyperplane is a linear subspace of codimension one, that is,
of dimension n — 1 in P™.

Suppose that Z C P™ is any subset. We define the span of Z, denoted by
span(Z), to be the intersection of all linear subspaces containing Z. If L =
span(Z), we might also say that Z spans L. We say that Z is nondegenerate if
Z spans all of P™.

If Z is a finite set of points Z = {py,...,p-}, then we say that Z is linearly
independent if the dimension of the span of Z is maximal, i.e., if dimspan(Z) =
#(Z) — 1. The finite set Z is dependent if not.

Thus two distinct points are always independent and span a line. Three points
either are independent (and span a 2-plane) or are dependent and span a line.
Points lying on a line are said to be collinear.

We have the following dimension formula, which follows easily from the cor-
responding formula for vector subspaces of a vector space:

LEMMA 5.3. If L and M are two linear subspaces of P™, then
dim(span(L U M)) = dim(L) + dim(M) — dim(L N M).

We leave the proof to the reader.

The Ideal of a Projective Algebraic Set. Suppose that Z C P" is a
subset. Since homogeneous polynomials are the only “functions” which we have
available to work with in P™, it is natural to ask which ones vanish at all the
points of Z. We define

I(Z) = theideal of k[z]
generated by all homogeneous polynomials F' vanishing on Z;

I(Z) is called the homogeneous ideal of the subset Z.

The study of projective algebraic sets and their ideals is the main topic of the
field of algebraic geometry. We will not delve too deeply into this in this text,
but the reader should be aware of some of the language.
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Linear Automorphisms and Changing Coordinates. Suppose that T :
Cnt!l - C"* s a C-linear isomorphism. Then T transports subspaces to sub-
spaces, preserving dimension; in particular it sends each 1-dimensional subspace
to another. Hence T induces a map 7" : P™ — P™; such a map is called a linear
automorphism of P™.

In terms of homogeneous coordinates, suppose that we think of C™*! as
column vectors in the usual way, so that applying the map T is equal to multi-
plication by an invertible square matrix Ar = (a;;) of size n + 1:

n
0 o 2040 %T;
n
1 1 2j=041;%;
T . = Ar . = .
n
Tn Tn 2_1:0 a"’j :EJ

Hence the same formulas are used for transforming the homogeneous coordinates
of points in P™ under T

n n
Tlxg:---:xp) = [Zaojzj Deeed Zanjmj].
7=0 7=0

Often the application of an invertible linear transformation 7' on projective
space is called changing the coordinates, or choosing coordinates. This is perhaps
more apt when thinking about the projectivization PV of a vector space V of
dimension n + 1 over C. A choice of basis v, ..., v, for V gives “coordinates”
on V: the coordinates of 3 c;jv; are the ¢;’s. This choice of basis is equivalent
to giving a C-linear isomorphism ¢ : C™*! — V, which send the standard *"
basis vector of C™*! to v;; using ¢ we obtain a corresponding isomorphism from
P" to PV, putting homogeneous coordinates on PV. The formalism is the same:
the homogeneous coordinates of the point [} c;u;] € PV are [co @ -+ @ ¢,
Choosing another basis gives a different isomorphism, and different homogeneous
coordinates.

More generally, if V and W are two vector spaces, and T : V — W is an
isomorphism between them, the T induces a map T : PV — PW; such a map is
called a linear isomorphism of the projective spaces.

One of the most common uses of changing coordinates is to take some collec-
tion of subsets of P™ and choose coordinates so that the subsets are described
either by simple equations or by simple coordinates. Some examples are given
in the lemma below, which we leave to the reader to check.

LEMMA 5.4. Let P™ be projective n-space.
a. Given any point p € P", there are coordinates so that

p=[1:0:0:---:0].
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b. Given any point p € P™, and any hyperplane H C P™ not containing p,
there are coordinates so thatp=1[1:0:0:---:0] and H is described by
To = 0.

c. Given any n+1 linearly independent points {po,p1,...,pn} of P", there
are coordinates so that

po = [1:0:0:---:0]
pp = [0:1:0:---:0]
Prn = [0:0:0:---:1]
d. Given any n+2 points {po,p1,. . -,Pn,Pr+1} of P", such that any n+1
of them are linearly independent there are coordinates so that py,...,Pn
are as above, and ppp 1 =[1:1:---:1].

e. Given a k- plane L C P™, there are coordinates so that L is described by
Trt1 = T2 = =T, = 0.
f. Given a k—plane L CP", and an (n — k — 1)-plane M C P™, which are
disjoint, there are coordinates so that L is described by Tpr1 = Tpr2 =
=2 =0 and M is described by xyo =z, =--- = x5 = 0.

Two disjoint linear subspaces L. and M as in Lemma 5.4.f above are said to
be complementary linear subspaces.

Projections. Let L C P™ be a k-plane and M C P™ be an (n — k — 1)-plane
which are disjoint (and hence complementary) subspaces. Note that L and M
together span all of P™.

Suppose p is a point not in L. Then the span of L U {p} is a linear subspace
L, which has dimension one more than that of L: Ly is a (k + 1)-plane. Hence
by the dimension formula (Lemma 5.3), we see that

dim(Li " M) = dim(L,)+ dim(M) — dimspan(L; U M)
(k+1)+(n—k—-1)—(n)=0,

Il

so that L; N M is a single point, in M of course.
DEFINITION 5.5. The projection from L to M is the mapping
m:(P"~L) - M

defined by sending a point p ¢ L to the intersection point of span(L U {p}) with
M:
7(p) = span(L U {p}) N M.

The subspace L is called the center of projection.
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Note the odd use of the word: the projection from L is exactly not defined on
L!

It is easy to see that if L is defined by zp11 = k49 = =2, =0and M is
described by z¢ =z, = .-+ = x4 =0, then
wlog - ixy ={0:0:---:0:Tpyq i Thao i - Tnl.

One often suppresses the choice of the target subspace M in the language, and
refers to 7 simply as “the projection from L”. The reason for this is that if M,
and M, are two complementary subspaces to L, with projections m; from L to
M and 7y from L to M,, then the restriction of 79 to My is a linear isomorphism
¢: M, — M, and

¢om =my.

So for most purposes it doesn’t matter which subspace one is projecting to.

In abstract terms, projections may be defined as follows. Suppose that 14
is a vector subspace of V, and L = PW is the corresponding linear subspace
of PV. Then the quotient space V/W is a vector space, and the quotient map
7 :V — V/W induces the projection map « : (PV — L) — P(V/W).

This point of view makes it even clearer that the target space of a projection
is not so important: in the above formulation, it is not even a subspace!

Probably the most common use of projections is when the center of projection
is a single point p. Then the projection from p maps P™ — {p} to a hyperplane,
isomorphic to a P!,

Projections send linear subspaces to linear subspaces; the dimension of the
image depends on how much the subspace meets the center of the projection.

Projections compose nicely: if Ly C Ly C P™ are linear subspaces, and if «;
is the projection from L;, then 79 is the composition of m; with projection from
the image of L,. In particular, any projection may be viewed as a composition
of projections, each of which is a projection from a single point.

Projection maps are always onto, and never 1-1. It is an exercise to check
that if 7 is the projection from L, and p # ¢ are distinct points not in L, then
n(p) = w(q) if and only if the line joining p and ¢ meets L.

Secant and Tangent Lines. Let us return now to a smooth projective curve
X C P"™. Suppose that p and ¢ are distinct points on X. The line joining p and
q is called a secant line to X, and in general any line of P™ which meets X in
at least two distinct points is called a secant line to X. The line through two
points p and ¢ is often denoted by pg.

Let L C P™ be a linear subspace, with a complementary space M, and suppose
that L is disjoint from X. If 7 is the projection with center L, then 7|x maps
X to the lower-dimensional linear space M.

If p and g are distinct points of X, then the projection n(p) = n(g) if and
only if the secant line through p and q meets the center of projection L. Hence
m|x will be 1-1 if L is disjoint from the union of the secant lines.
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More interesting, and slightly more difficult to define, are the tangent lines to
X. Fix a point p € X. Since X is holomorphically embedded, we may choose

coordinates in P™ such that p=1{1:0:0:---: 0] and X is, near p, defined by
the locus

1:2z:692(2): 1 gn(2)],
where z is a local coordinate centered at p and gy, ..., g, are holomorphic func-

tions of z, with g;(0) = 0 for every 1.
Define a point g by taking the derivative of the above local parametrization
of X:
dgs dgn
=0:1:—==(0):---: =(0)]
q=[0:1: 20 : L))
DEFINITION. 5.6. The tangent line to X at p is the line joining p and q.

It is an exercise to check that the tangent line is well defined, independent of
the choices made in the local parametrization of X.

If X is a straight line in P”, then X is its own tangent line at any of its points.

Returning to the situation of a projection n from a center L, restricted to
the Riemann surface X, we ask the question: given a point p, when does 7|x
map a neighborhood of p isomorphically onto a Riemann surface in the target
projective space? We have already seen above that in order for 7|x to be 1-1,
the center L must be disjoint from all of the secant lines.

This is not enough for the image to be a holomorphically embedded Riemann
surface, however. Consider the twisted cubic curve X C P2, which is the image
of the mapping from P! to P3 which locally sends z to [1: 2 : 22 : 2%]. Let L be
the single point [0: 1: 0 : 0]; projection from L, restricted to X, locally sends z
to [1: 22 : 23] € P2. This is not a holomorphically embedded Riemann surface
near z = 0.

The problem with the above example is that the tangent line to X at the
point {1 : 0: 0 : 0] (corresponding to z = 0) is the line joining (1 : 0 : 0 : (] to
[0:1:0:0], and this line then meets the center of projection L. If this does not
happen, then the image is locally a Riemann surface:

PROPOSITION 5.7. Let X CP™ be a smooth projective curve. Let L CP™ be
a linear space disjoint from X. Suppose that L does not meet any secant line to
X, so that the projection  from L, when restricted to X, is 1-1. Fizx a point
p € X. Then there is a neighborhood U of p such that m{U) is a holomorphically
embedded Riemann surface (in the complementary space to L) if and only if the
tangent line to X at p does not meet L.

ProoF. We may choose coordinates so that the k-plane L is defined by z¢ =
Ty =+ =2Zn-k-1 =0, and that p={1:0:---:0]. In this case, since X is
holomorphically embedded, there is a local coordinate z centered at p such that
X is locally parametrized near p by [1 : g1(2) : g2(2) : -+ : gn(2)], where the
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g:’s are holomorphic functions of 2z, ¢;(0) = 0 for each i, and at least one g; has
nonvanishing derivative at 0 (so that this g; is a local coordinate also at p).

The projection =, in terms of the local coordinate z, sends z to [1 : g1(2) :
v+ 1 gn-k_1(2)]. This is also a holomorphically embedded Riemann surface if
and only if one of the g;’s with ¢ < n— k— 1 is a local coordinate at the image
of p, i.e., one of the g;’s with i <n — k — 1 has a nonvanishing derivative at 0.

Now the tangent line to X at p is the line joining p to the point [0 : ¢7(0) :
g5(0) = - -+ : g/ (0)]. This line meets L if and only if this point is in L, and so the
tangent line meets L if and only if ¢/(0) =0 for everyi <n—k - 1.

Hence the tangent line to X at p meets L if and only if the projection #(X),
near w(p), is not a holomorphically embedded Riemann surface. 0O

Projecting Projective Curves. The discussion above immediately gives
us the following.

COROLLARY 5.8. Suppose that X C P" is a smooth projective curve. Let L
be a linear space disjoint from X, which is the center of the projection m. Then
m|x is 1-1 and m(X) is a smooth projective curve if and only if L does not meet
any secant or tangent line to X. In this case w|x : X — w(X) is an isomorphism
of Riemann surfaces.

Can we find a linear subspace L disjoint from any secant or tangent line? This
is basically a matter of determining dimensions. Fix a smooth projective curve
X and consider the space

I={(p.q,r)|pE€X,qe X, p#q,r €Pq}

of triples of points whose first and second point are different, and lie on X, and
whose third point lies on the secant line through the first two points. The space
T is clearly a 3-dimensional complex manifold: If 2z is a local coordinate near p,
and w is a local coordinate near q, and r = p+ Ag, then Z is parametrized locally
near (p,q,r) by (z,w,A).

The function o : Z — P™ sending (p,q,r) to r is a continuous map, and has
image equal to the union of all the secant lines to X. We conclude that if n > 4,
then a cannot be an onto map; therefore there is a point pg € P™ which does
not lie on any secant line.

Similarly consider the space

J = {(p,r) | r lies on the tangent line to X at p}.

Again, it is easy to see that J is a 2-dimensional complex manifold: if z is a
local coordinate near p, and if we choose coordinates so that X is described near
p as the locus [1 : 2 : g2(2) : -+ : gn(2)], then we may write r = p+ A[0:1:
g5(0) : -+ : g,(0)], and we see that (z,A) parametrizes J near the point (p,r).
The function G : J — P" sending (p,r) to r is a continuous map, and has
image equal to the union of all the tangent lines to X. We conclude that if n > 3,
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then (3 cannot be onto; therefore there is a point py € P™ which does not lie on
any tangent line.

Putting the two constructions together, we see that if n > 4, there is a point pq
which does not lie on any secant or tangent line to X. Therefore, by Corollary
5.8, the projection from py maps X isomorphically onto a smooth projective
curve in P71,

We may therefore proceed recursively, continuing to project the curve X until
we reach P3. Therefore:

PROPOSITION 5.9. Let X be a smooth projective curve in P™ with n > 4.
Then there is a projection to P> which maps X isomorphically onto a smooth
projective curve in P3.

One can refine this argument and show the following.

PROPOSITION 5.10. Let X be a smooth projective curve in P™ with n > 3.
Then there is a projection to P2 which maps X isomorphically onto a smooth
projective plane curve with nodes.

We leave the details to the reader; the idea is that since there are points not
on any tangent lines, we can project to P2, and locally we have an isomorphism
onto the image, which is a Riemann surface. But globally, since the projecting
point may lie on some secants, two different points may be mapped to the same
point in the plane, creating nodes on the image.

Problems II1.5

A . Letp=|zg: - :z,] and ¢ = [yo : -+ : yn] be points of P™ given by
homogeneous coordinates. Show that p = ¢ if and only if for every ¢ and 7,
TiY; = Z;Yi.

B. Show that if S; C Sy C k[z] then Z(S;) C Z(S1) C P™.

C. Show that if § C k[z] generates the ideal I C k[z], then Z(S) = Z(I).

D. Prove Lemma 5.2.

E. If L and M are two linear subspaces of P™, show that

dim(span(L U M)) = dim(L) + dim(M) — dim(L N M).

F. Show that any four distinct points on the twisted cubic curve in P? are
linearly independent.

G. Show that the homogeneous ideal I(X) of the plane conic curve X defined
by F(z,y,2) = vz — y? = 0 is the principal ideal generated by F.

H. Show that the homogeneous ideal of the twisted cubic is generated by the
three quadratic equations Fy = z? — z¢zo, F, = 22 — 7123, and F3 =
ToT3 — Z1ZTo which cut it out.

I. Let p and ¢ be distinct points in P". Find a map F : P! — P™ which sends
0 to p, 00 to ¢, and has image equal to the line joining p and q.
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J. Show that given any degree d, and any finite set of points of P™, there is a
hypersurface of degree d not containing any of the points of the set.

K. Prove Lemma 5.4.

L. Suppose that W; and W, are vector subspaces of V, so that PW; and PW,
are linear subspaces of PV. Show that PW; and PW, are complementary
(i.e., they are disjoint and the sum of their dimensions is one less than the
dimension of PV) if and only if the vector space V is the internal direct sum
of Wi and W,.

M. Check that if L is defined by zx11 = zxy2 = -+ = 2, = 0 and M is described
by g = 1 = --- = x; = 0, then the projection n from L to M has the
formula

wlrg: i xy] =[0:0: 10Ty i Tao i Ty

N. Show that if 7 : P™ — L — M is the projection from L to M, and p # q are
distinct points not in L, then w(p) = n(q) if and only if the line joining p
and g meets L.

O. Suppose that 7 is a projection with center L, and that L’ is another linear
subspace. Show that the image 7(L’) is a linear subspace of the target space,
and that

dimn (L") = dim(L’) — dim(L N L) — 1.

P. Let X be a smooth projective plane curve defined by F(z,y,z) = 0, where
F is a nonsingular homogeneous polynomial. Show that if p = [zg : ¥ : 20]
is a point on X, then the tangent line to X at p is the line defined by

OoF oF oF
E(zo,yo, 20)T + %(zm Yo,%0)Y + 5(330, Yo, 20)z = 0.

Q. Show that the complement of an algebraic set in P™ is path-connected.
Further Reading

The discussion about lines and conics is de rigueur for any book on curve
geometry; [Reid88] and [Clemens80] are recent books with sections devoted
to conics in particular. For further reading on maps between complex tori,
[JS87] and [Serre73] are fine; all books devoted to elliptic curves treat this, in
particular [Lang87], [Silverman86], and [Husemoller87] among many others
take off from here.

The singularities of projective plane curves are discussed in [Walker50],
[S-K59], [Seidenberg68], [Fulton69], [Samuel69] [O-O81], [Brieskorn86],
and [Kirwan92]; an older viewpoint is taken in [Coolidge31]. This is a clas-
sical subject, and its literature may be as large as that on Riemann surfaces
themselves.

Forming quotients of manifolds and algebraic varieties by actions of groups is
also a subject unto itself. Eventually an expert will want to read [Mumford65],
but not right away.
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The brief section above on Projective Geometry is meant only to scratch
the surface and whet the reader’s appetite for more algebraic details, leading
to Algebraic Geometry. A sampler of relatively recent books might include
[Mumford76], [Kendig77], [Shafarevich77], [Hartshorne77|, [G-HT78|,
(Iitaka82], [Namba84|, [Reid88], [C-L-092], and [Harris92]. For the previ-
ous generation [H-P47] and [S-R49] were widely read and are still valuable.



Chapter IV. Integration on Riemann Surfaces

1. Differential Forms

As you know from a first course in one complex variable, the basic tool and,
indeed, the motivation for much of the subject is contour integration. In order to
transport the theory of integration to Riemann surfaces, we need to have objects
to integrate. These objects are called forms, and they come in various flavors.

Holomorphic 1-Forms.

DEFINITION 1.1. A holomorphic 1-formon an openset V C C is an expression
w of the form

w = f(2)dz

where f is a holomorphic function on V. We say that w is a holomorphic 1-form
in the coordinate z.

This is the basic object which we would like to transport up to a general
Riemann surface via complex charts. When we do this, we will require some
compatibility condition whenever two charts have overlapping domains. This
motivates the following.

DEFINITION 1.2. Suppose that w; = f(2)dz is a holomorphic 1-form in the
coordinate 2, defined on an open set Vi. Also suppose that wy = g(w)dw is
a holomorphic 1-form in the coordinate w, defined on an open set V5. Let
z = T(w) define a holomorphic mapping from the open set V, to V. We say
that wy transforms to we under T if g(w) = f(T(w))T' (w).

Note that the above definition is cooked up exactly so that the expression for
w transforms into the expression for wy when one sets dz = T'(w)dw (as one
should!).

Also note that if T is invertible with inverse function S, then w; transforms
to wo under T if and only if wy transforms to w; under S.

Given the above notation, we are ready to transport this construct to a Rie-
mann surface:

105



106 CHAPTER IV. INTEGRATION ON RIEMANN SURFACES

DEFINITION 1.3. Let X be a Riemann surface. A holomorphic 1-form on X
is a collection of holomorphic 1-forms {w4}, one for each chart ¢ : U — V in the
coordinate of the target V, such that if two charts ¢; : U; — V; (for i = 1,2) have
overlapping domains, then the associated holomorphic 1-form wy, transforms to
wg, under the change of coordinate mapping T = ¢, o ¢3 .

To define a holomorphic 1-form on a Riemann surface, one does not need to
actually give a holomorphic 1-form on every chart, but only the charts of some
atlas:

LEMMA 1.4. Let X be a Riemann surface and A a complezx atlas on X. Sup-
pose that holomorphic 1-forms are given for each chart of A, which transform to
each other on their common domains. Then there erists a unique holomorphic
1-form on X extending these holomorphic 1-forms on each of the charts of A.

PROOF. Let ¢ be a chart of X not in the atlas; our task is to define the
holomorphic 1-form with respect to 1 or, equivalently, in terms of the local
coordinate w of 1. Fix a point p in the domain of ¢, and choose chart ¢ in
the atlas containing p in its domain; let z be the associated local variable. Let
f(2)dz be the holomorphic 1-form with respect to ¢. Then simply define the
holomorphic 1-form with respect to ¢ as f(T(w))T’'(w)dw, where z = T(w)
describes the change of coordinates ¢ o 1~?.

Now one checks that this definition is independent of the choice of ¢, and
gives a 1-form with respect to ¢ at every point of the domain. Next one checks
that all of these holomorphic 1-forms transform to each other, and thus define a
holomorphic 1-form on X. This 1-form is obviously unique. [

Meromorphic 1-Forms. In the same spirit as above we may define mero-
morphic 1-forms, as expressions which are locally of the form f(z)dz where f is
meromorphic:

DEFINITION 1.5. A meromorphic 1-form on an open set V C C is an expres-
sion w of the form

w= f(2)dz

where f is a meromorphic function on V. We say that w is a meromorphic 1-form
tn the coordinate z.

The compatibility condition for meromorphic 1-forms is identical to that for
holomorphic 1-forms:

DEFINITION 1.6. Suppose that w; = f(z)dz is a meromorphic 1-form in the
coordinate z, defined on an open set Vj. Also suppose that wy = g{w)dw is
a meromorphic 1-form in the coordinate w, defined on an open set V3. Let
2z = T(w) define a holomorphic mapping from the open set V5 to V;. We say
that wy transforms to wy under T if g{w) = f(T(w))T”(w).
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Transporting the notion of meromorphic 1-forms from the complex plane to
a Riemann surface is now done in the same way also:

DEFINITION 1.7. Let X be a Riemann surface. A meromorphic 1-form on X
is a collection of meromorphic 1-forms {w,}, one for each chart ¢ : U — V in the
variable of the target V, such that if two charts ¢; : U; — V; (for ¢ = 1,2) have
overlapping domains, then the associated meromorphic 1-form wy, transforms
to we, under the change of coordinate mapping T = ¢, o ¢ 1

As is the case for holomorphic 1-forms, we may define a meromorphic 1-form
using only the charts in a given atlas; we leave this to the reader.

LEMMA 1.8. Let X be a Riemann surface and A a complex atlas on X. Sup-
pose that meromorphic 1-forms are given for each chart of A, which transform to
each other on their common domains. Then there exists a unique meromorphic
1-form on X extending these meromorphic 1-forms on each of the charts of A.

Let w be a meromorphic 1-form defined in a neighborhood of a point p. Choos-
ing a local coordinate centered at p, we may write w = f(z)dz where f is a
meromorphic function at z = 0.

DEFINITION 1.9. The order of w at p, denoted by ord,(w), is the order of the
function f at 0.

It is easy to see that ord,(w) is well defined, independent of the choice of
local coordinate. A meromorphic 1-form w is holomorphic at p if and only if

ordp(w) > 0.
We say p is a zero of w of order n if ordy(w) =n > 0. We say pis a pole of w
of order n if ordp(w) = —n < 0. The set of zeroes and poles of a meromorphic

1-form is a discrete set.

Defining Meromorphic Functions and Forms with a Formula. The
definition of a meromorphic or holomorphic 1-form w suggests that in order to
define w on a Riemann surface X, one must give local expressions for w (of
the form f(z)dz) in each chart of an atlas for X. In fact, one can define w by
giving a single formula in a single chart. This is sufficient to determine w by
the Idenfity Theorem for meromorphic functions and forms: if two meromorphic
1-forms agree on an open set, they must be identical.

Of course, this way of defining a form does not guarantee that the form actu-
ally exists on all of X. It may well happen that if one has a meromorphic local
expression f(z)dz in one chart, then when one transforms this local expression
to another chart it may fail to be meromorphic. For example, the meromorphic
1-form exp(z)dz on the finite chart C of C,, does not extend to a meromorphic
1-form in a neighborhood of o0.

A second problem may arise, namely that the local expression does not trans-
form uniquely to the other points of X. For example, consider the meromorphic
1-form y/2dz defined on the complex plane with the negative real axis removed,
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where the branch of the square root is chosen so that v/1 = 1. This can be
extended to the negative real axis, but not uniquely. Hence we do not obtain a
meromorphic 1-form on all of C*.

However, it is very convenient to simply use a single formula in one specified
chart to define a meromorphic 1-form w, and to let the burden fall to the reader
to check that the formula transforms uniquely to give a meromorphic 1-form on
all of X. This way of defining meromorphic 1-forms is employed systematically.

The same remarks hold also for meromorphic functions: they can be deter-
mined by a single formula in a single chart.

Using dz and dz. We can relax the holomorphic or meromorphic conditions
for 1-forms and obtain a notion of C* 1-forms. These should locally be expres-
sions of the form f(z,y)dz + g(z,y)dy, where  and y are the local real variables
(ie., z =z +1y).

However it is useful to abandon completely the use of the real and imaginary
parts  and y of the complex variable z, and instead depend solely on 2 and its
complex conjugate Z. This is possible, since

z=(z+%)/2and y = (2 - 2)/2i,
and
z=xz+1yand Z =z — iy,

so that any function expressible in terms of  and y is expressible in terms of z
and Z, and vice-versa. Furthermore, the same holds for the differentials:

dz = (dz + dz)/2 and dy = (dz — dz)/2i,

since
dz = dz + idy and dz = dz — <dy.

Thus any expression one would like to construct of the form f(z,y)dz +
g(z,y)dy can be written instead in the form r(z,%Z)dz + s(z,%Z)dZz. This we will
do religiously.

This principle is carried over to partial derivatives also. Given a C* function
f(z,y), we have

of _ 0fox ofoy

0z 0r 9z Oy dz
_19f  10f
T 20z 20y’

and
of _ 2f0x, ofoy
0z or o0z Oyoz
18f 19f

20 218y’
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Thus we can define the differential operators 8/9z and §/0z by

o _1 ( 0 _; 0 )
8z 2'9xr Oy
and
2 _10 .0
oz 20z Oy’
With this notation, we note that a C* function f is holomorphic on an open
set V if and only if
of
7z
since this condition is exactly the Cauchy-Riemann equations for f.

C> 1-Forms. With the dz and dZ notation at hand, we can easily develop
the notion of C* 1-forms.

DEFINITION 1.10. A C* 1-form on an open set V C C is an expression w of
the form

w= f(2,2)dz + ¢g(2,%2)dZ

where f and g are C* functions on V. We say that w is a C* 1-form in the
coordinate z.

The transformation rule is the following:

DEFINITION 1.11. Suppose that wy = f1(z,2)dz+¢1(z,%)dz is a C* 1-form in
the coordinate 2, defined on an open set V;. Also suppose that wy = fo(w,W)dw+
g2(w,W)dw is a C* 1-form in the coordinate w, defined on an open set V5.
Let z = T(w) define a holomorphic mapping from the open set V5 to V;. We
say that wy transforms to wo under T if fo(w,w) = fi(T(w), T(w))T'(w) and

g2(w, W) = g1(T(w), T (w)) T (w).

Note that the definition is made in this way because of the differential formula
for the chain rule: if z = T(w), then dz = T"(w)dw, and dz = T"(w)dw. Also
note that the dz part of the expression transforms into the dw part, and the dz
part into the dw: there is no “mixing” of the two halves of the expression upon
changes of coordinates. This is the real reason to use z and 7 instead of z and
y here; in an z,y formulation, there are cross-terms everywhere.

We use the same method as before to transport these ideas to a Riemann

surface:

DEFINITION 1.12. Let X be a Riemann surface. A C*® 1-formon X is a
collection of C* 1-forms {wg}, one for each chart ¢ : U — V in the variable of
the target V, such that if two charts ¢; : U; — V; (for ¢ = 1,2) have overlapping
domains, then the associated C* 1-form w,, transforms to wy, under the change
of coordinate mapping T = ¢, 0 ¢; *.
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We have the same remark concerning defining a C* 1-form only on the charts
of an atlas, which we again leave to the reader:

LEMMA 1.13. Let X be a Riemann surface and A a complex atlas on X.
Suppose that C*° 1-forms are given for each chart of A, which transform to each
other on their common domains. Then there exists a unique C™® 1-form on X
extending these C°° 1-forms on each of the charts of A.

1-Forms of Type (1,0) and (0,1). Since, under transformation by holomor-
phic changes of coordinates, the dz and dz parts of a C* 1-form are preserved,
we may split the definition of a C* 1-form into two separate definitions, namely
of C*° 1-forms with only dz parts, and ones with only dZ parts.

DEFINITION 1.14. A C® 1-form is of type (1,0) if it is locally of the form
f(z,2)dz. It is of type (0,1) if it is locally of the form ¢(z,Zz)dz. '

Since the transformation rules for C* 1-forms preserve the dz part and the
dz part, this definition is well defined: if a form looks like a form of type (1,0)
in one chart, it will in any other chart on the common domain.

Note that any holomorphic 1-form is of type (1,0). A meromorphic 1-form
would be of type (1,0) if it was C* (which it is not at its poles).

C* 2-Forms. One introduces 1-forms in order to have something to integrate
around paths, which we will see later. Similarly, one often has a desire to perform
a surface integral over a suitable 2-dimensional piece of a Riemann surface. The
appropriate integrand in this case is a 2-form.

DEFINITION 1.15. A C* 2-form on an open set V C C is an expression 7 of
the form
n=f(zz)dzAdz

where f is a C* function on V. We say that n is a C* 2-form in the coordinate
z.

These types of differentials for surface integrals behave formally as follows.
Firstly, one has

dzAdZ = -dz Adz

since changing the order in the wedge product corresponds to reversing the orien-
tation of the surface over which the integration is being performed (thus changing
the sign of the integral). Secondly,

dzAdz=dzAdZ=0

since one cannot have a surface integral using only one variable!
The transformation rule is the following:
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DEFINITION 1.16. Suppose that 71 = f(z,Z)dz A dZ is a C* 2-form in the
coordinate z, defined on an open set V7. Also suppose that 7, = g(w,w)dw Adw
is a C* 2-form in the coordinate w, defined on an open set V. Let z = T'(w)
define a holomorphic mapping from the open set V, to V;. We say that m;
transforms to ny under T if g(w,w) = f(T(w), T(w))||T" (w)|]*.

The above definition comes exactly from making the change of coordinates
both in the function parts and the dz and dz parts of the expression, and then
using the rules given above for simplifying and cancelling, noting that ||T” (w)|> =
T (w)T"{w).

Again the same method is used to transport these ideas to a Riemann surface:

DEeFINITION 1.17. Let X be a Riemann surface. A C*® 2-form on X is a
collection of C*° 2-forms {74}, one for each chart ¢ : U — V in the variable of
the target V, such that if two charts ¢; : U; — V; (for ¢ = 1,2) have overlapping
domains, then the associated C> 2-form 74, transforms to 74, under the change
of coordinate mapping T = ¢1 o ¢ '

Finally the same atlas remark holds again:

LEMMA 1.18. Let X be a Riemann surface and A a compler atlas on X.
Suppose that C*® 2-forms are given for eaeh chart of A, which transform to each
other on their common domains. Then there ezists a unique C*® 2-form on X
extending these C*° 2-forms on each of the charts of A.

Problems IV.1

A. Let X be the Riemann Sphere C,, with local coordinate z in one chart and
w = 1/z in the other chart. Let w be a meromorphic 1-form on X. Show
that if w = f(z)dz in the coordinate z, then f must be a rational function
of z. Show further that there are no nonzero holomorphic 1-forms on Cy.
Where are the zeroes and poles, and the orders, of the meromorphic 1-form
defined by dz? Of the 1-form dz/z?

B. Let L be a lattice in C, and let 7 : C — X = C/L be the natural quotient
map. Show that the local formula dz in every chart of C/L is a well defined
holomorphic 1-form on C/L. Show that this 1-form has no zeroes. Show
that the local formula dZ in every chart of C/L is a well defined (> 1-form
on C/L.

C. Let X be a smooth affine plane curve defined by f(u,v) = 0. Show that
du and dv define holomorphic 1-forms on X, as do p(u,v)du and p(u, v)dv
for any polynomial p(w,v). Show that if r(u,v) is any rational function,
then r(u,v)du and r{u,v)dv are meromorphic 1-forms on X. Show that
(8f/0u)du = —(0f/8v)dv as holomorphic 1-forms on X.

D. Let X be a smooth projective plane curve defined by a homogeneous poly-
nomial F(z,y,z) = 0. Let f(u,v) = F(u,v,1) define the associated smooth
affine plane curve. Show that du and dv define meromorphic 1-forms on all
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of X, as do r(u,v)du and r{u,v)dv for any rational function r. Show that
(0f Jou)du = —(8f/dv)dv as meromorphic 1-forms on X.

E. With the notation of the previous problem, suppose that F(z, y, z) has degree
d > 3. Show that if p(u,v) is any polynomial of degree at most d — 3, then

du
p(u, U)W

defines a holomorphic 1-form on the compact Riemann surface X.

F. Suppose that X is a projective plane curve of degree d with nodes, defined
by the affine equation f(u,v) = 0. Show that if p(u, v} is any polynomial of
degree at most d — 3, which vanishes at the nodes of X, then

du
P(u,v) 5a

af /ov
defines a holomorphic 1-form on the resolution X of the nodes.

G. Let X be a compact hyperelliptic Riemann surface defined by y? = h(z),
where h has degree 2g+1 or 29+ 2 (so that X has genus g). Show that dz/y
is a holomorphic 1-form on X if g > 1. Show that p(x)dz/y is a holomorphic
1-form on X if p(x) is a polynomial in x of degree at most g — 1.

H. Let X be a cyclic cover of the line defined by y¢ = h(z). Show that r(z,y)dz
defines a meromorphic 1-form on X. Give criteria for when r(z,y)dz is a
holomorphic 1-form.

I. Let L be a lattice in C, and let 7 : C —» X = C/L be the natural quotient
map. Show that dz A dZ is a well defined C*> 2-form on C/L.
J. Prove Lemma 1.8,

2. Operations on Differential Forms

There are several operations which one can perform with forms to produce
other forms. We briefly describe them here, and we will leave the details of most
of the constructions to the reader.

Multiplication of 1-Forms by Functions. Suppose that h is a C* function
on a Riemann surface X, and w is a C*° 1-form on X. We may define a C*> 1-
form hw locally, by writing w = fdz + gdZ and declaring hw to be hfdz + hgdz.
It is an immediate check that this gives a well defined 1-form hw on X. The
properties listed below are all obvious:

o If w is of type (1,0), then so is hw.

If w is of type (0, 1), then so is hw.

If w is holomorphic and h is holomorphic, so is hw.

If w is meromorphic and h is meromorphic, so is hw.

If h and w are meromorphic at p then ord,(hw) = ord, (k) + ordy(w).

One can also multiply a C*° 2-form 7 by a function h, obtaining a C*> 2-form
hn defined locally in the obvious way: if n = f(z,%Z)dz A dZ with respect to a
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coordinate z, then hn = h(z,%) f(2,Z)dz A dZ with respect to that coordinate.

Differentials of Functions. Let f be a C* function defined on a Riemann
surface. Then one can define the C® 1-forms df, df, and 8f on X by the
following rule. Let ¢ : U — V be a chart on X giving a local coordinate z. Write
f on U in terms of the local coordinate as f(z,%). Define

_ 9y

_of
E® 2, = —=d

of of 57 9%

and

Y F)
df =8f +0f = 6—£dz+ édz.

LEMMA 2.1. The above local recipe gives well defined C* 1-forms df, 0f, and
Of on X. A C*® function f is holomorphic if and only if 3f = 0. The operators
d, 8, and O are C-linear and satisfy the product rules

d(fg)=fdg+gdf; d(fg)=[0g+gdf;, 0(fg)=fg+ gbf.

A C* 1-form w is said to be ezact on an open set U if there is a C* function
f defined on U such that df =w on U.

Recall that every meromorphic function f on a Riemann surface can be used
as a local coordinate at a point p where f is holomorphic and ord,(f - f(p)) = 1;
moreover this is the case at all but a discrete set of points p. Therefore if such an
f is given, we may write any meromorphic 1-form w with an expression g(z)df
for a suitable meromorphic function g. This is a convenient method for giving
formulas for meromorphic 1-forms without having to be too explicit about where
the formula is valid.

The Wedge Product of Two 1-Forms. The formalism used in the def-
inition of 2-forms can be extended, by the use of linearity, to define a wedge
product of two 1-forms. The w;, and wy be two C*> 1-forms on X. Choosing a
local variable 2 we may write w; = fidz + ¢1dZ and wy = fadz + godz. Define
with respect to this local variable the C*° 2-form w; A ws by

w1 Awy = (f192 — fag1)dz A dZ.

LEMMA 2.2. The above definition gives a well defined C* 2-form on X.
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Differentiating 1-Forms. Let w be a C* 1-form on a Riemann surface X.
Then one can define the C*° 2-forms dw, 8w, and Ow on X by the following rule.
Let ¢ : U — V be a chart on X giving a local coordinate z. Write w on U in
terms of the local coordinate as f(z,%)dz + ¢g(z,%)dZ. Define

_ Oy - #._ _Of =
6w—azdz/\dz, Ow = gdz/\dz,

and 3 of
— 3, (29 _9) =
dw—8w+8w—(az %)dZAdZ'

LEMMA 2.3. The above local recipe gwes well defined C* 2-forms dw, dw, and
Ow on X. A C*® 1-form w of type (1,0) is holomorphic if and only if Ow = 0.
The operators d, 0, and 8 are C-linear and satisfy the product rules

d(fw) = df Aw + fdw; O(fw) =0f Aw + fOw; B(fw)=0f Aw+ fow -
if f is a C*® function and w a C*™ 1-form. In addition, we have
ddf =88f =008f =0
for any C™ function f.

Note also that
00 f = —00f

for a C* function f.

A C* function f is said to be harmonic on an open set U if 39f =0 on U.

A C*° 1-form w is said to be d-closed (or simply closed) if dw = 0; it is 8-closed
if 8w = 0 and 8-closed if dw = 0.

Note that since ddf = 0, every exact form is closed; the converse is not
generally true. Similar remarks hold for 8-exact and 8 exact forms.

The following is a simple consequence of applying the Cauchy-Riemann equa-
tions.

LEMMA 2.4. If w is a holomorphic 1-form, then w is d-closed: dw = 0. Con-
versely, if w is of type (1,0) and is d-closed, then w is holomorphic.

Pulling Back Differential Forms. Let F : X — Y be a nonconstant
holomorphic map between two Riemann surfaces. Let w be a C* 1-form on Y.
We can define a C*° l-form F*w on X using the following rule. Fix a chart
¢ : U — V on X such that F(U) is contained in the domain U’ of a chart
¥ : U = V' on Y. This gives local coordinates z on U’ and w on U, and in
terms of these local coordinates the holomorphic map F' has the form z = h(w)
for some holomorphic function h.

Assume that w is equal to f(z,Z)dz + g(z,Z)dZ in the variable z. We define
the 1-form F*w with respect to the variable w by setting

F*w = f(h(w), h(w))W (w)dw + g(h(w), h(w))h' (w)dw.
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LEMMA 2.5. The above prescription gives a well defined C* 1-form F*w on
X.

The form F*w is called the pullback of w via F'. The following are immediate:

If w is holomorphic, so is F*w.
If w is meromorphic, so is F*w.
If w is of type (1,0), so is F*w.
If w is of type (0, 1), so is F*w.

Recall that we may also pull back functions: if f is a function on Y, then F* f
is simply the function f o F.

A completely analogous idea allows us to pull back 2-forms also, using the
local formula

F*(f(2,7)dz A dZ) = f(h(w), R({)) ||} (w)||dw A dB.

The operation of F* commutes with all three types of differentiation, at all
levels. Specifically, if f is a C* function and w is a C* 1-form, we have

o F*(df) = d(F*f) and F*(dw) = d(F*w).
o [*(9f) = 8(F*f) and F*(0w) = 8(F*w).
o F*(8f) = 3(F*f) and F*(0w) = 0(F*w).

The pullback of a meromorphic 1-form enjoys an order formula relating the
order of the form and the multiplicity of the map to the order of the pullback:

LEMMA 2.6. Suppose that F': X — Y is a holomorphic map between Riemann
surfaces, and w is a meromorphic 1-form on'Y. Fiz a point p € X. Then

ord, (F*w) = (1 + ordp(p) (w)) mult,(F) — 1.

PROOF. We may choose local coordinates w at p and z at F(p) such that near
p, F' has the form z = w”, where n = mult,(F). With respect to the variable
2, the form w equals (cz* + higher order terms in z)dz, where k = ordp(,)(w).
Thus the form F*w equals (cw™ + higher order terms in w)(nw" 1)dw with
respect to this variable w. We see immediately then that the order of F*w is
nk +n —1 as claimed. O

Some Notation. Fix an open set U on a Riemann surface X. It is convenient
to be able to speak of the space of k-forms of various types defined on U alone.
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We employ the following notation, most of which is quite standard.

EWU)=EOW) = {C* functions f:U — C}.
ED() {C*1-forms defined on U}.
ELOY = {C* 1-forms of type (1,0) defined on U}.
EON@W) = {C* 1-forms of type (0,1) defined on U}.
EDU) = {c*™ 2-forms defined on U}.
OU) = { holomorphic functions f: U — C}.
QY U) { holomorphic 1-forms defined on U}.
MUY = M) { meromorphic functions f defined on U}.
MOW) = { meromorphic 1-forms defined on U}.

All of these sets are complex vector spaces. Moreover, the spaces £(U), O(U),
and M(U) are rings (in fact, C-algebras); if U is connected then O(U) is an in-
tegral domain and M(U) is a field. The usual multiplication makes the spaces
ED), ELO(U), £X9(U), and £@(U) into modules over the ring £(U); simi-
larly the spaces Q2! (U) and M) (U) are modules over O(U) and if U is connected
MO(U) is a vector space aver M(U).

We have the obvious relationships

o) c &),

ow) c M),

Q) c €M),

QU) ¢ MD), and
ENUy = W) @YD)

Note that if V' C U are open sets, then for all of these spaces there are natural
“restriction” maps from the space of forms over U to the corresponding space
over V. All such maps are denoted by p%,. We always have

pt=id and pY 0pY =p% fWCV CU.
If F: X —Y is a holomorphic map, and V C Y is an open set, then we have
F* EO(V) = EO(F-Y(V))
for each i = 0,1, 2, and similarly for all of the other spaces mentioned above. The
fact that F'* commutes with the various forms of differentiation can be expressed

by the commutativity of the obvious squares.
F* also commutes with the restriction maps, as do all forms of differentiation.
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The Poincaré and Dolbeault Lemmas. The Poincaré and Dolbeault Lem-
mas address the question: when is a function equal to the derivative of another
function, at least locally? More precisely, when is a 1-form w equal to df or f,
locally? Clearly since ddf = 0, a necessary condition for w = df is that dw = 0;
since 0f has type (0,1), a necessary condition for w = 8f is that w be of type
(0,1).

It turns out that these conditions are sufficient as well. We will not use these
results in an important way, and so will not give proofs; they can be found in
many texts.

PROPOSITION 2.7 (POINCARE’S LEMMA). Let w be a C*° 1-form on a Rie-
mann surface X. Suppose that dw = 0 identically in a neighborhood of a point
p in X. Then on some neighborhood U of p there is a C*®° function f defined on
U withw =df onU.

A proof can be found in [Munkres91]; the idea is to use path integration
(which we will discuss in the next section) and show that the function f(z) = fpz w
is well defined (using dw = 0) and satisfies df = w (by the fundamental theorem
of calculus).

Dolbeault’s Lemma is not as elementary.

PROPOSITION 2.8 (DOLBEAULT’S LEMMA). Let w be a C* (0,1)-form on a
Riemann surface X. Then on some neighborhood U of p there is a C*° function
f defined on U with w = 38f on U.

In the real analytic category a proof is elementary, and goes as follows. Write
w = g(2,Z)dZ. We seek a function f such that 3f/8z = g. If g is real analytic,
then it can be expanded in a series and we may write g = Zi, p ¢:;2'Z%. Then we
may integrate term-by-term, and set f = 37, s ¢;;2'27 ! /(5 + 1).

See for example [Forster81] for a general proof.

Problems IV.2
A. Check that if w is a C*° 1-form and h is a C* function, then hw defined as
in the text is a C*° 1-form.

B. Prove Lemma 2.1.

C. Prove Lemma 2.2, i.e., that the wedge product of two 1-forms is a well defined
2-form.

D. Prove Lemma 2.3.

E. Prove Lemma 2.4.

F. Prove Lemma 2.5, i.e., that the pullback of a 1-form is well defined.

G. Prove that the pullback of a 2-form is well defined.

H. Let a holomorphic map F : Co, — Co be defined by the formula w = 2% for

some integer N > 2, where we use z as an affine coordinate in the domain
and w as an affine coordinate in the range. Compute the pullback F*{dw)
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of the form (1/w)dw. Compute the orders of F*(dw) at all of its zeroes and
poles.

I. Let X be a hyperelliptic curve defined by y> = h(z). Let 7 : X — P! be the
double covering map sending (z,y) to z. Let w = n*(dz/h(z)). Compute
the orders of w at all of its zeroes and poles.

3. Integration on a Riemann Surface
We are now in a position to describe contour integration for a Riemann surface.

Paths. The concept of a 1-form is specifically designed to provide an inte-
grand for a “contour integral” on a Riemann surface. The other ingredient of
such an integral is the contour itself. This we now develop briefly; these ideas
should be quite well known.

DEFINITION 3.1. A path on a Riemann surface X is a continuous and piece-
wise C*° function v : [a,b] — X from a closed interval in R to X. The points
v(a) and (b) are the endpoints of the path (y(a) is sometimes called the initial
point). We say the path -y is closed if y{a) = ~(b).

There are several obvious remarks to make.

EXAMPLE 3.2. Let v : [a,8] — X be a path on X. Suppose that o : [¢,d] —
[a,b] is a continuous and piecewise C™ function sending ¢ to a and d to b. Then
vo o is a path on X. This is referred to as a reparametrization of the path .
Any path v may be reparametrized so that its domain is [0, 1].

EXAMPLE 3.3. Let <y : [a,b] — X be a path on X. The reversal of +, denoted
by —v, is the path defined by sending ¢t € [a,b] to y(a + b — t). Its initial point
is the endpoint of 7, and its endpoint is the initial point of ~.

EXAMPLE 34. If F: X — Y is a C*™ map (in particular if it is a holomorphic
map), then F' o+ is a path on Y. The path F' o+ is often denoted by F.~.

EXAMPLE 3.5. Let p be a point of a Riemann surface X, and let S be a subset
of X whose closure does not contain the given point p. Then there is a closed
path v on X with the following properties:

e ~ is 1-1 and the image of v lies completely inside the domain U of a
chart ¢ : U —» V on X.
e The closed path ¢ oy on V has winding number 1 about the point ¢(p).
e No point of S which lies in the domain U is mapped to the interior of
¢ o, ie., for every s € SNU, the winding number of ¢ o v about ¢(s)
is zero.
We say that such a path is a small path enclosing p and not enclosing any point
of S.

We note that this definition is independent of which coordinate chart is used.
One can also arrange, by suitable choice of the coordinate chart, that
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e the chart ¢ is centered at p,
¢ the domain of v is [0, 27], and
o the closed path ¢ o~y on V is exactly the path 2(¢) = rexp(it) for some
real number 7 > 0, in the local coordinate 2z of V.
Finally we note that the interior of a small path enclosing p is well defined:
it is the connected component of X — image(~y) containing p.

EXAMPLE 3.6. Suppose v; and -, are two paths on X with the endpoint of
~1 being the same as the initial point of <. Then there is a path v on X with
domain [0, 1] such that |jg 1/2) and |[1/2,1] are reparametrizations of v; and 72
respectively. This is the process of concatenation of the two paths. It can be
extended in the obvious way to any finite number of paths.

The above construction can be trivially reversed: if v is a path on X with
domain [a, b], then any partition a = a9 < a7 < ... < a, = b of the interval gives
a decomposition of v into n paths, of which = is the concatenation. One calls
this a partitioning of the path ~.

The following is immediate using the compactness of a closed interval.

LEMMA 3.7. Let v be a path on a Riemann surface X. Then v may be par-
titioned into a finite number of paths {7}, such that each v; is C*, with image
contained in a single chart domain of X.

Note that any two such partitionings have a common refinement. Thus any
quantity defined via a partition of a path which is invariant under refinement is
actually a function of the path itself, not the partition.

Integration of 1-Forms Along Paths. We are now prepared to define the
integral of a C*° 1-form along a path. Let w be a C* 1-form on a Riemann surface
X. Let v be a path on X. Choose a partition {v;} of 7 so that each +; is C*
on its domain [a;_1, a;] and has image contained in the domain U; of a chart ¢;.
With respect to each chart ¢;, write the 1-form w as w = fi(2,2)dz + ¢;(2,2)dz.
Consider the composition ¢; o 7; as defining the function z = 2(¢) for ¢ in the
domain of +;.

DEFINITION 3.8. With the above notation, we define the integral of w along
~ to be the complex number

L w=Yy / :;i_llfi(z(w,?(t_))z'(t) + 0u(=(0), 7D

Note that if the image of v is contained in the domain of a single chart
¢:U — V,and if w = fdz 4 gdZ in this chart, then

/w = fdz +g¢dz
v oe]

where the integral on the right is the usual contour integral of the path ¢y in V.
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It is an immediate check that the above definition is independent of the choice
of coordinate charts; this is exactly the motivation for the definition of how a
1-form transforms under change of coordinates. Moreover, it is invariant under
a refinement of the partition. Therefore, as noted above, the integral is well
defined, depending only on the path v and the 1-form w.

The following lemma contains some immediate remarks, which we leave to
the reader.

LEMMA 3.9. (a) The integral is independent of the choice of parametriza-

tion. In other words,
Yo bl

if a is any reparametrization of the domain of the path .
(b) The integral is C-linear in w:

/(Aw1+uwz)=>\/w1+u/wz-
b Y Y

(¢) The fundamental theorem of calculus holds: if f is a C*™ function defined
in a neighborhood of the image of v : [a,b] — X, then

/ df = 1((8)) - F(+(a)).
A

(d) The integral is linear under partition of the path, i.e., if v is partitioned

into paths {v;}, then
[o=%[w
v i I

(e) If one reverses the direction of a path, the sign of the integral changes:

/_vw:—[yw.

(f) If F: X — Y 1is a holomorphic map between Riemann surfaces, then the
operation of F, on paths is adjoint to the operation of F* on 1-forms.
In other words, if v is a path on X and w is a 1-form on'Y, then

/ w:/F*w.
Fuy v

Chains and Integration Along Chains. It is useful to employ a summa-
tion notation for the partitioning of a path, and also in other situations. The
proper setting for this is the notion of a chain.

DEFINITION 3.10. A chain on a Riemann surface X is a finite formal sum of
paths, with integer coefficients.
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The set of all chains on X forms a free abelian group CH(X), with basis the
set of paths on X. Every chain can be uniquely written in the form vy = 5 Y5
where the n;’s are integers (positive or negative) and the «;’s are paths on X.

Given a chain y = } 7 n;v;, and a C* 1-form w, we can define the integral of
w over v by extending the path integrals by linearity:

=5 ]

Note that if v is partitioned into paths {;}, we may write v = 3, v, and
not get into trouble with the integration conventions. Similarly, the notation —+
for a reversal of a path v now has two meanings (as the reversed path and also
the chain (—1) - ), but integration cannot see the difference between these two
meanings, so we will not fuss about it.

With this notation, we now have that integration is a bilinear operation, C-
linear in the 1-forms as has been mentioned above, and now Z-linear in the
chains.

The Residue of a Meromorphic 1-Form. Let w be a 1-form on a Riemann
surface X which is meromorphic at a point p € X. Choosing a local coordinate
z centered at p, we may write w via a Laurent series as

o0

w= f(z)dz = ( Z cp2™)dz

n=—M
where ¢_ps # 0, so that ord, (w) = —M.

DEFINITION 3.11. The residue of w at p, denoted by Res,(w), is the coefficient
c—1 in a Laurent series for w at p.

We note that a Laurent series is certainly not well defined; it is our task to
show that at least this one coefficient ¢_y is, however. This will follow from the
next lemma.

LEMMA 3.12. Let w be a meromorphic 1-form defined in a neighborhood of
p € X. Let v be a small path on X enclosing p and not enclosing any other pole

of w. Then
1
Resp(W) = Eﬂ_—”’/yw

PROOF. Let ¢ : U — V be a chart on X centered at p containing the image
of -y, so that « satisfies the conditions of the definition of small path enclosing
p with respect to this chart. Write w = f(z)dz in the local coordinate z on V,
and assume that f(z) has a Laurent series ) . c,2". Then

/w= f(2)dz,
Y (07
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which is equal to 2mic_; by the ordinary Residue Theorem in the complex
plane. O

COROLLARY 3.13. The residue of a meromorphic 1-form is a well defined
complex number.

This follows from the previous lemma, since the integral is independent of the
chart, and hence of the local coordinate used to expand the 1-form in a Laurent
series.

LEMMA 3.14. Suppose f is a meromorphic function at p € X. Then df/f 1is
a meromorphic 1-form at p, and

Resp(df/f) = ord,(f).

PrOOF. Choose a chart centered at p, giving a local coordinate z, and assume
that ord,(f) = n. Then we may write f = cz” + higher order terms near
p, with ¢ # 0. Note that then 1/f = ¢ *2™™ + higher order terms near p.
In this case df = (ncz”"! + higher order terms )dz near p, so that df/f =
(n/z + higher order terms )dz; this clearly has residue n = ord,(f) at p. O

Integration of 2-Forms. Let T be a triangle on a Riemann surface X, that
is, the homeomorphic image of a triangle in C. Suppose that T is contained
completely inside the domain of a chart ¢ : U — V. Then if  is a C*° 2-form
on X, we may write n = f{z,%Z)dz A dz in this chart. With this set-up, we may

deﬁne
//
T

/ f(z,2)dz AdZ
&(T)

Il

// (=29)f(z +iy,x — iy)dz A dy
#(T)

where this last integral is the usual surface integral in C = R2.

Note that if 7 is contained in the domain of two charts, then the integral is
well defined: this amounts to simply a change of variable in the double integral.

In general, suppose that D C X is a triangulable closed set. Then we may
define [ n by first triangulating D so that each triangle is contained in a single
chart domain, and then adding the separate integrals over the triangles together.

Since any two triangulations of D will have a common refinement, one need
only show that the definition is well defined under a refinement of a triangulation.
This boils down to simply showing that if a single triangle is subdivided, the
integral does not change. But this is simply the addition formula for integrating
over the union of two closed sets. Thus:

LEMMA 3.15. The above prescription gives a well defined integral [[,n when-
ever D is a triangulable closed set of X and n is a C* 2-form on X.
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We note here a useful construction. If T is any triangle on X completely
contained in some chart domain, we can construct a path 81" by traversing the
boundary of T counterclockwise, parametrized by arc-length. (The initial point
can be taken to be any one of the vertices, fix one to be specific, it will never
matter.) This gives a closed path 8T on X. If D is any triangulable closed set
on X, we may decompose D into triangles {7T;}, and set 8D = ). 8T;, which
is a chain on X, called the boundary chain of D. This chain depends on the
triangulation, but only up to some mild transformations, essentially replacing
paths by partitions and reparametrizations. Since we only use this construction
of 0D in order to integrate over 0D, and since integration is unaffected by
partitioning and reparametrizing, we do not need to pay too much attention to
the choices made.

Stoke’s Theorem. We now have all the ingredients to write down the Rie-
mann surface version of Stoke’s Theorem:

THEOREM 3.16 (STOKE’S THEOREM). Let D be a triangulable closed set on
a Riemann surface X, and let w be a C*™ 1-form on X. Then

f= I

PROOF. Since both sides are additive with respect to the triangles composing
a triangulation of D, we may assume D is a triangle which is contained inside
some chart domain. At this point we may transfer both integrals to the complex
plane via the chart map, and then notice that the theorem is simply Green’s
Theorem in the plane. O

The Residue Theorem. In the standard first course in complex variables,
one inevitably comes across the Residue Theorem, which states that the sum
of the residues is equal to some integral. The Riemann surface version is even
simpler:

THEOREM 3.17 (THE RESIDUE THEOREM). Let w be a meromorphic 1-form
on a compact Riemann surface X. Then

Z Res,(w) = 0.

pEX

ProOF. Note of course that since the poles of w form a discrete set in X, the
sum is actually finite since X is compact. Let p;,p2,...,pn be the poles of w.
For each pole p;, choose a small path «; on X enclosing p; and no other pole of
w, and let U; be the interior of ~;. Note that by the usual residue theorem in
the plane, we have

/ w = 2mi Resp, (w)
Yi

by Lemma 3.12.
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Let D = X — U;U;; then D is triangulable, and D = — 3", ~; as a chain on
X. Therefore

;Respi(w) = 57%;/«,,“)
-1

= b w
271'1/_2_%_

_1/

= — w

2w 8D

= _—1//dw by Stoke’s Theorem
D

2m

=0
since dw = 0 in a neighborhood of D, where w is holomorphic. [J

One cannot stress too much the importance of the Residue Theorem in the
theory of Riemann Surfaces. The Residue Theorem can be taken to be the basis
for the proof of the Riemann-Roch Theorem, which describes rather precisely
the space of meromorphic functions with prescribed poles on a compact Riemann
surface.

There is also an algebraic proof of the Residue Theorem which avoids the use
of integration; this will be described later.

As a first application, applying the Residue Theorem to df/f, and using
Lemma 3.14, we have the following.

COROLLARY 3.18. Let f be a nonconstant meromorphic function on a com-
pact Riemann surface X. Then

> ordy(f) =0.

peX

Recall that we have previously proved this statement (as Proposition 4.12 of
Chapter II) using the theory of the degree of a holomorphic map.

Homotopy. The concept of homotopic paths extends readily to Riemann
surfaces. Let I : [a,b] % [0,1] — X be a continuous function. For each s € [0, 1],
define v, : [a,b] — X by v(t) = I'(t,s). Assume that each ~, is a path on X.
Assume further that all of these paths have the same initial point and the same
endpoint; in other words, the map T is constant on the two sets {a} x [0, 1] and

5} x [0, 1].

DEFINITION 3.19. A map I as above defines a homotopy between the paths g
and v; on X. We say that the two paths 7y and v1 are homotopic, or homotopic
via I'.

Note that homotopic paths necessarily have the same initial points and the
same endpoints.
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The basic theorem concerning homotopy of paths carries over verbatim from
the theory of contour integration in the complex plane. In our context, it is the
following.

PROPOSITION 3.20. Suppose vo and ;1 are homotopic paths on a Riemann
surface X. Then if w is any closed 1-form on X (i.e., dw = 0), then

/wz/w.
“Yo Y1

ProoOF. The point is that if D is the image of the rectangle under the ho-
motopy, then D is triangulable and 8D = +; — 4o up to partitioning and
reparametrization. Therefore

fo#= o= [ =0

since w is closed. O -

Note that any holomorphic 1-form is closed, so the above proposition applies
immediately to integrals of holomorphic 1-forms: the integrals depend only on
the homotopy class of the path of integration, not on the path itself.

Let 71 (X, p) be the fundamental group of X, consisting of homotopy classes
of closed paths starting and ending at p € X. The above proposition implies
that for any closed 1-form w, the map

/ W ﬂl(Xap) d Ca

defined by sending the homotopy class of the closed path vy to f,y w, is well defined,
independent of the choice of particular path + in the homotopy class.

Moreover, this map, for fixed w, is a group homomorphism from the funda-
mental group to C. Since C is an abelian group, this group homomorphism must
factor through the abelianization of w1 (X, p).

In other words, we note that every commutator aba~16~! of m (X, p) is sent to
zero by this group homomorphism, and thus the commutator subgroup [mr;,m]
(which is generated by such commutators) is in the kernel of this integration
map. Thus a fundamental theorem for group homomorphisms implies that inte-
gration of w induces a well defined group homomorphism from the abelianization
m(X,p)/[m1,m] to C.

The quotient group m (X, p)/[m1,m1] is denoted by H;(X), and is called the
first homology group of X. If X is a compact orientable 2-manifold of genus g,
which is the case for a compact Riemann surface, then H;(X) is a free abelian
group of rank 2g.
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Homology. There is another viewpoint on homology of which it is useful to
be aware. Consider the group CH(X) of chains on X. Each chain is a finite

formal sum
2 %Y,
i

where each n; is an integer and +; is a path on X. To each chain we can
associate a finite formal sum of points on X, by mapping each path «; to the
formal difference of its endpoints, and extending by linearity. This gives a group
homomorphism from the group of all chains CH(X) to the free abelian group
on the set of points of X. The kernel of this homomorphism is the set of chains
which has every endpoint of a path +;, canceled by an initial point of another.
We denote this kernel by CLCH(X), the set of closed chains on X.

Now it is trivial that if D is a triangulable closed set in X, then the chain 8D
is a closed chain; this follows since the boundary &7 of any triangle is closed.
Such a closed chain is called a boundary chain on X. The subgroup of CLCH(X)
- generated by all boundary chains 8D is denoted by BCH(X).

DEFINITION 3.21. The quotient group CLCH(X)/ BCH(X) is called the first
homology group of X, and is denoted by H; (X).

It is a basic theorem in homotopy and homology theory for manifolds that
the definition given above for H;(X) in terms of closed chains modulo boundary
chains gives the same answer as that given in the previous subsection, as the
abelianization of 1 (X). The precise statement is that the natural map from the
set of based paths on X to CLCH(X) (sending a path ~ to itself) induces an
isomorphism between 7 (X)/[7, 7] and CLCH(X)/ BCH(X).

With respect to integration, suppose that w is a closed 1-form. Then integra-
tion of w gives a group homomorphism from the group of closed chains CLCH(X)
to C. By Stoke’s theorem,

/ w=20
aD

for any boundary chain D on X; therefore this group homomorphism from
CLCH(X) to C has all of BCH(X) in its kernel, and so induces 2 homomorphism

/_w:Hl(X)—»(C.

This homomorphism [ w associated to w is called the period mapping for
w. One can consider its domain to be either the homology group H;(X) or the
fundamental group m;(X), as needs arise.

Problems IV.3
A. Check the assertions made in Examples 3.2 - 3.6.
B. Prove Lemma 3.7.
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C. Check that the definition of the integral of a C*° 1-form along a path is inde-
pendent of the choice of coordinate charts and is invariant under refinement
of the chosen partition.

D. Prove Lemma 3.9.

E. Let L be a lattice in C, and let 7 : C — X = C/L be the natural quotient
map.

a. Let 29 € L be a lattice point. Define the curve v : [0,1] — C by
~(t) = tzp. Show that 7y is a closed path on C/L.

b. Compute fm dz.

d. Compute [[, dz A dz.

F. Let T be a complex number with strictly positive imaginary part. Let h be
a meromorphic function on C which is (Z + Z7)-periodic; in other words,
h(z+1) = h(z+7) = h(z) for all z. For any point p in C, let -, be the path
which is the counterclockwise boundary of the parallelogram with vertices
p,p+1,p+7+1,p+ 7,p (in that order). Assume p is chosen so that there
are no zeroes or poles of h on ~y,. Show that

1 R (z
omi / z%dz
Tp
is an element of the lattice (Z + Zt).

G. Check by direct computation that if () is a rational function of z, then the
meromorphic 1-form r(z)dz on the Riemann Sphere C,, satisfies the Residue
Theorem. (Hint: write r(z) in partial fractions.)

H. Check that if L is a lattice in C and h(z) is an L-periodic meromorphic

function, then the meromorphic 1-form w = h{z)dz, considered as a form on
the complex torus C/L, satisfies the Residue Theorem.

Further Reading

We have taken what might be called a “low road” approach to differential
forms; the “high road” is to define a form as a section of a bundle, or a sheaf.
For an introduction to forms on real manifolds, see [B-T82].

The most important, and maybe the only, result in this chapter is the Residue
Theorem; the rest is mainly definitions of what should be familiar objects, in the
Riemann surface setting. The proof we have given is the standard analytic one,
found in many texts, e.g., [Forster81]|, [Narasimhan92], [G-H78|. There is
an algebraic proof, which we will discuss later; see [Serre59) for this approach.



Chapter V. Divisors and Meromorphic Functions

1. Divisors

Divisors are, at first, a way of organizing into one package the zeroes and
poles of a meromorphic function or 1-form. It turns out that a seemingly simple
idea has many other applications, however.

The Definition of a Divisor. Let X be a Riemann surface. We will denote
by ZX the group of all functions from X to the integers, which is a group under
pointwise addition. Given a function D : X — Z, the support of D is the set of
points p € X where D(p) # 0.

DEFINITION 1.1. A divisor on X is a function D : X — Z whose support is a

discrete subset of X. The divisors on X form a group under pointwise addition,
denoted by Div(X).

It follows immediately that if X is a compact Riemann surface, then a function
D : X — Z is a divisor if and only if it has finite support; therefore the group
Div(X) for compact X is exactly the free abelian group on the set of points of
X.

We usually denote a divisor D by using a summation notation, and write

peEX
where the set of points p such that D(p) # 0 is discrete.

The Degree of a Divisor on a Compact Riemann Surface. The finite-
ness of the support of a divisor on a compact Riemann surface allows us to take
the formal sum in the notation for a divisor and make an actual sum:

DEFINITION 1.2. The degree of a divisor D on a compact Riemann surface is
the sum of the values of D:

deg(D) = 3" D(p).

peX

129
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The degree function deg : Div(X) — Z is a group homomorphism. Its kernel
is the subgroup Divo(X) consisting of divisors of degree 0.

The Divisor of a Meromorphic Function: Principal Divisors. Let X
be a Riemann surface and let f be a meromorphic function on X which is not
identically zero.

DEFINITION 1.3. The divisor of f, denoted by div(f), is the divisor defined
by the order function:

div(f) =) _ord,(f) - p.

Any divisor of this form is called a principal divisor on X. The set of principal
divisors on X is denoted by PDiv(X).

We note that by Lemma 1.29 of Chapter II, we have the following:

LEMMA 1.4. Let f and g be nonzero meromorphic functions on X. Then:
(a) div(fg) = div(f) + div(g).
(b) div(f/g) = div(f) — div(g).
(c) div(1/f) = —div(f).

The above lemma shows that the set PDiv(X) of principal divisors on X forms
a subgroup of Div(X). In fact it is a subgroup of Divy(X) when X is compact:

LEMMA 1.5. If f is a nonzero meromorphic function on a compact Riemann
surface, then deg(div(f)) = 0.

This statement is exactly Proposition 4.12 of Chapter II (and Corollary 3.18
of Chapter ITI): the sum of the orders of a meromorphic function on a compact
Riemann surface is zero.

EXAMPLE 1.6. Let X be the Riemann Sphere C,, with coordinate z in the
finite plane C. Let f(z) be any rational function, which we can then factor
completely and write as

f(z) = cH(z — A%

where the e; are integers and the )\; are distinct complex numbers. Then

n n

dlv(f) = Zei . /\‘L — (Z ei) - O0.

i=1 =1
EXAMPLE 1.7. Let 6(z) be the standard theta-function, which is holomorphic

on all of C, and has simple zeroes at the points (1/2) + (7/2) + ¢, for all lattice
points £ € Z + Z7. Then

div() = > 1-(1/2) +(r/2) + m+n1.
m,neZ

This divisor on C does not have finite support.
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Occasionally it is useful to focus on only the zeroes or only the poles of a
meromorphic function f.

DEFINITION 1.8. The divisor of zeroes of f, denoted by divg(f), is the divisor
dive(f)= Y, ordp(f)-p.
p with ord,(f)>0
Similarly, the divisor of poles of f, denoted by dive.(f), is the divisor
diveo (f) = > (=ord,(f)) - p.
p with ordy(f)<0

Note that both of these divisors are nonnegative functions, with disjoint sup-
port, and

(L.9) div(f) = divo(f) — divee(f).

The Divisor of a Meromorphic 1-Form: Canonical Divisors. Let X
be a Riemann surface and let w be a meromorphic 1-form on X which is not
identically zero.

DEFINITION 1.10. The divisor of w, denoted by div(w), is the divisor defined
by the order function:

div(w) = Z ord,(w) - p.

Any “divisor of this form is called a canonical divisor on X. The set of canonical
divisors on X is denoted by KDiv(X).

ExXAMPLE 1.11. Let w be the 1-form dz on the Riemann Sphere C,,. Then
div(w) = —2 - 00, since w has no zeroes, and has a double pole at co. More
generally, if w = f(2)dz, where f = ¢, (z — ;) is a rational function of z,

then
div(w) = Zei . Ai — (2 + Zei) + 0.
In particular, all such meromorphic 1-forms on C, have degree —2.
We have the formula
div(fw) = div(f) + div(w)

when f is a nonzero meromorphic function and w is a nonzero meromorphic
1-form on X.

The above formula shows that if one adds a principal divisor to a canonical
divisor, the result is a canonical divisor. There is a stronger version of this, based
on the following lemma.

LEMMA 1.12. Let w; and wo be two meromorphic 1-forms on a Riemann sur-
face X, with w; not identically zero. Then there is a unique meromorphic func-
tion f on X with wy = fw;.
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PROOF. Choose a chart ¢ : U — V on X giving local coordinate z. Write
w; = g:(2)dz for meromorphic functions g; on V. Let h = go/g; be the ratio of
these functions, which is also a meromorphic function on V. Now define f = hog,
a meromorphic function on U.

It is easy to check that f is well defined, independent of the choice of coordi-
nate chart. This is the desired function. [

COROLLARY 1.13. The set KDiv(X) of canonical divisors is exactly a coset
of the subgroup PDiv(X) of principal divisors. In other words, the difference of
any two canonical divisors s principal.

Therefore we have that
KDiv(X) = div(w) + PDiv(X)

for any nonzero meromorphic 1-form w.

Finally we note that we also have the concept of the divisor of zeroes divy(w)
and the divisor of poles dive,(w) of a meromorphic 1-form, defined in exactly
the same way as for a meromorphic function.

The Degree of a Canonical Divisor on a Compact Riemann Surface.
Let X be a compact Riemann surface of genus g. Suppose that f is a mero-
morphic function on X; consider f as a holomorphic map F': X — C,,. Let us
assume F' has degree d. Then by Hurwitz’s formula, we see that

Z[multP(F) —1] =29 -2+ 2deg(F).

Consider the meromorphic 1-form w on C,, of degree —2, defined by w = dz;
it has a double pole at oo, and no other poles or zeroes. Let 1 = F*(w) be the
pullback of w to X. It is not hard to see, using Hurwitz’s formula and Lemma
2.6 of Chapter IV, that the degree of div(n) is 29 — 2:
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deg(div(n)) = Y _ ordy(n)

peX
= Z ord, (F*(w))
pEX
= > [(1+ordpg) (w)) mult,(F) - 1]
peX
= > mult,(F) -1+ > (-mult,(F)-1)
q#0o pEF~1(00)
pEF )
= Z[multp(F) -1] - Z 2 mult, (F)
peX pEF—1(00)
= 2g—2+2deg(F) — 2deg(F)
= 2g-—2.

This computation shows the following:

PROPOSITION 1.14. If X is a compact Riemann surface which has a noncon-
stant meromorphic function, then there is a canonical divisor on X of degree
29 —- 2.

The assumption that X has a nonconstant meromorphic function will be dis-
pensed with later: every compact Riemann surface has one, and in fact has many.
However this is highly nontrivial!

The Boundary Divisor of a Chain. Suppose v = )_, n;v; is a chain on
X. Assume for simplicity that each of the paths v; is defined on [0, 1]. Since the
sum is finite, we see that the boundary

Oy = an[’ﬁ ¥i( ]

is also a finite sum, and we may consider it then as a divisor on X. This
divisor 8+, which was briefly introduced in Section 3 of Chapter IV, is called the
boundary divisor of the chain . It obviously has degree 0, and it is easy to see
since X is path-connected that any divisor of degree 0 is the boundary divisor
of some chain on X.

Note that a chain is closed if and only if its boundary divisor is zero.

The Inverse Image Divisor of a Holomorphic Map. Let F: X - Y
be a nonconstant holomorphic map between Riemann surfaces.

DEFINITION 1.15. Let ¢ be a point of Y. The inverse image divisor of q,
denoted by F*(q), is the divisor
Z mult,(F) - p

pEF-1(q)
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Note that if X and Y are compact, then the degree of the inverse image divisor
is independent of the point ¢ and is the degree of the map F.
More generally, we can extend the above construction to any divisor D on Y.

DEFINITION 1.16. Let D = quy ng - ¢ be a divisor on Y. The pullback of D
to X, denoted by F*(D), is the divisor

F*(D) =) n,F*(q)-

Q€Y

In other words, thinking of divisors as functions, we have
F*(D)(p) = mult, (F)D(F(p)).
Pullbacks behave very nicely with respect to most operations on divisors.

LEMMA 1.17. Let F : X — Y be a nonconstant holomorphic map between
Riemann surfaces. Then:
(a) The pullback is a group homomorphism F* : Div(Y) — Div(X).
(b) The pullback of a principal divisor is principal. Indeed, if f is a mero-
morphic function on'Y | then F*(div(f)) = div(F*(f)) = div(f o F).
{¢) If X and Y are compact, so that divisors have degrees, we have

deg(F* (D)) = deg(F) deg(D).

Warning: the pullback of a canonical divisor is not necessarily canonical; we
shall see a bit later what the difference is.

PROOF. Statement (a) follows simply from the definition of F*, since it is
extended by linearity from the pullback of a point.

To see (b), suppose that f is a meromorphic function on Y, and let p €
X. Then, using functional notation for divisors, we have F*(div(f))(p) =
mult, (F)(div(f)(F(p))) = mult,(F) ordp(y)(f). On the other hand ord,(f o F)
is also the product mult,(F) ordpey( f)-

Statement (c) follows immediately from the definition if D is a single point on
Y'; it then follows in general since both sides of the equality are linear in D. [

The Ramification and Branch Divisor of a Holomorphic Map. Let
F: X —Y be anonconstant holomorphic map between Riemann surfaces.

DEFINITION 1.18. The ramification divisor of F', denoted by R, is the divisor
on X defined by

Rp = Z[multp(F) -1 p

peX
The branch divisor of F, denoted by Br, is the divisor on Y defined by

Be=3" [ Y (mult,(F)~1)]-v.

ye€Y peF~1(y)
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Note that if X and Y are compact, then these sums are finite, and the rami-
fication divisor has the same degree as the branch divisor. The degree of these
divisors in this case is exactly the error term in Hurwitz’s formula relating the
genus of X and Y'; this formula can therefore be written as

29(X) — 2 = deg(F)(29(Y) — 2) + deg(RF).

A more precise version of the Hurwitz formula relates the pullback of a canon-
ical divisor on Y to a canonical divisor on X. The result is the following, whose
proof we leave as an exercise.

LEMMA 1.19. Let F . X — Y be a nonconstant holomorphic map between
Riemann surfaces. Let w be a meromorphic 1-form on Y, not identically zero.
Then the difference between the pullback of the divisor of w and the divisor of
the pullback of w is the ramification divisor of the map F:

div(F*w) = F*(div(w)) + Rp.

If X and Y are compact, and one takes the degree of both sides of this
equation, one recovers the Hurwitz formula.

Intersection Divisors on a Smooth Projective Curve. Let X be a
smooth projective curve, that is, a Riemann surface holomorphically embed-
ded in projective space P™. We will write the homogeneous coordinates in P"™
as [To: Ty :---: Zn]. Fix a homogeneous polynomial G(x,...,z,) which is not
identically zero on X.

We want to define the intersection divisor div(G) on X, which records the
points where G = 0 on X. Of course there are multiplicities (i.e., orders of
vanishing) and we must take these into account.

Fix a point p € X where G vanishes, and choose a homogeneous polynomial
H of the same degree as G, which does not vanish at p. (One way to do this is
to choose a coordinate z; which is not zero at p, and use H = z¢.)

In this case the ratio G/H is a meromorphic function on X, which vanishes at
p. We define the integer div(G)(p) to be the order of this meromorphic function
at p. Note that since G' vanishes at p and H does not, this order is strictly
positive.

At points g where G # 0 we set div(G)(¢) = 0.

LEMMA 1.20. This divisor div(G) does not depend on the choice of the non-
vanishing homogeneous polynomial H, and is therefore well defined.

PROOF. If another polynomial H' is used, then the meromorphic function
G/H changes to G/H', which is just G/H multiplied by the nonzero function
H/H'. Since multiplication by a meromorphic function having order 0 does not
change the order, we see that the order of G/H and of G/H’ is the same, and is
determined only by G. 0O
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DrFINITION 1.21. The divisor div(G) is called the intersection divisor of G
on X.

Note that
(122) le(GlGZ) = le(Gl) + le(Gg)

if G; and G4 are both homogeneous polynomials.

Of particular importance is when G has degree one. In this case the intersec-
tion divisor is called a hyperplane divisor.

There is a nice relationship between intersection divisors and principal divi-
sors. Suppose that G and G, are two homogeneous polynomials of the same
degree. Then we may form the meromorphic function f = G;/G2 on the smooth
projective curve X.

LEMMA 1.23. With the above notation, if G, and G, are homogeneous poly-
nomials of the same degree, then the divisor of f = G1/G, is the difference of
the two intersection divisors:

diV(f) = diV(Gl) - diV(Gg).

PROOF. Given a point p € X, choose a homogeneous polynomial H of the
same degree as G and G2 which does not vanish at p. Then div(G))(p) and
div(G2)(p) are equal to the order of the functions G1/H and G2/ H at p. Since
f=G1/Gy = (Gi/H)/(G2/H), we have ord,(f) = ord,(G1/H) — ord,(G2/H)
as required. [

In particular, we see that the difference between any two hyperplane divisors
is a principal divisor.

The Partial Ordering on Divisors. Let D be a divisor on a Riemann
surface. We write D > 0 if D(p) > 0 for all p (thinking of D as a function).
We write D > 0if D > 0 and D # 0. We write D; > D, if D; — Dy > 0, and
similarly for >. Similarly we have the notion of < and < for divisors. This puts
a partial ordering on the set Div(X) of divisors on X.

Note that every divisor D can be uniquely written in the form

D=P-N,

where P and N are nonnegative divisors with disjoint support. We have already
seen an example of this decomposition in (1.9) for the divisor of a meromorphic
function.

If f is a meromorphic function on X, then f is holomorphic if and only if
div(f) > 0. The same remark applies to divisors of meromorphic 1-forms.

There is also the notion of the minimum of a (finite) set of divisors, which is
taken to be the function which is the minimum value among all the values of the
given divisors at each point:

min{Dy, ..., D, }(p) = min{Dy (p), ..., Du(p)}.
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Note that if f and g are nonzero meromorphic functions such that f + g is
nonzero, then

div(f + g) > min{div(f),div(g)}

since the same holds true for the order function.

Problems V.1

A. Let X be the hyperelliptic surface defined by 42 = 2° — . Note that = and
y are meromorphic functions on X. Compute the principal divisors div(z)
and div(y).

B. Show that the ratio of two meromorphic 1-forms on a Riemann surface is
a well defined meromorphic function, independent of the coordinate chart
used to define it as in Lemma 1.12.

C. Let X = C/L be a complex torus. Show that the form dz on X is a well
defined nowhere zero holomorphic 1-form on X. Conclude that 0 is a canon-
ical divisor on X. Conclude that on a complex torus, every canonical divisor
is principal and vice versa.

D. Let f be a nonconstant meromorphic function on a Riemann surface X, and
let F: X — C4 be the associated map to the Riemann Sphere. Show that
the divisor of zeroes divg(f) of f is the same as the inverse image divisor
F*(0). Similarly show that dive.(f) = F*(00) as divisors on X.

E. Let X be the hyperelliptic surface defined by y?> = h(z), where h(z) is a
polynomial in x with distinct roots of even degree. Let 7 : X — C, be the
double covering map sending (r,y) to . Show that the ramification divisor
R of 7 is the divisor of zeroes divg(y) of the meromorphic function y. What
goes wrong if h has odd degree?

Compute the branch divisor B,;. Show that the pullback of the branch
divisor #*(B;) is equal to twice the ramification divisor R,: #*(B;) = 2R,.

F. Prove Lemma 1.19, using Lemma 2.6 of Chapter IV.

G. Show that if X is a smooth projective curve, then div(G1G2) = div(G1) +
div(G7) if G, and G, are homogeneous polynomials.

H. Let X be the smooth projective plane cubic curve defined by 32z = 2% —z22.
Compute the intersection divisors of the lines defined by z = 0, y = 0, and
z =0 with X.

1. Show that if X is a line in the projective plane, then the intersection divisor of
any other line with X has degree one. In general, show that the intersection
divisor of a homogenous polynomial G of degree d with a line X has degree
d.

J. Let X be the projective plane conic defined by xy = 22. Then if G =
azx + by + cz is a homogeneous polynomial of degree one, the intersection
divisor div(G) on X has degree two. Give criteria (in terms of the coefficients
of G) for this divisor div(G) to be of the form 2 - p for some point p € X.

3
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2. Linear Equivalence of Divisors

One notices that in many of the natural constructions of divisors, it is often
the case that any two of the divisors differ by a principal divisor. For example,
the difference between any two canonical divisors is a principal divisor. This
seemingly harmless idea will become the primary way in which divisors are or-
ganized.

The Definition of Linear Equivalence. The relationship of “differing by
a principal divisor” is important enough to be extracted and given a name:

DEFINITION 2.1. T'wo divisors on a Riemann surface X are said to be linearly
equivalent, written D, ~ Do, if their difference is a principal divisor, i.e., if their
difference is the divisor of a meromorphic function.

There are several elementary remarks to be made:

LEMMA 2.2. Let X be a Riemann surface. Then:
(a) Linear equivalence is an equivalence relation on the set Div(X) of divi-
sors on X.
(b) A divisor is linearly equivalent to 0 if and only if it is a principal divisor.
(c) If X is compact, then linearly equivalent divisors have the same degree:
if D1 ~ Dy then deg(D1) = deg(Ds).

PROOF. Statement (b) is practically the definition of linear equivalence: D ~
0 if and only if D — 0 = D is a principal divisor. Statement (a) then follows
immediately, since we see that linear equivalence is simply the relation of being
in the same coset for the subgroup PDiv(X) of principal divisors. A linear
equivalence class is therefore exactly a coset for PDiv(X).

If X is compact, then principal divisors have degree 0 {Lemma 1.5). Therefore
if Dy = div(f) + D,, then deg(D,) = deg(div(f)) + deg(D,) = deg(D>), which
proves (¢). O

We have the following examples of linearly equivalent divisors, all taken from
the examples of the last section.

LEMMA 2.3. Let X be a Riemann surface. Then:

(a) If f is a meromorphic function on X which is not identically zero, then
the divisor of zeroes of f is linearly equivalent to the divisor of poles of
F:dive(f) ~ divee(f).

(b} Any two canonical divisors on X are linearly equivalent, and any divisor
linearly equivalent to a canonical divisor is a canonical divisor.

(c) If X is the Riemann Sphere C, then any two points on X are linearly
equivalent.

(d) If F : X — Y is a holomorphic map, and D, and D, are linearly
equivalent divisors on Y, then the pullbacks F*(D,) and F*(D,) are
linearly equivalent divisors on X.
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(e) If F: X — Cy is a holomorphic map, then the inverse image divisors
F*(X\) are all linearly equivalent.

(f) If X is a smooth projective curve, and Gy and G2 are two homogeneous
polynomials in the ambient variables of the same degree, then their in-
tersection divisors div(G)) and div(Gs) are linearly equivalent. In par-
ticular, any two hyperplane divisors on X are linearly equivalent.

Proor. Statement (a) is immediate from the equation (1.9), which says that
for a meromorphic nonzero function f, div(f) = dive(f) — diveo (f). Statement
(b) is the content of Corollary 1.13.

To see (c), let A\; and Ao be two points in C.., neither equal to co. Then
f(2) = (z—A1)/(z — A2) is a meromorphic function with div(f) =1-A; —1-Ag.
If Ay = 0o, then simply use f(z) =z — A;.

To prove (d), suppose that D; — Dy = div(f) on Y, for some meromorphic
function f on Y. Then by Lemma 1.17, F*(D,) — F*(D,) = div(F*(f)), where
F*(f) = f o F is the composition of f with the map F. Statement (e) now
follows immediately from (c) and (d).

Finally (f) is immediate from Lemma 1.23. O

The linear equivalence class of the canonical divisors is called the canonical
class of divisors.

The terminology of linear equivalence comes from property (e) above; A is
varying on a line (which the Riemann Sphere is considered to be for this purpose).
If we have a principal divisor D, we may write D = div(f) as D = P — N,
where both P and N are nonnegative with disjoint support. Thus P is the
divisor of zeroes of f and N is the divisor of poles of f. We see immediately
from the definition that P and N are linearly equivalent. Now view f not as
a meromorphic function but as a holomorphic map F from X to the Riemann
Sphere. The divisor P is the inverse image divisor F*(0), and N is the inverse
image divisor F*(c0). One can imagine “interpolating” between P and N by the
other inverse image divisors F*()\) as X passes from 0 to co. This gives a family
of divisors on X, varying with A € C.

If we combine these examples given in the above lemma with the remark that
for a compact Riemann surface linearly equivalent divisors have the same degree,
we obtain the following corollary.

COROLLARY 2.4. Let X be a compact Riemann surface. Then:

(a) If f is a meromorphic function on X which is not identically zero, then
deg(divo(f)) = deg(diveo(f)).

(b) Any two canonical divisors on X have the same degree. If X has genus
g and has a nonconstant meromorphic function, then the degree of any
canonical divisor is 2g — 2.

(¢) If X is a smooth projective curve, and G1 and Gy are two homogeneous
polynomials in the ambient variables of the same degree, then their in-
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tersection divisors div(G,1) and div(G2) have the same degree. In par-
ticular, any two hyperplane divisors on X have the same degree.

Statement (a) of the above corollary is another restatement of the by-now-
familiar property that the sum of the orders of a meromorphic function on a
compact Riemann surface is zero. Statement (b) follows from the linear equiv-
alence between any two canonical divisors, and the computation of Proposition
1.14.

Linear Equivalence for Divisors on the Riemann Sphere. On a com-
pact Riemann surface X, any principal divisor has degree 0. For the Riemann
Sphere, this turns out also to be a sufficient condition for a divisor to be principal.

PROPOSITION 2.5. A divisor D on the Riemann Sphere is a principal divisor
if and only if deg(D) = 0.

PROOF. We have already seen that the condition is necessary. For the suffi-
ciency, suppose that deg(D) = 0, and write

D=Ze,~~/\i+eoo-oo

where the ); are points of C and e, = —)_, €;. Then D = div(f), where
HOES | [EEPHRS

g

We leave the following two corollaries to the reader.

COROLLARY 2.6. Let Dy and Dy be two divisors on the Riemann Sphere.
Then Dy ~ Dy if and only if deg(D) = deg(D2).

COROLLARY 2.7. Let D be a divisor with deg(D) > 0 on the Riemann Sphere.
Then D is linearly equivalent to a nonnegative divisor. If deg(D) > 0 then for
any given point p there is a strictly positive divisor E linearly equivalent to D
without p in its support.

Principal Divisors on a Complex Torus. The problem of determining
the principal divisors on a complex torus X = C/L, where L is a lattice Z + Zr,
introduces a new element into the situation. Note that X itself is a group, with
group structure inherited from the addition in C. This allows us to define a
group homomorphism

A:Div(X) - X
by sending a formal sum ), n; - p; to the actual sum in the group of X. This
map is called the Abel-Jacobi map for the complex torus X.

THEOREM 2.8 (ABEL'S THEOREM FOR A TORUS). A divisor D on the com-
plez torus X = C/L is principal if and only if deg(D) = 0 and A(D) = 0.
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PROOF. Let us first check that the conditions are necessary. Suppose that
D) = div(f) for some meromorphic nonzero function f on X. Of course deg(D) =
. Let m : C — X be the quotient map, and let » = f ox be the pullback of f to
n L-periodic meromorphic function h on C. For any point p € C, denote by v,
he parallelogram with vertices p, p+ 1, p+ 1+ 7, and p + 7. Since the zeroes
ind poles of h are discrete, we may choose a point p such that h has no zeroes or
»oles on v,. Therefore the zeroes and poles of f on X are in 1-1 correspondence
vith the zeroes and poles of h inside <,, with the same orders. Now the integral

7
/ zh (2) dz
e
s easily seen by explicit computation over the four edges of v, to be an element of

he lattice L. (See Problem IV.3F.) On the other hand, by the ordinary residue
heorem in the complex plane, the value of this integral is exactly

Z ord,(h)z.

z inside vy,

Jence modding by L gives
Z ord;(f)z =0 in X,

zeX
howing that A(div(f)) = 0.

Conversely, assume that D has degree 0 and A(D) = 0. Write D =Y _.(pi—gq:),
vhere the p; and ¢; need not be distinct, although no p; equals any g;. Lift each
; to z; € C, and similarly lift each ¢; to w;. Since A(D) = 0, we have that
(21 — w;) is an element of the lattice L. By altering z1, we may assume then
hat in fact ,(2; — w;) = 0. In this case the ratio of theta-functions

p(=)
h( = Lo )
[, 6¢)(z)
s an L-periodic meromorphic function on C which descends to a meromorphic
unction f on X with div(f)=D. O

The following is now immediate.

COROLLARY 2.9. Let Dy and D,y be two divisors on a comples torus. Then
D1 ~ Dy if and only if deg(D1) = deg(D2) and A(D,) = A(Ds).

We have the following analogue of Corollary 2.7. Note the differences, how-
ver; they are significant.

COROLLARY 2.10. Let D be a divisor with deg(D) > 0 on a complex torus X.
Then D is linearly equivalent to a positive divisor. If deg(D) = 1 then D ~ ¢
for a unique point q € X. If deg(D) > 1 then for any given point x € X there is
1 positive divisor E linearly equivalent to D without x in its support.
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ProOOF. Let deg(D) = d > 0, and consider the divisor E=D—{d—1)-p—¢q
for p and q arbitrary points on X. E has degree 0, and by choosing the point
g = A(D - (d—-1)-p) we may arrange A(F) = 0. Therefore F is a principal
divisor, and D is linearly equivalent to (d — 1) - p + ¢. If deg(D) = 1, then of
course the point ¢ is determined by ¢ = A(D). If deg(D) > 1, then by varying
the point p we may avoid any given point of X. O

The Degree of a Smooth Projective Curve. We are now in a position
to define the degree of a smooth projective curve X, which is a fundamental
invariant.

DEFINITION 2.11. Let X be a smooth projective curve. The degree of X,
denoted by deg(X), is the degree of any hyperplane divisor on X.

This is well defined, since any two hyperplane divisors on X are linearly
equivalent by Lemma 2.3(f); since X is compact, these hyperplane divisors will
then have the same degree.

We already have a notion of degree for smooth projective plane curves X,
defined by the vanishing of a homogeneous polynomial F(zx,y, z); we have taken
the degree of X to be the degree of the polynomial F. Let us check that these
two definitions of degree coincide.

For this, let X be defined by F(z,y,z) = 0, where F has degree d. Let G be a
homogeneous degree one polynomial defining the hyperplane divisor div(G) on
X.

To compute the degree of div(G), we may change coordinates and assume
that G(z,y,2) = z, and that [0 : 0 : 1] is not a point of X. Consider the
linear polynomial y; since [0: 0: 1] ¢ X, z and y never vanish simultaneously
on X. Therefore the meromorphic function h = z/y can be used to determine
div(z); indeed, the intersection divisor div(z) is exactly the divisor of zeroes of
the function h: div(z) = divg(h) = dive(z/y).

Let H : X — C,, be the associated holomorphic map to h. The divisor of
zeroes of the function h is exactly the inverse image divisor H*(0) (see Problem
V.1D.) Therefore the degree of div(z) is the degree of H*(0), which is the same
as the degree of the map H, by Lemma 1.17(c).

What is the degree of the map H? Fix a general A € C. For H(p) to equal },
we must have p = [z : y : 2] with z = Ay; moreover p lies on the curve X, and
hence satisfies F' = 0. If X\ # 0, then neither z nor y can be zero, again since
[0:0: 1] is not on X. Therefore all points of H~!(\) can be written in the form
[A:1:w] with F(\,1,w) = 0. For a general fixed ), this is a polynomial in w
of degree d, and has d solutions. Moreover for a general )\, these solutions are
distinct, and the map H has multiplicity one at all of them, since this is the case
for any A which is not a branch point of H. Hence we see that for general A,
H=1(}) has cardinality d; this implies that H has degree exactly d. We conclude
that the intersection divisor div(z) has degree d.
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Summarizing, we have proved the following.

PROPOSITION 2.12. Let X be a smooth projective plane curve defined by the
vanishing of a homogeneous polynomial F(z,y,z) = 0, where F has degree d.
Then X has degree d, in the sense that any hyperplane divisor on X has degree
d.

Bezout’s Theorem for Smooth Projective Plane Curves. Let X be
a smooth projective curve in P" of degree d. Suppose that G(zg,...,z,) is a
homogeneous polynomial of degree €, defining the intersection divisor div(G).
Intuitively, this intersection divisor records the number of points of intersection
between X and the hypersurface defined by G = 0 (counted of course with some
multiplicities). Bezout’s Theorem tells us the degree of this intersection divisor,
and so tells us how many points of intersection there are.

THEOREM 2.13 (BEZOUT’S THEOREM). Let X be a smooth projective curve
of degree d and let G be a homogeneous polynomial of degree e which does not
vanish identically on X. Then the degree of the intersection divisor div(G) on
X is the product of the degrees of X and of G:

deg(div(G)) = deg(X) deg(G) = de.

ProoF. Let H be a homogeneous polynomial of degree one, defining a hy-
perplane divisor div(H) on X. Note that H® has degree e, which is the same as
the degree of G. Therefore by Corollary 2.4(c), the intersection divisors div(H*®)
and div(G) on X have the same degree since X is compact.

Since div(H®) = ediv(H), we have deg(div(H¢)) = edeg(div(H)). Moreover
deg(div(H)) = deg(X) = d by the definition of the degree of X. Hence we have
that deg(G) = de as claimed. O

There are more general forms of Bezout’s Theorem which apply even when
X is not a smooth curve, and even when X is not a curve at all, but a higher-
dimensional subset of projective space.

Pliicker’s Formula. Bezout’s Theorem allows us to give a proof of Pliicker’s
formula for the genus of a smooth plane curve.

The proof is based on the following, which is a more precise version of Lemma
4.6 of Chapter II.

LEMMA 2.14. Let X be a smooth projective plane curve defined by a homo-
geneous polynomial F(x,y,z) = 0; consider the map 7w : X — P! defined by
wlz :y: 2] =[x : z]. Note that OF/dy is also a homogeneous polynomial. In this
case the intersection divisor div(0F /0y) on X is exactly the ramification divisor
R, of m:

div(0F/dy) = R,.
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PRrOOF. The earlier lemma simply noted that these two divisors have the same
support, that is, a point p € X is ramified for 7 if and only if (8F/8y)(p) = 0.
Therefore the lemma above is a quantitative version of the earlier qualitative
statement.

It is sufficient to prove the statement in the open set where z # 0; in the
other open sets the argument is similar. Here X is isomorphic to the affine
plane curve defined by f(z,y) = 0, where f(z,y) = F(z,y,1); moreover 7 is
simply the projection map sending (z,y) to z. Suppose p = (2o, yo) is a point
of ramification for m, which is therefore also a zero of 8f/dy. Then 8f/dz is
nonzero at p, since X is smooth at p; hence y is a local coordinate for X near p.

By the Implicit Function Theorem, near p, X is locally the graph of a holo-
morphic function g(y). Hence f(g(y),y) is identically zero in a neighborhood of
yo. Taking the derivative with respect to y, we see that (8f/9z)g'(y) + (8f/0y)
is identically zero on X near p; so

0f /oy = —(0f/0z)g' ()

on X near p.

Now ¢(y) is exactly the local formula for the projection map 7. Hence the
order of g(y) is the multiplicity of the map n. The order drops by one upon
taking a derivative, so the order of ¢’(y) is one less than the multiplicity of .
Since (8f/dz) # 0 at p, the order of ¢'(y) is the same as the order of 8f/8y.
Hence

ord,(0f/0y) = mult,(m) — 1.

The number on the left is the value of the intersection divisor div(8F/dy) at p;
the number on the right is the value of the ramification divisor R, at p. O

Once we understand the ramification of 7, we can recover the genus of X
using Hurwitz’s formula.

PROPOSITION 2.15 (PLUCKER'S FORMULA). A smooth projective plane curve
of degree d has genus g = (d — 1)(d — 2)/2.

ProoF. Let X be a smooth projective plane curve of degree d, defined by
the vanishing of the homogeneous polynomial F'. Consider the holomorphic map
m: X — P! defined by n[r : y : 2] = [z : 2]. This map = has degree d, and
has ramification divisor equal to the intersection divisor div(8F/dy) by Lemma
2.14. By Bezout’s Theorem (Theorem 2.13) this intersection divisor has degree
d(d — 1), since F/dy has degree d — 1. Therefore Hurwitz’s formula yields

2g~-2=d(-2)+d(d-1)
for the genus g of X; solving for g give g = (d — 1)(d — 2)/2 as claimed. 0O

This method can also be extended to provide the Pliicker formula for the
genus of a projective plane curve with nodes. One needs to define and check
several things. Firstly, one defines the intersection divisor div(G) in this case
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and checks that Bezout’s Theorem still holds. Secondly, assume for simplicity
that none of the node points lift to ramification points for the projection map
m; this can always be achieved after a change of coordinates. In this case one
now checks that if X is defined by F' = 0, then 3F/dy vanishes at all the nodes,
and the intersection divisor has value exactly one at both of the points on the
Riemann surface corresponding to the node. Since these points then occur in the
intersection divisor but not in the ramification divisor, the ramification divisor
is equal to the intersection divisor minus the divisor of points corresponding to
nodes; there are two such points for each node. Therefore the degree of the
ramification divisor is equal to d(d — 1) — 2n, where n is the number of nodes.
Plugging this into Hurwitz's formula gives 2g — 2 = d(—2) + d(d — 1) — 2n, and
solving for g gives

g=(d-1)(d-2)/2-n.

Problems V.2

A. Prove Corollary 2.6, that two divisors on the Riemann Sphere Cy, are linearly
equivalent if and only if they have the same degree.

B. Prove Corollary 2.7.

C. Let X be the projective plane cubic defined by the equation y?z = z3 — z22.
Let po ={0:1:0],p, =[0:0:1),p2=1[1:0:1],and p3 =[-1:0:1].
Show that 2py ~ 2p; for each 7. Show that p; + p2 + p3 ~ 3pg.

D. Prove the following converse to Lemma 2.3(e). Suppose F; and E, are
two divisors which are both nonnegative and have disjoint support on a
Riemann surface X. Show that if ) ~ Ej, then there is a holomorphic map
F: X — C, such that E; = F*{(0) and E; = F*{c0).

E. Prove Corollary 2.9.

F. Show that the “twisted cubic curve” in P3 defined by rw = yz, rz = 32,
and yw = 22 has degree three, by computing the (degree of the) hyperplane
divisor div(z). Also compute div(y) on the twisted cubic.

G. Check what needs to be checked in the outline of the proof of Pliicker’s
formula given in the text for a projective plane curve with nodes.

3. Spaces of Functions and Forms Associated to a Divisor

One of the primary uses of divisors is to organize the meromorphic functions
on a Riemann surface. This is done by employing the order function, as we will
see below. For this purpose it is convenient to define

ord,(f) = o0

if f is identically zero in a neighborhood of p. We also use the convention that
oo > n for any integer n.

The Definition of the Space L(D). Let D be a divisor on a Riemann
surface X.



146 CHAPTER V. DIVISORS AND MEROMORPHIC FUNCTIONS

DEFINITION 3.1. The space of meromorphic functions with poles bounded by
D, denoted by L(D), is the set of meromorphic functions

L(D) = { € M(X) | div(f) > ~D}.

It is immediate from the definition that L(D) is a complex vector space.

The reason for the terminology is the following. Suppose that D(p) = n > 0.
Then if f € L(D), we must have ord,(f) > —n, which means that f may have
a pole of order n at p, but no worse. Similarly, if D(p) = —n < 0, then if
f € L(D), we must have ord,(f) > n, forcing f to have a zero of order n at p.
Hence the conditions imposed on a meromorphic function f to get into a space
L({D) are one of two types: either poles are being allowed (to specified order and
no worse), or zeroes are being required (to at least some specified order), at a
discrete set of points of X.

Another way to say the above definition is to use Laurent series. Write D =
Ep np - p. For any point p, choose a local coordinate z centered at p. Then any
meromorphic function f on X has a local Laurent series with respect to this
local coordinate. The condition that f € L(D) is equivalent to saying that at all
points p, the local Laurent series has no terms lower than z7"».

If D; < D,, then any functions with poles bounded by D; has poles certainly
bounded by D3; thus we see that

(3.2) if D; < Da, then L(Dy) C L(Dy).

Recall that a meromorphic function is holomorphic if and only if div(f) > 0;
thus

(3.3) L(0) = O(X) = {holomorphic functions on X}.
In particular, we see that

(34)  if X is compact, then L(0) = { constant functions on X} = C

since the only holomorphic functions on a compact Riemann surface are the
constant functions.

We have the following easy but important criterion, when X is compact, for
when L(D) = {0}.

LEMMA 3.5. Let X be a compact Riemann surface. If D is a divisor on X
with deg(D) < 0, then L(D) = {0}.

PROOF. Suppose that f € L(D) and f is not identically zero. Consider the
divisor E = div(f) + D. Since f € L(D), E > 0, so certainly deg(E) > 0. How-
ever since deg(div(f)) = 0, we have deg(E) = deg(D) < 0. This contradiction
proves the result. [J
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Complete Linear Systems of Divisors. Suppose that D is a divisor on
X.

DEFINITION 3.6. The complete linear system of D, denoted by |D)|, is the set
of all nonnegative divisors £ > 0 which are linearly equivalent to D:

|ID|={E € Div(X) | E~ D and E > 0}.

Note that any of the divisors in a complete linear system can define that linear
system; they are all linearly equivalent to each other. We have the easy remark
that

if X is compact and deg(D) < 0, then |D| = 9.

There is a geometric/algebraic structure to a complete linear system | D| which
is related to the vector space L(D). Recall the projectivization P(V) for a
complex vector space V; it is the set of 1-dimensional subspaces of V, and if
V has dimension n + 1, then P(V) can be put into 1-1-correspondence with
projective n-space P".

Take the vector space P(L(D)). Define a function

S :P(L(D)) — |D|

by sending the span of a function f € L(D) to the divisor div(f) + D. Since
div(Af) = div(f) for any constant A, the above map § is well defined.

LeEmMA 3.7. If X is a compact Riemann surface, the map S defined above is
a 1-1 correspondence.

PRrROOF. Take a divisor E € |D|. Since E ~ D, there is a meromorphic
function f on X such that E = div(f) 4+ D; moreover, since E > 0, the function
f € L(D). Clearly S(f) = E, showing that S is onto.

Suppose that S(f) = S(g); they are exactly the same divisor. This implies
after cancelling the D’s that div(f) = div(g). Therefore div(f/g) = 0, so that
f/g has no zeroes or poles on X. Since X is compact, f/g must be a nonzero
constant A; hence f and g have the same span in L(D). This shows that S is
111, O

Thus for a compact Riemann surface, complete linear systems have a natural
projective space structure.

A general linear system is a subset of a complete linear system |D|, which
corresponds (via the map S) to a linear subspace of P(L(D)). The whole space
is a linear subspace obviously, so any complete linear system is a linear system.
The dimension of a linear system is the dimension of the linear subspace of | D|
considered as a projective space. A linear system of dimension one is a pencil; a
linear system of dimension two is a net, and of dimension three is a web.
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Isomorphisms between L(D)’s under Linear Equivalence. If two divi-
sors are linearly equivalent, then the associated spaces of meromorphic functions
are naturally isomorphic.

PROPOSITION 3.8. Suppose that D1 and D, are linearly equivalent divisors on
a Riemann surface X. Write D1 = Do + div(h) for some nonzero meromorphic
function h. Then multiplication by h gives an isomorphism of compler vector
spaces

ftn 1 L(D1) 5 L(Dy).

In particular, if D1 ~ D2, then dim L{D;) = dim L(D>).

PROOF. Suppose that f € L(D;), so that div(f) > —D;. Then div(hf) =
div(h) + div(f) > div(h) — D1 = D, so that the function hf = p,(f) is indeed
in L(D,). Thus py, maps L(D1) to L(D,), and by symmetry j,,, maps L(D5)
back to L(D;). Since these are inverse linear maps, pp is an isomorphism. O

The Definition of the Space L(V)(D). The same constructions used above
in defining spaces of functions with poles bounded by a divisor can be used to
define spaces of meromorphic 1-forms.

DEFINITION 3.9. The space of meromorphic 1-forms with poles bounded by D,
denoted by L) (D), is the set of meromorphic 1-forms

LY(D) = {we MY (X) | div(w) > —D}.

It is immediate from the definition that L(!)(D) is a complex vector space.
We have
LM(0) = 2'(X),

the space of global holomorphic 1-forms on X.
There is the following analogue of Proposition 3.8.

PROPOSITION 3.10. Suppose that D, and D4 are linearly equivalent divisors
on a Riemann surface X. Write Dy = Dy + div(h) for some nonzero mero-
morphic function h. Then multiplication by h gives an isomorphism of complex
vector spaces

s LY(Dy) S LY(D,).

In particular, if Dy ~ Dy, then dim LV(D;) = dim LY (D,),

The same proof given above for the spaces L(D) works in this setting.
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The Isomorphism between L(V)(D) and L(D + K). The construction of
the spaces L{!) (D) can actually be directly related to the spaces L(D). Fix a
canonical divisor K = div(w) (where w is a meromorphic 1-form) and another
divisor D. Suppose that f is a meromorphic function in the space L(D + K);
this means that div(f) + D + K > 0. Consider the meromorphic 1-form fw;
note that div(fw) = div(f) + div(w) = div(f) + K. Hence div(fw) + D > 0, so
fw € LO(D). Therefore multiplication by w gives a C-linear map

o : L(D+ K) — LY(D).
LEMMA 3.11. With the above notation, the multiplication map u., is an iso-

morphism of vector spaces. In particular, dim L) (D) = dim L(D + K).

PRoOF. The map is obviously linear and injective. To see that it is surjective,
choose a 1-form ' € L(M(D), so that div(w') + D > 0. By Lemma 1.12, there
is a meromorphic function f such that w’ = fw. Note that

div(f) + D+ K = div(f) + D + div(w) = div(fw) + D = div(w’) + D > 0,
so f € L(D + K). Clearly then i, (f) =«’. O

Computation of L(D) for the Riemann Sphere. Suppose that D is a
divisor on the Riemann Sphere with deg(D) > 0. Write

D:zn:ei-/\i—i-eoo-oo

i=1
with A; distinct in C, such that >, e; + e > 0. Consider the function

io(z) = [z - 2)7™.

=1

PROPOSITION 3.12. With the above notations, the space L(D) is ezactly the
space

L(D) ={g9(2)fp(z) | 9(z) is a polynomial of degree at most deg(D)}.

PRroOF. Fix a polynomial g(z) of degree d; note that div(g) > —d - 0. Now

the divisor of fp is exactly
e A+ (e oo
i i

and so

div(g(2)fp(2)) + D

div(g) + div(fp)+ D
> (Zei—}-ew —d) 00 = (deg(D) — d) - 00,

which is at least 0 if d < deg(D). This proves that the given space is a subspace
of L(D).
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Now take any nonzero h € L(D), and consider g = h/fp. We have

div(g) = div(h)—div(fp) > ~D—div(fp) = (- Ze — o) 00 = — deg(D) -0,

which shows that g can have no poles in the finite part C, and can have a pole of
order at most deg(D) at co. This forces g to be a polynomial of degree at most

deg(D). O
This explicit computation gives immediately the dimension of the space L(D):

COROLLARY 3.13. Let D be a divisor on the Riemann Sphere. Then

0 if deg(D) <0, and

dim L(D) = {1 +deg(D) if deg(D) > 0.

Computation of L(D) for a Complex Torus. Let X = C/L be a complex.
torus. Let us compute the dimension of L(D) for any divisor D on X.

PROPOSITION 3.14. Let X = C/L be a complex torus, and let D be a divisor
on X.
a) If deg(D) < 0, then L(D) = {0}.
b) If deg(D) =0 and D ~ 0 then dim L(D) = 1.
c) Ifdeg(D) =0 and D # 0 then L(D) = {0}.
d) If deg(D) > 0 then dim L(D) = deg(D).

ProoF. The first statement has been noticed already. We leave statements
(b) and (c) as exercises; they are in fact true for any compact Riemann surface.
To prove statement d), first let us show that it is true if deg(D) = 1. By
Corollary 2.10, we know that D is linearly equivalent to a positive divisor, so we
may assume that D = p for some point p € X. Clearly the constant functions
are in L(D), so L(D) has dimension at least one. On the other hand, suppose
that L(D) contains a nonconstant meromorphic function f. This function f
must then have a pole; however the poles of f are bounded by p, so f has a
simple pole at p and no other pole. Therefore the associated map F : X — C
has degree one, and is therefore an isomorphism, which is absurd. Hence L(D)
consists of only the constant functions and has dimension one if deg(D) = 1.

To finish the proof, we may proceed by induction on D; assume then that
deg(D) = d > 1. Write D = D; + p for some divisor D; of degree d — 1 and
some point p. By the induction step we know that dim L(D;) = d — 1.

Find a positive divisor E ~ D, which does not have p in its support; this is
possible by Corollary 2.10. Let f be a meromorphic function on X with div(f) =
E — D; notice that f € L(D). Also we have div(f)+ D, =FE—-D+D;=E—p
which is not nonnegative; hence f ¢ L(D;). This proves that L(D,) # L(D),
and so dim L(D) > d since L(D;) C L(D).

To see that the dimension of L(D) is exactly d, choose a local coordinate z
centered at p, and suppose that D(p) = n. Then every f € L(D) has a Laurent
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series in 2 whose lowest possible term is the =™ term. Consider the linear map
7 : L(D) — C sending f to the coefficient of the =" term of its Laurent series
in z. The kernel of 7 is exactly L(D — p) = L(D;). Hence L(D) has dimension
at most one more than dim L(D;). Since they are not equal, we must have
dim L(D) =dim L{(D;) +1=d. O

A Bound on the Dimension of L(D). Part of the argument used above
in the computation of L(D) for a complex torus can be applied to any Riemann
surface. This will lead to a bound on the dimension of L(D) for a compact
Riemann surface, and in particular prove that these spaces are finite-dimensional.

LEMMA 3.15. Let X be a Riemann surface, let D be a divisor on X, and let
p be a point of X. Then either L(D — p) = L(D) or L(D — p) has codimension
one in L(D).

PRrROOF. Choose a local coordinate z centered at p, and let n = —D(p).
Then every function f in L(D) has a Laurent series at p of the form e¢2™ +
higher order terms . Define a map « : L(D) — C by sending f to the coefficient
of the z™ term in its Laurent series. Clearly o is a linear map, and the kernel of
a is exactly L(D — p). If o is the identically zero map, then L(D — p) = L(D).
Otherwise « is onto, and so L(D — p) has codimension one in L(D). O

On a compact Riemann surface, we can use this lemma to prove the following
bound on the dimension of L(D):

PROPOSITION 3.16. Let X be a compact Riemann surface, and let D be a
divisor on X. Then the space of functions L(D) ts a finite-dimensional complez
vector space. Indeed, if we write D = P — N, with P and N nonnegative divisors
with disjoint support, then dim L(D) < 1 + deg(P). In particular, if D is a
nonnegative divisor, then dim L{D) < 1 + deg(D).

PrOOF. Note that the statement is true for D = 0: on a compact Riemann
surface, L(0) consists of only the constant functions and therefore has dimension
one. We go by induction on the degree of the positive part P of D. If deg(P) =0,
then P = 0, so that dim L(P) = 1; since D < P, we see that L(D) C L(P), so
that dim L(D) < dim L(P) =1 = 1 + deg(P) as required.

Assume then that the statement is true for divisors whose positive part has
degree k—1, and let us prove it for a divisor whose positive part has degree k > 1.
Fix such a divisor D, and write D = P — N as above, with deg(P) = k. Choose
a point p in the support of P, so that P(p) > 1. Consider the divisor D — p; its
positive part is P — p, which has degree k — 1. Hence the induction hypothesis
applies, and we have that dim L(D — p) < deg(P — p) + 1 = deg(P). Now we
apply the codimension statement Lemma 3.15, and conclude that dim L(D) <
1+ dim L(D — p). Hence dim L(D) < deg(P) + 1 as claimed. O
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The finite-dimensionality of the spaces L(D) implies the same for the spaces
LM)(D), given the isomorphism between L() (D) and L(D + K) for a canonical
divisor K. Therefore:

COROLLARY 3.17. Let X be a compact Riemann surface. Then for any divisor
D on X, the spaces L'V (D) are finite-dimensional.

Problems V.3

A. Show that the space L(D) is a complex vector space.

B. Let F': X — C, be a nonconstant holomorphic map. Show that the divisors
F*(q) for ¢ € C form a pencil.

C. Let D be a divisor of degree 0 on a compact Riemann surface X. Show
that if D ~ 0, then L(D) is one-dimensional. Show that if D ¢ 0, then

(D) = {0} :

D. Let X be a compact Riemann surface of genus g, and assume that X has a
meromorphic function, so that by Proposition 1.14 canonical divisors have
degree 2g — 2. Prove that if deg(D) < 2 — 2¢, we must have L(})(D) = 0.
This is the 1-form analogue of Lemma 3.5.

E. Prove Proposition 3.10.

F. Let L = Z+Zt, where T is a complex number with strictly positive imaginary
part. Let X = C/L be the associated quotient torus, and let 7 : C — X be
the natural quotient map. Finally let pg = 7(0) be the origin of the group
law on X.

1. Recall that for any meromorphic function f on a Riemann Surface, and
any meromorphic 1-form w, the product fw is also a meromorphic 1-
form. Use this to show that if h is any meromorphic function on the
torus X, then hdz is a meromorphic 1-form on X.

2. Suppose h is a meromorphic function on X in the space L(npg) for some
integer n. Show that Res,, (hdz) =0

3. Let z be a local coordinate on X centered at py. Suppose that for some
integer n, h is a meromorphic function on X in L(npy), with a Laurent
series expansion ) .~ ¢;z*. Show that if ¢; = 0 for every i < 0, then
the meromorphic function & is identically 0.

4. Suppose that h is in L(2pg). Show that h(z) = h(—z) for all z in X.
(This is equivalent to the Laurent series for h (in a coordinate z centered
at pg) having only even degree terms.)

5. Show that no nonconstant function h in L(2pp) is the square of any
meromorphic function on X.

6. Show that there exists a unique function f € L(2pg) such that the
Laurent series for f (in a coordinate z centered at pg) has the form

1
f(z)=§+azz2+a4z4+....
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7. Show that there exists a unique function g € L(3pg) such that the
Laurent series for g (in a coordinate z centered at pg) has the form

1 1
g(z)z;—i—blz +.oai

8. Show that g(z) = —g(—=x) for all z in X. (This is equivalent to the
Laurent series for ¢ (in a coordinate z centered at py) having only odd
degree terms.) Hence the Laurent series for g actually has the form

1
g(z)=z—3+b1z1+b3z3+....

9. Find the Laurent series for f2, f3, and g2 (up through the ‘2’ term) in
terms of the above-written Laurent series for f and g.
10. Show that g2 = f3 + Af + B for some constants A and B.
11. Show that the polynomial w3 + Aw + B has no double roots. (Hint:
suppose that « is a double root. Show that the meromorphic function
g/(f — a) is a square root of a function in L(2pp).)
G. Show that given any two meromorphic functions f and g on X, there is a
divisor D such that f and g are both in L(D).
H. Suppose that X is a compact Riemann surface and D > 0 is a strictly positive
divisor on X such that dim L(D) = 1 + deg(D). Conclude that there exists
a point p € X such that dim L(p) = 2. Conclude that X is isomorphic to
the Riemann Sphere.
I. Let X be a Riemann surface, and let E be any divisor on X. Suppose that
D is a nonnegative divisor with finite support. Show that L(E) C L(E+ D)
has codimension at most deg(D).

4. Divisors and Maps to Projective Space

One of the primary ways of understanding Riemann surfaces is to map them
into a projective space. If we can exhibit a Riemann surface X as holomorphically
embedded in a projective space, that is, as a smooth projective curve, the tools
of algebraic geometry can come into play, in particular the use of hyperplane
divisors, etc. Therefore, via intersections, embeddings of X into projective space
give rise to divisors; the converse is also true, as we will see.

Holomorphic Maps to Projective Space. The first task is to understand
what is meant by a holomorphic map to P". The condition is local on the
domain.

DEFINITION 4.1. Let X be a Riemann surface. A map ¢ : X — P™ is holo-
morphic at a point p € X if there are holomorphic functions gg, g1, . . ., gn defined
on X near p, not all zero at p, such that ¢(x) = [go(z) : g1(z) : -+ : gu(z)] for =
near p. We say ¢ is a holomorphic map if it is holomorphic at all points of X.
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Note that if one of the g;’s is nonzero at p, then it will be nonzero in a
neighborhood of p, and so the map ¢(z) = [go(z) : g1(x) : +-- : gn(z)] will be
well defined for z near p.

Maps to Projective Space Given By Meromorphic Functions. On
a compact Riemann surface, there are no nonconstant holomorphic functions.
Therefore one cannot expect to use the same holomorphic functions g; at all
points of X to define a holomorphic map ¢. In fact, one can use meromorphic
functions as we now discuss.

Let X be a Riemann surface. Choose n + 1 meromorphic functions f =
(fo, fis--., fn) on X, not all identically zero. Define ¢; : X — P™ by setting

o5(p) = [fo®) : fi(p) : -+ : fa(p)).

Note that a priori, ¢5 is defined at p if
¢ pis not a pole of any f;, and
e p is not a zero of every f;.
Moreover ¢y is a holomorphic map at all such points p where it is defined.
We claim that even at points which violate the above conditions, ¢ can be
defined, in such a way that ¢y is holomorphic. This is due to the fundamental
property of homogeneous coordinates of projective space, namely that

[Zo:z1: - 1za) = [Azo: Az o000 1 Az
for any nonzero number A.

LEMMA 4.2. If the meromorphic functions {f.} are not all identically zero,
then the map ¢5 : X — P™ given above extends to a holomorphic map defined
on all of X.

Proor. Fix a point p € X, and let n = min; ord,(f;). The problem comes
exactly when n # 0: if p is a pole of some f;, then n < 0, and if p is a zero of
every f;, then n > 0.

Now in a neighborhood of p, we may assume that no f; has a pole other than
possibly at p, and there are no common zeroes to the f;’s, other than possibly
at p. Hence if we choose a local coordinate z on X centered at p, then every
fi(2) is holomorphic for z near 0 but z # 0, and there is no z near 0 which is a
common root to every f;. Hence for z # 0 we may multiply each f;(z) by 277,
without changing the value of ¢¢. Thus if we set g;(z) = 27" fi(z) for each 7, we
have

¢5(2)

[fo(2) : f1(2) : -1 fu(2)] for 2 #0
= [27"fo(2): 27" fi(z) s+ i 27T fa(2)] for 2 £ 0
[90(2) : g1(2) : -+ 2 gu(2)].

Now this last expression for ¢;(z) has every coordinate holomorphic near 0, and
has at least one coordinate nonzero at 0. Therefore the value of ¢; is well defined
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at z = 0, namely it is [go(0) : g1(0) : -+ - : g,(0)]. This process extends ¢; to all
of X, in a holomorphic way. O

It is a basic result that every holomorphic map ¢ : X — P™ can be defined
this way.

PROPOSITION 4.3. Let ¢ : X — P™ be a holomorphic map. Then there is an
(n + 1)-tuple of meromorphic functions f = (fo, f1,.-.,fn) on X such that ¢ =
¢¢. Moreover if two (n + 1)-tuples f = (fo, f1,...,fn) and g = (90,91, ..., 9n)
of meromorphic functions induce the same map, so that ¢5 = ¢4 as holomorphic
maps to P", then there is a meromorphic function A on X such that g, = Af;
for every 1.

Proor. Fix the holomorphic map ¢ : X — P™. Let [zg : --- : ] be the
homogeneous coordinates of P*. By reordering the variables we may assume
that zq is not identically zero on the image ¢(X). Define f; on X to be the
composition of ¢ with the function z;/zg on P™. The function fg is the constant
function 1 in this case.

We claim that f; is a meromorphic function on X. To see this, fix a point
p € X, and write ¢ in a neighborhood of p as ¢(2) = [go(2) : 1(2) : - -+ : gn(2)]
for holomorphic functions g; of a local coordinate z centered at p. Note that
go is not identically zero near p, by assumption. Then clearly f;(2) = g;/g, is
meromorphic at p, since it is a ratio of holomorphic functions.

Finally it is clear that ¢ = ¢y, where f = (1, f1, fo,.. ., fu)-

To prove the uniqueness statement, suppose that ¢y = ¢ with the notation
above. Let us assume for simplicity that none of the functions f; or g; are
identically zero; if so, these must simply be omitted from the discussion. At all
points p except the finitely many zeroes and poles of the functions f; and g;, we
have [fo(®) : -+ : fn(P)] = [90o(P) : - - - : gn(P)] as points in projective space, and
none of these coordinates are zero. Therefore there is a nonzero A(p), depending
on p, such that g;(p) = fi(p)A(p) for every i. We see that A is a holomorphic
function at these points, since it is equal to g;/ f; for every i. Moreover this also
shows that A is meromorphic on all of X, since it is a ratio of global meromorphic
functions at all but finitely many points. O

Recall that M(X) is the field of global meromorphic functions on X. The
above proposition then gives a 1-1 correspondence between the set of holomorphic
maps from X to P™ and the projective space IP”M( x) (which is the set of 1-

dimensional subspaces of the (n + 1)-dimensional vector space M(X)"*+! defined
over the field M(X)).

The Linear System of a Holomorphic Map. Let ¢ : X — P" be a
holomorphic map to projective space. To every such holomorphic map ¢ we can
associate a linear system, which we now describe.
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Write ¢ = [fy : f1: -+ : fn] where each f; is a meromorphic function on X.
Let D = —min;{div(f;)} be the inverse of the minimum divisor of the divisors
of the functions. Therefore, for p € X, we have that —D(p) is the minimum
among the orders of the f; at p, and so —D(p) < ord,(f;) for each i.

Therefore —D < div(f;) for each i, and we have that f; € L(D) for every i.
Hence if we let V; be the C-linear span of the functions {f;}, that is, the set of
all linear combinations Y, a; f; with a; € C, we have that Vy C L(D) is a linear
subspace of L(D).

Therefore the set of divisors |¢| = {div(g) + D | g € V}} forms a linear system
on X, a subsystem of the complete linear system |D| of all positive divisors
linearly equivalent to D.

Clearly the construction of D depends on the choice of the meromorphic
functions {f;} used to define ¢. But in fact the linear system depends only on

¢:

LEMMA 4.4. The linear system || defined above is well defined, independent
of the choice of the functions {f;} used to define ¢.

PROOF. Suppose that ¢ is also defined by ¢ = [gg : - - - : gn] for meromorphic
functions g; on X. By Proposition 4.3 there is a meromorphic function A on X
such that g; = Af; for each . Since div(g;) = div(}A) + div(f;), the minimum of
the divisors of the g;’s will differ from the minimum of the divisors of the f;’s by
exactly the divisor div()\). Hence if we call D the negative of the minimum for
the f;’s as above, and D’ the negative of the minimum for the g;’s, we have that
D’ = D — div(\). In particular, D ~ D’ and so the complete linear systems are
the same: |D| = |D’|.

Now it is clear also that the linear systems |¢¢| and |@y|, defined as above
using the f;’s and the g;’s respectively, are also the same. Indeed, a typical
member of |¢,] is a divisor of the form div(}_; a;g;) + D', and since

div(z a;gi)+ D' = div(z a;Af;)+ D'
Z = div(i a; f;) +div(d) + D’
= div(i a;fi)+ D,
this is a general element of |¢| also. Hence the two linear systems are the same

and the definition of |¢| is well defined. O

DEFINITION 4.5. Given a holomorphic map ¢ : X — P™ with nondegenerate
image, the linear system |¢| defined above is called the linear system of the map

@.

With a linear system of divisors naturally associated to a holomorphic map
¢, one might be tempted to define the degree of the map ¢ to be the degree
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of the divisors in the associated linear system |¢|. This agrees with the prior
notion of the degree of a map to P!, but in general is too dangerous a use of the
terminology. The reason for this, as we will see later, is that if ¢ maps X onto
a smooth projective curve Y inside P", then we have two different definitions
of the degree of ¢; one coming from the old definition of the degree of the map
¢ : X — Y, and the one coming from the degree of the divisors in the linear
system |¢|, and these do not agree in general.

Note also that if ¢ maps X to P™ with nondegenerate image (which is equiv-
alent to having the coordinate functions {f;} linearly independent), then the
dimension of the linear system |¢| is exactly n, since the dimension of the asso-
ciated vector space of functions is n + 1.

A linear system of dimension n whose divisors all have degree d is often called
a “gh}”. A natural question now arises: which g7}’s can be the linear systems of
holomorphic maps? There is one property which can be singled out, that the.
linear system |¢| enjoys:

LEMMA 4.6. Let ¢ : X — P" be a holomorphic map. Then for every point
p € X there is a divisor E € |¢| which does not have p in its support. In other
words, there is no point of X which is contained in every divisor of the linear
system |@|.

ProOF. Fixp € X, and write ¢ = [fo : - - - : fn] for meromorphic functions f;.
Recall that we define D = — min;{div{f;)}. Suppose that the minimum order of
the f;’s at p is k; assume that this minimum is achieved with the function f;, so
that ord,(f;) = k. Then D(p) = —k, and E = div(f;) + D is an element of the
linear system |¢|. But E(p) =ord,(f;) + D(p) =k — k=0, so E does not have
p in its support. [J

Base Points of Linear Systems. The property above will turn out to be
the only restriction on a linear system, in order that it occurs as the linear system
of a holomorphic map. It is important enough to discuss it on its own.

DEFINITION 4.7. Let @ be a linear system (that is, @ is a ¢7}) on a Riemann
surface X. A point p is a base point of the linear system @ if every divisor E € @
contains p (i.e., every E € @ satisfies £ > p). A linear system Q is said to be
base-point-free (or simply free) if it has no base points,

The simplest example of a linear system which is base-point-free is the system
|0} consisting of divisors of holomorphic functions. If X is compact, this system
just has the single divisor 0 in it.

We have seen above that if ¢ is a holomorphic map to P™ with nondegenerate
image, then the associated linear system |¢| is base-point-free.

One can express the property of being a base point using spaces of functions.
Suppose that @ C |D| is a linear system, a subsystem of a complete linear system
|D|]. Let V C L(D) be the vector subspace which corresponds to @, so that the
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divisors in the linear system @ are exactly those of the form div(f) + D for
fev.

Now for every f € L(D), and for every point p € X, we have D(p)+ord,(f) >
0. So p is a base point of @ if and only if for every f € V, we have D(p) +
ordy(f) > 1. Since f is already in L(D), this condition on f exactly says that
f € L(D — p). Hence we are led to the following criterion:

LEMMA 4.8. A point p € X is a base point of the linear system QQ C |D|
defined by the vector subspace V. C L(D) if and only if V C L(D —p). In
particular p is a base point of the complete linear system |D| if and only if
L(D —p) = L(D).

We adopt the convention, which is consistent with the above, that if |D| is
empty, then every point is a base point.

Another way to express the above is that p is not a base point of @ if and
only if there is a function f € V' with ord,(f) = —D(p) exactly. '

Combining Lemma 4.8 and Proposition 3.16 we arrive at the following.

PROPOSITION 4.9. Let D be a divisor on a compact Riemann surface X . Then
a point p € X is a base point of the complete linear system |D| if and only if
dim L(D — p) = dim L(D). Hence |D| is base-point-free if and only if for every
point p € X, dim L(D — p) = dim L(D) — 1.

The following examples come from our rather complete knowledge of the di-
mensions of the spaces L(D) for the Riemann Sphere and for a complex torus.

ExaMPLE 4.10. Every divisor of nonnegative degree on the Riemann Sphere
has a base-point-free complete linear system.

ExAMPLE 4.11. Suppose X is a complex torus. Then any divisor of degree
at least 2 has a base-point-free complete linear system.

The Hyperplane Divisor of a Holomorphic Map to P". Let ¢: X —
P"™ be a holomorphic map. We have seen above that we may associate to ¢ a
linear system |¢| of divisors on X, by considering a set of n + 1 meromorphic
functions which define ¢.

There is another, more geometric, way of obtaining a linear system from the
holomorphic map ¢, which is inspired by the construction of a hyperplane divisor
for a smooth projective curve.

Suppose that H C P" is a hyperplane, defined by the vanishing of a single
homogeneous polynomial of degree one. Suppose that X does not lie entirely
inside H. We will define a divisor ¢*(H) associated to this hyperplane.

Fix a point p € X, and suppose that L is the homogeneous linear equation
for H. Since X does not lie inside H, the equation L does not vanish identically
on X.

Choose another homogeneous linear equation M which is not zero at ¢(p),
and consider the function h = (L/M) o ¢, defined in a neighborhood of p. This
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is a holomorphic function near p, since if we choose a local coordinate z centered
at p and write ¢ near p as ¢(z) = [go(2) : g1(2) : -+ : gn(2)] for holomorphic
functions g;, not all 0 at » = 0, the function h is a ratio of one linear combination
of g;’s divided by another, with the denominator not zero at p.

We set ¢*(H)(p) to be the order ord,(h) of h at p; since h is holomorphic, this
is a nonnegative integer. Moreover it is strictly positive if and only if ¢(p) € H.

DEFINITION 4.12. The above construction defines a divisor ¢*(H) on X, and
is called a hyperplane divisor for the map ¢.

One must check that this is well defined, but this goes exactly like the argu-
ment which shows that an intersection divisor on a smooth projective curve is
well defined; we leave it to the reader. Indeed, it is possible to define, for any
homogeneous polynomial G in the ambient variables, a divisor ¢*(G), using the
same ideas.

In any case we note that the hyperplane divisor ¢*(H) depends only on the
hyperplane H, and not on its equation L: if one multiplies the equation by a
constant, one does not change the order of the function which defines ¢* (H)(p).

We want to show that the set of hyperplane divisors {¢*(H)} forms exactly the
linear system |¢| for the map ¢. This relies on the following simple observation:

LEMMA 4.13. Suppose that the homogeneous coordinates of P™ are [zg: - :
zy], and that H is defined by the linear equatwn L = 5%, aix; = 0. Let the

holomorphic map ¢ be defined by ¢ = [fo : - -+ : fn], and set D = — min;{div(f;)}.
If $(X) is not contained in the hyperplane H, then
= le(Z aifi) +D
PRrROOF. Fix a point p € X, and choose j such that ord,(f;) = —D(p) is

the minimum order. In this case the coordinate z; will not vanish at p, so
we may take M = z; in defining the hyperplane divisor ¢*(H). The function

=(L/M)o¢isthen h=(3",a:fi)/f;), and does not vanish identically near p
since X does not lie inside H. Hence

ordp(h) = ord,( Za,f, — ord,(f;) = ord, Zalfz + D(p)

as claimed. [

Now the desired statement is immediate.

COROLLARY 4.14. Let ¢ : X — P™ be a holomorphic map. Then the set of
hyperplane divisors {¢*(H)} forms the linear system || of the map.

We see in particular another quick proof that the linear system |¢| of a holo-
morphic map has no base points. This is clear from the description of this linear
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system as the set of hyperplane divisors: a point p is in the support of a hyper-
plane divisor ¢*(H) if and only if ¢(p) € H, and given any point of projective
space, one can find a hyperplane which does not contain that point.

Defining a Holomorphic Map via a Linear System. We will now prove
that the base-point-free property of the linear system of a holomorphic map in
fact characterizes such systems.

PROPOSITION 4.15. Let Q C |D| be a base-point-free linear system of (projec-
tive) dimension n on a compact Riemann surface X. Then there is a holomorphic
map ¢ : X — P™ such that Q = |¢|. Moreover ¢ is unique up to the choice of
coordinates in P™.

PrOOF. We have been running around these ideas enough now that the proof
of the Proposition is almost easier than the statement. Suppose that the linear
system Q corresponds to a vector subspace V C L(D), so that the divisors of Q
are those of the form div(f) + D, for f € V. Choose a basis fo,..., fn for V.
Then the holomorphic map ¢ = [fo : -+ : fn] has Q = |¢| as desired.

To see the uniqueness statement, suppose that ¢’ = [go : -+ : g,] also has
Q = |¢/|- The divisors of |¢'| are then of the form div(g) + D’ where ¢ is a
general linear combination of the g;'s, and D’ is the inverse of the minimum of
the divisors of the g;’s. In any case since |¢| = |¢’|, we may change coordinates
in the ¢’ map and assume that for each ¢, div(f;) + D = div(g;) + D’. If we set
hi = fi/g:, we see that div(h;) = D’ — D is constant, independent of 7; since all
of these ratios have the same divisor, they must all be equal (up to a constant
factor). By adjusfing the g¢,’s further by constant factors, we may then assume
that there is a single meromorphic function h on X such that h = f;/g;. At this
point we have that ¢ = ¢’, and so ¢ is unique, up to the changes of coordinates
in P™ which were applied in the proof. O

Therefore we have a 1-1 correspondence

base-point-free holomorphic maps ¢ : X — P"
linear systems o with nondegenerate image,
of dimension n on X up to linear coordinate changes

Removing the Base Points. The most important case of the construction
of holomorphic maps via linear systems is to use complete linear systems |D|.
One immediate problem is that in general complete linear systems may well have
base points. However this is not fatal, as we now discuss.

Suppose that the complete linear system |D| has base points. Let F =
min{E | E € |D|} be the minimum of all of the divisors in the linear sys-
tem; the divisor F is the largest divisor that occurs in every divisor of |D|. It is
obvious that the complete linear system |D — F| then has no base points, and
moreover |D| = F + |D — F)|, that is, every divisor of |D| is F' plus a divisor in
|D — F| and conversely.
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The divisor F is called the fized part, or fired divisor, of the linear system |D)|.
The complete linear system |D — F| is called the moving part of |D)|.

As far as choosing functions in order to define a holomorphic map ¢ goes,
one loses nothing by passing to the moving part of |D|, by the following simple
observation:

LEMMA 4.16. If F is the fired divisor of the complete linear system |D|, then
L(D - F)=L(D).

PROOF. Clearly since F' > 0, we have that D — F < D and so L(D — F) C
L(D). To see the reverse inclusion, let f € L(D), so that div(f) + D > 0.
Therefore div(f) + D € |D|, and we may write div(f) + D = F + D’ for some
nonnegative divisor D’. Then div(f) + (D ~ F) = D’ > 0, so that f € L(D —
F). O

In any case we see that base points of |D| allow us to “shrink” the divisor
without affecting the space of functions. We therefore lose nothing by restricting
attention to holomorphic maps defined by complete linear systems which are
base-point-free.

Given a divisor D with |D| base-point-free, we denote by ¢p the holomorphic
map associated to the complete linear system |D|.

Criteria for ¢p to be an Embedding. The results given above allow us to
restrict attention to holomorphic maps ¢p where |D| is a complete linear system
without base points. We first ask the question: when is ¢p a 1-1 map? We need
the following preliminary lemma.

LEMMA 4.17. Let X be a compact Riemann surface, and let D be a divisor on
X with | D| base-point-free. Fix a pointp € X. Then there is a basis fo, f1,..., fn
for L(D) such that ord,(fo) = —D(p) and ord,(f;) > —D(p) for i > 1.

ProOF. Consider the codimension one subspace L(D — p) of L{D), and let
fi,-.., fn be a basis for L(D — p). Extend this to a basis for L(D) by adding a
function fy in L(D) ~ L(D — p). Then ord,(f;) > —D(p) +1 > —D(p) for every
t>1.

If in addition ord,(fo) > —D(p), then fo € L(D—p), which is a contradiction.
Therefore ord,(fo) = —D(p) as required. [J

The above lemma provides a convenient tool in studying whether the map
¢p is 1-1. We have the following criterion for this, expressed in terms of the
function spaces.

PROPOSITION 4.18. Let X be a compact Riemann surface, and let D be a
divisor on X with |D| base-point-free. Fiz distinct points p and q in X. Then
¢p(p) = ¢u(q) if and only if L(D —p—q) = L(D — p) = L(D — q). Hence
¢p is 1-1 if and only if for every pair of distinct points p and g on X, we have
dim (D — p — ¢) = dim L(D) — 2.
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Proor. Since changing the basis for L(D) only gives a linear change of co-
ordinates for the map ¢p, we may certainly check whether ¢p(p) = ¢n(q)
using any basis. Choose the basis given by the previous lemma. With this ba-
sis, note that ¢p(p) = [1:0:0: ---: 0. Therefore ¢p(q) = ¢p(p) if and
ounly if ¢p(g) =[1:0:0: --.: 0] also, which is clearly equivalent to having
ordg(fg) < ordy(f;) for each ¢ > 1, by the construction of the map ¢p = ¢;.
Since g is not a base point of | D|, this happens if and only if ord,(fo) = —D(q)
and ord,(f;) > —D(q) for each i > 1. This happens if and only if {fi,..., fn} is
a basis for L(D — q). However this basis was chosen exactly so that {fi,..., fn}
was a basis for L(D — p); therefore the above criterion is equivalent to having
L(D - p) equal to L{D — q).

This says that every function f in L{D) with ord,(f) > —D(p) also satisfies
ordy(f) > —D(q). Hence L(D — p) C L(D — p — gq), since p and q are distinct.
Thus we see that the condition is equivalent to having the three spaces L(D —p),
L(D —gq), and L(D — p — g) all equal, which proves the first statement.

Since |D| is base-point-free, we have that dim L(D — p) = dim L(D — q) =
dim L{D) —1. Therefore dim L{D —p—q) is either dim L{D) —1 or dim L(D)~ 2,
by Lemma 3.15. If ¢p is 1-1, then by the first part we see that L{(D —p—gq) is a
proper subspace of L(D — p) for all p and ¢, and so must have dimension equal
to dim L(D) — 2.

Conversely, if the dimension always does drop by 2, then the tower of sub-
spaces L{D — p — q) C L{D — p) C L(D) must all be distinct for every p and q,
so that ¢p is 1-1. O

Having ¢p 1-1 is not completely satisfying. The problem is that the image of
¢p, even if it is 1-1, may not be a holomorphically embedded Riemann surface.
The prototype for this phenomenon is the map from C to P? given by sending
zto [1:2?%: 23] In the relevant chart Uy = C2 of P2 where the first coordinate
is nonzero, this map sends z to (22, 2®). This image cannot possibly be a holo-
morphically embedded Riemann surface, since if it were, the composition of the
map ¢p with a chart map near (0,0) for the image would be a 1-1 holomorphic
map between Riemann surfaces, hence would be a biholomorphism. But the
derivative of ¢p is zero at the origin, and so by the chain rule the derivative of
the composition would be zero, which is a contradiction.

Another way to see that the image in this example is not holomorphically
embedded in P2 is to notice that at z = 0 none of the coordinates of the map is
a local coordinate on the curve. What is necessary and sufficient is that, if we
choose a basis fo, f1,..., fn for L(D) as above to use as the coordinates of the
map ¢p, where fy has minimum order —D(p) at p and all other f; have order
strictly greater, then we require that at least one of the f; with ¢ > 1 have order
exactly —D(p) + 1 and no more. This will have the effect that, using a local
coordinate z near p, and after scaling by =2, the zeroth coordinate will not
vanish at p, all other coordinates will vanish at p, and at least one of the other
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oordinates will have a simple zero at p.

This is the condition which allows us to apply the Implicit Function Theorem,
ind to conclude that the image is a holomorphically embedded Riemann surface.
Essentially, if f; has order exactly —D(p)+1 at p, then f;/ fo is a local coordinate
m the image.)

Hence, if we assume that ¢p is 1-1, then the image is a Riemann surface and
bp is an isomorphism onto its image if and only if there is a function in L(D —p)
»ut not in L(D — 2p). This function is the desired f; having order —D(p) + 1
ind no more. Therefore we have shown the following.

LEMMA 4.19. Let X be a compact Riemann surface, and let D be a divisor
m X with |D| base-point-free. Assume that ¢p is 1-1. Fiz a point p in X.
Then the image of ¢p ts a holomorphically embedded Riemann surface near
bp(p) (and hence ¢p is an isomorphism onto its image near p) if and only if
U(D —2p) # L(D - p). ‘

Again, on a compact Riemann surface, we may rephrase this using dimension.
Che codimension of L{D — 2p) inside L(D — p) is either 0 or 1, and we need it to
se 1 for the above criterion. However we have seen that when |D| is base-point-
ree, then L(D — p) has codimension 1 in L(D). Thus the above condition boils
lown to having dim L(D — 2p) = dim L(D) — 2.

Note that this is the same condition as the 1-1 condition, simply allowing
I = p. Therefore the whole analysis can be expressed as follows.

PROPOSITION 4.20. Let X be a compact Riemann surface, and let D be a
livisor on X whose linear system |D| has no base points. Then ¢p is a 1-1
wlomorphic map and an isomorphism onto its image (which is a holomorphically
:mbedded Riemann surface in P™), if and only if for every p and q in X, we
wave dim L(D — p — q) = dim L(D) — 2. (The case p = q is explicitly required
iere!)

When the map ¢p is an isomorphism onto its image, we say that it is an
:mbedding. One t