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Preface

The aim of the present volume is to give a survey of the recent development
on the interplay between solvable lattice models in statistical mechanics and
representation theory of quantum affine algebras. The original papers on this
subject were published in the form of a series and the results are all scat-
tered around. We thus felt that a systematic account was necessary, which
develops the materials from scratch, focusing attention on the most funda-
mental case and without assuming prior knowledge about lattice models nor
representation theory.

Schematically, the basic problems of integrable models in field theory or
statistical mechanics are to diagonalize the given Hamiltonian, and to com-
pute the correlation functions. By correlation functions we mean a system of
functions (¢a ()}, (da(Z)Pa(y)), - - - obtained as vacuum expectations of the
operators in the theory. In the context of lattice statistics they are functions
of the lattice sites z,y,---; in field theory they are functions of the space-
time coordinates or momenta. In principle the totality of the correlation
functions has enough information to determine the theory completely.

In a naive way the Hamiltonian is an infinte dimensional matrix acting
on some infinite dimensional space. For instance, in the lattice models the
latter is typically given as an infinite tensor product of ‘local’ spaces, e.g.

- CtRC?*RCE® - .

Obviously such a Hamiltonian cannot be defined literally because of the
difficulty of divergence. In fact, an arbitrary vector in this huge space is
not meaningful; what make sense are only those eigenvectors which have
finite energy (= finite eigenvalues). They can be thought of as constituting
a non-trivial space, which we will refer to as the space of states.

At present one knows very few systems whose correlation functions can
be described explicitly. The representative examples are 1) the Ising model,
and 2) conformal field theory. The Ising model is a two-dimensional lattice

xii1



xiv PREFACE

model. Its correlations (on the lattice or in the continuum limit}) can be
characterized by classical non-linear systems such as the Painlevé equations
or soliton equations. The conformal field theory deals with critical, or mass-
less, systems in the continuum. Their correlation functions belong to the
linear world, giving a good class of generalized hypergeometric functions.
The success in the Ising model or conformal field theory is largely related
to the fact that their spaces of states have clear mathematical structures:
in the Ising model they are the fermion Fock spaces, and in conformal field
theory they are the highest weight representations of infinite-dimensional Lie
algebras.

Beyond the Ising model, a large class of solvable lattice models have
been known; they are built on the solutions of the Yang-Baxter equation.
Our main example— the six-vertex model and its spin-chain equivalent,
the XXZ model— is one of the most typical models of this sort. However,
until recently the space of states and correlation functions have not been
understood very well for these more general class of models.

One of the key insights to this problem came from the corner transfer
matrix method introduced by Baxter in 1976. The calculation of the one-
point functions is reduced to counting the multiplicities of the eigenvalues of
the corner transfer matrix. Among others, in the study of the Hard Hexagon
model, it led to a remarkable connection with the Rogers-Ramanujan iden-
tities. It was then recognized that, in many interesting cases including the
Hard-Hexagon model, the spectra of the corner transfer matrices can be de-
scribed in terms of the characters of affine Lie algebras. Despite the close
similarity to certain structure in conformal field theory, this finding has re-
mained a curiosity for some years. Its combinatorial aspect was subsequently
clarified by the theory of crystal bases for quantum affine algebras.

Another key emerged through the recent symmetry approach to massive
integrable field theories. Bernard and others realized that these theories pos-
sess hidden non-Abelian symmetries by the Yangians. It was hoped to exploit
these symmetries to understand the integrability in the massive case, follow-
ing the spirit of conformal field theory. In the latter case a central role was
played by the notion of vertex operators and the Knizhnik-Zamolodchikov
(KZ) equations for the correlation functions. It was then found that these
structures admit a remarkable deformation: by Smirnov, who showed that
the form factors he has constructed over the years satisfy the deformed KZ
equations; and by Frenkel and Reshetikhin, who studied the vertex opera-
tors for quantum affine algebras and derived the g-deformed KZ equations
for their matrix elements.
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For lattice models the space on which the corner transfer matrix is acting
can be viewed as ‘half’ of the space of states. The appearance of the Lie
algebra characters suggests that this half can be identified with a highest
weight representation of the quantum affine algebra, which we expect to
govern the symmtries of the models. Our first goal in this volume is to
explain that it is indeed so. Let H = V(Ag) ® V(A;) be the direct sum of
level one integrable representations of the quantum affine algebra Uq(;l2).
Then the space of states for the six-vertex model has the structure H ® H*,
the tensor product being understood in a certain completed sense. Thus
we are upgrading the dimension counting by the characters to a structural
understanding of the space of states. This picture will lead to the description
of the correlation functions and the form factors in terms of the ¢-deformed
vertex operators, and, via bosonization, to the integral formulas for them.
This will be our second goal.

Our expositions are organized as follows. In Chapter 0 we shall give a
brief account of basic principles in statstical mechanics. We also touch upon
the history of solvable models. The first three Chapters are devoted to the
standard subjects concerning solvable lattice models in statistical mechanics.
Our main examples are the spin 1/2 XXZ chain and the six-vertex model.
The setting for these models and their mutual equivalence are explained in
Chapter 1 and Chapter 2, respectively. In Chapter 3 we discuss the inte-
grability of the models. The role of the Yang-Baxter equation and the com-
muting transfer matrices are clarified. The rest of the Chapter is devoted
to the introduction of the quantum affine algebra Uy(sl2}, and the represen-
tation theoretical interpretation of the Yang-Baxter equation. In Chapter 4
we introduce the main objects, the corner transfer matrices and the vertex
operators. By a physical argument we then show how the correlation func-
tions can be written as the trace of products of the vertex operators, and
derive difference equations for them. Having these as physical motivations,
we restart our mathematical discussions from the next Chapters. Chapter 5
is devoted to the Frenkel-Jing bosonization of the level 1 module of Uq(§l2 ).
In Chapter 6 we derive the formulas for the vertex operators using bosons.
In Chapter 7 we reformulate the physical setting in representation theoreti-
cal terms, such as the space of states, vacuum, translation, Hamiltonian and
its eigenstates. To derive the formulas for the correlation functions and the
form factors we need to calculate the trace of products of vertex operators.
This computation is carried out in Chapter 8, and its application is given in
Chapter 9. The limit of the XXX model is briefly discussed in Chapter 10.
We note that the formulas in Chapters 8-10 are presented here for the first
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time in such details. The last Chapter 11 is devoted to the discussion of the
other types of models, and related works. In the Appendix we collect basic
formulas for reader’s reference. The bibliography is far from being exhaus-
tive. We have limited the citations to only those which are directly related
to the discussions.

We would like to thank our colleagues B.Davies, O.Foda, M.Idzumi,
K.Iohara, K.Miki, T.Nakashima, A Nakayashiki, Y.Ohta and T.Tokihiro for
the collaboration in these works. Special thanks are due to F.Smirnov from
whom we learned a great deal during his stay in Kyoto. The present vol-
ume is an outgrowth of a series of lectures delivered by one of us (T.M.)
at the regional conference at North Carolina State University, June 1993.
He wishes to thank K.Misra for the organization of the conference and the
hospitality. We are indebted to S.-J. Kang and N. Kawakami who read the
manuscript and offered invaluable comments. This work is partly supported
by Grant-in-Aid for Scientific Research on Priority Areas 231, the Ministry
of Education, Science and Culture, Japan.

Michio Jimbo and Tetsuji Miwa
Kyoto, Japan
April 1994



Chapter 0

Background of the problem

The subject of this book is the study of a class of exactly solvable lattice
models which arise in statistical mechanics. Before embarking upon their
formulation, we wish in this chapter to give the reader a rough idea of what
statistical mechanics and the lattice models are all about. Of course, we are
by no means aiming at something like a rapid course in statistical mechanics
for undergraduate physics students. All we wish is provide a minimal back-
ground to motivate the reader so he can proceed to the subsequent chapters.

0.1 Statistical mechanics

In classical mechanics, we study the motions of such objects as massive
particles or rigid bodies governed by Newton's equation of motion. The
states of such systems are specified by a finite number of quantities. For
instance the motion of N particles in our three dimensional space is described
by 6N parameters— the position (;,¥;,z:) and the momentum (p?, p?, p?)
of the i-th particle, i = 1,---, N. In this sense we are dealing with systems
of a finite number of degrees of freedom.

In statistical mechanics, we study statistical properties of a huge (typi-
cally of order 10%3) number of particles. By mathematical idealization, such
systems are best thought of as consisting of an infinite number of particles;
they are systems of an infinite number of degrees of freedom. The motion
of each of these particles is governed by quantum mechanics; in some cases
classical mechanics is a good enough approximation. In either case, it is
hopeless to keep track of the microscopic behavior of the system, i.e. that
of each individual particle. Statistical mechanics is designed to study the

1



2 CHAPTER 0. BACKGROUND OF THE PROBLEM

average, or macroscopic, behavior of a system, from the knowledge of how its
microscopic constituents interact. The macroscopic features are described
in terms of a small number of parameters such as the temperature, volume,
pressure, etc., to be referred to as the thermodynamic quantities. Some ele-
ments of statistical mechanics from the viewpoint of solvable models can be
found e.g. in [15, 64].

It can happen that at some temperature the system suddenly changes
from one phase to another which show qualitatively different behaviors. For
instance, when the temperature is increased high enough, a magnet bar loses
its magnetism. More familiar examples are ice melting into water, or water
boiling into steam, changing the molecular densities drastically. In such
cases the system is said to undergo a phase transition. The study of the
phenomena near the transition point is a particularly interesting subject in
statistical mechanics.

Take a magnet, as an example. It consists of molecules which are con-
strained rigidly and regularly to their own spatial positions in the mag-
net. Each of these molecules in turn are regarded as microscopic magnets.
Let us adopt the simplifying assumption that the magnetic moments of the
molecules can point only two directions, say up and down, or + and —. This
situation can be modeled as follows. Consider a d-dimensional lattice (d = 3
in the realistic situation). At each vertex ¢ of the lattice, associate a ‘spin’
variable ¢; which takes values in the set § = {+, —}. A microscopic state of
the magnet is represented by an assignment of values + to each i, that is, a
mapping C : i + ¢;(C) from the set of vertices to S. Hence if there are N
vertices on the lattice, there are altogether 2V possible configurations. We
shall often refer to a vertex as a ‘site’, and a map C as a ‘configuration’.

The physics of a statistical system is governed by the energy E(C) of
each microscopic state, or configuration, C. The interaction between the
constituent particles is determined by specifying the real-valued function
E(C). In our case of a magnet, a typical choice of the energy is

E(C) = — Z Ei,jO'i(C)O'j(C) + hZUl(C) (0.1)
¥, i

The parameter E; ; is the coupling constant between the two ‘spin’ variables
o; and 05, and h is called the external magnetic field. The model of a magnet
formulated this way is called the Ising model. * We often assume that the
spins interact through nearest neighbors, namely that FE,; = 0 unless the

! The Ising model can also be interpreted as a model of a lattice gas. See e.g. [15].
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vertices ¢ and j are located next to each other on the lattice. In the Ising
model the microscopic degrees of freedom are represented by local ‘spin’
variables o;(C), which are ordinary commuting numbers. This is a model in
classical statistical mechanics.

In this book, we are concerned with only the equilibrium states of mat-
ters. It means that the system is put in a large external system (called heat
bath}, and the conduction of heat between the system and the heat bath is
already equilibrated. In other words, in an equilibrium state, the internal
energy of the system is preserved. This does not mean that microscopic
states with different energies are forbidden. In principle all kinds of config-
urations can be realized, but with certain probabilities. The internal energy
of the system is a quantity observed as an average of the different energies
carried by these configurations. The Boltzmann principle states that, in an
equilibrium state at absolute temperature T, a particular configuration C
occurs with the probability
Z e~ 5 (0.2)
Here k is the Boltzmann constant which adjusts the dimensions of the energy
E(C) and the temperature T. The normalizing factor Z, called the partition
function, makes the total probability 1:

Z=Y e (0.3)
C

The sum is taken over all possible configurations. The internal energy of the
system is then given by the expectation value of the energy E(C):

1 ~EC) 2i
7XC:E(C)e ¥ = kT o log Z. (0.4)

We notice that these formulas are not defined literally for systems with
an infinite volume (in the Ising model the volume is simply the number of
lattice sites N). To make sense of them we must first take a system with a
finite volume V and then consider the limit V — oo. The internal energy
is divergent, because the energy is an additive quantity with respect to the
volume. What makes sense is the internal energy per unit volume

11
w= lim VEZE(C)e_%‘).

The quantity
1
= - im —log Z
f= kT Jim, 108
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is called the free energy per volume. This is one of the most basic quantities
of physical interest, from which various other thermodynamic quantities can
be derived. Using f, the internal energy per volume is represented as

U= —T2% <%> .

Its derivative Ou/OT represents the increment of the energy (per volume)
relative to an increment of the temperature. It is called the specific heat
(per volume).

Other basic quantities of interest are the correlation functions. These are
the expectation values of a function F which depends on the ‘spin’ variables

o:(C):

(F) = lim. % S F(C)e 5. (0.5)
C

If F(C) is a function of oy, (C),-- -, 0:,(C), then (F) is called an n point
function. For the Ising model, the typical correlation functions are

(@i(C)),  (ai(C)o;(C)),  (0:(C)o;(Chor(C)), -

Many physical quantities measured by experiments are expressed as corre-
lation functions.

Looking at the Boltzmann principle (0.2} we notice that the tempera-
ture enters in the following way: At a low temperature T ~ 0, only a few
microscopic states in low energy levels contribute and the rest of the de-
grees of freedom of the system is effectively frozen. As the temperature is
increased, these degrees of freedom are freed, and eventually at T = oo all
configurations occur equally likely. It can happen that in the course the sys-
tem undergoes a phase transition at some temperature T, called a critical
temperature. (There can be several critical temperatures.)

The phase transitions are accounted for by the presence of analytic sin-
gularities in the thermodynamic quantities at the critical temperature. How-
ever, if we keep the volume to be finite, the quantities such as (0.4) can never
be singular, since they are finite sums of analytic functions in T. It is only
after taking the infinite volume limit that analytic singularities may develop.

For example, let us consider the spontaneous magnetization. This is the
strength of a magnet in the absence of the external field (h = 0). Let us
choose the coupling constants E; ; in (0.1) to be all positive. Then the energy
E(C) is smaller if the number of neighboring ‘spin’ variables with the same
values is bigger. Therefore, if the temperature is low the ‘spin’ variables
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tend to be equal, and the collective effect of the particles with the equal spin
is observed as the magnetism. If the temperature is high, the spins of the
particles are randomly distributed and the magnetism is lost. In a model
with translational invariance, the spontaneous magnetization is given by the
following one-point function

i i 1 1 _E©)
M = hlir& Jim = Ec v Ei oi(C)e” *r
. . 1 _E@©)
=l Jim, 7 2 (@ E 09)

where 0 is a vertex chosen arbitrarily. If we set A = O before the infinite
volume limit, the expectation value (0.6) is zero because if h = 0 in (0.1)
then E(C) = E(C') if 0:(C} = —0;(C’) for all i. But the two limits in (0.6)
are not interchangeable, and M can be non-vanishing.

In the next section we shall see an explicit example of a phase transition
in the two-dimensional Ising model. In particular we see that the critical
temperature 7, > 0 is unique, and that M > 0 for T < T, and M = 0 for
T>T,.

So far we have considered models in classical statistical mechanics. When
the quantum effect becomes important, we must apply the principles of
quantum mechanics. In quantum statistical mechanics, the analog of the
classical ‘spin’ variable o; becomes an operator on some vector space V;
which represents the internal degrees of freedom of the particle. The energy
is described by an operator H called the Hamiltonian which acts on the
tensor product F = ®;V;. The partition function is given by

Z=r(e ).

If F' is an operator acting on the tensor product of n spaces V;,,---, Vi, , the
associated n-point correlation function is defined by

1 _H

Etr; (Fe kT) . (0.7)

In this book, we shall treat only the case of the zero-temperature. If T" = 0,
a simplification occurs to the correlation function (0.7). It reduces to the
vacuum expectation value, i.e., the matrix element of the operator F' with
respect to the eigenvector |vac) for the lowest eigenvalue of the Hamiltonian
H:

{vac|F'|vac).
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To close this section, we remark that there is a general principle which
states an equivalence between d-dimensional classical lattice models, and
(d — 1)-dimensional quantum lattice models at the zero temperature. In the
later chapters, this equivalence will be made explicit and exploited in the
case of the two-dimensional six-vertex model and the one-dimensional XXZ
model.

0.2 Solvable models

Let us consider the Ising model whose interaction is through nearest neigh-
bors and is translationally invariant. In two dimensions d = 2, the model is
solvable if there is no external magnetic field (h = 0). With the assumptions
made above, the energy of a configuration C takes the form

C)=—E1 ) 0i;(C)ous1,(C) — B2 ZUU )oij+1(C).

Here the lattice sites are labeled by coordinates (4, j). We take E, Fy to be
positive. Among all the known exactly solvable models, the zero-field two-
dimensional Ising model is the best understood non-trivial example. We
shall quote below the main exact results.

In 1944 Onsager [69] derived his famous formula for the free energy per
volume:

f 1 /2"/2" de, dé,
—— =log2+ - ——lo - -
Fels2+s || S g(C1C: — $1 cos by — Sy cosbr)
where C; = cosh(2E;/kT) and S; = sinh(2F;/kT). As we mentioned before,
the model possesses a unique critical temperature T, given explicitly by the

equation - o
smh(le) nh(FT_:) =1

It follows from Onsager’s formula that the specific heat near T, has a singu-

larity
% ~ const. log |T — Tg|.
The spontaneous magnetization was derived by Yang in 1952 [90] (the

result itself was announced earlier by Onsager).

M= { (1= (S (T <),
0 (T > Te).
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Since then, it took more than 20 years before the correlation functions
were calculated. For simplicity let F1 = Eo. When T # T, the two-point
function falls off exponentially as the distance R = v'm? + n? tends to oo:

(UOOUmn> - (000>(Umn> ~ e_R/E-

The coefficient £ (called the correlation length) measures how far the cor-
relations reach. Near T, it behaves like £ ~ 1/|T — T|. Hence it makes
sense to consider the scaling limit m,n — oo, T — T, while keeping z =
m|T ~ T,|, y = n|T — T,| fixed. It turns out that the two point functions
have well-defined limits and are rotationally invariant (i.e. is a function
of r = /22 +y%). In 1973-1976 Wu et al.[89] found that the two-point
correlation functions in the scaling limit

Ti(r) = T_lé%nio(ao,oam,n>/Mi (M : constant)

can be expressed as

=)= oo (- o0 - i)

where u(r) is a solution of

1 . d%u
u” + Z“u = sinhu, u'= -
r dr

This is an equivalent form of a Painlevé transcendent of the third kind. These
results were extended by Sato et al. [73] to general n-point functions in the
scaling limit, leading to an unexpected link with the monodromy preserving
deformations of linear differential equations. It is also known that the corre-
lation fuctions on the lattice satisfy Hirota-type difference equations, which
are the lattice analogues of the differential equations in the scaling limit. For
further results including these difference equations, the reader is referred to
the recent lecture notes [64]. It is quite remarkable that behind this simple
model is underlying such a rich mathematical structure.

In quantum statistical systems, perhaps the first exact result goes back
to Bethe’s treatment of the Heisenberg spin chain in one dimension

H=-2) s ke,
k

(67,07, 07), ;-85 =

I T Y. Y 2z
110,00, (oiaj+aiaj+az-a).

B[ =
==

S, =
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This is a quantum mechanical version of the Ising model wherein the ‘spin’
variables s; are now non-commuting operators generating the Lie algebra
sla. For spin 1/2, they are represented by the Pauli matrices

01 0 — 1 0
r Y — z
7 ‘(1 0)""<i 0)"’“((} —1>'

Bethe found that the eigenvectors of this Hamiltonian can be written in a
certain very specific form, and that the eigenvalues are described by a system
of algebraic equations now known as Bethe's equations. )

Bethe's technique, termed the Bethe Ansatz, was subsequently developed
and applied to various other models, including those in two-dimensional clas-
sical statistical mechanics. The free energy and the low-lying eigenvalues
along with their eigenvectors have been calculated in these models. Among
others, Baxter (8] solved (in the above sense) the general anisotropic Heisen-
berg model

Hxyz = Z (JraﬁaﬁH + Jyopon, + Jzaiai+l) (0.8)
k
by solving its two-dimensional counterpart in classical statistics— the eight-
vertex model [9]. The model given by the Hamiltonian (0.8) is called the
XY7Z model. In the case where J; = J, = J; or J; = J it is called the XXX
or XXZ model, respectively.

Through these developments it has been gradually recognized that what
is now called the Yang-Baxter equation is at the heart of the algebraic mech-
anism that makes Bethe's method work. The quantum inverse scattering
method initiated by Faddev et al. [75, 76, 31] systematized and developed
these methods in a more algebraic framework. Detailed discussions about
the algebraic Bethe Ansatz from the quantum inverse method can be found
in the book [55]. The notion of quantum groups [27] also is an outcome of
this line of thought. Schematically, each solution of the Yang-Baxter equa-
tion gives rise to a solvable model. We have now an abundant list of such
solvable models at hand.

For two-dimensional systems at the critical temperature and in the con-
tinuum limit, a totally different approach was initiated in 1984 by Belavin,
Polyakov and Zamolodchikov [17]— conformal field theory. It is based on
the prinicple that in the above situation an infinite dimensional algebra (typ-
ically the Virasoro algebra) is acting as the symmetry of the system, giving
stringent constraints on its structure. With the aid of the powerful machin-
ery of representation theory, the correlation functions in these systems are
shown to satisfy hypergeometric-type linear differential equations.
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The solvable models based on the Yang-Baxter equation are in general
non-critical. Onsager was the first to recognize the Yang-Baxter equation
(much before the term was coined) in the Ising model. However, among
these more general class of models the Ising model occupies a rather special
position, as it can be solved using the quite different method of free fermions.
It is this aspect which was crucial in the calculations of the Ising correla-
tions. Beyond the Ising model and conformal field theory, it has remained a
challenge to describe the correlation functions.

The aim of this book is to address this issue in the case of the XXZ chain
and the six-vertex model. As we shall see, these models are built upon the
most basic example of solutions of the Yang-Baxter equation, which arise
naturally in the representation theory of quantum affine algebras (see Chap-
ter 3). Following the spirit of conformal field theory we wish to understand
the structure of these non-critical models by the symmetry principle as well
— this time that of the quantum affine algebras. For the general case of
the XYZ model, the theory of its possible symmetry algebra is still poorly
developed. This is the reason why we are interested in the XXZ model. In
the following chapters we give an exposition of the method developed in the
series of papers [26, 43, 38, 45, 44, 34], along with the computational details.






Chapter 1

The spin 1/2 XXZ model for
A< -1

We introduce a one-dimensional spin 1/2 XXZ Hamiltonian, and formulate
the problems we are going to address. The model exhibits distinct features
depending on the three regions of the parameter A in the Hamiltonian.
Focusing attention on the case A < —1, we explain the different ‘vacuum
sectors’, which will be the starting point of the subsequent discussions about
the space of states. In the end we mention Baxter’s exact result for the one
point function.

1.1 Quantum Hamiltonian

In this Chapter we consider a simple quantum mechanical model in one
dimension, called the XXZ model. In physical terms, it describes a system
on a one-dimensional lattice, where each lattice point k carries ‘quantum
spins’ of interacting with its neighbors. Mathematically it is formulated as
follows.

Let V = Cvy @ Cu_ be a two-dimensional vector space with the distin-
guished basis vy, v_. Let further

2 (0 1\ ,_ (0 =i\ ,_(1 0
”‘(10’”"i0’”’0—1

be the Pauli spin operators acting on V' in this basis. When copies Vi of V
are involved, we indicate by of (o = x,, 2) the spin operators on Vj; they
are understood to act as identity elsewhere.

11
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The XXZ Hamiltonian is an operator

Hyz = —%Z(UﬁaﬁH +oop, + ATEogL)- (1.1)
k

Here k£ € Z, and A is a real number. The quantum spin chain specified
by the Hamiltonian (1.1) is called the XXZ model. In the case A = 1 the
Hamiltonian acquires the explicit symmetry under the group SL(2).! In this
case the model is called the XXX model. In the general case the parameter
A represents the anisotropy of the interaction in the (z, y, 2)-direction. The
XXX and the XXZ models are among the best studied quantum spin chains
in one dimension. It is not our aim here to touch upon their long history.
The interested readers are referred to the literature that can be found e.g.
in [15, 55].

The physical problems of interest that we wish to address in these lectures
are the following: to diagonalize the Hamiltonian, and to compute the matrix
elements of a local operator with respect to its eigenvectors. Here by a ‘local
operator’ we mean a linear combination of products of finitely many spin
operators of. In particular we are interested in determining the vacuum
vectors (i.e., the lowest eigenvectors), the excitations over them, and further
the correlation functions— the vacuum-to-vacuum matrix elements of local
operators.

Here a basic question arises. As it stands the Hamiltonian (1.1) is an
operator ‘acting’ on the infinite tensor product space ®;czVk; this is a sys-
tem of infinite number of degrees of freedom. How should one understand
the proper meaning of such an infinite system?

The usual approach to handle such ‘infinity’ is to start from a finite ten-
sor product of size N with a certain (e.g., cyclic) boudary condition. The
traditional Bethe Ansatz method [91, 92] provides a way to describe the
eigenvalues and eigenvectors. After solving the problems for finite N, one
proceeds to analyze the large lattice limit N — oo. Considerable informa-
tion has been gained this way as for the diagonalization of the Hamiltonian.
In contrast, very little has been known about the correlation functions. Vir-
tually the only exception is Baxter's result on the one point function which
we will discuss shortly.

In these lectures we wish to explain an alternative approach developed in
the series of papers [26]-[34]. Rather than studying the individual eigenvec-
tors, one tries here to capture the whole ‘space of states’ as a mathematical

'Namely if g € SL(2) and Hyoor x = 0508 1 +o¥ol, +oioi, then (9®9)Hooo x(97' ®
97" = Hxoc k.
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entity, on the basis of the representation theory of quantum groups. At
present its applicability is limited to the region of the parameter A < —1
(see below for its meaning). Nevertheless it has a particularly appealing
aspect: It allows an explicit description of the correlation functions. With
this point in mind, we shall review in the rest of this chapter some of the
basic features about the Hamiltonian and its eigenvectors.

1.2 Three regions in A

Let us explain a few known facts on the XXZ Hamiltonian {15, 55]. Among
other things we discuss briefly the distinction between the three regions of
the parameter A:

A<-1 |Al<1, 1<A.

Let N be a positive and even integer. Consider the Hamiltonian (1.1)
wherein k € Zy = Z/NZ. This amounts to considering a finite chain of
length N under the cyclic boundary condition 0%, ; = of. Let us denote
the Hamiltonian by Hy. This is a 2% x 2V Hermitian matrix. Therefore its
eigenvalues are all real. Let us number them as hy < hg < -+ < hgw.

Define the total spin operator

1
SN = é‘ Z O'Z.
keZy

The total space Wy = ®¢z, Vi splits into the eigenspaces of Sy:
Wy = @,W, WI(\,S) = {v € Wy | Syv = sv},

where s ranges over integers from —N/2 to N/2. Since Hy and Sy commute,
one can consider the diagonalization of Hy in each subspace WI(VS ) with fixed
‘total spin’ s.

The spectrum of Hy exhibits distinct features depending on the three
regions.

Case 1 A > 1: The two lowest eigenvalues h; and hy are equal. The
corresponding eigenspace is the direct sum of WI(VN/ Q- CQ, and WI(\,_N/ D=
CQl_, where the vacuum vectors ¢ = ®ycz, v are simple pure tensors
independent of A. Accordingly the correlation functions, which are the
matrix elements of operators 021‘ -+ oy, are also independent of A and are
readily calculable. For that reason this region is uninteresting to us.
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Case 2 |A| < 1: The lowest eigenvalue belongs to WI(\,0 ). Since the

dimension of WI(\,0 ) increases rapidly as N — oo, the explicit form of the
lowest eigenvector is very complicated. Moreover, in the limit, infinitely
many eigenvalues collapse to the lowest one, i.e., the gaps above the lowest
one tend to zero for those.

Case3 A < —1: The lowest and the next lowest eigenvalues degenerate
in the infinite lattice limit. More precisely, hy < hg holds for finite N but in
the limit N — oo the gap hs — h; tends to zero. On the other hand, the gap
hs — hs remains non-zero in the limit. Such is called the mass gap. Because
the mass gap is non-zero, this region is called massive. In this sense Case 2
is a massless region. The eigenvectors corresponding to hy and hg belong to
WI(\,0 ) Their explicit forms are complicated.

1.3 The anisotropic limit

From now on, we restrict our consideration to the massive region A < —1.
To gain insight into the nature of the eigenstates, it is instructive to look at
the extreme limit when the anisotropy parameter A tends to —oo. In this
limit one can see what is happening directly on the infinite lattice, without
recourse to the finite lattice Hamiltonian Hy.

Adding a suitable constant and rescaling, let us modify the Hamiltonian
as

1 1

—(Hxxz + const.) = Hy — eH;, £ = —, 1.2
|A|( ) N (12)
1 A4
Hy = 5 Z(Ukakﬂ + 1), (1.3)
k

Hy =2 (offo5, +oroi,y),
k

with 0% = (0" +i0Y)/2. Here the shift by a constant is so chosen as to make
the lowest eigenvalue of Hp be 0.

Let us consider the Hamiltonian Hp (1.3) obtained as the limit A — —oo.
In contrast to the original Hamiltonian Hp is much simplified, since it is
already diagonal with respect to the pure tensor vectors

[P) = -+ ® Vp(ies1) ® Vpky ® Up(r—1) ® -+

If we consider the model on the infinite lattice, then p runs through all maps
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Z — {+,—}.! The important point is that not all of these vectors have finite
energy (=eigenvalues). To see this, note that each ({0}, +1)/2 takes the
value 0 or 1 according to whether p(k) = —p(k + 1) or p(k) = p(k + 1).
Therefore, Hp has a finite eigenvalue on |p) if and only if

p(k) = ~p(k +1) for almost all k € Z.

Let us call a map p satisfying this condition a path. Hence for the limiting
Hamiltonian Hy we have the following picture: The eigenvectors which have
finite energy can be identified with paths. They constitue a space F¢ which
we call the space of states for Hy (the suffix 0 referring to the limit A = —o0).
It splits further into the direct sum of four ‘sectors’

Fo= @i,jzo,lfém),
where féi’j ) is the span of the paths subject to a fixed ‘boundary condition’

plk) = (=D)* if k> 1,
= (-1 if —k>» 1

In particular, the sector (9 (i = 0,1) contains the ‘vacuum path’, or the

vacuum vector ‘
PO (k) = (-1)** vk e Z.

It is the unique vector belonging to the minimum eigenvalue 0. The general
vectors in F&%) can be regarded as finite excitations over the vacuum vector.
We note that a local operator sends one sector into itself, since it cannot
change the + infinitely many times. In this sense the different sectors are
separate from each other.

Intuitively we expect that, for nonzero but small enough £ = 1/(2|A[),
the space of states be still a ‘span’ of the paths, involving possibly infinite
linear combinations. To have an idea of what it should mean, let us try to
expand the vacuum vector in powers of £

|vac) = Qo +eQ; +£%Qy + €303 + - - (1.4)

where € corresponds to one of the vacuum paths 5® of Féi’i). Demanding
it be an eigenvector of the full Hamiltonian Hy —€Hy, we can determine the

!We have displayed the tensor components in the decreasing order ---2,1,0, -1, =2, ---
from left to right, in accordance with the convention to be used later.



16 CHAPTER 1. THE SPIN 1/2 XXZ MODEL FOR A < -1

vectors §); in the expansion. Note that the operator ot ® 0~ + 0~ @ o
exchanges vy ® vy with vy ® vy and kills vy ® v+. Hence

In) = (U:U;-H + U;U:+1)QO

represents the path whose components at the n'h and (n + 1)' positions
are flipped from those of the vacuum path. Define similarly |ni,n2), and so
forth. We find that the first two terms besides 2y are given by

W=D, H=2Dlnntdt T jmm).

ny<nz—2

More generally it should be clear that for any r the Q, are linear combina-
tions of vectors obtained by flipping + from p by at most 2r times.

We expect that the eigenvectors other than the vacuum are also analo-
gous infinite linear combinasions of the paths. In practice, however, such a
direct treatment in the infinite lattice meets a difficulty. For nonzero € and
in the infinite lattice limit, the original Hamiltonian has a continuous spec-
trum except for the vacuum. After rescaling (1.3) has discrete eigenvalues
{0,1,2,...}. This means that there are infinitely many distinct eigenvalues
of Hxxz for € # 0 that degenerate to the same eigenvalue of (1.3). Hence
even for € = 0 the general eigenvectors should necessarily be infinite lin-
ear combinations of the paths, and we cannot tell a priori how to start the
e-expansions of these eigenvectors. For this purpose one needs to use the
eigenvectors obtained on the finite lattice by Bethe Ansatz.

In any event, we will not attempt to justify the picture about the space of
states by tracing the limit N — oco. What we will actually do is to construct
a mathematical model directly in the infinite lattice limit that reflects the
features mentioned above. The solution to this problem will be given in
Chapter 7 by using the representation theory of Uq(;l(Z)).

1.4 One point function (vac|o}|vac)

The perturbative expansion of the vacuum vector (1.4) holds equally well for
a finite lattice of length N with periodic boundary condition.? Making use
of it, let us compute the expectation value of the operator o7 to the order £*.
Without loss of generality we assume that the first component of Qg is vy:

%If we start from the finite lattice with periodic boundary condition and pass to the
infinite lattice limit, we would see only the sectors }‘(1 7 with i = 7.
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0fQo = Qo. Multiplying a scalar to |vac) if necessary, we also assume that
the vector {2y never appears in {2, with n > 0. With this convention, the
formula for Q4 is not necessary to compute (vac|vac). For Q3 it is sufficient to
know that Q3 = —Q; +(terms different from §2;) for the same reason. Since
o} is diagonal on the paths, a similar argument applies to the computation
of (vac|of|vac). We then find that

RLEH I

N(N -
(vaclof|vac) = 1+ e*(N —4) +¢* <—(—2—9) ——4) 4

(vac|vac) = 1+ 2N + ¢

to obtain s

aclof|vac

M = 1—452—454+...'

{vac|vac)
Continuing further one finds that each coeflicient of the expansion in € sta-
bilizes to a finite value as N — co. However as one goes higher in the power
of € the combinatorial complication becomes enormous, eventually making
the computations impracticable.

In fact an exact formula for this quantity has been known by Baxter.
In [10] it is called the spontaneous staggered polarization. Introduce the
parametrization
g+q”!
2

so that € = —q/(1 + ¢*). The region of our interest A < —1 corresponds to

q being real and —1 < ¢ < 0.} Baxter’s formula is

{vac|of|vac) _ ﬁ (1 ——q2")2‘ (1.5)

{vac|vac) o \1+¢m

A=

On the basis of the representation theoretical approach, we will give an
integral formula of the correlation function (vac|L|vac) for an arbitrary local
operator L (see (9.4)). The formula (1.5) is included as the simplest special
case.

Remark.  As we mentioned in the introduction, the corner transfer matrix
enables us to compute the one point functions. To avoid confusion we remark
that these one point functions are those of the face models (see Chapter 11).

'The other region A > 1 or |A] < 1 corresponds respectively to 0 < ¢ < 1 or to ¢ being
complex and |g| = 1.
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In the latter language, Baxter’s spontaneous staggered polarization discussed
above is the nearest neighbor two point function.



Chapter 2

The six-vertex model in the
anti-ferroelectric regime

In this Chapter we introduce another well-known lattice model called the
six-vertex model. While the XXZ model is a one-dimensional system in
quantum mechanics, the six-vertex model is a two-dimensional system in
classical statistical mechanics. In fact the two models are equivalent, in the
sense to be elaborated on in the next Chapter. Here we shall formulate our
problems from the point of view of the six-vertex model.

2.1 Vertex model

Consider a two-dimensional square lattice. In the following discussion, such
geometrical attributes as angles or lengths will be irrelevant. We shall use
only the topological or combinatorial structure of the lattice. Although our
ultimate interest lies in the infinite lattice, we start with a finite lattice
in order to fix our ideas. Thus let us draw M vertical and N horizontal
lines on the plane. For simplicity we assume that both M and N are even.
We call an intersection of two lines a verter, and a line segment limited by
two neighboring vertices an edge. As with the XXZ model, let us impose the
cyclic boundary condition on both ends. This means that for each horizontal
or vertical line we join the edge at an end with the edge at the opposite end
of the same line. Hence the lattice is actually wound on the torus rather
than placed on the plane.

A model in classical statistical mechanics is built on our lattice in the
following way. First, with each edge j we associate a variable €; taking the

19
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values + or —. Unlike the quantum spin chain, ¢; is an ordinary commuting
variable. We shall refer to the ¢; as (classical) spin variables and the values
+ as spins. A configuration C is an assignment of spins g; = =+ for all j.
Hence there are altogether 22" configurations.

Next we introduce a probability measure in the set of all configurations by
assigning a statistical weight W(C) to each configuration C. The probability
for a configuration C to take place is Z,yW(C), where

Zun =y W(C). (2.1)
C

The normalization factor (2.1) is called the partition function of the model.

To define W (C') we prepare a set of positive real numbers RZ/} ,Z’g (€], -, 62 =
+) called Boltzmann weights. A configuration C gives rise to a configuration
of the spin variables around each vertex v. Denote this configuration by
e1(C,v), e5(C,v), e1(C,v), e2(C,v) (see the figure below).

7
€}

3] 2]

€1

Figure 2.1: A configuration round a vertex

The weight W(C) is given as the product over all the vertices

et (C,v),e5(Cv)
W(C) = HRE§ (Cim) 2(Cimy- (2.2)

The six-vertex model is specified by giving the Boltzmann weights ac-
cording to the following rule.

R =
Rop=R__=a,

- o gt =
Rp_=R_{=b
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+i— . pt
RIL =R T =g

RZ}:Z% = if €)+¢eh#el+ea
+ + +
e+ -l -+ -
+ + -
e e R N + - -t +
- ~ +
a b c

Figure 2.2: Six vertex configurations

Here a, b, ¢ are positive real numbers. The last condition says that the
sums of spins are conserved at each vertex in the NE-SW diagonal direction.
The Boltzmann weights are chosen to be symmetric under the reversal of
spins £ — —¢;.

2.2 Ground states and low-temperature expan-
sion

As will be discussed in the next Chapter, the XXZ model with the parameter
A is equivalent to the six-vertex model with the parameter a,b, ¢ if
22 2
a*+b —c
A= —m——. 2.3
2ab (2:3)
The region A < —1 corresponds to the region ¢ > a + b. We restrict our
consideration to this case.
In the region mentioned above, there are two configurations that maxi-
mize W(C). We call them ground state configurations. They are those in
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which all the vertices have the type ¢ configuration around them. In other
words the spin variables take the same value along the NE-SW diagonal and
alternating values - -+ + — + — + —--- along the horizontal direction. We
pick a reference edge 1 and call C® the one with e, = (=1) (i = 0,1).

The partition function (2.1) is one of the basic quantities of physical
interest. For finite M, N it is simply a polynomial in the three variables
a,b,c. We are interested in the behavior of Zy v when M, N — oo. It turns
out that the limit

1
K= M,ll%ln—l'oo (ZM,N) MN (2.4)
is finite. This is called the partition function per site.

Since the weights W(C) are homogeneous in the Boltzmann weights,
changing the latter by a common multiple does not lead to any essential
change. Let us normalize ¢ = 1 for the time being. Then a and b can be
regarded as small parameters in terms of which we can expand the physical
quantities. Such an expansion is called the low-temperature series expansion.
In the physical context the Boltzmann weights a, b, ¢ appear in the form
(cf.the Boltzmann principle (0.2))

—Bo/kT __ By /kT _ —E. kT
“/,b—eb/, -—e”/,

a=¢€ c

where E,, Ey, E. are the energies of the local configurations, k the Boltz-
mann constant, and T the absolute temperature. With E,, Ey, E, fixed, the
limit T — O corresponds to the ratios a/c and b/c tending to zero. Whence
the name ‘low-temperature’.

Counting the degrees of a and b to be 1, suppose we try to compute (2.4)
up to some fixed degree K. Take M and N sufficiently large, and consider
only configurations C' of degree less than or equal to K. The ground state
configurations are the only ones of degree 0: W(C®) = 1. In general the
configurations can be classified into two groups: Given a configuration C
let d;(C) be the number of edges j such that the value of the spin variable
g; in C is different from that in C%). We say C belongs to the i-th sector
if d;(C) < d;-:(C). Because of the spin reversal symmetry, the partition
function Zpy N (up to degree K) is equal to twice the sum of W(C) over C
belonging to one of the sectors. Since this factor 2 is unimportant in the
large lattice limit, one can compute the expansion in a, b of k by using only
one sector.

Set L = M N. The first few terms in the expansions of Zy v and « are

1
SOMN = 1+ La*b? + La*h?(a? + %)
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+L(L2+ 1)a4b4 + La2b2(a4 + b4) +.--, (25)

Kk = 14+a%b? +a?b?(a® + %) + a'b? + a®?(a? + 1Y) + - .(2.6)
In principle this computation can be carried through to any order, giving &

an unambiguous meaning as a power series in a,b. As for the exact result
for &, see the end of 3.2.

2.3 The correlation function

The correlation functions of the six-vertex model is defined as follows. Take

n arbitrary edges ji, - -, jn. Consider the following ratio
2 cEn(C) g, (C)W(C)
Ejy " Ejn) = . 2.7
(€3 e5a) YeW(C) @7

Here €;(C) signifies the value of the spin variable on the edge j in the config-
uration C. Fix a ground-state sector i = 0 or 1. Given a degree K, we choose
the cyclic lattice of sufficiently large size M, N and compute (2.7) with the
summation restricted to the i-th sector. It has a similar low-temperature
expansion as with (2.5). We denote the quantity obtained in this way by
(€5, - - - €ja )4, and call it the n-point correlation function (in the i-th sector).
Notice that it is not the same as taking the unrestricted sum in (2.7). For
instance if n = 1 and the reference edge is 1, then the former is a series of
the form (—1)}(1 + ---) while the latter is trivially 0 by the spin reversal
symmetry.

The equivalence between the XXZ model and the six-vertex model to
be discussed in the next Chapter entails the following relation between the
correlation functions. For convenience let us number the horizontal (resp.
vertical) lines by integers from bottom to top (resp. right to left). Consider n
distinct horizontal edges lying between two neighboring vertical lines. Call-
ing jr the horizontal edge on the ji-th line, consider the n-point correlation
function for the six-vertex model (gj, - - - £;,):. Then the statement is

(€ wgiadi = (ilog, - 07, 18) (2.8)

where the right hand side signifies the correlation function of the XXZ model
as explained in Chapter 1. In particular Baxter’s formula (1.5) applies to
the simplest correlation of the six-vertex model.
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2.4 Transfer matrix

Basically a quantum spin chain is an eigenvalue problem of a large (infinite!)
matrix such as Hxxz. Let us explain that classical statistical systems can
be put on an equal footing by using transfer matrices.

The partition function (2.2) is a sum over two dimensijonal configura-
tions, the sums extending over the vertical and the horizontal edges. Pick
a particular column. (See Figure 2.2.) Consider the sum over the vertical
edges in this column, while fixing the configurations of the horizontal edges
to the left and right of this column:

! ’ ! ' 4
1.4.5 _ vag V3Eq Vi€n
51...51{7 = Z RulsiRuzsz T 'RVNEN' (29)
Vi, UN
Vi
W ey ———— &y
VN
V3
V2 gy — | 5/2
V2
’
Vi e f1
1
Y

Figure 2.3: Transfer matrix

Regard the indices ¢}, 53- as the labels of the basis of V = Cvy @ Cv_. Then
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(2.9) gives rise to a matrix T acting on the N-fold tensor product V&N. We
call T = T, the column transfer matrix, or simply the transfer matrix.

To get the partition function we have to perform the sum over the hori-
zontal edges. Clearly the sum over the horizontal edges between two succes-
sive columns amounts to matrix multiplication of T’s. In view of the cyclic
boundary condition it follows that

Az
_ My _ WM
ZM,N—tI‘(T )—/\1 <1+(/\1) + )

where A\; > Ay > ... are eigenvalues of T. This makes it manifest that
the study of the partition function reduces to the eigenvalue problem of T
The correlation functions is related to the eigenvectors of T but we skip the
discussion here.

Operating with T amounts to counting the contribution from vertices on
a column. Similarly, counting a contribution from a single vertex amounts
to operating with a matrix R € End (V ® V)

R( UEI ® vs Z Vg, @ Ve, R

£1€g

We shall refer to it as R-matrix. Often it is necessary to consider the tensor
product Vi, ® --- ® Vj,, of copies Vj, of V = C?, arranged in some order.
In this situation we denote by Rji (j # k) the operator acting on V; and
Vi as R and as identity elsewhere. Namely let us write R = }_a, ® b; with
a;,b; € End (V). Then for instance on V; @ V5 ® V3 we have

R13=Zai®id @ by,
and on V3 ® Vi ® V3 we have
R13=Zbi®ai®id.

We use P € End (V) for the transposition; P(z ® v) = v ® u. (Do not
confuse this with the weight lattice that will be defined in 3.4.) Note that

Piy = Py, Ry = PiaRi2 Pra.

Sometimes we use the transposition acting from V; @ V3 to V2 ® Vi. We
abuse the notation P for this operator (e.g. (3.25)).
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The relation between the R and transfer matrices can be made explicit as
follows. Define the monodromy matrix 7 acting on the (N + 1)-fold tensor
product Vo ® Vi@ --- @ Vy (Vi =V)

T or o= (4 B). 210

In (2.10) the partition into 2 x 2 blocks is according to the base v, ,v_ of
Vo. The transfer matrix is expressed as

T=A+D=try (T).

Note that it is thus natural to associate the two-dimensional space V) to
each line k. (See Figure 2.2.)



Chapter 3

Solvability and Symmetry

The solvability of the XXZ model and the six-vertex model is based on the
Yang-Baxter equation (YBE) satisfied by the R matrix. We will review
the well known fact that the YBE implies commutativity of the transfer
matrices— a property that is a manifestation of abelian symmetries of the
models. It turns out that our R matrix is dictated by the quantum group
Uq(;lz). We suggest that it leads to non-abelian symmetries.

3.1 Commuting Hamiltonians

A characteristic feature common to classical or quantum integrable systems
is the existence of an infinite number of ‘commuting integrals’, or ‘conserva-
tion laws’. In the context of the XXZ model, this amounts to the following
statement: There exist a hierarchy of independent operators Hy, Hs, Hs,
-+, including H xxz = H; as the first member, such that they are mutually
commutative,

[Hp, Hpy)=0  Vm,n. 3.1)

Correspondingly, in the six-vertex model there exists a family of transfer
matrices T'(¢) depending on a parameter ¢ in such a way that

T, T =0 V(. (3.2)

Moreover the two models are connected by the relation

H,, = const. <Cd£§

27

) 10Tl (33)
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The commutativity of the ‘higher Hamiltonians’ (3.1) is a direct consequence
of that of the transfer matrices (3.2). Since Hxxz and T({) commute, they
share the same eigenvectors in common. Thanks to the relation (3.3), know-
ing the eigenvalues of T(¢{) is the same as knowing those of the H,. Thus
the two models are equivalent in this sense.

We shall sketch below the mechanism how these properties come about.

3.2 Yang-Baxter equation
Let us begin by re-parameterizing the Boltzmann weights of the six-vertex

model: ) )
1 1(1-¢%)q 1(1-¢%)¢
= = == == . 4
e b Kk 1-gq32° ¢ Kk 1—q%¢? (34)
The parameter x simply accommodates the overall scale of the Boltzmann
weights. For a reason to be explained later we make a specific choice of & as
a function of ¢, ¢
K(¢) = C(Q“@;q“)oo (€% qY) o (35)
(%729 o (3¢ 0%)oe
where (2;p)oo = [[o(1 — 2p™). It follows from (3.4) that

a?+b2—-¢? _q+q~l

A ab 2

is independent of {. Hence ¢ plays the role of a coordinate on the manifold
{(a:b:c) € P?| A = const.}. We will refer to ¢ as the spectral parameter.
Normally we fix ¢ and regard a, b, - - as functions of {. In the matrix form
the parameterization reads

(1-¢YHg (1-¢)¢

_ 1-¢C2  1-¢%¢?
BO = 51 a-&¢ - |

1-q2C7 1-gq2C2

(3.6)

where the matrix structure is relative to the basis v, ® v, arranged in the
order (57 5/) = (+v +)1 (+v —)7 (_7 +)v (—v —)'

We have introduced the parameterization (3.4) in a rather ad hoc manner.
The virtue of it is that for a fixed g the R matrix satisfies the following
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Yang-Baxter Equation On V] ® V5 ® V3 we have
R12(¢1/¢2) Ras(€1/€3) Ras($2/¢3) = Ra3(Ca/C3) Rus($1/¢3) Raa($1/2).
(3.7)

Using (3.4) a direct verification of YBE is certainly possible. But we prefer
to discuss later the conceptual meaning of YBE and the origin of the formula
(3.6). (See 3.5.)

‘We record here further properties of the R matrix:

Initial Condition

R(1) = P. (3.8)
Unitarity Relation On V; ® Vo we have
Ry2(C1/G2)Ra1(G2/61) = 1. (3.9)
Crossing Symmetry
R(Go/G)i = R4 /G2 (3.10)

Notice that we demand the formulas (3.8-3.10) as written, without intro-
ducing extra scalar factors. They are true if and only if x(¢) is chosen to
satisfy k(1) =1 and
1y A(=q7¢) _ (1-q7*¢*)q

k(Qk(CTH =1, e o i-a (3.11)
The solutions of the equations (3.11) are not unique. Among them the
formula (3.5) is characterized as the unique solution which is analytic in
the region ¢* < |¢?| < ¢~%. Later we will find that R({) with precisely
this scalar factor arises in the commutation relations of vertex operators
(A.1) and (A.2). We remark also that (3.5) coincides with the known exact
result for the partition function per site of the six-vertex model with the
normalization a = 1; In other words, with the choice (3.4) the partition
function per site of the model is simply 1.

3.3 Z-invariant lattice

As it will turn out, when we consider the R matrix R(¢) it is more natural
to attach independent spectral parameters ¢, ¢z to the first and the second
tensor components of V ® V', and regard R({) = R({1/{2). Graphically the
Boltzmann weights are represented by crossings as in Fig.3.1.
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§2 &9 £9

€1

8!

Figure 3.1: Boltzmann weights

Often it becomes necessary to rotate this figure. To avoid possible confusion
we assign orientation to the lines represented by ‘arrows’ on them: In the
above ‘normal position’ the vertical lines are supposed to point downward
and the horizontal lines to the left.! The YBE (3.7), unitarity (3.9) and
crossing symmetry (3.10) are represented by the following figures 3.2, 3.3,
3.4, respectively.

$3
= $3
¥

|

G G G2 Gt

Figure 3.2: Yang-Baxter equation

!In the literature the spins + on the edges are sometimes represented by ‘arrows’. They
are not to be confused with our arrows which are used only to represent the orientation.
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G2
G2
G G
Figure 3.3: Unitarity relation
= —£]
CQ £2 5'2 = Eg 5/2
G2
£1 —€1
G —-q71¢

Figure 3.4: Crossing symmetry
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In formulating the six-vertex model we orient the lines of the lattice
accordingly, so that the horizontal ones point to the left and vertical ones
downward. Let us attach spectral parameters independently line by line,

(l) to the -th column and C 7 to the j-th row. At the crossmg of the i-th
column and the j-th row we associate the Boltzmann weights R61 2(¢ (l)/C(J))
This generalizes the homogeneous model we considered in the last Chapter,
where C( = {y (resp. C(J) = {y) are chosen to be the same for all columns
(resp. rows). Though we are interested in the homogeneous model, the
idea of independently varying the spectral parameters is crucial to us. The
usefulness of such an inhomogeneous model was emphasized by Baxter. In
[13] such a model is called Z-invariant since its partition function Z can
be shown to be invariant under sliding the rows (or columns) through each
other (cf. the argument below). The role of YBE is made particularly clear
in the Z-invariant model.

In this setting, let us derive the commutativity (3.2) of the transfer ma-
trices. Let

T, -, ¢H) = Ro1(¢/¢P) - Ron(C/CH)

be the monodromy matrix of the inhomogeneous model, regarded as an
operator on Vo Vy @V ® - -® Vy that acts as identity on Vir. We suppress
the row variables (j; ) Define similarly 7o/({) which acts as identity on V5.
Note that

(T (C)
= (Ror(¢/V Ry ¢ /6 ) -+ (Ron (/e B (¢'165%)):
Applying YBE
Rov(¢/¢) - Bos (C/S) Rors(€'/€)) - Roor (/€)™ = Rers(€ /5 Ros(C /)
we find
Bov(¢/) - T To(¢") - Ro (¢/€) ™ = Ty (€)T(C).

Upon taking the trace of both sides over Vi ® Vi, we obtain the commuta-
tivity mentioned above. The following figure illustrates this process.
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C/

Figure 3.5: Commutativity of the transfer matrices

Next let us establish the relation with the XXZ model. We return to
the homogeneous model and regard the transfer matrix as a function of
¢ = {v/Cu. First notice the initial condition (3.8) for the R matrix. This
implies that the transfer matrix at { = 1 reduces to the translation operator

T(1)ve, OUe, @ QUey = Veyy DUe; @+ QUey_,-

Since the T'({) commute, it makes sense to define the operators H, by
log(T(1)71T(0)) = 3 Hal¢ - 1)
n=1

Clearly they also mutually commute. On the other hand, expanding R(¢)
at ¢ =1 we find

R(¢)P

1+ (1—-¢)h+const.)+--- (¢ — 1), (3.12)

I qq2 (0" Q0%+ Q0¥+ Ac? @07). (3.13)
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From this it follows that

Cdic o T(0)] _, = I—_Q_%Hm + const. (3.14)
In this way the abelian symmetries described in 3.1 emerge from the Yang-
Baxter equation.

We remark that in exactly the same way as the column transfer matrix
Te01(¢) the row transfer matrices Trow(¢) can be formulated. As spectral
parameters enter only through the ratio, there is no essential distinction
between the row and column formulation; in particular the Tiow({) also
form a commutative family. '

3.4 Quantum affine algebra U,(sl,)

We wish to elucidate the origin of the R matrix in the framework of the
representation theory of quantum groups. To us the relevant quantum group
is the quantum affine algebra U = Uy(sl2). For an introductory guide to the
subject the reader is referred e.g. to [40]. Let us recall below some basic
notions.

Consider a free abelian group on the letters Ag, A1, 6:

P =ZAy® ZA, D Z6.

We call P the weight lattice, A; (i = 0,1) the fundamental weights and é
the null root. Define the simple roots o; (¢ = 0,1) and an element p by

«
ap 0y =36, A1=A0+7‘, p=Ag+A;.

Let (ho,hi,d) be an ordered basis of P* = Hom(P,Z) dual to (Ag, Ay, d).
We define a symmetric bilinear form (, ): P x P — 1Z by

(Ao,Ao) = 0, (Ao,al) = 0, (Ao,(S) = 1,
(alyal) = 21 (alv(s) = 01 (616) =0.

Regarding P* C P via this bilinear form we have the identification
h0=a0, hl =y, d=A0

In the following definition of U, (;lg) we fix a complex number ¢ # 0, +1.
For definiteness we take ¢ to be real and —1 < ¢ < 0, though in most cases
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it is sufficient to assume that ¢"'# 1 for n = 1,2,---. We use the symbol
(g-integer)
g —-q"
n="—"+.
q9—4q

By definition the quantum affine algebra Uq(;lg) is an algebra with 1 over
C, defined on the generators e;, f; (i = 0,1) and ¢" (h € P*) and through
the defining relations:

=1, " =¢"",
dreig ™t = q"e;, ¢ figh =g B g,
ti—t;!
€, Jjl = 6i'——l‘7
[ fJ] J q- q_1
efej — [3lelejei + [leejel —ejed =0 (i # j),
£ =B+ BUfifE = Fiff =0 (i #7).
Here t; = ¢™. We will write U’ = Ué(sAlz) for the subalgebra of U generated

by e;, fi, ti (i =0,1).
We choose the following Hopf algebra structure (A, a, €):

Coproduct
A =d"®¢", Al)=ea®l+ti®e, Alfi)=fi®t'+1Q fi.
(3.15)
Antipode
a(qh) = q~h1 a(ei) = —ti~16h a(fi) - —fiti-
Counit

eg") =1, ele)=€(fi) =0.
For completeness we list the axioms for these maps, see e.g. [83, 2, 40].

Alzy) = A@)AY), elzy) = e(@)e(v), aley) = aly)ale),

(A®id)oA = (id ®A)o A, (3.16)
(e®@id)oA=id =(id ®€) o A, (3.17)
mo(a®id)oA=e=mo(id ®a)oA. (3.18)
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Here m(z ® y) = zy denotes the multiplication map. It follows that
Aa(z) = (a ® a) A(z) (3.19)

where A'(z) = 00 A(z), c(a®b) = b® a. In the case of our U the following
property also holds:

a(z) = ¢ zg** vz eU. (3.20)

Hereafter we will consider only left modules unless otherwise stated ex-
plicitly. For a U-module M the weight space is defined by

M,={veM|qv=qg" v}

where v is a C-linear form on Chy @ Chy ® Cd. In these lectures we shall
consider only weight modules, i.e. those which are the direct sums of weight
spaces: M = @&, M,. Though the elements h € P are not in the algebra U,
they make sense as operators on weight modules.

There are two important classes of representations of U:

(1) Highest weight modules,
(2) Evaluation modules.

The highest weight modules will be important in the description of the space
of states. We will discuss it in Chapter 5. Here let us consider the evaluation
modules which are relevant to the R matrix.

The algebra U has the standard Hopf subalgebra U,(sl2) generated by
e1, fi,t1. The evaluation modules are constructed from finite-dimensional
modules of Uy(slz) by introducing spectral parameters (in the language of
[50] it is the ‘affinization’). Let us consider the example of V = Cvy @ Cv_
which is a Uy(sl2)-module with the action

eivy =0, ev_ =wvg,

flv+=v—a flv~=07
+1

tiv+ = ¢ V4.

Let ¢ be an indeterminate, and consider
Ve=veck=vev,
V*® = span {v: ® (", vz ® (™! (n € Z)}.
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We equip V; with a U-module structure by setting

eo(ve ® (™) = (frve) @ ¢, er(ve ®C™) = (e1ve) ®C™H,
folve ®C™) = (e1ve) ® ¢, fi(ve ®C™) = (froe) ®C™T,
to=t", ti(ve®C™) = (t1ve) ® (™

The action of ¢? is fixed by demanding ¢%(v+ ® (°) = v+ ® ¢®. In general we
have

qd(ve ® Cm) — qm/2+(:tl~5)/4v6 ® <m for Ve ® <m € Vg(:t)-

In view of the relation

1
=2d+ -h
p + a™m
this amounts to setting
d 1 (£)

Each of Vg(i) is irreducible under U. If we consider the multiplication by ¢
in addition to the action of U, then V¢ itself is irreducible. Henceforth we
will call V¢ the evaluation module (more precisely, the one associated with
the two-dimensional module V). The element tyt; is in the center of U. A
U-module M is said to be of level k if tgt; acts as a scalar ¢* on M. Hence,
by the definition, the evaluation modules have level 0.

We remark that, by taking ¢ to be a nonzero complex number, one can
also define a U’-module on V by the same formula as above except the action
of ¢%.

3.5 R matrix as an intertwiner

Recall that for a Hopf algebra one can define the tensor product of two
representations using the coproduct. In the sequel, for an element = € U,
we shall often write

Al) =Y z() ® (3 (3.21)

as an abbreviation for the expression of the form A(z) = 3,2} ® = (cf.
the sigma notation [83]). Given U-modules M;, M> we define the action of
z €U on M; @ Ms by

z(v ®v2) = Zz(l)vl ® T (2yv2 (3.22)
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where we used (3.21). The co-associativity axiom (3.16) implies that for any
three modules M1, M2, M3 one can canonically identify

(M; @ M2) @ M3 ~ M; ® (M2 ® M3).

On the other hand, it is not obvious whether or not M; ® Mj is isomorphic
to My ® My} This is because the coproduct (3.15) is not symmetric under
switching the tensor components.

Now let us consider this question for the evaluation modules V;. Namely
we compare

Vo, ®V,, and Vi, ® V. (3.23)

Suppose there exists an intertwiner for (3.23), that is, a linear operator
R : V,®V;, — V;,®V,, commuting with the action of U and multiplication
by (1, ¢2. This condition is equivalent to a set of linear equations for R

RA(x)=A(z)R Vzel. (3.24)
Solving them one finds that up to scalar there is a unique solution

R(¢1/¢2) = PR(Gi1/¢2) (3.25)

where R(({i1/{2) denotes the R matrix as given by the formula (3.6) and
P:V, ®V, — Vi, ® V, is the transposition as explained in 2.4. Thus the
R matrix arises as the intertwiner giving the equivalence of (3.23).

Let us show that the YBE follows automatically. In terms of the R
matrix, the YBE is equivalent to the relation

(Rc/G)@id) (id ® R(Gi/¢)) (R(Gi/G) @id)
= (id ® R(G1/0) (R(G/¢) ®1d) (id © R(G:/G3)),
which states the equality between the following two maps given by compo-
sition
A - V(1 ® V(2 ® V(3 R(Cx/C2)®ld
id®R(C1/¢3)
—

Ve, ® Ve, ® Vi

R(¢2/¢3)®id

VC2®VC3 ®VC1 VC3®VC2®VC1

and

deR
B : VaoV,eV, "Xy oy, 0,

R(C1/¢3)®id id ®R(1/¢2) v
- (s

VC3®VC1®VC2 ®VC2®VC1~

In fact it is not true in general, e.g. if ¢ is a root of 1.



3.6. DUAL MODULES AND CROSSING SYMMETRY 39

Clearly both A and B commute with the action of U. On the other hand
it is known that the tensor products V¢, ® --- ® V, are irreducible for
all m [20] (note that the {; are independent indeterminates). Hence any
two intertwiners between them must be unique up to scalar, and we have
A = ¢ x B. Since both send v, ® vy ® v, to itself times a common scalar,
we must have ¢ = 1. This proves YBE.

Later we shall mainly quote the intertwining property (3.24) as that of
the R matrix rather than R, which means the commutativity of the diagram

z(1)®%(2)
—_

VCl ® VC? VCl ® VCz
L R(G1/¢2) 1 R(¢1/¢) (3.26)
®
VCl ® VCz I(Q_ﬁ(l) VCl ® VCz

In the first line the action of z € U is via the coproduct (3.21), and in the
last line via the opposite coproduct

A’(T)=0A(T)=ZT(2)®T(1), o(z®y)=y®z.

Often the summation symbol is omitted in the diagram.

3.6 Dual modules and crossing symmetry

The other properties of the R matrix (3.8), (3.9), (3.10) also have natural
meaning. The initial condition (3.8) simply states that up to scalar the
identity is the unique intertwiner for V;®V; into itself. Likewise the unitarity
(3.9) means that the composition Vo, ® Vo, — Vo, @ Vo, — Vi, ® V, is
proportional to the identity. The crossing symmetry (3.10) is related to the
dual module as we shall explain below.

Let M be a left U-module. The dual space M* of M is naturally a right
U-module by

(v'z,v) = (v, zv).

If ¢ is an anti-automorphism of the algebra U, a left U-action on M* is given
by
(zv*,v) = (v*, ¢(z)v). (3.27)

The dual space with this action is denoted M*®. Suppose further that ¢ is
an anti-coalgebra homomorphism in the sense

Ag(z) = (¢ ® ¢) A'(2). (3.28)
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Then we have the canonical isomorphism of U-modules
(M ® Ma)*® ~ M3® @ M;®.

A convenient choice for ¢ is the antipode ¢ = a. (See (3.19).) In this
case we have the canonical identification

Homy(L,M ® N) = Homy(M*™ ®L,N), (3.29)
Homy(L® N,M) = Homy(L,M ® N**). (3.30)

Of course all that have been discussed apply equally to U’-modules.

Now we consider the dual of the evaluation module V;. Let V* = Cv} &
Cv* be the dual space equipped with the dual basis (v}, ve) = f. We
regard

Vee=vig Cl¢,¢Y] = VC(+)*a ® VC(—)*a,
Vc(i)m = span {v} ®§2",v; ® ¢! (ne Z)}
as the dual of V; via the pairing
(v ®C™, ver ® (™) = beerbmin,p
and the U-module structure defined by the antipode a. Notice that we have

_ d 1 (£)*a
p—<d<=F2 on V.7

It turns out that the following is an isomorphism of U-modules:

v = v (3.31)
e ®(" - vl e (3.32)

For instance, in V_(le o we have
folv-® (") = —quy ®C",
while in Véﬁm

(fOU:_ ® Cnav— ® <m>

(i ® "~ fotov- ® (™)
= (L eC g (™Y
”q6n+m41,0

= (~q e v ®™),
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showing fo(vi ® (") = —qut @ ("L
In a similar manner we have

) ~ (F)xa™?
Vg — % ’
e ®¢(" — v e

Now consider the intertwiner
R(<1/<2)_1P c Ve, ® VCl = Vo, ® Ve

Write R((1/¢2)7! in the form ¥ ¢; ® v; with ¢; € End (V) and ; €
End (V¢,). Define

( (G /42 ) Z ‘Pz ®Y;
where ¢! € End (VZ:®) denotes the transpose of ;:
(QHv),v) = (v, pi(v)) forv* e V%, ve V.

Define Q : V — V* by

Quy = v%.
Thanks to (3.29) and (3.30), P(R({l/ﬁz)_l)t1 gives an intertwiner
Vit @V — Ve, @ V'
Combining this with (3.32) and comparing the two possible intertwiners

Q®1d

vaid
Vo @V, = Vit eV, — VeV = Ve ® Vg1,

we arrive at the crossing symmetry
R(~q"'¢1/¢2) = (scalar) x (Q7* ®id) (R(G: /Cz)_l)tl (Q®id).

We remark that this sort of functorial properties can be best described
in terms of the universal R matrix [27].
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3.7 Abelian and non-abelian Symmetries

Our discussions so far can be summarized by the following scheme:
Uq(sAlz )_3___5> YBEZY Commuting Transfer Matrices.

If you wish the last item can be called abelian symmetries of the Hamiltonian

Hxxz;
[Hn,Hxxz] =0 Vn. (3.33)

There is a well established technology for studying the eigenvalues of the
transfer matrix on the basis of the YBE and the abelian symmetries. The
Bethe Ansatz method makes it possible to write down all the eigenvalues and
eigenvectors in a certain specific form, using solutions to a system of algebraic
equations (the Bethe Ansatz equations) (e.g. [15, 55]). Alternatively one can
derive functional relations satisfied by the transfer matrices as functions of
the spectral parameter [15]. Because of the commutativity of the transfer
matrices all the eigenvalues satisfy the same functional relations. In either
case the equations are exact on a finite (usually periodic) lattice. The main
problem in these approaches is to handle the Bethe Ansatz equations in the
infinite lattice limit where the number of roots become also infinite. Such
calculations have been carried through for numerous models including the
six-vertex/XXZ models as very special cases, and the partition function
per site and the ‘elementary excitations’ have been found exactly. Usually
when these quantities are obtained the model is regarded as being ‘solved’.
However this is not the end of the story. We would like to go further to clarify
the structure of the eigenvectors as a mathematical entity, and ultimately
that of the correlation functions. We wish to reserve the word ‘solved’ till
we understand these aspects.

We know that building a solvable model amounts to finding a solution to
the YBE. From the quantum group point of view, the R matrices are nothing
but the intertwiners between tensor products of evaluation modules. Thus
there is more than a good reason to expect that quantum groups should play
a vital role in ‘solving’ the models thus constructed. In this connection let
us note the following point. Consider the monodromy matrix 7(¢) (2.10)

T(¢) = Rou(¢)- -~ Ron(€), (¢ =Cv/Ch),

acting on Vo ¢, ® Vive, ® - ® Vig,. Set A = (A®id)Alr—1, Al = A,
and for z € U write

AN (@) =Y ) @ zn) @ - ® ().
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From (3.26) we have the commutative diagram

®...
WeVwe oW O e e oW
1T(¢) 1T{)
VhoVy® @V M ey e oW,

In the large lattice limit, neglecting the boundary effects we would conclude
that T'(1)~'T(¢) acting on

Ve @V ® Vi1 @
commutes with the action of U’ given by
A(OO)(I) = Z"'®z(k+1) ®T() ® T(h_1) ® -
In particular the XXZ Hamiltonian would commute with the action of U;
[A)(z), Hxxz] = 0.

This would mean that the algebra U plays the role of infinite dimensional
non-abelian symmetries in contrast to the abelian symmetries (3.33)






Chapter 4

Correlation
functions—physical
derivation

We are now in a position to introduce the central object in our approach —
the vertex operators. We wish to explain how they naturally arise when we
study the correlation functions via Baxter’s corner transfer matrix method,
and how they can be used to derive difference equations for the correlation
functions. The arguments presented in this Chapter will rely on some phys-
ical intuition. They are meant to motivate the mathematical constructions
to be developed later.

4.1 Corner Transfer Matrix

First recall that we are working in the region a,b,¢ > 0 and A < —1. In the
parameterization (3.4) this means

~1<qg<0, 1<(<(=q)7. (4.1)

We shall discuss the correlation functions in this region.

45
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Figure 4.1: Subdivision of the lattice into quadrants

To simplify the presentation, let us first concentrate on the simplest
case of the one point correlation function discussed in (1.5). See also (2.8).
Consider an edge ‘0’ such that g9 = (—1)**! in the i-th ground state (i =
0,1). Then the one-point function as defined in (2.7), (2.8) is

(e0)i = PY — PO,

where Pe(i) (¢ = + or —) denotes the probability that the spin on the edge
0 takes the value ¢ in the i-th ground state sector. The quantity we are
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interested in is thus

€, (Cw) €4(Cyw)
Yell, REi(C,v) e2(Cw)

(Cw)eb(C) ~
ZC H REi(C v) Ez(C v)

The sum in the numerator ranges over all the configurations C such that
£o(C) = €. In addition, the sums are restricted to the i-th sector as explained
in 2.2.

An alternative and equivalent way is to define (4.2) as the limit of a
similar ratio with the sum over configurations taken on the finite lattice,
wherein the spins on the boundary of the lattice are fixed to the -th ground
state configuration. When we pass to the infinite lattice limit, we expect
that the detailed shape of the lattice should not matter in so far as the edge
0 is kept ‘deep inside’. For our purposes it is convenient to choose a lattice
of the shape depicted in fig.4.1.

We will label the horizontal lines from bottom to top as —N +1,--- N
where now 2N is the total number of lines. Similarly we label the vertical
lines from right to left as —N,.--, N. Let us subdivide this lattice into 6
pieces, consisting of four corners and two half columns, separated by the
‘seams’ indicated by broken lines in the figure. The idea is to perform the
sum (4.2) in two steps, first over the spins not lying on the seams, and then
over the ones on the seams.

To this end, following Baxter we introduce the corner transfer matriz
(CTM) associated with each corner. As an example look at the NW quad rant
(see fig.4.2). On the NE boundary the spins are fixed to the (1-1%)-th ground
state. In fig.4.2, they are set to +. Let N be the number of rows in the
corner. Fixing a configuration p = (p1,--,pn) of the horizontal boundary
spins and p’ = (p},---,p)y) for the vertical one, we consider the sum over
the spin configurations in the interior of this corner

D D S 1 £ (43)

PPl interior edges

P = (4.2)

By definition As\,wl) is a 2" by 2" matrix whose (p, p’)-entry is given by the
sum (4.3).
The other CTM’s A(slwl), (5%, Al )E are defined in a similar way.
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Figure 4.2: Corner transfer matrix A( )

In the same spirit, define a half-column transfer matrix corresponding to
the upper half column by

(247") " "= 2 HRZZ %, (4.4)

PNy 5P1 VN1 g=1

where vy = € and vy = (—1)V*1~% Similarly define

. . ! 0
(o), o= X IL B3N, @9

POy P-N41 VotV Ngl j=—N41

where vy = € and v_y = (=1)V¥*+17% In anticipation of the representation
theoretical interpretation, we call them verter operators (VO’s). Later we
shall introduce a different type of VO’s related to the particle creation and
annihilation operators. To make distinction we shall also refer to the VO's
introduced here as VO's of type L

All these operators in fact depend on the spectral parameters through the
ratio ¢ = (v /(y. In the sequel this dependence will be exhibited as A(l Y (0,
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Figure 4.3: Vertex operators @8;?) (left) and Q(Llé;)e (right)

etc. The crossing symmetry for the R matrix entails relations among these
operators. Writing A®)(¢) = A§f,)w(§) and &7 (¢) = @3;;”)(0 we have

AL = RAGD(—gi¢TY, (4.6)
AGO = RAD(QOR, (4.7)
AQe(©) = AD(—¢ YR, (4.8)
i) = ROETIOR. (4.9)

Here R = 0* ® - - - @ 0” signifies the spin reversal operator vg, ® - - @ v, —
Voey @ QU_g,.

Having introduced these fancy operators, one might wonder if they are
of any use at all. It turns out, however, that a remarkable simplification
takes place in the infinite lattice limit. The heart of the matter is Baxter’s
discovery on the CTM, which we now explain. Multiplying a scalar factor
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let us normalize A¥)(¢) to make its largest eigenvalue equal to 1. Then the
statement is that in the infinite lattice limit we have

lim AD(¢) = ¢~P%, (4.10)

where D is an operator independent of ¢ and has a discrete spectrum
(recall that we are working in the region ¢ > 1)

Spec(D®) = {0,1,2,---}. (4.11)

Baxter’s argument leading to (4.10-4.11) is based on the Yang-Baxter equa-
tion and is described in Chapter 13 of [15]. Apparently he was led to find
these properties by observing a drastic simplification in the low temperature
series expansion of the CTM [11, 12]. We wish to emphasize here that such
a low temperature series makes sense only in the ‘massive regime’, and that
working in this regime is essential. Otherwise, even the very existence of the
CTM in the infinite lattice limit (4.10) would become obscure.

The limiting CTM (4.10) is an operator on the space H( spanned by
its eigenvectors. In the same way we expect that the VO also tends to some
well defined operator (which we denote by the same letter)

@214,1’)(0 A VONEENE VIO

Notice that unlike the CTM’s they carry one space to another because of
the change in the boundary conditions.

4.2 Properties of Vertex Operators

Let us examine more closely the structure which emerged in the previous
sections. The basic ingredients are the spaces H(¥ and the operators D(®),
(b(l—i,i)(g).

Naively one can think of the space H(¥) as the limit of a subspace of the
N-fold tensor product V®N . In this picture H(*) is spanned by half-infinite
pure tensor vectors

@ Up(3) ®Vp(z) ®Vp(), P = (=) (1> 0).

The ground state in this sector corresponds to the sequence p(j) = (—1)?*+
Vi=1,2--).
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The discreteness of the spectrum (4.11) means that H® is a Z-graded
vector space:

HO = @rezﬁg), 'Hﬁi) ={veH® | Dby = rv}.

As it turns out the eigenvalues r are highly degenerate. Their multiplicities
dim ’Hy) can be determined by Baxter’s method. The relevant calculation
can be found in [15], Sect.13.7, where the more general case of the eight-
vertex model is treated rather than the six-vertex model. The result is
common to both cases and is given by

0
Q) . i 1
tr HG) (tD ) = E dlmH,S.l) th = H Wl—l (412)
reZ n=1

The formula (4.12) tells in particular dim ’Hg) = 1, which means that up to
a scalar there is a unique eigenvector belonging to the maximum eigenvalue
of the CTM. In the sequel we fix a nonzero u(® € ’H(()i) and refer to it as the
highest weight vector.

For a systematic treatment it is often useful to use the language of R
matrices. Set

Neglecting the boundary conditions one can write the CTM as

A = By v Q) BN AN (OB N41(0)
X (Ri2(¢)Ra3(€) - - - Rv N+1(0))- (4.13)

Expanding (4.13) to the first order we obtain the formal expression (up to
an additive constant)

D® = Ry + 2hog + 3hgs + - -

where h is the density of the Hamiltonian (3.13). (See 2.4. for the notations
hi2, hos, - --.) This characteristic form for the ‘CTM Hamiltonian’ D® was
noted in [11, 12}.

Next let us examine the VO. In terms of the R matrix the VO can be
written as
prpye’

(@ (0))ppr = (Riz(OBaa(©) -+ Brvvs1(0)) (414)

EP1PN



52 CHAPTER 4. CORRELATION FUNCTIONS

where p = (p1,--,pn), P = (], -, Ply), and we set ¢’ = (—=)¥T1~*. From
this expression some symmetries are apparent. The spin-reversal symmetry
of the R matrix L .,

R(Q)4e = R(Q) -8 &
implies

a*0(¢) = RO (OR
where R = 0 ®---®o®. From the relation B(—() = —(¢*®1) R({) (¢ ®1)
it follows that

Rig(=0) - By ny1(=¢) = (=1)Nof Ri2(Q) - Rvn1(Q) oy

Hence we have the parity relation

(=4 (—¢) = (=1)e U4 (¢). (4.15)

Let us ‘derive’ the main properties of VO’s. First consider fig 4.4. It
shows the effect of a successive application of the Yang-Baxter equation.
Jgnoring the crossing in the left hand side, which represents the R-matrix,
as if it disappears to infinity, we get

B @L () = Y R(G/G)AERS T ()2l (G):
€],6h

(4.16)

This argument does not tell why the scalar multiple of R has to be chosen
as we did. We will come back to this point later.

Next we derive a relation between the CTM and the vertex operator.
Differentiation of the YBE

R j41(ORj41j12(€O By j1(6) = Ris142O) By 1 (€O Rj11542(0)
at § = 1 yields
R j41(¢) Risr54+2(Ohyjn — hirr a2 Ry 1O Rivi542(0)

dR; ; = -~ dRi: s
= 4&%?(_4)Rj+1j+2(g) - Rjjﬂ(g)g_}ﬁir;_?L(Q_

Multiply j Xﬁlz(o e ﬁj-lj(g) from the left, §j+2j+3(§) ‘e EN N+1(¢) from
the right, and sum over j = 1,2,---. This gives

(§12(<) ---Rn N+1(C)) (hi2 +2h2s + -+ hN_1in)
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Figure 4.4: Commutation relations of the vertex operators

- (h12 +2h3+ -+ hN-1N) (§12(<) - ENN+1(<))

= (d— (Rlz(g) e ENN+1(§)) + boundary terms.
¢
Comparing with (4.14) we find
Di-9gfl-44)(q) - o= ((D0 = (LBl (41)

We have followed the argument of [85, 82, 86] where D( is referred to as
the boost operator. Rewriting (4.17) in the exponentiated form, we have

€_1:)(1—1) o (Dgl_i,i)(o ogD(i) - <I>§1‘“) (4/6)’ (4.18)
The VO’s are invertible in the following sense:
Z (I)(z 1—1) ‘14)(1)21—-1,1')(() = id, (4.19)

a8 (—q7l) = o xid. (420)
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¢v

CH

¢v ¢

CH

Figure 4.5: The inversion property

Notice that (4.20) follows from (4.19) and the commutation relation (4.16).

To see this it suffices to set (; = —¢~ (2 and use
0 0 0O
01 10
— _l =
B=a)=19 110
0 0 0O

The relation (4.19) is a direct consequence of the unitarity and crossing
symmetry for the R matrix. By the crossing symmetry, <I>Y'EH) (—q71¢) is
represented by the half-row in fig.4.5. Then the argument should be clear
from fig.4.5.

Recall that we have chosen the normalizing scalar £(¢) (3.5) to satisfy
(3.9) and (3.10) without introducing extra scalar factors. As we show below,
the R-matrix appearing in (4.16) must satisfy these conditions as well. In
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fact, using (4.16) twice we must have

€le, ney 2 (i,1—1 —i)g
> RG/REZRG/0)ZG % (el @)

t VN i
€1,61 €967

= Y R(G/G)EEel el ™ (@)
€162

= 85" ()25 (G-
Therefore, we have (3.9). Notice further that
> RG/@GGR(-aT /a2l ()

’ 1
€1:€2,€

ele _ —eYel
= Y RG/GQ)ggR(-0 /)0
€167 ,€2:65

Xq)gﬁi,i) (Cl)(bgél’{_i)(‘q_lﬁl)‘bg_i,i)(ﬁz)

= ¥ RG/@)EGR0 T RV @eL ™ (=)
€] .2

= 2y (el (@)L~

= @2;1’,1’)((2)66,{7‘61‘

Therefore, we have

ehe _ —elel
> R(Cl/Cz)E}{EZI (=07 '/ )erds ? = ber e, 6c -

y
€1,€2

Because of (3.9) this is equivalent to (3.10). This gives a strong evidence

that the R-matrix in (4.16) must be equal to the one given in (3.6).

If we regard &'~ (¢) as a formal series ¥ ez <I>gj"i’i) ¢, then (4.18)

tells that the coeflicients are linear operators
el mlD —H) (4.21)
In particular, counting degrees and taking (4.15) into account we must have
1= ()ul) = const. w7 + O(C) for e = (—1)"*1.

Adjusting a scalar multiple we shall henceforth redefine the VO’s to make
the above constant= 1:

U=t ()@ =419 1 O(¢)  fore = (~1)"Th. (4.22)
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The invertibility then holds with id being multiplied by a certain scalar g~!

(see (4.28)), to be determined in the next section.
Let us summarize here the properties of the CTM’s and the VO’s dis-
cussed so far.

Character H) is a Z-graded vector space with the character

DY _ Oo 1
tr HE (t ) = J;Il 1—_t—27—l—_—1‘ . (423)
Homogeneity
—DU- —i,0 (1) —ii
e 0 @l () 0 €2 = BT ((/8). (4.24)

Commutation Relation

(@)l () = Y R(G/GaEel () el ().

1,65
(4.25)
Normalization Fixing u{) € 'H(()i) we have
(O = w1 0(¢)  fore = (=1)}" (4.26)
Invertibility
> el (@) = g7t xid,
e=%
a4 ()0 (—gl¢) = g6 xid  (427)
where (@)
979
= 20 4.28
9= ). (4.28)

Z, Symmetry There exists a linear isomorphism v : H(® — H()) such that
voD©® = DW oy, pu®) = u® and

@21,0)(() —vo <I>(_0;1)(§) ov. (429)

Parity
B4 (—¢) = (~1)17% U= (). (4.30)
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4.3 The one point function

Now let us return to the one point function (4.2). Having introduced the
CTM'’s and VO’s, what remains to be done is to take the sum over the spins
on the seams. This amounts to multiplying these matrices and taking the
trace. Note that (4.11) implies in the limit

AR(0)AGR(C) = ()P R,
AG (0 AV () = R (=P
Using (4.18) one can express (4.2) as
FY = N7l (ARR(O AR 0w (O ASw (O AR (0822(C))
N7 ((—a)P 8l (0 (~g) P T el ()
= Nl (7Y el (g i)l () (4.31)

Here A is a normalization factor, to be determined by the condition Pf) +
P9 =1

We wish to show that the properties of the VO’s contain enough infor-
mation to determine the one point function.! Set

FO(Q) = tr (qw“’<I>§’;“")(<1)<I>§§“"’“(<z))

where { = (2/{;. Here we used (4.24) to conclude that the dependence of
the trace function on the variables {; and (s is only through the ratio . We
have

PY = — £ E(—% _
F(=q) + FY (—q)
Using the cyclicity of trace and (4.24) we have

1 —1,i () 2 (5,1—4
FELIO = trya-o (2579”78l 9(¢1))
= trya-0 (@700 (g 2G)e0 ()
= FEICY (4.32)

!See however the remark at the end of this section.
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The relation (4.16) implies
F, (¢ = 3 RECHESFLL (© (4.33)
El 62

From (4.29) we have
FO,0)=F'52%,(0

Set

££(0) = F2(©) = FO(©). (4.34)

Then (4.32) implies
f+(0) = f+(¢*¢TH), (4.35)

while (4.30) implies

Q) = f+(=0)-
Therefore, (4.33) reduces to the relation

£1(0) = T £, (4.30)

where £({) is given in (3.5). Combining (4.35) and (4.36) we obtain a dif-
ference equation

£060) = RO TR0 (4.37)
To solve this equation let
() = (62 ¢* 0 (@%2715 0% 4)oo (¢ _ ¢
(*275 ¢4 ¢No (2594, 0Y0 7 (@747 K(Q)

where (2; 1, g2)o0 = [Inns0(l — 297"¢%)- If we assume that f, (¢) is analytic
in the annulus |q| < |¢| < |¢~!|, then the solution of (4.37) is unique up to
constant and is given by

()
(=3¢ %) 0o(—9¢54%) oo

f+(€) = const. x (4.38)

Specializing to { = —q¢ we find

f-(=9) _ (%)%
fr(-9)  (—d%dM%

(=17 (P - PY) =
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This reproduces Baxter’s formula for the spontaneous staggered polarization
(1.5).

It should be clear to the reader that the derivation of the difference
equation can be extended straightforwardly to the case of general correlation
functions. We shall come to a more systematic treatment in the following
section.

At the same time we notice a difficulty common to solving difference
equations. If f1(¢) is a nontrivial solution of (4.37), then obviously the
general solution is given by f, (¢) x v(¢) where v(¢{) is an arbitrary pseudo-
constant (i.e. a function satisfying ¥(¢?¢) = v(¢)). This situation is in sharp
contrast with holonomic differential equations, where the solution space is
finite dimensional. In order to fix a unique solution to the difference equation
we have imposed in the above an analyticity condition, which is to be verified
separately. Here we will not discuss this point any further, but it must be
taken care of when we construct a mathematical model for the space of
states.

Let us show that the scalar g (4.28) can be determined from the other
properties. The argument is similar to the calculation of the one point
function. Instead of the trace we look at the ‘highest-to-highest’ matrix
elements

FOQerer = (uP[@ED() 0L () [ul?),
where ¢ = (2/(;. Set
¢ (0) = FOQ 4 £ FOQ) -+
Then we have
90 = o0,
s = —P(-0),
s90) = ¢©.

Therefore, using (4.25) we obtain

O 1 ¢(+g

O(c-1y w1+
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In addition, from (4.22) we have ¢$)(§) =1+ O(¢). This is a Riemann-
Hilbert factorization problem. Assuming again suitable analyticity proper-
ties we can solve this equation. The result is

6(2; 4 -
0 ¢) = f9(¢) = %4—4—2%;
(6°¢% %)

f(_ol(C) = -(rll(O = *QCm-
Setting { = —¢~! and comparing with (4.27) we find (4.28).

We remark that a similar graphical argument leads to the difference
equations for the partition function per site, see [15], p.384. If we normalize
the Boltzmann weights by a = 1, then they are exactly (3.11). The simplest
solution (3.5) of the difference equations coincides with the correct result
obtained by Bethe Ansatz.

4.4 Trace functions and difference equations

Now let us consider the trace function

FO(5G1y - Gneye, = B (2PBEH(G) - @1 () )

(4.39)
Here n is even and = € C is a parameter satisfying |z| < 1. The index ¢ in
VO is to be read modulo 2. In exactly the same way as for the one point
function, the general n-point functions can be written in terms of (4.39).
Let E.s denote the matrix unit with 1 as the (g, &')-entry and 0 elsewhere.
In the spin-chain language consider the local operator E, o ® -+ ® E516’1 .
Then its expectation value in the :-th ground state sector is given by

(Eener, ® -+ ® E 1))
1 (%)
= Ffe)l.“_en,efn...efl(qQ;—q<1, oy =qlny Gny -5 (1) /T (qw )

We shall also regard (4.39) as a function which takes valuesin V®---®V.
From the properties of VO one finds immediately the following:

FO (5, G, Gy o)

= Py i1 Ry (G /G FO (5, Gy G, ), (4.40)
Fr(ll) ((L‘, Cla Tty z{n)el,u-,en = Fy(;l-'_l)(z; Cna <17 Ty Cn—l)En,Eh---,En_U
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(4.41)
FM(@;¢1, -, Cnderven = FO(2561, 7+, n)—er st
Fi(z;=C1, oy ~Caderymen = (—1)™ 261 n (@61, Cne, e
(4.42)
F(@;¢, G, Gato -y Cnderomesessnenle, immamics
= 66j:‘6:+1g_1F7(f_)2(T; Gy G15 G2 s Cndermi, 1,6y 42,0m6m

Except for the last one, these formulas are similar to Smirnov’s axioms for
the form factors of massive integrable field theories [77].! Combining (4.40)
and (4.41) we have

F(i)(z;gla“'azgja"'agn) = Aj((l,"',Cn)F(H_l)((L';Cl,'",Cj,“‘,gn),
Ai(CL 0 Cn) = Rysi(8G/Gan) ™t Rin(2G/Gn) ™"
xRy (G1/G) - Rie15(G-1/65)-

Hence the combination
G(:t)((L‘;Cl, e a<n) = F(O)(I;Cla' . 'agja o 'a{n) ﬂ:F(l)((L‘,Cl, o agja Ty <n)
satisfies the gKZ equation

G(i)(z;ﬁl,-“,zﬁj,‘-‘,Cn) = iAj(Cl,"-,Cn)G(i)(I;Cl,“',Cj,‘“,Cn)-
(4.43)

We remark that by specializing = 0 only the highest weight contributes
to the trace, and hence (4.39) reduces to the ‘highest-to-highest’ matrix
element

FC, -, Gn) = (wi]@EHD () - BEFPTLHR) (€ ;). (4.44)

Unlike the trace functions, these are power series in the variables (2 /(1, - -,
Cn/ <n—1 .

Along with the CTM the VO’s already appeared in Baxter’s paper {14],
where they are called half-column and half-row transfer matrices. Appar-
ently there has been no attempt to combine them with the idea of varying
the spectral parameters which plays such a crucial role in the Z-invariant

!The precise analogues of the form factors are the trace functions involving type II
vertex operators. See the discussion in 11.3.
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inhomogeneous lattice [13]. All the graphical arguments we have been using
so far apply equally well to the more general cases, e.g. the eight-vertex
model [34]. We will develop in Chapters 5,6 a systematic method of obtain-
ing correlation functions for the six-vertex model. For the eight-vertex model
an analogous technique is not known, which makes it difficult to construct
solutions of the difference equations for the correlation functions except for
the one-point function [44].



Chapter 5

Level one modules and
bosonization

From now on we turn to the mathematical construction of the structures that
emerged in the previous chapter. For that purpose we need to prepare more
about the representation theory of quantum affine algebra U = Uy(slz). Our
goal in this chapter is a concrete realization of the level one highest weight
modules using free bosons.

5.1 Highest weight modules

As mentioned earlier, an important class of representations of U are the
highest weight modules. We shall consider here only the irreducible modules
with dominant integral highest weights. Thus let A € P be such that (hg, A),
(h1,A) are both non-negative integers. For each such A there exists a unique
nonzero U-module V(A) characterized by the following properties.

there exists a vector vy € V(A) such that
eupa =0, tivg = q(h"’A)vA, fi(hi’A)+lvA =0 (:=0,1),
V(A) = U,
Moreover they are irreducible and (except in the trivial case A = 0) are

infinite dimensional .
By the definition V(A) is spanned by elements of the form

fiv - fiyva,  (i,--,in =0,1).

63
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The element p acts on it as
pfin fiyon = (=N +(p, ) fi, -+ fixur.
The grading defined by D = —p + (p, A)
V(A) =82,V (A)r, V(A ={veV(A)| Dv=rv}
is called the principal grading. The principally specialized character
Xa(t) = tryay (tD) (5.1)

is given by the same formula as in the affine Lie algebra case [49].

The module V (A) has level (hg + hy, A), and there are only two that has
level 1, namely V(A;) (i = 0,1). These are the cases of our interest. Their
characters are given by

= 1
n=1

Later we shall also consider the (restricted) dual module
VH(A) = 8720 (V(A))"

As a right U-module V*(A) is a highest weight module of highest weight A
with level (A, ho + h1). Viewed as a left U-module via the antipode, V**(A)
is a lowest weight module of lowest weight —A with level —(A, ho + h1).
Sometimes we use the bra-ket notation for the pairing (u|v) = (u,v) for
u € V*(A), v € V(A). We will write vy = |A). We fix also (A| € (V(A)o)*
such that (A|A) = 1.

5.2 Drinfeld’s generators

The level one modules have much more concrete realization in terms of
bosons. Let us explain the construction following the work of [35]. For
that purpose the original generators of U are not convenient, and we need
to use another set of generators given by Drinfeld.

For convenience we shall enlarge U’ by adjoining a central element ~!/2
such that (71/2)2 = tgt;. Thus v = ¢* on level k-modules. Drinfeld intro-
duced the following generators

ax (k€ Z\{0}), =¥ (k€ Z), /2, K+
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They satisfy the following defining relations:

ek, a1] = Sk 012:] 7—:—(:_—1, (53)
KaxK™' = a5, KziK™'=q"af, (5.4)
lag, 2] = :t-[Z—k] F2gE (5.5)
a:,:ct_'_la:f q a?lia:,f_'_l = qﬂwfzﬁ_l wﬁ_lwf, (5.6)
(et 2] = L2 ””“q* ’ qu Prsl G7)

where ¥, i are defined by

ZWZ = Kexp{(g—g¢") ) axz7*}, (58)
k=0 k=1

Yook =K 'exp{-(¢g—q7") i a_xz*}. (5.9)
k=0 =

The old generators are related to them via
tl:Ky wa—:elv wa:flv
to=7vK"', z7 =eot1, T, =t]"f.
In terms of the generating functions (called currents)

XE(2) = Z gzl
neZ

the defining relations are written more compactly as follows:

[ak, XE(2)] = i[Z—:]ﬁlklﬂzkxi(z), (5.10)

(z - quw)Xi(z)Xi(w) + (w— qi2z)Xi(w)Xi(z) =0, (5.11)

[X*(2), X~ (w)] = Kexp{(a~¢7") i “Wkﬂz_k}u%fzq%

~Klexp{~(¢~q7") Za 72z k}(qé(f_/f‘))iw (5.12)

Here 6(z) = ¥,c7 2" is a formal series, and we have used the formula

8(z/w)f(2) = 8(z/w) f(w).
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To obtain the full algebra U we impose the following.

¢y Pg =42, ¢*Kq =K,
¢*riq = gz, (5.13)
¢*arg ™ = ¢ ax. (5.14)

5.3 Realization of level one modules

In the sequel we concentrate on the level one modules. Since v = ¢, (5.3)
becomes

lak, @] = bkt [2k]1[k] :

Thus apart from a normalization the a constitute free bosons. Abbreviating
o) to o we set

V/(A) = Cla-1,8-2,-+] ® (BpezCe™t™).

Here the e* are formal symbols satisfying e*e# = e*#. On this space we
define the action of ax (k # 0) by

a(fef) = af®eP ifk<0,
= [ak,f]@)e‘3 ifk>0

where f € Cla_1,a—2, -] and 8 = A; + na. Let further e* and 8 be the
operators acting on V/(A;) as

Il

f®efte
(a,B)f ® €.

e (f®eP)
o(f ® )

Il

The actions of the other generators are as follows:

K=¢% =g

Xﬁ:(Z) = exp (:E i ?t;’/_]qu:n/2zn)exp (:F i a_nqq:n/2z—n)ej:azj:6)
n=1 n=1

= [
(5.15)
Faeely = g BARA1Qef) for f=A +na,neZ. (5.16)

The action of g% on general vectors are defined via (5.14).
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The statement is that with these definitions V'(A;) coincides with the
irreducible level one highest weight module V(A;) where the highest weight
vector is given by :
|A1> =1® eAi .

We shall verify below that these formulas indeed give a representation of U.

Let us check the defining relations (5.10), (5.11), (5.12). For the calcu-
lation we need the following normal ordering symbol : :

tagar: = agay if k<O,
= @ax ifk>0,
t0f: = :0a:= ad,

as well as the standard formulas

edeP = ehPlePed  if [A, B] is a scalar, (5.17)
00 un
exp (£ 7)
n=1

The relation (5.10) immediately follows from (5.3) and (5.17). To show
(5.11) and (5.12), we compute the normal-ordered products of the currents

Il

(1-2)%L (5.18)

Xt()XT(w) = 2(1——)(1—(1—) XH)XT(w):, (5.19)
XX ~(w) = 21-=)(1- qz“’) X~ ()X (w): (5.20)
1
XX (W) = 7w XX ~(w):,  (5.21)
g (1‘7)(1‘;,;)
X~ (w)X*(2) ! X)X (w) ;. (5.22)

21\ £
W(1-3)0- %)
To illustrate the use of the formulas (5.17) and (5.18), let us compute

(5.19). To rewrite the product X*(z)X*(w) into the normal-ordered form,
we must reverse the order of the products

exp( Z (ln —n/2z—n exp(z -n —n/2 n

and
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Putting
an —n/2 —n - n/2 n
“LH Pl
in (5.17) and using (5.18), we find
_ [l wyn
[A7 B] - n;l n [TL]2 ( 7 )
R N TR o
n=1 n

Il
<3
o
N
—
|
I
~—
N
—
|
L]
e
~—

Therefore, we have

n=1
o0
w w an _p/ -
(1—;)(1-(12—) (z[—] e (5 )
Similarly, we have 20> = 22 : . Thus we obtain (5.19).

The relation (5.11) mmedlately follows from (5.19) and (5.20). Noting
that
PR o) -of2)
W w | )
A1-T)0-g) w-)0-5) e

we can derive the relation (5.12) from (5.21) and (5.22).
Let us verify the relations (5.13). They are equivalent to

1 1 5(z)

¢*X*(2)g 7= ¢ ' XF (g ). (5.23)
Using (5.14) we can reduce (5.23) to
gle*q =g %70, (5.24)

With the normalization ¢%(1 ® e®) = 1 ® e* we are thus led to (5.16).
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5.4 Principal vs. homogeneous pictures

Before closing this chapter let us give a remark about the different gradings
of U. Recall that on weight modules the action of A € P makes sense. In
this sense the elements d and p act as derivations on U:

[d,&] = 6ives, [d, fi] = ~6iofi, [d,d"] =0,
el =ei, [pfil=—f [od"]=0.

We refer to the grading of U defined by d (resp. p) as the homogeneous
(resp. principal) grading. The 0 « 1 symmetry is manifest in the principal
grading.

The evaluation module V; considered in Chapter 3 is adapted to the
principal grading operator in the sense that p is realized as differentiation in
{. We call it the evaluation module in the principal picture.

In contrast, (5.23) shows that the realization of the level one modules is
adapted to the homogeneous grading. For that reason, in the construction
of the vertex operators we will choose to work with the evaluation module in
the homogeneous picture. By definition it is W -yve C[z, z71] equipped
with the following U-module structure:

eo(ve ® 2™) = (f1ve) ® 2" e (ve ® 2™) = (e1ve) ® 2™
fO(UE®Zm) = (elvE)®zm_17 fl(vE®zm) :(flvE)®zm7
to=1t7", ti(ve ®2™) = (tive) ® 2™,

d
d = ZE.
(5.25)
The dual module V/"** = v* @ Clz,2z7}] is defined similarly as in the

principal picture, where the pairing is (v} ® 2™, ver ® 2") = bcerOmin0. The
analog of the isomorphism (3.32) takes the form
IS ~ wat!
v Xy (5.26)
v ®2" — v "
- Q®Z" —qilvfF ® z".

In fact each irreducible piece Vc(i) of V¢ is equivalent to Vz(h) by the map
v 49 ym 2oy (5.27)

v @™ o p @THETIR
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Let
PR(z1/z) : Vi o Vi) — v oV

be an intertwiner in the homogeneous picture. The above equivalence (5.27)
implies that R(z) is related to the R matrix R({) (3.6) in the principal
picture by the formula

R(z1/22) = scalar x (C((1) ® C(2)) R(G1/%) (C(G) ® C_'(@))_l .
Normalizing as R(z1/z2)v+ ® vy = vy @ vy we have explicitly
(1-2¢ (-4
1-q2z 1-g¢%z

(1-¢))z (1-2)g
1-¢%2z 1-gq%z

R(z) =

Here again the matrix structure is relative to the basis v ® v in the order
(67 E'J) = (+7 +)7 (+7 —)7 (—7 +)7 (—7 —)'



Chapter 6

Vertex operators

Along with the highest weight modules, another important ingredients are
the (g-deformed) vertex operators in the sense of Frenkel-Reshetikhin [36].
We proceed to constructing the vertex operators on the basis of the results
of the previous chapter.

6.1 The notion of vertex operators

In this chapter, except in the last section, we will deal with the homogeneous
picture. Thus let Vz(h) be the evaluation module (5.25) associated with the
two-dimensional representation. Consider the intertwiners of U-modules

319 (2)  V(A) — V(A1) @ VW, (6.1)
G0 (z) 0 V(A) — VPV @ V(A1) (6.2)
We call (6.1), (6.2) vertex operators of type I and type II, respectively. Their

precise meaning is as follows. For instance, the type I operator is a formal
series

30-i(z) = (D) @, (6.3)
€

B9 = 3 B
nez

whose coefficients are linear maps

=) L V(Ay) — V(A),

En

71
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such that it commutes with the action of U in the sense that
STy @ (v ® 27" = A(x) {Z 311y @ (v ® z_")}

for all x € U and v € V(Ay).

Here the action on v, ® z7™ is understood in Vz(h). The type II operator
is defined analogously. When there is no fear of confusion we will suppress
the superscripts (1 — ¢,7) that indicate the relevant spaces.

The VO’s have been introduced and studied by Frenkel-Reshetikhin {36]
in a more general setting where highest weight modules have arbitrary level.
It was shown that the product of VO’s

ey (1) e, (2n)

is analytic! in the region |z;| > -+ > |zn|, extends to a meromorphic
function on (C\{0})", and that its highest-to-highest matrix elements satisfy
the ¢KZ equation.

In our situation such operators exist, and are unique up to multiplication
by a scalar. (See [36, 24] for a general statement.) In the sequel we adopt,
the normalization

(AMrl@_(2)[Ao) =1, (Rol@4(2)|A1) =1, (6.4)

(MT_(2)|Ao) =1, (Ao]T4(2)|A1) = 1. (6.5)

More generally an intertwiner of the form V(A;) — V(Ai4n) ® Vz(lh) ®
e ® Vz(f ) is unique up to scalar.? This is a special feature of the present
situation, reflecting the fact that the two-dimensional module is ‘perfect’
with respect to the level one modules [50].

6.2 Type I vertex operator

We now construct the type I VO (6.1). We define the components of ®(z)
as in (6.3). From the intertwining relation

A(z) o B(z) = B(z)ox forzeU (6.6)

'In the sense of matrix elements.
2The suffix i + n is to be read modulo 2.
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with the choice z = ¢1, ¢* we obtain

K&)i(z)K_l = ¢T'oi(2),
q_dq)i(z)qd = ®.i(gz2).

With the choice z = fi1, e1, fo, ep we obtain respectively

& (2)a5 — ¢ e 84 (2) =0,

o,(2) = ( )zg — q:c0<I> (2),

K‘I’ (2) = &4 (2)ag — 2§ ®4(2),
d_(2)z — 23 ®_(2) =0,

(gzK)~ o (2) = (I)+(Z)I~1 - :vfﬁf)_,,(z),

®_(2)zt, —27,8_(2) =0,

&, (2)z7 — qz7 24 (2) = 0,

@284 (2) = ®_(2)a7 - ¢ 'o7 8 (2).
We will solve these equations for ®+(z).

First, assuming (6.9)-(6.16), let us derive
(X (w), @-(2)] = 0,

~ n/2 ~
[an, ®_(2)] = q———[-T-L—]Zn(I)_(Z),
3 _ q—5n/2[n] -nx
[a_n, ®_(2)] = ———z ®_(z),

where n € Z-o. From (6.10) and (6.16) we obtain
¢2(3_ ()5 —g259(2) — (B-(2)ay — ¢ '27 D (2) =
Set

Aw) = ed((g-a7) i ang*?w ™),
B(w) = exp (—(q -q Y i a_nq"/2w").

Using (5.12) we have

(@- g Xt (w),55] = w'KA(w)-w 'K B(w),

Il

(¢— ¢ HIX"(w), 2] ¢ K A(w) — ¢K ™' B(w).
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(6.7)
(6.8)

(6.9
(6.10
(6.11
(6.12
(6.13
(6.14
(6.15
(6.16

N e e N S S N S

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
(6.22)
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Thanks to (6.12) and (6.14), the equation (6.17) is already true for the
coefficients of w° and w™!. Commuting (6.20) with X *(w) and using (6.21),
(6.22), we then obtain

¢’z Pz 1 =
8- (@)K Aw) - K™ 'B(w)) - ——(KA(w) = K7 B(w))2-(2)

~3_(2)(¢ "' K A(w) ~ K B(w)) + (¢ 2K A(w) - K7 B(w))3_(2)
=0, (6.23)

which holds to the orders w® and w™'. Thus we obtain (6.18) and (6.19)
for n = 1. Starting from this, taking commutators with a4, repeatedly and
using (5.5), one can show (6.17) to all orders. This in turn implies that
(6.23) is true to all orders. Finally, expanding (6.23) in w, we get (6.18) and
(6.19).

The commutation relaticns (6.17), (6.18), (6.19), the normalization (6.4)
and the relation (6.7) altogether determine the operator ®_(z) uniquely:

69-—1‘,1’)(2 - exp(z [2'7‘: 7n/2 n exp( Z -5n/2z-n)

xea/2(—q 2)(0+9/2, (6.24)

The other component &)S}“i’i)(z) is determined via (6.10).
Yet we must check that (6.24), (6.10) satisfy the rest of the intertwining
relations. We use the following formulas for the operator products.

Xt(w)®_(2) = ®_(2)XF(w) = (w—¢%2): X (w)®_(2)
X-()d_(z) = m X (w)B_(2) -
-1

m P ()X (w):.

®_(2)X " (w)

We need to show (6.9), (6.11), (6.13), (6.15), (6.16). To prove (6.9) and
(6.15), we need to compute

~ - - dw, [ dwp
B_()ener = § 5 § Srulugdo ()X (wn) X~ (we)

f‘gﬂ dw w T 2wi(1 - wa /w1 )(1 — gPwa/wr)
2mi J 2mi q822(1 — w1 /q?2)(1 — w2/q%2)
X &)_(z)X“(wl)X—(wg) i
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Using the equalities

w1 — w2 _ 1 _ 1
?z(1—wi/g?z)(1 — we/q?2) 1 -wi/q?z 1—ws/q%z

and renaming the integration variables for the second term noting
(B (2) X (wi) X (we) =2 B_(2) X (wo) X (w1) :,
we have

dwi [ dws

o_ o X~
(@)zmey ?{ omi | 2mi ()X (w) X" (wa)
wi M w? — @uwPwit! + 2wl — wiwlt!

% q*z(1 — w1 /q%2)

Similarly, we have

f du, dw2 : &,_(Z)X—(wl)X_(wQ) :

omi J 2mi
w"wm+1 +wit Wl g(~wPwd + Wl wd
@Bz(1 — w1 /g%2) 1-¢z/w ’

;558 _(2) fdwl duz (B (2) X (w)X " (we) :

omi ] omi

2 1 1 1 1 2
Wl + ot b up gt - Puug) .

><l—q z/wl(

The equalities (6.9) and (6.15) immediately follow from these formulas. The
equality (6.16) is equivalent to (6.20). The latter is proved by a similar
calculation.

Finally, let us prove (6.11) and (6.13). We have

[(54-(2)7 Ii—l]

It

o (Z [IO T 1] - Q[IOI ](I) (Z)

= —q1/2<I>_(z)K a_1+q3/2K" a_ﬁf_(z)
—q3/2K_1[(5_(Z)7a_1]

= (qu)~1<f>_(z),

Il

showing (6.13). The proof of (6.11) is similar.



76

CHAPTER 6. VERTEX OPERATORS

6.3 Type II vertex operator

The construction of the type II operator (6.2) is quite parallel. On V(A;)
they are given by the formulas

B ()

\Tlg“i’i)(z)

I

~ exp( Z Q_n n/2 n exp(z —3n/2

Xe—a/2(_qz)(-6+z)/2( q)z—l7
W (@)a - gz B (),

The intertwining relations are

-(2) = \fl+(z):v0 = 4%y ‘I’+(Z)
_(2)zf —q 'z V_(2) =0,

\le(z):v1 - :17l U, (z) =0, B

A (DK = B_()a7 — =7 - (2),

¥, ()5 — 25 ¥4(2) = 0,

K YW, (2) = U_(2)z5 — 25 ¥_(2),
(92)710_(2) = q¥4(2)at) — 2, . (2),
¢ U _(2)zF, -z, ¥_(2) = 0.

SHESH

For the proof, we use the following product formulas.

X~ ()¥i(z) = T (2)X (w) = (w—g2): X (w)Ty(2),
XH@)¥y(s) = — X))
T ()Xt w) = —— g T ()X (W) -

qz(l—q—z)

We omit the details of the proof.

6.4 Commutation relations

Consider the product of the vertex operators

(6.25)
(6.26)

(6.27)

(@01 (z1) @idy,, )B4 (22) : V(A) = V(M) @ VP @ V.
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This is an intertwiner. Let us write it as
1 2
& 10 (2)) & 1700 (29) = 5 B9 (2) 8L (29) @ vey ® vy
€1,€2
In this notation, we have
2 r — -
B (1790 (29) & 1700 (z1) = 57 3B (29) B ) (21) @ ve, ® v,
€1,€2

This is an intertwiner
V(A)—V () @ VIM @ vk (6.28)

where in the right hand side the action of z € U is given by 3~ z(1)®x(3®(3),
with (A ®1d)A(z) = 3 (1) ® T(2) ® 7(3).-
1 2

Consider now R(z1/z2) ® 179 () ® (149 (2,) where R operates on
Vz(lh) ® Vz(zh). This gives another intertwiner of the form (6.28). Thanks to

the uniqueness of VO's mentioned above, it must be the same up to scalar
1

2
as @ (4179 (z) ® (1-49)(2,). The scalar can be determined by computing

(_q3zl)1/2(‘122_2/zi24)£

@R (2/o1:4)

I

s 0D (30 () o, (6.29)
o o a-2/2 . o
:@Y’l'”(zl)@(_l’“)(@) T = <z—;) : ®(1’1-l)(z2)@9_1’1)(21) 5
(6.30)

where we used

We thus find

1 2
R(z1,22) ® (i’l‘i)(zl) i3] (l'i’i)(ZQ)

2\ (g1 /220 Yoo (€22/ 215 0V)o0 2 151 Lo
— <_1) (q2 1/ 2‘q ) (q4 2/ 1‘q4) (D ( 1 1,)(22) (D (l y )(Zl)-
22 (?21/22; ") oo (€*22/215 0% )0

(6.31)
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In the same way we have
F () B (22)

4
= (g2 2/ e G- GO0 () )
(—g21) T (z1) ¥y " (z2) 5, (6.32)
T ()80 ()
3 4
NSV 1(' i Vet WEE AR ED VIR (S DI 3
(—g21) P/ e T (21)2 " (22) 5, (6.33)
U () B (1)
4
ey -12(82/22 80 | giid-0 (G-,
= (—¢°z M/ T Joo AT z1):. (6.34
(-¢°=) (/922 o (2)¥ " (21) - (6.34)

From these identities follow the commutation relations

2 1
R(z1,22) v (i’l_i)(ZQ) v (l“i’i)(zl)

= <ﬂ)l (¢*21/ 23 ¢")oo (®22/213¢%)o0 é, (19 () \% (1=6d) (5,)
2/ (@2/22;0% )0 (¢122/215¢%) o ’

(6.35)

Lo 2z
U (z,l—z)(zl) & (1—1,1)(22)

_ <ﬂ)l_i (a22/21:0")o0 (®21/22¢%)oo (%(i,l—i)(z2) é, (169 (5,).
) (Pz/zn;¢)o (921/722;0*)

(6.36)

Notice that the type I and type II operators mutually commute up to a
scalar factor.

6.5 Dual vertex operators

Let us consider the intertwiners of the form
1-1(z) + V(M) VY - V(AL
- () o v @ V(A) - V(A1)

We call them dual vertex operators. Define their components by
S () = ST (|v) @ we),
() = T2 (e 8 o).
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We choose the normalization
(M|®5(2)|A0) =1, (Ao|@%(2)|A1) =1,
(M|T%(2)|Ao) =1, (AoT~(2)|A1) = L.
Using the relations (3.29-3.30) and the isomorphism (5.26) we obtain
5;(1—1‘,1‘)(2) = (~q)** —21@(1 H)( “2), (6.37)
T = (~g TR (). (6-38)
We have also
('igi,l—i)(z)(‘izl(l‘iyi)(z) — 9‘1655,7 (639)

\f;gi,l—i)(zl)\f;;(l‘ivi)(m) = gl + regular at z; = z

1
1-2z/z1
(6.40)

where g is as in (4.28).
Let us prove the second. First we consider the case ¢/ = —¢. Using the
commutation relation, we have

{I'/gi,l-i) (Zl)@r(fl—i,i) (q222)

_(£6) /e ulan/ i) G019 (2 2 ) B -0) (2,
<Cl ) @1/ Vool @tz Pos ¢ (¢222) B0 (1),

Suppose first that € = + and consider \flgf’l“l)(q%g)\flg“l’l)(zl) given by
(6.32). Its simple pole at z; = 2 is cancelled by the factor (21/22;q4)°o
Therefore, this is regular. For € = —, we need to compute the product with
z$ by using (6.26) and (6.27). An explicit calculation shows that there is no
further pole at z; = z2. We have shown \Tl(_l_"glgi)(zl)\fl;(lti’i)(ZQ) is regular at
21 = z9. Next consider the case €/ = €. We have

\I/(tl z)(z) *(1— ll)( )
= (B V(a)ag - +@“’1'”(z (=)' T ()

¢*z/21;q%) = (4,1—i T (15
= (~g=z1 )1/2Eq zzjzi q*) ?{Zm \I/(+1 )(Zl)‘I’Srl (@)X ()

X (—q) -1 ; 1 1
- w . Z1 2 .
J 1-= 1z
g 0 w5
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The pole at z; = 23 appears only in the first term of the integration. Using
()BT (@) X (2 = ()R,

we have (6.40). The other case is shown similarly.
Using (6.31) we obtain also

Z (5;(1;,1—1;)(2)(5?—1;,1;)(2) — g-l.
e=%

6.6 Principal picture

By the isomorphism (5.27) between the principal and the homogeneous pic-
tures, the corresponding VO'’s are connected by

ei-id(¢) = (FRI(CY),

v = TR,
This amounts to choosing the normalization

(A|2_(OlAo) =1, (Ao|®4(Q)|A1) =1,
(M (OlAo) =1, (Ao T4(O)IA1) =1
The parity property (4.30) is manifest.
By the definition of highest weight modules, there is a Zj-symmetry

exchanging 0 and 1. This means that we have the isomorphism of vector
spaces

vV V(Ao) —_— V(A]),
v(|Ag)) = |A1), v(zu) = v(z)v(u) =€ U, u€ V(Ag),

where 7 signifies the automorphism of U/ = Ué(sAlg) sending eg to e;, fp to
fi, to to t1 and vice versa (for the definition of U’ see 3.4). Unfortunately
this symmetry is not at all clear in the bosonization as it is based on the
homogeneous picture. It is apparent rather in the principal picture. In fact
we have the relations

e =200,  »u®(r =80 (0).
This implies, for instance,

(Al (C1) - e, (Ga)lAg) = (A1l @) () - @ (o) A1)
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In the appendix, we summarize the properties of VO using the principal
picture.

One of the important differences between type I and type II operators
lies in the structure of poles. This is manifest from the formulas (A.16):
As an operator the product @, ({1)®e,({2) of type I operators is analytic
up to |G2/¢1) < ¢~ 2 including (1 = (2, whereas for the type II operators
W (¢1)¥2,(¢2) is analytic only in |(2/(1| < g? and has poles at (2/(; = %q.

We end this chapter by giving a remark on the symmetry of matrix
elements. Let w be the involutive anti-automorphism of U given as follows:

w(qh) = qh7 w(ez) = —fiti, (-U(fl) = —ti'lei.

It can be shown by a standard argument that the irreducible highest weight
module V(A) admits a unique non-degenerate symmetric bilinear form ( , )
with the properties

(vp,va) =1, (v, zv) = (w(x)u,v) VzeU, u,ve V(A).

We extend this form to V (Ag) @V (A1) demanding that V(Ag) and V(A1) be
orthogonal. Then the following relations hold for any u,v € V(Ag) & V' (A1):

(4, Penv) = (Pe,—nu,v), (u, 7 4v) = (P, _pu,v). (6.41)

This can be verified by induction on the degree of u,v, but we omit the
details. Let
@: V(A) — V*(A)

be the identification map via ( , ), i.e. one such that @(JA)) = (A| and
@(ru) = W(u)w(z) for £ € U and v € V(A). Then the properties (6.41) can
be rephrased as

D((I)El.nl T (DEk,nkIAi)) = <Ai|¢)—5k,—nk tr (I)—El.—m
and likewise for U*. In particular we have
(Aal @21 (G1) -~ Ben(CR)IAG) = (A2 (G1) - Boe (G IA).

The same relation holds if we replace ®.(¢) by ¥ ().






Chapter 7

Space of states—
mathematical
picture

In this chapter we return to the structures introduced in Chapter 4. We
begin by identifying H®, D® and ®*~*) with objects in representation
theory. Using these as building blocks we shall define such notions as space
of states, transfer matrix, Hamiltonian, vacuum and excited states.

7.1 Space of states

Recall the formula (4.23) for the character of the space H(Y). The basic
cbservation is that it coincides with the principally specialized character of
the level one modules (5.2):

tr @ (tD(i)) =1rya,) (t'p+i/2) .

This may seem rather accidental at first sight. Nevertheless this type of
coincidence between the characters of affine Lie algebras and the spectra of
CTM has been observed for a wide class of models [21, 22, 23]. Subsequently
it was established systematically by the theory of crystal bases [50]. We are
thus led to inake the following identification:

HD =V (A),

)= —pt b
D p+2
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Moreover, one expects that the VO defined as a half-column transfer
matrix should commute with the action of U. The argument goes in much
the same way as with the full-column transfer matrix at the end of Chapter
3. The only difference is that for the upper half column the boundary on the
top goes away in the limit but the central site does not. This is the reason
why VO is a map of the form H®) — H("9 @ V. Thus we identify the
VO’s defined as the half-column transfer matrices with ®(*~%9(¢) defined
mathematically as intertwiners of type I. With this identification we have
already verified all the properties of VO listed in Chapter 4.

Roughly speaking, what we are doing is to regard the half-infinite tensor
product as representing the level one module

"'®VCH®VCHNV(AL')7

where the choice of the i-th boundary condition is implied in the left hand
side. Then how should one understand the tensor product extending in both
directions?

To answer this question let us consider the following anti-automorphism

b(z) = (—9)’alz)(-q)™" z€l
Explicitly we have
ble:) = gt e, b(fi) =q ' fiti, blg")=q ™.
A convenient feature of b is that b*> = id ., and that the following isomorphism
holds:
c:V ——»Vc*b v ® (" v @ (™

Moreover it is an anti-coalgebra homomorphism, so that

Veu @V @0 £ Vi oViie. - (7.1)
(< ®Vey ®Ve) " ~ V(AT (72)

Il

where we put R = C®C ®- - -. Hence, assuming the i-th (resp. j-th) bound-
ary condition to the left (resp. right) end, we are led to the identification

@V OV, @V, @ Ve ®- ~ V(M) ®V(A)®. (7.3)

Notice that V(A;)*® is a lowest weight module of level ~1, and hence the
right hand side has level 0. We now define:!

In (26] F was defined using antipode a in place of b, Here we followed the convention
of [66] which seems convenient to make contact with the naive picture.
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Space of states

F=HRH™ = @ jug, F),
H =V(Ao) ®V (A1), 74
FoI) = V() © V(A

Note that this is a level 0 module. To be precise the space of states
should be a proper completion of the algebraic tensor product (7.4), for
operating with the VO’s necessarily produces infinite sums. As we have
explicit formulas for the space and VO’s anyway, we will not discuss these
points here. Henceforth we regard the VO’s as acting on the direct sum H,
and drop the superscripts (1 —1,1%).

7.2 Translation and local operators

At first glance the argument leading to the identification (7.4) seems artifi-
cial, as it breaks the translational invariance of the problem. One may also
take

V(A) @ VEr @ V(Ay)* (75)

as an alternative of the F(*9) (with an appropriate choice of 7/, j'), since
after all what matters is only the boundary condition. Fortunately these
questions can be resolved by using the type I operators.

To simplify the notations we will suppress the index ¢ and write D =
—p+1/2, etc.. Using the isomorphisms

V(A)—V(A—) ®V, w7y P (Dudu,
£
VOVA)T—V(A-)?, v®u" = a0 (1)
we may identify
V(A)®V(A)*™ 25 V(A-)QVOV(A;)* <5 V(A1~)®V (A1-;)™. (7.6)

It is also clear that (7.5) can be identified with F(*7). Composing (7.6) we
define

Translation operator

T=¢3 2.(1)®2_.(1),
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whose inverse is
T =¢) ®;(1)® o (1)"
£

Using the middle realization of (7.6), one can define the local operators
on V as operators on F(9. Let us label the tensor components from the
middle as 1,2,--- for the left half, 0, — - for the right half. Then the
operators acting on the site 1 are deﬁned by

E. = ¢g®}(1)®(1)®id, (7.7
O'it = Ej:q:, O'f:E++—E__.

Here ot = (¢® £ io¥)/2. More generally we set
o2 =T~ Vgl (ne7Z).

For instance

of 22@*(1 ) (1)®.(1) ®1id,
g% = 91d®(‘1>i(1) ;(1))‘-

7.3 Transfer matrix

Let us consider how the column transfer matrix T'(¢) = Teo1(¢) looks like in
this picture. From the graphical definition of VO, its elements are given by

TOREEE = X @undO 3 * Prows( O35
- 2(@ (O ph > (@-clO) T

On the other hand, if we regard ®(¢) = Y., ®.({) ® v- as a map
("'®VCH®VCH) '_’("'®VCH®VCH)®VCV7
then its transpose
*b *b *b *b *b
Vit (Vipevie ) — (Vievie )
is a map

Ve ® (U, @, @ -+ ) — Z(”pl ®Qup, @) (‘D—E(O):ZZ:::’_Z’/—N“ :

PN+
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Here we have used the identification (7.2).
This motivates us to define

Transfer matrix

T(C) =g 2(0)®(@_(0). (7.8)

The translation operator is 7 = T(1) as expected. Conversely, using the
homogeneity of VO we can write
T(Q)=¢PT(P

where D denotes its action on H ® H*®, ie. D®id —id ® D'. Hence the
transfer matrices are manifestly commutative with each other. Notice also
that

T =92 %0 8 (L) (7.9)
Comparing with the formula (3.14) we define

XX7Z Hamiltonian
1 ¢ d

TR T(©)| _- (7.10)

(=1

7.4 Vacuum

Often it is convenient to regard a state f € F as a linear map on H according
to the relation H ® H** ~ End (H). ! In this language the left action of U
takes the form

z.f= 217(1) o fob(z(y), Az) = Zw(l) ® T2y (7.11)

A linear operator of the form O = ¢ ® ¥ (¢ € End (H) and % € End (H*?))
operates on a state f as

frogofoyt. (7.12)

For instance, the transfer matrix (7.8) acts on a state vector f as

T f= 92‘1’ (o fod_c(0)

!Strictly speaking ‘=’ should be understood properly as H is infinite dimensional.



88 CHAPTER 7. SPACE OF STATES—MATHEMATICAL PICTURE

The dual space is F* ~ H ® H*® via the pairing

(fr9)=tru(fog).
The right action of U is given by

f.:L‘ = Z b(z‘(g)) o f o 1‘(1). (7.13)
Let P® denote the projection H — V(A;). We call the element
vac)y = x 3 (-)P PO € F

the vacuum in the i-th sector, where x denotes the principally specialized
character (5.1)

o0

x=xa(d%) = -¢"H" (7.14)

n=1
When regarded as an element of F* it is denoted by (;) (vac|. In what follows
we will suppress P® which should be clear from the context. For an operator
O on F its vacuum expectation value is the coupling of (;)(vac| and O|vac) .
In particular if © is of the type O = ¢ ®id or = id ® ¢*, then its vacuum
expectation value reads

tr V(A;) (q2D(l) d’)
Ay (q2D(=)) ’

Physically one expects that the vacuum vectors are translationally in-
variant and a singlet (i.e. belongs to the trivial representation of U). These
are immediate consequences of the definition. In fact,

Thvac)yy = x Y293 2.(0) (~9)P"@_.(¢)

= x93 @ ()@ c(~qC) (-9)P" "

|vac)(1-),

() (vac|O|vac) ;) = (7.15)

Il

where we used (A.4.4). Similarly,

_ ()
z.|vac)y = X 1/2Z$(1)(‘Q)D b(z(2))
- ()
XY zyalem)(~a)”
e(z)|vac)(y)-

In the third line we used (3.18).

It

Il
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7.5 Eigenstates

In order to construct general eigenstates we employ the type II operators.
For &1, ---,&n with |§;] = 1 we define the n-particle states

n/2 N * (i
s s E)eneny = 9 AXTVRUE (6) - U2, (61)(—9)P (7.16)
(errenl€l 2 &al = gTACVH=)PV O, (61) - Ve, (60).(7.17)

These are vectors in F+™%) F*i+n9) regpectively. The product of opera-
tors such as (7.16) is understood as analytic continuation from the domain of
convergence |£,| > - -+ > |£1] to the unit circle. The series obtained by ex-
panding the operators in power of the spectral parameters are not absolutely
convergent on the unit circles |£;] = 1 because in the analytic continuation
we encounter poles.

Using the commutation relation with the type I operators (A.4.3) one
verifies that

Tl €0 eneris) = cZ@(c t (&) UL () (=P @ (0)

= ¢ H T(¢/&) Ve, (&) - - \p;l(&)(_q)Du—l)

j=1

XY ®:(-g71)@_c ()

n
= H T(C/é]) |§n1 ] £1>En,-~,51‘,(1—i)'
1=1
Here we put ¢ = g* ~/2x~1/2 and used 7(—q() = 7({"1) = 7(¢)~!. Therefore
(7.16) are eigenstates of T(¢)2. Likewise for the bra vectors. In particular
the eigenvalues of the translation operator 72 and the Hamiltonian H on
the one-particle states [£)..(;) are given by

T*e)ey = 7(6) *1E)eii)s
Hl)eyiy = €O

where
_ -1 9q4(q§2)
T(é) - 6 6q4(q£_2))
_1-¢* d
e(§) = 5% £d£ log 7(§).



90 CHAPTER 7. SPACE OF STATES—MATHEMATICAL PICTURE

Let us rewrite 7(£) and €(£) in terms of Jacobi’s elliptic functions {39, 15].

We set
£ = —iel® g=—e"K/K
where K, K’ are the complete elliptic integrals. Because we are working in
the region ~1 < ¢ < 0, the nome of the elliptic functions is chosen to be —q.
In this parametrization we have
2K 2K
7(€) =sn <—9) +icn <—9) ,
T T

or equivalently

(€)=, p(6)=am (270) - 7. (7.18)
By differentiation we also obtain
7
e(¢) = 2 sinh - dn (6) (7.19)

These formulas coincide with the momentum/energy of the elementary ex-
citations derived from the Bethe Ansatz method [48, 7].

Let us consider the action of U’ on the eigenstates. For f € End (H) we
define the left and right adjoint actions of z € U’ by

adz.f = 237(1) fa(z(2)), fad"z = Za'l(z(g)) fzay,

where A(z) = 3 x(;)®%(2). They are related to the left (resp. right) actions
(see (7.11) (resp. (7.13))) on F (resp. F*) via

z.(f(~9) = (@dz.f) (-9)°,  ((-9)°f) = = (~9)° (f-ad"z).

Moreover they are compatible with the composition of maps in the sense
that

il

adz.(fg) = 3 (ad(e).f) (2d(z)9),
(fg).ad "z ¥ ( f.ad(z(g))) (g.a.d (:v(l))) .

Using (3.17), (3.18) one can verify

Il

Il

adz. VI(§)
U, (&).ad"z

\II*(&) (:L‘UE & ) )
((viz,-) ®id) ¥(£).

Il



7.5. EIGENSTATES 91

Therefore, the left and right hand sides of the following share the same
transformation properties under the action of U’:

I&n;"';él)én,'--,él;(i) — U€n®”'®v€l e‘/&n®...®‘/§“
(i);e1,---,en<§lx"‘7§n| o U;1®“‘®U;n EV&@"‘@V{M

In other words the eigenstates give rise to the embedding
Ve, ®--®V;, ¢ HD@HD* if n is even,
Ve, ® - ®V;, ¢ HID @HO if nis odd.

In [32] Faddeev and Takhtajan pointed out that the particles of the XXX
model in the anti-ferromagnetic regime transform as a two-dimensional rep-
resentation of sl(2). This means that, in the same way as above, the n-
particle states constitute the n-fold tensor product of C? as a representation
of sl(2). However the role of the full infinite dimensional symmetries was
not discussed there.

We expect that these eigenstates satisfy further the orthogonality

(B)ie1,Em <§17 te 767”'6;17 Tty 6;)&;,---,5'1;(1’) =0 (m 7& TL), (7'20)
and the completeness relations
idy = Y% Z ?{ o & (7.21)
o S emes nl 2mi&, 2mi€,

I&n: T 61>en,---,e1;(i)(i);el,---,sn <§17 Tty §n|

Notice that thanks to the commutation relation (A.2) the combination

Z |§nv T 61>€n,"',€1§(i)(i)}El,"',En <§1; ) §n|

€n,y€l

is symmetric in the variables &1, -, &n.
We will come back to these relations (including the case m = n of (7.20))
after deriving the integral formulas for the trace of VO’s.






Chapter 8

Traces of vertex operators

We calculate the trace functions by using the bosonization of the vertex
operators. The resulting expressions are integrals of certain meromorphic
functions written in an infinite product form.

8.1 Calculating the trace

We will calculate the trace functions;

tryan (208000, () -+ @en (Gn) U5 (60) - W5, (6) . (B

In this section, the parameter z is assumed to be sufficiently small. After
establishing that (8.1) is meromorphic in all the variables, we specialize z
to ¢° by analytic continuation in order to obtain the correlation functions
discussed in Chapter 4.

We use the boson realization of the spaces V(A;) (: = 0,1) discussed in
Chapter 5;

V(Aj) = Cla_1,a-2, -] ® <€BlezeA"+l").
To avoid confusion, let us use the (bra)cket notation such as a_;|0) to des-
ignate the vectors in Cla_1,a-2, -]

For convenience, we introduce operators ¢(¢), ¥*(£), x (w) and x*(v)
which are all of the form

eZ:‘;l Ana-n eZZJ:l Bnan gex fa_

The choices of Ay, By, ¢ and f are given in the following table. In the
subsequent calculation we use different letters (, £, w and v for the variables

93
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of these four operators, in order to distinguish contributions from each of
them.

A, B, c f
PO | T | I | b | (=)
v© | et | Tmret | -3 (o)
x (W) | ~Trer | e | -1 (@)
) | r ot | )T [ 1] gt

Notice that x~(w) = X~ (q¢*w) and x+(v) = X*+(—g%*v). The operators
a~")(¢) and w749 (£) are given as follows.

2U9() = (- qS)%(c) (8.2)
o) = 3)i/2g? f 27”(99(( X~ (w) — gx~ (w)p(¢)), (8.3)
v = (g )Z/Qw ©), ®4)

v = (—) f ;—;(w*(oxw)—qx+(v)w*(s))- (8.5)

Here the integration symbol § 22 30 means taking the (—1)-th coefficient in
the Laurent expansion in w.
We use the formula

tr V(A) (I-Dez:o:l Ant_n 62:;1 Bnan ecafa) (86)

— 60,0(1' ) lfze ( 1_1+21f2 exp (Z Z 2mnA B [2TL] [TL])
m=1n=1
where (z)o and 6,(z) will be defined in (8.17).

Eq.(8.6) can be verified as follows. Clearly we must have 6. ¢ since the op-
erator e°® shifts e? to e#+°*. We can calculate the contributions in the trace
for the tensor components (i) 33, Ca* ,|0) (n > 1) and (ii) 32, Celitla,
separately. Notice that the operators D and O are diagonal on the bases
@, -+ a_p,|0) ® eMHe with the eigenvalues

.
D:2) n;+ 2% —1+2l
j=1
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and
9.1+ 2,

respectively. Therefore, for (ii) we have

2 o A .
Z iL‘2l —l+2zlfz+2l - f’6z4(——z1+2’f2).
leZ

For (i) we use

2 k
eA”"‘"eB"a”ali"|0) = gAna-n <a_" + Bn[ nT]L[Tl]) |0>
Taking the coefficient of a* ,|0), multiplying %" (coming from the term

23771 n; in the eigenvalue of D) and summing up with respect to k we get

3 ka: B, et
r &=
Per S A (ORCEDE 1—r
where 2
TZZ'2" ands:A"B"[n][n]‘
n

Let us introduce h;(z) (i=1,2,3) by

hi(z) = exp (— i %) =1-z, 8.7
n=1
ha(z) = exp (— > [27:}]1»1) =(1-g)1-a"2),  (88)
n=1
B B 8 () W C L2 2
ha(z) = exp ( ;nw) = e (8.9)

We also use h{°(z) = [ hi(z2"2).
We wish to calculate try,,) (zD yBO) where O is a product (in a certain
order) of the operators

X"(w) (b€ B), (8.10)
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where we define the index sets

A {5i1<ji<me =+}, (8.11)
B = {k1<k<npu=+}

In fact, we must take care not only of products but also of sums and integrals
of the operators as we see in (8.3) and (8.5). We will come back to this point
later.

The procedure of the calculation goes as follows. First, we normal-order
the product, and then apply the formula (8.6). Thus we get a Laurent series
in the variables (;, £k, w, and v,. We will see that the series has a certain
domain of convergence, and is equal to a meromorphic function.

Let us explain this procedure in detail by taking the product ¢(¢1)e(¢2)
as an example.

The normal-ordering gives rise to

0(G)P(C2) = cpp(C)hpe(Cr, C2) : (C)e(Ce) ¢, (8.12)
Coo(C1) = (=402, (8.13)
hoo(Cl,C2) = ha(ai3/¢h). (8.14)

The factor c,,(¢1) comes from the product (—¢3¢,)%/%e%/2, and hop(C1, €2)
from exp (3~ —q=5/2¢[ *"an/[2n])exp (3 ¢"*/*¢3*a_n/(2n]). In summing up the se-
ries ho,y(C1, G2), we used the product formula (8.9). The convergence domain
is known to be [(2/(1| < ¢72.

In applying (8.6), we must take into account both of the contributions
from

/2 ~5n/2
_ (4 2n __q —2n
(Aan") - ( [27’1,] <2 ’ [27’1,] Cl )
and
7n/2 —5n/2
— q__ 2n _g__ —2n
(Aan") - ( [21’1,] Cl ’ [21’1,] <2 )
They are hgoo) (z%q¢2/¢?) and hgoo) (x2q¢%/¢2), respectively. The convergence

domain for the product of these two series is known to be z¢% < [(2/¢1| <
(zg®) " _
As a whole, the contribution from the product ¢(¢1)p((e) is

(=a* )2 (g3 /CHRS) (2%aCE/ ),
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and the convergence domain is
-2
oq® <|G/Gl < g%

For each pair of the operators in (8.10), we want to calculate the contribution
of the normal-ordering (8.12) and that of the trace operation (8.6). As above,
the latter is easily obtained from the former. We give the list of the c-terms
(8.13) and the h-terms (8.14) in the tables below.

Table of c-terms

e(¢) P (E) X~ (w') X" (v')
e(Q) | (=@ | (=) | (=) ¢
V(&) | (=D)L (—g3R)? -2 | (=g¥H)™!
X

~(w) w1 w w w

x(v) v vt v~2 v2

Table of h-terms (z = (2, 2/ = (7, u = ~£%, v/ = —¢£?)

e@) | wE) | x ) ()

e(Q) | ha(gZ'/z) | ha(—w/2)7t | m@'[2)" | h(-q7"/2)
W*(€) | ha(=2'/u) | ha(a™"Ju) | hi(=g7 ' /u) | ha(g™% fu)
X~ (w) | hi(¢?2 fw)™' | ha(—qu'/w) | ho(qw'/w) | ha(=v/w)”!
XT() | hi(=g/v) | ha(@//v)™" | ha(—w'/v)7' | helq™'v/v)

Let us discuss the convergence domain. As we discussed, for each pair
of v(¢;) and ¢((;) such that the former sits to the left of the latter in the
product, the condition for the convergence is z2¢* < |z;/2;| < ¢~*. From the
table of h-terms, we can list such a condition for each pair. The condition
differs for each pair. Nevertheless, we can observe the following common
feature; For any pair z; and zp among the variables z; (1 < j < m), ug
(1 <k <n), w, (a € A), v, (b € B), where the operator corresponding to
2L sits to the left of the operator corresponding to zg, the condition for the

convergence is of the form

2@ < |zp/zL| < ¢*
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for some j; and jo. Therefore, if z is sufficiently small, we can take a non-
empty domain of convergence common to all the variables. In this domain,
the Laurent series sums up to a meromorphic function as we can read from
the tables of the c-terms and the h-terms.

In the formulas (8.3) and (8.5) by the integration symbol we meant to
take the (—1)-th coefficient in the Laurent series expansion of the operator.
Now, after the calculation of the trace, we can take the (—1)-th coefficient
in the Laurent series expansion of the meromorphic function by an actual
integration with respect to an appropriate cycle in the convergence domain.
Thus, we have obtained an integral formula for the trace function. In the
next section, we write down the integrand and the cycles explicitly.

8.2 Result
Let us summarize the result for the trace. Notice the Zy symmetry

trv(ao) (27526, (G1) - B (Gm) T, (6n) -+ U, (61))

=tr V(A1) (szl—h®—51(<1) P, (Cm)‘llt-pn (6") T ‘I}t-;q (61)) .
(8.15)

Recall the definition of the index set A and B in (8.10). Set
s=14A4, t=1{B.
Because of the Kronecker symbol in (8.6}, the trace (8.1) vanishes unless
m-—n=2(s—t). (8.16)
In the sequel the indices j, k, a, b are understood to run over
1<j<m, 1<k<n, a€A, beB,

respectively. We set

Z2; = <J27 Ug = _62
We use the following notations:
{Z} = (Z§q4,1'2)oo» (z)oo = (351'2)00» (8‘17)

Bp(z) = (2P)oo(Pz i P)oc(BiP)o = Y (=2)"p V2,

neZ
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I (O N (o ) SR
W) = Gy (G T H0T)

2,21\ ™ 2} \"
;vtm —_ 6m_n,2(3-—t)(_—q)N (}34];2%) ({({12;1;3})

X (225 NP7 )5,
m {m n{n
= (2 ~ (= —nt.
N 2<2+1)+2<2+1)+ms n
Then for i = 0,1 we have
trv(ag (2250 () Ber () U, (Gn) -+ 13, ()
<y Y+ (25/25) Tk v- (“k'/“k)
I £ v0(2j /uk)
XHC J+(1+5.7)/2+’H§k (I+pk)/2-i

H }{ 4ty H }{ 2‘::2 (2,4, w, v) (8.18)

2miw,

__mn
- Cst

where the integrand is given by

1
i(z,u,w,v) = 2; — ~lwa Zj — Wy
Fi(z,u,w,v) ]I;[a(q 7 — 4 )]I;[a( )E (wa/zj)oo(q2zj/wa)oo
-1 _ ,-1,-1 ol gt 1
X kl;[b(qvb q “ug )kl;[b( b k )g (4205 /) oo (4 Vb Joo
O,2(—q Lvp/ 25 O,2(—qui/w,
<1 ( 7 b/ )H (zg k/Wa)
b (z‘ )°° ka ( )oo
<T1 ()%
ab S} 2('—qvb/wa)e 2(— —lvb/wa)
q wa/wa') (q wa’/wa)oo wa’ 63;2 (wa'/wa)
g aIJz' Wy = q*Wa (2%)co
vy Oz2 (vp/vw)

x [ (oo ~ q“%b)(ﬁq“?vb/vb/)oo(qu“va,/vb)oo (@)

bty
/
_ n_1+2i m-n, 2 112 [1%
x6z4k (- 1) "y Hu;cHw2>

(g Ly

Wq
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The contours C, C are anti-clockwise circuit surrounding the poles of the
integrand by the following rule.

Cc q2z2lzj (1> 0) are inside and z‘mz]- (1 > 0) are outside , (8.19)

C : ziu (1 > 0) are inside and ¢z %y (1 > 0) are outside ,
—qtz%w, (1 >1) areinside and — ¢z w, (! > 0) are outside .
(8.20)

Figure 8.1: The contour ¢

The contours C and C are determined by the following argument. They
are chosen by examining the domain of convergence for the integration vari-
ables w, and v, as discussed in 8.1. In general, the product of operators in
(8.1) gives rise to a sum of products of the operators listed in (8.10). This is
because (8.3) and (8.5) contain two terms. Different products have different
domains of convergence. Therefore, the integral formula contains integrands
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with different contours. This is cumbersome though not serious. If we can
choose a contour commonly belonging to the convergence domains, we can
sum the integrands to get a single integrand. In other words, we can use the
following formula instead of (8.3) or (8.5);

U=id) oy (_3yi2 W (1= g%’

L () = (-¢7) ¢ 2miw q(w — ) (w — ¢2C2)
i o [ @ 1 - ¢*)vg? .

\I/+(l ,)(5) = (=¢°)? 62—7:’:17(—7)—(—52%5_2) (Y (E)xT(v) ;-

sp(Qx T (w)

Let us examine if this is true. First, consider w,. For the product
¢(Ca)x ™ (w,), the convergence domain is

w
z2q2 < |2 <«1,
Zq
and for x ™ (wge)w((a), it is
@< |2 <2

Therefore, we can choose the contour C for the variable w, in the common
domain

a

and for x* (vp)* (&), it is
v
1< ‘—b‘ < z“2q2.
Up
In this case, there is no common domain. Nevertheless, we can take the
contour C for the varlable v in such a way that the pole at u, lies inside of

C and the pole g~2u, outside. In other words, we choose C in such a way
that it surrounds ug inside but g%uy should be outside it for all k .

For the product of type I operators alone the formula above simplifies as
follows.

try(a,) (75 Y @EI(CI) @, (Cm))
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- ot TP I1 f

mwa
i<y’
1
x (qz.__q"lw) (Z'—’LU)
1 = H ) N C A

y H (g wa/wa) (q2wa [Wa)eo w;16z2(wa’/wa)

S ST (e

X0 <— 1+2’q’"y2IIIIw2) x ((—q)mﬂwagl)i,
(8.21)

where

O = T = bmas(~ q)mz/“’"ﬂ(gﬁ,ﬁ) @) ).

8.3 Examples

In the case £; = px = — for all 5,k (and hence m = n), the formula (8.18)
involves no integrals. Accordingly we have

tryay (P9 0-(G1) - @ (Ga) UL () -+ U (61))
- (ZL‘ )n 1H]<]’ ’7+(< /<2)Hk<k’ ’7—(61‘;’/61‘;)
H]k%( C/fk)

x H Cj']'-i‘i Hé:_l ylez4 (_Z,H-?l H C] )
]' J k H&k

In Appendix (A.4.7), we give the explicit formulas for the traces in the
simplest cases, which can be determined by solving the difference equations
and examining the analyticity by the integral formulas. The formulas (A.18)
and (A.19) are special cases of (8.22) but are listed for comparison. Notice
that the formula (A.18) vanishes at z = ¢°. In general, we have (see 8.4)

(8.22)

try(a,) (QQD‘I’;“ (G) - ‘I’un(Cn)) =0.

We will give the derivation of the formulas (A.17) and (A.18). Essentially
it is a repetition of the argument in 4.2. In 4.2 the parameter x was set to
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g°. We also assumed a certain analyticity property, which we derive here

from the integral formula in this section.
Set

£4(0) = try(ag (z2@0V ()20 () + 20V () ()))

where ( = (2/¢1. Then, as in 4.2, we have

Q) = £+ (=), (8.23)
@) _ 1+ag,
AT (824
From (A.6) we have
f+(=a) N

It is easy to check that (A.17) gives a solution to these equations. On the
other hand, the solution is unique if we further demand that it is holomorphic
for g < |¢| < z7'¢"!. Let us show this property by using the integral

formula. Specializing to the present situation and setting z = (2, we have

2.212(,2 -1
D g (0,1) (10) _ {7} (g or+ (27)
tryag (70 (B0 (G)) = S
dw 0,4(~zg%z7 1 /u?) { (1-w)
¢ 2miw (wz)oo(w)oo(q%—l/w)oo(q2/w)oo ((a/z—w/q)’
The contour for w is pinched when z = ¢2, z2q?,.. ., orz=q"2,z7%¢%,.

where the integral may have poles. However, the pole at z = g2 is cancelled
by the zero of v, (z™!). Therefore, f,(¢) is holomorphic if ¢ < || < z71q7L.

The derivation of (A.18) is similar. Instead of (A.6), we use (A.9).

8.4 Orthogonality of the eigenvectors

We will state the orthogonality relation (see (7.20) for the case m # n) for

the eigenvectors created by the type II vertex operator. We also give a sketch

of proof, although we have not worked out the complete details of the proof.
Before going into the general case, let us consider the special case,

G (6, €) = try,) (sPLL(ET(E)) .-
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This is a meromorphic function of £ and & as given in (A.18). We are
interested in the poles of GSL,({ ,&') that are located near the submanifold
|| = |¢'| when z is close to g°. The formula (A.18) shows that there are
poles at &2 = £2 and &2 = ¢*z72¢"2. From (A.9) we see that

G(l) (& €') ~ b 1%2- thYV(A)( ) g2 -
—5

On the other hand,

try(a,) (zD\II#(ﬁ)\I/;,(ﬁl))

try () (ﬂfD‘I’*'(ﬁl)‘I’ (395))
= GNP (~a¢, ~q 7 f).

Therefore we have

(z s 1 D 2 _, 4 22
G 6,€) 5yy1_%z_§§;xgtrvm1_1)(z) £~ g'a7¢"

o

Since try(a,) (zD) = try(a,_:) (zD) = (z;2%)7}, these two poles cancel
each other at z = ¢2. This is easily seen from (A.18) since it is identically zero
at = g°. A question arises: Is the norm of the eigenvector @t iy
identically zero? The answer is NO, but

()i <§|§/>(i)m’ = 6##’6(52/5/2)»

where 6(¢2/€"?) is Dirac’s delta function in the sense given below.

We assume the reader knows the definition of Dirac’s delta functions as a
sum of boundary values of holomorphic functions. Take the real coordinate
6 on S! = {£;|€| = 1} where £ = €. By §(¢?) we mean the delta function
on S! supported on £2 = 1;

1 1
2 - p—
(&) = 1 — e2i(6+i0) 1 _ £2i(8-i0) "

We have

1 1
b-v / 27rzw éf )1 - %) T 1 — e2i(01-62+i0)
w

Here the integration contour C is such that £ = €% is inside and ¢ = %62

is outside. The symbol b.v. means taking the boundary value near the real
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manifold |1| = |§2| = 1, the integral defines a function holomorphic in the
imaginary direction |§1| < |£2], ie., Im#; > Im#y. Therefore, we take the
boundary value of the meromorphic function 1——Elf/_§27 from that direction. In
other words, the left hand side can be replaced by the integral on the real
manifold S! = {w = e*},

d\ 1
o (1 = i@B=2+i0))(1 = i ~262+i0))°

With this understood let us proceed to the general case.
Consider the trace function

try(a;) (zD‘I’un (&n) - Py, (51)) :

The integral formula tells us that this is a meromorphic function. We claim
that it is identically zero if x = q>. The reason is as follows. Set

FO(@;6n, -, 61) = trya,) (ePU(E) - U&))

= Z tr V(A,) (zD‘I’#n (gn) c ‘I’m (51)) UV, @ - Quy,.
Hny ol

This is a meromorphic function taking its values inV®---®V. Suppose that
(&n, -, &) € (C\{0})" is a regular point of F®)(z;&,,---,£). Consider the
actionof ' onV®---@V,

p:p§l®®p§n’

where, for a comlex number £ € C\{0}, p¢ denotes the representation of U’
such that

p

2 8), P(f1)=<£91 8),
0

0

). =0 5).

The vector F(*)(q2;£,,---,&) behaves as a singlet, i.e., a vector in the one-
dimensional representation, under the action of U’. For example, take e; €
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U’. Because of the intertwining property of ¥(£) we have

plej) FO (z;6n, -+, 61)
=trya,) (ﬂfD‘I’(&n) e ‘1’(51)6]') = p(ti) try(ay (zDej‘I’(ﬁn) .- ‘1’(51)) .
Using the properties
zPe, = z7le;zl,

weight of (tr V(Al)(zDe]-\I/(én) S \11(51))) = weight of e;,

we have

p(t5) tr v (a,) (zDe]»\I/(gn) : “‘1’(51))
=g’z Mryp, (“’D‘I’(fn) e ‘1’(51)31)
Therefore, letting z — g% we have
p(t;)F (% 6n, -, 61) = 0.

On the other hand, if (£,,---,&) is generic, the representation p has no
singlet [20]. Therefore, the vector F((g2;&,,---, &) itself is zero.
Now, consider the meromorphic function

GHI’...,“m“In"..'“’I (ZL', 611 o 7§m7 6/"’ T 6’1)

= tryay (TP (€0) - Y (€m) U (60) - Ui (€1))
and set

GOz 81, em, Epy o1 €1)
= Z G;tl,w,pm;t’n,w,p’l (‘T;gh"'v&mv&;)”';éi) X

HLyafan i,
XUy @ @ Uy, @V, @+ Qu_yy.

We will examine when z is close to ¢? the singularity structure of G near
the real submanifold
&1 = 1€l =1 Vi,k, (8.25)

which is equal to (S1)™™. Using the integral formula, we can show that in
the vicinity of (8.25) the only poles are £2 = &% or £,2 = z%¢~*¢2. These
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poles are simple. They arise because the contour for an integration variable,
say v, is pinched by the simple poles of the integrand of the following types:
v-—§2 and v = &2, v = ¢~ 2§2andv—z‘2q2§k,orv—zq‘2§2 and
v = qié’ 2 Looking at the contours more closely, we see that the plnchmg
by the poles v = 52 and v = 5 is such that the integral has a well-defined
boundary value on (8 25) from the imaginary dlrectlon |§2| > |§k2| Similarly,
the pinching by the poles v = ¢ 252 and v = 72¢%¢,2, (or v =z2q 252 and
v = q%£,?) is such that the mtegral has a well-defined boundary value from
€2 > |§J2| Summing up, the integral has a well-defined boundary value,

bv. GO (%61, Em 61 60) (8.26)
on (S1)™™,
For an element w of the n-th symmetric group let
w= wisjs T wiljl

be a reduced expression in terms of elementary transpositions w;; (i < 7).
We set

Ry = Rij, (&, /&5,) - Bivin (§ii /€50)-
With this notation we claim that (8.26) is equal to 0 if m # n, or equal to

6/ i+j+'1;2‘“j‘ )
Y nganwH( ) 5(€3/€2 )

HLyeeesfin wESn Su(i)
XUy @+ @ U @ Vo) @ BV, (8.27)

ifm=n.
To show (8.27) the key observation is the residue formula

0y (7 (€1) - W () T (6) - T (61))

& 1+n
MELEVAC A o (8.28)
1~ §In2/§m

Xty (a,) (zD‘I’(ﬁl) U Em1) Y (6ny) ‘1’(5'1)) + (regular).

This is formally a consequence of (A.9), and can also be derived from the
integral formula (8.18). Because of the R-matrix symmetry the calculation
of the residues at the poles §J2» = 622 can be reduced to the special case
(8.28). In any event, the residues of these poles are obtained inductively.
Noting this and using the fact that G (g% &1, -, &m, 4 -+, €}) is zero as a
meromorphic function, we have (8.27).






Chapter 9

Correlation functions and
form factors

In this section we study various specializations of the formula in the previous
chapter. They are the correlation functions, i.e., the vacuum-to-vacuum
matrix elements of local operators for the XXZ model, the form factors, i.e.,
the matrix elements of Pauli spins with respect to the eigenvectors of the
XXZ Hamiltonian, and the matrix elements of the products of type I vertex
operators with respect to the highest weight vectors. We also discuss the
completeness of the eigenvectors created by the type II vertex operators.

9.1 Correlation functions

First let us consider the correlation functions for local operators. We will
specialize the trace function (8.1) to

in order to apply the formula (7.15).
Recall that the matrix unit operator EE(,TE) acting on the site r is realized
as (7.7):
ET) = 7701 (g8, (1)®.(1) ®d ) T, (9.1)

We generalize the situation slightly by introducing the spectral parameters
(; for each column j. Let us set

BONG ) = ADT(G) ™ -+ Ad T(Gro1) ™! (982G (G) ®id) (9.2)

€

109
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Then, by using (7.8), (7.9), (7.12), (A.6), we have the following formula for
the correlation function

(i (vac B (Groe,Ga) -+ BS) (Q)lvac) gy = x 719"
Xty (a,) (q Po (477 @t (07 ) e (Gn) - Py (Cl)) :

The integral formula for this is obtained from (8.21) by letting m — 2n and
specializing variables as

(o alm — ~q7 0, =0 n G, G

Notice that the specialization (; — —¢~'(x (j < k) in (8.21) causes no
pinching of the integration contour (8.19) because of the factor [[;<.(92; —
g we) [Tack(2k — w,) in the integrand.

The resulting formula reads as follows. Set z; = C]2 again, and set further

h(z) = (¢°2,6)oo( @25 4) oo
A={jl1<j<n g=-1}, A={j|1<j<n, ¢ =+1},
s =44, s=4}A
The selection rule (8.16) this case reads as
s'+s=n.

For each o/ € A’ (resp. a € A) prepare an integration variable w/, (resp
w,). Writing A’ = {al,---,a,}, A = {a1,---,as} with ¢] < .-+ < af,
a1 < -+ < ag, we arrange them as

(M, 1) = (wfz'lv“‘vw:z's,vwasv“‘vwal)- (9.3)
Then we have

() (vaclES) (G, Ga) - B (<1>|vac><,-)

a'€EA

DI I | w"““JH -y

7 z; — W, W — 2 % — q2n;

j al<i<n <1 a2’ a<i<n 7 j<k Tk /5
a’ € Al aEA

xh(l)"Hj<kh(zj/zk)h('rlj/'flk) i T 202 _H_fJ_l
[T A(n/2¢) 6"8( 7 I;[ J/”J) (Hm) . (94)

= by s x (=1)
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Here 1
N = Z a + Z a-— n{n +
a’e A’ acA
The contours C’, C are such that

C' . q¥z(j > 0) are inside and g %2;(1 > 1) are outside,
C : ¢"2(1>1) are inside and ¢~ %2;(j > 0) are outside.

Notice that the formula reduces to 1 if n = 0 because of the equality
o o ( 2+4z) — g——l

The correlators of the homogeneous lattice are given by setting (; = 1 for
all 7.

9.2 Form factors

In much the same way as with the correlation functions, the form factors of
a local operator O

@) (vaclOl&n, - &) ppypursi)  (n 0 €ven)

are specializations of the formula (8.18). Note that the cyclic property of
the trace and (A.5) imply the relation

(&) itm+ 1, fhn <§m+l, T 7§"|0|§17 s 7§m>u1,~-,ym;(i) =
(1+n—m) (Vac|(9|§1, o bme —mer, _q§">p1,»»»,um,—umﬂ,---,—pn;(i-{-n—m)

as a meromorphic function in &, --,&,. We consider here the form factors
of the Pauli spin operators O = of. Thanks to the Z, symmetry

() (vacloy [€n, 7§l>un,---,m;(i) = (1-3) (vacloy [€n, - - 7§I>Ayn,~-,—m;(l—i)
(9.5)
it suffices to consider o] and o7. We give below the results for the n-particle
form factors of o where n is even and a = +, z. Here we use
pw) = L8580 e g
(¢%u;q ,q4)oo(qQU“,q 7)o

— (q 7 4v )oo
p = (4% ¢% %)

e
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As before we set
B={kl<k<nu=+}, t=iB,

and the indices b, ¥’ run over the set B.

@ (vacloT 6ns - -5 €1 opars )
- [Te<kr v(uw /ug) Hgk (1+pk)/2—4
TTe(—qui; 4% oo (—a3u]; ¢%)

<1 2‘”” ot~ ) [T 5 ~ )

7T’L'Ub kb
1 -1, . 2 3 2
x (=07 ;9%)oo(—q" /b5 ¢%)
Tt 1L Joo =

x H Vo (Ve — @7 20p) (95/ V5 4 )oo (@200 V83 D)oo X G (v, ).
b/

Here uy = —£2 and
2
G (v,u) =CH T[(—w) x © —q2_"+4i—‘~Hb b,
1 ( ) n,2i Ib—[( b) g8 ( Hk ug

_nl @mun n_
Cli=6tnjp-1(—q) T 2 1(1 2 g% g wol(ah; 0",

. oz dw - Hb( b)’
Giv,u) = Cr, £++C* 2miw (w %) ool 2/w 2o
o Tle(=qus /w3 0% oo (~%w fugs ¢ _pnen_Ib% )
Hb( g vp/w; %) o (— q w/vb, wTleug )’

2 _ﬁ -un n "
Cii=binp(-0) T 2 (1-q733(¢% ¢ (% a)p

The contours are

C : q'u (1>0) are inside and ¢ *u; (I > 0) are outside ,
C* ¢ g1 (1>0) are inside and ¢~ 27'*! (I > 0) are outside
_q—1+2l,vb (l > 0) are inside and — q-—B—?lvb (l > 0) are outside .

We remark that because of (8.22) the 2-particle form factors for o] has
the simple form

w{vaclot €2, &) -y /(—g) 7L TES
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2.4 4. 4\3 2 1&/€5) 24
= (6% 4" oo(a*; 4*)20p s O D) O (—61%:%") .

9.3 Matrix elements

We will give the integral formulas for the matrix elements !,

<Ai|q>r:1 (Cl) s q’r:m (Cm)|A2+m>

and
(AT (&) - - L (&) Aigm)-

If m is even, we set * = 0 in (8.21). Then only the highest weight
vector contributes to the trace, and we obtain the highest-to-highest matrix
element. The case of odd m can be handled by specializing this further to
Cm = 0. To see this, consider for example

(Ko, (C1) - ®e, o (Gn-1)[A1) (M : even). (9:6)

This is non-zero only if §{j;e; = +} = #{j;e; = =} + 1. If it is the case, we
get (9.6) by specializing

<A0|¢El(<1) Em l(CTn 1) —-(Cm)|AO>

t0 {m = 0.
The integral formula reads as follows. Following the notation in (8.21)
we have

(Aol®e, (C1) -~ e (G )| Ara)
= <A1 |q>—51 (Cl) s q’—sm(cm)|A1+m>

3

= (—q)" " Lsea®(1 - ¢?) »II¢ (1te;)/2-7+25 (q2<]2’/<J2;q4)oo
j=1 i<y (q“Cﬁ/Cf;q“)oo

dw, ] < wa W' )(Wa — q2w“') )
a<a’ 6,",25 Wy + 6m,2s—
aeHA}{ 2mi [1,<a(C] — wa) Tlag; (wa — ¢3¢7) agl l
(9.7

The contour C is given by |q2CJ2| < Jw,| < |C]2| for all 5, a

'For convenience we extend the suffix for the highest weights by A, = Ay
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For instance we have
(Am|®(_ym (1)~ @, (1)®_(1)[Ag)
m(m=1)/2 4
=(1- q2)s ((q2; q4)oo> duwg

B (2% 4*) o0 i Jar<lwl<1 2w
)

2 8
Wg — Wi )Wk ~ @ Wy
N e w (wi — wir)( k bm2s || wa + 6m,2s-1

X
[IEor (1 — wi )25 (wy, — g2)m—2k+2 ( _ )

We conjecture that the m-th root of this quantity has a limit when m — co.
(See Section 2 and Appendix 3 in [26].)
In principle, we can obtain a formula for the matrix element

<Ai|q>r:1 (Cl) B 'Qem (Cm)|Ai+m>7

that contains no integration: Using the R-matrix symmetry (A.l), we can
reduce the general case to the extreme case gy = --- =¢; =+ and 5,1 =

- = g5 = —. For the latter, the integrals in (9.7) can be performed
successively. Consider the integration for w,. The only pole in the variable
w; that lies outside of the contour C is wy = Cf. By taking the residue at
wy = ¢}, the integrand reduces in such a way that the pole at we = Gis
cancelled by the zero arising from the factor w, —ws. Thus we continue the
process of integration. The explicit formula is as follows. Let ¢,7 = 0,1,
t—j=mmod 2, and

_m+1-i
s= [———2 ]

Then we find

(A2(6) - 2, ()2 (o) (G
:(_q)s(.s—1+2z)/2 H C:-—m-{-l-—] H C]l:*m-{‘]

1<k<s s<k<m
(¢5¢2 /¢Ra*) 2 2.9 2 2.9
x H ( 4<§ /Cg 4)00 H (G — a°Gr) H (G — a"Cer)-
1<k<k’<m 96k /5> 9 O 1<k<k'<s s<k<k'<m

The matrix elements for the type II operators are quite similar. We have

(A1 (&n) - - T (&) (&) WL (&0)|AY)
:(_q)—t(t—1+2i)/2 H 6/;—k+1+2 H §;k+2—-z (98)

1<k<t t<k<n

2 /62, 44
[ A= q1 (@-q%) [ (€ -d%

26272, 44
1<k<k'<n (g gk/gk” q )°° 1<k<h <t t<h<ki<n
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where 7,7 =0,1,7— j =n mod 2, and

t:[%j].

9.4 Completeness relation

The completeness relation (7.21) amounts to the statement that for any
f, [’ € F we have

197" dén 3!
HH=33 Z o L mie P o

1=0,1 n>0 Hn, -

xtryiay (£, ) U5 (6)(~0)®)
xtrya,) ((—Q)D‘I’m (61)--- 9, (ﬁn)f') -
Here the integration is taken on the unit circle |&| = 1. Let
W) e V), eV, WleViA), eV,
be arbitrary weight vectors. Taking f = |u)(v/| and f' = |v)(x/| we obtain

-n / dé,
(W' |u)(v']v) = nzzo X—l%(_q)degu+degu -—275_6" 2:5:21
x D W ()T () ) ([ (61) - Uy (G o)
gt
(9.9)

At present we do not have a mathematical proof of these statements.
Here we give a plausibility check of the simplest case choosing |u), etc. to
be the highest weight vectors. Eq.(9.9) then reduces to the equalities

Y A
X = ;0 nl J 2rmig, | F 2w (9.10)
x Z (Ao|¥ ., (&n) - Wy, (€1)|Ao) (Ao Ty (61) - U (€n) | Ao)
- g dfn [ dé
N ; “nl 27rz§" 2wi€y (9-11)

XD (Ml (6n) - T, (€[ A0) (A0l Ty (61) - Ly () [ A1)

Mmooyl
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Let us estimate the order of the summand as ¢ — 0. From the explicit
formulas in the extreme case (9.8) one verifies that

(Ao W4 (Er) -+ W4 (Eur) U3 (&) - - W3 (61) | Ao) = O(g¥30/2),
(9.12)
(AW (Ear-) - W () W () - -~ Wi (€0) | o) = O(q3F30/2),
(9.13)

In the last line ¢’ = ¢ for the upper sign and ¢’ = t — 1 for the lower sign.
Define a,, .. .. (n,---,€1) by

2/ 0%

(Anl¥5, (&)~ 05 (D) = [] 57— % tunoir a5 60)-
i) 1)) kgc/ @2/ T
They satisfy
1— 262
T (RN AN D 0= 52) £ €k Ckgns )
£(1-d%)
+——a...i o k1, 8k ),y
q(l _ 62) ¥ ( +1,Gk )
where £ = £, 11/&. Thus each time the neighboring +— or —+ is inter-
changed one picks ¢~! at worst. Let S, stand for the sum DN

(9.10), (9.11), respectively. Using (9.12) or (9.13), and taking into account
the remark at the end of Chapter 6, we find that

S = Oy (n=2p),
O(g"V-2)  (n=2t-1).

For small n, the above recursion formula along with (9.8) allows us to
calculate the a,, ... ., (§n, - - -, &1) explicitly:

ay(§1) =1

a.(62,6) =1, a -(&2,6) =~ __12_1’
2
2
a-t+(£3,62,61) = —q*lg_z (1 - q—2§_é) ’
3

ar-+(63.62,61) =1-g¢ 2

ay-(§3,62,61) = "12 (1— "22)
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Hence if the first two terms are taken, (9.10), (9.11) becomes respectively

€%aY)o (%Y

= g° ~2)
X = eyl %27"6 T ) (0% B0 |
= 1+ +q¢' +-
and
X = ¢ +_‘3ﬁ s (3/6:0Y00 (/65 0Yoo

Wbk | ey €26 /E 000 (7% /65 0%

8(1+2q2+2qﬁ+qg*q4 > 52/513/)4—

1<k#k'<3
= 1+@+¢" +2¢° +28° +- -,

which agrees with the formula for x (7.14).






Chapter 10

The XXX limit ¢ — -1

In this chapter we give integral formulas for the correlation functions and the
form factors for the XXX model by taking the limit ¢ — —1 in the formulas
for the XXZ model.

10.1 The XX X limit and the continuum limit

We begin by a remark on the meaning of the limit ¢ — —1. Let us transform
the XXZ Hamiltonian (1.1) in the naive picture into an equivalent form, by
conjugation under the operator K = [];.,qq 05. Since o* oY anti-commute
with o7, we have

- 1 2 o2
KHyz K™ = 3 Z (Uﬁaﬁﬂ +ojol ., ~ Aakak+l) .
k

Namely the result is again the XXZ Hamiltonian but with A negated and
the overall sign in front is changed. In particular, in the limit ¢ — -1,
the transformed one gives rise to the negative of the XXX Hamiltonian
—Hxxx. Of course, such a difference by an overall sign is irrelevant for
a finite lattice. It matters however in the large lattice limit, where one
focuses attention on the lowest eigenvalues of the Hamiltonian and the ‘finite’
deviations from them. For instance the ground state energy for —Hxxx is
the largest eigenvalue in the context of Hxxx. The Hamiltonian —H xxx
is usually referred to as the XXX Hamiltonian in the anti-ferromagnetic
regime. We will obtain below its correlation functions and the form factors
as the limit of the corresponding quantities for the XXZ model. We will
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find that the parameters (2, -6]2- (entering the type I and type II operators,
respectively) must be scaled near the point 1.

Let us mention here about a similar but different limit, namely the limit
to the continuum field theory. Consider for example the two-point correlation
function (03 ,07). Inserting the identity operator (7.21) we have

1 dén & ¢ _
(,-)(vac|afv+laf|vac)(i) = Z Z ;!f%riﬁn‘“ 275'151 HT(éj) :

n20, En, €1 j=1
n:€ven

X i+ NVaCloT[n, - - 1) o ers (i N) (D)se1,0n (€15 -+ -5 EnlOT [ VaC) (3)-

To take the continuum limit we let ¢ — —1 and N — oo at the same
time. Because of the oscillatory nature of 7(£) = e~*(¥) (7.18), the main
contribution comes from the point p(d) = 0, or equivalently £ = 1, as opposed
to the choice in the XXX limit —£2 = 1. Setting £ = (~q) %™ with 3
fixed, we find that the momentum and energy functions (7.18), (7.19) scale
respectively to

p(f) = —K'sinh g + -, €(€) =wk'coshB+---.  (10.1)

Here k' = /1 — k? denotes the conjugate modulus for the elliptic functions
with nome —q. Setting 7K'/ K = ¢ we have in the limit ¢ — 0 (ie. K' — §
and K — o0),

k'~ e /%

In view of (10.1), we must let the lattice spacing N tend to oo by keeping
k'N finite. This means
N ~ const.e™ /%,
Naturally we expect that the limiting relativistic field theory is the
SU (2)-invariant Thirring model (or the chiral Gross-Neveu model) treated
in [77]. In this volume we will not discuss this limit any further.

10.2 Scaling

For later use let us first list the behaviors of basic functions. In the limit
p — 1 we have

. 1-2z
(P*iP)oc ~ (p;p)oo(l—r(%—, (10.2)

6,(-p’) ~ (2m)/*(1-p)7V/2 (10.3)
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We use also the following asymptotics:

(L-a")'*7/* 4, (8)

r<%+%) NED M =@

Yo (z) ~ (q4§ q4)oo

where for ¢ = +,0, — we set

o) e (- [ LA ).
To verify (10.4) we note first that
ny n - 1 P
S S LS M A

Substituting —q = ™, z = €2#/™ and using the definition of v,(z) (8.17)
we have

Z sinh? (ke(1 — 8/mi)) e~*eo

% pat sinh 2ke cosh ke kK’
o %(q*) _ & sinh’(ke/2) ek
& ((=9)**7;q%),,  (=jsinh2kecoshke &

Setting x = ke and letting ¢ — 0 we find that the left hand sides of these
equations tend to log A,(8) and —log A,(ni/2), respectively. The formula
(10.4) follows from these and (10.2).

10.3 Critical values of the correlators

The XXZ Hamiltonian reduces to the XXX Hamiltonian when ¢ = —1, i.e.,
A = ~1. To get a non-trivial limit of the corresponding R-matrix, we must
scale the spectral parameter ¢ at {( = 1: We set

(= (q2)—ﬁ/27r1"
The R-matrix then scales to

P+§7r—i1’
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where P is the transposition and I is the identity. For simplicity we ignored
a scalar factor in the scaling. We employ the same scaling for the variables
= ¢? in the integral formula (9.4).
Let us examine the behavior of the integrand of (9.4) in the limit ¢ — —1.
The crucial factors are the function h in the last line. We have

h(z) N 1

if z = (g%~ A/
(@ 4%)% (1~ 2)yra+2) fz=(0)

If we keep z away from z = 1 and let ¢ — —1, then the left hand side
diverges. Since we scale the variables z; it is also necessary to scale the
integration variables n; in (9.3). In other words, in the limit ¢ — —1, the
main contribution to the integral comes from the integration near n; = 1.
Therefore, we put

w(/,/ — (q’l)—a;,/m" we = (q2)—aa/m"
As in (9.3) we arrange them as
(711' . '1’7") = (051’17” '1022110037”'7001)
In the limit ¢ — —1 we find the following.

lim () (vac| B2 (Ga) - E” (G1) [vac)

E 51
— M _t
ag, o+ 27i(d agq c- 27” ﬁa)

< H ﬁ]-aa:‘f'ﬂ'l H a-.ﬁj+7”

a ‘el ’Bj a aEA Ga = ﬁj

al<jgn a<agn
y H sinh(yg — ;) sinh(8; — Bx) H vi — B

Ger \ Y= +me B = Bk 7 Sinh(ys = Br)

Here

M= Za+Za+s——M

a'c A’ acA

The contours C* are such that for all k and a € C* we have

Ct @ ImBr <Ima <ImpB+m,
C™  ImBy -7 <Ima < Imp,
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and their orientation is from Rea = oo to Rea = —oc. As we expect, the
result is independent of the sector ¢ = 0, 1. Setting all the spectral parame-
ters Bx to zero, we get the integral formula for the correlation functions for
the XXX model. These formulas were obtained in [67, 56].

10.4 Form factors in the limit

We expect that

[S1Eg

(i)<va‘c|gfl|§"7 e 7£1>#"’...’“1;(i) (d&n e d&l)

scales to a finite limit. The correct scaling is given by

w(=-8) = @,
vy = (q2)—ab/m'+1/2‘
The shift 1/2 in the exponent of v, is chosen to make the formulas neat. The
crucial point is that the scaling is taken at ux ~ 1 and v, ~ 1.
To see that ug ~ 1 is the correct scaling let us examine the simplest case

o) (vacloy €2, 1) - —(0)
Y- (u2/u1)0gs (—1/u1up)
Hk=1,2(‘q3/uk; q4) oo (—qus; oo

= —¢6183(¢% 0")oo(a*; 0" oo+ (672)
Notice the following behavior in the limit ¢ — —1;

(@49Y ~ Ci(g*iq
v+(@7?) ~ Calghq
(a4
(¢%;q

Y- (u2/u1) ~ Ca(q%
(6 /x5 0" )oo (~quii ¢1)o0 ~ Ca
O,8(—1/uiuy) ~ Cse™3,

o

— e N
m

Bl B N

where Cj are finite. Therefore, we have
+ ~ C -1
) {vacloy |€2,€1) - —j0) ~ Cee ™.

Since

(dadg)t ~ = (i)},
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the scaling for uy is correct. In fact, if we keep ux away from 1 in the scaling
process, the factor (g (vaclo] |£2,§1)‘_ (0 is rapidly decreasing.

We scale the form factor at u; ~ 1 in general. Since ux = —¢7, there are
two choices of the limiting value of &; & = i. Since

Iﬁn, T 7£1>an,---,51;(i)(i);al,--«,an (£17 o »£n|

is even with respect to the sign change £, — —&; separately, without loss of
generality we set & ~ i in the scaling.

Now that the scaling for uy is fixed it is easy to see that the scaling for
the integration variables v, (and w for g{) must be taken at 1. We have the
following.

(2) (vacla‘flfn, tet 7£1>}Jm ,;1-1 (2)

—-n/2 /Bk’ -
H A (mi/2)T 1/4 ];Ismh 7rz/4 Bk/2)

k<k'

H/Cdab b'—ﬁk+§)H(ﬁk—ab+%l)

b<k
<IIr (-5 + 2500 (- 5)

X Hsinh ap H (o — ap + i) sinh(oy, — o)
b bt

xG*(a, B).
Here

— . . 2) a2 2 B
G+(a ) = /a2 (___EW_’/_) 9—3n%/4+n/2 ~Tn?/8+9n/4-1
’ T(3/4) ’

=z n(n Ay (mif/2)\ ™2 —3n2/d—n  —~Tn2/8—n
Glap) = (-ayiemisn (SETE) T ot iaongmnisons

da 1 1 . a— LBk i
Lo h .
/a@ 27 sinh o 1;[ sinh(a — o) IZIS‘“ ( 2 T3 )

The contour C is shown in the following figure.

il

X
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Figure 10.1: The contour C

i X ap +
C, X X X
0~ ap
- X X X
C, ;
—miX ap — ﬂ'l
X X X

Figure 10.2: The contours C; and C,






Chapter 11

Discussions

We end these lectures by mentioning some related works. There are various
classes of models to which at least part of the present method is applicable.
We will briefly survey these extensions and the difficulties that arise. We
also touch upon mathematical works concerning vertex operators and the
g-difference equations.

11.1 Other models

So far we have been focusing our attention on the six-vertex model in the
anti-ferroelectric regime and its spin-chain equivalent, the XXZ model with
A < —1. Here we wish to discuss the possibility of extending the present
scheme to other known models, and difficulties as well. Specifically we will
touch upon the following different categories of models.

(1) Vertex models associated with various quantum affine algebras and
their representations,

(2) RSOS models of Andrews-Baxter-Forrester and their Lie-theoretical
generalizations,

(3) Eight-vertex model,
(4) Ising-type edge interaction models.

The category (1) is a straightforward generalization of the six-vertex
model. In principle the present method is applicable to such models when the
underlying finite-dimensional module V' is ‘perfect’ [50]— loosely speaking
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this means that the highest weight module of a fixed level can be realized as
a half-infinite tensor product of V. The representative examples of this sort
are the higher spin analog of the six-vertex/ X X Z model based on the (k+1)-
dimensional representation of Ug(sl2). It has been known from the Bethe
Ansatz method [81] that, in the anti-ferroelectric regime, the excitations of
these models always carry spin 1/2 irrespective of k, and that the single-
particle eigenvalues of the transfer matrix are given by the same function
7(¢) as in the case k = 1. Moreover the multi-particle states do not have
a simple tensor product form but obey an RSOS type restriction [71]. In
[38] these models are studied in the framework of the present method. The
relevant highest weight modules are level k integrable representations of
Uq(;l2)‘ The particle picture provided by the VO’s is in agreement with
the known results mentioned above. The case of k = 2 has a particularly
nice feature, for the level two modules of U,(sl2) have explicit realizations
in terms of bosons and fermions [18]. The corresponding VO’s and integral
formula for the correlation functions are worked out in [37, 19].

As an example of higher rank algebras, the X X Z type model correspond-
ing to the n-dimensional representation of Uy(sl,) is studied in [57] (see also
[25]). On the basis of the Frenkel-Jing bosonization [35], the formulas for
the VO’s and the spontaneous staggered polarization are derived.

All these works concern the anti-ferroelectric regime of the models. In
exactly the same way as for the six-vertex model the correlators are expressed
as traces of type I VO’s and the eigenstates are described by the type II VO's.
However, it is a rather non-trivial problem to solve the difference equations
for the correlators and form factors. We will come back to this point in the
next subsection. In practice the bosonization is the most efficient method
for that. In the case of general level, there exists also a bosonization based
on the Wakimoto modules, but the expressions for the currents become far
more complicated than for level 1 [60, 63, 74, 5, 6, 52, 1]. To our knowledge
the treatment of integrable modules and the calculation of the traces of VO’s
have not been accomplished so far (see however [54]).

As we already mentioned, our method is not applicable to the massless
regime |A| < 1. The model being critical there, the corner transfer matrix is
no longer well defined. We have no direct hint concerning the representation
theoretical picture of the space of states.

Next let us come to the second category (2) consisting of Interaction-
Round-A-Face(IRF) models, or face models for short. In contrast to the
vertex models we have been discussing, here the Boltzmann weights are
associated with configurations around each face (an elementary square) of
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the lattice. While the local ‘spin’ variables of the vertex models live on the
edges, those of the face models live on ihe lattice sites. In the models based
on Lie theory the states that the local variables assume are identified with
the weights of the Lie algebra. The Boltzmann weights of these face models
are written in terms of elliptic theta functions [3, 21, 22, 47, 42]. Their
true nature was subsequently clarified to be the connection matrices for the
gKZ equation [36]. In [45, 34] the present framework is extended to these
models, again in the anti-ferroelectric regime usually referred to as regime
111. The mathematical formulation is a relative, or coset, version of that of
the six-vertex model. In place of the highest weight modules themselves, we
consider a tensor product of two such:

VO @Vn) =P %@ VN,
A

where
Qemr ={veV(E©Vn) |ew=0, tv=q*uVi}

denotes the space of highest weight vectors of a definite weight A. The corner
transfer matrix of a face model splits into blocks in which the local variable
at the central site is fixed to a state A. The {2, is the space on which the
corner transfer matrix is acting; in other words it is the piece of the ‘left
half’ of the space of states where the central site is in a fixed state A. The
choice of (£,n) accommodates that of the boundary conditions. The whole
space of states is ®xQgnx ® Qy.5. This formulation has been guided by
the foregoing results concerning the spectrum of the corner transfer matrix
[21, 22, 47, 50, 24]. The VO's for the RSOS models can also be formulated
mathematically. Their relation to the VO's for the vertex models is discussed
in [34].

Beyond the models discussed so far, the representation theoretical inter-
pretation of the space of states is not known. Nevertheless there are examples
for which the corner transfer matrix along with the ‘physical’ arguments in
Chapter 4 enables us to formulate the VO’s [44, 34].

The construction of Chapter 4 carries over almost word-to-word to the
third category (3), the eight-vertex model. By solving the simplest difference
equation, the conjectured formula for the spontaneous staggered polarization
for the eight-vertex model can be recovered [44] (see also [70] as for the sl,
case). Very recently an elliptic extention of the quantum affine algebra was
proposed [33], which is conjectured to admit a natural deformation of the
whole structure including highest weight modules and VO’s.
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The last category (4) comprises models where the Boltzmann weights are
associated with each edge of the lattice. The simplest example is the Ising
model. In fact it can be formulated as the simplest case of the ABF models
as well, so the mathematical formulation of its space of states is known. An
equivalent, yet more direct, approach is also possible: to use the Jordan-
Wigner fermions. In this case the ‘left-half’ of the space of states can be
identified with the fermion Fock space. This exercise is worked out in [34].

Within the category of edge-interaction models, the Ising model has ex-
tensions in two different directions: the Kashiwara-Miwa models [51] and the
chiral Potts models [4, 65, 16]. The Boltzmann weights of the Kashiwara-
Miwa models are written in terms of elliptic theta functions. Though the
mathematical framework for the space of states is not known, the struc-
ture of the corner transfer matrix is very similar to the cases we have been
discussing, and its spectrum can be interpreted in terms of Lie algebra char-
acters [46]. The difference aquations for the correlators are worked out on
the basis of the physical arguments in [34]. The chiral Potts models are more
difficult to handle. In all the other models the spectral parameters live on
P! or a genus 1 curve, and enter the Boltzmann weights as the difference
u; — uy of the additive spectral parameters u;.! This ‘difference property’
was crucial for the corner transfer matrix to have the simple structure in the
infinite lattice limit. In the case of the chiral Potts models, the spectral pa-
rameters live on algebraic curves of high genus, and the difference property
dose not make sense. It is a challenge to unravel the structure of the chiral
Potts models, in particular that of the corner transfer matrix to begin with.

11.2 The ¢-KZ equation

In conformal field theory, the vertex operators as intertwiners between high-
est weight modules first appeared in the paper by Tsuchiya-Kanie [87]. It
opened a way to many interesting topics in mathematics centering around
the representation theory, differential equations and special functions. Sub-
sequently the g-deformation of vertex operators was discussed by Frenkel
and Reshetikhin [36] and the difference-equation version of the Knizhnik-
Zamolodchikov (KZ) equations was derived. A rather remarkable fact is
that the same difference equations arise in different contexts.

To make comparison, let us recall the results of [36]. For simplicity we
restrict the discussion to the case of Uy(sla) and the evaluation module V;

'We have been using multiplicative spectral parameters ¢; = e®.
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with V' two-dimensional. Consider the compositions of type I VO’s between
irreducible highest weight modules V'(1;) of level k,

Vipn) — Vign-1)® Vg, — -+ — V() @V, @ @V,
Define the highest-to-highest matrix elements

F(Ct, o, Gn) = (uol®Won) (¢y) -+ @lin=18) (¢, )

which are V®"-valued functions. Then they satisfy the following system of
difference equations®

F(Cr,--,085, -1 Gn) = R§ )0 ‘14,-_1/(,-)‘1~.-R§;)(p‘1<;1/<j)‘1
x DR (G/6n) -+ R$ P (G/G1) F(CL e+, Gn)- (1L.1)

Here p = ¢*2, and the R matrix is a scalar multiple of (3.6)

4,-1. .4 -1. .4
ROQ = dAORQ),  p(e) = T el e

The D; are diagonal operators acting on the j-th space
D; = q—w1+k-2(u1‘1/\1)+1/2’
¥ = po+ pn—kp,

where in the last line i = I(A; — Ag) denotes the classical part of p =
(k— Ao + IA;. Let us call (11.1) the ¢-KZ equation of level k.

The case of level 0 appeared earlier in Smirnov’s works on the form
factors of massive integrable field theory models. In particular the form
factors of the sine-Gordon model satisfy (11.1) with D; = 1. In this context
the parameter q is related to the coupling constant of the sine-Gordon model
but with |g| = 1.

As we have already seen, the trace functions for type I vertex operators
also satisfy the ¢-KZ equations (4.43). The case relevant to the correlation
functions is x = ¢?, so the ¢-KZ equations are of level k = —4 (here 2h =4
is twice the dual Coxeter number for ;l2) Unlike in Smirnov’s case the
relevant region is |g| < 1.

!The original equations are presented in the homogeneous picture in [36]. We have
rewritten them in the principal picture.
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We noted earlier the difference in the analytic structures between the
highest-to-highest matrix elements and the trace functions: the former are
power series in the variables (j1/(; but the latter contain both positive and
negative powers. The derivation of the ¢-KZ equations for the former makes
serious use of the structure theory of the quantized affine algebras, whereas
for the latter it is based simply on the commutation relations of VO’s and
the cyclic property of the trace. Combining the two methods, Etingof [28]
derived two independent difference equations for the trace functions (see also
(29, 30] for related works).

The construction of solutions to the ¢-KZ equations is also an interesting
and important problem. At the moment three different types of integral
representations are known:

(1) Jackson integral [61, 62, 72, 88, 84, 54]
(2) Smirnov’s integrals {77, 41, 53]
(3) Contour integrals from bosonization.

The Jackson integrals (1) are actually infinite sums of special type, rather
than genuine integrals. They have been investigated for general highest
weight modules and evaluation modules of Uy(slz) and Uy(sl,). In order to
get actual solutions one has to determine the possible choices of integration
cycles. To our knowledge this issue has not been settled. In [54] the trace
functions were studied on the basis of the Wakimoto module construction.

So far Smirnov’s integrals (2) have been known only for level O case. As
opposed to Jackson integrals these are ordinary contour integrals. Here one
makes a specific choice of the contours and the integrand admits certain
freedom, which accommodates the freedom of choosing different solutions.
Finally the integral formulas (3) presented in Chapter 8 apply only to this
particular solution.

In this connection we wish to mention Smirnov’s works on the classical
limit of the form factors. He gave an intriguing interpretation to his integral
formulas as the quantization of period integrals on Riemann surfaces [78, 80,
79]. See also [67] for related discussions.

11.3 Related works

In closing let us mention some other works directly related to the present
volume.
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We defined the eigenstates of the Hamiltonian by applying the type II
operators on the vacuum. Though these eigenstates themselves have canoni-
cal meaning, the operators that create them are by no means unique. In fact
the type II operators are not the most natural ones for the following reason.
As operators on the space of states they act only on the left half, i.e. they
have the form O ®id. If we apply the type II operators to arbitrary vectors
of the highest weight module then there appear negative powers of ¢ which
is hard to control. This is because the type II operators do not preserve
the crystal structure as opposed to the type I operators [24]. From physical
considerations the eigenstates should have a well defined limit as ¢ tends to
0, but it is hard to see from the construction using type II operators. Miki
introduced two kinds of creation operators which act on both the left and
right halves of the space [66]. When acting on the vacuum, each one of these
new operators create the same set of eigenstates as do the type II operators.
They satisfy some simple commutation relations with each other, and in ad-
dition they seem to be well defined as ¢ — 0. Using these he showed that the
form factors of the X X Z model satisfy properties analogous to Smirnov’s
axioms for the form factors of massive field theory models [77].

Lukyanov’s works [59] are concerned with massive field theory. Using
a method similar to the bosonization for our lattice models, he discussed
a construction of the form factors directly in the continuum. He also gave
an interpretation of the type I vertex operators as the analogue of the Jost
functions in classical inverse scattering method [58].

In a recent paper [68], Nakayashiki formulated the 6-vertex model with
impurities. He treats an inhomogeneous 6-vertex model carrying a finite
number of lines corresponding to higher spin representations. For this he
utilizes new kinds of vertex operators of the type V;_1 ,QV(A;) = V(Ai41)®
Vs where V;, denotes the evaluation module associated with the spin s
representation.

We remark that Korepin and others have developed an approach to the
lattice correlation functions on the basis of the quantum inverse scattering
method. For these works the reader is referred to the monograph [55].
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List of formulas

A.1 R matrix

(A.1.1) Parameterization

1-¢®a (1-4¢*¢

1 1-¢CZT 1- g2

RO = 251 a-e¢ -3

1-q22 1- g2

(0°¢% 0% o (PC2% qY) o

K = ,
© ¢ (€*¢% ¢ (6%¢% 6% o
where we set
o0
H (1—2p™)
n=0
(A.1.2) Initial Condition
R()=P

(A.1.3) Unitarity Relation
R12(61/62)Ra1(¢2/61) = 1

(A.1.4) Crossing Symmetry

Ro1 (/)" = of Rya(—q (1 /G2)of
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(A.1.5) Convention of indices

R(¢) Ve, ® Ve, = Z Ve, @ UazR(C)Z} gg

£€1,€2

A2 Uysly)
(A.2.1) Weights, roots

P=ZA D ZA, D Z6,
ag + a1 =9, A1=A0+%» p=Ao+ Ay,
(AQ, Ao) = 0, (Ao,al) = 0, (AQ, 5) = 1,_

(ar,00) =2, (01,8)=0, (5,6)=0.

(A.2.2) Identification
1
ho=o00, h=a1, d=Ao, p=2d+ h.

(A.2.3) Defining relations

q0 =1, qhqh — qh+h’

qheiq-h — q(h,a,)ei, thl_q-h — q~(h,a1)f“

t,—t;7t
[eivfj] = 61J_q‘l‘_—q_T1

eje; — [3]‘31239'61 + [3leiesel —ejel =0 (i # ),
F2f =B f+ BUfifE = fifE =0 (i #37),

where we set

n__ .,—n
[n] = 9;1___;1‘21_, b= g

(A.2.4) Hopf algebra structure
Al =d"®d,
Ale)=e®@1+6®e, Alf)=f05 +18f;

@) =1, ele) =e(fi) =0,
(qh) = q#hv a’(ei) = —tz_leiv a(fl) = “fztz-

m

a
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(A.2.5) Axiomatic properties

Azy) = A()A(y),  elzy) = e(e)e(y), alzy) = a(y)a(z),
(A®id)o A =(id @A) o A,

(e®id)ecA=id = (id @ €) 0 A,
mo(a®id)oA=e=mo(id ®a)oA.

where m(z ® y) = zy.
(A.2.6) Square of antipode

a*(z) = ¢ *z¢** VzeU.

(A.2.7) Dual modules The dual space M* of a left U-module M is nat-
urally a right U-module by

(v'z,v) = (v*, zv).
For an anti-automorphism ¢ the left module structure M*? is given by
(zv*,v) = (v*, (z)v).
If ¢ is also a coalgebra anti-homomorphism, then

(My ® Ma)*® ~ M3* @ M}?,
Hom y(L, M ® N) = Homy(M*® ® L, N),
Homy(L® N, M) =Homy(L, M @ N*%).

(A.2.8) Two-dimensional module V = Cv; & Cu_:

ervy =0, ev- =y,

fivy =vo, fivo =0,
+1

vt =q vt

(A.2.9) Evaluation module

% = veckc=vTev",
V((j:) — span{vi ® C2n,'U:F ®<2n—1 (TL € Z)}7
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with the action:

30('”5 b Cm) = (flva) b Cm+l7 el('”a Y Cm) = (61115) ® <m+17
fO('Ua ® Cm) = (el'Ua) b Cm—l’ fl('Ua b Cm) = (fl'Ua) Y Cm—17
to = t;l, t1(ve ® ¢™) = (t1ve) ®C™,

1
pC‘C

(A.2.10) Dual evaluation module
Ve =vieC ¢ = Vi e v
V<(j:)*a = span {’U; ® C2n’v; ® <2n—1 (n € Z)},
(U* b Cm, Vgt @ (:") = 555’5m+n,01

oy ()+a
p= C y C on V, .
We have an isomorphlsm
~ —s)xat! *
V_(:):Flc aaand ‘/<( S) ¢ 1 Ve ® Cn g v—a ® Cn'
(A.2.11) Drinfeld generators
[2k] v* — 7
ag,a;] =4 —
ok, @] = k41077 k g—q1

KoK~ ' =ay, KziK™'=q"%zf,
[2k] K|/2.£
lak, z] = ¥| d Thtir
+ j: + £2_+ £
T —q" Iz Ik+1_q T Ty — T T
k-t
v k2 V4l —’Y k) <Pk+z
q-q
d - dyr —d
¢ Pt =" 'Kq ' =K,

¢‘ziq ! = ¢*zif, q“akq“‘ = ¢*a.

[z, z]] =

where 9k, i are defined by

Z%Z = Kexp{(g—q~ Zakz b

‘—(]

PSR

k=0
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(A.2.12) Relation with Chevalley generators

+ - _

th=K, z5=e, z4=f1,
to=vK"', z{ =egt1, z7 =t]"
0= y Iy = €oll, I-l“lfo‘

A.3 Currents and vertex operators

(A.3.1) Currents

— Z Ii:z—n—l7

neZ
ak, XE(2)] = :i:-[-zf—]—yﬂklﬂzkxi(z)’
(z — ¢F2w) XE(2) X E(w) + (w — qi2z)Xj:( 1 X% (2) =0,

[(X*(2), X~ (w)] = Kexp{(¢—q~ Zaw"/2 "‘}j;z—q/_ll%
_ ex k/2 k 5(yz/w)
K 'exp {—( Z:la e

Here 6(2) = 3",z 2™

(A.3.2) Vertex operators

() V(A) — V(M) @V, 8 =) &) ®v,
() : Ve @ V(A) — V(Ay), VIHE) =¥ () (ve ® ).

They are normalized as

(Af@-(OlAo) =1, (Al®+(Q)IA1) =1
(Mf¥-(QlAo) =1, (Ag]¥+(Q)IA1) = 1.

(A.3.3) Fock space

’

V(A)) =Cla—1,a-2,--] ® (@nezCeAﬁ—na) )

(A.3.4) Bosonization

Xi(z) — eRi(z)eSi(z)ej:azj:B,
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Qg‘l—i,i) (C) = 8P(<2)eQ(cz)ea/2(_q3<'2)(3+i)/2<-—i’

e dw (1 - ¢*)wg (1~ _
sl _ f dw A
>0 ¢ 2mi q(w — @C)(w — ¢3¢2) (€)X~ (w)

() = P Q) gmaf2 B ¢2)(-0+ /213
dw  ¢(1-g*)¢
¢, 2mi (w — ¢2¢2) (w — ¢4¢?)

‘IJ:—(l—i,i)(C) _ : ‘Ili(l‘i’i)(C)Xﬂh(w) 5

where

P(z)= SR 0™, Q) = - S e
R - £, BRF, §E(z) = F L, fgT
The contours encircle w = 0 in such a way that
Cy : ¢*C%is inside and ¢%¢? is outside,
C> :  q*C?is outside and ¢2¢? is inside.
A.4 Properties of Vertex operators
(A.4.1) Homogeneity
£P00:(() 0t = :(¢/8), € oWI(() 0P = W((/9).
(A.4.2) Zy-symmetry

ve®V (O =el0(),  vEPH(Qr = el

(A.4.3) Commutation relations

R(Cl/@)‘i’( D) = 8(0)® (), (A1)
VU ET(G) = - () Y (RG/G), (A2)
B () V(G) = /Y@ P ) (A3)
where
2
rg) = ¢rowle)

9q4(fIC‘2)’
6,(2) = (2;P)00 (P27 P)oo(P; P)oo-
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(A.4.4) Dual VO

8¢ = ®-(-¢7'Q), (A4)
V() = ¥.(-¢7'9), (A.5)
9> ®:Oe:(Q) = id, (A.6)
g‘Dal(C)‘I’Ez(C) = 661€2id1 (A'7)
(A8)
(5,1-19) s(lmigypy _  Gberer (G2 o .
WOETG = e ()T v Gt
(A9)
where - - - means regular terms and
2. 4
g= EZ;Z‘&W. (A.10)
(A.4.5) Parity
BT(=() = (1)), (A11)
W) = ((NTFREE. (A1)
(A.4.6) Two-point functions
_ (@¥8/tadY) | [
(Aol®+(C)2x(G2)lA0) = (q4<22/(:%;q4)oox{ 2 (A1
2/¢2. 04 1
(ol @@t = pE sl (ay
; _ (@8/Fd)w | 1
(oles(@ @A) = Farii e (A
3¢2/¢2: a0 1
(Aol (C)@£(C)lA0) = %{ G . (a1

(A.4.7) Trace functions Let ¢ = (2/(1, {2} = (2;¢% 7?)oo-

2,212 [ 202) (2,202
Ty (A) (ID‘I’i(Cl)‘I’x(@)) = 541212 54221 54122-21
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(e L gnn )

X 2 ((‘qc;m)oo(—qz(:’l;m)oo + (q(;;z)oo(qz(:‘l;z)oo s (A17)
z2}? 2 2202

v () (27 0£(0) ¥ (G2)) = {2212}2 {fzgcl} {fz%gc-l}

1 (¢*z;2%) (q%z;2%) )
2 ((—q‘lé;r)m(—q‘lwé‘l T)oo i( 12)oo(g7 (T )0 )

2 51.2 2
by (an (6784 (Q)F-()) = Poos b (it B (a2,

(A.18)

20 (5202
trv(ag) (ID‘I’A(Cl)‘I’+(C2)) {éfci} ggﬁg 2% «(—2¢*¢?)

x(=q7¢). (A.19)

A.5 Principal vs homogeneous pictures
(A.5.1) Evaluation module

Vc(i) C;(EZ Vz(h)7 C2 =2,

Ve ® Cm - v ® <m+(j:l—a)/2’

(A.5.2) R matrix

R(C}/G3) = K(G1/G) X
x (C(¢1) ® C(¢2)) R(¢1/¢2) (C(¢) ® C(éa)

1
(1-2)q¢ (-4
1-¢*z2 1-¢2z
(1-¢%z (1-2)q
1-¢%z2 1-g%z

R(z) =

1

(A.5.3) Vertex operators

S() = (TR,
P () = (F TR,
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A.6 Space of states
(A.6.1) Space of states

F=HH?®= ®iyj=011}—(i’j)’
H = V(Ao) ®V (A1),
Fid) = V(A) ® V(A;)™.

where b(z) = (—q)Pa(z)(—q) P forz € U.
(A.6.2) Translation operator

T = gZ<1> )® P_c(1),

T = gZ‘I)* ) ®®* ()"

(A.6.3) Local operators

E.o = ¢g®(1)®-(1)®id,
of = Eis, of=E; —E__,

ol = T_("_l)a‘fT"*l.

(A.6.4) Transfer matrix

T() = gy 2(0)®(2-(0),

£

_ -2
= “—q—C— 10gT(<)1(=1'

(A.6.5) Vacuum

(A.6.6) Expectation value For O = ¢ ®id or id ® ¢':

try(a,) (Q2D(z)¢’)

(1) {vac|Ofvac) () = ——————=F.
try(a,) (Q2D( ))
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(A.6.7) Eigenstates

gV (6,) - 02 (1) (—) P,
g2V ()P W (&) - e, (6n)-

|n,- - 7£1>En,"',51;(i)

]

(i):e1,s€m (£17 T, £n|
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Erratum.

There is an error in the description of 3.7. In the last paragraph,

the lines starting from “Set A™ = (A®id)A™-1 . .” and continuing
to “In the large lattice limit,..." should read as follows:
Set Al = (A® iI)ACD AN = Al and also PNY) = Py, --- Pyy.

From R({)A(z) = PA(z )PR(C) we have the commutative diagram
(N) (g
BeWwe eV —  %heVWwe -8
LT(S) L T(¢)

(V) ALNY () PN I
VieWwe e S8 Y eowe oW



