
Iterative Methods for Linear
and Nonlinear Equations

C. T. Kelley
North Carolina State University

Society for Industrial and Applied Mathematics
 Philadelphia 1995

Untitled-1 9/20/2004, 2:59 PM3

To Polly H. Thomas, 1906-1994, devoted mother and grandmother

1

Contents

Preface xi

How to Get the Software xiii

CHAPTER 1. Basic Concepts and Stationary Iterative Methods 3

1.1 Review and notation . 3

1.2 The Banach Lemma and approximate inverses 5

1.3 The spectral radius . 7

1.4 Matrix splittings and classical stationary iterative methods . . 7

1.5 Exercises on stationary iterative methods 10

CHAPTER 2. Conjugate Gradient Iteration 11

2.1 Krylov methods and the minimization property 11

2.2 Consequences of the minimization property 13

2.3 Termination of the iteration . 15

2.4 Implementation . 19

2.5 Preconditioning . 22

2.6 CGNR and CGNE . 25

2.7 Examples for preconditioned conjugate iteration 26

2.8 Exercises on conjugate gradient 30

CHAPTER 3. GMRES Iteration 33

3.1 The minimization property and its consequences 33

3.2 Termination . 35

3.3 Preconditioning . 36

3.4 GMRES implementation: Basic ideas 37

3.5 Implementation: Givens rotations 43

3.6 Other methods for nonsymmetric systems 46

3.6.1 Bi-CG. 47

3.6.2 CGS. 48

3.6.3 Bi-CGSTAB. 50

vii

viii CONTENTS

3.6.4 TFQMR. 51

3.7 Examples for GMRES iteration 54

3.8 Examples for CGNR, Bi-CGSTAB, and TFQMR iteration . . . 55

3.9 Exercises on GMRES . 60

CHAPTER 4. Basic Concepts and Fixed-Point Iteration 65

4.1 Types of convergence . 65

4.2 Fixed-point iteration . 66

4.3 The standard assumptions . 68

CHAPTER 5. Newton’s Method 71

5.1 Local convergence of Newton’s method 71

5.2 Termination of the iteration . 72

5.3 Implementation of Newton’s method 73

5.4 Errors in the function and derivative 75

5.4.1 The chord method. 76

5.4.2 Approximate inversion of F ′. 77

5.4.3 The Shamanskii method. 78

5.4.4 Difference approximation to F ′. 79

5.4.5 The secant method. 82

5.5 The Kantorovich Theorem . 83

5.6 Examples for Newton’s method 86

5.7 Exercises on Newton’s method 91

CHAPTER 6. Inexact Newton Methods 95

6.1 The basic estimates . 95

6.1.1 Direct analysis. 95

6.1.2 Weighted norm analysis. 97

6.1.3 Errors in the function. 100

6.2 Newton-iterative methods . 100

6.2.1 Newton GMRES. 101

6.2.2 Other Newton-iterative methods. 104

6.3 Newton-GMRES implementation 104

6.4 Examples for Newton-GMRES 106

6.4.1 Chandrasekhar H-equation. 107

6.4.2 Convection-diffusion equation. 108

6.5 Exercises on inexact Newton methods 110

CHAPTER 7. Broyden’s method 113

7.1 The Dennis–Moré condition . 114

7.2 Convergence analysis . 116

7.2.1 Linear problems. 118

7.2.2 Nonlinear problems. 120

7.3 Implementation of Broyden’s method 123

7.4 Examples for Broyden’s method 127

CONTENTS ix

7.4.1 Linear problems. 127
7.4.2 Nonlinear problems. 128

7.5 Exercises on Broyden’s method 132

CHAPTER 8. Global Convergence 135
8.1 Single equations . 135
8.2 Analysis of the Armijo rule . 138
8.3 Implementation of the Armijo rule 141

8.3.1 Polynomial line searches. 142
8.3.2 Broyden’s method. 144

8.4 Examples for Newton–Armijo 146
8.4.1 Inverse tangent function. 146
8.4.2 Convection-diffusion equation. 146
8.4.3 Broyden–Armijo. 148

8.5 Exercises on global convergence 151

Bibliography 153

Index 163

Preface

This book on iterative methods for linear and nonlinear equations can be used
as a tutorial and a reference by anyone who needs to solve nonlinear systems
of equations or large linear systems. It may also be used as a textbook for
introductory courses in nonlinear equations or iterative methods or as source
material for an introductory course in numerical analysis at the graduate level.
We assume that the reader is familiar with elementary numerical analysis,
linear algebra, and the central ideas of direct methods for the numerical
solution of dense linear systems as described in standard texts such as [7],
[105], or [184].

Our approach is to focus on a small number of methods and treat them
in depth. Though this book is written in a finite-dimensional setting, we
have selected for coverage mostly algorithms and methods of analysis which
extend directly to the infinite-dimensional case and whose convergence can be
thoroughly analyzed. For example, the matrix-free formulation and analysis for
GMRES and conjugate gradient is almost unchanged in an infinite-dimensional
setting. The analysis of Broyden’s method presented in Chapter 7 and
the implementations presented in Chapters 7 and 8 are different from the
classical ones and also extend directly to an infinite-dimensional setting. The
computational examples and exercises focus on discretizations of infinite-
dimensional problems such as integral and differential equations.

We present a limited number of computational examples. These examples
are intended to provide results that can be used to validate the reader’s own
implementations and to give a sense of how the algorithms perform. The
examples are not designed to give a complete picture of performance or to be
a suite of test problems.

The computational examples in this book were done with MATLAB�
(version 4.0a on various SUN SPARCstations and version 4.1 on an Apple
Macintosh Powerbook 180) and the MATLAB environment is an excellent one
for getting experience with the algorithms, for doing the exercises, and for
small-to-medium scale production work.1 MATLAB codes for many of the
algorithms are available by anonymous ftp. A good introduction to the latest

1MATLAB is a registered trademark of The MathWorks, Inc.

xi

xii PREFACE

version (version 4.2) of MATLAB is the MATLAB Primer [178]; [43] is also
a useful resource. If the reader has no access to MATLAB or will be solving
very large problems, the general algorithmic descriptions or even the MATLAB
codes can easily be translated to another language.

Parts of this book are based upon work supported by the National
Science Foundation and the Air Force Office of Scientific Research over
several years, most recently under National Science Foundation Grant Nos.
DMS-9024622 and DMS-9321938. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation or of the Air
Force Office of Scientific Research.

Many of my students and colleagues discussed various aspects of this
project with me and provided important corrections, ideas, suggestions, and
pointers to the literature. I am especially indebted to Jim Banoczi, Jeff Butera,
Steve Campbell, Tony Choi, Moody Chu, Howard Elman, Jim Epperson,
Andreas Griewank, Laura Helfrich, Ilse Ipsen, Lea Jenkins, Vickie Kearn,
Belinda King, Debbie Lockhart, Carl Meyer, Casey Miller, Ekkehard Sachs,
Jeff Scroggs, Joseph Skudlarek, Mike Tocci, Gordon Wade, Homer Walker,
Steve Wright, Zhaqing Xue, Yue Zhang, and an anonymous reviewer for their
contributions and encouragement.

Most importantly, I thank Chung-Wei Ng and my parents for over one
hundred and ten years of patience and support.

C. T. Kelley
Raleigh, North Carolina
January, 1998

How to get the software

A collection of MATLAB codes has been written to accompany this book. The
MATLAB codes can be obtained by anonymous ftp from the MathWorks server
ftp.mathworks.com in the directory pub/books/kelley, from the MathWorks
World Wide Web site,

http://www.mathworks.com

or from SIAM’s World Wide Web site
http://www.siam.org/books/kelley/kelley.html

One can obtain MATLAB from
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760,
Phone: (508) 653-1415
Fax: (508) 653-2997
E-mail: info@mathworks.com
WWW: http://www.mathworks.com

xiii

Chapter 1

Basic Concepts and Stationary Iterative Methods

1.1. Review and notation

We begin by setting notation and reviewing some ideas from numerical linear
algebra that we expect the reader to be familiar with. An excellent reference
for the basic ideas of numerical linear algebra and direct methods for linear
equations is [184].

We will write linear equations as

Ax = b,(1.1)

where A is a nonsingular N ×N matrix, b ∈ RN is given, and

x∗ = A−1b ∈ RN

is to be found.
Throughout this chapter x will denote a potential solution and {xk}k≥0 the

sequence of iterates. We will denote the ith component of a vector x by (x)i
(note the parentheses) and the ith component of xk by (xk)i. We will rarely
need to refer to individual components of vectors.

In this chapter ‖ ·‖ will denote a norm on RN as well as the induced matrix
norm.

Definition 1.1.1. Let ‖ · ‖ be a norm on RN . The induced matrix norm
of an N ×N matrix A is defined by

‖A‖ = max
‖x‖=1

‖Ax‖.

Induced norms have the important property that

‖Ax‖ ≤ ‖A‖‖x‖.
Recall that the condition number of A relative to the norm ‖ · ‖ is

κ(A) = ‖A‖‖A−1‖,
where κ(A) is understood to be infinite if A is singular. If ‖ · ‖ is the lp norm

‖x‖p =

 N∑
j=1

|(x)i|p



1/p

3

4 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

we will write the condition number as κp.
Most iterative methods terminate when the residual

r = b−Ax

is sufficiently small. One termination criterion is

‖rk‖
‖r0‖ < τ,(1.2)

which can be related to the error

e = x− x∗

in terms of the condition number.
Lemma 1.1.1. Let b, x, x0 ∈ RN . Let A be nonsingular and let x∗ = A−1b.

‖e‖
‖e0‖ ≤ κ(A)

‖r‖
‖r0‖ .(1.3)

Proof. Since

r = b−Ax = −Ae

we have

‖e‖ = ‖A−1Ae‖ ≤ ‖A−1‖‖Ae‖ = ‖A−1‖‖r‖

and

‖r0‖ = ‖Ae0‖ ≤ ‖A‖‖e0‖.

Hence

‖e‖
‖e0‖ ≤ ‖A−1‖‖r‖

‖A‖−1‖r0‖ = κ(A)
‖r‖
‖r0‖ ,

as asserted.
The termination criterion (1.2) depends on the initial iterate and may result

in unnecessary work when the initial iterate is good and a poor result when the
initial iterate is far from the solution. For this reason we prefer to terminate
the iteration when

‖rk‖
‖b‖ < τ.(1.4)

The two conditions (1.2) and (1.4) are the same when x0 = 0, which is a
common choice, particularly when the linear iteration is being used as part of
a nonlinear solver.

BASIC CONCEPTS 5

1.2. The Banach Lemma and approximate inverses

The most straightforward approach to an iterative solution of a linear system
is to rewrite (1.1) as a linear fixed-point iteration. One way to do this is to
write Ax = b as

x = (I −A)x+ b,(1.5)

and to define the Richardson iteration

xk+1 = (I −A)xk + b.(1.6)

We will discuss more general methods in which {xk} is given by

xk+1 = Mxk + c.(1.7)

In (1.7) M is an N×N matrix called the iteration matrix. Iterative methods of
this form are called stationary iterative methods because the transition from xk
to xk+1 does not depend on the history of the iteration. The Krylov methods
discussed in Chapters 2 and 3 are not stationary iterative methods.

All our results are based on the following lemma.
Lemma 1.2.1. If M is an N × N matrix with ‖M‖ < 1 then I − M is

nonsingular and

‖(I −M)−1‖ ≤ 1

1− ‖M‖ .(1.8)

Proof. We will show that I − M is nonsingular and that (1.8) holds by
showing that the series

∞∑
l=0

M l = (I −M)−1.

The partial sums

Sk =
k∑
l=0

M l

form a Cauchy sequence in RN×N . To see this note that for all m > k

‖Sk − Sm‖ ≤
m∑

l=k+1

‖M l‖.

Now, ‖M l‖ ≤ ‖M‖l because ‖ · ‖ is a matrix norm that is induced by a vector
norm. Hence

‖Sk − Sm‖ ≤
m∑

l=k+1

‖M‖l = ‖M‖k+1

(
1− ‖M‖m−k

1− ‖M‖

)
→ 0

as m, k → ∞. Hence the sequence Sk converges, say to S. Since MSk + I =
Sk+1 , we must have MS + I = S and hence (I −M)S = I. This proves that
I −M is nonsingular and that S = (I −M)−1.

6 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Noting that

‖(I −M)−1‖ ≤
∞∑
l=0

‖M‖l = (1− ‖M‖)−1.

proves (1.8) and completes the proof.
The following corollary is a direct consequence of Lemma 1.2.1.
Corollary 1.2.1. If ‖M‖ < 1 then the iteration (1.7) converges to

x = (I −M)−1c for all initial iterates x0.
A consequence of Corollary 1.2.1 is that Richardson iteration (1.6) will

converge if ‖I − A‖ < 1. It is sometimes possible to precondition a linear
equation by multiplying both sides of (1.1) by a matrix B

BAx = Bb

so that convergence of iterative methods is improved. In the context of
Richardson iteration, the matrices B that allow us to apply the Banach lemma
and its corollary are called approximate inverses.

Definition 1.2.1. B is an approximate inverse of A if ‖I −BA‖ < 1.
The following theorem is often referred to as the Banach Lemma.
Theorem 1.2.1. If A and B are N×N matrices and B is an approximate

inverse of A, then A and B are both nonsingular and

‖A−1‖ ≤ ‖B‖
1− ‖I −BA‖ , ‖B−1‖ ≤ ‖A‖

1− ‖I −BA‖ ,(1.9)

and

‖A−1 −B‖ ≤ ‖B‖‖I −BA‖
1− ‖I −BA‖ , ‖A−B−1‖ ≤ ‖A‖‖I −BA‖

1− ‖I −BA‖ .(1.10)

Proof. Let M = I −BA. By Lemma 1.2.1 I −M = I − (I −BA) = BA is
nonsingular. Hence both A and B are nonsingular. By (1.8)

‖A−1B−1‖ = ‖(I −M)−1‖ ≤ 1

1− ‖M‖ =
1

1− ‖I −BA‖ .(1.11)

Since A−1 = (I −M)−1B, inequality (1.11) implies the first part of (1.9). The
second part follows in a similar way from B−1 = A(I −M)−1.

To complete the proof note that

A−1 −B = (I −BA)A−1, A−B−1 = B−1(I −BA),

and use (1.9).
Richardson iteration, preconditioned with approximate inversion, has the

form
xk+1 = (I −BA)xk +Bb.(1.12)

If the norm of I − BA is small, then not only will the iteration converge
rapidly, but, as Lemma 1.1.1 indicates, termination decisions based on the

BASIC CONCEPTS 7

preconditioned residual Bb − BAx will better reflect the actual error. This
method is a very effective technique for solving differential equations, integral
equations, and related problems [15], [6], [100], [117], [111]. Multigrid methods
[19], [99], [126], can also be interpreted in this light. We mention one other
approach, polynomial preconditioning, which tries to approximate A−1 by a
polynomial in A [123], [179], [169].

1.3. The spectral radius

The analysis in § 1.2 related convergence of the iteration (1.7) to the norm of
the matrix M . However the norm of M could be small in some norms and
quite large in others. Hence the performance of the iteration is not completely
described by ‖M‖. The concept of spectral radius allows us to make a complete
description.

We let σ(A) denote the set of eigenvalues of A.
Definition 1.3.1. The spectral radius of an N ×N matrix A is

ρ(A) = max
λ∈σ(A)

|λ| = lim
n→∞ ‖An‖1/n.(1.13)

The term on the right-hand side of the second equality in (1.13) is the limit
used by the radical test for convergence of the series

∑
An.

The spectral radius of M is independent of any particular matrix norm of
M . It is clear, in fact, that

ρ(A) ≤ ‖A‖(1.14)

for any induced matrix norm. The inequality (1.14) has a partial converse that
allows us to completely describe the performance of iteration (1.7) in terms of
spectral radius. We state that converse as a theorem and refer to [105] for a
proof.

Theorem 1.3.1. Let A be an N ×N matrix. Then for any ε > 0 there is
a norm ‖ · ‖ on RN such that

ρ(A) > ‖A‖ − ε.

A consequence of Theorem 1.3.1, Lemma 1.2.1, and Exercise 1.5.1 is a
characterization of convergent stationary iterative methods. The proof is left
as an exercise.

Theorem 1.3.2. Let M be an N×N matrix. The iteration (1.7) converges
for all c ∈ RN if and only if ρ(M) < 1.

1.4. Matrix splittings and classical stationary iterative methods

There are ways to convert Ax = b to a linear fixed-point iteration that are
different from (1.5). Methods such as Jacobi, Gauss–Seidel, and sucessive
overrelaxation (SOR) iteration are based on splittings of A of the form

A = A1 +A2,

8 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

where A1 is a nonsingular matrix constructed so that equations with A1 as
coefficient matrix are easy to solve. Then Ax = b is converted to the fixed-
point problem

x = A−1
1 (b−A2x).

The analysis of the method is based on an estimation of the spectral radius of
the iteration matrix M = −A−1

1 A2.
For a detailed description of the classical stationary iterative methods the

reader may consult [89], [105], [144], [193], or [200]. These methods are usually
less efficient than the Krylov methods discussed in Chapters 2 and 3 or the more
modern stationary methods based on multigrid ideas. However the classical
methods have a role as preconditioners. The limited description in this section
is intended as a review that will set some notation to be used later.

As a first example we consider the Jacobi iteration that uses the splitting

A1 = D,A2 = L+ U,

where D is the diagonal of A and L and U are the (strict) lower and upper
triangular parts. This leads to the iteration matrix

MJAC = −D−1(L+ U).

Letting (xk)i denote the ith component of the kth iterate we can express Jacobi
iteration concretely as

(xk+1)i = a−1
ii


bi −

∑
j
=i

aij(xk)j


 .(1.15)

Note that A1 is diagonal and hence trivial to invert.
We present only one convergence result for the classical stationary iterative

methods.
Theorem 1.4.1. Let A be an N × N matrix and assume that for all

1 ≤ i ≤ N

0 <
∑
j
=i

|aij | < |aii|.(1.16)

Then A is nonsingular and the Jacobi iteration (1.15) converges to x∗ = A−1b
for all b.

Proof. Note that the ith row sum of M = MJAC satisfies

N∑
j=1

|mij | =
∑
j
=i |aij |
|aii| < 1.

Hence ‖MJAC‖∞ < 1 and the iteration converges to the unique solution of
x = Mx + D−1b. Also I − M = D−1A is nonsingular and therefore A is
nonsingular.

BASIC CONCEPTS 9

Gauss–Seidel iteration overwrites the approximate solution with the new
value as soon as it is computed. This results in the iteration

(xk+1)i = a−1
ii


bi −

∑
j<i

aij(xk+1)j −
∑
j>i

aij(xk)j


 ,

the splitting
A1 = D + L,A2 = U,

and iteration matrix
MGS = −(D + L)−1U.

Note that A1 is lower triangular, and hence A−1
1 y is easy to compute for vectors

y. Note also that, unlike Jacobi iteration, the iteration depends on the ordering
of the unknowns. Backward Gauss–Seidel begins the update of x with the Nth
coordinate rather than the first, resulting in the splitting

A1 = D + U,A2 = L,

and iteration matrix
MBGS = −(D + U)−1L.

A symmetric Gauss–Seidel iteration is a forward Gauss–Seidel iteration
followed by a backward Gauss–Seidel iteration. This leads to the iteration
matrix

MSGS = MBGSMGS = (D + U)−1L(D + L)−1U.

If A is symmetric then U = LT . In that event

MSGS = (D + U)−1L(D + L)−1U = (D + LT)−1L(D + L)−1LT .

From the point of view of preconditioning, one wants to write the stationary
method as a preconditioned Richardson iteration. That means that one wants
to find B such that M = I − BA and then use B as an approximate inverse.
For the Jacobi iteration,

BJAC = D−1.(1.17)

For symmetric Gauss–Seidel

BSGS = (D + LT)−1D(D + L)−1.(1.18)

The successive overrelaxation iteration modifies Gauss–Seidel by adding a
relaxation parameter ω to construct an iteration with iteration matrix

MSOR = (D + ωL)−1((1− ω)D − ωU).

The performance can be dramatically improved with a good choice of ω but
still is not competitive with Krylov methods. A further disadvantage is that
the choice of ω is often difficult to make. References [200], [89], [193], [8], and
the papers cited therein provide additional reading on this topic.

10 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

1.5. Exercises on stationary iterative methods

1.5.1. Show that if ρ(M) ≥ 1 then there are x0 and c such that the iteration
(1.7) fails to converge.

1.5.2. Prove Theorem 1.3.2.

1.5.3. Verify equality (1.18).

1.5.4. Show that if A is symmetric and positive definite (that is AT = A and
xTAx > 0 for all x �= 0) that BSGS is also symmetric and positive
definite.

Chapter 2

Conjugate Gradient Iteration

2.1. Krylov methods and the minimization property

In the following two chapters we describe some of the Krylov space methods
for linear equations. Unlike the stationary iterative methods, Krylov methods
do not have an iteration matrix. The two such methods that we’ll discuss in
depth, conjugate gradient and GMRES, minimize, at the kth iteration, some
measure of error over the affine space

x0 +Kk,
where x0 is the initial iterate and the kth Krylov subspace Kk is

Kk = span(r0, Ar0, . . . , A
k−1r0)

for k ≥ 1.
The residual is

r = b−Ax.

So {rk}k≥0 will denote the sequence of residuals

rk = b−Axk.

As in Chapter 1, we assume that A is a nonsingular N ×N matrix and let

x∗ = A−1b.

There are other Krylov methods that are not as well understood as CG or
GMRES. Brief descriptions of several of these methods and their properties
are in § 3.6, [12], and [78].

The conjugate gradient (CG) iteration was invented in the 1950s [103] as a
direct method. It has come into wide use over the last 15 years as an iterative
method and has generally superseded the Jacobi–Gauss–Seidel–SOR family of
methods.

CG is intended to solve symmetric positive definite (spd) systems. Recall
that A is symmetric if A = AT and positive definite if

xTAx > 0 for all x �= 0.

11

12 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

In this section we assume that A is spd. Since A is spd we may define a norm
(you should check that this is a norm) by

‖x‖A =
√
xTAx.(2.1)

‖ · ‖A is called the A-norm. The development in these notes is different from
the classical work and more like the analysis for GMRES and CGNR in [134].
In this section, and in the section on GMRES that follows, we begin with a
description of what the algorithm does and the consequences of the minimiza-
tion property of the iterates. After that we describe termination criterion,
performance, preconditioning, and at the very end, the implementation.

The kth iterate xk of CG minimizes

φ(x) =
1

2
xTAx− xT b(2.2)

over x0 +Kk .
Note that if φ(x̃) is the minimal value (in RN) then

∇φ(x̃) = Ax̃− b = 0

and hence x̃ = x∗.
Minimizing φ over any subset of RN is the same as minimizing ‖x− x∗‖A

over that subset. We state this as a lemma.
Lemma 2.1.1. Let S ⊂ RN . If xk minimizes φ over S then xk also

minimizes ‖x∗ − x‖A = ‖r‖A−1 over S.
Proof. Note that

‖x− x∗‖2A = (x− x∗)TA(x− x∗) = xTAx− xTAx∗ − (x∗)TAx+ (x∗)TAx∗.

Since A is symmetric and Ax∗ = b

−xTAx∗ − (x∗)TAx = −2xTAx∗ = −2xT b.

Therefore

‖x− x∗‖2A = 2φ(x) + (x∗)TAx∗.

Since (x∗)TAx∗ is independent of x, minimizing φ is equivalent to minimizing
‖x− x∗‖2A and hence to minimizing ‖x− x∗‖A.

If e = x− x∗ then

‖e‖2A = eTAe = (A(x− x∗))TA−1(A(x− x∗)) = ‖b−Ax‖2A−1

and hence the A-norm of the error is also the A−1-norm of the residual.
We will use this lemma in the particular case that S = x0+Kk for some k.

CONJUGATE GRADIENT ITERATION 13

2.2. Consequences of the minimization property

Lemma 2.1.1 implies that since xk minimizes φ over x0 +Kk
‖x∗ − xk‖A ≤ ‖x∗ − w‖A(2.3)

for all w ∈ x0 +Kk. Since any w ∈ x0 +Kk can be written as

w =
k−1∑
j=0

γjA
jr0 + x0

for some coefficients {γj}, we can express x∗ − w as

x∗ − w = x∗ − x0 −
k−1∑
j=0

γjA
jr0.

Since Ax∗ = b we have

r0 = b−Ax0 = A(x∗ − x0)

and therefore

x∗ − w = x∗ − x0 −
k−1∑
j=0

γjA
j+1(x∗ − x0) = p(A)(x∗ − x0),

where the polynomial

p(z) = 1−
k−1∑
j=0

γjz
j+1

has degree k and satisfies p(0) = 1. Hence

‖x∗ − xk‖A = min
p∈Pk,p(0)=1

‖p(A)(x∗ − x0)‖A.(2.4)

In (2.4) Pk denotes the set of polynomials of degree k.
The spectral theorem for spd matrices asserts that

A = UΛUT ,

where U is an orthogonal matrix whose columns are the eigenvectors of A and
Λ is a diagonal matrix with the positive eigenvalues of A on the diagonal. Since
UUT = UTU = I by orthogonality of U , we have

Aj = UΛjUT .

Hence
p(A) = Up(Λ)UT .

Define A1/2 = UΛ1/2UT and note that

‖x‖2A = xTAx = ‖A1/2x‖22.(2.5)

14 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Hence, for any x ∈ RN and

‖p(A)x‖A = ‖A1/2p(A)x‖2 ≤ ‖p(A)‖2‖A1/2x‖2 ≤ ‖p(A)‖2‖x‖A.

This, together with (2.4) implies that

‖xk − x∗‖A ≤ ‖x0 − x∗‖A min
p∈Pk,p(0)=1

max
z∈σ(A)

|p(z)|.(2.6)

Here σ(A) is the set of all eigenvalues of A.
The following corollary is an important consequence of (2.6).
Corollary 2.2.1. Let A be spd and let {xk} be the CG iterates. Let k be

given and let {p̄k} be any kth degree polynomial such that p̄k(0) = 1. Then

‖xk − x∗‖A
‖x0 − x∗‖A ≤ max

z∈σ(A)
|p̄k(z)|.(2.7)

We will refer to the polynomial p̄k as a residual polynomial [185].
Definition 2.2.1. The set of kth degree residual polynomials is

Pk = {p | p is a polynomial of degree k and p(0) = 1.}(2.8)

In specific contexts we try to construct sequences of residual polynomials,
based on information on σ(A), that make either the middle or the right term
in (2.7) easy to evaluate. This leads to an upper estimate for the number of
CG iterations required to reduce the A-norm of the error to a given tolerance.

One simple application of (2.7) is to show how the CG algorithm can be
viewed as a direct method.

Theorem 2.2.1. Let A be spd. Then the CG algorithm will find the
solution within N iterations.

Proof. Let {λi}Ni=1 be the eigenvalues of A. As a test polynomial, let

p̄(z) =
N∏
i=1

(λi − z)/λi.

p̄ ∈ PN because p̄ has degree N and p̄(0) = 1. Hence, by (2.7) and the fact
that p̄ vanishes on σ(A),

‖xN − x∗‖A ≤ ‖x0 − x∗‖A max
z∈σ(A)

|p̄(z)| = 0.

Note that our test polynomial had the eigenvalues of A as its roots. In
that way we showed (in the absence of all roundoff error!) that CG terminated
in finitely many iterations with the exact solution. This is not as good as it
sounds, since in most applications the number of unknowns N is very large,
and one cannot afford to perform N iterations. It is best to regard CG as an
iterative method. When doing that we seek to terminate the iteration when
some specified error tolerance is reached.

CONJUGATE GRADIENT ITERATION 15

In the two examples that follow we look at some other easy consequences
of (2.7).

Theorem 2.2.2. Let A be spd with eigenvectors {ui}Ni=1. Let b be a linear
combination of k of the eigenvectors of A

b =
k∑
l=1

γluil .

Then the CG iteration for Ax = b with x0 = 0 will terminate in at most k
iterations.

Proof. Let {λil} be the eigenvalues of A associated with the eigenvectors
{uil}kl=1. By the spectral theorem

x∗ =
k∑
l=1

(γl/λil)uil .

We use the residual polynomial,

p̄(z) =
k∏
l=1

(λil − z)/λil .

One can easily verify that p̄ ∈ Pk. Moreover, p̄(λil) = 0 for 1 ≤ l ≤ k and
hence

p̄(A)x∗ =
k∑
l=1

p̄(λil)γl/λiluil = 0.

So, we have by (2.4) and the fact that x0 = 0 that

‖xk − x∗‖A ≤ ‖p̄(A)x∗‖A = 0.

This completes the proof.
If the spectrum of A has fewer thanN points, we can use a similar technique

to prove the following theorem.
Theorem 2.2.3. Let A be spd. Assume that there are exactly k ≤ N

distinct eigenvalues of A. Then the CG iteration terminates in at most k
iterations.

2.3. Termination of the iteration

In practice we do not run the CG iteration until an exact solution is found, but
rather terminate once some criterion has been satisfied. One typical criterion is
small (say ≤ η) relative residuals. This means that we terminate the iteration
after

‖b−Axk‖2 ≤ η‖b‖2.(2.9)

The error estimates that come from the minimization property, however, are
based on (2.7) and therefore estimate the reduction in the relative A-norm of
the error.

16 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Our next task is to relate the relative residual in the Euclidean norm to
the relative error in the A-norm. We will do this in the next two lemmas and
then illustrate the point with an example.

Lemma 2.3.1. Let A be spd with eigenvalues λ1 ≥ λ2 ≥ . . . λN . Then for
all z ∈ RN ,

‖A1/2z‖2 = ‖z‖A(2.10)

and
λ
1/2
N ‖z‖A ≤ ‖Az‖2 ≤ λ

1/2
1 ‖z‖A.(2.11)

Proof. Clearly

‖z‖2A = zTAz = (A1/2z)T (A1/2z) = ‖A1/2z‖22
which proves (2.10).

Let ui be a unit eigenvector corresponding to λi. We may write A = UΛUT

as

Az =
N∑
i=1

λi(u
T
i z)ui.

Hence
λN‖A1/2z‖22 = λN

∑N
i=1 λi(u

T
i z)

2

≤ ‖Az‖22 =
∑N
i=1 λ

2
i (u
T
i z)

2

≤ λ1
∑N
i=1 λi(u

T
i z)

2 = λ1‖A1/2z‖22.
Taking square roots and using (2.10) complete the proof.

Lemma 2.3.2.

‖b‖2
‖r0‖2

‖b−Axk‖2
‖b‖2 =

‖b−Axk‖2
‖b−Ax0‖2 ≤

√
κ2(A)

‖xk − x∗‖A
‖x∗ − x0‖A(2.12)

and
‖b−Axk‖2

‖b‖2 ≤
√
κ2(A)‖r0‖2

‖b‖2
‖xk − x∗‖A
‖x∗ − x0‖A .(2.13)

Proof. The equality on the left of (2.12) is clear and (2.13) follows directly
from (2.12). To obtain the inequality on the right of (2.12), first recall that if
A = UΛUT is the spectral decomposition of A and we order the eigenvalues
such that λ1 ≥ λ2 ≥ . . . λN > 0, then ‖A‖2 = λ1 and ‖A−1‖2 = 1/λN . So
κ2(A) = λ1/λN .

Therefore, using (2.10) and (2.11) twice,

‖b−Axk‖2
‖b−Ax0‖2 =

‖A(x∗ − xk)‖2
‖A(x∗ − x0)‖2 ≤

√
λ1
λN

‖x∗ − xk‖A
‖x∗ − x0‖A

as asserted.
So, to predict the performance of the CG iteration based on termination on

small relative residuals, we must not only use (2.7) to predict when the relative

CONJUGATE GRADIENT ITERATION 17

A-norm error is small, but also use Lemma 2.3.2 to relate small A-norm errors
to small relative residuals.

We consider a very simple example. Assume that x0 = 0 and that the
eigenvalues of A are contained in the interval (9, 11). If we let p̄k(z) =
(10− z)k/10k, then p̄k ∈ Pk. This means that we may apply (2.7) to get

‖xk − x∗‖A ≤ ‖x∗‖A max
9≤z≤11

|p̄k(z)|.

It is easy to see that
max

9≤z≤11
|p̄k(z)| = 10−k.

Hence, after k iterations

‖xk − x∗‖A ≤ ‖x∗‖A10−k.(2.14)

So, the size of the A-norm of the error will be reduced by a factor of 10−3 when

10−k ≤ 10−3,

that is, when
k ≥ 3.

To use Lemma 2.3.2 we simply note that κ2(A) ≤ 11/9. Hence, after k
iterations we have ‖Axk − b‖2

‖b‖2 ≤
√
11× 10−k/3.

So, the size of the relative residual will be reduced by a factor of 10−3 when

10−k ≤ 3× 10−3/
√
11,

that is, when
k ≥ 4.

One can obtain a more precise estimate by using a polynomial other than
pk in the upper estimate for the right-hand side of (2.7). Note that it is always
the case that the spectrum of a spd matrix is contained in the interval [λN , λ1]
and that κ2(A) = λ1/λN . A result from [48] (see also [45]) that is, in one
sense, the sharpest possible, is

‖xk − x∗‖A ≤ 2‖x0 − x∗‖A
[√

κ2(A)− 1√
κ2(A) + 1

]k
.(2.15)

In the case of the above example, we can estimate κ2(A) by κ2(A) ≤ 11/9.
Hence, since (

√
x− 1)/(

√
x+ 1) is an increasing function of x on the interval

(1,∞). √
κ2(A)− 1√
κ2(A) + 1

≤
√
11− 3√
11 + 3

≈ .05.

18 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Therefore (2.15) would predict a reduction in the size of the A-norm error by
a factor of 10−3 when

2× .05k < 10−3

or when
k > − log10(2000)/ log10(.05) ≈ 3.3/1.3 ≈ 2.6,

which also predicts termination within three iterations.
We may have more precise information than a single interval containing

σ(A). When we do, the estimate in (2.15) can be very pessimistic. If the
eigenvalues cluster in a small number of intervals, the condition number can
be quite large, but CG can perform very well. We will illustrate this with an
example. Exercise 2.8.5 also covers this point.

Assume that x0 = 0 and the eigenvalues of A lie in the two intervals (1, 1.5)
and (399, 400). Based on this information the best estimate of the condition
number of A is κ2(A) ≤ 400, which, when inserted into (2.15) gives

‖xk − x∗‖A
‖x∗‖A ≤ 2× (19/21)k ≈ 2× (.91)k.

This would indicate fairly slow convergence. However, if we use as a residual
polynomial p̄3k ∈ P3k

p̄3k(z) =
(1.25− z)k(400− z)2k

(1.25)k × 4002k
.

It is easy to see that

max
z∈σ(A)

|p̄3k(z)| ≤ (.25/1.25)k = (.2)k,

which is a sharper estimate on convergence. In fact, (2.15) would predict that

‖xk − x∗‖A ≤ 10−3‖x∗‖A,

when 2× (.91)k < 10−3 or when

k > − log10(2000)/ log10(.91) ≈ 3.3/.04 = 82.5.

The estimate based on the clustering gives convergence in 3k iterations when

(.2)k ≤ 10−3

or when
k > −3/ log10(.2) = 4.3.

Hence (2.15) predicts 83 iterations and the clustering analysis 15 (the smallest
integer multiple of 3 larger than 3× 4.3 = 12.9).

From the results above one can see that if the condition number of A is near
one, the CG iteration will converge very rapidly. Even if the condition number

CONJUGATE GRADIENT ITERATION 19

is large, the iteration will perform well if the eigenvalues are clustered in a few
small intervals. The transformation of the problem into one with eigenvalues
clustered near one (i.e., easier to solve) is called preconditioning. We used
this term before in the context of Richardson iteration and accomplished the
goal by multiplying A by an approximate inverse. In the context of CG, such
a simple approach can destroy the symmetry of the coefficient matrix and a
more subtle implementation is required. We discuss this in § 2.5.

2.4. Implementation

The implementation of CG depends on the amazing fact that once xk has been
determined, either xk = x∗ or a search direction pk+1 �= 0 can be found very
cheaply so that xk+1 = xk + αk+1pk+1 for some scalar αk+1. Once pk+1 has
been found, αk+1 is easy to compute from the minimization property of the
iteration. In fact

dφ(xk + αpk+1)

dα
= 0(2.16)

for the correct choice of α = αk+1. Equation (2.16) can be written as

pTk+1Axk + αpTk+1Apk+1 − pTk+1b = 0

leading to

αk+1 =
pTk+1(b−Axk)

pTk+1Apk+1
=

pTk+1rk

pTk+1Apk+1
.(2.17)

If xk = xk+1 then the above analysis implies that α = 0. We show that
this only happens if xk is the solution.

Lemma 2.4.1. Let A be spd and let {xk} be the conjugate gradient iterates.
Then

rTk rl = 0 for all 0 ≤ l < k.(2.18)

Proof. Since xk minimizes φ on x0 +Kk, we have, for any ξ ∈ Kk
dφ(xk + tξ)

dt
= ∇φ(xk + tξ)T ξ = 0

at t = 0. Recalling that

∇φ(x) = Ax− b = −r

we have
∇φ(xk)

T ξ = −rTk ξ = 0 for all ξ ∈ Kk.(2.19)

Since rl ∈ Kk for all l < k (see Exercise 2.8.1), this proves (2.18).
Now, if xk = xk+1, then rk = rk+1. Lemma 2.4.1 then implies that

‖rk‖22 = rTk rk = rTk rk+1 = 0 and hence xk = x∗.
The next lemma characterizes the search direction and, as a side effect,

proves that (if we define p0 = 0) pTl rk = 0 for all 0 ≤ l < k ≤ n, unless the
iteration terminates prematurely.

20 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Lemma 2.4.2. Let A be spd and let {xk} be the conjugate gradient iterates.
If xk �= x∗ then xk+1 = xk + αk+1pk+1 and pk+1 is determined up to a scalar
multiple by the conditions

pk+1 ∈ Kk+1, p
T
k+1Aξ = 0 for all ξ ∈ Kk.(2.20)

Proof. Since Kk ⊂ Kk+1,

∇φ(xk+1)
T ξ = (Axk + αk+1Apk+1 − b)T ξ = 0(2.21)

for all ξ ∈ Kk. (2.19) and (2.21) then imply that for all ξ ∈ Kk,

αk+1p
T
k+1Aξ = −(Axk − b)T ξ = −∇φ(xk)

T ξ = 0.(2.22)

This uniquely specifies the direction of pk+1 as (2.22) implies that pk+1 ∈ Kk+1

is A-orthogonal (i.e., in the scalar product (x, y) = xTAy) to Kk, a subspace
of dimension one less than Kk+1.

The condition pTk+1Aξ = 0 is called A-conjugacy of pk+1 to Kk. Now, any
pk+1 satisfying (2.20) can, up to a scalar multiple, be expressed as

pk+1 = rk + wk

with wk ∈ Kk. While one might think that wk would be hard to compute, it
is, in fact, trivial. We have the following theorem.

Theorem 2.4.1. Let A be spd and assume that rk �= 0. Define p0 = 0.
Then

pk+1 = rk + βk+1pk for some βk+1 and k ≥ 0.(2.23)

Proof. By Lemma 2.4.2 and the fact that Kk = span(r0, . . . , rk−1), we need
only verify that a βk+1 can be found so that if pk+1 is given by (2.23) then

pTk+1Arl = 0

for all 0 ≤ l ≤ k − 1.
Let pk+1 be given by (2.23). Then for any l ≤ k

pTk+1Arl = rTk Arl + βk+1p
T
kArl.

If l ≤ k − 2, then rl ∈ Kl+1 ⊂ Kk−1. Lemma 2.4.2 then implies that

pTk+1Arl = 0 for 0 ≤ l ≤ k − 2.

It only remains to solve for βk+1 so that pTk+1Ark−1 = 0. Trivially

βk+1 = −rTk Ark−1/p
T
kArk−1(2.24)

provided pTkArk−1 �= 0. Since

rk = rk−1 − αkApk

CONJUGATE GRADIENT ITERATION 21

we have
rTk rk−1 = ‖rk−1‖22 − αkp

T
kArk−1.

Since rTk rk−1 = 0 by Lemma 2.4.1 we have

pTkArk−1 = ‖rk−1‖22/αk �= 0.(2.25)

This completes the proof.
The common implementation of conjugate gradient uses a different form

for αk and βk than given in (2.17) and (2.24).
Lemma 2.4.3. Let A be spd and assume that rk �= 0. Then

αk+1 =
‖rk‖22

pTk+1Apk+1
(2.26)

and

βk+1 =
‖rk‖22
‖rk−1‖22

.(2.27)

Proof. Note that for k ≥ 0

pTk+1rk+1 = rTk rk+1 + βk+1p
T
k rk+1 = 0(2.28)

by Lemma 2.4.2. An immediate consequence of (2.28) is that pTk rk = 0 and
hence

pTk+1rk = (rk + βk+1pk)
T rk = ‖rk‖22.(2.29)

Taking scalar products of both sides of

rk+1 = rk − αk+1Apk+1

with pk+1 and using (2.29) gives

0 = pTk+1rk − αk+1p
T
k+1Apk+1 = ‖rTk ‖22 − αk+1p

T
k+1Apk+1,

which is equivalent to (2.26).
To get (2.27) note that pTk+1Apk = 0 and hence (2.23) implies that

βk+1 =
−rTk Apk
pTkApk

.(2.30)

Also note that

pTkApk = pTkA(rk−1 + βkpk−1)

= pTkArk−1 + βkp
T
kApk−1 = pTkArk−1.

(2.31)

Now combine (2.30), (2.31), and (2.25) to get

βk+1 =
−rTk Apkαk
‖rk−1‖22

.

22 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Now take scalar products of both sides of

rk = rk−1 − αkApk

with rk and use Lemma 2.4.1 to get

‖rk‖22 = −αkr
T
k Apk.

Hence (2.27) holds.
The usual implementation reflects all of the above results. The goal is to

find, for a given ε, a vector x so that ‖b−Ax‖2 ≤ ε‖b‖2. The input is the initial
iterate x, which is overwritten with the solution, the right hand side b, and a
routine which computes the action of A on a vector. We limit the number of
iterations to kmax and return the solution, which overwrites the initial iterate
x and the residual norm.

Algorithm 2.4.1. cg(x, b, A, ε, kmax)
1. r = b−Ax, ρ0 = ‖r‖22, k = 1.

2. Do While
√
ρk−1 > ε‖b‖2 and k < kmax

(a) if k = 1 then p = r
else
β = ρk−1/ρk−2 and p = r + βp

(b) w = Ap

(c) α = ρk−1/p
Tw

(d) x = x+ αp

(e) r = r − αw

(f) ρk = ‖r‖22
(g) k = k + 1

Note that the matrix A itself need not be formed or stored, only a routine
for matrix-vector products is required. Krylov space methods are often called
matrix-free for that reason.

Now, consider the costs. We need store only the four vectors x, w, p, and r.
Each iteration requires a single matrix-vector product (to compute w = Ap),
two scalar products (one for pTw and one to compute ρk = ‖r‖22), and three
operations of the form ax+ y, where x and y are vectors and a is a scalar.

It is remarkable that the iteration can progress without storing a basis for
the entire Krylov subspace. As we will see in the section on GMRES, this is
not the case in general. The spd structure buys quite a lot.

2.5. Preconditioning

To reduce the condition number, and hence improve the performance of the
iteration, one might try to replace Ax = b by another spd system with the
same solution. If M is a spd matrix that is close to A−1, then the eigenvalues

CONJUGATE GRADIENT ITERATION 23

of MA will be clustered near one. However MA is unlikely to be spd, and
hence CG cannot be applied to the system MAx = Mb.

In theory one avoids this difficulty by expressing the preconditioned
problem in terms of B, where B is spd, A = B2, and by using a two-sided
preconditioner, S ≈ B−1 (so M = S2). Then the matrix SAS is spd and its
eigenvalues are clustered near one. Moreover the preconditioned system

SASy = Sb

has y∗ = S−1x∗ as a solution, where Ax∗ = b. Hence x∗ can be recovered
from y∗ by multiplication by S. One might think, therefore, that computing
S (or a subroutine for its action on a vector) would be necessary and that a
matrix-vector multiply by SAS would incur a cost of one multiplication by A
and two by S. Fortunately, this is not the case.

If yk, r̂k, p̂k are the iterate, residual, and search direction for CG applied
to SAS and we let

xk = Sŷk, rk = S−1r̂k, pk = Sp̂k, and zk = Sr̂k,

then one can perform the iteration directly in terms of xk, A, and M . The
reader should verify that the following algorithm does exactly that. The input
is the same as that for Algorithm cg and the routine to compute the action of
the preconditioner on a vector. Aside from the preconditioner, the arguments
to pcg are the same as those to Algorithm cg.

Algorithm 2.5.1. pcg(x, b, A,M, ε, kmax)
1. r = b−Ax, ρ0 = ‖r‖22, k = 1

2. Do While
√
ρk−1 > ε‖b‖2 and k < kmax

(a) z = Mr

(b) τk−1 = zT r

(c) if k = 1 then β = 0 and p = z
else
β = τk−1/τk−2, p = z + βp

(d) w = Ap

(e) α = τk−1/p
Tw

(f) x = x+ αp

(g) r = r − αw

(h) ρk = rT r

(i) k = k + 1

Note that the cost is identical to CG with the addition of

• the application of the preconditioner M in step 2a and

• the additional inner product required to compute τk in step 2b.

24 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Of these costs, the application of the preconditioner is usually the larger. In
the remainder of this section we briefly mention some classes of preconditioners.
A more complete and detailed discussion of preconditioners is in [8] and a
concise survey with many pointers to the literature is in [12].

Some effective preconditioners are based on deep insight into the structure
of the problem. See [124] for an example in the context of partial differential
equations, where it is shown that certain discretized second-order elliptic
problems on simple geometries can be very well preconditioned with fast
Poisson solvers [99], [188], and [187]. Similar performance can be obtained from
multigrid [99], domain decomposition, [38], [39], [40], and alternating direction
preconditioners [8], [149], [193], [194]. We use a Poisson solver preconditioner
in the examples in § 2.7 and § 3.7 as well as for nonlinear problems in § 6.4.2
and § 8.4.2.

One commonly used and easily implemented preconditioner is Jacobi
preconditioning, whereM is the inverse of the diagonal part of A. One can also
use other preconditioners based on the classical stationary iterative methods,
such as the symmetric Gauss–Seidel preconditioner (1.18). For applications to
partial differential equations, these preconditioners may be somewhat useful,
but should not be expected to have dramatic effects.

Another approach is to apply a sparse Cholesky factorization to the
matrix A (thereby giving up a fully matrix-free formulation) and discarding
small elements of the factors and/or allowing only a fixed amount of storage
for the factors. Such preconditioners are called incomplete factorization
preconditioners. So if A = LLT + E, where E is small, the preconditioner
is (LLT)−1 and its action on a vector is done by two sparse triangular solves.
We refer the reader to [8], [127], and [44] for more detail.

One could also attempt to estimate the spectrum of A, find a polynomial
p such that 1− zp(z) is small on the approximate spectrum, and use p(A) as a
preconditioner. This is called polynomial preconditioning. The preconditioned
system is

p(A)Ax = p(A)b

and we would expect the spectrum of p(A)A to be more clustered near z = 1
than that of A. If an interval containing the spectrum can be found, the
residual polynomial q(z) = 1 − zp(z) of smallest L∞ norm on that interval
can be expressed in terms of Chebyshev [161] polynomials. Alternatively
q can be selected to solve a least squares minimization problem [5], [163].
The preconditioning p can be directly recovered from q and convergence rate
estimates made. This technique is used to prove the estimate (2.15), for
example. The cost of such a preconditioner, if a polynomial of degree K is
used, is K matrix-vector products for each application of the preconditioner
[5]. The performance gains can be very significant and the implementation is
matrix-free.

CONJUGATE GRADIENT ITERATION 25

2.6. CGNR and CGNE

If A is nonsingular and nonsymmetric, one might consider solving Ax = b by
applying CG to the normal equations

ATAx = AT b.(2.32)

This approach [103] is called CGNR [71], [78], [134]. The reason for this name
is that the minimization property of CG as applied to (2.32) asserts that

‖x∗ − x‖2
ATA

= (x∗ − x)TATA(x∗ − x)
= (Ax∗ −Ax)T (Ax∗ −Ax) = (b−Ax)T (b−Ax) = ‖r‖2

is minimized over x0+Kk at each iterate. Hence the name Conjugate Gradient
on the Normal equations to minimize the Residual.

Alternatively, one could solve

AAT y = b(2.33)

and then set x = AT y to solve Ax = b. This approach [46] is now called CGNE
[78], [134]. The reason for this name is that the minimization property of CG
as applied to (2.33) asserts that if y∗ is the solution to (2.33) then

‖y∗ − y‖2
AAT = (y∗ − y)T (AAT)(y∗ − y) = (AT y∗ −AT y)T (AT y∗ −AT y)

= ‖x∗ − x‖22
is minimized over y0 +Kk at each iterate. Conjugate Gradient on the Normal
equations to minimize the Error.

The advantages of this approach are that all the theory for CG carries over
and the simple implementation for both CG and PCG can be used. There
are three disadvantages that may or may not be serious. The first is that the
condition number of the coefficient matrix ATA is the square of that of A.
The second is that two matrix-vector products are needed for each CG iterate
since w = ATAp = AT (Ap) in CGNR and w = AAT p = A(AT p) in CGNE.
The third, more important, disadvantage is that one must compute the action
of AT on a vector as part of the matrix-vector product involving ATA. As we
will see in the chapter on nonlinear problems, there are situations where this
is not possible.

The analysis with residual polynomials is similar to that for CG. We
consider the case for CGNR, the analysis for CGNE is essentially the same.
As above, when we consider the ATA norm of the error, we have

‖x∗ − x‖2ATA = (x∗ − x)TATA(x∗ − x) = ‖A(x∗ − x)‖22 = ‖r‖22.
Hence, for any residual polynomial p̄k ∈ Pk,

‖rk‖2 ≤ ‖p̄k(ATA)r0‖2 ≤ ‖r0‖2 max
z∈σ(ATA)

|p̄k(z)|.(2.34)

26 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

There are two major differences between (2.34) and (2.7). The estimate is
in terms of the l2 norm of the residual, which corresponds exactly to the
termination criterion, hence we need not prove a result like Lemma 2.3.2. Most
significantly, the residual polynomial is to be maximized over the eigenvalues
of ATA, which is the set of the squares of the singular values of A. Hence the
performance of CGNR and CGNE is determined by the distribution of singular
values.

2.7. Examples for preconditioned conjugate iteration

In the collection of MATLAB codes we provide a code for preconditioned
conjugate gradient iteration. The inputs, described in the comment lines,
are the initial iterate, x0, the right hand side vector b, MATLAB functions for
the matrix-vector product and (optionally) the preconditioner, and iteration
parameters to specify the maximum number of iterations and the termination
criterion. On return the code supplies the approximate solution x and the
history of the iteration as the vector of residual norms.

We consider the discretization of the partial differential equation

−∇(̇a(x, y)∇u) = f(x, y)(2.35)

on 0 < x, y < 1 subject to homogeneous Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, 0 < x, y < 1.

One can verify [105] that the differential operator is positive definite in the
Hilbert space sense and that the five-point discretization described below is
positive definite if a > 0 for all 0 ≤ x, y ≤ 1 (Exercise 2.8.10).

We discretize with a five-point centered difference scheme with n2 points
and mesh width h = 1/(n+ 1). The unknowns are

uij ≈ u(xi, xj)

where xi = ih for 1 ≤ i ≤ n. We set

u0j = u(n+1)j = ui0 = ui(n+1) = 0,

to reflect the boundary conditions, and define

αij = −a(xi, xj)h
−2/2.

We express the discrete matrix-vector product as

(Au)ij = (αij + α(i+1)j)(u(i+1)j − uij)

−(α(i−1)j + αij)(uij − u(i−1)j) + (αi(j+1) + αij)(ui(j+1) − uij)

−(αij + αi(j−1))(uij − ui(j−1))

(2.36)

CONJUGATE GRADIENT ITERATION 27

for 1 ≤ i, j ≤ n.
For the MATLAB implementation we convert freely from the representa-

tion of u as a two-dimensional array (with the boundary conditions added),
which is useful for computing the action of A on u and applying fast solvers,
and the representation as a one-dimensional array, which is what pcgsol ex-
pects to see. See the routine fish2d in collection of MATLAB codes for an
example of how to do this in MATLAB.

For the computations reported in this section we took a(x, y) = cos(x) and
took the right hand side so that the exact solution was the discretization of

10xy(1− x)(1− y) exp(x4.5).

The initial iterate was u0 = 0.
In the results reported here we took n = 31 resulting in a system with

N = n2 = 961 unknowns. We expect second-order accuracy from the method
and accordingly we set termination parameter ε = h2 = 1/1024. We allowed
up to 100 CG iterations. The initial iterate was the zero vector. We will report
our results graphically, plotting ‖rk‖2/‖b‖2 on a semi-log scale.

In Fig. 2.1 the solid line is a plot of ‖rk‖/‖b‖ and the dashed line a plot of
‖u∗−uk‖A/‖u∗−u0‖A. Note that the reduction in ‖r‖ is not monotone. This is
consistent with the theory, which predicts decrease in ‖e‖A but not necessarily
in ‖r‖ as the iteration progresses. Note that the unpreconditioned iteration is
slowly convergent. This can be explained by the fact that the eigenvalues are
not clustered and

κ(A) = O(1/h2) = O(n2) = O(N)

and hence (2.15) indicates that convergence will be slow. The reader is asked
to quantify this in terms of execution times in Exercise 2.8.9. This example
illustrates the importance of a good preconditioner. Even the unpreconditioned
iteration, however, is more efficient that the classical stationary iterative
methods.

For a preconditioner we use a Poisson solver. By this we mean an operator
G such that v = Gw is the solution of the discrete form of

−vxx − vyy = w,

subject to homogeneous Dirichlet boundary conditions. The effectiveness of
such a preconditioner has been analyzed in [124] and some of the many ways
to implement the solver efficiently are discussed in [99], [188], [186], and [187].

The properties of CG on the preconditioned problem in the continuous
case have been analyzed in [48]. For many types of domains and boundary
conditions, Poisson solvers can be designed to take advantage of vector and/or
parallel architectures or, in the case of the MATLAB environment used in
this book, designed to take advantage of fast MATLAB built-in functions.
Because of this their execution time is less than a simple count of floating-
point operations would indicate. The fast Poisson solver in the collection of

28 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

0 10 20 30 40 50 60
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Iterations

R
el

at
iv

e
R

es
id

ua
l a

nd
 A

-n
or

m
 o

f E
rr

or

Fig. 2.1. CG for 2-D elliptic equation.

0 10 20 30 40 50 60
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Iterations

R
el

at
iv

e
R

es
id

ua
l

Fig. 2.2. PCG for 2-D elliptic equation.

codes fish2d is based on the MATLAB fast Fourier transform, the built-in
function fft.

In Fig. 2.2 the solid line is the graph of ‖rk‖2/‖b‖2 for the preconditioned
iteration and the dashed line for the unpreconditioned. The preconditioned
iteration required 5 iterations for convergence and the unpreconditioned
iteration 52. Not only does the preconditioned iteration converge more
rapidly, but the number of iterations required to reduce the relative residual
by a given amount is independent of the mesh spacing [124]. We caution
the reader that the preconditioned iteration is not as much faster than the

CONJUGATE GRADIENT ITERATION 29

unpreconditioned one as the iteration count would suggest. The MATLAB
flops command indicates that the unpreconditioned iteration required roughly
1.2 million floating-point operations while the preconditioned iteration required
.87 million floating-point operations. Hence, the cost of the preconditioner is
considerable. In the MATLAB environment we used, the execution time of
the preconditioned iteration was about 60% of that of the unpreconditioned.
As we remarked above, this speed is a result of the efficiency of the MATLAB
fast Fourier transform. In Exercise 2.8.11 you are asked to compare execution
times for your own environment.

30 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

2.8. Exercises on conjugate gradient

2.8.1. Let {xk} be the conjugate gradient iterates. Prove that rl ∈ Kk for all
l < k.

2.8.2. Let A be spd. Show that there is a spd B such that B2 = A. Is B
unique?

2.8.3. Let Λ be a diagonal matrix with Λii = λi and let p be a polynomial.
Prove that ‖p(Λ)‖ = maxi |p(λi)| where ‖ ·‖ is any induced matrix norm.

2.8.4. Prove Theorem 2.2.3.

2.8.5. Assume that A is spd and that

σ(A) ⊂ (1, 1.1) ∪ (2, 2.2).

Give upper estimates based on (2.6) for the number of CG iterations
required to reduce the A norm of the error by a factor of 10−3 and for
the number of CG iterations required to reduce the residual by a factor
of 10−3.

2.8.6. For the matrix A in problem 5, assume that the cost of a matrix vector
multiply is 4N floating-point multiplies. Estimate the number of floating-
point operations reduce the A norm of the error by a factor of 10−3 using
CG iteration.

2.8.7. Let A be a nonsingular matrix with all singular values in the interval
(1, 2). Estimate the number of CGNR/CGNE iterations required to
reduce the relative residual by a factor of 10−4.

2.8.8. Show that if A has constant diagonal then PCG with Jacobi precondi-
tioning produces the same iterates as CG with no preconditioning.

2.8.9. Assume that A is N × N , nonsingular, and spd. If κ(A) = O(N), give
a rough estimate of the number of CG iterates required to reduce the
relative residual to O(1/N).

2.8.10. Prove that the linear transformation given by (2.36) is symmetric and
positive definite on Rn

2
if a(x, y) > 0 for all 0 ≤ x, y ≤ 1.

2.8.11. Duplicate the results in § 2.7 for example, in MATLAB by writing the
matrix-vector product routines and using the MATLAB codes pcgsol

and fish2d. What happens as N is increased? How are the performance
and accuracy affected by changes in a(x, y)? Try a(x, y) =

√
.1 + x and

examine the accuracy of the result. Explain your findings. Compare
the execution times on your computing environment (using the cputime
command in MATLAB, for instance).

CONJUGATE GRADIENT ITERATION 31

2.8.12. Use the Jacobi and symmetric Gauss–Seidel iterations from Chapter 1
to solve the elliptic boundary value problem in § 2.7. How does the
performance compare to CG and PCG?

2.8.13. Implement Jacobi (1.17) and symmetric Gauss–Seidel (1.18) precondi-
tioners for the elliptic boundary value problem in § 2.7. Compare the
performance with respect to both computer time and number of itera-
tions to preconditioning with the Poisson solver.

2.8.14. Modify pcgsol so that φ(x) is computed and stored at each iterate
and returned on output. Plot φ(xn) as a function of n for each of the
examples.

2.8.15. Apply CG and PCG to solve the five-point discretization of

−uxx(x, y)− uyy(x, y) + ex+yu(x, y) = 1, 0 < x, y,< 1,

subject to the inhomogeneous Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(1, y) = 0, u(0, y) = 1, 0 < x, y < 1.

Experiment with different mesh sizes and preconditioners (Fast Poisson
solver, Jacobi, and symmetric Gauss–Seidel).

32 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Chapter 3

GMRES Iteration

3.1. The minimization property and its consequences

The GMRES (Generalized Minimum RESidual) was proposed in 1986 in [167]
as a Krylov subspace method for nonsymmetric systems. Unlike CGNR,
GMRES does not require computation of the action of AT on a vector. This is
a significant advantage in many cases. The use of residual polynomials is made
more complicated because we cannot use the spectral theorem to decompose
A. Moreover, one must store a basis for Kk, and therefore storage requirements
increase as the iteration progresses.

The kth (k ≥ 1) iteration of GMRES is the solution to the least squares
problem

minimizex∈x0+Kk
‖b−Ax‖2.(3.1)

The beginning of this section is much like the analysis for CG. Note that
if x ∈ x0 +Kk then

x = x0 +
k−1∑
j=0

γjA
jr0

and so

b−Ax = b−Ax0 −
k−1∑
j=0

γjA
j+1r0 = r0 −

k∑
j=1

γj−1A
jr0.

Hence if x ∈ x0 + Kk then r = p̄(A)r0 where p̄ ∈ Pk is a residual polynomial.
We have just proved the following result.

Theorem 3.1.1. Let A be nonsingular and let xk be the kth GMRES
iteration. Then for all p̄k ∈ Pk

‖rk‖2 = min
p∈Pk

‖p̄(A)r0‖2 ≤ ‖p̄k(A)r0‖2.(3.2)

From this we have the following corollary.
Corollary 3.1.1. Let A be nonsingular and let xk be the kth GMRES

iteration. Then for all p̄k ∈ Pk
‖rk‖2
‖r0‖2 ≤ ‖p̄k(A)‖2.(3.3)

33

34 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

We can apply the corollary to prove finite termination of the GMRES
iteration.

Theorem 3.1.2. Let A be nonsingular. Then the GMRES algorithm will
find the solution within N iterations.

Proof. The characteristic polynomial of A is p(z) = det(A − zI). p has
degree N , p(0) = det(A) �= 0 since A is nonsingular, and so

p̄N (z) = p(z)/p(0) ∈ PN
is a residual polynomial. It is well known [141] that p(A) = p̄N (A) = 0. By
(3.3), rN = b−AxN = 0 and hence xN is the solution.

In Chapter 2 we applied the spectral theorem to obtain more precise infor-
mation on convergence rates. This is not an option for general nonsymmetric
matrices. However, if A is diagonalizable we may use (3.2) to get information
from clustering of the spectrum just like we did for CG. We pay a price in that
we must use complex arithmetic for the only time in this book. Recall that
A is diagonalizable if there is a nonsingular (possibly complex!) matrix V such
that

A = V ΛV −1.

Here Λ is a (possibly complex!) diagonal matrix with the eigenvalues of A on
the diagonal. If A is a diagonalizable matrix and p is a polynomial then

p(A) = V p(Λ)V −1

A is normal if the diagonalizing transformation V is orthogonal. In that case
the columns of V are the eigenvectors of A and V −1 = V H . Here V H is the
complex conjugate transpose of V . In the remainder of this section we must
use complex arithmetic to analyze the convergence. Hence we will switch to
complex matrices and vectors. Recall that the scalar product in CN , the space
of complex N -vectors, is xHy. In particular, we will use the l2 norm in CN .
Our use of complex arithmetic will be implicit for the most part and is needed
only so that we may admit the possibility of complex eigenvalues of A.

We can use the structure of a diagonalizable matrix to prove the following
result.

Theorem 3.1.3. Let A = V ΛV −1 be a nonsingular diagonalizable matrix.
Let xk be the kth GMRES iterate. Then for all p̄k ∈ Pk

‖rk‖2
‖r0‖2 ≤ κ2(V) max

z∈σ(A)
|p̄k(z)|.(3.4)

Proof. Let p̄k ∈ Pk. We can easily estimate ‖p̄k(A)‖2 by

‖p̄k(A)‖2 ≤ ‖V ‖2‖V −1‖2‖p̄k(Λ)‖2 ≤ κ2(V) max
z∈σ(A)

|p̄k(z)|,

as asserted.

GMRES ITERATION 35

It is not clear how one should estimate the condition number of the
diagonalizing transformation if it exists. If A is normal, of course, κ2(V) = 1.

As we did for CG, we look at some easy consequences of (3.3) and (3.4).
Theorem 3.1.4. Let A be a nonsingular diagonalizable matrix. Assume

that A has only k distinct eigenvalues. Then GMRES will terminate in at most
k iterations.

Theorem 3.1.5. Let A be a nonsingular normal matrix. Let b be a linear
combination of k of the eigenvectors of A

b =
k∑
l=1

γluil .

Then the GMRES iteration, with x0 = 0, for Ax = b will terminate in at most
k iterations.

3.2. Termination

As is the case with CG, GMRES is best thought of as an iterative method.
The convergence rate estimates for the diagonalizable case will involve κ2(V),
but will otherwise resemble those for CG. If A is not diagonalizable, rate
estimates have been derived in [139], [134], [192], [33], and [34]. As the set of
nondiagonalizable matrices has measure zero in the space of N ×N matrices,
the chances are very high that a computed matrix will be diagonalizable. This
is particularly so for the finite difference Jacobian matrices we consider in
Chapters 6 and 8. Hence we confine our attention to diagonalizable matrices.

As was the case with CG, we terminate the iteration when

‖rk‖2 ≤ η‖b‖2(3.5)

for the purposes of this example. We can use (3.3) and (3.4) directly to estimate
the first k such that (3.5) holds without requiring a lemma like Lemma 2.3.2.

Again we look at examples. Assume that A = V ΛV −1 is diagonalizable,
that the eigenvalues of A lie in the interval (9, 11), and that κ2(V) = 100.
We assume that x0 = 0 and hence r0 = b. Using the residual polynomial
p̄k(z) = (10− z)k/10k we find

‖rk‖2
‖r0‖2 ≤ (100)10−k = 102−k.

Hence (3.5) holds when 102−k < η or when

k > 2 + log10(η).

Assume that ‖I − A‖2 ≤ ρ < 1. Let p̄k(z) = (1 − z)k. It is a direct
consequence of (3.2) that

‖rk‖2 ≤ ρk‖r0‖2.(3.6)

The estimate (3.6) illustrates the potential benefits of a good approximate
inverse preconditioner.

36 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

The convergence estimates for GMRES in the nonnormal case are much
less satisfying that those for CG, CGNR, CGNE, or GMRES in the normal
case. This is a very active area of research and we refer to [134], [33], [120],
[34], and [36] for discussions of and pointers to additional references to several
questions related to nonnormal matrices.

3.3. Preconditioning

Preconditioning for GMRES and other methods for nonsymmetric problems is
different from that for CG. There is no concern that the preconditioned system
be spd and hence (3.6) essentially tells the whole story. However there are two
different ways to view preconditioning. If one can find M such that

‖I −MA‖2 = ρ < 1,

then applying GMRES to MAx = Mb allows one to apply (3.6) to the
preconditioned system. Preconditioning done in this way is called left
preconditioning. If r = MAx − Mb is the residual for the preconditioned
system, we have, if the product MA can be formed without error,

‖ek‖2
‖e0‖2 ≤ κ2(MA)

‖rk‖2
‖r0‖2 ,

by Lemma 1.1.1. Hence, if MA has a smaller condition number than A, we
might expect the relative residual of the preconditioned system to be a better
indicator of the relative error than the relative residual of the original system.

If
‖I −AM‖2 = ρ < 1,

one can solve the system AMy = b with GMRES and then set x = My. This is
called right preconditioning. The residual of the preconditioned problem is the
same as that of the unpreconditioned problem. Hence, the value of the relative
residuals as estimators of the relative error is unchanged. Right preconditioning
has been used as the basis for a method that changes the preconditioner as the
iteration progresses [166].

One important aspect of implementation is that, unlike PCG, one can
apply the algorithm directly to the system MAx = Mb (or AMy = b). Hence,
one can write a single matrix-vector product routine for MA (or AM) that
includes both the application of A to a vector and that of the preconditioner.

Most of the preconditioning ideas mentioned in § 2.5 are useful for GMRES
as well. In the examples in § 3.7 we use the Poisson solver preconditioner for
nonsymmetric partial differential equations. Multigrid [99] and alternating
direction [8], [182] methods have similar performance and may be more
generally applicable. Incomplete factorization (LU in this case) preconditioners
can be used [165] as can polynomial preconditioners. Some hybrid algorithms
use the GMRES/Arnoldi process itself to construct polynomial preconditioners
for GMRES or for Richardson iteration [135], [72], [164], [183]. Again we
mention [8] and [12] as a good general references for preconditioning.

GMRES ITERATION 37

3.4. GMRES implementation: Basic ideas

Recall that the least squares problem defining the kth GMRES iterate is

minimizex∈x0+Kk
‖b−Ax‖2.

Suppose one had an orthogonal projector Vk onto Kk. Then any z ∈ Kk can
be written as

z =
k∑
l=1

ylv
k
l ,

where vkl is the lth column of Vk. Hence we can convert (3.1) to a least squares
problem in Rk for the coefficient vector y of z = x− x0. Since

x− x0 = Vky

for some y ∈ Rk, we must have xk = x0 + Vky where y minimizes

‖b−A(x0 + Vky)‖2 = ‖r0 −AVky‖2.

Hence, our least squares problem in Rk is

minimizey∈Rk‖r0 −AVky‖2.(3.7)

This is a standard linear least squares problem that could be solved by a QR
factorization, say. The problem with such a direct approach is that the matrix
vector product of A with the basis matrix Vk must be taken at each iteration.

If one uses Gram–Schmidt orthogonalization, however, one can represent
(3.7) very efficiently and the resulting least squares problem requires no extra
multiplications of A with vectors. The Gram–Schmidt procedure for formation
of an orthonormal basis for Kk is called the Arnoldi [4] process. The data are
vectors x0 and b, a map that computes the action of A on a vector, and a
dimension k. The algorithm computes an orthonormal basis for Kk and stores
it in the columns of V .

Algorithm 3.4.1. arnoldi(x0, b, A, k, V)
1. Define r0 = b−Ax0 and v1 = r0/‖r0‖2.
2. For i = 1, . . . , k − 1

vi+1 =
Avi −∑ij=1((Avi)

T vj)vj

‖Avi −∑ij=1((Avi)T vj)vj‖2

If there is never a division by zero in step 2 of Algorithm arnoldi, then
the columns of the matrix Vk are an orthonormal basis for Kk. A division by
zero is referred to as breakdown and happens only if the solution to Ax = b is
in x0 +Kk−1.

38 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Lemma 3.4.1. Let A be nonsingular, let the vectors vj be generated by
Algorithm arnoldi, and let i be the smallest integer for which

Avi −
i∑
j=1

((Avi)
T vj)vj = 0.

Then x = A−1b ∈ x0 +Ki.
Proof. By hypothesis Avi ∈ Ki and hence AKi ⊂ Ki. Since the columns of

Vi are an orthonormal basis for Ki, we have
AVi = ViH,

where H is an i × i matrix. H is nonsingular since A is. Setting β = ‖r0‖2
and e1 = (1, 0, . . . , 0)T ∈ Ri we have

‖ri‖2 = ‖b−Axi‖2 = ‖r0 −A(xi − x0)‖2.
Since xi − x0 ∈ Ki there is y ∈ Ri such that xi − x0 = Viy. Since r0 = βVie1
and Vi is an orthogonal matrix

‖ri‖2 = ‖Vi(βe1 −Hy)‖2 = ‖βe1 −Hy‖Ri+1 ,

where ‖ · ‖Rk+1 denotes the Euclidean norm in Rk+1.
Setting y = βH−1e1 proves that ri = 0 by the minimization property.
The upper Hessenberg structure can be exploited to make the solution of

the least squares problems very efficient [167].
If the Arnoldi process does not break down, we can use it to implement

GMRES in an efficient way. Set hji = (Avj)
T vi. By the Gram–Schmidt

construction, the k+1×k matrix Hk whose entries are hij is upper Hessenberg,
i.e., hij = 0 if i > j+1. The Arnoldi process (unless it terminates prematurely
with a solution) produces matrices {Vk} with orthonormal columns such that

AVk = Vk+1Hk.(3.8)

Hence, for some yk ∈ Rk,

rk = b−Axk = r0 −A(xk − x0) = Vk+1(βe1 −Hky
k).

Hence xk = x0 + Vky
k, where yk minimizes ‖βe1 −Hky‖2 over Rk. Note that

when yk has been computed, the norm of rk can be found without explicitly
forming xk and computing rk = b−Axk. We have, using the orthogonality of
Vk+1,

‖rk‖2 = ‖Vk+1(βe1 −Hky
k)‖2 = ‖βe1 −Hky

k‖Rk+1 .(3.9)

The goal of the iteration is to find, for a given ε, a vector x so that

‖b−Ax‖2 ≤ ε‖b‖2.
The input is the initial iterate, x, the right-hand side b, and a map that
computes the action of A on a vector. We limit the number of iterations
to kmax and return the solution, which overwrites the initial iterate x and the
residual norm.

GMRES ITERATION 39

Algorithm 3.4.2. gmresa(x, b, A, ε, kmax, ρ)
1. r = b−Ax, v1 = r/‖r‖2, ρ = ‖r‖2, β = ρ, k = 0

2. While ρ > ε‖b‖2 and k < kmax do

(a) k = k + 1

(b) for j = 1, . . . , k
hjk = (Avk)

T vj

(c) vk+1 = Avk −
∑k
j=1 hjkvj

(d) hk+1,k = ‖vk+1‖2
(e) vk+1 = vk+1/‖vk+1‖2
(f) e1 = (1, 0, . . . , 0)T ∈ Rk+1

Minimize ‖βe1 −Hky
k‖Rk+1 over Rk to obtain yk.

(g) ρ = ‖βe1 −Hky
k‖Rk+1 .

3. xk = x0 + Vky
k.

Note that xk is only computed upon termination and is not needed within
the iteration. It is an important property of GMRES that the basis for the
Krylov space must be stored as the iteration progress. This means that in
order to perform k GMRES iterations one must store k vectors of length N .
For very large problems this becomes prohibitive and the iteration is restarted
when the available room for basis vectors is exhausted. One way to implement
this is to set kmax to the maximum number m of vectors that one can store,
call GMRES and explicitly test the residual b−Axk if k = m upon termination.
If the norm of the residual is larger than ε, call GMRES again with x0 = xk,
the result from the previous call. This restarted version of the algorithm is
called GMRES(m) in [167]. There is no general convergence theorem for the
restarted algorithm and restarting will slow the convergence down. However,
when it works it can significantly reduce the storage costs of the iteration. We
discuss implementation of GMRES(m) later in this section.

Algorithm gmresa can be implemented very straightforwardly in MAT-
LAB. Step 2f can be done with a single MATLAB command, the backward
division operator, at a cost of O(k3) floating-point operations. There are more
efficient ways to solve the least squares problem in step 2f, [167], [197], and we
use the method of [167] in the collection of MATLAB codes. The savings are
slight if k is small relative to N , which is often the case for large problems, and
the simple one-line MATLAB approach can be efficient for such problems.

A more serious problem with the implementation proposed in Algo-
rithm gmresa is that the vectors vj may become nonorthogonal as a result of
cancellation errors. If this happens, (3.9), which depends on this orthogonality,
will not hold and the residual and approximate solution could be inaccurate. A
partial remedy is to replace the classical Gram–Schmidt orthogonalization in
Algorithm gmresa with modified Gram–Schmidt orthogonalization. We replace

40 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

the loop in step 2c of Algorithm gmresa with

vk+1 = Avk
for j = 1, . . . k
vk+1 = vk+1 − (vTk+1vj)vj .

While modified Gram–Schmidt and classical Gram–Schmidt are equivalent in
infinite precision, the modified form is much more likely in practice to maintain
orthogonality of the basis.

We illustrate this point with a simple example from [128], doing the
computations in MATLAB. Let δ = 10−7 and define

A =


 1 1 1

δ δ 0
δ 0 δ


 .

We orthogonalize the columns of A with classical Gram–Schmidt to obtain

V =


 1.0000e+ 00 1.0436e− 07 9.9715e− 08

1.0000e− 07 1.0456e− 14 −9.9905e− 01
1.0000e− 07 −1.0000e+ 00 4.3568e− 02


 .

The columns of VU are not orthogonal at all. In fact vT2 v3 ≈ −.004. For
modified Gram–Schmidt

V =


 1.0000e+ 00 1.0436e− 07 1.0436e− 07

1.0000e− 07 1.0456e− 14 −1.0000e+ 00
1.0000e− 07 −1.0000e+ 00 4.3565e− 16


 .

Here |vTi vj − δij | ≤ 10−8 for all i, j.
The versions we implement in the collection of MATLAB codes use modi-

fied Gram–Schmidt. The outline of our implementation is Algorithm gmresb.
This implementation solves the upper Hessenberg least squares problem using
the MATLAB backward division operator, and is not particularly efficient. We
present a better implementation in Algorithm gmres. However, this version is
very simple and illustrates some important ideas. First, we see that xk need
only be computed after termination as the least squares residual ρ can be used
to approximate the norm of the residual (they are identical in exact arithmetic).
Second, there is an opportunity to compensate for a loss of orthogonality in
the basis vectors for the Krylov space. One can take a second pass through the
modified Gram–Schmidt process and restore lost orthogonality [147], [160].

Algorithm 3.4.3. gmresb(x, b, A, ε, kmax, ρ)
1. r = b−Ax, v1 = r/‖r‖2, ρ = ‖r‖2, β = ρ, k = 0

2. While ρ > ε‖b‖2 and k < kmax do

(a) k = k + 1

GMRES ITERATION 41

(b) vk+1 = Avk
for j = 1, . . . k

i. hjk = vTk+1vj

ii. vk+1 = vk+1 − hjkvj

(c) hk+1,k = ‖vk+1‖2
(d) vk+1 = vk+1/‖vk+1‖2
(e) e1 = (1, 0, . . . , 0)T ∈ Rk+1

Minimize ‖βe1 −Hky
k‖Rk+1 to obtain yk ∈ Rk.

(f) ρ = ‖βe1 −Hky
k‖Rk+1 .

3. xk = x0 + Vky
k.

Even if modified Gram–Schmidt orthogonalization is used, one can still
lose orthogonality in the columns of V . One can test for loss of orthogonality
[22], [147], and reorthogonalize if needed or use a more stable means to create
the matrix V [195]. These more complex implementations are necessary if A is
ill conditioned or many iterations will be taken. For example, one can augment
the modified Gram–Schmidt process

• vk+1 = Avk
for j = 1, . . . k
hjk = vTk+1vj
vk+1 = vk+1 − hjkvj

• hk+1,k = ‖vk+1‖2
• vk+1 = vk+1/‖vk+1‖2

with a second pass (reorthogonalization). One can reorthogonalize in every
iteration or only if a test [147] detects a loss of orthogonality. There is nothing
to be gained by reorthogonalizing more than once [147].

The modified Gram–Schmidt process with reorthogonalization looks like
• vk+1 = Avk
for j = 1, . . . , k
hjk = vTk+1vj
vk+1 = vk+1 − hjkvj

• hk+1,k = ‖vk+1‖2
• If loss of orthogonality is detected
For j = 1, . . . , k
htmp = vTk+1vj
hjk = hjk + htmp
vk+1 = vk+1 − htmpvj

• hk+1,k = ‖vk+1‖2
• vk+1 = vk+1/‖vk+1‖2

42 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

One approach to reorthogonalization is to reorthogonalize in every step.
This doubles the cost of the computation of V and is usually unnecessary.
More efficient and equally effective approaches are based on other ideas. A
variation on a method from [147] is used in [22]. Reorthogonalization is done
after the Gram–Schmidt loop and before vk+1 is normalized if

‖Avk‖2 + δ‖vk+1‖2 = ‖Avk‖2(3.10)

to working precision. The idea is that if the new vector is very small relative
to Avk then information may have been lost and a second pass through
the modified Gram–Schmidt process is needed. We employ this test in the
MATLAB code gmres with δ = 10−3.

To illustrate the effects of loss of orthogonality and those of reorthogonal-
ization we apply GMRES to the diagonal system Ax = b where b = (1, 1, 1)T ,
x0 = (0, 0, 0)T , and

A =


 .001 0 0

0 .0011 0
0 0 104


 .(3.11)

While in infinite precision arithmetic only three iterations are needed to solve
the system exactly, we find in the MATLAB environment that a solution to full
precision requires more than three iterations unless reorthogonalization is ap-
plied after every iteration. In Table 3.1 we tabulate relative residuals as a func-
tion of the iteration counter for classical Gram–Schmidt without reorthogonal-
ization (CGM), modified Gram–Schmidt without reorthogonalization (MGM),
reorthogonalization based on the test (3.10) (MGM-PO), and reorthogonaliza-
tion in every iteration (MGM-FO). While classical Gram–Schmidt fails, the
reorthogonalization strategy based on (3.10) is almost as effective as the much
more expensive approach of reorthogonalizing in every step. The method based
on (3.10) is the default in the MATLAB code gmresa.

The kth GMRES iteration requires a matrix-vector product, k scalar
products, and the solution of the Hessenberg least squares problem in step 2e.
The k scalar products require O(kN) floating-point operations and the cost
of a solution of the Hessenberg least squares problem, by QR factorization or
the MATLAB backward division operator, say, in step 2e of gmresb is O(k3)
floating-point operations. Hence the total cost of the m GMRES iterations is
m matrix-vector products and O(m4+m2N) floating-point operations. When
k is not too large and the cost of matrix-vector products is high, a brute-
force solution to the least squares problem using the MATLAB backward
division operator is not terribly inefficient. We provide an implementation
of Algorithm gmresb in the collection of MATLAB codes. This is an appealing
algorithm, especially when implemented in an environment like MATLAB,
because of its simplicity. For large k, however, the brute-force method can be
very costly.

GMRES ITERATION 43

Table 3.1

Effects of reorthogonalization.

k CGM MGM MGM-PO MGM-FO

0 1.00e+00 1.00e+00 1.00e+00 1.00e+00
1 8.16e-01 8.16e-01 8.16e-01 8.16e-01
2 3.88e-02 3.88e-02 3.88e-02 3.88e-02
3 6.69e-05 6.42e-08 6.42e-08 6.34e-34
4 4.74e-05 3.70e-08 5.04e-24
5 3.87e-05 3.04e-18
6 3.35e-05
7 3.00e-05
8 2.74e-05
9 2.53e-05
10 2.37e-05

3.5. Implementation: Givens rotations

If k is large, implementations using Givens rotations [167], [22], Householder
reflections [195], or a shifted Arnoldi process [197] are much more efficient
than the brute-force approach in Algorithm gmresb. The implementation in
Algorithm gmres and in the MATLAB code collection is from [167]. This
implementation maintains the QR factorization of Hk in a clever way so that
the cost for a single GMRES iteration is O(Nk) floating-point operations. The
O(k2) cost of the triangular solve and the O(kN) cost of the construction of
xk are incurred after termination.

A 2× 2 Givens rotation is a matrix of the form

G =

(
c −s
s c

)
,(3.12)

where c = cos(θ), s = sin(θ) for θ ∈ [−π, π]. The orthogonal matrix G rotates
the vector (c,−s), which makes an angle of −θ with the x-axis through an
angle θ so that it overlaps the x-axis.

G

(
c

−s

)
=

(
1
0

)
.

An N × N Givens rotation replaces a 2 × 2 block on the diagonal of the

44 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

N ×N identity matrix with a 2× 2 Givens rotation.

G =




1 0 . . . 0

0
. . .

. . .
. . . c −s

... s c 0
...

0 1
. . .

. . .
. . . 0

0 . . . 0 1




.(3.13)

Our notation is that Gj(c, s) is an N × N givens rotation of the form (3.13)
with a 2× 2 Givens rotation in rows and columns j and j + 1.

Givens rotations are used to annihilate single nonzero elements of matrices
in reduction to triangular form [89]. They are of particular value in reducing
Hessenberg matrices to triangular form and thereby solving Hessenberg least
squares problems such as the ones that arise in GMRES. This reduction can be
accomplished in O(N) floating-point operations and hence is far more efficient
than a solution by a singular value decomposition or a reduction based on
Householder transformations. This method is also used in the QR algorithm
for computing eigenvalues [89], [184].

Let H be an N × M (N ≥ M) upper Hessenberg matrix with rank M .
We reduce H to triangular form by first multiplying the matrix by a Givens
rotation that annihilates h21 (and, of course, changes h11 and the subsequent
columns). We define G1 = G1(c1, s1) by

c1 = h11/
√
h211 + h221 and s1 = −h21/

√
h211 + h221.(3.14)

If we replace H by G1H, then the first column of H now has only a single
nonzero element h11. Similarly, we can now apply G2(c2, s2) to H, where

c2 = h22/
√
h222 + h232 and s2 = −h32/

√
h222 + h232.(3.15)

and annihilate h32. Note that G2 does not affect the first column of H.
Continuing in this way and setting

Q = GN . . . G1

we see that QH = R is upper triangular.
A straightforward application of these ideas to Algorithm gmres would

solve the least squares problem by computing the product of k Givens rotations
Q, setting g = βQe1, and noting that

‖βe1 −Hky
k‖Rk+1 = ‖Q(βe1 −Hky

k)‖Rk+1 = ‖g −Rky
k‖Rk+1 ,

where Rk is the k + 1× k triangular factor of the QR factorization of Hk.

GMRES ITERATION 45

In the context of GMRES iteration, however, we can incrementally perform
the QR factorization of H as the GMRES iteration progresses [167]. To see
this, note that if Rk = QkHk and, after orthogonalization, we add the new
column hk+2 to Hk, we can update both Qk and Rk by first multiplying hk+2

by Qk (that is applying the first k Givens rotations to hk+2), then computing
the Givens rotation Gk+1 that annihilates the (k + 2)nd element of Qkhk+2,
and finally setting Qk+1 = Gk+1Qk and forming Rk+1 by augmenting Rk with
Gk+1Qkhk+2.

The MATLAB implementation of Algorithm gmres stores Qk by storing
the sequences {cj} and {sj} and then computing the action of Qk on a vector
x ∈ Rk+1 by applying Gj(cj , sj) in turn to obtain

Qkx = Gk(ck, sk) . . . G1(c1, s1)x.

We overwrite the upper triangular part of Hk with the triangular part of the
QR factorization of Hk in the MATLAB code. The MATLAB implementation
of Algorithm gmres uses (3.10) to test for loss of orthogonality.

Algorithm 3.5.1. gmres(x, b, A, ε, kmax, ρ)
1. r = b−Ax, v1 = r/‖r‖2, ρ = ‖r‖2, β = ρ,

k = 0; g = ρ(1, 0, . . . , 0)T ∈ Rkmax+1

2. While ρ > ε‖b‖2 and k < kmax do

(a) k = k + 1

(b) vk+1 = Avk
for j = 1, . . . k

i. hjk = vTk+1vj

ii. vk+1 = vk+1 − hjkvj

(c) hk+1,k = ‖vk+1‖2
(d) Test for loss of orthogonality and reorthogonalize if necessary.

(e) vk+1 = vk+1/‖vk+1‖2
(f) i. If k > 1 apply Qk−1 to the kth column of H.

ii. ν =
√
h2k,k + h2k+1,k.

iii. ck = hk,k/ν, sk = −hk+1,k/ν
hk,k = ckhk,k − skhk+1,k, hk+1,k = 0

iv. g = Gk(ck, sk)g.

(g) ρ = |(g)k+1|.
3. Set ri,j = hi,j for 1 ≤ i, j ≤ k.

Set (w)i = (g)i for 1 ≤ i ≤ k.
Solve the upper triangular system Ryk = w.

4. xk = x0 + Vky
k.

46 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

We close with an example of an implementation of GMRES(m) . This
implementation does not test for success and may, therefore, fail to terminate.
You are asked to repair this in exercise 7. Aside from the parameter m, the
arguments to Algorithm gmresm are the same as those for Algorithm gmres.

Algorithm 3.5.2. gmresm(x, b, A, ε, kmax,m, ρ)
1. gmres(x, b, A, ε,m, ρ)

2. k = m

3. While ρ > ε‖b‖2 and k < kmax do

(a) gmres(x, b, A, ε,m, ρ)

(b) k = k +m

The storage costs of m iterations of gmres or of gmresm are the m + 2
vectors b, x, and {vk}mk=1.

3.6. Other methods for nonsymmetric systems

The methods for nonsymmetric linear systems that receive most attention in
this book, GMRES, CGNR, and CGNE, share the properties that they are easy
to implement, can be analyzed by a common residual polynomial approach, and
only terminate if an acceptable approximate solution has been found. CGNR
and CGNE have the disadvantages that a transpose-vector product must be
computed for each iteration and that the coefficient matrix ATA or AAT has
condition number the square of that of the original matrix. In § 3.8 we give
an example of how this squaring of the condition number can lead to failure
of the iteration. GMRES needs only matrix-vector products and uses A alone,
but, as we have seen, a basis for Kk must be stored to compute xk. Hence,
the storage requirements increase as the iteration progresses. For large and
ill-conditioned problems, it may be impossible to store enough basis vectors
and the iteration may have to be restarted. Restarting can seriously degrade
performance.

An ideal method would, like CG, only need matrix-vector products, be
based on some kind of minimization principle or conjugacy, have modest
storage requirements that do not depend on the number of iterations needed
for convergence, and converge in N iterations for all nonsingular A. However,
[74], methods based on short-term recurrences such as CG that also satisfy
minimization or conjugacy conditions cannot be constructed for general
matrices. The methods we describe in this section fall short of the ideal, but
can still be quite useful. We discuss only a small subset of these methods and
refer the reader to [12] and [78] for pointers to more of the literature on this
subject. All the methods we present in this section require two matrix-vector
products for each iteration.

Consistently with our implementation of GMRES, we take the view that
preconditioners will be applied externally to the iteration. However, as with
CG, these methods can also be implemented in a manner that incorporates

GMRES ITERATION 47

the preconditioner and uses the residual for the original system to control
termination.

3.6.1. Bi-CG. The earliest such method Bi-CG (Biconjugate gradient)
[122], [76], does not enforce a minimization principle; instead, the kth residual
must satisfy the bi-orthogonality condition

rTk w = 0 for all w ∈ Kk,(3.16)

where
Kk = span(r̂0, A

T r̂0, . . . , (A
T)k−1r̂0)

is the Krylov space for AT and the vector r̂0. r̂0 is a user-supplied vector and is
often set to r0. The algorithm gets its name because it produces sequences of
residuals {rk}, {r̂k} and search directions {pk}, {p̂k} such that bi-orthogonality
holds, i. e. r̂Tk rl = 0 if k �= l and the search directions {pk} and {p̂k} satisfy
the bi-conjugacy property

p̂TkApl = 0 if k �= l.

In the symmetric positive definite case (3.16) is equivalent to the minimization
principle (2.2) for CG [89].

Using the notation of Chapter 2 and [191] we give an implementation of Bi-
CG making the choice r̂0 = r0. This algorithmic description is explained and
motivated in more detail in [122], [76], [78], and [191]. We do not recommend
use of Bi-CG and present this algorithm only as a basis for discussion of some
of the properties of this class of algorithms.

Algorithm 3.6.1. bicg(x, b, A, ε, kmax)
1. r = b−Ax, r̂ = r, ρ0 = 1, p̂ = p = 0, k = 0

2. Do While ‖r‖2 > ε‖b‖2 and k < kmax

(a) k = k + 1

(b) ρk = r̂T r, β = ρk/ρk−1

(c) p = r + βp, p̂ = r̂ + βp̂

(d) v = Ap

(e) α = ρk/(p̂
T v)

(f) x = x+ αp

(g) r = r − αv; r̂ = r̂ − αAT p̂

Note that if A = AT is spd, Bi-CG produces the same iterations as CG
(but computes everything except x twice). If, however, A is not spd, there is
no guarantee that ρk in step 2b or p̂TAp, the denominator in step 2e, will not
vanish. If either ρk−1 = 0 or p̂TAp = 0 we say that a breakdown has taken
place. Even if these quantities are nonzero but very small, the algorithm can
become unstable or produce inaccurate results. While there are approaches

48 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

[80], [78], [148], [79], [81], to avoid some breakdowns in many variations of
Bi-CG, there are no methods that both limit storage and completely eliminate
the possibility of breakdown [74]. All of the methods we present in this section
can break down and should be implemented with that possibility in mind.
Once breakdown has occurred, one can restart the Bi-CG iteration or pass
the computation to another algorithm, such as GMRES. The possibility of
breakdown is small and certainly should not eliminate the algorithms discussed
below from consideration if there is not enough storage for GMRES to perform
well.

Breakdowns aside, there are other problems with Bi-CG. A transpose-
vector product is needed, which at the least will require additional program-
ming and may not be possible at all. The performance of the algorithm can
be erratic or even unstable with residuals increasing by several orders of mag-
nitude from one iteration to the next. Moreover, the effort in computing r̂
at each iteration is wasted in that r̂ makes no contribution to x. However,
Bi-CG sometimes performs extremely well and the remaining algorithms in
this section represent attempts to capture this good performance and damp
the erratic behavior when it occurs.

We can compare the best-case performance of Bi-CG with that of GMRES.
Note that there is p̄k ∈ Pk such that both

rk = p̄k(A)r0 and r̂k = p̄k(A
T)r̂0.(3.17)

Hence, by the minimization property for GMRES

‖rGMRESk ‖2 ≤ ‖rBi−CGk ‖2,
reminding us that GMRES, if sufficient storage is available, will always
reduce the residual more rapidly than Bi-CG (in terms of iterations, but not
necessarily in terms of computational work). One should also keep in mind that
a single Bi-CG iteration requires two matrix-vector products and a GMRES
iterate only one, but that the cost of the GMRES iteration increases (in terms
of floating-point operations) as the iteration progresses.

3.6.2. CGS. A remedy for one of the problems with Bi-CG is the Conjugate
Gradient Squared (CGS) algorithm [180]. The algorithm takes advantage of
the fact that (3.17) implies that the scalar product r̂T r in Bi-CG (step 2b of
Algorithm bicg) can be represented without using AT as

rTk r̂k = (p̄k(A)r0)
T (p̄k(A

T)r̂0) = (p̄k(A)
2r0)

T r̂0.

The other references to AT can be eliminated in a similar fashion and an
iteration satisfying

rk = p̄k(A)
2r0(3.18)

is produced, where p̄k is the same polynomial produced by Bi-CG and used in
(3.17). This explains the name, Conjugate Gradient Squared.

GMRES ITERATION 49

The work used in Bi-CG to compute r̂ is now used to update x. CGS
replaces the transpose-vector product with an additional matrix-vector product
and applies the square of the Bi-CG polynomial to r0 to produce rk. This may,
of course, change the convergence properties for the worse and either improve
good convergence or magnify erratic behavior [134], [191]. CGS has the same
potential for breakdown as Bi-CG. Since p̄2k ∈ P2k we have

‖rGMRES2k ‖2 ≤ ‖rCGSk ‖2.(3.19)

We present an algorithmic description of CGS that we will refer to in our
discussion of TFQMR in § 3.6.4. In our description of CGS we will index the
vectors and scalars that would be overwritten in an implementation so that we
can describe some of the ideas in TFQMR later on. This description is taken
from [77].

Algorithm 3.6.2. cgs(x, b, A, ε, kmax)
1. x0 = x; p0 = u0 = r0 = b−Ax

2. v0 = Ap0; r̂0 = r0

3. ρ0 = r̂T0 r0; k = 0

4. Do While ‖r‖2 > ε‖b‖2 and k < kmax

(a) k = k + 1

(b) σk−1 = r̂T0 vk−1

(c) αk−1 = ρk−1/σk−1

(d) qk = uk−1 − αk−1vk−1

(e) xk = xk−1 + αk−1(uk−1 + qk)
rk = rk−1 − αk−1A(uk−1 + qk)

(f) ρk = r̂T0 rk; βk = ρk/ρk−1

uk = rk + βkqk
pk = uk + βk(qk + βkpk−1)
vk = Apk

Breakdowns take place when either ρk−1 or σk−1 vanish. If the algorithm
does not break down, then αk−1 �= 0 for all k. One can show [180], [77], that
if p̄k is the residual polynomial from (3.17) and (3.18) then

p̄k(z) = p̄k−1(z)− αk−1zq̄k−1(z)(3.20)

where the auxiliary polynomials q̄k ∈ Pk are given by q̄0 = 1 and for k ≥ 1 by

q̄k(z) = p̄k(z) + βkq̄k−1(z).(3.21)

We provide no MATLAB implementation of Bi-CG or CGS. Bi-CGSTAB
is the most effective representative of this class of algorithms.

50 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

3.6.3. Bi-CGSTAB. The Bi-conjugate gradient stabilized method (Bi-
CGSTAB) [191] attempts to smooth the convergence of CGS by replacing
(3.18) with

rk = qk(A)pk(A)r0(3.22)

where

qk(z) =
k∏
i=1

(1− ωiz).

The constant ωi is selected to minimize ri = qi(A)pi(A)r0 as a function of ωi.
The examples in [191] indicate the effectiveness of this approach, which can
be thought of [12] as a blend of Bi-CG and GMRES(1). The performance in
cases where the spectrum has a significant imaginary part can be improved by
constructing qk to have complex conjugate pairs of roots, [98].

There is no convergence theory for Bi-CGSTAB and no estimate of the
residuals that is better than that for CGS, (3.19). In our description of the
implementation, which is described and motivated fully in [191], we use r̂0 = r0
and follow the notation of [191].

Algorithm 3.6.3. bicgstab(x, b, A, ε, kmax)
1. r = b−Ax, r̂0 = r̂ = r, ρ0 = α = ω = 1, v = p = 0, k = 0, ρ1 = r̂T0 r

2. Do While ‖r‖2 > ε‖b‖2 and k < kmax

(a) k = k + 1

(b) β = (ρk/ρk−1)(α/ω)

(c) p = r + β(p− ωv)

(d) v = Ap

(e) α = ρk/(r̂
T
0 v)

(f) s = r − αv, t = As

(g) ω = tT s/‖t‖22, ρk+1 = −ωr̂T0 t

(h) x = x+ αp+ ωs

(i) r = s− ωt

Note that the iteration can break down in steps 2b and 2e. We provide an
implementation of Algorithm bicgstab in the collection of MATLAB codes.

The cost in storage and in floating-point operations per iteration re-
mains bounded for the entire iteration. One must store seven vectors
(x, b, r, p, v, r̂0, t), letting s overwrite r when needed. A single iteration re-
quires four scalar products. In a situation where many GMRES iterations are
needed and matrix-vector product is fast, Bi-CGSTAB can have a much lower
average cost per iterate than GMRES. The reason for this is that the cost of
orthogonalization in GMRES can be much more than that of a matrix-vector
product if the dimension of the Krylov space is large. We will present such a
case in § 3.8.

GMRES ITERATION 51

3.6.4. TFQMR. Now we consider the quasi-minimal residual (QMR)
family of algorithms [80], [81], [77], [37], [202]. We will focus on the transpose-
free algorithm TFQMR proposed in [77], to illustrate the quasi-minimization
idea. All algorithms in this family minimize the norm of an easily computable
quantity q = f − Hz, a quasi-residual over z ∈ RN . The quasi-residual is
related to the true residual by a full-rank linear transformation r = Lq and
reduction of the residual can be approximately measured by reduction in q.
The specific formulation of q and L depends on the algorithm.

Returning to Algorithm cgs we define sequences

ym =




uk−1 if m = 2k − 1 is odd,

qk if m = 2k is even,

and

wm =




(p̄k(A))
2r0 if m = 2k − 1 is odd,

p̄k(A)p̄k−1(A)r0 if m = 2k is even.

Here the sequences {p̄k} and {q̄k} are given by (3.20) and (3.21). Hence, the
CGS residual satisfies

rCGSk = w2k+1.

We assume that CGS does not break down and, therefore, αk �= 0 for all
k ≥ 0. If we let �r� be the nearest integer less than or equal to a real r we
have

Aym = (wm − wm+1)/α�(m−1)/2�,(3.23)

where the denominator is nonzero by assumption. We express (3.23) in matrix
form as

AYm = Wm+1Bm,(3.24)

where Ym is the N ×m matrix with columns {yj}mj=1, Wm+1 the N × (m+ 1)

matrix with columns {wj}m+1
j=1 , and Bm is the (m+ 1)×m matrix given by

Bm =




1 0 . . . 0

−1 1
. . .

...

0
...

... 0
...

. . . −1 1
0 . . . 0 −1



diag(α0, α0, . . . , α�(m−1)/2�)−1.

Our assumptions that no breakdown takes place imply that Km is the span
of {yj}mj=1 and hence

xm = x0 + Ymz(3.25)

for some z ∈ Rm. Therefore,

rm = r0 −AYmz = Wm+1(e1 −Bmz),(3.26)

52 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

where, as in our discussion of GMRES, e1 = (1, 0, . . . , 0)T ∈ Rm. In a sense,
the conditioning of the matrix Wm+1 can be improved by scaling. Let

Ω = diag(ω1, ω2, . . . , ωm)(3.27)

and rewrite (3.26) as

rm = r0 −AYmz = Wm+1Ω
−1
m+1(fm+1 −Hmz)(3.28)

where fm+1 = Ωm+1e1 = ωm+1e1 and Hm = Ωm+1Bm is bidiagonal and hence
upper Hessenberg. The diagonal entries in the matrix Ωm+1 are called weights.
The weights make it possible to derive straightforward estimates of the residual
in terms of easily computed terms in the iteration.

If Wm+1Ω
−1
m+1 were an orthogonal matrix, we could minimize rm by solving

the least squares problem

minimizez∈Rm‖fm+1 −Hmz‖2.(3.29)

The quasi-minimization idea is to solve (3.29) (thereby quasi-minimizing the
residual) to obtain zm and then set

xm = x0 + Ymzm.(3.30)

Note that if k corresponds to the iteration counter for CGS, each k produces
two approximate solutions (corresponding to m = 2k − 1 and m = 2k).

The solution to the least squares problem (3.29) can be done by using
Givens rotations to update the factorization of the upper Hessenberg matrix
Hm [77] and this is reflected in the implementation description below. As
one can see from that description, approximate residuals are not computed in
Algorithm tfqmr. Instead we have the quasi-residual norm

τm = ‖fm+1 −Hmzm‖2.
Now if we pick the weights ωi = ‖wi‖2 then the columns of Wm+1Ω

−1
m+1 have

norm one. Hence

‖rm‖2 = ‖Wm+1Ω
−1
m+1(fm+1 −Hmz)‖2 ≤ τm

√
m+ 1.(3.31)

We can, therefore, base our termination criterion on τm, and we do this in
Algorithm tfqmr.

One can [80], [78], also use the quasi-minimization condition to estimate
the TFQMR residual in terms of residual polynomials.

Theorem 3.6.1. Let A be an N ×N matrix and let x0, b ∈ RN be given.
Assume that the TFQMR iteration does not break down or terminate with
the exact solution for k iterations and let 1 ≤ m ≤ 2k. Let rGMRESm be the
residual for the mth GMRES iteration. Let ξm be the smallest singular value
of Wm+1Ω

−1
m+1. Then if ξm > 0

τm ≤ ‖rGMRESm ‖2/ξm.(3.32)

GMRES ITERATION 53

Proof. We may write

rGMRESm = r0 + Ymz
GMRES
m

and obtain

‖rGMRESm ‖2 = ‖Wm+1Ω
−1
m+1(fm+1−Hmz

GMRES
m)‖2 ≥ ξm‖fm+1−Hmz

GMRES
m ‖2.

Hence, by the quasi-minimization property

‖rGMRESm ‖2 ≥ ξmτm

as desired.
As a corollary we have a finite termination result and a convergence

estimate for diagonalizable matrices similar to Theorem 3.1.3.
Corollary 3.6.1. Let A be an N ×N matrix and let x0, b ∈ RN be given.

Then within (N +1)/2 iterations the TFQMR iteration will either break down
or terminate with the solution.

We apply Theorem 3.1.3 to (3.32) and use (3.31) to obtain the following
result.

Theorem 3.6.2. Let A = V ΛV −1 be a nonsingular diagonalizable matrix.
Assume that TFQMR does not break down or terminate with the solution for k
iterations. For 1 ≤ m ≤ 2k let ξm be the smallest singular value of Wm+1Ω

−1
m+1

and let xm be given by (3.30). Then, if ξm > 0,

‖rm‖2
‖r0‖2 ≤ √

m+ 1ξ−1
m κ(V) max

z∈σ(A)
|φ(z)|

for all φ ∈ Pm.
The implementation below follows [77] with r̂0 = r0 used throughout.

Algorithm 3.6.4. tfqmr(x, b, A, ε, kmax)
1. k = 0, w1 = y1 = r0 = b−Ax, u1 = v = Ay1, d = 0

ρ0 = rT0 r0, τ = ‖r‖2, θ = 0, η = 0

2. Do While k < kmax

(a) k = k + 1

(b) σk−1 = rT0 v, α = ρk−1/σk−1, y2 = y1 − αk−1v, u2 = Ay2

(c) For j = 1, 2 (m = 2k − 2 + j)

i. w = w − αk−1uj

ii. d = yj + (θ2η/αk−1)d

iii. θ = ‖w‖2/τ , c = 1/
√
1 + θ2

iv. τ = τθc, η = c2αk−1

v. x = x+ ηd

vi. If τ
√
m+ 1 ≤ ε‖b‖2 terminate successfully

(d) ρk = rT0 w, β = ρk/ρk−1

54 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

(e) y1 = w + βy2, u1 = Ay1

(f) v = u1 + β(u2 + βv)

Note that y2 and u2 = Ay2 need only be computed if the loop in step 2c
does not terminate when j = 1. We take advantage of this in the MATLAB
code tfqmr to potentially reduce the matrix-vector product cost by one.

3.7. Examples for GMRES iteration

These examples use the code gmres from the collection of MATLAB codes. The
inputs, described in the comment lines, are the initial iterate x0, the right-hand
side vector b, a MATLAB function for the matrix-vector product, and iteration
parameters to specify the maximum number of iterations and the termination
criterion. We do not pass the preconditioner to the GMRES code, rather
we pass the preconditioned problem. In all the GMRES examples, we limit
the number of GMRES iterations to 60. For methods like GMRES(m), Bi-
CGSTAB, CGNR, and TFQMR, whose storage requirements do not increase
with the number of iterations, we allow for more iterations.

We consider the discretization of the partial differential equation

(Lu)(x, y) = −(uxx(x, y) + uyy(x, y)) + a1(x, y)ux(x, y)

+a2(x, y)uy(x, y) + a3(x, y)u(x, y) = f(x, y)
(3.33)

on 0 < x, y < 1 subject to homogeneous Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, 0 < x, y < 1.

For general coefficients {aj} the operator L is not self-adjoint and its discretiza-
tion is not symmetric. As in § 2.7 we discretize with a five-point centered dif-
ference scheme with n2 points and mesh width h = 1/(n+ 1). The unknowns
are

uij ≈ u(xi, xj)

where xi = ih for 1 ≤ i ≤ n. We compute Lu in a matrix-free manner
as we did in § 2.7. We let n = 31 to create a system with 961 unknowns.
As before, we expect second-order accuracy and terminate the iteration when
‖rk‖2 ≤ h2‖b‖2 ≈ 9.8× 10−4‖b‖2.

As a preconditioner we use the fast Poisson solver fish2d described in § 2.7.
The motivation for this choice is similar to that for the conjugate gradient
computations and has been partially explained theoretically in [33], [34], [121],
and [139]. If we let Gu denote the action of the Poisson solver on u, the
preconditioned system is GLu = Gf .

For the computations reported in this section we took

a1(x, y) = 1, a2(x, y) = 20y, and a3(x, y) = 1.

GMRES ITERATION 55

u0 = 0 was the initial iterate. As in § 2.7 we took the right hand side so that
the exact solution was the discretization of

10xy(1− x)(1− y) exp(x4.5).

In Figs. 3.1 and 3.2 we plot iteration histories corresponding to precondi-
tioned or unpreconditioned GMRES. For the restarted iteration, we restarted
the algorithm after three iterations, GMRES(3) in the terminology of § 3.4.
Note that the plots are semilog plots of ‖r‖2/‖b‖2 and that the right-hand
sides in the preconditioned and unpreconditioned cases are not the same. In
both figures the solid line is the history of the preconditioned iteration and the
dashed line that of the unpreconditioned. Note the importance of precondi-
tioning. The MATLAB flops command indicates that the unpreconditioned
iteration required 7.6 million floating point operations and converged in 56
iterations. The preconditioned iteration required 1.3 million floating point op-
erations and terminated after 8 iterations. Restarting after 3 iterations is more
costly in terms of the iteration count than not restarting. However, even in
the unpreconditioned case, the restarted iteration terminated successfully. In
this case the MATLAB flops command indicates that the unpreconditioned
iteration terminated after 223 iterations and 9.7 million floating point opera-
tions and the preconditioned iteration required 13 iterations and 2.6 million
floating point operations.

The execution times in our environment indicate that the preconditioned
iterations are even faster than the difference in operation counts indicates.
The reason for this is that the FFT routine is a MATLAB intrinsic and is not
interpreted MATLAB code. In other computing environments preconditioners
which vectorize or parallelize particularly well might perform in the same way.

3.8. Examples for CGNR, Bi-CGSTAB, and TFQMR iteration

When a transpose is available, CGNR (or CGNE) is an alternative to GMRES
that does not require storage of the iteration history. For elliptic problems like
(3.33), the transpose (adjoint) of L is given by

L∗u = −uxx − uyy − a1ux − a2uy + a3u

as one can derive by integration by parts. To apply CGNR to the precondi-
tioned problem, we require the transpose of GL, which is given by

(GL)∗u = L∗G∗u = L∗Gu.

The cost of the application of the transpose of L or GL is the same as that
of the application of L or GL itself. Hence, in the case where the cost of the
matrix-vector product dominates the computation, a single CGNR iteration
costs roughly the same as two GMRES iterations.

However, CGNR has the effect of squaring the condition number, this effect
has serious consequences as Fig. 3.3 shows. The dashed line corresponds to

56 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

0 10 20 30 40 50 60
10

-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

Fig. 3.1. GMRES for 2-D elliptic equation.

0 50 100 150 200 250
10

-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

Fig. 3.2. GMRES(3) for 2-D elliptic equation.

CGNR on the unpreconditioned problem, i.e., CG applied to L∗Lu = L∗f .
The matrix corresponding to the discretization of L∗L has a large condition
number. The solid line corresponds to the CGNR applied to the preconditioned
problem, i.e., CG applied to L∗G2Lu = L∗G2f . We limited the number of
iterations to 310 = 10m and the unpreconditioned formulation of CGNR had
made very little progress after 310 iterations. This is a result of squaring
the large condition number. The preconditioned formulation did quite well,
converging in eight iterations. The MATLAB flops command indicates that
the unpreconditioned iteration required 13.7 million floating-point operations

GMRES ITERATION 57

and the preconditioned iteration 2.4 million. However, as you are asked to
investigate in Exercise 3.9.8, the behavior of even the preconditioned iteration
can also be poor if the coefficients of the first derivative terms are too large.
CGNE has similar performance; see Exercise 3.9.9.

0 50 100 150 200 250 300 350
10

-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
R

es
id

ua
l

Fig. 3.3. CGNR for 2-D elliptic equation.

The examples for Bi-CGSTAB use the code bicgstab from the collection
of MATLAB codes. This code has the same input/output arguments as gmres.
We applied Bi-CGSTAB to both the preconditioned and unpreconditioned
forms of (3.33) with the same data and termination criterion as for the GMRES
example.

We plot the iteration histories in Fig. 3.4. As in the previous examples, the
solid line corresponds to the preconditioned iteration and the dashed line to
the unpreconditioned iteration. Neither convergence history is monotonic, with
the unpreconditioned iteration being very irregular, but not varying by many
orders of magnitude as a CGS or Bi-CG iteration might. The preconditioned
iteration terminated in six iterations (12 matrix-vector products) and required
roughly 1.7 million floating-point operations. The unpreconditioned iteration
took 40 iterations and 2.2 million floating-point operations. We see a
considerable improvement in cost over CGNR and, since our unpreconditioned
matrix-vector product is so inexpensive, a better cost/iterate than GMRES in
the unpreconditioned case.

We repeat the experiment with TFQMR as our linear solver. We use
the code tfqmr that is included in our collection. In Fig. 3.5 we plot the
convergence histories in terms of the approximate residual

√
2k + 1τ2k given

by (3.31). We plot only full iterations (m = 2k) except, possibly, for the
final iterate. The approximate residual is given in terms of the quasi-residual
norm τm rather than the true residual, and the graphs are monotonic. Our

58 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

0 5 10 15 20 25 30 35 40
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Iterations

R
el

at
iv

e
R

es
id

ua
l

Fig. 3.4. Bi-CGSTAB for 2-D elliptic equation.

0 10 20 30 40 50 60 70
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
A

pp
ro

xi
m

at
e

R
es

id
ua

l

Fig. 3.5. TFQMR for 2-D elliptic equation.

termination criterion is based on the quasi-residual and (3.31) as described in
§ 3.6.4, stopping the iteration when τm

√
m+ 1/‖b‖2 ≤ h−2. This led to actual

relative residuals of 7× 10−5 for the unpreconditioned iteration and 2× 10−4

for the preconditioned iteration, indicating that it is reasonable to use the
quasi-residual estimate (3.31) to make termination decisions.

The unpreconditioned iteration required roughly 4.1 million floating-point
operations and 67 iterations for termination. The preconditioned iteration
was much more efficient, taking 1.9 million floating-point operations and 7
iterations. The plateaus in the graph of the convergence history for the

GMRES ITERATION 59

unpreconditioned iteration are related (see [196]) to spikes in the corresponding
graph for a CGS iteration.

60 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

3.9. Exercises on GMRES

3.9.1. Give an example of a matrix that is not diagonalizable.

3.9.2. Prove Theorem 3.1.4 and Theorem 3.1.5.

3.9.3. Prove that the Arnoldi process (unless it terminates prematurely with a
solution) produces a basis for Kk+1 that satisfies (3.8).

3.9.4. Duplicate Table 3.1 and add two more columns corresponding to classical
Gram–Schmidt orthogonalization with reorthogonalization at every step
and determine when the test in (3.10) detects loss of orthogonality. How
do your conclusions compare with those in [160]?

3.9.5. Let A = Jλ be an elementary Jordan block of size N corresponding to
an eigenvalue λ �= 0. This means that

Jλ =




λ 1 0
0 λ 1 0

. . .
. . .

. . .
. . .

0 λ 1 0
0 λ 1

0 λ



.

Give an example of x0, b ∈ RN , and λ ∈ R such that the GMRES
residuals satisfy ‖rk‖2 = ‖r0‖2 for all k < N .

3.9.6. Consider the centered difference discretization of

−u′′ + u′ + u = 1, u(0) = u(1) = 0.

Solve this problem with GMRES (without preconditioning) and then
apply as a preconditioner the map M defined by

−(Mf)′′ = f, (Mf)(0) = (Mf)(1) = 0.

That is, precondition with a solver for the high-order term in the
differential equation using the correct boundary conditions. Try this
for meshes with 50, 100, 200, . . . points. How does the performance of
the iteration depend on the mesh? Try other preconditioners such as
Gauss–Seidel and Jacobi. How do other methods such as CGNR, CGNE,
Bi-CGSTAB, and TFQMR perform?

3.9.7. Modify the MATLAB GMRES code to allow for restarts. One way to do
this is to call the gmres code with another code which has an outer loop
to control the restarting as in Algorithm gmresm. See [167] for another
example. How would you test for failure in a restarted algorithm? What
kinds of failures can occur? Repeat Exercise 6 with a limit of three
GMRES iterations before a restart.

GMRES ITERATION 61

3.9.8. Duplicate the results in § 3.7 and § 3.8. Compare the execution times
in your computing environment. Experiment with different values of m.
Why might GMRES(m) be faster than GMRES? Vary the dimension and
the coefficient ay. Try ay = 5y. Why is the performance of the methods
sensitive to ay and ax?

3.9.9. Apply CGNE to the PDE in § 3.7. How does the performance differ from
CGNR and GMRES?

3.9.10. Consider preconditioning from the right. For the PDE in § 3.7, apply
GMRES, CGNR, Bi-CGSTAB, TFQMR, and/or CGNE, to the equation
LGw = f and then recover the solution from u = Gw. Compare timings
and solution accuracy with those obtained by left preconditioning.

3.9.11. Are the solutions to (3.33) in § 3.7 and § 3.8 equally accurate? Compare
the final results with the known solution.

3.9.12. Implement Bi-CG and CGS and try them on some of the examples in
this chapter.

62 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Chapter 4

Basic Concepts and Fixed-Point Iteration

This part of the book is about numerical methods for the solution of systems
of nonlinear equations. Throughout this part, we will let ‖ · ‖ denote a norm
on RN as well as the induced matrix norm.

We begin by setting the notation. We seek to solve

F (x) = 0.(4.1)

Here F : RN → RN . We denote the ith component of F by fi. If the
components of F are differentiable at x ∈ RN we define the Jacobian matrix
F ′(x) by

F ′(x)ij =
∂fi
∂xj

(x).

The Jacobian matrix is the vector analog of the derivative. We may express
the fundamental theorem of calculus as follows.

Theorem 4.0.1. Let F be differentiable in an open set Ω ⊂ RN and let
x∗ ∈ Ω. Then for all x ∈ Ω sufficiently near x∗

F (x)− F (x∗) =
∫ 1

0
F ′(x∗ + t(x− x∗))(x− x∗) dt.

4.1. Types of convergence

Iterative methods can be classified by the rate of convergence.
Definition 4.1.1. Let {xn} ⊂ RN and x∗ ∈ RN . Then
• xn → x∗ q-quadratically if xn → x∗ and there is K > 0 such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖2.

• xn → x∗ q-superlinearly with q-order α > 1 if xn → x∗ and there is
K > 0 such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖α.
• xn → x∗ q-superlinearly if

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖ = 0.

65

66 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

• xn → x∗ q-linearly with q-factor σ ∈ (0, 1) if

‖xn+1 − x∗‖ ≤ σ‖xn − x∗‖
for n sufficiently large.

Definition 4.1.2. An iterative method for computing x∗ is said to be
locally (q-quadratically, q-superlinearly, q-linearly, etc.) convergent if the
iterates converge to x∗ (q-quadratically, q-superlinearly, q-linearly, etc.) given
that the initial data for the iteration is sufficiently good.

Note that a q-superlinearly convergent sequence is also q-linearly conver-
gent with q-factor σ for any σ > 0. A q-quadratically convergent sequence is
q-superlinearly convergent with q-order 2.

In general, a q-superlinearly convergent method is preferable to a q-linearly
convergent one if the cost of a single iterate is the same for both methods. We
will see that often a method that is more slowly convergent, in terms of the
convergence types defined above, can have a cost/iterate so low that the slow
iteration is more efficient.

Sometimes errors are introduced into the iteration that are independent of
the errors in the approximate solution. An example of this would be a problem
in which the nonlinear function F is the output of another algorithm that
provides error control, such as adjustment of the mesh size in an approximation
of a differential equation. One might only compute F to low accuracy in the
initial phases of the iteration to compute a solution and tighten the accuracy
as the iteration progresses. The r-type convergence classification enables us to
describe that idea.

Definition 4.1.3. Let {xn} ⊂ RN and x∗ ∈ RN . Then {xn} converges
to x∗ r-(quadratically, superlinearly, linearly) if there is a sequence {ξn} ⊂ R
converging q-(quadratically, superlinearly, linearly) to zero such that

‖xn − x∗‖ ≤ ξn.

We say that {xn} converges r-superlinearly with r-order α > 1 if ξn → 0
q-superlinearly with q-order α.

4.2. Fixed-point iteration

Many nonlinear equations are naturally formulated as fixed-point problems

x = K(x)(4.2)

where K, the fixed-point map, may be nonlinear. A solution x∗ of (4.2) is
called a fixed point of the map K. Such problems are nonlinear analogs of the
linear fixed-point problems considered in Chapter 1. In this section we analyze
convergence of fixed-point iteration, which is given by

xn+1 = K(xn).(4.3)

This iterative method is also called nonlinear Richardson iteration, Picard
iteration, or the method of successive substitution.

FIXED-POINT ITERATION 67

Before discussing convergence of fixed-point iteration we make two defini-
tions.

Definition 4.2.1. Let Ω ⊂ RN and let G : Ω → RM . G is Lipschitz
continuous on Ω with Lipschitz constant γ if

‖G(x)−G(y)‖ ≤ γ‖x− y‖
for all x, y ∈ Ω.

Definition 4.2.2. Let Ω ⊂ RN . K : Ω → RN is a contraction mapping
on Ω if K is Lipschitz continuous on Ω with Lipschitz constant γ < 1.

The standard result for fixed-point iteration is the Contraction Mapping
Theorem [9]. Compare the proof to that of Lemma 1.2.1 and Corollary 1.2.1.

Theorem 4.2.1. Let Ω be a closed subset of RN and let K be a contraction
mapping on Ω with Lipschitz constant γ < 1 such that K(x) ∈ Ω for all x ∈ Ω.
Then there is a unique fixed point of K, x∗ ∈ Ω, and the iteration defined by
(4.3) converges q-linearly to x∗ with q-factor γ for all initial iterates x0 ∈ Ω.

Proof. Let x0 ∈ Ω. Note that {xn} ⊂ Ω because x0 ∈ Ω and K(x) ∈ Ω
whenever x ∈ Ω. The sequence {xn} remains bounded since for all i ≥ 1

‖xi+1 − xi‖ = ‖K(xi)−K(xi−1)‖ ≤ γ‖xi − xi−1‖ . . . ≤ γi‖x1 − x0‖,
and therefore

‖xn − x0‖ = ‖∑n−1
i=0 xi+1 − xi‖

≤∑n−1
i=0 ‖xi+1 − xi‖ ≤ ‖x1 − x0‖∑n−1

i=0 γi

≤ ‖x1 − x0‖/(1− γ).

Now, for all n, k ≥ 0,

‖xn+k − xn‖ = ‖K(xn+k−1)−K(xn−1)‖

≤ γ‖xn+k−1 − xn−1‖

≤ γ‖K(xn+k−2)−K(xn−2)‖

≤ γ2‖xn+k−2 − xn−2‖ ≤ . . . ≤ γn‖xk − x0‖

≤ γn‖x1 − x0‖/(1− γ).

Hence
lim
n,k→∞

‖xn+k − xn‖ = 0

and therefore the sequence {xn} is a Cauchy sequence and has a limit x∗ [162].
If K has two fixed points x∗ and y∗ in Ω, then

‖x∗ − y∗‖ = ‖K(x∗)−K(y∗)‖ ≤ γ‖x∗ − y∗‖.

68 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Since γ < 1 this can only hold if ‖x∗ − y∗‖ = 0, i. e. x∗ = y∗. Hence the fixed
point is unique.

Finally we note that

‖xn+1 − x∗‖ = ‖K(xn)−K(x∗)‖ ≤ γ‖xn − x∗‖,

which completes the proof.
One simple application of this theorem is to numerical integration of

ordinary differential equations by implicit methods. For example, consider
the initial value problem

y′ = f(y), y(t0) = y0

and its solution by the backward Euler method with time step h,

yn+1 − yn = hf(yn+1).(4.4)

In (4.4) yk denotes the approximation of y(t0 + kh). Advancing in time from
yn to yn+1 requires solution of the fixed-point problem

y = K(y) = yn + hf(y).

For simplicity we assume that f is bounded and Lipschitz continuous, say

|f(y)| ≤ M and |f(x)− f(y)| ≤ M |x− y|

for all x, y.
If hM < 1, we may apply the contraction mapping theorem with Ω = R

since for all x, y

‖K(x)−K(y)‖ = h|f(x)− f(y)| ≤ hM |x− y|.

From this we conclude that for h sufficiently small we can integrate forward
in time and that the time step h can be chosen independently of y. This time
step may well be too small to be practical, and the methods based on Newton’s
method which we present in the subsequent chapters are used much more often
[83]. This type of analysis was used by Picard to prove existence of solutions
of initial value problems [152]. Nonlinear variations of the classical stationary
iterative methods such as Gauss–Seidel have also been used; see [145] for a
more complete discussion of these algorithms.

4.3. The standard assumptions

We will make the standard assumptions on F .
Assumption 4.3.1.

1. Equation 4.1 has a solution x∗.

2. F ′ : Ω → RN×N is Lipschitz continuous with Lipschitz constant γ.

FIXED-POINT ITERATION 69

3. F ′(x∗) is nonsingular.
These assumptions can be weakened [108] without sacrificing convergence

of the methods we consider here. However the classical result on quadratic
convergence of Newton’s method requires them and we make them throughout.
Exercise 5.7.1 illustrates one way to weaken the standard assumptions.

Throughout this part, we will always denote a root of F by x∗. We let
B(r) denote the ball of radius r about x∗

B(r) = {x | ‖e‖ < r},

where
e = x− x∗.

The notation introduced above will be used consistently. If xn is the nth iterate
of a sequence, en = xn − x∗ is the error in that iterate.

Lemma 4.3.1 is an important consequence of the standard assumptions.
Lemma 4.3.1. Assume that the standard assumptions hold. Then there is

δ > 0 so that for all x ∈ B(δ)

‖F ′(x)‖ ≤ 2‖F ′(x∗)‖,(4.5)

‖F ′(x)−1‖ ≤ 2‖F ′(x∗)−1‖,(4.6)

and
‖F ′(x∗)−1‖−1‖e‖/2 ≤ ‖F (x)‖ ≤ 2‖F ′(x∗)‖‖e‖.(4.7)

Proof. Let δ be small enough so that B(δ) ⊂ Ω. For all x ∈ B(δ) we have

‖F ′(x)‖ ≤ ‖F ′(x∗)‖+ γ‖e‖.

Hence (4.5) holds if γδ < ‖F ′(x∗)‖.
The next result (4.6) is a direct consequence of the Banach Lemma if

‖I − F ′(x∗)−1F ′(x)‖ < 1/2.

This will follow from

δ <
‖F ′(x∗)−1‖−1

2γ

since then

‖I − F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x∗)− F ′(x))‖

≤ γ‖F ′(x∗)−1‖‖e‖ ≤ γδ‖F ′(x∗)−1‖ < 1/2.
(4.8)

To prove the final inequality (4.7), we note that if x ∈ B(δ) then x∗ + te ∈
B(δ) for all 0 ≤ t ≤ 1. We use (4.5) and Theorem 4.0.1 to obtain

‖F (x)‖ ≤
∫ 1

0
‖F ′(x∗ + te)‖‖e‖ dt ≤ 2‖F ′(x∗)‖‖e‖

70 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

which is the right inequality in (4.7).
To prove the left inequality in (4.7) note that

F ′(x∗)−1F (x) = F ′(x∗)−1
∫ 1

0
F ′(x∗ + te)e dt

= e−
∫ 1

0
(I − F ′(x∗)−1F ′(x∗ + te))e dt,

and hence, by (4.8)

‖F ′(x∗)−1F (x)‖ ≥ ‖e‖(1− ‖
∫ 1

0
I − F ′(x∗)−1F ′(x∗ + te)dt‖) ≥ ‖e‖/2.

Therefore
‖e‖/2 ≤ ‖F ′(x∗)−1F (x)‖ ≤ ‖F ′(x∗)−1‖‖F (x)‖,

which completes the proof.

Chapter 5

Newton’s Method

5.1. Local convergence of Newton’s method

We will describe iterative methods for nonlinear equations in terms of the
transition from a current iterate xc to a new iterate x+. In this language,
Newton’s method is

x+ = xc − F ′(xc)−1F (xc).(5.1)

We may also view x+ as the root of the two-term Taylor expansion or linear
model of F about xc

Mc(x) = F (xc) + F ′(xc)(x− xc).

In the context of single systems this method appeared in the 17th century
[140], [156], [13], [137].

The convergence result on Newton’s method follows from Lemma 4.3.1.
Theorem 5.1.1. Let the standard assumptions hold. Then there are K > 0

and δ > 0 such that if xc ∈ B(δ) the Newton iterate from xc given by (5.1)
satisfies

‖e+‖ ≤ K‖ec‖2.(5.2)

Proof. Let δ be small enough so that the conclusions of Lemma 4.3.1 hold.
By Theorem 4.0.1

e+ = ec − F ′(xc)−1F (xc) = F ′(xc)−1
∫ 1

0
(F ′(xc)− F ′(x∗ + tec))ec dt.

By Lemma 4.3.1 and the Lipschitz continuity of F ′

‖e+‖ ≤ (2‖F ′(x∗)−1‖)γ‖ec‖2/2.
This completes the proof of (5.2) with K = γ‖F ′(x∗)−1‖.

The proof of convergence of the complete Newton iteration will be complete
if we reduce δ if needed so that Kδ < 1.

Theorem 5.1.2. Let the standard assumptions hold. Then there is δ such
that if x0 ∈ B(δ) the Newton iteration

xn+1 = xn − F ′(xn)−1F (xn)

converges q-quadratically to x∗.

71

72 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Proof. Let δ be small enough so that the conclusions of Theorem 5.1.1
hold. Reduce δ if needed so that Kδ = η < 1. Then if n ≥ 0 and xn ∈ B(δ),
Theorem 5.1.1 implies that

‖en+1‖ ≤ K‖en‖2 ≤ η‖en‖ < ‖en‖(5.3)

and hence xn+1 ∈ B(ηδ) ⊂ B(δ). Therefore if xn ∈ B(δ) we may continue the
iteration. Since x0 ∈ B(δ) by assumption, the entire sequence {xn} ⊂ B(δ).
(5.3) then implies that xn → x∗ q-quadratically.

The assumption that the initial iterate be “sufficiently near” the solution
(x0 ∈ B(δ)) may seem artificial at first look. There are, however, many
situations in which the initial iterate is very near the root. Two examples are
implicit integration of ordinary differential equations and differential algebraic
equations, [105], [83], [16], where the initial iterate is derived from the solution
at the previous time step, and solution of discretizations of partial differential
equations, where the initial iterate is an interpolation of a solution from a
coarser computational mesh [99], [126]. Moreover, when the initial iterate is
far from the root and methods such as those discussed in Chapter 8 are needed,
local convergence results like those in this and the following two chapters
describe the terminal phase of the iteration.

5.2. Termination of the iteration

We can base our termination decision on Lemma 4.3.1. If x ∈ B(δ), where δ
is small enough so that the conclusions of Lemma 4.3.1 hold, then if F ′(x∗) is
well conditioned, we may terminate the iteration when the relative nonlinear
residual ‖F (x)‖/‖F (x0)‖ is small. We have, as a direct consequence of applying
Lemma 4.3.1 twice, a nonlinear form of Lemma 1.1.1.

Lemma 5.2.1. Assume that the standard assumptions hold. Let δ > 0 be
small enough so that the conclusions of Lemma 4.3.1 hold for x ∈ B(δ). Then
for all x ∈ B(δ)

‖e‖
4‖e0‖κ(F ′(x∗))

≤ ‖F (x)‖
‖F (x0)‖ ≤ 4κ(F ′(x∗))‖e‖

‖e0‖ ,

where κ(F ′(x∗)) = ‖F ′(x∗)‖‖F ′(x∗)−1‖ is the condition number of F ′(x∗)
relative to the norm ‖ · ‖.

From Lemma 5.2.1 we conclude that if F ′(x∗) is well conditioned, the size
of the relative nonlinear residual is a good indicator of the size of the error.
However, if there is error in the evaluation of F or the initial iterate is near a
root, a termination decision based on the relative residual may be made too
late in the iteration or, as we will see in the next section, the iteration may
not terminate at all. We raised this issue in the context of linear equations
in Chapter 1 when we compared (1.2) and (1.4). In the nonlinear case, there
is no “right-hand side” to use as a scaling factor and we must balance the
relative and absolute size of the nonlinear residuals in some other way. In all

NEWTON’S METHOD 73

of our MATLAB codes and algorithms for nonlinear equations our termination
criterion is to stop the iteration if

‖F (x)‖ ≤ τr‖F (x0)‖+ τa,(5.4)

where the relative error tolerance τr and absolute error tolerance τa are input
to the algorithm. Combinations of relative and absolute error tolerances are
commonly used in numerical methods for ordinary differential equations or
differential algebraic equations [16], [21], [23], [151].

Another way to decide whether to terminate is to look at the Newton step

s = −F ′(xc)−1F (xc) = x+ − xc,

and terminate the iteration when ‖s‖ is sufficiently small. This criterion is
based on Theorem 5.1.1, which implies that

‖ec‖ = ‖s‖+O(‖ec‖2).

Hence, near the solution s and ec are essentially the same size.
For methods other than Newton’s method, the relation between the step

and the error is less clear. If the iteration is q-linearly convergent, say, then

‖e+‖ ≤ σ‖ec‖

implies that
(1− σ)‖ec‖ ≤ ‖s‖ ≤ (1 + σ)‖ec‖.

Hence the step is a reliable indicator of the error provided σ is not too near
1. The differential equations codes discussed in [16], [21], [23], and [151], make
use of this in the special case of the chord method.

However, in order to estimate ‖ec‖ this way, one must do most of the work
needed to compute x+, whereas by terminating on small relative residuals or
on a condition like (5.4) the decision to stop the iteration can be made before
computation and factorization of F ′(xc). If computation and factorization of
the Jacobian are inexpensive, then termination on small steps becomes more
attractive.

5.3. Implementation of Newton’s method

In this section we assume that direct methods will be used to solve the linear
equation for the Newton step. Our examples and discussions of operation
counts make the implicit assumption that the Jacobian is dense. However,
the issues for sparse Jacobians when direct methods are used to solve linear
systems are very similar. In Chapter 6 we consider algorithms in which iterative
methods are used to solve the equation for the Newton step.

In order to compute the Newton iterate x+ from a current point xc one
must first evaluate F (xc) and decide whether to terminate the iteration. If
one decides to continue, the Jacobian F ′(xc) must be computed and factored.

74 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Then the step is computed as the solution of F ′(xc)s = −F (xc) and the iterate
is updated x+ = xc + s. Of these steps, the evaluation and factorization of F ′

are the most costly. Factorization of F ′ in the dense case costs O(N3) floating-
point operations. Evaluation of F ′ by finite differences should be expected to
cost N times the cost of an evaluation of F because each column in F ′ requires
an evaluation of F to form the difference approximation. Hence the cost of a
Newton step may be roughly estimated as N + 1 evaluations of F and O(N3)
floating-point operations. In many cases F ′ can be computed more efficiently,
accurately, and directly than with differences and the analysis above for the
cost of a Newton iterate is very pessimistic. See Exercise 5.7.21 for an example.
For general nonlinearities or general purpose codes such as the MATLAB code
nsol from the collection, there may be little alternative to difference Jacobians.
In the future, automatic differentiation (see [94] for a collection of articles on
this topic) may provide such an alternative.

For definiteness in the description of Algorithm newton we use an LU
factorization of F ′. Any other appropriate factorization such as QR or
Cholesky could be used as well. The inputs of the algorithm are the initial
iterate x, the nonlinear map F , and a vector of termination tolerances
τ = (τr, τa) ∈ R2.

Algorithm 5.3.1. newton(x, F, τ)
1. r0 = ‖F (x)‖
2. Do while ‖F (x)‖ > τrr0 + τa

(a) Compute F ′(x)

(b) Factor F ′(x) = LU .

(c) Solve LUs = −F (x)

(d) x = x+ s

(e) Evaluate F (x).

One approach to reducing the cost of items 2a and item 2b in the Newton
iteration is to move them outside of the main loop. This means that the linear
approximation of F (x) = 0 that is solved at each iteration has derivative
determined by the initial iterate.

x+ = xc − F ′(x0)−1F (xc).

This method is called the chord method. The inputs are the same as for
Newton’s method.

Algorithm 5.3.2. chord(x, F, τ)
1. r0 = ‖F (x)‖
2. Compute F ′(x)

3. Factor F ′(x) = LU .

NEWTON’S METHOD 75

4. Do while ‖F (x)‖ > τrr0 + τa

(a) Solve LUs = −F (x)

(b) x = x+ s

(c) Evaluate F (x).

The only difference in implementation from Newton’s method is that the
computation and factorization of the Jacobian are done before the iteration
is begun. The difference in the iteration itself is that an approximation to
F ′(xc) is used. Similar differences arise if F ′(xc) is numerically approximated
by differences. We continue in the next section with an analysis of the effects
of errors in the function and Jacobian in a general context and then consider
the chord method and difference approximation to F ′ as applications.

5.4. Errors in the function and derivative

Suppose that F and F ′ are computed inaccurately so that F + ε and F ′ +∆
are used instead of F and F ′ in the iteration. If ∆ is sufficiently small, the
resulting iteration can return a result that is an O(ε) accurate approximation
to x∗. This is different from convergence and was called “local improvement”
in [65]. These issues are discussed in [201] as well. If, for example, ε is entirely
due to floating-point roundoff, there is no reason to expect that ‖F (xn)‖ will
ever be smaller than ε in general. We will refer to this phase of the iteration
in which the nonlinear residual is no longer being reduced as stagnation of the
iteration.

Theorem 5.4.1. Let the standard assumptions hold. Then there are
K̄ > 0, δ > 0, and δ1 > 0 such that if xc ∈ B(δ) and ‖∆(xc)‖ < δ1 then

x+ = xc − (F ′(xc) + ∆(xc))
−1(F (xc) + ε(xc))

is defined (i.e., F ′(xc) + ∆(xc) is nonsingular) and satisfies

‖e+‖ ≤ K̄(‖ec‖2 + ‖∆(xc)‖‖ec‖+ ‖ε(xc)‖).(5.5)

Proof. Let δ be small enough so that the conclusions of Lemma 4.3.1 and
Theorem 5.1.1 hold. Let

xN+ = xc − F ′(xc)−1F (xc)

and note that

x+ = xN+ + (F ′(xc)−1 − (F ′(xc) + ∆(xc))
−1)F (xc)− (F ′(xc) + ∆(xc))

−1ε(xc).

Lemma 4.3.1 and Theorem 5.1.1 imply

‖e+‖ ≤ K‖ec‖2 + 2‖F ′(xc)−1 − (F ′(xc) + ∆(xc))
−1)‖‖F ′(x∗)‖‖ec‖

+‖(F ′(xc) + ∆(xc))
−1‖‖ε(xc)‖.

(5.6)

76 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

If
‖∆(xc)‖ ≤ ‖F ′(x∗)−1‖−1/4

then Lemma 4.3.1 implies that

‖∆(xc)‖ ≤ ‖F ′(xc)−1‖−1/2

and the Banach Lemma implies that F ′(xc) + ∆(xc) is nonsingular and

‖(F ′(xc) + ∆(xc))
−1‖ ≤ 2‖F ′(xc)−1‖ ≤ 4‖F ′(x∗)−1‖.

Hence

‖F ′(xc)−1 − (F ′(xc) + ∆(xc))
−1‖ ≤ 8‖F ′(x∗)−1‖2‖∆(xc)‖.

We use these estimates and (5.6) to obtain

‖e+‖ ≤ K‖ec‖2 + 16‖F ′(x∗)−1‖2‖F ′(x∗)‖‖∆(xc)‖‖ec‖+ 4‖F ′(x∗)−1‖‖ε(xc)‖.
Setting

K̄ = K + 16‖F ′(x∗)−1‖2‖F ′(x∗)‖+ 4‖F ′(x∗)−1‖
completes the proof.

The remainder of this section is devoted to applications of Theorem 5.4.1.

5.4.1. The chord method. Recall that the chord method is given by

x+ = xc − F ′(x0)−1F (xc).

In the language of Theorem 5.4.1

ε(xc) = 0,∆(xc) = F ′(x0)− F ′(xc).

Hence, if xc, x0 ∈ B(δ) ⊂ Ω

‖∆(xc)‖ ≤ γ‖x0 − xc‖ ≤ γ(‖e0‖+ ‖ec‖).(5.7)

We apply Theorem 5.4.1 to obtain the following result.
Theorem 5.4.2. Let the standard assumptions hold. Then there are

KC > 0 and δ > 0 such that if x0 ∈ B(δ) the chord iterates converge q-linearly
to x∗ and

‖en+1‖ ≤ KC‖e0‖‖en‖.(5.8)

Proof. Let δ be small enough so that B(δ) ⊂ Ω and the conclusions of
Theorem 5.4.1 hold. Assume that xn ∈ B(δ). Combining (5.7) and (5.5)
implies

‖en+1‖ ≤ K̄(‖en‖(1 + γ) + γ‖e0‖)‖en‖ ≤ K̄(1 + 2γ)δ‖en‖.
Hence if δ is small enough so that

K̄(1 + 2γ)δ = η < 1

NEWTON’S METHOD 77

then the chord iterates converge q-linearly to x∗. Q-linear convergence implies
that ‖en‖ < ‖e0‖ and hence (5.8) holds with KC = K̄(1 + 2γ).

Another variation of the chord method is

x+ = xc −A−1F (xc),

where A ≈ F ′(x∗). Methods of this type may be viewed as preconditioned
nonlinear Richardson iteration. Since

‖∆(xc)‖ = ‖A− F ′(xc)‖ ≤ ‖A− F ′(x∗)‖+ ‖F ′(x∗)− F ′(xc)‖,
if xc ∈ B(δ) ⊂ Ω then

‖∆(xc)‖ ≤ ‖A− F ′(x∗)‖+ γ‖ec‖ ≤ ‖A− F ′(x∗)‖+ γδ.

Theorem 5.4.3. Let the standard assumptions hold. Then there are
KA > 0, δ > 0, and δ1 > 0, such that if x0 ∈ B(δ) and ‖A−F ′(x∗)‖ < δ1 then
the iteration

xn+1 = xn −A−1F (xn)

converges q-linearly to x∗ and

‖en+1‖ ≤ KA(‖e0‖+ ‖A− F ′(x∗)‖)‖en‖.(5.9)

5.4.2. Approximate inversion of F ′. Another way to implement chord-
type methods is to provide an approximate inverse of F ′. Here we replace
F ′(x)−1 by B(x), where the action of B on a vector is less expensive to compute
than a solution using the LU factorization. Rather than express the iteration
in terms of B−1(x)− F ′(x) and using Theorem 5.4.3 one can proceed directly
from the definition of approximate inverse.

Note that if B is constant (independent of x) then the iteration

x+ = xc −BF (xc)

can be viewed as a preconditioned nonlinear Richardson iteration.
We have the following result.
Theorem 5.4.4. Let the standard assumptions hold. Then there are

KB > 0, δ > 0, and δ1 > 0, such that if x0 ∈ B(δ) and the matrix-valued
function B(x) satisfies

‖I −B(x)F ′(x∗)‖ = ρ(x) < δ1(5.10)

for all x ∈ B(δ) then the iteration

xn+1 = xn −B(xn)F (xn)

converges q-linearly to x∗ and

‖en+1‖ ≤ KB(ρ(xn) + ‖en‖)‖en‖.(5.11)

78 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Proof. On one hand, this theorem could be regarded as a corollary of the
Banach Lemma and Theorem 5.4.1. We give a direct proof.

First, by (5.10) we have

‖B(x)‖ = ‖B(x)F ′(x∗)F ′(x∗)−1‖ ≤ ‖B(x)F ′(x∗)‖‖F ′(x∗)−1‖

≤ MB = (1 + δ1)‖F ′(x∗)−1‖.
(5.12)

Using (5.12) and

e+ = ec −B(xc)F (xc) =

∫ 1

0
(I −B(xc)F

′(x∗ + tec))ec dt

= (I −B(xc)F
′(x∗))ec +B(xc)

∫ 1

0
(F ′(x∗)− F ′(x∗ + tec))ec dt

we have

‖e+‖ ≤ ρ(xc)‖ec‖+MBγ‖ec‖2/2.
This completes the proof with KB = 1 +MBγ/2.

5.4.3. The Shamanskii method. Alternation of a Newton step with a
sequence of chord steps leads to a class of high-order methods, that is, methods
that converge q-superlinearly with q-order larger than 2. We follow [18] and
name this method for Shamanskii [174], who considered the finite difference
Jacobian formulation of the method from the point of view of efficiency. The
method itself was analyzed in [190]. Other high-order methods, especially for
problems in one dimension, are described in [190] and [146].

We can describe the transition from xc to x+ by

y1 = xc − F ′(xc)−1F (xc),

yj+1 = yj − F ′(xc)−1F (yj) for 1 ≤ j ≤ m− 1,

x+ = ym.

(5.13)

Note that m = 1 is Newton’s method and m = ∞ is the chord method with
{yj} playing the role of the chord iterates.

Algorithmically a second loop surrounds the factor/solve step. The inputs
for the Shamanskii method are the same as for Newton’s method or the chord
method except for the addition of the parameterm. Note that we can overwrite
xc with the sequence of yj ’s. Note that we apply the termination test after
computation of each yj .

Algorithm 5.4.1. sham(x, F, τ,m)
1. r0 = ‖F (x)‖
2. Do while ‖F (x)‖ > τrr0 + τa

NEWTON’S METHOD 79

(a) Compute F ′(x)

(b) Factor F ′(x) = LU .

(c) for j = 1, . . .m

i. Solve LUs = −F (x)

ii. x = x+ s

iii. Evaluate F (x).

iv. If ‖F (x)‖ ≤ τrr0 + τa exit.

The convergence result is a simple application of Theorem 5.4.2.
Theorem 5.4.5. Let the standard assumptions hold and let m ≥ 1 be

given. Then there are KS > 0 and δ > 0 such that if x0 ∈ B(δ) the Shamanskii
iterates converge q-superlinearly to x∗ with q-order m+ 1 and

‖en+1‖ ≤ KS‖en‖m+1.(5.14)

Proof. Let δ be small enough so that B(δ) ⊂ Ω and that the conclusions
of Theorem 5.4.2 hold. Then if xn ∈ B(δ) all the intermediate iterates {yj}
are in B(δ) by Theorem 5.4.2. In fact, if we set y1 = xn, (5.8) implies that for
1 ≤ j ≤ m

‖yj−x∗‖ ≤ KC‖xn−x∗‖‖yj−1−x∗‖ = KC‖en‖‖yj−1−x∗‖ ≤ . . . ≤ KjC‖en‖j+1.

Hence xn+1 ∈ B(δ). Setting j = m in the above inequality completes the
proof.

The advantage of the Shamanskii method over Newton’s method is
that high q-orders can be obtained with far fewer Jacobian evaluations or
factorizations. Optimal choices of m as a function of N can be derived
under assumptions consistent with dense matrix algebra [18] by balancing the
O(N3) cost of a matrix factorization with the cost of function and Jacobian
evaluation. The analysis in [18] and the expectation that, if the initial iterate is
sufficiently accurate, only a small number of iterations will be taken, indicate
that the chord method is usually the best option for very large problems.
Algorithm nsol is based on this idea and using an idea from [114] computes
and factors the Jacobian only until an estimate of the q-factor for the linear
convergence rate is sufficiently low.

5.4.4. Difference approximation to F ′. Assume that we compute
F (x) + ε(x) instead of F (x) and attempt to approximate the action of F ′

on a vector by a forward difference. We would do this, for example, when
building an approximate Jacobian. Here the jth column of F ′(x) is F ′(x)ej
where ej is the unit vector with jth component 1 and other components 0.

A forward difference approximation to F ′(x)w would be

F (x+ hw) + ε(x+ hw)− F (x)− ε(x)

h
.

80 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Assume that ‖ε(x)‖ ≤ ε̄. Then

F ′(x)w − F (x+ hw) + ε(x+ hw)− F (x)− ε(x)

h
= O(h+ ε̄/h).

The quantity inside the O-term is minimized when h =
√
ε̄. This means, for

instance, that very small difference steps h can lead to inaccurate results. In
the special case where ε(x) is a result of floating-point roundoff in full precision
(ε̄ ≈ 10−15), the analysis here indicates that h ≈ 10−7 is a reasonable choice.
The choice h ≈ 10−15 in this case can lead to disaster (try it!). Here we have
made the implicit assumption that x and w are of roughly the same size. If
this is not the case, h should be scaled to reflect that. The choice

h = ε̄1/2‖x‖/‖w‖

reflects all the discussion above.
A more important consequence of this analysis is that the choice of step

size in a forward difference approximation to the action of the Jacobian on
a vector must take into account the error in the evaluation of F . This can
become very important if part of F is computed from measured data.

If F (x) has already been computed, the cost of a forward difference
approximation of F ′(x)w is an additional evaluation of F (at the point x+hw).
Hence the evaluation of a full finite difference Jacobian would cost N function
evaluations, one for each column of the Jacobian. Exploitation of special
structure could reduce this cost.

The forward difference approximation to the directional derivative is not
a linear operator in w. The reason for this is that the derivative has been
approximated, and so linearity has been lost. Because of this we must
carefully specify what we mean by a difference approximation to the Jacobian.
Definition 5.4.1 below specifies the usual choice.

Definition 5.4.1. Let F be defined in a neighborhood of x ∈ RN .
(∇hF)(x) is the N ×N matrix whose jth column is given by

(∇hF)(x)j =




F (x+ h‖x‖ej)− F (x)

h‖x‖ x �= 0

F (hej)− F (x)

h
x = 0

We make a similar definition of the difference approximation of the
directional derivative.

Definition 5.4.2. Let F be defined in a neighborhood of x ∈ RN and let

NEWTON’S METHOD 81

w ∈ RN . We have

DhF (x : w) =




0, w = 0,

‖w‖F (x+ h‖x‖w/‖w‖)− F (x)

h‖x‖ , w, x �= 0,

‖w‖F (hw/‖w‖)− F (x)

h
, x = 0, w �= 0.

(5.15)

The standard assumptions and the Banach Lemma imply the following
result.

Lemma 5.4.1. Let the standard assumptions hold. Then there are δ, ε̄, h̄ >
0 such that if x ∈ B(δ), h ≤ h̄, and ‖ε(x)‖ ≤ ε̄ for all x ∈ B(δ), then
∇h(F + ε)(x) is nonsingular for all x ∈ B(δ) and there is MF > 0 such that

‖F ′(x)−∇h(F + ε)(x)‖ ≤ MF (h+ ε̄/h).

If we assume that the forward difference step has been selected so that
h = O(

√
ε̄), then ∆(x) = O(

√
ε̄) by Lemma 5.4.1. Theorem 5.4.1 implies the

following result.
Theorem 5.4.6. Let the standard assumptions hold. Then there are

positive δ, ε̄, and KD such that if xc ∈ B(δ), ‖ε(x)‖ ≤ ε̄ for all x ∈ B(δ),
and there is M− > 0 such that

hc > M−
√
ε̄

then

x+ = xc −∇hc(F + ε)(xc)
−1(F (xc) + ε(xc))

satisfies

‖e+‖ ≤ KD(ε̄+ (‖ec‖+ hc)‖ec‖).
Note that Theorem 5.4.6 does not imply that an iteration will converge to

x∗. Even if ε is entirely due to floating-point roundoff, there is no guarantee
that ε(xn) → 0 as xn → x∗. Hence, one should expect the sequence {‖en‖}
to stagnate and cease to decrease once ‖en‖ ≈ ε̄. Therefore in the early
phases of the iteration, while ‖en‖ >>

√
ε̄, the progress of the iteration will

be indistinguishable from Newton’s method as implemented with an exact
Jacobian. When ‖en‖ ≤ √

ε̄, Theorem 5.4.6 says that ‖en+1‖ = O(ε̄). Hence
one will see quadratic convergence until the error in F admits no further
reduction.

A difference approximation to a full Jacobian does not use any special
structure of the Jacobian and will probably be less efficient than a hand coded
analytic Jacobian. If information on the sparsity pattern of the Jacobian is
available it is sometimes possible [47], [42], to evaluate ∇hF with far fewer than
N evaluations of F . If the sparsity pattern is such that F ′ can be reduced to

82 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

a block triangular form, the entire solution process can take advantage of this
structure [59].

For problems in which the Lipschitz constant of F ′ is large, the error in
the difference approximation will be large, too. Moreover, DhF (x : w) is not,
in general, a linear function of w and it is usually the case that

(∇hF (x))w �= DhF (x : w).

If F ′(x∗) is ill conditioned or the Lipschitz constant of F ′ is large, the
difference between them may be significant and a difference approximation to
a directional derivative, which uses the size of w, is likely to be more accurate
than ∇hF (x)w.

While we used full matrix approximations to numerical Jacobians in all
the examples reported here, they should be used with caution.

5.4.5. The secant method. The results in this section are for single
equations f(x) = 0, where f is a real-valued function of one real variable.
We assume for the sake of simplicity that there are no errors in the evaluation
of f , i.e., ε(x) = 0. The standard assumptions, then, imply that f ′(x∗) �= 0.
There is no reason to use a difference approximation to f ′ for equations in a
single variable because one can use previously computed data to approximate
f ′(xn) by

an =
f(xn)− f(xn−1)

xn − xn−1
.

The resulting method is called the secant method and is due to Newton
[140], [137]. We will prove that the secant method is locally q-superlinearly
convergent if the standard assumptions hold.

In order to start, one needs two approximations to x∗, x0 and x−1. The
local convergence theory can be easily described by Theorem 5.4.1. Let xc be
the current iterate and x− the previous iterate. We have ε(xc) = 0 and

∆(xc) =
f(xc)− f(x−)

xc − x−
− f ′(xc).(5.16)

We have the following theorem.
Theorem 5.4.7. Let the standard assumptions hold with N = 1. Then

there is δ > 0 such that if x0, x−1 ∈ B(δ) and x0 �= x−1 then the secant iterates
converge q-superlinearly to x∗.

Proof. Let δ be small enough so that B(δ) ⊂ Ω and the conclusions of
Theorem 5.4.1 hold. Assume that x−1, x0, . . . , xn ∈ B(δ). If xn = x∗ for some
finite n, we are done. Otherwise xn �= xn−1. If we set s = xn − xn−1 we have
by (5.16) and the fundamental theorem of calculus

∆(xn) =

∫ 1

0
(f ′(xn−1 + ts)− f ′(xn)) dt

NEWTON’S METHOD 83

and hence

|∆(xn)| ≤ γ|xn−1 − xn|/2 ≤ γ(|en|+ |en−1|)
2

.

Applying Theorem 5.4.1 implies

|en+1| ≤ K̄((1 + γ/2)|en|2 + γ|en||en−1|/2).(5.17)

If we reduce δ so that
K̄(1 + γ)δ = η < 1

then xn → x∗ q-linearly. Therefore

|en+1|
|en| ≤ K̄((1 + γ/2)|en|+ γ|en−1|/2) → 0

as n → ∞. This completes the proof.
The secant method and the classical bisection (see Exercise 5.7.8) method

are the basis for the popular method of Brent [17] for the solution of single
equations.

5.5. The Kantorovich Theorem

In this section we present the result of Kantorovich [107], [106], which states
that if the standard assumptions “almost” hold at a point x0, then there
is a root and the Newton iteration converges r-quadratically to that root.
This result is of use, for example, in proving that discretizations of nonlinear
differential and integral equations have solutions that are near to that of the
continuous problem.

We require the following assumption.
Assumption 5.5.1. There are β, η, r̄, and γ with βηγ ≤ 1/2 and x0 ∈ RN

such that
1. F is differentiable at x0,

‖F ′(x0)−1‖ ≤ β, and ‖F ′(x0)−1F (x0)‖ ≤ η.

2. F ′ is Lipschitz continuous with Lipschitz constant γ in a ball of radius
r̄ ≥ r− about x0 where

r− =
1−√

1− 2βηγ

βγ
.

We will let B0 be the closed ball of radius r− about x0

B0 = {x | ‖x− x0‖ ≤ r−}.

We do not prove the result in its full generality and refer to [106], [145],
[57], and [58] for a complete proof and for discussions of related results.
However, we give a simplified version of a Kantorovich-like result for the chord

84 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

method to show how existence of a solution can be derived from estimates
on the function and Jacobian. Unlike the chord method results in [106],
[145], and [57], Theorem 5.5.1 assumes a bit more than Assumption 5.5.1 but
has a simple proof that uses only the contraction mapping theorem and the
fundamental theorem of calculus and obtains q-linear convergence instead of
r-linear convergence.

Theorem 5.5.1. Let Assumption 5.5.1 hold and let

βγη < 1/2.(5.18)

Then there is a unique root x∗ of F in B0, the chord iteration with x0 as the
initial iterate converges to x∗ q-linearly with q-factor βγr−, and xn ∈ B0 for
all n. Moreover x∗ is the unique root of F in the ball of radius

min

(
r̄,
1 +

√
1− 2βηγ

βγ

)

about x0.
Proof. We will show that the map

φ(x) = x− F ′(x0)−1F (x)

is a contraction on the set

S = {x | ‖x− x0‖ ≤ r−}.

By the fundamental theorem of calculus and Assumption 5.5.1 we have for
all x ∈ S

F ′(x0)−1F (x) = F ′(x0)−1F (x0)

+F ′(x0)−1
∫ 1

0
F ′(x0 + t(x− x0))(x− x0) dt

= F ′(x0)−1F (x0) + x− x0

+F ′(x0)−1
∫ 1

0
(F ′(x0 + t(x− x0))− F ′(x0))(x− x0) dt

(5.19)

and

φ(x)− x0 = −F ′(x0)−1F (x0)

−F ′(x0)−1
∫ 1

0
(F ′(x0 + t(x− x0))− F ′(x0))(x− x0) dt.

Hence,
‖φ(x)− x0‖ ≤ η + βγr2−/2 = r−.

NEWTON’S METHOD 85

and φ maps S into itself.
To show that φ is a contraction on S and to prove the q-linear convergence

we will show that
‖φ(x)− φ(y)‖ ≤ βγr−‖x− y‖

for all x, y ∈ S. If we do this, the contraction mapping theorem (Theo-
rem 4.2.1) will imply that there is a unique fixed point x∗ of φ in S and
that xn → x∗ q-linearly with q-factor βγr−. Clearly x∗ is a root of F because
it is a fixed point of φ. We know that βγr− < 1 by our assumption that
βηγ < 1/2.

Note that for all x ∈ B0

φ′(x) = I − F ′(x0)−1F ′(x) = F ′(x0)−1(F ′(x0)− F ′(x))

and hence
‖φ′(x)‖ ≤ βγ‖x− x0‖ ≤ βγr− < 1.

Therefore, for all x, y ∈ B0,

‖φ(x)− φ(y)‖ =
∥∥∥∥
∫ 1

0
φ′(y + t(x− y))(x− y) dt

∥∥∥∥ ≤ βγr−‖x− y‖.

This proves the convergence result and the uniqueness of x∗ in B0.
To prove the remainder of the uniqueness assertion let

r+ =
1 +

√
1− 2βηγ

βγ

and note that r+ > r− because βηγ < 1/2. If r̄ = r−, then we are done by the
uniqueness of x∗ in B0. Hence we may assume that r̄ > r−. We must show
that if x is such that

r− < ‖x− x0‖ < min(r̄, r+)

then F (x) �= 0. Letting r = ‖x− x0‖ we have by (5.19)

‖F ′(x0)−1F (x)‖ ≥ r − η − βγr2/2 > 0

because r− < r < r+. This completes the proof.
The Kantorovich theorem is more precise than Theorem 5.5.1 and has a

very different proof. We state the theorem in the standard way [145], [106],
[63], using the r-quadratic estimates from [106].

Theorem 5.5.2. Let Assumption 5.5.1 hold. Then there is a unique root
x∗ of F in B0, the Newton iteration with x0 as the initial iterate converges to
x∗, and xn ∈ B0 for all n. x∗ is the unique root of F in the ball of radius

min

(
r̄,
1 +

√
1− 2βηγ

βγ

)

about x0 and the errors satisfy

‖en‖ ≤ (2βηγ)2
n

2nβγ
.(5.20)

86 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

If βηγ < 1/2 then (5.20) implies that the convergence is r-quadratic (see
Exercise 5.7.16).

5.6. Examples for Newton’s method

In the collection of MATLAB codes we provide an implementation nsol

of Newton’s method, the chord method, the Shamanskii method, or a
combination of all of them based on the reduction in the nonlinear residual.
This latter option decides if the Jacobian should be recomputed based on the
ratio of successive residuals. If

‖F (x+)‖/‖F (xc)‖
is below a given threshold, the Jacobian is not recomputed. If the ratio is too
large, however, we compute and factor F ′(x+) for use in the subsequent chord
steps. In addition to the inputs of Algorithm sham, a threshold for the ratio
of successive residuals is also input. The Jacobian is recomputed and factored
if either the ratio of successive residuals exceeds the threshold 0 < ρ < 1 or
the number of iterations without an update exceeds m. The output of the
MATLAB implementation of nsol is the solution, the history of the iteration
stored as the vector of l∞ norms of the nonlinear residuals, and an error flag.
nsol uses diffjac to approximate the Jacobian by ∇hF with h = 10−7.

While our examples have dense Jacobians, the ideas in the implementation
of nsol also apply to situations in which the Jacobian is sparse and direct
methods for solving the equation for the Newton step are necessary. One would
still want to minimize the number of Jacobian computations (by the methods
of [47] or [42], say) and sparse matrix factorizations. In Exercise 5.7.25, which
is not easy, the reader is asked to create a sparse form of nsol.

Algorithm 5.6.1. nsol(x, F, τ,m, ρ)
1. rc = r0 = ‖F (x)‖
2. Do while ‖F (x)‖ > τrr0 + τa

(a) Compute ∇hF (x) ≈ F ′(x)
(b) Factor ∇hF (x) = LU .

(c) is = 0, σ = 0

(d) Do While is < m and σ ≤ ρ

i. is = is + 1

ii. Solve LUs = −F (x)

iii. x = x+ s

iv. Evaluate F (x)

v. r+ = ‖F (x)‖, σ = r+/rc, rc = r+
vi. If ‖F (x)‖ ≤ τrr0 + τa exit.

In the MATLAB code the iteration is terminated with an error condition
if σ ≥ 1 at any point. This indicates that the local convergence analysis in this

NEWTON’S METHOD 87

section is not applicable. In Chapter 8 we discuss how to recover from this.
nsol is based on the assumption that a difference Jacobian will be used. In
Exercise 5.7.21 you are asked to modify the code to accept an analytic Jacobian.
Many times the Jacobian can be computed efficiently by reusing results that
are already available from the function evaluation. The parameters m and ρ
are assigned the default values of 1000 and .5. With these default parameters
the decision to update the Jacobian is made based entirely on the reduction in
the norm of the nonlinear residual. nsol allows the user to specify a maximum
number of iterations; the default is 40.

The Chandrasekhar H-equation. The Chandrasekhar H-equation, [41],
[30],

F (H)(µ) = H(µ)−
(
1− c

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1

= 0,(5.21)

is used to solve exit distribution problems in radiative transfer.
We will discretize the equation with the composite midpoint rule. Here we

approximate integrals on [0, 1] by

∫ 1

0
f(µ) dµ ≈ 1

N

N∑
j=1

f(µj),

where µi = (i− 1/2)/N for 1 ≤ i ≤ N . The resulting discrete problem is

F (x)i = xi −

1− c

2N

N∑
j=1

µixj
µi + µj




−1

.(5.22)

It is known [132] that both (5.21) and the discrete analog (5.22) have two
solutions for c ∈ (0, 1). Only one of these solutions has physical meaning,
however. Newton’s method, with the 0 function or the constant function with
value 1 as initial iterate, will find the physically meaningful solution [110].
The standard assumptions hold near either solution [110] for c ∈ [0, 1). The
discrete problem has its own physical meaning [41] and we will attempt to
solve it to high accuracy. Because H has a singularity at µ = 0, the solution of
the discrete problem is not even a first-order accurate approximation to that
of the continuous problem.

In the computations reported here we set N = 100 and c = .9. We used the
function identically one as initial iterate. We computed all Jacobians with the
MATLAB code diffjac. We set the termination parameters τr = τa = 10−6.
We begin with a comparison of Newton’s method and the chord method.
We present some iteration statistics in both tabular and graphical form. In
Table 5.1 we tabulate the iteration counter n, ‖F (xn)‖∞/‖F (x0)‖∞, and the
ratio

Rn = ‖F (xn)‖∞/‖F (xn−1)‖∞

88 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Table 5.1

Comparison of Newton and chord iteration.

n ‖F (xn)‖∞/‖F (x0)‖∞ Rn ‖F (xn)‖∞/‖F (x0)‖∞ Rn
0 1.000e+00 1.000e+00
1 1.480e-01 1.480e-01 1.480e-01 1.480e-01
2 2.698e-03 1.823e-02 3.074e-02 2.077e-01
3 7.729e-07 2.865e-04 6.511e-03 2.118e-01
4 1.388e-03 2.132e-01
5 2.965e-04 2.136e-01
6 6.334e-05 2.136e-01
7 1.353e-05 2.136e-01
8 2.891e-06 2.136e-01

for n ≥ 1 for both Newton’s method and the chord method. In Fig. 5.1
the solid curve is a plot of ‖F (xn)‖∞/‖F (x0)‖∞ for Newton’s method and
the dashed curve a plot of ‖F (xn)‖∞/‖F (x0)‖∞ for the chord method. The
concave iteration track is the signature of superlinear convergence, the linear
track indicates linear convergence. See Exercise 5.7.15 for a more careful
examination of this concavity. The linear convergence of the chord method
can also be seen in the convergence of the ratios Rn to a constant value.

For this example the MATLAB flops command returns an fairly accurate
indicator of the cost. The Newton iteration required over 8.8 million floating-
point operations while the chord iteration required under 3.3 million. In
Exercise 5.7.18 you are asked to obtain timings in your environment and will
see how the floating-point operation counts are related to the actual timings.

The good performance of the chord method is no accident. If we think
of the chord method as a preconditioned nonlinear Richardson iteration with
the initial Jacobian playing the role of preconditioner, then the chord method
should be much more efficient than Newton’s method if the equations for the
steps can be solved cheaply. In the case considered here, the cost of a single
evaluation and factorization of the Jacobian is far more than the cost of the
entire remainder of the chord iteration.

The ideas in Chapters 6 and 7 show how the low iteration cost of the
chord method can be combined with the small number of iterations of a
superlinearly convergent nonlinear iterative method. In the context of this
particular example, the cost of the Jacobian computation can be reduced by
analytic evaluation and reuse of data that have already been computed for the
evaluation of F . The reader is encouraged to do this in Exercise 5.7.21.

In the remaining examples, we plot, but do not tabulate, the iteration
statistics. In Fig. 5.2 we compare the Shamanskii method with m = 2 with
Newton’s method. The Shamanskii computation required under 6 million
floating-point operations, as compared with over 8.8 for Newton’s method.
However, for this problem, the simple chord method is the most efficient.

NEWTON’S METHOD 89

0 1 2 3 4 5 6 7 8
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 5.1. Newton and chord methods for H-equation, c = .9.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 5.2. Newton and Shamanskii method for H-equation, c = .9.

The hybrid approach in nsol with the default parameters would be the chord
method for this problem.

We now reconsider the H-equation with c = .9999. For this problem the
Jacobian at the solution is nearly singular [110]. Aside from c, all iteration
parameters are the same as in the previous example. While Newton’s method
converges in 7 iterations and requires 21 million floating-point operations, the
chord method requires 188 iterations and 10.6 million floating-point operations.
The q-factor for the chord method in this computation was over .96, indicating
very slow convergence. The hybrid method in nsol with the default parameters

90 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

computes the Jacobian four times during the course of the iteration, converges
in 14 iterations, and requires 12 million floating-point operations. In Fig. 5.3
we compare the Newton iteration with the hybrid.

0 2 4 6 8 10 12 14
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 5.3. Newton and hybrid methods for H-equation c = .9999.

One should approach plots of convergence histories with some caution. The
theory for the chord method asserts that the error norms converge q-linearly to
zero. This implies only that the nonlinear residual norms {‖F (xn)‖} converge
r-linearly to zero. While the plots indicate q-linear convergence of the nonlinear
residuals, the theory does not, in general, support this. In practice, however,
plots like those in this section are common.

NEWTON’S METHOD 91

5.7. Exercises on Newton’s method

In some of the exercises here, and in the rest of this part of the book, you will
be asked to plot or tabulate iteration statistics. When asked to do this, for
each iteration tabulate the iteration counter, the norm of F , and the ratio
of ‖F (xn)‖/‖F (xn−1)‖ for n ≥ 1. A better alternative in the MATLAB
environment is to use the semilogy command to plot the norms. When
one does this, one can visually inspect the plot to determine superlinear
convergence (concavity) without explicitly computing the ratios. Use the l∞

norm.

5.7.1. A function G is said to be Hölder continuous with exponent α in Ω if
‖G(x)−G(y)‖ ≤ K‖x− y‖α for all x, y ∈ Ω. Show that if the Lipschitz
continuity condition on F ′ in the standard assumptions is replaced by
Hölder continuity with exponent α > 0 that the Newton iterates converge
with q-order 1 + α.

5.7.2. Can the performance of the Newton iteration be improved by a linear
change of variables? That is, for nonsingular N × N matrices A and
B, can the Newton iterates for F (x) = 0 and AF (Bx) = 0 show any
performance difference when started at the same initial iterate? What
about the chord method?

5.7.3. Let ∇hF be given by Definition 5.4.1. Given the standard assumptions,
prove that the iteration given by

xn+1 = xn − (∇hnF (xn))−1F (xn)

is locally q-superlinearly convergent if hn → 0. When is it locally q-
quadratically convergent?

5.7.4. Suppose F ′(xn) is replaced by ∇hnF (xn) in the Shamanskii method.
Discuss how hn must be decreased as the iteration progresses to preserve
the q-order of m+ 1 [174].

5.7.5. In what way is the convergence analysis of the secant method changed if
there are errors in the evaluation of f?

5.7.6. Prove that the secant method converges r-superlinearly with r-order
(
√
5 + 1)/2. This is easy.

5.7.7. Show that the secant method converges q-superlinearly with q-order
(
√
5 + 1)/2.

5.7.8. The bisection method produces a sequence of intervals (xkl , x
k
r) that

contain a root of a function of one variable. Given (xkl , x
k
r) with

f(xkl)f(x
k
r) < 0 we replace one of the endpoints with y = (xkl + xkr)/2

to force f(xk+1
l)f(xk+1

r) < 0. If f(y) = 0, we terminate the iteration.
Show that the sequence xk = (xkl + xkr)/2 is r-linearly convergent if f is
continuous and there exists (x0l , x

0
r) such that f(x0l)f(x

0
r) < 0.

92 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

5.7.9. Write a program that solves single nonlinear equations with Newton’s
method, the chord method, and the secant method. For the secant
method, use x−1 = .99x0. Apply your program to the following
function/initial iterate combinations, tabulate or plot iteration statistics,
and explain your results.

1. f(x) = cos(x)− x, x0 = .5

2. f(x) = tan−1(x), x0 = 1

3. f(x) = sin(x), x0 = 3

4. f(x) = x2, x0 = .5

5. f(x) = x2 + 1, x0 = 10

5.7.10. For scalar functions of one variable a quadratic model of f about a point
xc is

mc(x) = f(xc) + f ′(xc)(x− xc) + f ′′(xc)(x− xc)
2/2.

Consider the iterative method that defines x+ as a root of mc. What
problems might arise in such a method? Resolve these problems and
implement your algorithm. Test it on the problems in Exercise 5.7.9. In
what cases is this algorithm superior to Newton’s method? For hints and
generalizations of this idea to functions of several variables, see [170]. Can
the ideas in [170] be applied to some of the high-order methods discussed
in [190] for equations in one unknown?

5.7.11. Show that if f is a real function of one real variable, f ′′ is Lipschitz
continuous, and f(x∗) = f ′(x∗) = 0 but f ′′(x∗) �= 0 then the iteration

xn+1 = xn − 2f(xn)/f
′(xn)

converges locally q-quadratically to x∗ provided x0 is sufficiently near to
x∗, but not equal to x∗ [171].

5.7.12. Show that if f is a real function of one real variable, the standard
assumptions hold, f ′′(x∗) = 0 and f ′′(x) is Lipschitz continuous, then
the Newton iteration converges cubically (q-superlinear with q-order 3).

5.7.13. Show that if f is a real function of one real variable, the standard
assumptions hold, x0 is sufficiently near x∗, and f(x0)f

′′(x0) > 0, then
the Newton iteration converges monotonically to x∗. What if f ′(x∗) = 0?
How can you extend this result if f ′(x∗) = f ′′(x∗) = . . . f (k)(x∗) = 0 �=
f (k+1)(x∗)? See [131].

5.7.14. How would you estimate the q-order of a q-superlinearly convergent
sequence? Rigorously justify your answer.

5.7.15. If xn → x∗ q-superlinearly with q-order α > 1, show that log(‖en‖) is a
concave function of n in the sense that

log(‖en+1‖)− log(‖en‖)

NEWTON’S METHOD 93

is a decreasing function of n for n sufficiently large. Is this still the case
if the convergence is q-superlinear but there is no q-order? What if the
convergence is q-linear?

5.7.16. Show that the sequence on the right side of (5.20) is r-quadratically (but
not q-quadratically) convergent to 0 if βηγ < 1/2.

5.7.17. Typically (see [89], [184]) the computed LU factorization of F ′(x) is the
exact LU factorization of a nearby matrix.

LU = F ′(x) + E.

Use the theory in [89], [184] or another book on numerical linear algebra
and Theorem 5.4.1 to describe how this factorization error affects the
convergence of the Newton iteration. How does the analysis for the QR
factorization differ?

5.7.18. Duplicate the results on the H-equation in § 5.6. Try different values of
N and c. How does the performance of the methods differ as N and c
change? Compare your results to the tabulated values of the H function
in [41] or [14]. Compare execution times in your environment. Tabulate
or plot iteration statistics. Use the MATLAB cputime command to see
how long the entire iteration took for each N, c combination and the
MATLAB flops command to get an idea for the number of floating-
point operations required by the various methods.

5.7.19. Solve the H-equation with c = 1 and N = 100. Explain your results
(see [50] and [157]). Does the trick in Exercise 5.7.11 improve the
convergence? Try one of the approaches in [51], [49], or [118] for
acceleration of the convergence. You might also look at [90], [170], [75],
[35] and [155] for more discussion of this. Try the chord method and
compare the results to part 4 of Exercise 5.7.9 (see [52]).

5.7.20. Solve the H-equation withN = 100, c = .9 and c = .9999 with fixed-point
iteration. Compare timings and flop counts with Newton’s method, the
chord method, and the algorithm in nsol.

5.7.21. Compute by hand the Jacobian of F , the discretized nonlinearity from
the H equation in (5.22). Prove that F ′ can be computed at a cost of
less than twice that of an evaluation of F . Modify nsol to accept this
analytic Jacobian rather than evaluate a difference Jacobian. How do
the execution times and flop counts change?

5.7.22. Modify dirder by setting the forward difference step h = 10−2. How
does this change affect the convergence rate observations that you have
made?

94 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

5.7.23. Add noise to your function evaluation with a random number generator,
such as the the MATLAB rand function. If the size of the noise is
O(10−4) and you make the appropriate adjustments to dirder, how are
the convergence rates different? What is an appropriate termination
criterion? At what point does the iteration stagnate?

5.7.24. Assume that the standard assumptions hold, that the cost of a function
evaluation is O(N2) floating-point operations, the cost of a Jacobian is
O(N) function evaluations, and that x0 is near enough to x∗ so that the
Newton iteration converges q-quadratically to x∗. Show that the number
n of Newton iterations needed to obtain ‖en‖ ≤ ε‖e0‖ is O(log(ε)) and
that the number of floating-point operations required is O(N3 log(ε)).
What about the chord method?

5.7.25. Develop a sparse version of nsol for problems with tridiagonal Jacobian.
In MATLAB, for example, you could modify diffjac to use the
techniques of [47] and nsol to use the sparse matrix factorization in
MATLAB. Apply your code to the central difference discretization of the
two-point boundary value problem

−u′′ = sin(u) + f(x), u(0) = u(1) = 0.

Here, the solution is u∗(x) = x(1− x), and

f(x) = 2− sin(x(1− x)).

Let u0 = 0 be the initial iterate.

5.7.26. Suppose you try to find an eigenvector-eigenvalue pair (φ, λ) of an N×N
matrix A by solving the system of N + 1 nonlinear equations

F (φ, λ) =

(
Aφ− λφ
φTφ− 1

)
=

(
0
0

)
(5.23)

for the vector x = (φT , λ)T ∈ RN+1. What is the Jacobian of this
system? If x = (φ, λ) ∈ RN+1 is an eigenvector-eigenvalue pair, when is
F ′(x) nonsingular? Relate the application of Newton’s method to (5.23)
to the inverse power method. See [150] for more development of this
idea.

Chapter 6

Inexact Newton Methods

Theorem 5.4.1 describes how errors in the derivative/function affect the
progress in the Newton iteration. Another way to look at this is to ask how
an approximate solution of the linear equation for the Newton step affects the
iteration. This was the view taken in [55] where inexact Newton methods in
which the step satisfies

‖F ′(xc)s+ F (xc)‖ ≤ ηc‖F (xc)‖(6.1)

are considered. Any approximate step is accepted provided that the relative
residual of the linear equation is small. This is quite useful because conditions
like (6.1) are precisely the small linear residual termination conditions for
iterative solution of the linear system for the Newton step. Such methods are
not new. See [145] and [175], for example, for discussion of these ideas in the
context of the classical stationary iterative methods. In most of this chapter
we will focus on the approximate solution of the equation for the Newton step
by GMRES, but the other Krylov subspace methods discussed in Chapters 2
and 3 and elsewhere can also be used. We follow [69] and refer to the term ηc
on the right hand side of (6.1) as the forcing term.

6.1. The basic estimates

We will discuss specific implementation issues in § 6.2. Before that we will
give the basic result from [55] to show how a step that satisfies (6.1) affects
the convergence. We will present this result in two parts. In § 6.1.1 we give a
straightforward analysis that uses the techniques of Chapter 5. In § 6.1.2 we
show how the requirements of the simple analysis can be changed to admit a
more aggressive (i.e., larger) choice of the parameter η.

6.1.1. Direct analysis. The proof and application of Theorem 6.1.1 should
be compared to that of Theorem 5.1.1 and the other results in Chapter 5.

Theorem 6.1.1. Let the standard assumptions hold. Then there are δ and
KI such that if xc ∈ B(δ), s satisfies (6.1), and x+ = xc + s then

‖e+‖ ≤ KI(‖ec‖+ ηc)‖ec‖.(6.2)

95

96 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Proof. Let δ be small enough so that the conclusions of Lemma 4.3.1 and
Theorem 5.1.1 hold. To prove the first assertion (6.2) note that if2

r = −F ′(xc)s− F (xc)

is the linear residual then

s+ F ′(xc)−1F (xc) = −F ′(xc)−1r

and

e+ = ec + s = ec − F ′(xc)−1F (xc)− F ′(xc)−1r.(6.3)

Now, (6.1), (4.7), and (4.6) imply that

‖s+ F ′(xc)−1F (xc)‖ ≤ ‖F ′(xc)−1‖ηc‖F (xc)‖

≤ 4κ(F ′(x∗))ηc‖ec‖.

Hence, using (6.3) and Theorem 5.1.1

‖e+‖ ≤ ‖ec − F ′(xc)−1F (xc)‖+ 4κ(F ′(x∗))ηc‖ec‖

≤ K‖ec‖2 + 4κ(F ′(x∗))ηc‖ec‖,

where K is the constant from (5.2). If we set

KI = K + 4κ(F ′(x∗)),

the proof is complete.
We summarize the implications of Theorem 6.1.1 for iterative methods in

the next result, which is a direct consequence of (6.2) and will suffice to explain
most computational observations.

Theorem 6.1.2. Let the standard assumptions hold. Then there are δ and
η̄ such that if x0 ∈ B(δ), {ηn} ⊂ [0, η̄], then the inexact Newton iteration

xn+1 = xn + sn,

where

‖F ′(xn)sn + F (xn)‖ ≤ ηn‖F (xn)‖
converges q-linearly to x∗. Moreover

• if ηn → 0 the convergence is q-superlinear, and

• if ηn ≤ Kη‖F (xn)‖p for some Kη > 0 the convergence is q-superlinear
with q-order 1 + p.

2Our definition of r is consistent with the idea that the residual in a linear equation is b−Ax. In
[55] r = F ′(xc)s+ F (xc).

INEXACT NEWTON METHODS 97

Proof. Let δ be small enough so that (6.2) holds for xc ∈ B(δ). Reduce δ
and η̄ if needed so that

KI(δ + η̄) < 1,

where KI is from (6.2). Then if n ≥ 0 and xn ∈ B(δ) we have

‖en+1‖ ≤ KI(‖en‖+ ηn)‖en‖ ≤ KI(δ + η̄)‖en‖ < ‖en‖.

This proves q-linear convergence with a q-factor of KI(δ + η̄).
If ηn → 0 then q-superlinear convergence follows from the definition. If

ηn ≤ Kη‖F (xn)‖p

then we may use (4.7) and (6.2) to conclude

‖en+1‖ ≤ KI(‖en‖1−p +Kη2
p‖F ′(x∗)‖p)‖en‖1+p

which completes the proof.

6.1.2. Weighted norm analysis. Since KI = O(κ(F ′(x∗))), one might
conclude from Theorem 6.1.2 that if F ′(x∗) is ill conditioned very small forcing
terms must be used. This is not the case and the purpose of this subsection
is to describe more accurately the necessary restrictions on the forcing terms.
The results here differ from those in § 6.1.1 in that no restriction is put on
the sequence {ηn} ⊂ [0, 1) other than requiring that 1 not be an accumulation
point.

Theorem 6.1.3. Let the standard assumptions hold. Then there is δ such
that if xc ∈ B(δ), s satisfies (6.1), x+ = xc + s, and ηc ≤ η < η̄ < 1, then

‖F ′(x∗)e+‖ ≤ η̄‖F ′(x∗)ec‖.(6.4)

Proof. To prove (6.4) note that Theorem 4.0.1 implies that

‖F (xc)‖ ≤ ‖F ′(x∗)ec‖+ γ‖ec‖2
2

.

Since
‖ec‖ = ‖F ′(x∗)−1F ′(x∗)ec‖ ≤ ‖F ′(x∗)−1‖‖F ′(x∗)ec‖

we have, with

M0 =
γ‖F ′(x∗)−1‖

2

‖F (xc)‖ ≤ (1 +M0δ)‖F ′(x∗)ec‖.(6.5)

Now,

F ′(x∗)e+ = F ′(x∗)(ec + s)

= F ′(x∗)(ec − F ′(xc)−1F (xc)− F ′(xc)−1r).

98 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

By Theorem 5.1.1

‖F ′(x∗)(ec − F ′(xc)−1F (xc))‖ ≤ K‖F ′(x∗)‖‖ec‖2.

Hence,

‖F ′(x∗)e+‖ ≤ ‖F ′(x∗)F ′(xc)−1r‖+K‖F ′(x∗)‖‖ec‖2.(6.6)

Since

‖F ′(x∗)F ′(xc)−1r‖ ≤ ‖r‖+ ‖(F ′(x∗)− F ′(xc))F ′(xc)−1r‖

≤ (1 + 2γ‖F ′(x∗)−1‖‖ec‖)‖r‖,
we may set

M1 = 2γ‖F ′(x∗)−1‖, and M2 = K‖F ′(x∗)‖
and obtain, using (4.7) and (6.5),

‖F ′(x∗)e+‖ ≤ (1 +M1δ)‖r‖+M2δ‖ec‖

≤ (1 +M1δ)(1 +M0δ)ηc‖F ′(x∗)ec‖

+M2δ‖F ′(x∗)−1‖‖F ′(x∗)ec‖

≤ ((1 +M1δ)(1 +M0δ)η +M2δ‖F ′(x∗)−1‖)‖F ′(x∗)ec‖.

(6.7)

Now let δ be small enough so that

(1 +M1δ)(1 +M0δ)η +M2δ‖F ′(x∗)−1‖ ≤ η̄

and the proof is complete.
Note that the distance δ from the initial iterate to the solution may have

to be smaller for (6.4) to hold than for (6.2). However (6.4) is remarkable in its
assertion that any method that produces a step with a linear residual less than
that of the zero step will reduce the norm of the error if the error is measured
with the weighted norm

‖ · ‖∗ = ‖F ′(x∗) · ‖.
In fact, Theorem 6.1.3 asserts q-linear convergence in the weighted norm if the
initial iterate is sufficiently near x∗. This is made precise in Theorem 6.1.4.

The application of Theorem 6.1.3 described in Theorem 6.1.4 differs from
Theorem 6.1.2 in that we do not demand that {ηn} be bounded away from 1
by a sufficiently large amount, just that 1 not be an accumulation point. The
importance of this theorem for implementation is that choices of the sequence
of forcing terms {ηn} (such as ηn = .5 for all n) that try to minimize the
number of inner iterations are completely justified by this result if the initial
iterate is sufficiently near the solution. We make such a choice in one of the
examples considered in § 6.4 and compare it to a modification of a choice from

INEXACT NEWTON METHODS 99

[69] that decreases ηn rapidly with a view toward minimizing the number of
outer iterations.

Theorem 6.1.4. Let the standard assumptions hold. Then there is δ such
that if x0 ∈ B(δ), {ηn} ⊂ [0, η] with η < η̄ < 1, then the inexact Newton
iteration

xn+1 = xn + sn,

where

‖F ′(xn)sn + F (xn)‖ ≤ ηn‖F (xn)‖
converges q-linearly with respect to ‖ · ‖∗ to x∗. Moreover

• if ηn → 0 the convergence is q-superlinear, and

• if ηn ≤ Kη‖F (xn)‖p for some Kη > 0 the convergence is q-superlinear
with q-order 1 + p.

Proof. The proof uses both (6.4) and (6.2). Our first task is to relate the
norms ‖ · ‖ and ‖ · ‖∗ so that we can estimate δ. Let δ0 be such that (6.4) holds
for ‖ec‖ < δ0.

For all x ∈ RN ,

‖x‖∗ ≤ ‖F ′(x∗)‖‖x‖ ≤ κ(F ′(x∗))‖x‖∗,(6.8)

Note that ‖e‖ < δ0 if

‖e‖∗ < δ∗ = ‖F ′(x∗)‖δ0
Set δ = ‖F ′(x∗)‖−1δ∗. Then ‖e0‖∗ < δ∗ if ‖e0‖ < δ.

Our proof does not rely on the (possibly false) assertions that ‖en‖ < δ for
all n or that xn → x∗ q-linearly with respect to the unweighted norm. Rather
we note that (6.4) implies that if ‖en‖∗ < δ∗ then

‖en+1‖∗ ≤ η̄‖en‖∗ < δ∗(6.9)

and hence xn → x∗ q-linearly with respect to the weighted norm. This proves
the first assertion.

To prove the assertions on q-superlinear convergence, note that since
xn → x∗, eventually ‖en‖ will be small enough so that the conclusions of
Theorem 6.1.1 hold. The superlinear convergence results then follow exactly
as in the proof of Theorem 6.1.2.

We close this section with some remarks on the two types of results in
Theorems 6.1.2 and 6.1.4. The most significant difference is the norm in which
q-linear convergence takes place. q-linear convergence with respect to the
weighted norm ‖ · ‖∗ is equivalent to q-linear convergence of the sequence of
nonlinear residuals {‖F (xn)‖}. We state this result as Proposition 6.1.1 and
leave the proof to the reader in Exercise 6.5.2. The implications for the choice of
the forcing terms {ηn} are also different. While Theorem 6.1.2 might lead one
to believe that a small value of ηn is necessary for convergence, Theorem 6.1.4
shows that the sequence of forcing terms need only be kept bounded away from

100 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

1. A constant sequence such as ηn = .5 may well suffice for linear convergence,
but at a price of a greater number of outer iterations. We will discuss other
factors in the choice of forcing terms in § 6.3.

Proposition 6.1.1. Let the standard assumptions hold and let xn → x∗.
Then ‖F (xn)‖ converges q-linearly to 0 if and only if ‖en‖∗ does.

6.1.3. Errors in the function. In this section, we state two theorems on
inexact local improvement. We leave the proofs, which are direct analogs to
the proofs of Theorems 6.1.1 and 6.1.3, to the reader as exercises. Note that
errors in the derivative, such as those arising from a difference approximation
of the action of F ′(xc) on a vector, can be regarded as part of the inexact
solution of the equation for the Newton step. See [55] or Proposition 6.2.1 and
its proof for an illustration of this point.

Theorem 6.1.5. Let the standard assumptions hold. Then there are δ and
KI such that if xc ∈ B(δ), s satisfies

‖F ′(xc)s+ F (xc) + ε(xc)‖ ≤ ηc‖F (xc) + ε(xc)‖(6.10)

and x+ = xc + s, then

‖e+‖ ≤ KI((‖ec‖+ ηc)‖ec‖+ ‖ε(xc)‖).(6.11)

Theorem 6.1.6. Let the standard assumptions hold. Then there is δ such
that if xc ∈ B(δ), s satisfies (6.10), x+ = xc + s, and ηc ≤ η < η̄ < 1, then
there is KE such that

‖F ′(x∗)e+‖ ≤ η̄‖F ′(x∗)ec‖+KE‖ε(xc)‖.(6.12)

6.2. Newton-iterative methods

A Newton-iterative method realizes (6.1) with an iterative method for the linear
system for the Newton step, terminating when the relative linear residual is
smaller than ηc (i.e, when (6.1) holds). The name of the method indicates
which linear iterative method is used, for example, Newton-SOR, Newton-CG,
Newton-GMRES, would use SOR, CG, or GMRES to solve the linear system.
This naming convention is taken from [175] and [145]. These methods have also
been called truncated Newton methods [56], [136] in the context of optimization.

Typically the nonlinear iteration that generates the sequence {xn} is called
the outer iteration and the linear iteration that generates the approximations
to the steps is called the inner iteration.

In this section we use the l2 norm to measure nonlinear residuals. The
reason for this is that the Krylov methods use the scalar product and the
estimates in Chapters 2 and 3 are in terms of the Euclidean norm. In the
examples discussed in § 6.4 we will scale the l2 norm by a factor of 1/N so
that the results for the differential and integral equations will be independent
of the computational mesh.

INEXACT NEWTON METHODS 101

6.2.1. Newton GMRES. We provide a detailed analysis of the Newton-
GMRES iteration. We begin by discussing the effects of a forward difference
approximation to the action of the Jacobian on a vector.

If the linear iterative method is any one of the Krylov subspace methods
discussed in Chapters 2 and 3 then each inner iteration requires at least one
evaluation of the action of F ′(xc) on a vector. In the case of CGNR and CGNE,
an evaluation of the action of F ′(xc)T on a vector is also required. In many
implementations [20], [24], the action of F ′(xc) on a vector w is approximated
by a forward difference, (5.15), DhF (x : w) for some h. It is important to note
that this is entirely different from forming the finite difference Jacobian∇hF (x)
and applying that matrix to w. In fact, as pointed out in [20], application
of GMRES to the linear equation for the Newton step with matrix-vector
products approximated by finite differences is the same as the application of
GMRES to the matrix GhF (x) whose last k − 1 columns are the vectors

vk = DhF (x : vk−1)

The sequence {vk} is formed in the course of the forward-difference GMRES
iteration.

To illustrate this point, we give the forward-difference GMRES algorithm
for computation of the Newton step, s = −F ′(x)−1F (x). Note that matrix-
vector products are replaced by forward difference approximations to F ′(x), a
sequence of approximate steps {sk} is produced, that b = −F (x), and that the
initial iterate for the linear problem is the zero vector. We give a MATLAB
implementation of this algorithm in the collection of MATLAB codes.

Algorithm 6.2.1. fdgmres(s, x, F, h, η, kmax, ρ)
1. s = 0, r = −F (x), v1 = r/‖r‖2, ρ = ‖r‖2, β = ρ, k = 0

2. While ρ > η‖F (x)‖2 and k < kmax do

(a) k = k + 1

(b) vk+1 = DhF (x : vk)
for j = 1, . . . k

i. hjk = vTk+1vj

ii. vk+1 = vk+1 − hjkvj

(c) hk+1,k = ‖vk+1‖2
(d) vk+1 = vk+1/‖vk+1‖2
(e) e1 = (1, 0, . . . , 0)T ∈ Rk+1

Minimize ‖βe1 −Hky
k‖Rk+1 to obtain yk ∈ Rk.

(f) ρ = ‖βe1 −Hky
k‖Rk+1 .

3. s = Vky
k.

In our MATLAB implementation we solve the least squares problem in
step 2e by the Givens rotation approach used in Algorithm gmres.

102 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

As should be clear from inspection of Algorithm gmres, the difference
between ∇hF and GhF is that the columns are computed by taking directional
derivatives based on two different orthonormal bases: ∇hF using the basis of
unit vectors in coordinate directions and GhF the basis for the Krylov space Kk
constructed by algorithm fdgmres. The action of GhF on K⊥

k , the orthogonal
complement of Kk, is not used by the algorithm and, for the purposes of
analysis, could be specified by the action of ∇hF on any basis for K⊥

k . Hence
GhF is also first order accurate in h. Assuming that there is no error in the
evaluation of F we may summarize the observations above in the following
proposition, which is a special case of the more general results in [20].

Proposition 6.2.1. Let the standard assumptions hold. Let η ∈ (0, 1).
Then there are CG, h̄, and δ such that if x ∈ B(δ), h ≤ h̄, and Algo-
rithm fdgmres terminates with k < kmax then the computed step s satisfies

‖F ′(x)s+ F (x)‖2 < (η + CGh)‖F (x)‖2.(6.13)

Proof. First let δ be small enough so that B(δ) ⊂ Ω and the conclusions
to Lemma 4.3.1 hold. Let {uj} be any orthonormal basis for RN such that
uj = vj for 1 ≤ j ≤ k, where {vj}kj=1 is the orthonormal basis for Kk generated
by Algorithm fdgmres.

Consider the linear map defined by its action on {uj}

Buj = DhF (x : uj).

Note that

DhF (x : uj) =
∫ 1
0 F ′(x+ th‖x‖2uj)uj dt

= F ′(x)uj +
∫ 1
0 (F

′(x+ th‖x‖2uj)− F ′(x))uj dt.

Since F ′ is Lipschitz continuous and {uj} is an orthonormal basis for RN we
have, with γ̄ = γ(‖x∗‖2 + δ),

‖B − F ′(x)‖2 ≤ h‖x‖2γ/2 ≤ hγ̄/2(6.14)

Since the linear iteration (fdgmres) terminates in k < kmax iterations, we
have, since B and GhF agree on Kk,

‖Bs+ F (x)‖2 ≤ η‖F (x)‖2

and therefore

‖F ′(x)s+ F (x)‖2 ≤ η‖F (x)‖2 + hγ̄‖s‖2/2.(6.15)

Assume that

h̄γ̄ ≤ ‖F ′(x∗)−1‖−1
2 /2

INEXACT NEWTON METHODS 103

Then Lemma 4.3.1 and (6.15) imply

‖F ′(x∗)−1‖−1
2 ‖s‖2/2 ≤ ‖F ′(x)−1‖−1

2 ‖s‖2

≤ ‖F ′(x)s‖2 ≤ (1 + η)‖F (x)‖2 + h̄γ̄‖s‖2/2.
Therefore,

‖s‖2 ≤ 4(1 + η)‖F ′(x∗)−1‖2‖F (x)‖2.(6.16)

Combining (6.16) with (6.15) completes the proof with CG = 4γ̄(1 +
η)‖F ′(x∗)−1‖2.

Proposition 6.2.1 implies that a finite difference implementation will not
affect the performance of Newton-GMRES if the steps in the forward difference
approximation of the derivatives are sufficiently small. In an implementation,
therefore, we must specify not only the sequence {ηn}, but also the steps {hn}
used to compute forward differences. Note also that Proposition 6.2.1 applies
to a restarted GMRES because upon successful termination (6.15) will hold.

We summarize our results so far in the analogs of Theorem 6.1.4 and
Theorem 6.1.2. The proofs are immediate consequences of Theorems 6.1.2,
6.1.4, and Proposition 6.2.1 and are left as (easy) exercises.

Theorem 6.2.1. Assume that the assumptions of Proposition 6.2.1 hold.
Then there are δ, σ̄ such that if x0 ∈ B(δ) and the sequences {ηn} and {hn}
satisfy

σn = ηn + CGhn ≤ σ̄

then the forward difference Newton-GMRES iteration

xn+1 = xn + sn

where sn is computed by Algorithm fdgmres with arguments

(sn, xn, F, hn, ηn, kmax, ρ)

converges q-linearly and sn satisfies

‖F ′(xn)sn + F (xn)‖2 < σn‖F (xn)‖2.(6.17)

Moreover,
• if σn → 0 the convergence is q-superlinear, and

• if σn ≤ Kη‖F (xn)‖p2 for some Kη > 0 the convergence is q-superlinear
with q-order 1 + p.

Theorem 6.2.2. Assume that the assumptions of Proposition 6.2.1 hold.
Then there is δ such that if x0 ∈ B(δ) and the sequences {ηn} and {hn} satisfy

σn = ηn + CGhn ∈ [0, σ̄]

with 0 < σ̄ < 1 then the forward difference Newton-GMRES iteration

xn+1 = xn + sn

104 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

where sn is computed by Algorithm fdgmres with arguments

(sn, xn, F, hn, ηn, kmax, ρ)

converges q-linearly with respect to ‖ · ‖∗ and sn satisfies (6.17). Moreover
• if σn → 0 the convergence is q-superlinear, and

• if σn ≤ Kη‖F (xn)‖p2 for some Kη > 0 the convergence is q-superlinear
with q-order 1 + p.

In the case where hn is approximately the square root of machine roundoff,
σn ≈ ηn if ηn is not too small and Theorem 6.2.2 states that the observed
behavior of the forward difference implementation will be the same as that of
an implementation with exact derivatives.

6.2.2. Other Newton-iterative methods. Other iterative methods may
be used as the solver for the linear equation for the Newton step. Newton-
multigrid [99] is one approach using a stationary iterative method. See also
[6], [111]. If F ′ is symmetric and positive definite, as it is in the context of
unconstrained minimization, [63], Newton-CG is a possible approach.

When storage is restricted or the problem is very large, GMRES may not
be practical. GMRES(m), for a small m, may not converge rapidly enough
to be useful. CGNR and CGNE offer alternatives, but require evaluation of
transpose-vector products. Bi-CGSTAB and TFQMR should be considered in
all cases where there is not enough storage for GMRES(m) to perform well.

If a transpose is needed, as it will be if CGNR or CGNE is used as the
iterative method, a forward difference formulation is not an option because
approximation of the transpose-vector product by differences is not possible.
Computation of ∇hF (x) and its transpose analytically is one option as is
differentiation of F automatically or by hand. The reader may explore this
further in Exercise 6.5.13.

The reader may also be interested in experimenting with the other Krylov
subspace methods described in § 3.6, [78], and [12].

6.3. Newton-GMRES implementation

We provide a MATLAB code nsolgm in the collection that implements
a forward-difference Newton-GMRES algorithm. This algorithm requires
different inputs than nsol. As input we must give the initial iterate, the
function, the vector of termination tolerances as we did for nsol. In addition,
we must provide a method for forming the sequence of forcing terms {ηn}.

We adjust η as the iteration progresses with a variation of a choice from
[69]. This issue is independent of the particular linear solver and our discussion
is in the general inexact Newton method setting. Setting η to a constant for
the entire iteration is often a reasonable strategy as we see in § 6.4, but the
choice of that constant depends on the problem. If a constant η is too small,
much effort can be wasted in the initial stages of the iteration. The choice in

INEXACT NEWTON METHODS 105

[69] is motivated by a desire to avoid such over solving. Over solving means
that the linear equation for the Newton step is solved to a precision far beyond
what is needed to correct the nonlinear iteration. As a measure of the degree
to which the nonlinear iteration approximates the solution we begin with

ηAn = γ‖F (xn)‖2/‖F (xn−1)‖2,
where γ ∈ (0, 1] is a parameter. If ηAn is uniformly bounded away from 1,
then setting ηn = ηAn for n > 0 would guarantee q-quadratic convergence by
Theorem 6.1.1. In this way, the most information possible would be extracted
from the inner iteration. In order to specify the choice at n = 0 and bound
the sequence away from 1 we set

ηBn =




ηmax, n = 0,

min(ηmax, η
A
n), n > 0.

(6.18)

In (6.18) the parameter ηmax is an upper limit on the sequence {ηn}. In [69]
the choices γ = .9 and ηmax = .9999 are used.

It may happen that ηBn is small for one or more iterations while xn is still
far from the solution. A method of safeguarding was suggested in [69] to avoid
volatile decreases in ηn. The idea is that if ηn−1 is sufficiently large we do not
let ηn decrease by much more than a factor of ηn−1.

ηCn =




ηmax, n = 0,

min(ηmax, η
A
n), n > 0, γη2n−1 ≤ .1,

min(ηmax,max(ηAn , γη
2
n−1)), n > 0, γη2n−1 > .1.

(6.19)

The constant .1 is somewhat arbitrary. This safeguarding does improve the
performance of the iteration.

There is a chance that the final iterate will reduce ‖F‖ far beyond the
desired level and that the cost of the solution of the linear equation for the last
step will be more accurate than is really needed. This oversolving on the final
step can be controlled comparing the norm of the current nonlinear residual
‖F (xn)‖ to the nonlinear residual norm at which the iteration would terminate

τt = τa + τr‖F (x0)‖
and bounding ηn from below by a constant multiple of τt/‖F (xn)‖. The
algorithm nsolgm does this and uses

ηn = min(ηmax,max(ηCn , .5τt/‖F (xn)‖)).(6.20)

Exercise 6.5.9 asks the reader to modify nsolgm so that other choices of
the sequence {ηn} can be used.

We use dirder to approximate directional derivatives and use the default
value of h = 10−7. In all the examples in this book we use the value γ = .9 as
recommended in [69].

106 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Algorithm 6.3.1. nsolgm(x, F, τ, η)

1. rc = r0 = ‖F (x)‖2/
√
N

2. Do while ‖F (x)‖2/
√
N > τrr0 + τa

(a) Select η.

(b) fdgmres(s, x, F, η)

(c) x = x+ s

(d) Evaluate F (x)

(e) r+ = ‖F (x)‖2/
√
N, σ = r+/rc, rc = r+

(f) If ‖F (x)‖2 ≤ τrr0 + τa exit.

Note that the cost of an outer iterate is one evaluation of F to compute
the value at the current iterate and other evaluations of F to compute the
forward differences for each inner iterate. Hence if a large value of η can be
used, the cost of the entire iteration can be greatly reduced. If a maximum
of m GMRES iterations is needed (or GMRES(m) is used as a linear solver)
the storage requirements of Algorithm nsolgm are the m+ 5 vectors x, F (x),
x+ hv, F (x+ hv), s, and the Krylov basis {vk}mk=1.

Since GMRES forms the inner iterates and makes termination decisions
based on scalar products and l2 norms, we also terminate the outer iteration on
small l2 norms of the nonlinear residuals. However, because of our applications
to differential and integral equations, we scale the l2 norm of the nonlinear
residual by a factor of 1/

√
N so that constant functions will have norms that

are independent of the computational mesh.
For large and poorly conditioned problems, GMRES will have to be

restarted. We illustrate the consequences of this in § 6.4 and ask the reader to
make the necessary modifications to nsolgm in Exercise 6.5.9.

The preconditioners we use in § 6.4 are independent of the outer iteration.
Since the Newton steps for MF (x) = 0 are the same as those for F (x) = 0, it
is equivalent to precondition the nonlinear equation before calling nsolgm.

6.4. Examples for Newton-GMRES

In this section we consider two examples. We revisit the H-equation and solve
a preconditioned nonlinear convection-diffusion equation.

In all the figures we plot the relative nonlinear residual ‖F (xn)‖2/‖F (x0)‖2
against the number of function evaluations required by all inner and outer
iterations to compute xn. Counts of function evaluations corresponding to
outer iterations are indicated by circles. From these plots one can compare
not only the number of outer iterations, but also the total cost. This enables
us to directly compare the costs of different strategies for selection of η. Note
that if only a single inner iteration is needed, the total cost of the outer iteration
will be two function evaluations since F (xc) will be known. One new function
evaluation will be needed to approximate the action of F ′(xc) on a vector

INEXACT NEWTON METHODS 107

and then F (x+) will be evaluated to test for termination. We also count
the evaluation of F (x0) as an additional cost in the evaluation of x1, which
therefore has a minimum cost of three function evaluations. For each example
we compare a constant value of ηn with the choice given in (6.20) and used as
the default in nsolgm.

6.4.1. Chandrasekhar H-equation. We solve the H-equation on a 100-
point mesh with c = .9 using two schemes for selection of the parameter η.
The initial iterate is the function identically one. We set the parameters in
(6.20) to γ = .9 and ηmax = .25.

We used τr = τa = 10−6 in this example.
In Fig. 6.1 we plot the progress of the iteration using η = .1 with the solid

line and using the sequence given by (6.20) with the dashed line. We set the
parameters in (6.20) to γ = .9 and ηmax = .25. This choice of ηmax was the
one that did best overall in our experiments on this problem.

We see that the constant η iteration terminates after 12 function evalua-
tions, 4 outer iterations, and roughly 275 thousand floating-point operations.
This is a slightly higher overall cost than the other approach in which {ηn} is
given by (6.20), which terminated after 10 function evaluations, 3 outer itera-
tions, and 230 thousand floating-point operations. The chord method with the
different (but very similar for this problem) l∞ termination condition for the
same problem, reported in § 5.6 incurred a cost of 3.3 million floating-point
operations, slower by a factor of over 1000. This cost is entirely a result of the
computation and factorization of a single Jacobian.

0 2 4 6 8 10 12
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 6.1. Newton-GMRES for the H-equation, c = .9.

In Fig. 6.2 the results change for the more ill-conditioned problem with
c = .9999. Here the iteration with ηn = .1 performed slightly better and

108 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

0 5 10 15 20 25
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 6.2. Newton-GMRES for the H-equation, c = .9999

0 2 4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 6.3. Newton-GMRES for the PDE, C = 20.

terminated after 22 function evaluations and 7 outer iterations, and roughly
513 thousand floating-point operations. The iteration with the decreasing {ηn}
given by (6.20) required 23 function evaluations, 7 outer iterations, and 537
thousand floating-point operations.

6.4.2. Convection-diffusion equation. We consider the partial differen-
tial equation

−∇2u+ Cu(ux + uy) = f(6.21)

INEXACT NEWTON METHODS 109

with homogeneous Dirichlet boundary conditions on the unit square (0, 1) ×
(0, 1). f has been constructed so that the exact solution was the discretization
of

10xy(1− x)(1− y) exp(x4.5).

We set C = 20 and u0 = 0. As in § 3.7 we discretized (6.21) on a 31× 31 grid
using centered differences. To be consistent with the second-order accuracy of
the difference scheme we used τr = τa = h2, where h = 1/32.

We compare the same possibilities for {ηn} as in the previous example and
report the results in Fig. 6.3. In (6.20) we set γ = .9 and ηmax = .5. The
computation with constant η terminated after 19 function evaluations and 4
outer iterates at a cost of roughly 3 million floating-point operations. The
iteration with {ηn} given by (6.20) required 16 function evaluations, 4 outer
iterations, and 2.6 million floating-point operations. In the computation we
preconditioned (6.21) with the fast Poisson solver fish2d.

In this case, the choice of {ηn} given by (6.20) reduced the number of inner
iterations in the early stages of the iteration and avoided oversolving. In cases
where the initial iterate is very good and only a single Newton iterate might be
needed, however, a large choice of ηmax or constant η may be the more efficient
choice. Examples of such cases include (1) implicit time integration of nonlinear
parabolic partial differential equations or ordinary differential equations in
which the initial iterate is either the converged solution from the previous
time step or the output of a predictor and (2) solution of problems in which
the initial iterate is an interpolant of the solution from a coarser mesh.

Preconditioning is crucial for good performance. When preconditioning
was not done, the iteration for C = 20 required more than 80 function
evaluations to converge. In Exercise 6.5.9 the reader is asked to explore this.

110 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

6.5. Exercises on inexact Newton methods

6.5.1. Verify (6.8).

6.5.2. Prove Proposition 6.1.1 by showing that if the standard assumptions
hold, 0 < ε < 1, and x is sufficiently near x∗ then

‖F (x)‖/(1 + ε) ≤ ‖F ′(x∗)e‖ ≤ (1 + ε)‖F (x)‖.

6.5.3. Verify (6.14).

6.5.4. Prove Theorems 6.2.2 and 6.2.1.

6.5.5. Prove Theorems 6.1.5 and 6.1.6.

6.5.6. Can anything like Proposition 6.2.1 be proved for a finite-difference Bi-
CGSTAB or TFQMR linear solver? If not, what are some possible
implications?

6.5.7. Give an example in which F (xn) → 0 q-linearly but xn does not converge
to x∗ q-linearly.

6.5.8. In the DASPK code for integration of differential algebraic equations,
[23], preconditioned Newton-GMRES is implemented in such a way
that the data needed for the preconditioner is only computed when
needed, which may be less often that with each outer iteration. Discuss
this strategy and when it might be useful. Is there a relation to the
Shamanskii method?

6.5.9. Duplicate the results in § 6.4. For the H-equation experiment with
various values of c, such as c = .5, .99999, .999999, and for the convection-
diffusion equation various values of C such as C = 1, 10, 40 and how
preconditioning affects the iteration. Experiment with the sequence of
forcing terms {ηn}. How do the choices ηn = 1/(n + 1), ηn = 10−4

[32], ηn = 21−n [24], ηn = min(‖F (xn)‖2, (n + 2)−1) [56], ηn = .05, and
ηn = .75 affect the results? Present the results of your experiments as
graphical iteration histories.

6.5.10. For the H-equation example in § 6.4, vary the parameter c and see how
the performance of Newton-GMRES with the various choices of {ηn} is
affected. What happens when c = 1? See [119] for an explanation of
this.

6.5.11. Are the converged solutions for the preconditioned and unpreconditioned
convection-diffusion example in § 6.4 equally accurate?

6.5.12. For the convection-diffusion example in § 6.4, how is the performance
affected if GMRES(m) is used instead of GMRES?

INEXACT NEWTON METHODS 111

6.5.13. Apply Newton-CGNR, Newton-Bi-CGSTAB, or Newton-TFQMR to the
two examples in § 6.4. How will you deal with the need for a transpose in
the case of CGNR? How does the performance (in terms of time, floating-
point operations, function evaluations) compare to Newton-GMRES?
Experiment with the forcing terms. The MATLAB codes fdkrylov,
which allows you to choose from a variety of forward difference Krylov
methods, and nsola, which we describe more fully in Chapter 8, might
be of use in this exercise.

6.5.14. If you have done Exercise 5.7.25, apply nsolgm to the same two-point
boundary value problem and compare the performance.

112 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Chapter 7

Broyden’s method

Quasi-Newton methods maintain approximations of the solution x∗ and the
Jacobian at the solution F ′(x∗) as the iteration progresses. If xc and Bc are
the current approximate solution and Jacobian, then

x+ = xc −B−1
c F (xc).(7.1)

After the computation of x+, Bc is updated to form B+. The construction of
B+ determines the quasi-Newton method.

The advantages of such methods, as we shall see in § 7.3, is that solution of
equations with the quasi-Newton approximation to the Jacobian is often much
cheaper than using F ′(xn) as the coefficient matrix. In fact, if the Jacobian is
dense, the cost is little more than that of the chord method. The method we
present in this chapter, Broyden’s method, is locally superlinearly convergent,
and hence is a very powerful alternative to Newton’s method or the chord
method.

In comparison with Newton-iterative methods, quasi-Newton methods
require only one function evaluation for each nonlinear iterate; there is no cost
in function evaluations associated with an inner iteration. Hence, if a good
preconditioner (initial approximation to F ′(x∗)) can be found, these methods
could have an advantage in terms of function evaluation cost over Newton-
iterative methods.

Broyden’s method [26] computes B+ by

B+ = Bc +
(y −Bcs)s

T

sT s
= Bc +

F (x+)s
T

sT s
.(7.2)

In (7.2) y = F (x+)− F (xc) and s = x+ − xc.
Broyden’s method is an example of a secant update. This means that the

updated approximation to F ′(x∗) satisfies the secant equation

B+s = y.(7.3)

In one dimension, (7.3) uniquely specifies the classical secant method. For
equations in several variables (7.3) alone is a system of N equations in N2

113

114 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

unknowns. The role of the secant equation is very deep. See [62] and [64] for
discussion of this topic. In this book we focus on Broyden’s method and our
methods of analysis are not as general as those in [62] and [64]. In this chapter
we will assume that the function values are accurate and refer the reader to [66],
[65], and [114] for discussions of quasi-Newton methods with inaccurate data.
Locally superlinearly convergent secant methods can be designed to maintain
the sparsity pattern, symmetry, or positive definiteness, of the approximate
Jacobian, and we refer the reader to [28], [63], [62], and [64] for discussion and
analysis of several such methods. More subtle structural properties can also
be preserved by secant methods. Some examples can be found in [101], [96],
[95], [113], and [116].

Broyden’s method is also applicable to linear equations [29], [82], [84],
[104], [143], [130], Ax = b, where B ≈ A is updated. One can also apply the
method to linear least squares problems [84], [104]. The analysis is somewhat
clearer in the linear case and the plan of this chapter is to present results for
the linear case for both the theory and the examples. One interesting result,
which we will not discuss further, is that for linear problems Broyden’s method
converges in 2N iterations [29], [82], [84], [143].

We will express our results in terms of the error in the Jacobian

E = B − F ′(x∗)(7.4)

and the step s = x+−xc. While we could use E = B−F ′(x), (7.4) is consistent
with our use of e = x − x∗. When indexing of the steps is necessary, we will
write

sn = xn+1 − xn.

In this chapter we show that if the data x0 and B0 are sufficiently good,
the Broyden iteration will converge q-superlinearly to the root.

7.1. The Dennis–Moré condition

In this section we consider general iterative methods of the form

xn+1 = xn −B−1
n F (xn)(7.5)

where Bn = F ′(x∗)+En ≈ F ′(x∗) is generated by some method (not necessarily
Broyden’s method).

Verification of q-superlinear convergence cannot be done by the direct
approaches used in Chapters 5 and 6. We must relate the superlinear
convergence condition that ηn → 0 in Theorem 6.1.2 to a more subtle, but
easier to verify condition in order to analyze Broyden’s method. This technique
is based on verification of the Dennis–Moré condition [61], [60] on the sequence
of steps {sn} and errors in the Jacobian {En}

lim
n→∞

‖Ensn‖
‖sn‖ = 0.(7.6)

BROYDEN’S METHOD 115

The main result in this section, Theorem 7.1.1 and its corollary for linear
problems, are used to prove superlinear convergence for Broyden’s method in
this chapter and many other quasi-Newton methods. See [61], [28], [62], and
[64] for several more examples. Our formulation of the Dennis–Moré result is
a bit less general than that in [60] or [63].

Theorem 7.1.1. Let the standard assumptions hold, let {Bn} be a sequence
of nonsingular N ×N matrices, let x0 ∈ RN be given and let {xn}∞n=1 be given
by (7.5). Assume that xn �= x∗ for any n. Then xn → x∗ q-superlinearly if
and only if xn → x∗ and the Dennis–Moré condition (7.6) holds.

Proof. Since

−F (xn) = Bnsn = F ′(x∗)sn + Ensn

we have

Ensn = −F ′(x∗)sn − F (xn) = −F ′(x∗)en+1 + F ′(x∗)en − F (xn).(7.7)

We use the fundamental theorem of calculus and the standard assumptions to
obtain

F ′(x∗)en − F (xn) =

∫ 1

0
(F ′(x∗)− F ′(x∗ + ten))en dt

and hence

‖F ′(x∗)en − F (xn)‖ ≤ γ‖en‖2/2.
Therefore, by (7.7)

‖Ensn‖ ≤ ‖F ′(x∗)en+1‖+ γ‖en‖2/2.(7.8)

Now, if xn → x∗ q-superlinearly, then for n sufficiently large

‖sn‖/2 ≤ ‖en‖ ≤ 2‖sn‖.(7.9)

The assumption that xn �= x∗ for any n implies that the sequence

νn = ‖en+1‖/‖en‖(7.10)

is defined and and νn → 0 by superlinear convergence of {xn}. By (7.9) we
have

‖en+1‖ = νn‖en‖ ≤ 2νn‖sn‖,
and hence (7.8) implies that

‖Ensn‖ ≤ (2‖F ′(x∗)‖νn + γ‖en‖)‖sn‖

which implies the Dennis-Moré condition (7.6).
Conversely, assume that xn → x∗ and that (7.6) holds. Let

µn =
‖Ensn‖
‖sn‖ .

116 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

We have, since

Ensn = (Bn − F ′(x∗))sn = −F (xn)− F ′(x∗)sn,(7.11)

‖sn‖‖F ′(x∗)−1‖−1 ≤ ‖F ′(x∗)sn‖ ≤ ‖Ensn‖+ ‖F (xn)‖

= µn‖sn‖+ ‖F (xn)‖.
(7.12)

Since µn → 0 by assumption,

µn ≤ ‖F ′(x∗)−1‖−1/2,(7.13)

for n sufficiently large. We assume now that n is large enough so that (7.13)
holds. Hence,

‖sn‖ ≤ 2‖F ′(x∗)−1‖‖F (xn)‖.(7.14)

Moreover, using the standard assumptions and (7.11) again,

‖F (xn) + F ′(xn)sn‖ ≤ ‖F (xn) + F ′(x∗)sn‖+ ‖(F ′(x∗)− F ′(xn))sn‖

≤ (µn + γ‖en‖)‖sn‖.
(7.15)

Since xn → x∗ by assumption, ηn → 0 where

ηn = 2‖F ′(x∗)−1‖(µn + γ‖en‖).
Combining (7.14) and (7.15) implies that

‖F (xn) + F ′(xn)sn‖ ≤ ηn‖F (xn)‖,(7.16)

which is the inexact Newton condition. Since ηn → 0, the proof is complete
by Theorem 6.1.2.

7.2. Convergence analysis

Our convergence analysis is based on an approach to infinite-dimensional
problems from [97]. That paper was the basis for [168], [104], and [115], and
we employ notation from all four of these references. We will use the l2 norm
throughout our discussion. We begin with a lemma from [104].

Lemma 7.2.1. Let 0 < θ̂ < 1 and let

{θn}∞n=0 ⊂ (θ̂, 2− θ̂).

Let {εn}∞n=0 ⊂ RN be such that∑
n

‖εn‖2 < ∞,

and let {ηn}∞n=0 be a set of vectors in RN such that ‖ηn‖2 is either 1 or 0 for
all n. Let ψ0 ∈ RN be given. If {ψn}∞n=1 is given by

ψn+1 = ψn − θn(η
T
nψn)ηn + εn(7.17)

then
lim
n→∞ ηTnψn = 0.(7.18)

BROYDEN’S METHOD 117

Proof. We first consider the case in which εn = 0 for all n. In that case, we
can use the fact that

θn(2− θn) > θ̂2 > 0

to show that the sequence {ψn} is bounded in l2-norm by ‖ψ0‖2 and, in fact,

‖ψn+1‖22 ≤ ‖ψn‖22 − θn(2− θn)(η
T
nψn)

2

≤ ‖ψn‖22 − θ̂2(ηTnψn)
2

≤ ‖ψn‖22.
Therefore, for any M > 0,

M∑
n=0

(ηTnψn)
2 ≤ ‖ψ0‖22 − ‖ψM+1‖22

θ̂2
≤ ‖ψ0‖2

θ̂2
.

We let M → ∞ to obtain

∞∑
n=0

(ηTnψn)
2 < ∞.(7.19)

Convergence of the series in (7.19) implies convergence to zero of the terms in
the series, which is (7.18).

To prove the result for εn �= 0 we use the inequality

√
a2 − b2 ≤ a− b2

2a
,(7.20)

which is valid for a > 0 and |b| ≤ a. This inequality is used often in the analysis
of quasi-Newton methods [63]. From (7.20) we conclude that if ψn �= 0 then

‖ψn − θn(η
T
nψn)ηn‖2 ≤

√
‖ψn‖22 − θn(2− θn)(ηTnψn)

2

≤ ‖ψn‖2 − θn(2− θn)(η
T
nψn)

2

2‖ψn‖2 .

Hence if ψn �= 0

‖ψn+1‖2 ≤ ‖ψn‖2 − θn(2− θn)(η
T
nψn)

2

2‖ψn‖2 + ‖εn‖2.(7.21)

Hence

(ηTnψn)
2 ≤ 2‖ψn‖2

θn(2− θn)
(‖ψn‖2 − ‖ψn+1‖2 + ‖εn‖2),(7.22)

which holds even if ψn = 0.
From (7.21) we conclude that

‖ψn+1‖2 ≤ µ,

118 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

where

µ =
∞∑
i=0

‖εi‖2 + ‖ψ0‖2.

Hence

∑M
n=0(η

T
nψn)

2 ≤ 2µ

θ̂2

M∑
n=0

(‖ψn‖2 − ‖ψn+1‖2 + ‖εn‖2)

=
2µ

θ̂2

(
‖ψ0‖2 − ‖ψM+1‖2 +

M∑
n=0

‖εn‖2
)

≤ 2µ2

θ̂2
.

Hence (7.19) holds and the proof is complete.

7.2.1. Linear problems. We may use Lemma 7.2.1 to prove a result from
[130] on the convergence of Broyden’s method for linear problems. The role of
the parameter θ̂ and the sequence {θn} in Lemma 7.2.1 is nicely illustrated by
this application of the lemma.

In this section F (x) = Ax−b and Bn = A+En. The standard assumptions
in this case reduce to nonsingularity of A. Our first task is to show that
the errors in the Broyden approximations to A do not grow. This property,
called bounded deterioration [28], is an important part of the convergence
analysis. The reader should compare the statement of the result with that
in the nonlinear case.

In the linear case, the Broyden update has a very simple form. We will
consider a modified update

B+ = Bc + θc
(y −Bcs)s

T

sT s
= Bc + θc

(Ax+ − b)sT

sT s
.(7.23)

If xc and Bc are the current approximations to x∗ = A−1b and A and
s = x+ − xc then

y −Bcs = (Ax+ −Axc)−Bc(x+ − xc) = −Ecs

and therefore

B+ = Bc + θc
(y −Bcs)s

T

‖s‖22
= Bc − θc

(Ecs)s
T

‖s‖22
.(7.24)

Lemma 7.2.2. Let A be nonsingular, θc ∈ [0, 2], and xc ∈ RN be given. Let
Bc be nonsingular and let B+ be formed by the Broyden update (7.23). Then

‖E+‖2 ≤ ‖Ec‖2.(7.25)

BROYDEN’S METHOD 119

Proof. By subtracting A from both sides of (7.24) we have

E+ = Ec − θc
(Ecs)s

T

‖s‖22
= Ec(I − θcPs),

(7.26)

where Ps is the orthogonal projector

Ps =
ssT

‖s‖22
.(7.27)

This completes the proof as

‖E+‖2 ≤ ‖Ec‖2‖I − θcPs‖2
and ‖I − θcPs‖2 ≤ 1 by orthogonality of Ps and the fact that 0 ≤ θc ≤ 2.

Now, θc can always be selected to make B+ nonsingular. In [130] one
suggestion was

θc =




1, |γc| ≥ σ,
1− sign(γc)σ

1− γc
, otherwise,

where

γc =
(B−1
c y)T s

‖s‖22
=

(B−1
c As)T s

‖s‖22
and σ ∈ (0, 1) is fixed. However the results in [130] assume only that the
sequence {θn} satisfies the hypotheses of Lemma 7.2.1 for some θ̂ ∈ (0, 1) and
that θc is always chosen so that B+ is nonsingular.

For linear problems one can show that the Dennis–Moré condition implies
convergence and hence the assumption that convergence takes place is not
needed. Specifically

Proposition 7.2.1. Let A be nonsingular. Assume that {θn} satisfies
the hypotheses of Lemma 7.2.1 for some θ̂ ∈ (0, 1). If {θn} is such that
the matrices Bn obtained by (7.23) are nonsingular and {xn} is given by the
modified Broyden iteration

xn+1 = xn −B−1
n (Axn − b)(7.28)

then the Dennis–Moré condition implies convergence of {xn} to x∗ = A−1b.
We leave the proof as Exercise 7.5.1.
The superlinear convergence result is remarkable in that the initial iterate

need not be near the root.
Theorem 7.2.1. Let A be nonsingular. Assume that {θn} satisfies the

hypotheses of Lemma 7.2.1 for some θ̂ ∈ (0, 1). If {θn} is such the matrices Bn
obtained by (7.23) are nonsingular then the modified Broyden iteration (7.28)
converges q-superlinearly to x∗ = A−1b for every initial iterate x0.

120 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Proof. Our approach is to show that for every φ ∈ RN that

lim
n→∞φT

(
Ensn
‖sn‖2

)
= 0.(7.29)

Assuming that (7.29) holds, setting φ = ej , the unit vector in the jth

coordinate direction, shows that the j component of
Ensn
‖sn‖2 has limit zero.

As j was arbitrary, we have

lim
n→∞

Ensn
‖sn‖2 = 0

which is the Dennis–Moré condition. This will imply q-superlinear convergence
by Theorem 7.1.1 and Proposition 7.2.1.

Let φ ∈ RN be given. Let

Pn =
sns
T
n

‖sn‖22
.

Since for all v ∈ RN and all n

vT (ETn φ) = φT (Env)

and, by (7.26)
ETn+1φ = (I − θnPn)E

T
n φ,

we may invoke Lemma 7.2.1 with

ηn = sn/‖sn‖2, ψn = ETn φ, and εn = 0

to conclude that

ηTnψn =
(ETn φ)

T sn
‖sn‖2 = φT

Ensn
‖sn‖2 → 0.(7.30)

This completes the proof.
The result here is not a local convergence result. It is global in the sense

that q-superlinear convergence takes place independently of the initial choices
of x and B. It is known [29], [82], [84], [143], that the Broyden iteration will
terminate in 2N steps in the linear case.

7.2.2. Nonlinear problems. Our analysis of the nonlinear case is different
from the classical work [28], [63]. As indicated in the preface, we provide a
proof based on ideas from [97], [115], and [104], that does not use the Frobenius
norm and extends to various infinite-dimensional settings.

For nonlinear problems our analysis is local and we set θn = 1. However
we must show that the sequence {Bn} of Broyden updates exists and remains
nonsingular. We make a definition that allows us to compactly express this
fact.

Definition 7.2.1. We say that the Broyden sequence ({xn}, {Bn}) for the
data (F, x0, B0) exists if F is defined at xn for all n, Bn is nonsingular for all
n, and xn+1 and Bn+1 can be computed from xn and Bn using (7.1) and (7.2).

BROYDEN’S METHOD 121

We will show that if the standard assumptions hold and x0 and B0 are
sufficiently good approximations to x∗ and F ′(x∗) then the Broyden sequence
exists for the data (F, x0, B0) and that the Broyden iterates converge q-
superlinearly to x∗. The development of the proof is complicated. We first
prove a bounded deterioration result like Lemma 7.2.2. However in the
nonlinear case, the errors in the Jacobian approximation can grow as the
iteration progresses. We then show that if the initial data is sufficiently good,
this growth can be limited and therefore the Broyden sequence exists and
the Broyden iterates converges to x∗ at least q-linearly. Finally we verify the
Dennis–Moré condition (7.6), which, together with the q-linear convergence
proved earlier completes the proof of local q-superlinear convergence.

Bounded deterioration. Our first task is to show that bounded deteriora-
tion holds. Unlike the linear case, the sequence {‖En‖} need not be monotone
non-increasing. However, the possible increase can be bounded in terms of the
errors in the current and new iterates.

Theorem 7.2.2. Let the standard assumptions hold. Let xc ∈ Ω and a
nonsingular matrix Bc be given. Assume that

x+ = xc −B−1
c F (xc) = xc + s ∈ Ω

and B+ is given by (7.2). Then

‖E+‖2 ≤ ‖Ec‖+ γ(‖ec‖2 + ‖e+‖2)/2(7.31)

Proof. Note that (7.7) implies that

Ecs = −F (x+) + (F (x+)− F (xc)− F ′(x∗)s)

= −F (x+) +

∫ 1

0
(F ′(xc + ts)− F ′(x∗))s dt.

(7.32)

We begin by writing (7.32) as

F (x+) = −Ecs+

∫ 1

0
(F ′(xc + ts)− F ′(x∗))s dt

and then using (7.2) to obtain

E+ = Ec(I − Ps) +
(∆cs)s

T

‖s‖22
where Ps is is given by (7.27) and

∆c =

∫ 1

0
(F ′(xc + ts)− F ′(x∗)) dt.

122 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Hence, by the standard assumptions

‖∆c‖2 ≤ γ(‖ec‖2 + ‖e+‖2)/2.
Just as in the proof of Lemma 7.2.2 for the linear case

‖E+‖2 ≤ ‖Ec‖2 + ‖∆c‖2
and the proof is complete.

Local q-linear convergence. Theorem 7.2.3 states that Broyden’s method
is locally q-linearly convergent. The proof is more complex than similar results
in Chapters 5 and 6. We must explore the relation between the size of ‖E0‖
needed to enforce q-linear convergence and the q-factor.

Theorem 7.2.3. Let the standard assumptions hold. Let r ∈ (0, 1) be
given. Then there are δ and δB such that if x0 ∈ B(δ) and ‖E0‖2 < δB the
Broyden sequence for the data (F, x0, B0) exists and xn → x∗ q-linearly with
q-factor at most r.

Proof. Let δ and δ1 be small enough so that the conclusions of Theo-
rem 5.4.3 hold. Then, reducing δ and δ1 further if needed, the q-factor is at
most

KA(δ + δ1) ≤ r,

where KA is from the statement of Theorem 5.4.3.
We will prove the result by choosing δB and reducing δ if necessary so that

‖E0‖2 ≤ δB will imply that ‖En‖2 ≤ δ1 for all n, which will prove the result.
To do this reduce δ if needed so that

δ2 =
γ(1 + r)δ

2(1− r)
< δ1(7.33)

and set
δB = δ1 − δ2.(7.34)

We show that ‖En‖2 ≤ δ1 by induction. Since ‖E0‖2 < δB < δ1 we may
begin the induction. Now assume that ‖Ek‖2 < δ1 for all 0 ≤ k ≤ n. By
Theorem 7.2.2,

‖En+1‖2 ≤ ‖En‖2 + γ(‖en+1‖2 + ‖en‖2)/2.
Since ‖En‖2 < δ1, ‖en+1‖2 ≤ r‖en‖2 and therefore

‖En+1‖2 ≤ ‖En‖2 + γ(1 + r)‖en‖2/2 ≤ ‖En‖2 + γ(1 + r)rnδ/2.

We can estimate ‖En‖2, ‖En−1‖2, . . . in the same way to obtain

‖En+1‖2 ≤ ‖E0‖2 + (1 + r)γδ

2

n∑
j=0

rj

≤ δB +
(1 + r)γδ

2(1− r)
≤ δ1,

which completes the proof.

BROYDEN’S METHOD 123

Verification of the Dennis–Moré condition. The final task is to verify
the Dennis–Moré condition.

Theorem 7.2.4. Let the standard assumptions hold. Then there are δ and
δB such that if x0 ∈ B(δ) and ‖E0‖2 < δB the Broyden sequence for the data
(F, x0, B0) exists and xn → x∗ q-superlinearly.

Proof. Let δ and δB be such that the conclusions of Theorem 7.2.3 hold.
By Theorem 7.1.1 we need only show that Dennis–Moré condition (7.6) holds
to complete the proof.

As in the proof of Theorem 7.2.1 let

Pn =
sns
T
n

‖sn‖22
.

Set

∆n =

∫ 1

0
(F ′(xn + tsn)− F ′(x∗)) dt.

Let φ ∈ RN be arbitrary. Note that

ETn+1φ = (I − Pn)E
T
n φ+ Pn∆

T
nφ.

We wish to apply Lemma 7.2.1 with

ψn = ETn φ, ηn = sn/‖sn‖2, and εn = Pn∆
T
nφ.

The hypothesis in the lemma that∑
n

‖εn‖2 < ∞

holds since Theorem 7.2.3 and the standard assumptions imply

‖∆n‖2 ≤ γ(1 + r)rnδ/2.

Hence Lemma 7.2.1 implies that

ηTnψn =
(ETn φ)

T sn
‖sn‖2 = φT

Ensn
‖sn‖2 → 0.

This, as in the proof of Theorem 7.2.1, implies the Dennis–Moré condition and
completes the proof.

7.3. Implementation of Broyden’s method

The implementation of Broyden’s method that we advocate here is related
to one that has been used in computational fluid mechanics [73]. Some
such methods are called limited memory formulations in the optimization
literature [138], [142], [31]. In these methods, after the storage available for
the iteration is exhausted, the oldest of the stored vectors is replaced by the
most recent. Another approach, restarting, clears the storage and starts over.

124 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

This latter approach is similar to the restarted GMRES iteration. Our basic
implementation is a nonlinear version of the implementation for linear problems
in [67]. We use a restarted approach, though a limited memory approach could
be used as well.

We begin by showing how the initial approximation to F ′(x∗), B0, may be
regarded as a preconditioner and incorporated into the defintion of F just as
preconditioners were in the implementation of Newton-GMRES in § 6.4.

Lemma 7.3.1. Assume that the Broyden sequence ({xn}, {Bn}) for the data
(F, x0, B0) exists. Then the Broyden sequence ({yn}, {Cn}) exists for the data
(B−1

0 F, x0, I) and
xn = yn, Bn = B0Cn(7.35)

for all n.
Proof. We proceed by induction. Equation (7.35) holds by definition when

n = 0. If (7.35) holds for a given n, then

yn+1 = yn − C−1
n B−1

0 F (yn)

= xn − (B0Cn)
−1F (xn) = xn −B−1

n F (xn)

= xn+1.

(7.36)

Now sn = xn+1 − xn = yn+1 − yn by (7.36). Hence

Bn+1 = Bn +
F (xn+1)s

T
n

‖sn‖22

= B0Cn +B0
B−1
0 F (yn+1)s

T
n

‖sn‖22
= B0Cn+1.

This completes the proof.
The consequence of this proof for implementation is that we can assume

that B0 = I. If a better choice for B0 exists, we can incorporate that into the
function evaluation. Our plan will be to store B−1

n in a compact and easy to
apply form. The basis for this is the following simple formula [68], [176], [177],
[11].

Proposition 7.3.1. Let B be a nonsingular N × N matrix and let
u, v ∈ RN . Then B + uvT is invertible if and only if 1 + vTB−1u �= 0. In
this case,

(B + uvT)−1 =

(
I − (B−1u)vT

1 + vTB−1u

)
B−1.(7.37)

The expression (7.37) is called the Sherman–Morrison formula. We leave
the proof to Exercise 7.5.2.

In the context of a sequence of Broyden updates {Bn} we have for n ≥ 0,

Bn+1 = Bn + unv
T
n ,

BROYDEN’S METHOD 125

where

un = F (xn+1)/‖sn‖2 and vn = sn/‖sn‖2.
Setting

wn = (B−1
n un)/(1 + vTnB

−1
n un)

we see that, if B0 = I,

B−1
n = (I − wn−1v

T
n−1)(I − wn−2v

T
n−2) . . . (I − w0v

T
0)

=
∏n−1

j=0
(I − wjv

T
j).

(7.38)

Since the empty matrix product is the identity, (7.38) is valid for n ≥ 0.
Hence the action of B−1

n on F (xn) (i.e., the computation of the Broyden
step) can be computed from the 2n vectors {wj , vj}n−1

j=0 at a cost of O(Nn)
floating-point operations. Moreover, the Broyden step for the following
iteration is

sn = −B−1
n F (xn) = −

∏n−1

j=0
(I − wjv

T
j)F (xn).(7.39)

Since the product ∏n−2

j=0
(I − wjv

T
j)F (xn)

must also be computed as part of the computation of wn−1 we can combine
the computation of wn−1 and sn as follows:

w =
∏n−2

j=0
(I − wjv

T
j)F (xn)

wn−1 = Cww where Cw = (‖sn−1‖2 + vTn−1w)
−1

sn = −(I − wn−1v
T
n−1)w.

(7.40)

One may carry this one important step further [67] and eliminate the need
to store the sequence {wn}. Note that (7.40) implies that for n ≥ 1

sn = −w + Cww(v
T
n−1w) = w(−1 + Cw(C

−1
w − ‖sn−1‖2))

= −Cww‖sn−1‖2 = −‖sn−1‖2wn−1.

Hence, for n ≥ 0,

wn = −sn+1/‖sn‖2.(7.41)

Therefore, one need only store the steps {sn} and their norms to construct
the sequence {wn}. In fact, we can write (7.38) as

B−1
n =

∏n−1

j=0

(
I +

sj+1s
T
j

‖sj‖22

)
.(7.42)

126 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

We cannot use (7.42) and (7.39) directly to compute sn+1 because sn+1 appears
on both sides of the equation

sn+1 = −
(
I +

sn+1s
T
n

‖sn‖22

)∏n−1

j=0

(
I +

sj+1s
T
j

‖sj‖22

)
F (xn+1)

= −
(
I +

sn+1s
T
n

‖sn‖22

)
B−1
n F (xn+1).

(7.43)

Instead, we solve (7.43) for sn+1 to obtain

sn+1 = − B−1
n F (xn+1)

1 + sTnB
−1
n F (xn+1)/‖sn‖22

.(7.44)

By Proposition 7.3.1, the denominator in (7.44)

1 + sTnB
−1
n F (xn+1)/‖sn‖22 = 1 + vTnB

−1
n un

is nonzero unless Bn+1 is singular.
The storage requirement, of n+O(1) vectors for the nth iterate, is of the

same order as GMRES, making Broyden’s method competitive in storage with
GMRES as a linear solver [67]. Our implementation is similar to GMRES(m),
restarting with B0 when storage is exhausted.

We can use (7.42) and (7.44) to describe an algorithm. The termination
criteria are the same as for Algorithm nsol in § 5.6. We use a restarting
approach in the algorithm, adding to the input list a limit nmax on the number
of Broyden iterations taken before a restart and a limit maxit on the number
of nonlinear iterations. Note that B0 = I is implicit in the algorithm. Our
looping convention is that the loop in step 2(e)ii is skipped if n = 0; this is
consistent with setting the empty matrix product to the identity. Our notation
and algorithmic framework are based on [67].

Algorithm 7.3.1. brsol(x, F, τ,maxit, nmax)
1. r0 = ‖F (x)‖2, n = −1,

s0 = −F (x), itc = 0.

2. Do while itc < maxit

(a) n = n+ 1; itc = itc+ 1

(b) x = x+ sn

(c) Evaluate F (x)

(d) If ‖F (x)‖2 ≤ τrr0 + τa exit.

(e) if n < nmax then

i. z = −F (x)

ii. for j = 0, n− 1
z = z + sj+1s

T
j z/‖sj‖22

BROYDEN’S METHOD 127

iii. sn+1 = z/(1− sTnz/‖sn‖22)
(f) if n = nmax then

n = −1; s = −F (x);

If n < nmax, then the nth iteration of brsol, which computes xn and
sn+1, requires O(nN) floating-point operations and storage of n + 3 vectors,
the steps {sj}nj=0, x, z, and F (x), where z and F (x) may occupy the same
storage location. This requirement of one more vector than the algorithm
in [67] needed is a result of the nonlinearity. If n = nmax, the iteration
will restart with xnmax, not compute snmax+1, and therefore need storage for
nmax+2 vectors. Our implementation of brsol in the collection of MATLAB
codes stores z and F separately in the interest of clarity and therefore requires
nmax+ 3 vectors of storage.

The Sherman–Morrison approach in Algorithm brsol is more efficient, in
terms of both time and storage, than the dense matrix approach proposed
in [85]. However the dense matrix approach makes it possible to detect
ill conditioning in the approximate Jacobians. If the data is sufficiently
good, bounded deterioration implies that the Broyden matrices will be well
conditioned and superlinear convergence implies that only a few iterates will
be needed. In view of all this, we feel that the approach of Algorithm brsol

is the best approach, especially for large problems.
A MATLAB implementation of brsol is provided in the collection of

MATLAB codes.

7.4. Examples for Broyden’s method

In all the examples in this section we use the l2 norm multiplied by 1/
√
N .

We use the MATLAB code brsol.

7.4.1. Linear problems. The theory in this chapter indicates that Broy-
den’s method can be viewed as an alternative to GMRES as an iterative method
for nonsymmetric linear equations. This point has been explored in some detail
in [67], where more elaborate numerical experiments that those given here are
presented, and in several papers on infinite-dimensional problems as well [91],
[104], [120]. As an example we consider the linear PDE (3.33) from § 3.7. We
use the same mesh, right-hand side, coefficients, and solution as the example
in § 3.7.

We compare Broyden’s method without restarts (solid line) to Broyden’s
method with restarts every three iterates (dashed line). For linear problems,
we allow for increases in the nonlinear residual. We set τa = τr = h2 where
h = 1/32. In Fig. 7.1 we present results for (3.33) preconditioned with the
Poisson solver fish2d.

Broyden’s method terminated after 9 iterations at a cost of roughly 1.5
million floating point operations, a slightly higher cost than the GMRES
solution. The restarted iteration required 24 iterations and 3.5 million floating
point operations. One can also see highly irregular performance from the

128 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

restarted method.
In the linear case [67] one can store only the residuals and recover the

terminal iterate upon exit. Storage of the residual, the vector z, and the
sequence of steps saves a vector over the nonlinear case.

0 5 10 15 20 25
10

-3

10
-2

10
-1

10
0

10
1

Iterations

R
el

at
iv

e
R

es
id

ua
l

Fig. 7.1. Broyden’s method for the linear PDE.

7.4.2. Nonlinear problems. We consider the H-equation from Chapters 5
and 6 and a nonlinear elliptic partial differential equation. Broyden’s method
and Newton-GMRES both require more storage as iterations progress, Newton-
GMRES as the inner iteration progresses and Broyden’s method as the outer
iteration progresses. The cost in function evaluations for Broyden’s method is
one for each nonlinear iteration and for Newton-GMRES one for each outer
iteration and one for each inner iteration. Hence, if function evaluations are
very expensive, the cost of a solution by Broyden’s method could be much less
than that of one by Newton-GMRES. If storage is at a premium, however,
and the number of nonlinear iterations is large, Broyden’s method could be at
a disadvantage as it might need to be restarted many times. The examples
in this section, as well as those in § 8.4 illustrate the differences in the two
methods. Our general recommendation is to try both.

Chandrasekhar H-equation. As before we solve the H-equation on a 100-
point mesh with c = .9 (Fig. 7.2) and c = .9999 (Fig. 7.3). We compare
Broyden’s method without restarts (solid line) to Broyden’s method with
restarts every three iterates (dashed line). For c = .9 both methods required six
iterations for convergence. The implementation without restarts required 153
thousand floating-point operations and the restarted method 150, a substantial
improvement over the Newton-GMRES implementation.

BROYDEN’S METHOD 129

For c = .9999, the restarted iteration has much more trouble. The un-
restarted iteration converges in 10 iterations at a cost of roughly 249 thousand
floating-point operations. The restarted iteration requires 18 iterations and
407 floating-point operations. Even so, both implementations performed bet-
ter than Newton-GMRES.

0 1 2 3 4 5 6
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 7.2. Broyden’s method for the H-equation, c = .9.

0 2 4 6 8 10 12 14 16 18
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 7.3. Broyden’s method for the H-equation, c = .9999.

One should take some care in drawing general conclusions. While Broyden’s
method on this example performed better than Newton-GMRES, the storage
in Newton-GMRES is used in the inner iteration, while that in Broyden in the
nonlinear iteration. If many nonlinear iterations are needed, it may be the case

130 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

that Broyden’s method may need restarts while the GMRES iteration for the
linear problem for the Newton step may not.

Convection-diffusion equation. We consider the nonlinear convection-
diffusion equation from § 6.4.2. We use the same mesh width h = 1/32 on
a uniform square grid. We set C = 20, u0 = 0, and τr = τa = h2. We
preconditioned with the Poisson solver fish2d.

We allowed for an increase in the residual, which happened on the second
iterate. This is not supported by the local convergence theory for nonlinear
problems; however it can be quite successful in practice. One can do this in
brsol by setting the third entry in the parameter list to 1, as one would if the
problem were truly linear. In § 8.4.3 we will return to this example.

In Fig. 7.4 we compare Broyden’s method without restarts (solid line) to
Broyden’s method with restarts every 8 iterates (dashed line). The unrestarted
Broyden iteration converges in 12 iterations at a cost of roughly 2.2 million
floating-point operations. This is a modest improvement over the Newton-
GMRES cost (reported in § 6.4.2) of 2.6 million floating-point operations.
However, the residual norms do not monotonically decrease in the Broyden
iteration (we fix this in § 8.3.2) and more storage was used.

0 2 4 6 8 10 12 14 16
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Iterations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 7.4. Broyden’s method for nonlinear PDE.

At most five inner GMRES iterations were required. Therefore the GMRES
inner iteration for the Newton-GMRES approach needed storage for at most
10 vectors (the Krylov basis, s, xc, F (xc), F (xc + hv)) to accommodate the
Newton-GMRES iteration. The Broyden iteration when restarted every n
iterates, requires storage of n+2 vectors {sj}n−1

j=0 , x, and z (when stored in the
same place as F (x)). Hence restarting the Broyden iteration every 8 iterations
most closely corresponds to the Newton-GMRES requirements. This approach

BROYDEN’S METHOD 131

took 15 iterations to terminate at a cost of 2.4 million floating-point operations,
but the convergence was extremely irregular after the restart.

132 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

7.5. Exercises on Broyden’s method

7.5.1. Prove Proposition 7.2.1.

7.5.2. Prove Proposition 7.3.1.

7.5.3. Extend Proposition 7.3.1 by showing that if A is a nonsingular N × N
matrix, U is N × M , V is M × N , then A + UV is nonsingular if and
only if I + V A−1U is a nonsingular M ×M matrix. If this is the case,
then

(A+ UV)−1 = A−1 −A−1U(I + V A−1U)−1V A−1.

This is the Sherman–Morrison–Woodbury formula [68], [199]. See [102]
for further generalizations.

7.5.4. Duplicate the results reported in § 7.4. Vary the parameters in the
equations and the number of vectors stored by Broyden’s method and
report on their effects on performance. What happens in the differential
equation examples if preconditioning is omitted?

7.5.5. Solve the H-equation with Broyden’s method and c = 1. Set τa = τr =
10−8. What q-factor for linear convergence do you see? Can you account
for this by applying the secant method to the equation x2 = 0? See [53]
for a complete explanation.

7.5.6. Try to solve the nonlinear convection-diffusion equation in § 6.4 with
Broyden’s method using various values for the parameter C. How does
the performance of Broyden’s method differ from Newton-GMRES?

7.5.7. Modify nsol to use Broyden’s method instead of the chord method after
the initial Jacobian evaluation. How does this compare with nsol on the
examples in Chapter 5.

7.5.8. Compare the performance of Broyden’s method and Newton-GMRES on
the Modified Bratu Problem

−∇2u+ dux + eu = 0

on (0, 1) × (0, 1) with homogeneous Dirichlet boundary conditions.
Precondition with the Poisson solver fish2d. Experiment with various
mesh widths, initial iterates, and values for the convection coefficient d.

7.5.9. The bad Broyden method [26], so named because of its inferior perfor-
mance in practice [63], updates an approximation to the inverse of the
Jacobian at the root so that B−1 ≈ F ′(x∗)−1 satisfies the inverse secant
equation

B−1
+ y = s(7.45)

BROYDEN’S METHOD 133

with the rank-one update

B−1
+ = B−1

c +
(s−B−1

c y)yT

‖y‖22
.

Show that the bad Broyden method is locally superlinearly convergent
if the standard assumptions hold. Try to implement the bad Broyden
method in a storage-efficient manner using the ideas from [67] and § 7.3.
Does anything go wrong? See [67] for more about this.

7.5.10. The Schubert or sparse Broyden algorithm [172], [27] is a quasi-Newton
update for sparse matrices that enforces both the secant equation and the
sparsity pattern. For problems with tridiagonal Jacobian, for example,
the update is

(B+)ij = (Bc)ij +
(y −Bcs)isj∑i+1
k=i−1 s

2
k

for 1 ≤ i, j ≤ N and |i − j| ≤ 1. Note that only the subdiagonal, su-
perdiagonal, and main diagonal are updated. Read about the algorithm
in [172] and prove local superlinear convergence under the standard as-
sumptions and the additional assumption that the sparsity pattern of B0

is the same as that of F ′(x∗). How would the Schubert algorithm be
affected by preconditioning? Compare your analysis with those in [158],
[125], and [189].

7.5.11. Implement the bad Broyden method, apply it to the examples in § 7.4,
and compare the performance to that of Broyden’s method. Discuss the
differences in implementation from Broyden’s method.

7.5.12. Implement the Schubert algorithm on an unpreconditioned discretized
partial differential equation (such as the Bratu problem from Exer-
cise 7.5.8) and compare it to Newton-GMRES and Broyden’s method.
Does the relative performance of the methods change as h is decreased?
This is interesting even in one space dimension where all matrices are
tridiagonal. References [101], [93], [92], and [112], are relevant to this
exercise.

7.5.13. Use your result from Exercise 5.7.14 in Chapter 5 to numerically estimate
the q-order of Broyden’s method for some of the examples in this
section (both linear and nonlinear). What can you conclude from your
observations?

134 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Chapter 8

Global Convergence

By a globally convergent algorithm we mean an algorithm with the property
that for any initial iterate the iteration either converges to a root of F or fails
to do so in one of a small number of ways. Of the many such algorithms we
will focus on the class of line search methods and the Armijo rule [3], [88],
implemented inexactly [24], [25], [70].

Other methods, such as trust region [153], [154], [181], [129], [63], [24],
[25], [173], [70], and continuation/homotopy methods [1], [2], [109], [159],
[198], can be used to accomplish the same objective. We select the line search
paradigm because of its simplicity, and because it is trivial to add a line search
to an existing locally convergent implementation of Newton’s method. The
implementation and analysis of the line search method we develop in this
chapter do not depend on whether iterative or direct methods are used to
compute the Newton step or upon how or if the Jacobian is computed and
stored. We begin with single equations, where the algorithms can be motivated
and intuition developed with a very simple example.

8.1. Single equations

If we apply Newton’s method to find the root x∗ = 0 of the function
f(x) = arctan(x) with initial iterate x0 = 10 we find that the initial iterate
is too far from the root for the local convergence theory in Chapter 5 to be
applicable. The reason for this is that f ′(x) = (1 + x2)−1 is small for large
x; f(x) = arctan(x) ≈ ±π/2, and hence the magnitude of the Newton step
is much larger than that of the iterate itself. We can see this effect in the
sequence of iterates:

10,−138, 2.9× 104,−1.5× 109, 9.9× 1017,

a failure of Newton’s method that results from an inaccurate initial iterate.
If we look more closely, we see that the Newton step s = −f(xc)/f

′(xc) is
pointing toward the root in the sense that sxc < 0, but the length of s is too
large. This observation motivates the simple fix of reducing the size of the step
until the size of the nonlinear residual is decreased. A prototype algorithm is
given below.

135

136 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Algorithm 8.1.1. lines1(x, f, τ)
1. r0 = |f(x)|
2. Do while |f(x)| > τrr0 + τa

(a) If f ′(x) = 0 terminate with failure.

(b) s = −f(x)/f ′(x) (search direction)

(c) xt = x+ s (trial point)

(d) If |f(xt)| < |f(x)| then x = xt (accept the step)
else
s = s/2 goto 2c (reject the step)

When we apply Algorithm lines1 to our simple example, we obtain the
sequence

10,−8.5, 4.9,−3.8, 1.4,−1.3, 1.2,−.99, .56,−0.1, 9× 10−4,−6× 10−10.

The quadratic convergence behavior of Newton’s method is only apparent
very late in the iteration. Iterates 1, 2, 3, and 4 required 3, 3, 2, and 2
steplength reductions. After the fourth iterate, decrease in the size of the
nonlinear residual was obtained with a full Newton step. This is typical of the
performance of the algorithms we discuss in this chapter.

We plot the progress of the iteration in Fig. 8.1. We plot

|arctan(x)/arctan(x0)|
as a function of the number of function evaluations with the solid line. The
outer iterations are identified with circles as in § 6.4. One can see that most of
the work is in the initial phase of the iteration. In the terminal phase, where
the local theory is valid, the minimum number of two function evaluations per
iterate is required. However, even in this terminal phase rapid convergence
takes place only in the final three outer iterations.

Note the differences between Algorithm lines1 and Algorithm nsol. One
does not set x+ = x+ s without testing the step to see if the absolute value of
the nonlinear residual has been decreased. We call this method a line search
because we search along the line segment

(xc, xc − f(xc)/f
′(xc))

to find a decrease in |f(xc)|. As we move from the right endpoint to the left,
some authors [63] refer to this as backtracking.

Algorithm lines1 almost always works well. In theory, however, there is
the possibility of oscillation about a solution without convergence [63]. To
remedy this and to make analysis possible we replace the test for simple
decrease with one for sufficient decrease. The algorithm is to compute a search
direction d which for us will be the Newton direction

d = −f(xc)/f
′(xc)

GLOBAL CONVERGENCE 137

0 5 10 15 20 25 30 35
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.1. Newton–Armijo iteration for inverse tangent.

and then test steps of the form s = λd, with λ = 2−j for some j ≥ 0, until
f(x+ s) satisfies

|f(xc + λd)| < (1− αλ)|f(xc)|.(8.1)

The condition in (8.1) is called sufficient decrease of |f |. The parameter
α ∈ (0, 1) is a small, but positive, number intended to make (8.1) as easy
as possible to satisfy. We follow the recent optimization literature [63] and
set α = 10−4. Once sufficient decrease has been obtained we accept the step
s = λd. This strategy, from [3] (see also [88]) is called the Armijo rule. Note
that we must now distinguish between the step and the Newton direction,
something we did not have to do in the earlier chapters.

Algorithm 8.1.2. nsola1(x, f, τ)
1. r0 = |f(x)|
2. Do while |f(x)| > τrr0 + τa

(a) If f ′(x) = 0 terminate with failure.

(b) d = −f(x)/f ′(x) (search direction)

(c) λ = 1

i. xt = x+ λd (trial point)

ii. If |f(xt)| < (1− αλ)|f(x)| then x = xt (accept the step)
else
λ = λ/2 goto 2(c)i (reject the step)

This is essentially the algorithm implemented in the MATLAB code nsola.
We will analyze Algorithm nsola in § 8.2. We remark here that there is
nothing critical about the reduction factor of 2 in the line search. A factor of

138 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

10 could well be better in situations in which small values of λ are needed for
several consecutive steps (such as our example with the arctan function). In
that event a reduction of a factor of 8 would require three passes through the
loop in nsola1 but only a single reduction by a factor of 10. This could be
quite important if the search direction were determined by an inexact Newton
method or an approximation to Newton’s method such as the chord method
or Broyden’s method.

On the other hand, reducing λ by too much can be costly as well. Taking
full Newton steps ensures fast local convergence. Taking as large a fraction as
possible helps move the iteration into the terminal phase in which full steps
may be taken and fast convergence expected. We will return to the issue of
reduction in λ in § 8.3.

8.2. Analysis of the Armijo rule

In this section we extend the one-dimensional algorithm in two ways before
proceeding with the analysis. First, we accept any direction that satisfies the
inexact Newton condition (6.1). We write this for the Armijo sequence as

‖F ′(xn)dn + F (xn)‖ ≤ ηn‖F (xn)‖.(8.2)

Our second extension is to allow more flexibility in the reduction of λ. We
allow for any choice that produces a reduction that satisfies

σ0λold ≤ λnew ≤ σ1λold,

where 0 < σ0 < σ1 < 1. One such method, developed in § 8.3, is to minimize
an interpolating polynomial based on the previous trial steps. The danger is
that the minimum may be too near zero to be of much use and, in fact, the
iteration may stagnate as a result. The parameter σ0 safeguards against that.
Safeguarding is an important aspect of many globally convergent methods and
has been used for many years in the context of the polynomial interpolation
algorithms we discuss in § 8.3.1 [54], [63], [86], [133], [87]. Typical values of σ0
and σ1 are .1 and .5. Our algorithm nsola incorporates these ideas.

While (8.2) is motivated by the Newton-iterative paradigm, the analysis
here applies equally to methods that solve the equations for the Newton step
directly (so ηn = 0), approximate the Newton step by a quasi-Newton method,
or even use the chord method provided that the resulting direction dn satisfies
(8.2). In Exercise 8.5.9 you are asked to implement the Armijo rule in the
context of Algorithm nsol.

Algorithm 8.2.1. nsola(x, F, τ, η).
1. r0 = ‖F (x)‖
2. Do while ‖F (x)‖ > τrr0 + τa

(a) Find d such that ‖F ′(x)d+ F (x)‖ ≤ η‖F (x)‖
If no such d can be found, terminate with failure.

GLOBAL CONVERGENCE 139

(b) λ = 1

i. xt = x+ λd

ii. If ‖F (xt)‖ < (1− αλ)‖F (x)‖ then x = xt
else
Choose σ ∈ [σ0, σ1]
λ = σλ
goto 2(b)i

Note that step 2a must allow for the possibility that F ′ is ill-conditioned
and that no direction can be found that satisfies (8.2). If, for example, step
2a were implemented with a direct factorization method, ill-conditioning of F ′

might be detected as part of the factorization.
Let {xn} be the iteration produced by Algorithm nsola with initial iterate

x0. The algorithm can fail in some obvious ways:
1. F ′(xn) is singular for some n. The inner iteration could terminate with

a failure.

2. xn → x̄, a local minimum of ‖F‖ which is not a root.

3. ‖xn‖ → ∞.
Clearly if F has no roots, the algorithm must fail. We will see that if F has no
roots then either F ′(xn) has a limit point which is singular or {xn} becomes
unbounded.

The convergence theorem is the remarkable statement that if {xn} and
{‖F ′(xn)−1‖} are bounded (thereby eliminating premature failure and local
minima of ‖F‖ that are not roots) and F ′ is Lipschitz continuous in a
neighborhood of the entire sequence {xn}, then the iteration converges to a
root of F at which the standard assumptions hold, full steps are taken in the
terminal phase, and the convergence is q-quadratic.

We begin with a formal statement of our assumption that F ′ is uniformly
Lipschitz continuous and bounded away from zero on the sequence {xn}.

Assumption 8.2.1. There are r, γ,mf > 0 such that F is defined, F ′ is
Lipschitz continuous with Lipschitz constant γ, and ‖F ′(x)−1‖ ≤ mf on the
set

Ω({xn}, r) =
∞⋃
n=0

{x | ‖x− xn‖ ≤ r}.

Assumption 8.2.1 implies that the line search phase (step 2b in Algorithm
nsola) will terminate in a number of cycles that is independent of n. We show
this, as do [25] and [70], by giving a uniform lower bound on λn (assuming
that F (x0) �= 0). Note how the safeguard bound σ0 enters this result. Note
also the very modest conditions on ηn.

Lemma 8.2.1. Let x0 ∈ RN and α ∈ (0, 1) be given. Assume that {xn} is
given by Algorithm nsola with

{ηn} ⊂ (0, η̄] ⊂ (0, 1− α)(8.3)

140 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

and that Assumption 8.2.1 holds. Then either F (x0) = 0 or

λn ≥ λ̄ = σ0min

(
r

mf‖F (x0)‖ ,
2(1− α− η̄)

m2
f‖F (x0)‖(1 + η̄)2γ

)
.(8.4)

Proof. Let n ≥ 0. By the fundamental theorem of calculus and (8.2) we
have, for any λ ∈ [0, 1]

F (xn + λdn) = F (xn) + λF ′(xn)dn +
∫ 1

0
(F ′(xn + tλdn)− F ′(xn))λdn dt

= (1− λ)F (xn) + λξn +

∫ 1

0
(F ′(xn + tλdn)− F ′(xn))λdn dt,

where, by the bound ηn ≤ η̄,

‖ξn‖ ≤ ηn‖F (xn)‖ ≤ η̄‖F (xn)‖.

The step acceptance condition in nsola implies that {‖F (xn)‖} is a decreasing
sequence and therefore

‖dn‖ = ‖F ′(xn)−1(ξn − F (xn))‖ ≤ mf (1 + η̄)‖F (xn)‖.

Therefore, by Assumption 8.2.1 F ′ is Lipschitz continuous on the line segment
[xn, xn + λdn] whenever

λ ≤ λ̄1 = r/(mf‖F (x0)‖).

Lipschitz continuity of F ′ implies that if λ ≤ λ̄1 then

‖F (xn + λdn)‖ ≤ (1− λ)‖F (xn)‖+ λη̄‖F (xn)‖+ γ

2
λ2‖dn‖2

≤ (1− λ)‖F (xn)|+ λη̄‖F (xn)‖+
m2
fγ(1 + η̄)2λ2‖F (xn)‖2

2

≤ (1− λ+ η̄λ)‖F (xn)‖+ λ‖F (xn)‖
m2
fγλ(1 + η̄)2‖F (x0)‖

2

< (1− αλ)‖F (xn)‖,
which will be implied by

λ ≤ λ̄2 = min

(
λ̄1,

2(1− α− η̄)

(1 + η̄)2m2
fγ‖F (x0)‖

)
.

This shows that λ can be no smaller than σ0λ̄2, which completes the proof.
Now we can show directly that the sequence of Armijo iterates either is

unbounded or converges to a solution. Theorem 8.2.1 says even more. The

GLOBAL CONVERGENCE 141

sequence converges to a root at which the standard assumptions hold, so in the
terminal phase of the iteration the step lengths are all 1 and the convergence
is q-quadratic.

Theorem 8.2.1. Let x0 ∈ RN and α ∈ (0, 1) be given. Assume that {xn}
is given by Algorithm nsola, {ηn} satisfies (8.3), {xn} is bounded, and that
Assumption 8.2.1 holds. Then {xn} converges to a root x∗ of F at which the
standard assumptions hold, full steps are taken for n sufficiently large, and the
convergence behavior in the final phase of the iteration is that given by the local
theory for inexact Newton methods (Theorem 6.1.2).

Proof. If F (xn) = 0 for some n, then we are done because Assump-
tion 8.2.1 implies that the standard assumptions hold at x∗ = xn. Otherwise
Lemma 8.2.1 implies that F (xn) converges q-linearly to zero with q-factor at
most (1− αλ̄).

The boundedness of the sequence {xn} implies that a subsequence {xnk}
converges, say to x∗. Since F is continuous, F (x∗) = 0. Eventually
|xnk − x∗| < r, where r is the radius in Assumption 8.2.1 and therefore the
standard assumptions hold at x∗.

Since the standard assumptions hold at x∗, there is δ such that if x ∈ B(δ),
the Newton iteration with x0 = x will remain in B(δ) and converge q-
quadratically to x∗. Hence as soon as xnk ∈ B(δ), the entire sequence, not
just the subsequence, will remain in B(δ) and converge to x∗. Moreover,
Theorem 6.1.2 applies and hence full steps can be taken.

At this stage we have shown that if the Armijo iteration fails to converge
to a root either the continuity properties of F or nonsingularity of F ′ break
down as the iteration progresses (Assumption 8.2.1 is violated) or the iteration
becomes unbounded. This is all that one could ask for in terms of robustness
of such an algorithm.

Thus far we have used for d the inexact Newton direction. It could well be
advantageous to use a chord or Broyden direction, for example. All that one
needs to make the theorems and proofs in § 8.2 hold is (8.2), which is easy to
verify, in principle, via a forward difference approximation to F ′(xn)d.

8.3. Implementation of the Armijo rule

The MATLAB code nsola is a modification of nsolgm which provides for a
choice of several Krylov methods for computing an inexact Newton direction
and globalizes Newton’s method with the Armijo rule. We use the l2 norm in
that code and in the numerical results reported in § 8.4. If GMRES is used
as the linear solver, then the storage requirements are roughly the same as for
Algorithm nsolgm if one reuses the storage location for the finite difference
directional derivative to test for sufficient decrease.

In Exercise 8.5.9 you are asked to do this with nsol and, with each
iteration, numerically determine if the chord direction satisfies the inexact
Newton condition. In this case the storage requirements are roughly the same
as for Algorithm nsol. The iteration can be very costly if the Jacobian must be

142 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

evaluated and factored many times during the phase of the iteration in which
the approximate solution is far from the root.

We consider two topics in this section. The first, polynomial interpolation
as a way to choose λ, is applicable to all methods. The second, how Broyden’s
method must be implemented, is again based on [67] and is more specialized.
Our Broyden–Armijo code does not explicitly check the inexact Newton
condition and thereby saves an evaluation of F . Evaluation of F ′(xc)dc if the
full step is not accepted (here dc is the Broyden direction) would not only verify
the inexact Newton condition but provide enough information for a two-point
parabolic line search. The reader is asked to pursue this in Exercise 8.5.10.

8.3.1. Polynomial line searches. In this section we consider an elabora-
tion of the simple line search scheme of reduction of the steplength by a fixed
factor. The motivation for this is that some problems respond well to one or
two reductions in the steplength by modest amounts (such as 1/2) and others
require many such reductions, but might respond well to a more aggressive
steplength reduction (by factors of 1/10, say). If one can model the decrease
in ‖F‖2 as the steplength is reduced, one might expect to be able to better
estimate the appropriate reduction factor. In practice such methods usually
perform better than constant reduction factors.

If we have rejected k steps we have in hand the values

‖F (xn)‖2, ‖F (xn + λ1dn)‖2, . . . ‖F (xn + λk−1dn)‖2.

We can use this iteration history to model the scalar function

f(λ) = ‖F (xn + λdn)‖22
with a polynomial and use the minimum of that polynomial as the next
steplength. We consider two ways of doing this that use second degree
polynomials which we compute using previously computed information.

After λc has been rejected and a model polynomial computed, we compute
the minimum λt of that polynomial analytically and set

λ+ =




σ0λc if λt < σ0λc,

σ1λc if λt > σ1λc,

λt otherwise.

(8.5)

Two-point parabolic model. In this approach we use values of f and f ′

at λ = 0 and the value of f at the current value of λ to construct a 2nd degree
interpolating polynomial for f .

f(0) = ‖F (xn)‖22 is known. Clearly f ′(0) can be computed as

f ′(0) = 2(F ′(xn)Tdn)TF (xn) = 2F (xn)
T (F ′(xn)dn).(8.6)

GLOBAL CONVERGENCE 143

Use of (8.6) requires evaluation of F ′(xn)dn, which can be obtained by
examination of the final residual from GMRES or by expending an additional
function evaluation to compute F ′(xn)dn with a forward difference. In any
case, our approximation to f ′(0) should be negative. If it is not, it may
be necessary to compute a new search direction. This is a possibility with
directions other than inexact Newton directions, such as the Broyden direction.

The polynomial p(λ) such that p, p′ agree with f, f ′ at 0 and p(λc) = f(λc)
is

p(λ) = f(0) + f ′(0)λ+ cλ2,

where

c =
f(λc)− f(0)− f ′(0)λc

λ2c
.

Our approximation of f ′(0) < 0, so if f(λc) > f(0), then c > 0 and p(λ) has a
minimum at

λt = −f ′(0)/(2c) > 0.

We then compute λ+ with (8.5).

Three-point parabolic model. An alternative to the two-point model that
avoids the need to approximate f ′(0) is a three-point model, which uses f(0)
and the two most recently rejected steps to create the parabola. The MATLAB
code parab3p implements the three-point parabolic line search and is called
by the two codes nsola and brsola.

In this approach one evaluates f(0) and f(1) as before. If the full step is
rejected, we set λ = σ1 and try again. After the second step is rejected, we
have the values

f(0), f(λc), and f(λ−),

where λc and λ− are the most recently rejected values of λ. The polynomial
that interpolates f at 0, λc, λ− is

p(λ) = f(0) +
λ

λc − λ−

(
(λ− λ−)(f(λc)− f(0))

λc
+

(λc − λ)(f(λ−)− f(0))

λ−

)
.

We must consider two situations. If

p′′(0) =
2

λcλ−(λc − λ−)
(λ−(f(λc)− f(0))− λc(f(λ−)− f(0)))

is positive, then we set λt to the minimum of p

λt = −p′(0)/p′′(0)

and apply the safeguarding step (8.5) to compute λ+. If p′′(0) ≤ 0 one could
either set λ+ to be the minimum of p on the interval [σ0λ, σ1λ] or reject the
parabolic model and simply set λ+ to σ0λc or σ1λc. We take the latter approach
and set λ+ = σ1λc. In the MATLAB code nsola from the collection, we
implement this method with σ0 = .1, σ1 = .5.

144 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

Interpolation with a cubic polynomial has also been suggested [87], [86],
[63], [133]. Clearly, the polynomial modeling approach is heuristic. The
safeguarding and Theorem 8.2.1 provide insurance that progress will be made
in reducing ‖F‖.

8.3.2. Broyden’s method. In Chapter 7 we implemented Broyden’s
method at a storage cost of one vector for each iteration. The relation
y − Bcs = F (x+) was not critical to this and we may also incorporate a line
search at a cost of a bit of complexity in the implementation. As in § 7.3, our
approach is a nonlinear version of the method in [67].

The difference from the development in § 7.3 is that the simple relation
between the sequence {wn} and {vn} is changed. If a line search is used, then

sn = −λnB
−1
n F (xn)

and hence
yn −Bnsn = F (xn+1)− (1− λn)F (xn).(8.7)

If, using the notation in § 7.3, we set

un =
yn −Bnsn

‖sn‖2 , vn =
sn

‖sn‖2 , and wn = (B−1
n un)/(1 + vTnB

−1
n un),

we can use (8.7) and (7.38) to obtain

wn = λn

(−dn+1

‖sn‖2 + (λ−1
n − 1)

sn
‖sn‖2

)

= λn

(−sn+1/λn+1

‖sn‖2 + (λ−1
n − 1)

sn
‖sn‖2

)
,

(8.8)

where
dn+1 = −B−1

n+1F (xn+1)

is the search direction used to compute xn+1. Note that (8.8) reduces to (7.41)
when λn = 1 and λn+1 = 1 (so dn+1 = sn+1).

We can use the first equality in (8.8) and the relation

dn+1 = −
(
I − wns

T
n

‖sn‖2

)
B−1
n F (xn+1)

to solve for dn+1 and obtain an analog of (7.44)

dn+1 = −‖sn‖22B−1
n F (xn+1)− (1− λn)s

T
nB

−1
n F (xn+1)sn

‖sn‖22 + λnsTnB
−1
n F (xn+1)

(8.9)

We then use the second equality in (8.8) to construct B−1
c F (x+) as we did in

Algorithm brsol. Verification of (8.8) and (8.9) is left to Exercise 8.5.5.

GLOBAL CONVERGENCE 145

Algorthm brsola uses these ideas. We do not include details of the line
search or provide for restarts or a limited memory implementation. The
MATLAB implementation, provided in the collection of MATLAB codes, uses
a three-point parabolic line search and performs a restart when storage is
exhausted like Algorithm brsol does.

It is possible that the Broyden direction fails to satisfy (8.2). In fact, there
is no guarantee that the Broyden direction is a direction of decrease for ‖F‖2.
The MATLAB code returns with an error message if more than a fixed number
of reductions in the step length are needed. Another approach would be to
compute F ′(xc)d numerically if a full step is rejected and then test (8.2) before
beginning the line search. As a side effect, an approximation of f ′(0) can be
obtained at no additional cost and a parabolic line search based on f(0), f ′(0),
and f(1) can be used. In Exercise 8.5.10 the reader is asked to fully develop
and implement these ideas.

Algorithm 8.3.1. brsola(x, F, τ,maxit, nmax)
1. Initialize:

Fc = F (x) r0 = ‖F (x)‖2, n = −1,
d = −F (x), compute λ0, s0 = λ0d

2. Do while n ≤ maxit

(a) n = n+ 1

(b) x = x+ sn

(c) Evaluate F (x)

(d) If ‖F (x)‖2 ≤ τrr0 + τa exit.

(e) i. z = −F (x)

ii. for j = 0, n− 1
a = −λj/λj+1, b = 1− λj
z = z + (asj+1 + bsj)s

T
j z/‖sj‖22

(f) d = (‖sn‖22z + (1− λn)s
T
nzsn)/(‖sn‖22 − λns

T
nz)

(g) Compute λn+1 with a line search.

(h) Set sn+1 = λn+1d, store ‖sn+1‖2 and λn+1.

Since dn+1 and sn+1 can occupy the same location, the storage require-
ments of Algorithm brsola would appear to be essentially the same as those
of brsol. However, computation of the step length requires storage of both the
current point x and the trial point x + λs before a step can be accepted. So,
the storage of the globalized methods exceeds that of the local method by one
vector. The MATLAB implementation of brsola in the collection illustrates
this point.

8.4. Examples for Newton–Armijo

The MATLAB code nsola is a modification of nsolgm that incorporates the
three-point parabolic line search from § 8.3.1 and also changes η using (6.20)

146 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

once the iteration is near the root. We compare this strategy, using GMRES
as the linear solver, with the constant η method as we did in § 6.4 with γ = .9.

As before, in all the figures we plot ‖F (xn)‖2/‖F (x0)‖2 against the number
of function evaluations required by all line searches and inner and outer
iterations to compute xn. Counts of function evaluations corresponding to
outer iterations are indicated by circles. We base our absolute error criterion
on the norm ‖ · ‖2/

√
N as we did in § 6.4.2 and 7.4.

In § 8.4.3 we compare the Broyden–Armijo method with Newton-GMRES
for those problems for which both methods were successful. We caution the
reader now, and will repeat the caution later, that if the initial iterate is far
from the solution, an inexact Newton method such as Newton-GMRES can
succeed in many case in which a quasi-Newton method can fail because the
quasi-Newton direction may not be an inexact Newton direction. However,
when both methods succeed, the quasi-Newton method, which requires a single
function evaluation for each outer iteration when full steps can be taken, may
well be most efficient.

8.4.1. Inverse tangent function. Since we have easy access to analytic
derivatives in this example, we can use the two-point parabolic line search.
We compare the two-point parabolic line search with the constant reduction
search (σ0 = σ1 = .5) for the arctan function. In Fig. 8.2 we plot the iteration
history corresponding to the parabolic line search with the solid line and that
for the constant reduction with the dashed line. We use x0 = 10 as the initial
iterate with τr = τa = 10−8. The parabolic line search required 7 outer iterates
and 21 function evaluations in contrast with the constant reduction searches 11
outer iterates and 33 function evaluations. In the first outer iteration, both line
searches take three steplength reductions. However, the parabolic line search
takes only one reduction in the next three iterations and none thereafter. The
constant reduction line search took three reductions in the first two outer
iterations and two each in following two.

8.4.2. Convection-diffusion equation. We consider a much more diffi-
cult problem. We take (6.21) from § 6.4.2,

−∇2u+ Cu(ux + uy) = f

with the same right hand side f , initial iterate u0 = 0, 31 × 31 mesh and
homogeneous Dirichlet boundary conditions on the unit square (0, 1) × (0, 1)
that we considered before. Here, however, we set C = 100. This makes a
globalization strategy critical (Try it without one!). We set τr = τa = h2/10.
This is a tighter tolerance that in § 6.4.2 and, because of the large value of C
and resulting ill-conditioning, is needed to obtain an accurate solution.

In Fig. 8.3 we show the progress of the iteration for the unpreconditioned
equation. For this problem we plot the progress of the iteration using η = .25
with the solid line and using the sequence given by (6.20) with the dashed

GLOBAL CONVERGENCE 147

0 5 10 15 20 25 30 35
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.2. Newton–Armijo for the arctan function.

line. We set the parameters in (6.20) to γ = .9 and ηmax = .25. This problem
is very poorly conditioned and much tighter control on the inner iteration is
needed than for the other problems. The two approaches to selection of the
forcing term performed very similarly. The iterations required 75.3 (constant
η) and 75.4 (varying η) million floating point operations, 759 (constant η) and
744 (varying η) function evaluations, and 25 (constant η) and 22 (varying η)
outer iterations.

0 100 200 300 400 500 600 700 800
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.3. Newton–Armijo for the PDE, C = 100.

We consider the preconditioned problem in Fig. 8.4. In the computation we

148 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

preconditioned (6.21) with the fast Poisson solver fish2d. In Fig. 8.4 we show
the progress of the iteration for the preconditioned equation. For this problem
we plot the progress of the iteration using η = .25 with the solid line and using
the sequence given by (6.20) with the dashed line. We set the parameters in
(6.20) to γ = .9 and ηmax = .99.

The constant η iteration terminated after 79 function evaluations, 9 outer
iterations, and roughly 13.5 million floating-point operations. The line search
in this case reduced the step length three times on the first iteration and twice
on the second and third.

The iteration in which {ηn} is given by (6.20) terminated after 70 function
evaluations, 9 outer iterations, and 12.3 million floating-point operations. The
line search in the non-constant η case reduced the step length three times on
the first iteration and once on the second. The most efficient iteration, with
the forcing term given by (6.20), required at most 16 inner iterations while the
constant η approach needed at most 10.

0 10 20 30 40 50 60 70 80
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.4. Newton–Armijo for the PDE, C = 100.

8.4.3. Broyden–Armijo. We found that the Broyden–Armijo line search
failed on all the unpreconditioned convection diffusion equation examples. In
these cases the Jacobian is not well approximated by a low rank perturbation
of the identity [112] and the ability of the inexact Newton iteration to find a
good search direction was the important factor.

We begin by revisiting the example in § 6.4.2 with C = 20. As reported
in § 6.4.2, the Newton-GMRES iteration always took full steps, terminating
in 4 outer iterations, 16 function evaluations, and 2.6 million floating-point
operations. When compared to the Broyden’s method results in § 6.4.2,
when increases in the residual were allowed, the Broyden–Armijo costs reflect

GLOBAL CONVERGENCE 149

an improvement in efficiency. The Broyden iteration in § 6.4.2 took 12
iterations and 2.8 million floating-point operations while the Broyden–Armijo
took 9 iterations and required 2 million floating-point operations. We set
τa = τr = h2, ηmax = .5, and γ = .9 as we did in § 6.4.2.

In our implementation of brsola the three-point parabolic line search was
used. The steplength was reduced on the second iteration (twice) and the third
(once). Figure 8.5 compares the Broyden–Armijo iteration (solid line) to the
GMRES iteration (dashed line).

0 2 4 6 8 10 12 14 16
10

-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.5. Newton-GMRES and Broyden–Armijo for the PDE, C = 20.

For the more difficult problem with C = 100, the performance of the
two methods is more similar. In Fig. 8.6 we compare our implementation
of Newton–GMRES–Armijo (dashed line) to Broyden–Armijo (solid line). We
set τa = τr = h2/10, ηmax = .99, and γ = .9. The Broyden–Armijo iteration
required 34 nonlinear iterations, roughly 16 million floating-point operations,
and 85 function evaluations. In terms of storage, the Broyden–Armijo iteration
required storage for 37 vectors while the Newton-GMRES iteration needed at
most 16 inner iterations, needing to store 21 vectors, and therefore was much
more efficient in terms of storage.

Restarting the Broyden iteration every 19 iterations would equalize the
storage requirements with Newton–GMRES–Armijo. Broyden’s method suf-
fers under these conditions as one can see from the comparison of Broyden–
Armijo (solid line) and Newton–GMRES–Armijo (dashed line) in Fig. 8.7. The
restarted Broyden–Armijo iteration took 19.5 million floating-point operations,
42 outer iterates, and 123 function evaluations.

From these examples we see that Broyden–Armijo can be very efficient pro-
vided only a small number of iterations are needed. The storage requirements
increase as the nonlinear iteration progresses and this fact puts Broyden’s

150 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

0 10 20 30 40 50 60 70 80 90
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.6. Newton-GMRES and Broyden–Armijo for the PDE, C = 100.

0 20 40 60 80 100 120 140
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Function Evaluations

R
el

at
iv

e
N

on
lin

ea
r

R
es

id
ua

l

Fig. 8.7. Newton-GMRES and restarted Broyden–Armijo for the PDE, C = 100.

method at a disadvantage to Newton-GMRES when the number of nonlinear
iterations is large.

GLOBAL CONVERGENCE 151

8.5. Exercises on global convergence

8.5.1. How does the method proposed in [10] differ from the one implemented in
nsola? What could be advantages and disadvantages of that approach?

8.5.2. In what ways are the results in [25] and [70] more general than those in
this section? What ideas do these papers share with the analysis in this
section and with [3] and [88]?

8.5.3. Implement the Newton–Armijo method for single equations. Apply your
code to the following functions with x0 = 10. Explain your results.

1. f(x) = arctan(x) (i.e., Duplicate the results in § 8.1.)
2. f(x) = arctan(x2)

3. f(x) = .9 + arctan(x)

4. f(x) = x(1 + sin(1/x))

5. f(x) = ex

6. f(x) = 2 + sin(x)

7. f(x) = 1 + x2

8.5.4. A numerical analyst buys a German sports car for $50,000. He puts
$10,000 down and takes a 7 year installment loan to pay the balance. If
the monthly payments are $713.40, what is the interest rate? Assume
monthly compounding.

8.5.5. Verify (8.8) and (8.9).

8.5.6. Show that if F ′ is Lipschitz continuous and the iteration {xn} produced
by Algorithm nsola converges to x∗ with F (x∗) �= 0, then F ′(x∗) is
singular.

8.5.7. Use nsola to duplicate the results in § 8.4.2. Vary the convection
coefficient in the convection-diffusion equation and the mesh size and
report the results.

8.5.8. Experiment with other linear solvers such as GMRES(m), Bi-CGSTAB,
and TFQMR. This is interesting in the locally convergent case as well.
You might use the MATLAB code nsola to do this.

8.5.9. Modify nsol, the hybrid Newton algorithm from Chapter 5, to use the
Armijo rule. Try to do it in such a way that the chord direction is used
whenever possible.

8.5.10. Modify brsola to test the Broyden direction for the descent property
and use a two-point parabolic line search. What could you do if the
Broyden direction is not a descent direction? Apply your code to the
examples in § 8.4.

152 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

8.5.11. Modify nsola to use a cubic polynomial and constant reduction line
searches instead of the quadratic polynomial line search. Compare the
results with the examples in § 8.4.

8.5.12. Does the secant method for equations in one variable always give a
direction that satisfies (8.2) with ηn bounded away from 1? If not, when
does it? How would you implement a secant-Armijo method in such a
way that the convergence theorem 8.2.1 is applicable?

8.5.13. Under what conditions will the iteration given by nsola converge to a
root x∗ that is independent of the initial iterate?

Bibliography

[1] E. L. Allgower and K. Georg, Simplicial and continuation methods for
approximating fixed points and solutions to systems of equations, SIAM Rev., 22
(1980), pp. 28–85.
[2] , Numerical Continuation Methods : An Introduction, Springer-Verlag, New
York, 1990.
[3] L. Armijo, Minimization of functions having Lipschitz-continuous first partial
derivatives, Pacific J. Math., 16 (1966), pp. 1–3.
[4] W. E. Arnoldi, The principle of minimized iterations in the solution of the
matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.
[5] S. F. Ashby, T. A. Manteuffel, and J. S. Otto, A comparison of
adaptive Chebyshev and least squares polynomial preconditioning for Hermetian
positive definite linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1–
29.
[6] K. E. Atkinson, Iterative variants of the Nyström method for the numerical
solution of integral equations, Numer. Math., 22 (1973), pp. 17–31.
[7] , An Introduction to Numerical Analysis, 2nd. ed., John Wiley, New York,
1989.
[8] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cam-
bridge, 1994.
[9] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications
aux équations intégrales, Fund. Math, 3 (1922), pp. 133–181.
[10] R. E. Bank and D. J. Rose, Global approximate Newton methods, Numer.
Math., 37 (1981), pp. 279–295.
[11] M. S. Barlett, An inverse matrix adjustment arising in discriminant analysis,
Ann. Math. Statist., 22 (1951), pp. 107–111.
[12] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1993.
[13] N. Bićanić and K. H. Johnson, Who was ‘-Raphson’?, Internat. J. Numer.
Methods. Engrg., 14 (1979), pp. 148–152.
[14] P. B. Bosma and W. A. DeRooij, Efficient methods to calculate Chan-
drasekhar’s H-functions, Astron. Astrophys., 126 (1983), p. 283.
[15] H. Brakhage, Über die numerische Behandlung von Integralgleichungen nach
der Quadraturformelmethode, Numer. Math., 2 (1960), pp. 183–196.
[16] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution

153

154 BIBLIOGRAPHY

of Initial Value Problems in Differential-Algebraic Equations, no. 14 in Classics in
Applied Mathematics, SIAM, Philadelphia, 1996.
[17] R. Brent, Algorithms for Minimization Without Deriviatives, Prentice-Hall,
Englewood Cliffs, NJ, 1973.
[18] , Some efficient algorithms for solving systems of nonlinear equations, SIAM
J. Numer. Anal., 10 (1973), pp. 327–344.
[19] W. Briggs, A Multigrid Tutorial, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1987.
[20] P. N. Brown, A local convergence theory for combined inexact–Newton/ finite–
difference projection methods, SIAM J. Numer. Anal., 24 (1987), pp. 407–434.
[21] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable
coefficient ode solver, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1038–1051.
[22] P. N. Brown and A. C. Hindmarsh, Reduced storage matrix methods in stiff
ODE systems, J. Appl. Math. Comput., 31 (1989), pp. 40–91.
[23] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov methods
in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15
(1994), pp. 1467–1488.
[24] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of
equations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 450–481.
[25] , Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J.
Optim., 4 (1994), pp. 297–330.
[26] C. G. Broyden, A class of methods for solving nonlinear simultaneous equa-
tions, Math. Comput., 19 (1965), pp. 577–593.
[27] , The convergence of an algorithm for solving sparse nonlinear systems,
Math. Comput., 25 (1971), pp. 285–294.
[28] C. G. Broyden, J. E. Dennis, and J. J. Moré, On the local and superlinear
convergence of quasi-Newton methods, J. Inst. Maths. Applic., 12 (1973), pp. 223–
246.
[29] W. Burmeister, Zur Konvergenz einiger verfahren der konjugierten Richtun-
gen, in Proceedings of Internationaler Kongreß über Anwendung der Mathematik in
dem Ingenieurwissenschaften, Weimar, 1975.
[30] I. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Tracts,
No. 50, Cambridge Univ. Press, Cambridge, 1960.
[31] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representation of quasi-
Newton matrices and their use in limited memory methods, Math. Programming, 63
(1994), pp. 129–156.
[32] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, Newton-Krylov-
Schwarz methods in CFD, in Proceedings of the International Workshop on the
Navier-Stokes Equations, R. Rannacher, ed., Notes in Numerical Fluid Mechanics,
Braunschweig, 1994, Vieweg Verlag.
[33] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer, GMRES
and the minimal polynomial, Tech. Report CRSC-TR94-10, North Carolina State
University, Center for Research in Scientific Computation, July 1994. BIT, to appear.
[34] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, C. D. Meyer, and Z. Q.
Xue, Convergence estimates for solution of integral equations with GMRES, Tech.
Report CRSC-TR95-13, North Carolina State University, Center for Research in
Scientific Computation, March 1995. Journal of Integral Equations and Applications,
to appear.
[35] R. Cavanaugh, Difference Equations and Iterative Processes, PhD thesis,
University of Maryland, 1970.

BIBLIOGRAPHY 155

[36] F. Chaitin-Chatelin, Is nonnormality a serious difficulty ?, Tech. Report
TR/PA/94/18, CERFACS, December 1994.
[37] T. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. Tong, A quasi-
minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems,
SIAM J. Sci. Comput., 15 (1994), p. 338.
[38] T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Domain
Decomposition Methods,Proceedings of the Second International Symposium on
Domain Decomposition Methods, Los Angeles, CA, January 14–16, 1988; Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1989.
[39] , eds., Domain Decomposition Methods, Proceedings of the Third Interna-
tional Symposium on Domain Decomposition Methods, Houston, TX, 1989; Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1990.
[40] , eds., Domain Decomposition Methods, Proceedings of the Fourth Interna-
tional Symposium on Domain Decomposition Methods, Moscow, USSR, 1990; Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, 1991.,
[41] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
[42] T. F. Coleman and J. J. Moré, Estimation of sparse Jacobian matrices and
graph coloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187–209.
[43] T. F. Coleman and C. VanLoan, Handbook for Matrix Computations,
Frontiers in Appl. Math., No. 4, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1988.
[44] P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the
conjugate gradient method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220–252.
[45] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate
gradient method for the numerical solution of elliptic partial differential equations,
in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
1976, pp. 309–332.
[46] E. J. Craig, The N-step iteration procedures, J. Math. Phys., 34 (1955), pp. 64–
73.
[47] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse
Jacobian matrices, J. Inst. Math. Appl., 13 (1974), pp. 117–119.
[48] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator
equations, SIAM J. Numer. Anal., 4 (1967), pp. 10–26.
[49] D. W. Decker, H. B. Keller, and C. T. Kelley, Convergence rates for
Newton’s method at singular points, SIAM J. Numer. Anal., 20 (1983), pp. 296–314.
[50] D. W. Decker and C. T. Kelley, Newton’s method at singular points I, SIAM
J. Numer. Anal., 17 (1980), pp. 66–70.
[51] , Convergence acceleration for Newton’s method at singular points, SIAM J.
Numer. Anal., 19 (1982), pp. 219–229.
[52] , Sublinear convergence of the chord method at singular points, Numer.
Math., 42 (1983), pp. 147–154.
[53] , Broyden’s method for a class of problems having singular Jacobian at the
root, SIAM J. Numer. Anal., 22 (1985), pp. 566–574.
[54] T. J. Dekker, Finding a zero by means of successive linear interpolation, in
Constructive Aspects of the Fundamental Theorem of Algebra, P. Henrici, ed., 1969,
pp. 37–48.
[55] R. Dembo, S. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM
J. Numer. Anal., 19 (1982), pp. 400–408.
[56] R. Dembo and T. Steihaug, Truncated Newton algorithms for large-scale
optimization, Math. Programming, 26 (1983), pp. 190–212.

156 BIBLIOGRAPHY

[57] J. E. Dennis, On the Kantorovich hypothesis for Newton’s method, SIAM J.
Numer. Anal., 6 (1969), pp. 493–507.
[58] , Toward a unified convergence theory for Newton-like methods, in Nonlinear
Functional Analysis and Applications, L. B. Rall, ed., Academic Press, New York,
1971, pp. 425–472.
[59] J. E. Dennis, J. M. Martinez, and X. Zhang, Triangular decomposition
methods for solving reducible nonlinear systems of equations, SIAM J. Optim., 4
(1994), pp. 358–382.
[60] J. E. Dennis and J. J. Moré, A characterization of superlinear convergence
and its application to quasi-Newton methods, Math. Comput., 28 (1974), pp. 549–560.
[61] , Quasi-Newton methods, methods, motivation and theory, SIAM Rev., 19
(1977), pp. 46–89.
[62] J. E. Dennis and R. B. Schnabel, Least change secant updates for quasi-
Newton methods, SIAM Rev., 21 (1979), pp. 443–459.
[63] , Numerical Methods for Unconstrained Optimization and Nonlinear Equa-
tions, no. 16 in Classics in Applied Mathematics, SIAM, Philadelphia, 1996.
[64] J. E. Dennis and H. F. Walker, Convergence theorems for least change secant
update methods, SIAM J. Numer. Anal., 18 (1981), pp. 949–987.
[65] , Inaccuracy in quasi-Newton methods: Local improvement theorems, in
Mathematical Programming Study 22: Mathematical programming at Oberwolfach
II, North–Holland, Amsterdam, 1984, pp. 70–85.
[66] , Least-change sparse secant updates with inaccurate secant conditions,
SIAM J. Numer. Anal., 22 (1985), pp. 760–778.
[67] P. Deuflhard, R. W. Freund, and A. Walter, Fast secant methods for
the iterative solution of large nonsymmetric linear systems, Impact of Computing in
Science and Engineering, 2 (1990), pp. 244–276.
[68] W. J. Duncan, Some devices for the solution of large sets of simultaneous
linear equations (with an appendix on the reciprocation of partitioned matrices), The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
Seventh Series, 35 (1944), pp. 660–670.
[69] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact
Newton method, SIAM J. Sci. Comput., 17 (1996), pp. 16–32.
[70] , Globally convergent inexact Newton methods, SIAM J. Optim., 4 (1994),
pp. 393–422.
[71] H. C. Elman, Iterative Methods for Large, Sparse, Nonsymmetric Systems of
Linear Equations, PhD thesis, Yale University, New Haven, CT, 1982.
[72] H. C. Elman, Y. Saad, and P. E. Saylor, A hybrid Chebyshev-Krylov
subspace algorithm for solving nonsymmetric systems of linear equations, SIAM J.
Sci. Statist. Comput., 7 (1986), pp. 840–855.
[73] M. Engelman, G. Strang, and K. J. Bathe, The application of quasi-
Newton methods in fluid mechanics, Internat. J. Numer. Methods Engrg., 17 (1981),
pp. 707–718.
[74] V. Faber and T. A. Manteuffel, Necessary and sufficient conditions for the
existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–
362.
[75] D. Feng, P. D. Frank, and R. B. Schnabel, Local convergence analysis of
tensor methods for nonlinear equations, Math. Programming, 62 (1993), pp. 427–459.
[76] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical
Analysis Dundee 1975, G. Watson, ed., Springer-Verlag, Berlin, New York, 1976,
pp. 73–89.

BIBLIOGRAPHY 157

[77] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.
[78] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of
linear systems, Acta Numerica, 1 (1991), pp. 57–100.
[79] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implemen-
tation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci.
Comput., 14 (1993), pp. 137–158.
[80] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual
algorithm for non-hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.
[81] , An implementation of the QMR method based on coupled two-term
recurrences, SIAM J. Sci. Comput., 15 (1994), pp. 313–337.
[82] D. M. Gay, Some convergence properties of Broyden’s method, SIAM J. Numer.
Anal., 16 (1979), pp. 623–630.
[83] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equa-
tions, Prentice-Hall, Englewood Cliffs, NJ, 1971.
[84] R. R. Gerber and F. T. Luk, A generalized Broyden’s method for solving
simultaneous linear equations, SIAM J. Numer. Anal., 18 (1981), pp. 882–890.
[85] P. E. Gill and W. Murray, Quasi-Newton methods for unconstrained
optimization, J. I. M. A., 9 (1972), pp. 91–108.
[86] , Safeguarded steplength algorithms for optimization using descent methods,
Tech. Report NAC 37, National Physical Laboratory Report, Teddington, England,
1974.
[87] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization,
Academic Press, London, 1981.
[88] A. A. Goldstein, Constructive Real Analysis, Harper and Row, New York,
1967.
[89] G. H. Golub and C. G. VanLoan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1983.
[90] A. Griewank, Analysis and modification of Newton’s method at singularities,
PhD thesis, Australian National University, 1981.
[91] , Rates of convergence for secant methods on nonlinear problems in Hilbert
space, in Numerical Analysis, Proceedings Guanajuato , Mexico 1984, Lecture Notes
in Math., No, 1230, J. P. Hennart, ed., Springer-Verlag, Heidelberg, 1986, pp. 138–
157.
[92] , The solution of boundary value problems by Broyden based secant methods,
in Computational Techniques and Applications: CTAC 85, Proceedings of CTAC,
Melbourne, August 1985, J. Noye and R. May, eds., North Holland, Amsterdam,
1986, pp. 309–321.
[93] , On the iterative solution of differential and integral equations using secant
updating techniques, in The State of the Art in Numerical Analysis, A. Iserles and
M. J. D. Powell, eds., Clarendon Press, Oxford, 1987, pp. 299–324.
[94] A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1991.
[95] A. Griewank and P. L. Toint, Local convergence analysis for partitioned
quasi-newton updates, Numer. Math., 39 (1982), pp. 429–448.
[96] , Partitioned variable metric methods for large sparse optimization problems,
Numer. Math., 39 (1982), pp. 119–137.
[97] W. A. Gruver and E. Sachs, Algorithmic Methods In Optimal Control,
Pitman, London, 1980.

158 BIBLIOGRAPHY

[98] M. H. Gutknecht, Variants of BICGSTAB for matrices with complex spectrum,
SIAM J. Sci. Comput., 14 (1993), pp. 1020–1033.
[99] W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer Series
in Computational Mathematics, Springer-Verlag, New York, 1985.

[100] , Multigrid methods of the second kind, in Multigrid Methods for Integral
and Differential Equations, Oxford University Press, Oxford, 1985.

[101] W. E. Hart and S. O. W. Soul, Quasi-Newton methods for discretized
nonlinear boundary problems, Journal of the Institute of Applied Mathematics, 11
(1973), pp. 351–359.

[102] H. V. Henderson and S. R. Searle, On deriving the inverse of a sum of
matrices, SIAM Rev., 23 (1981), pp. 53–60.

[103] M. R. Hestenes and E. Steifel, Methods of conjugate gradient for solving
linear systems, J. of Res. Nat. Bureau Standards, 49 (1952), pp. 409–436.

[104] D. M. Hwang and C. T. Kelley, Convergence of Broyden’s method in Banach
spaces, SIAM J. Optim., 2 (1992), pp. 505–532.

[105] E. Isaacson and H. B. Keller, Analysis of numerical methods, John Wiley,
New York, 1966.

[106] L. Kantorovich and G. Akilov, Functional Analysis, 2nd ed., Pergamon
Press, New York, 1982.

[107] L. V. Kantorovich, Functional analysis and applied mathematics, Uspehi Mat.
Nauk., 3 (1948), pp. 89–185. translation by C. Benster as Nat. Bur. Standards Report
1509. Washington, D. C., 1952.

[108] H. B. Keller, Newton’s method under mild differentiability conditions, J.
Comput. Sys. Sci, 4 (1970), pp. 15–28.

[109] , Lectures on Numerical Methods in Bifurcation Theory, Tata Institute of
Fundamental Research, Lectures on Mathematics and Physics, Springer-Verlag, New
York, 1987.

[110] C. T. Kelley, Solution of the Chandrasekhar H-equation by Newton’s method,
J. Math. Phys., 21 (1980), pp. 1625–1628.

[111] , A fast multilevel algorithm for integral equations, SIAM J. Numer. Anal.,
32 (1995), pp. 501–513.

[112] C. T. Kelley and E. W. Sachs, A quasi-Newton method for elliptic boundary
value problems, SIAM J. Numer. Anal., 24 (1987), pp. 516–531.

[113] , A pointwise quasi-Newton method for unconstrained optimal control
problems, Numer. Math., 55 (1989), pp. 159–176.

[114] , Fast algorithms for compact fixed point problems with inexact function
evaluations, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 725–742.

[115] , A new proof of superlinear convergence for Broyden’s method in Hilbert
space, SIAM J. Optim., 1 (1991), pp. 146–150.

[116] , Pointwise Broyden methods, SIAM J. Optim., 3 (1993), pp. 423–441.
[117] , Multilevel algorithms for constrained compact fixed point problems, SIAM
J. Sci. Comput., 15 (1994), pp. 645–667.

[118] C. T. Kelley and R. Suresh, A new acceleration method for Newton’s method
at singular points, SIAM J. Numer. Anal., 20 (1983), pp. 1001–1009.

[119] C. T. Kelley and Z. Q. Xue, Inexact Newton methods for singular problems,
Optimization Methods and Software, 2 (1993), pp. 249–267.

[120] , GMRES and integral operators, SIAM J. Sci. Comput., 17 (1996), pp. 217–
226.

[121] T. Kerkhoven and Y. Saad, On acceleration methods for coupled nonlinear
elliptic systems, Numerische Mathematik, 60 (1992), pp. 525–548.

BIBLIOGRAPHY 159

[122] C. Lanczos, Solution of linear equations by minimized iterations, J. Res. Natl.
Bur. Stand., 49 (1952), pp. 33–53.

[123] T. A. Manteuffel, Adaptive procedure for estimating parameters for the
nonsymmetric Tchebychev iteration, Numer. Math., 31 (1978), pp. 183–208.

[124] T. A. Manteuffel and S. Parter, Preconditioning and boundary conditions,
SIAM J. Numer. Anal., 27 (1990), pp. 656–694.

[125] E. S. Marwil, Convergence results for Schubert’s method for solving sparse
nonlinear equations, SIAM J. Numer. Anal., (1979), pp. 588–604.

[126] S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[127] J. A. Meijerink and H. A. van der Vorst, An iterative solution method
for linear systems of which the coefficient matrix is a symmetric M-matrix, Math.
Comput., 31 (1977), pp. 148–162.

[128] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, forthcoming.
[129] J. J. Moré, Recent developments in algorithms and software for trust region

methods, in Mathematical Programming: The State of the Art, A. Bachem,
M. Gröschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983, pp. 258–287.

[130] J. J. Moré and J. A. Trangenstein, On the global convergence of Broyden’s
method, Math. Comput., 30 (1976), pp. 523–540.

[131] T. E. Mott, Newton’s method and multiple roots, Amer. Math. Monthly, 64
(1957), pp. 635–638.

[132] T. W. Mullikin, Some probability distributions for neutron transport in a half
space, J. Appl. Probab., 5 (1968), pp. 357–374.

[133] W. Murray and M. L. Overton, Steplength algorithms for minimizing a
class of nondifferentiable functions, Computing, 23 (1979), pp. 309–331.

[134] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are
nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–
795.

[135] N. M. Nachtigal, L. Reichel, and L. N. Trefethen, A hybrid gmres
algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal. Appl., 13 (1992).

[136] S. G. Nash, Preconditioning of truncated Newton methods, SIAM J. Sci. Statist.
Comput., 6 (1985), pp. 599–616.

[137] , Who was Raphson? (an answer). Electronic Posting to NA-Digest,
v92n23, 1992.

[138] J. L. Nazareth, Conjugate gradient methods less dependent on conjugacy,
SIAM Rev., 28 (1986), pp. 501–512.

[139] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser,
Basel, 1993.

[140] I. Newton, The Mathematical Papers of Isaac Newton (7 volumes), D. T.
Whiteside, ed., Cambridge University Press, Cambridge, 1967–1976.

[141] B. Noble, Applied Linear Algebra, Prentice Hall, Englewood Cliffs, NJ, 1969.
[142] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numer-
ica, 1 (1991), pp. 199–242.

[143] D. P. O’Leary, Why Broyden’s nonsymmetric method terminates on linear
equations, SIAM J. Optim., 4 (1995), pp. 231–235.

[144] J. M. Ortega, Numerical Analysis A Second Course, Classics in Appl. Math.,
No. 3, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

[145] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, New York, 1970.

[146] A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic

160 BIBLIOGRAPHY

Press, New York, 1960.
[147] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood
Cliffs, NJ, 1980.

[148] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos
algorithm for unsymmetric matrices, Math. Comput., 44 (1985), pp. 105–124.

[149] D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic
and elliptic differential equations, J. Soc. Indus. Appl. Math., 11 (1955), pp. 28–41.

[150] G. Peters and J. Wilkinson, Inverse iteration, ill-conditioned equations and
Newton’s method, SIAM Rev., 29 (1979), pp. 339–360.

[151] L. R. Petzold, A description of DASSL: a differential/algebraic system solver,
in Scientific Computing, R. S. Stepleman et al., eds., North Holland, Amsterdam,
1983, pp. 65–68.

[152] E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la
méthode des approximations successives, J. de Math. ser 4, 6 (1890), pp. 145–210.

[153] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical
Methods for Nonlinear Algebraic Equations, Gordon and Breach, New York, 1970,
pp. 87–114.

[154] , Convergence properties of a class of minimization algorithms, in Nonlinear
Programming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds.,
Academic Press, New York, 1975, pp. 1–27.

[155] L. B. Rall, Convergence of the Newton process to multiple solutions, Numer.
Math., 9 (1961), pp. 23–37.

[156] J. Raphson, Analysis aequationum universalis seu ad aequationes algebraicas
resolvendas methodus generalis, et expedita, ex nova infinitarum serierum doctrina,
deducta ac demonstrata. Original in British Library, London, 1690.

[157] G. W. Reddien, On Newton’s method for singular problems, SIAM J. Numer.
Anal., 15 (1978), pp. 993–986.

[158] J. K. Reid, Least squares solution of sparse systems of nonlinear equations by a
modified Marquardt algorithm, in Proc. NATO Conf. at Cambridge, July 1972, North
Holand, Amsterdam, 1973, pp. 437–445.

[159] W. C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations,
John Wiley, New York, 1986.

[160] J. R. Rice, Experiments on Gram-Schmidt orthogonalization, Math. Comput.,
20 (1966), pp. 325–328.

[161] T. J. Rivlin, The Chebyshev Polynomials, John Wiley, New York, 1974.
[162] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York, 1968.
[163] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient

method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 865–881.
[164] , Least squares polynomials in the complex plane and their use for solving

nonsymmetric linear systems, SIAM J. Numer. Anal., 24 (1987), pp. 155–169.
[165] , ILUT: A dual threshold incomplete LU factorization, Tech. Report 92-38,
Computer Science Department, University of Minnesota, 1992.

[166] , A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.
Comput., (1993), pp. 461–469.

[167] Y. Saad and M. Schultz, GMRES a generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986),
pp. 856–869.

[168] E. Sachs, Broyden’s method in Hilbert space, Math. Programming, 35 (1986),
pp. 71–82.

[169] P. E. Saylor and D. C. Smolarski, Implementation of an adaptive algorithm

BIBLIOGRAPHY 161

for Richardson’s method, Linear Algebrra Appl., 154/156 (1991), pp. 615–646.
[170] R. B. Schnabel and P. D. Frank, Tensor methods for nonlinear equations,
SIAM J. Numer. Anal., 21 (1984), pp. 815–843.

[171] E. Schröder, Über unendlich viele Algorithmen zur Auflosung der Gleichungen,
Math. Ann., 2 (1870), pp. 317–365.

[172] L. K. Schubert, Modification of a quasi-Newton method for nonlinear equations
with sparse Jacobian, Math. Comput., 24 (1970), pp. 27–30.

[173] G. A. Schultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-
based algorithms for unconstrained minimization with strong global convergence
properties, SIAM J. Numer. Anal., 22 (1985), pp. 47–67.

[174] V. E. Shamanskii, A modification of Newton’s method, Ukran. Mat. Zh., 19
(1967), pp. 133–138. (In Russian.)

[175] A. H. Sherman, On Newton-iterative methods for the solution of systems of
nonlinear equations, SIAM J. Numer. Anal., 14 (1978), pp. 755–774.

[176] J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corre-
sponding to changes in the elements of a given column or a given row of the original
matrix (abstract), Ann. Math. Statist., 20 (1949), p. 621.

[177] , Adjustment of an inverse matrix corresponding to a change in one element
of a given matrix, Ann. Math. Statist., 21 (1950), pp. 124–127.

[178] K. Sigmon, MATLAB Primer, Fourth Edition, CRC Press, Boca Raton, FL,
1994.

[179] D. C. Smolarski and P. E. Saylor, An optimum iterative method for solving
any linear system with a square matrix, BIT, 28 (1988), pp. 163–178.

[180] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear
systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36–52.

[181] D. C. Sorensen, Newton’s method with a model trust region modification, SIAM
J. Numer. Anal., 19 (1982), pp. 409–426.

[182] G. Starke, Alternating direction preconditioning for nonsymmetric systems of
linear equations, SIAM J. Sci. Comput., 15 (1994), pp. 369–385.

[183] G. Starke and R. S. Varga, A hybrid Arnoldi-Faber iterative method for
nonsymmetric systems of linear equations, Numer. Math., 64 (1993), pp. 213–239.

[184] G. W. Stewart, Introduction to matrix computations, Academic Press, New
York, 1973.

[185] E. L. Stiefel, Kernel polynomials in linear algebra and their numerical
applications, U.S. National Bureau of Standards, Applied Mathematics Series, 49
(1958), pp. 1–22.

[186] P. N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and
the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle,
SIAM Rev., 19 (1977), pp. 490–501.

[187] , Approximate cyclic reduction for solving Poisson’s equation, SIAM J. Sci.
Statist. Comput., 8 (1987), pp. 199–209.

[188] P. N. Swarztrauber and R. A. Sweet, Algorithm 541: Efficient FORTRAN
subprograms for the solution of elliptic partial differential equations, ACM Trans.
Math. Software, 5 (1979), pp. 352–364.

[189] P. L. Toint, On sparse and symmetric matrix updating subject to a linear
equation, Math. Comput., 31 (1977), pp. 954–961.

[190] J. F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall,
Englewood Cliffs, NJ, 1964.

[191] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant to
Bi-CG for the solution of nonsymmetric systems, SIAM J. Sci. Statist. Comput., 13

162 BIBLIOGRAPHY

(1992), pp. 631–644.
[192] H. A. van der Vorst and C. Vuik, The superlinear convergence behaviour

of GMRES, Journal Comput. Appl. Math., 48 (1993), pp. 327–341.
[193] R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ,
1962.

[194] E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to
the Neutron Diffusion Equations of Reactor Physics, Prentice Hall, Englewood Cliffs,
NJ, 1966.

[195] H. F. Walker, Implementation of the GMRES method using Householder
transformations, SIAM J. Sci. Statist. Comput., 9 (1989), pp. 815–825.

[196] , Residual smoothing and peak/plateau behavior in Krylov subspace methods,
Applied Numer. Math., 19 (1995), pp. 279–286.

[197] H. F. Walker and L. Zhou, A simpler GMRES, J. Numer. Lin. Alg. Appl.,
6 (1994), pp. 571–581.

[198] L. T. Watson, S. C. Billups, and A. P. Morgan, Algorithm 652:
HOMPACK: A suite of codes for globally convergent homotopy algorithms, ACM
Trans. Math. Software, 13 (1987), pp. 281–310.

[199] M. A. Woodbury, Inverting modified matrices, Memorandum Report 42,
Statistical Research Group, Princeton NJ, 1950.

[200] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New
York, 1971.

[201] T. J. Ypma, The effect of rounding errors on Newton-like methods, IMA J.
Numer. Anal., 3 (1983), pp. 109–118.

[202] L. Zhou and H. F. Walker, Residual smoothing techniques for iterative
methods, SIAM J. Sci. Comput., 15 (1994), pp. 297–312.

Index

A-conjugacy, 20

A-norm, 12

Approximate inverse, 6, 77

Armijo rule, 137

Arnoldi process, 37

Backtracking, 136

Bad Broyden method, 132

Banach Lemma, 6

Bi-CG, 47

algorithm, 47

Bi-CGSTAB, 50

algorithm, 50

finite difference, 110

Bi-conjugacy, 47

Bi-Conjugate Gradient, 47

algorithm, 47

Bi-orthogonality, 47

Bounded deterioration, 118, 121

Breakdown, 47

Broyden sequence, 120

Broyden’s method, 113

convergence

linear equations, 118

nonlinear equations, 120

implementation, 123

limited memory, 123

restarting, 123

sparse, 133

Brsol

algorithm, 126

Brsola

algorithm, 145

Cauchy sequence, 67

CGNE, 25

CGNR, 25

CGS, 48

algorithm, 49

Chandrasekhar H-equation, 87

solution

Broyden’s method, 128

Newton’s method, 87

Newton-GMRES, 107

Characteristic polynomial, 34

Chord method, 74

algorithm, 74

convergence, 76

Condition number, 3

Conjugate Gradient

algorithm, 22

finite termination, 14

minimization property, 12

use of residual polynomials, 14

Conjugate Gradient Squared, 48

algorithm, 49

Conjugate transpose, 34

Contraction mapping, 67

Contraction Mapping Theorem, 67

Convection-Diffusion Equation

Broyden’s method, 130

Newton–Armijo, 146

Newton-GMRES, 108

solution

Broyden’s method, 130

Convergence theorem

Broyden’s method

linear equations, 119

163

164 INDEX

nonlinear equations, 123
chord method, 76, 77
contraction mapping, 67
finite difference Newton, 81
inexact Newton’s method, 96,

99
Newton’s method, 71
Newton–Armijo, 141
Newton-GMRES, 103
secant method, 82
Shamanskii method, 79

DASPK, 110
Dennis–Moré Condition, 114

superlinear convergence, 115
Diagonalizable matrix, 34
Diagonalizing transformation, 34
Difference approximation, 79

choice of h, 80
directional derivative, 80
Jacobian, 80
nonlinearity, 80

Elementary Jordan block, 60

Fixed point, 66
Fixed-point iteration, 66
Forcing term, 95

choice of, 104

Gauss–Seidel
algorithm, 9

Givens rotation, 43
Globally convergent algorithm, 135
GMRES

algorithm, 40, 45
diagonalizable matrices, 34
finite differences, 101
finite termination, 34
GMRES(m), 39, 46
algorithm, 46

loss of orthogonality, 41
minimization property, 33
restarts, 39, 46
use of residual polynomials, 33

Gram–Schmidt process, 37

loss of orthogonality, 40, 41
modified, 40

H-equation, 87
solution
Broyden’s method, 128
Newton’s method, 87
Newton-GMRES, 107

Hölder Continuity, 91
High order methods, 78
Hybrid algorithms, 36

Induced matrix norm
definition, 3

Inexact Newton method, 95
Inner iteration, 100
Inverse power method, 94
Inverse secant equation, 132
Inverse Tangent

Newton–Armijo, 146
Iteration matrix, 5
Iteration statistics, 91

Jacobi
algorithm, 8
convergence result, 8
preconditioning, 9

Jacobi preconditioning, 24
Jordan block, 60

Kantorovich Theorem, 83
Krylov subspace, 11

Left preconditioning, 36
Limited memory, 123
Line Search

parabolic
three-point, 143
two-point, 142

polynomial, 142
Line search, 135, 136
Linear PDE

Bi-CGSTAB, 57
Broyden’s method, 127
CGNR, 55
GMRES, 54

INDEX 165

solution
Broyden’s method, 127

TFQMR, 58
Lipschitz continuous

definition, 67
Local improvement, 75

inexact, 100

Matrix norm, 3
Matrix splitting, 7
Modified Bratu Problem, 132

Newton direction, 136
Newton’s method, 71

algorithm, 74
convergence rate, 71
finite differences, 81
stagnation, 81

inexact, 95
monotone convergence, 92
termination, 72

Newton-GMRES, 101
convergence rates, 103
finite differences, 101
safeguarding, 105

Newton-iterative method, 100
Normal matrix, 34
Nsol

algorithm, 86
Nsola

algorithm, 138
Nsolgm

algorithm, 105

Outer iteration, 100
Over solving, 104

Picard iteration, 66
Poisson solver, 24, 27

preconditioner
for CG, 24, 27
for GMRES, 36, 54

Polynomial preconditioning, 24, 36
Richardson iteration, 7

Positive definite matrix, 11
Preconditioned CG

algorithm, 23
Preconditioning

conjugate gradient, 19
GMRES, 36
incomplete
factorization, 24, 36

Jacobi, 24
Poisson solver, 27, 36, 54
polynomial, 24, 36
Richardson iteration, 6

Quasi-minimization, 52
Quasi-Newton methods, 113
Quasi-residual, 51
Quasi-residual norm, 52

Relaxation parameter, 9
Reorthogonalization, 41
Residual

linear, 11
as error estimate, 4

nonlinear
as error estimate, 72

relative nonlinear, 72
Residual polynomials

application to CG, 14
application to CGNR, 25
application to GMRES, 33
application to TFQMR, 52
definition, 14

Richardson iteration, 5
nonlinear, 66

Right preconditioning, 36

Schubert algorithm, 133
Search direction, 136
Secant equation, 113
Secant method, 82

convergence, 82
q-order, 91
r-order, 91

Secant update, 113
Shamanskii method, 78

algorithm, 78
convergence, 79

166 INDEX

finite differences, 91
Sherman–Morrison

formula, 124, 132
Sherman–Morrison–Woodbury for-

mula, 132
Simple decrease, 136
SOR

algorithm, 9
SPD matrix, 12
Spectral radius, 7
Stagnation, 94

Newton’s method, 75
Stationary iterative methods, 5

as preconditioners, 24
Successive substitution, 66
Sufficient decrease, 137
Symmetric Gauss–Seidel

algorithm, 9
preconditioning, 9

Symmetric matrix, 11
Symmetric positive definite matrix,

12

Termination
CG, 16
GMRES, 35, 38
linear equations, 4
nonlinear equations, 72
TFQMR, 52

TFQMR, 51
algorithm, 53
finite difference, 110
weights, 52

Weighted norm, 98

