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Preface to the Millennium Edition

The original 1981 edition of A Course in Universal Algebra has now been
LaTeXed so the authors could make the out-of-print Springer-Verlag Gradu-
ate Texts in Mathematics edition available once again, with corrections. The
subject of Universal Algebra has flourished mightily since 1981, and we still
believe that A Course in Universal Algebra offers an excellent introduction
to the subject.

Special thanks go to Lis D’Alessio for the superb job of LaTeXing this
edition, and to NSERC for their support which has made this work possible.
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Preface

Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and
a student entering the subject now will find a bewildering amount of material to digest.

This text is not intended to be encyclopedic; rather, a few themes central to universal
algebra have been developed sufficiently to bring the reader to the brink of current research.
The choice of topics most certainly reflects the authors’ interests.

Chapter I contains a brief but substantial introduction to lattices, and to the close con-
nection between complete lattices and closure operators. In particular, everything necessary
for the subsequent study of congruence lattices is included.

Chapter II develops the most general and fundamental notions of universal algebra—
these include the results that apply to all types of algebras, such as the homomorphism and
isomorphism theorems. Free algebras are discussed in great detail—we use them to derive
the existence of simple algebras, the rules of equational logic, and the important Mal’cev
conditions. We introduce the notion of classifying a variety by properties of (the lattices of)
congruences on members of the variety. Also, the center of an algebra is defined and used to
characterize modules (up to polynomial equivalence).

In Chapter III we show how neatly two famous results—the refutation of Euler’s con-
jecture on orthogonal Latin squares and Kleene’s characterization of languages accepted by
finite automata—can be presented using universal algebra. We predict that such “applied
universal algebra” will become much more prominent.

Chapter IV starts with a careful development of Boolean algebras, including Stone du-
ality, which is subsequently used in our study of Boolean sheaf representations; however,
the cumbersome formulation of general sheaf theory has been replaced by the considerably
simpler definition of a Boolean product. First we look at Boolean powers, a beautiful tool
for transferring results about Boolean algebras to other varieties as well as for providing a
structure theory for certain varieties. The highlight of the chapter is the study of discrimi-
nator varieties. These varieties have played a remarkable role in the study of spectra, model
companions, decidability, and Boolean product representations. Probably no other class of
varieties is so well-behaved yet so fascinating.

The final chapter gives the reader a leisurely introduction to some basic concepts, tools,
and results of model theory. In particular, we use the ultraproduct construction to derive the
compactness theorem and to prove fundamental preservation theorems. Principal congruence
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x Preface

formulas are a favorite model-theoretic tool of universal algebraists, and we use them in the
study of the sizes of subdirectly irreducible algebras. Next we prove three general results on
the existence of a finite basis for an equational theory. The last topic is semantic embeddings,
a popular technique for proving undecidability results. This technique is essentially algebraic
in nature, requiring no familiarity whatsoever with the theory of algorithms. (The study
of decidability has given surprisingly deep insight into the limitations of Boolean product
representations.)

At the end of several sections the reader will find selected references to source material
plus state of the art texts or papers relevant to that section, and at the end of the book one
finds a brief survey of recent developments and several outstanding problems.

The material in this book divides naturally into two parts. One part can be described
as “what every mathematician (or at least every algebraist) should know about universal
algebra.” It would form a short introductory course to universal algebra, and would consist
of Chapter I; Chapter II except for §4, §12, §13, and the last parts of §11, §14; Chapter
IV §1–4; and Chapter V §1 and the part of §2 leading to the compactness theorem. The
remaining material is more specialized and more intimately connected with current research
in universal algebra.

Chapters are numbered in Roman numerals I through V, the sections in a chapter are
given by Arabic numerals, §1, §2, etc. Thus II§6.18 refers to item 18, which happens to
be a theorem, in Section 6 of Chapter II. A citation within Chapter II would simply refer
to this item as 6.18. For the exercises we use numbering such as II§5 Exercise 4, meaning
the fourth exercise in §5 of Chapter II. The bibliography is divided into two parts, the first
containing books and survey articles, and the second research papers. The books and survey
articles are referred to by number, e.g., G. Birkhoff [3], and the research papers by year, e.g.,
R. McKenzie [1978].
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Preliminaries

We have attempted to keep our notation and conventions in agreement with those of the
closely related subject of model theory, especially as presented in Chang and Keisler’s Model
Theory [8]. The reader needs only a modest exposure to classical algebra; for example he
should know what groups and rings are.

We will assume a familiarity with the most basic notions of set theory. Actually, we use
classes as well as sets. A class of sets is frequently called a family of sets. The notations,
Ai, i ∈ I, and (Ai)i∈I refer to a family of sets indexed by a set I. A naive theory of sets
and classes is sufficient for our purposes. We assume the reader is familiar with membership
(∈), set-builder notation ({—:—}), subset (⊆), union (∪), intersection (∩), difference (−),
ordered n-tuples (〈x1, . . . , xn〉), (direct) products of sets (A×B,

∏
i∈I Ai), and (direct) powers

of sets (AI). Also, it is most useful to know that

(a) concerning relations:

(i) an n-ary relation on a set A is a subset of An;

(ii) if n = 2 it is called a binary relation on A;

(iii) the inverse rˇ of a binary relation r on A is specified by 〈a, b〉 ∈ rˇ iff 〈b, a〉 ∈ r;
(iv) the relational product r◦s of two binary relations r, s on A is given by: 〈a, b〉 ∈ r◦s

iff for some c, 〈a, c〉 ∈ r, 〈c, b〉 ∈ s;

(b) concerning functions:

(i) a function f from a set A to a set B, written f : A → B, is a subset of A × B
such that for each a ∈ A there is exactly one b ∈ B with 〈a, b〉 ∈ f ; in this case
we write f(a) = b or f : a 7→ b;

(ii) the set of all functions from A to B is denoted by BA;

(iii) the function f ∈ BA is injective (or one-to-one) if f(a1) = f(a2)⇒ a1 = a2;

(iv) the function f ∈ BA is surjective (or onto) if for every b ∈ B there is an a ∈ A
with f(a) = b;

1



2 Preliminaries

(v) the function f ∈ BA is bijective if it is both injective and surjective;

(vi) for f ∈ BA and X ⊆ A, f(X) = {b ∈ B : f(a) = b for some a ∈ X};
(vii) for f ∈ BA and Y ⊆ B, f−1(Y ) = {a ∈ A : f(a) ∈ Y };
(viii) for f : A → B and g : B → C, let g ◦ f : A → C be the function defined by

(g ◦ f)(a) = g(f(a)). [This does not agree with the relational product defined
above—but the ambiguity causes no problem in practice.];

(c) given a family F of sets, the union of F,
⋃
F, is defined by a ∈

⋃
F iff a ∈ A for some

A ∈ F (define the intersection of F,
⋂
F, dually);

(d) a chain of sets C is a family of sets such that for each A,B ∈ C either A ⊆ B or
B ⊆ A;

(e) Zorn’s lemma says that if F is a nonempty family of sets such that for each chain C of
members of F there is a member of F containing

⋃
C (i.e., C has an upper bound in

F ) then F has a maximal member M (i.e., M ∈ F and M ⊆ A ∈ F implies M = A);

(f) concerning ordinals:

(i) the ordinals are generated from the empty set ∅ using the operations of successor
(x+ = x ∪ {x}) and union;

(ii) 0 = ∅, 1 = 0+, 2 = 1+, etc.; the finite ordinals are 0, 1, . . . ; and n = {0, 1, . . . , n−
1}; the natural numbers are 1, 2, 3 . . . , the nonzero finite ordinals;

(iii) the first infinite ordinal is ω = {0, 1, 2, . . .};
(iv) the ordinals are well-ordered by the relation ∈, also called <;

(g) concerning cardinality:

(i) two sets A and B have the same cardinality if there is a bijection from A to B;

(ii) the cardinals are those ordinals κ such that no earlier ordinal has the same car-
dinality as κ. The finite cardinals are 0, 1, 2, . . . ; and ω is the smallest infinite
cardinal;

(iii) the cardinality of a set A, written |A|, is that (unique) cardinal κ such that A and
κ have the same cardinality;

(iv) |A| · |B| = |A × B| [= max(|A|, |B|) if either is infinite and A,B 6= ∅] . A ∩ B =
∅⇒ |A|+ |B| = |A ∪B| [= max(|A|, |B|) if either is infinite];

(h) one usually recognizes that a class is not a set by noting that it is too big to be put in
one-to-one-correspondence with a cardinal (for example, the class of all groups).
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In Chapter IV the reader needs to know the basic definitions from point set topology,
namely what a topological space, a closed (open) set, a subbasis (basis) for a topological space,
a closed (open) neighborhood of a point, a Hausdorff space, a continuous function, etc., are.

The symbol “=” is used to express the fact that both sides name the same object, whereas
“≈” is used to build equations which may or may not be true of particular elements. (A
careful study of ≈ is given in Chapter II.)





Chapter I

Lattices

In the study of the properties common to all algebraic structures (such as groups, rings, etc.)
and even some of the properties that distinguish one class of algebras from another, lattices
enter in an essential and natural way. In particular, congruence lattices play an important
role. Furthermore, lattices, like groups or rings, are an important class of algebras in their
own right, and in fact one of the most beautiful theorems in universal algebra, Baker’s finite
basis theorem, was inspired by McKenzie’s finite basis theorem for lattices. In view of this
dual role of lattices in relation to universal algebra, it is appropriate that we start with a
brief study of them. In this chapter the reader is acquainted with those concepts and results
from lattice theory which are important in later chapters. Our notation in this chapter is
less formal than that used in subsequent chapters. We would like the reader to have a casual
introduction to the subject of lattice theory.

The origin of the lattice concept can be traced back to Boole’s analysis of thought and
Dedekind’s study of divisibility. Schroeder and Pierce were also pioneers at the end of the
last century. The subject started to gain momentum in the 1930’s and was greatly promoted
by Birkhoff’s book Lattice Theory in the 1940’s.

§1. Definitions of Lattices

There are two standard ways of defining lattices—one puts them on the same (algebraic)
footing as groups or rings, and the other, based on the notion of order, offers geometric
insight.

Definition 1.1. A nonempty set L together with two binary operations ∨ and ∧ (read
“join” and “meet” respectively) on L is called a lattice if it satisfies the following identities:

L1: (a) x ∨ y ≈ y ∨ x
(b) x ∧ y ≈ y ∧ x (commutative laws)

L2: (a) x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z

5



6 I Lattices

(b) x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (associative laws)
L3: (a) x ∨ x ≈ x

(b) x ∧ x ≈ x (idempotent laws)
L4: (a) x ≈ x ∨ (x ∧ y)

(b) x ≈ x ∧ (x ∨ y) (absorption laws).

Example. Let L be the set of propositions, let ∨ denote the connective “or” and ∧ denote
the connective “and”. Then L1 to L4 are well-known properties from propositional logic.

Example. Let L be the set of natural numbers, let ∨ denote the least common multiple
and ∧ denote the greatest common divisor. Then properties L1 to L4 are easily verifiable.

Before introducing the second definition of a lattice we need the notion of a partial order
on a set.

Definition 1.2. A binary relation ≤ defined on a set A is a partial order on the set A if the
following conditions hold identically in A:

(i) a ≤ a (reflexivity)

(ii) a ≤ b and b ≤ a imply a = b (antisymmetry)

(iii) a ≤ b and b ≤ c imply a ≤ c (transitivity).

If, in addition, for every a, b in A

(iv) a ≤ b or b ≤ a

then we say ≤ is a total order on A. A nonempty set with a partial order on it is called a
partially ordered set, or more briefly a poset, and if the relation is a total order then we speak
of a totally ordered set, or a linearly ordered set, or simply a chain. In a poset A we use the
expression a < b to mean a ≤ b but a 6= b.

Examples. (1) Let Su(A) denote the power set of A, i.e., the set of all subsets of A. Then
⊆ is a partial order on Su(A).

(2) Let A be the set of natural numbers and let ≤ be the relation “divides.” Then ≤ is
a partial order on A.

(3) Let A be the set of real numbers and let ≤ be the usual ordering. Then ≤ is a total
order on A.

Most of the concepts developed for the real numbers which involve only the notion of
order can be easily generalized to partially ordered sets.

Definition 1.3. Let A be a subset of a poset P. An element p in P is an upper bound for
A if a ≤ p for every a in A. An element p in P is the least upper bound of A (l.u.b. of A),
or supremum of A (sup A) if p is an upper bound of A, and a ≤ b for every a in A implies
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p ≤ b (i.e., p is the smallest among the upper bounds of A). Similarly we can define what it
means for p to be a lower bound of A, and for p to be the greatest lower bound of A (g.l.b.
of A), also called the infimum of A (inf A). For a, b in P we say b covers a, or a is covered
by b, if a < b, and whenever a ≤ c ≤ b it follows that a = c or c = b. We use the notation
a ≺ b to denote a is covered by b. The closed interval [a, b] is defined to be the set of c in P
such that a ≤ c ≤ b, and the open interval (a, b) is the set of c in P such that a < c < b.

Posets have the delightful characteristic that we can draw pictures of them. Let us
describe in detail the method of associating a diagram, the so-called Hasse diagram, with
a finite poset P. Let us represent each element of P by a small circle “◦”. If a ≺ b then
we draw the circle for b above the circle for a, joining the two circles with a line segment.
From this diagram we can recapture the relation ≤ by noting that a < b holds iff for some
finite sequence of elements c1, . . . , cn from P we have a = c1 ≺ c2 · · · cn−1 ≺ cn = b. We have
drawn some examples in Figure 1. It is not so clear how one would draw an infinite poset.
For example, the real line with the usual ordering has no covering relations, but it is quite
common to visualize it as a vertical line. Unfortunately, the rational line would have the
same picture. However, for those infinite posets for which the ordering is determined by the
covering relation it is often possible to draw diagrams which do completely convey the order
relation to the viewer; for example, consider the diagram in Figure 2 for the integers under
the usual ordering.

(a)

(g) (h)(f)(e)

(d)(c)(b)

Figure 1 Examples of Hasse diagrams
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.

..

.

..
Figure 2 Drawing the poset of the integers

Now let us look at the second approach to lattices.
Definition 1.4. A poset L is a lattice iff for every a, b in L both sup{a, b} and inf{a, b} exist
(in L).

The reader should verify that for each of the diagrams in Figure 1 the corresponding
poset is a lattice, with the exception of (e). The poset corresponding to diagram (e) does
have the interesting property that every pair of elements has an upper bound and a lower
bound.

We will now show that the two definitions of a lattice are equivalent in the following
sense: if L is a lattice by one of the two definitions then we can construct in a simple and
uniform fashion on the same set L a lattice by the other definition, and the two constructions
(converting from one definition to the other) are inverses. First we describe the constructions:

(A) If L is a lattice by the first definition, then define ≤ on L by a ≤ b iff a = a ∧ b;
(B) If L is a lattice by the second definition, then define the operations ∨ and ∧ by a∨ b =

sup{a, b}, and a ∧ b = inf{a, b}.

Suppose that L is a lattice by the first definition and ≤ is defined as in (A). From a∧a = a
follows a ≤ a. If a ≤ b and b ≤ a then a = a ∧ b and b = b ∧ a; hence a = b. Also if a ≤ b
and b ≤ c then a = a∧ b and b = b∧ c, so a = a∧ b = a∧ (b∧ c) = (a∧ b)∧ c = a∧ c; hence
a ≤ c. This shows ≤ is a partial order on L. From a = a ∧ (a ∨ b) and b = b ∧ (a ∨ b) follow
a ≤ a∨ b and b ≤ a∨ b, so a∨ b is an upper bound of both a and b. Now if a ≤ u and b ≤ u
then a ∨ u = (a ∧ u)∨ u = u, and likewise b ∨ u = u, so (a ∨ u) ∨ (b ∨ u) = u ∨ u = u; hence
(a ∨ b) ∨ u = u, giving (a ∨ b) ∧ u = (a ∨ b) ∧ [(a ∨ b) ∨ u] = a ∨ b (by the absorption law),
and this says a ∨ b ≤ u. Thus a ∨ b = sup{a, b}. Similarly, a ∧ b = inf{a, b}.

If, on the other hand, we are given a lattice L by the second definition, then the
reader should not find it too difficult to verify that the operations ∨ and ∧ as defined
in (B) satisfy the requirements L1 to L4, for example the absorption law L4(a) becomes
a = sup{a, inf{a, b}}, which is clearly true as inf{a, b} ≤ a.

The fact that these two constructions (A) and (B) are inverses is now an easy matter to
check. Throughout the text we will be using the word lattice to mean lattice by the first
definition (with the two operations join and meet), but it will often be convenient to freely
make use of the corresponding partial order.
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Exercises §1

1. Verify that Su(X) with the partial order ⊆ is a lattice. What are the operations ∨ and
∧?

2. Verify L1–L4 for ∨, ∧ as defined in (B) below Definition 1.4.

3. Show that the idempotent laws L3 of lattices follow from L1, L2, and L4.

4. Let C[0, 1] be the set of continuous functions from [0, 1] to the reals. Define ≤ on
C[0, 1] by f ≤ g iff f(a) ≤ g(a) for all a ∈ [0, 1]. Show that ≤ is a partial order which
makes C[0, 1] into a lattice.

5. If L is a lattice with operations ∨ and ∧, show that interchanging ∨ and ∧ still gives a
lattice, called the dual of L. (For constrast, note that interchanging + and · in a ring
usually does not give another ring.) Note that dualization turns the Hasse diagram
upside down.

6. If G is a group, show that the set of subgroups S(G) of G with the partial ordering
⊆ forms a lattice. Describe all groups G whose lattices of subgroups look like (b) of
Figure 1.

7. If G is a group, let N(G) be the set of normal subgroups of G. Define ∨ and ∧ on
N(G) by N1 ∧N2 = N1 ∩N2, and N1 ∨N2 = N1N2 = {n1n2 : n1 ∈ N1, n2 ∈ N2}. Show
that under these operations N(G) is a lattice.

8. If R is a ring, let I(R) be the set of ideals of R. Define ∨ and ∧ on I(R) by I1 ∧ I2 =
I1 ∩ I2, I1 ∨ I2 = {i1 + i2 : i1 ∈ I1, i2 ∈ I2}. Show that under these operations I(R) is a
lattice.

9. If ≤ is a partial order on a set A, show that there is a total order ≤∗ on A such that
a ≤ b implies a ≤∗ b. (Hint: Use Zorn’s lemma.)

10. If L is a lattice we say that an element a ∈ L is join irreducible if a = b∨c implies a = b
or a = c. If L is a finite lattice show that every element is of the form a1 ∨ · · · ∨ an,
where each ai is join irreducible.
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§2. Isomorphic Lattices, and Sublattices

The word isomorphism is used to signify that two structures are the same except for the
nature of their elements (for example, if the elements of a group are painted blue, one still
has essentially the same group). The following definition is a special case of II§2.1.

Definition 2.1. Two lattices L1 and L2 are isomorphic if there is a bijection α from L1 to
L2 such that for every a, b in L1 the following two equations hold: α(a ∨ b) = α(a) ∨ α(b)
and α(a ∧ b) = α(a) ∧ α(b). Such an α is called an isomorphism.

It is useful to note that if α is an isomorphism from L1 to L2 then α−1 is an isomorphism
from L2 to L1, and if β is an isomorphism from L2 to L3 then β ◦ α is an isomorphism from
L1 to L3. One can reformulate the definition of isomorphism in terms of the corresponding
order relations.

Definition 2.2. If P1 and P2 are two posets and α is a map from P1 to P2, then we say α
is order-preserving if α(a) ≤ α(b) holds in P2 whenever a ≤ b holds in P1.

Theorem 2.3. Two lattices L1 and L2 are isomorphic iff there is a bijection α from L1 to
L2 such that both α and α−1 are order-preserving.

Proof. If α is an isomorphism from L1 to L2 and a ≤ b holds in L1 then a = a ∧ b, so
α(a) = α(a∧ b) = α(a)∧α(b), hence α(a) ≤ α(b), and thus α is order-preserving. As α−1 is
an isomorphism, it is also order-preserving.

Conversely, let α be a bijection from L1 to L2 such that both α and α−1 are order-
preserving. For a, b in L1 we have a ≤ a ∨ b and b ≤ a ∨ b, so α(a) ≤ α(a ∨ b) and
α(b) ≤ α(a∨ b), hence α(a)∨α(b) ≤ α(a∨ b). Furthermore, if α(a)∨α(b) ≤ u then α(a) ≤ u
and α(b) ≤ u, hence a ≤ α−1(u) and b ≤ α−1(u), so a ∨ b ≤ α−1(u), and thus α(a ∨ b) ≤ u.
This implies that α(a)∨α(b) = α(a∨b). Similarly, it can be argued that α(a)∧α(b) = α(a∧b).

2

c

1 2

d

b

a a

b

c

d

L L

Figure 3 An order-preserving bijection
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It is easy to give examples of bijections α between lattices which are order-preserving but
are not isomorphisms; for example, consider the map α(a) = a, . . . , α(d) = d where L1 and
L2 are the two lattices in Figure 3.

A sublattice of a lattice L is a subset of L which is a lattice in its own right, using the
same operations.

Definition 2.4. If L is a lattice and L′ 6= ∅ is a subset of L such that for every pair of
elements a, b in L′ both a ∨ b and a ∧ b are in L′, where ∨ and ∧ are the lattice operations
of L, then we say that L′ with the same operations (restricted to L′) is a sublattice of L.

If L′ is a sublattice of L then for a, b in L′ we will of course have a ≤ b in L′ iff a ≤ b in
L. It is interesting to note that given a lattice L one can often find subsets which as posets
(using the same order relation) are lattices, but which do not qualify as sublattices as the
operations ∨ and ∧ do not agree with those of the original lattice L. The example in Figure
4 illustrates this, for note that P = {a, c, d, e} as a poset is indeed a lattice, but P is not a
sublattice of the lattice {a, b, c, d, e}.

d

a

b

c

e
Figure 4

Definition 2.5. A lattice L1 can be embedded into a lattice L2 if there is a sublattice of L2

isomorphic to L1; in this case we also say L2 contains a copy of L1 as a sublattice.

Exercises §2

1. If (X, T ) is a topological space, show that the closed subsets, as well as the open
subsets, form a lattice using ⊆ as the partial order. Show that the lattice of open
subsets is isomorphic to the dual (see §1, Exercise 5) of the lattice of closed subsets.

2. If P and Q are posets, let QP be the poset of order-preserving maps from P to Q,
where for f, g ∈ QP we define f ≤ g iff f(a) ≤ g(a) for all a ∈ P. If Q is a lattice show
that QP is also a lattice.

3. If G is a group, is N(G) a sublattice of S(G) (see §1, Exercises 6,7)?



12 I Lattices

4. If ≤ is a partial order on P then a lower segment of P is a subset S of P such that if
s ∈ S, p ∈ P, and p ≤ s then p ∈ S. Show that the lower segments of P form a lattice
with the operations ∪,∩. If P has a least element, show that the set L(P ) of nonempty
lower segments of P forms a lattice.

5. If L is a lattice, then an ideal I of L is a nonempty lower segment closed under ∨. Show
that the set of ideals I(L) of L forms a lattice under ⊆ .

6. Given a lattice L, an ideal I of L is called a principal ideal if it is of the form {b ∈
L : b ≤ a}, for some a ∈ L. (Note that such subsets are indeed ideals.) Show that the
principal ideals of L form a sublattice of I(L) isomorphic to L.

§3. Distributive and Modular Lattices

The most thoroughly studied classes of lattices are distributive lattices and modular lattices.

Definition 3.1. A distributive lattice is a lattice which satisfies either (and hence, as we
shall see, both) of the distributive laws,

D1: x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)
D2: x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

Theorem 3.2. A lattice L satisfies D1 iff it satisfies D2.

Proof. Suppose D1 holds. Then

x ∨ (y ∧ z) ≈ (x ∨ (x ∧ z)) ∨ (y ∧ z) (by L4(a))

≈ x ∨ ((x ∧ z) ∨ (y ∧ z)) (by L2(a))

≈ x ∨ ((z ∧ x) ∨ (z ∧ y)) (by L1(b))

≈ x ∨ (z ∧ (x ∨ y)) (by D1)

≈ x ∨ ((x ∨ y) ∧ z) (by L1(b))

≈ (x ∧ (x ∨ y)) ∨ ((x ∨ y) ∧ z) (by L4(b))

≈ ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z) (by L1(b))

≈ (x ∨ y) ∧ (x ∨ z) (by D1).

Thus D2 also holds. A similar proof shows that if D2 holds then so does D1. 2

Actually every lattice satisfies both of the inequalities (x∧ y)∨ (x∧ z) ≤ x∧ (y ∨ z) and
x∨ (y∧ z) ≤ (x∨ y)∧ (x∨ z). To see this, note for example that x∧ y ≤ x and x∧ y ≤ y∨ z;
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hence x ∧ y ≤ x ∧ (y ∨ z), etc. Thus to verify the distributive laws in a lattice it suffices to
check either of the following inequalities:

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z)
(x ∨ y) ∧ (x ∨ z) ≤ x ∨ (y ∧ z).

Definition 3.3. A modular lattice is any lattice which satisfies the modular law

M: x ≤ y → x ∨ (y ∧ z) ≈ y ∧ (x ∨ z).

The modular law is obviously equivalent (for lattices) to the identity

(x ∧ y) ∨ (y ∧ z) ≈ y ∧ ((x ∧ y) ∨ z)

since a ≤ b holds iff a = a ∧ b. Also it is not difficult to see that every lattice satisfies

x ≤ y → x ∨ (y ∧ z) ≤ y ∧ (x ∨ z),

so to verify the modular law it suffices to check the implication

x ≤ y → y ∧ (x ∨ z) ≤ x ∨ (y ∧ z).

Theorem 3.4. Every distributive lattice is a modular lattice.

Proof. Just use D2, noting that a ∨ b = b whenever a ≤ b. 2

The next two theorems give a fascinating characterization of modular and distributive
lattices in terms of two five-element lattices called M5 and N5 depicted in Figure 5. In
neither case is a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), so neither M5 nor N5 is a distributive lattice.
For N5 we also see that a ≤ b but a ∨ (b ∧ c) 6= b ∧ (a ∨ c), so N5 is not modular. With a
small amount of effort one can verify that M5 does satisfy the modular law, however.

5 5

a b   c

b

a
c

M N

Figure 5
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Theorem 3.5 (Dedekind). L is a nonmodular lattice iff N5 can be embedded into L.

Proof. From the remarks above it is clear that if N5 can be embedded into L, then L does
not satisfy the modular law. For the converse, suppose that L does not satisfy the modular
law. Then for some a, b, c in L we have a ≤ b but a∨ (b∧ c) < b∧ (a∨ c). Let a1 = a∨ (b∧ c)
and b1 = b ∧ (a ∨ c). Then

c ∨ b1 = c ∧ [b ∧ (a ∨ c)]
= [c ∧ (c ∨ a)] ∧ b (by L1(a), L1(b), L2(b))

= c ∧ b (by L4(b))

and

c ∨ a1 = c ∨ [a ∨ (b ∧ c)]
= [c ∨ (c ∧ b)] ∨ a (by L1(a), L1(b), L2(a))

= c ∨ a (by L4(a)).

Now as c∧ b ≤ a1 ≤ b1 we have c ∧ b ≤ c ∧ a1 ≤ c ∧ b1 = c ∧ b, hence c ∧ a1 = c∧ b1 = c∧ b.
Likewise c ∨ b1 = c ∨ a1 = c ∨ a.

Now it is straightforward to verify that the diagram in Figure 6 gives the desired copy of
N5 in L. 2

c   b

a

b

c   a

c

1

1

Figure 6

Theorem 3.6 (Birkhoff). L is a nondistributive lattice iff M5 or N5 can be embedded into
L.

Proof. If either M5 or N5 can be embedded into L, then it is clear from earlier remarks
that L cannot be distributive. For the converse, let us suppose that L is a nondistributive
lattice and that L does not contain a copy of N5 as a sublattice. Thus L is modular by 3.5.
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Since the distributive laws do not hold in L, there must be elements a, b, c from L such that
(a ∧ b) ∨ (a ∧ c) < a ∧ (b ∨ c). Let us define

d = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)
e = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)
a1 = (a ∧ e) ∨ d
b1 = (b ∧ e) ∨ d
c1 = (c ∧ e) ∨ d.

Then it is easily seen that d ≤ a1, b1, c1 ≤ e. Now from

a ∧ e = a ∧ (b ∨ c) (by L4(b))

and (applying the modular law to switch the underlined terms)

a ∧ d = a ∧ ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c))
= ((a ∧ b) ∨ (a ∧ c)) ∨ (a ∧ (b ∧ c)) (by M)

= (a ∧ b) ∨ (a ∧ c)

it follows that d < e.

1 11

e

d

a b   c

Figure 7

We now wish to show that the diagram in Figure 7 is a copy of M5 in L. To do this it
suffices to show that a1 ∧ b1 = a1 ∧ c1 = b1 ∧ c1 = d and a1 ∨ b1 = a1 ∨ c1 = b1 ∨ c1 = e.
We will verify one case only and the others require similar arguments (in the following we
do not explicitly state several steps involving commutativity and associativity; the terms to
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be interchanged when the modular law is applied have been underlined):

a1 ∧ b1 = ((a ∧ e) ∨ d) ∧ ((b ∧ e) ∨ d)

= ((a ∧ e) ∧ ((b ∧ e) ∨ d)) ∨ d (by M)

= ((a ∧ e) ∧ ((b ∨ d) ∧ e)) ∨ d (by M)

= ((a ∧ e) ∧ e ∧ (b ∨ d)) ∨ d
= ((a ∧ e) ∧ (b ∨ d)) ∨ d (by L3(b))

= (a ∧ (b ∨ c) ∧ (b ∨ (a ∧ c))) ∨ d (by L4)

= (a ∧ (b ∨ ((b ∨ c) ∧ (a ∧ c)))) ∨ d (by M)

= (a ∧ (b ∨ (a ∧ c))) ∨ d (a ∧ c ≤ b ∨ c)
= (a ∧ c) ∨ (b ∧ a) ∨ d (by M)

= d.

2

Exercises §3
1. If we are given a set X, a sublattice of Su(X) under ⊆ is called a ring of sets (following

the terminology used by lattice theorists). Show that every ring of sets is a distributive
lattice.

2. If L is a distributive lattice, show that the set of ideals I(L) of L (see §2 Exercise 5)
forms a distributive lattice.

3. Let (X, T ) be a topological space. A subset of X is regular open if it is the interior of
its closure. Show that the family of regular open subsets of X with the partial order
⊆ is a distributive lattice.

4. If L is a finite lattice let J(L) be the poset of join irreducible elements of L (see
§1 Exercise 10), where a ≤ b in J(L) means a ≤ b in L. Show that if L is a finite
distributive lattice then L is isomorphic to L(J(L)) (see §2 Exercise 4), the lattice
of nonempty lower segments of J(L). Hence a finite lattice is distributive iff it is
isomorphic to some L(P ), for P a finite poset with least element. (This will be used
in V§5 to show the theory of distributive lattices is undecidable.)

5. If G is a group, show that N(G), the lattice of normal subgroups of G (see §1 Exercise
7), is a modular lattice. Is the same true of S(G)? Describe N(Z2 × Z2).

6. If R is a ring, show that I(R), the lattice of ideals of R (see §1 Exercise 8), is a modular
lattice.

7. If M is a left module over a ring R, show that the submodules of M under the partial
order ⊆ form a modular lattice.
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§4. Complete Lattices, Equivalence Relations,

and Algebraic Lattices

In the 1930’s Birkhoff introduced the class of complete lattices to study the combinations of
subalgebras.

Definition 4.1. A poset P is complete if for every subset A of P both sup A and inf A
exist (in P ). The elements sup A and inf A will be denoted by

∨
A and

∧
A, respectively.

All complete posets are lattices, and a lattice L which is complete as a poset is a complete
lattice.

Theorem 4.2. Let P be a poset such that
∧
A exists for every subset A, or such that

∨
A

exists for every subset A. Then P is a complete lattice.

Proof. Suppose
∧
A exists for every A ⊆ P. Then letting Au be the set of upper bounds

of A in P, it is routine to verify that
∧
Au is indeed

∨
A. The other half of the theorem is

proved similarly. 2

In the above theorem the existence of
∧
∅ guarantees a largest element in P, and likewise

the existence of
∨
∅ guarantees a smallest element in P. So an equivalent formulation of

Theorem 4.2 would be to say that P is complete if it has a largest element and the inf of
every nonempty subset exists, or if it has a smallest element and the sup of every nonempty
subset exists.

Examples. (1) The set of extended reals with the usual ordering is a complete lattice.
(2) The open subsets of a topological space with the ordering ⊆ form a complete lattice.
(3) Su(I) with the usual ordering ⊆ is a complete lattice.

A complete lattice may, of course, have sublattices which are incomplete (for example,
consider the reals as a sublattice of the extended reals). It is also possible for a sublattice
of a complete lattice to be complete, but the sups and infs of the sublattice not to agree
with those of the original lattice (for example look at the sublattice of the extended reals
consisting of those numbers whose absolute value is less than one together with the numbers
−2,+2).

Definition 4.3. A sublattice L′ of a complete lattice L is called a complete sublattice of L
if for every subset A of L′ the elements

∨
A and

∧
A, as defined in L, are actually in L′.

In the 1930’s Birkhoff introduced the lattice of equivalence relations on a set, which is
especially important in the study of quotient structures.

Definition 4.4. Let A be a set. Recall that a binary relation r on A is a subset of A2. If
〈a, b〉 ∈ r we also write arb. If r1 and r2 are binary relations on A then the relational product
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r1 ◦ r2 is the binary relation on A defined by 〈a, b〉 ∈ r1 ◦ r2 iff there is a c ∈ A such that
〈a, c〉 ∈ r1 and 〈c, b〉 ∈ r2. Inductively one defines r1 ◦ r2 ◦ · · · ◦ rn = (r1 ◦ r2 ◦ · · · ◦ rn−1) ◦ rn.
The inverse of a binary relation r is given by rˇ = {〈a, b〉 ∈ A2 : 〈b, a〉 ∈ r}. The diagonal
relation ∆A on A is the set {〈a, a〉 : a ∈ A} and the all relation A2 is denoted by ∇A. (We
write simply ∆ (read: delta) and ∇ (read: nabla) when there is no confusion.) A binary
relation r on A is an equivalence relation on A if, for any a, b, c from A, it satisfies:

E1: ara (reflexivity)
E2: arb implies bra (symmetry)
E3: arb and brc imply arc (transitivity).

Eq(A) is the set of all equivalence relations on A.

Theorem 4.5. The poset Eq(A), with ⊆ as the partial ordering, is a complete lattice.

Proof. Note that Eq(A) is closed under arbitrary intersections. 2

For θ1 and θ2 in Eq(A) it is clear that θ1 ∧ θ2 = θ1 ∩ θ2. Next we look at a (constructive)
description of θ1 ∨ θ2.

Theorem 4.6. If θ1 and θ2 are two equivalence relations on A then

θ1 ∨ θ2 = θ1 ∪ (θ1 ◦ θ2) ∪ (θ1 ◦ θ2 ◦ θ1) ∪ (θ1 ◦ θ2 ◦ θ1 ◦ θ2) ∪ · · · ,

or equivalently, 〈a, b〉 ∈ θ1 ∨ θ2 iff there is a sequence of elements c1, c2, . . . , cn from A such
that

〈ci, ci+1〉 ∈ θ1 or 〈ci, ci+1〉 ∈ θ2

for i = 1, . . . , n− 1, and a = c1, b = cn.

Proof. It is not difficult to see that the right-hand side of the above equation is indeed an
equivalence relation, and also that each of the relational products in parentheses is contained
in θ1 ∨ θ2. 2

If {θi}i∈I is a subset of Eq(A) then it is also easy to see that
∧
i∈I θi is just

⋂
i∈I θi. The

following straightforward generalization of the previous theorem describes arbitrary sups in
Eq(A).

Theorem 4.7. If θi ∈ Eq(A) for i ∈ I, then∨
i∈I
θi =

⋃
{θi0 ◦ θi1 ◦ · · · ◦ θik : i0, . . . , ik ∈ I, k <∞}.

Definition 4.8. Let θ be a member of Eq(A). For a ∈ A, the equivalence class (or coset) of
a modulo θ is the set a/θ = {b ∈ A : 〈b, a〉 ∈ θ}. The set {a/θ : a ∈ A} is denoted by A/θ.
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Theorem 4.9. For θ ∈ Eq(A) and a, b ∈ A we have

(a) A =
⋃
a∈A a/θ.

(b) a/θ 6= b/θ implies a/θ ∩ b/θ = ∅.

Proof. (Exercise). 2

An alternative approach to equivalence relations is given by partitions, in view of 4.9.

Definition 4.10. A partition π of a set A is a family of nonempty pairwise disjoint subsets
of A such that A =

⋃
π. The sets in π are called the blocks of π. The set of all partitions of

A is denoted by Π(A).

For π in Π(A), let us define an equivalence relation θ(π) by θ(π) = {〈a, b〉 ∈ A2 : {a, b} ⊆
B for some B in π}. Note that the mapping π 7→ θ(π) is a bijection between Π(A) and
Eq(A). Define a relation ≤ on Π(A) by π1 ≤ π2 iff each block of π1 is contained in some
block of π2.

Theorem 4.11. With the above ordering Π(A) is a complete lattice, and it is isomorphic
to the lattice Eq(A) under the mapping π 7→ θ(π).

The verification of this result is left to the reader.

Definition 4.12. The lattice Π(A) is called the lattice of partitions of A.

The last class of lattices which we introduce is that of algebraic lattices.

Definition 4.13. Let L be a lattice. An element a in L is compact iff whenever
∨
A exists

and a ≤
∨
A for A ⊆ L, then a ≤

∨
B for some finite B ⊆ A. L is compactly generated iff

every element in L is a sup of compact elements. A lattice L is algebraic if it is complete
and compactly generated.

The reader will readily see the similarity between the definition of a compact element in
a lattice and that of a compact subset of a topological space. Algebraic lattices originated
with Komatu and Nachbin in the 1940’s and Büchi in the early 1950’s; the original definition
was somewhat different, however.

Examples. (1) The lattice of subsets of a set is an algebraic lattice (where the compact
elements are finite sets).

(2) The lattice of subgroups of a group is an algebraic lattice (in which “compact” =
“finitely generated”).

(3) Finite lattices are algebraic lattices.
(4) The subset [0, 1] of the real line is a complete lattice, but is not algebraic.
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In the next chapter we will encounter two situations where algebraic lattices arise, namely
as lattices of subuniverses of algebras and as lattices of congruences on algebras.

Exercises §4

1. Show that the binary relations on a set A form a lattice under ⊆ .

2. Show that the right-hand side of the equation in Theorem 4.6 is indeed an equivalence
relation on A.

3. If I is a closed and bounded interval of the real line with the usual ordering, and P a
nonempty subset of I with the same ordering, show that P is a complete sublattice iff
P is a closed subset of I.

4. If L is a complete chain show that L is algebraic iff for every a1, a2 ∈ L with a1 < a2

there are b1, b2 ∈ L with a1 ≤ b1 ≺ b2 ≤ a2.

5. Draw the Hasse diagram of the lattice of partitions of a set with n elements for 1 ≤
n ≤ 4. For |A| ≥ 4 show that Π(A) is not a modular lattice.

6. If L is an algebraic lattice and D is a subset of L such that for d1, d2 ∈ D there is a
d3 ∈ D with d1 ≤ d3, d2 ≤ d3 (i.e., D is upward directed) then, for a ∈ L, a ∧

∨
D =∨

d∈D(a ∧ d).

7. If L is a distributive algebraic lattice then, for any A ⊆ L, we have a∧
∨
A =

∨
d∈A(a∧

d).

8. If a and b are compact elements of a lattice L, show that a∨ b is also compact. Is a∧ b
always compact?

9. If L is a lattice with at least one compact element, let C(L) be the poset of compact
elements of L with the partial order on C(L) agreeing with the partial order on L. An
ideal of C(L) is a nonempty subset I of C(L) such that a, b ∈ I implies a ∨ b ∈ I, and
a ∈ I, b ∈ C(L) with b ≤ a implies b ∈ I. Show that the ideals of C(L) form a lattice
under ⊆ if L has a least element and that the lattice of ideals of C(L) is isomorphic
to L if L is an algebraic lattice.

§5. Closure Operators

One way of producing, and recognizing, complete [algebraic] lattices is through [algebraic]
closure operators. Tarski developed one of the most fascinating applications of closure op-
erators during the 1930’s in his study of “consequences” in logic.
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Definition 5.1. If we are given a set A, a mapping C : Su(A)→ Su(A) is called a closure
operator on A if, for X, Y ⊆ A, it satisfies:

C1: X ⊆ C(X) (extensive)
C2: C2(X) = C(X) (idempotent)
C3: X ⊆ Y implies C(X) ⊆ C(Y ) (isotone).

A subset X of A is called a closed subset if C(X) = X. The poset of closed subsets of A with
set inclusion as the partial ordering is denoted by LC .

The definition of a closure operator is more general than that of a topological closure
operator since we do not require that the union of two closed subsets be closed.

Theorem 5.2. Let C be a closure operator on a set A. Then LC is a complete lattice with∧
i∈I
C(Ai) =

⋂
i∈I
C(Ai)

and ∨
i∈I
C(Ai) = C

(⋃
i∈I
Ai

)
.

Proof. Let (Ai)i∈I be an indexed family of closed subsets of A. From⋂
i∈I
Ai ⊆ Ai,

for each i, we have

C

(⋂
i∈I
Ai

)
⊆ C(Ai) = Ai,

so

C

(⋂
i∈I
Ai

)
⊆
⋂
i∈I
Ai,

hence

C

(⋂
i∈I
Ai

)
=
⋂
i∈I
Ai;

so
⋂
i∈I Ai is in LC . Then, if one notes that A itself is in LC , it follows that LC is a complete

lattice. The verification of the formulas for the
∧

’s and
∨

’s of families of closed sets is
straightforward. 2

Interestingly enough, the converse of this theorem is also true, which shows that the
lattices LC arising from closure operators provide typical examples of complete lattices.
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Theorem 5.3. Every complete lattice is isomorphic to the lattice of closed subsets of some
set A with a closure operator C.

Proof. Let L be a complete lattice. For X ⊆ L define

C(X) = {a ∈ L : a ≤ supX}.

Then C is a closure operator on L and the mapping a 7→ {b ∈ L : b ≤ a} gives the desired
isomorphism between L and LC . 2

The closure operators which give rise to algebraic lattices of closed subsets are called al-
gebraic closure operators; actually the consequence operator of Tarski is an algebraic closure
operator.

Definition 5.4. A closure operator C on the set A is an algebraic closure operator if for
every X ⊆ A

C4: C(X) =
⋃
{C(Y ) : Y ⊆ X and Y is finite}.

(Note that C1, C2, C4 implies C3.)

Theorem 5.5. If C is an algebraic closure operator on a set A then LC is an algebraic
lattice, and the compact elements of LC are precisely the closed sets C(X), where X is a
finite subset of A.

Proof. First we will show that C(X) is compact if X is finite. Then by (C4), and in view
of 5.2, LC is indeed an algebraic lattice. So suppose X = {a1, . . . , ak} and

C(X) ⊆
∨
i∈I
C(Ai) = C

(⋃
i∈I
Ai

)
.

For each aj ∈ X we have by (C4) a finite Xj ⊆
⋃
i∈I Ai with aj ∈ C(Xj). Since there are

finitely many Ai’s, say Aj1, . . . , Ajnj , such that

Xj ⊆ Aj1 ∪ · · · ∪Ajnj ,

then
aj ∈ C(Aj1 ∪ · · · ∪Ajnj).

But then
X ⊆

⋃
1≤j≤k

C(Aj1 ∪ · · · ∪ Ajnj),

so

X ⊆ C

 ⋃
1≤j≤k
1≤i≤nj

Aji

 ,
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and hence

C(X) ⊆ C

 ⋃
1≤j≤k
1≤i≤nj

Aji

 =
∨

1≤j≤k
1≤i≤nj

C(Aji),

so C(X) is compact.
Now suppose C(Y ) is not equal to C(X) for any finite X. From

C(Y ) ⊆
⋃
{C(X) : X ⊆ Y and X is finite}

it is easy to see that C(Y ) cannot be contained in any finite union of the C(X)’s; hence
C(Y ) is not compact. 2

Definition 5.6. If C is a closure operator on A and Y is a closed subset of A, then we say
a set X is a generating set for Y if C(X) = Y. The set Y is finitely generated if there is a
finite generating set for Y. The set X is a minimal generating set for Y if X generates Y
and no proper subset of X generates Y.

Corollary 5.7. Let C be an algebraic closure operator on A. Then the finitely generated
subsets of A are precisely the compact elements of LC .

Theorem 5.8. Every algebraic lattice is isomorphic to the lattice of closed subsets of some
set A with an algebraic closure operator C.

Proof. Let L be an algebraic lattice, and let A be the subset of compact elements. For
X ⊆ A define

C(X) = {a ∈ A : a ≤
∨
X}.

C is a closure operator, and from the definition of compact elements it follows that C is
algebraic. The map a 7→ {b ∈ A : b ≤ a} gives the desired isomorphism as L is compactly
generated. 2
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Exercises §5

1. If G is a group and X ⊆ G, let C(X) be the subgroup of G generated by X. Show that
C is an algebraic closure operator on G.

2. If G is a group and X ⊆ G, let C(X) be the normal subgroup generated by X. Show
that C is an algebraic closure operator on G.
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3. If R is a ring and X ⊆ R, let C(X) be the ideal generated by X. Show that C is an
algebraic closure operator on R.

4. If L is a lattice and A ⊆ L, let u(A) = {b ∈ L : a ≤ b for a ∈ A}, the set of upper
bounds of A, and let l(A) = {b ∈ L : b ≤ a for a ∈ A}, the set of lower bounds of A.
Show that C(A) = l(u(a)) is a closure operator on A, and that the map α : a 7→ C({a})
gives an embedding of L into the complete lattice LC (called the Dedekind-MacNeille
completion). What is the Dedekind-MacNeille completion of the rational numbers?

5. If we are given a set A, a family K of subsets of A is called a closed set system for A
if there is a closure operator on A such that the closed subsets of A are precisely the
members of K. If K ⊆ Su(A), show that K is a closed set system for A iff K is closed
under arbitrary intersections.

Given a set A and a family K of subsets of A, K is said to be closed under unions of
chains if whenever C ⊆ K and C is a chain (under ⊆) then

⋃
C ∈ K; and K is said to

be closed under unions of upward directed families of sets if whenever D ⊆ K is such that
A1, A2 ∈ D implies A1 ∪ A2 ⊆ A3 for some A3 ∈ D, then

⋃
D ∈ K. A result of set theory

says that K is closed under unions of chains iff K is closed under unions of upward directed
families of sets.

6. (Schmidt). A closed set system K for a set A is called an algebraic closed set system
for A if there is an algebraic closure operator on A such that the closed subsets of A
are precisely the members of K. If K ⊆ Su(A), show that K is an algebraic closed set
system iff K is closed under (i) arbitrary intersections and (ii) unions of chains.

7. If C is an algebraic closure operator on S and X is a finitely generated closed subset,
then for any Y which generates X show there is a finite Y0 ⊆ Y such that Y0 generates
X.

8. Let C be a closure operator on S. A closed subset X 6= S is maximal if for any closed
subset Y with X ⊆ Y ⊆ S, either X = Y or Y = S. Show that if C is algebraic and
X ⊆ S with C(X) 6= S then X is contained in a maximal closed subset if S is finitely
generated. (In logic one applies this to show every consistent theory is contained in a
complete theory.)



Chapter II

The Elements of Universal Algebra

One of the aims of universal algebra is to extract, whenever possible, the common elements
of several seemingly different types of algebraic structures. In achieving this one discovers
general concepts, constructions, and results which not only generalize and unify the known
special situations, thus leading to an economy of presentation, but, being at a higher level of
abstraction, can also be applied to entirely new situations, yielding significant information
and giving rise to new directions.

In this chapter we describe some of these concepts and their interrelationships. Of pri-
mary importance is the concept of an algebra; centered around this we discuss the notions
of isomorphism, subalgebra, congruence, quotient algebra, homomorphism, direct product,
subdirect product, term, identity, and free algebra.

§1. Definition and Examples of Algebras

The definition of an algebra given below encompasses most of the well known algebraic struc-
tures, as we shall point out, as well as numerous lesser known algebras which are of current
research interest. Although the need for such a definition was noted by several mathemati-
cians such as Whitehead in 1898, and later by Noether, the credit for realizing this goal goes
to Birkhoff in 1933. Perhaps it should be noted here that recent research in logic, recur-
sive function theory, theory of automata, and computer science has revealed that Birkhoff’s
original notion could be fruitfully extended, for example to partial algebras and heteroge-
neous algebras, topics which lie outside the scope of this text. (Birkhoff’s definition allowed
infinitary operations; however, his main results were concerned with finitary operations.)

Definition 1.1. For A a nonempty set and n a nonnegative integer we define A0 = {∅},
and, for n > 0, An is the set of n-tuples of elements from A. An n-ary operation (or function)
on A is any function f from An to A; n is the arity (or rank) of f. A finitary operation is an
n-ary operation, for some n. The image of 〈a1, . . . , an〉 under an n-ary operation f is denoted
by f(a1, . . . , an). An operation f on A is called a nullary operation (or constant) if its arity
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is zero; it is completely determined by the image f(∅) in A of the only element ∅ in A0,
and as such it is convenient to identify it with the element f(∅). Thus a nullary operation is
thought of as an element of A. An operation f on A is unary, binary, or ternary if its arity
is 1,2, or 3, respectively.

Definition 1.2. A language (or type) of algebras is a set F of function symbols such that
a nonnegative integer n is assigned to each member f of F. This integer is called the arity
(or rank) of f, and f is said to be an n-ary function symbol. The subset of n-ary function
symbols in F is denoted by Fn.

Definition 1.3. If F is a language of algebras then an algebra A of type F is an ordered
pair 〈A,F 〉 where A is a nonempty set and F is a family of finitary operations on A indexed
by the language F such that corresponding to each n-ary function symbol f in F there is an
n-ary operation fA on A. The set A is called the universe (or underlying set) of A = 〈A,F 〉,
and the fA’s are called the fundamental operations of A. (In practice we prefer to write just
f for fA—this convention creates an ambiguity which seldom causes a problem. However,
in this chapter we will be unusually careful.) If F is finite, say F = {f1, . . . , fk}, we often
write 〈A, f1, . . . , fk〉 for 〈A,F 〉, usually adopting the convention:

arity f1 ≥ arity f2 ≥ · · · ≥ arity fk.

An algebra A is unary if all of its operations are unary, and it is mono-unary if it has just
one unary operation. A is a groupoid if it has just one binary operation; this operation is
usually denoted by + or ·, and we write a+ b or a · b (or just ab) for the image of 〈a, b〉 under
this operation, and call it the sum or product of a and b, respectively. An algebra A is finite
if |A| is finite, and trivial if |A| = 1.

It is a curious fact that the algebras that have been most extensively studied in conven-
tional (albeit modern!) algebra do not have fundamental operations of arity greater than
two. (However see IV§7 Ex. 8.)

Not all of the following examples of algebras are well-known, but they are of considerable
importance in current research. In particular we would like to point out the role of recent
directions in logic aimed at providing algebraic models for certain logical systems. The reader
will notice that all of the different kinds of algebras listed below are distinguished from each
other by their fundamental operations and the fact that they satisfy certain identities. One
of the early achievements of Birkhoff was to clarify the role of identities (see §11).

Examples. (1) Groups. A group G is an algebra 〈G, ·, −1, 1〉 with a binary, a unary, and
nullary operation in which the following identities are true:

G1: x · (y · z) ≈ (x · y) · z
G2: x · 1 ≈ 1 · x ≈ x
G3: x · x−1 ≈ x−1 · x ≈ 1.

A group G is Abelian (or commutative ) if the following identity is true:
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G4: x · y ≈ y · x.
Groups were one of the earliest concepts studied in algebra (groups of substitutions

appeared about two hundred years ago). The definition given above is not the one which
appears in standard texts on groups, for they use only one binary operation and axioms
involving existential quantifiers. The reason for the above choice, and for the descriptions
given below, will become clear in §2.

Groups are generalized to semigroups and monoids in one direction, and to quasigroups
and loops in another direction.

(2) Semigroups and Monoids. A semigroup is a groupoid 〈G, ·〉 in which (G1) is true.
It is commutative (or Abelian) if (G4) holds. A monoid is an algebra 〈M, ·, 1〉 with a binary
and a nullary operation satisfying (G1) and (G2).

(3) Quasigroups and Loops. A quasigroup is an algebra 〈Q, /, ·, \〉 with three binary
operations satisfying the following identities:

Q1: x\(x · y) ≈ y; (x · y)/y ≈ x
Q2: x · (x\y) ≈ y; (x/y) · y ≈ x.

A loop is a quasigroup with identity, i.e., an algebra 〈Q, /, ·, \, 1〉 which satisfies (Q1), (Q2)
and (G2). Quasigroups and loops will play a major role in Chapter III.

(4) Rings. A ring is an algebra 〈R,+, ·,−, 0〉, where + and · are binary, − is unary and 0
is nullary, satisfying the following conditions:

R1: 〈R,+,−, 0〉 is an Abelian group
R2: 〈R, ·〉 is a semigroup
R3: x · (y + z) ≈ (x · y) + (x · z)

(x+ y) · z ≈ (x · z) + (y · z).
A ring with identity is an algebra 〈R,+, ·,−, 0, 1〉 such that (R1)–(R3) and (G2) hold.

(5) Modules Over a (Fixed) Ring. Let R be a given ring. A (left) R-module is an
algebra 〈M,+,−, 0, (fr)r∈R〉 where + is binary, − is unary, 0 is nullary, and each fr is unary,
such that the following hold:

M1: 〈M,+,−, 0〉 is an Abelian group
M2: fr(x+ y) ≈ fr(x) + fr(y), for r ∈ R
M3: fr+s(x) ≈ fr(x) + fs(x), for r, s ∈ R
M4: fr(fs(x)) ≈ frs(x) for r, s ∈ R.
Let R be a ring with identity. A unitary R-module is an algebra as above satisfying (M1)–
(M4) and

M5: f1(x) ≈ x.
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(6) Algebras Over a Ring. Let R be a ring with identity. An algebra over R is an
algebra 〈A,+, ·,−, 0, (fr)r∈R〉 such that the following hold:

A1: 〈A,+,−, 0, (fr)r∈R〉 is a unitary R-module
A2: 〈A,+, ·,−, 0〉 is a ring
A3: fr(x · y) ≈ (fr(x)) · y ≈ x · fr(y) for r ∈ R.

(7) Semilattices. A semilattice is a semigroup 〈S, ·〉 which satisfies the commutative law
(G4) and the idempotent law

S1: x · x ≈ x.

Two definitions of a lattice were given in the last chapter. We reformulate the first
definition given there in order that it be a special case of algebras as defined in this chapter.

(8) Lattices. A lattice is an algebra 〈L,∨,∧〉 with two binary operations which satisfies
(L1)–(L4) of I§1.

(9) Bounded Lattices. An algebra 〈L,∨,∧, 0, 1〉 with two binary and two nullary opera-
tions is a bounded lattice if it satisfies:

BL1: 〈L,∨,∧〉 is a lattice
BL2: x ∧ 0 ≈ 0; x ∨ 1 ≈ 1.

(10) Boolean Algebras. A Boolean algebra is an algebra 〈B,∨,∧, ′, 0, 1〉 with two binary,
one unary, and two nullary operations which satisfies:

B1: 〈B,∨,∧〉 is a distributive lattice
B2: x ∧ 0 ≈ 0; x ∨ 1 ≈ 1
B3: x ∧ x′ ≈ 0; x ∨ x′ ≈ 1.

Boolean algebras were of course discovered as a result of Boole’s investigations into the
underlying laws of correct reasoning. Since then they have become vital to electrical engi-
neering, computer science, axiomatic set theory, model theory, and other areas of science
and mathematics. We will return to them in Chapter IV.

(11) Heyting Algebras. An algebra 〈H,∨,∧,→, 0, 1〉 with three binary and two nullary
operations is a Heyting algebra if it satisfies:

H1: 〈H,∨,∧〉 is a distributive lattice
H2: x ∧ 0 ≈ 0; x ∨ 1 ≈ 1
H3: x→ x ≈ 1
H4: (x→ y) ∧ y ≈ y; x ∧ (x→ y) ≈ x ∧ y
H5: x→ (y ∧ z) ≈ (x→ y) ∧ (x→ z); (x ∨ y)→ z ≈ (x→ z) ∧ (y → z).

These were introduced by Birkhoff under a different name, Brouwerian algebras, and with
a different notation (v : u for u→ v).
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(12) n-Valued Post Algebras. An algebra 〈A,∨,∧, ′, 0, 1〉 with two binary, one unary,
and two nullary operations is an n-valued Post algebra if it satisfies every identity satisfied
by the algebra Pn = 〈{0, 1, . . . , n − 1},∨,∧, ′, 0, 1〉 where 〈{0, 1, . . . , n − 1},∨,∧, 0, 1〉 is a
bounded chain with 0 < n − 1 < n − 2 < · · · < 2 < 1, and 1′ = 2, 2′ = 3, . . . , (n − 2)′ =
n − 1, (n − 1)′ = 0, and 0′ = 1. See Figure 8, where the unary operation ′ is depicted by
arrows. In IV§7 we will give a structure theorem for all n-valued Post algebras, and in V§4
show that they can be defined by a finite set of equations.

.

..

1

2

n-1

0
Figure 8 The Post algebra Pn

(13) Cylindric Algebras of Dimension n. If we are given n ∈ ω, then an algebra
〈A,∨,∧, ′, c0, . . . , cn−1, 0, 1, d00, d01, . . . , dn−1,n−1〉 with two binary operations, n + 1 unary
operations, and n2 + 2 nullary operations is a cylindric algebra of dimension n if it satisfies
the following, where 0 ≤ i, j, k < n :

C1: 〈A,∨,∧, ′, 0, 1〉 is a Boolean algebra
C2: ci0 ≈ 0
C3: x ≤ cix
C4: ci(x ∧ ciy) ≈ (cix) ∧ (ciy)
C5: cicjx ≈ cjcix
C6: dii ≈ 1
C7: dik ≈ cj(dij ∧ djk) if i 6= j 6= k
C8: ci(dij ∧ x) ∧ ci(dij ∧ x′) ≈ 0 if i 6= j.

Cylindric algebras were introduced by Tarski and Thompson to provide an algebraic
version of the predicate logic.

(14) Ortholattices. An algebra 〈L,∨,∧, ′, 0, 1〉 with two binary, one unary and two
nullary operations is an ortholattice if it satisfies:

Q1: 〈L,∨,∧, 0, 1〉 is a bounded lattice
Q2: x ∧ x′ ≈ 0; x ∨ x′ ≈ 1
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Q3: (x ∧ y)′ ≈ x′ ∨ y′; (x ∨ y)′ ≈ x′ ∧ y′
Q4: (x′)′ ≈ x.

An orthomodular lattice is an ortholattice which satisfies

Q5: x ≤ y → x ∨ (x′ ∧ y) ≈ y.
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Exercises §1

1. An algebra 〈A,F 〉 is the reduct of an algebra 〈A,F ∗〉 to F if F ⊆ F∗, and F is the
restriction of F ∗ to F. Given n ≥ 1, find equations Σ for semigroups such that Σ will
hold in a semigroup 〈S, ·〉 iff 〈S, ·〉 is a reduct of a group 〈S, ·, −1, 1〉 of exponent n (i.e.,
every element of S is such that its order divides n).

2. Two elements a, b of a bounded lattice 〈L,∨,∧, 0, 1〉 are complements if a∨b = 1, a∧b =
0. In this case each of a, b is the complement of the other. A complemented lattice is a
bounded lattice in which every element has a complement.

(a) Show that in a bounded distributive lattice an element can have at most one
complement.

(b) Show that the class of complemented distributive lattices is precisely the class of
reducts of Boolean algebras (to {∨,∧, 0, 1}).

3. If 〈B,∨,∧, ′, 0, 1〉 is a Boolean algebra and a, b ∈ B, define a → b to be a′ ∨ b. Show
that 〈B,∨,∧,→, 0, 1〉 is a Heyting algebra.

4. Show that every Boolean algebra is an ortholattice, but not conversely.

5. (a) If 〈H,∨,∧,→, 0, 1〉 is a Heyting algebra and a, b ∈ H show that a → b is the
largest element c of H (in the lattice sense) such that a ∧ c ≤ b.

(b) Show that the class of bounded distributive lattices 〈L,∨,∧, 0, 1〉 such that for
each a, b ∈ L there is a largest c ∈ L with a∧c ≤ b is precisely the class of reducts
of Heyting algebras (to {∨,∧, 0, 1}).
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(c) Show how one can construct a Heyting algebra from the open subsets of a topo-
logical space.

(d) Show that every finite distributive lattice is a reduct of a Heyting algebra.

6. Let 〈M, ·, 1〉 be a monoid and suppose A ⊆ M. For a ∈ A define fa : M → M
by fa(s) = a · s. Show that the unary algebra 〈M, (fa)a∈A〉 satisfies fa1 · · · fan(x) ≈
fb1 · · · fbk(x) iff a1 · · ·an = b1 · · · bk. (This observation of Mal’cev [24] allows one to
translate undecidability results about word problems for monoids into undecidability
results about equations of unary algebras. This idea has been refined and developed
by McNulty [1976] and Murskǐı [1971]).

§2. Isomorphic Algebras, and Subalgebras

The concepts of isomorphism in group theory, ring theory, and lattice theory are special
cases of the notion of isomorphism between algebras.

Definition 2.1. Let A and B be two algebras of the same type F. Then a function α : A→ B
is an isomorphism from A to B if α is one-to-one and onto, and for every n-ary f ∈ F, for
a1, . . . , an ∈ A, we have

αfA(a1, . . . , an) = fB(αa1, . . . , αan). (∗)

We say A is isomorphic to B, written A ∼= B, if there is an isomorphism from A to B. If α
is an isomorphism from A to B we may simply say “α : A→ B is an isomorphism”.

As is well-known, following Felix Klein’s Erlanger Programm, algebra is often considered
as the study of those properties of algebras which are invariant under isomorphism, and such
properties are called algebraic properties. Thus from an algebraic point of view, isomorphic
algebras can be regarded as equal or the same, as they would have the same algebraic
structure, and would differ only in the nature of the elements; the phrase “they are equal up
to isomorphism” is often used.

There are several important methods of constructing new algebras from given ones. Three
of the most fundamental are the formation of subalgebras, homomorphic images, and direct
products. These will occupy us for the next few sections.

Definition 2.2. Let A and B be two algebras of the same type. Then B is a subalgebra of
A if B ⊆ A and every fundamental operation of B is the restriction of the corresponding
operation of A, i.e., for each function symbol f, fB is fA restricted to B; we write simply
B ≤ A. A subuniverse of A is a subset B of A which is closed under the fundamental
operations of A, i.e., if f is a fundamental n-ary operation of A and a1, . . . , an ∈ B we
would require f(a1, . . . , an) ∈ B.
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Thus if B is a subalgebra of A, then B is a subuniverse of A. Note that the empty set
may be a subuniverse, but it is not the underlying set of any subalgebra. If A has nullary
operations then every subuniverse contains them as well.

It is the above definition of subalgebra which motivated the choice of fundamental op-
erations for the several examples given in §1. For example, we would like a subalgebra of
a group to again be a group. If we were to consider a group as an algebra with only the
usual binary operation then, unfortunately, subalgebra would only mean subsemigroup (for
example the positive integers are a subsemigroup, but not a subgroup, of the group of all
integers). Similar remarks apply to rings, modules, etc. By considering a suitable modifica-
tion (enlargement) of the set of fundamental operations the concept of subalgebra as defined
above coincides with the usual notion for the several examples in §1.

A slight generalization of the notion of isomorphism leads to the following definition.

Definition 2.3. Let A and B be of the same type. A function α : A→ B is an embedding of
A into B if α is one-to-one and satisfies (∗) of 2.1 (such an α is also called a monomorphism).
For brevity we simply say “α : A→ B is an embedding”. We say A can be embedded in B
if there is an embedding of A into B.

Theorem 2.4. If α : A→ B is an embedding, then α(A) is a subuniverse of B.

Proof. Let α : A → B be an embedding. Then for an n-ary function symbol f and
a1, . . . , an ∈ A,

fB(αa1, . . . , αan) = αfA(a1, . . . , an) ∈ α(A),

hence α(A) is a subuniverse of B. 2

Definition 2.5. If α : A → B is an embedding, α(A) denotes the subalgebra of B with
universe α(A).

A problem of general interest to algebraists may be formulated as follows. Let K be
a class of algebras and let K1 be a proper subclass of K. (In practice, K may have been
obtained from the process of abstraction of certain properties of K1, or K1 may be obtained
from K by certain additional, more desirable, properties.) Two basic questions arise in the
quest for structure theorems.

(1) Is every member of K isomorphic to some member of K1?
(2) Is every member of K embeddable in some member of K1?

For example, every Boolean algebra is isomorphic to a field of sets (see IV§1), every group
is isomorphic to a group of permutations, a finite Abelian group is isomorphic to a direct
product of cyclic groups, and a finite distributive lattice can be embedded in a power of the
two-element distributive lattice. Structure theorems are certainly a major theme in Chapter
IV.
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§3. Algebraic Lattices and Subuniverses

We shall now describe one of the natural ways that algebraic lattices arise in universal
algebra.

Definition 3.1. Given an algebra A define, for every X ⊆ A,

Sg(X) =
⋂
{B : X ⊆ B and B is a subuniverse of A}.

We read Sg(X) as “the subuniverse generated by X”.

Theorem 3.2. If we are given an algebra A, then Sg is an algebraic closure operator on A.

Proof. Observe that an arbitrary intersection of subuniverses of A is again a subuniverse,
hence Sg is a closure operator on A whose closed sets are precisely the subuniverses of A.
Now, for any X ⊆ A define

E(X) = X ∪ {f(a1, . . . , an) : f is a fundamental n-ary operation on A and a1, . . . , an ∈ X}.
Then define En(X) for n ≥ 0 by

E0(X) = X

En+1(X) = E(En(X)).

As all the fundamental operations on A are finitary and

X ⊆ E(X) ⊆ E2(X) ⊆ · · ·

one can show that (Exercise 1)

Sg(X) = X ∪ E(X) ∪E2(X) ∪ · · · ,

and from this it follows that if a ∈ Sg(X) then a ∈ En(X) for some n < ω; hence for some
finite Y ⊆ X, a ∈ En(Y ). Thus a ∈ Sg(Y ). But this says Sg is an algebraic closure operator.

2

Corollary 3.3. If A is an algebra then LSg, the lattice of subuniverses of A, is an algebraic
lattice.

The corollary says that the subuniverses of A, with ⊆ as the partial order, form an
algebraic lattice.

Definition 3.4. Given an algebra A, Sub(A) denotes the set of subuniverses of A, and
Sub(A) is the corresponding algebraic lattice, the lattice of subuniverses of A. For X ⊆ A
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we say X generates A (or A is generated by X, or X is a set of generators of A) if Sg(X) = A.
The algebra A is finitely generated if it has a finite set of generators.

One cannot hope to find any further essentially new lattice properties which hold for the
class of lattices of subuniverses since every algebraic lattice is isomorphic to the lattice of
subuniverses of some algebra.

Theorem 3.5 (Birkhoff and Frink). If L is an algebraic lattice, then L ∼= Sub(A), for some
algebra A.

Proof. Let C be an algebraic closure operator on a set A such that L ∼= LC (such exists
by I§5.8). For each finite subset B of A and each b ∈ C(B) define an n-ary function fB,b on
A, where n = |B|, by

fB,b(a1, . . . , an) =

{
b if B = {a1, . . . , an}
a1 otherwise,

and call the resulting algebra A. Then clearly

fB,b(a1, . . . , an) ∈ C({a1, . . . , an}),

hence for X ⊆ A,
Sg(X) ⊆ C(X).

On the other hand
C(X) =

⋃
{C(B) : B ⊆ X and B is finite}

and, for B finite,

C(B) = {fB,b(a1, . . . , an) : B = {a1, . . . , an}, b ∈ C(B)}
⊆ Sg(B)

⊆ Sg(X)

imply
C(X) ⊆ Sg(X);

hence
C(X) = Sg(X).

Thus LC = Sub(A), so Sub(A) ∼= L. 2

The following set-theoretic result is used to justify the possibility of certain constructions
in universal algebra—in particular it shows that for a given type there cannot be “too many”
algebras (up to isomorphism) generated by sets no larger than a given cardinality. Recall
that ω is the smallest infinite cardinal.



§4. The Irredundant Basis Theorem 35

Corollary 3.6. If A is an algebra and X ⊆ A then |Sg(X)| ≤ |X|+ |F|+ ω.

Proof. Using induction on n one has |En(X)| ≤ |X| + |F|+ ω, so the result follows from
the proof of 3.2. 2

Reference

1. G. Birkhoff and O. Frink [1948]

Exercise §3
1. Show Sg(X) = X ∪ E(X) ∪ E2(X) ∪ · · · .

§4. The Irredundant Basis Theorem

Recall that finitely generated vector spaces have the property that all minimal generating
sets have the same cardinality. It is a rather rare phenomenon, though, to have a “dimen-
sion.” For example, consider the Abelian group Z6—it has both {1} and {2, 3} as minimal
generating sets.

Definition 4.1. Let C be a closure operator on A. For n < ω, let Cn be the function defined
on Su(A) by

Cn(X) =
⋃
{C(Y ) : Y ⊆ X, |Y | ≤ n}.

We say that C is n-ary if
C(X) = Cn(X) ∪ C2

n(X) ∪ · · · ,
where

C1
n(X) = Cn(X),

Ck+1
n (X) = Cn(Ck

n(X)).

Lemma 4.2. Let A be an algebra all of whose fundamental operations have arity at most
n. Then Sg is an n-ary closure operator on A.

Proof. Note that (using the E of the proof of 3.2)

E(X) ⊆ (Sg)n(X) ⊆ Sg(X);

hence

Sg(X) = X ∪E(X) ∪ E2(X) ∪ · · ·
⊆ (Sg)n(X) ∪ (Sg)2

n(X) ∪ · · ·
⊆ Sg(X),

so
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Sg(X) = (Sg)n(X) ∪ (Sg)2
n(X) ∪ · · · .

2

Definition 4.3. Suppose C is a closure operator on S. A minimal generating set of S is called
an irredundant basis. Let IrB(C) = {n < ω : S has an irredundant basis of n elements}.

The next result shows that the length of the finite gaps in IrB(C) is bounded by n− 2 if
C is an n-ary closure operator.

Theorem 4.4 (Tarski). If C is an n-ary closure operator on S with n ≥ 2, and if i < j with
i, j ∈ IrB(C) such that

{i+ 1, . . . , j − 1} ∩ IrB(C) = ∅, (∗)

then j−i ≤ n−1. In particular, if n = 2 then IrB(C) is a convex subset of ω, i.e., a sequence
of consecutive numbers.

Proof. Let B be an irredundant basis with |B| = j. Let K be the set of irredundant bases
A with |A| ≤ i.

The idea of the proof is simple. We will think of B as the center of S, and measure the
distance from B using the “rings” Ck+1

n (B) − Ck
n(B). We want to choose a basis A0 in K

such that A0 is as close as possible to B, and such that the last ring which contains elements
of A0 contains as few elements of A0 as possible. We choose one of the latter elements a0 and
replace it by n or fewer closer elements b1, . . . , bm to obtain a new generating set A1, with
|A1| < i+n. Then A1 contains an irredundant basis A2. By the ‘minimal distance’ condition
on A0 we see that A2 6∈ K, hence |A2| > i, so |A2| ≥ j by (∗). Thus j < i+ n.

Now for the details of this proof, choose A0 ∈ K such that

A0 6* Ck
n(B) imples A * Ck

n(B)

for A ∈ K (see Figure 9). Let t be such that

A0 ⊆ Ct+1
n (B), A0 * Ct

n(B).

We can assume that

|A0 ∩ (Ct+1
n (B)− Ct

n(B))| ≤ |A ∩ (Ct+1
n (B)− Ct

n(B))|

for all A ∈ K with A ⊆ Ct+1
n (B). Choose

a0 ∈ [Ct+1
n (B)− Ct

n(B)] ∩A0.

Then there must exist b1, . . . , bm ∈ Ct
n(B), for some m ≤ n, with

a0 ∈ Cn({b1, . . . , bm}),
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so
A0 ⊆ Cn(A1),

where
A1 = (A0 − {a0}) ∪ {b1, . . . , bm};

hence
C(A0) ⊆ C(A1),

which says A1 is a set of generators of S. Consequently, there is an irredundant basisA2 ⊆ A1.
Now |A2| < |A0|+ n. If |A0|+ n ≤ j, we see that the existence of A2 contradicts the choice
of A0 as then we would have

A2 ∈ K, A2 ⊆ Ct+1
n (B)

and
|A2 ∩ (Ct+1

n (B)− Ct
n(B))| < |A0 ∩ (Ct+1

n (B)− Ct
n(B))|.

Thus |A0|+ n > j. As |A0| ≤ i, we have j − i < n. 2

Cn
t ( )B
+1

Cn
t( )B

A0

a0

b b

B

m1

Figure 9

Example. If A is an algebra all of whose fundamental operations have arity not exceeding
2 then IrB(Sg) is a convex set. This applies to all the examples given in §1.

References

1. G.F. McNulty and W. Taylor [1975]
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2. A. Tarski [1975]

Exercises §4
1. Find IrB(Sg), where Sg is the subuniverse closure operator on the group of integers Z.

2. If C is a closure operator on a set S and X is a closed subset of S, show that 4.4 applies
to the irredundant bases of X.

3. If A is a unary algebra show that |IrB(Sg)| ≤ 1.

4. Give an example of an algebra A such that IrB(Sg) is not convex.

§5. Congruences and Quotient Algebras

The concepts of congruence, quotient algebra, and homomorphism are all closely related.
These will be the subjects of this and the next section.

Normal subgroups, which were introduced by Galois at the beginning of the last century,
play a fundamental role in defining quotient groups and in the so-called homomorphism and
isomorphism theorems which are so basic to the general development of group theory. Ideals,
introduced in the second half of the last century by Dedekind, play an analogous role in
defining quotient rings, and in the corresponding homomorphism and isomorphism theorems
in ring theory. Given such a parallel situation, it was inevitable that mathematicians should
seek a general common formulation. In these two sections the reader will see that congruences
do indeed form the unifying concept, and furthermore they provide another meeting place
for lattice theory and universal algebra.

Definition 5.1. Let A be an algebra of type F and let θ ∈ Eq(A). Then θ is a congruence
on A if θ satisfies the following compatibility property:

CP: For each n-ary function symbol f ∈ F and elements ai, bi ∈ A, if aiθbi holds for
1 ≤ i ≤ n then

fA(a1, . . . , an)θfA(b1, . . . , bn)

holds.

The compatibility property is an obvious condition for introducing an algebraic structure
on the set of equivalence classes A/θ, an algebraic structure which is inherited from the
algebra A. For if a1, . . . , an are elements of A and f is an n-ary symbol in F, then the easiest
choice of an equivalence class to be the value of f applied to 〈a1/θ, . . . , an/θ〉 would be simply
fA(a1, . . . , an)/θ. This will indeed define a function on A/θ iff (CP) holds. We illustrate (CP)
for a binary operation in Figure 10 by subdividing A into the equivalence classes of θ; then
selecting a1, b1 in the same equivalence class and a2, b2 in the same equivalence class we want
fA(a1, b1), fA(a2, b2) to be in the same equivalence class.
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Figure 10

Definition 5.2. The set of all congruences on an algebra A is denoted by Con A. Let θ
be a congruence on an algebra A. Then the quotient algebra of A by θ, written A/θ, is the
algebra whose universe is A/θ and whose fundamental operations satisfy

fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ

where a1, . . . , an ∈ A and f is an n-ary function symbol in F.

Note that quotient algebras of A are of the same type as A.

Examples. (1) Let G be a group. Then one can establish the following connection between
congruences on G and normal subgroups of G:

(a) If θ ∈ Con G then 1/θ is the universe of a normal subgroup of G, and for a, b ∈ G
we have 〈a, b〉 ∈ θ iff a · b−1 ∈ 1/θ;

(b) If N is a normal subgroup of G, then the binary relation defined on G by

〈a, b〉 ∈ θ iff a · b−1 ∈ N

is a congruence on G with 1/θ = N.
Thus the mapping θ 7→ 1/θ is an order-preserving bijection between congruences on G

and normal subgroups of G.
(2) Let R be a ring. The following establishes a similar connection between the congru-

ences on R and ideals of R:
(a) If θ ∈ Con R then 0/θ is an ideal of R, and for a, b ∈ R we have 〈a, b〉 ∈ θ iff

a− b ∈ 0/θ;
(b) If I is an ideal of R then the binary relation θ defined on R by

〈a, b〉 ∈ θ iff a− b ∈ I
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is a congruence on R with 0/θ = I.
Thus the mapping θ 7→ 0/θ is an order-preserving bijection between congruences on R

and ideals of R.

These two examples are a bit misleading in that they suggest any congruence on an
algebra might be determined by a single equivalence class of the congruence. The next
example shows this need not be the case.

(3) Let L be a lattice which is a chain, and let θ be an equivalence relation on L such
that the equivalence classes of θ are convex subsets of L (i.e., if aθb and a ≤ c ≤ b then aθc).
Then θ is a congruence on L.

We will delay further discussion of quotient algebras until the next section and instead
concentrate now on the lattice structure of Con A.

Theorem 5.3. 〈Con A,⊆〉 is a complete sublattice of 〈Eq(A),⊆〉, the lattice of equivalence
relations on A.

Proof. To verify that Con A is closed under arbitrary intersection is straightforward. For
arbitrary joins in Con A suppose θi ∈ Con A for i ∈ I. Then, if f is a fundamental n-ary
operation of A and

〈a1, b1〉, . . . , 〈an, bn〉 ∈
∨
i∈I
θi,

where
∨

is the join of Eq(A), then from I§4.7 it follows that one can find i0, . . . , ik ∈ I such
that

〈ai, bi〉 ∈ θi0 ◦ θi1 ◦ · · · ◦ θik , 0 ≤ i ≤ n.

An easy argument then suffices to show that

〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ θi0 ◦ θi1 ◦ · · · ◦ θik ;

hence
∨
i∈I θi is a congruence relation on A. 2

Definition 5.4. The congruence lattice of A, denoted by Con A, is the lattice whose
universe is Con A, and meets and joins are calculated the same as when working with
equivalence relations (see I§4).

The following theorem suggests the abstract characterization of congruence lattices of
algebras.

Theorem 5.5. For A an algebra, there is an algebraic closure operator Θ on A × A such
that the closed subsets of A × A are precisely the congruences on A. Hence Con A is an
algebraic lattice.
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Proof. Let us start by setting up an appropriate algebraic structure on A × A. First, for
each n-ary function symbol f in the type of A let us define a corresponding n-ary function
f on A× A by

f(〈a1, b1〉, . . . , 〈an, bn〉) = 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉.

Then we add the nullary operations 〈a, a〉 for each a ∈ A, a unary operation s defined by

s(〈a, b〉) = 〈b, a〉,

and a binary operation t defined by

t(〈a, b〉, 〈c, d〉) =

{
〈a, d〉 if b = c

〈a, b〉 otherwise.

Now it is an interesting exercise to verify that B is a subuniverse of this new algebra iff B is
a congruence on A. Let Θ be the Sg closure operator on A×A for the algebra we have just
described. Thus, by 3.3, Con A is an algebraic lattice. 2

The compact members of Con A are, by I§5.7, the finitely generated members Θ(〈a1, b1〉,
. . . , 〈an, bn〉) of Con A.

Definition 5.6. For A an algebra and a1, . . . , an ∈ A let Θ(a1, . . . , an) denote the congruence
generated by {〈ai, aj〉 : 1 ≤ i, j ≤ n}, i.e., the smallest congruence such that a1, . . . , an are in
the same equivalence class. The congruence Θ(a1, a2) is called a principal congruence. For
arbitrary X ⊆ A, let Θ(X) be defined to mean the congruence generated by X ×X.

Finitely generated congruences will play a key role in II§12, in Chapter IV, and Chapter
V. In certain cases we already know a good description of principal congruences.

Examples. (1) If G is a group and a, b, c, d ∈ G then 〈a, b〉 ∈ Θ(c, d) iff ab−1 is a product
of conjugates of cd−1 and conjugates of dc−1. This follows from the fact that the smallest
normal subgroup of G containing a given element e has as its universe the set of all products
of conjugates of e and conjugates of e−1.

(2) If R is a ring with unity and a, b, c, d ∈ R then 〈a, b〉 ∈ Θ(c, d) iff a− b is of the form∑
1≤i≤n ri(c − d)si where ri, si ∈ R. This follows from the fact that the smallest ideal of R

containing a given element e of R is precisely the set
{∑

1≤i≤n riesi : ri, si ∈ R, n ≥ 1
}
.

Some useful facts about congruences which depend primarily on the fact that Θ is an
algebraic closure operator are given in the following.

Theorem 5.7. Let A be an algebra, and suppose a1, b1, . . . , an, bn ∈ A and θ ∈ Con A.
Then
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(a) Θ(a1, b1) = Θ(b1, a1)
(b) Θ(〈a1, b1〉, . . . , 〈an, bn〉) = Θ(a1, b1) ∨ · · · ∨Θ(an, bn)
(c) Θ(a1, . . . , an) = Θ(a1, a2) ∨Θ(a2, a3) ∨ · · · ∨Θ(an−1, an)
(d) θ =

⋃
{Θ(a, b) : 〈a, b〉 ∈ θ} =

∨
{Θ(a, b) : 〈a, b〉 ∈ θ}

(e) θ =
⋃
{Θ(〈a1, b1〉, . . . , 〈an, bn〉) : 〈ai, bi〉 ∈ θ, n ≥ 1}.

Proof. (a) As
〈b1, a1〉 ∈ Θ(a1, b1)

we have
Θ(b1, a1) ⊆ Θ(a1, b1);

hence, by symmetry,
Θ(a1, b1) = Θ(b1, a1).

(b) For 1 ≤ i ≤ n,
〈ai, bi〉 ∈ Θ(〈a1, b1〉, . . . , 〈an, bn〉);

hence
Θ(ai, bi) ⊆ Θ(〈a1, b1〉, . . . , 〈an, bn〉),

so
Θ(a1, b1) ∨ · · · ∨Θ(an, bn) ⊆ Θ(〈a1, b1〉, . . . , 〈an, bn〉).

On the other hand, for 1 ≤ i ≤ n,

〈ai, bi〉 ∈ Θ(ai, bi) ⊆ Θ(a1, b1) ∨ · · · ∨Θ(an, bn),

so
{〈a1, b1〉, . . . , 〈an, bn〉} ⊆ Θ(a1, b1) ∨ · · · ∨Θ(an, bn);

hence
Θ(〈a1, b1〉, . . . , 〈an, bn〉) ⊆ Θ(a1, b1) ∨ · · · ∨Θ(an, bn),

so
Θ(〈a1, b1〉, . . . , 〈an, bn〉) = Θ(a1, b1) ∨ · · · ∨Θ(an, bn).

(c) For 1 ≤ i ≤ n− 1,
〈ai, ai+1〉 ∈ Θ(a1, . . . , an),

so
Θ(ai, ai+1) ⊆ Θ(a1, . . . , an);

hence
Θ(a1, a2) ∨ · · · ∨Θ(an−1, an) ⊆ Θ(a1, . . . , an).

Conversely, for 1 ≤ i < j ≤ n,

〈ai, aj〉 ∈ Θ(ai, ai+1) ◦ · · · ◦Θ(aj−1, aj)



§5. Congruences and Quotient Algebras 43

so, by I§4.7
〈ai, aj〉 ∈ Θ(ai, ai+1) ∨ · · · ∨Θ(aj−1, aj);

hence
〈ai, aj〉 ∈ Θ(a1, a2) ∨ · · · ∨Θ(an−1, an).

In view of (a) this leads to

Θ(a1, . . . , an) ⊆ Θ(a1, a2) ∨ · · · ∨Θ(an−1, an),

so
Θ(a1, . . . , an) = Θ(a1, a2) ∨ · · · ∨Θ(an−1, an).

(d) For 〈a, b〉 ∈ θ clearly
〈a, b〉 ∈ Θ(a, b) ⊆ θ

so
θ ⊆

⋃
{Θ(a, b) : 〈a, b〉 ∈ θ} ⊆

∨
{Θ(a, b) : 〈a, b〉 ∈ θ} ⊆ θ;

hence
θ =

⋃
{Θ(a, b) : 〈a, b〉 ∈ θ} =

∨
{Θ(a, b) : 〈a, b〉 ∈ θ}.

(e) (Similar to (d).) 2

One cannot hope for a further sharpening of the abstract characterization of congruence
lattices of algebras in 5.5 because in 1963 Grätzer and Schmidt proved that for every algebraic
lattice L there is an algebra A such that L ∼= Con A. Of course, for particular classes of
algebras one might find that some additional properties hold for the corresponding classes of
congruence lattices. For example, the congruence lattices of lattices satisfy the distributive
law, and the congruence lattices of groups (or rings) satisfy the modular law. One of the
major themes of universal algebra has been to study the consequences of special assumptions
about the congruence lattices (or congruences) of algebras (see §12 as well as Chapters IV
and V). For this purpose we introduce the following terminology.

Definition 5.8. An algebra A is congruence-distributive (congruence-modular) if Con A is
a distributive (modular) lattice. If θ1, θ2 ∈ Con A and

θ1 ◦ θ2 = θ2 ◦ θ1

then we say θ1 and θ2 are permutable, or θ1 and θ2 permute. A is congruence-permutable if
every pair of congruences on A permutes. A class K of algebras is congruence-distributive,
congruence-modular, respectively congruence-permutable iff every algebra in K has the de-
sired property.

We have already looked at distributivity and modularity, so we will finish this section
with two results on permutable congruences.
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Theorem 5.9. Let A be an algebra and suppose θ1, θ2 ∈ Con A. Then the following are
equivalent:

(a) θ1 ◦ θ2 = θ2 ◦ θ1

(b) θ1 ∨ θ2 = θ1 ◦ θ2

(c) θ1 ◦ θ2 ⊆ θ2 ◦ θ1.

Proof. (a) ⇒ (b): For any equivalence relation θ we have θ ◦ θ = θ, so from (a) it follows
that the expression for θ1 ∨ θ2 given in I§4.6 reduces to θ1 ∪ (θ1 ◦ θ2), and hence to θ1 ◦ θ2.

(c) ⇒ (a): Given (c) we have to show that

θ2 ◦ θ1 ⊆ θ1 ◦ θ2.

This, however, follows easily from applying the relational inverse operation to (c), namely
we have

(θ1 ◦ θ2)̌ ⊆ (θ2 ◦ θ1)̌,

and hence (as the reader can easily verify)

θ2̌ ◦ θ1̌ ⊆ θ1̌ ◦ θ2̌.

Since the inverse of an equivalence relation is just that equivalence relation, we have estab-
lished (a).

(b) ⇒ (c): Since
θ2 ◦ θ1 ⊆ θ1 ∨ θ2,

from (b) we could deduce
θ2 ◦ θ1 ⊆ θ1 ◦ θ2,

and then from the previous paragraph it would follow that

θ2 ◦ θ1 = θ1 ◦ θ2;

hence (c) holds. 2

Theorem 5.10 (Birkhoff). If A is congruence-permutable, then A is congruence-modular.

Proof. Let θ1, θ2, θ3 ∈ Con A with θ1 ⊆ θ2. We want to show that

θ2 ∩ (θ1 ∨ θ3) ⊆ θ1 ∨ (θ2 ∩ θ3),

so suppose 〈a, b〉 is in θ2 ∩ (θ1 ∨ θ3). By 5.9 there is an element c such that

aθ1c θ3b

holds as
θ1 ∨ θ3 = θ1 ◦ θ3.
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By symmetry
〈c, a〉 ∈ θ1;

hence
〈c, a〉 ∈ θ2,

and then by transitivity
〈c, b〉 ∈ θ2.

Thus
〈c, b〉 ∈ θ2 ∩ θ3,

so from
aθ1c(θ2 ∩ θ3)b

follows
〈a, b〉 ∈ θ1 ◦ (θ2 ∩ θ3);

hence
〈a, b〉 ∈ θ1 ∨ (θ2 ∩ θ3).

2

We would like to note that in 1953 Jónsson improved on Birkhoff’s result above by
showing that one could derive the so-called Arguesian identity for lattices from congruence-
permutability. In §12 we will concern ourselves again with congruence-distributivity and
permutability.
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Exercises §5

1. Verify the connection between normal subgroups and congruences on a group stated
in Example 1 (after 5.2).

2. Verify the connection between ideals and congruences on rings stated in Example 2
(after 5.2).

3. Show that the normal subgroups of a group form an algebraic lattice which is modular.

4. Show that every group and ring is congruence-permutable, but not necessarily congruence-
distributive.
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5. Show that every lattice is congruence-distributive, but not necessarily congruence-
permutable.

6. In the proof of 5.5, verify that subuniverses of the new algebra are precisely the con-
gruences on A.

7. Show that Θ is a 2-ary closure operator. [Hint: replace each n-ary f of A by unary
operations

f(a1, . . . , ai−1, x, ai+1, . . . , an), a1, . . . , ai−1, ai+1, . . . , an ∈ A

and show this gives a unary algebra with the same congruences.]

8. If A is a unary algebra and B is a subuniverse define θ by 〈a, b〉 ∈ θ iff a = b or
{a, b} ⊆ B. Show that θ is a congruence on A.

9. Let S be a semilattice. Define a ≤ b for a, b ∈ S if a · b = a. Show that ≤ is a partial
order on S. Next, given a ∈ S define

θa = {〈b, c〉 ∈ S × S : both or neither of a ≤ b, a ≤ c hold}.

Show θa is a congruence on S.

An algebra A has the congruence extension property (CEP) if for every B ≤ A and
θ ∈ Con B there is a φ ∈ Con A such that θ = φ ∩B2. A class K of algebras has the CEP
if every algebra in the class has the CEP.

10. Show that the class of Abelian groups has the CEP. Does the class of lattices have the
CEP?

11. If L is a distributive lattice and a, b, c, d ∈ L show that 〈a, b〉 ∈ Θ(c, d) iff c ∧ d ∧ a =
c ∧ d ∧ b and c ∨ d ∨ a = c ∨ d ∨ b.

An algebra A has 3-permutable congruences if for all θ, φ ∈ Con A we have θ ◦ φ ◦ θ ⊆
φ ◦ θ ◦ φ.

12. (Jónsson) Show that if A has 3-permutable congruences then A is congruence-modular.



§6. Homomorphisms and the Homomorphism and Isomorphism Theorems 47

§6. Homomorphisms and the Homomorphism and

Isomorphism Theorems

Homomorphisms are a natural generalization of the concept of isomorphism, and, as we shall
see, go hand in hand with congruences.

Definition 6.1. Suppose A and B are two algebras of the same type F. A mapping α :
A→ B is called a homomorphism from A to B if

αfA(a1, . . . , an) = fB(αa1, . . . , αan)

for each n-ary f in F and each sequence a1, . . . , an from A. If, in addition, the mapping α is
onto then B is said to be a homomorphic image of A, and α is called an epimorphism. (In
this terminology an isomorphism is a homomorphism which is one-to-one and onto.) In case
A = B a homomorphism is also called an endomorphism and an isomorphism is referred to
as an automorphism. The phrase “α : A→ B is a homomorphism” is often used to express
the fact that α is a homomorphism from A to B.

Examples. Lattice, group, ring, module, and monoid homomorphisms are all special cases
of homomorphisms as defined above.

Theorem 6.2. Let A be an algebra generated by a set X. If α : A→ B and β : A→ B are
two homomorphisms which agree on X (i.e., α(a) = β(a) for a ∈ X), then α = β.

Proof. Recall the definition of E in §3. Note that if α and β agree on X then α and β
agree on E(X), for if f is an n-ary function symbol and a1, . . . , an ∈ X then

αfA(a1, . . . , an) = fB(αa1, . . . αan)

= fB(βa1, . . . , βan)

= βfA(a1, . . . , an).

Thus by induction, if α and β agree on X then they agree on En(X) for n < ω, and hence
they agree on Sg(X). 2

Theorem 6.3. Let α : A→ B be a homomorphism. Then the image of a subuniverse of A
under α is a subuniverse of B, and the inverse image of a subuniverse of B is a subuniverse
of A.

Proof. Let S be a subuniverse of A, let f be an n-ary member of F, and let a1, . . . , an ∈ S.
Then

fB(αa1, . . . , αan) = αfA(a1, . . . , an) ∈ α(S),
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so α(S) is a subuniverse of B. If we now assume that S is a subuniverse of B (instead of
A) and α(a1), . . . , α(an) ∈ S then αfA(a1, . . . , an) ∈ S follows from the above equation, so
fA(a1, . . . , an) is in α−1(S). Thus α−1(S) is a subuniverse of A. 2

Definition 6.4. If α : A → B is a homomorphism and C ≤ A,D ≤ B, let α(C) be the
subalgebra of B with universe α(C), and let α−1(D) be the subalgebra of A with universe
α−1(D), provided α−1(D) 6= ∅.

Theorem 6.5. Suppose α : A → B and β : B → C are homomorphisms. Then the
composition β ◦ α is a homomorphism from A to C.

Proof. For f an n-ary function symbol and a1, . . . , an ∈ A, we have

(β ◦ α)fA(a1, . . . , an) = β(αfA(a1, . . . , an))

= βfB(αa1, . . . , αan)

= fC(β(αa1), . . . , β(αan))

= fC((β ◦ α)a1, . . . , (β ◦ α)an).

2

The next result says that homomorphisms commute with subuniverse closure operators.

Theorem 6.6. If α : A→ B is a homomorphism and X is a subset of A then

α Sg(X) = Sg(αX).

Proof. From the definition of E (see §3) and the fact that α is a homomorphism we have

αE(Y ) = E(αY )

for all Y ⊆ A. Thus, by induction on n,

αEn(X) = En(αX)

for n ≥ 1; hence

α Sg(X) = α(X ∪ E(X) ∪E2(X) ∪ . . . )
= αX ∪ αE(X) ∪ αE2(X) ∪ . . .
= αX ∪ E(αX) ∪ E2(αX) ∪ . . .
= Sg(αX).

2
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Definition 6.7. Let α : A→ B be a homomorphism. Then the kernel of α, written ker(α),
is defined by

ker(α) = {〈a, b〉 ∈ A2 : α(a) = α(b)}.

Theorem 6.8. Let α : A→ B be a homomorphism. Then ker(α) is a congruence on A.

Proof. If 〈ai, bi〉 ∈ ker(α) for 1 ≤ i ≤ n and f is n-ary in F, then

αfA(a1, . . . , an) = fB(αa1, . . . , αan)

= fB(αb1, . . . , αbn)

= αfA(b1, . . . , bn);

hence
〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ ker(α).

Clearly ker(α) is an equivalence relation, so it follows that ker(α) is actually a congruence
on A. 2

When studying groups it is usual to refer to the kernel of a homomorphism as a normal
subgroup, namely the inverse image of the identity element under the homomorphism. This
does not cause any real problems since we have already pointed out in §5 that a congruence
on a group is determined by the equivalence class of the identity element, which is a normal
subgroup. Similarly, in the study of rings one refers to the kernel of a homomorphism as a
certain ideal.

We are now ready to look at the straightforward generalizations to abstract algebras of
the homomorphism and isomorphism theorems usually encountered in a first course on group
theory.

θA /

A

ν

Figure 11



50 II The Elements of Universal Algebra

Definition 6.9. Let A be an algebra and let θ ∈ Con A. The natural map νθ : A → A/θ
is defined by νθ(a) = a/θ. (When there is no ambiguity we write simply ν instead of νθ.)
Figure 11 shows how one might visualize the natural map.
Theorem 6.10. The natural map from an algebra to a quotient of the algebra is an onto
homomorphism.

Proof. Let θ ∈ Con A and let ν : A → A/θ be the natural map. Then for f an n-ary
function symbol and a1, . . . , an ∈ A we have

νfA(a1, . . . , an) = fA(a1, . . . , an)/θ

= fA/θ(a1/θ, . . . , an/θ)

= fA/θ(νa1, . . . , νan),

so ν is a homomorphism. Clearly ν is onto. 2

Definition 6.11. The natural homomorphism from an algebra to a quotient of the algebra
is given by the natural map.

Theorem 6.12 (Homomorphism Theorem). Suppose α : A→ B is a homomorphism onto
B. Then there is an isomorphism β from A/ ker(α) to B defined by α = β ◦ ν, where ν is
the natural homomorphism from A to A/ ker(α). (See Figure 12).

A / ker α

α

B

βν

A

Figure 12
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Proof. First note that if α = β ◦ ν then we must have β(a/θ) = α(a). The second of these
equalities does indeed define a function β, and β satisfies α = β ◦ ν. It is not difficult to
verify that β is a bijection. To show that β is actually an isomorphism, suppose f is an
n-ary function symbol and a1, . . . , an ∈ A. Then

β(fA/θ(a1/θ, . . . , an/θ)) = β(fA(a1, . . . , an)/θ)

= αfA(a1, . . . , an)

= fB(αa1, . . . , αan)

= fB(β(a1/θ), . . . , β(an/θ)).

2

Combining Theorems 6.5 and 6.12 we see that an algebra is a homomorphic image of
an algebra A iff it is isomorphic to a quotient of the algebra A. Thus the “external” prob-
lem of finding all homomorphic images of A reduces to the “internal” problem of finding
all congruences on A. The homomorphism theorem is also called “the first isomorphism
theorem”.

Definition 6.13. Suppose A is an algebra and φ, θ ∈ Con A with θ ⊆ φ. Then let

φ/θ = {〈a/θ, b/θ〉 ∈ (A/θ)2 : 〈a, b〉 ∈ φ}.

Lemma 6.14. If φ, θ ∈ Con A and θ ⊆ φ, then φ/θ is a congruence on A/θ.

Proof. Let f be an n-ary function symbol and suppose 〈ai/θ, bi/θ〉 ∈ φ/θ, 1 ≤ i ≤ n. Then
〈ai, bi〉 ∈ φ (why?), so

〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ φ,
and thus

〈fA(a1, . . . , an)/θ, fA(b1, . . . , bn)/θ〉 ∈ φ/θ.
From this is follows that

〈fA/θ(a1/θ, . . . , an/θ), f
A/θ(b1/θ, . . . , bn/θ〉 ∈ φ/θ.

2

Theorem 6.15 (Second Isomorphism Theorem). If φ, θ ∈ Con A and θ ⊆ φ, then the map

α : (A/θ)/(φ/θ)→ A/φ

defined by
α((a/θ)/(φ/θ)) = a/φ

is an isomorphism from (A/θ)/(φ/θ) to A/φ. (See Figure 13.)
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φ / θ
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Proof. Let a, b ∈ A. Then from

(a/θ)/(φ/θ) = (b/θ)/(φ/θ) iff a/φ = b/φ

it follows that α is a well-defined bijection. Now, for f an n-ary function symbol and
a1, . . . , an ∈ A we have

αf (A/θ)/(φ/θ)((a1/θ)/(φ/θ), . . . , (an/θ)/(φ/θ)) = α(fA/θ(a1/θ, . . . , an/θ)/(φ/θ))

= α((fA(a1, . . . , an)/θ)/(φ/θ))

= fA(a1, . . . , an)/φ

= fA/φ(a1/φ, . . . , an/φ)

= fA/φ(α((a1/θ)/(φ/θ)), . . . , α((an/θ)/(φ/θ))),

so α is an isomorphism. 2

Definition 6.16. Suppose B is a subset of A and θ is a congruence on A. Let Bθ = {a ∈
A : B ∩ a/θ 6= ∅}. Let Bθ be the subalgebra of A generated by Bθ. Also define θ�B to be
θ∩B2, the restriction of θ to B. (See Figure 14, where the dashed-line subdivisions of A are
the equivalence classes of θ.)
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Bθ

B

A

Figure 14

Lemma 6.17. If B is a subalgebra of A and θ ∈ Con A, then

(a) The universe of Bθ is Bθ.
(b) θ�B is a congruence on B.

Proof. Suppose f is an n-ary function symbol. For (a) let a1, . . . , an ∈ Bθ. Then one can
find b1, . . . , bn ∈ B such that

〈ai, bi〉 ∈ θ, 1 ≤ i ≤ n,

hence
〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θ,

so
fA(a1, . . . , an) ∈ Bθ.

Thus Bθ is a subuniverse of A. Next, to verify that θ�B is a congruence on B is straightfor-
ward. 2

Theorem 6.18 (Third Isomorphism Theorem). If B is a subalgebra of A and θ ∈ Con A,
then (see Figure 15)

B/θ�B∼= Bθ/θ�Bθ .

α

/θ BB θ/θ BθB

Figure 15
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Proof. We leave it to the reader to verify that the map α defined by α(b/θ�B) = b/θ�Bθ is
the desired isomorphism. 2

The last theorem in this section will be quite important in the subsequent study of
subdirectly irreducible algebras. Before looking at this theorem let us note that if L is a
lattice and a, b ∈ L with a ≤ b then the interval [a, b] is a subuniverse of L.

Definition 6.19. For [a, b] a closed interval of a lattice L, where a ≤ b, let [[[a, b]]] denote the
corresponding sublattice of L.

Theorem 6.20 (Correspondence Theorem). Let A be an algebra and let θ ∈ Con A. Then
the mapping α defined on [θ,∇A] by

α(φ) = φ/θ

is a lattice isomorphism from [[[θ,∇A]]] to Con A/θ, where [[[θ,∇A]]] is a sublattice of Con A.
(See Figure 16.)

Con A /θ

α

Con A

θ

Figure 16

Proof. To see that α is one-to-one, let φ, ψ ∈ [θ,∇A] with φ 6= ψ. Then, without loss of
generality, we can assume that there are elements a, b ∈ A with 〈a, b〉 ∈ φ− ψ. Thus

〈a/θ, b/θ〉 ∈ (φ/θ)− (ψ/θ),

so
α(φ) 6= α(ψ).

To show that α is onto, let ψ ∈ Con A/θ and define φ to be ker(νψνθ). Then for a, b ∈ A,

〈a/θ, b/θ〉 ∈ φ/θ
iff 〈a, b〉 ∈ φ
iff 〈a/θ, b/θ〉 ∈ ψ,
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so

φ/θ = ψ.

Finally, we will show that α is an isomorphism. If φ, ψ ∈ [θ,∇A] then it is clear that

φ ⊆ ψ

iff φ/θ ⊆ ψ/θ

iff αφ ⊆ αψ.

2

One can readily translate 6.12, 6.15, 6.18, and 6.20 into the (usual) theorems used in
group theory and in ring theory.

Exercises §6

1. Show that, under composition, the endomorphisms of an algebra form a monoid, and
the automorphisms form a group.

2. Translate the isomorphism theorems and the correspondence theorem into results about
groups [rings], replacing congruences by normal subgroups [ideals].

3. Show that a homomorphism α is an embedding iff kerα = ∆.

4. If θ ∈ Con A and Con A is a modular [distributive] lattice then show Con A/θ is
also a modular [distributive] lattice.

5. Let α : A → B be a homomorphism, and X ⊆ A. Show that 〈a, b〉 ∈ Θ(X) ⇒
〈αa, αb〉 ∈ Θ(αX).

6. Given two homomorphisms α : A→ B and β : A→ C, if ker β ⊆ kerα and β is onto,
show that there is a homomorphism γ : C→ B such that α = γ ◦ β.

§7. Direct Products, Factor Congruences, and

Directly Indecomposable Algebras

The constructions we have looked at so far, namely subalgebras and quotient algebras, do
not give a means of creating algebras of larger cardinality than what we start with, or of
combining several algebras into one.
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Definition 7.1. Let A1 and A2 be two algebras of the same type F. Define the (direct)
product A1 × A2 to be the algebra whose universe is the set A1 × A2, and such that for
f ∈ Fn and ai ∈ A1, a

′
i ∈ A2, 1 ≤ i ≤ n,

fA1×A2(〈a1, a
′
1〉, . . . , 〈an, a′n〉) = 〈fA1(a1, . . . , an), fA2(a′1, . . . , a

′
n)〉.

In general neither A1 nor A2 is embeddable in A1 ×A2, although in special cases like
groups this is possible because there is always a trivial subalgebra. However, both A1 and
A2 are homomorphic images of A1 ×A2.

Definition 7.2. The mapping

πi : A1 × A2 → Ai, i ∈ {1, 2},

defined by
πi(〈a1, a2〉) = ai,

is called the projection map on the i th coordinate of A1 × A2.

Theorem 7.3. For i = 1 or 2 the mapping πi : A1×A2 → Ai is a surjective homomorphism
from A = A1 ×A2 to Ai. Furthermore, in Con A1 ×A2 we have

ker π1 ∩ ker π2 = ∆,

ker π1 and ker π2 permute,

and
ker π1 ∨ ker π2 = ∇.

Proof. Clearly πi is surjective. If f ∈ Fn and ai ∈ A1, a
′
i ∈ A2, 1 ≤ i ≤ n, then

π1(fA(〈a1, a
′
1〉, . . . , 〈an, a′n〉)) = π1(〈fA1(a1, . . . , an), fA2(a′1, . . . , a

′
n)〉)

= fA1(a1, . . . , an)

= fA1(π1(〈a1, a
′
1〉), . . . , π1(〈an, a′n〉)),

so π1 is a homomorphism; and similarly π2 is a homomorphism.
Now

〈〈a1, a2〉, 〈b1, b2〉〉 ∈ ker πi

iff πi(〈a1, a2〉) = πi(〈b1, b2〉)
iff ai = bi.

Thus
ker π1 ∩ ker π2 = ∆.
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Also if 〈a1, a2〉, 〈b1, b2〉 are any two elements of A1 × A2 then

〈a1, a2〉 ker π1〈a1, b2〉 ker π2〈b1, b2〉,

so

∇ = ker π1 ◦ ker π2.

But then ker π1 and ker π2 permute, and their join is ∇. 2

The last half of Theorem 7.3 motivates the following definition.

Definition 7.4. A congruence θ on A is a factor congruence if there is a congruence θ∗ on
A such that

θ ∩ θ∗ = ∆,

θ ∨ θ∗ = ∇,

and

θ permutes with θ∗.

The pair θ, θ∗ is called a pair of factor congruences on A.

Theorem 7.5. If θ, θ∗ is a pair of factor congruences on A, then

A ∼= A/θ ×A/θ∗

under the map

α(a) = 〈a/θ, a/θ∗〉.

Proof. If a, b ∈ A and

α(a) = α(b)

then

a/θ = b/θ and a/θ∗ = b/θ∗,

so

〈a, b〉 ∈ θ and 〈a, b〉 ∈ θ∗;

hence

a = b.

This means that α is injective. Next, given a, b ∈ A there is a c ∈ A with

aθcθ∗b ;
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hence

α(c) = 〈c/θ, c/θ∗〉
= 〈a/θ, b/θ∗〉,

so α is onto. Finally, for f ∈ Fn and a1, . . . , an ∈ A,

αfA(a1, . . . , an) = 〈fA(a1, . . . , an)/θ, fA(a1, . . . , an)/θ∗〉
= 〈fA/θ(a1/θ, . . . , an/θ), f

A/θ∗(a1/θ
∗, . . . , an/θ

∗)〉
= fA/θ×A/θ∗(〈a1/θ, a1/θ

∗〉, . . . , 〈an/θ, an/θ∗〉)
= fA/θ×A/θ∗(αa1, . . . , αan);

hence α is indeed an isomorphism. 2

Thus we see that factor congruences come from and give rise to direct products.

Definition 7.6. An algebra A is (directly) indecomposable if A is not isomorphic to a direct
product of two nontrivial algebras.

Example. Any finite algebra A with |A| a prime number must be directly indecomposable.

From Theorems 7.3 and 7.5 we have the following.

Corollary 7.7. A is directly indecomposable iff the only factor congruences on A are ∆
and ∇.

We can easily generalize the definition of A1 ×A2 as follows.

Definition 7.8. Let (Ai)i∈I be an indexed family of algebras of type F. The (direct) product
A =

∏
i∈I Ai is an algebra with universe

∏
i∈I Ai and such that for f ∈ Fn and a1, . . . , an ∈∏

i∈I Ai,
fA(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))

for i ∈ I, i.e., fA is defined coordinate-wise. The empty product
∏
∅ is the trivial algebra

with universe {∅}. As before we have projection maps

πj :
∏
i∈I

Ai → Aj

for j ∈ I defined by
πj(a) = a(j)

which give surjective homomorphisms

πj :
∏
i∈I

Ai → Aj.
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If I = {1, 2, . . . , n} we also write A1 × · · · ×An. If I is arbitrary but Ai = A for all i ∈ I,
then we usually write AI for the direct product, and call it a (direct) power of A. A? is a
trivial algebra.

A direct product
∏

i∈I Ai of sets is often visualized as a rectangle with base I and vertical
cross sections Ai. An element a of

∏
i∈I Ai is then a curve as indicated in Figure 17. Two

elementary facts about direct products are stated next.

I

a
a(i)

i

Ai

Figure 17

Theorem 7.9. If A1,A2, and A3 are of type F then

(a) A1 ×A2
∼= A2 ×A1 under α(〈a1, a2〉) = 〈a2, a1〉.

(b) A1 × (A2 ×A3) ∼= A1 ×A2 ×A3 under α(〈a1, 〈a2, a3〉〉) = 〈a1, a2, a3〉.

Proof. (Exercise.) 2

In Chapter IV we will see that there is up to isomorphism only one nontrivial directly in-
decomposable Boolean algebra, namely a two-element Boolean algebra, hence by cardinality
considerations it follows that a countably infinite Boolean algebra cannot be isomorphic to
a direct product of directly indecomposable algebras. On the other hand for finite algebras
we have the following.

Theorem 7.10. Every finite algebra is isomorphic to a direct product of directly indecom-
posable algebras.

Proof. Let A be a finite algebra. If A is trivial then A is indecomposable. We proceed by
induction on the cardinality of A. Suppose A is a nontrivial finite algebra such that for every
B with |B| < |A| we know that B is isomorphic to a product of indecomposable algebras. If
A is indecomposable we are finished. If not, then A ∼= A1 ×A2 with 1 < |A1|, |A2|. Then,
|A1|, |A2| < |A|, so by the induction hypothesis,

A1
∼= B1 × · · · ×Bm,

A2
∼= C1 × · · · ×Cn,
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where the Bi and Cj are indecomposable. Consequently,

A ∼= B1 × · · · ×Bm ×C1 × · · · ×Cn.

2

Using direct products there are two obvious ways (which occur a number of times in
practice) of combining families of homomorphisms into single homomorphisms.

Definition 7.11. (i) If we are given maps αi : A→ Ai, i ∈ I, then the natural map

α : A→
∏
i∈I

Ai

is defined by
(αa)(i) = αia.

(ii) If we are given maps αi : Ai → Bi, i ∈ I, then the natural map

α :
∏
i∈I

Ai →
∏
i∈I

Bi

is defined by
(αa)(i) = αi(a(i)).

Theorem 7.12. (a) If αi : A → Ai, i ∈ I, is an indexed family of homomorphisms, then
the natural map α is a homomorphism from A to A∗ =

∏
i∈I Ai.

(b) If αi : Ai → Bi, i ∈ I, is an indexed family of homomorphisms, then the natural map
α is a homomorphism from A∗ =

∏
i∈I Ai to B∗ =

∏
i∈I Bi.

Proof. Suppose αi : A → Ai is a homomorphism for i ∈ I. Then for a1, . . . , an ∈ A and
f ∈ Fn we have, for i ∈ I,

(αfA(a1, . . . , an))(i) = αif
A(a1, . . . , an)

= fAi(αia1, . . . , αian)

= fAi((αa1)(i), . . . , (αan)(i))

= fA∗(αa1, . . . , αan)(i);

hence
αfA(a1, . . . , an) = fA∗(αa1, . . . , αan),

so α is indeed a homomorphism in (a) above. Case (b) is a consequence of (a) using the
homomorphisms αi ◦ πi. 2
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Definition 7.13. If a1, a2 ∈ A and α : A→ B is a map we say α separates a1 and a2 if

αa1 6= αa2.

The maps αi : A → Ai, i ∈ I, separate points if for each a1, a2 ∈ A with a1 6= a2 there is an
αi such that

αi(a1) 6= αi(a2).

Lemma 7.14. For an indexed family of maps αi : A → Ai, i ∈ I, the following are
equivalent:

(a) The maps αi separate points.
(b) α is injective (α is the natural map of 7.11(a)).
(c)
⋂
i∈I kerαi = ∆.

Proof. (a) ⇒ (b): Suppose a1, a2 ∈ A and a1 6= a2. Then for some i,

αi(a1) 6= αi(a2);

hence
(αa1)(i) 6= (αa2)(i)

so
αa1 6= αa2.

(b) ⇒ (c): For a1, a2 ∈ A with a1 6= a2, we have

αa1 6= αa2;

hence
(αa1)(i) 6= (αa2)(i)

for some i, so
αia1 6= αia2

for some i, and this implies
〈a1, a2〉 6∈ kerαi,

so ⋂
i∈I

kerαi = ∆.

(c) ⇒ (a): For a1, a2 ∈ A with a1 6= a2,

〈a1, a2〉 6∈
⋂
i∈I

kerαi
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so, for some i,
〈a1, a2〉 6∈ kerαi;

hence
αia1 6= αia2.

2

Theorem 7.15. If we are given an indexed family of homomorphisms αi : A→ Ai, i ∈ I,
then the natural homomorphism α : A→

∏
i∈I Ai is an embedding iff

⋂
i∈I kerαi = ∆ iff the

maps αi separate points.

Proof. This is immediate from 7.14. 2

Exercises §7

1. If θ, θ∗ ∈ Con A show that they form a pair of factor congruences on A iff θ ∩ θ∗ = ∆
and θ ◦ θ∗ = ∇.

2. Show that (Con A1)× (Con A2) can be embedded in Con A1 ×A2.

3. Give examples of arbitrarily large directly indecomposable finite distributive lattices.

4. If Con A is a distributive lattice show that the factor congruences on A form a com-
plemented sublattice of Con A.

5. Find two algebras A1,A2 such that neither can be embedded in A1 ×A2.

§8. Subdirect Products, Subdirectly Irreducible

Algebras, and Simple Algebras

Although every finite algebra is isomorphic to a direct product of directly indecomposable
algebras, the same does not hold for infinite algebras in general. For example, we see that a
denumerable vector space over a finite field cannot be isomorphic to a direct product of one-
dimensional spaces by merely considering cardinalities. The quest for general building blocks
in the study of universal algebra led Birkhoff to consider subdirectly irreducible algebras.

Definition 8.1. An algebra A is a subdirect product of an indexed family (Ai)i∈I of algebras
if

(i) A ≤
∏

i∈I Ai

and
(ii) πi(A) = Ai for each i ∈ I.
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An embedding α : A→
∏

i∈I Ai is subdirect if α(A) is a subdirect product of the Ai.

Note that if I = ∅ then A is a subdirect product of ∅ iff A =
∏
∅, a trivial algebra.

Lemma 8.2. If θi ∈ Con A for i ∈ I and
⋂
i∈I θi = ∆, then the natural homomorphism

ν : A→
∏
i∈I

A/θi

defined by
ν(a)(i) = a/θi

is a subdirect embedding.

Proof. Let νi be the natural homomorphism from A to A/θi for i ∈ I. As ker νi = θi,
it follows from 7.15 that ν is an embedding. Since each νi is surjective, ν is a subdirect
embedding. 2

Definition 8.3. An algebra A is subdirectly irreducible if for every subdirect embedding

α : A→
∏
i∈I

Ai

there is an i ∈ I such that
πi ◦ α : A→ Ai

is an isomorphism.

The following characterization of subdirectly irreducible algebras is most useful in prac-
tice.

Theorem 8.4. An algebra A is subdirectly irreducible iff A is trivial or there is a minimum
congruence in Con A− {∆}. In the latter case the minimum element is

⋂
(Con A− {∆}),

a principal congruence, and the congruence lattice of A looks like the diagram in Figure 18.

(Con A - {∆})

∆

∆
Figure 18
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Proof. (⇒) If A is not trivial and Con A−{∆} has no minimum element then
⋂

(Con A−
{∆}) = ∆. Let I = Con A− {∆}. Then the natural map α : A→

∏
θ∈I A/θ is a subdirect

embedding by Lemma 8.2, and as the natural map A → A/θ is not injective for θ ∈ I, it
follows that A is not subdirectly irreducible.

(⇐) If A is trivial and α : A →
∏

i∈I Ai is a subdirect embedding then each Ai is
trivial; hence each πi ◦ α is an isomorphism. So suppose A is not trivial, and let θ =⋂

(Con A−{∆}) 6= ∆. Choose 〈a, b〉 ∈ θ, a 6= b. If α : A→
∏

i∈I Ai is a subdirect embedding
then for some i, (αa)(i) 6= (αb)(i); hence (πi ◦ α)(a) 6= (πi ◦ α)(b). Thus 〈a, b〉 6∈ ker(πi ◦ α)
so θ * ker(πi ◦ α). But this implies ker(πi ◦ α) = ∆, so πi ◦ α : A→ Ai is an isomorphism.
Consequently A is subdirectly irreducible.

If Con A − {∆} has a minimum element θ then for a 6= b and 〈a, b〉 ∈ θ we have
Θ(a, b) ⊆ θ, hence θ = Θ(a, b). 2

Using 8.4, we can readily list some subdirectly irreducible algebras.

Examples. (1) A finite Abelian group G is subdirectly irreducible iff it is cyclic and |G| = pn

for some prime p.
(2) The group Zp∞ is subdirectly irreducible.
(3) Every simple group is subdirectly irreducible.
(4) A vector space over a field F is subdirectly irreducible iff it is trivial or one-dimensional.
(5) Any two-element algebra is subdirectly irreducible.

A directly indecomposable algebra need not be subdirectly irreducible. For example
consider a three-element chain as a lattice. But the converse does indeed hold.

Theorem 8.5. A subdirectly irreducible algebra is directly indecomposable.

Proof. Clearly the only factor congruences on a subdirectly irreducible algebra are ∆ and
∇, so by 7.7 such an algebra is directly indecomposable. 2

Theorem 8.6 (Birkhoff). Every algebra A is isomorphic to a subdirect product of subdirectly
irreducible algebras (which are homomorphic images of A).

Proof. As trivial algebras are subdirectly irreducible we only need to consider the case of
nontrivial A. For a, b ∈ A with a 6= b we can find, using Zorn’s lemma, a congruence θa,b
on A which is maximal with respect to the property 〈a, b〉 6∈ θa,b. Then clearly Θ(a, b) ∨
θa,b is the smallest congruence in [θa,b,∇] − {θa,b}, so by 6.20 and 8.4 we see that A/θa,b
is subdirectly irreducible. As

⋂
{θa,b : a 6= b} = ∆ we can apply 8.2 to show that A

is subdirectly embeddable in the product of the indexed family of subdirectly irreducible
algebras (A/θa,b)a6=b.

An immediate consequence of 8.6 is the following.
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Corollary 8.7. Every finite algebra is isomorphic to a subdirect product of a finite number
of subdirectly irreducible finite algebras.

Although subdirectly irreducible algebras do form the building blocks of algebra, the
subdirect product construction is so flexible that one is often unable to draw significant
conclusions for a class of algebras by studying its subdirectly irreducible members. In some
special yet interesting cases we can derive an improved version of Birkhoff’s theorem which
permits a much deeper insight—this will be the theme of Chapter IV.

Next we look at a special kind of subdirectly irreducible algebra. This definition extends
the usual notion of a simple group or a simple ring to arbitrary algebras.

Definition 8.8. An algebra A is simple if Con A = {∆,∇}. A congruence θ on an algebra
A is maximal if the interval [θ,∇] of Con A has exactly two elements.

Many algebraists prefer to require that a simple algebra be nontrivial. For our devel-
opment, particularly for the material in Chapter IV, we find the discussion smoother by
admitting trivial algebras.

Just as the quotient of a group by a normal subgroup is simple and nontrivial iff the
normal subgroup if maximal, we have a similar result for arbitrary algebras.

Theorem 8.9. Let θ ∈ Con A. Then A/θ is a simple algebra iff θ is a maximal congruence
on A or θ = ∇.

Proof. We know that

Con A/θ ∼= [[[θ,∇A]]]

by 6.20, so the theorem is an immediate consequence of 8.8. 2

Reference

1. G. Birkhoff [1944]

Exercises §8

1. Represent the three-element chain as a subdirect product of subdirectly irreducible
lattices.

2. Verify that the examples following 8.4 are indeed subdirectly irreducible algebras.

3. (Wenzel). Describe all subdirectly irreducible mono-unary algebras. [In particular
show that they are countable.]
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4. (Taylor). Let A be the set of functions from ω to {0, 1}. Define the bi-unary algebra
〈A, f, g〉 by letting

f(a)(i) = a(i+ 1)

g(a)(i) = a(0).

Show that A is subdirectly irreducible.

5. (Taylor). Given an infinite cardinal λ show that one can construct a unary algebra A
by size 2λ with λ unary operations such that A is subdirectly irreducible.

6. Describe all subdirectly irreducible Abelian groups.

7. If S is a subdirectly irreducible semilattice show that |S| ≤ 2. (Use §5 Exercise 9.)
Hence show that every semilattice is isomorphic to a semilattice of the form 〈A,∩〉,
where A is a family of sets closed under finite intersection.

8. A congruence θ on A is completely meet irreducible if whenever θ =
⋂
i∈I θi, θi ∈ Con A,

we have θ = θi, for some i ∈ I. Show that A/θ is subdirectly irreducible iff θ is
completely meet irreducible. (Hence, in particular, A is subdirectly irreducible iff ∆
is completely meet irreducible.)

9. If H = 〈H,∨,∧,→, 0, 1〉 is a Heyting algebra and a ∈ H define θa = {〈b, c〉 ∈ H2 :
(b→ c)∧ (c→ b) ≥ a}. Show that θa is a congruence on H. From this show that H is
subdirectly irreducible iff |H| = 1 or there is an element e 6= 1 such that b 6= 1⇒ b ≤ e
for b ∈ H.

10. Show that the lattice of partitions 〈Π(A),⊆〉 of a set A is a simple lattice.

11. If A is an algebra and θi ∈ Con A, i ∈ I, let θ =
⋂
i∈I θi. Show that A/θ can be

subdirectly embedded in
∏

i∈I A/θi.

§9. Class Operators and Varieties

A major theme in universal algebra is the study of classes of algebras of the same type closed
under one or more constructions.

Definition 9.1. We introduce the following operators mapping classes of algebras to classes
of algebras (all of the same type):

A ∈ I(K) iff A is isomorphic to some member of K
A ∈ S(K) iff A is a subalgebra of some member of K
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A ∈ H(K) iff A is a homomorphic image of some member of K
A ∈ P (K) iff A is a direct product of a nonempty family of algebras in K
A ∈ PS(K) iff A is a subdirect product of a nonempty family of algebras in K.

If O1 and O2 are two operators on classes of algebras we write O1O2 for the composition of
the two operators, and ≤ denotes the usual partial ordering, i.e., O1 ≤ O2 if O1(K) ⊆ O2(K)
for all classes of algebras K. An operator O is idempotent if O2 = O. A class K of algebras
is closed under an operator O if O(K) ⊆ K.

Our convention that P and PS apply only to non-empty indexed families of algebras is the
convention followed by model theorists. Thus for any operator O above, O(∅) = ∅. Many
algebraists prefer to include

∏
∅, guaranteeing that P (K) and PS(K) always contain a trivial

algebra. However this leads to problems formulating certain preservation theorems—see V§2.
For us

∏
∅ is really used only in IV§1, §5 and §7.

Lemma 9.2. The following inequalities hold: SH ≤ HS, PS ≤ SP, and PH ≤ HP. Also
the operators, H,S, and IP are idempotent.

Proof. Suppose A = SH(K). Then for some B ∈ K and onto homomorphism α : B→ C,
we have A ≤ C. Thus α−1(A) ≤ B, and as α(α−1(A)) = A, we have A ∈ HS(K).

If A ∈ PS(K) then A =
∏

i∈I Ai for suitable Ai ≤ Bi ∈ K, i ∈ I. As
∏

i∈I Ai ≤
∏

i∈I Bi,
we have A ∈ SP (K).

Next if A ∈ PH(K), then there are algebras Bi ∈ K and epimorphisms αi : Bi → Ai

such that A =
∏

i∈I Ai. It is easy to check that the mapping α :
∏

i∈I Bi →
∏

i∈I Ai defined
by α(b)(i) = αi(b(i)) is an epimorphism; hence A ∈ HP (K).

Finally it is a routine exercise to verify that H2 = H, etc. 2

Definition 9.3. A nonempty class K of algebras of type F is called a variety if it is closed
under subalgebras, homomorphic images, and direct products.

As the intersection of a class of varieties of type F is again a variety, and as all algebras
of type F form a variety, we can conclude that for every class K of algebras of the same type
there is a smallest variety containing K.

Definition 9.4. If K is a class of algebras of the same type let V (K) denote the smallest
variety containing K. We say that V (K) is the variety generated by K. If K has a single
member A we write simply V (A). A variety V is finitely generated if V = V (K) for some
finite set K of finite algebras.

Theorem 9.5 (Tarski). V = HSP.

Proof. Since HV = SV = IPV = V and I ≤ V it follows that HSP ≤ HSPV = V. From
Lemma 9.2 we see that H(HSP ) = HSP, S(HSP ) ≤ HSSP = HSP, and P (HSP ) ≤
HPSP ≤ HSPP ≤ HSIPIP = HSIP ≤ HSHP ≤ HHSP = HSP ; hence for any
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K, HSP (K) is closed under H, S, and P. As V (K) is the smallest class containing K and
closed under H, S, and P, we must have V = HSP. 2

Another description of the operator V will be given at the end of §11. The following
version of Birkhoff’s Theorem 8.6 is useful in studying varieties.

Theorem 9.6. If K is a variety, then every member of K is isomorphic to a subdirect
product of subdirectly irreducible members of K.

Corollary 9.7. A variety is determined by its subdirectly irreducible members.

References

1. E. Nelson [1967]

2. D. Pigozzi [1972]

3. A. Tarski [1946]

Exercises §9

1. Show that ISP (K) is the smallest class containing K and closed under I, S, and P.

2. Show HS 6= SH, HP 6= IPH, ISP 6= IPS.

3. Show ISPHS 6= ISHPS 6= IHSP.

4. (Pigozzi). Show that there are 18 distinct class operators of the form IO1 · · ·On where
Oi ∈ {H,S, P} for 1 ≤ i ≤ n.

5. Show that if V has the CEP (see §5 Exercise 10) then for K ⊆ V, HS(K) = SH(K).

§10. Terms, Term Algebras, and Free Algebras

Given an algebra A there are usually many functions besides the fundamental operations
which are compatible with the congruences on A and which “preserve” subalgebras of A. The
most obvious functions of this type are those obtained by compositions of the fundamental
operations. This leads us to the study of terms.

Definition 10.1. Let X be a set of (distinct) objects called variables. Let F be a type of
algebras. The set T (X) of terms of type F over X is the smallest set such that

(i) X ∪ F0 ⊆ T (X).
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(ii) If p1, . . . , pn ∈ T (X) and f ∈ Fn then the “string” f(p1, . . . , pn) ∈ T (X).

For a binary function symbol · we usually prefer p1 ·p2 to ·(p1, p2). For p ∈ T (X) we often
write p as p(x1, . . . , xn) to indicate that the variables occurring in p are among x1, . . . , xn. A
term p is n-ary if the number of variables appearing explicitly in p is ≤ n.

Examples. (1) Let F consist of a single binary function symbol ·, and let X = {x, y, z}.
Then

x, y, z, x · y, y · z, x · (y · z), and (x · y) · z
are some of the terms over X.

(2) Let F consist of two binary operation symbols + and ·, and let X be as before. Then

x, y, z, x · (y + z), and (x · y) + (x · z)

are some of the terms over X.
(3) The classical polynomials over the field of real numbers R are really the terms as

defined above of type F consisting of +, ·, and − together with a nullary function symbol r
for each r ∈ R.

In elementary algebra one often thinks of an n-ary polynomial over R as a function from
Rn to R for some n. This can be applied to terms as well.

Definition 10.2. Given a term p(x1, . . . , xn) of type F over some set X and given an algebra
A of type F we define a mapping pA : An → A as follows:

(1) if p is a variable xi, then

pA(a1, . . . , an) = ai

for a1, . . . , an ∈ A, i.e., pA is the ith projection map;
(2) if p is of the form f(p1(x1, . . . , xn), . . . , pk(x1, . . . , xn)), where f ∈ Fk, then

pA(a1, . . . , an) = fA(pA
1 (a1, . . . , an), . . . , pA

k (a1, . . . , an)).

In particular if p = f ∈ F then pA = fA. pA is the term function on A corresponding to the
term p. (Often we will drop the superscript A).

The next theorem gives some useful properties of term functions, namely they behave
like fundamental operations insofar as congruences and homomorphisms are concerned, and
they can be used to describe the closure operator Sg of §3 in a most efficient manner.

Theorem 10.3. For any type F and algebras A, B of type F we have the following.
(a) Let p be an n-ary term of type F, let θ ∈ Con A, and suppose 〈ai, bi〉 ∈ θ for 1 ≤ i ≤ n.

Then
pA(a1, . . . , an)θpA(b1, . . . , bn).
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(b) If p is an n-ary term of type F and α : A→ B is a homomorphism, then

αpA(a1, . . . , an) = pB(αa1, . . . , αan)

for a1, . . . , an ∈ A.
(c) Let S be a subset of A. Then

Sg(S) = {pA(a1, . . . , an) : p is an n-ary term of type F, n < ω, and a1, . . . , an ∈ S}.

Proof. Given a term p define the length l(p) of p to be the number of occurences of n-ary
operation symbols in p for n ≥ 1. Note that l(p) = 0 iff p ∈ X ∪ F0.

(a) We proceed by induction on l(p). If l(p) = 0, then either p = xi for some i, whence

〈pA(a1, . . . , an), pA(b1, . . . , bn)〉 = 〈ai, bi〉 ∈ θ

or p = a for some a ∈ F0, whence

〈pA(a1, . . . , an), pA(b1, . . . , bn)〉 = 〈aA, aA〉 ∈ θ.

Now suppose l(p) > 0 and the assertion holds for every term q with l(q) < l(p). Then we
know p is of the form

f(p1(x1, . . . , xn), . . . , pk(x1, . . . , xn)),

and as l(pi) < l(p) we must have, for 1 ≤ i ≤ k,

〈pA
i (a1, . . . , an), pA

i (b1, . . . , bn)〉 ∈ θ;

hence

〈fA(pA
1 (a1, . . . , an), . . . , pA

k (a1, . . . , an)), fA(pA
1 (b1, . . . , bn), . . . , pA

k (b1, . . . , bn))〉 ∈ θ,

and consequently
〈pA(a1, . . . , an), pA(b1, . . . , bn)〉 ∈ θ.

(b) The proof of this is an induction argument on l(p).
(c) Referring to §3 one can give an induction proof, for k ≥ 1, of

Ek(S) = {pA(a1, . . . , an) : p is an n-ary term, l(p) ≤ k, n < ω, a1, . . . , an ∈ S},

and thus

Sg(S) =
⋃
k<∞

Ek(S) = {pA(a1, . . . , an) : p is an n-ary term, n < ω, a1, . . . , an ∈ S}.

2
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One can, in a natural way, transform the set T (X) into an algebra.

Definition 10.4. Given F and X, if T (X) 6= ∅ then the term algebra of type F over X,
written T(X), has as its universe the set T (X), and the fundamental operations satisfy

fT(X) : 〈p1, . . . , pn〉 7→ f(p1, . . . , pn)

for f ∈ Fn and pi ∈ T (X), 1 ≤ i ≤ n. (T(∅) exists iff F0 6= ∅.)

Note that T(X) is indeed generated by X. Term algebras provide us with the simplest
examples of algebras with the universal mapping property.

Definition 10.5. Let K be a class of algebras of type F and let U(X) be an algebra of type
F which is generated by X. If for every A ∈ K and for every map

α : X → A

there is a homomorphism
β : U(X)→ A

which extends α (i.e., β(x) = α(x) for x ∈ X), then we say U(X) has the universal mapping
property for K over X, X is called a set of free generators of U(X), and U(X) is said to be
freely generated by X.

Lemma 10.6. Suppose U(X) has the universal mapping property for K over X. Then if
we are given A ∈ K and α : X → A, there is a unique extension β of α such that β is a
homomorphism from U(X) to A.

Proof. This follows simply from noting that a homomorphism is completely determined
by how it maps a set of generators (see 6.2) from the domain. 2

The next result says that for a given cardinal m there is, up to isomorphism, at most
one algebra in a class K which has the universal mapping property for K over a set of free
generators of size m.

Theorem 10.7. Suppose U1(X1) and U2(X2) are two algebras in a class K with the univer-
sal mapping property for K over the indicated sets. If |X1| = |X2|, then U1(X1) ∼= U2(X2).

Proof. First note that the identity map

ıj : Xj → Xj , j = 1, 2,

has as its unique extension to a homomorphism from Uj(Xj) to Uj(Xj) the identity map.
Now let

α : X1 → X2
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be a bijection. Then we have a homomorphism

β : U1(X1)→ U2(X2)

extending α, and a homomorphism

γ : U2(X2)→ U1(X1)

extending α−1. As β ◦ γ is an endomorphism of U2(X2) extending ı2, it follows by 10.6 that
β ◦ γ is the identity map on U2(X2). Likewise γ ◦ β is the identity map on U1(X1). Thus β
is a bijection, so U1(X1) ∼= U2(X2). 2

Theorem 10.8. For any type F and set X of variables, where X 6= ∅ if F0 = ∅, the term
algebra T(X) has the universal mapping property for the class of all algebras of type F over
X.

Proof. Let α : X → A where A is of type F. Define

β : T (X)→ A

recursively by
βx = αx

for x ∈ X, and
β(f(p1, . . . , pn)) = fA(βp1, . . . , βpn)

for p1, . . . , pn ∈ T (X) and f ∈ Fn. Then β(p(x1, . . . , xn)) = pA(αx1, . . . , αxn), and β is the
desired homomorphism extending α. 2

Thus given any class K of algebras the term algebras provide algebras which have the
universal mapping property for K. To study properties of classes of algebras we often try to
find special kinds of algebras in these classes which yield the desired information. Directly
indecomposable and subdirectly irreducible algebras are two examples which we have already
encountered. In order to find algebras with the universal mapping property for K which
give more insight into K we will introduce K-free algebras. Unfortunately not every class K
contains algebras with the universal mapping property for K. Nonetheless we will be able to
show that any class closed under I, S, and P contains its K-free algebras. There is reasonable
difficulty in providing transparent descriptions ofK-free algebras for most K. However, most
of the applications of K-free algebras come directly from the universal mapping property,
the fact that they exist in varieties, and their relation to identities holding in K (which
we will examine in the next section). A proper understanding of free algebras is essential
in our development of universal algebra—we use them to show varieties are the same as
classes defined by equations (Birkhoff), to give useful characterizations (Mal’cev conditions)
of important properties of varieties, and to show every nontrivial variety contains a nontrivial
simple algebra (Magari).
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Definition 10.9. Let K be a family of algebras of type F. Given a set X of variables define
the congruence θK(X) on T(X) by

θK(X) =
⋂

ΦK(X),

where
ΦK(X) = {φ ∈ Con T(X) : T(X)/φ ∈ IS(K)};

and then define FK(X), the K-free algebra over X, by

FK(X) = T(X)/θK(X),

where
X = X/θK(X).

For x ∈ X we write x for x/θK(X), and for p = p(x1, . . . , xn) ∈ T (X) we write p for

pFK(X)(x1, . . . , xn). If X is finite, say X = {x1, . . . , xn}, we often write FK(x1, . . . , xn) for
FK(X). FK(X) is the universe of FK(X).

Remarks.

(1) FK(X) exists iff T(X) exists iff X 6= ∅ or F0 6= ∅. (2) If FK(X) exists, then X is a set of
generators of FK(X) as X generates T(X). (3) If F0 6= ∅, then the algebra FK(∅) is often
referred to as an initial object by category theorists and computer scientists. (4) If K = ∅ or
K consists solely of trivial algebras, then FK(X) is a trivial algebra as θK(X) = ∇. (5) If K
has a nontrivial algebra A and T(X) exists, then X ∩ (x/θK(X)) = {x} as distinct members
x, y of X can be separated by some homomorphism α : T(X)→ A. In this case |X| = |X|.
(6) If |X| = |Y | and T(X) exists, then clearly FK(X) ∼= FK(Y ) under an isomorphism which
maps X to Y as T(X) ∼= T(Y ) under an isomorphism mapping X to Y. Thus FK(X) is
determined, up to isomorphism, by K and |X|.

Theorem 10.10 (Birkhoff). Suppose T(X) exists. Then FK(X) has the universal mapping
property for K over X.

Proof. Given A ∈ K let α be a map from X to A. Let ν : T(X) → FK(X) be the
natural homomorphism. Then α ◦ ν maps X into A, so by the universal mapping property
of T(X) there is a homomorphism µ : T(X) → A extending α ◦ ν �X . From the definition
of θK(X) it is clear that θK(X) ⊆ ker µ (as ker µ ∈ ΦK(X)). Thus there is a homomorphism
β : FK(X) → A such that µ = β ◦ ν (see §6 Exercise 6) as ker ν = θK(X). But then, for
x ∈ X,

β(x) = β ◦ ν(x)

= µ(x)

= α ◦ ν(x)

= α(x),
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so β extends α. Thus FK(X) has the universal mapping property for K over X. 2

If FK(X) ∈ K then it is, up to isomorphism, the unique algebra in K with the universal
mapping property freely generated by a set of generators of size |X|. Actually every algebra
in K with the universal mapping property for K is isomorphic to a K-free algebra (see
Exercise 6).

Examples. (1) It is clear that T(X) is isomorphic to the free algebra with respect to the
class K of all algebras of type F over X since θK(X) = ∆. The corresponding free algebra
is sometimes called the absolutely free algebra F (X) of type F.

(2) Given X let X∗ be the set of finite strings of elements of X, including the empty
string. We can construct a monoid 〈X∗, ·, 1〉 by defining · to be concatenation, and 1 is the
empty string. By checking the universal mapping property one sees that 〈X∗, ·, 1〉 is, up to
isomorphism, the free monoid freely generated by X.

Corollary 10.11. If K is a class of algebras of type F and A ∈ K, then for sufficiently
large X, A ∈ H(FK(X)).

Proof. Choose |X| ≥ |A| and let
α : X → A

be a surjection. Then let
β : FK(X)→ A

be a homomorphism extending α. 2

In general FK(X) is not isomorphic to a member of K (for example, let K = {L} where
L is a two-element lattice; then FK(x, y) 6∈ I(K)). However FK(X) can be embedded in a
product of members of K.

Theorem 10.12 (Birkhoff). Suppose T(X) exists. Then for K 6= ∅, FK(X) ∈ ISP (K).
Thus if K is closed under I, S, and P, in particular if K is a variety, then FK(X) ∈ K.

Proof. As
θK(X) =

⋂
ΦK(X)

it follows (see §8 Exercise 11) that

FK(X) = T(X)/θK(X) ∈ IPS({T(X)/θ : θ ∈ ΦK(X)}),

so
FK(X) ∈ IPSIS(K),
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and thus by 9.2 and the fact that PS ≤ SP,

FK(X) ∈ ISP (K).

2

From an earlier theorem of Birkhoff we know that if a variety has a nontrivial algebra in
it then it must have a nontrivial subdirectly irreducible algebra in it. The next result shows
that such a variety must also contain a nontrivial simple algebra.

Theorem 10.13 (Magari). If we are given a variety V with a nontrivial member, then V
contains a nontrivial simple algebra.

Proof. Let X = {x, y}, and let

S = {p(x) : p ∈ T ({x})},

a subset of FV (X). First suppose that Θ(S) 6= ∇ in Con FV (X). Then by Zorn’s lemma
there is a maximal element in [Θ(S),∇]−{∇}. (The key observation for this step is that for
θ ∈ [Θ(S),∇],

θ = ∇ iff 〈x, y〉 ∈ θ.
To see this note that if 〈x, y〉 ∈ θ and Θ(S) ⊆ θ, then for any term p(x, y), with F = FV (X)
we have

pF(x, y)θpF(x, x)Θ(S)x;

hence θ = ∇.) Let θ0 be a maximal element in [Θ(S),∇]−{∇}. Then FV (X)/θ0 is a simple
algebra by 8.9, and it is in V.

If, however, Θ(S) = ∇, then since Θ is an algebraic closure operator by 5.5, it follows
that for some finite subset S0 of S we must have 〈x, y〉 ∈ Θ(S0). Let S be the subalgebra
of FV (X) with universe S (note that S = Sg({x}) by 10.3(c)). As V is nontrivial we must
have x 6= y in FV (X), and as 〈x, y〉 ∈ Θ(S) it follows that S is nontrivial. Now we claim
that ∇S = Θ(S0), where Θ in this case is understood to be the appropriate closure operator
on S. To see this let p(x) ∈ S and let

α : FV (X)→ S

be the homomorphism defined by

α(x) = x

α(y) = p(x).

As
〈x, y〉 ∈ Θ(S0) in FV (X),
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it follows from 6.6 (see §6 Exercise 5) that

〈x, p(x)〉 ∈ Θ(S0) in S

as
α(S0) = S0.

This establishes our claim; hence using Zorn’s lemma we can find a maximal congruence θ
on S as ∇S is finitely generated. Hence S/θ is a simple algebra in V. 2

Let us turn to another application of free algebras.

Definition 10.14. An algebra A is locally finite if every finitely generated subalgebra (see
§3.4) is finite. A class K of algebras is locally finite if every member of K is locally finite.

Theorem 10.15. A variety V is locally finite iff

|X| < ω ⇒ |FV (X)| < ω.

Proof. The direction (⇒) is clear as X generates FV (X). For (⇐) let A be a finitely
generated member of V, and let B ⊆ A be a finite set of generators. Choose X such that we
have a bijection

α : X → B.

Extend this to a homomorphism
β : FV (X)→ A.

As β(FV (X)) is a subalgebra of A containing B, it must equal A. Thus β is surjective, and
as FV (X) is finite so is A. 2

Theorem 10.16. Let K be a finite set of finite algebras. Then V (K) is a locally finite
variety.

Proof. First verify that P (K) is locally finite. To do this define an equivalence relation
∼ on T ({x1, . . . , xn}) by p ∼ q if the term functions corresponding to p and q are the
same for each member of K. Use the finiteness conditions to show that ∼ has finitely many
equivalence classes. This, combined with 10.3(c), suffices. Then it easily follows that V is
locally finite since every finitely generated member of HSP (K) is a homomorphic image of
a finitely generated member of SP (K). 2
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Exercises §10

1. Let L be the four-element lattice 〈{0, a, b, 1},∨,∧〉 where 0 is the least element, 1 is
the largest element, and a∧ b = 0, a∨ b = 1 (the Hasse diagram is Figure 1(c)). Show
that L has the universal mapping property for the class of lattices over the set {a, b}.

2. Let A = 〈ω, f〉 be the mono-unary algebra with f(n) = n+1. Show A has the universal
mapping property for the class of mono-unary algebras over the set {0}.

3. Let p be a prime number, and let Zp be the set of integers modulo p. Let Zp be
the mono-unary algebra 〈Zp, f〉 defined by f(n) = n+ 1. Show Zp has the universal
mapping property for K over {1}, where K is the class of mono-unary algebras 〈A, f〉
satisfying f p(x) ≈ x.

4. Show that the group Z = 〈Z,+,−, 0〉 of integers has the universal mapping property
for the class of groups over {1}.

5. If V is a variety and |X| ≤ |Y | show FV (X) can be embedded in FV (Y ) in a natural
way.

6. If U(X) ∈ K and U(X) has the universal mapping property for K over X show that
U(X) ∼= FK(X) under a mapping α such that α(x) = x.

7. Show that for any algebra A and a, b ∈ A,Θ(〈a, b〉) = t∗(s({〈p(a, c), p(b, c)〉 : p(x, y1,
. . . , yn) is a term, c1, . . . , cn ∈ A}))∪∆A, where t∗( ) is the transitive closure operator,
i.e., for Y ⊆ A × A, t∗(Y ) is the smallest subset of A × A containing Y and closed
under t. (See the proof of 5.5.)

§11. Identities, Free Algebras, and Birkhoff’s Theorem

One of the most celebrated theorems of Birkhoff says that the classes of algebras defined
by identities are precisely those which are closed under H, S, and P. In this section we
study identities, their relation to free algebras, and then give several applications, including
Birkhoff’s theorem. We have already seen particular examples of identities, among which are
the commutative law, the associative law, and the distributive laws. Now let us formalize
the general notion of an identity, and the notion of an identity holding in an algebra A, or
in a class of algebras K.

Definition 11.1 An identity of type F over X is an expression of the form

p ≈ q



78 II The Elements of Universal Algebra

where p, q ∈ T (X). Let Id(X) be the set of identities of type F over X. An algebra A of type
F satisfies an identity

p(x1, . . . , xn) ≈ q(x1, . . . , xn)

(or the identity is true in A, or holds in A), abbreviated by

A |= p(x1, . . . , xn) ≈ q(x1, . . . , xn),

or more briefly
A |= p ≈ q,

if for every choice of a1, . . . , an ∈ A we have

pA(a1, . . . , an) = qA(a1, . . . , an).

A class K of algebras satisfies p ≈ q, written

K |= p ≈ q,

if each member of K satisfies p ≈ q. If Σ is a set of identities, we say K satisfies Σ, written

K |= Σ,

if K |= p ≈ q for each p ≈ q ∈ Σ. Given K and X let

IdK(X) = {p ≈ q ∈ Id(X) : K |= p ≈ q}.

We use the symbol 6|= for “does not satisfy.”

We can reformulate the above definition of satisfaction using the notion of homomor-
phism.

Lemma 11.2. If K is a class of algebras of type F and p ≈ q is an identity of type F over
X, then

K |= p ≈ q

iff for every A ∈ K and for every homomorphism α : T(X)→ A we have

αp = αq.

Proof. (⇒) Let p = p(x1, . . . , xn), q = q(x1, . . . , xn). Suppose K |= p ≈ q, A ∈ K, and
α : T(X)→ A is a homomorphism. Then

pA(αx1, . . . , αxn) = qA(αx1, . . . , αxn)

⇒ αpT(X)(x1, . . . , xn) = αqT(X)(x1, . . . , xn)

⇒ αp = αq.
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(⇐) For the converse choose A ∈ K and a1, . . . , an ∈ A. By the universal mapping
property of T(X) there is a homomorphism α : T(X)→ A such that

αxi = ai, 1 ≤ i ≤ n.

But then

pA(a1, . . . , an) = pA(αx1, . . . , αxn)

= αp

= αq

= qA(αx1, . . . , αxn)

= qA(a1, . . . an),

so K |= p ≈ q. 2

Next we see that the basic class operators preserve identities.

Lemma 11.3. For any class K of type F all of the classes K, I(K), S(K), H(K), P (K)
and V (K) satisfy the same identities over any set of variables X.

Proof. Clearly K and I(K) satisfy the same identities. As

I ≤ IS, I ≤ H, and I ≤ IP,

we must have

IdK(X) ⊇ IdS(K)(X), IdH(K)(X), and IdP (K)(X).

For the remainder of the proof suppose

K |= p(x1, . . . , xn) ≈ q(x1, . . . , xn).

Then if B ≤ A ∈ K and b1, . . . , bn ∈ B, then as b1, . . . , bn ∈ A we have

pA(b1, . . . , bn) = qA(b1, . . . , bn);

hence
pB(b1, . . . , bn) = qB(b1, . . . , bn),

so
B |= p ≈ q.

Thus
IdK(X) = IdS(K)(X).
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Next suppose α : A → B is a surjective homomorphism with A ∈ K. If b1, . . . , bn ∈ B,
choose a1, . . . , an ∈ A such that

α(a1) = b1, . . . , α(an) = bn.

Then

pA(a1, . . . , an) = qA(a1, . . . , an)

implies

αpA(a1, . . . , an) = αqA(a1, . . . , an);

hence

pB(b1, . . . , bn) = qB(b1, . . . , bn).

Thus

B |= p ≈ q,

so

IdK(X) = IdH(K)(X).

Lastly, suppose Ai ∈ K for i ∈ I. Then for a1, . . . , an ∈ A =
∏

i∈I Ai we have

pAi(a1(i), . . . , an(i)) = qAi(a1(i), . . . , an(i));

hence

pA(a1, . . . , an)(i) = qA(a1, . . . , an)(i)

for i ∈ I, so

pA(a1, . . . , an) = qA(a1, . . . , an).

Thus

IdK(X) = IdP (K)(X).

As V = HSP by 9.5, the proof is complete. 2

Now we will formulate the crucial connection between K-free algebras and identities.

Theorem 11.4. Given a class K of algebras of type F and terms p, q ∈ T (X) of type F we
have

K |= p ≈ q

⇔ FK(X) |= p ≈ q

⇔ p = q in FK(X)

⇔ 〈p, q〉 ∈ θK(X).
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Proof. Let F = FK(X), p = p(x1, . . . , xn), q = q(x1, . . . , xn), and let

ν : T(X)→ F

be the natural homomorphism. Certainly K |= p ≈ q implies F |= p ≈ q as F ∈ ISP (K).
Suppose next that F |= p ≈ q. Then

pF(x1, . . . , xn) = qF(x1, . . . , xn),

hence p = q. Now suppose p = q in F. Then

ν(p) = p = q = ν(q),

so
〈p, q〉 ∈ ker ν = θK(X).

Finally suppose 〈p, q〉 ∈ θK(X). Given A ∈ K and a1, . . . , an ∈ A choose α : T(X) → A
such that αxi = ai, 1 ≤ i ≤ n. As kerα ∈ ΦK(X) we have

kerα ⊇ ker ν = θK(X),

so it follows that there is a homomorphism β : F→ A such that α = β ◦ ν (see §6 Exercise
6). Then

α(p) = β ◦ ν(p) = β ◦ ν(q) = α(q).

Consequently
K |= p ≈ q

by 11.2. 2

Corollary 11.5. Let K be a class of algebras of type F, and suppose p, q ∈ T (X). Then for
any set of variables Y with |Y | ≥ |X| we have

K |= p ≈ q iff FK(Y ) |= p ≈ q.

Proof. The direction (⇒) is obvious as FK(Y ) ∈ ISP (K). For the converse choose X0 ⊇ X
such that |X0| = |Y |. Then

FK(X0) ∼= FK(Y ),

and as
K |= p ≈ q iff FK(X0) |= p ≈ q

by 11.4 it follows that
K |= p ≈ q iff FK(Y ) |= p ≈ q.

2
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Corollary 11.6. Suppose K is a class of algebras of type F and X is a set of variables.
Then for any infinite set of variables Y,

IdK(X) = IdFK(Y )(X).

Proof. For p ≈ q ∈ IdK(X), say p = p(x1, . . . , xn), q = q(x1, . . . , xn), we have p, q ∈
T ({x1, . . . , xn}). As |{x1, . . . , xn}| < |Y |, by 11.5

K |= p ≈ q iff FK(Y ) |= p ≈ q,

so the corollary is proved. 2

As we have seen in §1, many of the most popular classes of algebras are defined by
identities.

Definition 11.7. Let Σ be a set of identities of type F, and define M(Σ) to be the class
of algebras A satisfying Σ. A class K of algebras is an equational class if there is a set of
identities Σ such that K = M(Σ). In this case we say that K is defined, or axiomatized, by
Σ.

Lemma 11.8. If V is a variety and X is an infinite set of variables, then V = M(IdV (X)).

Proof. Let
V ′ = M(IdV (X)).

Clearly V ′ is a variety by 11.3, V ′ ⊇ V, and

IdV ′(X) = IdV (X).

So by 11.4,
FV ′(X) = FV (X).

Now given any infinite set of variables Y, we have by 11.6

IdV ′(Y ) = IdFV ′ (X)(Y ) = IdFV (X)(Y ) = IdV (Y ).

Thus again by 11.4,
θV ′(Y ) = θV (Y );

hence
FV ′(Y ) = FV (Y ).

Now for A ∈ V ′ we have (by 10.11), for suitable infinite Y,

A ∈ H(FV ′(Y ));
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hence

A ∈ H(FV (Y )),

so A ∈ V ; hence V ′ ⊆ V, and thus V ′ = V. 2

Now we have all the background needed to prove the famous theorem of Birkhoff.

Theorem 11.9 (Birkhoff). K is an equational class iff K is a variety.

Proof. (⇒) Suppose

K = M(Σ).

Then
V (K) |= Σ

by 11.3; hence

V (K) ⊆M(Σ),

so
V (K) = K,

i.e., K is a variety.
(⇐) This follows from 11.8. 2

We can also use 11.4 to obtain a significant strengthening of 10.12.

Corollary 11.10. Let K be a class of algebras of type F. If T(X) exists and K ′ is any class
of algebras such that K ⊆ K ′ ⊆ V (K), then

FK′(X) = FK(X).

In particular it follows that
FK′(X) ∈ ISP (K).

Proof. Since IdK(X) = IdV (K)(X) by 11.3, it follows that IdK(X) = IdK′(X). Thus
θK′(X) = θK(X), so FK′(X) = FK(X). The last statement of the corollary then follows
from 10.12. 2

So far we know that K-free algebras belong to ISP (K). The next result partially sharpens
this by showing that large K-free algebras are in IPS(K).

Theorem 11.11. Let K be a nonempty class of algebras of type F. Then for some cardinal
m, if |X| ≥ m we have

FK(X) ∈ IPS(K).
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Proof. First choose a subset K∗ of K such that for any X, IdK∗(X) = IdK(X). (One can
find such a K∗ by choosing an infinite set of variables Y and then selecting, for each identity
p ≈ q in Id(Y ) − IdK(Y ), an algebra A ∈ K such that A 6|= p ≈ q.) Let m be any infinite
upper bound of {|A| : A ∈ K∗}. (Since K∗ is a set such a cardinal m must exist.)

Next let ΨK∗(X), for any X, be {φ ∈ Con T(X) : T(X)/φ ∈ I(K∗)}. Then ΨK∗(X) ⊆
ΦK∗(X), hence

⋂
ΨK∗(X) ⊇ θK∗(X). To prove equality of these two congruences for |X| ≥ m

suppose 〈p, q〉 6∈ θK∗(X). Then K∗ 6|= p ≈ q by 11.4; hence for some A ∈ K∗, A 6|= p ≈ q.
If p = p(x1, . . . , xn), q = q(x1, . . . , xn), choose a1, . . . , an ∈ A such that pA(a1, . . . , an) 6=
qA(a1, . . . , an). As |X| ≥ |A| we can find a mapping α : X → A which is onto and αxi =
ai, 1 ≤ i ≤ n. Then α can be extended to a surjective homomorphism β : FK∗(X) → A,
and β(p) 6= β(q). Thus 〈p, q〉 6∈ ker β ∈ ΨK∗(X), so 〈p, q〉 6∈

⋂
ΨK∗(X). Consequently⋂

ΨK∗(X) = θK∗(X).As FK(X) = FK∗(X) by 11.4, it follows that FK(X) = T(X)/
⋂

ΨK∗(X).
Then (see §8 Exercise 11) we see that FK(X) ∈ IPS(K∗) ⊆ IPS(K). 2

Theorem 11.12. V = HPS.

Proof. As
PS ≤ SP

we have
HPS ≤ HSP = V.

Given a class K of algebras and sufficiently large X, we have

FV (K)(X) ∈ IPS(K)

by 11.11; hence
V (K) ⊆ HPS(K)

by 10.11. Thus
V = HPS.

2

Reference

1. G. Birkhoff [1935]

Exercises §11

1. Given a type F and a set of variables X and p, q ∈ T (X) show that T(X) |= p ≈ q iff
p = q (thus T(X) does not satisfy any interesting identities).

2. If V is a variety and X is infinite, show V = HSP (FV (X)).
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3. If X is finite and IdV (X) defines V does it follow that V = HSP (FV (X))?

4. Describe free semilattices.

5. Show that if V = V (A) then, given X 6= ∅, FV (X) can be embedded in A|A|
|X|
. In

particular if A has no proper subalgebras the embedding is also subdirect.

§12. Mal’cev Conditions

One of the most fruitful directions of research was initiated by Mal’cev in the 1950’s when
he showed the connection between permutability of congruences for all algebras in a variety
V and the existence of a ternary term p such that V satisfies certain identities involving p.
The characterization of properties in varieties by the existence of certain terms involved in
certain identities we will refer to as Mal’cev conditions. This topic has been significantly
advanced in recent years by Taylor.

Lemma 12.1. Let V be a variety of type F, and let

p(x1, . . . , xm, y1, . . . , yn),

q(x1, . . . , xm, y1, . . . , yn)

be terms such that in F = FV (X), where

X = {x1, . . . , xm, y1, . . . , yn},

we have

〈pF(x1, . . . , xm, y1, . . . , yn), qF(x1, . . . , xm, y1, . . . , yn)〉 ∈ Θ(y1, . . . , yn).

Then
V |= p(x1, . . . , xm, y, . . . , y) ≈ q(x1, . . . , xm, y, . . . , y).

Proof. The homomorphism

α : FV (x1, . . . , xm, y1, . . . , yn)→ FV (x1, . . . , xm, y)

defined by
α(xi) = xi, 1 ≤ i ≤ m,

and
α(yi) = y, 1 ≤ i ≤ n,
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is such that
Θ(y1, . . . , yn) ⊆ kerα;

so
αp(x1, . . . , xm, y1, . . . , yn) = αq(x1, . . . , xm, y1, . . . , yn);

thus
p(x1, . . . , xm, y, . . . , y) = q(x1, . . . , xm, y, . . . , y)

in FV (x1, . . . , xm, y), so by 11.4

V |= p(x1, . . . , xm, y, . . . , y) ≈ q(x1, . . . , xm, y, . . . , y).

2

Theorem 12.2 (Mal’cev). Let V be a variety of type F. The variety V is congruence-
permutable iff there is a term p(x, y, z) such that

V |= p(x, x, y) ≈ y

and
V |= p(x, y, y) ≈ x.

Proof. (⇒) If V is congruence-permutable, then in FV (x, y, z) we have

〈x, z〉 ∈ Θ(x, y) ◦Θ(y, z)

so
〈x, z〉 ∈ Θ(y, z) ◦Θ(x, y).

Hence there is a p(x, y, z) ∈ FV (x, y, z) such that

xΘ(y, z)p(x, y, z)Θ (x, y)z.

By 12.1
V |= p(x, y, y) ≈ x

and
V |= p(x, x, z) ≈ z.

(⇐) Let A ∈ V and suppose φ, ψ ∈ Con A. If

〈a, b〉 ∈ φ ◦ ψ,

say aφcψb, then
b = p(c, c, b)φp(a, c, b)ψp(a, b, b) = a,
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so

〈b, a〉 ∈ φ ◦ ψ.

Thus by 5.9

φ ◦ ψ = ψ ◦ φ.

2

Examples. (1) Groups 〈A, ·, −1, 1〉 are congruence-permutable, for let p(x, y, z) be x ·y−1 ·z.
(2) Rings 〈R,+, ·,−, 0〉 are congruence-permutable, for let p(x, y, z) be x− y + z.
(3) Quasigroups 〈Q, /, ·, \〉 are congruence-permutable, for let p(x, y, z) be (x/(y\y)) ·

(y\z).

Theorem 12.3. Suppose V is a variety for which there is a ternary term M(x, y, z) such
that

V |= M(x, x, y) ≈M(x, y, x) ≈M(y, x, x) ≈ x.

Then V is congruence-distributive.

Proof. Let φ, ψ, χ ∈ Con A, where A ∈ V. If

〈a, b〉 ∈ φ ∧ (ψ ∨ χ)

then 〈a, b〉 ∈ φ and there exist c1, . . . , cn such that

aψc1χc2 · · ·ψcnχb.

But then as

M(a, ci, b)φM(a, ci, a) = a,

for each i, we have

a = M(a, a, b)(φ ∧ ψ)M(a, c1, b)(φ ∧ χ)M(a, c2, b) · · ·M(a, cn, b)(φ ∧ χ)M(a, b, b) = b,

so

〈a, b〉 ∈ (φ ∧ ψ) ∨ (φ ∧ χ).

This suffices to show

φ ∧ (ψ ∨ χ) = (φ ∧ ψ) ∨ (φ ∧ χ),

so V is congruence-distributive. 2

Example. Lattices are congruence-distributive, for let

M(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).
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Definition 12.4. A variety V is arithmetical if it is both congruence-distributive and
congruence-permutable.

Theorem 12.5 (Pixley). A variety V is arithmetical iff it satisfies either of the equivalent
conditions

(a) There are terms p and M as in 12.2 and 12.3.
(b) There is a term m(x, y, z) such that

V |= m(x, y, x) ≈ m(x, y, y) ≈ m(y, y, x) ≈ x.

Proof. If V is arithmetical then there is a term p as V is congruence-permutable. Let
FV (x, y, z) be the free algebra in V freely generated by {x, y, z}. Then as

〈x, z〉 ∈ Θ(x, z) ∩ [Θ(x, y) ∨Θ(y, z)]

it follows that

〈x, z〉 ∈ [Θ(x, z) ∩Θ(x, y)] ∨ [Θ(x, z) ∩Θ(y, z)];

hence

〈x, z〉 ∈ [Θ(x, z) ∩Θ(x, y)] ◦ [Θ(x, z) ∩Θ(y, z)].

Choose M(x, y, z) ∈ FV (x, y, z) such that

x[Θ(x, z) ∩Θ(x, y)]M(x, y, z)[Θ(x, z) ∩Θ(y, z)]z.

Then by 12.1,

V |= M(x, x, y) ≈M(x, y, x) ≈M(y, x, x) ≈ x.

If (a) holds then let m(x, y, z) be p(x,M(x, y, z), z). Finally if (b) holds let p(x, y, z) be
m(x, y, z) and let M(x, y, z) be m(x,m(x, y, z), z), and use 12.2 and 12.3. 2

Examples. (1) Boolean algebras are arithmetical, for let

m(x, y, z) = (x ∧ z) ∨ (x ∧ y′ ∧ z′) ∨ (x′ ∧ y′ ∧ z).

(2) Heyting algebras are arithmetical, for let

m(x, y, z) = [(x→ y)→ z] ∧ [(z → y)→ x] ∧ [x ∨ z].

Note that 12.3 is not a Mal’cev condition as it is an implication rather than a character-
ization. Jónsson discovered a Mal’cev condition for congruence-distributive varieties which
we will make considerable use of in the last chapter.



§12. Mal’cev Conditions 89

Theorem 12.6 (Jónsson). A variety V is congruence-distributive iff there is a finite n and
terms p0(x, y, z), . . . , pn(x, y, z) such that V satisfies

pi(x, y, x) ≈ x 0 ≤ i ≤ n

p0(x, y, z) ≈ x, pn(x, y, z) ≈ z

pi(x, x, y) ≈ pi+1(x, x, y) for i even

pi(x, y, y) ≈ pi+1(x, y, y) for i odd.

Proof. (⇒) Since

Θ(x, z) ∧ [Θ(x, y) ∨Θ(y, z)] = [Θ(x, z) ∧Θ(x, y)] ∨ [Θ(x, z) ∧Θ(y, z)]

in FV (x, y, z) we must have

〈x, z〉 ∈ [Θ(x, z) ∧Θ(x, y)] ∨ [Θ(x, z) ∧Θ(y, z)].

Thus for some p1(x, y, z), . . . , pn−1(x, y, z) ∈ FV (x, y, z) we have

x[Θ(x, z) ∧Θ(x, y)]p1(x, y, z)

p1(x, y, z)[Θ(x, z) ∧Θ(y, z)]p2(x, y, z)

...

pn−1(x, y, z)[Θ(x, z) ∧Θ(y, z)]z,

and from these the desired equations fall out.
(⇐) For φ, ψ, χ ∈ Con A, where A ∈ V, we need to show

φ ∧ (ψ ∨ χ) ⊆ (φ ∧ ψ) ∨ (φ ∧ χ),

so let
〈a, b〉 ∈ φ ∧ (ψ ∨ χ).

Then 〈a, b〉 ∈ φ, and for some c1, . . . , ct we have

aψc1χ . . . ctχb.

From this follows, for 0 ≤ i ≤ n,

pi(a, a, b)ψpi(a, c1, b)χ . . . pi(a, ct, b)χpi(a, b, b);

hence
pi(a, a, b)(φ ∧ ψ)pi(a, c1, b)(φ ∧ χ) . . . pi(a, ct, b)(φ ∧ χ)pi(a, b, b),
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so

pi(a, a, b)[(φ ∧ ψ) ∨ (φ ∧ χ)]pi(a, b, b),

0 ≤ i ≤ n. Then in view of the given equations, a[(φ ∧ ψ) ∨ (φ ∧ χ)]b, so V is congruence-
distributive. 2

By looking at the proofs of 12.2 and 12.6 one easily has the following result.

Theorem 12.7. A variety V is congruence-permutable (respectively, congruence-distributive)
iff FV (x, y, z) has permutable (respectively, distributive) congruences.

For convenience in future discussions we introduce the following definitions.

Definition 12.8. A ternary term p satisfying the conditions in 12.2 for a variety V is called
a Mal’cev term for V, a ternary term M as described in 12.3 is a majority term for V, and a
ternary term m as described in 12.5 is called a 2

3
-minority term for V.

The reader will find Mal’cev conditions for congruence-modular varieties in Day [1] below.
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Exercises §12

1. Verify the claim that Boolean algebras [Heyting algebras] are arithmetical.

2. Let V be a variety of rings generated by finitely many finite fields. Show that V is
arithmetical.

3. Show that the variety of n-valued Post algebras is arithmetical.

4. Show that the variety generated by the six-element ortholattice in Figure 19 is arith-
metical.
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Figure 19

§13. The Center of an Algebra

Smith [6] introduced a generalization to any algebra in a congruence-permutable variety of
the commutator for groups. Hagemann and Herrmann [3] then showed that such commuta-
tors exist for any algebra in a congruence-modular variety. Using the commutator one can
define the center of such algebras. Another very simple definition of the center, valid for any
algebra, was given by Freese and McKenzie [1], and we will use it here.

Definition 13.1. Let A be an algebra of type F. The center of A is the binary relation
Z(A) defined by:

〈a, b〉 ∈ Z(A)

iff for every p(x, y1, . . . , yn) ∈ T (x, y1, . . . , yn) and for every c1, . . . , cn, d1, . . . , dn ∈ A,

p(a, c1, . . . , cn) = p(a, d1, . . . , dn) iff p(b, c1, . . . , cn) = p(b, d1, . . . , dn).

Theorem 13.2. For every algebra A, the center Z(A) is a congruence on A.

Proof. Certainly Z(A) is reflexive, symmetric, and transitive, hence Z(A) is an equivalence
relation on A. Next let f be an n-ary function symbol, and suppose 〈ai, bi〉 ∈ Z(A), 1 ≤ i ≤
n. Given a term p(x, y1, . . . , ym) and elements c1, . . . , cm, d1, . . . , dm of A, from the definition
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of Z(A) we have

p(f(a1, a2, . . . , an),~c ) = p(f(a1, a2, . . . , an), ~d )

iff p(f(b1, a2, . . . , an),~c ) = p(f(b1, a2, . . . , an), ~d )

...

iff p(f(b1, . . . , bn−1, an),~c ) = p(f(b1, . . . , bn−1, an), ~d )

iff p(f(b1, . . . , bn),~c ) = p(f(b1, . . . , bn), ~d );

hence
p(f(~a),~c ) = p(f(~a), ~d ) iff p(f(~b),~c ) = p(f(~b), ~d ),

so
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ Z(A).

Thus Z(A) is indeed a congruence. 2

Let us actually calculate the above defined center of a group and of a ring.

Example. Let G = 〈G, ·, −1, 1〉 be a group. If 〈a, b〉 ∈ Z(G) then, with the term
p(x, y1, y2) = y1 · x · y2 and c ∈ G, we have

p(a, a−1, c) = p(a, c, a−1);

hence
p(b, a−1, c) = p(b, c, a−1),

that is,
a−1 · b · c = c · b · a−1.

With c = 1 it follows that
a−1 · b = b · a−1;

hence for c ∈ G,
a−1 · b · c = c · a−1 · b,

consequently 〈a, b〉 is in the congruence associated with the normal subgroup N of G which
is the usual group-theoretic center of G, i.e., N = {g ∈ G : h · g = g · h for h ∈ G}.

Conversely, suppose N is the usual group-theoretic center of G. Then for any term
p(x, y1, . . . , yn) and elements a, b, c1, . . . , cn, d1, . . . , dn ∈ G, if a · b−1 ∈ N, and if

p(a,~c ) = p(a, ~d )

then
p((a · b−1) · b,~c ) = p((a · b−1) · b, ~d ),
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so
p(b,~c ) = p(b, ~d )

as a · b−1 is central. So, by symmetry, if a · b−1 ∈ N then

p(a,~c ) = p(a, ~d ) iff p(b,~c ) = p(b, ~d ),

so 〈a, b〉 ∈ Z(G).
Thus

Z(G) = {〈a, b〉 ∈ G2 : (a · b−1) · c = c · (a · b−1) for c ∈ G}.

Example. Let R = 〈R,+, ·,−, 0〉 be a ring. If 〈r, s〉 ∈ Z(R) then, for t ∈ R,

(r − r) · t = (r − r) · 0;

hence replacing the underlined r by s we have

(r − s) · t = 0.

Likewise
t · (r − s) = 0,

so r − s ∈ Ann(R), the annihilator of R. Conversely, if r − s ∈ Ann(R) and p(x, y1, . . . , yn)
is a term and c1, . . . , cn, d1, . . . , dn ∈ R then from

p(r,~c ) = p(r, ~d )

it follows that
p((r − s) + s,~c ) = p((r − s) + s, ~d ),

and thus
p(s,~c ) = p(s, ~d ).

By symmetry, we have
Z(R) = {〈r, s〉 : r − s ∈ Ann(R)}.

Now we return to the fundamental theorem of centrality, namely the characterization of
modules up to polynomial equivalence.

Definition 13.3. Let A be an algebra of type F. To F0 add symbols a for each a ∈ A,
and call the new type FA, and let AA be the algebra of type FA which is just A with a
nullary operation corresponding to each element of A. The terms of type FA are called the
polynomials of A. We write pA for pAA. Two algebras A1 = 〈A,F1〉 and A2 = 〈A,F2〉,
possibly of different types, on the same universe are said to be polynomially equivalent if
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they have the same set of polynomial functions, i.e., for each polynomial p(x1, . . . , xn) of A1

there is a polynomial q(x1, . . . , xn) of A2 such that pA1 = qA2 , and conversely.

The following proof incorporates elegant arguments due to McKenzie and Taylor.

Theorem 13.4 (Gumm, Hagemann, Herrmann). Let A be an algebra such that V (A) is
congruence-permutable. Then the following are equivalent:

(a) A is polynomially equivalent to a left R-module, for some R.
(b) Z(A) = ∇A.
(c) {〈a, a〉 : a ∈ A} is a coset of a congruence on A×A.

Proof. (a) ⇒ (b): If A is polynomially equivalent to a module M = 〈M,+,−, 0, (fr)r∈R〉,
then for every term p(x, y1, . . . , yn) of A there is a polynomial

q(x, y1, . . . , yn) = fr(x) + fr1(y1) + · · ·+ frn(yn) +m

of M such that
pA = qM.

Thus for a, b, c1, . . . , cn, d1, . . . , dn ∈ A, if

p(a, c1, . . . , cn) = p(a, d1, . . . , dn)

then
q(a, c1, . . . , cn) = q(a, d1, . . . , dn);

hence if we subtract fr(a) from both sides,

fr1(c1) + · · ·+ frn(cn) +m = fr1(d1) + · · ·+ frn(dn) +m,

so if we add fr(b) to both sides,

q(b, c1, . . . , cn) = q(b, d1, . . . , dn);

consequently
p(b, c1, . . . , cn) = p(b, d1, . . . , dn).

By symmetry,
p(a,~c ) = p(a, ~d ) iff p(b,~c ) = p(b, ~d );

hence Z(A) = ∇A.
(b) ⇔ (c): First note that X = {〈a, a〉 : a ∈ A} is a coset of some congruence on A×A

iff it is a coset of Θ(X), the smallest congruence on A×A obtained by identifying X. Now,
from §10 Exercise 7,

Θ({〈a, a〉 : a ∈ A}) = t∗(s({〈pA×A(〈a, a〉, 〈c1, d1〉, . . . , 〈cn, dn〉),
pA×A(〈b, b〉, 〈c1, d1〉, . . . , 〈cn, dn〉)〉 : a, b, c1, . . . , cn, d1, . . . , dn ∈ A
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and p is a term })) ∪∆A×A.
Hence X is a coset of Θ(X) iff for every a, b, c1, . . . , cn, d1, . . . , dn ∈ A and every term
p(x, y1, . . . , yn),

pA×A(〈a, a〉, 〈c1, d1〉, . . . , 〈cn, dn〉) ∈ X
iff

pA×A(〈b, b〉, 〈c1, d1〉, . . . , 〈cn, dn〉) ∈ X,
that is,

pA(a,~c ) = pA(a, ~d ) iff pA(b,~c ) = pA(b, ~d ).

Thus X is a coset of Θ(X) iff Z(A) = ∇A.
(b) ⇒ (a): Given that Z(A) = ∇A, let p(x, y, z) be a Mal’cev term for V (A). Choose

any element 0 of A and define, for a, b ∈ A,

a+ b = p(a, 0, b)

−a = p(0, a, 0).

Then

a+ 0 = p(a, 0, 0)

= a.

Next observe that for a, b, c, d, e ∈ A,

p(p(a, a, a), d, p(b, e, e)) = p(p(a, d, b), e, p(c, c, e));

hence, as 〈e, c〉 ∈ Z(A), we can replace the underlined e by c to obtain

p(p(a, a, a), d, p(b, e, c)) = p(p(a, d, b), e, p(c, c, c)),

so
p(a, d, p(b, e, c)) = p(p(a, d, b), e, c).

Setting d = e = 0, we have the associative law

a+ (b+ c) = (a+ b) + c.

Next,

a+ (−a) = p(a, 0, p(0, a, 0))

= p(p(a, 0, 0), a, 0)

= p(a, a, 0)

= 0.
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By
p(a, b, b) = p(b, b, a)

and the fact that 〈0, b〉 ∈ Z(A), we can replace the underlined b by 0 to obtain

p(a, 0, b) = p(b, 0, a);

hence
a+ b = b+ a,

so 〈A,+,−, 0〉 is an Abelian group.
Next we show that each n-ary term function pA(x1, . . . , xn) of A is affine for 〈A,+,−, 0〉,

i.e., it is a homomorphism from 〈A,+,−, 0〉n to 〈A,+,−, 0〉 plus a constant. Let a1, . . . , an,
b1, . . . , bn ∈ A. Then

p(a1 + 0, . . . , an + 0) + p(0, . . . , 0) = p(0 + 0, . . . , 0 + 0) + p(a1, . . . , an).

As 〈0, b1〉 ∈ Z(A) we can replace the underlined 0’s by b1 to obtain

p(a1 + b1, a2 + 0, . . . , an + 0) + p(0, . . . , 0) = p(0 + b1, 0 + 0, . . . , 0 + 0) + p(a1, . . . , an).

Continuing in this fashion, we obtain

p(a1 + b1, . . . , an + bn) + p(0, . . . , 0) = p(b1, . . . , bn) + p(a1, . . . , an)

= p(a1, . . . , an) + p(b1, . . . , bn).

Thus pA(x1, . . . , xn)− pA(0, . . . , 0) is a group homomorphism from 〈A,+,−, 0〉n to 〈A,+,−, 0〉.
To construct the desired module, let R be the set of unary functions pA(x, c1, . . . , cn) on

A obtained by choosing terms p(x, y1, . . . , yn) and elements c1, . . . , cn ∈ A such that

p(0, c1, . . . , cn) = 0.

For such unary functions we have

p(a+ b, c1, . . . , cn) = p(a, c1, . . . , cn) + p(b, 0, . . . , 0)− p(0, . . . , 0)

and

p(b, c1, . . . , cn) = p(b, 0, . . . , 0) + p(0, c1, . . . , cn)− p(0, . . . , 0)

= p(b, 0, . . . , 0)− p(0, . . . , 0);

hence

p(a+ b, c1 . . . , cn) = p(a, c1, . . . , cn) + p(b, c1, . . . , cn). (∗)

Thus each member of R is an endomorphism of 〈A,+,−, 0〉.
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Clearly R is closed under composition ◦, and for r, s ∈ R define r + s and −r by

(r + s)(a) = r(a) + s(a) = p(r(a), 0, s(a))

(−r)(a) = −r(a) = p(0, r(a), 0).

Then r + s,−r ∈ R. Let 0̂ be the constant function on A with value 0, and let 1̂ be the
identity function on A. Then 0̂, 1̂ ∈ R as well. We claim that R = 〈R,+, ·,−, 0̂, 1̂〉 is a
ring. Certainly 〈R,+,−, 0〉 is an Abelian group as the operations are defined pointwise in
the Abelian group 〈A,+,−, 0〉, and 〈R, ·, 1〉 is a monoid. Thus we only need to look at the
distributive laws. If we are given r, s, t ∈ R, then

[(r + s) ◦ t](a) = (r + s)(t(a))

= r(t(a)) + s(t(a))

= (r ◦ t)(a) + (s ◦ t)(a)

= (r ◦ t+ s ◦ t)(a);

hence
(r + s) ◦ t = r ◦ t+ s ◦ t.

Also

[r ◦ (s+ t)](a) = r((s+ t)(a))

= r(s(a) + t(a))

= r(s(a)) + r(t(a)) (by (∗) above)

= (r ◦ s)(a) + (r ◦ t)(a)

= (r ◦ s+ r ◦ t)(a);

hence
r ◦ (s+ t) = (r ◦ s) + (r ◦ t).

This shows R is a ring.
Now to show that M = 〈A,+,−, 0, (r)r∈R〉 is a left R-module, we only need to check the

laws concerning scalar multiplication. So let r, s ∈ R, a, b ∈ A. Then

(r + s)(a) = r(a) + s(a) (by definition)

r(a+ b) = r(a) + r(b) by (∗))
(r ◦ s)(a) = r(s(a)).

Thus M is a left R-module (indeed a unitary left R-module).
The fundamental operations of M are certainly expressible by polynomial functions of A.

Conversely any n-ary fundamental operation fA(x1, . . . , xn) of A satisfies, for a1, . . . , an ∈ A,

f(a1, . . . , an)− f(0, . . . , 0) = (f(a1, 0, . . . , 0)− f(0, . . . , 0))

+ · · ·+ (f(0, . . . , an)− f(0, . . . , 0)).
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As

r1 = fA(x, 0, . . . , 0)− fA(0, . . . , 0) ∈ R
...

rn = fA(0, . . . , 0, x)− fA(0, . . . , 0) ∈ R

it follows that

fA(x1, . . . , xn) = r1(x1) + · · ·+ rn(xn) + f(0, . . . , 0);

hence each fundamental operation of A is a polynomial of M. This suffices to show that A
and M are polynomially equivalent. 2

Actually one only needs to assume V (A) is a congruence-modular in Theorem 13.4 (see
(4) or (7) below).
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Exercises §13

1. If A belongs to an arithmetical variety, show that Z(A) = ∆A. [Hint: if 〈a, b〉 ∈ Z(A)
use m(a, b, a) = m(b, b, a).]

2. Show that 〈a, b〉 ∈ Z(
∏

i∈I Ai) iff 〈a(i), b(i)〉 ∈ Z(Ai) for i ∈ I.

3. If A ≤ B and Z(B) = ∇B, show Z(A) = ∇A.

4. If B ∈ H(A) and A is in a congruence-permutable variety, show that Z(A) = ∇A

implies Z(B) = ∇B. Conclude that in a congruence-permutable variety all members
A with Z(A) = ∇A constitute a subvariety.

5. Suppose A is polynomially equivalent to a module. If p(x, y, z), q(x, y, z) are two
Mal’cev terms for A, show pA(x, y, z) = qA(x, y, z).
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6. (Freese and McKenzie). Let V be a congruence permutable variety such that Z(A) =
∇A for every A ∈ V. Let p(x, y, z) be a Mal’cev term for V. Define R by

R = {r(x, y) ∈ FV (x, y) : r(x, x) = x}.

(Note that if r(x, y) = s(x, y), then r(x, x) = x iff s(x, x) = x.) Define the operations
+, ·,−, 0, 1 on R by

r(x, y) + s(x, y) = p(r(x, y), y, s(x, y))

r(x, y) · s(x, y) = r(s(x, y), y)

−r(x, y) = p(y, r(x, y), y)

0 = y

1 = x.

Verify that R = 〈R,+, ·,−, 0, 1〉 is a ring with unity. Next, given an algebra A ∈ V
and n ∈ A, define the operations +,−, 0, (fr)r∈R on A by

a+ b = p(a, n, b)

−a = p(n, a, n)

0 = n

fr(a) = r(a, n).

Now verify that 〈A,+,−, 0, (fr)r∈R〉 is a unitary R-module, and it is polynomially
equivalent to A.

§14. Equational Logic and Fully Invariant Congruences

In this section we explore the connections between the identities satisfied by classes of alge-
bras and fully invariant congruences on the term algebra. Using this, we can give a complete
set of rules for making deductions of identities from identities. Finally, we show that the
possible finite sizes of minimal defining sets of identities of a variety form a convex set.

Definition 14.1. A congruence θ on an algebra A is fully invariant if for every endomor-
phism α on A,

〈a, b〉 ∈ θ ⇒ 〈αa, αb〉 ∈ θ.
Let ConFI(A) denote the set of fully invariant congruences on A.

Lemma 14.2. ConFI(A) is closed under arbitrary intersection.
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Proof. (Exercise.) 2

Definition 14.3. Given an algebra A and S ⊆ A × A let ΘFI(S) denote the least fully
invariant congruence on A containing S. The congruence ΘFI(S) is called the fully invariant
congruence generated by S.

Lemma 14.4. If we are given an algebra A of type F then ΘFI is an algebraic closure
operator on A× A. Indeed, ΘFI is 2-ary.

Proof. First construct A×A, and then to the fundamental operations of A×A add the
following:

〈a, a〉 for a ∈ A
s(〈a, b〉) = 〈b, a〉

t(〈a, b〉, 〈c, d〉) =

{
〈a, d〉
〈a, b〉

if b = c

otherwise

eσ(〈a, b〉) = 〈σa, σb〉 for σ an endomorphism of A.

Then it is not difficult to verify that θ is a fully invariant congruence on A iff θ is a subuniverse
of the new algebra we have just constructed. Thus ΘFI is an algebraic closure operator.

To see that ΘFI is 2-ary let us define a new algebra A∗ by replacing each n-ary funda-
mental operation f of A by the set of all unary operations of the form

f(a1, . . . , ai−1, x, ai+1, . . . , an)

where a1, . . . , ai−1, ai+1, . . . , an are elements of A.

Claim. Con A = Con A∗.

Clearly θ ∈ Con A ⇒ θ ∈ Con A∗. For the converse suppose that θ ∈ Con A∗ and
f ∈ Fn. Then for

〈ai, bi〉 ∈ θ, 1 ≤ i ≤ n,

we have

〈f(a1, . . . , an−1, an), f(a1, . . . , an−1, bn)〉 ∈ θ
〈f(a1, . . . , an−1, bn), f(a1, . . . , bn−1, bn)〉 ∈ θ

...

〈f(a1, b2, . . . , b2), f(b1, . . . , bn)〉 ∈ θ;

hence
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ θ.
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Thus
θ ∈ Con A.

If now we go back to the beginning of the proof and use A∗ instead of A, but keep the eσ’s
the same, it follows that ΘFI is the closure operator Sg of an algebra all of whose operations
are of arity at most 2. Then by 4.2, ΘFI is a 2-ary closure operator. 2

Definition 14.5. Given a set of variables X and a type F, let

τ : Id(X)→ T (X)× T (X)

be the bijection defined by
τ(p ≈ q) = 〈p, q〉.

Lemma 14.6. For K a class of algebras of type F and X a set of variables, τ(IdK(X)) is
a fully invariant congruence on T(X).

Proof. As

p ≈ p ∈ IdK(x) for p ∈ T (X)

p ≈ q ∈ IdK(X) ⇒ q ≈ p ∈ IdK(X)

p ≈ q, q ≈ r ∈ IdK(X) ⇒ p ≈ r ∈ IdK(X)

it follows that τ(IdK(X)) is an equivalence relation on T (X). Now if

pi ≈ qi ∈ IdK(X) for 1 ≤ i ≤ n

and if f ∈ Fn then it is easily seen that

f(p1, . . . , pn) ≈ f(q1, . . . , qn) ∈ IdK(X),

so τ(IdK(X)) is a congruence relation on T(X). Next, if α is an endomorphism of T(X) and

p(x1, . . . , xn) ≈ q(x1, . . . , xn) ∈ IdK(X)

then it is again direct to verify that

p(αx1, . . . , αxn) ≈ q(αx1, . . . , αxn) ∈ IdK(X);

hence τ(IdK(X)) is fully invariant. 2

Lemma 14.7. Given a set of variables X and a fully invariant congruence θ on T(X) we
have, for p ≈ q ∈ Id(X),

T(X)/θ |= p ≈ q ⇔ 〈p, q〉 ∈ θ.
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Thus T(X)/θ is free in V (T(X)/θ).

Proof. (⇒) If

p = p(x1, . . . , xn),

q = q(x1, . . . , xn)

then

T(X)/θ |= p(x1, . . . , xn) ≈ q(x1, . . . , xn)

⇒ p(x1/θ, . . . , xn/θ) = q(x1/θ, . . . , xn/θ)

⇒ p(x1, . . . , xn)/θ = q(x1, . . . , xn)/θ

⇒ 〈p(x1, . . . , xn), q(x1, . . . , xn)〉 ∈ θ
⇒ 〈p, q〉 ∈ θ.

(⇐) Given r1, . . . , rn ∈ T (X) we can find an endomorphism ε of T(X) with

ε(xi) = ri, 1 ≤ i ≤ n;

hence

〈p(x1, . . . , xn), q(x1, . . . , xn)〉 ∈ θ
⇒ 〈εp(x1, . . . , xn), εq(x1, . . . , xn)〉 ∈ θ
⇒ 〈p(r1, . . . , rn), q(r1, . . . , rn)〉 ∈ θ
⇒ p(r1/θ, . . . , rn/θ) = q(r1/θ, . . . , rn/θ).

Thus
T(X)/θ |= p ≈ q.

For the last claim, given p ≈ q ∈ Id(X),

〈p, q〉 ∈ θ ⇔ T(X)/θ |= p ≈ q

⇔ V (T(X)/θ) |= p ≈ q (by 11.3),

so T(X)/θ is free in V (T(X)/θ) by 11.4. 2

Theorem 14.8. Given a subset Σ of Id(X), one can find a K such that

Σ = IdK(X)

iff τ(Σ) is a fully invariant congruence on T(X).

Proof. (⇒) This was proved in 14.6.
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(⇐) Suppose τ(Σ) is a fully invariant congruence θ. Let K = {T(X)/θ}. Then by 14.7

K |= p ≈ q ⇔ 〈p, q〉 ∈ θ
⇔ p ≈ q ∈ Σ.

Thus Σ = IdK(X). 2

Definition 14.9. A subset Σ of Id(X) is called an equational theory over X if there is a
class of algebras K such that

Σ = IdK(X).

Corollary 14.10. The equational theories (of type F) over X form an algebraic lattice which
is isomorphic to the lattice of fully invariant congruences on T(X).

Proof. This follows from 14.4 and 14.8. 2

Definition 14.11. Let X be a set of variables and Σ a set of identities of type F with
variables from X. For p, q ∈ T (X) we say

Σ |= p ≈ q

(read: “Σ yields p ≈ q”) if, given any algebra A,

A |= Σ implies A |= p ≈ q.

Theorem 14.12. If Σ is a set of identities over X and p ≈ q is an identity over X, then

Σ |= p ≈ q ⇔ 〈p, q〉 ∈ ΘFI(τΣ).

Proof. Suppose
A |= Σ.

Then as τ(IdA(X)) is a fully invariant congruence on T(X) by 14.6, we have

ΘFI(τΣ) ⊆ τIdA(X);

hence
〈p, q〉 ∈ ΘFI(τΣ) ⇒ A |= p ≈ q,

so
〈p, q〉 ∈ ΘFI(τΣ) ⇒ Σ |= p ≈ q.

Conversely, by 14.7
T(X)/ΘFI(τΣ) |= Σ,
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so if
Σ |= p ≈ q

then
T(X)/ΘFI(τΣ) |= p ≈ q;

hence by 14.7,
〈p, q〉 ∈ ΘFI(τΣ).

2

In the proof of 14.4 we gave an explicit description of the operations needed to construct
the fully invariant closure ΘFI(S) of a set of ordered pairs S from an algebra. This will lead
to an elegant set of axioms and rules of inference for working with identities.

Definition 14.13. Given a term p, the subterms of p are defined by:
(1) The term p is a subterm of p.
(2) If f(p1, . . . , pn) is a subterm of p and f ∈ Fn then each pi is a subterm of p.

Definition 14.14. A set of identities Σ over X is closed under replacement if given any
p ≈ q ∈ Σ and any term r ∈ T (X), if p occurs as a subterm of r, then letting s be the result
of replacing that occurrence of p by q, we have r ≈ s ∈ Σ.

Definition 14.15. A set of identities Σ over X is closed under substitution if for each p ≈ q
in Σ and for ri ∈ T (X), if we simultaneously replace every occurrence of each variable xi in
p ≈ q by ri, then the resulting identity is in Σ.

Definition 14.16. If Σ is a set of identities over X, then the deductive closure D(Σ) of Σ
is the smallest subset of Id(X) containing Σ such that

p ≈ p ∈ D(Σ) for p ∈ T (X)
p ≈ q ∈ D(Σ) ⇒ q ≈ p ∈ D(Σ)
p ≈ q, q ≈ r ∈ D(Σ) ⇒ p ≈ r ∈ D(Σ)
D(Σ) is closed under replacement
D(Σ) is closed under substitution.

Theorem 14.17. Given Σ ⊆ Id(X), p ≈ q ∈ Id(X),

Σ |= p ≈ q ⇔ p ≈ q ∈ D(Σ).

Proof. The first three closure properties make τD(Σ) into an equivalence relation contain-
ing τΣ, the fourth makes it a congruence, and the last closure property says τD(Σ) is a fully
invariant congruence. Thus

τD(Σ) ⊇ ΘFI(τΣ).
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However τ−1ΘFI(τΣ) has all five closure properties and contains Σ; hence

τD(Σ) = ΘFI(τΣ).

Thus

Σ |= p ≈ q ⇔ 〈p, q〉 ∈ ΘFI(τΣ) (by 14.12)

⇔ p ≈ q ∈ D(Σ).

2

Thus we see that using only the most obvious rules for working with identities we can
derive all possible consequences. From this we can set up the following equational logic.

Definition 14.18. Let Σ be a set of identities over X. For p ≈ q ∈ Id(X) we say

Σ ` p ≈ q

(read “Σ proves p ≈ q”) if there is a sequence of identities

p1 ≈ q1, . . . , pn ≈ qn

from Id(X) such that each pi ≈ qi belongs to Σ, or is of the form p ≈ p, or is a result of
applying any of the last four closure rules of 14.16 to previous identities in the sequence,
and the last identity pn ≈ qn is p ≈ q. The sequence p1 ≈ q1, . . . , pn ≈ qn is called a formal
deduction of p ≈ q, and n is the length of the deduction.

Theorem 14.19 (Birkhoff: The Completeness Theorem for Equational Logic). Given Σ ⊆
Id(X) and p ≈ q ∈ Id(X) we have

Σ |= p ≈ q ⇔ Σ ` p ≈ q.

Proof. Certainly
Σ ` p ≈ q ⇒ p ≈ q ∈ D(Σ)

as we have used only properties under which D(Σ) is closed in the construction of a formal
deduction p1 ≈ q1, . . . , pn ≈ qn of p ≈ q.

For the converse of this, first it is obvious that

Σ ` p ≈ q for p ≈ q ∈ Σ

and
Σ ` p ≈ p for p ∈ T (X).
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If

Σ ` p ≈ q

then there is a formal deduction

p1 ≈ q1, . . . , pn ≈ qn

of p ≈ q. But then

p1 ≈ q1, . . . , pn ≈ qn, qn ≈ pn

is a formal deduction of q ≈ p.
If

Σ ` p ≈ q, Σ ` q ≈ r

let

p1 ≈ q1, . . . , pn ≈ qn

be a formal deduction of p ≈ q and let

p1 ≈ q1, . . . , pk ≈ qk

be a formal deduction of q ≈ r.
Then

p1 ≈ q1, . . . , pn ≈ qn, p1 ≈ q1, . . . , pk ≈ qk, pn ≈ qk

is a formal deduction of p ≈ r.
If

Σ ` p ≈ q

let

p1 ≈ q1, . . . , pn ≈ qn

be a formal deduction of p ≈ q. Let

r(. . . , p, . . . )

denote a term with a specific occurrence of the subterm p. Then

p1 ≈ q1, . . . , pn ≈ qn, r(. . . , pn, . . . ) ≈ r(. . . , qn, . . . )

is a formal deduction of

r(. . . , p, . . . ) ≈ r(. . . , q, . . . ).

Finally, if

Σ ` pi ≈ qi, 1 ≤ i ≤ n,
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and f ∈ Fn then by writing the formal deductions of each pi ≈ qi in succession and adding
replacement steps to obtain the identity f(p1, . . . , pn) ≈ f(q1, . . . , qn) at the end we have a
formal deduction of the latter, viz.,

. . . , p1 ≈ q1, . . . , p2 ≈ q2, . . . , . . . , pn ≈ qn, f(p1, . . . , pn) ≈ f(p1 . . . , pn−1, qn), . . . .

Thus
D(Σ) ⊆ {p ≈ q : Σ ` p ≈ q};

hence
D(Σ) = {p ≈ q : Σ ` p ≈ q},

so by 14.17
Σ |= p ≈ q ⇔ Σ ` p ≈ q.

2

The completeness theorem gives us a two-edged sword for tackling the study of conse-
quences of identities. When using the notion of satisfaction, we look at all the algebras
satisfying a given set of identities, whereas when working with ` we can use induction argu-
ments on the length of a formal deduction.

Examples. (1) An identity p ≈ q is balanced if each variable occurs the same number of
times in p as in q. If Σ is a balanced set of identities then using induction on the length of a
formal deduction we can show that if Σ ` p ≈ q then p ≈ q is balanced. [This is not at all
evident if one works with the notion |= .]

(2) A famous theorem of Jacobson in ring theory says that if we are given n ≥ 2, if Σ
is the set of ring axioms plus xn ≈ x, then Σ |= x · y ≈ y · x. However there is no known
routine way of writing out a formal deduction, given n, of x · y ≈ y · x. (For special n, such
as n = 2, 3, this is a popular exercise.)

Another application of fully invariant congruences in the study of identities is to show
the existence of minimal subvarieties.

Definition 14.20. A variety V is trivial if all algebras in V are trivial. A subclass W of a
variety V which is also a variety is called a subvariety of V. V is a minimal (or equationally
complete) variety if V is not trivial but the only subvariety of V not equal to V is the trivial
variety.

Theorem 14.21. Let V be a nontrivial variety. Then V contains a minimal subvariety.

Proof. Let V = M(Σ), Σ ⊆ Id(X) with X infinite (see 11.8). Then IdV (X) defines V,
and as V is nontrivial it follows from 14.6 that τ(IdV (X)) is a fully invariant congruence on
T(X) which is not ∇. As

∇ = ΘFI(〈x, y〉)
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for any x, y ∈ X with x 6= y, it follows that ∇ is finitely generated (as a fully invariant
congruence). This allows us to use Zorn’s lemma to extend τ(IdV (X)) to a maximal fully
invariant congruence on T(X), say θ. Then in view of 14.8, τ−1θ must define a minimal
variety which is a subvariety of V. 2

Example. The variety of lattices has a unique minimal subvariety, the variety generated
by a two-element chain. To see this let V be a minimal subvariety of the variety of lattices.
Let L be a nontrivial lattice in V. As L contains a two-element sublattice, we can assume L
is a two-element lattice. Now V (L) is not trivial, and V (L) ⊆ V, hence V (L) = V. [We shall
see in IV§8 Exercise 2 that V is a variety of all distributive lattices.]

We close this section with a look at an application of Tarski’s irredundant basis theorem
to sizes of minimal defining sets of identities.

Definition 14.22. Given a variety V and a set of variables X let

IrB(IdV (X)) = {|Σ| : Σ is a minimal finite set of identities over X defining V }.

Theorem 14.23 (Tarski). Given a variety V and a set of variables X, IrB(IdV (X)) is a
convex set.

Proof. For Σ ⊆ IdV (X), Σ |= IdV (X) implies

ΘFI(τΣ) = τIdV (X).

As ΘFI is 2-ary by 14.4, from 4.4 we have the result. 2
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Exercises §14

1. Show that the fully invariant congruences on an algebra A form a complete sublattice
of Con A.

2. Show that every variety of mono-unary algebras is defined by a single identity.

3. Verify the claim that consequences of balanced identities are again balanced.

4. Given a type F and a maximal fully invariant congruence θ on T(x, y) show that
V (T(x, y)/θ) is a minimal variety, and every minimal variety is of this form.
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5. If V is a minimal variety of groups show that FV (x) is nontrivial, hence V = V (FV (x)).
Determine all minimal varieties of groups.

6. Determine all minimal varieties of semigroups.

7. If p(x) is a term and Σ is a set of identities such that Σ |= p(x) ≈ x and Σ |= p(x) ≈
p(y), show that Σ |= x ≈ y; hence M(Σ) is a trivial variety.

8. Let f, g be two unary operation symbols. Let N be the set of natural numbers, and
for I ⊆ N let

ΣI = {fgfng2(x) ≈ x : n ∈ I} ∪ {fgfng2(x) ≈ fgfng2(y) : n 6∈ I}.

Show that M(ΣI) is not a trivial variety, but for I 6= J, M(ΣI) ∩M(ΣJ) is trivial.
Conclude that there are 2ω minimal varieties of bi-unary algebras; hence some variety
of bi-unary algebras is not defined by a finite set of identities.

9. If a variety V is defined by an infinite minimal set of identities show that V has at
least continuum many varieties above it.

10. (The compactness theorem for equational logic) If a variety V is defined by a finite set
of identities, then for any other set Σ of identities defining V show that there is a finite
subset Σ0 of Σ which defines V.

11. Given Σ ⊆ Id(X) let an elementary deduction from Σ be one of the form

r(. . . , εp, . . . ) ≈ r(. . . , εq, . . . ),

which is an identity obtained from p ≈ q, where p ≈ q or q ≈ p ∈ Σ, by first substituting
for some variable x the term εp, where ε is an endomorphism of T(X), and then
replacing some occurrence of εp in a term by εq. Show that D(Σ) is the set of r ≈ s
such that r = s or there exist elementary deductions ri ≈ si, 1 ≤ i ≤ n, with
r = r1, si = ri+1, 1 ≤ i ≤ n, and sn = s, provided X is infinite.

12. Write out a formal deduction of x · y ≈ y · x from the ring axioms plus x · x ≈ x.





Chapter III

Selected Topics

Now that we have covered the most basic aspects of universal algebra, let us take a brief look
at how universal algebra relates to two other popular areas of mathematics. First we discuss
two topics from combinatorics which can conveniently be regarded as algebraic systems,
namely Steiner triple systems and mutually orthogonal Latin squares. In particular we will
show how to refute Euler’s conjecture. Then we treat finite state acceptors as partial unary
algebras and look at the languages they accept—this will include the famous Kleene theorem
on regular languages.

§1. Steiner Triple Systems, Squags, and Sloops

Definition 1.1. A Steiner triple system on a set A is a family S of three-element subsets of
A such that each pair of distinct elements from A is contained in exactly one member of S.
|A| is called the order of the Steiner triple system.

If |A| = 1 then S = ∅, and if |A| = 3 then S = {A}. Of course there are no Steiner triple
systems on A if |A| = 2. The following result gives some constraints on |A| and |S|. (Actually
they are the best possible, but we will not prove this fact.)

Theorem 1.2. If S is a Steiner triple system on a finite set A, then

(a) |S| = |A| · (|A| − 1)/6

(b) |A| ≡ 1 or 3(mod 6).

Proof. For (a) note that each member of S contains three distinct pairs of elements of A,
and as each pair of elements appears in only one member of S, it follows that the number of
pairs of elements from A is exactly 3|S|, i.e.,(

|A|
2

)
= 3|S|.

111
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To show that (b) holds, fix a ∈ A and let T1, . . . , Tk be the members of S to which
a belongs. Then the doubletons T1 − {a}, . . . , Tk − {a} are mutually disjoint as no pair of
elements ofA is contained in two distinct triples of S; andA−{a} = (T1−{a})∪· · ·∪(Tk−{a})
as each member of A − {a} is in some triple along with the element a. Thus 2

∣∣|A| − 1, so
|A| ≡ 1 (mod 2). From (a) we see that |A| ≡ 0 or 1 (mod 3); hence we have |A| ≡ 1 or
3 (mod 6). 2

Thus after |A| = 3 the next possible size |A| is 7. Figure 20 shows a Steiner triple system
of order 7, where we require that three numbers be in a triple iff they lie on one of the lines
drawn or on the circle. The reader will quickly convince himself that this is the only Steiner
triple system of order 7 (up to a relabelling of the elements).

1

2

3
4 5

6

7

Figure 20

Are there some easy ways to construct new Steiner triple systems from old ones? If we
convert to an algebraic system it will become evident that our standard constructions in
universal algebra apply. A natural way of introducing a binary operation on A is to require

a · b = c if {a, b, c} ∈ S. (∗)

Unfortunately this leaves a · a undefined. We conveniently get around this by defining

a · a = a. (∗∗)

Although the associative law for · fails already in the system of order 3, nonetheless we have
the identities
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(Sq1) x · x ≈ x
(Sq2) x · y ≈ y · x
(Sq3) x · (x · y) ≈ y.

Definition 1.3. A groupoid satisfying the identities (Sq1)–(Sq3) above is called a squag (or
Steiner quasigroup).

Now we will show that the variety of squags precisely captures the Steiner triple systems.

Theorem 1.4. If 〈A, ·〉 is a squag define S to be the set of three-element subsets {a, b, c}
of A such that the product of any two elements gives the third. Then S is a Steiner triple
system on A.

Proof. Suppose a · b = c holds. Then

a · (a · b) = a · c,

so by (Sq3)

b = a · c.

Continuing, we see that the product of any two of a, b, c gives the third. Thus in view of
(Sq1), if any two are equal, all three are equal. Consequently for any two distinct elements
of A there is a unique third element (distinct from the two) such that the product of any
two gives the third. Thus S is indeed a Steiner triple system on A. 2

Another approach to converting a Steiner triple system S on A to an algebra is to adjoin
a new element, called 1, and replace (∗∗) by

a · a = 1 (∗∗′)
a · 1 = 1 · a = a. (∗∗′′)

This leads to a groupoid with identity 〈A ∪ {1}, ·, 1〉 satisfying the identities
(Sl1) x · x ≈ 1
(Sl2) x · y ≈ y · x
(Sl3) x · (x · y) ≈ y.

Definition 1.5. A groupoid with a distinguished element 〈A, ·, 1〉 is called a sloop (or Steiner
loop) if the identities (Sl1)–(Sl3) hold.

Theorem 1.6. If 〈A, ·, 1〉 is a sloop and |A| ≥ 2, define S to be the three-element subsets
of A − {1} such that the product of any two distinct elements gives the third. Then S is a
Steiner triple system on A− {1}.

Proof. (Similar to 1.4.) 2
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§2. Quasigroups, Loops, and Latin Squares

A quasigroup is usually defined to be a groupoid 〈A, ·〉 such that for any elements a, b ∈ A
there are unique elements c, d satisfying

a · c = b

d · a = b.

The definition of quasigroups we adopted in II§1 has two extra binary operations \ and /,
left division and right division respectively, which allow us to consider quasigroups as an
equational class. Recall that the axioms for quasigroups 〈A, /, ·, \〉 are given by

x\(x · y) ≈ y (x · y)/y ≈ x

x · (x\y) ≈ y (x/y) · y ≈ x.

To convert a quasigroup 〈A, ·〉 in the usual definition to one in our definition let a/b be
the unique solution c of c · b = a, and let a\b be the unique solution d of a · d = b. The four
equations above are then easily verified. Conversely, given a quasigroup 〈A, /, ·, \〉 by our
definition and a, b ∈ A, suppose c is such that a · c = b. Then a\(a · c) = a\b; hence c = a\b,
so only one such c is possible. However, a · (a\b) = b, so there is one such c. Similarly, we
can show that there is exactly one d such that d · a = b, namely d = b/a. Thus the two
definitions of quasigroups are, in an obvious manner, equivalent.

A loop is usually defined to be a quasigroup with an identity element 〈A, ·, 1〉. In our
definition we have an algebra 〈A, /, ·, \, 1〉; and such loops form an equational class.

Returning to a Steiner triple system S on A we see that the associated squag 〈A, ·〉 is
indeed a quasigroup, for if a · c = b then a · (a · c) = a · b, so c = a · b, and furthermore
a · (a · b) = b; hence if we are given a, b there is a unique c such that a · c = b. Similarly,
there is a unique d such that d · a = b. In the case of squags we do not need to introduce the
additional operations / and \ to obtain an equational class, for in this case / and \ are the
same as ·. Squags are sometimes called idempotent totally symmetric quasigroups.

Given any finite groupoid 〈A, ·〉 we can write out the multiplication table of 〈A, ·〉 in a
square array, giving the Cayley table of 〈A, ·〉 (see Figure 21). If we are given the Cayley
table for a finite groupoid 〈A, ·〉, it is quite easy to check whether or not 〈A, ·〉 is actually a
quasigroup.

a b
..
.

. . .a

b

Figure 21
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Theorem 2.1. A finite groupoid A is a quasigroup iff every element of A appears exactly
once in each row and in each column of the Cayley table of 〈A, ·〉.

Proof. If we are given a, b ∈ A, then there is exactly one c satisfying a · c = b iff b occurs
exactly once in the ath row of the Cayley table of 〈A, ·〉; and there is exactly one d such that
d · a = b iff b occurs exactly once in the ath column of the Cayley table. 2

Definition 2.2. A Latin square of order n is an n × n matrix (aij) of elements from an n
element set A such that each member of A occurs exactly once in each row and each column
of the matrix. (See Figure 22 for a Latin square of order 4.)

b a

c

a b c d
d c a b

cd

d b a

Figure 22

From Theorem 2.1 it is clear that Latin squares are in an obvious one-to-one correspon-
dence with quasigroups by using Cayley tables.
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§3. Orthogonal Latin Squares

Definition 3.1. If (aij) and (bij) are two Latin squares of order n with entries from A
with the property that for each 〈a, b〉 ∈ A × A there is exactly one index ij such that
〈a, b〉 = 〈aij , bij〉, then we say that (aij) and (bij) are orthogonal Latin squares.

Figure 23 shows an example of orthogonal Latin squares of order 3. In the late 1700’s
Euler was asked if there were orthogonal Latin squares of order 6. Euler conjectured: if
n ≡ 2 (mod 4) then there do not exist orthogonal Latin squares of order n. However he was
unable to prove even a single case of this conjecture for n > 2. In 1900 Tarry verified the
conjecture for n = 6 (this is perhaps surprising if one considers that there are more than
800 million Latin squares on a set of six elements). Later Macneish gave a construction
of orthogonal Latin squares of all orders n where n 6≡ 2 (mod 4). Then in 1959–60, Bose,
Parker, and Shrikhande showed that n = 2, 6 are the only values for which Euler’s conjecture
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is actually true! Following the elegant presentation of Evans we will show, by converting
orthogonal Latin squares into algebras, how to construct a pair of orthogonal Latin squares
of order 54, giving a counterexample to Euler’s conjecture.

a

a b c
c ab

c b

ac b
c ab

a b c

Figure 23

In view of §2, two orthogonal Latin squares on a set A correspond to two quasigroups
〈A, /, ·, \〉 and 〈A, ◦/, ◦, ◦\〉 such that the map 〈a, b〉 7→ 〈a · b, a ◦ b〉 is a permutation of A×A.
For a finite set A this will be a bijection iff there exist functions ∗l and ∗r from A× A to A
such that

∗l(a · b, a ◦ b) = a

∗r(a · b, a ◦ b) = b.

Thus we are led to the following algebraic structures.

Definition 3.2 (Evans). A pair of orthogonal Latin squares is an algebra

〈A, /, ·, \, ◦/, ◦, ◦\, ∗l, ∗r〉

with eight binary operations such that

(i) 〈A, /, ·, \〉 is a quasigroup

(ii) 〈A, ◦/, ◦, ◦\〉 is a quasigroup

(iii) ∗l(x · y, x ◦ y) ≈ x

(iv) ∗r(x · y, x ◦ y) ≈ y.

The order of such an algebra is the cardinality of its universe. Let POLS be the variety of
pairs of orthogonal Latin squares.

Now let us show how to construct a pair of orthogonal Latin squares of order n for any
n which is not congruent to 2 (mod 4).

Lemma 3.3. If q is a prime power and q ≥ 3, then there is a member of POLS of order q.

Proof. Let 〈K,+, ·〉 be a finite field of order q, and let e1, e2 be two distinct nonzero
elements of K. Then define two binary operations 21 and 22 on K by

a2ib = ei · a+ b.
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Note that the two groupoids 〈K,21〉 and 〈K,22〉 are actually quasigroups, for a2ic = b
holds iff c = b− ei · a, and d2ia = b holds iff d = e−1

i · (b− a). Also we have that

〈a21b, a22b〉 = 〈c21d, c22d〉

implies

e1 · a+ b = e1 · c+ d

e2 · a+ b = e2 · c+ d;

hence

e1 · (a− c) = d− b
e2 · (a− c) = d− b

and thus, as e1 6= e2,
a = c and b = d.

Thus the Cayley tables of 〈K,21〉 and 〈K,22〉 give rise to orthogonal Latin squares of order
q. 2

Theorem 3.4. If n ≡ 0, 1, or 3 (mod 4), then there is a pair of orthogonal Latin squares of
order n.

Proof. Note that n ≡ 0, 1 or 3 (mod 4) iff n = 2αpα1
1 · · · pαkk with α 6= 1, αi ≥ 1, and

each pi is an odd prime. The case n = 1 is trivial, and for n ≥ 3 use 3.3 to construct
A0,A1, . . . ,Ak in POLS of order 2α, pα1

1 , . . . , p
αk
k respectively. Then A0 ×A1 × · · · ×Ak is

the desired algebra. 2

To refute Euler’s conjecture we need to be more clever.

Definition 3.5. An algebra 〈A,F 〉 is a binary algebra if each of the fundamental operations
is binary. A binary algebra 〈A,F 〉 is idempotent if

f(x, x) ≈ x

holds for each function symbol f.

Definition 3.6. Let IPOLS be the variety of idempotent algebras in POLS.

Our goal is to show that there is an idempotent pair of orthogonal Latin squares of order
54. We construct this algebra by using a block design obtained from the projective plane of
order 7 to paste together some small members of IPOLS which come from finite fields.

Definition 3.7. A variety V of algebras is binary idempotent if
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(i) the members of V are binary idempotent algebras, and

(ii) V can be defined by identities involving at most two variables.

Note that IPOLS is a binary idempotent variety.

Definition 3.8. A 2-design is a tuple 〈B,B1, . . . , Bk〉 where

(i) B is a finite set,

(ii) each Bi is a subset of B (called a block),

(iii) |Bi| ≥ 2 for all i, and

(iv) each two-element subset of B is contained in exactly one block.

The crucial idea is contained in the following.

Lemma 3.9. Let V be a binary idempotent variety and let 〈B,B1, . . . , Bk〉 be a 2-design.
Let n = |B|, ni = |Bi|. If V has members of size ni, 1 ≤ i ≤ k, then V has a member of
size n.

Proof. Let Ai ∈ V with |Ai| = ni. We can assume Ai = Bi. Then for each binary function
symbol f in the type of V we can find a binary function fB on B such that when we restrict
fB to Bi it agrees with fAi (essentially we let fB be the union of the fAi). As V can be
defined by two variable identities p(x, y) ≈ q(x, y) which hold on each Ai, it follows that we
have constructed an algebra B in V with |B| = n. 2

Lemma 3.10. If q is a prime power and q ≥ 4, then there is a member of IPOLS of size q.
In particular, there are members of sizes 5, 7, and 8.

Proof. Again let K be a field of order q, let e1, e2 be two distinct elements of K − {0, 1},
and define two binary operations 21,22 on K by

a2ib = ei · a+ (1− ei) · b.

We leave it to the reader to verify that the Cayley tables of 〈K,21〉 and 〈K,22〉 give rise to
an idempotent pair of orthogonal Latin squares. 2

Now we need a construction from finite projective geometry. Given a finite field F of
cardinality n we form a projective plane Pn of order n by letting the points be the subsets of
F 3 of the form U where U is a one-dimensional subspace of F 3 (as a vector space over F ),
and by letting the lines be the subsets of F 3 of the form V where V is a two-dimensional
subspace of F 3. One can readily verify that every line of Pn contains n+ 1 points, and every
point of Pn “belongs to” (i.e., is contained in) n + 1 lines; and there are n2 + n + 1 points
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and n2 + n + 1 lines. Furthermore, any two distinct points belong to exactly one line and
any two distinct lines meet in exactly one point.

Lemma 3.11. There is a 2-design 〈B,B1, . . . , Bk〉 with |B| = 54 and |Bi| ∈ {5, 7, 8} for
1 ≤ i ≤ k.

Proof. Let π be the projective plane of order 7. This has 57 points and each line contains 8
points. Choose three points on one line and remove them. Let B be the set of the remaining
54 points, and let the Bi be the sets obtained by intersecting the lines of π with B. Then
〈B,B1, . . . , Bk〉 is easily seen to be a 2-design since each pair of points from B lies on a
unique line of π, and |Bi| ∈ {5, 7, 8}. 2

Theorem 3.12. There is an idempotent pair of orthogonal Latin squares of order 54.

Proof. Just combine 3.9, 3.10, and 3.11. 2

Reference.
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§4. Finite State Acceptors

In 1943 McCulloch and Pitts developed a model of nerve nets which was later formalized as
various types of finite state machines. The idea is quite simple. One considers the nervous
system as a finite collection of internal neurons and sensory neurons and considers time as
divided into suitably small subintervals such that in each subinterval each neuron either
fires once or is inactive. The firing of a given neuron during any one subinterval will send
impulses to certain other internal neurons during that subinterval. Such impulses are either
activating or deactivating. If an internal neuron receives sufficiently many (the threshold of
the neuron) activating impulses and no deactivating impulses in a given subinterval, then it
fires during the next subinterval of time. The sensory neurons can only be excited to fire
by external stimuli. In any given subinterval of time, the state of the network of internal
neurons is defined by noting which neurons are firing and which are not, and the input during
any given subinterval to the network is determined by which sensory neurons are firing and
which are not. We call an input during a subinterval of time a letter, the totality of letters
constituting the alphabet. A sequence of inputs (in consecutive subintervals) is a word. A
word is accepted (or recognized) by the neural network if after the sensory neurons proceed
through the sequence of inputs given by the letters of the word the internal neurons at some
specified number of subintervals later are in some one of the so-called accepting states.

In his 1956 paper, Kleene analyzed the possibilities for the set of all words which could
be accepted by a neural network and showed that they are precisely the regular languages.
Later Myhill showed the connection between these languages and certain congruences on the
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monoid of words. Let us now abstract from the nerve nets, where we consider the states as
points and the letters of the alphabet as functions acting on the states, i.e., if we are in a
given state and read a given letter, the resulting state describes the action of the letter on
the given state.

Definition 4.1. A finite state acceptor (abbreviated f.s.a.) of type F (where the type is
finite) is a 4-tuple A = 〈A,F, a0, A0〉, where 〈A,F 〉 is a finite unary algebra of type F, a0 ∈ A,
and A0 ⊆ A. The set A is the set of states of A, a0 is the initial state, and A0 is the set of
final states.

Definition 4.2. If we are given a finite type F of unary algebras, let 〈F∗, ·, 1〉 be the monoid
of strings on F. Given a string w ∈ F∗, an f.s.a. A of type F, and an element a ∈ A, let w(a)
be the element resulting from applying the “term” w(x) to a; for example if w = fg then
w(a) = f(g(a)), and 1(a) = a.

Definition 4.3. A language of type F is a subset of F∗. A string w from F∗ is accepted by
an f.s.a. A = 〈A,F, a0, A0〉 of type F if w(a0) ∈ A0. The language accepted by A, written
L(A), is the set of strings from F∗ accepted by A. (“Language” has a different meaning in
this section from that given in II§1.)

Definition 4.4. Given languages L,L1, and L2 of type F let

L1 · L2 = {w1 · w2 : w1 ∈ L1, w2 ∈ L2} and

L∗ = the subuniverse of 〈F∗, ·, 1〉 generated by L.

The set of regular languages of type F is the smallest collection of subsets of F∗ which contains
the singleton languages {f}, f ∈ F ∪ {1}, and is closed under the set-theoretic operations,
∪,∩, ′, and the operations · and ∗ defined above.

To prove that the languages accepted by f.s.a.’s form precisely the class of regular lan-
guages it is convenient to introduce partial algebras.

Definition 4.5. A partial unary algebra of type F is a pair 〈A,F 〉 where F is a family
of partially defined unary functions on A indexed by F, i.e., the domain and range of each
function f are contained in A.

Definition 4.6. A partial finite state acceptor (partial f.s.a.) A = 〈A,F, a0, A0〉 of type F

has the same definition as an f.s.a. of type F, except that we only require that 〈A,F 〉 be a
partial unary algebra of type F. Also the language accepted by A, L(A), is defined as in 4.3.
(Note that for a given w ∈ F∗, w(a) might not be defined for some a ∈ A.)

Lemma 4.7. Every language accepted by a partial f.s.a. is accepted by some f.s.a.
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Proof. Given a partial f.s.a. A = 〈A,F, a0, A0〉 choose b 6∈ A and let B = A ∪ {b}. For
f ∈ F and a ∈ A ∪ {b}, if f(a) is not defined in A let f(a) = b. This gives an f.s.a. which
accepts the same language as A. 2

Definition 4.8. If 〈A,F, a0, A0〉 is a partial f.s.a. then, for a ∈ A and w ∈ F∗, the range of
w applied to a, written Rg(w, a), is the set

{fn(a), fn−1fn(a), . . . , f1 · · · fn(a)}

where w = f1 · · ·fn; and it is {a} if w = 1.

Lemma 4.9. The language accepted by any f.s.a. is regular.

Proof. Let L be the language of the partial f.s.a. A = 〈A,F, a0, A0〉. We will prove the
lemma by induction on |A|. First note that ∅ is a regular language as ∅ = {f}∩{f}′ for any
f ∈ F. For the ground case suppose |A| = 1. If A0 = ∅ then L(A) = ∅, a regular language.
If A0 = {a0} let

G = {f ∈ F : f(a0) is defined}.
Then

L(A) = G∗ =

⋃
f∈G
{f}

∗ ,
also a regular language.

For the induction step assume that |A| > 1, and for any partial f.s.a. B = 〈B,F, b0, B0〉
with |B| < |A| the language L(B) is regular. If A0 = ∅, then, as before, L(A) = ∅, a
regular language. So assume A0 6= ∅. The crux of the proof is to decompose any acceptable
word into a product of words which one can visualize as giving a sequence of cycles when
applied to a0, followed by a noncycle, mapping from a0 to a member of A0 if a0 6∈ A0. Let

C ={〈f1, f2〉 ∈ F × F : f1wf2(a0) = a0 for some w ∈ F∗,

f2(a0) 6= a0, and Rg(w; f2(a0)) ⊆ A− {a0}}

which we picture as in Figure 24. Now, for 〈f1, f2〉 ∈ C let

Cf1f2 = {w ∈ F∗ : f1wf2(a0) = a0, Rg(w; f2(a0)) ⊆ A− {a0}}.

Then Cf1f2 is the language accepted by

〈A− {a0}, F, f2(a0), f−1
1 (a0)− {a0}〉;

hence, by the induction hypothesis, Cf1f2 is regular. Let

H = {f ∈ F : f(a0) = a0} ∪ {1}
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and
D = {f ∈ F : f(a0) 6= a0}.

For f ∈ D let

Ef = {w ∈ F∗ : wf(a0) ∈ A0, Rg(w, f(a0)) ⊆ A− {a0}}.

We see that Ef is the language accepted by

〈A− {a0}, F, f(a0), A0 − {a0}〉;

hence by the induction hypothesis, it is also regular. Let

E =


⋃
f∈D

Ef · {f} if a0 6∈ A0( ⋃
f∈D

Ef · {f}
)
∪ {1} if a0 ∈ A0.

Then

L = E ·

H ∪
⋃

〈f1,f2〉∈C

{f1} · Cf1f2 · {f2}

∗ ,
a regular language. 2

f1

f2

w

a0

Figure 24

Definition 4.10. Given a type F and t 6∈ F let the deletion homomorphism

δt : (F ∪ {t})∗ → F∗

be the homomorphism defined by

δt(f) = f for f ∈ F

δt(t) = 1.
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Lemma 4.11. If L is a language of type F ∪ {t}, where t 6∈ F, which is also the language
accepted by some f.s.a., then δt(L) is a language of type F which is the language accepted by
some f.s.a.

Proof. Let A = 〈A,F ∪ {t}, a0, A0〉 be an f.s.a. with L(A) = L. For w ∈ F∗ define

Sw = {w(a0) : w ∈ (F ∪ {t})∗, δt(w) = w}

and let
B = {Sw : w ∈ F∗}.

This is of course finite as A is finite. For f ∈ F define

f(Sw) = Sfw.

This makes sense as Sfw depends only on Sw, not on w. Next let

b0 = S1,

and let
B0 = {Sw : Sw ∩A0 6= ∅}.

Then

〈B,F, b0, B0〉 accepts w

iff w(S1) ∈ B0

iff Sw ∩ A0 6= ∅
iff w(a0) ∈ A0 for some w ∈ δ−1

t (w)

iff w ∈ L for some w ∈ δ−1
t (w)

iff w ∈ δt(L).

2

Theorem 4.12 (Kleene). Let L be a language. Then L is the language accepted by some
f.s.a. iff L is regular.

Proof. We have already proved (⇒) in 4.9. For the converse we proceed by induction. If
L = {f} then we can use the partial f.s.a. in Figure 25, where all functions not drawn are
undefined, and A0 = {a}. If L = {1} use A = A0 = {a0} with all f ’s undefined.

f
a 0a

Figure 25
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Next suppose L1 is the language of 〈A,F, a0, A0〉 and L2 is the language of 〈B,F, b0, B0〉.
Then L1 ∩ L2 is the language of 〈A × B,F, 〈a0, b0〉, A0 × B0〉, where f(〈a, b〉) is defined to
be 〈f(a), f(b)〉; and L′1 is the language of 〈A,F, a0, A− A0〉 (we are assuming 〈A,F, a0, A0〉
is an f.s.a.). Combining these we see by De Morgan’s law that L1 ∪ L2 is the language of a
suitable f.s.a.

To handle L1 ·L2 we first expand our type to F∪{t}. Then mapping each member of B0

to the input of a copy of A as in Figure 26 we see that L1 · {t} · L2 is the language of some
f.s.a.; hence if we use 4.11 it follows that L1 · L2 is the language of some f.s.a.

A

B

A

B0

t

t

Figure 26

Similarly for L∗1, let t map each element of A0 to a0 as in Figure 27. Then (L1 · {t})∗ ·L1

is the language of this partial f.s.a.; hence

L∗1 = δt[(L1 · {t})∗ · L1 ∪ {1}]

is the language of some f.s.a. This proves Kleene’s theorem. 2

A a
A0

0

t

Figure 27
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Another approach to characterizing languages accepted by f.s.a.’s of type F uses congru-
ences on 〈F∗, ·, 1〉.

Definition 4.13. Let τ be the mapping from F∗ to T (x), the set of terms of type F over x,
defined by τ(w) = w(x).

Lemma 4.14. The mapping τ is an isomorphism between the monoid 〈F∗, ·, 1〉 and the
monoid 〈T (x), ◦, x〉, where ◦ is “composition.”

Proof. (Exercise.) 2

Definition 4.15. For θ ∈ Con〈F∗, ·, 1〉 let

θ(x) = {〈w1(x), w2(x)〉 : 〈w1, w2〉 ∈ θ}.

Lemma 4.16. The map θ 7→ θ(x) is a lattice isomorphism from the lattice of congruences
of 〈F∗, ·, 1〉 to the lattice of fully invariant congruences of T(x). (See II§14.)

Proof. Suppose θ ∈ Con〈F∗, ·, 1〉 and 〈w1, w2〉 ∈ θ. Then for u ∈ F∗, 〈uw1, uw2〉 ∈ θ
suffices to show that θ(x) is a congruence on T(x), and 〈w1u, w2u〉 ∈ θ shows that θ(x) is
fully invariant. The remaining details we leave to the reader. 2

Lemma 4.17. If L is a language of type F accepted by some f.s.a., then there is a θ ∈
Con〈F∗, ·, 1〉 such that θ is of finite index (i.e., 〈F∗, ·, 1〉/θ is finite) and Lθ = L (see II§6.16),
i.e., L is a union of cosets of θ.

Proof. Choose A an f.s.a. of type F such that L(A) = L. Let FA(x) be the free algebra
freely generated by x in the variety V (〈A,F 〉). Let

α : T(x)→ FA(x)

be the natural homomorphism defined by α(x) = x, and let

β : FA(x)→ 〈A,F 〉

be the homomorphism defined by β(x) = a0. Then, with

L(x) = {w(x) : w ∈ L},
L(x) = α−1β−1(A0)

=
⋃

p∈β−1(A0)

p/ kerα;
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hence

L(x) = L(x)kerα.

As kerα is a fully invariant congruence on T(x) we have kerα = θ(x) for some θ ∈
Con〈F∗, ·, 1〉. Thus

L(x) = L(x)θ(x);

hence
L = Lθ.

As kerα is of finite index, it follows that θ is also of finite index. 2

Theorem 4.18 (Myhill). Let L be a language of type F. Then L is the language of some
f.s.a. iff there is a θ ∈ Con〈F∗, ·, 1〉 of finite index such that Lθ = L.

Proof. (⇒) This was handled in 4.17.
(⇐) Suppose θ is a congruence of finite index on F∗ such that Lθ = L. Let

A = {w/θ : w ∈ F∗}
f(w/θ) = fw/θ for f ∈ F

a0 = 1/θ

A0 = {w/θ : w ∈ L}.

Then

〈A,F, a0, A0〉 accepts w

iff w(1/θ) ∈ A0

iff w/θ ∈ A0

iff w/θ = u/θ for some u ∈ L
iff w ∈ L.

2

Definition 4.19. Given a language L of type F define the binary relation ≡L on F∗ by

w1 ≡L w2 iff (uw1v ∈ L⇔ uw2v ∈ L for u, v ∈ F∗).

Lemma 4.20. If we are given L, a language of type F, then ≡L is the largest congruence θ
on 〈F∗, ·, 1〉 such that Lθ = L.

Proof. Suppose Lθ = L. Then for 〈w1, w2〉 ∈ θ and u, v ∈ F∗, 〈uw1v, uw2v〉 ∈ θ; hence
uw1v ∈ L⇔ uw2v ∈ L as uw1v/θ = uw2v/θ and L =

⋃
w∈Lw/θ. Thus θ ⊆ ≡L .
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Next ≡L is easily seen to be an equivalence relation on F∗. If w1 ≡L w2 and ŵ1 ≡L ŵ2

then for u, v ∈ F∗,

uw1ŵ1v ∈ L
iff uw1ŵ2v ∈ L
iff uw2ŵ2v ∈ L;

hence
w1ŵ1 ≡L w2ŵ2,

so ≡L is indeed a congruence on 〈F∗, ·, 1〉.
If now w ∈ L and w ≡L ŵ then

1 · w · 1 ∈ L⇔ 1 · ŵ · 1 ∈ L

implies ŵ ∈ L; hence w/ ≡L ⊆ L. Thus L≡L = L. 2

Definition 4.21. If we are given a language L of type F, then the syntactic monoid ML of
L is defined by

ML = 〈F∗, ·, 1〉/ ≡L .

Theorem 4.22. A language L is accepted by some f.s.a. iff ML is finite.

Proof. Just combine 4.18 and 4.20. 2
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Chapter IV

Starting from Boolean Algebras . . .

Boolean algebras, essentially introduced by Boole in the 1850’s to codify the laws of thought,
have been a popular topic of research since then. A major breakthrough was the duality
between Boolean algebras and Boolean spaces discovered by Stone in the 1930’s. Stone also
proved that Boolean algebras and Boolean rings are essentially the same in that one can con-
vert via terms from one to the other. Following Stone’s papers numerous results appeared
which generalized or used his results to obtain structure theorems—these include the work of
Montgomery and McCoy (rings), Rosenbloom (Post algebras), Arens and Kaplansky (rings),
Foster (Boolean powers), Foster and Pixley (various notions of primality), Dauns and Hof-
mann (biregular rings), Pierce (rings), Comer (cylindric algebras and general algebras), and
Bulman-Fleming, Keimel, and Werner (discriminator varieties).

Since every Boolean algebra can be represented as a field of sets, the class of Boolean
algebras is sometimes regarded as being rather uncomplicated. However, when one starts
to look at basic questions concerning decidability, rigidity, direct products, etc., they are
associated with some of the most challenging results. Our major goal in this chapter will be
representation theorems based on Boolean algebras, with some fascinating digressions.

§1. Boolean Algebras

Let us repeat our definition from II§1.

Definition 1.1. A Boolean algebra is an algebra 〈B,∨,∧, ′, 0, 1〉 with two binary operations,
one unary operation (called complementation), and two nullary operations which satisfies:
B1: 〈B,∨,∧〉 is a distributive lattice
B2: x ∧ 0 ≈ 0, x ∨ 1 ≈ 1
B3: x ∧ x′ ≈ 0, x ∨ x′ ≈ 1.

Thus Boolean algebras form an equational class, and hence a variety. Some useful prop-
erties of Boolean algebras follow.

129
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Lemma 1.2. Let B be a Boolean algebra. Then B satisfies
B4: a ∧ b = 0 and a ∨ b = 1 imply a = b′

B5: (x′)′ ≈ x
B6: (x ∨ y)′ ≈ x′ ∧ y′, (x ∧ y)′ ≈ x′ ∨ y′ (DeMorgan’s Laws).

Proof. If

a ∧ b = 0

then

a′ = a′ ∨ (a ∧ b)
= (a′ ∨ a) ∧ (a′ ∨ b)
= 1 ∧ (a′ ∨ b)
= a′ ∨ b;

hence a′ ≥ b, and if

a ∨ b = 1

then

a′ = a′ ∧ (a ∨ b)
= (a′ ∧ a) ∨ (a′ ∧ b)
= 0 ∨ (a′ ∧ b)
= a′ ∧ b.

Thus a′ ≤ b; hence

b = a′.

This proves B4.
Now

a′ ∧ a = 0 and a′ ∨ a = 1;

hence

a = (a′)′

by B4, so B5 is established. Finally

(x ∨ y) ∨ (x′ ∧ y′) ≈ x ∨ [y ∨ (x′ ∧ y′)]
≈ x ∨ [(y ∨ x′) ∧ (y ∨ y′)]
≈ x ∨ y ∨ x′

≈ 1
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and

(x ∨ y) ∧ (x′ ∧ y′) ≈ [x ∧ (x′ ∧ y′)] ∨ [y ∧ (x′ ∧ y′)]
≈ 0 ∨ 0

≈ 0.

Thus by B4
x′ ∧ y′ ≈ (x ∨ y)′.

Similarly (interchanging ∨ and ∧, 0 and 1), we establish

x′ ∨ y′ ≈ (x ∧ y)′.

Perhaps the best known Boolean algebras are the following.

Definition 1.3. Let X be a set. The Boolean algebra of subsets of X, Su(X), has
as its universe Su(X) and as operations ∪,∩, ′,∅, X. The Boolean algebra 2 is given by
〈2,∨,∧, ′, 0, 1〉 where 〈2,∨,∧〉 is a two element lattice with 0 < 1, and where 0′ = 1, 1′ = 0;
also 1 = 〈{∅},∨,∧, ′,∅,∅〉.

It is an easy exercise to see that if |X| = 1 then Su(X) ∼= 2; and Su(∅) = 1.

Lemma 1.4. Let X be a set. Then Su(X) ∼= 2X .

Proof. Let α : Su(X)→ 2X be such that

α(Y )(x) = 1 iff x ∈ Y.

Then α is a bijection, and both α and α−1 are order-preserving maps between 〈Su(X),⊆〉
and 〈2X ,≤〉; hence we have a lattice isomorphism. Also for Y ⊆ X

α(Y ′)(x) = 1 iff x 6∈ Y
iff α(Y )(x) = 0;

hence
α(Y ′)(x) = (α(Y )(x))′,

so
α(Y ′) = (α(Y ))′.

As
α(∅) = 0 and α(X) = 1

we have an isomorphism. 2
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Definition 1.5. If B is a Boolean algebra and a ∈ B, let B�a be the algebra

〈[0, a],∨,∧,∗ , 0, a〉

where [0, a] is the interval {x ∈ B : 0 ≤ x ≤ a},∨ and ∧ are the same as in B except
restricted to [0, a], and b∗ is defined to be a ∧ b′.

Lemma 1.6. If B is a Boolean algebra and a ∈ B then B�a is also a Boolean algebra.

Proof. Clearly 〈[0, a],∨,∧〉 is a distributive lattice, as it is a sublattice of 〈B,∨,∧〉. For
b ∈ [0, a] we have

b ∧ 0 = 0, b ∨ a = a,

b ∧ b∗ = b ∧ (a ∧ b′)
= 0,

b ∨ b∗ = b ∨ (a ∧ b′)
= (a ∧ b) ∨ (a ∧ b′)
= a ∧ (b ∨ b′)
= a ∧ 1

= a.

Thus B�a is a Boolean algebra. 2

Lemma 1.7. If B is a Boolean algebra and a ∈ B then the map

αa : B → B�a

defined by

αa(b) = a ∧ b

is a surjective homomorphism from B to B�a.
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Proof. If b, c ∈ B then

αa(b ∨ c) = a ∧ (b ∨ c)
= (a ∧ b) ∨ (a ∧ c)
= αa(b) ∨ αa(c),

αa(b ∧ c) = a ∧ (b ∧ c)
= (a ∧ b) ∧ (a ∧ c)
= αa(b) ∧ αa(c),

αa(b
′) = a ∧ b′

= (a ∧ a′) ∨ (a ∧ b′)
= a ∧ (a′ ∨ b′)
= a ∧ (a ∧ b)′

= (αa(b))
∗,

αa(0) = 0 and αa(1) = a.

Thus αa is indeed a homomorphism. 2

Theorem 1.8. If B is a Boolean algebra and a ∈ B, then

B ∼= B�a×B�a′.

Proof. Let
α : B → B�a×B�a′

be defined by
α(b) = 〈αa(b), αa′(b)〉.

It is easily seen that α is a homomorphism, and for

〈b, c〉 ∈ B�a×B�a′

we have

α(b ∨ c) = 〈a ∧ (b ∨ c), a′ ∧ (b ∨ c)〉
= 〈b, c〉

as

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
= b ∨ 0

= b,
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etc. Thus α is surjective. Now if
α(b) = α(c)

for any b, c ∈ B then
a ∧ b = a ∧ c and a′ ∧ b = a′ ∧ c

so
(a ∧ b) ∨ (a′ ∧ b) = (a ∧ c) ∨ (a′ ∧ c);

hence
(a ∨ a′) ∧ b = (a ∨ a′) ∧ c,

and thus
b = c.

This guarantees that α is the desired isomorphism. 2

Corollary 1.9 (Stone). 2 is, up to isomorphism, the only directly indecomposable Boolean
algebra which is nontrivial.

Proof. If B is a Boolean algebra and |B| > 2, let a ∈ B, 0 < a < 1. Then 0 < a′ < 1,
and hence both B � a and B � a′ are nontrivial. From 1.8 it follows that B is not directly
indecomposable. 2

Corollary 1.10 (Stone). Every finite Boolean algebra is isomorphic to the Boolean algebra
of all subsets of some finite set X.

Proof. Every finite Boolean algebra B is isomorphic to a direct product of directly inde-
composable Boolean algebras by II§7.10; hence B ∼= 2n for some finite n. Now 1.4 applies.

2

Definition 1.11. A field of subsets of the set X is a subalgebra of Su(X), i.e., a family of
subsets of X closed under union, intersection, and complementation and containing ∅ and
X, with the operations of Su(X).

Corollary 1.12. Every Boolean algebra is isomorphic to a subdirect power of 2; hence
(Stone) every Boolean algebra is isomorphic to a field of sets.

Proof. The only nontrivial subdirectly irreducible Boolean algebra is 2, in view of 1.9.
Thus Birkhoff’s theorem guarantees that for every Boolean algebra B there is an X and a
subdirect embedding α : B→ 2X ; hence by 1.4 there is an embedding β : B→ Su(X). 2

Definition 1.13. Let BA be the class of Boolean algebras.

The next result is immediate from 1.12.

Corollary 1.14. BA = V (2) = ISP (S) = IPS(S), where S = {1,2}.
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Exercises §1
1. A subset J of a set I is a cofinite subset of I if I − J is finite. Show that the collection

of finite and cofinite subsets of I form a subuniverse of Su(I).

2. If B1 and B2 are two finite Boolean algebras with |B1| = |B2|, show B1
∼= B2.

3. Let B be a Boolean algebra. An element b ∈ B is called an atom of B if b covers 0 (see
I§1). Show that an isomorphism between two Boolean algebras maps atoms to atoms.

4. Show that an infinite free Boolean algebra is atomless (i.e., has no atoms).

5. Show that any two denumerable atomless Boolean algebras are isomorphic. [Hint:
Let B0,B1 be two such Boolean algebras. Given an isomorphism α : B′0 → B′1,B

′
i a

finite subalgebra of Bi, and B′0 ≤ B′′0 ≤ B0 with B′′0 finite, show there is a B′′1 with
B′1 ≤ B′′1 ≤ B1 and an isomorphism β : B′′0 → B′′1 extending α. Iterate this procedure,
alternately choosing the domain from B0, then from B1.]

6. If B is a (nontrivial) finite Boolean algebra, show that the subalgebra of BBB generated

by the projection maps πb : BB → B, where πb(f) = f(b), has cardinality 22|B| .

7. Let F(n) denote the free Boolean algebra freely generated by {x1, . . . , xn}. Show F(n) ∼=
22n . [Hint: Use Exercise 6 above and II§11 Exercise 5.]

8. If B is a Boolean algebra and a, b ∈ B with a ∧ b = 0 are such that B�a ∼= B�b, show
that there is an automorphism α of B such that α(a) = b and α(b) = a.

9. If A is an algebra such that Con A is a distributive, show that the factor congruences
on A form a Boolean lattice which is a sublattice of Con A.

10. Let B be a subalgebra of Su(X). Show that B̂ = {Y ⊆ X : (Y ∩Z ′)∪ (Z ∩Y ′) is finite
for some Z ∈ B} is a subuniverse of Su(X), and B̂ contains all the atoms of Su(X).

11. Given a cardinal κ ≥ ω and a set X show that {Y ⊆ X : |Y | < κ or |X − Y | < κ} is a
subuniverse of Su(X).

The study of cylindric algebras (see II§1) has parallels with the study of Boolean algebras.
Let CAn denote the class of cylindric algebras of dimension n, and let c(x) be the term
c0(c1(. . . (cn−1(x)) . . . )). We will characterize the directly indecomposable members of CAn
below.
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12. Show CAn satisfies the following:

(a) ci(x) ≈ 0↔ x ≈ 0

(b) ci(ci(x)) ≈ ci(x)

(c) x ∧ ci(y) ≈ 0↔ ci(x) ∧ y ≈ 0

(d) ci(x ∨ y) ≈ ci(x) ∨ ci(y)

(e) c(x ∨ y) ≈ c(x) ∨ c(y)

(f) ci(ci(x) ∧ ci(y)) ≈ ci(x) ∧ ci(y)

(g) ci((cix)′) ≈ (cix)′

(h) ci(x) ≤ c(x)

(i) c((cx)′) ≈ (cx)′.

13. For A ∈ CAn and a ∈ A with c(a) = a define A � a to be the algebra 〈[0, a],∨,∧,∗ ,
c0, . . . , cn−1, 0, a, d00 ∧ a, . . . , dn−1,n−1 ∧a〉, where the operations ∨,∧, c0, . . . , cn−1 are
the restrictions of the corresponding operations of A to [0, a], and x∗ = a ∧ x′. Show
A � a ∈ CAn, and the map α : A → A � a defined by α(b) = b ∧ a is a surjective
homomorphism from A to A�a.

14. If A ∈ CAn, a ∈ A, show that c(a) = a implies c(a′) = a′. Hence show that if c(a) = a
then the natural map from A to A � a × A � a′ is an isomorphism. Conclude that
A ∈ CAn is directly indecomposable iff it satisfies a 6= 0→ c(a) = 1 for a ∈ A.

15. A member of CA1 is called a monadic algebra. Show that the following construction
describes all finite monadic algebras. Given finite Boolean algebras B1, . . . ,Bk define
c0 on each Bi by c0(0) = 0 and c0(a) = 1 if a 6= 0, and let d00 = 1. Call the resulting
monadic algebras B∗i . Now form the product B∗1 × · · · ×B∗k.

§2. Boolean Rings

The observation that Boolean algebras could be regarded as rings is due to Stone.

Definition 2.1. A ring R = 〈R,+, ·,−, 0, 1〉 is Boolean if R satisfies

x2 ≈ x.

Lemma 2.2. If R is a Boolean ring, then R satisfies

x+ x ≈ 0 and x · y ≈ y · x.
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Proof. Let a, b ∈ R. Then
(a+ a)2 = a+ a

implies
a2 + a2 + a2 + a2 = a+ a;

hence
a+ a+ a+ a = a+ a,

so
a+ a = 0.

Thus
R |= x+ x ≈ 0.

Now
(a+ b)2 = a+ b,

so
a2 + a · b+ b · a+ b2 = a+ b;

hence
a+ a · b+ b · a+ b = a+ b,

yielding
a · b+ b · a = 0.

As
a · b+ a · b = 0

this says
a · b+ a · b = a · b+ b · a,

so
a · b = b · a.

Thus
R |= x · y ≈ y · x.

2

Theorem 2.3 (Stone). (a) Let B = 〈B,∨,∧, ′, 0, 1〉 be a Boolean algebra. Define B⊗ to be
the algebra 〈B,+, ·,−, 0, 1〉, where

a+ b = (a ∧ b′) ∨ (a′ ∧ b)
a · b = a ∧ b
−a = a.

Then B⊗ is a Boolean ring.
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(b) Let R = 〈R,+, ·,−, 0, 1〉 be a Boolean ring. Define R⊗ to be the algebra 〈R,∨,∧, ′, 0, 1〉
where

a ∨ b = a+ b+ a · b
a ∧ b = a · b

a′ = 1 + a.

Then R⊗ is a Boolean algebra.
(c) Given B and R as above we have B⊗⊗ = B, R⊗⊗ = R.

Proof. (a) Let a, b, c ∈ B. Then

(i) a+ 0 = (a ∧ 0′) ∨ (a′ ∧ 0)

= a ∧ 1

= a

(ii) a+ b = (a ∧ b′) ∨ (a′ ∧ b)
= (b ∧ a′) ∨ (b′ ∧ a)

= b+ a

(iii) a+ a = (a ∧ a′) ∨ (a′ ∧ a)

= 0

(iv) a+ (b+ c) = [a ∧ (b+ c)′] ∨ [a′ ∧ (b+ c)]

= {a ∧ [(b ∧ c′) ∨ (b′ ∧ c)]′} ∨ {a′ ∧ [(b ∧ c′) ∨ (b′ ∧ c)]}
= {a ∧ [(b′ ∨ c) ∧ (b ∨ c′)]} ∨ {(a′ ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c)}
= {a ∧ [(b′ ∧ c′) ∨ (c ∧ b)]} ∨ {(a′ ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c)}
= (a ∧ b′ ∧ c′) ∨ (a ∧ b ∧ c) ∨ (a′ ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c)
= (a ∧ b ∧ c) ∨ (a ∧ b′ ∧ c′) ∨ (b ∧ c′ ∧ a′) ∨ (c ∧ a′ ∧ b′).

The value of this last expression does not change if we permute a, b and c in any manner;
hence c+ (a+ b) = a+ (b+ c), so by (ii) (a+ b) + c = a+ (b+ c).

(v) a · 1 = 1 · a = a

(vi) a · (b · c) = a ∧ (b ∧ c)
= (a ∧ b) ∧ c
= (a · b) · c

(vii) a · (b+ c) = a ∧ [(b ∧ c′) ∨ (b′ ∧ c)]
= (a ∧ b ∧ c′) ∨ (a ∧ b′ ∧ c)
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and

(a · b) + (a · c) = [(a ∧ b) ∧ (a ∧ c)′] ∨ [(a ∧ b)′ ∧ (a ∧ c)]
= [(a ∧ b) ∧ (a′ ∨ c′)] ∨ [(a′ ∨ b′) ∧ (a ∧ c)]
= (a ∧ b ∧ c′) ∨ (b′ ∧ a ∧ c)

so
a · (b+ c) = (a · b) + (a · c).

(viii) a · a = a ∧ a
= a.

Thus B⊗ is a Boolean ring.
(b) Let a, b, c ∈ R. Then

(i) a ∨ b = a+ b+ a · b
= b+ a+ b · a
= b ∨ a

(ii) a ∧ b = a · b
= b · a
= b ∧ a

(iii) a ∨ (b ∨ c) = a+ (b ∨ c) + a · (b ∨ c)
= a+ (b+ c+ b · c) + a · (b+ c+ b · c)
= a+ b+ c+ a · b+ a · c+ b · c + a · b · c.

The value of this last expression does not change if we permute a, b and c, so

a ∨ (b ∨ c) = c ∨ (a ∨ b);

hence by (i) above
a ∨ (b ∨ c) = (a ∨ b) ∨ c.

(iv) a ∧ (b ∧ c) = a · (b · c)
= (a · b) · c
= (a ∧ b) ∧ c

(v) a ∨ a = a+ a+ a · a
= 0 + a

= a
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(vi) a ∧ a = a · a
= a

(vii) a ∨ (a ∧ b) = a+ (a ∧ b) + a · (a ∧ b)
= a+ a · b+ a · (a · b)
= a+ a · b+ a · b
= a

(viii) a ∧ (a ∨ b) = a · (a+ b+ a · b)
= a2 + a · b+ a2 · b
= a+ a · b+ a · b
= a

(ix) a ∧ (b ∨ c) = a · (b+ c+ b · c)
= a · b+ a · c+ a · b · c
= a · b+ a · c+ a · b · a · c
= (a ∧ b) ∨ (a ∧ c)

(x) a ∧ 0 = a · 0
= 0

(xi) a ∨ 1 = a+ 1 + a · 1
= 1

(xii) a ∧ a′ = a · (1 + a)

= a+ a2

= a+ a

= 0

(xiii) a ∨ a′ = a+ (1 + a) + a · (1 + a)

= a+ 1 + a+ a+ a2

= 1.

Thus R⊗ is a Boolean algebra.
(c) Suppose B = 〈B,∨,∧, ′, 0, 1〉 is a Boolean algebra and a, b ∈ B. Then with B⊗ =

〈B,+, ·,−, 0, 1〉

(i) a · b = a ∧ b

(ii) 1 + a = (1 ∧ a′) ∨ (1′ ∧ a) = a′
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(iii) a+ b+ a · b = a+ (b+ a · b)
= a+ b · (1 + a)

= a+ b · a′

= [a ∧ (b ∧ a′)′] ∨ [a′ ∧ (b ∧ a′)]
= [a ∧ (b′ ∨ a)] ∨ [a′ ∧ b]
= a ∨ (a′ ∧ b)
= (a ∨ a′) ∧ (a ∨ b)
= a ∨ b.

Thus B⊗⊗ = B.
Next suppose R = 〈R,+, ·,−, 0, 1〉 is a Boolean ring. Then with R⊗ = 〈R,∨,∧, ′, 0, 1〉

and a, b ∈ R,

(i) (a ∧ b′) ∨ (a′ ∧ b) = [a · (1 + b)] + [(1 + a) · b] + [a · (1 + b) · (1 + a) · b]
= [a+ a · b] + [b+ a · b] + 0

= a+ b

(ii) a ∧ b = a · b.

Thus R⊗⊗ = R. 2

The reader can verify that ⊗ has nice properties with respect to H,S, and P ; for example,
if B1,B2 ∈ BA, then

(i) If α : B1 → B2 is a homomorphism then α : B⊗1 → B⊗2 is a homomorphism between
Boolean rings.

(ii) If B1 ≤ B2 then B⊗1 ≤ B⊗2 .

(iii) If Bi ∈ BA for i ∈ I then
(∏

i∈I Bi

)⊗
=
∏

i∈I B⊗i .
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Exercises §2

1. If A is a Boolean algebra [Boolean ring] and A0 is a subalgebra of A, show A⊗0 is a
subalgebra of A⊗.
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2. If A1,A2 are Boolean algebras [Boolean rings] and α : A1 → A2 is a homomorphism,
then α is also a homomorphism from A⊗1 to A⊗2 .

3. If (Ai)i∈I is an indexed family of Boolean algebras [Boolean rings], then
(∏

i∈I Ai

)⊗
=∏

i∈I A⊗i .

4. If we are given an arbitrary ring R, then an element a ∈ R is a central idempotent
if a · b = b · a for all b ∈ R, and a2 = a. If R is a ring with identity, show that
the central idempotents of R form a Boolean algebra using the operations: a ∨ b =
a+ b− a · b, a ∧ b = a · b, and a′ = 1− a.

5. If θ is a congruence on a ring R with identity, show that θ is a factor congruence
iff 0/θ is a principal ideal of R generated by a central idempotent. Hence the factor
congruences on R form a sublattice of Con R which is a Boolean latttice.

An ordered basis (Mostowski/Tarski) for a Boolean algebra B is a subset A of B which
is a chain under the ordering of B, 0 6∈ A, and every member of B can be expressed in the
form a1 + · · ·+ an, ai ∈ A.

6. If A is an ordered basis of B, show that 1 ∈ A, A is a basis for the vector space 〈B,+〉
over the two-element field, and each nonzero element of B can be uniquely expressed
in the form a1 + · · ·+ an with ai ∈ A, a1 < a2 < · · · < an.

7. Show that every countable Boolean algebra has an ordered basis.

§3. Filters and Ideals

Since congruences on rings are associated with ideals, it follows that the same must hold
for Boolean rings. The translation of Boolean rings to Boolean algebras, namely R 7→ R⊗,
gives rise to ideals of Boolean algebras. The image of an ideal under ′ gives a filter.

Definition 3.1. Let B = 〈B,∨,∧, ′, 0, 1〉 be a Boolean algebra. A subset I of B is called
an ideal of B if

(i) 0 ∈ I

(ii) a, b ∈ I ⇒ a ∨ b ∈ I

(iii) a ∈ I and b ≤ a⇒ b ∈ I.

A subset F of B is called a filter of B if

(i) 1 ∈ F

(ii) a, b ∈ F ⇒ a ∧ b ∈ F
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(iii) a ∈ F and b ≥ a⇒ b ∈ F.

Theorem 3.2. Let B = 〈B,∨,∧, ′, 0, 1〉 be a Boolean algebra. Then I is an ideal of B iff I
is an ideal of B⊗.

Proof. Recall that I is an ideal of a ring B⊗ iff

0 ∈ I,
a, b ∈ I ⇒ a+ b ∈ I

as −b = b, and
a ∈ I, b ∈ R⇒ a · b ∈ I.

So suppose I is an ideal of B. Then

0 ∈ I,

and if a, b ∈ I then

a ∧ b′ ≤ a,

a′ ∧ b ≤ b,

so
a ∧ b′, a′ ∧ b ∈ I;

hence
a+ b = (a ∧ b′) ∨ (a′ ∧ b) ∈ I.

Now if a ∈ I and b ∈ B then
a ∧ b ≤ a,

so
a · b = a ∧ b ∈ I.

Thus I is an ideal of B⊗.
Next suppose I is an ideal of B⊗. Then 0 ∈ I, and if a, b ∈ I then

a · b ∈ I;

hence
a ∨ b = a+ b+ a · b ∈ I.

If a ∈ I and b ≤ a then
b = a ∧ b = a · b ∈ I,

so I is an ideal of B. 2
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Definition 3.3. If X ⊆ B, where B is a Boolean algebra, let

X ′ = {a′ : a ∈ X}.

The next result shows that ideals and filters come in pairs.

Lemma 3.4. Given a Boolean algebra B, then
(a) For I ⊆ B, I is an ideal iff I ′ is a filter,
(b) For F ⊆ B, F is a filter iff F ′ is an ideal.

Proof. First
0 ∈ I iff 1 = 0′ ∈ I ′.

If a, b ∈ I then
a ∨ b ∈ I iff (a ∨ b)′ = a′ ∧ b′ ∈ I ′.

For a ∈ I we have b ≤ a iff a′ ≤ b′; hence b ∈ I iff b′ ∈ I ′. This proves (a), and (b) is handled
similarly. 2

The following is now an easy consequence of results about rings, but we will give a direct
proof.

Theorem 3.5. Let B be a Boolean algebra. If θ is a binary relation on B, then θ is a
congruence on B iff 0/θ is an ideal, and for a, b ∈ B we have

〈a, b〉 ∈ θ iff a+ b ∈ 0/θ.

Proof. (⇒) Suppose θ is a congruence on B. Then

0 ∈ 0/θ,

and if a, b ∈ 0/θ then

〈a, 0〉 ∈ θ,
〈b, 0〉 ∈ θ,

so
〈a ∨ b, 0 ∨ 0〉 ∈ θ,

i.e.,
a ∨ b ∈ 0/θ.

Now if a ∈ 0/θ and b ≤ a then
〈a, 0〉 ∈ θ
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so
〈a ∧ b, 0 ∧ b〉 ∈ θ,

i.e.,
〈b, 0〉 ∈ θ;

hence
b ∈ 0/θ.

This shows that 0/θ is an ideal. Now

〈a, b〉 ∈ θ

implies
〈a+ b, b+ b〉 ∈ θ,

i.e.,
〈a+ b, 0〉 ∈ θ,

so
a+ b ∈ 0/θ.

Conversely,
a+ b ∈ 0/θ

implies
〈a+ b, 0〉 ∈ θ,

so
〈(a+ b) + b, 0 + b〉 ∈ θ,

thus
〈a, b〉 ∈ θ.

(⇐) For this direction, first note that θ is an equivalence relation on B as

〈a, a〉 ∈ θ,

since
a+ a = 0,

for a ∈ B; if
〈a, b〉 ∈ θ

then
〈b, a〉 ∈ θ

as
a+ b = b+ a;
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and if

〈a, b〉 ∈ θ,
〈b, c〉 ∈ θ

then

a+ c = (a+ b) + (b+ c) ∈ 0/θ;

hence

〈a, c〉 ∈ θ.

Next to show that θ is compatible with the operations of B, let a1, a2, b1, b2 ∈ B with

〈a1, a2〉 ∈ θ,
〈b1, b2〉 ∈ θ.

Then

(a1 ∧ b1) + (a2 ∧ b2) = (a1 · b1) + (a2 · b2)

= (a1 · b1) + [(a1 · b2) + (a1 · b2)] + (a2 · b2)

= a1 · (b1 + b2) + (a1 + a2) · b2 ∈ 0/θ,

so

〈a1 ∧ b1, a2 ∧ b2〉 ∈ θ.

Next

(a1 ∨ b1) + (a2 ∨ b2) = (a1 + b1 + a1 · b1) + (a2 + b2 + a2 · b2)

= (a1 + a2) + (b1 + b2) + (a1 ∧ b1 + a2 ∧ b2) ∈ 0/θ

as each of the three summands belongs to 0/θ, so

〈a1 ∨ b1, a2 ∨ b2〉 ∈ θ.

From

a1 + a2 ∈ 0/θ

it follows that

(1 + a1) + (1 + a2) ∈ 0/θ,

so

〈a′1, a′2〉 ∈ θ.

This suffices to show that θ is a congruence. 2
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Definition 3.6. If I is an ideal of a Boolean algebra B, let B/I denote the quotient algebra
B/θ, where

〈a, b〉 ∈ θ iff a+ b ∈ I.
Let b/I denote the equivalence class b/θ for b ∈ B. If F is a filter of B let B/F denote B/F ′

and let b/F denote b/F ′ (see 3.3).

Since we have established a correspondence between ideals, filters, and congruences of
Boolean algebras, it is natural to look at the corresponding lattices.

Lemma 3.7. The set of ideals and the set of filters of a Boolean algebra are closed under
arbitrary intersection.

Proof. (Exercise). 2

Definition 3.8. Given a Boolean algebra B and a set X ⊆ B let I(X) denote the least ideal
containing X, called the ideal generated by X, and let F (X) denote the least filter containing
X, called the filter generated by X.

Lemma 3.9. For B a Boolean algebra and X ⊆ B, we have
(a) I(X) = {b ∈ B : b ≤ b1 ∨ · · · ∨ bn for some b1, . . . , bn ∈ X} ∪ {0}
(b) F (X) = {b ∈ B : b ≥ b1 ∧ · · · ∧ bn for some b1, . . . , bn ∈ X} ∪ {1}.

Proof. For (a) note that
0 ∈ I(X),

and for b1, . . . , bn ∈ X we must have

b1 ∨ · · · ∨ bn ∈ I(X),

so
I(X) ⊇ {b ∈ B : b ≤ b1 ∨ · · · ∨ bn for some b1, . . . , bn ∈ X} ∪ {0}.

All we need to do is show that the latter set is an ideal as it certainly contains X, and for
this it suffices to show that it is closed under join. If

b ≤ b1 ∨ · · · ∨ bn,
c ≤ c1 ∨ · · · ∨ cm

with b1, . . . , bn, c1, . . . , cm ∈ X then

b ∨ c ≤ b1 ∨ · · · ∨ bn ∨ c1 ∨ · · · ∨ cm

so I(X) is as described. The discussion of F (X) parallels the above. 2
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Lemma 3.10. Let B be a Boolean algebra.
(a) The set of ideals of B forms a distributive lattice (under ⊆) where, for ideals I1, I2,

I1 ∧ I2 = I1 ∩ I2,

I1 ∨ I2 = {a ∈ B : a ≤ a1 ∨ a2 for some a1 ∈ I1, a2 ∈ I2}.

(b) The set of filters of B forms a distributive lattice (under ⊆) where, for filters F1, F2,

F1 ∧ F2 = F1 ∩ F2,

F1 ∨ F2 = {a ∈ B : a ≥ a1 ∧ a2 for some a1 ∈ F1, a2 ∈ F2}.

(c) Both of these lattices are isomorphic to Con B.

Proof. From 3.5 it is evident that the mapping

θ 7→ 0/θ

from congruences on B to ideals of B is a bijection such that

θ1 ⊆ θ2 iff 0/θ1 ⊆ 0/θ2.

Thus the ideals form a lattice isomorphic to Con B. The calculations given for ∧ and ∨
follow from 3.7 and 3.9. The filters are handled similarly. The distributivity of these lattices
follows from the fact that Boolean algebras form a congruence-distributive variety, see II§12,
or one can verify this directly. 2

A remarkable role will be played in this text by maximal filters, the so-called ultrafilters.

Definition 3.11. A filter F of a Boolean algebra B is an ultrafilter if F is maximal with
respect to the property that 0 6∈ F. A maximal ideal of B is an ideal which is maximal
with respect to the property that 1 6∈ I. (Thus only non-trivial Boolean algebras can have
ultrafilters or maximal ideals.)

In view of 3.4, F is an ultrafilter of B iff F ′ is a maximal ideal of B, and I is a maximal
ideal of B iff I ′ is an ultrafilter. The following simple criterion is most useful.

Theorem 3.12. Let F be a filter [I be an ideal ] of B. Then F is an ultrafilter [I is a
maximal ideal ] of B iff for any a ∈ B, exactly one of a, a′ belongs to F [belongs to I ].

Proof. Suppose F is a filter of B.
(⇒) If F is an ultrafilter then

B/F ∼= 2
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by 1.9 as B/F is simple by II§8.9. Let

ν : B→ B/F

be the natural homomorphism. For a ∈ B,

ν(a′) = ν(a)′

so
ν(a) = 1/F or ν(a′) = 1/F,

as B/F ∼= 2; hence
a ∈ F or a′ ∈ F.

If we are given a ∈ B then exactly one of a, a′ is in F as

a ∧ a′ = 0 6∈ F.

(⇐) For a ∈ B suppose exactly one of a, a′ ∈ F. Then if F1 is a filter of B with

F ⊆ F1 and F 6= F1

let a ∈ F1 − F. As a′ ∈ F we have

0 = a ∧ a′ ∈ F1;

hence F1 = B. Thus F is an ultrafilter.
The ideals are handled in the same manner. 2

Corollary 3.13. Let B be a Boolean algebra.
(a) Let F be a filter of B. Then F is an ultrafilter of B iff 0 6∈ F and for a, b ∈ B, a∨b ∈ F

iff a ∈ F or b ∈ F.
(b) (Stone) Let I be an ideal of B. Then I is a maximal ideal of B iff 1 6∈ I and for

a, b ∈ B, a ∧ b ∈ I iff a ∈ I or b ∈ I.

Proof. We will prove the case of filters.
(⇒) Suppose F is an ultrafilter with

a ∨ b ∈ F.

As
(a ∨ b) ∧ (a′ ∧ b′) = 0 6∈ F

we have
a′ ∧ b′ 6∈ F ;
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hence
a′ 6∈ F or b′ 6∈ F.

By 3.12 either
a ∈ F or b ∈ F.

(⇐) Since 1 ∈ F, given a ∈ B we have

a ∨ a′ ∈ F ;

hence
a ∈ F or a′ ∈ F.

Both a, a′ cannot belong to F as
a ∧ a′ = 0 6∈ F.

2

Definition 3.14. An ideal I of a Boolean algebra is called a prime ideal if 1 6∈ I and

a ∧ b ∈ I implies a ∈ I or b ∈ I.

Thus we have just seen that the prime ideals of a Boolean algebra are precisely the
maximal ideals.

Theorem 3.15. Let B be a Boolean algebra.
(a) (Stone) If a ∈ B − {0}, then there is a prime ideal I such that a 6∈ I.
(b) If a ∈ B − {1}, then there is an ultrafilter U of B with a 6∈ U.

Proof. (a) If a ∈ B − {0}, let
α : B→ 2J

be any subdirect embedding of B into 2J for some J (see 1.12). Then

α(a) 6= α(0),

so for some j ∈ J we have
(πj ◦ α)(a) 6= (πj ◦ α)(0).

As
πj ◦ α : B→ 2

is onto it follows that
θ = ker(πj ◦ α)

is a maximal congruence on B; hence

I = 0/θ
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is a maximal ideal, thus a prime ideal, and a 6∈ I.
(b) is handled similarly. 2

Lemma 3.16. Let B1 and B2 be Boolean algebras and suppose

α : B1 → B2

is a homomorphism. If U is an ultrafilter of B2, then α−1(U) is an ultrafilter of B1.

Proof. Let U be an ultrafilter of B2 and β the natural map from B2 to B2/U. Then

α−1(U) = (β ◦ α)−1(1),

hence α−1(U) is an ultrafilter of B1 (as the ultrafilters of B1 are just the preimages of 1
under homomorphisms to 2). 2

Theorem 3.17. Let B be a Boolean algebra.
(a) If F is a filter of B and a ∈ B − F, then there is an ultrafilter U with F ⊆ U and

a 6∈ U.
(b) (Stone) If I is an ideal of B and a ∈ B − I, then there is a maximal ideal M with

I ⊆M and a 6∈M.

Proof. For (a) choose an ultrafilter U∗ of B/F by 3.15 with

a/F 6∈ U∗.

Then let U be the inverse image of U∗ under the canonical map from B to B/F. (b) is
handled similarly. 2

Exercises §3

1. If B is a Boolean algebra and a, b, c, d ∈ B, show that

〈a, b〉 ∈ Θ(c, d)⇔ a+ b ≤ c+ d.

2. If B is a Boolean algebra, show that the mapping α from B to the lattice of ideals of
B defined by α(b) = I(b) embeds the Boolean lattice 〈B,∨,∧〉 into the lattice of ideals
of B.

3. If U is an ultrafilter of a Boolean algebra B, show that
∧
U exists, and is an atom b or

equals 0. In the former case show U = F (b). (Such an ultrafilter is called a principal
ultrafilter.)

4. If B is the Boolean algebra of finite and cofinite subsets of an infinite set I, show that
there is exactly one nonprincipal ultrafilter of B.
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5. If H = 〈H,∨,∧,→, 0, 1〉 is a Heyting algebra, a filter of H is a nonempty subset F of
H such that (i) a, b ∈ F ⇒ a ∧ b ∈ F and (ii) a ∈ F, a ≤ b ⇒ b ∈ F. Show (1) if
θ ∈ Con H then 1/θ is a filter, and 〈a, b〉 ∈ θ iff (a → b) ∧ (b → a) ∈ 1/θ, and (2) if
F is a filter of H then θ = {〈a, b〉 ∈ H2 : (a→ b) ∧ (b→ a) ∈ F} is a congruence and
F = 1/θ.

6. If A = 〈A,∨,∧, ′, c0, . . . , cn−1, 0, 1, d00, . . . , dn−1,n−1〉 is a cylindric algebra, a cylindric
ideal of A is a subset I of A which is an ideal of the Boolean algebra 〈A,∨,∧, ′, 0, 1〉 and
is such that c(a) ∈ I whenever a ∈ I. Using the exercises of §1 show (1) if θ ∈ Con A
then 0/θ is a cylindric ideal and 〈a, b〉 ∈ θ iff a + b ∈ 0/θ, and (2) if I is a cylindric
ideal of A then θ = {〈a, b〉 ∈ A2 : a+ b ∈ I} is a congruence on A with I = 0/θ.

7. Show that a finite-dimensional cylindric algebra A is subdirectly irreducible iff a ∈ A
and a 6= 0 imply c(a) = 1.

§4. Stone Duality

We will refer to the duality Stone established between Boolean algebras and certain topo-
logical spaces as Stone duality. In the following when we speak of a “clopen” set, we will
mean of course a closed and open set.

Definition 4.1. A topological space is a Boolean space if it (i) is Hausdorff, (ii) is compact,
and (iii) has a basis of clopen subsets.

Definition 4.2. Let B be a Boolean algebra. Define B∗ to be the topological space whose
underlying set is the collection B∗ of ultrafilters of B, and whose topology has a subbasis
consisting of all sets of the form

Na = {U ∈ B∗ : a ∈ U},

for a ∈ B.

Lemma 4.3. If B is a Boolean algebra and a, b ∈ B then

Na ∪Nb = Na∨b,

Na ∩Nb = Na∧b,

and

Na′ = (Na)
′.

Thus in particular the Na’s form a basis for the topology of B∗.
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Proof.

U ∈ Na ∪Nb iff a ∈ U or b ∈ U
iff a ∨ b ∈ U
iff U ∈ Na∨b.

Thus
Na ∪Nb = Na∨b.

The other two identities can be derived similarly. 2

Lemma 4.4. Let X be a topological space. Then the clopen subsets of X form a subuniverse
of Su(X).

Proof. (Exercise.) 2

Definition 4.5. If X is a topological space, let X∗ be the subalgebra of Su(X) with universe
the collection of clopen subsets of X.

Theorem 4.6 (Stone). (a) Let B be a Boolean algebra. Then B∗ is a Boolean space, and B
is isomorphic to B∗∗ under the mapping

a 7→ Na.

(b) Let X be a Boolean space. Then X∗ is a Boolean algebra, and X is homeomorphic
to X∗∗ under the mapping

x 7→ {N ∈ X∗ : x ∈ N}.

Proof. (a) To show that B∗ is compact let (Na)a∈J be a basic open cover of B∗, where
J ⊆ B. Now suppose no finite subset of J has 1 as its join in B. Then J is contained in a
maximal ideal M, and

U = M ′

is an ultrafilter with
U ∩ J = ∅.

But then
U 6∈ Na

for a ∈ J, which is impossible. Hence for some finite subset J0 of J we have∨
J0 = 1.

As ∨
J0 ∈ U
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for every ultrafilter U we must have
U ∈ Na

for some a ∈ J0 by 3.13, so (Na)a∈J0 is a cover of B∗. Thus B∗ is compact. It clearly has a
basis of clopen sets as each Na is clopen since

Na ∩Na′ = ∅,
Na ∪Na′ = B∗.

Now if
U1 6= U2

in B∗ let
a ∈ U1 − U2.

Then

U1 ∈ Na,

U2 ∈ Na′ ,

so B∗ is Hausdorff. Thus B∗ is a Boolean space.
The mapping a 7→ Na is clearly a homomorphism from B to B∗∗ in view of 4.3. If a, b ∈ B

and a 6= b then
(a ∨ b) ∧ (a ∧ b)′ 6= 0,

so by 3.15(a) there is a prime ideal I such that

(a ∨ b) ∧ (a ∧ b)′ 6∈ I,

so there is an ultrafilter U(= I ′) such that

(a ∨ b) ∧ (a ∧ b)′ ∈ U.

But then
(a ∧ b)′ ∈ U

so
a ∧ b 6∈ U ;

hence
a 6∈ U or b 6∈ U ;

but as
a ∨ b ∈ U

we have
a ∈ U or b ∈ U
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so exactly one of a, b is in U ; hence
Na 6= Nb.

Thus the mapping is injective. If now N is any clopen subset of B∗ then, being open, N is a
union of basic open subsets Na, and being a closed subset of a compact space, N is compact.
Thus N is a finite union of basic open sets, so N is equal to some Na, by 4.3.

Thus B ∼= B∗∗ under the above mapping.
(b) X∗ is a Boolean algebra by 4.4. Let

α : X → X∗∗

be the mapping
α(x) = {N ∈ X∗ : x ∈ N}.

(Note that α(x) is indeed an ultrafilter of X∗). If

x, y ∈ X and x 6= y

then
α(x) 6= α(y)

as X is Hausdorff and has a basis of clopen subsets. If U is an ultrafilter of X∗ then U is
a family of closed subsets of X with the finite intersection property, so as X is compact we
must have ⋂

U 6= ∅.

It easily follows that for x ∈
⋂
U,

U ⊆ α(x);

thus
U = α(x)

by the maximality of U. Thus α is a bijection.
A clopen subset of X∗∗ looks like

{U ∈ X∗∗ : N ∈ U}

for N ∈ X∗, i.e., for N a clopen subset of X. Now

α(N) = {U ∈ X∗∗ : α(x) = U for some x ∈ N}
= {U ∈ X∗∗ : N ∈ U},

so α is an open map. Also

α−1{U ∈ X∗∗ : N ∈ U} = {x ∈ X : α(x) ∈ {U ∈ X∗∗ : N ∈ U}}
= {x ∈ X : x ∈ N}
= N,
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so α is continuous. Thus α is the desired homeomorphism. 2

Definition 4.7. Given two disjoint topological spaces, X1, X2, define the union of X1, X2

to be the topological space whose underlying set is X1∪X2 and whose open sets are precisely
the subsets of the form O1 ∪O2 there Oi is open in Xi.

Given two topological spaces X1, X2, let

X1 ·∪ X2

denote the topological space whose underlying set is

{1} ×X1 ∪ {2} ×X2

and whose open subsets are precisely the subsets of the form

{1} ×O1 ∪ {2} ×O2

where Oi is open in Xi, i = 1, 2. X1 ·∪ X2 is called the disjointed union of X1, X2.

The next result is used in the next section.

Lemma 4.8. Given two Boolean algebras B1 and B2, the Boolean spaces (B1 × B2)∗ and
B∗1 ·∪ B∗2 are homeomorphic.

Proof. The case that |B1| = |B2| = 1 is trivial, so we assume |B1 × B2| ≥ 2. Given an
ultrafilter U in (B1×B2)∗, let πi(U) be the image of U under the projection homomorphism

πi : B1 ×B2 → Bi.

Claim: U = π1(U)×B2 or U = B1 × π2(U).
To see this, note that

〈1, 0〉 ∨ 〈0, 1〉 = 〈1, 1〉 ∈ U
implies

〈1, 0〉 ∈ U or 〈0, 1〉 ∈ U.
If 〈1, 0〉 ∈ U, then

〈b1, b2〉 ∈ U ⇒ 〈b1, 0〉 = 〈b1, b2〉 ∧ 〈1, 0〉 ∈ U ;

hence
π1(U)× {0} ⊆ U,

so
π1(U)×B2 ⊆ U.

As
U ⊆ π1(U)× π2(U)
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we have
U = π1(U)×B2.

Likewise we handle the case 〈0, 1〉 ∈ U. This finishes the proof of the claim.
From the claim it is easy to verify that either π1(U) or π2(U) is a filter, and then an

ultrafilter. So let us define the map

β : (B1 ×B2)∗ → B∗1 ·∪ B∗2

by
β(U) = {i} × πi(U)

for i such that πi(U) is an ultrafilter of Bi. The map β is easily seen to be injective in view
of the claim. If U ∈ B∗1 then U ×B2 ∈ (B1 ×B2)∗, so

β(U ×B2) = {1} × U,

and a similar argument for U ∈ B∗2 shows β is also surjective. Finally, we have

β(N〈b1,b2〉) = {β(U) : U ∈ (B1 ×B2)∗, 〈b1, b2〉 ∈ U}
= {β(U) : U ∈ (B1 ×B2)∗, 〈b1, 0〉 ∈ U or 〈0, b2〉 ∈ U}
= {β(U) : U ∈ (B1 ×B2)∗, b1 ∈ π1(U) or b2 ∈ π2(U)}
= {1} ×Nb1 ∪ {2} ×Nb2 .

2

Actually Stone goes on to establish relationships between the following pairs:

Boolean algebras ←→ Boolean spaces
filters ←→ closed subsets
ideals ←→ open subsets
homomorphisms ←→ continuous maps.

However, what we have done above suffices for our goals, so we leave the other relation-
ships for the reader to establish in the exercises.

References
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Exercises §4

1. Show that a finite topological space is a Boolean space iff it is discrete (i.e., every
subset is open).
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2. If X is a Boolean space and I is any set, show that the Tychonoff product XI is a
Boolean space; and if I is infinite and |X| > 1 then (XI)∗ is an atomless Boolean
algebra.

3. Show that a countably infinite free Boolean algebra B has a Boolean space homeomor-
phic to 2ω, where 2 is the discrete space {0, 1}; hence B is isomorphic to the Boolean
algebra of closed and open subsets of the Cantor discontinuum. Conclude also that B
has continuum many nonprincipal ultrafilters.

4. Given any set I show that (Su(I))∗ is the Stone-Čech compactification of the discrete
space I.

5. Give a topological description of the Boolean space of the algebra of finite and cofinite
subsets of an infinite set I.

6. For B a Boolean algebra and U ∈ B∗∗∗, show that there is an x ∈ B∗ with
⋂
U = {x},

and U = {N ∈ B∗∗ : x ∈ N}.

7. If B is a Boolean algebra and F is a filter of B, show that F ∗ =
⋂
{Nb : b ∈ F} is a

closed subset of B∗ and the map F 7→ F ∗ is an isomorphism from the lattice of filters
of B to the lattice of closed subsets of B∗, and b ∈ F iff Nb ⊇ F ∗.

8. If B is a Boolean algebra and I is an ideal of B, show I∗ =
⋃
{Nb : b ∈ I} is an open

subset of B∗ such that the map I 7→ I∗ is an isomorphism from the lattice of ideals of
B to the lattice of open subsets of B∗ with b ∈ I iff Nb ⊆ I∗.

9. If α : B1 → B2 is a Boolean algebra homomorphism, let α∗ : B∗2 → B∗1 be defined by
α∗(U) = α−1(U). Show α∗ is a continuous mapping from B∗2 to B∗1 which is injective if
α is surjective, and surjective if α is injective.

10. If α : X1 → X2 is a continuous map between Boolean spaces, let α∗ : X∗2 → X∗1 be
defined by α∗(N) = α−1(N). Then show α∗ is a Boolean algebra homomorphism such
that α∗ is injective if α is surjective, and surjective if α is injective.

11. Show that the atoms of a Boolean algebra B correspond to the isolated points of B∗

(a point x ∈ B∗ is isolated if {x} is a clopen subset of B∗).

12. Given a chain 〈C,≤〉 define the interval topology on C to be the topology generated
by the open sets {c ∈ C : c > a} and {c ∈ C : c < a}, for a ∈ C. Show that this gives
a Boolean space iff 〈C,≤〉 is an algebraic lattice (see I§4 Ex. 4).

13. If λ is an ordinal, show that the interval topology on λ gives a Boolean space iff λ is
not a limit ordinal.
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14. Given Boolean spaces X1, . . . , Xn such that Xi ∩ Xj = {x} for i 6= j, show that the
space Y =

⋃
1≤i≤nXi with open sets {

⋃
1≤i≤n Ui : Ui open in Xi, x belongs to all or

none of the Ui’s} is again a Boolean space.

§5. Boolean Powers

The Boolean power construction goes back at least to a paper of Arens and Kaplansky in
1948, and it has parallels in earlier work of Gelfand. Arens and Kaplansky were concerned
with rings, and in 1953 Foster generalized Boolean powers to arbitrary algebras. This con-
struction provides a method for translating numerous fascinating properties of Boolean alge-
bras into other varieties, and, as we shall see in §7, provides basic representation theorems.

Definition 5.1. If B is a Boolean algebra and A an arbitrary algebra, let A[B]∗ be the set
of continuous functions from B∗ to A, giving A the discrete topology.

Lemma 5.2. If we are given A,B as in 5.1, A[B]∗ is a subuniverse of AX , where X = B∗.

Proof. Let c1, . . . , cn ∈ A[B]∗. As X is compact, each ci has a finite range, and, for
a ∈ A, c−1

i (a) is a clopen subset of X. Thus we can visualize a typical member of A[B]∗ as
in Figure 28, namely a step function with finitely many steps, each step occurring over a
clopen subset of X. If A is of type F and f ∈ Fn then if we choose clopen subsets N1, . . . , Nk

which partition X such that each ci is constant on each Nj , i = 1, . . . , n, j = 1, . . . , k, it is
clear that f(c1, . . . , cn) is constant on each Nj . Consequently, f(c1, . . . , cn) ∈ A[B]∗. 2

N N Nk21

X

A

Figure 28

Definition 5.3. Given A,B as in 5.1, let A[B]∗ denote the subalgebra of AX , X = B∗,
with universe A[B]∗. A[B]∗ is called the (bounded) Boolean power of A by B. (Note that
A[1]∗ is a trivial algebra.)

Theorem 5.4. The following results hold for Boolean powers:
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(a) A[B]∗ is a subdirect power of A.
(b) A can be embedded in A[B]∗ if B is not trivial.
(c) A[2]∗ ∼= A.
(d) A[B1 ×B2]∗ ∼= A[B1]∗ ×A[B2]∗.
(e) (A1 ×A2)[B]∗ ∼= A1[B]∗ ×A2[B]∗.

Proof. For (a) and (b) note that the constant functions of AX are in A[B]∗. (c) follows from
noting that 2∗ is a one-element space, so the only functions in AX are constant functions.

Let C(X,A) denote the set of continuous functions from X to A, for X a Boolean space,
and let C(X,A) denote the subalgebra of AX with universe C(X,A). Given two disjoint
Boolean spaces X1, X2 define

α : C(X1 ∪X2,A)→ C(X1,A)× C(X2,A)

by
αc = 〈c�X1 , c�X2〉.

As X1, X2 are clopen in X1 ∪ X2 it is not difficult to see that α is a bijection, and if
c1, . . . , cn ∈ C(X1 ∪X2,A) and f is a fundamental operation of arity n, then

αf(c1, . . . , cn) = 〈f(c1, . . . , cn)�X1, f(c1, . . . , cn)�X2〉
= 〈f(c1�X1, . . . , cn�X1), f(c1�X2, . . . , cn�X2)〉
= f(〈c1�X1, c1�X2〉, . . . , 〈cn�X1, cn�X2〉)
= f(αc1, . . . , αcn),

so α is an isomorphism. As
A[B]∗ = C(B∗,A)

it follows from 4.8 that
A[B1 ×B2]∗ ∼= A[B1]∗ ×A[B2]∗.

This proves (d).
Next define

α : A1[B]∗ × A2[B]∗ → (A1 × A2)[B]∗

by
α(〈c1, c2〉)(x) = 〈c1x, c2x〉.

Clearly this is a well-defined injective map. If c ∈ (A1×A2)[B]∗ let N1, . . . , Nk be a partition
of B∗ into clopen subsets such that c is constant on each Nj. Then let

ci(x) = (πic)(x),

i = 1, 2. Then ci ∈ Ai[B]∗ as ci is constant on each Nj , and

α(〈c1, c2〉) = c,
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so α is surjective. If 〈cj1, cj2〉 ∈ A1[B]∗ × A2[B]∗, 1 ≤ j ≤ n, and if f is a fundamental n-ary
operation then

αf(〈c1
1, c

1
2〉, . . . , 〈cn1 , cn2〉)(x) = α(〈f(c1

1, . . . , c
n
1 ), f(c1

2, . . . , c
n
2 )〉)(x)

= 〈f(c1
1, . . . , c

n
1 )(x), f(c1

2, . . . , c
n
2)(x)〉

= 〈f(c1
1x, . . . , c

n
1x), f(c1

2x, . . . , c
n
2x)〉

= f(〈c1
1x, c

1
2x〉, . . . , 〈cn1x, cn2x〉)

= f(α(〈c1
1, c

1
2〉)(x), . . . , α(〈cn1 , cn2〉)(x))

= f(α〈c1
1, c

1
2〉, . . . , α〈cn1 , cn2〉)(x);

hence
αf(〈c1

1, c
1
2〉, . . . , 〈cn1 , cn2〉) = f(α〈c1

1, c
1
2〉, . . . , α〈cn1 , cn2〉).

This proves
A1[B]∗ ×A2[B]∗ ∼= (A1 ×A2)[B]∗

as α is an isomorphism. 2

The next result is used in §7, and provides the springboard for the generalization of
Boolean powers given in §8.

Definition 5.5. If a, b ∈
∏

i∈I Ai the equalizer of a and b is

[[a = b]] = {i ∈ I : a(i) = b(i)};

and if J1, . . . , Jn partition I and a1, . . . , an ∈
∏

i∈I Ai then

a1�J1 ∪ · · · ∪ an�Jn
denotes the function a where

a(i) = ak(i) if i ∈ Jk.

Theorem 5.6. Let B be a Boolean algebra and A any algebra. With X = B∗, a subset S
of AX is A[B]∗ iff S satisfies

(a) the constant functions of AX are in S,
(b) for c1, c2 ∈ S, [[c1 = c2]] is a clopen subset of X, and
(c) for c1, c2 ∈ S and N a clopen subset of X,

c1�N ∪ c2�X−N∈ S.

Proof. (⇒) We have already noted that the constant functions are in A[B]∗. For part (b)
note that c ∈ A[B]∗ implies c−1(a) is clopen for a ∈ A as c is continuous. Also as c has finite
range,

[[c1 = c2]] =
⋃
a∈A

c−1
1 (a) ∩ c−1

2 (a)
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is a clopen subset of X. Finally
c = c1�N ∪ c2�X−N

is in A[B]∗ as
c−1(a) = (c−1

1 (a) ∩N) ∪ (c−1
2 (a) ∩ (X −N)),

a clopen subset of X for a ∈ A.
(⇐) For a ∈ A let ca ∈ AX be the constant function with value a. From (b) we have, for

c ∈ S,
c−1(a) = [[c = ca]],

a clopen subset of X; hence c is continuous, so c ∈ A[B]∗. Finally, if c ∈ A[B]∗ let

Na = [[c = ca]]

for a ∈ A. Then
c =

⋃
a∈A

ca�Na ,

so by (c), c ∈ S. 2
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Exercises §5

1. Given Boolean algebras B1,B2, define B1 ∗ B2 to be (B∗1 × B∗2)∗. Show that for any
A, (A[B1]

∗)[B2]∗ ∼= A[B1 ∗B2]∗; hence (A[B1]
∗)[B2]∗ ∼= (A[B2]

∗)[B1]∗.

2. If F is a filter of B, define θF on A[B]∗ by 〈a, b〉 ∈ θF iff [[a = b]] ⊇ F ∗ (see §4 Ex. 7).
Show that A[B]∗/θF ∼= A[B/F ]∗.

3. Show that |A[B]∗| = |A| · |B| if either |A| or |B| is infinite, and the other is nontrivial.

4. (Bergman). Let M be a module. Given two countably infinite Boolean algebras B1,B2

show that M[B1]∗ ∼= M[B2]∗. (Hint: (Lawrence) Let Qi be an ordered basis (see §2
Ex. 7) for Bi, i = 1, 2, and let α : Q1 → Q2 be a bijection. For a ∈M and q ∈ Qi, let
Ca�q denote the member of M [Bi]

∗ with

Ca�q (x) =

{
a if x ∈ Nq

0 if x 6∈ Nq.
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Then each member of M [Bi]
∗ can be uniquely written in the form Ca1�q1 + · · ·+Can�qn,

where q1 < · · · < qn, qj ∈ Qi. Define β : M [B1]∗ →M [B2]∗ by

Ca1�q1 + · · ·+ Can�qn 7→ Ca1 �αq1 + · · ·+ Can�αqn,

where q1 < · · · < qn. Then β is the desired isomorphism.)

Show that we can replace M by any algebra A which is polynomially equivalent to a
module.

§6. Ultraproducts and Congruence-distributive

Varieties

One of the most popular constructions, first introduced by  Loś (pronounced “wash”) in
1955, is the ultraproduct. We will make good use of it in both this and the next chapter.
The main result in this section is a new description due to Jónsson, using ultraproducts, of
congruence-distributive varieties generated by a class K.

Definition 6.1. For any set I, members of Su(I)∗ are called ultrafilters over I. Let Ai, i ∈ I,
be a family of algebras of a given type, and let U be an ultrafilter over I. Define θU on

∏
i∈I Ai

by
〈a, b〉 ∈ θU iff [[a = b]] ∈ U,

where [[a = b]] is as defined in 5.5.

Lemma 6.2. With Ai, i ∈ I, and U as above, θU is a congruence on
∏

i∈I Ai.

Proof. Obviously, θU is reflexive and symmetric. If

〈a, b〉 ∈ θU and 〈b, c〉 ∈ θU

then
[[a = c]] ⊇ [[a = b]] ∩ [[b = c]]

implies
[[a = c]] ∈ U,

so
〈a, c〉 ∈ θU .

If
〈a1, b1〉, . . . , 〈an, bn〉 ∈ θU

and f is a fundamental n-ary operation then

[[f(a1, . . . , an) = f(b1, . . . , bn]] ⊇ [[a1 = b1]] ∩ · · · ∩ [[an = bn]]
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implies
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ θU .

Thus θU is a congruence. 2

Definition 6.3. With Ai, i ∈ I, and U an ultrafilter over I, we define the ultraproduct∏
i∈I

Ai/U

to be ∏
i∈I

Ai/θU .

The elements of
∏

i∈I Ai/U are denoted by a/U, where a ∈
∏

i∈I Ai.

Lemma 6.4. For a/U, b/U in an ultraproduct
∏

i∈I Ai/U, we have

a/U = b/U iff [[a = b]] ∈ U.

Proof. This is an immediate consequence of the definition. 2

Lemma 6.5. If {Ai : i ∈ I} is a finite set of finite algebras, say {B1, . . . ,Bk}, (I can be
infinite), and U is an ultrafilter over I, then

∏
i∈I Ai/U is isomorphic to one of the algebras

B1, . . . ,Bk, namely to that Bj such that

{i ∈ I : Ai = Bj} ∈ U.

Proof. Let
Sj = {i ∈ I : Ai = Bj}.

Then
I = S1 ∪ · · · ∪ Sm

implies (by 3.13) that for some j,
Sj ∈ U.

Let Bj = {b1, . . . , bk}, where the b’s are all distinct, and choose a1, . . . , ak ∈
∏

i∈I Ai such
that

a1(i) = b1, . . . , ak(i) = bk

if i ∈ Sj . Then if we are given a ∈
∏

i∈I Ai,

[[a = a1]] ∪ · · · ∪ [[a = ak]] ⊇ Sj ,
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so
[[a = a1]] ∈ U or . . . or [[a = ak]] ∈ U ;

hence
a/U = a1/U or . . . or a/U = ak/U.

Also it should be evident that a1/U, . . . , ak/U are all distinct. Thus
∏

i∈I Ai/U has exactly
k elements, a1/U, . . . , ak/U. Now for f a fundamental n-ary operation and for

{bi1 , . . . , bin , bin+1} ⊆ {b1, . . . , bk}

with
f(bi1 , . . . , bin) = bin+1 ,

we have
[[f(ai1 , . . . , ain) = ain+1 ]] ⊇ Sj;

hence
f(ai1/U, . . . , ain/U) = ain+1/U.

Thus the map

α :
∏
i∈I

Ai/U → Bj

defined by
α(at/U) = bt,

1 ≤ t ≤ k, is an isomorphism. 2

Lemma 6.6 (Jónsson). Let W be a family of subsets of I(6= ∅) such that

(i) I ∈W,

(ii) if J ∈W and J ⊆ K ⊆ I then K ∈W, and

(iii) if J1 ∪ J2 ∈W then J1 ∈W or J2 ∈W. Then there is an ultrafilter U over I with

U ⊆W.

Proof. If ∅ ∈W then W = Su(I), so any ultrafilter will do. If ∅ 6∈W, then Su(I)−W is
a proper ideal; extend it to a maximal ideal and take the complementary ultrafilter. 2

Definition 6.7. We denote the class of ultraproducts of members of K by PU(K).

Theorem 6.8 (Jónsson). Let V (K) be a congruence-distributive variety. If A is a subdirectly
irreducible algebra in V (K), then

A ∈ HSPU(K);
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hence
V (K) = IPSHSPU(K).

Proof. Suppose A is a nontrivial subdirectly irreducible algebra in V (K). Then for some
choice of Ai ∈ K, i ∈ I, and for some B ≤

∏
i∈I Ai there is a surjective homomorphism

α : B→ A,

as V (K) = HSP (K). Let
θ = kerα.

For J ⊆ I let

θJ =

〈a, b〉 ∈
(∏
i∈I

Ai

)2

: J ⊆ [[a = b]]

 .

One easily verifies that θJ is a congruence on
∏

i∈I Ai. Let

θJ �B = θJ ∩B2

be the restriction of θJ to B, and define W to be

{J ⊆ I : θJ �B ⊆ θ}.

Clearly
I ∈W, ∅ 6∈W

and if
J ∈ W and J ⊆ K ⊆ I

then
θK �B ⊆ θ,

as
θK �B ⊆ θJ �B .

Now suppose
J1 ∪ J2 ∈W,

i.e.,
θJ1∪J2�B ⊆ θ.

As
θJ1∪J2 = θJ1 ∩ θJ2 ,

it follows that
(θJ1∪J2)�B = θJ1�B ∩ θJ2�B .
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Since
θ = θ ∨ (θJ1�B ∩ θJ2�B)

it follows that
θ = (θ ∨ θJ1�B) ∩ (θ ∨ θJ2�B)

by distributivity, and as Theorem II§6.20 gives

Con B/θ ∼= [[[θ,∇]]]

≤ Con/B

we must have from the fact that B/θ is subdirectly irreducible (it is isomorphic to A)

θ = θ ∨ θJi�B

for i = 1 or 2; hence
θJi�B ⊆ θ

for i = 1 or 2, so either J1 or J2 is in W. By 6.6, there is an ultrafilter U contained in W.
From the definition of W we have

θU �B ⊆ θ

as
θU =

⋃
{θJ : J ∈ U}.

Let ν be the natural homomorphism from
∏

i∈I Ai to
∏

i∈I Ai/U. Then let

β : B→ ν(B)

be the restriction of ν to B. As

ker β = θU �B
⊆ θ

we have

A ∼= B/θ
∼= (B/ ker β)/(θ/ kerβ).

Now
B/ ker β ∼= ν(B) ≤

∏
i∈I

Ai/U

so
B/ ker β ∈ ISPU(K);

hence
A ∈ HSPU(K).
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As every algebra in V (K) is isomorphic to a subdirect product of subdirectly irreducible
algebras, we have

V (K) = IPSHSPU(K).

2

One part of the previous proof has found so many applications that we isolate it in the
following.

Corollary 6.9 (Jónsson’s Lemma). If V is a congruence-distributive variety and Ai ∈ V, i ∈
I, if B ≤

∏
i∈I Ai, and θ ∈ Con B is such that B/θ is a nontrivial subdirectly irreducible

algebra, then there is an ultrafilter U over I such that

θU �B ⊆ θ

where θU is the congruence on
∏

i∈I Ai defined by

〈a, b〉 ∈ θU iff [[a = b]] ∈ U.

Corollary 6.10 (Jónsson). If K is a finite set of finite algebras and V (K) is congruence-
distributive, then the subdirectly irreducible algebras of V (K) are in

HS(K),

and
V (K) = IPS(HS(K)).

Proof. By 6.5, PU(K) ⊆ I(K), so just apply 6.8. 2
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Exercises §6

1. An ultrafilter U over a set I is free iff
⋂
U = ∅. Show that an ultrafilter U over I is

free iff I is infinite and the cofinite subsets of I belong to U.

2. An ultrafilter U over I is principal if
⋂
U 6= ∅. Show that an ultrafilter U is principal

iff U = {J ⊆ I : i ∈ J} for some i ∈ I.
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3. If U is a principal ultrafilter over I and Ai, i ∈ I, is a collection of algebras, show that∏
i∈I Ai/U ∼= Aj where

⋂
U = {j}.

4. Show that a finitely generated congruence distributive-variety has only finitely many
subvarieties. Show that the variety generated by the lattice N5 has exactly three
subvarieties.

5. (Jónsson) If A1,A2 are two finite subdirectly irreducible algebras in a congruence-
distributive variety and A1 � A2, show that there is an identity p ≈ q satisfied by one
and not the other.

6. Given an uncountable set I show that there is an ultrafilter U over I such that all
members of U are uncountable.

7. Show that for I countably infinite there is a subset S of the set of functions from
I to 2 which has cardinality equal to that of the continuum such that for f 6= g
with f, g ∈ S, {i ∈ I : f(i) = g(i)} is finite. Conclude that |AI/U | ≥ 2ω if U is a
nonprincipal ultrafilter over I and |A| is infinite.

§7. Primal Algebras

When Rosenbloom presented his study of the variety of n-valued Post algebras in 1942, he
proved that all finite members were isomorphic to direct powers of Pn (see II§1), just as in the
case of Boolean algebras. However, he thought that an analysis of the infinite members would
prove to be far more complex than the corresponding study of infinite Boolean algebras. Then
in 1953 Foster proved that every n-valued Post algebra was just a Boolean power of Pn.

Definition 7.1. If A is an algebra and

f : An → A

is an n-ary function on A, then f is representable by a term if there is a term p such that

f(a1, . . . , an) = pA(a1, . . . , an)

for a1, . . . , an ∈ A.

Definition 7.2. A finite algebra A is primal if every n-ary function on A, for every n ≥ 1,
is representable by a term.

In §10 we will give an easy test for primality, and show that the Post algebras Pn are
primal. However, one can give a direct proof. A key tool here and in later sections is the
switching function.
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Definition 7.3. The function
s : A4 → A

on a set A defined by

s(a, b, c, d) =

{
c if a = b

d if a 6= b

is called the switching function on A. A term s(x, y, u, v) representing the switching function
on an algebra A is called a switching term for A.

Theorem 7.4 (Foster). Let P be a primal algebra. Then

V (P) = I{P[B]∗ : B is a Boolean algebra}.

Proof. We only need to consider nontrivial P. If E is an equivalence relation on P and

〈a, b〉 6∈ E,
〈c, d〉 ∈ E

with c 6= d, then choose a term p(x) such that

p(c) = a,

p(d) = b.

Thus
E 6∈ Con(P);

hence P is simple. Also the only subalgebra of P is itself (as P is the only subset of P closed
under all functions on P ). As P has a majority term, it follows that V (P) is congruence-
distributive, so by 6.8 and the above remarks

V (P) = IPSHSPU(P)

= IPS(P) ∪ {trivial algebras}.

Thus we only need to show every subdirect power of P is isomorphic to a Boolean power of
P. Let

A ≤ PI

be a nontrivial subdirect power of P. Recall that for p1, p2 ∈ P I we let

[[p1 = p2]] = {i ∈ I : p1(i) = p2(i)}.

In the following we will let s(x, y, u, v) be a term which represents the switching function on
P.
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Claim i. The constant functions of P I are in A.

This follows from noting that every constant function on P is represented by a term.

Claim ii. The subsets [[a1 = a2]], for a1, a2 ∈ A, of I form a subuniverse of the Boolean
algebra Su(I).

Let c1, c2 be two elements of A with

[[c1 = c2]] = ∅

(such must exist as we have assumed P is nontrivial). Then for a1, a2, b1, b2 ∈ A the following
observations suffice:

I = [[c1 = c1]]

[[a1 = a2]] ∪ [[b1 = b2]] = [[s(a1, a2, b1, b2) = b1]]

[[a1 = a2]] ∩ [[b1 = b2]] = [[s(a1, a2, b1, a1) = s(a1, a2, b2, a2)]]

I − [[a1 = a2]] = [[s(a1, a2, c1, c2) = c2]].

Let B be the subalgebra of Su(I) with the universe

{[[a1 = a2]] : a1, a2 ∈ A},

and let
X = B∗.

Claim iii. For a ∈ A and U ∈ X there is exactly one p ∈ P such that a−1(p) ∈ U.

Since P is finite this is the an easy consequence of the facts⋃
p∈P

a−1(p) = I ∈ U,

U is an ultrafilter, and the a−1(p)’s are pairwise disjoint.
So let us define σ : A×X → P by

σ(a, U) = p iff a−1(p) ∈ U.

Then let us define α : A→ PX by

(αa)(U) = σ(a, U).

Clearly all the constant functions of PX are in αA (just look at the images of the constant
functions in A).



172 IV Starting from Boolean Algebras . . .

Claim iv. For a, b ∈ A, [[αa = αb]] = {U ∈ X : [[a = b]] ∈ U}.

To see this we have

[[αa = αb]] = {U ∈ X : (αa)(U) = (αb)(U)}
= {U ∈ X : σ(a, U) = σ(b, U)}
= {U ∈ X : a−1(p) ∈ U, b−1(p) ∈ U for some p ∈ P}
= {U ∈ X : [[a = b]] ∈ U} (why?).

Thus a typical clopen subset of X is of the form [[αa = αb]].
Next for a1, a2 ∈ A and N a clopen subset of X, choose b1, b2 ∈ A with

N = {U ∈ X : [[b1 = b2]] ∈ U}.

Let

a = a1�M ∪ a2�I−M
where

M = [[b1 = b2]].

Then

a ∈ A

as

a = s(b1, b2, a1, a2).

Now

[[αa = αa1]] = {U ∈ X : [[a = a1]] ∈ U}
⊇ {U ∈ X : M ∈ U}
= N,

and

[[αa = αa2]] = {U ∈ X : [[a = a2]] ∈ U}
⊇ {U ∈ X : I −M ∈ U}
= X −N ;

hence

αa = αa1�N ∪ αa2�X−N .

Then by 5.6 we see that

α(A) = P [B]∗.
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The map α is actually a bijection, for if a1, a2 ∈ A with

a1 6= a2

then choosing, by 3.15(b), U ∈ X with

[[a1 = a2]] 6∈ U,

we have
(αa1)(U) 6= (αa2)(U).

Finally, to see that α is an isomorphism, let a1, . . . , an ∈ A, and suppose f is an n-ary
function symbol. Then for U ∈ X and p such that

σ(f(a1, . . . , an), U) = p

we can use
f(a1, . . . , an)−1(p) =

⋃
pi∈P

f(p1,...,pn)=p

a−1
1 (p1) ∩ · · · ∩ a−1

n (pn)

and
f(a1, . . . , an)−1(p) ∈ U

to show that, for some choice of p1, . . . , pn with f(p1, . . . , pn) = p,

a−1
1 (p1) ∩ · · · ∩ a−1

n (pn) ∈ U.

Hence
a−1
i (pi) ∈ U, 1 ≤ i ≤ n,

and thus
σ(ai, U) = pi, 1 ≤ i ≤ n.

Consequently,

α(f(a1, . . . , an))(U) = σ(f(a1, . . . , an), U)

= p

= f(p1, . . . , pn)

= f(σ(a1, U), . . . , σ(an, U))

= f((αa1)(U), . . . , (αan)(U))

= f(αa1, . . . , αan)(U),

so
αf(a1, . . . , an) = f(αa1, . . . , αan).

2
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Exercises §7

1. Show that a primal lattice is trivial.

2. Show that if B is a primal Boolean algebra, then |B| ≤ 2.

3. Prove that for p a prime number, 〈Z/(p),+, ·,−, 0, 1〉 is a primal algebra.

4. Prove that the Post algebras Pn are primal.

5. If B1,B2 are Boolean algebras and α : B1 → B2 is a homomorphism, let α : B∗∗1 →
B∗∗2 be the corresponding homomorphism defined by α(Nb) = Nα(b). Then, given any
algebra A, define α∗ : A[B1]∗ → A[B2]∗ by

[[α∗c = ca]] = α[[c = ca]], for a ∈ A.

Show that α∗ is a homomorphism from A[B1]∗ to A[B2]∗.

6. If P is a primal algebra, show that the only homomorphisms from P[B1]∗ to P[B2]
∗

are of the form α∗ described in Exercise 5.

7. If P is a nontrivial primal algebra, show that P[B1]
∗ ∼= P[B2]∗ iff B1

∼= B2.

8. (Sierpiński). Show that any finitary operation on a finite set A is expressible as a
composition of binary operations.

§8. Boolean Products

Boolean products provide an effective generalization of the notion of Boolean power. Actually
the construction that we call “Boolean product” has been known for several years as “the
algebras of global sections of sheaves of algebras over Boolean spaces”; however, the definition
of the latter was unnecessarily involved.

Definition 8.1. A Boolean product of an indexed family (Ax)x∈X , X 6= ∅, of algebras is a
subdirect product A ≤

∏
x∈X Ax, where X can be endowed with a Boolean space topology

so that

(i) [[a = b]] is clopen for a, b ∈ A, and
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(ii) if a, b ∈ A and N is a clopen subset of X, then

a�N ∪ b�X−N ∈ A.
We refer to condition (i) as “equalizers are clopen”, and to condition (ii) as “the patchwork
property” (draw a picture!). For a class of algebras K, let Γa(K) denote the class of Boolean
products which can be formed from nonempty subsets of K. Thus Γa(K) ⊆ PS(K).

Our definition of Boolean product is indeed very close to the description of Boolean
powers given in 5.6. In this section we will develop a technique for establishing the existence
of Boolean product representations, and apply it to biregular rings. But first we need to
develop some lattice-theoretic notions and results.

Definition 8.2. Let L be a lattice. An ideal I of L is a nonempty subset of L such that

(i) a ∈ I, b ∈ L, and b ≤ a⇒ b ∈ I,
(ii) a, b ∈ I ⇒ a ∨ b ∈ I.
I is proper if I 6= L, and I is maximal if I is maximal among the proper ideals of L. Similarly
we define filters, proper filters, and maximal filters of L.

Parallel to 3.7, 3.8, and 3.9 we have (using the same proofs) the following.

Lemma 8.3. The set of ideals and the set of filters of a lattice are closed under finite
intersection, and arbitrary intersection provided the intersection is not empty.

Definition 8.4. Given a lattice L and a nonempty set X ⊆ L, let I(X) denote the least
ideal of L containing X, called the ideal generated by X, and let F (X) denote the least filter
of L containing X, called the filter generated by X.

Lemma 8.5. For a lattice L and X ⊆ L we have

I(X) = {a ∈ L : a ≤ a1 ∨ · · · ∨ an for some a1, . . . , an ∈ X}
F (X) = {a ∈ L : a ≥ a1 ∧ · · · ∧ an for some a1, . . . , an ∈ X}.

In particular if J is an ideal of L and b ∈ L, then

I(J ∪ {b}) = {a ∈ L : a ≤ j ∨ b for some j ∈ J}.

Definition 8.6. A lattice L is said to be relatively complemented if for

a ≤ b ≤ c
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in L there exists d ∈ L with

b ∧ d = a,

b ∨ d = c.

d is called a relative complement of b in the interval [a, c].

Lemma 8.7. Suppose L is a relatively complemented distributive lattice with I an ideal of
L and a ∈ L− I. Then there is a maximal ideal M of L with

I ⊆M, a 6∈M.

Furthermore, L−M is a maximal filter of L. The same results hold interchanging the words
ideal and filter.

Proof. Use Zorn’s lemma to extend I to an ideal M which is maximal among the ideals of
L containing I, but to which a does not belong. It only remains to show that M is actually
a maximal ideal of L. For b1, b2 6∈M we have

a ∈ I(M ∪ {bi}), i = 1, 2;

hence for some ci ∈M, i = 1, 2,

a ≤ b1 ∨ c1,

a ≤ b2 ∨ c2.

Hence

a ≤ (b1 ∨ c1) ∧ (b2 ∨ c2)

= (b1 ∧ b2) ∨ [(b1 ∧ c2) ∨ (c1 ∧ b2) ∨ (c1 ∧ c2)].

As the element in brackets is in M, we must have

b1 ∧ b2 6∈M

as a 6∈M. Thus it is easily seen that L−M is a filter. Now given b1, b2 6∈M, choose c ∈M
with

c ≤ b1.

Then let d1 ∈ L be such that

b1 ∨ d1 = b1 ∨ b2,

b1 ∧ d1 = c,
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i.e., d1 is a relative complement of b1 in the interval [c, b1 ∨ b2]. As L −M is a filter and
c 6∈ L−M, it follows that d1 ∈M. But then

b2 ≤ b1 ∨ d1

says
b2 ∈ I(M ∪ {b1});

hence
L = I(M ∪ {b1}).

Consequently M is a maximal ideal. 2

Lemma 8.8. In a distributive lattice relative complements are unique if they exist.

Proof. Suppose L is a distributive lattice and

a ≤ b ≤ c

in L. If d1 and d2 are relative complements of b in the interval [a, c], then

d1 = d1 ∧ c
= d1 ∧ (b ∨ d2)

= (d1 ∧ b) ∨ (d1 ∧ d2)

= d1 ∧ d2.

Likewise
d2 = d1 ∧ d2,

so
d1 = d2.

2

Definition 8.9. If L is a relatively complemented distributive lattice with a least element
0 and a, b ∈ L, then a\b denotes the relative complement of b in the interval [0, a ∨ b].

Lemma 8.10. If L is a distributive lattice with a least element 0 such that for a, b ∈ L the
relative complement (denoted a\b) of b in the interval [0, a ∨ b] exists, then L is relatively
complemented.

Proof. Let
a ≤ b ≤ c

hold in L. Let
d = a ∨ (c\b).
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Then
b ∨ d = b ∨ (c\b) = c,

and

b ∧ d = b ∧ [a ∨ (c\b)]
= a ∨ [b ∧ (c\b)]
= a,

so d is a relative complement of b in [a, c]. 2

Now we have all the facts we need about relatively complemented distributive lattices,
so let us apply them to the study of Boolean products.

Definition 8.11. If A is an algebra, then an embedding

α : A→
∏
x∈X

Ax

gives a Boolean product representation of A if α(A) is a Boolean product of the Ax’s.

Theorem 8.12. Let A be an algebra. Suppose L is a sublattice of Con A such that

(i) ∆ ∈ L,
(ii) the congruences in L permute,

(iii) L is a relatively complemented distributive lattice, and

(iv) for each a, b ∈ A there is a smallest member θab of L with 〈a, b〉 ∈ θab.

Let
X = {M : M is a maximal ideal of L} ∪ {L},

and introduce a topology on X with a subbasis

{Nθ : θ ∈ L} ∪ {Dθ : θ ∈ L}

where
Nθ = {M ∈ X : θ ∈M},

and
Dθ = {M ∈ X : θ 6∈M}.

Then X is a Boolean space,
⋃
M is a congruence for each M ∈ X, and the map

α : A→
∏
M∈X

(A/
⋃
M)
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defined by

(αa)(M) = a/
⋃
M

gives a Boolean product representation of A such that

[[αa = αb]] = Nθab.

Consequently,

A ∈ IΓa({A/
⋃
M : M ∈ X}).

Proof.

Claim i. The subbasis
{Nθ : θ ∈ L} ∪ {Dθ : θ ∈ L}

is a field of subsets of X, hence a basis for the topology. In particular,
(a) X = N∆, ∅ = D∆,
and for θ, φ ∈ L,
(b) Nθ ∪Nφ = Nθ∩φ,
(c) Nθ ∩Nφ = Nθ∨φ,
(d) Dθ ∪Dφ = Dθ∨φ,
(e) Dθ ∩Dφ = Dθ∩φ,
(f) Nθ ∪Dφ = Nθ\φ,
(g) Nθ ∩Dφ = Dφ\θ,
and
(h) X = Nθ ∪Dθ, ∅ = Nθ ∩Dθ.

Proof. (a) Clearly
X = N∆, ∅ = D∆.

The proofs below make frequent use of the fact that L−M is a filter of L if M ∈ X − {L}.

(b) M ∈ Nθ ∪Nφ iff θ ∈M or φ ∈M
iff θ ∩ φ ∈M
iff M ∈ Nθ∩φ.

One handles (c) similarly.

(d) M ∈ Dθ ∪Dφ iff θ 6∈M or φ 6∈M
iff θ ∨ φ 6∈M
iff M ∈ Dθ∨φ.

One handles (e) similarly.
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(f) From the statements

φ ∩ (θ\φ) = ∆

θ\φ ⊆ θ

θ ⊆ θ ∨ φ = φ ∨ (θ\φ)

it follows, for M ∈ X, that

φ ∈M or θ\φ ∈M
θ 6∈M or θ\φ ∈M
φ 6∈M or θ\φ 6∈M or θ ∈M.

The first two give
θ\φ 6∈M ⇒ θ 6∈M and φ ∈M

and from the third
θ\φ ∈M ⇒ θ ∈M or φ 6∈M.

Thus
θ\φ ∈M ⇔ θ ∈M or φ 6∈M.

(g) This is an immediate consequence of (f).
(h) (These assertions are obvious.)

Thus we have a field of subsets of X. 2

Claim ii. X is a Boolean space.

Proof. If M1,M2 ∈ X and M1 6= M2, then without loss of generality let θ ∈ M1 −M2.
Then

M1 ∈ Nθ,

M2 ∈ Dθ,

so X is Hausdorff. From claim (i) we have a basis of clopen subsets. So we only need to
show X is compact. Suppose

X =
⋃
i∈I
Nθi ∪

⋃
j∈J

Dφj .

As L ∈ X it follows that I 6= ∅, say i0 ∈ I. Let

Dθ′i
= Nθi ∩Dθi0

and
Dφ′j

= Dφj ∩Dθi0
.



§8. Boolean Products 181

Then

Dθi0
= X ∩Dθi0

=
⋃
i∈I
Dθ′i
∪
⋃
j∈J

Dφ′j
.

If the ideal of L generated by

{θ′i : i ∈ I} ∪ {φ′j : j ∈ J}

does not contain θi0 , then it can be extended to a maximal ideal M of L such that θi0 6∈M.
But then

M ∈ Dθi0
−
(⋃
i∈I
Dθi ∪

⋃
j∈J

Dφ′j

)
,

which is impossible. Thus by 8.5 for some finite subsets I0 (of I) and J0 (of J) we have

θi0 ≤
∨
i∈I0

θ′i ∨
∨
j∈J0

φ′j;

hence, by claim (i),

Dθi0
⊆
⋃
i∈I0

D′θi ∪
⋃
j∈J0

Dφ′j
.

As

Dθ′i
⊆ Nθi,

Dφ′j
⊆ Dφj

we have

X = Nθi0
∪Dθi0

= Nθi0
∪
⋃
i∈I0

Nθi ∪
⋃
j∈J0

Dφj ,

so X is compact. 2

Claim iii. α gives a Boolean product representation of A.

Proof. Certainly α is a homomorphism. If a 6= b in A, then

{θ ∈ L : 〈a, b〉 ∈ θ}

is a proper filter of L. Extend this to a maximal filter F of L, and let

M = L− F,
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a maximal ideal of L. Thus
〈a, b〉 6∈

⋃
M

as
〈a, b〉 6∈ θ

for θ ∈M. From this follows ⋂
M∈X

(
⋃
M) = ∆,

so αA is a subdirect product of the A/
⋃
M by II§8.2.

For a, b ∈ A we have

[[αa = αb]] = {M ∈ X; 〈a, b〉 ∈
⋃
M}

= {M ∈ X : θab ∈M}
= Nθab,

so equalizers are clopen.
Next given a, b ∈ A and θ ∈ L we want to show

(αa)�Nθ ∪ (αb)�X−Nθ ∈ αA.

Choose φ ∈ L such that
〈a, b〉 ∈ φ.

Then
〈a, b〉 ∈ θ ∨ φ = θ ∨ (φ\θ),

so by the permutability of members of L there is a c ∈ A with

〈a, c〉 ∈ θ,
〈c, b〉 ∈ φ\θ.

As

[[αa = αc]] = Nθac

⊇ Nθ

and

[[αc = αb]] = Nθcb

⊇ Nφ\θ

= Nφ ∪Dθ

⊇ Dθ
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we have
αc = αa�Nθ ∪ αb�Dθ ,

so αA has the patchwork property. 2

Definition 8.13. Given A let

Spec A = {φ ∈ Con A : φ is a maximal congruence on A} ∪ {∇},

and let the topology on Spec A be generated by

{E(a, b)|a, b ∈ A} ∪ {D(a, b)|a, b ∈ A},

where

E(a, b) = {φ ∈ Spec A : 〈a, b〉 ∈ φ},
D(a, b) = {φ ∈ Spec A : 〈a, b〉 6∈ φ}.

Corollary 8.14. Let A be an algebra such that the finitely generated congruences permute
and form a sublattice L of Con A which is distributive and relatively complemented. Then
the natural map

β : A→
∏

θ∈ Spec A

A/θ

gives a Boolean product representation of A, and for a, b ∈ A,

[[βa = βb]] = E(a, b).

Proof. Let M ∈ X, X as defined in 8.12. If

M = L

then ⋃
M = ∇ ∈ Spec A.

If
M 6= L,

then for some a, b ∈ A,
Θ(a, b) 6∈M,

so
〈a, b〉 6∈

⋃
M.
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If
⋃
M is not maximal then, for some θ ∈ Con A,⋃

M ⊆ θ 6= ∇

and ⋃
M 6= θ.

But
θ =

⋃
{φ ∈ L : φ ⊆ θ},

so
I = {φ ∈ L : φ ⊆ θ}

is a proper ideal of L such that M ⊆ I but M 6= I. This contradicts the maximality of M.
Hence M ∈ X implies ⋃

M ∈ Spec A.

If M1,M2 ∈ X with
M1 6= M2,

then it is readily verifiable that ⋃
M1 6=

⋃
M2.

And for θ ∈ Spec A, clearly
{φ ∈ L : φ ⊆ θ}

is in X. Thus the map
σ : X → Spec A

defined by

σM =
⋃

M

is a bijection. For a, b ∈ A note that

σ(NΘ(a,b)) = σ{M ∈ X : Θ(a, b) ∈M}
= {
⋃
M : M ∈ X, 〈a, b〉 ∈

⋃
M}

= {θ ∈ Spec A : 〈a, b〉 ∈ θ}
= E(a, b);

hence σ is a homeomorphism from X to Spec A. Thus

β : A→
∏

θ∈ Spec A

A/θ
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gives a Boolean product representation of A where

[[βa = βb]] = E(a, b).

2

Example (Dauns and Hofmann). A ring R is biregular if every principal ideal is generated
by a central idempotent (we only consider two-sided ideals). For r ∈ R let I(r) denote the
ideal of R generated by r. If a and b are central idempotents of R, it is a simple exercise to
verify

I(a) ∨ I(b) = I(a+ b− ab)
and

I(a) ∧ I(b) = I(ab).

Thus, for R biregular, all finitely generated ideals are principal, and they form a sublattice of
the lattice of all ideals of R. From the above equalities one can readily check the distributive
laws, and finally

I(b)\I(a) = I(b− ab),
i.e., the finitely generated ideals of R form a relatively complemented distributive sublattice
of the lattice of ideals of R; and of course all rings have permutable congruences. Thus by
8.14, R is isomorphic to a Boolean product of simple rings and a trivial ring. (A lemma of
Arens and Kaplansky shows that the simple rings have a unit element.)
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Exercises §8

1. If L is a distributive lattice, I is an ideal of L, and a ∈ L − I, show that there is an
ideal J which contains I but a 6∈ J, and L − J is a filter of L. However, show that J
cannot be assumed to be a maximal ideal of L.

2. (Birkhoff). Show that if L is a subdirectly irreducible distributive lattice, then |L| ≤ 2.

3. Verify the details of the example (due to Dauns and Hofmann) at the end of §8.

4. Let A be an algebra with subalgebra A0. Given a Boolean algebra B and a closed
subset Y of B∗, let

C = {c ∈ A[B]∗ : c(Y ) ⊆ A0}.
Show that C is a subuniverse of A[B]∗, and C ∈ Γa({A,A0}).
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5. If A is a Boolean product of (Ax)x∈X and Y is a subset of X, let A�Y = {a�Y : a ∈ A},
a subuniverse of

∏
x∈Y Ax. Let the corresponding subalgebra be A�Y . If N is a clopen

subset of X, ∅ 6= N 6= X, show

A ∼= A�N × A�X−N .

Hence conclude that if a variety V can be expressed as V = IΓa(K), then all the
directly indecomposable members of V are in I(K).

§9. Discriminator Varieties

In this section we look at the most successful generalization of Boolean algebras to date,
successful because we obtain Boolean product representations (which can be used to provide
a deep insight into algebraic and logical properties).

Definition 9.1. The discriminator function on a set A is the function t : A3 → A defined
by

t(a, b, c) =

{
a if a 6= b

c if a = b.

A ternary term t(x, y, z) representing the discriminator function on A is called a discrimi-
nator term for A.

Lemma 9.2. (a) An algebra A has a discriminator term iff it has a switching term (see §7).
(b) An algebra A with a discriminator term is simple.

Proof. (a) (⇒) If t(x, y, z) is a discriminator term for A, let s(x, y, u, v) = t(t(x, y, u), t(x, y, v), v).
(⇐) If s(x, y, u, v) is a switching term for A, then let t(x, y, z) = s(x, y, z, x).
(b) Let s(x, y, u, v) be a switching term for A. If a, b, c, d ∈ A with a 6= b, we have

〈c, d〉 = 〈s(a, a, c, d), s(a, b, c, d)〉 ∈ Θ(a, b);

hence

a 6= b⇒ Θ(a, b) = ∇.

Thus A is simple. 2

Definition 9.3. Let K be a class of algebras with a common discriminator term t(x, y, z).
Then V (K) is called a discriminator variety.

Examples. (1) If P is a primal algebra, then V (P) is a discriminator variety.
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(2) The cylindric algebras of dimension n form a discriminator variety. To see this let
c(x) = c0(c1(. . . (cn−1(x) . . . ). From §3 Exercise 7 we know that a cylindric algebra A of
dimension n is subdirectly irreducible iff for a ∈ A,

a 6= 0⇒ c(a) = 1.

Thus the term t(x, y, z) given by

[c(x+ y) ∧ x] ∨ [c(x+ y)′ ∧ z]

is a discriminator term on the subdirectly irreducible members. This ensures that the variety
is a discriminator variety.

Theorem 9.4 (Bulman-Fleming, Keimel, Werner). Let t(x, y, z) be a discriminator term
for all algebras in K. Then

(a) V (K) is an arithmetical variety.
(b) The indecomposable members of V (K) are simple algebras, and
(c) The simple algebras are precisely the members of ISPU(K+), where K+ is K, augmented
by a trivial algebra.
(d) Furthermore, every member of V (K) is isomorphic to a Boolean product of simple alge-
bras, i.e.,

V (K) = IΓaSPU(K+).

Proof. As t(x, y, z) is a 2/3-minority term for K, we have an arithmetical variety by
II§12.5. Hence the subdirectly irreducible members of V (K) are in HSPU(K) by 6.8. For
Ai ∈ K, i ∈ I, U ∈ Su(I)∗, and a, b, c ∈

∏
i∈I Ai, if

a/U = b/U

then

t(a/U, b/U, c/U) = t(a, b, c)/U

= c/U

as

[[t(a, b, c) = c]] ∈ U

since

[[a = b]] ∈ U

and

[[t(a, b, c) = c]] ⊇ [[a = b]].



188 IV Starting from Boolean Algebras . . .

Likewise,

[[a = b]] 6∈ U
⇒ I − [[a = b]] ∈ U

⇒ [[t(a, b, c) = a]] ∈ U ;

hence
a/U 6= b/U ⇒ t(a/U, b/U, c/U) = a/U ;

thus t is a discriminator term for
∏

i∈I Ai/U. If now

B ≤
∏
i∈I

Ai/U

then t is also a discriminator term for B. Consequently, all members of SPU(K) are simple
by 9.2. It follows by 6.8 that the subdirectly irreducible members of V (K) are up to iso-
morphism precisely the members of SPU(K+), and all subdirectly irreducible algebras are
simple algebras with t(x, y, z) as a discriminator term.

To see that we have Boolean product representations let

A ∈ PSSPU(K+),

say A ≤
∏

i∈I Si,Si ∈ SPU(K+). Let s(x, y, u, v) be a switching term for SPU(K+) (which
must exist by 9.2). If a, b, c, d ∈ A and

[[a = b]] ⊆ [[c = d]]

then
〈c, d〉 = 〈s(a, a, c, d), s(a, b, c, d)〉 ∈ Θ(a, b).

Thus
〈a, b〉 ∈ {〈c, d〉 : [[a = b]] ⊆ [[c = d]]} ⊆ Θ(a, b).

The set
{〈c, d〉 : [[a = b]] ⊆ [[c = d]]}

is readily seen to be a congruence on A; hence

Θ(a, b) = {〈c, d〉 : [[a = b]] ⊆ [[c = d]]}.

From this it follows that

Θ(a, b) ∨Θ(c, d) = Θ(t(a, b, c), t(b, a, d))

Θ(a, b) ∧Θ(c, d) = Θ(s(a, b, c, d), c).
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Let us verify these two equalities. For i ∈ I,

t(a, b, c)(i) = t(b, a, d)(i)

holds iff
a(i) = b(i) and c(i) = d(i);

hence
[[t(a, b, c) = t(b, a, d)]] = [[a = b]] ∩ [[c = d]],

so
〈a, b〉, 〈c, d〉 ∈ Θ(t(a, b, c), t(b, a, d)),

thus
Θ(a, b),Θ(c, d) ⊆ Θ(t(a, b, c), t(b, a, d)).

This gives
Θ(a, b) ∨Θ(c, d) ⊆ Θ(t(a, b, c), t(b, a, d)).

Now clearly
〈t(a, b, c), t(b, a, d)〉 ∈ Θ(a, b) ∨Θ(c, d)

as
t(a, b, c)Θ(a, b)t(a, a, c)Θ(c, d)t(a, a, d)Θ(a, b)t(b, a, d).

Thus
〈t(a, b, c), t(b, a, d)〉 ∈ Θ(a, b) ∨Θ(c, d),

so
Θ(a, b) ∨Θ(c, d) = Θ(t(a, b, c), t(b, a, d)).

Next, note that
s(a, b, c, d)(i) = c(i) iff a(i) = b(i) or c(i) = d(i);

hence
[[s(a, b, c, d) = c]] = [[a = b]] ∪ [[c = d]].

This immediately gives
Θ(s(a, b, c, d), c) ⊆ Θ(a, b),Θ(c, d),

so
Θ(s(a, b, c, d), c) ⊆ Θ(a, b) ∩Θ(c, d).

Conversely, if
〈e1, e2〉 ∈ Θ(a, b) ∩Θ(c, d)

then
[[a = b]], [[c = d]] ⊆ [[e1 = e2]],
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so

[[s(a, b, c, d) = c]] = [[a = b]] ∪ [[c = d]]

⊆ [[e1 = e2]],

thus
〈e1, e2〉 ∈ Θ(s(a, b, c, d), c).

This shows
Θ(a, b) ∩Θ(c, d) = Θ(s(a, b, c, d), c).

The above equalities show that the finitely generated congruences on A form a sublattice
L of Con A, and indeed they are all principal. As V (K) is arithmetical L is a distributive
lattice of permuting congruences. Next we show the existence of relative complements. For
a, b, c, d ∈ A note that

Θ(c, d) ∧Θ(s(c, d, a, b), b) = Θ(s(c, d, s(c, d, a, b), b), s(c, d, a, b))

= ∆

as one can easily verify
s(c, d, s(c, d, a, b), b) = s(c, d, a, b);

and

Θ(c, d) ∨Θ(s(c, d, a, b), b) = Θ(t(c, d, s(c, d, a, b)), t(d, c, b))

= Θ(t(c, d, a), t(d, c, b))

(just verify that both of the corresponding equalizers are equal to [[c = d]] ∩ [[a = b]]); hence

= Θ(a, b) ∨Θ(c, d).

Thus
Θ(a, b)\Θ(c, d) = Θ(s(c, d, a, b), b),

so L is relatively complemented.
Applying 8.14, we see that A ∈ IΓaSPU(K+).
Note that if a variety V is such that V = IΓa(K) then VDI ⊆ I(K), where VDI is the

class of directly indecomposable members of V. 2
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Exercises §9

1. (a) Show that the variety of rings with identity generated by finitely many finite fields
is a discriminator variety. (b) Show that the variety of rings generated by finitely many
finite fields is a discriminator variety.

2. If A is a Boolean product of an indexed family Ax, x ∈ X, of algebras with a common
discriminator term, show that for each congruence θ on A there is a closed subset Y
of X such that

θ = {〈a, b〉 ∈ A×A : Y ⊆ [[a = b]]},
and hence for θ a maximal congruence on A there is an x ∈ X such that

θ = {〈a, b〉 ∈ A×A : a(x) = b(x)}.

3. If A1,A2 are two nonisomorphic algebras with A1 ≤ A2, and with a common ternary
discriminator term, show that there is an algebra in Γa({A1,A2}) which is not isomor-
phic to an algebra of the form A1[B1]∗ ×A2[B2]∗.

The spectrum of a variety V, Spec (V ), is {|A| : A ∈ V, A is finite}.

4. (Grätzer). For S a subset of the natural numbers, show that S is the spectrum of
some variety iff 1 ∈ S and m,n ∈ S ⇒ m · n ∈ S. [Hint: Find a suitable discriminator
variety.]

5. (Werner). Let R be a biregular ring, and for a ∈ R let a∗ be the central idempotent
which generates the same ideal as a. Show that the class of algebras 〈R,+, ·,−, 0, ∗〉
generates a discriminator variety, and hence deduce from 9.4 the Dauns-Hofmann the-
orem in the example at the end of §8.

§10. Quasiprimal Algebras

Perhaps the most successful generalization of the two-element Boolean algebra was intro-
duced by Pixley in 1970. But before looking at this, we want to consider three remarkable
results which will facilitate the study of these algebras.

Lemma 10.1 (Fleischer). Let C be a subalgebra of A×B, where A,B are in a congruence-
permutable variety V. Let A′ be the image of C under the first projection map α, and let B′

be the image of C under the second projection map β. Then

C = {〈a, b〉 ∈ A′ ×B′ : α′(a) = β′(b)}

for some surjective homomorphisms α′ : A′ → D, β′ : B′ → D.
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Proof. Let θ = kerα �C ∨ ker β �C , and let ν be the natural map from C to C/θ. Next,
define

α′ : A′ → C/θ

to be the homomorphism such that

ν = α′ ◦ α�C

and
β′ : B′ → C/θ

to be such that
ν = β′ ◦ β�C .

(See Figure 29.) Suppose c ∈ C. Then

c = 〈αc, βc〉 ∈ A′ ×B′

and

α′(αc) = νc

= β′(βc),

so
c ∈ {〈a, b〉 ∈ A′ ×B′ : α′(a) = β′(b)}.

Conversely, if
〈a, b〉 ∈ A′ ×B′ and α′(a) = β′(b)

let c1, c2 ∈ C with
α(c1) = a, β(c2) = b.

Then

ν(c1) = α′α(c1)

= α′(a)

= β′(b)

= β′(βc2)

= ν(c2),

so
〈c1, c2〉 ∈ θ;

hence 〈c1, c2〉 ∈ kerα ◦ ker β as C has permutable congruences. Choose c ∈ C such that

c1(kerα)c(ker β)c2.
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Then

α(c) = α(c1) = a,

β(c) = β(c2) = b,

so

c = 〈a, b〉;

hence

〈a, b〉 ∈ C.

This proves

C = {〈a, b〉 ∈ A′ ×B′ : α′(a) = β′(b)}.

2
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Corollary 10.2 (Foster-Pixley). Let S1, . . . ,Sn be simple algebras in a congruence-permutable
variety V. If

C ≤ S1 × · · · × Sn

is a subdirect product, then

C ∼= Si1 × · · · × Sik

for some {i1, . . . , ik} ⊆ {1, . . . , n}.
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Proof. Certainly the result is true if n = 1. So suppose m > 1 and the result is true for all
n < m. Then C is isomorphic in an obvious way to a subalgebra C∗ of (S1×· · ·×Sm−1)×Sm.
Let

A = S1 × · · · × Sm−1,

B = Sm.

Let

α′ : A′ → D,

β′ : B′ → D

be as in 10.1. (Of course B′ = B.) As β′ is surjective and B′ is simple, it follows that D is
simple.

If D is nontrivial, then β′ is an isomorphism. In this case

C∗ = {〈a, b〉 ∈ A′ ×B′ : α′a = β′b}

implies
C∗ = {〈a, β′−1α′a〉 : a ∈ A′},

so
A′ ∼= C∗

under the map
a 7→ 〈a, β′−1α′a〉

(just use the fact that β′−1α′ is a homomorphism from A′ to B′), and hence C ∼= A′. As

A′ ≤ S1 × · · · × Sm−1

is a subdirect product, then the induction hypothesis implies C is isomorphic to a product
of some of the Si, 1 ≤ i ≤ m.

The other case to consider is that in which D is trivial. But then

C∗ = {〈a, b〉 ∈ A′ ×B′ : α′a = β′b}
= A′ ×B′

so
C ∼= A′ ×B′.

As A′ is isomorphic to some product of the Si and B′ is isomorphic to Sm, we have C
isomorphic to a product of suitable Si’s. 2

Definition 10.3. Let f be a function from An → A. Define f on A2 by

f(〈a1, b1〉, . . . , 〈an, bn〉) = 〈f(a1, . . . , an), f(b1, . . . , bn)〉.
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For an algebra A we say f preserves subalgebras of A2 if, for any B ≤ A2,

f(Bn) ⊆ B,

i.e., B is closed under f.

Lemma 10.4 (Baker-Pixley). Let A be a finite algebra of type F with a majority term
M(x, y, z). Then for any function

f : An → A, n ≥ 1,

which preserves subalgebras of A2 there is a term p(x1, . . . , xn) of type F representing f on
A.

Proof. First note that for B ≤ A we have

f(Bn) ⊆ B

as
C = {〈b, b〉 : b ∈ B}

is a subuniverse of A2; hence
f(Cn) ⊆ C,

i.e., if we are given b1, . . . , bn ∈ B there is a b ∈ B such that

f(〈b1, b1〉, . . . , 〈bn, bn〉) = 〈b, b〉.

But then
f(b1, . . . , bn) = b.

Thus given any n-tuple 〈a1, . . . , an〉 ∈ An we can find a term p with

p(a1, . . . , an) = f(a1, . . . , an)

as
f(a1, . . . , an) ∈ Sg({a1, . . . , an})

(see II§10.3). Also given any two elements

〈a1, . . . , an〉, 〈b1, . . . , bn〉 ∈ An,

we have
f(〈a1, b1〉, . . . , 〈an, bn〉) ∈ Sg({〈a1, b1〉, . . . , 〈an, bn〉});

hence there is a term q with

q(〈a1, b1〉, . . . , 〈an, bn〉) = f(〈a1, b1〉, . . . , 〈an, bn〉),
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so
q(a1, . . . , an) = f(a1, . . . , an)

and
q(b1, . . . , bn) = f(b1, . . . , bn).

Now suppose that for every k elements of An, k ≥ 2, we can find a term function p which
agrees with f on those k elements. If k 6= |A|n, let S be a set of k+1 elements of An. Choose
three distinct members 〈a1, . . . , an〉, 〈b1, . . . , bn〉, 〈c1, . . . , cn〉 of S, and then choose terms
p1, p2, p3 such that p1 agrees with f on the set S − {〈a1, . . . , an〉}, etc. Let

p(x1, . . . , xn) = M(p1(x1, . . . , xn), p2(x1, . . . , xn), p3(x1, . . . , xn)).

Since for any member of S at least two of p1, p2, p3 agree with f, it follows that p agrees
with f on S. By iterating this procedure we are able to construct a term which agrees with
f everywhere. 2

Definition 10.5. An algebra S is hereditarily simple if every subalgebra is simple.

Definition 10.6. A finite algebra A with a discriminator term is said to be quasiprimal.

Theorem 10.7 (Pixley). A finite algebra A is quasiprimal iff V (A) is arithmetical and A
is hereditarily simple.

Proof. (⇒) In §9 we verified that if A has a discriminator term then A is hereditarily
simple and V (A) is arithmetical.

(⇐) Let t : A3 → A be the discriminator function on A. Since V (A) is arithmetical,
it suffices by 10.4 and II§12.5 to show that t preserves subalgebras of A2. So let C be a
subalgebra of A2. Let A′ be the image of C under the first projection map, and A′′ the
image of C under the second projection map. By 10.1 there is an algebra D and surjective
homomorphisms

α′ : A′ → D,

β′ : A′′ → D

such that
C = {〈a′, a′′〉 ∈ A′ × A′′ : α′a′ = β′a′′}.

As A is hereditarily simple, it follows that either α′ and β′ are both isomorphisms, or D is
trivial. In the first case

C = {〈a′, β′−1α′a′〉 : a′ ∈ A′},
and in the second case

C = A′ × A′′.
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Now let

〈a′, a′′〉, 〈b′, b′′〉, 〈c′, c′′〉 ∈ A2,

and let C be the subuniverse of A2 generated by these three elements. If C is of the form

{〈a′, γa′〉 : a′ ∈ A′}

for some isomorphism

γ : A′ → A′′

(γ was β′−1α′ above), then

〈a′, a′′〉 = 〈b′, b′′〉 iff a′ = b′;

hence

t(〈a′, a′′〉, 〈b′, b′′〉, 〈c′, c′′〉) = 〈t(a′, b′, c′), t(a′′, b′′, c′′)〉 =

{
〈c′, c′′〉 if a′ = b′

〈a′, a′′〉 if a′ 6= b′,

and in either case it belongs to C. If C is

A′ × A′′,

then as

t(〈a′, a′′〉, 〈b′, b′′〉, 〈c′, c′′〉) ∈ {〈a′, a′′〉, 〈a′, c′′〉, 〈c′, c′′〉, 〈c′, a′′〉} ⊆ C

we see that this, combined with the previous sentence, shows t preserves subalgebras of A2.
2

Corollary 10.8 (Foster-Pixley). For a finite algebra A the following are equivalent:

(a) A is primal,
(b) V (A) is arithmetical and A is simple with no subalgebras except itself, and the only
automorphism of A is the identity map, and
(c) A is quasiprimal and A has only one subalgebra (itself ) and only one automorphism (the
identity map).

Proof. (a ⇒ b) If A is primal then there is a discriminator term for A so V (A) is
arithmetical and A is simple by §9. As all unary functions on A are represented by terms,
A has no subalgebras except A, and only one automorphism.

(b ⇒ c) This is immediate from 10.7.
(c ⇒ a) A2 can have only A2 and {〈a, a〉 : a ∈ A} as subuniverses in view of the details

of the proof of 10.7. Thus for f : An → A, n ≥ 1, it is clear that f preserves subalgebras of
A2. By 10.4, f is representable by a term p, so A is primal. 2
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Examples. (1) The ring Z/(p) = 〈Z/(p),+, ·,−, 0, 1〉 is primal for p a prime number
as Z/(p) = {1, 1 + 1, . . . }; hence Z/(p) has no subalgebras except itself, and only one
automorphism. A discriminator term is given by

t(x, y, z) = (x− y)p−1 · x+ [1− (x− y)p−1] · z.

(2) The Post algebra Pn = 〈{0, 1, . . . , n−1},∨,∧, ′, 0, 1〉 is primal as Pn = {0, 0′, . . . , 0(n−1)},
where a(k) means k applications of ′ to a; hence Pn has no subalgebras except Pn, and no au-
tomorphisms except the identity map. For the discriminator term we can proceed as follows.
For a, b ∈ Pn, ∧

1≤k≤n
a(k) ∨ b(k) = 0 iff a = b

( ∧
1≤j≤n−1

a(j)

)′
=

{
0 if a = 0

1 if a 6= 0.

Thus let

g(a, b) =

 ∧
1≤j≤n−1

( ∧
1≤k≤n

a(k) ∨ b(k)

)(j)
′ .

Then

g(a, b) =

{
0 if a = b

1 if a 6= b.

Now we can let
t(x, y, z) = [g(x, y) ∧ x] ∨ [g(g(x, y), 1)∧ z].

It is fairly safe to wager that the reader will think that quasiprimal algebras are highly
specialized and rare—however Murskǐı proved in (6) below that almost all finite algebras are
quasiprimal.
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Exercises §10

1. Show that one cannot replace the “congruence-permutable” hypothesis of 10.1 by
“congruence-distributive”. [It suffices to choose C to be a three-element lattice.]

2. Show that every finite subdirect power of the alternating group A5 is isomorphic to a
direct power of A5.

3. If V is a congruence-permutable variety such that every subdirectly irreducible algebra
is simple, show that every finite algebra in V is isomorphic to a direct product of simple
algebras.

4. (Pixley). Show that a finite algebra A is quasiprimal iff every n-ary function, n ≥ 1,
on A which preserves the subuniverses of A2 consisting of the isomorphisms between
subalgebras of A can be represented by a term.

5. (Quackenbush). An algebra A is demi-semi-primal if it is quasiprimal and each iso-
morphism between nontrivial subalgebras of A can be extended to an automorphism
of A. Show that a finite algebra A is demi-semi-primal iff every n-ary function, n ≥ 1,
on A which preserves the subalgebras of A and the subuniverses of A2 consisting of
the automorphisms of A can be represented by a term.

6. (Foster-Pixley). An algebra A is semiprimal if it is quasiprimal with distinct nontrivial
subalgebras being nonisomorphic, and no subalgebra of A has a proper automorphism.
Show that a finite algebra A is semiprimal iff every n-ary function, n ≥ 1, on A which
preserves the subalgebras of A can be represented by a term.

§11. Functionally Complete Algebras and

Skew-free Algebras

A natural generalization of primal algebras would be to consider those finite algebras A such
that every finitary function on A could be represented by a polynomial (see II§13.3). Given
an algebra A of type F, recall the definition of FA and AA given in II§13.3.

Definition 11.1. A finite algebra A is functionally complete if AA is primal, i.e., if every
finitary function on A is representable by a polynomial.

In this section we will prove Werner’s remarkable characterization of functionally com-
plete algebras A, given that V (A) is congruence-permutable.

Definition 11.2. Let 2L denote the two-element distributive lattice 〈2,∨,∧〉 where 2 =
{0, 1} and 0 < 1.
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Lemma 11.3. Let S be a finite simple algebra such that V (S) is congruence-permutable and

Con(SnS) ∼= 2nL

for n < ω. Then S is functionally complete.

Proof. For brevity let F denote FV (SS)(x, y, z). From II§11.10 it follows that F ∈ ISP (SS).
As SS has no proper subalgebras, F is subdirectly embeddable in SkS for some k. Then from
10.2, we have

F ∼= SnS

for some n, so by hypothesis
Con(F) ∼= 2nL.

Thus Con F is distributive, so by II§12.7, V (SS) is congruence-distributive. Since V (S)
is congruence-permutable so is V (SS) (just use the same Mal’cev term for permutability);
hence V (SS) is arithmetical. As SS has only one automorphism, we see from 10.8 that SS
is primal, so S is functionally complete. 2

The rest of this section is devoted to improving the formulation of 11.3.

Definition 11.4. Let θi ∈ Con Ai, 1 ≤ i ≤ n. The product congruence

θ1 × · · · × θn

on A1 × · · · ×An is defined by

〈〈a1, . . . , an〉, 〈b1, . . . , bn〉〉 ∈ θ1 × · · · × θn

iff
〈ai, bi〉 ∈ θi for 1 ≤ i ≤ n.

(We leave the verification that θ1×· · ·× θn is a congruence on A1×· · ·×An to the reader.)

Definition 11.5. A subdirect product

B ≤ B1 × · · · ×Bk

of finitely many algebras is skew-free if all the congruences on B are of the form

(θ1 × · · · × θk) ∩B2,

where θi ∈ Con Bi, i.e., the congruences on B are precisely the restrictions of the product
congruences on B1× · · ·×Bk to B. A finite set of algebras {A1, . . . ,An} is totally skew-free
if every subdirect product

B ≤ B1 × · · · ×Bk
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is skew-free, where Bi ∈ {A1, . . . ,An}.

Lemma 11.6. The subdirect product

B ≤ B1 × · · · ×Bk

is skew-free iff
θ = (θ ∨ ρ1) ∩ · · · ∩ (θ ∨ ρk)

for θ ∈ Con B, where
ρi = (ker πi) ∩B2

and πi is the ith projection map on B1 × · · · ×Bk.

Proof. (⇒) Given B skew-free let θ ∈ Con B. Then

θ = (θ1 × · · · × θk) ∩B2

for suitable θi ∈ Con Bi. Let
νi : B→ B/(θ ∨ ρi)

be the canonical homomorphism, and let

π̂i : B→ Bi

be the ith projection of B1 × · · · ×Bk restricted to B. Then as

ker π̂i = ρi ⊆ θ ∨ ρi = ker νi

there is a homomorphism
αi : Bi → B/(θ ∨ ρi)

such that
νi = αiπ̂i.

Now for a, b ∈ B we have

〈a, b〉 ∈ θ ∨ ρi iff νi(a) = νi(b)

iff αiπi(a) = αiπi(b)

iff αiai = αibi

iff 〈ai, bi〉 ∈ kerαi;

hence
θ ∨ ρi = (∇× · · · × kerαi × · · · × ∇) ∩B2.

Also since
〈a, b〉 ∈ ρi ⇒ ai = bi
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it is clear that

〈a, b〉 ∈ θ ∨ ρi ⇒ 〈ai, bi〉 ∈ θi;

hence

kerαi ⊆ θi.

Thus

θ ∨ ρi ⊆ (∇× · · · × θi × · · · × ∇) ∩B2,

and then

θ ⊆ (θ ∨ ρ1) ∩ · · · ∩ (θ ∨ ρk)
⊆ (θ1 ×∇× · · · × ∇) ∩ · · · ∩ (∇× · · · × ∇× θk) ∩B2

= (θ1 × · · · × θk) ∩B2

= θ,

so the first half of the theorem is proved.
(⇐) For this direction just note that the above assertion

θ ∨ ρi = (∇× · · · × kerαi × · · · × ∇) ∩B2,

for θ ∈ Con B, does not depend on the skew-free property. Thus

θ = (θ ∨ ρi) ∩ · · · ∩ (θ ∨ ρk)
= (kerα1 ×∇× · · · × ∇) ∩ · · · ∩ (∇× · · · × ∇× kerαk) ∩B2

= (kerα1 × · · · × kerαk) ∩B2,

so θ is the restriction of a product congruence. 2

Now we can finish off the technical lemmas concerning the congruences in the abstract
setting of lattice theory.

Lemma 11.7. Suppose L is a modular lattice with a largest element 1. Also suppose that
a1, a2 ∈ L have the property:

c ∈ [a1 ∧ a2, 1]⇒ c = (c ∨ a1) ∧ (c ∨ a2).

Then for any b ∈ L,

c ∈ [a1 ∧ a2 ∧ b, b]⇒ c = (c ∨ (a1 ∧ b)) ∧ (c ∨ (a2 ∧ b)).
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Proof. Let c ∈ [a1 ∧ a2 ∧ b, b]. Then

c = c ∨ (b ∧ a1 ∧ a2)

= b ∧ (c ∨ (a1 ∧ a2))

= b ∧ (c ∨ a1) ∧ (c ∨ a2)

= [c ∨ (a1 ∧ b)] ∧ [c ∨ (a2 ∧ b)]

follows from the modular law and our hypotheses. 2

Lemma 11.8. Let L be a modular lattice with a largest element 1. Then if a1, . . . , an ∈ L
have the property

c ∈ [ai ∧ aj, 1]⇒ c = (c ∨ ai) ∧ (c ∨ aj),
1 ≤ i, j ≤ n, then

c ∈ [a1 ∧ · · · ∧ an, 1]⇒ c = (c ∨ a1) ∧ · · · ∧ (c ∨ an).

Proof. Clearly the lemma holds if n ≤ 2. So let us suppose it holds for all n < m, where
m ≥ 3. Then for c ∈ [a1 ∧ · · · ∧ am, 1],

c = c ∨ (a1 ∧ c)
= c ∨ {[(a1 ∧ c) ∨ (a1 ∧ a2)] ∧ · · · ∧ [(a1 ∧ c) ∨ (a1 ∧ am)]}. (∗)

This last equation follows by replacing L by the sublattice of elements x of L such that
x ≤ a1, and noting that a1 ∧ a2, . . . , a1 ∧ am satisfy the hypothesis of 11.8 in view of 11.7.
By the induction hypothesis we have for this sublattice

a1 ∧ c = [(a1 ∧ c) ∨ (a1 ∧ a2)] ∧ · · · ∧ [(a1 ∧ c) ∨ (a1 ∧ am)].

Now applying the modular law and the hypotheses to (∗) we have

c = c ∨ {a1 ∧ [c ∨ (a1 ∧ a2)] ∧ · · · ∧ [c ∨ (a1 ∧ am)]}
= c ∨ {a1 ∧ [(c ∨ a1) ∧ (c ∨ a2)] ∧ · · · ∧ [(c ∨ a1) ∧ (c ∨ am)]}
= (c ∨ a1) ∧ · · · ∧ (c ∨ am).

This finishes the induction step. 2

Lemma 11.9. Let {A1, . . . ,An} be a set of algebras in a congruence-modular variety such
that for any subdirect product D of any two (not necessarily distinct ) members, say D ≤ Ai×
Aj, the only congruences on D are restrictions of product congruences. Then {A1, . . . ,An}
is totally skew-free.
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Proof. Let
B ≤ B1 × · · · ×Bk

be a subdirect product of members of {A1, . . . ,An}, and let

ρi = (ker πi) ∩B2

as before. For 1 ≤ i ≤ j ≤ k, B/(ρi ∩ ρj) is isomorphic to a subalgebra of Bi ×Bj, which
is a subdirect product of Bi ×Bj obtained by using a projection map on B. From this and
the correspondence theorem it follows that if θ ∈ Con B, then

ρi ∩ ρj ⊆ θ

implies
θ = (θ ∨ ρi) ∩ (θ ∨ ρj)

by our assumption on D above and 11.6. Now we can invoke 11.8, noting that B ×B is the
largest element of Con B, to show that, for θ ∈ Con B,

θ = (θ ∨ ρ1) ∩ · · · ∩ (θ ∨ ρk)

because ρ1 ∩ · · · ∩ ρk is the smallest congruence of B. By 11.6, {A1, . . . ,An} must be totally
skew-free. 2

Lemma 11.10. Suppose A1, . . . ,An belong to a congruence-distributive variety. Then
{A1, . . . ,An} is totally skew-free.

Proof. For any subdirect product

B ≤ B1 × · · · ×Bk,

where B1, . . . ,Bk belong to a congruence-distributive variety, let ρi be as defined in 11.6.
Then for θ ∈ Con B,

θ = θ ∨∆ = θ ∨ (ρ1 ∧ · · · ∧ ρk)
= (θ ∨ ρ1) ∧ · · · ∧ (θ ∨ ρk),

so B is skew-free by 11.6. Hence {A1, . . . ,An} is totally skew-free. 2

Lemma 11.11. Let P be a nontrivial primal algebra. Then

Con P2 ∼= 22
L.

Proof. As V (P) is congruence-distributive, the congruences of P2 are precisely the product
congruences θ1 × θ2 by 11.10. As P is simple, Con P2 is isomorphic to 22

L. 2



§11. Functionally Complete Algebras and Skew-free Algebras 205

Theorem 11.12 (Werner). Let A be a nontrivial finite algebra such that V (A) is congruence-
permutable. Then A is functionally complete iff Con A2 ∼= 22

L.

Proof. (⇒) Suppose A is functionally complete. Note that

Con An = Con An
An

(adding constants does not affect the congruences). As AA is primal, we have by 11.11,

Con A2 ∼= 22
L.

(⇐) As
Con A2 ∼= 22

L

again
Con A2

A
∼= 22

L.

Thus AA must be simple (otherwise there would be other product congruences on A2
A), and

having the constants of A ensures AA has no proper subalgebras and no proper automor-
phisms. A (now familiar) application of Fleischer’s lemma shows that the only subdirect
powers contained in AA ×AA are A2

A and D, where

D = {〈a, a〉 : a ∈ A}.

The congruences on A2
A are product congruences since there are at least four product con-

gruences ∆×∆,∆×∇,∇×∆,∇×∇, and from above

Con An
A
∼= 2nL.

The congruences on D are (∇×∇)∩D2 and (∆×∆)∩D2 as D ∼= AA. Thus by 11.9, {AA}
is totally skew-free. Consequently,

Con An
A
∼= 2nL,

so A is functionally complete by 11.3. 2

Corollary 11.13 (Maurer-Rhodes). A finite group G is functionally complete iff G is
nonabelian and simple or G is trivial.

Proof. The variety of groups is congruence-permutable; hence congruence-modular. If

Con G2 ∼= 22
L

then G is simple.
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The nontrivial simple abelian groups are of the form Z/(p); and

|Con(Z/(p)× Z/(p))| > 4

as
{〈a, a〉 : a ∈ Z/(p)}

is a normal subgroup of Z/(p)×Z/(p), so Z/(p) cannot be functionally complete. Hence G
is nonabelian and simple.

If G is nonabelian simple and N is a normal subgroup of G2, suppose 〈a, b〉 ∈ N with
a 6= 1. Choose c ∈ G such that

cac−1 6= a.

Then
〈cac−1, b〉 = 〈c, b〉〈a, b〉〈c−1, b−1〉 ∈ N ;

hence
〈cac−1a−1, 1〉 = 〈cac−1, b〉〈a−1, b−1〉 ∈ N.

As G is simple, it follows that
〈cac−1a−1, 1〉

generates the normal subgroup ker π2 since

cac−1a−1 6= 1,

so
ker π2 ⊆ N.

Similarly,
b 6= 1⇒ ker π1 ⊆ N.

If both a, b 6= 1, then
ker π1, ker π2 ⊆ N

implies
G2 = N.

Thus G2 has only four normal subgroups, so

Con G2 ∼= 22
L.

This finishes the proof that G is functionally complete. 2
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Exercises §11

1. If A is a finite algebra belonging to an arithmetical variety, show that A is functionally
complete iff A is simple.

2. If R1,R2 are rings with identity, show that R1 ×R2 is skew-free. Does this hold if we
do not require an identity?

3. Describe all functionally complete rings with identity.

4. Describe all functionally complete lattices.

5. Describe all functionally complete Heyting algebras.

6. Describe all functionally complete semilattices.

7. Show the seven-element Steiner quasigroup is functionally complete.

8. (Day) Show that a finitely generated congruence-distributive variety has the CEP iff
each subdirectly irreducible member has the CEP.

§12. Semisimple Varieties

Every nontrivial Boolean algebra is isomorphic to a subdirect power of the simple two-element
algebra, and in 9.4 we proved that every algebra in a discriminator variety is isomorphic to
a subdirect product of simple algebras. We can generalize this in the following manner.

Definition 12.1. An algebra is semisimple if it is isomorphic to a subdirect product of
simple algebras. A variety V is semisimple if every member of V is semisimple.

Lemma 12.2. A variety V is semisimple iff every subdirectly irreducible member of V is
simple.

Proof. (⇒) Let A be a subdirectly irreducible member of V. Then A can be subdirectly
embedded in a product of simple algebras, say by

α : A→
∏
i∈I

Si.

As A is subdirectly irreducible, there is a projection map

πi :
∏
i∈I

Si → Si
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such that πi ◦ α is an isomorphism. Thus

A ∼= Si,

so A is simple.
(⇐) For this direction use the fact that every algebra is isomorphic to a subdirect product

of subdirectly irreducible algebras. 2

Definition 12.3. Let A be an algebra and let θ ∈ Con A. In the proof of II§5.5 we showed
that θ is a subuniverse of A×A. Let θθθ denote the subalgebra of A×A with universe θ.

Lemma 12.4 (Burris). Let A be a nonsimple directly indecomposable algebra in a congruence-
distributive variety. If θ ∈ Con A is maximal or the smallest congruence above ∆, then θθθ is
directly indecomposable.

Proof. We have
θθθ ≤ A×A.

By 11.10, θθθ is skew-free. Thus suppose

(φ1 × φ2) ∩ θ2

and
(φ∗1 × φ∗2) ∩ θ2

are a pair of factor congruences on θθθ, where φi, φ
∗
i ∈ Con A, i = 1, 2. From

[(φ1 × φ2) ∩ θ2] ◦ [(φ∗1 × φ∗2) ∩ θ2] = ∇θ

it follows that
φi ◦ φ∗i = ∇A,

i = 1, 2. To see this let a, b ∈ A. Then

〈〈a, a〉, 〈b, b〉〉 ∈ θ2,

so for some c, d ∈ A,

〈a, a〉[(φ1 × φ2) ∩ θ2]〈c, d〉[(φ∗1 × φ∗2) ∩ θ2]〈b, b〉.

Thus

aφ1cφ
∗
1b,

aφ2dφ
∗
2b.
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Next, from
[(φ1 × φ2) ∩ θ2] ∩ [φ∗1 × φ∗2) ∩ θ2] = ∆θ

it follows that
φi ∩ φ∗i ∩ θ = ∆A

for i = 1, 2. To see this, suppose

〈a, b〉 ∈ φ1 ∩ φ∗1 ∩ θ,

with a 6= b. Then

〈〈a, b〉, 〈b, b〉〉 ∈ [(φ1 × φ2) ∩ θ2] ∩ [(φ∗1 × φ∗2) ∩ θ2],

which is impossible as
〈a, b〉 6= 〈b, b〉.

Likewise, we show
φ2 ∩ φ∗2 ∩ θ = ∆A.

Suppose θ is a maximal congruence on A. If

φi ∩ φ∗i 6= ∆A

for i = 1, 2, then
θ ∨ (φi ∩ φ∗i ) = ∇A

as
φi ∩ φ∗i * θ;

and
θ ∩ (φi ∩ φ∗i ) = ∆A,

so φi∩φ∗i is the complement of θ in Con A, i = 1, 2. In distributive lattices complements are
unique, so

φ1 ∩ φ∗1 = φ2 ∩ φ∗2.
Then choose 〈a, b〉 ∈ φ1 ∩ φ∗1 with a 6= b. This leads to

〈〈a, a〉, 〈b, b〉〉 ∈ [(φ1 × φ2) ∩ θ2] ∩ [(φ∗1 × φ∗2) ∩ θ2],

which is impossible as
〈a, a〉 6= 〈b, b〉.

Now we can assume without loss of generality that

φ1 ∩ φ∗1 = ∆A.
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Thus, by the above, φ1, φ
∗
1 is a pair of factor congruences on A. As A is directly indecom-

posable, we must have
{φ1, φ

∗
1} = {∆A,∇A},

say
φ1 = ∇A, φ∗1 = ∆A.

Then

(φ∗1 × φ∗2) ∩ θ2 = (∆A × φ∗2) ∩ θ2

= [∆A × (φ∗2 ∩ θ)] ∩ θ2;

hence
φ2 ◦ (φ∗2 ∩ θ) = ∇A.

As
φ2 ∩ (φ∗2 ∩ θ) = ∆A

and A is directly indecomposable we must have

φ∗2 ∩ θ = ∆A,

so

(φ∗1 × φ∗2) ∩ θ2 = (∆A ×∆A) ∩ θ2

= ∆θ.

This shows that θθθ has only one pair of factor congruences, namely

{∆θ,∇θ};

hence θθθ is directly indecomposable.
Next suppose θ is the smallest congruence in Con A− {∆A}. Then

θ ∩ (φi ∩ φ∗i ) = ∆A

immediately gives
φi ∩ φ∗i = ∆A,

so we must have
{φi, φ∗i} = {∆A,∇A}

as
φi ◦ φ∗i = ∇A,

i = 1, 2. If
φ1 6= φ2,
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say
φ1 = ∇A, φ2 = ∆A,

then
(φ1 × φ2) ∩ θ2 = (θ ×∆A) ∩ θ2,

which implies
(φ∗1 × φ∗2) ∩ θ2 = (∆A × θ) ∩ θ2.

But if 〈a, b〉 6∈ θ then

〈〈a, a〉, 〈b, b〉〉 6∈ (θ ×∆A) ∩ θ2 ◦ (∆A × θ) ∩ θ2,

so we do not have factor congruences. Hence necessarily

φ1 = φ2,

φ∗1 = φ∗2,

and this leads to the factor congruences

{∇θ,∆θ},

so θθθ is directly indecomposable. 2

Theorem 12.5 (Burris). If V is a congruence-distributive variety such that every directly
indecomposable member is subdirectly irreducible, then V is semisimple.

Proof. Suppose A ∈ V where A is a nonsimple subdirectly irreducible algebra. Let θ be
the least congruence in Con A−{∆}. Note that θ 6= ∇A. Then θθθ is a directly indecomposable
member of V which is not subdirectly irreducible (as

ρ1 ∩ ρ2 = ∆θ

where

ρi = (ker πi) ∩ θ2,

πi : A× A→ A,

i = 1, 2). 2
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Exercises §12

1. Let V be a finitely generated congruence-distributive variety such that every directly
indecomposable is subdirectly irreducible. Prove that V is semisimple arithmetical.

2. Give an example of a finitely generated semisimple congruence-distributive variety
which is not arithmetical.

3. Given A as in 12.4 can one conclude for any congruence θ such that ∆ < θ < ∇ that
θθθ is directly indecomposable?

4. Given A, θ as in 12.4 and B a subuniverse of Su(I) let A[B, θ]∗ be the subalgebra of
AI with universe {f ∈ AI : f−1(a) ∈ B, f−1(a)/θ ∈ {∅, I}, for a ∈ A, |f(A)| < ω}.
Show that A[B, θ]∗ is directly indecomposable.

§13. Directly Representable Varieties

One of the most striking features of the variety of Boolean algebras is the fact that, up to
isomorphism, there is only one nontrivial directly indecomposable member, namely 2 (see
Corollary 1.9). From this we have a detailed classification of the finite Boolean algebras. A
natural generalization is the following.

Definition 13.1. A variety V is directly representable if it is finitely generated and has (up
to isomorphism) only finitely many finite directly indecomposable members.

After special cases of directly representable varieties had been investigated by Taylor,
Quackenbush, Clark and Krauss, and McKenzie in the mid-1970’s, a remarkable analysis
was made by McKenzie in late 1979. Most of this section is based on his work.

Lemma 13.2 (Pólya). Let c1, . . . , ct be a finite sequence of natural numbers such that not
all are equal to the same number. Then the sequence

sn = cn1 + · · ·+ cnt , n ≥ 1,

has the property that the set of prime numbers p for which one can find an n such that p
divides sn is infinite.

Proof. Suppose that c1, . . . , ct is such a sequence and that the only primes p such that p
divides at least one of {sn : n ≥ 1} are p1, . . . , pr. Without loss of generality we can assume
that the greatest common divisor of c1, . . . , ct is 1.

Claim. For p a prime and for n ≥ 1, k ≥ 1, t < pk+1,

pk+1 - c(p−1)pk·n
1 + · · ·+ c(p−1)pk·n

t .
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To see this, note that from Euler’s Theorem we have

p - ci ⇒ c
φ(pk+1)
i ≡ 1 (mod pk+1);

and furthermore

p | ci ⇒ ci ≡ 0 (mod p)

⇒ ck+1
i ≡ 0 (mod pk+1)

⇒ c
φ(pk+1)
i ≡ 0 (mod pk+1).

Let u be the number of integers i ∈ [1, t] such that p - ci, i.e., c
φ(pk+1)
i ≡ 1 (mod pk+1). Then

u ≥ 1 as g.c.d.(c1, . . . , ct) = 1. Furthermore, for n ≥ 1,

c
φ(pk+1)·n
1 + · · ·+ c

φ(pk+1)·n
t ≡ u (mod pk+1).

Since 1 ≤ u ≤ t < pk+1, pk+1 - u, and hence the claim is proved.
Now if we set

m = φ(pk+1
1 ) · · ·φ(pk+1

r )

then for n ≥ 1, 1 ≤ j ≤ r, t < pk+1, the claim implies

pk+1
j - cmn1 + · · ·+ cmnt ,

so

smn ≤ pk+1
1 · · · pk+1

r

as p1, . . . , pr are the only possible prime divisors of smn. Thus the sequence (smn)n≥1 is
bounded. But this can happen only if a1 = · · · = at = 1, which is a contradiction. 2

Definition 13.3. A congruence θ on A is uniform if for every a, b ∈ A,

|a/θ| = |b/θ|.

An algebra A is congruence-uniform if every congruence on A is uniform.

Theorem 13.4 (McKenzie). If V is a directly representable variety, then every finite member
of V is congruence-uniform.

Proof. If V is directly representable, then there exist (up to isomorphism) finitely many
finite algebras D1, . . . ,Dk of V which are directly indecomposable; hence every finite member
of V is isomorphic to some Dm1

1 ×· · ·×Dmk
k . Thus there are only finitely many prime numbers

p such that p
∣∣|A| for some finite A ∈ V.
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Now if A is a finite member of V which is not congruence-uniform, choose θ ∈ Con A
such that for some a, b ∈ A, |a/θ| 6= |b/θ|. For n ≥ 1, let Bn be the subalgebra of An whose
universe is given by

Bn = {a ∈ An : a(i)θa(j) for 0 ≤ i, j < n}.
Let the cosets of θ be S1, . . . , St and have sizes c1, . . . , ct respectively. Then

|Bn| = cn1 + · · ·+ cnt ;

hence by Pólya’s lemma there are infinitely many primes p such that for some Bn, p
∣∣|Bn|. As

Bn ∈ SP (A) ⊆ V this is impossible. Thus every finite member of V is congruence-uniform.
2

Lemma 13.5 (McKenzie). If A is a finite algebra such that each member of S(A ×A) is
congruence-uniform, then the congruences on A permute.

Proof. Given θ1, θ2 ∈ Con A, let B be the subalgebra of A×A whose universe is given by

B = θ1 ◦ θ2.

Let
φ = θ2 × θ2�B,

a congruence on B. For a ∈ A,

a/θ2 × a/θ2 ⊆ θ2 ⊆ B;

hence
〈a, a〉/φ = a/θ2 × a/θ2.

Since A ∈ IS(A×A), both θ2 on A and φ on B are uniform congruences. If r is the size
of cosets of θ2 and s is the size of cosets of φ, it follows that s = r2. Now for 〈a, b〉 ∈ B, we
have

〈a, b〉/φ ⊆ a/θ2 × b/θ2,

|〈a, b〉/φ| = s,

|a/θ2| = |b/θ2| = r,

and s = r2; hence
〈a, b〉/φ = a/θ2 × b/θ2.

Now for c, d ∈ A,
〈c, d〉 ∈ θ2 ◦ θ1 ◦ θ2 ◦ θ2

iff
〈c, d〉 ∈ a/θ2 × b/θ2 for some 〈a, b〉 ∈ B,
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so
θ2 ◦ θ1 ◦ θ2 ◦ θ2 ⊆ B = θ1 ◦ θ2;

hence
θ2 ◦ θ1 ⊆ θ1 ◦ θ2,

so the congruences on A permute. 2

Theorem 13.6 (Clark-Krauss). If V is a locally finite variety all of whose finite algebras
are congruence-uniform, then V is congruence-permutable.

Proof. As FV (x, y, z) is finite, by 13.5 it has permutable congruences; hence V is congruence-
permutable. 2

Corollary 13.7 (McKenzie). If V is a directly representable variety, then V is congruence-
permutable.

Proof. Just combine 13.4 and 13.6. 2

Theorem 13.8 (Burris). Let V be a finitely generated congruence-distributive variety. Then
V is directly representable iff V is semisimple arithmetical.

Proof. (⇒) From 12.4 and 12.5, V is semisimple, and by 13.7 V is congruence-permutable.
Hence V is semisimple arithmetical.

(⇐) If V is semisimple arithmetical, then every finite subdirectly irreducible member of
V is a simple algebra; hence every finite member of V is isomorphic to a subdirect product
of finitely many simples. Then by 10.2 every finite member of V is isomorphic to a direct
product of simple algebras. By 6.10 there are only finitely many simple members of V, so V
is directly representable. 2

Theorem 13.9 (McKenzie). If V = IΓa(K), where K is a finite set of finite algebras, then
V is congruence-permutable.

Proof. As every finite Boolean space is discrete, it follows that every finite member of V
is in IP (K+); hence V is directly representable, so 13.7 applies. 2

A definitive treatment of directly representable varieties is given in [1] below.
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Exercises §13

1. Which finitely generated varieties of Heyting algebras are directly representable?

2. Which finitely generated varieties of lattices are directly representable?

3. If G is a finite Abelian group, show that V (G) is directly representable.

4. If R is a finite ring with identity, show that V (R) is directly representable if R is a
product of fields.



Chapter V

Connections with Model Theory

Since the 1950’s, a branch of logic called model theory has developed under the leadership
of Tarski. Much of what is considered universal algebra can be regarded as an extensively
developed fragment of model theory, just as field theory is part of ring theory. In this chapter
we will look at several results in universal algebra which require some familiarity with model
theory. The chapter is self-contained, so the reader need not have had any previous exposure
to a basic course in logic.

§1. First-order Languages, First-order Structures,

and Satisfaction

Model theory has been primarily concerned with connections between first-order properties
and first-order structures. First-order languages are very restrictive (when compared to
English), and many interesting questions cannot be discussed using them. On the other
hand, they have a precise grammar and there are beautiful results (such as the compactness
theorem) connecting first-order properties and the structures which satisfy these properties.

Definition 1.1. A (first-order) language L consists of a set R of relation symbols and a set
F of function symbols, and associated to each member of R [of F] is a natural number [a
nonnegative integer] called the arity of the symbol. Fn denotes the set of function symbols
in F of arity n, and Rn denotes the set of relation symbols in R of arity n. L is a language
of algebras if R = ∅, and it is a language of relational structures if F = ∅.

Definition 1.2. If we are given a nonempty set A and a positive integer n, we say that r is
an n-ary relation on A if r ⊆ An. r is unary if n = 1, binary if n = 2, and ternary if n = 3.
A relation is finitary if it is n-ary for some n, 1 ≤ n < ω. When r is a binary relation we
frequently write arb for 〈a, b〉 ∈ r.

Definition 1.3. If L is a first-order language, then a (first-order) structure of type L (or

217
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L-structure) is an ordered pair A = 〈A,L〉 with A 6= ∅, where L consists of a family R of
fundamental relations rA on A indexed by R (with the arity of rA equal to the arity of r,
for r ∈ R) and a family F of fundamental operations fA on A indexed by F (with the arity
of fA equal to the arity of f, for f ∈ F). A is called the universe of A, and in practice we
usually write just r for rA and f for fA. If R = ∅ then A is an algebra; if F = ∅ then A
is a relational structure. If L is finite, say F = {f1, . . . , fm},R = {r1, . . . , rn}, then we often
write

〈A, f1, . . . , fm, r1, . . . , rn〉

instead of 〈A,L〉.

Examples. (1) If L = {+, ·,≤}, then the linearly ordered field of rationals 〈Q,+, ·,≤〉 is a
structure of type L.

(2) If L = {≤}, then a partially ordered set 〈P,≤〉 is a relational structure of type L.

Definition 1.4. If L is a first-order language and X is a set (members of X are called
variables), we define the terms of type L over X to be the terms of type F over X (see
II§11). The atomic formulas of type L over X are expressions of the form

p ≈ q where p, q are terms of type L over X

r(p1, . . . , pn) where r ∈ Rn and p1, . . . , pn are terms of type L over X.

Example. For the language L = {+, ·,≤} we see that

(x · y) · z ≈ x · y, (x · y) · z ≤ x · z

are examples of atomic formulas, where of course we are writing binary functions and binary
relations in the everyday manner, namely we write u · v for ·(u, v), and u ≤ v for ≤ (u, v). If
we were to rewrite the above atomic formulas using only the original definition of terms, we
would have the expressions

·(·(x, y), z) ≈ ·(x, y), ≤ (·(·(x, y), z), ·(x, z)).

Definition 1.5. Let L be a first-order language and X a set of variables. The set of (first-
order) formulas of type L (or L-formulas) over X, written L(X), is the smallest collection of
strings of symbols from L∪X ∪{(, )}∪ {&,∨,¬,→,↔, ∀, ∃,≈}∪{, } containing the atomic
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formulas of type L over X, and such that if Φ,Φ1,Φ2 ∈ L(X) then

(Φ1)&(Φ2) ∈ L(X),

(Φ1) ∨ (Φ2) ∈ L(X),

¬ (Φ) ∈ L(X),

(Φ1)→ (Φ2) ∈ L(X),

(Φ1)↔ (Φ2) ∈ L(X),

∀x(Φ) ∈ L(X),

∃x(Φ) ∈ L(X).

The symbols & (and), ∨ (or), ¬ (not), → (implies), and ↔ (iff) are called the propositional
connectives. ∀ is the universal quantifier, and ∃ is the existential quantifier; we refer to them
simply as quantifiers. p 6≈ q denotes ¬ (p ≈ q).

Example. With L = {+, ·,≤} we see that

(∀x(x · y ≈ y + u))→ (∃y(x · y ≤ y + u))

is in L({x, y, u}), but
∀x(x&y ≈ u)

does not belong to L({x, y, u}).

Definition 1.6. A formula Φ1 is a subformula of a formula Φ if there is consecutive string
of symbols in the formula Φ which is precisely the formula Φ1.

Example. The subformulas of

(∀x(x · y ≈ y + u))→ (∃y(x · y ≤ y + u))

are itself,

∀x(x · y ≈ y + u),

x · y ≈ y + u,

∃y(x · y ≤ y + u),

and
x · y ≤ y + u.

Remark. Note that the definition of subformula does not apply to the string of symbols

(∀x(x · y ≈ y + u))→ (∃y(x · y ≤ y + u));
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for clearly y ≈ y is a consecutive string of symbols in this expression which gives a formula,
but we would not want this to be a subformula. However if one translates the above into
the formula

(∀x(·(x, y) ≈ +(y, u))→ (∃y(≤ (·(x, y),+(y, u)),

then the subformulas, retranslated, are just those listed in the example above.

Definition 1.7. A particular variable x may appear several times in the string of symbols
which constitute a formula Φ; each of these is called an occurrence of x. Similarly we may
speak of occurrences of subformulas. Since strings are written linearly we can speak of the
first occurrence, etc., reading from left to right.

Example. There are three occurrences of x in the formula

(∀x(x · y ≈ y + u))→ (∃y(x · y ≤ y + u)).

Definition 1.8. A particular occurrence of a variable x in a formula Φ is said to belong to
an occurrence of a subformula Φ1 of Φ if the occurrence of x is a component of the string of
symbols which form the occurrence of Φ1. An occurrence of x in Φ is free if x does not belong
to any occurrence of a subformula of the form ∀x(Ψ) or ∃x(Ψ). Otherwise, an occurrence of
x is bound in Φ. A variable x is free in Φ if some occurrence of x is free in Φ. To say that
x is not free in Φ we write simply x 6∈ Φ. A sentence is a formula with no free variables.
When we write Φ(x1, . . . , xn) we will mean a formula all of whose free variables are among
{x1, . . . , xn}. We find it convenient to express Φ(x1, . . . , xm, y1, . . . , yn, . . . ) by Φ(~x, ~y, . . . ). If
xi is free in Φ(x1, . . . , xn) then this notation is assumed to refer to all the free occurrences
of xi. Thus, given a formula Φ(x1, . . . , xn), when we write

Φ(x1, . . . , xi−1, y, xi+1, . . . , xn)

we mean the formula obtained by replacing all free occurrences of xi by y.

Example. Let Φ(x, y, u) be the formula

(∀x(x · y ≈ y + u))→ (∃y(x · y ≤ y + u)).

The first two occurrences of x in Φ(x, y, u) are bound, the third is free. Φ(x, x, u) is the
formula

(∀x(x · x ≈ x+ u))→ (∃y(x · y ≤ y + u)).

Definition 1.9. If A is a structure of type L, we let LA denote the language obtained by
adding a nullary function symbol a to L for each a ∈ A. Given Φ(x1, . . . , xn) of type LA and
a ∈ A, the formula

Φ(x1, . . . , xi−1, a, xi+1, . . . , xn)
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is the formula obtained by replacing every free occurrence of xi by a. We sometimes refer to
formulas of type LA as formulas of type L with parameters from A.

When desirable we give ourselves the option of inserting or removing parentheses to
improve readability, and sometimes we use brackets, [, ] and braces {, } instead of parentheses.

Next we want to capture the intuitive understanding of what it means for a first-order
formula to be true in a first-order structure. A precise definition of truth (i.e., definition of
satisfaction) will allow us to do proofs by induction later on. From now on we will frequently
drop parentheses. For example we will write Φ1 & Φ2 instead of (Φ1) & (Φ2), and ∀x∃yΦ
instead of ∀x(∃y(Φ)); but we would not write Φ1 & Φ2 ∨ Φ3 for (Φ1) & (Φ2 ∨ Φ3).

Definition 1.10. Let A be a structure of type L. For sentences Φ in LA(X) we define the
notion A |= Φ (read: “A satisfies Φ” or “Φ is true in A” or “Φ holds in A”) recursively as
follows:

(i) if Φ is atomic:

(a) A |= p(a1, . . . , an) ≈ q(a1, . . . , an) iff pA(a1, . . . , an) = qA(a1, . . . , an)

(b) A |= r(a1, . . . , an) iff rA(a1, . . . , an) holds in A

(ii) A |= Φ1 & φ2 iff A |= Φ1 and A |= Φ2

(iii) A |= Φ1 ∨ Φ2 iff A |= Φ1 or A |= Φ2

(iv) A |= ¬Φ iff it is not the case that A |= Φ (which we abbreviate to: A 6|= Φ)

(v) A |= Φ1 → Φ2 iff A 6|= Φ1 or A |= Φ2

(vi) A |= Φ1 ↔ Φ2 iff (A 6|= Φ1 and A 6|= Φ2) or (A |= Φ1 and A |= Φ2)

(vii) A |= ∀xΦ(x) iff A |= Φ(a) for every a ∈ A

(viii) A |= ∃xΦ(x) iff A |= Φ(a) for some a ∈ A.

For a formula Φ ∈ LA(X) we say

A |= Φ

iff

A |= ∀x1 . . .∀xnΦ,

where x1, . . . , xn are the free variables of Φ. For a class K of L-structures and Φ ∈ L(X) we
say

K |= Φ iff A |= Φ for every A ∈ K,
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and for Σ a set of L-formulas

A |= Σ iff A |= Φ for every Φ ∈ Σ

K |= Σ iff K |= Φ for every Φ ∈ Σ.

(If A |= Σ we also say A is a model of Σ.) Then we say

Σ |= Φ iff A |= Σ implies A |= Φ, for every A,

(read: “Σ yields Φ”), and

Σ |= Σ1 iff Σ |= Φ for every Φ ∈ Σ1.

Example. A graph is a structure 〈A, r〉 where r is a binary relation which is irreflexive and
symmetric, i.e., for a, b ∈ A we do not have r(a, a), and if r(a, b) holds so does r(b, a). Graphs
are particularly nice to work with because of the possibility of drawing numerous examples.
Let A = 〈A, r〉 be the graph in Figure 30, where an edge between two points means they
are related by r. Let us find out if

A |= ∀x∃y∀z(r(x, z) ∨ r(y, z)).

This sentence will be true in A iff the following four assertions hold:

(i) A |= ∃y∀z(r(a, z) ∨ r(y, z))
(ii) A |= ∃y∀z(r(b, z) ∨ r(y, z))
(iii) A |= ∃y∀z(r(c, z) ∨ r(y, z))
(iv) A |= ∃y∀z(r(d, z) ∨ r(y, z)).

Let us examine (i). It will hold iff one of the following holds:

(ia) A |= ∀z(r(a, z) ∨ r(a, z))
(ib) A |= ∀z(r(a, z) ∨ r(b, z))
(ic) A |= ∀z(r(a, z) ∨ r(c, z))
(id) A |= ∀z(r(a, z) ∨ r(d, z)).

The validity of (ib) depends on all of the following holding:

(iba) A |= r(a, a) ∨ r(b, a)

(ibb) A |= r(a, b) ∨ r(b, b)
(ibc) A |= r(a, c) ∨ r(b, c)
(ibd) A |= r(a, d) ∨ r(b, d).
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(ib) is true, hence (i) holds. Likewise, the reader can verify that (ii), (iii), and (iv) hold.
But this means the graph A satisfies the original sentence.

It is useful to be able to work with sentences in some sort of normal form.

d
a b

c
Figure 30

Definition 1.11. Let Φ1(x1, . . . , xn) and Φ2(x1, . . . , xn) be two formulas in L(X). We say
that Φ1 and Φ2 are logically equivalent, written Φ1 ∼ Φ2, if for every structure A of type L

and every a1, . . . , an ∈ A we have

A |= Φ1(a1, . . . , an) iff A |= Φ2(a1, . . . , an).

If for all L-structures A,A |= Φ, where Φ is an L-formula, we write

|= Φ.

The reader will readily recognize the logical equivalence of the following pairs of formulas.

Lemma 1.12. Suppose Φ,Φ1,Φ2 and Φ3 are formulas in some L(X). Then the following
pairs of formulas are logically equivalent:

Φ & Φ

Φ ∨ Φ

Φ

Φ

}
idempotent

laws

Φ1 & Φ2

Φ1 ∨ Φ2

Φ2 & Φ1

Φ2 ∨ Φ1

}
commutative

laws

Φ1 & (Φ2 & Φ3)

Φ1 ∨ (Φ2 ∨ Φ3)

(Φ1 & Φ2) & Φ3

(Φ1 ∨ Φ2) ∨ Φ3

}
associative

laws

Φ1 & (Φ2 ∨ Φ3)

Φ1 ∨ (Φ2 & Φ3)

(Φ1 & Φ2) ∨ (Φ1 & Φ3)

(Φ1 ∨ Φ2) & (Φ1 ∨ Φ3)

}
distributive

laws

¬ (Φ1 & Φ2)

¬ (Φ1 ∨ Φ2)

(¬Φ1) ∨ (¬Φ2)

(¬Φ1) & (¬Φ2)

}
de Morgan

laws

Φ1 ↔ Φ2 (Φ1 → Φ2) & (Φ2 → Φ1)

Φ1 → Φ2 (¬Φ1) ∨ Φ2

¬¬Φ Φ
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Proof. (Exercise.) 2

The next list of equivalent formulas, involving quantifiers, may not be so familiar to the
reader.

Lemma 1.13. If Φ,Φ1 and Φ2 are formulas in some L(X), then the following pairs of
formulas are logically equivalent:

∀x(Φ1 & Φ2) (∀xΦ1) & (∀xΦ2)

∃x(Φ1 ∨ Φ2) (∃xΦ1) ∨ (∃xΦ2)

∀xΦ Φ if x 6∈ Φ

∃xΦ Φ if x 6∈ Φ

∀x(Φ1 ∨ Φ2) (∀xΦ1) ∨ Φ2 if x 6∈ Φ2

∃x(Φ1 & Φ2) (∃xΦ1) & Φ2 if x 6∈ Φ2

¬∀xΦ(x) ∃x¬Φ(x)

¬∃xΦ(x) ∀x¬Φ(x)

∀x(Φ1 → Φ2) Φ1 → (∀xΦ2) if x 6∈ Φ1

∃x(Φ1 → Φ2) Φ1 → (∃xΦ2) if x 6∈ Φ1

∀x(Φ1 → Φ2) (∃xΦ1)→ Φ2 if x 6∈ Φ2

∃x(Φ1 → Φ2) (∀xΦ1)→ Φ2 if x 6∈ Φ2

∀xΦ(x)

∃xΦ(x)

∀yΦ(y)

∃yΦ(y)


provided replacing all free occurrences

of x in Φ(x) by y does not lead

to any new bound occurrences of y.

Proof. All of these are immediate consequences of the definition of satisfaction. In the
last two cases let us point out what happens if one does not heed the “provided. . . ” clause.
Consider the formula Φ(x) given by ∃y(x 6≈ y). Replacing x by y gives ∃y(y 6≈ y). Now
the sentence ∀x∃y(x 6≈ y) is true in any structure A with at least two elements, whereas
∀x∃y(y 6≈ y) is logically equivalent to ∃y(y 6≈ y), which is never true. 2

Definition 1.14. If Φ ∈ L(X) we define the length l(Φ) of Φ to be the number of occurrences
of the symbols &,∨,¬,→,↔, ∀, and ∃ in Φ.

Note that l(Φ) = 0 iff Φ is atomic.

Lemma 1.15. If Φ1 is a subformula of Φ and Φ1 is logically equivalent to Φ2, then replacing
an occurrence of Φ1 by Φ2 gives a formula Φ∗ which is logically equivalent to Φ.
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Proof. We proceed by induction on l(Φ).
If l(Φ) = 0 then Φ is atomic, so the only subformula of Φ is Φ itself, and the lemma

is obvious in this case. So suppose l(Φ) ≥ 1 and for any Ψ such that l(Ψ) < l(Φ) the
replacement of an occurrence of a subformula of Ψ by a logically equivalent formula leads to
a formula which is logically equivalent to Ψ. Let Φ1 be a subformula of Φ and suppose Φ1 is
logically equivalent to Φ2. The case in which Φ1 = Φ is trivial, so we assume l(Φ1) < l(Φ).
There are now seven cases to consider. Suppose Φ is Φ′ & Φ′′. Then the occurrence of Φ1

being considered is an occurrence in Φ′ or Φ′′, say it is an occurrence in Φ′. Let Φ′∗ be the
result of replacing Φ1 in Φ′ by Φ2. By the induction assumption Φ′∗ is logically equivalent to
Φ′. Let Φ∗ be the result of replacing the occurrence of Φ1 in Φ by Φ2. Then Φ∗ is Φ′∗ & Φ′′,
and this is easily argued to be logically equivalent to Φ′ & Φ′′, i.e., to Φ. Likewise one handles
the four cases involving ∨,¬,→,↔ . If Φ is ∀xΦ′(x, ~y ) then let Φ′∗(x, ~y ) be the result of
replacing the occurrence of Φ1 in Φ′(x, ~y ) by Φ2. Then by the induction hypothesis Φ′∗(x, ~y )
is logically equivalent to Φ′(x, ~y ), so given a structure A of type L we have

A |= Φ′∗(x, ~y )↔ Φ′(x, ~y );

hence

A |= Φ′∗(a, ~y )↔ Φ′(a, ~y )

for a ∈ A, so

A |= ∀xΦ′∗(x, ~y ) iff A |= ∀xΦ′(x, ~y );

thus Φ is logically equivalent to ∀xΦ′∗(x, ~y ). Similarly, we can handle the case ∃xΦ′(x, ~y ).2

Definition 1.16. An open formula is a formula in which there are no occurrences of quan-
tifiers.

Definition 1.17. A formula Φ is in prenex form if it looks like

Q1x1 . . . QnxnΦ′(x1, . . . , xn)

where each Qi is a quantifier and Φ′(x1, . . . , xn) is an open formula. Φ′ is called the matrix
of Φ.

Here, and in all future references to prenex form, we have the convention that no quan-
tifiers need appear in the formula Φ.

Theorem 1.18. Every formula is logically equivalent to a formula in prenex form.

Proof. This follows from 1.12, 1.13, and 1.15. First, if necessary, change some of the bound
variables to new variables so that for any variable x there is at most one occurrence of ∀x as
well as ∃x in the formula, both do not occur in the formula, and no variable occurs both as
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a bound variable and a free variable. Then one simply pulls the quantifiers out front using
1.13. 2

Example. The following shows how to put the formula ∀x¬ (r(x, y)→ ∃xr(x, z)) in prenex
form.

∀x¬ (r(x, y)→ ∃xr(x, z)) ∼ ∀x¬ (r(x, y)→ ∃wr(w, z))
∼ ∀x¬∃w(r(x, y)→ r(w, z))

∼ ∀x∀w¬ (r, (x, y)→ r(w, z)).

In view of the associative law for & and ∨, we will make it a practice of dropping parenthe-
ses in formulas when the ambiguity is only “up to logical equivalence”. Thus Φ1 & Φ2 & Φ3

replaces (Φ1 & Φ2) & Φ3 and Φ1 & (Φ2 & Φ3), etc. Also, we find it convenient to replace

Φ1 & · · · & Φn by &1≤i≤nΦi (called the conjunction of the Φi), and Φ1∨· · ·∨Φn by
∨

1≤i≤n Φi

(called the disjunction of the Φi).

Definition 1.19. An open formula is in disjunctive form if it is in the form∨
i

&
j

Φij

where each Φij is atomic or negated atomic (i.e., the negation of an atomic formula). An
open formula is in conjunctive form if it is in the form

&
i

∨
j

Φij

where again each Φij is atomic or negated atomic.

Theorem 1.20. Every open formula is logically equivalent to an open formula in disjunctive
form, as well as to one in conjunctive form.

Proof. This is easily proved by induction on the length of the formula by using the
generalized distributive laws(∨

i

Φi

)
&

(∨
j

Ψj

)
∼
∨
i

∨
j

(Φi & Ψj),

(
&
i

Φi

)
∨
(

&
j

Ψj

)
∼&

i
&
j

(Φi ∨Ψj),
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the generalized De Morgan laws

¬
(∨

i

Φi

)
∼&

i
(¬Φi),

¬
(
&
i

Φi

)
∼
∨
i

(¬Φi),

and the elimination of →,↔, and ¬¬. 2

Example. Let Φ be the formula (with L = {·, <})

(x · y ≈ z)→ ¬[(x < z) ∨ (x ≈ 0)].

Then

Φ ∼ ¬(x · y ≈ z) ∨ ¬[(x < z) ∨ (x ≈ 0)]

∼ ¬(x · y ≈ z) ∨ [¬(x < z) & ¬(x ≈ 0)] (in disjunctive form)

∼ [¬(x · y ≈ z) ∨ ¬(x < z)] & [¬(x · y ≈ z) ∨ ¬(x ≈ 0)] (in conjunctive form).

The notions of subalgebra, isomorphism, and embedding can be easily generalized to
first-order structures.

Definition 1.21. Let A and B be first-order structures of type L. We say A is a substructure
of B, written A ≤ B, if A ⊆ B and the fundamental operations and relations of A are
precisely the restrictions of the corresponding fundamental operations and relations of B to
A. If X ⊆ B let Sg(X) be the smallest subset of B which is closed under the fundamental
operations of B. The substructure Sg(X) with universe Sg(X) (assuming Sg(X) 6= ∅) is
called the substructure generated by X. As in II§3 we have |Sg(X)| ≤ |X|+ |F|+ ω. If K is
a class of structures of type L, let S(K) be the class of all substructures of members of K.

A very restrictive notion of substructure which we will encounter again in the next section
is the following.

Definition 1.22. Let A,B be two first-order structures of type L. A is an elementary
substructure of B if A ≤ B and for any sentence Φ of type LA (and hence of type LB),

A |= Φ iff B |= Φ.

In this case we write

A ≺ B.

S(≺)(K) denotes the class of elementary substructures of members of K.
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Example. Let us find the elementary substructures of the group of integers Z = 〈Z,+,−, 0〉.
Suppose A ≺ Z. As Z is a group, it follows that A is a group.

Z |= ∃x∃y(x 6≈ y),

so
A |= ∃x∃y(x 6≈ y);

hence A is nontrivial. Thus for some n > 0, n ∈ A. As

Z |= ∃x(x + x+ · · ·+ x ≈ n),

where there are n x’s added together, it follows that A satisfies the same; hence

1 ∈ A.

But then
A = Z.

Definition 1.23. Let A and B be first-order structures of type L and suppose α : A→ B
is a bijection such that

αf(a1, . . . , an) = f(αa1, . . . , αan)

for f a fundamental operation, and that r(a1, . . . , an) holds in A iff r(αa1, . . . , αan) holds in
B. Then α is an isomorphism from A to B, and A is isomorphic to B (written A ∼= B). If
α : A → B is an isomorphism from A to a substructure of B, we say α is an embedding of
A into B. Let I(K) denote the closure of K under isomorphism. An embedding α : A→ B
such that αA ≺ B is called an elementary embedding.

Exercises §1

1. In the language of semigroups {·}, find formulas expressing (a) “x is of order dividing
n,” where n is a positive integer, (b) “x is of order at most n,” (c) “x is of order at
least n.”

2. Find formulas which express the following properties of structures: (a) A “has size at
most n,” (b) A “has size at least n.”

3. Given a finite structure A for a finite language show that there is a first-order formula
Φ such that for any structure B of the same type, B |= Φ iff B ∼= A.

Given a graph 〈G, r〉 and g ∈ G, the valence or degree of g is |{h ∈ G : hrg}|.

4. In the language of graphs {r}, find formulas to express (a) “x has valence at most n,”
(b) “x has valence at least n,” (c) “x and y are connected by a path of length at most
n.”
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5. Show that the following properties of groups can be expressed by first-order formulas:
(a) G “is centerless,” (b) G “is a group of exponent n,” (c) G “is nilpotent of class
k,” (d) “x and y are conjugate elements.”

A property P of first-order structures is first-order (or elementary) relative to K, where
K is a class of first-order structures, if there is a set Σ of first-order formulas such that for
A ∈ K, A has P iff A |= Σ. If we can choose Σ to be finite, we say that P is strictly first-
order (or strictly elementary). Similarly, one can consider properties of elements of first-order
structures relative to K.

6. Show that “being of infinite size” is a first-order property (relative to any K).

7. Relative to the class of graphs show that the following properties are first-order: (a)
“x has infinite valence,” (b) “x and y are not connected.”

8. Prove that if A ∼= B, then A |= Φ iff B |= Φ, for any Φ.

9. Let K = {N} where N is the natural numbers 〈N,+, ·, 1〉. Show that relative to K the
following can be expressed by first-order formulas: (a) “x < y,” (b) “x|y,” (c) “x is a
prime number.”

10. Put the following formula in prenex form with the matrix in conjunctive form:

∀x[xry → ∃y(xry → ∃x(yrx & xry))].

11. Does the following binary structure (Figure 31) satisfy

∀x[∃y(xry ↔ ∃x(xry))]?

����

Figure 31

12. Express the following in the language {r}, where r is a binary relation symbol:

(a) 〈A, r〉 “is a partially ordered set,”
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(b) 〈A, r〉 “is a linearly ordered set,”

(c) 〈A, r〉 “is a dense linearly ordered set,”

(d) r “is an equivalence relation on A,”

(e) r “is a function on A,”

(f) r “is a surjective function on A,”

(g) r “is an injective function on A.”

A sentence Φ is universal if Φ is in prenex form and looks like

∀x1 . . .∀xnΨ

where Ψ is open, i.e., Φ contains no existential quantifier.

13. Show that substructures preserve universal sentences, i.e., if A ≤ B and Φ is a universal
sentence, then

B |= Φ⇒ A |= Φ.

14. Show that in the language {·}, the property of being a reduct (see II§1 Exercise 1) of
a group is first-order, but not definable by universal sentences.

15. Show that any two countable dense linearly ordered sets without endpoints are isomor-
phic. [Hint: Build the isomorphism step-by-step by selecting the elements alternately
from the first and second sets.]

16. Can one embed:

(a) 〈ω,≤,+, 0〉 in 〈ω,≤, ·, 1〉?
(b) 〈ω,≤, ·, 1〉 in 〈ω,≤,+, 0〉?

17. Let A be a finite structure. Describe all possible elementary substructures of A.

18. Let A be a countable dense linearly ordered set without endpoints. If B is a substruc-
ture of A which is also dense in A, show B ≺ A.

19. Find all elementary substructures of the graph (called a rooted dyadic tree) pictured
in Figure 32.
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Figure 32

If we are given two structures A and B of type L, then a mapping α : A → B is a
homomorphism if (i) αf(a1, . . . , an) = f(αa1, . . . , αan) for f ∈ F, and (ii) r(a1, . . . , an) ⇒
r(αa1, . . . , αan) for r ∈ R.

If α is a homomorphism we write, as before, α : A → B. The image of A under α,
denoted by αA, is the substructure of B with universe αA. The homomorphism α is an
embedding if the map α : A → αA is an isomorphism. A sentence Φ is positive if it is in
prenex form and the matrix uses only the propositional connectives & and ∨.

20. Suppose α : A → B is a homomorphism and Φ is a positive sentence with A |= Φ.
Show αA |= Φ; hence homomorphisms preserve positive sentences.

21. Let L = {f} where f is a unary function symbol. Is the sentence ∀x∀y(fx ≈ fy →
x ≈ y) logically equivalent to a positive sentence?

22. Is (a) the class of 4-colorable graphs, (b) the class of cubic graphs, definable by positive
sentences in the language {r}?

23. Show every poset 〈P,≤〉 can be embedded in a distributive lattice 〈D,≤〉.

A family C of structures is a chain if for each A,B ∈ C either A ≤ B or B ≤ A. If C is
a chain of structures, define the structure ∪∪∪C by letting its universe be

⋃
{A : A ∈ C}, and

defining f(a1, . . . , an) to agree with fA(a1, . . . , an) for any A ∈ C with a1, . . . , an ∈ A, and
letting r(a1, . . . , an) hold iff it holds for some A ∈ C.

A sentence Φ is an ∀∃-sentence iff it is in prenex form and it looks like ∀x1 . . .∀xm∃y1 . . . ∃ynΨ,
where Ψ is open.

24. If C is a chain of structures and Φ is an ∀∃-sentence such that A |= Φ for A ∈ C, show
that ∪∪∪C |= Φ.

25. Show that the class of algebraically closed fields is definable by ∀∃-sentences in the
language {+, ·,−, 0, 1}.
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26. The class of semigroups which are reducts of monoids can be axiomatized by

∀x∀y∀z[(x · y) · z ≈ x · (y · z)]
∃x∀y(y · x ≈ x · y & y · x ≈ y).

Can this class be axiomatized by ∀∃-sentences?

Given a nonempty indexed family (Ai)i∈I of structures of type L, define the direct product∏
i∈I Ai to be the structure A whose universe is the set

∏
i∈I Ai, and where fundamental

operations and relations are specified by

fA(a1, . . . , an)(i) = fAi(a1(i), . . . , an(i))

rA(a1, . . . , an) holds iff for all i ∈ I, rAi(a1(i), . . . , an(i)) holds.

27. Given homomorphisms αi : A→ Bi, i ∈ I, show that the natural map α : A→
∏

i∈I Bi

is a homomorphism from A to
∏

i∈I Bi.

28. Show that a projection map on
∏

i∈I Ai is a surjective homomorphism.

A Horn formula Φ is a formula in prenex form which looks like

Q1x1 . . . Qnxn
(
&
i

Φi

)
where each Qi is a quantifier, and each Φi is a formula of the form

Ψ1 ∨ · · · ∨Ψk,

in which each Ψj is atomic or negated atomic, and at most one of the Ψj is atomic.

29. Show that the following can be expressed by Horn formulas: (a) “the cancellation law”
(for semigroups), (b) “of size at least n,” (c) any atomic formula, (d) “inverses exist”
(for monoids), (e) “being centerless” (for groups).

30. If Φ is a Horn formula and Ai |= Φ for i ∈ I, show that∏
i∈I

Ai |= Φ.

A substructure A of a direct product
∏

i∈I Ai is a subdirect product if πi(A) = Ai for all
i ∈ I. An embedding α : A→

∏
i∈I Ai is a subdirect embedding if αA is a subdirect product.

A sentence Φ is a special Horn sentence if it is of the form

&
i
∀~x(Φi → Ψi)

where each Φi is positive and each Ψi is atomic.
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31. Show that a special Horn sentence is logically equivalent to a Horn sentence.

32. Show that if A is a subdirect product of Ai, i ∈ I, and Φ is a special Horn sentence
such that Ai |= Φ for all i ∈ I, then A |= Φ; hence subdirect products preserve special
Horn sentences.

33. Can the class of cubic graphs be defined by special Horn sentences?

A complete graph 〈G, r〉 is one satisfying

∀x∀y(x 6≈ y → xry).

A complete graph with one edge removed is almost complete.

34. Show that every graph is subdirectly embedded in a product of complete and/or almost
complete graphs.

35. If A is an algebra of type F with a discriminator term t(x, y, z) [and switching term
s(x, y, u, v)] show that A satisfies (see IV§9)

(p ≈ q & p̂ ≈ q̂)↔ t(p, q, p̂) ≈ t(q, p, q̂)

(p ≈ q ∨ p̂ ≈ q̂)↔ s(p, q, p̂, q̂) ≈ p̂

(p ≈ q ∨ p̂ 6≈ q̂)↔ s(p̂, q̂, p, q) ≈ q

and if A is nontrivial,

(p 6≈ q)↔ ∀x[t(p, q, x) ≈ p].

Show that, consequently, if A is nontrivial, then for every [universal] F-formula φ there
is an [universal] F-formula φ∗ whose matrix is an equation p ≈ q such that A satisfies

φ↔ φ∗.

Define the spectrum of an L-formula φ, Spec φ, to be {|A| : A is an L-structure, A |= φ, A
is finite}.

36. (McKenzie). If φ is an F-formula satisfied by some A, where F is a type of algebras,
show that there is a (finitely axiomatizable) variety V such that Spec V (see IV§9
Exercise 4) is the closure of Spec φ under finite products.
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§2. Reduced Products and Ultraproducts

Reduced products result from a certain combination of the direct product and quotient con-
structions. They were introduced in the 1950’s by  Loś, and the special case of ultraproducts
has been a subject worthy of at least one book. In the following you will need to recall the
definition of [[a = b]] from IV§5.5, and that of direct products of structures from p. 232.

Definition 2.1. Let (Ai)i∈I be a nonempty indexed family of structures of type L, and
suppose F is a filter over I. Define the binary relation θF on

∏
i∈I Ai by

〈a, b〉 ∈ θF iff [[a = b]] ∈ F.

(When discussing reduced products we will always assume ∅ 6∈ F, i.e., F is proper.)

Lemma 2.2. For (Ai)i∈I and F as above, the relation θF is an equivalence relation on∏
i∈I Ai. For a fundamental n-ary operation f of

∏
i∈I Ai and for

〈a1, b1〉, . . . , 〈an, bn〉 ∈ θF

we have
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ θF ,

i.e., θF is a congruence for the “algebra part of A”.

Proof. Clearly θF is reflexive and symmetric. If

〈a, b〉, 〈b, c〉 ∈ θF

then
[[a = b]], [[b = c]] ∈ F,

hence
[[a = b]] ∩ [[b = c]] ∈ F.

Now from
[[a = c]] ⊇ [[a = b]] ∩ [[b = c]]

it follows that
[[a = c]] ∈ F,

so
〈a, c〉 ∈ θF .

Consequently, θF is an equivalence relation. Next with f and 〈ai, bi〉 as in the statement of
the lemma, note that

[[f(a1, . . . , an) = f(b1, . . . , bn)]] ⊇ [[a1 = b1]] ∩ · · · ∩ [[an = bn]];
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hence
[[f(a1, . . . , an) = f(b1, . . . , bn)]] ∈ F,

so
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ θF .

2

Definition 2.3. Given a nonempty indexed family of structures (Ai)i∈I of type L and a
proper filter F over I, define the reduced product

∏
i∈I Ai/F as follows. Let its universe∏

i∈I Ai/F be the set
∏

i∈I Ai/θF , and let a/F denote the element a/θF . For f an n-ary
function symbol and for a1, . . . , an ∈

∏
i∈I Ai, let

f(a1/F, . . . , an/F ) = f(a1, . . . , an)/F,

and for r an n-ary relation symbol, let r(a1/F, . . . , an/F ) hold iff

{i ∈ I : Ai |= r(a1(i), . . . , an(i))} ∈ F.

If K is a nonempty class of structures of type L, let PR(K) denote the class of all reduced
products

∏
i∈I Ai/F, where Ai ∈ K.

In view of Definition 2.3, it is reasonable to extend our use of the [[ ]] notation as follows.

Definition 2.4. If (Ai)i∈I is a nonempty indexed family of structures of type L and if
Φ(a1, . . . , an) is a sentence of type LA, where A =

∏
i∈I Ai, let

[[Φ(a1, . . . , an)]] = {i ∈ I : Ai |= Φ(a1(i), . . . , an(i))}.

Thus given a reduced product
∏

i∈I Ai/F and an atomic sentence Φ(a1, . . . , an), we see
that ∏

i∈I
Ai/F |= Φ(a1/F, . . . , an/F ) iff [[Φ(a1, . . . , an)]] ∈ F.

Determining precisely which sentences are preserved by reduced products has been one
of the milestones in the history of model theory. Our next theorem is concerned with the
easy half of this study.

Definition 2.5. A Horn formula is a formula in prenex form with a matrix consisting of
conjunctions of formulas Φ1 ∨ · · · ∨ Φn where each Φi is atomic or negated atomic, and at
most one Φi is atomic in each such disjunction. Such disjunctions of atomic and negated
atomic formulas are called basic Horn formulas.

The following property of direct products is useful in induction proofs on reduced prod-
ucts.
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Lemma 2.6 (The maximal property). Let Ai, i ∈ I, be a nonempty indexed family of
structures of type L. If we are given a formula ∃xΦ(x, y1, . . . , yn) of type L and a1, . . . , an ∈∏

i∈I Ai, then there is an a ∈
∏

i∈I Ai such that

[[∃xΦ(x, a1, . . . , an)]] = [[Φ(a, a1, . . . , an)]].

Proof. For
i ∈ [[∃xΦ(x, a1, . . . , an)]]

choose a(i) ∈ Ai such that
Ai |= Φ(a(i), a1(i), . . . , an(i)),

and for other i’s in I, let a(i) be arbitrary. Then it is readily verified that such an a satisfies
the lemma. 2

Theorem 2.7. Let
∏

i∈I Ai/F be a reduced product of structures of type L, and suppose
Φ(x1, . . . , xn) is a Horn formula of type L. If

a1, . . . , an ∈
∏
i∈I

Ai

and
[[Φ(a1, . . . , an)]] ∈ F

then ∏
i∈I

Ai/F |= Φ(a1/F, . . . , an/F ).

Proof. First let us suppose Φ is a basic Horn formula

Φ1(x1, . . . , xn) ∨ · · · ∨ Φk(x1, . . . , xn).

Our assumption [[ ∨
1≤i≤k

Φi(a1, . . . , an)

]]
∈ F

is equivalent to ⋃
1≤i≤k

[[Φi(a1, . . . , an)]] ∈ F.

If, for some Φi which is a negated atomic formula we have

I − [[Φi(a1, . . . , an)]] 6∈ F,
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then, by the definition of reduced product,∏
i∈I

Ai/F |= Φi(a1/F, . . . , an/F );

hence ∏
i∈I

Ai/F |= Φ(a1/F, . . . , an/F ).

If now for each negated atomic formula Φi we have

I − [[Φi(a1, . . . , an)]] ∈ F,

then there must be one of the Φi’s, say Φk, which is atomic. (Otherwise

I − [[Φ(a1, . . . , an)]] = I −
⋃

1≤i≤k
[[Φi(a1, . . . , an)]] ∈ F,

which is impossible as F is closed under intersection and ∅ 6∈ F.) Now in this case

[[¬Φi(a1, . . . , an)]] ∈ F

for 1 ≤ i ≤ k − 1, so [[
&

1≤i≤k−1
¬Φi(a1, . . . , an)

]]
∈ F.

Since
[[Φ(a1, . . . , an)]] ∈ F,

taking the intersection we have[[(
&

1≤i≤k−1
¬Φi(a1, . . . , an)

)
& Φk(a1, . . . , an)

]]
∈ F,

so
[[Φk(a1, . . . , an)]] ∈ F.

This says ∏
i∈I

Ai/F |= Φk(a1/F, . . . , an/F );

hence ∏
i∈I

Ai/F |= Φ(a1/F, . . . , an/F ).

If Φ is a conjunction
Ψ1 & · · · & Ψk
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of basic Horn formulas, then

[[Ψ1(a1, . . . , an) & · · · & Ψk(a1, . . . , an)]] ∈ F

leads to
[[Ψi(a1, . . . , an)]] ∈ F

for 1 ≤ i ≤ k, so ∏
i∈I

Ai/F |= Ψi(a1/F, . . . , an/F ),

1 ≤ i ≤ k, and thus ∏
i∈I

Ai/F |= Φ(a1/F, . . . , an/F ).

Next we look at the general case in which Φ is in the form

Q1y1 . . . QmymΨ(y1, . . . , ym, x1, . . . , xn)

with Ψ being a conjunction of basic Horn formulas. We use induction on the number of
occurrences of quantifiers in Φ. If there are no quantifiers, then we have finished this case in
the last paragraph. So suppose that the theorem is true for any Horn formula with fewer than
m occurrences of quantifiers. In Φ above let us first suppose Q1 is the universal quantifier,
i.e.,

Φ = ∀y1Φ∗(y1, x1, . . . , xn).

If we are given a ∈
∏

i∈I Ai, then from

[[Φ(a1, . . . , an)]] ∈ F

it follows that
[[Φ∗(a, a1, . . . , an)]] ∈ F

as
[[Φ(a1, . . . , an)]] ⊆ [[Φ∗(a, a1, . . . , an)]].

By the induction hypothesis∏
i∈I

Ai/F |= Φ∗(a/F, a1/F, . . . , an/F );

hence ∏
i∈I

Ai/F |= Φ(a1/F, . . . , an/F ).

Next suppose Q1 is the existential quantifier, i.e.,

Φ = ∃y1Φ∗(y1, x1, . . . , xn).
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Choose by 2.6 a ∈
∏

i∈I Ai such that

[[Φ(a1, . . . , an)]] = [[Φ∗(a, a1, . . . , an)]].

Then again by the induction hypothesis∏
i∈I

Ai/F |= Φ∗(a/F, a1/F, . . . , an/F );

hence ∏
i∈I

Ai/F |= Φ(a1/F, . . . , an/F ).

2

The following generalizes the definition of ultraproducts in IV§6 to arbitrary first-order
structures.

Definition 2.8. A reduced product
∏

i∈I Ai/U is called an ultraproduct if U is an ultrafilter
over I. If all the Ai = A, then we write AI/U and call it an ultrapower of A. The class of
all ultraproducts of members of K is denoted PU(K).

For the following recall the basic properties of ultrafilters from IV§3. We abbreviate
a1, . . . , an by ~a, and a1/U, . . . , an/U by ~a/U.

Theorem 2.9 ( Loś). Given structures Ai, i ∈ I, of type L, if U is an ultrafilter over I and
Φ is any first-order formula of type L, then∏

i∈I
Ai/U |= Φ(a1/U, . . . , an/U)

iff
[[Φ(a1, . . . , an)]] ∈ U.

Proof. (By induction on l(Φ).) For l(Φ) = 0 we have already observed that the theorem is
true. So suppose l(Φ) > 0 and the theorem holds for all Ψ such that l(Ψ) < l(Φ). If

Φ = Φ1 & Φ2,

then

[[Φ1(~a) & Φ2(~a)]] ∈ U iff [[Φ1(~a)]] ∩ [[Φ2(~a)]] ∈ U
iff [[Φi(~a)]] ∈ U for i = 1, 2

iff
∏
i∈I

Ai/U |= Φi(~a/U) for i = 1, 2

iff
∏
i∈I

Ai/U |= Φ1(~a/U) & Φ2(~a/U).
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One handles the logical connectives ∨,¬,→,↔ in a similar fashion. If

Φ(~a) = ∃xΦ̂(x,~a),

choose a ∈
∏

i∈I Ai such that

[[∃xΦ̂(x,~a)]] = [[Φ̂(a,~a)]].

Then

[[Φ(~a)]] ∈ U iff [[∃xΦ̂(x,~a)]] ∈ U
iff [[Φ̂(a,~a)]] ∈ U for some a

iff
∏
i∈I

Ai/U |= Φ̂(a/U,~a/U) for some a

iff
∏
i∈I

Ai/U |= ∃xΦ̂(x,~a/U)

iff
∏
i∈I

Ai/U |= Φ(~a/U).

Finally, if
Φ(~a) = ∀xΦ̂(x,~a)

then one can find a Ψ(~a) such that the quantifier ∀ does not appear in Ψ and Φ ∼ Ψ (by
1.13), hence from what we have just proved,

[[Φ(~a)]] ∈ U iff [[Ψ(~a)]] ∈ U
iff

∏
i∈I

Ai/U |= Ψ(~a/U)

iff
∏
i∈I

Ai/U |= Φ(~a/U).

2

Lemma 2.10. Let A be a first-order structure, I a nonempty index set and F a proper filter
over I. For a ∈ A, let ca denote the element of AI with

ca(i) = a, i ∈ I.

The map
α : A→ AI/F

defined by
αa = ca/F

is an embedding of A into AI/F. The map α is called the natural embedding of A into AI/F.
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Proof. (Exercise.) 2

Theorem 2.11. If A is a first-order structure of type L, I is an index set, and U is an
ultrafilter over I, then the natural embedding α of A into AI/U is an elementary embedding.

Proof. Just note that for formulas Φ(x1, . . . , xn) of type L, we have

[[Φ(ca1 , . . . , can)]] = I if A |= Φ(a1, . . . , an),

and
[[Φ(ca1 , . . . , can)]] = ∅ if A 6|= Φ(a1, . . . , an).

Thus
αA |= Φ(αa1, . . . , αan) iff AI/U |= Φ(αa1, . . . , αan).

2

Next we prove one of the most celebrated theorems of logic.

Theorem 2.12 (The Compactness Theorem). Let Σ be a set of first-order sentences of type
L such that for every finite subset Σ0 of Σ there is a structure satisfying Σ0. Then A |= Σ
for some A of type L.

Proof. Let I be the family of finite subsets of Σ, and for i ∈ I let Ai be a structure
satisfying the sentences in i. For i ∈ I let

Ji = {j ∈ I : i ⊆ j}.

Then
Ji1 ∩ Ji2 = Ji1∪i2 ,

so the collection of Ji’s is closed under finite intersection. As no Ji = ∅ it follows that

F = {J ⊆ I : Ji ⊆ J for some i ∈ I}

is a proper filter over I, so by IV§3.17 we can extend it to an ultrafilter U over I; and each
Ji belongs to U. Now for Φ ∈ Σ we have

{Φ} ∈ I,

so
Aj |= Φ for j ∈ J{Φ}

as Φ ∈ j. Looking at
∏

i∈I Ai we see that

[[Φ]] ⊇ J{Φ}
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so ∏
i∈I

Ai/U |= Φ;

hence ∏
i∈I

Ai/U |= Σ.

2

Corollary 2.13. If Σ is a set of sentences of type L and Φ is a sentence of type L such that

Σ |= Φ,

then, for some finite subset Σ0 of Σ,
Σ0 |= Φ.

Proof. If the above fails, then for some Σ and Φ and for every finite subset Σ0 of Σ there is
a structure A which satisfies Σ0 but not Φ; hence Σ0∪{¬Φ} is satisfied by some A. But then
2.12 says Σ ∪ {¬Φ} is satisfied by some A, which is impossible as A |= Σ implies A |= Φ.2

A slight variation of the proof of the compactness theorem gives us the following.

Theorem 2.14. Every first-order structure A can be embedded in an ultraproduct of its
finitely generated substructures.

Proof. Let I be the family of nonempty finite subsets of A, and for i ∈ I let Ai be the
substructure of A generated by i. Also, for i ∈ I let

Ji = {j ∈ I : i ⊆ j}.

As in 2.12 extend the family of Ji’s to an ultrafilter U over I. For a ∈ A let λa be any
element of

∏
i∈I Ai such that

(λa)(i) = a

if a ∈ i. Then let
α : A→

∏
i∈I

Ai/U

be defined by
αa = (λa)/U.

For Φ(x1, . . . , xn) an atomic or negated atomic formula and a1, . . . , an ∈ A such that

A |= Φ(a1, . . . , an),
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we have
[[Φ(λa1, . . . , λan)]] ⊇ J{a1,...,an};

hence
α(A) |= Φ(λa1/U, . . . , λan/U).

This is easily seen to guarantee that α is an embedding. 2

For the remainder of this section we will assume that we are working with some convenient
fixed countably infinite set of variables X, i.e., all formulas will be over this X.

Definition 2.15. A class K of first-order L-structures is an elementary class (or a first-order
class) if there is a set Σ of first-order formulas such that

A ∈ K iff A |= Σ.

K is said to be axiomatized (or defined) by Σ in this case, and Σ is a set of axioms for K.
Let Th(K) be the set of first-order sentences of type L satisfied by K, called the theory of
K.

Theorem 2.16. Let K be a class of first-order structures of type L. Then the following are
equivalent:

(a) K is an elementary class.
(b) K is closed under I, S(≺), and PU .
(c) IS(≺)PU(K∗), for some class K∗.

Proof. For (a)⇒ (b) use the fact that each of I, S(≺) and PU preserve first-order properties.
(b) ⇒ (c) is trivial, for let K∗ = K. For (c) ⇒ (a) we claim that K is axiomatizable by
Th(K∗) where K∗ is as in (c). Note that K |= Th(K∗). Suppose

A |= Th(K∗).

Let Th∗(A) be the set of sentences Φ(a1, . . . , an) of type LA satisfied by A, and let I be the
collection of finite subsets of Th∗(A). If

Φ(a1, . . . , an) ∈ Th∗(A)

then for some B ∈ K∗,
B |= ∃x1 . . .∃xnΦ(x1, . . . , xn).

For otherwise
K∗ |= ∀x1 . . .∀xn¬Φ(x1, . . . , xn),

which is impossible as
A |= ∃x1 . . .∃xnΦ(x1, . . . , xn)
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and A |= Th(K∗). Consequently, for i ∈ I we can choose Ai ∈ K∗ and elements â(i) ∈ Ai
for a ∈ A such that the formulas in i become true of Ai when a is interpreted as â(i), for
a ∈ A. Let

Ji = {j ∈ I : i ⊆ j},
and, as before, let U be an ultrafilter over I such that Ji ∈ U for i ∈ I. Let â be the element
in
∏

i∈I Ai whose ith coordinate is â(i). Then for

Φ(a1, . . . , an) ∈ Th∗(A)

we have
[[Φ(â1, . . . , ân)]] ⊇ Ji ∈ U

where
i = {Φ(a1, . . . , an)};

hence
[[Φ(â1, . . . , ân)]] ∈ U.

Thus ∏
i∈I

Ai/U |= Φ(â1/U, . . . , ân/U).

By considering the atomic and negated atomic sentences in Th∗(A), we see that the mapping

α : A→
∏
i∈I

Ai/U

defined by
αa = â/U

gives an embedding of A into
∏

i∈I Ai/U, and then again from the above it follows that the
embedding is elementary. Thus A ∈ IS(≺)PU(K∗). 2

Definition 2.17. An elementary class K is a strictly first-order (or strictly elementary)
class if K can be axiomatized by finitely many formulas, or equivalently by a single formula.

Corollary 2.18. An elementary class K of first-order structures is a strictly elementary
class iff the complement K ′ of K is closed under ultraproducts.

Proof. If K is axiomatized by Φ, then the complement of K is axiomatized by ¬Φ; hence
K ′ is an elementary class, so K ′ is closed under PU . Conversely suppose K ′ is closed under
PU . Let I be the collection of finite subsets of Th(K). If K is not finitely axiomatizable, for
each i ∈ I there must be a structure Ai such that

Ai |= i
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but
Ai 6∈ K.

Let
Ji = {j ∈ I : i ⊆ j},

and construct U as before. Then ∏
i∈I

Ai/U |= Φ

for Φ ∈ Th(K) as
[[Φ]] ⊇ J{Φ} ∈ U.

Thus ∏
i∈I

Ai/U |= Th(K),

so ∏
i∈I

Ai/U ∈ K.

But this is impossible since by the assumption∏
i∈I

Ai/U ∈ K ′

as each Ai ∈ K ′. Thus K must be a strictly elementary class. 2

Definition 2.19. A first-order formula Φ is a universal formula if it is in prenex form and all
the quantifiers are universal. An elementary class is a universal class if it can be axiomatized
by universal formulas.

Theorem 2.20. Let K be a class of structures of type L. Then the following are equivalent:

(a) K is a universal class,
(b) K is closed under I, S, and PU ,
(c) K = ISPU(K∗), for some K∗.

Proof. (a) ⇒ (b) is easily checked and (b) ⇒ (c) is straightforward. For (c) ⇒ (a) let
Th∀(K

∗) be the set of universal sentences of type L which are satisfied by K∗, and suppose
A |= Th∀(K

∗). Let Th∗∀(A) be the set of universal sentences of type LA which are satisfied
by A. Now we just repeat the last part of the proof of 2.16, replacing Th∗ by Th∗∀. 2

Definition 2.21. A first-order formula Φ is a universal Horn formula if it is both a universal
and a Horn formula. A class K of structures is a universal Horn class if it can be axiomatized
by universal Horn formulas.

Before looking at classes defined by universal Horn formulas we need a technical lemma.
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Lemma 2.22. The following inequalities on class operators hold:

(a) P ≤ IPR,
(b) PRPR ≤ IPR,
(c) PR ≤ ISPPU .

Proof. (a) Given
∏

i∈I Ai let F = {I} be the smallest filter over I. Then one sees that∏
i∈I

Ai
∼=
∏
i∈I

Ai/F

using the map α(a) = a/F.
(b) Given a set J and a family of pairwise disjoint sets Ij, j ∈ J, and algebras Ai for

i ∈ Ij and a filter F over J and for j ∈ J a filter Fj over Ij, define

I =
⋃
j∈J

Ij

and let

F̂ = {S ⊆ I : {j ∈ J : S ∩ Ij ∈ Fj} ∈ F}.

Then F̂ is easily seen to be a filter over I, and we will show that

∏
j∈J

∏
i∈Ij

Ai/Fj

/F ∼=
∏
i∈I

Ai/F̂ .

For each j ∈ J define

αj :
∏
i∈I

Ai →
∏
i∈Ij

Ai

by

αj(a) = a� Ij .

Then αj is a surjective homomorphism from
∏

i∈I Ai to
∏

i∈Ij Ai. Let

νj :
∏
i∈Ij

Ai →
∏
i∈Ij

Ai/Fj

be the natural mapping. Define

β :
∏
i∈I

Ai →
∏
j∈J

∏
i∈Ij

Ai/Fj


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to be the natural mapping derived from the νj ’s, i.e.,

β(a)(j) = νj(a�Ij).

Let

ν :
∏
j∈J

∏
i∈Ij

Ai/Fj

→∏
j∈J

∏
i∈Ij

Ai/Fj

/F

be the natural map (see Figure 33.) The mapping ν ◦ β is surjective as each of ν and β is
surjective. Also let

ν∗ :
∏
i∈I

Ai →
∏
i∈I

Ai/F̂

be the natural map. Let us show that

ker(ν ◦ β) = θF̂ .

We have

〈a, b〉 ∈ ker(ν ◦ β)⇔ 〈βa, βb〉 ∈ ker ν = θF̂
⇔ [[βa = βb]] ∈ F
⇔ {j ∈ J : νj(a�Ij) = νj(b�Ij)} ∈ F
⇔ {j ∈ J : [[a = b]] ∩ Ij ∈ Fj} ∈ F
⇔ [[a = b]] ∈ F̂ .

Thus we have a bijection

γ :
∏
i∈I

Ai/F̂ →
∏
j∈J

∏
i∈Ij

Ai/Fj

/F

such that γ ◦ ν∗ = ν ◦ β. If we were working in a language of algebras, we could use the first
isomorphism theorem to show γ is an isomorphism. We will leave the details of showing that
γ preserves fundamental relations to the reader.
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(c) If F is a filter over I, let J be the set of ultrafilters over I containing F. Given
Ai, i ∈ I, define, for U ∈ J,

αU :
∏
i∈I

Ai/F →
∏
i∈I

Ai/U

by

αU(a/F ) = a/U,

and then let

α :
∏
i∈I

Ai/F →
∏
U∈J

(∏
i∈I

Ai/U

)
be the natural map. We claim that since one clearly has

F =
⋂
J

we must have an injective map α. For if

a/F 6= b/F

then

[[a = b]] 6∈ F

so we can find an ultrafilter U extending F with

[[a = b]] 6∈ U.
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Thus

αU(a) 6= αU(b)

so α is injective. If we were working with algebras, we would clearly have an embedding,
and we again leave the details concerning fundamental relations to the reader. 2

Theorem 2.23. Let K be a class of structures of type L. Then the following are equivalent:

(a) K is a universal Horn class,
(b) K is closed under I, S, and PR,
(c) K is closed under I, S, P, and PU ,
(d) K = ISPR(K∗), for some K∗,
(e) K = ISPPU(K∗), for some K∗.

Proof. (a) ⇒ (b) is easily checked using 2.7, and (b) ⇒ (c), (b) ⇒ (d) and (c) ⇒ (e) are
clear. For (d) ⇒ (a) and (e) ⇒ (a) let Th∀H(K∗) be the set of universal Horn sentences of
type L which are true of K∗. Certainly K |= Th∀H(K∗). Suppose

A |= Th∀H(K∗).

Let Th∗0(A) be the set of atomic or negated atomic sentences true of A in LA. (This is called
the open diagram of A.) If we are given

{Φ1(a1, . . . , an), . . . ,Φk(a1, . . . , an)} ⊆ Th∗0(A)

then

A |= ∃x1 . . .∃xn[Φ1(x1, . . . , xn) & · · · & Φk(x1, . . . , xn)].

We want to show some member of P (K∗) satisfies this sentence as well. For this purpose it
suffices to show

P (K∗) 6|= ∀x1 . . . ∀xn[¬Φ1(x1, . . . , xn) ∨ · · · ∨ ¬Φk(x1, . . . , xn)].

If at most one Φi is negated atomic, then the universal sentence above would be logically
equivalent to a universal Horn sentence which is not true of A, hence not of K∗. So let us
suppose at least two of the Φi are negated atomic, say Φi is negated atomic for 1 ≤ i ≤ t
(where 2 ≤ t ≤ k), and atomic for t+ 1 ≤ i ≤ k. Then, for 1 ≤ i ≤ t, one can argue as above
that

K∗ 6|= ∀x1 . . .∀xn[¬Φi(x1, . . . , xn) ∨ ¬Φt+1(x1, . . . , xn) ∨ · · · ∨ ¬Φk(x1, . . . , xn)];

hence for some Ai ∈ K∗,

Ai |= ∃x1 . . .∃xn[Φi(x1, . . . , xn) & Φt+1(x1, . . . , xn) & · · · & Φk(x1, . . . , xn)].
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For 1 ≤ i ≤ t, 1 ≤ j ≤ n, choose aj(i) ∈ Ai such that

Ai |= Φi(a1(i), . . . , an(i)) & Φt+1(a1(i), . . . , an(i)) & · · · & Φk(a1(i), . . . , an(i)).

Then ∏
1≤i≤t

Ai |= &
1≤i≤k

Φi(a1, . . . , an)

and ∏
1≤i≤t

Ai ∈ P (K∗).

Let I be the collection of finite subsets of Th∗0(A), and proceed as in the proof of 2.16,
replacing Th∗(A) by Th∗0(A), to obtain

A ∈ ISPUP (K∗).

From 2.22,
ISPR ≤ ISPPU ≤ ISPRPR ≤ ISPR;

hence
ISPR = ISPPU .

Now
ISPUP ≤ ISPRPR = ISPR;

hence
A ∈ ISPUP (K∗) ⊆ ISPR(K∗) = ISPPU(K∗) = K.

2

Let us now turn to algebras.

Definition 2.24. A quasi-identity is an identity or a formula of the form (p1 ≈ q1 & · · · & pn ≈
qn)→ p ≈ q. A quasivariety is a class of algebras closed under I, S, and PR, and containing
the one-element algebras.

Theorem 2.25. Let K be a class of algebras. Then the following are equivalent:

(a) K can be axiomatized by quasi-identities,
(b) K is a quasivariety,
(c) K is closed under I, S, P, and PU and contains a trivial algebra,
(d) K is closed under ISPR and contains a trivial algebra, and
(e) K is closed under ISPPU and contains a trivial algebra.

Proof. As quasi-identities are logically equivalent to universal Horn formulas, and as trivial
algebras satisfy any quasi-identity, we have (a) ⇒ (b). (b) ⇒ (c), (b) ⇒ (d) and (c) ⇒ (e)
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are obvious. If (d) or (e) holds, then K can be axiomatized by universal Horn formulas by
2.23 which we may assume to be of the form ∀x1 . . .∀xn(Ψ1 ∨ · · · ∨ Ψk) with each Ψi an
atomic or negated atomic formula. (Why?) As a trivial algebra cannot satisfy a negated
atomic formula, exactly one of Ψ1, . . . ,Ψk is atomic. Such an axiom is logically equivalent
to a quasi-identity. 2

For us the study of universal algebra has been almost synonymous with the study of
varieties, but the Russian mathematicians under the leadership of Mal’cev have vigorously
pursued the subject of quasivarieties as well.

Example. The cancellation law

x · y ≈ x · z → y ≈ z

is a quasi-identity.
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Exercises §2

1. If R is the ordered field of real numbers, show that Rω/U is a non-Archimedean ordered
field if U is a nonprincipal ultrafilter on ω. Show that the class of Archimedean ordered
fields is not an elementary class.

2. With P the set of prime numbers, show that
∏

p∈P Z/(p) is a ring of characteristic zero.
Hence show that “being a field of finite characteristic” is not a first-order property.

3. Show that “being a finite structure of type L” is not a first-order property.

4. Show that “being isomorphic to the ring of integers” is not a first-order property. [Hint:
Use IV§6 Exercise 7.]

5. Prove that the following hold: (a) PUS ≤ ISPU ; (b) PRS ≤ ISPR.

6. Prove that a graph is n-colorable iff each finite subgraph is n-colorable.

Given two languages L,L′ with L ⊆ L′ and a structure A of type L′, let A�L denote the
reduct of A to L, i.e., retain only those fundamental operations and relations of A which
correspond to symbols in L. Then define K�L= {A�L: A ∈ K}.
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7. Let K be an elementary class of type L′, and let A be a structure of type L, L ⊆ L′.
Show that A ∈ IS(K�L) iff A |= Th∀(K�L).

8. Prove that a group G can be linearly ordered iff each of its finitely generated subgroups
can be linearly ordered.

9. If Φ is a sentence such that A |= Φ ⇒ S(A) |= Φ, then show that Φ is logically
equivalent to a universal sentence.

10. If Φ is a sentence such that K |= Φ ⇒ SPR(K) |= Φ, then show that Φ is logically
equivalent to a universal Horn sentence.

11. Given a language L let K be an elementary class and let Φ be a sentence such that for
A,B ∈ K with B ≤ A, if A |= Φ then B |= Φ. Show that there is a universal sentence
Ψ such that K |= Φ↔ Ψ. [Hint: Make appropriate changes in the proof of 2.20.]

12. Given a first-order structure A of type L let D+(A) be the set of atomic sentences in
the language LA true of A. Given a set of sentences Σ of type L, show that there is a
homomorphism from A to some B with B |= Σ iff there is a C with C |= D+(A)∪Σ.

§3. Principal Congruence Formulas

Principal congruence formulas are the obvious first-order formulas for describing principal
congruences. We give two applications of principal congruence formulas, namely McKenzie’s
theorem on definable principal congruences, and Taylor’s theorem on the number of subdi-
rectly irreducible algebras in a variety. Throughout this section we are working with a fixed
language F of algebras. First we look at how to construct principal congruences using unary
polynomials.

Lemma 3.1 (Mal’cev). Let A be an algebra of type F and suppose a, b, c, d ∈ A. Then

〈a, b〉 ∈ Θ(c, d)

iff there are terms
pi(x, y1, . . . , yk),

1 ≤ i ≤ m, and elements e1, . . . , ek ∈ A such that

a = p1(s1, ~e ),

pi(ti, ~e ) = pi+1(si+1, ~e ) for 1 ≤ i ≤ m,

pm(tm, ~e ) = b,

where
{si, ti} = {c, d}
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for 1 ≤ i ≤ m.

Proof. Let pi(x, y1, . . . , yk) be any terms of type F and let e1, . . . , ek be any elements of A.
Then clearly

〈pi(c, ~e ), pi(d,~e )〉 ∈ Θ(c, d);

hence if
{si, ti} = {c, d}

and
pi(ti, ~e ) = pi+1(si+1, ~e )

then by the transitivity of Θ(c, d),

〈p1(s1, ~e ), pm(tm, ~e )〉 ∈ Θ(c, d).

Thus the collection θ∗ of pairs 〈a, b〉 such that there are pi’s and ej ’s as above form a subset
of Θ(c, d). Now note that θ∗ is an equivalence relation, and indeed a congruence. For if

〈aj , bj〉 ∈ θ∗,

1 ≤ j ≤ n, and if f is a fundamental n-ary operation, let

aj = pj1(sj1, ~ej),

pji(tji, ~ej) = pji+1(sji+1, ~ej),

and
pjmj(tjmj , ~ej) = bj .

Then

f(b1, . . . , bj−1, aj, . . . , an) = f(b1, . . . , bj−1, pj1(sj1, ~ej), aj+1, . . . , an),

f(b1, . . . , bj−1, pji(tji, ~ej), aj+1, . . . , an) = f(b1, . . . , bj−1, pji+1(sji+1, ~ej), aj+1, . . . , an),

1 ≤ i ≤ mj , and

f(b1, . . . , bj−1, pjmj(tjmj , ~ej), aj+1, . . . , an) = f(b1, . . . , bj−1, bj , aj+1, . . . , an);

hence
〈f(b1, . . . , bj−1, aj, . . . , an), f(b1, . . . , bj , aj+1, . . . , an)〉 ∈ θ∗,

so by transitivity
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ θ∗.

As
〈c, d〉 ∈ θ∗ ⊆ Θ(c, d)
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we must have
Θ(c, d) = θ∗,

since Θ(c, d) is the smallest congruence containing 〈c, d〉. 2

Definition 3.2. A principal congruence formula (of type F) is a formula

π(x, y, u, v)

of the form

∃~w{x ≈ p1(z1, ~w) &

[
&

1≤i<n
pi(z

′
i, ~w) ≈ pi+1(zi+1, ~w)

]
& pn(z′n, ~w) ≈ y}

where
{zi, z′i} = {u, v},

1 ≤ i ≤ n. Let Π be the set of principal congruence formulas in F(X) where X is an infinite
set of variables.

Theorem 3.3. For a, b, c, d ∈ A and A an algebra of type F, we have

〈a, b〉 ∈ Θ(c, d)

iff
A |= π(a, b, c, d)

for some π ∈ Π.

Proof. This is just a restatement of 3.1. 2

Definition 3.4. A variety V has definable principal congruences if there is a finite subset
Π0 of Π such that for A ∈ V and a, b, c, d ∈ A,

〈a, b〉 ∈ Θ(c, d) iff A |= π(a, b, c, d)

for some π ∈ Π0.

Theorem 3.5 (McKenzie). If V is a directly representable variety, then V has definable
principal congruences.

Proof. Choose finite algebras A1, . . . ,Ak ∈ V such that for any finite B ∈ V,

B ∈ IP ({A1, . . . ,Ak}),

and let
mi = |Ai|.



§3. Principal Congruence Formulas 255

Now let
K = {Aj1

1 × · · · ×Ajk
k : ji ≤ m4

i , 1 ≤ i ≤ k}.
As K is a finite set of finite algebras, it is clear that there is a finite Π0 ⊆ Π such that for
A ∈ K and a, b, c, d ∈ A,

〈a, b〉 ∈ Θ(c, d)

iff
A |= π(a, b, c, d)

for some π ∈ Π0. Now suppose B is any finite member of P ({A1, . . . ,Ak}) and a, b, c, d ∈ B
with

〈a, b〉 ∈ Θ(c, d).

Let
B = As1

1 × · · · ×Ask
k .

Let us rewrite the latter as

B11 × · · · ×B1s1 × · · · ×Bk1 × · · · ×Bksk,

with Bij = Ai. For some π ∈ Π we have

B |= π(a, b, c, d).

Let π(x, y, u, v) be
∃w1 . . .∃wrΦ(x, y, u, v, w1, . . . , wr),

where Φ is open. Let e1, . . . , er ∈ B be such that

B |= Φ(a, b, c, d, e1, . . . , er).

As there are at most m4
i possible 4-tuples

〈a(i, j), b(i, j), c(i, j), d(i, j)〉

for 1 ≤ j ≤ si we can partition the indices i1, . . . , isi into sets Ji1, . . . , Jiti with ti ≤ m4
i such

that on each Jij the elements a, b, c, d are all constant. Thus in view of the description of
congruence formulas we can assume the e’s are all constant on Jij . The set of elements of B
which are constant on each Jij form a subuniverse C of B, and let C be the corresponding
subalgebra. Then C ∈ I(K), for if we select one index (ij)∗ from each Jij then the map

α : C →
∏

B(ij)∗

defined by
α(c)(ij)∗ = c((ij)∗)
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is easily seen to be an isomorphism. As αC ∈ H(B),

αC |= π(αa, αb, αc, αd);

hence
C |= π(a, b, c, d).

It follows that for some π∗ ∈ Π0 (as C ∈ I(K)),

C |= π∗(a, b, c, d).

But then
B |= π∗(a, b, c, d).

Hence for any finite member B of V, the principal congruences of B can be described just
by using the formulas in Π0.

Finally, if B is any member of V and a, b, c, d ∈ B with

〈a, b〉 ∈ Θ(c, d)

then for some π ∈ Π we have
B |= π(a, b, c, d).

If π is
∃w1 . . .∃wrΦ(x, y, u, v, w1, . . . , wr)

with Φ open, choose e1, . . . , er ∈ B such that

B |= Φ(a, b, c, d, e1, . . . , er).

Let C be the subalgebra of B generated by {a, b, c, d, e1, . . . , er}. Then

C |= Φ(a, b, c, d, e1, . . . , er)

so
C |= π(a, b, c, d);

hence for some π∗ ∈ Π0,
C |= π∗(a, b, c, d),

so
B |= π∗(a, b, c, d).

Thus V has definable principal congruences. 2

Before proving Taylor’s Theorem we need a combinatorial lemma, a proof of which can
be found in [3].
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Lemma 3.6 (Erdös). Let κ be an infinite cardinal and let A be a set with |A| > 2κ, C a
set with |C| ≤ κ. Let A(2) be the set of doubletons {c, d} contained in A with c 6= d. If α is a
map from A(2) to C, then for some infinite subset B of A,

α(B(2)) = {e}

for some e ∈ C.

Theorem 3.7 (Taylor). Let V be a variety of type F, and let κ = max(ω, |F|). If V has
a subdirectly irreducible algebra A with |A| > 2κ, then V has arbitrarily large subdirectly
irreducible algebras.

Proof. If A ∈ V is subdirectly irreducible and |A| > 2κ, then let a, b ∈ A be such that
Θ(a, b) is the smallest congruence not equal to ∆. As there are only κ many formulas in Π,
and as

A |= π(a, b, c, d)

for some π ∈ Π, if c 6= d, it follows from 3.3 and 3.6 that for some infinite subset B of A
there is a π∗ ∈ Π such that for c, d ∈ B, if c 6= d then

A |= π∗(a, b, c, d).

Given an infinite set I of new nullary function symbols with |I| = m and an infinite set of
variables X, let Σ be

{i 6≈ j : i, j ∈ I and i 6= j} ∪ (IdV (X)) ∪ {π∗(a, b, i, j) : i, j ∈ I and i 6= j} ∪ {a 6≈ b}.

Then for each finite Σ0 ⊆ Σ we see that by interpreting the i’s as suitable members of B,
it is possible to find an algebra (essentially A) satisfying Σ0. Thus Σ is satisfied by some
algebra A∗ of type F ∪ I ∪ {a, b}. Let I ⊆ A∗ be the elements of A∗ corresponding to I, and
let a, b again denote appropriate elements of A∗. Then |I| = m, and a 6= b. Choose θ to be
a maximal congruence on A∗ among the congruences on A∗ which do not identify a and b.
Then i, j ∈ I and i 6= j imply

〈i, j〉 6∈ θ,
as

A∗ |= π∗(a, b, i, j).

Consequently A∗/θ is subdirectly irreducible and

|A∗/θ| ≥ |I| = m.

This shows that V has arbitrarily large subdirectly irreducible members. 2

The next result does not depend on principal congruence formulas, but does indeed nicely
complement the previous theorem.
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Theorem 3.8 (Quackenbush). If V is a locally finite variety with, up to isomorphism,
only finitely many finite subdirectly irreducible members, then V has no infinite subdirectly
irreducible members.

Proof. Let V ∗ be the class of finite subdirectly irreducible members of V. If A ∈ V then
let K be the set of finitely generated subalgebras of A. By 2.14 we have

A ∈ ISPU(K),

and from local finiteness
K ⊆ IPS(V ∗) ⊆ ISP (V ∗);

hence
A ∈ ISPUSP (V ∗),

so
A ∈ ISPPU(V ∗)

by 2.23. As an ultraproduct of finitely many finite algebras is isomorphic to one of the
algebras, we have

A ∈ ISP (V ∗);

hence
A ∈ IPS(V ∗),

so A cannot be both infinite and subdirectly irreducible. 2
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Exercises §3

1. Show that commutative rings with identity have definable principal congruences.

2. Show that abelian groups of exponent n have definable principal congruences.

3. Show that discriminator varieties have definable principal congruences.

4. Show that distributive lattices have definable principal congruences.
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5. Suppose V is a variety such that there is a first-order formula φ(x, y, u, v) with

〈a, b〉 ∈ Θ(c, d)⇔ A |= φ(a, b, c, d)

for a, b, c, d ∈ A,A ∈ V. Show that V has definable principal congruences.

6. Show that a finitely generated semisimple arithmetical variety has definable principal
congruences.

7. Are elementary substructures of subdirectly irreducible [simple] algebras also subdi-
rectly irreducible1 [simple]? What about ultrapowers?

8. (Baldwin and Berman). If V is a finitely generated variety with the CEP (see II§5
Exercise 10), show that V has definable principal congruences.

§4. Three Finite Basis Theorems

One of the older questions of universal algebra was whether or not the identities of a finite
algebra of finite type F could be derived from finitely many of the identities. Birkhoff proved
that this was true if a finite bound is placed on the number of variables, but in 1954 Lyndon
constructed a seven-element algebra with one binary and one nullary operation such that
the identities were not finitely based. Murskǐı constructed a three-element algebra whose
identities are not finitely based in 1965, and Perkins constructed a six-element semigroup
whose identities are not finitely based in 1969. An example of a finite nonassociative ring
whose identities are not finitely based was constructed by Polin in 1976. On the positive
side we know that finite algebras of the following kinds have a finitely based set of identi-
ties: two-element algebras (Lyndon, 1951), groups (Oates-Powell, 1965), rings (Kruse; Lvov,
1973), algebras determining a congruence-distributive variety (Baker, 1977), and algebras
determining a variety with finitely many finite subdirectly irreducibles and definable prin-
cipal congruences (McKenzie, 1978). We will prove the theorems of Baker, Birkhoff, and
McKenzie in this section.

Definition 4.1. Let X be a set of variables and K a class of algebras. We say that IdK(X)
is finitely based if there is a finite subset Σ of IdK(X) such that

Σ |= IdK(X),

and we say that the identities of K are finitely based if there is a finite set of identities Σ
such that for any X,

Σ |= IdK(X).

1This is apparently an open problem.
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Theorem 4.2 (Birkhoff). Let A be a finite algebra of finite type F and let X be a finite set
of variables. Then IdA(X) is finitely based.

Proof. Let θ be the congruence on T(X) defined by

〈p, q〉 ∈ θ

iff
A |= p ≈ q.

(This, of course, is the congruence used to define FV (A)(X).) As A is finite there are only
finitely many equivalence classes of θ. From each equivalence class of θ choose one term. Let
this set of representatives be Q = {q1, . . . , qn}. Now let Σ be the set of equations consisting
of

x ≈ y if x, y ∈ X and 〈x, y〉 ∈ θ,
qi ≈ x if x ∈ X and 〈x, qi〉 ∈ θ,

f(qi1 , . . . , qin) ≈ qin+1 if f ∈ Fn and 〈f(qi1, . . . , qin), qin+1〉 ∈ θ.

Then a proof by induction on the number of function symbols in a term p ∈ T (X) shows
that if

〈p, qi〉 ∈ θ
then

Σ |= p ≈ qi.

But then
Σ |= p ≈ q

if
A |= p ≈ q,

and as
A |= Σ,

IdK(X) is indeed finitely based. 2

Theorem 4.3 (McKenzie). If V is a locally finite variety of finite type F with finitely many
finite subdirectly irreducible members and if V has definable principal congruences, then the
identities of V are finitely based.

Proof. Let Π0 ⊆ Π be a finite set of principal congruence formulas which show that V has
definable principal congruences. Let Π0 be {π1, . . . , πn}, and define Φ to be

π1 ∨ · · · ∨ πn.
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Then for A ∈ V and a, b, c, d ∈ A,

〈a, b〉 ∈ Θ(c, d)⇔ A |= Φ(a, b, c, d).

Let S1, . . . ,Sn be finite subdirectly irreducible members of V such that every finite sub-
directly irreducible member of V is isomorphic to one of the Si’s. By 3.8 they are, up to
isomorphism, the only subdirectly irreducible algebras in V. Let Ψ1 be a sentence which
asserts “the collection of 〈a, b〉 such that Φ(a, b, c, d) holds is Θ(c, d),” i.e. Ψ1 can be

∀u∀v
{

Φ(u, v, u, v) & ∀xΦ(x, x, u, v) & ∀x∀y[Φ(x, y, u, v)→ Φ(y, x, u, v)]

& ∀x∀y∀z[Φ(x, y, u, v) & Φ(y, z, u, v)→ Φ(x, z, u, v)]

& &
Fn 6=?

&
f∈Fn
∀x1∀y1 . . .∀xn∀yn

[
&

1≤i≤n
Φ(xi, yi, u, v)→ Φ(f(~x), f(~y), u, v)

]}
.

Thus for A any algebra of type F, A |= Ψ1 iff for all a, b, c, d ∈ A,

〈a, b〉 ∈ Θ(c, d)⇔ A |= Φ(a, b, c, d).

Next let Ψ2 be a sentence which says

“an algebra is isomorphic to one of S1, . . . ,Sn”

(see §1 Exercise 3). Then let Ψ3 be a sentence which says

“an algebra satisfies Ψ1, and if it is subdirectly irreducible

then it is isomorphic to one of S1, . . . ,Sn.”

For example, Ψ3 could be

Ψ1 & ({∃x∃y[x 6≈ y & ∀u∀v(u 6≈ v → Φ(x, y, u, v))]→ Ψ2} ∨ ∀x∀y(x ≈ y)).

Let Σ be the set of identities of V over an infinite set of variables X. As

Σ |= Ψ3,

there must be a finite subset Σ0 of Σ such that

Σ0 |= Ψ3

by 2.13. But then the subdirectly irreducible algebras satisfying Σ0 will satisfy Ψ3; hence
they will be in V . Thus the variety defined by Σ0 must be V. 2

Now we turn to the proof of Baker’s finite basis theorem. From this paragraph until the
statement of Corollary 4.18 we will assume that our finite language of algebras is F, and
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that we are working with a congruence-distributive variety V. Let p0(x, y, z), . . . , pn(x, y, z)
be ternary terms which satisfy Jónsson’s conditions II§12.6.

Lemma 4.4.

V |= pi(x, u, x) ≈ pi(x, v, x), 1 ≤ i ≤ n− 1

V |= x 6≈ y → [p1(x, x, y) 6≈ p1(x, y, y)∨ · · · ∨ pn−1(x, x, y) 6≈ pn−1(x, y, y)].

Proof. These are both immediate from II§12.6. 2

The proof of Baker’s theorem is must easier to write out if we can assume that the pi’s
are function symbols.

Definition 4.5. Let F∗ be the language obtained by adjoining new ternary operation
symbols t1, . . . , tn−1 to F, and let V ∗ be the variety defined by the identities Σ of type F

over some infinite set X of variables true of V plus the identities

ti(x, y, z) ≈ pi(x, y, z),

1 ≤ i ≤ n− 1.

Lemma 4.6. If the identities Σ∗ of V ∗ are finitely based, then so are the identities Σ of V.

Proof. Let Σ∗∗ be

Σ ∪ {ti(x, y, z) ≈ pi(x, y, z) : 1 ≤ i ≤ n− 1},

and let Σ∗0 be a finite basis for Σ∗. Then

Σ∗∗ |= Σ∗0;

hence by 2.13 there is a finite subset Σ∗∗0 of Σ∗∗ such that

Σ∗∗0 |= Σ∗0.

Thus Σ∗∗0 is a set of axioms for V ∗; hence there is a finite Σ0 ⊆ Σ such that

Σ0 ∪ {ti(x, y, z) ≈ pi(x, y, z); 1 ≤ i ≤ n− 1}

axiomatizes V ∗. Hence it is clear that

Σ0 |= Σ

as one can add new functions ti to any A satisfying Σ0 to obtain A∗ with

A∗ |= Σ∗∗0 ,
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so
A |= Σ.

2

Definition 4.7. Let T ∗ be the set of all terms p(x, ~y ) of type F∗ such that (i) no variable
occurs twice in p, and (ii) the variable x occurs in every nonvariable subterm of p (as defined
in II§14.13).

Lemma 4.8. For A ∈ V ∗ and a, b, a′, b′ ∈ A we have

Θ(a, b) ∩Θ(a′, b′) 6= ∆

iff
A |= ∃~z ∃~w [ti(p(a, ~z ), q(a′, ~w ), p(b, ~z )) 6≈ ti(p(a, ~z ), q(b′, ~w ), p(b, ~z ))]

for some p(x, ~z ), q(x, ~w ) ∈ T ∗ and some i, 1 ≤ i ≤ n− 1.

Proof. (⇒) Suppose c 6= d and

〈c, d〉 ∈ Θ(a, b) ∩Θ(a′, b′).

Then we claim that for some p̂(x, ~y ) ∈ T ∗, for some j, and for some ~g from A, we have

tj(c, p̂(a,~g ), d) 6= tj(c, p̂(b,~g ), d).

To see this first note that the equivalence relation on A generated by

{〈p̂(a,~g ), p̂(b,~g )〉 : p̂ ∈ T ∗, ~g from A}

is Θ(a, b) (one can argue this in a manner similar to the proof of 3.1). As

〈c, d〉 ∈ Θ(a, b)

we see that for each i,
〈ti(c, c, d), ti(c, d, d)〉

is in the equivalence relation generated by

{〈ti(c, p̂(a,~g ), d), ti(c, p̂(b,~g ), d)〉 : p̂ ∈ T ∗, ~g from A}.

As c 6= d, for some j we know
tj(c, c, d) 6= tj(c, d, d)

by 4.4; hence for some p̂, some ~g, and the same j,

tj(c, p̂(a,~g ), d) 6= tj(c, p̂(b,~g ), d),
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proving the claim. By incorporating c, d into the parameters, we have a p ∈ T ∗ and param-
eters ~e such that

p(a,~e ) 6= p(b, ~e );

and furthermore
〈p(a,~e ), p(b, ~e )〉 ∈ Θ(a′, b′)

as
〈p(a,~e ), p(b, ~e )〉 ∈ Θ(c, d)

because of 4.4. Now starting with 〈p(a,~e ), p(b, ~e )〉 instead of 〈c, d〉, we can repeat the above

argument to find q ∈ T ∗, ti and ~f from A such that

ti(p(a,~e ), q(a′, ~f ), p(b, ~e )) 6= ti(p(a,~e ), q(b′, ~f ), p(b, ~e )),

as desired.
(⇐) If for some i

ti(p(a,~e ), q(a′, ~f ), p(b, ~e )) 6= ti(p(a,~e ), q(b′, ~f ), p(b, ~e )),

then, as the ordered pair consisting of these two distinct elements is in both Θ(a, b) and
Θ(a′, b′) by 4.4, we have

Θ(a, b) ∩Θ(a′, b′) 6= ∆.

2

Definition 4.9. Suppose the operation symbols in F∗ have arity at most r, with r finite.
For m < ω let T ∗m be the subset of T ∗ consisting of those terms p in T ∗ with no more than
m occurrences of function symbols. Then define δm(x, y, u, v) to be∨

1≤i≤n−1
p,q∈T ∗m

∃~z ∃~w [ti(p(x, ~z ), q(u, ~w ), p(y, ~z )) 6≈ ti(p(x, ~z ), q(v, ~w ), p(y, ~z ))]

where the z’s come from {z1, . . . , zmr}, and the w’s come from {w1, . . . , wmr}.

The next lemma is just a restatement of Lemma 4.8.

Lemma 4.10. For A ∈ V ∗ and a, b, a′, b′ ∈ A, we have

Θ(a, b) ∩Θ(a′, b′) 6= ∆

iff
A |= δm(a, b, a′, b′)

for some m < ω.
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Definition 4.11. Let δ∗m be the sentence

∀x∀y∀u∀v[δm+1(x, y, u, v)→ δm(x, y, u, v)].

Lemma 4.12. (a)
V∗ |= δ∗m → δ∗m+1

for m < ω, and
(b) for A ∈ V ∗, if

A |= δ∗m

and
A |= δk(a, b, c, d),

then
A |= δm(a, b, c, d)

for k,m < ω.

Proof. To prove (a) suppose, for A ∈ V ∗,

A |= δ∗m

and, for some a, b, c, d ∈ A,
A |= δm+2(a, b, c, d).

We want to show
A |= δm+1(a, b, c, d).

Choose p, q ∈ T ∗m+2,
~f,~g ∈ A, and i such that

ti(p(a, ~f ), q(c,~g ), p(b, ~f )) 6= ti(p(a, ~f ), q(d,~g ), p(b, ~f )).

Then one can find p′, q′ ∈ T ∗1 , p′′, q′′ ∈ T ∗m+1 with

p(x, ~z ) = p′′(p′(x, ~z(1)), ~z(2))

q(x, ~w ) = q′′(q′(x, ~w(1)), ~w(2))

where ~z(1), ~z(2), ~w(1), ~w(2) are subsequences of ~z, respectively ~w. Let

a′ = p′(a, ~f(1)),

b′ = p′(b, ~f(1)),

c′ = q′(c,~g(1)),

d′ = q′(d,~g(1)).
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Then

ti(p
′′(a′, ~f(2)), q

′′(c′, ~g(2)), p
′′(b′, ~f(2))) 6= ti(p

′′(a′, ~f(2)), q
′′(d′, ~g(2)), p

′′(b′, ~f(2)));

hence
A |= δm+1(a′, b′, c′, d′).

As A |= δ∗m it follows that
A |= δm(a′, b′, c′, d′),

so there are p̂, q̂ ∈ T ∗m, and ~h,~k ∈ A, and j such that

tj(p̂(a
′,~h ), q̂(c′, ~k ), p̂(b′,~h )) 6= tj(p̂(a

′,~h ), q̂(d′, ~k ), p̂(b′,~h )),

i.e.,

tj(p̂(p
′(a, ~f(1)),~h ), q̂(q′(c,~g(1)), ~k ), p̂(p′(b, ~f(1),~h ))

6= tj(p̂(p
′(a, ~f(1)),~h ), q̂(q′(d,~g(1)), ~k ), p̂(p′(b, ~f(1),~h )).

Now
p̂(p′(x, ~z(1)), ~u ) ∈ T ∗m+1

for suitable ~u, and likewise
q̂(q′(x, ~w(1)), ~v ) ∈ T ∗m+1

for suitable ~v, so
A |= δm+1(a, b, c, d),

as was to be shown.
Combining (a) with the fact that

V ∗ |= δk → δk+1,

k < ω, we can easily show (b). 2

Definition 4.13. An algebra A is finitely subdirectly irreducible if for a, b, a′, b′ ∈ A with
a 6= b, a′ 6= b′ we always have

Θ(a, b) ∩Θ(a′, b′) 6= ∆.

(Any subdirectly irreducible algebra is finitely subdirectly irreducible.) If V is a variety,
then VFSI denotes the class of finitely subdirectly irreducible algebras in V.

Lemma 4.14. If V ∗FSI is a strictly elementary class, then, for some n0 < ω,

V ∗FSI |= (x 6≈ y & u 6≈ v)→ δn0(x, y, u, v)
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and
V ∗ |= δ∗n0

.

Proof. Let Φ axiomatize V ∗FSI . Then the set of formulas

{Φ & (a 6≈ b & c 6≈ d) & ¬ δm(a, b, c, d)}m<ω

cannot be satisfied by any algebra A and elements a, b, c, d ∈ A in view of 4.10. Hence by
the compactness theorem, there is an n0 < ω such that

{Φ & (x 6≈ y & u 6≈ v) & ¬ δm(x, y, u, v)}m≤n0

cannot be satisfied. By taking negations, we see that every algebra of type F∗ satisfies one
of

{Φ→ [(x 6≈ y & u 6≈ v)→ δm(x, y, u, v)]}m≤n0;

hence if A ∈ V ∗FSI and a, b, c, d ∈ A, we have

A |=
∨
m≤n0

(a 6≈ b & c 6≈ d)→ δm(a, b, c, d)

so
A |= (a 6≈ b & c 6≈ d)→

∨
m≤n0

δm(a, b, c, d);

and as
V ∗FSI |= δm → δm+1,

we have
A |= (a 6≈ b & c 6≈ d)→ δn0(a, b, c, d).

Thus
V ∗FSI |= (x 6≈ y & u 6≈ v)→ δn0(x, y, u, v).

Again if
A ∈ V ∗FSI

and a, b, c, d ∈ A and
A |= δn0+1(a, b, c, d)

then
Θ(a, b) ∩Θ(c, d) 6= ∆

by 4.10, so a 6= b and c 6= d. From the first part of this lemma we have

A |= δn0(a, b, c, d).
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Thus
V ∗FSI |= δ∗n0

.

Now if
A ∈ PS(V ∗FSI),

say

A ≤
∏
i∈I

Ai (as a subdirect product),

where Ai ∈ V ∗FSI , and if a, b, c, d ∈ A and

A |= δn0+1(a, b, c, d),

then for some p, q ∈ T ∗n0+1, for some ~e, ~f from A, and for some j, we have

tj(p(a,~e ), q(c, ~f ), p(b, ~e )) 6= tj(p(a,~e ), q(d, ~f ), p(b, ~e ));

hence for some i ∈ I,

tj(p(a,~e ), q(c, ~f ), p(b, ~e ))(i) 6= tj(p(a,~e ), q(d, ~f ), p(b, ~e ))(i).

Thus
Ai |= δn0+1(a(i), b(i), c(i), d(i)).

As V ∗FSI |= δ∗n0
it follows that

Ai |= δn0(a(i), b(i), c(i), d(i)).

We leave it to the reader to see that the above steps can be reversed to show

A |= δn0(a, b, c, d).

Consequently,
V ∗ |= δ∗n0

.

2

Definition 4.15. If V ∗FSI is a strictly elementary class, let Φ1 axiomatize V ∗FSI . Let Φ2 be
the sentence

∀x∀u∀v
[

&
1≤i≤n−1

ti(x, u, x) ≈ ti(x, v, x)

]
& ∀x∀y

[
x 6≈ y →

∨
1≤i≤n−1

ti(x, x, y) 6≈ ti(x, y, y)

]
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and let Φ3 be the sentence

∀x∀y∀u∀v[(x 6≈ y & u 6≈ v)→ δn0(x, y, u, v)],

where n0 is as in 4.14.

Lemma 4.16. If V ∗FSI is a strictly elementary class, then

V ∗ |= δ∗n0
& Φ2 & (Φ3 → Φ1),

where n0 and the Φi are as in 4.15.

Proof. We have
V ∗ |= δ∗n0

from 4.14 and
V ∗ |= Φ2

follows from 4.4. Finally, the assertions

A |= Φ3, A ∈ V ∗

imply
A ∈ V ∗FSI

in view of 4.10; hence
V ∗ |= Φ3 → Φ1.

2

The following improvement of Baker’s theorem (4.18) was pointed out by Jónsson.

Theorem 4.17. Suppose V is a congruence-distributive variety of finite type such that VFSI
is a strictly elementary class. Then V has a finitely based equational theory.

Proof. Let p1, . . . , pn−1 be the terms used in 4.4, and let V ∗ be as defined in 4.5. Let Φ
axiomatize VFSI . Then

Φ &

[
&

1≤i≤n−1
ti(x, y, z) ≈ pi(x, y, z)

]
axiomatizes V ∗FSI , so V ∗FSI is also a strictly elementary class. Now let Φ1,Φ2,Φ3 and n0 be
as in 4.15. If Σ∗ is the set of identities true of V ∗ over some infinite set of variables, then

Σ∗ |= δ∗n0
& Φ2 & (Φ3 → Φ1)

by 4.16. By 2.13 it follows that there is a finite subset Σ∗0 of Σ∗ such that

Σ∗0 |= δ∗n0
& Φ2 & (Φ3 → Φ1).
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We want to show that Σ∗0 axiomatizes V ∗, so suppose A is finitely subdirectly irreducible
and A |= Σ∗0. The only time we have made use of congruence-distributivity was to obtain
terms for 4.4. All of the subsequent results have depended only on 4.4 (this is not surprising
in view of Exercise 3). As Φ2 holds in the variety defined by Σ∗0 we can use these subsequent
results. Hence if a, b, c, d ∈ A and a 6= b, c 6= d, then

A |= δm(a, b, c, d)

for some m < ω by 4.10. As A |= δ∗n0
we know

A |= δn0(a, b, c, d)

by 4.12. Thus
A |= Φ3,

and as
A |= Φ3 → Φ1,

it follows that
A |= Φ1.

This means
A ∈ V ∗FSI ;

hence every subdirectly irreducible algebra satisfying Σ∗0 also satisfies Σ∗. In view of Birkhoff’s
theorem (II§8.6), Σ∗0 is a set of axioms for V ∗. From 4.6 it is clear that V has a finitely based
set of identities. 2

Corollary 4.18 (Baker). If V is a finitely generated congruence-distributive variety of finite
type, then V has a finitely based equational theory.

Proof. The proof of Jónsson’s Theorem IV§6.8 actually gives VFSI ⊆ HSPu(K), where
K generates V. If V is finitely generated, this means VFSI = VSI , a finitely axiomatizable
elementary class. 2
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Exercises §4

1. Given a finite algebra A of finite type and a finite set of variables X, show that there
is an algorithm to find a finite basis for IdA(X).

2. Show that the identities of a variety are finitely based iff the variety is a strictly
elementary class.

3. (Baker). If V is a variety with ternary terms p1, . . . , pn−1 which satisfy the statements
in Lemma 4.4, show that V is congruence-distributive.

§5. Semantic Embeddings and Undecidability

In this section we will see that by assuming a few basic results about undecidability we will be
able to prove that a large number of familiar theories are undecidable. The fundamental work
on undecidability was developed by Church, Gödel, Kleene, Rosser, and Turing in the 1930’s.
Rosser proved that the theory of the natural numbers is undecidable, and Turing constructed
a Turing machine with an undecidable halting problem. These results were subsequently
encoded into many problems to show that the latter were also undecidable—some of the
early contributors were Church, Novikov, Post, and Tarski. Popular new techniques of
encoding were developed in the 1960’s by Ershov and Rabin.

We will look at two methods, the embedding of the natural numbers used by Tarski, and
the embedding of finite graphs used by Ershov and Rabin.

The precise definition of decidability cannot be given here—however it suffices to think
of a set of objects as being decidable if there is an “algorithm” to determine whether or not
an object is in the set, and it is common to think of an algorithm as a computer program.

Let us recall the definition of the theory of a class of structures.

Definition 5.1. Let K be a class of structures of type L. The theory of K, written Th(K),
is the set of all first-order sentences of type L (over some fixed “standard” countably infinite
set of variables) which are satisfied by K.

Definition 5.2. Let A be a structure of type L and let B be a structure of type L∗. Suppose
we can find formulas

∆(x)

Φf (x1, . . . , xn, y) for f ∈ Fn, n ≥ 1

Φr(x1, . . . , xn) for r ∈ Rn, n ≥ 1

of type L∗ such that if we let

B0 = {b ∈ B : B |= ∆(b)}
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then the set
{〈〈b1, . . . , bn〉, b〉 ∈ Bn

0 ×B0 : B |= Φf (b1, . . . , bn, b)}
defines an n-ary function f on B0, for f ∈ Fn, n ≥ 1, and the set

{〈b1, . . . , bn〉 ∈ Bn
0 : B |= Φr(b1, . . . , bn)}

defines an n-ary relation r on B0 for r ∈ Rn, n ≥ 1, such that by suitably interpreting the
constant symbols of L in B0 we have a structure B0 of type L isomorphic to A. Then we
say A can be semantically embedded in B, written A -

sem B. The notation A -

sem K means
A can be semantically embedded in some member of K, and the notation H -

sem K means
each member of H can be semantically embedded in at least one member of K, using the
same formulas ∆,Φf ,Φr.

Lemma 5.3. If G -

sem H and H -

sem K, then G -

sem K, i.e., the notion of semantic
embedding is transitive.

Proof. (Exercise.) 2

Definition 5.4. If K is a class of structures of type L and c1, . . . , cn are symbols not
appearing in L, then K(c1, . . . , cn) denotes the class of all structures of type L∪{c1, . . . , cn},
where each ci is a constant symbol, obtained by taking the members B of K and arbitrarily
designating elements c1, . . . , cn in B.

Definition 5.5. Let N be the set of natural numbers, and let N be 〈N,+, ·, 1〉.

We will state the following result without proof, and use it to prove that the theory of
rings and the theory of groups are undecidable. (See [33].)

Theorem 5.6 (Tarski). Given K, if for some n < ω we have N -

sem K(c1, . . . , cn), then
Th(K) is undecidable.

Lemma 5.7 (Tarski). N -

sem Z = 〈Z,+, ·, 1〉, Z being the set of integers.

Proof. Let ∆(x) be

∃y1 · · · ∃y4[x ≈ y1 · y1 + · · ·+ y4 · y4 + 1].

By a well-known theorem of Lagrange,

Z |= ∆(n) iff n ∈ N.

Let Φ+(x1, x2, y) be
x1 + x2 ≈ y,
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and let Φ.(x1, x2, y) be
x1 · x2 ≈ y.

Then it is easy to see N -

sem Z. 2

Theorem 5.8 (Tarski). The theory of rings is undecidable.

Proof. Z is a ring, so 5.6 applies. 2

Remark. In the above theory of rings we can assume the language being used is any of the
usual languages such as {+, ·}, {+, ·, 1}, {+, ·,−, 0, 1} in view of 5.6.

Lemma 5.9 (Tarski).
〈Z,+, ·, 1〉 -

sem 〈Z,+, 2, 1〉,
where 2 denotes the function mapping a to a2.

Proof. Let ∆(x) be
x ≈ x,

let Φ+(x1, x2, y) be
x1 + x2 ≈ y,

and let Φ.(x1, x2, y) be
y + y + x2

1 + x2
2 ≈ (x1 + x2)2.

To see that the latter formula actually defines · in Z, note that in Z

a · b = c⇔ 2c+ a2 + b2 = (a+ b)2.

2

Lemma 5.10 (Tarski).
〈Z,+, 2, 1〉 -

sem 〈Z,+, |, 1〉,
where a|b means a divides b.

Proof. Let ∆(x) be
x ≈ x,

let Φ+(x1, x2, y) be
x1 + x2 ≈ y

and let Φ2(x1, y) be

∀z[(x1 + y)|z ↔ ((x1|z) & (x1 + 1|z))]
& ∀u∀v∀z[((u + x1 ≈ y) & (v + 1 ≈ x1))

→ (u|z ↔ (x1|z & v|z))].
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Then Φ2(a, b) holds for a, b ∈ Z iff

a+ b = ± a(a+ 1)

b− a = ± a(a− 1),

and thus iff

b = a2.

2

Lemma 5.11 (Tarski). Let Sym(Z) be the set of bijections from Z to Z, let ◦ denote
composition of bijections, and let π be the bijection defined by π(a) = a+ 1, a ∈ Z. Then

〈Z,+, |, 1〉 -

sem 〈Sym(Z), ◦, π〉.

Proof. Let ∆(x) be

x ◦ π ≈ π ◦ x,

let Φ+(x1, x2, y) be

x1 ◦ x2 ≈ y,

and let Φ|(x1, x2) be

∀z(x1 ◦ z ≈ z ◦ x1 → x2 ◦ z ≈ z ◦ x2).

For σ ∈ Sym(Z) note that

σ ◦ π = π ◦ σ

iff for a ∈ Z,
σ(a+ 1) = σ(a) + 1;

hence if

σ ◦ π = π ◦ σ

then

σ(a) = σ(0) + a,

i.e.,

σ = πσ(0).

Thus

〈Sym(Z), ◦, π〉 |= ∆(σ)

iff

σ ∈ {πn : n ∈ Z}.
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Clearly Φ+ defines a function on this set, and indeed

〈Sym(Z), ◦, π〉 |= Φ+(πa, πb, πc)

iff
a+ b = c.

Next we wish to show
〈Sym(Z), ◦, π〉 |= Φ|(π

a, πb) iff a|b,
in which case the mapping

a 7→ πa

for a ∈ Z gives the desired isomorphism to show

〈Z,+, |, 1〉 −−→
sem
〈Sym(Z), ◦, π〉.

So suppose a|b in Z. If σ ∈ Sym(Z) and

σ ◦ πa = πa ◦ σ

we have
σ(c+ a) = σ(c) + a

for c ∈ Z; hence
σ(c + d · a) = σ(c) + d · a

for c, d ∈ Z, so in particular
σ(c+ b) = σ(c) + b;

hence
σ ◦ πb = πb ◦ σ.

Thus
a|b⇒ 〈Sym(Z), ◦, π〉 |= Φ|(π

a, πb).

Conversely suppose
〈Sym(Z), ◦, π〉 |= Φ|(π

a, πb)

for some a, b ∈ Z. If b = 0 then a|b, so suppose b 6= 0. Let

ρ(c) =

{
c+ a if a|c
c if a - c

for c ∈ Z. Clearly ρ ∈ Sym(Z). An easy calculation shows

ρ ◦ πa = πa ◦ ρ;
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hence looking at Φ| we must have
ρ ◦ πb = πb ◦ ρ.

Now

πb ◦ ρ(c) =

{
c + a+ b if a|c
c + b if a - c

and

ρ ◦ πb(c) =

{
c+ b+ a if a|c+ b

c+ b if a - c+ b.

Thus
a|c iff a|c+ b,

for c ∈ Z; hence a|b. 2

Corollary 5.12 (Tarski). The theory of groups is undecidable.

Proof. From 5.3, 5.7, 5.9, 5.10, and 5.11 we have N -

sem 〈Sym(Z), ◦, π〉. If K is the class
of groups (in the language {·}) then 〈Sym(Z), ◦, π〉 ∈ K(c1); hence by 5.6 it follows that
Th(K) is undecidable. 2

A major result of J. Robinson was to show 〈N,+, ·, 1〉 -

sem 〈Q,+, ·, 1〉; hence the theory
of fields is undecidable.

Now we turn to our second technique for proving undecidability. Recall that a graph is
a structure 〈G, r〉 where r is an irreflexive and symmetric binary relation.

Definition 5.13. Gfin will denote the class of finite graphs.

The following result we state without proof. (See [13]; Rabin [1965].)

Theorem 5.14 (Ershov, Rabin). If we are given K, and for some n < ω we have

Gfin
-

sem K(c1, . . . , cn),

then Th(K) is undecidable.

Corollary 5.15 (Grzegorczyk). The theory of distributive lattices is undecidable.

Proof. If P = 〈P,≤〉 is a poset, recall that a lower segment of P means a subset S of P
such that a ∈ P, b ∈ S and a ≤ b imply a ∈ S. In I§3 Exercise 4 it was stated that a finite
distributive lattice is isomorphic to the lattice of nonempty lower segments (under ⊆) of the
poset of join irreducible elements of the lattice; and if we are given any poset with 0 then
the nonempty lower segments form a distributive lattice, with the poset corresponding to
the join irreducibles.
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Thus given a finite graph 〈G, r〉, let us define a poset P = 〈P,≤〉 by

P = G ∪ {{a, b} ⊆ G : arb holds} ∪ {0},

and require p ≤ q to hold iff p = q, p = 0, or p ∈ G and q is of the form {p, b}. Then in
the lattice L of lower segments of P the minimal join irreducible elements are precisely the
lower segments of the form {a, 0} for a ∈ G; and arb holds in G iff there is a join irreducible
element above {a, 0} and {b, 0} in L. (See Figure 34 for the poset corresponding to the graph
in Figure 30.) Hence if we let Irr(x) be

∀y∀z(y ∨ z ≈ x→ (y ≈ x ∨ z ≈ x))

and then let ∆(x) be

Irr(x) & ∀y[(y ≤ x & Irr(y))→ (y ≈ 0 ∨ y ≈ x)] & (x 6≈ 0)

and let Φr(x1, x2) be

(x1 6≈ x2) & ∃y[Irr(y) & x1 ≤ y & x2 ≤ y],

where in the above formulas u ≤ v is to be replaced by u ∧ v = u, then we see that 〈G, r〉 is
semantically embedded in 〈L,∨,∧, 0〉. 2

db,{b, c}{a, b} { c, d{ }}

b c da

0
Figure 34

Corollary 5.16 (Rogers). The theory of two equivalence relations is undecidable, i.e., if K
is the class of structures 〈A, r1, r2〉 where r1 and r2 are both equivalence relations on A, then
Th(K) is undecidable.
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Proof. Given a finite graph 〈G, r〉 let ≤ be a linear order on G. Then let S be the set

G ∪ {〈a, b〉 : arb}.
Let the equivalence class a/r1 be

{a} ∪ {〈a, b〉 : arb, a < b} ∪ {〈b, a〉 : arb, a < b}
and let the equivalence class b/r2 be

{b} ∪ {〈a, b〉 : arb, a < b} ∪ {〈b, a〉 : arb, a < b}.
(See Figure 35 for the structure 〈S, r1, r2〉 corresponding to the graph in Figure 30 with
a < b < c < d. The rows give the equivalence classes of r1, the columns the equivalence
classes of r2.) Then 〈S, r1, r2〉 is a set with two equivalence relations. Let

r0 = r1 ∩ r2.

Then the elements of G are precisely those s ∈ S such that

s/r0 = {s},
and for a, b ∈ G, arb holds iff

|{c ∈ S : ar1c and cr2b} ∪ {c ∈ S : br1c and cr2a}| = 2.

Thus the formulas

∆(x) = ∀y[(xr1y & xr2y)→ x ≈ y]

Φr(x1, x2) = ∃y1∃y2

{
y1 6≈ y2 &

[(
&
i=1,2

x1r1yi & yir2x2

)
∨(

&
i=1,2

x2r1yi & yir2x1

)]}
suffice to show

〈G, r〉 -

sem 〈S, r1, r2〉.
2

c, d
d, c

b, c
c, b

a,
b,

b
aa

b

c

d

d
d,
b,

b

Figure 35
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A more general notion of a semantic embedding of a structure A into a structure B is
required for some of the more subtle undecidability results, namely the interpretation of the
elements of A as equivalence classes of n-tuples of elements of B. Of course this must all be
done in a first-order fashion. For notational convenience we will define this only for the case
of A a binary structure, but it should be obvious how to formulate it for other structures.

Definition 5.17. Let A = 〈A, r〉 be a binary structure, and B a structure of type L. A can
be semantically embedded in B, written A

sem−−→ B, if there are L-formulas, for some n < ω,

∆(x1, . . . , xn)

Φr(x1, . . . , xn; y1, . . . , yn)

Eq(x1, . . . , xn; y1, . . . , yn)

such that if we let
D = {〈b1, . . . , bn〉 ∈ Bn : B |= ∆(b1, . . . , bn)}

and if rD is the binary relation

rD = {〈~b,~c 〉 ∈ D ×D : B |= Φr(~b,~c )}

and ≡ is the binary relation

≡ = {〈~b,~c 〉 ∈ D ×D : B |= Eq(~b,~c )}

then ≡ is an equivalence relation on D and we have

〈A, r〉 ∼= 〈D, rD〉/ ≡

where
rD/ ≡ = {〈~b/ ≡,~c/ ≡〉 ∈ D/ ≡ ×D/ ≡ : rD ∩ (~b/ ≡ ×~c/ ≡) 6= ∅}.

A class H of binary structures can be semantically embedded into a class K of structures
of type L, written H

sem−−→ K, if there are formulas ∆,Φr,Eq as above such that for each
structure A in the class H there is a member B of K such that ∆,Φr,Eq provide a semantic
embedding of A into B.

Using our more general notion of semantic embedding we still have the general results
from before, two of which we repeat here for convenience.

Theorem 5.18. (a) The semantic embeddability relation
sem−−→ is transitive.

(b) (Ershov, Rabin). If finite graphs can be semantically embedded into a class K(c1, . . . , cn),
then the first-order theory of K is undecidable.

For the last part of this section we will look at results on Boolean pairs.
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Definition 5.19. A Boolean pair is a structure 〈B,B0,≤〉 where 〈B,≤〉 is a Boolean algebra
(i.e., this is a complemented distributive lattice) and B0 is a unary relation which gives a
subalgebra 〈B0,≤〉. The class of all Boolean pairs is called BP.

The Boolean pairs 〈B,B0,≤〉 such that 〈B,≤〉 is atomic (i.e., every element is a sup of
atoms) and B0 contains all the atoms of 〈B,≤〉 form the class BP 1.

The Boolean pairs 〈B,B0,≤〉 such that for every element b ∈ B there is a least element
b ∈ B0 with b ≤ b constitute the class BPM .

The Boolean pairs 〈B,B0,≤〉 in BPM such that 〈B,≤〉, 〈B0,≤〉 are atomic form the class
BP 2.

Definition 5.20. Let G∗fin be the class of finite graphs 〈G, r〉 such that r 6= ∅.

Lemma 5.21. Gfin
sem−−→ G∗fin(c).

Proof. (Exercise.) 2

Adapting a technique of Rubin, McKenzie proved the following.

Theorem 5.22 (McKenzie). The theory of BP 2 is undecidable.

Proof. Given a member G = 〈G, r〉 of G∗fin let X = G × ω. Two sets Y and Z are said
to be “almost equal,” written Y

a
= Z, if Y and Z differ by only finitely many points. For

g ∈ G, let Cg = {〈g, j〉 : j ∈ ω} ⊆ X, a “cylinder” of X. Let B be all subsets of X which

are almost equal to a union of cylinders, i.e., all Y such that for some S ⊆ G, Y
a
=
⋃
g∈S Cg.

Note that 〈B,⊆〉 is a Boolean algebra containing all finite subsets of X.
To define B0 first let

E = {{a, b} : 〈a, b〉 ∈ r},
the set of unordered edges of G, and then for each g ∈ G choose a surjective map

αg : Cg → E × ω

such that

|α−1
g (〈e, j〉)| =

{
2 if g ∈ e
3 if g 6∈ e.

Then, for 〈e, j〉 ∈ E × ω, let

De,j =
⋃
g∈G

α−1
g (〈e, j〉).

This partitions X into finite sets De,j such that for g ∈ G,

|De,j ∩ Cg| =
{

2 if g ∈ e
3 if g 6∈ e.
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Let B0 be the set of finite and cofinite unions of De,j’s. Note that 〈B0,⊆〉 is a subalgebra of
〈B,⊆〉 as a Boolean algebra.

Now we want to show 〈G, r〉 sem−−→ 〈B,B0,⊆〉 :

∆(x) is “for all atoms y of B0 there are exactly two or three atoms of B below x ∧ y”
Eq(x, y) is ∀z∃u [u is an atom of B0 and there are exactly two or three atoms of B below

x ∧ y ∧ u and (x ∧ y ∧ z ∧ u ≈ 0 or x ∧ y ∧ z′ ∧ u ≈ 0)]
Φr(x, y) is x 6≈ y & ∀u∀v[Eq(u, x) & Eq(v, y)→ (for some atom z of B0 there are exactly

two atoms of B below each of u ∧ z and v ∧ z)].
To see that G

sem−−→ 〈B,B0,≤〉 it suffices to check the following claims:

(a) 〈B,B0,≤〉 |= ∆(Z) implies Z
a
= Cg for some g ∈ G (just recall the description of the

elements of B),
(b) 〈B,B0,≤〉 |= ∆(Cg) for g ∈ G,
(c) for X, Y such that ∆(X),∆(Y ) hold we have Eq(X, Y ) iff X

a
= Y,

(d) for X, Y such that ∆(X),∆(Y ) hold we have Φr(X, Y ) iff X
a
= Cg, Y

a
= Cg′ for some

g, g′ ∈ G with 〈g, g′〉 ∈ r,
(e) the mapping g 7→ Cg/ ≡ establishes G ∼= 〈D, rD〉/ ≡ .

Thus we have proved

G∗fin
sem−−→ BP 2;

hence

G∗fin(c)
sem−−→ BP 2(c);

thus by Lemma 5.21

Gfin
sem−−→ BP 2(c).

2

Theorem 5.23 (Rubin). The theory of CA1, the variety of monadic algebras, is undecidable.

Proof. It suffices to show BP 2 sem−−→ CA1 as we have Gfin
sem−−→ BP 2(c1). Given 〈B,B0,≤〉∈

BP 2, let c be the unary function defined on the Boolean algebra 〈B,≤〉 by

c(b) = the least member of B0 above b.

Then 〈B,∨,∧, ′, c, 0, 1〉 is a monadic algebra, and with

∆(x) defined as x ≈ x

ΦB0(x) defined as x ≈ c(x)

we have, using the old definition of semantic embedding, 〈B,B0,≤〉 -

sem 〈B,∨,∧, ′, c, 0, 1〉.
2
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Actually the class BPM defined above is just an alternate description of monadic algebras,
and BP 2 ⊆ BPM .

Finally we turn to the class BP 1, a class which has played a remarkable role in the
classification of decidable locally finite congruence modular varieties.

Theorem 5.24 (McKenzie). The theory of BP 1 is undecidable.

Proof. Given a finite graph 〈G, r〉 with r 6= ∅ first construct 〈B,B0,⊆〉 as in 5.22, so B is
a field of subsets of X = G × ω. Let π1 be the first projection map from X × ω to X, and
define

B∗ = {π−1
1 (Y ) : Y ∈ B}

B∗0 = {π−1
1 (Y ) : Y ∈ B0}.

Then
〈B∗, B∗0 ,⊆〉 ∼= 〈B,B0,⊆〉,

and each nonzero member of B∗ contains infinitely many points from X × ω. Now let

B∗∗ = {Y ⊆ X × ω : Y
a
= Z for some Z ∈ B∗}

B∗∗0 = {Y ⊆ X × ω : Y
a
= Z for some Z ∈ B∗0}.

Then 〈B∗∗, B∗∗0 ,⊆〉 ∈ BP 1 as all finite subsets of X × ω belong to both B∗∗ and B∗∗0 , and
furthermore

〈B∗∗, B∗∗0 ,⊆〉/
a
= ∼= 〈B∗, B∗0 ,⊆〉.

Now “Y is finite” can be expressed for Y ∈ B∗∗ by

∀x[x ≤ Y → x ∈ B∗∗0 ]

as every nonzero element b0 of B0 has an element b ∈ B −B0 below it. Thus

〈B∗, B∗0 ,⊆〉
sem−−→ 〈B∗∗, B∗∗0 ,⊆〉;

hence
〈B,B0,⊆〉 sem−−→ 〈B∗∗, B∗∗0 ,⊆〉.

This shows
BP 2 sem−−→ BP 1;

hence
Gfin

sem−−→ BP 1(c1).

2
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Recent Developments and
Open Problems

At several points in the text we have come very close to some of the most exciting areas
of current research. Now that the reader has had a substantial introduction to universal
algebra, we will survey the current situation in these areas and list a few of the problems
being considered. (This is not a comprehensive survey of recent developments in universal
algebra—the reader will have a good idea of the breadth of the subject if he reads Taylor’s
survey article [35], Jónsson’s report [20], and the appendices to Grätzer’s book [16].)

§1. The Commutator and the Center

One of the most promising developments has been the creation of the commutator by Smith
[1976]. He showed that, for any algebra A in a congruence-permutable variety, there is a
unique function, [−,−], called the commutator, from (Con A) × (Con A) to Con A with
certain properties. In the case of groups this is just the familiar commutator (when one
considers the corresponding normal subgroups). Rather abruptly, several concepts one had
previously considered to belong exclusively to the study of groups have become available on
a grand scale: viz., solvability, nilpotence, and the center. Hagemann and Herrmann [1979]
subsequently extended the commutator to any algebra in a congruence-modular variety.
Freese and McKenzie [1987] have given another definition of the commutator, and of course
we used their (first-order) definition of the center (of an arbitrary algebra) in II§13. These
new concepts have already played key roles in Burris and McKenzie [1981] and Freese and
McKenzie [1981],[1987].

Problem 1. For which varieties can we define a commutator?

Problem 2. Find a description of all A (parallel to II§13.4) such that Z(A) = ∇A.

283



284 Recent Developments and Open Problems

§2. The Classification of Varieties

Birkhoff’s suggestion in the 1930’s that congruence lattices should be considered as funda-
mental associated structures has proved to be remarkably farsighted. An important early
result was the connection between modular congruence lattices and the unique factorization
property due to Ore [1936]. A major turning point in showing the usefulness of classifying a
variety by the behavior of the congruence lattices was Jónsson’s theorem [1967] that if V (K)
is congruence-distributive, then V (K) = IPSHSPU(K).

The role of a single congruence, the center, is rapidly gaining attention. Let us call a
variety modular Abelian if it is congruence-modular and, for any algebra A in the variety,
Z(A) = ∇A. Such varieties are essentially varieties of unitary left R-modules. A variety V is
said to be (discriminator) ⊗ (modular Abelian) if it is congruence modular and there are two
subvarieties V1, V2 such that V1 is a discriminator variety, V2 is a modular Abelian variety,
and V = V1 ∨ V2. For such a variety V (see Burris and McKenzie [1981]) each algebra in V
is, up to isomorphism, uniquely decomposable as a product of an algebra from V1 and an
algebra from V2. The importance of this class of varieties is discussed in §3 and §5 below.
The following Hasse diagram (Figure 36) shows some of the most useful classes of varieties
in research.

semisimple
arithmetical

modular
Abelian

(discriminator)
  (modular Abelian)

congruence-
   permutable

congruence
-distributive

generated by
a primal algebra

all varieties

arithmetical

congruence-modular

discriminator

trivial varieties
Figure 36
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§3. Decidability Questions

Decidability problems have been a popular area of investigation in universal algebra, thanks
to the fascinating work of Mal’cev [24] and Tarski [33]. Let us look at several different types
of decidability questions being studied.

(a) First-order Theories. In V§5 we discussed the semantic embedding technique for
proving that theories are undecidable. There has been a long-standing conviction among
researchers in this area that positive decidability and nice structure theory go hand in hand.
The combined efforts of Szmielew [1954], Ershov [1972] and Zamjatin [1978a] show that
a variety of groups is decidable iff it is Abelian. This has recently been strengthened by
McKenzie [1982c] as follows: any class of groups containing PS(G), where G can be any
nonabelian group, has an undecidable theory. In Burris and Werner [1979] techniques of
Comer [1975] for cylindric algebras have been extended to prove that every finitely generated
discriminator variety of finite type has a decidable theory. Zamjatin [1976] showed that a
variety of rings has a decidable theory iff it is generated by a zero-ring and finitely many finite
fields. Recently Burris and McKenzie [1981] have applied the center and commutator to prove
the following: if a locally finite congruence-modular variety has a decidable theory, then it
must be of the form (discriminator) ⊗ (modular Abelian). Indeed there is an algorithm such
that, given a finite set K of finite algebras of finite type, one can decide if V (K) is of this
form, and if so, one can construct a finite ring R with 1 such that V (K) has a decidable
theory iff the variety of unitary left R-modules has a decidable theory. This leads to an
obvious question.

Problem 3. Which locally finite varieties of finite type have a decidable theory?

Zamjatin [1976] has examined the following question for varieties of rings.

Problem 4. For which varieties of finite type is the theory of the finite algebras in the variety
decidable?

Actually we know very little about this question, so let us pose two rather special prob-
lems.

Problem 5. Do the finite algebras in any finitely generated arithmetical variety of finite type
have a decidable theory?

Problem 6. Do the finite algebras in any finitely generated congruence-distributive, but not
congruence-permutable, variety of finite type have an undecidable theory?

(b) Equational Theories. Tarski [1953] proved that there is no algorithm for deciding if an
equation holds in all relation algebras (hence the first-order theory is certainly undecidable).
Mal’cev [24] showed the same for unary algebras. Murskǐı [1968] gave an example of a
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finitely based variety of semigroups with an undecidable equational theory. R. Freese [1979]
has proved that there is no algorithm to decide which equations in at most 5 variables hold
in the variety of modular lattices. From Dedekind’s description (see [3]) of the 28 element
modular lattice freely generated by 3 elements it is clear that one can decide which equations
in at most 3 variables hold in the variety of modular lattices.

Problem 7. Is there an algorithm to decide which equations in at most 4 variables hold in
modular lattices?

(c) Word Problems. Given a variety V of type F, a presentation (of an algebra A) in V
is an ordered pair 〈G,R〉 of generators G and defining relations R such that the following
hold.

(i) R is a set of equations p(g1, . . . , gn) ≈ q(g1, . . . , gn) of type F∪G (we assume F∩G = ∅)
with g1, . . . , gn ∈ G.
(ii) If V̂ is the variety of type F ∪G defined by Σ∪R, where Σ is a set of equations defining
V, then A is the reduct (see II§1 Exercise 1) of FV̂ (∅) to the type of V.

When the above holds we write PV (G,R) for A, and say “PV (G,R) is the algebra in V freely
generated by G subject to the relations R.” If R = ∅ we just obtain FV (G). A presentation
〈G,R〉 is finite if both G and R are finite, and in such case PV (G,R) is said to be finitely
presented.

The word problem for a given presentation 〈G,R〉 in V asks if there is an algorithm to
determine, for any pair of “words,” i.e., terms r(g1, . . . , gn), s(g1, . . . , gn), whether or not

FV (∅) |= r(g1, . . . , gn) ≈ s(g1, . . . , gn).

If so, the word problem for 〈G,R〉 is decidable (or solvable); otherwise it is undecidable (or
unsolvable). The question encountered in (b) above of “which equations in the set of variables
X hold in a variety V ” is often called the word problem for the free algebra FV (X). The word
problem for a given variety V asks if every finite presentation 〈G,R〉 in V has a decidable
word problem. If so, the word problem for V is decidable; otherwise it is undecidable.

Markov [1947] and Post [1947] proved that the word problem for semigroups is undecid-
able. (A fascinating introduction to decidability and word problems is given in Trakhtenbrot
[36].) Perhaps the most celebrated result is the undecidability of the word problem for
groups (Novikov [1955]). A beautiful algebraic characterization of finitely presented groups
PV (G,R) with solvable word problems is due to Boone and Higman [1974], namely PV (G,R)
has a solvable word problem iff it can be embedded in a simple group S which in turn can be
embedded in a finitely presented group T. This idea has been generalized by Evans [1978]
to the variety of all algebras of an arbitrary type. Other varieties where word problems have
been investigated include loops (Evans [1951]) and modular lattices (Hutchinson [1973], Lip-
schitz [1974] and Freese [1979]). The survey article of Evans [14] is recommended.

Problem 8. Is the word problem for orthomodular lattices decidable?
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(d) Base Undecidability. This topic has been extensively developed by McNulty [1976]
and Murskǐı [1971]. The following example suffices to explain the subject. Suppose one takes
a finite set of equations which are true of Boolean algebras and asks: “Do these equations
axiomatize Boolean algebras?” Surprisingly, there is no algorithm to decide this question.

Problem 9. Can one derive the Linial-Post theorem [1949] (that there is no algorithm to de-
termine if a finite set of tautologies with modus ponens axiomatizes the propo-
sitional calculus) from the above result on Boolean algebras, or vice versa?

(e) Other Undecidable Properties. Markov [26] showed that a number of properties of
finitely presented semigroups are undecidable, for example there is no algorithm to determine
if the semigroup is trivial, commutative, etc. Parallel results for groups were obtained
by Rabin [1958]; and McNulty [1976] investigates such questions for arbitrary types. In
[1975] McKenzie shows that the question of whether or not a single groupoid equation has
a nontrivial finite model is undecidable, and then he derives the delightful result that there
is a certain groupoid equation which will have a nontrivial finite model iff Fermat’s Last
Theorem is actually false. For decidability questions concerning whether a quasivariety is
actually a variety see Burris [1982b] and McNulty [1977]. A difficult question is the following.

Problem 10. (Tarski). Is there an algorithm to determine if V (A) has a finitely based equa-
tional theory, given that A is a finite algebra of finite type?

§4. Boolean Constructions

Comer’s work [1971], [1974], [1975], and [1976] connected with sheaves has inspired a se-
rious development of this construction in universal algebra. Comer was mainly interested
in sheaves over Boolean spaces, and one might say that this construction, which we have
formulated as a Boolean product, bears the same relation to the direct product that the
variety of Boolean algebras bears to the class of power set algebras Su(I). Let us discuss the
role of Boolean constructions in two major results.

The decidability of any finitely generated discriminator variety of finite type (Burris and
Werner [1979]) is proved by semantically embedding the countable members of the variety
into countable Boolean algebras with a fixed finite number of distinguished filters, and then
applying a result of Rabin [1969]. The semantic embedding is achieved by first taking
the Boolean product representation of Keimel and Werner [1974], and then converting this
representation into a better behaved Boolean product called a filtered Boolean power (the
filtered Boolean power is the construction introduced by Arens and Kaplansky in [1948]).

The newest additions to the family of Boolean constructions are the modified Boolean
powers, introduced by Burris in the fall of 1978. Whereas Boolean products of finitely many
finite structures give a well-behaved class of algebras, the modified Boolean powers give
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a uniform method for constructing deviant algebras from a wide range of algebras. This
construction is a highly specialized subdirect power, but not a Boolean product.

The construction is quite easy. Given a field B of subsets of a set I, a subfield B0 of B,
an algebra A, and a congruence θ on A, let

A[B,B0, θ]
∗ = {f ∈ AI : f−1(a) ∈ B, f−1(a/θ) ∈ B0, for a ∈ A, and |Rg(f)| < ω}.

This is a subuniverse of AI , and the corresponding subalgebra is what we call the modified
Boolean power A[B,B0, θ]

∗. McKenzie developed a subtle generalization of this construction
in the fall of 1979 for the decidability result of Burris and McKenzie mentioned in §3(a)
above. His variation proceeds as follows: let B,B0,A and θ be as above, and suppose
A ≤ S. Furthermore assume that B0 contains all singletons {i}, for i ∈ I. Then the set

A[B,B0, θ,S]∗ = {f ∈ SI : ∃g ∈ A[B,B0, θ]
∗ with [[f 6= g]] finite}

is a subuniverse of SI . The corresponding subalgebra A[B,B0, θ,S]∗ is the algebra we want.

§5. Structure Theory

We have seen two beautiful results on the subject of structure theory, namely the Bulman-
Fleming, Keimel and Werner theorem (IV§9.4) that every discriminator variety can be rep-
resented by Boolean products of simple algebras, and McKenzie’s proof [1982b] that every
directly representable variety is congruence-permutable. McKenzie goes on to show that in
a directly representable variety every directly indecomposable algebra is modular Abelian or
functionally complete.

The definition of a Boolean product was introduced in Burris and Werner [1979] as a
simplification of a construction sometimes called a Boolean sheaf. Subsequently Krauss and
Clark [1979] showed that the general sheaf construction could be described in purely algebraic
terms, reviewed much of the literature on the subject, and posed a number of interesting
problems. Recently Burris and McKenzie [1981] have proved that if a variety V can be
written in the form IΓa(K), with K consisting of finitely many finite algebras, then V is of
the form (discriminator) ⊗ (modular Abelian); and then they discuss in detail the possibility
of Boolean powers, or filtered Boolean powers, of finitely many finite algebras representing
a variety. The paper concludes with an internal characterization of all quasiprimal algebras
A such that the [countable] members of V (A) can be represented as filtered Boolean powers
of A, generalizing the work of Arens and Kaplansky [1948] on finite fields.

Let us try to further crystallize the mathematically imprecise question of “which varieties
admit a nice structure theory” by posing some specific questions.

Problem 11. For which varieties does there exist a bound on the size of the directly inde-
composable members?
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Problem 12. For which varieties V is every algebra in V a Boolean product of directly
indecomposable algebras? (Krauss and Clark [1979]) of subdirectly irreducible
algebras? of simple algebras?

Problem 13. For which finite rings R with 1 is the variety of unitary left R-modules directly
representable?

§6. Applications to Computer Science

Following Kleene’s beautiful characterization [1956] of languages accepted by finite state
acceptors and Myhill’s study [1957] of the monoid of a language, considerable work has
been devoted to relating various subclasses of regular languages and the associated class of
monoids. For example Schützenberger [1965] showed that the class of star-free languages
corresponds to the class of groupfree monoids. For this direction see the books [11], [12] of
Eilenberg, and the problem set and survey of Brzozowski [7], [7a].

§7. Applications to Model Theory

Comer [1974] formulated a version of the Feferman-Vaught theorem (on first-order properties
of direct products) for certain Boolean products, and in Burris and Werner [1979] it is
shown that all of the known variations on the Feferman-Vaught theorem can be derived
from Comer’s version.

Macintyre [1973/74] used sheaf constructions to describe the model companions of certain
classes of rings, and this was generalized somewhat by Comer [1976] and applied to varieties of
monadic algebras. In Burris and Werner [1979] a detailed study is made of model companions
of discriminator varieties, and then the concept of a discriminator formula is introduced to
show that the theorems of Macintyre and Comer are easy consequences of the results on
discriminator varieties. A formula τ(x, y, u, v) is a discriminator formula for a class K of
algebras if it is an existential formula in prenex form such that the matrix is a conjunction
of atomic formulas, and we have

K |= τ(x, y, u, v)↔ [(x ≈ y & u ≈ v) ∨ (x 6≈ y & x ≈ v)].

Problem 14. For which varieties V can one find a discriminator formula for the subclass of
subdirectly irreducible members?

Problem 15. Which finite algebras have a discriminator formula?
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§8. Finite Basis Theorems

In V§4 we looked at the three known general results on the existence of a finite basis for a va-
riety (i.e., the variety is finitely axiomatizable). For many years universal algebraists hoped
to amalgamate the Oates-Powell theorem [1965] (that a variety generated by a finite group
has a finite basis) with Baker’s theorem (that a finitely generated congruence-distributive
variety of finite type has a finite basis) into one theorem saying that a finitely generated
congruence-modular variety of finite type would have a finite basis. This was shown im-
possible by Polin [1976] who gave an example of a finitely generated but not finitely based
(congruence-permutable) variety of nonassociative rings.

Problem 16. Find a common generalization of the Oates-Powell theorem and Baker’s theo-
rem.

§9. Subdirectly Irreducible Algebras

Let F be a type of algebras, and let κ = |F|+ω. As we have seen in V§3, Taylor [1972] proved
that if a variety V of type F has a subdirectly irreducible algebra of size greater than 2κ then
V has arbitrarily large subdirectly irreducible members. Later McKenzie and Shelah [1974]
proved a parallel result for simple algebras. In V§3 we proved Quackenbush’s result [1971]
that if A is finite and V (A) has only finitely many finite subdirectly irreducible members
(up to isomorphism), then V (A) contains no infinite subdirectly irreducible members. Using
the commutator Freese and McKenzie [1981] proved that a finitely generated congruence-
modular variety with no infinite subdirectly irreducible members has only finitely many finite
subdirectly irreducible members.

Problem 17. (Quackenbush). If a finitely generated variety has no infinite subdirectly irre-
ducible members, must it have only finitely many finite subdirectly irreducible
algebras?
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23. H. Lausch and W. Nöbauer, Algebra of Polynomials, Mathematics Studies, vol. 5,
North-Holland, Amsterdam, 1973.

24. A.I. Mal’cev, The Metamathematics of Algebraic Systems, Collected papers 1936–1967,
translated and edited by B.F. Wells III, North-Holland, Amsterdam, 1971.

25. , Algebraic Systems, Grundlehren der mathematischen Wissenschaften, vol. 192,
Springer-Verlag, New York, 1973.

26. A.A. Markov, Theory of Algorithms, Academy of Science USSR, Works of the Mathe-
matical Institute Steklov. (Transl. by NSF.)

27. B.H. Neumann, Universal Algebra, Lecture notes, Courant Institute of Math. Sci., New
York University, New York, 1962.

28. R.S. Pierce, Introduction to the Theory of Abstract Algebra, Holt, Rinehart and Win-
ston, New York, 1968.

29. H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland, Amster-
dam, 1974.

30. H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Panstwowe Wydaw-
nictwo Naukowe, Warszawa, 1963.

31. H.P. Sankappanavar, Decision Problems: History and Methods, in A.I. Arruda, N.C.A.
da Costa, and R. Chuaqui, eds., Mathematical Logic: Proceedings of the First Brazilian
Conference, Marcel Dekker, New York, 1978, 241-291.

32. R. Sikorski, Boolean Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 25, Springer-Verlag, Berlin, 1964.

33. A. Tarski, with A. Mostowski and R. Robinson, Undecidable Theories, North-Holland,
Amsterdam, 1953.



§2. Research Papers and Monographs 293

34. , Equational logic and equational theories of algebras, in K. Schütte, ed., Con-
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