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Editor’s Preface

Approach your problems from It isn’t that they can’t see the

the right end and begin with the solution. It is that they can’t see
answers. Then, one day, perhaps the problem.

you will find the final question.

*The Hermit Clad in Crane Feathers’ G. K. Chesterton, The scandal of
in R. Van Gulik’s The Chinese Maze Father Brown *“The point of a pin”
Murders.

Growing specialization and diversification have brought a host of
monographs and textbooks on increasingly specialized topics. However,
the ‘tree’ of knowledge of mathematics and related fields does not grow
only by putting forth new branches. It also happens, quite often in fact,
that branches which were thought to be completely disparate are suddenly
seen to be related.

Further, the kind and level of sophistication of mathematics applied in
various sciences has changed drastically in recent years: measure theory
is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory
and the structure of water meet one another in packing and covering
theory; quantum fields, crystal defects and mathematical programming
profit from homotopy theory; Lie algebras are relevant to filtering; and
prediction and electrical engineering can use Stein spaces.

This series of books. Mathematics and Its Applications, is devoted to such
(new) interrelations as exempla gratia:

—a central concept which plays an important role in several different
mathematical and/or scientific specialized areas;

—new applications of the results and ideas from one area of scientific
endeavor into another;

—influences which the results, problems and concepts of one field of
enquiry have and have had on the development of another.
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With books on topics such as these, of moderate length and price, which
are stimulating rather than definitive, intriguing rather than encyclo-
paedic, we hope to contribute something towards better communication
among the practitioners in diversified fields.

The unreasonable effectiveness of  As long as algebra and geometry
mathematics in science. .. proceeded a long separate paths,
Fugene Wigner their advance was slow and their
applications limited.
Well, if you knows of a better ‘ole,  But when these sciences joined
go to it. company, they drew from each
Bruce Bairnsfather other fresh vitality and thence-
forward marched on at a rapid pace
What is now proved was once only towards perfection,
imagined.
William Blake Joseph Louis Lagrange

Krimpen a/d IJssel MICHIEL HAZEWINKEL
March, 1979.
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Preface

Two principal approaches to the problems of applied mathematics are
through numerical analysis and perturbation theory. In this monograph,
we discuss and bring together a special body of techniques from each of
these: (i) from numerical analysis, methods for stiff systems of differential
equations, (ii) from perturbation theory, singular perturbation methods.
Both of these areas are grounded in problems arising in applications from
outside of mathematics for the most part. We cite and discuss many of
them.

The mathematical problem treated is the initial value problem for a
system of ordinary differential equations. However, results for other
problems such as recurrences, boundary value problems and the initial
value problem for partial differential equations are also included.

Although great advances have by now been made in numerical methods,
there are many problems which seriously tax or defy them. Such problems
need not be massive or ramified. Some are the simplest problems to state.
They are those problems which possess solutions which are particularly
sensitive to data changes or correspondingly problems for which small
changes in the independent variable lead to large changes in the solution.
These problems are variously called ill conditioned, unstable, nearly
singular, etc. Stiff differential equations is a term given to describe such
behavior for initial value problems.

Problems of this type have always attracted attention among mathe-
maticians. The stiff differential equation is a relative late comer, its
tardiness correlated perhaps to the development of powerful computers.
However, in recent years a sizeable collection of results has emerged for
this problem, although of course very much remains to be done. For
example, the connection between stiff problems and other types of ill
conditioned problems is easy to draw. However, there is a conspicious
paucity of methods of regularization, so commonly used for ill conditioned
problems in the treatment of stiff equations.

Xi
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Problems of singular perturbation type are also ill conditioned in the
sense described here. These problems have been extensively and conti-
nuously studied for some time. Only relatively recently and also with the
development of powerful computers has the numerical analysis of such
problems begun in a significant way.

Of course the two problem classes overlap as do the sets of numerical
methods for each. We include examples and applications as well as the
results of illustrative computational experiments performed with the
methods discussed here. We also see that these methods form the starting
point for additional numerical study of other kinds of stiff and/or singu-
larly perturbed problems. For this reason, numerical analyses of recur-
rences, of boundary value problems and of partial differential equations
are also included.

Most of the material presented here is drawn from the recent literature.
We refer to the survey of Bjurel, Dahlquist, Lindberg and Linde, 1972,
to lecture notes of Liniger, 1974 and of Miranker, 1975, to three symposia
proceedings, one edited by Willoughby, 1974, one by Hemker and Miller,
1979, and one by Axelsson, Frank and vander Sluis, 1980. These and
citations made in the text itself to original sources are collected in the
list of references. I cite particularly the work of F. C. Hoppensteadt
to whom is due (jointly with myself) all of the multitime methodology
which is presented here.

This monograph is an outgrowth of an earlier one which contained
my lecture notes for courses given at the Université de Paris-Sud, (Orsay)
and at the Instituto per le Applicazioni del Calcolo ‘Mauro Picone’,
Rome during 1974-1975.

The presentation in this monograph reflects the current active state of
the subject matter. It varies from formal to informal with many states in
between. 1 believe that this shifting of form is not distracting, but on the
contrary, it serves to stimulate understanding by exposing the applied
nature of the subject on the one hand and the interesting mathematics
on the other. It certainly shows the development of mathematics as a
subject drawing on real problems and supplying them in turn with
structure, a process of mutual enrichment. This so-called process of
applied mathematics is one which I learned so many years ago as a
student, first of E. Isaacson and then of J. B. Keller, and I do, with gratitude,
dedicate this modest text to them.

I'am grateful to R. A. Toupin, the Director of the Mathematical Sciences
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Department of the IBM Research Center for his interest in and for his
support of this work. For the physical preparation of the text, I must
thank Jo Genzano, without whose help I would not have dared to attempt
it.

Yorktown Heights, 1979 W.L. M.



Chapter 1

Introduction

Summary

In the first section of this chapter, we introduce the problem classes to
be studied in this monograph. In the second section, we review the classical
linear multistep theory for the numerical approach to ordinary differential
equations.

The problem classes, which as we will see are rather closely related to
each other, are stiff differential equations and differential equations of
singular perturbation type. Our introduction to them is complemented by
the presentation examples both of model problems and of actual
applications.

These two problem classes seriously defy traditional numerical me-
thods. The numerical approach to these problems consists of exposing
the limitations of the traditional methods and the development of
remedies. Thus, we include the review of the linear multistep theory
here since it is the traditional numerical theory for differential equations
and as such it supplies the point of departure of our subject.

1.]1. STIFFNESS AND SINGULAR PERTURBATIONS

1.1.1. Motivation

Stiff differential equations are equations which are ill-conditioned in a
computational sense. To reveal the nature of the ill-conditioning and to
motivate the need to study numerical methods for stiff differential
cquations, let us consider an elementary error analysis for the initial
value problem

y=—-Ay, 0O<t<r,
»(0)=y,.

Here p is an m-vector and A is a constant m x m matrix. The dot denotes

(1.1.1)
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time differentiation. Corresponding to the increment 4 > 0, we introduce

the mesh pointst =nh,n=0, 1,.... The solution
Y, =Nt,),
of (1.1.1) obeys the recurrence relation,
Vo1 =¢ "y, (1.1.2)

For convenience we introduce the function S(z)=e % and we rewrite
(1.1.2) as

Vor1 =S(4h)y,. (1.1.3)

The simplest numerical procedure for determining an approximation
u toy ,n=12...,is furnished by Euler's method,

u,, ,—u=—hAu, n=12,..., (1.1.4)
uy,=y,.

Using the function K(z) = 1 — z, we may rewrite (1.1.4) as
u,, ,=K(Ahnu,. (1.1.5)

K(z) is called the amplification factor and K(Ah) the amplification operator
corresponding to the difference equation (1.1.4).
By subtracting (1.1.5) from (1.1.3), we find that the global error,

e =u —y

n b
obeys the recurrence relation

—Ke,+Ty,. (1.1.6)

en+l

Here T = K — S is the truncation operator. (1.1.6) may be solved to yield

en+1 = Z KjTyn—j’

j=0
from which we obtain the bound

lel<n max |K|/ max |Ty,]. (1.1.7)

0<j<n—1 0<j<n-1

Note that nk <t. Here and throughout this text (and unless otherwise
specified) the double bars, || + ||, denote some vector norm or the associated
matrix norm, as the case may be.
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If the numerical method is stable, i.e.,
|K|<1 (1.1.8)
and accurate of order p, i.e.,
| Ty | =0+ Y|y ], (1.1.9)

then the bound (1.1.7) shows that | e, || = O(?). (Of course for Euler’s
method, to which case we restrict ourseives, p=1.)

To demonstrate (1.1.9), we note that || »| is bounded as a function of
t for 0 <t <t, and we show that | T| = O(h*). For the latter we use the
spectral representation theorem which contains the assertion

T(hA)= ), T(hi)P(A). (1.1.10)
i=1
Here we assume that the eigenvalues ).j, j=1,...,mof A are distinct. The
P(z), j=1,...,m are the fundamental polynomials on the spectrum of A4.
(ie, P(2) is the polynomial of minimal degree such that P(4,)=79,,,
i.j=1,...,m Hered,is the Kronecker delta.)
We have chosen T(z) = K(z) — S(z) to be small at a single point, z = 0.
Indeed

T(z) = O(%).

This and (1.1.10) assures that || T| = O(#*). More precisely we have
that

I T || = O] 2o |*47), (L.1.11)
where
lj’max’ = max ’ijl
1<j<m

One proceeds similarly, using the spectral representation theorem to
deal with the requirement of stability. For Euler's method we obtain
stability if

[1—hi|<1,  j=1,..,m (1.1.12)

(Sce Definition 1.2.11 and Theorem 1.2.12 below.)

For the usual equations encountered in numerical analysis, /'Lmaxl is
not too large, and (1.1.12) is achieved with a reasonable restriction on the
size of A. In turn (1.1.11) combined with the bound (1.1.7) for || e, || yields
an acceptable error size for a reasonable restriction on the size of A.
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1.1.2. Stiffness

For the time being at least, stiffness will be an informal idea.

A stiff system of equations is one for which |4_, | is enormous, so
that either the stability or the error bound or both can only be assured by
unreasonable restrictions on 4 (i.e., an excessively small 4 requiring too
many steps to solve the initial value problem). Enormous means, enormous
relative to a scale which here is 1/f. Thus, an equation with |4_, | small
may also be viewed as stiff if we must solve it for great values of time.

In the literature, stiffness for the system (1.1.1) of differential equations
is frequently found to be defined as the case where the ratio of the eigen-
values of 4 of largest and smallest magnitude, respectively, is large. This
definition is unduly restrictive. Indeed as we may see, a single equation
can be stiff. Moreover, this usual definition excludes the obviously stiff
system corresponding to a high frequency harmonic oscillator, viz.

j+wly=0,  o?large. (1.1.13)

Indeed neither definition is entirely useful in the nonautonomous or
nonlinear case. While stiffness is an informal notion, we can include most
of the problems which are of interest by using the idea of ill-conditioning
(i.e., instability). Suppose we develop the numerical approximation to the
solution of a differential equation along the points of a mesh, for example,
by means of a relation of the type (1.1.5). If small changes in u_ in (1.1.5)
result in large changes in u,_, then the numerical method represented
by (1.1.5), when applied to the problem in question, is ill-conditioned. To
exclude the case wherein this unstable behavior is caused by the numerical
method and is not a difficulty intrinsic to the differential equations, we
will say that a system of differential equations is stiff if this unstable
behavior occurs in the solutions of the differential equations. More
formally we have the following definition.

DEFINITION 1.1.1. A system of differential equations is said to be stiff
on the interval [0,7 ], if there exists a solution of that system a component
of which has a variation on that interval which is large compared to 1/1.

We make the following observation about the informal nature of our
discussion.

REMARK 1.1.2. We may ask what the term ‘large compared to’ signifies
in a formal definition. In fact it has no precise meaning, and we are allowing
informal notions (like: reasonable restriction, enormous, acceptable, too
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many, etc.) with which some numerical analysts feel comfortable to find
their way into a formal mathematical statement. While allowing this
risks some confusion, we will for reasons of convenience continue to do so.
In order to minimize this risk and as a model for similar questions, we now
explain how this informality could be repaired in the context of Definition
1.1.1. Hereafter we will not return to this point for other similar problems.
The repair is made by replacing single objects by a class of objects out of
which the single object is drawn.

For example, a proper alternate to Definition 1.1.1 could be the following.

DEfFINITION 1.1.3. A collection of systems of differential equations is
said to be stiff on an interval [0,¢], if there exists no positive constant M
such that the variation of every component of every solution of every
member of the collection is bounded by M.

The following example shows how treacherous the reliance on eigenvalues
to characterize stiffness can be; even in the linear case.

Example

y=A(@t)y, (1.1.14)

Alt) = [sin ot cos wt]_

where

cos wt — sin wt
The eigenvalues of A(t) are + 1. The matrizant of (1.1.14) is

sinh ¢
o

+ I cosho.

(1) = B(2)

Here I is the 2 x 2 identity matrix,

o= ﬁ(l — cos wt)'/?

B(t)=l[l — cos wt sin wt ]

wl sin wt coswt — 1

and

Thus for w — o0,
D(1) = (coshﬁjZ cos wi)(1 + O(w™ )1

uniformly for te[0,1].
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Thus, in spite of the eigenvalues of A(r), the solution of (1.1.14) varies
with frequency w, a quantity at our disposal.

1.1.3. Singular Perturbations

The study of problems of singular perturbation type predates the study
of numerical methods for stiff differential equations. (Perhaps the first
appearance of the latter term is in 1952. See Curtiss and Hirschfelder,
1952.) In any case, it is easy to see that problems of singular perturbation
type are a subclass of stiff equations.

Indeed the common picture of boundary layers and outer solutions
characterizing solutions of problems of singular perturbation type is
analogous to the rapidly and slowly varying modes of stiff problems.
Observing the connection between these two subjects as well as exploiting
the large body of techniques from the older theory seems to have begun
only as late as the early 70’s.

We note this connection here by pointing out that the generic initial
value problem for a singularly perturbed system of differential equations
may be written in the following form.

dx/dt=f(t,x,py,€),  x(0)=¢,
edy/dt=g(t,x,y,¢), y0)=n.

S and g depend regularly on ¢ and g(t, x, y, 0) = 0. We may observe that this
class of systems is stiff by means of the following scalar example. Take
f=y g=x+y
The eigenvalues of the corresponding system are
e ' +0() and -1+ 0()
In a sense the smaller &, the stiffer the system. Additional examples will
be given in the next section.

Of course, there is considerable interest in computational questions for
problems of singular perturbation type independent of their role as a
subset of the class of stiff problems. Thus, numerical developments for
such problems are of interest in their own right as well as for those cases
in which these developments are exploitable for numerical purposes for
stiff but not necessarily singularly perturbed problems.

This monograph is organized so that the methods for stiff differential
equations are presented first, to be followed by methods for the singular

perturbation problems. In actual fact we prefer to deemphasize this
division.
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1.1.4. Applications

It is easy to generate model problems which are stiff or singularly
perturbed, since it suffices to take a linear system of differential equations
whose coefficient matrix has widely separated eigenvalues. One can find
model problems of this type, which are used for illustrative computational
purposes, scattered throughout this text.

In this section, we give a sampling of examples which arise in applica-
tions. We have chosen these examples from circuit analysis, chemical
reactions, engineering applications and even mathematical areas among
others.

Tunnel Diodes

Tunnel diodes are employed in many high speed circuits. These circuits
are modeled by stiff equations with both rapidly equilibrating solutions
on the one hand and highly oscillatory solutions on the other.

A simple circuit representing a tunnel diode is given in Figure 1.1-1a.
The current through the nonlinear element in the circuit is given by
I = f(v), where the tunnel diode characteristic, f (v), is the S-shaped graph
as indicated in Figure 1.1-1b. The differential equations describing this
circuit are

dv |

Ca~i-/0 (1.1.15)
di

L—=E—-Ri—v.
ar E i—v

For certain ranges of values of the parameters, (1.1.15) is a stiff system
whose solutions exhibit a variety of extreme behavior. We now give an
indication of this behavior.

1| . I=f(v)

(a) (b)
Fig. L1-1.
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Introduce the new variables

R CR?
x b £ I I=Ri, F(@v)=Rf(v)

in (1.1.15). We get
dv
¢ dx
dl
o E—v—1I
When & is small this system is stiff, and solutions move alternately
through regions of slow change and rapid change. A typical family of solu-
tions in this case is shown in Figure 1.1-2a. The limiting trajectory for &
tending to zero in Figure 1.1-2a, isa curve which has a horizontal portion as
well as two parts which coincide with segments of the curve I = F(v) (the
tunnel diode characteristic). The changes in I and v per unit x (the dimen-
sionless time) along the latter segments are slow. Correspondingly with
respect to the horizontal portion, there is no change in I but a change
in ¥ which occurs in zero time. This is typical boundary layer behavior for
a singular perturbation problem, i.e., (time) regions of rapid transition.
The example fits our notion of a stiff equation as well, since there are
large variations of solution in fixed time intervals (the horizontal portion).
Alternatively we may introduce the variables
z=1t/RC, d=1/,
in terms of which (1.1.15) becomes

I — F(v),

dv
—=]-F
e (v),
dI
6—=E—1-v.
dz v
(a) DECREASING € ({b) =0
I - I=F(v) I 4 §\\§
AN AON
AGOONR VAN
4 *5'/4,
E-v-I=0 g%
AY v AN v
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When 0 is small, the solutions behave in an extreme manner as shown
in Figure 1.1-2b. The behavior for this example with respect to boundary
layer or stiff behavior is analogous to the behavior in Figure 1.1-2a. The
horizontal portion in the former case has as its counterpart a vertical
portion for the latter case. (See Figure 1.1-2.)

A different form of extreme behavior of solutions of (1.1.15) for certain
other ranges of parameter values may be observed by introducing the

variable
y=t//LC

and writing the system (1.1.15) as a single equation

> dv
S = — 1.1.16
dy2+w v K<U’dy>’ ( )

C L, do
K=(w2—I)U—Rf(v)—[R\/;+\/;f(v)]d—y+E.

In this case, there are one and sometimes two periodic solutions of
(1.1.16) as illustrated in Figure 1.1-3.
These periodic solutions are limit cycles with the approximate frequency

w=./C(L—R?

in the t-time scale. Thus for certain values of C, L and R, there are
oscillatory solutions of arbitrarily high frequency.

For details concerning asymptotic analyses of the types of solution
classes referred to here, see Miranker, 1962 and 1962b.

where

LIMIT
CYCLES

Fig. 1.1-3.
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o
+ v -L + Ce +
Vin ‘elif‘le -]—°0 Yo L“'”’—— B L
<L
Fig. 1.1-4.
Transistors

A typical equivalent circuit for a transistor is given in Figure 1.1-4.
In terms of the input voltage v, , the voltages v,(t) and v, (t) in this

circuit are specified by the following differential equations which are
statements of Kirchoff's current law at the nodes (A) and (B), respectively.

dv dv

(A) gyti, = (g, + (1 = 20)g o, + (Co + )5 = €=

dv dv

(B) 0 =ag,v, — cc—d—: +g,0, + ch—tL'

In contemporary transistor technology typical values for the constants
appearing here are: g, = 0.4 ohms™!, g, =g, =002 ohms™', a =0.99,
¢,=107° farads and ¢, = 107 '2 farads. In this case the eigenvalues of
these differential equations are approximately — 2.4 x 10”and — 2 x 10'°,
respectively. The first of these is the time constant relevant to the response
of the transistor which is of physical interest; the second corresponds to
an ever-present parasitic effect which makes for increased stiffness in the
system.

T hermal Decomposition of Ozone
The kinetic steps involved for a dilute ozone~-oxygen mixture are

kl
0, +0,=0+20,,

k‘z
0,+0-20,.
If the following dimensionless variables are defined:

x=[0;)/[0;)p. y=[0)/e[0;],.
K= 2](2[02]0/16l y &= kl [Oz}o/2k3 [03]0’
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and the time scale divided by 2/k,[O,],. then the transient behavior is
described by

d
a’f: —x—xy+eky, x(0)=1,
dy .

£y =X~ Xy oKy, y0)=0.

It is interesting to note that this stiff system with x = O(¢ " !) corre-
sponds to the simple enzyme reaction treated in Section 5.3 below.

Behavior of a Catalytic Fluidized Bed

Mass and heat balance equations corresponding to one irreversible gas
phase reaction within a uniform porous catalyst generate a stiff system of
differential equations. For certain numerically specified values of the
parameters, such a system is

%; = 1.30(y, — x) + 1.04 x lO"'kyl , x(0) = 759,
%: 188 x 10°[y, — y,(1 +K)],  y,(0)=00,
%2 = 1752 — 269y, + 267x, ¥,(0) = 600,
%*=0.1 + 320y, — 321y,, y,(0)=0.1,

where k = 0.006 exp(20.7 - 15000/x) and x, y,, y,, and y, represent the
temperature and partial pressure of the catalyst and interstitial fluid,
respectively.

For further details concerning these two applications including illustra-
tive computations, we refer to Aiken and Lapidus, 1974,

Recurrence Relations

In Section 7.1, we consider stiff and singularly perturbed recurrence
relations. Such relations arise in several areas of application which are dis-
cussed in Section 7.1. These are a training algorithm arising in pattern
recognition, a population genetics model and regression analysis:
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Training Algorithm

Referring to Section 7.1.1, for fixed 8 >0 and w eR"*!, we define
w,, W, ..., as follows.

wn'xn.
wn+l=wn+xns 2] ’xn ?

where

l,wex<8

’ - d xeA*
O,w-x> 9} anc x&€a%
~lLwx>—-90

’ - d xeB*.
O,w-x> —9} and x

Here A* and B* are specified finite point sets in R?* . Setting w, = 0z(n)
and ¢ = 8~ 1, the recurrence relation for w, becomes

Zn+1)=z(n) + ex, S(z(n)- x, : x,),
while in the definition of S, w is changed to z and @ is replaced by unity.

A Population Genetics Model

In a large population of diploid organisms having discrete generations,
the genotypes determined by one locus having two alleles, 4 and a, divide
the population into three groups of type A4, Aa, and aa, respectively. The
gene pool carried by this population is assumed to be in proportion p,
of type A4 in the nth generation. It follows (see Crow and Kimura, 1970)
that

P, —p )Wy, —wip, +(wy —wy))(1=p)]
wy 1p: +2wy,p,(1 = p,) +wy,(1 —p,)?

pn+l=pn+

b

where w,,, w,,, and w,, are relative fitnesses of the genotypes 44, Aa,
and aa, respectively.

If the selective pressures are acting slowly, i.e., if w,, =1+ e0, w, = 1,
w,, = 1 + &f, where ¢ is near zero, then

ep,(1 = p)[(@—Plp, + F]
1 + O(e) '

pn+l=pn+
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Regression Analysis

In section 7.1.5, we consider the Munro—Robins algorithm for approxi-
mating the root of a function g(w), in the presence of noise. This algorithm
corresponds to the following singularly perturbed recurrence relation.

w(k + 1) = wk) — ea, [g(w(k)) + 02,].

Here o and the o, , k=0, 1, ... are scalars with properties to be specified.
We may view g(w(k)) + oz, as a noisy measurement of g(w(k)).

1.2. REVIEW OF THE CLASSICAL LINEAR MULTISTEP THEORY

1.2.1. Motivation

A well-known family of numerical methods for dealing with differential
equations is the class of linear multistep methods. The earliest attacks on
stiff problems proceeded with methods from this class, For many problems
this is still a good way to proceed. Many further developments for the
stiff problem (both historically and in this text) are stimulated by the
successes and conspicuous failures of this class concerning the stiff
problem. Since moreover, many basic ideas which we make use of such as
precision, accuracy, stability and convergence for numerical methods
are so well portrayed by the theory of linear multistep methods, we
insert a review of this theory at this point.

For details and proofs concerning the theory to be reviewed here, we
refer to Henrici, 1962, Isaacson and Keller, 1966, Dahlquist, Bjorck and
Anderson, 1974 or to any one of a number of other standard texts. However
in Section 4.2, a discussion with the context of the stiff problem is given
from which proofs of most of the notions discussed here are directly
extractable.

1.2.2. The Initial Value Problem
We begin by considering the nonlinear initial value problem

£ =f(t x),

x(a) =s,

(1.2.1)

where x, f and seC,, (i.e., are m-tuples of complex numbers). We seek a
solution to (1.2.1) on the interval .#;

F={tlagst<bh;o0o<a<b< o}



14 Chapter !

The class of functions s, for which (1.2.1) is a well-posed problem is specified
in the following definition.

DEFINITION 1.2.1. f is said to be an L-function (alternatively, fe L) if
for all re# and x and yeC,, there exists a constant L (the Lipschitz
constant) such that

| £t x)—fe, )| <L[|x—yl.

We may now state the following existence and uniqueness theorem for
the problem (1.2.1).

THEOREM 1.2.2. If f is continuous in t for t€ # and if f is an L-function,
the problem (1.2.1) has one and only one solution in S.

1.2.3. Linear Multistep Operators

The linear multistep operator & is given by

N
= Hi— Hi—
$=3 aH hjgo BHS

j=0
Here H is the shift operator,
Hx(t) = x(t + h),

and the o; and B; are given scalars with (2 + B2y, #0. k is called the
number of steps or the step number of L.

The notion of degree of precision is the subject of the following
definition.

DEFINITION 1.2.3. & is said to have degree of precision p, if &
annihilates all monomials ¢*, v < p and p is maximal with respect to this
property.

Now let us suppose that x(z)eC*, and let us express £x(t) in the form
of a Taylor series.
Lxt)= 3 e, B x(t). (1.2.2)
v=0
An alternate specification of the degree of precision of & is given in the
following definition.
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DEFINITION 1.2.4. ¥ is said to have degree of precision p if the
cocfficients a; and ﬁj of & are chosensothatc, =0,v=0,1,...,pand p is
maximal with respect to this property. Clearly p < 2k.

1.2.4. Approximate Solutions

To construct an approximate solution to (1.2.1), we begin by introduc-
ing the mesh t,=a+nh, h>0, neJ,={0,1,..., n_, }. J, is the set of
integers n, such that ¢, ,€4,i=0,1,... k

An approximate solution is a sequence {x }, neJ,, where x, is viewed
as an approximation to x(t,),n€J,. We define an approximate solution by
means of ¥ through the linear multistep method,

max

k k
)= ) X, i~ Z S ;=0. neJ,. (1.2.3)
j=0 j =
Here f, = f(t,,x,).

The linear multistep method is said to be explicit if f, = 0. Otherwise
it is implicit. Each x,_,,neJ, is obtained from (1.2.3) through transposing
and solving an equation of the form

x,..—hpft .. x,, ) =const (1.2.4)

In the expllclt case, solving this equation requires only division by «, .
Indeed if we normalize £ by dividing it by o, , even this division may be
eliminated. In the implicit case, (1.2.4) represents a system of finite equa-
tions which must be solved by a more or less elaborate numerical pro-
cedure. (See Section 2.3.)

The linear multistep formula allows the step by step determination of
x,, neJ,, provided that the values of x,,...,x,_, are known. These so
called starting values are determined by some independent procedure
which may be called the starting procedure. As a notation for the starting
procedure, we write

x,=S,(h), m=01,. k-1l (1.2.5)

Basic properties of the starting procedure are given in the following two
definitions.

DErFINITION 1.2,5. The starting procedure is said to be bounded if
there exists a positive constant M such that || S, (k)| < M for all sufficiently
small A.
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DEFINITION 1.2.6. The starting procedure is said to be compatible if
limS (k) =s, m=0,1,... k-1

h—0
Let (see (1.2.1))
hy=o, (B L) (1.2.6)

The existence and uniqueness of the numerical procedure which we
have just described is the subject of the following theorem.

THEOREM 1.2.7. A linear multistep formula has one and only one solution
x,, neJ, for all starting procedures S, (h) if 0 < h < h,,.

1.2.5. Examples of Linear Multistep Methods

The following are some of the well-known linear multistep methods.
(i) Adams’ method:

K
T A Z ﬂjfn+j=0’
j=0

B, # 0: Adams—-Moulton, k = 1: Trapezoidal formula.
B, = 0: Adams-Bashforth, k = 1: Euler’s formula.
(i) Nystrom’s method: '

k-1
Xpsk = Xpsx—2 —h Z ijn+j'
ji=0

k = 2: mid-point formula.
(i) Method of Newton—Cotes:

k
xn+k—xn_h Z ﬂjfn+j:0‘

j=0

k = 2: Simpson’s formula.
(iv) Backward differentiation formula:

0.x,  —hBf, ., =0.

jTn+]

It

J

1.2.6. Stability, Consistency and Convergence

Order and consistency of a linear multistep method is specified in the
following definition.
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DEerINITION 1.2.8. A linear multistep method is said to be of order p if
| #(x(,))| = OW®P), neld,, (1.2.7)

where x(¢) is any solution of ' = £(t, x) (see (1.2.3)). It is said to be consist-
ent if (1.2.7) is valid with p > 1.

We now introduce the p and o polynomials.

§ %, (1.2.8)

k

o(w) = Z

and we suppose that (p|o) =1 (i.e., that p and ¢ are relatively prime). The
following theorem connects these polynomials with the notion of consis-
tency.

THEOREM 1.2.9. A linear multistep method is consistent if and only if

Z(1)=p(1)=
and

£L(t) = hp'(1) - a(1)) =

The stability of a linear multistep method is characterized in the following
definition.

DEFINITION 1.2.10. A linear multistep formula is said to be stable if
there is a positive constant M such that

max H xn H < M’
nedn

uniformly in %, h€(0,4,] for all bounded starting procedures and for all
feL.

The study of stability makes use of the root condition which is given in
the following definition.

DEFINITION 1.2.11. A polynomial p(w) is said to satisfy the root condi-
tion if all of its roots lie in the closed unit disc while those on the boundary
of the disc are simple. The root condition is sometimes given for the
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polynomial w*p(w™!). For the latter, the interior and exterior of the unit
disc are exchanged; the theory being otherwise identical.

With this definition, we have the following theorem connecting stability
and the root condition.

THEOREM 1.2.12. A linear multistep method is stable if and only if p(w)
obeys the root condition.
The global or cumulative error of the linear multistep method is

e, =x,—x(t), ned,.
A convergent method is characterized in the following definition.
DEFINITION 1.2.13. A linear multistep method is convergent if for
all fe L and all compatible starting procedures, we have

lim max |e, | =0.
h—~>0 nedy

Finally, the main theorem of this subject is the following.

THEOREM 1.2.14. A consistent linear multistep method is convergent if
and only if it is stable.
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Methods of Absolute Stability

Summary

In this chapter , we discuss the first systematic attacks on the stiff problem.
These proceed by imposing strong stability notions onto the traditional
linear multistep methods. While this approach has had some success for
dealing with the stiff problem, it is perhaps more noteworthy in demons-
trating the nature of the limitations of the classical numerical methods;
these limitations having stimulated much of the subsequent development
of the subject.

We begin with the well-known notion of A-stability in Section 2.1.
Then in Section 2.2, we discuss A(x)-stability and stiff stability, two of a
large number of alternative stability notions associated with stiff problems.
Finally in Section 2.3, we consider the problem of solving the equations
which are generated by the numerical methods themselves.

2.1. STIFF SYSTEMS AND A-STABILITY

The use of A-stability as a notion for dealing with the stiff problem as
well as the theory describing its value and its limitations with respect to the
class of linear multistep methods is due largely to G. Dahlquist, 1963. We
begin our exposition of these ideas with a motivating discussion.

2.1.1. Motivation
Consider the linear system,
x=Ax, te(0,r], (.11

where A is an m x mconstant matrix. Let 4, j = 1,.. ., m be the eigenvalues
of A. For the following discussion, we take the following definition for
characterizing a stiff system.
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DEFINITION 2.1.1. The linear system (2.1.1) is said to be stiff if

max |4;7]» 1.

1<j<m
Referring to Remark 1.1.2, we see this is not a precisely defined notion.
Moreover, this definition obliges us to make the following observation.

REMARK 2.1.2. A system consisting of a single equation may be stiff.

To motivate the first method for dealing with stiff systems, consider the
case m =2 with 4, € 4, <0 and with the solution component

F(t) = eM* 4 et

As t increases from zero there is a transitory stage during which F(r)
varies extremely rapidly. After a time of the order 4., the term e**
of F(t) becomes negligible, and a new permanent stage develops. To
determine a numerical approximation to F(t) in the transitory stage, we
would use a mesh increment, 4, such that |4, 4_| is small. For the perma-
nent stage, we would like to use a much larger mesh increment 4, and
one such that

[y | <1 <[4, h, ).
In this case, the numerical theory described in Section 1.2 is applicable for
the term e**. We do not expect the same to be true for the other term.
However, if the method is stable no matter how large |A_h,| is, we may
expect the term e’ to remain negligible. This technique calls for methods
of an extraordinarily stable character; indeed it calls for methods with a
form of absolute stability.

We give three criticisms of this idea.

(i) Getting through the transitory stage requires a number of steps
proportional to 4, ', and this may not be acceptable. (This number of
steps may be considerably reduced by a gradual increase of mesh incre-
ment. However, any policy for altering a computation adaptively brings
along additional computational cost of its own.)

(ii) If 4, is large in magnitude because it has a large imaginary part,
the so-called transitory stage is itself permanent.

(iii) Absolutely stable methods of simple types are rare. (This will be
seen presently.)

For the time being, we exclude eigenvalues with a large imaginary part,
and we will return to this type of problem in Section 4.3 and more syste-
matically in Chapter 6.
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2.1.2. A-stability

In the following definition, we formalize the well-known notion of absolute
stability called A-stability.

DErFINITION 2.1.3. A linear multistep method is 4-stable if all solutions
of the difference equation generated by the application of this method to
the test equation (scalar)

X = Ax, 4 a complex constant, (2.1.2)

tend to zero as n — oo for all 2 with Re 4 < 0 and for all fixed 4 > 0.

To determine which linear multistep methods are A-stable, we note
that when the test equation (2.1.2) is inserted into the linear multistep
formula, a linear difference equation results:

k
2 (@;—aB)y,,;=0, q=ih (2.1.3)
j=0

The characteristic equation corresponding to (2.1.3) is
X(w;q) = plw) — go(w) = 0. (2.1.4)
(See (1.2.7).)
X defines a k-valued mapping of g into w. The inverse of this mapping
q(w) = p(w)/a(w), (2.1.5)

defines a single valued mapping of w into g.
Having made these observations, we may state the following proposition
connecting A-stability and the mapping X.

ProrosITION 2.1.4. Let @, i=1,...,k be the roots of X(w;q)=0.
Then the following three statements are equivalent.

(@) a linear multistep method is A-stable.
(b) Reqg <0 =|ew,| <1, i=1,..,k (2.1.6)
(¢) |w| > 1= Reg(w)>0.

Proof. We forego displaying the proof since it is immediate. O

In the succeeding discussion, we repeatedly refer to the exterior of the
unit disc in the w-plane. So we name this set W, i.e.,

W = {ow||o|>1}. 2.1.7)
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Using Proposition 2.1.4, we may state and prove the following lemma
which relates A-stability to the p and ¢ polynomials.

wr; =0 I8

k
LEMMA 2.1.5. The linear multistep method ), (a;— qB)x

j=0
A-stable only if ’
(i) The roots o, of o(w) satisfy |o,| < 1,i=1,....k.
It is A-stable if an only if
(ii) Re p(w)/a(w)=0,for all weW.
Proof. (A) We first show that A4-stability implies (i) and (ii).

That A-stability implies (ii) is obvious. We proceed to verify (i). p(g,) # 0
since (p|6)=1. Thus under the mapping of w into g generated by
X(w, q) = 0, each g, is mapped into the north pole of the Riemann g-sphere,
the latter being a point on the imaginary axis of that sphere. Similarly, each
neighborhood of ¢, is mapped onto a neighborhood of the north pole.
Now every neighborhood of the north pole contains values of g such
that Re ¢ < 0.

Suppose (i) were not true. Then one of the roots o, is such that |al.| > 1.
Then there exists a sufficiently small neighborhood of this o, contained
in W. (See Figure 2.1-1).

Thus, X =0 would have solutions in W for values of g with Re ¢ < 0.
This contradicts the A-stability, completing part (A) of this proof. 3

(B) (ii) implies (2.1ffc) in W. Thus there remains only to verify (2.1.6¢c)
for @] = 1. Then let w, be such that |w,|=1 and consider two cases;
Case (a) g(w,) # 0 and Case (b) a(w,) =0.

Case(a): (w,) # 0.

In this case, g(w) is analytic in a neighborhood of w,. Suppose to the
/—\
Ll QS

4
-

Fig. 2.1-1.
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aS A
N,

Fig. 2.1-2.

contrary that Re g(w,)< 0. Then a sufficiently small neighborhood of ®,
will be mapped onto a neighborhood of g(w,), the latter neighborhood
being entirely contained in Re g < 0. (See Figure 2.1-2))

This neighborhood of w, contains points w of W whose image g(w)
satisfies Re ¢ < 0. This contradicts (ii) completing the proof of Case (a).

Case (b): 0 (,) = 0.

In this case, g{(w,) is the north pole of the Riemann g-sphere, a point on
the imaginary axis. Thus, (2.1%c) is obviously satisfied. This completes
the proof of Case (b) and of the lemma. O

The following proposition is interesting because it increases the similarity
of conditions on a(w,) for A-stability to the root condition (see Definition
1.2.11) imposed on p(w) for ordinary stability of the linear multistep
method.

ProrosITION 2.1.6. If a root w, of o(w) has magnitude unity and is not
a simple root, then the linear multistep method is not A-stable.

Proof. Let m=2 be the multiplicity of the root ,. Then g(w)=
const(w — wy)"™(1 + o(1)). Thus, the sectors of a neighborhood of w,
which are of angle 2n/m are mapped onto a neighborhood of the north
pole of the g-sphere. Since these sectors are at most a half plane, we may
choose one which lies entirely in W (except of course for the vertex w, of
this sector). (See Figure 2.1-3.) Thus, there exist points of W whose images
satisfy Re g < 0. Thus, the corresponding linear multistep method is not
A-stable. (]

2.1.3. Examples of A-stable Methods

We now give several examples of A-stable methods.
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Kn
N

Fig. 2.1-3.

(1) The trapezoidal formula:
1
xn+1 _xn _Eh(fn-*-l +fn)=0

plw)=w-1, o(w) =%(w+ 1).
jf?— 1
lw+1]*

Thus, Re g(w)> 0 for |w|> 1, and the root of ¢ on |w|=1
(2) The backward Euler formula:

xn+l _xn—hfn+l =0
p)=w-1, dw)=

Re g(w) =

w|*—Rew
Req((l))=l—~lWIz—-—~ >0, .(J)‘>l‘
1
Ot x gk )=

plw)=w*—1, o(w) = %k(w" +1).

The roots of o{w) are the kth roots of unity.

Re (a))— kl—wli-—>0 || >1
TO= 1] '
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Note further that p(1)=0, p'(1) = o(1) =k, implying the consistency of
this method (see Theorem 1.2.8). This example shows the existence of
linear multistep methods which are consistent and A-stable for any k (i.e., for
any number of steps).

2.1.4. Properties of A-stable Methods

Achieving A-stability is costly in terms of the restrictions this property
imposes on the class of linear multistep methods. The first restriction is the
loss of explicit schemes which requires a greater amount of computation
in each step of the method. (See (1.2.4)f.) This restriction is characterized
by the following theorem.

THEOREM 2.1.7. An explicit multistep method cannot be A-stable.

Proof. Assume to the contrary that the method is both explicit and
A-stable. Then B, =0 and g(w) = p(w)/a(w) has a pole at the point,
wy,, at infinity on the w-sphere. But w, as well as a neighborhood of
w, lie in W. The image of such a neighborhood under the mapping ¢ = q(w)
is a neighborhood of the point, g, at infinity on the g-sphere. Such a
neighborhood contains points for which Re g < 0. This contradicts (2.1.6¢)
completing the proof of the theorem. ([

If a linear multistep method is of order p (see Definition 1.2.8), we have
from (1.2.3) that

LD = ¢,y X D)1+ Oh)).

If p>1, p(1)=0, and since (p|o) =1, then (1) # 0. Now consider the
following definition and remark which introduce the so-called error
constant ¢*, which serves as a measure of quality of linear multistep
methods of the same order.

DEFINITION 2.1.8. ¢* = — ¢,y /0(l) is called the error constant of a
linear multistep method of order p > 1.

RiMARK 2.1.9. ¢* = lim [log w — p(w)/a(w) ]/(w — 1)"* 1. (2.1.8)

w1

The following theorem characterizes the key restriction on A-stable
methods.
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THEOREM 2.1.10. The order p of an A-stable linear multistep method
cannot exceed 2. The trapezoidal formula is the A-stable method or order
2 which supplies the smallest'error constant, ¢* = 1/12.

Proof. The proof begins with a side calculation.

Let z = (w + 1)/(w — 1), (the well known 1-1 Moebious transformation,
carrying @ = 1 into the point z at infinity). Let the transformation I" be
defined by

w1 @]
Lfo) =240~ iy (25},
and let

r(z) = Ip(w), s(z) = I'o(w).
Now apply I' to (2.1.8). We get

pt1
logz+l_r(2) c*(g) (1 +o(1)), Z— 0.

z—1 Rz—)z
Since
2+l _, 12 -4
logz__l—ZZ +§z +0(z" %),

this becomes

M) o v (2o s s

s(z)—2z + 3 8¢ z +0(z7%), (2.1.9)
where

.t p=2,

C#{O, p=3.

Thus we may note that the coefficient of z™ 3 in (2.1.9) is strictly positive if
p=3.

Next we translate the conditions (i) and (ii) of Lemma 2.1.5. By using
properties of the Moebious transformation, we see that this lemma shows
that the A-stability of a linear multistep method implies the following
conditions (i) and (ii).

(i) The roots s, of s(z) satisfy Re s, <0,i=1,... k.
(ii) Re (r(z)/s(z)) =0forall zin Rez>0.

Next we make use of the following variant of the Riesz-Herglotz
theorem (see Achiezer and Glassman, 1959, p. 152):

(2.1.10)
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THEOREM 2.1.11. An analytic function ¢(z) which satisfies the following

conditions:

(a) sup |x¢(x)| < oo,

O<x<w
(b} ¢(z) regular in Re z> 0,
() Rep(z)=0inRez>0,

may be represented as follows.

war- |~ 20

a
L Z— it

where wt) is a bounded nondecreasing function.

We will show that z¢(z) = zr(z)/s(z) is bounded for all xe[0, c0]. We
note first that (2.1.9) implies that xr(x)/s(x) is bounded as x — o0. By
hypothesis the linear multistep method is A-stable. Then from Proposition
2.1.6, o(w) has a zero of order at most unity at @ = — 1. The same then is
true for s(z) at z = 0. Then xr(x)/s(x) is bounded at x = 0. Using (2.1.10)(i),
we may conclude that xr(x)/s(x) is bounded for all x on the positive
real axis. Thus, z¢(z) is indeed bounded as claimed. Re ¢(z) >0 in the
half plane Re z > 0. Thus the hypotheses (a), (b) and (c) of the cited Theorem

2.1.11 are verified for x > 0, and we have

x) | x (e X2
x@—ﬁxx_ndw(t)—[ mdw(t),

- &«

Since
d x*  2x?
dx x2+ 2 (x2+12)?

>0for x>0,

we may conclude from this representation that
d rx)]

dx _xs(*)‘ >0.
Next from (2.1.9) we may conclude that
dix_x:—g—;d = —2(2/3—-8c)x*(1 +0(1)), X = 0.
Comparing (2.1.11) and (2.1.12), we deduce that
2/3—8¢'<0

@2.1.11)

2.1.12)

(2.1.13)
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If p>3, ¢/=0 and (2.1.13) is impossible. This demonstrates the first
assertion of the theorem.
If p=2,then2/3 — 8¢ < 0orc* > 1/12 For the trapezoidal formula,

plw)=w-10w)= %(w + )2 =2 s(2) = 2//2,
so that

rz) 2
s(z) z
Comparing this with (2.1.9), we deduce that 2/3 —8c* =0 or ¢*=1/12.
This demonstrates the second assertion of the theorem and completes its
proof. O

2.1.5. A Sufficient Condition for A-stability

Condition (ii) of Lemma 2.1.5 requires the vertification of a property
of g(w) for all win W (see (2.1.7)). A less stringent requirement furnishes the
sufficient condition for A-stability characterized by the following theorem.

THEOREM 2.1.12.If (i) the roots o, of o(w) satisfy |o;| <1,i=1,...,k and
(i1) u(w) = Re g(w) = 0 on the unit circle, then the linear multistep is A-stable.
Proof. (i) implies that g(w) is analytic in W and in particular at w = 0.
Then u(ew) is harmonic in W, and from the minimum principle
uw(w) > min w(w),
loj=1

for all we W. Then (ii) implies that u(w) > 0 for all we W. Then (2.1.6¢)
implies that the method is A-stable completing the proof of the theorem. [

2.1.6. Applications

As an application of Theorem 2.1.12 consider the formula

X,o, =X —h[(1—a)%,, +ax]=0, (2.1.14)

for which p > 1 for all real values of the parameter a. For a=1,1/2, 0,
respectively, this formula becomes the Euler formula, the trapezoidal
formula and the backward Euler formula, respectively. In any case, we
have

o(w)=( —ajw+ a.
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The root 6, = — a(l —a)™ ' of o(w) is less than unity in magnitude if and
only if a < 1/2. A calculation shows that

u(ew) — ‘o(ew” - 2P(ei0),
where
P(e®) = (1 — 2a)(1 — cos 0).

P(e”) > 0 if and only if a < 1/2. Thus (2.1.14) is A-stable ifa < 1/2.

Note that the trapezoidal formula (which is A-stable) fails to satisfy
the sufficient condition of Theorem 2.1.12. A second application of
Theorem 2.1.12 is furnished by the following formula.

(=1—a+bx,+2a—b)x,, ,+(1—a+b)x,,,
—hlax, +(2—a—b)x, ., +bx,,,]=0.

For this formula, p > 2 for all real values of the parameters a and b. One
may show that for this formula, hypotheses (i) and (ii) of Theorem 2.1.12
are equivalent to the following inequalities.

b—a>0,
—1l4+a+b>0,

2.2. NOTIONS OF DIMINISHED ABSOLUTE STABILITY

The family of linear multistep methods is so desirable because of its
simple form for both computation and analysis that the limitations
imposed on this family by A-stability made a great impact. To attempt to
save the family for the solution of stiff differential equations, a sequence
of weakened forms of absolute stability were invented in order. We will
cxamine two of these, First we will consider the notation of 4A(x)-stability,
and following that, we will review the so-called stiffly stable methods.

2.2.1. A(x)-stability

Examination of the failure of linear multistep methods to be A-stable
shows in many cases that failure occurs for values of 4 in the test equation
which are nearly purely imaginary. It is then a simple step to abandon such
values of 4 (i.e., highly oscillatory solutions) and to seek the analogue of
A-stability corresponding to a subset of the left half complex plane which
in particular excludes the imaginary axis. The most straightforward
approach to doing this is to replace the left half plane by a cone §,, with
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Fig. 2.2-1.

vertex at the origin centered on the negative half axis and of half angle «.
(See Figure 2.2-1))
With such a cone in mind, consider the following definition.

DEFINITION 2.2.1. Alinear multistep method is A(a)-stable,0 < a < /2,
if all solutions of the difference equation arising through the application of
this method to the test equation (see Definition 2.1.3) tend to zeroas n —
for each fixed mesh increment /4 > 0 and for all A # 0, where

q=iheS, ={q||arg(—q)| <o, g#0}.
We make the following observations concerning A(«)-stability.

REMARK 2.2.2. Let w,;, i=1,...,k be the roots of the characteristic
equation X = 0, corresponding to the difference equation arising from
the application of the test equation to the linear multistep method.
Then the corresponding linear multistep method is A(x)-stable if ge§,
implies that the |o,| < Li=1,... k.

REMARK 2.2.3. (a)A(a)-stability = A(f)-stability for 0< ff < a. (b) A-sta-
bility is equivalent to A(n/2)-stability.

The case « = 0 is described in the following definition.

DEFINITION 2.2.4. A linear multistep method is A(Q)-stable if it is
A(a)-stable for all sufficiently small « > 0.

The following lemma which employs the functions r(z) and s(z) intro-
duced in the proof of Theorem 2.1.10, is the analogue of Lemma 2.1.5.
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k
LEMMA 2.2.5. The linear multistep method . (o; — qB,x

stable, o > 0, if =0

(i) The roots s, of s(z) satisfy Re s, <0,i=1,... k.

It is A(a)-stable if and only if

(i) r(z)/s(z) is in the compliment of S, for all z with Re z > 0.

is A(x)-

n+j

For the case of A(0)-stability, we have the following necessary condition.

LEMMA 2.2.6. If a linear multistep method is A(0)-stable then {a, >0
ora,<0}and {B,=00r B, <0}, v=1,...,k

We forego developing the proofs of Lemmas 2.2.5 and 2.2.6 since the
proofs are generally analogous to the proofs in Section 2.1, (Alternatively,
see Widlund, 1967.)

2.2.2. Properties of A(a)-stable Methods

Asusual we will suppose that (p|6) = 1 and that p > 1 (so that the methods
are consistent).

The following theorem shows that abandonment of wedges adjacent to
the imaginary axis is not sufficient to recover the explicit methods which
were already lost to A-stability.

THEOREM 2.2.7. An explicit linear multistep method cannot be A(0)-
stable.
On the other hand the restriction p <2 on the order of methods is

weakened, at least somewhat, as the following two theorems show.

THEOREM 2.2.8. The trapezoidal formula is the only A(O)-stable linear
multistep method withp > k + 1.

THEOREM 2.2.9. There exist A(x)stable linear multistep methods,
O<a<mn/2, fork=p=3and k=p=4.

The proofs of these three theorems are not given since they are analogous
to proofs in Section 2.1. (Alternatively, see Widlund, 1967.)

2.2.3. Stiff Stability

The class of methods which are stiffly stable is uncovered by an abandon-
ment of the imaginary axts for the domain of stability. For these methods,
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2.2-2. Regions of stability of some stiffly stable methods.
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the left half plane of A-stability is replaced by another left half plane
contained in the former. Such a method will certainly leave quiescent a
component of the form e*»’ (see Section 2.2.1). On the other hand, for a
non-stiff mode ", the method must provide accuracy in a neighborhood
S of the origin into which 4, may be scaled by multiplication by 4, A
reasonably small.

With these tactics in mind, consider the following definition.

DEFINITION 2.2.10. A consistent method is stiffly stable if the following
two conditions hold.

(i) For some constant D < 0, all solutions of the difference equation
generated by the application of this method to the test equation tend to
zero as n — oo for all A with Re 4 < D and for all fixed 4 > 0.

(i) There is an open set S whose closure contains the origin such that
the method is stable for A1€S.

Among the methods which are stiffly stable are the so-called backward
differentiation formulas (see Section 5.1.4 of Henrici, 1962). Low order
formulas of this type provide the basis of the well known Gear’s package
for solving stiff differential equations. (See Hindmarsh, 1974.)

The first three backward differentiation formulas are:

k=1 yn+1_yn_hyn+1:0’

4 1 2.
k=2 Vs =Yt H 3% " 3002 =0 2.2.1)

18 9 2 6 .
k=3 ’ y"+3_1—1'y,,+2+ﬁyn+1_ﬁyn_'ﬁhyn+3:0'

In Figure 2.2-2a, we plot the regions of stability for these three methods.
The methods are stable outside of the curves indicated. In Figure 2.2-2b,
regions of stability are plotted for some stiffly stable methods of orders 4, 5
and 6 (see Gear, 1971).

2.3. SOLUTION OF THE ASSOCIATED EQUATIONS

2.3.1. The Problem

Applying A-stable, A(x)-stable or stiffly stable methods (of the back-
ward differentiation formula type) to the stiff initial value problem forces
the linear multistep methods to be implicit (see Theorem 2.1.7, Theorem
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2.2.7 and equation (2.2.1)). Thus at each mesh point t_, we are confronted
with the problem of solving a system of equations of the form

x—hBf(x)="b 2.3.1)

(compare (1.2.4)), where f§ is a constant and b is a constant vector. Even in
the linear case

(I —hBAX=b, (2.3.2)

the solution of such systems is difficult. This is so because the stiffness of
the original system of differential equations translates into ill-conditioning
for the system of finite equations. In (2.3.2) and hereafter (and unless
otherwise specified), I denotes the m-dimensional identity matrix.

Convergence of an iterative method corresponding to (2.3.2) is equiva-
lent to a condition on the spectral radius of I — A A. A typical such condi-
tion is that this spectral radius be less than unity, i.e.,

0 < hfr<?2, (2.3.3)

for each eigenvalue A€ o(A), the spectrum of A. Of course in the stiff case,
this restriction on 4 is impractical and unacceptable.

A direct method of solution avoids this particular difficulty, but for the
condition number u(A)= || A| /|| A~ ", we have

wA)=14,4;"|

approximately, where 4, and 4 are the eigenvalues of 4 of smallest and
largest magnitude, respectively. Apart from the possibly large amount of
computation required of a direct method of solution, this poor condition-
ing of the problem makes the numerical solution process unstable and
unreliable.

In practice, Newton’s method or a variant is used to solve (2.3.1), i.e.,
an iteration scheme of the form

X, =x,+—hBf (x) "(x,— hBf(x,)) (2.3.4)

is employed.

It is the rapid (quadratic-)convergence of Newton’s method which
seems to be the reason why this approach is more successfu!l than the
previous ones. Of course to exploit the rapid convergence of Newton’s
method, a good starting value for the recurrence must be supplied. In
the transient state (see the discussion following Remark 2.1.2), this is not
o easy to come by, but in the permanent state, such a starting value is
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easily supplied by extrapolation from the numerical approximation (to
the differential equations) at several preceding mesh points. The quality
of this starting value is a critical ingredient in this approach to solving
(2.3.1).

2.3.2. Conjugate Gradients and Dichotomy

The nonlinear system (2.3.1) may be linearized locally (as in Newton’s
method (2.3.4)). In this section, we describe several algorithms for solving
such a linear system which employ the method of conjugate gradients.
Some of these algorithms employ a prediction process as well. The
algorithms do not appear to be adversely affected by the difficulties which
we have just described. Indeed, they seem to be suited to the problem (2.3.2)
corresponding to the stiff differential equation.

Conjugate Gradient Algorithm
Let B be a symmetric and positive definite m x m matrix. Corresponding
to the m-dimensional system

Bx=b,

whose solution we denote by x*, the conjugate gradient algorithm is
defined recursively as follows.
Given x,, r; and p;, compute

(r,'ar,')

a. =,

* (Bp.p)
e D E TGP (2.3.5)
Fioy =1 —aBp,
Py :ri+1+bipi’

where

biZM i=12 ...

(o)
The initial values of this recursion are taken to be
x,=0, r,=p,=b.

The conjugate gradient algorithm is an iterative scheme which converges
in principle in m (the dimension) or fewer steps. Thus in fact, it is an elimina-
tion method as well, and as such, its convergence is not determined by a
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condition of the type (2.3.3) (necessary and sufficient for the convergence
of linear iterations).

We now make a dichotomized characterization of the spectrum o(A) of
A. We suppose that 6(4) = o, (4) U a4(A), and that there exist constants ¢
and C such that

O0<e<l<(,
and such that

|A|=C, Zeq,(A),
H! <c, A€ag(A).

Let L and S denote the invariant subspaces of R™ which correspond to
eigenvalues in o, and in o(A4), respectively.

When A is symmetric and positive, the conjugate gradient algorithm
furnishes favorable properties for systems whose spectrum tends to
cluster. Indeed, suppose that the cardinality of o,(A), |s,(4)| = . Then
o(A) may be viewed as composed of [+ 1 clusters. One cluster is o4(A4)
itself while each of the eigenvalues in ¢, (4) comprises a separate cluster.
In fact if the eigenvalues in o,(A) tend to cluster among themselves, the
situation with respect to the conjugate algorithm will be even further
improved.

These claims concerning the conjugate gradient algorithm derive from
the following error estimate for s-th iterate x_, furnished by that algorithm.

| x, — x*| < min (B~ ' R(B)b, R(B)b), (2.3.6)

where the minimum is taken over all polynomials R(z) of degree s or less
and which are normalized by R(0) = 1 (see Luenberger, 1965 or Miranker,
1972). Thus the value of (B~ ! R(B)b, R(B)b), for any such polynomial
R(z), provides an upper bound for ||x, — x*||.

The computational problem derived in Section 2.3.1, and to which we
will apply the conjugate gradient algorithm, is the solution at each mesh
point ¢, of an equation of the following form.

Bx=(I - hfA)x=b. (2.3.7)

Algorithms
We propose three algorithms for treating (2.3.7).

Alg,: Apply the method of conjugate gradients directly to (2.3.7).
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Alg,: Make a prediction x' of the solution of (2.3.7), where

x'=b+ hfAb.
For the residual of this prediction, p! = b — (I — hfA)x", we have
p' = hp2A%h. (2.3.8)

Clearly p'| = O(h*c?$?), but p' |, > O(h*C?). Thus the prediction, while
good on S, is very poor on L.
Writing the solution x* of (2.3.7) as

x*=x!' 4ol (2.3.9)
we have

(I —hBAW! = p'. (2.3.10)

The algorithm consists of applying the method of conjugate gradients to
(2.3.10) to compute v, and then to determine x* from (2.3.9).

Alg,: This algorithm, which is an extension of Alg,, begins with the
prediction

xXP=(I+hBA+ ... + h°fPA")b

of the solution to (2.3.7). The corresponding residual p” is

p° = (hBAY* 1. 2.3.11)
Writing the solution x* of (2.3.7) as
X* =xP 4 vP, (2.3.12)

we have that
(I — hAW? = p*. (2.3.13)

The algorithm consists of applying the method of conjugate gradients to
(2.3.13) to compute v?, and then to determine x* from (2.3.12).

If v™ is the vector produced by s steps of the conjugate gradient
algorithm applied to (2.2.13), and setting x' = x? + vP®) notice that

x*—x®=xP Ly — (xP + 0P )=0? — 0?9 p=12 ... (2.3.14)

To determine the effectiveness of these algorithms, we employ (2.3.6).



38 Chapter 2
Recalling that |o, (4)| =1, set

1
R =10 —u/nw), w=1-hpa,. (2.3.15)

i=1
Then we will see that for an approximation produced by ! conjugate
gradient steps, the algorithms produce the following results, respectively.
© =2 =00)
)] ', — o' || = O(h*c?B?) (2.3.16)
(P) H vp,(l)_vp H zo(hp+lcp+lﬁp+l).
We will verify this estimate in the case (2.3.16)1). Since the y, are the
eigenvalues of B (see (2.3.7) and (2.3.15)),

m

(B"'R(B)p',R(B)p") = Y.

i=1 i

R2(u,
(.u,) ]pil

2
s

where p} is the component of p' in the eigenspace corresponding to ;.
(There is an implicit assumption of simplicity of the eigenvalues made
here for reasons of convenience and which is easily avoided.) Since
R*(u;) = O for p,€q,(B), we get

TR P U
tilweo, (B i

<O0|lp'|sll = Oth*c? B>, (2.3.17)

by appealing to (2.3.14) for the left member here and to (2.3.8) for the right.
If the eigenvalues in ¢, (B) themselves fall into d different clusters
K;,j=1,...,d, the polynomial (2.3.15) may be replaced by

d
R,(wy=[T(1—n/v),
ji=1
where y, is the center of the ith such cluster. Correspondingly, we execute
d <1 steps of the conjugate gradient algorithm. The error estimate is
degraded since R,(u;) = 0 is replaced by

d
Z H (I —#/Vj),

pnekK; j=1

aquantity which depends on the diameters of the clusters K;,i =1, ..., d.
The error estimate (2.3.17) shows the value of a prediction. On the
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subspace S, the prediction annihilates the error in the solution we seck
to the accuracy O(h**!) of the numerical method (see (2.3.11)). The
conjugate gradient algorithm does not disturb this accomplishment,
but proceeds to annihilate the remaining error which is in L, by use of a
number of steps not exceeding the cardinality [ of g, (B). If we proceed
further with say g conjugate gradient steps, the error bound will be im-
proved by a factor hfic per step. This follows since such steps consist
principally of solving an equation in S. Since in S, the eigenvalues of
I — BhA cluster around unity, (i.e., are of the form 1 — Afi4; see (2.3.10)),
this claim is verified by employing the previous argument and the
polynomial

i
R(x) = [] (1 — w/p)(1 — ¥

i=1

Work Needed for the Algorithms

In Table 2.3-1, we list the approximate number of conjugate gradient
steps (NCG) required to achieve an error bound of the size O((hcf)y** 1) for
each of the three algorithms Alg,,j=0,1,p.

(2.3.5) shows that each conjugate gradient step requires a single matrix
multiplication, say M units of work and two inner products, say P units of
work each. Preprocessing for the prediction step shows that it requires a
single matrix multiplication, M units of work. We neglect the minor
ancillary arithmetic operations in our count. Since an inner product is
1/m times the work of a matrix product, we ignore P compared to M as
well. We tabulate the work needed to produce an error bound of the size
(OtheB)y* ! for the algorithms in Table 2.3-1. In that table, we use the
abbreviation

W=({+p+1)M.

TABLE 2.3-1
Alg NCG Work
o Lapi W
1 l+p—1 wW-M

p ! W —-pM




40 Chapter 2

A Scaling Question

The prediction step amplifies by factors of the size O(h**'A?*'). While
these factors are small for the 4,€S, they are enormous for the 4,eL. A
large prediction gives a large residual, and in turn, a large correction
which must combine (see (2.3.4) or (2.3.12)) to produce a moderate resuit.
This is a well known computational situation to be avoided. The efficacy
of prediction as shown in Table 2.3-1 can, however, be redeemed by
exploiting a dichotomous characterization of the solution of the
differential equation (2.1.1).

As ¢ increases from zero, the solution of the differential equation
decays exponentially with the time constants which act algebraically, as
we have observed, in the prediction process. Correspondingly as t,
increases as we proceed along the mesh, the global numerical error decays
geometrically on L. (See Theorem 2.1, Miranker and Chern, 1980, where
this result is demonstrated for the backward differentiation formulas
(see (2.2.1)) of any step number k.) Thus the numerical solution will
decay likewise on L. Thus at the mesh point ¢, the prediction process,
amplifying by factors of the form O(h”A?), will deliver a residual of the

size
1 +1 ] mk
o' Yo ———
wo( )

on L (ie., for 1€ag,(A4)). Thus if n is large enough compared to p, this
residual is not at all large and the scaling problem is vacuous. Indeed
we may see in Table 2.3-2, which shows the result of computational
experiments, that n =1 is too small but #n > 2 large enough to control
the scaling problem. In particular, notice in this table that the number of
conjugate gradient steps (NCG) needed to achieve a specified level of
accuracy drops in passing from n = 1 to n = 2. The degree of improvement
is proportional to the degree of prediction, as we expect. These computa-
tional experiments are described in the next section.

2.3.3. Computational Experiments

In this section, we present the results of computational experiments
with Alg,, Alg, and Alg, . As numerical methods, we employ the backward
differentiation formulas for k = 1,2 (see (2.2.1)). We use the two algorithms
Alg, and Alg, in the case k = 1 and the three algorithms Alg,, Alg, and
Alg, in the case k = 2.

We take m =10, and for the spectrum, we take a(— 4)= {105, 103,
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10%,104,10°,1,107,1072,10 3, 10~ *}. Note that this spectrum has three
large clusters, i.e., [ = 3. The mesh increment is chosen to be 4 = 0.1.

To provide a definite and a symmetric 4, and one for which the exact
solution of the differential equation could be found, we select a random

TABLE 2.3-2
k=1
n NCG, NCG, TA,x10° T4, x10° TE, TE,
T“M-‘ 7 N 5 ) 0.244 20 0.0277 0.0277_
2 6 4 0.487 3.96 0.0307 0.0307
3 6 4 0.729 5.88 0.0418 0.0418
4 6 4 0.97 7.76 0.0505 0.0505
5 6 4 1.21 9.6 0.0573 0.0573
k=2

T4, TA, T4, TE, TE, TE,

n NCG, NCG, NCG, xI10° x 103 x 103 x 103 x 103 x 10°
! g 5‘; 6 - 0 0 ) #—0“. ‘ 0 B 0 0 “
2 5 4 3 0 0 0 0 0 0
3 5 4 3 0.896 0.00601 0.056 1.0 11.0 10.9
4 5 4 3 207 0.0139 0.839 2.7 1.59 0.775
5 5 4 3 332 0.0223 1.83 4.2 234 0.523
6 5 4 3 457 0.0308 2.83 5.0 298 0.265
7 5 4 3 5.82 0.0392 3.07 8.3 348 0.0767
8 5 4 3 7.04 0.0474 4.06 9.5 3.87 0.212
9 5 4 3 824 0.0555 452 1.1 4.15 0.377

10 5 4 3 941 0.0634 4.85 5.13 4.34 0413
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m x m matrix 5. Then § is replaced by S, the latter obtained by ortho-
normalizing the columns of §. Finally

A=AST,

where A is the diagonal matrix whose diagonal entries are those of 6(A)
taken in order. The initial vector is chosen to be

x0)=(1,2,3,...,10)T.

Starting values for the case k =2 are determined by an application of
the algorithm for the case k = 1.

We call TE the Euclidean norm of the global error, and we call T A the
Euclidean norm of the algebraic error (i.e., the error between the exact
solution of (2.3.7) and the solution produced by these methods). For pur-
poses of comparison, the exact solution of the differential equation and
of (2.3.7), where needed, is produced by some elimination method to a
least ten figures.

We call NCG, the number of conjugate gradient steps needed to
produce convergence of Alg, = 0, 1, 2 to a prescribed tolerance, (viz A”).

Discussion’
Results of the experiments are displayed in Table 2.3-2. The stopping
tolerance is A* = 0.01. Thus each algorithm uses as many conjugate gradi-
ent steps as required to reduce the algebraic error (T 4) to 0.01. Examin-
ing the row n =10 in the case k = 2 of the table, we see that the actual
algebraic errors (T A) achieved are 9.41 x 1073, 0.0634 x 10~2 and
4.85 x 1073, respectively. Such wide variations are characteristic in the
table and point out the sensitivity of the algorithms to a single conjugate
gradient step. Thus while the value 0.0634 x 10 3 referred to and which is
produced by NCG, =4 conjugate gradient steps is much smaller than
necessary, the fact is that three such steps fail to achieve the tolerance
of 0.01 for Alg,. The corresponding global errors (TE) are less widely
varied. In fact the global errors tend to improve with passage from
Alg, — Alg, — Alg,. Thus the more elaborate algorithm gives a generally
better result with less work (lower NCG).

Since =3 and p=2 in the experiments, Table 2.3-1 predicts that
NCG, =3, NCG, =4 and NCG, = 6. These actual values are 3,4 and 5
respectively, in quite good agreement.
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Nonlinear Methods

Summary

The various notions of absolute stability introduced in the previous
chapter provided for a reasonable approach to the stiff problem. How-
ever, the restrictions imposed by these notions on the class of linear multi-
step methods (e.g., loss of explicitness or limitations on accuracy) are
severe indeed. Each weakening of A-stability, the strongest of these notions
of absolute stability, gains some ground for the linear multistep class.
Here we consider an alternative approach, namely, maintain A-stability
but leave the class of linear multistep methods. We discuss two families
of the many such possible approaches. First we consider a family of
interpolatory methods which were in fact devised expressly for use on
the stiff problem. This family is composed of methods by Certaine and by
Jain (see Certaine, 1960, and Jain, 1972). Then we consider the venerable
class of Runge—Kutta methods and point out that certain of these methods,
including a variation of them by Rosenbrock (see Rosenbrock, 1962),are
useful for the stiff problem.

3.]1. INTERPOLATORY METHODS

We begin our discussion of interpolatory methods by describing Certaine’s
method and conclude it, following that, with a description of Jain’s
method.

3.1.1. Certaine’s Method

The system of differential equations is written in the form

Y€)= — Dy(t) + g(¥(t), 1). (3.1.1)

Here y and g are m-vectors and D is an m x m constant matrix with at

43
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least one large eigenvalue. We integrate (3.1.1) to obtain

Tn+ 1

y(t,,+1)=e“”‘y,,+f el g (pydt,  h=t,,, —1t,.

" (3.12)
Certaine's method consists of the following two steps.

(i) Approximate g(y,) by an interpolation polynomial, g,(t), of degree k
at the points ¢, _,,t, _,,,.--.t,. Replace g in (3.1.2) by g,, and use the
resulting expression for y(t, . ,) as a predictor.

(i) Using the predicted value of y(z,, ,), repeat step (i) using the points
ty_yi1s+ 1,4, to determine the correction.

Thus, Certaine’s method is given by two utilizations of the following
expression

th+1
Voo =¢ Py fePte J e g, (r)dt, (3.1.3)
tn

and it is apparent that we have left the linear multistep class.

Since some details concerning Certaine’s method are extractable from
the discussion of Jain’s method to follow, we conclude our discussion of
Certaine’s method with the following two observations.

ReMARK 3.1.1. The integral in (3.1.3) may be evaluated explicitly. If the
exponential matrix e~ ? is difficult to evaluate, one may take D =D, + D,,
where e ~ P is easy to evaluate and ' is adjoined to g.

ReMARK 3.1.2. If g is a polynomial or order less than k + I, Certaine’s
method is exact. Thus the method is A-stable,

Remark 3.1.2 can be demonstrated along the lines of the proof of Theorem
3.1.3 in the next section.

3.1.2. Jain's Method

We start with the initial value problem
yiy=f@ty), te(ab)
Ma)=s.

Here y, s and f are m-vectors.
We consider the function

Y+ Pytr),

(3.1.4)
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where P is an m x m matrix to be specified, and we perform the following
three steps.
(i) Approximate y'(t)+ Py(t) by a polynomial of interpolation, Q(t),
which uses Hermite interpolatory data at the points¢,_,,i=0,1,...,k — L.
(ii) Integrate the differential equation y'+ Py = Q from ¢, to t,,
(iiiy Choose P as an approximation to

_(9f\ _ o, ¥t)
ov), oy )
Step (i) results in

k k
Y@+ Pyt)y= ) h()(f,+ Py)+ Z O+ Pf)+T.
i=1 i= (3.1.5)

Here /, and h, are the fundamental Hermite interpolation polynomials of
the first and second kind, respectively, corresponding to the points t,_,,
i=0,1,..., k— 1. For clarity we do not display the dependence of the
h, and of the A, on n. Also

f-=f(ti,y-), fi=11,y)

(2k), o PO, a<e<b,

where
F(t)=f(1) + Py(t)

and

H [—t"l

Now we apply step (ii) (i.e., integrate (3.1.5)). We find

k
Yury =€ "y, te P Y [HF + HF]+R, (3.1.6)

i=1

where

Tu+1
m=j ePh(p)dt,
tn

ths
H = f 1e"’h’i(t)dt
tn
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and
e‘Ptan‘tnm - 5
R =——o- ePt FCH (& (&)dt.
(2k)! "

As far as step (iii) is concerned and in the case where m = 1, a natural
choice for P is

szn —f([,.’y,.—l?'
yn—yn—l

In the case m > 1, the choices for P depend upon the relative dfficulty
in evaluating e™”. A simple choice is the diagonal matrix whose iith entry
is

LS Yo Y )
/A
As we see in (3.1.6), Jain’s method is far from being a linear multistep
method. Properties of this method are described in the following theorem.

P.=

123

THEOREM 3.1.3. The method of Jain is A-stable and of order 2k.
Proof. Let f(t, y) = Ay where 4 is a complex constant with Re 4 < 0 (i.e., the
case of the test equation). Then P = — 4, and for each i,

F,=f,+Py,=Ay,— Ay;=0

t

and
Fy=f;+Pf; = 2y 4y, =0,
Then (3.1.6) becomes

—_ ~AR
Yur1 =€V,

Then since Re 4 <0, lim y, = 0 for each fixed /> 0. This demonstrates

the A-stability of the method.
Now insert s = (¢t — t,)/h into (3.1.6). It becomes

k
Vo= My, the ™ Y [HF,+ B, F] 4R, (.17

i=1

Here

1
H.=j ePk,(s)ds, ky(s)=hihs +1t),

1 ]
0
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H = jl ek (s)ds, k(s)=h(hs+1t)

]
and
h2k+ 1 1
R = TN e‘”’j "W F20 (Eyn2(s)ds
: 0
h2k+ 1
= 2k
h2k+ 1

1
= O f 73(s)ds + O(h***2),
2k! .

1
e*PhJ F(Zk)(é)ﬂz(s)ds+0(h2k+2)
0

by the second mean value theorem. Then
R = h2k+ le—PhF(Zk)(E)Ak + 0(h2k+ 2)’

where
| S
Ak = EIF Jo K (S)ds.
Thus the method is order 2k and the theorem is proved. |

Some Special Cases
The integrals for the determination of the H,, H ;and R_are of the form

1 N )
'[ e""’( Y Ais’)ds,
[1] i=1

where N = N(n) is an integer. In addition
2k

2k
H,=Y a(Ph)"e™+h 3 b(Ph),

r=1 r=1

_ 2k 2k

H =Y a(Ph)re™+h Y B(Ph)"
r=1 r=1

In the simple case k = 1, we find
=1, h@=t—t,
k(s)=1, k/(s)=s, n(s)=s,
1
H, = '[ ef*ds = (Ph)~ 1(eP* - 1),

0
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A, = f sePds = [(Ph) " — (Ph)2]e™ — (Ph)"?,

1
Y 24g = 1
Al—zj sds =g,

a,=1, a,=0, b,=—1 b,=0,
a, =1, a=-1, B,=0 B,=1

We conclude this section with the following remark.

REMARK 3.1.4. While the methods of Certaine and of Jain are 4-stable
and of higher accuracy, they are computationally costly to use.

3.2, RUNGE-KUTTA METHODS AND ROSENBROCK METHODS

In this section, we discuss the well-known class of Runge- Kutta methods,
and show that in this class of methods we may also find A-stable methods
of higher order. Then we consider a variant of these methods due to
Rosenbrock which have desirable computational properties.

3.2.1. Runge-Kutta Methods with v-levels
We start with the differential equation

£ =f(x), (3.2.1)

where x and f are m-vectors.
A Runge-Kutta process with v levels is defined by the following
relations.

(@) x"=x+h) bk,
i=1

. (3.2.2)
(b) k‘.=f(x+h2aijkj), i=1,2,...,v.
j=1

These relations are used to define an approximation, x* to x(¢,, ,) in
terms of an approximation to x(t,), denoted simply by x in (3.2.2). The
coefficients b‘.,a‘.j,i, j=1,2,...,v are to be determined by a procedure
which we now describe.
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3.2.2. Determination of the Coefficients
By using (3.2.1), we may write the following list of formal relations

n=f,
X =f1fs
D =fof 2+ 11, (3.2.3)

x® =f3f3 +3(f2f)(.f1f)9

P

(ry —

= Z arsFrs'
s=1

Here f, = f,, the Jacobian, an array ororder 2, f, = f
array of order 3, ....
The F,,r=1,2,...,s=1,...,p, are called the elementary differentials.

For each index r, there are p, such differentials. For example, p, =1,
p,=Lpy=2,p,=4,..,and

F.=f, F,,=f/ F31=f2f2* F32=f32=f12f'

Now let x* and x denote the exact value of x at ¢, _, and ¢, respectively.
Next substituting the relations in (3.2.3) into the formal statement

the Hessian, an

x?

x' —x=Y hx"/r!, of Taylor's theorem gives

r=1

0 P
xt—x=3 r—l'h’( Y {Z'SF"). (3.2.4)
r=1"" s=1

Now if we formally develop each k, i=1,...,v (see (3.22b)) in a
series, we may write the first relation in (3.2.2) as

A 0 ] n,
hy bk=73% m > B, F, | (3.2.5)
! r=l(r_l)! et rsTes’ rs
Here the 8, are numerical coefficients while the ¢,_are functions of the b,
and the a;;.

For a Runge—Kutta process to be of order or precision p, it is necessary
that the formal series in (3.2.4) and (3.2.5) agree to p terms. Thus, we
find

¢, =a/B) r=1,...p, s=1l..p, (3.2.6)
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P
as a set of M = ) p equations for the determination of the v(v + 1)

r=1
coefficients a,,b,;,i,j=1,...,v.
We distinguisﬂ three classes of Runge—Kutta processes as prescribed in
the following definition.

DEFINITION 3.2.1. A Runge-Kutta process is said to be explicit if
a;=0,j>1i,itissaid to be semi-explicit if g;; = 0,j > i and it is said to be
implicit otherwise. The number of available coefficients in these three
cases are N, N and N, respectively, where

N, =vv+1)/2, N, =vv+3)/2, N;=vv+1).

The relation between the quantities N,,N,,N,,pand Mforv=1,..., 7is
expressed in the following Table 3.2-1.

TABLE 32-1
v N, N, N p M
! to2 2 1 !
2 305 6 2 2
3 6 9 12 3 4
4 o 14 20 4 8
5 15 20 30 5 17
6 20 27 42 6 37
7 28 35 56 7 85

The M equations in (3.2.6) are not independent, and so it is usually
possible to satisfy them with a number N of coefficients considerably
smaller than M.

3.2.3. An Example

Let us illustrate the last point by means of the case p=v = 3. In this
case, an explicit calculation using (3.2.1) gives
3

3 3
h Z biki=h< Z bi)Fll +h2< Z bici)FZI
i=1 =1

i=1

h 2 3 3 3 .
+7[<Z b¢; )F31 + 2(2 Z biaijCj)F32]+O(h ), (3.2.7)
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where

3
=Y a;
j=1
This must be set equal to the right member of (3.2.5) which is

h(ﬂll¢11)Fii+h2(ﬂ21¢21)F21

h3
+5(ﬂ31¢31F31+B32¢32F32)+0(h4)- (328)

Comparing coefficients of the elementary differentials in (3.2.7) and
(3:2.8) allows us to determine f, ¢, as functions of the g;; and the b,.
These are:

Bii®ii = Z b;,
Byitbay = Z bc;, (3.2.9)
Bs103, = Z bzcw
3 3
ﬂ32¢32 ZL: Z %€

1
Next, the expression in (3.2.4) must be developed so that the «,, may
be obtained. This reveals that «,, =1, a,; =1, a,, =1 and a,;,=1.
(Recall that we have already noted that p, = p, =1 and p, = 2)
We assembie the information developed for this example in Table 3.2-2.

TABLE 3.2-2
Bo=ur roa p,
B Xb=1 111
By Lbici=1/2 2 11
By Ybict=1/3 301
BMZZb,aUc, =1/3 3 1} ?
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TABLE 3.2-3
Appevrns a,, e,
Aypvenns a,, ¢, where ¢, = Z a;

One associates the tableau of coefficients in Table 3.2-3 with the
Runge-Kutta process.

A particular solution of the equations displayed in Table 3.2-2 is
displayed in the version of Table 3.2-3 corresponding to v = 3 as follows.

TABLE 3.2-4
0 0 0
1/2 0 0 1/2
-1 2 0 1
1/6 2/3 1/6

The corresponding values of the f’s are 8,, = B,, = f;, =1 and §,, =2.
This particular solution is due to Kutta.

For a more detailed treatment of the derivation of Runge-Kutta
methods, see Butcher, 1964.

3.2.4. Semi-explicit Processes and the Method of Rosenbrock

Among the implicit and semi-explicit Runge--Kutta processes (see
Definition 3.2.1) are A-stable methods. The implicit processes lead to
methods which are difficult to apply in general, because at each step of the
integration, the k;, i=1,...,v must be determined as the solution of the
system of v nonlinear equations (3.2.2b).

In the semi-explicit case, the nonlinear system is triangular in the sense
that the jth equation in this system contains only the unknowns k,,
i=1,...,j. Thus, each equation in turn need only be solved for one
unknown, i.e., the ith equation for k,i=1,...,v.

Let us consider the semi-explicit case and replace the solution procedure
for the k,, i=1,...,v by a single step of a Newton-Raphson iteration.
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The resulting method is

xt=x+hY bk, (3.2.10)

i-1 -1 i-1
k,.=|:I—ha”fx<x+h Zaijkj>:| f<x+h cijkj>, i=1,...,v,

i=1 ji=1

where I is the m x midentity matrix. This is an example of a method which
may be called a linearized semi-explicit Runge—Kutta process of the
Rosenbrock type, or simply a Rosenbrock method. (See Rosenbrock,
1962.)
Using Rosenbrock’s notation, the case p= 3, v = 2 becomes
x* =x+ Rk, +R k),
k,=[I—ha f]'f, (3.2.11)
k,=[I—-ha,f (x +hc k)] 'flx+hb k)

There are six undetermined coefficients. The set of equations analogous
to (3.2.6) for the determination of the six unknowns are four in number
and are

R,+R,=1,

R,a, +R,la,+b,)=1,

R,af + R,[a} + (a, + ay)b, ] =4
R,(a,c, +3b))=¢

(3.2.12)

A particular solution of (3.2.12) due to Rosenbrock is

a, =1+1//6,

a,=1-1//6,

by =c; =[—6—/6+(58+20/6)""2]/(6 + 2./6),
R, = — 0413154,

R, = — 1413154,

The two matrices in (3.2.11) which must be inverted become identical
under the constraints a, = a, and ¢, =0. This considerably reduces the
computation per step. Under these constraints the equations (3.2.12)
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become
R, +R,=1,
@+ Ryb, =3, (3.2.13)
af +2R,a. b, = %,
R,b2=1.

(3.2.13) has two solutions, one of which is
R,=3/4, R,=1/4 a,=(1+/3)/2, b, =—2//3.
(See Calahan, 1967 for a study of this solution of (3.2.13).)

3.2.5. A-Stability

To demonstrate the A-stability of these linearized methods requires
their application to the scalar test equation (viz. f=/Ax,f,=4) and a
study of the location of the roots of the characteristic equation corres-
ponding to the difference equation which results. We forego these details.
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Exponential Fitting

Summary

We have now completed a review of some of the ideas and methods
for approximating the solution of stiff equations which use a technique
coupling small mesh increments during a transitory stage with a property
of absolute stability during a permanent stage. We now turn to a second
class of methods which employ exponential fitting, a different approach
to the stiff problem.

In the context of a simple example, we see in Section 1.1.1 that the
control of the errore, = u, — y, (see 1.1.6) depends on the stability of the
amplification operator, K(hA), and the closeness of K(#A4) to the solution
operator, S(hA). We see in that example that K(hA) is made close to S(hA)
by making K(Az) close to S(/z) for z in the spectrum ¢(A) of A. Thisin turn is
accomplished by making K close to S in a neighborhood of the origin, and
then shrinking Ao(A) into this neighborhood by making 4 small enough.

The methods of exponential fitting replace the single point at the origin
by a set of points in the complex plane, which we call the fitting points.
Then K(z) is made close to S(z) at all points in this set. Then by taking A
small, the collection of points ho(A) tend to one or another of the fitting
points,

This idea becomes interesting for stiff systems when we note that
fitting points may be very large in magnitude, so that 4 is not required to
scale the entire spectrum of 4 into a neighborhood of the origin. Of
course, in addition to being fitted, a method must be stable and convergent
in some sense if it is to be of computational value. We discuss these latter
aspects as well. Exponential fitting is effective in the transient stage
where the rapidly varying modes of the solution are present. When these
modes become quiescent in the permanent stage, the value of fitting is
more or less lost and thus it becomes unnecessary. In the permanent
stage, the rapidly varying modes must be kept quiescent by use of a method
with some form of absolute stability. Of course in practice, the quiescent

55
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modes will typically tend to reactivate, and the fitting may need to be
reperformed from time to time according to some adaptive criteria.

We begin in Section 4.1 with some examples of exponential fitting for
linear multistep methods and include as well an example of an error
analysis of a particular exponentially fitted method, the Willoughby-
Liniger—-Miranker method. In Section 4.2, we generalize these ideas to
consider fitting for a class of matricial linear multistep methods. In
Section 4.3, we consider the highly oscillatory problem wherein the rapidly
varying modes correspond to eigenvalues with large imaginary parts.
For these problems the transitory stage is itself permanent, and we consider
fitting in such a case. Finally, in Section 4.4, we consider some numerical
approaches to partial differential equations which employ exponential
fitting.

4.1. EXPONENTIAL FITTING FOR LINEAR MULTISTEP METHODS

4.1.1. Motivation and Examples
We motivate the idea of exponential fitting by means of several examples.
Consider the following linear multistep formulas (4.1.1)-(4.1.4).

Foix, ,—x —h[(1-ax,, +ax,]=0. 4.1.1)
The order of this method is p = 2ifa = 1/2 and it is p = 1 otherwise.

1
F,:x, ., —x"—ih[(l +a)x,,, +0—ax)]

+£1—1h2[(b+a))'c'"+1 —(b-a)%]=0. 4.1.2)

Here p=4 if b=} and a=0, p=3if b=4 a#0 and p=2if b #1.

In particular for b =1, (4.1.2) becomes

h . ;
Fy: an—xn—E[(l +a)x,,  + (1 —a)x]
2

+%[(1 +3a)%,,, — (1 -3a)%,] = 0. (4.1.3)

In turn, when ¢ =0, (4.1.3) becomes

h . . 2 .
F,: an—xn—ﬁ(xnﬂ+xn)+ﬁ(xn+1—xn)=0. (4.1.4)
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(4.1.2)~(4.1.4) are not the customary linear multistep methods since they
employ second derivatives of x.

The exact solution of the test equation (see (2.1.2)) satisfies the following
recurrence relation

x(t,, )=¢€%x(,), q=4h 4.1.5)
The amplification factor of F is K (q), v=1, 2, 3, 4 (see (1.1.5) f.) where

K, (@=(1+ag)/[1—(1—ajq],
K,(@)=[4+21—a)g + (b—a)’]/[4 — 21 + a)g + (b + a)g*],
K (g)=[12+6(1 —a)g + (1 — 3a)q*]/[12 — 6(1 — a)g

+(1 +3a)q?], 4.1.6)
K, (q@) =[12+ 69+ ¢*]/[12 + 69 + ¢*].

It is simple matter to verify that the truncation operator (see (1.1.6)f.)
T(q)=K,(g)—e"=0@q""") 4.1.7)

as g — 0, since, as we have noted, p has the various values 2, 3, or 4 as the
case may be.
We introduce the following definition of exponential fitting.

DEFINITION 4.1.1. A method with tru_ncation operator T(q) is expo-
nently fitted to order r ata point ¢ if (d’/d¢’) T(g)| .., = 0,j =0, 1, ..., .

We note that the formulas F are exponentially fitted to order r > v at
the origin. The remaining parameters may be chosen so that fitting
occurs elsewhere as well. If we can adjust F| so that T (h4) = 0, where the
magnitude of A is very large, then it is reasonable to use F, to solve stiff
systems whose spectrum is divided into two clusters. The first cluster
lying near ¢ = O corresponds to slowly varying modes; the second cluster,
lying near g = h4 = ¢, corresponds to rapidly varying (stiff) modes.
Let us now consider some fittings of the F .

Fora =0, F isfitted to order r =0 at c = — o0.
For a= %,F , becomes the trapezoidal formula. The fitting is maxi-
mal at q=0(p=r=2), but there is no fitting at c¢= — oo, since
lim T (9)= -1
[ Endianiie ¥

Forv =1 or 3, T, (c) = 0 defines the parameter a as a function a = a,(c),
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where
al@=—-q ' ==,
a;(q)=1[124+ 69+ q* — (12— 6 + ¢*)e"]/[29 + ¢*
~ (24— g?)e). @.18)

T,(c) = T,(c') = 0 defines a and b as functions of both ¢ and ¢'. These
two functions are

a,(a,4)=2[f(@) = f@1/ldf@)—af (4]

and

by(q.9)=2q9'— 9df (@)~ af ()],
respectively. Here
f@=a"e"—1)/[2+q+(q— 2]
4.1.2. Minimax Fitting
As an alternate use of free parameters, we may attempt to minimize
T(q) in some global sense. We illustrate this by means of the following

example dealing with F .
Let

T(@= max |T(q)|.
—x<g<0
The following lemma results from a direct calculation which employs
{4.1.8). (See Liniger and Willoughby, 1970.)

LEMMA 4.1.2. a=a,(c) defines a 1-1 mapping of ce€(— ,0] into
acl0,1].

Now let a, be defined by
T(a))= min T(@= min T(a,(c))
0<ax<1j2 ~o<c<0
Then

a,=0.122..., T(a,)=0139...,

and the corresponding fitting point is ¢, = — 8.19 ... Notice that for the
backward Euler formula T(0)=0204..., while T(1/2)=1 for the
trapezoidal formula.
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4.1.3. An Error Analysis for an Exponentially Fitted F,

In the classical case, fitting at the origin is a form of control of the local
error, i.e., is tantamount to what we call local error analysis. Then we
see that exponential fitting is a somewhat elaborated variant of local
error analysis. Just as in the classical procedure wherein a local error
analysis by no means assures the control of the global error, we also lack
this assurance in the case of exponential fitting. We must supplement
the local analysis with a stability analysis, and then combine the two by
constructing a global error analysis to demonstrate the value of the
method.

We now illustrate such a global error analysis with F, (see (4.1.1)).
In Section 4.2, we will consider a more general framework.

When F, is applied to the linear system (1.1.1), viz

y=Ay, 4.1.9)

we find the following recurrence relation for the global error, e, (see (4.1.6)
and (4.1.7)).

e,.,=K,(hAe, + T (hA)y,. (4.1.10)

From this in turn, we get

n-1
e, = ). Ki(hAT (hA)y @.1.11)

=0

n—j—-1°

where we have assumed that the initial error, e, = 0.
The following lemma follows from a direct calculation.

LEMMA 4.1.3. |K,(z)| <1 for z€(0, — o0) and a€[0,1].

This lemma implies that F, is A-stable for ae[0, 1/2] (see Lemma 4.1.2).
We now consider a to be restricted to this interval.

Now let us suppose that 4 is negative definite and has distinct eigenva-
lues 4, i=1,...,m, where 0> 4, > ...>/ . Let the resolution of the
identity, relative to A be given by

M=

I=Y P(A), @.1.12)

i

n

where the P,, i = 1,...,m are appropriate polynomials (see (1.1.10)f.).
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Then
| Kitha)| =] 3 K{(hi)P,(A)]
i=1

<const x Y. |K,(h4)| < const. (4.1.13)
i=1
The first equality in (4.1.13) follows from (4.1.12) while the last inequality
follows from Lemma 4.1.3, since the A, are negative. Using (4.1.13), (4.1.11)
becomes

le, |l <const x n| T,(hA)]|. 4.1.14)

Now from the properties of T,(z) for z near zero, we may conclude
that

| T,(z)] < const x min(l,2z%), z<0. (4.1.15)

On the other hand, given ¢ > 0, and if a = a,(c) (see (4.1.8)), then from
Taylor's theorem, we conclude that

T,(2) = (c — 2)(K} () + €9). (4.1.16)

Here Z€(c, z) arises from the remainder term in the application of Taylor’s
theorem. From (4.1.16) in turn, we have that

| T,(2)] < const x |¢ — z|, c<0, z<0. (4.1.17)

Now let (I,.1,) be a partition, I1, of the integers J = {1, ..., m}. Then
combining (4.1.14)-{4.1.17) and utilizing the resolution of the identity,
we get the following estimate for | e | .

e, || < nconst x min [max |h?A?| + max h|y — 4,|]
n iely iel>
< const x max [ min(|h4,|%,]|y — 4,])].
ieJ
(Recall that ¢ = hy.)

The property of Lemma 4.1.2 (i.e., the fitting) was observed by R. A.
Willoughby while that of Lemma 4.1.3 (i.e., the A-stability) was observed
by W. Liniger. The global error analysis was made by W. L. Miranker.
Thus, the simple scheme F, used in an exponential fitting mode for
approximating the solution of stiff equations is called the Willoughby—
Liniger—Miranker method. (See Liniger and Willoughby, 1970 and
Miranker, 1971b.)
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4.2. FITTING IN THE MATRICIAL CASE

In this section, we study the process of exponential fitting in a setting
which is more general than that of Section 4.1. In particular, we consider a
class of linear multistep methods with matricial coefficients. Such a general
setting creates more possibilities for the use of fitting to deal with the stiff
problem.

4.2.1. The Matricial Multistep Method
We consider the initial value problem for the following system.

X = Ax, t>0. 4.2.1)
Here x is an m-vector and A is an m x m matrix of constants. Evidently
(4.2.2)

Now consider the three functions L(z), R(z) and C(z) given as follows.

— adh
x, =¢e'"x

n-1"

Liz)= ) (a;+zB)e" 77,
=0

J

R(z)= 3. (y;+28)e" 7", (4.2.3)
i=0

C(z) = L) [RE=] .
Here the o, Bj, Y and 5j,j =0,...,r are m x m matrices. Note that
L(hA) — C(hA)R(hA) = 0. 4.2.9)

Let P(z) be an approximation to C(z), and consider the following
formula, which is an approximation to (4.2.4), as a numerical method for
determining u, as an approximation to x,,n=r,r+ I, ....

Y o u,_+h Y B,Au, _;
j=0 j=0

r

—P(hA)[ Y Vi, h Y o'jAun_szo. (4.2.5)
j=0 j=0

If P(z) were equal to C(z), this expression would be an identity for solutions
of (4.2.1) (see (4.2.4)). That is, (4.2.5) would be fitted (exponentially) at all
points in the spectrum o(4). However, C(hA4) is too difficult to calculate,
especially if we use (4.2.5) on systems of the form (4.2.1), where A changes at
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each step. Thus, we will choose P(z) as a function for which P(hA) is easy to
calculate, and such that P(z) is an approximation to C(z) in a sense to be
made precise.

4.2.2. The Error Equation

To determine the quality of (4.2.5) as a numerical method, we proceed
to derive an equation for the global error e, = u, — x_. To do this, we
introduce the shift operator H, where

Hf(t)=f(@ + h), (4.2.6)
and we introduce two operators ¥ (H) and #(H) associated respectively
with L and R as follows.

PLH)=Y (o,+hAB)H ",
j=0

AH)= Y, (y;+hAS)H ™. (4.2.7)
j=0

(Expect for the sign change, ;> — f§, the . here is the same as the one
used in Section 1.2.)
Now

Hx =My, 4.2.8)

where x is a solution of (4.2.1).
Thus

(HA - AH)x =0. 4.2.9)
From this we deduce that

A(H)x = R(hA)x,

SL(H)x = L(hA)x (4.2.10)
and that

[Z£(H) - ChARH)]x,_, =0, n=rr+1... (4.2.11)
On the other hand, we may write (4.2.5) as

| Z(H)— P(hA)R(H)Ju,_, =0, n=rr+1,.... (4.2.12)

Then by subtracting (4.2.11) from (4.2.12), we find the following error
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equation, fore, =u, —x n=0,1,....
[Z(H)— PhAAH)]e, _,

= [P(hA) — C(hA)]R(H)x n=rr+1,... (42.13)

4.2.3. Solution of the Error Equation
To solve (4.2.13), we introduce the operator ¥ (H) as follows.
SF(H)= ¥(H)— P(hA)A(H). (4.2.14)

We write . (H) as a polynomial in H as follows.

r

FL(H)= Y st"f, 4.2.15)
i=0
where
s;=s(A)=o;+ hAf; — P(hA)(y; + hAS ), j=0,...r
4.2.16)
Thus (4.2.13) may be written in the following form
S(He, ,=[PhA)— C(hA)JRMhAX, ., n=rr+1,..
Now let 4.2.17)
=y s,.z"j (4.2.18)
j=0

be a polynomial with the matricial coefficients s.,j =0, ..., r. Suppose that
[z7S(z"")] ™" is an analytic function of z in a neighborhood of z =0 and
let its power series be given by

[zSz"H]'= Y ajzj, (4.2.19)
where the o, are matrices. (See Lemma 4.2.2 below.)

Multiply (4.2.17) by g, _,, and sum the result over n from r to N. For
the left member, this operation gives

ZGN"‘/’(H Z isH’ e, |
n=r n=r i=0
N r
=X o, Z e, (4.2.20)

=aosoeN+(ol§0+a )eN 1+ i (VIR
+ 0,5 )e + linear combmatlon ofe e ,....e._,.
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From the defining property (4.2.19) of the 6,,j= 0, ..., we may deduce the
following relation.
D Ty ;5 =0no 1. 4.2.21)
ji=0
Here I is the m x midentity matrix. Using (4.2.21) in (4.2.20) and assuming
that the starting errors e, =e, = ... =¢ _, =0, we find that the right
member of (4.2.20) simply becomes e, . Thus we are lead to the solution of
(4.2.17), viz.

(4.2.22)

n—r’

ey = % oy_,[P(hA) — C(hA)IR(hA)x

4.2.4. Estimate of Global Error

To estimate e, , we require a stability statement and an accuracy statement.
Stability is the subject of the following two lemmas.

LEMMA 4.2.1. If Y sj(}t)z"f satisfies the root condition (see Definition

j=0
1.2.11) for each eigenvalue i€o(A), then the determinant |S(z)| also satisfies
the root condition.

r

Proof. Let f(4)= Y s{A4)z" /. Suppose that the determinant |f(4)]

=0
vanishes for a valuejofz, then | f(A) + ul — 1| vanishes. Then p = p + f(1),
for each A€a(A) or f(4) =0 for that value of z. This completes the proof
of the lemma. d

LEMMA 4.2.2. Let the determinant |S(z)| obey the root condition. If the
determinant of s, is not zero, then the matrix [z'S(z™ ')} " is analytic in a
neighborhood of z=0. Furthermore, the matrices ¢;,j=0,1,... given by
(4.2.19), have uniformly bounded norms.

Proof. Since z’S(z™')= Y. 5,27 and |s,] # 0, it is clear that["S(z™ )] "' is

analytic in a neighborhé)ood of the origin. Since |z"S(z™!)| = 2" |S(z™ 1),
the root condition locates the roots of the polynomial |zS(z~')| outside
the open unit disc while those roots on the boundary of the unit disc are
simple. Since

[2S(z"Y)]~! = [matrix of polynomials in z]/|z"S(z " '),
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it suffices to show that the power series for the reciprocal polynomial,
[2'S(z=')]~ ! has bounded coefficients, given that its roots are outside
the open unit disc, with those on the boundary being simple. Let mr = g,
and let

q -1 o«
|zrS(z71)| ! =[ Y tjzf] =) uz
j=0 j=0

-t
ol o)

where the contour of integration lies inside the unit disc and encircles the
origin. If we move the contour through the unit disc and out to infinity in
all directions, the integral will vanish if g > 1, and we are left with a sum of
residues. If there is a pole {, on the unit disc, it is simple. Let the residue of
this pole be 7. Then

q -1
(c:;“ thjC{;‘l)
j=0

which is independent of n.
If there is a pole at {, of order p + | (p > 0) outside the unit disc, let
its residue be 7, . Then

1
oz dz;”[(: C‘)Hl((:"HZ'CJ) ]

Let Q({) be the polynomial given by

() s

Then since Q(C) is independent of {,

Then

-1

IT0|:

[}

! j- 1
o
i%
j=0

T

1 dC” (Cn+lQ(C) ]

Then performing the differentiation, we get

p dﬂ j
"o Zo( )(dac‘ ) ag G2t

. —mtp @

p-

(C ¢!
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Thus
|7, | <+ pPK/|C, |

where K is a constant independent of n. This estimate shows that |7, | tends
to zero when n tends to infinity since |{,|> 1. Since there are at most a
finite number of residues to be accounted for, the coefficients
u,,n=0,1,..., are bounded uniformly in n, and the lemma is proved. O

If S(z) satisfies the hypothesis of Lemma 4.2.2, then that lemma and (4.2.22)
may be combined to yield

N
[ ey <const x |[[P(h4)— C(hA)IR(A)| ¥ ||x,_ || (4.2.23)

If Nh =1, (4.2.23) becomes
ey || < const x k™" || [P(h4) — C(hA)IR(hA)] . (4.2.24)

To complete the error analysis, the local error, which here is
I [P(hA) — C(hA)]R(hA4)|, must be made o(k). To accomplish this we
have at our disposal the specification of P, L and R to which we now
turn.

4.2.5. Specification of P

Let P(z) be a polynomial which has contact of order 7,+ 1 with C(z)
at a set of points in the complex plane which we denote by hz,,i=1,...,p.
That is

PIhz)— CYhz)=0, j=0,1,...,1,. (4.2.25)
We suppose that z,#0,i =1, ..., p, and we set z, =0.

Now divide the spectrum of A into p+ | disjoint clusters called
Ky, ..k » respectively, where
kiz{ljea(A)||/1j—zi|gomlin |4,— 2|}
<i<p

Ties are decided arbitrarily.
Let
di=max|,1j—z,.|, i=0,..,p.
Ajek;

Now we resolve the identity by writing

I= i Y Z,(hA), (4.2.26)
i=0 Ajek;
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where the Z;; are appropriate polynomials (see (1.1.10)f.), and where for
convenience, we have supposed that the eigenvalues of 4 are distinct.
Using (4.2.26), we obtain

[P(h4)— C(hA)]R(hA) = Z Y [P(ht)
=0 Ajek,

— C(h4 )]R(hi VZ(hA). 4.2.27)
Using Taylor’s theorem with remainder and (4.2.25), (4.2.27) becomes
[P(ha)— ChA)]R(hA) = ) [P (hA)R(hA)) — L(h1)]Z,,(hA)

Ajeko

+ Z ) ;[h (4; = z) ] [P™(hz; )

i=1 A,Ek.

— h/Lij ]R(h/ij)Z,.j(hA). (4.2.28)
The Zij and f,.j are values of 4 arising in the remainder term.

4.2.6. Specification of L and R

To specify L and R we make the hypothesis
L(z)= O(z**"),
R(z)=0O(z'*Y).

This hypothesis asserts that the classical (matricial) linear multistep
methods #L(h)u, _, =0and #(H)u,_, = 0 have order of accuracy u and v,
respectively, (see Definition 1.2.4).

Using (4.2.29) in (4.2.28) gives

(4.2.29)

M*l)

| [P(h4) — ChA)IR(hA)|| < ¢ max(|hd [**1,

+c, Z —|hd |5t (4.2.30)
i=1 l
Here ¢, and c, are appropriate constants. (4.2.30) is the local error (esti-
mate) for the numerical method (4.2.5) which we are studying. Combining
(4.2.30) with (4.2.24) finally gives the global error estimate

14
| ey |l < const x [max(lhd0|",|hd0|“) + |hd,.|“]. (4.2.31)

i=t
The following observation connects the present development to the
classical linear multistep theory.
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REMARK 4.2.3. The classical theory of linear multistep methods corres-
ponds to the case P =0.

42.7. An Example

A simple example of the method (4.2.5) corresponds to the case r =1,
%, = l,a, = — land §, = 1. All other coefficients are taken to be zero. We
select one cluster, ie., p =1, and P(z) is taken to be the constant, C(hz,).
The numerical method is
ehss — 1 |

W) ha, _, .
For this method, y = v =1, = 0. Thus, the method has accuracy of order
zero at the origin and at z, . This low accuracy method may be viewed as
the forward Euler method with mesh increment scaled by (e — 1)/(hz,).

For this method, S(z) =1z — (I +((e*' — 1)/z,)4). By Lemma 4.2.1,
|S(z)| obeys the root condition if z— 1 — ((e"** — 1)/z,)4 does for every
eigenvalue 4 of A. This latter requirement is seen to be satisfied for any
choice of z, in an interval which itself is contained in the interval (— oo, 4).
(We suppose that 4 <0). Thus if z, is chosen as any lower estimate for the
spectrum of A, (4.2.32) will be stable.

Let us choose z; = min (4 — p), for some u > 0. To simplify for purposes

(4.2.32)

"n—"n-lz

Aea(A) R
of illustration, let us consider the special case corresponding to m =2
and to say 4, = — | and 4, some very large negative number. Then the
difference scheme becomes
ehldi-u) _ 1 4 N 4
u—u_ =— — Au__ u
n n-1 AL— U n-1 ,U—il n-1°
since 4, < — 1.
eh(ll —-u) __ 1
Now since x, =e**x _, and u, =|I+-———A |u,_,, we have
A—u "

e,= T(hd)e,_,,

where
eh(ll -4 __ 1
ThA) =1+ "———— 4 — ek,
Ay —H
Thus, T(h4) is the difference between the exponential e’ and the
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hN
/\ hz -
eh1| _I

hZ. hZ|

Fig. 4.2-1

straight line 1 — (e"* 7% — 1)4/(4, — p). At the eigenvalue 4 , we have
T(hA y=HE oy +u l—h + 0| u? ~1~—h ’
: Al /11 g /‘i'l
2
i
¥ o<_>.
3

In Figure 4.2-1 we indicate how a forward Euler-type formula (viz.
(4.2.32)) may be used to stably integrate a stiff system. From this figure, we
see that the z-axis is scaled so that the method (the straight line) isused in a
region where it is stable, but where its value (of the straight line) is equal
to the value of the exponential (the transfer function of the solution) at
the large eigenvalue.

We emphasize that the matricial class of methods being discussed here
is very wide and the operative qualities of the class are by no means
restricted to the scaling concept of the example.

4.3, EXPONENTIAL FITTING IN THE OSCILLATORY CASE

4.3.1. Failure of Previous Methods

The numerical methods which we discussed thus far use the fact that
the rapid changes in the solution are transitory, although possibly re-
current on a time scale which is long compared to that of the rapid changes.
When the stiff system has solutions of a highly oscillatory character, the
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methods which we have thus far examined do not work at all. For example,
the key idea behind the introduction of notions of absolute stability
was based on the existence of slowly varying stages in the development of
the solution during which maintenance of the quiescence of the rapidly
varying modes was the key idea.

In this section, we interpolate a discussion of a method for the highly
oscillatory problem. This method employs a form of exponential fitting
based on a process called aliasing (see Snider and Fleming, 1974).

4.3.2. Aliasing
Let f(t) be periodic with period 2n. For a fixed integer N > 0, let the

following values of f(t) be given.

1), tj=<§!ﬁ>2n, j=0,1,...,2N. (4.3.1)

These points ¢ are called the data points.
In terms of these values (4.3.1), the discrete Fourier series Cy(t) of

ft),is

A y . A
Cy(t)= —20— + Y (A,cosrt + B,sinrt) + 7” cos Nt. (4.3.2)
r=1
The coefficients of this series are
1 2N-1
A = N j;o f(t)cosrt,,
1 2N-1

Br=ﬁ .ZO f(t)sinrt;, r=0,1,....N.
I

If f(z) 1s highly oscillatory, then a good representation of f(t) by C,(t),
requires N to be quite large. In fact we would need 2N values of f(¢)
(see (4.3.1)) and 2N terms in the series (4.3.2), a large number of values and
terms respectively.

Now suppose that f(t) has a special form so that its frequencies fall
into clusters. In particular, suppose that

P
f)=hn+ ¥ ¢,cosR, t+d sinR 1,

m=1

where h(t) is a smooth function. That is

h(t) = ‘% + Y, (d,cosrt + b, sinri),
r=1
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but that there exists an integer L > O such that the quantities |a/| and | b} |
are negligible for r> L. Moreover, suppose that the frequencies
R,>R,_,> ...> R, >L are known (and are large).

The objective is to estimate the coefficients ¢, and d,, m=1,...,p
and the coefficients @ and b/, r = 1, ..., L. This may be efficiently accom-
plished through a process called aliasing.

Note that at each of the data points, the functions cos Rt and sin Rt
can be replaced by cos r,t and sin r_t, respectively, for some r, where
R, > N> r, . This is accomplished by use of the following identities.

cos[2gN +r]t, = cosrt,
cos[(2g+ )N +r]t;= — cos(N —r)t
sin[2gN +r]t; =sinrt,,

sin[(2g + DN +r]t; = —sin(N —r)t

j*

j

One may view the first of these identities, for example, as the statement
that cos [2gN + r]t takes on the same values as cos rt at the data points
but oscillates faster in between. Thus, if we use a coarse mesh composed of
2N + 1 mesh points where N < R, each of the high frequencies R, will be
replacable by a harmonic with an appropriate lower frequency r, < N.

The relation between the Fourier coefficients (a_,b,) of f(t) and the
coefficients (A4_, B,) of its finite Fourier series (see (4.3.2)) is

A=a,4 Y (s, = Gy, 433)

m=1
Br = br + Z (b2mN+r - blmN—r)'
m=1

Thus the replacement of higher frequencies by lower ones will not mix
and confuse components if N is chosen in such a way that each of the
frequencies w =0, 1,2,...,L— 1, R, R,, ...»R, occurs in a separate sum
in the right member of (4.3.3). Clearly, N > L + p, but usually N is smaller

than R , making the process reasonably efficient.

4.3.3. An Example of Aliasing

These ideas are clearly illustrated with the following example. Suppose
that f(t) is the sum of a slowly varying function plus three harmonics of
frequencies 177, 589 and 1000 respectively. Using N = 52 or equivalently,
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105 data points, we have
coS lOOOtj= cos 40 ti
sin lOOOtj = —s8in 40tj,
cos 589tj = cos 35 £,

sin 589tj = —sin 35 (,
cos l77tj =cos 3¢,
sin 177t; = —sin31¢,

where t; =jn/52,j=0,1,...,104.
Thus, if we find the discrete Fourier series for f(¢) at these data points,
viz.

. 4, & . A
fu)= 7°+ > (A,cosrt;+ B sinrt) + %COSSZ t,

r=1

we can say that at the data points

A 30
f@t)= —2—0 + Z (A, cosrt + B, sinrt)
r=1

+ A3, c08177t — By, sin 177t

+ A;5c08589t — B, sin 589 ¢t

+ A,,cos 10007 — B, sin 10001,
within an error depending on the size of the Fourier coefficients of the
slowly varying part of f(t). We forego a discussion of the error analysis of
this aliasing procedure, for which we refer to Snider, 1972. Instead we
turn to the application of this process to the highly oscillatory stiff system.

4.3.4. Application to Highly Oscillatory Systems

We use Certaine’s method which is discussed in Section 3.1.1. We see
from that discussion that for the differential equation

Y'(t)y= — Dy(t) + g(»(0), 1),

where y and g are m-vectors and D is an m x m constant matrix with at
least one large eigenvalue, that Certaine’s method is given by two utiliza-
tions of the following expression,

the 1
Vo= "Phy e D J‘ e g, ()dt. 4.3.4)
’"
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Here g,(t) is an interpolation polynomial of degree k which approximates
g(y,t) at the points ¢, _,,t, .. (»---»t,.

In the oscillating case at hand, the polynomial g, is replaced by a
trigonometric polynomial. In this case as well, the integral in (4.3.4) may be
explicitly evaluated. However, we will have an inefficient procedure
unless we use aliasing. That is, we must know the higher frequencies in
the problem (i.e., the large imaginary eigenvalues of D), and then we must
alias these higher frequencies so that g, is a trigonometric polynomial of
low degree. For illustrative computations which employ this method,
we refer once more to Snider and Fleming, 1974.

A criticism of this method arises in the case of a non-linear system.
For in such a system, even though the frequencies are known to start with,
we may find, among other nonlinear effects, the introduction of sum and
difference frequencies into the solution as it develops. Of course the deter-
mination of N, depending on L and the R,.j= I, ..., p, requires a computa-
tion also.

4.4, FITTING IN THE CASE OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations of evolutionary type along with their
numerical treatment are subject to being ill-conditioned. In some cases
this ill-conditioning resembles the difficulties associated with stiff ordinary
differential equations. The remedy of exponential fitting for the latter has a
counterpart for partial differential equations, and we review this counter-
part here. As we might expect in the partial differential equations case,
the idea of exponential fitting is susceptible to a much wider scope of
possibilities and results than in the ordinary differential equations case.

To motivate our discussion, we begin with a review of a model problem
and an elementary error analysis.

4.4.1. The Problem Treated

Let D be the domain of points, D = {(x,)|1€(0, T], | x| < o0} and consider
the initial value problem

u=Au_, (x.t)eD, (#0,
u(x,0) = f(x), t=0.

Here 4 is a scalar, and u and f are real valued scalar functions, This
model problem has the solution

u(x, 1) = fx + At). (4.4.2)

4.4.1)
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In the half plane, t > 0, we set down a mesh, .#, with increments At
and Ax, ie, M4 = {(xj,tn)= (jAx,nAt), j=0,+1,...,n=0,1,...}. We
may suppose without loss of generality that At = Ax = A.

Let u, = u,(x) = u(x, nh). Then

0
u"+1=S<h5);>un, n=0,1,...,
S(z)=¢*,

as (4.4.2) shows.
As a numerical approximation to u_, we take v, = v, (x), where
Voo = 2, aHv,, n=0,1,..,
lil=t

vy = f(%). (4.4.3)

Here >0 is an integer, and H is the shift operator, Hf (x)= f(x + h).
(4.4.3) is commonly called a two level explicit difference scheme. If
|a,| + |a_,| # 0, we say that this scheme has width I. We write (4.4.2) as

U = Ko, (4.44)

where K is the amplification operator of the scheme.

If the powers | K ||/,j = 1,2, ... are bounded, then the numerical scheme
is stable, and we may obtain the following bound for the global error,
e, =v,— U,

le, |l <const x n x max | Tu,|. (4.4.5)
O<psn
Here T = K — Sis the truncation operator, and we are using || || to denote
the norm in L*[ — o0, 0]
Using Taylor’s theorem and the following consistency relations for the
difference scheme (4.4.3):

1 — =
E,“i ’ (4.4.6)
A— z ja;= 0,
jst
(4.4.5) becomes

e, | <const x nh? x max | u () I, ne(c—lhx+1h). (4.4.7)
O0<p<n

Ifu) exists and is bounded by a constant M uniformly in the domain D, the
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bound (4.4.7) becomes
| e, | <const x Mh, (4.4.8)

provided that nh < T.

As the data f(x) or the solution up(x) becomes less smooth, the bound
(4.4.8) becomes less satisfactory, and convergence of the pointwise error to
zero with h becomes slower and slower. Indeed, when the data or solution
becomes discontinuous, there is no bound M at all, and the convergence
of the pointwise error is a delicate question. This difficulty in turn is
reflected in an inadequate state of affairs in actual computations for such
problems. The problems are ill-conditioned. Indeed, as the data becomes
less smooth, the absolute values of its Fourier transform at larger fre-
quencies tend to grow. Since the spectrum of 40/0x is continuous, we see
then that as the operator S$(40/0x) develops the solution, it receives
increasing input at higher frequencies as the data degrades (i.e., as the
data lessens in smoothness).

We see then that the situation is quite analogous to the case of stiff
systems of ordinary differential equations.

What we will do is to return to the bound (4.4.5) for | ¢, ||, and make
| Tu, || as small as possible. That is, we will minimize || Tu, || over the set of
real coefficient vectors a=(a_,, ..., a,). An alternative approach would be
to minimize the max, | Tu, |, a procedure which resembles the minimax
fitting discussed in Section 4.1.2. We will not discuss this possibility here,
but refer to Micchelli and Miranker, 1973 and 1974 for details concerning
it. Instead we consider a set of special cases in which we replace this
maximization over u, by an appropriate choice of u, itself. The principle
being that if we seek to derive a numerical method with desirable pro-
perties relative to a given type of problem (or data), we cause the properties
~ which are wanted to be taken on by constraining the minimization or
fixing the weight function u, appropriately. We will henceforth drop this
subscript p.

4.4.2. The Minimization Problem

To formulate the minimization problem to be considered, we introduce
the Fourier transform f of f, where

F=Fw) = \/%5 J : e~ r (x)dx.
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Then the minimization problem becomes

min || Tu || = min || (K — S)i| . 4.4.9)

Here
K=Y a;e'”,
R Ii!Sl
S(z) = e'*,

Then the function to be minimized is

J=|(K - 9%

2= f | K(hw) — S(hw)|* |i(w))*dw.  (4.4.10)
We introduce some terminology in the following definition and the ensuing
remark.

DEFINITION 4.4.1. We call the schemes (4.4.3), which use the vector of
coefficients, a, determined by the minimization problem (4.4.9), schemes
with best possible (local-) truncation error, or simply best possible schemes.

REMARK 4.4.2. Schemes for which the 21+ 1 degrees of freedom re-
presented by a are chosen so as to achieve the relation

K(hw) = Sthw) + O((hw)y?), (4.4.11)

with p =2l are the classical schemes. These arc schemes of maximal
order or of maximal (local-) accuracy. They have been named the most
accurate schemes (see Strang, 1962).

For an integer p < 2/, the relation (4.4.11) is equivalent to the following
p + 1 moment conditions.

Zj’aj———/l’, r=0,1,....p, p<2lL
lit<ti

4.4.3. Highly Oscillatory Data

Derivation of the Quadratic Form
For problems with highly oscillatory data, a good choice of u(x) is one
such that

. I, |w|<c/h
2 __ ]
Jite)? = {0, lw| > c/h,
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for ¢, some constant. In this case, we denote J (see (4.4.10)) by J.. Evidently,
2h c/h R -
J, =— | K(hw) — S(ho |*dw).
¢ —c/h
For ¢ = n/4, we find
24 sin(jn/A)
Joa=1+ Y af——a;———

et A=
24 2 < >Si1’1(k7t/;t)
25 (0y g, |Sntke/a)
"121 h-Ta-k J1712 k
For ¢ = n, we find
J=1+ Y a-227y (—1)1'% (4.4.12)
i<t L=t

For ¢ = prn, p an integer, we find

=143 a.

FEY

Consistent Formulas

Let us minimize J, with respect to a and subject to the constraints of
consistency (4.4.6). We may expect the resulting finite difference scheme to
be good uniformly over all frequencies. Using the method of Lagrange
multipliers, we find the minimizing value of a = | j| <!lto be

L PO
YTav| TP Ak

1 (—l)kk] (—1y
L =, (4.4.13
232[ PL Tk [T )
p="E S, =L+ Q)

If in (4.4.13) we set A =m, an integer, we get
a;= éjm.

In this case, the difference scheme propagates information precisely
along the characteristic of the partial differential equation, i.c., the numeri-
cal solution is exact.
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In the case | = 1, (4.4.13) becomes

1 A+ p
a, = l:l-}-i(z 1) :l+

LY IFOS L N ) PO
Ga=3l i TIE)P [ R TR T i

We similarly find that the minimum of J ,, is taken on when

a,= : + J*
P41 728,
This scheme is always stable. To see this, note that

mina,=a pli+1)—3

< 0 U o+ @@+ 7

since p > 2 (consistency), | > 1, and appeal to the following lemma whose
proof is straightforward.

LEMMA 4.4.3. Difference schemes of the type (4.4.3) for which ) a ;=1
i<t

anda}.ZO,j:O,i 1,..., + L are stable.

Consistent Formulas which are Fitted at High Frequency
If the data has large frequency components, the constraints

T(z)| =0

z=*+c/h
suggest themselves. Setting ¢ = p, let us minimize Jon subject to these
constraints along with the constraints of consistency, i.e., subject to the
following for constants.
T =T10)=T(pr/h)=T(— pn/h) =
The minimum occurs at
1
—_— + ‘I ,
204+1  2pS,
a. =

’ [1—(-1y] Sl L I odd
“W iy talteys, Podd

p even,
(4.4.19)
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In the case of even p, we deduce from (4.4.14) that

. pl+1)—3
ming,=a_,=————+—— >0,
S R (S VT Ry
since p,1 > 2. Thus in the case of even p, the schemes given by (4.4.14) are
always stable.

4.4.4. Systems

Derivation of the Quadratic Form
The approach to the determination of difference schemes which we are
discussing may be carried over directly to the case of systems of first order
partial differential equations.

Let u and v be g-vectors and let A be a g x g matrix. We consider the
initial value problem for

u = Au, (x,t)eD, t#0. (4.4.15)
The difference scheme is
Dopr = Z Bjva", (4.4.16)
i<l

where the B,,|j| <1, are g x g matrices.
Proceeding as before by taking Fourier transforms of (4.4.15) and
(4.4.16), we are led to the problem of minimizing the following functional

J = | (R(ho) ~ S(ho))i(w) | 2.

Here K(z) and $(z) are the g x ¢ matrices given by

K(z)= ) Be'”
st
§(Z) —_ eizA~
respectively.

For the weight function, we choose #(w) to be

1, |w| < n/h,
0, otherwise,

li(w)qu{

Here 5 is the g-vector all of whose components are unity. This choice of
#{w) makes J correspond to the functional J in (4.4.12).
Now using (,") to denote the inner product in Euclidean g-space, we
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may rewrite J as follows.

J= J [8(z) — R(2))m. (8(z) — K(z))m]dz. (4.4.17)
Now suppose that A4 is a symmetric matrix with eigenvalues, 4,,
i=1,...,q. Let U be the unitary matrix which diagonalizes A, viz.
UAU ' =A,

where A is the diagonal matrix whose iith entry is 4, i=1,...,q. Let
UB,U! =C;,and let Un= p. Then (4.4.17) becomes

sz ( zAz_zCeuz :Az_zCeuz >

i<t lil<t

Now let C,= (¢}, ), mn=1,...,q,and let g = (i, ..., 11.)". Also let
q
= Z Cfmll'ln’
n=1
Then J becomes

L N e |

m=1 i<t TPy

The constraints of consistency are
> /*B;= 4% k=0,1,

lil=t

or equivalently
Zj"Cj=A", k=0,1.

Lilst

An Example
Let us consider the case corresponding to the wave equation. Here the

0
dimension g=2 and A4 =c[ (1) 1], where ¢ is the sound speed.
Then we find that

11 -1 . .
Uzﬁ[l 1],/11=—/12=c and y’m=\/§c,'n1.
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J becomes
! . . sincm & y
J=2[1+ Y [(c’“)2+(c’21)2]—2 Y (- ]
j=-1 j=-1
The solution to the constrained minimization problem is found to be

1 ¢ 1

B1 =§'Y_IM1+1M2+ZM3’
1 1

BO EYOMI _ZM3, (4418)
1 ¢ 1

B, ~§71M1 _ZMz_ZMs

Here
1 1 1 —1 _ «—pB —at+p
M‘:[l 1]’ MZ:[—I 1]’ M3’[a+ﬁ —a—ﬁ]‘

z and f are arbitrary parameters, and

T 1T3T 3 6+ lele— 1)

I 1p I1+¢
Yo =3 §_<1+3c —1>

1+c p 22-1
& 26c— Delc+ 1y

with p =2 (sin cm)/7.
o and ff may be chosen so that the resulting difference scheme is more
like the usual scalar scheme. This is accomplished by demanding that

B,=P(4), k=0,%1,
where the P, (4) are polynomials in 4. We find that « = f = 0 and that

1 c I oy
P_I(A)=<§’y_1 +Z>I+<1_2—CI>A,

1 1
Po(A) = E'yol + 2_6'}’0/4,

_(1 _¢ 1.7
P“‘“‘(zyl 4)1 <4+2C>A

Here [ is the 2 x 2 identity matrix.
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4.4.5. Discontinuous Data

The Scalar Case

We return to the scalar case and consider the problem of optimizing
the difference scheme when the data is discontinuous. Thus we are interes-
ted in minimizing || Tu | when

I, x=0,
ulx) = 0 x <0

In this case,

V 2mi(w) = lim J e “*u (x)dx = lim i [e7*—1].
d— o d— o w

With this choice of éi(w) and the associated weight function |i(w)|?, we

denote the corresponding value of | Tu| by J,. Then

—iwd

e ied — 1|2

2nJ = lim f | T(hw)|? dw

d= o

=2f | T(he )|2——211mf | T(ho )lzcos‘”ddw.

d=w

Both integrals exist if T(0) = 0, a property implied by the consistency of the
scheme, which we will always require. The last integral here tends to zero
when d — 00, as an integration by parts shows.

A straightforward calculation now gives the value of J,, which is

J _zz[ S i jla, - z k( » ahahﬂ.

=i J1—Jja=k
We now minimize J,, over the vectors @ and subject to the constraints of
consistency, (4.4.6). For the minimizing &, we find that
A+1—j,  j-1<ig],
a;=4-A+1-}j j<d<j+1, (4.4.19)
0, otherwise, li| <1
These a,(4) are the translates of the cardinal spline of order unity. From
(4.4.19) we see that only those coefficients corresponding to mesh points

which immediately surround the characteristic of the differential equation
(4.4.1), which passes through the forward time point (x,(n + 1)At), are
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non-zero. Notice also that the a; given in (4.4.19) are non-negative. Thus
this most accurate scheme is always stable (see Lemma 4.4.3).

Systems

The procedure discussed in Section 4.4.4 for a system may be carried
over to the case of the discontinuous data at hand. The details are quite
similar, and we merely display the following analogue of (4.4.18).

"1 1 cf1 1 e «o
B=al1 1]+Z[1 1]_3[5 p}

B _1_ 1 -1 c[ -1 1 o «
°7 2| -1 1}7[ 1—1J+§[ﬁ ﬁ]’
i1 17 ¢ 1 =37 1o «
Bi=1]1 1}“2[—3 1}5[;% ﬁ]'

Casting B; into the form P,=a;/1+b;A,j=0,F1 where a; and b,
are scalars and I is the 2 x 2 identity matrix, we find that « = § and

l4+c—« _1+c—cx

P_y(d) = - R,
l—c+a, l—c—

Pold) =1+ A, (4.4.20)
l+c—a, 1-3c—a

P(A) =1 -5

A simple and interesting special case of (4.4.20) corresponds to setting o = c.

4.4.6. Computational Experiments

In this section, we present the results of calculations based on some of

the difference schemes derived above. We have chosen three classes of

schemes for the calculations. The first is the class of most accurate schemes.
This class of schemes is given by

A—k
a;= —

|k} slj —k’
k#j
See Remark (4.4.2.). This class of schemes is viewed as the test case against
which the results of any other schemes are to be compared. We expect that
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for data with low frequencies only, i.e., smooth or non-stiff problems, this
class is probably as good a set of methods as possible.

The second class is those schemes which are best possible for data
which is a step function, i.e., the scheme (4.4.19). The third class is the
scheme (4.4.13). This is the class of best possible consistent methods
which weighs all frequencies equally.

We solve the initial value problem

u = Aiu,, —w<x<w, t>0,

u(x,0) = sin kznx, — 00 < X < 00.

The mesh increments At and Ax are taken without loss of generality to
be unity. Then we see that the frequency parameter k of the data can have a
sensible maximum of unity since this is the highest frequency which can
exist on the mesh. We solve this initial value problem numerically with
each of the three classes of schemes discussed above. k varies between 0.25
and 1.0 while A varies between zero and [, the Courant number for the
problem. (The smooth problems correspond to the smaller values of k,
while the stiffer problems correspond to values of k near unity.)

We illustrate the results of these computations by means of graphs in
Figures 4.4-1, 4.4-2 and 4.4-3. One set of graphs is a plot of the discrete
L? norm of the pointwise error after one integration step versus frequency
k. The error is computed over a range of x, 10(2/ + 1)Ax wide, i.e., for the
points x = — 10, — 10/ + 1, ..., 10L (Recall that Ax = 1) In the second
set of graphs, we plot the average of the discrete L? norm of the pointwise
error, as just described; the average taken over the first ten time steps.

In the graphs, the three classes of schemes are distinguished by plotting
the first class with dots, the second with circles and third with crosses. The
abscissa is k and the ordinates are unitless,

The results clearly show that at low frequencies (i.e., smooth problems)
the class of most accurate schemes is best. At higher frequencies (i.e.,
stiffer problems) this class is superseded by both the remaining two classes,
although, the third class, i.e., (4.4.13) is usually the best of all at higher
frequencies. The plots for ten time steps give a similar picture, but show
that the second class has a better average performance over all frequencies.

Finally, note that schemes in the first class, the class of most accurate
schemes, are unstable for 4 > 1 and so are not competitive in this range in
any event. Some of the graphs show this instability clearly. For further
details concerning fitting in the case of partial differential equations, we
refer to Miranker, 1971.
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Methods of Boundary Layer Type

Summary

We begin our study of numerical methods for singular perturbation
problems and the connection of these methods to the numerical treatment
of stiff differential equations by considering the generic initial value pro-
blem for a singularly perturbed system of differential equations written
in the following form.

d
d—f —ftxpe),  x0)=¢
(5.1)

dy
gd—t - g(t’ X, 8)’ y(o) =,

where x(t), feR™ and p(1), ge R". We assume that f and g depend regularly
on ¢ and that g(t,x,,0) # 0.

In Section 1.3, we noted that this class of systems is stiff by observing
that in the case that f = y and g = x + y, the eigenvalues of the system are
¢!+ O0(1)and — 1 + O(e). In a sense, the smaller ¢, the stiffer the system.
Thus the large collection of analytic methods, commonly called
boundary layer methods, used to characterize solutions of singularly
perturbed systems, could be exploited to generate numerical methods for
stiff systems. Since the approximations produced by these analytic
methods improve with decreasing &, we may expect that the corresponding
numerical methods will likewise improve with increasing stiffness in the
system. Of course the case is typically just the opposite in our previous
discussions.

Since the solution of the system (5.1) is described by the so-called
boundary layer formalism, we will refer to numerical methods developed
according to this idea as numerical methods of boundary layer type.

We begin in Section 5.1 with a description of the boundary layer

88



Methods of Boundary Layer Type 89

formalism and a description of the boundary layer numerical method.
Then in Section 5.2 we discuss the so-called e-independent method which
connects the singular perturbation technique rather directly to a larger
class of stiff problems. This is followed by the results of computational
experiments with this method. Finally, in Section 5.3 we present an extra-
polation method which allows the stiff system to be dealt with by treatment
of a pair of associated non stiff or relaxed equations.

5.1. THE BOUNDARY LAYER NUMERICAL METHOD

5.1.1. The Boundary Layer Formalism

We begin with a review of the formalism of boundary layers. Although
the formalism is simply outlined here, a derivation exhibiting the rationale
upon which it is built is given below in Section 5.2 in the context of the
e-independent method. The solutions x(z) and y(t) of (5.1) have expansions
of the type

x(t) ~ gox'(t)%Jr,:ZoX'(t)%’ (5.1.1)

(o)~ goy,(t)% + =Zo Y,(t)%, (5.1.2)
where

T=t/e. (5.1.3)

The symbol ~ is used to denote the fact that the series in (5.1.1) and
(5.1.2) are asymptotic expansions. The first and second sums in (5.1.1) and
(5.1.2) are called the outer solution and the boundary layer, respectively.

Following well-known procedures (see Hoppensteadt, 1971 and Levin
and Levinson, 1954), we find that the coefficients {x,,y} of the outer
solution are determined from

X, =f(t,%4,¥5,0), (5.1.4,)
0= g(t,xosyoao)’
X =[tx,,9,,0x, +f,(t,x4,9,,00x, +Q,,

j’,_ 1= g,(t»xo,yo,olx, + g,(l,xo,yo,o).l’, + R', (51-4.»)
r=12,....
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The dot represents d/dt. f, denotes the m x m matrix whose ijth compo-
nent is the derivative of the ith component of f with respect to the jth
component of x. f,g and g, are similarly defined. Q, and R, depend on
6%, Vs s X,_ 1> ¥,_ 1> =1,2,.... In particular,

Q1 =f;(t,x0,y050)a
R =g,(t,x,,5,,0)

The subscript ¢ denotes &/0e.

Notice that foreachr =0, 1, 2, ..., the first equation in (5.1.4,) represents
a system of differential equations, while the second represents a system of
finite equations.

Continuing to follow well known procedures, we find the following
equations:

(5.1.5)

X, =0,
Y, =g(0,x,(0) + X, y,(0) + ¥,,0), (5.1.6,)
X =p,
Y =g (0,x,00) + X, y,(0) + ¥,,0)X,
+£.0,x,0), 5,0+ ¥,,00Y +gq, (5.1.6)
r=12,...,

from which the coefficients {X , ¥ } of the boundary layer are determined.
The prime represents d/dt. p, and ¢, depend only on 7, x,(0), y,(0),...,
x,_,0),y,_,0),X,,7Y,,..,X Y _,,r=12,.... Inparticular,

r—1°* “r

P (1) =f(0,5,y,(0)+ Y¥,,0) - £(0,,,(0),0). (5.1.7)

Supplementing the equations (5.1.4,)and (5.1.6,) for the x,, y,, X, and Y, is
the set of initial conditions:

x,(0)+ X, (0)=£4,,,

2O+ ¥YO=ns, =01,
where 4, is the Kronecker delta. Since there is one condition for each pair
of variables, the determination of the expansion is still not complete. We
require an additional condition for the undetermined initial values in

(5.1.8).
We require that the X, Y, be boundary layers; namely that

lim X (t) = lim ¥ (t) = 0. (5.1.9)

T a0 t—> a0

(5.1.8)
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Now the specification of the coefficients in the expansions is complete,
and we determine them in ordered groups of four; {X ,x,,y,, Y}, r =0,
1,...,as follows.

From (5.1.4), (5.1.6), (5.1.8) and (5.1.9), we have for r =0

@  X,=0, lim X, = 0,
b) x.o =f(tax0,y0,0), xo(O) = éa

( (5.1.10)
© 0= g(t,x,,7,,0),

d Y, =80,5y,0)+ ¥,,0),  Y,(0)=n—y,0)
(5.1.10a) has the solution X, = 0, and the succeeding equations uniquely

determine x,,y, and Y. The condition (5.1.9) for Y, is satisfied if the
eigenvalues of g , denoted A(g,), satisfy

Ag,) <0. (5.1.11)

The condition (5.1.11) characterizes the class of stiff systems to which
the methods which we are now discussing are designed to be applied. We
henceforth assume that (5.1.11) holds.

Similarly, for r =1, we have

(@) X, =p,(), lim X, (1) = 0,

(b) X =fx +fy +f, x,(0)= — X, (0), (5.1.12)
©  Yo=8x +8gy +8&,.

(d) Y'1=ng1+ng1 +q1, Y1(0)= —y1(0)

To solve (5.1.12), we proceed as follows. From (5.1.12a) we get

X, 0)= —f p,(o)do.
0

This and (5.1.8) determine x,(0) = — X, (0) so that (5.1.12b) and (5.1.12¢)
may be solved simultaneously for x, and y,. Then (5.1.12d) may be
solved for ¥, . This procedure may now be repeated foreachr=2,3,....

5.1.2. The Numerical Method

We describe a numerical method which consists of constructing the
formal boundary layer expansion by solving the equations which specify its
terms numerically.

Let #>0 be a mesh increment. Let z=(x,y)T and Z=(X, )T be
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N = m + n dimensional vectors. Then from (5.1.1) and (5.1.2),
2h) = zy(h) + ez, (h) + Z,(h/e) + eZ (h]e) + O(?).
Since the equations are stiff, we are interested in the case
h> e
This and condition (5.1.9) imply that Z (h/e) and Z, (h/e) will be near zero.
In fact these terms will in general be exponentially small in 4/¢. Thus we
approximate z(h) by z,(h) 4 £z, (h), the approximation being O(£?) (i.e., it
improves with increasing stiffness). The numerical method consists of
calculating z,(h) and z,(h). We must still compute Z,, in order to obtain
the initial condition x,(0) required for the determination of z, (k). (Of
course more terms in the expansion may be calculated if they are wanted.)
The numerical method consists of the following steps (i)—(iv):
(i) Solve
(a) X, =flt,x4,¥,,0), x,(0)=2¢,
for x,(h), ¥,(0) and y,(h). The numerical method for solving (5.1.13a)
should be of the self-starting type.
(ii) Having determined y,(0) in step (i), solve

Y'0=g(0,§,y0(0)+ Y()’O)v Y0(0)="_y0(0)

for ¥,(t),t > 0. This must be done for a net of t-values, say {0,k, 2k, ...,
Mk}, so that

xl(o):_X1(0)=J\ pl(a)da

0

(5.1.13)

can be approximated to some prescribed degree of accuracy by a
quadrature rule:

(iii)
M
§, =2 ap (k)
j=0

-
= Y. a;[£(0,£,5,(0) + Y, (jk),0) — £(0,£,5,(0),0)].
j=0

(iv) Having determined &, , the approximation to x,(0), in step (iii),
solve
(a) x.l =./;(tax07y0’0)x1 +f;,(t>x0,y0’0)y1
+f;(t1x03y0’0)’ x1(0)=§]’
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(b) ¥y =—8 't,x5,¥0.0)[&(t,%0,¥,, 00, — ¥y + g6, %4.55,0)]

for x (h) and y, (h).
We make the following observations concerning this numerical method.

ReEMAark 5.1.1. Steps (i) and (iv) determine z,(h) and z, (h) respectively.
Steps (ii) and (iii) deal with Z and are used to determine the initial condi-
tion &, for x,. The method seems to step across the rapidly varying
modes (the boundary layers) as they change over the comparatively great
interval (0, 4). This is not quite true, nor is it accomplished without cost.
Steps (ii) and (iii) perform a mesh calculation with increment k in t.
Since t = t/¢, k will be #0(¢). Thus, in order to calculate Z, and x (0), a
fine mesh calculation must be performed. The critique of this boundary
layer method is:

(a) the parts or aspects of the given initial value problem upon which
to perform the fine mesh calculation are a well-defined subpart of the
original system.

(b) this fine calculation part may be performed with less precision than
the coarse part (step (i)). To see that this is so, note that z, (%) depends on
the fine part of the calculation through x, (0). Thus an error in determining
the fine part leads to a proportional error in z, (h). But the approximation
to the solution is z, (k) + ez, (h). Thus the effect of such an error is reduced
in order by &, a measure of the stiffness. Thus here again the stiffer the
system, the more functional the method.

The following observation promises even more in this regard.

REMARK 5.1.2. Insection 5.2, we will show how to by-pass this fine mesh
calculation (see (5.2.22)).

5.1.3. An Example

We now consider an example for which the steps of the numerical method
may be carried out analytically, i.e., to infinite arithmetic precision.
The example consists of the following initial value problem.

X=y—x x(0)=¢,
y=—100y+1, y0)=n.
The exact solution of this problem is

1 n—(1/100) 1 ] _, n—(1/100) _, 4,
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1
1 - 100 .1.14
V=151~ (1/100)]e (5.1.14)
For the example, the steps of the numerical method are the following ones.
@) Solve

Xo = Yo — Xps X0(0)=é, (5115)
0=y,

for x4 (h), y,(0), and y,(h). We use Euler’s method with increment 4 in ¢ to
solve (5.1.15). We find :

xo(h) = (1 — h)¢,

Vo(0) =y, (1) =0.
(i) and (iii) Solve

Yo ()= — Y, (1), Y, 0)=n—-y,00)=1n (5.1.17)

on the mesh t; =ik, i =0, ..., M. Then evaluate

(5.1.16)

x,(0)= r Y,(0)do. (5.1.18)

0

Using Euler’s method with increment k in t for (5.1.17) and using the
rectangle rule for (5.1.18) with the upper limit of integration replaced by
kM, we find

x, (0) = (1 — KM*1),

(iv) Solve
'xllzl—x17 x1(0)=’1(1-kM+1)’
y, =L

Again using Euler’s method with increment A, we find
x, (hy=h+(1 = )(1 = kM "y,

(5.1.19)
y‘(h)=l
Combining (5.1.16) and (5.1.19), we find
M
x(hy=(1-hE+eth+ (1 =1 —k"" "), (5.1.20)

wh)=e.
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Identifying ¢ with 1/100, (5.1.20) becomes

x(h) = l(l)0+ (1- h)( Loy +J(1 kM”)n>,
1

100"

which approximates (5.1.14) to the claimed accuracy.

y(h) =

5.2. THE ¢-INDEPENDENT METHOD

A criticism of the boundary layer method which we have just discussed
is that it depends on the stiff system being given in a form in which there is
an identifiable small parameter which characterizes the system as one of
singular perturbation type.

To deal with this criticism, we consider how boundary layer methods
may be developed even though there is no identifiable small parameter.
With this development, the boundary layer numerical method will be
applicable to wider classes of stiff systems.

5.2.1. Derivation of the Method

We proceed by writing k = (f, g)*, z=(x.»)", and {= (§,n)". The initial
value problem (5.1) is supposed given in the following form.

2 =k(t, z;¢), z(0)=¢. (5.2.1)

Here and throughout this section, the parameter ¢ will appear explicitly
in our development. In fact, ¢ is to be regarded as unidentifiable and as
being displayed in some virtual sense. That is, we will suppose that the
problem contains a small but unspecifiable parameter with respect to
which certain properties are fulfilled. The derivation will make use of
and display this parameter, in the virtual sense. What matters is that in
the end result, the parameter is not needed and its utilization throughout
is an artifact of the development. Of course the correctness (i.e., an error
estimate) of the result depends on the correctness of the hypotheses
concerning the unknown parameter. For a discussion of this latter
point and other details, we refer to Miranker, 1973.

We solve the system (5.2.1) numerically along the mesh with increment
h, proceeding as if the system were not stiff. In terms of the notation in
Section 5.1.2, we start with m regarded as equal to the number of dimen-
sions N, in z and with n equal to zero. The method then produces z, (/)
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by employing a standard seif-starting numerical method. Then we
compare z,(h) and { componentwise, i.e., we test the following inequality.

ENUR
1+1¢,\

Here 6 is a prescribed positive tolerance. If the tolerance is not exceeded by
any component of z,(h), we accept the value of z,(h) produced. If the
tolerance is exceeded by a set # =#£(j,,...,j ) of n>0 components of
z,(h), we reject the integration step and redo it as follows.

Set

>0, j=1..,N. (5.2.2)

X, =2,
£—¢, (5.23)
fi=k. i=1..,N,i¢g,
and set
Yi=Zjp
n=L, (5.2.4)

g,=k;, Jj=1..,N, jes.
Now the system has the form

t=flt,z58),  x(0)=¢,

y=gl,ze,  ¥0)=n

We stress that the parameter ¢ is still unidentifiable, and we make the
following assumption.

(5.2.5)

AssuMPTION 5.2.1, There exists a variable ¢, so that f(r, z,¢) and g(t, z,¢)
are analytic in ¢ in a neighborhood of e = 0 except that g(t,z,¢) has a simple
pole at ¢=0. We also maintain the requirement A(g,) <0 (see 5.1.1),
assuring the boundary layer nature of the solution of the system.

We seek a solution of (5.2.5) in the form
x(t)=x,(t)+ex, () + X (D) + X, (D) + ..., (5.2.6)
W)=y +epy, () + Y () +eY, (1) + ... (5.2.7)

For the outer solution, we have

Xo+ ek, =f(t.xy,¥58)
+ef (Xy., Yy :80x, + r,f_v(t, Xo Vo 8+ -y (5.2.8)
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Yot ey, =8t xy,0,:¢)
+&f (8%, V0 560X, + 88, (8, X4, P053€)P, + ... (52.9)

By our assumption, the terms g, g, and g, have simple poles at ¢ = 0.
Thus from (5.2.8) and (5.2.9), we deduce the followmg equations (5.2.10)and
(5.2.11) for x,, ,, and for ex, and ey, (since ¢ is unidentifiable, we deter-
mine the products ex, and ¢y, , and not x, and y, as before (see 5.1.12)),
respectively.

@ gy =f(txepeieh %0 =& (5210
(b) 0= g(t, X0:Y0 ;8)'

Notice that consistent with its lack of identifiability, we do not set ¢ = 0.
(Compare (5.2.10) with (5.1.4,).)

For convenience we will hereafter suppress the arguments (¢, x,, y, ;)
of fand g. The equations for ex, and £y, are

ex, =f ex, +fysy1,

(5.2.11)
Vo= 8. 6x, +g.Ey,.

We solve the second equation here for gy, as follows.

g 'Do—gex 1=8"'[-8 ' g +gf—gex]
(5.2.12)

Here we replace y, by its value obtained by differentiating (5.2.10b) with
respect to ¢.

Combining (5.2.11) and (5.2.12) yields the following equations for
determining ¢x, and gy, respectively.

X =, ~f,8 '8 )x, —f,8 g +8rf)

. = (5.2.13)
=8, 'gex, —8 (& +8/f)

Notice that ¢ is still unspecified, but the quantities ex, and gy, which
are sought are, except for the initial condition ex, (0), well-defined.
Moreover, examining the right members of (5.2.13), we see by Assumption
5.2.1 that the large quantities g,g and g, are neutralized, in the sense
that they occur as quotients, one of the other.

To determine the initial condition, ex,(0), we obtain an e-independent
determination of the boundary layers. Inserting (5.2.6) and (5.2.7) into
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(5.2.5), we find
ex(y (1) + £2x) (e7) + X, (1) + eX (D) + ...
= ef (et, x,(e7) + ex, (e7) + X, (1) + X, (7)
+ .,y et) 4+ . e, (5.2.14)
ey (eT) + 2y ety + Y (D) + eY () + ...
= £g(eT,x,(e7) + ex,(67) + X{(7) + eX (1) + ..., poleT) + ... ;8).
Here and hereafter we use the prime to denote differentiation with respect
to argument.
Using Assumption 5.2.1, we deduce the following equations for X, X,

and Y, from (5.2.14).
First setting ¢ = 0 in (5.2.14), we obtain

X,(1)=0. (5.2.15)
As in Section 5.1, X,(0) =0, since XO(O)Jyer(O) =¢, so that X (7)=0.
Next from (5.2.14), we deduce the following equations for X, and Y.

X, (1) =£(0,&,y,(0) + Y, (1);6) = £(0,&,v,(0); ), (5.2.16)
and

Y (1) = £8(0,&,y,(0) + Y (1);e). (5.2.17)

We integrate (5.2.16) from zero to infinity, using the boundary layer
property, lim X(r) = 0. Also using x, (0)+ X,(0) =0, we get

ex,(0) = 8] [£(0,&,5,(0) + Y, (1);6) — £(0, &, 5,(0); ) ]dr.
° (5.2.18)
Now since Y, (r) vanishes exponentially fast as ¢ increases from zero,
the bulk of the value of the integral in (5.2.18) comes from the neighbor-
hood of © = 0. Thus we may expect a good approximation to the integral

by replacing the integrand by an interpolant using data at T =0. This
data is first,

from the initial condition, y,(0) + Y,(0) = #, while from (5.2.17) itself we
have

Y,(0) = £g(0,&,1; ). (5.2.20)
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While we can obtain more data by differentiating (5.2.17), let us approxi-
mate (5.2.18) using just (5.2.19) and (5.2.20). The simplest approximation
comes from replacing the integrand in (5.2.18) by its tangent at 7 =0,
and integrating this tangent from zero to its positive root. In this manner
we obtain the following expression for approximating ex, (0) from (5.2.18).

&, 0) _1/0.8 ;0 - £0.£,5,0:9] (5.221)

2 £0,8,1;6)80.8,n:8)
In (5.2.21) all arithmetic is componentwise except the matrix vector
product £ g in the denominator. Notice that as far as magnitude with
respect to ¢ is concerned, both sides of (5.2.20) are in agreement.

A second choice in approximating (5.2.18) is to use the data (5.2.19)
and (5.2.20) to fit an exponential to the integrand, and then to integrate the
exponential from zero to infinity. In this manner, we obtain the following
expression for approximating ex, (0) from (5.2.18).

S0,8,y,(0);¢) — f(0,&,n:¢)
ex, (0) = 0 .
0= E g0, &)

The arithmetic here is to be performed exactly as in the previous case.

With either (5.2.21) or (5.2.22), (5.2.13) determine ex, and gy, completely.
We emphasize that while the derivation of (5.2.21) and (5.2.22) appears to
depend upon and use the variable e, it does so only in a virtual sense.
Moreover the resulting approximating expressions for ex,(0) in these
two equations are independent of ¢. (See the comment following (5.2.1).)

We now solve (5.2.10) for y,(0), y,(h) and x, (), by a numerical method
as described earlier in Section 5.1.2. Then (5.2.13) and (5.2.21) or (5.2.22)
are used to solve for &x, (h) and &y, () by a numerical method also des-
cribed earlier. Finally we take

x () + ex, ()
m=|"° 1 . 5.2.23
d’(n@+wﬂ9 (.223)

We now repeat this procedure on the interval (4,2k). This time we
start with the system already divided into a regular and singular part as in
{(5.2.5). We then make a tolerance test on z(2h) compared with z(h)
analogous to (5.2.2). If the tolerance is not exceeded by any component of
z(2h), we accept the integration step. Otherwise we reject it and redivide
the system according to the scheme described above (see (5.2.3)-(5.2.5)).
We then redo this integration step. Once a component is placed into the
singular part of the system. we do not remove it, even though its solution

(5.2.22)
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settles down and passes the tolerance test. Thus the flow of components
of z from x status to y status is unidirectjonal. If this policy is not followed,
the component in question usually regenerates a stiff mode (becomes
unstable) at once and it is then pushed back into the singular part anyway.
This aspect of the ¢-independent numerical method concerning the
tolerance test is an algorithmic aspect and should be adjusted to the
particular problem being considered. Tt is likely that for nonlinear systems
where the stiffness comes and goes as the solution evolves, a two-direc-
tional flow components of z between the regular and singular parts may
be called for.

5.2.2. Computational Experiments

In this section, we give the results of calculations performed on two
different stiff systems using the numerical method of Section 5.2.1 and two
comparison methods.

For the numerical treatment of each of the equations of the boundary
layer numerical method, we choose a simple numerical procedure. Thus
for solving the differential equation (5.2.10a), we use the modified Euler
method which for the equation y = f(t.y) is

1
y(t + h)=y(t)+ Eh[f(t,y(t)) + f+hy@)+ H ()]

For solving the finite equation (5.2.10b), we use one iteration of Newton’s
method with initial guess # when solving for y (0) and with initial guess
¥,(0) when solving for y,(h). The linear differential equation (5.2.13) is
solved by using Euler’s forward method (unmodified). Of the two alter-
natives for evaluating ex, (0), we choose (5.2.22). These are very primitive
numerical methods, but they are adequate to provide a comparison
with conventional (non-stiff) methods.

The first comparison method is the modified Euler, the simplest Runge—
Kutta method, applied to all equations of the system. The second compari-
son method is the trapezoidal rule which for the equation y' = f(t,y),
we take as

y M+ h) = yr) + %h[f YO+ L+ h Y e+ )],

j: 1’2’ ""6'
YO+ h) = y(t).

This method may be viewed as the simplest prototype of stiff methods of
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TABLE 5.2-1: two sets of calculations for the system of (5.2.24)
Boundary
layer method | Exact solution | Modified Euler | Trapezoidal rule
t X y x y x y x y
h=005 00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10
8=005 005 0961 0.1 0961 0.017 8.76E-1 8.43 0937 —0421
0.10 | 0915 001 {0915 001 3.65E-3 8.29E1 | 0.897 0.188
0.15 0871 0.01 0871 001 —8.39 8.29E2| 0.851 —0.0733
020 | 0829 001 0.829 001 —9.21E1 8.30E3 | 0.81 0.0386
025 | 0789 001 [0.789 001 |-930E2 831E4| 077 —0.00939
030 | 0751 001 |0.751 001 0.732 0.0112
035 | 0715 001 0715 0.01 0.696 0.00236
040 | 0.681 001 | 0680 001 0.662 0.00613
045 | 0648 001 | 0.648 0.01 0629 0.00451
0.50 0.617 0,01 0617 0.01 0.598 0.00521
h=001 00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
8=0.1 0.01 100 001 | 099 0.37 0995 0505 | 0.983 0.337
0.02 0.990 0.01 0989 0.4 0990 0.503 0971 0.116
003 | 0981 001 | 0979 0.059 0985 0.500 | 0.961 0.0419
004 | 0971 001 0971 0028 0980 0.498 0.951 0.0173
005 | 0961 001 | 091 0.017 0976 0495 | 0941 0.00909
006 | 0952 00I 0952 0012 0971 0493 | 0932 0.00636
0.07 | 0942 001 | 00942 0011 0966  0.490 | 0923 0.00545
0.08 0933 001 0933 0.010 0961 0.488 0913 0.00515
0.09 | 0924 001 | 0924 0010 0957 0486 | 0.904 0.00505
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TABLE 5.2-2: two sets of calculations for the System of (5.2.25)

Boundary
layer method Modified Euler trapezoidal rule
t X, X, Xy X, X, X5 X, X, X5
h=005 00 10 10 00 i.0 1.0 0.0 10 -1.68 9.52
=005 005|101 102 118 |1.00 1.01 - 1.31 | 1.00 102 —-1.71
0.10 | 104 105 120 |1.01 102 —-409 | 1.13 1.02 0.00
015106 107 122|102 104 —100 | 2.08 1.13 —892
020 | 107 110 124 | 1.03 106 —-226 | 107 211 —8.66
0251109 112 127 | 107 L12 —495 | 942 108 -7.56
030 | .11 114 129 | 1.15 123 —107.
035 | 1.13 117 131 | 1.33 145 — 228.
040 | 1.15 119 133 | 1.7 1.93 — 483,
045 [ 1.17 122 135 [ 251 297 —1020.
050 | .19 124 137 [432 527 —2100.
=001 00 |10 10 00 |10 10 00 | 100 1.00 0.00
h=001 001|102 102 118 i.00 100 0.468| 1.00 1.00 0.508
002|104 104 1.20| 100 100 0.747| 1.00 1.00 0.793
003] 1.05 106 1.22] 1.00 1.00 0913 1.06 1.00 0954
004 | 107 108 124 | 100 100 1.01 | 1.00 1.00 1.04
005|109 .10 126 | 1.00 100 107 | 1.00 1.00 1.10
006 | 111 111 128§ 1,00 101 1.11 | 1.00 1.00 1.12
007 1.13 113 130 100 101 1.13 | 1.00 1.00 1.14
008 | 1.14 115 1.32 | 1.00 101 1.14 | 1.00 1.01 1.15
009} .16 117 134} 100 1.01 1.15| 1.00 1.01 1.16
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the A-stable or stiffly-stable type (see Chapter 2) so that it stands some-
where in between a conventional method and a method devised for stiff
equations.

Example 1. This example is the same as the one in Section 5.1.3, viz.
X=y—Xx,

5= 100y 4 1 (5.2.24)

The numerical results are presented in Table 5.2-1.

Example 2. This example concerns the system
X, =0.0785(x, — x,),
x, =0.1x,, (5.2.25)
Xy = —(554x,)x; + 65x, .

The numerical results are presented in Table 5.2-2.

For additional computational results, see Aiken and Lapidus, 1974.

5.3, THE EXTRAPOLATION METHOD

We now show how the form of the perturbation solution can be used
to calculate the stiff solution by combining solutions of auxiliary non-stiff
or relaxed equations. This method which is called the extrapolation
method begins by identifying a value of &, say &', which is substantially
larger than ¢ in magnitude, but for which the solution of (5.1) with &
replaced by ¢ can be used to approximate x(h,¢&), y(h,¢). Thus, (5.1) is
solved for larger values of ¢, and so it can be solved more accurately with
less effort. The number of operations used in these computations is
proportional to 1/¢ and 1/¢’, respectively. Therefore the ratio ¢'/¢ provides
a measure of the relative number of operations of direct solution (by some
conventional numerical method) compared to the extrapolation method.

5.3.1. Derivation of the Relaxed Equations

We begin with an observation concerning the asymptotic form (5.1.1)
and (5.1.2) of the solution to the initial value problem (5.1). From the
boundary layer behavior of the inner solution (see (5.1.9) and (5.1.11)),
we may specify two positive constants ¢ and K so that the solution of
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(5.1) has the form
x(t,€) = x,(t) + x, (e + X(t/e,¢) + O(c?),

, (5.3.1)
Yt &)= yo(t)+ y (the + Y(t/e,€) + O(e”).
Here X, Y have the following bounds.
| X(t/e.e)|| + || Y(t/e,8)| < Ke™ % (5.3.2)

0 is usually of the order of the smallest eigenvalue of g, , and K depends on
other data in the problem. These estimates hold uniformly for 0 <t < T
and for all small positive . For details concerning this assertion sce
Hoppensteadt, 1971.

Now referring to (5.3.2), a value T is determined so that

Ke °T=0(hr" ). (5.3.3)

Clearly T is only determinable as an approximate value.

Next, a value ¢ = h/T is defined, and the system (5.1) is solved twice
by a conventional (order p) integration method: first for x(h.&'/2), y(h, ¢'/2),
and then for x(h,¢&'), y(h,¢). It follows that

x(h, &) = 2x(h, e /2) — x(h,&) + O(hP "1y + O((£')*) + O(e),

y(h, &) =2p(h,&'/2) — y(h,e)+ Oh* " ') + O((£)*) + Ole).
This relationship can be derived in the following way. From (53.1),

2x(h,&'/2)=2x,(h) + x (h)e' + 2X(2T.&'/2) + O((¢'))

x(h,ey=x,(h) + x,(h)e' + X(T, &) + O((¢)*)

and so by subtracting,

2x(h,&'/2) — x(h, &) = x,(h) + O(W"* ') + O((£'Y). (5.3.9)
Here the term O(h**') comes from estimating the boundary layer terms

X in (5.3.2) by utilizing (5.3.3). On the other hand, by utilizing (5.3.1),
(5.3.2) and (5.3.3), we find

x(h,e) = x,(h) + Ole) + O((¢))

(5.3.4)

and similarly, for y(h,¢). Here O(e) is an estimate for the outer solution
while O((¢')?) is, as in (5.3.5), an estimate for the boundary layer. The final
result is that
x(h,e) = 2x(h,&'/2) — x(h, &)+ Oh?* ') + O(e) + O((h/ T)?), (5.36)
y(h.e)=2y(h.e'12) — p(h.&') + OhP* 1) + O(e) + O((h/TY?).
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We make the following two observations concerning this extrapolatory
approach.

REMARK 5.3.1. The difference expressions 2x(h, &'/2)— x(h, &) and
2y(h,£'/2) — p(h,¢') in (5.3.6) which are used as approximate replacements
for x(h,&) and y(h,¢), respectively, are in fact also approximate replace-
ments for x,(h) and y,(h), respectively. Thus while calculating x(h, ¢’)
and y(h,¢') from (5.1) is much easier than calculating x(#,¢) and y(h,¢),
since ¢ > ¢, why do we not just calculate x,(h) and y,(h) from (5.1.4,)?
We give two answers.

(a) The exploitation of the methods of singular perturbation theory for
the development of numerical techniques for stiff differential equations
usually proceeds with the numerical determination of values of one or
more terms in the asymptotic expansion supplied by that theory. The
extrapolation formulas (5.3.6) break through this limitation of approach.

(b) Equation (5.1) with ¢ = ¢’ is not stiflf and may be easily and reliably
solved by simple explicit numerical methods. While (5.14,) is also not
stiff, employing it for the determination of x,(h) and y,(h) requires the
solution of the nonlinear system g = O at each mesh point. This is usually a
costly computation.

5.3.2. Computational Experiments
The following two computational experiments compare the extrapolation

method (5.3.6) and the asymptotic expression itself.

(i) A linear system
We consider first the linear example studied analytically in Section
5.1.3 and numerically in Section 5.2.2:

dx

E—y—x, x(o)—é9
dy y
—=—241 y0)=n.
h 8+, W0)=1ny

The eigenvalues of this systemare — 1 and — 1/e € — 1. The exact solution
is given by the formulas (see (5.1.14))

X(l):e-t5+(l—e_t)g—(Ti—s>(’7_8)(6_”6_6_'),

WD) =¢e+e " (n—¢),
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and the leading terms of the matched asymptotic expansion solutions are

x)y=e E+ef(n—De "+ 1]+ ...,

Wt)=e+ ... (5:3.7)

For any value of ¢ £ 10~ %, the leading terms of the matched asymptotic
expansion (x,(h), y,(h)) and the exact solution (x(h,¢), y(h,e)) agree to
about four figures. Thus while in Table 5.3-1, ¢ = 1073 is employed in the
column labeled &'/e, the results in that table are otherwise valid for any
¢ < 1075, The results using the extrapolation method and evaluation of
the matched asymptotic expansion (to leading order) are presented in
Table 5.3-1. Since K=1+|y| and 6=1 in this case, we take
T=—In[h**'/(1 +|5|)]. In spite of the involved form of this formula for
T, the values of the latter should be taken only approximately. The
calculated values of ¢ = h/T are & =0.00819 and & =0.00304 corres-
ponding to & = 0.1 and 0.01, respectively. Since these values of ¢" are to be
taken only as approximate, calculations for nearby values of ¢ are also
presented in the table.

TABLE 5.3-1:
é =n= 1 p= 4
h=01 ¢ =0.00819
Extrapolation method & x(h) yih) ele
0.005 0.8632 0.0025 500
0.00819 0.8648 0.004 819
0.01 0.8657 0.005 1000
0.02 0.8707 0.010 2000
Matched solution E— 0.9049 0.0
h=0.01 ¢ = 0.00304
Extrapolation method e x(h) yih) gle
0.003 0.9866 0.00155 300
0.00304 0.9866 0.00157 304
0.004 09871 0.00255 400

Matched solution _ 0.9901 0.0
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Notice that the extrapolation method gives a 4%, answer for h = 0.1,
but it gives better than a 19] answer, the package for 2 = 0.01.

It is instructive to compare this extrapolation method with more
typical stiff methods, such as the absolutely stable methods of Chapter 2.
To do this, we invoke the latter by means of the frequently used package
of C. W. Gear for integrating stiff differential equations. We use this
package with & = 107 % for the second case in Table 5.3-1 with the follow-
ing result. The package reaches h = 0.01 by employing a variable submesh
of points which it determines adaptively. To produce a 19, answer, the
package requires an average submesh size of 1.96 x 10 % The extra-
polation method with ¢ = 0.00304 produces its 19, answer with a fixed
stepsize of 9.75 x 10 *, nearly an order of magnitude difference. Of
course as ¢ decreases the latter remains invariant, but the average stepsize
employed by the package will decrease even further.

(11) A model enzyme reaction
A simple enzyme reaction involves an enzyme E, substrate S, complex
C and product P. Schematically, the reaction is

E+S=C, C=E+P

After some preliminary scaling, this reaction can be described by a system
of differential equations for the substrate concentration (x) and the
complex concentration (y) as

dx
Frie —x+(x+ky, x(0)=1,

8Q =x—(x+k)y, y0)=0,

dt
where ¢ measures a typical ratio of enzyme to substrate (O(10 %)), and k
and k'(k < k') denote ratios of rate constants suitably normalized (O(1)).

The following Table 5.3-2 summarizes the result of these numerical
calculations for ¢ = 10° (although as noted in (i) above, except for the
column &'/¢, the results are valid for any e $107°), A=0.1and 0.1, k= 1,
k'=2. In this case, K=1, 8 =k, so we take T= — ((p+ 1)/2)Inh. The
calculated values for ¢ = /T are ¢ = 0.04 and & = 0.0009, respectively.
Calculations are also presented for some nearby values of ¢'.

The extrapolation method gives a 3% answer for 2 = 0.1, but it gives
better than a 19 answer for A =0.0l. As in the case of Table 5.3-1, a
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TABLE 5.3-2:
x0)=1 y0)=0 p=4
h=0.1 & =004
Extrapolation method e x(h) y(h) g/e
0.01 0.9530 0.3229 1000
0.04 0.9596 0.3247 4000
0.05 0.9617 0.3253 5000
0.1 0.9726 0.3285 10000
0.15 0.9882 0.3350 15000
0.2 0.9937 0.3406 20000
Matched solution D 0.9888 0.3308

h=001 ¢ = 0,0009

Extrapolation method & x(h) y(h) g /e

0.0004 0.9951 0.3322 40

0.0008 0.9952 0.3323 80

0.0009 0.9952 0.3323 90

0.001 0.9952 0.3323 100

0.0016 0.9954 0.3323 160
Matched solution _ 0.9917 0.3315

comparison here produces an average step size of 2.4 x 10~ * for a 19
answer for Gear’s package as opposed to a fixed stepsize of 2.7 x 1073
for a 19 answer for the extrapolation method with &' = 0.0009.

Note that a Runge-Kutta method of order p = 4 has been used to calculate the values of
x{h) and y(h) furnished by the extrapolation method in all of the examples displayed in the
Tables 5.3-1 and 5.3-2. In order to assure high accuracy and stability. these Runge-Kutta
calculations were performed on a submesh of [0,4] with a submesh increment k = he'.
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The Highly Oscillatory Problem

Summary

Except for the discussion involving aliasing in Section 4.3, we have up
to now dealt with methods which exploit the transitory nature of the rapid
change in solutions of stiff problems. Here we turn to the highly oscillatory
problem wherein the rapid changes are expected to persist. A characteristic
of the corresponding numerical methods to be discussed is the abandon-
ment of the objective to obtain precise pointwise information about the
solution.

We begin in Section 6.1 with a discussion of the two-time method, a
technique for characterizing singular perturbation problems whose
solutions are highly oscillatory. Numerical approximations to the solution
which abandon precise phase information are then developed. The two-
time technique requires computation of certain averages, and in Sections
6.2 and 6.3, we study this averaging procedure. Section 6.2 is concerned
with an algebraic development of the averaging process, while in Section
6.3, we introduce an extrapolatory process for accelerating the computa-
tion of the average.

Finally, in Section 6.4, we adopt an approach to the highly oscillatory
problem which consists of replacing the point functionals of standard
numerical methods which indeed are unstable functionals for highly
oscillatory stiff problems by other functionals which are stable. A numeri-
cal calculus is developed for the latter functionals in the context of the
highly oscillatory problem.

6.1. A TWO-TIME METHOD FOR THE OSCILLATORY PROBLEM

In this section, we study the two-time technique for characterizing the
asymptotic form of the solution of singular perturbation problems with
highly oscillatory solutions. The asymptotic form is used to develop
numerical approximations to the solution of the problem. The numerical

109
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approximations are characterized by the abandonment which is made
of the need and desirability to obtain an approximation to the solution,
in the traditional sense, i.c., pointwise. We begin this study with the
introduction of the model problem for the case at hand.

6.1.1. The Model Problem

We consider the following model problem.

du
eq, =(A+eBu,  1€0.T), (6.1.1)
u(0) = u,,

where u is an n-vector and 4 and B are n X n matrices.
In terms of the matrizant W(t,¢), we write the solution of the model
problem as

u= ‘P(t,s)uo,

W(t,e) = exp[(A + eB)t/¢]. (6.1.2)
If we introduce a new time scale
T=t/g, (6.1.3)
the solution becomes
u=e*tPy 0<t<Tl/e (6.1.4)

This indicates that the solution develops on two different time scales: ¢
called the slow time and 7 called the fast time. If A and B commute, (6.1.4)
becomes

u=c"ePu,. (6.1.5)

In the commutative case the dependence on the two scales separates, and in
principle, we could determine each of the factors in (6.1.5) separately and
without computational difficulty.

However, in general, 4 and B do not commute, and moreover it is not
necessarily the case that the development of the solution on the t-scale is
even meaningful to approximate numerically.

6.1.2. Numerical Solution Concept

Consider the example corresponding to

[ e
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ul

-y

ul
Fig. 6.1-1.

With these matrices, the motion described by (6.1.1) corresponds to a
slowly damped (t-scale) extremely rapid (t-scale) harmonic motion.
The solution, indicated in Figure 6.1-1 for the case n = 2, is practically a
surface filling curve.

As ¢— 0, the solution converges (in an approximate sense) to the
cone obtained by rotating the curve [ #,]|e~* about the t-axis. Thus the
meaningfulness of describing a trajectory by a set of its values on the
points of a mesh is lost (i.e., is an ill-conditioned process).

A variety of alternate numerical solution concepts may be formulated.
Consider the following one.

Numerical Solution Concept: Given & > 0 and § > 0, we say that U{t) is an
(¢', 8) numerical approximation to u(t) at the time ¢, if there exists a positive
t' = ¢'(t) with |¢'| < & such that

U@~ u+ )| <¢.

If ¢ is independent of ¢ for t in some interval, then we say that U(t) is a
uniform (¢/, 8) (numerical) approximation to u(t).

Of course, 6 =0 for the usuwal concept of (numerical) approximation.
In Figure 6.1-2, an example of this approximation is given.

In terms of the model problem and by means of this approximation
concept, we may accept a numerical approximation to the slow time part
of the solution as a numerical approximation to the solution itself. The
difficulty is to extract this part out of the whole solution, and to do this we
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U(t)

€

/u(x)

\\u(f)

/7
Fig. 6.1-2.

employ the method of two-times. (Of course nothing prevents us from
computing the fast time part, as we will see, locally.) That is, to remove the
ill-conditioning of the highly oscillatory problem, we must abandon
some aspect of the solution, and in particular, we abandon the determina-
tion of its precise (fast time) phase. Pictorially speaking, imagine the solu-
tion to be a very tightly wound and slowly undulating helix. Imagine this
helix to be cut at every mesh point and that each slice is shifted in turn
by an unknown but very slight amount (i.e., piecewise discard the phase
of the solution locally). What we seek is to determine numerical informa-
tion about this mangled helix. In fact, unless a computation is performed
on a scale of g, which we certainly seek to avoid, we can only deal with
this mangled helix. In terms of the approximation concept just introduced,
the amount of information about the original helix which is contained
in its mangled version is acceptable and adequate when ¢ is small.

6.1.3. The Two-time Expansion
We seek approximations to the solution of (6.1.1) in the form of a general
two-time expansion.

O

u= Z u(t, ). (6.1.6)

r=0
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This will be a useful series for purposes of approximation, if we have
u(t,t/e)e” = ol "), =1,2...., (6.1.7)

as ¢ — 0, uniformly for 0 <+ < T. With (6.1.7) valid, we say that (6.1.6) is
an gsymptotic expansion with asymptotic scale €. A sufficient condition for
(6.1.7) is that

u (t,7) = o(7), (6.1.8)

ast—oo,forr=1,2....

The expansion resulting from this prescription of the form (6.1.6)—(6.1.8)
of the solution will be derived below. It is sometimes possible to obtain
more information from the expansion by placing a stronger condition
than (6.1.8) on the coefficients. In particular, we will determine conditions
on A and B so that the requirement

u,(t,7) = ofre*’), 6.1.9)

ast—> oo forr=1,2,..., can be used to obtain a valid expansion.

If A is an oscillatory matrix (all its eigenvalues have zero real parts), the
conditions (6.1.8) and (6.1.9) are equivalent. If A is a stable matrix (all its
eigenvalues have negative real parts), the condition (6.1.9) is more restric-
tive than (6.1.8). In the stable case, it may not be possible to obtain an
expansion of the solution of (6.1.1) in the form (6.1.6) wherein the coeffi-
cients satisfy either (6.1.8) or (6.1.9). However, we will describe another
restriction on the problem which when used with (6.1.9) guarantees that
the solution of (6.1.1) can be approximately solved in the form (6.1.6).
This approximation technique proceeds via the two-time approach.
This result is valid when the eigenvalues of A4 lie in the stable half plane;
therefore, it contains both the stable and oscillatory cases. In the stable
case, the expansion found by this method reduces to the one which
would be obtained by the method of matched asymptotic expansions
(see Section 5.1). In the oscillatory case, this result reduces to an expansion
equivalent to the one obtained by the Bogoliubov method of averaging
(see Volosov, 1962).

6.1.4. Formal Expansion Procedure

We consider the initial value problem for the system (6.1.1), and we
write the initial conditions in the form

u(0) = i ac. (6.1.10)
r=0
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To simplify computation, let
o(t, ) = e~ *u(t, 7). (6.1.11)
Since vis considered as a function of the two variables 7 and t = ¢t

do(er,7)  Ov(t,t) Ov(t, 1)

= . 6.1.12
& a T w €113
Then (6.1.1) becomes the following equation for v.
v 8 it
ea—'t’ + a—: =cB(lp,  v(0)= Eo ae, (6.1.13)
where
B(z) = e" 4" Be®". (6.1.14)

We seek a solution in the form (6.1.6) which becomes
o= v (1), (6.1.15)
r=0

subject to the condition (6.1.9) on the u,. In terms of the v, this condition
becomes

v(t,7)=o0(r) as t1— o, r=0,1,.... (6.1.16)

Substituting (6.1.15) into (6.1.13) and equating coefficients of the like
powers of ¢ gives
ov, ov,_,
Tr—B(T)D"i_a—t’ v,00)=a, r=0,1,.., (6.1.17)
Herev_, =0.
The problem (6.1.17) is underdetermined. The equation (6.1.17) for
v, can be integrated to give

T

v,(t,7) = 0,(t) + j

0

[B(a)u,_l(t,a)—?g’%t—’i)]da, r=0,1,...,(61 )

where
5 (0)=a,. (6.1.19)
Except for (6.1.19), §,(¢) is arbitrary. Differentiating (6.1.18) with respect to
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t gives

v, 0v, t a))

r— B —=_r=1 |dg. 1.
5=t L[ (¢ ) =5 ]da (6.1.20)
Combining this with (6.1.18) gives ¢

vr(t,r)=6r(t)+j B(a)daﬁr_l(t)—rd—v';l-+ J‘ R__,(t,0)do,

0 dt 0
(6.1.21)
where

(t,0) d,_,(ta)]. ,
R (t,0)= —J‘ [B( ) Or-1 rt ]da
0 ot or?

. l(t o)

+ B(o) J‘a[B(a’)vr_l(t,a’)— ]d . (6.1.22)
o ot

(6.1.21) and (6.1.22) hold for r=0, 1,..., where 6_, =R, =0. Let us
impose the growth condition (6.1.16) in (6.1.21). To do this divide (6.1.21)
by t and take the limit as © — oo. This results in the following condition

foro,_,.

db [
—D’;l=(1im—j B(a)da>5,_,
dt r-'o)t 0

1 T
+ lim ;j R__,(t,0)ds, r=0,1,.... (6.1.23)

T=w 1]

When these limits exist, (6.1.23) along with (6.1.19) determine §_,r = 0,1, ....

This approach depends critically on the existence of the limits in
(6.1.23). The development will be simplified by using the following
notation.

f=lim % f fo)do. (6.1.24)
T ® 0
If fexists we will call it the average of f. In terms of this notation, (6.1.23)
becomes
ds,
dr

+R@®, b0)=a, r=01,.., (6.1.25)

provided the averages exist.



116 Chapter 6

6.1.5. Existence of the Averages and Estimates of the Remainder

In this section, we study the existence of the averages appearing in (6.1.25).
We content ourselves with a study of B and R, since it is these two averages
which provide for thg existence of the approximation v, +év, to v.
This approximation is adequate for our computational purposes. We
conclude this section with an estimate of the quality of the approximation
of v by v, + ev,, an implicit estimate of the remainder R, .

Existence of the Average, B
-1 0 00 " .
The example A = [ 0 — 2], B= [1 0} shows that B may not exist.
We assume in this analysis that the matrix 4 has simple elementary
divisors. In this case, we may assume without loss of generality that A is a
diagonal matrix. We denote the elements of A4 and B, respectively, by

Az(ﬂviéﬁ) and B=(b,.j). (6.1.26)
Then
] : - AG g
;Le 42 Be” = (b, f;,) (6.1.27)
where
e(l-j-)-i)t -1
—_— , A FA,
A —A, L
fiy= W= 4) (6.1.28)
1, lizij.

This computation demonstrates the following theorem.

THEOREM 6.1.1. B exists if and only if the elements b;; of B vanish when-
ever Re (4, — 1) >0.

We henceforth assume that the hypothesis of Theorem 6.1.1 holds.
The computation also has the following corollary.

Corollary 6.1.2
() IfB exists, then B, ;= b;;0(4;, 1)), where § is the Kronecker delta.
(i) If the eigenvalues of A are distinct, th_e_en B=(b;9,).
(i) If A and B are normal matrices, then B exists and is conjugate to B.

(iv) If A and B commute, then B exists and is conjugate to B.
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(v) If B is diagonal, then B = B.

(vi) If A= Al then B= B.

(vii) Let B exist and suppose that A, =A,=...=)_=0and A, ,#0,
i=1,...,n—m. Let B, be the mxm principle submatrix of B. Then
the m x m principle submatrix of B is B, while B;;=0 for j>mand i <m
and for j < mand i > m.

In terms of a block decomposition of B and B, (vii) may be represented

by:
B:[Bn B12}=>I§=|:B11 __0 }
BZI BZZ 0 B22

where B, , is unspecified but assumed to exist.
Proof. (iii) and (iv) follow since A and B are simultaneously diagonalizable
in these cases. All other statements are immediate. O

Existence of the average R,
The following theorem characterizes the existence of R, .

THEOREM 6.1.3. R, exists whenever B exists.
Proof. The proof follows from Theorem 6.1.1 and the following computa-
tion. Let

p(o) = ja(B(d) — B)do'. 6.1.29)
0

Then from (6.1.22), we have
R, (1,0) = (B(a)p(0) — p(0)B)eP'v,(0), (6.1.30)

where we have used db,/dt = Bb,, the latter following from (6.1.25).
We first show the existence of 5. From (6.1.28), we see that the ijth
element of p is

e().j—).i)a'_l
pi;=|byx —)”_j‘——)ﬂ—“, A F A ) 0, A4 #4
B o, A=A ob;, li=}.j
eldi=Ane _ 1
ey
= J !
o PRy
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Then

PN e e
—f ployde = . (6.1.31)
o 0, Ai=2

The limit of (6.1.31) as 7 — oo exists if and only if b,;=0 whenever
Re(4; — 4,) > 0. In this case we have

—b,
% a4
b at

5= , (6.1.32)
0, =4,

demonstrating the existence of p.
We now show the existence of the average Bp. We have

(Bp Z lkpkj Z b euk Al)a(abkjfkj kj)

eu,—ma _ elhk Aae

II
[

]
M=

o

S

+ Z (obyby;— abikBkj)
=1

k“kj —
k=1 j'j j'k =
Aj# Ak Aj=iu
n ei— Ao _ otdx—Aio
= Z bikbkj 12
k=1 J k
Aj# Ax
n e()-j_)-i)ﬂ' _ l

—_ (Ay — Ai)o
= ) bye b
k=1
Aj# Ay

Ifthe real part of any exponent appearing in this expression is positive, then
by hypothesis the corresponding element of B appearing in front of that
exponential term vanishes. Thus the sum appearing here contains only
exponentials with exponents with non-positive real part. Thus Bp exists.

This completes the proof of the theorem. O

Wy A,

Using the techniques of this proof, we may deduce the following relation,
which will be exploited in the estimate of the remainder to follow.

Bp—pB),= 3 b,B,
(Bp —pB), = ,;1 ,11 . (6.1.34)

AEA i
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Estimate of the remainder
Let
W=0—0,—¢v,. (6.1.35)

As we remarked above, we restrict ourselves to estimate w. We will
derive a differential equation for w, solve this equation and estimate its
solution.

Using dv/dt = ¢B(t)v (see (6.1.13)) and dv,/dt = Bvo (see (6.1.21)) and
(6.1.25)), we differentiate (6.1.35) to obtain

dw(et, 7)/dt = eBo(et, T) — sEvO(sr) —edv, (et 7)/dT
=¢eB(w + v, + ev,) — eBvy(et) — edv (g7, 7)/dT.

Let (6.1.36)

C(0) = B(o)p(0) — p(0)B. (6.1.37)
Then from (6.1.25) and (6.1.30), we obtain

do, (¢)/de = Bb, + Cu,(2). (6.1.38)
From (6.1.18) and (6.1.29), we have

v, (t,7) = 0,(t) + p(T)v, (1). (6.1.39)
Differentiating this relation with respect to 7 gives

do, (e7,7) = .sdﬁ1 (e7) + (B(t) — B, (et) + ep(t)Boy(e1).  (6.1.40)

dz dt

Combining this with (6.1.38) gives us an expression for do, (e7, 7)/d7
which when inserted into (6.1.36) gives us the following differential
equation for w.

d _ _ -
aw(sr,r) =¢&B(w+ v, + ev,) — eBv, —e?Bo, — ¢2Cv,
—&B — Bw, +¢&*pBu,,. (6.1.41)
Note that C is given by (6.1.34). Using (6.1.37) and (6.1.39),(6.1.41) becomes
d _ -
T w(et, 1) = ¢Bw + e*[ (B — B), +(C — C)5, ] (6.1.42)
T
To estimate w, we first introduce the fundamental matrix ¥ defined by
d¥

- - =cBY, YO0)=1. (6.1.43)
dt
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Note that
d -1 -1
— (Y Y)y=—¢e¥ 'B. (6.1.44)
dr

Let B* denote the complex conjugate of B and BT its transpose. Then
d
9 w22 L pres — BT 4 BHwr. (6.1.45)
dr dz

Then since BT + B* is Hermitian, there exists a constant K (e.g., the magni-
tude of the largest eigenvalue of BT + B*) such that

d
e R RESI Y R 4 (6.1.46)
Then

1P ? < ek, (6.1.47)

By our hypothesis (see Theorem 6.1.1£)), B(t) is a bounded function of t for
72> 0. Thus K isindependent of 7, and (6.1.47) shows that | ¥||* is bounded
unformily for 7 restricted to an interval of the form [0, T /¢].

Now we solve (6.1.42), and write

wiet, 1) =VY(1)[a,e* + ...]
+ &2 Jt Y(1)¥ (o) [(B — B, (¢0) + (C — C)b,(e0) ]do.
° (6.1.48)

In (6.1.48) write (B— B) as (d/do) [5(B — B)ds’ and (C — C) as (d/do)
[7(C — C)da'. Then use the relation (FGHY = FGH' + FG'H + F'GH to
integrate by parts the integral with respect to ¢’. Using (6.1.29) and (6.1.44)
in what results, we finally obtain the following representation of w.

wier, 7) = e2{W(1)0(1) + p(x)b, (e7) + JI(C — O)do’5, (1)
0

+& J‘t‘{’(r)‘l’_ Y0)[Blo) J‘a (C — C)do'5,(e0)
0

0

d
- p(o-)(Ttﬁl (80-) + BP(O')61 (86)

- JG(C — C)do' Bi,(e0) Jdo}. (6.1.49)

0o
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We have noted that ||\¥| is bounded uniformly for 7 in the interval
[0, T/¢] and that B is bounded for 7 >0 (see (6.1.47)f.). The functions
U, (e7) and U, (e7) appearing in (6.1.49) are defined as continuous functions
and their arguments range over the bounded interval O < et < T. Thus
these functions are uniformly bounded. The quantities p(¢) and
fo(C — C)do’ appearing in (6.1.49) exist as bounded functions for 0 < ¢ < o0
since they are continuous functions. This accounts for every quantity
appearing in (6.1.49). Thus we may conclude that | w| is bounded, and
the estimate of the remainder is complete. We summarize this estimate
with the statement of the following theorem.

THEOREM 6.1.4. max |v(er,7) — vy(e7) — ev, (e, 7)| < const&?.
0<1<T/e

For a more complete treatment of (6.1.1) by the two-time method in the
general case where the eigenvalues of 4 may be anywhere in the complex
plane and where nonlinear forcing terms are adjoined to the system as
well, see Hoppensteadt and Miranker, 1976.

6.1.6. The Numerical Algorithm

We take the leading term, u(t,7) of the expansion (6.1.6) as an approxi-
mation to the solution of the initial value problem (6.1.1) with the initial
condition given in (6.1.10).

Then from (6.1.11) and (6.1.18)

uy(t, ) = S, (¢). (6.1.50)
®(7) is the fundamental matrix given by

. = AP, P0) =1, (6.1.51)
where I is the n x n identity matrix, while from (6.1.25)

do,/dt = Bo,, 0,(0) = a,. (6.1.52)
From (6.1.14)

B = lim % Jr(l)" Y(6)B®(0)do. (6.1.53)

T—+ 00 /]

We describe the algorithm for replacing a,,, the approximation to #(0),
by U(h), the approximation to u(h), (in the sense of the approximation
concept in Section 6.1.2 above). The algorithm is to be repeated approxi-
mating u(t) at 2k, 34, ...,successively.
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Algorithm
(i) Solve (6.1.51) on a mesh of increment k in the t-scale by some self
starting numerical method, obtaining the sequence ®(jk), j=0,...,N.
(i) Using the values ®(jk) obtained in (i), approximating B by truncat-
ing the limit of t integration and replacing the integral in (6.1.53) by a
quadrature formula, say
N

_ 1 1y .
B= N Z ¢, @~ 1(jk)BD(jk).
j=0
The integer N is determined by a numerical criterion which insures that
the elements of the matrix B are calculated to some desired accuracy.
(iii) With B (approximately) determined in (ii), solve (6.1.52) for b, (h) by
some self-starting numerical method.
(iv) Compute #,(h,Nk)= ®(Nk)i (h), and take this as the approxi-
mation to u(h).

Refinement
The method may be refined by adding an approximation of ev, (h, h/¢)
to §,(#) prior to multiplication by ®(Nk) (step (iv)). This approximation
in turn is determined from a numerical solution of the equations defining
v,(t,7), viz.

v,(£,7)=0,() — (Et + J

T

B(a)da)eﬁ’ a,,
0
db,/dt=Bb, + R (t), b,(0)=a,,

R (t,0)= [(32 ~ B(0)B)o — JGB(G’)da’E

0

+ B(o) J B(a’)da’]ﬁo(t).
0

In Figure 6.1-3, we schematize the computation. Of course, in practice
¢ will be extremely small so that unlike the schematic an enormous
number of oscillations of @ will occur in the ¢ interval [0,4]. Notice
how far the computed answer ®(Nk) (/) may be from the usual approxi-
mation to the solution, u(h, h/c).

The fundamental matrix ®(z) is composed of modes corresponding
to the eigenvalues of A. Since the eigenvalues of A lie in the closed left
half plane, the profile for (a component of) ® will, after some moderate
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Volt)
Uo(h,h/e)
+—H—+—t+—t +—t+——+—+ b {
k Nk h
D (t/e)
O(Nk)
@ (NK)Vg(h)
Fig. 6.1-3.

number of cycles, settle down to an (almost-)periodic function. Thus the
set of mesh points {jk|j=0,..., N} may be expected to extend over just
these cycles (approximately).

6.1.7. Computational Experiments

In Table 6.1-1, we give the results of calculations with three sample
problems, P;,i=1,2,3. P, corresponds to a damped case (A4 has real
eigenvalues), P, to a purely oscillatory A and P, to a mixed case. The

TABLE 6.1-1
Problem P, (damped case)

0 0
A=[0_l] B

1

il
~
|
[

] ¢ =001, A= 0.05 k=005

0
t v, QN
0.0 1.000 1.00 1.000 1.00
0.05 0953 1.00 0953 0.0
0.10 0.908 1.00 0.906 0.0
0.15 0.865 1.00 0.862 0.0
0.20 0.824 1.00 0.820 0.0

0.25 0.785 1.00 0.780 0.0
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TABLE 6.1-1 (Contd.)
Problem P, (oscillatory case)

A:[O ‘1] B:[‘z 0] £=0.001, k=001, k =005

10 0 0
t v, (N,
0.0 0.500 0.500 0.500 0.500
0.01 0.495 0.495 0.325 0.605
002 0490 0.490 0.184 0.669
0.03 0485 0.485 0.007 0.687
0.04 0.480 0.481 —.167 0.660
0.05 0475 0.476 -.327 0.589

Problem P (mixed case)

0 00 O 1110
0 -10 0 0100
A= B= £=0.01,h =005,k = 0.05

0 01 -1 1110

0 00 0 0001

t ¥, (KN,

0.0 100 100 100 1.00 100 10 1000  1.000
0.05 105 105 106 1.04 105 00 —145 0327
0.10 LIl LI 112 109 110 00 0534 —1.460
0.15 117 116 118 114 L1700 0997 1310
0.20 123 122 124 L19 122 00 -1720  0.149
0.25 129 128 131 124 128 00 0846 — 1.600

numerical methods used are chosen to be the most elementary (e.g.,
Euler’s method for differential equations and Simpson’s rule for integrals)
so that the results are accurate only to a few percent. Moreover &/A = 0.1
or 0.2 so that the examples are not particularly stiff. Of course this means
that the examples are not ones which would show the methods at their
best, since the stiffer the problem the better are these methods.
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6.2. ALGEBRAIC METHODS FOR THE AVERAGING PROCESS

We study the algebraic aspects of the averaging process (6.1.53). This
will lead to a solution of the problem of computing the average (6.1.53) in
the sense that we will provide several alternative ways for giving B.

6.2.1. Algebraic Characterization of Averaging

We begin this algebraic study by showing that the integrand, ¢ ~“?Be*®
which is being averaged in (6.1.53) spans a subspace S, of n*-dimensional
Euclidean space. To do this we use three algebraic constructs or mappings
called exp, ad and Ad, respectively. We describe a base for and then
invariant properties of S. This leads to Theorem 6.2.3 which gives the
value of the average B.

The mappings exp, ad and Ad

Let E(n) denote the set of n x n matrices considered as a vector space over
the field of definition which will be either R, the reals: or C, the complex
numbers. Let GL(n) < E(n) be the group of nonsingular linear transfor-
mations.

Let GL denote the group of nonsingular linear transformations of E(n),
and let E denote the space of linear endormorphisms of E(n). Clearly E can
be identified with the space of n? x n? matrices.

For A€ E(n) (or for AcE), we define exp(4) =e! as

2

A
exp(A) =T+ A+ 57+ ... (6.2.1)

Clearly exp(A4)eGL(n) or exp(A4)e GL as the case may be.

For future reference, we note that if a linear vector space V has the
property that A(V)< V, then exp(tANV)<S V, VteR.

It is well-known that exp(rA4), teR, is a one parameter subgroup of
GL(n) (or of GL) and that

d
a-texp(tA)L=0 = A.
Further, for any one parameter subgroup g(t) of GL(n), we have that if

d
ag(t)L:O = A, then g(t)=exp(tA).

The form of the integrand in (6.1.53) leads us to the concept of the adjoint
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representations. For ge GL(n), we define ad(g) by the formula
ad(@)(X)=gXg~ ', VxeE(n).
Multiplication in the right member here denotes matrix multiplication.

That ad(g)eE comes from the following relation which expresses a
standard property of matrix multiplication.

gla, X, +a,X,)9 ' =a,9X, 9" +a,9X,97".
Here a,, a,eR or C and X, X,€E(n). Note also that since ad(g,g,) =
ad(g,)ad(g,), then ad(g ~ ') is the inverse of ad(g). Thus ad(g)eGL.

We will make use of an additional mapping denoted by Ad(4) and
defined as follows. Let A€E(n). Then define

Ad(A)(Y)=[A,Y]=AY - YA, VYeE(n).
Clearly Ad(A4) may be viewed as a linear map of E(n) into E. (Most of these
algebraic ideas may be found discussed in Chevalley, 1946.)
Since GL < E, it is meaningful to consider the mapping exp: £ — GL.

Thus, we may state the following theorem connecting the three maps
Ad, ad and exp.

THEOREM 6.2.1. Let AcE(n), then exp(Ad(A4)) = ad (exp(a)).
Proof. The proof of this theorem is by computation using the definition
of the three mappings exp, ad and Ad. 0

The subspace S
Let BeE(n). The quantity ad(exp(At))B is what is being averaged in
(6.1.53) to determine B. Thus we are led to describe the span of
ad(exp(At))B as t ranges over R. We will see that this span is a subspace
S =S(B) of E.

Let V, =B and V, = Ad(A4)V,_,,k=1,2,.... Let N be the first index
such that vV, ..., VN . are linearly dependent, and let

Vi1 = ZaV

Let S be the subspace of E spanned by {V,|i=0,...,N}.
The following lemma connects S with the averages of interest.

LEMMA 6.2.2. Each of the following two sets span §.

(i) {%ad exp(tA))B|l=0|k=0,1,..}

(i) {ad(exp(t4))B| teR)}.
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Proof. (i) easily follows since

:11 —ad(exp(tA))B|,., = Ad“(4)(B).
To show (ii), we begin by noting that S is Ad(tA4) invariant so that it is
exp(Ad(t4)) invariant as well. Then Theorem 6.2.1 implies that
exp(Ad(tA)) = ad(exp(tA)). Thus, S is ad(exp(t4)) invariant. Thus since
BeS, then exp(Ad(tA))(B)eS, Vi. Now in fact, part (i) shows that
exp(Ad(tA))(B) spans S for ¢ close to t = 0; a fortiori it spans § for all t.
This completes the proof of the lemma. 1

By construction, § is a cyclic subspace for Ad(4) with cyclic vector B.
Thus the restriction of Ad(4) to S has the matrix representation

[0 1 0 . . . 0]
0010. . . 0
0 0 1

g ay

relative to the base V..., V), of S. Thus the determinant of Ad(4) is a,, .
The following theorem characterizes averaging algebraically.

THEOREM 6.2.3. Let the eigenvalues of A be purely imaginary. Let

T
B= lim % J ad(exp(tA4))Bdt,

andlet V,,...,V,, = Z a;V,. Let S be as defined above.
i=0

(i) Ifa,+#0,then B=0.

(i) If a, =0, there exists a non-zero WeS which is unique up to a scalar
multiple such that Ad(A\W =0.If W= 3" bV, thenB=—-Wsb,. [
An Invariant Statement of Theorem 6.2.3
Before giving the proof of Theorem 6.2.3, we rephrase this result in an
invariant terminology which frees it from the coordinate system V..., V,
used in the statement of this theorem.

According to Theorem 6.2.3 if Ad(A4) is nonsingular, then B =0, while
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if Ad(A) is singular, then B= — W/b,. Since W =Y b,V,and B=V,,
we have

N
B- _KJFLZbiVi, 6.2.1)

bO bO i=1
The uniqueness of W implies that the first term in this sum is a vector in
the one dimensional eigenvector space S,< S, corresponding to the
eigenvalue zero of Ad(4). By definition of the V,, the second term in
(6.2.1) lies in the subspace S, < S, which is the range of Ad(A) (restricted
to §). Since S=3S (-95'1, if B B, + B, with BjeS, and B, €S, then
B=B,.Thatis tosay, Bis the pI‘OjeCthI’) along the range of Ad(A) (restric-

ted to S) onto the one dimensional null space of Ad(A) (restricted to S).

This invariant statement of the main result depends on S and the
construction of its base V, ..., V. In fact, even this dependence can be
eliminated.

To see this, we begin by noting that Ad(A4) is a completely reducible
transformation acting on E(n). Thus

E(n)=E n@E,(n),
where E (n) is the null space of Ad(4) and E, (n) is its range.

Clearly S,<E, (n) and S, € E|(n). Thus since B=B,+ B, with
B,eS,and B €S, we have B eE (n)and B, € E (n). Thus B= B, + B, is
also a decomposition in B into a part in E(n) and a part in E, (n). How-
ever, any such decomposition is well-defined. Thus B, is the projection
along E| (n) onto E(n). If P denotes this projection operator, we have that

T
B = P(B)= lim 1 e1'Be™Adt.
T 0

T—w

In Section 6.2.2, we show how to carry out the computation P(B) when
the matrix A has a particularly simple form.
We make use of the following lemma in the proof of Theorem 6.2.3.

LEMMA 6.2.4. If A has purely imaginary eigenvalues, then so does Ad(t A).
Proof. By hypothesis exp(t A) is contained in the orthogonal group (which
is compact). Then C, the closure of exp(tA) (in the orthogonal group) is
compact. Then ad(C) is a compact group operating as linear transforma-
tions on E(n). But any compact group is similar to a subgroup of the
orthogonal group on E(n). (See Hochshild, 1965.) Thus every matrix in
ad(C) is similar to a diagonal matrix whose jjth entry is exp(ik;t) for some
k;€R.
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Using Theorem 6.2.1, we have

d d
Ad(4) = Etexp(Ad(tA))|r:0 = —ad(exp(tA))|,_,-

T
That 15, Ad(A4) is similar to a diagonal matrix whose jjth entry is
(d/dt)exp(ikj t)lt=0 = ikj. This completes the proof of the lemma. O

We now give the proof of Theorem 6.2.3, and in particular, in its invariant
terminology form.

Proof of Theorem 6.2.3. Lemma 6.2.4 shows that there exists a coordinate
system in S relative to which Ad(r A) has the following matrix representa-
tion.

iAot W

0

Ad(t4) =

iAyt
N

Let B have the coordinates [Bos---» By]" in this coordinate system. Then
using Theorem 6.2.1,

Fei Aotﬁo-
exp(Ad(t4))B = ad(exp(tA))B =
Lei ANrBN
This and part (i) of Lemma 6.2.2 imply that the following vectors,

(8, [48, | [ 238, ]

ﬁN_‘ _}'NI)’NV L'lzﬁ_v_
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span S. Thus the matrix whose columns are these vectors is nonsingular.
This matrix may be written as the following product of a diagonal matrix
and a Vandermonde matrix.

[ B, 0 1 2y - . AV

0 Bl L1 Ay o o A

The nonsingularity of this matrix product implies that no f; vanishes and
that the 4; are distinct.
Evaluating B amounts to evaluating

T
lim ;—,J e“f’ﬁjdt, j=0,,N.
T—w 0

This limit is zero iflj # 0 and it equals §; ifd;=0,j=0,...,N.

If no 4,=0, then Ad(4) is nonsingular, and the proof is complete.
Suppose then that Ad(A4) is singular. Since the A ; are distinct, at most one
4; can vanish. Thus the space S, annihilated by Ad(A) has dimension one.
By relabelling, we may suppose that 4, = 0 so that the range S, of Ad(A)
consists of vectors of the form [0,y,,...,y,]7. Thus writing B= B, + B,
with ByeS, and B €S, , we have

N - 0
0 B,
By=| . land B =| -
[ 0] | By
Thus B = 8, completing the proof of the theorem. O

6.2.2. An Example

Let us apply the theory just developed to the differential equation des-
cribing a canonical mechanical system:

MG+ Cqg=0.
q is the position vector, M is an inertial matrix and C is the stiffness matrix.
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M and C are symmetric and positive definite. We introduce matrices
L and R through the following relations.
M=L"'R™!, LC=RT

Then introducing a momentum vector p, the differential equation becomes

g1 | O Rilgq
pl L-RTO]lp ]
Typically M = I, the identity matrix, so that we may take

L '=CYR'=C"* and R"=LC=C'2

Setting a = C'/2, so that a is symmetric and nonsingular, the differential
equation becomes

HERSH

Then for this example,

[ 0 a
A= .
Let B be the following matrix.
s_|*® ﬁ]’
Ly o

where a, §, 4 and 0 are blocks corresponding to the blocks of A. Let V, = B
be taken in the following form.

Vo=

o
)
B
Y

Further introduce the matrices E, F and G:

I 1 I -1 I I
I R

where the blocks here also correspond to the blocks of 4. Then we find
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thatforn=1,2,...,

. 0 G
(_1)( ”/ZI:__GT O:I’ nodd,

(—1)"/2|:g (1)5], n even.

(Ad(A)Y = 2" 1a"

Here and in what follows, this notation means that the matrix a multiplies
each of the blocks in the other indicated matrices. (In this equation there
are 16 such blocks per matrix. See (6.2.2).)

Then

o

0 Gljo

Range Ad(4) = V|V=a|:_GT 0] 8
v

B+
-B-v
—o+d
—o+0

=qV|V=a

Thus, if x and w are blocks of the size of a, we have

w
Range Ad(A)={ V|V=a|—-w
X
X

We similarly find that if 1 and v are blocks of size a, that
u
Null Ad(4) =< a

Thus writing B as a sum of vectors in the null space and range respec-
tively, requires a representation of the following form.

AR .
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Thus,
u=1la '(a+9),
v=7ja '(f—7),
w=1a"Ya—9),
x=za "B+

Thus for the projection P(B)(= B) of B along the range of Ad(4) and
onto the null space of Ad(A), we find

_1a+d f—y
P(B)_2[y—ﬁ cx-l—é:l'
6.2.3. Preconditioning

The discussion concerning the invariant statement of Theorem 6.2.3 in
Section 6.2.1 shows that the average B = P(B), the projection along the
range of Ad(A) onto the null space of Ad(A). We may carry out this
computation when A4 has a particularly simple form.

First suppose that A is the 2 x 2 matrix J, where

=[]

Then we have the following lemma whose proof follows by direct computa-
tion.

LEMMA 6.2.5. Ad(J) is defined on E(2) = Null(Ad(J)) ® Range (Ad(J)),
where

Null(Ad(J)) = [ ~ Z Z J

and

Range(Ad(J)) = [; ~ ‘j]

. Cla
Thus, given the arbitrary matrix [v ﬁ:|, we compute

o

o+ 9 B—v _a—4 d_B+y
7 ‘T YT
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Then
o p a b ¢ d
- el
and
a+d -y
pl p _ 2 2 .
y 0 y—fB a+6
2 2

Let J_ be the block diagonal matrix with s blocks of J along the main
diagonal. Then for an arbitrary skew symmetric matrix of even order, we
have the following lemma.

LEMMA 6.2.6. Aneven ordered skew symmetric matrix is similar to a block
diagonal matrix with the blocks k,J ,i=1,..., N along the main diagonal.
(We suppose that the skew symmetric matrix is nonsingular, so that no
k; vanishes. Moreover since the eigenvalues of J are + i, we assume
without loss of generality that k, > 0,i=1,...,N.)

The following observation describes what is meant by preconditioning
here.
REMARK 6.2.7. The similarity transformation RT AR, where R is the
orthogonal matrix whose columns are the real parts and the imaginary
parts of the eigenvalues of A4, will produce the block diagonal form
referred to in Lemma 6.2.6. (See Beliman, 1960, p. 64.) Determining R may
be viewed as a preconditioning of the averaging problem when there are
many matrices B to be averaged (as is the case of solving nonlinear
differential equations at many mesh points). Indeed with this precondition-
ing having been performed, the averaging process becomes quite simple,
as we will presently see.

Suppose that 4 has the block diagonal form described in Lemma 6.2.6.
N

Let any given matrix B of order ), s,, (ie., the order of A, the skew

i=1
symmetric matrix under consideration) be viewed as a matrix of blocks
B, i, j=1,...,N, corresponding to the blocks of 4. Thus B, is a sub-
matrix of order 2s; x 2sj, i,j=1,...,N. Each such block corresponds to a
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subspace of E(n) which is invariant under Ad(A). To see this, let E'ij be the
matrix obtained from B by setting every element in B equal to zero
except for those in the one block B, phi=1..,N. Then in particular,
N
B=Y B,
i,j=1
Now a computation shows that Ad(4) B,. ; Is zero everywhere except in

the ijth block, where it has the value

k.J,B,;—kB;J, .

Now let each block B;; be composed of the 2 x 2 subblocks C}7,
I=1,..,5,,m=1, S follows.

cyio.o . C"ljsj
B, =
O M o
Then the Imth 2 x 2 block of kiJs,Bij - ijijJs,- is
kiJij;l - ij;'fnJ, Vi, j,l,m. (6.2.3)

In particular if ﬁwm is the matrix obtained from B,; by sctting every
element equal to zero except the Imth 2 x 2 subblock of B;; itself, then

N Si S; .
B= Z Z Z Bij;lm‘
i,j=11l=1m=1 R

Moreover, a computation shows that Ad(A)l?ij;,m is everywhere zero
except in Imth 2 x 2 subblock of the subblock B,;, where it has the value
(6.2.3). That is, every 2 x 2 subblock Cf;” of B corresponds to an invariant
subspace of Ad(A). ~

Thus to find Ad(A)B it is only necessary to compute Ad(A)Eij,,m (
(6.2.3)) and add.

To find P(B) the projection of B along the range of Ad(A) onto the null
space of Ad(A4), we may use the invariant subspaces, as just noted, and find
this projection for each such subspace in turn. In fact, there are only two
simple possibilities. .

If i=j so that B; is a diagonal block, P(Bii;lm) is everywhere zero
except in the nonvanishing 2 x 2 subblock to which B,

ii:dlm

sec

corresponds, and
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where from Lemma 6.2.5, we see that P(ﬁ ) has the value

iislm
i ii i i
Clm-ll + Clm;22 Clmilz Clm;ll
2 2
ii _ i il i
Clm;21 Clm;12 Clm;ll + Clm;22
2 2

Here Cﬁ;.':pq, p,q = 1,2, are the four components of the 2 x 2 submatrix Cf;"
If i # j, we seek the null space of the transformation

Ad(4)B,,,, = kJCI — k,Ci J, Viz].
Setting this to zero gives the following matrix equation.
C C -C,, C
ki[ 21 ZZ:I:k'I: 12 11]’ Vl#:]
-C, —Cp, 1 -G Gy

Here we have suppressed the index pairs ij and Im for clarity.
These equations yield k; = -T—kj. Since k; >0, i=1,...,N, the null
space we seek is empty. Thus

P(éij;lm) =0.

We summarize this discussion as follows.

Summary

Suppose A has the simple form specified in Lemma 6.2.6. Then B may be
determined by considering the block structure given by A. In the off-
diagonal blocks, B vanishes. In the diagonal blocks, simply apply Lemma
6.2.5 to each 2 x 2 subblock. See Auslander and Miranker, 1979 for
additional details.

6.3. ACCELERATED COMPUTATION OF AVERAGES AND AN
EXTRAPOLATION METHOD

In this section, we consider techniques for accelerating the computation
of averages. We also develop extrapolation methods which replace the stiff
highly oscillatory problem with auxiliary relaxed equations. We begin
with a review of the multi-time expansion in the nonlinear case.

6.3.1. The Multi-time Expansion in the Nonlinear Case

Consider the following nonlinear analogue of the model problem (6.1.1)
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which we have been studying.
dx/dt = f(t/e,x), x(0)=¢, (6.3.1)

where x,f,{eR" and where f(7,-) is an almost periodic function of .
Multi-time perturbation methods lead to the approximation

x(t,€) = x,(t) + ex, (¢, 1/€) + O(e?), 6.3.2)

(the analogue of (6.1.15)), where x is determined from the initial value
problem

dxy/dt=f(x,), x,(0)=¢, (6.3.3)

(the analogue of (6.1.25). See (6.1.52) also. Also see Volosov, 1962.)
As usual, f is the average of f, defined by

- 1 (7

f(xy)= lim —J [z, x,)dr,
T-ow T 0

(the analogue of (6.1.24)).

The coeflicient x, is determined from the formula

t/e
x,(t,t/e) =X (t) + L [f(z,xy) —f(xo)]d‘z:. (6.3.4)

In this formula, X, is determined at a later step in the perturbation scheme.
Since it will not be needed here, it is not discussed further. (For such
details, see Persek and Hoppensteadt, 1978.) Thus,

tje
x(t,e) = x,(t) + s{fl(t) + f [fl(t,x,) —f(xo)]dr} + O(e?).
0

This approximation suggests several numerical schemes for determining
x(h,&). In Section 6.3.2, we consider the computation of the average f’; first
by the customary method and then by a second difference method which
accelerates the computation of f in some cases. Then in Section 6.3.3, we
describe an extrapolation method for approximating x(h,¢). As in the
extrapolation method introduced in Section 5.3, certain larger values &
of g are introduced, and (6.3.1) is used with this larger value of ¢’ to furnish
approximations to x(k,¢) itself. In Section 6.3.4, the-results of computa-
tional experiments which compare the methods are presented. Finally a
discussion of these various computational procedures is given in
Section 6.3.5.



138 Chapter 6

6.3.2. Accelerated Computation of f
We propose two methods for calculating f.

(1) Direct evaluation of lim —J Jde.
To

o . 1 .
A convergence criterion is first set, and then the 1ntegral?f Sfdt is

calculated for increasing values of T until the criterion is met: Given a
tolerance A. there is a value T(4, x) such that

J f(r,x)dt — = f(‘l.' x)dt
0

2 0

and

Tl " fe e —F)| <6

1J0

for all T, T, > T(9,x). Thus, we can write
T(3.x)
J f(z,x)dz + O(9).

f(x)=T(5,x) .
and proceed to solve (6.3.3). Unfortunately, there is no certain way of

finding T(4, x).
In order to find a candidate for T(d, x), we calculate

V(T x)= JTf(f,x)dT
0

for 0 < T < 2T*, and keep increasing T* until the condition

NT*+T,x)| <o

1
sup T T

0<T'«T

is met. Then we take T(d,x)=2T*. Usually 2T* is of order 1/6. For
example, if f(r,x)=sint, then f(x)=0 and W(T,x)=cos T— 1. Thus

= V(T -

—,11; T x)| <2/T,

o<|

the maximum being attained in each interval of length 2.
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(ii) Second difference method
In most applications, the integral of the almost periodic function f has
the form

VT, x)= )T + p(T; x),

where p is an almost periodic function of its first argument. Thus, given a
tolerance J, there is a d-translation number 7 (8,x) such that

|p(T + 75,%),x) - p(T;x)| <&

for all T = 0; in particular, since p(0, x) = 0, then l P(T (8, x)| <.

If the frequencies of ¥, hence p, are known, then J (J, x) can be deter-
mined by a Diophantine approximation procedure (see Leveque, 1956).
Thus, Fourier transform methods can be used to determine the spectrum,
and a Diophantine algorithm used to find 7 (5, x). We do not carry this
procedure out here. Instead we find candidates for 4~ by an alternate
method.

Note that

VT, x) - 2T x) = p(2T, x) — 2p(T, x).
In particular for T = (4, x), we have that

2T ,x)-2WT ,x)=pQRT ,x)— p(T,x)— p(T ,x)+ p(0,x)
= 0(d). (6.3.5)

Thus, any J-translation number p makes (6.3.5) of order 6. Unfortu-
nately the converse does not hold; in particular, | V2T, x)— 2T, x)|
may be small while || (T, x) || is not small.

Still, by tabulating

V2T, x)- 2N T, x),

candidates for 7 (6, x) can be found and tested by comparing the values of

W(T, x)/ T for several of them, since these should all approximate f(x). In

practice, this method is no worse than the direct calculation in (i), and in

periodic cases, it reliably gives f(x) after calculation over one period.
Thus from either (i) or (ii), we use

1
7O, %)

as an approximation to f and proceed to integrate (6.3.1) using this
approximation.

g
j 3,%) f(‘t, x)dr
0
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6.3.3. The Extrapolation Method

As in the matched asymptotic expansions case (see Section 53), an appro-
priate value T must be found which represents a time at which rapid
motions can be ignored. In the present case, we pick T to be a d-translation
number of p(z, x). Then, in particular,

_ 2T
pR2Tx) - 2p(T,x) _ % f [fz,x) —F(x)]dt = O,  (6.3.6)

for x = & 4 O(h). The existence of such a value of T follows from viewing
(6.3.6) as the statement that T is an approximation to a d-translation
number (compare (6.3.5) with O(8) = AP). Such a T value must be found,
perhaps using one of the methods mentioned earlier in this section or
additional knowledge about a specific problem being studied.

Once a T value is found which satisfies (6.3.6), we define

&=n/T

as in Section 5.3, and then we calculate x(h, £'/2) and x(h, &') from (6.3.1) by
a pth-order numerical method. It follows from formulas (6.3.2) and
(6.3.4) that

2T
2x(h,e/2)— x(h,&) = x,(h) + & J [f(r,x, (k) — F(x,(h))]dz
+ O((e"?),
= x,(h)+ ORP* ") + O((h/T)?).

On the other hand,

x(h,e)=x,(h) + eX, + ¢ Jm/s [f(T, xo(h) — fxy(h))]dT + O(e?)

=x4(h) + O(e),

since

h/e
J LSz, xo(1) — F(xo(h))]d7 = O(1).

Therefore,
x(h,e) = 2x(h,&'/2) — x(h,&') + O(e) + O(h?* 1) + O((h/ T)?). (6.3.7)
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This formula gives the extrapolation method for calculating x(4, ¢). It and
the previous methods are compared for an example in the next section.

We refer here to Remark 5.3.1 to emphasize that the approach repre-
sented by the extrapolation method is important both computationally
and theoretically. (See Remark 5.3.1a especially for the latter, where the
role of the extrapolation method in avoiding straightforward evaluation
of terms of an expansion is explained.)

Note that if T differs by the quantity A from the approximation 7 (4, x)
of the J-translation number, then from (6.3.7) we see that the corre-
sponding difference in the associated value of x(h,¢) is

Oh?/T?) .
The dependence of this estimate on h is illustrated in Table 6.3-1.
6.3.4. Computational Experiments: A Linear System
The linear initial value problem

%‘ =((1/e)A + B)a, u(0)=¢,

is taken into the problem

(;_': — e—At/eBeAt/a v, D(O) — 6

by the change of variables u = ¢*"°v. We take veR* and £ =(1, 1,1, )T.
Running values of (T, &) are computed using a quadrature increment

of AT = 0.01. The tolerances for each of the methods (i) and (ii) are denoted

by, and §,;, respectively, and the corresponding values of T at which the

associated computations halt are denoted T; and T, respectively. The

calculations are carried out for two different matrices:

0 1 0 0 0o 1 2 0
-1 0 0 0 ~10 0 3

ALW=10 0o o w| 4®W=l0 0 o w|
0 0 —w 0 0 0 —w 0

where w is a parameter specified below.
B s taken to be

00—
wWaoN
NN W
_—th 0
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The average B can be determined in closed form, which we denote by
B(1,w) and B(2,w) respectively. These are compared with Bs obtained by
methods (i) and (ii); e.g., B(1,w) is compared with B,(1,w) and B,(1,w) in
Table 6.3-1. ]

The averaging method gives e®*¢ as an approximation to x(h,e).
Table 6.3-1 compares these approximations for the three ways of deter-
mining B. The extrapolation formula (6.3.7) gives an approximation to
x(h, ). Results of two utilizations of this formula are presented in Table
6.3-1 as well. These are denoted by Ex(e)) and Ex(e},), respectively, where
g =h/T, and ¢, = h/T,. We observe that no value of ¢ is prescribed for
these computations. This demonstrates the effectiveness of singular
perturbation methods in supplying approximations which are uniformly
valid for all ¢ smaller than some prescribed value ¢, say. The latter in
turn depends only on the accuracy desired of the leading term of the
expansion as an approximation to the full solution (for the particular
differential equation at hand). (Compare the comments following (5.3.7).)

6.3.5. Discussion

Existing stiff differential equation solving routines, such as Gear’s (see
Hindmarsh, 1974), can degrade markedly when applied to problems
having highly oscillatory solutions since computations must continually
be made using very small increments. On the other hand, methods like
those presented here can require extensive a priori preparation of the
system to be solved.

Numerical implementation of the averaging procedure requires the
determination of T, (Section 6.3.2.i) which is used in direct approximation
of f or determination of T, (Section 6.3.2.ii) as an approximate translation
number for the integral ¥(T, x).

The ratio h/¢ is a measure of the system’s stiffness, while 1/(¢/) measures
the work involved in direct computation of solutions. On the other
hand, T,/AT (AT is the increment used in the averaging quadrature)
measures the work needed to calculate f, and T,,/AT is a measure of the
work involved in calculating the approximate translation number.
While the method based on approximation of f in Section (6.3.2(i) is
reliable, it is costly even for a periodic function f. The work involved in
the computation of translation numbers varies from minimal (e.g., for a
periodic function) to an amount which offers no improvement when
resonances occur in the integral V.

Finally, note that formula (6.3.7) shows the error arising in the extra-
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polation procedure decreases as a power of 4; e.g., replacing h by h/2
implies the error changes from h%/e to h*/(4e). Consequences of this
fact are illustrated in Table 6.3-1 where computations are carried out
for the two or three values of 4. For example, from Case 3 of that table we
may calculate the following:

| e®18& — Ex(0.001)| = 59.5,
| e°-038¢ — Ex(0.0005)|| = 8.1,
| %0258 — Ex(0.00025) || = 1.1.

Here ||| denotes the Euclidean norm in R*.

6.4. A METHOD OF AVERAGING

6.4.1. Motivation: Stable Functionals

Consider the following model problem
X + A%x = A*sint, (6.4.1)
and the following family of solutions

sint
1—1/2%

For A large, this solution family consists of a high frequency carrier wave,
asin At, modulated by a slow wave, (sin £)/(1 — 1/4%). As we have observed,
the specification of the value at a point of such a function is an ill-condi-
tioned problem.

We have seen that the linear multistep class of methods is highly
desirable for numerical analysis since these methods are easy to use and
easy to analyze. However these methods consist of a linear combination
of unstable functionals of the solution of (6.4.1), namely values and values
of derivatives at points. In this section, we show how to replace these
unstable functionals by stable ones, thereby producing a class of linear
multistep methods suitable for the stiff problem. We suppose that the
stable functionals provide information about the solution being sought,
and (subject to a process like mesh refinement) that the stable functionals
furnish as adequate a description of the solution as needed.

We do not characterize the classes of functionals which are stable in an
abstract way. Instead we select two special functionals, an averaging
functional and an appropriate evaluation functional, which are stable

x{t) = asin At + (6.4.2)
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in the sense discussed. We construct the numerical methods out of these
two functionals.

6.4.2. The Problem Treated
We develop the method in the context of the problem,

f40x=f(en, te[0,T],

(O mx,. (6.4.3)

where x and f are scalars.

The solution of this problem will be required to exist on the larger
interval . = [— 1, T, where the positive quantity t will be specified in
(6.4.9). Thus, we assume that f(x, ) is continuous in ¢,t€# and Lipschitz
continuous in x for all such ¢, with Lipschitz constant L. Then f(x,t) is
uniformly bounded for te.# and x restricted to any compact set including,
in particular, the set of values taken on by the solutions x(t) for te #. At
first we restrict our attention to the linear problem in which f(x,t) = f(¢).
Then in Section 6.4.9, we make some comments about the nonlinear
case and the case of second order systems.

6.4.3. Choice of Functionals

Let r, s and N be positive integers,leth=T/N and lett, =ih,i=0,+ 1, ...
be the points of a mesh. Let z(t) be a functional of x which can be calculated
at each mesh point. Then we seek to determine y, = y(t,), in terms of
Voo i=1...,rand z,_, =2zt,_), i=0,1,...,s by means of the linear
multistep formula

Yay,_,+ 3 bz,_,=0, n=01_.,N. (6.4.4)
i=0 i=0
The initial values y,, i= —1,..., —r are assumed to be furnished by

some independent means, i.e., by a starting procedure (compare (1.2.5)f.).
In the case (6.4.3) of interest and 4 large, we choose y(t) to be

yty= Jw k(t — s)x(s)ds, (6.4.5)

b ¢ ¢
where

k()—l I, —A<z<0,
2= A 10, otherwise.

Thus y(t) represents the average of x(t) over the interval [t — A, ¢].

(6.4.6)
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The functional z(¢) is chosen to be [d?/dt?> + A?]x(t), i.e., f(t), which
we suppose can be stably calculated at each mesh point. Thus with a
change in normalization, (6.4.4) may be written as

r

Vo= X GVt Y dif, (6.4.7)

i=1 i=0

6.4.4. Representers

We introduce the reproducing kernel space, # = #,, which is the Sobolev
space W?2[ — o0, 00] with the inner product

ugd=3 (’;’)(f“", g, (6.4.8)

=0
where

(f.9)= f J(D)g*(e)de.
An asterisk is used to denote the complex conjugate throughout. Since
we are interested in solutions of (6.4.3) on the interval

I =[-rAT] (6.4.9)

we may identify both a solution of (6.4.3) and f(t) appearing in (6.4.3) with
the unique functions of minimal norm in % with which they agree on .#,
respectively. Of course on .4, f is required to have m — 1 absolutely
continuous derivatives and an mth derivative (almost everywhere)
which is square integrable.

We use a carat to denote the Fourier transform, viz.

£ty = \/—12_7-; J _: P wydo,  Jl)= ﬁ J _: e~ (1)dr.

(6.4.10)
Then the inner product in 5 may be written as
I {® . .-
(S, =.._j w)g* ()| P, (w)|*dw, (6.4.11
19 T _wf (@)g*()| | )

where

P, ()= (1 —iw)". (6.4.12)
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The reproducing kernel in 3 is (see Michelli and Miranker, 1973)

1 [} ei(s—t)m
ﬁf TR @R
A second Hilbert space, 5 is introduced as follows.
#=H,={f|fP,eL*[- w0, o]} (6.4.14)
The inner product in J# is

(6.4.13)

R,=R"(s) =

PN 1 ® .
g = —= *|P |2dw. 6.4.15
XD \/ﬁf.wfg |P|*de (6.4.15)

(6.4.11) defines an isometric isomorphism between # and #. We use the
symbol ~ to denote this isomorphism. Then from (6.4.11), we see that the
isomorphism between R, and its image in J# is expressed as follows.

e ot
~—— 6.4.16
R B ar (6410
Then for the representer n, of (d%/dt?) + 2%, we have
- it
7, =R + 2R, ~ (— 0* + 1%) (6.4.17)

|P (@)
For the representer k, of y(t) given by (6.4.5) and (6.4.6), we have

k,=k(s)= % J: '_ ARu(s)du

t —iwu

1 e
~"A_J,-AIP,,.(w>|2d“

_ 1 e—iwt|:l __e—iwA:I
[P (w)|? — iwA
—iwt

- ﬁ’e(—w)F 2nk(w), (6.4.18)

where k(w) is the Fourier transform of the function k(z) given in (6.4.6).
With these representers, the formula (6.4.7) leads us to introduce the
following linear functional g, .

r

g,=g,[x]= <k,n— Yk —hY, dl.n,n_i,x>. (6.4.19)

i=1 i=0
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g, will be zero if x is the numerical solution. In general g, is not zero and is
the analogue of the local truncation error for classical linear multistep
schemes.

6.4.5. Local Error and Generalized Moment Conditions

g, is characterized in the following definition.

DEFINITION 6.4.1. Using (6.4.19) as a definition, we call the linear

functional, g, appearing there the local truncation error (functional) of
the method (6.4.7). The (generalized) local truncation error is || g, | >, where

Ix[>=<x,x> and [x]?={xx),. (6.4.20)

To estimate the local truncation error we write

2

, (6.4.21)

kt,._ Z cjktn-—j —h? Z djrlfn—j

=1 j=0

lg.1” <

We will drop the subscript «, since no confusion should result. Now
using (6.4.15), (6.4.18) and (6.4.19), we find for the right member of (6.4.21)
that

Hw) =

r

k, — Y ¢k, — h*y dn,.
j=0

]:1 j=

2 1 ®© dw
=— Ho)|?
o)
(6.4.22)
where

1 . r . S .
——k(w) ). 5,e9" — B2(2 - w?) Y deVn. (6.4.23)
j=0 i=1

so=1 and s;=—¢, j=L..r (64.24)

Here

Expanding t(w) formally in a Taylor series with remainder gives

p-1
tw)= Y (ho)m + R, (6.4.25)

=1

where from (6.4.23) and (6.4.25), we obtain

11+ .
— Lk—l A+i-k )
m’ (l+])'k§l< k ) zj S]
hzlz s ] 1 s o
- ,ZO»’ldf'(l—"z')‘. > T, (6.4.26)
j=
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and

R

(ihw)” 1 r o+ 1 ijhe; . +1
= — . e” D5t — + L P
P p! L(p + l)jgosj(l v )
% eijh“ + L)mj,z) _ hZAZ Z jpdjeijhwj,l —_ p(p_ 1)
i=0

x Z e Zdj eiihwj,{l_ (6.4.27)

In (6.4.26) and (6.4.27), we use the abbreviation
L=A/h. (6.4.28)

That is, in terms of the functional k of (6.4.5) and (6.4.6), the interval A, over
which the average is taken, is a multiple L, of the mesh increment A. In
(6.4.27) the quantitiesw; , and @, , j=0,...,randw, ;andw; ,,j=0,.
are of values of w wh1ch arise from the calculatlon of the remamder in
Taylor’s theorem.

The quantities m, are characterized in the following definition.

DEFINITION 6.4.2. We call the m,, [ =0,1, ..., the generalized moments
(of the coefficients). Analogously m, =0, =0, 1,..., will be called the
generalized moment conditions.

We make the following observation concerning the determination of
the coefficients of the numerical method from the generalized moment
conditions.

REMARK 6.4.3. View the equations m=0, I=0,...,r—1 as r equa-
tions for the r unknowns s;, j=1,....r. The Ith row of the resulting
coefficient matrix which has as its jth term

1 LI+ 1
Lk—l 1*!-1(,
(1+1)!,§1< r > "

is a linear combination of the first [ rows of the Vandermonde matrix.
Thus the system of r equations has a solution in this case. Indeed by
choosing the d o= 0, ..., s to be proportional to A~ 2, we obtain a solution
for the s;. j=1,....r which is O(1) + O(4 2.

From the form of t(w) given in (6.4.23), we may make the following remark,
the assertion in which follows from a familiar argument which proceeds
by breaking up the range of integration in (6.4.22) appropriately.
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REMARK 6.4.4. Ifpischosen less thanm, and the coefficientss,,j=1,....r

and d;,j=0,...,s are chosen as solutions of the generalized moment
conditions m, =0, [=0, 1,..., p, we may obtain an estimate of the local
truncation error of the following form.
lg,| = max |g,| <OK"*Y), p<m. (6.4.29)
xeH
IIxll <t

We collect these remarks into the following theorem.

THEOREM 6.4.5. There exists a choice of coefficients s;,j=1,....r and
dj, j=0,...,s, such that the local truncation error has a bound of the form

(6.4.29). Moreover, this bound is uniform in A for |A| > A, for any fixed
positive A .

6.4.6. Stability and Global Error Analysis

y,» =0, 1,... denotes the values obtained by the multistep formula
(6.4.7) from the initial values y, ,n=-r,...,—1. Let Y ,n=—r,
—r+ 1,... denote the exact values of these functionals. Let

e, =y,— Y, n=-—r—r+l,..

n

denote the global error. For convenience, assume that the initial func-
tionals vanish,ie,e, =0n=—r,—r4+1,..., - L.
Subtract the following identity

Jj=1 J

from (6.4.7). We get

ji=1

_ 2 S r 2 s
Y,= 2 ¢Y, ;+h 0djfn,j+ Y,— XY, —h Zod"f"""
= i=

e,= ) cie, ;+g, (6.4.30)
j=1
Here , .
9, = —yn+ Z CjY'l—j+h2 Z djf”‘j’
j=1 j=0

is the value of the linear functional g, of (6.4.19) applied to x, the latter
being the exact solution of the initial value problem (6.4.3). To solve
(6.4.30) for ¢, , we use the polynomial S(z) (compare (4.2.18)):

S(z)= Y s;20

j=0
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Since s, = 1, [z"S(z~ 1y}~ is an analytic function of z in a neighborhood
of z=0. Then let its power series be given by

[ZS(z"H] '= i 0,7
j=o

Now multiply (6.4.30) by ¢, _, and sum the result over n from n=r
to N. The result is the solution of (6.4.30) (compare (4.2.19)-(4.2.22)):

N
ey =2 On_pdy- (6.4.31)

n=r

Stability of these methods is characterized in the following definition.

DEFINITION 6.4.6. If the sequence {aj, j=0,1, ...} is bounded, then
the method is said to be stable.

We recall the following definition.

DEFINITION 6.4.7. S(z) is said to obey the root condition if all of its
roots lie in the closed unit disc while those of its roots which lie on the
boundary of that disc are simple.

With this definition we may state the following lemma which character-
izes the stability of the method.

LEMMA 6.4.8. If the polynomial S(z) obeys the root condition, then the
sequence {aj,j =0,1,...} is bounded, i.e., the method is stable. (See Lemma
4.2.2).

If Lemma 6.4.8 is applicable, (6.4.31) gives

ley| <const x N max |g,| [ x|,

r<n<N

where x Is the exact solution of (6.4.3).
Combining this with (6.4.28) gives the following convergence theorem
for the method.

THEOREM 6.4.9. Ifthe choice of coefficients characterized in Lemma 6.4.8
gives rise to a stable method, then for the method (6.4.7) with those coefficients,

ley <O®?),  p<m, (6.4.32)

uniformly in A for | | > 4 for any fixed positive 4.
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6.4.7. Examples

We now consider some examples of methods of the type (6.4.7) in which
the coefficients are determined by the generalized moment conditions.
From (6.4.26) we have for [ =0, | and 2, respectively,

(0) 0= Z 22 Y d,
i= j=0
r L r S
) = Yis+5 Z s,—h*22Y jd, (6.4.33)
]=0 j= j=0
L r L2 r thZ s
2 —-—st+ st+ Zs ijd—Zd

Consider the followmg case where the first two generallzed moment
conditions are satisfied.

(A)y my=m, =0.
Forr=s5=1, we get
2
=1-— 23%d
Lt Lh o (6.4.34)

2 2

In the special case d,, = 0, (6.4.34) becomes

2
-7
1 thZL‘
These coefficients (i.e.,, ¢,) obey the root condition if and only if L > I.
In the special case d, = d, , (6.4.34) becomes

) 2
¢ =1—-u—
L+1
I —q [ (6.4.35)
do=h = 1

Under the restriction L >0, the root condition is equivalent to L >0
for the coefficients (6.4.35).
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2 2 2
¢, = 1 ———(l +—E)Cz +I}.2h2(d0—d1),

2 2 2
dl =W2~i(1+6'2)-<1 +—E>d0—'<l ——E)dz

In the special case dy = 0,¢, = ¢,.d, = d,,(6.4.36) becomes

(6.4,36)

o =¢ _L—-3
1= 2_7—
111 L3
==
In this case,
L-3 L-3
Se)=2' = 52— 5~

and this polynomial S(z) obeys the root condition for a set of values of L
which includes all L > 1,
In the special case ¢, = ¢,.d, = d, =0, (6.4.36) becomes

_. 1L
“=%=337
1V
Lo L3
0T 234 L
Here
L 1 L
S(z)=z} =5 ez — 2

23+ L° 234 L
This polynomial obeys the root condition for a set of values of L whicl

includes all L.> 0.
In the special case ¢, =c,,d, =d, =d, (6.4.36) becomes

1L-1
R Tt
v 2 1
d0=d1=d2=3/12h2]+L'

In this case, the root condition is obeyed for L> 0.
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Now we consider a case corresponding to three generalized moment
conditions.

(B) my=m, =m, =0.
Forr=s=1, we get

> L 2 \!
c1=1—L<v+—— > ,

3727 B2
1 (2., 4\
VINdy=g| | =L+ (3L +L— s ] | (6450)

1 N 4 \!

Notice that the root condition is obeyed for L large and positive but is
violated for 24 small compared to L.

We make the following observations concerning the explicit dependence
of the coefficients of the numerical methods on the coefficients of the
differential equation, in particular on A2,

REMARK 6.4.10. Inall of these examples as in the general case, we see that
the coefficients obtained as solutions of the moment conditions depend on
A2, At first sight this seems to be more restrictive than the case of the classi-
cal linear multistep formulas where the coefficients of the formula do not
depend on the coefficients of the differential equation. In fact there is no
such distinction. In the classical case, the coefficients of the differential
equation enter into the method when it is used to approximate the differen-
tial equation, e.g., when y__ . isreplaced by f(y, _;, t,_;). It is essential after
all that the numerical method at some point be dependent on the equation
to be solved. In the present development, this dependence occurs at the
outset in the determination of coefficients and in the error analysis. In the
classical case it enters in the error analysis and in the use of the methods.

A generalization of the methods described here which also utilize concepts
of the two-time approach of Section 6.1 can be found in Miranker and
van Veldhuizen, 1978.

6.4.8. Computational Experiments

We now apply the six sets of methods labeled L, 11, ..., VI in Section 6.4.7,
to the model problem:
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X+ A2x = A%siny,
0 =0 ’O)—'l-l— :
XOr=0, O =341

Computations are made over the interval [0, T] =[0,7]. In Table
6.4-1, we display the 4!/ x [>-norm of the global error:

[=/h} 1/2
ueu,zs[h 5 ] ,
n=0

for a set of various combinations of #=0.1, 0.01, 1 =10, 10%, 10° and

TABLE 6.4-1
Method  A\L 1 2 3 1 2 3
1 10 0.273 0.108 0.112 0.133 0.126 0.126
103 0.113 0.00217 00611 0.0283 0.00683 0.0083
10% 0.112 0.00209  0.0611 0.0111 0.000106  0.00627
1 10 0.122 0.133 0.155 0.126 0.127 0.128

10° 0.00125  0.0622 0.177 0.0241 0.00926 0.0136
108 0.00104  0.0621 0.177 0.000118  0.00627 0.0125

11 10 0.242 0.111 0.0872 0.136 0.126 0.126
103 0.0032 0.00422 000317  0.0294 0.00684 0.00546
10% 0.0034 0.00419 000313  0.00023 0.00112 0.89E-6

v 10 0.123 0.111 0.0938 0.126 0.126 0.126
103 0.00627  0.0144 0.0244 0.0241 0.00684 0.00546
10% 0.00623  0.0144 00244 0000133 0000179  0.000264

|4 10 0.144 0.152 0.156 0.127 0.127 0.128
10% 0.0657 0.094 0.119 0.0249 0.0116 0.0136
108 0.0657 0.0939 0.119 0.0063 0.00942 0.0125

14 10 0.758E4  0.66E!1  0.124 0.195E1 0471E} 0.11E2
10° 0.0447 0.0639 0.244 0.0246 0.00901 0.0253
10% 0.0447 0.0639 0.244 0.00421 0.00629 0.0251

h 0.1 001

h'2 el
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L=1,2, 3 and for each of the six methods cited. Here [n/h] denotes the
integer part of n/h.

To illustrate both the favorable and unfavorable effects, Table 6.4-1
contains cases for which the methods are designed to operate well along
with cases with poor or nonsensical results.

For example although the cases corresponding to A=10 give fair
results, these cases are not stiff, and we should not expect good results.
When 4 is decreased, improvement should occur but only for the stiff
cases. The cases 4 =10° and h =001 are not stiff, and improvement
with decreasing & does not always occur in these cases. Method VI is
used in some unstable cases. Examining (6.4.27) we see that Rp is pro-
portional to L? (see (6.4.28)). Thus in some cases as L increases, we see an
improvement due to improving the averaging (i.e., increasing A), but
ultimately a degradation due to the L dependence of R . The stiff cases
for moderate L give extremely good results as we expect.

6.49. The Nonlinear Case and the Case of Systems

In Miranker and Wahba, 1976, a discussion of the extension of the results
described in Sections 6.4.1-6.4.8 to the nonlinear case and to the case
of systems is given. We give a survey of that discussion.

In the nonlinear case, f,_, in the multistep formula (6.4.7) is replaced
by f(y,_;.t,_,), since f _,=f(x, _,t, ;) cannot be computed as we
proceed along with the mesh. This results in a degradation of the error
estimate (6.4.32) to the following one.

| ey | <const x [A* + Le, v, ]. (6.4.37)

Here

[}

&, = max |h’d, L
Jj

where, as before, L is the Lipschitz constant of f, and
[ 0]
"2l JoL 1P, ()] ’
We make the following observation concerning this error estimate.

REMARK 6.4.11. The two terms in the estimate (6.4.37) are not comparable
in orders of 4. The first term, which corresponds to the local truncation
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error, is small for # small. The second term is the error by which a function
may be approximated by its average. We may expect the latter to be small
if 4 is large. (6.4.27) may be viewed as the statement that modulo the error
made in replacing a function by its average, the numerical method is
globally A2,

In the systems case, the differential equation (6.4.3) is replaced by the
second order system

X+ Axx = f(x,1).

Here x and f are g-vectors and A is a g x g matrix. The coefficients ¢ ;(and
s;)and d; of the numerical method are replaced by g x g matrices (denoted
by the same symbols). Many such forma! replacements of the scalar
development follow. For example, the first two generalized moments
become

m,, =< Y sj—th2 Y dj>Cq,
j=0 j=0

(6.4.38)
r , L r S
m, =( stj+-2~ Y s;— A2 Y jdj>Cq
j=0 j=0 j=0

(compare (6.4.27)), where {_ is the g-vector all of whose components are
unity.

The error analysis proceeds similarly (using some of the matricial
arguments of Section 4.3, leading to an estimate of the global error which is
similar to the one described in Theorem 6.4.9).

We conclude this summary of the systems case with the following two
observations about these matricial methods.

REMARK 6.4.12. Referring to Remark 6.4.10 and noting the dependence
of the coefficients of the numerical method on the coefficients of the
differential equation, we see from (6.4.38) the way in which the dependence
appears in terms of the matrix A?, for the coefficients determined by the
generalized moment conditions. It is important to take note that the
coefficients depend on the matrix A? and not explicitly on eigenvalues
of A% Thus, if we know that a system is stiff, with highly oscillatory
components, we may use the methods described here without having to
calculate the eigenvalues of A2 which cause this stiffness.
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REMARK 6.4.13. Inthe usual systems case for the numerical treatment of
differential equations, the methods frequently used are the scalar methods
with the scalar coefficients simply multiplied by the g-dimensional
identity matrix. We conjecture that the methods developed here in the
scalar case would work in the same way with the simple additional
requirement of replacing 4 or 2! by A or A~ !, respectively.
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Other Singularly Perturbed Problems

Summary

Thus far we have dealt with the numerical treatment of the initial
value problem. There certainly are many other kinds of stiff and singularly
perturbed problems, and we conclude this monograph with a discussion
of two of them. These illustrate the wide variety of problems of this nature
for which numerical methods have barely begun to be developed.

We begin in Section 7.1 with a study of recurrences containing a small
parameter. Such recurrences arise in a number of applications several of
which are illustrated. Then in Section 7.2 we turn to a model two point
boundary value problem containing a small parameter. Moreover, we
consider the cases in which turning points are present as well. Such
problems are very well-known and arise, for example, by separation of
variables in problems from mathematical physics.

7.1. SINGULARLY PERTURBED RECURRENCES

7.1.1. Introduction and Motivation

Numerical methods for differential equations which are neither stiff
nor singularly perturbed proceed by replacement of the differential
equation by a difference equation. In the stiff or singularly perturbed case,
such a direct approach will result in a difference equation which is itself
stiff or singularly perturbed and therefore of problematical efficacy.
Suppose nevertheless, that we do proceed in this way for the singularly
perturbed problem. The resulting difference equation will have a small
parameter causing its solution to change rapidly. As with differential
equations, these rapid changes are often superimposed upon a slowly
changing aspect of the solution. As we have seen in a number of cases,
it is often the slowly changing part of the solution which gives the im-
portant features.

164
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Systems of difference equations or recurrences which contain small
parameters arise not only through discretization of differential equations
but also in fact in their own right in many applications of mathematics to
physical, biological and engineering problems. Of course in the non-
singularly perturbed case (the nonstiff case), the numerical solution of
such recurrences is more or less straightforward. We already know that
this is not true in the singularly perturbed case, wherein the numerical
development might require extraction of the slowly developing part of
the solution.

To illustrate this, consider the following system of recurrences.

X, =(A+eBx,,  x, given, (7.1.1)

where xeR? and 4 and B are p x p constant matrices. (7.1.1) has the
solution
x, = (A +¢B)'x,.

Now suppose that ¢ is a small parameter. For convenience, we will tempo-
rarily suppose that A and B commute. Then

x,=A"(I +&A 'B)'x,.

Here and hereafter I is the p-dimensional identity matrix. For large
values of n, say n = K[1/¢] + p (here [1/¢] denotes the integer part of
1/¢),so that (I + ¢4 "By =exp[A ' BK][I + O(¢)], and so the solution
may be written as

x, = A"exp[A~ " Ben]x (1 + neO(e)), (7.1.2)

which is a useful approximation when n = O(1/¢). Thus, the solution can
be expressed asymptotically for ¢ near O, by the product of a factor which
varies rapidly (i.e., 4") with n and one that varies slowly (i.e.,exp (4 ! Ben))
with n.

Separation of the fast and slowly varying parts can sometimes lead to
an acceleration in the development of the recurrence. To illustrate this,
let us consider an explicit example arising in pattern recognition where a
recurrence relation appears in connection with a so-called training
algorithm. The algorithm determines a hyperplane separating two finite
point sets A and B whose respective convex hulls are disjoint.

Let A={a. i=1,....,q} and B={b,j=1,...,r} be finite point
sets in R?. The problem is to find a vector v = (v, ... ,0,) and a scalar ¢
such that

v-bj<c<v-ai, i=1l,....q, j=1,..., r. (7.1.3)
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Here we use a dot to denote the inner product of two finite dimensional
vectors.

Then the equation v-x — ¢ = 0 determines a hyperplane which separates
the sets A and B.

We imbed the problem in R?*! by introducing the following augmented
vectors. W =(v,,..., v,, —¢), @ =(a;,...,q,,,1), i=1,...,q and b} =
(bﬂ,... Jp,l),j ..., LetA* {ahi=1,...,q} and

={b%j=1,.., }
The training algorithm is described as follows.

Training algorithm
Let T = {x,x,,...} by any sequence of vectors chosen from A* L B*.
For fixed 6 > O and a given w,, eR?*! we define W ,W,,...,asfollows:

W, = wn+an<w"0x";xn>, (7.1.4)
where
1.w.
wex <6 and xe A*,
wex O,wex>0
—lwx>-—-0
i - B*.
Owex> ~ 0} and xe

This algorithm is characterized by the following theorem (see Greenberg
and Konheim, 1964).

THEOREM 7.1.1 Given 0, w, and a training set T, let {w,} be determined
by (7.1.6). Then the sequence {w,} converges. In fact, there is an integer N
such that wy =w, | = ... If each element in A* U B* occurs in T infinitely
often, then the augmented vector wy, = (v, — c) supplies a hyperplane which
separates A and B.

Through the change of variables: w, = 6z(n) and & = 8~ ', the recurrence
relation (7.1.4) for w_is cast into the following perturbation form.

Zn+ 1) = 2(n) + ex,S(z(n)-x, 3%,
while in the definition (7.1.5) of S, w is changed to z and 8 is replaced by
unity.
As an example of the training algorithm consider the sets A = {1} and
={—1}in R Then A* = {x¥=(1,1)} and B* = {x¥=(1 - 1,1)}.
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Qn

Qw

Fig. 7.1-1. Trajectories of the training algorithm (27) and of its slowly varying part (x51).

The linear expressions [ (z) = z-x¥ — 1 and I,(z) = z-x¥ + 1 relevant
to the definition of S, divide the z-plane into four quadrants Q,,0,,,0,,,
and Q,,, corresponding to the values of signum (/, )= (4, =), (+, +),
(—, +) and (—, —), respectively. For zeQ,, Q,,, Q,,, and Q,,, the pair
(S(z-x¥;xF), S(z-x*;x¥) takes on the values of (0, 0), (0, — 1), (I, — 1)
and (1, 0), respectively. Choose T to be the periodic sequence {x¥,x%,
xtxd,

In 2Figure 7.1-1, a sample trajectory for z(n) which starts at the point
labeled « is plotted. This trajectory describes the sawtooth path (xf) and
then the straight but segmented portion (87). There are eight segments
in all of this trajectory (o8y), each one of lengthﬁs.

In Figure 7.1-1, we also plot a path («1) consisting of two line segments.
This latter path is the slowly changing part of the solution, i.e., of the
trajectory (afy) of the training algorithm. Indeed as &£ — 0, we see that
the corresponding sequence of training algorithm trajectories converges
to (¢41). Each such trajectory has the qualitative description of (¢f8y) (i.., a
sawtooth portion followed by a straight segmented portion) except that
the number of its segments tends to infinity.

This example leads us to guess that the limiting path (x§1) is simply
the trajectory which moves in the direction which the training algorithm
trajectory itself takes, on the average. Indeed we will see that this is so. That
is, the set of trajectories defined by the differential equation

dz,/ds = xS(z,), (7.1.6)
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where the average
. . ] n—1
xS(z,) = lim = ¥ x, S(z,-x,;x,),
n->oc h k=0
determines the slowly changing part of the recurrence. (Compare (6.1.24)
and (6.1.25)). In partig_l_l_lar, we will see that z(n)= z,(en)+ O(e).
For this example, xS is conveniently computed since T is a periodic
set. We have indeed that

(070)7 ztes

v (15 - 1)9 zeQ ’
25@0=11l0),  zeQ,,
(171)5 zteV'

In Figure 7.1-1, we plot the direction fields of the differential equation
(7.1.6). Notice that all points in Q, are fixed points of the direction field, i.e.,
they are solutions of the set of inequalities (7.1.3).

7.1.2. The Two-time Formalism for Recurrences

The representation (7.1.2) of the development of the solution of the
recurrence (7.1.1) on the time scales n and s =en (fast and slow times,
respectively) can be obtained by another method (compare Section 6.1)
which is applicable to more general systems (systems with noncommuting
A and B and nonlinear systems as well). We proceed by factoring out the
dominant fast time behavior by setting

x, = A"u,.
Thus u, satisfies the following equation.
u,  =(I+e¢A"'Bu,, u,=x,.

Since we expect the solution to depend on two time scales, nand s = en, we
set

u, = Un,s,e) = U%n,s) +eU'(n,s) + O(c?),

and attempt to determine the coefficients U° and U'. To ensure that the
expansion is meaningful as £¢—-0, we assume that the coefficients
U°, U', ..., are bounded in n and s. Substituting this form into the equation
for u, gives

Un+1,s+¢e¢6) = +eAd 'B)Un,s,¢). (7.1.7)
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It follows that
Uln + 1,5) = UP(n, 5), (7.1.7)

Uin+1,5)= U'(n,s) + A~ ' BU (n,s) — % U°(n, s).

(7.1.7) shows that U° is independent of n, so we write U° = U°(s). The
solution of (7.1.7) is

U'(n,s)= U'0,s) +n[A " 'BU°(s) — dU°/ds].
Since U' is bounded, we must have,

dU°

—=A"'BU°, U%0)=x,.

ds
Solving this equation and combining with the previous results, we are
led to the following representation of x,.

x, = A"exp(A~ ' Ben)x, + Ofe).

Thus, the multi-time hypothesis gives a formal derivation of the carlier
result (7.1.2). In the next section, this method is extended to more general
systems where the slowly varying part of the solution will be derived by an
averaging procedure.

7.1.3. The Averaging Procedure
The system of equations

=Ax, +&f(x, x, given, (7.1.8)

n+1

will be studied under various conditions on 4 and f. Here x, feR?, A is a
p x p matrix and ¢ is a small positive parameter. Setting p =g+ r, we
now introduce the hypotheses H1, H2, H3 and H4 characterizing 4 and f.

H1: Suppose there exists an invertible matrix P such that
P 'AP = diag(0, &),

where the g x g matrix ¢ is oscillatory, i.e., has all characteristic roots on
the unit disc | 1| =1, in the complex A-plane, and the r x r matrix & is
stable, i.e., has all its characteristic roots inside the unit disc, || < 1.
(Contrast this with the notion of stable matrix introduced following (6.1.9).)
The matrix (" is assumed to be diagonalizable.
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H2: Suppose the function f is a smooth function of its arguments.
We define new variables by means of the following relation.

0’!
X, = P< u").
DH
Here P and ¢ are givenin H1, and u, e R%,v_€R". Then (7.1.8) becomes

u,,, =u,+e0""" g0 ,v,¢),
=%, +ehl0"u,,v ,¢),

Dn+l n’“n?

h
Next suppose that the equation here has a solution, viz.

wheref=P<g>, geR? and heR'

H3: There is a smooth function ¢(u,¢) such that
¢ =S¢+ chu,,c),
with ¢ = O(e).
With this, we define v, = ¢(¢"u,,e)+ V,, and we obtain
u,, =u+e0 " g u, YO, )+ V¢,
v, 1= Fv+e[BC"u,,p(C0"u, )+ V, &)
— hC"u,, (O u,,¢),¢)].
To order ¢, the # components will not change before the ¥ components

have equilibrated at ¥, = O(e). Thus, in constructing the solution of the
system, we consider the problem

u,, , =u +e0 " g0u,Pp(0"u,c)¢e), u,=x,.
The solution of this equation will be found in the form

u, = Un,s,e) = U°(n,s) + eU'(n,s) + O(e?),
where s = ¢n. Therefore,

Un+1,s+¢8) = Upn,s,e)+eC " 1g(O"U,$(C" U,¢),¢).
It follows that

U(n+1,5) = U%n,s).

so U%n,s) = U%Gs) is independent of n. Moreover,
dve

Un+ 1,s)= Ul(n,s) + € " 1g(0" U°,0,0) — &
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Therefore,
n—1 dUO
Uln,s)= UY0,5)+ Y, O+ 'g(0*U%s),0,0) —n——.
k=0 ds
This and the boundedness of U! implies that
l n-1 .
A _ ! Y 0+ 1 (0 U%s),0,0), (71.9)
dS n—w nk=0

The next hypothesis ensures that equation (7.1.9) is meaningful.

H4: The average
1= 1
gw)=lim - Y 0% 14(0*4,0,0),
n—w h k=0
exists and defines a smooth function of . Moreover, suppose that the
difference
] n—1

- Y 07" g(C*u,0,0) — g(u),
Ri=o
remains bounded uniformly in n and u.
Note that if the characteristic roots of ¢ are Mth roots of unity, then
OM = I. In this case, Condition H4 is satisfied, and

_ 1
glu)=—

M-1
= L g a.0,0)
k=0

Of course, if @ = I (i.e., M = 1), then g(u)= g(u,0,0).
With Condition H4, equation (7.1.9) has a solution U°(s), and it follows
from this formal calculation that

_ 0" U, (en) U, (0)\
*n"’(ynuo, >+0(8>, p( o >—x0.

The remainder term in this expansion is valid uniformly up to n = O(1/¢).
The proof of this result which we omit, is similar to an analogous result
obtained for differential equations (see Hoppensteadt and Miranker,
1976). For a proof in the case where 4 = O(¥ = 0), see Hoppensteadt
and Miranker, 1977.
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7.1.4. The Linear Case
The linear problem

X, ,=(A+¢eBx,, x, given,

permits us to derive an alternative and more detailed description of the
solution of the recurrences which we are studying. In fact it enables us to
avoid decomposition of the solution into oscillatory and stable parts as in
Section 7.1.3. To proceed we write x, = A" U, and apply the analysis of
Section 7.1.3. We find that

- ln—l
g(u)= A“< lim -3 A"‘BA“)u.

n—+w n k=0
If the matrix A is diagonalizable, i.e., there exists an invertible matrix &
such that
D= 142 =(4,9,),

then we may write

- ln—l

g(u)=A“9?< lim- Y D"‘%’D")g’“‘u, (7.1.10)
n-oc nk=0

where

B=P 'BP=(4,,).
It follows that D™*ZD* =(£,,4.*4;). Thus computing the limit in
(7.1.10) leads to consideration of the following expression.

jncl G Ay -1
;l'kgo(iv//lu) —7—1 (’1‘,//1“)— 1

This expression is unity if A, =4, approaches zero if |4,/2,| <1 and

approaches infinity if {4,/4,| > 1. Thus the average exists if and only if the
following condition is satisfied.

HS: 4, =0 whenever |4,/4,|> L. In this case, we have

prcd _
lim- Y D™*#D* =5, ,)=%.

n—~ow k=0

With Condition HS, we have that
guy=A""Bu=A""PRP 'u.
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7.1.5. Additional Applications

We now apply the method of Section 7.1.3 to an elementary genetics
model and then to the Munro—Robbins algorithm.

(i) A population genetics model

In a large population of diploid organisms having discrete generations,
the genotypes determined by one locus having two alleles 4 and a, divide
the population into three groups of type AA, Aa, and aa, respectively.
Suppose that the gene pool carried by this population is in proportion p,
of type 4 in the nth generation. It follows (see Crow and Kimura, *70) that

pn(l - pn)[(wll - le)p,, + (W21 - W22)(1 - P,,)]
Wllpr21 +2w,p,(1 = p) +w,,(1 - P,,)2

where w,,, w,,, and w,, are relative fitnesses of the genotypes 44, Aa,
and aa, respectively.

If the selective pressures act slowly, ie., if w,,=1+ex, w,,=1,
w,, = 1 + ¢, where ¢ is near zero, then

ep,(1 —p)[(a— Bp, + B]
1 + Oe) '

It follows from the calculation in Section 7.1.3 that
p, = P(en) + O(¢),

)

pn+1=pn+

pn+1=pn+

where
dP/ds= P(1 — P)[(a — B)P + B].

This equation describes the evolution of the 4-gene frequency on the slow
time scale.

(ii) Regression analysis

The Robbins—Munro algorithm (see Robbins and Munro, 1951) is a
recurrence relation for approximating the root of a function when only
noisy observations of the function can be made.

Let g(w) be a function with a unique root w and such g(w)(w —w) > 0,
w#w. Letz,, k=0,1,..., be a sequence of identically distributed random
variables with mean zero and unit variance. Consider the following
recurrence, the Robbins—Munro algorithm, for approximating w.

wk + 1) = wik) — e, [g(w(k)) + oz, ].
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Hereo and the o,k =0, 1, ... are scalars with properties to be specified. We
view g(w(k)) + 0z, as a noisy measurement g(w(k)). We may expect a very
chaotic behavior for the w(k), but we can use the multi-time technique to
describe the slow time behavior w(k) which turns out to be quite orderly.

Let s = ¢k and let
wik) = W(k,s) = W(k,s) + eW, (k,s) + ....
Then by familiar techniques, we find that
Wk + 1,5)= W(k,s),

(e, W, is independent of k and is the slowly varying term being sought)

and

Wik + 1,5+ dVZO(S)

S
This equation is solved to give
dw,

k
W, (k,s) = W,(s) = 2. a,[g(W,(s)) + 0z,] — k 5

Jj=0
From this, the usual multi-time hypothesis gives

dw, [ & . o &
_(g‘l= — lim [E > :xjj'g(WO)— lim - ) a;z;.

k= j=0 k=-x " j=0

We suppose that the following two averages exist.

k
=2 _ -2 2
G°= limk Zaj,

k- j=0
1 k

x= hml; z .
k=w ™ j=0

Then using the central limit theorem, we conclude that

o k
lim - ) oz,= N(0,67).

k—aw® j=0

If we further assume that 6 = 0,(7.1.11) implies that
dW,/ds = — ag(W,).

= W, (k,s) — %, [g(W,(s)) + 0z,].

(7.1.11)

For appropriate g, the solutions of this differential equation converge
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to the equilibrium value w, and the theory presented here leads us to
conclude that

wik) = W(s)(1 + O()).

7.2, SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS

72.1. Introduction

While this monograph deals with the initial value problem, we conclude
itin this section with a discussion of the numerical treatment of a singularly
perturbed boundary value problem. We do this in order to point out the
existence of a large and difficult class of stiff problems. Boundary value
problems certainly find wide applications and computational treatment,
as is well known. Along with initial value problems, the stiff cases seriously
defy numerical treatment. We refer to Hemker and Miller, 1979 for a
representative collection of problems and methodology and also to
Ilin, 1969, Pearson, 1968, Dorr, 1971 and Abrahamson, Keller and
Kreiss, 1974, for representative earlier work.

We treat the boundary value problem taken in the following canonical
form.

My=ey’ + f(x)y' + g(x)y = h(x), 0<x<],
y(0) = a, (1) = B,
where ¢ is considered to be small. We restrict our attention to this linear
case for reasons of convenience. The boundary value problem is further

complicated by the presence of points where f vanishes; the so-called
turning points.

(7.2.1y

7.2.2. Numerically Exploitable Form of the Connection T heory

The algorithm developed here consists of an elaborate discretization of
the connection theory, the latter describing a rich and ramified structure for
solutions of (7.2.1). This structure transcends the comparatively simple
fast and slow mode picture of the initial value problem.

We begin by characterizing the analytical form of the solution of
(7.2.1) (i.e., development of the W K B or connection theory, (see O’'Malley,
1974)) but in a numerically exploitable form (see Miranker and Morreeuw,
1974). This will then be combined with boundary layer methods. As in the
context of initial value problems, this approach furnishes pumerical
methods which inherit the favorable features of the analytic methods:
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improvement rather than degradation with increasing stiffness
(decreasing &).

We require some terminology which we introduce by means of the
following definitions and remark. In these definitions, all points and sets
lie in the interval [0,1].

DErFINITION 7.2.1. A point x is said to be an irregular point if in every
neighborhood of x, the function f(x) is neither larger than a positive num-
ber nor smaller than a negative number.

REMARK 7.2.2. Turning points are irregular points.

DEFINITION 7.2.3. An interval of regularity is an interval containing no
irregular points.

DEFINITION 7.2.4. A neighborhood of irregularity is an open interval
containing exactly one irregular point.

DEFINITION 7.2.5. A right-(left-) sided neighborhood of irregularity is
an open interval containing no point of irregularity and whose greatest
lower (least upper) bound is a point of irregularity. When we need not
specify the right- or left-sidedness, we will refer to those neighborhoods
as demi-neighborhoods of irregularity.

Form of the solution in an interval of regularity
In a closed interval of regularity, the solution y of (7.2.1) is written in
the form

y=u+nv, (7.2.2)
where
(a) v=e" %,
(b) ¢ =f
© Mu=h (7.2.3)
(d) Mv=0.

From these, in turn, we obtain the following equation for w.
(e) ew” —d(fw)/dx + gw =0,
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Introducing the operator L and its adjoint L*:
Lz = fdz/dx + gz,
L¥z = — d(fz)/dx + gz,
we may write (7.2.3c) and (7.2.3d), respectively, as

(a) eu” + Lu=h,
(b) ew’+ L*w=0.

In fact, (7.2.3¢) may be written as
(©) M*w =0, _
where M* is the adjoint of M.
Form of the solution in a neighborhood of irregularity
We restrict our attention to the case in which f has nonvanishing right-

and left-sided derivatives at the irregular point, hereafter denoted by x, . f
may be written as

S(x) = alx — x*)[l + g%—*lf"(x* +0(x — x*»],

where

a=f'(x,).

We introduce the new variable # in place of x through
2 (> 1/2
71=71(x)=[5j f(S)dSJ ,

(x — x n(x) = 0.

where

Note that (x,) = 0,7'(x,) = 1 and thatn’ > 0 in the demi-neighborhood.
Thus, the change of variables is a valid one, and from (7.2.1), we obtain

R WA N 12
sy"ﬂ+(an (’1')2 )yﬂ+a x2 (f‘/(x))Zy (’1')2' ( ol )

The solutions of (7.2.4) are characterized by the following theorem.

THEOREM 7.2.6. There exist functions M(n,¢), N(n.¢), h(n,€) and a(e),
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analytic in ¢ and continuously differentiable in n such that

Wn,&) = M(n, )z + eN(n, )z, (7.2.5)
is a solution of (1.2.4), where z is a solution of
6z, + anz, + (b + ea(e))z = fi(n, e). (7.2.6)
Here and hereafter
b = g(x,).
Proof. Introduce {(17) and 6(y) as follows.
@ =
a*n*g(x)— x*(f'(x))’b
T
Then (7.2.4) may be written as
&Y,y + (an +&6m)y, + (b + y0n))y = h(x)/(n'). (7.2.7)

Inserting (7.2.5) into (7.2.7) and using (7.2.6), we get

Az+aan+C=0,
where

(a) A=naM, +6M)+ &M, + (M, — oM —(b+e0)2N, + (N)),
(b) B=2M"—(Nan),,+0nN+C(M—Nan)+a(N""+CN"—0'N),
€©) C=Mh—h+&Nh+(Nk+(Nk),). (7.2.8)
Set
M=) ¢M, and N=Y ¢N,.
i=0 i=0
Then the terms of order zero in ¢ in (7.2.8a) and (7.2.8b) yield
(a) aM, +6M,=0,
(b 2M0,,,—-(N0ar1),1+ OnN, + UM, — aN,n) =0.

Let M, be the solution of (7.2.9a) which satisfies the condition M (0) = 1.
Then the solution of (7.2.9b), which is bounded at = 0, is given by

(0
aNgn=M, —epr. <E—C)dn.
0

(12.9)
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Similarly, to order i in ¢, the equations (7.2.8) give

@  naM;,+6M)—0o,_ M, +K,_(n)=0, (7.2.10)

(b) —(N,an) + 9/a)ar’N.—Car’N.+2M“,+CMl.+Ji_1 =0.
Here, K,_, whichdependsonM,....M, . N,,...,N,_,,0,,...,0,_, 8
contmuous atn =0.J,_, depends onN WN_1,04,...,0,_

By choosing o,_, = K, L), (7.2. 10a) may be solved for M which is
continuous at y =0. With this M,, (7.2.10b) may be solved in turn for
N,an with N, being bounded at n = 0. In this manner, M and N may be

constructed. Similarly, i Z .& may also be obtained, completing the
proof of the theorem. i=0 O

If z is a solution of (7.2.6) such that €z, is bounded, then we conclude
from (7.2.5) that

y=Myz+:eNyz, + O(e). (7.2.11a)
Differentiating (7.2.5) with respect to # and using (7.2.6) and the bounded-
ness of £z, gives

Y, =M, — Nyan)z, + O(1). (7.2.11b)

From (7.2.11) it is clear that if we restrict attention to quantities deter-
mined up to O(g), then we may use z, which is obtained from the restriction
of (7.2.6) to

£z, + anz, + bz =k (). (7.2.12)
This equation has a solution of the form 4,(0)/b + O(y) + Ofe), whose
derivative moreover, is bounded with respect to both n and ¢. Thus, all

bounded solutions y of the original equation (7.2.1) may be written in the
following form.

@ =M,z +hix)/glx,) + Nz, + O, ),

(7.2.13)
b oy, =M, Noanz, + 0(1) -
Here z is a bounded solution of
¢z, + anz, +bz =0, (7.2.14)

i.e., the homogeneous equation (7.2.12).
In (7.2.13) and hereafter, we use the following notation.

=00, »=|f|/(|x| +|y])<const for (}x|+]|y|])<const.
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Likewise
f=0(),,=|f| <const for (|x|+]y|)<const.

For the bounded solution of (7.2.14), it may be verified that 7z, as well
as gz are bounded. Thus, since x —# = O(n?), we find that z(x) — z(y) =
O(n) and that ez, (x) — ez,(n) = O(n). Using these observations and the
regularity of M, and N, we write (7.2.13) as follows.

(a) yx) =M,z + h(x,)/g(x,)) +eNyz, + O, x — x,),
(b)  Y(x)=M,— Nyalx —x Nz, + O0(1)

We adopt the normalization M(x,) = 1. Thus, (7.2.15) is further simplified
to

(7.2.15)

(&.x)"

h
(a) y=z+ bey) eN,(0)z' + Ofe, x — x,),
g(x,)
(b) y/ =z + 0(1)(2,,;_,(*)’ (7216)
where z is a solution of
ez" +alx —x, )z + bz=0. (7.2.17)

We are now directed to the solutions of (7.2.17). These are the parabolic
cylinder functions. We now summarize the properties of these solutions
which are required for the numerical method.

In Table 7.2-1, 4, and u, are approximations to independent solutions
of (7.2.17) (which are bounded in neighborhoods of x_ ). Here and through-
out p=b/a. From this table, we can deduce properties of z + &N (0)z'
and z’ needed for y and )’ in (7.2.16) by taking appropriate combinations
of u, and u,. We recombine the entries in Table 7.2-1 calling them
Y, i=1,2 where

(a) Y,=u,+eNyOu;, i=1,2,
b)) Y/ =u, i=1,2

These quantities are needed for determining y (as in (7.2.16)). The relevant
data are displayed in Table 7.2-2 in terms of the original notation.

In Table 7.2-2, w, and w, are normalized solutions of Lw =0 and
L*w = 0, respectively. The normalization is such that there exist constants
p, and p, such that

lim

XX,

lim —22 _ —1. (7.2.18)
[x — x|
*

x-x*

\x——x*|”‘ B
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Thus, from (7.2.16), we see that in each demi-neighborhood of irregu-
larity the solution of (7.2.1) is a combination of Y, and Y, viz.

@ y= )
g(x,)
(b) y, = ,uY1 + O(l)(a/(x—x*).x—x*)'

Thus, we see that up to terms whichare O(1), ,_ |, Y, may be identified
with the function v and Y, with the function u introduced in (7.2.2).
Thus, in an appropriate sense, the values of  and v and their derivatives
at an irregular point may be read off from Table 7.2-2.

This concludes the description of the solution of (7.1.1) in a neighbor-
hood of irregularity.

+AY, +pY, + O0/(x — x,),x — x,),
(7.2.19)

7.2.3. Description of the Algorithm

We now derive the numerical method which is carried out on the mesh
points, x,,i =0,..., N, where

O=x,<x, <...<xy=1L

Notice that the mesh points are not necessarily equally spaced.
The mesh points consist of three types: irregular points, neighboring
points and regular points. These are specified in the following definitions.

DEFINITION 7.2.7. An irregular mesh point is an irregular point in the
sense of Definition 7.2.1. We assume that all irregular points are to be
found among the mesh points. We also assume that each pair of irregular
mesh points are separated by at least two points of the mesh.

DEFINITION 7.2.8. Xx;is a neighboring mesh point if either x,, , or x,_
are irregular points.

1

DEFINITION 7.2.9. X, is a regular mesh point if it is neither an irregular
mesh point nor a neighboring mesh point.

Hereafter, we drop the qualifying word, mesh, associated with these
points, since no confusion will result.

Let f denote a discretization of f. That is a function which interpolates
/ on the mesh. Similarly, i and ¢ will denote discretizations of u and v,
respectively. ¢ will denote a primitive of f.

In addition to the usual forward and backward divided difference
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operators, which will be denoted by a subscript x and X, respectively, we
make use of a directional divided difference operator. This is given by

a/i\(-)— a(-),, if a>0o,
ox ' al);, if a<O.

The dual of this operator is given by
AN —_— T

- éa;(a-)= signum (— 1)%(](1]-),

(See Dorr, 1971))

The boundary value problem and the connection theory is now discre-
tized. The resulting discrete problem is solved by an iteration process. We
now describe this discretization process for each of the different types of
mesh points in turn.

Discretization at a reqular point
At a regular point x;, Mu=~h and Mv =0 are discretized respectively,
as follows.

o
&), g, +fi 5= (@), + g, = b, (7.2.20)
' Ox
and
>
e~ ¢i/el:8(ﬁe¢/€)xi,i _ a (fﬁe‘#/s)i + gi(ﬁe‘#/e)iJ =0. (7.2‘21)

Since (7.2.21) may be multiplied by a constant, the choice of the primitive
¢ occurring there is arbitrary. The sign of f determines the utilization of
the data as is specified in the following remark.

ReEMARK 7.2.10. The directionally discretized terms in (7.2.20) and
(7.2.21), respectively involve u; and u; _, and v, and v;_, or they involve
u;and u,_, and v, and v, |, depending on the sign of f.

Treatment of a neighboring point

The principal difficulty at a neighboring point x, involves the evaluation
of the second divided difference. We are ill-advised to use (7.2.20) and
(7.2.21) at a neighboring point, since the terms of the form (-),; ; occurring
there will involve values at both an irregular point and at a neighboring
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point; these points delimiting a region of rapid change of u and/or v,
when ¢ is small.

We proceed to obtain an alternative approximation to the second
derivatives. Let r denote the second derivative of u. Then (7.2.3¢) becomes

er+ fu' +gu=nh. (7.2.22)
Differentiating (7.2.22) gives
fr+(f +gu +gu="h —er. (7.2.23)

Combining (7.2.22) and (7.2.23) gives
fP—ef +g)]=@u—W(f +9) +f[(H —er)+gu].(7.224)

If the last bracket here is bounded at x;, we may neglect it, since its coeffi-
cient f is small at x, (since we assume that |x, — x| is small), where x,
denotes the irregular point for which x; is a neighbor. Then we have the
following approximation for r.

gr=y, (gu—h), (7.2.25)
where
_ g+t
X = sf_———z o) (7.2.26)

Similarly, denoting the second derivative of w = ¢%v by s, we obtain
from (7.2.3d) the following equations in place of (7.2.22), (7.2.23), (7.2.24)
and (7.2.26), respectively.

es—fw +(@g—fw=0,
—fs4+@—2fW+@g—fYw=—¢&s
and
&s=x,(g — fw,
where
.9

2 —eg—2f")

Using r and s in (7.2.20) and (7.2.21), respectively, in place of the second
divided differences, Remark 7.2.10 shows that one of the resulting equa-

tions does not make use of data at the irregular point. We use this equation
to calculate the associated function (u or w as the case may be) at the

X2
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neighboring point. We call this function the principal function (relative to
this neighboring point). The remaining function is called the minor
Junction.

Let y denote the principal function (u or e~ ¢y, as the case may
be), and let y denote the minor function.

First consider the case where y is u. Then write (7.7.22) as

Ly =h—g¢r. (7.2.27)
We solve this equation to obtain
y=4+pw,

where 4 is a particular solution of (7.2.27), u is a constant and w is a normal-
ized solution (in the sense of (7.2.18)) of Ly = 0. Writing

Pi= A+ i, (7.2.28)
we approximate /4 as follows.

A=(h,—er)/g,. (7.2.29)
For w,, we have

W, =|x, — x| 790 (7.2.30)

In (7.2.29), r is computed by means of (7.2.25) and (7.2.26), and in
(7.2.25), we set u to equal to y, which is known to us. Since y is the principal
function y, is known, and so then from (7.2.28)—(7.2.30), uis known.

In the case that the principal function y is identified with e'®~ ¢/,
we similarly derive (7.2.28). However in this case,

A= —es/g, (7.2.31)

approximately, and W, is obtained from the normalized solution of
L*y=0:

W, = (1/f)x; = x| 9477 (7.2.32)
For the minor function, the same development may be made, represent-
ing it as
y=21+ .
Z is computed as in (7.2.30), however, since jy is not known, we use a

prior value of y (e.g., y from the previous iteration of the solution process
referred to for the discretized problem being developed). The equations
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(7.2.28)—(7.2.32) are valid for the minor function with bars inserted as
necessary. However, because y is the minor function, y; is not known,
and so j1is unknown as well. To determine y,, we must determine fi, which
we now proceed to do.

Treatment at an irregular point
The study of the principal function at neighboring points permits us to
express this function as

A_+p_w_,
to the left of an irregular point and as

'1+ U W,
to the right. Similarly, the minor function, to the left of and to the right
of an irregular point, may be written as

I_+a.w_ and T, +a,w,,

respectively.

WemayidentifyA, + 71, + p, w, + i, w, with(7.2.19a)as an approxi-
mation to the solution of y, to one side of an irregular point. From
Table 7.2-2, we see that the limiting values as x,— x,., of Y,(x) and Y,(x)
are known and approximate the normalized solutions (at x,.) wbich are
w, and w_ in some order. Call Y, and Y, the functions Y and Y, as the
case may be. Thus, by the continuity of y at an irregular point, we have

A_+X_4+p Y O +a Y =4, +7, +p,Y,00)
+ i, Y, (0. (7.2.33)

Similarly, from (7.2.19b) and the continuity of y’ at an irregular point, we
have

H_Y O+ A YO =p, Y, 0 +4, T, 0. (7.2.34)
(7.2.33) and (7.2.34) form a system for the determination of g, and j_.
Except in the case where the determinant of this system vanishes (an
analogue of a resonance phenomena in the solution), we may solve this
system for g, and fi_.
7.4.4. Computational Experiments

Computational experimentation with the semianalytic methods developed
here require judicious computational technique, and we refer to Section 4
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-1 0 |

Fig. 7.2-1. Approximate solution in case (ii)

of Miranker and Morreeuw, 1974 for a description of the latter. Here we
describe results of such experiments. First we characterize the errors
arising through use of the algorithm for the model (test) equation
ey" + axy + by =0 (compare (2.1.2)). Following this, we give several
examples of solutions for linear equations with variable coecfficients
which illustrate types of solution behavior at turning point problems.

Solution of the boundary value problem ey’ + axy’ + by= 0 with y(— 1)= 1,
y()=2.

We take ¢ = 10”7, Two typical cases are
) a=—-1,b<0,
i) a=1,b= —1.0001(~ — 1).

ERROR ¢}
005+
0.025} 2
..,’
0.925 Q.05 O‘.l Increment Ax
Il'H 81 4 21 No. of points N

Fig. 7.2-2. Maximum error versus Ax in case (ii)
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f(x)=x3-1/2x
YA A
2 -
f Ax=005/ -
o-I 0 |

107 7y" +(x3-1/2x)y'-y =0
Fig. 7.2-3.

f

SN
o N

f(x)=1/2-x2
2t 4
i ]
Ax=0.05
o-I 0l |

IO-sy"-O-(I/Z- xz)y'+xy =0

Fig. 7.2-5.

f)
15
10

f(x)=x+1/2x2

Ax=0.

i 0
1077y "+ (x +1/2x3)y" + -1+ 1/2xc08 x) y =0
Fig 7.2-4.
05
ol __ A
-o.5|» \-/j
f(x)=x2-1/2
y
Ax=005
0
5
2
0

10°9%" " +(x2-1/2)y +xy=0

Fig. 7.2-6.
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fa A

|
IO'ay"+|ny'+(x-|/2)3y=0

Fig. 7.2-7.

0
f(x)=sinwx

ﬂl

N =<

-1 0 |
10°7y"+(sinmrx)2y'+(x-aly= 0

Fig. 7.2-9.

Chapter 7
" p
k) \ A0
Y I’
N 2
1 -0.5\\\ ,/ 41
o BN P (A
-1} -
'IO'A)(=0.I>{ 1
> Ax=0.05
-10%} . J
Pearson's
-103F result ]
-10% ;_%m:o.a 1

0 Ty +Ixly'+i/2y=0

Fig. 7.2-8.

|
1078y " +(1-xly'+xy=0

Fig. 7.2-10.
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f f
! |
0 0

f(x)=x3 - f(x)=x3

3 cycles of oscillations

;A with amplitude ~102°
150} 4
! 100} b
50 - -
0 ro5ox05 12
-8 3 U -@ 1t 3t -
107y +x"y-y=0 Psarson's Result for 10 "y +x"y-xy=0
. In this case, our method is unstable.
Fig. 7.2-11.
Fig. 7.2-12.
Exoct

- 0 1

10" Ty" +1xly'-y=

AN

¥ 0 ' ~(1+7210™ ) cos 7 x - mixIsinmrx
Exact solution: y=cosmx

10" T y" +(x+1/2x2) y'+ (- 1+1/2x cos x)y
= X{-3+sin{x+cos x)) Fig. 7.2-14.
Fig. 7.2-13.
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In Case (i), the algorithm gives zero at all interior mesh points if b is
not a (machine) integer. This corresponds to an error of less than 1072,

In Case (ii), the exact solution is linear to within 10~ 4 on each side of
the turning point, where it vanishes. The approximate solution is dis-
played in Figure 7.2-1. The maximum error { versus the mesh increment
Ax is plotted in Figure 7.2-2. The linearity of the plot in Figure 7.2-2 is
expected since all of the discretization procedures in the various aspects
of the algorithm are of the first order inAx.

Variable coefficients cases
Now we present a sequence of Figures7.2-3-7.2-16 each of which exhibits

a particular coefficient f(x) of the term ', the specific choice of the
boundary value problem and the corresponding numerical solution. In
the plots of f(x), the arrows drawn along the x-axis represent the direction
of the discretization of the derivative (see (7.2.20) and (7.2.21)). The
various values of the mesh increment A x employed are also displayed in
the figures. The problems treated in the figures have been chosen to
illustrate the large variety of possible solution types. Pearson, 1968 has
studied some of these cases by a mesh refinement method, and we plot his
results when there is disagreement with those of the algorithm discussed
here. We also compare the numerical results to the exact solution in

A
| Exact T
solution
d
0 /A
Ax=0025~§,///,'
2"‘_0'05\?// / 10y +Ixly-y=12xi0 'x2
-tF x-O.I\\L// #IO'7y"+lxly'+y: +4lxix3-x*
‘,I ! 12:107x2 + Exact solution
1 4lxix3+x4 y=x*
1
-2t ||",' HExact solution Fig. 7.2-16.
4
H y=x
I
-3k H J
H
-1 0 |

Fig 7.2-15.
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Figures 7.2-14-7.2-16. In these cases, the numerical error vanishes with
the mesh increment, and when the maximum principle is satisfied by the
solution of the boundary value problem, the numerical error is less than
the mesh increment.

The sign (F) of the linear term y in the differential equation determines
whether or not the maximum principle holds for the corresponding
boundary value problem. The corresponding cases are displayed by
Figures 7.2-15 and 7.2-16. Notice the extreme dependence of the computa-
tional methods discussed here to the presence or absence of the maximum
principle.
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