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Preface 

A generalized polynomial identity (GPI) of an algebra A over 
a field F is a polynomial expression f in noncommutative vari- 
ables and fixed  coefficients  from A between the variables such 
that f vanishes upon all substitutions by elements of A. It is a 
natural extension of the notion of a polynomial identity (PI ) ,  in 
which the coefficients  come  from the base  field F .  The theory of 
GPI’s is in reality, however, quite  separate from that of ordinary 
PI’s. It is a rather  rare occurrence that results in GP1 theory 
provide better proofs or insight into PI results. Rather,  the use- 
fulness of GP1 theory lies in the  fact  that in many problems in 
noncommutative ring theory involving  elementwise calculations 
GPI’s appear frequently and naturally, whereas PI’s seldom 
make their appearance. Of course  one expects PI’s to have a 
stronger effect  on a ring than do GPI’s, and  this shows up very 
clearly in the case of a primitive ring R, i.e., a dense ring of 
linear transformations of a vector space V over a division ring 
D. Here the presence of a PI forces R to be finite dimensional 
central simple whereas a GPI, though forcing R to have  mini- 
mal right ideals and D to be finite dimensional over its center, 
has no effect  on the dimension of V over D. As a special case 
one has the ring R of all linear transformations of an infinite 
dimensional vector space over a field. If e is a rank one idempo- 
tent  then R satisfies the GPI ezeye = eyeze for all x and y in 
R whereas R satisfies no PI .  

111 
... 



iv PREFACE 

Just as PI theory began with Kaplansky’s 1948 paper on 
primitive PI rings, the theory of GPI’s was initiated by Amitsur 
in 1965 with his fundamental paper on primitive GPI rings. In 
1969 Martindale extended Amitsur’s work to prime GP1 rings. 
A key notion in making the transition to a prime ring R was 
that of the extended centroid C and  the resulting central closure 
RC, it becoming clear that C (rather  than  the field of fractions 
of the centroid) was the proper field of scalars in the case of 
prime rings. A short  time  later generalizations in two directions 
occurred. In one GPl’s involving involutions were studied by 
Martindale, Rowen, and  others,  and  in  another GP1 theory was 
extended to semiprime rings by Beidar and Mikhalev using the 
technique of orthogonal completion, a powerful alternative to  the 
usual method of reducing semiprime problems to prime rings. 

One of the most significant advances was made in a series of 
fundamental  papers by Kharchenko in  the  late 1970’s in  which 
GPI’s involving derivations and automorphisms were studied, 
i.e., the variables were  suggestively superscripted by composi- 
tions of derivations and automorphisms. (Let us henceforth refer 
to these more complicated identities simply as generalized iden- 
tities (GI’s)). Indeed, Utumi’s (1956) ring of quotients of a ring 
R was seen to contain elements which induce automorphisms 
and derivations in R (called X-inner  automorphisms  and deriva- 
tions in honor of Kharchenko). In 1985 Lanski investigated the 
situation of GI’s in prime rings with involution. Around 1990 
Chuang carried the theory to  its present state by adding arbi- 
trary antiautomorphisms to  the Kharchenko results. He intro- 
duced the  important notion of F’robenius (anti)automorphism 
for prime rings using  which  he  gave a description of the struc- 
ture of (not necessarily multilinear) GI’s involving derivations 
and (anti)automorphisms, thus extending Kharchenko’s results 
even in the case of derivations ‘and automorphisms. 

The centerpiece of this book  is Chapter 7 in which the the- 
orems of Kharchenko and Chuang on GI’s in prime rings are 
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presented. Special attention is paid to describing the ”home” of 
GI’s (a  matter which  is somewhat glossed  over in  the accounts 
of Kharchenko and Chuang). Also presented in this chapter is a 
striking application of Kharchenko’s results to  the characteriza- 
tion of algebraic derivations and automorphisms. The extension 
of the results of Chapter 7 to semiprime rings is  accomplished 
in Chapter 8. 

The choice of topics for Chapters 1 through 5 is generally dic- 
tated by what is  needed  for the exposition in Chapters 6 through 
9. As mentioned earlier the extended centroid plays a key role in 
the definition of a GI and a detailed discussion of its properties 
is included in Chapter 2. It has also  been pointed out  that cer- 
tain rings of quotients  (notably the symmetric ring of quotients, 
a subring of Utumi’s ring of quotients)  are also  needed in or- 
der to properly define GI’s, and accordingly a general account 
of rings of quotients is  also  given in Chapter 2. The ”home” 
for GI’s is a certain coproduct, and  this notion is  discussed 
in some detail in Chapter 1. A generalized PoincarBBirkhoff- 
Witt theorem (PBW theorem) for differential Lie algebras is 
precisely what is  needed  for characterizing nontrivial GI’s in- 
volving derivations, and  this topic forms the content of Chapter 
5. The main tool used in our proof of the  PBW theorem is the 
Diamond Lemma and we therefore present a careful exposition 
of this result in Chapter 1. The interplay between derivations 
and  (anti)automorphisms leads naturally to skew group rings, 
which are briefly summarized in Chapter 1. The extension of 
GI results to semiprime rings requires the theory of orthogonal 
completion (developed by Beidar and Mikhalev), and  this sub- 
ject, along with a review of first order logic in Chapter 1, is laid 
out in Chapter 3. Since the effect of a nontrivial GI on a prime 
ring is to force its central closure to’ have minimal right ideals, 
we have  given a fairly detailed account of primitive rings with 
nonzero  socle in Chapter 4. 

GPI’s are of course just a special case of GI’s in which 
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derivations and (anti)automorphisms  are  not involved, and var- 
ious results on GPI’s are presented in  Chapter 6. Included here 
is a very short proof (due to Chuang) of Martindale’s result on 
prime GPI rings. To help prepare the reader for the transi- 
tion from GPI’s to  the far more  involved GI’s of Chapter 7, we 
also present in Chapter 6 various results on GPI’s with invo- 
lution. The generators of the 2’-ideal of GPI’s in prime rings 
have  been determined by Beidar and an account of this is given 
here.  At the end of Chapter 6 several results on special GPI’s 
are presented. 

A powerful feature of GPI theory is that frequently one can 
(so to speak) have the best of both worlds: if the particular GPI 
is nontrivial then  the ring is tractable (e.g., has nonzero socle) 
whereas if the GPI is trivial  there is often a strong  relation 
among the coefficients. A striking example of this phenomenon 
occurs in the recent solution of a long-standing conjecture of 
Herstein on  Lie isomorphisms, which we present in  Chapter 9. 
We also  give here some details of the theory of n-additive com- 
muting  maps  initiated by Bresar, which  is a powerful tool  in 
combinatorial ring theory and plays an  important role in  the 
Lie isomorphism problem. 

Some comments for the reader’s  benefit are now in order. 
The subject matter of this book in its full generality, i.e., GI’s 
with derivations and  (anti)automorphisms  in a semiprime set- 
ting, is admittedly  both  mathematically  and  notationally com- 
plicated. However, depending on the particular reader’s inter- 
ests  and concerns, some of this burden may be alleviated. Most 
notably, for the reader solely interested in prime rings, a consid- 
erable portion of the material may be bypassed, namely, Section 
1.6, Chapters 3 and 8, and those parts of Chapter 6 concerned 
with semiprime rings. Furthermore, without  too much effort, 
most of the  statements of the main results of Chapters 5, 6 and 
7 can be easily understood  and  in  fact have a natural intuitive 
appeal (even though lengthy rigorous proofs may be required). 
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The various PoincarBBirkhoff-Witt theorems in Chapter 5 are 
a case in point. Another example is the set of ”obvious” gener- 
ators of the T-ideal of GPl’s in Chapter 6. The main results of 
the book, to be found in Sections 7.5, 7.6 and 7.7, have rather 
short simple statements,  and  the very definition of a generalized 
identity  and its ”reduction” to a prescribed ”nontrivial” form 
are often dismissed as being too self-evident to warrant much 
attention. At any rate  the reader should not have the idea that 
Chapters 1 through  6 must be read line by line  before  he or she 
is able to find out (in Chapter 7) what the  title of the book 
means! 

With  the book having already reached critical length, we 
have  decided not to include a  chapter on generalized rational 
identities. Another topic we shall not discuss  is that of Galois 
theory of prime and semiprime rings. This  subject is thoroughly 
treated in the recent book of Kharchenko, ”Automorphisms  and 
derivations of associative rings” (Kluwer,  1991).  Various results 
on GPl’s (with involution) are also to be found in Rowen’s book, 
”Polynomial identities in ring theory” (Academic Press, 1980). 
GPl’s are touched upon very  briefly  in Procesi’s book, ”Rings 
with polynomial identities” (Marcel  Dekker, 1973). 
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Chapter 1 

Preliminaries 

1.1 Basic Notions 
In this book we shall mainly be concerned with  three  types of 
rings. A ring R is prime if, for any two ideals U and V of R, 
UV = 0 implies U = 0 or V = 0. As a special case of a prime 
ring, a ring is (right) primitive if it has  a faithful irreducible 
right R-module. As a generalization of a prime ring, a ring R is 
semiprime if it has no  nonzero nilpotent ideals. We  will assume 
the reader is familiar with these concepts and with equivalent 
formulations thereof. We point  out that prime (resp. primitive) 
rings are the basic "building blocks"  in the  structure theory of 
rings if one takes as the radical the  Baer lower (resp. Jacobson) 
radical. A semiprime ring can always be written as a subdirect 
product of prime rings. However, a much  more  powerful method 
of reducing questions about rings to prime rings is the method 
of orthogonal completion (which  will be developed  in Chapter 3 
and applied in Chapter 9). 

Let K be a commutative ring with 1. By definition a  K-ring 
A is a ring with 1 for  which there exists a ring homomorphism 
o : K +- A (sending 1 to 1). It follows that A is a  unital (K,   K)-  
bimodule by defining ka = k"a and ak = aku, a E A, k E K. 

1 
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As an  important example, if R is a ring with center C, then 
A = End(R) (the ring of endomorphisms of the additive group 
R) is a C-ring by letting c" be the left multiplication of R by c, 
c E c. 

We  will define a K-algebra A to be a  K-ring in which K" 
is contained in the center of A (this is  equivalent to  the usual 
definition of an algebra with 1 over K). In case 0 is injective 
(which  will usually be the case) we shall assume that A contains 
K. Of particular interest to us is the  situation where K is a 
field  (when we study prime rings) or the more general situation 
where K is a von Neurnann regular self-injective ring (when we 
study semiprime rings). Here we recall that K is self-injective 
if it is injective as  a K-module. In case A contains K and K is 
self-injective it can be shown that K m 1 is a  K-direct summand 
of the algebra A. 

A derivation of a ring R is an additive map 6 : R + R such 
that (xy)' = x'y + zy' for all x, y E R. For a E R the mapping 
p given  by x p  = [a, x] = ax - x u  is  easily  seen to be a derivation 
and is  called inner (sometimes denoted by ad(a) or [a, 3). It is 
straightforward to show that  the set Der(R) E End(R) of all 
derivations is a Lie ring, i.e., is  closed under addition  and the 
Lie product [&,TI. 

Given a natural number n, we set En equal to  the set of all 
subsets of W(n) = {l, 2,. . . , n}. For derivations dl, S2,. . . ,Sn  E 
Der(R) and a subset S = { j l , j 2 , .  . . ,jk} E En, where j t  <' jt+l 
for all t < IC, we let As denote the product SjlSj2 . . . 6jk and Al, 
denote Aw(n)\s. It will be useful to have at our disposal the 
following 

Remark 1.1.1 (Leibnitz Formulas) (U) For all z,y E' R, 
61, S,,. . . ,Sn E Der(R), and A = 6162.. . Sn the  following equal- 
i t y  holds 
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(b)  (special case of (a)) For x ,  y E R and S E Der(R) 

(It is understood  that A0 and So mean 1). 

The proof is by induction on n and we leave the straight- 
forward though  notationally complicated details to  the reader. 

As an immediate corollary to Remark 1.1.1 (b) we see that 
in characteristic p (p a prime) Der(R) is also closed under pth 
powers S I+ &P. 

Other mappings of major interest to us are the automor- 
phisms  and  antiautomorphisms of R. An important special case 
is an involution of R, i.e., an antiautomorphism of period 1 or 
2. We will denote the set of all automorphisms (resp. antiau- 
tomorphisms) of R by Aut(R) (resp. Antiaut(R)). It is easily 
seen that G(R) = Aut@) U Antiaut(R) is a group. 

The center Z(R)  of R is also an  important  set,  and we may 
(and often will) regard Z(R)  as acting on R via left multiplica- 
tions. 

If a is a homomorphism of rings K + T and KV,TW are 
modules then an additive map q!J : V + W is  called a-semilinear 
if (kw)4 = k a d ,  k E K ,  v E V .  Analogously if p is a derivation 
of K ,  an additive map q!J : V + V is  called p-semilinear if 
( I C V ) ~  = k b  + kv4, k E K, U E V .  

A derivation S of a K-algebra A will mean a derivation of 
the ring A; we do not assume that S is necessarily K-linear. 
In case p is a derivation of K then  a derivation S of A is 
called a p-derivation of A if S is  also a p-semilinear map, i.e., 
(h)' = kpa + ka', k E K, a E A. In  a similar fashion 
an automorphism  (antiautomorphism) g of a K-algebra will 
mean an automorphism (antiautomorphism) of the ring A. If 
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a is an automorphism of K then g is a a-automorphism ( a- 
antiautomorphism) of A if g is also a a-semilinear map, i.e., 

We continue this section with a brief  discussion of skew group 
rings. For  us the motivating example for this notion comes  from 
two simple "skew" relationships connecting Der(R),  G(R) and 
Z(R)  (all contained in End(R)). Let x, y E R, 6 E Der(R), 
g E G(R) (we  will just consider the case  where g is an antiau- 
tomorphism). We then see  from the equations 

( k 4 9  = kUU9. 

(2y)9-169 = (y9-129 -1 ) a9 = (y9-'6x9-' + y9-'29-1J ) 
= xy9-'69 + x9-f69y 

that 

Remark 1.1.2 g-l6g is  an  element ofDer(R) (notation: 69 = 
g"6g). 

Remark 1.1.3 e9 E Z(R)  and c9 = g-kg. 

We proceed now to recall the notion of skew group ring. 
Let R be a ring with 1, G a group, and I I ,  : G + Aut(R) a 
group homomorphism. We refer to I I ,  as an action of G on R. 
However, we will usually suppress the @ and simply write 7-9 for 
~(9'). The skew group ring R cc G of R and G is then defined 
to be the free  left R-module with basis G, where multiplication 
is  given according to gr = rg-lg and  its consequences. It is 
straightforward to verify that R cc G is in fact a ring. Now let 
A be a ring with 1, (Y a ring homomorphism of R into A, and p 
a group homomorphism of G into the multiplicative semigroup 
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of A sending 1 to 1. Clearly the  map y : R cc G + A given  by 
C rgg I+ C r;gp is a well-defined additive map. A useful criteria 
for y to be a ring homomorphism is  given by 

Lemma 1.1.4 A necessary and suficient condition for y to be 
a ring  homomorphism is the  following: if R is generated as a 
ring by  a subset X then 

zagp = gPxga, x E X ,  g E G. 

Proof. If y is a homomorphism then from 

x"gP = (xg)' = (9x9)' = g7 (29)' = gpxg(' 

the necessity  is clear. To show the sufficiency,  since X generates 
R as a ring, we need  only  show that ( u v ) ~  = U~V' for U = 
~ 1 x 2 . .  .x,g and y = ~192..  .yrnh, xi, yj  E X ,  g ,  h E G. We then 
have 

(uv)' = ( 2 1  xnY1 g " .  . . yglgh)' 

= ( X I . .  .x,yf-l.. . y% ) (gh)P 

- - X:. . . x,yl a 9"a . . . yglagPhP = X:.  . . x:gpy:. . . yghp 
= ( X I  . . . X,)"gp(yl . .  . yrn)*hp = U'V' 

-1 Q 

and the proof  is complete. 

We  close this section with a "weak density" theorem which 
will  have important applications in several  places later on. The 
motivation comes  from the celebrated Jacobson Density Theo- 
rem; the reader will notice that virtually the same proof can be 
used. 

For a ring S let N be a right S-module, let A = End(Ns) 
(thus N is a (A, S)-bimodule),  let AM be a left A-module, and 
let 5" be an S-submodule of the right S-module H o ~ ( A M ,  A N ) .  
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We shall refer to  the above system as a (right)  S-context. With 
reference to this S-context we make three definitions: 

N is closed: given any homomorphism of S-modules f : 
Us 3 Ns (where 0 # Us is a submodule of Ns) there exists 
X E A such that X u .  = f(u) for all U E U. (Note that closed 
simply means quasi-injective). 

T is total: for any 0 # m E M we have mT # 0. 
T is weakly  dense: given ml, m2,. . . , mk E M ,  with m1 $! x:=2 Ami, there exists t E T such that mlt # 0, m$ = 0 for 

a > 1. 
In  an analogous fashion  one  may  define a left  S-context with 

a similar ensuing discussion. 

Theorem 1.1.5 (Weak Density Theorem) Given  an  S-con- 
text as above such that Ns is closed and T is total, then T is 
weakly dense. 

Proof. We proceed by induction on k .  The case k = 1 is 
clear because T is total. Now let m1 Ami. Suppose 
the result is not  true, i.e.,  for all t E T mlt = 0 whenever 
mit = 0 for all i = 2,3,. . . , k .  We set J = {t  E T I m$ = 
0, i > 2) (if k = 2 set J = 2'). Clearly J is an S-submodule. 
If m2 E x:==, Ami then we are finished immediately by the in- 
duction hypothesis. Therefore, again by the induction hypoth- 
esis, m2 J # 0, and m2J is an S-submodule of Ns. We define 
f : m2J + N by the rule m2t I+ mlt for all t E J .  f is 
well-defined,  since if m2t = 0 we have mlt = 0 by our earlier 
assumption. Certainly f is an S-module map  and so (since Ns 
is closed) there exists X E A such that A(m2t) = f(m2t) = 
mlt for all t E J ,  i.e., (Am2 - m1)J = 0. But  then consider 
the elements Am2 - m1 , m3, . . . , mk. Since m1 Ami, 
Am2 - m1 # x:=, Ami. By the induction hypothesis we would 
have (Am2 - ml) J # 0, and so we have  reached a contradiction. 
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1.2 Tensor  Products  and  Free 
Algebras 

Let K be a commutative ring with 1, let V be a right K-module 
and  let W be a left K-module. For P any additive abelian group 
we say that a map 4 : V x W + P is balanced if it is biadditive 
and satisfies ( v ~ ,  W)'#' = (v, Q W ) ~ ,  v E V, W E W, Q E K. 
An abelian group T is  called a tensor  product of V and W over 
K if the. following properties hold: 

(i) There is a balanced map r : V x W + T such that T is 
additively  generated by  the image of r. 

(ii) Given any abelian group P and any balanced map p : 
V x W + P there exists an additive map $ : T P such that 
p = r$. 

The existence of such a T is  easily  seen as follows. Let F 
be the free abelian group on the set V x W, and  let N be the 
subgroup of F generated by all elements of the form 

We claim that F = F/N is a tensor product of V and W over 
K. Indeed, the  map r : ( v ,  W) I+ ( v , ~ )  = (v, W) + N fulfills 
condition (i). For a mapping p : (V, W )  + P balanced, define 
x : F 4 P according to (v, W) I+ (v,  w)P. Since x maps N to 0 
it induces the desired additive map $ : F + P satisfying (ii). 
The uniqueness of the tensor product (up  to isomorphism) is 
easily  seen  from consideration of the commutative diagram 
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V X W -  T 
7 

showing that 1c, and 1c,’ are inverses of each other. We  will denote 
the tensor product of V and W over K by V @ K  W and a typical 
generator (v, w ) ~  by v @ W. 

Suppose furthermore that W is a (K, L)-bimodule for some 
commutative ring L. Then V @K W is a right Emodule with 
multiplication given  by (v @ 2u)Z  = v @ wl, I E L. The well- 
definedness of this  operation follows from the fact that for I E L 
the map p : (v, W) I+ v @ wZ is balanced. In  particular, if V and 
W are K-modules, V @K W is again a K-module. 

Given one or more K-modules V,  W, . . . we will  find it useful 
to form the tensor algebra determined by these modules over K. 
We proceed to briefly describe this construction for the case of 
two modules V and W. 

First consider a fixed ordered sequence ,571, S2, . . . , Sn where 
for  each i = 1,2,. . . , n  Si = V or Si = W. We define the 
n-fold tensor product to be that K-module S characterized by 
the properties: 

(i)’ There is an n-linear map r : S1 X . . . X Sn += S whose 
image  generates S additively. 

(ii)’ Given 4 : Sl x . . . x ,Sn += P any n-linear map  into a 
K-module P, there exists a K-linear map $J : S 3 P such that 

One shows the existence and uniqueness of S in a similar 
manner as earlier; we denote this n-fold tensor product by S = 

4 = r$. 

S l @ . - . @ S n .  
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We  now define the tensor algebra T of V and W over K to 
be  the direct sum of all the n-fold tensor products: 

T = K @ V @ W @ ( V @ V ) @ ( V @ W ) @ ( W @ V )  
@ ( W @ W ) @ ( V @ V @ V ) @ . . . .  

Clearly the problem of defining multiplication reduces to  the 
following situation. Let S(,) = SI@. . .@S,, S:,) = Si@. . .@S&, 
and S(,+,) = SI @ . . . @ S, @ Si @ . . . @ SA, where  each Si, 
Si is either V or W. If S = (SI,. . . ,S,)  E S1 X . . . X S,, t = 
(tl, . . . , tm) E Si x . . . x S; we let S = s1 @ . . . @ S, E S(,), 
f = tl@. . .@tm E SA. We define a  binary  operation S(,) x S(,) + 
S(,+,) as follows:  for x = CS S, y = Et f we set xy = S 5. 
We shall show this is  well-defined, leaving associativity, etc., to 
the reader. Indeed, for  each t E Si x . . . x S; there is a K-linear 
map $+ : S(,) + S(,+,) given  by x*t = CS S @ 5, and for  each 
S E S1 x . . . x S, there is a K-linear map xs : S'{,) + S(,+,) 
given  by yXd = Et S @ 5. Now suppose x = CS S = C,  ti and 
y = Ct5= Eva. Then 

In case we are dealing only with a single K-module V we shall 

In the following remarks V is a K-module, K a commutative 
denote the tensor algebra determined by V over K as K{V}. 

ring with 1. 

Remark 1.2.1 Let P be a K-algebra  and let 4 : V + P be a 
K-linear  map.  Then 4 can be uniquely  extended to a K-algebra 
map $J : K{V} +.P. 
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Proof. Using property (ii)' the  map x : V @ . . . @ V +- 
P given  by v1 @ . . . @ vn H ~ ? v $ .  . .V: is a well-defined K- 
linear map,  and extension of x by additivity to K{V}  yields the 
required K-algebra  map 11,. 

Corollary 1.2.2 Let a be an  automorphism of K, let P be a 
K-algebra,  and  let 6 : V + P be a a-semilinear  map.  Then: 

(a )  q5 can be uniquely  extended to  a a-homomorphism of K- 
algebras $ : K{V} + P. 

(b) 4 can be uniquely  extended to  a a-antihomomorphism of 
K-algebras $ : K{V} + P. 

Proof. To prove (a) we consider P as a K-algebra P* by 
defining k x = k'x, k E K, x E P. Then 6 : V -+ P* 
is a K-linear map  and so by Remark 1.2.1 may  be extended 
to a K-algebra  map $ : K{V} + P, i.e., a a-homomorphism 
$ : K{V} -+ P. To prove (b) let Po be the opposite algebra 
of P. Then by part ( a )  g5 can be  uniquely extended to a a- 
homomorphism 11, : K{V} + Po, i.e., a a-antihomomorphism 
$ : K{V} + P. 

Corollary 1.2.3 Let 6 be a derivation of K and  let g5 : V + 
K{V} be a 6-semilinear  map.  Then q5 can be uniquely  extended 
to a 6-derivation p of K{V}. 

Proof. Set T = K{V}, let A be the set of all matrices of 

the form a = ( ) , s,t E T, and  let K' be the set of 

all matrices of the form k' = ( ) , k E K. One readily 

checks that K "= K' via the map v : k t-) k' and that A is a 
K-algebra under k a = k"a. One then verifies that  the map 

x : V + A given  by v H ( ) , is a K-linear map  and so 
\ / 

may be uniquely extended to a K-algebra  map 11, : K{V} + A. 
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Since T is generated as a K-algebra by V it is clear that for  each 

t E T we have t g  = ( 7 ) , t p  E T, whence . p  is the 

desired &derivation of K {V). 
We  now approach these matters  in a less sophisticated way. 

Let X be an  arbitrary  set,  let S<X> be  the free semigroup with 
1 on the set X ,  let K be a commutative ring with 1, and  let 
K < X  > denote the free K-module with basis S < X  >. Mul- 
tiplication is  defined in the obvious way  by juxtaposition,  and 
K<X> is in fact a K-algebra. Now let P be any K-algebra  and 
q5 : X + P any  set mapping. Then 4 may be uniquely extended 
to a K-algebra  map 1c, : K < X  > -+ P by simply sending each 
basis element S = ~1x2.. . x, to x1x2 . . . x:, xi E X. For this 
reason we call K<X> the free algebra on the set X over K. 

Let X be a set,  let V be  the free K-module with basis X' in 
one-one correspondence with X. The K-linear map V -+ K<X> 
given  by x' I+ x may be  lifted to a K-algebra  map K{ V} + 
K<X>, and conversely the set  map x I+ x' may be lifted to a 
K-algebra  map K<X> + K{V}.  Thus  K{V) E K<X>, and, 
identifying X and X' ,  we may state: 

4 4  

Remark 1.2.4 If V is a free K-module with  basis X ,  then 
K { V )  = K G > .  

In view of Remark 1.2.4 the equivalent formulations of Corol- 
laries 1.2.2 and 1.2.3  for K < X  > can now be  stated without 
further proof. 

Remark 1.2.5 Let K<X> be the  free  K-algebra in X over a 
commutative  ring K and  let P be a K-algebra  with 1. Then: 

(a) If cr is  an  automorphism of K and t$ : X + P is a set 
map,  then  there is a unique a-homomorphism 1c, : K<X> -+ P 
extending t$ and also a unique a-antihomomorphism p : K<X> 
+ P extending 4. 
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(9) If 6 is a derivation of K ,  and $ : X -+ K<X> is a set 
map, then there as a unique &derivation $ of K<X> extending 
$ - 

Finally, suppose A and B are K-algebras. Then A @K B 
becomes a K-algebra under multiplication given by 

and its consequences. 

Remark 1.2.6 Let A, B,  P be K-algebras and a : A -+ P ,  
,O : B -+ P K-algebra maps such that [A", Bp] = 0. Then 
there is a unique K-algebra map y : A @K B --+ P such that 
( a @  b)? = a%@. 

Remark 1.2.7 Let A, B ,  P be K-algebras, let w : K --+ K be 
a ring homomorphism, and let a : A -+ P,  /3 : B -+ P be w-  
semilinear ring homomorphisms such that [A", BPI = 0.  Then 
there as a unique w-semilinear ring homomorphism y A@KB --+ 
P such that (a  @I b)? = a"b? 

Proof. We consider P as a K-algebra P* by defining k - p  = 
kwp ,  k E K, p E P. Then a : A -+ P*, p : B -+ P* are K-  
algebra maps and so the K-algebra map given by Remark 1.2.6 is 
the required w-semilinear ring homomorphism y : A @K B -+ P.  

Remark 1.2.8 Let A, B,  P be K-algebras, let w : K -+ K 
be a ring homomorphism, and let a : A + P,  /3 : B -+ P be 
w-semilinear ring antihomomorphisms such that [A", Bp] = 0.  
Then there is a unique w-semilinear rang antihomomorphism y : 
A 6 3 ~  B -+ P such that ( a  @I b)? = a"bp. 

Proof. Let Po denote the opposite algebra of P,  note that 
a : A -+ Po,  p : B + Po are w-semilinear ring homomorphisms 
such that a" 0 bp - b@ o a" = 0, and apply Remark 1.2.7. 

Y 
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Remark 1.2.9 Let A, B be K-algebras with 1, let p : K + K 
be a derivation, and let 6 : A -+ A,  p : B + B be p-derivations. 
Then  there is a unique p-derivation r : A 8 B + A 8 B such 
that ( a  8 b)' = a6 8 b + a 8 bp. 

Proof. We set C = A &  B,  let R be the set of all matrices 

in M&') of the form r = ( 0" ) , c ,d  E C, and let K' 

k kP be the set of all matrices of the form k' = 

K, One readily checks that K' K via the map u : k I+ 

k' and R is a K-algebra under k 0 r = k"r. The mappings 

0 a 8 1  p :  b I +  ( l:b l m b p )  1 8 b  are 

respectively K-algebra maps of A into R and B into R such that 
[A", BPI = 0. Consequently by Remark 1.2.6 there is a unique 
K-algebra map y : A 8 B -+ R such that ( a  8 b)r = Since 
A @  B is generated by A 8  1 and 18  B it is clear that for c E C, 

cr = ( 

( 0  k ) '  k c  

a b 8 1  ) a : a *  

c c' ) , whence r is the desired p-derivation of A 8 B. 

1.3 The Diamond Lemma 
Our goal in this section is the Diamond Lemma, which is the 
main tool in our proof of the Poincar6-Birkhoff-Witt thorems. 
We note that the technique of composition for Lie algebras was 
introduced by A. I. Shirshov [273] in 1962 and further extended 
to the Composition (Diamond) Lemmas for Lie algebras and 
for associative algebras by L. A. Bokut ([56] and [57]) and by 
G. Bergman [52] (see also [58]). 

Let (Y, 5 )  be a partially ordered set and let € ( Y )  be the 
set of all finite subsets of Y consisting of pairwise incomparable 
elements. For U, V E € ( Y )  we define: U 5 V if for all u E U 
there exists w E V such that u 5 v. We claim (E(Y),<) is a 

I 
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partially ordered set. Indeed, transitivity is clear. Next suppose 
U S V a n d V S U a n d l e t u E U .   I f u f C V t h e n u < v f o r s o m e  
V E V  and from V 5 U' for  some U' E U we see that U < U', 

contradicting the incomparability of the elements of U: Thus 
U = V and we have  shown < is antisymmetric. 

Lemma 1-3.1 If (Y, <) satisfies  the  DCC  then (E(Y), <) also 
satisfies  the DCC. 

Proof. Suppose U0 > U1 > . . . U, > . . . is an infinite de- 
scending chain in E(Y). Without loss of generality we may as- 
sume for  each n > 1 there is an element v, E U, such that 
V, < w,-1 for  some w,-l E Un-1 (otherwise there would  ex- 
ist m such that U, 3 U,+l 2 . . . is a infinite sequence of 
proper inclusions, in contradiction to  the finiteness of U,). If 
v k  = for  some IC < n then we obtain  the contradiction 
v k  = < w,-l 5 uk for  some uk E U,. Therefore the vks 
are  distinct  and so in particular U,"==, Un is infinite. 

A path is a sequence p = (uo, u1,. . . ,U,, . . .), U, E U, 
(which can be finite or infinite) such that U, 2 un+1 for each n. 
Given x E U, we say that p passes through x if Un = x. For any 
finite sequence 

P(uio,  uil,. . . , Uik) is that subset of U,"=1 U, formed  from all 
paths passing simultaneously through  uio, uil, . . . , uik. Since  ev- 
ery element of U,"==, U, lies in some path, by the finiteness of U0 
we may  choose uo E U0 such that  P(u0) is infinite. Suppose some 
P(uio, uil,. . . , uik) (as defined  above)  is infinite. Then  there ex- 
ists x E P(uio,  uil,. . . , uik) such that x $2 Uj, since Uj 
is finite. Thus x E U,, m > ik and so x 5 uik. It follows 
that uik fC U, and accordingly there exists U, E U,, U, < Uik, 

such that  P(uio,  uil, . . . , uik, U,) is infinite. Repeated applicai- 
tion of the above process then produces an infinite sequence 
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uio > uil > . . . > uik > . . . in contradiction to (Y, 5 )  satisfying 
the DCC. 

Let @ be a commutative ring with 1 and  let X be a set. 
Denote by Y = S<X> the free semigroup (with 1) generated 
by X ,  and  let @<X> be  the free @-algebra (with 1) generated 
by X .  Consider a subset A C Y x @ < X  > of the Cartesian 
product of Y and @<X>. For any 0 = (Wu, fa) E A, A, B E Y, 
denote by RA,,B the endomorphism of the @-module @ < X > 
given  by the rule: 

RA~B(AW,,B) = AfuB and 
R A u B ( U )  = U for U # AWuB, U E S<X> . 

We call this  set A a reduction system and the @-endomor- 
phisms : @ < X  >+ @ < X  > are called reductions. We 
say that  an element f E @ < X  > is irreducible if f does not 
contain monomials of the form AWuB where A, B E Y and 
CT = (Wu, fa). Clearly the subset @ < X  >irr of all irreducible 
elements of @<X> is a @-submodule of the module @<X>. 

Lemma 1.3.2 Let L = S<X> n@<X>irr. Then L is a @-basis 
of the  module @<X>irr. 

Proof. Clearly, the elements of the  set L are linearly in- 
dependent over @. Suppose that @ < X >irr# &L @l. Let 
h E @<X>irr \ &=L @Z. Further  let h = xi kiui, where ki E @, 
ui E S<X>. Clearly ui 6 L for some i. Hence there exists a 
reduction R A ~ B  such that R A ~ B ( U ~ )  # ui. Since RAuB(Uj) = U j  

for all j # i, RAuB(h) # h in contradiction with h E @<X>irr. 
Thus @<X>irr= Cl,=-L @l. 

Suppose that for f E @<X> there exists a finite' sequence 
RI, . . . , R, of reductions such that R , & - l .  . . Rl(f) E @<X>Or. 
The element R , R , - 1 .  . . R1 (f) is said to  be a normal form of f 
(in general an element g E @<X> may  have no normal form, 
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several normal forms, or a unique normal form). Denote by 
@<X>red the subset of all elements f of @<X> with a unique 
normal form N (  f )  (possibly @<X>Ted= 0). 

A collection (a, r, A, B,  C) is said to  be  an overlap ambiguity 
ifA,B,C E Y, o,r E A, and W, = AB,  W, = BC. We 
shall say that  the overlap ambiguity ( o , , ~ ,  A, B, C) is  resolvable 
if there exist compositions of reductions R and R’ such that 

A collection (a, r, A, B, C) is said to be  an inclusion ambi- 
guity if A, B, C E Y, a,r E A, and W, = B, W, = ABC. 
We shall say that  the inclusion ambiguity (o,r,A, B,C) is re- 
solvable if there exist compositions of reductions R and R’ such 
that R(RA,~(ABC)) = R’(R,(ABC)). 

A partial ordering on the  set Y = S < X > is said to 
be a semigroup ordering if B < B’ with B,B’ E Y implies 
ABC < AB’C for all A, C E Y. A partial ordering 5 on the 
set S<X > is said to be compatible with A if for any o E A 
the element f, is a linear combination of monomials V with 
v < W,. 

Denote by I = I(A) the two-sided ideal of @<X> generated 
by the elements W, - f,, o E A. Clearly the @-module I is 
generated by the elements A(W,,- &)B, where A,  B E Y, o E A. 

With reference to ( Y ,  5 )  above and to Lemma 1.3.1,. we 
denote by O(h) E E(Y) the set of all maximal monomials in 
h E @<X>. 

R(R,c(ABC)) = R’(RA~(ABC)). 

Lemma 1.3.3 Under  the  above notations suppose (S<X>, 5)  
satisfies  the DCC, where 5 is a semigroup partial order  compat- 
ible with  the  reduction system A. Then: 

(a) Every  element f- E @ < X > has a normal form (not 
necessarily  unique). 

(b) @<X>?& is a @-submodule of @<X> and the  mapping 
N : +<x>,&-) @<X>irr is a @-module  homomorphism. 
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(c) For any sequence R of reductions R ( f )  - f E I ( A )  for 
all f E @<X>. 

Proof. (a) Suppose the contrary. Then the set H of 
all elements of @,<X> which can not be reduced to a normal 
form is not empty. By Lemma 1.3.1 it follows that in the set 
{O(g) I g E H }  there exist minimal elements. Choose an ele- 
ment h E H such that O( h) is minimal in { O(g) I g E H } ,  and 
the number lO(h)l is minimal possible.  Let h = C,  kuu, where 
k,  E @, U E S<X>. We set p = kuu, q = h - p .  Clearly 
0 (q) < 0 ( p )  = O( h). By our choice of the element h, there 
exists a sequence of reductions R such, that R(q) E @<X>irr. 
Since the semigroup partial ordering 5 is compatible with A and 
monomials in O(p) are pairwise incomparable, for any reduction 
R A ~ B  we have that either RA,,B(P) = p ,  or O ( R A ~ B ( P ) )  < O(p).  
Hence either R(p) = p ,  or O(R(p))  < O(p).  By the choice of h, 
in  the last case there exists a sequence of reductions R’ such that 

Hence we obtain 
R’R(p) E @<X>irr .  Since R(q) E @<X>+r, R’R(q) = R(q). 

R’R(h) = R’R(p) + R’R(q) = R’R(p) + R(q) E Q<X>sr 

By the choice of the element h this case is impossible. Therefore, 
R(p) = p .  As p 61 @<X>irr, there exists a reduction RAuB such 
that R A ~ B ( P )  # p .  By the above this is impossible and so we 
have a contradiction. Thus any element  of @ < X  > may be 
reduced to a normal form. 

(b) Let f , g  E @<X >red, d ,  P E @ and R any sequence 
of reductions. Since the element R ( f )  has a normal form and 
this normal form is also a normal form of the element f,  there 
exists a sequence of reductions R’ such that R’R(f) = N ( f ) .  
Analogously, R”R’R(g) = N ( g )  for some  sequence of reductions 
R”. Hence we have 
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Therefore, aN( f )  +DN(g) is a normal form of elements af + @g 
and R(af + @g) .  Since R is an  arbitrary sequence of reductions, 
the element Q! f + p g  has a unique normal form. Thus a f  +@g E 

(c) Since W,, - fu E I for all o E A, R A ~ B  ( g )  - g E I for all 
A, B E S<X>, g E @<X>. So R(g) - g E I for any  sequence 
of reductions R. 

@<X>ted and N ( a f  + @ g )  = aN(f) + PN(g)- 

Theorem 1.3.4 (Diamond Lemma) (see [52] and [57]). Let 
A be a  reduction  system  for  the  free  associative @-algebra @<X> 
and 5 be a  semigroup  partial  ordering o n   S < X  > compatible 
with A and  satisfying  the  descending  chain  condition.  Then  the 
following  conditions are equivalent: 

(U) All ambiguities of A are resolvable; 
(b)  @<X>= @<X>red,  i.e. any  element of @<X> has  a 

unique  normal form; 
(C) @<X>= @<X>irr @ I ( A ) .  
If these  conditions  hold,  then @<X>/I(A)  may be identified 

with  the  @-module @<X >irr, which  is a @-algebra under  the 
multiplication f x g = N (  f g ) .  

Proof. Assume that (c) holds. Then @<X>= @<X>irr @I ,  
where I = I ( A ) .  Let f E @<X>. By Lemma 1.3.3, the element 
f has a normal form. Suppose that  it has two  different normal 
forms g ,  g' E @ < X >irr.  Since g - f E I and g' - f E I ,  
g - g' E @<X>irr nI = 0, and we have a contradiction. Thus 
the element f has the unique normal form, @<X>= @<X>red 

and (c) implies (b). 
Suppose that (b) holds. Then N is a projection of the @- 

module @<X> onto @<X>irr. Since N(g)  - g E I ,  ker N C I .  
As elements of @<X>= @<X>red have a unique normal form, 

N(A(W,, - f,,)B) = N(AWuB) - N(Af,,B) = 0 

for all A, B E S<X>, o E A. Furthermore, the @-submodule I is 
generated by the elements of the form A(Wb - fu)B.  Therefore, 
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ker N 2 I .  Hence  ker N = I and @<X>=  @<X>,,, $I. Thus, 
conditions (b) and (c) are equivalent. 

Obviously, (b) implies (a). We  show that (a) implies (b) . 
By Lemma 1.3.3, @<X>,ed is a @-submodule and the normal 
form mapping N : @<X>,ed+  @<X>irr is a homomorphism of 
@-modules. It is enough to prove that S<X>c @<X>red. 

Assume that S<X> \@<X>red# 8. Let W be a minimal 
element of the set S<X> \@<X>,.ed. Furthermore let RU,vt 
and  rut,^ be two  different reductions such that Rv,vt(w) # 
Ru~,v(w). Clearly, UW,V' = W = U'W,V. By the choice of the 
element W, Rvdvt(W) E @<X>red and &p,v(W) E @<X>red. It 
is  enough to prove that N(R~,vt(w)) = N(Rut,v(w)). Without 
loss of- generality one can assume that U' = UA for  some A E 
S<X>. Consider three possible  cases. 

Case 1. We have an overlap ambiguity W = UABCV, W, = 
AB,  W, = BC, V' = CV, U' = UA. By (a) this ambiguity is 
resolvable,  i.e. the elements f,C and Af, can be reduced to one 
and  the same element f . Therefore the elements RU,vt (W) = 
Uf,CV, Ru~,v(w) = UAf,V can be reduced to  the element 
g = UfV.  

Case 2. We have an inclusion ambiguity W = UABCV', 
W, = ABC,  W, = B, V = CV', U' = UA. By analogy with 
the first case,  one can show that  the elements RU,vt(w) = Uf,V 
and RUt,V(w) = UAf,CV can  be reduced to one and  the same 
element. 

Case 3. The subwords W, and W .  are disjoint in W (i.e. 
W = UW,SW,V, U' = UW,B, V' = SW,V). Then 

For any v = 2122. .  . xk E S<X>, where 21, 22,. . . , xk E X ,  we 
set l(v) = k .  Without loss of generality we may assume that 

m n 
f, = c aipi and f, = c Pjqj ,  where 

k l  j= l  
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We claim that 

Since U fJ3W.V = Cgl aiUpiBW,V, it is enough to prove that 

R U P , B T V R U P ~ - ~ B ~ V . .  . R U ~ ~ B , V ( U ~ ~ B W , V )  = UpiB f,V 

for all 1 5 i 5 m. Note that 

So it is  enough to prove that 

we have that Z(W,) < Z(qj ) .  That is to say q j  = OW, for some 
1 # D E S < X >. Since the  partial ordering 5 of S < X > 
is compatible with the reduction system A, OW, = q j  < W,. 
As this ordering is a semigroup one, D"+lW, < P W ,  for all 
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n 2 0 which  is a contradiction to  the descending chain condition. 
Therefore 

Analogously R(UWuB fTV) = UfuB  fTV for some  sequence 
of reductions R. That is to say elements Rvuv! ( W )  and RUW(W) 
are reduced to one and  the  same element. 

Therefore in all cases it follows  from 

that N(RU,,VI(W)) = N(RutTv(w)). Thus the element W has a 
unique normal form and we have a contradiction. 

We close this section with the famous Amitsur-Levitski The- 
orem [g]. The proof presented here is  very simple and is due to 
S. Rosset [254]. Let X be an infinite set, 2 the ring of integers, 
Q the field of rational numbers and 2 < X  > the free algebra 
over 2 generated by X .  Further  let n > 0 be  a  natural num- 
ber, S, the symmetric group of order n and E(O) the sign of the 
permutation o E S,. We set 

where 2 1 ,  x2) . . . ) x, E X are  distinct variables and we will  call 
St, the standard polynomial of degree n. 

Theorem 1.3.5 (Amitsur-Levitski) Let R be a commutative 
ring, n > 0 a natural  number and Mn(R) 'the n X n-matrix ring 
over R. Then for all AI, .  . . ) Aan E M,(R) 

(i.e., Stzn is a polynomial identity of M,(R)). 
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We start with the following  easy remarks (here tr ( A )  is the 
trace of the  matrix A E M,(R)) 

Remark 1.3.6 Let R be a commutative algebra  over Q and A E 
M,(K). Suppose  that tr (Ai)  = 0 for all i > 0. Then A" = 0. 

Proof. Adjoining (if it is  necessary) an identity element 
to R, we can assume that R has an identity. Consider the 
polynomial ring K = Q[zij I 1 5 i, j 5 n] and  let U = 
( ~ i j ) & ~  E Mn(K). The Newton formula on symmetric polyno- 
mials shows that  the coefficients of the characteristic polynomial 
xv(t) = tn + u1tn-'+ . . .+U,, of U are polynomials with  rational 
coefficients (and with zero constant terms) in  the traces tr(Ui), 
i = 1,2, .  . . , n. Clearly there exists a Q-algebra map 4 : K ++ R 
such that for its canonical extension @ : Mn(K) + M, (R) we 
have @(U) = A. Then 4(ui) = 0 for all i = 1 ,2 , .  . . ,n and 

A" = @(U") + $(~l)ia(U"") + . . . + 4(un) = i a ( x ~ ( U ) )  = 0. 

Remark 1.3.7 If r is an  even  natural  number,  then 

tr(St,(Al,   A2,.  . . , A , ) )  = 0 

for all A l ,   A 2 , .  . . , A ,  E Mn(R). 

Proof. It is well-known that t r (AB)  = t r (BA) .  Let T = 
(1,2, . . . , r )  E S, be a cycle and  let A, be the  alternating sub- 
group of Sr. Clearly S, = A, U A,r and € ( U T )  = -1 for all 
U E A,. Further we have 
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The proof is complete. 
Let K = Q[xijk I 1 5 i, j 5 n, 1 5 IC 5 2n] be  the polyno- 

mial ring in xijk over Q and B k  = (Xi jk)&, l  E Mn(K). Consider 
the free algebra F = K<Y> where Y = { y l ,  . . . , ~ 2 ~ ) .  Letting 
I denote the ideal of F generated by all elements of the form 
YiYj + YjYi ,  we set 

D = F / I ,   e i = y i + I ,  i=1,2  ,..., 2n. 

The reduction system for F consisting of all pairs (YjYi ,  -y iYj) ,  
i 5 j, is clearly compatible with the usual ordering of mono- 
mials (i.e., first by length and  then lexicographic). It then fol- 
lows easily  from the Diamond Lemma that 1 and all elements 
eilei, . . .e+., where k 5 n and il < 22 < . . . < ik, form a basis of 
the K-module D. Clearly ei,ei, . . . eik E Z(D) = C if IC is  even 
where Z(D) is the center of D. Noting that M,(K) E Mn(C) C_ 
M,(D), we set B = Blel + &e2 + . . . + B2,ezn E Mn(D). Ob- 
viously 

= C ~ t k ( ~ i ~ ,  ~ i , ,  . . . , ~ i ~ ) e i ,  ei, . . . eik . (1.1) 
i l < i z <  <G 

In  particular, Bk = 0 for IC > 2n and 

B ~ "  = St2,(~1, ~ 2 , .  . . , ~ 2 , ) e l e a . .  . e2, 

For any natural number r > 0 we have B 2 r  = (B2)' E M,(C). 
Now from (1.1) and Remark 1.3.7 it follows that 

tr  ( ( B ~ ) ~ )  = o 
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and so = (B2)" = 0 by Remark 1.3.6. Therefore 

Consider the subring L = 2 [ x i j k  I 1 5 i, j 5 n, 1 5 IC 5 27x1 C 
K. Clearly Bi E Mn(L) E Mn(K). Since there exists a ring 
homomorphism 4 : L + R such that for its canonical extension 
<P : Mn(L) -+ M, ( R )  we have Q(&) = Ai for all 1 5 i 5 271, 
we conclude that StZn(A1, AZ, . . . , A2,J = 0, and  the proof of 
Amitsur-Levitski Theorem is complete. 

1.4 Coproducts 
The notion of a coproduct is fundamental to  this book since 
(as we shall see in  Chapter 6) it forms the "home" in which 
"generalized identities''  live. 

Let AI and A2 be algebras with 1 over a commutative ring 
K. Then a K-algebra A with 1 is a coproduct of AI and A2 over 
K if: 

(i) There exist K-algebra homomorphisms Q! : A1 + A and 
p : A2 + A such that AY U At generates A as a K-algebra. 

(ii) For any K-algebra P with 1 and homomorphisms B : 
A1 + P and T : A2 -+ P there exists a homomorphism $ : A + 
P such that a$ = B and P$ = T, i.e., the diagram 

a P 
AI- A- A2 

can  always  be completed. 
It is immediate from (i) and (ii) that $ is uniquely deter- 

mined by B and r. It is' also easy to see that if A and A' are 
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any two coproducts of A1 and A2 over K then A and A' are iso- 
morphic via isomorphisms 4 and 4' as indicated in the following 
self-explanatory diagram: 

cr P AI- A-  A2 

A' 

Indeed, for the K-algebra maps 4 and 4' one simply checks 
that $4' (resp. 4'4) acts as the identity  map on the generators 

We next show the existence of the coproduct of A1 and A2 
over K by the following natural (if somewhat cumbersome)  con- 
struction. The idea is to first "overshoot the mark" by finding 
an algebra generated by A1 and A2 (thus guaranteeing (i)) and 
then  to factor out  an  appropriate ideal of this algebra (thus 
guaranteeing (ii)) . Let 

AY U A[ of A (resp. A$ U AC' of AI) .  

be the tensor algebra of A1 and A2 (as defined in section 1.2), 
and  let I be  the ideal of T generated by all elements of the form 

where al,  bl E A I ,  a2, b2 E A2. We claim that A = T/I is a 
coproduct of A1 and A2 over K. Let QO and P o  be  the respective 
inclusion maps QO : A1 + T ,  PO : A2 -+ T ,  and,  letting v 
denote the  natural homomorphism of T onto T/I,  we define crl : 
AI -+ A by a1 = aov and P 1  : A2 "+ A by P 1  = &v. Property 
(i) is then clear. Now consider homomorphisms CT : Al + P,  
r : A2 -+ P ,  P a K-algebra. We first complete the diagram 
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Indeed, it suffices to define 40 on each direct summand TI @ 
T2 @ . . . @ T' of T ,  where  each is either A1 or A2, and  then 
extend by linearity. The  map x : TI @T2@. . .@Tm -+ P given  by 
t l @ t 2 @ . . , @ t , ~ t ~ t ~ . . . t ~  (wherep=aorp=Tdepending 
on whether ti E A1 or ti E Az) is already K-linear,  and from 
the  nature of multiplication in T it is  easy to see that $0 is a 
K-algebra homomorphism. Furthermore, by applying 40 to  the 
generators (1.2) it is  clear that $0 maps I to 0. As a result $0 

may  by lifted to a  K-algebra homomorphism 4 : T/I + P by 
defining (94 = t40, -E = t + I ,  t E T. The  commutativity 
of the above diagram then yields the commutativity of 

which  shows that property (ii) holds. 
The existence and uniqueness of a coproduct of AI and A2 

having been established, we  now refer to the coproduct of A1 
and A2 and  denote it by A1 uK AS. 

In general A;" n A[ may properly contain K. For instance, 
the reader may  check that Q u2 Q provides  such an example. 
Furthermore the maps ar and p need not be injections. For 
example, Q u2 2 2  = 0. To alleviate these unwanted occurrences 
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we make the following 

Remark 1.4.1 Let A1 and A2 be K-algebras  with 1 such  that 

K is a K- direct  summand of both A1 and A2. (1.3) 

Then: 
(a) Ay n A! = K ;  
(b)  Q and p are injections. 

Proof. Consider the commutative diagram 
Q P 

A1- A1 LI A- A2 

where a(a1) = a1 8 1 and ~ ( ~ 3 2 )  = 1 8 U2 for all a1 E AI, a2 E 
A2. If ay = U! then al 8 1 = 1 63 a2. Let T : A1 -+ K be 
the projection of A1 onto the direct summand K .  Clearly the 
mapping AI x A2 + A2 given  by the rule (bl , b2) I+ ~ ( b l )  b2 is 
balanced. Hence it may be lifted to a K-module homomorphism 
$ : Al 63 A2 + A2. Now  we have 

Analogously  one can show a1 E K and so (a) is  proved. If 
a2 E ker P then 1 63 a2 = 0 and so a2 = $(l 8 a2) = 0. Thus p 
(and similarly a)  is an injection, whence (b )  has been  proved. 

In  particular (1.3) is satisfied in case K is a field (this  situ& 
tion will occur when we study prime rings) or more generally 
in case K is commutative von Neumann regular selfinjective 
(this  situation will occur when westudy semiprime rings). With 
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this motivation in mind we will henceforth assume that all K- 
algebras satisfy condition (1.3). 

In view of Remark 1.4.1 we are now entitled to suppress a 
and ,B and to assume that A1 and A2 are in fact subalgebras of 
Al U A2, with Al n A2 = K. 

Under certain conditions it is possible to simultaneously lift 
homomorphisms, anti-homomorphisms, and derivations of A1 
and A2 to A1  A2 even  if these mappings are not K-linear. 
These considerations will be important ones in the sequel, and 
we proceed to indicate how they may be accomplished. 

Remark 1.4.2 Let Al,   A2,  P be K-algebras, let W : K + K be 
a ring homomorphism, and  let (T : A1 -+ P, r : A2 + P be w- 
semilinear  ring  homomorphisms. Then there is an  w-semilinear 
ring homomorphism (b : A1  A2 + P simultaneously  extending 
(T and r. 

Proof. We consider P as a  K-algebra P* by  defining k - p  = 
kWp,  k E K ,p  E P. Then (T : A1 + P*, r : A2 + P* are K- 
algebra maps and so by (ii) may be extended to K-linear map 
g5 : A1 U A2 + P*, i.e., an w-semilinear ring homomorphism 
(b: AlJJA2 + P .  

Remark 1.4.3 Let Al,Az, P be K-algebras,  let W : K -+ K 
be a ring homomorphism, and let (T : AI + P, r : A2 + P 
be w-semilinear  ring  anti-homomorphisms. Then there  is  an w- 
semilinear  ring  anti-homomorphism g5 : AI U A2 -+ P simulta- 
neously  extending (T and r. 

Proof. Let P" denote the opposite algebra of P,  note that 
(T : A1 + P", r : A2 -+ P" are w-semilinear ring homomor- 
phisms, and apply Remark 1.4.2. 

Remark 1.4.4 Let Al and A2 be K-algebras, and let p : K -+ 
K, 6 : A1 + AI, p : A2 + A2 be derivations (not necessarily 
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K-linear)  such  that S and p agree with p on K. Then S and p 
can be simultaneously  extended to  a  derivation I I ,  : A1  A2 + 
A1 LT A2. 

Proof. We set A = A1  A2, let R be the  set of all matrices 

in M2 (A) of the form r = ( i  :), a,b E A, and  let K’be  

the  set of all ,matrices of the form k‘ = ( i  kkp), k , k ~ K .  

One readily checks that K‘ is isomorphic to K via the mapping 
U : k I+ k’ and that R is a K-algebra under k - r = k”r. The 

mappings (T : a1 H ( 2 z! ) and r : a2 I+ ( 2 ) are 

respectively K-algebra  maps of A1 into R and of A2 into R. 
Consequently (T and r may be simultaneously extended to a 
unique K-algebra  map t$ : A + R. Since A is generated by AI 

and A2 it is clear that, for U E A, U# = ( ), whence $J 

is the desired derivation of Al LT A2. 

As an application of the Diamond Lemma we prove the useful 

Lemma 1.4.5 Let A1 and A2 be algebras with 1 over K with 
respective K-bases {1}UB1 and { l }UB2.  Then {1}UM is  a K -  
basis of A1  A2, where M is  the  set of all alternatingmonomials 
from B1 and B2. 

Proof. We outline the proof,  leaving  some details for the 
reader to fill in. Writing B1 = {ai} we have  for  each i, k 
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for  each i, k ,  m, T .  A similar set of equations  results from con- 
sidering & = { b j }  and writing 

Pjll+ C Pjlqbq 
Q 

Letting X = {xi} and Y = { y j }  be  sets of indeterminates cor- 
responding respectively to B1 and &, we form the free algebra 
K<X U Y> and  let 5 be the  partial ordering on the free 
semigroup S < X U Y > determined by the length of a mono- 
mial. Clearly < is a semigroup partial ordering which satisfies 
the descending chain condition. The reduction system A of all 
pairs 

is  obviously compatible with 5. It is  easy to see that  the only 
types of ambiguities which  occur are overlapping ones of the 
form 

(oik, ~ k m ,  s i , , z k ,  z m )  or (T.1, ~ l n ,  y j ,  ~3 ~ n )  (1.6) 
To resolve the first of these (the second  is similarly resolved) we 
have  only to note that 

in view of (1.5). By Lemma 1.3.2, {l} U N is a K-basis of 
K<XUY>irr, where N is the  set of all alternating monomials of 
X and Y .  Therefore by Theorem 1.3.4(c) the cosets determined 
by (l} U N form a K-basis of K < X  U Y > /I(A). The K- 
module mapping of A1 into K<X U Y> / I (A)  given by 1~~ I-+ 

1 + I ( A ) ,  ai I-+ xi + I ( A )  is in fact a K-algebra map because of 
(1.4) and (1.6). Similarly 1~~ I+ l+I(A), bj H yj+I(A) yields 
a K-algebra  map of A2 into K<XuY>, and these two maps can 
be extended simultaneously to a K-algebra  map g5 : AI A2 + 
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K<X U Y>/I(A). On the other  hand the K-algebra  map from 
K<X U Y> to A1 U A2 via 1 I+ 1, xi H ai, yj H bj sends 
I ( A )  to 0 (because of (1.6)) and  thus induces a K-algebra  map 
$ : K<X U Y>/I(A)  + A1 UA2. Clearly and $ are inverses 
of each other  and  thus A1 U A2 g K < X U Y > /I(A), whence 
{l} W M is a K-basis of A1 U A2. 

In continuing our analysis of A = A1 U[ A2 we assume for 
the remainder of this section that K is a field. This assures the 
existence of respective K-bases { 1) U B1 and {l} UBZ for A1 and 
A2, and hence the basis {l} U M for A as given  by  Lemma 1.4.5. 
The  treatment we are embarking upon stems from a series of 
papers of P.M. Cohn  ([94]  ,[95],[96]) and we will  freely  borrow 
some terminology and  portions of his account. We  will make 
use of these matters in a later  chapter, but in any case we feel 
this development  is of independent interest. 

A has a filtration given  by H-l = 0, H o  = K, H 1  = Al + 
A2, H" = C AilAi, . . . Ai,, n = 1,2, . . .. For any subscript 
i = 1 ,2  let us agree to  the convention that it = 2 if i = 1 
and it = 1 if i = 2, and also to  the convention that Ai = A1 
if i is odd  and Ai = A2 if i is  even. We  will express the fact 
that  an element a of H" actually lies in H"-l by saying that 
a 0 (rnodH"-l) or simply a 0 if the context is clear. For 
i = 1,2 we set H; = AiAi+l. . . Ai+n-l, where j = it if n is 
even and j = i if n is odd. It is  easy to see that H; 2 
H;Hyk = H;+", and H" = H; + HTj,. We denote the factor 
spaces Hn/Hn-l and HyHn-l  by H" and respectively. With 
the aid of Lemma  1.4.5 we are able to show the following 

Lemma 1.4.6 (a) H" = H; @ HFj, (i.e.,  the  decomposition of 
H" = H; + H;j, is unique  modulo Hn-l) .  

" 

(b)  H $ @  Hyk 2 HZ+" via  the  mapping G @ 8 H W. 
"- 

Proof. If {l} U M is the basis of A given  by  Lemma 1.4.5, 
we let M" be the subset of all elements of M of length n, and for 
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i = 1 , 2  we let M: be the subset of all elements of M" whose left 
hand factors lie in Bi. Clearly {l} U M" is a K-basis of H" and 
M? is a K-basis of e. It follows that H; n = H"-l and 
so (a) is  proved.  To  prove (b) we first note that  the mapping 
~ : H ~ @ H y k - , H ~ + n g i v e n b y . i i ~ ~ ~ ' i i i i , u E H ; , v E H 7 j f ,  
is a well-defined surjective K-linear map.  Then the elements 
{G@& I xp E M:, gq E M;} are a K-basis of H: whose 
images m under 4 are precisely the elements of M;+m. It 
follows that 4 is injective and  the proof of (b) is complete. 

- 

" 

" 

The height la1 of an element a E A is defined as follows: 
la1 = n if a # 0, a E H", a H"-l and la1 = -00 if a = 0. 
The elements of H$ which are of height n (i.e., which do not 
lie in Hn-l )  are called (i,j)-pure. Elements of height n 2 1 
which are  not (i, j)-pure for  some i, j are called 0-pure. We 
shall frequently use the suggestive notation aij for an element of 
H;. 

Remark 1.4.7 Let W E H;: U E H Z ,  m 2 n, and U $ 
0 (mod  H"-'). Then there exzst elements U = u1;u2, . . . , uq E 
HZ which  are  independent  modulo H"-l and elements V I , .  . . , vq 
E HEJ:" such  that zu C:,, upvp (modH"-l). 

Proof. Extend U to a basis of H$  (modH"-l) and use the 
fact that H$ = H; H&Tn. 

Remark 1.4.8 Let elements u1, . . . , uq E H; be independent 
(modH""), let vl ,  . . . , vq E HFk and suppose upvp 5 0 
(modH"+"-l). Then up = 0 (modHm-'), p = 1,2,. . . , q. 

Proof. In @ the given condition implies that 
C:=, up@% = 0. Since {up} is an independent subset it follows 
that each = 0, i.e., up 0. 

The following lemma shows there is unique factorization mod- 

%? 
- 

ulo appropriate subspaces. 
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Lemma 1.4.9 Suppose ab = cd (modHn+*-l), m = la[ = [dl, 
n = Ibl = I C \ ,  m 2 n, a (i,j)-pure, b (j', k)-pure, c (i, I)-pure, d 
(l ' ,  k)-pure. Then a ce (modH"-l), where e is (Z',j)-pure of 
heightm-n ( o r e = X E  K i f m m n ) .  

Proof. By Remark 1.4.7 a ce + C $ e p  (modH"-l), c, 
independent (modH"-l), e,  ep E HE-". Thus ab ceb + 

C $e,b  cd (m~dH" '+~- l ) ,  i.e., 

c(eb - d) + C G(epb) o ( m o d ~ ~ + " - l ) .  

By Remark 1.4.8 eb d (mod&) (hence e is (?,$-pure of 
height m-n) and epb = 0 (modHlfk). By Remark 1.4.8 again, we 
conclude that ep 0 (modHm-"-l ). Thus a ce (modHm-l) 
and  the proof  is complete. 

The height of an element has the expected properties in view 
of 

Lemma 1.4.10 lab1 I lal+lbl, with  strict  inequality if and only 
if for some i,  j ,  k a is (i, j)-pure and b is ( j ,  k)-pure. 

Proof. Let n = la1 and m = Ib(. Without loss of generality 
we may assume n, m 2 1.  The inequality lab1 5 la1 + Ibl is 
obvious. Suppose lab1 < la1 + \dl. We write a = aij + aity E 

0 (modH"-') then by.Remark 1.4.8 Uijbkl  0 (modHm+"-l) 
unless j = k.  The conclusion follo*s from this observation. 

H", b = bkl + bpp E Hm. If aij $ O (mOdH"-') and bkl $ 

Corollary 1.4.11 If each d i m ~ ( A i )  > 1 then A = Al u K A z  is 
a prime  ring. 
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In Corollary 1.4.11, if at least one of the d i m ~ ( A i )  > 2, 
then Lichtman [l891 has shown that A is in fact primitive. If 
each d i m ~ ( A i )  = 2 it has been pointed out by Bergman [49] 
that A is not primitive. We close this section with the following 
useful remark whose  proof is just a formal usage of the universal 
properties of coproducts and tensor products  and we leave the 
straightforward details for the reader. 

Remark 1.4.12 Let A and B be algebras over a  field K and 
F a  field  extension of K .  Then F-algebras (AUK B )  @ K  F and 
( A  @K F )  U F ( B  @K F )  are canonically  isomorphic. 

1.5 Introduction to First Order Logic 
Operations  and  predicates. Given a set S and a natural 

number n > 0, a mapping X : S x S x . . . x S + S is  called 
an n-ary operation on S and  the number n is  called the arity 
of the operation X. A constant mapping y : S + S is said to 
be a 0-ary operation. In what follows we will identify a 0-ary 
operation with its image  (i.e., y with ?(S)). Further,  let 22 be 

the two  element  field. A mapping cr : S x S x . . . x S -+ 22 is 
said to be an n-ary predicate on S. 

Examples. (1) Let R be a ring. Then 0 is a nullary opera- 
tion, - is a unary  operation  and +, . are binary operations. Fur- 
ther,  the mapping P : R x  R’+ 2 2 ,  given  by the rule P(., s)  = l 
if and only if r = S, is a predicate. In what follows we will de- 
note P(., y) by llx = yll. Now let 8 # T 2 R be a subset of R. 
Then  the mapping PT : R + 22 defined  by PT(r) = 1 if and 
only if r E T ,  is a predicate also. We will denote it by 112 E 2’11. 

(2) Let 2 2  be the two  element  field.  Define three  binary 
operations A, V and 3 and a unary  operation 1 on 22 as follows 

x V y = x + + + ~ ~ y ,   ~ A y = x y ,   x ~ y = l + a : + x y ,   ~ x = l + x  

n 

n 
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for all x, y E 22. Note that 

x v y  = 1 if and only ifeither x = 1 or y = 1, 
x A y  = 1 ifandonlyif x = l  and y = l ,  
x + y  = 1 if and only if either x=O or y =  1, 

lx = 1 if and only if x = 0. 

Obviously x + y = lx V y for all x, y E 22. 
R-rings. Let a be  an ordinal number. We set 

W(a)  = (y I y is ordinal  and y < a}. 

Given a pair R = (7; a) (where r : W(a)  + N and N is the 
set of all natural numbers), an O-ring R is a ring R with a 
set i;ZE = {F,  I 7 E W(a)}  of operations such that  the  arity 
of F, is equals to ~ ( y )  for all y E W(a).  It is assumed that 

Example. A ring R together  with the  set of all its deriva- 
tions, automorphisms and  antiautomorphism is  for  us the most 

Given  two  O-rings R and S, the mapping f : R + S is 
said to be a homomorphism of R-rings if F,(T~, . . . , rT(,))f = 
F, (rf , . . . , rT f ,)) for all rl , . . . , rT(,) E R and y E W (  a). A 
subset I C_ k of the R-ring R is said to be R an ideal of an 
R-ring if F'.(ri + il, . . . , rT(,) + &(,l) - FT(rl, . . . , rT(,)) E I for 
all T I , .  . . , rr(,) E R, il, . . . , iT(,) E I and y E W(@).  It is easy 
to see that  an ideal of the R-ring R is an ideal of the ring R. 
Clearly the kernel ker(f) of a homomorphism f of R-rings R and 
S is an ideal of the %ring R. Similarly to  that of an ideal and a 
homomorphism  one  may easily formulate the notions of a factor 
R-ring, variety of O-rings and a free R-ring of a given variety 
generated by a given set X .  Being only interested in R-rings in 
the case  when the  set RF = R d  U Re U R, U (0, -, +, .) consists 
of certain  sets (possibly empty) of derivations (Rd), endomor- 
phisms  (Re) and antiendomorphisms (R,) (such  R-rings form a 

(0, +, '} E RF. 

* important example of an R-ring. . 
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variety determined by identities of the type ( ~ y ) ~  = x d y  + x y d ,  
d E R d ,  etc.), we proceed to describe a free R-ring in this case. 

Let S be the free semigroup (with 1) generated by the set 
RdUReURa and let 2 be the ring of integers. We set Y = X x S, 
which we may write suggestively as X s ,  and K = 2<Y>. De- 
fine a mapping a : X + K ,  setting xu = (x, 1) = x1 E Y c K .  
Further, let W E R d  U Re U 52,. We set ( x ' ) ~  = xsw for all x E X ,  
S E S. Since W is either  a derivation, endomorphism, or antien- 
domorphism, there exists a unique extension of the mapping W 

up  to, respectively, a derivation, endomorphism or antiendomor- 
phism of K.  Now one  may  easily check that ( X ;  a; K )  is the free 
R-ring generated by the set X .  

Terms. Let X = {q ,x2 , .  . . ,x,, . . .} be an infinite set  and 
To the free  R-ring generated by X .  Then any element t E Ta 
is  called a term of the signature R. Given any y E W(a)  and 
yl, 32, . . . , yT(r) E X (not necessarily distinct), we choose any 
linear ordering { 21, ZZ., . . . , zm} of the set {yl, y2, . . . , yT(r)} where 
zi # zj for all 1 5 i # j 5 m and we will  use the ,notation 
t = t(zl,z2,. . . , zm) for the term t = F,(yl, y2,. . . , T J ~ ( ~ ) ) .  We let 

be the  set of all variables involved in t .  Let now 0 E W(a) ,  
n = .(e) and  let ti = t i ( ~ i , ~ ,  . . . , Y~,,~), i = 1,2,. . . ,n, be 
terms. Choosing any linear ordering {xl, x2, .  . . , xm} of the set 
u?==,X(ti), we will  use the notations 

Substitutions. Given any R-ring R and a mapping q : X -+ 
R, there exists a unique extension of q to a homomorphism 
of R-rings Ta -+ R. Therefore we may identify the  set of all 
homomorphisms of R-rings To + R with the  set Mup(X;  R) of 
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all mappings of the set X into R. Let t = t ( x l , x 2 , .  . . , x,) E Tn 
and q E Mup(X;  R). We set 

Elements of the  set Mup(X; R) are called substitutions. 

Mup(X;  R) + Mup(X;  R) ,  setting 
Given any U E X and W E R define the mapping pU,,, : 

= v and xPu+(q) = xq for all x E X ,  x # U. 

Let U = ( q , x 2 , .  . . ,x,) E X(,) and V = (211, v2, .  . . ,v,) E 
R(?) where X(") and R(,) are  n-th  Cartesian power of X and 
R respectively.  Assuming that xi # xj for all i # j, we set 

Consider now a term t such that t = t ( z l , x2 , .  . . ,x,). Obviously 
t ~ w ( 7 )  = t ( v l ,   v 2 , .  . . ,v,) for all q E Mup(X;  R). 

Now  we introduce the following  useful notations. For any 
y, x l ,   x 2 , .  . . , z,+1 E X and 1 5 i 5 m, we set 

R-A-rings. Given pairs R = (7; cy) and  A = (a; p) (where 
r : W(cy) + N and a : W(p),  + N ) ,  an R-A-ring R is an R-ring 
R with a set Ap = {Pr I y E W(p)}  of predicates such that  the 
arity of Pr is equal to a(y)  for all y E W(/?). 

Let now {Rt I t E T}, be a family of R-A-rings. We proceed 
to describe the Cartesian product H = ntcT I& of R-A-rings. 
We consider H as the set of all mappings h : T + UtET Rt such 
that h(t) E I& for all t E T. Defining operations pointwise, we 
obtain  an R-ring structure on H. Given any y E W@) and 
h ,  h2, . . . , hu(r) E H ,  we set P-,(hl, h2, . . . , hg(r)) = 1 if and only 
if P,(hl(t),  h2(t), . . . , hu(Y)(t)) = 1 for all t E T. 
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Note, that  the ”behavior” of predicates under taking of Carte- 
sian products of a-A-rings ”coincides” with the behavior of that 
predicate which is most important for us, namely, llz = 911. 

First order formulas. Consider the  set C of logical symbols 
A (for conjunction, read AND), 
V (for disjunction, read OR), 
1 (for negation, read NOT), 
+ (for implication, read IMPLIES), 
V (for universal quantification, read FOR EVERY), 
3 (for existential quantification, read T H E m  EXISTS), 
= (for equality, read EQUALS). 
Letting PA denote the set of all formal predicate symbols 

{P,(tl,t2,. . . , t U ( T ) )  I Y < P, t l , t2 , .  . . ,47(,) E xi} 
we define S to be the free semigroup generated by the disjoint 
sets C, 5, PA and {{, }, (, ), [, 1, 11). Now  we proceed to 
define the first order formulas (which we shall simply refer to 
as formulas ) as a subset F Q , ~  of S. Formulas 4, together  with 
associated sets of free variables X ( 4 )  and complexity CompZ(q5), 
are defined inductively. 

(i) If tl and t 2  are  terms,  then the element lltl = t 2 l l  E S is 
called a formula. Choosing any linear ordering {zl,z2, . . . , zm} 
of the set X ( t , )  U X ( t 2 ) ,  we set 

4 = - , = lltl = tz l l ,  
X(+) = X(tl) U X( t2 )  and CompZ(q5) = 1. 

Such formulas are called atomic. 
(ii) For any predicate symbol P, E A and any terms tl,  . . . , t n  

where n = a(7) the element P,(t1, t 2 ,  . . . , t n )  E PA is said to be 
a formula and, choosing an  arbitrary linear ordering { 21, . . . , zm} 
of the  set U?=, X ( t i ) ,  we set 

$ = $(a,  ’ 7 zm) = P,(tl, h ,  S ,  L), 
X($) = U X ( t i )  and CompZ($) = 1. 

a 
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Such formulas are also  called atomic. 
(iii) If 4 is a formula, then 14 is a formula and we set 

X(+) = X($) and CompZ(+) = CompZ(4) + 1. 
(iv) If 4 and 11, are formulas, then 4 V 11,, 4 A $ and 4 =+ 11, 

are formulas and we set 

X(d v $) = X(($ A $) = X(4 * $1 = X(4) U X($) and 
CompZ(4 V $) = Compl(4 A $) = compl(4 =+ $) 

= muz(CompZ($), CompZ(11,)) + 1. 
(v) If 4 is a formula and z E X ,  then (V$)$ and (EIS)$ are 

formulas .and we set 

X ((Vz)4) = X ((g+$) = X(4) \ (5) and 
CompZ ( (VZ)~) = CompZ ((3z)cj) = CompZ(4) + I. 

If 4 is a formula and X ( 4 )  = 8, then the formula 4 is  called 
a sentence . 

The  notation in general 4 = 4(yl, y2,. . . , yn) is introduced 
analogously to  that for the cases (i) and (ii). We only note, that 
if either $ = (b”yi)$ or $ = (3yi)4, then 11, = $(VI,. . . , yn)iiI. 

Notations. We shall write 112 9 TI\ instead of 111z E 2’11 
and [ l a :  # yll instead of 111z = yll. 

Formulas and substitutions. We shall put into correspon- 
dence with any substitution q E Mup(X;  R) of an R-A-ring R 
the mapping fj : 3a,A + 22. We proceed by induction on the 
complexity of formulas. 

If 4 = [ I t1  = t a l l ,  then = 1 if and only if t: = t;. 
Consider now the case 4 = P,(tl, t 2 ,  :. . ,&l). Then we set 

Suppose that our mapping fj is defined on formulas of  com- 
= P&:, g ,  . . . , tZ(,)). 

plexity 5 m and CompZ($), CompZ($) 5 m. We set 

(+ = 
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Proposition 1.5.1 Let 4 = 4(yl, y2, . . . , y,,) be a formula. Con- 
sider  the  subsets Y = (yl, . . . , y,,) E X(,,) and V = (211,. . . , v,) 
E R(,,). Then qP~V(") = ~ ~ P Y I V ( ~ )  for all q , O  E Mup(X;  R). 

Proof. We proceed by induction on the complexity of 4. 
Assume that Compl(4) = 1. Consider the case 

The case 4 = Pr(tl, . . . , tn) is  considered  analogously. 
Suppose now that Compl(4) = m + 1 and our statement 

is proved for formulas of complexity less than or equal to m. 
Consider the case 4 = l$((yl , .  . . , yn). Then we have 

The cases 4 = $1 V $2 ,4  = $1 and 4 = $1 * $2 are consid- 
ered similarly. Assume now that 4 = (Vz)$(zl, . . . , zm) where 
( zl, z2, . . . , zm)[il = (y1,y2, . . . , yn) (for simplicity we assume that 
z = zi for  some 1 5 i 5 m). Now ,we  have 

r#f'Y*v(q) = 1 if and only if $Pz+PY*v(rl) = 1 for all v E R. 
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Since ~ ~ , ~ p y , v  = pyt,vl where Y' = (z,y1,. . . ,g,) and V = 
(v, v1, . . . , v,), by the inductive assumption we have 

$P",VPY,V(O) = $P.,VPY,V(~)* 

Therefore q 5 P Y ~ V ( ~ )  = q5PY*v('). The last case q5 = (h)$ is  consid- 
ered analogously. 

Let q5 = q5(yl, y2,. . . , y,) be a formula, q E Mup(X;  R). For 
any subset v1, v2,. . . ,v, E R we set Y = {yl, y2,. . . , y,}, V = 
{ V l ,  212, - - I v,} and 

It follows  from Proposition 1.5.1, that q5(.vl; $2,: : . ,v,) E 2 2  is 
independent of q. We  will write 

Rpq5(vl,v2,.. . ,vn] 

if q5(v1, v2, . . . , v,) = 1. In this case we wili  say tlidk Eke formula 
$(v1, v2,.  . . , v,) is true in the  a-A-ring k. Otli&wise we will 
say that  the formula q5(w1, 212,. . . , W,) is false 

Examples. Let R be a ring. 
(1) Consider the formula $1 = (Vz)(Vy)llzy .= yzll. Then 

(2) Let q52(z) ,= (b'y)llzy = yzll: ,Given any P E R, R 
R q51 if and only if R is commutative. 

$ 2 ( ~ )  if and only if P is a  central element of R. 

011 }] . For an element P E R, R I= 43 (P) if and only if the right 
annihilator of P in R is an essential right ideal of R. 

Two formulas q5 = q5(yl, y2, . . . , yn) and II, = @(zl, q ,  . . . , zm) 
are said to be equivalent, if for any R-A-ring R and any substi- 
tution q E Mup(X,  R), the formula +(x:, . . , ,$x) is true in R if 
and only if $(z:, . . , zL)  is true. 

The following proposition is  easily  proved by induction on 
complexity of formulas. 

(3) Now let 4 3 ( 4  = (VY)(34 [Ilv # 011 *{ l l w  # Oll AllzYz = 
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Proposition 1.5.2 Let 4 = $(xl,x2,. . . ,xn), $ be formulas 
and z E X \ X(+) \ X ( $ ) .  Then  the  following  formulas are 

and 
and 
and 
and 
and 
and 
and 

and 

and 

and 
and 
and 

The next two corollaries follow immediately by an induction 
on the complexity of formulas from Proposition 1.5.2. 

Corollary 1.5.3 Any  formula 4 is equivalent to a formula of 

1,2, . . . , m, and  the  formula $ does not  contain  quantifiers V 
and 3. 

the form ( Q I Y I ) ( Q ~ Y ~ )  ( Q m ~ m ) $ ,  where Qi E {V, 3}, = 

Corollary 1.5.4 Any  formula is equivalent to  a formula con- 
taining  only  atomic  formulas,  symbols 7, A, 3, variables  and 
bracket  symbols. 
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Define a new formula $ in free variables 21, x2, . . . , x,, as follows 
$ ( X I ,  22,. . . ,x,) = q5(xil, xiz,.  . . , x i k ) .  Then clearly 

The formulas 4 and $ are equivalent. (1.7) 

Horn  formulas and multiplicative stability. The reader 
has seen already that formulas provide  us with a formal way  of 
writing properties of R-A-rings and  their elements. It is rather 
interesting to note that  the stability of properties under taking 
of Cartesian  products mainly depends on the  structure of the 
corresponding formulas. Now  we shall describe an  important 
class of formulas, stable under taking  Cartesian  products. 

A formula 4 is said to be a Horn formula if it is  equiva- 
lent to a formula of the type ( Q l y l ) ( Q 2 ~ 2 ) .  . . (QmYm)$, where 
Qi E {V, 31, i = 1,2,. . . ,m, the formula $ does not contain 
quantifiers V and 3 and is the conjunction of formulas each of 
which is either (a) an atomic formula; (b) the disjunction of 
one atomic formula and several negations of atomic formulas; or 
(c) the disjunction of negations of atomic formulas. 

A formula 4 = 4 ( y l ,  y2, . . . ,g,) is  called multiplicatively  sta- 
ble , if the following  holds:  for any family { R ,  I i E I }  of 
R-A-rings and all hl, h2, . . . , h,, E H = niEl R, the relations 

R, + +(h( i ) ,h2( i ) ,  . . . , h,,(i)), for all i E I ,  

Further a multiplicatively stable formula 4 = 4 ( y l ,  y 2 , .  . . , y,) 
is said to be a  strictly  multiplicatively  stable  formula, if for all 
hl, hp,. . . , h,, E H the relation H l= 4(hl ,  h2, . . . ,h,) implies 
that R, +(hl(i), . . . , hn(i)) for all i E I .  

Example. The formula 
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is not multiplicatively stable, since the Cartesian  product of 
domains is  no  longer a domain. But  the formula 

$ = ( h )  [(z = 0) v (x2 # o)] 
is multiplicatively stable. 

Theorem 1.5.5 (A. Horn [196]) Every Horn formula is mul- 
tiplicatively stable. 

Proof. I t ,  immediately follows  from the definitions that 

Consider now the case 
atomic formulas are  strictly multiplicatively stable. 

. .  

4 = V;=l(l$j), 

where $3, j = 1,2, . . . , n, are  atomic formulas. By  (1.7) we may 
assume that X($i )  = X ( $ j )  for d l  i,j. Let 

4 = 4 ( Y l ,  - ,!/m), $3 = $ j ( Y l ,  * ,?/m), 1 L j L n 

and hl, h2,. . . ,hm'€ H. Suppose that R, $(hl(i), . . . , h,(i)) 
for all i E I .  Fix any t E I .  We have & k c$(hl(t), . . . , h,(t)) 
and so & ( l$j(hl( t ) ,  . . . , h,(t))) for  some 1 5 j 5 n. Since 
all atomic formulas are  strictly multiplicatively stable, we see 
that H + ( l$j(hl ,  . . . , h,)) . Therefore H F= c$(hl, . . . , h,). 
Let now 4 = dl V [V:=,( +)] . Again we suppose that R, 
4(hl(i), . . . , h,(i)) for all i E I .  If for  some t E I and 2 5 j 5 n 
we have that & + ( ~ $ j ( h l ( t ) ,  . . . , h,(t))) , then as above one 
may show that H 4(hl, . . . , hm). Therefore without loss of 
generality we may assume that formulas ~ $ 3  (h1 (i), . . . , h, (i)) 
are false in R, for all j = 2,3,. . . , n and i E I .  Since R, 
+(hl(i), . . . , h,(i)) for all z E I ,  R, + $l(hl(i), . . . , h,(i)) for all 
i E I also. Then H k $1(hl,. . . , h,) and H + 4(hl,. . . , hm). 

If $i, j = 1,2 , .  . . , n, are multiplicatively stable formulas, 
then one  may easily check that  the formula 4 = A:=l$j is 
multiplicatively stable. also. 
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Let 1 I j I n and 4(Yl,.. , Ym)bl = (3Yj)lcI(Yl, - * ,Ym) 
where 11, is a multiplicatively stable formula. Suppose that 

for all i E I ,  where hl, . . . , hj-1, hj+l, . . . , h,, E H .  Then for 
every i E I there exists an element hj(i) E R, such that 
R, + +( hl (i), . . . , hm(i)) .  Since $J is multiplicatively stable, 
H + @(hl,. . . , hm). But  then again 

The case  when 4 = (Vy)@ is  considered  analogously. Thus  the 
theorem is proved. 

Ultrafilters. Let I be  an infinite set  and Ezp(1) the  set of 
all subsets of I .  A subset ‘T C_ Ezp(I) is said to be a  filter on 
the set I ,  if it does not contain the empty subset and for  every 
natural number n and all 2’1, Tz, . . . , T, E ‘T, njn=, T j  E 7. 

Examples (1) Given any io E I ,  we set ‘ T ( i 0 )  = {T C_ 
I I io E T}. Clearly ‘ T ( i 0 )  is a filter. 

(2) We set 7, = {T c I.1 II \T( < 00). Obviously 7, is a 
filter. 

We note that  the  set of all filters on I is partially ordered 
by inclusion. A filter 7 on the set I is said to be  an  ultrafilter 
on I if it is a maximal element in,the partially ordered set of all 
filters on I .  

Example. Clearly the filter “(io) is an ultrafilter on I .  Such 
ultrafilters  are called principal. 

‘Proposition 1.5.6 Let I be an infinite set, ‘T an  ultrafilter  on 
. .  

I and X C_ I .  Then: 
(a) Any filter  on I as contained in some  ultrafilter; 
(b)  I E ‘T; 
( c ) i f X n T # 0 f o r a l l T ~ ‘ T , t h e n X ~ ‘ T ;  
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(d)  if T E T and T = U;=, Bj)  then Bj E T for some 

(e) a filter 3 on I is an  ultrafilter if and only if for any 

( f ) i f T E T a n d T C A C I , t h e n A E T .  

lsjsn; 
A C I either A E F, or I \ A E 3; 

Proof. The first statement follows easily from  Zorn’s lemma. 
The second one is  obvious. 

( c )  Consider the collection ‘T‘ = T U { X  n T I T E T} 
of subsets of I .  Clearly it is a filter and 7 E T’. Since 7 is 
a maximal element of the set of all filters on I ,  ‘T = T. So 
x E T. 

(d) Suppose the contrary. By ( c )  for  every 1 5 j 5 n there 
exist an element Aj E 7 such that BjnAj = 8. Letting A denote 
the intersection of all Aj,  we infer that A n Bj = 8. Therefore 
A n T = 8, a contradiction to A,  T E ‘T. Hence Bj E ‘T for  some 

(e) Taking into account the already proved statement (c ) ,  
we have only to prove that if a filter F on I is  such that for any 
A C I either A E F, or I \ A E F, then F is an ultrafilter. 
Again suppose the contrary. Let F C 3c for  some filter X. 
Then  there exists an element A E 3c which does not belong to 
F. By assumption we then have that I \ A E F C X. But 
A n  ( I  \A) = 8, which contradicts the definition of a filter. Thus 
F is an ultrafilter. The last  statement follows  from (c ) .  

j. 

Corollary 1.5.7 Let I be an infinite set and an  ultrafilter  on 
I. Then either T is a principal  ultrafilter, or 7,. c 7. 

Proof. Obviously an ultrafilter T is principal if and only if 
there exists an element i o  E I such that {io) E ‘T. Assume that“ 
‘T is not principal. Let J C I be any finite subset of I .  Since 
( j }  $! ‘T for all j E J, it follows  from Proposition 1.5.6, that 
J $! T. Then again by Proposition 1.5.6 we have that I \ J E T. 
Thus ‘Tm C T. 
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Ultraproducts. Given any family { R ,  I i E I ) ,  of Q-A- 
rings, where I is an infinite set,  and  an element h E H = niEl R , ,  
we set 

I (h )  = {i E I I h(i) = 0) .  
For an ultrafilter 7 on I ,  we set 

I(") = { h  E nR, I I (h)  E 'T). 

We claim that I (")  is an ideal of the O-ring H = niEl R , .  

Indeed, for all h,g E H we have I ( -h)  = I (h) ,   I (hg)  2 I (h)  n 
I(g),   I(h+g) 2 I (h )n I (g ) .  It is now immediate that 1(7) is an 
ideal of the ring H .  Let y E W(a) ,  n = ~ ( y )  , g 1 ,  g2, . . . , gn E H ,  

F,(gl,g2,. . . , gn). Since I (h )  2 I(h,) E 'T, h E I("). Thus 
I(") is an ideal of the Q-ring H .  Consider the factor O-ring 
H/.("). Now  we proceed to describe an Q-A-ring structure on 
it. Given any y E W(p) ,  hl, h2, . . . , hu(T) E H ,  we set 

Z€I 

h1, h2,. . . , h, E I(") and h = F,(gl+ hl, g2 + h2,. . . , gn + hn) - 

P,(hl+ W"), h2 + I("), - , hu(,) + = 1 
if and only if 

{i E I I PT(hl(i),  h2(i), . . . , hb(,)(i)) = 1) E 7. 
The factor Q-A-ring H/I(") is called the ultraproduct of Q-A- 
rings R, i E I ,  and is denoted by ni,,RJT. The canonical 
image of an element h E H in H/I(") is denoted by h'T. 

Theorem 1.5.8 (Los [196]) Let (R ,  I i E I) be an infinite 
family of Q-A-rings, H = niEl R, ,  $(yl, y2,.  . . , yn)  a  first  order 
formula in free  variables y1, y2, . . . , yn, hl,, h2,. . . , h, E H and 
'T an ultrafilter on I. Then 

n RJT I= 4(hlT ,  h2T9 9 h,") 
Z€Z 



48 CHAPTER 1.  PRELIMINARIES 

Proof. Suppose that Cmpl(+) = 1. Consider the case 
when 

The last condition is  equivalent to 

which in turn is equivalent to 

{i E I I t l (hi l ( i ) ,  . . . , hi,(i)) - t2(hj1(i), . . . ,tj,(i) = 0) E T. 

But 

(i E I I t l (hi l ( i ) ,  . . . , hi,(i)) - t2(hjl(i), . . . ,tj,(i) = 0) 

= I&,  h2, ' 7 hn). 

Therefore 
l p m = + ( h l r , . . . , h n n  
i E I  

if and only if 
I#(hl, h27 * L )  E 'T- 

The case 4 = P,(tl, t 2 , .  . . ,tu(,)) follows directly from the def- 
initions. 

Assume  now that our statement is  proved for the formula 
$ ( g l ,  . . . , yn) and 4 = l$. It immediately follows  from the 
definition that 
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if and only if $(h17,  h27, . . . , hn7) is false in n,,z W. By as- 
sumption the  last is equivalent to I$(h1, h2, . . . , hn) $! 7, which 
in turn is equivalent to I4(hl,  h2,. . . , hn) E 7 (see Proposi- 
tion 1.5.6). 

Suppose that 4 = $l A 7+b2 and our statement is  proved  for 
formulas and $2. By (1.7) we may assume that 

Note that 

if and only if I$, , I$, E 7, which  is equivalent to I4 = I+l nIq2 E 
7. 

Now  we consider the case 4 = (3y)$. We suppose that our 
statement is  proved  for $. For simplicity we assume that $ = 
$(Y, 31, Y 2 , .  * . , Yn). Clearly 

if and only if 

for some h E nic1 K .  The last is  equivalent to 
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So it is enough to prove that 14(hl, h2, . . , , h,) E ‘T if and only 
if Iq,(h, hl, h2,. . . , h,) E 7 for  some h E &. The ”if” part 
is clear since 

Suppose that J = I4(hl, h p , .  . . ,h,) E T. Then  there exist 
elements rj, j E J, such that 

Define the element h E niEI R, by setting h( j )  = rj,h(i) = 0 
for all j E J, i E I \ J. Clearly I+ (h, hl, hz, . . . , h,) 2 J. Thus 

Since any formula is equivalent to a formula containing only 
atomic formulas, symbols 1, A, 3, variables and bracket sym- 
bols, the theorem is proved  (see Corollary 1.5.4). 

I$@, hl, . . . , h,) E r. 



Chapter 2 

Rings of Quotients 

2.1 Maximal  Right  Rings of 
Quotients 

In the  study of generalized identities in prime and semiprime 
rings it will be seen that rings of quotients play a crucial role. 
Not only  will we want to extend generalized identities to rings of 
quotients, but  the very  presence of a suitable ring of quotients 
is  necessary in order to properly define a generalized identity. 
For us the most important ring of quotients is the so called 
symmetric ring of quotients but  at times we will want to employ 
the more general maximal ring of quotients. 

For S a subset of R the left annihilator {x E R I xS = 0) will 
be denoted by ZR(S) or simply Z(S) when the context is clear. 
The right annihilator PR(S) is similarly defined. A right ideal J 
of R is dense if given any 0 # ~1 E R, ~2 E R there exists P E R 
such that PIT # 0 and 7-21" E J .  One defines a dense left ideal 
in an analogous fashion. The collection of all dense right ideal 
of R will be denoted by D = D(R).  For any submodule J of a 
right R-module M and any subset S G M we set 

51 
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When the context is clear we will simply write (S : J). 
Although occasionally a result may hold  for arbitrary rings, 

we shall assume throughout  this section that R is a semiprime 
ring. 

Proposition 2.1.1 Let I ,  J ,  S E D(R)  and  let f : I -+ R be a 
homomorphism of right R-modules. Then: 

(i) f " ( J )  = {a E I I f ( a )  E J )  E D(R);  
(ii) (a  : J )  E D(R)  for all a E R ; .  
(iii) I n  J E D(f i ) ;  
(iv) If K is a right ideal of R and K 2 I ,  then K E D(R) ; .  

(vi) If K is a right  ideal of R and (a : K )  E D(R) for all 
a E I, then K E D(R);  

(vii) If L is a right  ideal of R and g : L + R is a homomor- 
phism of right S-modules, then g is a homomorphism of right 
R-modules; . 

(v) l ( I )  = 0 = ?-(I); _ .  

(viii) I J E D( R) .  

Proof. (i) Let r1 # 0, r2 E R. Since I is a dense right 
ideal of R, rlr' # 0 and rzr' E I for  some T' E R. Analogously 
(~1r')r'' # 0 and f(r2r')r'' E J for  some r" E R. Setting r = r'r'' 
we conclude that rlr # 0 and r2r E f -'(J), which means that 
f (J) is a dense right ideal of R. 

(ii) Letting l ,  denote the left multiplication by a we note 
that (a : J )  = 1i1(J) .  Now apply (i). 

(iii) If i is the inclusion map I + R, then I n J = C" ( J ) .  
Now apply (i). 

(iv) Is obvious. 
(v) Suppose l a  = 0 for  some 0 # a E R. Setting r1 = a = r2 

we see that there exists r E R such that 0 # ar E I .  We 
then have a contradiction arRar C Iar = 0. Next we suppose 
Z(I) # 0. Since R is semiprime, there exist a, b E 1(I) such that 
ab # 0. Now  we can find r E R such that abr # 0 and br E I .  
But abr E aI = 0 and again a contradiction is reached. 
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(vi) Let 0 # TI, 7-2 E R. Since I E D, there is an element 
r' E R such that rlr' # 0 and r2r' E I. Hence (7-27" : K )  E D. 
By part (v) we then have Z ( ( ~ 2 7 "  : K ) )  = 0 and hence rlr'r'' # 0 
and r2r'r'' E K for  some r" E (7-27" : K ) .  Thus K E D. 

(vii) Let z E L and r E R. By (ii) ( r  : S ) R  E D and so by 
(iii) M = (r  : S), n S E D. For  every y E M c S we have 
r y  E S and so 

It follows  from (v) that g ( z r )  = g ( z ) r  and  thus g is a homo- 
morphism of right R-modules. 

(viii) Let r1 # 0 and 7-2 E R. By (ii) L = (73 : I )  E D ( R ) ,  
and so by (v) there exist r' E L such that qr '  # 0 and r" E J 
such that rlr'r'' # 0. Setting T = r'r" we then have TIT # 0 and 
T ~ T  = (~2~')r ' '  E IJ. 

As an  alternate definition of dense right ideal we have 

Corollary 2.1.2 Let J be a right  ideal of R. Then J E D if 
and  only if Z R  ((a : J)) = 0 for all a E R. 

Proof. If J E D we  know from Proposition 2.1.1(ii) and 
(v) that (a : J) E D and ZR ((a : J)) = 0. Conversely,  given 
r1 # 0, 7-2 E R we  know that rl(7-2 : J) # 0, and so we may 
choose r E (7-2 : J) such that TIT # 0. But since T E (73 : J), 
we also have r2r E J. 

At this point we pause to mention the notion of essential 
right ideal. We recall that a right ideal J of R is essential if 
for  every  nonzero right ideal K of R we have J n K # 0. This 
notion may perhaps  strike the reader as a more familiar and 
more natural one than  that of a dense right ideal, but  it does 
have the drawback that (even  for primitive rings) the left 
annihilator of an essential right ideal may not  be 0. A more 
through discussion of the relationship between essential and 
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dense right ideals will be given at the end of this section. For 
now  we have the following remark. 

Remark 2.1.3 Let J be a dense right ideal of R. Then J is   an 
essential right ideal of R. 

Proof. Indeed, for 0 # a E R , pick r E R such that 
O f a r e  J .  T h e n o f a r e  J n a R .  

There is  one prominent situation, however,  when the two 
notions coincide, and we leave it for the reader to verify the 
following 

Remark 2.1.4 Let I be a  2-sided  ideal of R. Then  the  following 
conditions are equivalent: 

(i) l ( I )  = 0; 
(ii) I is a dense right ideal; 
(iii) I is an  essential right ideal; 
(iu) I is  essential  as a  2-sided  ideal  (i.e., for   any ideal  J # 0, 

I n J # 0). 

Because of the symmetry imposed by (iv) the words "left" 
and "right" may be interchanged. In case R is prime an ideal 
is essential if and only if it is  nonzero.  For semiprime rings we 
have the following result and we again leave it for the reader to 
verify the straightforward details of its proof. 

Remark 2.1.5 Let I be a  2-sided  ideal of R. Then: 
(i) 1(I) = r ( I ) ;  

(iii) I + l ( I )  is  a dense right ideal of R. 
(ii) l ( I )  n I = 0; 

We continue now with our discussion of dense right ideals, 
pointing out  the following  useful properties. 
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Remark 2.1.6 Let J be a right ideal of R and  let f : J + R 
be a right  R-module  homomorphism. Then: 

(i) zfa E R and r(a)  E D(R) ,  then a = 0; 
(ii) ifker(f) E D(R) ,  then f = 0. 

Proof. The first statement follows  from Proposition 2.1.1(v). 
Suppose that  ker(f) E D(R).  Then we have f ( b ) ( b  : ker(f)) = 
0 for all b E J .  According to Proposition 2.1.1(ii), ( b  : ker(f)) E 
D(R).  By the first statement we then have f ( b )  = 0. Thus 
f = 0. 

We are now in a position to construct the desired ring of 
quotients of R. Consider the set 

We define (f; J )  - ( g ;  K )  if there exists L E J n K such that 
L E D and f = g on L. One readily checks that N is  indeed 
an equivalence relation,  and we let [ f ;  J ]  denote the equivalence 
class determined by (f;  J )  E X. We then define addition  and 
multiplication of equivalence  classes as follows (roughly speak- 
ing, just ordinary  addition  and composition of functions restrict- 
ed to appropriate domains): 

[f; J I  + [g;  K1 = [f + 9; J n K ]  (2.1) 

C f ;  J I  [g;  K1 = [ f g ;  s-YJ)] (2.2) 

First of all we note that by Proposition 2.1.1 J n K  E D and 
9-l ( J )  E D. One easily  checks that addition is  well-defined. We 
will  show that multiplication is also well-defined. If ( f l ;  J1) N 

( f 2 ;  J 2 )  and (91; K1) N ( 9 2 ;  K Z )  we may find L E D such that 
L C J1 n J2, f 1  = f 2  on L and M E D such that M E K1 n KZ ,  
g1 = g2 on M .  Set N = g;l(L) n M ,  and  let x E N .  Then 
N E D and 
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(noting that g1(z) = g2(x) E L). Thus (2.2) is  well-defined. We 
leave it for the reader to verify that  the ring axioms holds, and 
so our construction is complete. 

We shall denote the ring just constructed by Qmr = Qmr(R) 
and shall call it  the maximal right ring of quotients of R. It was 
first constructed by Utumi [270], and  although  there  are more 
”homological” constructions of it available (see,  e.g., [155]) we . 
have preferred Utumi’s very simple and  natural construction 
using ”partial” homomorphisms (indeed, speaking very  loosely, 
given f : JR  + RR and f a  = T ,  a E J ,  T E R we may ”solve” 
for f and get ”f = ra-l” which says in some  sense that f is a 
”fraction”). 

We proceed by showing that Qmr is characterized by certain 
reasonable properties that any ring of quotients should have. 
First  there is a ring injection p : R 3 Qmr given  by up = [l,; R], 
where l ,  is the left multiplication determined by a. Secondly, 
given q = [f; J ]  E Qmr one sees that [f; J][ la ;  R] = [ I f ( , ) ;  R] 
for all a E J ,  i.e., qJp C ,RP. Thirdly, if q = [f; J ]  E Qmr 

and K E D such that qKp = . O  then q = 0. Indeed, we have 
0 = [f; J][l,; R] = [ I f ( , ) ;  R] for all a E J n K forcing f ( a )  = 0, 
whence f ( J )  = 0 and q = 0 (see Remark 2.1.6). Finally, suppose 
we are given a homomorphism of right R-modules f : JR  + RR, 
J E 9. Then [f; J][ la;  R] = [If(,,; R] for all a E J, i.e., qaB = 
f ( a ) p  for all a E J ,  where q = [f; J ] .  

In a similar fashion, using the filter of dense left ideals Dl, one 
can construct the maximal left ring of quotients Qml = Qml(R) 

(in so doing it is best to  put mappings on the right and use ( J ;  f) 
instead of (f ;  J ) ) .  One then embeds R into Qml via Q : a ++ 
[R; T,] and goes  on to show an analogous set of properties holds 
for Qml. However, we are  not interested in pursuing further the 
relationship between Q,, and Qml; in any given situation we 
will just  be working with one of them. For this reason we shall 
simplify matters by replacing R by its isomorphic image RP in 
&m,-, i.e., R is contained in Qmr. We then summarize the four 
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properties derived  in the preceding paragraph. 

Proposition 2.1.7 Qmr(R) satisfies: 
(i) R is a subring of Qmr; 

(ii) For all q E Qmr there  exists J E D such  that qJ C_ R; 
(iii) For all q E Qmr and J E D, qJ = 0 if and  only if 

(iv) For all J E D and f : JR + RR there  exists q E Qmr 

Furthermore,  properties (i)- (iv) characterize ring Qmr (R)  

q = 0; 

such  that f ( x )  = qx for  all x E J .  

up  to  isomorphism. 

Proof. We have  only to prove the last  statement. Let Q 2 
R be a ring having properties (i)-(iv). Define the mapping 
Q : Q + Qmr by the rule q" = [lq; ( q  : R)R]. One can readily 
check that Q is an isomorphism of rings identical on R. 

As a useful corollary to Proposition 2.1.7 we have 

Lemma 2.1.8 Given q1, q2, . . . , qn E Q,, and I ,  J E D(R) 
there  exists L E D(R) such  that L E J and qiL C_ I for  all 
i = 1 , 2  ,..., n. 

Proof. Setting Ji = (qi : R)R we note that Ji E D for all i. 
Consider the  map fi = l ,  : Ji + RR. By Proposition 2.1.1 

Ki = &'(I) = { X  E Ji I qix E I }  E D. 
Setting L = (n&Ki) n J ,  we have the desired dense right ideal. 

Lemma 2.1.9 Let K be a dense right ideal of a semiprime ring 
R and S a subring of Q,r(R) such  that K c S. Then: 

(i) S is a semiprime ring; 
(ii) A right ideal J of S is dense if and  only if ( J  n R)K E 

(iii) A right ideal J of S is essential if and  only if ( J  n R)K 
D(R) (in particular I S  E D(S)  if I E D(R)); 

is  an  essential right ideal of R. 
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Proof. (i) Assume that I is a nonzero nilpotent ideal of 
S and pick 0 # q E I .  By Proposition 2.1.7(ii), qJ 5 R for 
J E D(R) and by Proposition 2.1.7(iii) 0 # q(J  n K )  C I n R 
is a nonzero nilpotent right ideal of the semiprime ring R, a 
contradiction. 

(ii) Suppose that J E D ( S )  and r1 # 0, 7-2 E R. Since 
K E D(R) ,  L = (r1 : K ) R  n (7-2 : K ) R  E D(R) .  By Propo- 
sition 2.1.1(v), rlr' # 0 for  some r' E L. Clearly r1r',r2r' E 
K C S. Therefore there exists an element q E S such that 
rlr'q # 0 and r2r'q E J .  Again by Proposition 2.1.1 we have that 
rlr'qr'' # 0 for  some r" E ( q  : R),nK. Clearly r2r'qr" E JnR. 
Pick r'" E K such that r1r'qT''r"' # 0. Since T~T'QT~'T''' E 
( J  n R)K and r'qr''r''' E R, we conclude that ( J  n R)K E D(R) . 

Conversely, let ( J  n R)K E D(R) and s1 # 0, s2 E S. 
According to Proposition 2.1.1 we have slr' # 0 for  some 

r' E (sl : R)R n (s2 : R)R n K. 

Clearly sir', s2r' E R and T' E K C S. Since ( J  n R)K E D@), 
(s2r' : ( J  n R)K)R E D ( R )  and therefore 

L = ( s ~ T '  : ( J  n R ) K ) ~  n K E D@). 

Hence there exists an element r" E L such that slr'r'' # 0. Note 
that s2r'r" E ( J  n R)K c J and T',  T", r'r" E K C S. Therefore 
J is a dense right ideal of S. In particular, if I E D(R)  , then 
( IS  n R)K 2 ( I K  n R)K 2 I K 2 ,  and so IS E D(S) .  

(iii) Assume that J is an essential right ideal of S. We 
set I = J n R. Let M be any nonzero right ideal of R. By 
Remark 2.1.3 K is an essential right ideal of R and so M n K # 
0. Then ( M  n K ) S  is a nonzero right ideal of S, since S is 
semiprime and so Zs(S) = 0. Then ( M  n K ) S  n J # 0. Let 
0 # q = Cy=l kiqi E ( M  n K)Sn J ,  where ki E M n K and 
qi E S. By Lemma 2.1.8, qiL E R for  some  dense right ideal 
L G K of R, i = 1,2 , .  . . ,n. Obviously 0 # qL E M n (J n R) 
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and so 0 # qLK E M n ( ( J  n R)K).  Therefore ( J  n R)K is an 
essential right ideal of R. 

Conversely, let ( J  n R)K be an essential right ideal of R and 
let P be a nonzero right ideal of S. Choosing 0 # p E P we see 
from  Lemma 2.1.8 that p L  c K for  some L C_ K ,  L E D(R) .  
Then P n R  # 0, (PnR)K # 0 and hence J n P  2 ( JnR)Kn  
( P  n R)K # 0. Thus J n P # 0 and  the proposition is  proved. 

Proposition 2.1.10 Let K be a dense  right ideal of R and S a 
subring of Qmr(R) such  that K c S.  Then Qm,(S) = Q,,(@. 

Proof. We verify the four properties of Proposition 2.1.7. 
Since S C Qmr(R), (i) holds. Let q E Q,,(R). By Lemma 2.1.8, 
qI c K for  some I E D(R) ,  I C_ K.  According to Lemma 2.1.9, 
I S  E D(S)  and we have qIS K S  c S, thus proving (ii). 
Next suppose qJ = 0 for  some q E Qmr(R), J E D(S) .  By 
Lemma 2.1.9(ii) ( J  n R)K E D ( R )  whence q = 0 and so (iii) is 
proved. Finally suppose we are given f : JS -+ SS, J E D( S). 
Setting 

L = {x E ( J  n R)K I f(x) E R} 
we shall show that L E D(R)  and f : L -+ R is a homomor- 
phism of right R-modules. Note that ( J  n R)K E D(R) by 
Lemma 2.1.9(ii). Since K c S, f is a homomorphism of right 
K-modules and so by Proposition 2.l.l(vii) f is a homomor- 
phism of right R-modules. It follows  from Proposition 2.1.1 (i) 
that L = f - l ( ( J n R ) K )  E D(R) .  Thus  there exists q E Qmr(R) 
such that f(x) = qx for all x E L. We claim that f (z)  = qz 
for all z E J. Indeed, by Lemma 2.1.9 LS E D(S).  Clearly 
LS c J and f (z )  = qz for all z E LS. Given any z E J and 
S E (z : LS),  we have 

(f(2) - qz)s = f ( z ) s  - qzs = f ( z s )  - qzs = qzs - qzs = 0. 

Since ( z  : LS)s E D( S), we conclude that f (z) = qz for all 
z E J ,  and (vi) has thereby been  shown. 
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The following result is an immediate corollary of the above 
Proposition. 

Theorem 2.1.11 Let R be a semiprime ring  and Q = Qmr(R). 
Then Qmr ( Q )  = Q. 

Corollary 2.1.12 Let R be a semiprime  ring, I an ideal of R 
and J = ZR(I). Then  Q,r(R) = Qmr(I)  CB Q m r ( J ) .  

Proof. By Remark 2.1.5, I @ J E D(R).  According to 
Proposition 2.1.10, Q,,(R) = Q m r ( I @  J ) .  Now our statement 
follows  from the obvious equality Qm,-(I@J) = Qmr(I)CBQmr(J). 

For a ring R we set 

Z+-(R) = {z E R I r i ( z )  is an essential right ideal }. 

We remark that &(R)  is  called the (right) singular ideal of R . 
Lemma 2.1.13 Let R be a semiprime  ring, K an  essential  right 
ideal of R and r E R. Then: 

(i) (r  : K)R is an essential  right  ideal of R; 
(ii) ZT(R) is an ideal of R; 
(iii) Zr(R) = 0 if  and  only if every essential  right  ideal  is 

(iv) for any  subring R E S E Qmr(R) ,   &(R)  = R n Zr(S). 
dense; 

Proof. (i) Let L # 0 be a right ideal of R. If r L  = 0, 
then L c ( r  : K )  and hence 0 # L = L n (T : K ) .  Suppose 
that rL # 0. Since r L  is a right ideal of R, r L  n K # 0. But 
rL n K = r [L  n (r  : K)] .  Therefore L n (r : K )  # 0 and 
(r : K )  is essential. 

(ii) Let r1,r2 E Zr(R) and z E R. Since rR(r1 - 7-2) 2 
rR(r1) n r ~ ( r 2 )  and rR(r1) n r ~ ( r 2 )  is an essential right ideal, 
rR(r1 - r2) is essential as well.  Hence r1 - 9-2 E &(R) .  Further 
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as rR(xr1) 2 rR(r1), x r  E &(R). By the above result the right 
ideal (x : rR(r1)) is essential. From rR(r1x) 2 ( x  : r ~ ( r 1 ) )  it 
follows that r1x E 2, (R). Therefore &(R) is an ideal of R. 

(iii) Suppose that &(R) = 0. Let J be  an essential right 
ideal of R. Taking into account (i), we get 1~ ((a : J ) )  = 0 for 
all a E R. By Corollary 2.1.2 we then have J E D. The converse 
statement follows from Proposition 2.1.1(v). 

(iv) Note that T R ( X )  = rs(z) n R for all x E R and so by 
Lemma 2.1.9 r R ( x )  is an essential right ideal of R if and only if 
rs(z) is an essential right ideal of S. Hence 2,. (R)  = 2,. ( S )  n R. 

Lemma 2.1.14 Let R be a semiprime  ring, Q = Q,,(R) and K 
a submodule of the  right  R-module Q. Suppose  that Q : K + Q 
is a homomorphism of right  R-modules. Then: 

(i) The rule B(Cy=l kiqi) = E t l  a(ki)qi  where ki E K and 
qi E Q defines a homomorphism of right  Q-modules B : KQ + 

(ii) If K is a right  ideal of the  ring Q, then Q is a homo- 
Q; 

morphism of right  Q-modules. 

Proof. (i) It is enough to check that B is  well-defined.  In- 
deed, let kiqi = 0 where ki E K ,  qi E Q. By Lemma 2.1.8 
there exists a dense right ideal L of R such that qiL C R for all 
i. For any x E L we have 

Therefore '& a(ki)qi = 0 and B is  well-defined. 

means that Q is a homomorphism of right Q-modules. 
(ii) If K is a right ideal of the ring Q, then Q = B which 

Recall that a ring R is  called von  Neumann  regular if for any 
T E R there exists an element x E R such that rxr = T .  The 
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following result is  valid  for arbitrary rings, but for simplicity we 
shall prove it only  for semiprime rings. 

Theorem 2.1.15 Let R be a semiprime  ring and Q = Qmr(R). 
Then the following conditions are  equivalent: 

(i) Q is a von Neumann regular ring; 
(ii) 2, (R)  = 0. 
Furthermore, if the above conditions are fulfilled, then Q is 

an  injective  right  R-module and Q-module. 

Proof. Setting Q = QmT (R), we suppose that Q is  von 
Neumann regular. Let 0 # q E Q.  Then qxq = q for  some 
z E Q. Obviously ro(zq) = rQ(q) and (xq)2 = xq. Hence 
rs(zq)  = (1 - zq)Q. Since (1 - zq)Q n zqQ = 0, the right 
ideal (1 - zq)Q is not essential. Therefore &(Q) = 0. By 
Lemma 2.1.13, &(R) = 0. 

Conversely, let  &(R) = 0. Then by Lemma 2.1.13, the  set 
D(R)  coincides with the set of all essential right ideals of R. Let 
q = [f; J ]  E Q = Qmr(R). We set K = ker(f). Choosihg L 
to be a right ideal of R maximal with respect to  the properties 
L C J and L n K = 0, we note that L S qL. One can easily 
check that K + L is an essential right ideal of R and hence 
K + L E D(R).  Now  we choose M to be a right ideal of R 
maximal with respect to  the property M n qL = 0. It is  well 
known that M @ qL is an essential right ideal of R. Hence 
M @ q L  E D(R).  Define the mapping g : M@qL + L by the rule 
g(m+ql) = l for all m E M ,  1 E L. Clearly p = [ g ;  M e q L ]  E Q 
and f g f  ( k  + l )  = f (IC + l )  for all k E K and I E L. Therefore 
qpq = q and Q is von Neumann regular. 

We  show  now that Q is an injective right R-module. Let 
K be a submodule of the right R-module Q and a : K 3 Q a 
homomorphism of right R-modules.  According to Lemma 2.1.14 
we can assume that K is a right ideal of the ring Q and a is a 
homomorphism of right Q-modules. Choosing L to be a right 
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ideal of Q maximal with respect to  the property L n K = 0, 
we extend Q up to homomorphism ti : K + L + Q by the rule 
t i (k  + l )  = a ( k )  for all k E K, 1 E L. Clearly K + L is an 
essential right ideal of Q. Since Zr(Q) n R = Zr(R) = 0, we 
infer that &(Q) = 0 (see Lemma 2.1.13 and Proposition 2.1.7). 
Then according to Lemma 2.1.13(iii), K + L is a dense right 
ideal of Q. Hence [ti; K + L] E Qmr (Q) Since Qmr (Q) = Q by 
Theorem 2.1.11, there exists an element q E Q such that ti = 1, 
where 1, is left multiplication by q. Thus we have extended the 
mapping Q : K + Q up to  an endomorphism of &Q. Applying 
this observation to  the case K C_ R we conclude that QR is an 
injective module. On the other  hand, applying this observation 
to  the case KQ C_ QQ we infer that QQ is an injective Q-module. 

2.2 The  Two-sided  and  Symmetric 
Rings of Quotients 

The notion of two-sided rings of quotients (in which  two-sided 
ideals are used) was introduced by  W.S. Martindale [205] for 
prime rings (and extended to semiprime rings by Amitsur [S]). 
The construction of a two-sided ring of quotients is  much simpler 
than of the maximal ring of quotients. Since the annihilator of 
any nonzero ideal of a prime ring is equal to zero, any nonzero 
ideal of a prime ring is  dense and so the construction of the two- 
sided ring of quotients  has an especially simple form  for prime 
rings. We proceed to describe this construction for semiprime 
rings. In what follows R is a semiprime ring and 

Z = Z(R) = { I  I I is an ideal of R and Z(1) = 0). 

We note that Z is  closed under products  and finite intersec- 
tions. We also mention that any I E Z is  dense and essential as 
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a right (or left) ideal and accordingly we shall call  such ideals 
dense . Consider the  set 

and define (f; J )  N ( g ;  K )  if there exists L c J n K such that 
L E Z and f = g on L. We let {f; J }  denote the equivalence 
class determined by (f; J )  E 7. We  now define addition  and 
multiplication of equivalence  classes as follows: 

We will  only  show that multiplication is  well-defined. First of all 
we note that K J  E Z whenever K ,  J E Z. Indeed, let T K J  = 0 
for  some R E R. Then rK 5 Z(J) = 0 and so T K  = 0. Hence 
T E Z(K) = 0, T = 0 and K J  E Z. Further g ( K J )  = g ( K ) J  c J 
and so the composition f g  is  well-defined  on K J .  If ( f 1 ;  J1) N 

( f 2 ;  J2) and (g1; K1) N- (92; K2) we may  find L E Z such that 
L 5 J1 n J2, fl = f2 on L and M E Z such that M C K1 n K,, 
g1 = 92 on M .  Set N = ML,  and  let x E N .  Then N E Z and 

(noting that g1(x) = 942)  E L). Thus (2.4) is  well-defined. The 
reader can readily verify that  the ring axioms hold, and so our 
construction is complete. 

We shall denote the ring constructed above by Qr = Q,(R) 
and shall call it  the two-sided right ring of quotients of R . 

We are now in a position to characterize the two-sided ring 
of quotients by its properties. First of all we note that  the 
mapping y : R + Q,. given  by the rule ay = { l a ;  R} where 1, is 
the left multiplication determined by a, is a monomorphism of 
rings.  Secondly,  given q = {f; J }  E Q,. and a E J one can easily 
check that {f; J}{Za; R )  = { Z f ( a ) ;  R}, i.e., qJ' 5 R'. Thirdly, 
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if q = { f ;  J }  E Qr and K E Z such that qK7 = 0, then q = 0. 
Indeed, one sees that 

which means that q = { f ;  J }  = 0. Finally, for any ideal J E Z 
and any given homomorphism f : JR + RR, J E Z, we have that 
qa7 = f (a)? where a E J ,  q = { f ; J } .  We simplify matters by 
replacing R by its isomorphic image R7 in QC, i.e., R is contained 
in Qr,  and summarize the four properties derived  above. 

Proposition 2.2.1 Let R be a semiprime ring. Then Qr(R) 
satisfies: 

(i) R is  a  subring of Qr ; 
(ii) For all q E Qr there  exists J E Z such  that  qJ C_ R; 
(iii) For all q E Q,. and  J E Z, qJ = 0 if and only if q = 0; 
(iv) For any ideal  J E Z(R) and f : JR + RR there  exists 

Furthermore)  properties (i)- (iv) characterize ring Qr (R)  up 
q E Qr such  that f ( x )  = qx for all X E J ;  

to  isomorphism. 

Proof. There remains only the last  statement  to prove. Let 
Q be a ring satisfying (i) - (iv). For q E Q, using (i) and (ii), 
we define qa = f ;  J, where qJ  5 R, J E Z, and f ( x )  = qx 
for all x E J .  One readily checks that a : Q + Qr is a ring 
homomorphism. By (iii) a is an injection and by (iv) a is 
surjective, and so a is a ring isomorphism. 

The next proposition describes the relation between&&,, (R) 
and Qr (R). 

Proposition 2.2.2 Given a semiprime ring R, there  exists a 
unique ring monomorphism 0 : Qr (R) + Qmr (R) such  that 
r' = r for a1l.r E R. Further, 
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Proof. Define the mapping a : Q, + Q,, by the rule 
{f; J}" = [f; J ]  for all {f; J }  E Q,. It follows directly from 
the definitions of - and N that a is well-defined.  Obviously 
T" = {l,.; R}" = [l,; R] = T for all T E R. Let {f; J } ,  {g ;  K }  E 
Q, . Since K J C K n J and K J  E Z, we have 

( U ;  J }  + (9; K))" = (f + 9; KJ}" = [f + 9;  KJI 
= [f; 51 + [g; K1 

and a is additive. Noting that K J 5 g-l( J ) ,  one  easily  checks 
that a preserve products. If {f; J}" = 0, then f(L) = 0 €or 
some  dense right ideal L 2 J .  Then by Remark 2.1.6 f = 0 
and therefore a is a monomorphism. If a' : Q,(R) 3 Qm,(R) 
is another ring monomorphism such that T"' = T for all T E R, 
then for  every q E' Q, (R)  and x E ( q  : R)R we have 

(q" - = q"x" - - - (qx)" - (qs)"' = qs - qx = 0 

and so q" = q"' for all q E Q,(R) thus proving the uniqueness. 
We set 

Q = ( Q  E Qm,(R) I qJ C R for some J E 1). 

Clearly Im(a) 5 Q, Let q E Q. Then qJ C R for  some J E Z. 
We define f : J 3 R .by  the rule f ( x )  = qx for all x E J .  
Setting q' = {f; J}", we note that qa = q'a for all a E J .  
Applying Proposition 2.1.7(iii), we infer that q = q' and  thus 
Q = Im(a). 

In  what follows we shall identify Q, with Q via a. We set 

Qs  = { q  E Q,,(R) I q J U  J q  C R for  some J E 1). 

One can easily check that Qs is a subring of .Q1.. We shal1 call 
it  the symmetric ring of quotients of R. As noted by Passman 
([236], Proposition 1.4) Qs may be characterized by four prop- 
erties analogous to those which characterize Qm, (see Proposi- 
tion 2.1.7). 
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Proposition 2.2.3 Let R be a semiprime ring. Then Qs (R)  
satisfies: 

(i) R is  a subring of Qs; 
(ii) For all q E Qs there  exists J E Z such  that qJu J q  C R;  
(iii) For all q E Qs and J E Z, q J  = 0 (or J q  = 0) if and 

only if q = 0; 
(iv) Given J E Z, f : JR  + RR and g : RJ + RR such 

that x f (g) = g ( x ) y   f o r  all x, y E J ,  there  exists q E Q such  that 
qx = f(x), xq  = g(x) f o r  all x E J .  

Furthermore,  properties (i)-(h) characterize ring Q,(R) up 
to isomorphism.' 

Proof. We leave  for the reader the straightforward verifica- 
tion that Qs enjoys the properties (i) - (iv). Now assume that 
Q is a ring satisfying (i) - (iv). We define a map Q += Qmr 
by the rule q I+ q' = [ f ;  J ] ,  where J is  given  by (ii) and f is 
defined  by f (x) = qx for all x E J .  Again  by (ii) one  shows 
that for all a E J 

i.e. aq' E R, whence q' E Qs. It is straightforward to show that 
q I") q' is a ring homomorphism. That q I+ q' is an injection 
follows  from property (iii) . Finally, given p E Qs we have p J + 
J P  G R for some J E 1. We then define f : JR + RR by 
f(x) = px for all x E J and g : RJ + RR by g(x)  = xp for all 
x E J .  Thus g ( x ) y  = ( xp )y  = x (py )  = xf (9) for all x, y E J ,  
and so by property (iv) there exists q E Q such that qx = f (x), 
xq  = g(x) for all x E J .  Clearly q' = p and so q I+ q' is 
surjective. The proof of Proposition 2.2.3 is now complete. 

We have  defined Qs as a subring of QV c Qmr and so, more 
accurately, we should have  called Qs the right symmetric ring of 
quotients of R. Analogously, the left symmetric ring of quotients 
Q', .may be defined as a subring of Q1 C_ Qml. For q E Qs we 
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define q' = J ;  g E Q',, where xg = zq for all x E J .  Then  the 
map q r-) q' is an isomorphism of Q, onto Q', (the key observation 
being that  the  map 1, + fa is a ring homomorphism if one writes 
left multiplications on the left and right multiplications on the 
right).  Thus we are able to make the following 

Remark 2.2.4 Q, "= Q', (via  the  map defined  above). 

2.3 The Extended  Centroid 
The center of the two-sided ring of quotients plays a key role in 
the definition of generalized identities. We will call the center 
C = Z(Q,) of the two-sided right ring of quotients Qr of a 
semiprime ring R the extended  centroid of R . We start our 
discussion of the extended centroid with the following  obvious 
remark. 

Remark 2.3.1 Let R be a semiprime ring. Then 

Proof. If c E Z(Qmr) ,  x E (c : R)R and T E R, then 
c(rx)  = r ( m )  E R, rx  E (c : R)R, and so J = (c  : R)R is a 
dense ideal of R. Since Jc = CJ C_ R, c E Q s  and Z(Qmr) C 
Z(Q,). According to Proposition 2.1.10, Qmr(Qs) = Qmr(R). 
Therefore Z(Qa) C Z(Qm,) and Z(Qa) = Z(Qmr). Analogously 
one can show that Z(Q,) = Z(Qmp). 

If q E Q,, and qr = T q  for all T E R, then (qx - xq)r = 
q(zr) - xqr = srq - zrq = 0 for all x E Q,,, r E (x : R)R. 
Thus q E C. 

Given a semiprime ring R, the subring RC of Qmr (R)  is said 
to be the central  closure of R. Further, R is called centrally 
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closed if it coincides with its central closure (i.e., R is a C- 
subalgebra of Qmr). 

Next we prove the following important  property of the 
extended centroid. 

Theorem 2.3.2 Let R be a semiprime  ring, Q = Qmr(R), 
RUR C_ RQR a subbimodule of Q and f : RUR + RQR a 
homomorphism of bimodules. Then there  exists  an  element X E 
C such  that f ( U )  = Xu for all U E U .  

Proof. By Proposition 2.1.7, W = U n R is a nonzero ideal 
of R. We set I ( w )  = (f(w) : R)R and V = CWEwwI(w). Since 
f ( r w )  = rf (W) for all r E R and W E W ,  we have f(rw)I(w) C_ 
R and I ( w )  C_ I ( T w ) .  It follows that V is a left ideal of R. 
Hence, being a sum of right ideals, V is an ideal of R. Note 
that f(V) = Cf(w) ( f (w)  : R) C_ R. Define a mapping g : 
V @ rR(V) + R by the rule g(v + v’) = f (v)  + v’ for all v E V ,  
v‘ E TR(V). Clearly g is a homomorphism of R-R-bimodules. 
Since V @ rR( V )  E D( R),  there exists an element X E Q such 
that g($) = Xz for all x E V @ PR(V). Note that 

Xrz = g(rx) = rg(z) = rXx for all x E V r ( V ) ,  ,r E R. 

Hence rX = Xr for all r E R and so X E C by Remark 2.3.1. 
Further,  let U E U, D = (U : R)R and d E D. Then for all 
r E ( f (ud )  : R)R we have udr E V and 

f(u)dr = f (udr)  = g(udr) = Xudr, ( f .(u) - X U )  dr = 0. 

Therefore (f (U) - Xu) d = 0 for all d E D and so f (U) = Xu for 
all U E U (see Proposition 2.1.7(iii)). The proof  is complete. 

Now, using the above theorem and  the Weak Density Theo- 
rem (Theorem 1.1.5), we will  prove the following result. We con- 
sider Q as a left C-module. Then Q is a right Endc(Q)-module. 
Denote by R(1) (R(,)) the subring of Endc(Q) generated by all 
left (respectively, by all right) multiplications by elements of R 
and  put S = R([) R ( r )  C_ Endc(Q). 
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Theorem 2.3.3 Let R be a semiprime  ring,  Q = QT(R),  C = 
z(Q) and q1,q2, . . . , qn E Q. Suppose  that 91 # C?.2 Cqi. Then 
there  exist an element p = Cgl lai,rbi E R(l)R(,) such  that 

Proof. According to Theorem 2.3.2 Q is a closed right S- 
module and C = End(Qs). Setting T = S, A = C and M = 
N = Q, we note that T is a total S-submodule of the right 
S-module H o ~ ( A M ,  A N )  = Endc(Q). Indeed, for any 0 # 
q E Q we have qT = RqR 2 Rq(q : R)R # 0. Now apply 
Theorem 1.1.5. 

For the convenience of the reader who  is interested in the 
prime ring case only we will first prove the most important 
properties of the extended centroid of prime rings and  then 
continue the discussion of the semiprime ring case. 

The  extended  centroid of prime  rings First of all we 
note that  the extended centroid C of a prime ring R is a field. 
Indeed, let 0 # c E C. We shall show that c is invertible. Clearly 
cU C R for  some  nonzero ideal U of R and cU is an ideal of R. 
Since any nonzero ideal of R is dense and  the  annihilator  in R 
of a central element of Q is a two  sided ideal, we infer  from 
Proposition 2.2.l(iii) that rR(c) = 0. Hence CUR E UR and  the 
mapping f : cU + U given  by the rule f(cu) = U for all U E U 
is  well-defined. Letting t denote the element { f ;  CV} E Q, we 
note that tr = rt for all r E R, and so by Remark 2.3.1, t E C. 
Obviously tcu = U for all U E U and so tc = 1. 

Proof. If a, b are C-independent, then by Theorem 2.3.3 
there exists an element p = CEl lairbi E R(l)R(r) such that 
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d = a - p # O a n d b . p = O .   F o r a l l r E R w e h a v e  

and bRd = 0. Choosing IC, y E R such that 0 # bx E R and 
0 # dy  E R we conclude that (bz )R(dy )  = 0 in contradiction to 
primeness of R. Thus a, b are C-dependent. 

Theorem 2.3.5 Let A be a centrally closed prime ring with 
extended  centroid C and  let B be any  C-algebra  such  that 
rg (B )  = 0 = IB(B). Then  any  nonzero ideal W of the ring 
A @C B contains a nonzero  element of the form a @ b. 

Proof. Pick 0 # W E W and write W = Cy=l zi @ yi where 
we may assume without loss of generality that 21, z2, . . . , I C ~  are 
C-independent. We choose p = lairbi E A(l)A(,) satisfying 
Theorem 2.3.3. Clearly ryls # 0 for  some r, S E B. Then W 
contains the element 
m 

Theorem 2.3.6 Let A be a centrally closed prime ring with 
extended  centroid C and  let  A" be its opposite  C-algebra. Then 
A" @c A g A(l)A(,) C Endc(A)   under  th.e mapping a @ b I+ larb 
(here  we regard E n d c ( A )   a s  acting from  the right). 

Proof. By Remark 1.2.6 the mapping r : A"&A +- A(l)A(,) 
given by the rule X i  ai @ bi I+ lairbi is a well-defined surjective 
C-algebra map. Suppose that ker(.r) # 0. By Theorem 2.3.5 the 
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ideal ker(r) contains a nonzero element of the form a,@ b. Then 
0 = T ( a  @ b)  = larb and aAb = A(larb) = 0, a contradiction to 
the primeness of A. Therefore the mapping r is an isomorphism. 

Let R be a prime ring, Q = Qmr(R) and a, b E Q.  Suppose 
that uRb = 0. Then  either a = 0, or b = 0. Indeed, let a # 0 
andb#O. T h e n O # a z E R a n d O # b y E R f o r s o m e z , y E R .  
We have (az)R(by) = 0, a contradiction to  the primeness of R. 
Now  we are  in a position to prove the following generalization 
of Theorem 2.3.4. 

Theorem 2.3.7 Let R be a prime ring,  Q = Qm,(R) and qi E 
Q ,  1 5 i 5 n. Set M = Cqi. Then  the  following  conditions 
are equivalent: 

(i) For all r l ,  7 - 2 , .  . . ) rn-l E R 

where S, is the permutation group; 
(ii) dimc(M) < n. 

Proof. To  prove that (i) implies (ii) we proceed  by induc- 
tion on n. The case n = 2 follows  from Theorem 2.3.4.  Consider 
now the general case. Suppose that qn C::. Cqi. Then by 
Theorem 2.3.3 there exists an element p = l,rbj E R(l)R(,) 
such that 

Substituting in (2.5) rn-luj in place of r,-1 and multiplying by 
bj from the right, we infer that 
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for all rn-l E R and so 

for all rl, 7-2, . . . , rn-2 E R. Setting M' = C::: Cqi, we infer 
from the induction hypothesis that  dimc(M') < n - 1. Thus 

The proof that (ii) implies (i) rests on the well-known ar- 
gument that  the  standard polynomial vanishes on dependent 
vectors. 

Let Q = Q,,(R) and n > 0. An element a E Q is  called 
an algebraic  element of degree 5 n over C if there exists a 
Polynomial h(z) = x" + C1znL1 + . . . + c,, E C[z] such that 
h(a) = 0. We set u0 = 1. 

Corollary 2.3.8 Let R be a prime  ring, Q = &,,(R), C = 
Z(Q) and a E Q. Then  the  following  conditions are equivalent: 

(i) a is an algebraic element of degree 5 n; 
(ii) c ~ ~ S ~ + ~  a'(o)roau(l)rl . . .  la^(^). = o for all ri E R. 

The  extended  centroid of semiprime  rings We begin 
with the following theorem which describes the properties of the 
extended. centroid C of a semiprime ring R and I the local 
structure of the C-module Qmr(R) as well. 
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Theorem 2.3.9 Let R be a semiprime  ring and Q = Q,,(R). 
Then: 

(i) For any subset V c Q there exists a unique  idempotent 
E(V)  such  that TC(V) = (1 - E ( V ) )  C; moreover TQ(QVQ) = 
(1 - E(V) )Q and E(V)v  = v for all v E V ;  

(ii) FOT any subset V C Q and idempotent e E C,  E(eV) = 

(iii) C is a von Neumann regular  selfinjective  ring  (and 
hence Qmr(C) = C); 

(iv) Any finitely generated  submodule M = Cyz1 Cai of 
the  C-module Q contains a finite subset of nonzero  elements 
(ml, m2,. . . , mk), where li is the  minimal  number of generators 
of M ,  such  that M = Cmi and E(mi)E(mi+l) = E(mi+l) 
for all a = 1 ,2 , .  . . , li - 1; 

(v) Any finitely generated C-submodule M of Q is projective 
and injective. 

e W ) ;  

Proof. (i) Letting I denote the ideal of Q = Q,, generated 
by the subset V ,  we note that rc (V)  = rc( I ) .  Put J = rg( I ) .  
According to Remark 2.1.5, I CB J is a dense ideal of Q. Define 
the mapping h : I CB J + Q by the rule h(i + j )  = i for all 
i E I ,  j E J .  Clearly e = [h; I @ J ]  E Qmr(Q) = Q (see 
Theorem 2.1.11), We note also that e2 = e and eq = qe for 
all q E Q. Hence e E C. We claim that TC(I )  = (1 - e)C. 
Indeed, let c E C be such that IC = 0. Then c(l - e)(i  + j )  = 
cj = c(i + j )  for all i E I ;  j E J. Since I @ J is a dense ideal 
of Q, c = c(1- e) and c E (1 - e)C. On the other hand the 
equality (1 - e)I = 0 implies that rC(I) 2 (1 - e)C. Therefore 
rc (V)  = rc(I)  = (1 -e)C. Being an identity element of the ring 
(1 - e)C, the element 1 - e (and so e) is uniquely determined. 
Note that (1 - e) ( I  + J )  = J .  Hence rQ( I )  = J c (1 - e)&. On 
the other  hand the inclusion rQ( I )  2 (1 - e)& is  obvious, since 
eI = I .  Therefore rQ( I )  = (1 - e)&. 
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(ii) Let c E rc(eV) .  Since ceV = 0, ce E TC( V )  = 
(1 - E(V))C and so 

c = ce + c(1-   e)  E (1 - E(V))C + ( 1  - e)C 

and rc (eV)  c (1 - E ( V ) ) C  + (1 - e)C. On the other  hand 
(1 - E(V))C + (1 - e)C c rc (eV)  and hence 

rc (eV)  = (1 - E(V))C + (1  - e)C 
= [I - E ( V )  + 1 - e - (1  - E(V)(1-  e ) ) ]  C 
= (1 - eE(V) )C .  

Thus E ( e V )  = e E ( V ) .  
(iii) Let c E C and I = QC& = QC. Setting J = TQ ( I ) ,  we 

note that I @ J is a dense ideal of Q. By Lemma 2.1.9, Q is a 
semiprime ring. Since c is a central element, TQ ( C )  = T Q ( C ~ )  and 
so cQQ E c ~ Q Q .  In particular T Q ( c ~ Q )  = TQ(CQ) = J .  Hence 
c2Q@ J is a dense ideal of Q. Define the mapping f : c2Q@ J +- 
Q by the rule f (c2q + j )  = cq + j for all q E Q ,  j E J .  Clearly 
t = [f; c2Q$ J ]  E Qmr(Q) = Q and tq  = qt for all q E Q. Hence 
t E C. Since dc(cq + j )  = c?q = c(cq + j )  for all cq E c& and 
j E J, ctc = c and so C is  von Neumann regular. 

Now  we  show that C is  selfinjective. Let K be an ideal of C 
and f : K +- C a homomorphism of C-modules. It is enough to 
prove that there exists an element c E C such that f ( x )  = cx 
for all x E K.  To this end we set e = 1 - E ( K )  and  note that 
K@eC is a dense ideal of C. By Zorn's  Lemma K has a maximal 
subset D' of orthogonal idempotents. Setting D = D' U {e} ,  we 
claim that rc(D) = 0. Indeed, if rc(D) # 0, by (i) r c ( 0 )  = VC 
for  some 0 # v = v2 E C. Since DV = 0 and K + eC is a dense 
ideal of C, we infer that Kv # 0. Then vk # 0 and v k y v k  = vk 
for  some k E K, y E C. Therefore W = v k y  E K is a nonzero 
idempotent orthogonal to all idempotents in D', a contradiction 
to  the choice of D'. Hence TC( D) = 0 and so by the above result 
TQ(QDQ) = 0, which means that L = DQ = QDQ is a dense 
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ideal of Q and DC = D'C + eC is a dense ideal of C as well. 
Clearly L = @dEDdQ. Define the mapping f' : L + Q by the 
rule 

where qd E Q and only a finite number of qd's are nonzero. 
Obviously c = [f'; L] E C and f'(x) = cx for all x E L. It 
follows immediately from the definition that m = f'(2) = f(x) 
for all x E D'C. For y E K, d E D' we then have f (y)d' = 
f(d')y = cyd' and f ( y ) e  = f(ye) = 0. It follows that (cy - 
f ( y ) ) ( D C )  = 0, whence f(y)  = cy for all y E K, i.e. C is 
selfinjective. 

(iv) First of all we note that given any q E Q, the C-modules 
Cq and CE(q) are isomorphic. Since C = CE(q)@C (1 - E(q)) ,  
we conclude that Cq is an injective C-module. 

We proceed by induction on n. The case n = 1 is obvious. 
Suppose that our statement is proved  for t < n. Then the mod- 
ule M' = C::. Cui contains a finite subset mi, mi,. . . , mil of 
nonzero elements such that k' is the  the minimal number of gen- 
erators of M', M' = @Ll Cm: and E(m$!3(m:+,) = E(m:+,) 
for all i = 1,2, . . . , k' - 1. From the above observation it follows 
that M' is an injective C-module and so M-= M' @ N for  some 
C-submodule N .  Since ai E M' for all i 5 n - 1, we infer that 
the module N is generated by the canonical projection a of a,. 
We set 

eo = 1, ei = E(mi),  mi = m: + (ei-1- ei)a for 1 5 i 5 k', 

IC = { k'+ 1 if epu # 0. ' 
k' if ekm = 0; 

m k t  if k = L'; 
m k = {  ek'a if k # k'. ' 

One can easily  check that M = @F=l Cmi and Cmi Cei @ 
C(ei-1 - ei)E(a). Hence miC = (ei + (ei-1 - ei)E(a))  C and 
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E(mi) = ei + (e i - l -   e i )E(a) .  We leave it for the reader to check 
that E(n~i )E(mi+~)  = E(mi+l) for all i = 1,2 , .  . . , k - 1. 

We  show that k is the minimal number of generators of M .  
It was noted above that  the mapping a : Cmk +- CE(mk) 
given  by the rule cmk I+ cE(mk) is an isomorphism of C- 
modules. Pick P to be a maximal ideal of C containing l - 
E(mk). Clearly E(mk) $ P. Hence PCE(mk) # CE(mk) and 
so PCmk # Cmk. Since E(mi)E(mk) = E(mk),  E(mJ $ P 
for all i = 1,2 ,  . . . , k .  Therefore PCmi # Cmi for all i. Taking 
into account the equality P M  = &PCmk, we conclude that 
M/PM S &:=,Cmi/Pmi and so M/PM is a k-dimensional  lin- 
ear space over the field C/P. Since any generating subset of the 
C-module M determines a generating subset of the vector space 
M/PM,  we conclude that k is the minimal number of generators 
of M .  

(v) By the above result M = @&mi. Since Cmi g CE(mi) 
and CE(mi) is a projective and injective C-module, we conclude 
that M is projective and injective. 

Keeping the notations of Theorem 2.3.9(iv), we will call 
the number k the dimension of the C-module M and  denote 
it by dimc(M).  The idempotents just introduced have the 
following  useful property. 

Lemma 2.3.10 Let R be a semiprime ring, Q = Qmr(R) and 
S,T subsets of Q. Then  the  following  conditions are equivalent: 

(i) SIT = 0 for   some I E Z>(R); 
(ii) TQS = 0; 
(iii) E(S)T = 0; 
(iv) E(T)E(S )  = 0. 

Proof. (i) + (ii) Consider V = TQSI. Clearly V is a 
submodule of the right R-module Q and V 2  = 0. Since R is a 
semiprime ring and V n R  is a nilpotent right ideal of R, we have 
V n R = 0. It follows  from Proposition 2.1.7 that TQS = 0. 
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(ii) + (iii) Letting I denote the ideal of Q generated by the 
set S, we note that 

T C l g (1 )  = ~ g ( 1 )  = (1 - E(S))Q 

(see Theorem 2.3.9). It follows that E(S)T E(T)rg(I)  = 0. 
(iii) + (iv) By Theorem 2.3.9 we have 0 = E(E(S)T)  = 

(iv) + (i) According to Theorem 2.3.9(i), E(S)S  = S and 
E(S)E(T)*  

E(T)T = T.  Hence 

SRT = (E(S)S)  A (E(T)T)  = ( E ( S ) E ( T ) )  SRT = 0. 

Using the above results, we are now able to  state and prove 
the analog of Theorem 2.3.4 for semiprime rings. 

Theorem 2.3.11 Let R be a semiprime  ring,  Q = Qmr(R), 
a,  b E Q and e = E(a)E(b). Suppose that axb = bxa for all 
x E R. Then there  exists an invertible  element  c E C such that 
ea = ceb. 

Proof. Without loss of generality we can assume that e # 0. 
Suppose that ea e (eb)C. By Theorem 2.3.3 there exists an 
element p = CEl lairbi E R@(T) such that d = (ea) - p  # 0 and 
(eb) - p  = 0. Note that eaxeb = e(axb) = ebxea for all x E R. 
Further for all T E R we have 

m m 
0 = ear c aiebbi = x(earaieb)bi 

i=l i=l 
m 

= C(ebraiea)bi = ebr c aieabi = ebrd 
i=l i=l 

and ebRd = 0. Then E(eb)d = 0 by Lemma 2.3.1O(iii). On the 
other  hand E(eb) = eE(b) = e by Theorem 2.3.9(ii). Hence 

m m m 

0 = ed = e c aieabi = c aie2abi = c aieabi = d ,  
i=l i=l i=l 
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a contradiction to d # 0. Therefore ea E (eb)C and ea = deb for 
some c' E C. Since E( ea) = e and rc (ea) 2 rc ( d )  , we conclude 
that 

(1 - e ) ( l  - E(c')) = 1 - E(c'), and eE(c')  = e 

and so E ( e d )  = e. It follows that r c ( e d  + 1 - e )  = 0. Since C 
is  von Neumann regular, c = ed + 1 - c is invertible. Clearly 
ceb = deb = ea. 

Corollary 2.3.12 Let R be a semiprime ring with  extended  cen- 
troid C and v = v2 E R. Set C, =. {c  E C I CV E R}. Then 
Z(vRv) = Cvv. In particular, if R is  centrally  closed,  then 
Z(vRv) = CV. 

Proof. Obviously C,v Z(vRv).  Let d E Z(vRv) .  Then 
vd = d and rc(d) 2 rc(v). It follows that e = E(d)E(v)  = E(d). 
For any x E R we have vxd = (vzv)d = d(vzv) = dxv and so by 
Theorem 2.3.11 d = ed = cev for  some invertible element c E C. 
Therefore d E C,v and Z(vRv) = C,v. 

Theorem 2.3.13 Let A be a  centrally closed semiprime ring 
with  extended  centroid C and  let A" be its  opposite  C-algebra. 
Then A"&A g A(I)A(,) C Endc(A) under  the  mapping  a@b I+ 

larb.  

Proof. By Remark 1.2.6 the mapping r : A"@cA + A(l)A(r) 
given  by the rule Ci ai @ bi I+ lairbi is  a  well-defined  surjec- 
tive C-algebra map. Suppose that 0 # ai @ bi E ker(7). 
Consider the C-submodule M = Cui. By Theorem 2.3.9 
M = @&Cdj for  some d l ,  4, . . . , dm E M .  Since all ai's are lin- 
ear combinations of dj's with coefficients in C, we can assume 
without loss of generality that M = @y.lCai. Furthermore, 
since 
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we can also assume that E(ai) = E(bi) (see Theorem 2.3.9(ii)). 
By Theorem 2.3.3 there exists an element p = C:=, Z,,r,,, E 
A(l)A(,) such that 

t 

alp = C U k a l V k  # o and aip = O for i 2 2. 

The inclusion xi ai @ bi E ker(.r)  is  equivalent to  the equality xi a i x b i  = 0 for all x E A. Substituting ?&x instead of x and 
multiplying by u k  from the left the above equality, we infer that 

k=l  

for all x E A. Taking into account that E(b1) = E(a1) and 
E(al)al = al, we infer  from  Lemma 2.3.10 that 

0 = E(b1) X U k a l V k  = c U k ( E ( b 1 ) a l ) v k  = c U k a l V k  
k  k  k 

a contradiction to X I ,  U k a l V k  # 0. The proof  is complete. 

We close this section with the following  useful result due to 
S. Montgomery [230]. 

Proposition 2.3.14 Let R be a semiprime (prime) ring, Q = 
Qs(R),  0 # e2 = e E Q and A = eQe n R. Then A is a 
semiprime  (respectively, prime) ring  and eQe = Q,(A). 

Proof. Pick I E Z(R) such that eIUIe R. Letting J = I 2  
we note that eJe 5 R and so eJe E A. Suppose that aAa = 0 
for  some a E A. In particular aeJea = 0. Since ae = a = ea, 
a Ja  = 0 and hence (a J ) 2  = 0. As R is semiprime, we .conclude 
that aJ = 0 and so a = 0. Therefore A is semiprime. Suppose 
now that R is prime and aAb = 0 for  some a, b E A. Then again 
aJb = 0 and hence (bRaJ)2 = 0. It follows that bRa = 0 and so 
either a = 0, or b = 0. Hence A is prime. 
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We claim that if eqeIe = 0, q E Q ,  I E Z(R),  then eqe = 0. . 
Indeed, by Lemma 2.3.10 we have eqe = eqeE(e) = 0. As a 
corollary we see that if I E Z(R) such that eIe c R, then eIe c 
I ( A ) .  Indeed, suppose (eqe)(ele) = 0 for eqe E A. Then by the 
above  claim we have eqe = 0, which  shows that ZA(eIe) = 0, i.e., 
eIe E Z ( A ) .  

We  now proceed to show that eQe = Q,(A) by verifying 
the four properties (i) - (iv) of Proposition 2.2.3. Clearly A C 
eQe. Next, given eqe E eQe, let I E Z(R) be such that e l ,   l e ,  
eqeI,  Ieqe are contained in R. Setting J = 12, we see  from the 
preceding paragraph that eJe E Z(A), and it is  also clear that 
(eqe)(eJe),  (eJe)  (eqe) are contained in A, thus proving (ii). 
Now suppose eqeK = 0 for  some K E Z(A) and 0 # eqe E eQe. 
Pick I E Z(R) such that e l  c R and Ieqe c R and  set J = 12. 
By the above claim 0 # eJeqe G A. Thus eJeqeK = 0, a 
contradiction to K E Z ( A ) ,  and so eqe = 0 and (iii) is  proved. 

To prove (iv) we are given mappings f : KA + AA, g : 
AK + AA, K E Z(A),  such that zf(y)  = g(z)y for all z,y E K.  
Our  task is to find an element eqe E eQe for  which f(x) = eqes 
and g ( x )  = zeqe for all x E K .  Again letting J = 12, where 
l E Z(R)  such that e r ,   l e  are contained in R, we set U = J K J ,  
V = TR(U)  and  note that U + V E Z(R).  We define a map 
F : U + V + R by the rule: 

c aikibi + v I+ c f(eaiki)bi, ki E K ,  ai, b( i )  E J ,  v E V 

(using the fact that eaiki = (eaie)ki E AK c K) .  To prove 
that F is  well-defined suppose that C ai ki bi = 0 and  set x = 
Cf(eaiki)bi. On the one hand xE(e),=  Cf(eailci)ebiE(e) = z. 
On the other  hand, for all reR, 

zre = C f(eaiki)(ebire) = C f(eaikibire) 

= f (e  [C aikibi] re) = 0. 

By Lemma 2.3.10 zE(e)  = 0 and so x = 0. Clearly F is a right 
R-module map  and so there is an element q E Q,. such that 
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q(u + v) = F ( u  + v), U E U, v E V .  In particular qak = f ( e a k ) ,  
a E J ,  k E K ,  and qv = 0, v E V .  

From qV = 0 it is  easy to see that Vq = 0. From J K J V  = 0 
we first obtain K J V  = 0, whence  from  Lemma  2.3.10 we see 
that Ke’ = 0, where e‘ = E(V).  Suppose ee’ # 0. Choose 
l E Z(R) such that ee’l,  lee‘ are contained in R and  set L = 12. 
Then ee’L # 0 and so 0 # ee’Lee’ G A. But Kee’Lee‘ = 0, in 
contradiction to K E Z(A),  and so ee’ = 0, and with it eV = 0. 

Next, for k ,  l E K ,  a, b E J ,  we see that 

Thus [kaq - g(lcae)]bZ = 0 and, from the preceding paragraph, 
we then have [kaq - g(kae)](  U + V) = 0, whence kaq = g(kae) .  
Therefore q E Qs. Then from 

~ a f ( k )  = Zuef ( k )  = g(lae)k = laqk 

we see that U [ f ( k )  - qk] = 0 and,  in view  of the preceding 
paragraph, that (U + V ) [ f ( k )  - qk] = 0. Thus f(k) = qk,  from 
which it follows that f ( k )  = keqe for all k E K.  Similarly, one 
shows that g ( k )  = keqe for all k E K ,  and  the proof is complete. 

The most important properties of the extended centroid of 
prime rings and  its key  role in the definition of generalized 
identities of prime rings were  discovered  by W. S. Martindale 
[205]. Theorem 2.3.4 and Theorem 2.3.6 are taken from  [205] 
(see  also  [214]). Regularity of extended centroids of semiprime 
rings was  proved by S. Amitsur [8]. Other  properties of extended 
centroids of semiprime rings were  proved by K. I. Beidar [21]. 
Theorem 2.3.7 was proved in the more general situation of prime 
(not necessarily associative) a-rings by  Yu. P. Razmyslov  [247]. 
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2.4 Rings of Quotients of 
Coproducts 

Let A = A1 UK A2 be  the coproduct of algebras AI and A2 with 
1 over a field K ,  with each  dimK(Ai) > 1. By Corollary 1.4.11 
we  know that A is a prime ring. It is our purpose in the present 
section to prove that if each dimK(Ai) > 2 and at least one 
Ai is a domain,  then Qs(A) = A, i.e., A is equal to  its own 
symmetric ring of quotients. This is a special case of far more 
general results but is the only result needed in  this book (s7.4). 
For  more general coproducts R = R1 Ua Rz, where R1 and R2 
are so-called A-rings with 1 over a division ring A, Qs (R) has 
also  been determined (see  [217],  also  [190],  [215],  [216], [223]). 

For the time being we assume that A = A1 LTK Al, A1 and 
A2 with 1 over a field K ,  with each  dimK(Ai) > 2. We shall 
use the terminology and lemmas developed in section 1.4 and 
suggest the reader reacquaint himself with these matters. We 
let Q = Qs(A) denote the symmetric ring of quotients of  A. 

We  fix a nonzero ideal I of A and  let 

Next we fix a E I such that a is  0-pure of even height n = lul > 0 
and  thus we may write a = a12 + u21. For q E &I, we let b, = qa 
and c, = aq (when the context is clear we will sometimes write 
b = b, and c = c,). We have immediately the simple relationship 

Since a is  0-pure of even height it follows  easily  from  (2.6) and 
Lemma 1.4.10 that lb,l = IC,[ = m,. Clearly b, is 0-pure if 
and only if c, is 0-pure, and b, is (i, j)-pure if and only if c, is 
(i, j)-pure. 

Lemma 2.4.1 If q E QI is such  that m, < n, then q = 0. 
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Proof. If q # 0, choose r E I such that 0 # rq E A. 
Therefore rqa # 0 (since a is 0-pure), whence b = qa # 0. 
We write b = blj + b2jt7 whence without loss of generality we 
may assume blj # 0 (mod where m = m,. Now choose 
y', y" E A2 such that y' and y" are K-independent mod Ho  (this 
is  possible  since dim~(A2) > 2). Setting c' = ay'q. E A, we see 
from ( a y ' q ) ~  = ay'(qa) that 

c'a = ay'b. (2.7) 

It follows  from  (2.7) that IC'] = m + 1, and examination of the 
(2, j)-component of (2.7)  yields 

f&aj'j 3 U21Y'blj (mod 

By Lemma 1.4.9 (we are assuming m + 1 5 n) there exists 
ejfl E Hj,l n-m-l such that ajtj = ejtly'blj  (mod P - ' ) .  Similarly 
there exists f j t l  such that ajtj fyly"b1j. It follows that ejtly' 3 

f j ~ l y " .  By Remark 1.4.8 we see in particular that ejtl = 0 (since 
y', y" are K-independent mod HO). This forces the contradiction 
ujtj 0 and the lemma is proved. 

Lemma 2.4.2 If q E Q1 is such  that m, > n, then there  exists 
r E A such  that m,+ < m, = m. 

Proof. We let b = b, and write b = blj+bqr (possibly b1j E 0 
or b,t 0). Likewise  we have c = c, = cu + c2jr. Examination 
of the (i, j)-component of ca = ab shows that 

c1jajr.j = ~ 1 2 b p j .  (2.8) 

Applying Lemma 1.4.9 to (2.8), we see  in particular that blj E 
eljajtj  (rnodH"-l) for  some e1j E H;-". In exactly the same 
fashion b2jt 3 f2jtujjt for suitable f 2 j t  E H2jt m-n . Setting T = 
e1j + f i j t  we have 

(Q - r)a = b - ra E blj + b2jl - (e1j + f2jr)(ajjt + q j )  
- = (bl j  - eljajtj) + (b2jt - f2jrajtj) G o ( m o d ~ ~ - l ) .  
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In  other words m,+ < m and  the lemma is  proved. 

Lemma 2.4.3 If q E Q1 is  such  that m, = m and i is  given, 
then  there  exist X, p E K such  that ( q  - X)a paii! ' 

Proof. We write b = b, = blj  + b2j1, C = c, = cu + C 2 j l .  We 
may assume that bl2 0. From (2.8) we obtain ~ 1 2 ~ 1 2  al2bl2 

and application of Lemma 1.4.9 yields b12 0 0 1 2  for  some a E 
K.  Suppose b21 0. Then 

Also qa = b b12 0612. Suppose that bzl 0, and hence 
b21 Pa21 for  some p E K .  Then 

( q  - a)a = b - aa E b12 + b21 - aa12 - aazl 3 (p  - a)azl.  

On the other hand 

The four  cases just discussed  show that  the lemma has been 
proved. 

With these lemmas to draw on we are now in a position to 
prove 

Theorem  2.4.4 Let A = A1 U K  A2 be the coproduct of algebras 
A1 and A2 with 1 over  a  field K ,  with  each dimK(Ai) > 2 and 
at  least  one of the Ai 'S a domain.  Then Q,(A) = A.  

Proof. We may assume that A1 is a domain. Suppose there 
exists Q E Qs such that q 4 A. We have q1 + I q  G A for 
some nonzero ideal I of A, and we fix a E I ,  a 0-pure of even 
height n. Repeated application of Lemma 2.4.2, (if necessary) 
together  with Lemma 2.4.1 shows that we may assume without 
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loss of generality that m, = n, whence by Lemma  2.4.3 we may 
assume that qa 3 pa12, p E K .  In fact we may furthermore 
assume that qa f a12 (just replace q by p-lq). It then follows 
from  (2.6) that also uq = a12. 

We claim now that A1 = K @ TI where 2'1 = {x E A1 I xq = 
0). Indeed, for x E A1 we see immediately that Izqal = lzal2I 5 
n. In case lxqal < n the by Lemma  2.4.1 xq = 0 and we are 
finished. If lsqal = n then by Lemma 2.4.3 there exist Q, p E K 
such that (xq - a)a Pal2 3 Pqa, i.e., (sq - Q - Pq)a = 
0 (modH"-l). By Lemma 2.4.1 again xq - Q - Pq = 0, i.e., 
(x - P)q = Q. If Q # 0, we set x0 = a - l ( x  - P) and note 
that xoq = 1. From this we obtain  a contradiction a = xoqa = 
xoa12 + . . . (just compare the  (2,l)-components of both sides). 
Therefore we are left with Q = 0 and accordingly (z - P)q = 0. 
This places z -P E TI, and so we have  shown that A1 = K @ T I .  

We next claim that A1 = K@T', where T2 = {x E A1 I qx = 
x}. Indeed, since 

a(1 - Q )  = a - aq = U12 + a21 - a12 = a21, 

the obvious analogue of the preceding claim may be invoked, 
with 1 - q playing the role of Q. 

Since  dimK(A1) > 2 and A1 = K@T1,  TI # 0. Choose tl # 0 
in 2-1 and  let t2 E T2. We see that 0 = tlqt2 = tlt2 and by our 
assumption that A1 is a domain we conclude that T' = 0. We 
therefore reach the contradiction that A1 = K and the theorem 
is proved. 

2.5 Derivations  and  (Anti)automor- 
phisms 

Let R be a semiprime ring. We set Qmr = Qmr (R),  Qr = Qr (R)  
and Qs = Qs(R)- 
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Proposition 2.5.1 Any derivation 6 of a semiprime ring R can 
be extended  uniquely to  a derivation of &m, (we shall let 6 also 
denote  its  extension  to &m,). Furthermore Q: C Q, and Q: c 
Qs . 

Proof. Given any dense right ideal K of R, we set K,5 = 
C z E K x ( x 6  : K)R. Clearly K6 S K is a right ideal of R and 
(K*)* G K .  We claim that K6 is a dense right ideal of R. 
Indeed, let U, W E R and U # 0. Since K is a dense right ideal 
of R, 'UT E K and ur # 0 for  some r E R. As we already know 
((W)* : K)R is a dense right ideal of R. Therefore urr' # 0 
for  some r/ E ((W)* : K)R (see Proposition 2.1.1). Clearly 
wrr' E K6 and so our claim is  proved. 

Let q E Q,,. Then qJ E R for  some J E D(R) .  We define 
f : JJ + R by the rule f (x) = (qx)6 - qx' for all x E Ja. For 
r E R, a E JJ we have 

f(ar) = (qar)* - q(ar)* = ((qa)r)* - q(ar)* 

= (qa)*r + (qa)r* - qar' - qa6r = f(a)r. 

Therefore [f; J J ]  E &m, and we define q' = [f; Js]. Hence 
q* E &m+-, and so 6 has been extended uniquely to an element 6 
of Endz(QmT) such that 

q6a = (qa)' - qad, (qu)' = q*a + qa' for all a E JJ. (2.9) 

Note that q6 JJ G R. 
Let p ,  q E Q,,. By Lemma 2.1.8 there exist dense right 

ideals J ,  I of R such that p J ,  qJ,  pq J R, I c Ja and qI  C JJ 
as well. Then according to (2.9) we have 

(Pq)*x = (Pqx)* - P P *  = p'(qx) + p(qx)* - pqx* 
= (P'S + Pq% 

for all x E I .  Hence [(pq)* - p'q - pq6]x = 0 and so by Propo- 
sition 2.1.7 we have (pq)* - p6q - pq6 = 0. Therefore 6 is a 
derivation of Q,,. 
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Now let q E Qr . Then qI E R for  some  dense ideal I of 
R. Clearly ( I2)*  G I .  Letting J denote 12, we conclude that 
q*J E (qJ)* + qJ* E R and so q6 E QT. 

Given any q E Qs,  we have qI + Iq E R for  some  dense ideal 
I of R. We already know that q* E Q,.. Again  for J = I 2  we 
infer'that Jq* C (Jq)* + J*q E R and  thus q* E Qs. The proof 
is  complete. 

Let Q E (Qmr,  Q?, Qs}. Proposition 2.5.1 enables us to 
regard Der@) as a Lie subring of End2 (Q)  where 2 is the ring 
of integers. We may  also  regard C as contained in Endz(Q)  via 
the multiplication x I+ m. Endz(Q)  becomes a C-ring accord- 
ing to xtc = cxt,  x E Q, t E Endz(Q) ,  c E C. If 6 E Der(Q),  
c E C, and x ,y  E Q, then 

(xy)*" = c(zy)* = cx*y + cxy* = x*cy + zy*c 

and so 6c E Der(&), Thus Der (Q)  is a submodule of the 
right C-module EndZ(Q) and in particular (Der (R))C is a C- 
submodule of Der(&). It is important to point out  that in 
general c E C does not commute with 6 E Der(Q), but we do 
have the commutation formula 

c6 = SC+ c6, c E C, S E Der(R).  (2.10) 

We let Di = Di(R) denote the inner derivations of Q, i.e., all 
derivations of Q of the form ad(q), q E Q. This is a (possibly) 
larger set of derivations than  the set of X-inner derivations of 
R (so named by S. Montgomery in honor of Kharchenko), the 
latter being those of the form ad(q) where [R, q] E R. 

Remark 2.5.2 Let q E Q,? be such.  that ad(q) is an X-inner 
derivation of R. Then q E Qs. 

Proof. Let J = (q : R)R. Since [R, a] ,  qJ E R, Jq 2 
R as well.  Hence RJq E R. Letting I denote RJ, we .note 
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that lR(I) = 0 and so I E Z(R) (see Proposition 2.1.1 and 
Remark 2.1.4). Further, again since I q ,  [R, q] R, q1 C_ R as 
well and so q E Qs. 

Note that Di is a Lie ideal of Der(Q), and in fact we have 
the specific formula: 

The Lie ring in which we are primarily interested is 

D = D ( R )  = Der(R)C + Di. 
If R is a prime ring and @ is the prime subfield of C, then D is 
a Lie algebra over @. 

We  now turn our attention  to  the set of all automorphisms 
and  antiautomorphisms of a semiprime ring R. This  set forms a 
group under composition of mappings and we denote this group 
by G = G(R). 

Proposition 2.5.3 Any automorphism o of a semiprime  ring 
R can be extended  uniquely to an  automorphism of Q,,. (we shall 
let CT also denote its extension to  Qmr) .  Furthermore Q: = Q,. 
.and Q: = Qs. 

Proof. Let q E &m,-. Then qJ C_ R for  some  dense right 
ideal J of R. Setting I = J", we note that I is a dense right 
ideal of R. Define f : I + R by the rule f(x) = (qxU-l)" for all 
x E I .  Then for T E R we have 

and SO [f; I ]  E Qmr. We define q' = [f;  I ] .  Clearly the mapping 
CT : Qmr + Q,, is additive,  and so U has been extended uniquely 
to  an element CT of Endz(Qm,.) such that 

q"x" = (qa)" for all x E J. (2.12) 
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Note that qaJu C R. 
Let now p , q  E Q,,. By Lemma 2.1.8 qJ ( p  : R)R for 

some dense right ideal J of R. It follows  from (2.12) that for 
x E J we have 

(pq)"z" = (pqx)" = (p(qx))" = p"(qx)" = paquxa 

and so (pq)" = pug". Therefore o is an endomorphism of  Qmr. 
Applying the above argument to o-l, we conclude that o is 
invertible and so an automorphism of Qmr. Obviously Q," = QT 
and Q: = Qs. 

Proposition 2.5.4 Any antiautomorphism o of a semiprime 
ring R can be extended  uniquely to  an antiautomorphism of& = 
Qs (and  thus we have G(R) C G(Q)). 

Proof. Let q E Q. Then q J +   J q  C_ R for  some  dense ideal J 
of R. Note that I = J" is a dense ideal of R as well.  We  define 
f : I -+ R by the rule f ( x )  = (z"-~Q)". It is  easy to check that 
f is a homomorphism of right R-modules and so {f; I }  E QT. 
We set Q" = {f; I )  and  note that 

qaxu = (xq)" for all x E J. 

Further, for all U ,  b E J we have 

u"qaba = a"(bq)" = (bqa)" = (qa)"b" 

and so (qu)" = uaqa. I t  follows that q" E Q s  and hence 
o : Qs -+ Qs. Clearly o is an additive mapping. Let now 
p ,  q E Q. Choose a dense ideal J of R such that JP, p J ,   J q ,  
qJ,   Jpq,   pqJ are all contained in R and  let I = P .  Then 
Iq ,  gI, Ip ,  P I  C J .  For all x E I we have 
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which implies that (pq)(' = q'pu. Now it is clear that U is an 
antiautomorphism of Q. 

We let Gi = Gi(R) be the set of all automorphisms IY of R 
for  which there exists an invertible element t E Qmr such that 
ra = t-lrt for all r E R (i.e., U = inn(t)). It is  easy to see that 
in fact t E Qs. Following S. Montgomery  such automorphism is 
called X-inner  and  the element t is  called a normalizing element 
for R. Clearly Gi is a normal subgroup of G and includes the 
ordinary inner automorphisms of R. 

In  Chapter 7 certain mappings involving derivations, auto- 
morphisms, and  antiautomorphisms will be very  useful in induc- 
tion arguments, and we  now describe some of them. 

Consider the ring &" @2 Q, the tensor product of Q = 
Qmr(R) and  its opposite ring Q" over the integers 2, and the 
ring E n d z ( Q ) .  For any e E E n d z ( Q )  the mapping of Q" 8 2  Q 
into Q" @2 Q given by a @ b I+ a€ @ b is always  well-defined. 
Further for p = Cj xj@yj E &"@2Q we denote the image under 
this  map by p'. The mapping x I+ C j  xjxyj, z E Q is  also well- 
defined and we denote the image under this mapping by IC - p. 
Clearly Q is a right Q" @E Q-module under the multiplication 
x - P , x E Q , P E Q " @ z Q .  

We  will often be interested in cutting down the domain of 
mappings to subsets NZ,J of Q" @2 Q defined as follows:  given 
I E Z(R),  J E D(R),  NZ, J is the subring of Q" 8 2  Q generated 
by all elements of the form r @ r', where r E I ,  r' E J. In case 
I = J E Z(R) we let NI = N ~ J .  We remark that NZ is  always 
an ideal of N = NR and NI, J is  always a right ideal of N .  

Remark 2.5.5 Let R be a semiprime ring with extended  cen- 
troid C ,  Q = Qmr(R), I a dense ideal of R and q1,42, . . . , qn E 
Q. Suppose  that q1 # C:=2 Cqi.  Then  there  exists p E NZ such 
that 

q1 - p  # 0 but q i - p  = 0 for all i = 2,3,.. .,n. 
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Proof. By Proposition 2.1.10, Qmr(I) = Q. Now applying 
Theorem 2.3.3 (with I instead of R), we complete the proof. 

Of particular interest to us  is the  situation where E = (T, an 
element of G = G(R) (especially  when CT E Aut(@), or E = 6, 
an element of D = D(R) . 

For o E Aut(R) the map p I+ p" is a ring homomorphism. 
For 6 E D and y E Q, and p E Q"8zQ we have the following 

formulas whose straightforward verification  will be left to  the 
reader. 

Associated with each element (T E Aut(R) is the  set 

Mu = {S  E Qmr I TS = sr' for all T E R}. 

Clearly M, is a C-submodule of Qmr. It is  called the conjugation 
module of U . If r E Aut(@, then one can easily  prove that 

MUM, = Mu,. (2.14) 

We next  note that 
Mu C Qs. (2.15) 

Indeed, let 0 # t E M,,. We have t I  c R where I = (t : R)R. 
Clearly IU-'t = t l  E R and so for J = RI"" we have J t  S R 
and J E Z(R). Now from J t  = tJ" we conclude that t E Qs. 

Another characterization of M,, for prime rings is  given in 
the following 

Lemma 2.5.6 Let R be a prime ring, (T E Aut(R) and Q = Qs. 
Then 

M,, = {S E Q I S is  invertible in Q and o = inn(s) }  U (0). 
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Proof. It is immediate that M, contains the right side of 
the above equation. Let 0 # S E M,. By  (2.15) there exists 
a dense ideal K of R such that K s  + sK c R. We next note 
that sK is an ideal of R since rsK = sr"K for all r E R. The 
mapping f : sK + R given  by sk I+ k is  well-defined since if 
sk = 0, then 0 = rsk = sr'k for all r E R which implies that 
k = 0. Clearly f is a right R-module map  and  thus determines 
an element q E Qr such that qsk = k for all k E K .  It follows 
that qs = 1, and from sqsk = sk for all sk E sK we see that 
sq = 1 and so S is invertible in Qr. From the definition of 
S we then have s-lrs = r' and s-lr = for all r E R. 
Substituting r = a'"', we obtain asv1 = s-'aa-' for all a E R, 
i.e. s-l E M,-'. Hence  from  (2.15) we infer that s-l E Q and 
so S is invertible in Q. The proof  is complete. 

Corollary 2.5.7 Let R be a prime ring  and B E Aut(R).  Then 
M ,  # 0 if  and  only if B E Gi. 

Remark 2.5.8 If B = 1, then M ,  = C. 

Now  we generalize the notion of C-independence as follows: 
Let q1, ~ 2 ,  . . . , qn E Qmr and ~ 1 , 0 2 ,  . . . , an E Aut(R). Then 

q1 is said to be left dependent on q2,q3,. . . , qn re 0 1 , 0 2 , .  . . ,On 

if q1 E Cy=2 qi (for n = 1 q1 = 0). 
Equivalently, q1 is left independent of q2, . . . , qn re 01, . . . , an 

if q1 # C;=2 M,-luiqi with q1 # 0 in case n = 1. 
In view of the preceding remark, if each ai = 1, then  the 

notion of left independence coincides with C-independence. We 
now prove a useful  "weak density" result for left independence 
due to Kharchenko. 

Theorem 2.5.9 Let R be a semiprime  ring,  Q = Qmr(R), I E 
Z(R),  J E D(R)  and  let q1 be left  independent of qZ,q3,. . . ,qn 
re 01, a2, . . . , On where qi E Q, ai E Aut(R) . Then there  exists 
p E NIJ such that q1 p"' # 0 and qi = 0 for all a 2 2. 
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Proof. The proof  is  by induction on n. The result is clear 
for n = 1 since Iulql J # 0. We  now assume the result true 
for n - 1 and prove it for n. We suppose it is not  true for n. 
By Lemma 2.1.8 there exists L E D(R)  such that L c J and 
qiL E R for all i = 1,2, . . . , n. We let N' = NI,L and  set 

(in case n = 2, we just set B = NI). It is easy to see that B is 
a right ideal of the ring R" 8 R. Hence K = {qn p u n  I p E B )  
(which lies in R since q,L R) is an ideal of R (since it is 
a subbimodule of the right R" @J R-module R). Suppose that 
K = 0. Applying the induction assumption to ql, q2, . . . , 
we find an element p E N' such that q1 - p"' # 0 and qi p'i = 0 
for all i = 2,3, .  . . , n- 1. Clearly p E B .  Hence q n . p " n  = 0 and 
our statement is  proved. Therefore we may assume that K # 0. 
Now  we define f : K + R by the rule qn.pun I+ q1 -/3"', p E B .  
By our assumption that  the theorem is not  true we see that f 
is  well-defined. Clearly f is a right R-module homomorphism. 
By Proposition 2.2.2 there exists an element t E QT such that 
f(x) = tx for all z E K.  This means that t(qn p"n) = q1 p'-" 
for all p E B. Now let p = Cj zj 8 yj E B and r E R. Setting 
y = p(r @ l), we note that y E B. We have 

trun (qn * p"") = c tr""z7qnyj = c t(rzj)'*qnyj 
j  j 

= t(qn y") = Q1 ya' = C ( r z j ) " ' q l y j  

j 

= C ~ ~ 1 ~ 7  q l y j  = rU1 ( ~ 1 .  pol) = r'lt(qn * pun)  

j 

and hence (tr"" -r'lt)k = 0 for all k E K ,  i.e., (tr'cl"n -rt)K = 
0 for all r E R. Setting e = E ( K )  and U = TR( K ) ,  we recall  from 
Theorem 2.3.9 that eU = 0. Therefore (tef"""n -rte)(K+U) = 
0, whence - rte = 0 since K + U E Z(R). It follows 
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that S = te E MUTlun. Since ke = k for all k E K ,  sk = t k  = 
f ( k ) .  Now q1 - sq, must be left independent of q2,43, . . . , qn-l re 
o1, Q , .  . . , a,-l since otherwise ql-sq,  E MUTluiqi, that is, 
q1 E MUTluiqi, a contradiction to  the original hypothesis. 
By our induction hypothesis again, this  time applied to q1 - 
sq,, q2 , .  . . , re al,a2,. . . , a,-l there exists p E B such that 
(ql-sqn).pul # 0. But on the other  hand, writing p = cj XjBYj, 
we have 
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Chapter 3 

The  Method of 
Orthogonal Completions 

Our goal in this  chapter is to describe the method of orthogonal 
completions (see [25],  [33],  [32],  [35], and [228]). In the  study of 
semiprime rings it  turns  out  to be useful if one can reduce the 
problem to  the case of prime rings. However, directly factoring 
a semiprime ring by a prime ideal turns  out  to be ineffective in 
certain cases.  For example, it is  known  (special  case of Theo- 
rem 6.4.4) that every polynomial identity of a prime ring R is an 
identity of its maximal right ring of quotients Qmr(R).  It is nat- 
ural to  try  to prove an analogous result for semiprime rings. The 
direct reduction to  the  case of prime rings is difficult here, since, 
in general, there is no homomorphism Qmr (R)  + QmT (RIP) for 
a prime ideal P of R. 

Similar difficulties arise in considering . a  number of other 
questions connected with the maximal right ring of quotients of 
semiprime rings, in the  study of semiprime rings with involution 
or in the  study of derivations of semiprime rings. As we shall 
show, many of this difficulties of reducing the "semiprime case') 
to  the "prime case" can be successfully  overcome  by the method 
of orthogonal completions, 
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3.1 Basic  Notions  and  Constructions 
In  what follows C will be a von Neumann regular selfinjective 
commutative ring with 1. Clearly QmT(C) = c and so 

rc(T) = (1 - E(T))C 

for any subset T C by Theorem 2.3.9. A unital right C- 
module N is  called nonsingular if for any element O # x E N its 
right annihilator rc(x) is not essential. 

Lemma 3.1.1 Let N be a right C-module. Then the  following 
conditions are  equivalent: 

(i) N is nonsingular; 
(ii) For any  subset T C N there  exists a unique  idempotent 

(iii) E(Te) = E(T)e for any subset T c N and e = e2 E C .  
E(”) E C such  that rc(T) = (1 - E(T))C;  

Proof. (i) + (ii) Let T C N .  Setting e = E(rC(T)), 
we note that I = (1 - e)C + rc (T)  is a dense ideal of C by 
Remark 2.1.5. Since T e l  = 0, it follows  from our assumptions 
that T e  = 0 and so e E rc(T). On the other  hand ec = c for all 
c E rC(T) by Theorem 2.3.9(i). Therefore rc(T) = eC and (ii) 
is proved. From (ii) it follows that rc(a;) = (1 - E(z))C for all 
x E N .  Hence if x # 0, then rc(x)  is not essential for and so 
N is nonsingular. The last  statement is proved  analogously to 
Theorem 2.3.9(ii). 

The criteria of Lemma 3.1.1 yields two corollaries. The first 
one  follows directly from Theorem 2.3.9. 

Corollary 3.1.2 Let R be a semiprime  ring. Then Q,, (R) is 
a nonsingular  module  over its center C.  

Corollary 3.1.3 Let R be a semiprime  ring, Q = QmT(R) and 
D = Der(Q). Then D is a nonsingular  right C-module. 
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Proof. Let d E D. Then rc(d) = rC(Qd) = (1 - E(Qd))C 

Applying the same arguments as in the proof of the Theo- 

which completes the proof. 

rem 2.3.9(iv), one can prove the following 

Remark 3.1.4 Let N be a nonsingular right C-module, M = 
Cy=l a& a finitely  generated  submodule of N and  let k be the 
minimal  number of generators of M .  Then there  exist  elements 
ml, . . . , mk E M such  that M = @L1miC and E(mi)E(mi+l) = 
E(mi+l) for all i = 1,. . . , k - 1. 

We set 
B = B(C) = ( e  E C I e2 = e}. 

A convenient partial ordering of B is  given as follows:  for e, f E 
B e 5 f if e = e f .  Clearly e 5 f if and only if 1 - e 2 1 - f .  
A subset U G B is  called dense if rc(U) = 0 (i.e., E(U) = 1). 
Further, a subset U is said to be orthogonal if uv = 0 for all 
U # v E U. We note that for any dense orthogonal subsets 
U, V G B the subset 

is  dense orthogonal as well. 

Remark 3.1.5 Let T be a subset of B such  that  eT C T for 
any e E B, and  let V be a maximal  orthogonal  subset of T.  
Then U = V U (1 - E(T)}  is a dense  orthogonal  subset of B 
and E(V)  = E(T).  

Proof. Clearly U is an orthogonal subset of B. Suppose 
that 0 # e2 = e E rc(U). Since e ( 1 -  E (T) )  = 0 and rc(T) = 
(1 - E(T))C, we have eT  # 0 and so et # 0 for  some t E T.  
By assumption et E T.  Then V U ( e t }  is an orthogonal subset 
of T.  By.  the maximality of V we conclude that et E V and so 
0 = (e t )e  = et, a contradiction. 
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We set e = E(V).  Since rc(V) 2 rc(T),  we infer that 
eE(T) = e. Clearly U ( l  - e)E(T)  = 0. By the density of U we 
conclude that (1 - e)E(T)  = 0 and so E(T)  = e. The proof  is 
complete. 

In what follows N will be a nonsingular right C-module. A 
subset T E N is  called orthogonally  complete if for any orthog- 
onal dense subset U 5 B and any subset {tu I U E U }  E T there 
exists an element t E T such- that tu = t,u for all U E U .  

We note that  the element t E T is  uniquely determined by the 
conditions tu = t,u for all U E U .  Indeed, assume that for  some 
x E N we have that ux = ut, for all U E U. Then (x - t)u = 0 
for all U E U and so U c rc(x - t )  = (1 - E ( x  - t))C. Since U 
is dense, rc(x - t )  = C and x = t. We denote this element t by 

I' t = c t,u. 
u€U 

Now it is clear that  the intersection of any family of orthogonally 
complete subsets of N is again orthogonally complete. Consider 
next an  arbitrary orthogonal subset V of B and t, E T where 
T is an orthogonally complete subset containing 0. Set W = 
1 - E(V) ,  U = V U {W} and t, = 0. We then define C,',, t,v = 

The following example plays a key  role in the demonstration 
of connections of the orthogonally completion method with the 
classical Los and Horn theorems. 

c,',, tuu. 

Example. Let { R ,  I i E I }  be a family of prime rings with 
extended centroids Ci and maximal right rings of quotients  Qi. 
It is  easy to see that Q = Q,, (n ic l  l$) = ni,g Qi and the 
extended centroid C of l$ is equal to ni,=l Ci. One can 
easily check that a subset T G Q is orthogonally complete if 
and only if T = JJi=l E where E is the canonical projection of 
T into Qi. 

The following proposition gives a characterization of orthog- 
onally complete C-modules. 
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Proposition 3.1.6 Let N be a nonsingular  C-module.  Then 
N is  orthogonally  complete if and  only if N is  an  injective C- 
module. 

Proof. Suppose that N is orthogonally complete and  let 
f : L -+ N is a homomorphism of an ideal L of the ring C. 
According to Baer’s criteria, it is enough to prove that there 
exists an element x E N such that f (y) = zy for all y E L. Let 
V be a maximal orthogonal subset of L n B. Since C is von 
Neumann regular, L = C ( L  n B )  and so E(L)  = E ( L  n B).  By 
Remark 3.1.5, U = V U {l - E(L) )  is a dense orthogonal subset 
of B = B(C). We set xv = f ( w )  for all w E V ,  w = 1 - E(V) ,  
x,,, = 0 and x = xiEu %,U. Let now y E L. Then for all w E V 
we have 

(xy)v = (ZV)Y = z v w l  = f ( v ) w  = f ( W )  = f ( Y 4  = f ( d v .  

(xy)w = (xw)y = 0 = f(yw) = f(y)w. 

Since Vw = 0, LW = 0 as  well.  Hence yw = 0 and 

Therefore rc(xy - f(y)) 2 U and so rc(xy - f (y)) = C, and 
f (y) = zy. Hence N is injective. 

Assume  now that N is injective and  let U be dense orthog- 
onal subset of B,  x, E N ,  U E U .  Note that L = CUEUuC = 
eUEUuC. Define a homomorphism f : L -+ N by the rule 
f(u) = xuu, U E U ,  and  its consequences.  By assumption there 
exists an element x E N such that f(y)  = xy for all y E L. In 
particular xu = f (U) = x,u for all U E U and so N is orthogo- 
nally complete. 

We continue with the following  useful remarks. 

Remark 3.1.7 Let R be a semiprime ring with extended ten- 
troid C ,  U G B(C) a dense  orthogonal  subset, I, = (U : R)R, 
D, E D(R) ,  U E U .  Then: 

(i) I = C u E U  I,u is a dense ideal of R; 
(ii) D = &U DuIuu is a dense right ideal of R. 
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Proof. Since U E C, I, is a dense ideal of R. Hence I is 
an ideal of R. Consider x E rR(I). We have I,ux = 0 for all 
U E U. As I, is  dense, xu = ux = 0 by Proposition 2.1.7. Hence 
U c rc(x)  = (1 - E(x) )C and so rc(x)  = C by the density of 
U. It follows that x = 0 and so I is  dense. 

Now let r1,r2 E R with r1 # 0. Hence E(r1) # 0 and so 
uE(r1) # 0 for  some U E U. By Theorem 2.3.9(ii) E(ur1) = 
uE(r1) # 0 and hence ur1 # 0 as well. Since D, is a dense right 
ideal of R, there exists an element r' E R such that urlr' # 0 
and rzr' E Du. Recalling that I, is a dense ideal of R, we infer 
that urlr'r" # 0 for  some r" E I,. Setting r = ur'r'', we note 
that r2r = r2r'r''u E D,I,u E D and r1r # 0. Thus D is a 
dense right ideal of R. 

Remark 3.1.8 Let x = x&, x,u E N ,  y = C,",, yvv E N 
where x,, yv E N and U, V are dense  orthogonal  subsets of B. 
Then x + y = C ~ v E U V ( x u  + yv)uv. 

Proof. By (3.1) UV is a dense orthogonal subset of B. For 
all U E U, 21 E V we have 

( x  + y)uv = (xu)'u + (y2I)u = x,uv + yvuv = (x ,  + yv)uv 

which means that ' x  + y = Cf,,v(xu + yv)uv. . 

The proof of the following remark is similar to  that of the 
preceding one and is left to  the reader. 

Remark 3.1.9 Let R be a semiprime ring with  extended  cen- 
troid C,  Q = Q,, (R) ,  a E Q, x = C,',, xuu E Q, y = 
EtEv yvv E Q where x,, yv E Q and U, V are dense  orthog- 
onal  subsets of B(C). Then xy = ~ ~ v , = u v x u y v u v  and xu = 
c,',, xuau. 

Now  we are in a position to prove the following important 
results. 
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Proposition 3.1.10 Let R be a semiprime  ring, Qs = QS(R),  
Qr = Q r ( R ) ,  Qmr = Qmr(R ) )  and Di = {ad(q) I Q E Q}. Then 
each of the  right C-modules Qmr, Qr,  Qs and Di is  orthogonally 
complete. 

Proof. Let {q, I U E U) C_ Q,, where U is a dense orthog- 
onal subset of B. We set I ,  = (U : R)R, D, = (Q, : R)R and 
D = CUEU D,I,u. By Remark 3.1.7 D is a dense right ideal 
of R. Since U is an orthogonal subset, D = CBuE~Du1,u. De- 
fine a homomorphism of right R-modules f : D + R by the 
rule f(d,i,u) = q,d,i,u (where d, E D, and i, E I,) and 
its consequences. Setting q = [f; D] E Qmr, we note that 
qd,i,u = q,d,i,u and so (qu - quu)dui, = 0 for all d, E D, 
and i, E I,. Since I, and .D, are dense right ideals, we have 
qu = q,u for all U E U and so Qmr is orthogonally complete. 

If in the above consideration all q, are in Qr, then we take 
each D, to be some dense ideal of R such that q,D, C R. Hence 
D is a dense ideal of R and so q E Qr . If all q, are in Qs, we 
can assume that  the dense ideals D, are chosen in such a way 
that q,D, + D,q, C_ R. Then one can easily  check that Dq C R 
which implies that q E Qs. 

Now let  be given U E B a dense orthogonal subset. For any 
subset {ad(q,) I q, E Qs}  c Di(R) we set q = C&tr~uu and 
note that (zq - qz)u = z(qu) - (qu)z = (zq, - q,z)u for all 
z E Q and U E U. Hence ad(q)u = ad(q,)u for all U E U which 
completes the proof. 

Proposition 3.1.11 Let 0 E T be an  orthogonally  complete 
subset of a nonsingular  right C-module N .  Then: 

(i) Te C_ T for all e E B(C); 
(ii) There  exists an element t E T such  that E( t )  = E ( T )  

(or, equivalently, r c (T )  = rc(t)) .  
Proof. (i) Let x E T and e E B. Since T is orthogonally 

complete, there exists an element y E T such that ye  = ze and 
y(1- e)  = 0. It follows that y = ye  = ze and so ze E T.  



104 CHAPTER 3. ORTHOGONAL COMPLETIONS 

(ii) Consider the  set W = { E ( x )  I x E T ) .  By Lemma 3.1.1 
(iii) we have E(xe) = E(x)e for all e E B and x E T.  Hence 
W e  E W .  Let V be a maximal orthogonal subset of W and 
U = V U { 1 - E (W)  1. According to Remark 3.1.5 U is a dense 
orthogonal subset of B. By definition of the set W for  every 
v E V there exists an element t, E T such that 21 = E(t,). Set 
t l - ~ ( ~ )  = 0 and t = C&tUu. Clearly t E T.  We claim that 
E( t )  = E(T) .  It is enough to prove that TC(T) = rc( t ) .  Clearly 
r ~ ( t )  2 rc(T). Suppose r ~ ( t )  # rc(T). Then (1 - E ( t ) ) x  # 0 
for  some z E T.  We set e = 1 - E(t ) ,  y = ex and w = E(y).  
Note that w # 0 since y # 0. From  Lemma 3.l . l( i i i)  we infer 
that U) = ew. Since t e  = 0, we  have 0 = t(vw) = (tv)w = t,vw 
for all W E V .  Therefore vw. E r ~ ( t , )  = (1 - v)C and so vw = 0 
for all v E V, a contradiction to  the maximality of V. Thus 
E(t)  = E(T) .  

Proposition 3.1.12 Let R be a semiprime  ring Q = Q,(R) 
and CT E Aut(R).  Then M, is a cyclic C-module and its gener- 
ator m, is an invertible  element of the  ring QE(m,). 

Proof. We claim that M, is an orthogonally complete subset 
of Q. Indeed, let U be a dense orthogonal subset of B = B(C) 
and m, E M,, U E U .  Consider the element m = C&vmuu. 
According to Remark 3.1.9 we have 

I I 
x m  = C xmuu = C muxau = mx' 

U E U  U€U 

for all x E R. Therefore m E M, and our claim is  proved. 
By Proposition 3.1.11 E(M,) = E ( m )  for  some m E M,. Let 

e = E(m) ,  I = (e : R)R, J = e1 and K = rR J . Clearly J @ K  
is a dense ideal of R. We note that mJ = J"- m is an ideal of R 
and m J K  = 0. We claim that rR(mJ) = K .  If mJr = 0 where 
r E R, then meIr = mJr = 0. Since I is a dense ideal of R, 

0 
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Qmr(I )  = Q by Proposition 2.1.10. It follows from Lemma 2.3.10 
that E(me)r  = 0. Recall that e = E ( m )  and me = m. Hence 
er = 0 and Jr  = Ier = 0 which  proves our claim. Define a 
homomorphism of right R-modules f : m J €B K + J €B K by the 
rule m x  + y H x for all x E J ,  y E K .  If m x  = 0 where x E J ,  
then m J x  = Ja"mx = 0 and so x E J n K = 0. Therefore 
f is  well-defined. Setting q = [f; m J  + K ]  E Q ,  we note that 
qe = q and qm = e. Note that I e K  = JK = 0. Since I is 
dense, eK = 0. Hence mqK = (me)qK = mqeK = 0. It follows 
that (mq - e ) (mJ  + K )  = 0 and so mq = e. Therefore m is 
an invertible element of the ring e&. Clearly rq = qrU-' for all 
r E R. Hence rm'q = m'qr for all r E R, m' E M,,. It follows 
that M,,q C C and so M,, = M,,e = M,,qm c Cm. The proof  is 
complete. 

We set i(a) = E(M,,).. It follows  from the above result that 
the ring Q = Qmr(R) is a direct sum Q = Qi(a)  @ Q ( l  - i (a))  
of a-invariant ideals and a induces an inner automorphism on 

Now let p be a derivation of a semiprime ring R and Q = 
Qi(a>. 

Q,, (R) We set 

MP = {m E Q I r m  - m r  = E ( m ) r P  for all r E R). 

Since E(ex )  = e E ( x )  for all e E B(C) and x E Q, we conclude 
that MPe c MP. We leave  for the reader the straightforward 
verification of the following remark (see the proof of (2.15) in 
section 2.5). 

Remark 3.1.13 The subset M,, is orthogonally complete and 
C Qs.  

We set z(p) = E ( M P )  and  note that i ( p )  = E ( m )  for  some 
m E MP according to Proposition 3.1.11. Clearly p induces the 
inner derivation :ad(m) on the direct summand Qi(p) .  
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Let N be  an orthogonally complete nonsingular C-module 
and T c N a subset. The intersection of all orthogonally com- 
plete subsets of N containing T is called the orthogonal  comple- 
tion of T and is denoted by O(T).  

Since the intersection of orthogonally complete subsets is or- 
thogonally complete, O(T)  is an orthogonally complete subset 
as well. 

Proposition 3.1.14 Let  N be a nonsingular  orthogonally  com- 
plete  right  C-module and T c N a subset. Then 

O(T)  = {c 'tuu  I U is a dense  orthogonal  subset 
UEU 

of B and (tu I U €  U) LT}. 

Proof. Letting H denote the right side of the above  equal- 
ity, we note that  it is  enough to prove that H is orthogonally 
complete. To this end consider any dense orthogonal subset 
W of B and  let h, = xi,,,, x,,u, E H ,  W E W, where 
xu, E T and U, is a dense orthogonal subset of B. We set 
V = {wu, I W E W, U ,  E U, }. One can easily  check that V 
is a dense orthogonal subset of B. For v = wu, E V we set 
tu = xuw. We  now claim that 

c Ih,w = c 'tvv.  
WEW  VEV 

Indeed, for any v = wu, E V we have 

k L  ) h,w W U ,  = h,wu, = (h,u,)w = X,,U,W = tvv 

which completes the proof. 

The following result follows directly from the preceding propo- 
sition,  Proposition 3.1.10, Remark 3.1.8 and Remark 3.1.9. 
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Corollary 3.1.15 Let R be a semiprime ring. Then: 
(i) its orthogonal  completion O(R)  is a  subring of the ring 

(ii) If I is a  (right)  ideal of R, then O ( I )  is a  (right)  ideal 
Q8 (R); 

of O(R)  as well. 

Example. We  keep the notations of the preceding example. 
Let R = @,g& C &,l &. Clearly Qmr(R)  = Qi. It is 
easy to see that O(R) = niEl &. 

Proof. We first note that 

ep = (e2)p = eep + epe = 2eep,  e E B. 

Multiplying both sides by e, we infer that eep = 2eep and so 
eep = 0. Hence ep = 2eep = 0. We  now have 

9% = (qu)P = (quu)’l = q;u 

for all U E U which  implies the first formula. The second  one  is 
proved similarly. 

Corollary 3.1.17 Let R be a semiprime ring, Q = Qmr(R), 
p E Der(Q) and g E G(Q) . Suppose  that RP 2 R and Rg = R. 
Then O(R)h C O(R) and O(R)g = O(R) as well. 

We continue our discussion of orthogonally complete subsets 
with the following  useful lemmas. 
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Lemma 3.1.18 Let N be a  nonsingular right C-module, Ti c 
N an  orthogonally  complete  subset of N containing 0, 1 5 i 5 n, 
and f : TI xT2 X .  . . Tn -+ N a  mapping  such  that f (tl, . . . , t,)e = 
f ( t l e , .  . . , tne) far all e E B = B(C) and ti E Ti. Then H = 
f (Tl,T2,. . . , Tn) is orthogonally  complete. 

Proof. Let U C B be a dense orthogonal subset and h, = 
f (tul, t u 2 , .  . . ,tun) E H for all U E U where t,i E Ti. Setting ti = 
C,',, &,U, we leave to  the reader the straightforward verification 
of the equality C,',, h,u = f (tl,  tP, . . . , tn), which completes the 
proof. 

The proof of the following lemma is straightforward and we 
leave it  to  the reader. 

Lemma 3.1.19 Let R be a  semiprime ring and  let T and H 
be orthogonally  complete  subsets of Q = Q m r ( R ) .  Then  for  any 
a E Q the  subset 

(U : T)H = { h  E H I ah ET }  

is  either  empty  or  orthogonally  complete. 

Theorem 3.1.20 Let T be an  orthogonally  complete  subset of 
Q = Qmr (R) containing 0, and  let  q E Q. Then there  exists  a 
unique  element E(T; q )  E B = B(C) such  that  q(1- E(T;  q ) )  E 
T and 1 - E(T; q)  2 e for all e E B such  that  qe E T .  Further, 
E(T;  eq) = e E ( T ;   q )   f o r  all e E B. 

Proof. Since B is an orthogonally complete subset of Q, L = 
(q  : T ) B  is orthogonally complete by Lemma  3.1.19.  Because 
0 E T (and hence 0 E L)  we have by Proposition 3.1.11 that 
T e  5 T for all e E B and E(L) = E( eo) = eo for  some eo E 
L. Clearly (i) qeo E T and (ii) e 5 eo for all e E L (since 
eeo = eE(L) = e ) .  We see that E(T; q)  = 1 - eo is the required 
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element. Next let e E B and write E(T;  qe) = 1 - fo. We  wish 
to prove that 1 - fo = e ( 1 -  eo). Indeed, from 

qe(1-   e (1-   eo) )  = qeeo E T e  C_ T 

we have 1' - e ( 1 -  eo) 5 fo and hence e ( 1 -  eo) 2 1 - fo and so 
e ( 1 -  eo) 2 e( 1 - fo). From qefo E T we have efo 5 eo whence 
1 - e fo  2 1 - eo and e ( l  - fo) 2 e ( l  - eo). It follows that 
e(1-eo)  = e(1- fo)  5 1-fo 5 e(1-eo) andsoe(1-eo) = 1-fo 
and the theorem is proved. 

We close this section with the following  useful lemma. 

Lemma 3.1.21 Let B = B(C) and V = {vi I i E I }  a  subset 
of B such  that V e M for  every M E Spec(B).   Then there 
exists  a  finite  subset il, i 2 , .  . . , i k  E I and  pairwise  orthogonal 
idempotents  el,  e2, . . . , ek E B whose sum is equal to  1 such  that 
ej 5 vij for all j = 1,2, .  . . , IC. 

Proof. We have that  the ideal of the Boolean ring B gen- 
erated by V is equal to B and so 1 .,= vil bl CB . . . CB vi,bk for 
some il, . . . , i k  E I and bj E B,  where @ is the Boolean  ad- 
dition (i.e., U @ v = U + v - 2uv for all U, v E B).  Therefore 
vi,B+vi,B+. . .+vi,B = B. We set el = vil. Suppose that we al- 
ready have' found pairwise orthogonal idempotents el,   e2,  . . . , el 
such that ej 5 vij and 

1 R 
C e j B  + C vitB = B. 
j = l  t=l+l 

Then .we set 

el+l = vil+l (1  - el - e2 - . . . - el). 

Continuing in this fashion we find  pairwise orthogonal idempo- 
tents el,   e2, .  . . , ek such that el + . . . + ek = 1 and ej 5 vij for 
all j. 
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3.2 Pierce Stalks 
The content of the present section will depend heavily on sec- 
tion 1.5. 

Let R be a semiprime ring with extended centroid C, B = 
B(C) and Q = Q,,(R). The ring R is called orthogonally com- 
plete, if R = O(R).  If R is orthogonally complete, then eR  E R 
for all e E B by Proposition 3.1.11. Let a be an ordinal number, 
r : W(a)  + N and R = (7; a). An  Q-ring R is said to be or- 
thogonally  complete if R is an orthogonally complete semiprime 
ring and for any e E B, y E W(a) and rl ,  Q , .  . . , r, E R, where 
n = ~ ( y ) ,  we have 

eFT(rl, 7-2,. . . , rn)  = Fy(erl, er2,. . . ,ern). 

In  what follows R will be  an orthogonally complete O-ring with 
extended centroid C and B = B(C). Given any term t = 
t(zl,22,. . . , x,) of signature Q, rl ,  7-2,. . . , r, E R and e E B, 
one can easily  prove by induction on a number of operation 
symbols appearing in t that 

et(r1,  r2,. . . , r,) = t(er1, er2,. . . ,er,). (3.2) 

Let Ap be the set of all predicates either of type ”112 Til”, 
where T is an orthogonally complete subset of R containing 0, or 
” 1 1 2  = g [ [ ” .  In what follows we will  consider R as an R-A-ring. 

It follows directly from the above definition that e R  is an 
Q-subring of R for all e E B. Further, any predicate 112 E TI1 
where T is an orthogonally complete subset of R containing 0 
defines a predicate on eR  as on a subset of R. Here we note that 
if z E eR, then 11% E 2‘11 = 1 if and only if 1 1 2  E eTll = 1. 

Proposition 3.2.i Let R be an orthogonally  complete R-A- 
ring, U an  orthogonal  subset of B and e = x&,u. Then  the 
mapping qv : nuEU Ru + Re given by the  rule {ruu I U E U) H 
~&,r,,u is  an  isomorphism of Q-A-rings. 
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Proof. Using the same argument as in the proofs of Re- 
mark 3.1.8 and Remark 3.1.9, one can easily  prove that qv is a 
homomorphism of R-rings. Clearly it is a monomorphism. Since 

ea = ( p )  a = p u ,  

qv is surjective and so qv is an isomorphism of R-rings. Now let 
T be an orthogonally complete subset of Re containing 0 and 
x E Re. Since T is orthogonally complete and e = C,',, U, the 
inclusion x E T is  equivalent to  the inclusions xu E Tu for all 
U E U .  Therefore 112 E TI1 = 1 if and only if llxu E Tu11 = 1 for 
all U E U .  Recalling the definition of the Cartesian  product of 
R-A-rings, we conclude that qv is an isomorphism of R-A-rings. 

Recall that B is a Boolean ring with addition given  by the 
rule U @ v = U + v - 2uv for all U, v E B and multiplication the 
same as that in C. We let Spec(B) denote the set of all maximal 
ideals of the Boolean ring B. It is well  known that  an ideal M 
of B is maximal if and only if for any e E B either e E M ,  or 
1 - e = 1 @ e E M ,  but  not  both. 

Let M E Spec(B). We set 

RM = { x r i e i  I ~i E R and ei E M}. 

Remark 3.2.2 Let  M be a maximal ideal of B and a E R. 
Then: 

i 

(i) RM = { X  E R I T C ( X )  n ( B  \ M )  # 8); 
(ii) a E RM if and only if E(a)  E M .  

Proof. (i) Let x = riei E RM where T i  E R, ei E M .  
We set e = (1 - e l ) ( l  - en). . . (1 - e,). Since 1 - ei # M ,  we 
see that e # M .  Clearly ex = 0. On the other  hand,  let TU = 0 
for  some U E B \ M .  As U # M ,  1 - U E M .  Now  we have 
T = ~ ( 1 -  U )  E RM. 
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(ii) If E(a) E M ,  then a = aE(a) E R M .  Conversely, 
let a E R M .  Then ae = 0 for  some e E B \ M .  Since e E 
rc(a)  = (1 - E(a))C, we infer that 1 - E(a) 6 M .  But  then 
E(u)  = 1 - (1 - E(u))  E M .  

Corollary 3.2.3 Let M E Spec(B).   Then R M  is an ideal of 
the R-ring R. 

Proof. Being a sum of ideals Re, e E M ,   R M  is an ideal 
of the ring R. Let y E W(Q) ,  n = ~ ( y ) ,  r1,r2,. . . ,rn E R and 
a l ,  a2, . . . , an E R M .  By Remark 3.2.2  for  every index i there 
exists an  idempotent ei E B \ M such that aiei = 0. Setting 
si = ri + ai and e = e1e2.. .e,, we note that sie = rie for  all i. 
Therefore  for z = F,(sl, . . . , S,) - Fr(rl ,  . . . , r,) we have 

e z  = F,(esl,. . . , es,) - F,(er1,. . , , er,) 
= F,(erl,. . . ,ern) - F,(erI,. . . ,er,) = o 

and so z E R M .  Thus RM is an ideal of the O-ring R. 

The factor O-ring W R M  is  called the Pierce stalk of R at 
the point M of Spec(B). Letting RM denote the factor R-ring 
W R M  and q 5 ~  : R + RM the canonical projection and taking 
into account Proposition 3.1.11 we summarize what has been 
proved in the following 

Corollary 3.2.4 Let R be an  orthogonally  complete  O-ring, T 
an orthogonally  complete  subset of R containing 0 and M E 
Spec(B).   Then: 

(i) the  canonical  homomorphism q 5 ~  : R + RM = ES/RM of 
rings  is a homomorphism of O-rings  as  well; 

(ii) ker(4M) = ( r  E R ] E(r)  E M } ;  
(iii) $M(T)  = 0 if and  only if E(X)  E M .  
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Example With reference to  the example of the preceding 
section, we consider R = R, and  note that  the extended 
centroid C of R coincides with niEZ Ci. Hence the Boolean ring 
B = B(C) coincides with the set of all functions I + 22. Given 
any maximal ideal M of B, the set 

T M  = (f-'(o) I f E B \ M )  

is an ultrafilter on I .  We close this example with the note that 
R M  = ni,Z W M .  

We continue our discussion of properties of Pierce stalks with 
following lemmas. 

Lemma 3.2.5 Let R be an orthogonally  complete R-ring, a E 
R, T an orthogonally  complete  subset of R containing 0 and 
M E Spec(B).   Then  the following  conditions are equivalent: 

(i) 4 M ( 4  E (l"); 
(ii) ae E T for some e E B \ M ;  
(iii) E(T; a )  E M .  

Proof. First of all we recall that T e  C_ T for all e E B by 
Proposition 3.1.11. 

(i) + (ii) Let + ~ ( u )  E + M ( T ) .  Then 4M(a) = $ M ( t )  for 
some t E T .  Hence q5~(a - t )  = 0 and so (a - t ) e  = 0 for  some 
e E B \ M .  Therefore ae = t e  E 2'. 

(ii) + (iii) Assume that ae E T for some e E B \ M .  By 
Theorem 3.1.20  we have that e ( l  - E(T; a)) = e and so 1 - 
E(T; a) M .  Therefore E(T; a) E M by the maximality of M .  

(iii) + (i) Let U = E(T; a)  E M .  Then a(1 - U )  E T and 
uu E R M .  Thus $M(u)  = 4M(a( l -  U ) )  E 4M(T). 

Lemma 3.2.6 Let R be an  orthogonally  complete R-ring, a E 
R, T and H orthogonally  complete  subsets of R containing 0 
and M E Spec(B).   Then: 

4 M b  : T)H) = (4" : 4 M ( T ) ) + M ( H ) .  
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Proof- Clearly h ( ( a  : T)H) E ( h @ )  : 4 M ( m f $ M ( H ) '  
Let dM(a)4M(h) E g5~(T) where h E H. Then ahe = t e  for 
some e E B \ M and t E T .  Clearly he E H and te E T.  Hence 
he E (a : T ) H .  Since e fZ M ,  1 - e E M and so q5M(e)  = 1. 
Thus 4M(h) = E # M ( @  : T)H). 

Now  we are in a position to prove the following important 
result. 

Theorem 3.2.7 Let R be a semiprime  orthogonally complete 
ring with extended centroid C ,  B = B(C) and M E Spec(B). 
Then the ring RM = R/RM i s  prime. 

Proof. Suppose that 4 ~ ( a )  R M $ M ( b )  = 0 for  some a, b E R. 
Then q5M(aRb) = 0. Applying Lemma 3.1.18 to  the mapping 
R + R, x I+ axb, we conclude that aRb is an orthogonally 
complete subset of R. By Corollary 3.2.4 we have e = 1 - 
E(aRb) $?! M .  Without loss of generality we can assume that 
~ M ( U )  # 0. Then E(a)  $?! M .  Now  we have e(aRb) = 0. Hence 
according to Theorem 2.3.9(ii) and Lemma 2.3.10, eE(a)b = 
E(ea)b = 0. Since eE(a) fZ M ,  we conclude that b E ker(6M). 
Thus R M  is prime. 

Let @(XI, x2,. . . , zn) be a first order formula of signature R- 
A, a' = (al, Q , .  . , , a,) E R("') and V E B. We set B* = B \ (01, 
wa' = (21u1, vaz, . . . , vu,), 

H(@; Z) = (e  E B* I wR @(v?;) for all 0 # v 5 e} U (0) 

and 
E(@(Z))  = E(H(@; Z)). 

In the case of the atomic formulas Ilx = yyll x ,y  E X ,  and 
llx E 2'11, T orthogonally complete with 0, the above concept 
takes  a very concrete form. Indeed, we see that 
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since 

{ e  E B* Iv(a - b) = 0 for all 0 # W 5 e }  U {0} = rc(a - b) n B. 

From (3.3) it is immediate that 

E(lla = bll) = 1 - E(u - b) (3.4) 

Similarly, we see that 

since 

{e E B* I vu E T for all 0 # W 5 e) U (0) = (a : T)B.  

From (3.5) it is clear that 

E(lla E TI!) = 1 - E(T; a) (3.6) 

in view of Theorem 3.1.20. 
We have in fact proved parts (i) and (iii) of the following 

corollary,  which  will in turn provide the basis for induction in 
our main theorem. 

Corollary 3.2.8 Let R be an  orthogonally  complete R-ring, a, 
b E R, T an orthogonally  complete  subset of R containing 0 and 
M E Spec(B)  . Then: 

(i) E ( l l ~  = bll) = 1 - E(u - b); 
(ii) [[+M(.) = +M(b)lJ = 1 if and  only if E(lla = bll) # M ;  
(iii) E(lla E TI]) = 1 - E(T; a); 
(;v) II+M(U) E + M ( T ) I I  = 1 if and  only if E(lla E Til) 4 M -  

Proof. (ii) follows  from part (i) and Corollary 3.2.4(ii). 
(iv) follows from part (iii) and Lemma 3.2.5(iii). 

The following lemma plays an  important role in  the proof 
of Theorem 3.2.10, and it is here that Horn's Theorem (Theo- 
rem 1.5.5) is deployed. 
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Lemma 3.2.9 Let R be an orthogonally  complete 0-A-ring, 
@(XI,  2 2 , .  . . ,x,) a Horn formula of signature R-A in free van" 
ables x l , q , . .  .,x,, and a' = (al, a2,. . . ,a,) E R("). Then 

E(@(Z)) E H(@; 8) 

(i.e., vR @(v;) for all 0 # v 5 E(@(Z))). 

Proof. We set U = H(@; Z). It follows immediately from 
the definition that eU E U for all e E B. Let V be a maximal 
orthogonal subset of U. By Remark 3.1.5 we have E(V)  = E(U). 
Setting W = C,',,V, we note that rc(V) = (1 - w)C and so 
E(U) = E(V)  = W. If W = 0, then W = 0 E U and  there is 
nothing to prove.  Assume that W # 0 and  let 0 # f E wB. We 
claim that f R  @(fZ). Indeed, let %, = {v E V I vf # 0). 
Note that 

f = f w = C L f v =  C'fv. 
W€V W € V O  

Since V c H ( @ ;  Z), we have 

Rv f @(v fZ) for all v E %,. 

By Theorem 1.5.5 it follows that 

l= @ W J a l ) v E % ,  * , { f ~ a n ) v E % ) .  

According to Proposition 3.2.1, the mapping 7 given by the rule 

is an isomorphism of 0-A-rings nvEvo RV f and Rw f = Rf .  
Hence Rf + @( fZ) for all 0 # f E w B  and so 

E(@(Z)) = E(U) = W E H(@; Z). 
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We note that for U, W E B the inequality U 5 21 is  equivalent 
to  the  statement  that for all M E Spec(B) U not an element of 
M implies W not an element of M .  We are now in a position to 
prove the main result of this chapter. 

Theorem 3.2.10 Let R be .an  orthogonally  complete R-A-ring 
with  extended  centroid C,  B = B(C), M E Spec( B )  and $M : 
R + RM = R/RM the  canonical  projection of Q-A-rings. Fur- 
ther  let Q(x1,  x2,. . . , x,) be a Horn formula of signature R-A 
and a' = (a l ,  a2,. . . , an) E R("). Suppose that 

2'hen.e = E(Q(a')) 4 M and W R  Q(&) for all 0 # 21 5 e. 

Proof. We set $ ~ ( a ' )  = ( $ ~ ( a l ) ,  $ M ( u ~ ) ,  . . . , $ M ( u ~ ) ) .  First 
we suppose that Q is an atomic formula  (i.e., a formula either 
of the  type Iltl(x1,x2,. . . ,xn) = t2(xl,x2,,. . . ,xnl\, where tl,t2 
are  terms, or of the  type llx E 7 ' 1 1 ,  where T is an orthogonally 
complete subset of R containing 0). Then it follows from Corol- 
lary 3.2.8 that RM Q ( $ M ( ~ ' ) )  if and only  if E(Q(2))  4 M .  

Here we note that for any atomic formula P(z l ,  z2, . . . , zk)  
and  any. c' = (cl, c2, . . . , c k )  E R@) the reader can easily check 
that E(+(E)) = 1 - E(P(E)). It follows  from  Corollary 3.2.8 
that 

RM i= TP($M(E)) if and only if E(+(E)) 4 M.  (3.7) 

Next we consider the case  when the formula Q is  equivalent 
to  the formula Vf==,(+i) where PI, . . . , P, are  atomic formulas. 
For  simplicity we assume that all Pi's depend on xl ,   x2,  . . . , x,. 
Since Rh i= V f = l ( 4 ? ( g 5 ~ ( Z ) ) ) ,  RM + (+i ($~(a ' ) ) )  for some 
1 5 i 5 IC. Then by (3.7) we have E(lP,(Z))  6 M .  Clearly 
E(le(a')) E H(@;  2) = H and so E(lP,(Z))  5 E(Q(a')) = 
E ( H ) .  Hence,E(Q(a')) 4 M. 
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Su  pose now that  the formula Q is  equivalent to  the formula 
PO V (1Pi)) where PO, PI, . . . , P k  are  atomic formulas. As 
above we assume that all Pi's depend on xl, x2,. . . ,x,,. Clearly 
E(Po(a')) E H(*; a') as well as E(lP,(Z)) E H(@; a') for all 
i = 1,2, .  . .,IC. Hence E(Po(Z)), E(~Pi( i3))  5 E(Q(Z)) and so it 
is enough to prove that either E(&(;)) # M ,  or E(le(Z)) M 
for  some 1 5 i 5 IC. We note that R M b Po V (le)) if 
and only if either 'RM b Po, or RM V:=:=,(lpZ). Applying the 
above result, we complete the consideration of the case. 

Assume  now that  the formula Q is equivalent to  the for- 
mula Agn=,Qi where  each formula Qi is  equivalent to either an 
atomic formula, or a disjunction of negations of atomic formu- 
las, or a disjunction of an atomic formula and.severa1 negations 
of atomic formulas. As above we assume that all Qi's depend 
on q , ~ ,  . . . ,x,,. We set e = E(Q(Z)),  ei = E(Qi(a')) and 
v = e1e2.. .e,. Since RM A E l Q i ( 4 ~ ( Z ) ) ,  RM Qi (4~(a ' ) )  
for all i = 1,2,. . . ,m as well.  By the above result we then 
have ei # M for all i and so v # M .  Note that W 5 ei and so 
Ru + Q~(uZ) for all 0 < U 5 v .  Thus Ru b Q(ua') whence 
v E H ( @ ;  Z), i.e., v 5 e. Now it follows that e # M .  

Next consider the case  when the formula !P is equivalent to 
the formula (3xn+1)@(x1, $2,. . . , x,+1) where @ is  such that for 
all c' = (c1, c2, . . . , %+l) E the relation RM @(q5~(E)) 
implies that E(@(E)) # M ,  and @ is a Horn formula. Since 
RM + (3x,+1)@(q5~(Z),xn+l), there exists an element a,+l E R 
such that RM b @(+M($)), where i? = (al ,  a2,. . . , a,+l), and so 
E(@($)) # M .  Clearly E(@($)) E H(@;  Z). Hence E(@($)) 5 
E(Q(i3)) and so E(Q(i3)) 4 M .  

Finally assume that  the formula !P is equivalent to  the for- 
mula (Vxn+l)@(q, x2,. . . , where again @ is  such that for 
all c'= (cl, c2,. . . ,%+l) E R("+') the relation RM b @(~$M(E)) 
implies that E( @(E)) # M and is a Horn formula. We set 

W = {W E B* I there exists a, E R such that for  every 
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v E B*, v 5 W there exists U E B*, U 5 v ,  
with the property uR b +(ual, ua2,. . . , ua,, ua,)} 

Note that for e E B and W E W the relation ew # 0 im- 
plies that ew E W (with aew = ea,). Let V be a maxi- 
mal orthogonal subset of W U (0). By Remark 3.1.5  we have 
E(W)  = E(V)  = C,',, v.  We set a0 = 0, a = C&,a,v and 
e = E(Q(a1, a2, . . . , a,, a)). Since 

we have in particular that RM b @ ( q 5 ~ ( a l ) ,  . . . , ~ M ( u , ) ,  ~ M ( u ) ) .  
Then by our assumption 

Now  we suppose that eW # 0. Since V is a maximal orthogonal 
subset of W ,  ev # 0 for  some v E V. Recalling that Q is a Horn 
formula, we infer  from Lemma 3.2.9 that for  every  nonzero U, 
U 5 ev 5 e = E(Q(a1, Q , .  . . ,an,u)), we have that 

Note that uea, = ua, = uva, = uva = ua. On the other hand 
by the definition of W ,  there exist a nonzero idempotent U 5 ev 
such that 

UR +(uu~,  ~ ~ 2 9 . .  - 9  uan, U U ) ,  

a contradiction. Hence eW = 0. 

b E R. Then 
Next we suppose that E(Q(al, a2,. . . , a,, b))e # e for some 

U = e(1- E(Q(a1, a2,. . . ,a,, b))  # 0 
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Consider any 0 # U' 5 U. Clearly u'E(@(az, ~ 2 , .  . . ,an, b) )  = 0 
and so U' # H(@;  al ,  a2,. . . , a,, b). By the definition of the set 
H(@;  a1 , ~ 2 ,  . . . , an, b) it follows that 

u"R  +D(u"al, u"an, U"b) 

for  some 0 # U" 5 U'. Recalling the definition of the set W ,  
we conclude that U E W (with a, = b). But eu = U # 0 in 
contradiction with eW = 0. Therefore E ( @ ( u ~ ,  a2,. . . , an, b))e = 
e for all b E R and so 

eR + (V~s,+l)@(eal, ea27 . 9 ea,, xn+1)- 

Hence e E H(!€!; ti) and e 5 E(Q(5)). Recalling that e $Z M, 
we conclude that E(Q(5)) # M. According to  the definition of 
Horn formulas the proof  is complete. 

Let R be  an orthogonally complete R-A-ring. A first or- 
der formula @ ( X I ,  22,. . . , $,) of signature R-A is  called heredi- 
tary if for all 0 # U 5 v E B and al,  Q,.  . . ,a, E R the r e b  
tion vR i= @(val , .  . . ,van) implies that uR @(ual,. . . , ua,). 
Further a hereditary formula is said to be strictly  heredi- 
tary if for all 0 # v E B and al, a2, . . . , a, E R the relation 
vR + @(Val,. . . ,van) implies that there exist bl ,  b 2 , .  . . , bn E R 
such that R @(bl,.. , . , b,) and ubi = vai for all i. 

Example Let R = F @ F where F is a field. Then  the 
formula Q = (Vx)(Vy)Jlzy # 011 V 112 = 011 V lly = 011 is hereditary 
but is not  strictly hereditary. 

Corollary 3.2.11 Let R be an orthogonally  complete R-A-ring, 
a' = (al ,  a2,. . . ,a,) E R("), M E Spec (B) ,  RM = WRM and 

: R + RM the  canonical  projection.  Further let ! € ! ( X I ,  . . . , xn) 
be a hereditary formula of signature R-A such  that TQ is  a  Horn 
formula.  Suppose  that vR + Q(va1,. . . ,vu,) for  some v # M .  
Then 

BM @($M(al), 9 $M(%))- 
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Proof. If RM k 18(4M(al),  . . . , c $ M ( u ~ ) ) ,  then by Theo- 
rem  3.2.10 we have e = E ( l S ( Z ) )  6 M. Hence ev # 0 and by 
Lemma  3.2.9 we have 

evR + +P(evZ). 

On the other hand since 8 is hereditary  and wR *(v.’), evR + 
8(ewZ) as well, a contradiction. Thus RM + 8 ( 4 ~ ( Z ) ) . ,  

Some important subsets of rings (for example, the center, 
the right singular ideal, the Jacobson radical) are defined by 
first order formulas in the following  sense. Let *(x) be a first 
order formula of signature R-A. We set 

&,(R) = { r  E R I R Q(r)} .  

Corollary 3.2.12 Let R be an orthogonally  complete Q-A-ring, 
M E Spec(B), RM = R/RM and q 5 ~  : R += RM the  canonical 
projection.  Further let *(x) be a strictly  hereditary  Horn for- 
mula of signature R-A such  that 18 is a Horn formula. Then 
4 M ( & ( R ) )  = sW(RM). 

Proof. If a E S, (R), then R @(a) and so by Corol- 
lary 3.2.11 RM Q ( ~ M ( U ) ) .  Hence + M ( u )  E & ( R M )  and 

4M(SW(R)) G &!(R”)- 

On the other hand if $bM(b)  €‘&(RM),  then RM + Q ( 4 M ( b ) )  
and so by Theorem 3.2.10 e = E(@(b)) 6 M and e R  Q(&). 
Since 8 is strictly hereditary, there exists an element d E R such 
that ed = eb and R 8 ( d ) .  Therefore d E &(R). Since e 6 M 
and eb = ed, h ( d )  = 4 M ( b )  and so ~ M ( & ( R ) )  2 &(R”) 
which completes the proof. 

Corollary 3.2.13 Let R be an  orthogonally  complete  ring  with 
center Z ( R )  and  right  singular ideal &(R),  M E Spec(B), 
RM = R/RM and $M : R += RM the  canonical  projection. Then 
dM(Z(R))  = Z(RM) and 4M(Zr(R)) = & @ M ) -  
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Proof. Consider the formulas 

@(X> = (WIIzY = Wll, 
W4 = ( V Y ) ( W ( I l Y  = 011 v l lw # 011) A llzw = 011. 

Clearly Z( R) = Sa( R) and &(R) = &(R). Since Z(eR) = 
eZ(R)  and Zr(eR) = eZr(R) for all 0 # e E B,  both formulas @ 
and B are  strictly hereditary.  Obviously they  are Horn  formulas. 
Further 

are Horn  formulas.  By  Corollary 3.2.12 

Analogously Z r  (RM) = 4~ (Z r  (R))  

Lemma 3.2.14 Let R be an orthogonally  complete  ring, M E 
Spec(B), RM = R/RM and 4~ : R + BM the canonical  pro- 
jection. Further, let D be an  orthogonally  complete  dense  right 
ideal of R. Then ~ M ( D )  is a dense right ideal of RM. 

Proof. Consider the sentence 
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is a Horn formula. Now  by Corollary 3.2.11 we have 

(vx)(vy)(32)(11x = Oil v llzz f Oil) 
A(llYz E 4 M ( D ) I I )  

and so 4~ (D) is a dense right ideal of RM. 
Here we note that if R is an orthogonally complete ring with 

maximal right ring of quotients Q = Qmr(R) and M E Spec(R), 
then (QM) n R = RM by Remark 3.2.2(ii). Therefore we can 
identify the ring RM = R/RM with the subring ( R  + QM)/QM 
of QIQM. 

Theorem 3.2.15 Let R be an  orthogonally  complete ring with 
extended  centroid C and Q = Qmr(R), B = B(C), M E Spec(B) ,  
Q M  = Q/QM and 4~ : Q + QM the  canonical  projection. 
Then: 

(i) Q M  C Qmr (RM);  
(ii) 4 M ( Q r )  E Qr(RM); 
(iii) 4 ~ ( Q s )  C &a(&); 
(iv) The extended  centroid of RM is equal to ~ M ( C ) .  

Proof. Let q E Q and D = (q : R)R. By Lemma 3.1.19 D 
is an orthogonally complete dense right ideal of R. According 
to Lemma 3.2.14, ~ M ( D )  is a dense right ideal of RM. Clearly 
4 ~ ( 4 ) 4 ~ ( D )  C RM. Suppose that ~ M ( Q ) ~ M ( D )  = 0. Then 
4M(qD) = 0. By Lemma 3.1.18 qD is an orthogonally complete 
subset of R and so eqD = 0 for e = 1 - E(@) E B \ M (see 
Corollary 3.2.4). Since D is a dense right ideal of R, we conclude 
that eq = 0 and hence 4~ (q) = 4~ (eq) = 0. Therefore for any 
x E QM we have  proved that K, = (x : R M ) R ~  is a dense right 
ideal of R M  and xK # 0. Then the mapping x I+ [l,; K,], where 
1, is the left multiplication by x, gives an embedding of QM into 
Q,, (RM) .  Statements (ii) and (iii) are proved  analogously. 

(iv) Since QM C Qmr(R”), it is enough to prove that QM is 
centrally closed. The mapping E : Q + Q, Q e E(q) ,  defines an 
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unary  operation on Q. By Theorem 2.3.9(ii) E(eq) = eE(q) for 
all e E B, q E Q. Hence Q is an orthogonally complete O-ring 
of signature (0, +, -, S ,  E}. The rule E($M(Q))  = q5M(E(q)), 
q E Q, defines an O-ring structure on Q M .  For all x E Q M ,  
clearly E(x) E (0, l}, and E(x) = 0 if and only if x = 0. 
Consider the formulas 

Then 

is a Horn formula. Since e& is centrally closed with extended 
centroid eC, e& + 8 for all e E B (see Theorem 2.3.11). There- 
fore \I, is hereditary. By Corollary 3.2.11, QM *, that is to 
say,  for  every  nonzero x, y E QM such that xzy = yzx for all 
z E QM there exists c E $M(C) such that x = cy. Let K be  the 
extended centroid of QM.  Clearly $M(C) C K .  Consider any 
element 0 # k E K.  Pick 0 # y E QM such that x = ky E Q M .  
Clearly xzy = yzx for all z E Q M  and so x = cy for  some 
c E $M(C). Therefore ( k  - c)y = 0. Since y # 0 and K is a 
field, we infer  from k - c E K that k = c and so K = c $ ~ ( C ) .  

Now  we are in a position to prove the analogs of Theo- 
rem 2.3.7 and Corollary 2.3.8 for semiprime rings. We refer 
the reader to  the remark after Theorem 2.3.9 for the definition 
of dimc (L) .  



3.2. PIERCE STALKS 125 

Theorem 3.2.16 Let R be a semiprime ring, Q = Qmr(R), 
q 1 , q 2 , .  . . ,qn E Q. Set L = Cy=l Cqi. Then 

C ~(o)qa(l)rlqa(2)r2 * - rn-l ia(n)  = 0 (3.8) 
UESn 

for all r1,r2, . . . , rn-l E R (where S n  is  the  permutation group 
on  n symbols) if and  only if dimc(L) 5 n - 1. 

Proof. Let A = O(R).  By Remark 3.1.8 and Remark 3.1.9 
the identity (3.8)  holds  for all r1, r2,. . . , rn-l E A. Hence it 
holds also  for all r1, r2, . . . , rn-l E A M  G QM where M E 
Spec(B) .  According to Theorem 3.2.7, AM is a prime ring. 
By Theorem 3.2.15 QM C_ Qmr(AM) and 4M(C) = C M  is an 
extended centroid of A M .  Since A M  is a homomorphic image of 
A, 

C c ( o ) 4 M ( q a ( l ) ) r l -  - rn- l4M(qa(n))  = 0 
U€ S, 

for all rl ,  7-2, . . . , rn-l E A M .  Further, by Theorem 2.3.9 L is an 
injective C-module and so L is an orthogonally complete subset 
of Q (see Proposition 3.1.6).  Consider the following formula 

@ = @ l ) .  . . ( 3 U n - l ) ( V ~ ) ( 3 C l ) .  . . ( 3 ~ - 1 ) ( A ~ ~ : l l a i  E L]\) 
, n-l 

AllX E Lll A (ATz:llci E Cl\) A 112 = c ciaill. 
i=l 

Clearly @ is a Horn formula. By Theorem 2.3.7 QM @ for 
all M E Spec(B) .  Therefore E(@) M for all M E Spec(B) ,  
E(@) = 1 and Q @ (see Theorem 3.2.10). The proof is 
complete. 

Corollary 3.2.17 Let R be, a semiprime ring, Q = &,,-(R), 
C = Z(Q) and a E Q. Then  the  following  conditions are equiv- 
alent: 

(i) a is  an algebraic element of degree 5 n; 
(''1 CaESn+I e(cT)a~(o)roau(')r~ . . . rn-laa(n) = o for  all ri E 

R. 
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Proof. The proof is analogous to  that of the above theorem. 
The only  difference is that instead of the formula @ we consider 
the following formula 

The last  important result of this chapter is the following 

Theorem 3.2.18 Let R be an  orthogonally  complete Cl-A-ring 
with  extended  centroid C,  @i(xl,x2,. . . ,x,,) Horn formulas of 
signature %A, i = 1,2,  . . ., and  Q(y1, y2, . . . , ym) a  heredita y 
first order formula such that T@ is a Horn formula.  Further,  let 

that R /= @(C) and for  ewey  maximal ideal M of the  Boolean 
ring B = B(C) there  exists a natural  number i = i ( M )  > 0 such 
that 

a' = ( ~ 1 ,  ~ 2 ,  . . . , a n )  E R(n), c' = (cl, ~ 2 ,  . . . , h) E R(m). Suppose 

RA4 l= @ ( 4 M ( C 3 )  * Q i ( 4 M ( a ' ) ) .  

Then there  exist a natural  number k > 0 and  pairwise  orthogonal 
idempotents el ,   e2, .  . . , ek  E B such  that  el + e2 + . . . + ek = 1 
and eiR  Qi(eiZ)  for all  ei # 0. 

Proof. By Corollary 3.2.11 RM @ ( ~ M ( Z ) )  and so for  every 
maximal ideal M we have RM Qi(&(a')) for  some i = i( M). 
According to Theorem 3.2.10, wi = E(@i(d)) 4 M .  Therefore 
by Lemma  3.1.21 there exist a natural number k and pairwise 
orthogonal idempotents el, e2,. . . , ek whose sum is equal to 1 
such that ei 5 vi for all i = 1,2,  . . . , IC. If ei # 0, then by 
Lemma 3.2.9  we conclude that e i R  *;(e$). 

We close this chapter with an example of an application of 
Theorem 3.2.18. We shall extend to semiprime rings the fol- 
lowing theorem proved by Herstein [l191 for prime rings.  For 
completeness we include a proof of Herstein's theorem. 
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Theorem 3.2.19 Let R be a prime  ring  with a derivation d : 
R + R such  that xdyd = ydxd for all x, y E R. Then either R 
is a commutative  domain, or 8 = 0. 

Proof. We set [z, y] = zy - ya: for all x, y E R. Let D be 
the subring of R generated by Rd. Clearly [xd, D] = 0 for all 
x E R. Suppose that 8 # 0. Then adz # 0 for some a E R. Let 
b = ad. We have 

zbd = (zb)d - zdb E D 

for all z E R. Hence 

[xd, uvbd] = 0 = [xd, vbd] 

for all U, v E R. Now we infer that 

0 = [xd, uvbd] = [xd, u]vbd 

for all v E R. Since bd # 0 and R is prime, we conclude that 
[xd, U ]  = 0 for all x, U E R and so D Z(R) .  In particular 

[x, uvbd] = 0 = [X, vbd] 

for all x, U, v E R. Hence 

0 = [X, uvbd] = [X, u]vbd 

for all x, U ,  v E R and therefore R is commutative. 

Corollary 3.2.20 Let A be a semiprime ring  with a derivation 
d : A + A such  that xdyd = ydxd for all x, y E A. Further,  let 
R = O(A)  be the  orthogonal  completion of A and B = B(C) 
where C is the  extended  centroid of A. Then there  exists an 
idempotent e E B such  that eR is a commutative  ring and d 
induce a square  zero derivation on (1  - e)R. 
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Proof. By Proposition 2.5.1 the derivation d can be ex- 
tended uniquely to a derivation d : Q n r ( A )  + Qmr(A).  Ac- 
cording to Remark 3.1.16 Rd 5 R and ed = 0 for all e E B. 
Therefore R is an orthogonally complete Q-A-ring  where Q = 
(0, +, -, a ,  d). Consider formulas 

= (Vz)(Vy)Il&d = ydzdl(, 
Q1 = ( ~ ~ > ( \ d Y ) l l Z Y  = Y 4 L  
Q2 = (Vz)Ilsd2 = 01). 

Using Theorem 3.2.19,  one can easily check that all the con- 
ditions of Theorem 3.2.18 are fulfilled.  Hence there exist two 
orthogonal idempotent el and e2 such that el + e2 = 1 and if 
ei # 0, then eiA + Qi, i = 1,2.  The proof  is complete. 



Chapter -4 

Prirnit ive Rings 

4.1 Rings of Quotients 

A ring R is  (left) primitive if there exists a faithful irreducible 
left R-module V. This is equivalent to saying that there is an 
abelian group V for  which R is a subring of End(V) acting 
irreducibly on. V (i.e., V has no R-invariant subgroups). We 
will  generally  find it useful to adopt  this  latter approach. For R 
a  subring of E = End(V8) the  set ' 

. .  , 

N ( R )  = NE(R) = (t  E End(V) I tr = rt for all r E R} 

is  called the commuting ring of .,R. We consider the ring D = 
E n d i ~ V )  as acting from the right on V. It is  well-known .(and 
easy to show), that D = NE(@" is a division ring, where NE(R)" 
is the opposite ring of NE(R). Given V we shall call D = 
E n d ~ ( v )  the' associated division ring of R relatively to V (in 
general a primitive ring may  have many nonisomorphic faithful 
irreducible modules with ':corresponding nonisomorphic associ- 
ated division rings). We may regard V as a 'left vector space 
over D" = NE(R) .  Equivalently, V is a right vector space over 
D. In this case we may regard V as an (R, D)-bimodule. We 

129 
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also regard End(V) as a left vector space over D" by  defining: 

( d  t )v  = t ( ~ ) d ,  d E D", t E End(V), V E V. 

Clearly R c End(Vo). For S a subset of V we let [SI0 (or simply 
[S] if context is clear) denote the D-subspace of V generated by 
S. An element t E End(V) is said to be of finite D-rank  in case 
[tV], is finite dimensional over D. 

A right primitive ring is  defined in a similar fashion and 
the preceding remarks have their analogous counterparts in this 
situation. 

We begin by showing that for primitive rings the symmet- 
ric ring of quotients is reasonably well-behaved. The following 
result is due to Whelan [275]. 

Theorem 4.1.1 If R is primitive then &,(R) 5 End(V,) (hence 
Q,( R) is also primitive). 

Proof. We set Qs = Qs (R). Let q E Qs, V E V ,  and 
let I and J be  nonzero ideals of R such that qI ,  Iq,  Jq,  qJ 
are all contained in R. Since V = IV = JV  we may write 

we see that 
V = Q V ~  = bjwj, ai E I ,  bj  E J ,  ~ i ,  wj E V .  For T E I 

making use of rq E R. It follows that Cr="=,qai)vi = Cz,(qbj)Wj. 
What we have just established shows first of all that 

i=l i=1 
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is well-defined  element of End(V)  and secondly that @ is a well- 
defined mapping of Q8 into End(V) .  Additivity is clear and 

' we claim that Q is multiplicative. Indeed, for q1,q2 E Q8 there 
exists a nonzero ideal I of R such that qlI,  Iql, q2I, Iq2 are all 
contained in R. Then for a, b E I we have 

Furthermore if @, = 0 then from ( Iq) IV  = I (qI )V  = 0 we see 
that Iq = 0, hence q = 0 and so @ is 1 - 1. 

Finally, for q E Q8, d E D, a E I ,  v E V we have 

@,(avd) - (@,av)d = (qa)(vd) - ([qa]v)d 
= (qa)(vd) - (qa)(vd) = 0 

since qa E R. Consequently @, E End(V') and  the theorem is 
proved. 

As a result of Theorem 4.1.1 we may assume that Q,(R) c 
End(Vo). In  particular the central closure RC and  the C- 
subalgebra A = RC = RC + C are contained in End(Vo). 
Clearly C c D". Since C c End(Vo),  we conclude that cd = dc 
for all d E D" and so C C Z(D") where Z(D") is the center 
of D". Identifying (D")" with D and C" with C we summarize 
what we have thus shown in the following 

Corollary 4.1.2 If R is  primitive  then  the central  closure A = 
R'C is contained in End(VD) and C is  contained in the  center 
of D. 

The following example shows that C need not be equal to 
the center of D. 

Example. Let F = Q(z) be the field of rational expressions 
in 2, where Q is the rational number field, let 0 be the auto- 
morphism of F given by z I+ x+ 1, and let E = F < y ; a >  be 
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the set of all Laurent series 

with componentwise addition  and multiplication determined by 
ya = a"y and its consequences.  Since o is of infinite period it is 
well  known (and straightforward to show) that E is a division 
ring with center Q and maximal subfield F = Q(z). We let K = 
Q(x2)  and  let R be the subring E(I)K(,.) of End(E), where E(l) 
denotes the left multiplications by elements of E (i.e., (1, I x E 
E } )  and K(,.) the right multiplications by elements of K .  R acts 
irreducibly on E since E is a division ring, and so R is primitive. 
As E(l) E is centrally closed, E(@(,) E @Q K and K is 
the extended centroid of R. On the other  hand we claim that 
the commuting, ring D = EndR(E) of R is F(r). Indeed, we 
first observe that for  every i E 2 xu' = x + i and so from 
(x2)"' = x2 + 2ix + i2 we see that oi is the identity on K if and 
only if i '= 0.: Now let d E D. Since d commutes with E(l) we 
have d '  = rb for  some b = Czrn ai yi E E. From ba = ab for all 
a E K we have crrnui (uui - a) yi = 0. If ai # 0 for  some i # 0 
we have the contradiction that aUi = a for all a E K.  Hence 
i'= 0, which says that b = a0 E F ,  therefore d = rb E F(,.). Since 
D clearly contains F(r)  it follows that D = F(r) E F and our 
claim  is established. 

With reference to Theorem 4.1.1 one might ask if either Q1 or 
Qr, lies in End(Vo). The following example ([133]) shows that 
the answer  is  no.  Let V be a countably infinite dimensional 
vector space over a field F with basis wl, w 2 , .  . . ,v,, . , .. Let x 
be  the linear transformation given ?by xwl = 0, = vi and 
y the linear transformation given by ywi = z 1 ~ 2 + ~ .  Let R be  the 
R-subalgebra (with 1) of En&(V) generated by 5 and y. It can 
be shown that R acts irreducibly on V (hence  is primitive), the 
commuting ring of R is F ,  and R is the .free algebra in x and y 
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over F .  The set U = Rx @ Ry = zR @ yR is a two-sided ideal of 
R. Suppose first that Q[ G EndF(.V). Let q E Q1 be the element 
defined  by xq  = y, yq = 0. Since q # 0, qvj = C aivi # 0 for 
some j. Then 

a contradiction. Suppose next that QT C EndF(V). We define 
q E QT according to qx = x ,  q y  = 0. Then qui = q ~ v i + ~  = 
zvi+l = vi for all i. But a contradiction is reached  since 0 = 
qyv1 = qv2 = up. 

For primitive rings containing minimal left ideal?,..  however, 
the story is quite different, and we' shall discuss this  matter in 
section 4.4. 

4.2 Density Theorems 
As a consequence of Theorem 1.1.5 we begin with the celebrated 
Jacobson Density Theorem. 

Theorem 4.2.1 Let R be a (left) primitive ring  with RV a 
faithful irreducible  R-module and D = End(RV) (thus V is an 
(R, D)-bimodule). Then for any  positive  integer n, if 211, . . . , v, 
are D-independent in V and w1, . . , W ,  are  arbitra y in V there 
exists r E R such  that rvi = wi) i = 1 ,2 , .  . . , n. 

Proof. We set M = VD, N = RVD, and S = T = R. 
N = V is  closed (by the irreducibility of RV and the defi- 
nition of D).  T = R is total (again by the irreducibility of 
RV). Therefore Theorem 1.1.5 may be applied. Let V I ,  212, . . . , v, 
be D-independent and w1, w2,. . . ,,W, arbitrary  in V .  For  each 
i = 1 ,2 , .  . . ,n set Ji = {r  E R I rvj = 0, j # i}. Then by 
Theorem 1.1.5 Jivi # 0. But then Jivi = V (since RV is ir- 
reducible) and so we may  choose ri E Ji such that rjvi = wi. 
Setting r = rl + 7-2 + . . . + r,, we have the desired conclusion. 



134 CHAPTER 4. PRIMITIVE RINGS 

Any division ring D is a division algebra over its center C. It 
follows  from  Zorn’s Lemma that D contains a maximal subfield 
F (i.e., a subfield  which is not a proper subfield of any other 
subfield of D) which  necessarily contains C. 

Corollary 4.2.2 Let D be a finite dimensional  division algebra 
over its center C,  F a maximal  subfield of D. Then there  exists 
a natural  number n such  that D @C F g Mn(F), dimc(D) = n2 
and dimc(F) = n. 

Proof. Let R be  the subalgebra D(I)F(,) of Endc(D), where 
D(1) denotes the left multiplications by D and F(T) the right mul- 
tiplications by F .  Since D is a division ring, R acts irreducibly 
on D. Thus R is a primitive ring. Let f E EndR(D). As f com- 
mutes  with D([), f(d) = f ( l d  - 1) = ldf(1) = df(1) for all d E D, 
where Id is the left multiplication by d. Hence f = rf(1). Since 
f commutes with F(,), we have that [f(l),z] = 0 for all z E F.  
Taking into account the maximality of F ,  we infer that f(1) E F.  
Thus  EndR(D) = F.  Clearly dimF(D) 5 dimc(D) < 00.  By 
the Jacobson Density Theorem we have that D(l)F(,) E Mn(F),  
where n = dimF(D). According to Theorem 2.3.6, D(l)F(,) E 
D @C F .  Hence dimc(D) = dimF(D @C F )  = n2. On the other 
hand 

n2 = dimc(D) = dimc(F)  dimF(D) = n dimc(F) 

and so dimc(F) = n. The proof  is complete. 

The present proof of Wedderburn’s theorem on finite division 
rings is due to T. Nagahara  and H. Tomnaga 

Theorem 4.2.3 (Wedderburn) Any  finite division  ring D is 
commutative. 

Proof. Suppose that D is not commutative. Without loss 
of generality we can assume that all proper subrings (which are 
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in fact subdivision rings) are commutative. Let C be the center 
of D with [Cl = Q. If d e C, then N ( d )  = { x  E D I xd = 
dx}, being a proper subring of D, is commutative and hence 
contained in and therefore equal to a maximal subfield. By 
Corollary 4.2.2 dimc(N(d)) = n and  dimc(D) = n2 for  some 
n > 1. Therefore IN(d)l = qn and ID[ = qn2. Set D* = D\ {0}, 
N(d)* = N(d)\{O}, and C* = C\{O}, and  let CS = {xxz-l I x E 
D*} be the conjugacy  class in D* determined by x. By the above 
IC,[ = 1D*[/lN(x)*/ = (Q"' - l)/(@ - 1) for x e C* and ICz[ = 1 
for x E C*. The class equation for D* then reads 

whence the contradiction that Q - 1 is divisible by 

Therefore D is commutative. 

Our  aim in the rest of this section is to prove a useful "den- 
sity" result due to Amitsur. In  contrast to  the Jacobson Density 
Theorem the  situation will be (loosely speaking) that given  in- 
dependent linear transformations r1,72, . . . , Tn a vector v will be 
found such that r1v,r2v,. . . , rnv are independent. We start with 

Remark 4.2.4 Let R be primitive with  commuting  ring A = 
N(R)  and  central  closure A = R'C. Then A A  E A @C A. 

Proof. The  map Cui @ di I-) C aidi, ai E A, di E A, is 
clearly a ring surjection. Suppose its kernel K is  nonzero. Then 
by Theorem 2.3.5, 0 # a @ d E K for  some a E A, d E A which 
yields the contradiction 0 = adV = aV. 

Corollary 4.2.5 Under  the  conditions of Remark 4.2.4 sup- 
pose that al, a2, . . . , a, are C-independent elements of A. Then 
al, a2, . . . , an are also A-independent. 
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Lemma 4.2.6 Under  the  conditions of Remark 4.2.4, AA has 
a nonzero’elernent of finite  D-rank if and  only if R has a nonzero 
element of finite  D-rank, where D = E n d ( R V ) .  

Proof. Let 0 # t = C z l  aidi be  an element of finite D-rank 
with m minimal. Necessarily the ai’s are C-independent and  the 
di’s are C-independent. If m > 1 choose (and fix) r E R. Then 
S = alrt-tl;al = C ~ 2 ( a l r a ~ - u ~ r a l ) d i ,  hence sV G alrtV+tV. 
Therefore S has finite D-rank and so S = 0 by the minimality of 
m. Since AA is a tensor product (by Remark 4.2.4) and since the 
di’s are C-independent we conclude in  particular that alrai = 
airal. Since r is arbitrary in R we arrive at the contradiction 
that a1 and a2 are C-dependent by Theorem 2.3.4. Therefore we 
have  shown that m = 1, i.e., t = aldl.  Since alV = aldlV = tV 
we see that a1 has finite D-rank. But 0 # b = alr E R for  some 
r E R and so b is the required  element  in R of finite D-rank. 

Let B be an abelian  group and  and let U be a left  vector 
space over .a division ring A. Then M = H o m ( B ,  U )  is a left 
vector space over A by defining: 

(Qm)(b)  = am(v), a, E A, m E M ,  b E B. 

Theorem 4.2.7 (Amitsur’s  Lemma) Let B be an  abelian 
group, let U.  be a left  vector space over a division ring A, U0 
be a finite  dimensional subspace of U and  let T = At1 + At2 + 
. . . + At, C Hom(B, U),  where tl ,  t 2 , .  . . , t k  are A-independent 
elements.  Suppose  that T does not  contain a nonzero  element of 
finite  A-rank.  Then  there  exists b E B such  that  tl(b), . . . , tk(b)  
are A-independent  mod (Uo). 

Proof. The proof  is by induction on k.  The case k = 1 
is  obvious,  since the inclusion t l (B)  C U0 means that tl is of 
finite A-rank. We assume the theorem true for k - 1 and show 
it for k.  To this end we assume the theorem is not true.  This 
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means that for  every b E B there exist elements d l ,  . . . ; d k  , E 
A  not all equal zero  such that &ti@) E Uo. It follows 
that if t2 (x) ,  t 3 ( 2 ) ,  . . . , t k ( x )  are A-independent modulo UO, then 
tl (x) = 6 i t i ( ~ )  + U for  some  uniquely determined U E UO, 
6 2 , .  . . , 6 k  E A. By the induction hypothesis there exists bl E B 
such that t 2  ( b l )  , t 3  ( b l ) ,  . . . , t k  ( b l )  are A-independent modulo UO. 
Hence 

k 

t l ( b 1 )  = C&i(bl) + U 1  . . (4;l) 
i=2 

for  some uniquely determined u 1  E Uo, ai E A. It is enough 
to show that (tl - aiti)B c Uo. To this end let b E B 
be an  arbitrary element. We set U 1  = U0 + Ati( b l )  + 
C$l Atj(b). Let b2 be an  arbitrary element of ' B  such that 
t 2  (bz ) ,  . . . , t k  ( b 2 )  are A-independent modulo U 1  (the existence 
of such an element  follows  from the induction hypothesis). In 
particular t 2  (b2), . . . , t k   ( b 2 )  are A-independent modulo U0 and 
so 

for  some uniquely determined u 2  E UO, Pi E, A. Setting V1 = 
[{ t i (b l )  1 i = 2 ,3 , .  .'.,IC}] and'V2 = [{ t i (b23  I i = 2 ,3 , .  . . , k } ] ,  we 
infer  from the choice  of b2 that V- n (U0 + h) = 0 and so 

(U0 + Vl) n (U0 + v2) = U0 (4.3) 

Since t i ( b l + ~ 2 )  ti(b2) mod ~ 1 ,  t& +b2) ,  . . . , t k ( b 1  +b2) are A- 
independent modulo Ul .and so tl (bl+b2) = .E;=, yiti(bl + b 2 ) + ~ 3  

for  some  uniquely determined u3 E Uo, yi E A. Hence 

It follows  from (4.1) that  the left side of (4.4) belongs to &+h. 
On the other hand by (4;2) the right side$ of. (4.4) belongs to 



138 CHAPTER 4. PRIMITIVE  RINGS 

U0 + V,. Now (4.3) implies that each side of (4.4) belongs to UO. 
Then by (4.1) and (4.2) we conclude that oi = ~i = pi for all 
i = 2,3, . . . , k .  In particular 

k 

tl(b2) - C Q i t i ( b 2 )  E U,. (4.5) 
i=2 

Since ti(b+b2) ti&) mod&,  t ,(bz+b),t~(bz+b),  . . . , t k (b~+b)  
are A-independent modulo U1. Applying what we just have 
proved we conclude that tl (b2 + b) - C:=, a& (bp + b) E U0 and 
so by (4.5) 

With  this contradiction the proof  is complete. 
We  now let R be a primitive ring, recalling the framework 

that R acts densely on a vector space VD over a division ring 
D, with A = R'C E R'D" c Endc(V). We consider V as 
a left Do-space and  note that t E R'D" has finite Do-rank if 
and only if it has finite D-rank. Furthermore U c V is a D"- 
subspace if and only if it is D-subspace. If U is D-subspace, then 
dimD(U) = d i m p  (U). Also we recall that  D" = N(R).  The 
following corollary of Amitsur's Lemma  is crucial to our needs 
in  the section 4.4. 

Lemma 4.2.8 Let R be a primitive ring, let al, a2, . . . , a,, be 
C-independent  elements of A = R'C, let U0 be a finite  dimen- 
sional  D-subspace of V ,  and let T = Cy.-l aiD'. Then  either 
T contains a nonzero  element of finite  D-rank  or  there  exist 
~ 0 ,  V I ,  . . . , V,, . . . E V such  that aivj, i = 1,2,. . . , n,j = 0,1, . . ., 
are D-independent  modulo UO. 

Proof. By Corollary 4.2.5 ul, u2,. . . , an are also D"-indepen- 
dent. Suppose there is no 0 # t E T of finite D-rank. By Amit- 
sur's Lemma one finds v0 E V such that alvo, ~ 2 2 1 0 ,  . . . , anvo are 
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Do-independent modulo U0 (and hence D-independent modulo 
UO). Again by Amitsur's Lemma (here B = U = V and A = 
D") there exists v1 E V such that a1v1, a2v1, . . . , anvl are D- 
independent modulo the D-span of UO and alvo, ~2210, . . . , a,vo. 
Continuing in  this fashion we obtain  the desired result. 

4.3 Primitive  Rings  with 
Nonzero  Socle 

Our main object in this book is the  study of rings satisfying cer- 
tain "generalized identities" and it will be seen in this connection 
that primitive rings with nonzero socle arise quite naturally. Ac- 
cordingly we feel it is appropriate to present in some detail  the 
basic facts about  this class of rings. The following account is an 
abbreviated version of the full treatment given in [133, Chapter 
IV]. We will then close this section with the determination of 
the various rings of quotients in this  situation. 

We begin by discussing dual spaces. A left vector space AV 
and right vector space WA over a division ring A are called a 
pair of dual spaces over A if there exists a nondegenerate bilinear 
form on V and W (denoted by ( , )): 

(a) ( , ) : V x W + - A ;  
(b )  (211 + v2, W) = (211, W) + (212, W), 

(v, W1 + w2) = (v, w1) + (v, w2); 
( 4  (QV, 4 = W), 

(v, wa) = (v, w)a; 
(d )  (v, W )  = O implies v = 0; 
(e) (V, W) = O implies w = 0. 

for all v,vi E V, w,wi E W ,  a E A. A map a : AV +- 
AV has an adjoint a* : WA +- WA if (vu, W) = (v, a * ~ )  for 
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all v E !V, W E W .  An important example of dual spaces 
is the pair AV, VA, where V* = HOVZ(AV, AA) is the right 
vector space of linear functionals of V .  Two sets of vectors 
211, v2,. . . , vk E V and w1, w2,. . . , wk E W are called dual to 
each other in case (vi, wi) = S i j ,  i , j  = 1 , 2 , .  . . ,IC. If V ,  W are  a 
dual pair then W is isomorphic to a subspace W’ of V* via the 
map W I-) ( , W) (making use of (e)). The Weak Density Theo- 
rem (Theorem 1.1.5) now enters the picture if  we set M = AV, 
N = AA,, T = W’, S = A. T = W’ is total in view of (d). 
Next  consider f : AA + AA. Setting f (1) = A we’have 

for all y E A. Therefore N = AAA is  closed. Now let VI,. . . , vn 
be A-independent in V and for  each i set Ji = {W’ E W’ I VjWI = 
0, j: # i } .  By Theorem‘ 1.1.5 viJi # 0, i = 1 , 2 , .  . . ,n, and 
since ‘Vi Ji = A we can find W: E Ji such that viw: = 1. Since 
W: = ( , wi) we have  proved 

Theorem 4.3.1 If V and W are a pair of dual  spaces over 
A and V I ,  v2, . . . , v, are A-independent in V then  there  exists 
~ 1 ,  ~ 2 , .  . . ,W, E W such  that (vi, wj) = S i j ,  i ,  j = 1 , 2 , .  . . , n. 

We  now define  two sets: 

&(V)  = { a  E End(Av) I a has an adjoint}; 
FW ( V )  = { a  E End(hV) I a has an adjoint and is of 

finite rank }. 

Fw(V) is an ideal of the ring ,&(V) and may be characterized 
according to 

Theorem  4.3.2 a E Fw(V) if and  only if a is a sum of ele- 
ments of the form x I+ (x, w)u,, 
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Proof. Since any mapping of the form z I+ (x, W)U is of 
rank one and has an adjoint y I+ W (U, y), any sum of a finite 
number of such mappings is of finite  rank  and has an adjoint. 
Therefore it is enough to prove that any a E Fw(V) is a sum 
of elements of the above  form. Clearly V u  = Cy=l AV,, where 
211, 212, . . . , v, are A-independent. By Theorem 4.3.1 there exist 
elements wl, w2, . . . , W n  E W such that (vi, wj) = Sij for all i, j. 
Obviously 

vu =  VU, W& = C(., a*wi)l-li 
n n 

i= 1 i=l 

for all v E V ,  which completes the proof. 

Recall that a nonzero left ideal L of an  arbitrary ring A is 
said to be minimal if its does not properly contain any nonzero 
left ideal of A. We continue with the following general 

Proposition 4.3.3 Let L be a  minimal  left ideal of a ring A. 
Suppose  that L2 # 0. Then there  exists an  idempotent  e E' L 
such  that L = Ae.  Moreover eAe  is  a  division ring. Further, 
if A is  a  semiprime ring and v E A is  an  idempotent  such  that 
vAv is  a  division ring, then AV is  a  minimal  left ideal of A. 

Proof. Since L2 # 0, Lz # 0 for  some x E L. Then by 
the minimality of L we have L = Lz. Therefore e z  = x for 
some e. E L. Hence e2z  = e x  = x and (e2 - e ) z  = 0. Letting 
Z(z) denote the left annihilator of z in A we infer that e2 - e E 
Z(z) n L. Since La; # 0, L e Z(z). Again by the minimality 
of L we have L n Z(z) = 0 and e2 - e = 0. Therefore e is an 
idempotent. Clearly 0 # e = e2 E A e  5 L and L = Ae.  Now let 
eze  E eAe be any nonzero element. Then eze  = e(eze)  E A e z e  
and 0 # A e z e  c L. By the minimality of L we have Aeze  = L 
and in particular yeze  = e. Hence (eye)   (eze)  = e and eze  is an 
invertible element of eAe. Therefore eAe  is a division ring. 

Suppose that v is a nonzero idempotent of a semiprime ring 
A such that vAv is a division ring. Let y = av E AV be a 
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nonzero element. Being a semiprime ring A has no nontrivial 
right annihilator. Hence Ay # 0. Therefore (Ay)2 # 0 and 
avbav # 0 for  some b E A. We have vbav # 0 and vbav E vAw. 
This implies that (vzv)(vbav)  = v for  some z E A. Thus v E Ay, 
Av S Ay c Av and Ay = Av which completes the proof. 

Given  any ring A the sum of all minimal left ideals of A is 
called the left socle of A and is denoted by Socl(A). The notion 
of right socle is introduced analogously. We note that in general 
left and right socles are  not necessarily equal. For example if A 
is the ring of upper triangular (2 x 2)-matrices over a field, then 
Socl ( A )  # Soc,. (A) .  The following corollary follows immediately 
from Proposition 4.3.3. 

Corollary 4.3.4 Let A be a semiprime ring and e = e2 E A. 
Then: 

(i) Ae is  a minimal  left ideal if and  only if eA is a minimal 
right ideal of the ring A; 

(ii) SOC~  (A)  = SOC, (A) .  

Remark 4.3.5 Let A be a ring. Then Socl(A) is   an ideal of A 
and is a direct sum of minimal  left ideals. 

Proof. For an element a E A we let r, to  be  the right 
multiplication by a (i.e., r, : A + A, zr, = za for all x E A).  
Since the homomorphic image of a minimal left ideal under a 
right multiplication is either zero or again a minimal left ideal, 
we have that Socl(A)a = Soq(A)r, c Socl(A) and Socl(A) is an 
ideal of A. Making  use of Zorn’s lemma we conclude that there 
exists a family {L,  I y E l?} of left ideals of A maximal with 
respect to the property &Er L, is direct. If L is a minimal left 
ideal which does not belong to L,, then L n &Er  L, = 0 
and  the sum L + CrEr L, is direct, in contradiction with the 
choice of the family {L, I y E F}. Thus L C {L, I y E l?} and 
CrEr L, = SOCL  (A). 
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An idempotent e # 0 of a semiprime ring A is called minimal 
if A e  is a minimal left ideal of A. It follows immediately from 
Proposition 4.3.3, that a semiprime ring A has  a nonzero  socle 
if and only if it has  a minimal idempotent. Furthermore, if e 
is a minimal idempotent of a semiprime ring A, then eAe is a 
division ring. 

Now let R be a prime ring with nonzero  socle and  let e be a 
minimal idempotent of R. Then V = e R  is a faithful irreducible 
right R-module and also a left vector space over A = eRe. If 
4 E D = EndR(V), then 4 ( e )  = 4 ( e 2 )  = 4(e )e  E eRe and, 
in view of this observation, it is straightforward to show that 
D S A (here we are  letting D act on V from the left). Thus A 
is the associated division ring of R relative to V = eR.  

Theorem 4.3.6 Let R be a  primitive  ring  and let V be any 
faithful  irreducible  right  R-module  with  associated  division ring 
D (thus  we  may regard R as acting densely on D V  in view of 
the  Jacobson  Density  Theorem).  Then: 

(i) Soc(R) = {r E R I rank r < m}; 
(ii) Soc(R)  = Soc(H) (recall Theorem 4.1.1) where H is 

any ring  such  that R c H C Q9 (R). 

Proof. Let S = {r E R I rank r < m}. Let a E S be of 
rank n and  let w1,  w2, . . . , wn be a D-basis of V a .  By density for 
each i = 1,2,. . . , n there exists ri E R such that wjri = Sijwi, 
whence a = ari. Therefore, in order to prove (i), it suffices 
to show that a E R has  rank 1 if and only if the right ideal 
J generated by a is minimal. Suppose a has  rank 1. Setting 
W = ker(a) we may write V = W @ D V ,  with W a  = 0 and 
U = wa # 0. Now let 0 # b E J .  Since Wb = 0 we must have 
W = vb # 0. By density there exists c E R such that W C  = U 

and so vbc = U, which  shows that a = bc. It follows that J is 
minimal. Conversely, suppose J is minimal but a has rank > 1. 
Then we may  find  two D-independent vectors vu, wa in V .  By 
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density there exists r E R such that var = 0 but war # 0. Then 

since a E J but a # L, a contradiction to  the minimality of J .  
To  prove (ii) we first  recall  from Theorem 4.1.1 that Qs = 

Q,(R) C EndD(V). Since R c H it is immediate from (i) that 
Soc(R)  C_ Soc(H). Now let q E Soc(H) and  let vlq, vzq,. . . , v,q 
be a D-basis for V q .  There exists 0 # IQR such that Iq+qI C R. 
It is easy to see that V is an irreducible right I-module  and so I 
acts densely on V .  Hence there exists T E I such that viqr = viq 
for  all i = 1,2, . . . , n. Clearly V = ker(q) G3 Dui and so 
V ( q  - qr)  = 0. Thus q = qr E R and the proof  is  complete. 

The next theorem shows that primitive rings with nonzero 
socle  have many nice properties. 

Theorem 4.3.7 Let R be a  primitive ring with  nonzero  socle, 
let V be any  faithful  irreducible  right  R-module  (with  associated 
division ring D),  and  let  e be any  minimal  idempotent  (with 
A = eRe).  Then: 

(i) There are a ring isomorphism r : A + D and  a r- 
semilinear  isomorphism U ; e R  + V such  that U is  also  a right 
R-module  map; 

(ii) E v e y  nonzero  right  (left)  ideal of R contains  a  minimal 
idempotent; 

(iii) Soc(R)  is  a  right  ideal of E n d ( D V ) ;  
(iv) Soc(R)  is  contained in every  essential right (left)  ideal 

(v) Soc(R)  is  the  unique  minimal ideal of R ;  
(vi) Soc(R) is a  simple  ring; 

(uiii) Qml(R) = E n d ( A e R )  2 End(DV) with  eQmle = eRe;  
(ix) The extended  centroid C of R i s  isomorphic  to  the,cen- 

of R ;  

(uii) Qml (R) = QI (R); 

ter of D. 



4.3. PRIMITIVE  RINGS WITH NONZERO SOCLE 145 

Proof. Since V is faithful, we # 0 for  some w E V .  Define 
the mapping (T : e R  + V by the rule (er)u = ver. Clearly (T is 
an isomorphism of right R-modules. Now  we define the mapping 
r : A + D setting 

(ereI7x = [(ere)x ] u-l 

for all x E V and ere E eRe. One can easily check that all 
desired properties are fulfilled and so (i) has been established. 

To  prove (ii) let 0 # L be a right ideal of R and pick 0 # 
a E L. Since aSoc(R) # 0 we must have aJ # 0 for some 
minimal right ideal J .  Then the map x I+ ax is a right R- 
module isomorphism and so aJ is a minimal right ideal of R 
contained in L. By Proposition 4.3.3 aJ  (and hence L )  contains 
a minimal idempotent. 

To  prove (iii) let S E Soc(R) and let t E End(DV). By 
Theorem 4.3.6(i) S has finite rank  and we choose a D-basis 
vls, w2s,. . . , w,s for Vs. By density there exists r E Soc(R) such 
that visr = 'U&, i = 1,2, . . . , n. From V = ker S CB Cy.l Dui we 
infer that st = sr E Soc( R). 

Given any essential left ideal I of R and a minimal left ideal L 
we have I n  L # 0. Since L is a minimal left ideal, L = I n  L G I .  
Hence I 2 Soc(R). As any nonzero ideal of a prime ring is an 
essential left ideal, it contains the socle. Suppose now that K 
is a nonzero ideal of Soc(R). Since Soc(R) is a nonzero ideal of 
the prime ring R, K' = Soc(R)KSoc(R) is a nonzero ideal of R. 
Therefore Soc(R) c K' C K c Soc(R) and K = Soc(R). We 
have thus proved (iv), (v) and (vi). 

Let q E Q = Qml(R). Then Kq c R for  some  dense left 
ideal K of R. Since any dense left ideal is an essential left ideal, 
K 2 Soc(R) by (iv). This means that q E Q1 (R) ,  and so 
Qml(R) = Ql(R), thus proving (vii). Since e R  C_ Soc(R) C K ,  
we conclude that eRq C R. But  then eRq = e(eRq) 2 e R  
and hence e R  is a right ideal of Q. Since rQ(eR) n R = 0 
and rQ ( e R )  is an ideal of Q, we conclude that rQ  (eR) = 0. 



146 CHAPTER 4. PRIMITIVE RINGS 

Therefore we may regard Q as a subring of End(AeR) .  Consider 
any linear transformation t E End(AeR) .  Define the mapping 
f t  : ReR R according to  the rule 

n n (C riesi)ft = C rie(esit). 
i=l i=l 

We claim that f t  is  well-defined. Indeed, let Cy=l riesi = 0 and 
set z = rie(esit). Then er(CZ1  r ies i )  = 0 for all r E R 
and so 

and z = 0, since R is prime. Therefore the mapping ft is a 
well-defined homomorphism of left R-modules. Setting qt = 
[ReR; ft], we see that erqt = er f t  = ert for all r E R and 
hence qt = t. Therefore Q = End(AeR) .  Finally we note that 
the r-semilinear isomorphism c7 : e R  + V yields End(AeR)  S 
E n d ( ~ v ) .  By (iii) we then have e& C Soc(R) and so eQe = 
eRe. In view of Corollary 2.3.12 we conclude that C "= Z(A) 
and Z(A) is isomorphic to Z(D) via r. 

We  now  show the relationship between primitive rings with 
nonzero socle and bilinear forms. 

Theorem 4.3.8 Let AV, WA be a dual pair of vector spaces 
over a division ring A, let R be a ring such  that &(V) E 
R G &(V), and  let a I+ a* denote  the  adjoint  map LW( V )  + 
E n d ( w ~ ) .  Then: 

(i) FW(V) # 0; 
(ii) R acts  densely on AV (hence R is  primitive); 
(iii) The  map a I+ a* is a ring injection  and WA is  a faithful 

(iv) SOC( R) = .7+ (V); 
(V) Q s ( R )  = Lw(V).  

irreducible  left  R*-module; 
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Proof. Let ( , ) denote the given nondegenerate bilinear 
form. Clearly Fw(V) # 0 since,  e.g., the rank one transforma- 
tion ( , w)v has as its adjoint w(v, ). Next let vl, v2,. . . ,vn be 
A-independent vectors in V and  let u 1 ,   u 2 ,  . . . , U ,  E V .  By The- 
orem 4.3.1 there exist wl, w 2 , .  . . , wn E W such that (vi, wi) = 
Sij  i, j = 1,2, . . . n. Then 

n 

t = C( , W i ) U i  E &(V) 
i=l 

is such that vit = ui, i = 1,2, . . . , n. Thus &(V) (and hence 
R) acts densely on VA 

To  prove (iii) first let a, b E R, W E V ,  w E W and conclude 
from 

(v, (&)*W) = (wab, W) = (wa, b*w) = (v, a*b*w) 
that (ab)* = a*b*. If a* = 0, then (vu, W) = (v, a*w) = 0 and so 
a = 0. Thus a I+ a* is a ring injection. Now let 0 # w E W and 
y an  arbitrary element of W .  Picking v E V such that (W, W) = 1 
we note that t = ( , y)v E R and  that t* = y(v, ) E R* is  such 
that t*w = y. It follows that WA is a faithful irreducible left 
R*-module. 

(iv) is an immediate consequence of Theorem 4.3.6(i). To 
prove (v) we first pick a minimal idempotent e and an element 
v such that ve # 0, and write V = veR. By Theorem 4.3.7(viii) 
we may assume that Qs = Qs(R) c E ~ ( A V )  and for q E Qs 
we have (wer)q = v(erq) where r E R. Now e* is a minimal 
idempotent of R* and,  in view of (iii), we may analogously write 
W = R*e*w. We define a  transformation Q* E End(WA) by 
q*(r*e*w) = [q(re)]*w, noting that q(re) E R since re E Soc(R). 
As the mapping R*e* + R*e*w, r*e* I+ r*e*w is an isomorphism 
of R*-modules, the transformation Q* is well-defined.  From 

(verq, s*e*w) = (v, (era) S e W) 

= (v, (erqse)*w) = (v, (er)*(qse)*w) 
= (ver, q*(s*e*w)) 

* * *  
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we see that q* is the adjoint of q and hence Qs c Lw(V).  On 
the other  hand,  let t E ,&(V) g E n d ( A V )  = Q,l(R) (see 
Theorem 4.3.7(viii)). Letting S = Soc(R) we  know from The- 
orem 4.3.7(iii) that St E S. To show that t E Qs we need only 
show that tS  C S. By part (iii) S* is the socle of R* and by 
Theorem 4.3.7(iii) (applied to E n d ( W A ) )  we see that t*S* C_ S*. 

Since a I+ U* is a ring injection, we conclude that tS c S and 
the proof of the theorem is complete. 

Conversely we have the  important  fact  that  the primitive 
rings with nonzero  socle  which arise in Theorem 4.3.8 are a 
general phenomenon. 

Theorem 4.3.9 Let R be a primitive ring with  nonzero socle. 
Then  there i s  a dual pair AV, WA such  that Fw(V) E R C 
LW(V). 

Proof. Let e  be any minimal idempotent of R. We  know 
that V = e R  is a faithful irreducible right R-module and R is a 
right primitive ring acting densely  on V over A = eRe. Setting 
W = Re we define a bilinear form ( , ) : V X W += A by 
(er,  se) = erse E A for all r, S E R. Since R is a prime ring, 
( , ) is nondegenerate and so AV, WA is a  pair of dual spaces. 
Since (em, ye) = ezrye = (ex,rye) for all ez E V ,  ye E W 
and T E R, any element r E R has an adjoint r* : ye I+ rye. 
Hence R C LW. Next let a E Fw. By Theorem 4.3.2 there exist 
elements bi, c, E R, i = 1,2, . . . , n, such that 

for all ez E V ,  where d = Cy=l bieG E R. Therefore a = d and 
.Fw C R. 

We come  finally to Litoff’s Theorem. Our feeling is that  this 
theorem deserves an  important place  in the  structure theory 
since it furnishes the device  by  which many problems in prime 
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rings (especially those in  which a "generalized identity" appears) 
can eventually be reduced to problems in M,(A). 

One first makes a general observations about.  dual spaces. 
For a subset S of W ,  where V ,  W is a pair of dual spaces over 
a division ring A, we set 

S" = {v E v I (v, S) = 0). 

Clearly SI is a subspace of V .  

Remark 4.3.10 If V ,  W are dual spaces, P and Q finite di- 
mensional  subspaces of V and W respectively, then  there  exist 
finite  dimensional  subspaces P' 2 P and Q' 2 Q of V and W re- 
spectively  which are dual to each  other  (i.e., ( , ) : P' x Q' + A 
is  nondegenerate). 

Proof. If ( , ) : P x Q + A is nondegenerate, then  there 
is nothing to prove. Suppose now that there exists q E Q, say, 
with (P, q) = 0. Then choose v E V such that (v ,  q) # 0 and 
replace P by Po = P+ AV. In  a straightforward way one  verifies 
that 

Q 1 n P o = Q * n P  

Q n P: is a proper subspace of Q n P" 
(since q E P l  but q # P:). A dimension argument shows that 
this process must stop in a finite number of steps,  and so the 
remark i,s established. 

but . (  . .  

We are now in  a position to prove 

Theorem 4.3.11 (Litoff's  Theorem) Let R be a  primitive 
ring with  nonzero socle H = Soc(R) ,  let b l ,  b2, . . . , bm E I2 and 
let S be a  positive  integer 5 max{rank(h)  1 h E H ) .  Then 
there  exists  an  idempotent  e in H such  that  bl, b2, . . . , bm E eRe 
and  the ring eRe  is  isomorphic  to n x n-matrix ring over  the 
associated  division ring A of R, where n 2 S is  the  A-rank of e.  
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Proof. By assumption we may  pick an element b,+l E H 
such that ranlc(b,+l) 2: S. By Theorem 4.3.9 we have Fw(V) 2 
R C &(V). According to Theorem 4.3.2  we may assume 
without loss of generality that bi = ( , W&, i=1,2,. . . ,m+l. 
Then  the preceding observation show that P = CE:' Au, and 
Q = CEl' wiA are contained in finitely dimensional subspaces 
P' and Q' of V and W respectively such that P' and Q' are 
dual to each other. By Theorem 4.3.1 we may  select dual bases 
21, xt.9,. . . , z,, E P' and y1, y2,. . . , y,, E Q'. We leave it for reader 
to verify that  the elements eij = ( , y i ) q  behave as matrix  units 
and  that each bk (and more generally,  each T E eRe, where 
e = Cy=l eii) may be  written  in the form &( , yi)Xijzj, X i j  E A. 
Then for e = Cyzl eii we have bk = ebke E eRe 2 M,(A). 
Clearly n 2 S since bm+l E eRe. 

4.4 Generalized  Pivotal  Monomials 
The notion of a generalized pivotal monomial was introduced 
by Amitsur in his  1965 paper [3], simultaneously generalizing 
on the one hand generalized polynomial identities  and on the 
other hand pivotal monomials (first studied by Drazin in 1965 
[99]). We  give the definition in case R is a prime ring, although 
up to  the present substantional results have only been obtained 
in  case R is primitive. As we shall presently see (Theorem 4.4.2), 
a necessary and sufficient condition for a primitive ring to have a 
nonzero socle  is that  it possess a generalized pivotal monomial. 

Let R be a prime ring, let A = R'C = RC + C, and  let S = 
(a1 = 1, a2, . . . , a,} be a finite set of C-independent elements of 
A. For a monomial of "length" m in A< X >= A JJc C<X > 
(here X is an infinite set  and C < X > is the free C-algebra 
generated by X) 
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the complement P, is  defined to be the set of all monomials ~ ( x )  
of the form 

T(x) = aPIxqlaPI-l * uPlxqlaPO, ' P k  E 

subject to  the following condition: if 1 5 m then  either some 
jk # q k ,  k 5 1 or some ik # pk, k < 1. For l > m there is 
no restriction. We shall say that ~ ( x )  is a generalized pivotal 
monomial (abbreviated GPM) if for  each substitution r : xj I+ 

~ j ,  rj E R, the element T(r)  lies in Co(z)EP, Aa(r), the left 
ideal of A generated by all the elements a(r). Without loss 
of generality we may assume that  the a(x) E P, involve only 
those 5 ' s  which appear in ~ ( x )  (just  substitute 0 for any other 
variable). In the special case S = (1) the notion of a GPM 
reduces to  the notion of a pivotal monomial (abbreviated PM)  
in the sense of Drazin. 

Our goal  is to characterize primitive rings having a GPM. 
The main body of the arguments of Theorem 4.4.2  is  given in 
the following lemma. 

Lemma 4.4.1 Let R be a primitive ring with  faithful irreducible 
left  module V ,  D = E n d ( R V ) ,  let a1 = 1,a2,. . . ,a, be C- 
independent  elements of A = R'C, and  let T = Cy=l aiDo. If R 
has a GPM ~ ( x )  = ai,,,xj,,,ui,,,-l . . . ailxjlaio, then T contains a 
nonzero  element of finite D-rank. 

Proof. If the conclusion does not hold by Lemma  4.2.8 we 
can find elements vo, 211,. . . , wm E V such that  the elements uiwj, 
i = 1,2, .  . . , n, j = 0,1,. . . ,m, are D-independent. For  each 
variable xj appearing in ~ ( x )  (the same variable may appear in 
several  places) we let Ij denote the set of all integers C ,  0 5 k 5 
m, for  which xj is immediately to  the left of aik. By the density 
of R we may define rj E R as follows: 

T p i k W k  = '&+l, k E Ij, 
rjuiwp = 0, (i, P )  # (ik, k ) ,  k E Ij. 
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Notice in particular that rjaivrn = 0 for all i. We  now make the 
substitution r : xj I+ rj and write 

r ( r )  = c boa(r), b, E A. 
U(X)€P* 

A careful look at how the rj’s are defined  shows that r(r)vo = 
ai,,, urn # 0 but a(r)vo = 0 for  each a E P,. 

We are now able to establish the main result. 

Theorem 4.4.2 (Amitsur) ([3, Theorem 16’) If R is a prim- 
itive ring then R has a generalized  pivotal  monomial if and  only 
if Soc( R) # ‘0. 

Proof. If Soc(R) # 0 we choose an idempotent e such that 
R e  is a minimal left ideal, hence eRe is a division ring. It fol- 
lows that eze  is a GPM. Conversely,  :if R has a GPM by 
Lemma 4.4.1 RD contains a nonzero .element of finite D-rank. 
Then by Lemma4.2.6 R itself contains a nonzero  element of finite 
D-rank  and the proof  is complete. 

As a corollary to Lemma 4.4.1 we can easily obtain Drazin’s 
result. 

Theorem 4.4.3 (Drazin, [99]). If R is primitive, then R has a 
pivotal  monomial if and  only  if R = EndD(V) with dimD(V) < 
0 0 .  

Proof, If R has a PM then the set S consists solely of the 
element 1 and, so by, Lemma 4.4.1 there exists 0 # d E D such 
that d has finite D-rank. . But d is invertible and so V = dV 
is a finite dimensional left vector space over D. Conversely, if 
R Mn(D) then R is an $-dimensional left vector space over 
D. Therefore every  element t E R satisfies diti = 0, some 
di # 0, and hence  one  may  conclude that tn2 E Rtn2+l. It follows 
that zn2 is a PM for R. 
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4.5 Derivations 
Our aim in this section is to show that if R is a primitive ring 
with nonzero  socle  whose associated division ring is finite dimen- 
sional over its center then any derivation of R which  vanishes  on 
the center must be X-inner. This result is  needed in  the  study 
of generalized identities in Chapter 7. 

We begin with a very special case. 

Lemma 4.5.1 Let S be a derivation of R = M,(F), F a field, 
which  vanishes  on F .  Then S is  inner. 

Proof. The proof  is  by induction on n. The case n = 1 is 
clear. Let {eij I i, j '= 1,2,  . . . , n) denote the usual matrix  units. 
We set el = e l l ,  e2 = e22 + e33 + . . . + e,,, and write R in its 
Pierce decomposition @?,j=l&j, &j = eiRej. Then 

e,  = elel + elel = ael + a12 + a21, 

a E F ,  aij E & j ,  i # j.  From this we see that clef = ael + a12 
and e!el = ael + a21. It follows that e! = 2ael + a12 + a21, 
whence a = 0. Therefore 

6 6 6  

e; = a12 + a21 = [el ,  a12 - a2119 - 
and so, by replacing S with S - ad(al2 - a21), we may assume 
without loss of generality that e! = 0. Hence e: = (1 - el)' = 0 
and G2 c R 2 2 .  By induction there exists b E R 2 2  such that 
ab = [a, b] for all a E R 2 2 .  Since [el ,  b] = 0 we may replace S by 
S - ad@) and assume that e! = 0 and S = 0 on R22. In  particular 
efj = 0, i = 1 ,2 , .  . . , n, whence e t  = (ellelieii)' = Xieli, i > 1, 
and e& = pjejl ,  j > 1. Applying S to eji = e j le l i ,   i , j  > 1, we 
obtain 0 = pjeji + Xieji and so Xi = -pj for all i, j > 1. Setting 
p = pj  = -Xi, i , j  > 1 we see that 

[eli,   pel] = -peli = Xieli = eli 6 
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and 
[ejl,  Pel] = Pejl = ej1. 6 

It is then clear that S = ad(pe1) and  the proof  is complete. 

Corollary 4.5.2 Let D be a finite  dimensional  division algebra 
over  its  center C. Then  any  C-linear  derivation S of D is  inner. 

Proof. Let F be a maximal subfield of D. Since S is  CLlinear 
it may  be lifted to an  F-linear derivation 8 of R = D @C F 
&?,(F) (see Corollary 4.2.2). By Lemma 4.5.1 

h 

S = a d ( x  ai @ Xi), {ai}  C D, {Xi} C-independent in F, 

with X 1  = 1 (we do  not assume that al # 0, but it will  follow 
from our further considerations). For x E D we see in  particular 
from 

that x6 = [x, all, and the proof  is complete. 

Theorem 4.5.3 Let R be a  centrally closed primitive ring with 
nonzero socle H ,  with  extended  centroid C and with  faithful ir- 
reducible right R-module M .  Suppose  furthermore  that  the as- 
sociated division ring A = EndR(2M)  is  finite  dimensional  over 
its  center.  Then  any  C-linear  derivation S of R is   X-inner.  

Proof. We shall regard V = M @ M  = ((x, y) I z , ' y  E M }  as 
an R-module under the multiplication (x, y)oa = (xu, xa6+ya). 
We let M1 = ( M ,  0) and M2 = (0, M ) ,  noting that M2 is an 
R-module. Since R has nonzero  socle we may write M = mK 
for  some m E M and minimal right ideal K of R.  Then N = 
(m, 0) o K is an irreducible R-submodule of V which  is not 
contained in M2, hence N n M2 = 0. The equation 

( m a ,  0) = (ma, mu6) - (0, mu6) = (m, 0) o a - (0, mu6), 
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a E K, shows that V = N @ M2. We define an additive map 
E : V + M by sending (x, y) I+ y, and an R-map F : V + M 
by writing V = N @ M2 and sending n @ m2 I-+ y, where m2 = 
(0, y). We set D = E - F ,  noting that D maps M 2  to 0. For 
a E R we see that 

Since F is an R-map we have (x, y)[a, F] = 0. It follows that 

(x, Y)[% Dl = xa 6 

Now let v = V / ” .  Since D maps M2 to 0, D induces a map 
D : v + M and so we have (x, y) [a, D] = xu6. We next 
note that  the  map v : M -+ v given by x I-+ (x, 0) is an R- 
isomorphism. We note that xu6 = xv [a, D] for all x E M .  Since 
v is an R-map we may rewrite this equation as xu6 = x [a, VD]. 
Setting g = vf5 we then have 

- 

where g : M + M is an additive map. Considering the ring 
E = End(M) as acting from the right on M ,  we remark that 

0 = [X, 4 = [X, [a, 911 = [a, [X, 911 

for all X E A’ = NE(R), a E R, i.e., [X, g] E A’. Thus [ ,g] 
induces a C-linear derivation of A’ and so by Theorem 4.3.7(ix) 
and Corollary 4.5.2 there exists a E A’ such that [X, g] = [X, a3 
for all X E A’. This says that q = g-a E NE(AO) = End(&), 
and furthermore we have 
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By Theorem 4.3.9 End(~A4)  = Ql(R) (the left  two  sided quo- 
tient ring of R), which says that H q  C R. Since H 2  = H ,  
Hd C_ H .  Therefore  from ad = aq - qa, a E H ,  we obtain 
qH c R, hence q E Q,(R) (the symmetric ring of quotients of 
R). Thus we have  shown that S is  X-inner and  the proof  is 
complete. 

We point out  that  the condition that A be  finite dimensional 
in Theorem 4.5.3 is  needed.  For  example let F = Q(t) be the 
field of rational functions over the field of rationals  and  let a be 
the automorphism of F given  by t I+ t + 1. Then the fixed  field 
of F is just Q. Now let D = F(x; a) be the division ring of all 
Laurent series Cz"=, aizi, m E Z, ai E F,  with multiplication 
given  according to xu = a'x, a E F .  Then  the center of D is 
Q and  dimQ(D) = 0 0 .  We leave it for the reader to check that 
the  map S : D + D given  by axn I+ nuxn is a derivation of D 
which  is not inner. 

4.6 Involutions 
We recall  from  section 1.1 that an involution * of a ring R is an 
antiautomorphism of period 1 or 2. An  element x E R is  called 
symmetric if x* = x and is  called  skew if x* = -x. The subset 
S = S(R) of all symmetric elements  is  closed under addition  and 
the  Jordan  product xoy = xy+yx and  the subset K = K ( R )  of 
all skew elements  is  closed under addition  and the Lie product 
[x, y] = xy - yx. In dealing with involutions we  will  always 
make the blanket assumption that R has no  2-torsion,  hence 
S n K = 0 and 2R C S + K .  In case  every  element  is  divisible 
by 2 we have the decomposition R = S @ K.  An  ideal I of R 
such that I* = I will be called a *-ideal . For instance the socle 
of a primitive ring with involution is a *-ideal. 

In this section we first  prove Kaplansky's Theorem (The- 
orem 4.6.8) characterizing involutions of primitive rings with 
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nonzero  socle in terms of Hermitian and  alternate forms. This 
result is then applied to give a very tight description of involu- 
tions of &(C), C an algebraically closed  field. Finally we shall 
present an involution version of Litoff’s Theorem. 

We define an involution * of a prime ring R with nonzero 
socle to be of transpose type if there exists a symmetric minimal 
idempotent  and to be of symplectic type if ee* = 0 for any 
minimal idempotent e E R. 

Lemma 4.6.1 Let A be a prime ring  and U ,  v E A minimal 
idempotents. Then either vu = 0 or uAv is a division  ring  with 
an identity e and uAv = eAe. 

Proof. It is  enough to consider the case vu # 0. Then 
uavu # 0 for  some a E A, since A is  prime. We set b = uav. 
Taking into account the minimality of uA we infer  from 0 # 
bu E buA G uA that buA = uA. Multiplying both sides by v 
we obtain that buAv = uAv. Since b E uAv, we conclude that 
be = b for  some e E uAv. Therefore b(e2 - e)  = 0. Letting T 
denote the right annihilator of b we infer that e2 - e E T n uA. 
Since U A  is a minimal right ideal and buA # 0, we have e = e2. 
Recalling that e E uAv we obtain that eA = uA by minimality 
of uA. Therefore e is a minimal idempotent. Analogously Ae = 
AV. Thus eAe = uAv. 

Theorem 4.6.2 Let R be a primitive ring  with  nonzero socle 
and involution *. Then the  involution * is  either of transpose 
type  or of symplectic  type. 

Proof. Suppose that  the involution * is not of symplectic 
type. Then  there exists a minimal idempotent v E R such that 
vu* # 0. By Lemma 4.6.1 v*Rv is a division ring with identity 
e and v*Rv = eRe. Therefore eRe is a *-invariant subring  and 
in particular e* = e. 
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Our next goal is a characterization of involutions of primitive 
rings with a nonzero  socle in terms of bilinear forms.  To this end 
we proceed to define the following  two types of forms which  will 
be relevant. Let A be a division ring with involution a! I-+ E, 
AV a vector space, and ( , )V x V + A a biadditive mapping 
such that 

(Qv, P 4  = 4% w)P (4.7) 
for all Q, /3 E A, v, W E V .  

We say that ( , ) is Hermitian relative to Q I+ E if 

(v, W) = (W, v) for all v ,  W E V. 

We say that ( , ) is alternate if E = a! for all o E A, 
char(A) # 2 and 

(v, W) = -(W, v )  for all v ,w  E V. 

We remark that if ( , ) is alternate then A is  necessarily a field 
and (v, v )  = 0 for all v E V .  

Of secondary importance is the notion of a skew  Hermitian 
form: 

(v, W) = -(U], v )  for all v ,w E V. 

The reason  for this is  given by the following lemma. 

Lemma 4.6.3 If ( , ) is a skew  Hermitian  form  then  one of 
the  following  must occur 

(i) ( , ) is  alternate; 
(ii) If A E A is any  nonzero  skew  element,  then  the  map 

N:  A + A defined by Q I-+ 6 = A-lGA is an  involution of A 
and  the f o r m  ( , ) defined by  (v, U ] )  = (v, w)A is  Hermitian 
relative to a! I+ 6. 

Proof. If there  are no nonzero skew elements in A then E = 
a! for all a! E A and ( , ) is alternate. Now let 0 # X E A with 
A = -A. It is straightforward to check that a! I+ 6 = A- lZA is 
- 
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an involution. The form  defined  by (v,  W) = (v,  w)X is clearly 
biadditive. Furthermore we have 

(QV, DUI) = (QV, p W ) x  = Q(W,  w>px 
= a(v,  W)x(x-’px) = Q(V, W)p”. 

Finally, from 

(v>) = (v;W)X = x-yv, W)XX 
= x-lx(v, W)X = (-l){-(W, .)}A = (W, v)A 

= (W, v) 

we see that ( , ) is Hermitian. 

We make the useful observation that if ( , ) : V x V + V is a 
nondegenerate biadditive mapping satisfying (4.7) then,  turning 
V into a right A-space VA by defining v a! = Ev) we see that 
AV, VA is a dual pair. Accordingly, the notions and results of 
section 4.3 are available. In  particular we shall write 3 v  for 
3 v A ( ~ V )  and .CV for C,(,V). It is straightforward to verify 
that  the mapping a I+ a*, a* the adjoint of a, is an involution 
on .CV. 

The next four results show that involutions of transpose  type 
correspond to Hermitian forms and involutions of symplectic 
type correspond to alternate forms. 

Proposition 4.6.4 If R is a prime ring with  nonzero socle and 
with  involution * of transpose  type,  then 

where AV is  a vector space with  a  nondegenerate  Hermitian form 
( , ) and * is  the  adjoint  mapping  relative  to ( ) ). 

Proof. Since * is of transpose  type,  there exists a symmetric 
minimal idempotent e. We set V = eR, A = eRe,  define ere = 
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er*e,  and define ( , ) : V x V 3 V by the rule (ex, ey) = exy*e. 
It is easily verified that  this is a nondegenerate Hermitian.form. 
The property (em, ey) = (ex,  eyr*) shows that * is the adjoint 
mapping re ( , ) and R C ,CV. Finally, let t = ( , ea)eb E Fv, 
a,b E R. For all r E R 

ert = (er, ea)eb = era*eb 

and so t = u*eb E R. It follows  from Theorem 4.3.2 that Fv C 
R, and the proposition is  proved. 

Conversely, we  now prove 

Proposition 4.6.5 Let AV be a vector  space  over a division 
ring A of char(A) # 2 with a nondegenerate  Hermitian form 
( , ) relative to  Q I+ E, and suppose R is a *-invariant subring 
of LW such  that FV C R. Then the  involution induced  on R by 
* is of transpose type. 

Proof. Suppose the involution induced on R is not of trans- 
pose type. Then by Theorem 4.6.2 it is of symplectic type, 
i.e.,  for  every minimal idempotent e we have  ee* = 0. Let 
0 # v E V and pick W E V such that (v, W) = 1. Then 
e = ( , w)v E Fv C_ R is a minimal idempotent. Indeed, for 
x E V ,  we have 

xe2 = [(x, w)v]e = ((IC, W)V, W)V 

= (x, w)(v, W)V = xe 

and so e = e2.  Since e is of rank one, it is a minimal idempotent. 
Since  e* = ( , v ) ~ ,  we see  by assumption that 

O = vee* = [(v, w)v]e* = ((v, W)V, v)w 
= (v, W)(V, V)W = (v, v)w. 

Since W # 0, we conclude that (v,  v )  = 0 for all v E V .  Lineariz- 
ing, we have (2, y) + (g ,  x) = 0 for all z, y E V .  In  particular 

0 = (v, W) + (W, v )  = 1 + (v,  W) = 2, 
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in contradiction to char (A)  # 2. 

Proposition 4.6.6 If R is a prime ring with  nonzero socle and 
with  involution * of symplectic  type,  then 

- 7 v S R G &  
where AV is a vector space with a nondegenerate  alternate form 
( , ) and * is  the  adjoint  mapping  relative  to ( , ). 

Proof. Let e be any minimal idempotent. By assumption 
ee* = 0 = e*e. We set U = e + e*. Clearly U is a symmetric 
idempotent of rank 2 and H = uRu E M 2 ( A )  (by the Jacobson 
Density Theorem). Let ell = e,  e22 = e*, e12, e21 be  a system of 
matrix  units of H .  We have 

e;, = (e11e12e22)* = ef2e;,e;, = e11e;~e22 

and e;, = 0 8 1 2  for  some Q E A. Consider v = ell + e12. Since 
v R  = ell R = e R ,  v is a minimal idempotent of R. Hence 

0 = vu* = (ell + e12)(e22 + ae12) = e12 + Qe12 

and Q = -1. Analogously  one can show that ell = -e21. Define 
the additive mapping # : A + A by the rule 

(eze)# = e12(eze)*e21 

for all eze  E eRe = A. First we note that 

[(eze)(eye)l# = e12e22Y*e22z*e22e21 
= e1~e22~*e22e21e1~e22z*e2~e21 

= (eye)#(eze)# 

Further 

(me)##  = [e12(exe)*eZl]# = [e12z*ezl]# 
= e12(e12z*e21)*e21 
= e12(-e21)z(-e12)e21 = ellzell  = eze  
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which means that # is an involution of the division ring A. Now 
we define the bilinear form ( , ) by the rule 

( e z ,   e y )  = exy*e21 

we infer that ( , ) is a skew Hermitian bilinear form. Since R 
is prime, this form is nondegenerate. The  property ( e z r ,   e y )  = 
(ex ,   eyr*)  for all ex,   ey  E e R  and r E R is obvious. It shows 
that * is the adjoint mapping re ( , ) and also that R c CV. If 
t = ( , eu)eb E Fv, then for all r E R 

ert = (er,  ea)eb = eru*e21eb 

and so t = u*e2leb E R. Hence FV R C CV. 
Suppose that ( , ) is not an  alternate form. It follows from 

Lemma 4.6.3 that  the form ( , ) defined by ( v ,  W) = ( v ,  w)A, 
A# = -A # 0, is a Hermitian form relative to the involution 
cu e G = A-la#A. It is  easy to see that * remains the adjoint 
mapping relative to ( , ) and that  the rings CV and FV remains 
unchanged. But now  by Proposition 4.6.5, * must be of trans- 
pose type, in contradiction to our hypothesis. Therefore ( , ) is 
an  alternate form and the proof is complete. 

The converse of Proposition 4.6.6 is easily  shown. 

Proposition 4.6.7 Let AV be a vector space over a division 
ring A of char (A)  # 2 with  a  nondegenerate  alternate f o r m  ( , ), 
and suppose R is a *-invariant  subring such that Fv c R C LW. 
Then the  involution  induced  on R by  * is of symplectic  type. 

Proof. By Theorem 4.3.8 R is primitive with nonzero  socle. 
Suppose * is of transpose  type, i.e., there is a symmetric minimal 
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idempotent e = e* E R. We can then write V = Aw @ V ( l -  e ) ,  
where we = W # 0. Let v = QW + u(1- e )  be any element of V. 
Then 

( W ,  v )  = ( W ,  QW + u(1- e ) )  = ( W ,  w)a + (we ,  u(1- e ) )  
= ( W ,  u(1- e)e)  = 0. 

Thus (W,  V) = 0 in contradiction to nondegeneracy of ( , ), and 
the proposition is proved. 

Taken together Propositions 4.6.4,  4.6.5,  4.6.6,  4.6.7 give  us 

Theorem 4.6.8 (Kaplansky’s Theorem) Let R be a primi- 
tive ring with  nonzero socle (and of char # 2). Then  any in- 
volution of R is  either of transpose  type  or of symplectic  type. 
Furthermore R has  an  involution * of transpose  (resp.  symplec- 
tic)  type if and  only if there  is a vector space AV with a non- 
degenerate  Hermitian  (resp.  alternate) form ( W ,  v) such  that 
3 v  c R c .CV and * is the  adjoint  map  relative  to (W,  v ) .  

We  now apply Kaplansky’s Theorem to obtain  a more  pre- 
cise determination of involutions of Endc(V) (S M, (C)) where 
dimc(V) = n < 00 and C is an algebraically closed  field.  Al- 
though this is admittedly a rather special case we shall see in 
Chapter 9 that our exposition of Herstein’s  Lie theory of prime 
rings with involution ultimately reduces to this  situation. 

Let V be an n-dimensional  vector space over a field C of char- 
acteristic # 2, and  let Endc(V) denote the n2-dimensional alge- 
bra of linear transformations of V. A  set {eij},  i, j = 1,2, . . . , n, 
of elements of Endc(V) satisfying 

eijekl = 6jkeil (4.8) 

will be referred to as a set .of transformation  units . Given a 
basis V I ,  212, . . -. , v, of V the mappings (e i j }  given by vkeij = 
&kvj  will be called the transformation units re 211, 112, . . . , v, and 
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conversely,  given any set of transformation  units {eij} there is a 
basis v1, v2,. . . , v, whose transformation  units  are the given eij 
(just pick v1 = vel1 # 0 and define vj = vlel j ) .  It follows that 
if a = c;=l  aijeij, Qij  E C, then A = (aij) is the  matrix of a re 
211,212, . . . , in the sense that via = C!& Qijvj. 

Two important involutions of Endc(V) can now be defined. 
The map r : C;=, aijeij I+ C;=, clrjieij will be called the trans- 
pose involution re {eij} and, if n = 2m and 

S = e1,2m+e2,2m-1+. * .+em,m+l-(em+l,m+em+2,m-l+. .+e2m,1), 

the  map a I+ sa7s-l will be called the symplectic involution re 
{eij}. 

Remark 4.6.9 Let 211, 212, . . . , vn and 201, w2, . . . , W, be bases of 
V with  corresponding  transformation  units { eij} and { fij}. Then 
f i j  = t-leijt,  where t is  the  linear  transformation  given by  t : 
vi H wi. 

Let ( , ) be a nondegenerate symmetric or alternate form  on 
V .  A symmetric form  on CV .is just a Hermitian form in case 
5 = Q for all Q E C, and  thus (v, W) = (W, v) for all v, W E V .  
Given a basis v1 ,212, . . . , bn of V the  matrix A = (oij), where 
0i.j = (vi,, q ) ,  is called the  matrix of ( , ) re v1,v2,. . . , v,’. If 
w1, w2,. . . ,W, is a second  basis of Y (where wi = x;=, pijvj) 
and B is the  matrix of ( , ) re wl,  w2,.  . . ,W, then B = P A  (“p>, 
where P = ( p i j )  and t P  is the transposed matrix. 

Lemma 4.6.10 If C is algebraically closed and ( , ) is  a  non- 
degenerate symmetric form, then there is  a basis w l ,   w 2 , .  . . , W, 

of V such  that  the  matrix of ( , ) re w1,  w2,. . . ,W, is  the identity 
n x n-matrix I .  

Proof. Suppose (v, v) = 0 for all v E V .  Picking v ,  W E V 
such that (v, W) = Q # 0 we immediately reach the contradic- 
tion that (v + W, v + W) = ZQ # 0. Thus (W, W) = p # 0 for 
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some W. Since C is algebraically closed we may write p = a2 
for  some a E C. Setting w1 = a-lw we then have (wl,  wl) = 1. 
The  map e : v I") (v, w1)wl is a projection with V(l  - e )  or- 
thogonal to w1 (i.e., (V(l - e ) ,  wl) = 0), and so ( , ) induces 
a nondegenerate symmetric form on V(l - e ) .  By induction 
V ( 1 -   e )  has a basis w2, w3, . . . , W, such that (wi, wj) = bij and 
the proof  is complete. 

Lemma 4.6.11 If ( , ) is a  nondegenerate  alternate form  then 
n = 2m  is  even  number and  there  is  a basis w1, w2,. . . , W, such 

that  the  matrix of ( , ) re w1, w2,. . . , Wn is 

I,  is th'e identity m x m-matrix. 

Proof. Choosing v, W E V  such that (v, W) = a # 0 we 
set w1 = a-lv, W, = W and  note that (w1, W,) = 1, whence 
(W,, wl) = -1. The map e : v I+ (v, Wn)W1 - (v, W1)Wn is a 
projection of V on Ve  with V(l - e) orthogonal to w1 and Wn, 

and so ( , ) induces a nondegenerate alternate form  on V( 1 - e). 
By induction, n - 2 = 2 ( m  - 1) is even and V( l -  e) has a basis 
~ 2 , ~ 3 , .  . . ,wn-1 such that (wi, Wn-i) = 1 for i = 2,3 , .  . . ,m, 
(w,+i, wi) = -1 for i = 1,2,. . . ,m - 1 and all other  products 
are 0. The lemma is thereby proved. 

Now assume * is any involution of Endc(V). We shall fur- 
thermore assume * acts as the identity  map on C; such  involu- 
tions  are called involutions of the first kind . (Problems concern- 
ing prime rings with involutions which do not  act as the iden- 
tity  map on the extended centroid can be frequently reduced 
to prime rings without involution). By Kaplansky's Theorem 
* is the adjoint  map relative to a Hermitian or alternate form 
( , ). Since we are assuming that * is the identity  map on C 
it follows  easily that in the Hermitian case ( , ) is symmetric, 
i.e., (v, W) = (W, v) for all v ,w E V. By Lemma 4.6.10 and 
Lemma  4.6.11 V has a basis w1, w2, . . . , W, such that  the matrix 
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S = ( O i j )  of ( , ) re w1, ~ 2 , .  . . ,W, is either I (if ( , ) is symmet- 

ric) or ( ) , n = 2m (if ( , ) is alternate). Let ( f i j }  

be  the set of transformation  units re wl ,  wp, . . . , wn and a E R. 
Writing U = c", a i j   f i j ,  U* = C; p i j  f i j  and  setting A = ( a i j ) ,  

B = ( p i j )  we see  from the equations 

0 Im 
- Im 

(wiu*, w j )  = c P i k ( w k ,  w j )  = c P i k o k j  
k  k 

and 
(wir w j a )  = (wi, x a j k w k )  = X O i k a j k  

k  k 

that BS = S ( t A ) ,  i.e., B = S ( tA)  S - l .  Translated back to 
an equation in R this says that U* = s u 7 s - l ,  where u7 is the 
transpose involution re { fij}. If S = I ,  then S = 1 and * is the 

transpose involution re { f i j }  and if S = ( -;m ) 9 then 

= f1,2m + - - - + f m , m + l -   ( f m + l , m  + * + f2m,1) 

and * is the symplectic involution re { f i j } .  We have thus corn- 
pleted the proof of the following 

Theorem 4.6.12 Let * be an  involution of the  first  kind of 
R = Endc(V), where C is   an algebraically closed field.  Then 
there is  a  set of transformation  units { f i j }  such  that * is  either 
the  transpose  involution  or  the  symplectic  involution  relative  to 
{ f i j } .  

Corollary 4.6.13 Let * be an  involution of &(C) of the  first 
kind,  where C is   an algebraically closed field. Then there  exists 
a  set of matriz  units {Fij} in M,,((?) such  that * is one of the 
following  two  maps: 

(a) C Q i j E j  I+ C a i j $ i  (transpose); 
(b)  C CZlijFzj I+ S (C a i j $ i )  S-', n = 2m (symplectic),  where 

S = F1,2m + + Fm,m+1 - (Fm+l,m + . + Fzm, l ) .  
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Proof. This is easily  seen by letting 4 : Endc(V) + M, (C) 
be a C-algebra isomorphism, defining an involution * on Endc(V) 
by U*+ = (U+)*, and  setting F.j = fijq5, where { fij} are  the 
transformation  units given  by Theorem 4.6.12. 

We turn our attention now to developing the analogue of 
Litoff's Theorem for rings with involution. In what follows R 
will denote  a primitive ring with involution * and  with nonzero 
socle Soc(R) .  

We start with the following general observations about spa- 
ces with a nondegenerate Hermitian or skew Hermitian bilinear 
form. For a subset S of V ,  where V is a left vector space over 
a division ring A with a nondegenerate Hermitian or skew  Her- 
mitian bilinear form ( , ) : V X V + A, we set 

S" = {v E v I (v ,  S )  = 0) .  

Clearly S" is a subspace of V .  

Remark 4.6.14 If V is a  left  vector space over  a  division ring 
A with  a  nondegenerate  Hermitian OT skew  Hermitian  bilinear 
form ( , ) : V x V + A and P is a finite  dimensional subspace 
of V ,  then  there  exists  a  finite  dimensional subspace P' 2 P 
such  that ( , )Ipr is  nondegenerate. 

Proof. If ( , ) : P x P + A is nondegenerate, then  there 
is nothing to prove. Suppose now that  there exists v E P, say, 
with (v ,  P )  = 0. Then choose W E V such that (v, W) # 0 and 
replace P by PO = P + Azo. We claim that 

dima(Pk n Po) < dima(P" n P). 

Indeed, let p +  aw E P:. Since v E PO and (p, v )  = f (v ,  p )  = 0,  

0 = (p+aw, v )  = a(w,  v )  
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and hence Q = 0 and p E P*. On  the  other hand v # P& 
which  proves the claim. A dimension argument shows that  this 
process must stop in a finite  number of steps,  and so the proof 
is  complete. 

We are now in a position to prove 

Theorem 4.6.15 (*-Litoff Theorem) Let R be a primitive 
ring  with  nonzero  socle H = Soc(R) and with  involution *. Let 
b l ,  b2, . . . , b, E H .  Then there  exists  a  symmetric  idempotent e 
in H such that bi E eRe  for all i and the  ring eRe is isomor- 
phic to  n x n-matrix ring  over  the  associated  division  ring A of 
R, where n is the  A-rank of e. If n > 1, then the  type of the 
restriction of the  involution * on the subring eRe coincides  with 
that of the  involution * of the  ring R. 

Proof. Taking into account Theorem 4.6.8 we can assume 
that there exists a left  vector  space V over A with a nondegen- 
erate  Hermitian or alternate form ( , ) such that  Fv(V) C R C 
&(V) and  the involution * coincides with the adjoint relative 
to ( , ). By Theorem 4.3.2 we may  assume without loss of  gen- 
erality that bi = ( , W&. Then Remark 4.6.14 shows that P = 

(Aui + Awi) is contained in a finitely  dimensional subspace 
Q of V such that ( , )IQ is  nondegenerate. By Theorem 4.3.1 the 
subspace Q has  dual bases x1,x2,. . . , xn and y1, y2, .  . . , yn. We 
leave it for the reader to verify that  the elements eij = ( ) yi)xj 
behave as  matrix  units  and  that each bk (and more  generally, 
each T E eRe, where e = E t l  eii) may be  written in the 
form Cij ( ) y i ) X i p j ,  Xij E A. Then €or e = C:=l eii we have 
bk = ebke E eRe S! M,(A).' Let v E V.  Then ve = 0 if and 
only if Cy=l (v,  yJxi = 0. Since 2 1 ,  Q ,  . . . , x,  are linearly  inde- 
pendent, the  last condition is  equivalent to (v ,  yi )  = 0 for all 
i = 1,2,. . . , n. But y1, y2,. . . , yn is a basis of Q. Hence we have 
proved that ker(e) = QI. Since V e  = P ,  it follows that 

( W  Y )  = (%e, Ye + Y ( 1  - e ) )  = (xe,  ye) = ( x ,  y e )  
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which means that e* = e. The last  statement of the theorem is 
obvious. 

We remark that clearly the symmetric idempotent e in The- 
orem  4.6.15  may be chosen so that  the rankA(e)  2 k ,  where k is 
any prescribed positive integer for  which k 5 dima(V). Indeed, 
let el denote the symmetric idempotent guaranteed by Theo- 
rem  4.6.15, take any element c of sufficiently  high finite rank in 
(1 - e l ) R ,  and reapply Theorem 4.6.15 to  the elements e l ,  c to 
obtain  the desired symmetric idempotent e. 

The *-Litoff Theorem will  prove to be useful in Chapter  9 
when we shall give an exposition of Herstein's Lie theory for 
prime rings with involution. 

4.7 Automorphisms 
Our aim in this section is a description of automorphisms of 
primitive rings with nonzero  socle  whose associated division ring 
is finite dimensional over its center. We  show that any automor- 
phism acting on the extended centroid identically is X-inner. We 
start with the following  easy remark. 

Remark 4.7.1 Let a be an  automorphism of R = M,(F), F a 
field,  which  acts  identically on F .  Then cy is  inner. 

Proof. Let {eij} be a  set of matrix  units in M,(F). Obvi- 
ously {e;} is again a  set of matrix  units. By Remark 4.6.9 there 
exists an invertible matrix t E M,(F) such that e; = t-leijt for 
all i, j which  proves the remark. 

Corollary 4.7.2 Let D be afinite  dimensional  division algebra 
over  its  center C. Then  any  C-linear  automorphism a of D is 
inner. 
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Proof. Let F be a maximal subfield of D. Since Q is C- 
linear it may be lifted to an  F-linear automorphism Ci of R = 
D @C F F &(F)  (see Corollary 4.2.2). By Remark 4.7.1 5 = 
i n n ( C a i @ X i ) ,  {ai} 2 D, {X i }  C-independent in F ,  with X1 = 1 
(otherwise we replace (C ai €3 Xi) with (C ai €3 &)(l €3 X,)"). 
For x E D we see in  particular from 

that alx" = xul, and the proof  is complete. 

Theorem 4.7.3 Let R be a primitive ring with  nonzero  socle, 
with  faithful  irreducible right R-module M and A = End(ik?R). 
Suppose  that Q is  an  automorphism of R. Then there  exist  an 
automorphism r ; A + A and  a  r-semilinear  automorphism S 
of M such  that r' = S-%S for all r E R. 

Proof. Here we consider R as a subring of EndA(M). Fur- 
ther we consider M as  an R-module M' with multiplication 
given  by the rule m * r = mra. Clearly End(M&) = A. By 
Theorem 4.3.7 there exist an automorphism r : A + A and a 
.r-semilinear  isomorphism S : M + M' which  is an isomorphism 
of right R-modules as well.  We  have 

(mr)S = (mS) * r = (mS)r" 

for all m E M and r E R. Hence rS  = S P  and rQ = S-lrS, 
which completes the proof. 

Theorem 4.7.4 Let R be a  centrally closed primitive ring with 
nonzero socle H and  with  extended  centroid C ,  and let M be 
a faithful irreducible  right R-module  whose  associated  division 
ring A = End(MR)  is  finite  dimensional  over  its  center.  Then 
any  C-linear  automorphism Q of R is  X-inner. 
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Proof. By Theorem 4.3.7(ix) we can identify the center of 
A with lac. It follows from Theorem 4.7.3 that re = S"rS for 
some  .r-semilinear automorphism of M .  Consider c E C. Since 
c" = c, CS = Sc. Note that mc = cm for all m E M .  We have 

c(mS) = (mS)c = (mc)S = ( m ) S  = c7(mS) 

and hence c = c7 for all c E C. Applying Corollary 4.7.2 we 
infer that T = inn(a) for  some a E A. Consider now the endo- 
morphism T : M + M of the abelian group M given  by the rule 
mT = a(mS) for all m E M .  Clearly T is an automorphism. 
Further 

(mr)T = a [(mr)S] = a [(mS)rO] = [a(mS)] TU = (mT)r* 

which means that P = T-lrT. Moreover 

(dm)T = a[(dm)S] = a [ f l ( m S ) ]  = acr(mS) 
= da(mS) = d(mT) 

for all m E M and d E A. Therefore T E End(aM). By 
Theorem 4.3.7 End(aM) = Qr(R) and Soc(R) is a right ideal of 
&l (R). Clearly Soc(R)" = Soc(R) and so for  every r E Soc( R) 
we have TT" = rT E Soc(R). Thus 

TSoc(R) = TSoc(R)" Soc(R) 

and we conclude that T E Qs (R). 
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Chapter 5 

The 
Poincar6-Birkhoff-Witt 
Theorem 

In this chapter we shall prove a generalization of the well-known 
PoincarBBirkhoff-Witt theorem for  Lie algebras. Aside  from our 
feeling that  this result is of independent interest, we have a very 
tangible motivation for this  project. One of the central goals 
in  this book (Chapter 7) is the  study of so-called  generalized 
identities which  involve derivations (along with automorphisms 
and  antiautomorphisms). To be specific let R be a prime ring 
with extended centroid C, prime subfield Q, of C, and symmetric 
ring of quotients Q. Letting D = D(R)  = Der(R)C+Di (where 
Di is the  set of inner derivations of Q) we recall  from Chapter 2 
that D is a  certain  set of derivations of Q which  satisfies the 
following properties 

(i) D is a @-algebra; 
(ii) D is a right C-space; 
(iii) There is  @-Lie algebra map A : D + Der (C); 
(iv) [6c, p] = [6, plc + 6 4 ,  where fi = A(p), 6, p E D and 

c E c. 
173 
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In case of char. p D is also closed under pth powers (in 
this  situation D is  called restricted)  and  there  are  further natural 
properties (which we will not mention here). 

In view of this motivation, in this  chapter we shall abstract 
the above properties and define accordingly the notion of a (re- 
stricted) differential F-Lie algebra L (F playing the role of C). 
For such a Lie algebra we will construct a universal enveloping 
algebra (which is an F-ring)  and then show that  it  has  the ex- 
pected right  F-basis (Theorem 5.3.6 and Theorem 5.4.5). The 
main tool  in the proof  will be  the Diamond Lemma. Since there 
are various  level of complications, depending on whether L is an 
F-algebra  rather than  just a right F-space  and on whether L is 
restricted or not, we have  chosen to divide the chapter  into four 
separate sections (with each  succeeding section building upon 
the previous case). In  this way the reader may restrict his at- 
tention to  the level of generality in which  he  is interested. We 
have also carried through our arguments in the generality where 
F is a commutative ring with 1 rather  than  just being a field, 
since there is no appreciable change in  the arguments. In the 
few instances in which there is  some simplification in case F is 
a field these matters will be pointed out. 

The main results of sections 5.1 and 5.2, namely, Theo- 
rem 5.1.1, Theorem 5.2.3, are of course  well-known, although 
the use  of the Diamond Lemma in their proof may be of interest 
(in preparation of these sections we used  some material from [l91 
and [20]). Theorem 5.3.6 is a special case of a more general the- 
orem  proved  by  homological methods in [264] whereas we have 
not seen Theorem 5.4.5 in the literature. 

5.1 Lie Algebras 
Let @ be a commutative ring with 1. Recall that a @-algebra 
K with multiplication (x, y) I+ [x, y] is said to be a Lie algebra 
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over @ if it satisfies the identities 

for all x, y, z E K. The last identity is called the Jacobi identity. 

Further  let A be  an associative @-algebra with an identity 
element 1. We set, [x, y] = xy - y z  for all x, y E A. Denote by 
A(-) the additive group A with new multiplication [ , 1. Clearly 
A(-) is a Lie algebra over <P. 

Let K be a Lie algebra over <P. A pair (A; f) is said to be a 
cover of the Lie algebra K if A is an associative @-algebra with 
1 and f : K -+ A(-) is a homomorphism of @-algebras. A cover 
(A; f) of the Lie algebra K is  called an enveloping algebra of the 
Lie algebra K if A = (Kf)+@-l, where (Kf) is the subalgebra of 
A generated by the image Kf of the mapping f . An enveloping 
algebra (U;  4) of the Lie algebra K is said to be a universal 
enveloping algebra of the Lie algebra K, if  for any cover algebra 
(A; f) of the Lie algebra K there exists a (necessarily unique) 
homomorphism $J : U + A of @-algebras with identity elements 
(i.e. l$ = 1) such that = f.  

Two covers (A; f) and (B; g) of a Lie algebra K are said 
to be isomorphic if there exists an isomorphism h : A + B 
of @-algebras with 1 such that fh = g. Clearly a universal 
enveloping algebra of a given  Lie algebra is determined uniquely 
up to isomorphism. 

Any  Lie algebra K over @ has a universal  enveloping  alge- 
bra. Indeed, let { (Ai ,  fi) 1 i E I }  be a set of all pairwise  non- 
isomorphic enveloping algebras of the Lie algebra K. We let 
A = n,,l Ai be  the Cartesian  product of Ai, i E I .  Define the 
mapping 4 : K -+ A by the rule 4(x) = {fi(x))iEI for all z E K. 
Denote by U the subalgebra of A generated by the identity el- 
ement and K4. It immediately follows from our construction 
that (U;  4) is the universal  enveloping algebra of K.  
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However, we are only interested in Lie algebras which are 
free @-modules. In this case we proceed to describe the univer- 
sal enveloping algebra (U(K);  p) in a more tangible fashion as 
follows. Let X be a @-basis of K, Z = {Z I x E X}, S = S<Z> 
the free semigroup (with l), and @<Z> the free algebra (with 
1) generated by 2. Denote by L the @-span of Z in @ < Z> 
and  let T,!J : K + L be the @-map given  by x H 2, x E X .  
It is clear that T,!J is an isomorphism of @-modules, and we set 
cf, = $-l. We  now define I = I ( K )  $0 be  the ideal of @<Z> 
generated by all elements of the form [L!, v$] - [U, v]@, U, v E K ,  
or, equivalently, [Z,V] - [x,g]@, x,y E X .  Letting U denote the 

. projection of @<Z> onto @<Z>/I, W: set p = $U. The rGader 
may then verify the straightforward details that (@<Z>/I; p) 
is a universal  enveloping algebra of K (if (A;  f) is any co;er  of 
K ,  first lift f to a homomorphism cr : @<Z>+ A and  then  just 
check that o sends I to d). 
Theorem 5.1.1 Let K be a Lie algebra over @ with  universal 
enveloping algebra (U(K):  6). Assume  thut K is a  free  @-module 
with  a well-ordered basis X .  Then U ( K )  is a  free  @-module  with 
the basis 

r 

v={x;.; . . .  Z L I X j E X ,  X l S X 2 5  . . . S  Zm}U{1} 

(we  shall  refer  to V as  a PBW-basis of the  universal  enveloping 
algebra U ( K )  of the Lie algebra K). 

Proof. Let A be  the reduction system of @<Z>, given  by 

crys = ( ~ 2 ,  ~g + [y, x]$) for all y > x E X. 
Further  let x, y E X, P, Q E S. We set R = RP~,,Q for x > 

We claim that for any P, Q E S ,  ul,  u2,. . . , un, vl, v2,.  . . , v, E 
Y, and R = RPa,,Q for y > x. Then R (P[Z, g]Q) = P[., y]$Q. 

L there exists a sequence of reductions R such that 
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Indeed, let ui = Ex vix%, vi = Cy piyB, where vix,pix E @, 
2, y E X .  Using reductions of the form RP~.,Q (or RP,,,,,Q) we 
may reduce the element 

n 

to  the element 

n 

C P[ut, vf]*Q. 
i=l 

Let W = Z1Z2.. .%m E S. The number m is  called the length 
of W. A linear order 5 is  defined on S as follows: U < v ,  if 
either 

(a) U is of smaller length than v ,  or 
(b) U and v have the same length but U is  less then v rela- 

tively to  the lexicographic order. 
It is clear that  this ordering 5 is a semigroup ordering com- 
patible  with the reduction system A and that  it satisfies the 
descending chain condition. 

Denote by I = I ( A )  the ideal of the algebra @<Z> generated 
by the reduction system A, noting that U ( K )  = @<Z> /I.  We 
will  show, that all ambiguities of A are resolvable and the set 

is a @-basis of @<Z>irr. 
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Indeed, only the overlap ambiguity (gzy ,  oyx, E ,  g, Z), where 
x, y, z E X and z > y > x, is  possible. We set 

and 

W' = RZQzy R d v z Z R u z z Y ~ u z z  ( 4  
= ZgZ + [y, x]% + g[., x]+ + [z, 4% 
- zgz - Z[x, g]@ - [x, y]qj - Z[y, x]@ 

= [[Y,xll", z] + [g, [ V I q  + [ [ w l q  

R( [[P, Zl$, Z] + [g, [z, .l+] + [[z, Y l t  4) 
= [[Y, 4 ,  XI+ + [Y, [X, x11+ + [ [ x ,  YI, XI4 

R~~OzvRc7vzzRuzzY%uzz ( 4  = 0 

By (5.1) there exists a sequence of reductions R such that 

The last expression is equal to zero by Jacobi identity. Thus 

and  this ambiguity is resolvable. Therefore by the Diamond 
Lemma U(K) = @<Z> /I E @<Z>+ By Lemma 1.3.2 it is 
clear that V' is a @-basis of @<Z>irr and so V is a @-basis for 
U(K) .  
Corollary 5.1.2 Keeping  the  notations of the proof of Theo- 
rem 51.1, we  set   ad(Z)(v) = [v,Z] and Ad(Z)(v) = [v4,x]$ f o r  
all x E X,v E L. Let t be a natural  number. Then  there ex- 
ists a sequence R of reductions of the  form R A ~ , , ~ B  such  that 
R (~d(Z)~(v)) = Ad(Z)t(v). 

Proof. Clearly [Z,Z] - [z, #' E I (A)  for all z E X .  Hence 
[u,Z] - [d,z]$ E I (A)  for all U E L. Therefore 

~ d ( Z ) ( v )  - Ad(Z)(v) E I(A). ( 5 4  
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Suppose that 

~ d ( Z ) ~ " ( w )  - A~l(Z)~-l(v)  E I(A). 

Then 

ad(z)t(v) - ad(z) (ad(f)t-l(v)) 

= ad(~)(ad(~)~-'(v) - AcZ(Z)~-'(V)) E I(A). (5.3) 

Clearly ~d(z) t - l (v)  = (~d(z)t-l(v+))' E L for all t > 0. BY 
(5.2) it follows that 

ad(z) ( A d ( ~ ) ~ - ' ( v ) )  - A ~ l ( z ) ~ ( v )  

= ad(3) (Ad(?Z)t-l(~)) - Ad(3) (A~l ( z )~ - ' ( v ) )  E I(A) 

(5.4) 

From (5.3) and (5.4) it follows that 

~ d ( z ) ~ ( ~ )  - A C ~ ( Z ) ~ ( U )  E I(A). 

Since Ad(Z)t(v) E L E @<Z>irr, 

N ( ~ d ( z ) ~ ( v ) )  - A C Z ( ~ ) ~ ( V )  

= ~ ( a d ( z ) ~ ( v )  - ~ d ( ~ ) ~ ( v ) )  E I(A> n a<nirr= o 
where N : @<Z>+ @<Z>irr is the normal form mapping (its 
existence follows  from Theorem 5.1.1 and  the Diamond Lemma). 
Hence N ( ~ d ( z ) ~ ( v ) )  = AcZ(Z)~(TJ). Now our statement follows 
from the definition of a normal form of an element. 

Corollary 5.1.3 Let W ,  u1,  u2, . . . , U,, q ,  212, . . . , v, E < Z > 
and r = uiwvi. Keeping  the  notations of the proof of the 
Theorem 5.1 .l, we suppose that  there  exists a sequence R of 
reductions of the fo rm R A ~ ~ ~ B  such,  that R(w) = 0. Then there 
exists a sequence R' of reductions of the  same form such  that 
R'(r) = 0. 
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Proof. Since R(w)  = 0, W E I ( A ) .  Hence r E I (A) .  Clearly 
N ( r )  = 0. Now our statement follows  from the definition of a 
normal form of an element. 

Corollary 5.1.4 Let K be a Lie algebra over @ with  univer- 
sal  enveloping algebra ( U ( K ) ; p ) .  Assume  that K is a free Q- 
module. Then p : K + U(K)(-) is a monomorphism of Lie 
algebras. 

5.2 Restricted Lie Algebras 
Let L be  a Lie algebra over @ and x E L. We denote by ad(x)  
the mapping L + L given by ad(z)(y) = [y, z]. Further  let A 
be an associative ring and a E A. We let r, and l ,  stand for the 
mappings A -+ A,  given by r,(x) = xu, la(x)  = az for all x E A. 

Lemma 5.2.1 Let p be a prime  number, @ the  p-element  field, 
X an  infinite  set, A = @<X> the  free @-algebra with 1 generated 
by X ,  L G A the  Lie subalgebra generated  by X ,  and x, y E X 
Then: 

(U) ad(z)P = ad(xP); 
(b)  ad(z)P-l = c"-1 i P l-i 

z=o r x l x -  ) ad(z)P-ly = x;;; +p-1-i; 
(c) W(z,y) = (x + y)p - zp - yp f L. 

Proof. (a) Clearly, r,Z, = Zxrx and ad(z) = r, - l,. Since c) = & = O m o d p f o r i # O , p ,  

(b) We  show that pi') = (-l)i mod p for all i = 0 , 1 , .  . . , p -  
1. We proceed by induction  on i. For i = 0 this is true. Suppose 
this is true for i = IC. Since 
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z (-1)"l mod p and we are done. 
hus 

P-1 
ad(x)P-ly = c xiyxP,-l-i. 

i=O 

(c) Consider the polynomial ring A[t] and  let S : A[t] + A[t] 
be the derivation given by ts = 1 and ad = 0 for all a E A. 

Note, that  the Lie @[t]-subalgebra generated by X is equal to 
L[t]. Thus  the coefficients of the polynomial [ad(tx + y)Jp-' (x) E 
L[t] belong to L. 

We have: 

(tx + y)P = tpxp + y p  +-x tis&, y), (5.5) 
i=l 

where si(x, y) is the coefficient of ti in the polynomial (tx + y)P. 
Applying S to (5.5) one obtains 

Taking into account (b) we have 
P-1 P-1 

[ad(tx + y)]P-' (x) = C(tx+y)ix(tx+y)P-l-i = c it%&, y). 

Thus isi(x, y) is the coefficient of ti-' in the polynomial 
[ a d ( t ~  + y)lP" (x) E L[t]. Hence si(z, y) E L. Substituting 
t = 1 into (5.5) we see that ,(x + y)P = xp + y p  + si(x, y) 
and  thus W(x,  y) = C::: si(x,y) E L. 

Corollary 5.2.2 Let A be an  associative ring and pA = 0 for 
some  prime  number p .  Then ad(x)p = ad(xP) and (x + y)P = 
x p  + y p  + W(x,  y) for all x, y . ~  A.  
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Let p be a prime number and @ an associative commutative 
ring with 1 such that p @  = 0. We recall that a Lie algebra K 
over @ with an unary  operation z H &’l satisfying the identities 

(X2)W = X p 2 y  A E @,x E K ,  (5.6) 
ad(sw) = ad(z)P, 2 E K ,  (5.7) 
(x + y)” = zW + yM + W ( Z ,  y), Z, y E K,  (5.8) 

is said to  be restricted Lie algebra (or p-Lie algebra ). Further 
the operation x I-) &l is  called a p-operation . 

Note that from Corollary 5.2.2 it follows that  the Lie @- 
algebra A(-) with  unary  operation z H x p  is restricted. 

Let K be a restricted Lie algebra over @. A pair (A; f) is 
said to be a cover of the Lie algebra K if A is an associative 
@-algebra with 1 and f : K + A(-) is a homomorphism of 
restricted Lie algebras (i.e. f(&]) = f ( z ) P  for all z E K ) .  No- 
tions of enveloping algebra and universal  enveloping algebra for 
restricted Lie algebra are defined  analogously to corresponding 
notions for  Lie algebras. The existence of a universal  enveloping 
algebra (U(K); 4)  of a restricted Lie algebra K is  proved in  the 
same way as that of a Lie algebra. 

Being  only interested in restricted Lie algebras which are 
free @-modules, we construct a universal  enveloping algebra 
(U(K);  p) in much the same fashion as we did for ordinary Lie 
algebras. The only  difference  is that we define the ideal I ( K )  of 
@<2> to be the ideal generated by all elements of the following 
two  forms: 

[ U+ , v+ ] - [u,v]+, ubi+ - , u,v E K. 

Again we leave it for the reader to verify that (U(K) ; p) is indeed 
a universal  enveloping algebra (here U(K) = @<Z>/I(K) and 
p = $U, where $ : K + L and v : @<Z>+ @<Z>/I(K)). 

Consider now the ideal I of @<Z> generated by all elements 
of the forms: 

[z, g] - [x, y]+, 2b1+ - 9 ,  2, y E x. 
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We claim that I ( K )  = I .  Indeed, the inclusion I C I ( K )  is 
obvious. We denote by p the projection of @<Z> onto <P<Z>/I 
and  set r = $p. Since r is a @-linear map  and [X', y'] = [x, y]' 
for all x,y E X ,  [uT,vT] = [U, v]' for all u,v E K .  Hence r 
is a homomorphism of Lie @-algebras. It is  enough to prove 
that (u')~ = &lT for all u E K (i.e. r is a homomorphism of 
restricted Lie algebras). Let H = {U E K I (U')' = ublr). It is 
clear that X c H .  For any U, v E H, a, p E @ we have 

(au + pv)"' = {(a.)["' + ( p v p  + W(au, pv,}' 
= { + ppvbl+ W(au, pv)}T 

- - a~ubl' + ppv["" + W(au, @v)' 
= ap (u')P + pp (v')P + W(au, pv). 

= { (au)'}P + { (pv)'}P + W(au, pvy 
Taking into account that W(x,  y) is a Lie polynomial in x, y we 
have 

(see  Lemma 5.2.1). Hence au +pv E H and H is a @-submodule 
of K.  Since X G H ,  H = K. Thus r is a homomorphism of 
restricted Lie algebras and I = I ( K ) .  

Theorem 5.2.3 Let p be a prime  number, @ an associative 
commutative ring with 1 such  that p@ = 0, K a restricted Lie al- 
gebra over @ and (U(K);  p)) the  universal  enveloping algebra of 
the restricted Lie algebra K .  Assume  that K is a free  @-module 
with a well-ordered  basis X .  Then  the  set 
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is  a @-basis of U ( K )  (we shall  refer to V as a PBW-basis   of the 
universal  enveloping algebra U(K)  of the restricted Lie algebra 
K) .  

Proof. We continue with the same notations as in Theo- 
rem  5.1.1.  Consider the reduction system A of @<Z>, 

ay. = (VZ, ZY + [y,x]+) for all y > IC E X ,  

a, = (ZP, &l+) for all x E X .  

Let 5 be the linear order on S which was introduced in the 
proof of Theorem 5.1.1. Clearly this ordering is a semigroup 
ordering compatible with the reduction system A and satisfying 
the descending chain condition. 

It was shown in the proof of Theorem 5.1.1 that for any 
P,& E S, u1,u2,. . . ,un,v1,v2,. . . ,v, E L there exists a se- 
quence of reductions R such that 

Let I = I ( A )  be the ideal of the algebra A generated by the 
reduction system A. It is clear that  the ideal I is generated by 
all elements of the form [Z, g]  - [x, g]+ and ZP - &'l@, IC, y E X .  

We  will  show that all ambiguities of A are resolvable and  the 
set 

is a @-basis of @<Z>irr.  

Indeed, let us  consider the various ambiguities. 
Case 1. Overlap ambiguity (czy, ay., 2, V, Z), where IC, y, z E 

X and z > y > IC. It was shown in the proof  of Theorem 5.1.1 
that  this ambiguity is  resolvable. 
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Assume that p = 2. Then 

W!' = [g, x[214] - [p, x]% - z[y, x]+ = [g, 2[21+] - [[y, x]$, 4 . 

[Y, - [[v, 4 ,  $l4 = 0, 

By  (5.9) we may reduce this element to 

since K is a restricted Lie algebra. 
We consider now the case p > 2. Then the length of any 

monomial in - xbl$jj is equal to 2 while the length of any 
monomial in Cyzi ?[y, z]@ZP-~-~ is equal to p > 2. Obviously, 
we may  reduce the element [fj,xbld] to [y,xbl]+, such that  the 
element Zi[y, Z]+ZP-~-~ will not change. By Lemma  5.2.1 
it follows that 

Taking into account Corollary 5.1.2 we find that  this element 
may be reduced to 
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Thus, the element 'W" (and, therefore, the element W) may be 
reduced to 0 and  this ambiguity is  resolvable. 

Case 3. Overlap ambiguity (a,, a,,, ZP-', Z, g), where x, y E 
X and x > y. This case is considered by analogy with case 2. 

Case 4. Overlap ambiguity (az, a,, Z1, 9 - ' ,  $), where z E X .  
We set 

i = O  

By (5.9) it follows that R (kb]@,Z]) = [&l, x]$ for  some  se- 
quence R of reductions of t e form R,+,,,B. Since K is a re- 
stricted Lie algebra, 

[&l, x] = ad(x)P(z) = ad(z)P-l (ad(z)(x)) = 0. 

Taking into account Corollary 5.1.3 we find that  the element W 

may be reduced to 0. Thus  this ambiguity is  resolvable. 
With all ambiguities resolved, we can now assert (just as in 

the proof of Theorem 5.1.1) that  the Diamond Lemma together 
with Lemma 1.3.2 imply that V is a @-basis  for U ( K ) .  

Corollary 5.2.4 Let K be a restricted Lie algebra over @ with 
universal  enveloping algebra (U(K), p) .  Assume  that K is  a 
free  @-module. Then p : K 3 U(K)( - )  is  a monomorphism of 
restricted Lie algebras. 

5.3 Differential  Lie  Algebras 
Let @ be an associative commutative ring with  an  identity ele- 
ment e and F 2 @ an associative commutative @-algebra with 
same identity e. Furthermore  let A be a @-algebra with 1 which 
is also an  F-ring. 



5.3. DIFFERENTIAL LIE ALGEBRAS 187 

Slightly generalizing the definition of a differential Lie  alge- 
bra (see Baer [14], Jacobson [131], Kharchenko [l461 and [147]) 
we make the following 

Definition 5.3.1 A subset  L c A is said to be a special difer- 
entia1 F-Lie algebra  over @ (SDL-algebra)  with  cover algebra A, 
if the  following  conditions  hold: 

(a) [a, b] E L for all a, b E L; 
(b)  aX + bp E L for all a, b E L, X ,  p E F; 
(c) [l - X ,  a] E 1 F for all a E L, X E F; 
(d) AnnF(L) = A ~ ~ F ( A )  (i.e., L A  = 0 implies 1 e X = 0 for 

all X E F). 

Let I be an ideal of the @-algebra F.  We denote by Der( F/I) 
the  set of all derivations of the factor algebra F/I. One may 
verify that Der(F/I) with multiplication 621 = 6162 - 6261 
is a Lie @-algebra. Further  let 6 E Der(  F/I), c E F. We set 
x6' = x6c for all z E F/I. Clearly 6c is a derivation of F/I. Thus 
Der( F/I) is a right F-module. Analogously Der(F/I) is a right 
F/I-module. 

Definition 5.3.2 A triple ( K ;  F ;  A) is said to be a differential 
F-Lie algebra (DL-algebra), if the  following  conditions  hold: 

(a) K is a Lie  @-algebra; 
(b) K is a right  F-module; 
(c) A : K + Der(F/AnnF( K )  is a homomorphism of Lie 

@-algebras,  which is also a homomorphism of right  F-modules; 
(d) [6c, p] = [6, plc + 6cb (where fi = A(p)) for all 6, p E K ,  

c E F.  

In what follows fi = A(p) for a DL-algebra K .  Let L 2 A 
be an  SDEalgebra. Note that F / A ~ ~ F ( L )  E 1 - F under the 
mapping c + A ~ ~ F ( L )  I+ 1 - c for all c E F.  Define the mapping 
A : L + Der(1 - F ) ,  setting (1 -C)*(") = [l 'c, a] for all c E F ,  a E 



188 CHAPTER 5. THE PBW THEOREM 

L. It immediately follows  from  Definition  5.3.1 that (L;  F ;  A) is 
a DL-algebra. 

We remark that in case F is a field  some  obvious  simplifica- 
tions occur. Part (d) of Definition 5.3.1  may be  omitted,  and  the 
ideal A ~ ~ F ( K )  = 0 wherever it appears (i.e., in Definitions  5.3.2 
and 5.3.9 and Proposition 5.3.10). 

Definition 5.3.3 Let K ,  L be DL-algebras. Then a mapping 
f : K += L is said to be a homomorphism of DL-algebras, if the 
following  conditions hold: 

(a)  f is a homomorphism of Lie @-algebras; 
( b )   L i s  a homomorphism of right F-modules; 
(c) ~f = 8 for  all S E K .  

Definition 5.3.4 Let K be a diflerential F-Lie algebra. A pair 
( (A;  L);  f )  is said to be a cover of the  DL-algebra K ,  'if L G A is 
a special diflerential F-Lie algebra with  the  cover A and f : K + 
L is a homomorphism of DL-algebras. A cover ( (A;  L) ;  f )  of the 
DL-algebra K is  called an enveloping algebra of K .if A = ( K f ) +  
1 - F ,  where ( K f )  is  the subalgebra of A generated by the set K f .  
Two covers ( (A;  L);  f )  and ( (B;  M ) ; g )  of a DL-algebra K are 
said to be isomorphic if there  exists an  isomorphism h : A +- B 
of F-rings  such  that f h = g. An enveloping algebra ( (U;  M ) ;  4)  
of the  DL-algebra K is said to  be a universal  enveloping algebra 
of K if for  any cover algebra ( (A;  L); f )  of K there  exists a 
(necessarily  unique)  homomorphism of F-rings + : U += A such 
that q5+ = f .  

It would perhaps be  more realistic to refer to a cover algebra 
as a cover ring (since F rather  than @ is the  important ring of 
scalars) and accordingly  use the term universal  enveloping ring. 
However, we shall keep the (more customary) terms of cover 
algebra and universal  enveloping algebra. 

Clearly, a universal  enveloping algebra of a given DL-algebra, 
if it exists, is determined uniquely up to isomorphism. We shall 
presently construct the universal  enveloping algebra of K .  
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Lemma 5.3.5 Let ( K ;  F ;  A) be a diferential F-Lie algebra and 
let K' = K @ F be the direct sum of right  F-modules. We set 

Define the mapping A' : K' + Der(F), setting A'(x+f) = A(.) 
for all x E K ,  f E F .  Then (K'; F ;  A') is a diferential F-Lie 
algebra. 

Proof. First of all we show that K' is a Lie @-algebra. 
Clearly [x + f, x + f ]  = 0 for all x E K ,  f E F. It is  enough to 
prove that  the Jacobi identity holds in K'. For all x, y, z E K ,  
f , g ,  h E F we have 

since the Jacobi  identity holds in K and A is a homomorphism 
of Lie algebras. 

Clearly A' is a homomorphism of Lie @-algebras. Further 
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for all x, y E K ,  f, g,  c E F. Thus all the conditions of  Defini- 
tion 5.3.2 hold in K' and K' is a differential F-Lie algebra. 

Before  proving the main theorem of this section, we make the 
following observations. Assume that K is a free right F-module 
with a basis X ,  F is a free @-module with a basis G and  the 
identity element e of the ring F belongs to G. Now  we proceed 
to describe the universal  enveloping algebra U(K) as a factor 
algebra of a free @-algebra. Clearly G U {xg I x E X ,  g E G} 
is a basis of the @-module K' = K @ F. Let Z = {Z I z E 
X )  U {g I g E G}, S = S<Z> the free semigroup (with l), 
and @<Z> the free @-algebra (with 1) generated by the set 2. 
Denote by L the @-span of {ij I g E G} U {Zij I x E X ,  g E G} 
in @<Z> and  let $ : K' + L be  the @-map given  by g I+ i j ,  
zg I+ Zg €or all g E G, x E X .  Obviously $ is an isomorphism 
of @-modules and we set q5 = $-l. We define I ( K )  to be  the 
ideal of @<Z> generated by E - 1 and all elements of the form 
(m)$  - u * d ,  [U, v]$ - [U@, v$] for all a E F ,  U, v E K', or, 
equivalently, E - I, (ba)$ - 5a, [x, - [z, g], [a, x]$ - (a*)@ 
for all a, b E G, x,y E X .  Letting U denote the projection of 

< Z >  onto U = U ( K )  = <p < Z >  / I ( K ) ,  we set p = $U 
and M = L" = K'P. Note that (ua)P = UPUP, [u,v]P - [UP, vP] 

for all a E F, U, v E K'. Hence MFP = M and [M,  M ]  C M .  
Moreover p is a homomorphism of Lie algebras over @. Recalling 
that F C K' and C? - 1 E I ( K ) ,  we infer that F P F P  = FP and 
1 E FP. Therefore F P  is a subalgebra of the @-algebra U. Clearly 
p induces a homomorphism F += F P  of @-algebras. Thus the 
algebra U is a right F-module under the operation U a = uaP 
for all U E U, a E F.  It immediately follows  from the above 
that M is a submodule of the right F-module U and p is a 
homomorphism of right F-modules. Further 

[l c, UP] = [c", UP3 = [c, U]P = cGP = 1 * cc E 1 * F 

for all c E F, U E K'. Hence M is a special differential F-Lie 
algebra over Q. The reader may now verify the straightforward 
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details that p is a homomorphism of DL-algebras. 
Let ( (A;  N ) ;  f )  be any cover of the DL-algebra K .  Define 

the mapping f‘ : K’ + N + 1 - F ,  setting ( k  + c)f‘ = kf + 1 c 
for all k E K ,  c E F .  It easily  follows  from the definitions 
that ( (A;  N ) ;  f’) is a cover of the  DLalgebra K’. Lifting f‘ to 
a homomorphism o : < 2 >+ A and recalling that f’ is a 
homomorphism of right F-modules and Lie algebras over @, we 
see that I (K)f‘  = 0. Thus (U(K);  p) is the universal enveloping 
algebra of K’, whence, with p restricted to K ,  ((U; M ) ;  p) is 
also the universal  enveloping algebra (U; p) of K .  

Now  we are ready to prove the main theorem of this section. 

Theorem 5.3.6 Let ( K ;  F ;  A) be a  DL-algebra  with  the uni- 
versal  enveloping algebra (U(K);  p), assuming  that  F  is a  free 
@-module  and K is a  free  right  F-module  with  a well-ordered 
ordered basis X .  Then  the  set 

v = {Xfx;. . .XL 1 xj E x, x1 5 x2 5 . . . 5 x,} U {l} 

is  a basis of the right F-module U ( K )  (we  shall  refer  to V as 
a PBW-basis of the  universal  enveloping algebra U ( K )  of the 
DL-algebra K).  

Proof. Without loss of generality we may assume that G 
is  well-ordered.  Define a well-ordering on the set 2 = {Z I x E 
X} U {B I g E G}, setting ii < ij if either U, v E X and U < v ,  or 
u , v E G a n d u < v , o r u E X a n d v E G , f o r a l l i i , a E Z .  

We continue with the same notations as in Theorem 5.1.1. 
Consider the reduction system A of @<Z>, 
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Let 5 be the linear order on S which  was introduced in  the 
proof of Theorem 5.1.1. Clearly this ordering is a semigroup 
ordering compatible with the reduction system A and satisfying 
the descending chain condition. Further,  let I = I(A) be the 
ideal of the algebra @<Z> generated by the reduction system 
A. We note that I ( K )  = I ( A )  and so U ( K )  = @<Z>/I(A). 

Now let c E F and z E X .  We claim that there exists a 
sequence R of reductions of the form Rxgz such that 

R(c'2) = Zc' + (c')'. 
Indeed, let c = aig i ,  where ai E @. We set 

R = Rxg1zRXg2z * I Z X g n d  

Then 

= 5%' + (2)'. 
Analogously  one  may  prove the following statements. For 

any c E F and u E K there exists a sequence R of reductions of 
the form R x g z  such that 

R(c'u') = u'c' + (c')'. (5.10) 

Further for all c E F and x, y E X there exists a sequence R of 
reductions of the form 

R(c'5fj) = Zfjc' + Z (cc) ' -  + y (c')' + (c'"'. (5.11) 
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Moreover  for all c E F and x, y E X there exists a sequence R 
of reductions of the form R y x g x  such that 

R(gc$Z) = ~ Z C $  + g (C') . (5.12) 

Now let a, b E F and x E X .  In a similar fashion  one  may  show 
that 

R(a@b$) = (ab)$, R'(a$b$Z) = Z(ab)@ + ((ab)')@ (5.13) 

for  some  sequences R and R' of reductions of the forms &,h and 

We  show that all ambiguities of A are resolvable and the set 

II 

respectively. 

V ' = { Z ~ Z ~ . . . Z , S I ~ ~ E X ,  g E G ,  x1<x2<. . .<xm}UC 
is a @basis of @<Z>irr. 

Indeed, let us  consider the various ambiguities. 
Case 1. Overlap ambiguity (azy, ayx, Z,g, Z), where x, y, z E 

X and z > y > x. It was  shown in the proof of Theorem 5.1.1 
that  this ambiguity is  resolvable. 

Case 2. Overlap ambiguity (xgy, ay%, 8, g, Z), where x, y E X ,  
g E G and y > x. We set 

U = Rgdyx (@P?) = j[y,  x]$ + @TV, 
- rl,- 

21 = &gyx(ggZ) = ggz + (91) x. 

Since R,,, (@TV) = @Zg for all z E X ,  from  (5.10) it follows that 
there exists a sequence R1 'of reductions such that 

AS ( ga ) '  = (g@)' - (g'$">, we infer  from  (5.11) that 

R2R1 (U) 

= [y, x19 + (gb."]) +%g! + Z ( 9 9 )  + y (g')* + (g'">$ 
- *  + -  

= [y, x]% + Zgg + Z (g@) + y (g"$ + (g@)$ 11,- (5.14) 
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for  some reduction sequence R2. From (5.10) it follows that 

R&) = ggz + z ((JP)* + (g")* 

R4R3(21) = gzg + g (g') * + ( + 

for  some reduction sequence R3. Using (5.12) we obtain 

for  some reduction sequence R*. Now  we have 

* -  R0,,gR4R3(21) = [y, .]*g + zgg + g (g') + x (g$)* + ( p ) * .  

Comparing with (5.14) we conclude that  this ambiguity is re- 
solvable. 

Case 3. Overlap ambiguity ((&g, agz, h, i j ,  3), where x E X ,  
g ,  h E G. We set 

U = RhXg+ (633) = h@ 4- h (g') , * 
21 = &hgz(hgz) = (hg)*z. 

From (5.13) we infer that R1 (U) = hzij + (hg') for  some  reduc- 

tion sequence RI. Clearly RXhzgR1 ( U )  = zkj+ (h">* g+ (hg2) . 
Again by (5.13) we have that 

* 
!b 

R2RXhzgR1 ( U )  = 269 + (h's)* + (hg')* 

= 36g + (h'g + hg')* 

= !&g+ ((hg)')* 

for  some reduction sequence R2. Now  we have 
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for  some reduction sequence R3 (see  (5.10)). Therefore this am- 
biguity is  resolvable  also. 

Case 4. Inclusion ambiguity ( r e ,   X e z ,  E ,  Z), where x E X .  
Since e is the identity of F, e' = (e2)' = ee5 + e'e = 2e' and 
e' = 0. So &Te%es(aZ) = x = l?&(x) and  this ambiguity is 
resolvable. 

Case 5. Overlap ambiguity (Ugp,  wpp, g, p ,  g), where g ,  p ,  q E 
G. It easily  follows  from  (5.13) that  this ambiguity is  resolvable. 

Case 6. Inclusion ambiguity ( r e , U e g ,  E ,  S), where g E G. 
Since heg(i?g) = = (eg)$ = R&(@), this ambiguity is  re- 
solvable. 

Case 7. Inclusion ambiguity ( U g e ,  re, S, a), where g E G. 
Obviously it is  resolvable. 

Again we are in the  situation where the Diamond Lemma 
and Lemma 1.3.2 imply that V' is a @-basis for U(K) .  It follows 
immediately that V is a right F-module basis of U ( K )  and  the 
proof is complete. 

Corollary 5.3.7 Let ( K ;  F; A) be a DL-algebra  with  the  uni- 
versal  enveloping algebra (U(K); 4). Assume  that F is a free @- 
module,  and K is .a free right F-module.  Then p : K -+ U(K)(-)  
is a monomorphism of difemntial  Lie algebras. 

In section 5.4 we will  need the following  (we  keep the nota- 
tions of the proof 'of Theorem 5.3.6) 

Lemma 5.3.8 Suppose  that  p@ = 0 for  some  prime  number 
p .  Let g E G and x E X .  Then there  exists a sequence R of 
reductions of the  form 
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Proof. Let U = g3' and v = 3gZP-l + g*ZP-l. Since 
~ 9 m z p - 1 ( u )  = v ,  U - v E I ( K ) .  By  Lemma  5.2.1, ad(Z)P(g) = 

- ZPg. Now it follows  from Corollary 5.1.2 that gZP - 9 ' g  - 
Ad(z)p(g) E I ( K ) .  Thus  the element U is reducible to  the ele- 
ment 3Pg + Ad(if)p(g) E Q,<Z>irr. Since U - v E I ( K ) ,  they 
have the same  normal form and we are done. 

In order to discuss  some  useful properties of universal en- 
veloping algebras, we need the following notion. 

Definition 5.3.9 Let K ,  L be differential  Lie algebras  and let 
r : F/AnnF(K) +- F/AnnFL be an isomorphism of @-algebras. 
Then a mapping f : K +- L  is said to  be a r-semilinear homo- 
morphism of DL-algebras, if the  following  conditions  hold: 

(a)  f is a homomorphism of Lie  @-algebras; 
(b) (6c)f = 6fc' for all 6 E K ,  c E F/AnnF(K); 
( C )  = 7-187 for all 6 E' K .  

Proposition 5.3.10 Let ( K ;  F; A) be a DL-algebra, (U(K) ;  p) 
the  universal  enveloping algebra of K ,  L C A a special difer- 
entia1 F-Lie algebra  over @ and h : K + L a r-semilinear 
homomorphism of DL-algebras. Then there is a unique  homo- 
morphism h' : U ( K )  -+ A of @-algebras  such  that ph' = h and 
h'(uc) = h'(u)(c + AnnF(K))'  for all U E U ( K ) ,  c E F .  

Proof. According to Definition 5.3.1, AnnF(L) = AnnF(A). 
We consider A and L as @-algebras A* and L* respectively 
with  right  F-module  structures given  by the rule a o c = a(c + 
AnnF(K))', Zoc = l(c+AnnF(K))' for all a E A. 1 E L, c E F .  
Clearly L* is a submodule of the right  F-module A*. Further 

Hence L* C A* is an  SDL-algebra. The reader may now  verify 
the straightforward  details that h is a homomorphism of DL- 
algebras. By the definition of a universal enveloping algebra of a 
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DL-algebra, it follows that there exists a unique homomorphism 
h' : U(K)  + A of F-rings  with identity such that ph' = h. Since 
h'(uc) = h'(u) o c = h'(u)(c + AnnF(K))', we are done. 

Corollary 5.3.11 Let ( K ;  F; A) be a DL-algebra  with  the uni- 
versal  enveloping  algebra (U(K);  4). Then for any r-semilinear 
automorphism h : K + K of DL-algebras  there exists a unique 
r-semilinear automorphism h' : U(K)  + U(K)  of @-algebras 
such  that ph' = hp. 

Proof. We apply Proposition 5.3.10 to h and h-l. 

5.4 Restricted  Differential Lie 
Algebras 

Let p be a prime number, @ a commutative ring with  identity 
element e such that p @  = 0 and F 2 @ a commutative @- 
algebra with same identity. Furthermore let A be a @-algebra 
with 1 which  is also an  F-ring. 

Definition 5.4.1 A subset L C_ A is said to  be a special  re- 
stricted  diflerential F-Lie algebra  over @ (p-SDL-algebra)  with 
the  cover  algebra A, if L is an  SDL-algebra and up E L  for all 
a E L. 

As motivation for the definition of an  abstract'restricted dif- 
ferential F-Lie algebra we have the following lemma. 

Lemma 5.4.2 Let L A be a p-SDL algebra, H = 1 - F and 
a E L. Define mappings Tn,a : H + H ,  n = 1,2, . . . , p ,  setting 

Tl,a(C) = C, Tn+l,a(c) = [Tn,a(c), a] C 

for all c E H .  Then: 
(4 ( a 4 4 1 H 4 p  = (ad(a)lH)P cp + ( 4 4  IH) Tp,a(c);  

(c)  (a + c y  = up + cp + ad(a)P-l(c). 
(b )  (uc)' = UPCP + aTp,a(c); 
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Proof. (a) Letting p denote the mapping ud(u)lH, we note 
that P is a derivation of the @-algebra H (recall that [H,  U] E H ) .  
Setting Tn,c((~) = Tn,a(c), we observe that 

Let R be a commutative ring such that pR = 0, x E R, 
and  let S : R + R be a derivation. Recall that xPr = x b  for 
all T E R. One may  prove the following formula by an obvious 
induction on n: 

where Pn,i,6(r) is a polynomial in T,  r6,  . . . , T p - i  with integral 
coefficients. We claim that Pp,i,6(r) = 0 for all i = 2,3,. . . , p -  1. 

Indeed, consider the polynomial ring K = @[xi, vi, zi I i = 
1,2,. . .l. Let U be the derivation of K given  by the rule 

x; = Zi+l, y; = &+l, zi = &+l v for all i = 1,2, ... . 
Clearly for all x E R there exists a homomorphism of @-algebras 
& = r#~ : K + R such that g!(zi) = +(zf) = r6’, q!(yi) = 0 and 
$(xi) = +(xf) = X’;. Since 4(Pp,i,v(z1)) = Pp,i,6(r), it is enough 
to prove that Pp,i,v(zl) = 0. We set z = z1. Then according to 
5.15 we have 

P-1 
= TVPZP + C TViPP,i,”(Z) + T”TP,&), 

i=2 

for all T E K. In  particular, 
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Multiplying (5.17) by y 1  and (5.18) by z1 we obtain 

(5.18) 

(5.19) 
P-1 . 

X l Y l  (”z)p = z 1 y r P r p  + c slY;IIPp,i,”(z) 
i=2 

+&TP,V (Z>. (5.20) 

Since v p  and ( v z ) P  are derivations, substracting (5.19) and (5.20) 
from (5.16), we obtain 

P-1 c [ ( w l ) y i  - &l - ZlYf] PP,ilV(Z) = 0. 
i=2 

From the Leibnitz  formula  and the definition of the derivation 
v we  infer that 

The coefficient of x 2 y i  in this polynomial is equal to (:)Pp,i ,v(~).  

Since (:) = i # 0, ~ ~ , i , ~ ( z )  = 0. 
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Therefore 
x?)’ = x y P 2  + xyTP,”(z). (5.21) 

Let x E R. Applying & we infer  from  (5.21) that = xdp~P+ 

Z ~ T ~ , ~ ( T )  for all x E R. In  particular x@)’ = x@cp + ZP”T~,~(C) 

for all x E H and so (pc)P = ppcp + P”T~,~(C) .  Since p = ad(a) \H, 
(a) is  proved. 

(b) We let K be the polynomial ring with derivation v as 
defined in (a) and consider the skew polynomial ring K[t;  v], 
where kt  = t k  + k” for all k E K .  Obviously v = a d ( t ) I ~ .  Since 
K is commutative, it follows  from  Lemma 5.2.1 and (5.21) that 

[ q ,  ( t z y  - t p z p  - tTp,v(Z)] = 0. 

We claim that (tz)p - t p z p  - tTp ,v (~)  = 0. Assume the contrary. 
Clearly (tz)p - t p z p  - tTp,v(~) = t iki ,  where ki E @[zi; i = 
1,2, .  . .l, n < p and kn # 0. Note that n > 0 and the coefficient 
of tn-l in [XI, (tz)p - t p x p  - tTp,42)] is equal to nx2kn+x1kn”l # 
0 which contradicts [Q, (tz)P - t p z p  - tTp,”(z)] = 0. Therefore 
( t x ) p  - t p z p  - tTp,”(z) = 0. Define the mapping $ : K[t;  v] + A,  
setting $(t )  = a and $ ( k )  = &(k)  for all k E K .  The reader 
may now easily  verify that $ is a homomorphism of @-algebras. 

( c )  By Lemma  5.2.1 we have (a + c)P = up + cp + W ( a , c ) ,  
where W(x,  g) is a sum of  Lie monomials of degree p in x,y. 
Since F is commutative, all Lie monomials in which c appears 
twice are equal to zero. So W ( a ,  c) = m ad(a)P-l(c) for  some 
integer m. Therefore we have 

Thus (uc)~ - UPCP - UT,,,(C) = $ ((tz)’ - t p ~ p  - t T p , v ( ~ ) )  = 0. 
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On  the other hand, 

[a, (a + c)p]  = [. . . [[a, a + c], a + c], . . . , a + c] 
= [ . . . [ [a ,c] ,a+c]  ,..., a+c]  
= [. . . [ [ a , ~ ]  , a ] ,  . . . ,a ]  

= -ad(a)'(c). 

Therefore m ad(a)P(c) = ad(a)p(c) and  we  are done. 

Definition 5.4.3 A triple ( K ;   F ;  A) is said to be a restricted 
diferential F-Lie algebra (p-DL-algebra), if the  following con- 
dition  holds: 

(a) ( K ;   F ;  A) is a diferential F-Lie algebra; 
(b)  K  is a restricted  Lie  algebra  over @ with a p-operation 

6 r") satisfying the  following identity: 

TI,~(c) = c, T,+I,s(c) = c(Tn,6)', and c E F /AnnF(K) ,  S 

(C) the  mapping A is a homomorphism of restricted  Lie Q- 
E K .  

algebras. 

For a pSDL-algebra  L C A and the mapping A : A +- 
Der( l - F )  given by the rule $(a) = [c, a] for all a E A and 
c E .l F ,  we infer from Corollary 5.2.2 and Lemma 5.4.2 that 
(L;   F;  A) is a pDL-algebra. 

In what  follows ji = R(p)  for a p-DL-algebra K and p E K .  

Definition 5.4.4 Let K and L be p-DL-algebras over Q. Then 
a mapping f : K + L is said to be a homomorphism of p-DL- 
algebras if it is a homomorphism of DL-algebras and a homo- 
morphism of restricted  Lie  algebras (i.e. (@]) f = (Sf) bl for all 
S E K) .  
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Notions of cover algebras, enveloping algebras and  the uni- 
versal  enveloping algebras for pDL-algebras are defined analo- 
gously to corresponding notions for restricted Lie algebras and 
DL-algebras. 

Now  we are in a position to describe a universal enveloping 
algebra (U(K);  p) of a pDL-algebra K as a factor of a free @- 
algebra in the case  when F is a free @-module and K is a free 
right F-module. Let X be a basis of the right F-module K and 
G a basis of F over G. We set Z = {ij I g E G} U {Zij I x E 
X ,  g E G}. Let S = S<Z> be  the free semigroup (with l), 
@<Z> the free @-algebra (with 1) generated by the  set Z and 
L the @-span of Z in @ < Z>. Denote by K’ the differential 
F-Lie algebra K @ F (see  Lemma  5.3.5) and let $J : K‘ + L 
be the @-map given by the rule g H i j ,  sg H Sg for all g E G 
and s E X. Obviously $J is an isomorphism of @-modules. We 
define I ( K )  to be the ideal of @<Z> generated by E - 1 and all 
elements of the form 

(UU)+ - U“+, [U,V]+ - [U+,V+] , p ) +  - 
for all U E G, U,V E K’ and k E K .  Further  letting I be the 
ideal of @<Z> generated by E - 1 and all elements of the form 

(bU)+ - k ,  (sa)+ - Sii, [x, v]+ - [z, g], 

[x, U]+ - (U”+, (kl”’)* - p ) ”  
we claim that I = I ( K ) .  Indeed, letting U denote the projection 
of G<Z> onto U = U(K)  = @<Z> / I ,  we set p = $U and 
M = L” = K’P. It was  shown  before the proof of Theorem 5.3.6 
that F P  is a subalgebra of U containing the identity 1 and p 
induces a homomorphism F + F P .  Moreover U and M have a 
canonical F-module  structure via p, M is a special differential 
F-Lie algebra and p is a homomorphism of DL-algebras. Before 
the proof of Theorem 5.2,3 it was  shown that ( ~ ~ 1 ) ~  = (up)” for 
all U E K.  Now it is clear that I = I ( K ) .  
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Consider any cover ( (A;  N ) ;  f) of the  p-DEalgebra K .  De- 
fine the mapping f’ : K’ + N +  l - F ,  setting ( k  +c)f’ = kf + l - c 
for all k E K ,  c E F. It follows  easily  from the definitions 
that ( (A;  N ) ;  f’) is a cover  of the  DEalgebra K‘. Lift f’ to a 
homomorphism 0 : @<Z>+ A. Recall that f’ is a homomor- 
phism of right F-modules and Lie algebras over @. Furthermore, 
(kW)  ” = (kf’) ’l for all k E K.  Hence I (K) f ’  = 0 and f’ in- 
duces a homomorphism q5 : U + A such that pq5 = f‘. Thus U 
is a universal enveloping algebra of the  p-DLalgebra K.  

Now we are ready to prove the main theorem of this section. 

Theorem 5.4.5 Let ( K ;  F ;  A) be a p-DL-algebra  with  the uni- 
versal  enveloping algebra (U(K); q5), assuming  that F is a free 
@-module  and K is a free right F-module  with a well-ordered 
basis X .  Then  the  set 

is a basis of the right F-module U ( K )  (we  shall  refer  to V as 
a PBW-basis  of the  universal  enveloping algebra U(K)  of the 
p-DL-algebra K). 

Proof. Without loss of generality we may assume that G 
is  well-ordered.  Define a well-ordering on the set 2 = {if I x E 
X) U {B I g E G},  setting fi < a if either U ,  v E X and U < v, or 
u , v E G a n d u < v , o r u E X a n d v E G , f o r a l l f i , a E Z .  

We continue with the same  notations as in Theorems 5.1.1, 
5.2.3 and 5.3.6. Consider the reduction system A of @<Z>, 

o,, = (@i,zg+ [y,x]$), for all y > x E X; 
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r e  = ( E ,  1) ; 

a, = (ZP, .W+) for all x E X .  

Letting 5 denote the linear order on S which  was intro- 
duced in the proof of Theorem 5.1.1 we note that  this ordering 
is a semigroup one compatible with the reduction system A and 
satisfying the descending chain condition. Further,  let I = I(A) 
be the ideal of the algebra @<Z> generated by the reduction 
system A. 

We claim that all ambiguities of A are resolvable and  the set 

V' = ( 2 1 Z 2 . .  Zmg I ~j E X ,  g E G, 2 1  5 x2 5 5 xm 
and if xk = xk+l = . . . = I C ~ + ~ - I ,  then S < p }  U G 

- 

is a @-basis of @<Z>irr. 

Indeed, consider the various ambiguities. It was  shown in 
the proof of Theorem 5.1.1 that  the following ambiguity is  re- 
solvable. 

Case 1. Overlap ambiguity (azy, ay,, Z, jj, Z), where IC, y, x E 
X and x > y > x. 

It was  shown in the proof of Theorem 5.3.6 that  the ambi- 
guities listed below  in  cases  2-7 are resolvable. 

Case 2. Overlap ambiguity (xgy, ay,, i j ,  jj, Z), where IC, y E X ,  
g E G and y > IC. 

Case 3. Overlap ambiguity (whg, agz, h, i j ,  z), where x E X ,  
g ,hEG.  

Case 4. Inclusion ambiguity (re, xez, b, Z), where x E X .  
Case 5. Overlap ambiguity (wgp, wpq, i j ,  p ,  g), where g , p ,  Q E 

Case'6. Inclusion ambiguity ( r e ,  weg, b, i j ) ,  where g E G.' 
Case 7. Inclusion ambiguity (wge, re, i j ,  E ) ,  where g E G. 
In the proof of Theorem 5.2.3 we showed that  the ambiguities 

Case 8. Overlap ambiguity (ay,, a,, jj, Z,ZP"), where x,  y E 

G. 

listed below in cases 8-10 are resolvable. 

X and y > x. 
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Case 9. Overlap ambiguity (a,,  a,,, ZP-l, 2, g), where x, y E 
X and x > y. 

Case 10. Overlap ambiguity (a,, a,, Z‘, P ‘ , Z ‘ ) ,  where x E 
X .  

Case 11. Overlap ambiguity (xgz,  a,, i j ,  E ,  ZP-’), where g E G 
and x E X .  We set v = ~ g z , p - ~ ( i j Z p )  = 3ijZP-l + g5@9-l  
and W = Rg,(ijZp) = gxb]@. By Lemma  5.3.8 there exists a 
sequence R of reductions such that R(v)  = Zpij + Ad(Z)p(ij). 
Obviously R,,,R(v) = xbl$ij+Ad(Z)P(ij). It follows  from  (5.10) 
that R’(w) = zbI@ij + g,’’@ for  some  sequence of reductions R‘. 
Since K is a p-DL-algebra, ad(z)P(g) = g,‘”. Thus RrzgR(v) = 
R’(w) and  this ambiguity is  resolvable. 

The Diamond Lemma  may therefore be invoked, and in view 
of Lemma  1.3.2 we again conclude that V’ is a @-basis for U(K) .  
It follows that V is a right F-module basis of U ( K ) .  

h 

h 

Corollary 5.4.6 Let ( K ;  F ;  A) be a p-DL-algebra  with  the uni- 
versal  enveloping algebra ( U ( K ) ;  4) .  Assume  that F is a free @- 
module,  and K is a free right F-module.  Then p : K + U ( K ) ( - )  
is a monomorphism of diflerential  restricted Lie algebras. 

As in Section 5.3 we make the following 

Definition 5.4.7 Let K ,  L be restricted’  diflerential  Lie alge- 
bras and  let r : F/AnnF ( K )  + F/AnnFL be an  isomorphism 
of @-algebras. Then a mapping f : K + L is  said to be a 
r-semilinear  homomorphism of p-DL-algebras, if the  following 
conditions hold: 

(a)  f is a homomorphism of restricted Lie @-algebras; 
(b) &)f = Sfcr for  all S E K ,  c E F/AnnF(K); 
( c )  ~f = 7-187 for  all S E K .  

The following statements  are proved  analogously to Propo- 
sition 5.3.10 and Corollary 5.3.11 
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Proposition 5.4.8 Let ( K ;  F ;  A) be a p-DL-algebra, (U(K) ;  p) 
the  universal  enveloping algebra of K ,  L C A a special restricted 
diferential F-Lie algebra  over @ and h : K +- L a r-semilinear 
homomorphism of p-DL-algebras. Then there is a unique  homo- 
morphism h' : U ( K )  +- A of @-algebras  such  that ph' = h and 
h'(uc) = h'(u)(c + A ~ ~ F ( , K ) ) '  for all U E U(K) ,  c E F .  

As in Section 5.3 we note that in case F is a field the ideal 
A ~ ~ F ( K )  = 0 where it appears in Definition  5.4.7 and Proposi- 
tion 5.4.8. 

Corollary 5.4.9 Let ( K ;  F ;  A) be a p-DL-algebra  with  the uni- 
versal  enveloping  algebra (U(K) ;  4). Then for any r-semilinear 
automorphism h : K + K of DL-algebras  there  exists a unique 
r-semilinear automorphism h' : U ( K )  + U ( K )  of algebras  such 
that ph' = hp. 

5.5 A  Particular  Differential Lie 
Algebra 

The preceding sections of this chapter were devoted to proving 
a generalized PBW theorem for abstract differential Lie  alge- 
bras. In this book, however, we will be mainly interested in a 
particular differential Lie algebra, one  which arises from the set 
Der(R) of derivations of prime ring R. 

Let R be a prime ring with extended centroid C, prime field 
Q, and symmetric ring of quotients Q. We let Der(R) denote 
the @Lie algebra of derivations of R. We  have  previously  seen 
(Proposition 2.5.1) that any derivation of R can be uniquely 
extended in an obvious way to a derivation of Q, and so we may 
regard Der (R)  C_ Der(Q) C_ Endip (Q).  We mention here that 
it is  useful to view C as left multiplications acting on Q. For 
c E C and 6 E Der(R) 6c is clearly a derivation of Q and so 
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Der(&) is a right C-space.  For q E Q we see  from 

0 = [c, 416 = [c6, a1 + [c, Q 1 - [c 9 4 6 -  6 

that 6 induces a derivation on C which we denote by 3. F'rom 

Q* = (cq) 6 -  - c 6 q + cq6 = qp + qbC 

we have the  important  commutation formula in End(Q): 

c6 = 6c + c$, 6 E Der(&), c E C. (5.22) 

The set Di = {ad(a) I a E Q )  of all inner derivations of 
Q is a C-Lie algebra and also a Lie ideal of Der(&) (in fact, 
[ad(a), 61 = ad(a6), 6 E Der(Q)).  The subset of Der(Q) we are 
primarily interested in is 

D = D(R)  = (Der(R))C + D; (5.23) 

From the preceding observations it is clear that D(R)  is a special 
differential C-Lie algebra over <P with cover End(Q). 

Suppose char(C)-= p.  From Remark l.l.l(b) we see that 
Der (R)  is  closed under pth powers and from Lemma  5.2.1 (a) 
that Di is  closed under pth powers as well. For 6 E Der (R)  
and c E C we see  from Lemma 5.4.2(b) that (&)P E (Der(R))C 
and consequently  from  Lemma 5.2.l(c) that D(R) is a special 
restricted differential C-Lie algebra over with cover End(Q).  

Now let U be  the (restricted) universal enveloping algebra 
of D and pick an ordered right C-basis B of D. Then by The- 
orem 5.3.6 and Theorem 5.4.5 U has a (restricted) PBW right 
C-basis induced by B. By Corollary 5.3.7 and Corollary 5.4.6 
the canonical mapping of D into U is injective and so (with 
some abuse of notation) we may identify D with its image in 
U. On  the other hand D c End@(Q) whence there is a C- 
ring map p : U + End(Q) such that  the following diagram is 
commutative: 
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D c u  

End (Q)  

Thus  there is a copy of D in both U and End(Q), each 
designated by D,  and the context will  always  make it clear which 
copy of D we are using. 

If a is an automorphism of C and K ,  L are any differential C- 
Lie algebras we recall  from  Definition 5.3.9 and Definition 5.4.7 
the notion of a a-semilinear differential Lie map f : K + L 
(the key features  are (Sc)f = Gfc' and 6f = a-'8a).  Then 
f : K + L* is an ordinary differential Lie map, where L* is 
simply L made into a new differential C-Lie algebra by defining 
6 c = 6c" and 8 = a"&~. These considerations, of course, 
apply in particular to  the case K = D. For instance, any a- 
semilinear differential C-Lie map of D into itself can,  in view of 
Proposition 5.3.10 and Proposition 5.4.8, be uniquely extended 
to a a-semilinear @-algebra homomorphism of U into itself. 

In the sequel it will be important  to choose the basis B of D 
so that it reflects the  nature of D. To this end let 230 be a well- 
ordered right C-basis for D modulo Di and Bi a well-ordered 
C-basis for Q. Then,  taking Bo < Bi, we see that B = BO U Bi is 
a well-ordered right C-basis for D. Let W be the PBW right C- 
basis of U relative to (B, <) as provided by Theorem 5.3.6 and 
Theorem 5.4.5. If A = Sil&, . . .Si,, 8ij E B, then  the length lAl 
of A is m, the number of factors. W is then ordered as follows: 
if ]AI < Irl then A < I' and if ]AI = Irl then  the ordering is 
lexicographic. We remark that  the well-ordering of B implies 
that W is  also  well-ordered. We denote by WO the set of all 
elements of W whose factors lie in Bo (and also including 1) and 

h 
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by Wi the subset of W arising from Bi. It is an easy  exercise to 
show that Ui = U(Di) may be taken to be  the subring of U ( D )  
generated by C and Di and Wi is the PBW basis of Ui with 
respect to (Bi, <). 

Finally, from the definition of U, we note that  the commu- 
tation formula corresponding to (5.22)  is  also  valid in U: 

cS=Sc+c', S E D ~ U ,  C E C ~ U .  (5.24) 

Setting A = 6162 . . . S,, Si E D U and referring the reader 
to  the notations preceding Remark 1.1.1 we have the following 
useful formula in U for slipping an element c E C through A: 

CA = c AscG 
S 

(5.25) 

The proof  is a formal inductive one making repeated use of (5.24) 
and we omit it. However, to give the reader a concrete illustra- 
tion of the formula (5.25)  when written  out  in  detail, we write 
out  the case n = 3 in full: 

Of course, using the map p : U -+ End(Q), the formula in 
End(&) corresponding to (5.25)  is also valid. 
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Chapter 6 

Rings with Generalized 
Polynomial  Identities 

6.1 Prime  GPI-rings 
It is hoped that much of the material developed in the first five 
chapters is of interest in its own right. However, it must also be 
said that  the choice of these topics was to a large extent  dictated 
by the background requirements of the remaining chapters, in 
which the  structure theory for  generalized identities is laid out 
and some applications are given. 

Although there were earlier scattered examples of situations 
where ”generalized identities” appeared (e.g.,  [248],  [194]), for all 
intents  and purposes the subject began in 1965 with the appear- 
ance of Amitsur’s fundamental paper [3] characterizing primitive 
rings satisfying a so-called  generalized polynomial identity  (this 
notion, abbreviated as GPI ,  will presently be formally defined). 
In 1969 Martindale simultaneously generalized Amitsur’s the- 
orem on primitive GPI-rings and Posner’s theorem on prime 
PI-rings [205], obtaining a characterization of prime GPI-rings. 
Our main purpose in the present section is to present a proof 
(due to C.-L. Chuang) of this result. 

211 
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Let R be a prime ring with extended centroid C and sym- 
metric ring of quotients Q. We let X be an (infinite) set  and 
form the coproduct Q c < X >  of the C-algebra Q and  the free 
algebra C<X> over C. If P is any C-algebra with 1 containing 
Q then, in view of Remark 1.2.5, any set-theoretic  map X += P 
can  be extended uniquely to a C-algebra map Qc<X>+ P such 
that q e q, q E Q. Such a map will be called a substitution. 
Given an element 4 = $(x1,x2, . . . , xn)  E Qc<X> and elements 
p l ,p2 , .  . . ,pn E P,  $(pl ,pa, .  . . ,pn) will denote the image of $ 
under the  substitution determined by xi I+ pi. Let 0 # U be 
an additive subgroup of R. An element 4 = q5(x1, x2, . . . , zn) E 
Q c < X >  is said to be a generalized polynomial identity on U 
if ~ ( u I ,  ~ 2 , .  . . ,U,) = 0 for all u1, u2,. . . , U ,  E U. Henceforth 
we will  use the abbreviation GPI, and  (with some grammatical 
license)  make statements such as ”$ is a GPI on U” or ”U is 
GPI”. 

We first look at linear elements of QC < X > in a single 
variable x ,  i.e., elements of QxQ, and make the following 

Remark 6.1.1 Q(qQ(,.) 2 Q @C Q 2 QxQ as C-spaces,  with 
the  isomorphisms  given by Q : larb e a 8 b, p : a 8 b e axb, 
a,b E Q. 

Proof. We  know already by Theorem 2.3.6 that Q is an 
isomorphism and clearly p is a well  defined surjection. If $ = xi ai @ bi E ker(P),  then Ciaixbi = 0 whence Ciaiqbi = 0 for 
all q E Q, i.e., xi lairbi = 0, and so xi ai @ bi = 0 in view of the 
isomorphism Q. 

Lemma 6.1.2 Let 0 # $ = xzl aixbi E QxQ. Then: 
(i) For all nonzero ideals I of R $(I)  # 0; 
(ii) If 0 # I a R is such  that dimc($(l)C) < 00 then there 

exist  nonzero  elements a, b E R such  that dimc(aRCb) < 0 0 .  
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Proof. Without loss of generality we may assume that 
m 2 1 and that {ai} and {bi} are each C-independent sets. 
By Theorem 2.3.3 there exists p = Ck lukrVk E R(&,) such 
that  al p # 0 but ai p = 0,  i > 1. We set $(x) = Ck ukqi(vkx) 
and  note that $(x) = a'xbl  where a' = a1 p # 0. Let 0 # I a R 
and suppose qi(I) = 0. Then $ ( I )  = 0 whence we have the 
contradiction a'Ib1 = 0. Part (i) has thereby been  proved. 
Now suppose 0 # I a R is  such that  dimc(qi(I)C) < c m .  Since 
ukqi(vkI) C ukqi(I), it follows- that dimc($(I)C) < cm that is, 
dimc(a'IblC) < cm. Pick S E I such that 0 # a = a's E R 
and t E R such that 0 # b = tb l  E R. As a result we see that 
aRb c a'lbl  and accordingly dimc(aRbC) < c m .  The proof of 
(ii) is thereby complete. 

Lemma 6.1.2 yields the immediate 

Corollary 6.1.3 If qi E &x& is a GPI on  some 0 # I a R then 
qi = 0,  i.e., there  are  no  nonzero  linear GPI's  in one  variable. 

The next lemma continues where the preceding lemma left 
Off. 

Lemma 6.1.4 Let A = RC be the  central  closure of R and 
let a, b E A be nonzero  elements  such  that dimc(aAb) < cm. 

Then the. ring A has a nonzero  idempotent e such  that e A  is a 
minimal  right ideal of A and dimc(eAe) < 00 (In particular A 
is a primitive ring  with  nonzero  socle). 

Proof. Without loss of generality we may assume that  the 
elements a, b E A are such that dimc(aAb) 5 dimc(uAv) for all 
nonzero U, v E A.  We claim that M = aAbA is a minimal right 
ideal of A. Indeed, since A is prime and a # 0 # b, M # 0. Let 
0 # z = xi axibyi E M where xi, yi E A. Setting U = xi xibyi, 
we note that z = au. Further ,we  have auAb C aAb and so 
auAb = aAb by the choice of a, b. Hence  auAbA = M and hence 

M = auAbA c zA C M and zA = M 
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for all nonzero z E M .  Therefore M is a minimal right ideal 
of A. By Proposition 4.3.3 M = eA  for  some idempotent e 
and eAe is a division ring. Clearly e = Czl auibvi. Hence 
eAe C_ C%, aAbq  and so dimc(eAe) < 0 0 ,  and  the lemma is 
proved. 

Before taking  up the  matter of arbitrary GPI’s we shall first 
describe the linearization process in Qc<X>. We mention that 
this process  works equally well  for Q = Qmr as for Q = Qs. We 
fix a C-basis A of Q containing 1 which in conjunction with the 
usual C-basis of C<X> leads to  the monomial basis M(A) of 
Qc<X>. For M E M ( A )  we define 

deg,( M )  = number of times x appears in M ;  
deg(M) = c deg,(M); 

ht(M) = c ht,(M) 

SEX 
&(M) = max{deg,(M) - 1, 0); 

XEX 
= deg(M) minus the number of distinct x’s 

appearing in M .  

Now  we write 

4=4(21,~2,...,xn)=Cc~M~Q~<X>, 

M E M(A), CM E c. 
M 

We shall say that M belongs to 4 if CM # 0. We define: 

deg,(4) = m={deg,(W I CM # 0) ;  
deg(4 = m={deg(M) I CM # 0); 
htx(4) = m={ht,(M) I CM # 0); 
M(#) = max{ht(M) I CM # 0).  

Given k > 0 and x E X we say that 4 is k-homogeneous in x 
if deg,(M) = k for each M belonging to 4. Given a sequence 
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r = (ml,  m2,. . . ,m,) of nonegative integers we say that $ is 
.r-homogeneous if $ is  mi-homogeneous in xi, i = 1,2, . . . , n. If, 
in addition, each  mi = 1 we say that 4 is multilinear of degree n. 
Clearly,  given x E X appearing in $, we may write $ uniquely 
as a sum Er=, &(x), $k k-homogeneous in x, m = deg,(4). 
Also we may write $ uniquely as a sum C $T where $T is r- 
homogeneous. 

Let 4 # 0 be of degree n and suppose deg, ($) = m > 1 
for  some x E X .  We can then perform the following operation 
which we shall refer to as an operation of type A. Notationally 
suppressing all xi # x appearing in 4 we shall write $ = $(x). 
Let M belong to $ such that deg,(M) = m and write 

M = M(x) = Pi0XPil . . . XPi, 

where Pij E M(A) does not contain x. Choose y E X not 
appearing in $ and form 

$ = $(x + Y) - 4(x) - $(Y). 
One observes in particular that  the monomial 

pzOXPi1 . . . ypi, 

belongs to $, thereby showing 

(i) deg($) = deg($) (and hence $ # 0) 
Furthermore it is clear that 

(ii) deg,($) = m - 1 = deg,($); 

(iv) M($) < ht($) (because of (ii)); 
(v )  If $ is a GPI then $ is a GPI. 

( 4  deg,, ($> I deg,, ($1, xi # 2, Y; 

An operation of type B may be performed in case there is 
an x E X appearing in $ but not in each M belonging to $. 
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Here we simply replace 6, by the element p obtained from 6, by 
sending x to 0. Clearly p # 0, de&) 5 deg(6,), ht(p) 5 ht(6,), 
and if 4 is a GPI, then p is a GPI. 

We say that @ is a linearization of 6, if @ is multilinear and 
is obtained from 6, by a finite sequence of operations of types A 
and B. Evidently every 6, # 0 has a linearization and as a result 
we have 

Remark 6.1.5 If 0 # 6, is a GPI on I of degree n then there 
exists a nonzero  multilinear GPI on I of degree 5 n. 

We are now in a position to prove the main result of this 
section (which we shall sometimes in the  future refer to as "the 
prime GPI theorem"). The proof we  give is due to Chuang [87] 
who greatly simplified the original proof in [205]. 

Theorem 6.1.6 Let R be a prime  ring  with  extended  centroid 
C and  central  closure A = RC. Then there is a nonzero GPI 
6, on I for some 0 # I Q R if and only if A has a nonzero 
idempotent e such  that eA is a minimal  right ideal of A (hence A 
is primitive with  nonzero  socle)  and eAe is a finite dimensional 
division algebra  over C.  

Proof. If dimc(eAe) = n < 00 and St,+l is the  standard 
polynomial in n + 1 variables, then 

6, = St,+l(exle,  ezze, . . . , ex,+le) 

is the required a GPI. 
Conversely let 0 # 6, be a GPI on some 0 # I a R. By 

Remark 6.1.5 we may assume that 6, = $(XI, x2, . . . , x,) is  mul- 
tilinear of degree n. Pick any C-basis A of Q. The element 
4, when written in terms of the monomial  basis M(A) ,  only 
involves a finite subset F of A. By suitable reordering of the 
variables we may write 
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(i) 0 # $(zn) E QznQ; 

(ii) M is of the form bbzl .. . bL-2zn-1x(zn), 
with (bb,.  . . , b;-2) # (bo, .  . . , bn-2) and 
~ ( z n )  E QxnQ; 

(iii) N is of the form 
bb'zl.. . by-lzib;znby+lzi+l.. . b''  b" n, . 

(iv) 2 1 ,  z2, . . . , zn-l appear in a different order in P. 

By Lemma 6.1.4 we may assume that $(I)C g V = &FdC. 
Choose r E I such that $(r)  V and  set 

Let A' be a C-basis of Q containing F U {$(r)} ,  and consider 
p as being written in terms of the monomial basis M ( N )  of 
QC < X  > induced by A'. It is then clear that  the monomial 
H = box1 . . . bn-2zn-1$(r) cannot be canceled by any monomials 
which arise from M ,  N ,  or P. For instance, N ends in b: E F 
whereas H ends in $(r)  F .  Thus 0 # p is a GPI of degree 
n - 1 on I ,  and so by induction the proof  is complete. 

Although in this section our framework  is that of the sym- 
metric ring of quotients Qs,  the following corollary shows that 
the effect of a GPI carries up to  the maximal right ring of quo- 
tients Qmr . 

Corollary 6.1.7 Let R be a prime ring with  extended  centroid 
C ,  central  closure A = RC and Q = Qmr(R). Then  the  follow- 
ing conditions are equivalent: 

(i) There is a nonzero GPI 4 on I for some 0 # I a R; 
(ii) A n y  subring A c H c Q is  primitive  with  nonzero 

socle and a nonzero  idempotent e E H such  that  eHe  is a finite 
dimensional  division algebra over C; 
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(iii) The ring Q is  isomorphic  to  the  complete ring of  linear 
transformations of a right vector space over a division ring which 
is  finite  dimensional  over  its  center; 

(iv) R is GPI. 

Proof. (i) + (ii) By Theorem 6.1.6 A has nonzero  socle 
and (ii) then follows immediately from Theorem 4.3.6(ii). 

(ii) 3 (iii) By  Lemma 2.1.9, Q = Q,,(H). Now the  state- 
ment (iii) follows  from the symmetric version of Theorem 4.3.7 
(viii) . 

(iii) + (iv) We identify the ring Q with this complete ring 
of linear transformations over a division ring A. Let n be the 
dimension of A over its center and  let e be  an idempotent of 
rank 1 of the linear transformation ring Q. Clearly eQe E A. 
Hence the generalized  polynomial 

4 = Stn+1(eqe, .  . . , ez,+le) = Stn+1(eq, .  . . , ez,+l)e 

where St,+l is the  standard  polynomi4  in (n + 1) variables 
vanishes under all substitutions xi c-) qi E Q, i = 1,2,. . . , n + 1. 
Pick any a E ( e  : R)R such that ea # 0. Then 

0 # $ = Stn+l(euxl,  eax~p, . . . , eax,+l)ea E Qc<X> 

is a GPI on R. The implication (iv)  (i) is  obvious. The 
proof  is thereby complete. 

Theorem 6.1.6 says that prime GPI rings are "well-behaved", 
but for  non GPI prime  rings we have the following  positive  re- 
sult which  will  prove  useful in  the sequel. 

Lemma 6.1.8 Let R be a prime ring, let U be an  additive 
subgroup of R which is not GPI,  and fix x E X .  Let Ti = 
{&(x) 1 j = 1,2,. . . ,nil, i = 1,2,. . .,m, be m given  subsets  of 
Qc<X> each of which  is  C-independent.  Then  there  exists U E 
U such  that  the  subset Ti(u) = {$ij(u) I j = 1,2, .  . . , ni) Q is 
C-independent  for each i = 1,2,. . . , m. 
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Proof. Suppose to  the contrary that for  each U E U there 
exists 1 5 i 5 m such that %(U) is a C-dependent subset of Q. 
Then  the  set 

remains a C-dependent subset of Q for all vi E U. We form the 
element 

where y1, . . . , ym, z1, . . . , zm E X (distinct from x )  and Stni is the 
standard polynomial in ni variables. Clearly q5 # 0 but, since 
Stk(al, a2, . . . , a k )  = 0 whenever al,  a2, . . . , a k  are C-dependent, 
4 is a GP1 on U, contrary to our hypothesis. 

We  close this section by showing how Theorem 6.1.6, with 
assistance from other results we have obtained, implies the path- 
breaking theorems of Kaplansky [137], Amitsur [3], and Posner 
[242]. 

Let us take a closer  look at the  situation when R is a prim- 
itive GPI ring. By Theorem 6.1.6, RC has a nonzero  socle 
Soc(RC) and so by Theorem 4.3.6(ii) R has socle Soc(R) = 
Soc(RC); Furthermore Theorem 6.1.6 assures us of a minimal 
idempotent e (necessarily in R)  such that eRe = eRCe is finite 
dimensional over C, and we  know from Theorem 4.3.7(ix) that 
eRe has center isomorphic to C. 

The  fundamental theorem of Amitsur ([3], Theorem lo), 
which in essence originated the theory of generalized  polyno- 
mial identities  in 1965, follows immediately from the preceding 
paragraph. 

Theorem 6.1.9 (Amitsur) Let R be a primitive ring  with ex- 
tended  centroid C.  Then R is GPI if  and  only  if R contains a 
minimal  idempotent e such that dimc(eRe) < 00.  
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Now  we recall that a ring R is  called a PI-ring if there exists 
a nonzero  element f (x1,22, . . . , xn)  E C < X  > which  vanishes 
under all substitutions zi I+ ri E R, 1 5 i 5 n. Next suppose 
that R is a primitive PI ring over C with faithful irreducible 
right R-module M and D = End(MR) .  We may  assume without 
loss of generality that R has a multilinear polynomial identity 

f (21' x2, * ' 4  = c A7~u(1)&7(2) * - * "u(n) 
UES, 

of degree n with X 1  = 1. Then 

~ 1 x 2  xn E C Auxu(l)xu(2) - xu(n)R 
U€Sn\{l} 

is a pivotal  monomial of R. By Theorem 4.4.3  we have that 
R = EndD ( M )  where dimD ( M )  < m. On the other  hand  our 
preceding remarks show that  dimc(D) < m. We have thereby 
completed the proof of Kaplansky's Theorem [137], which  orig- 
inated the theory of polynomial identities in 1948. - 

Theorem 6.1.10 (Kaplansky) Let R be a primitive ring with 
extended  centroid C. Then R is PI over C if and  only if R is 
finite  dimensional central simple  over C. 

Finally, we come to Posner's Theorem [242]  of 1960,  which 
became a fundamental tool in the theory of prime  rings (an area 
which had recently  been  opened up by Goldie's Theorems). We 
state  and prove the original  version.  Here we recall that given a 
ring R, a ring S 2 R with 1 is said to be a two-sided classical ring 
of quotients of R if all regular  element  (i.e.,  nonzero  divisors) of 
R are invertible in S and for  every S E S there exist regular 
elements tl, t2 E R such that stl,   t2s E R. 

Theorem 6.1.11 (Posner) Let R be a prime ring with ex- 
tended  centroid C. Then R is  PI over C if and  only if A = RC 
is a  two-sided  classical  ring of quotients of R and dimc(A) < m. 
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Proof. We may assume that  the PI  is multilinear and hence 
satisfied by A. By Theorem 6.1.6, A is a primitive ring with 
nonzero  socle and so by Kaplansky’s Theorem A = &(D) for 
some n 2 1, where D is a division algebra finite dimensional 
over its center C. Let el, e2,. . . , e,  be the usual diagonal matrix 
units. We  now claim that every  nonzero ideal U of R contains 
a regular element of  A.  We may  choose a nonzero ideal W of 
R such that W C_ U ,  Wei 2 U and eiW C_ U for all i, whence 
0 # eiW3ei G U. Selecting 0 # ui E eiW3ei U, we see that 
U = u1+ u2 + . . . + U, E U has rank n and so must be a regular 
element of  A.  Now let a E A,  choose a nonzero ideal U of R 
such that aU + U a  C_ R, and by the preceding  claim  select a 
regular element b E U. Clearly ab, ba E R. Next let d E R be 
a regular element. Suppose dx = 0 for  some x E A. Choose 
a nonzero ideal V of R such that xV c R. Then d ( x V )  = 0 
and so xV = 0. Hence x = 0 and T A ( ~ )  = 0. Analogously  one 
may  show that Z A ( ~ )  = 0. Therefore d is a regular element of  A. 
Since dimc(A) < 0 0 ,  every regular element of A is invertible. 
It follows that every regular element of R is invertible in A and 
thus A is a two-sided  classical ring of quotients of R. 

It must be added that our methods do not enable us to prove 
the sharper version of Posner’s Theorem, namely, the one that 
asserts additionally that C is the field of fractions of the center of 
R. This  latter improvement stems from the existence of central 
polynomials in &(F)  (see Formanek [l051 and Razmyslov  [246]) 
and was proved by  Rowen  [255]. 

As a final note we mention that in section 6.3,  where our 
main purpose will be  to  study GPI’s in semiprime rings, we 
shall at  the same time also broaden the definition of a GPI to 
allow its coefficients to lie in Qmr (rather  than  just in Ss). As  we 
shall see the theory will not be weakened  by this generalization 
since the fundamental prime GPI theorem will remain intact. 
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6.2 Identities  with  a  Fixed 
Antiautomorphism 

The first step  in extending the notion of GPl’s for prime rings 
to  that of more general identities in prime rings was taken in 
[207],  [208] and [257] where R was a prime ring with involution 
* satisfying an identity of the form 4(x1,. . . ,x,, x:, . . . ,x:). The 
special case of an ordinary GPI satisfied by the symmetric el- 
ements was studied by Martindale [208] and  the more general 
situation by  Rowen  [257] (also independently by Skinner [265]). 

Our motivation for including this topic in the present chap- 
ter  (rather  than delegating it  to Chapter 7 as a special case of 
a far more general situation) is severalfold. First, some readers 
may be primarily interested in rings with involution but  not  in 
further generality.  Secondly, this  particular theory has impor- 
tant applications in  its own right (e.g., in Chapter 9 the solution 
of Herstein’s Lie isomorphism  problem  uses it in a crucial way). 
Thirdly, the lemma on linear identities (Lemma 6.2.1) forms an 
important  step in reducing the general theory in  Chapter 7 to 
the prime GPI theorem (Theorem 6.1.6). Lastly, it is hoped 
that  the exposition in this section will help in a small way to 
bridge the gap between section 6.1 and  the vastly more  compli- 
cated setting in Chapter 7. 

For the remainder of this section R will denote a prime ring 
with a fixed antiautomorphism g. This includes the special case 
when g is an involution. The arguments required for the general 
antiautomorphism case are essentially no different  from’ those 
needed in the involution case. We have  previously noted (section 
2.5) that g may be uniquely extended to  an antiautomorphism 
of the symmetric ring of quotients Q = Qs(R) .  Let X be an 
arbitrary infinite set,  let X9 = {xg I x E X }  be a copy of X with 
the elements suggestively superscripted by g, and  let X U Xg be 
the disjoint union of these two sets. We then form the coproduct 
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Qc<X U Xg> of Q and  the free algebra C<X U X9> over C. 
As in the preceding section any set-theoretic map of X U X9 

into  a C-algebra P containing Q can be uniquely lifted to a C- 
algebra map of Qc<XUXg>+ P such that Q I+ Q, Q E Q. Such 
maps are called substitutions. We  will be primarily interested 
in  the  situation where P = Q or P = Qc<X U X9>. As the no- 
tation for the set Xg suggests, it is natural to focus  on substitu- 
tions of Qc<XUXg> into Q which are restricted by the require- 
ment xg I+ T S  whenever x I+ T ,  T E Q. Such substitutions will 
be called g-substitutions . Let U be an additive subgroup of R. 
Then  an element 4 =  XI,. . . , Xn, x;, . . . , xi) E Qc<X U X9> 
is said to be a g-identity on U if 4 is mapped to 0 under all 
g-substitutions for  which xi I+ Ti, T; E U (Our main concern is 
the situation in which 0 # U = I a R). 

We begin with  a seemingly  very  specialized result, but as 
it  turns  out one  which plays a key role in the proof of Theo- 
rem 7.5.8 (as well as Theorem 6.2.3). We fix x E X and  set 
L, = QxQ + &x9&. 

Lemma 6.2.1 Let g be an antiautomorphism of R and let 

m  n 

i=l j=1 

be such that dimc(rj(I)C) < 00 for some 0 # I a R. Then R is 
G P I  (in particular if 4 is a g-identity on I then R is GPI). 

Proof. The proof  is  by induction on n. The case n = 0 
is  obvious in view of Lemma 6.1.2, Lemma 6.1.4 and Theo- 
rem 6.1.6. We assume that  the lemma is true for n - 1 and show 
it for n. Without loss of generality we may assume that m > 
0 and  the elements al, a2, . . . , am are C-independent. There- 
fore Gxul, .  . . , %xum,  al, . . . , am are C-independent elements of 
Qc<X U Xg>. By Corollary 6.1.7 it is  enough to consider the 
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case  when I is not GPI. By Lemma  6.1.8 there exists r E I 
such that 

%Tal ,  . . . , Gram, al, . . . , am are C-independent. (6.1) 

Then we have 

4'(4 = 
- - 

m n 

From  (6.1) it follows that q5'(x) # 0. Clearly $'(I)C G $(I)C + 
Grq5(I)C and so dirnc($'(I)C) < 0 0 .  Therefore by induction 
the proof  is complete. 

Before taking  up the  matter of arbitrary g-identities we de- 
scribe a linearization process compatible with g. With only a 
few adjustments it is similar to  the usual linearization process 
described in the previous section and we will omit most of the 
details. For a nonzero  monomial M in Qc<X U Xg> we define 
the g-degree of M in z (g-deg,(M)) to be  the number of times 
x or xg appears in M .  Similarly we define the g-height of M in 
x (g-&(M)) to be max{g-deg,(M) - 1, 0) and  the g-height of 
M (g-ht(M)) to be CZEX g-ht,(M). For example if 

M = a , - ,x2a~x~a2x~a~x~a~  

then g-deg,, (M) = 3, g-deg,,(M) = 1 and 

deg,,(M) = 1, deg,:(M) = 2, deg,,(M) = 0, deg(M) = 4. 
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We say that 4 is g-multilinear of degree n in 21, x2, . . . , x, if 
for  each monomial M in 4 and each i we have  g-deg,,(M) = 1 
and  deg(M) = n. For example zlax! + x!bxf is g-multilinear of 
degree 2 in x1 and x2 but is not multilinear. On the other hand 
q a x f  is multilinear of degree 2 in 51, xf but is not g-multilinear. 
With these adjustments in mind, together with the fact that g 
is additive,  a process similar to  that described in the preceding 
section results in 

Remark 6.2.2 If 0 # 4 is a g-identity of degree n on 0 # I a R 
then there  exists a nonzero g-multilinear identity on I of degree 
5 n. 

Theorem 6.2.3 Let R be a  prime ring with an antiautomor- 
phism g,  and let 0 # q5 E Qc<X U Xg> be a g-identity on I, 
where 0 # I a R. Then R is GPI. 

Proof. In view of Remark 6.2.2 we may assume that q5 = 
4(q ,  . . . , x,, x!, . . . , x:) is g-multilinear of degree n in z1, . . . , xn. 
Let 7-2, r3,. . . , r, E I and  set 

We note that @ E L,, is a g-identity on I. If @ # 0, then by 
Lemma  6.2.1 R is GPI. Therefore we may assume without loss 
of generality that for  every  choice of r2,r3, . . . , r, E I 

~(21,r2,r3,...,rn,51,r2,r3,...,r~) 9 9 9  

is the zero  element of Qc<X>. In particular 

q5(r1,r2,r3,...,rn,s1,T2,r3,...,r~) 9 9  = o  
for all r1, . . . , r,, s1 E I. Continuing this process with 2 2 , .  . . ,x, 
we may eventually assume that 
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for all ri, si E I ,  i = 1,2,. . . , n, i.e., 4(x1,. . . ,xn,yl,. . . , yn) is a 
GPI on I .  

As an  important special case we have the 

Corollary 6.2.4 If R is a prime ring with  involution * and 
0 # 4 is a *-identity  on 0 # I Q R then R is GPI. 

Included in  this corollary are the following special cases. 

Corollary 6.2.5 Let R be a prime ring of characteristic  diger- 
ent  from 2 with  involution * with  skew  elements K and sym- 
metric  elements S .  

(i) If K is GPI, then R is GPI. 
(ii) If S is  GPI, then R is GPI. 

Proof. In either (i), or (ii) let 0 # 4 ( x 1 , ~ 2 , .  . . ,xn) be a 
GPI. Then 

$ = (x1 - z;,z2 - x;, . . . ,xn - x;) 

is a *-identity on R in case (i) and 

is *-identity on R in case (ii). By Corollary 6.2.4 R is GPI. 

6.3 Semiprime  GPI-rings 
Our main purpose in the present section is the extension of the 
notion of generalized polynomial identities to semiprime rings. 
At the same time, as promised at the end of section 6.1, we 
will extend the definition of GPI so that  the coefficients  may 
lie in Q,,. It is debatable which ring of quotients is better  to 
use. On the one hand QB is  a  less complicated ring not as far 
removed  from R as is Qmr, and working with (dense) two-sided 
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ideals is generally a simpler matter  than working with dense 
right ideals. In Chapter 7 we shall choose to use Q,. On the 
other  hand, Qmr has the advantage of more generality and also 
has the useful property that if J is a dense right ideal of R then 
for any subring J c S c Q,, (R)  we have Qmr (S) = Q,,. (R). 
Also Q,, includes classical rings of quotients  not included in 
Q,, e.g.,  for R a simple right Ore domain Qs = R whereas Qmr 
coincides with the classical ring of right quotients. At any rate 
for the remainder of this  chapter we elect to use Qmr instead of 
Qs,  and we proceed to define the notion of GPI in this wider 
sense. 

Let R be a semiprime ring with extended centroid C and 
maximal right ring of quotients Q = Qmr(R). Letting X be 
an infinite set, we form the coproduct QC < X >  of the free C- 
algebra C < X >  and Q. AS we already know any set-theoretic 
map X + Q can be extended uniquely to a C-algebra map 
Qc<X>+ Q such that q I+ q for all q E Q. As usual we will 
call such a map a substitution. Now let 0 # U be an additive 
subgroup of R. An  element 4 = 4 ( q ,  2 2 ,  . . . , x,) E QC <X > 
(where Q = Qmr(R)) is said to be a generalized polynomial 
identity on U if 4(u1,u2,. . . ) U , )  = O for all u1,u2,. . . ) U ,  E U. 

Before beginning our investigation of GPI’s in the general 
semiprime setting we shall first establish the reassuring fact  that 
in the prime case  no  weakening of the theory has taken place. 

Remark 6.3.1 Let R be a prime  ring  with  extended  centroid C 
and Q = Qmr(R).  Further let q1, q 2 ,  . . . , qn E Q be C-independent 
and J = nr=l(qi : R)R. Then either dimc(RC) < 0 0 ,  or 
there  exists  an  element r E J such  that qlr,   q2r, .  . . , qnr are C- 
independent  elements. 

Proof. Suppose that qlr,  q2r,. . . , qnr are C-dependent for 
all r E J .  Consider the C-linear mappings 1, : V = JC + RC 
given by the left multiplications by qi. By Amitsur’s Lemma 
there exist elements c l ,  c2, .  . . )c, such that r = ql, is a 
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nonzero linear transformation of finite rank (see Theorem 4.2.7). 
Setting Q = C:=l qqi ,  we note that r = 1,. Hence K = qJC is 
a nonzero finite dimensional right ideal of RC. Since RC is a 
prime ring, RC C_ Endc(qJC) which  proves our remark. 

Corollary 6.3.2 Let R be a prime  ring  with  extended  centroid 

on a nonzero ideal U of R. Then U has a nonzero  generalized 
polynomial identity ?I, E QsC<X>. 

C,  Q = Qmr(R), Qs = Qs(R) and 0 # 4 E Qc<X> a G P I  

Proof. Pick any C-basis A of Q containing 1 and consider 
the monomial basis M(A) of Qc<X>. The element 4, when 
written  in  terms of the monomial basis M(A), involves  only a 
finite subset b l , .  . . , b, of A. If dimc(RC) = k < 0 0 ,  then R 
is a PI-ring and then Stk+1(x1, 22,. . . , xk+l) E ?I, E Qsc<X> 
is a G P I  of R. Suppose dimc(RC) = 00.  By Remark .6.3.1 
there exists an element r E R such that blr, b g ,  . . . , b,r are C- 
independent elements of A = RC. Write 4 = a& where 
Mi E M(A) and ai E C.  It follows that 

Therefore q5(rq,  rzz, . . . , rzn)r is a nonzero G P 1  on U with co- 
efficients  belonging to A, and  the proof  is complete. 

The preceding  corollary,  in conjunction with Theorem 6.1.6, 
yields 

Corollary 6.3.3 Let R be a prime ring with extended centroid 
C, Q = Q,? ( R )  and 4 = 4(21,22,. . . , x,) E Qc<X> a nonzero 
GP1 on R. Then the  central  closure A = RC C_ Q contains 
a nonzero  idempotent e such  that eAe is a finite dimensional 
division  C-algebra  (Hence A is a primitive ring  with  nonzero 
socle). 
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Corollary 6.3.3 tells us that if a prime ring is GPI in  the 
"wider"  sense then it is GPI in the sense of section 6.1.  We will, 
however, in  the course of the present section establish the ana- 
logues of Corollary 6.1.3 (Lemma 6.3.12), Theorem 6.2.3 (Theo- 
rem 6.3.18), and Lemma  6.1.8 (Corollary 6.3.14)  for prime rings. 

We return now to  the investigation of GPI's in semiprime 
rings and make the following important definition. A GPI 4 E 
Q c < X >  is  called strict, if rC(4) = 0. The following example 
shows us the importance of the condition rc(4) = 0. 

Example. Let K be any commutative semiprime ring with 
an identity e and  let A be any semiprime ring. We set R = K @ A  
and u = (e, 0). Then $(x, y) = uxy - uyx is a GPI of R and 
rc(4) = (1 - u)C. Thus  the GPI 4 only contains nontrivial 
information about  a  "part" of R, namely about  the direct sum- 
mand K of R. We shall see that in general the  situation is 
analogous to  that of the example. 

Remark 6.3.4 Q c < X >  is a nonsingular  C-module. In par- 
ticular for any 4 E Q c < X >  there exists a unique  idempotent 
E(4)  E C such  that T C ( ~ )  = (1 - E(4))C. 

Proof. Let A be the  set of all finite sequences of elements 
of X .  For any Q = ( X I ,  x2,. . . ,x,), ,O = ( y l ,  y2,. . . , yn) E A we 
set I Q \  = m + 1 and a, U ,O = ( q , x 2 , .  . . ,xn,yl ,  y2, .  . . , yn) E A. 
Given any natural number n, we define Q["] to be the n-fold 
tensor product Q @c Q @c . . . @c Q of Q. Now  we set 

We note that for r = 8, 1 7 1  = 1 and Q7 = Q. Define a multipli- 
cation in H by the rule 
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and  its consequences,  where 

NOW we define a'mapping f : Qc<X>-+ H by the rule 

and  its consequences,  where a = (21, . . . , xm).  We  leave it  to 
the reader to check the straightforward details that H is an 
associative C-algebra and f is an isomorphism of C-algebras. 
Since a direct sum of nonsingular C-modules is a nonsingular 
C-module and Q is a nonsingular C-module by Corollary 3.1.2, 
it is enough to show that  the tensor product of nonsingular C- 
modules is nonsingular as well. To this end consider nonsingular 
C-modules M and N .  Let z = Czl zi @ yi E M @ N where 
xi E M ,  yi E N .  We set M' = Cgl Cxi  and N' = CEl Cyi. 
According to Remark 3.1.4 and Lemma 3.1.1, the C-modules M' 
and N' are isomorphic to  direct sums of principal ideals of the 
ring C and  are injective C-modules. In  particular  they  are di- 
rect summands of M and N respectively. The reader can easily 
check that  the operation of tensor product commutes with the 
operation of direct sum. Hence M' @c N' is a direct summand 
of M @c N and  furthermore the C-module M' @c N' is  isomor- 
phic to a direct sum of tensor products of principal ideals of C. 
Therefore it is  enough to show that U = (Cu) @c (CV) is a non- 
singular C-module for all idempotents U, v E C. Consider the 
mapping h : Cu x CV -+ Cuv given  by the rule (xu, yv) H xyuv, 
x, y E C. Clearly h is a balanced mapping. Hence there ex- 
ists a homomorphism of C-modules F : U + Cuv such that 
F(xu @ yv) = xyuv for all x, y E C. Obviously F is a surjec- 
tive homomorphism. l r t h e r  let z = Cxiu  @ yiv E U where 
x,, yi E C. Then z = (C ziyiuv) @ v and so F is injective. Thus 
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U 2 Cuv is a nonsingular C-module and our remark now  follows 
from  Lemma 3.1.1. 

Let $ E Qc<X> be a GPI on R, e = E($),  I = (e  : R)R 
and J = er. Since e is a central element of Q, I is a dense ideal 
of R. Setting K = (1 - e)I,  we note that K is an ideal of R, 
K n J = 0 and I = J @ K.  Using Proposition 2.1.10 one  checks 
that 

Q = Qmr(J @ K )  = Q m r ( J )  @ Qmr(K) = eQ CB (1 - e)&, 

Q m r ( J )  = e& and eQc<X>= (eQ)ec<X>. Hence 

$ E eQc<X>= (eQ)ec<X> 

is a  strict GPI on the ring J and determines a zero  generalized 
polynomial identity on the ring K .  

These comments show that in the  study of semiprime rings 
with GPI’s one may  confine  one’s attention to strict GPI’s. 

There  are two  ways to characterize semiprime rings with 
strict GPI’s. The first one  is  using the results of section 2.3 
and the skeleton of the proof of Theorem 6.1.6 to give a  direct 
proof of a semiprime ring version of the prime GPI theorem. 
This approach was  used in [21] and [22]. The second possibility 
is using the method of orthogonal completion to derive the de- 
sired description from the prime GPI theorem. We will  follow 
this approach in order to demonstrate the method of orthogonal 
completion. 

Let R be a semiprime ring with extended centroid C, Q = 
Qmr(R), Q s  = Qs(R),  and A = RC C_ Qs. We let D = O(R), 
H = O(A)  denote the orthogonal completions of R and A, not- 
ing (by Proposition 3.1.10) that O(Q) = Q and O(Qs) = Qs. 
Further  let B = B(C), P E Spec(B), and  let $p : Q + Q/PQ = 
Q be the canonical surjection of rings. By Theorem 3.2.7 D = 
$p(D) is a prime ring, and by Theorem 3.2.15(iv) c = 4p(C) is 
the extended centroid of fs. By Theorem 3.2.15(i) G C_ Qmr(fs) 

- 
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and by Theorem 3.2.15(iii) C R 2 &, C Qs(D). The 
following remark shows that  the canonical C-algebra map 

behaves  properly. 

Remark 6.3.5 Let R be a  semiprime ring with  extended  cen- 
troid C ,  B = B(C) the  Boolean ring of all idempotents of C, 
Q = Qmr(R),  F = Qc<X> and P a  maximal ideal of B. Fur- 
ther  let 4 p  : Q + &/P& = g be the  canonical  homomorphism 
of C-algebras and @p : F + & K X >  the  canonical  extension 
of 4p. Then: 

(i) Q p  i s  a  sudective  homomorphism  with ker(@p) = P F ;  
(ii) If $J E QC < X >, then $J E ker(@p) if and  only if 

E($) E p .  

Proof. (i) Let M and N be nonsingular left C-modules. 
We set M = M/PM and r = N/PN. Consider the mapping 
g : M x N + m@cx given by the rule 

( m , n ) H ( m + P M ) @ ( n + P N ) ,  m E M ,  n E N .  

Clearly g is balanced. Therefore there exists a mapping 

such that 

m @ n H ( m + P M ) @ ( n + P N ) ,  m~ M ,  nE N. 

We claim that ker(G) = P(M @c N ) .  Indeed, 

P(M @c N )  = (PM) @c N = M @c (PN) .  

Note that  and  are vector spaces over the field c. Pick 
subsets {uy I y E l?} C M and (v6 I 6 E A} C N such that 
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{U-, + P M  I y E I'} and {v6 + PN I 6 E A} are c-bases of % 
and 7 respectively. Let z = xi xi @yi E M @ c N  where xi E M ,  
yi E N .  Obviously z = C7,6 cyau, @ v6 + z' where cy6  E C and 
z' E P ( M  @C N ) .  If z P(M @c N ) ,  then cyoa0 P for  some 
T~ E l?, a0 E A. Since {(U-, + PM) @ (v6 + PN) 1 y E l?, 6 E A} 
is a c-basis of % @~n, we conclude that  G(z) # 0. Therefore 
ker(G) = P(M @C N ) .  

Taking into account the isomorphism of the C-algebras H 
and Qc<X> established in the proof of the preceding remark, 
we infer now that ker(@p) = PF. 

(ii) The proof  is similar to  that of Remark 3.2.2. 

Returning to our general setting we suppose now that 

is a strict G P I  on R. We claim that = @p(@) is a nonzero 
G P I  on D. Indeed, it follows  from Remark 3.1.8 and Re- 
mark 3.1.9 that @ is a  strict G P I  on D. For any dl ,   dz ,  . . . , d, E 
D we have 

- 
@(4P(dl) ,  - - * 9 4P(dn)) = $&(dl, * , dn)) = 0 

and so $ is a G P I  on D. Since E(@) = 1, @p(@) # 0 by  Re- 
mark 6.3.5. We summarize what we have  proved in  the following 

Corollary 6.3.6 Let R be a semiprime ring with  extended cen- 
troid C ,  B = B(C), Q = Qm,.(R), D = O(R) the orthogo- 
nal  completion of R and P a maximal ideal of B. Further  let 
4 p  : Q + Q/PQ = G and @p : Qc<X>+ G$X> be canonical 
homomorphisms of C-algebras  and  let @ E Qc<X> be a strict 
G P I  on R. Then @p(@) is a nonzero G P I  on  the  prime ring 
4 P W  - 

An idempotent e of a C-algebra A is said to be of finite C- 
rank n if eAe is a free C-module with a basis of n elements. 
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Further,  an idempotent e is  called abelian if eAe is a von  Neu- 
mann regular ring all of whose idempotents  are  central. Finally 
an idempotent e E A is called faithful (or C-faithful for empha- 
sis) if rc(e) = 0. The notion of a faithful abelian idempotent 
e of finite C-rank n lends itself  very  nicely to  the following  de- 
scription by Horn  formulas: 

xo(e, c) = Ilc E Cl1 A (Ilc = 011 v [Ice # 011) A [le2 = ell; 
x l ( e ,   ~ 1 ~ x 2 )  = Il(ez1e)(ex2e)(ezle) = exlel); 
X2(e,Yl,Y2) = ll(eYle)2 # eYlell 

Vll(eYle)(eY2e) = (eY24(eYle>ll; 

en (e) = (VC) (vz1) (3x2) ( @ h )  (\dy2) (3x1)  - ( g & )  (Vz) 
(3S). (3%)Xo(e, 2 1 ,  $2 )  

AX&, Y1, Y2) A x2(e, Y l ,  Y2) 

~ ~ ~ ( e , ~ , ~ l , . ~ . ~ ~ n , ~ l , . . . ~ ~ , t l , . . . , ~ n ) ~  

0, = (3e)On(e) (6.2) 

Clearly e E A is a faithful abelian idempotent of finite C-rank 
if and only if A + 0, ( e )  for  some n > .O. 

Lemma 6.3.7 Let R be a semiprime ring, A = RC, H = O(A), 
let $ E Qc<X> be a strict GPI of R and 0 # a E A. Then: 

(i) For all P Spec(B) there  exists a number n = n(P), 
n = k2 ,  such  that 4p(H) 0,; 

(ii) For all P E Spec(B) with E(a) $! P there  exists a num- 
ber n = .(P) such that $ p ( H )  + (3x)(3e)(On(e) A Ile = asll). 
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Proof. Let e be any minimal idempotent of R and  let n = 
dimc(A) where A = e g e .  Clearly n = k2 < 00 and 

which  proves (i). 
Now let E(a) @ P. Then a = q5p(u) # 0 by Corollary 3.2.4. 

Therefore the right ideal 0 # ?iR of R contains a minimal idem- 
potent of and so + p ( H )  + (32)(3e)(O,,(e) A (le = azll). 

It is  well-known that any right (left) ideal of a centrally closed 
prime GPI ring contains a minimal idempotent e such that eRe 
is a finite-dimensional vector space over its center eC.  We  now 
prove the analogue of this result for semiprime rings. 

Theorem 6.3.8 Let R be a semiprime ring with  extended  cen- 
troid C ,  Q = Qmr(R), A = RC E Q the  central closure of 
R, and N a nonzero right (left) ideal of A .  Suppose  that 4 E 
Qc<X>  i s  a strict GPI on R. Then there  is a  central idem- 
potent U E C and  a  uC-faithful  abelian  idempotent h' in A of 
finite  uC-rank n. 

Proof. We set H = O(A) and  let 0 # a E N .  Note that 
aH is an orthogonally complete subset of H by Lemma 3.1.18. 
Choose a maximal ideal P of B such that +p(u) # 0 (i.e., E(a) @ 
P ) .  Then by Lemma 6.3.7(ii) r j p ( H )  + 0; for some natural 
number n where 0; = (3s)(3h)(On(h) A [ ( h  = aell). According 
to Theorem 3.2.10, there exists a central  idempotent f P such 
that f H  0;. Therefore there exists an abelian idempotent 
h E faH of finite fC-rank n such that rfC(h) = 0. Pick a 
basis z1,z2,. . . , z,, E hHh of the fC-module hHh. Note that 
hHh = @="=,Czi. By Proposition 3.1.14 

h = c hvw and xi = c zvi wi, I I 
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where V, V,  are dense orthogonal subsets of B and h, E aA, 
zvi E A for all W E V, vi E V,, i = 1 ,2 , .  . . , n. Pick idempotents 
W E V, v1 E VI,. . . , v, E V, such that U = f vv1 . . . v, # 0. 
Since r f c (h )  = 0, h' = h,u = hu # 0. Clearly h' E aA is an 
idempotent and zi = ziu = zviu E h'Ah', i = 1 ,2 , .  . . , n. From 
hHh = @Ll f Czi we conclude that 

n n 

h'Ah' C h'Hh' = uhHh = C Cuzi = C Czi h'Ah'. ! 

i=l i=l 

Therefore h' e aA G N is a nonzero abelian  idempotent of finite 
uC-rank. The proof  is complete. 

The following decomposition theorem for semiprime rings 
will be especially  useful  for the determination of generators of 
the T-ideal of GPI's in section 6.5. 

Theorem 6.3.9 Let R be a semiprime  ring  with  extended  cen- 
troid C,  Q = Qmr (R) and H the  orthogonal  completion of the 
central  closure RC c Q of R. Suppose  that R has a strict GPI 
h ( X )  E Qc<X>. Then there  exist a natural  number t > 0 and 
nonzero  idempotents ul,u3,. . . ,ut E H such  that: 

(i) The E(ui)  'S are  an  orthogonal  set  whose sum is 1; 
(ii) ui is a faithful abelian  idempotent of finite rank ni = k; 

of E(ui)C-algebra E(ui)H, i = 1 , 2 , .  . . , t; 
(iii) If M E Spec(B) with E(ui) # M then d ~ ( u i Q u i )  is an 

ni-dimensional  division algebra  over its center $M(uiC); 
(iv) e = ul +up + . . . -k ut is a faithful abelian  idempotent of 

the  C-algebra H such  that uHu is a finitely generated C-module. 

Proof. By Lemma 6.3.7(i) for  every P E Spec(B) d p ( H )  
On(p) for  some natural number n(P) = k2.  According to Theo- 
rem 3.2.18 (with H playing the role of R) there exists a family 
of pairwise orthogonal nonzero idempotents { f1, f2,. . . , ft} C C 
and  natural numbers n1, n2, . . . , nt such that f1+ f2 + . . . + ft = 1 
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and f iH  Oni, i = 1,2 , .  . . ,t. Thus f iH contains an fiC- 
faithful abelian idempotent ui of rank ni over fiC. Clearly 
E(ui) = fi and so both (i) and (ii) have  been  proved. Now 
suppose E(ui) $Z M .  By Corollary 3.2.4 $ M ( u ~ )  # 0. Set- 
ting D = O( R) and 'is = ~ M ( D ) ,  we recall that is a prime 
ring with extended centroid ~M(C) and 'is C ~ M ( H )  G Q9 (D). 
Therefore ~ M ( H )  is a prime ring. Since 4 ~ ( u i )  is a nonzero 
idempotent, it follows that $ ~ ( u i ) $ ~ ( H ) $ ~ ( u i )  = + ~ ( u i H u i )  
is a prime ring as well. Obviously a prime von Neumann regu- 
lar ring all of whose idempotents  are  central is a division ring. 
Therefore + ~ ( u i H u i )  is a division ring. By Corollary 2.3.12 the 
center Z ( ~ ~ ( z l i ) ~ ~ ( H ) ~ ~ ( u i > )  is equal to C$,(ui) = 4 ~ ( u i C ) .  
Consider the following decomposition of the C-module H :  

It follows that ( P H )  n (uiHui) = PuiHui and so ker(4M) n 
(uiHui) = PuiHui .  Choose a basis zl, 2 2 , .  . ,xn of the C- 
module uiHui ,  where n = ni. Then PuiHui  = @r.lPCzi and so 
4 ~ ( u i H u i )  = @r==1c4~(zi). Therefore dim~,(,iC)(4M(UiHui)) 
= ni and (iii) is  proved. Finally it is an easy matter  to see that 
e = u1+ u2 + . . . + ut is a faithful abelian idempotent over C (in 
fact eHe  = @f=,uiHui) and  that eHe is finitely generated over 
C (the number of generators being 5 721722.. . nt). The proof  is 
complete. 

Corollary 6.3.10 Let R be a  semiprime ring with  extended cen- 
troid C ,  B = B(C), Q = Qmr (R)  and D = O(R)  the  orthogonal 
completion of R and H = O(RC). Then  the  following  conditions 
are equivalent: 

(i) R has  a  strict GPI $ E Qc<X>; 
(ii) The orthogonal  completion O(RC) contains  a  faithful 

abelian  idempotent e such  that eHe  is finitely generated  over C; 
(iii) For all P E Spec(B)  the ring $p(D) is G P I ;  



238 CHAPTER 6. RINGS WITH GPI 

(iv) For all P E Spec(B)  the ring q5p(H) is  primitive  with 
nonzero socle and  the  associated  division ring is a finite  dimen- 
sional  over  its  center; 

(v) For .all P E Spec(B)  the ring 4 p ( Q )  is  primitive  with 
nonzero socle ‘and the associated  division ring is a finite  dimen- 
sional  over  its  center. 

Proof. The implication (i) + (iii) is an immediate con- 
sequence of Lemma 6.3.7(i). Since the proof of Theorem 6.3.9 
only rested on the assumption that each #+(H) was GPI, it 
follows that (iii) implies (ii). The equivalence of (iii), (iv) and 
(v) follows  from Corollary 6.1.7. Now  we proceed to prove that 
(ii) 3 (i). Let e O ( R C ) e  be an n-generated C-module. It i s  
clear that 

is a GPI on R. Since 

for all P E Spec(B),  St,+l(ezle, . . . , ez,+le) is strict. 

Theorem 6.3.11 Let R be a  semiprime  ring  with  extended  cen- 
troid C and Q = Qmr(R) .  Suppose  that 4 E Qc<X> is a strict 
GPI on  R. Then: 

(i) R is  right and  left  nonsingular (i. e, Zr(R) = 0 = &(R)); 
(ii) Q is a right selfinjective  von  Neumann regular ring with 

a  faithful  abelian  idempotent  e  such  that  eQe  is  a  finitely  gener- 
ated C-module. 

Proof. (i) Since O(RC) C_ Qs (R) ,  it is enough to show that 
the orthogonal completion H of the central closure A = RC is 
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right and left nonsingular (see Corollary 3.1.15, Lemma 2.1.13). 
According to Corollary 6.3.10, $ p ( H )  is a primitive ring with 
nonzero  socle  for any maximal ideal P of B = B(C). By The- 
orem 4.3.7(iv) the socle of a primitive ring belongs to any es- 
sential left (right) ideal. Hence &(4p(H)) = 0 = Z T ( ~ p ( H ) ) .  
Then by Corollary 3.2.13 

for all P E Spec(B),  It follows  from Corollary 3.2.4 that H is 
left and right nonsingular. 

(ii) First of all we note that Q is a centrally closed orthogo- 
nally complete ring by Theorem 2.1.11 and  Proposition 3.1.10. 
According to Corollary 6.3.10, 4p(Q) is a primitive ring with 
nonzero  socle and  the associated division ring is finite dimen- 
sional over its center. Since Qmr(Q) = Q ,  it follows  from  Corol- 
lary 6.3.10 (with Q instead of R) that Q has a faithful abelian 
idempotent e such that eQe is a finitely generated C-module. In 
view of (i) the other properties of Q are given by Theorem 2.1.15. 
The proof is complete. 

Our next aim is to show that Corollary 6.1.3 also holds  for 
semiprime rings.  To this end the following lemma will be useful. 

Lemma 6.3.12 Let R be a  semiprime ring with  extended  cen- 

Suppose  that CEl Cui = @glCui and E(ui) = E(bi) # 0 for  all 
i = 1,2 , .  . . ,m. Then 4 is  not a GPI on R. 

troid C, Q = Qmr(R) and 4 ( ~ )  = CE1 U i X b i  E QC < X >. 

Proof. Suppose that 4 is a GPI on R. By Theorem 2.3.3 
there exist elements u1, . . . ,U,, V I ,  . . . , V, E R such that 
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Clearly Cy=, ujq5(qx) = axbl is a GPI on R. Therefore aRb1 = 
0 and so aE(b1) = 0 by Lemma 2.3.10. Then 

a contradiction. 

Proposition 6.3.13 Let R be a semiprime  ring  with  extended 
centroid C and Q = Qmr(R). Suppose that $ (x )  = Cgl aixbi E 
Qc<X> is a GPI on R. Then 4 = 0. 

Proof. Suppose that 4 # 0. Taking into account Theo- 
rem 2.3.9(iv), we can assume without loss of generality that 

Replacing (if it is  necessary) ai and bi by E(bi)ai and E(ai)bi we 
can assume also that E(ai) = E(bi) for all i = 1 , 2 , .  . . ,m (see 
Theorem 2.3.9(ii)). The conditions of Lemma 6.3.12 are now 
fulfilled, and by  Lemma 6.3.12 a contradiction is reached. 

Now  we proceed to prove the analogs of the results of  Sec- 
tion 6.2 for semiprime rings. We start with the ‘following 

Corollary 6.3.14 Let R be a prime  ring  with  extended  centroid 
C and Q = Qmr (R) ,  let U be an  additive subgroup of R which 
is not GPI, and fix x E X .  Let = { 4 i j ( X )  I j = 1 ,2 , .  . . ,nil, 
i = 1,2,-. . . ,m, be m given  subsets of Qc<X> each of which 
is C-independent. Then there exists U E U such  that for each 
i = 1 ,2 , .  . . ) m  the  subset %(U) = {6ij(u) I j = 1 ,2 , .  . . ,ni) C Q 
is C-independent. 
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Proof. Exactly the same proof as that of Lemma 6.1.8 can 
be used, with Qs now replaced by Qmr. 

Our next goal is to prove the analogue of Theorem 6.2.3 for 
semiprime rings. Let R be a semiprime ring with a (fixed) anti- 
automorphism g and Q = &mr(R). The notions of g-substitution 
and g-identity q5 E Qc<X> for semiprime rings are defined anal- 
ogously to  that of prime ring. 

Lemma 6.3.15 Let R be a prime ring with  extended centroid 
C and Q = Q,(R). Suppose  that g is an  antiautomorphism of 
R and 

m n 

0 # $(X) = C + C cjz’dj E Qc<X U X’> 
i=l j=1 

be such  that dimc(q5(I)C) < 00 fo r  some 0 # I a R. Then R is  
G P I  (in particular if q5 is a g-identity  on I then R is  GPI). 

Proof. Suppose that R is not G P I  and n = 0. With- 
out loss of generality we can assume that al,  a2, . . . , am are C- 
independent. Multiplying by a suitable element r from the right 
we can assume also that bi E R. By Remark 6.3.1 there exist an 
element r’ E R such that air', azr‘, . . . , are C-independent 
elements of R. Hence @(x) = q5(r‘z) # 0. Since @(I)C = 
q5(r‘I)C C_ q5(I)C, we conclude that dimc(q5’(I)C) < 00 and 
so by Lemma 6.1.2 and Lemma 6.1.4 R is GPI ,  a contradic- 
tion.  The general case is considered  analogously to  that of 
Lemma  6.2.1. 

Now the proof of Theorem 6.2.3  yields the following 

Corollary 6.3.16 Let R be a prime ring with  an  antiautomor- 
phism g and  extended  centroid C ,  Q = Q,,(R) and  let 0 # q5 E 
Qc<X U X’> be a g-identity  on 0 # I a R. Then R is GPI .  
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Lemma 6.3.17 Let R be a semiprime  ring  with  an  antiauto- 
morphism g and  extended  centroid C, Q = Q,,(R) and  let 

be a g-identity of R. Then there  exists  an ideal I of R such 
that  XI,. . . , xn,y1,. . . ,gn) is a GPI on I and e9 = e fOT all 
e2 = e E (I - E(I ) )C .  

Proof. First of all we recall that by Proposition 2.5.4 g can 
be uniquely extended to  an antiautomorphism of Q9 = QS(R) .  
Clearly C9 = C. By Zorn's Lemma there exists an ideal I of R 
maximal with respect to  the property that 

4(x1,. . . , xn, y l , .  . . , yn) is a GP1 on I .  

Suppose that u9 # U for  some u2 = U E (1 - E(1))C. If uug" = 
U = uu9, then 

219 = uu9-I = u9u= '21, 0 
a contradiction. Therefore either U # U ~ U ,  or U # u9"u. In the 
first case we set v =  U( 1 - u9) and W = u9" (1 - U), otherwise we 
let v = U (1 - u9") and W = us-' (1 - u9-'). Clearly w9 = v 
and 2rw = 0. Hence 0 = ( v w ) ~  = 2 1 9 ~  and 

Let J = v(v : R)R and K = W(W : R)R. Since 21 = w9, J = K9 
as well. Obviously 

vanishes under all substitutions xi I+ ri E J ,  zi si E K ,  
i = 1,2, . . . , n. We  now infer from (6.3) that 



6.3. SEMIPRIME GPI-RINGS 243 

Recall that vr = r for all r E J and Jg" = K.  Pick any 
r1, 73,. . . , rn, SI, s2,. . . , sn E J .  By the above results ?,h van- 
ishes under the  substitution xi I+ ri, zi I+ s:-', i = 1,2, . . . , n. 
Therefore $(XI, . . . , x,, y1, . . . , yn) is a GP1 on J .  Recalling that 
J = v(v : R)R and v E (1 - E(I) )C,  we note that E ( I ) J  = 0 
and so IQJ = 0. Therefore I + J = I @ J .  Since IQJ = 0, 

for all ai, Q E I ,  di, bi E J ,  1 5 i 5 n. It follows that 
4(x1,. . . , xn, y1,. . . , yn) is a GPI on I + J in contradiction to 
the choice of I .  Thus ug = U for all U E (1 - E( I))C and  the 
proof  is complete. 

Theorem 6.3.18 Let R be a semiprime ring  with  an  antiauto- 
morphism g and extended  centroid C, Q = Qmr(R), Qs = Qs (R) 
and let 

Proof. By Corollary 6.3.10 it is enough to show that 4p(Q) 
is a primitive ring with nonzero  socle and an associated division 
ring is finite dimensional over its center for all P E Spec(B) 
where B = B(C). Let an ideal I of R be as in Lemma 6.3.17. 
Clearly 0 ( I )  is an ideal of D = O( R) and 

is a GPI on O(I)  (see Remark 3.1.8 and Remark 3.1.9). We 
also note that r~(?,h) = .C($) = 0,  TC(O(I) )  = rc ( I )  and so 
E(O(I ) )  = E(I ) .  We set v = (1 - E(I ) )  and J = v(v : R)R. 
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Since (v : R)R is a dense ideal, rc(J) = TC(W) = E(I )C  and so 
E ( J )  = v.  Let P E Spec(B). Then  either E ( I )  4 P or v # P. 
Suppose that E ( I )  4 P. Then by Corollary 3.2.4 (bp(O(I)) is a 
nonzero ideal with a nonzero G P I  on a prime ring d ( D )  and so 
q5p(Q) has the desired properties (see Corollary 6.1.7).  Consider 
now the case  when v # P. Since V = E ( J )  = E ( O ( J ) ) ,  we con- 
clude that q5p(O(J)) # 0. According to Lemma  6.3.17, ug = U 

for all U E VC. We infer  from Remark 3.1.8, Remark 3.1.9 and 
Remark 3.1.16 that q5 is a g-identity of O ( J ) .  Further P = 
(1 - v ) B  + Pn vB and so Pg = P. Hence g induces an  antiauto- 
morphism h of q5p(D). We set Q = $p(Q) and c = q5p(C). Con- 
sider the canonical extension @p : Qc<XUXg>+ Q 6 X u X h >  
of dp. Clearly @p(+) is an h-identity on 0 # $p(O(J) )  Q $(D).  . 

By Lemma  6.3.15 q5p(D) is GP1 and so by Corollary 6.1.7 the 
ring g has the desired properties. The proof  is complete. 

Remark 6.3.19 Let R be a semiprime ring with  extended  cen- 
troid C and Q = Qmr (R) .  Further let K be a submodule of QR. 
Then E ( K )  = E(K n R) and rR(K) = T R ( K  n R) = TR(E(K)) .  

Proof. We set L = K n R. Let LC = 0 for  some c E C. 
Pick any q E K and  set I = ( Q  : R)R. We note that I is a 
dense right ideal of R and q1 C L. Hence 0 = qIc = (qc)I and 
so qc = 0 by Proposition 2.1.7. It follows that rc(L) = rc(K) 
which implies E ( K )  = E ( L ) ,  

It follows from Lemma 2.3.10 that for any submodule U c 
QR and element r E R the relation Ur = 0 is equivalent to 
E(V)r = 0. Applying what we just proved, we infer that 
rR(K) = rR(K n R). 

We  close this section with the following  useful result (here 
we call a ring R a PI-ring if it has a polynomial identity with 
integral coefficients at least one of which equals 1). 
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Theorem 6.3.20 Let R be a semiprime ring with  extended cen- 
troid C and Q = Qmr (R). Then  the following  conditions are 
equivalent: 

(i) R has a strict GPI belonging to Qc<X>; 
(ii) R contains a right (left) ideal L such  that rR(L) = 0 

(1R(L) = 0) and L is a PI-ring; 
(iii) A n y  right (left) ideal K of R contains a right (left) 

ideal N such that rR(K) = TR(N) (ZR(K) = ZR(N)) and N is a 
PI-ring. 

Proof. (i) =+ (ii) We set A = RC c Q and H = O(A) .  By 
Theorem 6.3.9(iv) H contains a faithful abelian idempotent v 
(hence E(v )  = 1) such that vHv is an n-generated C-module for 
some natural number n. Then STn+l(v; X )  is a  strict GPI on 
H .  Since H c Qs (R), it is  enough to prove  only the "right" ver- 
sion of (ii) and (iii) (see Proposition 3.1.10). We set L = vHnR 
and claim that L is a PI-ring and rR(L) = 0. Indeed, since 
vx = x for all x E L, St,+l (x1, . . . , xn+l)xn+2 is a polyno- 
mial identity of L. Further by Remark 6.3.19 rR(L) = rR(vH). 
Let r E T R ( V H ) .  Then vHr = 0 and so r = E(v)r  = 0 by 
Lemma 2.3.10. 

(ii) =+ (iii) Let K be a nonzero right ideal of R and f = 
f ( 2 1 ,  . . . , xm) a polynomial identity of L. Then O(K)  and O(L) 
are right ideals of the orthogonal completion O(R)  of R. It fol- 
lows from Remark 3.1.8 and Remark 3.1.9, that f is a polynomial 
identity on O(L). By Proposition 3.1.11 there exist k E O ( K ) ,  
1 E O(L) such that E ( k )  = E(O(K))  and E(Z) = E(O(L)).  
According to Lemma 3.1.18 kO(R)l is an orthogonally complete 
subset of O(R) and so there exists r E O(R) such that E(kr1) = 
E(kO(R)l)  by Proposition .3.1.11. For all dl , .  . . , dm+l E O(R) 
we have ldikr E .O(L), 1 5 i 5 m + 1, and so 

f (krldl ,   krldz,  . . . , krldm)krldm+l = 
kr f (ldlkr,  Id&, . . . , ldmkr)ldm+l = 0. 
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Therefore the ring krZO(R) satisfies the polynomial identity 
f ( x 1 , .  . . , xn)xn+l. Setting N = (krZO(R)) n K, we claim that 
~ . R ( N )  = T.R(K). Indeed, let Nr = 0 for some a E R. Since N is 
a right ideal, we have NRa = 0. By Lemma 2.3.10  we have that 
E(a)N = 0. Suppose that E(a)krZ # 0. By Proposition 3.1.14 
k = CUE= IC,v where V is a dense orthogonal subset of B = B(C) 
and ku E K for all 'U E V. Then k,(E(a)rZ) = v(E(a)krZ) # 0 
for  some 'U E V (see Theorem 2.3.9(i)). Since I = (TI : R)R 
is a dense right ideal of R, E(a)k,rZI = k,(E(a)rZ)I # 0. On 
the other  hand k,rlI C N and so E(a)kvrZI = 0, a contradic- 
tion. Therefore E(a)krZ = 0. By the choice of r we then have 
E(a)kO(R)Z = 0 and hence E(a)kE(Z) = 0 by Lemma 2.3.10. 
By the choice of 2 we have E(Z) = E(L).  Since T.R(L) = 0 and 
L ( 1 -  E(L)) (E(L)  : R)R = 0, it follows that E(L) = 1 and so 
E(a)k = 0. By the choice of k we then have that KE(a) = 0 
and hence Ka = 0 by Lemma 2.3.10  which  proves our claim. 

(iii) + (i) Taking K = R, we conclude that there exists a 
right ideal L of R such that TR(L) = 0 and L is a PI-ring. Let 
f = f ( q ,  . . . , x,) be a polynomial identity of L and  let Z E O(L) 
be as above. Without loss of generality we can assume that f is 
multilinear and  the monomial x152 . . . x, is involved in f with 
the coefficient 1. We claim that q5 = f(Zz1,Zx2,. . . , Zx,)Zx,+1 is 
a strict G P 1  on O(R). Indeed, clearly g5 is a G P 1  on R. Setting 
e = 1 - E(L)  and I = (e : R)R, we see that 0 = LeI and 
e l  C_ R. Hence e I  = 0 and E(L)  = E(Z) = 1. Suppose cq5 = 0 
for  some c E C. Then cZx1Zx2.. . Zxm+l = 0. Recall that  the 
C-module Q z l Q x 2 .  . . Qx,+1Q is isomorphic to  the  (m+2)-fold 
tensor product Q@pcQ. . .@pc& via the mapping given  by the rule 
41x142. . . xm+lqm+l e 4 1 8  42 8 .  . . @ qm+2 and  its consequences. 
Since CZ E C, CZ is an injective C-module and so CZ is a direct 
summand of the C-module Q. Therefore the C-submodule C(@ 
Z 8 . . . 8 Z @ 1) is isomorphic to C @pc C @pc . . . @pc C E C and 
hence rc(Zz1Zx2.. . Zz,+1) = 0. The proof  is complete. 

Semiprime rings with G P I  were investigated by K. I. Beidar 
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in [21],  [22],  [24] and [27] where Theorem 6.3.8, Theorem 6.3.11 
and Proposition 6.3.13 were  proved. The proofs presented here 
are new.  Besides the method of orthogonal completions, we 
have  used here some ideas from [Sl]. The prime ring case of 
Theorem 6.3.20 was  proved in S. K. Jain [l351 and extended to 
semiprime rings in [27]. 

6.4 Lifting of GPl’s 
Our aim in this section is to prove the following theorem. 

Theorem 6.4.1 Let R be a semiprime  ring  with  extended  cen- 
troid C and Q = Qmr(R).  Then any GPI $ = $(XI,. . . ,xn) E 
Qc<X> on R is a GPI on Q. 

We start with the following  useful 

Proposition 6.4.2 Let R be a prime ring  with  extended  cen- 
troid C and Q = Qmr (R) .  Suppose  that 0 # 4 E QC < X > is 
a GPI on 0 # K a R and IC1 < 0 0 .  Then R is a primitive 
ring  with  nonzero socle and a nonzero  idempotent e such that 
eRe = eC. 

Proof. Obviously I = (ncEc(c : R)R)  n K is a nonzero ideal 
of R and IC = I .  Recalling that Qmr(I) = Q, we conclude that 
C is the extended centroid of I and so I is centrally closed  (see 
Lemma 2.1 .g). Since 4 is a nonzero GPI on I ,  we infer from 
Corollary 6.3.3 that I = IC has a nonzero idempotent e such 
that eIe is a finite dimensional division C-algebra. Therefore 
eIe is a finite division ring. By Wedderburn’s theorem on finite 
division rings eIe is a field  (see Theorem 4.2.3). According to 
Corollary 2.3.12, the center Z(eIe) is equal to eC and so eIe = 
eC. Since I is an ideal of R and e E I ,  eIe C eRe = e(eRe)e c 
eIe and so eRe = eIe = eC. Applying Proposition 4.3.3, we 
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conclude that R is a primitive ring with nonzero  socle. The 
proof  is thereby complete. 

Let R be a prime ring with extended centroid C and Q = 
QmT(R). We fix a C-basis A containing 1 and consider the 
corresponding monomial basis M(A) of Qc<X> determined by 
A. Any  element 4 E Qc<X> may be written 4 = EM CXMM E 
Qc<XUXg>, where M E M(A) and 0 # ~ J M  E C. We refer the 
reader to  the linearization process described in section 6.1  and 
section 6.2,  in  which  various notions of degree,  g-degree, height, 
g-height, and homogeneity are defined.  Here we recall that 4 is 
multilinear if and only if it is homogeneous of zero height. 

Lemma 6.4.3 Let R be a prime ring with  extended  centroid C 
and Q = QmT (R). Suppose that 

0 # 4 = 4 ( ~ 1 , 2 2 7  - 7 2,) E Qc<X> 
is a GPI on 0 # K a R. Then C$ is a GPI on  the socle Soc (A)  
of A = RC. 

Proof. By Corollary 6.3.3 A is primitive with Soc(A)  # 0. 
Replacing (if it is  necessary) K by K f l  Soc(A) ,  we can suppose 
that K G Soc(A) .  It follows  from Theorem 4.3.7(iv) that KC = 
Soc(A) .  In a view of Proposition 6.4.2 without loss of generality 
we can assume that IC1 = 00.  Let 4 = EM CXMM where M E 
M(A) and 0 # QM E C. Further  let deg,,(4) = m. For  every 
O < k s m w e s e t  

4 k  = x ( a M M  1 deg,,(M) = k } .  
M 

Pick m + 1 distinct elements cl,  c2, . . . , %+l E C. Clearly there 
exists a nonzero ideal I c K of R such that GI c R for all 
t = 1 , 2  ,..., m +  1. For any 1 5 t 5 m + 1, r1 E I and 
r2, ~ 3 , .  . . , rn E K we have 

m 
0 = 4(ctr1, T 2 ,  * , rn) = c C;4b(rl, 7-2, * * , rn). 

k=O 
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Using a Vandermonde determinant  argument, we conclude that 
&(rl, r2,  . . . , rn) = 0 for all k = 0,1, . . . , m. Continuing in this 
fashion we find a nonzero ideal J of R such that all homogeneous 
components $T of 4 are GPI’s on J .  It is  enough to show that 
every 4T is an identity on Soc(A). Therefore without loss of 
generality we can assume that 4 is  7-homogeneous  where T = 

We proceed by induction on h($ ) .  If ht(4) = 0, then 4 is 
multilinear and so 4 is an identity on JC. Further, JC is an 
ideal of A. By Theorem 4.3.7 Soc(A) c JC (in fact Soc(A) = 
JC) and hence  is an identity on Soc(A). Suppose now that 
ht(4) = m and our statement is  proved  for GPl’s of height 
less then m. Notationally suppressing all variables in 4 other 
than z E {Q, 22, . . . , Zn} (where htz(4) > 0) and picking a new 
variable y E X which does not  appear in 4 we form the element 

( h ,  k2, * 9 kn). 

$(X? Y) = + Y) - - 4(Y). 
and  note the following properties of Q: 

htz ($)  < degz(4) - 1 = h&@); 
W $ )  < h W ;  
$ is a GPI on J. 

By the induction assumption every  homogeneous component of 
$ (and hence $ itself) is a GPI on Soc(A). Therefore 

O = $ (  r, 4 = 4(r + S) - 4(r)  - 4 ( s )  
for all r, S E Soc(A) and so 4 is additive in every variable xi on 
Soc(A). Let 

= C Gjrij E SOC(A) C JC 
j 

where Gj E C, Tij  E J .  Then we have 

4 ( U l , .  . .,U?.&) = C C S 1 . .  .ck? n3n 4 ( f 1 j 1 ,  , r j n )  = O 
h , . .  .,jn 
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and hence q5 is an identity on Soc(A). The proof  is complete. 

Theorem 6.4.4 Let R be a prime ring with extended  centroid 
C and Q = Qmr(R). Suppose  that 

is a GPI on 0 # K Q R. Then q5 is a GPI on.&. 

Proof. Letting A denote the central closure RC of R, we 
infer  from Corollary 6.3.3 and Lemma 6.4.3 that Soc(A) # 0 
and q5 is an identity on Soc(A). Pick a nonzero idempotent 
e E Soc(A) such that Ae is a minimal left ideal of A. By The- 
orem 4.3.7 Q = End(AeA) where A = eAe is a division ring. 
Furthermore 

QSoc(A) = QAeA = AeA = Soc(Q). 

Suppose that 4 is not  a GPI on Q. Then  there exist elements 
41, q2, .  . . , qn E Q and a E Ae such that 

Let m = deg(4) + 2 and 4 = EM O M M  where M E M(A) and 
0 # CXM E C. Denote by T' the set of all coefficients appearing 
in q5 and  set T" = T' U { q l ,  . . . , qn}. Further  let T be the set of 
all m-fold products of elements from TI'. Obviously T', TI' and 
T all are finite. By Litoff's theorem there exists an idempotent 
v E Soc(A) such that uta = tu for all t E T.  Consider now any 
monomial 

M = aioxjlail . . . xjk aik 

appearing in 4 where 0 # ai, E Q, zj, E X .  We claim that 
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for all T = 1,2, . . . , k .  Indeed, letting 

a contradiction to (6.4). The proof is thereby complete. 

Proof of Theorem 6.4.1. Let q1,q2, .  . . , qn E Q. We set 
q = @(ql, .  . . , qn) and B = B(C). It is  enough to prove that 
4 p ( q )  = 0 for all P E Spec(B) where rpp : Q + Q = Q/PQ is 
the canonical projection of rings (see Corollary 3.2.4). We set 

D = O(R), D = &(D) and c = &(C). 

Letting @p denote the canonical extension of 4 p  to a homomor- 
phism Qc<X>+  i&<X>, we note that if $ = @p($) = 0, 
then 

4p(a) = R4P(Q1) ,  - 9 4 P ( Q n ) )  = 0 

as well. If $ # 0, then  it is a nonzero GPI on by Corol- 
lary 6.3.6 and by Theorem 6.4.4 we have 

Thus 4 p  (q) = 0 for all P E Spec(B) and the proof is thereby 
complete. 

NOW we proceed to prove the analogous result for g-identities 
of a semiprime ring where g is an  antiautomorphism. Let R be a 
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semiprime ring with extended centroid C and  a fixed antiauto- 
morphism g. We set Q = Qmr ( R )  and Qs = Qs(R).  The notions 
of g-substitution, g-identity 4 E QceX U X g >  and g-degree are 
introduced analogously to  that of prime rings (see section 6.2) 
and we leave the straightforward details for the reader. Let 

where M E M(A) and 0 # a~ E C 

be a g-polynomial, r = (ml, . . . , m,) and o = (ml, . . . , m2,) 
sequences of natural numbers. We set 

We  will call & a g-homogeneous component of 4 . Clearly qbu 
is a homogeneous component of 4. Here we note that qb is g- 
multilinear if and only if it is  g-homogeneous of zero g-height. 

Lemma 6.4.5 Let R be a prime ring  with  extended  centroid C, 
an antiautomorphism g and Q = Q,, (R) .  Suppose that 

is a g-identity on 0 # K Q R. Then 4 is a g-identity on  the socle 
Soc(A) of A = RC. 

Proof. First of all we note that g can be uniquely extended 
to an  antiautomorphism of the ring Q,(R) 2 A by Proposi- 
tion 2.5.4 (which we again denote by g ) .  Secondly replacing 
(if it is  necessary) K by K n Soc(A), we can suppose that 
K c Soc(A). It follows  from Theorem 4.3.7 that KC = Soc(A). 
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Suppose now that 

4(T1,. . . , T,, T?, . . . , TZ) = 0 
for all TI,. . . , rt E Soc(A), T t + l , .  . . , T, E K 

where t 2 0 is  given. We claim that 

4(T1,. . . , T,, T?, . . . , TZ) = 0 
for all TI, . . . , Tt+l E Soc(A), rt+2, . . . , P, E K. (6.6) 

We proceed by induction on g-ht(4). If it is equal to 0, then 
any monomial appearing in 4 is g-multilinear. Substituting zero 
instead of some variables (if it is necessary), we conclude that 4 
is a sum of g-multilinear identities on K .  Therefore without loss 
of generality we can assume that 4 is g-multilinear. If g1 C = idc, 
then 4 is a g-identity on KC 2 Soc(R). Otherwise a9 # a for 
some U E C. Clearly aJ G K for  some  nonzero ideal J G K of 
R. Since 4 is g-multilinear, 

Now for all b E J ,  TI,. . . , rt E Soc(A) and ~ t + 2 , .  . . , T, E K we 
have 

Since ag # a, we conclude that 

$'(TI, . . . , T t ,  b, ~ t + 2 ,  . . . , T,, T?, . . . , r f ,  ~ t9+~ ,  . . . , T;) = 0 and 
qY'(T1, . . . , Tt, Tt+2,. . . , T,, Tf, . . . , r,9, P, Tt9+2. . . , TZ) = 0. 
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Consider now 

$'(X) =  TI, - 9 rt, 2, rt+2, - * - 9 rn, rf, 9 r$) 

$"(Y) = V(r1, - 7 r,, e ,  ' - ' , r,9, Y, e+2, 9 4 .  

and 

By the above result they  are generalized polynomial identities 
on J and J9-l respectively.  According to corollary 6.1.3, we 
have $' = 0 = $'I. Therefore our claim is true for g-identities of 
zero g-height. 

Suppose now that our claim is proved  for g-identities of  g- 
height  less then g&($).  Assume $ ( T I , .  . . , r,, rf, . . . , r i )  # 0 for 
some rl, . . . , rt+l E Soc(A), rt+2,. . . , r, E K. We set 

$(X, 2') = $(TI, - 9 rt, X, rt+2, 9 rn, r!, 9 rt ,X > rt+2r 7 TE). g 9 9  

Clearly $ is  a  nonzero g-identity on K and g-hi($) 5 g-ht(q5). 
Let g-degi(q5) = m and I I ,  = EM (YMM where A4 E M ( A ) ,  
O # Q M E E .  F o r e v e r y O < k , l < m w i t h k + l < m w e s e t  

$kt = ~ { ( Y M M  I deg,(M) = k and deg,, ( M )  = 1); 

Il$ll = l{(k,l) I h d  f O)l* 

Since $ ( T ~ + ~ ,  ~ f + ~ )  = q5(r1,. . . , r,, rf, . . . , r i )  # 0, $ is not a g- 
identity on Soc(A). Consider the set T of all nonzero g-identities 
~ ( 2 ,  xg) on 0 # J, a R  having the properties r is not a g-identity 
on Soc(A) and  g-ht(r) < g&($). Clearly $ E T and so T # 8. 
Pick r E T with a minimal possible  value of 11r11. Without 
loss of generality we can assume that N = J, c Soc(A). Pick 
any pair of natural numbers S ,  t such that rst # 0. Let c E C. 
Clearly CL c N for  some  nonzero ideal L c N of R. Then for 
all b E L we have 

0 = x r k l ( b , p ) ,  
kl 

o = C c' (CS)' rkl(b, P). 
kl 
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Setting 

we conclude that p is a g-identity on L and llpll < 1 1 ~ 1 1 .  Hence 
p is a g-identity on Soc(A). In  particular P(a, a g )  = 0 for all 
a E N .  Now it follows that 

T ( a ,  @ag) = c ck (c”)’ Tkl(a,  a’) 
kl 

We consider 

x@, Y, zg, Yg) = T ( 2  + Y, zg + !lg) - T(2, x9) - T(Y, Y”. 
Clearly x is a g-identity on N and 

g-ht(x) < g-ht(7) < g-ht(6). 

By induction assumption we then have that x is a g-identity on 
Soc( A).  Therefore 

0 = x(?-, S, ?-g, sg) = T(T + S, ?-g + sg) - T(T, r9) - T(S, s9) 

for all T, S E Soc(A). Let 

a = c cjrj E Soc(A) = NC 
j 

where cj E C, ~j E N .  Then by (6.7) we have 

T(U,  U’) = c T(c j r j ,  <T!) = o 
j 

and hence r is an identity on Soc(A), a contradiction. The claim 
is thereby proved.  From (6.6) it follows immediately that 6 is a 
g-identity on Soc(A). The proof is complete. 
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Theorem 6.4.6 Let R be a prime ring with  extended centroid 
C ,  an  antiautomorphism g and Q = Qm,.(R) . Suppose  that 

is a g-identity  on 0 # K a R. Then 4 is a g-identity of Qs = 
Qs (R)  

Proof. As  we  know g can be uniquely extended to  an an- 
tiautomorphism of the ring Qs(R) by Proposition 2.5.4 and we 
denote the extension again by g .  Letting A denote the central 
closure RC of R, we infer from Corollary 6.3.3 and Lemma 6.4.5 
that Soc(A) # 0 and 4 is a g-identity on Soc(A). Pick a nonzero 
idempotent e E Soc(A) such that Ae is a minimal left ideal of 
A. According to Theorem 4.3.7 Q = End(Aea), where A = eAe 
is a division ring, and 

QSoc(A) = QAeA = AeA = Soc(Q). 

Suppose that (p is not  an  identity on Q,.. Then  there exist ele- 
ments q1,q2, .  . . , qn E Qs and a E Ae such that 

We set m = g-deg(q3) + 2. Let 4 = CM CXMM where M E M(A) 
and 0 # CXM E C. Denote by T' the set of all coefficients ap- 
pearing in 4 and  set T" = T' U (41, . . . , qn, qf,  . . . , q:}. Fur- 
ther  let T be  the set of all m-fold products of elements from 
T". Obviously T', T" and T all are finite. By  Litoff's theorem 
there exists an  idempotent v E Soc(A) such that vtu = tu and 
(tu)g"v = (ta)g-' for all t E T.  Applying g to  the last equality 
we infer that vgta = t a  for all t E T .  Hence 

v ta  = tu = vgta for all t E T. 

At this point we note that  the rest of proof  is analogous to  that 
of Theorem 6.4.4. In  particular, making use of Lemma 6.4.5, we 
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infer that 

Theorem 6.4.7 Let R be a semiprime ring with  extended  cen- 
troid C ,  an  antiautomorphism g and Q = Qmr(R). Then  any 
g-identity 

is a g-identity of Q, = Q,(R) I 

Proof. The proof  is similar to  that of Theorem 6.4.1. Pick 
~ 1 ,  ~ 2 , .  . . , qn E &S and  set Q = $(ql , .  - - , qn,q!,  - - - , a:). It is 
enough to prove that q = 0. By Lemma 6.3.17 there exists an 
ideal I of R such that + = $ ( X I , .  . . ,x,, y1,. . . , yn) is a GPI on 
I and eg = e for all e2 = e E (1 - E(I))C.  By Theorem 6.4.1 
E(I)+ is a GPI on Qmr(I) = E(I)Q. In particular E(I)q = 0. 
We set e = 1 - E ( I )  and J = e(e  : R)R. It is  enough to prove 
eq = 0. Clearly Q,( J )  = e&, and 

Hence without loss of generality we can assume that I = 0, e = 1 
and 21g = 21 for all u2 = 21 E C. 

It is  enough to prove that d p ( q )  = 0 for all P E Spec (B)  
where B = B(C) and +p : Q + 8, = Q/PQ is the canonical 
projection of rings (see Corollary 3.2.4). Since P9 = P,  g induces 
an antiautomorphism of Q$PQ, which we denote again by g for 
simplicity. We set 

Letting @p denote the canonical extension of g5p to a homo- 
morphism QC < X U Xg >+ &< X U X9 >, we note that if 



258 CHAPTER 6. RINGS WITH GPI 

- 
$ = @p($) = 0, then 4 p ( q )  = 0 as well. If $ # 0, then it is 
a nonzero g-identity of D as it was  shown in the proof of The- 
orem  6.3.18. In  the last case $ is a g-identity of Qs(D) 2 
by Theorem 6.4.6 and so 4 p ( q )  = 0. Thus &(q) = 0 for all 
P E Spec(B) which completes the proof. 

In [209] W. S. Martindale proved that every multilinear poly- 
nomial identity of a semiprime ring is an identity of its maximal 
right ring of quotients. Theorem 6.4.1 is a generalizarion of this 
result and it was proved  by K. I. Beidar in [24].  Since the original 
proof  used the existence of a central polynomial of a prime PI- 
ring, we used here the proof  given in [81] for the prime ring case. 
The involution case of Theorem 6.4.7 was proved  by K. I. Bei- 
dar, A. V. Mikhalev and K. Salavova in [37] (see also [X]) and 
here we used  some ideas from their proof. 

6.5 The ‘T-ideal of GPI’s 
The aim of this section is to describe the IT--ideal  of generalized 
polynomial identities of prime and semiprime rings. The results 
we present are due to K.I.Beidar  (except Proposition 6.5.5  which 
is due to Littlewood [194]). Although there  are considerable 
technical and  notational  aspects as well as case-by-case argu- 
ments involved in  the proof, the end products  are  quite definitive 
and simply stated.  The main results for centrally closed prime 
GPI rings (Theorem 6.5.7 and Theorem 6.5.12)  show that  the 
‘T-ideal of all GPI’s has a single ”obvious” generator, and for 
semiprime rings the finite generation of the  7-ideal of all GPI’s 
depends solely  on the boundedness of the orders of the extended 
centroids of the Pierce stalks. 

Let R be a semiprime ring with extended centroid C, Q = 
Qmr (R)  and RC C H E Q a C-subalgebra. Consider the ring 
A = HC < X >. An endomorphism r : A -+ A is said to be 
an H-endomorphism if h‘ = h for all h E H c A. An ideal 
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I of A is called a 7-ideal if it is an ideal of A and I' 5 I 
for any H-endomorphism r : A + A. The last condition is 
equivalent to  the following  one: f (91, g2, . . . , g") E I for  every 
f ( 2 1 ,  x2 ,  . . . ,x , )  E I and all 91, g2, . . . , gn E A (i.e., I is  closed 
under all substitutions). Obviously the  set of all GPI's on R 
forms a 7-ideal which we shall denote by G( H ;  R).  We also 
note that sums and intersections of 7-ideals  are again 7-ideals. 
Given a subset L c H c < X > ,  the intersection of all 7-ideals 
of Hc<X> containing L is said to be  the  7-ideal of Hc<X> 
generated by L. We shall denote it by " ( H ;  L) or simply "(L) 
when the context is clear. Here we note that " (L )  is just  the 
ideal of A generated by all f (91, g2, . . . , g") where f (x1, . . . , x") E 
L and 91,. . . , g n  E A.  

Now let R be a primitive centrally closed algebra over a field 
C with minimal idempotent e such that eRe = e C .  Given any 
natural number q > 0 we set 

ST2(e; X )  = exlex2e-ex2ex1e, and L,(e; X )  = (ex1e)q"exle. 

Clearly ST2(e; X )  is a GPI  on R. Further if IC[ = q, then 
L,(e; X )  is a GPI  on R as well. 

The polynomial ring K = C [ x l ,  x2, . . . , X"] will  play an im- 
portant role in the sequel. In particular in case q = IC[ < m we 
will  need the following  well-known result (Remark 6.5.1). For 
any monomial M = x?xF . . . x? we set MP = x y l x y  . . . x? 
where 0 5 mi < q, t i  mi mod (Q - 1) and mi = 0 if and only 
if ti = 0, i = 1,2,. . . , n. Extending p by linearity to K..+ K, 
we denote the resulting map again by p. A polynomial f E K 
is said to be reduced if f P = f. 

Remark 6.5.1 Let f E C[x1 ,x2 , .  . . ,x , ]  where q = IC1 < m. 
Then: 

(i) f and f P  determine  the  same  functions  on C"; 
(ii) f vanishes  on C" if and  only if f P  = 0;  
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Proof. The first statement easily  follows from the obvious 
fact that aq = a for all a E C. 

Clearly it is enough to prove that a nonzero  reduced  poly- 
nomial g determines a nonzero function on C”. We proceed  by 
induction on n. If n = 1, then deg(g) I q - 1. Hence g  has at 
most q - 1 roots in C and so it determines a nonzero function 
on C. Suppose now that our claim is  proved for C[xl,. . . ,x,-1] 
and 0 # g E C[zl, . . . , x,] is a reduced polynomial. We write 
g = c$, hi(x1,. . . ,xn-l)xi where k < q, hi E C[xl ,  . . . ,$,-I], 
i = 0,1, . . , , IC and hk # 0. Clearly all hi are reduced  polyno- 
mials. Since hk # 0, by the induction assumption there exist 
elements cl,. . . , c, -1 E C such that hk(c1,. . :, ~ - 1 )  # 0. Then 

is a nonzero reduced polynomial. Hence p(%) # 0 for some 
c, E C and so g(c1,. . . , c,) # 0. The proof  is thereby complete. 

The 7-ideal of GPI’s on the ring  of n x n matrices. In 
this subsection we determine G(& R) for R = M,(C) (Proposi- 
tion 6.5.5), and in the course of doing so we introduce the flavor 
of the arguments used  in a more general situation. 

Let C be a field, n > 0 a natural number and A = M,(C) 
the ring of n x n-matrices over C. We  fix a set A = (eij 1 1 5 
i, j 5 n} of matrix  units of A. Clearly A is a basis of the C- 
space A and  it determines a monomial basis M(A) of Ac<X> 
where X = (21, $2,. . . ,xn, . . .} is a countable set. We note that 
M(A) consists of all monomials of the form 

where eit-lj, E A, x k t  E X .  Setting 
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we form the polynomial ring C[A] over C. Define a linear map- 
ping 7r : Ac<X>+ C[A] by the rule 

and  its consequences  where M is as in (6.9). 
We fix any linear order of A such that [i, j] < [T, IC, S] for all 

1 5 i, j, T, S 5 n, k 2 1 and define a linear mapping 7 : C[A] + 
Ac<X> as follows.  If a monomial f E C[A] is representable in 
the form 

[iO,jm+ll[jl,  kl, illn1 * - [ j m ,  km, i,Inm (6.10) 

where [jt, kt, i t]  < [jt+l,  kt+l, it+l] for all t = 1,2,. . . , m - 1, then 
we set 

Otherwise we set f" = 0. 

Lemma 6,.5,2 Let 

Then: / 

(i) M - M"" E T(A; ST2(ell; X))=I; 
(ii) If IC1 = q < cm,  then 

M - MTm E T(A; ST2(ell;  X) + Lq(e;l;  X)) = J. 

Proof. (i) Let u(X),v(X) E Ac<X>. We claim that 

for all 1 5 j, k ,  T, S 5 n. Define an A-endomorphism 
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by the rule 

Then 

and our claim is proved. The  statement (i) follows  now directly 
from the definitions of the mappings ?r and Q. 

(ii) Letting L, = L, (e l l ;X)  and  setting 2 2  = 0, we infer 
that L, E J .  Clearly 

and so 
M"" - M"" E T(A;  L,) c J. 

Now  we have 

and  the proof is thereby complete. 

Corollary 6.5.3 Let h ( X )  E Ac<X>. Suppose  that h(X)"" = 
0.  Then h ( X )  E T ( A ;  ST2(ell; X ) )  = I .  

Proof. Writing h(X)  = &CV" where M E M ( A )  and 
0 # CYM E C, we note that 

h ( X )  = h ( X )  - /&(X)"" = CCYM ( M  - M"") E I 
M 

by  Lemma 6.5.2. The proof  is complete. 

Analogously  one can prove the following 
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Corollary 6.5.4 Let h ( X )  E Ac <X >. Suppose that IC1 = 
q < 00 and h(X)"m = 0. Then h ( X )  E T(A; ST2(ell; X )  + 
Lq(e11; X ) ) .  

Proposition 6.5.5 Let C be a field, n > 0 a natural  number 
and A = Mn(C) the ring of n X n-matrices  over  the field C .  
Suppose that h(xl,x2,. . . ,x,) E Ac<X>  is a GPI  on A. Then: 

(i) If (Cl = 00 or h ( X )  is multilinear, then 

W )  E m ;  ST2(e11; X ) ) ;  

(ii) If IC1 = q < 00, then 

Proof. Clearly h ( X )  = eil(e&(X)ejl)elj and all 
e&(X)ejl are GPIs. Hence without loss of generality we can 
assume that ellh(X)ell = h(X) .  Let 7 : C[A] + C be any 
homomorphism of C-algebras such that [l, l]' = 1. We set 

n 

uk = c ej,&i, IC, i]' for all k = 1,2 , .  . . . 
j , k l  

Then for any monomial 

we have 
M ( u ~ ,  ~ 2 ,  . . . , a,) = e1lMmr. 

Therefore 
O = h ( q ,  u2,. . . ,U,) = ellh(X)"7 

and h(X)"? = 0 for all y : C[A] + C. If IC1 = 00 or h ( X )  is 
multilinear, then h(X)" = 0. If IC1 = q < 0 0 ,  then h(X)"P = 0 
by Remark 6.5.1. Applying Corollary 6.5.3 and Corollary 6.5.4, 
we complete the proof. 
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Lemma 6.5.6 Let C be a field, n > 0 a natural  number. and 
A = Mn(C) the ring of n X n-matrices over  the field C .  Then: 

Proof. We’have 

where S2n is the symmetric group and E (  a) is the sign of 0. Let- 
ting h(xl, . . . , xan) denote the polynomial in noncommutative 
indeterminates 

we note that h is not a polynomial identity of A because 

Hence 

By Amitsur-Levitsky theorem Stan is a polynomial identity of 
A and so p(zl,x2) is a GPI (see Theorem 1.3.5). Clearly 

for  some 1 5 i, j 2 n. We write 

n n 
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where Pijkl,  6ijkl E c and pick 1 5 i, j, k ,  1 5 n such that # 
0. Then 

Clearly f is a GPI. In particular f(ell,  ell) = 0 and so Pijkl = 
6ijkl.  Therefore 

ST2(e11; X )  = p;;lf(% 2 2 )  E 7 ( A ;  St2n(z1, .,. ? , 22;)) 

and hence 

The converse  inclusion  follows  from Proposition 6.5.5. 

The 7-ideal of GPI’s on primitive  algebras over a field. 
In  this  rather lengthy subsection we determine G(R; R) for R 
a centrally closed prime ring over C. If R is not GPI then 
G(R; R) = 0 and  nothing more  needs to be said. Therefore we 
may assume, in view of Theorem 6.1.6 and Theorem 4.3.7, that 
there exists an idempotent w E R such that A = wRw is a 
finite-dimensional division algebra over C whose center is WC. 

We begin by looking at  the case  where A E C, i.e. wRw = 
Cw. First of all we show that any h E Rc<X> has a so-called 
S-W-representation, which  may then be used to develop a useful 
connection with a polynomial ring C[A]. 

Let h(zl,x2,.  . . ,Q)  E RC < X  >. Clearly h ( X )  is a sum 
of monomials of the form alZkla22k2 . . . amxk,am+i where 1 5 
ki 5 k ,  aj E R, i = 1 , 2  ,..., m, j = 1 , 2  ,..., m +  1. Letting 
V ,  denote the C-subspace of R generated by all coefficients of 
h ( X )  together  with i and W, we note that  dimc(K) < 00.  We 
note that Vj depends upon the choice of monomials in the rep- 
resentation of h ( X ) .  By  Litoff’s theorem it follows that there 
exists an  idempotent U E Soc(R) such that uvu = v for all 
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v E Vh n Soc(R) and uRu &(C) for some natural number 
t .  Since W E Vh n Soc(R), uwu = W as well.  Recalling that 
wRw = WC, we conclude that there exists a system of matrix 
units W = {eij I 1 5 i, j 5 t )  such that W = ell. Clearly 
U = ell + e22 + . . . + ett and Vh n Soc(R) E & Ceij. Choose 
elements v1 = 1,212, . . . , v, E Vj such that they form a basis of 
Vh modulo Vh n Soc(R). Obviously V# C_ CL1 Cvl + Ceij. 
Setting S = (211,212, . . . , urn}, we note that h ( X )  is representable 
uniquely as a linear combination of monomials whose  coefficients 
belongs to  the set S U W .  We  will  refer to  this representation 
as an S-W-representation of h(X) .  Let h ( X )  = Eaihi(X) be 
the S-W-representation of h(X)  where 0 # cy( E C and hi = hj 
if and only if i = j. We consider monomials hi as elements of 
the subsemigroup S of RC <X > generated by S U W U X .  A 
submonomial (subword) g of hi is said to be W-free  if it belongs 
to  the subsemigroup generated by SUX. Let H be  the  set of all 
W-free subwords of all monomials hi. We consider the element i 
as a W-free submonomial of all monomials hi. Clearly I H I < 00.  

Setting 

- 

we form the polynomial ring C[A] over C. We  fix any linear 
order < on A such that 

for all g, g', g'' E H, 1 5 i, j, a, b 5 t .  For any monomial h, 
we have the following possibilities (the seemingly complicated 
description is simply a rigorous way  of insuring that no element 
of S is  ever adjacent to  an eij): 
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where : 
(a) either go = i or go = for  some 
g; E H ,  1 5 TO 5 k ;  
(b) either gi = x,i or g; = 
for  some g: E H ,  1 5 Q ,  li 5 IC, 
where 1 5 i 5 n; 
(c) either  gn+l = 1 or gn+l = 2,,,+19,+1 for  some 

I 
Xr&Xli 

- I 

&+l E H ,  1 I Tn+1 L k-  I 

We define a polynomial h: E C[A], respectively, in the cases just 
described: 

Case 1 h: = [g]; 
Case 2 h: = [gx,; i][j; i]; 
Case 3 h: = [I; ilk; ~ , g ] ;  
Case 4 h: = [gx,; i]b; ~lg'] ;  
Case 5 h: = [go; i0][j1; 91; 4 . .  . bn; gn; inlIjn+l; gn+lI. 
Further we put 

h" = CaihT. 
Consider a monomial M E C[A] which  is written in the following 
form 

where [G; fi; bi] < [%+l; fi+l; bi+l] for all 1 5 i 5 m - 1. We 
set 
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By linearity we extend q to linear combinations of the mono- 
mials just described. As in Lemma  6.5.2, Corollary 6.5.3 and 
Corollary 6.5.4  one can prove that 

h, - h:q E “(R; S T ~ ( W ;  X ) ) ;  
If IC\ = Q  < 00 ,  then 
h, - hrm E “(R; S T ~ ( W ;  X )  + L,(w; X ) ) ;  
If hTq = 0, then h ( X )  E “(R; ST2(w; X)); 
If IC1 = q  < 00 and h“” =0 ,  ., 

then h E 7 ( R ;  ST2(w; X) + L,(w; X ) ) .  

We let I = “(R; STz(w;X)) if h is multilinear or [Cl = 
00 ,  or I = “(R; ST2(w; X )  + Lq(w; X ) )  if IC[ = q < 00: We 
therefore have the following  sufficient condition for h to belong 
to I :  

h“ = 0 (if h is multilinear or IC1 = 00) 
h”” = 0 (if IC[ = q < 00) (6.11) 

In view of Remark 6.5.1  (6.11) is equivalent to  the single suffi- 
cient condition: 

hTr = 0 for any C-algebra map y : C[A] -+ C (6.12) 

We are now in a position to prove the key result of this 
subsection. 

Theorem 6.5.7 Let R be a primitive algebra with unity element 
1 over a  field C and  let g(R; R) C Rc<X> be the  7-ideal of 
GPI’s on R. Assume  that R contains a nonzero  idempotent W 

such  that wRw = Cw. Then: 

- 
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(i) If a GPI   h (X)  E Rc<X> is multilinear, then h ( X )  E 

(ii) If  [Cl = 00, then 
T(R;  STz(w; X ) ) ;  

(iii) If IC1 = q c 0 0 ,  then 

G(R; R) = T(R; ST-(w; X )  + L*(w; X ) ) .  

Proof. We shall assume that h is written in an S-W-rep- 
resentation  and that linear maps 7r and q are as described near 
the beginning of this section. We shall prove all the  statements 
of the theorem simultaneously. According to (6.12) it is  suffices 
to show that hT7 = 0 for all C-algebra maps y : C[A] + C. 
Unlike the simpler situation encountered in the proof of Propo- 
sition 6.5.5 the increased generality in the present situation en- 
tails a case-by-case  series of technical arguments. We begin by 
setting  the  stage using Amitsur’s Lemma. 

We set 
t 

V = C C Csejl G Re11 

and  note that V 2 C&l Cejl since i E S. By Lemma 4.2.8 
there exist distinct elements yg,i E Rell, g E H ,  0 5 i 5 t ,  
such that  the elements {syg,i I S E S, g E H ,  0 5 i 5 t }  are C- 
independent modulo the subspace V .  In particular syg,+ = s‘Y~,,~, 
if and only if (S; g ;  i )  = (S’; g’; i’). 

Let : C[A] + C[A] be a homomorphism of C-algebras. We 
set 

sES j = l  
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where g E H ,  1 5 i 5 t. Let s E S. Since U = ell+e22+. . .+ett 
and suRe11 C C;=, Csejl C V, we have szg,i 3 sgg+ (modV) 
and so the elements 

are C-independent. Since ellRe11 = Cell and Re11 is a faithful 
irreducible left R-module, R is a dense subring of Endc(Re11) 
by the Jacobson Density Theorem. Hence there exist elements 

such that: 

If z,sg E H ,  then urSZg,i = zXTsg,i; (6.13) 
Ureil = zxT,i; (6.14) 
If sg E H and i 2 1, then 
uszg,i = [sg; i]Te11; (6.15) 
If sg E H ,  then uszg,o = [sg]'ell; (6.16) 
ueil = [Ti i]Yell, (6.17) 

for all 1 5 j 5 t and g E H .  Analogously 

e1jzg,o = L; gI'e11 (6.19) 

for all 1 5 j 5 t and g E H .  We claim that 
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for all monomials h, involved in h. Indeed, consider the following 
five cases listed above. 

Case 1. h, = g E H .  Then it follows directly from (6.13) 
and (6.16) that 

by (6.14). Now from (6.13) and (6.15) we infer that 

Case 3. h, = eijx,g. Then from  (6.13) we conclude that 
aTg(a1,. . . , Uk)ZI,o = zz,,,o. Hence  by  (6.19) we have 

Applying (6.17) we obtain 

Case 4. h, = gxTeijxlgl. We already know that 

Applying (6.14) we obtain that 

Now from (6.13) and (6.15) we infer that 
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and our claim is thereby established. 
Now from (6.20) it follows that 

and so h"7 = 0 for all C-algebra maps y : C[A] + C. The proof 
is thereby complete. 

If h is a GPI on R, then the proof of the preceding theorem 
shows that condition (6.11), or equivalently (6.12), is a neces- 
sary  and sufficient condition for an element h E RC < X  > to 
belong to  the  7-ideal I .  We proceed to draw further conclu- 
sions. If a monomial hi appearing  in h has a form described in 
(1) - (4), then h: # h: for  any other monomial hj appearing 
in the S-W-representation of h(X).  From this we conclude that 
monomials of the form described in (1) - (4) do  not  appear in 
h(X)  and so any monomial appearing in the S-W-representation 
of h ( X )  has at  least two  coefficients in  W. If either h(X)  is 
multilinear or IC[ = 00 ,  then any monomial appearing in the S- 
W-representation of h(X)  has at least three coefficients in W. 
Given a natural number S > 1 we let h(s) denote the sum of all 
aihi such that hi has exactly S - 1 coefficients in  W. We note 
that is exactly the s-homogeneous component of the poly- 
nomial h". Clearly a polynomial is equal to zero if and only if 
all its homogeneous components are equal to zero. Furthermore 
if IC( = q < 00 and f E C[A] with homogeneous components 
f(.), then f P  = 0 if and only if c{f(a I i T mod (q - l)} = 0 
for all T = 1,2,. . . , q - 1. 

Although the notion of an S-W-representation is a crucial 
one (it provides the  important connection with the polynomial 
ring C[A]), it is not so natural  to expect a given GPI h to be 
presented in such a restrictive representation. Fortunately we 
are able to partially loosen this restriction. To be  sure we must 
continue to prescribe a subset S of elements of R of infinite 
rank which together with i is C-independent modulo Soc(R). 
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However it is  less artificial to assume now that h is a GPI on R 
which  is written in the form h = C a> h>, 0 # a> E C, where the 
coefficients of all the hi's are  either of finite rank or belong to 
S. As we have  seen earlier the C-span of all coefficients of finite 
rank lies inside the C-span of a set W of matrix  units eij, with 
ell equal to  the prescribed idempotent W .  Thus we may also 
write h in its S-W-representation h = Caihi. It is clear that 
h(s) is equal to  the sum of all ar[ih[i such that h[i has exactly S - 1 
coefficients of finite rank. The following corollary then follows 
from our discussion in the preceding paragraph. 

Corollary 6.5.8 Let R be a primitive algebra with unity ele- 
ment i over a  field C having a nonzero  idempotent W such that 
w R w  = Cw and  let h ( X )  = CPifi be a GPI on R where 
0 # pi E C and fi 'S are monomials.  Suppose  that  the  set S 
of all coeflcients of all fi 'S of infinite  rank  together  with i is  
C-independent  modulo  Soc(R).  Given a natural  number S 2 1 
we  set 

h+) = c ( p i  fi I fi has  exactly S - 1 coeficients of finite  rank}. 

Then: 
(4 h(1) = 0 = h(2); 
(ii) If either h ( X )  is  multilinear  or IC1 = 00, then h(3) = 0 

(iii) If IC1 = q < 00, then 
and h ( k )  is a GPI on R for all k > 3; 

sEr mod ( q - l )  

i saGPI  o n R   f o r a l l r = 1 , 2  ,..., q - 1 .  

Let h ( X )  = C pi fi be a GPI on R as in Corollary 6.5.8. Our 
aim now is to produce a closely related but simpler GPI C f: 
(see (6.21) ahead). Clearly any monomial fi can be  written in 
the following  form: 

fi = 9ioYioaioyilgilXilail- * YiniginixiniainiT/i,ni+lgi,ni+l 
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where the following conditions are fulfilled: 
(i) ai j  E Soc(R), j = O,I,. . . , n i ;  

(ii) x i j  E X ,  yir E X U (I}, 1 5 j 5 ni, 0 5 I 5 ni + 1; 
(iii) The gil are  alternating monomials in S and X such that 

if yil = 1, then gir = i, 1 = 0,1,. . . , n i  + 1; 
(iv) The set S of all (distinct) coefficients  of all gij  together 

with i is C-independent modulo Soc(R). 
Picking a C-basis of R modulo Soc(R) containing i and all 

the coefficients of all the gij's  and extending it  to a C-basis A 
of R, we note that gij  E M(A).  We shall refer to  the form of 
writing of h just described as an A-standard form of writing of 
h(X) .  Here we also note that any C-basis At of R will be called 
standard if i E AI and A' \ Soc(R) is a C-basis of R modulo 
Soc(R). Clearly the basis A just constructed is standard. 

- 

We set 

I 
Si0 = QiOYiO, gi,ni+l = Yi,ni+lgi,ni+l,  gij = YijgijXij  

I I 

where 1 5 j 5 n i .  Pick elements zij E X U i such that: - - 
(a) xi0 = 1 if and only if gio = 1; 
(b) Xi,ni+l = 1 if and only if gi,ni+l = 1; 
( C )  zij E X if 1 5 j 5 n i ;  

(d) Zij = zpq if and only if gij  = gLq. 
Now  we set 

- - 

As we have earlier noted,  without loss of generality we can 
assume that ai j  E CeEW Ce for all i, j. Also we can assume that 
all zij E H (just adjoin them to H ) .  We write h = Caihi in 
its S-W-representation. Now  we have h' = Caih:  where the 
monomials h!, are  obtained from the monomials hi according to 
the above described procedure. We consider the case  when either 
h ( X )  is multilinear or IC1 = 0 0 ,  since the case IC( = q < 00 
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is considered  analogously. Our comment after Theorem 6.5.7 
indicates that h" = 0. This means that for any monomial hj 
appearing in  the S-W-representation 

Since h: = hj" if and only if (h:)" = (hi)", we conclude that 
h'" = 0 and so by  (6.11) h' is a GPI on R. Thus we have  proved 
the following 

Corollary 6.5.9 Let R be a primitive algebra with  unity ele- 
ment i over a  field C having a nonzero  idempotent W such  that 
wRw = Cw, let A be a  standard basis of R and let h ( X )  = 
Cpi fi be a GPI o n  R written in an  A-standard form. Then 
h ' (X)   i s  a GPI on  R where h ' (X)   i s  obtained f r o m   h ( X )  ac- 
cording to  the procedure described in (6.21) 

Corollary 6.5.9  was pointed out to  the first author by Prof. 
C.-L. Chuang in 1994, but no ideas of proof were presented. 

Corollary 6.5.10 Let R be a primitive algebra with unity ele- 
ment i over a  field C having a nonzero  idempotent W such  that 
wRw = Cw, let A be a standard basis of R and  let h ( X )  = 
Cpifi be a GPI on R written in an  A-standard form. Further 
let  g = g'xk  where g' E M ( A )  is a monomial  without  coeficients 
of finite rank  and x k  E X .  W e  set 

I (g )  = { i  I fi = ga& for  some ai E Soc(R), ̂hi E M(A)}. 

Then  ̂ h = ,&ai& is a GPI on R. 

Proof. We note that ĥ" is exactly the sum of all aihr such 
that h: involves the variable of the form [g; 2 1 ,  1 5 i 5 t. We 
consider the case  when IC1 = 00 ,  since the case (C( < 00 is 
considered  analogously.  Since h is a GPI on R, h"+= 0. Hence 
h" = 0 and so ĥ is a GPI on R. 
h 

The following corollary answers a very natural question. 
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Corollary 6.5.11 Let R be a primitive algebra with unity ele- 
ment I over a  field C having a nonzero  idempotent W such  that 
wRw = Cw, f, h E &<X> and  let xk E X be a  variable  which 
is  not involved in f and h. Suppose  that f X k h  is a GPI on R 
and deg,(f) + deg,(g) < [Cl for  all x E X .  Then  either f or h 
is a GPI on R. 

Proof. Assume that neither f nor h is a GP1 on R. As in 
the discussion at the beginning of this subsection we choose S 
and W such that  both f and h have an S-W-representation (i.e., 
all their coefficients  belong CsES Cs+CVEw CV). Let f = C aifi 
and h = C pjhj be S-W-representations. Then 

and 

where X i j ,  t r ,  E x, gab, i&d E x U (1) satisfy the conditions (iii) 
and (iv) listed after, Corollary 6.5.8. 

We fix any r = ~ i , ~ ~ l ,  f' = yi,ni+lfi,ni+l, S = ujo and h' = 
hjOZj0. Let f (T,y)  = f denote the sum of all alfl such that 
ql,nl+l = r and !/l,n!+lfl,nl+l = f' and  let h(s,hl) = h denote 
the sum of all plhl such that ulo = S and hloqo = h'. Clearly 
f = C f(r,f') and h = C h(s,hl). Since f and h are  not GPI on 
R, we can choose r ,  f', S and h' such that f^ and ĥ are  not GPI 
on R. 

w e  note that ( f X k ^ h ) *  is exactly the sum of all monomials 
(together with their coefficients) appearing in ( fxkh)"  which 
involve the variable [r; f 'xk h'; S ] .  Recall that deg,(f)+deg,(g) < 
IC]. Hence  if IC1 < 0 0 ,  (fXkh)"P = (fxkh)*. Since f x k h  is 

h 
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a GPI on R, we infer from the proof of Theorem 6.5.7 that 
( f ~ k h ) ~  = 0. It follows that (?&^h)* = 0. But 

(f^;Ck^h)* = (f)”[r; f‘]-l[r; f’zlch’; s](Z)T[h’; S]-! 

Hence either (f3* = 0 or (x). = 0 and respectively either f̂  is 
a GPI or ĥ is a GPI, a contradiction to  the choice of f and ĥ. 
The proof  is thereby complete. 

Keep the notation of preceding  corollary. Then  setting f = w 
and h = x1wxkx2w - x2wxkxlw we see that 

is a GPI on R. Therefore the condition that x k  is not involved 
in f and h is essential. Further  let IC1 = Q < 00.  Setting 
f = (wzlw)Q-l + ( ~ z ~ w ) Q - ~  + . . . + w and h = wqw - W we 
conclude that 

is a GPI on R. Thus the condition deg,(f) + deg,(h) < IC1 for 
all z E X is essential as well. 

We  now come to  the general situation in which R is a cen- 
trally closed prime GPI ring, i.e. there is a minimal idempotent 
W such that A = wRw is finite-dimensional  over C. If C is fi- 
nite,  then A = C (by Theorem 4.2.3) in which  case B(R; R) is 
already characterised in Theorem 6.5.7. Therefore without loss 
of generality we may assume for the remainder of this subsection 
that C is finite. 

Let n > 1 be a natural number and w E R. We set 

where St2, is the  standard polynomial in 2n noncommuting vari- 
ables. 
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Theorem 6.5.12 Let R be a primitive algebra with  identity 
over an  infinite field C and  let G(R;  R) be the  T-ideal of GPI 'S 

on R. Assume  that R has a nonzero  idempotent W such  that 
wRw is a division  C-algebra of dimension n2 over  the  field C 
and Z(wRw) = WC. Then: 

S ( R ;   R )  = "(R;  ST2n(~;  X ) ) .  

Proof. One can easily  show that R is a centrally closed 
prime ring with extended centroid C. Let C' be a maximal sub- 
field of the division ring wRw. Clearly C' is a subalgebra of 
the C-algebra R. By Corollary 4.2.2 wRw @c C' E M,(C'). 
Since R' = R @C C' 2 wRw @c C', we conclude that R' has  a 
nonzero idempotent W' such that w'R'w' = w'C'. From Theo- 
rem 2.3.5 it follows that R' is a closed prime C'-algebra. Hence 
the conditions of Theorem 6.5.7 hold in R' and 

G(R';  R') = T(R' ;  ST~(W'; X ) ) .  (6.22) 

Making  use of the universal property of free algebras one 
can easily  prove that C<X> @CC' E C'<X> canonically. We 
will identify them. According to Remark 1.4.12 the C'-algebras 
Rc<X> @CC' and R'CI <X> are isomorphic canonically. We 
will identify them.  Further we will identify R with the subring 
R @ 1 of R'. Clearly 

are  both ideals of R'cI<X>. It is  enough to show that 

To this end we claim that any GPI h ( X )  on R is a GPI on R'. 
Indeed, since C is infinite, all homogeneous components of h are 
GPI's on R. Hence without loss of generality we can assume 
that h ( X )  is  homogeneous.  Making  use of induction on ht(h), 
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one can easily  reduce consideration to  the case  when h ( X )  is 
additive. But  then it is immediate that h ( X )  is a GPI on R‘. 
Therefore 

G(R; R) @c C‘ c G(R’; R’). 
Next we claim that 

T(R; ST2n(w; X ) )  @c C‘ = 7 ( R ’ ;  ST2n(w; X ) ) .  

Indeed, any  R-endomorphism 4 of Rc<X> (i.e., any endomor- 
phism  such that r4 = r for all r E R) has a unique  extension to 
an R’-endomorphism of R’ct<X> and so 

On the other  hand  let  be an R’-endomorphism of R’o<X>. 
Pick any C-basis V I ,  212, .  . . , vn of C’ and write 

j=l 

Since S T 2 n ( ~ ;  X )  is multilinear, we have 

As 

we conclude that 

and so 

7 ( R ;  ST2n(w; X ) )  @c c‘ 1 7 ( R ’ ;  ST2n(w; X ) )  
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which  proves our claim. 
Secondly we note that 

F’rom Lemma 6.5.6 it now  follows that 

ST2(w’;X) E %(R’; ST2,(w; X)) 

and so 
S@’; R’) E “(R‘; ST2n(w; X ) )  

by Theorem 6.5.7. Summarizing what is  proved, we see that 

and hence 

which completes the proof. 

Keep the notation of Theorem 6.5.12 and recall that we iden- 
tified R and R @ 1 E R @C C’ = R’. As an easy  exercise we 
leave it  to  the reader to show that Soc(R) @c C‘ = Soc(R’). 
Clearly any C-basis A of R is’a C’-basis of R‘. Further, if A is a 
standard C-basis of R, then  it is a standard C’-basis of R’ as well. 
We are  thus able to infer  from Corollary 6.5.8, Corollary 6.5.9, 
Corollary 6.5.10, and Corollary 6.5.11 their respective analogues 
in the more general case  where wRw is finite-dimensional over 
C. We shall merely state these, leaving the details of the proofs 
to  the reader. 
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Corollary 6.5.13 Let R be a  primitive algebra with  identity 
over  an  infinite  field C having  a  nonzero  idempotent W such  that 
wRw is  a finite  dimensional  division  C-algebra  with  the  center 
WC. Further  let A be a  standard  C-basis of R and h (X)  = 

fi a GPI on R written in an  A-standard form. Given  a 
natural  number S 2 1 we  set 

h(s) = x{ pi fi I fi has  exactly S - 1 coeficients of finite  rank). 

Then h(l) = hp) = hp) = 0 and h ( k )  is a GPI on R for  all 
k > 3. 

Corollary 6.5.14 Let R be a primitive algebra with  identity 
over  an  infinite  field C having  a  nonzero  idempotent W such  that 
wRw is a finite  dimensional  division  C-algebra  with  the  center 
WC. Further  let A be a  standard  C-basis of R and h ( X )  = 
C pi fi be a GPI on R written in an  A-standard  form.  Then 
h'(X) is a GPI on R where h'(X) is obtained from h (X)  ac- 
cording to  the procedure described in (6.21) 

Corollary 6.5.15 Let R be a primitive algebra with  identity 
over  an  infinite  field C having  a  nonzero  idempotent W such  that 
wRw is a finite  dimensional  division  C-algebra  with  center WC. 
Further  let A be a  standard basis of R and  let h (X)  = C pi fi 
be a GPI on  R written in an  A-standard form. Let g = g'xk 
where g' E M(A) be a  monomial  without  coeficients of finite 
rank  and xk E x. w e  set 

I (g)  = { i  I f i  = gai^hi for some ai E SOC(R), ^hi E M(A)) .  
Then ̂ h = pia& is  a GPI on R. 

Corollary 6.5.16 Let R be a primitive algebra with  identity 
over  an  infinite  field C having  a  nonzero  idempotent W such 
that wRw is  a finite  dimensional  division  C-algebra  with  center 
WC. Further  let f ,  h E &<X > and  let xk E X be a  variable 
which  is  not  involved in f and h. Suppose  that f x k h  is  a GPI 
on R. Then  either f or h is a GPI on R. 
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The 'T-ideal  of GPI's on  semiprime  rings. Throughout  this 
subsection R will be a semiprime ring with extended centroid C, 
Q = Qmr(R), A the orthogonal completion of RC and A H E 
Q a C-algebra. We start with the following  useful 

Lemma 6.5.17 Let R be a semiprime ring with  extended cen- 
troid C and B = B(C). Then there  exists an orthogonal  subset 
{ei I i = 2,3,. . .) B such  that: 

(i) For any M E Spec(B)  l r $~ (C) (  = n > 1 if and only if 

(ii) xn = X for  all X E e n c .  

Proof. First of all we recall that ~ $ M ( C )  is a field.  Consider 

en 6 M ;  

the sentences 

Qn = (3x1) - (3xn)(Vy)(~i+jllxi # xjll) A I ~ v  E Cl1 
n 

A(AL1IlXi E Cll) A (I1 U(Y - Xi)  = 011) 
i=l 

where n = 2,3,. . .. Clearly the Qn's are Horn formulas. Setting 
e, = E(Qn) E B,  n = 2,3, . . ., we infer  from Theorem 3.2.10 
that l r$~(C)l  = n if and only if e, 6 M. 

Now we consider the sentences 

Note that  the an's are Horn formulas. If l r $ ~ ( C ) ]  = n, then we 
have ~ $ M ( C )  @ne Therefore e, M implies that E(@,) 6 M 
and so E(Qn)en = e, (see Theorem 3.2.10). From the definition 
of the idempotents E(@,) we infer that e,C k @n which means 
that xn = x for all x E enc. The proof is complete. 

We remark that in Lemma 6.5.17  some  or all of the ei's may 
be 0. 

Lemma 6.5.18 Let R be a semiprime ring with  extended cen- 
troid C, Q = Qmr(R) and A the orthogonal completion of the 
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central  closure RC Q of R. hrther let idempotents e2, e3,. . . 
be as in Lemma 6.5.1 7. Suppose that R has a strict generalized 
polynomial identity h ( X )  E Qc<X>. Then there  exist  idempo- 
tents v2, vs,. . . E A such  that E(vi) = ei and viQvi = viC for all 
i = 2,3,. . .. Furthemnore L,(v,; X )  = (v,z~v,)~ - v,xlvn is a 
GP1 on Q for all n = 2,3,. . .. 

Proof. We first note that if ei = 0 then one  need  only  choose 
vi = 0. Thus we shall only  be  concerned with those ei for  which 
ei # 0. Consider the sentence 

Clearly Q is a Horn formula. Let B = B(C) and M E Spec(B). 
Suppose that e, # M .  As we already know then l +~ (C) l  = n. 
By Corollary 6.3.10 +M(A) is a primitive ring with nonzero 
idempotent W such that w+M(A)w is division ring finite dimen- 
sional over $M(C). From Wedderburn's Theorem we infer that 
w$M(A)w is commutative and hence  is equal to w$M(C) (see 
Theorem 4.2.3). Therefore $M(A)  9, whence E(Q) # M by 
Theorem 3.2.10. We conclude that E(Q)e, = e, and e,A Q, 
which means that e,A contains an idempotent v, such that 
v,(e,A)v, = v,(e,C) and renC(v,) = 0. Hence E(v,) = e,, 
e,v, = v, and vnAvn = v,C. Since v,C "= e,C, it follows 
from Lemma 6.5.17 that L,(v,; X )  is a GP1 on A. Applying 
Theorem 6.4.1, we complete the proof. 

Now  we are in a position leading up to  the main results of 
the present section, namely, to give a list of generators for the 
T-ideal B ( H ;  R) and a criterion for this  7-ideal  to  be finitely 
generated. We make the  natural assumption that R has a strict 
GP1 h ( X )  E Qc<X>.  Let ul,u2,. . . ,ut  be the idempotents 
given  by Theorem 6.3.9, recalling that each ui is an  E(ui)C- 
faithful abelian idempotent of E(ui)C-rank ni = IC;. We claim 



6.5. THE T-IDEAL OF GPI’S 285 

that each Si = ST2ki(ui; X )  is a GPI on Q. Indeed, let 

Let M E Spec(B). If q5~(ui) = 0, then ST2k i (4~(u i ) ;X)  = 0 
and so q 5 ~ ( Q )  + !Pi. Suppose now that +M(ui) # 0. Then 
by Theorem 6.3.9 q5M(uiQui) is ni-dimensional division  alge- 
bra over its center q5~(uiC). According to Corollary 4.2.2 the 
ring # ~ ( u i Q u i )  is embeddable into ki x ki matrix ring over a 
field. Then by Theorem 1.3.5 we see that St2ki(X) is a polyno- 
mial identity of q5M(uiQui). It follows that ~ M ( Q )  + !Pi for all 
M E Spec(B). By Theorem 3.2.10 we have that E(!Pi) $2 M for 
all M E Spec(B). Therefore E(XPi) = 1, ST2ki(ui; X )  is a GPI 
on Q and our claim is established. Further  let vi,, wiz,  . . . , w i k ,  . . . 
(possibly empty or infinite in number) be the nonzero  idempo- 
tents given in Lemma 6.5.18, and so we  know that each Lij = 
Lij (vij; X )  is also a GPI on Q. We set 

and show in Theorem 6.5.19 that P is a set of generators of the 
7-ideal g( H ;  R). 

In  preparation for this theorem we continue with the follow- 
ing remarks. It follows  from Theorem 6.4.1 that 4 ( H ;  R) = 
B ( H ;  H ) .  Let B = B(C). Since C is  von Neumann regular, the 
mapping Spec(C) + Spec(B) given  by the rule P I+ P n B,  
P E Spec(C), is a bijection with the inverse mapping given  by 
the rule M I+ C M ,  M E Spec(B). For any M E Spec(B) let q5M 

denotes the canonical homomorphism of rings Q + Q = Q/MQ. 
We set 3 = q5M(A), c = $M(C) and ff = q 5 M ( H ) .  As  we al- 
ready know 3 is a prime ring with the extended centroid c and 
Q c Qm,.(A) (see Theorem 3.2.7 and Theorem 3.2.15). 

Letting @M denote the canonical extension of q5M to666 QC< 
X>+  Q$X>, we infer  from Remark 6.3.5 and Corollary 6.3.6 
that @M is surjective and @ M ( h )  is a nonzero GPI on ff. Since 

- 
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H is centrally closed with the extended centroid c, we conclude 
that  it is a primitive ring with a nonzero idempotent W such 
that w z w  is a finite dimensional c-algebra with center WC 
(see Theorem 6.1.6). Therefore the  c-algebra satisfies all the 
conditions either of Theorem 6.5.7  (if w z w  is commutative) or 
of Theorem 6.5.12  (if w z w  is not commutative). 

We claim that 

Indeed, we already know that aM(G(H;  H ) )  C G(E; g) .  Sup 
pose now that ( a ~ ( f )  is a GP1 on where 

We consider the formula 

Let al, Q, . . . , a, E H be all the coefficients appearing in f .  
Considering them as 0-ary operations of the orthogonally com- 
plete S1-A-ring Q where 

and A = {[/X = VI]), we note that Q is a Horn sentence. If 
Q Q, then  there exists an idempotent e E B \ M such that 
e& k Q (see Theorem 3.2.10). This means that ef is a GP1 on 
e& and hence it is a GP1 on Q. Therefore ef E G ( H ;  H ) .  Since 
@ M ( e f )  = @ ~ ( f ) ,  we conclude that @ M ( G ( H ;  H)) 2 G@; R) 
which  proves our claim. 

Now  we consider any H-endomorphism r of Hc<X> (i.e., 
an endomorphism r such that ar = a for all a E H). Clearly it 
- induces an  2-endomorphism of z+X>. We claim that any 
H-endomorphism CT of gc<X> is of this form. Indeed, pick 
gz E Hc<X> such that xu = @,(g5) for all I[: E X and define 

- 
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the H-endomorphism r of Hc<X> by the rule x7 = g z ,  3; E X, 
and  its consequences.  Obviously 7 = U and our claim is  proved. 
Now it follows that for  any subset F C_ Hc<X> we have 

Theorem 6.5.19 Let R be a  semiprime ring with  extended  cen- 
troid C and Q = Qmr(R). Further  let A be the  orthogonal com- 
pletion of the subalgebra RC + C C Q. Suppose  that R has 
a  strict GPI h ( X )  E Q c < X >  and A C H C_ Q is a C-  
subalgebra. Then P (given  above) is  a  set of generators for  the 
T-ideal G(H; R) of all generalized  identities on R. 

Proof. In view of G(H; R) = G(H; H) and  the  fact  that 
T(H; P) C_ G(H; H )  we need  only  show that 

For  any M E Spec(B)  we have G(g; g )  = T(Z; @“(P)) by 
Theorem 6.5.7 and Theorem 6.5.12, and hence 

by the remark preceding the  statement of this theorem. Now 
consider any element f E G(H; H). Then for  each M E Spec(B)  
@M(f)  = @“(hM) for  some h M  E T(H; P) .  By Remark 3.2.2(i) 
v ~ ( f  - h”) = 0 for  some ~ I M  E B \ M .  We note that vMf = 
v M h M .  By  Lemma 3.1.21 (with suitable relabeling of subscripts) 
there is a finite subset 211, v2,. . . ,v, of the 21”s for  which there 
are central idempotents 0 # ei 5 vi, el + e2 + . . . + e, = 1, 
and eiej = 0 for i # j. Therefore for  each j = 1 ,2 , .  . . , S e j f  = 

proof  is complete. 
ejhM = hj E T(H; P )  and SO f = e .f E T(H;  P). The 

As our final result in this section we have 
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Theorem 6.5.20 Under  the  assumptions  and  notation of The- 
orem 6.5.19 the  following  conditions are equivalent: 

(i) G(H; R) is  finitely  generated  as  a  ‘T-ideal; 
(ii) There  is a  natural  number N such  that  for  any  maximal 

ideal P of C either IC/PI 2 N or IC/PI = m. 

Proof. (i) + (ii) Let F be a finite generating set of G(H; R) 
= G(H; H )  and m = maxf€pdeg(f). Further  let M E S p e c ( B )  
and I+M(C)I = n < m. It is  enough to show that n 5 m. S u p  
pose that n > m. Using Vandermonde determinant  arguments, 
one can easily  show that all homogeneous components of any 
f E @ M ( F )  are  a GPI’s on R. Letting F’ denote the set of all 
homogeneous components of all f E @ M ( F ) ,  we note that 

G@; R) = @M(G(H;  H ) )  = @ M ( ~ ( H ;  F ) )  
= “(TT; @“(F)) = “(TT; F’). 

Further as we already know from the proof of Lemma  6.5.18, 
H contains a nonzero idempotent w such that wgw = WC and 
L,(w; X )  is a GP1 on R. Therefore 

- 

L&; X )  E 7(P;  F’). (6.23) 

Let K be  the field of rational expressions in t with coefficients in 
C. We identify the ring g with the subring 1 @ E K @zz = 
G. Clearly wGw = wK and G = P K .  Using the induction 
on the height of GP1 and the relations deg(f) < IC1 for all 
f f F’, one can prove that every f E F‘ vanishes  on G (see the 
proof of Lemma 6.4.3 for the details). It follows  from  (6.23) that 
L,(w; X )  vanishes  on G which means that (wk)” = wk for all 
IC E K ,  a contradiction. Thus n 5 m. 

(ii) * (i) By Theorem 6.5.19 

- 

P = {SI, S& . . . , st, Li, , Li, , . . . , Li, , . . .} 
is a  set of generators for the  7-ideal G ( H ;  R). We claim that 
i k  L N for all k .  Indeed, if i k  > N ,  we choose M E Spec(B)  such 



6.6. SPECIAL GPI 'S 289 

that ,!?(vik) # M .  Then by Lemma 6.5.18 and Lemma 6.5.17(i) 
we have that I4M(C)I = ik > N forcing the contradiction to 
our assumptions. Therefore our claim is established. But  then 
P = {SI, . . . , St, Li,, . . . , Li,) for  some S such that is 5 N and 
so g ( H ;  R) is finitely generated as a "-ideal. The proof  is  com- 
plete. 

Theorem 6.5.7, Theorem 6.5.12 and Theorem 6.5.19 were 
proved by K. I. Beidar (see [23] and [26]). The case of generalized 
polynomial identities with involution was  considered in [250], 
[237], [238], and [239]. Corollary 6.5.9 was pointed out to him 
by Prof. C.-L. Chuang in 1994, but no ideas of proof  were 
presented. 

6.6 Special GPI's 
In this section we shall discuss some special generalized  polyno- 
mial identities. We start with the following 

Lemma 6.6.1 Let V be a nonzero right vector space over a 
division ring A with  proper subspaces VI,  V2,. . . , V, such  that 
V = U?==,V,. Then A is a finite  field  with [A(  < n. 

Proof. Without loss of generality we may assume that 
UizjV, # V for all j = 1,2, . . . , n. Pick v j  E V \ 
We note that vj E V,  if and only if i = j. Thus if X v j  E V,,  
0 # X E A, then vj E V,  forcing i = j. The case n = 2 
cannot exist and so we may assume n > 2. Suppose \AI 2 n. 
Then (by the pigeon-hole principle) there exists i > 2 such 
that v1 + Xvz, v1 + p212 E V,  for  some X # p E A. Thus 
Xp-'q + Xu2 E V,  and so (1 - Xpu-')vl E &, forcing the contra- 
diction X = p, By Theorem 4.2.3 A is a field and  the proof  is 
complete. 
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Theorem 6.6.2 Let R be a prime ring with  extended centroid C 
and Q = Qmr(R). Then  the  following  conditions are equivalent: 

(i) There  exist  nonzero  elements T I ,  7-2, . . . , rn+l E R such 
that T ~ X T Z X . .  . rnxrn+l = 0 for all X E R ;  

(ii) There  exist  nonzero  elements q1,q2,. . . , qn+l E Q such 
that Q ~ X ~ Z X . .  . qnxqn+l = 0 for all X E R; 

(iii) IC1 5 n and R is a noncommutative  primitive ring 
with  nonzero socle containing a minimal  idempotent e such  that 
eRe  = eC.  

Proof. The implication (i) + (ii) is  obvious. We  show that 
(ii) + (iii). Clearly 

QlXq2X  qnXQn+l (6.24) 

is a GP1 on R. In view  of Proposition 6.4.2 it is  enough to show 
that (Cl 5 n. By Theorem 6.4.4 q1xq2x. . . qnxqn+l = 0 for all 
x E Q and so Q is GPI. In  particular Q is a primitive ring with 
nonzero  socle K. Let e be a minimal idempotent of Q. Consider 
the right vector space V = Qe over the division ring A = eQe. 
Clearly Q c End(VA) and ker(qi) is a subspace of V for all 
i = 1 ,2 , .  . . ,n + 1. If V = ker(qi), then by Lemma 6.6.1 
lA( 5 n and so (C( 5 n. Hence without loss of generality we 
may assume that U::: ker(qi) # V and  there exists q E Q such 
that qiqe # 0 for all i = 1,2, . . . , n + 1. Substituting qex for x 
in  (6.24) and multiplying by qe from the right, we infer that 

is a nonzero GP1 on Q. Now we consider the faithful right Q- 
module W = e&. If W # UT:: ker qiqe, then  there exists q‘ E Q 
such that eq’qiqe # 0 for all i = 1,2,. . . , n + 1. Since A = eQe 
is a division ring, we conclude that 

(eq’) [(qlqe) ( 4 )  ( 4 2 ~ )  (ea’) (qnqe) (eq’) (qn+le) 
= (eq’q lqe) (eq’q~)  * (eq’qn+lqe) # 0, 
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a contradiction to (6.25). Thus W = U;.. ker qiqe and so [AI 5 
n by Lemma 6.6.1. 

(iii) + (i) Clearly Soc(R) contains an idempotent v such 
that vRv E M2(C). Let (eij I 1 5 i, j 5 2) be  matrix  units 
of vRv. Obviously vRv = Endc(vRe11) and  the vector space 
vRe11 contains exactly m = IC1 + 1 5 n + 1 distinct one  dimen- 
sional subspaces VI, V2, . . . , V,. It is well-known that any proper 
subspace of a vector space is the kernel of a nonzero linear endo- 
morphism. Pick ai E v Rv such that & = ker(ai), i = 1,2, . . . , m. 
Further choose bi E vRv such that ri = ellbiai # 0. We set 
rm+l = ell. Then for all x E R we have 

since vxell E & for  some 1 5 i 5 m. The proof  is complete. 

Corollary 6.6.3 Let n > 0 be a natural  number and R a prime 
ring  with infinite extended centroid.  Further let r l ,  1-2, . . . , rn+l E 
R. Suppose that rlxr2x.. . r,xrn+l = 0 for all x E R. Then 
ri = 0 for some 1 5 i 5 n + 1. 

Proof. Let C be  the extended centroid of R. Then IC1 > n. 
Now apply Theorem 6.6.2. 

Proposition 6.6.4 Let R be a semiprime  ring  with  extended 
centroid C and Q = Qmr (R). Further let B = B(C), M E 
Spec(B) and $M : Q + Q/” the  canonical  surjection of rings. 
Suppose $ M ( Q )  is GPI with I $ M ( C ) I  = m < 00.  Then there 
exists an idempotent e E B \ M such  that  every  right (left) ideal 
L of R with eL # 0 contains a nonzero  idempotent W E L such 
that wRw is a commutative  ring and xm = x for all x E WRW. 
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Proof. Let H = Qs(R). Consider the formula 

Clearly @ is  Horn sentence. It follows  from Proposition 6.4.2 
that $ M ( H )  Q. By Theorem 3.2.10 e = E(@)  # M and 
eH a. Hence there exists an idempotent W E H such that 
E(v)  = e and vHv = VC. We also note that xm = x for all 
x E eC. 

Now let L be a right ideal of R such that eL # 0. Then 
ae # 0 for  some a E L and so eE(a) # 0. Pick any N E 
Spec(B) such that E(a)e 6 N .  According to Corollary 3.2.4 
Ti = #N(a) # 0 and T = #N(w) # 0. Clearly T R T  = and 
xm = x for all x E c where = ~ N ( H )  and c = ~ N ( C )  = 
$N(eC).  Clearly g is a primitive ring with nonzero  socle and B is 
a minimal idempotent of R. By Theorem 4.3.7(ii) the right ideal 
Zz contains a minimal idempotent U. Obviously u z u  = uc. 
Consider the formula (here we note that  it is understood that 
the element a is a 0-ary operation on H )  

By the preceding observations Q. It follows from Theo- 
rem 3.2.10 that fH Q for  some f N .  Hence there exists an 
idempotent W' E aH such that E(w') = f and w'Hw' = w'C. 
Furthermore xm = x for all x E fC. . Since f C 2 w'C, we 
conclude that xm = x for all x E w'C. Write W' = ah where 
h E H and choose a .dense ideal I of R such that Ih  + h l  G R. 
Then w'12w' 2 aR c L. Clearly w'12w' is a nonzero subring of 
the commutative ring w'C. Hence x* = x for all x E W l 2  I W I . 
Pick any nonzero y E w'12w' and  set W = Obviously 
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W' = W ,  W E L and w R w  c w'Hw' = w'C. Thus xm = x for all 
x E w R w  and the proof is complete. 

Our final result along these lines is a corollary to Theo- 
rem  6.6.2 and Proposition 6.6.4. 

Theorem 6.6.5 Let R be a  semiprime ring with  extended  cen- 
troid C, Q = Qmr(R) and q1,q2, . . . , qn+l E Q .  W e  set  e = 
E ( q l ) E ( a )  . . . E(qn+1).  Suppose q l x q ~ x . .  . qnxqn+l = 0 f o r  all 
x E R and e # 0. Let L be a right (left) ideal of R such  that 
e L  # 0.  Then there  exist  a  natural  number m and  a  nonzero 
idempotent W E L such  that 0 < m < n -k 1, w R w  as a  commu- 
tative ring and xm = x for all x E w R w .  

Proof. Let @ be the Horn formula given in (6.26) and  set 
e' = E(@). Suppose e e'. Then  there exists 0 # f 5 e such 
that f e' = 0. Pick M E Spec(B)  such that f $ M .  Then e $ M 
and so E(qi) $! M for all i = 1,2 , .  . . ,n + 1. By Remark 3.2.2 
each 4 M ( q i )  # 0 and we have 

is a nonzero GPI on ~ M ( Q ) .  By Theorem 6.6.2 I~M(C)I  5 n. 
We note that ~ M ( Q )  and see by Theorem 3.2.10 that e' = 
E(@) $ M .  We then have the contradiction f e '  = 0 E M ,  
f $! M ,  e' $ M ,  and so we conclude that e 5 e'. Now let 
L be a right (left) ideal of R such that e L  # 0. It follows 
that e'L # 0 (noting that e' = E(@) is  precisely the central 
idempotent  obtained in the proof of Proposition 6.6.4). The 
conclusion then follows from Proposition 6.6.4 

The following result extends to prime rings a theorem origi- 
nally proved  by Slater for primitive rings [266]. The  latter result 
is noteworthy since it was one of the very first results in GPI 
theory (slightly predating the fundamental theorem of Amitsur 
[31). 
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Theorem 6.6.6 Let R be a prime ring  with  extended  centroid 
C,  0 # p(xl,x2,. . . ,x,) E C < X >  and a E R. Suppose  that 
p(a,  x2,x3,. . . ,x,) is a GPI on R. Then a is algebraic  over C.  

Proof. Let A be the central closure of R and n = deg,, p(x)  
Suppose that a is not algebraic over C. Then p(a,  5 2 , .  . . ,x,) # 
0. Hence R is GPI. According to  the prime GPI theorem 
A is a primitive ring with nonzero  socle  whose associated divi- 
sion ring is a finite dimensional C-algebra. By Corollary 6.5.13 
(1, a, a2, . . . , an} is a C-dependent set modulo Soc(A) , whence 
there exists an element 0 # b = Cy=o Piai E Soc(A), Pi E C. By 
Litoff's Theorem there exists an idempotent e E Soc(A) such 
that b E eAe and  dimc(eAe) < 0 0 .  Thus b (and so a) is alge- 
braic over C. 

A standard application of the method of orthogonal comple- 
tion (Theorem 3.2.18) together with the above theorem yields 

Theorem 6.6.7 Let R be a semiprime  ring  with  extended  cen- 
troid C,  p(xl,x2,. . . ,x,) E C<X> and a E R. Suppose  that 
p(a,  2 2 ,  x3,. . . ,x,) is a GPI on R and  at  least  one coeficient of 
p(x)  equals 1. Then a is algebraic  over C. 

Our final application in this chapter gives equivalent condi- 
tions for an involution to be symplectic. 

Theorem 6.6.8 Let R be a prime  ring (char(R) # 2)  with 
involution *, extended  centroid C and  central  closure A = RC. 
Then the  following  conditions are  equivalent: 

(i) A as a primitive  ring  with  nonzero socle and * is of sym- 
plectic  type; 

(ii) There  exists a nonzero  element a E R such  that axx*a* = 
0 for all x E R; 

(iii) There  exists a nonzero  element a E R such  that  axa* + 
ax*a* = 0 for all x E R. 
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Proof. (i) + (ii) Since * is of symplectic type, A contains 
a minimal idempotent e such that ee* = 0. We claim that 
ezz*e* = 0 for all x E A. Indeed, by Kaplansky's Theorem there 
exists a vector space CV over a field C with  a nondegenerate 
alternate form ( , ) such that FV C A C LV and * is the adjoint 
map relatively to ( , ) (see Theorem 4.6.8). Pick 0 # v E V such 
that ve = v .  Clearly V = CV @ V(l - e). Let U, w E V .  Then 
U = Xv + u'(1 - e) and w = pv + w'(1 - e) for  some X, p E C 
and U', W' E V .  We have 

(U, wezz*e*) = (uez, wez) = Xp(vz, vz) = 0 

because ( t ,   t )  = 0 for all t E V .  Since ( , ) is nondegenerate, 
wezz*e* = 0 for all w E V and so ezz*e* =' 0. Pick any T E 
R such that 0 # re E R. Setting U = Te  we conclude that 
uxx*u* = 0 for all z E R. 

(ii) + (i) By Theorem 6.2.3 R is GPI and so by the prime 
GPI theorem A is a primitive ring with nonzero  socle. By Ka- 
plansky's Theorem * is either of transpose  type or of symplectic 
type. Suppose * is of transpose  type.  Then  there exists a vector 
space AV over a division ring A with  a nondegenerate Hermitian 
form ( , ) such that FV C A c LV and * is the adjoint map 
relatively to ( , ) (see Theorem 4.6.8). Pick W E V such that 
wu # 0. Clearly vuA = V .  Since ( , ) is Hermitian,  there exists 
z E A such that (vaz, vuz) # 0. Then 

0 # (vuz, wuz) = (v, vuzz*u*) = 0, 

a contradiction. Thus * is of symplectic type. 
(ii) + (iii) Linearizing the *-identity uzz*u* we obtain that 

uzy*u* +uyz*u* is a *-identity of R. By Theorem 6.4.7 uzy*u* + 
uyx*u* is a *-identity of QS(R).  Substituting 1 E Qs(R) for y 
we conclude that m u *  + uz*u* is a *-identity of R. 

(iii) =+ (ii) Substituting zz* for z we obtain 2uxx*u* is a 
*-identity of R. Since chur(R) # 2, uzz*u* is a *-identity of R. 
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Theorem 6.6.2  was  proved  by Posner and Schneider  [243] in 
the case of primitive rings with nonzero  socle. Corollary 6.6.3  is 
due to Richoux  [249] and Herstein and Small [125]. 



Chapter 7 

T-identities of Prime 
Rings 

7.1 The Home of T-identities 
We come now to one of the central topics of this book. Our aim 
is to give a rigorous and detailed account of the powerful  re- 
sults of Kharchenko concerning prime rings satisfying identities 
involving derivations and automorphisms (and of the extension 
of his  work by Chuang to include antiautomorphisms).  The first 
order of business  is to carefully define these identities, and  there 
are several approaches one can take. 

One approach is to naively  say that  an identity is simply 
an expression  involving  fixed ring elements and variables super- 
scripted by composites of derivations and  (anti)automorphisms 
which  is sent to zero  when the variables are replaced by arbi- 
trary ring elements. But questions about  the precise nature of 
”expressions” and  ”superscripted variables” quickly indicate the 
lack of rigor in this simplistic approach. Before describing more 
acceptable approaches we must first  set in place  some  necessary 
terminology. 

Throughout this, chapter R will be a prime ring, C its 

297 
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extended centroid, @ the prime subfield of C, Q the symmet- 
ric ring of quotients of R, Di the inner derivations of Q, D = 
Der (R)C + Di, Gi the X-inner automorphisms of R, and G = 
Aut(R) U Antiaut(R). We let Go denote  a  set of representatives 
of G modulo Gi, and  let 

AutO(R) = GonAut(R) and Antiauto (R) = GonAntiaut(R). 

Furthermore we let V be a vector space over C and  let X be a 
C-basis for V, recalling that C<X>= C{V}. We have  seen in 
earlier chapters that C, D, and G are all contained in Endip(Q), 
and we let N denote the subring of Endip(Q) generated by C, 
D, and G. 

Keeping in mind that  the "home"  for GPI's is 

Q C<X>= Q JJ C{V)  
C C 

it seems reasonable that  the framework we are seeking should 
be of the form Q uc A where  (for temporary purpose) we shall 
refer to A as a  suitable "algebra of variables". 

An appealing choice  for A (although one  which we shall pre- 
sently reject) is A = C<XN> where X N  is simply a suggestive 
way  of writing X x N .  The  substitutions we allow are of the 
form q e Q,  x I+ r ,  r E Q, 9 I") rs ,  S E N .  Then  an "identity" 
is an element of Q C <XN > which  vanishes under all sub- 
stitutions  just described. Although this definition of identity 
is quite rigorous it has the drawback that there is no unique- 
ness to writing the elements of N ,  and so attempts  to work in 
this framework are fraught with ambiguities. For this reason we 
must reject this approach. 

In order to counteract the lack of uniqueness inherent in the 
approach just described we shall go to  the end of the spectrum 
(so to speak)  and  construct the algebra of variables A to be 
a s  "free" as possible.  To this end let D denote the set D, G 
the  set G, @<D U G> the free algebra in the set D U G over 
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@, = CuC @<D U c>, V a vector space over C, v the 
Cartesian  product of V and T ,  and A = C < V'>. We let 
CY : + Enda(Q) be  the @-algebra map given  by c e c, 8 I+ S ,  
g I-) g,  c E C ,  6 E D, g E G. Let ?,h : V + Q be any C- 
space map  and  let $ : C < V'>+ Q be the C-algebra map 
given  by ut I+ V E V ,  t E T.  Then  the C-algebra map 
Q uc A + Q which simultaneously lifts idg and $ will be called 
a F-substitution.  The notion of identity we require can now be 
defined: c$ E Q JJc A is a F-identity on I (where 0 # I a R) if c$ 
mapped to 0 by all F-substitutions for  which @ ( X )  5 I .  

The favorable aspects of this approach are that there  are no 
hidden relations (because of the freedom of its construction), it 
has a nice algebraic structure,  and  it is reasonably natural (if one 
thinks of ut as a "variable" V acted on by an "endomorphism" 
t).  However, it has the considerable disadvantage that Q uc A 
contains many types of elements which are  "trivial"  F-identities 
in the sense that they have no effect  on the ring R. To give the 
reader an accurate view of the extent of this phenomenon we 
proceed with the following list of "obvious" identities. Those 
of type (A)  simply reflect the  nature of endomorphisms and of 
End@ (Q) being a left and right C-space: 

( A I )  (V + w ) ~  - - wt; 
(A2) - V' - d ;  
(AS) V &  - ( v c ) ~ ;  
(A4) d C  - V' C 

where V ,  W E V ,  S ,  t E F, c E C. Those of type (B) reflect the 
interrelations among C, D, and G. They  are of the form vSut 
where V E V, S ,  t ,  U E T ,  and U is  one of the following: 
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where c E C, 6, p E D, g ,  h E G. Those of type (C) arise from 
the elements of Di and Gi: 

where t E T ,  21 E V .  
Ultimately, however, we are interested in identities which 

are "nontrivial" in the sense that they have an impact on the 
ring R. What we are seeking  is a "home"  for identities whose 
structure  still  retains a degree of freedom to make it tractable 
to work with but is  one in which the identities corresponding to 
the trivial ones (A1)-(A4), (Ell)-( &) have already "collapsed" 
to  the zero element. Therefore we shall reject the preceding 
approach. 

It is now time to take the positive step of constructing  what 
we feel  is the proper "home"  for the identities we will be consid- 
ering. We begin by focusing our attention on U ,  the universal 
enveloping ring of the (restricted) differential C-Lie algebra D. 
At this point the reader should review the remarks concerning 
D and U made in section 5.5, as we shall feel  free to draw upon 
the terminology and  notations given there  without  further com- 
ment. 

We proceed to show that there is an action of G on U ,  and 
hence the skew group ring U o( G exists. (That  this is possible 
should come as no surprise in view of the relations (B1)-(B5) 
previously listed.) Indeed, given g E G we will  define g" : U + 
U as follows. Consider the diagram: 
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where f : S c-) SS. We define an automorphism a of C by c' = cg 

for all c E C. Considering C as a subring of End@(Q), we have 
cg = g-lcg for all c E C. We proceed to check that f is a 
a-semilinear differential C-Lie automorphism of D: 

(a) [S, p]! = g-l[6,  p]g = [g-l6g, 9-1Pg1 = [Sf, pfl; 
(b )  (6c)f = g-%g = g-16gg-lcg = #cu; 

(c) Sf = g-1Sg = g"8g = a-lSa; 
(d) (char(C) = p )  ( S p y  = g-1 (P) g = (g-16g)p = ( S f ) p  

h h h 

where 6, p E D ,  c E C. Therefore by our discussion in section 5.5 
there exists a a-semilinear @-algebra automorphism g" : U + U 
completing the diagram. One verifies that 7r is a homomorphism 
by applying (glg2)?r to  the generators of U ,  i.e., to  the elements 
of C and D. We leave the details for the reader. 

We let T denote the skew group ring U oc G just defined. 
Clearly T is both a left and right C-space. We then form the 
right C-space V @c T ,  with scalar multiplication given  by 

(v €3 t)c = v 63 tc ,  v E v, t E T,  c E c. 
We  now take our "algebra of variables" to be the tensor algebra 
C(V 8 T }  of the C-space V 8 T over C. 

The ring 
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will then be the primary point of reference  for the remainder of 
this  chapter,  and we shall call S the setting of R . (One notes 
that  the elements corresponding to (Al)-(A4) are 0 because of 
the tensor product V @ T ,  and those corresponding to (&)-(BB) 
are 0 because of the  nature of U and of T) .  Of course we want 
to view elements such as v @ t as an  ”indeterminate v’’ acted on 
by t .  

We proceed to describe, at first in a rather general way, a 
substitution process  which is compatible with the idea that  an 
arbitrary C-linear mapping out of V completely determines the 
substitution. Let P by any C-algebra with 1 which contains Q, 
and  let y : T + End+ ( P )  be a fixed C-ring map (i.e., c7 = c 
for all c E C). Now let $ : V -+ P be any C-space map. Then 
the map: V x T + P given  by (v, t )  I+ $ ( ~ ) 7 ( ~ )  is balanced. 
Indeed, 

whereas 
(WC, t )  I+ $(vc)r(t) = [ $ ( v ) C p )  

(v, d)  l+ $ ( v ) r ( c t )  - - $(v)7(c)T(t)  = +(w)ey(t) 

= [$(v)c]7(? 

The additive map: V@cT + P so determined is in fact C-linear 
since 

(v @ t)c = v €3 tc  CS $(V)Y(tC) = $(v)7(t)c 
= [$(v)“”] c. 

It can therefore be lifted to a C-algebra map of C{V @ T }  into 
P in  view of Remark 1.2.1. Hence there exists a (necessarily 
unique) C-algebra map of S into P such that q I+ q and 
v @ t I+ $ ( w ) Y ( ~ )  for all q E Q, v E V ,  t E T.  Such a map 
will be called the T-substitution determined by $ (relative to 

For  now the particular choice of P and y we are interested 
in  is P = Q and y defined as follows. Recall the  map p : U + 
7 : T + End@(P)). 
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Enda(Q) (see section 5.5) and  the inclusion map G + End@ (Q).  
The observations cg = gcg and 

p ( S ) g  - g p p )  = 6g - gSg  = 0 

show that  the hypothesis of Lemma 1.1.4 is satisfied, and hence 
there is a C-ring  map y : T + End+ (Q).  Until further notice 
the term  T-substitution will  refer to  the y just described. 

We are now in a position to define the notion of T-identity. 
Fix any C-basis X of V .  Let I be a nonzero ideal of R. Then 
an element 4 of S is said to  be a T-identity on I if 4 is mapped 
to 0 under all T-substitutions 6 for  which $ ( X )  C I .  It is 
straightforward to see that  the set of all 2'-identities (the I may 
vary, of course)  is an ideal of S, and we denote  this ideal by 
GT(Q; R). 

The use of the ring S = Qc{V @ T )  as the framework  for 
T-identities has the advantage that "basis-free" arguments can 
be used. On the other  hand the tensor product  notation may 
not have an immediate suggestive appeal for denoting a "vari- 
able", and so we shall indicate here an alternative but equivalent 
description. Let W be any right C-basis of U (we shall in the 
sequel usually take W to be  the particular PBW basis given in 
section 5.5). Then 

W G  = {wg I W E W ,  g E G )  

is a right C-basis of T which we denote by 2'1. Let X be any 
C-basis of V .  Then  the  set 

is a C-basis of V @ T ,  and we may  accordingly write C{V @ T )  
as the free algebra C<X @ TI> (as indicated by Remark 1.2.4). 
Since the set X@Tl  is in one-one correspondence with the Carte- 
sian product XT1 we will the write C < X  @ 2'1 >= C <XT1 >, 
it being understood that  the element xwg means the element 
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x 8 wg. Therefore we may write S alternatively as Qc<XT1>. 
If $ : X += Q is a set-theoretic  map then  the unique C-algebra 
map of S into Q given by q !+ q, xt I+ $(x)T@), q E Q, 
x E X ,  t E Tl will be called the  T-substitution determined 
by , and 4 E S is a T-identity on I if r$ is mapped to 0 by all 
T-substitutions for  which $ ( X )  c I. 

Next, if C is any field we shall replace the usual setting 
S(C; C) by a simpler setting  as follows. First, since the  situation 
will arise when C is the extended centroid of R and we thus have 
both S(C; C) and S(&; R) to contend with simultaneously, we 
shall pick N to be a C-space with basis A disjoint from V with 
basis X .  Then 

S(C; C) = S(C) = C{N 8 T }  = C<AT1> . 

Clearly the commutator ideal I1 of S(C) is contained in G(C; C) 
(the ideal of all T-identities of C). Therefore it is natural  to 
replace S(C) by the algebra 

which in turn may by identified with the (commutative) poly- 
nomial algebra CIAT1]. Since any 2'-substitution of S(C) into C 
maps I1 to 0 it induces a well-defined C-algebra map So + C, 
which we continue to refer to as the T-substitution determined 
by $ : N + C. Accordingly a T-identity on C will mean any 
element of &(C) mapped to 0 by all 2'-substitutions. 

Finally, when we study  the  structure of T-identities in sec- 
tion 7.7, it will be useful to have available the extended setting 
of R 

S(Q; R) = &(R) = &(C) @c S(R). 

More  will be said about &(R) in section 7.3. 
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7.2 Trivial  and  Reduced T-identities 
We continue to assume R is a prime ring together with the ter- 
minology  developed in the preceding section. Again we suggest 
that  the reader review section 5.5 since we will  feel  free to use any 
remarks and  notations made there  without  further comment. 

In section 7.1 we set  the stage for the  study of 2'-identities of 
R by defining the  setting S for R in  two  equivalent formulations 

where V is a C-space with C-basis X ,  2' = T(R) = U K G with 
right C-basis 2'1 = WG, W a PBW right C-basis of U. Since 
the elements of S corresponding to  the trivial  identities (AI)- 
(A4), (Bl)-(Bs) listed in the preceding section are all equal to 
the zero element of S we define the set Io of trivial  T-identities of 
R to be the ideal of S generated by all elements of the following 
two  forms: 

where 21 E V ,  t E T.  
It will also be useful to have an  alternate formulation of IO. In 

fact, we claim that Io is the ideal of S generated by all elements 
of the following forms 

where z E X ,  A E W ,  g E G. Indeed, we may assume without 
loss of generality that a generator of type (C;) has the form 
zc €3 Agp - [a, zc €3 Ag]. We note that zc €3 Ag = x €3 cAg. 
Using the formula (5.25) from section 5.5 we may write 
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Therefore we may furthermore assume the generator is of the 
form x @ A g p  - [a, x @ Ag] (since cp = pc), which is of the 
desired one. A similar argument works  for generators of type 
(C;), and so our claim is established. 

We  now take TI to be  the right C-basis of T dictated by the 
basis B = BO U Bi of D (see section 5.5) and the representatives 
Go of G modulo Gi. Thus TI = W G  = WoWiGoGi, where W = 
WoWi is a PBW basis of U, Wi a PBW basis of Vi = U(Di).  

It will be useful in  the sequel to "translate" the basis B of D 
and  the  set of representatives Go in the following manner: given 
h E G we set Bh = {hh 1 6 E B} and h-lGo = {h-lg 1 g E Go}. 

Lemma 7.2.1 (i) B; is  a right C-basis  for D modulo Di; 
(ii) B: is  a right C-basis f o r  Di; 
(iii) h-lGo is  a  set of representatives of G modulo Gi. 

we then  obtain C 6 je - l  = ad(&'), which  forces  each c?-', and 
hence  each cj, to equal zero. Next, given 6 E D, we may write 

Together these remarks prove (i). A similar argument, along 
with the observation that if p = ad(a), then ph = ad(&), estab- 
lishes (ii), and  the proof of (iii) is immediate. 

The bijection between B = and Bh = 23; UB: given in 
Lemma 7.2.1 of course induces a well-ordering <h of 23% 6 < p if 
and only if dh < h  ph .  We can then form the well-ordered PBW 
right C-basis W h  = WtWt of U with respect to (Bh, <h) .  
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We  now state our aim in this section: to show that S is the 
(semi)direct sum of the ideal Io of trivial T-identities and  the 
subring E = QC<XTO>, where To = WoGo. We shall refer to E 
as the subring of reduced elements of S relatively to (B, <). 

Our  first step toward this goal is to note that since c E C, 
6 = ad(a) E Di, and inn(s) E Gi are each elements of Endc(S) 
it follows  from  Lemma 1.1.4 that there is a C-algebra map p : 
Ti + Endc(S) where Ti = Vi cc Gi c U cc G = T extending 
a : Di + En& (S) and p : Gi + En& (S). 

Next we claim that WOG0 is a right Ti-basis of T.  Indeed, 
WoWiGoGi is a right C-basis of T and  the equation rg  = gr9, 
l? E Wi, g E Go, shows that WJo generates T as right Ti- 
module. Now suppose that 

Using the fact that Wig is a right C-basis of Ui = U(Di) we write 
Q A ~  = c W 9 h Q g w h ,  whence 

where the summation  runs over A E WO, g E Go, W E Wi, 
h E Gi. Thus CAgwh = 0 and so each = 0, which establishes 
the claim. 

We proceed to define a C-space map 9 : V 8 T + S. In 
preparation for this we again recall the commutation formula 

c~ = xas&, A,A, ,A ,~  E wo, c E c 
S 

(see (5.25) in section 5.5 for details). From this we see that, for 
C E C, A E WO, g E Go, 



308 CHAPTER 7. T-IDENTITIES OF PRIME MNGS 

where CAgS = & a t g .  We  now claim that  the map  from V x T to S 
sending (v, C AgRAg) to C(v €3 Ag)P("Ag) is balanced. Indeed, 
on the one hand 

h 

On the other hand 

We therefore have an additive  map 9 : V 63 T + S, and one 
easily  sees that 9 is a C-space map. 

!P can be lifted to a C-algebra  map of C{V €3 T }  into S, 
and  this  map together with the inclusion map of Q into S can 
be lifted simultaneously to a C-algebra map $J : S + S. Any 
element of the form v €3 t ,  v E V ,  t E T ,  can be written as a 
sum of elements of the form x €3 AgR,  z E X ,  A E WO, g E Go, 
R E Ti. Since it is  easily  seen that x @Ago - (x €3 Ag)P(") lies in 
10, it follows that S = Io + 1. Furthermore the generators (C;) 
and (C;) of Io are clearly sent to zero by $, and so $(l,-,) = 0. 
However $J acts as the identity  map on E,  whence IO n E = 0 
and S = 10 @ &. We have thus proved 

Theorem 7.2.2 Let S = Qc(V €3 C} = QC < XT1 > be the 
setting of R, Io the  ideal of trivial  T-identities, and & the  subring 
Qc<XTo>L S where To = WoGo. Then S = Io @ 1. 
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The generators of IO are of a  particularly nice "linear" form, 
which  makes it easy to decompose  various subspaces of S into 
trivial  and reduced components in a very concrete way.  Of spe- 
cial interest to us are  certain "linear" subspaces of S. For  in- 
stance most of the proof of Kharchenko's Theorem in section 7.5 
takes place  in the  (Q, Q)-bimodule QxTIQ. We are also inter- 
ested in the  situation where  only derivations and automorphisms 
are involved. We therefore set  in place the following terminology: 
G* = Aut(R), T* = U CC G* T ,  G: = Go n G*, T; = WG*, 
T,* = WOG;. We also  recall  (from the first part of the proof of 
Theorem 7.2.2) the C-algebra map p : T,  + Endc(S) extending 
the maps a! : Di + Endc(S) and p : Gi + Endc(S). 

Let us denote by Z the  set of generators of Io (given in the 
form (C;) and (C;)): 

x E X, t E T ,  p = ud(a) E Di, h = inn(s) E Gi. We set Z* = 
{X E Z I t E T;}, 2, = {X E Z 1 IC is fixed }, and 2; = Z*nZ,. 
As we have already noted in the proof of Theorem 7.2.2, any 
variable v 8 t is a sum of variables of the form x 8 AgR, x E X ,  
A E WO, g E Go (or G; if no automorphisms are involved), 
R E Ti. As a corollary of Theorem 7.2.2 we may then conclude 
from writing 

that  the following decompositions into  T-irivial  and reduced 
components hold. 

Corollary 7.2.3 (i) QXTIQ = QZQ QXToQ; 
(ii) &XT; Q = QZ*Q QXTl Q; 
(iii) QxT'Q = QZ,Q @ &xT"; 
(iv) QxT;Q = QZ;Q @ QxT;Q. 
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Finally, let S* = Qc<XT:>, E* = Qc<XTG>, and 1: the 
ideal of S* generated by Z*. Since S* is generated as a ring by 
QXT;Q, Corollary 7.2.3(ii) together with Theorem 7.2.2 imply 

Corollary 7.2.4 S* = 1; @ E*.. 

7.3 Related Rings 
Let R be a prime ring with extended centroid C. Henceforth 
we may frequently abbreviate "centrally closed" as "closed". In 
section 7.1 we introduced several rings related to R and C: 

S(R) = Qc{V @C T(R)},  (the  setting of R),  
&(C) = C(AT(')], (the  setting of C), and 
&(R) = SO @C S(R) (the extended setting of R). 

By Corollary 1.4.11, Theorem 2.3.5, and Theorem 2.4.4, each of 
these rings is a prime C-algebra with 1, with S(R) closed  over C 
(i.e, its extended centroid is equal to C). If P denotes any one 
of these rings we shall be interested in considering T ( P )  (' m case 
P is  closed) or End* ( P )  (in any case). Both T(P)  and End(P) 
are C-rings. The  important connection we shall make  between 
R and any of these rings P will be to define certain  C-ring maps 
from T(R)  to T ( P )  or End@ ( P )  which  preserve a sufficient part 
of the  structure.  Our primary motivation is the need later on for 
making 2'-substitutions into larger rings than Q. For instance, 
in section 7.4 we will  need to make the  substitution x H xd, 
d E Q, of X into S. In section 7.7 it will  prove  useful to make 
the  substitution of X into SI given by x H x + Ay, x, y E X ,  
X E A. 

We begin by translating Lemma 1.1.4 to our present context. 

Lemma 7.3.1 Let A be a C-ring with 1, let Q : D(R)  + A be 
a diferential  C-Lie algebra map, and  let p : G(R) + A be a 



7.3. RELATED RINGS 311 

group homomorphism into the units of A.  Suppose 

cgP = g P 8 ,  i.e., 8' = c+ ( 7 4  

8"gP = gP (P), , i.e., (~.)9' = (P). (7.2) 

for all c E C, g E G,  S E D. Then a and p may be uniquely 
extended  to a C-ring map y : T(R)  + A.  

Proof. We  know (from the definition of U(D)) that a may 
be extended to a C-ring map of U(D) into A. Since U(D)  is 
generated as a ring by D(R)  U C, we see by Lemma 1.1.4 that 
a and p may be uniquely extended to a C-ring homomorphism 
of T(R) into A. 

Let P be a closed prime algebra over C. D(P)  and G ( P )  
are primarily subsets of Endip(P). They are also embedded in 
" ( P )  (with some abuse of notation we have  been writing them 
as being contained in T ( P ) ) ,  but some care must be exercised 
when considering situations where T ( P )  and Enda((P) are being 
discussed simultaneously. For instance, an equation involving 
the elements of D( P )  and G(P)  may  hold in Endip ( P )  whereas 
the corresponding equation in T ( P )  need not hold. Fortunately, 
because of the special nature of equations (7.1) and (7.2), we 
have the following  useful corollary of Lemma  7.3.1. 

Corollary 7.3.2 Let R be a prime ring  with  extended  centroid 
C and  let P be a prime algebra  over C.  Let a : D(R)  + Der(P) 
be a diflerential C-Lie algebra  map  and p : G(R)  + G ( P )  a 
group homomorphism.  Suppose  the  equations (7.1) and (7.2) 
hold in  Endip(P). Then: 

(i) a and p may be uniquely  extended  to C-ring map y : 
T(R)  + Endip(P); 

(ii) If  P is furthermore closed  over C,  then the  equations 
(7. 1) and (7.2) also hold in T (  P )  and a and p may be uniquely 
extended to a C-ring map y : T(R) + T ( P ) .  
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We  now take  up the connection between R and S = S(R) = 
Qc{V 8 T(R)}  in  the following series of lemmas. We note that 
D e r ( S )  = D ( S )  (see  Theorem 2.4.4). 

Lemma 7.3.3 There is a  diflerential C-Lie  algebra injection 
Q : D (R)  + D(S)  given by  S I+ S" where S" sends q + q6 
and v 8 t to  v 8 tb, S E D(R),  q E Q, v E V ,  t E T(R).  
Furthermore a right C-basis B(S) of D(S)  may be chosen so 
that B(R)" C B(S), and ,Bo(R)" C_ &(S). 

Proof. For S E D(R) ,  with the aid of Corollary 1.2.3, let S" 
be the derivation of C{V @ T(R)}  determined by c I+ c' and 
v @ t I+ v 8 tS. By  Remark 1.4.4 the derivation q I+ q6 and S" 
can be simultaneously lifted to a uniquely determined derivation 
of S, which we again  denote by 6". It is then  straightforward to 
verify that S H S" is a differential C-Lie algebra map of D(R)  
into D(S). That Q is injective follows immediately from the fact 
that q6= = q6 for all q E Q. Thus a right  C-basis of D ( S )  may be 
chosen so as to contain B(R)". Next suppose that S" E Di(S),  
that is, 6" = ad(4)  for  some 4 E S. In particular we have 

every variable x E X to 0 and q to q, q E Q. If a denotes the 
image of 4 the preceding equation becomes q6 = [a, Q], whence 
6 E Di(R). As a result &(R)" is a right  C-independent  set  in 
D ( S )  modulo Di(S), and so a basis B'(S) = Bh(S) U B:(S) of 
D(S)  may be chosen so that &(R)" E Z?h(S). 

q 6  = qJC' = [#, q] for all q E Q. We then  map S into Q by sending 

Lemma 7.3.4 There  is a  group injection ,f3 : G(R) + G(S) 
given by  g I+ g p  where gp sends q to  q9 and v 8 t to  v @ t g ,  
g E G(R),  q E Q, v E V ,  t E T(R) .  Furthemnore  given 
a set of representatives Go(R) of G(R) modulo Gi(R), a set 
of representatives Go(S) of G(S) modulo Gi(S) may be chosen 
such  that Go(R)O E Go(S). Finally (Aut(R))fi C Aut(S), and 
(Ant iaut (R))p  C_ Ant iau t (S ) .  
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Proof. For g E G(R) the additive map of the right C- 
space V @ T(R)  determined by V @ t I+ V @ tg is a-semilinear 
where a denotes the automorphism c I+ cg of C. By Corol- 
lary 1.2.2 we may extend this map to a a-endomorphism gp 
of C{V @ T(R)}  (resp. a-antiendomorphism) if g E Aut(R) 
(resp. g E Antiaut (R)) .  Clearly (g-')' is the inverse of gp 
and so gp is a  a-automorphism (resp. a-antiautomorphism) of 
C{V @J T(R)}.  The (anti)automorphism g of Q is  also a a- 
(anti)automorphism of the C-ring Q, and so by Remark 1.4.2 
and Remark 1.4.3 g : Q "+ Q and g8 can be simultaneously ex- 
tended to  an (anti)automorphism of S which we again denote by 
gp. It is  easily  verified that g I-+ g@ is a group homomorphism of 
G(R)  into G(S) with (as we already know) Aut(R)p E Aut(S) 
and Antiaut(R)p C_ Antiaut(S). That p is injective follows  from 
the fact that qg' = q g  for all q E Q. Next suppose gp E Gi (S), 
that is, gp = inn(4) for  some unit 4 E S. In particular we have 

q g  = q g  = c$-'q$ for all q E Q. B 

We then  map S into Q by sending every x E X to 0 and q to q, 
q E Q. The image a of 4 is thus  a  unit in Q and  the preceding 
equation becomes q g  = a-lqa, i.e., g E Gi(R). Consequently, if 

for g2, g1 E Go (R) ,  we have g1 = g2, and so we can choose Go (S) 
such that Go(R)P E Go(S). 

Theorem 7.3.5 Let Q : D(R)  -+ D ( S )  and p : G(R) "+ G(S) 
be the  mappings  given in Lemma 7.3.3 and Lemma 7.3.4. Then: 

(i) Q and p may be uniquely  extended to a C-ring map t I+ t' 
of T(R) + End,(S); 

(ii) Q and p may be uniquely  extended to a C-ring injection 
y : T(R)  "+ T(S)  such  that To(R)r C_ To(S). 



314 CHAPTER 7. T-IDENTITIES OF P R T "  RINGS 

Proof. In either (i) or (ii), in order to show that Q and p can 
be simultaneously extended, it suffices in  view of Corollary 7.3.2 
to show that equations (7.1) and (7.2 hold in Enda(S). It 
is immediate that (7.1) holds since c g  = CS, c E C, by the 
definition of p. To verify equation (7.2), it suffices to show that 
(7.2) agrees on the set Q U (V @ T(R)) ,  which generates S as a 
ring. Now using the definitions of a! and p, we see that 

$ 

Q (g@)-lSQg@ - - q(g-')86Q9@ = q9-169 = Q 6s = Q  3 

(v @ t ) ( g V Q g @  = 2) @ tg-16g = v @ = (v @ t)(@IU 

for all 6 E D(R) ,  g E G(R), q E Q,  v E V ,  t E T(R).  It 
remains to be shown in (ii) that  the extension y of a and p 
is injective and that To(R)T c To(S). From Lemma 7.3.3 it 
follows that a! induces an injection of B(R) into some right C- 
basis B(S) and so, with the PBW theorem in mind, the PBW 
basis W(R)  determined by B(R) is mapped injectively into the 
PBW basis W ( S )  determined by B(S) .  Thus y induces an 
injection on U ( D ( R ) )  into U ( D ( S ) )  and, since by Lemma 7.3.4 
p is an injection, it follows that y is an injection of T(R) into 
T(S) .  Finally, from 5 &(S) (Lemma 7.3.3) implying 
Wo(R)r c Wo(S) and Go(R)P C Go(S) (Lemma 7.3.4), we 
conclude that To(R)T c To(S). 

We  move on now to  the connection between R and SO (C). 
For the present purposes it is best to view &(C) in its original 
form S/Il(C), where Il(C) is the commutator ideal of S(C), 
rather  than  in its alternative form CIAT1(c)]. The elements of 
&(C), cosets by nature, will be denoted by $ , 4  E S(C). Let 6 E 
D(S(C)). Since  any derivation of a ring leaves the commutator 
ideal invariant, it follows that 6 induces a derivation 8 of So (C) 
by defining: $ H F, 4 E S(C). We thus have a differential 
C-Lie algebra map: D(S(C)) += Der(So(C)). Similarly there is 
a group homomorphism G(S( C)) += G(& (C)) given  by g I+ g, 
where Tj  sends $ to @, 4 E S(C). The equations (7.1) and 
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(7.2) being easily  verified, it follows  from Corollary 7.3.2 that 
6 I+ 8 and g I+ may be simultaneously lifted to a C-ring map: 
T(S(C))  + End@(So(C)). A connecting link between R and 
&(C) is now indicated by the following 

D(R) + D(C) + D(S(C))  + Der(&(C)), (7.3) 

G@) + G(C) + G(S(C))  -+ G(So(C)), (7.4) 

T(R) + T(C)  + T(S(C))  -+ End@(So(C)). (7.5) 

In (7.3) the composite differential C-Lie algebra map will 
be denoted by 6 I+ l, where l sends E537 to v @ 76, v E N ,  

In (7.4) the composite group homomorphism  will be denoted 
by g I+ i j ,  where i j  sends TB7 to G. 

In (7.5) the composite C-ring map is determined by the map- 
pings in (7.3) and (7.4). 

Earlier in this section we have  defined a differential C-Lie 
algebra map 6 I+ 6‘ of D(R)  into D(S(R)) ,  where 6‘ sends q to 
q6 and v @ t to v @ t6,  q E Q, v E V ,  t E T(R).  Also we defined 
a group homomorphism g I+ g’ of G(R) into G(S(R)) ,  where g’ 
sends q to qg and v @ t to v @ tg. Together these induce a C-ring 
map T(R) + End@(S(R)). 

Now consider the extended setting &(R) = &(C) @C S(R). 
Let 6 E D(R).  By Remark 1.2.9 l : &(C) + &(C) and 6’ : 
S(R) + S(R) can be uniquely extended to a derivation of &(R) 
which we denote by Sa. It is straightforward to verify that Q: 

D ( R )  + Der(&(R)) is a differential C-Lie algebra map. 
By Remark 1.2.7 and Remark 1.2.8 i j  : &(C) + &(C) and 

g’ : S(R) + S(R) can be extended to  an (anti)homomorphism 
of &(R) into itself, which we denote by gp. Clearly (9-l)’ is 
the inverse of gp and so gp is an (anti)automorphism of &(R). 
It is  easily  shown that p : G(R) + G(&(R)) is a group homo- 
morphism. 

For the maps a and p defined  in the preceding paragraph one 
proceeds to verify the equations (7.1) and (7.2). It suffices to 

7 E T(C), 6 E D@). 
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show they agree on ring generators of SI (R), namely on elements 
of the form q (q E Q), W €9 r (W E N ,  T E T ( C ) ) ,  and v €9 t 
(W V ,  t E T ( R ) ) .  We leave these details to  the reader. Hence 
by Corollary 7.3.2 we have the following 

Remark 7.3.6 There is a C-ring map y : T ( R )  + End+(&(R)) 
simultaneously  extending Q and p .  

Finally, let P be any C-algebra with 1 containing Q,  and  let 
y : T ( R )  + End+((P) be a C-ring map. By Remark 1.2.6 we 
have 

Remark 7.3.7 Any T-substitution &(C) + C and  any T- 
substitution S(R) + P (relative to y) can be uniquely  extended 
to a C-algebra  map &(R) + P. 

The import of Remark 7.3.7 is that we can now make T- 
substitutions involving "central" indeterminates, which  will  be 
useful  in section 7.7. 

7.4 Linear Formulas 
In the  study of reduced T-identities coming up in section 7.5 the 
crucial arguments will occur  when the T-identity lies in L, = 
&xT".  We recall from Corollary 7.2.3(i) the decomposition of 
the (Q, Q)-bimodule 

&X"& = QZ,Q @ L, 

into its T-trivial  and reduced components. Any  element 4(x) E 
L, may be uniquely decomposed as follows 

4(x) = c 4 g ( 4  
gEGo 
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The  support of 4 ( x )  (briefly, sup(4)) consists of all g E Go for 
which $A,,(z) # 0 for  some A E WO (or, equivalently, & # 0). 
The set of all such A being finite (given $ and g )  and WO being 
linearly ordered, there exists a unique largest such A; we call it 
the leading g-term and denote it by A,,,. 

We next define a useful partial ordering < for L, which has 
the property that every nonempty subset S of L, contains a least 
element 4 (in the sense that if $ E L, and $ < $ then $ 6 S). 
We define < as follows.  For 4, $ E L, we say that $ < $ 
precisely  when either of the following  two conditions holds: 

(1) sup($) is a proper subset of sup($); 
(2) sup(4) = sv.+f% A,,, I A,,, for all 9 E SUP(4), and 

A,,, < A,,, for some g E sup(4). 
Otherwise $ and $ are  not compatible. Since WO is well-ordered 
it is  easily  seen that < is indeed a partial well-ordering  for L,. 

Next let h E G and  let L; = QzTtQ, where Tt = W,"(h-lGo) 
(recall Lemma 7.2.1 and  the subsequent discussion  for details). 
L: is  endowed with the  partial well-ordering <h based  on 
(B!, hAIGo)  and  the C-space isomorphism  between L, and L; 
given  by xAg e xAhh"g, A E WO, g E Go, Ah = h-lAh E W," 
is order preserving. In  particular we make the  important obser- 
vation that 4 is a minimal element of a subset S of L, if and 
only if $h is a minimal element of corresponding set Sh in L:. 

For future reference we recall  from section 2.5 some  defini- 
tions concerned with the tensor product Q" @a Q. For p = 
C c k  C3 d k   c k ,   d k  E Q we have 

= X C k q d k ,  Q E Q, 
= cc: @ & ,  6 E D(R),  

p' = C< @ d k ,  9 E G(R). 
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For J E Z(R) NJ denotes the subring of Q" @a Q generated by 
all elements of the form T @ r', T ,  r' E J. 

At this point we recall the C-ring map t I+ t' of T(R) into 
Enda(S) given by Theorem 7.3.5.  We let Pd denote the T- 
substitution of S into S determined by z zd relative to t I") t', 
d E Q t E 'I' (all other  indeterminates in X are sent to 0). With 
some abuse of notation, we may sometimes write pd(4) as +(mi), 
and it is understood that means Now for a, b E Q, 
A E WO, g E Go, we have 

pd(azAgb) = a(zd)(Ag)'b = a(zd)A'g'b. 

Applying the Leibnitz Formula to ( ~ d ) ~ '  we then  can  write 

pd(UXAgb) = { axAgdsb + $(x) if g E Auto(R), 
a d g z A g b  + $(S) if g E Antiauto(R) 

(7.8) 
where sup($) c { g }  and A,,, < A. It follows  from  (7.8) that 
pd maps L, into itself. Clearly the map: Q + Enda(L,) given 
by d I+ pd is additive. Fixing 4 E L, we then see that  the  map 
d I+ pd(4) of Q into L, is additive, and from this we obtain  an 
additive map 6 : &" @a Q + L, given  by d @ c I+ pdrc where 
T,  is the right multiplication by c. Clearly 4 I") 4 is additive 
and so we have a biadditive map: L, x Q" @a Q + L, given 
by (4, P)  I+ 4 P = &P), P E Q" @ Q, 4 E L,. Thus for 
P = C d k @ c k E Q o @ Q a n d # E L x w e s e e t h a t  

In  particular, for a, b, c, d E Q, A E WO, g E Go we have 

Together (7.8) and (7.9) imply 
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We  now look at  the special case of (7.9)  where 4 ( x )  = axAgb, 
a, b E Q, A E WO, g E Auto(R), and we set P = c d k  @ ck. 
Together (7.9) and (7.10) enable us to write 

where sup($) C_ { g }  and A,,, < A. 
More generally we consider 4 E L,, g E sup(4) nAuto(R), set 

A = A,,g, and write = Xi aizA9bi, with {ai} C-independent 
and {bi} C-independent. Then from  (7.15) we obtain  the for- 
mula 

(4 P)A,g(x) = x a i x A g ( b i  (7.16) 
i 

We thus have a criteria for testing when A+@,, < A,,,, namely 

Remark 7.4.2 Given  the above notations A+.@,, < A,,, if and 
only if bi - P g  = 0 for  each i. 

The following lemma and  its corollary will be of crucial im- 
portance  in section 7.5. 

Lemma 7.4.3 Let d E Q, A = 6162.. .S, E WO, and  let S 2 1 
be the largest  subscript such  that S1 = 62 = . . . = S, (necessarily 
S, < &,+l, and in case of characteristic p ,  S < p ) .  Then 

(mi)*' = xAd + ~ ~ ' c f '  +$(X), 

where Q =  6263. . . S, and  the leading term A,,, of $ is  less  than 
Q. 
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Proof. We set Ai = 61 . . . 6i_lSi+l. . .6n, i = 1,2, . . . , n. For 
1 5 i 5 S we see that Ai = R, whereas  for S + 1 5 i 5 n we 
have 

Ai = 61 . . .6, . . . Si-l&+l. . . 6, < 6263 . . .Sn = R. 

Now, expanding (zd)Af according to  the Leibnitz Formula we 
may conclude that 

n 
(zd)Af = xAd + c x A i d 6 i  + O(x) (lAe,,I < n - 1) 

i=l. 
n 

= xAd  + sxRd61 + C zAidsi + O(z) 

= xAd + SXRdb1 +$(IC) (A,,, < 52). 
i=s+l 

The proof  is complete. 

Corollary 7.4.4 Let c$ = axA b, a, b E Q, A = 6162 . . . 6, E WO, 
S = s(A) as  described in Lemma 7.43, J E Z(R),  and p E N J .  
Then: 

4 .  p = m A ( b  p) + S U S R ( b  * + p(x) 

where 52 = 6263.. . 6n and Ap,l < R. 

Proof. We set p = C d k  8 ck, 9 ,  d k  E J. By Lemma 7.4.3 

(ICdk)A' = X A d k  4- sxnd2 ?,bk(IC), 

with A+k,l < R. Therefore 

c$ - p = c c$(xdk)ck = c a(xdk)Af bck 
k k 

= c a [ICAdk + sxndp 4- $k(2)] bck 

= axA(b p) + .saxR(b p'') + p(z), 
k 

where Ap,l < R, and the proof is complete. 
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7.5 Reduced  7'-identities 
We are now able to  attain one of the main goals of this book, 
namely, to establish the fundamental result of Kharchenko (to- 
gether with Chuang's generalization) which says that if a prime 
ring R satisfies a nonzero  reduced T-identity  then  R is G P I  
(Theorem 7.5.8). 

Most of the arguments will take place in the special situa- 
tion where the T-identity is linear and we shall draw  heavily 
upon the material developed in section 7.4. We first recall.from 
Corollary 7.2.3 various linear settings  and  their decompositions 
into  T-trivial  and reduced components 

&xT1& = QZQ@QXToQ, 
Q ~ T ~ Q  = QZ,Q@ L,, L, = Q X ~ O Q  

and  the  particular cases  where no antiautomorphisms  are in- 
volved: 

QXT:Q = QZ*Q @ QXTo'Q, 
QxT;Q = QZjQ @ Lj, L j  = QxTo'Q. 

It turns  out  that  the proof of the main result (Theorem 7.5.8) 
ultimately rests on Lemma 6.2.1, which we  now restate as 

Lemma 7.5.1 Let h E Antiaut (R)  and let 0 # 4 E &x& + 
&xh& be a  T-identity on  some 0 # I a R. Then R is GPI.  

Also  useful  will be the following corollary of Corollary 6.1.3. 

Lemma 7.5.2 Let g E G  and jet 4 E QxgQ be a  T-identity on 
someO#IaR.   Then4=0 .  

Proof. Simply note that $(x) = 4 (xg-') E &x& is a G P I  
on P and apply Corollary 6.1.3. 



322 CHAPTER 7. T-IDENTITIES OF PRIME RINGS 

Lemma  7.5.1, Lemma 7.5.3 and Lemma  7.5.4  will, taken to- 
gether, show that if there is a nonzero reduced linear T-identity 
on R then R is GP1 (Theorem 7.5.5),  which in  turn will rather 
quickly  yield Theorem 7.5.8. Along the way sharper results 
will be  obtained in case no  antiautomorphisms  are involved and 
char(R) = 0. 

The following lemma is the crucial step in the proof of The- 
orem 7.5.8. 

Lemma 7.5.3 Let 4 E L, be minimal  with respect  to  the  prop- 
erty  that c)  # 0, 4 is a T-identity on some I ,  and sup($) C 
{g, h} for some g E Auto(R) and h E Antiauto(R). Then 
A,,! = 1 for each f E sup($). 

Proof. Without loss of generality we may assume that g = 1 
(since 4 is minimal-in L, with the given property if and only 
if c)f is minimal in Lf with the same property; see section 7.4 
for the details). Furthermore it suffices to show that A,,, = 1 
(since = 1 if and only if A 4 h r l  = 1). Suppose A = A,,, # 1. 
Then we write A = S,& . . . S, E WO and  set R = 6263 . . . Sn. 

We claim that without loss of generality we may assume that 
c )A , l (x )  = ax*b. Indeed, we may write 

with {ai} C-independent and { bi} C-independent, a1 # 0 # bl .  
By Remark 2.5.5 there exists p E NI such that bl - p # 0,  
bi P = 0, i > 1. Now  by formula (7.16), with g = 1, we have 

Now 0 # 4 - p E L, is a 2'-identity on I ,  by  (7.13) 
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and by (7.12) A4.~ ,p  5 A4,p for  each f E sup(4 .  p). Thus  the 
conditions of Remark 7.4.1 are  met,  and it follows that 4-p must 
also be a minimal element of L, relatively to  the given  require- 
ments. Our claim is thereby established and we will assume that 
4&1(x) = axAb where a, b # 0. 

We  now extend {a}  to C-basis {ut I E E} of Q and  note 
that {atxt  I t E To, < E E} is a right Q-module basis for L,. 
We write 4 ( x )  in terms of this basis, being at this  time only 
interested in those basis elements of the form: ax***n (where 
cl = 6263 . . * dn) 

4 ( x )  = axAb + C U X " ~ V :  + . . . + UX'W' + . . . (7.17) 

61 > 1-11 > 1-12 > . . . E WO, vi, W' E Q. At this  point we note that 
62 2 61 > pi and so s(p&?) = 1 for all i (see Corollary 7.4.4 for 
the definition of s(A)). Now choose J C I such that a J ,  bJ ,   v iJ ,  
w'J are all contained in R. (Remark: our eventual aim is to show 
that 61 + C piai = ad(u) for suitable ai E C U E Q, which  will 
be a contradiction to 61,p1, 1-12, . . . being right C-independent 
modulo Di). Let p E N J .  We compute +p(x) = ( $ . p ) ( x ) ,  being 
only  concerned in knowing the  terms beginning with axA and 
ax'. Note that +p(x)  remains a T-identity on I .  Applying the 
full  force of Corollary 7.4.4 to (7.17), we see that 

axA(b * p) + saxn(b - p b l )  + . . . 
+ C a x  (vi.P"')+...+ax"(w'.p)+... n r  

i 

axA(b p) + . . . 
+ u x ' [ s b . p ~ l + C v I . p Y I + W I . p  i ] + ... 

where S = s(A) # 0 (recall S .< p in case of characteristic p ,  and 
s(pia) = 1 for all i). Since S is invertible, we can set vi = s-'v:, 
W = s-~w' and rewrite $ ~ ( x )  as follows: 
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Now  we define f : JbJ + R as follows: 

b . p t , b . P 6 ' + C W i . p f i i + w . P ,  P E N J .  
i 

We note that vi and W as well as b are now  fixed elements of Q 
independent of p, that JbJ is an ideal of R, and that  the image 
of f does indeed lie in R (since bJ ,   v {J ,  w'J and hence viJ, W J  , 

all lie in R). To show f is  well-defined suppose b p = 0. But 
then the leading l-term of $@(x) is  less than A, which says that 
$p(.) < $(x), and so by the minimality of $(x) we conclude 
that $p(x)  = 0. In particular we then see  from  (7.18) that 

S b*pd '  + C v i . P " + W . p  = O  [ i 1 
whence 

+ C ~ i - p ' " ' + w * p = O  
i 

(since S is invertible). 

letting y E R, setting y = p(1@ y), and noting that 
It is straightforward to check that f is a right R-map. Indeed, 

Y6 = P6(l @ Y), 6 E D(R),  

we have 

b * p y  = b . 7 -   b - y " + C ~ i * y f i '  + W . Y  
i 

Next  'we set U = { f, J b J }  E QT(R) and  note that 

~ ( b  p) = f ( b  p) = b - P'' + C * pfii + W p (7.19) 
i 
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for all p E NJ.  Multiplication of (7.19) on the left by y E R 
yields 

On the other  hand,  setting y = p(yB1) and using formula (2.13) 

Y6 = P6(Y €3 1) + P(y6 €3 l), 

we have 

Subtraction of (7.21) from (7.20) yields 

(yu - u y ) ( b  - p) = yb ' (b -  P) + C Y P ' ( V i  P) (7.22) 
i 

for all y E R and p E NJ.  

b = bl.  For  each i (only a finite number) we write 
Finally, we extend {b}  to a C-basis {bc I 5' E E} of Q with 

This only  involves a finite number of bj's, say, b = bl,  ba, . . . , b,. 
By Remark 2.5.5 we may  choose y E NJ such that b .  y = bo # 0 
and bj - y = 0, j  > 1. We note that bo E JbJ c J .  Then, for any 
p E NJ,  we use (7.22) to compute 
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Therefore 

for all y E R and P E N J .  Hence 

for all y E R, in other words, 

This is a contradiction since 61, p1, p2, . . . are C-independent 
modulo Q, and  the proof  is complete. 

The next lemma shows that if there is a nontrivial linear 
T-identity then  the conditions of Lemma 7.5.3 will be. fulfilled. 

Lemma 7.5.4 If $ E L, is minimal  with respect  to the  property 
that 0 # $ is a T-identity  for some 0 # I a R, then sup($) C 
( g ,   h }  for some g E Auto(R) and h E Antiuuto(R). 

Proof. If the lemma is false we claim that we may assume 
without loss of generality that sup($) contains two automor- 
phisms g1 and 92. Indeed, if g and h are two antiautomorphisms 
in sup($), then sup ($9) contains the two automorphisms 1 and 
g-'h, and our claim is thereby established. Therefore let gi, 
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i = 1 , 2  be two automorphisms in sup(+), and  let Ai = A+,gi be 
the leading gi-term of 4. We write 

with {ail, ai2, . . . , aimi 1 C-independent and { bil, biz, . . . ) bimi 1 C- 
independent. We claim that bll is left independent of 

with respect to 

gr, 91, , 91,92, 927 - - ' , g2 
m1 times m2 times 
" 

If not we have (in view of Remark 2.5.8) 

a contradiction to bll, b12, . . . , blml being C-independent. Now 
by Theorem 2.5.9 there exists p E NI such that 

The element +-p  E L, is a T-identity on I and, in view of (7.16), 
+ S  p # 0 since b l l P g l  # 0. By the criterion of Remark 7.4.2 we 
see that A+.p,g2 < A4,g2, whence 4 - p < + in contradiction to 
the minimality of 4. The proof  is thereby complete. 

Theorem 7.5.5 Let 0 # 4 E QXToQ be a T-identity on  some 
0 # I a R. Then R is GPI. 
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Proof. Without loss of generality we may assume that 
$ E L, for  some x E X .  Furthermore we may assume that 
$ is a minimal nonzero T-identity on I .  Then Lemma  7.5.4, 
Lemma  7.5.3 and Lemma  7.5.1 together imply that R is GPI. 

Theorem 7.5.5  may be improved upon if there  are no anti- 
automorphisms present. 

Theorem 7.5.6 If 4 E QXT;Q is a 7'-identity  on  some 0 # 
I a R ,  then4=0.  

Proof. We may assume without loss of generality that $ E 
L: and is a minimal nonzero T-identity on I .  By Lemma 7.5.4 
sup($) C {g, h}, g E Auto(R), h E Antiauto(R) and, since 
$ E L:, we must in fact have sup($) E {g}. By Lemma 7.5.3 
A,,, = 1 and, in view of Lemma  7.5.2, we reach the contradiction 
that 4 = 0. 

Before  moving on to  the general case of a 7'-identity we shall 
briefly  review the linearization process in S = QC < XT1 >. 
With some  obvious adjustments it is  basically the same as that 
described in section 6.1, and  the reader can refer to  the account 
given there (preceding Remark 6.1.5). Again we start with the 
usual monomial basis M(A) of S. For  each M E M(A) let 
&? E M(A) be obtained by replacing each xt by x, x E X, 
t E 2'1. Then, if U represents any of the functions deg,, deg, 
ht,, ht, we define v ( M )  = U(&?). For 4 = Cc" we define 
U($) = maxM v (M)  where M belongs to 4. As a notational 
example, if M E M(A) is such that deg,(M) = k ,  then one 
may write 

M = M(x) = Pio~t1P,,~t2 . . .X t k P , k  

where tj E TI and Pij E M(A) containing only variables of the 
form x:,  xi # x, t E Tl. Now let 4 = $(XI, x2,. . . , x,) E S. 4 is 
k-homogeneous in x if deg,(M) = k for  every M belonging to 4, 
and given a sequence r = (ml,  m2, . . . , m,) 4 is .r-homogeneous 
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if 4 is  mi-homogeneous in xi, i = 1,2, . . . , n. Clearly any $ # 0 
may be uniquely written as a sum C&, & .r-homogeneous, 
or, for a fixed x, &(x), $h (x) k-homogeneous  in x, m = 
deg,($). We say d is T-multilinear of degree n if 4 is  .r-homo- 
geneous with each  mi = 1, i = 1,2,. . . , n. 

With  this terminology in hand the linearization process pro- 
ceeds exactly as described in section 6.1. An operation of type 
A may be used  whenever  deg, (4) > 1 for  some x E X :  deg 
is preserved, height  is  lowered, and T-identity is  preserved. An 
operation of type B may be used  whenever there is an x E X 
appearing in some but not all monomials belonging to 4: T- 
identity is preserved, and neither degree  nor height is raised. As 
in section 6.1 every 0 # 4 E S has a linearization and so we may 
state 

Remark  7.5.7 If 0 # 4 E S is a reduced T-identity of degree n 
on  some 0 # l a  R, then  there is a nonzero reduced T-multilinear 
identity of deg 5 n. 

We come now to one of the main results in the theory of gen- 
eralized identities. In the case of derivations and automorphisms 
it was proved by Kharchenko in 1978, and it was extended to 
include antiautomorphisms by Chuang in 1990  ([143],  [146],  [82], 
P61 7 1881 1 m 

Theorem  7.5.8 Let R be a prime  ring and  let 4 be a nonzero 
reduced T-identity on  some  nonzero ideal I of R. Then R is 
GPI. 

Proof. The proof  is by induction on n = deg(4).  The 
case n = 1 is  given by Theorem 7.5.5. Now let 4 be a T- 
identity of degree n ,on  some O # I a R. By Remark 7.5.7 we 
may assume that 4 = 4 ( q ,  22,. . . , xn) is T-multilinear of degree 
n. Let r2,r3,. . :,rn E I and  let $(XI) = $(xp,r2,r3, . . . ,rn) 
be the image of 4 under the T-substitution x; I+ x;, xi H 
r;@), t E To, i = 2,3,. . . , n, relative to  the mapping y : T + 
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E n d a ( S )  described in section 7.1.  We note that $ ( X I )  E L,, 
is a T-identity on I .  If $ ( X I )  # 0 we are again finished by 
Theorem 7.5.5. Therefore we may assume $ ( X I )  = 0 which 
implies that $ maps to 0 under the  substitution x i  H rt E I 
for any choice rt E I ,  t E TO. Thus  the image p = p(x2, . . . , x,) 
of 4 under the  substitution x i  H rt, x: H x:, i = 2,3,. . . ,n 
is a T-identity on I of deg 5 n - 1, and so by induction we 
may assume that p = 0. Altogether this shows that 4 maps to 
0 under any substitution x: H ri,t E I ,  t E To, i = 1,2 , .  . . , n. 
Thus we have  found a GPI X(xi,J such that  the  substitution 
xi,t H xf maps it  to 4. Hence x # 0 and R is GPI. 

In case char(R)  = 0 and 4 is a T-identity  without  antiauto- 
morphisms we have the following sharper result. 

Theorem 7.5.9 Let char(R)  = 0 and let 

be a T-identity  on  some 0 # l a  R. Let {yit) be distinct  elements 
of X in one-one  correspondence  with  the  variables x:. Then 
4(yit) is a GPI on Q (it  is understood  that 4(yit) is mapped to 
$(x)  under  the  substitution yit H x:, t E T,, 1 5 i 5 n) .  

Proof. The proof  is  by induction on ht(4). We first claim 
that  it suffices to assume that 4 is homogeneous. Indeed, we 
write 4 = Er=, g5k where q5k is  k-homogeneous in x l ,  noting 
that 

m 

0 = 4 ( j r l ,  ~ 2 ,  - 9 rn) = C jk4k(r1,  ~ 2 ,  - , rn) 
k=O 

for j = 1,2, .  . .,m + 1. Since char(R)  = 0, 1,2 , .  . . ,m  + 1 are 
distinct elements in the prime field <P and so, using a Vander- 
monde determinant  argument, each 4k(r1, r2, . . . , r,) = 0, i.e., 
g5k is a T-identity on I ,  k = 0,1,. . . ,m. Repeated use of the 
above argument ultimately shows that we may write 4 = E 



7.5. REDUCED 2'-IDENTITIES 331 

where  each 4T is a .r-homogeneous 2'-identity on I .  By assump- 
tion each  is a GPI on Q whence 4 is a GPI on Q and  the 
claim is established. 

For ht(q5) = 0 we know that 4 = 4(x1 ,  5 2 , .  . . ,xn) is 2'- 
multilinear (since we are assuming is  homogeneous). Let 
r2,r3,. . . , rn E I and  set @ ( X I )  = uJ(x1, r2,. . . , r,) E L;. Since 
$J is a 2'-identity on I we know  by Lemma 7.5.2 that @ ( X I )  = 0. 
In  particular, for any choice qt E Q, t E 2'0, 4 ( q ,  ~ 2 , .  . . , x,) is 
mapped to 0 by xi C )  qt, x: C )  T : ( ~ ) ,  i = 2 ,3 , .  . . , n. Continu- 
ing this process with 5 2 ,  x3, . . . , xn we see that, given any choice 
qi,t E Q, t E T,*, i = 1,2 , .  . . , n, 4 is mapped to 0 by xf C )  qi,t.  
The conclusion of the theorem follows immediately in this case. 

We  now suppose that ht(4) > 0. We may assume, say, that 
r = degSn > 1. We then apply an operation of type A in the lin- 
earization process,  namely,  for y E X distinct from x l , x 2 ,  . . . , x, 
we replace 4 by 

@ ( z ~ , . . - , x n , ~ )  = 4 ( x 1 , . . - , x n - 1 , x n + y )  

- 4 ( m  - 7 G )  - 4(% , %-l, Y) 

noting that ht(@) < ht(4) and @ is again a 2'-identity on I .  
Then  the induction hypothesis says that @ is a GPI on Q. Fur- 
thermore, since 4 is  r-homogeneous in xn we see that 

@(% * ,x,, x,) = 4(% - - - , x,-l, 22,) - 24(% - , 2,) 
= - 2)4(%52, e ,  2,) 

whence 4 is a GPI on Q (in a view  of char (R) = 0). The proof 
of the theorem is complete. 

Under the conditions of Theorem 7.5.9, if 4 is a 2'-identity 
on 0 # I Q R, one may  say, in somewhat looser language, that 
the variables xf can be "freed" (replaced by yiJ and  that  the re- 
sulting element vanishes on all of Q. In general, if char( R) = p 
and/or 4 involves antiautomorphisms, the conclusion of Theo- 
rem 7.5.9 is no longer  always  valid.  However, as we shall show 
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in sections 7.6 and 7.7, the variables zf may be "partially" freed 
and  the resulting element  will be a 2'-identity on Q. 

7.6 The  Structure of T-identities 
(Fields) 

In section 7.5 the central result (Theorem 7.5.8)  was that a 
nonzero  reduced T-identity on a nonzero ideal of a prime ring 
forced the ring to be GPI.  However, there was no special effort 
to keep track of the original T-identity. In the present section 
and section 7.7 our aim is to prove  some results about  the T- 
identities themselves. The case in which R = C is a field,  for 
which we give a complete analysis in this section, is not only 
used  heavily in the general situation of prime rings in the fol- 
lowing section, but may be of independent interest in its own 
right. 

Let C be a field. In  this special situation we recall  from  sec- 
tion 7.1 that  the  setting for C is  defined to be the commutative 
polynomial ring 

where Il(C) is the commutator ideal of C<AT1(C)>. We recall 
too in this  situation  that since Di = 0 and Gi = 1, W =.WO, 
G = Go and accordingly TI = WOG0 = To. 

It will  prove  useful to further refine G as follows.  We  define 
an automorphism g E G to be fiobenius if either g = 1 or, in 
case char (C) = p and 8 : c H cp is an automorphism, g = 
for  some I E 2. We let G! denote the set of all F'robenius 
automorphisms of C and  note that Gf is a normal subgroup of 
G. If char(C) = 0 or char(C) = p and 8 is not onto,  then 
Gf = 1. In case char (C) = p and 8 is onto then Gf is the cyclic 
group generated by 8, being infinite (resp. finite) if and only  if C 
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is infinite (resp. finite). We choose a set Gof of representatives 
of G modulo G f  and accordingly take G = Go to be GofGf = 
{ g k f i  I g k  E Gof, fi E G f } .  We note  in passing that if GI # 1, 
then necessarily W = {l}. Indeed, every  element of C in this 
case  is a pth power cp and if 6 E D e r  (C), then (cp)' = pcp-l c -  * - 
0. Also, if C is a finite field of order pn, G = Gf  is  cyclic of 
order n (hence Gof = 1) and of course W = {l}. 

With  the above decomposition of G in mind it is clear that 
the set of all finite products 

(7.23) 

forms a C-basis of CIATo], where N = {0,1,2, .  . .}, Ai E A, 

In analyzing the T-identities of C it is  convenient to consider 

(la) G f  = 1 and char (C) = 0; 
(lb) G f  = 1 and char(C) = p  > 0; 
(2a) Gf  # 1 and C is infinite (hence G f  is the infinite cyclic 

(2b) G f  # 1 and C is finite (hence Gf  is the finite cyclic 

There  are in some  cases  some  "obvious" T-identities of C 

In cases (la) and (lb) there  are no other "obvious" T- 

In case (2a) we define 12(C) to be the ideal of CIATo] gen- 

A j  E W ,  g k  E G o f ,  f i  E Gf- 

separate  situations which we label as follows: 

group {e1 1 1 E 2) and W = {l}); 

group {ei 1 1 = 0,1,. . . ,n - l} and W = {l}). 

which we describe as follows. 

identities and we set Iz(C) = O. 

erated by all elements of the form 

where 8 is the basic  F'robenius automorphism c I+ cp, c E C. 

erated by all elements of the form 
In case (2b) we define I2(C) to be  the ideal of C[A*o] gen- 

A ~ ' - A P ' ,  A E A ,  ~ = 1 , 2  ,..., n 



where IC1 = pn. We note that 

We shall call 12 = 12(C) the ideal of F-trivial T-identities of 
CIATo]. Our goal in this section is to show that every T-identity 
of C is F-trivial. 

To this end it is first of all important to determine an explicit 
C-basis for CIATo] modulo 12(C). For future reference it will be 
useful to have a simpler description of the monomials in (7.23) 
in the various  cases (la),  (lb), (2a) and (2b): 

M = JJ ( & % g k ) m i j k  , 
m i j k  E N in cases (la) and (lb); (7.24) 

M = ( X q , e ' ) m i k l  7 

M = JJ ( $ ) m i l ,  

m i k l  E N ,  1 E Z in case (2a); (7.25) 

mil E N ,  1 = 0,1,. . . , n - 1 in case (2b); .(7.26) 

We define N = h/ (in cases (la) and (lb)) and N = Np = 

We next define the  important notion of F-degree in cases 
(la),  (lb),(2a) and (2b). For a monomial given in (7.23) we 
define the F-degree of in M by consideration of the  three 
forms of M as shown  in  (7.24)-(7.26): 

{C~=-qslPl I E N ,  0 5 S6 < P }  (case (2a)). 
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We remark that in cases (la) and (lb) the F-deg of XA9 in M 
is just  the ordinary degree of the variable XA9 in M .  In case 
(2a) we note that F-deg of X9 in M need not be an integer (if 
1 < 0). In all cases the notion of F-deg is quite natural if one 
thinks of it as the "power" to which XA9 occurs in M when 8l is 
replaced by pl. Finally if 

4 = c C", CM E C, M of form (7.23) 
M 

is an  arbitrary element of CIATo] we define: 

F-deg of XA9 in 4 = m a {  F-deg of XA9 in M ) .  

Again we remark that if Gf  = 1, then the  F-deg of XA9 in 4 
coincides with the ordinary degree of XA9 in 4. 

We consider now the Cartesian  product A x W x Gof ,  a 
typical element of which  will be denoted by a! = (Xi, Aj, g k )  
(with = Xi, a2 = Aj, a3 = gk), and mappings 

it being understood that S always has finite support, i.e., s(a) # 
0 for  only a finite number of a's. Using these notations we next 
define certain monomials 

in cases (la) and (lb), 

va,s = in case (2a), 
0 5 s(a)  < p" in  case (2b) 

(IC1 = p " ) .  

We then  set 
v, = n va,s (7.27) 

a 
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noting that these are finite products in view  of S having  finite 
support. We make the  important observation that for  each a = 
(Xi, Aj, gk) involved in V, the  F-deg of Xpgk in V, is  precisely 
s(a) . Conversely we have 

Lemma 7.6.1 Let M be given by (7.23) and h i j k  = h(a) be the 
F-deg of Xpgk in M for  each Q = (Xi, Aj, gk). Then M E 

V ,  (modI2(C)) where s(a) = h(a) for all a. 

Proof. In cases (la) and (lb) there is nothing to prove. 
Case (2a) is a consequence of repeated applications of the ob- 
servation that, given m = p + q (thus q < m) 

If JCI = p" < 00 ,  then P" - X E 12(C) and Xe' - P' E 12(C). 
Hence  case (2b) follows  from repeated application of the follow- 
ing fact that, given m = p" + k (thus m = k + 1 (modp" - 1)) 

f A P n  Ak  Xkfl. 

Theorem  7.6.2 The V ,  'S (as defined in (7.27)) are a C-basis 
for CIATo] modulo 12(C). 

Proof. In cases (la) and (lb) the result is  clear  since 
12(C) = 0 and  the K's coincide with the monomials  given in 
(7.23). 

In case (2a) the fact that  the K's are a C-spanning set mod- 
ulo 12(C) is given  by Lemma 7.6.1. To show that  the Vs's are 
C-independent modulo 12(C) we define a C-linear transforma- 
tion x : CIATo] +- CIATo] as follows.  For  each  monomial M in 
(7.23) we map M to  that V,  in (7.27)  such that for  each Xgk the 
F-deg of Xgk in M is the same as F-deg of Xgk in V,. Clearly x 
acts as the identity on  each V,. On the  other hand consider an 
element of the form 

(7.28) 
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where M is as in (7.23). Evidently the F-deg of X? in each 
summand of (7.28) is the same and so x maps (7.28) to 0, whence 
x maps &(C) to 0. If Cc,K E 12(C) then 

and so c, = for all S. 

In case (2b) we conclude  from Lemma 7.6.1 that  the K’s 
are a C-spanning set of CIATO] modulo 12(C). Next we consider 
the C-linear transformation x of CIATo] defined as in the case 
(2a). For any element of the form 

(7.29) 

where M is as in (7.23), the F-deg of X i  in each summand of 
(7.29)  is the same and so x maps (7.29) to 0. Hence x maps 
12(C) to 0. Since x acts as the identity on each V,, we infer that 
the K’s are linearly independent modulo 12(C). The theorem is 
thereby proved. 

The C-span of the K’s in Theorem 7.6.2  will be denoted 
by P(C) and  the elements of P(C) will be called F-reduced . 
Clearly we have the C-space decomposition 

CIATo] = 12(C) P(C) 

where 12(C) is the set of F-trivial 7’-identities of C. Thus our 
stated goal of showing that any 7’-identity of C is F-trivial is 
equivalent to showing any F-reduced 7’-identity of C is 0. 

The analysis of case (lb) will  prove to  the most complicated 
and we first require a digression into the theory of algebraically 
dependent homomorphisms of a field into itself (the need  for this 
is brought about by the fact that in case (lb) the  map c !-+ c p  

is a homomorphism but  not an automorphism). 
Let C be a field, and  let C[A] be the free commutative algebra 

in A over C. We note that C[A] is a subalgebra of CIATo] and 
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we may  on  occasion  use this inclusion to connect results  in C[A] 
with our usual general setting. For example if C is a finite field 
of order p" a polynomial 4(Xl, AS, . . . , X,) E CIA] is commonly 
called "reduced" if  deg,, (4) < pm for  each i or, equivalently, 4 is 
an F-reduced element of CIATo]. We begin with the well-known 

Remark 7.6.3 Let 4 = 4(Xl, X2, . . . , X,) E C[A] (and  assumed 
to be "reduced" if C is finite) such  that $(cl, c2, . . . , c , )  = 0 for 
all cl, c2, . . . , c, E C.  Then 4 = 0. 

A polynomial d(X1, X2,. . . , X,) is said to be additive if 

where XI,. . . , X,, PI,. . . , p, are  distinct  indeterminates in A. 
Next let A be an additive abelian group and  let hl, h2, . . . , h, be 
additive mappings of A into  the additive group of C (we are pri- 
marily interested in the case  when A = C). Then hl, h2, . . . , h, 
are said to be algebraically dependent via  over C if 0 # 
4(Xl, X2,. . . , X,) E C[A] is  such that 

4(ah1, ah2, .  . . ,ahn) = 0 for all a E A. 

Theorem 7.6.4 (Artin) If hl, h2, . . . , h, : A + C are aZge- 
braically  dependent  via #(XI, X2,. . . , X,) over C then there  exists 
a nonzero  additive  polynomial $(XI, X2,. . . , X,) such  that 

$(&,ah2, .  . . , ahn) = 0 for all a E A 

Proof. For  convenience we shall write X = (XI, X2,. . . , X,), 

Let $(X) be a nonzero polynomial of smallest total degree deg, $ 
for  which deg,, ($) 5 deg,. (4) 'Tor each i and for  which $(2) = 0 
for all a E A. We claim ;hat $(X) is the desired polynomial. 

/L = (/AI, ~ 2 9 . .  P,), 2 = (ah', ah',. 9 ah,), Z = ( ~ 1 ,  a29 - m 9 U,). 
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Indeed, suppose to  the contrary that $ is not additive. Choosing 
new variables p1, pup,. . . , we are  thus assuming that 

It is  easy to see that 

deg(x) I de&), d e a i  (x) I de&, ($), deg,, (X) L (.(cl> , 
and x(&$) = 0 for all a, b E A. Suppose first that x(Z,8) = 0 for 
all cl, c2, . . . , cECn, b E A. By Remark 7.6.3 we may  pick C', dE 
C" such that x(Z,d) # 0, since x # 0. Setting a(p) = $(S, p) 
we note that a(p) # 0, a@ = 0 for all b E A, 

and  thus we have a contradiction to  the choice of $. Therefore 
we may suppose there exist c' E C", b E A such that x(Z, 8) # 0. 
Setting .(X) = x(&$), we see that .(X) # 0, T(G) = 0 for all 
a E A, 

and again we have a contradiction to  the choice of $. 
We next characterize additive polynomials. 

Theorem 7.6.5 A polynomial 4 = +(XI, X2, . . . ,X,) E C[h] is 
additive if and  only if it has  the form C aJi (char(C) = 0) or 
Cy=l Cjlo a$? (char(C) = p ) .  

Proof. Clearly the indicated polynomials are additive. Con- 
versely, setting qbi(Xi) = +(O,. . . ,0, Xi, 0,. . . ,O) ,  we see  by the 
additivity of 4 that $(XI, X2,. . . ,X,) = C:=l $i(Xi), and so we 
may assume without loss of generality that 4 = C a@ is a 
polynomial in one variable. It is immediate from additivity 
that a0 = 0. Suppose that a, # 0 for  some r > 0. From 
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4(A + p) - 4(X) - 4 ( p )  = 0 ( p  a new indeterminate) it follows 
that a' [(X + p)' - X' - p'] = 0 and in particular ra,.X'-'p = 0. 
If char(C) = 0 then we have the immediate contradiction a, = 0 
and we are done. If char( C) = p ,  then p divides r and we may 
write r = spk, k 2 1 and ( p ,  S) = 1. Then 

o =  (X + p)T - X' - p' = (X + p) P k 5  - X P k 5  - p P k 5  

= ( X P k  + p P k ) 5  - ( X P k ) ) "  - 

If S > 1 it follows that S ( P k ) ' - '  p p k  = 0, a contradiction since 
( p ,  S) = 1. Therefore r = pk and  the proof of the theorem is 
complete. 

Functions hl, h2, . . . , h, of a set S into C are said to be lin- 
early dependent over C if there exists 0 # %Xi such that 
E t l  %shi = 0 for all S E S. A useful condition for linear inde- 
pendence  is  given in 

Theorem 7.6.6 (Artin) If hl,. . . ,h, are distinct homomor- 
phisms of a group G into the  multiplicative group of C,  then 
they are linearly  independent  over C .  

Proof. Suppose hl, h2,. . . , h, are linearly dependent. By 
suitable reordering we may assume that hl, ha, . . . , h, is a min- 
imal dependent subset of {hl, . . . , hn}, satisfying, say, Cgl &Xi. 
Clearly m > 1. We  pick a E G such that ahl # ah2 , and let 
g E G. On the one hand 0 = c ~ ( a g ) ~ i  = C tyzhighi whereas 
on the other hand 0 = ahl C Gghi = C cyzhlghi.  Subtracting 
second equation from the first yields ZE2 G (ahi - ahl) ghi = 0 

contradicting the minimality of m since c2 (ah2 - ahl) # 0. 

showing that F-reduced T-identities of C are 0. 
Our digression  is now complete and we return  to  the task of 

Lemma 7.6.7 Fix X E A and let c$ be an  F-reduced T-identity 
of C involving  only X. Then c$ = 0. 
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Proof. We suppose q5 # 0 and write in the  standard form 

S a 

according to (7.27). In case (2b) (C finite) C$ = 0 by  Re- 
mark 7.6.3 since d is a reduced polynomial in X. In case (la) 
we choose  new indeterminates X, for  each a involved in 6 (finite 
in number),  set h, = Ajgk E Enda (C), set 

and note that  the ha’s are algebraically dependent via c7 (here 
a = (X, Aj, gk))  . In case (2a) for  each (a, l )  involved in 4 (finite 
in number) we choose a new indeterminate X,J, set h,,l = E 
En& (C), set 

and  note that  the ha,l’s are algebraically dependent via 0. By 
Theorem 7.6.4 and Theorem 7.6.5 the h,’s are linearly depen- 
dent over C and also the ha,l’s are linearly dependent over C 
(since in case (2a) we have q(a)  < p ) .  Translated back to 
our usual setting,  this simply says that there exists a nonzero 
reduced linear T-identity  in X satisfied by C. This is contra- 
dictory to Theorem 7.5.6 and so the proof  is complete in cases 
(la),  (2a) and (2b). 

For the remainder of the proof we assume case (lb) and 
write in detail 

4 = C CS n (XAjgk)’j* . 
j ,k  

This in turn may be further explicitly written as 
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where s j k  = Sjklp ' .  Setting p = (j, IC, Z) we let { A p }  be 
distinct indeteriinates in A, and for  each p let h p  denote that 
additive map A j g k c q ,  where 01 stands for the homomorphism 
c I+ cp' . Now set $ = C, c, up Ab, where sp = s j k l  < p and  note 
that $ ( $ p )  = 0 for all c E C, i.e., the maps hp are algebraically 
dependent. By Theorem 7.6.4 and Theorem 7.6.5 there is a 
nonzero linear element Ea cpXp (since sp < p )  such that 

is a nonzero T-identity on C. We choose p # X E A and make 
the  substitution X I+ ApP in x. From (pp)' = p p p - l p 6  = 0 it is 
clear that ( , ~ p ) ~ j  = 0, whence we see that 

~ ( A p p )  of course remains a T-identity on C and so, recalling the 
notation 01 : c H cp , we have l 

whence cp" = c% g k z ,  m = 21 - l 2  2 0. Thus gG1gk2 E Gf = 1 
and so ICl = IC2 and accordingly I1 = Z2. Therefore by Theo- 
rem  7.6.6 we see that for  each k ,  1 c j c j  (cAjgk)" = 0 for all 
c E C, where cj = cp, p = (j, IC, Z), i.e., 

-1 

(7.30) 
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is a nonzero T-identity. Applying gil  to (7.30) we see that 

is a nonzero T-identity. Now  we let L = { cp' I c E C}, choose an 
Ebasis {vi} of C, and write c? = xi <;vi. Then,  substituting 
X I+ c in (7.31), we have 

-1 

whence  for  each i Cj c$ (c*j) = 0, and hence Cj GjcAj = 0. 
P' 

Thus cj ~ j X * j  = 0 is a nonzero linear T-identity, a contradic- 
tion to Theorem 7.5.6, and  the proof of the lemma is complete. 

We are ready to show that for a field C the only T-identities 
are  F-trivial. 

Theorem 7.6.8 If 4 is an F-reduced T-identity on a field C, 
then 4 = 0. In other words,  every T-identity is F-trivial. 

Proof. We suppose 4 # 0. Let XI, X 2 , .  . . , X, be the indeter- 
minates involved in 4. We proceed by induction on n. The case 
n = 1 is  given by Lemma 7.6.7.  We may write 4 in the form 4 = 
C,, QslVs1, where V,, = n,,=,, V,,, and Q,, is an F-reduced 
element in X2, X3, . . . ) X,. Taking into account the induction as- 
sumption, we conclude that  it is  enough to prove that !Psl is a 
T-identity of C. If not  there is a 2"-substitution Xi I+ ri, ri E C, 
i = 2,3, . . . ) n such that for  some s1 XPSl (r2,r3, . . . , r,) # 0. We 
set c,, = Q,, (r2,r3, . . . , r,) and  note that C c,,Q,, is a nonzero 
F-reduced 5"-identity of C, a contradiction to Lemma  7.6.7. 
Thus Q,, = 0 and so 4 = C,, Q,,&, = 0, a contradiction. 
The proof of the theorem is thereby complete. 
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We close this section with the following  well-known criteria 
of linear independence of functions and  its corollary. 

Lemma 7.6.9 Functions hl, h2, . . . , h, of a set S into C are 
linearly  independent if and  only if there  exist a l ,  a2,. . . ,a, E S 
such  that det(hi(aj)) # 0. 

Proof. The "if" part is almost immediate. Indeed, suppose 
&%hi = 0, c, E C. Since det(hi(uj)) # 0, the n equations 

cJzi(aj) = 0, j = 1,2,. . . , n have  only the trivial solution 
for the G'S. 

Suppose that hl, h,, . . . , h, are linearly independent. We 
proceed by induction on n. The case n = 1 is obvious. For the 
n x n matrix A = (hi(aj)) we denote by Aij the i, j-cofactor. By 
the induction assumption there exist al, a2,. . . , a,-l E S such 
that A,,, = det(hi(aj))z;Ll # 0. Suppose that det(hi(aj))&,l = 
0 for all a, E S. Then expanding we obtain C&, Ai,,hi(u,) = 0 
and so Ai,,hi(t) = 0 in t E S which means that hl, . . . , h, 
are linearly dependent,  a contradiction. 

Corollary 7.6.10 Let 42,. . . , 4, be F-reduced elements of 
CIATo] involving  the indeterminates X1, X 2 , .  . . , X,. Then 4i, 
1 5 i 5 m, are C-independent if and  only if there  exist m substi- 
tutions a(j) = (aj1, u p , .  . . , aj,) E C" such  that det($a(a(j))) # 
0. 

7.7 The Structure of T-identities 
(General Case) 

One of the main results proved so far in this  chapter (Theo- 
rem 7.5.8) states  that if R is a prime ring and 4 is a nonzero 
reduced  2'-identity  on a nonzero ideal I of R, then R is GPI. 
This result will  be  used  in the present section, in which our aim 
is to show that such a q5 above  enjoys  two  very strong properties: 



7.7. THE STRUCTURE OF T-IDENTITIES 345 

(a) (very  roughly stated)  the variables involved  in 4 may be 

(b) 4 is a T-identity on Q = Q,(R). 
We mention that if 4 E E* (reduced with no antiautomor- 

phisms involved) and char(R) = 0 then  nothing  further need be 
said - Theorem 7.5.9  says that  the variables may be completely 
”freed” and 4 is a GP1 on Q. Thus  this section is of interest 
only if char (R)  = p or antiautomorphisms  are involved. 

Whereas the meaning of (b) is quite clear we need to extend 
the notion of Fkobenius automorphism defined  in the preceding 
section for  fields to prime rings in order to clarify (a). To this 
end let g E G = G(R) ,  the group of automorphisms and  antiau- 
tomorphisms of the prime ring R, and  let G be  the restriction of 
g to C. We say that g is a Robenius element if 3 is a Fkobenius 
automorphism of C (as defined in section 7.6), and we let G f  
denote the set of all Fkobenius elements of G. We leave it -as a 
routine exercise  for the reader to show that Gi C G f  G G. We 
now  fix  (for the remainder of this section) a set Go1 of represen- 
tatives of G modulo G f  and a set Gfi  of representatives of G f  
modulo Gi. We may then  set Go = GofGfi and therefore take 
TO = To(R) to be the set 

partially ” freed” ; 

{Agf I A E WO, 9 E GOf, f E Gfi}. 

Given a C-basis A of Q we  know that a typical C-basis mono- 
mial M in Qc<XTo> may now be written 

M = CL OX^^ a1 . . . xin an (7.32) 
Ajlgklfl l  Ajngknfin 

where 

(7.33) 



346 CHAPTER 7. T-IDENTITIES OF PMME RINGS 

where M is of the form (7.32). To remind us of the variables 
involved in (b we will  sometimes write (b = 6 ( x i  

We are now in a position to accurately explain property (a) 
stated at the beginning of this section.  Let {yijk} be a set of 
distinct  indeterminates of X in  one-one  correspondence with 
the variables xAjgk, and  let (b = b(xygk f i )  be a nonzero  reduced 
T-identity on  some  nonzero  ideal I of R. Then ((a)) may be 
restated as 

(a)' (b(y&) is a T-identity on  some  nonzero  ideal J of R. 
If we wish to focus  on a particular x in the monomial M in 

A j g k f l )  

(7.32) it is  convenient to rewrite (7.32) as 

M = PoxAj1gkl f11 pl . . , pn-lx*jngknfin p n (7.34) 

where PO, PI,.  . . , Pn are monomials of the form (7.32) not in- 
volving x. In turn if  we  wish to concentrate on a particular 
triple x,  A, g in (7.34) we shall write 

(7.35) 

where Qo, & I , .  . . , Qn are monomials of the form (7.32) whose 
variables are  not xAgfi for any 1. 

At this point we make an observation relating To(R) and 
To(C) which  will be used  in the sequel. 

Proof. Since R is a GPI we  know  by Theorem 4.5.3 that 
if 6 E D(R) is  such that 6 vanishes  on C, i.e. 8 = 0, then 
6 E Di(R). In  this  situation we then conclude that a basis 
&(C) of Der(C) may be chosen so that &(R) maps injectively 
into &,(C). It follows  (from the PBW Theorem) that Wo(R) 
maps injectively into WO (C), thus proving (i). The proof of (ii) 
follows  easily  from the definition of Frobenius  elements. 
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Now assume that R is GP1 and consider the extended setting 

&(R) = S O W )  @c S(R) 
together  with the C-ring map y : T ( R )  + Ende(Sl(R)) given 
by Remark 7.3.6.  Given x,y E X, X E A we  now make the T- 
substitution x I+ x+Xy of S(R) into &(R) relatively to y (Here, 
to simplify the  notation, we are writing z + Ay for 1 @ x + X @ y). 
For any Aj = 6162 . . . 6q E WO (R) ,  gk E Gof , f r  E Gfi,  we may 
use the Leibnitz formulas to obtain 

(z + Xy)Ajgkfi = C XAigkXyAy9kfi 
"- 

(7.36) 
A; 

where the summation is as described in Remark 1.1.1 and 

Aj,Ag,Ay E WO(R) C WO(C),  g k  E Gof(R) C Gof(C), 
4 = Y(Aj>, 5 = y(gk),  3 = T(fi>. 

Notice that  the slight abuse of notation in (7.36)  is justified in 
view of our tacit use of Remark 7.7.1. However  we definitely 
want to distinguish between fi E Gfi and E G f ( C ) ,  e.g. it 
might well be the case that  the 3 are all equal to 1. 

Next let {V,}  be  the C-basis of C<ATO(c)> modulo Iz(C) as 
given  by  (7.27) and Theorem 7.6.2. We  fix a nonzero ideal I of 
R. Then any II, E S1 can be written uniquely as 

II ,=Cv,@4s+x (7.37) 
S 

where E QC <XTo@) > and x E S1 is sent to 0 (in view  of 
Remark 7.3.7) by every C-algebra map X j  I+ cj E C (Xj E A), 
xi I+ ri E J (xi E X ) ,  with cjJ C I (for a given II, only a finite 
number of Xi's are involved).  For future reference we shall call 

the coefficient of V,  in (7.37). 
Given x E X, A E WO, g E Gof we proceed to define the 

notion of the Fkobenius degree (briefly, F-deg) of x A 9  in any 
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element 4 of Q c < X ~ O ( ~ ) > .  We begin by defining  for  each f E 
Gfi according to  the cases (la),  (lb)  ,(2a) and (2b) described 
in section 7.6: 

1 in cases (la) and (lb) 
If' = { p' if f = O1 in cases (2a) and (2b). 

Here we recall that f (the restriction of f to C) is a Frobenius 
automorphism of C by the definition of Got. Note that in case 
(2a) I f  1 is not  an integer if I < 0, whereas in case (2b) I f 1  is an 
integer since 0 5 I < m where IC1 = p". We also remark that in 
view  of Theorem 4.5.3 D(R)  = Q(R) (and so WO = 1) in cases 
(2a) and (2b) since Der(C) = 0 as was shown in section 7.6. 

Regarding a monomial M as written  in  the form  (7.35) we 
then define the F-deg of xAg in M to be equal to 

0 if xAg does not  appear in M ,  

c = n in cases (la) and (lb), 

C lfd in case @a), (7.38) 

n 

1=1 
n 

1=1 
n 

r in  case (2b), where c I f l [  - 1 = q(pn - 1) + ro, 
k l  

O L r o < p n - l ,  r=ro+1. 

We remark that  in cases (la) and (lb) the F-deg of zAg in M is 
just  the ordinary degree of the variable xAg in M .  In case (2a) 
we note that  the F-deg of x g  (since A = 1) in M need not  be 
an integer (if I < 0). For 4 E Qc<XTo> we write = CCMM 
as in (7.33) and define the F-deg of zag in 4 to be the maximal 
F-deg of xAg in all M's belonging to 4. 

For induction purposes later on the following partially or- 
dered set will be useful.  For  fixed x E X ,  g E Gof any vari- 
able of the form xAjgfi will  be  called an (x, g)-variable . If 
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4 E QC < XTo >, i.e., 4 is reduced, the largest Aj appear- 
ing in any ( x ,  g)-variable belonging to q5 will be denoted by 
A = zi(q5; x ;  g). (In case  no ( x ,  g)-variable belongs to 4 we 
have zi = 1). If m is a fixed integer, possibly negative, we de- 
fine S = S(m; x ;  g) to be the set of all reduced elements 4 whose 
( x ,  g)-variables xAjgfr are such that I f , l  2 p". We partially or- 
der S as follows 

- 

(i) First compare x ;  g), 
(ii) If (i) is  inconclusive, then compare the F-deg of xxg in 

4. We note that for any 4 E S the F-deg of xxg in 4 lies in the 
set N, of all rational numbers {C,,, alp1 1 al 2 0). Since both 
WO and Nm are well ordered sets i t  follows that S satisfies the 
minimum condition under the  partial ordering just described. 

We  now come to a rather technical lemma in which in a 
special instance of (7.35) we are able to compute the coefficient 
of one of the Vs's. This will be of crucial importance when we 
come to establishing property (a). 

We set N-,  = UmEZ Nm. 

Lemma 7.7.2 Assume C is infinite  and R is  GPI, fix x ,  y E X ,  
X E A, g E Gof(R),  h E N-m, and  let M E Qc<To(R)> be a 
monomial of the form 

M = Qn-lxAgfnQn 
- - 

(7.39) 

where (as in (7.35)) the Qi's do not  involve  any  variable of the 
f o r m  xAgf for  any f and x = Z ( M ;   x ;  g). Let M ( x  + Ay) be 
the  element of S1 obtained from M by  replacing x by  x + Ay and 
leaving xi ,   x i  # x ,  alone,  and  let V be the  C-basis  monomial in 
CIATo(c)] given by  V = = V,, where a = ( X ,  zi, g) is  the 
sole  support of S and s (a )  = h. Then  the  coeficient Mv of V 
in the  expansion of M ( x  + Ay) in Sl is  nonzero if and  only if 
h = Cy=1 I fil, in which case 

- 

MV = Q O ( X ) Y ~ ~ ' Q I ( X )  - Qn- l (x )yg fnQn(x) .  
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Proof. As a first step we consider any variable xAjgkfi ap- 
pearing in M ,  look at the expansion of (x + A ~ ) ~ j g k f [  in (7.36), 
and ask under what circumstances does 

"- 

Necessarily g k  = g and A$ = A. But A$ 5 Aj and by the 
maximality of x we then have Aj = A. Since all of the variables 
involved in the Q i ' s  in (7.39) are  distinct from x'gff, it follows 
by completely expanding (x + Ay) by means of (7.36) that  the 
one and only one summand  in this expansion containing V as a 
factor is 

- 
- 

subject to  the condition 

v f AAgfi (rnodI2(C)). 
- A  

(7.40) 
k 1  

But (7.40) is equivalent to C;"=, lfil = h, and  the lemma is 
proved. 

The preceding lemma will be used in proving the following 
lemma, which  in turn goes a long way towards establishing prop- 
erty (a). 

Lemma 7.7.3 Let C be infinite and let 4 be a reduced T-identity 
on a nonzero ideal I of R. For fixed x E X ,  g E Gof, = 
A(4; x; g ) ,  and y E X not  appearing in 4, let r be the  element 
obtained from 4 by substituting y g  in place of x'g but  leaving all 
other  variables xnjgkfi intact. Then r is a reduced T-identity on 
some  nonzero ideal J of R. 

- 
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Proof. We may suppose 4 # 0 and hence by Theorem 7.5.8 
that R is GPI. Suppose to  the contrary that r is not a reduced 
identity on any 0 # J a R and choose m E 2 such that for  every 
( x ,  g)-variable xAjgf[ belonging to 4 we have l f i l  2 p" (If G f  = 1 
we take m = 0). The subset SO of S(m; x ;  g )  consisting of all 
reduced T-identities 4o on some  nonzero ideal of R which are 
no longer T-identities on some  nonzero ideal of R when xK0g is 
replaced by yg, & = A(&,; 2;  g), is therefore nonempty.  Hence 
So has a minimal member  which, without loss of generality, we 
shall again designate as 4 (and assume is a T-identity on I ) .  We 
set h = F-deg of xEg in 4, a = s(4; x ;  g) and write 

- 

where (with (7.33) in mind) M is of the form 

M = Q ~ X ~ ~ ~ I Q ~ .  . . 
- 

where  in - turn  the QI's are monomials whose variables are  distinct 
from xAgf[ .  In 

we form the element 4 ( x  + Ay), A E A, y E X distinct from all 
indeterminates in 4, by replacing any variable xAjgkfl by ( x  + 
A ~ ) ~ j g k f [  as expanded in (7.36) but leaving all variables xi ,   x i  # 
x alone. We may then write 

"- 

according to (7.37),  where W = (K1 < 00.  By Corollary 7.6.10 
there exists elements E C, t E K ,  such that  the W x W matrix 
( K ( Q ) ) ~ , ~ ~ K  is nonsingular. We may  choose a nonzero ideal 
J E I such that QJ C I for t E K .  Hence 4 ( x  + Ay) vanishes 
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under any substitution in which A is mapped to Q and x, xi, y 
are  mapped  arbitrarily  into J. Now consider the W equations 

formed by sending 

A I+ Q, X H T, I+ ~ i ,  y H U ,  T, ~ i ,  U E J. 

Since ( V ,  (Q)) is nonsingular, each q&(~, rl, . . . , T ~ ,  a) = 0, i.e., 
each +s(x, XI, . . . , xq, y )  is a 2'-identity on J. 

In  particular  let V = Va,s = V,, where o = (A, K, g) is the 
sole support of S and S (  a) = h (here we recall that h is the  F-deg 
of xzg in 4). We  have just shown that  the coefficient of = 
of V in the expansion of $(x + Ay) in S1 is also a-T-identity on 
some  nonzero ideal J C_ I of R. We  now proceed to determine 
+V. Let - 

M = ~ , , ~ ~ g f 1 ~ ,  . . . ~ ~ - ~ ~ ~ g f n ~ ~ ,  

written in the form (7.35), be any one of the monomials in (7.37) 
belonging to 4. By  Lemma 7.7.2 the coefficient MV of V in the 
expansion of M ( x  + Ay) is  nonzero if and only if the  F-deg of 
xAg in M is equal to h (the  F-deg of xzg in +), in which  case 
- 

Therefore 

+V =  CM MV I F-deg of xzg in M is equal to h} 

and MV is obtained from M by replacing xxgfl by ygfi ,  1 = 
1,2, .  . . , n. Now let 4' be the element of Qc<XT0 > obtained 
from +V by substituting xE for y ,  i.e. 

4' = ~ { c M M  I F-deg of x'g in M is equal to h} 
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There exists a nonzero ideal K c J such that KT E J(e.g., take 
K = J', where r = la[+ 1). Since 4~ is a  T-identity on J it fol- 
lows that 4' is a  T-identity on K .  Clearly 4' E S = S(m, x, g), 
but 4' fZ SO. Consider the element $ = 4 - 4'. Certainly $ # 0, 
since otherwise we would  have the contradiction 4 fZ SO. From 
the definition of 4' it is clear that z($; x; g) 2 a($; x; g), and 
that  the F-deg of in $ is strictly less than h (the  F-deg of 
xag in 4). Therefore $ < 4 (in the ordering in S) and so by the 
minimality of 4 in So we conclude that $ SO, i.e. substitution 
of xEg by yg in $ produced a  T-identity p on  some  nonzero ideal 
L C K. The element 4~ + p is then the required element, and 
the proof of the lemma is complete. 

- 

We are now in a position to establish property (a)'. 

Theorem 7.7.4 Let R be a prime ring, let 4(xpgkf') be a  re- 
duced T-identity  on a  nonzero ideal I of R, and  let {yijk} be 
distinct  elements of X in one-one  correspondence  with  the  vari- 
ables x p g k .  Then c$(&) is  a T-identity  on  some  nonzero ideal 
J of R. 

Proof. If 4 = 0 there is nothing to prove, and so we may 
assume that 4 # 0. Then by Theorem 7.5.8 R is GPI and so by 
Remark 7.7.1 Wo(R) c Wo(C) = W ( C )  and Gof(R) Gof(C). 

Suppose C is finite. Then D e r ( C )  = 0 and Gof(C) = 1, 
whence WO (R) = 1 and Gof (R) = 1. Therefore in this case 
4 = 4(x;) is already of the required form. 

We may therefore assume that C is infinite. For  fixed x E X ,  
g E Go1 let 

- 
A(& X; g) = A1 > A2 > . . . > A, 

be the Aj E Wo(R) involved  in the (x, g)-variables of 4. Let $1 

be the element obtained from 4 by  by substituting zf in place 
of xalg (and leaving all other variables intact) where z1 is a 
new indeterminate. By Lemma 7.7.3 $1 is a  T-identity on some 
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nonzero ideal I1 c I .  Since A2 = A($1; x; g) < A, we see 
again by Lemma 7.7.3 that $2, the element obtained from $1 

by replacing xA2g by ,z!, is a  T-identity on  some  nonzero ideal 
12 C_ I1 C I .  Continuing in this fashion, after t steps we have 
shown that by substituting 2; for xAjg in 4, j = 1,2,. . . , t, the 
element $ = $x,g so obtained is a 2'-identity on  some  nonzero 
ideal J of R. Substituting now 9q-l for 5 ,  i = 1,2,. . . ,t (and 
leaving all other variables intact) where 91, 92,  . . . , yt are new 
variables, we obtain  the element r = rx,g which  is a  T-identity 
on U = J n J g .  We note that  the element r is obtained from 4 
by replacing xAJg by yj. Now let 

- 

be the (necessarily finite) subset of X x Gof such that 4 has 
(xij, gi,)-variables. Repeated application of the preceding argu- 
ment then completes the proof of the theorem. 

We  now turn our attention  to verifying property (b). In 
view of Theorem 7.7.4 we shall assume for the remainder of this 
section that any T-identity is of the form 4 = C$(.:). As 
an initial goal our aim will be to show that any T-identity on 
0 # I a R is a 2'-identity on the socle of RC. To do this we first 
need  some further definitions. We shall say that 4 is additive 
on an additive subgroup A of Q if for  each xi E X involved in $J 
we have 

q5(ri + si) = +(rJ + 4(si) for all ri, si E A. 

Next  recall the definition of N :  

Now let x be  an  indeterminate involved in 4 (where 4 is as 
shown in (7.33)) and  let h E N .  The ($-homogeneous part of 
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4 is  defined to be 

p h  = X{C" I M belongs to 4 and 
F-deg of x in M equals h}. 

Clearly,  for  fixed x, 4 is  uniquely representable as a sum of its 
(:)-homogeneous parts: 

4 = c p h .  

Likewise if xl, x2, . . . , zm are all the indeterminates involved in 4 
and hl,  h2, . . . , h, E N ,  then-  the   hornogene homogeneous part 
of 4 (which  will sometimes be referred to as an F-homogeneous 
part of 4) is defined to be 

p = ~ { c M M  I F-deg of xi in M equals hi, 1 5 i 5 m}. 

As above 4 can be written as the direct sum of its F-homogeneous 
parts. 

Lemma 7.7.5 Let C be infinite. Then 4 ( x f )  is a T-identity on 
a nonzero  ideal of R if  and  only  if  each F-homogeneous  compo- 
nent of 4 is a T-identity on a nonzero  ideal of R. 

Proof. The  "if'  part being obvious, we assume 4 is a T -  
identity on I and fix any one of the indeterminates involved in 
4. Let hl,  h2,. . . , h, be  the distinct F-deg's of x in the various 
monomials  belonging to 4. w e  write 4 = cy=l ri where ri = phi 
is the (,2i)-homogeneous part of 4. In the extended setting 

& = &(R) = So(C) @c S(R) 

we choose A E A and consider the element 4(Xx) obtained from 
4 by substituting A x  for x and leaving xi, xi # x, alone. From 

(Ax)?(f) = 
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(where y is 

monomials 
Mi (x) 

given by Remark 7.3.6) it is  easy to see that ri(Xz) = 
+ xi (as in (7.37)), where Mi( X) is  one of the basis 
(7.23) in which the F-deg of X is hi. By Lemma 7.6.1 

Therefore 
n 

4 ( W  = c vsi(X)Ti(2) + x, 
i=l 

noting that V,, , V , 2 ,  . . . , V,, are C-independent modulo Iz(C). 
By Corollary 7.6.10 there exist cl, c2,. . . ,c,, E C such that  the 
n X n matrix (V,,(cj))  is invertible. Let 0 # J a R be such that 
J C I and Jcj C I ,  j = 1,2, . . . , n, and  note that  the following 
n equations hold: 

n 

0 = +(CjT) = cv&j)Ti(r), j = 1,2, .  . . ,n 
i=l 

for all T E J and ~k E J ,  x k  # x. From the invertibility of 
(&.(cj)) we conclude that T ~ ( T )  = 0 for all T ,  E J ,  i.e., ri = phi 
is a T-identity on J for i = 1,2 , .  . . , n. Repetition of the above 
process applied to each phi and using indeterminates involved in 
4 other than x clearly leads ultimately to each F-homogeneous 
part of 4 being a  T-identity on  some  nonzero ideal of R. 

Lemma 7.7.6 Let C be infinite and  let 4 = ~ ( z I ,  52, . . . ,x,) be 
a T-identity  on 0 # -homogeneous,  and  additive 
on IC. Then 4 is a 

Proof. In SI = &(C) @C S(R) we select indeterminates 
XI, X2,. . . , X, E A and, using the homogeneity of and Theo- 
rem 7.6.2 we observe that 
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where V is that basis monomial in (7.27)  whose F-deg  in each 
A i  is hi. It follows that 

for all q E C, ri E I .  We  now compute, using  (7.41) and  the 
additivity of 4 on IC, 

Lemma 7.7.7 If4(z,f’) is a T-identity on 0 # IaR,  then 4(z,t’) 
is a T-identity on JC for some 0 # J a R. 

Proof. If C is finite we can pick 0 # K a R such that 
KC c R. Setting J = I K  we have 

JC = I (KC)  C_ I R  C I 

and  the lemma is  proved. 
We may therefore assume that C is infinite. The proof  is by 

induction on ht(4). Suppose first that ht(4) = 0. Writing 4 = 
C p as the sum of its F-homogeneous parts we  know that each p 
is of height 0 and consequently each p is additive. Furthermore, 
by Lemma  7.7.5, there is a nonzero ideal J of R such that each 
p is a T-identity on J .  Lemma 7.7.6 then says that each p, and 
hence 4, is a T-identity on JC and  the lemma is  proved  in this 
case. 

Now suppose the lemma is true for all 4 of height less than n 
satisfying the conditions of the lemma. Let 4 of height n satisfy 
the conditions of the lemma. Without loss of generality, in view 
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of Lemma 7.7.5,  we may assume that # is F-homogeneous. This 
implies in particular that any x that appears in # must appear in 
each monomial M involved in #. Now let x be such an x, select a 
new indeterminate y ,  and form the element M ( x  + y )  - M(z)  - 
M ( y ) .  If deg,(M) = 1 then M ( z  + y )  - M ( x )  - M ( y )  = 0. 
If deg,(M) > 1 then ht(M(x + y )  - M ( x )  - M ( Y ) )  < ht(M). 
From these considerations it follows that for any x appearing 
in # either #(x + y )  - #(x) - # ( y )  = 0 (if  deg,(#) = 1) or 
(if &g,(#) > 1) M(#(% + Y )  - #(x) - # ( Y ) )  < ht(#). Setting + = #(x + y )  - #(x) - #(y) we have that either $ = 0 (if 
deg, (4) = 1) or  (if  deg,(#) > 1) ht($) < ht(#). By induction 
the  latter possibility implies that $J is a 2'-identity on JC for 
some 0 # J a R. In either case we see that # is x-additive on 
JC. Since x was arbitrary  it follows that # is additive on KC for 
some 0 # K a R, whence by Lemma 7.7.6 the proof is complete. 

In view  of Theorem 7.7.4 we are now in a position to establish 
property (b). 
Theorem 7.7.8 Let R be a prime  ring  and  let # be a reduced 
T-identity  on 0 # I a R of the form # = #(x?). Then #J is a 
T-identity on Q,(R). 

Proof. We may assume # # 0, whence  by Theorem 7.5.8 
R is GPI.  In this  situation we  know that RC is primitive with 
nonzero  socle H ,  acting densely on a vector space V over a 
division ring D. By Theorem 4.3.8(v) &,(RC) C End~(v). 
Since Q,(R) c Qs(RC) it suffices to show that # is a 2'-identity 
on QS(RC). By Lemma 7.7.7 # is a T-identity on an ideal JC 
of RC for  some 0 # J a R and so in particular # is a 2'-identity 
on the socle H .  Let A be a C-basis of Q,(R) and write 

where M is a basis monomial of the form 



7.7. T H E  STRUCTURE OF T-IDENTITIES 359 

xi E X ,  aj E A, fi E Gfi. 

Let A', X ' ,  G)i denote respectively the sets (necessarily finite) 
of all aj E A, xi E X ,  fi E Gfi  appearing  in 4. We may 
assume X'  = { x l ,  x2, . . . , x,} and we make an  arbitrary  but 
fixed substitution xi H qi E QS(RC), i = 1,2, .  . .,m. Letting 
v E V, our task is to show that v$(ql,qz,. . . ,am) = 0. To this 
end consider the D-span Vi of all vectors W E V which are of 
one of the following  two forms 

W = VUjoqi, U j ,  . . . Ujr-lqi, U j r  Or fh fir 

W = Vajoqil  aj1 - -ajr-lQir f i l  fir (7.42) 

where 0 5 r 5 S ,  aj E A', fi E G)i, qi E {ql,qZ,. . . ,qm}. V0 

is finite dimensional over D and therefore, since H acts densely 
on V, there exists b E H such that b is the identity on Vo. 
By Litoff's theorem there exists eo E H such that b E eoHeo. It 
follows that eo acts as the identity on V,. Now consider the finite 
set L = {e{-' I f E G)i) C H .  Using Litoff's theorem again 
we  know there is an idempotent e E H such that L eHe. We 
claim that 

eo = eoef = efeo, f E G;i. 
Indeed, first assuming f is an automorphism, we have 

f-l  f f-l f efeo = (eeo = (eo = (e{-' e l f  = eoef. 

A similar argument prevails  if f is an antiautomorphism. We 
next claim that if W is  of the form (7.42) then wqf = w(eqe)f, 
f E G:f, 4 E {Ql, 42,  - , h } .  Indeed, 

w(eqe)f = wefq fe f  = weoefqfef = weqfef = wqfef  
= (wqfe0)ef = (wqf)eef = wq f e = wq f . 

From repeated use of this claim it follows that 

Vajoqf' aj1- - ajn-l qi, aj, 
= vajo(eqile)filajl . . .ajn-,(eqine)f~najn. 

fin 
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and  thus 

since eqie E H ,  i = 1 ,2 , .  . . ,m. This completes the proof of the 
theorem. 

By combining Theorem 7.7.4 and Theorem 7.7.8 we have 

Theorem 7.7.9 Let R be a prime ring, let q5 = q5(xPgkf') be a 
reduced T-identity  on  some  nonzero ideal of R, and  let {yijk) be 
distinct  elements of X in one-one  correspondence  with  variables .pgk. Then q5(y&) is a T-identity  on Qs(R). 

7.8 T-identities  with  Coefficients 
in Qmr 

This brief section is an appendix  in which we indicate that, 
by making some natural alterations in the definitions but oth- 
erwise essentially keeping the same proofs, the main results 
on  7'-identities remain valid  even  when the coefficients are al- 
lowed to be in &m,. The main obstacle to overcome is the fact 
that whereas derivations and automorphisms of R can  be lifted 
to QmT (Proposition 2.5.1 and Proposition 2.5.3) antiautomor- 
phisms can in general only be lifted to Qs (Proposition 2.5.4). 
This problem, however,  is  easily  solved  by  modifying the defini- 
tion of a 2'-substitution.  All other obstacles have already been 
anticipated by results on Qmr proved in Chapter 2, Chapter 4, 
and  Chapter 6, and we shall indicate where these are used. 

Let R be a prime ring with D, G, T, G*, and T* defined 
exactly as in sections 7.1 and 7.2. There  are two  obvious ways 
of generalizing the notion of the  setting S of R. One is defined 
to be 

Sm = Qmr C(V @C T )  
C 
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which we shall call the maximal setting of R. The other is 
defined to be 

= Q,, C{V @C T*}  
C 

which we shall call the *-maximal setting of R. 
A substitution process compatible with S, is, in general 

terms at first, described as follows. Let P be a C-algebra with 
1 such that 

(i) P 2 Q,,; 
(ii) P 2 N ,  N a C-subalgebra of P;  
(iii) There is a C-ring map y : T -+ End@ ( N )  . 

Let $ : V + N be any C-space map.  Then (as in section 7.1) 
it is  shown that  there is a unique C-algebra map 6 : S, -+ P 
given  by q I+ q, q E Q,,, and W @ t I+ $(w)Y@).  Such a map 
will be called the T‘-substitution determined by $ relative to 
y. Fix any C-basis X of V. Now let P = Q,,, N = Qs, and 
y : T -+ Endip(Q,) as given in section 7.1.  Any nonzero ideal 
I of R is of course contained in Qs and we shall say that  an 
element r$ of S, is a T’-identity on I if r$ is mapped to 0 under 
all 5”’-substitutions 4 for  which $ ( X )  E I .  As in sections 7.5 
and 7.7 7”-substitutions of S, into itself are needed, and here 
we take P = S,, N = S, and y : T + Endip(S) as given  by 
Theorem 7.3.5. 

As  for S: let P be a C-algebra with 1 containing Q,, and 
let y : T* -+ Endip(P) be a fixed C-ring map. For any C-space 
map $ : V -+ P the C-algebra map 6 : S; +- P determined by 
Q I+ Q,  q E Qmr, and W @ t  t+ $ ( W ) Y @ ) ,  t E T*, is called the T*- 
substitution determined by $ relative to y. Now let P = Q,,. 
Since derivations and automorphisms of R can be lifted to Q,, 
(Propositions 2.5.1 and 2.5.3) it is clear that  there are resulting 
maps QI : U -+ Endip (Q,,) and p : G* +- Endip (Q,,) which 
can be simultaneously extended to a C-ring map y : T* -+ 
End@(Q,T). We shall say that r$ E S: is a T*-identity on 0 # 
I a R if q5 is mapped to 0 under all !P-substitutions 4 for which 
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$ ( X )  C I .  It is clear that  the analogue of Theorem 7.3.5 is valid, 
namely, there is an  appropriate C-ring map y : T* + End@ (S;), 
and so we have the T*-substitutions of S; into itself  which are 
needed  for extending the results of sections 7.5 and 7.7. 

By definition the set I; of all trivial T'-identities (resp. the 
set I,* of all  trivial T*-identities) is the ideal of S, (resp., ideal 
of S;) generated by the same elements C;,  C; as were  used to 
generate 10. By definition the  set of reduced elements of Sm 
relative to (B, <) (resp., reduced elements of S&) is the subring 
E, = QmrC < XTO > (resp., EA = QmrC < XT; >). With no 
changes in the proof we have the decomposition theorem 

Theorem  7.8.1 Sm = I; @ &m and S; = I,* @ E&. 

We proceed to  state  the analogues of the main results proved 
in sections 7.5 and 7.7 (there  are, of course, no problems with 
section 7.6), providing remarks at  the key places  where the co- 
efficients of the identities are involved. We begin by stating  the 
analogues of Theorem 7.5.5 (concerning linear T'-identities) and 
Theorem 7.5.6 (concerning linear T*-identities). 

Theorem 7.8.2 Let 0 # q5 E QrlrXToQmr be a TI-identity on 
some 0 # I a R. Then R is GPI. 

Theorem 7.8.3 If q5 E QmTXT~Qmr is a T*-identity on some 
O f I a R ,  thenq5=0. 

Their proofs follow from the analogues of Lemmas 7.5.4, 
7.5.3,  7.5.1, 7.5.2. 

Concerning Lemma 7.5.4 the elements bij ,  j = 1,2, . . . , mi, 
i = 1,2 are only assumed to be in Qmr rather  than in Qs. But 
Theorem 2.5.9 already anticipates  this  situation by providing 
p = N I J ,  I an ideal, J a dense right ideal, to be used instead 
o f @  E N I .  
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Concerning the analogue of the crucial Lemma 7.5.3  Re- 
mark 2.5.5 can be applied to  the C-independent elements 
bl, .  . . , b, in the reduction to equation (7.17). Next, for the 
finite collection b, W;, W‘ in the equation (7.17), we must choose 
a dense right ideal J ,  with J c I ,  such that bJ ,  w:J, w‘J are all 
contained in R. Immediately following equation (7.18) we may 
use the ideal IbJ  in the definition of f ,  noting that a typical 
element of IbJ  can be expressed as b p, p E N I J .  Following 
equation (7.22) we need to know that bo = b y E IbJ .  Indeed, 
since Qm,.(J) = &,,.(R) (Proposition 2.1.10), we may  use  Re- 
mark 2.5.5 (with J playing the role of R) to conclude that there 
exists y E N I ~ J  such that bo = b y E I b J ,  bo # 0,  bj - y = 0, 
j = 2,3,. . . ,m. Finally, we need to make certain that  the ele- 
ment U lies in Qs. Having noted that U E Q,. we have uK C_ R 
for  some 0 # K a R. But  there is an ideal 0 # L a R such that 
Ldl+xpiai C_ R. From bl + x piai = ad(u) ,  taking P = K n L, 
it is clear that Pu c R whence U E Qs. 

Concerning Lemma 7.5.1 we simply replace it by Corollary 
6.3.16, and Lemma  7.5.2 may be replaced by Proposition 6.3.13. 

With these remarks in place the proofs of Theorem 7.8.2 and 
Theorem 7.8.3  follow. 

For the analogue of Theorem 7.5.8 the same proof by induc- 
tion on deg(4) goes through, the case n = 1 having been  given 
by Theorem 7.8.2.  We therefore may state 

Theorem 7.8.4 Let R be a prime ring and  let 4 E &m be a 
nonzero reduced TI-identity  on  some  nonzero ideal I of R. Then 
R is GPI. 

The analogue of the ”freeness” theorem (Theorem 7.7.4) 
holds true without comment. 

Theorem 7.8.5 Let R be a prime ring, let q5(xpgk””) E &m be 
a reduced TI-identity  on a nonzero ideal I of R, and  let  {yijk) 
be distinct  elements of X in one-one  correspondence  with  the 
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variables x?". Then $(g&.) i s  a TI-identity  on  some  nonzero 
ideal J of R. 

Finally, we remark that  it is the "extension" theorem (The- 
orem  7.7.8) that really necessitated the creation of the two set- 
tings Sm and SA. For the  setting Sm the analogue of Theo- 
rem 7.7.8  goes through with the same proof, since xi I+ qi E Qs 
is the T'-substitution being used.  For the  setting SA a slight ad- 
justment  must  be made since the T*-substitution xi I-) qi E Qmr 
is required. The vector space V on  which RC acts densely should 
be taken to be a right vector space VA. Then by (the symmetric 
version of) Theorem 4.3.7(viii) we have Qmr E End(VA).  Ac- 
cordingly Q,? acts on V from the left and  the elements given in 
(7.42) should be  appropriately  rewritten to  reflect this. We  now 
state  the two analogues of Theorem 7.7.8 

Theorem 7.8.6 Let R be  a prime ring and  let 4 E Sm be  a 
reduced TI-identity  on 0 # IaR of the   form 4 = $(x!), fi E Gfi. 
Then  4 is a T'-identity  on Q, (R) .  

Theorem 7.8.7 Let R be a prime ring and  let 4 E SA be a 
reduced T*-identity  on 0 # I a R of the form 4 = 4 ( x f ) ,  fi  E 
Gfi  n G*. Then 4 is a T*-identity  on Qmr(R). 

7.9 Applications 
We present in  this section several applications of the preceding 
results. Perhaps the most well-known is Kharchenko's charac- 
terization of algebraic derivations [146], and we begin with a gen- 
eralization of this result (due to Leroy and Matczuk). Following 
this we present analogous results for algebraic automorphisms, 
and  lastly we present some results on composition of derivations 
(due to Chebotar, Chuang and Lanski)  which are generaliza- 
tions of the well-known Posner's theorem on composition of two 
derivations of a prime ring. 
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Algebraic  derivations. Let R be a prime ring with sym- 
metric ring of quotients  Q. We continue to use the various nota- 
tions developed in earlier sections of this  chapter. We shall also 
need on occasion to utilize the two-sided ring of right quotients 
QT = Q,(R) 2 Q.  Both C (acting on Q via right multiplica- 
tions) and D ( R )  = D e r ( R ) C + D i  are  subsets of EndQ(Q)  and in 
this framework we define the notion of an algebraic derivation. 

Definition 7.9.1 Let 6 E D(R) ,  S a subring of Q, and 0 # 
I a R. Then  6 is  S-algebraic  on I if 

n C #ai = o (acting  on I )  (7.43) 
i=O 

for some n > 0, ai E S, an # 0. 

The condition (7.43) is equivalent to: 

n c X'' ai is a 7'-identity  on I .  
i = O  

An application of Corollary 7.2.3(ii) and Theorem 7.5.6 yields 

Remark 7.9.2 Cy.o = 0 o n  I if and only if Cy=o = 0 
o n  Q. 

In view of Remark 7.9.2 we may simply refer to 6 as being 
S-algebraic (it is no longer  necessary to add  the phrase "on I") .  
If n is minimal in Definition 7.9.1 then n is  called the S-deg of 
6. Clearly, if 6 is Q-algebraic, then 6 is R-algebraic, with Q-deg 
of 6 = R-deg of 6. The question arises as to whether 6 being Q- 
algebraic implies that 6 is C-algebraic, and in the forthcoming 
characterization of algebraic derivations this question will  be 
answered in the affirmative. 

We look first at inner derivations. 
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Lemma 7.9.3 Let a E Q. Then  the  following are  equivalent: 
(i) ad(a) is C-algebraic; 
(ii) ad(a)  is  Q-algebraic; 
(iii) a is C-algebraic. 

Proof. Clearly (i) implies (ii). If ad(a) is Q-algebraic, then 
CEo(la-ra)iai = 0, ai E Q, a, # 0, Since Q(qQ(,.) "= &"@c& in 
view  of Theorem 2.3.6, the above equation  translates to CEO ai@ 
bi = 0 for suitable bi E Q, with b, = a, # 0. Choose a C-basis 
111 = b,, 212,. . . , V n  of the vector space CEO Cbi. Then we obtain 
that f i (a)  @ vi = 0 for suitable polynomials ti(.) E C[.] 
and so f l ( a )  = 0. Clearly deg(fl(z)) = m and hence fl(z) # 0. 
As a result a is C-algebraic and therefore (ii) implies (iii). If 
a is C-algebraic, then  the subring of End+(Q) generated by l,, 
r,, and C is finite dimensional over C. Then ad(a) = 1, - r, is 
C-algebraic and so (iii) implies (i). 

We  will also need the following 

Remark 7.9.4 Given 6 E D(R)  and 0 # K a R there  exist 
nonzero  ideals K = Lo 2 L1 2 L2 2 . . . such  that L6, C Lk-1 
f o r k = 1 , 2 , 3  ,.... 

Proof. Writing 6 = C 6iq + p, Si E Der(R), G E C,  p = 
ad(b), b E Q, we may chose a nonzero ideal J of R such that 
J+cJ+bJ+Jb E K.  Setting Lo = K and L1 = J3 we see that 
L: c LO. Now  we set LI, = L! and see by an easy induction on 

We  now proceed to prove a result of Leroy and Matczuk [l871 
which describes the  nature of the equation of minimal degree 
satisfied by a Q-algebraic derivation. 

Theorem 7.9.5 Let 6 E D(R) be Q-algebraic ofQ-deg n. Then 
there  exist qo, q1,. . . , qn E Q, qn = 1, such  that: 

(i) C!==, 6iqi = 0, i.e., Eto  d 'q i  is a T-identity  on Q; 
(ii) qf = o for all i, i.e., [6, qi] = 0; 
(iii) [qi,  qj] = O for all i, j. 

k that L6, c Lk-1. 
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Proof. Without loss of generality we may assume that 6 is 
R-algebraic of degree n. Let I be the subset of all r E R for 
which there exist ri E R, i = 0,1, . . . , n - 1, such that 

n-l 
Snr + C Siri = o 

i=O 
(7.44) 

The Ti 's  are uniquely deterhined by r (by the minimality of n), 
and it is clear that I is a nonzero right ideal-of R. It follows 
from Remark 7.9.4 that there exists 0 # J Q R  such that J6* c R 
for all i 5 n. Now let S E Q, t E J ,  r E I .  From (7.44) we have 

n-l 
(st)6"r + C(s t )6 i r i  = o 

i=O 
(7.45) 

Expansion of (7.45) by repeated use  of the Leibnitz formulas 
results in 

n- 1 

i = O  

where  each ui is of the form zjt6Jri+j, z j  an integer. Since 
J'J c R for  each j = 0,1, . . . , n, we see that ui E R. We have 
thereby shown that J I  c I .  Now for  each i = 0,1,. . . , n - 
1 we have a well-defined right R-module map fi : J I  + R 
given by r I+ ri. Accordingly there exists qi E Q V  such that 
f ( r )  = ri = qir for all r E J I .  Setting qn = 1 we conclude that (c?='=, Siqi) J I  = 0, whence 

We  now claim that  the qi's lie in Q. Indeed, let 0 # K Q R such 
that qiK c R for all i. By Remark 7.9.4 there exist nonzero 
ideals K = LO 2 LO 2 L1 2 . . . 2 L, such that L: c Lk-1, 
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k = 1,2,. . . , n. Now let S ,  t E Q. Making  use of the Leibnitz 
formulas and  the  fact  that qn = 1 we have 

n n 

0 = C( s t )C&  - c c n-l 
(7.46) 

i=O i=O i=O 

where 
ui = 5 c) g j - i  t q j  + tqi - qit = 0 (7.47) 

j=i+l 

by the minimality of n. We  now make the subclaim that Lkqn-k  
E R for IC = 0,1, . . . , n, which we shall prove by induction on k .  
For k = 0 we have Loqn = K L R. In the equation (7.47) we 
replace i by n - IC and  set 1 = j - (n - k ) .  From the resulting 
equation we conclude that 

k 

Lkqn-k c qn-kLk + c Lfqn-k+l  (7.48) 
1=1 

By induction all summands on the right hand side of (7.48) lie in 
R and so the subclaim is  proved. In  particular Lnqi + q i L ,  E R 
for i = 0,1,. . . , n, i.e.,  each qi E Q, and so (i) is established. 

An application of b to Cr.o sd'qi = 0, S E Q, yields 

n n-l 

i = O  i=O 

Thus CTzt sbiqf = 0 and by the minimality of n we have qf = 0 
for each i and so (ii) is  proved. Finally, making use of (ii) and 
the minimality of n, we see  from 

n m. n- 1 

i=O i=O i=O 

that [q i ,  qj] = 0, thus establishing (iii). 
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Proposition 7.9.6 Let 6 E D(R)  be Q-algebraic of Q-deg n 
and  let qo, 41,. . . , qn E Q be given by  Theorem 7.9.5. suppose 
that 1 n # 0 in Q. Then 6 = ad(qn-l)/n. 

Proof. We  keep the  notation of the proof of Theorem 7.9.5. 
Setting i = n - 1 in (7.47), we obtain  that ntbqn + [t, qnV1] = 0 
for all t E J .  Therefore 6 - ad(-qn-l)/n vanishes on J .  Since 
Q = Q s ( J )  and any derivation has  a unique extension to Q, we 
see that 6 = ad(-qn-l)/n. 

Theorem 7.9.7 Let R be a prime ring of characteristic  zero 
and  let 6 E D(R).  Then  the  following  conditions are equivalent: 

(i) 6 is  C-algebraic; 
(ii) 6 is  Q-algebraic; 
(iii) 6 = ad(a), a E Q, a algebraic over C. 

Proof. It is  obvious that (i) implies (ii). If 6 is Q-algebraic, 
then 6 = ad(a) for  some a E Q by Proposition 7.9.6, because 
1 n # 0. Applying Lemma 7.9.3(iii), we conclude that a is 
C-algebraic and so (ii) implies (iii). The  fact that (iii) implies 
(i) follows immediately from  Lemma 7.9.3. 

Theorem 7.9.8 Let R be a prime ring of characteristic p > 0,  
and let 6 E D(R) .  Then  the  following  conditions are equivalent: 

(i) 6 is  C-algebraic; 
(ii) 6 is Q-algebraic; 
(iii) CEO bp' G = ad(a) where CO, cl, . . . , c, E C, c, # 0, 

a E Q, a algebraic over C. 

Proof. The implication (i) implies (ii) is immediate. We 
now assume that (ii) holds. We  know that D ( R )  is a special 
restricted differential Lie algebra. Suppose first that Si = P', 
i = 0,1,. . ., are right C-independent modulo Di. Hence Si, 
i = 0,1, . . ., is a part of a well-ordered basis BO of D( R) modulo 



370 CHAPTER 7. T-IDENTITIES OF PRIME  RINGS 

Di with Si < 6j in case i < j. Any positive integer i may 
be  written uniquely in the form xy20 aijpl, 0 5 aij < p ,  and 
so Si = 3=0 6"" 3 are  part of a PBW-basis of U(R) in view 
Theorem 5.4.5. This forces the contradiction to Theorem 7.5.6 
that xn';" ai E &xT:& is a nonzero T-identity. We may 
thus conclude that p = CEO 6 P i ~  = ad(a) for  some  choice of 
q E C, a E Q, c, # 0. By Theorem 7.9.5 

n 

CSiqi = 0, ~i E Q, qn = 1, [qi, q j ]  = 0, q! = O (7.49) 
i = O  

where n is the Q-deg of 6. Let S = C[qo, q1, . . . , qn-l] be the 
subring of End@(Q) generated by C, qo,  Q , .  . . , qn-l (regarded 
as right multiplications),  and  let M be the right S-submodule of 
End@ (Q) generated by l,&, 62, . . . . Since n is the Q-deg of 6, it 
follows  from  (7.49) that M is an n-generated free right module 
over the commutative ring S with the basis 1,6, b2, . , . , 
Clearly 6.M E M and so p M  E M .  Let A E Mn(S) be a matrix 
of the mapping x I-+ pax, x E M ,  and  let f ( t )  = ItE - A [  be the 
characteristic polynomial of A. By Cayley-Hamilton theorem 
f ( p )  x = 0 for all x E M .  In particular f ( p )  = f ( p )  1 = 0. 
Thus p is Q-algebraic, and by Lemma  7.9.3 the element a is 
C-algebraic. Therefore (ii) implies (iii) . 

Finally, assuming (iii), we  know that ad(a) is C-algebraic by 
Lemma 7.9.3, and so we may write 

Expansion of (7.50) using the commutation formula CS = &+c' 
results in an equation 

tpm-l 
dtPrnc,d, + c bic; = 0, c: E C 

i=O 

and so 6 is C-algebraic, thus proving that (iii) implies (i). 
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In closing we note that in 1957 Amitsur [l] proved the equiv- 
alence of (i) and (iii) in Theorem 7.9.7 in  the case that R was 
a simple ring, the equivalence of (i) and (iii) in Theorem 7.9.7 
and Theorem 7.9.8  was  proved  by Kharchenko [l461 in 1978, 
and  the  additional equivalence with (ii) was  proved  by  Leroy 
and Matczuk [l871 in 1985. 

Algebraic  automorphisms. In this subsection we char- 
acterize algebraic automorphisms of prime rings in a somewhat 
analogous fashion to  the results of preceding subsection. We re- 
fer the reader to  the papers of Leroy and Matczuk [187], Page 
and Maoulaoui  [l991  from  which these results are drawn. 

Let R be a prime ring. The basic definitions we need are en- 
tirely analogous to those concerning derivations in  the preceding 
subsection, and so we shall indicate these rather briefly. Let S 
be a subring of Q, and  let 0 # I a R. An  element g E Aut(R) is 
S-algebraic on I if C:.o giai = o on I for  some n > 0, ai E S, 
a, # 0, or, equivalently, C:=o &ai is a 2'-identity  on I .  As  be- 
fore, by Corollary 7.2.3 (ii) and Theorem 7.5.6, g is S-algebraic 
on I if and only if g is S-algebraic on Q (with the same equation 
in  either case). The minimal such n is  called the S-deg of g. We 
begin by characterizing X-inner automorphisms. 

Theorem 7.9.9 Let R be a prime ring and  let h = inn(s) 'E Gi 
be an  X-inner  .automorphism of R where S E Q. Then  the 
following  conditions are  equivalent: 

(i) h is Ckalgebraic; 
(ii) h is  Q-algebraic; 
(iii) S is C-algebraic. 
If this situation  holds,  let 1 be the Q-deg of h, k the C-  

deg of h and m the C-deg of S .  Then l = m, k < 1 2 ,  and 
C&-, hjsl-jcj = 0 for  some C j  E C,  cl = 1. 

Proof. In the course of showing the equivalence of (i), (ii) 
and (iii) the second part of the theorem will be evident. The im- 
plication (i) implies (ii) being obvious, we assume h'aj = 
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0, uj E Q, a1 # 0. This says that s-jqsjuj = 0 for all q E Q, 
whence by Theorem 2.3.6 s - j @ d u j  = 0. Since a2 # 0 (and 
hence slul # 0) it follows that s-l (and hence S) is C-algebraic 
of degree m 5 l (thus establishing (iii)). Furthermore, writing 

S - j c j  = 0,  cj € C ,  C, = 1, we have 

m m  m 

j = O  j=O j = O  

for all q E Q, i.e., C;, hj(sm-jcj) = 0. From the minimality of 
l we conclude that m = 1 and we have hj(s”jcj) = 0. 

Now assume that S is C-algebraic of degree m. Then 1, and 
r, are algebraic elements of degree m in Enda(Q) and so the 
subring generated by l , ,  r,, and C in End@ (Q) is of dimension 
5 m2 over C, whence h = i n n ( s )  = l,-lr, = l;%-, is C-algebraic 
of C-degree k 5 m2. Having now shown (i) (and hence (ii)), 
we know that m = l and so k 5 1’. The proof is now complete. 

Theorem 7.9.10 Let R be a prime ring and  let g E Aut(R). 
Then  the  following  conditions are equivalent: 

(i) g is  C-algebraic; 
(ii) g is Q-algebraic; 
(iii) For some  positive  integer v we  have g” = inn(t) is 

X-inner,  with t C-algebraic. 
If this  situation  holds,  let m be the least positive  integer  for 

which gm = inn(s) is  X-inner.   Then S is  C-algebraic  (of,  say, 
degree l ) ,  and if n is  the Q-deg of g and k is  the C-deg of g ,  
then  we  have n = ml, k 5 m12, and xi=ogmjsl-jcj = 0 for  
some cj E C ,  cl = 1. 

Proof. In the course of showing the equivalence of (i), 
(ii), (iii), we shall at  the same  time be proving the rest of the 
theorem. Clearly (i) implies (ii). Now assume g is Q-algebraic 
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of degree n and write 

n 

x g i a i  = 0, ai E Q,  an # 0 (7.51) 
i=O 

Suppose first that for all i < n gi is not  X-inner.  Then 1, g,.  . . , 
g" are  distinct elements of Go(R) and 

n C xgiai E &xT; Q 
i = O  

is a  T-identity on Q in contradiction to Theorem 7.5.6. There- 
fore h = gm = inn(s) E Gi for  some 0 < m < n and we may 
assume that m is minimal. Writing n = m1 + T, 0 5 T < m we 
rewrite (7.51) as 

T m-l 1-1 

in other words, 

is a reduced T-identity on Q. By Theorem 7.5.6 4(x) = 0 in 
QxT;Q and in particular for i = T we have 

j=O 

that is, 
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and so 
1 l 

By the minimality of n we see that r = 0, and hence n = ml. 
Again by the minimality of n (7.52)  says that h is Q-algebraic 
of degree 1. By Theorem 7.9.9  we see that S is C-algebraic of 
degree l (thus proving (iii)), hjsl-jcj = 0 for  some cj E C, 
cl = 1, and  the C-degree W of h satisfies W 5 Z2. It follows 
that Ci=ogmjsl-jcj = 0 and Cy=-,gmidi = 0 for some di E C, 
d, # 0, whence the C-degree k of g satisfies the relation k 5 m12. 
Finally, suppose f = gu = inn(t) is X-inner with t C-algebraic. 
Let m be the least positive integer for which h = gm = inn(s) is 
X-inner. Writing v = mq + r ,  0 5 r < m, we see  from f = hQgr 
that gr is X-inner, whence r = 0 by the minimality of m. Thus 
g" = (gm)Q,  leading to inn(t) = inn(sQ), and so SQ = t c  for  some 
c E C. Therefore S is C-algebraic. By Theorem 7.9.9, h is C- 
algebraic and so g is C-algebraic, thus proving that (iii) implies 
(i). 

Products of derivations. In 1957 Posner proved that if 
R is a prime ring of characteristic distinct from 2 with nonzero 
derivations dl and d2, then dld2 is not a derivation [241]. The 
question when a product of derivations is again a derivation was 
investigated by a number of authors, in particular by Krempa 
and Matczuk [153],  by Chuang [84],  by Lanski [l681 and by 
Chebotar [78],  some of  whose results we shall present in this 
subsection. We begin with the following generalization .of Mar- 
tindale's lemma (i.e., Theorem 2.3.4) and a result of Bresar [68]. 

Lemma 7.9.11 Let S be any set and R a prime ring  with  ex- 
tended centroid C. Suppose that F : S + R, G : S + R are 
nonzero  mappings  such  that F(s)zG(t)  = EG(s)xF(t) for all 
S, t E S,  x E R and some  fixed 0 # E E C. Then: 

(i) F and G are C-dependent; 
(ii) E = 1. 
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Proof. Pick tO,so E S such that F(t0) # 0 # G(s0). Then 
from F(so)xG(to) = eG(so)xF(to) we conclude that G(t0) # 
0. Now from F(s)xG(to) = ~G(s)xF( to)  we see that F ( s )  = 
0 if and only if G(s)  = 0. Suppose that G(s)  # 0. Then 
F(s)xG(to) - EG(s)xF(to) is a GPI on R and so by Corol- 
lary 6.1.3 we have that G(t0) = " ( t o )  for  some X E C. Hence 

(XF(s) - EG(s))xF(to) = 0 for all x E R, S E S. 

Therefore G = E-~XF. Now  we have 

for all x E R. Thus E = 1 and  the lemma is proved. 

We continue with the .following result of Posner [241]. 

Theorem 7.9.12 Let R be a prime ring  with  extended  centroid 
C and with  nonzero  derivations d l ,  d2 such that dld2 is again a 
derivation of R. Then char(R) = 2 and there  exists an element 
c E C such  that d2 = dlc. 

Proof. Let x ,  y E R. Then we have 

On the other  hand, since dld2 is a derivation, we have 

and so we conclude  from (7.53) that 

x y + xd2yd1 = o for all X ,  y E R d l  dz  (7.54) 

Substituting xz for x ,  we infer  from (7.54) that 

xd1zyda + xdzzydl = 0 for all x ,  y ,  z E R (7.55) 
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Hence  by Lemma 7.9.11 d2 = d2c for  some 0 # c E C and -1 = 1 
which  yields char (R) = 2. 

Now  we need the following general observation. Let R be 
a prime ring with extended centroid C and D = D(R). Fur- 
ther  let Bi be a linearly ordered C-basis of Di and  let BO be 
a linearly ordered C-basis of D modulo Di. As usual we as- 
sume that BO < &. Then 230 U & is a linearly ordered basis 
of D. Consider the corresponding PBW basis W = WoWi of 
the universal enveloping algebra U of the (restricted) differential 
C-Lie algebra D. Given A = 6162. . .S ,  E WO, where Si E Bo 
for all i ,  we set [AI = n. Now let x = AiRiG, where the 
AiRi's  are  distinct elements of W and 0 # Q E C. We set 
1x1 = max{lAil I 1 5 i 5 m}. Further given a natural number 
n, we denote by Un the C-linear span of all products of the form 
AR, where A E WO with lAl 5 n and R E Wi. For  ease with 
forthcoming formulas we also set U-1 = (0). 

Let dl,   d2, .  . . , dn E D. Suppose that d,,, d,,, . . . , d,,, where 
1 5 s1 < s2 < . . . < sm 5 n, forms a right C-basis of diC 
modulo Dim Setting pj  = dSj  for 1 5 j 5 m, we shall assume that 
1-11 < p2 < . . . pm E BO. Then we have that di = PjGj + 
ad(ai) for suitable ~j E C and ad(ai) E Di. Now consider the 
polynomial ring A = C [ X ~ , X ~ ,  . . . ,xCm,y1,y2,. . . ,yn3. Given a 
monomial M = sFf . . . . . . yk we. set  deg(M) = kl + k2 + 
and extend q5 to a right C-space map 6 : A + U by linearity. 
With reference to  the observations and terminology just devel- 
oped, the following lemma is due to Chebotar. 

. . + km, deg,,(M) = ICi, 4 ( M )  . . . pkad(a1)"  . . . ad(un)ln 

Lemma 7.9.13 Let il < i 2  < . . . < i k  5 n be those  indices 
i such that di = ad(ai) (i.e., Gj = 0 for all j = 1,2,. . .,m). 
Suppose  that  either char(R) = 0,  or char(R) > n + 1 - IC - m. 
Set f i  = CGl XjGj + yi. Then: 

(i) Idld2.. . dnl = n - k ;  
' (ii) dldz  dn - d ( f 1  f 2  f n )  E Un-k-1. 
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Proof. Let tl ,  t 2 ,  . . . , t m  be nonnegative integers with tl + 
t 2  + . . . + t m  = T ,  1 2 i 2 m, 1 5 S 5 k and C E C. It follows 
from the formulas 

that 

p: . . . p?ad(ai,). . . ad(ai*)cpi 
-p? . . . pi-1 ti-1 pi ti+l pi+1 ti+1 . . . p ~ u d ( a i l )  . . . U d ( U i , ) C  

E U, (7.57) 

We shall prove (ii) by induction on n. The case n = 1 is clear. 
Suppose now that our  statement is proved  for dl, 4 ,  . . . , 
Let f1f2 . . . fn-l = C;=, Mtq where Mt's are  distinct monomials 
and 0 # q E C. Consider the case d, = ad(a,). Then among 
dl, d2,. . . , dn-l there  are exactly IC - 1 X-inner derivations and 
so 

dld2 * dn-l - 4(flf2 - fn-1) 

E ~(n-l)-(k-l)-l = U,-k-l (7.58) 

Clearly 

4(M)ciad(a,) = 4(M)ad(an)G = 4 ( ~ i Y n ) c i  

dl dn - $(fie * * fn) = (dl - ' dn-1 - 4(fi fn-l))dn 

and so $ ( f 1 . .  . fn-l)dn = $ ( f 1 . .  . fn). It follows from (7.58) that 

E U,-k-l& 5 G-k-l 

and so in this case our statement  is proved. Now suppose that 
dn $! Di. Then we have 
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It follows from (7.57) that 

and so 

Now it is clear that 

thus proving (ii). Now let f l f 2 . .  . f n  = C;=, Mlcl, where the 
Mi's are  distinct monomials in zi’s and yj’s and 0 # cl E C. 
Since 

there exists an index lo such that Mio = Nyi,y,, . . . yih, where 
N is a monomial in xj’s of degree n - k .  Recall that fit = yit 
and fsj = zj for all t = 1,2,. . . , k ,  j = 1,2,. . . ,m. Hence 
deg, ( N )  5 n - k - (m - 1) = n+ 1 - k - m. By our assumptions 
either char(R)  = 0, or char(R) > n + 1 - k - m. Therefore 
4 ( N )  E WO and so I$(N)I = n - k .  It follows from (ii) that 
ldld2.. . dnl = Iq5(N)I = n - k and  the lemma is proved. 

The following theorem is due to Chebotar [78]. 

Theorem 7.9.14 Let R be a prime ring with  extended  centroid 
C and d l ,  d 2 , .  . , , dn E D = D(R)  \ {0} where n > 1. Further  let 
dil,  d i2 , .  . . , dik,  1 5 il < 22 < . . < ak 5 n) be all the  X-inner 
derivations  from  the  set  {dl, d2, . . . , dn}  and  let d,,, d,,, . . . , d,,, 
1 5 s1 < s2 < . . . < S, 5 n) be a maximal  C-independent 
subset of {dl,   d2, .  . . , dn) modulo Di. Suppose  that  dld2.. , dn = 
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d E D(R) and either char(R) = 0, or char(R) > n+ 1 - k -m. 
Then: 
. (i) d E Di; 

(ii) If char(R) # 2, then k 2 3; 
(iii) If k < n, then k > 0 and dildiz , . . dik = 0.  

Proof. Setting pj = dSj for all j = 1,2 , .  . . ,m, we may 
choose  a linearly ordered C-basis Bo of D modulo Di such that 
p1 < p2 < . . . < p,,, E BO. We may also assume that d = 

pjcj + ad(a )  for  some q 2 m, cj E C,  a E Q = Q,(R) and 

for  some ~j E C, ai E Q where i = 1,2, .  . . , n. It follows  from 
(7.56) that 

pj E Bo for all j = 1,2 , .  . . , q. Clearly di = Cy!, pjGj + ad(ai )  

r 
d = d l d 2 . .  . d,, = C A8fls (7.60) 

s = l  

where A, E WO, and  the Q,'s belong to  the right C-span of C, B,, 
B:, . . .e. Here we note that if k > 0, then the fl,'s belong to 
the right C-span of Bi, B:, . . .c. According to Lemma  7.9.13 
(i) Id1 = n - k and so /As I 5 n - k for all S. Furthermore 
there exists at least one index so such that ~A,,I = n - k and 
a,, = dildiz . . . di, h,, where 0 # h,, E C, and all As's with 
lA,l = n - k appearing in (7.60) are  distinct  and  are  products 
of pj's (see  Lemma  7.9.13 (ii)). Consider the following  reduced 
2'-identity on R: 

Q r c "PJCj + [x, a] - C zAaP('s) (7.61) 
j = l  s= l  

where p : + E n d c ( S )  is the C-algebra map introduced in 
section 7.2.  By Theorem 7.7.9 we have that 

Q 

C gPjcj + L", 'I - C YAa 
p(',) - C " A n a )  (7.62) 

j = l  &#l A a = l  

is a 2'-identity on Q. Only the following  two  cases are possible: 
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Case 1. Suppose that k = n. Then A, = 1 for all S = 
1,2 , .  . . , T. Setting x = 0, we conclude  from  (7.62) that C j  = 0 
for all j = 1,2,  . . . , q and so d = ad(a) E Di. Next suppose that. 
char(R) # 2. Then in view of Theorem 7.9.12, n # 2. Since 
n > 1, we have that k = n 2 3. Thus in this case the theorem 
is  proved. 

Case 2. Suppose that k < n. We claim that k > 0. Indeed, 
let k = 0. By Lemma 7.9.13 there exists at least one index 
so such that IA,,l = n and SZ,, = h,, E C. Since n > 1 and 
A, E WO, we see that A,, # /+ for all j = 1,2, . . . , 4. Now recall 
that A,, # Ap for p # so. Sending to zero all the variables in 
(7.62) distinct from gag,, we obtain that y ~ ~ , h , ,  is a T-identity 
on Q, a contradiction. Thus k > 0 and our claim is established. 
It was noted that  the relation k > 0 implies that all R,'s belong 
to the right C-span of l$, B;, . . . ,B?. In  particular in this case 

= 0 for all S = 1,2, .  . . , T. Pick any 1 5 j 5 Q. Sending to 
zero all the variables in (7.62) distinct from yp j  we obtain  that 

Letting ypj = 1, we see that cj = 0. Therefore d = ad(a) E Di 
and (7.62)  yields 

(7.63) 

is a T-identity on Q. Since k < n, IA,,l = n - k > 0. It fol- 
lows from  (7.63) that = 0. Recalling that di,di, . . . di, = 
SZ,,h,", we conclude that  the composition di, di, . . . di, of deriva- 
tions is equal to zero.  From Theorem 7.9.12  we infer that k 2 3. 
The theorem is thereby proved. 

The following theorem is due to Chuang [84]. 
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Theorem 7.9.15 Let R be a prime ring of characteristic p > 0 
and d l ,   d 2 , .  . . , dp  E D = D(R).  Suppose  that d ld2 . .  . dp = d E 
D. Then: 

(i) If { d l ,  d2, . . . , d p }  n Di # 8, then d E Di; 
(ii) If {dl ,   d2, .  . . , dn} n Di = 8, then dj  E d l C  + Di for all 

j = 2,3, . . . , p and  there  exists  c E C such  that d-= @c. 

Proof. If I ( d l ,   d 2 ,  . . . , d p }  n Dil = k > 0, then char( R) = 
p > p - k and so Theorem 7.9.14 is applicable. Therefore d E 
Di. Next suppose that { d l ,  d2, . . . , d p }  n Di = 8. Let V = 
C:=’=, diC and m = dimc (( V+ Di)/Di). If m > 1, then char (R)  = 
p > p + 1 - m and so by Theorem 7.9.14 (iii) we have that 
{d l ,   d z ,  . . . , d p }  n Di # 8, a contradiction. Therefore m = 1 and 
so di E d l C  + Di. For simplicity we set S = d l .  Then di = 
SG + ad(ai)  for  some 0 # q E C, ai E Q, where i = 2,3,. . . ,p.  
We set y = S. Let vi be equal to either 6~ or ad(ai) ,  where 
i = 2,3,. . . ,p. Consider the product U = 2424.. . vp. If at least 
one of the vi’s is X-inner,  then U = SjRj where the Rj’s 
belong to  the right C-span of &,B;, . . . , By-’. On the other 
hand if vi = 6q for all i = 2,3,. . . , p ,  then 

for  some aj E C. Therefore 

P-1 P-1 
d = Spa, + C Sjaj + C SjRj. (7.64) 

j=2 j=1 

The following  two  cases are the only  possible  ones. 
Case 1. 6 and SP are C-independent modulo Di. Then  setting 

p1 = S and p2 = SP we may  choose a C-basis Bo of D modulo 
Di such that p1,p2 E 230. Clearly d = E:=, piri + ad(a )  for 
some p3, p4, . . . , pq E 230, ri E C, a E Q. Consider the following 
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reduced T-identity on R: 

It follows  from Theorem 7.7.9 that 

is a  T-identity on Q. Now  we conclude that ri = 0 for all i > 2, 
7-2 = ab, aj = 0 for all j = 2,3, . . . , p  - 1, and yP('j) = 0 for 

all j = 2,3, . . . , p  - 1 (in particular &P('j) = 0 for all x E Q). 
Hence we see that 

4 

(7.65) 

is a T-identity on Q. Sending gpl to 1 and x to 0, we obtain 
that r1 = 0. On the other  hand, sending ypl to zero we see that 
[x, a] is a T-identity on Q and so ad(a) = 0. It follows  from 
(7.65) that YE?') = 0. Summarizing what we have  proved, we 
conclude that d = p2ap = Pol,. 

Case 2. 6 p  = 6c + ad@) for  some 0 # c E C and a E Q. 
We set 1-11 = 6 and we may assume that 1-11 E Bo. Then one 
can show that d = plr + ad(a) for  some r E C, a E Q, and 
~ p ; P ( ~ j )  = 0 = aj for all j = 2,3, . . . , p  - 1, and (7.64) yields the 
following T-identity on Q: 

Yp1T + [x, 4 - Yp1C*p - [ G  blap - Ypl P(%)  - 
Sending ypl to 0 we see that [x, a] = [x, blab. On the other 
hand, sending z to 0 and ypl to 1 we obtain  that r = cap. 
Now it follows that $!'l) = 0. Therefore zplP('1) = 0 and so 
d = 6cap + [x, blab = S p a p  thus proving the theorem. 

We  close this section with the following result of Lanski [l681 



7.9. APPLICATIONS 383 

Theorem 7.9.16 Let R be a prime ring of characteristic  dis- 
tinct  from 2 with extended centroid C and d l ,  d2, d3 E D = 
D(R).  Suppose that dld2d3 = d E D. Then either d l , d z ,  d3 E 
Di, or char(R) = 3, di = dl% for some E C, i = 2,3, where 
cz"l =o. 

Proof. If either char(R) = 0 or char(R) > 3, then d l ,  d2, d3 E 
Di by Theorem 7.9.14. Suppose that char(R) = 3. First we con- 
sider the case ( { d l ,  d2, d3) n Dil = k > 0. Then char(R) = 3 > 
3 - k and so by Theorem 7.9.14 we have k = 3. Next suppose 
that k = 0. Then d l ,  d2,d3 4 Di. Now it follows  from Theo- 
rem 7.9.15 that d2 = dlu + ad(a) and d3 = dlv  +ad@) for  some 
0 # U, v E C, a, b E Q. Setting for simplicity 6 = d l  we see that 

d = dld2d3 = .S(& + ad(a))(bv + ad@)) 
= C ~ ~ U V  + 62u6v + d2ad(a)v + 6ad(a6)v 

+S2ad(b)u + Gad(a)ad(b) 

By Theorem 7.9.15(ii) we have d = h3c, c E C, and so 

S3(~-uv)--6 2 6  (U v+ad(a)v+ad(b)u)-6(ad(a6)v+ad(a)ad(b)) = 0 
(7.66) 

We claim that  there exists y E C such that 

y + ad(a6)v + ad(a)ad(b) = 0 (7.67) 
u6v + ad(av +h) = 0 (7.68) 

Indeed, if 6, S3 are C-independent modDi we may assume 6, 63 E 
Bo. Then  the 2'-identity determined by (7.66) is  reduced and so 
by Theorem 7.5.6  (7.67) and (7.68) hold (taking y = 0). Other- 
wise we substitute 63 = S@ + ad(g), @ E C,  g E Q, into (7.66), 
and from the resulting reduced identity we see again by Theo- 
rem 7.5.6 that (7.67) and (7.68) hold (taking y = -@(c - W)). 
Applying (7.67) to 1 we see that y = 0, whence  by Theo- 
rem 7.9.12 either a E C or b E C. On the other  hand applying 
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(7.68) to 1 results in u*v = 0 and so U* = 0. But  this forces 
av + bu E C and since U ,  v # 0, we conclude that  both a and 
b lie in C. Thus d2 = dlu, d3 = dlv, and udl = U* = 0, which 
completes the proof. 



Chapter 8 

T-ident  it ies of Semiprime 
Rings 

The aim of the present chapter is to prove  for semiprime rings 
the results analogous to  the main theorems for prime rings with 
T-identities (see Chapter 7). 

We first set in place  some notations.  Throughout this chap- 
ter R will be a semiprime ring with extended centroid C, Q = 
Qmr (R) ,  S = 0 (R)  the orthogonal completion of R, Qs = Qs (S) 
and B = B(C). Further Di will be  the Lie algebra of inner 
derivations of Qs, D = D ( R )  = Der(S)C + Q, Gi the X-inner 
automorphisms of S, and G = G(R) = Aut(S) U Antiaui(S). 
Further  let M E Spec(B) and  let 4~ : Q + G = Q / M Q  be  the 
canonical surjection of rings. We set 

- 
S = ~ M ( S ) ,  &9 = 4 ~ ( Q s ) ,  and C = ~ M ( C ) .  

We ” already know that 9 is a prime ring with extended centroid 
c, Q C Qm,(S) and &S C Qs(9) by Theorem 3.2.7 and Theo- 
rem 3.2.15. 

The  first problem which we have to overcome is that in the 
semiprime ring case the universal  enveloping algebra U ( D ( R ) )  
of the differential C-Lie algebra D(R)  is not working as well as 

385 
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in the prime ring case. The reasons are  the following. First of all 
it is  easy to see that D(R) is not a restricted Lie algebra in gen- 
eral, but it may  have  some direct  summands of the form eD(R), 
e E B,  which are restricted differential eC-Lie algebras. In  the 
first section we construct a reduced enveloping algebra o ( D ( R ) )  
which  reflects this situation. Next the algebra o(D(R))  has no 
PBW basis because D(R)  is not a free right C-module in gen- 
eral. But we show that  this algebra locally has a basis of PBW 
type.  The second problem is that in the semiprime ring case the 
group G(R) does not serve our needs as well as in the prime ring 
case. In the second section we construct a larger group e ( R )  
and discuss its properties. The first two sections form a base  for 
the notion of a reduced T-identity on an ideal of a semiprime 
ring which  is introduced and discussed in third section. The 
last section is devoted to proofs of the analogs of the results in 
Chapter 7 about prime rings with T-identities. 

8.1 The Algebra D(D(R))  
Let R be a semiprime ring, let P be  the set of all prime numbers 
and  let PO = P U (0). Setting Ip = { T  E R I pr = 0), p E P, 
and IO = T R ( ~ ~ ~ ~  Ip) ,  we note that I = xpEF0 Ip = @pepoIp is 
a dense ideal of R and  the additive group of IO is torsionfree. 
We leave it  to  the reader as  an easy  exercise to show that Qs = 

D, a E G, p E Po. Letting ep denote the identity of Qs(Ip) E Qs, 
we remark that {ep I p E Po} is a dense orthogonal subset of B 
and ep” = ep for all o E G, p E Po. Clearly p&, ( I p )  = 0 and 
Qs(Ip) = epQs for all p E Po. We note the following important 
property of the  ePk,  the proof of which we leave to  the reader. 
Let M E Spec(B).  Then, for p E P,-,, 

Q s ( I >  = Ilpcpo Q s ( 1 p )  and Qs(Ip)’, Qs(Ip)O C_ Q s ( I p )  for all P E 

char(C/MC) = p if and only if  ep # M.  (8.1) 
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Next recall that up = 0 for all v E B,  p E D. Therefore ( z v ) ~  = 
xpv = x"' for all x E Qs. In particular 

(Qs(l - ep))pep = 0 and (Q,)pep c &,ep 

for all p E Po. Since pQsep = 0, we infer  from Remark 1.1.1 (b) 
that (pep), E D for all p E P. Further the commutation formula 
(5.22)  was  proved  for prime rings, but  the same proof  is  valid 
also  for semiprime rings. Therefore in End(Q,)  the following 
formula holds: 

c6 = dc + c'., 6 E D, c E C, (8.2) 

where 8 is the restriction of the derivation 6 on C. Letting CP, 
denote the prime subfield of epC, we infer  from Lemma 5.2.l(c) 
that  epD is a special restricted differential epC-Lie algebra over 
CP, with cover End(e,Q,), p E P. 

Now let <p be  the subring of C generated by the identity. We 
note that CP, = e,@ for all p E P. We identify the ring C with 
the subring idQ,C of End(Q,)  and  set 8 = C + D. We claim 
that D tl C = 0. Indeed, suppose that p = c where p E D, 
c E C. Then 

ZYC = ( ~ 9 ) ~  = spy+xyP = (xc)y+x(yc) = 2xyc and xyc = 0 

for all x, y E R. Therefore R2c = 0 and so c = 0 because 
R2 is a dense ideal of R. Thus our claim is established and so 
o  ̂= C @ D. From (8.2) we conclude that 8 is a special dif- 
ferential C-Lie algebra over CP with cover End(Q,). According 
to Lemma 5.4.2(c) epD  ̂is a restricted differential e,C-Lie  alge- 
bra over CPp with cover  End(e,Q,)  for all p E P. Thus we have 
proved the following 

Remark 8.1.1 B is a special differential C-Lie algebra over CP 
with  cover End(Q,). Moreover e,ô  is a restricted differential 
e,C-Lie  algebra  over CP, with  cover End(e,Q,) for all p E P. 
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Let 2 be  the ring of integers and X = {Z I x E E}. We 
consider the ideal I = I@) of F = Z < X  > generated by all 
elements of the following  forms: 

(1) 1F - IC; 
(2) Z+V- x + y for all x, y E B; 
(3) ZE - zc for all x E 3, c E C; 
(4) [z, g] - [x, y] for all x, y E E; 
( 5 )  P - xp for all x E e$, p E P. 

- 

- 

Setting 0 = O(D(R))  = F,I we note that  the mapping C + G 
given  by the rule c I+ E + I ,  c E C, is  a homomorphism of rings 
with identity by (1)-(3). Therefore 0 is a C-ring. From (4) 
it follows that  the mapping p : E + 0 given by x I-+ Z + I ,  
x E 5, is a homomorphism of  Lie rings. Moreover  by (3) p is a 
homomorphism of right C-modules. According to (4) we have 

p (2) = p([c, S]) = [ 4  E 1 c 
for all c E C, S E D. Now it follows that p@) is a special 
differential C-Lie algebra over @ with cover 0 and p is a  ho- 
momorphism of differential C-Lie algebras. Moreover  by (5) 
p : e,ô  +- e,O is a homomorphism of restricted differential 
epC-Lie algebras. Finally we note that  the C-ring i? is  gener- 
ated by p(D(R))  and 1 according to (1). 

Our next goal  is to show that p is an injection. To this end 
we set 

N ( B )  = { T E End(Q,) 1 r e  = e r  for all e E B}. 

Let M E Spec(B) and  let q5M : Qs += &9 = Q$”, be the 
canonical surjection of C-algebras. Since r(MQs) = Mr(Qs) for 
all r E N ( B ) ,  we conclude that r induces an endomorphism 
of the additive group of a. Clearly the mapping +M : N ( B )  + 
End(&,) given by + ~ ( r )  = F, r E N(B) ,  is a homomorphism 
of C-rings. 
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Remark 8.1.2 The  following  conditions are fulfilled: 
(i) N ( B )  is a nonsingular  right  C-module; 
(ii) Di is an injective submodule of the  C-module N ( B ) .  In 

(iii) ker($M) = M N ( B )  = ( r  E N ( B )  I E(r)  E M } ;  
(iv) $ M ( D ^ ~ G  +M(C) + D(+M(S))  C_ End(Qs(+~(s ) ) ) ;  

particular Di is an  orthogonally  complete  subset of N ( B ) ;  

(v) $M : D ( R )  * + M ( C )  + D(dM(S)) = D^(+M(S)) is a 
homomorphism of diferential  C-Lie algebras; 

(vi) If ep 6 M ,  then $M@) = $M(D^ep) and $M : D^ep + 
~ M ( C )  + D(+M(S))  is a homomorphism of restricted diferential 
epC-Lie algebras. 

Proof. (i) It follows directly from the definition of N ( B )  
that  it is a C-submodule of End(Q,). Clearly rc(r) = rc(Qi) = 
(1 - E(Qi))C by Theorem 2.3.9(i) for all r E N ( B ) .  Therefore 
N ( B )  is a nonsingular C-module and E(r )  = E(&;). 

(ii) Clearly Di is a C-submodule of N ( B ) .  By Proposi- 
tion 3.1.10 Di is orthogonally complete. It follows  from Propo- 
sition 3.1.6 that Di is an injective C-module. 

(iii) The equality M N ( B )  = {r E N ( B )  I E(r)  E M }  
is  proved similarly to Remark 3.2.2(ii). Assume that 7 = 0 
where r E N ( B ) .  Then + M ( Q ~ )  = 0. By Lemma 3.1.18 Q; 
is an orthogonally complete subset of Qs. Now it follows  from 
Corollary 3.2.4(iii) that E(r)  = E(Qi) E' M .  On the other 
hand if E ( r )  E M ,  then + M ( Q ~ )  = 0 by Corollary 3.2.4(iii) and 
so r E ker($M). 

Noting that &9 G Qs(+~(S)) by Theorem 3.2.l5(iii), we 
leave it for the reader to check the straightforward details of 
(iv)-(  vi). 

Consider now the universal  enveloping algebra (U(D(3)); x) 
of the (restricted) differential c-Lie algebra D(s>.  As we al- 
ready know c is a field.  By Corollary 5.3.7 and Corollary 5.4.6 
x is a monomorphism. Clearly D(3)X G U ( D ( 3 ) )  is a spe- 
cial differential c-Lie algebra. We identify D(3)  and D(S)X 
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via x. From Lemma 5.4.2(c) it follows that all the conditions 
of Definition 5.3.1 and Definition 5.4.1 hold  for c + D(s) and 
so it is a special (restricted) differential ??Lie subalgebra of 
U(D(3) ) .  Clearly c + D(-) is a special (restricted) differen- 
tial C-Lie subalgebra of U ( D ( s ) )  iw: well.  Define the mapping 
OM : ô  + c+D(s) by the rule aM(c+p) = 4M(c)+$M(p) for 
all p E D(R) ,  c E C. Clearly aM is a homomorphism of differ- 
ential C-Lie algebras. It follows directly from the definition of 0 
that there exists a unique homomorphism !PM : -+ U ( D ( 3 ) )  
of C-rings such that a~ = ! P M ~ .  Therefore 

ke r (~ )  C n M E s p e c ( B )  k e r ( a ~ ) .  

Clearly ker(aM) = ker(4M) @ ker($M). It follows that 

n M E s p e c ( B )  k e r ( a ~ )  = ( n M E s p e c ( B )  k e r ( 4 ~ ) )  
e ( n M E s p e c ( B )  ker(1CI~)) = 0 

by Remark 8.1.2(iii). Thus we have  proved the following 

Corollary 8.1.3 The mapping p : 5 + U(D) is a monomor- 
phism. 

A -  

In what follows we shall identify (via p) C and D with p(C) 
and  p(D) respectively. We shall call O(D(R) )  the reduced uni- 
versal  enveloping algebra of the differential C-Lie algebra D(R).  

Lemma 8.1.4 Let 6 E D(R)  be such  that 0 # $M(S) E D i p ) .  
Then there  exist  elements al ,  a2, b E S such  that E(a1) = E(a2) 
= E(b)  M and bx6b + alxb + bxaz = 0 for all x E Qs. 

Proof. Let $~ ( 6 )  = ad(q) where q E Q,(s). Clearly Iq + 
qI C_ 3 for  some  nonzero ideal I of 3. Suppose that for  all 
x E I either qx = 0 or z q  = 0. According to Proposition 2.2.1 
L = qJ # 0. It follows that y2 = 0 for all y E L. We have 

O = ( y + s ) 2 = y 2 + y ~ + z y + z 2 = y ~ + r y  and yz=-zy 
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for all y, x E L. Therefore ( y x ) ( y t )  = y(zy)t = -y2zt = 0 
for all y , z , t  E L and so ( Y L ) ~  = 0. By Theorem 3.2.7 9 is 
a prime ring and hence yL = 0 for all y E L. It follows that 
L2 = 0 which implies that L = 0, a contradiction. Therefore 
dq # 0 # qd for  some d E I .  We choose b', a\,  a', E S such 
that r$M(b') = d, r $ ~ ( a { )  = dq and r$~(a',) = -qd. Consider the 
mapping r : S + S given by x7 = b'x'b' + a',xb' + b'xa',, x E S. 
Since dPd(Q)d + dqxd - dxqd = 0 for all x E 9, we conclude that 
~ $ M ( S ~ )  = 0. By Lemma 3.1.18 S' is an orthogonally complete 
subset of S. Now it follows from Corollary 3.2.4(iii) that VS' = 
0 for  some V E B \ M .  Since d, qd, dq  are nonzero elements, we 
infer from Corollary 3.2.4(ii) that e = vE(b')E(a\)E(a',) # M .  
We set b = eb', a1 = ea; and a2 = ea',. From eS' = 0 we 
conclude that bx'b + alxb + bxa2 = 0 for all x E S. It follows 
from Theorem 2.3.9(ii) that e = E(b) = E(a1) = E(a2). The 
proof  is complete. 

Given 6 E D(R) ,  we recall from section 3.1 that 

M' = ( m  E Q I6E(m) = ad(m)).  

Lemma 8.1.5 Let 6 E D(R) and al,a2, b E S be such  that 
E(a1) = E(a2) = E(b) = e and 

bx'b + alxb + bxa2 = 0 for all x E Qs. (8.3) 

Then there  exists an element q E Qs such  that E(q) 5 e and 
6e = ad(q) . In particular q E M'. 

Proof. We define the mapping r : SbS + S by the rule 
b . p ~ b . p b + a 2 . P , P ~ S " 6 3 ~ S .  Supposeb.P=Oforsome 
P = Cri 63 si E S" @c S. Substituting xri for x in (8.3) and 
multiplying by si from the right, we obtain 

bx'ribsi + bxr4bsi + alxribsi + bxriassi = 0 
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for all x E S. Since b p = 0, we have 

0 = bz(b p*) + bx(a2 p) = bz(b ' p* + U2 p) 

for all x E S. 'According to Lemma 2.3.10 we have that 

0 = E ( b ) ( b .  p*+a2 . p )  
= (E@)@ P* + (E(%) - P 
= b * p d + a 2 * P  

since E(b) = E(a2). Therefore the mapping r is  well-defined. 
Clearly T is a homomorphism of right S-modules. By Propo- 
sition 2.2.l(iv) there exists an element q' E Q,. = Qr(S) such 
that xT = q'x for all x E SbS. Let t E S and P E S" @C S. We 
set y = P(t  €3 1). We have 

q't(b p) = q'(b y )  = ( b  * r)' = b y6 + a2 - y 

= t b ( b  p) + t ( b  - P*) + t(a2 p) 
= t*(b P) + tq'(b p) 

( [Q ' ,  t] - t6)E(SbS) = 0. 

Since rc(SbS) = r ~ ( b ) ,  we obtain  that E(SbS) = E@). Setting 
Q = -q'E(b) we conclude that ad(q) = 6E(b) (whence q E Ss). 
We recall from Theorem 2.3.9(ii) that E(q)  = E(b)E(q') 5 
e = E@). Finally we note that E(ad(q)) 5 E(q) 5 e and so 
6E(q) = 6eE(q) = ad(q)E(q) = ud(q). Thus q E M6 and  the 
proof  is complete. 

Corollary 8.1.6 Let 6 E D(R)  and P E Spec(B). Then 

M M * )  = M$&)' 
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Proof. First of all we note that 0 E M6 since 0 = ad(0) = 
SO = SE(0). Let m E M6. If E(m) E P, then $p(ad(m)) = 0 E 

and so 4 p  (m) E M$,(6). Therefore $p ( M J )  c M+,(6). Suppose 
that 4p(M6) = 0 but M$,(6) # 0. From  Lemma 8.1.4 it follows 
that  the conditions of Lemma 8.1.5 are fulfilled with E(b) = 
e 4 P .  By Lemma 8.1.5 we conclude that Se = ad(q) for  some 
q E M6. According to our assumption $p(q) = 0. Therefore 

M $ p ( 6 ) .  If E(m) 4 P ,  then $,P(ad(m)) = $p(SE(m)) = $ P @ )  

$ P @ )  = $ P ( W  = $p(ad(q)) = ad(4&)) = 0 

and so E(S) E P by Remark 8.1.2(iii). Setting W = 1 - E(6) we 
note that W 4 P and SW = 0. Therefore CV c M6 and hence 

0 # 4P(C) = 4P(CW) c 4P(M6) = 0, 

a contradiction. Now assume that $p(&) # 0. Let 0 # a = 
&(a) where q E M6 and b E M$,(6). Clearly [z, b - a] = 0 for 
all x E ~ M ( S ) .  Therefore b-a  E 4p(C) by Theorem 3.2.15(iv). 
Pick c E C such that 4p(c) = b - a. Since (q + cE(q))E(q) = 
q + cE(q), we conclude that E(q + cE(q)) 5 E(q)  . Clearly 

a d k +  cE(q)) = ad(q) = dE(q) 

and so 

ad(q + cE(q)) = ad((? + cE(q))E(q + cE(q)) = SEk7 + cE(q))* 

It follows that q + cE(q) E M6. Next  since 4 p ( q )  = a # 0, 
E(q)  4 P. Therefore 4 p ( q  + cE(q)) = a + 4p(c) = b and so 
4 p ( M ~ )  = M$,(6). The proof  is complete. 

We are now in a position to fulfill the'main goal of this section 
(Lemma 8.1.7 and Proposition 8.1.8). These results will  show 
that o ( D ( R ) )  has "local" PBW-type bases  which are "com- 
patible" with the P B W  bases of U ( D ( 3 ) )  for various prime 
homomorphic images 3 of S = O(R) .  
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Let M = {pi I 1 L i L n) c D(R).  The  set M is said to 
be strongly  independent if for all q E C, 1 5 i 5 n, the rela- 
tion piq E Di implies that piq = 0 for all i = 1,2, . . . , n. 
Obviously M is strongly independent if and only if Cy=l p i c  = 
CB?=lpiC and pic) n Di = 0. The notion of strong inde- 
pendence is of course motivated by the fact that in  the special 
case  when R is a prime ring p1, p2, . . . , pn E D(R)  are strongly 
independent if and only if they belong to some &(R) (see  sec- 
tion 5.5). 

Given a number m > 0 a product A = pilpiz . . . pi,,, E U, 
pik E M ,  is called a monomial in M of degree m. The monomial 
A is said to be correct if il 5 i2 5 . . . L i, and for  every p E P, 
p I m, the relations eppik # 0 and pik = pik+l - . . . - 
where k + S - 1 5 m, imply that S < p .  

Lemma 8.1.7 Let M = (pi I 1 I i 5 n )  C D(R)  be a  strongly 
independent  subset of derivations, t ,  m > 0 natural  numbers, 
D = {Aj I 1 L j L t )  a  set of paimise  distinct correct monomi- 
als in M of degree 5 m, P E Spec(B) ,  $p : Q + 0 = Q/MQ, 
$p : D^(R) + E(3) and !Pp : u(D(R))  + U ( D ( 3 ) )  the  canoni- 
cal homomorphisms.  Then: 

(i) There  exists  a basis l3 = Bo U l3i of D(3 such  that 

V’ = {Qp(A) I A E 23 and !Pp(A) # 0) c WO, 

where W = WoWi is a PBW-basis of U ( D ( 3 ) )  (see  section 5.4); 

are in M ,  then rc(Aj) = (1 - E(Aj))C where 

A 

- - 
pik+a-lj 

(ii) If Aj = pjilpjiz . . . pjik where k = k ( j )  and  the ’S 

B(Aj> = E(pjil)E(pjiz) E(pjik); 

(iii) xj=1 AjC = e$=lAjC. 

Proof. We recall from Theorem 3.2.7 and Theorem 3.2.15 
that 3 is a prime ring with extended centroid c. hr the r  we 
claim that  the set 

M’ = {P: = $ P ( P ~ )  I 1 I i L n and $+(pi) # 0) 
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is C-independent modulo Di(s). Indeed, suppose to  the con- 
trary  that CplS = ad(y), pi,c # 0, for  some y E Q,(s). 
In other words, setting p = Cpiq, we have $&) = ad(y) 
where y E M+p(p) .  By Corollary 8.1.6 y = 4p(z), z E MP, 
whence CpiqE(z) = ud(z). Since the pi's are strongly inde- 
pendent, we have that pisE(z)  = 0 for  each i. As pi4 # 0 and 
p:i?&p(E(z)) = 0, we conclude that E($) E P. Now from 

?hP(P)  = 4 y )  = 4 4 P ( X ) )  = $P(ad(z))  

we obtain p = ad(z) + T ,  where r E ker($p). It follows that 
E(T) E P. Clearly e = (1 - E(z))(l - E(T) )  $ P and 0 = 
pe = C p i q e .  It follows that &(e) = 1 and each piqe = 0. 
Applying $p we obtain  the contradiction pic = 0 which  proves 
our claim. Therefore there exists a linearly ordered basis B = 
Bo U Bi of D ( s )  such that M' C Bo and p: < p> if and only  if 
i < j. If char(C) > m or char(C) = 0, then clearly V' C WO. 
Suppose that char(C) = p 5 m. Then by (8.1) ep $ M and so 
$P (e&) = $P (pi) for all i = 1,2, . . . , n. We conclude from the 
definition of correct monomials that D' C WO. 

It fOllOWS that Qp(Aj)  = 0 if and only if $p(pji,) = O for 
some 1 5 S 5 k.  We already know that $p(pjia) = 0 if and only 
if E(pji,) E P. Therefore Qp(Aj)  = 0 if and only if 

e = E(pjil)E(pjiZ)  E(pjik) E P. 
Let now 0 # C E eC. Then we choose M E Spec(B) such 
that E(c)  M .  Clearly then e $ M and so QM(Ajc )  = 
* M ( A j ) 4 M ( C )  # 0. Therefore c $ rc(Aj) and so rc(Aj) L 
(1 - e)C.  On  the other hand 

A j E ( ~ j i , >  = pjil * pji,E(pji,) pjik 
- - . pji, m . . &ik = 

and hence Aje = Aj. It follows that rc ( A j )  2 (1 - e ) c  
and therefore rc(Aj) = (1 - e)C,  which  shows that E ( A j )  = 
E(pji,)E(pjiz) - E(pjik). 



396 CHAPTER 8. f-IDENTITIES OF SEMIPRIME RINGS 

Suppose now that  Ajcj = 0 for  some cl, c2, . . . , Q E C. 
Then C&, $ ~ ( A j c j )  = 0 and so $"(Ajcj) = 0 for all j = 
1,2 , .  . . ,t and M E Spec(B).  Thus  Ajcj = 0 and  the proof is 
complete. 

Proposition 8.1.8 Let M = {pi I 1 5 i 5 n} c D(R) and 
m > 0 a natural  number.  Then  there  exist a strongly  indepen- 
dent  subset MO = {6j 1 1 5 j 5 t }  C D(R) and a subset 
M i  = { vk I 1 5 IC 5 S} 5 Di(R) such  that  any  monomial 0 
in M of degree 5 m is a right C-linear  combination of products 
of the form AR, where A is a correct monomial in M O ,  R is a 
monomial in Mi  and deg(A) + deg(R) 5 deg(0). 

Proof. We set Pm = { p  E P I p 5 m}, P' = Pm U {0}, 
vp = ep,  p E Pm, WO  = 1 - &Fm ep and 

M' = {vlpi I 1 5 i 5 n, l E P'). 

Clearly any monomial of degree l 5 m in M is a sum of mono- 
mials in M' of the same degree. Furthermore any monomial in 
M' involving simultaneously vppi and wqpj with p # Q E P' is 
equal to zero. Therefore it is  enough to construct the desired 
subsets for  each {vlpi I 1 5 i 5 n, 1, l E P', provided that they 
will  belong to vlD(R). Replacing S by vlS we reduce the proof 
to  the following  two  cases: 

Case 1 pS = 0 for  some p 5 m; 
Case 2 ep = 0 for all p E Pm. 
We shall consider  only the first case since in the second  case 

the proof  is virtually the same (but slightly simpler). Since 
pS = 0, D(S)  is a restricted differential C-Lie algebra over a,. 

By Remark 8.1.2 Di is a direct summand of the right C- 
module D. Let D = Do @ Di and TO, .~ri be the projections on 
Do and Di respectively. We set K1 = p&', L1 = ~ o ( K 1 )  
and NI = ri(K1). Clearly L1 and NI are finitely generated 
nonsingular C-modules. It follows  from Remark 3.1.4 that  the 
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C-module L1 has  a strongly independent generating set C1 = 
{Sj I 1 5 j 5 t l ) .  We fix any finite generating set of the C- 
module NI and  denote it by NI. 

We proceed to construct by induction ordered 5-tuples (Ki, 
Li, Ci, iVi,Ni), i = 2,3,. . ., such that: 

(a) Ki is a finitely generated right C-submodule of D con- 
taining Ki-1; 

(b) Li = r0(Ki) and Ci = {61 ,S2 , .  . . , St i }  is a strongly inde- 
pendent generating set of Li, where ti 2 ti-1; 

(c )  Ni = .rri (Ki) and Ni is a finite generating set of the C- 
module Ni containing &l. 

Suppose that we have already constructed a 5-tuple (Ki, Li, 
Ci, Ni,Ni). Then we set 

YIC +c 
XECi 

x p c .  

Clearly &+l is finitely generated. Since Ki Li + Ni, we see 
that Ki C &+l. Next we set Li+1 = .rro(Ki+l) and Ni+l = 
.rri(Ki+l). Clearly Li+l and Ni+l are finitely generated C-mo- 
dules, Li C Li+l and Ni Ni+l. Choose any finite generating 
set Ni+1 of Ni+l containing Ni. Since Li is an injective C- 
module (see Remark 3.1.4 and Theorem 2.3.9), Li+l = Li @ L' 
for  some submodule L' c Li+l. According to Remark 3.1.4 
the C-module L' has a strongly independent generating set, say, 
{Sti+l,Sti+2,. . . Finally we set Ci+l = {Sj I 1 5 j 5 

Next we prove by induction on m the following statement. 
For all i = 1,2,  . . . any monomial 0 in Ki of degree m is a right 
C-linear combination of products of the form AR, where A is 
a correct monomial in &+,,+l, R is a monomial in Ni+,-l and 
deg(A) + deg(R) 5 m. 

If m = 1, then 0 = x E Ki. Since Ki C Li @ Ni, we conclude 
that x = x&l Sjcj + CzE~ i  zd, for  some cj, d, E C. Therefore 
our statement holds for m = 1. Suppose now that our statement 

ti+& 
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holds  for all 1 5 k 5 m - 1. Writing elements involved in 0 as 
linear combinations of elements belonging to Li U Ni and using 
the commutation formula (5.22) 

c6 = 6c + c6, 6 E D, c E c, 
we obtain  that 0 is a C-linear combination of monomials of the 
form 1 1 x 2 . .  . x k  where the Xj 'S  belong to Li U Ni and k 5 m. 
It follows  from the induction assumption that it is enough to 
consider  only  one  such monomial ~ 1 x 2 .  . . of degree m. First 
assume that there exists an index j such that 1 5 j 5 m - 1, 
X j  E JV~ and x j + l  E Li. Clearly 

X 1 X 2 . . .  X, = 2 1   Z j - l X j + l X j X j + 2  0 . .  X, 

+ ~ l . .  x j - l [ ~ j ,   ~ j + l ] ~ j + 2  a . .  X,.  (8.4) 

Since $1 . . . x j - l [ x j l   ~ j + l ] ~ j + 2  . . . xm is a monomial in &+l of 
degree m - 1, we can apply the induction assumption. It follows 
that without loss of generality we may assume that  there exists 
k such that k 5 m, x 1 , x 2 , .  . . , x k  E Li and x k + l ,   x k + 2 , .  . . , X ,  E 
Ni. Next assume that there exists an index j such that 1 5 j 5 
k - 1, x j  = 6,., ~ j + l  = 6, with 1 5 S < T 5 ti. Then the equation 
(8.4) together with the induction assumption yields that without 
loss of generality we may assume that 

x 1  = 6 j l ,  x2 = 6 j z l . .  . , x k  = 6 j h  

with j 1  5 j, < - . . . 5 j k .  Finally we note that  the case  when 
j, = j ,+1 = . . . = j l+p-l  is  considered  analogously. Therefore 
our statement is proved 

Taking MO = L, and Mi = N, we complete the proof. 

8.2 The Group e(R) 
The following example shows that in the case of semiprime rings 
some  new trivial 2'-identities appear. 
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Example Let A be any semiprime ring with 1. We set R = 
A @ A @ A @ A and e = (1,1,0,0). Define automorphisms a and 
p of R by the rule 

(a ,  b, c, d)* = (b, a, d, c), (a, b, C, d)' = (b,  a, C, d) 

for all (a ,  b, c, d) E R. Clearly a # p and 4(x)  = exo - ex' is a 
2"-identity on R. 

At this point we note that  the situation with the group G(R) 
is in some  sense analogous to  that of U(D(R)) :  it does not work 
as well as in the prime ring case. We shall need to construct a 
larger group G(R). To this end we recall that End(Q,) is a right 
C-module and for all y E End(Q,) we have rc (y) = rc (Q?) = 
(1 - E(Q7))C (see Theorem 2.3.9(i)). Therefore End(Q,) is a 
nonsingular C-module. Given a dense orthogonal subset V c B 
and a subset (3; 1 v E V }  c End(Q,) we define a mapping 
y : Qs + Q, by the rule x7 = x& X ~ V V  for all x E Q,. Clearly 

for all x E Q, and so yv = yvv for all v E V. Noting that all that 
we have just shown  is  valid  for End(S) as well, we summarize 
these results in  the following 

Remark 8.2.1 End(&,) is  a nonsingular  orthogonally  complete 
right C-module and End(S) is  an  orthogonally  complete  subset 
of End( Q s )  

We consider G(R) as a subgroup of End(Q,) and we identify 
C with i d ~ , C .  Then  the  products ae and ea are defined, where 
a E G(R), e E B. Given e E B, we may  consider End(eQ,) 
as a subring of End(Q,) defining xt = for all x E Q,, 
t E End(eQ,). We note that 

End(eQ,) = {t E End(&,) I et = t = te}. 
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Since e&, = Q,(eS), by Proposition 2.5.3 and  Proposition 2.5.4 
we have 

G(eS) C End(eQ,). 

The following remark will be especially  useful  when we come to 
defining  "F'robenius elements". 

Remark 8.2.2 Let V be a dense  orthogonal  subset of B and 

Suppose that wgu = W for v E V and W E vB. We set g = 
C,",, guv. Then: 

(i) g is  an automorphism of additive  groups of S and Q, 
such  that e9 = e for all e E B; 

(ii) There  exist  orthogonal  idempotents u1 = ul(g),u2 = 
u2(g) E B such  that u1+ u2 = 1, gul E Aut(u1S) 5 Aut(ulQ,) 
and  gu2 E Antiaut(u2S) E Antiaut(u2Q5); 

(iii) If g,, E Aut(vS) for all v E V ,  then g E Aut(S) C_ 

(iv) If gu E Antiaut(vS)  for all v E V ,  then g E Antiaut(S) 

(v) g1c is  an automorphism of C. 

Aut(Qs); 

Antiaut (Q,); 

Proof. We shall prove (i), (iii) and (iv) simultaneously. 
We  show that g is an automorphism of the additive group of S. 
The case of Q9 is proved  analogously. Let x, y E S. Then 

v(x+y)g = [v(x+y)]g" = (vX)g"+(vy)g" = vxg+vyg - - v(xg+yg) 

for all v E V and so (z+y)g = ag+yg since V is a dense subset of 
B (see Theorem 2.3.9(i)). Here we note that if gv E Aut(S) for 
all v E V ,  then  the equality (xy)g = xgyg is proved  analogously. 
Now suppose that xg = 0. Then 0 = xgv = (vx)gu and so vx = 0 
for all v E V which  implies that x = 0. It follows that g is 
injective. Now let x E S. Since gu is either an automorphism or 
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an antiautomorphism of VS, vz = (yV)gv for  some yV E VS. It is 
not difficult to see that yg = z where y = C,',, yVv. Therefore 
g is an automorphism of the additive group of S. Next  since 
e = CVEV ev, we see that I 

and hence eg = e for all e E B. Therefore (i) , (iii) and (iv) are 
proved. 

(ii) We set & = {v E V I gV E Aut(vS)}, V2 = V \ &, u1 = 
E(Vl) and u2 = E(&). Since 0 = &V&S' = VlSV2, we infer  from 
Lemma 2.3.10 that E(VI)E(&) = 0 and so u1u2 = 0. We have 
V = Vl U V2, w1u1 = v1 and v2u2 = 212 for all v1 E V,, 212 E V2. 
Therefore v(u1+ u2) = v for all v E V and so v(1- u1- u2) = 0,  
v E V .  Recalling that V is a dense subset of B,  we conclude that 
u1+ u2 = 1. Further Vu1 = V1 is a dense orthogonal subset of 
ulB. Obviously Q,(ulS) = q Q , ,  the extended centroid of ulQs 
equals ulC and B(u1C) = ulB. Finally gul = C,',, gVvul = 
C,',, gVv. By (iii) gul is an automorphism of ulS. Analogously 
one can show that gu2 is an  antiautomorphism of uzS. The proof 
is complete. 

Following section 7.6 we define an automorphism g of C to 
be Fkobenius if either g = 1 or, in case pc = 0 for  some prime 
p and 6 : c I+ cp is an automorphism of C, g = P for  some 
n E 2. Following section 7.7 we then define g E G(R) to be a 
Fkobenius (anti)automorphism of S if the restriction 3 of g to 
C is a Frobenius automorphism of C. We note that if g is a 
F'robenius (anti)automorphism,  then eg = e for all e E B. A 
mapping g : S + S is  called a Fkobenius  element if there exist 
a dense orthogonal subset V of B and 

{gV I gV is a Fkobenius (anti)automorphism of VS, 21 E V }  

such that g = C,',, gVv. Since any (anti)automorphism of VS 
has a unique extension to v&, = Q,(vS), we may assume that 
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every gv is an (anti)automorphism of vQS, v E V .  The following 
corollary follows immediately from Remark 8.2.2. 

Corollary 8.2.3 If g is a Frobenius  element of End(S), then g 
is an automorphism of the  additive group of Qs, eg = e for all 
e E B, and g induces  an  automorphism of C. 

We denote by G, = G f ( R )  the subset of all Frobenius ele- 
ments of End(S). 

Proposition 8.2.4 G f  is a subgroup of the  multiplicative  semi- 
group End(Q,) containing  Gi and a- lGfa = G f  for all a E 

m 

Proof. Let g = C,',, gvv and h = C,',, h,u be Frobenius 
elements. One can check that f = gh = ~ ~ ~ v , u E u g v h , v u  and 
gvh, is a F'robenius (anti)automorphism of vuS. Setting W = 
V U  and f w  = gvh, for all W = wu E W ,  W E V ,  u E U, we see 
that f = C;,, fww. As gu is a F'robenius (anti)automorphism 
of V S ,  g;l is a F'robenius (anti)automorphism of VS as well. 
Setting h = C,',,g;lv we note that h is a F'robenius element 
and 

gh = C Lgvg~lv  = C l idVsv  = ids. 
U E V  U E V  

Analogously hg = ids and so 9-l = h E G!. Therefore G f  
is a subgroup of End(Q,). Obviously Gi C G f .  Finally let 
a E G(R). We note that ea! = aeo for  every e E B. It follows 
that 

a-lga! = c La!-lgvav? 
VEV 

Since gv is either a Frobenius automorphism or a F'robenius  an- 
tiautomorphism of VS, a-lg,a! is  respectively either a F'robenius 
automorphism or a Frobenius antiautomorphism of vas.  Not- 
ing that V* is a dense orthogonal subset of B, we conclude that 
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Cu-lga is a F'robenius  element of End(S) which completes the 
proof. 

We set e ( R )  = G(R)Gf(R)  and continue with the following 

Corollary 8.2.5 G(R) is a subgroup of End(Q,) and G f ,  Gi 
are normal  subgroups of G(R). 

Proof. It follows  from Proposition 8.2.4 that e ( R )  is a 
subgroup of End(Q,) with the normal subgroup G f  . Since Gi 
is a normal subgroup of G(R),  it is  enough to show that f = 
g-linn(s)g E Gi for all g E G!. Here we note that ef = e for all 
e E B. Let g = C,',, g,v where V is a dense orthogonal subset 
of B and g,  is a F'robenius (anti)automorphism of v&, for all 
v E V. We set t, = (vs)gu if g,, is an automorphism of v&,. 
Otherwise we set t, = ( v s - ~ ) ~ ~ .  Letting t denote the element 
C,',, tvv ,  we see that 

for all U E. V, z E Q, and so f = inn(t) E Gi. The proof is 
complete. 

A subgroup H C_ G(R) is  called an 0-subgroup if H is an 
orthogonally complete subset of End(&,) and eh = e for all 
e E B , h E H .  

Remark 8.2.6 G f  and Gi are 0-subgroups of G(R). 

Proof. Let V c B be a dense orthogonal subset and g,  E 
G f ,  21 E V .  Then g, = g,+u. Setting W = {vu I W E 
V, U E U,, uw # 0) and g = C&g,,v we see that W is a 
dense orthogonal subset of B and gw = gvu = g,vu = g,uv = 
gv,uuv = gv,uw for all W = uv E W .  Letting h, denote where 
W = vu, v E V and U E' U,, we conclude that g = C;,, h,w. 

I 
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Note that h, is a F'robenius (anti)automorphism of W&, and so 

Next we recall that Gi is the group of all X-inner automor- 
phisms of S = O( R). Clearly eh = e for any h = inn( S) E Gi 
and e E B. Now let V be any dense orthogonal subset of B 
and  let a, = inn(s,) E Gi, 21 E V .  Setting S = C,',, s,w and 
t = C & S ; ~ ~ I ,  we infer  from Remark 3.1.9 that t s  = st = 
C,',, v = 1. Furthermore by Proposition 3.1.10 S, t E Q,. Next 
we see that trs = C,',, S;~~S,ZI E S for all T E S. Finally, 
letting g = X$, inn(s,)v, we note that rg = C,',, rinn(sw)~ = 
rinn@) for all T E S. Thus g = inn(s) E Gi. 

The following remark is  needed in  the course of forming the 
skew group ring 0 o( e which  will be needed in section 8.3 when 
we define the "home"  for  2'-identities. 

g E G f .  

Remark 8.2.7 Let f E G(R) and p E D(R) .  Then f-lpf E 
D(R) .  Furthermore if p E Di, then f - l p  f E Di as  well. 

Proof. Clearly f = ah for  some a E G(R), h E Gf(R) .  We 
already know that a-lpa is a derivation. Hence without loss 
of generality we may assume that a = 1. Let h = C,',, hvv, 
where V G B is a dense orthogonal subset and h, is a Frobe- 
nius (anti)automorphism of v&, such that (21s)~~ = VS,  v E V .  
Recall that h-l = C,",, h;lv. Since e p  = pe  and eh  = he for 
all e E B, we see that 

Clearly h;lph,v is a derivation of V S  for all 21 E V .  Recalling the 
relation End(vS) G End(S) we conclude that  it is a derivation 
of S. Setting v = C&(h;'ph,)v we see that uv = h;lph,v is 
a derivation of S for all 21 E V .  Since V is dense subset of B, we 
infer that v is a derivation of S. Thus hT1ph = U is a derivation 
of S. The proof  is complete. 
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For f E G the  map o : c I+ f - l c f ,  c E C, is an automor- 
phism of C. With Remark 8.2.7 in mind we leave it for the reader 
to check (just as in section 7.1) that  the map c + p  I") c U + f - l p f  
is  indeed a a-semilinear differential C-Lie algebra automorphism 
of 5. This leads to  an action of e on @ and hence to  the skew 
group ring 0 0: G. 

We recall the  partial ordering on B which  is  given as follows: 
for e, f E B e 5 f if e = ef. Let H be an  0-subgroup of 
G(R). Elements a, p E G(R) are called completely  distinct. on 
e E B modulo H ,  if either e = 0 or for  every 0 # v 5 e we have 
QV $! PHv. Using the fact that vh = hv for all v E B, h E H ,  it 
is  easy to see that a, p are completely distinct on e modulo H 
if and only if p, a are completely distinct on e modulo H .  

Let A = {ai I 1 5 i 5 n} and  el, e2, . . . , e, E B. Suppose 
that either A c Aut(S), or A C Antiaut(S), and  the following 
conditions are fulfilled: 

(a) eiej = 0 for all 1 5 i # j 5 n; 
(b) el + e2 + . . . + e, = 1; 

a:' 
( c )  e:;' = ekj for all 1 5 i, j, IC 5 n. 

Setting  g = C:=l aiei we claim that 

g E Aut(S) U Antiaut(S). (8.5) 

Indeed, clearly S = @L1Sei = @LISeY1 . By ( c )  we have that 
g = Erzl ei ai. Now it is clear that  g is an (anti)isomorphism 
of S = e,,2eY1 onto S = ey=lSei. 

Let g E G(R) E End(&,). We set 

-1 

a;' 

-1 

Then we have 

((1 - e(g))r)g = (1 - e(g))r for all P E S. 
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Moreover 

if e E B and (er)9 = er for all r E S, then e 5 1 - e(g). (8.6) 

Lemma 8.2.8 Let a, p E G(R) and let H be an 0-subgroup of 
G(R). Given any 0 # U E B there  exist an element h = ha,p,U E 
H and an idempotent e = eo,p,u E B such  that: 

(i) e(h) 5 e 5 U; 
(ii) va-l = v@-' for all v 5 e; 
(iii) pe = ahe (and  hence p = ahe + p(l - e)); 
(iv) a and p are completely distinct on U - e modulo H .  

Proof. We set g = a-lp and W = {W E Bu, I gw E Hw}. ' 
Clearly if w E W ,  W E B and W 5 W, then v E W as well. 
Let U be a maximal orthogonal subset of W .  By Remark 3.1.5 
E(U) = E ( W )  and V = U U {l - E(U)}  is a dense orthogonal 
subset of B. According to  the definition of the set W for  every 
v E U there exists an element h, E H such that gv = h,v. 
We set e = E(U), v0 = 1 - e, h,, = 1, h = C,',, h,v. One 
can readily check that e(h) 5 e 5 U and pe = ahe. Therefore 
p = ahe+p(l-e). According to  the definition of an  0-subgroup 
v h  = v for all v E B. From De = ahe one obtains a-lpv = hv 
whence va-lPv = v or va"P 5 v for all v 5 e. Likewise  from 
ph-le = ae one obtains @-la 5 v. Thus 5 v@-' 5 va" 
and so va-l = v@-' for all v 5 e. Finally if 0 # w 5 U - e and 
aw E PHw, then aw = Pfw for  some f E H .  Since f w  = wf,  
we conclude that f -'W = a-lpw and hence W E W .  Recalling 
that e 5 U we see that e(u - e)  = 0. Therefore ew = 0 and 
SO E(U)w = 0. It follows that Uw = 0, a contradiction to  the 
maximality of U. Thus Q and p are completely distinct on U - e 
modulo H and  the proof is complete. 

Proposition 8.2.9 Let a1, a2, . . . , a, E e(R) and H an 0- 
subgroup of G(R). We set a0 = 1. Then there  exist  idempotents 
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u k i  E B and  elements h k i  E H ,  k = 1,2 , .  . . , n, i = 0,1 , .  . . , k 
such  that: 

(i) U k o , .  . . , Ukk are pairwise  orthogonal  idempotents whose 
sum  is equal to 1 for  all k = 1,2, .  . . , n; 

(ii) Qk = ~ f = ~  a i h k i U k i  for  all IC = I ,  2, .  . . , n ;  
(iii) Qk and a j  are COmpktely  distinct on U j j  ( 1  - E&, u k i )  

(iv) a k  and a j  are completely  distinct on U k k U j j  modulo H 

(v) h k k  = 1 for  all k = 1,2, .  . . , n ;  
(vi) e ( h k i )  5 u k i  5 u i i  for all IC = 1,.  . . , n, i = I , .  . . , k - 1; 
(vii) UkO 2 1 - e(ak)  for  all k = 1,2, .  . . , n; 

f o r a l l k = 1 , 2  ,..., n , i = 0 , 1 ,  ..., k - l  

modulo H for all k = 1,2, .  . . , n and j = 1,2 , .  . . , k - 1; 

for  all k # j ;  

(viii) vai' = vai 
- 1  

and v 5 u k i .  

Proof. The lower triangular  array of idempotents u k j  E B 
(along with the accompanying elements h k j  E H )  is constructed 
column by column as follows. For column 0 we let uoo = 1 play 
the role of U in Lemma 8.2.8 and  set UkO = e l , a k , l  and h k o  = 
I I I , ~ ~ , ~ .  Now assume columns 0,1 ,  . . . , t have  been constructed 
and we proceed to construct column t + 1. We set 

For each k > t + 1 we let 

play the role of-u in  Lemma 8.2.8 and  set 
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By  (8.7) X:=O ukj = 1. By  (8.9) ukj 5 w k j  5 1 - Ci=o U&. 
j -1  

The sum U k i  is therefore direct  and so (i) is  proved.  By 
the definition of e ( q )  we have (a!k - 1)(1 - e (ok ) )  = 0, i.e., 
ak(1 - e(ak)) = 1 - (1 - e ( Q k ) ) ,  k = 1,2,. . . ,n. Since 1 E 
H this  puts 1 - e(&) 5 UkO, k = 1,2 , .  . . ,n and so (vii) is 
proved. By (8.7) hkk = 1 by definition, which establishes (v). 
An appropriate application of Lemma 8.2.8 gives e(hki) 5 w k i  

(see (8.10). It follows  from (8.8) that wki 5 uki and so e(hki) 5 
uki. By (8.8) and (8.9) we have uki 5 uii. Thus (vi) is  proved. 
By Lemma 8.2.8(ii), (viii) is clear. Since 

(using Lemma 8.2.8(iii)) we have thereby proved (ii). From 
Lemma 8.2.8(iv) we  know that Q k ,  Q j ,  k > j,  are completely 
distinct on 

which  proves (K). In particular, since Ukk 5 1 - uki, we 
see that a k ,  o l j  are completely distinct on ujjukk. Thus (iv) is 
shown and the proof  is complete. 

Lemma 8.2.10 Let Q E G(R). Then: 
(i) The  restriction QIB of Q on B is an automorphism of B; 

In particular Ma E Spec(B) for all M E Spec(B); 
(ii) Given M E Spec(B), the mapping QM : Q,/MQs + 

Q$.M"Q, defined by the rule x + MQ, I") xa + MaQs,  x E Qs, 
is  either an isomorphism (if ul(g) 6 M )  or  an antiisomorphism 
(if # M)-  
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Proof. (i) Since e = GGf , a = gh for  some g E G, h E Gf  . 
By Corollary 8.2.3 we have eh = e for all e E B. Therefore 
ea = eg for all e E B and so Q\  B = g1 B is an automorphism of 
B. 

(ii) It follows  from Remark 8.2.2 that  there exist two  or- 
thogonal idempotents u1 = ul(g),u2 = u2(g) E B such that 
u1 + u2 = 1, hul E Aut(u1S) and hu2 E Antiaut(u2S). If 
u1 E M", then ( x  + = xghu2 + MaQ,. Otherwise 
(z + MQ,)"M = xghul + M"Q,. Thus in the first case a~ is an 
antiisomorphism while in  the second  case it is an isomorphism. 
The proof  is complete. 

The following general result may be of independent interest 
since it gives a decomposition of B relative to  an automorphism 
Q. 

Lemma 8.2.11 Let Q be any  automorphism of the  Boolean  ring 
B c C. Then there  exists  paimuise  orthogonal  idempotents 
eff,o, %,l, ea,2, ea,3 E B such  that: 

(i) eCY,o + eCZ,l + eCY,2 + eQ,3 = 
(ii) ez,1 L ea,2, e:,2 = ea,3 and ez,3 = ea,l+ ea,2ea,3; a 

(iii) If e 5 ealo, then e" = e. 

Proof. Let A E B. We note that rB(A) = rc(A) n B = 
(1 - E(A))B.  Next we claim that 

E(A") = E(A)". (8.11) 

Indeed, we have 

(1 - E(A"))B = TB(A") = rB(A)" = (1 - E(A)")B 

which  proves our claim. Next we claim that 

if AA" = 0, then E(A)E(A)" = 0. (8.12) 



410 CHAPTER 8. ?-IDENTITIES OF SEMIPRIME RINGS 

Indeed, since ACA" = 0, from  Lemma  2.3.10 (with C instead 
of R) we see that E(A)E(A") = 0. Now  by (8.11) we have 
E(A)E(A)" = 0 and our claim is established. 

Given v E B we set U(v)  = { U  E B 1 UU" = 0 = uv}. 
Consider any chain A C U(v)  (i.e., a subset A c U ( v )  such 
that for all a, b E A either a 5 b, or b 5 a). We claim that 
E(A)  c U(v) .  Indeed, let a, b E A. Then  either a 5 b, or b 5 a. 
In the first case we have 

a"b = (ab)"b = a"(b"b) = 0. 

In the second case we see that 

aQb = aa(ab) = (a"a)b = 0. 

Therefore AA" = 0 and so E(A)E(A)" = 0 by  (8.12). Finally 
since Av = 0, v E rc(A) = (1 - E(A))C and hence vE(A) = 0. 
Thus E(A)  E U(v).  Since E(A)a = a for all a E A, we see 
that every chain in U(v)  has an upper bound. Therefore Zorn's 
Lemma is applicable and so 

U(v)  contains maximal elements. (8.13) 

Clearly preserves the  partial ordering 5 and U(v)"-l = 
U(v""). Hence  if a is a maximal element of U(v) ,  then 

a"" is a maximal element of ~ ( v " " )  (8.14) 

Let v E B and  let a be a maximal element in U(0).  We  now 

if vv" = 0 = v(a + U"), then vaa = W". (8.15) 

To this end we set W = v(1-  a"-') and  note that vw = W .  We 
claim that 

show 

WW" = wa = wa" = w"a = 0. (8.16) 

Indeed, since vu" = 0, ww" = 0 as well. As aa" = 0 and 
v(a + a") = 0, we infer that vu = 0 = vu". Recalling that 
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W = vw, we conclude that wa = waa = 0. Finally since wa = 
va( l  -a), we see that waa = 0 which  proves our claim. It follows 
from (8.16) that (W + a)(w + = 0,  (W + = W + a and so 
W + a E U(0) .  Since W + a 2 a and a is a maximal element in 
U(0)  , we conclude that W = 0 and hence v = ~ u O - ~ .  Applying 
Q we see that v* = vas. 

Let e be a maximal element in U(0)  and  let U be a maximal 
element in U(e + ea). Then by  (8.15) we have that 

uae = ua. (8.17) 

Let v E B. We claim that 

if v ( u  + e + ea) = 0, then 21% = wa. (8.18) 

Indeed, suppose that vav # va. Then vva" # v and so W = 
v(1 - # 0. We  show that 

w(e+ea)=wu=wua=wwa=uwa=O.  (8.19) 

Indeed, since U ,  e and ea are pairwise orthogonal, we infer  from 
v (u  + e + ea) = 0, that vu = we = vea = 0. Recalling that 
ww = W ,  we conclude that wu = we = wea = 0 and so w(e + 
ea) = 0. From  (8.17) and we = 0 we infer that wua = 0. 
Since wa = va( l  - v) and wv = W ,  ww" = 0. Finally since 
w(e + ea) = 0 = wwa, we have  by  (8.15) that wae = W O .  

Now from ue = 0 we obtain  that uwa = 0. Thus (8.19)  is 
proved.  From  (8.19) we see that w+u is an  idempotent such that 
(w+u)(e+ea) = 0 = ( w + u ) ( w + u ) ~ .  Hence w+u E U(e+ea) 
which contradicts the maximality of U .  Thus vav = wa and our 
claim is proved.  Next we claim that 

if v ( u  + e + ea) = 0, then va = v. (8.20) 

Indeed, let W = v( 1 - va). Then clearly w(u + e + ea) = 0. Now 
from (8.18) (with W instead of v) we see that 0 = wwa = wa and 



412 CHAPTER 8. p-IDENTITIES OF SEMIPRIME RINGS 

so W = 0. Hence W = WW". By (8.18) we have WW" = v" and so 
W = W" which  proves our claim. In particular (1 - U - e - e")" = 
1 - U - e - ea. Therefore (U + e + e")" = U + e + ea and so 
(U + e + e")"" = u + e + ea. It follows that U"" 5 u + e + ea and 
hence = u1 +u2 +us where u1 5 U,  u2 5 e and u3 5 e". We 
have U = u?+ug+u;. Since u1 5 U,  U? 5 U". On  the other  hand 
UU" = 0 and we conclude from U = U? +U; +U: that u1= 0. As 
u2 < e,  U; 5 ea,  Now from ue" = 0 we infer that u2 = 0. Hence 
U"" = u3 5 ea and so U 5 ea2. Further eQ2e0 = (eae)a = 0. 
Since e" 5 U + e + ea and (U + e + e")" = U + e + e", we infer 
that ea2 5 U + e' where e' 5 e. Recalling that ue = 0 we see 
that e' = eea2. Now setting e,,o = 1 - U - e - e",  ea,l = U, 
ea,2 = e and ea,3 = e" and recalling that 5 ea,2 by (8.17) 
we complete the proof. 

- 

Corollary 8.2.12 Let Q! be any automorphism of the Boolean 
ring B C C and let  idempotents e,,o, e,,l,  ea,2, ea,3 E B be as in 
Lemma 8.2. l l .  Further  let M E Spec(B)  . Then M" = M if 
and  only if e,,o M .  

Proof. We set ei = e,,i, i = 0,1,2,3. Let M" = M .  Then 
= M as well. Since erei = 0 for i = 1,2,3, we obtain 

that either ei E M or e: E M .  In the last case ei E Ma" = M .  
ThereforeeiEMfori=1,2,3andsoeo=l-el-ez-e3$iM. 

Next let eo M .  Recall that  the addition @ of the Boolean 
ring B is given  by the rule U @ W = U + W - 22121, U , W  E B. 
Now suppose that Ma # M .  Since M is a maximal ideal of the 
Boolean ring B, we infer that M @ M" = B. It follows that 
u + v - 2 u v = e ~ f o r s o m e u ~   M , W E  M". Sett ingz=u(l-v)  
and y = v ( 1 -  U) ,  we see that 

M"-' 

xy = 0, x + y = eo, x E M and y E M". 

It follows that y 5 eo. By Lemma 8.2.11(iii) we have ya = y and 
so y = g"-' E M .  Therefore eo = z + y E M which contradicts 
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the relation eo M .  Thus Ma = M and  the proof  is complete. 

Given o E G(R) and P E Spec(B), recall that  the map 
o p  : S/PS -+ S/PaS defined  by the rule x + PS I+ xa + P S ,  
x E S, is either  an isomorphism or an antiisomorphism of rings 
(see  Lemma 8.2.10). The next two results lead up  to Corol- 
lary 8.2.15, which  makes  possible an  important link between 
completely distinct elements modulo Gi and Go@) in certain 
situations. 

Lemma 8.2.13 Let o E G and P E Spec(B). Suppose  that 
Pa = P and o p  E Gi(S/PS) . Then there  exist  elements b, al ,  a2 
E S such  that: 

(i) E(a1) = E ( u ~ )  = E(b) # P; 
(ii) bxab = alxa2 for all x E S; 
(iii) aE(b) E Aut(E(b)S); 

Proof. Let +p : S + S = S/PS be  the canonical ring 
surjection and  let ei = e,,i, i = 0,1,2,3 (see Lemma 8.2.11). 
We have o p  = inn(s) for  some S E Qs(s). Obviously Is-l, SI G 
S for  some  nonzero ideal of S. Pick any 0 # 6 E I and  set 
a1 = h-’, a2 = s6. Since S is an invertible element of Qs(S), 
a1 # 0 # a2. We note that 

- 

6xap6 - B ~ X Z ~  = o for all x E S. (8.21) 

Clearly 6 = +p (b’) , ‘?il = +p(al,) and E2 = +p (a;) for  some 
b, ai ,  al, E S. It follows  from Corollary 3.2.4 that 

Since Pa = P ,  we conclude  from Corollary 8.2.12 that eo e P. 
Hence (1 - eo)x E PS for all x E S and so +p(eox) = + p ( x ) .  
Therefore without loss of generality we can assume that eOb’ = b’, 
eoal, = al, and eoa; = a;. Further it follows  from  Lemma 8.2.10 
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that u1 = ul (a)  6 P and so we can assume that ulb' = b', 
ulal, = al, and ulah = ah. Setting H = {b'xab' - aixah I x E 
S}, we claim that H is an orthogonally complete subset of S. 
Indeed, let V be  a dense orthogonal subset of B and {h, = 
b'xtb' - a ~ x , a ~  I 21 E V} .  By Lemma 8.2.11(iii) we have 

21 eo = P e t  = (weo)a = veo for all 21 E V. 

Letting x = xiEv x,v and recalling that b'eo = b', we see that 

a 

c I(b'x;b' - a~x,ah)w = c '(b'x;b')(eov) - a1xa2 
V € V  V E V  

' I  

/ \ Q  

= b'x'b' - U ~ X U ~  E H 

and hence H is orthogonally complete. 

some e E B \ P (see Corollary 3.2.4(iii)). Setting 
It follows  from (8.21) that 4p(H) = 0 and so eH = 0 for 

b = E(b')E(a',)E(u',)eb', 
a1 = E(b')E(a',)E(ak)eai and 
a2 = E ( b ' ) E ( a ~ ) E ( u ~ ) e a ~ ,  

we see that bxab - alxaz = 0 for all x E S. Further by Theo- 
rem 2.3.9(ii) we have that 

E(b) = E(a1) = E(a2) = E(b')E(a',)E(a;)e 6 P. 

Since ulb' = b', we see that ulb = b and so u1 >_ E(b). It is now 
clear that aE(b) E Aut(E(b)S). The proof is thereby complete. 
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Given a E 21, we set 

M, = {S E Q I rs = sr" for all r E S). 

Lemma 8.2.14 Let a E c. Suppose  that  there  exist b, ax, a2 E 
S such  that E(b) = E(a1) = E(a2) = e # 0, a e  E A u t ( e S )  and 

bxab - alxa2 = 0 for all x E S. (8.22) 

Then there  exists  an  element S E M, such  that E ( s )  = e,  als = b 
and a2 = sb. 

Proof. Replacing S by eS, we may assume that e = 1 
(whence E(b) = E(a1) = E(a2) = 1) and a E A u t ( S ) .  Suppose 
that a2  M,b. Then a2 is left independent of b re 1, a (see 
Section 2.5).  By Theorem 2.3.3 there exists p = C r i  63 si E 
S" @C S such that a2 - p # 0 but b .  p" = 0. Substituting xri for 
x in (8.22) and multiplying by si from the right, we obtain 

and so 
bxa(b p") - alz(a2 p) = 0 

for all x E S. Since b p" = 0, we see that alz(a2 p) = 0 for 
all x E S. As E(a1) = 1, it follows  from  Lemma  2.3.10 that 
0 = E(al)(a2 p) = a2 . p in contradiction to  the choice of p. 
Therefore a2 E M,b and so a2 = sb for  some S E M,. Clearly 
E(s )  2 E(a2) = 1. Hence E(s )  = 1. By Proposition 3.1.12 we 
have that S is an invertible element of Qs and so a = inn(s). 
Now  we have (bs-l -al)xsb = bs-'zsb-alxsb = 0 for all x E S. 
Applying Lemma 2.3.10, we obtain  that E(sb)(bs-l - al)  = 0. 
Since E(sb) = E(b) = 1, it follows that bs-l = a1 and so b = als. 
The proof  is complete. 

The following result will be useful  in section 8.4. 
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Corollary 8.2.15 Let a E e ( R )  and P E Spec(B). Suppose 
that Pa = P .  Then c$p(Ma) = Map and ae E Gie for some 
e E B \ M .  

Proof. Obviously &(Ma) G Map.  Now suppose that 
Map # 0. It follows from Lemma 8.2.13 and Lemma 8.2.14 
that there exists an element S E Ma such that E(s)  P and 
aE(s)  E Aut(SE(s)).  Hence c$p(s) # 0 by Corollary 3.2.4. 
From Proposition 3.1.12 we  know that Map is a cyclic #p(C)- 
module. Since $p(C) is a field and 0 # c$p(s) E Map, we con- 
clude that c$p(Ma) = Map. By Proposition 3.1.12 we have that 
S is an invertible element of &,E(s) and so aE(s) = inn(s) E 
Gi(Q,E(s)). Therefore t = S + 1 - E(s)  is an invertible element 
of Qs and aE(s)  = inn(t)E(s). The proof  is thereby complete. 

Our final result of this section is important because it makes 
possible a link between completely distinct elements modulo G f  
and representatives of G($) modulo G f ( 3 )  in certain  situations. 

Lemma 8.2.16 Let a E e ( R )  and P E Spec(B). Suppose  that 
Pa = P and a p  is  a Frobenius (anti)automorphism of 9 = 
SIPS. Then there  exists an idempotent e E B \ P such that 
ae E Gfe.  

Proof. We set 

char(C) if char(C) > 0, 

and ei = ei,a, i = 0,1,2,3 (see  Lemma 8.2.11). By  Corol- 
lary 8.2.12 we have that eo $! P. Recall that va = W for all 
W 5 eo (see  Lemma 8.2.11). It follows  from our assumptions 
that there exists a natural number n such that for all x E c ei- 
ther ap(x )  = xPn or (ap(x))pn = x. Accordingly we set H to be 
equal to either (a($) --Pn 1 x E e&} or {a(x)P" -x I x E e&}. 
Since va = W for all W 5 eo, one can easily check that H is an 



8.3. THE HOME OF ?-IDENTITIES 417 

orthogonally complete subset of S. Clearly 4 p ( H )  = 0 and so 
U H  = 0 for  some U E B \ P (see Corollary 3.2.4). Next we 
set T to be equal (a(x)a(y)  - a ( x y )  I x,y E e&} if ap is an 
automorphism and {a(y)a(x)  - a ( q )  I x, y E e&') if ap is an 
antiautomorphism of 9. Again  one can easily check that T is 
an orthogonally complete subset of S and &(T) = 0. Therefore 
vT = 0 for some v E B \ P. Setting e = eouv, we see that for 
all x E eC either 

and hence a is a F'robenius (anti)automorphism of eoS. We 
define p : S + S by the rule p(.) = a(ex) + (1 - e)x for all 
x E S. Clearly p E Gf and ae = @e. The proof  is complete. 

8.3 The  Home of T-identities 
Let R be a semiprime ring, S = O(R) its orthogonal completion, 
Q, = Qs(S), and Q = Qmr(R) = Qmr(S). Our first task is to 
define the notion of ?-identity, and it  turns  out  that  this may 
be done in the way it was done for prime rings in Chapter 7. We 
have already mentioned in section 8.2 (see Remark 8.2.7 and the 
comments following it)  that  the skew group ring ? = ?(R) = 
3 cc 6' can be formed. Proceeding in an analogous fashion to 
section 7.1 one can readily show that ? is a C-ring and  that 
there exists a C-ring homomorphism y : ? +- End(&,) defined 
in a natural way. Let V be a free right C-module with infinite 
basis X .  We then form the right C-module V @C with scalar 
multiplication given  by 

( v @ t ) c = v @ t c ,  v E v, c €  c 
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(since C is a commutative ring, the tensor product of right C- 
modules is a right C-module as well). Further we form 

which we shall call the maximal setting of R (here we are em- 
ulating section 7.8 but  the reader may  feel more comfortable 
using Q8 instead of Q and simply forming the  setting Ŝ  with 
reference to section 7.1). 

A substitution process compatible with gm is described anal- 
ogously to  that in section 7.8 as follows. Let P be a C-algebra 
with 1 such that 

(i) P 2 Q; 
(ii) P 2 K ,  K a C-subalgebra of P; 
(iii) There is a C-ring map CJ : + Enda(K). 
Let $ : V + K be any C-module map.  Then (as in sec- 

tion 7.1) it can be shown that there is a unique C-algebra map 
: gm "+ P given  by q I+ Q, q E Q, and 218t I-+ 21 E V, 

t E p. Such a map will be called a p-substitution determined 
by $ relatively to 0 . Now let P = Q, K = Q% and CJ = y. 
Given a nonzero ideal 1 of R, an element g of Sm is  called a 
?"identity on I if g is mapped to 0 under all p-substitutions 4 
for which $ ( X )  2 I .  Further a p-identity g E gm on an ideal I 
of R is said to be strict if Tc(g) c ~ g ( 1 ) .  

We define the set & of trivial T'-identities of R to be the 
ideal of generated by all elements of the following  two  forms: 

(Cl) 21 €3 t p  - [U,U @ t], p = ad(a) E Di 
(C;) 21 @ th - s-'(w @ t ) ~ ,  h = inn(s) E Gi 

where 21 E V ,  t E p. 
In  contrast to  the situation for prime rings in Chapter 7 0 

has no PBW-basis  and Q and p need not  be free C-modules. 
As a result the notion of degree and height for elements of gm as 
well as the notion of (F'robenius)  reduced element of gm cannot 
be defined in the usual way. Fortunately weaker definitions for 
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these notions can be given  which  will  suffice  for our purposes. 
We  now proceed to present these in a rigorous  fashion and  then, 
having done so, we will  feel  free to take some liberty with the 
notation. 

In these last two sections we shall be interested in arbitrary, 
reduced, and Gf-reduced elements of gm. It is therefore ap- 
propriate to consider  respectively the following types of finite 
sequences: 

7- = ( ( 2 1 ,  A,, Ql), (22 ,  A2, Q2), * , ( G ,  An, a n ) )  (8.23) 
7 = ( ( 2 1 ,  A,, 0 1 ,  Vl), - 7 (zn, An, Qn, V n ) )  (8.24) 
7 = ((21, A,, Q1, hl, Q),  , ( h  An, a n ,  h,, V n ) )  (8.25) 

where xi E X ,  Ai E 8, ai E 6, hi E Gf, wi E B. In (8.24) 
and (8.25) the Ai’s will be  appropriate correct monomials, and 
the ai’s and hi’s will be appropriate completely independent 
elements. We then define deg(r) and ht(r)  in the obvious way, 
i.e., deg(r) = n and ht(r)  = n minus the number of distinct xi’s 
appearing in r. Any finite sum S, of elements of the form 

uoZflal(hlul) U1 . . . 2, A n a n ( h n ~ n ) ~ ~  

will be called a generalized monomial determined by r or simply 
a r-monomial . For S, # 0 we define  deg ( S,) = deg(r) and 
ht(S,) = ht(7). Next let p = {Sn,  SQ,. . . , _Sm}  be a finite 
subset of distinct r-monomials and  let f E S, be such that 
f = fp = Czl Sri. We shall call p a support off and refer to fp 

as the representation off with respect to p . Then  the pdeg f = 
max{deg(S,) I 0 # S, E p} and  the p h t ( f )  = max{ht(S,) I 0 # 
S, E p} . It will  also be useful to define Mp(f) = IpI = m. Since 
the same element f may  have  many  different supports, it will of 
course  have many different pdegrees  and  pheights attached to 
it. When the context is clear (i.e.,  when a particular  support has 
been determined) we will often simply write f,  deg(f), ht(f), 
M(f) in place of, respectively, fp, pdeg(f), ph t ( f ) ,  Mp(f ) .  
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An element g E is called reduced if there is a strongly 
independent subset M of D(R)  such that g = C S,, r of the 
form (8.24), where 

(RI) Every Aj is a correct monomial in M ;  
(R2) 0 # vi 5 E(Aj)Qk for  each x A j Q k f f t  involved in g; 
(R3) ahl, ale2 are completely distinct on vtlvt2 modulo Gi for 

all xAjl Btl  and x A j 2 a k 2 w t 2  involved in g such that kl # k 2 .  

Similarly, an element g E S m  is called Gf-reduced if there is 
a strongly independent subset M of D(R)  such that g = C S,, 
r of the form (8.25), where 

(GRI) Every Aj is a correct monomial in M ;  
(G&) vt 5 E(Aj)ak for all x A j a k h l w t  involved in g; 
(G&) a k l  and a k 2  are completely distinct  on vtlvt2 modulo 

Gf for all x A j ~ Q k l h l ~ V t l  and x A j 2 Q k 2 h 1 2 B t 2  involved in g such that 

(GR4) hl, and h12 are completely distinct on vtlvt2 modulo 
Gi for all x A J I Q k ~ h l l w t l  and x A j 2 a k 2 h 1 2 w t 2  involved in g such that 

Since Gi C_ Gf , we conclude from (G&) and (G&) that aiel f l ,  

and a k 2  f12 are completely distinct on vtlwt2 modulo Gi for all 
x A j l Q k l h ~ l w t l  and xAJ2Qk2h12wt2  involved  in g such that (k1, l l )  # 
( k 2 , 1 2 ) .  Therefore every Gf-reduced element g E g m  is reduced. 

h # k 2 ;  

11 # 12. 

Recall that CQ = aca for all c E C and a E G. Further 
- 1  

x A ~ C  = xAac = &cu Q 

for all x E X ,  A E 0, a E 21, c E C. Therefore, for any T as 
given in (8.23), we have 

n 

rc(S7) 2 c (8.26) 
i=l 

We now prove the main result of this section. 

Theorem 8.3.1 Let f E gm be a ?-identity on I a R. Then 
there  exists a reduced p-identity g E S,,,, on I such  that f - g E 
70. 
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Proof. We choose a subset M = (vj I 1 5 j < r }  and 
a natural number S such that f is  expressible in  the form f = 
f (z>Tai) ,  zq E X ,  where c, E C, ai E e, the @'S are mono- 
mials m M and deg 01 < s. Since 

the  p-identity f can be written in the form f = f'(z?Iai) for 
some f'. Applying Proposition 8.1.8 we obtain that there exist 
a strongly independent subset M O  c D(R)  and  a  finite subset 
M i  c Di such that any monomial 01 is a right C-linear combi- 
nation of the monomials of the form Ai2 where A is a correct 
monomial in M O  and R is a monomial in Mi. By Remark 8.2.7 
we see that ailMiai c Di for all i. Therefore f is equivalent 
modulo 70 to a ?-identity f' of the form f' = f ' ( zq  ') where 
the Aj's are correct monomials in MO. Next applying Proposi- 
tion 8.2.9(ii) (with H = Gi) to  the set of all the ai's and using 
the equalities of the form z:tl+tz = ztl + zt2 where t l ,  t E F, we 
obtain  that f' can be written in the form f' = f ' (zq Lj a h' as as ) 
where S < i and hi, E Gi. Hence f' is equivalent modulo To to a 
?-identity g of the form g = g(zq a ' a ) .  Since Aj = AjE(Aj) 
and E(Aj)a, = c ~ , E ( A ~ ) " ~ ,  replacing ui, by ~ i , E ( A j > ~ a  we may 
assume that ui, 5 E(Aj)"s for all z ~ a s u i s  involved in g. Now 
we infer  from Proposition 8.2.9(ii) and (iv) that g is a reduced 
p-identity on I and  the proof is thereby complete. 

The following theorem is  proved analogously to  that of The- 

A . 0 .  

A . a  U '  

orem 8.3.1. 

Theorem 8.3.2 Let f E L?m be a p-identity on I Q R. Then 
there exists a Gf-reduced p-identity g E L?m on I such  that 
f - g  E To. 

Finally, we touch very  briefly on the  situation where we are 
only interested in the group G* = Aut(S)  rather  than in the 
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group e. The development and  arguments being very similar to 
those used  in the preceding exposition, we shall leave all  details 
to  the reader. One forms the skew group ring ?* = 0 o( G*, 
shows that there exists a C-ring homomorphism y* : ? + 
End(Q) in a natural way, and defines the *-maximal setting of 
R to be 

S L = Q u C { V @ c ? * }  
C 

One then defines the notions of ?*-substitution and ?*-identity 
(see section 7.8). Set G;(:) = G f ( R )  n G*(S).  The concept of 
a G>-reduced element of SA is introduced analogously to  that 
of a Gf-reduced element of gm. Next we define the set F, of 
trivial ?-identities of R to be  the ideal of 3; generated by all 
elements of the forms given  by (C:) and (C;). We close this 
section with the following theorem which  is  proved similarly to 
that of Theorem 8.3.1 

Theorem 8.3.3 Let f E 9 be a ?-identity on I a R. Then 
there  exists a Gj-reduced T*-identity g E 3; on I such  that 

.?m 

f - g  E 7,. 

8.4 Semiprime  Rings  with 
%dent  it  ies 

We are now in a position to prove the analogues of the main 
results of Chapter 7 for semiprime rings. We begin with 

Theorem 8.4.1 Let I be a nonzero ideal of R and  let f E gm 
be a ?-identity on I .  Then f is a ?-identity on E(I)Q,. 

Proof. Let f = fp where p is  some support of f .  We write 
f = f (x?"") where xi E X ,  i = 1,2, .  . . , n, Aj E 0, a k  E e, 
and {q,. . . , a m }  C e are all the elements of e appearing in f,,. 
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(The  notation is  suggestive of the fact that (xi, Aj, a k )  appears 
in some r where S, E p). Given 1 5 i 5 n we let Ai to be  the set 
of all ok's such that zFak is  involved in f,, for  some j = j ( i ,  IC). 
We define 

Nz(f,,) = c I{(a',a'') E AixAi I ea' # ea" for  some e 5 E(I)}I 

Of course Nz(f) = Nz(f,,) depends on the  support p. Supposing 
that our theorem is not  true, we let F to be the set of all pairs 
( J ,  g, a) such that: 

n 

i=l 

(1) J is an nonzero ideal of R; 
(2) g E gm is a ?-identity on J with  support a; 
(3) our theorem is not valid  for the triple ( J ,  g, a). 

We set 

Fl = { ( J ,  g, a) E F I a-ht(g) + a-deg(g) is  minimal}, 
F2 = { ( J ,  g, a) E F1 I NJ(g)  is minimal}, and 
F3 = { ( J ,  g, a) E F2 I M, (g) is  minimal}. 

Since our theorem is not valid  for ( I ,  f, p), F3 # 8. Let 
( J ,  g, a) E F3. Write g = g ( x l , x 2 , .  . . ,x,) where x1, 5 2 , .  . . ,x, E 
X are all the variables involved in g. We make the following 
general remark. In what follows we shall transform g into some 
other ?"identities  (g', g - g', h, g1 and so on). In all cases it 
will be clear how the  support a of g induces a support of cor- 
responding identity. With  this remark in mind we shall use the 
simplified notations for  degree, height and so on. We  now claim 
that g vanishes under the  substitution xi I+ 0, xj I+ xj, j # i, 
where 1 5 i 5 n is fixed. Indeed, if  g' is the result of this substi- 
tution,  then g' and g - g' are ?-identities on J and so they  are 
p-identities on E(J)Q, because M(g'),  M(g - g') < M(g).  But 
then we have a contradiction to  the choice of ( J ,  g, a). Thus 
our claim is established. It follows that every  .r-monomial of g 
involves all the variables $ 1 ,  x 2 , .  . . , x,. 
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Next we claim that n = 1. Indeed, let 0 5 i < n be such 
number that g(q1 , .  . . , q i , r i + l , .  . . ,rn) = 0 for all 41, .  . . , qi E 
E ( J ) Q s  and ri+l, - .  ., rn E J but g(p1, - , P ~ + I ,  si+2,. - - , 3,) # 0 
for some p l ,  . . . , pi+l E E(J)Q,  and si+2, . . . , S, E J. Setting 
h(z) = g(p1 , .  . . ,pi,z, si+2,. . . , sn), we note that by the above 
result deg(h) < deg(g). Further ( J ,  h, 0) E F (where 0 is a 
support of h induced by a) and we have: 

ht(W + deg(h) < W g )  + deg(g), 

%(h) L N J ( g )  and 
W4 5 W g ) ,  

a contradiction to  the choice of ( J ,  g a). Therefore n = 1 and 
we can write g = g(z). 

We claim now that N J ( g )  > 0. Indeed, let N J ( g )  = 0. 
We write g = g_(zAjak) where { A I , .  . . ,A,} E 0 and A = 
(a1, . . . , a,} G G are all the elements of 0 and G appearing 
in g ,  Then fixing  some p E A,  we conclude that 

v@ = 

for all v 5 e = E ( J ) ,  a E A. We show that g is a ?-identity 
on O(J) .  Let r E O ( J ) .  It is enough to show that g vanishes 
under the  substitution x I+ r. To this end we recall from Propo- 
sition 3.1.14 that r = C&vruv where V is a dense orthogonal 
subset of B and ru E J for all v E V .  Applying Remark 3.1.16 
we obtain that 

@ j a k  = c I $ j a k U a k  = c AjakvP 
TU 

UEV UEV 

where a k  E A. (Since a k  = a@, a E G, ,f3 = C,',, p,u E Gf 
one  may apply Remark 3.1.16 to each pu acting on Su). Setting 
W = V @  and rw = ru for W = up, we infer  from Remark 3.1.8 
and Remark 3.1.9 that 

g(rAjak) = C -lg(r$ak)w = 0 
WEW 
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and hence g is a P-identity on O(J) .  Setting 

A'. 3 = P-lAjP, and yk = ,Flak, 

we note that (wp)Tk = vak = vp for all 21 5 E ( J ) .  Since E ( J p )  = 
E(J)p ,  we conclude that urk = U for all U 5 E(Jp). Let 

Then h is a ?-identity on O(J)p = O(Jp).  Clearly g is a P- 
identity on E(J)Qs  if and only if h is a ?-identity on E(Jp)Qs .  
Therefore without loss of generality we can assume that P = 1 
and va = W for all W 5 E ( J )  and Q E A. It follows that 

Since E(J)q  = q for all q E E(J)Q,, we conclude that g is a 
?"identity  on E(J)Qs  if and only if E ( J ) g  is a ?-identity on 
Qs. Replacing g by E ( J ) g  we can assume that E ( J ) g  = g .  

Let M E Spec(B) with E ( J )  4 M .  Then by Corollary 8.2.12, 
M a  = M for all Q E A. According to Lemma  8.2.10  each ~k E A 
induces an (anti)automorphism Qk of S = S/MS.  Denote by 
Aj the canonical image of Aj in U($) and by g' the canonical 
image of g in Sm($). Clearly g' = g ' ( zA jG)  is a ?''-identity 
on 3. It follows  from Theorem 7.8.6 that g' is a 2''-identity 
on Qs(3). Since &9 C Ss@), we conclude that g' is a 2''- 
identity on &9. Therefore 4M(g(qAjQk)) = 0 for all q E Qs, 

M E Spec(B) with E ( J )  4 M .  Suppose now that E ( J )  E M .  
Then g(qAjak) = E(J)g (qAjak)  E M Q  and so 4M(g(qAjak)) = 0 
for all q E Qs, M E Spec(B). It follows that g is a ?-identity 
on Qs, a contradiction. Therefore N J ( g )  > 0. 

Next we recall that g is  called additive on E(J)Qs  if for all 
T, S E E( J)Qs we have 

- 
- 
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Supposing that g is additive on E(J)Q,, we show that g is a p- 
identity on E(J)Q,. Since N J ( ~ )  > 0, after a suitable renum- 
bering of al, . . . , a, we may assume that wal # vaz for  some 
'U 5 e = E ( J )  and a1,aP E A. Applying Lemma 8.2.11 to 

we find  pairwise orthogonal idempotents eo, el ,  e2, e3 E B 
such that eo + el + e2 + e3 = 1, uala; = 'U for all 'U 5 eo and 
ei ei = 0 for all i = 1,2,3.  Therefore ala;' 

= 'Uu"2 for all 'U 5 eo; (8.27) 
eq'e? = 0 for all i = 1,2,3.  (8.28) 

Now  we set 

g1 = the sum of all .r-monomials of g which  involve 
xAjal but  do  not involve x A k a 2 ,  Aj, Ak E 0; 

x A j a 2  but  do  not involve x A k a l ,  Aj, A, E 0; 

both xAjal and x A k a 2 ,  Aj, A k  E 0; 
9 4  = the sum of all .r-monomials of g which do  not 

involve either xAjal or x A k a 2 ,  Aj, Ak E 0. 

92 = the sum of all .r-monomials of g which  involve 

93 = the sum of all .r-monomials of g which  involve 

Clearly 9 = 91 + 92 + 93 + 94 and M(g)  = M(g1) + M(g2) + 
M(g3) + M ( g 4 ) .  Now  we choose a dense ideal K of R such that 
eiK c R for all i = 0,1 ,2 ,3  and  set Ki = e iKJ .  Clearly Ki 
is an ideal of R and KO @ Kl @ K2 @ K3 = K J .  Therefore 
E ( K J )  = E(&) + E(K1) + E(K2) + E(K3).  Since K is a 
dense ideal of R, one can easily  show that T ~ ( K J )  = rC(J) 
and SO E ( K J )  = E(J ) .  In view  of additivity of g on E(J)Q,, 
it is enough to show that g is a F-identity on E(Ki)Qs for 
all i = 0,1,2,3.  To this end we note that E(Ka) 5 ei for all 
i = 0 ,1 ,2 ,3  by Theorem 2.3.9(ii) because Ki = eiKJ.  Recalling 
that va1 = va2 for all 'U 5 eo, we obtain  that NKo(g) 5 NJ(g)  -1. 
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By the choice of ( J ,  g ,  a) we have that g is a p-identity on 
E(&)Q,. Further suppose that g3 # 0. Since ep'egz = 0 for 
all i = 1,2,3, we conclude that g3 is a ?-identity on eiQs (and 
SO g - g3 is a ?"identity on Ki). On the other  hand, since 
M(g  - 9 3 )  < h M ( g ) ,  we infer  from the choice of ( J ,  g ,  a) that 
g - g3 is a T'-identity on E(Ki)Q,. Then g = g -,93 + g3 is 
a ?-identity on E(Ki)Q,, i = 1,2,3. Hence g is a T'-identity 
on E(J)Q,  which contradicts the choice  of ( J ,  g ,  a). Therefore 
g3 = 0 and g = g1 + g2 + 94.  As c t1 , c t2  E A, we see that 
g1 # 0 # 92.  Recalling that eix = x for all x E Ki we infer that 

gl(z) = gl(eix) = eq'gl(eix) = eg'gl(x) 

for all x E Ki, i = 1,2,3. Analogously  one can show that 
g2(x) = e?g,(x) for all x E Ki, i = 1,2,3. Since eqley = 0 
for i ,= 1,2,3, we conclude that ep'g2 (and so eq'gl + $'g4) is 
a is 7"-identity on Ki, i = 1,2,3. Since M(ey1g2) < M ( g )  and 
M(eq'gl+eq'g3) < M(g) ,  we conclude that they  are p-identities 
on E(Ki)Q,. Therefore eqlg is a p-identity on E(Ki)Q,. On 
the other  hand (1 - eql)gl (and hence (1 - e9')g2 + (1 - eq1)g3) 
is a ?-identity on Ki. So they  are p-identities on E(Ki)Q,. 
Therefore (1 - eq')g is a p-identity on E(Ki)Q,. It is clear 
now that g is a ?-identity on &?(&)Q,. Therefore g is a p- 
identity on E ( K ) Q ,  = E(J)Qs  which contradicts the choice  of 
(J, g ,  a). Thus g is not additive on E(J)Q,. In  particular g is 
not multilinear and ht(g) > 0. 

Let y E X be any variable distinct from x. We consider 
q ( y )  = g(x + Y )  - g(x) - g ( y ) .  Obviously q is a 2"-identity on 
J and ht(q) < ht(g). Therefore q is a ?"identity  on E(J)Q,  
and so g is additive on E(J)Q,, a contradiction. The proof is 
complete. 

A 

Analogously  one can prove the following 

Theorem 8.4.2 Let I be a nonzero  ideal of R and let f E 3; 
be a ?*-identity on I. Then f i s  a ?*-identity on E(I)Q,. 
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The following technical lemma will be needed in the proofs 
of the remaining theorems. 

Lemma 8.4.3 Let A = (a1 , ~ 2 ,  . . . , Q,} 5 G, M E Spec (B) ,  
and { M I ,  M2, . . . , Mr} = {M"" I Q E A }  where Mi # Mj for 
1 5 i # j 5 r.  Choose PI, p 2 ,  . . . ,,Or E A such  that  each Mi = 
M':', let pi, denote  the  unique pj for which Ma;' = M';', and 
set Qk = pikyk. Furthermore  let A E 8, h E G!, v E B, and  let 
z1, z2, . . . , zr be distinct  variables in X .  Then there  exists  e E B 
such  that 

e $! M ,  
e';' '" e '  = 0 f o r a l l 1 5 i # j < r ,  

erk = e for all k = 1,2 , .  . .,m 

Proof. We first note that MTk = M .  According to Corol- 
lary 8.2.12 there exists an idempotent W k  E B such that wk $! M 
and vrk = v for all v 5 W k .  We set W = wlw2 . . . W k ,  and  note 
that W $! M and vrk = v for all v 5 W ,  k = 1,2, .  . . , m. Ap- 
plying the Chinese Reminder Theorem to  the Boolean ring B 
and  distinct maximal ideals MI,  Mz, . . . , M,, we find  idempo- 
tents e l ,  e2, . . . , er E B such that ei $! Mi and ei E MS for all i ,  S 

with 1 5 i # S 5 r. Replacing each ei by ei n+(l- e s ) ,  we can 
also assume that eies = 0 for all i # S. Since MP = M ,  we see 
that e a  $! M and e? E M for all i # S .  Set e = e p e p . .  . e p w .  
Then 

e $! M ,  (8.29) 
e ' ~ ' e ~ ~ '  = o for all i # s, (8.30) 

eTk = e for all k = 1,2, .  . . ,m (8.31) 
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because ePT1ePgl 5 eiea = 0 and e 5 W k  for all k = 1,2,  . . . , m. 
Finally, we see that 

making use of (8.30) and (8.31). The proof is now complete. 

Theorem 8.4.4 Let 0 # I a R and  let f(xi ) be a G f -  
reduced p-identity on I .  Set 'Ilkt = vtE(I)*k and  choose distinct 
elements yijk E X .  Then f (y$'Ilkt) is a Gf-reduced !?-identity 

Aj jakh lV t  

On &S. 

Proof. In  what follows we shall consider G!-reduced p- 
identities. It will be understood that each identity is  reduced 
with respect to some (attached)  support  and so we will simply 
write deg, ht and so on in place  of,  respectively, pdeg,   pht  and 
so on. We shall transform some of these identities into  other 
ones. It will be also understood that  the  supports of resulting 
identities are induced by the  supports of initial ones in a natural 
way. 

It follows  from Theorem 8.4.1 that f is a ?"identity  on 
E(I)Qa.  Hence without loss of generality we can assume that 
R = Qs and I = e&, for  some e E B. Then E ( I )  = e. Re- 
call that ehl = e for all e E B (see Corollary 8.2.3). Clearly 
f((xie)Ajakh[vt) is a ?-identity on Q,. Now replacing f by 

(with respect to some representation p) on Q,. We  show that 
f(y$ut) is a ?-identity on Q,. Suppose that  the theorem is not 

f ( , $ j a k h l v t  e a k  ) we can assume that f is a G,-reduced p-identity 
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true for f .  Let F be  the set of all the Gf-reduced p-identities 
on Qs  for  which the theorem does not hold. We set 

Fl = {g  E F I deg ( g )  is minimal}, and 
F 2  = { g  E F1 I M ( g )  is  minimal}, 

and note that F 2  # 8. Without loss of generality we can assume 
that f E F 2 .  

Write f = f ( x l , x 2 , .  . . , x , )  where xl, 2 2 , .  . . , x ,  E X are all 
the variables involved in f .  We claim that g vanishes under the 
substitution xp I+ 0, xq I+ xq,  q # p ,  where 1 5 p 5 n is  fixed. 
Indeed, if g is the result of this  substitution,  then g and f - g 
are Gf-reduced ?-identities on Qs.  Clearly M ( g ) ,  M ( f  - g )  < 
M ( f ) .  Therefore our theorem is  valid  for g and f - g. Hence 
it is  valid  for f = f - g + g,  a contradiction. Thus  our claim  is 
established. It follows that every  .r-monomial of g involves all 
the variables q , x 2 , .  . . , xn. 

Next we claim that n = 1. Suppose that n > 1. Choose the 
maximal integer T such that 0 5 T 5 n and f(y&vt) vanishes 
under all the  substitutions of the form yijk I+ q i j k ,  i 5 T, and 
yijk I+ di j l ,  i > T, where di,qijk E Qs. Since f(y$kvt) is 
not a ?"identity on Qs,  T < n. Hence f($jkvt) does not vanish 
for some substitution yijk I+ q i j k ,  i 5 T + 1, and yi jk  I+ di I ,  

i > r+l, where di, q i j k  E Qs. Denote by h(xAjaQkhlwt) the element 
obtained from f(y$vt) via the  substitution y i j k  I+ q i j k ,  i 5 T, 

~ ( ~ + l ) j k  I+ x A j c r k h l ,  and yijk I+ di j , i > T + 1. Clearly h is 
a Gf-reduced ?-identity on Qs and h(q$+l)jkvt) # 0. On the 
other  hand, h(xAjakhlvt) is a Gf-reduced ?-identity on Qs and 
deg( h) < deg(f) because every  .r-monomial of f involves  each 
variable xi. By the choice of f, h($vt) is a ?-identity on Q,, a 
contradiction to h(q$+l)jkvt) # 0. Thus  our claim is  proved. We 
set x = x1 and write f = f ( x A j a k h l v t ) .  Let A = tal ,  a2, . . . p m }  

and {AI, A 2 , .  . .,A,!} be all the elements of G(R)  and U(R) 
respectively involved  in f.  

A c r h  

A . a  h 

A a h  
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Choose any gjk E Q,. It is  enough to show that f(&vt) = 0. 
It follows from the definition of a Frobenius element and  the 
fact that only a finite number of hl's are involved in f that 
there exists a dense orthogonal subset V C B such that hlv is 
a F'robenius (anti)automorphism of Sv for all v E V and 1. We 
claim that it is  enough to show that +M(f(&vt)) = 0 for all M E 
Spec(B) with V sf M .  Indeed, suppose that 4M(f(g;'vt)) = 0 
for all M E Spec(B) with V sf M .  Setting e = E(f(&vt)), we 
infer  from Corollary 3.2.4 that q5M(f(&vt)) = 0 if and only if 
e E M .  It follows that  the condition V g M implies that e E M .  
Suppose that e # 0. Since V is dense, there exists v E V such 
that ve # 0. Choose M E Spec(B) such that we # M .  Then 
v ,  e $! M .  It follows that V sf M ,  but e # M ,  a contradiction. 
Hence e = 0 and our claim is established. 

Fix any M E Spec(B) such that V sf M and #M(f(g$vt)) # 
0. Suppose first that M":' = for all ai, aj E A. Then 
fixing  some p E A,  we see that MP" = Ma" for all Q E A. 
Setting 

Ma31 

Ai = P"AjP, yk = P - l a k ,  

we note that ak = pyk and 

Therefore 
h(@;^lkhtvt) = f(ZP-'Ajakhtut) 

is a p-identity on Q,. Clearly h is a Gf-reduced ?"identity 
on Q,. Next we note that M T k  = M for all y k .  Therefore y k  

induces an (anti)automorphism 5 of 3 (see Lemma 8.2.10). We 
now let h' be the element of gm obtained from h by deleting all r- 
monomials in which  some wt with vt e M appears. We see that h' 
remains a Gf-reduced element of gm (here we note that h' is not 
a p-identity in general). Letting A' = {yk I yk appears in h'}, 
we claim that yk $ 5  (mud G!@)) for all y k  # 71 E A'. Indeed, 
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setting y = y;'yl, suppose 7 E Gi(3). By Lemma 8.2.16 there 
is an  idempotent e E M such that ye = ae for  some CY E Gf . 
But vtt and vtlt (which appear respectively with yk and yl) do 
not belong to M by the definition of h' and A', and so W = 
evttvttt 4 M .  In  particular W # 0. Thus yi'ylw = ow, or, 
ylw = ykow, a contradiction to T k ,  71 being completely distinct 
on vttvttt modulo Gf. Next, according to Corollary 8.2.3, ehl = e 
for all e E B and hl appearing in h. In  particular MhI = M and 
so hl induces an (anti)automorphism of S. Since V g M ,  
is a F'robenius (anti)automorphism of S. We claim that 6 f 
h, (mod Gi(S)) for all h1 # h, appearing  in h'. Indeed, letting 
g = h;'h, E G!, suppose that g = inn(b) E Gi (S). Hence 
0 # b E MP By Corollary 8.2.15 ge = pe for  some p E Gi. Now, 
from W = evttvttt 4 M we have hlw = h,pw, in contradiction to 
hl, h, being completely distinct on vtt2rttt modulo Gi. Next we 
denote by a,' the canonical image of A$ in V ( D ( s ) )  and by E' 
the canonical image of h' in Sm(s). It follows from the definition 
of h' that 'il' = x. Applying Lemma 8.1.7 (i) to {a,'} we see 
that 7E' is a reduced 2''-identity of 3 (since K' = E) .  It follows 
from Theorem 7.8.5 that 

- 

a contradiction. 
Now let {MI ,  M2, . . . , M,} = {M"" I a E A }  where Mi # 

Mj for 1 5 i # j 5 T. By the above result T > 1. With refer- 
ence to Lemma 8.4.3 (and  its notations) we set z = C:==, zi&" 
(zi's are  distinct elements of X )  and g = ef(zibf ' '). By 
Lemma 8.4.3 e e M and g is a Gf-reduced p-identity on Q,. 
Clearly M ( g )  5 M ( f )  and deg(g) 5 deg(f). Suppose that 
our theorem is  valid  for g,  that is ef(yihLjkvt) is a ?-identity 
on Q,. Then making use of the  substitution yikjk r-) q j k  we 
see that ef(&vt) = 0. Since e 4 M ,  4M(e) = 1 and so 
4M(f(&vt>) = 4M(ef(q;ivt)) = 0, a contradiction. Hence our 

A." h~ 
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theorem is not valid  for g and so g E F .  As M ( g )  5 M ( f )  and 
deg (g) 5 deg (f ) , we conclude that g E F2. Then by the above 
result zi = z j  for all i, j = 1,2, . . . , r ,  a contradiction to r > 1. 
The proof is now complete. 

There is an analogue of Theorem 8.4.4 for reduced ?-identi- 
ties. 

Theorem 8.4.5 Let I be a  nonzero  ideal o fR  and  let f(xi ' ') 
be a reduced ?-identity  on I .  Set U k t  = wtE(I)Ok and  choose 
distinct  elements yij E X .  Then f ( Y F u k t )  is  a reduced p -  
identity  on Qs. Furthermore if f is  a  strict  p-identity  on R, 
then f (y$wt) is  a  strict  p-identity  on Qs. 

Proof. The proof essentially follows the same series of steps 
as in the proof  of Theorem 8.4.4 but is simpler because only 
Gi (rather  than  both Gi and GJ) is  involved.  Because of this 
we omit the details  and merely indicate any adjustments  and 
simplifications are to be made. We first make an observation in 
case R is prime. We write Qk = p k h k  where h k  E GJ and for all IC, 
r either ,& = or p k  # &GJ. Choose distinct z i j p k  E X .  Then 
applying Theorem 7.8.6 to  the reduced T'-identity f(xi 
we conclude that f ( ~ & ~ )  is a ""identity on Qs. Making  use of 
the  substitution x i j p k  I+ y?, we see that f ( y F )  is a T'-identity 

To outline the proof  one  may assume f is a reduced p- 
identity on Qs such that f E F !  and consequently of the form 
f ( x A j a k V t ) .  Choose any q j  E Qs, fix M E Spec(B)  and sup- 
pose $M(f(qjQkwt)) # 0. Suppose first (the case r = 1) that 
Mail = for  some  fixed p and all Qk.  Setting Ai = p- lAjp  
and ̂ /k = p - l a k ,  we have h(xASTkwt) = f ( x f i - l A J a k V t )  is a reduced 
?"identity on Qs. Using Corollary 8.2.15, one  shows that v $ 5  
modulo Gi(S) for all # 'ys. Thus x = x(xzxTQ is a reduced 
2"-identity on &9 whence  by the above observation one  reaches 
the contradiction 0 = 4 ~ ( h ( ( $ ) * j  T k q ) )  = 4M(f(q jak~t ) ) .  The 

A.CI V 

A j p k h k ) ,  

on Qs.  

"---I- 
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case r > 1 with the assistance of Lemma 8.4.3 leads to g = 
e f ( z2akv ' )  being a reduced rT'-identity on Qs, and a contradic- 
tion is reached in  the same manner as at  the end of the proof of 
Theorem 8.4.4. 

Suppose now that f is strict. Since E(R)  = 1, we conclude 
that f (y$vt) is a ?"identity on Qs. Since f(xi ') can be 
obtained from f ( y z v t )  via the  substitution x? for yij, we see 
that TC(  f ( y z v t ) )  = rc(f(xi j ')) = 0. The proof  is complete. 

A." V 

A a v  

The same arguments as in the proof of Theorem 8.4.4 yield 
the following 

Theorem 8.4.6 Let 0 # I a R and let f ( q  ) be a G;- 
reduced ?*-identity on I .  Set U k t  = vtE(Iyk and choose distinct 
elements y i j k  E X .  Then f ($kkUkt) is a T*-identity on Q. 

Ajakhtvt 

Theorem 8.4.7 Let f (xi ') be a strict reduced ?-identity 
on R. Then R has a strict GPI g E Qc<X>. 

A . 0  V 

Proof. Let A = {a1, 0 2 , .  . . ,an} be all the elements of @R) 
involved in f. Next let ($1, x2,. . . , xmj be all the variables in- 
volved in f. By Theorem 8.4.1 f is a T'-identity on S. In view 
of Theorem 8.4.5 we can assume that f = f(~:~'~). Accord- 
ing to Corollary 6.3.10 it is enough to show that q5~(S) is GPI 
for all M E Spec(B). Fix any M E Spec(B) and assume that 
S = q5~(S) is not GPI.  

Let {MI, M2, . . . , M,.} = {M"" I o E A }  where Mi # Mj 
for all i, j = 1,2, . . . , r and r 2 1. Choose &, . . . , p k  E A such 
that MP:' = M. for i = 1,2, . . . , r. It follows  from  Lemma 8.4.3 
applied to each variable 3 that there exist e 4 M and Xj ik  E X 
such that ef(zzkv') is a 2"-identity on S and zjik = zl,, if and 
only if j = 1 and i k  = is. Note that ik is given  by the condition 

M";' = MpG . Making  use of the  substitution Zjik  F+ zji'," , we 

- 

1 pr' 
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obtain  that ef(zjlt akv') is a T'-identity on S. Set yikk = ,8G1ak. 

Then ef(zy:Lkvt) is a !?-identity on S. Clearly M T i k k  = M for 
all yikk. It follows  from Corollary 8.2.12 that  there exists an 
idempotent w E B \ M such that ~~~k~ = U for all U 5 w and 
yikk. As ew # M ,  r$M(ewS) = ~ $ M ( S ) .  Therefore replacing S 
by ewS we may assume that ew = 1 and so f ( z j ; ik  ') is a p- 
identity on S. Furthermore we may assume that u T i k k  = U for all 
U 5 w and yikk. Since f ( x ; k v t )  can be obtained from f(zjtLk ') 
under the  substitution zjik I+ xj , 

7' v 

7' v 

p i k  

and so f(zjtLk ') is a strict  p-identity on S. Next, it follows from 
Lemma 8.2.10(ii) that each yikk induces an (anti)automorphism 
G of 3 = r$M(S). Therefore f(~;;:~'') induces a nonzero 
T'-identity -f(~;$~q) of 9. Choose any variable Zjik appear- 
ing in f. First assume that there exist elements qy ik ,  E S, 
(j', i k l )  # (j, ik), such that  the element g(zjiL ut') obtained from 
f(~;;~q) under the  substitution zjtik, I+ qj' ik , ,  (j', ik') # (j, ik), 
is  nonzero.  Here we note that  the appearance of zjik. in g 
means that zkt = ik, i.e., yik,kt = ,8G1ap. Clearly g 1s a T I -  

identity on S. We claim that g is a reduced T'-identity. In- 
deed, suppose that  both zjik and zji.i are involved in g with 
yik,p # yik, ,ktt .  Then  their accompanylng idempotents ut, and ut" 
do not belong to M and so ut' up  M .  By (R3) ap and apt are 
completely distinct on uttuttt modulo Gi. Hence yik,p = ,8G1akt 
and yik,,ktl = &'aktt are completely distinct on uttup modulo 
Gi. Therefore yz;'jk,,yik,km # Giu for all U 5 wt'up. It follows 
from Corollary 8.2.15 that # Gi(S) which  proves 
our claim. We conclude now from Theorem 7.8.4 that S is GPI, 
a contradiction to our assumption. 

7' v 

- 

- 
Ti ,k ' -  

- - 
- 
Tik,  k' 

- 
Tik,  k' Ti 1, k" 
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By the above result r ( z T G )  vanishes under substitutions 
zjtik/ I-+ Q j ) i k t ,  (j’, i k t )  # (j, ik), where qjt ikf  E 3. We replace each 
appearance of z z  (where i, = ik) in 7 by zji, and  denote by 
g the resulting element. Clearly g is a strict T‘-identity on 9. 
Continuing in  this fashion we obtain  that T(zli,q) is a nonzero 
GPI on S, a contradiction to our assumption. The proof is 
complete. 

A variant of Theorem 8.4.4 for p-identities of semiprime 
rings involving no (anti)automorphisms was  discovered  by Khar- 
chenko in [147, Theorem 21. Further a version of Theorem 8.4.5 
for multilinear ?-identities was  proved  by him in [147, Theorem 
41. To the best our knowledge all the results of this section are 
new. They were  proved by Beidar. 



Chapter 9 

Applications to Lie 
Theory 

The main goal of this  chapter is to present the solution of a 
long-standing question of Herstein [l131 on  Lie  isomorphisms: 
if R, R' are simple rings with involution with respective skew 
elements K ,  K' and a! : K + K' is a Lie isomorphism, then 
can a! be extended to  an isomorphism cr : R + R'? This we ac- 
complish in section 9.4, restricting our attention to involutions 
of the first kind (to be  defined presently) but on the other hand 
widening the context to prime rings. The reason  for including 
this topic in this book  is that, although it would appear on the 
surface to have  no special connection with GPI theory, GPI 
theory in fact plays a crucial role in key parts of the proof. In 
preparation for this,  and also another application of GPI the- 
ory, we redo in section 9.1 some of Herstein's Lie theory for the 
important case of prime rings with involution of the first kind. 
In section 9.2 we determine the Lie extended centroid of K .  It is 
not our intent to give a complete treatment of these matters  but 
rather to show  how GPI theory is  used. In section 9.3, again 
using GPI theory in a crucial way,  we prove a result on commut- 
ing traces of trilinear mappings which  is crucial for the solution 

437 
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of the Lie  isomorphism problem in section 9.4. This work  was 
inspired by Bresar’s study of commuting traces of bilinear map- 
pings [63]  which  he  used to settle Herstein’s conjecture on Lie 
isomorphisms of prime rings (without involution). 

9.1 The Structure of K 
An associative ring R becomes a Jordan ring R(+) under x o y = 
zy + yx and a Lie ring R(-) under [x, y] = xy - yx. In case R 
has an involution * the set of symmetric elements 

S = S(R) = {S E R I S* = S} 

is a Jordan  subring of R(+) and  the  set of skew elements 

K = K(R)  = {IC E R I k* = -IC} 
is a Lie subring of R(-). In  the early 1950’s Herstein initiated 
a study of the  Jordan  and Lie ideals of R, S, and K in case 
that R was a simple associative ring (either without  or  with an 
involution). In  the ensuing years his work was generalized in 
various directions, on the one hand to  the  setting of prime and 
semiprime rings, and, on the other hand to invariance condi- 
tions  other than  that given  by ideals. Besides Herstein himself 
we mention Lanski as having been a major force in this program. 
Other  important contributions were made by Baxter, Chacron, 
Erickson, Montgomery, Osborn, and others. Of particular inter- 
est to us because of the theme of this book, the GPI and PI 
theory for prime rings with involution has witnessed results of 
Amitsur [6],  [7], Herstein [114], Lanski [159],  [163], Martindale 
[207],  [208],  Rowen  [257] and others. In  fact, to pinpoint the key 
result in GPI theory from  which all applications in this chapter 
are based, we recall from section 6.2 Corollary 6.2.5. 

Corollary 9.1.1 If R is a prime ring of char(R) # 2 with in- 
volution and K is GPI,  then R is GPI. 
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Let R be a prime ring of char(R) # 2 with involution *, let 
R be the centroid of R and  let C be  the extended centroid of R. 
For simplicity we shall assume that 1/2 E R, whence we may 
write R = S + K .  It is a straightforward exercise to directly lift 
* to an involution of RC. However, this is virtually  a special 
case of Proposition 2.5.4  which says (in its proof) that * can 
be lifted to  an antiautomorphism * of the symmetric ring of 
quotients Q = Q,(R) such that q*u* = (uq)*, where 0 # U a R 
is  such that qU + Uq E R. Thus q**u = (u*q*)* = (qu)** = qu 
and so q** = q and * is an involution of Q. Since C is the center 
of Q, * induces an involution on C and hence  on the central 
closure RC. We shall say that * is of the first kind if it induces 
the identity mapping on C. Otherwise it is of the second kind, 
which  is equivalent to saying that C contains a nonzero skew 
element. An example of Kaplansky shows that  an involution of 
the second  kind  may well act  as  the  identity on the center: R is 
the set of all countably infinite matrices of the form A + XI, A 
is n x n matrix over the complexes C, n varies, X E R where R 
is the real number field, and * is conjugate transpose (one notes 
that C = C  and 2 = R). 

In  this section we shall (with the exception of Lemma  9.1.5 
and Theorem 9.1.10)  confine our  attention to  the  study of prime 
rings with involution of the first kind, mainly because this is the 
framework in which sections 9.3 and 9.4 reside. It is generally  re- 
garded as the more  difficult case, since (roughly speaking) many 
problems arising with an involution of the second kind may be 
reduced to problems in R(-) (where the connection with associa- 
tive theory is  much easier). For a complete account of  Lie theory 
of prime rings (with or without involution), especially from the 
point of view of GPI theory, we refer the reader to [219]. 

For the remainder of this section, then, R will denote  a prime 
ring with involution * of the first kind. A Lie ideal U of K is 
generally defined to be an additive subgroup of K such that 
[U,  X] E U for all U E U ,  x E K .  To avoid  some minor techni- 
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calities we shall also require that U be an Q-submodule of K ,  
where Q is the centroid of R. We will  use the  notation U a K to 
signify that U is a Lie ideal of K .  K is  called a simple Lie ring 
if it has no Lie ideals other than 0 and K and [K, K ]  # 0 (hence 
K = [K, K] ) .  If I is any *-ideal of R (i.e., an ideal invariant 
under *), then [I  n K ,   K ]  is  always a Lie ideal of K ,  which we 
shall call a standard Lie ideal of K .  We shall call a  subset X of 
R trivial (notationally, X E 0) if [ X ,  K ]  = 0. Our  major aim in 
this section is, given a nontrivial Lie ideal U of K ,  to produce a 
nontrivial standard Lie ideal [IunK, K ]  lying inside K .  We shall 
see that with the exception of two isolated "low-dimensional" 
cases this is  possible. 

For an additive subgroup W of a ring T we let (W) denote 
the subring of T generated by W. We will also use the following 
notation for higher commutators: 

We begin with an easy but useful general lemma. 

Lemma 9.1.2 If W is an additive subgroup of a ring T ,  then 
[ (W , TI = [W, TI. 

Proof. For 2, y E W and t E T we note that 

An  easy induction then completes the proof. 

We apply this result to  the ring R. 

Lemma 9.1.3 If U a K ,  then: 
(a) ( U )  n K a K ;  
(V [ ( U )  n K ,  K ]  c U -  
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Proof. (a) follows  from the observation that for k E K and 
~ 1 , ~ 2 , . . . , u n  E U, 

[ u ~ u Z . .  un, k]  = C ~ 1 ~ 2 .  [ u ~ Y  k]  m .  u n  E (U). 
i 

Using  Lemma 9.1.2 one notes that 

Therefore [(U) n K ,  K ]  C U. 
It will be useful to produce a nonzero ideal inside ( K )  and 

towards this goal we define L ( K )  = R#[K,KI2R# (here R# 
denotes the ring R with 1 adjoined if necessary). 

Lemma 9.1.4 L ( K )  C ( K ) .  

Proof. Let a, b E K ,  S E S. Then 

(ab - ba)s = a(bs + sb) - (as + sa)b + (sub - bas) E ( K ) .  

It follows that [K, K]R# C ( K )  (using R = S + K ) .  Similarly 
R#[K, K ]  C ( K )  and  the result is immediate. 

It will  also be useful to have the following description of ( K )  
(valid  for * of either kind). 

Lemma 9.1.5 ( K )  = K + K o K .  

Proof. For a, b E K we see  from 2ab = [a, b] + a o b that 
K 2  G K + K o K .  We note next that K o K coincides with the 
additive subgroup generated by (a2 I a E K } .  We  now claim 
that ( K  o K ) K  C K + K o K .  Indeed, for a, b E K we have 
a2b + ba2 E K ,  a2b - bu2 = a[a, b] + [a, b]a E K o K ,  whence 
a2b E K + K o K .  From this we see that 
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and, continuing in this fashion, we conclude that K" E K+KoK 
for any n. Since ( K )  = C K", the lemma is  proved. 

We  now define:  for U a K, Iu = R#[U o U, UI2R#. We shall 
call a Lie ideal U of K exceptional if Iu = 0. 

Proof. From 

we infer that [U o U, S] c U and [U o U, K ]  c U o U ,  whence 
[U o U, R] c (U) .  We then have 

Similarly R#[UoU, U ]  c (U) .  Therefore R#[UoU, UI2R# c ( U )  
and  the result follows  from  Lemma 9.1.3 (b). 

Lemma 9.1.6 produces a standard Lie ideal Iu inside a Lie 
ideal U of K but  the main problem arises when  one tries to 
show (under  appropriate circumstances) that Iu # 0. We shall 
deal with this problem by giving a complete description of what 
happens in the case R = M, ( F ) ,  F an algebraically closed  field, 
and  then using GPI theory (i.e., Corollary 9.1.1) and  the *-Litoff 
Theorem to reduce the general question to this very special case. 

Theorem 9.1.7 Let R = M,(F),  n 2 2, F an algebraically 
closed field of char(F)  # 2, and  let * be an  involution of the  first 
kind  on R. Then there  is  a  set of matrix  units in R relatively  to 
which * is  either  the  transpose  or  symplectic  involution,  and K 
is a  simple  Lie algebra over F unless  one of the  following  holds: 

(i) n = 2, * is  transpose  (here K is  l-dimensional); 
(ii) n = 4, * is  transpose  (here K is  the  Lie direct sum K1 @ 

K2 where Ki, i = 1,2, is a  3-dimensional  simple  Lie algebra). 



9.1. THE STRUCTURE OF K 443 

Proof. By Corollary 4.6.13 * is either the transpose invo- 
lution or the symplectic involution relative to a  suitable set of 
matrix  units {eij}.  

We first discuss the transpose case. We set Eij = eij -eji, i # 
j, and  note that { Eij I i < j }  is a basis  for K .  For  convenience if 
x = aijEij E K the  ”length” of x is the number of nonzero 
aij’s. The Eij satisfy Eij = -Eji, [Eij, E j k ]  = Eik, i # IC, and 
the consequences thereof. Clearly [K,   K]  = 0 if and only if 
n = 2, and so we may assume that n > 2. Suppose 0 # U a K 
and pick 0 # U = C aijEij E U of smallest length. If U is of 
the length 1, then  it is  easy to show that any basis element E k l  

lies in U, whence U = K. If Eij, E i k  appear in U for j # IC, 
then 0 # [u,Eij] E U is of smaller length than U. Therefore 
we may assume that  the Eij’s appearing in U are  ”disjoint”  and 
thus we may write U (say) as aE12 + PE34 + yE56 + . . .. If the 
length of U 2 3, then [U, E451 # 0 is of smaller length than U,  

and so we may assume that  the length of U is 2. This forces 
n 2 4. If n > 4, then [U, E451 # 0 has length 1, whence U = K .  
Therefore we are left with n = 4. Here it is  well-known (and 
easy to show directly) that K = K1 @ K Z ,  where K1 and K2 are 
both 3-dimensional simple Lie algebras with respective bases 

This completes the proof  in the transpose case. 

that K contains of all matrices of the form 
In the symplectic case n = 2m is even and  it is  easily  seen 

( -:A ) 
where A, S, T E M,(F), t A  the transpose of A, and S, T belong 
the set H of symmetric elements of M,(F). Letting {eij} be 
matrix  units for Mm(F)  we note that {eii,eij + eji}, i # j ,  is a 
basis for H .  The reader may  verify (by easy matrix calculations) 
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that H is a simple Jordan algebra. Now let 0 # U a K and pick 

a nonzero element U = A E U. If both S # 0 and 

T # 0 we may  replace U by 
( T - tA  ) 

[U,( 0 o ) ]  = ( -: A ; t A ) *  
o r  

Thus we may assume U = ( t -fA ) to begin with and, if 

A # 0, we choose P E H such that AP + P t A  # 0 and note 
that 

O P  

Thus we may assume that U = ( i : ) for some S # 0. From 

T E H ,  it follows that { S E H I ( ) } is a nonzero Jordan 

ideal of H and hence equal to H .  Therefore U contains  all 

matrices of the form ( i : ), S E H ,  and, by commutation 

with ( I ) , all  matrices of the form 

calculation 

0 0  (i  i ) , T e H .  The 

then shows that U contains all  matrices of the form 

and  the proof of the theorem is  complete. 
( t  --'A)' 
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We  now compile a set of remarks which  follows almost imme- 
diately  (with the help of an occasional matrix calcu1ation)’from 
Theorem 9.1.7. 

Corollary 9.1.8 Let R = Mn(F)  be as in Theorem 9.1.7 and 
let U, V denote  Lie  ideals of K .  Then: 

(a) U = 0 or U = K unless n = 4, * is  transpose, in which 
case U may also be K1 or K2. 

(b )  The  following are equivalent: 
( b l )  U is  trivial; 
(b2 )  U = 0 or n = 2, * is  transpose, in which case 

U = K is  l-dimensional; 
(b3) [U, U12 = 0; 

(c)  The  following are equivalent: 
( c l )  U is  exceptional; 
(c2)  U o U is  central; 
(c3)  U is  trivial, U = K1 or U = K2 (n = 4, * is 

(d) [U, V ]  0 if and  only if U F 0,  V 0, or  (say) U = K1 
transpose)  or U = K (n = 2, * is  transpose  or  symplectic); 

and V = KZ (n = 4, * is  transpose). 

Now let R be an  arbitrary prime ring with involution of the 
first kind, and  let F be  the algebraic closure of C. We form the 
extension R = RC@cF which  by Theorem 2.3.5 is a prime ring. 
We claim that R is centrally closed  over F .  Indeed, letting 6 
denote the extended centroid of R, we note that  the inclusion 
F 2 6 is  obvious  where F is  identified with l @ F  2 Q,(R) @CF. 
Let Q E 6. By Theorem 2.3.5 there exist nonzero elements a E 
R and f E F such that u = a . ( a @ f )  E R. Let u = E t l  ai@ fi, 

ai E R, fi E F .  Without loss of generality we can assume that 
al ,  . . . , a, and f 1 ,  . . . , fn are two sets of C-independent elements. 
Then u(x @ l)(a @ f) = ( a  @ f ) ( x  @ 1 ) u  for  every x E R and 
so aixa = axai for all i = 1,2, . . . , n. By Theorem 2.3.4 there 
exist cl, cg, . . . , c, E C such that ai = qa, i = 1,2,. . . , n and 
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taking  into account the C-independence of al, a2, . . . , a, we see 
that n = 1 and Q!. (a 8 c) = a1 8 f 1  = (a 8 f)(l@ f -'G fi which 
proves our claim. Next the involution * on R can clearly be 
lifted to  an involution * of the first kind on R according to  the 
rule ( rc  8 X)* = r*c @ A. The skew elements 3 of coincide 
with KF = KC 8 F and any Lie ideal U of K lifts to a Lie 
ideal 0 = UC @ F = U F  in 3. In case R is P I  we can draw 
the following  conclusion. 

Theorem 9.1.9 Let R be a  prime  PI-ring  with  involution * of 
the  first kind. Then: 

(a) RC is  finite  dimensional central simple  over C and fi = 
M,(F), F the algebraic  closure of C; 

(b)  KC is  a sample Lie ring unless n = 2 (* is  transpose) 
or n = 4 (* is  transpose); 

(c) If U is  a  nonzero  exceptional  Lie  ideal of K then  one of 
the  following hold: 

( c l )  n = 2, * is  transpose, U = K; 
(c2) n = 2, * is  symplectic, U = K ;  
(c3)  n = 4, * is  transpose, U = K1 or  U = K2. 

" 

" 

" " 

Proof. (a) is a consequence of Posner's Theorem. To  prove 
(b) let 0 # U a KC. By Theorem 9.1.7 0 = unless n = 2 
(* is transpose) or n = 4 (* is transpose). Let a E K .  Then 
a81 = C z l  U@&, ui E U ,  Xi E F with {Ai} C-independent and . 
A1 = 1. It follows that a = 211 E U and so U = KC, thus proving 
(b). Part (c) is an immediate application of Corollary 9.1.8 (c). 

As promised at the end of section 6.2 we are now in a position 
to deal with a conjecture made by Herstein in 1955: if R is a 
ring with involution and K is PI then R is PI.  Herstein verified 
his own conjecture in 1967 [l141 for R simple, and  this was 
shortly  thereafter extended to semiprime rings by Martindale 
[206] and then  to  arbitrary rings with involution by Amitsur 
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[6]. We present here an  alternate proof  for the case where R is 
prime. 

Theorem 9.1.10 Let R be a prime ring with  involution * (of 
either  kind) and  suppose K is  PI  (over C). Then R is P I .  

Proof. Without loss of generality we may assume that K 
satisfies a multilinear PI  &(XI, 2 2 ,  . . . , z,) E C<X> of degree n. 
If * is of the second  kind we choose a nonzero skew element A in 
C and  with it a nonzero *-ideal I such that A I  C_ R. Note that 
I = I n S e I n K  and A(InS) c K.  Therefore q5(q , .  . . , rn)  = 0 
where  each ri belongs to either I n K or A ( I  n S). Since q5 
is multilinear it follows that d(r1,. . . , r,) = 0 where  each ri 
belongs to either I n K or I n S and so q5 is a PI on I .  By 
Theorem 6.4.4 q5 is then a PI on R. 

We may therefore assume that * is of the first kind, and 
furthermore,  without loss of generality, we may suppose that 
R = R (since 6 lifts to g) .  BY Corollary 9.1.1 R is a centrally 
closed GP1 algebra over an algebraically closed  field F ,  whence 
R has nonzero  socle H and associated division ring F .  If R 
is not PI the dimension of the underlying vector space over F 
is infinite and so by the *-Litoff Theorem R contains eRe E 
&(F) ,  e a symmetric idempotent of finite rank k 2 2n. By 
Corollary 4.6.13 the involution * induced on Mk(F) is either the 
transpose or symplectic involution. If * is transpose  then 

produces a contradiction. If * is symplectic, then  writing k = 2m 
and  letting { e f j )  denote the  matrix  units in Mm(F), we write 
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We then arrive at  the contradiction 

some ai # 0. Therefore R must be PI and  the theorem is 
proved. 

Returning to  the assumption that R is prime with involution 
* of the first kind, we  now approach the  heart of this section. 
First, however, we need 

Lemma 9.1.11 If 0 # I is a * ideal of R and 0 $ U a K ,  then 
[I n K ,  U ]  $0. 

Proof. Suppose [InK, U ]  E 0. Then, writing [InK, InK]  = 
( InK)( ' )  and using the Jacobi identity, we have [ ( InK) ( l ) ,  U] = 
0, whence [ ( ( I n K ) ( l ) ) ,  U] = 0. Thus ((InK)(l)) cannot contain 
a nonzero ideal of R and so by Lemma 9.1.6(a) 

[ ( ~ n  K)(') 0 ( I  n K ) ( ~ ) , I  n K ] ~  = 0. 

By Theorem 9.1.10 (applied to  the prime ring I )  we conclude 
that I is PI ,  whence  by Theorem 6.4.4 R is PI. In  this  situation 
we  know that fi = Mn(F).  It follows that f = and accordingly 
I F K  = z. Therefore our original supposition forces [ K ,  U ]  
0, a contradiction to Corollary 9.1.8(d). , 

" 

Theorem 9.1.12 If R is a prime ring with  involution of the 
first  kind  and 0 # U is   an  exceptional Lie ideal of K ,  then R is 
PI (whence  the  conclusion of theorem 9.1.9 holds). 

Proof. We suppose R is not PI.  Since 0 # 0 is clearly 
an exceptional Lie ideal of &? we may assume without loss of 
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generality that R = R. Assume first that R has nonzero  socle 
H .  If [H n K ,  H n KI2 = 0, then by Theorem 9.1.10 (applied 
to H )   H ,  and hence R, is PI.  Therefore we can suppose that 
[H n K , H  n KI2 # 0. Then J = H [ H  n K , H  n KI2H is a 
nonzero ideal of H (and hence of R) which  by  Lemma  9.1.4  is 
contained in ( H  n K ) .  It follows that 0 # [U, H n K ]  G U n H .  
Choosing 0 # U E U n H we apply the *-Litoff Theorem to find 
a symmetric idempotent e E H such that U E eRe  c M,(F) 
where m > 4. Thus U n eRe is a nonzero exceptional ideal of 
e K e  is eRe,  a contradiction to theorem 9.1.9. 

We  now suppose R has zero  socle. If for all U E U ,  1, U, u2 
are  F-dependent, it follows that u2 = p E F .  Pick 0 # a E U 
(necessarily a # F ) .  For all k ,  1 E K we have [[a,  kI2, 11 = 0 and 
so $ ( z ~ , I c ~ )  = [[a,ql2,x2] is a nontrivial GPI for K over F .  
But by Corollary 6.2.5 this forces R to be GPI and hence  have 
nonzero  socle. Therefore we must conclude that there exists a E 
U such that 1, a, a2 are  F-independent. Since U is exceptional, 
we see  from [U o U, VI2 = 0 that 

Since 1, a, a2 are  F-independent, one  sees that 

is a nontrivial GPI for K over F ,  again forcing the contradiction 
that  the socle of R is  nonzero  in view  of Corollary 6.2.5. The 
proof of the theorem is now complete. 

We come now to  the main result of this section. 

Theorem 9.1.13 Let R be a prime ring with  involution * of 
the  first  kind  and  let U ,  V be Lie ideals of K .  Then: 

(9 If  U 0, then U = 0 or R = M2(F) (* is  transpose, 
0 = K is  l-dimensional); 
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U is exceptional, - then U = 0, = M2(F)-(* is sym- 
= E), or R = M~(F) (* is transpose, U = Zl or 

(c) If U is not exceptional, then 0 # Iu c ( U )  and 0 

(d)  If [U, VI2 = 0, then U 0; 
(e) If [U,V] = 0, then U E 0,  V 0, or 8 = M4(F) (* is 

transpose and (say) l? = El, v = z z ) .  

[ h  n K ,  K ]  c U ;  

Proof. to prove (a) and (b) we see from Theorem 9.1.12 
that R is PI ,  whence the conclusions follow from Corollary 9.1.8 
((b) and ( c ) ) .  Part (c )  is an immediate consequence of the 
definition of I ,  and Lemma  9.1.6.  To  prove (d) and (e), in 
view  of Corollary 9.1.8 ((b) and (d)) it suffices to show that R 
is PI. BY Theorem 9.1.12 we may assume that neither U nor V 
is exceptional. Then from part (c) together  with Theorem 9.1.10 
we see that Iu and Iu n Iv are prime PI rings, whence R is PI.  

The  import of Theorem 9.1.13 is that except for a couple of 
low-dimensional  cases  every  Lie ideal of K contains a nontrivial 
standard Lie ideal, ( K )  is ”large”  in the sense that  it contains 
a nonzero ideal of R, and K itself is a ”prime” Lie ring in  the 
sense that  the Lie product of any two nonzero Lie ideals cannot 
be 0. 

The  Jordan theory of prime rings (without  and  with involu- 
tion) is a considerably easier  affair than  the Lie structure (see, 
e.g.  [l161 and [118]), but we shall forego these matter with the 
exception of one isolated result (not presented in its full gener- 
ality) which  will be needed in section 9.4. 

Lemma 9.1.14 Let R be a prime  ring  with  involution of the 
first kind  such that dimc(RC) > 16, and let S denote  the set of 
symmetric elements of R. Then (S) contains a nonzero ideal of 
R, namely, R#[S,  SIR#. 

I 
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9.2 The Lie Extended  Centroid 
of K 

We continue with our assumption that R is a prime ring with 
involution of the first kind. Our aim here is to show that, with 
the exception of certain low dimensional cases, the Lie extended 
centroid of K (which we shall presently define)  coincides with 
the extended centroid C of R. Theorem 9.1.13(e) shows that K 
is (usually) a "prime" Lie ring and  thus suggests that we make 
a brief  digression into general nonassociative rings (see  [l011  for 
complete discussion). 

Let A be an  arbitrary nonassociative ring (i.e., all the ring 
axioms except for the associative law) with composition denoted 
by a b, a, b E A. We say that A is prime in case U V = implies 
U = 0 or V = 0 for any ideals U, V of A. The centroid @ 
of A is by definition the  set of all endomorphisms of (A,  +) 
which commute with all the left and right multiplications of 
A. It is a straightforward exercise  ([101, Theorem l.l(a)])  to 
show that @ is a commutative integral domain with 1 and  that 
A is @-torsion free provided A is prime. In the remainder of 
this digression we shall assume that A is a prime nonassociative 
ring and shall restrict ourselves to ideals which are @-invariant 
(i.e., A is a prime @-algebra). The multiplication ring M ( A )  
of A is the subring of EndZ(A) generated by all the left and 
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right multiplications of A, where 2 is the ring of integers. We 
proceed to define the extended centroid of A. We begin by 
noting that  the  set F of all nonzero ideals of A is  closed under 
finite intersections. For U E 3 a @-map f : U + A is  called 
permissible if f commutes with the elements of M ( A ) .  Such an 
element will be denoted by (f, U ) .  ker(f) = { U  E U I f (U)  = 0) 
and I m ( f )  = (f(u) I U E U )  are ideals of A and we note that 
(ker(f)) ( I m ( f ) )  = 0. Hence by the primeness of A either 
f = 0 or f is an injection. We define (f, U )  - (g, V) if there 
exists W E 3 such that W G U n V and f = g on W .  This 
is  easily  shown to be  an equivalence relation. We remark that 
(f, U )  - (g, V) if and only if there exists 0 # z E U n V such 
that f(s) = g ( x ) .  We denote by [ f , U ]  the equivalence  class 
determined by (f, U )  and let C(A)  be the  set of all equivalence 
classes. Addition in C(A)  is  defined by 

and it is  easy to check that this definition is independent of the 
representatives. 

For (g, V) permissible and U E F, let g-l(U) = {v E V I 
g (v) E U}. Clearly 9-l ( U )  is an ideal of A and we show that 
it is  nonzero. If g(V) = 0, then 0 # V C g"(U). If g(V) # 0, 
then g(V) n U # 0. Pick v E V such that 0 # g(v) E U .  Hence 
v # 0 and v E g"(U). Now define multiplication in C(A) by 

To see that multiplication is well-defined, suppose (fl, U l )  N 

( f 2 ,  UZ) and (gl, K) - (92, V,). Then f1 = f2 on W1 C U1 n U2 
and g1 = g2 on W2 5 Vi n V,. Set W = W2 n g-l (Wl). For all 
X E W ,  

and SO multiplication is  well-defined. It is then straightforward 
to check that C(A) is an associative ring with 1. awe shall call 
C(A)  the extended centroid of A. 

f1(91(4) = f i b 2  (4) = f 2  (92 (4) 
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Theorem 9.2.1 The extended  centroid C(A)  of a prime  nonas- 
sociative ring is a  field. 

Proof. We first show that C(A)  is commutative. Let X = 
[ f , U ] ,  p = [g,V] E C(A) .  We set W = g-l(U) n f - l (V)  and 
pick 2, y E W .  Then 

f g ( v )  = f ( g ( 4 y )  = g ( z ) f b )  = g ( z f ( y ) )  = g f ( d  

It follows that (fg - gf)(W)W = 0, and so ( f g  - g f ) ( W )  = 0, 
whence Ap = pX. Next let [f, U] # 0 and  note -that f ( U )  # 0 
but  ker(f) = 0. Define g : f ( U )  + A by g( f (u ) )  = U for 
all U E U. g is  well-defined  since f is an injection and  in  fact 
( g ,  f ( U ) )  is permissible. Clearly [ g ,  f(U)] is the inverse of [f, U ] ,  
and  the theorem is proved. 

This completes our digression and we return to our assump 
tion that R is a prime (associative) ring with involution of the 
first kind. We  will also make the assumption that  dimc(RC) > 
16 (this will  suffice  for our purpose in section 9.4). We are 
therefore assured by Theorem 9.1.13(e) that K is a prime Lie 
ring, and so K has an extended centroid r = C ( K ) .  Clearly 
I' 2 C = C(R). As a first step in showing that F = C it will be 
useful to have the following 

Lemma 9.2.2 Let R be a  simple GPI ring with  involution * of 
the  first  kind  such  that dimc(RC) > 16. Then K is a  simple 
Lie ring. 

Proof. By Theorem 6.1.6 R is its own socle, and by Theo- 
rem 9.1.9(b) we may assume without loss of generality that R is 
not PI .  Let a, b E K ,  with a # 0. By the *-Litoff Theorem there 
exists a symmetric idempotent e in R such that  dimc(eRe) > 16 
and a, b E eRe. Another application of Theorem 9.1.9(b), this 
time to  the simple ring eRe, shows that  eKe is a simple Lie ring. 
In  particular b lies in the Lie ideal generated by a,  and so we 
may  conclude that K is a simple Lie ring. 
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Lemma 9.2.3 If R is a centrally  closed prime ring  with invo- 
lution * of the first kind  and dimc(R) > 16, then I' = C. 

Proof. We assume first that R is not GPI .  Let A = [f, U ]  E 
l?, pick 0 # a E U ,  and  set b = f ( a )  E K .  For k E K we see 
from the fact that (f, U )  is permissible that 

Thus 4(z )  = [[b,  23, [u,IG]] E & < X >  is a G P I  on K and so 
by Corollary 6.2.5 q5(2) must be the zero  element of &<X>, 
forcing a and b to be C-dependent. Hence b = aa for  some 
a E C. It follows that A = a and so in the  non-GPI case we 
have  shown that C = l?. 

We  now assume that R is GPI.  In view of Theorem 6.1.6 
R has nonzero socle H .  We know that H is  a simple G P I  ring 
with involution of the first kind, centrally closed  over C, and 
with dimc(H) > 16. By Lemma  9.2.2 (applied to H )  we see 
that KH = K n H is a simple Lie ring. Furthermore we claim 
that I' = ~(KH). Indeed, if X = [ f , U ]  E I' we  know from 
dimc(H) > 16 and Theorem 9.1.13(c) that [H n K ,  K ]  C U 
and hence KH = [H n K ,  K ]  2 U.  Since KH = [KH, KH], we 
also  see that ~ ( K H )  E K H .  Our claim is therefore established, 
and it follows that A = [f, U ]  may be  written A = [f, KH] .  We 
now form the ring S = H @C l?, which  is a central simple G P 1  
ring over I', with dimr(S) > 16, and  with involution given  by 
h €3 X I+ h* €3 X. By Lemma 9.2.2 again (applied to S) we see 
that KH @C I' is a simple Lie ring. We  now define a mapping of 
KH @C I' into KH according to  the rule 

k @ A I-) f ( k ) ,  k E KH,  X = [f ,KH] E I'. 

In view of our previous remarks it is easily seen that  this is a well- 
defined  Lie homomorphism, and because of the Lie simplicity 
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of KH @ F, it is actually a Lie isomorphism. Now  pick X = 
[f,KH] E F and 0 # a E KH. Then a @ X - f(a) @ 1 maps to 
f(a) - f(a) = 0, and so a C3 X = f(a) 1. This forces X E C 
and completes the proof that F = C. 

We  now remove the assumption that R is centrally closed. 

Theorem 9.2.4 Let R be a prime ring  with  involution * of the 
first kind such that dimc(RC) > 16. Then C ( K )  = C(R). 

Proof. We have already pointed out  that K is a prime Lie 
ring and that C = C(R) c C(K) .  We claim that C(K) S 
C(KC) via the mapping [f, U] H [g,  VC], where g(Cuis) = 
C f ( u i ) ~ .  Indeed, the main thing to show  is that g is well- 
defined. Suppose Cui% = 0. Pick v E U and  note that 

By the primeness of KC we infer that C f ( u i ) ~  = 0, and 
from this it follows  easily that  the claim is established. By 
Lemma 9.2.3 we see that C(KC) = C(RC), and so from 

we conclude that C(R) = C(K) .  

9.3 Trilinear  Symmetric  Mappings 
Let R be  an algebra over a commutative ring @, and  let V be a 
@-subspace of R. We shall say that a mapping B : V" + R is 
n-linear symmetric if 

q ,  z2,. . . , xn E V and all permutations U E Sn; 
(i) B ( z l , ~ ,  - - G) = B(G(I), ~ ( 2 ) ,  - xu(n)) for all 
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(ii) B(z1,. . . ,xi + yi, . . . , x") = B(z1,. . . ,xi,. . . , x") 
+B(Q ,..., yi ,... ,xn) for all i = l , 2 , .  . .,n, x1,x2,. . .,xn, 
Yl ,Y2 ,  - ,Y" E v; 

(iii) B(z1,. . . , m i , .  . . ,xn) = cB(x1,. . . ,xi,. . . ,xn) for all 
i = l , 2  ,..., n,x1,x2 ,..., x , € V , c ~ @ .  

In case <P is the ring of integers we shall say that B is n- 
additive symmetric. Consider then  an n-linear symmetric map- 
ping B : V" -+ R. The mapping T : V + R given  by 
T ( x )  = B(z,  x,. . . ,x) is  called the trace of B ; T is said to 
be commuting if [T(z),  x] = 0 for all IC E V .  This  last condi- 
tion shows that generalized identities arise quite  naturally in the 
study of such mappings. 

The simplest case, V = R a prime ring and n = 1, goes 
back to 1957 when Posner [241] showed that  the existence of a 
nonzero commuting derivation in a prime ring implied that R 
was commutative. A variety of results on commuting mappings 
have  since  been obtained by a number of authors (e.g. [224], 
P. H. Lee and T. K. Lee [173],  [164],  [3.9],  [69], etc.). Many of 
these isolated results were simultaneously generalized in 1993 
by Bresar [62], and we  now proceed to present the details of his 
result in a series of easy steps (we shall need this result at one 
place in section 9.4). 

Let R be a ring. A biadditive map B : R x R + R is  called 
a biderivation if for  every x E R the map y H B(x,  y) is a 
derivation of R and for  every y E R the map x H B(x,  y) is a 
derivation of R. The notion of biderivation arises naturally  in 
the  study of additive commuting maps, namely, the linearization 

of an additive commuting map f implies that  the mapping 
B : R x R -+ R given  by B($, y) = [f(x), y] is a biderivation. 
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Lemma 9.3.1 Let R be a ring  and B : R x R + R a bideriva- 
tion. Then 

~ ( z , y ) z [ u ,  W ]  = [z ,y]zB(u,v)  for all z,y,z ,u ,v  E R. 

Proof. We compute B(zu, yw) in two different ways.  Using 
the  fact  that B is a derivation in the first argument, we get 

B(zu, yv) = B(z,  yv)u + zB(u, yv). (9.2) 

Since B is a derivation in the second argument, it follows from 
(9.2) that 

B(zu, yv) = B(z ,  y)vu + yB(z, v)u + zB(u, y)v + zyB(u, v). 

B(zu, yv) = B@, y)v + yB(zu, v) 

Analogously, we obtain 

= B(z ,  y)uv + zB(u, y)v + yB(z, v)u + yzB(u, v). 
Comparing the relations so obtained for B(zu, yv) we arrive at 

B(z ,  y)[u,v] = [x, y]B(u,v) for all z, y,u, v E R. 

Replacing u by zu and using the relations 

[xu, v] = [x, v3u + z[u, v], B(zu, v) = B(z ,  v)u + xB(u, v) 

we obtain  the assertion of the lemma. 
We are now in a position to prove 

Theorem 9.3.2 Let R be a noncommutative  prime ring  and let 
B : R X R + R be a biderivation. Then there exists A E C such 
that B(z ,  y) = A[z, y] for all z, y E R. 

Proof. Let S = R x R and define A : S + R by A(z ,  y) = 
[x, y]; A # 0 since R is noncommutative. By  Lemma  9.3.1 
the functions A, B : S + R satisfy all the requirements of 
Lemma 7.9.11.  Hence the result follows. 

As a consequence of Theorem 9.3.2  we obtain 
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Corollary  9.3.3 Let R be a prime ring. If f : R + R is an 
additive  commuting map, then there  exists X E C and  an  additive 
map p : R + C such  that f (x) = Ax + p(x) for all x E R. 

Proof. Linearizing [ f (a;), a;] = 0 we see that  the  map ( x ,  y) I-+ 

[ f (x), y] is a biderivation. Clearly we may assume R is  noncom- 
mutative. Therefore by Theorem 9.3.2 there exists X E C such 
that [f ( x ) ,  y] = [Ax, y] for all x, y E R. Hence we see that for 
any x E R the element p(x) = f (x) - Ax E C, and  the proof  is 
complete. 

Bresar’s characterization of biadditive symmetric mappings 
with commuting traces for V = R a prime ring of char(R) # 2 
[63] was a landmark achievement, for (along with  a variety of 
applications) it enabled him to settle a long standing conjecture 
of Herstein ([113],) concerning Lie isomorphisms of prime rings. 
For  us this work  of Bresar served as the inspiration to  attempt 
to characterize trilinear symmetric mappings with commuting 
traces for the  situation where R is a prime ring with involution 
and V = K .  It will be seen in section 9.4 how critical a role this 
characterization plays  in the verification of Herstein’s conjecture 
([31, Theorem 31) concerning Lie isomorphisms of the skew  ele- 
ments of a prime ring with involution. We  now state  the main 
result we wish to prove. The remainder of this section will be 
devoted to  its proof. 

Theorem  9.3.4  (Beidar,  Martindale,  Mikhalev [31]) Let 
R be a centrally closed prime ring  over C with  involution * of 
the first kind, and with char(R) # 2,3. Furthermore  assume 
that R is not GPI. Let B : K 3  + K be a trilinear symmetric 
mapping  whose  trace T is commuting. Then there  exist X E C 
and a bilinear  mapping p : K x K + C such  that 

for all x, y, z E K .  
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The Proof of Theorem 9.3.4 will  follow from a series of obser- 
vations and lemmas. Throughout the conditions of the theorem 
will be assumed. We also caution the reader of a slight change 
of notation (both here and in section 9.4): small letters x, y, . . . 
will be elements of R and  capital  letters X, Y, . . . will denote 
variables. 

We begin by linearizing our given condition 

[B(x,  x, x), x] = 0 x E K (9.3) 

through various stages. By replacing x by x + y in (9.3) we are 
led to 

and finally replacement of x by x + U in (9.7) leads to 

for all x, y, z, U E K.  



460 CHAPTER 9. APPLICATIONS TO LIE THEORY 

Before proceeding to our first lemma it will be convenient to 
define 

&,i(y) = xiy + zi-lyx + . . . + p i ,  x, y E R, i = 0,1,2,. . . 
(it is understood that q5z,~(y) = y) and  then to immediately note 
that 

4z,i[Y, 21 = [!l, (9.9) 

Lemma 9.3.5 If x E K is algebraic over C of degree m + 1, 
then 

m m+l 

i=O 5Qi+143,i[b,21 = ~ , c . i + l x - ' ]  i = O  = p.2 = 0, 

whence CEO ~ i + l 4 ~ , i [ a ,  y] = 0 for all y E K .  By Corollary 6.2.5 
the element f (Y) = CEO 0 i + l 4 ~ , i [ b ,  Y] must be  the zero element 
of Rc<X>. This means in particular that 

for all y E R. With  the help of Theorem 2.3.6, equation (9.10) 
may be translated  into  the tensor product equation 

m i c Qi+l 8 d ) ( U  8 1 - 1 8 a) = 0 (9.11) 
i=O j = O  
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Reversing the summation  and rewriting (9.11) we have 

For each summand of the tensor product in (9.12) let us agree 
to call the factor to  the left of the tensor sign the coefficient of 
the factor to  the right of the tensor sign. From our assumption 
that x is algebraic of degree m+ 1 we  know that 1, x,. . . , xm are 
C-independent. Suppose (to  the contrary of what we are  try- 
ing to prove) that 1, x,. . . , xm, a are C-independent. We make 
the  important observation that  the coefficient of a in (9.12) is 

For j > 0, if axj is a linear combination of 1, x, . . . , xm, a, ax, . . . , 
axj-l we rewrite (9.12) accordingly and  note that  the coefficient 
of a in the rewritten form of (9.12) remains a polynomial in x 
of degree m. A contradiction to 1, x,. . . ,xm, a being indepen- 
dent is thereby reached, and so we may  finally  conclude that 

CEO Qi+l xi = xm + CEi' ai+lxi, a polynomial in x of degree m. 

a = B(x,  x, S) = CEO pixi, pi E c. 
Lemma 9.3.6 If z E K is not algebraic of degree 5 6, then 

B(2, x, 2) = ax5 + pz3 + yz, a, p, y E c. 
Proof. Replacing x by z3 in (9.7) we have 

for all y E K. Applying (9.9) to  the first summand of (9.13) we 
obtain 
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Using  (9.9) in connection with the second summand  in (9.14) 
we then have 
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must be the zero  element of Rc<X> and so in particular 

for all y E R. Using Theorem 2.3.6 we may translate (9.21) into 
the tensor product equation 

d€31-1€3~-3(z2€31+x€3x+1€3z2)(c81-1~c) 
+ 3(z2 €3 1 + z €3 z + 1 €3 z2)2(b €3 1 - 1 €3 b) 
- (z2 €3 1 + z €3 z + 18 z ~ ) ~ ( c € ~  1 - 1 €3 C) (9.22) 

Two side calculations yield 

(x2 8 1 + X 8 z + 1 8 z ~ ) ~  = z4 8 1 + 8 X + 3z2 €3 z2 

+22 €3 x3 + 18 z4 (9.23) 

+7x3 €3 x3 + 6x2 €3 z4 
(z2 €3 l + z 8 x + l €3 z2)3 = z6 + 3z5 8 z + 6z4 C3 z2 

+3x €3 z5 + l @  x6 (9.24) 

Inserting (9.23) and (9.24) in (9.22) and  then expanding in full 
we see that 

d€31-1€3d-3{22C€31+zC€3+C€322 

-x2 €3 c - 2 €3 c2 - 1 8 c2}  
+ 3 ( z 4 b ~ 1 + 2 z 3 b 8 z + 3 z 2 b ~ z 2 + 2 z b ~ z 3 + b 8 z 4  
-z4 €3 b - 2z3 8 bz - 3z2 €3 bz2 - 22 8 bz3 - 1 8  bz4) 
-{z6a 8 1 + 3z5a €3 z + 6z4a 8 x2 + 7z3a 8 z3 
+ 6 z 2 a ~ z 4 + 3 ~ a 8 z 5 + u ~ z 6  
-z6 €3 a - 3x5 €3 az - 6z4 €3 uz2 - 7x3 €3 uz3 
-6x2 €3 uz4 - 32 €3 ax5 - 1 €3 ar6) = o (9.25) 

Systematically rearranging the  terms of (9.25) we have 

(d - 3z2c + 3z4b - ~ “ a )  8 1 + (-kc + 6x3b - 3z5a) €3 z 
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+(-3c + 9z2b - 6z4a)  €3 z2 + (6zb - 7z3a) @ z3 

+(3b - 6z2a)  €3 z4 - 3za @ z5 - a @ z6 + z6 @ a 
+3z5 az + 6z4 g az2 + 7z3 €3 az3 

+6z2 @ az4 + 32 @ ax5 + 1 @ az6 
-3z4 @ b - 6z3 €3 bz - 9z2 @ bz2 - 6z  @ bz3 - 3 @ bz4 
+ ~ Z ~ @ C + ~ ~ @ J C Z + ~ @ C Z ~ - ~ @ ~ = O  (9.26) 

Since z is not algebraic of degree 5 6 ,  we may speak of the degree 
of polynomials in z whose  powers of z do  not exceed 6. We  know 
that 1, z, . . . , z6 are C-independent. Suppose (contrary to what 
we are  trying to prove) that 1, x, . . . , z6, a are C-independent. 
In a similar fashion to  the proof of Lemma 9.3.5 we note that 
the coefficient of a in (9.26) is z6 whereas the coefficients of 

az, az2, . . . , az6, b, bz, . . . , bz4, c, cz, cz2, d 

in (9.26) are  all polynomials in z of degree < 6. Consequently, 
writing if  necessary  any of the above elements as a linear combi- 
nation of preceding elements and  then rewriting (9.26) accord- 
ingly, it follows that  the coefficient of a in the rewritten form 
of (9.26) remains a polynomial in z of degree 6. This a contra- 
diction to 1, x, . . . , z6, a being assumed C-independent and so 
a = B ( z ,  z, z) = zf=op&. Since B(z,z ,  z) is skew  we finally 
have B(z ,  z, z) = az5 + pz3 + yz, Q, p, y E C,  as desired. 

Lemma 9.3.7 If z E K is  not algebraic of degree 6,   then there 
exist X, p E C such  that B ( z ,  z, x) = Xz3 + pz. 

Proof. If x is algebraic of degree 5 5, then by Lemma 9.3.5 
B(z,  z, z) = Czo pizi for  some m 5 4. But B(z,  z,z) is  skew 
and so B(z ,  z, z) = p3z3 + ,012. Therefore we may assume that 
z is not algebraic of degree 5 6 ,  because z is not algebraic of 
degree 6 by our assumption. In the free product &<X> we 
consider the following sets of elements: 
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{Mi(z, Y )  I i = 1,2, . . . , n},  the set of all monomials of the 
form zjoYkl zjl . . . Ykazja, where j, + j, + . . . + j, 5 6 and k1 + 
k z +  . . .+ k,  5 6 ,  

{(U + z ) ~  I i = 0 ,1 , .  . . ,6}, 
{(Y - z ) ~  1 i = 0 ,1 , .  . . ,6}. 

Since l , z , .  . . , z6 are  C-independent, each of the above three  sets 
is a C-independent subset of &<X>. By Lemma 6.1.8 there 
exists x E K such that each of the sets {Mi(z ,x)} ,  {(x + z ) ~ } ,  
and {(a: - z ) ~ }  is a C-independent subset of R. We let V denote 
the C-span of the set {Mi(z ,x)} .  Since  none of the elements 
z, x, x+ x, x - z are algebraic of degree 5 6, Lemma 9.3.6 implies 
that  the traces T ( z ) ,  T ( x ) ,   T ( x  + z), T ( x  - z) are all elements of 
V and in fact  are of ”degree” 5 5 in x and ”degree” 5 5 in z. 
It then follows  from the equations 

T(x  + z) = T ( z )  + T ( z )  + 3B(x, x, x) + 3B(x,z ,  x), 
T(x  - z) = T ( x )  - T ( z )  - 3B(x, x, z) + 3B(x, z,z) 

that B(z,  x, z) and B(x,  x, z) are also elements of V of degree 
5 5 in both x and z. Using (9.5), we may then conclude  from 

[B(x,  x, x>,z]  = -3[B(z, x, z),xI 

that B(x,  x, z) is of degree 1 in z. Next, using (9.6), from 

[B(x, x, 4,23 = “x, z, z ) , x ]  

we see that B(x,  z, x) is of degree 5 2 in z. As a result it follows 
from 

1 
3 B(x,  z,z>, 21 = -+(x, z,z), 23 

that B ( z ,  z, z) has degree 5 3 in z. Since B(z ,  z,  z) is  skew we 
then have B ( z ,  z, z) = Xz3 + pz, X, p E C, as desired. 

Lemma 9.3.8 Suppose  that z E K is algebraic of degree 6. 
Then there  exist X, p E C such  that B ( z ,  z, z) = Xz3 + pz. 
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Proof. In  the free product &<X> we consider the follow- 

{ Mi(z,  Y) I i = 1,2,  . . . , n}, the  set of all monomials of de- 

{Yi I i = 0,1, .  . . ,6} which is a subset of the first set, 

{(Y + z ) ~  I i = 0,1 , .  . . ,6}, 
{(Y + 2 ~ ) ~  1 i = 0,1,. . . ,6}. 

ing five sets: 

gree 5 6 in Y and of degree < 5 in z, 

{(Y - z ) ~  I i = 0,1, .  . . ,6}, 

Each of these sets is a C-independent subset of RC < X  >, so 
by Lemma 6.1.8 there exists x E K such that each of the five 
sets {Mi(z,x)}, {xi}, {(x - z ) ~ } ,  {(x + z ) ~ ) ,  and {(x + 2 ~ ) ~ )  is 
an independent subset of R. We let W denote the C-span of 
the set {Mi(z ,  x)} and let W' denote the subspace of W whose 
elements are of degree 5 3 in x. Since  none of the elements 
x, x - z, x + x, x + 22 are algebraic of degree 6, Lemma 9.3.7 
implies that  the traces T(x) ,T(x  - z ) ,T(x  + z ) ,T(x  + 2z) all 
belong to W'. By adding the equations 

T ( x  + x) = T(x)  + T ( z )  + 3B(x ,  x, 2) + 3B(x ,  x, z) 
T ( x  - z) = T ( x )  - T(x) - 3B(x, x, 2) + 3B(x, z, z) 

we have 6B(x ,  z,z) = T ( x  + z) + T ( x  - z) - 2T(x), and so 
B(x,  z, x) E W'. Next, from the equations 

T(x + 22) = T(x)  + 8T(z)  + 6B(x, x, z) + 12B(s, z,  z) 

8T(s + z) = 8T(x)  + 8T(z)  + 24B(x, x, x) + 24B(x, z,  z) 

we obtain 

8T(x + Z )  - "(X + 22) = 7T(x) + 18B(x, 2, Z )  + 1 2 B ( ~ ,  Z,  X) 

and so B($, x, z) E W'. In W we have the equation 
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from  which we may  conclude that B(x,  x, z) has degree 1 in z. 
We therefore see  from 

that B(x,  z, z) has degree < 2 in z. Since z is algebraic of 
degree 6, we  know from Lemma 9.3.5 that B(z ,  z, z) = x:=o ?izi, 
~yi E C, and so [B(z ,  z, z), x] E W'. Therefore from the equation 

W ,  z,z), x] = -3[B(x, z, z),z] 

we see that B(z,  z, z) is of degree 5 3 in z, and  the proof of the 
lemma is complete. 

Together Lemma 9.3.7 and Lemma 9.3.8 imply 

Lemma 9.3.9 For all z E K there  exist X, p E C such  that 
B ( Z ,  Z ,  Z )  = xz3 + p ~ .  

We next show that X is independent of x .  

Lemma 9.3.10 There  exists X E C such  that for all z E K 
B ( Z ,  X ,  X )  = xz3 + ~ ( z ) z ,  p ( ~ )  E C. 

Proof. Let a, b be any elements of K neither of which is 
algebraic of degree 5 3. In the free product Rc<X> we consider 
two sets 

{ Mi(a, Y )  I i = 1,2, . . . , n}, the set of all monomials of de- 
gree < 6 in Y and of degree < 3 in a, 

{Mi@, Y) I i = 1,2,  . . . , n}, the  set of all monomials of degree 
5 6 in Y and of degree 5 3 in b 
These are each C-independent subsets of RC < X  > and so by 
Lemma 6.1.8 there exists x E K such that  the sets {Mi(a,x)} 
and {Mi@, x)} are  both C-independent subsets of R. Let U de- 
note the C-span of the set {Mi(a,z)} ,  and  let U' denote the 
subspace of U where elements are of degree 5 3 in x. By 
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Lemma 9.3.9 T(x ) ,  T ( a ) ,  T ( x  + a), T ( x  - a) all belong to U’ and 
so from the equations 

T(x + a) = T ( x )  + T ( a )  + 3B(x,x,  a) + 3B(x, a, a) 
T ( x  - a) = T ( x )  - T ( a )  - 3B(x, x, a) + 3B(z, a, a) 

(9.27) 

we conclude that B(%, x, a) and B(z ,  a, a) both lie in U’. From 

we see that B(x,  x, a) is of degree 1 in a, whence from 

we see that B(x,  a, a) has degree 5 2 in a. Next  from 

we see that B(x,  a, a) has degree 1 in x, whence  from 

we see that B(%, x, a) has degree 5 2 in x. Returning to equation 
(9.27) and using  Lemma 9.3.9 we write 

for suitable Xi,pi E C. Since the degrees of B(z,x ,  a) and 
B(%, a, a) in either x or in a do not exceed 2, we conclude from 
(9.28) that X1 = X2 and X1 = Xz, whence X2 = XJ. In a similar 
fashion, writing B(b, b,  b) = X b b 3 + 4 b ,  our argument shows that 
X; = X3 and therefore X2 = X; = X. In case y E K is algebraic 
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of degree 5 3 we  know  by Lemma 9.3.5 that B ( y ,  y, y) = py, so, 
writing y3 = yy, we have 

B(y, Y, y) = Ay3 + py - Ay3 = AY3 + ( p  - y4y .  

The proof of Lemma 9.3.10 is now complete. 

Proof of Theorem 9.3.4. By Lemma 9.3.10 there exists 
X E C such that 

B ( x , x , x )  = As3 + y(x)x, y(x) E c (9.29) 

for all x E K .  We proceed to linearize (9.29) in the usual fashion. 
Replacement of x by x + y in (9.29) results in 

3B(x, X, y)+3B(x ,  y, g) = X(x2y+xyz+yx2+ay2+yxy+y2x)+hl 
(9.30) 

for all x, y E K ,  where h1 is a linear term in x and y. Replace- 
ment of y by -y in (9.30) then quickly leads to 

3B(x, y, y) = X(zy2 + y ~ y  + y2x) + h2 (9.31) 

where h2 is linear in x and y. Replacement of y by y + z in 
(9.31) then results in 

6B(x, y, z) = X(xyz + m y  + yxz + yzx + zxy + zyx) + h (9.32) 

for all x, y, z E K ,  where 

h(x, Y,Z) = 4 x 7  Y, z>x + Pb, 9, Z>Y + ?(x, 3, z>z (9.33) 

and ~ (x ,y , z ) ,P ( s ,y , z ) ,y ( s ,y , z )  E C. We note from (9.32) 
that h : K 3  + K is a trilinear mapping. We define a mapping 
p : K x K + C in the following fashion. Given (y, z) E K x K 
choose x E K such that x does not lie in the C-span of y and 
z (such x exists since K is infinite dimensional over C). Now 
write 

h(x, y, z) = ax + Py + yz 
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and define p(y, z) = a. To show that p is  well-defined let U E K 
such that U Cy + Cz.  Suppose first that U = 712 + 72y + 732 

(necessarily 71 # 0). Then 

h(% y, 2) = 71h(x, Y, 2) + 72(h(Y, Y, 4 + 7 3 w  Y, 4 
= 71(QZ + PY + 72) + 72(P2Y + 7 2 4  + 73(P3Y + 7 3 4  

= a(712 + 7231 + 732) + P4Y + 742  

= QU + P4y + 742 

We may thus assume that U, x are C-independent modulo Cy + 
Cz. In  this case we write 

h(x, Y, z) + h(% Y, 2) = h(z + U, Y, 2) 
whence 

Q3S + PY + YZ -k a1U + Ply + 712 = @2(z + U) + P2Y + 732 (9.34) 

It follows  from (9.34) that a = a2 and a1 = a2 and so a = a1 
as desired. 

We next show that p is bilinear. Let y, y’, z E K ,  7 E C, 
and choose x E K such that x 4 Cy + Cy’ + Cz. The following 
equations 

h(x, y, 2) = ax + py + yz = h(x, 2, y) 

h(x, Y + y’, 2) = P(Y + 9 ’ 9  z)x + Pl(Y + Y‘) + 712 

= h(x, Y, 2) + h(x, Y’Z) 
= p(!/, z ) x  + P2Y + 722 + P(!/’, 4 %  + P3Y’ + 732 

h@, TY, 2) = p(% z>x + P47Y + 742 

N Z ,  Y, 2) = V(Y, z ) x  + 7PY + 7-73 

clearly imply that p is bilinear. 
Now let x, y, z E K be C-independent. From 

h($, Y, 2) = P(Y, z)x + PY + 72 
= h(Y, x , z )  = P b ,  Z)Y + P l X  + Y l X  

= h(& x, Y) = P b ,  Y>Z + P2x + 72Y 
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we then conclude that 

h(x, y, 2) = AY, z)x + P(X, 4 Y  + P(x, d z .  

Next suppose that y, x are C-independent but x E Cy + Cz.  
Choose U 4 C y  + Cz. Then x + U 4 Cy + Cz and we have 

h(& Y, 2) = h(x + U, Y, x) - h(% Y, 4 
= P(% z)(x + U) + P(x + U, z)y + P(Z + u)z  

= P(Y 7 z>x + P(Z, 4 Y  + P(2, Y>Z (9.35) 
-P(% z>x - P b ,  Z>Y - P h  Y>Z 

Finally, if dimc(Cx + Cy + Cz)  = 1, we choose U 6 Cx + 
Cy + C z  and making use of the preceding case together  with 
equation (9.35) we complete the proof of Theorem 9.3.4. 

9.4 Lie  Isomorphisms 
At  his 1961 AMS Hour Talk, entitled "Lie and  Jordan  structures 
in simple, associative rings", Herstein posed  several problems 
he  deemed worthy of attention [113]. Among these were the 
following questions (which we indicate in a rather loose fashion): 

Problem 1. Is every  Lie automorphism 6 of a simple asso- 
ciative ring R given by (or "almost" given  by) an automorphism 
0 or negative of an antiautomorphism 0 of R? 

Problem 2. If R is a simple ring with involution * and K 
denotes the Lie ring of  skew elements of R under *, is  every  Lie 
automorphism 4 of K induced by (or "almost" induced by) an 
automorphism CS of R? 

The qualification "almost" refers to  the possibility that 6 
and 0 may  differ  by an additive mapping r of R into the center 
which sends commutators to 0. 

The resolution of these problems in the classical  case R = 
M,(F), F a field, has been  well-known  for a long time ([132, 
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Chapter 101). In 1951 Hua [l301 solved Problem 1 for R a sim- 
ple Artinian  ring M, (D), D a division ring, n 2 3. A more 
general situation for Problem 1 was subsequently considered by 
Martindale ([201],  [203]) in which  Lie isomorphisms (b : R + R' 
(R, R' primitive in [201] and prime in [203]) were investigated 
and in which the  matrix condition n 2 3 was replaced by the 
condition that R contains three orthogonal idempotents whose 
sum is 1 (in [203] only  two idempotents were required). A close 
look at the results of these papers reveals the fact that  the im- 
age of cr in general requires a "larger" ring than R' and that  the 
image of r requires a "larger" field than  the center of R'. We 
note that  it was precisely this necessity to enlarge certain rings 
that was the motivation for  developing the notions of extended 
centroid and central closure  which  proved so useful in charac- 
terizing prime GP1 rings [205]. As mentioned in section 9.3, 
the final breakthrough on Problem 1 was made by Bresar [63]. 
Here, as a corollary to a general result on biadditive mappings in 
prime rings, he  removed the assumption of orthogonal idempo- 
tents  altogether  and thereby settled Problem 1 in full generality. 

Theorem 9.4.1 (Bresar [63, Theorem 31) Let R and R' be 
prime  rings of characteristic # 2, neither of which  satisfies  the 
standard  identity St4. Then  any  Lie  isomorphism 4 of R onto 
R' is of the form 4 = o+r, where IS is  either  an  isomorphism  or 
negative of an  antiisomorphism of R into  the central  closure of 
R' and r is an  additive  mapping of R into  the extended  centroid 
of R' sending  commutators  to 0. 

The present section is concerned with Problem 2. Let R be 
a prime ring with involution *, of characteristic # 2,3, with 
K the skew elements of R, and C the extended centroid of R. 
Throughout  this section all involutions will  be of the first kind. 
(For involution of the second  kind the feeling  is that  the solution 
of Problem 2 is inherently easier and should ultimately revert 
back to Theorem 9.4.1; partial results have  been obtained by 
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M. P. Rosen [253]). As we have  seen * may be extended to 
an involution of the central closure R C  according to rc  I+ r*c, 
r E R, c E C. Up to 1994 (see [31]) the main result concerning 
Problem 2 was the following theorem of Martindale [212], which 
we  now state carefully  since it plays a crucial role in the general 
solution of Problem 2. 

Theorem  9.4.2  (Martindale  [212,  Theorem 3.11) Let R 
and R' be centrally closed prime  rings of characteristic # 2 with 
involutions of the  first  kind,  with algebraically closed centroids C 
and C' respectively,  and  with  skew  elements  denoted  respectively 
by  K and K'. W e  assume  furthermore  that 

(a) dimc(R) # 1,4,9,16,25,64; 
(b)  R contains  two  nonzero  symmetric  idempotents  el  and 

e2 such  that  el + e2 # 1; 
(c) Fori  = 1,2, ei E ( e iRe in[K ,  K]), the  associative  subring 

generated by  eiRei n [K, K ] .  
Then  any  Lie  isomorphism of [K, K] onto [K', K'] can be ex- 

tended  uniquely  to  an  associative  isomorphism of ([K, K ] )  onto 
([K', K'] ) . 

Our aim in this section is to eliminate the requirement of 
idempotents assumed in Theorem 9.4.2. We are now ready to 
state  the main result of this section: 

Theorem  9.4.3  (Beidar,  Martindale,  Mikhalev  [31]) Let 
R and R' be prime  rings  with  involutions of the  first  kind  and 
of characteristic # 2,3. Let K and K' denote  respectively  the 
skew  elements of R and R' and  let C and C' denote  the  extended 
centroids  of R and R' respectively. Assume  that dimc(RC) # 
1,4,9,16,25,64. Then  any  Lie  isomorphism Q of K onto K' 
can be extended  uniquely to  an associative  isomorphism of ( K )  
onto (K'), the  associative  subrings  generated by  K and K' re- 
spectively. 



474 CHAPTER 9. APPLICATIONS TO LIE THEORY 

It is interesting to note that  the possibility of the mapping r : 
R + C' appearing in the conclusion of Theorem 9.4.3 does not 
in  fact occur. We also mention that counterexamples illustrating 
the dimension restrictions on d im(RC)  may be found in [2P2]. 

In view of Theorem 9.1.13 and Lemma 9.1.4 we have the 
following 

Corollary 9.4.4 If in Theorem 9.4.3 R and R' are  simple rings, 
then Q can be extended  uniquely  to  an  isomorphism of R onto 
R'. 

The proof of Theorem 9.4.3 is  self-contained with a single 
major exception. Theorem 9.4.2 is required and in fact plays 
a decisive  role; we refer the reader to [212] for the details of 
its proof.  For the remainder of this section we shall assume 
that  the conditions of the Theorem 9.4.3 hold. ' Our plan of 
attack is to consider  two  cases:  Case A in  which R is GPI 
and Case B in  which R is not GPI. In Case A we are able 
to make  use of Theorem 9.4.2. In case B we set  up a certain 
trilinear symmetric mapping B : K3 + K intimately related to 
Q. Then, making repeated use of Lemma 6.1.8, we are able to 
show (Theorem 9.3.4) that B is of a particular useful form. The 
upshot is that  both Theorem 9.4.2 in Case A and Theorem 9.3.4 
in Case B enable us to prove that (z3)* = (x:")3 for all x E K ,  
which  by Lemma 9.4.5 is  precisely the criterion for lifting Q to an 
isomorphism of (K) onto (K') .  Our main result, Theorem 9.4.3, 
will thereby be proved. 

We begin by showing that without loss of generality R and 
R'  may be assumed to be centrally closed prime rings with C 
and C' algebraically closed  fields. Indeed, since dimc(RC) > 16 
we  know from Theorem 9.1.13(e) that K is a prime Lie ring 
and from Theorem 9.2.4 that C = C(K), where C(K) is the Lie 
extended centroid of K.  From the Lie isomorphism Q we see that 
K' is also a prime Lie ring, in which  case it follows that C' = 
C(K'). The Lie  isomorphism Q then induces an isomorphism 
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c I+ E of C onto C' according to  the rule [f, U] I+ [g, U"] where 
g(u") = f(u)". We claim that a may be extended to a Lie 
isomorphism q5 : KC + K'C' given  by C xici I+ C x:&, xi E K ,  

E C. Indeed, the main point is to show that 4 is  well-defined. 
Suppose C  xi^ = 0 and choose a Lie ideal U # 0 of K such that 
US c K for all i. Then for all U E U we have 

Applying a to (9.36) we obtain 

(9.36) 

(9.37) 

But 
(qu)" = fi(U)" = gi('11") = E$ 

(where = [fi, U] ,  & = [Si, U"]) and so (9.37) becomes 

for all U E U. Therefore C x:& = 0 and q5 is  well-defined. 
Therefore without loss of generality we may assume that R and 
R' are already centrally closed. Now let F be an algebraic closure 
of C and  let F' be an algebraic closure of C' such that  the 
isomorphism c I+ E is extended to an isomorphism X I+ of 
F onto F'. We then form = R @C F ,  2 = R' @c/ F', and 
extend a to a Lie  isomorphism 4 : K @c F + K' @Q F' via 
x @ X I+ x"i, x E K ,  X E F .  This mapping is  well-defined (the 
crucial observation being that ( m ) "  @ x = z*i? @ x = x" @ E x = 
x" @ (CA), x E K ,  X E C). We leave it for the reader to verify the 
straightforward details that 4 is a Lie  isomorphism. Clearly we 
have the condition that  dimp(E) # 1,4,9,16,25,64. Therefore 
we may assume to begin with that R = and R' = R' are 
closed prime rings with algebraically closed extended centroids. 

We next present a criterion for extending a to  an associative 
isomorphism of ( K )  to (K'). 

- 
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Lemma 9.4.5 Q can be extended to  an isomorphism p : ( K )  + 
(K')  if and only if (x3)(* = for all x E K .  

Proof. The "only if'  part being obvious, we assume 

( X 3 y  = ($93 (9.38) 

for all x E K.  By Lemma 9.1.5 ( K )  = K @ K 0 K .  Replacement 
of x by x f y in (9.38) results in 

2(xy2 + xyx + y 2 a  x) = 2xa(ya)2 + 2yaxaya + 2(ya)2xa (9.39) 

for all x, y E K.  Also we have 

(xy2 - 2xyx + y2xy = [[x:, 31, YI0 = [[xa, ya1, gal 
= xa(ya)Z - 2yaxaya + (ya)2xa 

(9.40) 

Adding (9.39) and (9.40), we see that 

(xy2 + y2x)a = F ( y Q ) 2  + ( y a p  (9.41) 

for all x, y E K .  We  now define a mapping p : ( K )  + (K')  
according to 

To show that p is well-defined it suffices to show that if C y? = 0, 
then = 0. Indeed, for x E K we have C yqx + C sy: = 0 
whence by (9.41) we see that x ( ~ : ) ~ x ~ + x ~  = 0. Clearly 
S = is a symmetric element of (K') which anticommutes 
with all skew elements. Hence S commutes with all elements of 
the form ab+ ba, a, b E K' and so with all symmetric elements of 
(K'). Since dimct(R') > 16, by Theorem 9.1.13(c) (K') contains 
a nonzero *-ideal I of R' and so S commutes with all symmetric 
elements S(1) of 1. One can easily  shows that dimct(C'I) > 16 
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and hence ( S ( I ) )  contains a nonzero ideal J of the ring I by 
Lemma 9.1.14. From Andrunakievich's Lemma we conclude that 
J contains a nonzero ideal J' of R' (see [276]). Since S commutes 
with J' and R' is a prime ring, we see that S is a central element 
of R'. Recalling that sx = -2s for all z E K' we infer that S = 0 
and  thus p is a well-defined mapping of ( K )  onto (K') .  

From the identity xy = ;{(x + y)2 - x2 - y2 + [x, g]} and 
from the definition of p we see that for x, y E K 

(xy)P = -{[(x + y)"P - (x2)P - + [x, YIP} 1 
2 
1 
2 

= -{ (x" + - (x")2 - + [x", y"]} 
= x"y" = x P P  y (9.42) 

Next  from the identity x2y = ;{x o [x, y] + x2 o y} we obtain 

making use of (9.41). Together (9.42) and (9.43) imply 

= uPxP, U E ( K ) ,  x E K (9.44) 

and, since ( K )  is generated by K ,  it follows  from (9.44) that 
,L? is a homomorphism of ( K )  onto (K'). By symmetry the Lie 
isomorphism x" I+ x of K' onto K can be extended to a homo- 
morphism y : (K')  + ( K ) .  Since Py is the identity on K and 
yP is the identity on K' it is  clear that p is an isomorphism. 

At this point we divide our analysis of a! into two separate 

Case A: R is GPI. 
cases: 
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Case B: R is not GPI.  
Case A. By Theorem 6.1.6 R has nonzero socle H .  Since 

dimc(R) > 36 we  know from the *-Litoff Theorem that H con- 
tains a symmetric idempotent e of rank n > 6. Then eRe s 
&(C) and by Corollary 4.6.13 the involution * on eRe is either 
transpose or symplectic. In  either of these cases it is  well-known 
that eRe contains orthogonal symmetric idempotents el and e2 

each of rank 2. It is then easy to check that for i = 1,2 ei lies 
in  the subring generated by [K,  K ]  n eiRei. Finally Q! clearly 
induces a Lie  isomorphism a0 from [ K ,  K ]  onto [K', K'] ,  and so 
the conditions of Theorem 9.4.2 have now been met. We may 
th,erefore conclude that a0 can be extended to  an associative iso- 
morphism B : T + T', where T = ( [ K ,   K ] )  and T' = ( [K ' ,  K']). 
It is  easily  seen that ( K  n T)" = K' n T'. Indeed, this follows 
from writing x E K n T $S 

x = C(q.2.. . un + ( - l y + l U , .  . . U l ) ,  Ui E [K, K ] ,  

and  then applying the isomorphism B. Similarly (S n T)" = 
S'nT', where S and S' are respectively the symmetric elements 
of R and R'. We also claim that Q! agrees with on K n T.  
Indeed, for x E K n T ,  y E [K, K ]  we have 

[x", v"] = [x, YI" = [x, Yl" = [x", Y"1 = [xb, Y"1, 

whence xa -xa commutes with [K', K'] and so x" -xa is central 
by Theorem 9.1.13(c). But we have already seen that x" (as well 
x") must  be skew, and so x" - x" = 0 which  proves our claim. 

By Theorem 9.1.13(c) H T .  We note that H itself  is a 
simple ring. If 1 # 0 is an ideal of T ,  then I n H # 0 is an ideal 
of H and so 1 n H = H ,  i.e., 1 2 H .  It follows that H is  also 
the socle of T. It is  easy to show via B that R' must be GPI 
with socle H". 

We  now fix t E K .  We claim first of all that 

[U, t]" = [uU,ta], U E H (9.45) 
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Indeed, since ( H  n K )  = H by Lemma 9.1.4 and  the sim- 
plicity of H ,  we may assume without loss of generality that 
U = Z ~ I C ~ . . . X ~ , ~ ~ E H ~ K .  F o r n = l  

[21,t]" = [21,t]" = [ a y ]  = [@"l. 

and so our claim is established. 
From [U o t ,  U] = [t, U ]  o U we see, making use of (9.45), that 

[(U 0 t)", U"] = [t", U"] 0 U" = [U" 0 t", U"] 

for all U E H .  In  other words +t : U" I+ (U o t)" - U" o t" is an 
additive commuting function on the ring H". By Corollary 9.3.3 
there exist X E C' and p : H" -+ C' such that 

(U o t)" - U" o t" = XU" - ~ ( u " ) ,  U E H (9.46) 

Choosing U E H n K we see that X = 0 by comparing the skew 
and symmetric parts of (9.46). Next, choosing U E S n H ,  we 
see from (9.46) that p(u") = 0, that is 

(U o t)" = U" o t", U E S n H (9.47) 

Together (9.45) and (9.46) imply that 

(ut)" = u"t", U E S n H 

whence 

( ~ 1 ~ 2 . .  . unt)" = 211212 . . . unt , ui E S n H U "   U "  (9.48) 
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But (S n H) = H by Lemma 9.1.14 and so (9.48) implies 

(ut)" = u'ta, U E H,  t E K. 

Similarly (tw)" = t*w", w E H, t E K and so 

u"(t3)"w" = (ut3)"w" = (ut3v)" = {(ut)t(tw)}" 
= {(ut)t}"(tw)" = (Ut)"t"t"V" = u"(t")3w" 

for all u,w E H ,  t E K. Therefore H"[(t3)" - (ta)3]H" = 0 
whence (t3)>* = for all t E K. Lemma 9.4.5 is thereby 
applicable and so we have  succeeded in showing in Case A that 
a can be extended to  an isomorphism of ( K )  onto (K'). 

Case B. we begin by pointing out  that necessarily R' is not 
GPI. Indeed, since R is not GPI, it follows that  dimc(K) = 0 0 ,  
whence dimct(K') = 00.  If R' is GPI we have already seen in 
our discussion of Case A (with Q-' now playing the role of a) 
that a-l may be lifted to  an isomorphism U' of (K') onto (K). 
Using U' we easily  reach the contradiction that R must be GPI. 

We define a C'-trilinear symmetric mapping B : (K')3 -+ K' 
as follows: 

1 
B($", y", z") = &xyz + xzy + yxz + yzx + zxy + zyx)" 

for all z, y, z E K.  Its  trace B(xQ, x", x") is obviously commut- 
ing since B(xa, x",  x") = (x3)" and [(z3)", x"] = [x3,  x]" = 0 for 
all x E K .  Thus by Theorem 9.3.4 there exist X E C' and a 
C'-bilinear mapping p : K' x K' + C' such that 

(xyz + xzy + yzz + yzx + zzy + zyx)" 
= X(2"y"z" + xazaya + yaxaza 
+ yazaxa + zaxaya + 2"y"x") 
+ P(Y, 42" + P(& 2)Y" + P b ,  Y)Z" (9.49) 

for all x, y, z E K ,  where  for notational ease we are simply writ- 
ing p(x, y) for p(x*, y"). Our  aim, of course, is to show that 
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X = 1 and  that p = 0, whence (x3)a  = (xa)3 and Lemma  9.4.5 
may  accordingly be invoked to obtain the desired conclusion that 
a! may be extended to  an isomorphism of ( K )  onto (K'). 

We  now proceed to draw some  consequences  from (9.49). 
First  setting x = z in (9.49) and dividing by 2, we obtain 

Now, setting x = y in (9.50), we have 

From 3xyx = 
(9.50) that 

3(x:yz)a = 

- - 

whence 

1 
( x 3 y  = X(xQ)3 + y ( 2 ,  x ) x a  (9.51) 

x2y + xyx + yx2 - [[y, x], x] we conclude  using 

X{ + xayaxa + y a ( q 2 }  + p(z, y>xa 

++, x)y* - {(x ) y 2xayaxa + y a ( x a ) 2 }  

(X + 2)xayaxa + (X - l ){ (xyya  + y"(x*)2} 

+P(Z, Y)Z" + #x, 

1 a 2 a- 

1 

Lemma 9.4.6 X = 1, i.e., 

(9.52) 

1 1 
3 

( x y x ) a  = xayaxa + +(x, y)x* + x ) y a .  
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Proof. Choose xa E K' such that is not algebraic of 
degree 5 6 (such xa exists since otherwise K' would be PI) .  
In the free product R'ct<Y> consider the C'-independent sub- 
set { Mi(za, Y )  I i = 1,2, . . . , n} of all monomials of the form 
(xa)jOYi1(xa)jl . . . Yik(za)jk where j, + j1 + . . . + j, 5 6 and 
il + i 2  + . . . + i, 5 6. By  Lemma 6.1.8 there exists yo E K' such 
that {Mi(xQ, y")}  is a C'-independent subset of R'. We compute 
( z3yz3)O in two  different ways and compare the results, being 
only interested in the coefficients of ( ~ " ) ~ y *  and ( ~ ~ ) ~ y ~ a : ~ .  On 
the one hand 

X+2 X - l  
(a:3yz3)>" = - uy"u + --(u2yQ' + yau2} 

3 3 
1 +5P(Z3, Y b  + gP(X 1 x )Y 1 3 3 a  (9.53) 

where U = X ( X ~ ) ~  + $p(~,t)a:~ (see (9.51) and (9.52)). Using 

2 a 6  1 
u2 = A (a: ) + Ap(s, + p ( z ,  a:) 2 (a: a 2  ) 

we may write (9.53) as 

(23ys3)a  = 3 X  2 (a: a 6 0  ) y + 0 ' (a: a 5  ) y Q x a +. . . (9.54) 

On the other  hand 

(23yz3)" = 
- - X + 2a:"vza + -(a: X-1  a 2  ) v + T v ( z a ) 2  

X - l  
3 3 

where 

v = ( 2 y s 2 ) a  = {a:(zya:)a:}a 

X + 2a:awa:a + -(a: X - 1  a 2  ) W + -W(a:a)2 
X - l  - - -  

3 3 3 

(9.55) 
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where in  turn 

X + 2  a Ly a X - 1  a 2  a 
W = (xyx )*  = - x y x + - ( x  ) y + -ya(xLy)2  

X- l  
3 3 3 

Therefore 

X - l  3 

(x3yx3)a = ( x Q ) 6 f  

+ - -  [ y  (h;1)2++TT X - l X + 2 X - l  

+ (T)2 F] (Za)5yaxa +. . . 

+... (9.56) 

Equating the coefficients of (xLy)6yy" and (xa)5yaxa in (9.54) and 
(9.56) we have 

(X + 2)(X - 1)2 

9 
= O  

(9.57) 

(9.58) 

From  (9.57) we find that X = 1 or X2 = (y)2, whence X = 
1, -$ or i. From (9.58) we have X = 1 or X = 2. It follows that 
X = 1 and the lemma is proved. 

Lemma 9.4.7 p = 0. 
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Proof. Let xa # 0 be arbitrary  but fixed in K'. In  the free 
product R'cr<Y> we define the C'-independent set {Mi(xa, Y) I 
i = 1 , 2 , .  . . , n} to be the set of all monomials of the form 
(xa)joYil (za)jl . . . Y i k ( x a ) j k  where j, + j, + . . . + j k  5 4, il + 
i2+ ...+ i k 5 3 a n d  

j, 5 3 if x is not algebraic of degree 5 3 (9.59) 
j, 5 2 if x is algebraic of degree 3 (9.60) 
j, 5 1 if x is algebraic of degree 2 (9.61) 

for all q = 0,1, . . . , IC. In case of  (9.60)  we can replace 
by @xa, @ E C', and  in case of (9.61) we can replace by 
y E C' and hence ( z ~ ) ~  by ?xa. By Lemma 6.1.8 there exists 
yo E K' such that {Mi(xa, g*)}  is a C'-independent subset of R'. 
We compute (xyxyxyz)Q in two  ways and compare the results, 
being only interested in coefficients of (ya)2zayaxa.  

On the one hand, making use  of Lemma 9.4.6, we have 

On  the other  hand, again using  Lemma  9.4.6, we have 
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It is understood that (9.63) will be  further  rewritten by  re- 
placing ( z ~ ) ~  by ,& in case (9.60) holds and replacing 
by y and by yza in case (9.61) holds. Now, comparing 
the coefficients of (ya)2zayaxa in (9.62) and (9.63) we see that 
p(z,z) = p(za,za) = 0 for all xa E K'. Linearizing we have 
p(za, g*) = 0 for all x", ya E K' and the proof of Lemma 9.4.7 
is complete. 

Together Lemma 9.4.6 and Lemma 9.4.7 imply that (z3)a = 
(za)3 for all z E K and so by Lemma 9.4.5 we have  succeeded in 
Case B that a can  be extended uniquely to  an isomorphism of 
( K )  onto (K') .  Our analysis of Case A and Case B combine to 
immediately give us the proof of our main result. Theorem 9.4.3, 
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a complete statement of which  is  given near the beginning of this 
section. 

As a closing note we make two remarks. The analogue of 
Theorem 9.4.3 for  Lie derivations of K has been proved  by  Swain 
[269]. The condition in Theorem 9.4.1 that R not satisfy St4 has 
been  removed  by Blau [55]. 
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g-homogeneous component, 252 

Height 
g-, 224 

P, 419 
of element, 32 

H-endomorphism, 258 
Homomorphism of R-rings, 35 

Ideal 
dense, 64 
dense right, 51 
essential right, 53 
minimal left, 141 

Index 

of an R-ring, 35 
right singular, 60 
*-, 156 
7-, 259 

Idempotent 
abelian, 234 
faithful, 234 
minimal, 143 

F-trivial, 334 

g-multilinear, 225 
generalized polynomial, 212,  227 
Gf-reduced, 420 
Jacobi, 175 
Ic-homogeneous, 214,328 
multilinear, 215 
strict, ̂ 229 
strict T I - ,  418 

r-homogeneous, 215,329 
T-multilinear, 329 
'?", 418 

Identity 

g-, 223 

T-, 303,304 

T*-, 361 
T-, 299 
- 

Involution, 3, 156 
ofthe first kind, 165 
symplectic, 164 
transpose, 164 

Logical symbols, 38 

Map 
adjoint  map, 139 
balanced, 7 
differential Lie, 196 
ysemilinear, 3 
n-linear symmetric, 455 
permissable, 452 
a-semilinear, 3 

Matrix of bilinear form, 164 
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Module 
closed, 6 
conjugation, 92 
nonsingular, 98 

correct, 394 
generalized pivotal, 151 
pivotal, 151 
r-, 419 

Monomial 

Normal form of element, 15 
n-ary predicate, 34 

Operation 

P, 182 
0-ary, 34 

n-ary, 34 

Ordering 
compatible, 16 
semigroup, 16 

Orthogonal completion, 106 
O-subpoup, 403 

Pierce stalk, 112 
Polynomial 

additive, 338 
Gf-reduced, 420 
reduced, 259 
standard, 21 

Cartesian, 37 
Jordan, 156 
Lie, 156 
n-fold tensor, 8 
tensor, 7 

Product 

Reduction system, 15 
Reductions, 15 
Representation, 419 
Ring 

associated division, 129 

centrally closed, 69 
commuting, 129 

Lie, 2 
multiplication, 451 

K-, 1 

R-A-, 37 
R-, 35 
orthogonally complete, 110 
prime, 1 
primitive, 1, 129 
self-injective, 2 
semiprime, 1 
skew group, 4 
von Neumann regular, 61 

Ring of quotients 
maximal right, 56 
symmetric, 66 
two-sided classical, 220 
two-sided right, 64 

S-context, 6 
Sentence, 39 
Set of transformation  units, 163 
Setting 

extended, 304 
maximal, 361,418 
of R, 302 
*-maximal, 361,422 

Socle, 142 
Standard basis, 275 
Subset 

dense, 99 
orthogonal, 99 
orthogonally complete, 100 
total subset, 6 
weakly dense, 6 

Substitution, 37,  212 
g-, 223 
T-, 302,304 r-, 361 
TI-, 418 
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Support,  419  transpose,  157 

Term,  36 

%ace 
leading g-, 317 Ultrafilter,  45 

Ultraproduct, 47 
commuting,  456 
of n-linear  mapping,  456  Variable 

symplectic, 157 (G g)-, 348 
Type free,  38 


