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Preface

A generalized polynomial identity (GPI) of an algebra A over
a field F' is a polynomial expression f in noncommutative vari-
ables and fixed coefficients from A between the variables such
that f vanishes upon all substitutions by elements of A. It is a
natural extension of the notion of a polynomial identity (PI), in
which the coefficients come from the base field F'. The theory of
G PI’s is in reality, however, quite separate from that of ordinary
PI’s. Tt is a rather rare occurrence that results in GPI theory
provide better proofs or insight into PI results. Rather, the use-
fulness of GPI theory lies in the fact that in many problems in
noncommutative ring theory involving elementwise calculations
GPI’s appear frequently and naturally, whereas PI’s seldom
make their appearance. Of course one expects PI’s to have a
stronger effect on a ring than do GPI’s, and this shows up very
clearly in the case of a primitive ring R, i.e., a dense ring of
linear transformations of a vector space V' over a division ring
D. Here the presence of a PI forces R to be finite dimensional
central simple whereas a GPI, though forcing R to have mini-
mal right ideals and D to be finite dimensional over its center,
has no effect on the dimension of V over D. As a special case
one has the ring R of all linear transformations of an infinite
dimensional vector space over a field. If e is a rank one idempo-
tent then R satisfies the GPI exeye = eyexe for all z and y in
R whereas R satisfies no PI.

111
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Just as PI theory began with Kaplansky’s 1948 paper on
primitive PI rings, the theory of GPI’s was initiated by Amitsur
in 1965 with his fundamental paper on primitive GPI rings. In
1969 Martindale extended Amitsur’s work to prime G PI rings.
A key notion in making the transition to a prime ring R was
that of the extended centroid C and the resulting central closure
RC, it becoming clear that C' (rather than the field of fractions
of the centroid) was the proper field of scalars in the case of
prime rings. A short time later generalizations in two directions
occurred. In one GPI’s involving involutions were studied by
Martindale, Rowen, and others, and in another GPI theory was
extended to semiprime rings by Beidar and Mikhalev using the
technique of orthogonal completion, a powerful alternative to the
usual method of reducing semiprime problems to prime rings.

One of the most significant advances was made in a series of
fundamental papers by Kharchenko in the late 1970’s in which
GPD’s involving derivations and automorphisms were studied,
i.e., the variables were suggestively superscripted by composi-
tions of derivations and automorphisms. (Let us henceforth refer
to these more complicated identities simply as generalized iden-
tities (GI’s)). Indeed, Utumi’s (1956) ring of quotients of a ring
R was seen to contain elements which induce automorphisms
and derivations in R (called X-inner automorphisms and deriva-
tions in honor of Kharchenko). In 1985 Lanski investigated the
situation of GI’s in prime rings with involution. Around 1990
Chuang carried the theory to its present state by adding arbi-
trary antiautomorphisms to the Kharchenko results. He intro-
duced the important notion of Frobenius (anti)automorphism
for prime rings using which he gave a description of the struc-
ture of (not necessarily multilinear) GI’s involving derivations
and (anti)automorphisms, thus extending Kharchenko’s results
even in the case of derivations and automorphisms.

The centerpiece of this book is Chapter 7 in which the the-
orems of Kharchenko and Chuang on GI’s in prime rings are
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presented. Special attention is paid to describing the ”home” of
GDI’s (a matter which is somewhat glossed over in the accounts
of Kharchenko and Chuang). Also presented in this chapter is a
striking application of Kharchenko’s results to the characteriza-
tion of algebraic derivations and automorphisms. The extension
of the results of Chapter 7 to semiprime rings is accomplished
in Chapter 8.

The choice of topics for Chapters 1 through 5 is generally dic-
tated by what is needed for the exposition in Chapters 6 through
9. As mentioned earlier the extended centroid plays a key role in
the definition of a GI and a detailed discussion of its properties
is included in Chapter 2. It has also been pointed out that cer-
tain rings of quotients (notably the symmetric ring of quotients,
a subring of Utumi’s ring of quotients) are also needed in or-
der to properly define GI’s, and accordingly a general account
of rings of quotients is also given in Chapter 2. The ”"home”
for GI's is a certain coproduct, and this notion is discussed
in some detail in Chapter 1. A generalized Poincaré-Birkhof-
Witt theorem (PBW theorem) for differential Lie algebras is
precisely what is needed for characterizing nontrivial GI's in-
volving derivations, and this topic forms the content of Chapter
5. The main tool used in our proof of the PBW theorem is the
Diamond Lemma and we therefore present a careful exposition
of this result in Chapter 1. The interplay between derivations
and (anti)automorphisms leads naturally to skew group rings,
which are briefly summarized in Chapter 1. The extension of
G results to semiprime rings requires the theory of orthogonal
completion (developed by Beidar and Mikhalev), and this sub-
ject, along with a review of first order logic in Chapter 1, is laid
out in Chapter 3. Since the effect of a nontrivial GI on a prime
ring is to force its central closure to have minimal right ideals,
we have given a fairly detailed account of primitive rings with
nonzero socle in Chapter 4.

GPI’s are of course just a special case of GI's in which
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derivations and (anti)automorphisms are not involved, and var-
ious results on GPI’s are presented in Chapter 6. Included here
is a very short proof (due to Chuang) of Martindale’s result on
prime GPI rings. To help prepare the reader for the transi-
tion from GPI’s to the far more involved GI’s of Chapter 7, we
also present in Chapter 6 various results on GPI’s with invo-
lution. The generators of the T-ideal of GPI’s in prime rings
have been determined by Beidar and an account of this is given
here. At the end of Chapter 6 several results on special GPI’s
are presented.

A powerful feature of GPI theory is that frequently one can
(so to speak) have the best of both worlds: if the particular GPI
is nontrivial then the ring is tractable (e.g., has nonzero socle)
whereas if the GPI is trivial there is often a strong relation
among the coefficients. A striking example of this phenomenon
occurs in the recent solution of a long-standing conjecture of
Herstein on Lie isomorphisms, which we present in Chapter 9.
We also give here some details of the theory of n-additive com-
muting maps initiated by Bresar, which is a powerful tool in
combinatorial ring theory and plays an important role in the
Lie isomorphism problem.

Some comments for the reader’s benefit are now in order.
The subject matter of this book in its full generality, i.e., GI's
with derivations and (anti)automorphisms in a semiprime set-
ting, is admittedly both mathematically and notationally com-
plicated. However, depending on the particular reader’s inter-
ests and concerns, some of this burden may be alleviated. Most
notably, for the reader solely interested in prime rings, a consid-
erable portion of the material may be bypassed, namely, Section
1.6, Chapters 3 and 8, and those parts of Chapter 6 concerned
with semiprime rings. Furthermore, without too much effort,
most of the statements of the main results of Chapters 5, 6 and
7 can be easily understood and in fact have a natural intuitive
appeal (even though lengthy rigorous proofs may be required).
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The various Poincaré-Birkhoff-Witt theorems in Chapter 5 are
a case in point. Another example is the set of ”obvious” gener-
ators of the T-ideal of GPI’s in Chapter 6. The main results of
the book, to be found in Sections 7.5, 7.6 and 7.7, have rather
short simple statements, and the very definition of a generalized
identity and its "reduction” to a prescribed "nontrivial” form
are often dismissed as being too self-evident to warrant much
attention. At any rate the reader should not have the idea that
Chapters 1 through 6 must be read line by line before he or she
is able to find out (in Chapter 7) what the title of the book
means!

With the book having already reached critical length, we
have decided not to include a chapter on generalized rational
identities. Another topic we shall not discuss is that of Galois
theory of prime and semiprime rings. This subject is thoroughly
treated in the recent book of Kharchenko, ” Automorphisms and
derivations of associative rings” (Kluwer, 1991). Various results
on GPI’s (with involution) are also to be found in Rowen’s book,
"Polynomial identities in ring theory” (Academic Press, 1980).
GPI’s are touched upon very briefly in Procesi’s book, ”Rings
with polynomial identities” (Marcel Dekker, 1973).

The authors wish to extend their appreciation to the Uni-
versity of Massachusetts (Ambherst), Moscow State University
(Moscow), National Taiwan University (Taipei), and National
Cheng-Kung University (Tainan) for use of their facilities and
for hosting the authors. The content of some chapters was dis-
cussed at research seminars at the University of Massachusetts,
at the Moscow State University, at the University of Southern
California, at the National Cheng-Kung University and at the
National Taiwan University, and we express our thanks to lead-
ers and participants of these algebraic seminars, and especially
to P. H. Lee, Y. Fong, C. L. Chuang, W.-F. Ke, S. Montgomery,
V. N. Latyshev, Ch. Lanski and V. T. Markov. We are thank-
ful to A. A. Mikhalev for his assistance in discussion of some
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arguments of Chapter 5 and to M. A. Chebotar for his help in
writing a part of Section 7.9. We benefitted also from the efforts
of P. Blau, who carefully read the manuscript and pointed out
numerous corrections incorporated in the text. We are grateful
to W.-F. Ke for invaluable help in preparing the TEX version
of this book. Finally, we are grateful to our publisher, Marcel
Dekker, Inc., for being lenient about deadlines and understand-
ing the communication problems between authors located many
thousands of miles apart.

K. I. Beidar
W. S. Martindale III

A. V. Mikhalev
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Chapter 1

Preliminaries

1.1 Basic Notions

In this book we shall mainly be concerned with three types of
rings. A ring R is prime if, for any two ideals U and V of R,
UV =0 implies U = 0 or V = 0. As a special case of a prime
ring, a ring is (right) primitive if it has a faithful irreducible
right R-module. As a generalization of a prime ring, a ring R is
semiprime if it has no nonzero nilpotent ideals. We will assume
the reader is familiar with these concepts and with equivalent
formulations thereof. We point out that prime (resp. primitive)
rings are the basic ”building blocks” in the structure theory of
rings if one takes as the radical the Baer lower (resp. Jacobson)
radical. A semiprime ring can always be written as a subdirect
product of prime rings. However, a much more powerful method
of reducing questions about rings to prime rings is the method
of orthogonal completion (which w111 be developed in Chapter 3
and applied in Chapter 9).

Let K be a commutative ring with 1. By definition a K-ring
A is a ring with 1 for which there exists a ring homomorphism
o : K — A (sending 1 to 1). It follows that A is a unital (K, K)-
bimodule by defining ka = k°a and ak = ak?, a € A, k € K.

1
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As an important example, if R is a ring with center C, then
A = End(R) (the ring of endomorphisms of the additive group
R) is a C-ring by letting ¢” be the left multiplication of R by c,
ceC.

We will define a K-algebra A to be a K-ring in which K¢
is contained in the center of A (this is equivalent to the usual
definition of an algebra with 1 over K). In case o is injective
(which will usually be the case) we shall assume that A contains
K. Of particular interest to us is the situation where K is a
field (when we study prime rings) or the more general situation
where K is a von Neumann regular self-injective ring (when we
study semiprime rings). Here we recall that K is self-injective
if it is injective as a K-module. In case A contains K and K is
self-injective it can be shown that K -1 is a K-direct summand
of the algebra A.

A derivation of a ring R is an additive map § : R — R such
that (zy)® = 2%y + zy® for all z,y € R. For a € R the mapping
@ given by z# = [a, z] = ax — za is easily seen to be a derivation
and is called inner (sometimes denoted by ad(a) or [a, ]). It is
straightforward to show that the set Der(R) C End(R) of all
derivations is a Lie ring, i.e., is closed under addition and the
Lie product [4, 7].

Given a natural number n, we set &, equal to the set of all
subsets of W(n) = {1,2,...,n}. For derivations 6,8y, ...,0, €
Der(R) and a subset S = {j},j2,--.,Jk} € En, where j; < Jiq1
for all t < k, we let Ag denote the product 4;,6;, ...d;, and Ak
denote Awn)s. It will be useful to have at our disposal the
following

Remark 1.1.1 (Leibnitz Formulas) (a) For all z,y € R,
01,02,...,0, € Der(R), and A = 6,109 ...6, the following equal-

1ty holds
(zy)® = > zhsyss.
S€én
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(b) (special case of (a)) For z,y € R and 6 € Der(R)

=5 (1)

1

(It is understood that Ag and 6° mean 1).

The proof is by induction on n and we leave the straight-
forward though notationally complicated details to the reader.

As an immediate corollary to Remark 1.1.1(b) we see that
in characteristic p (p a prime) Der(R) is also closed under pth
powers & — 6P,

Other mappings of major interest to us are the automor-
phisms and antiautomorphisms of R. An important special case
is an involution of R, i.e., an antiautomorphism of period 1 or
2. We will denote the set of all automorphisms (resp. antiau-
tomorphisms) of R by Aut(R) (resp. Antiaut(R)). It is easily
seen that G(R) = Aut(R) U Antiaut(R) is a group.

The center Z(R) of R is also an important set, and we may
(and often will) regard Z(R) as acting on R via left multiplica-
tions.

If 0 is a homomorphism of rings X' — T and gV,7W are
modules then an additive map ¢ : V — W is called o-semilinear
if (kv)? = kv?% k € K, v € V. Analogously if u is a derivation
of K, an additive map ¢ : V — V is called p-semilinear if
(kv)? =kfv+kv?, ke K,veV.

A derivation ¢ of a K-algebra A will mean a derivation of
the ring A; we do not assume that § is necessarily K-linear.
In case p is a derivation of K then a derivation § of A is
called a p-derivation of A if § is also a pu-semilinear map, i.e.,
(ka)® = ktfa + ka®, k € K, a € A. In a similar fashion
an automorphism (antiautomorphism) g of a K-algebra will
mean an automorphism (antiautomorphism) of the ring A. If
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o is an automorphism of K then g is a o-automorphism ( o-
antiautomorphism) of A if ¢ is also a o-semilinear map, i.e.,
(ka)? = k%al.

We continue this section with a brief discussion of skew group
rings. For us the motivating example for this notion comes from
two simple "skew” relationships connecting Der(R), G(R) and
Z(R) (all contained in End(R)). Let z,y € R, § € Der(R),
g € G(R) (we will just consider the case where g is an antiau-
tomorphism). We then see from the equations

(my)g_l‘sg _ (yg—lmg-1)59 _ (yg—15$9-1 +yg-1$g—15)9

— myg“ﬁg + xg‘lﬁgy
that

Remark 1.1.2 ¢~'4g is an element of Der(R) (notation: §9 =
g7'dg).

Similarly, for ¢ € Z(R), we see from 929 = z9¢9 and 2979 =
(cxg_l)g = 9z that

Remark 1.1.3 ¢ € Z(R) and ¢ = g~ 'cg.

We proceed now to recall the notion of skew group ring.
Let R be a ring with 1, G a group, and ¥ : G — Aut(R) a
group homomorphism. We refer to 9 as an action of G on R.
However, we will usually suppress the v and simply write 9 for
r(9*), The skew group ring R « G of R and G is then defined
to be the free left R-module with basis (G, where multiplication
is given according to gr = r9'g and its consequences. It is
straightforward to verify that R oc G is in fact a ring. Now let
A be a ring with 1, & a ring homomorphism of R into A, and
a group homomorphism of G into the multiplicative semigroup
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of A sending 1 to 1. Clearly the map v: R o« G — A given by
Treg > Ty g? is a well-defined additive map. A useful criteria
for v to be a ring homomorphism is given by

Lemma 1.1.4 A necessary and sufficient condition for y to be
a ring homomorphism s the following: if R is generated as a
ring by a subset X then

z%g” = ¢fz9*, z€X, g€@.
Proof. If v is a homomorphism then from
2°g” = (29)” = (92°)" = ¢ (z°)" = gPu*

the necessity is clear. To show the sufliciency, since X generates
R as a ring, we need only show that (uv)? = w0 for u =

T1ZT2...Zng and ¥ = Y1Y2 ... Ynh, T;,y; € X, g,h € G. We then
have

-1

-1 Y
Sy gh)
-1 1\ Q@
= (a:l...a:ny{’ ...yfn) (gh)?
-1 —1
= z%...2%y) %yl %gPhP = 1% . %Py . Yo hP

= (z1...22)%P (W1 .. . ym)2hP = W07

(wv)? = (ml...a:ny{’

and the proof is complete.

We close this section with a ”weak density” theorem which
will have important applications in several places later on. The
motivation comes from the celebrated Jacobson Density Theo-
rem; the reader will notice that virtually the same proof can be
used.

For a ring S let N be a right S-module, let A = End(Ns)
(thus N is a (A, S)-bimodule), let oM be a left A-module, and
let T be an S-submodule of the right S-module Hom(a M, A N).
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We shall refer to the above system as a (right) S-context. With
reference to this S-context we make three definitions:

N is closed: given any homomorphism of S-modules f :
Us — Ng (where 0 # Us is a submodule of Ng) there exists
A € A such that Au = f(u) for all u € U. (Note that closed
simply means quasi-injective).

T is total: for any 0 # m € M we have mT # 0.

T is weakly dense: given my,ms,...,my € M, with m; ¢

k , Am,, there exists ¢t € T such that m;t # 0, m;t = 0 for
1> 1.

In an analogous fashion one may define a left S-context with

a similar ensuing discussion.

Theorem 1.1.5 (Weak Density Theorem) Given an S-con-
text as above such that Ng is closed and T is total, then T is
weakly dense.

Proof. We proceed by induction on k. The case k = 1 is
clear because T is total. Now let m; € ¥, Am;. Suppose
the result is not true, i.e., for all t € T myt = 0 whenever
mit =0 forall i =23,....k. Weset J={teT]|mt-=
0, i > 2} (if k =2set J =T). Clearly J is an S-submodule.
If my € % , Am; then we are finished immediately by the in-
duction hypothesis. Therefore, again by the induction hypoth-
esis, mqJ # 0, and myJ is an S-submodule of Ng. We define
f : myJ — N by the rule mot — myt for all t € J. f is
well-defined, since if myt = 0 we have m;t = 0 by our earlier
assumption. Certainly f is an S-module map and so (since Ng
is closed) there exists A € A such that A(mot) = f(mot) =
myt for all t € J, ie., (Amg — my)J = 0. But then consider
the elements Amy — my,ma,...,mi. Since m; € &, Am;,
Mmy —my € YF_, Am;. By the induction hypothesis we would
have (Amg —m,)J # 0, and so we have reached a contradiction.
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1.2 Tensor Products and Free
Algebras

Let K be a commutative ring with 1, let V' be a right K-module
and let W be a left K-module. For P any additive abelian group
we say that a map ¢ : V x W — P is balanced if it is biadditive
and satisfies (vo, w)® = (v, ow)?, veV, weW, a€ekK.
An abelian group T is called a tensor product of V and W over
K if the following properties hold:

(i) There is a balanced map 7 : V x W — T such that T is
additively generated by the image of 7.

(ii) Given any abelian group P and any balanced map p :
V x W — P there exists an additive map ¢ : T — P such that
p=TY.

The existence of such a T is easily seen as follows. Let F
be the free abelian group on the set V x W, and let N be the
subgroup of F' generated by all elements of the form

(v1 + v, w) — (v1,w) — (v, w)
(v, w1 + ws) — (v, wy1) — (v, ws)

(v, w) — (v, 0w), v,v1,v2 €V, w,w;,ws € W, @ € K.

We claim that F' = F/N is a tensor product of V and W over
K. Indeed, the map 7 : (v,w) — (v,w) = (v,w) + N fulfills
condition (¢). For a mapping p : (V,W) — P balanced, define
x : F — P according to (v, w) +— (v, w)?. Since x maps N to 0
it induces the desired additive map v : F — P satisfying (44).
The uniqueness of the tensor product (up to isomorphism) is
easily seen from consideration of the commutative diagram
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VxW

Y
TI

showing that 1) and 1)’ are inverses of each other. We will denote

the tensor product of V and W over K by V®g W and a typical

generator (v, w)” by v ® w.

Suppose furthermore that W is a (K, L)-bimodule for some
commutative ring L. Then V ®x W is a right L-module with
multiplication given by (v ® w)l = v® wl, | € L. The well-
definedness of this operation follows from the fact that for [ € L
the map p: (v,w) — v @wl is balanced. In particular, if V' and
W are K-modules, V ®x W is again a K-module.

Given one or more K-modules V, W, ... we will find it useful
to form the tensor algebra determined by these modules over K.
We proceed to briefly describe this construction for the case of
two modules V' and W.

First consider a fixed ordered sequence Si, Ss, ..., S, where
foreachi =1,2,...,n S; =V or S; = W. We define the
n-fold tensor product to be that K-module S characterized by
the properties:

(i)' There is an n-linear map 7 : Sy X ... x S, = S whose
image generates S additively.

(ii)’ Given ¢ : S; X ... x Sy — P any n-linear map into a
K-module P, there exists a K-linear map 1 : S — P such that
¢ =T1Y.

One shows the existence and uniqueness of S in a similar
manner as earlier; we denote this n-fold tensor product by S =
S1®...05,.
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We now define the tensor algebra T of V and W over K to
be the direct sum of all the n-fold tensor products:

T = KeVeWs(VeV)e(VeW)e (WeV)
eWeWe(VeaveV)e....

Clearly the problem of defining multiplication reduces to the
following situation. Let Sy = 51®...Q5,, S{m) =51®...85,,,
and Simin) = S1®...® Sn ® 5] ® ... ® S, where each S,
S is either V or W. If s = ($1,...,8,) € Sy X ...x S, t =
(1, 1tm) € Sy X ...x S welet 5 =15 0...0 s, € Sy,
t=1t1Q...Qty € S),. We define a binary operation S(,) X Sgm) —
S(m+n)y as follows: for z = 3,5, y =Y, tweset 2y =3, ,5® L.
We shall show this is well-defined, leaving associativity, etc., to
the reader. Indeed, for each t € S} x...x S}, there is a K-linear
map ¥ : Sin) = Sim+n) given by z¥* = ¥, 5 ® 1, and for each
sE€E S X...x S, there_is a K-linear map x, : Sfm) - Stmn)
given by yX* = ¥ ,5® t. Now suppose z = > ,5 = >, 4 and
y=13,t=3%,7. Then

In case we are dealing only with a single K-module V' we shall
denote the tensor algebra determined by V over K as K{V}.

In the following remarks V' is a K-module, K a commutative
ring with 1.

Remark 1.2.1 Let P be a K-algebra and let ¢ : V — P be a

K-linear map. Then ¢ can be uniquely extended to a K-algebra
map ¥ : K{V} - P.
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Proof. Using property (i)' themap x : V® ... V —
P given by v; ® ... ® v, — vPuf.. . v? is a well-defined K-
linear map, and extension of x by additivity to K{V'} yields the
required K-algebra map .

Corollary 1.2.2 Let o be an automorphism of K, let P be a
K -algebra, and let ¢ : V — P be a o-semilinear map. Then:
(a) ¢ can be uniquely extended to a o-homomorphism of K -
algebras ¢ : K{V} — P.
(b) ¢ can be uniquely extended to a o-antihomomorphism of
K -algebras ¢ : K{V} — P.

Proof. To prove (a) we consider P as a K-algebra P* by
defining k -z = k°z, ke K, ze€ P Then¢:V — P*
is a K-linear map and so by Remark 1.2.1 may be extended
to a K-algebra map ¢ : K{V} — P*, i.e., a o-homomorphism
¥ : K{V} — P. To prove (b) let P° be the opposite algebra
of P. Then by part (a) ¢ can be uniquely extended to a o-
homomorphism v : K{V} — P°, i.e., a o-antihomomorphism
Y:K{V}—> P.

Corollary 1.2.3 Let 6 be a derivation of K and let ¢ : V —
K{V} be a é-semilinear map. Then ¢ can be uniquely extended
to a d-derivation p of K{V}.

Proof. Set T' = K{V}, let A be the set of all matrices of

the form a = ( 3 Z ), s,t € T, and let K’ be the set of
: . k k° .
all matrices of the form k' = R k € K. One readily

checks that K = K' via the map v : k — k' and that A is a
K-algebra under k - a = kYa. One then verifies that the map

¢
x:V — A given by v — 8 vv , is a K-linear map and so

may be uniquely extended to a K-algebra map ¢ : K{V} — A.
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Since T is generated as a K-algebra by V it is clear that for each
t ¢

0 ¢t )’
desired §-derivation of K{V}.

We now approach these matters in a less sophisticated way.
Let X be an arbitrary set, let S<X> be the free semigroup with
1 on the set X, let K be a commutative ring with 1, and let
K < X > denote the free K-module with basis S<X>. Mul-
tiplication is defined in the obvious way by juxtaposition, and
K<X> is in fact a K-algebra. Now let P be any K-algebra and
¢ : X — P any set mapping. Then ¢ may be uniquely extended
to a K-algebra map ¢ : K<X>— P by simply sending each
basis element s = 122 ...Z, tO x‘fx‘zbzf{, z; € X. For this
reason we call K<X> the free algebra on the set X over K.

Let X be a set, let V be the free K-module with basis X' in
one-one correspondence with X. The K-linear map V — K<X>
given by 2’ — z may be lifted to a K-algebra map K{V} —
K <X>, and conversely the set map z + z’ may be lifted to a
K-algebra map K<X>— K{V}. Thus K{V} =2 K<X>, and,
identifying X and X', we may state:

t € T wehave t¥ = t# € T, whence p is the

Remark 1.2.4 If V is a free K-module with basis X, then
K{V}=K<X>.

In view of Remark 1.2.4 the equivalent formulations of Corol-

laries 1.2.2 and 1.2.3 for K <X > can now be stated without
further proof.

Remark 1.2.5 Let K<X> be the free K-algebra in X over a

commutative ring K and let P be a K-algebra with 1. Then:
(a) If o is an automorphism of K and ¢ : X — P is a set

map, then there is a unique o-homomorphism ¢ : K<X>— P

extending ¢ and also a unique o-antihomomorphism p : K<X>
— P extending ¢.
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(b) If 6 is a derivation of K, and ¢ : X — K<X> is a set
map, then there is a unique d-derivation Y of K<X> ertending

0.

Finally, suppose A and B are K-algebras. Then A ®x B
becomes a K-algebra under multiplication given by

(a1 ® by)(az ® b2) = ajas ® byby
and its consequences.

Remark 1.2.6 Let A, B, P be K-algebras and o : A — P,
B : B — P K-algebra maps such that [A%, B?] = 0. Then
there is a unique K-algebra map v : A ®x B — P such that
(a ® b)Y = a®b®.

Remark 1.2.7 Let A, B, P be K-algebras, let w: K — K be
a ring homomorphism, and let « : A — P, 8 : B — P be w-
semilinear ring homomorphisms such that [A%, Bf] = 0. Then
there is a unique w-semilinear ring homomorphismy : AQxB —

P such that (a ® b)Y = a®b’.

Proof. We consider P as a K-algebra P* by defining k-p =
k“p, ke K,pe P. Thena: A — P* 3: B — P* are K-
algebra maps and so the K-algebra map given by Remark 1.2.6 is
the required w-semilinear ring homomorphism v : A®x B — P.

Remark 1.2.8 Let A, B, P be K-algebras, let w : K — K
be a ring homomorphism, and let o : A — P, 3 : B — P be
w-semilinear ring antihomomorphisms such that [A%, B?] = 0.
Then there is a unique w-semilinear ring antithomomorphism 7y :
A®g B — P such that (a @ b)" = a®b®.

Proof. Let P° denote the opposite algebra of P, note that
a:A— P° (:B — P° are w-semilinear ring homomorphisms
such that a® o b® — b% 0 a® = 0, and apply Remark 1.2.7.
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Remark 1.2.9 Let A, B be K-algebras with 1, let p: K — K
be a derivation, and let 6 : A — A, u: B — B be p-derivations.
Then there is a unique p-derivation 7 : AQ B — A® B such
that (a®b)" = a* @b+ a @ b¥.

Proof. We set C = A®g B, let R be the set of all matrices

in My(C) of the form r = ( 8 ZZ), ¢,d € C, and let K’
. , k kP
be the set of all matrices of the form k' = E k €

K, One readily checks that K’ = K via the map v : k —
k' and R is a K-al%ebra under k or = k¥r. The mappings
a®l a’°®1 1®b 1QbH

0 ael )0 P07l 0 1@
respectively K-algebra maps of A into R and B into R such that
[A%, BP] = 0. Consequently by Remark 1.2.6 there is a unique
K-algebra map v : A® B — R such that (a ®b)” = a*bP. Since
AQ® B is generated by A® 1 and 1® B it is clear that for ¢ € C,

' = ( S Cc ) , whence 7 is the desired p-derivation of A® B.

o a— are

1.3 The Diamond Lemma

Our goal in this section is the Diamond Lemma, which is the
main tool in our proof of the Poincaré-Birkhoff-Witt thorems.
We note that the technique of composition for Lie algebras was
introduced by A. I. Shirshov [273] in 1962 and further extended
to the Composition (Diamond) Lemmas for Lie algebras and
for associative algebras by L. A. Bokut ([56] and [57]) and by
G. Bergman [52] (see also [58]).

Let (Y, <) be a partially ordered set and let £(Y) be the
set of all finite subsets of Y consisting of pairwise incomparable
elements. For U,V € £(Y) we define: U < V if for all u € U
there exists v € V such that u < v. We claim (£(Y),<) is a
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partially ordered set. Indeed, transitivity is clear. Next suppose
U<VandV <UandletueU. If ugV then u < v for some
v € V and from v < ' for some u' € U we see that u < o/,
contradicting the incomparability of the elements of U.. Thus
U =V and we have shown < is antisymmetric.

Lemma 1.3.1 If (Y, <) satisfies the DCC then (E(Y), S) also
satisfies the DCC.

Proof. Suppose Uy > U; > ...U, > ... is an infinite de-
scending chain in £(Y). Without loss of generality we may as-
sume for each n > 1 there is an element v, € U, such that
v, < Wp_; for some w,_; € U,_; (otherwise there would ex-
ist m such that U, D Unmny1 D ... Is a infinite sequence of
proper inclusions, in contradiction to the finiteness of Uy,). If
v, = v, for some k < n then we obtain the contradiction
Ve = Up < Wp_y < ug for some u; € Ug. Therefore the vs
are distinct and so in particular Up2, Uy, is infinite.

A path is a sequence p = (ug, U1, ..., Un,;-..), Un € Uy
(which can be finite or infinite) such that u, > un41 for each n.
Given z € U, we say that p passes through z if u, = z. For any
finite sequence

Uigy Uiyy « -y Uipy ’LL,;J.GU,;J., ’LL,;J-ZU,;J.H, g <t < ... <k,
P(uig, Uiy, - - -, u;,) 18 that subset of U2, U, formed from all
paths passing simultaneously through w, 4, - . ., us,. Since ev-

ery element of U2, U, lies in some path, by the finiteness of Uy
we may choose ug € Uy such that P(u) is infinite. Suppose some
P(uiy, %i,, - -, u;,) (as defined above) is infinite. Then there ex-
ists £ € P(uiy, Uiy, - - -, U;, ) such that z & Ui Uj, since Uteo Us
is finite. Thus z € U, m > i and so z < u;,. It follows
that u;, € U and accordingly there exists um, € Un, Um < U,
such that P(ug,, Ui, -, Um) is infinite. Repeated applica-
tion of the above process then produces an infinite sequence
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Uiy > Ui > ... > U, > ... in contradiction to (Y, <) satisfying
the DCC.

Let ® be a commutative ring with 1 and let X be a set.
Denote by Y = S<X> the free semigroup (with 1) generated
by X, and let ®<X> be the free ®-algebra (with 1) generated
by X. Consider a subset A C Y x ®< X > of the Cartesian
product of Y and ®<X>. Foranyo = (W,, f,) € A, A,B€Y,
denote by Ra,p the endomorphism of the ®-module ® < X >
given by the rule:

RAGB(AWUB) = Af‘TB and
Raos(U)=U for U # AW,B, U € S<X>.

We call this set A a reduction system and the ®-endomor-
phisms Raop : P<X >— <X > are called reductions. We
say that an element f € ® <X > is irreducible if f does not
contain monomials of the form AW,B where 4,B € Y and
o = (W,, f,). Clearly the subset ® <X >;.. of all irreducible
elements of ®<X> is a $-submodule of the module ®<X>.

Lemma 1.3.2 Let L = S<X> N®<X>;,.. Then L is a ®-basis
of the module ®<X>;,,.

Proof. Clearly, the elements of the set L are linearly in-
dependent over ®. Suppose that & < X >;,# Y, ®l. Let
h € ®<X>; \ Y1 ®l. Further let h = Y, k;u;, where k; € @,
u; € S<X>. Clearly u; € L for some i. Hence there exists a
reduction R4,p such that Ra,p(u;) # ui. Since Ra,p(u;) = u;

for all j # i, Rass(h) # h in contradiction with h € ®<X>,,,.
Thus ®<X>;,= X, OL.

Suppose that for f € ®<X> there exists a finite sequence
R,y,..., R, of reductions such that R,R,,_; ... Ry (f) € ®<X>;,,.
The element R,R,,_; ... R(f) is said to be a normal form of f
(in general an element g € ®<X> may have no normal form,
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several normal forms, or a unique normal form). Denote by
®<X > eq the subset of all elements f of $<X > with a unique
normal form N(f) (possibly ®<X>,eq= 0).

A collection (o, 7, A, B, C) is said to be an overlap ambiguity
if A,B,C € Y, 0,71 € A, and W, = AB, W, = BC. We
shall say that the overlap ambiguity (o, 7, A, B,C) is resolvable
if there exist compositions of reductions R and R’ such that
R(Ro,c(ABC)) = R'(R4,(ABC)).

A collection (o, 7, A, B,C) is said to be an inclusion ambi-
guity if A/B,C € Y, 0,7 € A, and W, = B, W, = ABC.
We shall say that the inclusion ambiguity (o, 7, A, B,C) is re-
solvable if there exist compositions of reductions R and R’ such
that R(R4,c(ABC)) = R(R,(ABC)).

A partial ordering < on the set ¥ = S< X > is said to
be a semigroup ordering if B < B’ with B,B’' € Y implies
ABC < AB'C for all A,C € Y. A partial ordering < on the
set S<X > is said to be compatible with A if for any ¢ € A
the element f, is a linear combination of monomials V' with
V <W,.

Denote by I = I(A) the two-sided ideal of ®<X> generated
by the elements W, — f,, 0 € A. Clearly the ®-module I is
generated by the elements A(W,— f,)B, where A,B € Y,0 € A.

With reference to (Y, <) above and to Lemma 1.3.1, we
denote by O(h) € £(Y) the set of all maximal monomials in
h € d<X>.

Lemma 1.3.3 Under the above notations suppose (S<X>,<)
satisfies the DCC, where < is a semigroup partial order compat-
tble with the reduction system A. Then:

(a) Every element f € ® <X > has a normal form (not
necessarily unique).

(b) <X >,eq is a P-submodule of D<X> and the mapping
N <X > 00— <X >0 18 a D-module homomorphism.
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(¢) For any sequence R of reductions R(f) — f € I(A) for
all f € d<X>.

Proof. (a) Suppose the contrary. Then the set H of

all elements of ®< X > which can not be reduced to a normal
form is not empty. By Lemma 1.3.1 it follows that in the set
{O(g) | ¢ € H} there exist minimal elements. Choose an ele-
ment h € H such that O(h) is minimal in {O(g) | g € H}, and
the number |O(h)| is minimal possible. Let h = Y, k,u, where
ky € @, u € S<X>. Weset p= 3 ,conm) kutt, ¢ = h—p. Clearly
O(q) < O(p) = O(h). By our choice of the element h, there
exists a sequence of reductions R such, that R(q) € ®<X>;.,.
Since the semigroup partial ordering < is compatible with A and
monomials in O(p) are pairwise incomparable, for any reduction
R4, we have that either Ra,5(p) = p, or O(R4,8(p)) < O(p).
Hence either R(p) = p, or O(R(p)) < O(p). By the choice of A,
in the last case there exists a sequence of reductions R’ such that
R'R(p) € ®<X>.. Since R(q) € ®<X>;,, R'R(q) = R(q).
Hence we obtain

R'R(h) = R'R(p) + R R(q) = R'R(p) + R(q) € <X >;,, .

By the choice of the element h this case is impossible. Therefore,
R(p) =p. As p & ®<X>,,,, there exists a reduction Ra,p5 such
that Ra,8(p) # p. By the above this is impossible and so we
have a contradiction. Thus any element of ® < X > may be
reduced to a normal form.

(b) Let f,g € ®<X >yeq, @, 8 € ® and R any sequence
of reductions. Since the element R(f) has a normal form and
this normal form is also a normal form of the element f, there
exists a sequence of reductions R' such that R'R(f) = N(f).

Analogously, R”R'R(g) = N(g) for some sequence of reductions
R". Hence we have

R'R'R(af +89) = aR'(N(f))+ BN(g)
= alN(f)+ ON(g) € <X>;, .
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Therefore, aN(f)+BN(g) is a normal form of elements a.f + (g
and R(af + (g). Since R is an arbitrary sequence of reductions,
the element «f + B¢ has a unique normal form. Thus af + (g €
®<X>,eq and N(af + pfg) = aN(f) + N(g).

(c) Since W, — f, € I for all 0 € A, Ra,5(g9) — g € I for all
A B e S<X>, g€ ®<X>. So R(g) — g € I for any sequence
of reductions R.

Theorem 1.3.4 (Diamond Lemma) (see [52] and [57]). Let
A be a reduction system for the free associative ®-algebra d<X >
and < be a semigroup partial ordering on S <X > compatible
with A and satisfying the descending chain condition. Then the
following conditions are equivalent:

(a) All ambiguities of A are resolvable;

(b) <X >= ®<X >y, i.e. any element of <X > has a
unique normal form;

(c) d<X>= <X >, DI(A).

If these conditions hold, then ®<X>/I(A) may be identified
with the ®-module ® < X >;,., which is a ®-algebra under the
multiplication f x g = N(fg).

Proof. Assume that (c) holds. Then <X >= d<X>;,, &I,
where I = I(A). Let f € ®<X>. By Lemma 1.3.3, the element
f has a normal form. Suppose that it has two different normal
forms g,9 € ®< X >;r. Since g— f € I and ¢' — f € 1,
g—¢ € ®<X>;., NI =0, and we have a contradiction. Thus
the element f has the unique normal form, d<X>= <X >, 4
and (c) implies (b).

Suppose that (b) holds. Then N is a projection of the ®-
module $<X> onto ®<X>;,,. Since N(g) —g € I, ker N C I.
As elements of <X >= d<X>,.; have a unique normal form,

N(A(W, — f,)B) = N(AW, B) — N(Af,B) =0

forall A, B € S<X>, 0 € A. Furthermore, the ®-submodule I is
generated by the elements of the form A(W, — f,)B. Therefore,
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ker N D I. Hence ker N = I and ®<X>= ®<X>,., ®I. Thus,
conditions (b) and (c) are equivalent.

Obviously, (b) implies (a). We show that (a) implies (b).
By Lemma 1.3.3, $<X > ¢4 is a $-submodule and the normal
form mapping N : <X >, eq— P<X >, is @ homomorphism of
®-modules. It is enough to prove that S<X>C ®<X> 4.

Assume that S<X> \ ®<X >,0# 0. Let w be a minimal
element of the set S<X> \ ®<X >,¢;. Furthermore let Rygy»
and Ry.,v be two different reductions such that Ry,v/(w) #
Ry:rv(w). Clearly, UW,V' = w = U'W, V. By the choice of the
element w, Ry,y(w) € P<X>req and Ryrpy(w) € P<X>peq. It
is enough to prove that N(Ry,v'(w)) = N(Ry:rv(w)). Without
loss of generality one can assume that U/ = UA for some A €
S<X>. Consider three possible cases.

Case 1. We have an overlap ambiguity w = UABCV, W, =
AB, W, = BC,V'=CV,U" = UA. By (a) this ambiguity is
resolvable, i.e. the elements f,C and Af, can be reduced to one
and the same element f. Therefore the elements Ry,v:(w) =
Uf,CV, Ry,v(w) = UAf,V can be reduced to the element
g=UfV.

Case 2. We have an inclusion ambiguity w = UABCV’,
W, = ABC, W, = B,V =CV', U = UA. By analogy with
the first case, one can show that the elements Ry v (w) = Uf,V
and Ry,v(w) = UAS,CV can be reduced to one and the same
element.

Case 3. The subwords W, and W, are disjoint in w (i.e.
w=UW,BW,V,U =UW,B, V'=BW,V). Then

RUUV’ ('LU) = UngW—rV and Rul‘rv('LU) = UWanTV.

For any v = 122 ... 2 € S<X>, where 21,2,,...,2; € X, we
set I(v) = k. Without loss of generality we may assume that

m n
fo=Youp and f, =3 fq; where
i=1 i=1
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ai,ﬁj € q)) Diy 45 € S<X>)
I(p:)) <llps), pi#ps forall 1<i<s<m, and
Wgj) <Ugq), ¢i#q forall 1<j<t<n.

We claim that
Ryp..Brv Rupy_1Brv - - - Rup Brv(U fo BW,.V) = U f,Bf. V.
Since U fe BW,V = Y7, a;Up; BW,V, it is enough to prove that
RupwmBrvRUp,_,Brv - - Rup Brv(Up; BW, V) =Up; Bf,V
for all 1 <7 < m. Note that

Ryp;rvRyp;_\Brv - - - RUp,Brv(UPQBWTV) =
RUp,-BTV(UpiBWTV) = Uszf‘rV

So it is enough to prove that
Rup,grv(UpiBf.V) = Up;Bf,V

forall 1 <i<s<m. AsUpBf,V = 35, B;Up;Bg;V, we
have to prove that

Rup,B-v(UpiBg;V) = Up;Bq;V

foralll1 < j<nandl <7< s < m Suppose the contrary.
Then Up,BW,V = Up;Bgq;V. Hence p,BW, = p;Bgq;. Since
U(ps) > U(p:) and ps # pi, U(ps) > U(p;). Taking into account that

Ups BW,) = l(ps) + UB) + UW,) = l(p;) + 1(B) + l(g;),

we have that (W) < I(g;). That is to say ¢; = DW. for some
1 # D € S<X>. Since the partial ordering < of S<X >
1s compatible with the reduction system A, DW, = ¢; < W,.
As this ordering is a semigroup one, D"*'W, < D"W, for all
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n > 0 which is a contradiction to the descending chain condition.
Therefore

RypnBrvRUpm_ Brv - - Rup Brv (U fe BW,V) = U f, Bf.V.

Analogously R(UW,Bf,V) = Uf,Bf,V for some sequence
of reductions R. That is to say elements Ry, v (w) and Ry v (w)
are reduced to one and the same element.

Therefore in all cases it follows from

Ryovi(w), Ryrry (w) € <X > eq

that N(Ry,v'(w)) = N(Ry-v(w)). Thus the element w has a
unique normal form and we have a contradiction.

We close this section with the famous Amitsur-Levitski The-
orem [9]. The proof presented here is very simple and is due to
S. Rosset [254]. Let X be an infinite set, Z the ring of integers,
@ the field of rational numbers and Z< X > the free algebra
over Z generated by X. Further let n > 0 be a natural num-
ber, S, the symmetric group of order » and €(c) the sign of the
permutation o € S,. We set

Stn(Z1, T2, Tn) = D €(0)To(1)To(2) - - - Ta(n)
€Sy

where z1,2,...,Z, € X are distinct variables and we will call
St, the standard polynomial of degree n.

Theorem 1.3.5 (Amitsur-Levitski) Let R be a commutative
ring, n > 0 a natural number and M,(R) the n X n-matriz ring
over R. Then for all A, ..., Ay € My(R)

St2’n(Ala A2a ey A2n) =0

(i.e., Sty is a polynomial identity of M,(R)).
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We start with the following easy remarks (here tr(A) is the
trace of the matrix A € M,,(R))

Remark 1.3.6 Let R be a commautative algebra over Qand A €
M, (K). Suppose that tr(A*) =0 for all i > 0. Then A™ =0.

Proof. Adjoining (if it is necessary) an identity element
to R, we can assume that R has an identity. Consider the
polynomial ring K = Q[z;; | 1 € ¢,j £ n] and let U =
(2i5)7 =1 € Mn(K). The Newton formula on symmetric polyno-
mials shows that the coefficients of the characteristic polynomial
xu(t) = t"+ugt" 1 +.. .4+ u, of U are polynomials with rational
coefficients (and with zero constant terms) in the traces tr(U?),
1=1,2,...,n. Clearly there exists a Q-algebramap ¢: K - R
such that for its canonical extension ® : M,(K) — M,(R) we
have ®(U) = A. Then ¢(u;) =0foralli=1,2,...,n and

A = @(U™) + ¢(w)B(U™) + ... + d(un) = S(xu(V)) =0.

Remark 1.3.7 If r is an even natural number, then
tr(St,(A;, Az, ..., Ar)) =0

for all Ay, Ag, ..., A, € Mu(R).

Proof. It is well-known that tr(AB) = tr(BA). Let 7 =
(1,2,...,7) € S, be a cycle and let A, be the alternating sub-
group of S,. Clearly S, = A, U A,7 and ¢(or) = —1 for all
o € A,. Further we have

tlr(.Ao-(l).Ag(z) .. .AU(,.)) = ir (AU(Q)AU(;:,) e Aa(r)Aa(l))
= tT(A(TT(l)AtTT(Z) SR Aa‘r('r))
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for all o € A, and so

tT(Str(Al, Ag, .. A)) = Z tT(Ag(l)Ag(g) een Ag(r))
UeAr

- Z tT(Aa‘r(l)Aa‘r(Z) s Aa‘r(r))
gEAr

= 0
The proof is complete.

Let K = Qzijx | 1 < 4,5 < n, 1 <k < 2n] be the polyno-
mial ring in z;;; over @ and By = (zi5x)7 ;-1 € Mn(K). Consider
the free algebra FF = K<Y > where Y = {yi,...,y2n}. Letting
I denote the ideal of F' generated by all elements of the form
YiY; + Y;¥i, we set

D=F/le=y+1,1=12,...,2n.

The reduction system for F' consisting of all pairs (y;vi, —vi¥;),
1 < j, is clearly compatible with the usual ordering of mono-
mials (i.e., first by length and then lexicographic). It then fol-
lows easily from the Diamond Lemma that 1 and all elements
€i,€i, - - - €;,, where k < n and 4; < iy < ... <1y, form a basis of
the K-module D. Clearly e;,e;,...€;, € Z(D) = C if k is even
where Z (D) is the center of D. Noting that M,,(K) C M,(C) C

M, (D), we set B = Bye; + Byeg + ...+ Boeo, € My(D). Ob-
viously

B* = > Sty(Bi, Bigy- -, Bi)eie, - - - €, (1.1)

11 <12 <. <

In particular, B* = 0 for k¥ > 2n and
an = Stzn(Bl, Bg, Cay Bgn)eleg ... €op

For any natural number r > 0 we have B = (B?)" ¢ M,(C).
Now from (1.1) and Remark 1.3.7 it follows that

o (5)) =0
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and so B = (B%)" = 0 by Remark 1.3.6. Therefore
Stgn(Bl, BQ, - ,Bgn) = 0.

Consider the subring L = Z{z;, | 1 < 4,5 <n, 1 <k <2n] C
K. Clearly B; € M, (L) C M,(K). Since there exists a ring
homomorphism ¢ : L — R such that for its canonical extension
®: M,(L) - M,(R) we have ®(B;) = A; for all 1 < i < 2n,
we conclude that Sto,(Ay, Ag, ..., A2,) = 0, and the proof of
Amitsur-Levitski Theorem is complete.

1.4 Coproducts

The notion of a coproduct is fundamental to this book since
(as we shall see in Chapter 6) it forms the "home” in which
"generalized identities” live.

Let A; and A, be algebras with 1 over a commutative ring
K. Then a K-algebra A with 1is a coproduct of A; and A, over
K if: :

(1) There exist K-algebra homomorphisms o : Ay = A and
B Ay — A such that AU Ag generates A as a K-algebra.

(ii) For any K-algebra P with 1 and homomorphisms o :
A, — P and 7: Ay — P there exists a homomorphism ¢ : A —
P such that a¢ = o and B¢ = 7, i.e., the diagram

a—2 a4
l
I
o o) T

;

P

can always be completed.
It is immediate from (i) and (ii) that ¢ is uniquely deter-
mined by ¢ and 7. It is also easy to see that if A and A’ are
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any two coproducts of A; and A, over K then A and A’ are iso-
morphic via isomorphisms ¢ and ¢’ as indicated in the following
self-explanatory diagram:

a— 4Py,

AI

Indeed, for the K-algebra maps ¢ and ¢' one simply checks
that ¢¢' (resp. ¢'¢) acts as the identity map on the generators
A2 U A of A (resp. A U AY of A).

We next show the existence of the coproduct of A; and A,
over K by the following natural (if somewhat cumbersome) con-
struction. The idea is to first ”overshoot the mark” by finding
an algebra generated by A; and A, (thus guaranteeing (i)) and

then to factor out an appropriate ideal of this algebra (thus
guaranteeing (ii)). Let

T=A1®A2®A1®A1®A1®A2®A2®A1®

be the tensor algebra of A; and A, (as defined in section 1.2),
and let I be the ideal of T generated by all elements of the form

a ® by — albl; as ® b2 — a2b2; 1,41 — 1,42 (12)

where a1,b1 € A1, az,bp € A;. We claim that A = T/ is a
coproduct of A; and A, over K. Let oy and 3 be the respective
inclusion maps ag : A1 = T, fy : A, — T, and, letting v
denote the natural homomorphism of T onto T/I, we define o :
Ay — Aby oy = opv and fy : Ay - A by B = Byv. Property
(i) is then clear. Now consider homomorphisms o : A; — P,
T : Ay — P, P a K-algebra. We first complete the diagram
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L bo A,
|
!

Ay

o do| T

:

P

Indeed, it suffices to define ¢g on each direct summand 77 ®
T,® ... T, of T, where each T; is either A, or A, and then
extend by linearity. The map x : T1®T2®...®T,, — P given by
H®t®...Qty, — tith...t2 (where p = o or p = 7 depending
on whether ¢; € A; or t; € A,) is already K-linear, and from
the nature of multiplication in T it is easy to see that ¢y is a
K-algebra homomorphism. Furthermore, by applying ¢ to the
generators (1.2) it is clear that ¢y maps I to 0. As a result @
may by lifted to a K-algebra homomorphism ¢ : T/T — P by

defining (£)¢ = t%, t =t+1, te& T Thecommutativity
of the above diagram then yields the commutativity of
Qa
A 1, A o)) Ay
a ¢0 T
P

which shows that property (ii) holds.

The existence and uniqueness of a coproduct of A, and A,
having been established, we now refer to the coproduct of A,
and A, and denote it by A, [1x 4.

In general A$ N Ag may properly contain K. For instance,
the reader may check that @[]z Q provides such an example.
Furthermore the maps o and # need not be injections. For
example, Q |1z Z, = 0. To alleviate these unwanted occurrences
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we make the following

Remark 1.4.1 Let A; and A, be K -algebras with 1 such that
K isa K-—direct summand of both A; and A;. (1.3)

Then:
(@) AFNAS = K;
(b) @ and B are injections.

Proof. Consider the commutative diagram

o B

A————— A JJAge—— A

A ® A,

where 0(a;) =a; ® 1 and 7(az) =1 ®ay foralla; € 4;, az €
Ay, If af = ag then a; ® 1 = 1®ay. Let m : A7 — K be
the projection of A; onto the direct summand K. Clearly the
mapping A; X Ay — A, given by the rule (b1, by) — m(by)bs is
balanced. Hence it may be lifted to a K-module homomorphism
YA ® Ay = As. Now we have

az =m(la,)as = Y(1 @ az) = Y(a; ® 1) = m(a))1l4, € K.

Analogously one can show a; € K and so (a) is proved. If
as € ker  then 1 ® a; = 0 and so ay = ¥(1® az) = 0. Thus j
(and similarly @) is an injection, whence (b) has been proved.

In particular (1.3) is satisfied in case K is a field (this situa-
tion will occur when we study prime rings) or more generally
in case K is commutative von Neumann regular selfinjective
(this situation will occur when we-study semiprime rings). With
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this motivation in mind we will henceforth assume that all K-
algebras satisfy condition (1.3).

In view of Remark 1.4.1 we are now entitled to suppress a
and f and to assume that A; and A, are in fact subalgebras of
AIHA% with Al ﬂAg =K.

Under certain conditions it is possible to simultaneously lift
homomorphisms, anti-homomorphisms, and derivations of A,
and A, to A;J] A, even if these mappings are not K-linear.
These considerations will be important ones in the sequel, and
we proceed to indicate how they may be accomplished.

Remark 1.4.2 Let A;, Ay, P be K-algebras, let w: K — K be
a ring homomorphism, and let 0 : Ay - P, 7 :Ay = P be w-
semilinear ring homomorphisms. Then there is an w-semilinear
ring homomorphism ¢ : A; 1 A; — P simultaneously extending
o and T.

Proof. We consider P as a K-algebra P* by defining k-p =
k“p, ke K,pe P. Theno: A — P* 7. A; —» P* are K-
algebra maps and so by (ii) may be extended to K-linear map
¢+ A1 A2 — P* ie. an w-semilinear ring homomorphism
¢ : Al 11 Ay = P.

Remark 1.4.3 Let Ay, Ay, P be K-algebras, let w : K — K
be a ring homomorphism, and let 0 : Ay, > P, 7: Ay > P
be w-semilinear ring anti-homomorphisms. Then there is an w-
semilinear ring anti-homomorphism ¢ : A [1 Ay — P simulta-
neously ertending o and 7.

Proof. Let P° denote the opposite algebra of P, note that
o:A — P°, 7:A; > P° are w-semilinear ring homomor-
phisms, and apply Remark 1.4.2.

Remark 1.4.4 Let A; and A, be K-algebras, and let p: K —
K, 6:A;— A, p:Ay — A be derivations (not necessarily
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K -linear) such that 6 and p agree with p on K. Then § and p
can be simultaneously extended to a deriwation ¥ : A1 ] A, —
A1 1] As.

Proof. Weset A = A, ][] A, let R be the set of all matrices

in M,(A) of the form r = ( 8 2 , a,b€ A, and let K' be
: , k k°
the set of all 'matrices of the form k' = L k.k € K.

One readily checks that K’ is isomorphic to K via the mapping
v:k— k' and that R is a K-algebra under k- r = k¥r. The
a, a ' ay ab
0 a and 7 : ap — 0 a2)are
respectively K-algebra maps of A; into R and of A, into R.
Consequently ¢ and 7 may be simultaneously extended to a

unique K-algebra map ¢ : A — R. Since A is generated by A;
P

and Aj; it is clear that, fora € A, a? = ( 8 @

is the desired derivation of A, [] A,.

mappings o : a; —

, Whence

As an application of the Diamond Lemma we prove the useful

Lemma 1.4.5 Let A; and A, be algebras with 1 over K with
respective K -bases {1}UB; and {1}UB;. Then {1}UM isa K-
basis of A1 1 Az, where M is the set of all alternating monomials
from By and B,.

Proof. We outline the proof, leaving some details for the
reader to fill in. Writing B; = {a;} we have for each 1, k

a;ap = aqkl + Z Cikplp (14)
a-peBl

Repeated use of (1.4) applied to (a;ax)an = ai(axa.n,) then pro-
duces

Z QikpQpmr = Z Cipr Okmp (15)
p

p
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for each i,k,m,r. A similar set of equations results from con-
sidering By = {b;} and writing

bibi = Bl + Y _ Bjigbg
q

Letting X = {z;} and Y = {y;} be sets of indeterminates cor-
responding respectively to B, and B,, we form the free algebra
K<XUY>andlet < be the partial ordering on the free
semigroup S <X UY > determined by the length of a mono-
mial. Clearly < is a semigroup partial ordering which satisfies
the descending chain condition. The reduction system A of all
pairs

Oik = (l‘iIk,aikl + Z a‘ikp-rp)a T = (yjyl,ﬂjzl + Z ,lequ)
zp€X Yq €Y

is obviously compatible with <. It is easy to see that the only
types of ambiguities which occur are overlapping ones of the
form

(Tiks Okms Tiy Ty Tm) O (T, Tin, Y5, Yty Yn) (1.6)

To resolve the first of these (the second is similarly resolved) we
have only to note that

I Ropm Rosom (@iZkZm) = [ [ Rowp Raiorm (ZiTkTm)
P P

in view of (1.5). By Lemma 1.3.2, {1} U N is a K-basis of
K<XUY>;,, where N is the set of all alternating monomials of
X and Y. Therefore by Theorem 1.3.4(c) the cosets determined
by {1} UN form a K-basis of K <X UY > /I(A). The K-
module mapping of A; into K<X UY> /I(A) given by 14, —
1+1I(A), a;— z;+I(A) is in fact a K-algebra map because of
(1.4) and (1.6). Similarly 14, = 1+I(A), b; > y;+I(A) yields
a K-algebra map of A, into K<XUY >, and these two maps can
be extended simultaneously to a K-algebra map ¢: A, [ A; —
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K<X UY>/I(A). On the other hand the K-algebra map from
K<XUY>to AillAyvial— 1, x;—a;, y; — b;sends
I(A) to 0 (because of (1.6)) and thus induces a K-algebra map
P K<XUY>/I(A) = A, 11 A;. Clearly ¢ and v are inverses
of each other and thus A;[1A; & K<X UY >/I(A), whence
{1} U M is a K-basis of A; [] 4.

In continuing our analysis of A = A; [ A, we assume for
the remainder of this section that K is a field. This assures the
existence of respective K-bases {1}UB; and {1}UB, for A; and
As, and hence the basis {1} UM for A as given by Lemma 1.4.5.
The treatment we are embarking upon stems from a series of
papers of P.M. Cohn ([94],[95],[96]) and we will freely borrow
some terminology and portions of his account. We will make
use of these matters in a later chapter, but in any case we feel
this development is of independent interest.

A has a filtration given by H™1 =0, H°=K, H'=A;+
Ay, H™ =3 A; A, ... A;,, n=1,2,... For any subscript
i1 = 1,2 let us agree to the convention that ¢/ = 2 if 1 = 1
and i = 1 if 7 = 2, and also to the convention that A; = A,
if 7 is odd and A; = A, if 7 is even. We will express the fact
that an element a of H™ actually lies in H™"! by saying that
a = 0 (modH™ ') or simply a = 0 if the context is clear. For
1= 1,2 we set H; = A;jA;jy1... Ajynoy, where j = 7' if n is
even and § =1if n is odd. It is easy to see that Hj} 2 H™?,
HXHT = HR*", and H" = H}: + H},. We denote 'the factor
spaces H"/H™! and H}}/H™! by H™ and HT: respectively. With
the aid of Lemma 1.4.5 we are able to show the following

Lemma 1.4.6 (a) H* = H: ® H}};, (i.e., the decomposition of
H" = HJ + H};i is unique modulo H™ 1).

(b) H" ®H e =~ H™" yiq the mapping & ® 7 — 0.

Proof. If {1} U M is the basis of A given by Lemma 1.4.5,
we let M™ be the subset of all elements of M of length n, and for



32 CHAPTER 1. PRELIMINARIES

1 =1,2 we let M be the subset of all elements of M™ whose left
hand factors lie in B;. Clearly {1} U M™ is a K-basis of H™ and
M} is a K-basis of HE. It follows that H; N H};, = H™! and
so (a) is proved. To prove (b) we first note that the mapping
¢: HE @ Hyy, — Hi*" given by a® 0 — ww, u € HE, v € H},
is a well-defined surjective K-linear map. Then the elements
{7, 07| 2, € M}, y, € M}} are a K-basis of H ® H7y,, whose
images Z,y, under ¢ are precisely the elements of M[*™™. It
follows that ¢ is injective and the proof of (b) is complete.

The height |a| of an element a € A is defined as follows:
la|=nifa#0, a€ H*, a¢ H"! and |a| = —c0 if a = 0.
The elements of HJ; which are of height n (i.e., which do not
lie in H™!) are called (,7)-pure. Elements of height n > 1
which are not (Z,7)-pure for some 7,5 are called 0-pure. We

shall frequently use the suggestive notation a;; for an element of
HE.
j

Remark 1.4.7 Let w € HT, uw € Hj;, m > n, and u #
0 (mod H"‘l). Then there exist elements u = uy,ug,...,uq €
H? which are independent modulo H™™! and elements vy, ..., v,
€ Hy™ such that w = ), upv, (modH™ ).

Proof. Extend u to a basis of HZ. (modH™ ') and use the
fact that H} = HL Hg ™.

Remark 1.4.8 Let elements uy,...,u, € Hj; be independent
(modH™ '), let vy,...,vy € HJy and suppose Y,y upv, = 0
(mod H™™1). Then v, = 0 (modH™ '), p=1,2,...,q.

Proof. In H ® H7; the given condition implies that
Y 5=1Tp ®Tp = 0. Since {T;} is an independent subset it follows
that each 7, = 0, i.e,, v, = 0.

The following lemma shows there is unique factorization mod-
ulo appropriate subspaces.
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Lemma 1.4.9 Suppose ab = cd (modH™*™ 1), m = |a| = |d|,
n=1b| = |c|, m > n, a (,5)-pure, b (j', k)-pure, c (,1)-pure, d
(I' k)-pure. Then a = ce (modH™"1), where e is (I', j)-pure of
height m —n (ore =X € K if m =n).

Proof. By Remark 1.4.7 a = ce + 3. cye, (modH™1), ¢,
¢, independent (modH"™'), e,e, € Hy; ™. Thus ab = ceb +
Y. cpepb = cd (mod H™1"71), fe.,

cleb—d) + > cp(eph) = 0 (modH™"71).

By Remark 1.4.8 eb = d (modHyy) (hence e is (I, j)-pure of
height m—n) and e,b = 0 (modHy;). By Remark 1.4.8 again, we
conclude that e, = 0 (modH™ "!). Thus a = ce (modH™ ")
and the proof is complete.

The height of an element has the expected properties in view
of

Lemma 1.4.10 |ab| < |a|+|b|, with strict inequality if and only
if for some 1,7,k a is (i,7)-pure and b is (j, k)-pure.

Proof. Let n = |a| and m = |b]. Without loss of generality
we may assume n,m > 1. The inequality |ab| < |a| + |b] is
obvious. Suppose |ab| < |a| + |b]. We write a = a;; + ayjy €
H™ b = by + bpp € H™. If Qij %0 (modH"‘l) and by #
0 (modH™"!) then by Remark 1.4.8 a;;b # 0 (modH™+""1)
unless j = k. The conclusion follows from this observation.

Corollary 1.4.11 If each dimg(A;) > 1 then A = A, [Ix As is
a prime ring.

Proof. Let a,b # 0, i.e,, |a] > 0 and |b| > 0. According to
Lemma 1.4.10 we may assume that for some 7,5,k a is (3, 5)-
pure and b is (j, k)-pure. Choosing r to be (j, j')-pure, we see
that ardb # 0.
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In Corollary 1.4.11, if at least one of the dimg(A;) > 2,
then Lichtman [189] has shown that A is in fact primitive. If
each dimg(A;) = 2 it has been pointed out by Bergman [49]
that A is not primitive. We close this section with the following
useful remark whose proof is just a formal usage of the universal
properties of coproducts and tensor products and we leave the
straightforward details for the reader.

Remark 1.4.12 Let A and B be algebras over a field K and
F a field extension of K. Then F-algebras (Allx B) ®« F' and
(A®k F)1Ip(B ®k F) are canonically isomorphic.

1.5 Introduction to First Order Logic

Operations and predicates. Given a set S and a natural

n

number 7 > 0, a mapping A : S X S x...x S — § is called

an n-ary operation on S and the number n is called the arity

of the operation A\. A constant mapping v : S — S is said to

be a 0-ary operation. In what follows we will identify a 0-ary

operation with its image (i.e., v with (S)). Further, let Z, be
n

the two element field. A mapping 0 : S XS x ... xS — Z, is
said to be an n-ary predicate on S.

Examples. (1) Let R be a ring. Then 0 is a nullary opera-
tion, — is a unary operation and +, - are binary operations. Fur-
ther, the mapping P : Rx R<s Zs, given by the rule P(r,s) =1
if and only if r = s, is a predicate. In what follows we will de-
note P(z,y) by ||z = y||. Now let § # T C R be a subset of R.
Then the mapping Pr : R — Z, defined by Pr(r) = 1 if and
only if r € T', is a predicate also. We will denote it by ||z € T'||.

(2) Let Z, be the two element field. Define three binary
operations A, V and = and a unary operation - on Z; as follows

zVy=z+y+zy, sANy=zy, z=>y=14+z+zy, z =141z
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for all z,y € Z,. Note that

TVYy 1 if and only if either z=1 or y=1,
zAy = 1 ifandonlyif z=1 and y=1,
rz=y = 1 ifandonlyifeither z=0 or y=1,
-z 1 ifand only if z=0.

Obviously z = y = -z V y for all z,y € Z,.
Q-rings. Let a be an ordinal number. We set

W(o)={y|~v isordinal and 7 < a}.

Given a pair Q = (7;a) (where 7 : W(a) = N and N is the
set of all natural numbers), an Q-ring R is a ring R with a
set Qp = {F, | v € W(a)} of operations such that the arity
of F, is equals to 7(7) for all v € W(a). It is assumed that
{0, -, +, } C Qp.

Example. A ring R together with the set of all its deriva-
tions, automorphisms and antiautomorphism is for us the most
important example of an Q-ring.

Given two -rings R and S, the mapping f : R — S is
said to be a homomorphism of Q-rings if F,(ry,... ,rT(,,))f =
Fy(r{,...,r}.)) for all r1,...,7(y) € Rand v € W(a). A
subset I C R of the Q-ring R is said to be R an ideal of an
Q-ring if Fy(ry 4 %1, .-, Tr(y) + br(y)) — Fy(r1,. -, Tr(y)) € I for
all ry,...,70(y) € R, %1,...,0r(y) € I and v € W(a). It is easy
to see that an ideal of the Q-ring R is an ideal of the ring R.
Clearly the kernel ker(f) of a homomorphism f of Q-rings R and
S is an ideal of the Q-ring R. Similarly to that of an ideal and a
homomorphism one may easily formulate the notions of a factor
Q-ring, variety of Q-rings and a free Q-ring of a given variety
generated by a given set X. Being only interested in {2-rings in
the case when the set Qp = Q;UQ.UQ, U{0, —, +, -} consists
of certain sets (possibly empty) of derivations (Qg4), endomor-
phisms (£2.) and antiendomorphisms (€,) (such Q-rings form a
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variety determined by identities of the type (zy)?¢ = z%y + zy¢,
d € {14, etc.), we proceed to describe a free {2-ring in this case.

Let S be the free semigroup (with 1) generated by the set
Q.U U, and let Z be the ring of integers. Weset Y = X x S|
which we may write suggestively as X°, and K = Z<Y>. De-
fine a mapping 0 : X — K, setting 2° = (z,1) = z! € Y C K.
Further, let w € QyUQ, UQ,. We set (z°)” =z forall z € X,
s € S. Since w is either a derivation, endomorphism, or antien-
domorphism, there exists a unique extension of the mapping w
up to, respectively, a derivation, endomorphism or antiendomor-
phism of K. Now one may easily check that (X;o; K) is the free
Q-ring generated by the set X.

Terms. Let X = {z1,22,...,Zn,...} be an infinite set and
Ta the free Q-ring generated by X. Then any element ¢ € T
is called a term of the signature Q. Given any v € W(a) and
Y1, Y2, - Yr(y) € X (not necessarily distinct), we choose any
linear ordering {21, 22, . . ., 2m} Of the set {y1,y2, ..., Yr(y)} Where
zi # zj for all 1 < i # j < m and we will use the notation
t =t(z1,22,...,2m) for the term t = F,(y1, 92, -, Yr(y))- Welet .

X)) ={y1,v2,- - yrm} = {21, 22, ., Zm}

be the set of all variables involved in t. Let now 6 € W(a),
n = 7(0) and let t; = t;(yi1,. -, Yim)s ¢ = 1,2,...,7n, be
terms. Choosing any linear ordering {z,z2,...,Zmn} of the set
U™, X(t;), we will use the notations

i = t(.’El,.’Ez, ‘e ,.’Em) = Fg(tl,tz, . atn))
n
X(t) = U X(tz)
i=1
Substitutions. Given any -ring R and a mappingn: X —
R, there exists a unique extension of n to a homomorphism

of Q-rings 7o — R. Therefore we may identify the set of all
homomorphisms of {2-rings Tq — R with the set Map(X; R) of
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all mappings of the set X into R. Let t = t(z),z2,...,2,) € Ta
and n € Map(X; R). We set

t(z],23,...,20) = t".

Elements of the set Map(X; R) are called substitutions.

Given any u € X and v € R define the mapping p,, :
Map(X;R) - Map(X; R), setting

u”“'”(") =v and z°*® =2" forall z€ X, z#u.

Let U = (z3,%2,...,2,) € X™ and V = (vy,vy,...,v,) €
R™ where X™ and R™ are n-th Cartesian power of X and
R respectively. Assuming that z; # x; for all i # j, we set

pU,V = Pz pa:z,’uz P pa:n,vn-

Consider now a term ¢ such that ¢t = t(z;, z2,...,2,). Obviously
tPov () = ¢(vy, vy, ..., v,) for all n € Map(X; R).
Now we introduce the following useful notations. For any

Yy Z1, T2, ..., Tmy1 € X and 1 <1 < m, we set
i _ .
(xl)x% v ,xm+l)[] - (xl)' o Ti-1, Tig1, - - - ,$m+1),
tyl —
(xth:- . 7x'm.)[ v - (xla e i1, Yy Tigy,y - axm)-

()-A-rings. Given pairs 2 = (7;a) and A = (0;3) (where
7:W(a) - Nand o : W(B) = N), an Q-A-ring R is an Q-ring
R with a set Ap = {P, | v € W(B)} of predicates such that the
arity of P, is equal to o () for all v € W(B).

Let now {R; | t € T'}, be a family of Q-A-rings. We proceed
to describe the Cartesian product H = [,y Ry of Q-A-rings.
We consider H as the set of all mappings h: T — Uter Rt such
that h(t) € R, for all t € T. Defining operations pointwise, we
obtain an Q2-ring structure on H. Given any v € W(8) and
hiyha, ... he(y € H, we set P,(hy, hy, ... sho(yy) = 1 if and only
if Py(hy(t), ha(t), ..., ho(n(t)) =1 forall t € T.
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Note, that the "behavior” of predicates under taking of Carte-
sian products of 2-A-rings ”coincides” with the behavior of that
predicate which is most important for us, namely, ||z = y||.

First order formulas. Consider the set L of logical symbols

A (for conjunction, read AND),

V  (for disjunction, read OR),

- (for negation, read NOT),

=  (for implication, read IMPLIES),

V  (for universal quantification, read FOR EVERY),

3 (for existential quantification, read THERE EXISTS),

= (for equality, read EQUALS).

Letting Pa denote the set of all formal predicate symbols

{P'y(tl)t21"' )ta(’y)) | v < :Ba t1, b2, .. ')ta(’)') € 7-(:!}

we define § to be the free semigroup generated by the disjoint
sets £, Ta, Paand {{, }, (, ), [, ], I|}. Now we proceed to
define the first order formulas (which we shall simply refer to
as formulas ) as a subset Fqa of S. Formulas ¢, together with
associated sets of free variables X(¢) and complexity Compl(¢),
are defined inductively.

(i) If ¢, and t, are terms, then the element ||t; = t5|| € S is
called a formula. Choosing any linear ordering {z,, 2, - .
of the set X (¢;) U X (t2), we set

¢ = (]5(2:1, oy Zm) = ”tl = t2H’
Such formulas are called atomic.
(ii) For any predicate symbol P, € A and any terms ty,...,t,
where n = o () the element P,(t1,1s,...,t,) € Pa is said to be

a formula and, choosing an arbitrary linear ordering {z1,. .., zm }
of the set UL, X (¢t;), we set

Y =1P(21,...,2m) = Py(t1,t2,. .., tn),
X)) =JX(%) and Compl(y) =1.

©yZm
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Such formulas are also called atomic.
(iii) If 4 is a formula, then —¢ is a formula and we set

X(—~¢) = X(¢) and Compl(—¢) = Compl(¢) + 1.

(iv) If ¢ and 9 are formulas, then ¢ V), p A9 and ¢ = %
are formulas and we set

X(pVe) = X(@Ap)=X(p=1)=X($)UX(P) and
Compl(¢ V) = Compl(¢ A1) = Compl(¢ = %)
= maz{Compl(¢), Compl()} + 1.

(v) If ¢ is a formula and z € X, then (Vz)¢ and (3x)y are
formulas and we set

X ((Vz)¢) = X ((3z)¢) = X(¢)\{z} and
Compl ((Vz)¢) = Compl ((3z)¢) = Compl(s) + 1.

If ¢ is a formula and X (¢) = 0, then the formula ¢ is called
a sentence .

The notation in general ¢ = ¢(y1,¥2,---,¥yn) is introduced
analogously to that for the cases (i) and (ii). We only note, that
if either ¥ = (Vu;) or 9 = (), then ¥ = 9(y1, ..., yn)l.

Notations. We shall write ||z ¢ T|| instead of —|jz € T||
and ||z # y|| instead of —|jz = y||.

Formulas and substitutions. We shall put into correspon-
dence with any substitution n € Map(X; R) of an Q-A-ring R
the mapping 7 : Foa — Z>. We proceed by induction on the
complexity of formulas.

If ¢ = ||ty = t||, then ¢7 = 1 if and only if t] = ].
Consider now the case ¢ = P,(t1,ts,...,ts(y)). Then we set
"= Py(t], 43, ., th)-

Suppose that our mapping 7 is defined on formulas of com-
plexity < m and Compl(¢), Compl(p) < m. We set

(-8 = -4,
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@vy)T = ¢V,
@AP)T = ¢"AYT,
(=) = ¢"=y".
Further, ((Vz)$)” = 1 if and only if ¢*=*™ =1 for all r € R.

Analogously, ((32)¢)" = 1 if and only if ¢?= = 1 for some
T € R.

Proposition 1.5.1 Let ¢ = ¢(y1, 92, - - ., Yn) be a formula. Con-
sider the subsets Y = (yy,...,yn) € X™ and V = (vy,...,v,)

€ R™. Then ¢*vvM = ¢ovv®) for all n,0 € Map(X;R).

Proof. We proceed by induction on the complexity of ¢.
Assume that Compl(¢) = 1. Consider the case

¢ = ||t1(?/z‘1, ce ,yz‘m) = t2(yj1, e )yje)”,
where X'(t;) U X(tz) =Y. Then

¢py,v(77) = ”tl(viu ey Uyy) = t2(vj1’ s ’Uje)“ = WY'V(O)'

The case ¢ = Py(t4,...,t,) is considered analogously.

Suppose now that Compl(¢) = m + 1 and our statement
is proved for formulas of complexity less than or equal to m.
Consider the case ¢ = < (y1,...,¥n). Then we have

¢py,v(77) — __,,d}py.v(ﬂ) z_ﬂ,gbpy,v(o)

¢py,v(9)_

The cases ¢ = 1, Vo, ¢ = ¥y Ay and ¢ = ) = 15 are consid-
ered similarly. Assume now that ¢ = (Vz)¥(2,..., 2m) Where
(21,22, o 2m)® = (41, 40, . . ., yn) (for simplicity we assume that
z = z; for some 1 < ¢ < m). Now we have

¢?*v =1 if and only if oP=v*v® =1 forall ve R.
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Since p,,pvy = py,v where Y' = (z,y1,...,%,) and V =
(v,v1,...,%y), by the inductive assumption we have

,l/)Pz,qu.V(n) - ¢Pz.uPY,v(9)_

Therefore ¢?vv(M = ¢#¥v(0) The last case ¢ = (3z)7 is consid-
ered analogously.

Let ¢ = ¢(y1,¥2,.--,Yn) be a formula, n € Map(X; R). For
any subset vy,vy,...,v, € Rweset Y = {y1,¥2,...,%}, V =
{v1,v2,...,v,} and

¢('U1,'U2, ‘e ,’Un) = ¢m

It follows from Proposition 1.5.1, that ¢(vy;v,...,v,) € Z, is
independent of n. We will write

N

R E ¢(v1,v2y...,0,)

if ¢(v1,v2,...,v,) = 1. In this case we will say that the formula
¢(v1, v, ...,v,) is true in the (3-A-ring R. Otherwise we will
say that the formula ¢(vy, vy, ..., v,) is false .

Examples. Let R be a ring.

(1) Consider the formula ¢; = (Vz)(Vy)||zy = yz||. Then
R k= ¢, if and only if R is commutative.

(2) Let ¢2(z) = (Vy)|lzy = yz||. Given any r € R, R |
¥o(r) if and only if r is a central element of R. :

(3) Now let ¢3(z) = (Vy)(32) [lly # Ol ={ |lyz # O||Al|lzyz =
0|/ }]. For an element 7 € R, R = ¢3(r) if and only if the right
annihilator of 7 in R is an essential right ideal of R.

Two formulas ¢ = ¢(y1,92,...,¥a) and ¥ = (21,22, ..., 2m)
are sald to be equivalent, if for any 2-A-ring R and any substi-
tution n € Map(X, R), the formula ¢(z7,...,z7?) is true in R if
and only if ¥(27,...,21) is true.

The following proposition is easily proved by induction on
complexity of formulas.
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Proposition 1.5.2 Let ¢ = ¢(21,22,...,%n), ¥ be formulas

and z € X \ X(¢) \ X(¢). Then the following formulas are
equivalent:

¢ and  —(=g),
“(eAY)  and  (24) V (—9),
“(eVYy)  and  (24) A (),
¢=9% and (-¢)VY,
~((vz)(~4))  and  (3z)(4),
~(Gz)(~¢))  and  (Yz)(9),
¢ A ((Vz;)y) and (V) (¢(x1, T2, ..., Tn) A 1,[1) ,
oA ((z)y)  and Gz (d(a1,22- @) AY),
$V (Vo))  and  (Va) (@(z1, 32, 2)E V),
&V ((Az))y) and () (¢(x1,x2, oy Tg) Y 1,[1) ,
) and  (V2)¢,

)
¢ and  (32)¢.

The next two corollaries follow immediately by an induction
on the complexity of formulas from Proposition 1.5.2.

Corollary 1.5.3 Any formula ¢ is equivalent to a formula of

the form (Qiy1)(Q2y2) - - - (QmYm)¥, where Q; € {V, 3}, i =
1,2,...,m, and the formula v does not contain quantifiers ¥V
and 3.

Corollary 1.5.4 Any formula is equivalent to a formula con-

taining only atomic formulas, symbols —, A, 3, variables and
bracket symbols.

Let ¢ = ¢(zi,, i, .. -, Ti,) be a formula such that

{.’1,‘1'1,.’1,‘1;2,. .. ,.’L‘in} g {.’121,.’1,‘2, Ce . ,.’L‘n}.
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Define a new formula v in free variables zy, z, . .., z, as follows
Y(z1, T2y - -, Tn) = H(Tiy, Tiy, - - -, T35, ). Then clearly

The formulas ¢ and ¢ are equivalent. (1.7)

Horn formulas and multiplicative stability. The reader
has seen already that formulas provide us with a formal way of
writing properties of {2-A-rings and their elements. It is rather
interesting to note that the stability of properties under taking
of Cartesian products mainly depends on the structure of the
corresponding formulas. Now we shall describe an important
class of formulas, stable under taking Cartesian products.

A formula ¢ is said to be a Horn formula if it is equiva-
lent to a formula of the type (Q1v1)(Q2v2) - - - (@mYm)¥, where
Q: € {v, 3}, i = 1,2,...,m, the formula ¢ does not contain
quantifiers V and 3 and is the conjunction of formulas each of
which is either (a) an atomic formula; (b) the disjunction of
one atomic formula and several negations of atomic formulas; or
(c) the disjunction of negations of atomic formulas.

A formula ¢ = ¢(y1, Yo, - . ., Yn) is called multiplicatively sta-
ble , if the following holds: for any family {R; | ¢ € I} of
Q-A-rings and all hy, hs, ..., h, € H = [[;c; R; the relations

R; E ¢(h1(5), ha(), ..., ha(3)), forall iel,

imply that
H = ¢(hy, ha,y ..., hy).

Further a multiplicatively stable formula ¢ = é(y1,v2,...,Yn)
is said to be a strictly multiplicatively stable formula, if for all
hi,hy, ..., hn € H the relation H = ¢(hy, hy, ..., h,) implies
that R; = ¢(h1(2), ..., ha(2)) for all i € I.

Example. The formula

¢ = (Vz)(Vy) [(z = 0) V (y = 0) V (zy # 0)]
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is not multiplicatively stable, since the Cartesian product of
domains is no longer a domain. But the formula

Y = (Vx) [(z =0)V (z* # 0)]
is multiplicatively stable.

Theorem 1.5.5 (A. Horn [196]) Every Horn formula is mul-
tiplicatively stable.

Proof. It immediately follows from the deﬁnitions that
atomic formulas are strictly multiplicatively stable.
Consider now the case

¢ = Vi (~wy),

where ¥;, j = 1,2,...,n, are atomic formulas. By (1.7) we may
assume that X (¢;) = X (¢);) for all ¢,j. Let

¢:¢(yla"'aym)a "/)Jz"/)J(ylsaym)a 1 SJSn

and hy, hy,..., hy € H. Suppose that R; E ¢(hy(7), ..., hn(7))
for all i € I. Fix any t € I. We have R, = ¢(hi(2),..., hn(t))
and so Ry = (m9;(h1(t),. .., hn(t))) for some 1 < j < n. Since
all atomic formulas are strictly multiplicatively stable, we see
that H = (-9;(h1,...,hm)). Therefore H | ¢(hy,..., hy).
Let now ¢ = ¥, V I:V;'l=2(—|'(/)j):| . Again we suppose that R; =
d(hi(i), ..., hpn(2)) foralli € I. If for somet € Tand2 < j < n
we have that Ry = (—~;(h1(t),. .., hm(t))), then as above one
may show that H = ¢(hy,..., hy). Therefore without loss of
generality we may assume that formulas —;(h1(3), ..., hm(i))
are false in R; for all j = 2,3,...,n and ¢ € I. Since R; |
d(h1(2), ..., hy(3)) forall i € I, R; = 41(hy(3), ..., hm(i)) for all
i € I also. Then H = ¢1(h1,...,hy) and H = ¢(hy, ..., hn).

If 4, 7 = 1,2,...,n, are multiplicatively stable formulas,
then one may easily check that the formula ¢ = Al_;%; is
multiplicatively stable. also.
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Let 1 < j < nand ¢(y1,--,vm)? = Cu)Y(¥1s--- s Ym)
where v is a multiplicatively stable formula. Suppose that

R = ¢(hy(3), ..., hi_1(8), hjr(3), - - -, hm(4))

for all 7 € I, where hy,...,hj_1,hj31,...,hn € H. Then for
every 1 € I there exists an element h;(i) € R; such that
R; & ¥(hi(2),...,hn(i)). Since 9 is multiplicatively stable,
H = 9(hq, ..., hy). But then again

H = ¢(hy, ... R, hjga, . ).

The case when ¢ = (Vy)® is considered analogously. Thus the
theorem is proved.

Ultrafilters. Let I be an infinite set and Ezp(I) the set of
all subsets of I. A subset 7 C Ezp(I) is said to be a filter on
the set I, if it does not contain the empty subset and for every
natural number n and all Ty, T3,..., T, € T, M., T € T.

Examples (1) Given any i € I, we set T(ig) = {T C
I|ip € T}. Clearly T (io) is a filter.

(2) Weset Too = {T CI'||I\T| < oc}. Obviously T, is a
filter.

We note that the set of all filters on I is partially ordered
by inclusion. A filter 7 on the set I is said to be an ultrafilter
on I if it is a maximal element in the partially ordered set of all
filters on 1.

Example. Clearly the filter 7 (i¢) is an ultrafilter on I. Such
ultrafilters are called principal.

*Proposition 1.5.6 Let I be an infinite set, T an ultraﬁlter on
I and X CI. Then:

(a) Any filter on I is contained in some ultrafilter;
() IeT;
(c) f XNT #0foralT €T, then X € T;
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(d) if T € T and T = Uj_, B;, then B; € T for some
1<j<n;

(e) a filter F on I is an ultrafilter if and only if for any
ACI either Ac F,orI\A€ F;

(f)ifTe€T andTCACI, thenAeT.

Proof. The first statement follows easily from Zorn’s lemma.
The second one is obvious.

(c) Consider the collection 7/ = TU{X NT | T € T}
of subsets of I. Clearly it is a filter and 7 C 7'. Since 7T is
a maximal element of the set of all filters on I, 7 = 7'. So
XeT.

(d) Suppose the contrary. By (c) for every 1 < j < n there
exist an element A; € T such that B;NA; = 0. Letting A denote
the intersection of all A;, we infer that A N B; = (. Therefore
ANT =0, a contradiction to 4,T € 7. Hence B; € T for some
j.

(e) Taking into account the already proved statement (c),
we have only to prove that if a filter F on [ is such that for any
A C I either A€ F,or I\ A € F, then F is an ultrafilter.
Again suppose the contrary. Let F C H for some filter H.
Then there exists an element A € H which does not belong to
F. By assumption we then have that I\ A € F C H. But
AN(I\ A) = 0, which contradicts the definition of a filter. Thus
F is an ultrafilter. The last statement follows from (c).

Corollary 1.5.7 Let I be an infinite set and T an ultrafilter on
I. Then either T is a principal ultrafilter, or T, C T .

Proof. Obviously an ultrafilter 7 is principal if and only if
there exists an element 4y € I such that {ip} € 7. Assume that
T is not principal. Let J C I be any finite subset of I. Since
{7} € T for all j € J, it follows from Proposition 1.5.6, that

J ¢ T. Then again by Proposition 1.5.6 we have that I\ J € 7.
Thus T, C T. '
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Ultraproducts. Given any family {R; | : € I}, of Q-A-
rings, where I is an infinite set, and an element h € H = [[;c; R;,
we set

I(h) = {i € I | h(s) = 0}.
For an ultrafilter 7 on I, we set
I(T) = {h e [[R: | I(h) € T}.

i€l
We claim that I(7) is an ideal of the Q-ring H = [[;c; R:.
Indeed, for all h,g € H we have I(—h) = I(h), I(hg) 2 I(h)N
I(g), I(h+g) 2 I(h)NI(g). It is now immediate that I(7) is an
ideal of the ring H. Let v € W(a),n=1(v), 91,92,---,9n € H,
hl,hz,...,hn < I(T) and h = F.,(g1+h1,g2+h2,...,gn+hn)—
F.(g1,92,---,9n)- Since I(h) 2 Ni=, I(h) € T, h € I(T). Thus
I(T) is an ideal of the Q-ring H. Consider the factor Q-ring
H/I(T). Now we proceed to describe an {2-A-ring structure on
it. Given any v € W(8), h1, ha, ..., ho(y) € H, we set

Py(hi + I(T) ha + I(T), ... s ho(yy + I(T)) =1
if and only if

{i € I'| Py(h1(3), ha(d),..., he(y(3)) =1} € T.

The factor Q-A-ring H/I(T) is called the ultraproduct of Q-A-
rings R;, i € I, and is denoted by [I;c; R/T. The canonical
image of an element h € H in H/I(T) is denoted by hT .

Theorem 1.5.8 (Los [196]) Let {R; | i € I} be an infinite
family of Q-A-rings, H = [l;c; Ri, ¢(Y1,Y2,--.,Yn) a first order
formula in free variables y1,y2y...,Yn, b1, ho,..., by € H and
T an ultrafilter on I. Then

[TR/T E ¢(M T, haT, ..., haT)

| icl
if and only if

Ig(hy, - hn) =t € T | Ri = $(M(d), ..., ha(i))} € T.
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Proof. Suppose that Compl(¢) = 1. Consider the case
when

¢(y1ay2’ s ayn) = “tl(yiu .. "yim) = t2(yju <. ’yjt)”7
where {y1,y2,...,Yn} = X(t1) U X(t2). Clearly

HR/T Eé(hT,...,hT)

i€l
if and only if
t1(hi, Ty i, T) = ta(hy, T, 85, T).
The last condition is equivalent to
ty(hi, T, ..yt T) —ta(hyT,...,t,T) =0,
which in turn is equivalent to

{i e I|ti(hi,(3),-..,hin(3)) = ta(hj, (3),...,t,(1) =0} € T.
But

{i el I tl(h'il (Z)’ . "h'im(i)) - t2(hj1 (Z), v ’tje(i) = 0}
= I4(hy, hay ..., hy).

Therefore

HR,/T|=¢(h1T,...,hnT)

el
if and only if

I¢(hh h2) s ,hn) eT.
The case ¢ = P,(t1,t2,...,tq(y)) follows directly from the def-
initions.
Assume now that our statement is proved for the formula

Y(y1,...,Yn) and ¢ = —p. It immediately follows from the
definition that

Ig(hy,hoy ... he) =TI\ Ly(hy, hoy. .., hy).
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We have
H R'/T '= QS(th, hQTa ey h'n.T)

i€l
if and only if (T, hoT, ..., h,T) is false in [[;c; R/T. By as-
sumption the last is equivalent to I (hy, he,..., h,) € T, which
in turn is equivalent to I4(hy, ho,...,h,) € T (see Proposi-
tion 1.5.6).

Suppose that ¢ = 1) A 1, and our statement is proved for
formulas v, and v,. By (1.7) we may assume that

¢ = ¢(y11y21 s 1ym)1 wt = wt(yliy% s 1ym)1 t= 1,2

Note that

Iy(hy, hoy ooy hy) = Iy (hyy hoy ooy hn) O Ty, (Byy By . ooy hy).

Obviously
H R'/T '= d)(tha hQTa ey hn'T)

iel
if and only if I, Iy, € T, which is equivalent to I, = I,,, NI, €
T.

Now we consider the case ¢ = (Jy)y. We suppose that our
statement is proved for 1. For simplicity we assume that ¢ =
T/J(y, Y, Y2, - .. 1y'n.)' Clearly

[ R/T E ¢(MT, hoT, ..., haT)

iel

if and only if

[ R/T E W (T, M T, haT, ..., haT)

i€l
for some h € [1;c; R;. The last is equivalent to

Lp(h, hl,hg, . .,hn) eT.
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So it is enough to prove that Is(h1, hs,...,h,) € T if and only
if Iy(h, h1, he, ..., hy) € T for some h € [[;c; R;. The ”if* part
is clear since

Is(hi, ho, ... hy) D Iy(h by ho, ... By).

Suppose that J = Ig(hy,ha,...,h,) € T. Then there exist
elements r;, j € J, such that

Rj '= ¢(7‘j,h1(j),h2(j), .- )h’n(]))

Define the element h € [y R; by setting h(j) = r;,h(i) = 0
for all j € J, i € I'\ J. Clearly I,(h,hy, hy,...,hn) 2 J. Thus
Iw(h;hly---)hn) eT. i

Since any formula is equivalent to a formula containing only
atomic formulas, symbols =, A, 3, variables and bracket sym-
bols, the theorem is proved (see Corollary 1.5.4).



Chapter 2

Rings of Quotients

2.1 Maximal Right Rings of
Quotients

In the study of generalized identities in prime and semiprime
rings it will be seen that rings of quotients play a crucial role.
Not only will we want to extend generalized identities to rings of
quotients, but the very presence of a suitable ring of quotients
is necessary in order to properly define a generalized identity.
For us the most important ring of quotients is the so called
symmetric ring of quotients but at times we will want to employ
the more general maximal ring of quotients.

For S a subset of R the left annihilator {z € R | S = 0} will
be denoted by [g(S) or simply {(S) when the context is clear.
The right annihilator rg(S) is similarly defined. A right ideal J
of R is dense if given any 0 # r, € R, o € R there exists r € R
such that ryr # 0 and r9r € J. One defines a dense left ideal
in an analogous fashion. The collection of all dense right ideal
of R will be denoted by D = D(R). For any submodule J of a
right R-module M and any subset S C M we set

(S: J)r={ze€R|SzCJ}

ol
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When the context is clear we will simply write (S : J).
Although occasionally a result may hold for arbitrary rings,

we shall assume throughout this section that R is a semiprime
ring.

Proposition 2.1.1 Let I,J,S € D(R) and let f : I — R be a
homomorphism of right R-modules. Then:

(i) 1)) = {a € T| fa) € J} € D(R);

(ii) (a : J) € D(R) for alla € R,

(ii) In J € D(R);

(iv) If K is a right ideal of R and K 2 I, then K e D(R);

(v) (1) =0=r(I);

(vi) If K is a right ideal of R and (a : K) € D(R) for all
a € I, then K € D(R);

(vii) If L is a right ideal of R and g : L — R is a homomor-
phism of right S-modules, then g is a homomorphism of right
R-modules; .

(viii) IJ € D(R).

Proof. (i) Let r, # 0, o € R. Since [ is a dense right
ideal of R, 7' # 0 and ror’ € I for some 7' € R. Analogously
(rir')r" # 0 and f(ror')r" € J for some " € R. Setting r = r'r"
we conclude that 7,7 # 0 and ror € f~1(J), which means that
f71(J) is a dense right ideal of R.

(ii) Letting I, denote the left multiplication by a we note
that (a : J) = 71(J). Now apply (i).

(iii) If i is the inclusion map I — R, then I N J = i71(J).
Now apply (i).

(iv) Is obvious.

(v) Suppose Ia = 0 for some 0 # a € R. Setting 7y = a =13
we see that there exists » € R such that 0 # ar € I. We
then have a contradiction arRar C Iar = 0. Next we suppose
I(I) # 0. Since R is semiprime, there exist a,b € I(I) such that
ab # 0. Now we can find 7 € R such that abr # 0 and br € I.
But abr € al = 0 and again a contradiction is reached.
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(vi) Let 0 # r1, 72 € R. Since I € D, there is an element
r' € R such that r;7’ # 0 and ror’ € I. Hence (ror' : K) € D.
By part (v) we then have [ ((ror’ : K)) = 0 and hence r17'r" 3 0
and ror'r” € K for some 7" € (ror’ : K). Thus K € D.

(vii) Let z € L and 7 € R. By (i) (r : S)r € D and so by
(ili) M = (r : S)sNS € D. For every y € M C S we have
ry € S and so

(g(zr) — g(z)r)y = g(zr)y — g(2)(ry) = g(zry) — g(zry) = 0.

It follows from (v) that g(zr) = g(z)r and thus g is a homo-
morphism of right R-modules.

(viii) Let r1 # 0 and 75 € R. By (ii) L = (r; : I) € D(R),
and so by (v) there exist v € L such that 7,7’ # 0 and 7" € J
such that r17'r" # 0. Setting » = r'r" we then have r17 # 0 and
ror = (ror)r" € 1J.

As an alternate definition of dense right ideal we have

Corollary 2.1.2 Let J be a right ideal of R. Then J € D if
and only if lr((a : J)) =0 for alla € R.

Proof. If J € D we know from Proposition 2.1.1(ii) and
(v) that (a : J) € D and lg((a : J)) = 0. Conversely, given
r1 # 0, 7o € R we know that r1(ry : J) # 0, and so we may
choose r € (ry : J) such that r;7 # 0. But since 7 € (ry : J),
we also have ryr € J.

At this point we pause to mention the notion of essential
right ideal. We recall that a right ideal J of R is essential if
for every nonzero right ideal K of R we have J N K # 0. This
notion may perhaps strike the reader as a more familiar and
more natural one than that of a dense right ideal, but it does
have the drawback that (even for primitive rings) the left
annihilator of an essential right ideal may not be 0. A more
through discussion of the relationship between essential and
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dense right ideals will be given at the end of this section. For
now we have the following remark.

Remark 2.1.3 Let J be a dense right ideal of R. Then J is an
essential right ideal of R.

Proof. Indeed, for 0 # a € R , pick 7 € R such that
0#ar € J. Then 0 # ar € JNaR.

There is one prominent situation, however, when the two
notions coincide, and we leave it for the reader to verify the
following

Remark 2.1.4 Let I be a 2-sided ideal of R. Then the following
conditions are equivalent:

() I(I) =0;

(i) I is a dense right ideal;

(#i2) I is an essential right ideal;

(iv) I is essential as a 2-sided ideal (i.e., for any ideal J # 0,
INJ#0).

Because of the symmetry imposed by (iv) the words ”left”
and "right” may be interchanged. In case R is prime an ideal
is essential if and only if it is nonzero. For semiprime rings we
have the following result and we again leave it for the reader to
verify the straightforward details of its proof.

Remark 2.1.5 Let I be a 2-sided ideal of R. Then:
(3) II) =r(I);
(it) (I)NI =0;
(ii3) I +1(I) is a dense right ideal of R.

We continue now with our discussion of dense right ideals,
pointing out the following useful properties.
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Remark 2.1.6 Let J be a right ideal of R and let f : J - R
be a right R-module homomorphism. Then:

(i) if a € R and r(a) € D(R), then a =0;

(i2) if ker(f) € D(R), then f = 0.

Proof. The first statement follows from Proposition 2.1.1(v).
Suppose that ker(f) € D(R). Then we have f(b)(b : ker(f)) =
0forallb € J. According to Proposition 2.1.1(ii), (b : ker(f)) €
D(R). By the first statement we then have f(b) = 0. Thus
f=0.

We are now in a position to construct the desired ring of
quotients of R. Consider the set

H=A{(f; J)|J € D(R), f:Jr = Rg}.

We define (f; J) ~ (g; K) if there exists L C J N K such that
L € D and f = g on L. One readily checks that ~ is indeed
an equivalence relation, and we let [f; J] denote the equivalence
class determined by (f; J) € H. We then define addition and
multiplication of equivalence classes as follows (roughly speak-
ing, just ordinary addition and composition of functions restrict-
ed to appropriate domains):

[f; J1+1g K] = [f+g JNK] (2.1)
1f; Jllg; K1 = [fg 97'(I)] (2.2)

First of all we note that by Proposition 2.1.1 JN K € D and
g7 1(J) € D. One easily checks that addition is well-defined. We
will show that multiplication is also well-defined. If (f;; Ji) ~
(f2; J2) and (g1; K1) ~ (g2; K2) we may find L € D such that
LCJind, fi=fyon L and M € D such that M C K1 N Ko,

gi =g2on M. Set N = gi}(L)N M, and let £ € N. Then
N €D and

f191($) = fi(g1(z)) = f1(92($)j = fa(g2(x))
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(noting that g;(z) = g2(z) € L). Thus (2.2) is well-defined. We
leave it for the reader to verify that the ring axioms holds, and
so our construction is complete.

We shall denote the ring just constructed by Q. = Qmr(R)
and shall call it the maximal right ring of quotients of R. It was
first constructed by Utumi [270], and although there are more
"homological” constructions of it available (see, e.g., [155]) we
have preferred Utumi’s very simple and natural construction
using "partial” homomorphisms (indeed, speaking very loosely,
given f : Jg &> Rgr and fa=17r,a € J, r € R we may "solve”
for f and get ” f = ra™!” which says in some sense that f is a
"fraction”).

We proceed by showing that Q,,, is characterized by certain
reasonable properties that any ring of quotients should have.
First there is a ring injection 8 : R — Qnr given by a® = [l,; R],
where [, is the left multiplication determined by a. Secondly,
given ¢ = [f; J] € Qm, one sees that [f; J][ls; R] = [l@); R]
for all a € J, ie.,, ¢JP C RA. Thirdly, if ¢ = [f; J] € Qmr
and K € D such that ¢&K? = (0 then ¢ = 0. Indeed, we have
0 = [f; J|lla; R] = [lf(a); R] for all a € JN K forcing f(a) =0,
whence f(J) = 0 and ¢ = 0 (see Remark 2.1.6). Finally, suppose
we are given a homomorphism of right R-modules f : Jg — Rk,
J € D. Then [f; J){la; R) = [lya); R] for alla € J, ie., ga? =
f(a)? for all a € J, where ¢ = [f; J].

In a similar fashion, using the filter of dense left ideals D;, one
can construct the maximal left ring of quotients Qi = @Qmi(R)
(in so doing it is best to put mappings on the right and use (J; f)
instead of (f; J)). One then embeds R into Qn via o : a —
[R; r,]) and goes on to show an analogous set of properties holds
for Q,n;. However, we are not interested in pursuing further the
relationship between Q,,, and @,,; in any given situation we
will just be working with one of them. For this reason we shall
simplify matters by replacing R by its isomorphic image R? in
Qmr, i-€., R is contained in @Q,,.. We then summarize the four
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properties derived in the preceding paragraph.

Proposition 2.1.7 Qn.(R) satisfies:

(i) R is a subring of Qmr;

(i) For all ¢ € Qm, there exists J € D such that ¢J C R,

(iit) For all ¢ € Qur and J € D, ¢J = 0 if and only if
g=0;

(iv) For all J € D and f : Jg = Rpg there ezists ¢ € Qum,
such that f(x) = qx for all z € J.

Furthermore, properties (i)-(iv) characterize ring Qm,(R)
up to isomorphism.

Proof. We have only to prove the last statement. Let Q D
R be a ring having properties (i)-(iv). Define the mapping
a: Q — Qm, by the rule ¢* = [l;; (¢ : R)g]. One can readily
check that « is an isomorphism of rings identical on R.

As a useful corollary to Proposition 2.1.7 we have

Lemma 2.1.8 Given q,¢2,...,¢n € Qmr and I,J € D(R)
there exists L € D(R) such that L C J and ;L C I for all
1=1,2,...,n.

Proof. Setting J; = (¢; : R)r we note that J; € D for all i.
Consider the map f; =l , : J; = Rgp. By Proposition 2.1.1

K, = fi_l(.[) = {:L‘ € J; l g;x € I} €D.
Setting L = (N2, K;) N J, we have the desired dense right ideal.

Lemma 2.1.9 Let K be a dense right ideal of a semiprime ring
R and S a subring of Qum,(R) such that K C S. Then:

(i) S is a semiprime ring;

(#) A right ideal J of S is dense if and only if (JNR)K €
D(R) (in particular IS € D(S) if I € D(R));

(ii1) A right ideal J of S is essential if and only if (JNR)K
is an essential right ideal of R.
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Proof. (i) Assume that I is a nonzero nilpotent ideal of
S and pick 0 # ¢ € I. By Proposition 2.1.7(ii), ¢J C R for
J € D(R) and by Proposition 2.1.7(iii) 0 # ¢(JNK) CINR
is a nonzero nilpotent right ideal of the semiprime ring R, a
contradiction.

(ii) Suppose that J € D(S) and r; # 0, r» € R. Since
K eD(R),L=(r1 : K)rn(r: : K)g € D(R). By Propo-
sition 2.1.1(v), ;7" # 0 for some 7' € L. Clearly ri7',ror’ €
K C S. Therefore there exists an element ¢ € S such that
ri7'q # 0 and ro7'qg € J. Again by Proposition 2.1.1 we have that
rir'qr” # 0 for some " € (¢ : R)gNK. Clearly ror'qr” € JNR.
Pick 7" € K such that ri7'qr"r" # 0. Since ror'gr'’r" €
(JNR)K and r'¢r"r" € R, we conclude that (JNR)K € D(R).

Conversely, let (JN R)K € D(R) and s; # 0, s, € S.
According to Proposition 2.1.1 we have s;7’ # 0 for some

7"6 (Sl : R)Rﬂ(s2 . R)RﬂK

Clearly s17',sor' € Rand r' € K C S. Since (JNR)K € D(R),
(ser’' : (JN R)K)g € D(R) and therefore

L= (sor' : (JNR)K)gN K € D(R).

Hence there exists an element " € L such that s;7'r" # 0. Note
that sor'r” € (JNR)K C J and 7', 7", 7'r" € K C S. Therefore
J is a dense right ideal of S. In particular, if I € D(R), then
(ISNR)K D (IKNR)K D IK? and so IS € D(S).

(iii) Assume that J is an essential right ideal of S. We
set I = JN R. Let M be any nonzero right ideal of R. By
Remark 2.1.3 K is an essential right ideal of R and so M N K #
0. Then (M N K)S is a nonzero right ideal of S, since S is
semiprime and so {g(S) = 0. Then (M N K)SNJ # 0. Let
0#q=3% ki € MNK)SNJ, where k; € M N K and
g; € S. By Lemma 2.1.8, ¢;L € R for some dense right ideal
LCKofR,1=1,2,...,n. Obviously 0 # ¢L € MN(JNR)
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and so 0 # ¢LK € M N ((JNR)K). Therefore (JN R)K is an
essential right ideal of R.

Conversely, let (J N R)K be an essential right ideal of R and
let P be a nonzero right ideal of S. Choosing 0 # p € P we see
from Lemma 2.1.8 that pL. C K for some L C K, L € D(R).
Then PNR #0, (PNR)K # 0 and hence JNP D (JNR)KN
(PNR)K # 0. Thus JN P 5 0 and the proposition is proved.

Proposition 2.1.10 Let K be a dense right ideal of R and S a
subring of Qmr(R) such that K C S. Then Quy(S) = Qumr(R).

Proof. We verify the four properties of Proposition 2.1.7.
Since S C Qmr(R), (i) holds. Let ¢ € @,-(R). By Lemma 2.1.8,
qI C K for some I € D(R), I C K. According to Lemma 2.1.9,
IS € D(S) and we have ¢IS C KS C S, thus proving (ii).
Next suppose ¢J = 0 for some ¢ € Q- (R), J € D(S). By
Lemma 2.1.9(ii) (/N R)K € D(R) whence ¢ = 0 and so (iii) is
proved. Finally suppose we are given f : Jg — Ss, J € D(S).
Setting

L={z e (JNR)K | f(z) € R}

we shall show that L € D(R) and f : L —» R is a homomor-
phism of right R-modules. Note that (J N R)K € D(R) by
Lemma 2.1.9(ii). Since K C S, f is a homomorphism of right
K-modules and so by Proposition 2.1.1(vii) f is a homomor-
phism of right R-modules. It follows from Proposition 2.1.1(i)
that L = f~'((JNR)K) € D(R). Thus there exists ¢ € Q- (R)
such that f(z) = gz for all z € L. We claim that f(z) = gz
for all z € J. Indeed, by Lemma 2.1.9 LS € D(S). Clearly

LS C J and f(2) = gz for all z € LS. Given any z € J and
s € (z : LS)s we have

(f(2) — qz)s = f(Z)S —qzs = f(28) — qzs = qzs — qzs = 0.

Since (z : LS)s € D(S), we conclude that f(z) = gz for all
z € J, and (vi) has thereby been shown.
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The following result is an immediate corollary of the above
Proposition.

Theorem 2.1.11 Let R be a semiprime ring and Q = Q- (R).
Then Qm,(Q) = Q.

Corollary 2.1.12 Let R be a semiprime ring, I an ideal of R
and J = lg(I). Then Qm,(R) = Qmr(I) ® Q- (J).

Proof. By Remark 2.1.5, I & J € D(R). According to
Proposition 2.1.10, @ (R) = Q- (I @ J). Now our statement
follows from the obvious equality Qu,, (I®J) = Qumr (1) DQumr(J).

For a ring R we set
Z,(R) = {z € R| rg(z) is an essential right ideal }.
We remark that Z,(R) is called the (right) singular ideal of R .

Lemma 2.1.13 Let R be a semiprime ring, K an essential right
ideal of R and r € R. Then:

(i) (r : K)g is an essential right ideal of R;

(ii) Z.(R) 1s an ideal of R;

(iit) Z.(R) = 0 if and only if every essential right ideal is
dense;

(iv) for any subring RC S C Q- (R), Z,(R) = RN Z,(S5).

Proof. (i) Let L # 0 be a right ideal of R. If 7L = 0,
then L C (r : K) and hence 0 # L = LN (r : K). Suppose
that rL # 0. Since rL is a right ideal of R, rL N K # 0. But
rLNK = r[LN(r: K)]. Therefore LN (r : K) # 0 and
(r : K) is essential.

(ii) Let r,7, € Z.(R) and z € R. Since rg(r; — r3) 2
Tr(r1) Nrr(re) and rr(r1) N Tr(ry) is an essential right ideal,
rr(r1 — r2) is essential as well. Hence r; — 75 € Z.(R). Further
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as Tr(zxr) 2 Tr(M), zr € Z,(R). By the above result the right
ideal (z : rgr(ry)) is essential. From rg(rz) 2 (z : rgr(r1)) it
follows that ryz € Z,.(R). Therefore Z,(R) is an ideal of R.

(iii) Suppose that Z,(R) = 0. Let J be an essential right
ideal of R. Taking into account (i), we get Igr ((a : J)) = 0 for
all a € R. By Corollary 2.1.2 we then have J € D. The converse
statement follows from Proposition 2.1.1(v).

(iv) Note that rg(z) = rs(z) N R for all z € R and so by
Lemma 2.1.9 7r(z) is an essential right ideal of R if and only if
rs(z) is an essential right ideal of S. Hence Z,(R) = Z,(S)NR.

Lemma 2.1.14 Let R be a semiprime 1ing, Q@ = Qmr(R) and K
a submodule of the right R-module Q. Suppose that o : K — Q
18 @ homomorphism of right R-modules. Then:

(1) The rule &(37-, kigi) = 33, a(k:)g; where k; € K and
g; € Q defines a homomorphism of right Q-modules & : KQ —
Q;

(i1) If K is a right ideal of the ring Q, then « is a homo-
morphism of right QQ-modules.

Proof. (i) It is enough to check that & is well-defined. In-
deed, let 37, kig; = 0 where k; € K, ¢; € Q. By Lemma 2.1.8
there exists a dense right ideal L of R such that ¢;L C R for all
1. For any z € L we have

[Z a(ki)q,] =Y alk)(giz) = @ (Z k,-q,-a:) = 0.
i=1 i=1 i=1
Therefore 377, o(ki)g; = 0 and & is well-defined.

(ii) If K is a right ideal of the ring @, then & = & which
means that a is a homomorphism of right Q-modules.

Recall that a ring R is called von Neumann regular if for any
7 € R there exists an element z € R such that rzr = r. The
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following result is valid for arbitrary rings, but for simplicity we
shall prove it only for semiprime rings.

Theorem 2.1.15 Let R be a semiprime ring and @ = Q- (R).
Then the following conditions are equivalent:

(i) Q is a von Neumann regular ring;

(i) Z.(R) = 0.

Furthermore, if the above conditions are fulfilled, then @ is
an injective right R-module and QQ-module.

Proof. Setting Q = Q..-(R), we suppose that @ is von
Neumann regular. Let 0 # ¢ € Q. Then gzq = ¢ for some
z € Q. Obviously rg(zq) = ro(q) and (z¢g)? = zq. Hence
ro(zq) = (1 — 2q)Q. Since (1 — zq)Q N zqQ = 0, the right
ideal (1 — z2q)@ is not essential. Therefore Z,.(Q) = 0. By
Lemma 2.1.13, Z,(R) = 0.

Conversely, let Z.(R) = 0. Then by Lemma 2.1.13, the set
D(R) coincides with the set of all essential right ideals of R. Let
qg=1[f;J] € Q = Qm(R). We set K = ker(f). Choosing L
to be a right ideal of R maximal with respect to the properties
L C Jand LN K = 0, we note that L = gqL. One can easily
check that K + L is an essential right ideal of R and hence
K + L € D(R). Now we choose M to be a right ideal of R
maximal with respect to the property M NgL = 0. 1t is well
known that M @& gL is an essential right ideal of R. Hence
M@®qL € D(R). Define the mapping g : M@®qL — L by the rule
gim+gql)=lforallme M, € L. Clearly p = [g; M®qL] € Q
and fgf(k+1) = f(k+1) for all k € K and [ € L. Therefore
gpq = q and @ is von Neumann regular.

We show now that @ is an injective right R-module. Let
K be a submodule of the right R-module @ and o : K — @ a
homomorphism of right R-modules. According to Lemma 2.1.14
we can assume that K is a right ideal of the ring Q and « is a
homomorphism of right J-modules. Choosing L to be a right
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ideal of Q maximal with respect to the property L N K = 0,
we extend a up to homomorphism & : K + L — @ by the rule
ak+1) = alk) forall k € K,l € L. Clearly K + L is an
essential right ideal of @. Since Z,(Q)N R = Z,(R) = 0, we
infer that Z,(Q) = 0 (see Lemma 2.1.13 and Proposition 2.1.7).
Then according to Lemma 2.1.13(iii), K + L is a dense right
ideal of Q). Hence [@; K + L] € Qm-(Q). Since Qm(Q) = Q by
Theorem 2.1.11, there exists an element ¢ € ) such that & = [,
where [, is left multiplication by q. Thus we have extended the
mapping @ : K — @ up to an endomorphism of . Applying
this observation to the case K C R we conclude that Qg is an
injective module. On the other hand, applying this observation
to the case Ko C Qg we infer that ()¢ is an injective Q-module.

2.2 The Two-sided and Symmetric
Rings of Quotients

The notion of two-sided rings of quotients (in which two-sided
ideals are used) was introduced by W.S. Martindale [205] for
prime rings (and extended to semiprime rings by Amitsur [8]).
The construction of a two-sided ring of quotients is much simpler
than of the maximal ring of quotients. Since the annihilator of
any nonzero ideal of a prime ring is equal to zero, any nonzero
ideal of a prime ring is dense and so the construction of the two-
sided ring of quotients has an especially simple form for prime
rings. We proceed to describe this construction for semiprime
rings. In what follows R is a semiprime ring and

I=I(R)={I|I isanidealof R and [(I)=0}.

We note that Z is closed under products and finite intersec-
tions. We also mention that any I € 7 is dense and essential as
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a right (or left) ideal and accordingly we shall call such ideals
dense . Consider the set

T={(f; /)| J€Z, f:Jr— Rg}

and define (f; J) >~ (g; K) if there exists L C J N K such that
LeZand f=gonL Welet{f; J} denote the equivalence
class determined by (f; J) € 7. We now define addition and
multiplication of equivalence classes as follows:

{f; J}+{g: K} = {f+g KJ} (2.3)
{f; J}{9; K} = {fg; KJ} (2.4)

We will only show that multiplication is well-defined. First of all
we note that KJ € 7 whenever K,J € Z. Indeed, let rKJ =0
for some R € R. Then rK C I(J) = 0 and so rK = 0. Hence
r€l(K)=0,r=0and KJ € Z. Further g(KJ) =g(K)J C J
and so the composition fg is well-defined on KJ. If (f; Ji) ~
(f2; J2) and (g1; K1) ~ (go; K3) we may find L € Z such that
LC Ny, fi=fronLand M € T such that M C K; N Ko,
g1=gson M. Set N=ML, and let z € N. Then N € 7 and

fig1(z) = fi(91(2)) = f1(g2(2)) = fa(92(2))

(noting that g,(z) = go(z) € L). Thus (2.4) is well-defined. The
reader can readily verify that the ring axioms hold, and so our
construction is complete.

We shall denote the ring constructed above by @, = Q.(R)
and shall call it the two-sided right ring of quotients of R .

We are now in a position to characterize the two-sided ring
of quotients by its properties. First of all we note that the
mapping 7 : R — Q, given by the rule a” = {l,; R} where [, is
the left multiplication determined by a, is a monomorphism of
rings. Secondly, given ¢ = {f; J} € Q, and a € J one can easily
check that {f; J}{ls; R} = {lja); R}, i.e., ¢J7 C R?. Thirdly,
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if g={f; J} € Q- and K € T such that ¢K” = 0, then ¢ = 0.
Indeed, one sees that

{f; JHla; B} = {lj; R} =0 forall acKnJ

which means that ¢ = {f; J} = 0. Finally, for any ideal J €
and any given homomorphism f : Jg — Rg, J € Z, we have that
ga” = f(a)” where a € J, ¢ = {f; J}. We simplify matters by
replacing R by its isomorphic image R" in @, i.e., R is contained
in Q,, and summarize the four properties derived above.

Proposition 2.2.1 Let R be a semiprime ring. Then Q.(R)
satisfies:

(i) R is a subring of Qr;

(it) For all q € Q, there exists J € I such that ¢J C R;

(iii) For allq € Q, and J € Z, gJ =0 if and only if ¢ = 0;

(iv) For any ideal J € Z(R) and f : Jp = Rpg there exists
q € Qr such that f(z) =qx forallz € J;

Furthermore, properties (i)-(iv) characterize ring Q.(R) up
to isomorphism.

Proof. There remains only the last statement to prove. Let
Q be a ring satisfying (i) — (iv). For q € @, using (i) and (ii),
we define ¢* = f; J, where ¢J C R, J € Z, and f(z) = gz
for all z € J. One readily checks that o : @ — @, is a ring
homomorphism. By (iii) « is an injection and by (iv) « is
surjective, and so « is a ring isomorphism.

The next proposition describes the relation between Qy.,(R)

and Q,(R).

Proposition 2.2.2 Given a semiprime ring R, there exists a

unique ring monomorphism o : Q.(R) — Qm-(R) such that
r® =1 for allT € R. Further,

Im(o) = {q € Qm-(R) | ¢J C R for some J¢€TI}.
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Proof. Define the mapping o : @, — Qmr by the rule
{f; J}? = [f; J] for all {f; J} € Q.. It follows directly from
the definitions of ~ and ~ that o is well-defined. Obviously
r° ={l,; R} =[l,; Rl=r for all r € R. Let {f; J},{g; K} €
Q@r. Since KJ C KNJ and KJ € Z, we have

{f; Iy +{a K})° = {f+g KJ}Y =[f+g KJ]
= [f; J1+1g K]

and o is additive. Noting that KJ C g~*(J), one easily checks
that o preserve products. If {f; J}° = 0, then f(L) = 0 for
some dense right ideal L C J. Then by Remark 2.1.6 f = 0
and therefore o is a monomorphism. If ¢’ : Q,(R) = Qm(R)
is another ring monomorphism such that 77 = r for all r € R,
then for every ¢ € Q,(R) and z € (¢ : R)r we have

(¢° —¢" )z =q"2" — " z° = (qz)° — (q2)” =qz —qz =0

and so q° = ¢ for all ¢ € Q,(R) thus proving the uniqueness.
We set

Q=4{q€ Qm(R)|qJCR forsome JEe€TI}.

Clearly Im(o) C Q. Let ¢ € Q. Then ¢J C R for some J € T.
We define f : J — R by the rule f(z) = gz for all z € J.
Setting ¢' = {f; J}°, we note that ga = ¢'a for all a € J.
Applying Proposition 2.1.7(iii), we infer that ¢ = ¢’ and thus
Q = Im(o).

In what follows we shall identify @, with Q via 0. We set
Qs={q€Qm(R)|¢JUJgC R forsome JeI}.

One can easily check that @, is a subring of Q,. We shall call
it the symmetric ring of quotients of R. As noted by Passman
([236], Proposition 1.4) @, may be characterized by four prop-
erties analogous to those which characterize Q,,, (see Proposi-
tion 2.1.7).
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Proposition 2.2.3 Let R be a semiprime ring. Then Qg (R)
satisfies:

(i) R is a subring of Qs;

(ii) For all q € Q; there exists J € T such that ¢JUJq C R;

(ii2) For allq e Qs and J € I, qJ =0 (or Jg =0) if and
only if ¢ = 0;

(iv) Given J € I, f : Jp = Rg and g : rJ — gR such
that z f(y) = g(a)y for all z,y € J, there ezists ¢ € Q such that
qr = f(x), zq = g(z) for allz € J.

Furthermore, properties (i)-(iv) characterize ring Qs(R) up
to isomorphism.

Proof. We leave for the reader the straightforward verifica-
tion that Q, enjoys the properties (i) — (iv). Now assume that
@ is a ring satisfying (i) — (iv). We define a map Q@ — Qmn
by the rule ¢ — ¢ = [f; J]|, where J is given by (ii) and f is
defined by f(z) = gz for all z € J. Again by (ii) one shows
that for all a € J

[la; RILf; J] = [lafs J] = [lag; J],

i.e. ag’ € R, whence ¢’ € Q. It is straightforward to show that
g — ¢ is a ring homomorphism. That ¢ — ¢’ is an injection
follows from property (iii). Finally, given p € Q, we have pJ +
Jp C R for some J € T. We then define f : Jp — Ry by
f(z) =pz forall z € J and g : gJ — grR by g(z) = zp for all
z € J. Thus g(z)y = (zp)y = z(py) = zf(y) for all z,y € J,
and so by property (iv) there exists ¢ € @ such that gz = f(z),
zq = g(z) for all z € J. Clearly ¢ = p and so q > ¢ is
surjective. The proof of Proposition 2.2.3 is now complete.

We have defined @); as a subring of Q, C Q.. and so, more
accurately, we should have called Q) the right symmetric ring of
quotients of R. Analogously, the left symmetric ring of quotients
@, may be defined as a subring of Q; C Q,,. For ¢ € Q, we
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define ¢’ = J; g € Q,, where g = zq for all z € J. Then the
map q — ¢’ is an isomorphism of @, onto @', (the key observation
being that the map [, — 7, is a ring homomorphism if one writes
left multiplications on the left and right multiplications on the
right). Thus we are able to make the following

Remark 2.2.4 Q; = Q) (via the map defined above).

2.3 The Extended Centroid

The center of the two-sided ring of quotients plays a key role in
the definition of generalized identities. We will call the center
C = Z(Q,) of the two-sided right ring of quotients @, of a
semiprime ring R the extended centroid of R . We start our
discussion of the extended centroid with the following obvious
remark.

Remark 2.3.1 Let R be a semiprime ring. Then
Z(Qs) =C = Z(Qmr) ={q € Qur | gqr =rq forall r € R}.

Proof. If ¢ € Z(Qm,), € (¢ : R)gr and r € R, then
c(rz) =r(cx) € R,rz € (c : R)p,andso J = (c: R)pisa
dense ideal of R. Since Jc = ¢J C R, ¢ € Q; and Z(Qumr) C
Z(Qs). According to Proposition 2.1.10, Qum(Qs) = Qm-(R).
Therefore Z(Q;) C Z(Qmr) and Z(Qs) = Z(Qm-). Analogously
one can show that Z(Q,) = Z(Qm,)-

If ¢ € Qmr and gr = rq for all 7 € R, then (¢qz — zq)r =
g(zr) —xzqr = zrq —zrg =0 for all ¢ € Qmr, 7 € (z : R)r.
Thus q € C.

Given a semiprime ring R, the subring RC of Q. (R) is said
to be the central closure of R. Further, R is called centrally
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closed if it coincides with its central closure (i.e., R is a C-
subalgebra of Q).

Next we prove the following important property of the
extended centroid.

Theorem 2.3.2 Let R be a semiprime ring, @ = Qu-(R),
rUr C rQpr a subbimodule of Q and f : rRUrp — grQr @
homomorphism of bimodules. Then there exists an element A €
C such that f(u) = Mu for allu e U.

Proof. By Proposition 2.1.7, W = U N R is a nonzero ideal
of R. We set I(w) = (f(w) : R)g and V = Y, wl(w). Since
frw) =rf(w) for all r € R and w € W, we have f(rw)l(w) C
R and I(w) C I(rw). It follows that V is a left ideal of R.
Hence, being a sum of right ideals, V' is an ideal of R. Note
that f(V) = ¥ f(w)(f(w) : R) C R. Define a mapping g :
V @& rg(V) — R by the rule g(v + ') = f(v) + ¢ forallv € V,
v' € rr(V). Clearly g is a homomorphism of R-R-bimodules.
Since V @ 7r(V) € D(R), there exists an element A € @Q such
that g(z) = Az for all z € V @ rr(V). Note that

Arz = g(rz) =rg(z) =rdz forall zeVear{V), reR

Hence 7A = Ar for all 7 € R and so A € C by Remark 2.3.1.
Further, let w € U, D = (u : R)g and d € D. Then for al
7 € (f(ud) : R)r we have udr € V and :

fu)dr = f(udr) = g(udr) = Audr, (f(uw) — Au)dr = 0.

Therefore (f(u) — Au)d =0 for all d € D and so f(u) = \u for
all u € U (see Proposition 2.1.7(iii)). The proof is complete.

Now, using the above theorem and the Weak Density Theo-
rem (Theorem 1.1.5), we will prove the following result. We con-
sider Q) as a left C-module. Then Q is a right Endc(Q)-module.
Denote by Ry (R(-)) the subring of Endc(Q) generated by all
left (respectively, by all right) multiplications by elements of R
and put S = R;yR(;) C Endc(Q).
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Theorem 2.3.3 Let R be a semiprime ring, Q = Q,(R), C =

Z(Q) and q1,¢qa, - . -,q, € Q. Suppose that g1 & iy Cq;. Then
there exist an element p = Y1~ Loy, € RyRyy such that

m
qp=) aabi#0 and ¢ p=0 for j>2.
i=1
Proof. According to Theorem 2.3.2 @ is a closed right S-
module and C = End(Qg). Setting T =S, A =C and M =
N = @, we note that T is a total S-submodule of the right
S-module Hom(aM, aN) = Endc(Q). Indeed, for any 0 #
g € Q we have qT' = RqR D Rqg(q : R)p # 0. Now apply
Theorem 1.1.5.

For the convenience of the reader who is interested in the
prime ring case only we will first prove the most important
properties of the extended centroid of prime rings and then
continue the discussion of the semiprime ring case.

The extended centroid of prime rings First of all we
note that the extended centroid C of a prime ring R is a field.
Indeed, let 0 # ¢ € C. We shall show that c is invertible. Clearly
cU C R for some nonzero ideal U of R and cU is an ideal of R.
Since any nonzero ideal of R is dense and the annihilator in R
of a central element of @) is a two sided ideal, we infer from
Proposition 2.2.1(iii) that rg(c) = 0. Hence cUg = Ug and the
mapping f : ¢cU — U given by the rule f(cu) = u for allu € U
is well-defined. Letting ¢ denote the element {f; cU} € Q, we
note that ¢tr = rt for all » € R, and so by Remark 2.3.1, ¢t € C.
Obviously tcu = u for all u € U and so tc = 1.

Theorem 2.3.4 Let R be a prime ring, Q@ = Qum-(R) and a,b €

Q. Suppose that axb = bxa for all x € R. Then a and b are
C-dependent.

Proof. If a,b are C-independent, then by Theorem 2.3.3
there exists an element p = Y%, l,,;7y, € Ry R(r) such that
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d=a-p#0and b-p=0. For all r € R we have

0 = arZa,bb = Z (ara;b)b;
= i=1

m
= > (bra;a)b; =br ) a;ab; = brd
i=1 i=1
and bRd = 0. Choosing z,y € R such that 0 # bz € R and

0 # dy € R we conclude that (bz)R(dy) = 0 in contradiction to
primeness of R. Thus a, b are C-dependent.

Theorem 2.3.5 Let A be a centrally closed prime ring with
extended centroid C and let B be any C-algebra such that
rg(B) = 0 = lg(B). Then any nonzero ideal W of the ring
A ®c¢ B contains a nonzero element of the form a ® b.

Proof. Pick 0 # w € W and write w = 3.7, z; ® y; where
we may assume without loss of generality that zy,z,,. .., z, are
C-independent. We choose p = Y70, o1y, € A)A(r) satisfying
Theorem 2.3.3. Clearly ry;s # 0 for some r,s € B. Then W
contains the element

m

Y (@®r)wb:®s) =Y > axib®ry;s = Zalxlb ®ry8 # 0.

i=1 j ot

Theorem 2.3.6 Let A be a centrally closed prime ring with
extended centroid C and let A° be its opposite C-algebra. Then
A°®c A= ApAry C Endc(A) under the mapping a®b — L7y
(here we regard Endc(A) as acting from the right).

Proof. By Remark 1.2.6 the mapping 7 : A°®cA — Ay A
given by the rule }; a; ® b; = I,y is a well-defined surjective
C-algebra map. Suppose that ker(7) # 0. By Theorem 2.3.5 the
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ideal ker(7) contains a nonzero element of the form a ® b. Then
0=17(a®b) =l and aAb = A(l,7p) = 0, a contradiction to
the primeness of A. Therefore the mapping 7 is an isomorphism.

Let R be a prime ring, Q@ = Qm-(R) and a,b € Q. Suppose
that aRb = 0. Then either a = 0, or b = 0. Indeed, let a # 0
and b # 0. Then 0 # az € R and 0 # by € R for some z,y € R.
We have (az)R(by) = 0, a contradiction to the primeness of R.
Now we are in a position to prove the following generalization
of Theorem 2.3.4.

Theorem 2.3.7 Let R be a prime 1ing, @ = Qm-(R) and ¢; €
Q,1<i<n Set M =371 ,Cq. Then the following conditions
are equivalent:

(i) For all ry,79,...,7n_1 € R

Z €(0)(1)T1962)T2 - - - Tn-19o(n) = 0, (2.5)
UESn

where S, is the permutation group;
(it) dime(M) < n.

Proof. To prove that (i) implies (ii) we proceed by induc-
tion on n. The case n = 2 follows from Theorem 2.3.4. Consider
now the general case. Suppose that ¢, ¢ 7' Cq;. Then by
Theorem 2.3.3 there exists an element p = 370, l;; 7, € RuyRr)
such that

m
@GP =) 0ajgab; #0 and g¢p=0 for i<n.
j=1

Substituting in (2.5) r,_1a; in place of r,_; and multiplying by
b; from the right, we infer that
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= Z ()qcf(l)rlq'-"(2 (ZaJQU(TL )

o0ESH

= ( Z G(U)QJ(I)TI ces Tn—2Qa(n—1)) Tn—1 (Z aj‘]nbj)
i

0ESH—1

for all r,,_; € R and so

Z E(U)Qa(l)qucr(z)Tz <o Tn_2Qg(n-1) = 0
UESn—l

for all r1,75,...,7n_2 € R. Setting M' = Y7 Cgq;, we infer
from the induction hypothesis that dimg(M') < n — 1. Thus

dim¢(M) = dimc(M' +Cq,) <n—2+1 < n.

The proof that (ii) implies (i) rests on the well-known ar-
gument that the standard polynomial vanishes on dependent
vectors.

Let Q@ = Qm(R) and n > 0. An element a € Q is called
an algebraic element of degree < n over C if there exists a
polynomial h(z) = z™ + c;z" ™ + ... + ¢, € C[z] such that
h(a) = 0. We set a® = 1.

Corollary 2.3.8 Let R be a prime ring, Q@ = Qm-(R), C =
Z(Q) and a € Q. Then the following conditions are equivalent:
(i) a is an algebraic element of degree < n;
() Yoes,,, °Orea®ry .. 1y 1a°™. =0 for allr; € R.

The extended centroid of semiprime rings We begin
with the following theorem which describes the properties of the
extended centroid C' of a semiprime ring R and the local
structure of the C-module Q.. (R) as well.
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Theorem 2.3.9 Let R be a semiprime ring and @ = Qm,(R).
Then:

(i) For any subset V C Q) there ezists a unique idempotent
E(V) such that rc(V) = (1 — E(V)) C; moreover 1q(QVQ) =
(1-E(V)Q and EV)v = for allv eV,

(i1) For any subset V C Q and idempotent e € C, E(eV) =
eE(V);

(iit) C is a von Neumann regular selfinjective ring (and
hence Qm,(C) = C);

(iv) Any finitely generated submodule M = Y., Ca; of
the C-module @Q contains a finite subset of nonzero elements
{my, ma,...,my}, where k is the minimal number of generators
of M, such that M = @%_, Cm; and E(m;)E(miy1) = E(mit)
foralli=1,2,...,k—1;

(v) Any finitely generated C-submodule M of Q is projective
and injective.

Proof. (i) Letting I denote the ideal of Q@ = Q.. generated
by the subset V', we note that ro(V) = r¢(I). Put J = ro(1).
According to Remark 2.1.5, I @ J is a dense ideal of Q). Define
the mapping h : I & J — @ by the rule h(: + j) = ¢ for all
i €I, jeJ Clearlye = [hIJ € Qum(Q) = Q (see
Theorem 2.1.11), We note also that e = e and eq = ge for
all ¢ € Q. Hence e € C. We claim that r¢(I) = (1 — €)C.
Indeed, let ¢ € C be such that Ic = 0. Then ¢(1 —e)(z + j) =
cj=c(i+j)forallie I, j € J Since I @ J is a dense ideal
of @, ¢ =c¢(l —e) and ¢ € (1 —€e)C. On the other hand the
equality (1 — e)J = 0 implies that 7¢(I) 2 (1 — e)C. Therefore
re(V) =rc(I) = (1—e)C. Being an identity element of the ring
(1 —e)C, the element 1 — e (and so e) is uniquely determined.
Note that (1 —e)(/ +J) = J. Hence rg(I) = J C (1—€)Q. On
the other hand the inclusion r¢(I) 2 (1 — €)@ is obvious, since
el = I. Therefore ro(I) = (1 — €)Q.
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(ii) Let ¢ € rc(eV). Since ceV = 0, ce € r¢(V) =
(1 - E(V))C and so

c=ce+c(l—e)e(l-E(V)C+(1-e)C

and r¢(eV) C (1 — E(V))C + (1 — e)C. On the other hand
(1 - E(V))C + (1 —¢€)C C rc(eV) and hence

re(eV) = (1-E(V)C+(1-¢e)C
= 1-E(V)+1l-e—(1-E(V)1-¢))]C
= (1-eE(V))C.

Thus E(eV) = eE(V).

(iii) Let ¢ € C and I = Qc@ = Qc. Setting J = rgo(I), we
note that I ® J is a dense ideal of (). By Lemma 2.1.9, Q is a
semiprime ring. Since ¢ is a central element, ro{c) = rg(c?) and
50 cQq = ®Qq. In particular ro(c?Q) = ro(cQ) = J. Hence
c2Q@® J is a dense ideal of Q. Define the mapping f : c2Q®J —
@ by the rule f(c’q+ j) =cg+jforall g € Q, j € J. Clearly
t=[f; PQ®J] € Qum(Q) = Q and tq = ¢t for all ¢ € Q. Hence
t € C. Since cte(cqg + j) = ¢®>q = c¢(cg + j) for all cq € ¢@ and
j € J, ctc = ¢ and so C is von Neumann regular.

Now we show that C is selfinjective. Let K be an ideal of C
and f : K — C a homomorphism of C-modules. It is enough to
prove that there exists an element ¢ € C such that f(z) = cz
for all z € K. To this end we set e = 1 — F(K) and note that
K®eC is a dense ideal of C. By Zorn’s Lemma K has a maximal
subset D' of orthogonal idempotents. Setting D = D' U {e}, we
claim that r¢(D) = 0. Indeed, if r¢(D) # 0, by (i) r¢(D) =vC
for some 0 # v = v? € C. Since Dv =0 and K + eC is a dense
ideal of C, we infer that Kv # 0. Then vk # 0 and vkyvk = vk
for some k € K, y € C. Therefore w = vky € K is a nonzero
idempotent orthogonal to all idempotents in D', a contradiction
to the choice of D'. Hence r¢(D) = 0 and so by the above result
ro(@DQ) = 0, which means that L = DQ = QDQ is a dense
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ideal of Q@ and DC = D'C + eC is a dense ideal of C as well.
Clearly L = ®4cpd@. Define the mapping f' : L — @ by the
rule

/(5 o) - 5 e

where g; € @ and only a finite number of ¢;'s are nonzero.
Obviously ¢ = [f'; L] € C and f'(z) = cx forall z € L. It
follows immediately from the definition that cz = f'(z) = f(z)
for all z € D'C. For y € K, d € D' we then have f(y)d' =
f(d)y = cyd' and f(y)e = f(ye) = 0. It follows that (cy —
FW)(DC) = 0, whence f(y) = cy for all y € K, ie. Cis
selfinjective.

(iv) First of all we note that given any ¢ € @, the C-modules
Cq and CE(q) are isomorphic. Since C = CE(q)®C (1 — E(q)),
we conclude that C'q is an injective C-module.

We proceed by induction on n. The case n = 1 is obvious.
Suppose that our statement is proved for ¢ < n. Then the mod-
ule M’ = ¥27! Ca; contains a finite subset m}, mj, ..., m}, of
nonzero elements such that £’ is the the minimal number of gen-
erators of M, M' = @¥_, Cm} and E(m})E(ml,,) = E(ml,,)
foralli =1,2,...,k"— 1. From the above observation it follows
that M’ is an injective C-module and so M = M’ & N for some
C-submodule N. Since a; € M’ for all « < n — 1, we infer that
the module N is generated by the canonical projection a of a,.
We set

eg=1, e, = E(m}), m; =m]+ (e;-1 —e;)a for1 <i <K,

k= kK if ewpa=0;
Tl K+1 if epa#0. 7
me = My if k= k’;
7Y ewa if kK£K.
One can easily check that M = @, Cm; and Cm; = Ce; ®
C(ei—1 — €;)E(a). Hence mC = (e; + (ei—1 — e;)E(a)) C and
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E(m;) = e;+ (e;1 —e;) E(a). We leave it for the reader to check
that E(m;)E(miy,) = E(m;yy) foralli=1,2,...,k—1.

We show that & is the minimal number of generators of M.
It was noted above that the mapping a : Cmy — CE(my)
given by the rule ¢my — cE(mg) is an isomorphism of C-
modules. Pick P to be a maximal ideal of C' containing 1 —
E(my). Clearly E(m) ¢ P. Hence PCFE(my) # CE(my) and
so PCmy # Cmy. Since F(m;)F(mg) = F(mg), E(m;) ¢ P
for all i = 1,2,...,k. Therefore PCm,; # Cm,; for all i. Taking
into account the equality PM = &% , PCmy, we conclude that
M/PM = &f ,Cm;/Pm; and so M/PM is a k-dimensional lin-
ear space over the field C/P. Since any generating subset of the
C-module M determines a generating subset of the vector space
M/PM, we conclude that % is the minimal number of generators
of M.

(v) By the above result M = &;Cm;. Since Cm; = CFE(m;)
and CE(m;) is a projective and injective C-module, we conclude
that M is projective and injective.

Keeping the notations of Theorem 2.3.9(iv), we will call
the number %k the dimension of the C-module M and denote

it by dimg(M). The idempotents just introduced have the
following useful property.

Lemma 2.3.10 Let R be a semiprime ring, @ = Qm-(R) and
S, T subsets of Q). Then the following conditions are equivalent:
(i) SIT =0 for some I € D(R);
(ii) TQS = 0;
(ii1) E(S)T = 0;
(iv) E(T)E(S) = 0.

Proof. (i) = (ii) Consider V = TQSI. Clearly V is a
submodule of the right R-module Q and V2 = 0. Since R is a
semiprime ring and VN R is a nilpotent right ideal of R, we have
VN R =0. It follows from Proposition 2.1.7 that TQS = 0.
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(ii) = (iii) Letting I denote the ideal of @ generated by the
set S, we note that

T Clg(l) = ro(I) = (1 - B(S))Q

(see Theorem 2.3.9). It follows that E(S)T C E(T)rq(I) =0.
(iii) = (iv) By Theorem 2.3.9 we have 0 = E(E(S)T) =
E(S)E(T).
(iv) = (i) According to Theorem 2.3.9(i), E(S)S = S and
E(T)T =T. Hence

SRT = (E(S)S) A(E(T)T) = (E(S)E(T)) SRT = 0.

Using the above results, we are now able to state and prove
the analog of Theorem 2.3.4 for semiprime rings.

Theorem 2.3.11 Let R be a semiprime ring, Q@ = Qm-(R),
a,b € @ and e = E(a)E(b). Suppose that azb = bza for all
x € R. Then there exists an invertible element ¢ € C such that
ea = ceb.

Proof. Without loss of generality we can assume that e # 0.
Suppose that ea ¢ (eb)C. By Theorem 2.3.3 there exists an
element p = 37, l,,7, € RyyR(r) such that d = (ea)-p # 0 and
(eb) - p = 0. Note that eazeb = e(azb) = ebzea for all z € R.
Further for all € R we have '

0 = eary_ aebb; =) (eara;eb)b;
i=1 im1

= Z(eb’raiea)bi = ebr }:aieabi = ebrd
i=1 i=1
and ebRd = 0. Then E(eb)d = 0 by Lemma 2.3.10(iii). On the
other hand E(eb) = eE(b) = e by Theorem 2.3.9(ii). Hence

O=ed=¢e) aeab; =) ae’ab; =) aeab; =d,

=1 i=1 i=1
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a contradiction to d # 0. Therefore ea € (eb)C and ea = 'eb for
some ¢ € C. Since E(ea) = e and r¢(ea) 2 re(c'), we conclude
that

(1-e)(1-E()=1-E(), and eE()=c¢e

and so F(ec') = e. It follows that rc(ec + 1 —e) = 0. Since C
is von Neumann regular, ¢ = ec’ + 1 — ¢ is invertible. Clearly
ceb = c'eb = ea.

Corollary 2.3.12 Let R be a semiprime ring with extended cen-
troid C and v =v?> € R. Set C, = {¢c € C | cv € R}. Then
Z(wRv) = Cyv. In particular, if R is centrally closed, then
Z(wRv) = Cv.

Proof. Obviously C,v C Z(vRv). Let d € Z(vRv). Then
vd = dand r¢(d) 2 re(v). 1t follows that e = E(d)E(v) = E(d).
For any z € R we have vazd = (vzv)d = d(vzv) = dzv and so by
Theorem 2.3.11 d = ed = cev for some invertible element ¢ € C.
Therefore d € Cyv and Z(vRv) = Cyv.

Theorem 2.3.13 Let A be a centrally closed semiprime ring
with extended centroid C and let A° be its opposite C-algebra.
Then A°@cA = ApyAqy C Endc(A) under the mapping a®b —
la'rb-

Proof. By Remark 1.2.6 the mapping 7 : A°®cA — ApA(r
given by the rule >;a; ® b; — ;1 is a well-defined surjec-
tive C-algebra map. Suppose that 0 # >, a; ® b; € ker(7).
Consider the C-submodule M = 7', Ca;. By Theorem 2.3.9
M = &7 ,Cd; for some dy,dy, . ..,dn € M. Since all a;’s are lin-
ear combinations of d;’s with coeflicients in C, we can assume
without loss of generality that M = @] ;Cqa;. Furthermore,
since

a; @ b; = (a;:E(a:)) ® (E(b:)b;) = (E(b;)as) ® (E(a:)bs),
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we can also assume that E(a;) = E(b;) (see Theorem 2.3.9(ii)).
By Theorem 2.3.3 there exists an element p = j_; lu, 7o, €
A(l)A(T) such that

t
mp=Y upaivx #0 and ap=0 for i>2.
k=1
The inclusion ¥°;a; ® b; € ker(7) is equivalent to the equality
Yia;xh; = 0 for all x € A. Substituting vgz instead of z and
multiplying by uy from the left the above equality, we infer that

t n
=Y ugaupzh; =Y (Z ukaivk> zb; = (D urayvi)zby
k=1i=1 i \k k

for all z € A. Taking into account that E(b;) = E(a;) and
E(a1)a; = a;, we infer from Lemma 2.3.10 that

0= E(bl) Z U A1V = Z uk b1 a1 Vg = Z Uk A1 Vg
k

a contradiction to Y uxa v # 0. The proof is complete.

We close this section with the following useful result due to
S. Montgomery [230].

Proposition 2.3.14 Let R be a semiprime (prime) ring, Q =
Qs(R), 0 £ e2 =e € Q and A = eQenNR. Then A is a
semiprime (respectively, prime) ring and eQe = Q;(A).

Proof. Pick I € Z(R) such that eJUle C R. Letting J = I?
we note that eJe C R and so eJe C A. Suppose that ada = 0
for some a € A. In particular aeJea = 0. Since ae = a = eq,
aJa = 0 and hence (aJ)? = 0. As R is semiprime, we conclude
that aJ = 0 and so @ = 0. Therefore A4 is semiprime. Suppose
now that R is prime and aAb = 0 for some a,b € A. Then again
aJb =0 and hence (bRaJ)? = 0. It follows that bRa = 0 and so
either a = 0, or b = 0. Hence A is prime.
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We claim that if eqele =0, ¢ € Q, I € I(R), then ege = 0.
Indeed, by Lemma 2.3.10 we have ege = eqgeE(e) = 0. As a
corollary we see that if I € Z(R) such that ele C R, then ele C
I(A). Indeed, suppose (eqe)(ele) = 0 for ege € A. Then by the
above claim we have eqe = 0, which shows that l4(ele) =0, i.e.,
ele € I(A).

We now proceed to show that eQe = Q,;(A) by verifying
the four properties (i) — (iv) of Proposition 2.2.3. Clearly A C
eQe. Next, given eqe € eQe, let I € Z(R) be such that el, Ie,
egel, Iege are contained in R. Setting J = I?, we see from the
preceding paragraph that eJe € Z(A), and it is also clear that
(eqe)(eJe), (eJe)(ege) are contained in A, thus proving (ii).
Now suppose eqge K = 0 for some K € Z(A) and 0 # ege € eQe.
Pick I € Z(R) such that eI C R and Iege C R and set J = I
By the above claim 0 # eJeqe C A. Thus eJeqeK = 0, a
contradiction to K € Z(A), and so eqe = 0 and (iii) is proved.

To prove (iv) we are given mappings f : K4 — Aa, ¢ :
4K — 4A, K € T(A), such that zf(y) = g(z)y for all z,y € K.
Our task is to find an element ege € eQe for which f(z) = eqgex
and g(z) = zege for all z € K. Again letting J = I?, where
I € I(R) such that el, Ie are contained in R, we set U = JKJ,
V = rg(U) and note that U + V € I(R). We define a map
F:U+V — R by the rule:

Zaikibz- +v—= Zf(eaiki)bi, ki € K, ai,b(z') € J, veV

(using the fact that eak; = (ea;e)k; € AK C K). To prove
that F' is well-defined suppose that Y. a;k;b; = 0 and set z =
- f(ea;k;)b;. On the one hand zE(e) = 5 f(eask;)ebE(e) = z.
On the other hand, for all reR,

zre = Y fleask;)(ebire) = Zf(eaikibire)
= f (6 [Z aikibi] 7‘6) = 0.

By Lemma 2.3.10 zE(e) = 0 and so z = 0. Clearly F is a right
R-module map and so there is an element ¢ € @, such that
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g(u+v) = F(u+v),u €U, v €V. In particular gak = f(eak),
a€J, ke K,andqu=0,veV.

From ¢V = 0 it is easy to see that Vq = 0. From JKJV =0
we first obtain KJV = 0, whence from Lemma 2.3.10 we see
that Ke’ = 0, where ¢ = E(V). Suppose ee’ # 0. Choose
I € Z(R) such that ee'I, Iee’ are contained in R and set L = I2.
Then ee’L # 0 and so 0 # ee'Lee’ C A. But Kee'Lee' = 0, in
contradiction to K € Z(A), and so ee’ = 0, and with it eV = 0.

Next, for k,l € K, a,b € J, we see that
kagbl = kaf(ebl) = kaef(ebl) = g(kae)ebl = g(kae)bl.

Thus [kag — g(kae))bl = 0 and, from the preceding paragraph,
we then have [kagq — g(kae)|(U + V) = 0, whence kag = g(kae).
Therefore g € Q);. Then from

laf (k) = laef(k) = g(lae)k = lagk

we see that U[f(k) — gk] = 0 and, in view of the preceding
paragraph, that (U + V)[f(k) — ¢k} = 0. Thus f(k) = gk, from
which it follows that f(k) = kege for all k € K. Similarly, one
shows that g(k) = kege for all k € K, and the proof is complete.

The most important properties of the extended centroid of
prime rings and its key role in the definition of generalized
identities of prime rings were discovered by W. S. Martindale
[205]. Theorem 2.3.4 and Theorem 2.3.6 are taken from [205]
(see also [214]). Regularity of extended centroids of semiprime
rings was proved by S. Amitsur [8]. Other properties of extended
centroids of semiprime rings were proved by K. I. Beidar [21].
Theorem 2.3.7 was proved in the more general situation of prime
(not necessarily associative) Q-rings by Yu. P. Razmyslov [247].
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2.4 Rings of Quotients of
Coproducts

Let A = A, [[x Ay be the coproduct of algebras A, and A, with
1 over a field K, with each dimg(A;) > 1. By Corollary 1.4.11
we know that A is a prime ring. It is our purpose in the present
section to prove that if each dimg(A;) > 2 and at least one
A; is a domain, then Q;(A) = A, i.e., A is equal to its own
symmetric ring of quotients. This is a special case of far more
general results but is the only result needed in this book (§7.4).
For more general coproducts R = R; [[5 B2, where R; and R,
are so-called A-rings with 1 over a division ring A, Q,(R) has
also been determined (see [217], also [190], [215], [216], [223]).
For the time being we assume that A = A; [I1x A2, A; and
A, with 1 over a field K, with each dimg(A4;) > 2. We shall
use the terminology and lemmas developed in section 1.4 and
suggest the reader reacquaint himself with these matters. We
let @ = Q;(A) denote the symmetric ring of quotients of A.
We fix a nonzero ideal I of A and let

Qr={qeQ| g+ 1IqC A}

Next we fix a € I such that a is 0-pure of even height n = |a| > 0
and thus we may write a = a1z +ay. For ¢ € Q;, we let b, = qa
and ¢; = ag (when the context is clear we will sometimes write
b = by and ¢ = ¢;). We have immediately the simple relationship

cqa = aby, g€ Q. (2.6)

Since a is 0-pure of even height it follows easily from (2.6) and
Lemma 1.4.10 that |b;| = |cq] = mgy. Clearly b, is O-pure if
and only if ¢, is 0-pure, and b, is (%, j)-pure if and only if ¢, is
(1, j)-pure.

Lemma 2.4.1 If q € Q; is such that my < n, then ¢ = 0.
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Proof. If ¢ # 0, choose r € I such that 0 # rq € A.
Therefore rqa # 0 (since a is 0-pure), whence b = ga # 0.
We write b = by; + by, whence without loss of generality we
may assume by; # 0 (mod H™ '), where m = m,. Now choose
y',y" € A, such that v’ and y” are K-independent mod H® (this
is possible since dimg(Az) > 2). Setting ¢ = ay'q € A, we see
from (ay'q)a = ay'(qa) that

da = ay'b. (2.7)

It follows from (2.7) that |¢| = m + 1, and examination of the
(2, j)-component of (2.7) yields

Cl2jajlj = a91y'by; (mod H™™).

By Lemma 1.4.9 (we are assuming m + 1 < n) there exists
ej € Hj",fm‘l such that aj; = e;19'by; (mod H™ ). Similarly
there exists f;, such that a;;; = fj1y"by;. It follows that e;ny’ =
finy". By Remark 1.4.8 we see in particular that e;;; = 0 (since
y', y" are K-independent mod H®). This forces the contradiction
aj; =0 and the lemma is proved.

Lemma 2.4.2 If q € Qy is such that myq > n, then there exists
T € A such that my_, < mg =m.

Proof. Welet b = b, and write b = by;j+byj (possibly by; =0
or by = 0). Likewise we have ¢ = ¢; = ¢1; + ¢p5. Examination
of the (7, 7)-component of ca = ab shows that

C15Qj5 = amblj. (28)

Applying Lemma 1.4.9 to (2.8), we see in particular that by; =
eyja;j (mod H™1) for some ey; € H}™". In exactly the same
fashion byjy = fojra;y for suitable fo; € Hyn™. Setting r =
e1j + faj» we have

(g—r)a = b~ra=by+by — (er; + foy)(ajj + aj;)
= (blj — eljaj:j) + (bgjl — fgj:aj:j) =0 (modH"‘_l).
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In other words my—, < m and the lemma, is proved.

Lemma 2.4.3 If ¢ € Qp is such that mqy = m and i is given,
then there exist A\, i € K such that (g — \)a = payy

Proof. We write b = by = by; + bojr, ¢ = ¢, = €15 + Coyr- We
may assume that by # 0. From (2.8) we obtain c1pa12 = a12b12
and application of Lemma 1.4.9 yields by, = aa; for some « €
K. Suppose by; = 0. Then

(g —a)a=b— aa = by —ala + a2) = —aag.

Also ga = b = bjy = wayp. Suppose that by # 0, and hence
by1 = fBasg, for some 3 € K. Then

(g —a)a=b—aa= by + by — aaiz — aay = (B8 — a)ay.
On the other hand
(g — B)a=b— Ba = by + by — Parz — fag = (a — Bare.

The four cases just discussed show that the lemma has been
proved.

With these lemmas to draw on we are now in a position to
prove

Theorem 2.4.4 Let A = A; [[x A, be the coproduct of algebras
Ay and A, with 1 over a field K, with each dimg(A4;) > 2 and
at least one of the A;’s a domain. Then Q,(A) = A.

Proof. We may assume that A; is a domain. Suppose there
exists ¢ € @ such that ¢ € A. We have qf + Iq C A for
some nonzero ideal I of A, and we fix a € I, a 0-pure of even
height n. Repeated application of Lemma 2.4.2 (if necessary)
together with Lemma 2.4.1 shows that we may assume without



86 CHAPTER 2. RINGS OF QUOTIENTS

loss of generality that m,; = n, whence by Lemma 2.4.3 we may
assume that ga = paj2, p € K. In fact we may furthermore
assume that ga = a2 (just replace g by p~!q). It then follows
from (2.6) that also ag = a;s.

We claim now that A, = K& T; where Ty = {z € A, |z¢ =
0}. Indeed, for z € A, we see immediately that |zga| = |zas| <
n. In case |zqa] < n the by Lemma 2.4.1 zg = 0 and we are
finished. If |zga| = n then by Lemma 2.4.3 there exist o, € K
such that (zg — o)a = Ba;2 = Bqa, ie., (z¢ — a — fg)a =
0 (mod H*!). By Lemma 2.4.1 again zq — o — B¢ = 0, ie,
(z—0B)g =a Ifa#0, weset zg =a '(z— ) and note
that zo¢ = 1. From this we obtain a contradiction a = zqqa =
Zoay2 + ... (just compare the (2,1)-components of both sides).
Therefore we are left with & = 0 and accordingly (z — 3)g = 0.
This places x — 3 € T}, and so we have shown that A, = K ®T.

We next claim that Ay = K@ Ts, where T = {z € A; | gz =
z}. Indeed, since

a(l —q) =a—aq = a2 + ag — a1z = ag,

the obvious analogue of the preceding claim may be invoked,
with 1 — g playing the role of q.

Since dimg (A;) > 2 and A; = K@®T;, T # 0. Choose t; # 0
in 77 and let ¢, € T5. We see that 0 = ¢;qt, = t;t and by our
assumption that A; is a domain we conclude that 7, = 0. We
therefore reach the contradiction that A; = K and the theorem
is proved.

2.5 Derivations and (Anti)automor-
phisms

Let R be a semiprime ring. We set Qmr = Qmr(R), Qr = Q-(R)
and Q; = Qs(R)-
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Proposition 2.5.1 Any derivation § of a semiprime ring R can
be extended uniquely to a derivation of Qn, (we shall let 6 also
denote its extension to Qny). Furthermore Q2 C @, and Q% C
Qs-

Proof. Given any dense right ideal K of R, we set K; =
Ssex (z? : K)gr. Clearly K; C K is a right ideal of R and
(K;)° € K. We claim that Kj is a dense right ideal of R.
Indeed, let u,v € R and u # 0. Since K is a dense right ideal
of R, vr € K and ur # 0 for some r € R. As we already know
((vr)® : K)g is a dense right ideal of R. Therefore urr’ # 0
for some 7' € ((vr)® : K)g (see Proposition 2.1.1). Clearly
vrr’ € K and so our claim is proved.

Let ¢ € Qmr. Then ¢J C R for some J € D(R). We define
f : J; = R by the rule f(z) = (qz)° — ¢q2° for all z € J;. For
r € R, a € Js we have

flar) = (gar)’ - q(ar)’ = ((ga)r)’ — g(ar)’
= (ga)’r + (ga)r® — gar® — qa’r = f(a)r.
Therefore [f; J5] € Qm, and we define ¢ = [f; J;]. Hence

q® € Qumr, and so § has been extended uniquely to an element §
of Endz(Qm.) such that

¢’a = (ga)’ — qd’, (qa)’ = Pa+qa® forall acJs. (2.9)

Note that ¢°J; C R.

Let p,g € Qm,- By Lemma 2.1.8 there exist dense right
ideals J, I of R such that pJ,qJ,pgJ C R, I C J; and qI C J;
as well. Then according to (2.9) we have

(p9)’z = (pgz)’ — paz’ = p’(gz) + p(gz)® — pgz’
= (PPq+pd)z
for all z € I. Hence [(pq)® — p’q — pg®]z = 0 and so by Propo-

sition 2.1.7 we have (pq)? — p®q — pg® = 0. Therefore ¢ is a
derivation of Q.
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Now let ¢ € Q.. Then ¢I C R for some dense ideal I of
R. Clearly (I?)° C I. Letting J denote I%, we conclude that
¢®J C (¢gJ)* +¢qJ° C Rand so ¢’ € Q.

Given any ¢ € Q,, we have g + Iq € R for some dense ideal
I of R. We already know that ¢° € Q,. Again for J = I? we
infer that J¢® C (Jq)® + J%q C R and thus ¢° € @,. The proof
is complete.

Let Q € {Qmr, Qr, @s}. Proposition 2.5.1 enables us to
regard Der(R) as a Lie subring of Endz(Q) where 2 is the ring
of integers. We may also regard C' as contained in Endz(Q) via
the multiplication z — cz. Endz(Q) becomes a C-ring accord-
ing to 2% = czt, z € Q, t € Endz(Q), c € C. If § € Der(Q),
c € C,and z,y € @, then

(avy)‘5C = c(xy)‘5 = cx5y + cxy® = x‘s"y + xy‘s"

and so dc € Der(Q). Thus Der(Q) is a submodule of the
right C-module Endz(Q) and in particular (Der(R))C is a C-
submodule of Der(Q). It is important to point out that in
general ¢ € C does not commute with § € Der(Q), but we do
have the commutation formula

s =6bc+c, ceC, §e Der(R). (2.10)

We let D; = D;(R) denote the inner derivations of @, i.e., all
derivations of @) of the form ad(q), ¢ € Q. This is a (possibly)
larger set of derivations than the set of X-inner derivations of
R (so named by S. Montgomery in honor of Kharchenko), the
latter being those of the form ad(g) where [R, q] C R.

Remark 2.5.2 Let ¢ € Quy be such that ad(q) is an X-inner
derivation of R. Then q € @,.

Proof. Let J = (¢ : R)g. Since [R, g],¢J C R, Jg C
R as well. Hence RJqg C R. Letting I denote RJ, we note



2.5. DERIVATIONS AND (ANTI)AUTOMORPHISMS 89

that [g(I) = 0 and so I € Z(R) (see Proposition 2.1.1 and
Remark 2.1.4). Further, again since Iq,[R, ¢ C R, ¢l C R as
well and so ¢ € Q.

Note that D; is a Lie ideal of Der(Q), and in fact we have
the specific formula:

lad(q), 8] = ad(¢"). (2.11)
The Lie ring in which we are primarily interested is
D = D(R) = Der(R)C + D;.

If R is a prime ring and @ is the prime subfield of C, then D is
a Lie algebra over .

We now turn our attention to the set of all automorphisms
and antiautomorphisms of a semiprime ring R. This set forms a

group under composition of mappings and we denote this group
by G = G(R).

Proposition 2.5.3 Any automorphism o of a semiprime ring
R can be extended uniquely to an automorphism of Qu, (we shall
let o also denote its extension to Q). Furthermore Q% = Q-

and Q7 = Qs.

Proof. Let ¢ € Qmr. Then gJ C R for some dense right
ideal J of R. Setting I = J?, we note that I is a dense right
ideal of R. Define f : I — R by the rule f(z) = (gz° )° for all
z € I. Then for r € R we have

f(ar) = (a(zr)”)" = ((gz" )r")” = (g2 ) = f(a)r

and so [f; I] € Qmr. We define ¢° = [f; I]. Clearly the mapping
0 : Qmr — Qm, is additive, and so ¢ has been extended uniquely
to an element o of Endz(Q.,,) such that

¢°z° = (qz)? forall ze J (2.12)
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Note that ¢°J C R.

Let now p,q¢ € Qm,. By Lemma 2.1.8 ¢J C (p : R)g for
some dense right ideal J of R. It follows from (2.12) that for
x € J we have

(pq)axa — (pqx)a — (p(qx))a — pa(qx)a — paqaxa

and so (pq)? = p?¢°. Therefore o is an endomorphism of Q.
Applying the above argument to o~!, we conclude that o is
invertible and so an automorphism of Q. Obviously Q¢ = @,

and Q7 = Q,.

Proposition 2.5.4 Any antiautomorphism o of a semiprime
ring R can be extended uniquely to an antiautomorphism of Q =

Qs (and thus we have G(R) C G(Q)).

Proof. Let ¢ € Q. Then ¢J+ Jg C R for some dense ideal J
of R. Note that I = J? is a dense ideal of R as well. We define
f: I — R by the rule f(z) = (z7 '¢)°. It is easy to check that
f is a homomorphism of right R-modules and so {f; I} € Q,.
We set ¢° = {f; I} and note that

¢°z° = (zq)? forall ze€J
Further, for all a,b € J we have
aO'qO'bO' — aa’(bq)d — (bqa')a' — (qa)dba'

and so (gqa)’ = a%’. It follows that ¢° € @, and hence
o Qs = Qs. Clearly o is an additive mapping. Let now
p,q € Q. Choose a dense ideal J of R such that Jp, pJ, Jq,
qJ, Jpq, pqgJ are all contained in R and let I = J%. Then
Iq,ql,Ip,pI C J. For all z € I we have

(pq)’z° = (zpq)° = ¢°(zp)° = ¢°p°2°,
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which implies that (pg)? = ¢°p°. Now it is clear that o is an
antiautomorphism of Q).

We let G; = G;(R) be the set of all automorphisms o of R
for which there exists an invertible element ¢ € @,,, such that
r? = t~!rt for all r € R (i.e., 0 = inn(t)). It is easy to see that
in fact t € @)s. Following S. Montgomery such automorphism is
called X-inner and the element ¢ is called a normalizing element
for R. Clearly G; is a normal subgroup of G and includes the
ordinary inner automorphisms of R.

In Chapter 7 certain mappings involving derivations, auto-
morphisms, and antiautomorphisms will be very useful in induc-
tion arguments, and we now describe some of them.

Consider the ring Q° ®z @, the tensor product of Q =
Qm-(R) and its opposite ring Q° over the integers Z, and the
ring Endz(Q). For any € € Endz(Q) the mapping of Q° ®z Q
into Q° ®z Q given by a ® b — af ® b is always well-defined.
Further for 8 = 37, 2;®y; € Q°®2z( we denote the image under
this map by §¢. The mapping z — 3, z;zy;, € Q is also well-
defined and we denote the image under this mapping by z - 3.
Clearly @ is a right Q° ®z Q-module under the multiplication
z-0,z€Q,0€Q°®zQ.

We will often be interested in cutting down the domain of
mappings to subsets Ny ; of Q° ®z Q defined as follows: given
I € I(R), J € D(R), Ni,y is the subring of Q° ®z Q generated
by all elements of the form r ® 7/, where r € I, 7’ € J. In case
I =J € ZI(R) welet Ny = Ny;. We remark that Ny is always
an ideal of N = N and N; ; is always a right ideal of V.

Remark 2.5.5 Let R be a semiprime ring with extended cen-
troid C, Q = Qmr(R), I a dense ideal of R and ¢q1,¢s,-..,q, €

Q. Suppose that ¢y & Y7o Cq;. Then there exists § € Ny such
that

- B#0 but ¢-B=0 forall i=2,3,...,n
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Proof. By Proposition 2.1.10, Qm-(I) = Q. Now applying
Theorem 2.3.3 (with I instead of R), we complete the proof.

Of particular interest to us is the situation where ¢ = o, an
element of G = G(R) (especially when ¢ € Aut(R)), or € = 6,
an element of D = D(R).

For 0 € Aut(R) the map 8 — f° is a ring homomorphism.

Ford € Dandy € @, and 8 € Q°®zQ we have the following
formulas whose straightforward verification will be left to the
reader.

If v = Bly®1), then 7 =F¥®1)+pH(y 1)
If v = B(1®y), then ~°=p(1®y). (2.13)
Associated with each element o € Aut(R) is the set

M, ={s€Qu |rs=sr forall re R}

Clearly M, is a C-submodule of Q. It is called the conjugation
module of o . If T € Aut(R), then one can easily prove that

M, M, = M,,. (2.14)

We next note that
M, C Q. (2.15)

Indeed, let 0 #£ t € M,. We have tI C R where I = (¢t : R)g.
Clearly I°'t = ¢tI C R and so for J = RI°”" we have Jt C R
and J € Z(R). Now from Jt = tJ? we conclude that ¢ € Qs.

Another characterization of M, for prime rings is given in
the following

Lemma 2.5.6 Let R be a prime ring, ¢ € Aut(R) and Q = Q;.
Then

M, = {s € Q| s is invertible in Q and o = inn(s)} U {0}.
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Proof. It is immediate that M, contains the right side of
the above equation. Let 0 # s € M,. By (2.15) there exists
a dense ideal K of R such that Ks + sK C R. We next note
that sK is an ideal of R since rsK = sr?K for all r € R. The
mapping f : sK — R given by sk — k is well-defined since if
sk = 0, then 0 = rsk = sr?k for all r € R which implies that
k = 0. Clearly f is a right R-module map and thus determines
an element ¢ € @, such that gsk = k for all £k € K. It follows
that ¢s = 1, and from sqsk = sk for all sk € sK we see that
s¢ = 1 and so s is invertible in ),. From the definition of
s we then have s7lrs = r° and s7!r = r9s7! for all 7 € R.
Substituting r = a° ', we obtain as™! = s7'a® " for all a € R,
i.e. s7! € M,-1. Hence from (2.15) we infer that s™! € Q and
so s is invertible in . The proof is complete.

Corollary 2.5.7 Let R be a prime ring and 0 € Aut(R). Then
M, #0 if and only if 0 € G;.

Remark 2.5.8 Ifo =1, then M, =C.

Now we generalize the notion of C-independence as follows:
Let ¢1,92,---,qn € Qms and 01,09,...,0, € Aut(R). Then

q: is said to be left dependent on ¢s,qs,...,q, r€ 01,02,...,0,
ifg € Yo Ma_l—la_i(h (forn=1¢q; =0).
Equivalently, ¢, is left independent of ¢o, ..., g, re 01,...,0n

if g1 & 27 M,-1,.q; with ¢ # 0 in case n = 1.

In view of the preceding remark, if each o; = 1, then the
notion of left independence coincides with C-independence. We
now prove a useful ”weak density” result for left independence
due to Kharchenko.

Theorem 2.5.9 Let R be a semiprime ring, Q = Qm-(R), I €
I(R), J € D(R) and let q; be left independent of q3,qs, ..., ¢n
TE 01,02,...,0, Where ¢; € Q, 0; € Aut(R). Then there exists
B € Np,j such that ¢y - 57 # 0 and ¢; - 3% =0 for all i > 2.
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Proof. The proof is by induction on n. The result is clear
for n = 1 since I7'¢q;J # 0. We now assume the result true
for n — 1 and prove it for n. We suppose it is not true for n.
By Lemma 2.1.8 there exists L € D(R) such that L C J and
¢LC Rforalli=1,2,...,n. Welet N'= Ny and set

B={feN|q¢-%=0 for i=2,3,...,n—1}

(in case n = 2, we just set B = N’). It is easy to see that B is
a right ideal of the ring R° ® R. Hence K = {¢, - °~ | § € B}
(which lies in R since ¢,L C R) is an ideal of R (since it is
a subbimodule of the right R° ® R-module R). Suppose that
K = 0. Applying the induction assumption to q;,¢2,...,qn-1,
we find an element 8 € N’ such that ¢, - 8°' #0and ¢;- 8% =0
forall: =2,3,...,n—1. Clearly § € B. Hence ¢, - 8°* = 0 and
- our statement is proved. Therefore we may assume that K # 0.
Now we define f : K — R by the rule ¢, - 8°* — ¢, - 5°*, 8 € B.
By our assumption that the theorem is not true we see that f
is well-defined. Clearly f is a right R-module homomorphism.
By Proposition 2.2.2 there exists an element ¢t € (), such that
f(z) = tz for all z € K. This means that t(g, - 67) = ¢; - B
for all B € B. Now let 8 =3 ;1; ®y; € B and r € R. Setting
v = B(r ® 1), we note that v € B. We have

tr(gn - B7) = Yo tr7aMany; = ) t(rz;) " gy
J J

= t{ga- V) =q 7" =D (rz)) quy;

J
= Yrmef ay; =" g ) =17t (gn - 67)
J

and hence (tro —r918)k = O for all k € K, i.e., (tr°1 o»—rt)K =
Oforallr € R. Settinge = E(K) and U = rg(K), we recall from
Theorem 2.3.9 that eU = 0. Therefore (ter"l_l"" —rte)(K+U) =
0, whence ter®s °» — rte = 0 since K + U € Z(R). It follows
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that s = te € M-, . Since ke = k for all k € K, sk =tk =
f(k). Now ¢; — s¢, must be left independent of ¢z, g3, ..., gn_1 re
01,02, ..., 0n_1 Since otherwise g1 —sgn € X775 M1, g;, that is,
@1 € Yo Ma'l—la'.'q‘i’ a contradiction to the originalml hypothesis.
By our induction hypothesis again, this time applied to ¢; —
SQn, Q2. .. ,Qn_1 Y€ 01,09,...,0,_1 there exists # € B such that
(@1—5¢»)-B°* # 0. But on the other hand, writing 8 = }_; z,;®y;,
we have

(S(Zn) B0 = nglsqnyj — st;nqnyj — S(Qn . ﬂo'n.) =q, - 7

and thus we have the contradiction (¢, — sg,) - 8°* = 0. The
theorem is thereby proved.
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Chapter 3

The Method of
Orthogonal Completions

Our goal in this chapter is to describe the method of orthogonal
completions (see [25], [33], [32], [35], and [228]). In the study of
semiprime rings it turns out to be useful if one can reduce the
problem to the case of prime rings. However, directly factoring
a semiprime ring by a prime ideal turns out to be ineffective in
certain cases. For example, it is known (special case of Theo-
rem 6.4.4) that every polynomial identity of a prime ring R is an
identity of its maximal right ring of quotients @m-(R). It is nat-
ural to try to prove an analogous result for semiprime rings. The
direct reduction to the case of prime rings is difficult here, since,
in general, there is no homomorphism Qmr(R) = Qm-(R/P) for
a prime ideal P of R.

Similar difficulties arise in considering.a number of other
questions connected with the maximal right ring of quotients of
semiprime rings, in the study of semiprime rings with involution
or in the study of derivations of semiprime rings. As we shall
show, many of this difficulties of reducing the ” semiprime case”
to the " prime case” can be successfully overcome by the method
of orthogonal completions.

97
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3.1 Basic Notions and Constructions

In what follows C will be a von Neumann regular selfinjective
commutative ring with 1. Clearly @y,,(C) = C and so

TC(T) = (1 - E(T))C

for any subset T C C by Theorem 2.3.9. A unital right C-
module N is called nonsingular if for any element 0 # z € N its
right annihilator ro(z) is not essential.

Lemma 3.1.1 Let N be a right C-module. Then the following
conditions are equivalent:

(i) N is nonsingular;

(ii) For any subset T C N there exists a unique idempotent
E(T) € C such that rc(T) = (1 — E(T))C;

(i11) E(Te) = E(T)e for any subset T C N ande =¢e* € C.

Proof. (i) = (ii) Let T C N. Setting e = E(r¢(T)),
we note that I = (1 — €)C + r¢(T) is a dense ideal of C by
Remark 2.1.5. Since Tel = 0, it follows from our assumptions
that Te = 0 and so e € r¢(T). On the other hand ec = ¢ for all
¢ € r¢(T) by Theorem 2.3.9(i). Therefore r¢(T) = eC and (ii)
is proved. From (ii) it follows that r¢(z) = (1 — E(z))C for all
z € N. Hence if z # 0, then r¢(z) is not essential for and so

N is nonsingular. The last statement is proved analogously to
Theorem 2.3.9(ii).

The criteria of Lemma 3.1.1 yields two corollaries. The first
one follows directly from Theorem 2.3.9.

Corollary 3.1.2 Let R be a semiprime ring. Then Qn,(R) is
a nonsingular module over its center C.

Corollary 3.1.3 Let R be a semiprime ring, Q = Qm-(R) and
D = Der(Q). Then D is a nonsingular right C-module.
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Proof. Let d € D. Then r¢(d) = r¢(Q%) = (1 — E(Q%))C
which completes the proof.

Applying the same arguments as in the proof of the Theo-
rem 2.3.9(iv), one can prove the following

Remark 3.1.4 Let N be a nonsingular right C-module, M =
Yir,a:C a finitely generated submodule of N and let k be the
minimal number of generators of M. Then there exist elements
my,...,my € M such that M = &% m;C and E(m;)E(m;4,) =
E(m,,,_l) foralli=1,...,k—1.

We set
B=B(C)={e€C|e*=¢e}.

A convenient partial ordering of B is given as follows: fore, f €
Be< fife=ef. Clearlye < fifandonlyifl—e>1- f.
A subset U C B is called dense if r¢(U) = 0 (i.e., E(U) = 1).
Further, a subset U is said to be orthogonal if uv = 0 for all
u # v € U. We note that for any dense orthogonal subsets
U,V C B the subset

UV={w|uel, veV} (3.1)
is dense orthogonal as well.

Remark 3.1.5 Let T be a subset of B such that €T C T for
any e € B, and let V be a mazimal orthogonal subset of T.

Then U = V U {1 — E(T)} is a dense orthogonal subset of B
and E(V) = E(T).

Proof. Clearly U is an orthogonal subset of B. Suppose
that 0 # e? = e € r¢(U). Since e(1 — E(T)) = 0 and r¢(T) =
(1 — E(T))C, we have €T # 0 and so et # 0 for some ¢t € T.
By assumption et € T. Then V U {et} is an orthogonal subset
of T. By the maximality of V' we conclude that et € V and so
0 = (et)e = et, a contradiction.
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We set e = E(V). Since r¢(V) D r¢(T), we infer that
eE(T) =e. Clearly U(1 — e)E(T) = 0. By the density of U we
conclude that (1 — e)E(T) = 0 and so E(T) = e. The proof is
complete.

In what follows NV will be a nonsingular right C-module. A
subset T' C N is called orthogonally complete if for any orthog-
onal dense subset U C B and any subset {t, | u € U} C T there
exists an element ¢t € T such that fu =¢t,u forallu e U.

We note that the element ¢ € T is uniquely determined by the
conditions tu = t,u for all u € U. Indeed, assume that for some
z € N we have that uz = ut, for all w € U. Then (z — t)u =0
forallue UandsoU Cre(z —t) = (1 — E(zx —t))C. Since U
is dense, r¢(z — t) = C and x = t. We denote this element ¢ by

t=3 "t
uel

Now it is clear that the intersection of any family of orthogonally
complete subsets of IV is again orthogonally complete. Consider
next an arbitrary orthogonal subset V of B and ¢, € T where
T is an orthogonally complete subset containing 0. Set w =
1-E(V),U =VuU{w} and t, = 0. We then define ¥,y t,v =
sev tutl.

The following example plays a key role in the demonstration
of connections of the orthogonally completion method with the
classical Los and Horn theorems.

Example. Let {R; | i € I} be a family of prime rings with
extended centroids C; and maximal right rings of quotients ;.
It is easy to see that Q@ = Qmr ([Ticr Ri) = Iliey @i and the
extended centroid C of [[;c; R; is equal to [[;c; C;. One can
easily check that a subset " C @ is orthogonally complete if
and only if T' = [],_, T; where T; is the canonical projection of
T into Qi-

The following proposition gives a characterization of orthog-
onally complete C-modules.
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Proposition 3.1.6 Let N be a nonsingular C-module. Then
N s orthogonally complete if and only if N is an injective C-
module.

Proof. Suppose that N is orthogonally complete and let
f : L = N is a homomorphism of an ideal L of the ring C.
According to Baer’s criteria, it is enough to prove that there
exists an element z € N such that f(y) = zy for all y € L. Let
V be a maximal orthogonal subset of L N B. Since C is von
Neumann regular, L = C(L N B) and so E(L) = F(LN B). By
Remark 3.1.5, U = VU {1 — E(L)} is a dense orthogonal subset
of B= B(C). Weset z, = f(v) forallve V,w=1-E(V),
T, =0 and £ = Ypcy T,u. Let now y € L. Then for allv € V
we have

(zy)v = (zv)y = my = f(v)vy = f(vy) = f(yv) = f(y)v.

Since Vw = 0, Lw = 0 as well. Hence yw = 0 and
(zy)w = (zw)y = 0= f(yw) = f(y)w.

Therefore r¢(zy — f(y)) 2 U and so r¢(zy — f(y)) = C, and
f(y) = zy. Hence N is injective.

Assume now that N is injective and let U be dense orthog-
onal subset of B, x, € N, u € U. Note that L = 3,y uC =
@uecvuC. Define a homomorphism f : L — N by the rule
f(u) = zyu, u € U, and its consequences. By assumption there
exists an element z € N such that f(y) = azy for ally € L. In

particular zu = f(u) = z,u for all u € U and so N is orthogo-
nally complete.

We continue with the following useful remarks.

Remark 3.1.7 Let R be a semiprime ring with extended cen-
troid C, U C B(C) a dense orthogonal subset, I, = (u : R)p,
D, € D(R), wue€ U. Then:

(i) I = Yy cv Lo is a dense ideal of R;

(i1) D = Ty Dulyu is a dense right ideal of R.
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Proof. Since u € C, I, is a dense ideal of R. Hence I is
an ideal of R. Consider z € rg(l). We have Lyuz = 0 for all
u € U. As I, is dense, zu = ux = 0 by Proposition 2.1.7. Hence
U Cre(z) = (1 — E(2))C and so r¢(z) = C by the density of
U. 1t follows that x = 0 and so I is dense.

Now let r;,79 € R with r; # 0. Hence E(r;) # 0 and so
uE(ry) # 0 for some u € U. By Theorem 2.3.9(ii) F(ur,) =
uE(r1) # 0 and hence ur; # 0 as well. Since D, is a dense right
ideal of R, there exists an element v € R such that uryr’ # 0
and ror' € D,. Recalling that I, is a dense ideal of R, we infer
that ur;r'r"” # 0 for some r” € I,. Setting r = ur'r”, we note
that ror = ror'ru € Dy Jyu C D and r;7r # 0. Thus D is a
dense right ideal of R.

Remark 3.1.8 Let x = Zf;euzuu € N,y = Zj’evyvv eN
where T, Y, € N and U,V are dense orthogonal subsets of B.
Then z +y = Y iyeuv(@u + yo)uv.

Proof. By (3.1) UV is a dense orthogonal subset of B. For
allu e U, v € V we have

(z + y)uv = (zu)v + (Yv)u = T,uV + Ypuv = (T, + Yo)UV

which means that z +y = Zi_-ueUV(xu + Yo )uv.

The proof of the following remark is similar to that of the
preceding one and is left to the reader.

Remark 3.1.9 Let R be a semiprime ring with extended cen-
troid C, Q@ = Qumr(R), a € Q, 2 = Tiyru € Q, y =
Eiev YU € Q where z,,y, € Q and U,V are dense orthog-
onal subsets of B(C). Then zy = Yicuy Tu¥puv and za =
E,fey Z,0U.

Now we are in a position to prove the following important
results.
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Proposition 3.1.10 Let R be a semiprime ring, Qs = Q;s(R),
Qr = QT(R); Qmr = er(R), and D; = {ad(Q) I q € Q} Then
each of the right C-modules Q .y, Qr, Qs and D; is orthogonally
complete.

Proof. Let {g, | u € U} C Qmr where U is a dense orthog-
onal subset of B. We set I, = (u : R)g, D, = (qu : R)r and
D = Y,cuv D, I,u. By Remark 3.1.7 D is a dense right ideal
of R. Since U is an orthogonal subset, D = @®,cy D, I u. De-
fine a homomorphism of right R-modules f : D — R by the
rule f(dyiu) = gudyi,u (where d, € D, and i, € I,) and
its consequences. Setting ¢ = [f; D] € Qmr, we note that
qd i u = qudyi,u and so (qu — guu)d,i, = 0 for all d, € D,
and i, € I,. Since I, and D, are dense right ideals, we have
qu = gq,u for all u € U and so Qy,, is orthogonally complete.

If in the above consideration all g, are in @,, then we take
each D, to be some dense ideal of R such that ¢,D, C R. Hence
D is a dense ideal of R and so ¢ € Q,. If all ¢, are in Q,, we
can assume that the dense ideals D, are chosen in such a way
that g, D, + D,q, C R. Then one can easily check that Dg C R
which implies that ¢ € Q.

Now let be given U C B a dense orthogonal subset. For any
subset {ad(qy) | qu € Qs} € D;(R) we set ¢ = Zieu g.u and
note that (zq — gqz)u = z(qu) — (qu)z = (zq, — gux)u for all
z € Q and u € U. Hence ad(q)u = ad(g,)u for all u € U which
completes the proof.

Proposition 3.1.11 Let 0 € T be an orthogonally complete
subset of a nonsingular right C-module N. Then:

(i) Te C T for all e € B(C);

(i) There exists an element t € T such that E(t) = E(T)
(or, equivalently, rc(T) = rc(t)).

Proof. (i) Let z € T and e € B. Since T is orthogonally
complete, there exists an element y € T such that ye = ze and
y(1 —e) = 0. It follows that y = ye = ze and so ze € T.
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(ii) Consider the set W = {F(z) | z € T}. By Lemma 3.1.1
(iii) we have FE(ze) = E(z)e for all e € B and z € T. Hence
We C W. Let V be a maximal orthogonal subset of W and
U=V U{l-E(W)}. According to Remark 3.1.5 U is a dense
orthogonal subset of B. By definition of the set W for every
v € V there exists an element t, € T such that v = E(t,). Set
ti—pw)y = 0 and t = Tyep tun. Clearly t € T. We claim that
E(t) = E(T). 1t is enough to prove that rc(T) = rc(t). Clearly
rc(t) D ro(T). Suppose r¢(t) # re(T). Then (1 — E(t))z # 0
for some x € T. We set e =1 — E(¢t), y = ex and w = E(y).
Note that w # 0 since y # 0. From Lemma 3.1.1(iii) we infer
that w = ew. Since te = 0, we have 0 = t(vw) = (lv)w = t,ow
for all v € V. Therefore vw € r¢(t,) = (1 — v)C and so vw = 0
for all v € V, a contradiction to the maximality of V. Thus
E(t) = E(T).

Proposition 3.1.12 Let R be a semiprime 1ing Q@ = Qumy(R)
and o € Aut(R). Then M, is a cyclic C-module and its gener-
ator m, is an invertible element of the ring QE(my).

Proof. We claim that M, is an orthogonally complete subset
of Q. Indeed, let U be a dense orthogonal subset of B = B(C)
and m, € M,, u € U. Consider the element m = Y., myu.
According to Remark 3.1.9 we have

L L
zm =Yy rmyu= Y m,z’u=mz’
uel uelU

for all z € R. Therefore m € M, and our claim is proved.

By Proposition 3.1.11 E(M,) = E(m) for some m € M,. Let
e=FE(m),I=(e: R)gp,J =el and K = rg(J). Clearly J@® K
is a dense ideal of R. We note that mJ = J°  m is an ideal of R
and mJK = 0. We claim that rg(mJ) = K. If mJr = 0 where
r € R, then melr = mJr = 0. Since I is a dense ideal of R,
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Q.- (I) = Q by Proposition 2.1.10. It follows from Lemma 2.3.10
that E(me)r = 0. Recall that e = E(m) and me = m. Hence
er = 0 and Jr = Ier = 0 which proves our claim. Define a
homomorphism of right R-modules f : mJ® K — J&® K by the
rule mx +y— z forallz € J, y € K. If mz = 0 where z € J,
then mJz = J° 'mz = 0 and so z € JNK = 0. Therefore
f is well-defined. Setting ¢ = [f; mJ + K| € @, we note that
ge = q and ¢gm = e. Note that JeK = JK = 0. Since [ is
dense, eK = 0. Hence mgK = (me)gK = mqgeK = 0. It follows
that (mq — e€)(mJ + K) = 0 and so mqg = e. Therefore m is
an invertible element of the ring eQ. Clearly rq = gr?”" for all
r € R. Hence rm/q = m/qr for all r € R, m' € M,. It follows
that M,q C C and so M, = M,e = M,qgm C Cm. The proof is
complete.

We set i(0) = E(M,). It follows from the above result that
the ring Q = Qm,(R) is a direct sum @ = Qi(o) ® Q(1 — i(0))
of o-invariant ideals and ¢ induces an inner automorphism on
Qi(o).

Now let x4 be a derivation of a semiprime ring R and Q =
Qmr(R). We set

M,={meQ|rm—-mr=Em)r* forall re R}

Since E(ex) = eE(z) for all e € B(C) and z € @, we conclude
that M,e C M,. We leave for the reader the straightforward
verification of the following remark (see the proof of (2.15) in
section 2.5).

Remark 3.1.13 The subset M, is orthogonally complete and
Mp. g Qs-

We set i(u) = E(M,) and note that i(u) = E(m) for some
m € M, according to Proposition 3.1.11. Clearly p induces the
inner derivation ad(m) on the direct summand Qi(u).
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Let N be an orthogonally complete nonsingular C-module
and T C N a subset. The intersection of all orthogonally com-
plete subsets of N containing T is called the orthogonal comple-
tion of T and is denoted by O(T).

Since the intersection of orthogonally complete subsets is or-

thogonally complete, O(T) is an orthogonally complete subset
as well.

Proposition 3.1.14 Let N be a nonsingular orthogonally com-
plete right C-module and T C N a subset. Then

OT)= {3 "t |U isa dense orthogonal subset

uelU

of B and {t,|ueU}CT}.

Proof. Letting H denote the right side of the above equal-
ity, we note that it is enough to prove that H is orthogonally
complete. To this end consider any dense orthogonal subset
W of B and let hy = ¥r cy. Tu,Uw € H, w € W, where
Ty, € T and U, is a dense orthogonal subset of B. We set
V = {wuy, | w € W, uy, € Uy}. One can easily check that V
is a dense orthogonal subset of B. For v = wu,, € V we set
ty = Ty, We now claim that

Z lhww = Z Ltvv.
wew veV
Indeed, for any v = wu,, € V we have

( > lhww) Wiy = MWty = (AW = Ty, Uy W = L,V
weW

which completes the proof.

The following result follows directly from the preceding propo-
sition, Proposition 3.1.10, Remark 3.1.8 and Remark 3.1.9.
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Corollary 3.1.15 Let R be a semiprime ring. Then:

(i) its orthogonal completion O(R) is a subring of the ring
Qs(R);

(it) If I is a (right) ideal of R, then O(I) is a (right) ideal
of O(R) as well.

Example. We keep the notations of the preceding example.

Let R = @®;crR; C Il Ri- Clearly Qu(R) = [liey Qi It is
easy to see that O(R) = [[;cs R:.

Remark 3.1.16 Let R be a semiprime ring, @ = Qu-(R), p €
Der(Q), g € G(Q) and ¢ = Ypeyy qut where g, € Q, u € U.

Then: N
1
¢=> "Tqgu and ¢°=) "qlul.
uelU uelU

Proof. We first note that
e# = (e%)* = ee” + et'e = 2eet, e € B.

Multiplying both sides by e, we infer that ee* = 2ee* and so
ee* = 0. Hence e* = 2ee* = 0. We now have

g'u = (qu)* = (qu)* = ¢hu

for all u € U which implies the first formula. The second one is
proved similarly.

Corollary 3.1.17 Let R be a semiprime ring, Q@ = Qm-(R),
w € Der(Q) and g € G(Q). Suppose that R* C R and R? = R.
Then O(R)* C O(R) and O(R)? = O(R) as well.

We continue our discussion of orthogonally complete subsets
with the following useful lemmas.
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Lemma 3.1.18 Let N be a nonsingular right C-module, T; C
N an orthogonally complete subset of N containing0, 1 <1 < n,
and f : Ty xTox... T, = N a mapping such that f(t1,...,t,)e =
f(tie, ..., tpe) for alle € B = B(C) and t; € T;. Then H =
f(T1, Ty, ..., T,) is orthogonally complete.

Proof. Let U C B be a dense orthogonal subset and h, =
f(tu1, tua, - - - tun) € H for all u € U where t,; € T;. Setting ¢; =
Zje v ti U, we leave to the reader the straightforward verification
of the equality Zteu hyu = f(t1,%2,...,t,), which completes the
proof.

The proof of the following lemma is straightforward and we
leave it to the reader.

Lemma 3.1.19 Let R be a semiprime ring and let T and H
be orthogonally complete subsets of Q = Qur(R). Then for any
a € @ the subset

(a:T)g={he€ H|aheT}
18 either empty or orthogonally complete.

Theorem 3.1.20 Let T be an orthogonally complete subset of
Q@ = Qmr(R) containing 0, and let ¢ € Q. Then there ezxists a
unique element E(T; q) € B = B(C) such that ¢(1-E(T}; q)) €
T and 1 — E(T; q) > e for all e € B such that qe € T. Further,
E(T; eq) = eE(T; q) for all e € B.

Proof. Since B is an orthogonally complete subset of @, L =
(g : T)p is orthogonally complete by Lemma 3.1.19. Because
0 € T (and hence 0 € L) we have by Proposition 3.1.11 that
Te C T for all e € B and E(L) = E(ey) = e for some ¢y €
L. Clearly (i) geo € T and (ii) e < ¢ for all e € L (since
eeg = eE(L) = e). We see that E(T; q) = 1 — ¢ is the required
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element. Next let e € B and write E(T; ge) = 1 — f,. We wish
to prove that 1 — fo = e(1 — €p). Indeed, from

ge(l—e(l —ep)) =qee € Te C T

we have 1 — e(1 — ep) < fo and hence e(1 —eg) > 1 — f and so
e(1 - ey) > e(1 — fo). From gefy € T we have efy < e, whence
1 —efo>1—e and e(1 — fo) > e(l — e). It follows that
e(l—ep) =e(l—fo) <1—fo<e(l—ep)andsoe(l—ey) =1—fo
and the theorem is proved.

We close this section with the following useful lemma.

Lemma 3.1.21 Let B = B(C) and V = {v; | i € I} a subset
of B such that V. € M for every M € Spec(B). Then there
erists a finite subset iy,1s,...,1x € I and pairwise orthogonal
idempotents ey, eq, ..., e € B whose sum is equal to 1 such that
e; <y forallj=1,2,... k.

Proof. We have that the ideal of the Boolean ring B gen-
erated by V is equal to B and so 1 = v;b; @ ... ® v; by for
some 11,...,% € I and b; € B, where @ is the Boolean ad-
dition (i.e., u® v = u+ v — 2uv for all u,v € B). Therefore
vy, B+v, B+.. +v; B = B. Weset e; = v;,. Suppose that we al-
ready have found pairwise orthogonal idempotents ey, e, ..., ¢
such that e; < v;; and

! k
> eB+ Y v,B=B
Then we set,
€l+1 :Uil+1(1 —€e —€y—...— 61).

Continuing in this fashion we find pairwise orthogonal idempo-

tents ey, eq,..., e, such that ey + ... 4+ e = 1 and e; < wj; for
all j.
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3.2 Pierce Stalks

The content of the present section will depend heavily on sec-
tion 1.5.

Let R be a semiprime ring with extended centroid C, B =
B(C) and @ = Qur(R). The ring R is called orthogonally com-
plete , if R = O(R). If R is orthogonally complete, then eR C R
for all e € B by Proposition 3.1.11. Let a be an ordinal number,
7:W(a) > N and Q = (7; @). An Q-ring R is said to be or-
thogonally complete if R is an orthogonally complete semiprime
ring and for any e € B, v € W(a) and 7y,79,...,7, € R, where
n = 7(7), we have

BFW(Ti,TQ, ooy Tn) = Fo(ery, erq, ... ery).

In what follows R will be an orthogonally complete {2-ring with
extended centroid C and B = B(C). Given any term t =
t(z1,Z2,...,Zn) of signature Q, ry,79,...,7, € R and e € B,
one can easily prove by induction on a number of operation
symbols appearing in ¢ that

et(r1,72,...,Tn) = t(ery, era, ... ery). (3.2)

Let Ap be the set of all predicates either of type ||z € T||”,
where T is an orthogonally complete subset of R containing 0, or
”|lz = y||”- In what follows we will consider R as an Q-A-ring.

It follows directly from the above definition that eR is an
Q-subring of R for all e € B. Further, any predicate ||z € T||
where T is an orthogonally complete subset of R containing 0
defines a predicate on eR as on a subset of R. Here we note that
if z € eR, then ||z € T|| =1 if and only if ||z € €T|| = 1.

Proposition 3.2.1 Let R be an orthogonally complete 2-A-
ring, U an orthogonal subset of B and e = f;eU u. Then the
mapping Ny : [l,cy Ru — Re given by the rule {ryu |u e U} —

Yacy Tut 5 an isomorphism of Q-A-rings.
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Proof. Using the same argument as in the proofs of Re-
mark 3.1.8 and Remark 3.1.9, one can easily prove that ny is a
homomorphism of 2-rings. Clearly it is a monomorphism. Since

ea = (Z lu) a=). “au,
uelU uelU
Ny is surjective and so ny is an isomorphism of 2-rings. Now let
T be an orthogonally complete subset of Re containing 0 and
z € Re. Since T is orthogonally complete and e = Yoy u, the
inclusion z € T is equivalent to the inclusions zu € Tu for all
u € U. Therefore ||z € T|| =1 if and only if ||zu € Tu|| =1 for
all u € U. Recalling the definition of the Cartesian product of
Q-A-rings, we conclude that 7y is an isomorphism of (-A-rings.

Recall that B is a Boolean ring with addition given by the
rule u ® v = u + v — 2uv for all u,v € B and multiplication the
same as that in C. We let Spec(B) denote the set of all maximal
ideals of the Boolean ring B. It is well known that an ideal M
of B is maximal if and only if for any e € B either e € M, or
l—e=1&e € M, but not both.

Let M € Spec(B). We set

RM ={> rie;|r;€ R and e; € M}.

Remark 3.2.2 Let M be a mazimal ideal of B and a € R.
Then:

(i) RM = {z € R | rc(z) 0 (B\ M) # B};

(it) a € RM if and only if E(a) € M.

Proof. (i) Let z = 3 ,re; € RM where ; € R, e; € M.
Wesete=(1—¢€)(1—e€)...(1—e,). Sincel —e; € M, we
see that e ¢ M. Clearly ex = 0. On the other hand, let 7u = 0
for some u € B\ M. Asu ¢ M,1—u € M. Now we have
r=r(l—u) € RM.
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(ii) If E(a) € M, then a = aF(a) € RM. Conversely,
let @ € RM. Then ae = 0 for some e € B\ M. Since e €
re(a) = (1 — E(a))C, we infer that 1 — E(a) ¢ M. But then
E(a)=1-(1-E(a)) € M.

Corollary 3.2.3 Let M € Spec(B). Then RM is an ideal of
the Q)-ring R.

Proof. Being a sum of ideals Re, e € M, RM is an ideal
of the ring R. Let v € W(a), n = 7(v), r1,72,...,7a € R and
a1,09,...,0, € RM. By Remark 3.2.2 for every index ¢ there
exists an idempotent e; € B\ M such that a;e; = 0. Setting
si =7T;+a; and e = eje;...e,, we note that s;e = r;e for all 4.
Therefore for z = F,(s1,...,8,) — Fy(r1,...,7s) we have

ez = F,(es),...,esp) — F,(ery,...,erp)
F.(er1,...,ern) — Fy(ery,...,erp) =0

and so z € RM. Thus RM is an ideal of the Q-ring R.

The factor Q-ring R/RM is called the Pierce stalk of R at
the point M of Spec(B). Letting Ry denote the factor Q-ring
R/RM and ¢p : R — Ry the canonical projection and taking
into account Proposition 3.1.11 we summarize what has been
proved in the following

Corollary 3.2.4 Let R be an orthogonally complete Q-ring, T
an orthogonally complete subset of R containing 0 and M €
Spec(B). Then:

(i) the canonical homomorphism ¢p : R — Ry = R/IRM of
rings is a homomorphism of Q-rings as well;

(ii) ker(pp) = {r e R | E(r) € M},

(iti) ép(T) =0 if and only if E(T) € M.
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Example With reference to the example of the preceding
section, we consider R = [[;c; R; and note that the extended
centroid C' of R coincides with [[;c; C;. Hence the Boolean ring
B = B(C) coincides with the set of all functions I — Z,. Given
any maximal ideal M of B, the set

Tu={f7(0)| f € B\ M}

is an ultrafilter on I. We close this example with the note that
Ry = Tlier Rif/Tur-

We continue our discussion of properties of Pierce stalks with
following lemmas.

Lemma 3.2.5 Let R be an orthogonally complete Q-ring, o €
R, T an orthogonally complete subset of R containing 0 and
M € Spec(B). Then the following conditions are equivalent:

(i) ¢n(a) € ¢m(T);

(ii) ae € T for somee € B\ M;

(ii) E(T; a) € M.

Proof. First of all we recall that Te C T for all e € B by
Proposition 3.1.11.

(i) = (ii) Let ¢p(a) € ¢m(T). Then ¢p(a) = dar(t) for
some t € T. Hence ¢p(a —t) = 0 and so (a — t)e = 0 for some
e € B\ M. Therefore ae =te € T.

(ii) = (iii) Assume that ae € T for some e € B\ M. By
Theorem 3.1.20 we have that e(1 — E(T; a)) = e and so 1 —
E(T; a) ¢ M. Therefore E(T; a) € M by the maximality of M.

(iii) = (i) Let u = E(T; a) € M. Then a(1 —u) € T and
au € RM. Thus ¢p(a) = ¢p(a(l —u)) € ppr(T).

Lemma 3.2.6 Let R be an orthogonally complete Q-ring, a €

R, T and H orthogonally complete subsets of R containing 0
and M € Spec(B). Then:

dm((a : T)g) = (dm(a) = dn(T))pusan)-
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Proof. Clearly ém((a : T)u) C (dmla) : om(T))pp(a)-
Let ¢n(a)pn(h) € ¢m(T) where h € H. Then ahe = te for
some e € B\ M and t € T. Clearly he € H and te € T. Hence
he € (a : T)y. Since e ¢ M, 1 —e € M and so ¢p(e) = 1.
Thus @p(h) = dr(he) € dm((a = T)g).

Now we are in a position to prove the following important
result.

Theorem 3.2.7 Let R be a semiprime orthogonally complete
ring with extended centroid C, B = B(C) and M € Spec(B).
Then the ring Ry = R/RM is prime.

Proof. Suppose that ¢as(a) Rpyréas(b) = 0 for some a,b € R.
Then ¢p(aRb) = 0. Applying Lemma 3.1.18 to the mapping
R — R, z — axb, we conclude that aRb is an orthogonally
complete subset of R. By Corollary 3.2.4 we have e = 1 —
E(aRb) ¢ M. Without loss of generality we can assume that
#dr(a) # 0. Then F(a) € M. Now we have e(aRb) = 0. Hence
according to Theorem 2.3.9(ii) and Lemma 2.3.10, eE(a)b =
E(ea)b = 0. Since eF(a) ¢ M, we conclude that b € ker(das).
Thus Ry, is prime.

Let ®(z,Z9,...,Zs) be a first order formula of signature Q-
A, d@=(aj,a,...,a;) € R™ and v € B. We set B* = B\ {0},
va = (vay,vao, . .., 0a0,),

H(®;d) ={e€ B*|vRE ®(va@) for all 0#v <e}U{0}

and

E(®(@)) = E(H(®; @)).

In the case of the atomic formulas ||z = y|| z,y € X, and
lz € T||, T orthogonally complete with 0, the above concept
takes a very concrete form. Indeed, we see that

H(|lz =yl; a,b) =rc(a—b)N B (3-3)
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since
{e € B* lu(a—b) =0 for all 0 # v < e} U {0} =7¢(a—b) N B.
From (3.3) it is immediate that

E(la=b])) = 1 - B(a - (3.4)
Similarly, we see that

H(lz € Tll,0) = (a : T)3 (3.5)
since

{ee B*|vacTforall0£v<e}U{0}=(a: T)s.

From (3.5) it is clear that

E(lla € T|)) =1 - E(T; a) (36)

in view of Theorem 3.1.20.

We have in fact proved parts (i) and (iii) of the following
corollary, which will in turn provide the basis for induction in
our main theorem.

Corollary 3.2.8 Let R be an orthogonally complete Q-ring, a,
b€ R, T an orthogonally complete subset of R containing 0 and
M € Spec(B). Then:

(1) E(lla=0b|) =1—E(a - b);

(i) ||pn(a) = om(b)|| =1 if and only if E(|ja = b]|) & M;

(iii) E(|la € T||) =1 — E(T}; a);

(iv) ||¢m(a) € du(T)|| =1 if and only if E(|la € T||) & M.

Proof. (ii) follows from part (i) and Corollary 3.2.4(ii).
(iv) follows from part (iii) and Lemma 3.2.5(iii).
The following lemma plays an important role in the proof

of Theorem 3.2.10, and it is here that Horn’s Theorem (Theo-
rem 1.5.5) is deployed.
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Lemma 3.2.9 Let R be an orthogonally complete Q2-A-ring,
O(zy,2z2,...,2,) a Horn formula of signature Q-A in free vari-
ables Ty, Ty, ..., Tn, and @ = (a;, ay,...,a,) € R™. Then

E(®(a)) € H(®; @)
(i.e., vR |= ®(v@d) for all 0 # v < E(®(Q))).

Proof. We set U = H(®; @). It follows immediately from
the definition that eU C U for all e € B. Let V be a maximal
orthogonal subset of U. By Remark 3.1.5 we have E(V) = E(U).
Setting w = Y7 v, we note that r¢(V) = (1 — w)C and so
EWU) = E(V) = w. If w =0, then w = 0 € U and there is
nothing to prove. Assume that w # 0 and let 0 # f € wB. We
claim that fR = ®(fd). Indeed, let Vo = {v € V | vf # 0}.

Note that N )
f=fo=3"fv="3 "fu

veV veEVy

Since V C H(®; d), we have
Ruf E®(vfd) forall veW.
By Theorem 1.5.5 it follows that
( H va) |= (I)({fval}vevoa T {fvan}vevo)'
veEW
According to Proposition 3.2.1, the mapping 7 given by the rule
{fvatoev, = D Tafv = (E Lv) fa=wfa= fa
veEW veV

is an isomorphism of Q-A-rings [[,ey, Rvf and Rwf = Rf.
Hence Rf = ®(fa) for all 0 # f € wB and so

E(®(d) = E(U) = w € H(®; &).
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We note that for u,v € B the inequality u < v is equivalent
to the statement that for all M € Spec(B) u not an element of
M implies v not an element of M. We are now in a position to
prove the main result of this chapter.

Theorem 3.2.10 Let R be an orthogonally complete Q2-A-ring
with extended centroid C, B = B(C), M € Spec(B) and ¢ :
R — Ry = R/IRM the canonical projection of Q-A-rings. Fur-
ther let U (2, 2s,...,2,) be a Horn formula of signature Q-A
and @ = (a1, ay,...,a,) € R™. Suppose that

RM t: \II(QSM(al)a crey ¢M(an))
Then-e=E(¥(a)) € M and vR = ¥ (vd) for all 0 # v < e.

Proof. We set ¢p(@) = (dpr(ar), drr(az), - - -, dar(ay)). First
we suppose that ¥ is an atomic formula (i.e., a formula either
of the type ||ti(z1,%2,...,2n) = t2(21,22,. .., Zxal|, where 1,1,
are terms, or of the type ||z € T||, where T is an orthogonally
complete subset of R containing 0). Then it follows from Corol-
lary 3.2.8 that Ry = U(dp (@) if and only if E(¥(3)) ¢ M.

Here we note that for any atomic formula P(z, 2, ..., 2;)
and any ¢ = (cy,¢p,...,¢) € R® the reader can easily check

that E(-P(c)) = 1 — E(P(c)). It follows from Corollary 3.2.8
that

Ry b= ~P(¢x(2)) ifand only if E(-P(®) ¢ M.  (3.7)

Next we consider the case when the formula ¥ is equivalent
to the formula V¥ ,(=P,) where Py, ..., P, are atomic formulas.
For simplicity we assume that all P;’s depend on z, 2o, ..., z,.
Since Ry = VE | (-Pi(¢m(@))), Ru | (—Pi(¢n(@))) for some
1 <1 < k. Then by (3.7) we have E(—~P;(d)) ¢ M. Clearly
E(-P;(d)) € H(¥; @) = H and so E(—-P,(d)) < E(¥(d)) =
E(H). Hence E(¥(@)) ¢ M.
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Suppose now that the formula ¥ is equivalent to the formula
PV &Ll(ﬂﬂ-)) where Py, Py, ..., P, are atomic formulas. As
above we assume that all P;’s depend on z1,z,,...,2z,. Clearly
E(Py(d@)) € H(Y; @) as well as E(—P;(d)) € H(¥; @) for all
i=1,2,...,k. Hence E(Py(a)), E(-Py(@)) < E(¥(&)) and so it
is enough to prove that either E(Py(d@)) ¢ M, or E(—P;(a)) ¢ M
for some 1 < i < k. We note that Ry E Py V (vle(ﬂP,-)) if
and only if either Ry, = Py, or Ry = V5 (=P;). Applying the
above result, we complete the consideration of the case.

Assume now that the formula ¥ is equivalent to the for-
mula A2, ¥; where each formula ¥; is equivalent to either an
atomic formula, or a disjunction of negations of atomic formu-
las, or a disjunction of an atomic formula and several negations
of atomic formulas. As above we assume that all ¥,’s depend
on T,Ia,...,T,. We set e = E(¥(a)), e, = E(¥;(@)) and
v =e€y...en. Since Ry E A, Vi(dn(@)), Ry E Vi(om(@))
for all 7+ = 1,2,...,m as well. By the above result we then
have e; & M for all + and so v € M. Note that v < e; and so
Ru E V;(ud) for all 0 < u < v. Thus Ru | ¥(ud) whence
v € H(Y; @), i.e.,, v < e. Now it follows that e ¢ M.

Next consider the case when the formula ¥ is equivalent to
the formula (3z,41)®(21, 22, . - ., Zns+1) where ® is such that for
all ¢ = (c1,¢y...,Cne1) € R™*Y the relation Ry | ®(dnm(0))
implies that F(®(¢)) ¢ M, and & is a Horn formula. Since
Ry E (32741)®(Pa (@), Tny1), there exists an element apt1 € R
such that Ry = ®(dp ('), where @ = (a1,02,...,0n+1), and so
E(®(a@)) & M. Clearly E(®(a")) € H(¥; @). Hence E(®(a)) <
E(¥(a)) and so E(¥(a)) ¢ M.

Finally assume that the formula ¥ is equivalent to the for-
mula (Vz,1)®(21,Z2,...,Zny1) where again ® is such that for
all = (c1,¢,...,Cne1) € RO®HD the relation Ry | ®(du(0))
implies that E(®(c)) € M and ® is a Horn formula. We set

W = {we B"| thereexists a, € R such that for every
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ve B*, v<w thereexists u¢€ B*, u<w,
with the property uR & —®(uai,uay, ..., Uan, Uay)}

Note that for e € B and w € W the relation ew # 0 im-
plies that ew € W (with a., = ea,). Let V be a maxi-
mal orthogonal subset of W U {0}. By Remark 3.1.5 we have
E(W) = E(V) = Ykyv. Weset ag =0, a= Y,y av and
e = E(®(ay, a,...,0,,a)). Since

Ry = (VEni1)®(dm(ar), - .., dm(an), Tntr),

we have in particular that Ry = ®(da(ar), - .., dm(an), dm(a)).
Then by our assumption

e = E(®(a,aq,...,an,a)) € M.

Now we suppose that eWW # 0. Since V is a maximal orthogonal
subset of W, ev # 0 for some v € V. Recalling that ® is a Horn
formula, we infer from Lemma 3.2.9 that for every nonzero wu,
u<ev<e=E(®(a,az,...,a,a)), we have that

uR = ®(uay, uay, ..., ua,, ua).

Note that uea, = ua, = uva, = uva = ua. On the other hand
by the definition of W, there exist a nonzero idempotent u < ev
such that

uR = ~®(uay, uay, . . ., uan,, ua),

a contradiction. Hence eW = 0. -

Next we suppose that E(®(ay,as,...,a,,b))e # e for some
b€ R. Then

u=-¢e(l - E(®(ai,az,...,an,b))#0

and
uE(®(a1,az,...,a,,b)) = 0.
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Consider any 0 # u' < u. Clearly v'E(®(a1, as,...,a,,0)) =0
and so u' € H(®; ay,as,...,an,b). By the definition of the set
H(®; ay,aq,...,a,,b) it follows that

u'RE ~®(u"ay,...,u"a,, u"d)

for some 0 # u” < u'. Recalling the definition of the set W,
we conclude that v € W (with a, = b). But eu = u # 0 in
contradiction with eW = 0. Therefore F(®(a;, az,...,a,,b))e =
e for all b € R and so

eR E (Vzn41)P(ea, eaq, ..., €0, Tny1).

Hence e € H(¥; @) and e £ E(¥(d)). Recalling that e & M,
we conclude that E(¥(a@)) ¢ M. According to the definition of
Horn formulas the proof is complete.

Let R be an orthogonally complete 2-A-ring. A first or-
der formula ®(zy,z,...,2,) of signature Q-A is called heredi-
tary if for all 0 # v < v € B and aj,ay,...,a, € R the rela-
tion vR | ®(vay,...,va,) implies that uR | ®(uay, ..., ua,).
Further a hereditary formula ® is said to be strictly heredi-
tary if for all 0 # v € B and a;,a,,...,a, € R the relation
vR = ®(vay,...,va,) implies that there exist by, bq,...,b, € R
such that R = ®(by,....,b,) and vb; = va; for all i.

Example Let R = F @ F where F is a field. Then the
formula ¥ = (Vz)(Vy)||lzy # 0|| V||lz = 0||V ||y = 0|| is hereditary
but is not strictly hereditary.

Corollary 3.2.11 Let R be an orthogonally complete ()-A-ring,
@ = (a1,09,...,a,) € R™ M € Spec(B), Ryy = R/RM and
éum 1 R — Ry the canonical projection. Further let U(zy, ..., Zn)
be a hereditary formula of signature Q-A such that =¥ is a Horn
formula. Suppose that vR = ¥(vay,...,vay,) for somev & M.
Then

Ry = U(om(ar),. .., dm(as)).
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Proof. If Ry = ~VU(¢dpm(ar),...,ém(as)), then by Theo-
rem 3.2.10 we have e = E(—~¥(d)) ¢ M. Hence ev # 0 and by
Lemma 3.2.9 we have

evR |= ¥ (evad).

On the other hand since ¥ is hereditary and vR | ¥(va), evR |=
U(evd) as well, a contradiction. Thus Ry = U(gp(a)).

Some important subsets of rings (for example, the center,
the right singular ideal, the Jacobson radical) are defined by
first order formulas in the following sense. Let ¥(z) be a first
order formula of signature (2-A. We set

Sy(R)={re R| R} ¥(r)}.

Corollary 3.2.12 Let R be an orthogonally complete Q2-A-ring,
M € Spec(B), Ry = RIRM and ¢p : R — Ry the canonical
projection. Further let U(z) be a strictly hereditary Horn for-
mula of signature 2-A such that =V is a Horn formula. Then
énm(Sw(R)) = Sw(Rum).

Proof. If a € Sy(R), then R = ¥(a) and so by Corol-
lary 3.2.11 Ry = U(¢ar(a)). Hence ¢pr(a) € Sy(Rys) and

rm(Sy(R)) C Sy(Rar).

On the other hand if ¢ (b) € Sy(Rar), then Ry = U(dpr (b))
and so by Theorem 3.2.10 e = E(¥(b)) ¢ M and eR = ¥(eb).
Since W is strictly hereditary, there exists an element d € R such
that ed = eb and R |= ¥(d). Therefore d € Sy(R). Since e ¢ M
and eb = ed, ¢rp(d) = ¢um(b) and so ¢ (Sy(R)) 2 Sy(Ru)
which completes the proof.

Corollary 3.2.13 Let R be an orthogonally complete ring with
center Z(R) and right singular ideal Z,(R), M € Spec(B),
Ry = R/IRM and ¢pr : R — Ry the canonical projection. Then
¢m(Z(R)) = Z(Ry) and ¢y (Z-(R)) = Z,(Rp).
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Proof. Consider the formulas

(z) = (Yy)llzy = yzl],

¥(z) = (Vy)(32)(ly = 0[| v ||lyz # 0||) A llzyz = 0f|.
Clearly Z(R) = Ss(R) and Z,.(R) = Sy¢(R). Since Z(eR) =
eZ(R) and Z,(eR) = eZ,(R) for all 0 # e € B, both formulas &

and V¥ are strictly hereditary. Obviously they are Horn formulas.
Further

~®(z)
-U(x)

(I llzy # yzl,

Fy) (V2)(lly # Ol Allyz = Of)) V [|zyz # 0|
(3y) (Y2)(lly # 0ll V llzyz # O]])

A(llyz = 0[] V ||lzyz # 0|))

are Horn formulas. By Corollary 3.2.12
Z(Ru) = Sa(Rum) = dm(Se(R)) = dm(Z(R)).
Analogously Z,.(Ru) = ¢m(Z,(R)).

Lemma 3.2.14 Let R be an orthogonally complete ring, M €
Spec(B), Ry = RIRM and ¢p © R — R the canonical pro-
jection. Further, let D be an orthogonally complete dense right
ideal of R. Then ¢ (D) is a dense right ideal of Ryy.

Proof. Consider the sentence
® = (Vx)(Vy)(3z)(l|lz = 0|| V [|[zz # 0||) A [lyz € D]|.

Since eD is a dense right ideal of eR for all 0 # e € B, P is a
hereditary formula. Further,

~® = (3z)3y)(Y2)(llz # 0| Allzz = 0[]} V [lyz & D||

(32)(Fy) (V2)(llz # 0l V [lyz ¢ DI))
Allzz = 0[| V {lyz & DI))
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is a Horn formula. Now by Corollary 3.2.11 we have

Ry E (Vz)(Vy)3z)(l|lz = O] V [lzz # O])
N(llyz € ¢m (D))

and so ¢ps(D) is a dense right ideal of Ry.

Here we note that if R is an orthogonally complete ring with
maximal right ring of quotients Q = Qn,-(R) and M € Spec(R),
then (QM) N R = RM by Remark 3.2.2(ii). Therefore we can
identify the ring R = R/RM with the subring (R + QM )/QM
of QM.

Theorem 3.2.15 Let R be an orthogonally complete ring with
extended centroid C and Q = Qumr(R), B = B(C), M € Spec(B),
QM = QM and ¢pr : Q@ — Qu the canonical projection.
Then:

(Z) QM g er(RM);

(ZZ) ¢M(Qr) - QT(RM);

(zzz) ¢M(Qs) C QS(RM);

(iv) The extended centroid of Rys is equal to ¢p(C).

Proof. Let g € Q and D = (¢ : R)g. By Lemma 3.1.19 D
is an orthogonally complete dense right ideal of R. According
to Lemma 3.2.14, ¢p (D) is a dense right ideal of Rys. Clearly
¢m(q)¢m(D) € Ry. Suppose that ¢nr(q)¢n(D) = 0. Then
ém(gD) = 0. By Lemma 3.1.18 ¢D is an orthogonally complete
subset of R and so eqgD = 0 fore = 1— E(qD) € B\ M (see
Corollary 3.2.4). Since D is a dense right ideal of R, we conclude
that eq = 0 and hence ¢5/(q) = énm(eg) = 0. Therefore for any
z € Qu we have proved that K, = (z : Rpy)g,, is a dense right
ideal of Rps and zK # 0. Then the mapping z — [l;; K], where
l; is the left multiplication by z, gives an embedding of Q into
Qmr(Ra). Statements (ii) and (iii) are proved analogously.

(iv) Since Qu C Qmr(Ru), it is enough to prove that Q@ is
centrally closed. The mapping F : Q — @, ¢ — E(q), defines an
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unary operation on @. By Theorem 2.3.9(ii) E(eq) = eE(q) for
all e € B, ¢ € Q. Hence @ is an orthogonally complete €2-ring
of signature {0, +, —, -, E}. The rule E(¢un(q)) = ¢m(E(q)),
q € Q, defines an Q-ring structure on @Qp. For all z € Qu,
clearly E(z) € {0, 1}, and E(z) = 0 if and only if z = 0.
Consider the formulas

O(z,y) = {(Vz)llzzy = yzz|} =
{GE(z)y = czl| Allc € ClI}
= (V2)(3){llzzy = yzzl =
(I1E(z)y = cz| Allc € CID}
= (V2)(3c){llzzy # yaz|l
V(|E(z)y = cz|| Allc € Cl)}  and
U= (Vz)(Vy)®(z,y).

Then

=¥ = (32)(3y)(32) (Vo) lzzy = yzz||A(|E(z)y # czl|V]|c € ClI)

is a Horn formula. Since eQ is centrally closed with extended
centroid eC, eQ = VU for all e € B (see Theorem 2.3.11). There-
fore ¥ is hereditary. By Corollary 3.2.11, Qum | 7, that is to
say, for every nonzero z,y € Qs such that zzy = yzz for all
z € Q) there exists ¢ € ¢p(C) such that z = cy. Let K be the
extended centroid of @ps. Clearly ¢3(C) C K. Consider any
element 0 # k € K. Pick 0 # y € Qs such that x = ky € Q.
Clearly zzy = yzx for all 2 € @Qp and so x = cy for some
¢ € ¢p(C). Therefore (k —c)y = 0. Since y # 0 and K is a
field, we infer from k£ — ¢ € K that k = c and so K = ¢y (C).

Now we are in a position to prove the analogs of Theo-
rem 2.3.7 and Corollary 2.3.8 for semiprime rings. We refer
the reader to the remark after Theorem 2.3.9 for the definition
of dim¢(L).
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Theorem 3.2.16 Let R be a semiprime ring, @ = Qm-(R),
Q1,92+ 4n € Q. Set L =37, Cqi. Then .

Z €(0)4o(1)T190(2)T2 - - .rn_lqa(n) =0 (3.8)
0€ESy
for all ry,79,...,7n_1 € R (where S, is the permutation group
on n symbols) if and only if dimc(L) <n — 1.

Proof. Let A = O(R). By Remark 3.1.8 and Remark 3.1.9
the identity (3.8) holds for all r,79,...,7,—1 € A. Hence it
holds also for all r{,79,...,7h-1 € Am € Qp where M €
Spec(B). According to Theorem 3.2.7, A is a prime ring.
By Theorem 3.2.15 Qup C Qmr-(Apm) and ¢p(C) = Cpy is an
extended centroid of As. Since Ajps is a homomorphic image of
A, ,

Z (O')d)M(ch(l )'rl - Tn—ld)M(ch(n)) =0

oES,
for all r,79,...,7n_1 € Ap. Further, by Theorem 2.3.9 L is an
injective C’-module and so L is an orthogonally complete subset
of @ (see Proposition 3.1.6). Consider the following formula

® = (Fa1)...(Fan1)(Vz)(Fcr) . .. Fenor) (A2 a; € L))
- n-1
Mz € LI A (NS le € CID A llz = ) ciaill.
i=1
Clearly @ is a Horn formula. By Theorem 2.3.7 Qu = @ for
all M € Spec(B). Therefore E(®) ¢ M for all M € Spec(B),
E(®) = 1 and Q = @ (see Theorem 3.2.10). The proof is
complete.

Corollary 3.2.17 Let R be a semiprime ring, @ = Qu,(R),

C =2(Q) and a € Q. Then the following conditions are equiv-
alent:

(i) a is an algebraic element of degree < n;

(1) Toes, ., €(0)aOrga®®ry . ry_1a°™ = 0 for all r; €
R.
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Proof. The proof is analogous to that of the above theorem.
The only difference is that instead of the formula ® we consider
the following formula

¥ =(3a). . @) (ALl € CI) A llg" = 3 eig™ |

i=1
The last important result of this chapter is the following

Theorem 3.2.18 Let R be an orthogonally complete 2-A-ring
with extended centroid C, V;(zy,zs,...,2,) Horn formulas of
signature 2-A, i = 1,2,..., and ®(y1,¥2,.-.,Ym) a hereditary
first order formula such that -® 1s a Horn formula. Further, let
@ = (ay,a,...,a,) € R™, &= (c1,¢2,.--,¢m) € R™. Suppose
that R = ®(C) and for every mazimal ideal M of the Boolean
ring B = B(C) there ezists a natural number 1 = i(M) > 0 such
that

Ry = ®(dm(0)) = Wi(dm(d)).

Then there exist a natural number k > 0 and pairwise orthogonal
idempotents ey, ey, ...,ex € B such thate, +e2+ ...+ e, =1
and ¢;R |= V;(e;a@) for all e; # 0.

Proof. By Corollary 3.2.11 Ry = ®(#a(€)) and so for every
maximal ideal M we have Ry = ¥;(¢p(a@)) for some i = i(M).
According to Theorem 3.2.10, v; = E(¥;(a@)) ¢ M. Therefore
by Lemma 3.1.21 there exist a natural number k& and pairwise
orthogonal idempotents e, es, ..., e, whose sum is equal to 1
such that e; < v; for all = = 1,2,...,k. If e; # 0, then by
Lemma 3.2.9 we conclude that e;R = ¥;(e;@).

We close this chapter with an example of an application of
Theorem 3.2.18. We shall extend to semiprime rings the fol-
lowing theorem proved by Herstein [119] for prime rings. For
completeness we include a proof of Herstein’s theorem.



3.2. PIERCE STALKS 127

Theorem 3.2.19 Let R be a prime ring with a derivation d :
R — R such that 2%® = y%¢ for all z,y € R. Then either R
is a commutative domain, or d* = 0.

Proof. We set [z, y] = 2y — yz for all z,y € R. Let D be
the subring of R generated by R?. Clearly [z¢, D] = 0 for all
z € R. Suppose that d* # 0. Then ad’ # 0 for some a € R. Let
b= a®. We have

zb? = (2b)% — 2% € D
for all z € R. Hence
[z¢, wvb?] = 0 = [z, vbY]
for all u,v € R. Now we infer that
0 = [z¢, wvb?] = [2¢, u]vb®

for all v € R. Since b® # 0 and R is prime, we conclude that
[z¢, u] = 0 for all z,u € R and so D C Z(R). In particular

[z, uvb?] = 0 = [z, vb]
for all z,u,v € R. Hence
0 = [z, wvb?] = [z, u]vb?
for all z, u,v € R and therefore R is commutative.

Corollary 3.2.20 Let A be a semiprime ring with a derivation
d: A — A such that z%® = y%2? for all z,y € A. Further, let
R = O(A) be the orthogonal completion of A and B = B(C)
where C is the extended centroid of A. Then there exists an
idempotent e € B such that eR is a commutative ring and d
induce a square zero derivation on (1 — e)R.
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Proof. By Proposition 2.5.1 the derivation d can be ex-
tended uniquely to a derivation d : Qmr(4) = Qm-(A). Ac-
cording to Remark 3.1.16 R* C R and e¢ = 0 for all e € B.
Therefore R is an orthogonally complete Q-A-ring where Q0 =
{0, +, —, -, d}. Consider formulas

® = (Vz)(vy)|lz%? = v,
U, = (Vz)(Vy)|lzy = yzl|,
U, = (va)|lz* =0]|.

Using Theorem 3.2.19, one can easily check that all the con-
ditions of Theorem 3.2.18 are fulfilled. Hence there exist two
orthogonal idempotent e; and e; such that e; + e, = 1 and if
e; # 0, then ;A | ¥;, i =1,2. The proof is complete.



Chaptei‘ 4
Primitive Rings

4.1 Rings of Quotients

A ring R is (left) primitive if there exists a faithful irreducible
left R-module V. This is equivalent to saying that there is an
abelian group V for which R is a subring of End(V) acting
irreducibly on. V' (i.e., V has no R-invariant subgroups). We
will generally find it useful to adopt this latter approach. For R
a subring of F = End(V) the set -

N(R)=Ng(R)={t € End(V) |tr=rt forall re R}

is called the commuting ring of R. We consider the ring D =
End(rV) as acting from the right on V. It is well-known (and
easy to show) that D = Ng(R)° is a division ring, where Ng(R)°
is the opposite ring of Ng(R). Given V we shall call D =
Endgr(V) the associated division ring of R relatively to V (in
general a primitive ring may have many nonisomorphic faithful
irreducible modules with corresponding nonisomorphic associ-
ated division rings). We may regard V' as a left vector space
over D° = Ng(R). Equivalently, V is a right vector space over
D. In this case we may regard V as an (R, D)-bimodule. We

129
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also regard End(V) as a left vector space over D° by defining:
(d-t)v=t(v)d, deD° te End(V),veV.

Clearly R C End(Vp). For S a subset of V we let [S]p (or simply
[S] if context is clear) denote the D-subspace of V' generated by
S. An element ¢t € End(V) is said to be of finite D-rank in case
[tV]p is finite dimensional over D.

A right primitive ring is defined in a similar fashion and
the preceding remarks have their analogous counterparts in this
situation.

We begin by showing that for primitive rings the symmet-
ric ring of quotients is reasonably well-behaved. The following
result is due to Whelan [275].

Theorem 4.1.1 If R is primitive then Qs(R) C End(Vp) (hence
Qs(R) is also primitive).

Proof. We set @, = Q;(R). Let ¢ € @;, v € V, and
let I and J be nonzero ideals of R such that qI, Iq, Jq, qJ
are all contained in R. Since V = [V = JV we may write
V=30 e = i, bjws, e, €1,b; € J,v,w; €V. Forr el
we see that

= (rq) [; a;v; — gbjwj:| =0

making use of rq € R. It follows that 327, (ga;)vs = Y7L, (gbs)w;
What we have just established shows first of all that

n

By > (ai)vi > Z qa;)v

i=1 =1
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is well-defined element of End(V') and secondly that ® is a well-
defined mapping of @, into End(V). Additivity is clear and
 we claim that ® is multiplicative. Indeed, for q;,q, € @, there
exists a nonzero ideal I of R such that ¢,1, Iqy, g21, Iq, are all
contained in R. Then for a,b € I we have

Bgq. (abv) = [(qlqz)( b)]v = (g1 [(g2a)b]) v
= ¢11 [q2( )] (I)th h(abv)'

Furthermore if ®, = 0 then from (Iq)IV = I(¢I)V = 0 we see
that I¢ = 0, hence ¢ =0 and so ® is 1 — 1.
Finally, for ¢ € Q,, d € D,a € I, v € V we have

By(avd) — (B,av)d = (ga)(vd) — (galv)d
= (ga)(vd) — (ga)(vd) = 0

since ga € R. Consequently ®, € End(Vp) and the theorem is
proved.

As a result of Theorem 4.1.1 we may assume that Q,(R) C
End(Vp). In particular the central closure RC and the C-
subalgebra A = R'C = RC + C are contained in End(Vp).
Clearly C C D°. Since C C End(Vp), we conclude that ed = dc
for all d € D° and so C C Z(D°) where Z(D°) is the center
of D°. Identifying (D°)° with D and C° with C we summarize
what we have thus shown in the following

Corollary 4.1.2 If R is primitive then the central closure A =
R'C is contained in End(Vp) and C is contained in the center
of D.

The following example shows that C need not be equal to
the center of D.

Example. Let F' = Q(x) be the field of rational expressions
in z, where @ is the rational number field, let o be the auto-
morphism of F' given by x +— £+ 1, and let F = F <y;0> be
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the set of all Laurent series
m .
Z aiyti a; = fz(x) S Q(.’E), meZ
i=m

with componentwise addition and multiplication determined by
ya = a’y and its consequences. Since o is of infinite period it is
well known (and straightforward to show) that E is a division
ring with center @ and maximal subfield F' = Q(z). We let K =
Q(z*) and let R be the subring Ey)K(») of End(E), where Eq
denotes the left multiplications by elements of E (i.e., {l, |z €
E}) and K,y the right multiplications by elements of K. R acts
irreducibly on F since F is a division ring, and so R is primitive.
As E(y £ E is centrally closed, By K-y & £ ®g K and K is
the extended centroid of R. On the other hand we claim that
the commuting ring D = Endg(E) of R is F{;y. Indeed, we
first observe that for every 1 € Z z°° = z + i and so from
(z2)” = 2% + 2iz 4 i* we see that o' is the identity on K if and
only if = 0. Now let d € D Since d commutes with Ej) we
have d = r;, for some b = Y72 a;y* € E. From ba = ab for all
a € K we have 332 a; (a" - a)y =0. Ifa; # 0 for some z # 0
we have the contradiction that a” = a for all @ € K. Hence
© = 0, which says that b =ag € F, therefore d =1y € F(;). Since
D clearly contains Fiy it follows that D = Fi;y & F and our
claim is established.

With reference to Theorem 4.1.1 one might ask if either @, or
@, lies in End(Vp). The following example ([133]) shows that
the answer is no. Let V be a countably infinite dimensional
vector space over a field F' with basis vy, vq,...,vy,,.... Let z
be the linear transformation given by zv, = 0, zv;y; = v; and
y the linear transformation given by yv; = v;2,,. Let R be the
F-subalgebra (with 1) of Endp(V) generated by 7 and y. It can
be shown that R acts irreducibly on V (hence is primitive), the
commuting ring of R is F', and R is the free algebra in z and y
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over F. The set U = Rz ® Ry = zR®yR is a two-sided ideal of
R. Suppose first that Q; € Endg(V). Let ¢ € Q; be the element
defined by zq =y, yg = 0. Since ¢ # 0, qu; = X a;v; # 0 for
some j. Then

0=yqu; =Y ayv; = V241 # 0,

a contradiction. Suppose next that @, C Endp(V). We define
g € Q, according to gr = =z, qy = 0. Then qu; = qzv;y =
zv;y1 = u; for all i. But a contradiction is reached since 0 =
qyvy = quz = V. ‘

For primitive rings containing minimal left ideals, however,
the story is quite different, and we shall discuss this matter in
section 4.4.

4.2 Density Theorems

As a consequence of Theorem 1.1.5 we begin with the celebrated
Jacobson Density Theorem. '

Theorem 4.2.1 Let R be a (left) primitive ring with gV a
faithful irreducible R-module and D = End(grV') (thus V is an
(R, D)-bimodule). Then for any positive integer n, if vi,...,Vq
are D-independent in V' and wy, ..., w, are arbitrary in V there
erists 1 € R such that rv; = w;, 1 =1,2,...,n.

Proof. Weset M = Vp, N = gVp,and S = T = R.
N = V is closed (by the irreducibility of gV and the defi-
nition of D). T = R is total (again by the irreducibility of
rV). Therefore Theorem 1.1.5 may be applied. Let vy, vy, ..., vy,
be D-independent and wi,ws,...,w, arbitrary in V. For each
i=1,2,...,nset J; ={r € R|r; =0, j #i}. Then by
Theorem 1.1.5 J;v; # 0. But then Jyv; = V (since gV is ir-
reducible) and so we may choose r; € J; such that rjv; = w;.
Setting r = r; + 79 + ... + 75, we have the desired conclusion.
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Any division ring D is a division algebra over its center C. It
follows from Zorn’s Lemma that D contains a maximal subfield
F (i.e., a subfield which is not a proper subfield of any other
subfield of D) which necessarily contains C.

Corollary 4.2.2 Let D be a finite dimensional division algebra
over its center C, F' a mazimal subfield of D. Then there ezists
a natural number n such that D ®c¢ F = M,(F), dim¢(D) = n?
and dim¢(F) = n.

Proof. Let R be the subalgebra D) Fi;y of Endc(D), where
D1y denotes the left multiplications by D and F{,y the right mul-
tiplications by F'. Since D is a division ring, R acts irreducibly
on D. Thus R is a primitive ring. Let f € Endg(D). As f com-
mutes with Dy, f(d) = f(la- 1) = laf(1) = df (1) for all d € D,
where g is the left multiplication by d. Hence f = rgq). Since
f commutes with F{), we have that [f(1),z] =0 forallz € F.
Taking into account the maximality of F', we infer that f(1) € F.
Thus Endg(D) = F. Clearly dimp(D) < dim¢(D) < co. By
the Jacobson Density Theorem we have that D) Firy & M,(F),
where n = dimp(D). According to Theorem 2.3.6, Dy F,) =
D ®c¢ F. Hence dim¢ (D) = dimp(D ®¢ F) = n?. On the other
hand

n? = dim¢ (D) = dime(F) dimp(D) = ndime (F)

and so dim¢(F) = n. The proof is complete.
The present proof of Wedderburn’s theorem on finite division
rings is due to T. Nagahara and H. Tomnaga

Theorem 4.2.3 (Wedderburn) Any finite division ring D is
commutative.

Proof. Suppose that D is not commutative. Without loss
of generality we can assume that all proper subrings (which are
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in fact subdivision rings) are commutative. Let C' be the center
of D with |C| = ¢q. Ifd ¢ C, then N(d) = {z € D | zd =
dz}, being a proper subring of D, is commutative and hence
contained in and therefore equal to a maximal subfield. By
Corollary 4.2.2 dim¢(N(d)) = n and dim¢g(D) = n? for some
n > 1. Therefore |[N(d)| = ¢" and |D| = ¢"*. Set D* = D\ {0},
N(d)* = N(d)\{0}, and C* = C\{0}, and let C;; = {zz27! | z €
D*} be the conjugacy class in D* determined by x. By the above
|Cel = |D*|/IN(z)*] = (g% = 1)g" = 1) forz ¢ C* and |C,| = 1
for z € C*. The class equation for D* then reads

¢ -1=g-1+m[@ - 1" -1)], m=>1

whence the contradiction that ¢ — 1 is divisible by

n?

@ -1 =)=V 4 gD 4 L1>q¢-1.

Therefore D is commutative.

- Our aim in the rest of this section is to prove a useful ”den-
sity” result due to Amitsur. In contrast to the Jacobson Density
Theorem the situation will be (loosely speaking) that given in-
dependent linear transformations 7y, 7, ..., 7, a vector v will be
found such that myv, v, ..., v are independent. We start with

Remark 4.2.4 Let R be primitive with commuting ring A =
N(R) and central closure A = R'C. Then AA 2 A Q¢ A.

Proof. The map Y a; ® d; = Y a;d;, a; € A, d; € A, is
clearly a ring surjection. Suppose its kerne] K is nonzero. Then
by Theorem 2.3.5, 0 # a ® d € K for some a € A, d € A which
yields the contradiction 0 = adV = aV.

Corollary 4.2.5 Under the conditions of Remark 4.2.4 sup-
pose that a1, aq, ..., a, are C-independent elements of A. Then
a1,02,...,0, are also A-independent.



136 CHAPTER 4. PRIMITIVE RINGS

Lemma 4.2.6 Under the conditions of Remark 4.2.4, AA has
a nonzero element of finite D-rank if and only if R has a nonzero
element of finite D-rank, where D = End(gV).

Proof. Let 0 # t = Y%, a;d; be an element of finite D-rank
with m minimal. Necessarily the a;’s are C-independent and the
d;’s are C-independent. If m > 1 choose (and fix) » € R. Then
s = ayrt—tra; = Yt ,(ayra; —a;ray)d;, hence sV C a;rtV +tV.
Therefore s has finite D-rank and so s = 0 by the minimality of
m. Since AA is a tensor product (by Remark 4.2.4) and since the
d;’s are C-independent we conclude in particular that a;ra; =
a;ra;. Since r is arbitrary in R we arrive at the contradiction
that a; and ay are C-dependent by Theorem 2.3.4. Therefore we
have shown that m =1, i.e., t = a;d;. Since o,V = a1,V =tV
we see that a; has finite D-rank. But 0 # b = a;r € R for some
r € R and so b is the required element in R of finite D-rank.

Let B be an abelian group and and let U be a left vector
space over a division ring A. Then M = Hom(B, U) is a left
vector space over A by defining:

(am)(b) = am(v), a€ A, me M, be B.

Theorem 4.2.7 (Amitsur’s Lemma) Let B be an abelian
group, let U be a left vector space over a division ring A, Uy
be a finite dimensional subspace of U and let T = Aty + Aty +
...+ Aty € Hom(B, U), where t1,t,...,tx are A-independent
elements. Suppose that T does not contain a nonzero element of
finite A-rank. Then there ezists b € B such that t(b), ..., ()
are A-independent mod (Up).-

Proof. The proof is by induction on k. The case k = 1
is obvious, since the inclusion ¢;(B) C U, means that ¢; is of
finite A-rank. We assume the theorem true for k£ — 1 and show
it for k. To this end we assume the theorem is not true. This
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means that for every b € B there exist elements di,...,d; €
A not all equal zero such that % dit;(b) € U;. It follows
that if t5(x), t3(z), . . . , te(z) are A-independent modulo Uy, then
t1(z) = F, &ti(z) + u for some uniquely determined u € U,
da,...,0r € A. By the induction hypothesis there exists b, € B
such that to(b1), t3(b1), ..., tx(b1) are A-independent modulo Uy.

Hence \

(3] (bl) = Z aiti(bl) + Uy : (41)
i=2 :

for some uniquely determined u; € Uy, o € A. It is enough
to show that (¢; — Zf:z a;t;)B C Up. To this end let b € B
be an arbitrary element. We set U; = Uy + X, At;(b)) +
Z§:1 At;(b). Let by be an arbitrary element of B such that
t2(b2), ..., te(b2) are A-independent modulo U; (the existence
of such an element follows from the induction hypothesis). In
particular t3(b),...,tx(b2) are A-independent modulo U and
SO

tl (bg) = Zj:ﬂztz(bg) + U9y | (42)

for some uniquely determined us € Uy, B; € A. Setting V) =
{ti(b) |1=2,3,...,k} and Vo = [{ti(b2) | i =2,3,...,k}], we
infer from the choice of by that Vo N (Up + V1) =0 and so

(Uo + V1) n (Uo + VQ) =U (43)

Since £;(by +by) = t;(b) mod Uy, ta(by+ba), ..., ta(br +bp) are A-
independent modulo U; and so t1(b1+bo) = 5, it (b +b2)+us
for some uniquely determined u3 € Uy, v; € A. Hence

t1(br) — Z"Yiti(bl) = 3" iti(ba) — t1(ba) + us. | (4.4)

=2 =2

2ol

It follows from (4.1) that the left side of (4.4) belongs to Uy + V4.
On the other hand by (4.2) the right side of- (4.4) belongs to



138 CHAPTER 4. PRIMITIVE RINGS

Uo+ V2. Now (4.3) implies that each side of (4.4) belongs to Up.
Then by (4.1) and (4.2) we conclude that «; = 7; = §; for all
1=2,3,...,k. In particular

k
tl(bz) — Zaiti(bz) € Uo. (45)
=2
Since t;(b+by) = ti(b2) mod Uy, t2(by+b),t3(ba+D), ..., tx(ba+b)
are A-independent modulo U;. Applying what we just have
proved we conclude that ¢;(by + b) — Yk, a;ti(be + b) € Uy and
so by (4.5)

(tl — Zk:a,-tz) (b) € tl(bg) — Ek:ait,-(bg) + Uy = Up.

1=2
With this contradiction the proof is complete.

We now let R be a primitive ring, recalling the framework
that R acts densely on a vector space Vp over a division ring
D, with A = R'C C R'D° C Endc(V). We consider V as
a left D°-space and note that ¢ € R'D° has finite D°-rank if
and only if it has finite D-rank. Furthermore U C V is a D°-
subspace if and only if it is D-subspace. If U is D-subspace, then
dimp(U) = dimpe.(U). Also we recall that D° = N(R). The
following corollary of Amitsur’s Lemma is crucial to our needs
in the section 4.4.

Lemma 4.2.8 Let R be a primitive ring, let a;,as,...,a, be
C-independent elements of A = R'C, let Uy be a finite dimen-
stonal D-subspace of V, and let T = 37, a;D°. Then either
T contains a nonzero element of finite D-rank or there erist
V0, V1, -+, Um, ... €V such that a;v;, 1 =1,2,...,n,j = 0,1,
are D-independent modulo Uy.

<.y

Proof. By Corollary 4.2.5 a;, ay, . .., a, are also D°-indepen-
dent. Suppose there is no 0 # t € T of finite D-rank. By Amit-
sur’s Lemma one finds vy € V such that a,vg, agvo, .. ., a v are
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De-independent modulo Uy (and hence D-independent modulo
Up). Again by Amitsur’s Lemma (here B = U =V and A =
D°) there exists v; € V such that a vy, avy,...,a,v; are D-
independent modulo the D-span of U, and a,vy, agvy, - . ., G,v.
Continuing in this fashion we obtain the desired result.

4.3 Primitive Rings with
Nonzero Socle

Our main object in this book is the study of rings satisfying cer-
tain ” generalized identities” and it will be seen in this connection
that primitive rings with nonzero socle arise quite naturally. Ac-
cordingly we feel it is appropriate to present in some detail the
basic facts about this class of rings. The following account is an
abbreviated version of the full treatment given in [133, Chapter
IV]. We will then close this section with the determination of
the various rings of quotients in this situation.

We begin by discussing dual spaces. A left vector space AV
and right vector space Wa over a division ring A are called a
pair of dual spaces over A if there exists a nondegenerate bilinear
form on V and W (denoted by (, )):

v, wa) = (v, w)o;
v, W) =0 implies v=0;
V,w)=0 implies w =0.

for all v,v; € V, w,w; € W, @« € A. Amapa: AV —
AV has an adjoint a* : Wa — Wy if (va, w) = (v, a*w) for
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all v € 'V, w € W. An important example of dual spaces
is the pair AV, VX, where V* = Hom(aV, AA) is the right
vector space of linear functionals of V. Two sets of vectors
V1, V,...,U € V and wy,ws,...,wr € W are called dual to
each other in case (v;, w;) = 6;5, 1,7 =1,2,...,k. If V, W are a
dual pair then W is isomorphic to a subspace W' of V* via the
map w — (, w) (making use of (e)). The Weak Density Theo-
rem (Theorem 1.1.5) now enters the picture if we set M = AV,
N = pAAA, T =W, S=A. T =W is total in view of (d).
Next consider f : Ax = Aa. Setting f(1) = A we have

f(N=f0-7)=f)y=Xy

for all v € A. Therefore N = AAn is closed. Now let vy,...,v,
be A-independent in V' and for each i set J; = {w' € W' | v;w' =
0, j # i}. By Theorem 1.1.5 vJ; # 0,4 = 1,2,...,n, and
since v;J; = A we can find w! € J; such that v;w} = 1. Since
w; = (, w;) we have proved

Theorem 4.3.1 If V and W are a pair of dual spaces over
A and vy, v,,...,v, are A-independent in V then there exists
Wy, Wa, - .., Wy € W such that (v;, w;) =&, 1,5 =1,2,...,n.

We now define two sets:

Lw(V) = {a€ End(aV)|a hasan adjoint };
Fw(V) = {a€ End(aV)|a has an adjoint and is of
finite rank }.

Fw(V) is an ideal of the ring Ly (V') and may be characterized
according to

Theorem 4.3.2 a € Fy (V) if and only if a is a sum of ele-
ments of the form x — (z, w)u, v ‘
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Proof. Since any mapping of the form z — (z, w)u is of
rank one and has an adjoint y — w(u, y), any sum of a finite
number of such mappings is of finite rank and has an adjoint.
Therefore it is enough to prove that any a € Fw (V) is a sum
of elements of the above form. Clearly Va = Y ;_; Av;, where

vy, Vg, ..., Uy are A-independent. By Theorem 4.3.1 there exist
elements wy, we, ..., w, € W such that (v;, w;) = §;; for all ¢, j.
Obviously

n n

e = Z(va, w;W; = Z(U, a’w;

for all v € V, which completes the proof.

Recall that a nonzero left ideal L of an arbitrary ring A is
said to be minimal if its does not properly contain any nonzero
left ideal of A. We continue with the following general

Proposition 4.3.3 Let L be a minimal left ideal of a ring A.
Suppose that L? # 0. Then there exists an idempotent e € L
such that L = Ae. Moreover eAe is a division ming. Further,
if A is a semiprime ring and v € A is an idempotent such that
vAv is a division ring, then Av is a minimal left ideal of A.

Proof. Since L? # 0, Lz # 0 for some z € L. Then by
the minimality of L we have L = Lxz. Therefore ex = z for
some e. € L. Hence €2z = er = z and (e? — e)z = 0. Letting
I(z) denote the left annihilator of z in A we infer that €2 — e €
l(z) " L. Since Lz # 0, L € l(z). Again by the minimality
of L we have LN I(z) = 0 and €2 — e = 0. Therefore e is an
idempotent. Clearly 0 #£ e = e? € Ae C L and L = Ae. Now let
exe € eAe be any nonzero element. Then exe = e(eze) € Aexe
and 0 # Aexe C L. By the minimality of L we have Aexe = L
and in particular yeze = e. Hence (eye)(exze) = e and eze is an
invertible element of eAe. Therefore eAe is a division ring.

Suppose that v is a nonzero idempotent of a semiprime ring
A such that vAv is a division ring. Let y = av € Av be a
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nonzero element. Being a semiprime ring A has no nontrivial
right annihilator. Hence Ay # 0. Therefore (Ay)? # 0 and
avbav # 0 for some b € A. We have vbav # 0 and vbav € vAv.
This implies that (vzv)(vbav) = v for some z € A. Thus v € Ay,
Av C Ay C Av and Ay = Av which completes the proof.

Given any ring A the sum of all minimal left ideals of A is
called the left socle of A and is denoted by Soc;(A). The notion
of right socle is introduced analogously. We note that in general
left and right socles are not necessarily equal. For example if A
is the ring of upper triangular (2 x 2)-matrices over a field, then
Soci(A) # Soc,(A). The following corollary follows immediately
from Proposition 4.3.3.

Corollary 4.3.4 Let A be a semiprime ring and e = €* € A.
Then:

(i) Ae is a minimal left ideal if and only if eA is a minimal
right ideal of the ring A;

(i) Soc;(A) = Soc,.(A).

Remark 4.3.5 Let A be a ring. Then Soc,(A) is an ideal of A
and is a direct sum of minimal left ideals.

Proof. For an element a € A we let r, to be the right
multiplication by a (i.e., r, : A = A, 27, = za for all z € A).
Since the homomorphic image of a minimal left ideal under a
right multiplication is either zero or again a minimal left ideal,
we have that Soc;(A)a = Soc;(A)r, C Soc;(A) and Soc;(A) is an
ideal of A. Making use of Zorn’s lemma we conclude that there
exists a family {L, | v € T'} of left ideals of A maximal with
respect to the property 3. cr L, is direct. If L is a minimal left
ideal which does not belong to >.,cr L, then LN Y .r Ly =0
and the sum L + 3,1 L, is direct, in contradiction with the
choice of the family {L, | vy € I'}. Thus L C {L, |y € '} and
2'761" L,Y = SOC[(A).
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An idempotent e # 0 of a semiprime ring A is called minimal
if Ae is a minimal left ideal of A. It follows immediately from
Proposition 4.3.3, that a semiprime ring A has a nonzero socle
if and only if it has a minimal idempotent. Furthermore, if e
is a minimal idempotent of a semiprime ring A, then eAe is a
division ring.

Now let R be a prime ring with nonzero socle and let e be a
minimal idempotent of R. Then V = eR is a faithful irreducible
right R-module and also a left vector space over A = eRe. If
¢ € D = Endgr(V), then ¢(e) = ¢(e?) = d(e)e € eRe and,
in view of this observation, it is straightforward to show that
D = A (here we are letting D act on V from the left). Thus A
is the associated division ring of R relative to V = eR.

Theorem 4.3.6 Let R be a primitive ring and let V be any
faithful irreducible right R-module with associated division ring
D (thus we may regard R as acting densely on pV in view of
the Jacobson Density Theorem). Then:

(i) Soc(R) = {r € R| rank r < oo};

(i) Soc(R) = Soc(H) (recall Theorem 4.1.1) where H is
any ring such that R C H C Qs(R).

Proof. Let S = {r € R|rank r < oo}. Let a € S be of
rank n and let wy, ws, ..., w, be a D-basis of Va. By density for
each i = 1,2,...,n there exists r; € R such that w;r; = d;;w;,
whence a = Y, ar;. Therefore, in order to prove (i), it suffices
to show that a € R has rank 1 if and only if the right ideal
J generated by a is minimal. Suppose a has rank 1. Setting
W = ker(a) we may write V = W @ Dv, with Wa = 0 and
u=7va # 0. Now let 0 # b € J. Since Wb = 0 we must have
w = vb # 0. By density there exists ¢ € R such that we = u
and so vbc = u, which shows that a = be. It follows that J is
minimal. Conversely, suppose J is minimal but a has rank > 1.
Then we may find two D-independent vectors va, wa in V. By
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density there exists 7 € R such that var = 0 but war # 0. Then
O#areL={yeJ|vy=0}CJ

since a € J but a € L, a contradiction to the minimality of J.
To prove (ii) we first recall from Theorem 4.1.1 that @, =
Qs(R) C Endp(V). Since R C H it is immediate from (i) that
Soc(R) C Soc(H). Now let g € Soc(H) and let v1q, v2q, . . ., Ung
be a D-basis for V¢q. There exists 0 # I<R such that Iq+q/ C R.
It is easy to see that V' is an irreducible right /-module and so I
acts densely on V. Hence there exists r € I such that v;gr = v;q
for all i = 1,2,...,n. Clearly V = ker(q) ® Y=, Dv; and so
V(¢ — gr) = 0. Thus ¢ = gr € R and the proof is complete.

The next theorem shows that primitive rings with nonzero
socle have many nice properties.

Theorem 4.3.7 Let R be a primitive ring with nonzero socle,
let V be any faithful irreducible right R-module (with associated
division ring D), and let e be any minimal idempotent (with
A =eRe). Then:

(i) There are a ring isomorphism 7 : A — D and a 7-
semilinear isomorphism o : eR — V such that o is also a right
R-module map,

(i) Every nonzero right (left) ideal of R contains a minimal
1dempotent;

(tit) Soc(R) is a right ideal of End(pV);

(iv) Soc(R) is contained in every essential Tight (left) ideal
of R;

(v) Soc(R) is the unique minimal ideal of R;

(vi) Soc(R) is a simple ring; :

(vii) Quu(R) = QuR);

(viit) Qm(R) = End(aeR) = End(pV) with eQe = eRe;

(ix) The extended centroid C of R is isomorphic to the cen-
ter of D.
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Proof. Since V is faithful, ve # 0 for some v € V. Define
the mapping ¢ : eR — V by the rule (er)? = ver. Clearly o is
an isomorphism of right R-modules. Now we define the mapping
7 : A — D setting

(ere) z = [(ere)z"—l]a
for all z € V and ere € eRe. One can easily check that all
desired properties are fulfilled and so (i) has been established.

To prove (ii) let 0 # L be a right ideal of R and pick 0 #
a € L. Since aSoc(R) # 0 we must have aJ # 0 for some
minimal right ideal J. Then the map z — az is a right R-
module isomorphism and so aJ is a minimal right ideal of R
contained in L. By Proposition 4.3.3 a.J (and hence L) contains
a minimal idempotent.

To prove (iii) let s € Soc(R) and let ¢ € End(pV). By
Theorem 4.3.6(i) s has finite rank and we choose a D-basis
V18,28, . . ., Uns for Vs. By density there exists 7 € Soc(R) such
that visr = v;st, ¢ =1,2,...,n. From V =kers ® Y., Dv; we
infer that st = sr € Soc(R).

Given any essential left ideal I of R and a minimal left ideal L
we have INL # 0. Since L is a minimal left ideal, L = INL C 1.
Hence I D Soc(R). As any nonzero ideal of a prime ring is an
essential left ideal, it contains the socle. Suppose now that K
is a nonzero ideal of Soc(R). Since Soc(R) is a nonzero ideal of
the prime ring R, K’ = Soc(R) K Soc(R) is a nonzero ideal of R.
Therefore Soc(R) C K' C K C Soc(R) and K = Soc(R). We
have thus proved (iv), (v) and (vi).

Let ¢ € @ = Qm(R). Then Kq C R for some dense left
ideal K of R. Since any dense left ideal is an essential left ideal,
K 2 Soc(R) by (iv). This means that ¢ € @Q;(R), and so
Qmi(R) = Qi(R), thus proving (vii). Since eR C Soc(R) C K,
we conclude that eRg C R. But then eRq = e(eRq) C eR
and hence eR is a right ideal of Q. Since rg(eR) "R = 0
and ro(eR) is an ideal of @, we conclude that rg(eR) = 0.
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Therefore we may regard @ as a subring of End(aeR). Consider
any linear transformation t € End(aeR). Define the mapping
ft : ReR — R according to the rule

Qn: ries;) fy = 2": rie(es;t).
i=1 i=1

We claim that f, is well-defined. Indeed, let 3%, res; = 0 and
set z = 3. re(es;t). Then er(31 res;)) =0 forallr € R
and so

n n
erz = Zerrie(esit) = <Z erriesi) t=0.

i=1 1=1

and z = 0, since R is prime. Therefore the mapping f, is a
well-defined homomorphism of left R-modules. Setting ¢, =
[ReR; fi], we see that erq, = erf, = ert for all » € R and
hence ¢; = t. Therefore Q@ = End(aeR). Finally we note that
the 7-semilinear isomorphism ¢ : eR — V yields End(aeR) =
End(pV). By (iii) we then have eQ C Soc(R) and so eQe =
eRe. In view of Corollary 2.3.12 we conclude that C = Z(A)
and Z(A) is isomorphic to Z(D) via .

We now show the relationship between primitive rings with
nonzero socle and bilinear forms.

Theorem 4.3.8 Let AV, Wa be a dual pair of vector spaces
over a division ring A, let R be a ring such that Fw (V) C
R C Lw(V), and let a — a* denote the adjoint map Lw (V) —
End(Wa). Then:

(it) R acts densely on AV (hence R is primitive);

(i4t) The map a — a* is a ring injection and W is a faithful
wrreducible left R*-module;

(iv) Soc(R) = Fw(V);

(v) Qs(R) = Lw (V).
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Proof. Let ( , ) denote the given nondegenerate bilinear
form. Clearly Fw (V) # 0 since, e.g., the rank one transforma-

tion ( , w)v has as its adjoint w(v, ). Next let vy, vy, ..., v, be
A-independent vectors in V' and let uy, ug, ..., u, € V. By The-
orem 4.3.1 there exist wy,ws,...,w, € W such that (v;, w;) =

6ij 'l,,_] = 1,2,...7?,. Then

n

= Z( , w,-)u,- (S Fw(V)

i=1
is such that vt = u;, ¢ = 1,2,...,n. Thus Fyw (V) (and hence
R) acts densely on V

To prove (iii) first let a,b € R, v € V, w € W and conclude

from

(v, (ab)*w) = (vab, w) = (va, b*w) = (v, a*b*w)

that (ab)* = a*b*. If a* = 0, then (va, w) = (v, a*w) = 0 and so
a = 0. Thus a — a* is a ring injection. Now let 0 # w € W and
y an arbitrary element of W. Picking v € V such that (v, w) =1
we note that ¢ = (,y)v € R and that t* = y(v, ) € R* is such
that t*w = y. It follows that W, is a faithful irreducible left
R*-module.

(iv) is an immediate consequence of Theorem 4.3.6(i). To
prove (v) we first pick a minimal idempotent e and an element
v such that ve # 0, and write V = veR. By Theorem 4.3.7(viii)
we may assume that @, = Q;(R) C End(AV) and for ¢ € @
we have (ver)q = v(erq) where r € R. Now e* is a minimal
idempotent of R* and, in view of (iii), we may analogously write
W = R*e*w. We define a transformation ¢* € End(Wa) by
¢*(r*e*w) = [g(re)]*w, noting that g(re) € R since re € Soc(R).
As the mapping R*e* — R*e*w, r*e* — r*e*w is an isomorphism
of R*-modules, the transformation ¢* is well-defined. From

(verq, s*e*w) = (v, (erq)*s*e*w)

= (v, (ergse)*w) = (v, (er)*(gse)*w)
= (ver, ¢*(s"e*w))
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we see that ¢* is the adjoint of ¢ and hence Q; € Lw (V). On
the other hand, let t € Lw (V) C End(aV) = Qum(R) (see
Theorem 4.3.7(viii)). Letting S = Soc(R) we know from The-
orem 4.3.7(iii) that St C S. To show that ¢ € Q; we need only
show that tS C S. By part (iii) S* is the socle of R* and by
Theorem 4.3.7(iii) (applied to End(Wa)) we see that t*S* C S*.
Since a — a* is a ring injection, we conclude that £S5 C S and
the proof of the theorem is complete.

Conversely we have the important fact that the primitive
rings with nonzero socle which arise in Theorem 4.3.8 are a
general phenomenon.

Theorem 4.3.9 Let R be a primitive ring with nonzero socle.
Then there is a dual pair AV, Wa such that Fw(V) C R C
Lw(V).

Proof. Let e be any minimal idempotent of R. We know
that V = eR is a faithful irreducible right R-module and R is a
right primitive ring acting densely on V over A = eRe. Setting
W = Re we define a bilinear form ( , ) : V. x W — A by
(er, se) = erse € A for all r,s € R. Since R is a prime ring,
(, ) is nondegenerate and so AV, Wa is a pair of dual spaces.
Since (ezr,ye) = exrye = (ex,rye) for all ex € V, ye € W
and r € R, any element r € R has an adjoint r* : ye — rye.
Hence R C Lw. Next let a € Fy. By Theorem 4.3.2 there exist
elements b;,¢; € R, =1,2,...,n, such that

exa =Y (ez, be)ec; = ex (Z bieci) = ezxd

=1 i=1
for all ex € V, where d = Y1, bec; € R. Therefore a = d and
Fw C R.
We come finally to Litoff’s Theorem. Our feeling is that this

theorem deserves an important place in the structure theory
since it furnishes the device by which many problems in prime
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rings (especially those in which a ” generalized identity” appears)
can eventually be reduced to problems in M,(A).

One first makes a general observations about dual spaces.
For a subset S of W, where V., W is a pair of dual spaces over
a division ring A, we set

St={weV|{ S)=0}.
Clearly S* is a subspace of V.

Remark 4.3.10 If V, W are dual spaces, P and Q) finite di-
mensional subspaces of V and W respectively, then there exist
finite dimensional subspaces P' O P and Q' 2 Q of V and W re-
spectively which are dual to each other (i.e., (, ): P'xQ — A
is nondegenerate).

Proof. If (, ): P x Q — A is nondegenerate, then there
is nothing to prove. Suppose now that there exists ¢ € @), say,
with (P, ¢) = 0. Then choose v € V such that (v, ¢) # 0 and
replace P by Py = P+ Av. In a straightforward way one verifies
that

| Q'NP=Q*NP
but o
QN P; s a proper subspace of QN P+

(since ¢ € PL but ¢ ¢ Pit). A dimension argument shows that
this process must stop in a finite number of steps, and so the
remark is established. '

We are now in- a position to prove

Theorem 4.3.11 (Litoff’s Theorem) Let R be a primitive
ring with nonzero socle H = Soc(R), let by, by, ..., b, € H and
let s be a positive integer < max{rank(h) | h € H}. Then
there exists an idempotent e in H such that by, b, ... b, € eRe
and the ring eRe is isomorphic to n X n-matriz ring over the
associated diwvision ring A of R, where n > s is the A-rank of e.
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Proof. By assumption we may pick an element b,,,, € H
such that rank(b,,41) > s. By Theorem 4.3.9 we have Fy (V) C
R C Lw(V). According to Theorem 4.3.2 we may assume
without loss of generality that b; = ( , wy)u;, i=1,2,... ,m+1.
Then the preceding observation show that P = Y74 Ay; and
Q = ™ w;A are contained in finitely dimensional subspaces
P’ and Q' of V and W respectively such that P’ and Q' are
dual to each other. By Theorem 4.3.1 we may select dual bases
xy,%9,...,Tn € P and 41,99, ...,y, € Q. We leave it for reader
to verify that the elements e;; = { , y;)2; behave as matrix units
and that each b, (and more generally, each 7 € eRe, where
e = Y i, e;) may be written in the form Y,;( , i) Aijz;, Aij € A.
Then for e = Y7 e; we have by = ebge € eRe = M,(A).
Clearly n > s since b,,,1 € eRe.

4.4 Generalized Pivotal Monomials

The notion of a generalized pivotal monomial was introduced
by Amitsur in his 1965 paper [3], simultaneously generalizing
on the one hand generalized polynomial identities and on the
other hand pivotal monomials (first studied by Drazin in 1965
[99]). We give the definition in case R is a prime ring, although
up to the present substantional results have only been obtained
in case R is primitive. As we shall presently see (Theorem 4.4.2),
a necessary and sufficient condition for a primitive ring to have a
nonzero socle is that it possess a generalized pivotal monomial.

Let R be a prime ring, let A= R'C=RC+C, and let S =
{a; =1,as,...,a,} be a finite set of C-independent elements of
A. For a monomial of ”length” m in A<X>= AllcC<X>
(here X is an infinite set and C < X > is the free C-algebra
generated by X)

’/T(il?) =0, T Qi g+ - - A3 Ty Qg Gy, eSS
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the complement P; is defined to be the set of all monomials 7(z)
of the form

7_(2:) = OpTqOpy_, - -+ 0pyTgyApy, GAp, € S

subject to the following condition: if [ < m then either some
Jk # qk, kK < 1 or some i # pg, K < . For [ > m there is
no restriction. We shall say that 7(z) is a generalized pivotal
monomial (abbreviated GPM) if for each substitution r : z; —
ri, r; € R, the element n(r) lies in ¥,(,ep, Ao(r), the left
ideal of A generated by all the elements o(r). Without loss
of generality we may assume that the o(z) € P, involve only
those z;’s which appear in 7(z) (just substitute 0 for any other
variable). In the special case S = {1} the notion of a GPM
reduces to the notion of a pivotal monomial (abbreviated PM)
in the sense of Drazin.

Our goal is to characterize primitive rings having a GPM.
The main body of the arguments of Theorem 4.4.2 is given in
the following lemma.

Lemma 4.4.1 Let R be a primitive ring with faithful irreducible
left module V, D = End(gV), let ay = 1l,as,...,a, be C-
independent elements of A= R'C, and let T =%} ,a,D°. If R
has o GPM 7(2) = @i, %;,,Ci,,_, - - - Gi; T, 0, then T contains a
nonzero element of finite D-rank.

Proof. If the conclusion does not hold by Lemma 4.2.8 we
can find elements vy, vy, ..., v, € V such that the elements a;v;,
1 =1,2,...,n, 5 = 0,1,...,m, are D-independent. For each
variable z; appearing in 7(z) (the same variable may appear in
several places) we let I; denote the set of all integers k, 0 < k <
m, for which z; is immediately to the left of a;,. By the density
of R we may define r; € R as follows:

rjaikvk = Vg4, kEIj,
TjQVp = 03 (Za p) 7é (ik) k)> ke I]
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Notice in particular that rja;v, = 0 for all ;. We now make the
substitution r : z; = r; and write

m(r)y= Y beo(r), b, € A.

o(z)EPy

A careful look at how the r;’s are defined shows that 7 (r)vy =
ai,, Um # 0 but o(r)ve = 0 for each o € F;.

We are now able to establish the main result.

Theorem 4.4.2 (Amitsur) ([8, Theorem 16]) If R is a prim-
itive Ting then R has a generalized pivotal monomial if and only

if Soc(R) # 0.

Proof. If Soc(R) # 0 we choose an idempotent e such that
Re is a minimal left ideal, hence eRe is a division ring. It fol-
lows that exe is a GPM. Conversely, if R has a GPM by
Lemma 4.4.1 RD contains a nonzero element of finite D-rank.
Then by Lemmad4.2.6 R itself contains a nonzero element of finite
D-rank and the proof is complete.

As a corollary to Lemma 4.4.1- we can easily obtain Drazin’s
result.

Theorem 4.4.3 (Drazin, [99]) If R is primitive, then R has a
pivotal monomial if and only if R = Endp(V) with dimp(V) <
0. . : '

Proof. If R has a PM then the set S consists solely of the
element 1 and so by Lemma 4.4.1 there exists 0 # d € D such
that d has finite D-rank. But d is invertible and so V = dV
is a finite dimensional left vector space over D. Conversely, if
R = M, (D) then R is an n-dimensional left vector space over
D. Therefore every element ¢t € R satisfies Zfzzo d;t* = 0, some
d; # 0, and hence one may conclude that n* e RV It follows
that "* is a PM for R.
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4.5 Derivations

QOur aim in this section is to show that if R is a primitive ring
with nonzero socle whose associated division ring is finite dimen-
sional over its center then any derivation of R which vanishes on
the center must be X-inner. This result is needed in the study
of generalized identities in Chapter 7.

We begin with a very special case.

Lemma 4.5.1 Let § be a derivation of R = M,(F), F a field,
which vanishes on F. Then § is inner.

Proof. The proof is by induction on n. The case n = 1 is
clear. Let {e;; | 1,7 = 1,2,...,n} denote the usual matrix units.
We set ey = eq1, €3 = €99 + €33 + ... + €,n, and write R in its
Pierce decomposition @ ,_, Rij, Ri; = e;Re;. Then

6 8 b, _
e; = eje; +eje;p = ey + app + as,
a € F, a; € Ry, i # j. From this we see that e;el = ae; + ap
and ele, = e, + ay. It follows that e‘{ = 2ae; + a9 + a1,
whence a = 0. Therefore

)
el = aip + ag = [e1, a12 — 1), ~

and so, by replacing § with 6 — ad(a;2 — a91), we may assume
without loss of generality that e = 0. Hence €} = (1 —e;)’ =0
and R}, C Ry,. By induction there exists b € Ry, such that
a’® = [a, b] for all a € Ry,. Since [e;, b] = 0 we may replace § by
§—ad(b) and assume that e{ = 0 and § = 0 on R,,. In particular
e, =0,i=1,2,...,n, whence e, = (ej1e;e5)° = Ney, 1 > 1,
and ej-l = pjej1, J > 1. Applying 0 to ej; = ejiey, 4,7 > 1, we
obtain 0 = pje;; + Ajej; and so A\; = —p; for all 4,7 > 1. Setting
= pj = —2X;, %7 > 1 we see that

— — _ 6
[e1i, per] = —per = hiey = €1;



154 CHAPTER 4. PRIMITIVE RINGS

and
)
[ejl, .Uel] = H€j1 = €.

It is then clear that § = ad(ue;) and the proof is complete.

Corollary 4.5.2 Let D be a finite dimensional division algebra
over its center C. Then any C-linear derivation d of D is inner.

Proof. Let F' be a maximal subfield of D. Since 4 is C-linear
it may be lifted to an F-linear derivation § of R = D Q¢ F =
M, (F) (see Corollary 4.2.2). By Lemma 4.5.1

6= ad(z a; ® \i), {a;} C D, {)\;} C-independent in F,

with A\; = 1 (we do not assume that a; # 0, but it will follow

from our further considerations). For € D we see in particular
from

'®1= (z®1) = [a:®1, Zai®/\i] =Z[$, ai] ® A;
that 2° = [z, a,], and the proof is complete.

Theorem 4.5.3 Let R be a centrally closed primitive ring with
nonzero socle H, with extended centroid C and with faithful ir-
reducible right R-module M. Suppose furthermore that the as-
sociated division ring A = Endg(M) is finite dimensional over
its center. Then any C-linear derivation § of R is X -inner.

Proof. We shallregard V = M®&M = {(z, y) | z,y € M} as
an R-module under the multiplication (z, y)oa = (za, Ta®+ya).
We let M; = (M, 0) and M, = (0, M), noting that M, is an
R-module. Since R has nonzero socle we may write M = mK
for some m € M and minimal right ideal K of R. Then N =
(m, 0) o K is an irreducible R-submodule of V' which is not
contained in Ma, hence N N M; = 0. The equation

(ma, 0) = (ma, ma®) — (0, ma’®) = (m, 0) o a — (0, ma®),
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a € K, shows that V = N @& M,. We define an additive map
E :V — M by sending (z, y) — y, and an R-map F: V - M
by writing V = N & M, and sending n @ my — y, where my =
(0, y). We set D = E — F, noting that D maps M, to 0. For
a € R we see that

(z, Y)la, E] = ((z,y)ca)E - ((z,y)E)a
= (za, za® + ya)E — ya

= xa5+ya——ya:xa5.

Since F is an R-map we have (z, y)[a, F] = 0. It follows that
(z, y)la, D] = za’.

Now let V = V/M,. Since D maps M, to 0, D induces a map

D :V — M and so we have (z, y) [a, E] = za’. We next

note that the map v : M — V given by z — (z, 0) is an R-

isomorphism. We note that za’ = zv [a, E] forallz € M. Since

v is an R-map we may rewrite this equation as za® = z [a, uﬁ].
Setting g = vD we then have

ol = [a, 9], @€ R, (4.6)

where g : M — M is an additive map. Considering the ring
E = End(M) as acting from the right on M, we remark that

0= [/\, 0'6] = [/\’ [a’ g” = [a, [/\’ g”

for all A € A° = Ng(R), a € R, ie, [\ g] € A°. Thus [,d]
induces a C-linear derivation of A° and so by Theorem 4.3.7(ix)
and Corollary 4.5.2 there exists oo € A° such that [\, g] = [\, q]

for all A € A°. This says that ¢ = g—a € Ng(A°) = End(a M),
and furthermore we have

ad = [a, q], a€R.
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By Theorem 4.3.9 End(aM) = Qi(R) (the left two sided quo-
tient ring of R), which says that Hg C R. Since H? = H,
H% C H. Therefore from a® = aq — qa, a € H, we obtain
qH C R, hence ¢ € Q(R) (the symmetric ring of quotients of
R). Thus we have shown that § is X-inner and the proof is
complete.

We point out that the condition that A be finite dimensional
in Theorem 4.5.3 is needed. For example let F' = Q(¢) be the
field of rational functions over the field of rationals and let o be
the automorphism of F given by ¢+ ¢+ 1. Then the fixed field
of F is just Q. Now let D = F{(z;0) be the division ring of all
Laurent series Y32 a;z', m € Z, a; € F, with multiplication
given according to za = a°z, a € F. Then the center of D is
@ and dimg(D) = oo. We leave it for the reader to check that
the map § : D — D given by az™ — nax” is a derivation of D
which is not inner.

4.6 Involutions

We recall from section 1.1 that an involution * of a ring R is an
antiautomorphism of period 1 or 2. An element x € R is called
symmetric if * = x and is called skew if z* = —xz. The subset
S = S(R) of all symmetric elements is closed under addition and
the Jordan product xoy = zy+yz and the subset K = K(R) of
all skew elements is closed under addition and the Lie product
[z, y] = zy — yz. In dealing with involutions we will always
make the blanket assumption that R has no 2-torsion, hence
SNK =0and 2R C S+ K. In case every element is divisible
by 2 we have the decomposition R = S @ K. An ideal I of R
such that I* = I will be called a *-ideal . For instance the socle
of a primitive ring with involution is a *-ideal.

In this section we first prove Kaplansky’s Theorem (The-
orem 4.6.8) characterizing involutions of primitive rings with
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nonzero socle in terms of Hermitian and alternate forms. This
result is then applied to give a very tight description of involu-
tions of M,,(C), C an algebraically closed field. Finally we shall
present an involution version of Litoff’s Theorem.

We define an involution % of a prime ring R with nonzero
socle to be of transpose type if there exists a symmetric minimal
idempotent and to be of symplectic type if ee* = 0 for any
minimal idempotent e € R.

Lemma 4.6.1 Let A be a prime ring and u,v € A minimal
tdempotents. Then either vu = 0 or uAv s a division ring with
an identity e and uAv = eAe.

Proof. It is enough to consider the case vu # 0. Then
uavu # 0 for some a € A, since A is prime. We set b = uav.
Taking into account the minimality of uA we infer from 0 #
bu € buA C uA that buA = uA. Multiplying both sides by v
we obtain that budv = uAv. Since b € uAv, we conclude that
be = b for some e € uAv. Therefore b(e* — e) = 0. Letting T
denote the right annihilator of b we infer that e — e € T NuA.
Since uA is a minimal right ideal and buA # 0, we have e = €2.
Recalling that e € uAv we obtain that eA = uA by minimality

of uA. Therefore e is a minimal idempotent. Analogously Ae =
Av. Thus ede = uAv.

Theorem 4.6.2 Let R be a primitive ring with nonzero socle
and involution x. Then the involution * is either of transpose
type or of symplectic type.

Proof. Suppose that the involution * is not of symplectic
type. Then there exists a minimal idempotent v € R such that
vv* # 0. By Lemma 4.6.1 v*Rv is a division ring with identity
e and v*Rv = eRe. Therefore eRe is a *-invariant subring and
in particular e* = e.
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Our next goal is a characterization of involutions of primitive
rings with a nonzero socle in terms of bilinear forms. To this end
we proceed to define the following two types of forms which will
be relevant. Let A be a division ring with involution o — @,
AV a vector space, and (, )V x V — A a biadditive mapping
such that

(aw, Bw) = alv, w)B ‘ (4.7)

forall a,8 € A, v,w € V.
We say that (, ) is Hermitian relative to o — @ if

(v, w) =(w,v) foral v,weV.

We say that ( , ) is alternate if @ = « for all @ € A,
char(A) # 2 and

(v, w) = —(w, v) forall v,weV.

We remark that if (, ) is alternate then A is necessarily a field
and (v, v) =0 forallve V.
Of secondary importance is the notion of a skew Hermitian
form:
(v, w) = —(w, v) forall v,weV.

The reason for this is given by the following lemma.

Lemma 4.6.3 If (, ) is a skew Hermitian form then one of
the following must occur

(i) (, ) is alternate;

(ii) If A € A is any nonzero skew element, then the map
~: A — A defined by oo — & = A7'@\ is an involution of A
and the form ( , ) defined by (v, w) = (v, W)\ is Hermitian
relative to o — @.

Proof. If there are no nonzero skew elements in A then @ =
aforalla € A and (, ) is alternate. Now let 0 # A € A with
A = —A. It is straightforward to check that o — @ = A~'a) is
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an involution. The form defined by (v, w) = (v, w)A is clearly
biadditive. Furthermore we have

(oaw, Bw) = {(av, fw) = alv, w)BA )
= alv, wWAAIBA) = a(v, w)B.

Finally, from

— ——

(v, w) = (v, WA= 1"{v, WA
A M w, w)A = (=) {—{w, v)}\ = {w, v)A

(w, v)

we see that (, ) is Hermitian.

We make the useful observation thatif (, }: VxV — Visa
nondegenerate biadditive mapping satisfying (4.7) then, turning
V into a right A-space Va by defining v - & = @v, we see that
AV, Va is a dual pair. Accordingly, the notions and results of
section 4.3 are available. In particular we shall write Fy for
Fy,(aV) and Ly for Ly, (aV). It is straightforward to verify
that the mapping a — a*, a* the adjoint of @, is an involution
on Ly.

The next four results show that involutions of transpose type
correspond to Hermitian forms and involutions of symplectic
type correspond to alternate forms.

Proposition 4.6.4 If R is a prime ring with nonzero socle and
with involution x of transpose type, then

FvCRCLy

where AV is a vector space with a nondegenerate Hermitian form
(, ) and * is the adjoint mapping relative to { , ).

Proof. Since * is of transpose type, there exists a symmetric
minimal idempotent e. We set V = eR, A = eRe, define ere =
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er*e, and define (, ) : V xV = V by the rule (ez, ey) = exye.
It is easily verified that this is a nondegenerate Hermitian form.
The property (exr, ey) = (ex, eyr*) shows that * is the adjoint
mapping re ( , Y and R C Ly. Finally, let t = (, ea)eb € Fy,
a,be R. Forallr € R

ert = (er, ea)eb = era’eb

and so t = a*eb € R. It follows from Theorem 4.3.2 that Fy C
R, and the proposition is proved.

Conversely, we now prove

Proposition 4.6.5 Let AV be a vector space over a division
ring A of char(A) # 2 with a nondegenerate Hermitian form
(, ) relative to o — @, and suppose R is a x-invariant subring
of Lw such that Fv C R. Then the involution induced on R by
* 15 of transpose type.

Proof. Suppose the involution induced on R is not of trans-
pose type. Then by Theorem 4.6.2 it is of symplectic type,
i.e., for every minimal idempotent e we have ee* = 0. Let
0 # v € V and pick w € V such that (v, w) = 1. Then
e =(,w)v € Fy C R is a minimal idempotent. Indeed, for
z €V, we have

ze? = [(z, wvle = ((z, w)v, whv

= (z, w)(v, w)v = ze
and so e = e2. Since e is of rank one, it is a minimal idempotent.
Since €* = (, v)w, we see by assumption that
0 = wee" =[(v, wyv]e" = (v, w)v, V)w
= (v, w)(v, v)w = (v, v)w.

Since w # 0, we conclude that (v, v) = 0 for all v € V. Lineariz-
ing, we have (2, y) + (y, z) = 0 for all z,y € V. In particular

0= (v, w) +(w,v) =1+ (v, w) =2,
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in contradiction to char(A) # 2.
Proposition 4.6.6 IfR 18 a prime ring with nonzero socle and
with involution * of symplectic type, then

Fy CRC Ly

where AV is a vector space with a nondegenerate alternate form
(, ) and x 1s the adjoint mapping relative to (, ).

Proof. Let e be any minimal idempotent. By assumption
ee* = 0 = e*e. We set u = e+ e*. Clearly u is a symmetric
idempotent of rank 2 and H = uRu = M3(A) (by the Jacobson
Density Theorem). Let e;; = €, €g9 = €*, €12, €21 be a system of
matrix units of H. We have '

* * * * * - *
ely = (enenen)” = €99€12€11 = €11€19€22

and e}, = aejs for some a € A. Consider v = e;; + e5. Since
vR = e;1 R = eR, v is a minimal idempotent of R. Hence.

0=9ov* = (611 + 812)(822 + 0812) = e12 + aeq2

and a = —1. Analogously one can show that e}, = —e,;. Define
the additive mapping # : A — A by the rule

(exe)* = erz(eze) eq

for all eze € eRe = A. First we note that

[(exe)(eye)]# = 612822y*822$*822é21
= 812822?/*82282181282227*622821
= (eye)*(eze)*
Further
(exe)®# = [elz(exe)*em]# =[612x*621]#
= 812(81227*821)*821

812(‘"821)27(—612)821 = €11T€11 = €xe
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which means that # is an involution of the division ring A. Now
we define the bilinear form (, ) by the rule

(ez, ey) = exy’en
for all ez, ey € eR. From

(ey, ex)? = epeyzen ) en = en(—eq)Ty*eres

= —exy'en = —(ex, ey)

we infer that (, ) is a skew Hermitian bilinear form. Since R
is prime, this form is nondegenerate. The property (exr, ey) =
(ex, eyr*) for all ex,ey € eR and r € R is obvious. It shows
that * is the adjoint mapping re (, ) and also that R C Ly. If
t=(,ea)eb € Fy, thenforallr € R

ert = (er, ea)eb = era*eyeb

and so t = a*ey;eb € R. Hence Fy C RC Ly.

Suppose that (, ) is not an alternate form. It follows from
Lemma 4.6.3 that the form (, ) defined by (v, w) = (v, w)A,
A = —)\ # 0, is a Hermitian form relative to the involution
a— &= A"la#) It is easy to see that * remains the adjoint
mapping relative to (, ) and that the rings £y and Fy remains
unchanged. But now by Proposition 4.6.5, * must be of trans-
pose type, in contradiction to our hypothesis. Therefore (, ) is
an alternate form and the proof is complete.

The converse of Proposition 4.6.6 is easily shown.

Proposition 4.6.7 Let AV be a vector space over a division
ring A of char(A) # 2 with a nondegenerate alternate form (, ),
and suppose R is a x-invariant subring such that 7y C R C L.
Then the involution induced on R by * is of symplectic type.

Proof. By Theorem 4.3.8 R is primitive with nonzero socle.
Suppose * is of transpose type, i.e., there is a symmetric minimal
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idempotent e = e* € R. We can then write V = Aw @ V(1 —e),

where we = w # 0. Let v = aw +u(1 — e) be any element of V.
Then

(w,v) = (w, aw+u(l —e)) =(w, wya+ (we, u(l —e))
= (w, u(l—e)e) =0.

Thus (w, V) = 0 in contradiction to nondegeneracy of ( , ), and
the proposition is proved.

Taken together Propositions 4.6.4, 4.6.5, 4.6.6, 4.6.7 give us

Theorem 4.6.8 (Kaplansky’s Theorem) Let R be a primi-
tie ring with nonzero socle (and of char # 2). Then any in-
volution of R is either of transpose type or of symplectic type.
Furthermore R has an involution x of transpose (resp. symplec-
tic) type if and only if there is a vector space AV with a non-
degenerate Hermitian (resp. alternate) form (w, v) such that
Fv C RC Ly and * is the adjoint map relative to (w, v).

We now apply Kaplansky’s Theorem to obtain a more pre-
cise determination of involutions of Endc(V) (=2 M, (C)) where
dim¢(V) = n < oo and C is an algebraically closed field. Al-
though this is admittedly a rather special case we shall see in
Chapter 9 that our exposition of Herstein’s Lie theory of prime
rings with involution ultimately reduces to this situation.

Let V be an n-dimensional vector space over a field C of char-
acteristic # 2, and let Endc (V') denote the n?-dimensional alge-
bra of linear transformations of V. A set {e;;},4,7 =1,2,...,n
of elements of Endc(V) satisfying

3

€ij€kl = 5jk6iz (4-8)

will be referred to as a set of transformation units . Given a
basis v1,vs,..-,v, of V the mappings {e;;} given by Vpey; =
d:;xv; will be called the transformation units re vy, v, . .., v, and
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conversely, given any set of transformation units {e;;} there is a
basis vy, vs, . . ., v, whose transformation units are the given e;;
(just pick v; = vey; # 0 and define v; = vye15). It follows that
if a = 37— auzeij, oy € C, then A = (au;) is the matrix of a re
V1, V2, .,V i0 the sense that v;a = 377, ay;v;.

Two important involutions of Endc(V) can now be defined.
The map 7 : 30 aujes; = Lq ajiei; will be called the t;ans—
pose involution re {e;;} and, if n = 2m and

s = 61,2m+e2,2m_1+. . -+em,m+1_(em+1,m+em+2,m—1+- . -+62m,1)7

the map a — sa"s™!

{ei;}-

Remark 4.6.9 Let vy,vs,...,v, and wy,ws, ..., w, be bases of
V' with corresponding transformation units {e;;} and { fi;}. Then
fij = tei;t, where t is the linear transformation given by t :
Vi = W;. i

will be called the symplectic involution re

Let (, ) be a nondegenerate symmetric or alternate form on
V. A symmetric form on oV is just a Hermitian form in case
@ = a for all @ € C, and thus (v, w) = (w, v) for all v,w € V.

Given a basis v1,vy,...,9, of V the matrix A = (0;;), where
0ij = (viyv;), is called the matrix of (, ) re vi,vs,...,v,. If
Wi, Wo, ..., Wn is & second basis of V' (where w; = Y51 PijV5)

and B is the matrix of (, ) re wy, wo, ..., w, then B = PA (*P),
where P = (p;;) and *P is the transposed matrix.

Lemma 4.6.10 If C is algebraically closed and (, ) is a non-
degenerate symmetric form, then there is a basis wy,wo,. .., w,
of V such that the matriz of (, ) re wy, ws, ..., w, is the identity
n X n-matriz I.

Proof. Suppose (v, v) =0 for all v € V. Picking v,w € V
such that (v, w) = o # 0 we immediately reach the contradic-
tion that (v + w, v+ w) = 2a # 0. Thus (w, w) = B # 0 for
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some w. Since C is algebraically closed we may write § = a?
for some « € C. Setting w; = a~'w we then have (wy, w;) = 1.
The map e : v — (v, w)w; is a projection with V(1 —e) or-
thogonal to w; (i.e., (V(1 —e), w;) = 0), and so (, ) induces
a nondegenerate symmetric form on V(1 —e). By induction
V(1 —e) has a basis wy, w3, . . ., w, such that (w;, w;) = ;5 and
the proof is complete.

Lemma 4.6.11 If (, ) is a nondegenerate alternate form then
n = 2m is even number and there is a basis wy, Wa, ..., Wy Such
: . 0 I
that the matriz of (, ) rewy, Wa, ..., Wy 15 ( I (’)n ) , where
—4im
I, is the identity m X m-matriz.

Proof. Choosing v,w € V such that (v, w) = a # 0 we
set w; = a v, w, = w and note that (w;, w,) = 1, whence
(wn, w;) = —1. The map e : v — (v, wp)wy — (v, wi)w, is a
projection of V on Ve with V(1 — e) orthogonal to w; and wy,
and so ( , ) induces a nondegenerate alternate form on V(1 —e).
By induction, n — 2 = 2(m —1) is even and V(1 — e) has a basis
Wa, W3, . . ., Wn_y Such that (w;, w,—;) = 1 for 1 = 2,3,...,m,
(Wmas, w;) = —1 for i = 1,2,...,m — 1 and all other products
are 0. The lemma is thereby proved.

Now assume * is any involution of Endc(V'). We shall fur-
thermore assume x acts as the identity map on C such involu-
tions are called involutions of the first kind . (Problems concern-
ing prime rings with involutions which do not act as the iden-
tity map on the extended centroid can be frequently reduced
to prime rings without involution). By Kaplansky’s Theorem
* 1s the adjoint map relative to a Hermitian or alternate form
(, ). Since we are assuming that x is the identity map on C
it follows easily that in the Hermitian case { , ) is symmetric,
ie., (v, w) = (w, v) for all vy,w € V. By Lemma 4.6.10 and
Lemma 4.6.11 V has a basis wy, ws, . .., w, such that the matrix
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S = (0i;) of (, ) re wi,wa,...,wy is either I (if (, ) is symmet-

ric) or I I(’)" , n=2m (if (, ) is alternate). Let {f;;}
“im

be the set of transformation units re wy,ws,...,w, and a € R.

Writing a = ZZ Olijfij, = EZ ,Bijfij and setting A = (aij),
B = (f;;) we see from the equations

(wia*, wj) = Zﬂik(wk, wj) = Zﬂikdkj
k k

and
(wi, wja) = (w;, Zajkwk> = Zdikajk
k k
that BS = S(*A), ie., B = S(*A)S™!. Translated back to
an equation in R this says that a* = sa"s™!, where a7 is the
transpose involution re {f;;}. If S = I, then s =1 and * is the

transpose involution re {f;;} and if S = < _(} 16" ) , then
m

§ = f1,2m +...+ fm,m+1 - (fm+1,m + ...+ f2m,1)

and x* is the symplectic involution re {f;;}. We have thus com-
pleted the proof of the following

Theorem 4.6.12 Let x be an involution of the first kind of
R = End¢(V), where C is an algebraically closed field. Then
there is a set of transformation units { fi;} such that x is either
the transpose involution or the symplectic involution relative to

{fi;}-

Corollary 4.6.13 Let * be an involution of M,(C) of the first
kind, where C is an algebraically closed field. Then there exists
a set of matriz units {F;;} in M,(C) such that x is one of the
following two maps:

(a) ¥ a;;Fij = Y o Fj; (transpose);

(b) T 0 Fij = S (X i Fji) S, n = 2m (symplectic), where
S=Flom+...+ Fomi1 — Fngim+ -+ Fom1).
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Proof. This is easily seen by letting ¢ : Endc(V) — M,(C)
be a C-algebra isomorphism, defining an involution * on Endc(V)
by a*¢ = (a¢)*, and setting F; = f;;¢, where {fi;} are the
transformation units given by Theorem 4.6.12.

We turn our attention now to developing the analogue of
Litoff’s Theorem for rings with involution. In what follows R
will denote a primitive ring with involution * and with nonzero
socle Soc(R).

We start with the following general observations about spa-
ces with a nondegenerate Hermitian or skew Hermitian bilinear
form. For a subset S of V', where V is a left vector space over
a division ring A with a nondegenerate Hermitian or skew Her-
mitian bilinear form (, ): V xV =5 A, we set

St={veV|{, S)=0}.

Clearly S+ is a subspace of V.

Remark 4.6.14 IfV is a left vector space over a division ring
A with a nondegenerate Hermitian or skew Hermuitian bilinear
form (, ):V xV = A and P is a finite dimensional subspace
of V, then there exists a finite dimensional subspace P' O P
such that {, )|p is nondegenerate.

Proof. If (, ) : P x P — A is nondegenerate, then there
is nothing to prove. Suppose now that there exists v € P, say,
with (v, P) = 0. Then choose w € V such that (v, w) # 0 and
replace P by Py = P + Aw. We claim that

dima (P;- N Py) < dima (P N P).

Indeed, let p+aw € Pi-. Since v € Py and (p, v) = £(v, p) =0,

0 = (p+ aw, v) = al{w, v)
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and hence « = 0 and p € P+, On the other hand v ¢ P§-
which proves the claim. A dimension argument shows that this
process must stop in a finite number of steps, and so the proof
is complete.

We are now in a position to prove

Theorem 4.6.15 (*-Litoff Theorem) Let R be a primitive
ring with nonzero socle H = Soc(R) and with involution *. Let
by, b, ..., b, € H. Then there exists a symmetric idempotent e
in H such that b; € eRe for all i and the ring eRe is isomor-
phic to n X n-matriz ring over the associated division ring A of
R, where n is the A-rank of e. If n > 1, then the type of the
restriction of the involution * on the subring eRe coincides with
that of the involution x of the ring R.

Proof. Taking into account Theorem 4.6.8 we can assume
that there exists a left vector space V over A with a nondegen-
erate Hermitian or alternate form (, ) such that F (V) C R C
Ly (V) and the involution * coincides with the adjoint relative
to {, ). By Theorem 4.3.2 we may assume without loss of gen-
erality that b, = (, w;)u;. Then Remark 4.6.14 shows that P =
> (Au; + Aw;) is contained in a finitely dimensional subspace
@ of V such that (, )| is nondegenerate. By Theorem 4.3.1 the
subspace () has dual bases zy,zs,...,2, and y1,%2,...,Yn. We
leave it for the reader to verify that the elements e;; = (, ¥:)z;
behave as matrix units and that each by (and more generally,
each r € eRe, where e = Y., e;) may be written in the
form 3,:( , yi)Aijz;, Aij € A. Then for e = 37, e;; we have
by = ebre € eRe = M,(A). Let v € V. Then ve = 0 if and
only if »-% ,{v, y;)z; = 0. Since z,,zs,...,z, are linearly inde-
pendent, the last condition is equivalent to (v, y;) = 0 for all
1=1,2,...,n. But y1,¥s,...,¥n is a basis of (). Hence we have
proved that ker(e) = Q. Since Ve = P, it follows that

(ze, y) = (ze, ye + y(1 — e)) = (ze, ye) = (z, ye)
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which means that e* = e. The last statement of the theorem is
obvious.

We remark that clearly the symmetric idempotent e in The-
orem 4.6.15 may be chosen so that the ranka(e) > k, where k is
any prescribed positive integer for which k¥ < dima (V). Indeed,
let e; denote the symmetric idempotent guaranteed by Theo-
rem 4.6.15, take any element ¢ of sufficiently high finite rank in
(1 — e1)R, and reapply Theorem 4.6.15 to the elements e, c to
obtain the desired symmetric idempotent e.

The x-Litoff Theorem will prove to be useful in Chapter 9
when we shall give an exposition of Herstein’s Lie theory for
prime rings with involution.

4.7 Automorphisms

Our aim in this section is a description of automorphisms of
primitive rings with nonzero socle whose associated division ring
is finite dimensional over its center. We show that any automor-
phism acting on the extended centroid identically is X-inner. We
start with the following easy remark.

Remark 4.7.1 Let o be an automorphism of R = M,(F), F a
field, which acts identically on F'. Then « is inner.

Proof. Let {e;;} be a set of matrix units in M,(F). Obvi-
ously {ef;} is again a set of matrix units. By Remark 4.6.9 there
exists an invertible matrix ¢t € M,(F) such that e = t~e;;t for
all 7,7 which proves the remark.

Corollary 4.7.2 Let D be a finite dimensional division algebra
over its center C. Then any C-linear automorphism « of D is
mnner.
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Proof. Let F be a maximal subfield of D. Since o is C-
linear it may be lifted to an F-linear automorphism & of R =
D ®c F =2 M,(F) (see Corollary 4.2.2). By Remark 4.7.1 & =
inn(Y a; ® \;), {a;} C D, {\;} C-independent in F, with A\; =1
(otherwise we replace (¥ a; ® \;) with (Za; ® A)(1® A\)~1).
For z € D we see in particular from

[Zai@))\i] (z°®1)=(z®1) [Zai®)\i]

that a1z% = za,, and the proof is complete.

Theorem 4.7.3 Let R be a primitive ring with nonzero socle,
with faithful irreducible right R-module M and A = End(Mp).
Suppose that o is an automorphism of R. Then there exist an
automorphism 7 : A = A and a T-semilinear automorphism S
of M such that 7 = S~'7S for all 7 € R.

Proof. Here we consider R as a subring of Enda(M). Fur-
ther we consider M as an R-module M’ with multiplication
given by the rule m x r = mr®. Clearly End(My) = A. By
Theorem 4.3.7 there exist an automorphism 7 : A — A and a
T-semilinear isomorphism S : M — M’ which is an isomorphism
of right R-modules as well. We have

(mr)S = (mS) xr = (mS)r*

for allm € M and r € R. Hence S = Sr® and r* = S™1r8,
which completes the proof.

Theorem 4.7.4 Let R be a centrally closed primitive ring with
nonzero socle H and with extended centroid C, and let M be
a faithful irreducible right R-module whose associated division
ring A = End(Mpg) is finite dimensional over its center. Then
any C-linear automorphism a of R is X -inner.
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Proof. By Theorem 4.3.7(ix) we can identify the center of
A with 15C. Tt follows from Theorem 4.7.3 that 7 = S~ 17 for
some 7-semilinear automorphism of M. Consider ¢ € C. Since
c®* = ¢, ¢S = Sc. Note that mc = em for all m € M. We have

c(mS) = (mS)c = (mc)S = (em)S = ¢ (mS)

and hence ¢ = ¢” for all ¢ € C. Applying Corollary 4.7.2 we
infer that 7 = inn(a) for some a € A. Consider now the endo-
morphism T : M — M of the abelian group M given by the rule
mT = a(mS) for all m € M. Clearly T is an automorphism.
Further

(mr)T = a[(mr)S] = a[(mS)r®] = [a(mS)]r* = (mT)r*
which means that r* = T~ 1rT. Moreover

(dm)T = a[(dm)S] = a[d"(mS)] = ad” (mS)
= da(mS) = d(mT)

for all m € M and d € A. Therefore T € End(aM). By
Theorem 4.3.7 End(aM) = Qi(R) and Soc(R) is a right ideal of
Qi(R). Clearly Soc(R)™ = Soc(R) and so for every r € Soc(R)
we have Tr* = rT € Soc(R). Thus

TSoc(R) = TSoc(R)* C Soc(R)

and we conclude that T € Q,(R).
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Chapter 5

The
Poincaré-Birkhoff-Witt
Theorem

In this chapter we shall prove a generalization of the well-known
Poincaré-Birkhoff-Witt theorem for Lie algebras. Aside from our
feeling that this result is of independent interest, we have a very
tangible motivation for this project. One of the central goals
in this book (Chapter 7) is the study of so-called generalized
identities which involve derivations (along with automorphisms
and antiautomorphisms). To be specific let R be a prime ring
with extended centroid C, prime subfield ® of C', and symmetric
ring of quotients Q. Letting D = D(R) = Der(R)C + D; (where
D; is the set of inner derivations of Q) we recall from Chapter 2
that D is a certain set of derivations of () which satisfies the
following properties '

(i) D is a ®-algebra;

(ii) D is a right C-space;

(iii) There is ®-Lie algebra map A : D — Der(C);

(iv) [dc, p] = [8, plc + 8c*, where i = A(p), 6,4 € D and
ceC.
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In case of char. p D is also closed under pth powers (in
this situation D is called restricted) and there are further natural
properties (which we will not mention here).

In view of this motivation, in this chapter we shall abstract
the above properties and define accordingly the notion of a (re-
stricted) differential F-Lie algebra L (F playing the role of C).
For such a Lie algebra we will construct a universal enveloping
algebra (which is an F-ring) and then show that it has the ex-
pected right F-basis (Theorem 5.3.6 and Theorem 5.4.5). The
main tool in the proof will be the Diamond Lemma. Since there
are various level of complications, depending on whether L is an
F-algebra rather than just a right F-space and on whether L is
restricted or not, we have chosen to divide the chapter into four
separate sections (with each succeeding section building upon
the previous case). In this way the reader may restrict his at-
tention to the level of generality in which he is interested. We
have also carried through our arguments in the generality where
F'is a commutative ring with 1 rather than just being a field,
since there is no appreciable change in the arguments. In the
few instances in which there is some simplification in case F' is
a field these matters will be pointed out.

The main results of sections 5.1 and 5.2, namely, Theo-
rem 5.1.1, Theorem 5.2.3, are of course well-known, although
the use of the Diamond Lemma in their proof may be of interest
(in preparation of these sections we used some material from [19]
and [20]). Theorem 5.3.6 is a special case of a more general the-
orem proved by homological methods in [264] whereas we have
not seen Theorem 5.4.5 in the literature.

5.1 Lie Algebras

Let ® be a commutative ring with 1. Recall that a ®-algebra
K with multiplication (z,y) — [z, ] is said to be a Lie algebra
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over @ if it satisfies the identities

[:II, :I:] =0, [11:, [yv z]] + [y’ [Z, :I:]] + [Z, [JI, y]] =0
for all z,y, 2 € K. The last identity is called the Jacobi identity.

Further let A be an associative ®-algebra with an identity
element 1. We set [z,y] = zy — yz for all z,y € A. Denote by
A®G) the additive group A with new multiplication [, ]. Clearly
AG) is a Lie algebra over .

Let K be a Lie algebra over ®. A pair (4; f) is said to be a
cover of the Lie algebra K if A is an associative ®-algebra with
1 and f: K — A®) is a homomorphism of ®-algebras. A cover
(A; f) of the Lie algebra K is called an enveloping algebra of the
Lie algebra K if A = (K/)+®-1, where (K /) is the subalgebra of
A generated by the image K/ of the mapping f. An enveloping
algebra (U;¢) of the Lie algebra K is said to be a universal
enveloping algebra of the Lie algebra K, if for any cover algebra
(A; f) of the Lie algebra K there exists a (necessarily unique)
homomorphism v : U — A of ®-algebras with identity elements
(i.e. 1¥ = 1) such that ¢op = f.

Two covers (A; f) and (B;g) of a Lie algebra K are said
to be isomorphic if there exists an isomorphism h : A — B

.of ®-algebras with 1 such that fh = g. Clearly a universal
enveloping algebra of a given Lie algebra is determined uniquely
up to isomorphism.

Any Lie algebra K over ® has a universal enveloping alge-
bra. Indeed, let {(A;, f;) |7 € I} be a set of all pairwise non-
isomorphic enveloping algebras of the Lie algebra K. We let
A = [1;er Ai be the Cartesian product of A;, 7 € I. Define the
mapping ¢ : K — A by the rule ¢(z) = {fi(z)}ics forallz € K.
Denote by U the subalgebra of A generated by the identity el-
ement and K?. It immediately follows from our construction
that (U; ¢) is the universal enveloping algebra of K.
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However, we are only interested in Lie algebras which are
free ®-modules. In this case we proceed to describe the univer-
sal enveloping algebra (U(K); p) in a more tangible fashion as
follows. Let X be a ®-basisof K, Z = {z |z € X}, S = S<Z>
the free semigroup (with 1), and ®<Z> the free algebra (with
1) generated by Z. Denote by L the ®-span of Z in &< Z >
and let ¥ : K — L be the ®-map given by z — Z, z € X.
It is clear that 1 is an isomorphism of ®-modules, and we set
¢ = ¥~'. We now define I = I(K) to be the ideal of ®<Z>
generated by all elements of the form [u?, v¥] - [u,v]%, u,v € K,
or, equivalently, (Z,9] — [z,y]¥, z,y € X. Letting v denote the
projection of <Z> onto <I><Z>/I we set p = 1v. The reader
may then verify the straightforward details that (®<Z>/I; p)
is a universal enveloping algebra of K (if (4; f) is any cover of
K, first lift f to a homomorphism o : #<Z>-— A and then just
check that o sends I to 0).

Theorem 5.1.1 Let K be a iz’e algebra over ® with universal
enveloping algebra (U(K); b) Assume that K is a free ®-module
with a well-ordered basis X. Then U(K) is a free ®-module with
the basis
V={elzh.. .20 |z, € X, 5y <2< ... <z} U{1}
(we shall refer to V' as a PBW -basis of the universal enveloping
algebra U(K) of the Lie algebra K ).
Proof. Let A be the reduction system of ®<Z>, given by
= (gf;,:fg + [y,x]"’) forall y>zeX.

Further let z,y € X, P,Q € S. We set R = Rp,,,q for z >
Yy, and R = Rpg,,q for y > z. Then R (P[%,§]Q) = Plz,y¥Q.

We claim that forany P,Q € S, uy, ug, ..., Un, V1, Vo, ..., Up €
L there exists a sequence of reductions R such that

R(;P[ui,v,—]Q> ZP[u,, 21YQ. (5.1)
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Indeed, let u; = X, viz®, vi = X, piy¥, where vig, piz € @,
z,y € X. Using reductions of the form Rp,, ¢ (or Rps,.q) we
may reduce the element

ZP[U,‘,’U,‘]Q = Z Vi:rﬂ'iyp[j)g]Q
i=1 1,2,y

= Z (Via;llliy - Viy,uli:r)P[j”g]Q

1,2<y

to the element

Z (Vi:rll'iy - Viy/li:r)P[x’y]wQ = Z l/iz,u,in[IE,y]wQ

1,2<y 1,y
n Y
= S P [Z VizT, Y, ,U'iyy] Q
i=1 T Y
i=1

Let w = 1;Z2...Tm € S. The number m is called the length
of w. A linear order < is defined on S as follows: u < v, if
either

(a) u is of smaller length than v, or

(b) u and v have the same length but u is less then v rela-
tively to the lexicographic order.

It is clear that this ordering < is a semigroup ordering com-
patible with the reduction system A and that it satisfies the
descending chain condition.

Denote by I = I(A) the ideal of the algebra ®<Z> generated
by the reduction system A, noting that U(K) = &<Z> /. We
will show, that all ambiguities of A are resolvable and the set

Vi={Z1Zy...Tm |2z, € X, 21 <22 < ... < 3 U {1}

is a ®-basis of ®<Z>,,,.
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Indeed, only the overlap ambiguity (o,y, 0ys, Z, , ), wWhere
z,Y,2 € X and z > y > z, is possible. We set
w = Rg,,:(29Z) — R0, (297)
= (922 + [2,y]"%) — (229 + 2l 2]”)
and
w = Rioy RoyorRoroy Ryo.. (w)
= I7Z+[y,z]¥Z + glz, 7] + [2,9]Y%
— 257 - Zlz,y)Y — [,y]"F - 2y, o]
= [.2l. 2] + [5 [z, 2] + 2 0)*, 2] -
By (5.1) there exists a sequence of reductions R such that

R([lv, 2%, 2] + [3: [, 2]*] + [[2,9]", %))
=[ly, 2], 2" + [v, [z, 2]]” +[[2, 9], 2" .
The last expression is equal to zero by Jacobi identity. Thus

RRzazyRay:zRouyRyau ('l.U) =0

and this ambiguity is resolvable. Therefore by the Diamond
Lemma U(K) = ®<Z> /I 2 ®<Z>;,. By Lemma 1.3.2 it is
clear that V' is a ®-basis of ®<Z>;,, and so V is a $-basis for
U(K).

Corollary 5.1.2 Keeping the notations of the proof of Theo-
rem 5.1.1, we set ad(z)(v) = [v,%] and Ad(Z)(v) = [v?,z]¥ for
allz € X,v € L. Lett be a natural number. Then there ex-
ists a sequence R of reductions of the form Ra,, 5 Such that
R(ad(z)"(v)) = Ad(z)"(v).

Proof. Clearly [2,Z] — [z,z]¥ € I(A) for all z € X. Hence
[u,Z] — [u®, z]¥ € I(A) for all u € L. Therefore

ad(3)(v) — Ad(z)(v) € I(A). (5.2)
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Suppose that
ad(2) (v) = Ad(z) 1 (v) € I(A).
Then

ad(z)"(v) — ad(z) (ad(2)""} (v))
= ad(%) (ad(z)' " (v) — Ad(2)"'(v)) € I(D).  (5.3)
Clearly Ad(z)"(v) = (Ad(x)“l(v"’))w € L forallt > 0. By
(5.2) it follows that
ad(z) (Ad(z)'"} (v)) — Ad(2)*(v)
= ad(z)(Ad(z)""'(v)) — Ad(z) (Ad(z)" " (v)) € I(D)
(5.4)
From (5.3) and (5.4) it follows that
ad(z)'(v) — Ad(Z)t(v) € I(A).
Since Ad(Z)'(v) € L € ®<Z>4;r,

N(ad(z)!(v)) — Ad(z)' (v)
= N(ad( ){(v) — Ad(2)(v)) € I(A) N ®<Z>4,= 0

where N : #8<Z>— ®<Z>;,, is the normal form mapping (its
existence follows from Theorem 5.1.1 and the Diamond Lemma).

Hence N(ad(Z)!(v)) = Ad(Z)'(v). Now our statement follows
from the definition of a normal form of an element.

Corollary 5.1.3 Let w,uy,ug,...,Upn, V1,V2,...,0, € ®<Z >
and r = Y0 u;wv;. Keeping the notations of the proof of the
Theorem 5.1.1, we suppose that there exists a sequence R of
reductions of the form Ry,, B such, that R(w) = 0. Then there

exists a sequence R' of reductions of the same form such that
R'(r) =0.
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Proof. Since R(w) =0, w € I(A). Hence r € I{(A). Clearly
N(r) = 0. Now our statement follows from the definition of a
normal form of an element.

Corollary 5.1.4 Let K be a Lie algebra over ® with univer-
sal enveloping algebra (U(K); p). Assume that K is a free ®-
module. Then p : K — U(K)) is a monomorphism of Lie
algebras.

5.2 Restricted Lie Algebras

Let L be a Lie algebra over ® and z € L. We denote by ad(z)
the mapping L — L given by ad(z)(y) = [y, z]. Further let 4
be an associative ring and a € A. We let 7, and [, stand for the
mappings A — A, given by r,(z) = za, l,(z) = azx for all z € A.

Lemma 5.2.1 Let p be a prime number, ® the p-element field,
X aninfinite set, A = ®<X> the free ®-algebra with 1 generated
by X, L C A the Lie subalgebra generated by X, and z,y € X
Then:

(a) ad(z)? = ad(zP),
(8) adlsp~ = TP, adlap =ty = £ sty
(c) W(z,y) = (x+y)»— 2P —yP € L.

Proof. (a) Clearly, r,l, = l;r, and ad(z) = r, — ;. Since
(’:) = 1—@’1—1), = 0 mod p for ¢ # 0, p,

ad(z)? = (rs — l)? = 3 (=1} (’,’) =il = qd(aP).

i 1

(b) We show that (”f) = (-1 modpforalli =0,1,...,p—
1. We proceed by induction on 7. For 1 = Q this is true. Suppose
this is true for ¢ = k. Since

e (02 = (PR (50 < (L) momean
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(iiil) = (—1)**! mod p and we are done.
hus

ad(@)™! = (re—L)"™ = Y (1) (P - 1>r;lg-1 =

1

p—1
ad(z)Ply =Y aiyaPT
i=0
(c) Consider the polynomial ring A[t] and let & : Aft] — A[t]
be the derivation given by t* =1 and a® = 0 for all a € A.
Note, that the Lie ®[t]-subalgebra generated by X is equal to
L[t]. Thus the coefficients of the polynomial [ad(tz + y)P ™" (z) €
L]t] belong to L.
We have:
p—1
(tz +y)? =tP2P + P + Y tisi(z,y), (5.5)
=1
where s;(z,y) is the coefficient of ¢ in the polynomial (tz + y)P.
Applying § to (5.5) one obtains

p—1 p—1

Stz +y)a(tc +y)P = it sz, y).

=0 i=1
Taking into account (b) we have

p—1 ; . p-l
[ad(tz + )P (z) = Y (tz+y)a(te+y)P 7 = it Lsi(z, ).
1=0 i=1
Thus is;(z,y) is the coefficient of #~! in the polynomial
lad(tz + y)P~" () € L[t]. Hence s;(z,y) € L. Substituting
t =1 into (5.5) we see that (z + y)? = 2P + 4P + YF7] si(z,y)
and thus W (z,y) = 02) si(z,y) € L.

Corollary 5.2.2 Let A be an associative ring and pA = 0 for
some prime number p. Then ad(z)? = ad(zP) and (z + y)P =
zP + yP + W(z,y) for all z,y-€ A.
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Let p be a prime number and ® an associative commutative
ring with 1 such that p® = 0. We recall that a Lie algebra K
over ® with an unary operation z — 2! satisfying the identities

Q)P =2l N e d,ze K, (5.6)
ad(zP!) = ad(z)?, z €K, (5.7)
(z + y)P = 2lP) 4 yIP) 4 W (2, ), z,y € K, (5.8)

is said to be restricted Lie algebra (or p-Lie algebra ). Further
the operation z — z!?! is called a p-operation .

Note that from Corollary 5.2.2 it follows that the Lie ®-
algebra A=) with unary operation = — 2P is restricted.

Let K be a restricted Lie algebra over ®. A pair (A4; f) is
said to be a cover of the Lie algebra K if A is an associative
®-algebra with 1 and f : K — A7) is a homomorphism of
restricted Lie algebras (i.e. f(zP)) = f(z)? for all z € K). No-
tions of enveloping algebra and universal enveloping algebra for
restricted Lie algebra are defined analogously to corresponding
notions for Lie algebras. The existence of a universal enveloping
algebra (U(K); @) of a restricted Lie algebra K is proved in the
same way as that of a Lie algebra.

Being only interested in restricted Lie algebras which are
free ®-modules, we construct a universal enveloping algebra
(U(K); p) in much the same fashion as we did for ordinary Lie
algebras. The only difference is that we define the ideal (K of
®<Z> to be the ideal generated by all elements of the following
two forms:

[u’!’, v‘!’] — [u,v]¥, ulPW— (u‘!’)p, u,v € K.

Again we leave it for the reader to verify that (U(K); p) is indeed
a universal enveloping algebra (here U(K) = ®<Z>/I(K) and
p=1v, where ¢ : K = L and v : ®<Z>— ®<Z>/I(K)).

Consider now the ideal I of ®<Z> generated by all elements
of the forms:

[.’1_3,’!]] - [x,y]w, x[PW’ - Ep, z,yY € X.
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We claim that I(K) = I. Indeed, the inclusion I C I(K) is
obvious. We denote by i the projection of ®<Z> onto ®<Z>/I
and set 7 = 9. Since 7 is a ®-linear map and [27,y"] = [z,y]"
for all z,y € X, [u",v"] = [u,v]" for all w,v € K. Hence 7
is a homomorphism of Lie ®-algebras. It is enough to prove
that (u7)? = ulPl” for all u € K (i.e. 7 is a homomorphism of
restricted Lie algebras). Let H = {u € K | (u")? = uPI"}. It is
clear that X C H. For any u,v € H, o, € ® we have

(o + Bv)PIT = {(au)[”] + (Bv)P + W (au, ﬁv)}T
= {a”u[”] + BP0 + W (au, ﬁv)}T
= oPulPl" 4 PP £ W (au, Bu)”
a® (u")? + 4P (v7)? + W(awn, fv)”
= {(ew)"Y + {(Bv)"Y + W (o, Bv)"

Taking into account that W(z,y) is a Lie polynomial in z,y we
have

(au+ o)™ = {(ou)}" +{(Bv)")" + W (aw, fv)”
= {(ew)"}" +{(Bv)"} + W ((ow)", (Bv)")
= {(aw)” + (Bv)"}" = {(ou + Bv)"}".
(see Lemma 5.2.1). Hence au+ (v € H and H is a ®-submodule

of K. Since X C H, H = K. Thus 7 is a homomorphism of
restricted Lie algebras and I = I(K).

Theorem 5.2.3 Let p be a prime number, ® an associative
commutative ring with 1 such that p® = 0, K a restricted Lie al-
gebra over ® and (U(K); p)) the universal enveloping algebra of
the restricted Lie algebra K. Assume that K is a free ®-module
with a well-ordered basis X. Then the set

V={alzh).. 20 |z;€X, 51 <z,<... <z, and

if Tk =gy =...=Tpys-1, then s<pluU{1}
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is a D-basis of U(K) (we shall refer to V' as a PBW -basis of the

universal enveloping algebra U(K) of the restricted Lie algebra
K).

Proof. We continue with the same notations as in Theo-
rem 5.1.1. Consider the reduction system A of ®<Z>,

Oy = (175:, Ty + [y,a:]ﬂ’) forall y>ze€X,
Oy = (E”,x[ph”) forall z e X.

Let < be the linear order on S which was introduced in the
proof of Theorem 5.1.1. Clearly this ordering is a semigroup
ordering compatible with the reduction system A and satisfying
the descending chain condition.

It was shown in the proof of Theorem 5.1.1 that for any
PQ € S, u,ugy...,Un,v1,0,...,0, € L there exists a se-
quence of reductions R such that

R(ij1 P[ui,vi]Q) = éP [uf,uf]’” Q. (5.9)

Let J = I(A) be the ideal of the algebra A generated by the
reduction system A. It is clear that the ideal I is generated by
all elements of the form [z,7] — [z, y]¥ and z? — 2P z,y € X.

We will show that all ambiguities of A are resolvable and the
set

Vi= {ZiZ..Tm|zi€e X1 <1< ... <2, and
if Ty =k =...=2Tpp_1, then s<p}uU{l}

is a ®-basis of ®<Z>,,,.

Indeed, let us consider the various ambiguities.

Case 1. Overlap ambiguity (0,y,0ys, 2,9, Z), Where 2,9,z €
X and z > y > z. It was shown in the proof of Theorem 5.1.1
that this ambiguity is resolvable.
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Case 2. Overlap ambiguity (g, 04, §, T, Z~1), where z,y €
X and y > xz.We set

w = Ryaz (gi'p) - Rayzmp—l (gi'p)
= g2l — (z5+ [y, 2]*) 27,
w = Rzp—lay: . RZZUU;:zp—SRzayrxp—Z('LU)
p_-l . .
= gzl —zpg = > By, 2]z,
1=0

and
p—1 ) .
w" = Rg:y(’u_},) — gm[p]w — :L-[P]dlg _ Z ‘,El[y, x]qj)jp_l_z.
=0

Assume that p = 2. Then
w" = [7,5™] - [y,a]'% - 2y, 2] = [7, 2] - [[y,2]’, 7].
By (5.9) we may reduce this element to
[y, 2% — [y, 2], 2]” =0,

since K is a restricted Lie algebra.

We consider now the case p > 2. Then the length of any
monomial in §zP¥ — zPI¥7 is equal to 2 while the length of any
monomial in Y27 Z[y, 2]¥ZP~ 1% is equal to p > 2. Obviously,
we may reduce the element [g, 2] to [y, 2%, such that the
element Y7~ [y, 2]¥Z?~'~* will not change. By Lemma 5.2.1
it follows that

p—1

> 2l ot = adley (1. ).

Taking into account Corollary 5.1.2 we find that this element
may be reduced to

Ad@y (w,al) = {ad@)P (v, 2)}"
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Thus, the element w” (and, therefore, the element w) may be
reduced to 0 and this ambiguity is resolvable.
Case 3. Overlap ambiguity (s, 04y, ZP7*, Z, ), where ,y €
X and z > y. This case is considered by analogy with case 2.
Case 4. Overlap ambiguity (o, 05, Z*, 2774, 7'), where z € X.
We set

w = Ry (V) = Ry, (277) = aPlg! — z'ablv

= [4P,5] = 34 29, 2]
1=0

By (5.9) it follows that R (E[P]“’,:E]) = [xlp],x]w for some se-
quence R of reductions of the form R4, 5. Since K is a re-
stricted Lie algebra,

[:r[”], x] = ad(z)P(z) = ad(z)P"* (ad(z)(z)) = 0.

Taking into account Corollary 5.1.3 we find that the element w
may be reduced to 0. Thus this ambiguity is resolvable.

With all ambiguities resolved, we can now assert (just as in
the proof of Theorem 5.1.1) that the Diamond Lemma together
with Lemma 1.3.2 imply that V is a ®-basis for U(K).

Corollary 5.2.4 Let K be a restricted Lie algebra over ® with
universal enveloping algebra (U(K),p). Assume that K is a
free ®-module. Then p : K — U(K)\) is a monomorphism of
restricted Lie algebras.

5.3 Differential Lie Algebras

Let @ be an associative commutative ring with an identity ele-
ment e and F' O ® an associative commutative ®-algebra with
same identity e. Furthermore let A be a ®-algebra with 1 which
is also an F'-ring.
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Slightly generalizing the definition of a differential Lie alge-
bra (see Baer [14], Jacobson [131], Kharchenko [146] and [147])
we make the following

Definition 5.3.1 A subset L C A is said to be a special differ-
ential F-Lie algebra over ® (SDL-algebra) with cover algebra A,
if the following conditions hold:

(a) [a,b] € L for all a,b € L;

(b) ad +bu € L for alla,be L, \,u € F;

(¢)[1-MNa]el-F forallac L, N € F;

(d) Annp(L) = Annp(A) (i.e., LA =0 implies1- A =0 for
Al e F).

Let I be an ideal of the ®-algebra F'. We denote by Der(F/I)
the set of all derivations of the factor algebra F/I. One may
verify that Der(F/I) with multiplication [d1,d2] = 6,82 — 026,
is a Lie ®-algebra. Further let § € Der(F/I), c € F. We set
7% = zc for all x € F/I. Clearly éc is a derivation of F/I. Thus
Der(F/I) is a right F-module. Analogously Der(F/I) is a right
F/I-module.

Definition 5.3.2 A triple (K; F; A) is said to be a differential
F-Lie algebra (DL-algebra), if the following conditions hold:

(a) K is a Lie ®-algebra;

(b) K is a right F-module;

(¢) A : K — Der(F/Annp(K) is a homomorphism of Lie
®-algebras, which is also a homomorphism of right F-modules;

(d) [b¢c, ] = [6, ple + 6c* (where o = A(p)) for all 6,1 € K,
ceF.

In what follows i = A(p) for a DL-algebra K. Let L C A
be an SDL-algebra. Note that F/Annp(L) = 1 - F under the
mapping ¢+ Annp(L) > 1. ¢ for all ¢ € F. Define the mapping
A:L — Der(1-F), setting (1-¢)A® =[1.c,a]forallce F,a €
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L. It immediately follows from Definition 5.3.1 that (L; F; A) is
a DL-algebra.

We remark that in case F' is a field some obvious simplifica-
tions occur. Part (d) of Definition 5.3.1 may be omitted, and the
ideal Annp(K) = 0 wherever it appears (i.e., in Definitions 5.3.2
and 5.3.9 and Proposition 5.3.10).

Definition 5.3.3 Let K,L be DL-algebras. Then a mapping
f: K — L is said to be a homomorphism of DL-algebras, if the
following conditions hold:

(a) f is a homomorphism of Lie ®-algebras;

(b) f is a homomorphism of right F-modules;

(¢) ﬁzsforall(SEK,

Definition 5.3.4 Let K be a differential F'-Lie algebra. A pair
((A; L); f) is said to be a cover of the DL-algebra K, if L C A is
a special differential F-Lie algebra with the cover A and f : K —
L is a homomorphism of DL-algebras. A cover ((A; L); f) of the
DL-algebra K is called an enveloping algebra of K if A = (K/)+
1-F, where (K7) is the subalgebra of A generated by the set K/.
Two covers ((A; L); f) and ((B; M); g) of a DL-algebra K are
said to be isomorphic if there exists an isomorphism h: A — B
of F-rings such that fh = g. An enveloping algebra ((U; M); ¢)
of the DL-algebra K is said to be a universal enveloping algebra
of K if for any cover algebra ((A;L); f) of K there ezists a
(necessarily unique) homomorphism of F-rings ¢ : U — A such

that ¢ = f.

It would perhaps be more realistic to refer to a cover algebra
as a cover ring (since F' rather than @ is the important ring of
scalars) and accordingly use the term universal enveloping ring.
However, we shall keep the (more customary) terms of cover
algebra and universal enveloping algebra.

Clearly, a universal enveloping algebra of a given D L-algebra,
if it exists, is determined uniquely up to isomorphism. We shall
presently construct the universal enveloping algebra of K.
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Lemma 5.3.5 Let (K; F;A) be a differential F-Lie algebra and
let K' = K @ F be the direct sum of right F-modules. We set

[3v+f,y+g]=[3E,y]+fg—g§C forall z,y€e K, f,g€ F.

Define the mapping A' : K' — Der(F), setting A'(z+ f) = Az)
forallz € K, f € F. Then (K'; F;X') is a differential F-Lie
algebra.

Proof. First of all we show that K’ is a Lie ®-algebra.
Clearly [z + f,z + f]=0for all z € K, f € F. It is enough to
prove that the Jacobi identity holds in K’. For all z,y,2z € K,
fya9,h € F we have

[z+flv+g.z+h]+[z+h[y+g,2+ ]l
+ly+glz+fz+h]]=[z+fly,2]+¢ — h)
+ [z 4 b [z, 9]+ 7 — 6| + [y + 9, [2,2] + bF - f7]
= [z, [y, 2)) + FAOD — g# 4 3
+ [z, [z, y]] + KM=V _ 92 4 32
+[y, [z, 2]]] + gD — B 4 50
= fMlpel) ( F9E _ fz‘zi) + gMll=e]) (géa‘: _ gﬁz‘)
+pAleal) (hﬁﬁ _ hﬂi) =0,
since the Jacobi identity holds in K and A is a homomorphism

of Lie algebras.
Clearly A’ is a homomorphism of Lie ®-algebras. Further

[(z+ Pey+9] = [zc+ fe,y+g] = [ze,y] + (fo)? — g
= [z,yle+zc + flc+ fc¥ — g*
= [z,ylc+ 2 + flc+ fc¥ — g°¢c
= (vl + 7 ~g®)c+ (= + f)
= [z+ f,y+glc+ (x+ f)cNE9
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for all z,y € K, f,g,¢ € F. Thus all the conditions of Defini-
tion 5.3.2 hold in K" and K" is a differential F-Lie algebra.

Before proving the main theorem of this section, we make the
following observations. Assume that K is a free right F-module
with a basis X, F is a free ®-module with a basis G and the
identity element e of the ring F' belongs to G. Now we proceed
to describe the universal enveloping algebra U(K) as a factor
algebra of a free ®-algebra. Clearly GU {zg | z € X, g € G}
is a basis of the ®-module K' = K@ F. Let Z = {z | z €
X}Yu{g|ge G}, S=S<Z> the free semigroup (with 1),
and ®<Z> the free ®-algebra (with 1) generated by the set Z.
Denote by L the ®-span of { | g € G} U{zZj |z € X, g € G}
in ®<Z> and let ¢ : K’ = L be the ®-map given by ¢ — g,
xg v~ Zg for all g € G, z € X. Obviously ¢ is an isomorphism
of ®-modules and we set ¢ = ¥p~!. We define I(K) to be the
ideal of ®<Z> generated by € — 1 and all elements of the form
(ua)¥ — u¥a¥, [u,v]¥ — [u¥,v¥] for all a € F, u,v € K', or,
equivalently, & — 1, (ba)¥ — ba, [z,y]Y — [Z,7], [a,z]¥ — (ai’)w
for all a,b € G, z,y € X. Letting v denote the projection of
d<Z>onto U = UK) = ®<Z> [I(K), we set p = v
and M = LY = K. Note that (ua)? = ufa?, [u,v]’ — [u*,v”]
foralla € F, u,v € K'. Hence MF? = M and [M,M] C M.
Moreover p is a homomorphism of Lie algebras over ®. Recalling
that F C K’ and € — 1 € I(K), we infer that FPF? = F* and
1 € F?. Therefore F* is a subalgebra of the ®-algebra U. Clearly
p induces a homomorphism F' — F? of ®-algebras. Thus the
algebra U is a right F-module under the operation u - a = ua?
for all w € U, a € F. It immediately follows from the above
that M is a submodule of the right F-module U and p is a
homomorphism of right F-modules. Further

-] =[cv]=[cuf=c*=1-c*c1.-F

for all c € F, u € K'. Hence M is a special differential F-Lie
algebra over ®. The reader may now verify the straightforward
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details that p is a homomorphism of DL-algebras.

Let ((A; N); f) be any cover of the DL-algebra K. Define
the mapping f': K' - N+ 1-F, setting (k+¢)/ =kf +1-¢
for all k € K, ¢ € F. It easily follows from the definitions
that ((A4; N); f') is a cover of the DL-algebra K'. Lifting f’ to
a homomorphism ¢ : ®<Z >— A and recalling that f' is a
homomorphism of right F-modules and Lie algebras over ®, we
see that I(K)/ = 0. Thus (U(K); p) is the universal enveloping
algebra of K', whence, with p restricted to K, ((U; M); p) is
also the universal enveloping algebra (U; p) of K.

Now we are ready to prove the main theorem of this section.

Theorem 5.3.6 Let (K;F;A) be a DL-algebra with the uni-
versal enveloping algebra (U(K); p), assuming that F is a free
®-module and K is a free right F-module with a well-ordered
ordered basis X. Then the set

V={ehzh).. .20 |z, € X, 51 <zo< ... <z} U{l}

is a basis of the right F-module U(K) (we shall refer to V as
a PBW -basis of the universal enveloping algebra U(K) of the
DL-algebra K ).

Proof. Without loss of generality we may assume that G
is well-ordered. Define a well-ordering on the set Z = {Z | z €
X}YU{g| g € G}, setting @ < @ if either u,v € X and u < v, or
u,v€Gandu<v,oru€ X andv € G, forall 4,9 € Z.

We continue with the same notations as in Theorem 5.1.1.
Consider the reduction system A of ®<Z>,

Oyz = (gjj,fgj+[y,x]"’), forall y>ze€ X;

Xoz = (gj,j;g + (gi)w) , forall geG, zeX;
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Let < be the linear order on S which was introduced in the
proof of Theorem 5.1.1. Clearly this ordering is a semigroup
ordering compatible with the reduction system A and satisfying
the descending chain condition. Further, let I = I(A) be the
ideal of the algebra ®<Z> generated by the reduction system
A. We note that I(K) = I(A) and so U(K) = ®<Z> /I(A).

Now let ¢ € F and z € X. We claim that there exists a
sequence R of reductions of the form R, . such that

R(c’z) = zc¥ + (c‘i)w.
Indeed, let ¢ = 377 ; a;g;, where oy; € ®. We set

R = RXglzRngr et RXgnI‘
Then

R(c'z) = R(Z i GiL) = Z_%’R(gif)
= Zaﬁ:gi -+ Zai (g‘:;:)"/’

= zc¥ -+ (ci)w

Analogously one may prove the following statements. For
any ¢ € F' and u € K there exists a sequence R of reductions of
the form R, . such that

R(c*u?) = we? + ()" (5.10)

Further for all ¢ € F and z,y € X there exists a sequence R of
reductions of the form

RXg:y’ Rng’ and 'RIng
such that

R(*zy) = zgc? + 7 (cﬁ)’/’ + (cj)w + (ciﬁ)w. (5.11)
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Moreover for all ¢ € F and z,y € X there exists a sequence R
of reductions of the form Ry, . such that

R(§c’z) = gac’ + 7 (cf)w . (5.12)
Now let a,b € F and x € X. In a similar fashion one may show
that

R(a¥W) = (ab)?, R'(a¥Wz) = z(ab)? + ((ab)ﬂ‘v)¢ (5.13)

for some sequences R and R’ of reductions of the forms R,, , and
Ry zr Ry, respectively.
We show that all ambiguities of A are resolvable and the set

V= {%1%y...Zmg |2, € X, 9€G, 5, <2y < ... < 2,} UG
is a ®-basis of ®<Z>,,,.

Indeed, let us consider the various ambiguities.

Case 1. Overlap ambiguity (o,y, 0y, 2,7, Z), where z,y,z €

X and z > y > z. It was shown in the proof of Theorem 5.1.1
that this ambiguity is resolvable.

Case 2. Overlap ambiguity (X gy, 0y, §, 9, Z), where z,y € X,
g € G and y > z. We set

u = Ry, (99%) = gly, z]¥ + §z7,
e o AV _
v = Ry,,.(397) =73z + ()" &

Since R, (3Z7) = gzg for all z € X, from (5.10) it follows that
there exists a sequence R; of reductions such that

—\ ¥
Ra(w) = [y,2g + (¢7)" + gap,

Y NV .
As (g[y,z]) = (gyz) - (gzy)¢, we infer from (5.11) that
R2R1 (u)
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for some reduction sequence R,. From (5.10) it follows that
o\ i3\ ¥
Ry(v) =73z + % ()" + (o)
for some reduction sequence R;. Using (5.12) we obtain
o an\Y Y 22\ ¥
RiRs(v) =925+ 7 (¢°)" + 7 (¢°)" + (o)
for some reduction sequence R4. Now we have
) mee = v _ o\ 2\ ¥
Ro,.qRaRs(v) = [y,31'5+ 255 + 7 (¢*)” + 2 (¢7)" + (¢%)

Comparing with (5.14) we conclude that this ambiguity is re-
solvable.

Case 3. Overlap ambiguity (whg, 04z, b, §,Z), where z € X,
g,h € G. We set

. - = Y
u = Rpy,,(hgZ)=hzg+h (g ) ,
v = Ry,,(hgZ) = (hg)’Z.

tion sequence R;. Clearly R, ,Ri(u) = Zhg+ (hi)d) g+ (hg“")w :
Again by (5.13) we have that

RZRXh,gRl (‘U,) = i}—lg

for some reduction sequence R,. Now we have

Rauny RoRypigRa(u) = 2(hg)® + ((hg)?)"
= Rs(v)
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for some reduction sequence R; (see (5.10)). Therefore this am-
biguity is resolvable also.

Case 4. Inclusion ambiguity (e, Xex, €,Z), where z € X.
Since e is the identity of F, e = (e2)* = ee® + efe = 2¢ and
e®* = 0. So Ry R,..(eZ) = z = R, .(z) and this ambiguity is
resolvable.

Case 5. Overlap ambiguity (wgp,wpq, §, P, ), Where g,p,q €
G. It easily follows from (5.13) that this ambiguity is resolvable.

Case 6. Inclusion ambiguity (7.,weq,€,3), where g € G.
Since Rr,,(é5) = § = (eg)¥ = R.,,(€9), this ambiguity is re-
solvable.

Case 7. Inclusion ambiguity (wge, e, g, €), where g € G.
Obviously it is resolvable.

Again we are in the situation where the Diamond Lemma
and Lemma 1.3.2 imply that V' is a ®-basis for U(K). It follows
immediately that V' is a right F-module basis of U(K) and the
proof is complete.

Corollary 5.3.7 Let (K; F;A) be a DL-algebra with the uni-
versal enveloping algebra (U(K); ¢). Assume that F is a free ®-
module, and K is a free right F-module. Then p: K — U(K)()
is a monomorphism of differential Lie algebras.

In section 5.4 we will need the following (we keep the nota-
tions of the proof of Theorem 5.3.6)

Lemma 5.3.8 Suppose that p® = 0 for some prime number
p. Let g € G and x € X. Then there exists a sequence R of
reductions of the form

Rao,.B, Raxy,By Raw,Bs Ran.n

such that R (2271 + g®37~!) = 275 + Ad(Z)?(3).
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Proof. Let u = gz? and v = Zgz?~' + ¢*¥zP~!. Since
Ry,,op-1(u) = v, u —v € I(K). By Lemma 5.2.1, ad(Z)?(g) =
gx? — ZPg. Now it follows from Corollary 5.1.2 that gzP — zPg —
Ad(z)?(g) € I(K). Thus the element u is reducible to the ele-
ment 77§ + Ad(Z)?(g) € ®<Z>;r,. Since u — v € I(K), they
have the same normal form and we are done.

In order to discuss some useful properties of universal en-
veloping algebras, we need the following notion.

Definition 5.3.9 Let K, L be differential Lie algebras and let
7 : F/Annp(K) — F/[AnngL be an isomorphism of ®-algebras.
Then o mapping f : K — L 1is said to be a T-semilinear homo-
morphism of DL-algebras, if the following conditions hold:

(a) f is a homomorphism of Lie ®-algebras;

(b) (8c)! =d/c™ for alld € K, c € F/Annp(K);

—

(c) 0f = 77187 for all 6 € K.

Proposition 5.3.10 Let (K; F';A) be a DL-algebra, (U(K); p)
the universal enveloping algebra of K, L C A a special differ-
ential F-Lie algebra over ® and h : K — L a T-semilinear
homomorphism of DL-algebras. Then there is a unique homo-
morphism h' : U(K) = A of ®-algebras such that ph' = h and
k' (uc) = h'(u)(c + Annp(K))™ for allu € U(K), c€ F.

Proof. According to Definition 5.3.1, Annp(L) = Anng(A).
We consider A and L as ®-algebras A* and L* respectively
with right F-module structures given by the rule aoc = a(c +
Annp(K))", loc =l(c+Annp(K)) foralla€e A.l€ L, ce F.
Clearly L* is a submodule of the right F-module A*. Further

locl]=[1:(c+ Annp(K))",l]€e1-F=10F.

Hence L* C A* is an SDL-algebra. The reader may now verify
the straightforward details that h is a homomorphism of DL-
algebras. By the definition of a universal enveloping algebra of a
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D L-algebra, it follows that there exists a unique homomorphism
h': U(K) — A of F-rings with identity such that ph’ = h. Since
h'(uc) = h'(u) o c = h'(u)(c + Annp(K))™, we are done.

Corollary 5.3.11 Let (K; F;A) be a DL-algebra with the uni-
versal enveloping algebra (U(K); ¢). Then for any T-semilinear
automorphism h : K — K of DL-algebras there ezists a unique
T-semilinear automorphism b' : U(K) — U(K) of ®-algebras
such that ph' = hp.

Proof. We apply Proposition 5.3.10 to A and h~!.

5.4 Restricted Differential Lie
Algebras

Let p be a prime number, ® a commutative ring with identity
element e such that p® = 0 and FF O & a commutative &-
algebra with same identity. Furthermore let A be a ®-algebra
with 1 which is also an F-ring.

Definition 5.4.1 A subset L C A s said to be a special re-
stricted differential F-Lie algebra over ® (p-SDL-algebra) with

the cover algebra A, if L is an SDL-algebra and o € L for all
a€ L.

As motivation for the definition of an abstract restricted dif-
ferential F'-Lie algebra we have the following lemma.

Lemma 5.4.2 Let L C A be a p-SDL algebra, H =1 F and
a € L. Define mappings T, : H— H, n=1,2,...,p, setting

Tio(c) =¢, Tni1a(c) =[Tnalc),alc
for allc e H. Then:
(a) (ad(a)|xc)’ = (ad(a)|r)’ ¢ + (ad(a)|r) Tpa(c);
(b) (ac)® = aP® + aT,(c);
(c) (a+c)? =a? +c? + ad(a)P~*(c).
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Proof. (a) Letting 4 denote the mapping ad(a)|x, we note
that u is a derivation of the ®-algebra H (recall that [H,a] C H).
Setting T, ,(c) = Tn 4(c), we observe that

Tul©) =€ Tninu(e) = (Tnul) e

Let R be a commutative ring such that pR = 0, z € R,
and let 6 : R — R be a derivation. Recall that z#" = z*r for
all 7 € R. One may prove the following formula by an obvious
induction on n:

n—1 .
g0 = 0" 4 > 2% Poigl(r) + 20T, 5(r), (5.15)
=2
where P,;;s(r) is a polynomial in 7,7¢ ... %" with integral

coefficients. We claim that P,;s(r) =0forall: =2,3,...,p—1.
Indeed, consider the polynomial ring K = ®[z;, 4,2 | 1 =
1,2,...]. Let v be the derivation of K given by the rule

14 v v Y —
T =iy, Y = Yirl, % = Zip1 forall i=1,2,....

Clearly for all z € R there exists a homomorphism of ®-algebras
¢: = ¢ : K — R such that ¢(z;) = ¢(z{') =7, ¢(y;) = 0 and
¢(z:) = ¢p(z¥') = 2. Since ¢(P,; (1)) = Pp;5(r), it is enough
to prove that P,;,(2) = 0. We set z = z;. Then according to
5.15 we have

=1
,r(uz)” — T‘upr + Z v Pp,i,u(z) + Tqu,l/(z))
=2

for all € K. In particular,
p—1

(561?/1)("2)? = (xlyl)upzp + Z(zlyl)uipp,i,u(z)
1=2

+(2191) T (2), (5.16)
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' = P4 Z ¥ Ppiu(
+$'pr,u( ), (5.17)
gV = g +p‘5yfip piw(2)
i=2
+y{ T, ,(2), (5.18)

Multiplying (5.17) by v, and (5.18) by z; we obtain

p—1
o= oy n + Y2 ni1Ppiu(2)
=2
+z;lep,u(z), (519)
p—1 .
xlygw)p = CEIZIIfPZp + Z T1yy Pp,i,u(z)
=2

219 Ty (2). (5.20)

zguz)”

Since v? and (vz)? are derivations, substracting (5.19) and (5.20)
from (5.16), we obtain

[
—

p

[(fﬂlyl)"i — 'y - 5'311/?(] Fpiv(2) = 0.

||
)

1

From the Leibnitz formula and the definition of the derivation
v we infer that

0 = 1{‘; () }Pp,i,u(z)
- 5[5 (o

The coeflicient of z,y; in this polynomial is equal to (;) Ppiu(2).
Since (;) =1#0, Pu(2) =0.

ﬁ s
._. NJ
l.-h k)

Pp’i,y(z).
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Therefore
2V = g 2Ty (7). (5.21)
Let z € R. Applying ¢, we infer from (5.21) that 27" = £ P4
2T, 5(r) for all z € R. In particular z{#” = z#°¢P + 2T, ,(c)
for all z € H and so (uc)? = pPc? + uT, 4(c). Since p = ad(a)|x,
(a) is proved.

(b) We let K be the polynomial ring with derivation v as
defined in (a) and consider the skew polynomial ring K|t; v],
where kt = tk + k" for all £k € K. Obviously v = ad(t)|k. Since
K is commutative, it follows from Lemma 5.2.1 and (5.21) that

ad((tz)?)|lk = (ad(tz)|k)” = (ad(t)|k2)
= (ad(t)|k)” 2" + ad(t)|k Ty (2)-

Hence [z1, (t2)?] = [z1, 1]2? + [21,t]T, . (2) and
[z1, (t2)? — tP2P — T, ,(2)] = 0.

We claim that (tz)? — tP2P — T}, ,(z) = 0. Assume the contrary.
Clearly (t2)? — tP2F — tT,,(z) = S0 t'k;, where k; € ®[z;; ¢ =
1,2,...], n < pand k, # 0. Note that n > 0 and the coefficient
of t"~lin [z, (t2)P — tP2P — tT,,(2)] is equal to nzoky,+z1k,—1 #
0 which contradicts [z, (£2)? — tP2P — tT,,(z)] = 0. Therefore
(tz)P — tP2P — tTp ,(2) = 0. Define the mapping ¢ : K[t;v] — A,
setting 1(t) = a and (k) = ¢,(k) for all k € K. The reader
may now easily verify that 1 is a homomorphism of ®-algebras.
Thus (ac)? — aP? — aTp.(c) = P ((t2)P — tP2P — tT,,(2)) = 0.

(c) By Lemma 5.2.1 we have (a + ¢)? = a? + & + W(a,c),
where W (z,y) is a sum of Lie monomials of degree p in z,y.
Since F' is commutative, all Lie monomials in which ¢ appears
twice are equal to zero. So W(a,c) = m - ad(a)?~*(c) for some
integer m. Therefore we have

[a,(@a+¢c)] = [a,a?] + [a,f]+m [a, ad(a)”"l(c)]
= —m-ad(a)?(c).
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On the other hand,

[a,(a+¢)?] = [..[la,a+c],a+c],...,a+]
= [...][a,c],a+¢],...,a+¢]
= [...[[a,q,q],...,q]
= —ad(a)?(c).

Therefore m - ad(a)?(c) = ad(a)?(c) and we are done.

Definition 5.4.3 A triple (K;F;A) is said to be a restricted
differential F-Lie algebra (p-DL-algebra), if the following con-
dition holds:

(a) (K; F;A) is a differential F-Lie algebra;

(b) K is a restricted Lie algebra over ® with a p-operation
§ — 817! satisfying the following identity:

(bc)lP! = §Ple? + 6T, 5(c),

where T 5(¢) = ¢, Thi15(c) = (Tns)®, and ¢ € F/Annp(K), 8
€ K.

(c) the mapping A is a homomorphism of restricted Lie ®-
algebras.

For a p-SDL-algebra L C A and the mapping A : A —
Der(1 - F) given by the rule ¢c*® = [c,a] for all a € A and
c € 1 F, we infer from Corollary 5.2.2 and Lemma 5.4.2 that
(L; F; A) is a p-DL-algebra.

In what follows ji = A(u) for a p-DL-algebra K and p € K.

Definition 5.4.4 Let K and L be p-DL-algebras over ®. Then
a mapping f : K — L is said to be a homomorphism of p-DL-
algebras if it is a homomorphism of DL-algebras and a homo-
morphism of restricted Lie algebras (i.e. (J[P])f = (éf) v for all
e K). .
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Notions of cover algebras, enveloping algebras and the uni-
versal enveloping algebras for p-DL-algebras are defined analo-
gously to corresponding notions for restricted Lie algebras and
DL-algebras.

Now we are in a position to describe a universal enveloping
algebra (U(K); p) of a p-DL-algebra K as a factor of a free ®-
algebra in the case when F' is a free ®-module and K is a free
right F-module. Let X be a basis of the right F-module K and
G a basis of F over ®. Weset Z = {g| g€ G}U{Zg |z €
X, g € G}. Let S = S<Z> be the free semigroup (with 1),
®<Z> the free ®-algebra (with 1) generated by the set Z and
L the ®-span of Z in ®<Z>. Denote by K’ the differential
F-Lie algebra K & F (see Lemma 5.3.5) and let ¢ : K’ — L
be the ®-map given by the rule g — g, xg — zZg for all g € G
and z € X. Obviously % is an isomorphism of ®-modules. We
define I(K) to be the ideal of $<Z> generated by € — 1 and all
elements of the form

(ua)¥ — u¥a?, [u,v]¥ — [uw,v¢] , (k[P])w _ (ktb)p

for all @ € G, u,v € K’ and k € K. Further letting I be the
ideal of ®<Z> generated by € — 1 and all elements of the form

(ba)w - Ed, (xa)tb — Za, [.’L‘, y]¢ - [Ey g]a
o - ()", (49)° — (1)

we claim that I = I(K). Indeed, letting v denote the projection
of ®<Z> onto U = U(K) = ®<Z> /I, we set p = ¢v and
M = LY = K. It was shown before the proof of Theorem 5.3.6
that F” is a subalgebra of U containing the identity 1 and p
induces a homomorphism F' — F?. Moreover U and M have a
canonical F-module structure via p, M is a special differential
F-Lie algebra and p is a homomorphism of D L-algebras. Before
the proof of Theorem 5.2.3 it was shown that (u[P])p = (u?)? for
all u € K. Now it is clear that I = I(K).
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Consider any cover ((A; N); f) of the p-DL-algebra K. De-
fine the mapping f’ : K’ = N+1-F, setting (k+c¢)f = kf+1.¢
for all k € K, ¢ € F. It follows easily from the definitions
that ((A; N); f') is a cover of the DL-algebra K’. Lift f' to a
homomorphism ¢ : #<Z>— A. Recall that f’ is a homomor-
phism ,of right F-modules and Lie algebras over ®. Furthermore,
(k)" = (k") for all k € K. Hence I(K)"' = 0 and f in-
duces a homomorphism ¢ : U — A such that p¢ = f'. Thus U
is a universal enveloping algebra of the p-DL-algebra K.

Now we are ready to prove the main theorem of this section.

Theorem 5.4.5 Let (K; F;A) be a p-DL-algebra with the uni-
versal enveloping algebra (U(K); ¢), assuming that F' is a free
®-module and K is a free right F-module with a well-ordered
basis X. Then the set

V={zfzg'...z?;t|zj€X,zlgzgg...gmm and
if Tk =Tgy1=...= Tpys-1, then s<p}uU{l}

is a basis of the right F-module U(K) (we shall refer to V as
a PBW -basis of the universal enveloping algebra U(K) of the
p-DL-algebra K ).

Proof. Without loss of generality we may assume that G
is well-ordered. Define a well-ordering on the set Z = {Z | z €
X}YU{g| g € G}, setting & < ¥ if either u,v € X and u < v, or
u,v€ Gandu<wv,orué€ X andv € G, forall u,v € Z.

We continue with the same notations as in Theorems 5.1.1,
5.2.3 and 5.3.6. Consider the reduction system A of ®<Z>,

Ops = (gijg+[y,z]"’), forall y>zeX;
Xoz = <§5,5§+(9ﬁ)¢), forall geG, z € X;

wgq = (gq, (gq)ll’) ) fOI‘ a'll g,q € G;
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me = (&1);

Oy = (i:”,x[”w) forall z € X.

Letting < denote the linear order on S which was intro-
duced in the proof of Theorem 5.1.1 we note that this ordering
is a semigroup one compatible with the reduction system A and
satisfying the descending chain condition. Further, let I = I(A)
be the ideal of the algebra ®<Z > generated by the reduction
system A. '

We claim that all ambiguities of A are resolvable and the set

Vi = {Z1Zs.. .Zmilz; € X, g€G, 21 <2< ... <y,
and if zx = Ty = ... = Trys 1, then s < p} UG

is a ®-basis of &<Z>;,,.

Indeed, consider the various ambiguities. It was shown in
the proof of Theorem 5.1.1 that the following ambiguity is re-
solvable.

Case 1. Overlap ambiguity (o,y, 0y, 2, ¥, Z), where z,y,z €
X and 2>y > z.

It was shown in the proof of Theorem 5.3.6 that the ambi-
guities listed below in cases 2-7 are resolvable.

Case 2. Overlap ambiguity (Xgy, Oye; §, 7, Z), Where z,y € X,
g€ Gandy>x.

Case 3. Overlap ambiguity (why, 04z, b, 3, %), where z € X,
g,heq.

Case 4. Inclusion ambiguity (e, Xez, €, %), where z € X.
Case 5. Overlap ambiguity (wgp, wpq, §, D, ¢), Where g,p,q €
G. '

Case 6. Inclusion ambiguity (7., weg, €, §), where g € G.

Case 7. Inclusion ambiguity (wge, 7, G, €), where g € G.

In the proof of Theorem 5.2.3 we showed that the ambiguities
listed below in cases 8-10 are resolvable.

Case 8. Overlap ambiguity (oys, 05,7, Z,ZP~'), where z,y €
X and y > z.
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Case 9. Overlap ambiguity (04, 05y, TP, Z,§), where z,y €
X and z > y.

Case 10. Overlap ambiguity (05,04, %', 277!, z), where z €
X.

Case 11. Overlap ambiguity (xgs, 0z, 9, Z, 27" '), where g € G
and z € X. We set v = Ry .»—1(g27) = ZgaP~' + g™¥z7!
and w = Ry, (32°) = gzlP¥. By Lemma 5.3.8 there exists a
sequence R of reductions such that R(v) = ZPg§ + Ad(Z)P(7).
Obviously R,,,R(v) = zP¥g+ Ad(z)?(g). It follows from (5.10)
that R'(w) = 2?5 + ¢*™ for some sequence of reductions R'.
Since K is a p-DL-algebra, ad(z)?(g) = ¢*™. Thus R, R(v) =
R'(w) and this ambiguity is resolvable.

The Diamond Lemma may therefore be invoked, and in view

of Lemma 1.3.2 we again conclude that V' is a ®-basis for U(K).
It follows that V is a right F-module basis of U(K).

Corollary 5.4.6 Let (K; F;A) be a p-DL-algebra with the uni-
versal enveloping algebra (U(K); ). Assume that F' is a free ®-
module, and K is a free right F-module. Then p: K — U(K)()
is a monomorphism of differential restricted Lie algebras.

As in Section 5.3 we make the following

Definition 5.4.7 Let K,L be restricted differential Lie alge-
bras and let 7 : F/[Anng(K) — F/AnnpL be an isomorphism
of ®-algebras. Then a mapping f : K — L is said to be a
T-semilinear homomorphism of p-DL-algebras, if the following
conditions hold:

(a) f is a homomorphism of restricted Lie ®-algebras;

(b) (6c)f =6%¢™ for all§ € K, c € F/[Annp(K);

——

(c) 8f = 7717 for all 6 € K.

The following statements are proved analogously to Propo-
sition 5.3.10 and Corollary 5.3.11
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Proposition 5.4.8 Let (K; F; A) be a p-DL-algebra, (U(K); p)
the universal enveloping algebra of K, L C A a special restricted
differential F-Lie algebra over ® and h: K — L a T-semilinear
homomorphism of p-DL-algebras. Then there is a untque homo-
morphism h' : U(K) — A of ®-algebras such that ph' = h and
R (uc) = K (u)(c+ Annp(K))" for allu €e U(K), c € F.

As in Section 5.3 we note that in case F' is a field the ideal
Anng(K) = 0 where it appears in Definition 5.4.7 and Proposi-
tion 5.4.8.

Corollary 5.4.9 Let (K; F;A) be a p-DL-algebra with the uni-
versal enveloping algebra (U(K); ¢). Then for any T-semilinear
automorphism h : K — K of DL-algebras there exists a unique
T-semilinear automorphism h' : U(K) — U(K) of algebras such
that ph' = hp.

5.5 A Particular Differential Lie
Algebra

The preceding sections of this chapter were devoted to proving
a generalized PBW theorem for abstract differential Lie alge-
bras. In this book, however, we will be mainly interested in a
particular differential Lie algebra, one which arises from the set
Der(R) of derivations of prime ring R.

Let R be a prime ring with extended centroid C, prime field
®, and symmetric ring of quotients Q). We let Der(R) denote
the ®-Lie algebra of derivations of R. We have previously seen
(Proposition 2.5.1) that any derivation of R can be uniquely
extended in an obvious way to a derivation of (), and so we may
regard Der(R) C Der(Q) C Ends(Q). We mention here that
it is useful to view C as left multiplications acting on . For
c € C and 6 € Der(R) éc is clearly a derivation of @ and so
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Der(Q) is a right C-space. For ¢ € @ we see from
0=1c, ¢ =1, gl +1c, ¢'] = [¢’, q]
that § induces a derivation on C' which we denote by 6. From
qc6 — (cq)a — C6q + cq6 - qc5 + q6c
we have the important commutation formula in End(Q):

S=bc+d, se Der(Q), ce C. (5.22)

The set D; = {ad(a) | a € Q} of all inner derivations of
Q is a C-Lie algebra and also a Lie ideal of Der(Q) (in fact,
[ad(a), 8] = ad(a’®), § € Der(Q)). The subset of Der(Q) we are
primarily interested in is

D = D(R) = (Der(R))C + D; (5.23)

From the preceding observations it is clear that D(R) is a special
differential C-Lie algebra over ® with cover End(Q).

Suppose char(C) = p. From Remark 1.1.1(b) we see that
Der(R) is closed under pth powers and from Lemma 5.2.1(a)
that D; is closed under pth powers as well. For § € Der(R)
and ¢ € C we see from Lemma 5.4.2(b) that (6¢c)? € (Der(R))C
and consequently from Lemma 5.2.1(c) that D(R) is a special
restricted differential C-Lie algebra over ® with cover End(Q).

Now let U be the (restricted) universal enveloping algebra
of D and pick an ordered right C-basis B of D. Then by The-
orem 5.3.6 and Theorem 5.4.5 U has a (restricted) PBW right
C-basis induced by B. By Corollary 5.3.7 and Corollary 5.4.6
the canonical mapping of D into U is injective and so (with
some abuse of notation) we may identify D with its image in
U. On the other hand D C Ends(Q) whence there is a C-

ring map p : U — End(Q) such that the following diagram is
commutative:
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End(Q)

Thus there is a copy of D in both U and End(Q), each
designated by D, and the context will always make it clear which
copy of D we are using.

If o is an automorphism of C' and K, L are any differential C-
Lie algebras we recall from Definition 5.3.9 and Definition 5.4.7
the notion of a o-semilinear differential Lie map f : K — L
(the key features are (c)f = 8/¢” and 6/ = 67'd0). Then
f : K — L* is an ordinary differential Lie map, where L* is
simply L made into a new differential C-Lie algebra by defining
§-c=d6c” and & = o-'éo. These considerations, of course,
apply in particular to the case K = D. For instance, any o-
semilinear differential C-Lie map of D into itself can, in view of
Proposition 5.3.10 and Proposition 5.4.8, be uniquely extended
to a o-semilinear ®-algebra homomorphism of U into itself.

In the sequel it will be important to choose the basis B of D
so that it reflects the nature of D. To this end let By be a well-
ordered right C-basis for D modulo D; and B; a well-ordered
C-basis for D;. Then, taking By < B;, we see that B = ByUB; is
a well-ordered right C-basis for D. Let W be the PBW right C-
basis of U relative to (B, <) as provided by Theorem 5.3.6 and
Theorem 5.4.5. If A = 6;,6;, ... d;,,, 6;; € B, then the length |A|
of A is m, the number of factors. W is then ordered as follows:
if |A] < |T'| then A < T and if |A| = |T'| then the ordering is
lexicographic. We remark that the well-ordering of B implies
that W is also well-ordered. We denote by Wy the set of all
elements of W whose factors lie in By (and also including 1) and
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by Wi, the subset of W arising from B;. It is an easy exercise to
show that U; = U(D;) may be taken to be the subring of U(D)
generated by C' and D; and W, is the PBW basis of U; with
respect to (B;, <).

Finally, from the definition of U, we note that the commu-
tation formula corresponding to (5.22) is also valid in U:

es=6bc+cl, §€DCU ceCCU. (5.24)

Setting A = 6;05...0,, §; € D C U and referring the reader
to the notations preceding Remark 1.1.1 we have the following
useful formula in U for slipping an element ¢ € C' through A:

A =3 Abv (5.25)

The proof is a formal inductive one making repeated use of (5.24)
and we omit it. However, to give the reader a concrete illustra-
tion of the formula (5.25) when written out in detail, we write
out the case n = 3 in full:

516,05 = 616965C 4 8,65C% + 6165¢% + 658560
+ 81¢%29 4 5o 0108 4 §uc0102 4 (010203

Of course, using the map p : U — FEnd(Q), the formula in
End(Q) corresponding to (5.25) is also valid.
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Chapter 6

Rings with Generalized
Polynomial Identities

6.1 Prime GPI-rings

It is hoped that much of the material developed in the first five
chapters is of interest in its own right. However, it must also be
said that the choice of these topics was to a large extent dictated
by the background requirements of the remaining chapters, in
which the structure theory for generalized identities is laid out
and some applications are given.

Although there were earlier scattered examples of situations
where ” generalized identities” appeared (e.g., [248], [194]), for all
intents and purposes the subject began in 1965 with the appear-
ance of Amitsur’s fundamental paper [3] characterizing primitive
rings satisfying a so-called generalized polynomial identity (this
notion, abbreviated as GPI, will presently be formally defined).
In 1969 Martindale simultaneously generalized Amitsur’s the-
orem on primitive GPI-rings and Posner’s theorem on prime
PI-rings [205], obtaining a characterization of prime G PI-rings.
Our main purpose in the present section is to present a proof
(due to C.-L. Chuang) of this result.

211
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Let R be a prime ring with extended centroid C and sym-
metric ring of quotients . We let X be an (infinite) set and
form the coproduct Qc<X > of the C-algebra @ and the free
algebra C<X> over C. If P is any C-algebra with 1 containing
@ then, in view of Remark 1.2.5, any set-theoretic map X — P
can be extended uniquely to a C-algebra map QQc<X>— P such
that ¢ — ¢, ¢ € Q). Such a map will be called a substitution.
Given an element ¢ = ¢(x1, Ze, ..., Z,) € Qc<X> and elements
P1, P2, -+ Pn € P, ¢(p1,D2,-..,pn) Will denote the image of ¢
under the substitution determined by z; — p;. Let 0 5% U be
an additive subgroup of R. An element ¢ = ¢(z1,22,...,2,) €
Qc<X > is said to be a generalized polynomial identity on U
if ¢(u1,ug,...,u,) = 0 for all uy,us,...,u, € U. Henceforth
we will use the abbreviation GPI, and (with some grammatical
license) make statements such as "¢ is a GPI on U” or "U is
GPI”.

We first look at linear elements of Q¢ < X > in a single
variable z, i.e., elements of Qx(), and make the following

Remark 6.1.1 Q)Q) & Q ®c Q = QzQ as C-spaces, with
the tsomorphisms given by a : L,y =~ a® b, B: a® b — azxb,
a,b e Q.

Proof. We know already by Theorem 2.3.6 that « is an
isomorphism and clearly [ is a well defined surjection. If ¢ =
Yia; ® b; € ker(B), then Y ; a;zb; = 0 whence Y ; a;gb; = 0 for
all g € Q, ie., 3 lsmy, =0, and so 3-; a; ® b; = 0 in view of the
1somorphism «.

Lemma 6.1.2 Let 0 # ¢ = 312, a;zb; € QxQ. Then:
(i) For all nonzero ideals I of R ¢(I) # 0;

(it) If 0 £ I < R is such that dimg(¢(1)C) < oo then there
exist nonzero elements a,b € R such that dimc(aRCH) < oo.
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Proof. Without loss of generality we may assume that
m > 1 and that {a;} and {b;} are each C-independent sets.
By Theorem 2.3.3 there exists 8 = 3 xly, 7, € RyyR(r) such
that a;- B #0but a;- 3=0,17 > 1. We set ¥(z) = i urd(vrz)
and note that ¥ (z) = a’zb, where @' =a,-6#0. Let 0 #I aR
and suppose ¢(I) = 0. Then (/) = 0 whence we have the
“contradiction a'Tb; = 0. Part (i) has thereby been proved.
Now suppose 0 # I < R is such that dim¢(¢(/)C) < oo. Since
urd(vel) C ugd(I), it follows that dime(¥(I)C) < oo that is,
dim¢g(a’'T5,C) < oo. Pick s € I such that 0 # a = d's € R
and t € R such that 0 # b = th; € R. As a result we see that
aRb C a'Ib; and accordingly dime(aRbC) < oo. The proof of
(ii) is thereby complete.

Lemma 6.1.2 yields the immediate

Corollary 6.1.3 If ¢ € QzQ is a GPI on some 0 # I <R then
¢ =0, i.e., there are no nonzero linear GPI’s in one variable.

The next lemma continues where the preceding lemma left
off.

Lemma 6.1.4 Let A = RC be the central closure of R and
let a,b € A be nonzero elements such that dimg(adb) < oo.
Then the ring A has a nonzero idempotent e such that eA is a
minimal Tight ideal of A and dimc(eAe) < oo (In particular A
is a primitive ring with nonzero socle).

Proof. Without loss of generality we may assume that the
elements a,b € A are such that dime(aAb) < dimc(uAv) for all
nonzero u,v € A. We claim that M = aAbA is a minimal right
ideal of A. Indeed, since A is prime and a # 0 # b, M # 0. Let
0 # z = Y, ax;by; € M where z;,y; € A. Setting u = ¥, z;by;,
we note that z = aqu. Further we have auAb C aAb and so
auAb = aAb by the choice of a,b. Hence auAdbA = M and hence

M =auAbA C2AC M and zAzM
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for all nonzero z € M. Therefore M is a minimal right ideal
of A. By Proposition 4.3.3 M = eA for some idempotent e
and eAe is a division ring. Clearly e = 3%, au;by;. Hence
ede C Y™, aAby; and so dimg(ede) < oo, and the lemma is
proved.

Before taking up the matter of arbitrary GPI’s we shall first
describe the linearization process in QQ¢<X>. We mention that
this process works equally well for @ = Q. as for Q = Q,;. We
fix a C-basis A of @ containing 1 which in conjunction with the
usual C-basis of C<X> leads to the monomial basis M(.A) of
Qc<X>. For M € M(A) we define

deg,(M) = number of times z appears in M,
deg(M) = D deg,(M);
T€EX

ht;(M) = max{deg, (M) -1, 0};
Rt(M) = Y ht (M)

z€X
= deg(M) minus the number of distinct z’s

appearing in M.
Now we write
¢ =d(x1,29,...,25) = D_cuM € Qe<X>,
M e M(A), cpy € C. "
We shall say that M belongs to ¢ if cpr # 0. We define:
deg,(¢) = max{deg (M) |cum # 0}
deg(¢) = max{deg(M) | cpr # 0};

htz(¢) = max{ht,(M) | cm # 0};
ht(¢) = max{ht(M) |cym #0}.

Given k£ > 0 and z € X we say that ¢ is k-homogeneous in x
if deg,(M) = k for each M belonging to ¢. Given a sequence
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7 = (my,my,...,my,) of nonegative integers we say that ¢ is
T-homogeneous if ¢ is m;-homogeneous in z;, 1 = 1,2,...,n. If,
in addition, each m; = 1 we say that ¢ is multilinear of degree n.
Clearly, given z € X appearing in ¢, we may write ¢ uniquely
as a sum Y jrodr(z), ¢r k-homogeneous in z, m = deg,(d).
Also we may write ¢ uniquely as a sum ) ¢, where ¢, is 7-
homogeneous.

Let ¢ # 0 be of degree n and suppose deg,(¢) = m > 1
for some z € X. We can then perform the following operation
which we shall refer to as an operation of type A. Notationally
suppressing all z; # = appearing in ¢ we shall write ¢ = ¢(z).
Let M belong to ¢ such that deg, (M) = m and write

M=M($)=Pio.’lipil....’lipim

where P;; € M(A) does not contain z. Choose y € X not
appearing in ¢ and form

b= ¢z +y) - d(z) - (y).
One observes in particular that the monomial
PzP; ... 2P _ | yF;,
belongs to v, thereby showing
(i) deg () = deg(¢) (and hence 1  0)

Furthermore it is clear that

(i) deg,(¥) =m — 1 =deg,(4);

(1) deg,, () < deg,,(4), =i # z,v;
(iv) ht(y) < ht(¢) (because of (ii));
(v) If ¢ is a GPI then 9 is a GPI.

An operation of type B may be performed in case there is
an z € X appearing in ¢ but not in each M belonging to ¢.
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Here we simply replace ¢ by the element p obtained from ¢ by
sending z to 0. Clearly p # 0, deg(p) < deg(¢), ht(p) < ht(4),
and if ¢ is a GPI, then p is a GPI.

We say that 1 is a linearization of ¢ if 1 is multilinear and
is obtained from ¢ by a finite sequence of operations of types A
and B. Evidently every ¢ # 0 has a linearization and as a result
we have

Remark 6.1.5 If 0 # ¢ is a GPI on I of degree n then there
exists a nonzero multilinear GPI on I of degree < n.

We are now in a position to prove the main result of this
section (which we shall sometimes in the future refer to as "the
prime GPI theorem”). The proof we give is due to Chuang [87]
who greatly simplified the original proof in [205].

Theorem 6.1.6 Let R be a prime ring with extended centroid
C and central closure A = RC. Then there is a nonzero GPI
¢ on I for some 0 # I < R if and only if A has a nonzero
idempotent e such that eA is a minimal right ideal of A (hence A
is primitive with nonzero socle) and eAe is a finite dimensional
division algebra over C.

Proof. If dimg(ede) = n < oo and St,4,; is the standard
polynomial in n + 1 variables, then

¢ = Stpy1(exie, exqe, . .., €Ty i1€)

is the required a GPI.

Conversely let 0 # ¢ be a GPI on some 0 # I < R. By
Remark 6.1.5 we may assume that ¢ = ¢(z1,2s,...,2,) is mul-
tilinear of degree n. Pick any C-basis A of Q). The element
¢, when written in terms of the monomial basis M(A), only
involves a finite subset F' of A. By suitable reordering of the
variables we may write

¢ = bga:l .. .bn_gxn_l’l//'(xn) + ZCYMM + E,BNN + Z’YPP’
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au, Bn,vp € C where

(1) 0% ¥(zs) € Qua@;
(i) M s of the form byzy... 0, _oZn_1X(n),
with  (by,...,b,_5) # (bo,-..,bn—2) and

X(2n) € Q2n@;
(#9i) N is of the form

" 1/ 11 " 1/ /I,
0:131 e bi_lxibi :I}nbi+1$1;+1 e bn_lxn_lbn,

() x1,%2,...,Zn—1 appear in a different order in P.

By Lemma 6.1.4 we may assume that Y(I)C € V = Y 4cpdC.
Choose r € I such that ¥(r) ¢ V and set

p(1, T2, Tn-1) = G(T1, T2,y -+ -, Tn1, 7).

Let A’ be a C-basis of @ containing F'U {¢(r)}, and consider
p as being written in terms of the monomial basis M(A') of
Qc <X > induced by A’. It is then clear that the monomial
H = byz,...b,_2Z,_1%(r) cannot be canceled by any monomials
which arise from M, N, or P. For instance, N ends in b € F
whereas H ends in ¥(r) ¢ F. Thus 0 # p is a GPI of degree
n — 1 on I, and so by induction the proof is complete.

Although in this section our framework is that of the sym-
metric ring of quotients @);, the following corollary shows that
the effect of a GPI carries up to the maximal right ring of quo-
tients Q.

Corollary 6.1.7 Let R be a prime ring with extended centroid
C, central closure A = RC and Q = Qu,(R). Then the follow-
ing conditions are equivalent:
(i) There is a nonzero GPI ¢ on I for some 0 # I 4 R;
(i) Any subring A C H C Q is primitive with nonzero
socle and a nonzero idempotent e € H such that eHe is a finite
dimensional division algebra over C;
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(ii3) The ring Q is isomorphic to the complete ring of linear
transformations of a Tight vector space over a division ring which
18 finite dimensional over its center;

(iv) R is GPI.

Proof. (i) = (ii) By Theorem 6.1.6 A has nonzero socle
and (ii) then follows immediately from Theorem 4.3.6(ii).

(ii) = (iii) By Lemma 2.1.9, Q = Q- (H). Now the state-
ment (iii) follows from the symmetric version of Theorem 4.3.7
(viii).

(iii) = (iv) We identify the ring @ with this complete ring
of linear transformations over a division ring A. Let n be the
dimension of A over its center and let e be an idempotent of
rank 1 of the linear transformation ring @. Clearly eQe = A.
Hence the generalized polynomial

¢ = Stpri(exre, ... eTnp1€) = Stupa(ex, ... eTny1)e

where St,,; is the standard polynomial in (n + 1) variables
vanishes under all substitutions z; —» ¢; € @,1=1,2,...,n+1.
Pick any a € (e : R)g such that ea # 0. Then

0 # v = Styy1(eax), eaxy, .. ., eat,1)ea € Qo<X>

is a GPI on R. The implication (iv) = (i) is obvious. The
proof is thereby complete.

Theorem 6.1.6 says that prime G PI rings are ” well-behaved”,
but for non GPI prime rings we have the following positive re-
sult which will prove useful in the sequel.

Lemma 6.1.8 Let R be a prime ring, let U be an additive
subgroup of R which is not GPI, and fiz x € X. Let T, =
{ij(z) |1 =1,2,...,n:},i=1,2,...,m, be m given subsets of
Qc<X> each of which is C-independent. Then there exists u €
U such that the subset Ti(u) = {¢;;(u) |1 =1,2,...,m} CQ is
C-independent for each i =1,2,...,m.
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Proof. Suppose to the contrary that for each w € U there
exists 1 < ¢ < m such that T;(u) is a C-dependent subset of Q.
Then the set

T,;(’U,,’Ui) = {(15.,;_7'(’(1,)’1),; | .7 = 1’2’ s ,’I’L,;}

remains a C-dependent subset of @) for all v; € U. We form the
element

¢ = H Stn,-(¢i1($)yi, ¢i2($)yi, ooy Bin, (x)yi)zi
i=1

where y1, .. ., Ym, 21, - - - » 2m € X (distinct from z) and St,, is the
standard polynomial in n; variables. Clearly ¢ # 0 but, since
Str(ay, ag, ..., ax) = 0 whenever ay, as, ..., a; are C-dependent,
¢ is a GPI on U, contrary to our hypothesis.

We close this section by showing how Theorem 6.1.6, with
assistance from other results we have obtained, implies the path-
breaking theorems of Kaplansky [137], Amitsur [3], and Posner
[242].

Let us take a closer look at the situation when R is a prim-
itive GPI ring. By Theorem 6.1.6, RC has a nonzero socle
Soc(RC) and so by Theorem 4.3.6(ii) R has socle Soc(R) =
Soc(RC). Furthermore Theorem 6.1.6 assures us of a minimal
idempotent e (necessarily in R) such that eRe = eRCe is finite
dimensional over C, and we know from Theorem 4.3.7(ix) that
eRe has center isomorphic to C.

The fundamental theorem of Amitsur ([3], Theorem 10),
which in essence originated the theory of generalized polyno-
mial identities in 1965, follows immediately from the preceding
paragraph.

Theorem 6.1.9 (Amitsur) Let R be a primitive ring with ex-
tended centroid C. Then R is GPI if and only if R contains a
minimal idempotent e such that dimeg(eRe) < oo.
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Now we recall that a ring R is called a PI-ring if there exists
a nonzero element f(zy,z,...,2,) € C <X > which vanishes
under all substitutions z; = r; € R, 1 <1 < n. Next suppose
that R is a primitive PI ring over C' with faithful irreducible
right R-module M and D = End(Mg). We may assume without
loss of generality that R has a multilinear polynomial identity

f(i'?hi'?z, SRR ,il?n) = Z /\ama(l)mo@) -+ - To(n)
O'ESn

of degree n with A\; = 1. Then

T1Zo9...Zy € Z )\a:va(l):vo(g) .. .:l:a(n)R
oeSu\{1}

is a pivotal monomial of R. By Theorem 4.4.3 we have that
R = Endp(M) where dimp(M) < oo. On the other hand our
preceding remarks show that dimg(D) < co. We have thereby
completed the proof of Kaplansky’s Theorem [137], which orig-
inated the theory of polynomial identities in 1948.

Theorem 6.1.10 (Kaplansky) Let R be a primitive ring with
extended centroid C. Then R is PI over C if and only if R is
finite dimensional central simple over C.

Finally, we come to Posner’s Theorem [242] of 1960, which
became a fundamental tool in the theory of prime rings (an area
which had recently been opened up by Goldie’s Theorems). We
state and prove the original version. Here we recall that given a
ring R, aring S O R with 1 is said to be a two-sided classical ring
of quotients of R if all regular element (i.e., nonzero divisors) of
R are invertible in S and for every s € S there exist regular
elements t1,t; € R such that st,f,s € R.

Theorem 6.1.11 (Posner) Let R be a prime ring with ez-
tended centroid C. Then R is PI over C if and only if A= RC
is a two-sided classical ring of quotients of R and dim¢(A) < 0.
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Proof. We may assume that the PI is multilinear and hence
satisfied by A. By Theorem 6.1.6, A is a primitive ring with
nonzero socle and so by Kaplansky’s Theorem 4 = M, (D) for
some 1 > 1, where D is a division algebra finite dimensional
over its center C. Let ey, e, ..., e, be the usual diagonal matrix
units. We now claim that every nonzero ideal U of R contains
a regular element of A. We may choose a nonzero ideal W of
R such that W C U, We; C U and e,W C U for all ¢, whence
0 # e;W3e; C U. Selecting 0 # u; € e;W3e; C U, we see that
U =1u;+uUs+...+u, €U has rank n and so must be a regular
element of A. Now let a € A, choose a nonzero ideal U of R
such that aU 4+ Ua C R, and by the preceding claim select a
regular element b € U. Clearly ab,ba € R. Next let d € R be
a regular element. Suppose dz = 0 for some z € A. Choose
a nonzero ideal V of R such that zV C R. Then d(zV) = 0
and so zV = 0. Hence z = 0 and r4(d) = 0. Analogously one
may show that {4(d) = 0. Therefore d is a regular element of A.
Since dimg(A) < oo, every regular element of A is invertible.
It follows that every regular element of R is invertible in A and
thus A is a two-sided classical ring of quotients of R.

It must be added that our methods do not enable us to prove
the sharper version of Posner’s Theorem, namely, the one that
asserts additionally that C is the field of fractions of the center of
R. This latter improvement stems from the existence of central
polynomialsin M, (F) (see Formanek [105] and Razmyslov [246])
and was proved by Rowen [255].

As a final note we mention that in section 6.3, where our
main purpose will be to study GPI’s in semiprime rings, we
shall at the same time also broaden the definition of a GPI to
allow its coefficients to lie in Q,,, (rather than just in Q;). As we
shall see the theory will not be weakened by this generalization
since the fundamental prime GPI theorem will remain intact.
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6.2 Identities with a Fixed
Antiautomorphism

The first step in extending the notion of GPI’s for prime rings
to that of more general identities in prime rings was taken in
[207], [208] and [257] where R was a prime ring with involution
* satisfying an identity of the form ¢(z1,...,z,, 25, ...,25). The
special case of an ordinary G PI satisfied by the symmetric el-
ements was studied by Martindale [208] and the more general
situation by Rowen [257] (also independently by Skinner [265]).

Our motivation for including this topic in the present chap-
ter (rather than delegating it to Chapter 7 as a special case of
a far more general situation) is severalfold. First, some readers
may be primarily interested in rings with involution but not in
further generality. Secondly, this particular theory has impor-
tant applications in its own right (e.g., in Chapter 9 the solution
of Herstein’s Lie isomorphism problem uses it in a crucial way).
Thirdly, the lemma on linear identities (Lemma 6.2.1) forms an
important step in reducing the general theory in Chapter 7 to
the prime GPI theorem (Theorem 6.1.6). Lastly, it is hoped
that the exposition in this section will help in a small way to
bridge the gap between section 6.1 and the vastly more compli-
cated setting in Chapter 7.

For the remainder of this section R will denote a prime ring
with a fixed antiautomorphism g. This includes the special case
when g is an involution. The arguments required for the general
antiautomorphism case are essentially no different from those
needed in the involution case. We have previously noted (section
2.5) that g may be uniquely extended to an antiautomorphism
of the symmetric ring of quotients @ = @Qs(R). Let X be an
arbitrary infinite set, let X9 = {29 | z € X} be a copy of X with
the elements suggestively superscripted by g, and let X U X9 be
the disjoint union of these two sets. We then form the coproduct
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Qc<X U X9> of @ and the free algebra C<X U X9> over C.

As in the preceding section any set-theoretic map of X U X¥
into a C-algebra P containing ) can be uniquely lifted to a C-
algebra map of Qc<X UX9>— P such that ¢ — ¢, ¢ € Q. Such
maps are called substitutions. We will be primarily interested
in the situation where P = Q or P = Q¢c<X U X9>. As the no-
tation for the set X9 suggests, it is natural to focus on substitu-
tions of Q<X UX9> into @ which are restricted by the require-
ment z¢ — 79 whenever z — 7, r € ). Such substitutions will
be called g-substitutions . Let U be an additive subgroup of .
Then an element ¢ = ¢(z;,...,Zn,23,...,29) € Qc<X U X9>
is said to be a g-identity on U if ¢ is mapped to 0 under all
g-substitutions for which z; — r;, r; € U (Our main concern is
the situation in which 0# U = I <« R).

We begin with a seemingly very specialized result, but as
it turns out one which plays a key role in the proof of Theo-
rem 7.5.8 (as well as Theorem 6.2.3). We fix z € X and set
L, = QzQ + Qz9Q.

Lemma 6.2.1 Let g be an antiautomorphism of R and let

0% ¢(z) =) amh+ ) cjz%d; € L,

i=1 i=1

be such that dime(¢(1)C) < oo for some 0 # I A R. Then R is
GPI (in particular if ¢ is a g-identity on I then R is GPI).

Proof. The proof is by induction on n. The case n = 0
is obvious in view of Lemma 6.1.2, Lemma 6.1.4 and Theo-
rem 6.1.6. We assume that the lemma is true for n — 1 and show
it for n. Without loss of generality we may assume that m >
0 and the elements a;,ay,...,a, are C-independent. There-
fore ch,zay, ..., chxam, a1, ..., ay are C-independent elements of
Qc<X U X9>. By Corollary 6.1.7 it is enough to consider the
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case when I is not GPI. By Lemma 6.1.8 there exists r € [
such that

CaTQl,- ., CaTCm,01,.-.,0, are C-independent. (6.1)

Then we have
$(z) = dlzcq 197) — car(z)

m n
-1 -1
= Y a;zcd 9 b+ Y eireadd;

i=1 j=1
m n

- Z Cpra; ;b — Z carc;zld;
i=1 j=1

m m

-1 -1
= Y azcd 19 b =) caraizib;

i=1 i=1

n—1
+ Y (ejren — enrey)z0d;.
J=1

From (6.1) it follows that ¢'(z) # 0. Clearly ¢'(I)C C ¢(I)C +
ca,rd(I)C and so dimg(¢'(I)C) < oo. Therefore by induction
the proof is complete.

Before taking up the matter of arbitrary g-identities we de-
scribe a linearization process compatible with g. With only a
few adjustments it is similar to the usual linearization process
described in the previous section and we will omit most of the
details. For a nonzero monomial M in Qo<X U X9> we define
the g-degree of M in x (g-deg, (M)) to be the number of times
z or 9 appears in M. Similarly we define the g-height of M in
T (g-ht;(M)) to be max{g-deg,(M) — 1, 0} and the g-height of
M (g-ht(M)) to be Y cx g-ht,(M). For example if

M = agzea,25as230375 a4
then g-deg,,(M) = 3, g-deg,,(M) =1 and
deg,, (M) =1, deg,g(M) =2, deg,,(M) =0, deg(M) = 4.
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We say that ¢ is g-multilinear of degree n in z;,zo,...,z, if
for each monomial M in ¢ and each i we have g-deg, (M) =1
and deg(M) = n. For example z;az] + z3bz{ is g-multilinear of
degree 2 in z; and z, but is not multilinear. On the other hand
z10zi is multilinear of degree 2 in z;, ] but is not g-multilinear.
With these adjustments in mind, together with the fact that g
is additive, a process similar to that described in the preceding
section results in

Remark 6.2.2 If 0 # ¢ is a g-identity of degreen on 0 # I<R
then there exists a nonzero g-multilinear identity on I of degree
< n.

Theorem 6.2.3 Let R be a prime ring with an antiautomor-
phism g, and let 0 # ¢ € Q<X U X9> be a g-identity on I,
where 0 # I < R. Then R is GPI.

Proof In view of Remark 6.2.2 we may assume that ¢ =

&(z1,- -, Ty, 23, ..., 29) is g-multilinear of degree n in z1, . . ., z,,.
Let ro,7r3,...,7n € I and set
— 9 .9 .9
Y(z1) = ¢(@1,72, 73y - o, Tny 3, 79,75, ..., 7).

We note that ¥ € L;, is a g-identity on I. If ¢ # 0, then by
Lemma 6.2.1 R is GPI. Therefore we may assume without loss
of generality that for every choice of 7y, 73,...,7, € I

9 9 .9
A(@1,72,73y -« T, &5, 73,79, ..., 79)
is the zero element of Q¢<X>. In particular
9 .9 _
¢(T1,T2,T3, <3 Tny 81,72, T3, . - arg,) =0

forall ry,...,75,51 € I. Continuing this process with x,, ..., z,
we may eventually assume that

(]5(7'1,7'2,7'3,.--,Tn,51,32,..-,3n) =0
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forall my s, € I,i=1,2,...,n,ie, ¢(z1,. .., ZnyY1,--+,Yn) IS &
GPI on I.

As an important special case we have the

Corollary 6.2.4 If R is a prime ring with involution x and
0 # ¢ is a x-identity on 0 # I < R then R is GPI.

Included in this corollary are the following special cases.

Corollary 6.2.5 Let R be a prime ring of characteristic differ-
ent from 2 with involution * with skew elements K and sym-
metric elements S.

(i) If K is GPI, then R is GPI.
(ii) If S is GPI, then R is GPI.

Proof. In either (i), or (ii) let 0 # ¢(z1,22,...,2,) be a
GPI. Then

Y= (z1— 2,22 — Ty, ..., Lpn — T})
is a *-identity on R in case (i) and
Y= (z1+ 2], 22+ 25,...,Ln +I),)

is *-identity on R in case (ii). By Corollary 6.2.4 R is GPI.

6.3 Semiprime GPI-rings

Our main purpose in the present section is the extension of the
notion of generalized polynomial identities to semiprime rings.
At the same time, as promised at the end of section 6.1, we
will extend the definition of GPI so that the coefficients may
lie in Q... It is debatable which ring of quotients is better to
use. On the one hand Q) is a less complicated ring not as far
removed from R as is Q.,,, and working with (dense) two-sided



6.3. SEMIPRIME GPI-RINGS 227

ideals is generally a simpler matter than working with dense
right ideals. In Chapter 7 we shall choose to use ¢);. On the
other hand, @,,, has the advantage of more generality and also
has the useful property that if J is a dense right ideal of R then
for any subring J C S C Qum,(R) we have Q- (S) = Qm-(R).
Also Q.. includes classical rings of quotients not included in
Qs, e.g., for R a simple right Ore domain ¢); = R whereas Q,,,
coincides with the classical ring of right quotients. At any rate
for the remainder of this chapter we elect to use Q),,, instead of
Q@,, and we proceed to define the notion of GPI in this wider
sense.

Let R be a semiprime ring with extended centroid C and
maximal right ring of quotients Q = Q..(R). Letting X be
an infinite set, we form the coproduct Qc<X > of the free C-
algebra C<X> and Q. As we already know any set-theoretic
map X — ( can be extended uniquely to a C-algebra map
Qc<X>— @ such that ¢ — ¢ for all ¢ € Q. As usual we will
call such a map a substitution. Now let 0 # U be an additive
subgroup of R. An element ¢ = ¢(z1,22,...,Z,) € Qc<X>
(where @ = Qm-(R)) is said to be a generalized polynomial
identity on U if ¢(uq,ug, ..., un) =0 for all uy,us,...,u, € U.

Before beginning our investigation of GPI’s in the general
semiprime setting we shall first establish the reassuring fact that
in the prime case no weakening of the theory has taken place.

Remark 6.3.1 Let R be a prime ring with extended centroid C
and Q = Qm-(R). Furtherlet qi,q,...,q € Q be C-independent
and J = N(gi : R)r. Then either dimg(RC) < oo, or
there ezists an element r € J such that qi7,qur, ..., q.r are C-
independent elements.

Proof. Suppose that ¢7,¢.r,...,¢,r are C-dependent for
all r € J. Consider the C-linear mappings l,, : V = JC — RC
given by the left multiplications by ¢;. By Amitsur’s Lemma
there exist elements c¢;,co,...,c, such that 7 = isq Cilg, is a
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nonzero linear transformation of finite rank (see Theorem 4.2.7).
Setting ¢ = Y7, ¢;g;, we note that 7 = [,. Hence K = ¢JC is
a nonzero finite dimensional right ideal of RC. Since RC' is a
prime ring, RC C Endc(qJC) which proves our remark.

Corollary 6.3.2 Let R be a prime ring with extended centroid
C, Q = Qu(R), Qs = Qs(R) and 0 # ¢ € Qc<X> a GPI
on a nonzero ideal U of R. Then U has a nonzero generalized
polynomial identity 1 € Qs-<X>.

Proof. Pick any C-basis A of () containing 1 and consider
the monomial basis M(A) of Qc<X>. The element ¢, when
written in terms of the monomial basis M(A), involves only a
finite subset by,...,b,, of A. If dimc(RC) = k < oo, then R
is a PI-ring and then Sti,.i(z1,Za,...,Zks1) € ¥ € Qse<X>
is a GPI of R. Suppose dimc(RC) = co. By Remark 6.3.1
there exists an element r € R such that b7, byr, ..., b,r are C-
independent elements of A = RC. Write ¢ = Z§=1 o; M; where
M; € M(A) and ¢; € C. It follows that

Mi(rzy, ... ,rx)r # Mi(razy, ... ra,)r for @ # 7.

Therefore ¢(rzy,rxs,...,7Z,)r is a nonzero GPI on U with co-
efficients belonging to A, and the proof is complete.

The preceding corollary, in conjunction with Theorem 6.1.6,
yields

Corollary 6.3.3 Let R be a prime ring with extended centroid
C, Q = Qm(R) and ¢ = ¢(z1,Za,...,Zn) € Qc<X> a nonzero
GPI on R. Then the central closure A = RC C Q contains
a nonzero idempotent e such that eAe is a finite dimensional
division C-algebra (Hence A is a primitive ring with nonzero
socle).
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Corollary 6.3.3 tells us that if a prime ring is GPI in the
”wider” sense then it is GPI in the sense of section 6.1. We will,
however, in the course of the present section establish the ana-
logues of Corollary 6.1.3 (Lemma 6.3.12), Theorem 6.2.3 (Theo-
rem 6.3.18), and Lemma 6.1.8 (Corollary 6.3.14) for prime rings.

We return now to the investigation of GPI’s in semiprime
rings and make the following important definition. A GPI ¢ €
Qc<X> is called strict, if r¢(¢) = 0. The following example
shows us the importance of the condition rc(¢) = 0.

Example. Let K be any commutative semiprime ring with
an identity e and let A be any semiprime ring. Weset R = KA
and u = (¢,0). Then ¢(z,y) = uzy — uyz is a GPI of R and
re(¢) = (1 — w)C. Thus the GPI ¢ only contains nontrivial
information about a ”part” of R, namely about the direct sum-
mand K of R. We shall see that in general the situation is
analogous to that of the example.

Remark 6.3.4 Qc<X > is a nonsingular C-module. In par-
ticular for any ¢ € Qc<X > there exists a unique idempotent
E(¢) € C such that rc(¢) = (1 — E(¢))C.

Proof. Let A be the set of all finite sequences of elements
of X. For any o = (z1,22,...,Zm), 8 = (Y1,%2,---,Yn) € A we
set la|=m+1and aUB = (z1,22,..-,Zn, Y1,Y2,---,Yn) € A.
Given any natural number n, we define Q™ to be the n-fold
tensor product Q ®¢c Q Q¢ ... ®¢c @ of Q. Now we set

Qa = Q“a” and H = EBaeAQa-

We note that for 7 =0, |7| = 1 and @, = Q. Define a multipli-
cation in H by the rule

(1® ... ® @ ®nt1)(P1 D2 ® ... ® Ppy1)
=01 ®...0 ¢n ® (gm+1P1) @ P2 ® Pnt1 € Qaup,
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and its consequences, where

o= (xl,xz,...,xm),ﬂ= (yl,yz’___’yn) € A,
(1®...00m®Gm+1 € Qo and
pl®p2®---®pn+1 EQﬂ.

Now we define a ‘mapping f : Qc<X>— H by the rule

N171G2 -« - TnGm+1 > @1 © G2 ®... ® gm+1 € Qo

and its consequences, where o = (z1,...,Zm). We leave it to
the reader to check the straightforward details that H is an
associative C-algebra and f is an isomorphism of C-algebras.
Since a direct sum of nonsingular C-modules is a nonsingular
C-module and @ is a nonsingular C-module by Corollary 3.1.2,
it is enough to show that the tensor product of nonsingular C-
modules is nonsingular as well. To this end consider nonsingular
C-modules M and N. Let z = Y2, 2; Q@ y; € M @ N where
z; € M,y; € N. Weset M' =¥, Cz; and N' = 372, Cy;.
According to Remark 3.1.4 and Lemma 3.1.1, the C-modules M’
and N’ are isomorphic to direct sums of principal ideals of the
ring C and are injective C-modules. In particular they are di-
rect summands of M and N respectively. The reader can easily
check that the operation of tensor product commutes with the
operation of direct sum. Hence M’ ®¢c N’ is a direct summand
of M ®c N and furthermore the C-module M’ ® c N’ is isomor-
phic to a direct sum of tensor products of principal ideals of C.
Therefore it is enough to show that U = (Cu) ®¢ (Cv) is a non-
singular C-module for all idempotents u,v € C. Consider the
mapping h : CuxCv — Cuv given by the rule (zu, yv) — zyuv,
z,y € C. Clearly h is a balanced mapping. Hence there ex-
ists a homomorphism of C-modules F : U — Cwuv such that
F(zu ® yv) = zyuw for all z,y € C. Obviously F is a surjec-
tive homomorphism. Further let 2 = Y z;u ® y;v € U where
Zi,¥: € C. Then 2z = (¥ z;y;uv) ® v and so F is injective. Thus
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U = Cuv is a nonsingular C-module and our remark now follows
from Lemma 3.1.1.

Let ¢ € Qc<X>beaGPIon R, e=E(¢),I = (e : R)r
and J = el. Since e is a central element of (), I is a dense ideal
of R. Setting K = (1 — e)I, we note that K is an ideal of R,
KnNnJ=0and I = J® K. Using Proposition 2.1.10 one checks
that

Q = er(J S K) = er(J) @ er(K) = CQ S (]- - C)Q,
Qmr(J) = eQ and eQc<X>= (eQ),,<X>. Hence
¢ € eQe<X>= (eQ) o <X>

is a strict GPI on the ring J and determines a zero generalized
polynomial identity on the ring K.

These comments show that in the study of semiprime rings
with GPI’s one may confine one’s attention to strict GPI’s.

There are two ways to characterize semiprime rings with
strict GPI’s. The first one is using the results of section 2.3
and the skeleton of the proof of Theorem 6.1.6 to give a direct
proof of a semiprime ring version of the prime GPI theorem.
This approach was used in [21] and [22]. The second possibility
is using the method of orthogonal completion to derive the de-
sired description from the prime GPI theorem. We will follow
this approach in order to demonstrate the method of orthogonal
completion.

Let R be a semiprime ring with extended centroid C, Q =
Qmr(R), Qs = Qs(R), and A = RC C Q,. We let D = O(R),
H = O(A) denote the orthogonal completions of R and A, not-
ing (by Proposition 3.1.10) that O(Q) = @ and O(Q,) = Q..
Further let B = B(C), P € Spec(B), and let ¢p : Q = Q/PQ =
@ be the canonical surjection of rings. By Theorem 3.2.7 D =
¢p(D) is a prime ring, and by Theorem 3.2.15(iv) C = ¢p(C) is
the extended centroid of D. By Theorem 3.2.15(i) Q@ C Q,.(D)
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and by Theorem 3.2.15(iii) DC € H C Qs C Q,(D). The
following remark shows that the canonical C-algebra map

®p : Qo<X>— Qa<X>C Qmr(D)a<X>

behaves properly.

Remark 6.3.5 Let R be a semiprime ring with extended cen-
troid C, B = B(C) the Boolean ring of all idempotents of C,
Q@ = Qur(R), F = Qc<X> and P a mazimal ideal of B. Fur-
ther let ¢p : @ — Q/PQ = Q be the canonical homomorphism
of C-algebras and ®p : F — Q<X > the canonical extension
of ¢p. Then:

(i) ®p is a surjective homomorphism with ker(®p) = PF;
(ii) If v € Qc <X >, then ¥ € ker(®p) if and only if
E(y) € P.

Proof. (i) Let M and N be nonsingular left C-modules.
We set M = M/PM and N = N/PN. Consider the mapping
g: M x N — M®gN given by the rule

(m,n) = (m+ PM)® (n+ PN), me M, n€ N.
Clearly g is balanced. Therefore there exists a mapping
G:M®:N—M®zN
such that
m®n— (m+PM)® (n+ PN), me M, ne N.
We claim that ker(G) = P(M ®¢ N). Indeed,
P(M®c N)=(PM)®c N =M ®c (PN).

Note that M and N are vector spaces over the field C. Pick
subsets {u, | vy € T'} C M and {vs | 6 € A} C N such that
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{u,+ PM |~y €T} and {vs + PN | § € A} are C-bases of M
and N respectively. Let 2 = 3, 2, ®1y; € M®c N where z; € M,
y; € N. Obviously z = 3, 5 ¢1suy ® v5 + 2’ where ¢,; € C and
2 € PIM®c N). If 2 ¢ P(M ®c N), then ¢,5, € P for some
v € T, 8y € A. Since {(uy+ PM)® (vs+ PN) |y €T, é € A}
is a C-basis of M ® N, we conclude that G(z) # 0. Therefore
ker(G) = P(M ®c N).

Taking into account the isomorphism of the C-algebras H
and @Qc<X > established in the proof of the preceding remark,
we infer now that ker(®p) = PF.

(ii) The proof is similar to that of Remark 3.2.2.

Returning to our general setting we suppose now that
"/} = "/}(Il,‘r2> e )In) € QC<X>

is a strict GPI on R. We claim that ¢ = ®p(2)) is a nonzero
GPI on D. Indeed, it follows from Remark 3.1.8 and Re-
mark 3.1.9 that v is a strict GPI on D. For any d),d,,...,d, €
D we have

Y(pp(di), ..., dp(dn)) = dp(¥(dy,...,dn)) =0

and so 9 is a GPI on D. Since E(¢)) = 1, ®p(th) # 0 by Re-
mark 6.3.5. We summarize what we have proved in the following

Corollary 6.3.6 Let R be a semiprime ring with extended cen-
troid C, B = B(C), Q@ = Qm-(R), D = O(R) the orthogo-
nal completion of R and P a mazimal ideal of B. Further let
dp:Q = QPQ =Q and p : Qe<X>— Qz<X> be canonical
homomorphisms of C-algebras and let 1) € Qc<X > be a strict
GPI on R. Then ®p(¢) is a nonzero GPI on the prime ring
¢p(D). ‘

An idempotent e of a C-algebra A is said to be of finite C-
rank n if eAe is a free C-module with a basis of n elements.
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Further, an idempotent e is called abelian if eAe is a von Neu-
mann regular ring all of whose idempotents are central. Finally
an idempotent e € A is called faithful (or C-faithful for empha-
sis) if r¢(e) = 0. The notion of a faithful abelian idempotent
e of finite C-rank n lends itself very nicely to the following de-
scription by Horn formulas:

xo(e,c) = llee C|A(lle=0llV llce #0]|) Alle® =e]|;
xi1(e,z1,22) = ||(exie)(exqe)(exie) = exiel|;
x2(e,y1,92) = |l(eyie)? # eysel|

Vll(eyre)(eyze) = (eyae)(eyie)ll;

(€ 2, 21y« ooy Zny Cly e ooy Cry bl e ooy b)) =

n
Aillei € C|[ A lleze =) cieziel|

i=1

Nzt llti € ClEA N1t = Ofl) V | D tiezie # Ol];

i=1

0.(e) = (Ve)(Vz1)(Tz2) (V1) (Vy2) (F21) . . . (F2n) (V2)
(Fa1) ... (Fen)xole, z1, 22)
Axi(e, 1, ¥2) A x2(e, 91, %2)
AN (€2, 21, oy Zny Cly v ey Cry Ely v oy En);
6n = (Ge)on(e) (62)

Clearly e € A is a faithful abelian idempotent of finite C-rank
if and only if A = 8,(e) for some n > 0.

Lemma 6.3.7 Let R be a semiprime ring, A = RC, H = O(A),
let Y € Qe<X> be a strict GPI of R and 0 # a € A. Then:
(i) For all P € Spec(B) there ezists a number n = n(P),
n = k2, such that ¢p(H) = O,;
(it) For all P € Spec(B) with E(a) ¢ P there exists a num-
ber n = n(P) such that ¢p(H) = (Fz)(Te)(On(e) A |le = az]|)-
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Proof. Let e be any minimal idempotent of H and let n =
dimg(A) where A = eHe. Clearly n = k* < co and

6p(H) = 6,(c) and @p(H) £ O,

which proves (i).

Now let E(a) € P. Then @ = ¢p(a) # 0 by Corollary 3.2.4.
Therefore the right ideal 0 # @H of H contains a minimal idem-
potent of H and so ¢p(H) = (37)(3e)(0n(€) A |le = az]|).

It is well-known that any right (left) ideal of a centrally closed
prime G PI ring contains a minimal idempotent e such that eRe
is a finite-dimensional vector space over its center eC. We now
prove the analogue of this result for semiprime rings.

Theorem 6.3.8 Let R be a semiprime ring with extended cen-
troid C, @ = Qmr(R), A = RC C @ the central closure of
R, and N a nonzero right (left) ideal of A. Suppose that ¢ €
Qc<X> is a strict GPI on R. Then there is a central idem-
potent u € C and a uC-faithful abelian idempotent h' in A of
finite uC-rank n.

Proof. We set H = O(A) and let 0 # a € N. Note that
aH is an orthogonally complete subset of H by Lemma 3.1.18.
Choose a maximal ideal P of B such that ¢p(a) # 0 (i.e., E(a) ¢
P). Then by Lemma 6.3.7(ii) ¢p(H) | O}, for some natural
number n where ©), = (3z)(3h)(0,(h) A ||h = az||). According
to Theorem 3.2.10, there exists a central idempotent f ¢ P such
that fH |= ©],. Therefore there exists an abelian idempotent
h € faH of finite fC-rank n such that ryc(h) = 0. Pick a
basis 21, 2s,...,2, € hHh of the fC-module hHh. Note that
hHh = @}, fCz. By Proposition 3.1.14

h=>" “hyy and 2z = > Lz,,_.v,-,

veV v EV;
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where V,V; are dense orthogonal subsets of B and h, € a4,
2z, € AforallveV, v eV, i=1,2,...,n Pick idempotents
veV, v €W,.. v, €V,such that u = fov,...v, # 0.
Since ryc(h) = 0, ' = hyu = hu # 0. Clearly h' € aA is an
idempotent and 2z} = zju = z,,u € K'AR', 1 = 1,2,...,n. From
hHh = @7, fCz we conclude that

WAK CHHK =uhHh =3 Cuz =Y Cz C KAK.

i=1 i=1

Therefore b’ € aA C N is a nonzero abelian idempotent of finite
uC-rank. The proof is complete.

The following decomposition theorem for semiprime rings
will be especially useful for the determination of generators of
the 7T-ideal of GPI’s in section 6.5.

Theorem 6.3.9 Let R be a semiprime ring with extended cen-
troid C, Q = Qmr(R) and H the orthogonal completion of the
central closure RC C @ of R. Suppose that R has a strict GPI
h(X) € Qc<X>. Then there exist a natural number ¢t > 0 and
nonzero idempotents uy, us,...,us € H such that:

(i) The E(u;)’s are an orthogonal set whose sum 1s 1;

(i) u; is a faithful abelian idempotent of finite rank n; = k?
of E(u;)C-algebra E(u)H, i =1,2,...,t;

(iiz) If M € Spec(B) with E(u;) ¢ M then ¢p(u:Qu;) 1s an
n;-dimensional division algebra over its center ¢pr(u;C);

(v) e = uy +uy+...+uy 18 a faithful abelian idempotent of
the C-algebra H such that uHwu is a finitely generated C-module.

Proof. By Lemma 6.3.7(i) for every P € Spec(B) ¢p(H) =
On(py for some natural number n(P) = k2. According to Theo-
rem 3.2.18 (with H playing the role of R) there exists a family
of pairwise orthogonal nonzero idempotents { f1, fa,..., fi} € C
and natural numbers ny, n,,...,n; such that fi+fo+...+f; =1
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and f;H E ©,, ¢ = 1,2,...,t. Thus f;H contains an f;C-
faithful abelian idempotent u; of rank n; over f;C. Clearly
E(u;) = f; and so both (i) and (ii) have been proved. Now
suppose E(u;) ¢ M. By Corollary 3.2.4 ¢p(u;) # 0. Set-
ting D = O(R) and D = ¢ (D), we recall that D is a prime
ring with extended centroid ¢ (C) and D C ¢ (H) C Q4(D).
Therefore ¢p(H) is a prime ring. Since @nr(u;) is a nonzero
idempotent, it follows that ¢ (u;)dar (H)dar(ws) = dnr(usHu;)
is a prime ring as well. Obviously a prime von Neumann regu-
lar ring all of whose idempotents are central is a division ring.
Therefore @pr(u;Hu;) is a division ring. By Corollary 2.3.12 the
center Z(par(u;)dar(H)dar(u;)) is equal to Char(u;) = dar(usC).
Consider the following decomposition of the C-module H:

H= u,-HuieB (1 - ui)Hu,- eBu,H(l — u,-) o) (1 - u,)H(l - u,-).

It follows that (PH) N (u;Hu;) = Pu;Hu; and so ker(¢p) N
(u;Hu;) = Pu;Hu;. Choose a basis z;,2,...,2, of the C-
module u; Hu;, where n = n;. Then Pu;Hu; = @} PCz; and so
dm(usHu;) = &%, Cohpr(z:). Therefore dimgy,, u.c)(dar (v Hus))
= n; and (iii) is proved. Finally it is an easy matter to see that
e = u;+ U+ ...+ is a faithful abelian idempotent over C (in
fact eHe = @!_,u;Hu;) and that eHe is finitely generated over
C (the number of generators being < nyny...n;). The proof is
complete.

Corollary 6.3.10 Let R be a semiprime ring with extended cen-
troid C, B = B(C), Q@ = Qmr(R) and D = O(R) the orthogonal
completion of R and H = O(RC). Then the following conditions
are equivalent:

(i) R has a strict GPI ¢ € Qc<X>;

(1) The orthogonal completion O(RC) contains a faithful
abelian idempotent e such that eHe is finitely generated over C;

(iti) For all P € Spec(B) the ring ¢p(D) is GPI;
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(iv) For all P € Spec(B) the ring ¢p(H) is primitive with
nonzero socle and the associated division ring is o finite dimen-
stonal over its center;

(v) For all P € Spec(B) the ring ¢p(Q) is primitive with
nonzero socle and the associated division ring is a finite dimen-
stonal over its center.

Proof. The implication (i) = (iii) is an immediate con-
sequence of Lemma 6.3.7(i). Since the proof of Theorem 6.3.9
only rested on the assumption that each ¢p(H) was GPI, it
follows that (iii) implies (ii). The equivalence of (iii), (iv) and
(v) follows from Corollary 6.1.7. Now we proceed to prove that

(ii) = (i). Let eO(RC)e be an n-generated C-module. It is
clear that

Stnri1(ezie, ..., eTpi1€) = Z €(0)exq(1)e - - . eTg(ntr)e
0€Sn+1

is a GPI on R. Since

Op(Stasi(ezre, ..., exnt1€))

= Stay1(dr(e)z10p(€), ..., Pp(€)Tny19p(e)) # 0

for all P € Spec(B), Stny1(ezxie, ..., exnq1€) is strict.

Theorem 6.3.11 Let R be a semiprime ring with extended cen-
troid C and Q = Q- (R). Suppose that ¢ € Qc<X> is a strict
GPI on R. Then:
(i) R is right and left nonsingular (i.e, Z,(R) = 0 = Z;(R));
(i) Q is a right selfinjective von Neumann regular ring with
a faithful abelian idempotent e such that eQe is a finitely gener-
ated C-module.

Proof. (i) Since O(RC) C Q,(R), it is enough to show that
the orthogonal completion H of the central closure A = RC is
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right and left nonsingular (see Corollary 3.1.15, Lemma 2.1.13).
According to Corollary 6.3.10, ¢p(H) is a primitive ring with
nonzero socle for any maximal ideal P of B = B(C). By The-
orem 4.3.7(iv) the socle of a primitive ring belongs to any es-
sential left (right) ideal. Hence Z;(¢p(H)) = 0 = Z.(¢p(H)).
Then by Corollary 3.2.13

¢p(Zi(H)) = 0 = ¢p(Z,(H))

for all P € Spec(B). It follows from Corollary 3.2.4 that H is
left and right nonsingular.

(ii) First of all we note that @ is a centrally closed orthogo-
nally complete ring by Theorem 2.1.11 and Proposition 3.1.10.
According to Corollary 6.3.10, ¢p(Q) is a primitive ring with
nonzero socle and the associated division ring is finite dimen-
sional over its center. Since Q,.-(Q) = @, it follows from Corol-
lary 6.3.10 (with @ instead of R) that @ has a faithful abelian
idempotent e such that eQe is a finitely generated C-module. In
view of (i) the other properties of @) are given by Theorem 2.1.15.
The proof is complete.

Our next aim is to show that Corollary 6.1.3 also holds for
semiprime rings. To this end the following lemma will be useful.

Lemma 6.3.12 Let R be a semiprime ring with extended cen-
troid C, @ = Qm:(R) and ¢(z) = T2, a2 € Qo< X >.
Suppose that Y12, Ca; = @ ,Ca; and E(a;) = E(b;) # 0 for all
1=1,2,...,m. Then ¢ is not a GPI on R.

Proof. Suppose that ¢ is a GPI on R. By Theorem 2.3.3
there exist elements u,,...,u,,v1,...,v, € R such that

a=Y ujaw;#0 but Y ujaw;=0 for i>1.

=1 =1
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Clearly 3°7_, u;¢(v;z) = axby is a GPI on R. Therefore aRRb; =
0 and so aFE(b) = 0 by Lemma 2.3.10. Then

0= aE(bl) = (Z Uj(lﬂ)j) bl = Z b1 a1 = a,
7j=1 7j=1

a contradiction.

Proposition 6.3.13 Let R be a semiprime ring with extended
centroid C and Q = Q- (R). Suppose that ¢(z) = Yz, a;zb; €
QRc<X> is a GPI on R. Then ¢ = 0.

Proof. Suppose that ¢ # 0. Taking into account Theo-
rem 2.3.9(iv), we can assume without loss of generality that

m
Z C’ai = EB?;lC’ai.

Replacing (if it is necessary) a; and b; by E(b;)a; and E(al)b we
can assume also that F(a;) = FE(b;) for alli =1,2,...,m (see
Theorem 2.3.9(ii)). The conditions of Lemma 6. 3.12 are now
fulfilled, and by Lemma 6.3.12 a contradiction is reached.

Now we proceed to prove the analogs of the results of Sec-
tion 6.2 for semiprime rings. We start with the following

Corollary 6.3.14 Let R be a prime ring with extended centroid
C and Q = Qm-(R), let U be an additive subgroup of R which
isnot GPI, and firx € X. Let T; = {¢s;(z) | 1 =1,2,...,m},
1= 1,2,...,m, be m given subsets of Qc<X > each of which
is C-independent. Then there exists u € U such that for each
i=1,2,...,m the subset T;(u) = {¢;;(v) | 7=1,2,...,n} CQ
s C-independent.
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Proof. Exactly the same proof as that of Lemma 6.1.8 can
be used, with ¢, now replaced by Q..

Our next goal is to prove the analogue of Theorem 6.2.3 for
semiprime rings. Let R be a semiprime ring with a (fixed) anti-
automorphism g and @ = Q.- (R). The notions of g-substitution
and g-identity ¢ € Qc<X> for semiprime rings are defined anal-
ogously to that of prime ring.

Lemma 6.3.15 Let R be a prime ring with extended centroid

C and Q = Qmr(R). Suppose that g is an antiautomorphism of
R and

0 75 (]5(11,‘) = Z a;zh; + Z CjCL‘ydj € Q<X U X9>

i=1 j=1

be such that dim¢(¢(1)C) < oo for some 0 # I < R. Then R is
GPI (in particular if ¢ is a g-identity on I then R is GPI).

Proof. Suppose that R is not GPI and n = 0. With-
out loss of generality we can assume that ay,as,...,a, are C-
independent. Multiplying by a suitable element r from the right
we can assume also that b; € R. By Remark 6.3.1 there exist an
element 7 € R such that a7, ayr',..., a7’ are C-independent
elements of R. Hence ¢'(z) = ¢(r'z) # 0. Since ¢'(I)C =
d(r'I)C C ¢(I)C, we conclude that dimg(¢'(1)C) < oo and
so by Lemma 6.1.2 and Lemma 6.1.4 R is GPI, a contradic-

tion. 'The general case is considered analogously to that of
Lemma 6.2.1.

Now the proof of Theorem 6.2.3 yields the following
Corollary 6.3.16 Let R be a prime ring with an antiautomor-

phism g and extended centroid C, Q = Qms(R) and let 0 # ¢ €
Qe<X U X9> be a g-identity on 0 # I <« R. Then R is GPI.
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Lemma 6.3.17 Let R be a semiprime ring with an antiauto-
morphism g and extended centroid C, Q = Qm-(R) and let

0£d=0d1,...,ZTn,2i,...,28) € Q<X U X>

be a g-identity of R. Then there exists an ideal I of R such
that ¢(x1, ..., T, Y1y---,Yn) 8 a GPI on I and 9 = e for all
e2=eec(1-E())C.

Proof. First of all we recall that by Proposition 2.5.4 ¢g can
be uniquely extended to an antiautomorphism of @Q; = Q,(R).
Clearly CY9 = C. By Zorn’s Lemma there exists an ideal I of R
maximal with respect to the property that

&(z1,- -y TnyY1y---,Yn) isaGPIon I.

Suppose that u9 # u for some u2 = u € (1 - E(I))C. Ifuud™ =
u = yu9, then
ud = (uu-"_l)g = vwu = u,

a contradiction. Therefore either u # u%u, or u # u9 . In the
first case we set v = u(1—u9) and w = w9 (1 —u), otherwise we
let v =u (1 - u-"_l) and w = ud”’ (1 - u-"_z). Clearly w9 = v
and vw = 0. Hence 0 = (vw)? = v9v and

vw =0 =% (6.3)

Let J=v(v : R)gr and K = w(w : R)g. Since v =w9, J = K¢
as well. Obviously

Y = d(vxy + W2y, - .., VITn + Wag, VIT] + 027, ..., 092 4+ v2])

vanishes under all substitutions z; — m, € J, z; — s; € K,
i=1,2,...,n. We now infer from (6.3) that

v = vh(Zy, ..., Tn, 25, ..., 23).
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Recall that vr = r for all # € J and J9 = K. Pick any
71,79, -+, Tn,S1,82,--.,8, € J. By the above results 1 van-
ishes under the substitution z; — r;, z; — sf_l, 1=1,2,...,n.
Therefore ¢(z1,-..,Zn, Y1, ---,Yn) isa GPI on J. Recalling that
J=uv( : R)g and v € (1 - E(I))C, we note that E(I)J =0
and so JQJ = 0. Therefore I + J =1& J. Since IQJ =0,

¢(a1+b17'--,an+bnacl+d11"')c‘n.+dn)
:¢(a1,"',an,cl)-'-,cn)+¢(b11"'1bn,d11"'5dn) =0

for all a;,¢; € I, dj,b; € J, 1 < ¢ < n. It follows that
é(Z1,- -, Zn,Y1,---,Yn) is @ GPI on I + J in contradiction to
the choice of J. Thus w9 = u for all u € (1 — E(J))C and the
proof is complete.

Theorem 6.3.18 Let R be a semiprime ring with an antiauto-
morphism g and extended centroid C, Q = Qmr(R), Qs = Qs(R)
and let

0# ¢=od(z1,...,Zn,28,...,23) € Qc<X U X9>

be a strict g-identity of R. Then the ring R has e strict GPI

Proof. By Corollary 6.3.10 it is enough to show that ¢p(Q)
is a primitive ring with nonzero socle and an associated division
ring is finite dimensional over its center for all P € Spec(B)
where B = B(C). Let an ideal I of R be as in Lemma 6.3.17.
Clearly O(I) is an ideal of D = O(R) and

¢=¢(x1,---,xn,yl,---,yn)

is a GPI on O(I) (see Remark 3.1.8 and Remark 3.1.9). We
also note that r¢(¥) = re(¢) = 0, rc(O(I)) = re(I) and so
E(O(I)) = E(I). Weset v=(1—E(I)) and J = v(v : R)s.
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Since (v : R)g is a dense ideal, 7¢(J) = r¢(v) = E(I)C and so
E(J) =v. Let P € Spec(B). Then either E(I) ¢ P or v &€ P.
Suppose that E(I) € P. Then by Corollary 3.2.4 ¢p(O(1)) is a
nonzero ideal with a nonzero GPI on a prime ring ¢(D) and so
#p(Q) has the desired properties (see Corollary 6.1.7). Consider
now the case when v & P. Since v = E(J) = E(O(J)), we con-
clude that ¢p(O(J)) # 0. According to Lemma 6.3.17, u? = u
for all u € vC. We infer from Remark 3.1.8, Remark 3.1.9 and
Remark 3.1.16 that ¢ is a g-identity of O(J). Further P =
(1—v)B+PnNuB and so P¢ = P. Hence g induces an antiauto-
morphism h of ¢p(D). We set @ = ¢p(Q) and C = ¢»(C). Con-
sider the canonical extension ®p : Qc<XUX9>— Q<X UXh>
of ¢p. Clearly ®p(¢) is an h-identity on 0 # ¢p(O(J)) < ¢(D).
By Lemma 6.3.15 ¢p(D) is GPI and so by Corollary 6.1.7 the
ring @ has the desired properties. The proof is complete.

Remark 6.3.19 Let R be a semiprime r1ing with extended cen-
trotd C and Q = Q- (R). Further let K be a submodule of Qg.
Then E(K) = E(KNR) and rp(K) = rp(K N R) = rp(E(K)).

Proof. We set L = KN R. Let Lc = 0 for some ¢ € C.
Pick any ¢ € K and set ] = (¢ : R)gr. We note that I is a
dense right ideal of R and qI C L. Hence 0 = ¢/c = (¢c¢)I and
so g¢ = 0 by Proposition 2.1.7. It follows that ro(L) = re(K)
which implies F(K) = E(L).

It follows from Lemma 2.3.10 that for any submodule U C
@r and element » € R the relation Ur = 0 is equivalent to
E(U)r = 0. Applying what we just proved, we infer that
rr(K) =rr(K NR).

We close this section with the following useful result (here
we call a ring R a PI-ring if it has a polynomial identity with
integral coeflicients at least one of which equals 1).
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Theorem 6.3.20 Let R be a semiprime ring with extended cen-
troid C and Q = Qm-(R). Then the following conditions are
equivalent:

(i) R has a strict GPI belonging to Qc<X>;

(ii) R contains a right (left) ideal L such that rr(L) = 0
(Ir(L) =0) and L is a PI-ring;

(iii) Any right (left) ideal K of R contains a right (left)
ideal N such that Tr(K) = mr(N) (Ip(K) = r(N)) and N is a
PI-ring.

Proof. (i) = (ii) We set A= RC C Q and H = O(A). By
Theorem 6.3.9(iv) H contains a faithful abelian idempotent v
(hence E(v) = 1) such that vHv is an n-generated C-module for
some natural number n. Then ST,,1(v; X) is a strict GPI on
H. Since H C Q,(R), it is enough to prove only the "right” ver-
sion of (ii) and (iii) (see Proposition 3.1.10). We set L = vHNR
and claim that L is a PI-ring and rx(L) = 0. Indeed, since
vz = g for all z € L, St,y1(x1,...,Tny1)Tne2 i a polyno-
mial identity of L. Further by Remark 6.3.19 rg(L) = rg(vH).
Let r € rg(vH). Then vHr = 0 and so 7 = E(v)r = 0 by
Lemma 2.3.10.

(ii) = (iii) Let K be a nonzero right ideal of R and f =
f(z1,...,2Zm) a polynomial identity of L. Then O(K) and O(L)
are right ideals of the orthogonal completion O(R) of R. It fol-
lows from Remark 3.1.8 and Remark 3.1.9, that f is a polynomial
identity on O(L). By Proposition 3.1.11 there exist k € O(K),
I € O(L) such that E(k) = F(O(K)) and E(l) = E(O(L)).
According to Lemma 3.1.18 kO(R)! is an orthogonally complete
subset of O(R) and so there exists r € O(R) such that E(krl) =
E(kO(R)l) by Proposition 3.1.11. For all di,...,dny; € O(R)
we have ld;kr € O(L),1 <i<m+1, and so

flkrldy, kridy, ... krldy)krldn, . =
krf(ldikr,ldokr, . .. ldnkr)ldy, = 0.



246 CHAPTER 6. RINGS WITH GPI

Therefore the ring krlO(R) satisfies the polynomial identity -
f(z1, .., Zn)Tnt1. Setting N = (krlO(R)) N K, we claim that
TrR(N) = rr(K). Indeed, let N7 = 0 for some a € R. Since N is
a right ideal, we have NRa = 0. By Lemma 2.3.10 we have that
E(a)N = 0. Suppose that E(a)krl # 0. By Proposition 3.1.14
k = ¥ ycv kyv where V is a dense orthogonal subset of B = B(C)
and k, € K for all v € V. Then k,(E(a)rl) = v(E(a)krl) £ 0
for some v € V (see Theorem 2.3.9(i)). Since I = (rl : R)g
is a dense right ideal of R, E(a)k,rll = ky(E(a)rl)] # 0. On
the other hand k,rII C N and so E(a)k,rlI = 0, a contradic-
tion. Therefore E(a)krl = 0. By the choice of r we then have
E(a)kO(R)! = 0 and hence E(a)kE(l) = 0 by Lemma 2.3.10.
By the choice of [ we have E(l) = E(L). Since rg(L) = 0 and
L(1 - E(L))(E(L) : R)gp =0, it follows that F(L) = 1 and so
E(a)k = 0. By the choice of k we then have that KFE(a) = 0
and hence Ka = 0 by Lemma, 2.3.10 which proves our claim.

(iii) = (i) Taking K = R, we conclude that there exists a
right ideal L of R such that rg(L) = 0 and L is a PI-ring. Let
f = f(z1,...,zy) be a polynomial identity of L and let | € O(L)
be as above. Without loss of generality we can assume that f is
multilinear and the monomial 125 ...%,, is involved in f with
the coefficient 1. We claim that ¢ = f(lz1,lza, ..., l2n) T mer 18
a strict GPI on O(R). Indeed, clearly ¢ is a GPI on R. Setting
e =1—-F(L) and I = (e : R)g, we see that 0 = Lel and
el C R. Hence el =0 and E(L) = E(l) = 1. Suppose c¢ =0
for some ¢ € C. Then clz,lz,...lzmy; = 0. Recall that the
C-module Qz1Qzx; . .. QTm41@ is isomorphic to the (m+ 2)-fold
tensor product QR¢cQ .. . Q¢ via the mapping given by the rule
AQiT1G2 - - - Tm+19m+1 > (1 QG2 ® ... @ g2 and its consequences.
Since Cl = C, Cl is an injective C-module and so C! is a direct
summand of the C-module Q. Therefore the C-submodule C(I®
l®...®1®1) is isomorphic to C ®c C ®¢ ... ®c C = C and
hence r¢(lz1lzy . .. lzmy1) = 0. The proof is complete.

Semiprime rings with GPI were investigated by K. I. Beidar
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in [21], [22], [24] and [27] where Theorem 6.3.8, Theorem 6.3.11
and Proposition 6.3.13 were proved. The proofs presented here
are new. Besides the method of orthogonal completions, we
have used here some ideas from [81]. The prime ring case of
Theorem 6.3.20 was proved in S. K. Jain [135] and extended to
semiprime rings in [27].

6.4 Lifting of GPI’s

Our aim in this section is to prove the following theorem.

Theorem 6.4.1 Let R be a semiprime ring with extended cen-
troid C and Q = Qmr(R). Then any GPI ¢ = ¥(zy,...,2,) €
Qc<X> on R is a GPI on Q.

We start with the following useful

Proposition 6.4.2 Let R be a prime ring with ertended cen-
troid C and Q = Qm-(R). Suppose that 0 # ¢ € Qc<X > 1is
a GPI on 0 # K< R and |C| < oco. Then R is a primitive
ring with nonzero socle and a nonzero idempotent e such that
eRe =eC.

Proof. Obviously I = (Neec(c : R)g)NK is a nonzero ideal
of R and IC = I. Recalling that Q. (I) = @, we conclude that
C is the extended centroid of I and so I is centrally closed (see
Lemma 2.1.9). Since ¢ is a nonzero GPI on I, we infer from
Corollary 6.3.3 that I = IC has a nonzero idempotent e such
that ele is a finite dimensional division C-algebra. Therefore
ele is a finite division ring. By Wedderburn’s theorem on finite
division rings ele is a field (see Theorem 4.2.3). According to
Corollary 2.3.12; the center Z(ele) is equal to eC and so ele =
eC. Since I is an ideal of R and e € I, ele C eRe = e(eRe)e C
ele and so eRe = ele = eC. Applying Proposition 4.3.3, we
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conclude that R is a primitive ring with nonzero socle. The
proof is thereby complete.

Let R be a prime ring with extended centroid C and @ =
Qmr(R). We fix a C-basis A containing 1 and consider the
corresponding monomial basis M (A) of Qc<X> determined by
A. Any element ¢ € Qc<X> may be written ¢ = >y ayM €
Qc<XUX9>, where M € M(A) and 0 # ap € C. We refer the
reader to the linearization process described in section 6.1 and
section 6.2, in which various notions of degree, g-degree, height,
g-height, and homogeneity are defined. Here we recall that ¢ is
multilinear if and only if it is homogeneous of zero height.

Lemma 6.4.3 Let R be a prime ring with extended centroid C
and Q = Qumr(R). Suppose that

0 :I'é QS = ¢($1>$27---,$n) S QC<X>

isa GPI on 0%# K <aR. Then ¢ is a GPI on the socle Soc(A)
of A= RC.

Proof. By Corollary 6.3.3 A is primitive with Soc(A) # 0.
Replacing (if it is necessary) K by K N Soc(A), we can suppose
that K C Soc(A). It follows from Theorem 4.3.7(iv) that KC =
Soc(A). In a view of Proposition 6.4.2 without loss of generality
we can assume that |C| = co. Let ¢ = Yy amM where M €
M(A) and 0 # ay € C. Further let deg, (¢) = m. For every
0 < k< m we set

O = §{OZMM | deg,, (M) = k}.

Pick m + 1 distinct elements ¢y, ¢y, ..., cmy1 € C. Clearly there
exists a nonzero ideal I C K of R such that ¢,/ C R for all
t=12,....m+1 Foranyl1 <t <m+1,r € I and
To,T3,...,Tn € K we have

m
0= QS(CtTI)T?, LR ,Tn) = Z cicqsk(/rl)/r% v ,Tn)'
k=0
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Using a Vandermonde determinant argument, we conclude that
ér(r1,79,...,7n) =0 for all k = 0,1,...,m. Continuing in this
fashion we find a nonzero ideal J of R such that all homogeneous
components ¢, of ¢ are GPI’s on J. It is enough to show that
every ¢, is an identity on Soc(A). Therefore without loss of
generality we can assume that ¢ is 7-homogeneous where 7 =
(kv kay oy kn).

We proceed by induction on ht(¢). If ht(¢) = 0, then ¢ is
multilinear and so ¢ is an identity on JC. Further, JC is an
ideal of A. By Theorem 4.3.7 Soc(A) C JC (in fact Soc(A) =
JC) and hence ¢ is an identity on Soc(A). Suppose now that
ht(¢) = m and our statement is proved for GPI’s of height
less then m. Notationally suppressing all variables in ¢ other
than = € {z1,z2,...,2.} (where ht;(¢) > 0) and picking a new
variable y € X which does not appear in ¢ we form the element

V(z,y) = d(z +y) — d(z) — o(y)

and note the following properties of :

htz(¥) < deg,(¢) — 1 = hty(4);
ht(1) < ht(¢);
¥ isa GPI on J.

By the induction assumption every homogeneous component of
1 (and hence 1 itself) is a GPI on Soc(A). Therefore

0=1(r,s) =¢(r+s)— ¢(r) — ¢(s)

for all 7,5 € Soc(A) and so ¢ is additive in every variable z; on
Soc(A). Let

a; =Y cijry; € Soc(A) C JC
J
where ¢;; € C, 75 € J. Then we have

#lay,...,a,) = . Z c’f;-l . .cﬁ}nqﬁ(rljl, ey Thga) =0
J1seedn
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and hence ¢ is an identity on Soc(A). The proof is complete.

Theorem 6.4.4 Let R be a prime ring with extended centroid
C and Q = Qmr(R). Suppose that

0+# ¢ =d(x,Z9,...,%,) € Qc<X>
18 a GPI on0# K< R. Then ¢ is a GPI on Q.

Proof. Letting A denote the central closure RC of R, we
infer from Corollary 6.3.3 and Lemma 6.4.3 that Soc(A) # 0
and ¢ is an identity on Soc(A). Pick a nonzero idempotent
e € Soc(A) such that Ae is a minimal left ideal of A. By The-
orem 4.3.7 Q = End(Aea) where A = eAe is a division ring.
Furthermore

QSoc(A) = QAeA = AeA = Soc(Q).

Suppose that ¢ is not a GPI on Q. Then there exist elements
G1,G2, - -,qn € Q and a € Ae such that

¢(q1,92,- - -, n)a # 0. (6.4)

Let m = deg(#) + 2 and ¢ = 3y aps M where M € M(A) and
0 # aypr € C. Denote by T the set of all coefficients appearing
in ¢ and set T" =T'U{qy,...,qn}. Further let T be the set of
all m-fold products of elements from T". Obviously 7", T" and
T all are finite. By Litoff’s theorem there exists an idempotent
v € Soc(A) such that vta = ta for all t € T. Consider now any
monomial

M = a;,x5,0i, - .. 75,04,

appearing in ¢ where 0 # a;, € Q, z;, € X. We claim that

a'zov(blv R qurva’irqu-i—l vt q]ka'zka’ =

Qiojy - - - §jp By @y - - - Qg Bif O (6.5)
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forall r =1,2,...,k. Indeed, letting
tl =airqu+l...qjkaik and tz =ert1,
we note that vtia = tya and vtaa = tya by the choice of v. Hence

a;,Vq; V... V45 V0;.Qj. 4y - - - 45,0, @ =

Qiyqj, - - - VG5, V@i, G5, Gy - - - 45, G4 G

which proves our claim. Since vg;v € Soc(A) and ¢ is an identity
on Soc(A), it follows from (6.5) that

(q1,92, - .., gn)a = d(vqv, Vg2, . .., Vgav)a = 0,

a contradiction to (6.4). The proof is thereby complete.

Proof of Theorem 6.4.1. Let ¢1,q2,...,¢, € . We set
g = ¥(q1,..-,qn) and B = B(C). It is enough to prove that
#p(gq) = 0 for all P € Spec(B) where ¢p : Q — Q = Q/PQ is
the canonical projection of rings (see Corollary 3.2.4). We set

D =O0(R), D=¢p(D) and C = ¢p(C).

Letting ®p denote the canonical extension of'qbp to a homomor-
phism Q¢ <X >— Qz<X>, we note that if 1) = ®p(p) = 0,
then

¢p(q) =9%(dp(ar), ..., 4p(gn)) =0

as well. If ¥ # 0, then it is a nonzero GPI on D by Corol-
lary 6.3.6 and by Theorem 6.4.4 we have

¢p(q) =¥(dpr(q1), .-, dp(gn)) = 0.

Thus ¢p(g) = 0 for all P € Spec(B) and the proof is thereby
complete.

Now we proceed to prove the analogous result for g-identities
of a semiprime ring where g is an antiautomorphism. Let R be a
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semiprime ring with extended centroid C and a fixed antiauto-
morphism g. We set Q = Qur(R) and Qs = Q;s(R). The notions
of g-substitution, g-identity ¢ € Q<X U X9> and g-degree are
introduced analogously to that of prime rings (see section 6.2)
and we leave the straightforward details for the reader. Let

¢:¢(m1,...,xn,m‘1’,...,m§l)=ZaMM€QC<XUXg>
M
where M € M(A) and O0#ay €C

be a g-polynomial, 7 = (my,...,m,) and ¢ = (my,...,Mma)
sequences of natural numbers. We set

¢r = Z{QMM | g-degzi(M) =m; forall 1<12< n};
by = Z{aMM | deg,. (M) = m,, degmg(M) = Mpys
forall 1<i<n}.

We will call ¢, a g-homogeneous component of ¢ . Clearly ¢,
is a homogeneous component of ¢. Here we note that ¢ is g-
multilinear if and only if it is g-homogeneous of zero g-height.

Lemma 6.4.5 Let R be a prime ring with extended centroid C,
an anticutomorphism g and Q = Qm,(R). Suppose that

0#¢d=0dz1,...,Zn,28,...,78) € Qc<X U X>

15 a g-identity on 0 # K< R. Then ¢ is a g-identity on the socle
Soc(A) of A= RC.

Proof. First of all we note that g can be uniquely extended
to an antiautomorphism of the ring Q,(R) 2 A by Proposi-
tion 2.5.4 (which we again denote by g). Secondly replacing
(if it is necessary) K by K N Soc(A), we can suppose that
K C Soc(A). 1t follows from Theorem 4.3.7 that KC = Soc(A).
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Suppose now that

¢(T1,...,Tn,7“i],..- ) 0
forall ry,...,7 € Soc(A), Te41,...,7n €K

where ¢ > 0 is given. We claim that

¢(T1,...,Tn,7“i],--- T'Z,) =0

forall ry,...,7441 € Soc(A), Tiyay...,7n € K. (6.6)

We proceed by induction on g-ht(¢). If it is equal to 0, then
any monomial appearing in ¢ is g-multilinear. Substituting zero
instead of some variables (if it is necessary), we conclude that ¢
is a sum of g-multilinear identities on K. Therefore without loss
of generality we can assume that ¢ is g-multilinear. If g|¢ = id¢,
then ¢ is a g-identity on KC 2O Soc(R). Otherwise a9 # a for
some a € C. Clearly aJ C K for some nonzero ideal J C K of
R. Since ¢ is g-multilinear,

¢ = ¢(x1,...,20,28,...,2],20,0,...,29)

" g '
+¢"(Z1, - Tty T2, ooy Ty TS, -, TT).

Now for all b € J, r,...,7 € Soc(A) and r4,9,...,7, € K we
have

0 = ¢(r, .., 16,0, m42, o Ty, 1 0y, 1Y)
+¢" (11, T Ty Taa T T B T TY);

0 = ad'(ri,o ., 1,0, Tep2, ooy Ty 1Y, 1 Ty, TE)
+a9¢" (11, .. T Ty Taa T, T 0 T 1Y),

Since af # a, we conclude that

/ 9 9.9 _
qS(rl,...,rt,b,ng,...,rn,rl,...,rt,rt+2,...,rg) = 0 and

7" 9 g g9 —
¢ (rl,...,rt,rt+2,...,rn,rl,...,rt,bg,rt+2...,r§) = 0.
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Consider now

! — & g g
)
1/)(:1:) (b(rl ...,Tt,$,Tt+2,...,Tn,Tl,...,Tn)

and

1/)”(y) = ¢"(T1) o 'arnari]a .. .,Tg,y,Tg_,_z, o -)T}ql)'

By the above result they are generalized polynomial identities
on J and J9 ' respectively. According to corollary 6.1.3, we
have 7' = 0 = ¢"". Therefore our claim is true for g-identities of
zero g-height.

Suppose now that our claim is proved for g-identities of g-

height less then g-ht(¢). Assume ¢(ry,..., 7m0, 7{,...,73) #0 for
some Ty,...,741 € Soc(A), Ti4g,...,7 € K. We set
Y2, 39) = D(Pey oo oy Ty Ty Ted2y ooy Ty Ty oo oy T8, 29,700, ooy 7).

Clearly 1 is a nonzero g-identity on K and g-ht(y)) < g-ht(e).
Let g-deg,(¢) = m and ¥ = Y amM where M € M(A),
0# apy € C. Forevery 0 < k,l <m withk+1 < m we set

Y = ) {amM | deg, (M) =k and deg,(M)=1}
Il = K1) [ ¢ # 0}

Since Y (ri41,741) = O(r1,.. ., Ty, ..., 78) # 0, 4 is not a g-
identity on Soc(A). Consider the set 7T of all nonzero g-identities
7(z,29) on 0 # J, <R having the properties 7 is not a g-identity
on Soc(A) and g-ht(r) < g-ht(¢). Clearly ¢ € T and so T # 0.
Pick 7 € T with a minimal possible value of ||7]. Without
loss of generality we can assume that N = J, C Soc(A4). Pick
any pair of natural numbers s,t¢ such that 75, # 0. Let ¢ € C.
Clearly ¢L C N for some nonzero ideal L C N of R. Then for
all b € L we have

0 = ZTkl(b,bg),

0 = ZC Tklbbg)
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Setting
Blw,z%) =3 (¢ () = ¢ ()") Thulz, o),

kl

we conclude that § is a g-identity on L and ||8|| < ||7]|. Hence
B is a g-identity on Soc(A). In particular B(a,a?) = 0 for all
a € N. Now it follows that

7(ca,cfa?) = % () (@, af)
¢ ()} %Tkl(a, a?)

= ¢ ()" 7(a,a?) =0. (6.7)

We consider
x(z,y,2%,y%) = 7(x +y, 27 + v*) — 7(2,2°) — 7(y,97)-
Clearly x is a g-identity on N and
g-ht(x) < g-ht(1) < g-ht(9).

By induction assumption we then have that x is a g-identity on
Soc(A). Therefore

0=x(r,s,719,8) =7(r+s,77+8%) —7(r,79) — 7(s, s9)
for all r, s € Soc(A). Let
a=Y_ ¢rj € Soc(A) = NC
J

where ¢; € C, r; € N. Then by (6.7) we have
7(a,0%) = 7(¢jrj,cird) =0
J
and hence 7 is an identity on Soc(A), a contradiction. The claim

is thereby proved. From (6.6) it follows immediately that ¢ is a
g-identity on Soc(A). The proof is complete.
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Theorem 6.4.6 Let R be a prime ring with extended centroid
C, an antiautomorphism g and Q = Qm,(R). Suppose that

0#£d=0dx1,-. ) Tn, 25,...,29) € Qe<X U X9>

is a g-identity on 0 # K 9 R. Then ¢ is a g-identity of Qs =
Qs(R).

Proof. As we know ¢ can be uniquely extended to an an-
tiautomorphism of the ring Q;(R) by Proposition 2.5.4 and we
denote the extension again by g. Letting A denote the central
closure RC of R, we infer from Corollary 6.3.3 and Lemma 6.4.5
that Soc(A) # 0 and ¢ is a g-identity on Soc(A). Pick a nonzero
idempotent e € Soc(A) such that Ae is a minimal left ideal of
A. According to Theorem 4.3.7 Q = End(Aea), where A = eAe
is a division ring, and

QSoc(A) = QAeA = AeA = Soc(Q).

Suppose that ¢ is not an identity on Qy. Then there exist ele-
ments ¢i,qs,...,¢, € Qs and a € Ae such that

¢(41,---,Qn,Qf,-- ')q'z,)a’ # 0. (68)

We set m = g-deg(d) + 2. Let ¢ = Y5y apr M where M € M(A)
and 0 # ap € C. Denote by T' the set of all coefficients ap-
pearing in ¢ and set 7" = T' U {q1,...,4n,45,.-.,4%}. Fur-
ther let T' be the set of all m-fold products of elements from
T". Obviously 7", T" and T all are finite. By Litoff’s theorem
there exists an idempotent v € Soc(A) such that vta = ta and
(ta)y'v = (ta)?”" for all t € T. Applying g to the last equality
we infer that v9ta = ta for all £ € T. Hence

vta =ta =vIta forall teT.

At this point we note that the rest of proof is analogous to that
of Theorem 6.4.4. In particular, making use of Lemma 6.4.5, we
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infer that

¢(Q1’ e )le)a = ¢(UQ1U) AR qu'g,vg)a = Oa

a contradiction. The proof is thereby complete.

Theorem 6.4.7 Let R be a semiprime ring with extended cen-
troid C, an antiautomorphism g and Q = Qu-(R). Then any
g-identity

=T, T, 25, .., 28) € Q<X U XI>
is a g-identity of Q; = Qs(R).

Proof. The proof is similar to that of Theorem 6.4.1. Pick
q1,92,---,qx € Qs and set ¢ = ¥(q1,...,Gn,q7,...,¢3). It is
enough to prove that ¢ = 0. By Lemma 6.3.17 there exists an
ideal I of R such that ¢ = ¥(z1,...,Zn,y1,-..,Yn) is a GPI on
I'and e = e for all e? = ¢ € (1 — E(I))C. By Theorem 6.4.1
E(I)¢ is a GPI on Q. (I) = E(I)Q. In particular E(I)g = 0.
We set e =1— E(I) and J = e(e : R)g. It is enough to prove
eq = 0. Clearly Q,(J) = eQ; and

eq = Yleq, ..., eq, (€q1)?, ..., (eq)?).

Hence without loss of generality we can assume that I =0,e =1
and v9 = v for allv?=v € C.

It is enough to prove that ¢p(g) = 0 for all P € Spec(B)
where B = B(C) and ¢p : Q@ = Q = Q/PQ is the canonical
projection of rings (see Corollary 3.2.4). Since P¢ = P, g induces
an antiautomorphism of Q,/PQ; which we denote again by g for
simplicity. We set

D= O(R)’ D= ¢P(D)) @ = d’P(Qs) and C= ¢P(C)

Letting ®p denote the canoniﬁal extension of ¢p to a homo-
morphism Q¢ <X U X9>— Q<X U X9>, we note that if
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% = ®p(h) = 0, then ¢p(q) = 0 as well. If 1) # 0, then it is
a nonzero g-identity of D as it was shown in the proof of The-
orem 6.3.18. In the last case ¥ is a g-identity of Q,(D) D @,
by Theorem 6.4.6 and so ¢p(q) = 0. Thus ¢p(q) = 0 for all
P € Spec(B) which completes the proof.

In [209] W. S. Martindale proved that every multilinear poly-
nomial identity of a semiprime ring is an identity of its maximal
right ring of quotients. Theorem 6.4.1 is a generalizarion of this
result and it was proved by K. I. Beidar in [24]. Since the original
proof used the existence of a central polynomial of a prime PI-
ring, we used here the proof given in [81] for the prime ring case.
The involution case of Theorem 6.4.7 was proved by K. 1. Bei-
dar, A. V. Mikhalev and K. Salavova in [37] (see also [36)) and
here we used some ideas from their proof.

6.5 The T-ideal of GPI’s

The aim of this section is to describe the 7-ideal of generalized
polynomial identities of prime and semiprime rings. The results
we present are due to K.I.Beidar (except Proposition 6.5.5 which
is due to Littlewood [194]). Although there are considerable
technical and notational aspects as well as case-by-case argu-
ments involved in the proof, the end products are quite definitive
and simply stated. The main results for centrally closed prime
GPI rings (Theorem 6.5.7 and Theorem 6.5.12) show that the
T-ideal of all GPI’s has a single ”obvious” generator, and for
semiprime rings the finite generation of the T-ideal of all GPI’s
depends solely on the boundedness of the orders of the extended
centroids of the Pierce stalks.

Let R be a semiprime ring with extended centroid C, @ =
Qmr(R) and RC C H C Q a C-subalgebra. Consider the ring
A = Ho<X>. An endomorphism 7 : A — A is said to be
an H-endomorphism if h™ = h for all h € H C A. An ideal
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I of A is called a T-ideal if it is an ideal of A and I™ C I
for any H-endomorphism 7 : A — A. The last condition is
equivalent to the following one: f(g1,92,...,9n) € I for every
f(x1,72,.-.,2,) € I and all g1,¢0,...,9, € A (ie., I is closed
under all substitutions). Obviously the set of all GPI's on R
forms a T-ideal which we shall denote by G(H; R). We also
note that sums and intersections of 7-ideals are again 7 -ideals.
Given a subset L C Hs<X >, the intersection of all 7-ideals
of Hc<X > containing L is said to be the T-ideal of Ho<X >
generated by L. We shall denote it by 7 (H; L) or simply 7 (L)
when the context is clear. Here we note that 7 (L) is just the
ideal of A generated by all f(g1, go, ..., gn) Where f(z1,...,z,) €
Land ¢y,...,9, € A.

Now let R be a primitive centrally closed algebra over a field
C with minimal idempotent e such that eRe = eC. Given any
natural number g > 0 we set

ST(e; X) = exrexqe—exsexie, and Ly(e; X) = (ex e)!—ex;e.

Clearly ST>(e; X) is a GPI on R. Further if |C| = ¢q, then
L,(e; X) is a GPI on R as well.

The polynomial ring K = C[z, 23, ..., z,] will play an im-
portant role in the sequel. In particular in case ¢ = |C| < oo we
will need the following well-known result (Remark 6.5.1). For
any monomial M = zi'z¥ ...zt we set MP = zzl2 .. gl
where 0 < m; < ¢, t; = m;mod (¢ — 1) and m; = 0 if and only
ift; =0,7=1,2,...,n. Extending p by linearity to K — K,
we denote the resulting map again by p. A polynomial f € K
is said to be reduced if f? = f.

Remark 6.5.1 Let f € Clz1,2,...,2,] where ¢ = |C| < oo.
Then:

(i) f and f? determine the same functions on C™;
(i) f vanishes on C™ if and only if f* =0;
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Proof. The first statement easily follows from the obvious
fact that a? = a for all a € C.

Clearly it is enough to prove that a nonzero reduced poly-
nomial g determines a nonzero function on C™. We proceed by
induction on n. If n = 1, then deg(g) < ¢ — 1. Hence g has at
most ¢ — 1 roots in C' and so it determines a nonzero function
on C. Suppose now that our claim is proved for C[zy, ..., Z,_1]
and 0 # g € C[z1,...,Z,) is a reduced polynomial. We write
g=F Jhi(z1,...,2n_1)7} where k < ¢, h; € C[z1,- .., Tn_1],
1= 0,1,...,k and hx # 0. Clearly all h; are reduced polyno-
mials. Since hy # 0, by the induction assumption there exist
elements ¢y, ...,ca—1 € C such that hg(ci,...,cn-1) # 0. Then

k .
p(zn) = g(er, - oy Cno1,ZTn) = Zhi(cl, ey Cre1) T
: 1=0
is a nonzero reduced polynomial. Hence p(c,) # 0 for some
¢, € C and so g(ci, ..., ¢n) # 0. The proof is thereby complete.

The T-ideal of GPI’s on the ring of n X n matrices. In
this subsection we determine G(R; R) for R = M, (C) (Proposi-
tion 6.5.5), and in the course of doing so we introduce the flavor
of the arguments used in a more general situation.

Let C be a field, n > 0 a natural number and A = M, (C)
the ring of n X n-matrices over C. We fix a set A = {e;; | 1 <
i,7 < n} of matrix units of A. Clearly A is a basis of the C-
space A and it determines a monomial basis M(A) of Ac<X>
where X = {z,22,...,Zn,...} is a countable set. We note that
M(A) consists of all monomials of the form

M= €ioj1 Tk €41 j2aTky » - -y Tk Civpgmar s : (69)
where e;,_,;, € A, zx, € X. Setting

A={[5,4), i,k 3|1 <4,5<n, k>1},
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we form the polynomial ring C[A] over C. Define a linear map-
ping 7 : Ac<X>— C[A] by the rule

M™ = [ig, jm+1]ld1> k1, 41]ld2, k2, 82] - - - [Jm km, tm] € C[A]

and its consequences where M is as in (6.9).

We fix any linear order of A such that [z, j] < [r, &, 5] for all
1<14,5,7s <n, k>1and define a linear mapping n : C[A] —
Ac<X> as follows. If a monomial f € C[A] is representable in
the form '

[i01 jm+1][j1) kla il]nl s [Jma kma Zm]nm (610)

where [jt, kt, ’Lt] < [jt+1) kt+1, it+1] for all t = ]., 2, ooy m— ]_, then
we set

I = eig1(er, Th, €,1)™ (€15,Tk,€01)"™ - - - (€1n Thim €in1) "™ €Ljimss
Otherwise we set f7 = 0.
Lemma 6.5.2 Let
M = €y, Tk, €135 Tky - - » Tk Cimimes € Ac<X> .
Then:
(i) M — M™ € T(A; STy(eq; X))=I;
(i) If |C| = q < oo, then
M — M™" € T(A; STa(ern; X) + Ly(err; X)) = J.
Proof. (i) Let u(X),v(X) € Ac<X>. We claim that
€1;Uek1€17 Ve — €1,Veq 615Uk € T
for all 1 < j,k,7r,s < n. Define an A-endomorphism

¢ Ac<X>— Ac<X>
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by the rule

é(z1) = erju(X)err, ¢(22) = e, v(X)es,
$(xy) =z forall t>2.

Then

e1juex1e1,ves1 — erveg ejuers = P(STh(err; X)) € 1.

and our claim is proved. The statement (i) follows now directly
from the definitions of the mappings 7 and 7.

(ii) Letting L, = L,(e1; X) and setting z, = 0, we infer
that Ly € J. Clearly

(erju(X)er)? — (erju(X)er) € T(A; Ly) € J

and so
M™ — M™" ¢ T(A; Lg) C J.

Now we have
M-MP"=M-MT+ M- M""cJ

and the proof is thereby complete.

Corollary 6.5.3 Let h(X) € Ac<X>. Suppose that h(X)™ =
0. Then h(X) € T(A; STz(en; X)) =1.

Proof. Writing h(X) = ¥y amM where M € M(A) and
0 # ap € C, we note that

h(X) = h(X) —R(X)™ =3 o (M - M™) € I

by Lemma 6.5.2. The proof is complete.

Analogously one can prove the following
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Corollary 6.5.4 Let h(X) € Ac<X >. Suppose that |C| =
g < o0 and h(X)™ = 0. Then h(X) € T(A; STa(en1; X) +
Ly(en; X)).

Proposition 6.5.5 Let C be a field, n > 0 a natural number

and A = M, (C) the ring of n x n-matrices over the field C.

Suppose that h(zy,z3,...,%,) € Ac<X> is a GPI on A. Then:
(i) If |C| = oo or h(X) is multilinear, then

h(X) c T(A, ST2(€11; X)),
(i) If |C| = q < oo, then
h(X) S T(A, ST2(€11; X) + Lq(eu; X))

Proof. Clearly h(X) = X7, ei(e1ih(X)ej1)er; and all
e1;h(X)e;j; are GPIs. Hence without loss of generality we can
assume that e; h(X)enn = h(X). Let v : C[A] — C be any
homomorphism of C-algebras such that [1,1]7 = 1. We set

ak = Y e;ilj k,i]7 forall k=1,2,....

Ji=1
Then for any monomial

M(.’L‘l,.’l,‘g, AP ,.’1?,-) = €15, %k €i1jaLky + + + Thp, €iyp 1

we have
M(a1,ay,...,0,) = e M™.

Therefore
0= h(al, g, ... ,(1,,-) = euh(X)""

and h(X)™ = 0 for all v : C[A] = C. If |C| = oo or h(X) is
multilinear, then h(X)™ = 0. If |C| = ¢ < 00, then h(X)™ =0
by Remark 6.5.1. Applying Corollary 6.5.3 and Corollary 6.5.4,
we complete the proof.
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Lemma 6.5.6 Let C be a field, n > 0 a natural number and
A = M, (C) the ring of n x n-matrices over the field C. Then:

T(A, Stgn(.’El, ‘e ,.’172,-,,)) == T(A, STQ(GH; X))
Proof. We have

Ston(T1, ..., Ton) = Z 6(0’).750(1).’170(2) .+ Tg(2n)
0ESan

where Sy, is the symmetric group and ¢(o) is the sign of 0. Let-
ting h(z1,...,%9,) denote the polynomial in noncommutative
indeterminates

Z €(0)Za(1)To(2) - - - Ta(2n)
o(1) < o(2)
we note that A is not a polynomial identity of A because

h(eu,eu, €12, €22,€23,€33,- - -, 6n—1,n6nn) =e, #0.

Hence

p(z1, Z2) = Ston (1, T2, €12, €22, €23, - - -, En—1,n€nn) 7 0.

By Amitsur-Levitsky theorem Sto, is a polynomial identity of
A and so p(z1,z,) is a GPI (see Theorem 1.3.5). Clearly

9(z1,22) = ep(z1, z2)ej; # 0

for some 1 < i,5 < n. We write

n n

9= Z ﬂijk161i$16jk$2611— Z 5ijkze1k$261i$16j1
i)j)k|l=1 55kl=1
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where ik, 03,0 € C and pick 1 < 4,4, k,1 < n such that B #
0. Then

f($1,932) = g(€i1331€1-j,€k1932€11)

= 5ijkz€111‘1611932€11 - 5ijkz€11332€11331611-

Clearly f is a GPI. In particular f(e;;,e1;) = 0 and so Bijn =
5-,;_7'“. Therefore

STQ(CU; X) = ,Bi;ilf(l'l,lj) € T(A, Sth(fL'l, . .,,fL‘Qn))
and hence
T(A, Stzn(.’lfl, ces ,fL‘Qn)) 2 T(A, ST2(611; X))

The converse inclusion follows from Proposition 6.5.5.

The 7T-ideal of GPI’s on primitive algebras over a field.
In this rather lengthy subsection we determine G(R; R) for R
a centrally closed prime ring over C. If R is not GPI then
G(R; R) = 0 and nothing more needs to be said. Therefore we
may assume, in view of Theorem 6.1.6 and Theorem 4.3.7, that
there exists an idempotent w € R such that A = wRw is a
finite-dimensional division algebra over C' whose center is wC.

We begin by looking at the case where A 2 C, i.e. wRw =
Cw. First of all we show that any h € Rc<X> has a so-called
S-W -representation, which may then be used to develop a useful
connection with a polynomial ring C[A].

Let h(zy,%q,...,2x) € Rc<X >. Clearly h(X) is a sum
of monomials of the form a,zg aszk, . . . amZk,, Gm+1 Where 1 <
ki <k,a; € R, 1=1,2,....,m,j=12,...,m+1. Letting
Vi, denote the C-subspace of R generated by all coefficients of
h(X) together with 1 and w, we note that dim¢(V},) < co. We
note that V), depends upon the choice of monomials in the rep-
resentation of hA(X). By Litoff’s theorem it follows that there
exists an idempotent u € Soc(R) such that uvu = v for all
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v € VN Soc(R) and uRu = M,;(C) for some natural number
t. Since w € Vi N Soc(R), vwu = w as well. Recalling that
wRw = wC, we conclude that there exists a system of matrix
units W = {e;; | 1 < 4,5 < t} such that w = e;;. Clearly
u=-¢en+exn+...+eyand VN Soc(R) C ¥;; Ce;;. Choose
elements v; = 1,vs,...,Un, € V4 such that they form a basis of
Vi modulo V; N Soc(R). Obviously Vi C &2, Cu + L} ;) Cei;.
Setting S = {v1,vs, ..., Un}, we note that h(X) is representable
uniquely as a linear combination of monomials whose coefficients
belongs to the set S U W. We will refer to this representation
as an S-W-representation of h(X). Let h(X) = ¥ a;h;(X) be
the S-W-representation of h(X) where 0 # a; € C and h; = h;
if and only if ¢ = j. We consider monomials h; as elements of
the subsemigroup & of R <X > generated by SUW U X. A
submonomial (subword) g of h; is said to be W-free if it belongs
to the subsemigroup generated by SUX. Let H be the set of all
W -free subwords of all monomials h;. We consider the element 1
as a W-free submonomial of all monomials h;. Clearly |H| < oo.
Setting

A={lg), lg; 4], [5; 954, [5, 9] l g € H, 1 <4,5 < t},

we form the polynomial ring C[A] over C. We fix any linear
order < on A such that

l9; 1] < [a; ¢'; b] < [5; ¢"]

for all g,¢',¢" € H, 1 < 4,j,a,b < t. For any monomial h,
we have the following possibilities (the seemingly complicated
description is simply a rigorous way of insuring that no element
of S is ever adjacent to an e;;):

(1)h3=g€H;
(2) hy = gz,e;; forsome ge H, 1<r<k, 1<4j<t
(3) hy =eijzrg forsome ge H, 1<r<k, 1<4j<t
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(4) hs = gzrey ;49" for some g,g'€ H, 1<l <k,
1<4,5<%
(5) hs = Go€igj1 91€iyjs - - - GnCinjps1 Gn+1
where :
(a) either go=1 or go=ggzr, for some
GEH 1<r<k
(b) either g ==z, or g =gz,
for some g€ H, 1 <r;,l; <k,
where 1 <1< n;
(c) either gny1 =1 or gny1 =2, 0,y forsome
g1 €H, 1< <k

We define a polynomial AT € C[A], respectively, in the cases just
described:

Case 1 by = [g];

Case 2 hT = [gz,; i][5; 1];
Case 3 hj = [1; i|[j; z-g];
Case 4 hy = [gz; ][] .9'];
Case 5 hy = [go; @ol[j15 915 4] - [n; 9ns inlldnt1; Gnar]-
Further we put

W= a:hl.

Consider a monomial M € C[A] which is written in the following
form

P = [fo; bolc1; f1; bi]- .. [em; fm} bmllCma; fma1] € CIA]
where [c;; fi; 0] < [cig1; figr; bipa] forall 1 <4< m—1. We
set

P" = foeboe; fr€hico + - - fm€bpemy fma1 € Re<X>,
(lg: dl; 1) = geyy,
(L 1l5; g™ = ey,
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(lg; 9l 9D = gesd,
9" = g

By linearity we extend 7 to linear combinations of the mono-
mials just described. As in Lemma 6.5.2, Corollary 6.5.3 and
Corollary 6.5.4 one can prove that

hs — hY" € T(R; STh(w; X));
If |Cl|=g¢< o0, then
hs — BTP" € T(R; STy(w; X) + Ly(w; X));
If W™ =0, then A(X) € T(R; STr(w; X));
If |[Cl=¢g<oo0 and A™" =0,
then h e T(R; STa(w; X) + Ly(w; X)).

We let I = T(R; ST3(w; X)) if h is multilinear or |C| =
00, or I = T(R; STo(w; X) + Ly(w; X)) if |C] = ¢ < c0. We
therefore have the following sufficient condition for A to belong
to I:

h™ =0 (if h is multilinear or |C| = o0)
h™ =0 (if |C] = ¢ < 00) (6.11)

In view of Remark 6.5.1 (6.11) is equivalent to the single suffi-
cient condition:

h™ =0 for any C-algebra map v: C[A] —» C (6.12)

We are now in a position to prove the key result of this
subsection. '

Theorem 6.5.7 Let R be a primitive algebra with unity element
1 over a field C and let G(R; R) C Rc<X> be the T -ideal of
GPI’s on R. Assume that R contains a nonzero idempotent w
such that wRw = Cw. Then:
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(i) If a GPI h(X) € Rc<X> is multilinear, then h(X) €
T(R; STe(w; X));
(it) If |C| = oo, then

G(R; R) = T(R; STa(w; X));
(iii) If |C| = ¢ < o0, then
G(R; R) = T(R; STa(w; X) + Ly(w; X)).

Proof. We shall assume that h is written in an S-W-rep-
resentation and that linear maps 7 and 71 are as described near
the beginning of this section. We shall prove all the statements
of the theorem simultaneously. According to (6.12) it is suffices
to show that h™ = 0 for all C-algebra maps v : C[A] — C.
Unlike the simpler situation encountered in the proof of Propo-
sition 6.5.5 the increased generality in the present situation en-
tails a case-by-case series of technical arguments. We begin by
setting the stage using Amitsur’s Lemma.

We set

t
V=3 > Csej; C Rep
s€S j=1

and note that V' 2 ¥!_, Ce;; since 1 € S. By Lemma 4.2.8
there exist distinct elements y,; € Reyy, g € H, 0 < 4 < ¢,
such that the elements {sy,; | s € S, g € H, 0 < i < t} are C-
independent modulo the subspace V. In particular sy, ; = s'y,
if and only if (s; g;1) = (s'; ¢; 7).

Let v : C[A] — C[A] be a homomorphism of C-algebras. We
set

t
290 = Yg,0 — UYgo + Z[j; 9]761'1,
j=1

t
Zgi = Ygi— WYei+ .55 9; i]"esn
i=1
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wherege H,1<i<t. Lets€ S. Sinceu =ej;+ep+...+ey
and suRe;; C X5, Cse;; C V, we have sz,; = sy, (mod V)
and so the elements

{s205]5€8,0<i<t}U{es|1<j<t}

are C-independent. Since e;; Re;; = Cep; and Rey; is a faithful
irreducible left R-module, R is a dense subring of Endc(Re;;)
by the Jacobson Density Theorem. Hence there exist elements

G,Q1,0,...,0 € R
such that:

If z,sg€ H, then a,525; = 2z.543; (6.13)

are; = Zg, (6.14)
If sg¢ H and ¢2>1, then

aszy; = [sg; i|"en; (6.15)
If sge H, then asz o= [sg]"e; (6.16)
ae;; = [1; 1]eyy, (6.17)

where 1 < r <k, s € S, g€ H 1 <3<t Sinceu=
€11 + €20+ ...+ €y, elj(yg,i—uyg,i)=0and SO

€1j25; = €15 (yg,i — UYg,i + i;[j; 9; Z']"'61'1)
j=
= [j; g; "en (6.18)
forall 1 <j <tand g€ H. Analogously
e1529,0 = [J; 9]"en (6.19)
forall1 <j <tand ge H. We claim that

ahg(a1,a,...,a5)219 = hgen (6.20)
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for all monomials h, involved in h. Indeed, consider the following
five cases listed above.

Case 1. hy = g € H. Then it follows directly from (6.13)
and (6.16) that

ahg(a1,az,...,ak)z10 = [9]"en = [hy]"e11.

Case 2. hq = g%r€Ei;. Then €ij21,0 = [j;I]”e,-l by (619)
Further
ar[j; IP@,;I = [.7) i]’yz:n:r,i
by (6.14). Now from (6.13) and (6.15) we infer that

ahg(a1,az, - .., ak)210 = [92,;4]7[5; 1]"enr = [hy]"en.

Case 3. hy = e;jz,g. Then from (6.13) we conclude that
arg(ay,...,ak)2i0 = 25.40. Hence by (6.19) we have

€ijarg(ay, ..., ax)210 = €ij2z,90 = [J; Z+g]"€i1.
Applying (6.17) we obtain
ahg(a1, @z, ..., a)zi0 = [3; 2.9]"[1; 4] en = [hg]"er1.
Case 4. hq = gz,e;;z,9'. We already know that
eijalg'(al, ‘e ,ak)zi,o = [j; Ilg,]7eil-
Applying (6.14) we obtain that
aresjarg (a,. .., a)210 = [J; 219" 2, ;-
Now from (6.13) and (6.15) we infer that
ahg(ay, az, . .., ak)z10 = [J; 219']"[4; 92 en = [hq]"e11.
Case 5. hy = go€iyj, 91€i1j; -+ - In€injnp1Gns1- We set

= €ii91€i155 - - - InCinjnyrns1
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and note that b, = gof. If gny1 = 1, then
Cinjns121,0 = [Jnt15 1] €in1 = [Jnt1; Gnrr] €in1.
If gn41 = Tr,,,Gn41, then we already know from Case 3 that
einyjn+larn+lg‘:l+1(a'1’ CoyQE)21T = [jn+1;$rn+19;+1]7€in1
= [jn+1;9n+1]7€in1-
If g, = x,,_, then by (6.14) we have
Orp[Jn415 Gna1] €in1 = Unt1s Gnr1) 2o, in = (415 Gnt1]” 20, -
If g, = z,, g\, then we infer from (6.14) and (6.13) that
Oy 9 (01, - - -5 Ok )AL, [nr1; Gn1]"€in1 = [nats Int1) Zgn i
Therefore
ein—ljng‘n-(a'l) e ’a'k)einjn+1gn+l(a17 ooy Ok)

= [jn"}'l; gn+1]’yein—ljn Zgn Jin
= [jn+1; gn+1]’y [jn; On, in]’yein_l ,1

by (6.18). Repeated application of the above argument yields
that

f(a'la ag, .- -, ak)ZT,O = fﬂ76i0,1
and so
ahq(a11 sy ak)zi,(] = ag(](a'l’ e )a'k)f(a'lv s )ak)zi,o
= ago(al, caay ak)f”eio,l.

If go = 1, then by (6.17) we have
afen1 = [I;iO]A’f’”en = [go; %] fen = hZ,”eu-
If go = gy+r,, then from (6.14), (6.13) and (6.15) we infer that

ago(ar, -, ax) f™ e = [g0;%0]" f™ e = hy"eq
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and our claim is thereby established.
Now from (6.20) it follows that

— N X ¢
0= ah(al, ey ak)zl,o =h 7611

and so h™ = 0 for all C-algebra maps v : C[A] — C. The proof
is thereby complete.

If his a GPI on R, then the proof of the preceding theorem
shows that condition (6.11), or equivalently (6.12), is a neces-
sary and sufficient condition for an element h € Ro <X > to
belong to the 7T-ideal I. We proceed to draw further conclu-
sions. If a monomial h; appearing in i has a form described in
(1) - (4), then AT # h7 for any other monomial h; appearing
in the S-W-representation of h(X). From this we conclude that
monomials of the form described in (1) — (4) do not appear in
h(X) and so any monomial appearing in the S-W-representation
of h(X) has at least two coefficients in W. If either h(X) is
multilinear or |C| = oo, then any monomial appearing in the S-
W-representation of h(X) has at least three coefficients in W.
Given a natural number s > 1 we let h(;) denote the sum of all
a;h; such that h; has exactly s — 1 coefficients in W. We note
that Ay is exactly the s-homogeneous component of the poly-
nomial A". Clearly a polynomial is equal to zero if and only if
all its homogeneous components are equal to zero. Furthermore
if |C| = ¢ < oo and f € C[A] with homogeneous components
f(s), then f? =0 if and only if >{fu) | ¢ = rmod(¢—1)} =0
forallr=1,2,...,9— 1.

Although the notion of an S-W-representation is a crucial
one (it provides the important connection with the polynomial
ring C[A]), it is not so natural to expect a given GPI h to be
presented in such a restrictive representation. Fortunately we
are able to partially loosen this restriction. To be sure we must
continue to prescribe a subset S of elements of R of infinite
rank which together with 1 is C-independent modulo Soc(R).
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However it is less artificial to assume now that hisa GPI on R
which is written in the form h = 3= a}h}, 0 # o} € C, where the
coefficients of all the h}’s are either of finite rank or belong to
S. As we have seen earlier the C-span of all coefficients of finite
rank lies inside the C-span of a set W of matrix units e;;, with
e1; equal to the prescribed idempotent w. Thus we may also
write h in its S-W-representation h = Y a;h;. It is clear that
h(s) is equal to the sum of all o;h; such that h; has exactly s —1
coeflicients of finite rank. The following corollary then follows
from our discussion in the preceding paragraph.

Corollary 6.5.8 Let R be a primitive algebra with unity ele-
ment 1 over a field C having a nonzero idempotent w such that
wRw = Cw and let h(X) = L 0:f; be a GPI on R where
0 # B; € C and f;’s are monomials. Suppose that the set S
of all coefficients of all fi’s of infinite rank together with 1 is
C-independent modulo Soc(R). Given a natural number s > 1
we set

hisy =Y {Bifi | fi has ezactly s — 1 coefficients of finite rank}.

Then:

(1) hay =0 = hey);

(ii) If either h(X) is multilinear or |C| = oo, then h@zy =0
and hy is a GPI on R for all k > 3;

(i3i) If |C| = q < oo, then

2 Ty
s=rmod(g-1)

isa GPI on R forallr=1,2,...,q—1.

Let h(X) = 3 63;f; be a GPI on R as in Corollary 6.5.8. Our
aim now is to produce a closely related but simpler GPI ¥ G; f

(see (6.21) ahead). Clearly any monomial f; can be written in
the following form:

fi= Fi0Yi00i0Yi19:1 %51 Q41 - - - Yin; Gin; Tin; Cin; Yim+19im:+1
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where the following conditions are fulfilled:

(i) Qi; € SOC(R), 3=0,1,...,n;

(ii) a:i_,-EX,quXU{i},lSjgni,OﬁlSni+1;

(iii) The gy are alternating monomials in S and X such that
ifyy=1,then gy =1,1=0,1,...,n; + 1;

(iv) The set S of all (distinct) coefficients of all g;; together
with 1 is C-independent modulo Soc(R).

Picking a C-basis of R modulo Soc(R) containing 1 and all
the coefficients of all the g;;’s and extending it to a C-basis A
of R, we note that g;; € M(A). We shall refer to the form of
writing of h just described as an .A-standard form of writing of
h(X). Here we also note that any C-basis A’ of R will be called
standard if 1 € A" and A’ \ Soc(R) is a C-basis of R modulo
Soc(R). Clearly the basis A just constructed is standard.

We set

! ! _ L
9io = 9i0Yi0s Gini+1 = Yini+19ini+1 Gij = YijGijTij

where 1 < j < n;. Pick elements z;; € X U1 such that:
(a) zio =1 if and only if gj, = I; i
(b) zin41=11if and only if gin 1 =15
(c) e Xif1 <j<ny;
(d) zi; = 2pq if and only if gj; = g,

Now we set
fi = 200021051 - . - Zin,Qin, Ziny 41,
Ko= S Bifi (6.21)

As we have earlier noted, without loss of generality we can
assume that a;; € 3-.cw Ce for all ¢, 5. Also we can assume that
all z;; € H (just adjoin them to H). We write h = ¥ o;h; in
its S-W-representation. Now we have h' = 3 o;h; where the
monomials h; are obtained from the monomials h; according to
the above described procedure. We consider the case when either
h(X) is multilinear or |C| = oo, since the case |C| = ¢ < o0
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is considered analogously. Our comment after Theorem 6.5.7
indicates that h™ = 0. This means that for any monomial h;
appearing in the S-W-representation

> {aih] |h] = h7} =0.

Since h] = hj if and only if (h])™ = (h})", we conclude that
h'™ = 0 and so by (6.11) b’ is a GPI on R. Thus we have proved
the following

Corollary 6.5.9 Let R be a primitive algebra with unity ele-
ment 1 over a field C having a nonzero idempotent w such that
wRw = Cw, let A be a standard basis of R and let h(X) =
Y Bif; be a GPI on R written in an A-standard form. Then
h'(X) is a GPI on R where h'(X) is obtained from h(X) ac-
cording to the procedure described in (6.21)

Corollary 6.5.9 was pointed out to the first author by Prof.
C.-L. Chuang in 1994, but no ideas of proof were presented.

Corollary 6.5.10 Let R be a primitive algebra with unity ele-
ment 1 over a field C having a nonzero idempotent w such that
wRw = Cw, let A be a standard basis of R and let h(X) =
Y B:f; be a GPI on R written in an A-standard form. Further
let g = g'zy where g’ € M(A) is a monomial without coefficients
of finite rank and xz, € X. We set

o~

Ig)={:| fi= gailAzi for some a; € Soc(R), h; € M(A)}.
Then h = Ticrq) Biaihi is a GPI on R.

Proof. We note that 2™ is exactly the sum of all o;hT such
that h] involves the variable of the form [g;4], 1 < i < t. We
consider the case when |C| = oo, since the case |C| < oo is
considered analogously. Since h is a GPI on R, h™»= 0. Hence
h™ =0 and so h is a GPI on R.

The following corollary answers a very natural question.
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Corollary 6.5.11 Let R be a primitive algebra with unity ele-
ment 1 over a field C having a nonzero idempotent w such that
wRw = Cw, f,h € Rc<X> and let x, € X be a variable which
is not involved in f and h. Suppose that fzih is a GPI on R
and deg,(f) + deg,(g9) < |C| for all x € X. Then either f or h
is a GPI on R.

Proof. Assume that neither f nor his a GPI on R. As in
the discussion at the beginning of this subsection we choose S
and W such that both f and h have an S-W-representation (i.e.,
all their coefficients belong Y ,c5 Cs+3 ,ew Cv). Let f =Y i f;
and h =} B;h; be S-W-representations. Then

fi = foliolpignVin fi1Ti€p g - - -

Yin, fin.'xini epin,-th,n,-+1 Yini+1 fi,m+1

and

hj = thZjoe‘u.jovjlZjlhjltjleujlng e

Zjm; hjmj tjm; Cujm;vj,m ;41 25,m;+1 hj,mj+1

where ;5,trs € X, Yap, Zca € X U {1} satisfy the conditions (iii)
and (iv) listed after Corollary 6.5.8.

We fix any 7 = gin, 41, f' = Yini+1fimi+1, § = ujo and h' =
hjozjo. Let firpy = f denote the sum of all ¢yf; such that
Qn+1 = 7 and Yip41fin+r = f' and let hgpy = h denote
the sum of all Bk, such that u;y = s and hyz = A'. Clearly
f =2 ftr.yy and b = 3 h,py. Since f and h are not GPI on
R, we can choose 7, f', s and A’ such that f and h are not GPI
on R.

We note that (fzxh)™ is exactly the sum of all monomials
(together with their coefficients) appearing in (fz;h)™ which
involve the variable [r; f'zxh'; s]. Recall that deg, (f)+deg,(g) <
|C|. Hence if |C| < oo, (fzxh)™ = (fzxh)™. Since fzih is
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a GPI on R, we infer from the proof of Theorem 6.5.7 that
(fzrh)™ = 0. It follows that (fzxh)™ = 0. But

(Fzxh)™ = (F)"[r; £172[rs foeh’s s)(R)™ (R 5]

Hence either ( )™ =0 or (h)™ = 0 and respectively either 7 1is
a GPI or his a GPI, a contradiction to the choice of f and h.
The proof is thereby complete.

Keep the notation of preceding corollary. Then setting f = w
and h = TYWTToW — TowWTRT1w We see that

faih = STh(w; zkxy, Tk2)

is a GPI on R. Therefore the condition that x; is not involved
in f and h is essential. Further let |C| = ¢ < oco. Setting
f = (wryw)?™ ! + (wrw)? 2+ ...+ wand h = wryw — w we
conclude that

farh = wrpw fh = wrrwLy(w; X)

is a GPI on R. Thus the condition deg,(f) + deg,(h) < |C| for
all z € X is essential as well.

We now come to the general situation in which R is a cen-
trally closed prime GPI ring, i.e. there is a minimal idempotent
w such that A = wRw is finite-dimensional over C. If C is fi-
nite, then A = C (by Theorem 4.2.3) in which case G(R; R) is
already characterised in Theorem 6.5.7. Therefore without loss
of generality we may assume for the remainder of this subsection
that C is finite.

Let n > 1 be a natural number and w € R. We set

STon(w; X) = Ston(wzy, wxs, . .., WTop)W

where Sta, is the standard polynomial in 2n noncommuting vari-
ables.
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Theorem 6.5.12 Let R be a primitive algebra with identity
over an infinite field C and let G(R; R) be the T -ideal of GPI’s
on R. Assume that R has a nonzero idempotent w such that
wRw is a division C-algebra of dimension n? over the field C
and Z(wRw) = wC. Then:

G(R; R) = T(R; STon(w; X)).

Proof. One can easily show that R is a centrally closed
prime ring with extended centroid C. Let C' be a maximal sub-
field of the division ring wRw. Clearly C’ is a subalgebra of
the C-algebra R. By Corollary 4.2.2 wRw ®¢ C' = M,(C").
Since R = R ®¢ C' O wRw ®¢ C', we conclude that R’ has a
nonzero idempotent w’ such that w'R'w’ = w'C’. From Theo-
rem 2.3.5 it follows that R’ is a closed prime C’-algebra. Hence
the conditions of Theorem 6.5.7 hold in R’ and

G(R'; R = T(R'; STo(v'; X)). (6.22)

Making use of the universal property of free algebras one
can easily prove that C<X> ®cC’ = C'<X> canonically. We
will identify them. According to Remark 1.4.12 the C’-algebras
Re<X> ®cC' and R'¢cr<X> are isomorphic canonically. We
will identify them. Further we will identify R with the subring
R® 1 of R'. Clearly

G(R; R)®c C' 2 T(R; STan(w; X)) ®c C'
are both ideals of R'c»<X>. It is enough to show that
G(R; R) ®c C' C T(R; STon(w; X)) ®c C'

To this end we claim that any GPI h(X) on Ris a GPI on R'.
Indeed, since C' is infinite, all homogeneous components of h are
GPI's on R. Hence without loss of generality we can assume
that h(X) is homogeneous. Making use of induction on ht(h),
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one can easily reduce consideration to the case when h(X) is
additive. But then it is immediate that A(X) is a GPI on R’
Therefore

G(R; R)®cC' CG(R; R).
Next we claim that

T(R; STon(w; X)) ®c C' = T(R'; STon(w; X)).

Indeed, any R-endomorphism ¢ of Rc<X> (i.e., any endomor-
phism such that r® = r for all 7 € R) has a unique extension to
an R’-endomorphism of R'c»<X> and so

T(R, STgn(w; X)) Qc C' - T(R’; STQn(’LU; X))

On the other hand let ¥ be an R'-endomorphism of R'c/<X>.
Pick any C-basis v, v, ..., v, of C' and write

n
$?=Zfij®'l}j, 1§z_<_2n
=1

Since STo,(w; X) is multilinear, we have

(ST?R(U); X))¢ = Z V51 V5, -« 'sznST2n(w; fljn f2j2 v f2n,j2n)'

J1-d2n

As
STon(w; frjis fags - - fongan) € T (8 STan(w; X)),
we conclude that
(STan(w; X))¥ C T(R; STon(w; X)) ®c C"
and so

T(R; STon(w; X)) ®c C' 2 T(R; STon(w; X))
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which proves our claim.
Secondly we note that

T(R; STon(w; X)) 2O T(wRw; STen(w; X))
= T(wR'w; Sty (X)).
From Lemma, 6.5.6 it now follows that
STy(w'; X) € T(R'; STon(w; X))

and so

G(R'; R C T(R; ST (w; X))

by Theorem 6.5.7. Summarizing what is proved, we see that

G(R; R)®cC' C G(R; R)

(R'; STy (w; X))

(R; STon(w; X)) ®c C’
G(R; R) ®c C'

N

3 3

N

and hence
G(R; R) ®c C' = T(R; STan(w; X)) ®c C'

which completes the proof.

Keep the notation of Theorem 6.5.12 and recall that we iden-
tified R and R® 1 C R®c C' = R'. As an easy exercise we
leave it to the reader to show that Soc(R) ®c C' = Soc(R').
Clearly any C-basis A of R is'a C’-basis of R'. Further, if A is a
standard C-basis of R, then it is a standard C’-basis of R’ as well.
We are thus able to infer from Corollary 6.5.8, Corollary 6.5.9,
Corollary 6.5.10, and Corollary 6.5.11 their respective analogues
in the more general case where wRw is finite-dimensional over
C. We shall merely state these, leaving the details of the proofs
to the reader.
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Corollary 6.5.13 Let R be a primitive algebra with identity
over an infinite field C' having a nonzero idempotent w such that
wRw is a finite dimensional division C-algebra with the center
wC. Further let A be a standard C-basis of R and h(X) =
Y Bifi a GPI on R written in an A-standard form. Given a
natural number s > 1 we set

hisy = Z{ﬁi fi | fi has ezactly s — 1 coefficients of finite rank}.

Then hgy = hpy = higy = 0 and hgy s a GPI on R for all
k> 3.

Corollary 6.5.14 Let R be a primitive algebra with identity
over an infinite field C having a nonzero idempotent w such that
wRw is a finite dimensional division C-algebra with the center
wC. Further let A be a standard C-basis of R and h(X) =
> Bif; be a GPI on R written in an A-standard form. Then
h'(X) is a GPI on R where h'(X) is obtained from h(X) ac-
cording to the procedure described in (6.21)

Corollary 6.5.15 Let R be a primitive algebra with identity
over an infinite field C having a nonzero idempotent w such that
wRw s a finite dimensional division C-algebra with center wC.
Further let A be a standard basis of R and let h(X) = ¥ G;f;
be a GPI on R written in an A-standard form. Let g = g’y
where g¢' € M(A) be a monomial without coefficients of finite
rank and x, € X. We set

I(g) = {i| f; = gash; for some a; € Soc(R), h; € M(A)}.
Then h = Tycy(q) Biaihi is a GPI on R.

Corollary 6.5.16 Let R be a primitive algebra with identity
over an nfinite field C having a nonzero idempotent w such
that wRw s a finite dimensional division C-algebra with center
wC. Further let f,h € Re<X> and let z; € X be a variable
which is not involved in f and h. Suppose that fzh is a GPI
on R. Then either f or h is a GPI on R.
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The 7-ideal of GPI’s on semiprime rings. Throughout this
subsection R will be a semiprime ring with extended centroid C,
@ = Qm-(R), A the orthogonal completion of RC and A C H C
@ a C-algebra. We start with the following useful

Lemma 6.5.17 Let R be a semiprime ring with extended cen-
troid C and B = B(C). Then there exists an orthogonal subset
{e;|1=2,3,...} C B such that:

(i) For any M € Spec(B) |¢m(C)| = n > 1 if and only if
en € M;

(i) 2™ =z for all z € e,C.

Proof. First of all we recall that ¢(C) is a field. Consider
the sentences

Uy = (3m) ... (3za) (Vo) (A i;ejllaii#wjll)/\llyecll
NNzl € Cll) A ||H — ;) = 0[])

where n = 2,3,.... Clearly the ¥,’s are Horn formulas. Setting
en = E(¥,) € B, n = 2,3,..., we infer from Theorem 3.2.10
that |¢pp(C)| =n if and only if e, & M.

Now we consider the sentences

¢, = (Vz)|lz € C||A||z" =z|, n=2,3,....

Note that the ®,’s are Horn formulas. If |¢(C)| = n, then we
have ¢y (C) |= ®,,. Therefore e, ¢ M implies that E(®,) ¢ M
and so E(®,)e, = e, (see Theorem 3.2.10). From the definition
of the idempotents F(®,) we infer that e,C = ®,, which means
that z™ = z for all € e,C. The proof is complete.

We remark that in Lemma 6.5.17 some or all of the e;’s may
be 0.

Lemma 6.5.18 Let R be a semiprime ring with extended cen-
troid C, @ = Qums(R) and A the orthogonal completion of the
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central closure RC C @Q of R. Further let idempotents ey, €3, . . .
be as in Lemma 6.5.17. Suppose that R has a strict generalized
polynomial identity h(X) € Qc<X>. Then there exist idempo-
tents vy, vs, ... € A such that E(v;) = e; and v;Qu; = v;C for all
i=2,3,.... Furthermore L,(v,; X) = (VnZ100)™ — 0210y 1S @
GPI on @ for alln=2,3,....

Proof. We first note that if ¢; = 0 then one need only choose
v; = 0. Thus we shall only be concerned with those e; for which
e; # 0. Consider the sentence

U = (E2)(Vy)E) (Wl = | Az € C
Allt € Cll A llzys = z2]l A (it # O]l v [|¢ = o).

Clearly ¥ is a Horn formula. Let B = B(C) and M € Spec(B).
Suppose that e, € M. As we already know then |¢(C)| = n.
By Corollary 6.3.10 ¢p(A) is a primitive ring with nonzero
idempotent w such that we¢p (A)w is division ring finite dimen-
sional over ¢»s(C). From Wedderburn’s Theorem we infer that
wén(A)w is commutative and hence is equal to wgy (C) (see
Theorem 4.2.3). Therefore ¢p(A) = ¥, whence F(¥) € M by
Theorem 3.2.10. We conclude that F(¥)e, = e, and e, A = ¥,
which means that e,A contains an idempotent v, such that
vn(enA)v, = vp(e,C) and r.,c(ve) = 0. Hence E(v,) = ey,
enln = vp and v, Av, = v,C. Since v,C = e,C, it follows
from Lemma 6.5.17 that L,(v,; X) is a GPI on A. Applying
Theorem 6.4.1, we complete the proof.

Now we are in a position leading up to the main results of
the present section, namely, to give a list of generators for the
T-ideal G(H; R) and a criterion for this 7T-ideal to be finitely
generated. We make the natural assumption that R has a strict
GPI h(X) € Qc<X>. Let uy,us,...,us be the idempotents
given by Theorem 6.3.9, recalling that each w; is an E(u;)C-
faithful abelian idempotent of E(u;)C-rank n; = k. We claim
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that each S; = STy, (us;; X) is a GPI on Q. Indeed, let
\I/i = (V’I‘l)(V’I‘g) e (Vr2k;)||ST2k;(Tla Toyn. ,Tz]cl.) = OH

Let M € Spec(B). If ¢pr(u;) = 0, then STok, (dar(ui); X) =0
and so ¢y (Q) E V;. Suppose now that ¢ar(u;) # 0. Then
by Theorem 6.3.9 épr(u;Qu;) is n;-dimensional division alge-
bra over its center @pr(u;C). According to Corollary 4.2.2 the
ring ¢ar(u;Qu;) is embeddable into k; x k; matrix ring over a
field. Then by Theorem 1.3.5 we see that Sto, (X) is a polyno-
mial identity of ¢ (u;Qu;). It follows that ¢x(Q) | ¥, for all
M € Spec(B). By Theorem 3.2.10 we have that E(¥;) ¢ M for
all M € Spec(B). Therefore E(V;) = 1, STox, (u;; X) is a GPI
on () and our claim is established. Further let v; ,v;,,...,v;,...
(possibly empty or infinite in number) be the nonzero idempo-
tents given in Lemma 6.5.18, and so we know that each L;; =
L;;(vi;; X) is also a GPI on Q. We set

P={SI,S%---,St,Li”Lig,---,Lik,---}

and show in Theorem 6.5.19 that P is a set of generators of the
T-ideal G(H; R).

In preparation for this theorem we continue with the follow-
ing remarks. It follows from Theorem 6.4.1 that G(H; R) =
G(H; H). Let B = B(C). Since C is von Neumann regular, the
mapping Spec(C) — Spec(B) given by the rule P — PN B,
P € Spec(C), is a bijection with the inverse mapping given by
the rule M — CM, M € Spec(B). For any M € Spec(B) let ¢ps
denotes the canonical homomorphism of rings Q@ — @ = Q/MQ.
We set A = ¢p(A4), C = ¢u(C) and H = ¢p(H). As we al-
ready know A is a prime ring with the extended centroid C and
Q € Qmr(A) (see Theorem 3.2.7 and Theorem 3.2.15).

Letting @, denote the canonical extension of ¢y, t0666 Qo<
X>— Qz<X>, we infer from Remark 6.3.5 and Corollary 6.3.6
that @, is surjective and ®ps(h) is a nonzero GPI on H. Since
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H is centrally closed with the extended centroid C, we conclude
that it is a primitive ring with a nonzero idempotent w such
that wHw is a finite dimensional C-algebra with center wC
(see Theorem 6.1.6). Therefore the C-algebra H satisfies all the
conditions either of Theorem 6.5.7 (if wHw is commutative) or
of Theorem 6.5.12 (if wHw is not commutative).

We claim that

®m(G(H; H)) = G(H; H).

Indeed, we already know that ®,,(G(H; H)) C G(H; H). Sup-
pose now that ®,/(f) is a GPI on H where

f=Ff(z1,29,...,2,) € Qe<X> .

We consider the formula

U= (Vr)...(vra)llf (r1, 72, .y ma) = 0.

Let ay,a9,...,a, € H be all the coefficients appearing in f.
Considering them as 0-ary operations of the orthogonally com-
plete Q-A-ring Q where

Q:‘—{0,1,&1,&2,...,an,—,+,'}

and A = {||z = y||}, we note that ¥ is a Horn sentence. If
@ = ¥, then there exists an idempotent e € B\ M such that
eQ = ¥ (see Theorem 3.2.10). This means that ef is a GPI on
e and hence it is a GPI on @. Therefore ef € G(H; H). Since
®rm(ef) = ®m(f), we conclude that ®p(G(H; H)) 2 G(H; H)
which proves our claim.

Now we consider any H-endomorphism 7 of Hc<X > (i.e.,
an endomorphism 7 such that a” = a for all a € H). Clearly it
induces an H-endomorphism 7 of Hg<X>. We claim that any
H-endomorphism o of Hg<X > is of this form. Indeed, pick
9z € Ho<X> such that 27 = ®p(g,) for all z € X and define
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the H-endomorphism 7 of Ho<X> by the rule 2™ = g,, x € X,
and its consequences. Obviously 7 = ¢ and our claim is proved.
Now it follows that for any subset F' C Heo<X> we have

Oy (T(H; F)) = T (H; 2y (F)).

Theorem 6.5.19 Let R be a semiprime ring with extended cen-
troid C and Q = Q. (R). Further let A be the orthogonal com-
pletion of the subalgebra RC' + C' C Q. Suppose that R has
a strict GPI h(X) € Qc<X> and A C H C @ is a C-
subalgebra. Then P (given above) is a set of generators for the
T-ideal G(H; R) of all generalized identities on R.

Proof. In view of G(H; R) = G(H; H) and the fact that
T(H; P) C G(H; H) we need only show that

G(H; H) C T(H; P).

For any M € Spec(B) we have G(H; H) = T(H; ®(P)) by
Theorem 6.5.7 and Theorem 6.5.12, and hence

®y(G(H; H)) = G(H; H) = T(H; ®u(P)) = Su(T(H; P))

by the remark preceding the statement of this theorem. Now
consider any element f € G(H; H). Then for each M € Spec(B)
O p(f) = ®arr(ha) for some hy € T(H; P). By Remark 3.2.2(i)
vm(f — ha) = 0 for some vy, € B\ M. We note that vy f =
vpmhy. By Lemma 3.1.21 (with suitable relabeling of subscripts)
there is a finite subset vy, vy, ..., v, of the vps’s for which there
are central idempotents 0 # e; < v;, e; + ey + ... +¢, = 1,
and e;e; = 0 for ¢« # j. Therefore for each j =1,2,...,5¢;f =
ejhp = hj € T(H; P) and so f = Y5, e;f € T(H; P). The
proof is complete.

As our final result in this section we have
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Theorem 6.5.20 Under the assumptions and notation of The-
orem 6.5.19 the following conditions are equivalent:

(i) G(H; R) is finitely generated as a T -ideal;

(1) There is a natural number N such that for any mazimal
ideal P of C either |C/P| < N or |C/P| = oc.

Proof. (i) = (ii) Let F be a finite generating set of G(H; R)
= G(H; H) and m = maxser deg(f). Further let M € Spec(B)
and | (C)| = n < co. It is enough to show that n < m. Sup-
pose that n > m. Using Vandermonde determinant arguments,
one can easily show that all homogeneous components of any
f € ®y(F) are a GPI's on H. Letting F’ denote the set of all
homogeneous components of all f € ®,(F'), we note that

G(H; H) = ou(G(H; H)) = 2u(T(H; F))
T(H; 2u(F)) =T (H; F').

Further as we already know from the proof of Lemma 6.5.18,
H contains a nonzero idempotent w such that wHw = wC and
Ln.(w; X) is a GPI on H. Therefore

L.(w; X) € T(H; F). (6.23)

Let K be the field of rational expressions in t with coefficients in
C. We identify the ring H with the subring 1@ H C K @z H =
G. Clearly wGw = wK and G = HK. Using the induction
on the height of GPI and the relations deg(f) < |C| for all
f € F’, one can prove that every f € F' vanishes on G (see the
proof of Lemma 6.4.3 for the details). It follows from (6.23) that
Ln(w; X) vanishes on G which means that (wk)® = wk for all
k € K, a contradiction. Thus n < m.
(ii) = (i) By Theorem 6.5.19

P={5,52...,5, Li,, Li, ..., Ly, ...}

is a set of generators for the 7-ideal G(H; R). We claim that
ig < N for all k. Indeed, if 3, > N, we choose M € Spec(B) such
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that E(v;,) € M. Then by Lemma 6.5.18 and Lemma 6.5.17(i)
we have that |¢p(C)| = i > N forcing the contradiction to
our assumptions. Therefore our claim is established. But then
P ={S1,...,S Li, ..., L} for some s such that i; < N and
so G(H; R) is finitely generated as a 7-ideal. The proof is com-
plete. ‘

Theorem 6.5.7, Theorem 6.5.12 and Theorem 6.5.19 were
proved by K. I. Beidar (see [23] and [26]). The case of generalized
polynomial identities with involution was considered in [250],
[237], [238], and [239]. Corollary 6.5.9 was pointed out to him
by Prof. C.-L. Chuang in 1994, but no ideas of proof were
presented.

6.6 Special GPI’s

In this section we shall discuss some special generalized polyno-
mial identities. We start with the following

Lemma 6.6.1 Let V' be a nonzero right vector space over a
dwvision ring A with proper subspaces Vi, Vs, ..., V, such that
V =UL,V;. Then A is a finite field with |A| < n.

Proof. Without loss of generality we may assume that
Uig;Vi # V for all j = 1,2,...,n. Pick v; € V \ Ui, Vi
We note that v; € V; if and only if 7 = 5. Thus if lv; € V;,
0 # X € A, then v; € V; forcing i« = j. The case n = 2
cannot exist and so we may assume n > 2. Suppose |A| > n.
Then (by the pigeon-hole principle) there exists ¢ > 2 such
that v; + Avg, vy + pvy € V; for some A # pu € A. Thus
M~ lvy + Ay € V; and so (1 — Ap~)v; € V;, forcing the contra-
diction A = u. By Theorem 4.2.3 A is a field and the proof is
complete.
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Theorem 6.6.2 Let R be a prime ring with eztended centroid C
and @ = Qmr(R). Then the following conditions are equivalent:

(i) There exist nonzero elements 11,7a,...,Tn41 € R such
that rxrex ... 1741 =0 for allx € R;
(i) There exist nonzero elements qi,qa, .. .,qns1 € Q such

that 12q2x . . . ga2qnyy = 0 for all x € R;
(i) |C| £ n and R is a noncommutative primitive ring
with nonzero socle containing a minimal idempotent e such that

eRe = eC.

Proof. The implication (i) = (ii) is obvious. We show that
(ii) = (iii). Clearly

QIGT . . . nTGnty (6.24)

isa GPI on R. In view of Proposition 6.4.2 it is enough to show
that |C| < n. By Theorem 6.4.4 q12¢2x ... g zgn41 = 0 for all
x € Q and so Q is GPI. In particular @ is a primitive ring with
nonzero socle K. Let e be a minimal idempotent of (). Consider
the right vector space V = Qe over the division ring A = eQe.
Clearly @ C End(Va) and ker(g;) is a subspace of V for all
i=1,2,...,n+ 1. IfV = U ker(g;), then by Lemma 6.6.1
|Al < n and so |C| < n. Hence without loss of generality we
may assume that U ker(g;) # V and there exists ¢ € Q such
that g;ge # 0 for all i = 1,2,...,n+ 1. Substituting gex for z
in (6.24) and multiplying by ge from the right, we infer that

q19€TG2GET - . . GnqeTqni19€ (6.25)

is a nonzero GPI on (). Now we consider the faithful right Q-
module W = eQ. If W # UX! ker g;qe, then there exists ¢ € Q
such that eq'g;qge # 0 for all i = 1,2,...,n+ 1. Since A = eQe
is a division ring, we conclude that

(eq')[(q19¢)(eq")(qz29e)(eq) . . . (gnge)(eq) (gnt1€)
= (eq'q1qe)(eq'qzq€) . . . (eq'qny10€) # O,
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a contradiction to (6.25). Thus W = U ker g;ge and so |A| <
n by Lemma 6.6.1.

(iii) = (i) Clearly Soc(R) contains an idempotent v such
that vRv & M,(C). Let {e;; | 1 < 4,5 < 2} be matrix units
of vRv. Obviously vRv = Endc(vRe;;) and the vector space
vRey; contains exactly m = |C|+1 < n+ 1 distinct one dimen-
sional subspaces Vi, V4, ..., V,,. It is well-known that any proper
subspace of a vector space is the kernel of a nonzero linear endo-
morphism. Pick a; € vRv such that V; = ker(a;),7=1,2,...,m.
Further choose b; € vRv such that r; = e;1ba; # 0. We set
Tm+1 = €11- Lhen for all z € R we have

TTTT . . . T ITm41

= en1biar (vzeyr)]belaz(vzeyy)] . . . [am(vzen)] =0

since vze;; € V; for some 1 <7 < m. The proof is complete.

Corollary 6.6.3 Let n > 0 be a natural number and R a prime
ring with infinite extended centroid. Further letry,ro,...,Thy1 €
R. Suppose that rzrex...Tpxrnyy = 0 for all x € R. Then
;=0 for somel <1< n+1.

Proof. Let C be the extended centroid of R. Then |C| > n.
Now apply Theorem 6.6.2.

Proposition 6.6.4 Let R be a semiprime ring with extended
centroid C and Q = Qm-(R). Further let B = B(C), M €
Spec(B) and ¢pr : Q = Q/MQ the canonical surjection of rings.
Suppose ¢p(Q) is GPI with |¢pp(C)| = m < oco. Then there
exists an idempotent e € B\ M such that every right (left) ideal
L of R with eL # 0 contains a nonzero idempotent w € L such
that wRw s a commutative ring and z™ = z for all x € wRw.
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Proof. Let H = Q;(R). Consider the formula

¢ = ()(Ve))(Vz)(3ee)lles € Cl Al = il
Alller = OV flerv # O) A llez € C|
Al|lvzv = vey|| A ||v? = v (6.26)

Clearly ® is Horn sentence. It follows from Proposition 6.4.2
that ¢p(H) & ®. By Theorem 3.2.10 e = E(®) ¢ M and
eH = ®. Hence there exists an idempotent v € H such that
E(v) = e and vHv = vC. We also note that 2™ = z for all
z € eC.

Now let L be a right ideal of R such that eL # 0. Then
ae # 0 for some a € L and so eE(a) # 0. Pick any N €
Spec(B) such that E(a)e ¢ N. According to Corollary 3.2.4
a = ¢n(a) # 0 and T = ¢y(v) # 0. Clearly vHv = 9C and
z™ = g for all z € C where H = ¢y(H) and C = ¢n(C) =
én(eC). Clearly H is a primitive ring with nonzero socle and 7 is
a minimal idempotent of H. By Theorem 4.3.7(ii) the right ideal
@H contains a minimal idempotent u. Obviously uHu = uC.
Consider the formula (here we note that it is understood that
the element a is a 0-ary operation on H)

T = (3b)(Yer)(V2)Bez)ller € CA Il = erl A | (@b)? = ab
A(ller = 0] V |lexab # 0]]) A |lez € C|| A ||abzab = abes||.

By the preceding observations H = ¥. It follows from Theo-
rem 3.2.10 that fH = ¥ for some f ¢ N. Hence there exists an
idempotent w’ € aH such that E(w’') = f and w'Hw' = w'C.
Furthermore z™ = z for all z € fC. Since fC = w'C, we
conclude that 2™ = z for all z € w'C. Write w' = ah where
h € H and choose a dense ideal I of R such that Th + hlI C R.
Then w'I*w' C aR C L. Clearly w'I*w’ is a nonzero subring of
the commutative ring w'C. Hence 2™ = z for all 2 € w'I%w'.
Pick any nonzero y € w'I?w' and set w = y™*. Obviously
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w?=w, w € L and wRw C w'Hw' = w'C. Thus 2™ = z for all
z € wRw and the proof is complete.

Our final result along these lines is a corollary to Theo-
rem 6.6.2 and Proposition 6.6.4.

Theorem 6.6.5 Let R be a semiprime ring with extended cen-
troid C, Q@ = Qm-(R) and q1,q2,..,qnt1 € Q. We set e =
E(q)E(q) ... E(gnt1). Suppose q12¢a% . ..¢nTqn+1 = 0 for all
z € Rande # 0. Let L be a right (left) ideal of R such that
el # 0. Then there exist a natural number m and a nonzero
idempotent w € L such that 0 <m < n+ 1, wRw is a commu-
tative ring and ™ = z for all x € wRw.

Proof. Let ® be the Horn formula given in (6.26) and set
e/ = E(®). Suppose e £ €. Then there exists 0 # f < e such
that fe' = 0. Pick M € Spec(B) such that f ¢ M. Thene ¢ M

and so F(g;) ¢ M for all i =1,2,...,n+ 1. By Remark 3.2.2
each ¢ps(g;) # 0 and we have

dm (@) zdm(g2) - - - Tdr(Gner)

is a nonzero GPI on ¢5(Q). By Theorem 6.6.2 |¢x(C)| < n.
We note that ¢»(Q) = ® and see by Theorem 3.2.10 that ¢’ =
E(®) ¢ M. We then have the contradiction fe' = 0 € M,
f & M, e ¢ M, and so we conclude that e < €. Now let
L be a right (left) ideal of R such that eL # 0. It follows
that ¢'L # 0 (noting that ¢ = FE(®P) is precisely the central
idempotent obtained in the proof of Proposition 6.6.4). The
conclusion then follows from Proposition 6.6.4

The following result extends to prime rings a theorem origi-
nally proved by Slater for primitive rings [266]. The latter result
is noteworthy since it was one of the very first results in GPI
theory (slightly predating the fundamental theorem of Amitsur

[3])-
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Theorem 6.6.6 Let R be a prime ring with extended centroid
C, 0 # p(z1,22,...,2,) € C<X> and a € R. Suppose that
p(a, o, x3,...,2Z,) is a GPI on R. Then a is algebraic over C.

Proof. Let A be the central closure of R and n = deg, p(z)
Suppose that a is not algebraic over C. Then p(a, 2o, . ..,Zs) #
0. Hence R is GPI. According to the prime GPI theorem
A is a primitive ring with nonzero socle whose associated divi-
sion ring is a finite dimensional C-algebra. By Corollary 6.5.13
{1,a,a?,...,a"} is a C-dependent set modulo Soc(A), whence
there exists an element 0 # b = Y%, Bia* € Soc(A), §; € C. By
Litoff’s Theorem there exists an idempotent e € Soc(A) such
that b € eAe and dim¢g(ede) < co. Thus b (and so a) is alge-
braic over C.

A standard application of the method of orthogonal comple-
tion (Theorem 3.2.18) together with the above theorem yields

Theorem 6.6.7 Let R be a semiprime ring with extended cen-
troid C, p(z1,%Z2,...,Z,) € C<X> and a € R. Suppose that
p(a,Z2,Z3,...,%,) is a GPI on R and at least one coefficient of
p(z) equals 1. Then a is algebraic over C.

Our final application in this chapter gives equivalent condi-
tions for an involution to be symplectic.

Theorem 6.6.8 Let R be a prime ring (char(R) # 2) with
involution x, extended centroid C and central closure A = RC.
Then the following conditions are equivalent:

(i) A is a primitive ring with nonzero socle and * is of sym-
plectic type;

(i) There exists a nonzero element a € R such that azz*a* =
0 for all x € R;

(%4t) There exists a nonzero element a € R such that aza* +
az*a* =0 for all x € R.
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Proof. (i) = (ii) Since * is of symplectic type, A contains
a minimal idempotent e such that ee* = 0. We claim that
exz*e* = 0 for all z € A. Indeed, by Kaplansky’s Theorem there
exists a vector space ¢V over a field C with a nondegenerate
alternate form ( , ) such that 7y C A C Ly and * is the adjoint
map relatively to { , ) (see Theorem 4.6.8). Pick 0 # v € V such
that ve = v. Clearly V = Cv@® V(1 —e¢). Let u,w € V. Then
u=X+u(l—e)and w=pv+w'(l —e) for some \,p € C
and v/, w' € V. We have

(u, wezz*e*) = (uex, wez) = Au(vz, vz) =0

because (t, t) = 0 for all t € V. Since (, ) is nondegenerate,
wezz*e* = 0 for all w € V and so exz*e* = 0. Pick any r €
R such that 0 # re € R. Setting a = re we conclude that
azxz*a* =0 for all z € R.

(ii) = (i) By Theorem 6.2.3 R is GPI and so by the prime
GPI theorem A is a primitive ring with nonzero socle. By Ka-
plansky’s Theorem x is either of transpose type or of symplectic
type. Suppose * is of transpose type. Then there exists a vector
space AoV over a division ring A with a nondegenerate Hermitian
form (, ) such that F/y C A C Ly and * is the adjoint map
relatively to ( , ) (see Theorem 4.6.8). Pick v € V such that
va # 0. Clearly vaA = V. Since (, ) is Hermitian, there exists
z € A such that (vaz, vaz) # 0. Then

0 # (vaz, vaz) = (v, vazz*a*) =0,

a contradiction. Thus * is of symplectic type.

(ii) = (iii) Linearizing the x-identity azz*a* we obtain that
ary*a* +ayz*a* is a *-identity of R. By Theorem 6.4.7 azy*a* +
ayz*a* is a *-identity of Q,(R). Substituting 1 € Q,(R) for y
we conclude that aza* + az*a* is a x-identity of R.

(iii) = (ii) Substituting zz* for z we obtain 2azz*a* is 2
*-identity of R. Since char(R) # 2, azz*a* is a *-identity of R.
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Theorem 6.6.2 was proved by Posner and Schneider [243] in
the case of primitive rings with nonzero socle. Corollary 6.6.3 is
due to Richoux [249] and Herstein and Small [125].



Chlapter 7

T-identities of Prime
Rings

7.1 The Home of T-identities

We come now to one of the central topics of this book. Our aim
is to give a rigorous and detailed account of the powerful re-
sults of Kharchenko concerning prime rings satisfying identities
involving derivations and automorphisms (and of the extension
of his work by Chuang to include antiautomorphisms). The first
order of business is to carefully define these identities, and there
are several approaches one can take.

One approach is to naively say that an identity is simply
an expression involving fixed ring elements and variables super-
scripted by composites of derivations and (anti)automorphisms
which is sent to zero when the variables are replaced by arbi-
trary ring elements. But questions about the precise nature of
”expressions” and "superscripted variables” quickly indicate the
lack of rigor in this simplistic approach. Before describing more
acceptable approaches we must first set in place some necessary
terminology.

Throughout this chapter R will be a prime ring, C its

297
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extended centroid, ® the prime subfield of C, @ the symmet-
ric ring of quotients of R, D; the inner derivations of @, D =
Der(R)C + D;, G; the X-inner automorphisms of R, and G =
Aut(R) U Antiaut(R). We let Gy denote a set of representatives
of G modulo G;, and let

Auty(R) = GonAut(R) and Antiauty(R) = GoNAntiaut(R).

Furthermore we let V' be a vector space over C' and let X be a
C-basis for V, recalling that C<X>= C{V}. We have seen in
earlier chapters that C, D, and G are all contained in Endg(Q),
and we let N denote the subring of EFndy(Q) generated by C,
D, and G.

Keeping in mind that the "home” for GPI’s is

QIlc<x>=qIlc{v}
c C

it seems reasonable that the framework we are seeking should
be of the form Q]I A where (for temporary purpose) we shall
refer to A as a suitable ”algebra of variables”.

An appealing choice for A (although one which we shall pre-
sently reject) is A = C<XV> where X¥ is simply a suggestive
way of writing X x N. The substitutions we allow are of the
formg—q,z— 7, r € Q, z° — r*, s € N. Then an "identity”
is an element of Q][> C<X"> which vanishes under all sub-
stitutions just described. Although this definition of identity
is quite rigorous it has the drawback that there is no unique-
ness to writing the elements of NV, and so attempts to work in
this framework are fraught with ambiguities. For this reason we
must reject this approach.

In order to counteract the lack of uniqueness inherent in the
approach just described we shall go to the end of the spectrum
(so to speak) and construct the algebra of variables A to be
as "free” as possible. To this end let D denote the set D, G
the set G, ®<D U G> the free algebra in the set D UG over
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® T =Cllc®<DUG>, V a vector space over C, V7T the
Cartesian product of V and T, and A = C<VT>. We let
o : T — Endg(Q) be the ®-algebra map given by c+— ¢, § = 4,
g—g,ce€C,6€D, ge G Lety: V——)QbeanyC-
space map and let 3 : C<VT>— Q be the C- algebra map
given by vt — %(v)°® v € V,t € T. Then the C-algebra map
Qllc A — Q which simultaneously lifts idg and 1 will be called
a T-substitution. The notion of identity we require can now be
defined: ¢ € Q1] A is a T-identity on I (where 0 # I 9 R) if ¢
mapped to 0 by all T-substitutions for which 1(X) C I.

The favorable aspects of this approach are that there are no
hidden relations (because of the freedom of its construction), it
has a nice algebraic structure, and it is reasonably natural (if one
thinks of v* as a ”variable” v acted on by an "endomorphism”
t). However, it has the considerable disadvantage that Qs A
contains many types of elements which are ”trivial” T-identities
in the sense that they have no effect on the ring R. To give the
reader an accurate view of the extent of this phenomenon we
proceed with the following list of ”obvious” identities. Those
of type (A) simply reflect the nature of endomorphisms and of
Ends(Q) being a left and right C-space:

(41) (v+w)' -t —wh
(A2) ,Us+t — % = ’Ut,
(A3) v — (ve)t

(Ag) v —2t-c

where v,w € V, s,t € T, ¢ € C. Those of type (B) reflect the
interrelations among g, D, and G. They are of the form v**
where v € V, s,¢,u € T, and u is one of the following:

(B1) cg —g¢’;
(By) cb — (bc+ ),
(Bs) bc — bc;
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(Bs) gh—7-h;

(Bs) 6-G~7-09, where &9 =g "'4y;
(Bs) 6+m—0+p;

(B7) [37 -ﬁ'] _[ 3 l'l'])

(Bg) & — &7 (if char(R) =p)

where c € C, 6,1 € D, g, h € G. Those of type (C) arise from
the elements of D; and G;:

(Ch) Utf —[a, v"], p=ad(a) € Dy, a € Q;
(Cy) v — s7Yuts, h =1inn(s) € G;,

wheret € T,v e V.

Ultimately, however, we are interested in identities which
are "nontrivial” in the sense that they have an impact on the
ring R. What we are seeking is a "home” for identities whose
structure still retains a degree of freedom to make it tractable
to work with but is one in which the identities corresponding to
the trivial ones (A;)-(A4), (By)—(Bsg) have already ”collapsed”
to the zero element. Therefore we shall reject the preceding
approach.

It is now time to take the positive step of constructing what
we feel is the proper "home” for the identities we will be consid-
ering. We begin by focusing our attention on U, the universal
enveloping ring of the (restricted) differential C-Lie algebra D.
At this point the reader should review the remarks concerning
D and U made in section 5.5, as we shall feel free to draw upon
the terminology and notations given there without further com-
ment.

We proceed to show that there is an action of G on U, and
hence the skew group ring U o« G exists. (That this is possible
should come as no surprise in view of the relations (B;)—(Bs)
previously listed.) Indeed, given g € G we will define ¢" : U —
U as follows. Consider the diagram:
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f:fg

U
where f : § — 69. We define an automorphism ¢ of C by ¢ = 9
for all ¢ € C. Considering C as a subring of Ends(Q), we have
9 = glcg for all ¢ € C. We proceed to check that f is a
o-semilinear differential C-Lie automorphism of D:

a) (6, pl = g6, plg = 9789, g7 pg] = (6", w'Y;
(de) = g7tbeg = g7'8gg " eg = 6 ¢

where 6, 4 € D, ¢ € C. Therefore by our discussion in section 5.5
there exists a g-semilinear ®-algebra automorphism g™ : U — U
completing the diagram. One verifies that « is a homomorphism
by applying (g192)™ to the generators of U, i.e., to the elements
of C and D. We leave the details for the reader.

We let T denote the skew group ring U « G just defined.
Clearly T is both a left and right C-space. We then form the
right C-space V ®¢ T', with scalar multiplication given by

w@tlc=vQ®te,veV,teT, ceC.
We now take our ”algebra of variables” to be the tensor algebra

C{V ® T} of the C-space V ® T over C.
The ring

S(@Q R)=8(R)=8=Qc{VeaT}=Q[[C{VeT}
C
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will then be the primary point of reference for the remainder of
this chapter, and we shall call S the setting of R . (One notes
that the elements corresponding to (A;)—(A4) are 0 because of
the tensor product V ®T, and those corresponding to (By)—(Bs)
are 0 because of the nature of U and of T'). Of course we want
to view elements such as v ®t as an "indeterminate v” acted on
by t.

We proceed to describe, at first in a rather general way, a
substitution process which is compatible with the idea that an
arbitrary C-linear mapping out of V' completely determines the
substitution. Let P by any C-algebra with 1 which contains @),
and let v : T — Endg(P) be a fixed C-ring map (i.e., ¢ = ¢
for all c € C). Now let ¢ : V — P be any C-space map. Then
the map: V x T — P given by (v, t) = 9(v)"®) is balanced.
Indeed,

(ve, 1) = (ve)™ = [P(v)e"™

whereas

(v, ct) = P)"D = h(p)7END = g(y)r®)
= [p(w)"®.

The additive map: V®¢T — P so determined is in fact C-linear
since

(v®t)c =v ®tcr P(v)) = y(v)1e
[1/)('0)7(‘)] c.

It can therefore be lifted to a C-algebra map of C{V ® T'} into
P in view of Remark 1.2.1. Hence there exists a (necessarily
unique) C-algebra map ¥ of S into P such that ¢ — ¢ and
v®t > Pw)® forall g € Q, v € V, t € T. Such a map
will be called the T-substitution determined by v (relative to
v:T — Ends(P)).

For now the particular choice of P and y we are interested
in is P = @ and <y defined as follows. Recall the map p: U —
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Endg(Q) (see section 5.5) and the inclusion map G — Ends(Q).
The observations cg = gc9 and

p(d)g — gp(d69) = dg— gé? =0

show that the hypothesis of Lemma 1.1.4 is satisfied, and hence
there is a C-ring map v : T — FEndg(Q). Until further notice
the term T-substitution will refer to the - just described.

We are now in a position to define the notion of 7-identity.
Fix any C-basis X of V. Let I be a nonzero ideal of R. Then
an element ¢ of S is said to be a T-identity on [ if ¢ is mapped
to 0 under all T-substitutions ¢ for which ¥(X) C I. It is
straightforward to see that the set of all T-identities (the I may
vary, of course) is an ideal of S, and we denote this ideal by
Gr(Q; R).

The use of the ring S = Q¢{V ® T'} as the framework for
T-identities has the advantage that ”basis-free” arguments can
be used. On the other hand the tensor product notation may
not have an immediate suggestive appeal for denoting a ” vari-
able”, and so we shall indicate here an alternative but equivalent
description. Let W be any right C-basis of U (we shall in the
sequel usually take W to be the particular PBW basis given in
section 5.5). Then

WG ={wg|weW, ge G}

is a right C-basis of T' which we denote by 7;. Let X be any
C-basis of V. Then the set

X@T={z®t|ze€X, teT}

is a C-basis of V ® T, and we may accordingly write C{V ® T'}
as the free algebra C<X ® T;> (as indicated by Remark 1.2.4).
Since the set X ®7T is in one-one correspondence with the Carte-
sian product X™* we will the write C<X ® Ti>= C<XT1 >,
it being understood that the element z*9 means the element
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z ® wg. Therefore we may write S alternatively as Qc<XTi>.
If ¢ : X — @ is a set-theoretic map then the unique C-algebra
map of & into Q given by ¢ — ¢, * = ¥(z)"®, ¢ € Q,
x € X, t € T, will be called the T-substitution determined
by 9 , and ¢ € S is a T-identity on I if ¢ is mapped to 0 by all
T-substitutions for which ¥(X) C I.

Next, if C is any field we shall replace the usual setting
S(C; C) by asimpler setting as follows. First, since the situation
will arise when C is the extended centroid of R and we thus have
both S(C; C) and S(Q; R) to contend with simultaneously, we
shall pick IV to be a C-space with basis A disjoint from V' with
basis X. Then

S(C; C)=8(C) = C{N@T} = C<AT> .

Clearly the commutator ideal I; of S(C) is contained in G(C; C)
(the ideal of all T-identities of C). Therefore it is natural to
replace S(C) by the algebra

So(C) = C{N @ T(CO) Y/

which in turn may by identified with the (commutative) poly-
nomial algebra C[AT!]. Since any T-substitution of S(C) into C
maps I; to 0 it induces a well-defined C-algebra map Sy — C,
which we continue to refer to as the T-substitution determined
by ¥ : N — C. Accordingly a T-identity on C will mean any
element of So(C) mapped to 0 by all T-substitutions.

Finally, when we study the structure of T-identities in sec-

tion 7.7, it will be useful to have available the extended setting
of R

S(@; R) = Si1(R) = 8(C) ®c S(R).

More will be said about S;(R) in section 7.3.
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7.2 Trivial and Reduced T-identities

We continue to assume R is a prime ring together with the ter-
minology developed in the preceding section. Again we suggest
that the reader review section 5.5 since we will feel free to use any
remarks and notations made there without further comment.
In section 7.1 we set the stage for the study of T-identities of
R by defining the setting S for R in two equivalent formulations

S=Qc{V ®: T} = Qe<XT>

where V is a C-space with C-basis X, T = T(R) = U «x G with
right C-basis Ty = WG, W a PBW right C-basis of U. Since
the elements of S corresponding to the trivial identities (A;)-
(A4), (B1)-(Bs) listed in the preceding section are all equal to
the zero element of S we define the set Iy of trivial T -identities of
R to be the ideal of S generated by all elements of the following
two forms:

(C1) v®tu—[a,v®1t], p=ad(a) € D;;
(Cy) v®th—s5(v®t)s, h=1inn(s) € G;
whereve V, teT.
It will also be useful to have an alternate formulation of I;. In

fact, we claim that I, is the ideal of S generated by all elements
of the following forms

(C) z® Agu—[a, ® Agl, = ad(a) € Dj;

(C3) z®Agh— sz ® Ag)s, h=inn(s) € G;
where z € X, A € W, g € G. Indeed, we may assume without
loss of generality that a generator of type (C7) has the form

zc ® Agp — [a, z¢c ® Ag]. We note that zc ® Ag = 2 ® cAg.
Using the formula (5.25) from section 5.5 we may write

cAg = Z Asgengs, As €W.
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Therefore we may furthermore assume the generator is of the
form 2 ® Agu — [a, z ® Ag] (since cu = pc), which is of the
desired one. A similar argument works for generators of type
(C%), and so our claim is established.

We now take T to be the right C-basis of T dictated by the
basis B = By U B; of D (see section 5.5) and the representatives
Gyo of G modulo G;. Thus T} = WG = WoW;GoG;, where W =
WoW; is a PBW basis of U, W; a PBW basis of U; = U(D;).

It will be useful in the sequel to ”translate” the basis B of D
and the set of representatives G in the following manner: given

h € G weset B"={6" | § € B} and h™'Go = {h71g | g € Go}.

Lemma 7.2.1 (%) B¢ is a right C-basis for D modulo D;;
(ii) B! is a right C-basis for D;;
(i13) h™*Gy is a set of representatives of G modulo G;.

Proof. Suppose ¥ 6%¢; = ad(a) € D;, §; € By, ¢; € C.
Writing

Soote; =3 h7'he; = b (30 8;¢h ) h

we then obtain ¥ 5jc;-‘_l = ad(a"™"), which forces each c;-‘_l, and
hence each c;, to equal zero. Next, given § € D, we may write

6 = ( h_l)h = (Z 5-cj)h = Zh_léjC]‘h
= Y h'hhTIeih =) 87k

Together these remarks prove (i). A similar argument, along
with the observation that if u = ad(a), then u* = ad(a"), estab-
lishes (ii), and the proof of (iii) is immediate.

The bijection between B = ByUB; and B = BhUBh given in
Lemma, 7.2.1 of course induces a well-ordering <” of B" d < pif
and only if §* <* uh. We can then form the well-ordered PBW
right C-basis W = WEW? of U with respect to (B, <*).
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We now state our aim in this section: to show that S is the
(semi)direct sum of the ideal [y of trivial T-identities and the
subring £ = Qc<XTe>, where Ty = WyGy. We shall refer to £
as the subring of reduced elements of S relatively to (B, <).

Our first step toward this goal is to note that since ¢ € C,
6 = ad(a) € D;, and inn(s) € G; are each elements of Endc(S)
it follows from Lemma 1.1.4 that there is a C-algebra map p :
T, = Endc(S) where T; = U; <« G; C U « G = T extending
a: D; = Endc(S) and 8 : G; = Endc(S).

Next we claim that WGy is a right T;-basis of T. Indeed,
WoW,iGoG; is a right C-basis of T and the equation I'g = ¢I'9,
' e W, g € Gy, shows that WyI'y generates T as right T;-
module. Now suppose that

ZAQQAQ =0, AeW,, g€ Gy, QAQ €T
A9

Using the fact that W} is a right C-basis of U; = U(D;) we write
Qag = 3. wIhcaguwn, whence

0=3 AgQa, =Y Agw’hcagun = Y Awghcaguwh,

where the summation runs over A € Wy, g € Gy, w € W,

h € G;. Thus cagyr = 0 and so each Qa, = 0, which establishes
the claim.

We proceed to define a C-space map ¥ : VT —» S. In
preparation for this we again recall the commutation formula

A= AB AN, Ay €Wy, cEC

(see (5.25) in section 5.5 for details). From this we see that, for
ceC,AeW,, g € Gy,

cAg = ZAsgCAgs,
3
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—

where cags = c®+9. We now claim that the map from V' xT to S
sending (v, 3 AgQa,) to (v ® Ag)?(a9) is balanced. Indeed,
on the one hand

(ve, Y Aglag) — D (ve® Ag)”(n‘”)
e ehgp
= Z ('U & AsgCAgs)p(QAg)

A,g,s

— Z ('U ® Asg)p(cAgaQAg).

A,g,s

On the other hand

(’U, CZAQQAQ) = (’U, Z AsgCAngAg)

A,g,s

— Z (fU ® Asg)P(CAngAg).
A,g,s

We therefore have an additive map ¥ : V® T — &, and one
easily sees that ¥ is a C-space map.

U can be lifted to a C-algebra map of C{V ® T} into S,
and this map together with the inclusion map of ¢} into S can
be lifted simultaneously to a C-algebra map ¢ : S = S. Any
element of the form v ® ¢, v € V, t € T, can be written as a
sum of elements of the form x ® AgQ), z € X, A € Wy, g € Gy,
Q € T;. Since it is easily seen that z® AgQ — (z® Ag)?™® lies in
Iy, it follows that S = Iy + £. Furthermore the generators (C])
and (C) of Iy are clearly sent to zero by v, and so ¥(I) = 0.
However v acts as the identity map on £, whence [y,NE =0
and § = I ® £. We have thus proved

Theorem 7.2.2 Let S = Qc{V ® C} = Qc < X" > be the
setting of R, Iy the ideal of trivial T-identities, and £ the subring
Qc<XT>C S where Ty = WyGo. Then S =TI, @ E.
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The generators of I are of a particularly nice ”linear” form,
which makes it easy to decompose various subspaces of S into
trivial and reduced components in a very concrete way. Of spe-
cial interest to us are certain ”linear” subspaces of S. For in-
stance most of the proof of Kharchenko’s Theorem in section 7.5
takes place in the (@, Q)-bimodule Q2z71Q. We are also inter-
ested in the situation where only derivations and automorphisms
are involved. We therefore set in place the following terminology:
G* = Aut(R), T* =U x G* C T, Gy = GoNG*, T} = WG,
T3 = WoG5. We also recall (from the first part of the proof of
Theorem 7.2.2) the C-algebra map p : T; — Endc(S) extending
the maps a : D; = Endc(S) and B : G; —» Endc(S).

Let us denote by Z the set of generators of I (given in the
form (CY) and (C%)):

Tt@tp—a,zQt), zQ@th— s (z®1t)s

z€ X,t€T, p=ad(a) € D;, h =1inn(s) € G;. We set Z* =
{z€Z|teTy}, Z,={2€ Z |z isfixed },and Z* = Z*NZ,.
As we have already noted in the proof of Theorem 7.2.2, any
variable v ® t is a sum of variables of the form z ® AgQ, z € X,
A €Wy, g € Gy (or G§ if no automorphisms are involved),

2 € T;. As a corollary of Theorem 7.2.2 we may then conclude
from writing

T@AIN=2® AgQ — (z® Ag)PD 4 (z.® Ag)"®D

that the following decompositions into 7T-frivial and reduced
components hold. '

Corollary 7.2.3 (3) QXT'Q = QZQ & QX™Q;
(i) QXT Q = QZ*Q & QX Q;
(14) Q2" Q = QZ,Q & Q2™Q;
(v) Qz11Q = QZ*Q & Q75 Q.
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Finally, let $* = Qc<XTi>, £€* = Qc< XT3 >, and I} the
ideal of &* generated by Z*. Since S* is generated as a ring by
QXT'Q, Corollary 7.2.3(ii) together with Theorem 7.2.2 imply

Corollary 7.2.4 S* =I; ® £

7.3 Related Rings

Let R be a prime ring with extended centroid C'. Henceforth
we may frequently abbreviate ” centrally closed” as ”closed”. In
section 7.1 we introduced several rings related to R and C:

S(R) = Qc{V®cT(R)}, (the setting of R),
Sp(C) = C[AT©)], (the setting of C), and
Si(R) = S ®c S(R) (the extended setting of R).

By Corollary 1.4.11, Theorem 2.3.5, and Theorem 2.4.4, each of
these rings is a prime C-algebra with 1, with S(R) closed over C
(i.e, its extended centroid is equal to C). If P denotes any one
of these rings we shall be interested in considering T(P) (in case
P is closed) or Endg(P) (in any case). Both T'(P) and End(P)
are C-rings. The important connection we shall make between
R and any of these rings P will be to define certain C-ring maps
from T'(R) to T'(P) or Endg(P) which preserve a sufficient part
of the structure. Our primary motivation is the need later on for
making T-substitutions into larger rings than . For instance,
in section 7.4 we will need to make the substitution z — zd,
d € @, of X into S. In section 7.7 it will prove useful to make
the substitution of X into &; given by z — z + Ay, z,y € X,
A €A

We begin by translating Lemma 1.1.4 to our present context.

Lemma 7.3.1 Let A be a C-ring with 1, let oo : D(R) — A be
a differential C-Lie algebra map, and let § : G(R) — A be a
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group homomorphism into the units of A. Suppose

cd® = ¢, de, & =d (7.1)
5ogf = P (69, e, (6% =(5%° (7.2)

forallce C, g€ G, § € D. Then a and 3 may be uniquely
extended to a C-ring map v : T(R) — A.

Proof. We know (from the definition of U(D)) that o may
be extended to a C-ring map of U(D) into A. Since U(D) is
generated as a ring by D(R) U C, we see by Lemma 1.1.4 that

«a and @ may be uniquely extended to a C-ring homomorphism
of T(R) into A.

Let P be a closed prime algebra over C. D(P) and G(P)
are primarily subsets of Endg(P). They are also embedded in
T(P) (with some abuse of notation we have been writing them
as being contained in T'(P)), but some care must be exercised
when considering situations where T'(P) and Endg(P) are being
discussed simultaneously. For instance, an equation involving
the elements of D(P) and G(P) may hold in Endg(P) whereas
the corresponding equation in T'(P) need not hold. Fortunately,
because of the special nature of equations (7.1) and (7.2), we
have the following useful corollary of Lemma 7.3.1.

Corollary 7.3.2 Let R be a prime ring with extended centroid
C and let P be a prime algebra over C. Let o : D(R) — Der(P)
be a differential C-Lie algebra map and § : G(R) —» G(P) a
group homomorphism. Suppose the equations (7.1) and (7.2)
hold in Endg(P). Then:

(i) o and B may be uniquely extended to C-ring map =y :
T(R) - Ends(P);

(i) If P is furthermore closed over C, then the equations
(7.1) and (7.2) also hold in T(P) and a and B may be uniquely
eztended to a C-ring map v : T(R) — T(P).
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We now take up the connection between R and S = S(R) =
Qc{V ® T(R)} in the following series of lemmas. We note that
Der(S) = D(S) (see Theorem 2.4.4).

Lemma 7.3.3 There is a differential C-Lie algebra injection
a : D(R) = D(S) given by & + 6% where §* sends ¢ — ¢°
and v @t tov®1ts, § € D(R), ¢ € Q, v € V,t € T(R).
Furthermore a right C-basis B(S) of D(S) may be chosen so
that B(R)* C B(S), and By(R)* C By(S).

Proof. For 6 € D(R), with the aid of Corollary 1.2.3, let §¢
be the derivation of C{V ® T(R)} determined by ¢ ++ ¢’ and
v®t— v®ts. By Remark 1.4.4 the derivation ¢ + ¢° and &%
can be simultaneously lifted to a uniquely determined derivation
of S, which we again denote by §°. It is then straightforward to
verify that § — 6% is a differential C-Lie algebra map of D(R)
into D(S). That « is injective follows immediately from the fact
that g% = ¢° for all ¢ € Q. Thus a right C-basis of D(S) may be
chosen so as to contain B(R)*. Next suppose that §* € D;(S),
that is, 6 = ad(¢) for some ¢ € S. In particular we have
¢ = q¢* =4, q| for all ¢ € Q. We then map S into @ by sending
every variable x € X to 0 and ¢ to ¢, ¢ € Q. If a denotes the
image of ¢ the preceding equation becomes ¢° = [a, g], whence
§ € D;(R). As a result Byo(R)* is a right C-independent set in
D(S) modulo D;(S), and so a basis B'(S) = By(S) U Bj(S) of
D(S) may be chosen so that By(R)* C By(S).

Lemma 7.3.4 There is a group injection § : G(R) — G(S)
given by g — g® where g? sends q to ¢ and vt to v ® tg,
g € GR), g € Q veV,te T(R). Furthermore given
a set of representatives Go(R) of G(R) modulo Gi(R), a set
of representatives Go(S) of G(S) modulo G;(S) may be chosen
such that Go(R)? C Go(S). Finally (Aut(R))? C Aut(S), and
(Antiaut(R))? C Antiaut(S).
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Proof. For g € G(R) the additive map of the right C-
space V ® T(R) determined by v ® t = v ® tg is o-semilinear
where o denotes the automorphism ¢ — ¢4 of C. By Corol-
lary 1.2.2 we may extend this map to a o-endomorphism g”
of C{V ® T(R)} (resp. c-antiendomorphism) if ¢ € Aut(R)
(resp. g € Antiaut(R)). Clearly (g71)” is the inverse of g?
and so ¢g? is a o-automorphism (resp. o-antiautomorphism) of
C{V ® T(R)}. The (anti)automorphism g of @ is also a o-
(anti)automorphism of the C-ring @, and so by Remark 1.4.2
and Remark 1.4.3 g: Q — Q and ¢? can be simultaneously ex-
tended to an (anti)automorphism of & which we again denote by
g?. Tt is easily verified that g — ¢? is a group homomorphism of
G(R) into G(S) with (as we already know) Aut(R)? C Aut(S)
and Antiaut(R)? C Antiaut(S). That 3 is injective follows from
the fact that ¢ = ¢9 for all ¢ € Q. Next suppose g? € Gi(S),
that is, ¢? = inn(¢) for some unit ¢ € S. In particular we have

¢ =q" =¢lqp forall qeQ.

We then map S into @ by sending every z € X to 0 and ¢ to g,
g € Q. The image a of ¢ is thus a unit in @) and the preceding
equation becomes ¢ = a~qa, i.e., g € G;(R). Consequently, if

(gg)_l 9 = (92_191)[3 € Gi(S)

for g2, g1 € Go(R), we have g = go, and so we can choose Go(S)
such that G()(R)ﬁ - G()(S)

Theorem 7.3.5 Let o : D(R) — D(S) and § : G(R) — G(S)
be the mappings given in Lemma 7.8.8 and Lemma 7.8.4. Then:
(i) a and 3 may be uniquely extended to a C-ring map t — t'
of T(R) = Ends(S);
(ii) o and 8 may be uniquely extended to a C-ring injection
v:T(R) = T(S) such that To(R)? C Ty(S).
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Proof. In either (i) or (ii), in order to show that & and § can
be simultaneously extended, it suffices in view of Corollary 7.3.2
to show that equations (7.1) and (7.22 hold in Ends(S). It
is immediate that (7.1) holds since ¢ = ¢?, ¢ € C, by the
definition of . To verify equation (7.2), it suffices to show that
(7.2) agrees on the set QU (V ® T'(R)), which generates S as a
ring. Now using the definitions of a and §, we see that

q(gﬂ)—laagﬂ _ q(g—l)ﬂaagﬂ _ qg—ldg — q,yg _ q(&g)a
(v® t)(gﬂ)‘ ¢ — y® tg~ g =v @189 = (v 1))

for all § € D(R), g € G(R), g € Q,ve V,teTR). It
remains to be shown in (ii) that the extension v of o and
is injective and that To(R)" C Tp(S). From Lemma 7.3.3 it
follows that « induces an injection of B(R) into some right C-
basis B(S) and so, with the PBW theorem in mind, the PBW
basis W(R) determined by B(R) is mapped injectively into the
PBW basis W(S) determined by B(S). Thus v induces an
injection on U(D(R)) into U(D(S)) and, since by Lemma 7.3.4
B is an injection, it follows that v is an injection of T'(R) into
T(S). Finally, from By(R)* C By(S) (Lemma 7.3.3) implying
Wo(R)T C Wy(S) and Gy(R)?P C Go(S) (Lemma 7.3.4), we
conclude that To(R)? C To(S).

We move on now to the connection between R and Sy(C).
For the present purposes it is best to view Sg(C) in its original
form S/I;(C), where I;(C) is the commutator ideal of S(C),
rather than in its alternative form C[AT1(©)]. The elements of
So(C), cosets by nature, will be denoted by ¢, ¢ € S(C). Let § €
D(S(C)). Since any derivation of a ring leaves the commutator
ideal invariant, it follows that & induces a derivation § of Sy(C)
by defining: ¢ — #%, ¢ € S(C). We thus have a differential
C-Lie algebra map: D(S(C)) — Der(Sy(C)). Similarly there is
a group homomorphism G(S(C)) — G(S,(C)) given by g — 7,
where g sends ¢ to 9, § € S(C). The equations (7.1) and
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(7.2) being easily verified, it follows from Corollary 7.3.2 that
§ — 6 and g — g may be simultaneously lifted to a C-ring map:
T(S(C)) — Ends(So(C)). A connecting link between R and
So(C) is now indicated by the following

D(R) — D(C)— D(S(C)) — Der(S(C)),  (7.3)
G(R) — G(C) = G(S(C)) = G(S,(C)), (7.4)
T(R) = T(C) = T(S(C)) = Ends(S(C)).  (7.5)

In (7.3) the composite differential C-Lie algebra map will
be denoted by § — &, where § sends U® T to v®7T8, v €N,
T € T(C), 6§ € D(R).

In (7.4) the composite group homomorphism will be denoted
by g — g, where g sends v® 7 to v @ 7g.

In (7.5) the composite C-ring map is determined by the map-
pings in (7.3) and (7.4).

Earlier in this section we have defined a differential C-Lie
algebra map § — ¢’ of D(R) into D(S(R)), where ¢ sends ¢ to
dandv@ttov®ts, g€ Q,veV,te T(R). Also we defined
a group homomorphism g — ¢’ of G(R) into G(S(R)), where ¢’
sends ¢ to ¢9 and v®t to v®tg. Together these induce a C-ring
map T(R) — Ends(S(R)).

Now consider the extended setting S)(R) = So(C) ®¢ S(R).
Let § € D(R). By Remark 1.2.9 6 : So(C) — So(C) and &' :
S(R) — S(R) can be uniquely extended to a derivation of S;(R)
which we denote by §%. It is straightforward to verify that o:
D(R) — Der(S:(R)) is a differential C-Lie algebra map.

By Remark 1.2.7 and Remark 1.2.8 § : 55(C) — Sy(C) and
g : S(R) — S(R) can be extended to an (anti)homomorphism
of S;(R) into itself, which we denote by ¢g?. Clearly (g‘l)ﬂ is
the inverse of g? and so ¢# is an (anti)automorphism of S;(R).
It is easily shown that 3 : G( ) = G(S1(R)) is a group homo-
morphism.

For the maps o and 3 defined in the preceding paragraph one
proceeds to verify the equations (7.1) and (7.2). It suffices to
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show they agree on ring generators of S; (R), namely on elements
of the form ¢ (¢ € Q), v®7 (v € N, 7 € T(C)), and v ® ¢
(veV,teT(R)). We leave these details to the reader. Hence
by Corollary 7.3.2 we have the following

Remark 7.3.6 Thereis a C-ring map vy : T(R) — Ends(S1(R))
stmultaneously extending o and .

Finally, let P be any C-algebra with 1 containing @, and let
v : T(R) — Ends(P) be a C-ring map. By Remark 1.2.6 we
have

Remark 7.3.7 Any T-substitution So(C) — C and any T-
substitution S(R) — P (relative to y) can be uniquely extended
to a C-algebra map S;(R) — P.

The import of Remark 7.3.7 is that we can now make T-
substitutions involving ”central” indeterminates, which will be
useful in section 7.7.

7.4 Linear Formulas

In the study of reduced T-identities coming up in section 7.5 the
crucial arguments will occur when the T-identity lies in L, =
QzTQ. We recall from Corollary 7.2.3(i) the decomposition of
the (Q, @)-bimodule

Qz"Q =QZ:Q® L,
into its T-trivial and reduced components. Any element ¢(z) €
L, may be uniquely decomposed as follows

(b(il?) = Z ¢!I(x)7

9€Go

$o(z) = Y day(), (7.6)

AEWy

Pag(z) € Qz9Q. (7.7)
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The support of ¢(z) (briefly, sup(¢)) consists of all g € Gy for
which ¢a 4(z) # 0 for some A € Wy (or, equivalently, ¢, # 0).
The set of all such A being finite (given ¢ and g) and W, being
linearly ordered, there exists a unique largest such A; we call it
the leading g-term and denote it by Ay .

We next define a useful partial ordering < for L, which has
the property that every nonempty subset .S of L, contains a least
element ¢ (in the sense that if ¢ € L, and 9 < ¢ then ¢ & 5).
We define < as follows. For ¢, € L, we say that ¢ < 9
precisely when either of the following two conditions holds:

(1) sup(¢) is a proper subset of sup(v);

(2) sup(¢) = sup(v), Dpy < Ay, for all g € sup(p), and
Ayg < Ay g for some g € sup(s).

Otherwise ¢ and ¥ are not compatible. Since W is well-ordered
it is easily seen that < is indeed a partial well-ordering for L.

Remark 7.4.1 If ¢1,¢2 € L, with sup(¢1) C sup(¢) and

Agyg < Agyyg for all g € sup(¢r), then for o € Ly ¢ < ¢
implies P < ¢s.

Next let b € G and let L = Q27 Q, where T = W (h™1G)
(recall Lemma 7.2.1 and the subsequent discussion for details).
L" is endowed with the partial well-ordering <" based on
(BE, h~'G,) and the C-space isomorphism between L, and L!
given by 729 s 22" A € Wy, g € Gy, AP = h™'Ah € Wt
is order preserving. In particular we make the important obser-
vation that ¢ is a minimal element of a subset S of L, if and
only if ¢" is a minimal element of corresponding set S* in L.

For future reference we recall from section 2.5 some defini-
tions concerned with the tensor product @° ®s @. For § =
S cr ®dy ¢, di € QQ we have

qu = chqdkaq€Q>
= Y d®d, 5€D(R),
B = Y cd®di, g€ G(R).
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For J € Z(R) N, denotes the subring of Q° ®¢ @ generated by
all elements of the form r @ r', r,r' € J.

At this point we recall the C-ring map ¢t — t' of T(R) into
FEndy(S) given by Theorem 7.3.5. We let p; denote the 7-
substitution of S into S determined by z — zd relative tot — ¢/,
d € Qt € Ty (all other indeterminates in X are sent to 0). With
some abuse of notation, we may sometimes write py(¢) as ¢(zd),
and it is understood that (zd)! means (zd)*. Now for a,b € @,
A € Wy, g € Gy, we have

pa(az?9b) = a(zd)P9'b = a(zd)>'9b.
Applying the Leibnitz Formula to (zd)2" we then can write

(az9b) = az®9dIb +(z) if g€ Auto(R),
pa\aT ad9z?9 +(z) if g € Antiauty(R)
(7.8)
where sup(¥) C {g} and Ayy < A. It follows from (7.8) that
pg maps L, into itself. Clearly the map: @ — Endg(L,) given
by d — pg is additive. Fixing ¢ € L, we then see that the map
d > pa(¢) of Q into L, is additive, and from this we obtain an
additive map ¢ : Q° ®¢ @ — L, given by d ® ¢ — pyr. where
T, is the right multiplication by ¢. Clearly ¢ — 5 is additive
and so we have a biadditive map: L, X ¢° ®¢ Q@ — L. given
by (¢,8) = ¢-8 = ¢(B), B € Q°®Q, ¢ € L,. Thus for
b=Ydi®@cr € Q°®Q and ¢ € L, we see that

¢ 8= pa(ex =Y dladi)cr. (7.9)
In particular, for a,b,¢,d € Q, A € W, g € Gy we have
(az?9b) - (d ® ¢) = pa(az®b)c (7.10)
Together (7.8) and (7.9) imply

sup(¢g - B) € {g}, (7.11)
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Dppg < Dpgs (7.12)
sup(¢p- ) C sup(4), (7.13)
(0-B)g = -8 (7.14)

~ We now look at the special case of (7.9) where ¢(z) = az?9b,
a,b € Q, A€Wy, g€ Auto(R), and we set § = Y di ® ck.
Together (7.9) and (7.10) enable us to write

¢,6 = Za(xdk)A'-‘"bck

k
> ax®dibey, + ()
k

= az®(b- %) + Y(z) (7.15)

where sup(y) C {g} and Ay, < A.

More generally we consider ¢ € L, g € sup(¢)NAuty(R), set
A = Ay, and write da , = 3; a;29b;, with {a;} C-independent
and {b;} C-independent. Then from (7.15) we obtain the for-
mula

i

(¢- Zaz 9(b; - B9) (7.16)
We thus have a criteria for testing when Ag.3, < Ay 4, namely

Remark 7.4.2 Given the above notations Ay.pq < Ay g if and
only if b; - B9 =0 for each 1.

The following lemma and its corollary will be of crucial im-
portance in section 7.5.

Lemma 7.4.3 Letd € Q, A = 6102...6, € Wy, and let s > 1
be the largest subscript such that §; = 6, = ... = d; (necessarily
ds < 8541, and in case of characteristic p, s < p). Then

(zd)2 = 22d + s2%d® + (),

where () = 0203 ... 0, and the leading term Ay of ¥ is less than
Q.
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Proof. Weset A; = 61...0;—16i41-..6n,1=1,2,...,n. For
1 <17 < s we see that A; = 2, whereas for s+ 1 < i < n we
have

Ai:61‘--65---6i—16i+1---6n <(52(53...(5n=Q.

Now, expanding (zd)®" according to the Leibnitz Formula we
may conclude that

(zd)® = z®d+ S zfid% 4+ 0(z) (|Asa] <n—1)

i=1

= z8d+s2%d" + Y z%d% +0(2)
i=s+1
= z8d 4 2% +p(z) (Ay, < Q).

The proof is complete.

Corollary 7.4.4 Let ¢ = az®b, a,b€ Q, A =665...5, €W,
s = s(A) as described in Lemma 7.4.3, J € Z(R), and 8 € Nj.
Then:

¢-B=az®(b-p)+ saz®(b- ) + p(x)
where Q = 6203...6, and A,y < Q.

Proof. We set =3 dx ® ¢k, ¢k, dx € J. By Lemma 7.4.3
(a:dk)A' = z%d, + sxndz‘ + (),
with Ay, 1 < Q. Therefore

¢-8 S d(zdi)ex = 3 a(zdi)® bex
P

k

= Za [:I;Adk + S:L‘Qd;zl + ’(/)k(l')] bey,
k

= az®(b- B) + sazx®(b- %) + p(z),

where A,; < ), and the proof is complete.
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7.5 Reduced T-identities

We are now able to attain one of the main goals of this book,
namely, to establish the fundamental result of Kharchenko (to-
gether with Chuang’s generalization) which says that if a prime
ring R satisfies a nonzero reduced T-identity then R is GPI
(Theorem 7.5.8). _

Most of the arguments will take place in the special situa-
tion where the T-identity is linear and we shall draw heavily
upon the material developed in section 7.4. We first recall from
Corollary 7.2.3 various linear settings and their decompositions
into T-trivial and reduced components

QX"Q QZQ & QX™Q,
Qz"Q = QZQ® L, Ly =Qz™Q

and the particular cases where no antiautomorphisms are in-
volved:

QXTQ = QZ'QeQXTiq,
Q<1Q = QZQeL, Li=Qd5Q.

It turns out that the proof of the main result (Theorem 7.5.8)
ultimately rests on Lemma 6.2.1, which we now restate as

Lemma 7.5.1 Let h € Antiaut(R) and let 0 # ¢ € QzQ +
Qz"Q be a T-identity on some 0 # I aR. Then R is GPI.

Also useful will be the following corollary of Corollary 6.1.3.

Lemma 7.5.2 Let g € G and let ¢ € Qz9Q be a T-identity on
some (0 #I<R. Then ¢ = 0.

Proof. Simply note that v (z) = ¢ (xg_l) € QzQ is a GPI
on I9 and apply Corollary 6.1.3.
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Lemma 7.5.1, Lemma 7.5.3 and Lemma 7.5.4 will, taken to-
gether, show that if there is a nonzero reduced linear T-identity
on R then R is GPI (Theorem 7.5.5), which in turn will rather
quickly yield Theorem 7.5.8. Along the way sharper results
will be obtained in case no antiautomorphisms are involved and
char(R) = 0.

The following lemma is the crucial step in the proof of The-
orem 7.5.8.

Lemma 7.5.3 Let ¢ € L, be minimal with respect to the prop-
erty that ¢ # 0, ¢ is a T-identity on some I, and sup(@) C
{g,h} for some g € Auto(R) and h € Antiauty(R). Then
Ay =1 for each f € sup(9).

Proof. Without loss of generality we may assume that g =1
(since ¢ is minimal in L, with the given property if and only
if ¢’ is minimal in L/ with the same property; see section 7.4
for the details). Furthermore it suffices to show that Ay; =1
(since Ay = 1ifand only if Ags ; =1). Suppose A = Agy # 1.
Then we write A = 6;6,...6, € W, and set 2 = 6303 ...08,.

We claim that without loss of generality we may assume that
da1(z) = az®b. Indeed, we may write

m
A
da1 =) azb;
i=1

with {a;} C-independent and {b;} C-independent, a; # 0 # b;.
By Remark 2.5.5 there exists § € N; such that b, - 8 # 0,
b;-B=0,i>1. Now by formula (7.16), with g = 1, we have

(Pa,1 - B) Zaz (bi - B) = a1z (by - B).

Now 0 # ¢ - B € L, is a T-identity on I, by (7.13)

sup(¢ - B) < sup(¢) € {1,h},
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and by (7.12) Ay < Ay s for each f € sup(¢ - B). Thus the
conditions of Remark 7.4.1 are met, and it follows that ¢- 3 must
also be a minimal element of L, relatively to the given require-
ments. Our claim is thereby established and we will assume that
éa1(z) = az®b where a,b # 0.

We now extend {a} to C-basis {a¢ | £ € Z} of @ and note
that {aez® | t € Ty, € € E} is a right @-module basis for L,.
We write ¢(z) in terms of this basis, being at this time only

interested in those basis elements of the form: az~ (where
Q= 0203...0,)

¢(z) = az®b+ 3 az* M+ ...+ azw' + ... (7.17)

81 > p1 > po > ... €Wy, vi,w' € Q. At this point we note that
8y > &1 > p; and so s(u;2) =1 for all ¢ (see Corollary 7.4.4 for
the definition of s(A)). Now choose J C I such that aJ, bJ, v}J,
w'J are all contained in R. (Remark: our eventual aim is to show
that 6; + 3 wa; = ad(u) for suitable a; € C u € @, which will
be a contradiction to 8y, u1, o, - .. being right C-independent
modulo D;). Let § € N;. We compute 95(z) = (¢-5)(z), being
only concerned in knowing the terms beginning with az® and

z%t. Note that 14(z) remains a T-identity on I. Applying the
full force of Corollary 7.4.4 to (7.17), we see that

Yp(z) = az®(b- ﬂ) + saz™ (b ﬂ‘”) +
+ Z az(v) - fH) + ...+ azt(w' - B) +
= adbp)+

Plsb B+ 0 - g+ B +

where s = s(A) # 0 (recall s < p in case of characteristic p, and
s(u:2) = 1 for all 7). Since s is invertible, we can set v; = s~1/,

w = s~ w' and rewrite 15(z) as follows:

Yo(z) = az®(b- )+
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+saz? [b- B+ v fH +w- B +...(7.18)

Now we define f : JbJ — R as follows:
b-Brrb-fr+Y v pM +w-B, BeN,.

We note that v; and w as well as b are now fixed elements of @
independent of 3, that JbJ is an ideal of R, and that the image
of f does indeed lie in R (since bJ, v;J, w'J and hence v;J, wJ
all lie in R). To show f is well-defined suppose b- 5 = 0. But
then the leading 1-term of 94(z) is less than A, which says that
Yg(xz) < ¢(z), and so by the minimality of ¢(z) we conclude
that ¢5(z) = 0. In particular we then see from (7.18) that

s|b-Br 4+ v B 4+w-Bl =0

whence

-+ v w =0

(since s is invertible).
It is straightforward to check that f is a right R-map. Indeed,
letting y € R, setting v = §(1 ® y), and noting that

v =p0'(1®y), § € D(R),

we have
b-By = by b+ vy twey
= b-ﬂ‘s‘+zvi'ﬂ”"+w-ﬂ y=f(b-B)y

Next we set u = {f, JbJ} € @,(R) and note that
wb- )= fb-F)=b-f" + Y v 4w (7.19)
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for all B € N;. Multiplication of (7.19) on the left by y € R
yields

yu(b-B) = y(b- ) + D y(vi- ) +y(w- B).  (7.20)

On the other hand, setting v = B(y®1) and using formula (2.13)
Y=yl +0y 1)
we have
wy(b-B) = ulb-y)=b-y" + 3 vy +wy
=y (0-B) +y(b- ﬂ"l; + 3y (v B)
+ Zi:y(vi BH) +y(w- ﬁl) (7.21)
Subtraction of (7.21) from (7.20) yields
(yu—uy)(b-B) =y (b- B) + Xi:y“‘ (v - B) (7.22)

for ally € R and 8 € Ny.

Finally, we extend {b} to a C-basis {b¢ | & = =} of @ with
b =b,. For each i (only a finite number) we write

V; = Zaijbj, 04 e C.
J

This only involves a finite number of b;’s, say, b = by, ba, .. ., by.
By Remark 2.5.5 we may choose v € Ny such that b-y = by # 0

and b;-y= 10,7 > 1. We note that by € JbJ C J. Then, for any
B € Ny, we use (7.22) to compute

= vﬂ +Zy“‘ - (v8))
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= Y% (bo- B) + 2 iy (b - (v0))

— Y- B)+ Ty ((b-7) - H)

= y%(bo- B) + Zaiy“"(bo - B) (o =0y €C).
Therefore
(y'” + 2 ey — [, ul) (bo-8) =0
for all y € R and # € N,;. Hence
Y+ 3oyt = [y, u]

for all y € R, in other words,

& + Z pic; = ad(u) € D;.

This is a contradiction since &1, p1, o, ... are C-independent
modulo D;, and the proof is complete.

The next lemma shows that if there is a nontrivial linear
T-identity then the conditions of Lemma 7.5.3 will be fulfilled.

Lemma 7.5.4 If ¢ € L, is minimal with respect to the property
that 0 # ¢ is a T-identity for some 0 # I < R, then sup($) C
{g,h} for some g € Auto(R) and h € Antiauty(R).

Proof. If the lemma is false we claim that we may assume
without loss of generality that sup(¢) contains two automor-
phisms g; and g,. Indeed, if g and h are two antiautomorphisms
in sup(¢), then sup (4?9) contains the two automorphisms 1 and
g~ 'h, and our claim is thereby established. Therefore let g;,
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i = 1,2 be two automorphisms in sup(¢), and let A; = Ay g be
the leading g;-term of ¢. We write

m;
= Aigip. . 4 =
Gnig = D iz % by, i=1,2
j=1

with {a;1, @iz, - - . , Gim,; } C-independent and {bi1, bigy - - -, bim, } C-
independent. We claim that by, is left independent of

bl2) b137 e ’blml)b2la b227 rery b2m2

with respect to

{91191,-'-1.9111{92)92’--"92'
m; times m. times

If not we have (in view of Remark 2.5.8)
my msa m1
b11 S Z Mgl_lglblj + ZMgrlgzsz = Z Cblj,

a contradiction to b1, bya, ..., b1m, being C-independent. Now
by Theorem 2.5.9 there exists # € Ny such that

bll'ﬁg1 3& 0) blj'ﬂglzo) j=2a37"')m1)
b2j':692 - 0) j=1,2’---)m2

The element ¢-8 € L, is a T-identity on I and, in view of (7.16),
¢ - B # 0 since b1 39 # 0. By the criterion of Remark 7.4.2 we

see that Ay.g4, < Ayg,, Whence ¢ - B < ¢ in contradiction to
the minimality of ¢. The proof is thereby complete.

Theorem 7.5.5 Let 0 # ¢ € QXTQ be a T-identity on some
0#1I<R. Then R is GPI.
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Proof. Without loss of generality we may assume that
¢ € L, for some x € X. Furthermore we may assume that
¢ is a minimal nonzero T-identity on I. Then Lemma 7.5.4,
Lemma 7.5.3 and Lemma, 7.5.1 together imply that R is GPI.

Theorem 7.5.5 may be improved upon if there are no anti-
automorphisms present.

Theorem 7.5.6 If $ € QXT0Q is a T-identity on some 0 #
I< R, then ¢ =0.

Proof. We may assume without loss of generality that ¢ €
L} and is a minimal nonzero T-identity on I. By Lemma 7.5.4
sup(¢) C {g,h}, g € Auto(R), h € Antiauto(R) and, since
¢ € Lk, we must in fact have sup(¢) C {g}. By Lemma 7.5.3
Ay, = 1and, in view of Lemma 7.5.2, we reach the contradiction
that ¢ = 0.

Before moving on to the general case of a T-identity we shall
briefly review the linearization process in & = Q¢ < XT >.
With some obvious adjustments it is basically the same as that
described in section 6.1, and the reader can refer to the account
given there (preceding Remark 6.1.5). Again we start with the
usual monomial basis M(A) of S. For each M € M(A) let
M € M(A) be obtained by replacing each z* by z, z € X,
t € Ty. Then, if v represents any of the functions deg,, deg,
ht,, ht, we define ¥(M) = v(M). For ¢ = ¥ ey M we define
v(¢) = maxy v(M) where M belongs to ¢. As a notational
example, if M € M(A) is such that deg,(M) = k, then one
may write

M = M(z) = Pyz" Pz ... g% P

where t; € Ty and P;; € M(A) containing only variables of the
form zt, z; # z, t € T. Now let ¢ = @(zy,%2,...,2,) €S. P is
k-homogeneous in z if deg, (M) = k for every M belonging to ¢,
and given a sequence 7 = (my, my,...,m,) ¢ is T-homogeneous
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if ¢ is m;-homogeneous in z;, i =1,2,...,n. Clearly any ¢ # 0
may be uniquely written as a sum Y %,, ¥, 7-homogeneous,
or, for a fixed z, Y pr, ¥k(z), ¥e(z) k-homogeneous in z, m =
deg,(v). We say ¢ is T-multilinear of degree n if ¢ is 7-homo-
geneous with each m; =1,1=1,2,...,n.

With this terminology in hand the linearization process pro-
ceeds exactly as described in section 6.1. An operation of type
A may be used whenever deg.(¢) > 1 for some z € X: deg
is preserved, height is lowered, and T-identity is preserved. An
operation of type B may be used whenever there is an z € X
appearing in some but not all monomials belonging to ¢: T-
identity is preserved, and neither degree nor height is raised. As
in section 6.1 every 0 # ¢ € & has a linearization and so we may
state

Remark 7.5.7 If0 # ¢ € S is a reduced T-identity of degree n
on some 0 # I <R, then there is a nonzero reduced T -multilinear
tdentity of deg < n.

We come now to one of the main results in the theory of gen-
eralized identities. In the case of derivations and automorphisms
it was proved by Kharchenko in 1978, and it was extended to
include antiautomorphisms by Chuang in 1990 ([143], [146], [82],
[86], [88]).

Theorem 7.5.8 Let R be a prime ring and let ¢ be a nonzero
reduced T-identity on some nonzero ideal I of R. Then R is

GPI.

Proof. The proof is by induction on n = deg(¢). The
case n = 1 is given by Theorem 7.5.5. Now let ¢ be a T-
identity of degree n.on some 0 # I <« R. By Remark 7.5.7 we
may assume that ¢ = ¢(zy, 22, . .., z,) is T-multilinear of degree
n. Let ro,rs,..., 7, € I and let ¢(z;) = ¢(z),72,73,-..,70)
be the image of ¢ under the T-substitution z! — z%, z}
r;’(t), te Ty, t=2,3,...,n, relative to the mapping v : T —
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FEnds(S) described in section 7.1. We note that ¥(z;) € Ly,
is a T-identity on I. If v(z;) # 0 we are again finished by
Theorem 7.5.5. Therefore we may assume (z;) = 0 which
implies that ¢ maps to 0 under the substitution zi — r, € T
for any choice ry € I, t € Tp. Thus the image p = p(za,...,Z,)
of ¢ under the substitution zt — ry, zt — 2!, 1 = 2,3,...,n
is a T-identity on I of deg < n — 1, and so by induction we
may assume that p = 0. Altogether this shows that ¢ maps to
0 under any substitution zt — r;, € I, t € Ty, i = 1,2,...,n.
Thus we have found a GPI x(z;;) such that the substitution
z;y — zt maps it to ¢. Hence x # 0 and R is GPI.

In case char(R) =0 and ¢ is a T-identity without antiauto-
morphisms we have the following sharper result.

Theorem 7.5.9 Let char(R) = 0 and let
0 # ¢ = ¢($1,.’L‘2, RN mn) € QC<XT6>

be a T-identity on some 0 # I<AR. Let {yx} be distinct elements
of X in one-one correspondence with the variables zt. Then
d(yir) s a GPI on Q (it is understood that ¢(y;;) is mapped to
#(z) under the substitution y; — xt, t € Ty, 1 < i < n).

Proof. The proof is by induction on ht(¢). We first claim
that it suffices to assume that ¢ is homogeneous. Indeed, we
write ¢ = Y[, dx where ¢y is k-homogeneous in z;, noting
that

m
0= ¢(j’f‘1,'f‘2, s alr‘n.) = ij¢k(T1,T2, s 7rn)
k=0

for j =1,2,...,m+ 1. Since char(R) =0, 1,2,...,m + 1 are
distinct elements in the prime field & and so, using a Vander-
monde determinant argument, each @x(ry,72,...,m) = 0, i€,
¢r is a T-identity on I, k = 0,1,...,m. Repeated use of the
above argument ultimately shows that we may write ¢ = 3 ¢,
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where each ¢, is a T-homogeneous T-identity on I. By assump-
tion each ¢, is a GPI on () whence ¢ is a GPI on @ and the
claim is established.

For ht(¢) = 0 we know that ¢ = ¢(z1,22,...,2,) is T-
multilinear (since we are assuming ¢ is homogeneous). Let
T2,73,...,Tn € I and set ¥(z;) = ¢(z1,72,...,7n) € L}. Since
3 is a T-identity on I we know by Lemma 7.5.2 that ¢ (z,) = 0.
In particular, for any choice ¢; € Q, t € T§, ¢(z1,Z2,...,Zz) iS
mapped to 0 by z¢{ — ¢, =t — r;’(t), i =2,3,...,n. Continu-
ing this process with z,, z3, ..., Z, we see that, given any choice
gt €Q,t€Ty,1=1,2,...,n, ¢ is mapped to 0 by z — ¢;,.
The conclusion of the theorem follows immediately in this case.

We now suppose that ht(¢) > 0. We may assume, say, that
r = deg, > 1. We then apply an operation of type A in the lin-
earization process, namely, for y € X distinct from z1,z,,..., 2,
we replace ¢ by

Y(Z1,. -y Tnyy) = O(Z1y .., Tno1,Zn + V)
—¢($1, .. ')m‘ﬂ) - ¢(IE1,. . ')zn—liy)

noting that ht(y) < ht(¢) and 9 is again a T-identity on I.
Then the induction hypothesis says that i is a GPI on Q. Fur-
thermore, since ¢ is r-homogeneous in z, we see that

Y(T1, . T, Tn) = (X1, Tno1,2Zn) — 20(21, ..., Tn)
(2T - 2)¢($1,IE2, s )mn)

whence ¢ is a GPI on Q (in a view of char(R) = 0). The proof
of the theorem is complete.

Under the conditions of Theorem 7.5.9, if ¢ is a T-identity
on 0 # I <« R, one may say, in somewhat looser language, that
the variables z¢ can be ”freed” (replaced by y;.) and that the re-
sulting element vanishes on all of Q. In general, if char(R) =p
and/or ¢ involves antiautomorphisms, the conclusion of Theo-
rem 7.5.9 is no longer always valid. However, as we shall show
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in sections 7.6 and 7.7, the variables z{ may be ”partially” freed
and the resulting element will be a T-identity on Q).

7.6 The Structure of T-identities
(Fields)

In section 7.5 the central result (Theorem 7.5.8) was that a
nonzero reduced T-identity on a nonzero ideal of a prime ring
forced the ring to be GPI. However, there was no special effort
to keep track of the original T-identity. In the present section
and section 7.7 our aim is to prove some results about the 7'-
identities themselves. The case in which R = C is a field, for
which we give a complete analysis in this section, is not only
used heavily in the general situation of prime rings in the fol-
lowing section, but may be of independent interest in its own
right.

Let C be a field. In this special situation we recall from sec-
tion 7.1 that the setting for C is defined to be the commutatlve
polynomial ring

So(C) = C[ATO)] = C<ATO> 1, (C)

where I;(C) is the commutator ideal of C<ATH{C) >, We recall
too in this situation that since D, = 0 and G; = 1, W = W,,
G = Gy and accordingly Ty = WGy = T

It will prove useful to further refine G as follows. We define
an automorphism ¢ € G' to be Frobenius if either ¢ = 1 or, in
case char(C) = p and 8 : ¢ — ¢? is an automorphism, g = 6
for some | € Z. We let Gy denote the set of all Frobenius
automorphisms of C' and note that G is a normal subgroup of
G. If char(C) = 0 or char(C) = p and 0 is not onto, then
Gy =1. In case char(C) = p and 6 is onto then G is the cyclic
group generated by 6, being infinite (resp. finite) if and only if C
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is infinite (resp. finite). We choose a set Gy of representatives
of G modulo G and accordingly take G = Gy to be G,;Gy =
{grfi | gr € Goy, fi € Gs}. We note in passing that if Gy # 1,
then necessarily W = {1}. Indeed, every element of C in this
case is a pth power ¢ and if § € Der(C), then (¢?)’ = pcP~c® =
0. Also, if C is a finite field of order p*, G = Gy is cyclic of
order n (hence Goy = 1) and of course W = {1}.

With the above decomposition of G in mind it is clear that
the set of all finite products

M =TT (™™ mye N (7.23)

forms a C-basis of C[AT®], where N' = {0,1,2,...}, \; € A,
AjeW, g € Gog, f1 € Gy.

In analyzing the T-identities of C it is convenient to consider
separate situations which we label as follows:

(1a) Gy =1 and char(C) = 0;

(1b) Gy =1 and char(C) =p > 0;

(2a) Gy # 1 and C is infinite (hence Gy is the infinite cyclic
group {6' |l € Z} and W = {1});

(2b) Gy # 1 and C is finite (hence Gy is the finite cyclic
group {#' | 1=0,1,...,n— 1} and W = {1}).

There are in some cases some ”obvious” T-identities of C
which we describe as follows.

In cases (1a) and (1b) there are no other ”obvious” T-
identities and we set I,(C) = 0.

In case (2a) we define I,(C) to be the ideal of C[AT?] gen-
erated by all elements of the form

(/\gal)P _ /\gel+l’ A e A, g€ Gof

where € is the basic Frobenius automorphism ¢ — ¢?, c € C.
In case (2b) we define I,(C) to be the ideal of C[AT] gen-
erated by all elements of the form

NN NeA 1=1,2,...,n



334 CHAPTER 7. T-IDENTITIES OF PRIME RINGS

where |C| = p™. We note that

n

A=W =) W2 e L(0).

We shall call I, = I,(C) the ideal of F-trivial T-identities of
C[A™]. Our goal in this section is to show that every T-identity
of C is F-trivial.

To this end it is first of all important to determine an explicit
C-basis for C[AT*] modulo I,(C). For future reference it will be
useful to have a simpler description of the monomials in (7.23)
in the various cases (1a), (1b), (2a) and (2b):

M= T1(S)™,

myjx € N in cases (1a) and (1b); (7.24)
M= T1(8)™
mit €N, L € Z in case (2a); (7.25)

o= TOE)™,

my €N, 1=0,1,...,n—1 in case (2b);.(7.26)

We define N = N (in cases (1a) and (1b)) and N = N, =
{CL_ s | g€ N, 0< s < p} (case (2a)).

We next define the important notion of F'-degree in cases
(1a), (1b),(2a) and (2b). For a monomial given in (7.23) we

define the F-degree of )\iAoj°g'°° in M by consideration of the three
forms of M as shown in (7.24)-(7.26):

Migjoko 1N cases (1a) and (1b),
> Migkup’  in case (2a),
!

r in case (2b), where
> migp't —1=q(p" — 1) + o,
!

0<rg<p* =1, r=ry+ 1.
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We remark that in cases (1a) and (1b) the F-deg of \29 in M
is just the ordinary degree of the variable A*9 in M. In case
(2a) we note that F-deg of A9 in M need not be an integer (if
I < 0). In all cases the notion of F-deg is quite natural if one
thinks of it as the ”power” to which A®9 occurs in M when # is
replaced by p'. Finally if

¢=> cuM, cyy €C, M of form (7.23)
M

is an arbitrary element of C[AT?] we define:
F-deg of \*Y in ¢ = max{F-deg of A9 in M}.

Again we remark that if G; = 1, then the F-deg of A29 in ¢
coincides with the ordinary degree of A29 in ¢.

We consider now the Cartesian product A x W x Gyy, a
typical element of which will be denoted by a = (\;, A;, gx)
(with aq = i, @ = A}, a3 = g&), and mappings

s:AXW xGor = N,

it being understood that s always has finite support, i.e., s(c) #
0 for only a finite number of &’s. Using these notations we next
define certain monomials

' (Afig")s(a), in cases (1a) and (1b),
si(a)
s TOE)T s(e) = Susie)r, 0 < si(e) <,
s = 9 in case (2a),
As@), 0 < s(a) < p™ in case (2b)
\ (€1 = p7).
"We then set

Ve =] Vas (7.27)
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noting that these are finite products in view of s having finite
support. We make the important observation that for each o =
(Xiy Aj, gx) involved in V; the F-deg of )\?"g" in V; is precisely
s(a). Conversely we have

Lemma 7.6.1 Let M be given by (7.23) and h;jx = h(c) be the
F-deg of A% in M for each o = (N, A;, gx). Then M =
Vs (mod I>(C)) where s(a) = h(a) for all c.

Proof. In cases (1a) and (1b) there is nothing to prove.
Case (2a) is a consequence of repeated applications of the ob-
servation that, given m = p + ¢ (thus ¢ < m)

("= o) () = () )"

If |C| = p* < 00, then A" — X € L(C) and X' — X' € L,(C).
Hence case (2b) follows from repeated application of the follow-
ing fact that, given m = p" + k (thus m = k + 1 (modp™ — 1))

AT = PR = \EHL

Theorem 7.6.2 The V,’s (as defined in (7.27)) are a C-basis
for C[A™] modulo I,(C).

Proof. In cases (1a) and (1b) the result is clear since
I,(C) = 0 and the V;’s coincide with the monomials given in
(7.23).

In case (2a) the fact that the V;’s are a C-spanning set mod-
ulo I,(C) is given by Lemma 7.6.1. To show that the V;’s are
C-independent modulo I>(C) we define a C-linear transforma-
tion x : C[AT?] — C[A™] as follows. For each monomial M in
(7.23) we map M to that V; in (7.27) such that for each A% the
F-deg of A% in M is the same as F-deg of A% in V;. Clearly x
acts as the identity on each V;. On the other hand consider an
element of the form

M (M) = 2] = M (W) — mae™ (7.28)
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where M is as in (7.23). Evidently the F-deg of A{* in each
summand of (7.28) is the same and so x maps (7.28) to 0, whence
x maps I(C) to 0. If 3~ ¢,V; € I(C) then

0=x (Z CsVs) = ZCSX(VS)

and so ¢, = for all s.

In case (2b) we conclude from Lemma 7.6.1 that the Vi’s
are a C-spanning set of C[AT?] modulo I>(C). Next we consider
the C-linear transformation x of C[AT®] defined as in the case
(2a). For any element of the form

M2 = W] = MN - M (7.29)

where M is as in (7.23), the F-deg of ); in each summand of
(7.29) is the same and so x maps (7.29) to 0. Hence x maps
I5(C) to 0. Since x acts as the identity on each V;, we infer that
the V,’s are linearly independent modulo I5(C). The theorem is
thereby proved.

The C-span of the V,’s in Theorem 7.6.2 will be denoted
by P(C) and the elements of P(C) will be called F-reduced .
Clearly we have the C-space decomposition

C[AT] = L(C) & P(C)

where I(C) is the set of F-trivial T-identities of C. Thus our
stated goal of showing that any T-identity of C is F-trivial is
equivalent to showing any F-reduced T-identity of C is 0.

The analysis of case (1b) will prove to the most complicated
and we first require a digression into the theory of algebraically
dependent homomorphisms of a field into itself (the need for this
is brought about by the fact that in case (1b) the map ¢ — ¢?
is a homomorphism but not an automorphism).

Let C be a field, and let C[A] be the free commutative algebra
in A over C. We note that C[A] is a subalgebra of C[AT®] and
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we may on occasion use this inclusion to connect results in C[A]
with our usual general setting. For example if C is a finite field
of order p™ a polynomial ¢(A1, Az, ..., An) € C[A] is commonly
called "reduced” if deg,.(¢) < p™ for each i or, equivalently, ¢ is
an F-reduced element of C[AT]. We begin with the well-known

Remark 7.6.3 Let ¢ = ¢(A1, g, ..., A\n) € C[A] (and assumed
to be "reduced” if C is finite) such that ¢(c1,ca,...,cn) =0 for
all ¢y, ¢y ...,cn € C. Then ¢ =0.

A polynomial ¢(\y, Ae, ..., Ay) is said to be additive if
¢(/\1 +;U'1,"',/\n+:u'n) = ¢(/\1)"')/\n) +¢()u'1)"'nu'n),

where Aj,..., A, f1,..., n are distinct indeterminates in A.
Next let A be an additive abelian group and let Ay, hs, ..., h, be
additive mappings of A into the additive group of C (we are pri-
marily interested in the case when A = C). Then hy, ho, ..., hy
are said to be algebraically dependent via ¢ over C if 0 #
&A1, Aoy ..., Ap) € C[A] is such that

#(a™ a2, ... ;a") =0 forall ae€ A.

Theorem 7.6.4 (Artin) If hy,hy, ..., hy, : A = C are alge-
braically dependent via (A1, Az, ..., A\n) over C then there exists
a nonzero additive polynomial ¥(A1, Ao, ..., Ap) such that

Pla™,a,...,a"™) =0 forall a€ A
and deg, (¥) < deg,, (¢) for each i.

Proof. For convenience we shall write A = (A1, A2,..., A\n),
po=(p1, oy - -+ hn), @ = (a™,am, ... a"), @ = (a1, a9,...,a,).
Let 1(A) be a nonzero polynomial of smallest total degree deg, 1
for which deg,, (v) < deg,,(¢) for each i and for which ¥(a@) =0
for all a € A. We claim that ¥(A) is the desired polynomial.
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Indeed, suppose to the contrary that 9 is not additive. Choosing
new variables pi, fio, . . ., o We are thus assuming that

X(A, 1) = (A +p) = P(A) — P(p) # 0.

It is easy to see that

deg(x) < deg(¥), degx,(x) < degy, (), deg,, (x) < degy,(¥),

and X(&,B) = 0 for all a,b € A. Suppose first that x(c, b) = 0 for
all ¢;,¢p,...,ccC™, b e A. By Remark 7.6.3 we may pick ¢, de
C" such that x(é’,cij # 0, since x # 0. Setting o(p) = ¥(E, p)
we note that o(u) # 0, o(b) = 0 for all b € 4,

deg(0) < deg p)(x) < deg(s), deg,, (o) < deg,, (¥),

and thus we have a contradiction to the choice of 1. Thgrefore
we may suppose there exist ¢ € C”, b € A such that x(¢,b) # 0.
Setting 7(A\) = x(),b), we see that 7()) # 0, 7(@) = 0 for all
a€ A,

deg(r) < deg(A)(x) < deg(¢), degy, (1) < degy, (¥),

and again we have a contradiction to the choice of 7.

We next characterize additive polynomials.

Theorem 7.6.5 A polynomial ¢ = ¢(A1, Ag,..., An) € C[A] is
additive if and only if it has the form 3 a;\; (char(C) =0) or
Y1 Ys0 @i (char(C) = p).

Proof. Clearly the indicated polynomials are additive. Con-
versely, setting ¢;(\;) = #(0,...,0,;,0,...,0), we see by the
additivity of ¢ that ¢(A1, Ao, ..., An) = X%, ¢:(\), and so we
may assume without loss of generality that ¢ = Y a; N is a
polynomial in one variable. It is immediate from additivity
that ap = 0. Suppose that a, # 0 for some r > 0. From
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d(A+ ) — d(A) — #(u) = 0 (1 a new indeterminate) it follows
that a, [(A+ u)” — A" — ] = 0 and in particular ra, \"" ' = 0.
If char(C) = 0 then we have the immediate contradiction a, = 0
and we are done. If char(C) = p, then p divides r and we may
write 7 = sp¥, k > 1 and (p, s) = 1. Then

kg

0 = A+p) =X = =4 pPs— 2" —pr
(¥ +0) = Oy = (")

-1
If s > 1 it follows that s (/\”k)s pP* = 0, a contradiction since

(p, s) = 1. Therefore r = p* and the proof of the theorem is
complete.

Functions hy, hg,...,h, of a set S into C are said to be lin-
early dependent over C if there exists 0 # Y., ¢;A; such that
St eisM =0 for all s € S. A useful condition for linear inde-
pendence is given in

Theorem 7.6.6 (Artin) If hi,...,h, are distinct homomor-
phisms of a group G into the multiplicative group of C, then
they are linearly independent over C.

Proof. Suppose hy,hs,...,h, are linearly dependent. By
suitable reordering we may assume that A, ho, ..., by is a min-
imal dependent subset of {hy, ..., h,}, satisfying, say, > iv; ¢;A;.
Clearly m > 1. We pick a € G such that a™ # a", and let
g € G. On the one hand 0 = ¥ ¢;(ag)® = ¥ c;a™g" whereas
on the other hand 0 = a™ Y cig = Y ca™g". Subtracting
second equation from the first yields Y7, ¢; (a’“ — a’”) g =0

contradicting the minimality of m since ¢, (a’12 ~ ’“) # 0.
Our digression is now complete and we return to the task of
showing that F-reduced T-identities of C' are 0.

Lemma 7.6.7 Fiz A € A and let ¢ be an F-reduced T-identity
of C involving only A. Then ¢ = 0.
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Proof. We suppose ¢ # 0 and write ¢ in the standard form

chVs; Vs = HVa,.s; o = A
3 a

according to (7.27). In case (2b) (C finite) ¢ = 0 by Re-
mark 7.6.3 since ¢ is a reduced polynomial in A. In case (1a)
we choose new indeterminates A, for each « involved in ¢ (finite
in number), set h, = Ajgr € Endg(C), set

o= ch (H )\;(")> ,

and note that the h,’s are algebraically dependent via o (here
a= (A A, gr)). Incase (2a) for each (e, ) involved in ¢ (finite
in number) we choose a new indeterminate A\, , set hqy = gt €
Ends(C), set

o= c (H )\;‘,(s")) ,
8 a,l

and note that the h,;’s are algebraically dependent via o. By
Theorem 7.6.4 and Theorem 7.6.5 the h,’s are linearly depen-
dent over C' and also the h,,’s are linearly dependent over C
(since in case (2a) we have s;(a) < p). Translated back to
our usual setting, this simply says that there exists a nonzero
reduced linear T-identity in A satisfied by C. This is contra-
dictory to Theorem 7.5.6 and so the proof is complete in cases
(1a), (2a) and (2b).

For the remainder of the proof we assume case (1b) and

write in detail .
b= e IT ()
8 j,k
This in turn may be further explicitly written as

1735
¢ = ch H |:()\Aj9k)p] i , 0< Skl < D,

S Gk
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where sj; = Y50 s;up'. Setting 8 = (3, k, I) we let {Ag} be
distinct indeterminates in A, and for each 8 let hg denote that
additive map A;gro;, where o; stands for the homomorphism
¢ — ¢?'. Now set Y=73 ¢l )\Z‘*, where sg = s < p and note
that 1)(c") = 0 for all ¢ € C, i.e., the maps hp are algebraically
dependent. By Theorem 7.6.4 and Theorem 7.6.5 there is a
nonzero linear element 3 5cgAg (since sg < p) such that

X=2_¢cs (AA"gk)pl
B

is a nonzero T-identity on C. We choose p # A € A and make
the substitution A — Ap® in x. From (,w"’)'s =ppP b =0t is
clear that (4?)®/ = 0, whence we see that

KOw) = s ()] = Ses (1) o™

X(AuP) of course remains a T-identity on C and so, recalling the
notation o; : ¢ — c”l, we have

i
> s (cAjg")p r9i+l =0 for all ¢,reC.
B

We claim that the homomorphisms {gxo;11} are distinct. In-
deed, suppose gi,01,41 = Gky0ly+1, With {j > lo. Then gy 4, =

1 .
gkl gk20-12+1) l'e'ﬁ
p12+1

cptl+1 _ (Cyk_llgkz)

whence ¢#" = cgzllgkz, m =1l —ly > 0. Thus g;'g, € Gy =1
and so k; = k; and accordingly /1 = l,. Therefore by Theo-

i
rem 7.6.6 we see that for each k,l ¥, ¢; (cAigk)p = 0 for all
c € C, where ¢; = cg, B8 = (j, k, 1), i.e.,

Z ¢ (/\Aigk)pl (7.30)
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is a nonzero T-identity. Applying g;' to (7.30) we see that
-1 {
S (M) (7.31)
J

is a nonzero T-identity. Now we let L = {c?' | ¢ € C}, choose an

-1
L-basis {v;} of C, and write c}* =¥, cf;vZ Then, substituting
A+ cin (7.31), we have

) (; & (c‘\f)”') v =0,

i

!
whence for each 7 3-; cf; (cAf')p = 0, and hence }; cichf = 0.
Thus ¥, ¢;;A% = 0 is a nonzero linear T-identity, a contradic-
tion to Theorem 7.5.6, and the proof of the lemma is complete.

We are ready to show that for a field C the only T-identities
are F'-trivial.

Theorem 7.6.8 If ¢ is an F-reduced T -identity on a field C,
then ¢ = 0. In other words, every T-identity is F-trivial.

Proof. We suppose ¢ # 0. Let Ay, Ag, ..., Ay be the indeter-
minates involved in ¢. We proceed by induction on n. The case
n = 1 is given by Lemma 7.6.7. We may write ¢ in the form ¢ =
s Yo, Vi, where Vi = [],, -5, Vo,s and ¥, is an F-reduced
element in Mg, Az, ..., A,. Taking into account the induction as-
sumption, we conclude that it is enough to prove that U, is a
T-identity of C. If not there is a T-substitution \; — r;, r; € C,
i =2,3,...,n such that for some s; Uy, (re,73,...,7) # 0. We
set ¢s, = Uy, (2, 73,...,7n) and note that 3" ¢, ¥y, is a nonzero
F-reduced T-identity of C, a contradiction to Lemma 7.6.7.
Thus ¥, = 0 and so ¢ = 3, ¥, V,, = 0, a contradiction.
The proof of the theorem is thereby complete.
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We close this section with the following well-known criteria
of linear independence of functions and its corollary.

Lemma 7.6.9 Functions hi, hy,...,h, of a set S into C are

linearly independent if and only if there exist ay,as,...,a, € S
such that det(h;(a;)) # 0.

Proof. The ”if” part is almost immediate. Indeed, suppose

Y, ch; =0, ¢; € C. Since det(h;(a;)) # 0, the n equations

T chi(a;) =0, 7 =1,2,...,n have only the trivial solution
for the ¢;’s.

Suppose that hy,hs,...,h, are linearly independent. We
proceed by induction on n. The case n = 1 is obvious. For the
nxn matrix A = (h;(a;)) we denote by A;; the 1, j-cofactor. By
the induction assumption there exist ay,as,...,a,_1 € S such
that A, = det(hs(a;))7;2, # 0. Suppose that det(h;(a;))7;-, =
0 for all a, € S. Then expanding we obtain 37, A;nhi(a,) =0
and so Y., Ainhi(t) = 0in t € S which means that h,,..., hy,
are linearly dependent, a contradiction.

Corollary 7.6.10 Let ¢y, ¢, ..., ¢m be F-reduced elements of
C[A™*] involving the indeterminates Ay, Mg, ..., Am. Then ¢;,
1 <7 < m, are C-independent if and only if there exist m substi-
tutions a¥) = (a1, a2, ..., ajm) € C™ such that det(¢;(al?)) #
0.

7.7 The Structure of T-identities
(General Case)

One of the main results proved so far in this chapter (Theo-
rem 7.5.8) states that if R is a prime ring and ¢ is a nonzero
reduced T-identity on a nonzero ideal I of R, then R is GPI.
This result will be used in the present section, in which our aim
is to show that such a ¢ above enjoys two very strong properties:
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(a) (very roughly stated) the variables involved in ¢ may be
partially ”freed”;

(b) ¢ is a T-identity on Q = Q;(R).

We mention that if ¢ € £* (reduced with no antiautomor-
phisms involved) and char(R) = 0 then nothing further need be
said - Theorem 7.5.9 says that the variables may be completely
"freed” and ¢ is a GPI on (). Thus this section is of interest
only if char(R) = p or antiautomorphisms are involved.

Whereas the meaning of (b) is quite clear we need to extend
the notion of Frobenius automorphism defined in the preceding
section for fields to prime rings in order to clarify (a). To this
end let g € G = G(R), the group of automorphisms and antiau-
tomorphisms of the prime ring R, and let § be the restriction of
g to C. We say that g is a Frobenius element if § is a Frobenius
automorphism of C' (as defined in section 7.6), and we let Gy
denote the set of all Frobenius elements of G. We leave it ‘as a
routine exercise for the reader to show that G; C Gy C G. We
now fix (for the remainder of this section) a set G of represen-
tatives of G modulo Gy and a set Gy; of representatives of G

modulo G;. We may then set Gy = GosGy; and therefore take
To = To(R) to be the set

{Agf | A€Wy, g€ Gy, f €G]}

Given a C-basis A of Q) we know that a typical C-basis mono-
mial M in Qc<X"°> may now be written

Aj 91, fi Aj
M = az; """ May .. ) inknfing (7.32)

sk

where
a; € A, Zi, € X, qu € Ws, Ik, € Gof, flq S Gf,-.
An arbitrary ¢ € Qc<X™°> can thus be written

o= cuM, cyy €C (7.33)
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where M is of the form (7.32). To remind us of the variables
involved in ¢ we will sometimes write ¢ = ¢(z: /).

We are now in a position to accurately explain property (a)
stated at the beginning of this section. Let {y;;x} be a set of
distinct indeterminates of X in one-one correspondence with
the variables z2%, and let ¢ = ¢(z-7**/') be a nonzero reduced
T-identity on some nonzero ideal I of R. Then ((a)) may be
restated as

(a) ¢>(yif;k) is a T-identity on some nonzero ideal J of R.

If we wish to focus on a particular z in the monomial M in
(7.32) it is convenient to rewrite (7.32) as

M = Pyzfasadup . P, gPindkntin P, (7.34)

where Py, Py, ..., P, are monomials of the form (7.32) not in-
volving z. In turn if we wish to concentrate on a particular
triple z, A, g in (7.34) we shall write

M = Qoz®1Qy ... Quorz®9Q, (7.35)

where Q, @1, ...,Qn are monomials of the form (7.32) whose
variables are not 229/ for any I.

At this point we make an observation relating Tp(R) and
To(C) which will be used in the sequel.

Remark 7.7.1 If R is GPI then To(C) may be chosen so that
(i) Wo(R) € Wy(C) and
(i1) Gos(R) C Gos(C).

Proof. Since R is a GPI we know by Theorem 4.5.3 that
if § € D(R) is such that & vanishes on C, i.e. § = 0, then
d € D;(R). In this situation we then conclude that a basis
By (C) of Der(C) may be chosen so that By(R) maps injectively
into By(C). It follows (from the PBW Theorem) that Wy(R)
maps injectively into Wy(C), thus proving (i). The proof of (ii)
follows easily from the definition of Frobenius elements.
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Now assume that R is GPI and consider the extended setting
51(R) = 8(C) ®c S(R)

together with the C-ring map 7 : T(R) — Ende(S;(R)) given
by Remark 7.3.6. Given z,y7 € X, A € A we now make the 7-
substitution z — z+\y of S(R) into Sy (R) relatively to v (Here,
to simplify the notation, we are writing z+ Ay for 1® 2+ A Qy).
For any A; = 6,02...6, € Wo(R), gr € Goy, fi € Gy;, we may
use the Leibnitz formulas to obtain

(:L‘ + /\y A]gkfl Z/\A gkfl Algrh (7.36)

J

where the summation is as described in Remark 1.1.1 and
Aj, A%, A € Wo(R) S Wo(C), gk € Gop(R) C Gos(C),
A =v(8;), g =7(g%), fi=(f)

Notice that the slight abuse of notation in (7.36) is justified in
view of our tacit use of Remark 7.7.1. However we definitely
want to distinguish between f; € Gy; and f) € G;(C), eg. it
might well be the case that the fl are all equal to 1.

Next let {V,} be the C-basis of C<AT(®)> modulo I,(C) as
given by (7.27) and Theorem 7.6.2. We fix a nonzero ideal I of
R. Then any ¢ € &) can be written uniquely as

=> V,®¢s+x (7.37)

where ¢; € Qe<X® > and x € &; is sent to 0 (in view of
Remark 7.3.7) by every C-algebra map \; = ¢; € C (\; € A),
z;— 1 € J (2 € X), with ¢;J C T (for a given ¢ only a finite
number of \;’s are involved). For future reference we shall call
@5 the coefficient of V; in (7.37).

Given . € X, A € W,, g € Gy we proceed to define the
notion of the Frobenius degree (briefly, F-deg) of 29 in any
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element ¢ of Qc<X™(®) >, We begin by defining for each f €

Gy; according to the cases (1a), (1b),(2a) and (2b) described
in section 7.6:

| = 1 in cases (1a) and (1b)
1Pt if f=46" incases (2a) and (2b).

Here we recall that f (the restriction of f to C) is a Frobenius
automorphism of C by the definition of Gys. Note that in case
(2a) |f] is not an integer if | < 0, whereas in case (2b) |f] is an
integer since 0 < [ < m where |C| = p™. We also remark that in
view of Theorem 4.5.3 D(R) = D;(R) (and so Wy = 1) in cases
(2a) and (2b) since Der(C) = 0 as was shown in section 7.6.

Regarding a monomial M as written in the form (7.35) we
then define the F-deg of 229 in M to be equal to

0 if z®9 does not appearin M,
n ;

Y |fil=n in cases (1a) and (1b),

=1

INNE

|f1| in case (2a), (7.38)

n

7 in case (2b), where Sl —1=q(@" - 1) +ro,
=1
0<rp<p"—1, r=r9+1.

We remark that in cases (1a) and (1b) the F-deg of 229 in M is
just the ordinary degree of the variable £29 in M. In case (2a)
we note that the F-deg of z¢ (since A = 1) in M need not be
an integer (if [ < 0). For ¢ € Qc<XT0> we write ¢ = Y cpyy M
as in (7.33) and define the F-deg of 229 in ¢ to be the maximal
F-deg of %9 in all M’s belonging to ¢.

For induction purposes later on the following partially or-
dered set will be useful. For fixed z € X, g € Gy any vari-
able of the form z%i9% will be called an (z, g)-variable . If
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¢ € Qe <X™ >, ie., ¢ is reduced, the largest A; appear-
ing in any (z, g)-variable belonging to ¢ will be denoted by
A = A(¢; 7; g). (In case no (z, g)-variable belongs to ¢ we
have A = 1). If m is a fixed integer, possibly negative, we de-
fine S = S(m; z; g) to be the set of all reduced elements ¢ whose
(z, g)-variables £239/t are such that |f;| > p™. We partially or-
der S as follows

(i) First compare A(¢; z; g),

(ii) If (i) is inconclusive, then compare the F-deg of 229 in
$. We note that for any ¢ € S the F-deg of 29 in ¢ lies in the
set N,, of all rational numbers {¥;.,, a;p' | a; > 0}. Since both
W, and N,, are well ordered sets it follows that S satisfies the
minimum condition under the partial ordering just described.
We set N_oo = UmezNnm.

We now come to a rather technical lemma in which in a
special instance of (7.35) we are able to compute the coefficient
of one of the V;’s. This will be of crucial importance when we
come to establishing property (a).

Lemma 7.7.2 Assume C s infinite and R is GPI, fizz,y € X,
ANEA, g€ Gos(R), h € Nowo, and let M € Qc<To(R)> be a
monomial of the form

M = Quz®'Q, ... Qu1z™9"Q, (7.39)

where (as in (7.35)) the Qi’s do not involve any variable of the
form 297 for any f and A = A(M; x; g). Let M(z + \y) be
the element of S; obtained from M by replacing x by x+ Ay and
leaving z;, x; # x, alone, and let V be the C-basis monomial in
CIAT©)] given by V = V,, = Vi, where o = (N, A, g) is the
sole support of s and s(a) = h. Then the coefficient My of V
in the expansion of M(z + A\y) in Sy is nonzero if and only if
h=Y71|fil, in which case

MV = QO(x)ygth (SII) o 'Qn—l(x)ygann(x)-
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Proof. As a first step we consider any variable z Ajgft gp-

pearing in M, look at the expansion of (z + \y) Ai6 in (7.36),
and ask under what circumstances does

AOjokfi — \Boe? for some gq.

Necessarily gr = g and A} = A. But A} < A; and by the
maximality of A we then have A; = A. Since all of the variables
involved in the @;’s in (7.39) are distinct from 29/, it follows
by completely expanding (z + Ay) by means of (7.36) that the

one and only one summand in this expansion containing V' as a
factor is

Qo(@)N 1 Qs (a) ... Qur (2] N9 Qu(a)
- (T1) © Qul2)3Qs(a).. QuerelQule)

subject to the condition
v=]] Py (mod I(C)). (7.40)
=1

But (7.40) is equivalent to Y7,|fi] = h, and the lemma is
proved.

The preceding lemma will be used in proving the following
lemma, which in turn goes a long way towards establishing prop-
erty (a).

Lemma 7.7.3 Let C be infinite and let ¢ be a reduced T-identity
on a nonzero ideal I of R. For fited x € X, g € Gy, A =
A(¢; x5 g), and y € X not appearing in ¢, let T be the element
obtained from ¢ by substituting y9 in place of 29 but leaving all
other variables z-9%7" intact. Then 7 is a reduced T-identity on
some nonzero ideal J of R.
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Proof. We may suppose ¢ # 0 and hence by Theorem 7.5.8
that R is GPI. Suppose to the contrary that 7 is not a reduced
identity on any 0 # J < R and choose m € Z such that for every
(z, g)-variable 29/t belonging to ¢ we have |f;| > p™ (If G; = 1
we take m = 0). The subset Sy of S(m; z; g) consisting of all
reduced T-identities ¢o on some nonzero ideal of R which are
no longer T-identities on some nonzero ideal of R when 209 is
replaced by 39, Ay = A(do; T; g), is therefore nonempty. Hence
So has a minimal member which, without loss of generality, we
shall again designate as ¢ (and assume is a T-identity on I). We
set h = F-deg of 229 in ¢, A = A(¢; z; ¢g) and write

(}SZZCMM, CMEC

where (with (7.33) in mind) M is of the form

M = Qoz™ Q... Q129 Q,

where in turn the (),’s are monomials whose variables are distinct
from 29/, In

S1(R) = C[AT) @¢ Qe<XTo(B)

we form the element ¢(z + Ay), A € A, y € X distinct from all
indeterminates in ¢, by replacing any variable 2%/ by (z +
Ay)2i9Jt a5 expanded in (7.36) but leaving all variables z;, z; #
z alone. We may then write

oz +Ny) = D Vi(A) ® ¢s(z, 21, T2, .., T, y) + X
SEK

according to (7.37), where w = |K| < oco. By Corollary 7.6.10
there exists elements ¢; € C, t € K, such that the w X w matrix
(Vs(ct))stex 1s nonsingular. We may choose a nonzero ideal
J C I such that ¢;J C I fort € K. Hence ¢(z + Ay) vanishes
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under any substitution in which A is mapped to ¢; and z,z;,y
are mapped arbitrarily into J. Now consider the w equations

Z ‘/.«;(Ct)(]ss(’l', T1,-.. ,rq,a) = 0, te K

SEK

formed by sending
AP C, T T, Yo a, 1,0 €

Since (V;(c;)) is nonsingular, each @q(r,71,...,7q,a) = 0, ie.,
each ¢s(z, 1, ..., 24 y) is a T-identity on J.

In particular let V = V, ; =V, where o = (), A, g) is the
sole support of s and s(e) = h (here we recall that h is the F-deg
of 229 in #). We have just shown that the coefficient of ¢y = ¢
of V in the expansion of ¢(z + Ay) in S is also a T-identity on
some nonzero ideal J C I of R. We now proceed to determine
¢V~ Let

M = Quz®Qy ... Qu_1229Qn,

written in the form (7.35), be any one of the monomials in (7.37)
belonging to ¢. By Lemma 7.7.2 the coefficient My of V' in the
expansion of M(z + )\y) is nonzero if and only if the F-deg of
289 in M is equal to h (the F-deg of z29 in ¢), in which case

My = Qo(z)y* Q1(x) . . . Qnoy (2)y"" Qn ().
Therefore
oy = Z{CMMV | F-deg of 789 in M is equal to h}

and My is obtained from M by replacing #3941 by y9fi, | =
1,2,...,n. Now let ¢' be the element of Qc<XT°> obtained
from ¢y by substituting 22 for y, i.e.

¢’ = Z{CMM | F-deg of 289 in M is equal to h}
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There exists a nonzero ideal K C J such that K2 C J(e.g., take
K = J7, where r = |A|+1). Since ¢y is a T-identity on J it fol-
lows that ¢’ is a T-identity on K. Clearly ¢' € S = S(m, z, g),
but ¢’ € Sp. Consider the element ¥ = ¢ — ¢'. Certainly 2 # 0,
since otherwise we would have the contradiction ¢ ¢ Sp. From
the definition of ¢' it is clear that A(+; z; g) < A(¢; z; g), and
that the F-deg of 789 ip 2 is strictly less than h (the F-deg of
289 in ¢). Therefore 1 < ¢ (in the ordering in S) and so by the
minimality of ¢ in Sy we conclude that i ¢ Sy, i.e. substitution
of 229 by 39 in % produced a T-identity p on some nonzero ideal
L C K. The element ¢y + p is then the required element, and
the proof of the lemma is complete.

We are now in a position to establish property (a)’.

Theorem 7.7.4 Let R be a prime ring, let ¢(xiAjg'°f‘) be a re-
duced T-identity on a nonzero ideal I of R, and let {yijx} be
distinct elements of X in one-one correspondence with the vari-

ables 9% Then ¢(yif]’-k) is a T-identity on some nonzero ideal
J of R.

Proof. If ¢ = 0 there is nothing to prove, and so we may
assume that ¢ # 0. Then by Theorem 7.5.8 R is GPI and so by
Remark 7.7.1 Wo(R) g Wo(C) = W(C) and Gof(R) Q Gof(C)

Suppose C is finite. Then Der(C) = 0 and Gy (C) = 1,
whence Wy(R) = 1 and Gos(R) = 1. Therefore in this case
¢ = ¢(zl) is already of the required form.

We may therefore assume that C'is infinite. For fixed z € X,
gc Gof let

Az 9)=01>0y> ... > A,

be the A; € Wy(R) involved in the (z, g)-variables of ¢. Let 1),
be the element obtained from ¢ by by substituting 2z{ in place
of 219 (and leaving all other variables intact) where z; is a
new indeterminate. By Lemma 7.7.3 1), is a T-identity on some
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nonzero ideal I; C I. Since Ay = A(%; 7; g) < A; we see
again by Lemma 7.7.3 that 1,, the element obtained from
by replacing 2229 by 23, is a T-identity on some nonzero ideal
I, C I C I. Continuing in this fashion, after t steps we have
shown that by substituting zJ for %9 in ¢, j = 1,2,...,t, the
element 9 = 1), , so obtained is a T-identity on some nonzero
ideal J of R. Substituting now yf_l for z;, i =1,2,...,t (and
leaving all other variables intact) where yy,¥2,...,y: are new
variables, we obtain the element 7 = 7, , which is a T-identity
on U = J N JI. We note that the element 7 is obtained from ¢
by replacing %9 by y;. Now let

(:1:; g) = (:I:iu gi1)) (:I:izv giz)a D) (xim gin)

be the (necessarily finite) subset of X x Goy such that ¢ has
(zi;, gi;)-variables. Repeated application of the preceding argu-
ment then completes the proof of the theorem.

We now turn our attention to verifying property (b). In
view of Theorem 7.7.4 we shall assume for the remainder of this
section that any T-identity ¢ is of the form ¢ = ¢(z!!). As
an initial goal our aim will be to show that any 7-identity on
0 # I <R is a T-identity on the socle of RC. To do this we first
need some further definitions. We shall say that ¢ is additive
on an additive subgroup A of @) if for each z; € X involved in ¢
we have

(}S(Ti + Si) = (}S(Ti) + ¢(3i) for all Tiy 8 € A.
Next recall the definition of NV:

N N GHC) =1
N, if  GHC)#1, |C|=oo.

Now let z be an indeterminate involved in ¢ (where ¢ is as
shown in (7.33)) and let h € N. The (fz)-homogeneous part of
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¢ is defined to be

pn = > {cmM | M belongs to ¢ and
F-deg of z in M equals h}.

Clearly, for fixed z, ¢ is uniquely representable as a sum of its
(z)-homogeneous parts:

¢=D i

Likewise if 1, %o, . . ., Tr, are all the indeterminates involved in ¢
and hy, hg, ..., Ay, € N, then the (fli:zz::::zz:)—homogeneous part

of ¢ (which will sometimes be referred to as an F-homogeneous
part of @) is defined to be

p=">3 {cuM | F-deg of z; in M equals h;, 1 <i < m}.

As above ¢ can be written as the direct sum of its F’~homogeneous
parts.

Lemma 7.7.5 Let C be infinite. Then ¢(zl!) is a T-identity on
a nonzero ideal of R if and only if each F-homogeneous compo-
nent of ¢ is a T-identity on a nonzero ideal of R.

Proof. The ”if” part being obvious, we assume ¢ is a T-
identity on I and fix any one of the indeterminates involved in
¢. Let hy, ho, ..., h, be the distinct F'-deg’s of z in the various
monomials belonging to ¢. We write ¢ = >, 7, where 7; = pp,
is the (,fi)—homogeneous part of ¢. In the extended setting

81 = 81(R) = 5(C) ®c S(R)

we choose A € A and consider the element ¢(\z) obtained from
¢ by substituting Az for z and leaving z;, z; # z, alone. From

(,\z)v(f) — ,\fzf
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(where v is given by Remark 7.3.6) it is easy to see that 7;(A\z) =
M;(A\)7i(z) + xi (as in (7.37)), where M;(A) is one of the basis
monomials (7.23) in which the F-deg of A is h;. By Lemma 7.6.1

M;(X) = V,,(A) (mod I(C)).

Therefore
=3 Vi (M)7m(z) + X,

i=1
noting that V;,,V,,,...,V,, are C-independent modulo I7(C).
By Corollary 7.6.10 there exist ¢, ¢s,...,¢, € C such that the
n x n matrix (V;,(c;)) is invertible. Let 0 # J 4 R be such that
JCTand Je; CI,j=1,2,...,n, and note that the following
n equations hold:

n
Vi(e)mi(r), =12,...,n
1

i=

for all » € J and 7 € J, zx # z. From the invertibility of
(Vs;(c;)) we conclude that 7;(r) = Oforallr,7x € J, i.e.,, 7 = pa,
is a T-identity on J for 1 = 1,2,...,n. Repetition of the above
process applied to each pp, and using indeterminates involved in
¢ other than z clearly leads ultimately to each F-homogeneous
part of ¢ being a T-identity on some nonzero ideal of R.

Lemma 7.7.6 Let C be infinite and let ¢ = ¢(z1,z2,...,Z,) be
a T-identity on 0 # I<4R, (flizzfl:) -homogeneous, and additive
on IC. Then ¢ is a T-identity on IC.

Proof. In 8§ = &(C) ®c S(R) we select indeterminates

A1, A9, ..., Ap € A and, using the homogeneity of ¢ and Theo-
rem 7.6.2 we observe that

¢()\1$1, AoTo, ..., )\nwn) = V¢($1,$2, .. -,CBn) + X
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where V is that basis monomial in (7.27) whose F-deg in each
A; 1s h;. It follows that

d(err1y .- entn) = V(e ., ca)@(r1,..,ma) =0 (7.41)

for all ¢; € C, r; € I. We now compute, using (7.41) and the
additivity of ¢ on IC,

¢(Z C15:T 1515 Z €25, 7252y« « Z annrnjn)

= Z B(C15,T 1511 C24aT242s - - > CrjnTngn)
jl)j2)"'1jn

= Z V(Cljl,02]‘2,---,C11j,,)¢(rljpr2j2;'-'ar‘njn) =0
J1:325-0n

wheré Cij; € C and Ty € I

Lemma 7.7.7 If &(z]) is a T-identity on 0 # I<R, then o(zi
is a T-identity on JC for some 0 # J < R.

Proof. If C is finite we can pick 0 # K < R such that
KC C R. Setting J = I K we have

JC=I(KC)CIRCI

and the lemma is proved.

We may therefore assume that C' is infinite. The proof is by
induction on ht(¢). Suppose first that ht(¢) = 0. Writing ¢ =
Y. u as the sum of its F-homogeneous parts we know that each u
is of height 0 and consequently each y is additive. Furthermore,
by Lemma 7.7.5, there is a nonzero ideal J of R such that each
i is a T-identity on J. Lemma 7.7.6 then says that each u, and
hence ¢, is a T-identity on JC and the lemma is proved in this
case.

Now suppose the lemma is true for all ¢ of height less than n
satisfying the conditions of the lemma. Let ¢ of height n satisfy
the conditions of the lemma. Without loss of generality, in view
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of Lemma 7.7.5, we may assume that ¢ is F-homogeneous. This
implies in particular that any z that appears in ¢ must appear in
each monomial M involved in ¢. Now let x be such an z, select a
new indeterminate y, and form the element M(z +y) — M(z) —
M(y). If deg (M) = 1 then M(z +y) — M(z) — M(y) = 0.
If deg, (M) > 1 then ht(M(z +y) — M(z) — M(y)) < ht(M).
From these considerations it follows that for any z appearing
in ¢ either ¢(z +y) — ¢(z) — ¢(y) = 0 (if deg,(¢) = 1) or
(if deg,(¢) > 1) ht(d(z + y) — ¢(z) — d(y)) < hi(4). Setting
v = ¢(z +y) — ¢(z) — ¢(y) we have that either op = 0 (if
deg,(#) = 1) or (if deg,(¢) > 1) ht(¥) < ht(¢). By induction
the latter possibility implies that v is a T-identity on JC for
some 0 # J <4 R. In either case we see that ¢ is z-additive on
JC. Since x was arbitrary it follows that ¢ is additive on K C for
some 0 # K 9 R, whence by Lemma 7.7.6 the proof is complete.

In view of Theorem 7.7.4 we are now in a position to establish
property (b).

Theorem 7.7.8 Let R be a prime ring and let ¢ be a reduced
T-identity on 0 # I 4R of the form ¢ = ¢(zl'). Then ¢ is a
T-identity on Q4(R).

Proof. We may assume ¢ # 0, whence by Theorem 7.5.8
R is GPI. In this situation we know that RC is primitive with
nonzero socle H, acting densely on a vector space V over a
division ring D. By Theorem 4.3.8(v) Qs;(RC) C Endp(V).
Since Q;(R) C Q,(RC) it suffices to show that ¢ is a T-identity
on Q,(RC). By Lemma 7.7.7 ¢ is a T-identity on an ideal JC
of RC for some 0 # J < R and so in particular ¢ is a T-identity
on the socle H. Let A be a C-basis of Q;(R) and write

¢= ZCMM, ey € C, deg(p) =s
where M is a basis monomial of the form

f(l f(n
M = A5 T; Gy - . Qg T; "G,
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z; € X, a; € A, fieGy.

Let A, X', G%; denote respectively the sets (necessarily finite)
of all aj € A, z; € X, fi € Gy; appearing in ¢. We may
assume X' = {z),zs,...,2n} and we make an arbitrary but
fixed substitution z; — ¢; € Qs(RC), i = 1,2,...,m. Letting
v € V, our task is to show that v¢(q1, ¢a,--.,qn) = 0. To this
end consider the D-span V; of all vectors w € V which are of
one of the following two forms

iy fir
w = vajoqil aj, ... Q5. _,q; a5, or
fy Jir
W= v040G;," a4, - - - GG, G (7.42)

where 0 <7 < s,a; € A, fi € G}, ¢ € {q1,92,---,am}- Vo
is finite dimensional over D and therefore, since H acts densely
on V, there exists b € H such that b is the identity on V4.
By Litoff’s theorem there exists ey € H such that b € egHeg. It
follows that eg acts as the identity on V;. Now consider the finite
set L ={el | fe G} C H. Using Litoff’s theorem again
we know there is an idempotent e € H such that L C eHe. We
claim that

eo = ege! =eley, f e G
Indeed, first assuming f is an automorphism, we have
efey = (eeé_l)f = (eé_l)f = (e({_le)f = epe’.
A similar argument prevails if f is an antiautomorphism. We
next claim that if w is of the form (7.42) then wq/ = w(eqe)/,
feGi 9€{an,q,...,qn} Indeed,
w(ege)! = welq’e! = wepe/qf e/ = weq’e! = wq'e!

= (wg'ep)e! = (wgh)eef = wgle = we’.

From repeated use of this claim it follows that

fuy fi
Vaj,q;, Qg - - - Qg G G,

= vajo(eqile)fll ajl e ajn.—l (eqine)fln ajn.'
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and thus

vd(q1, G2, -, Gm) = VO(€qr1E, €qae, ..., eqme) = 0

since eg;e € H, i =1,2,...,m. This completes the proof of the
theorem.

By combining Theorem 7.7.4 and Theorem 7.7.8 we have

Theorem 7.7.9 Let R be a prime ring, let ¢ = qb(a:iAjg"f‘) be a
reduced T -identity on some nonzero ideal of R, and let {y;jx} be

distinct elements of X in one-one correspondence with variables
z59%  Then qb(y{]fk) is a T-identity on Q(R).

7.8 T-identities with Coefficients
in Qpny

This brief section is an appendix in which we indicate that,
by making some natural alterations in the definitions but oth-
erwise essentially keeping the same proofs, the main results
on T-identities remain valid even when the coefficients are al-
lowed to be in Q... The main obstacle to overcome is the fact
that whereas derivations and automorphisms of R can be lifted
to Qmr (Proposition 2.5.1 and Proposition 2.5.3) antiautomor-
phisms can in general only be lifted to Qs (Proposition 2.5.4).
This problem, however, is easily solved by modifying the defini-
tion of a T-substitution. All other obstacles have already been
anticipated by results on Q.. proved in Chapter 2, Chapter 4,
and Chapter 6, and we shall indicate where these are used.

Let R be a prime ring with D, G, T, G*, and T* defined
exactly as in sections 7.1 and 7.2. There are two obvious ways
of generalizing the notion of the setting S of R. One is defined
to be

Sm = er H C{V ®c T}
C
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which we shall call the maximal setting of R. The other is
defined to be

S = Qumr [[C{V ®c T*}
c

which we shall call the x-maximal setting of R.

A substitution process compatible with S,, is, in general
terms at first, described as follows. Let P be a C-algebra with
1 such that

(i) P 2 Qur;

(ii) P 2 N, N a C-subalgebra of P;

(iii) There is a C-ring map 7 : T — Ends(N).

Let 1 : V — N be any C-space map. Then (as in section 7.1)
it is shown that there is a unique C-algebra map ¥ : S, —» P
given by ¢ = ¢, ¢ € Qur, and v ® t = (v)"®. Such a map
will be called the T'-substitution determined by % relative to
v. Fix any C-basis X of V. Now let P = Qur, N = @, and
v: T — Ends(Q;) as given in section 7.1. Any nonzero ideal
I of R is of course contained in @; and we shall say that an
element ¢ of S, is a T’-identity on I if ¢ is mapped to 0 under
all T"-substitutions ¢ for which %(X) C I. As in sections 7.5
and 7.7 T'-substitutions of S,, into itself are needed, and here
we take P = S, N =8, and v : T — Ends(S) as given by
Theorem 7.3.5.

As for Sy, let P be a C-algebra with 1 containing Q.,, and
let v : T* — Endg(P) be a fixed C-ring map. For any C-space
map % : V — P the C-algebra map zz : S;, — P determined by
g q, ¢ € Qmr, and v ®@t > P(v)"®), t € T*, is called the T*-
substitution determined by 1 relative to . Now let P = @Q,,,.
Since derivations and automorphisms of R can be lifted to @y,
(Propositions 2.5.1 and 2.5.3) it is clear that there are resulting
maps & : U = Ende(Qm,) and B : G* > Ends(Qm,) which
can be simultaneously extended to a C-ring map v : T* —
Ends(Qmr). We shall say that ¢ € S, is a T*-identity on 0 #
T 4R if ¢ is mapped to 0 under all T*-substitutions % for which



362 CHAPTER 7. T-IDENTITIES OF PRIME RINGS

¥(X) C I. It is clear that the analogue of Theorem 7.3.5 is valid,
namely, there is an appropriate C-ring map «y : T* — Ends(S,),
and so we have the T*-substitutions of S}, into itself which are
needed for extending the results of sections 7.5 and 7.7.

By definition the set I of all trivial T"-identities (resp. the
set I of all trivial T*-identities) is the ideal of S, (resp., ideal
of S;,) generated by the same elements C}, C), as were used to
generate . By definition the set of reduced elements of S,
relative to (B, <) (resp., reduced elements of S},) is the subring
Em = Qmre <X > (resp., &, = Qmrc <XT >). With no
changes in the proof we have the decomposition theorem

Theorem 7.8.1 S, = ® &y and S;, = I§ D E,.

We proceed to state the analogues of the main results proved
in sections 7.5 and 7.7 (there are, of course, no problems with
section 7.6), providing remarks at the key places where the co-
efficients of the identities are involved. We begin by stating the
analogues of Theorem 7.5.5 (concerning linear T"-identities) and
Theorem 7.5.6 (concerning linear T™*-identities).

Theorem 7.8.2 Let 0 # ¢ € Qv X °Qmr be a T'-identity on
some 0 # I aR. Then R is GPI.

Theorem 7.8.3 If ¢ € Qi XT6Q,, is a T*-identity on some
0+ IaR, then ¢ = 0.

Their proofs follow from the analogues of Lemmas 7.5.4,
7.5.3, 7.5.1, 7.5.2.

Concerning Lemma 7.5.4 the elements b;;, 7 = 1,2,...,m;,
1 = 1,2 are only assumed to be in Q,,, rather than in @,. But
Theorem 2.5.9 already anticipates this situation by providing

B = Ny, I an ideal, J a dense right ideal, to be used instead
of B € Nj. '
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Concerning the analogue of the crucial Lemma 7.5.3 Re-
mark 2.5.5 can be applied to the C-independent elements
bi,...,bn in the reduction to equation (7.17). Next, for the
finite collection b, v}, w' in the equation (7.17), we must choose
a dense right ideal J, with J C I, such that bJ, v;J, w'J are all
contained in R. Immediately following equation (7.18) we may
use the ideal IbJ in the definition of f, noting that a typical
element of IbJ can be expressed as b- 3, B € Ny, . Following
equation (7.22) we need to know that by = b-y € IbJ. Indeed,
since Qumr(J) = Qmr(R) (Proposition 2.1.10), we may use Re-
mark 2.5.5 (with J playing the role of R) to conclude that there
exists v € Nyny such that by = b-y € IbJ, by #0, b; -y =0,
j =2,3,...,m. Finally, we need to make certain that the ele-
ment u lies in ),. Having noted that u € ), we have uK C R
for some 0 # K < R. But there is an ideal 0 # L < R such that
Lo+ we C R From 8 + 3 pioy = ad(u), taking P= KN L,
it is clear that Pu C R whence u € Q.

Concerning Lemma, 7.5.1 we simply replace it by Corollary
6.3.16, and Lemma 7.5.2 may be replaced by Proposition 6.3.13.

With these remarks in place the proofs of Theorem 7.8.2 and
Theorem 7.8.3 follow.

For the analogue of Theorem 7.5.8 the same proof by induc-
tion on deg(¢) goes through, the case n = 1 having been given
by Theorem 7.8.2. We therefore may state

" Theorem 7.8.4 Let R be a prime ring and let ¢ € &, be a

nonzero reduced T"-identity on some nonzero ideal I of R. Then
R s GPI.

The analogue of the "freeness” theorem (Theorem 7.7.4)
holds true without comment.

Theorem 7.8.5 Let R be a prime ring, let ¢(x,-Ajg"f’) €&, be
a reduced T"-identity on a nonzero ideal I of R, and let {y;x}
be distinct elements of X in one-one correspondence with the
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variables 7% . Then ¢(yifj’.k) is o T'-identity on some nonzero

wdeal J of R.

Finally, we remark that it is the ”extension” theorem (The-
orem 7.7.8) that really necessitated the creation of the two set-
tings S, and S;,. For the setting S,, the analogue of Theo-
rem 7.7.8 goes through with the same proof, since z; — ¢; € Q;
is the T"-substitution being used. For the setting S;, a slight ad-
justment must be made since the T*-substitution z; — ¢; € Qmr
isrequired. The vector space V on which RC acts densely should
be taken to be a right vector space Va. Then by (the symmetric
version of) Theorem 4.3.7(viii) we have Qm, C End(Va). Ac-
cordingly Q.. acts on V from the left and the elements given in
(7.42) should be appropriately rewritten to reflect this. We now
state the two analogues of Theorem 7.7.8

Theorem 7.8.6 Let R be a prime ring and let ¢ € S, be a
reduced T'-identity on 0 # I<R of the form ¢ = qS(xif‘), fi € Gp.
Then ¢ is a T'-identity on Qs(R).

Theorem 7.8.7 Let R be a prime ring and let ¢ € S}, be a
reduced T*-identity on 0 # I 9 R of the form ¢ = qS(xif’), fi €
Gy NG*. Then ¢ is a T*-identity on Qm,(R).

7.9 Applications

We present in this section several applications of the preceding
results. Perhaps the most well-known is Kharchenko’s charac-
terization of algebraic derivations [146], and we begin with a gen-
eralization of this result (due to Leroy and Matczuk). Following
this we present analogous results for algebraic automorphisms,
and lastly we present some results on composition of derivations
(due to Chebotar, Chuang and Lanski) which are generaliza-
tions of the well-known Posner’s theorem on composition of two
derivations of a prime ring.
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Algebraic derivations. Let R be a prime ring with sym-
metric ring of quotients ). We continue to use the various nota-
tions developed in earlier sections of this chapter. We shall also
need on occasion to utilize the two-sided ring of right quotients
Q- = Q-(R) 2 Q. Both C (acting on @ via right multiplica-
tions) and D(R) = Der(R)C+ D; are subsets of Endg (@) and in
this framework we define the notion of an algebraic derivation.

Definition 7.9.1 Let § € D(R), S a subring of Q, and 0 #
IaR. Then ¢ is S-algebraic on I if

Y 8a; =0 (acting onl) (7.43)

=0

for somen >0, a; €S, a, # 0.

The condition (7.43) is equivalent to:

n .
3" z%a; is a T-identity on I.
=0

An application of Corollary 7.2.3(ii) and Theorem 7.5.6 yields

Remark 7.9.2 37, 6%; = 0 on I if and only if 0, 6%a; = 0
on Q.

In view of Remark 7.9.2 we may simply refer to § as being
S-algebraic (it is no longer necessary to add the phrase ”on I”).
If n is minimal in Definition 7.9.1 then n is called the S-deg of
d. Clearly, if § is Q-algebraic, then § is R-algebraic, with Q-deg
of § = R-deg of §. The question arises as to whether § being Q-
algebraic implies that ¢ is C-algebraic, and in the forthcoming
characterization of algebraic derivations this question will be
answered in the affirmative.

We look first at inner derivations.
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Lemma 7.9.3 Let a € Q. Then the following are equivalent:
(i) ad(a) is C-algebraic;
(i1) ad(a) is Q-algebraic;
(ii) a is C-algebraic.

Proof. Clearly (i) implies (ii). If ad(a) is Q-algebraic, then
T o(la—Ta)'ai = 0,4 € Q, am # 0, Since QuQ = Q°®cQ in
view of Theorem 2.3.6, the above equation translates to Y7, a'®
b; = 0 for suitable b; € Q, with b,, = a,,, # 0. Choose a C-basis
V1 = by, Va, .. ., Vs of the vector space 3 %, Cb;. Then we obtain
that 2, fi(a) ® v; = 0 for suitable polynomials f;(z) € Clz]
and so fi(a) = 0. Clearly deg(fi(z)) = m and hence fi(z) # 0.
As a result a is C-algebraic and therefore (ii) implies (iii). If
a is C-algebraic, then the subring of Endg(Q) generated by [,
e, and C is finite dimensional over C. Then ad(a) = I, — 7, is
C-algebraic and so (iii) implies (i).
We will also need the following

Remark 7.9.4 Given 6 € D(R) and 0 # K < R there ezist
nonzero ideals K = Ly O Ly D Ly O ... such that L C Li_,
fork=1,2,3,...

Proof. Writing 6 = Y d;¢; + i, &; € Der(R), ¢; € C, p =
ad(b), b € Q, we may chose a nonzero ideal J of R such that
J+¢;J+bJ+Jb C K. Setting Ly = K and L, = J® we see that

L{ C L. Now we set L, = L* and see by an easy induction on
k that L C Li_;.

We now proceed to prove a result of Leroy and Matczuk [187]
which describes the nature of the equation of minimal degree
satisfied by a @)-algebraic derivation.

Theorem 7.9.5 Leté € D(R) be Q-algebraic of Q-deg n. Then
there exist qo, q1,...,4, € Q, gn = 1, such that:

(i) St o8iq; =0, ie, Y7 2% ¢ is a T-identity on Q;

(i) ¢ =0 for all i, i.e., [6, ;] = O;

(#it) [g;, ¢;1 =0 for all 3.
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Proof. Without loss of generality we may assume that § is
R-algebraic of degree n. Let I be the subset of all » € R for
which there exist r; € R, i =0,1,...,n — 1, such that

n—1
'+ Y & =0 (7.44)

=0

The 7;’s are uniquely determined by r (by the minimality of n),
and it is clear that I is a nonzero right ideal-of R. It follows
from Remark 7.9.4 that there exists 0 # J <R such that J® C R
forall i <n. Now let s€ @, t € J, r € I. From (7.44) we have

(st)5"r + nz_:l(st)‘sir,- ~0 (7.45)
1=0

Expansion of (7.45) by repeated use of the Leibnitz formulas
results in

n—1
sty + 3 s"u; =0
1=0

where each w; is of the form T}_, z;t¥ri,;, z; an integer. Since
J¥ C R for each j=0,1,...,n, we see that u; € R. We have
thereby shown that JI C I. Now for each ¢ = 0,1,...,n —
1 we have a well-defined right R-module map f; : JI —» R
given by r — 7;. Accordingly there exists ¢; € @, such that
f(r) =r; = qir for all r € JI. Setting ¢, = 1 we conclude that
(32, 0%)JI =0, whence

n
Z(sIQ‘i = O) g; € Q’r, n = L.
=0

We now claim that the ¢;’s lie in Q). Indeed, let 0 # K < R such
that ¢;K C R for all i. By Remark 7.9.4 there exist nonzero
ideals K = Ly 2 Ly 2 Ly 2 ... D L, such that L{ C Ly_,,



368 CHAPTER 7. T-IDENTITIES OF PRIME RINGS

k=1,2,...,n. Now let s,t € ). Making use of the Leibnitz
formulas and the fact that ¢, = 1 we have

n . n . n—-1
0= (st)"q; =D s"qt =3 s u (7.46)
=0 i=0 i=0

where '
U; = Z (j> t‘sj—iq]' + tqi - q,,t =0 (747)
j=i+1 \* 7
by the minimality of n. We now make the subclaim that Liqn_&
C Rfor k=0,1,...,n, which we shall prove by induction on k.
For k = 0 we have Lyg, = K C R. In the equation (7.47) we

replace i by n — k and set [ = j — (n — k). From the resulting
equation we conclude that

k
LiGn-k C Gn-kLe + ) L gnii (7.48)
=1

By induction all summands on the right hand side of (7.48) lie in

R and so the subclaim is proved. In particular L,q; + ¢;L, C R

for:=0,1,...,n, i.e., each ¢; € Q, and so (i) is established.
An apphcatlon of 6 to YF,8%q; =0, s € Q, yields

n

. n—1
Y e+ " =
i=0

=0

Thus 77! s%°¢% = 0 and by the minimality of 7 we have ¢/ =0
for each 7 and so (ii) is proved. Finally, making use of (ii) and
the minimality of n, we see from

n n—1
0= Z Sq] Z 36"]1‘]] Z 36‘ [Qi, q]]
=0

1=0

that [g;, ¢;] = 0, thus establishing (iii).
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Proposition 7.9.6 Let § € D(R) be Q-algebraic of Q-deg n

and let qo,qu,...,q, € Q be given by Theorem 7.9.5. Suppose
that 1-n #0 in Q. Then § = ad(g,—1)/n.

Proof. We keep the notation of the proof of Theorem 7.9.5.
Setting i = n — 1 in (7.47), we obtain that nt’q, + [t, g,_1] =0
for all ¢ € J. Therefore § — ad(—g,—1)/n vanishes on J. Since
Q = Q,(J) and any derivation has a unique extension to @, we
see that § = ad(—gn-1)/n.

Theorem 7.9.7 Let R be a prime ring of characteristic zero
and let § € D(R). Then the following conditions are equivalent:
(i) 6 is C-algebraic;
(1) § is Q-algebraic;
(it1) § = ad(a), a € Q, a algebraic over C.

Proof. 1t is obvious that (i) implies (ii). If § is Q-algebraic,
then § = ad(a) for some a € @Q by Proposition 7.9.6, because
1-n # 0. Applying Lemma 7.9.3(iii), we conclude that a is
C-algebraic and so (ii) implies (iii). The fact that (iii) implies
(1) follows immediately from Lemma 7.9.3.

Theorem 7.9.8 Let R be a prime ring of characteristic p > 0,
and let § € D(R). Then the following conditions are equivalent:

(i) 6 is C-algebraic;

(i) & is Q-algebraic;

(iii) S, 0P c; = ad(a) where co,c1,...,cm € C, cm # 0,
a € Q, a algebraic over C.

Proof. The implication (i) implies (ii) is immediate. We
now assume that (ii) holds. We know that D(R) is a special
restricted differential Lie algebra. Suppose first that §; = &7,
+ = 0,1,..., are right C-independent modulo D;. Hence §;,
t=0,1,..., is a part of a well-ordered basis By of D(R) modulo
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D; with §; < §; in case i < j. Any positive integer i may
be written unlquely in the form Z aupj 0 <oy < p, and
so 6 = [Ij= 6 “ are part of a PBW basis of U(R) in view
Theorem 5. 4 5 ThlS forces the contradiction to Theorem 7.5.6
that 37, 11 557 a; € Qx5 Q is a nonzero T-identity. We may
thus conclude that p = >, 6P = ad(a) for some choice of
¢ €C,a€Q, ¢y #0. By Theorem 7.9.5

Y8u=0, ¢€Q, gn=1,[g:,¢]=0¢ =0 (749

i=0
where n is the Q-deg of §. Let S = Clqo,q1,---,qn-1] be the
subring of Endg(Q) generated by C, qo,q1,.--,qn-1 (regarded
as right multiplications), and let M be the right S-submodule of
Ends(Q) generated by 1,4,42,.... Since n is the Q-deg of 4, it
follows from (7.49) that M is an n-generated free right module
over the commutative ring S with the basis 1,6,42,...,6" L.
Clearly - M C M andso u-M C M. Let A € M,(S) be a matrix
of the mapping z — u-z, z € M, and let f(¢) = [tE — A| be the
characteristic polynomial of A. By Cayley-Hamilton theorem
f(p)-z =0 forall z € M. In particular f(p) = f(p)-1=0.
Thus p is Q-algebraic, and by Lemma 7.9.3 the element a is
C-algebraic. Therefore (ii) implies (iii).

Finally, assuming (iii), we know that ad(a) is C-algebraic by

Lemma 7.9.3, and so we may write

m

t N\ J
Z (Z 6P‘Ci> dj = 0, C-,;,dj S C, Cm ?é 0 ?é dg (750)
j=0

Expansion of (7.50) using the commutation formula ¢§ = dc+¢°
results in an equation

tp™m~1 .
S epdy+ Y 8¢ =0, ¢ eC

=0

and so ¢ is C-algebraic, thus proving that (iii) implies (i).
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In closing we note that in 1957 Amitsur [1] proved the equiv-
alence of (i) and (iii) in Theorem 7.9.7 in the case that R was
a simple ring, the equivalence of (i) and (iii) in Theorem 7.9.7
and Theorem 7.9.8 was proved by Kharchenko [146] in 1978,
and the additional equivalence with (ii) was proved by Leroy
and Matczuk [187] in 1985.

Algebraic automorphisms. In this subsection we char-
acterize algebraic automorphisms of prime rings in a somewhat
analogous fashion to the results of preceding subsection. We re-
fer the reader to the papers of Leroy and Matczuk [187], Page
and Maoulaoui [199] from which these results are drawn.

Let R be a prime ring. The basic definitions we need are en-
tirely analogous to those concerning derivations in the preceding
subsection, and so we shall indicate these rather briefly. Let S
be a subring of @), and let 0 # I <R. An element g € Aut(R) is
S-algebraic on I if % ; g'a; = 0 on I for some n > 0, a; € S,
an # 0, or, equivalently, > ; z9 q; is a T-identity on I. As be-
fore, by Corollary 7.2.3 (ii) and Theorem 7.5.6, g is S-algebraic
on [ if and only if ¢ is S-algebraic on @ (with the same equation
in either case). The minimal such 7 is called the S-deg of g. We
begin by characterizing X-inner automorphisms.

Theorem 7.9.9 Let R be a prime ring and let h = inn(s) € G;
be an X-inner -automorphism of R where s € Q. Then the
following conditions are equivalent:

(i) h is C-algebraic;

(i) h is Q-algebraic;

(iit) s is C-algebraic.

If this situation holds, let | be the QQ-deg of h, k the C-
deg of h and m the C-deg of s. Thenl = m, k < I?, and
Zg.:(, W sIe; =0 for some c; € C, ¢, = 1.

Proof. In the course of showing the equivalence of (i), (ii)
and (iii) the second part of the theorem will be evident. The im-
plication (i) implies (ii) being obvious, we assume 3°}_ hia; =
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0,a; € Q, a # 0. This says that ¥} _; s7¢s’a; = Oforallg € Q,

whence by Theorem 2.3.6 5_ s 7®31a] = 0. Since q; # 0 (and

hence s'a; # 0) it follows tha,t 57! (and hence s) is C-algebraic

of degree m < | (thus establishing (iii)). Furthermore, writing
T0577¢; =0,¢ € C, ¢ =1, we have

m

m m
0=> s7cigs™ = sgs!(s™¢;) = }: s™¢;)

for all ¢ € Q, i.e., X7y h?(s™ 7¢;) = 0. From the minimality of
| we conclude that m = [ and we have ¥5_ h(s'¢;) = 0.
Now assume that s is C-algebraic of degree m. Then [; and
r, are algebraic elements of degree m in Ends(Q) and so the
subring generated by l,, 5, and C in Ende(Q) is of dimension
< m? over C, whence h = inn(s) = l;-1r; = I7!r, is C-algebraic
of C-degree k < m2. Having now shown (i) (and hence (ii)),
we know that m = [ and so k < /2. The proof is now complete.

Theorem 7.9.10 Let R be a prime ring and let g € Aut(R).
Then the following conditions are equivalent:

(i) g is C-algebraic;

(%) g is Q-algebraic,

(iii) For some positive integer v we have ¢ = inn(t) is
X -inner, with t C-algebraic.

If this situation holds, let m be the least positive integer for
which g™ = inn(s) is X-inner. Then s is C-algebraic (of, say,
degree 1), and if n is the Q-deg of g and k is the C-deg of g,
then we have n = mi, k < ml?, and Zé':o g™sie; = 0 for
somec; € C, ¢ =1.

Proof. In the course of showing the equivalence of (i),
(ii), (iii), we shall at the same time be proving the rest of the
theorem. Clearly (i) implies (ii). Now assume g is Q-algebraic
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of degree n and write
Zgiai =0, a; €Q, a, #0 (7.51)
=0

Suppose first that for all 7 < n ¢* is not X-inner. Then 1,g,..
g™ are distinct elements of Go(R) and

9

n .
Z z%a; € QzT0Q
1=0

is a T-identity on @ in contradiction to Theorem 7.5.6. There-
fore h = g™ = inn(s) € G; for some 0 < m < n and we may
assume that m is minimal. Writingn=ml+r, 0 <r <m we
rewrite (7.51) as

m—11~1
Zghlazl+zzgzh Qij, az]eQ arl#o

1
1=0 i=0 j=0
in other words,
m—110-1

Zs x-"s’a,l+223 29 sTa;; € QeT6Q

i=0 j=0

is a reduced T-identity on Q. By Theorem 7.5.6 ¢(z) = 0 in
Q270 Q and in particular for i = r we have

-1

—1 L s ros

sT'xd say + E s729 s’a,; =0
=0

that is,

=0

-1 !
0 =g hla, + Z g’hjarj =g (Z hja,j)
=0
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and so
L L
Y ¢™ar; =Y ha,; =0, an #0. (7.52)
j=0 j=0

By the minimality of n we see that r = 0, and hence n = ml.
Again by the minimality of n (7.52) says that h is Q-algebraic
of degree . By Theorem 7.9.9 we see that s is C-algebraic of
degree I (thus proving (iii)), - h’s'¢; = 0 for some ¢; € C,
¢ = 1, and the C-degree w of h satisfies w < [2. It follows
that E' g™ st 'Jc = 0 and Y%, g™d; = 0 for some d; € C,
dy # 0, whence the C-degree k of g satisfies the relation k < mi?2.
Finally, suppose f = g* = inn(t) is X-inner with ¢ C-algebraic.
Let m be the least positive integer for which A = g™ = inn(s) is
X-inner. Writing v = mq+r, 0 <r <m, we see from f = hig"
that g is X-inner, whence » = 0 by the minimality of m. Thus
g" = (g™)9, leading to inn(t) = inn(s?), and so s? = tc for some
¢ € C. Therefore s is C-algebraic. By Theorem 7.9.9, h is C-
algebraic and so g is C-algebraic, thus proving that (iii) implies
(i).

Products of derivations. In 1957 Posner proved that if
R is a prime ring of characteristic distinct from 2 with nonzero
derivations d; and dj, then d;d; is not a derivation [241]. The
question when a product of derivations is again a derivation was
investigated by a number of authors, in particular by Krempa
and Matczuk [153], by Chuang [84], by Lanski [168] and by
Chebotar [78], some of whose results we shall present in this
subsection. We begin with the following generalization of Mar-
tindale’s lemma (i.e., Theorem 2.3.4) and a result of Bresar [68].

Lemma 7.9.11 Let S be any set and R a prime ring with ex-
tended centroid C. Suppose that F : S —- R, G : S — R are
nonzero mappings such that F(s)zG(t) = eG(s)xF(t) for all
s,t €S,z € R and some fired 0 # ¢ € C. Then:

(i) F and G are C-dependent;

(i) e = 1.
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Proof. Pick ty, sy € S such that F(ty) # 0 # G(sp). Then
from F(s0)zG(ty) = €G(so)zF(ty) we conclude that G(tp) #
0. Now from F(s)zG(to) = €G(s)zF(tp) we see that F(s) =
0 if and only if G(s) = 0. Suppose that G(s) # 0. Then
F(s)zG(ty) — eG(s)zF(ty) is a GPI on R and so by Corol-
lary 6.1.3 we have that G(ty) = AF(t) for some A € C. Hence

(AF(s) — eG(s))zF(tp) =0 forall z€R,seS.
Therefore G = ¢ ! \F. Now we have
0 = F(to)zG(to) — €G(to)TF (to) = (€7'X — A\ F(to)zF (o)

for all z € R. Thus ¢ = 1 and the lemma is proved.

We continue with the following result of Posner [241].

Theorem 7.9.12 Let R be a prime ring with extended centroid
C and with nonzero derivations dy,ds such that dids is again a
derivation of R. Then char(R) = 2 and there ezists an element
¢ € C such that dy = d;c.

Proof. Let z,y € R. Then we have
(zy)hde = ghdey 4 ghigyde 4 gdagdi 4 gy dide (7.53)
On the other hand, since d,d; is a derivation, we have
(zy)dle — zdley + zydle
and so we conclude from (7.53) that
zhy® 4 ghyh =0 forall z,yeR (7.54)
Substituting zz for z, we infer from (7.54) that

shzy® 4 a%yh =0 forall z,y,z€ R (7.55)
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Hence by Lemma 7.9.11 dy = dycforsome Q0 # c€ Cand -1 =1
which yields char(R) = 2.

Now we need the following general observation. Let R be
a prime ring with extended centroid C and D = D(R). Fur-
ther let B; be a linearly ordered C-basis of D; and let By be
a linearly ordered C-basis of D modulo D;. As usual we as-
sume that By < B;. Then By U B; is a linearly ordered basis
of D. Consider the corresponding PBW basis W = WyW,; of
the universal enveloping algebra U of the (restricted) differential
C-Lie algebra D. Given A = §;0,...0, € Wy, where §; € By
for all 7, we set |A| = n. Now let z = 3% A;Q;c;, where the
A;§Y’s are distinct elements of W and 0 # ¢; € C. We set
|z| = max{|A;| | 1 < i < m}. Further given a natural number
n, we denote by U, the C-linear span of all products of the form
AQ, where A € Wy with |A| < n and Q € W,;. For ease with
forthcoming formulas we also set U_; = {0}.

Let dy,do,...,d, € D. Suppose that d,,,d;,,...,ds,., where
1 <5 <582 <...< 8y <mn, forms a right C-basis of >, d,C
modulo D;. Setting u; = d; for 1 < j < m, we shall assume that
g1 < p2 < ... pty € By. Then we have that d; = 3770, pjci; +
ad(a;) for suitable ¢;; € C and ad(a;) € D;. Now consider the
polynomial ring A = Clz1,Z2,. -+, Zm,Y1,Y2,---,Yn). Given a
monomial M = z¥' . zFmylt |yl we set deg(M) = ky + ky +
oot ki, degg (M) = ki, (M) = pf' .. pErad(ar)" .. ad(ay )
and extend ¢ to a right C-space map ¢ : A — U by linearity.
With reference to the observations and terminology just devel-
oped, the following lemma is due to Chebotar.

Lemma 7.9.13 Let ©; < iy < ... < it < n be those indices
i such that d; = ad(a;) (i.e., ¢;j = 0 for all j = 1,2,...,m).
Suppose that either char(R) =0, or char(R) > n+1—k—m.
Set fz = Z;T;l Z;Ci5 + y;. Then:

(2) ld]dz.. dni =n—- k,’

(it) didy...dp— O(fifa... fn) € Uns_1.
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Proof. Let ¢1,ts,...,t,, be nonnegative integers with ¢; +
to+...+tp=7,1<i<m,1<s<kandceC. Itfollows
from the formulas

Cli = MiC+ C#ia
ad(a)p; = wp;ad(a) + ad(a*) and
i = ity + [, pal (7.56)

that

i - pmad(as,) - - ad(as, Jep

—ps ] “ufff prad(ay,) . - ad(as,)c

e U, (7.57)
We shall prove (ii) by induction on n. The case n = 1 is clear.
Suppose now that our statement is proved for di,ds, ..., d,_1.
Let fifo... fao1= Z;zl M,c; where M,’s are distinct monomials
and 0 # ¢, € C. Consider the case d, = ad(a,). Then among

dy,da,...,d,_1 there are exactly kK — 1 X-inner derivations and
SO

didy. . dn1 = ¢(fif2. .. fro1)
€ U(n—l)— (k=1)—1 = Un_g—1 (7.58)
Clearly
¢(M;)ciad(an) = d(M;)ad(ar)e; = ¢(Myn)ci
and 50 ¢(f1 ... fae1)dn = ¢(f1-.. fn). It follows from (7.58) that

diodn—¢(f1... fn) = (di...dncy = B(f1-.. faz1))dn
S Un—k—ldn g Un—-k—l

and so in this case our statement is proved. Now suppose that
dn & D;. Then we have

didy...dn1 ~ O(fifa. . fao1) € Un_g_a (7.59)
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It follows from (7.57) that

d(fifz. .. fao1)ticni — d(fifa-.. fn—lxi%i) € Un—k-1

and so

d(fifa-. foo1)dn — d(fifzo. .. fn) € Un—g-1.

Now it is clear that

dl . -dn - ¢(f1 . f'n.) = (dl . -dn—l —_ ¢(f1 .. -fn—l))d‘n.

+¢(fife. . fae1)dn — S(fif2. .- fn)
€ Up—g—2dn + Up_p—1 CUp_k—1

thus proving (ii). Now let fif2... fn = YXJ_; Mic;, where the
My’s are distinct monomials in z;’s and y;’s and 0 # ¢; € C.
Since

deg(fifz... fn) =deg(f1) + deg(fz2) + ... +deg(fn) =n—k,

there exists an index lp such that M;;, = Ny;,yy, ... Vi, where
N is a monomial in z;’s of degree n — k. Recall that f;, = v,
and f,, = z; for all t = 1,2,...,k, j = 1,2,...,m. Hence
deg, (N) <n—k—(m—1) = n+1—~k—m. By our assumptions
either char(R) = 0, or char(R) > n + 1 — k — m. Therefore
#(N) € W, and so [¢(N)| = n — k. It follows from (ii) that
|didy . ..dn| = |¢(N)| = n — k and the lemma is proved.

The following theorem is due to Chebotar [78].

Theorem 7.9.14 Let R be a prime ring with extended centroid
C and dy,dy,...,d, € D= D(R)\ {0} where n > 1. Further let
diydiy, .. diy, 1 <0y <dp < ... < 4 <, be all the X-inner
derivations from the set {dy,ds, ..., d,} and let dg,, ds,, . .., ds,,,

1 <38 <89 < ... <8y <n, be a mazimal C-independent
subset of {d1,da, ...,d,} modulo D;. Suppose that d\ds...d, =
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d € D(R) and either char(R) =0, or char(R) > n+1—k—m.
Then:

(i) d € D;;

(ii) If char(R) # 2, then k > 3;

(it2) If k < n, then k > 0 and d; d;, ... d;, = 0.

Proof. Setting pu; = d, for all j = 1,2,...,m, we may
choose a linearly ordered C-basis By of D modulo D; such that
p < po < ... < Wy € By. We may also assume that d =
Y31 1jc; + ad(a) for some ¢ > m, ¢; € C, a € Q = Q,(R) and
pi € By for all j = 1,2,...,q. Clearly d; = 77, pjci; + ad(a;)
for some ¢;; € C, a; € Q where i = 1,2,...,n. It follows from
(7.56) that

d=dd;y...dn =3 A0, (7.60)
s=1

where A; € W, and the 2,’s belong to the right C-span of C, B;,
BZ,...B!. Here we note that if £ > 0, then the (,’s belong to
the right C-span of B;, B?,...B?. According to Lemma 7.9.13
(i) |d| = n — k and so |A;] < n — k for all s. Furthermore
there exists at least one index so such that |A, | =n — &k and
Qs = diyd;, ... di hsy, where 0 # hyy € C, and all A,’s with
|Ag| = n — k appearing in (7.60) are distinct and are products
of p,’s (see Lemma 7.9.13 (ii)). Consider the following reduced
T-identity on R:

q9 T
S zHic; + [z, a] = Y zher ) (7.61)
J:l s=1

where p : T; - Endc(S) is the C-algebra map introduced in
section 7.2. By Theorem 7.7.9 we have that

q
> Ui+ lm a] = 3 AT = 3 oA (7.62)
j=1 Ay#1 As=1

is a T-identity on Q. Only the following two cases are possible:
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Case 1. Suppose that k¥ = n. Then A; = 1 for all s =
1,2,...,r. Setting z = 0, we conclude from (7.62) that ¢; = 0
forall j =1,2,...,q and so d = ad(a) € D;. Next suppose that
char(R) # 2. Then in view of Theorem 7.9.12, n # 2. Since
n > 1, we have that £k = n > 3. Thus in this case the theorem
is proved.

Case 2. Suppose that k& < n. We claim that k£ > 0. Indeed,
let ¥ = 0. By Lemma 7.9.13 there exists at least one index
S such that |As| = n and Q, = hs, € C. Since n > 1 and
As € Wy, we see that Ay, # p; forall j =1,2,...,9. Now recall
that Ay, # A, for p # so. Sending to zero all the variables in
(7.62) distinct from ya, , we obtain that ya, ks, is a T-identity
on @, a contradiction. Thus £ > 0 and our claim is established.
It was noted that the relation £ > 0 implies that all (2;’s belong
to the right C-span of B;, B?,..., BP. In particular in this case
1% =0forall s =1,2,...,r. Pick any 1 < j < ¢. Sending to
_zero all the variables in (7.62) distinct from y,, we obtain that

Q,
YuiCj — Z yﬁf- )
Ag=p;

Letting y,, = 1, we see that ¢; = 0. Therefore d = ad(a) € D;
and (7.62) yields

ENI D DR D (7.63)

As#l Ag=1

is a T-identity on @. Since k < n, |Ay | =n —k > 0. It fol-

lows from (7.63) that yg(f;"’) = 0. Recalling that d;,d,,...d;, =
Qsoh;., we conclude that the composition d;,d;, . . . d;, of deriva-
tions is equal to zero. From Theorem 7.9.12 we infer that k& > 3.

The theorem is thereby proved.
The following theorem is due to Chuang [84].
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Theorem 7.9.15 Let R be a prime ring of characteristic p > 0
and dy,ds, ...,d, € D = D(R). Suppose that didy...dp, = d €
D. Then:

(3) If {d1,ds,...,dp} N D; # 0, then d € D;;

(it) If {d1,da,...,dx} N D; = 0, then d; € d,C + D; for all
j=2,3,...,p and there exists c € C such that d = dlc.

Proof. If |{di,ds,...,d,} N D;| = k > 0, then char(R) =
p > p — k and so Theorem 7.9.14 is applicable. Therefore d €
D;. Next suppose that {d;,ds,...,dp,} N D; = 0. Let V =
?_1d;C and m = dimc((V+D;)/D;). If m > 1, then char(R) =
p > p+ 1 —m and so by Theorem 7.9.14 (iii) we have that
{d1,dy,...,dp,} N D; # 0, a contradiction. Therefore m =1 and
so d; € diC + D;. For simplicity we set 6 = dy. Then d; =
dc; + ad(a;) for some 0 # ¢; € C, a; € @, where 1 = 2,3,...,p.
We set v; = 4. Let v; be equal to either dc; or ad(a;), where
t=2,3,...,p. Consider the product v = 11v;y...v,. If at least
one of the v;’s is X-inner, then v = Z?;iéij where the ;s
belong to the right C-span of By, B8?,...,B8°"!. On the other
hand if v; = d¢; for all 2 = 2,3, ..., p, then

) .
v=1066c1cy...0c, =) Fay
7j=2
for some a;; € C. Therefore
p-1 p-1
d=a,+ > da;+ > 6. (7.64)
7=2 7j=1

The following two cases are the only possible ones.

Case 1. 6 and 4” are C-independent modulo D;. Then setting
1 = 6 and py = 67 we may choose a C-basis By of D modulo
D; such that py,pe € By. Clearly d = Y7, wr; + ad(a) for
SOme [13, fha, - - ., bg € By, 7 € C, a € Q. Consider the following
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reduced T-identity on R:

q —1 —1
Yo+ [o, 0] - 0y - Y atlag - 3 a0
=1 j=2 j=1

It follows from Theorem 7.7.9 that

q p-1 p—1 o)

Zyl‘-ir‘i + [:Ea a] — Yu:Cp — Z yy{aj - Z ylﬂ ’

i=1 =2 j=1 "1

is a T-identity on Q. Now we conclude that r; = 0 for all 7 > 2,

Te = ap, a; =0 forall j =2,3,...,p—1, and yzﬁ"f’ = 0 for
) 1

all j =2,3,...,p— 1 (in particular 2#17(%) = 0 for all z € Q).

Hence we see that

Y"1+ [z, a] — y;:sﬂ‘) (7.65)

is a T-identity on Q. Sending y,, to 1 and z to 0, we obtain
that r; = 0. On the other hand, sending y,, to zero we see that
[z, a] is a T-identity on @ and so ad(a) = 0. It follows from
(7.65) that yﬁgﬂl) = 0. Summarizing what we have proved, we
conclude that d = py0p = 6P 0.

Case 2. 6 = éc + ad(b) for some 0 # c € C and a € Q.
We set u; = 6 and we may assume that p; € By. Then one
can show that d = pr + ad(a) for some r € C, a € Q, and
ghiP%) = 0 = q; for all j = 2,3,...,p—1, and (7.64) yields the
following T-identity on @:

YT + [z, a] - Yp COp — [z, b]ap - yﬁnl)-

Sending y,, to 0 we see that [z, a] = [z, bJay,. On the other
hand, sending x to 0 and y,, to 1 we obtain that r = ca,.
Now it follows that yﬁ(lnl) = 0. Therefore 2#17(™) = 0 and so
d = dcayp + [z, bloy, = 6P, thus proving the theorem.

We close this section with the following result of Lanski [168]
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Theorem 7.9.16 Let R be a prime ring of characteristic dis-
tinct from 2 with extended centroid C and dy,dy,ds € D =
D(R). Suppose that dided; = d € D. Then either dy,dy,d3 €
Ddi, or char(R) = 3, d; = di¢; for some ¢; € C, i = 2,3, where
' =0.

Proof. If either char(R) = 0 or char(R) > 3, thend;, dy,d; €
D; by Theorem 7.9.14. Suppose that char(R) = 3. First we con-
sider the case |{d1,d2,d3} N D;| = k > 0. Then char(R) =3 >
3 — k and so by Theorem 7.9.14 we have kK = 3. Next suppose
that k = 0. Then dy,dy,d3 € D;. Now it follows from Theo-
rem 7.9.15 that dy = dyu + ad(a) and d3 = djv + ad(b) for some
0#u,veC,abe Q. Setting for simplicity § = d; we see that

d = didyds =6(6u+ ad(a))(dv + ad(d))
8%uv + 6%ulv + 6%ad(a)v + Sad(a®)v
+6%ad(b)u + dad(a)ad(b)

By Theorem 7.9.15(ii) we have d = §3¢, ¢ € C, and so

6% (c—uv)— 02 (uv+ad(a)v+ad(b)u)—b(ad(a’ ) v+ad(a)ad(b)) = 0
(7.66)

We claim that there exists v € C such that
v + ad(a®)v + ad(a)ad(b) = 0 (7.67)
w4 ad(av + bu) = 0 (7.68)

Indeed, if §, 8 are C-independent modD; we may assume §, §° €
By. Then the T-identity determined by (7.66) is reduced and so
by Theorem 7.5.6 (7.67) and (7.68) hold (taking v = 0). Other-
wise we substitute §° = 68 + ad(g), 8 € C, g € Q, into (7.66),
and from the resulting reduced identity we see again by Theo-
rem 7.5.6 that (7.67) and (7.68) hold (taking vy = —B(c — uv)).
Applying (7.67) to 1 we see that v = 0, whence by Theo-
rem 7.9.12 either a € C or b € C. On the other hand applying
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(7.68) to 1 results in u’»v = 0 and so u® = 0. But this forces
av + bu € C and since u,v # 0, we conclude that both a and
b lie in C. Thus dy = dyu, d3 = dyv, and u¥ = u® = 0, which
completes the proof.



Chapter 8

T-identities of Semiprime
Rings

The aim of the present chapter is to prove for semiprime rings
the results analogous to the main theorems for prime rings with
T-identities (see Chapter 7).

We first set in place some notations. Throughout this chap-
ter R will be a semiprime ring with extended centroid C, Q =
Qmr(R), S = O(R) the orthogonal completion of R, Q; = Q,(S)
and B = B(C). Further D; will be the Lie algebra of inner
derivations of @, D = D(R) = Der(S)C + D;, G; the X-inner
automorphisms of S, and G = G(R) = Aut(S) U Antiaut(S).

Further let M € Spec(B) and let ¢pr : Q = Q = Q/MQ be the
canonical surjection of rings. We set

g=d)M(S)a @:d)M(Qs)) and ézd)M(C)

We already know that S is a prime ring with extended centroid

C, Q C Qum(S) and @, C Q,(5) by Theorem 3.2.7 and Theo-
rem 3.2.15.

The first problem which we have to overcome is that in the
semiprime ring case the universal enveloping algebra U(D(R))
of the differential C-Lie algebra D(R) is not working as well as

385
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in the prime ring case. The reasons are the following. First of all
it is easy to see that D(R) is not a restricted Lie algebra in gen-
eral, but it may have some direct summands of the form eD(R),
e € B, which are restricted differential eC-Lie algebras. In the
first section we construct a reduced enveloping algebra U(D(R))
which reflects this situation. Next the algebra U(D(R)) has no
PBW basis because D(R) is not a free right C-module in gen-
eral. But we show that this algebra locally has a basis of PBW
type. The second problem is that in the semiprime ring case the
group G(R) does not serve our needs as well as in the prime ring
case. In the second section we construct a larger group @(R)
and discuss its properties. The first two sections form a base for
the notion of a reduced T-identity on an ideal of a semiprime
ring which is introduced and discussed in third section. The
last section is devoted to proofs of the analogs of the results in
Chapter 7 about prime rings with 7T-identities.

8.1 The Algebra U(D(R))

Let R be a semiprime ring, let P be the set of all prime numbers
and let Py = P U {0}. Setting I, = {r € R | pr =0}, p € P,
and Iy = rr(X,ep Ip), we note that I = 3 cp, Iy = Opepylp is
a dense ideal of R and the additive group of I is torsionfree.
We leave it to the reader as an easy exercise to show that @, =
QuI) = Thyep, Qo(Ty) and Qu(L), Qy(1,)* € Q,(I,) for all p €
D, o € G,p € Py. Letting e, denote the identity of Q,(I,) C Qs,
we remark that {e, | p € Py} is a dense orthogonal subset of B
and e; = e, for all & € G, p € Py. Clearly pQ,(I,) = 0 and
Qs(Ip) = e,Qs for all p € Py. We note the following important
property of the e,’s, the proof of which we leave to the reader.
Let M € Spec(B). Then, for p € Py,

char(C/MC) =p if and only if e, & M. (8.1)
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Next recall that v* = 0 for all v € B, u € D. Therefore (zv)* =
2ty = 2 for all z € ;. In particular

(Qs(L—ep))#» =0 and (Qs)** C Qsep

for all p € P,. Since pQse, = 0, we infer from Remark 1.1.1(b)
that (ue,)? € D for all p € P. Further the commutation formula
(5.22) was proved for prime rings, but the same proof is valid
also for semiprime rings. Therefore in End(Q;) the following
formula holds:

c<5=(5c+cg, deD, ceC, (8.2)

where 4 is the restriction of the derivation § on C. Letting o,
denote the prime subfield of ¢,C, we infer from Lemma 5.2.1(c)
that e,D is a special restricted differential e,C-Lie algebra over
®, with cover End(e,Q;), p € P.

Now let ® be the subring of C' generated by the identity. We
note that ®, = e,® for all p € P. We identify the ring C with
the subring idg,C of End(Q,) and set D = C + D. We claim
that DN C = 0. Indeed, suppose that ;& = ¢ where u € D,
c € C. Then

TYyc = (xy)“ = gly+zy* = (xc)y+x(yc) =2zyc and zyc=0

for all z,y € R. Therefore R%¢ = 0 and so ¢ = 0 because
/Rf is a dense ideal of R. Thus our claim is established and so
D = C @& D. From (8.2) we conclude that D is a special dif-
ferential C-Lie algebra over ® with cover End(Q,). According
to Lemma 5.4.2(c) e,D is a restricted differential e,C-Lie alge-

bra over &, with cover End(e,Q;) for all p € P. Thus we have
proved the following

Remark 8.1.1 D is a special differential C-Lie algebra over ®
with cover End(Q,). Moreover e,D is a restricted differential
epC-Lie algebra over ®, with cover End(e,Q;) for all p € P.
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Let Z be the ring of integers and X = {7 | z € D}. We
consider the ideal I = I(D) of F = Z<X > generated by all
elements of the following forms:

(

(2)z+7—z+y forall z,y € D;
(3)zc—zc forall z€ D, ceC;
(4) [z,7] - [5,y] forall z,ye D;
(5)7%? —2F forall zeeD, peP.

Setting U = U(D(R)) = F/I we note that the mapping C — U
given by the rule ¢+ ¢+ I, ¢ € C, is a homomorphism of rings
with identity by (1)-(3). Therefore U is a C-ring. From (4)
it follows that the mapping p : D — U given by z — T+ 1,
z € D, is a homomorphism of Lie rings. Moreover by (3) pis a
homomorphism of right C-modules. According to (4) we have

p () =slle,d) =631 c1-C

forall c € C, § € D. Now it follows that p(D) is a special
differential C-Lie algebra over ® with cover U and p is a ho-
momorphism of differential C-Lie algebras. Moreover by (5)
p: epD — ¢,U is a homomorphism of restricted differential
e,C-Lie algebras. Finally we note that the C-ring U is gener-
ated by p(D(R)) and 1 according to (1).

Our next goal is to show that p is an injection. To this end
we set

N(B) = {r € End(Q;) | Te =er forall e€ B}.

Let M € Spec(B) and let ¢pr : Qs = Q5 = Q/MQ, be the
canonical surjection of C-algebras. Since 7(MQ;) = M7(Q,) for
all 7 € N(B), we conclude that 7 induces an endomorphism 7
of the additive group of Q;. Clearly the mapping 1 : N(B) —
End(Q;) given by ¥y (r) = 7, 7 € N(B), is a homomorphism
of C-rings.
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Remark 8.1.2 The following conditions are fulfilled:

(i) N(B) is a nonsingular right C-module;

(ii) D; is an injective submodule of the C-module N(B). In
particular D; is an orthogonally complete subset of N(B);

(i) ker(pr) = MN(B) = {r € N(B) | E(1) € M},

(iv) ¥31(D) C ¢w(C) + D(én(S)) € End(Qs(é(5)));

(v) ¥m : D(R) = ¢m(C) + D(¢n(S)) = D(¢m(S)) is a
homomorphism of differential C-Lie algebras; .

(vi) If e, & M, then (D) = v (Dep) and har = De, —
dm(C)+ D(pum(S)) is a homomorphism of restricted differential
e,C-Lie algebras.

Proof. (i) It follows directly from the definition of N(B)
that it is a C-submodule of End(Q;). Clearly 7¢(7) = r¢(Q7) =
(1— E(QI))C by Theorem 2.3.9(i) for all 7 € N(B). Therefore
N(B) is a nonsingular C-module and E(7) = E(Q7).

(ii) Clearly D; is a C-submodule of N(B). By Proposi-
tion 3.1.10 D; is orthogonally complete. It follows from Propo-
sition 3.1.6 that D; is an injective C-module.

(iif) The equality MN(B) = {r € N(B) | E(r) € M}
is proved similarly to Remark 3.2.2(ii). Assume that 7 = 0
where 7 € N(B). Then ¢,(Q7) = 0. By Lemma 3.1.18 Q7
is an orthogonally complete subset of ;. Now it follows from
Corollary 3.2.4(iii) that E (1) = E(Q7) € M. On the other
hand if E(7) € M, then ¢3(Q7) = 0 by Corollary 3.2.4(iii) and
so T € ker(¢n).

Noting that @, C Qs(én(S)) by Theorem 3.2.15(iii), we
leave it for the reader to check the straightforward details of
(iv)-(vi).

Consider now the universal enveloping algebra (U(D(S)); x)
of the (restricted) differential C-Lie algebra D(S). As we al-
ready know C is a field. By Corollary 5.3.7 and Corollary 5.4.6
X is a monomorphism. Clearly D(S)X C U(D(S)) is a spe-
cial differential C-Lie algebra. We identify D(S) and D(S)X
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via x. From Lemma 5.4.2(c) it follows that all the conditions
of Definition 5.3.1 and Definition 5.4.1 hold for C + D(S) and
so it is a special (restricted) differential C-Lie subalgebra of
U(D(S)). Clearly C + D(S) is a special (restricted) differen-
tial C-Lie subalgebra of U(D(S)) as well. Define the mapping
ay : D — C+ D(S) by the rule ap(c+ p) = dar(c) +ar(p) for
all p € D(R), c € C. Clearly a)s is a homomorphism of differ-
ential C-Lie algebras. It follows directly from the definition of U
that there exists a unique homomorphism ¥, : U — U(D(S))
of C-rings such that ap; = ¥prp. Therefore

ker(p) € Nprespecs) ker(anr).

Clearly ker(ays) = ker(¢ar) @ ker(ps). It follows that

ﬁMGSPec(B) ker(aM) = (ﬁMGSpec(B) ker(qSM))
®(Narespec(n) ker(Pur)) =0

by Remark 8.1.2(iii). Thus we have proved the following

Corollary 8.1.3 The mapping p : DU (5) i$ a monomor-
phism.

In what follows we shall identify (via p) C and D with p(C)
and p(D) respectively. We shall call U(D(R)) the reduced uni-
versal enveloping algebra of the differential C-Lie algebra D(R).

Lemma 8.1.4 Let § € D(R) be such that 0 # ¥ (6) € Di(S).
Then there exist elements ay,a3,b € S such that E(a;) = E(az)
= E(b) ¢ M and bz’b + ayxb + bzay = 0 for all z € Q;.

Proof. Let v3;(8) = ad(q) where ¢ € Q,(S). Clearly Iq +
gl C S for some nonzero ideal I of S. Suppose that for all
x € I either gz = 0 or zg = 0. According to Proposition 2.2.1
L = qI #0. It follows that y?> = 0 for all y € L. We have

O0=+2)?=9y*+yz+2y+2>=yz+2y and yz=-—zy
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for all y,z € L. Therefore (yz)(yt) = y(z2y)t = —y%2t = 0
for all y,z,¢t € L and so (yL)? = 0. By Theorem 3.2.7 S is
a prime ring and hence yL = 0 for all y € L. It follows that
L? = 0 which implies that L = 0, a contradiction. Therefore
dg # 0 # qd for some d € I. We choose V,a},a;, € S such
that ¢p (V') = d, dn(a)) = dg and ¢ps(a) = —qd. Consider the
mapping 7 : S — S given by z7 = Vz°V + a\xb' + V'za,, z € S.
Since dz®¥9d + dgzd — dzgd = 0 for all z € S, we conclude that
ém(S™) = 0. By Lemma 3.1.18 S” is an orthogonally complete
subset of S. Now it follows from Corollary 3.2.4(iii) that vS™ =
0 for some v € B\ M. Since d, qd, dq are nonzero elements, we
infer from Corollary 3.2.4(ii) that e = vE(V)E(a))E(a)) & M.
We set b = e/, a; = ea) and a; = ea),. From eS™ = 0 we
conclude that bz’b + a12b + bzay = 0 for all z € S. Tt follows
from Theorem 2.3.9(ii) that e = E(b) = E(a1) = E(az). The
proof is complete.

Given § € D(R), we recall from section 3.1 that
Ms; ={m € Q| 6E(m) = ad(m)}.

Lemma 8.1.5 Let § € D(R) and a1,a3,b € S be such that
E(a1) = E(az) = E(b) = e and

b2®b + ajzb 4+ bzray =0 for all z € Q,. (8.3)

Then there exists an element ¢ € @, such that E(q) < e and
de = ad(q). In particular ¢ € M;.

Proof. We define the mapping 7 : SbS — S by the rule
b-Bb-B+ay-B,8€ S ®cS. Suppose b- 8 =0 for some
B=2ri®s € S°®cS. Substituting zr; for z in (8.3) and
multiplying by s; from the right, we obtain

b:v‘sr,-bsi + b:nrf bs; + ayzr;bs; + brr;ass; =0
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for all z € S. Since b- 8 = 0, we have
0=bz(b- B°) + bx(ay - B) = bz(b- ° + ay - f)
for all z € S. According to Lemma 2.3.10 we have that

0 = E@®)(b-A +ay- )
= (E(@®)b) -8+ (E(b)az) - B
= b tap
since E(b) = FE(ag). Therefore the mapping 7 is well-defined.
Clearly 7 is a homomorphism of right S-modules. By Propo-
sition 2.2.1(iv) there exists an element ¢’ € Q. = Q,(S) such

that 27 = ¢’z forall z € SbS. Let t € Sand S € S°®c S. We
set v = B(t ® 1). We have

qtb-B) = ¢b-V=0b-7)"=b-7+a-7
t2(b- B) + t(b- B°) + t(az - )
= t'(b-B)+tq'(b- B)
and so
(l¢',t] — t9)SbS =0
for all t € S. It follows from Lemma 2.3.10 that

([, t] — t°)E(SbS) = 0.

Since r¢(SbS) = r¢(b), we obtain that E(SbS) = E(b). Setting
q = —¢'E(b) we conclude that ad(q) = §E(b) (whence ¢ € Q).
We recall from Theorem 2.3.9(ii) that F(q) = E(b)E(¢) <
e = E(b). Finally we note that E(ad(q)) < E(q) < e and so

dE(q) = deE(q) = ad(q)E(¢q) = ad(q). Thus ¢ € M; and the
proof is complete.

Corollary 8.1.6 Let § € D(R) and P € Spec(B). Then

op(Ms) = Myp(s).
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Proof. First of all we note that 0 € Mj since 0 = ad(0) =
60 = 6E(0). Let m € M;. If E(m) € P, then ¥p(ad(m)) =0 €
My, If E(m) € P, then ¢p(ad(m)) = p(8E(m)) = ¢p(5)
and so ¢p(m) € My, ). Therefore ¢pp(Ms) C My,(5. Suppose
that ¢p(Ms) = 0 but My, # 0. From Lemma 8.1.4 it follows
that the conditions of Lemma 8.1.5 are fulfilled with E(b) =
e ¢ P. By Lemma 8.1.5 we conclude that e = ad(q) for some
q € Ms. According to our assumption ¢p(q) = 0. Therefore

Yp(0) = Yp(de) = Yp(ad(q)) = ad(ép(q)) =0

and so E(6) € P by Remark 8.1.2(iii). Setting v = 1 ~ E(§) we
note that v € P and dv = 0. Therefore Cv C M; and hence

0 # ¢p(C) = ¢p(Cv) C ¢p(Ms) =0,

a contradiction. Now assume that ¢p(Ms) # 0. Let 0 # a =
¢p(q) where ¢ € M; and b € My, ). Clearly [z,b — a] = 0 for
all z € ¢pr(S). Therefore b—a € ¢p(C) by Theorem 3.2.15(iv).
Pick ¢ € C such that ¢p(c) = b — a. Since (¢ + cE(q))E(q) =
q + cE(q), we conclude that E(q + cE(q)) < E(q). Clearly

ad(q + cE(q)) = ad(q) = 6E(q)

and so

ad(q+ cE(q)) = ad(q + cE(q))E(q + cE(q)) = §E(q + cE(q)).

It follows that ¢ + cE(q) € Mj. Next since ¢p(q) = a # 0,
E(q) ¢ P. Therefore ¢p(q + cE(q)) = a + ¢p(c) = b and so
¢p(Ms) = My, (5. The proof is complete.

We are now in a position to fulfill the main goal of this section
(Lemma 8.1.7 and Proposition 8.1.8). These results will show
that U(D(R)) has ”local” PBW-type bases which are ”com-
patible” with the PBW bases of U(D(S)) for various prime
homomorphic images S of S = O(R).
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Let M = {u; |1 <i<n}C D(R). The set M is said to
be strongly independent if for all ¢; € C, 1 < 7 < n, the rela-
tion 377, pic; € D; implies that p;c; =0 for alli =1,2,...,n.
Obviously M is strongly independent if and only if >7 , 4;C =
@, u:C and (F, u;C) N D; = 0. The notion of strong inde-
pendence is of course motivated by the fact that in the special
case when R is a prime ring py, o, - . ., by € D(R) are strongly
independent if and only if they belong to some By(R) (see sec-
tion 5.5).

Given a number m > 0 a product A = g phi, . .- iy, € U,
pi, € M, s called a monomial in M of degree m. The monomial
A is said to be correct if i; < i, < ... <, and for every p € P,
p < m, the relations eyu;, # 0 and p;, = p;,,, =
where k£ 4+ s — 1 < m, imply that s < p.

= Py

Lemma 8.1.7 Let M = {u; | 1 <i < n} C D(R) be a strongly
independent subset of derivations, t,m > 0 natural numbers,
D ={A;|1<j <t} asetof pairwise distinct correct monomi-
als in M of degree < m, P € Spec(B), ¢p: Q = Q = Q/MQ,
wp : D(R) = D(S) and ¥p : U(D(R)) — U(D(S)) the canoni-
cal homomorphisms. Then:

(i) There exists a basis B = By U B; of D(S) such that

D= {\IIP(A) | AeD and \I’P(A) 76 0} C W,

where W = WyW,; is a PBW -basis of U(D(S)) (see section 5.4);
(zz) If Aj = Wjiy Kjig - - - Hjig where k = k(j) and the Hjig 8
are in M, then rc(A;) = (1 — E(A;))C where

E(Aj) = E(pji, ) E(1ji,) - - - E(pa);
(iii) They A;C = @4, AC.

Pioof. We recall from Theorem 3.2.7 and Theorem 3.2.15
that S is a prime ring with extended centroid C. Further we
claim that the set

M ={pi=vp(m) |1 <i<n and 9p(u) # 0}
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is C-independent modulo D;(S). Indeed, suppose to the con-
trary that ¥ ule; = ad(y), ul,¢ # 0, for some y € Q4(S).
In other words, setting u = ¥ pic;, we have ¥p(u) = ad(y)
where y € My,(y. By Corollary 8.1.6 y = ép(z), * € M,
whence ¥ u;c;E(z) = ad(z). Since the y;’s are strongly inde-
pendent, we have that u;c;E(x) = 0 for each . As u/¢; # 0 and
wieidp(E(z)) = 0, we conclude that E(z) € P. Now from

Yp(p) = ad(y) = ad(ép(z)) = Yp(ad(z))

we obtain u = ad(z) + 7, where 7 € ker(yp). It follows that
E(r) € P. Clearly e = (1 — E(z))(1 — E(r)) € P and 0 =
pe = Y pice. It follows that ¢p(e) = 1 and each p;ce = 0.
Applying 1p we obtain the contradiction p}¢; = 0 which proves
our claim. Therefore there exists a linearly ordered basis B =
By U B; of D(S) such that M’ C By and p} <y} if and only if
i < j. If char(C) > m or char(C) = 0, then clearly D' C W
Suppose that char(C) = p < m. Then by (8.1) e, € M and so

Yp(epps) = Yp(p;) for all i =1,2,...,n. We conclude from the
definition of correct monomials that D' C W),.

It follows that ¥p(A;) = 0 if and only if ¥p(u;;,) = 0 for
some 1 < s < k. We already know that 1p(u;;,) = 0 if and only
if E(j;,) € P. Therefore ¥p(A;) = 0 if and only if

e = E(uji, ) E(kjiy) - - - E(pji,) € P.

Let now 0 # ¢ € eC. Then we choose M € Spec(B) such
that E(c) ¢ M. Clearly then e ¢ M and so Up(Ajc) =
U (Aj)ém(c) # 0. Therefore ¢ € rc(A;) and so re(4;) C
(1 —e)C. On the other hand

DB(si,) = tyin -1 B(bgi,) - - i
= “jil"'ﬂji,'-'“jik::Aj
and hence Aje = A;. It follows that ro(A;) 2 (1 —e)C

and therefore ro(A;) = (1 — e)C, which shows that E(A;) =
E (i) E (thsis) - - - E(ziy )-
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Suppose now that 3i_; Ajc; = 0 for some ¢;,¢y,...,¢ € C.
Then Y!_, Uar(Ajc;) = 0 and so Wp(Aje;) = 0 for all j =
1,2,...,t and M € Spec(B). Thus Ajc; = 0 and the proof is
complete.

Proposition 8.1.8 Let M = {y; | 1 < i < n} C D(R) and
m > 0 a natural number. Then there exist a strongly indepen-
dent subset Mo = {6; | 1 < j < t} C D(R) and a subset
M; ={v | 1 <k < s} C Di(R) such that any monomial ©
in M of degree < m is a right C-linear combination of products
of the form AQ, where A is a correct monomial in My, 2 is a
monomial in M; and deg(A) + deg(Q2) < deg(©).

Proof. We set P, = {p € P | p < m}, P' = P, U {0},
Up=€p, D E Py =13 cp,. € and

M ={ypu; |1<i<n, leP}

Clearly any monomial of degree { < m in M is a sum of mono-
mials in M’ of the same degree. Furthermore any monomial in
M' involving simultaneously vpu; and veu; with p # q € P is
equal to zero. Therefore it is enough to construct the desired
subsets for each {vu; | 1 <i<n,}, 1 € P!, provided that they
will belong to v;D(R). Replacing S by v;S we reduce the proof
to the following two cases:

Case 1 pS = 0 for some p < m;

Case 2 e, =0 for all p € Pp,.

We shall consider only the first case since in the second case
the proof is virtually the same (but slightly simpler). Since
pS =0, D(S) is a restricted differential C-Lie algebra over &,,.

By Remark 8.1.2 D; is a direct summand of the right C-
module D. Let D = Dy @ D; and 7, m; be the projections on
Dqy and D; respectively. We set Ky = Y0, ;1,C, Ly = m(K))
and N} = m;(K;). Clearly L; and N; are finitely generated
nonsingular C-modules. It follows from Remark 3.1.4 that the
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C-module L; has a strongly independent generating set £, =
{6; | 1 < j < t1}. We fix any finite generating set of the C-
module N; and denote it by Nj.

We proceed to construct by induction ordered 5-tuples (K,
L;, L;, N;, N;), i = 2,3, ..., such that:

(a) K; is a finitely generated right C-submodule of D con-
taining K,;_;

(b) L; = mo(K;) and L£; = {61,02,...,08;} is a strongly inde-
pendent generating set of L;, where #; > t;_;;

(c) N; = m(K;) and N; is a finite generating set of the C-
module N; containing N;_;.

Suppose that we have already constructed a 5-tuple (K, L;,
L;, N;, N;). Then we set

Kin=Li+N+ > [z,y]C+ ) z*C.
:L',yEL',,-UN,- TEL;

Clearly K;,, is finitely generated. Since K; C L; + N;, we see
that Kz Q Ki+1. Next we set Li+1 = 7T0(Ki+1) and Ni+1 =
7;(Kiy1). Clearly Liyy and Ny are finitely generated C-mo-
dules, L; € L;;; and N; C N;4;. Choose any finite generating
set N;y1 of N;41 containing N;. Since L; is an injective C-
module (see Remark 3.1.4 and Theorem 2.3.9), L;y; = L; ® L’
for some submodule L' C L;;;. According to Remark 3.1.4
the C-module L' has a strongly independent generating set, say,
{84;41,04;,42,--.,04;,,,}. Finally we set Li1q = {§; | 1 < j <
tit1}-

Next we prove by induction on m the following statement.
For all4 =1,2,... any monomial © in K; of degree m is a right
C-linear combination of products of the form A, where A is
a correct monomial in £;,,,_1, Q is a monomial in N;4,,—; and
deg(A) + deg(Q2) < m.

Ifm=1, then © =z € K;. Since K; C L;® N;, we conclude
that € = Y5, 8¢5 + sen, 2d, for some ¢;,d, € C. Therefore
our statement holds for m = 1. Suppose now that our statement
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holds for all 1 < k < m — 1. Writing elements involved in © as
linear combinations of elements belonging to £; UN; and using
the commutation formula (5.22)

S=d6c+c®, 6eD,ceC,

we obtain that © is a C-linear combination of monomials of the
form z,z, ...z, where the z;’s belong to £; UN; and k < m.
It follows from the induction assumption that it is enough to
consider only one such monomial 25 ...z, of degree m. First
assume that there exists an index j such that 1 < 7 < m —1,
z; € N; and ;41 € L;. Clearly

Z1X2..-Tyy = X1...T512541%iT542..-Tm

+z... Tj— [il?j, iIIj+1]iIIj+2 B (84)

Since z;...2;_1[zj,Zj41]Tj4+2 ... Tm is a monomial in Kjyy of
degree m — 1, we can apply the induction assumption. It follows
that without loss of generality we may assume that there exists
k such that K < m, z1,29,...,2x € L; and Tgy1, T2, .-+ Tm €
N;. Next assume that there exists an index j such that 1 < j <
k—1,2; =6,, 2j41 = 6, with 1 < s <r < t;. Then the equation
(8.4) together with the induction assumption yields that without
loss of generality we may assume that

T :6j1’ 9 Z(sz,...,.'L'k 26‘“

with j; < jp < ... < ji. Finally we note that the case when
Ji = ji+1 = ... = Jiyp—1 is considered analogously. Therefore
our statement is proved

Taking My = £L,, and M; = N,, we complete the proof.

8.2 The Group G(R)

The following example shows that in the case of semiprime rings
some new trivial T-identities appear.
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Example Let A be any semiprime ring with 1. We set R =
ADADADA and e = (1,1,0,0). Define automorphisms « and
[ of R by the rule

(a,b,c,d)® = (b,a,d,c), (a,b,c, d)ﬂ = (b,a,c,d)

for all (a,b,c,d) € R. Clearly o # § and ¢(z) = ex® — ez’ is a
T-identity on R.

At this point we note that the situation with the group G(R)
is in some sense analogous to that of U(D(R)): it does not work
as well as in the prime ring case. We shall need to construct a
larger group G(R). To this end we recall that End(Q,) is a right
C-module and for all ¥ € End(Q,) we have r¢(y) = re(Q7) =
(1 — E(QY))C (see Theorem 2.3.9(i)). Therefore End(Q,) is a
nonsingular C-module. Given a dense orthogonal subset V C B
and a subset {7y, | v € V} C End(Q;) we define a mapping
v: Qs — Qs by the rule 27 = i, v for all x € Q,. Clearly

V" =2y =" = 2"?

forall z € Q, and so yv = y,v for allv € V. Noting that all that
we have just shown is valid for End(S) as well, we summarize
these results in the following

Remark 8.2.1 End(Q;) is a nonsingular orthogonally complete

right C-module and End(S) is an orthogonally complete subset
of End(Qs).

We consider G'(R) as a subgroup of End(Q;) and we identify
C with idg,C. Then the products e and e« are defined, where
a € G(R), e € B. Given e € B, we may consider End(eQ))
as a subring of End(Q,) defining z* = (ex)! for all z € Q,,
t € End(eQ;). We note that

End(eQs) = {t € End(Q,) | et =t = te}.



400 CHAPTER 8. T-IDENTITIES OF SEMIPRIME RINGS

Since e@; = Q;(eS), by Proposition 2.5.3 and Proposition 2.5.4
we have

G(eS) C End(eQy).

The following remark will be especially useful when we come to
defining ”Frobenius elements”.

Remark 8.2.2 Let V be a dense orthogonal subset of B and
g» € G(vS) C End(vQ;) C End(Qs), v e V.

Suppose that w9 = w forv € V and w € vB. We set g =
Soev 9uv. Then:

(i) g is an automorphism of additive groups of S and Q)
such that €9 = e for all e € B;

(i) There exist orthogonal idempotents u; = wui(g),us =
uz(g) € B such that uy +uz = 1, guy € Aut(u1S) C Aut(u1Q;)
and guy € Antiaut(ueS) C Antiaut(usQ;);

(i) If g, € Aut(vS) for all v € V, then g € Aut(S) C
Aut(Qs);

(i) If g, € Antiaut(vS) for allv € V, then g € Antiaut(S)
C Antiaut(Q;);

(v) glc is an automorphism of C.

Proof. We shall prove (i), (iii) and (iv) simultaneously.
We show that ¢ is an automorphism of the additive group of S.
The case of () is proved analogously. Let z,y € S. Then

v(z+y)? = v(z+y)]” = (vz)? +(vy)?” = ved+vy? = v(z?+y9)

forallv € V and so (z+y)9 = 29+y? since V is a dense subset of
B (see Theorem 2.3.9(i)). Here we note that if g, € Aut(S) for
all v € V, then the equality (zy)? = 29y9 is proved analogously.
Now suppose that 29 = 0. Then 0 = 29y = (vz)9 and so vz =0
for all v € V which implies that z = 0. It follows that g is
injective. Now let z € S. Since g, is either an automorphism or
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an antiautomorphism of vS, vz = (y,)% for some y, € vS. It is
not difficult to see that y9 = z where y = Y1y y»v. Therefore
g is an automorphism of the additive group of S. Next since
e = Yicv ev, we see that

e =Y “(ev)® = > Tev=c¢
VeV vEV
and hence e9 = e for all e € B. Therefore (i), (iii) and (iv) are
proved.

(ii) We set Vi = {v e V | gy € Aut(vS)}, Vo=V \ V1, uy =
E(V}) and up = E(V3). Since 0 = V1V4S = V1.5V, we infer from
Lemma 2.3.10 that E(V})E(V,) = 0 and so ujus = 0. We have
V = ViUV, viu; = vy and voug = v, for all v, € Vi, vg € Va.
Therefore v(u; +ug) = v for all v € V and so v(1 —uy —uy) =0,
v € V. Recalling that V is a dense subset of B, we conclude that
U1 + ug = 1. Further Vu, = V; is a dense orthogonal subset of
w1 B. Obviously Q,(u1S) = u1@s, the extended centroid of u;Q,
equals u,C and B(u;C) = u;B. Finally gu; = E;Lev gyUU; =
Ejevl gvv. By (iii) gu; is an automorphism of u;S. Analogously
one can show that gus is an antiautomorphism of u2S. The proof
is complete.

Following section 7.6 we define an automorphism g of C to
be Frobenius if either g = 1 or, in case pC = 0 for some prime
p and 0 : ¢ = P is an automorphism of C, g = 6" for some
n € Z. Following section 7.7 we then define g € G(R) to be a
Frobenius (anti)automorphism of S if the restriction § of g to
C is a Frobenius automorphism of C. We note that if ¢ is a
Frobenius (anti)automorphism, then e = e for all e € B. A
mapping g : S — S is called a Frobenius element if there exist
a dense orthogonal subset V of B and

{9v | g is a Frobenius (anti)automorphism of vS, v € V'}

such that g = Yoy gv. Since any (anti)automorphism of v.S
has a unique extension to vQ; = Q,(vS), we may assume that
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every g, is an (anti)automorphism of vQ,, v € V. The following
corollary follows immediately from Remark 8.2.2.

Corollary 8.2.3 If g is a Frobenius element of End(S), then g
s an automorphism of the additive group of Qs, €9 = e for all
e € B, and g induces an automorphism of C.

We denote by Gy = Gs(R) the subset of all Frobenius ele-
ments of End(S).

Proposition 8.2.4 Gy is a subgroup of the multiplicative semi-
group End(Q,) containing G; and o 'Gyja = Gy for all o €
G(R).

Proof. Let ¢ = Y.\ g,v and h = ¥;c;y huu be Frobenius
elements. One can check that f = gh = Zj—EV,uEU gyhyvu and
gvhy, is a Frobenius (anti)automorphism of vuS. Setting W =
VU and f, = gyhy for all w =vu € W, v € V, u € U, we see
that f = Ybcw fuw. As g, is a Frobenius (anti)automorphism
of vS5, g;! is a Frobenius (anti)automorphism of vS as well.

Setting A = Y2\, g, 'v we note that h is a Frobenius element
and

gh=>" JLg,,gv“lv => Yidysv = ids.

veV eV
Analogously hg = ids and so g~* = h € Gy. Therefore G;
is a subgroup of End(Q,). Obviously G; C Gy. Finally let
a € G(R). We note that ea = ae® for every e € B. It follows
that

alga = Z la‘lgvav"‘.

veV

Since g, is either a Frobenius automorphism or a Frobenius an-
tiautomorphism of v9, o' g, is respectively either a Frobenius
automorphism or a Frobenius antiautomorphism of v*S. Not-
ing that V'* is a dense orthogonal subset of B, we conclude that
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a~'ga is a Frobenius element of End(S) which completes the
proof.

We set G(R) = G(R)G(R) and continue with the following

Corollary 8.2.5 @(R) is a subgroup of End(Qs) and G¢, G;

o~

are normal subgroups of G(R).

Proof. It follows from Proposition 8.2.4 that G(R) is a
subgroup of End(Q;) with the normal subgroup G;. Since G;
is a normal subgroup of G(R), it is enough to show that f =
g~linn(s)g € G; for all g € G;. Here we note that e/ = e for all
e € B. Let g = Yycy gvv where V is a dense orthogonal subset
of B and g, is a Frobenius (anti)automorphism of vQ; for all
v € V. We set t, = (vs)% if g, is an automorphism of vQ;.
Otherwise we set t, = (vs™!)%. Letting ¢ denote the element
Yoey tyU, We see that

val = (vz)f? = (vg)9 (9

= [(Us—l) (ng;‘) (US)],% = inn(ty)(vz) = ppinn(®)

forallv € V, z € Q, and so f = inn(t) € G;. The proof is
complete.

A subgroup H C @(R) is called an O-subgroup if H is an
orthogonally complete subset of Fnd(Q,) and e* = e for all
ec B,he H.

Remark 8.2.6 G; and G; are O-subgroups of G(R).

Proof. Let V C B be a dense orthogonal subset and g, €
Gy, v € V. Then g, = Ty, Guuu. Setting W = {vu | v €
V, u €U, w # 0} and g = Y5, g,v we see that W is a
dense orthogonal subset of B and gw = gvu = g,vu = g,uv =
oWV = gy, w for all w = uv € W. Letting h,, denote Gv Where
w=vu, v €V and u € U, we conclude that g = 1, hyw.
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Note that h,, is a Frobenius (anti)automorphism of w@, and so
g c Gf.

Next we recall that G; is the group of all X-inner automor-
phisms of S = O(R). Clearly e* = e for any h = inn(s) € G;
and e € B. Now let V be any dense orthogonal subset of B
and let av inn(sv) € Gi, v € V. Setting s = Y.\, s,v and
t = Yooy Sy1v, we infer from Remark 3.1.9 that ts = st =
ZvEV v = 1. Furthermore by Proposition 3.1.10 s,t € (). Next
we see that trs = Yl sylrs,v € S for all 1 € S. Finally,
letting g = Y icy inn(s,)v, we note that 79 = Yo, rinnlsvdy =
rnn(s) for all r € S. Thus g = inn(s) € G;.

The following remark is needed in the course of forming the
skew group ring U o G which will be needed in section 8.3 when
we define the "home” for T-identities.

Remark 8.2.7 Let f € G(R) and i € D(R). Then f~'uf €
D(R). Furthermore if p € D;, then f~uf € D; as well.

Proof. Clearly f = ah for some o € G(R), h € G;(R). We
already know that o 'pa is a derivation. Hence without loss
of generality we may assume that o = 1. Let h = Z‘UEV
where V C B is a dense orthogonal subset and h, is a Frobe—
nius (anti)automorphism of v@Q, such that (vS)*» =vS, v e V.
Recall that ™! = Y., hy'v. Since ey = pe and eh = he for
all e € B, we see that

hluh = (Z Lh;1v> ph=S"hiluhv =3 *(h7  phy)v.

vevV veV veV

Clearly h; ! ph,v is a derivation of vS for all v € V. Recalling the
relation End(vS) C End(S) we conclude that it is a derivation
of S. Setting v = Y1y (hyphy)v we see that vv = Ay uh,v is
a derivation of S for all v € V. Since V is dense subset of B, we
infer that v is a derivation of S. Thus h~'h = v is a derivation
of S. The proof is complete.
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For f € G the map ¢ : ¢ = f~lcf, c € C, is an automor-
phism of C. With Remark 8.2.7 in mind we leave it for the reader
to check (just as in section 7.1) that the map c+pu— ¢+ f L uf
is indeed a o-semilinear differential C-Lie algebra automorphism
of D. This leads to an action of G on U and hence to the skew
group ring UxG.

We recall the partial ordering on B which is given as follows:
fore,f € Be < fife =ef. Let H be an O-subgroup of
G(R). Elements a, 8 € G(R) are called completely distinct on
e € B modulo H, if either e = 0 or for every 0 # v < e we have
av & BHv. Using the fact that vh = hv forallv € B, h € H, it
is easy to see that «, # are completely distinct on e modulo H
if and only if 8, @ are completely distinct on e modulo H.

Let A= {o; |1 < i< n}andeyey,...,e, € B. Suppose
that either A C Aut(S), or A C Antiaut(S), and the following
conditions are fulfilled:

(a) e;,ej=0foralll <is#j <

(b)er+ex+...+e=1,

-1 -
(c) e =ey

Setting g = 37, aye; we claim that

1
forall 1 <4,5,k <n.

g € Aut(S) U Antiaut(S). (8.5)

Indeed, clearly S = ®,S5¢; = €B?=1Se?‘_l. By (c) we have that
g=3" ¢ ‘_lai. Now it is clear that ¢ is an (anti)isomorphism
of S = @1, Sel onto S = @, Se;.

Let g € G(R) C End(Q;). We set

e(9)=E(g—-1).

Then we have

(L—e(g)r)?!=(1—-e(g))r forall resS.
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Moreover

if e€ Band (er)d =er forallT € S, then e <1 —e(g). (8.6)

Lemma 8.2.8 Let o, € C:’(R) and let H be an O-subgroup of
G(R). Given any 0 # u € B there exist an element h = hy g, €
H and an idempotent e = eqp,, € B such that:

(i) e(h) < e <wuj

(ii) v*" =P for allv < e;

(ii1) Be = ahe (and hence B = ahe + B(1 —¢));

(iv) a and B are completely distinct on u — e modulo H.

Proof. Weset g = o 'fand W = {w € Bu | gw € Hw}.
Clearly if w € W, v € B and v < w, then v € W as well.
Let U be a maximal orthogonal subset of W. By Remark 3.1.5
E({U)=E(W)and V=UU{l1— E(U)} is a dense orthogonal
subset of B. According to the definition of the set W for every
v € U there exists an element h, € H such that gv = h,v.
We set e = E(U), vo = 1—e, hyy = 1, h = Tk, hyv. One
can readily check that e(h) < e < u and fe = ahe. Therefore
B = ahe+f(1—e). According to the definition of an O-subgroup
vh = v for all v € B. From fe = ahe one obtains a~!fv = hv
whence v® Pv = v or v®* ' < v for all v < e. Likewise from
Bh~le = ae one obtains v ® < v. Thus v*' < ¥ < o
and so v® = v for all v < e. Finally if 0 # w < u — e and
aw € fHw, then aw = ffw for some f € H. Since fu = wf,
we conclude that f~'w = a~'fw and hence w € W. Recalling
that e < u we see that e(u — e) = 0. Therefore ew = 0 and
so E(U)w = 0. It follows that Uw = 0, a contradiction to the
maximality of U. Thus a and § are completely distinct on u —e
modulo H and the proof is complete.

Proposition 8.2.9 Let ay,0,...,0, € G(R) and H an O-
subgroup of G(R). We set ap = 1. Then there ezist idempotents
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ug; € B and elements hy; € H, k= 1,2,...,n,1=0,1,...,k
such that:

(i) uko, ..., ukx are pairwise orthogonal idempotents whose
sum is equal to 1 for all k =1,2,...,n;

(1) ar = 8 o ashpug for allk =1,2,...,n; .

(#it) o and o are completely distinct on wj;(1 — 3i_g uki)
modulo H forallk=1,2,...,nand j3=1,2,...,k—1;

(iv) o and a; are completely distinct on ugru;; modulo H

for all k # 3;
(’U) hkk=1f07‘ allk=1,2,...,n;
(’U’L) e(hki)Sukiguiiforallkzl,...,n,i=1,...,k—1;
(vit) ugo > 1 — e(ag) forallk =1,2,...,n;
(vigi) v¥% =v forallk=1,2,...,n,i=0,1,..
and v < ug;.

k-1

Proof. The lower triangular array of idempotents ux; € B
(along with the accompanying elements hy; € H) is constructed
column by column as follows. For column 0 we let ugy = 1 play
the role of v in Lemma 8.2.8 and set ugy = €14,,1 and hgo =
h14,,1. Now assume columns 0,1,...,¢ have been constructed
and we proceed to construct column ¢ + 1. We set

t
Ul = 1= ) Uprg, Mg =1 (8.7)
=0

For each kK > t+ 1 we let

=0

t
Wt 41 = Y1041 (1 - uk,,) (8.8)
play the role of u in Lemma 8.2.8 and set

Ugt+1 — Cayy1,00,wk 141 (89)
hk,t+1 = hat+1,ak,wk,t+1 (8'10)
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By (87) Z?:O Ug; = 1. By (89) Uk < Wgj <1- ZZ;& Uks-
The sum Zf:o ug; is therefore direct and so (i) is proved. By
the definition of e(ay) we have (of — 1)(1 — e(ax)) = 0, i.e,
ap(l —e(ag)) = 1-(1 —e(ag)), k = 1,2,...,n. Since 1 €
H this puts 1 — e(ax) < uko, K = 1,2,...,n and so (vii) is
proved. By (8.7) hgx = 1 by definition, which establishes (v).
An appropriate application of Lemma 8.2.8 gives e(hg;) < wg;
(see (8.10). It follows from (8.8) that wy; < ug; and so e(hg;) <
uki- By (8.8) and (8.9) we have uy; < u;;. Thus (vi) is proved.
By Lemma 8.2.8(ii), (viii) is clear. Since

Qp = ak(uko + U1 + ...+ ukk)
= QpUky + CkUk) + ... + QrlUkk
= aphgouro + rhriurp + . .. + onhrrue

(using Lemma 8.2.8(iii)) we have thereby proved (ii). From
Lemma 8.2.8(iv) we know that ax, a;, k > j, are completely
distinct on

j-1 j
Wij — Ukj = Uy (1 - Uki) = Ukj = Ujj (1 - “ki) )

which proves (iii). In particular, since ug < 1 — Z{;O Ugi, WE
see that oy, o are completely distinct on wjjurs. Thus (iv) is
shown and the proof is complete.

Lemma 8.2.10 Let a € G(R). Then:

(i) The restriction a|p of & on B is an automorphism of B;
In particular M® € Spec(B) for all M € Spec(B);

(it) Given M € Spec(B), the mapping apn : Q/MQs —
QJ/M°Q; defined by the rule x + MQ, — z% + M°Q,, z € Q,,
is either an isomorphism (if uy(g) € M) or an antiisomorphism

(if us(g) & M).
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Proof. (i) Since G = GGy, a = gh for some g € G, h € Gy.
By Corollary 8.2.3 we have e* = e for all e € B. Therefore
e* = 9 for all e € B and so a|g = g|p is an automorphism of
B.

(ii) It follows from Remark 8.2.2 that there exist two or-
thogonal idempotents u; = u;(g),us = uz(g) € B such that
uy + up = 1, hu; € Aut(wyS) and huy € Antiaut(uyS). If
u; € M%, then (z + MQ,)* = g9 + M*Q,. Otherwise
(z + MQ,)*™ = 9" + M*Q,. Thus in the first case a) is an
antiisomorphism while in the second case it is an isomorphism.
The proof is complete.

The following general result may be of independent interest
since it gives a decomposition of B relative to an automorphism
Q.

Lemma 8.2.11 Let o be any automorphism of the Boolean ring
B C C. Then there exists patrwise orthogonal idempotents
€01 €a,ly €a,2, €a,3 € B such that:

(7') €00 T €a,1 + €a2 + €a3 = 1;

(1) €51 < €a2, €39 = a3 and €3 = €a1 + €a2€3 3,

(112) If e < eqp, then e =e.

Proof. Let A C B. We note that rg(4) = rc(A) N B =
(1 — E(A))B. Next we claim that

E(A%) = E(A)~. (8.11)
Indeed, we have
(1 - E(A%))B =rp(A%) =rp(A)* = (1 - E(A)*)B
which proves our claim. Next we claim that

if AA®=0, then E(A)E(A)* = 0. (8.12)
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Indeed, since ACA* = 0, from Lemma 2.3.10 (with C instead
of R) we see that F(A)E(A%*) = 0. Now by (8.11) we have
E(A)E(A)* = 0 and our claim is established.

Given v € B we set U(v) = {u € B | wu® = 0 = uv}.
Consider any chain A C U(v) (i.e., a subset A C U(v) such
that for all a,b € A either a < b, or b < a). We claim that
E(A) C U(v). Indeed, let a,b € A. Then either a < b, or b < a.
In the first case we have

a®b = (ab)*b = a®(b*b) = 0.
In the second case we see that
a®b = a%(ab) = (a®a)b = 0.

Therefore AA* = 0 and so E(A)E(A)* = 0 by (8.12). Finally
since Av =0, v € r¢(A) = (1 — E(A))C and hence vE(A) = 0.
Thus E(A) € U(v). Since E(A)a = a for all a € A, we see
that every chain in U(v) has an upper bound. Therefore Zorn’s
Lemma, is applicable and so

U(v) contains maximal elements. (8.13)

Clearly a~! preserves the partial ordering < and U(v)® =
U(v®"). Hence if a is a maximal element of U(v), then

a®"" is a maximal element of U(v®"") (8.14)

Let v € B and let a be a maximal element in U(0). We now
show

if vv®* =0 = v(a + a®), then v*a = v°. (8.15)

To this end we set w = v(1 — a®~') and note that vw = w. We
claim that

ww® = wa = wa® = w% = 0. (8.16)

Indeed, since vv* = 0, ww® = 0 as well. As aa® = 0 and

v(a + a®) = 0, we infer that va = 0 = va®. Recalling that
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w = vw, we conclude that wa = wa® = 0. Finally since w* =
v*(1—a), we see that w*a = 0 which proves our claim. It follows
from (8.16) that (w + a)(w + a)* =0, (w + a)?> = w + a and so
w4+ a € U(0). Since w + a > a and a is a maximal element in
U(0), we conclude that w = 0 and hence v = va®". Applying
o we see that v® = v%a.

Let e be a maximal element in U(0) and let u be a maximal
element in U(e + e*). Then by (8.15) we have that

u®e = u’. (8.17)
Let v € B. We claim that
if v(u + e + e*) = 0, then v*v = v*. (8.18)

Indeed, suppose that v*v # v®. Then vv®  # v and so w =
v(1 —v®") # 0. We show that

w(e + e*) = wu = wu® = ww* = vw®* = 0. (8.19)
Indeed, since u, e and e® are pairwise orthogonal, we infer from
v(u + e+ €*) = 0, that vu = ve = ve* = 0. Recalling that
vw = w, we conclude that wu = we = we* = 0 and so w(e +
e®) = 0. From (8.17) and we = 0 we infer that wu® = 0.
Since w® = v*(1 — v) and wv = w, ww®* = 0. Finally since
w(e +e*) = 0 = ww®, we have by (8.15) that w% = w®.
Now from ue = 0 we obtain that uw®* = 0. Thus (8.19) is
proved. From (8.19) we see that w+u is an idempotent such that
(w+u)(e+e*) =0= (w+u)(w+u)* Hence w+u € U(e+e®)
which contradicts the maximality of u. Thus v*v = v and our
claim is proved. Next we claim that

if v(u+e+e*) =0, then v* = v. (8.20)

Indeed, let w = v(1 —v*). Then clearly w(u+e+e*) = 0. Now
from (8.18) (with w instead of v) we see that 0 = ww® = w* and
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so w = 0. Hence v = vv®. By (8.18) we have vv* = v and so
v = v® which proves our claim. In particular (1 —u—e—e*)* =
1 —u—e—e* Therefore (u+e+e*)* = u+e+e* and so
(u+e+e?)*" =u+e+e® It follows that u®~ < u+e+e® and
hence u®™" = u; +uy+us where u; < u, up < eanduz <e*. We
have u = u{+u§+ug. Since u; < u, uf < u® On the other hand
uu® = 0 and we conclude from u = u$ +ufj +ug that u; = 0. As
up < e, u§ < e® Now from ue* = 0 we infer that us = 0. Hence
' = u3 < e* and s0 u < *’. Purther e®’e* = (&%) = 0.
Since e* < u+e+e* and (u+e+e*)* =u+e+ e, we infer
that e®” < u + ¢ where ¢ < e. Recalling that ue = 0 we see
that ¢ = ee®”. Now setting e,0 = 1 —u — e — €%, €41 = v,
a2 = e and e, 3 = e* and recalling that e, < eq2 by (8.17)
we complete the proof.

Corollary 8.2.12 Let o be any automorphism of the Boolean
ring B C C and let idempotents e, €q,1,€qa,2, €a,3 € B be as in
Lemma 8.2.11. Further let M € Spec(B). Then M* = M if
and only if eqo € M.

Proof. We set e; =e,;,1=0,1,2,3. Let M* = M. Then
M*" = M as well. Since e2e; = 0 for 1 = 1,2, 3, we obtain
that either ¢; € M or e* € M. In the last case e; € M®™ = M.
Therefore e; € M fori=1,2,3andsoey=1—e;—ey—e3 € M.

Next let eq & M. Recall that the addition & of the Boolean
ring B is given by the rule u @ v = v 4+ v — 2uv, u,v € B.
Now suppose that M* # M. Since M is a maximal ideal of the
Boolean ring B, we infer that M & M*> = B. It follows that
u+v—2uv = e for some u € M, v € M*. Setting z = u(1l —v)
and y = v(1 — u), we see that

zy=0,z4+y=ey, r€M and ye M"

It follows that y < eg. By Lemma 8.2.11(iii) we have y* = y and
s0y =y € M. Therefore eg = z +y € M which contradicts
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the relation eg € M. Thus M® = M and the proof is complete.

Given o € G(R) and P € Spec(B), recall that the map
ap : S/PS — S/P*S defined by the rule z + PS — z* + P2S,
z € S, is either an isomorphism or an antiisomorphism of rings
(see Lemma 8.2.10). The next two results lead up to Corol-
lary 8.2.15, which makes possible an important link between

completely distinct elements modulo G; and Go(S) in certain
situations.

Lemma 8.2.13 Let o € G and P € Spec(B). Suppose that
P* = P and ap € G;(S/PS). Then there exist elements b,a,,a;
€ S such that:

(i) E(ar) = Elaz) = E(b) & P;

(1) bxz®b = ayzay for allz € S;

(i) oE(b) € Aut(E(b)S);

Proof. Let ¢p : S - S = S/PS be the canonical ring
surjection and let e; = ey;, ¢ = 0,1,2,3 (see Lemma 8.2.11).
We have ap = inn(s) for some s € Q,(S). Obviously Is™1,sI C
S for some nonzero ideal of S. Pick any 0 # b € I and set
@1 = bs™!, @ = sb. Since s is an invertible element of Q,(S),
a; # 0 # a,. We note that

bz®Pb —@zd@, =0 forall z €S, (8.21)

Clearly b = ¢p(V'), @ = ¢ép(a}) and @ = ¢p(a}) for some
b,ay,a; € S. It follows from Corollary 3.2.4 that

E(Y), E(a)), E(ay) ¢ P.

Since P® = P, we conclude from Corollary 8.2.12 that ey ¢ P.
Hence (1 — ep)z € PS for all z € S and so ¢p(epr) = ¢p(z).
Therefore without loss of generality we can assume that egb’ = b',
eoa; = @) and epap, = aj. Further it follows from Lemma 8.2.10
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that u; = u;(@) ¢ P and so we can assume that u,b' = ¥,
wa) = aj and uyay, = aj. Setting H = {b'z*V' — alzay | z €
S}, we claim that H is an orthogonally complete subset of S.
Indeed, let V be a dense orthogonal subset of B and {h, =
b'z2b — ajz,ah | v € V}. By Lemma 8.2.11(iii) we have

vy = v%efy = (vey)® =wvey forall veV.

Letting ¢ = Y7y %,v and recalling that b'eq = b, we see that

3V — ajz,ay)y = Y F (622 (egv) — dyzal,

veV veV
[
1
= b (Z mveov) b — ayza;
veV
[2]
1
=V [(Z :c,,v) eo] V' — ad\za,
vEV
[0
1
=V (Z mvv) (egt') — a)za),
veV

= ¥z — dizay € H

and hence H is orthogonally complete.

It follows from (8.21) that ¢p(H) = 0 and so eH = 0 for
some e € B\ P (see Corollary 3.2.4(iii)). Setting

b = BW)E()E(a)el,
ap = E()E(a})E(a))ea; and
a = E(V)E(a})E(ay)eas,

we see that bz®b — a;za; = 0 for all z € S. Further by Theo-
rem 2.3.9(ii) we have that

E(b) = E(a1) = E(az) = E(V)E(a})E(ay)e & P.

Since u b’ = b', we see that u;b = b and so u; > E(b). It is now
clear that aE(b) € Aut(E(b)S). The proof is thereby complete.
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Given a € G, we set
My={s€eQ|rs=sr* forall reS}

Lemma 8.2.14 Let a € G. Suppose that there exist b,a;,as €
S such that E(b) = F(a;) = E(as) =€ # 0, ae € Aut(eS) and

bz®b — a1zas; =0 forall z € S. (8.22)

Then there ezists an element s € M, such that E(s) = e, a;s = b
and ay = sb.

Proof. Replacing S by eS, we may assume that e = 1
(whence E(b) = E(a;) = E(az) = 1) and a € Aut(S). Suppose
that a; € Myb. Then a, is left independent of b re 1,  (see
Section 2.5). By Theorem 2.3.3 there exists § = 3,7 ® s; €
S° ®c S such that ay - 8 # 0 but b- % = 0. Substituting zr; for
z in (8.22) and multiplying by s; from the right, we obtain

bx®*ribs; — ayxriaes; =0

and so
bz®(b- %) —ayz(az-B) =0

for all z € S. Since b- > = 0, we see that a;z(as - B) = 0 for
all z € S. As F(a;) = 1, it follows from Lemma 2.3.10 that
0 = E(ay)(az - B) = ay - [ in contradiction to the choice of .
Therefore a; € Myb and so a; = sb for some s € M,. Clearly
E(s) > F(az) = 1. Hence E(s) = 1. By Proposition 3.1.12 we
have that s is an invertible element of @, and so a = inn(s).
Now we have (bs™! —a;)zsb = bs~'zsb—a,zsb=0forallz € S.
Applying Lemma 2.3.10, we obtain that F(sb)(bs™ — a;) = 0.
Since E(sb) = E(b) = 1, it follows that bs™! = a; and so b = g, s.
The proof is complete.

The following result will be useful in section 8.4.
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o~

Corollary 8.2.15 Let o € G(R) and P € Spec(B). Suppose

that P* = P. Then ¢p(M,y) = My, and ae € Gie for some
e€ B\ M.

Proof. Obviously ¢p(My) € M,,. Now suppose that
My, # 0. It follows from Lemma 8.2.13 and Lemma 8.2.14
that there exists an element s € M, such that E(s) ¢ P and
aFE(s) € Aut(SE(s)). Hence ¢p(s) # 0 by Corollary 3.2.4.
From Proposition 3.1.12 we know that M,, is a cyclic ¢p(C)-
module. Since ¢p(C) is a field and 0 # @p(s) € M,,, we con-
clude that ¢p(M,) = M,,. By Proposition 3.1.12 we have that
s is an invertible element of Q;E(s) and so aF(s) = inn(s) €
Gi(QsE(s)). Therefore t = s+ 1 — E(s) is an invertible element
of Qs and aF(s) = inn(t)E(s). The proof is thereby complete.

Our final result of this section is important because it makes
possible a link between completely distinct elements modulo G

and representatives of G(S) modulo G(S5) in certain situations.

Lemma 8.2.16 Let o € G(R) and P € Spec(B). Suppose that
P* = P and ap is a Frobenius (anti)automorphism of S =
S/PS. Then there exists an idempotent e € B \ P such that
ae € Gye.

Proof. We set

[ char(C) if char(C) >0,
P= 1 if char(C) = 0.

and e; = €4, ¢ = 0,1,2,3 (see Lemma 8.2.11). By Corol-
lary 8.2.12 we have that ey ¢ P. Recall that v® = v for all
v < ey (see Lemma 8.2.11). It follows from our assumptions
that there exists a natural number n such that for all z € C ei-
ther ap(z) = 27" or (ap(z))?" = z. Accordingly we set H to be
equal to either {a(z)—2P" | z € e,C} or {a(z)"" —z | 7 € C}.
Since v* = v for all v < ey, one can easily check that H is an
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orthogonally complete subset of S. Clearly ¢p(H) = 0 and so
uH = 0 for some u € B\ P (see Corollary 3.2.4). Next we
set T to be equal {a(z)a(y) — a(zy) | 2,y € €S} if ap is an
automorphism and {a(y)a(z) — a(zy) | 2,y € €S} if ap is an
antiautomorphism of S. Again one can easily check that T is
an orthogonally complete subset of S and ¢p(T) = 0. Therefore
vT = 0 for some v € B\ P. Setting e = equv, we see that for
all z € eC either

o(z) = alex) = ea(z) = ex” = 17"

(a(@))" = (afex))” = e(a(z))” =ex =z

and hence « is a Frobenius (anti)automorphism of e;S5. We
define B : S — S by the rule 8(z) = a(ex) + (1 — e)z for all
z € S. Clearly § € Gy and ce = fBe. The proof is complete.

8.3 The Home of T-identities

Let R be a semiprime ring, S = O(R) its orthogonal completion,
Qs = Qs(S), and Q = Qmr(R) = Qmr(S). Our first task is to
define the notion of T-identity, and it turns out that this may
be done in the way it was done for prime rings in Chapter 7. We
have already mentioned in section 8.2 (see Remark 8.2.7 and the
comments following it) that the skew group ring T =T(R) =

U « G can be formed. Proceeding in an analogous fashion to
section 7.1 one can readily show that T is a C- -ring and that
there exists a C-ring homomorphism v : T — End(Q;) defined
in a natural way. Let V be a free right C-module with infinite
basis X. We then form the right C-module V ®¢ T with scalar
multiplication given by

(v@tlc=v®te, veV,cel



418 CHAPTER 8. T-IDENTITIES OF SEMIPRIME RINGS

(since C is a commutative ring, the tensor product of right C-
modules is a right C-module as well). Further we form

Sm=QI[C{V ®c T}
C

which we shall call the maximal setting of R (here we are em-
ulating section 7.8 but the reader may feel more comfortable
using @, instead of @ and simply forming the setting S with
reference to section 7.1). ~

A substitution process compatible with S, is described anal-
ogously to that in section 7.8 as follows. Let P be a C-algebra
with 1 such that

(i) P2@;

(ii) P O K, K a C-subalgebra of P;

(iii) There is a C-ring map o : T — Endg(K).

Let ¥ : V — K be any C-module map. Then (as in sec-
tion i 1) it can be shown that there is a unique C-algebra map
e S — Pgiven by ¢ ¢, ¢ € Q, and v®1 = %(v)°D, v € V,
t € T. Such a map will be called a T'-substitution determined
by 1 relatively to o . Now let P = Q, K = Q,, and 0 = 7.
Given a nonzero ideal I of R, an element g of S is called a
T'-identity on I if g is mapped to 0 under all 7"-substitutions
for which ¢ (X) C I. Further a T'-identity g € S, on an ideal T
of R is said to be strict if 7¢(g) C rc(I).

We define the set T, of trivial T"-identities of R to be the
ideal of S, generated by all elements of the following two forms:

(CY) v®tu—|a, v®t] p = ad(a) € D;

(C3) v®th—s7Hv®t)s, h = inn(s) € G;
wherev e V,te T.

In contrast to the situation for prime rings in Chapter 7 U
has no PBW-basis and Q and T need not be free C-modules.
As a result the notion of degree and height for elements of S, as
well as the notion of (Frobenius) reduced element of S, cannot
be defined in the usual way. Fortunately weaker definitions for
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these notions can be given which will suffice for our purposes.
We now proceed to present these in a rigorous fashion and then,
having done so, we will feel free to take some liberty with the
notation. '

In these last two sections we shall be interested in arbitrary,
reduced, and Gy-reduced elements of Sm. It is therefore ap-
propriate to consider respectively the following types of finite
sequences:

= ((xl)AI)al)a(x2aA2,a2)7""(xn,An,an)) (823)
= ((xl,AI)alavl)a"'a(xn’Anaa'n:vn)) (824)
== ((xlaAl)alahl)Ul)a'--1(xn,Anaan) hnavn)) (825)

where z; € X, A; € (?, o; € @’, hi € G¢, v; € B. In (8.24)
and (8.25) the A;’s will be appropriate correct monomials, and
the o;’s and h;’s will be appropriate completely independent
elements. We then define deg(7) and At(7) in the obvious way,
i.e., deg(7) = n and ht(7) = n minus the number of distinct z;’s
appearing in 7. Any finite sum S, of elements of the form

Ayay(hiv
11(11)a.

Anan(h
apT 1---% netn "u")an

n
will be called a generalized monomial determined by 7 or simply
a T-monomial . For S; # 0 we define deg(S,;) = deg(r) and
ht(S;) = ht(r). Next let p = {S;,Sn,...,S:,} be a finite
subset of distinct 7-monomials and let f € S,, be such that
f=Ffy =21 Sy We shall call p a support of f and refer to f,
as the representation of f with respect to p . Then the p-deg f =
max{deg(S;) | 0 # S, € p} and the p-ht(f) = max{ht(S,) | 0 #
S € p} . It will also be useful to define M,(f) = |p| = m. Since
the same element f may have many different supports, it will of
course have many different p-degrees and p-heights attached to
it. When the context is clear (i.e., when a particular support has
been determined) we will often simply write f, deg(f), ht(f),
M(f) in place of, respectively, f,, p-deg(f), p-ht(f), M,(f).
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An element g € S is called reduced if there is a strongly
independent subset M of D(R) such that ¢ = }°.5,, 7 of the
form (8.24), where

(R1) Every A, is a correct monomial in M,

(Ry) 0 # v, < E(Aj)°* for each 2% involved in g;

(Rs) a,, o, are completely distinct on v, v, modulo G; for
all z21%1% and z%72%2%: involved in g such that k, # ks.

Similarly, an element g € S, is called G s-reduced if there is
a strongly independent subset M of D(R) such that g = 3.5,
7 of the form (8.25), where

(GR,) Every A; is a correct monomial in M;

(GRy) vy < E(A;) for all z23%M% involved in g;

(GR3) oy, and oy, are completely distinct on vy, v;, modulo
Gy for all z21 % hu% and £22%:2Pe% involved in g such that
ky # ka;

(GR4) hy, and hy, are completely distinct on v, vy, modulo
G; for all g8 % hva and z852%2M2%: involved in g such that
ll 7é 12.

Since G; C Gy, we conclude from (GR,) and (GRj3) that ay, fi,
and oy, fi, are completely distinct on vy, v, modulo G; for all
ghaekhyv and gA2%2M2%2 involved in g such that (ki) #
(k2,l3). Therefore every G s-reduced element g € S, is reduced.
Recall that ca = ac® for all ¢ € C and a € G. Further

-1

a
:EAaC — anc — xAc «a

forallz € X, A € U, a € G, ¢ € C. Therefore, for any 7 as
given in (8.23), we have

re(Sr) 2 ilrc(Ai)"“ (8.26)

We now prove the main result of this section.

Theorem 8.3.1 Let f € S, be a T'-identity on I < R. Then

there ezists a reduced T'—identity g€ &y on I such that f—-g¢€
Iy.
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Proof. We choose a subset M = {v; | 1 < j < r} and
a natural number s such that f is expressible in the form f =
flademei), 24 € X, where ¢cp € C, o5 € G, the ©)’s are mono-
mlals in M and deg ©; < s. Since

x?’c"‘a" = xq®@lcmai = :z;q®®laic (xq®@la1) o= x@,a,ca,

the T'-identity f can be written in the form f = fl(zre) for
some f'. Applying Proposition 8.1.8 we obtain that there exist
a strongly independent subset My C D(R) and a finite subset
M; C D; such that any monomial ©, is a right C-linear combi-
nation of the monomials of the form AQ where A is a correct
monomial in Mg and € is a monomial in M;. By Remark 8.2.7
we see that o] ' M;o; C D; for all i. Therefore f is equivalent
modulo Iy to a T-identity f’ of the form f' = f’(qu"a") where
the A;’s are correct monomials in Mj. Next applying Proposi-
tion 8.2.9(ii) (with H = G) to the set of all the a;’s and using
the equalities of the form z!'*% = gt + z'2 where t1,¢, € T, we
obtain that f’' can be written in the form f' = f'(z AJo"h”"")
where s <4 and h;; € G;. Hence f’ is equivalent modulo I, to a
T'-identity g of the form g = g(zg7**" *). Since A; = A;E(A))
and E(Aj)o, = a, E(A)*, replacmg Ui by uisE(Aj)"" we may
assume that u;; < E(A;)* for all 259%™ involved in g. Now
we infer from Proposition 8.2.9(ii) and (iv) that g is a reduced
T'- identity on I and the proof is thereby complete.

The following theorem is proved analogously to that of The-
orem 8.3.1.

Theorem 8.3.2 Let f € g;m be a T’-identitAy on I <R. Then
there ezists a Gy-reduced T'-identity g € S, on I such that
f —gc Io.

Finally, we touch very briefly on the situation where we are
only interested in the group G* = Aut(S) rather than in the
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group G. The development and arguments being very similar to
those used in the preceding exposition, we shall leave all details
to the reader. One forms the skew group ring T* = U x G,
shows that there exists a C-ring homomorphism v* : T —
End(Q) in a natural way, and defines the x-maximal setting of
R to be

S =QIIC{V ® T"}
C

One then defines the notions of T*-substitution and 7*-identity
(see section 7.8). Set G}(R) = G;(R) N G*(S). The concept of
a G}-reduced element of S* is introduced analogously to that
of a Gj-reduced element of S,,. Next we define the set I3 of
trivial T*-identities of R to be the ideal of S* generated by all
elements of the forms given by (C]) and (Cj}). We close this
section with the following theorem which is proved similarly to
that of Theorem 8.3.1

Theorem 8.3.3 Let f € 3;,‘;1 be a T*-identizy on I <R. Then
there exists a G%-reduced T™-identity g € Sy, on I such that

f—geﬁ.

8.4 Semiprime Rings with

o~

T'-identities

We are now in a position to prove the analogues of the main
results of Chapter 7 for semiprime rings. We begin with

Theorem 8.4.1 Let I be a nonzero ideal of R and let f € S
be a T'-identity on I. Then f is a T'-identity on E(I)Q,.

Proof. Let f = f, where p is some support of f. We write
f= f(ziAjak) where z; € X, i =1,2,...,n, A; € U, ar € G,
and {o1,...,05,} C G are all the elements of G appearing in fo
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(The notation is suggestive of the fact that (z;, Aj, o) appears
in some 7 where S, € p). Given 1 < i < n we let A; to be the set
of all a’s such that z-7** is involved in f, for some j = j(i, k).

We define
Ni(fo) =D I{(e,0") € Ajx A; | e® # e for some e < E(I)}|

Of course N;(f) = N;(f,) depends on the support p. Supposing
that our theorem is not true, we let F' to be the set of all pairs
(J, g, o) such that:

(1) J is an nonzero ideal of R;

(2) g € S, is a T'-identity on J with support o;

(3) our theorem is not valid for the triple (J, g, o).

We set

F, = {(J, g,0) € F|o-ht(g) + o-deg(g) is minimal},
F, = {(J,9,0)€ Fy|Ny(g) isminimal}, and
F; = {(J,g,0) € F,| M,(g) is minimal}.

Since our theorem is not valid for (I, f, p), F3 # 0. Let
(J, g, o) € F3. Write g = g(z1,z2,...,Z,) Where 1, z2,...,Zn €
X are all the variables involved in g. We make the following
general remark. In what follows we shall transform ¢ into some
other T"-identities (¢',9g — g',h,g1 and so on). In all cases it
will be clear how the support ¢ of ¢ induces a support of cor-
responding identity. With this remark in mind we shall use the
simplified notations for degree, height and so on. We now claim
that g vanishes under the substitution z; — 0, z; = z;, § # 14,
where 1 < i < nis fixed. Indeed, if ¢’ is the result of this substi-
tution, then ¢’ and g — ¢ are T'-identities on J and so they are
T'-identities on E(J)Q, because M (g'), M (g —¢') < M(g). But
then we have a contradiction to the choice of (J, g, o). Thus
our claim is established. It follows that every 7-monomial of g
involves all the variables z,, z,, ..., z,.
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Next we claim that n = 1. Indeed, let 0 < i < n be such
number that g(qi,...,¢,%s1,-..,7n) = 0 for all q1,...,¢ €
E(J)Qs and 7441, ...,74 € J but g(p1, ..., D41, Sit2, .-, Sn) # 0
for some py,...,pis1 € E(J)Q, and 8;49,...,8, € J. Setting
h(z) = g(p1,---, 05 Z, Six2,---,Sa), We note that by the above
result deg(h) < deg(g). Further (J, h, 8) € F (where 6 is a
support of A induced by ¢) and we have:

ht(h) +deg(h) < ht(g) + deg(g),
NJ(h) S_ NJ(g) and
M(h) < M(g),

a contradiction to the choice of (J, go). Therefore n = 1 and
we can write g = g(z).

We claim now that Ny(g) > 0. Indeed, let N;(g) = 0.
We write g = g(z®%) where {A1,...,A} C U and A =
{on,...,an} C G are all the elements of U and G appearing
in g. Then fixing some 3 € A, we conclude that

P =®

for all v < e = E(J), @ € A. We show that g is a T'-identity
on O(J). Let r € O(J). It is enough to show that g vanishes
under the substitution z — 7. To this end we recall from Propo-
sition 3.1.14 that 7 = Y, 7, where V is a dense orthogonal
subset of B and r, € J for all v € V. Applying Remark 3.1.16
we obtain that

rRick — Z LrvAJ'akv“" = Z LrvAja"vﬂ
veEV veV
where oy € A. (Since o = aff, a € G, § = Eteu Buu € Gy
one may apply Remark 3.1.16 to each (3, acting on Su). Setting

W = Vb and r, = r, for w = v#, we infer from Remark 3.1.8
and Remark 3.1.9 that

g™ = 3 g(rdmw =0
wew
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and hence g is a T'-identity on O(J). Setting
AL =p708, and =7 e,

we note that (v%)7 = v = v¥ for allv < E(J). Since E(J?) =
E(J)?, we conclude that u” = u for all u < E(J?). Let

h(a:A3'7k) = g(xﬂ_lAia").

Then h is a T'-identity on O(J)? = O(AJﬂ). Clearly g is a T'-
identity on E(J)Q; if and only if A is a T"-identity on E(J#)Q,.
Therefore without loss of generality we can assume that 8 =1
and v® = v for all v < F(J) and o € A. It follows that

g((E(J)a:)AJ'"") = E(J)g(a:Ai"").

Since E(J)q = ¢ for all ¢ € E(J)Qs, we conclude that g is a
T'-identity on E(J)Q, if and only if E(J)g is a T'-identity on
Qs. Replacing g by E(J)g we can assume that E(J)g = g.

Let M € Spec(B) with E(J) ¢ M. Then by Corollary 8.2.12,
M® = M for all@ € A. According to Lemma 8.2.10 each o, € A
induces an (anti)automorphism @ of S = S/MS. Denote by
A; the canonical image of A; in U(S) and by ¢’ the canonical

image of g in S,,(S). Clearly ¢’ = ¢'(z%%) is a T'-identity
on S. It follows from Theorem 7.8.6 that ¢' is a T'-identity
on @,(S). Since Q, C Q,(S), we conclude that ¢’ is a T'-
identity on Q,. Therefore ¢y (g(g®*)) = 0 for all ¢ € Q;,
M € Spec(B) with E(J) ¢ M. Suppose now that F(J) € M.
Then g(q%%) = E(J)g(¢%**) € MQ and so ¢ (g(g2i**)) =0
for all ¢ € Q;, M € Spec(B). It follows that g is a T'-identity
on Q, a contradiction. Therefore N;(g) > 0.

Next we recall that g is called additive on E(J)Q; if for all
r,s € E(J)Qs we have

g((r+ 8)%%) = g(ro*) + g(s9%).
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Supposing that g is additive on E(J)@;, we show that ¢ is a T'-
identity on E(J)Q,. Since N;(g) > 0, after a suitable renum-
bering of ay,...,a, we may assume that v*! # v*2 for some
v < e = FE(J) and aj,a; € A. Applying Lemma 8.2.11 to
a 05!, we find pairwise orthogonal iderrllpotents €g,€1,€2,63 € B
such that eg +e; + e, +e3 =1, v91% =y for all v < ey and

ala;

e; lei =0 for all : =1, 2,3. Therefore

v® = v** forall v <eg; (8.27)
ele} = 0 forall i=1,2,3. (8.28)
Now we set
g1 = the sum of all 7-monomials of g which involve
%% but do not involve 22 A; Ay € U;
g2 = the sum of all -monomials of g which involve
£27%2 but do not involve z2:%1 A; Ay € U;
g3 = the sum of all 7-monomials of g which involve
both 27 and z8¢*2, A; Ay € U;
g4 = the sum of all 7-monomials of g which do not

involve either 2/ or z8x2 A; Ay € U.

Clearly g = g1 + g2 + g3 + 94 and M(g) = M(g1) + M(g2) +
M (gs) + M(g4). Now we choose a dense ideal K of R such that
e;K C Rforalli =0,1,2,3 and set K; = ¢;KJ. Clearly K;
is an ideal of R and Ky @ K, @ Ko @ K3 = KJ. Therefore
E(KJ) = E(Ky) + E(K)) + E(K;) + E(K3). Since K is a
dense ideal of R, one can easily show that rc(KJ) = rc(J)
and so F(KJ) = E(J). In view of additivity of g on E(J)Qs,
it is enough to show that g is a T’-identity on E(K;)Q, for
all i = 0,1,2,3. To this end we note that F(K;) < e; for all
i=0,1,2,3 by Theorem 2.3.9(ii) because K; = ¢; K J. Recalling
that v = v** for all v < eg, we obtain that Ng,(g) < Ny(g)—-1.
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By the choice of (J, g, o) we have that g is a T"-identity on
E(Kj)Qs. Further suppose that g3 # 0. Since e;"e* = 0 for
all i = 1,2, 3, we conclude that g is a T'-identity on e,-Qs (and
S0 g — g3 is a T’-identity on K;). On the other hand, since
M(g — g3) < M(g), we infer from the choice of (J, g, o) that
g—g3isa T"-identity on E(K;)Qs. Then g = g— g3+ g3 is
a f"-identity on F(K;)Qs, 1 = 1,2,3. Hence g is a T"-identity
on E(J)Q, which contradicts the choice of (J, g, ). Therefore
gs = 0and g = g1 + 92 + 94 As oy, € A, we see that
g1 7 0 # go. Recalling that e;z = z for all z € K; we infer that

91(39) = 91(61'30) = 3?191(61'33) = 6?191 (50)

for all z € K;, i = 1,2,3. Analogously one can show that
g2(z) = €?go(z) for all z € K;, 1 = 1,2,3. Since ef'e;* = 0
for i = 1,2, 3, we conclude that e go (and so ;' g1 + €51 gq) 1S
a is T'-identity on K;, i = 1,2,3. Since M(e'gs) < M(g) and
M (€21 g1+€ g3) < M(g), we conclude that they are T-identities
on E(K;)Q;. Therefore e;'g is a T'- identity on E(K;)Q;. On
the other hand (1 — e )gl (and hence (1—¢€{")gs + (1 —€")g3)
is a T'-identity on K So they are T'-identities on E(K;)Q,.
Therefore (1 — e*!)g is a T'-identity on E(K;)Q,. It is clear
now that g is a f-identity on E(K;)Qs. Therefore g is a T'-
identity on E(K)Q, = E(J)Q, which contradicts the choice of
(J, g, o). Thus g is not additive on E(J)Q;. In particular g is
not multilinear and ht(g) > 0.

Let y € X be any variable distinct from . We consider
q(y) = g(z + y) — g(z) — 9(y). Obviously ¢ is a T'-identity on
J and ht(q) < ht(g). Therefore q is a T'-identity on E(J)Q,

and so g is additive on E(J)Q,, a contradiction. The proof is
complete.

Analogously one can prove the following

Theorem 8.4.2 Let I be a nonzero ideal of R and let f € S*
be a T*- identity on I. Then f is a T*-zdentzty on E(I)Q;.
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The following technical lemma will be needed in the proofs
of the remaining theorems.

Lemma 8.4.3 Let A = {a;,09,...,0n} C G, Me Spec(B),
and {My, My, ..., M,} = {M®" | a € A} where M; # M; for
1<i#j<r. Choose By,0,...,0, € A such that each M; =
Mﬁi_l, let B;, denote the unique B; for which Mo = Mﬁ‘_lcl, and
set oy = i, vk Furthermore let A € (? h e Gy, v € B, and let

21,29, ..., 2 be distinct variables in X. Then there ezzsts eeB
such that
e ¢ M,
B 7 ey
ei e = 0 foralll<i#j<r,
e = e forallk=1,2,...,m

and, if 2 =%, 2;eP ' then

Ao hv Aakhv

zk

Proof. We first note that M™ = M. According to Corol-
lary 8.2.12 there exists an idempotent w;, € B such that w, ¢ M
and v = v for all v < wy. We set w = wyws...w;, and note
that w € M and v™* = v forallv < w, k =1,2,...,m. Ap-
plying the Chinese Reminder Theorem to the Boolean ring B
and distinct maximal ideals My, M,,..., M,, we find idempo-
tents e, ey, ..., e, € B such that e; & M; and e; € M, for all ¢, s
with 1 <1 # s < r. Replacing each e; by e; Hs;éi(l —e,), we can
also assume that e;e; = 0 for all 7 # s. Since MP' = M, we see
that e ¢ M and €’ € M for all i # 5. Set e = e ﬁQ. elrw.
Then

ez = ez

e & M, (8.29)
efilef = 0 foralli#s, (8.30)
e = e forallk=1,2,...,m (8.31)
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because e’ €% < ee, = 0and e < wy forall k=1,2,...,m.
Finally, we see that

zAakh'u — zAakhve zAakeh'u

e =
81
= OBy ey _ Atk Sy yihy

-1

B:
e 'k AB;, v hv -1
_ Z’ b1 EEE A gy
- Z;€7 = %,
=1
A
zAakh'ue = e arhv

ik (3

making use of (8.30) and (8.31). The proof is now complete.

Theorem 8.4.4 Let 0 # I < R and let F@M e o G-
reduced T'-identity on I. Set ug, = v E(I)** and choose distinct
elements y;jx € X. Then f (yi’;-‘kuk,) is a Gg-reduced T'-identity

on Q.

Proof. In what follows we shall consider G-reduced 7"
identities. It will be understood that each identity is reduced
with respect to some (attached) support and so we will simply
write deg, ht and so on in place of, respectively, p-deg, p-ht and
so on. We shall transform some of these identities into other
ones. It will be also understood that the supports of resulting
identities are induced by the supports of initial ones in a natural
way.

It follows from Theorem 8.4.1 that f is a 7"-identity on
E(I)Q;s. Hence without loss of generality we can assume that
R = Q; and I = eQ, for some e € B. Then E(I) = e. Re-
call that e = e for all e € B (see Corollary 8.2.3). Clearly
f((zse)Bi%h2 is a T'-identity on @Q,. Now replacing f by
F(z2®M gar) we can assume that f isa G s-reduced T"-identity
(with respect to some representation p) on @Q,. We show that
f (yfj‘kvt) is a T"-identity on Q,. Suppose that the theorem is not
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true for f. Let F be the set of all the G j-reduced T"-identities
on (), for which the theorem does not hold. We set

Fi = {ge€F| deg(g) isminimal}, and
F, = {g€ F,|M(g) isminimal},

and note that Fy # §. Without loss of generality we can assume
that f € FQ.

Write f = f(z1,22,...,2,) where 21,2, ...,2, € X are all
the variables involved in f. We claim that ¢ vanishes under the
substitution z, — 0, z4 —* 4, ¢ # p, where 1 < p < n is fixed.
Indeed, if ¢ is the result of this substitution, then g and f — g
are G ;-reduced T'-identities on Q. Clearly M(g), M(f — g) <
M(f). Therefore our theorem is valid for g and f — g. Hence
it is valid for f = f — g + g, a contradiction. Thus our claim is
established. It follows that every 7-monomial of g involves all
the variables 2., za, ..., Zn.

Next we claim that n = 1. Suppose that n > 1. Choose the
maximal integer 7 such that 0 < 7 < n and f (yf}‘kvt) vanishes
under all the substitutions of the form y;;z = ¢k, ¢ < r, and
Yijk > d?"a"h', i > r, where d;, ¢ijx € Q5. Since f(yfj‘kvt) is
not a T’-identity on @y, 7 < n. Hence f(yfj’kvt) does not vanish
for some substitution yjx = ik, 1 < 7 + 1, and g = di 7™,
i > r+1, where d;, ¢;jx € Q. Denote by h(z25%hivt) the element
obtained from f (y{’j’kvt) via the substitution y,;x « gijk, @ < 7,

Yir41)k > T2 and yip - d?"akh‘, i >r+1. Clearly h is

a G s-reduced f’—identity on ), and h(q?T’H)jkvt) # 0. On the
other hand, h(z2®M) is a G -reduced T'-identity on Q, and
deg(h) < deg(f) because every 7-monomial of f involves each
variable z;. By the choice of f, h(y;.’,‘cvt) is a T'-identity on @, a
contradiction to h(q?r‘ +1)jkvt) # 0. Thus our claim is proved. We
set £ = zy and write f = f(z%"M™). Let A = {on,0n,...,0m}
and {A1, Ay, ..., A} be all the elements of G(R) and U(R)
respectively involved in f.
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Choose any g;x € @s. It is enough to show that f(q]’.‘}cvt) =0.
It follows from the definition of a Frobenius element and the
fact that only a finite number of h;’s are involved in f that
there exists a dense orthogonal subset V' C B such that hjv is
a Frobenius (anti)automorphism of Sv for all v € V and . We
claim that it is enough to show that ¢M(f(q]'-l,évt)) =0forall M €
Spec(B) with V' ¢ M. Indeed, suppose that ¢M(f(q]'?,’cvt)) =0
for all M € Spec(B) with V ¢ M. Setting e = E(f(q}iv.)), we
infer from Corollary 3.2.4 that ¢M(f(q;-l,‘cvt)) = 0 if and only if
e € M. It follows that the condition V € M implies that e € M.
Suppose that e # 0. Since V is dense, there exists v € V such
that ve # 0. Choose M € Spec(B) such that ve ¢ M. Then
v,e € M. It follows that V &€ M, but e € M, a contradiction.
Hence e = 0 and our claim is established.

Fix any M € Spec(B) such that V € M and ¢M(f(q]'-l,évt)) +#

0. Suppose first that Mo = M9 for all a;,a; € A. Then
fixing some B € A, we see that MP~ = M for all a € A.
Setting

A; = ﬂ—lAjﬂi Y = ﬂ_lak)

we note that ay = By and
A;’)’khl’vt = ,B—_lAjOlkhl’Ut.

Therefore
h(xA;”"h’”‘) — f(xﬁ-lAjakhl‘Ut)

is a T"-identity on Q,. Clearly h is a G's-reduced T’-identity
on s. Next we note that M = M for all ;. Therefore v,
induces an (anti)automorphism 7% of S (see Lemma 8.2.10). We
now let i’ be the element of S, obtained from h by deleting all 7-
monomials in which some v; with v; € M appears. We see that b’
remains a G s-reduced element of S, (here we note that A’ is not
a T'-identity in general). Letting A’ = {yx | 7« appears in h'},
we claim that 7; # 7 (mod G;(S)) for all 4, # vy, € A’. Indeed,
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setting v = 7 ', suppose 7 € G;(S). By Lemma 8.2.16 there
is an idempotent e € M such that ye = oe for some ¢ € Gjy.
But vy and vy (which appear respectively with «, and ;) do
not belong to M by the definition of A’ and A’, and so w =
evyvy & M. In particular w # 0. Thus ’yk_lfylw = ow, or,
yw = Yxow, a contradiction to g, v, being completely distinct
on vy vy modulo G;. Next, according to Corollary 8.2.3, ™ = ¢
for all e € B and h; appearing in h. In particular M = M and
so h; induces an (anti)automorphism k; of S. Since V &€ M, h;
is a Frobenius (anti)automorphism of S. We claim that h; #

hs (mod G;(S)) for all h; # h, appearing in h’. Indeed, letting
g = h'hy € Gy, suppose that § = inn(b) € G;(5). Hence
0 # b € Mj. By Corollary 8.2.15 ge = pe for some p € G;. Now,
from w = evpvy ¢ M we have hyw = hgpw, in contradiction to
hi;, hs being completely distinct on vyvy modulo G;. Next we
denote by A} the canonical image of A, in U(D(S)) and by *
the canonical image of /' in S,,,(5). It follows from the definition
of i that B = h. Applying Lemma 8.1.7 (i) to {—A—J'} we see
that % is a reduced T'-identity of 5 (since 2’ = h). It follows
from Theorem 7.8.5 that

S (f(ghve)) = du (R (5 M) = 0,

a contradiction.

Now let {My, Ms,...,M,} = (M | @ € A} where M; #
M; for 1 <1 # j <r. By the above result 7 > 1. With refer-
ence to Lemma 8.4.3 (and its notations) we set z = Y.7_, 7Pt
(2;s are distinct elements of X) and g = ef(zija"h’”‘). By
Lemma 8.4.3 e € M and g is a Gy-reduced T"-identity on Qs.
Clearly M(g) < M(f) and deg(g) < deg(f). Suppose that
our theorem is valid for g, that is ef (yfk‘jkvt) is a T’-identity
on . Then making use of the substitution y; jx — gjx we
see that ef(q?,’cvt) = 0. Since e ¢ M, ¢éu(e) = 1 and so

¢M(f(q?,’cvt)) = ¢M(ef(q;-’,‘cvt)) = 0, a contradiction. Hence our
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theorem is not valid for g and so g € F. As M(g) < M(f) and
deg(g) < deg(f), we conclude that g € F;. Then by the above
result z; = z; for all 4,7 = 1,2,...,r, a contradiction to r > 1.
The proof is now complete.

There is an analogue of Theorem 8.4.4 for reduced T'-identi-
ties.

Theorem 8.4.5 Let I be a nonzero ideal of R and let f(z5?™*")
be a reduced T'-identity on I. Set ug, = v, E(I)®* and choose
distinct elements y;; € X. Then f(y;fur) 15 a reduced T'-
identity on Qs. Furthermore if f s a strict T'-identity on R,

then f(yifv) is a strict T'-identity on Q.

Proof. The proof essentially follows the same series of steps
as in the proof of Theorem 8.4.4 but is simpler because only
G; (rather than both G; and GYy) is involved. Because of this
we omit the details and merely indicate any adjustments and
simplifications are to be made. We first make an observation in
case R is prime. We write oy = Oxhi where by € Gy and for all &,
r either Bx = B, or Bx € B.G. Choose distinct 2,3, € X. Then
applying Theorem 7.8.6 to the reduced T’-identity f (:1r;il jﬁkhk),
we conclude that f(zf]’bk) is a T’-identity on @;. Making use of
the substitution z;;s, +> yfj", we see that f(yi) is a T'-identity
on ().

To outline the proof one may assume f is a reduced 7'-
identity on @, such that f € F, and consequently of the form
f(z®®¥). Choose any q; € Q,, fix M € Spec(B) and sup-
pose ¢u(f(gi*v:)) # 0. Suppose first (the case r = 1) that
Me:" = MP™" for some fixed § and all o. Setting A = f1A;
and v; = 7 o, we have h(z25v) = f(2P7' 4522 is a reduced
T'-identity on Q. Using Corollary 8.2.15, one shows that ¥ # 7;
modulo G;(S) for all v, # «,. Thus A = E(a;A_il”’—kv_t) is a reduced
T'-identity on @, whence by the above observation one reaches
the contradiction 0 = ¢ar(h((¢))™ %)) = fur(f(q2*ve)). The
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case r > 1 with the assistance of Lemma 8.4.3 leads to g =
ef (ziAkj ") being a reduced T"-identity on Q, and a contradic-
tion is reached in the same manner as at the end of the proof of
Theorem 8.4.4.

Suppose now that f is strict. Since E(R) = 1, we conclude
that f(yifw) is a T'-identity on Q,. Since f(z:7®") can be
obtained from f(y;}*v;) via the substitution 22 for Yij, We see
that ro(f (yifve)) = rc(f(:vf"ak”‘)) = 0. The proof is complete.

The same arguments as in the proof of Theorem 8.4.4 yield
the following

Theorem 8.4.6 Let 0 # I < R and let f(z;7**™™) be a G-

reduced ’f*—z’dentity onl. Setuy, = v F (I)""‘ and choose distinct
elements yix € X. Then f(y?jkukg) is a T*-identity on Q.

Theorem 8.4.7 Let f(z57™™) be a strict reduced T'-identity
on R. Then R has a strict GPI g € Qc<X>.

Proof. Let A = {a}, as, ..., a,} be all the elements of G(R)
involved in f. Next let {zq,zo,... ,zm} be all the variables in-
volved in f. By Theorem 8.4.1 f is a T"-identity on S. In view
of Theorem 8.4.5 we can assume that f = f(23*"). Accord-
ing to Corollary 6.3.10 it is enough to show that ¢y (S) is GPI
for all M € Spec(B). Fix any M € Spec(B) and assume that
S = ¢p(S) is not GPI.

Let {My, My,...,M,} = {M*" | @ € A} where M; # M;
for all 2,7 =1,2,...,7 and r > 1. Choose fi,...,05: € A such
that MA' = M; fori=1,2,...,r. It follows from Lemma 8.4.3
applied to each variable z; that there exist e ¢ M and z;;, € X
such that ef(z;£"™) is a T'-identity on S and z;;, = zy, if and
only if j = [ and 4y = i,. Note that 4 is given by the condition

-1

-1 -1 . . . i
Mei' = M Making use of the substitution zj;, > z;;* , we
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l

obtain that ef( Zjik & %) is a T"-identity on S. Set Yiek = B;, ¢
Then ef(z; 7"“ ‘) is a T'-identity on S. Clearly M+ = M for
all ¥ix- It follows from Corollary 8.2.12 that there exists an
idempotent w € B\ M such that w”* = u for all v < w and
Yik- As ew & M, ¢y(ewS) = ¢p(S). Therefore replacingAS
by ewS we may assume that ew = 1 and so f( ;’I’:k )is a T'-
identity on S. Furthermore we may assume that «”* = u for all
u < w and 7y;,x. Since f(z5**) can be obtained from f(z;;:kw)
under the substitution z;; — xfi",

ro(f(z*™)) C ro(f(23%%)) = 0

and so f (z;',’:kv') is a strict 7'-identity on S. Next, it follows from
Lemma 8.2.10(ii) that each ~y;, x induces an (anti)automorphism
Yok of S = ¢um(S). Therefore f(z);**") induces a nonzero
T'-identity f( ;’l’:kv_t) of 5. Choose any variable z;;, appear-
ing in f. First assume that there exist elements g;;, € S,

(3", 1k) # (4, k), such that the element g(z ]“’:' '7y) obtained from
f(z;7"9) under the substitution zj;,, = gy, (5, ik,) 76 (4, %),

k' .
is nonzero. Here we note that the appearance of z in ¢

means that ip = i, ie., 7,0 = ,[3% oy Clearly g 1s a T'-
identity on S. We c1a1m that ¢ is a reduced T'-identity. In-

deed, suppose that both ji:’k and z;k ¥ are involved in g with
Yigk' 7 Vignke- Then their accompanying idempotents vy and vy
do not belong to M and so vyuy € M. By (R3) ap and Qe are
completely distinct on vy v modulo G;. Hence Yigr k' = [3 Ol
and y; kv = ﬂ,k aku are completely distinct on vy v, modulo

G;. Therefore v, ”k,,'yzk,k/u € Giu for all u < vy, It follows
from Corollary 8.2.15 that 7% ' ¥, % € G;(S) which proves

our claim. We conclude now from Theorem 7.8.4 that S is GPI,
a contradiction to our assumption.
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By the above result f(z,7"%;) vanishes under substitutions
Zitiy " Qi (7', 5) # (4, %), where gj;,, € S. We replace each
appearance of z]{;" (where i; = i) in f by 2;i, and denote by
g the resulting element. Clearly g is a strict 7”-identity on S.
Continuing in this fashion we obtain that f(z;, 7;) is a nonzero
GPI on S, a contradiction to our assumption. The proof is
complete.

A variant of Theorem 8.4.4 for T"-identities of semiprime
rings involving no (anti)automorphisms was discovered by Khar-
chenko in [147, Theorem 2]. Further a version of Theorem 8.4.5
for multilinear 7*-identities was proved by him in [147, Theorem
4]. To the best our knowledge all the results of this section are
new. They were proved by Beidar.



Chapter 9

Applications to Lie
Theory

The main goal of this chapter is to present the solution of a
long-standing question of Herstein [113] on Lie isomorphisms:
if R, R’ are simple rings with involution with respective skew
elements K, K’ and a : K — K’ is a Lie isomorphism, then
can « be extended to an isomorphism ¢ : R — R'? This we ac-
complish in section 9.4, restricting our attention to involutions
of the first kind (to be defined presently) but on the other hand
widening the context to prime rings. The reason for including
this topic in this book is that, although it would appear on the
surface to have no special connection with GPI theory, GPI
theory in fact plays a crucial role in key parts of the proof. In
preparation for this, and also another application of GPI the-
ory, we redo in section 9.1 some of Herstein’s Lie theory for the
important case of prime rings with involution of the first kind.
In section 9.2 we determine the Lie extended centroid of K. It is
not our intent to give a complete treatment of these matters but
rather to show how GPI theory is used. In section 9.3, again
using G PI theory in a crucial way, we prove a result on commut-
ing traces of trilinear mappings which is crucial for the solution

437
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of the Lie isomorphism problem in section 9.4. This work was
inspired by Bresar’s study of commuting traces of bilinear map-
pings [63] which he used to settle Herstein’s conjecture on Lie
isomorphisms of prime rings (without involution).

9.1 The Structure of K

An associative ring R becomes a Jordan ring Rt) under zoy =
zy + yz and a Lie ring R under [z,y] = zy — yz. In case R
has an involution * the set of symmetric elements

S=SR)={s€eR|s" =s}
is a Jordan subring of R™*) and the set of skew elements
K=K(R)={keR|k*=—k}

is a Lie subring of R(™). In the early 1950’s Herstein initiated
a study of the Jordan and Lie ideals of R, S, and K in case
that R was a simple associative ring (either without or with an
involution). In the ensuing years his work was generalized in
various directions, on the one hand to the setting of prime and
semiprime rings, and, on the other hand to invariance condi-
tions other than that given by ideals. Besides Herstein himself
we mention Lanski as having been a major force in this program.
Other important contributions were made by Baxter, Chacron,
Erickson, Montgomery, Osborn, and others. Of particular inter-
est to us because of the theme of this book, the GPI and PI
theory for prime rings with involution has witnessed results of
Amitsur [6], [7], Herstein [114], Lanski [159], [163], Martindale
[207], [208], Rowen [257] and others. In fact, to pinpoint the key
result in GPI theory from which all applications in this chapter
are based, we recall from section 6.2 Corollary 6.2.5.

Corollary 9.1.1 If R is a prime ring of char(R) # 2 with in-
volution and K is GPI, then R is GPI.
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Let R be a prime ring of char(R) # 2 with involution *, let
Q be the centroid of R and let C be the extended centroid of R.
For simplicity we shall assume that 1/2 € Q, whence we may
write R = S+ K. It is a straightforward exercise to directly lift
* to an involution of RC. However, this is virtually a special
case of Proposition 2.5.4 which says (in its proof) that * can
be lifted to an antiautomorphism * of the symmetric ring of
quotients @ = Qs(R) such that ¢g*u* = (ug)*, where 0 # U< R
is such that qU + Uq C R. Thus ¢*™*u = (v*¢*)* = (qu)*™* = qu
and so ¢** = ¢ and * is an involution of Q. Since C'is the center
of @, * induces an involution on C and hence on the central
closure RC. We shall say that * is of the first kind if it induces
the identity mapping on C. Otherwise it is of the second kind,
which is equivalent to saying that C' contains a nonzero skew
element. An example of Kaplansky shows that an involution of
the second kind may well act as the identity on the center: R is
the set of all countably infinite matrices of the form A 4+ AI, A
is n X n matrix over the complexes C, n varies, A € R where R

is the real number field, and * is conjugate transpose (one notes
that C =C and Z = R).

In this section we shall (with the exception of Lemma 9.1.5
and Theorem 9.1.10) confine our attention to the study of prime
rings with involution of the first kind, mainly because this is the
framework in which sections 9.3 and 9.4 reside. It is generally re-
garded as the more difficult case, since (roughly speaking) many
problems arising with an involution of the second kind may be
reduced to problems in R(~) (where the connection with associa-
tive theory is much easier). For a complete account of Lie theory
of prime rings (with or without involution), especially from the
point of view of GPI theory, we refer the reader to [219].

For the remainder of this section, then, R will denote a prime
ring with involution * of the first kind. A Lie ideal U of K is
generally defined to be an additive subgroup of K such that
[u,z] € U for all uw € U, z € K. To avoid some minor techni-
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calities we shall also require that U be an 2-submodule of K,
where (2 is the centroid of R. We will use the notation U < K to
signify that U is a Lie ideal of K. K is called a simple Lie ring
if it has no Lie ideals other than 0 and K and [K, K| # 0 (hence
K = [K,K]). If I is any *-ideal of R (i.e., an ideal invariant
under %), then [I N K, K] is always a Lie ideal of K, which we
shall call a standard Lie ideal of K. We shall call a subset X of
R trivial (notationally, X = 0) if [X, K| = 0. Our major aim in
this section is, given a nontrivial Lie ideal U of K, to produce a
nontrivial standard Lie ideal [IyNK, K| lying inside /. We shall
see that with the exception of two isolated ”low—dimensional”
cases this is possible.

For an additive subgroup W of a ring T" we let (W) denote
the subring of T" generated by W. We will also use the following
notation for higher commutators:

w = W, W], Wi+l — [W(i), W,

We begin with an easy but useful general lemma.

Lemma 9.1.2 If W is an additive subgroup of a ring T, then
(W), T} = W, T].

Proof. For z,y € W and t € T we note that
[zy,t] = [z, yt] + [y, 2] € W, T].

An easy induction then completes the proof.
We apply this result to the ring R.
Lemma 9.1.3 If U< K, then:

(a) (V)N K aK;
(b) (U)yNK,K|CU.
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Proof. (a) follows from the observation that for k£ € K and
Uy, U,y .-y Un € U7

[urtg - . Uny k] = D urug ... [ui, k] .. u, € (U).

Using Lemma 9.1.2 one notes that
(UYNK,KIC[{U),RIC[UR CUK|+[USICUSS.

Therefore (U)N K, K] CU.

It will be useful to produce a nonzero ideal inside (K) and
towards this goal we define L(K) = R¥[K, K]?R* (here R*
denotes the ring R with 1 adjoined if necessary).

Lemma 9.1.4 L(K) C (K).
Proof. Let a,b € K, s € S. Then
(ab — ba)s = a(bs + sb) — (as + sa)b + (sab — bas) € (K).

It follows that [K, K|R* C (K) (using R = S + K). Similarly
R*[K, K] C (K) and the result is immediate.

It will also be useful to have the following description of (K)
(valid for * of either kind).

Lemma 9.1.5 (K) =K+ Ko K.

Proof. For a,b € K we see from 2ab = |a,b] + a o b that
K? C K + K o K. We note next that K o K coincides with the
additive subgroup generated by {a? | @ € K}. We now claim
that (K o K)K C K + K o K. Indeed, for a,b € K we have
a?b + ba? € K, a*b — ba® = ala,b] + [a,bla € K o K, whence
a’b € K + K o K. From this we see that

K*=KKC(K+KoK)KCK*+(KoK)KCK+KoK
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and, continuing in this fashion, we conclude that K* C K+ KoK
for any n. Since (K) = Y K™, the lemma is proved.

We now define: for U a K, Iy = R#[U o U,U]*R¥. We shall
call a Lie ideal U of K exceptional if Iy = 0.

Lemma 9.1.6 IfU < K, then:
(a) Iy C (U);
(b) Iy NK,K]CU.

Proof. From
[aob,z] =[a,z0b]l+ [b,acz]=aol[bz]+[a,z]ob

we infer that [U o U,S] C U and [U o U, K] C U o U, whence
[Uo U, R] C (U). We then have

[U o U UIR* C [U o U,UR*] + U[U o U, R¥] C (U).

Similarly R#[UoU, U] C (U). Therefore R*[UoU,U]?R# C (U)
and the result follows from Lemma 9.1.3 (b).

Lemma 9.1.6 produces a standard Lie ideal Iy inside a Lie
ideal U of K but the main problem arises when one tries to
show (under appropriate circumstances) that Iy # 0. We shall
deal with this problem by giving a complete description of what
happens in the case R = M,(F), F an algebraically closed field,
and then using GPI theory (i.e., Corollary 9.1.1) and the *-Litoff
Theorem to reduce the general question to this very special case.

Theorem 9.1.7 Let R = M,(F), n > 2, F an algebraically
closed field of char(F) # 2, and let * be an involution of the first
kind on R. Then there is a set of matriz units in R relatively to
which x is either the transpose or symplectic involution, and K
is a simple Lie algebra over F unless one of the following holds:

(i) n =2, % is transpose (here K is 1-dimensional);

(it) n = 4, « is transpose (here K is the Lie direct sum K, ®
K, where K;, i = 1,2, is a 3-dimensional simple Lie algebra).
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Proof. By Corollary 4.6.13 * is either the transpose invo-
lution or the symplectic involution relative to a suitable set of
matrix units {e;;}.

We first discuss the transpose case. We set E;; = e;;—eji, ¢ #
j, and note that {E;; |+ < j} is a basis for K. For convenience if
T = Y;¢;a;;E;; € K the length” of = is the number of nonzero
a,;j,S. The Eij satisfy Eij = —Eji, [Eij,Ejk] = E,;k, 1 75 k, and
the consequences thereof. Clearly [K,K] = 0 if and only if
n = 2, and so we may assume that n > 2. Suppose 0 # U < K
and pick 0 # u = Y a;;E;; € U of smallest length. If u is of
the length 1, then it is easy to show that any basis element E},
lies in U, whence U = K. If E;;, E; appear in u for j # k,
then 0 # [u, E;j] € U is of smaller length than u. Therefore
we may assume that the Ej;’s appearing in u are ”disjoint” and
thus we may write u (say) as aFjp + BFE3y + vEss + . ... If the
length of u > 3, then [u, Fyss] # 0 is of smaller length than u,
and so we may assume that the length of u is 2. This forces
n > 4. If n > 4, then [u, Fs5] # 0 has length 1, whence U = K.
Therefore we are left with n = 4. Here it is well-known (and
easy to show directly) that K = K| ® K,, where K, and K, are
both 3-dimensional simple Lie algebras with respective bases

{Er2+E34, E13+FEy2, Eva+Eo}, {Ev2—FEay, E13—Eys, E14—FEq3}.

This completes the proof in the transpose case.
In the symplectic case n = 2m is even and it is easily seen
that K contains of all matrices of the form

(43,

where A, S, T € M,,(F), *A the transpose of A, and S, T belong
the set H of symmetric elements of M,,(F'). Letting {e;;} be
matrix units for M, (F') we note that {e;, e;; + €}, 1 # J, is a
basis for H. The reader may verify (by easy matrix calculations)
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that H is a simple Jordan algebra. Now let 0 # U < K and pick

A S
T —‘A) € U. If both S # 0 and
T # 0 we may replace u by

(o o)) (5457

0 A
A # 0, we choose P € H such that AP + P'A # 0 and note

that P AP + Pt'A
0 0 + P!
(o )] =(5 77 ) 2o

5 ) for some S # 0. From

a nonzero element u = (

Thus we may assume u = to begin with and, if

Thus we may assume that u = ( 0

00
T 0 0 S\l _(0 TS+ST
0 -T /)’\0 0 /)| \O 0 ’
. 0 S :
T € H, it follows that <.S € H | 0 0 is a nonzero Jordan

ideal of H and hence equal to H. Therefore U contains all

matrices of the form ( 8 'g , S € H, and, by commutation

with ( ? ?) ), all matrices of the form ( 00

T O),TEH. The

calculation

0 €;j + €5 0 0 [ ey 0
0 0 ’ ejj 0 o 0 —'eji

then shows that U contains all matrices of the form 40 ) ,

and the proof of the theorem is complete.
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We now compile a set of remarks which follows almost imme-
diately (with the help of an occasional matrix calculation) from
Theorem 9.1.7.

Corollary 9.1.8 Let R = M,(F) be as in Theorem 9.1.7 and
let U,V denote Lie ideals of K. Then:
(a) U =0 or U = K unless n =4, % is transpose, in which
case U may also be K, or K,.
(b) The following are equivalent:
(b1) U is trivial;
(b2) U = 0 or n = 2, * is transpose, in which case
U = K is 1-dimensional;
(b3) [U,UJ? =0;
(¢) The following are equivalent:
(c1) U is exceptional;
(c2) UoU is central;
(c3) U is trivia, U = Ky or U = Ky (n = 4, x is
transpose) or U = K (n =2, x is transpose or symplectic);
(d) [U,V]=0ifand onlyif U=0,V =0, or (say) U = K,
and V = K, (n =4, x is transpose).

Now let R be an arbitrary prime ring with involution of the
first kind, and let F' be the algebraic closure of C. We form the
extension R = RC ®c F which by Theorem 2.3.5 is a prime ring.
We claim that R is centrally closed over F'. Indeed, letting C
denote the extended centroid of R, we note that the inclusion
F C C is obvious where F is identified with 1@ F C Q,(R)®cF.
Let & € C. By Theorem 2.3.5 there exist nonzero elements a €
Rand f € Fsuchthatu = a-(a® f) € R. Letu=Y7",a:®f;,
a; € R, f; € F. Without loss of generality we can assume that
ai,...,an and fi,..., f, are two sets of C-independent elements.
Then u(z® 1)(a® f) = (e ® f)(a: ® 1)u for every z € R and
so a;za = aza; for all 2 = 1,2,...,n. By Theorem 2.3.4 there
exist ¢y, co,...,cp, € C such that a; = ¢a, 1 =1,2,...,n and
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taking into account the C-independence of a;, as, ..., a, we see
thatn=1land a-(a®c)=a1® f = (a® f)(1® f e f; which
proves our claim. Next the involution * on R can clearly be
lifted to an involution * of the first kind on R according to the
rule (rc ® A\)* = r*¢® A. The skew elements K of R coincide
with KF = KC ® F and any Lie ideal U of K lifts to a Lie
ideal U = UC® F = UF in K. In case R is PI we can draw
the following conclusion.

Theorem 9.1.9 Let R be a prime PI-ring with involution * of
the first kind. Then: R

(a) RC is finite dimensional central simple over C and R =
M,(F), F the algebraic closure of C;

(b) KC is a simple Lie ring unless n = 2 (x is transpose)
or n =4 (* is transpose);

(¢) If U is a nonzero ezceptional Lie ideal of K then one of
the following hold:

(c1) n =2, x is transpose, U~ E
(c2) n =2, * is symplectic, U = K
(c8) n =4, x is transpose, U = K1 or U = K2

Proof. (a) is a consequence of Posner’s Theorem. To prove
(b) let 0 # U « KC. By Theorem 9.1.7 U = K unless n = 2
(x is transpose) or n = 4 (x is transpose). Let a € K. Then
a®l = Y0 w; @\, u; € U, \; € F with {);} C-independent and
A = 1. It follows that @ = u; € U and so U = K C, thus proving
(b). Part (c) is an immediate application of Corollary 9.1.8 (c).

As promised at the end of section 6.2 we are now in a position
to deal with a conjecture made by Herstein in 1955: if R is a
ring with involution and K is PI then R is PI. Herstein verified
his own conjecture in 1967 [114] for R simple, and this was
shortly thereafter extended to semiprime rings by Martindale
[206] and then to arbitrary rings with involution by Amitsur
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[6]. We present here an alternate proof for the case where R is
prime. '

Theorem 9.1.10 Let R be a prime ring with involution * (of
either kind) and suppose K is PI (over C). Then R is PI.

Proof. Without loss of generality we may assume that K
satisfies a multilinear PI ¢(zq, s, ..., Zn) € C<X> of degree n.
If * is of the second kind we choose a nonzero skew element A in
C and with it a nonzero *x-ideal I such that A\I € R. Note that
I=INS®INK and A(INS) C K. Therefore ¢(ry,...,1m2) =0
where each r; belongs to either I N K or A(J N S). Since ¢
is multilinear it follows that ¢(ry,...,r,) = 0 where each r;
belongs to either /N K or I NS and so ¢ is a Pl on I. By
Theorem 6.4.4 ¢ is then a PJ on R.

We may therefore assume that * is of the first kind, and
furthermore, without loss of generality, we may suppose that
R = R (since ¢ lifts to K). By Corollary 9.1.1 R is a centrally
closed GP1I algebra over an algebraically closed field F', whence
R has nonzero socle H and associated division ring F. If R
is not PI the dimension of the underlying vector space over F
is infinite and so by the *-Litoff Theorem R contains eRe =2
Mi(F), e a symmetric idempotent of finite rank k > 2n. By
Corollary 4.6.13 the involution * induced on M (F) is either the
transpose or symplectic involution. If x is transpose then

¢(€12 — €21,€23 —€32,...,€yn4] — €n+1,n) =a€int1 t+ ﬂ€n+1,1

produces a contradiction. If x is symplectic, then writing & = 2m
and letting {e;;} denote the matrix units in M,,(F'), we write

| eiin 0 . B
a; = ( 0 ), 1=1,2,...,n—1,

—€it1,i

a _ en,1 0
noT 0 —€1n !
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€4 0 .
b,; = <0 -eii>, 1,—1,2,...,7’2,.

We then arrive at the contradiction
0:¢(alaa21'--1an)zzaibia a‘tec

some o; # 0. Therefore R must be PJ and the theorem is
proved.

Returning to the assumption that R is prime with involution
x of the first kind, we now approach the heart of this section.
First, however, we need

Lemma 9.1.11 If0# I is a % ideal of R and 0 £ U <« K, then
[INnK,U £0.

Proof. Suppose [INK, U] = 0. Then, writing [INK, INK]| =
(INK)(M and using the Jacobi identity, we have [(INK)M, U] =
0, whence [{(INK)M), U] = 0. Thus ((INK)M) cannot contain
a nonzero ideal of R and so by Lemma 9.1.6(a)

(INK)YYo(INnK)Y, INK]?=0.

By Theorem 9.1.10 (applied to the prime ring I) we conclude
that I is PI, whence by Theorem 6.4.4 R is PI. In this situation
we know that R = M, (F). It follows that I = R and accordingly
INK = K. Therefore our original supposition forces [K,U] =
0, a contradiction to Corollary 9.1.8(d).

Theorem 9.1.12 If R is a prime ring with involution of the
first kind and 0 # U s an exceptional Lie ideal of K, then R is
PI (whence the conclusion of theorem 9.1.9 holds).

Proof. We suppose R is not PI. Since 0 # U is clearly
an exceptional Lie ideal of K we may assume without loss of
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generality that R = R. Assume first that R has nonzero socle
H. If [HN K,H N K]? = 0, then by Theorem 9.1.10 (applied
to H) H, and hence R, is PI. Therefore we can suppose that
[HNK,HNK]* # 0. Then J = HHHN K,HN K|?H is a
nonzero ideal of H (and hence of R) which by Lemma 9.1.4 is
contained in (H N K). It follows that 0 # [U, HN K] CUNH.
Choosing 0 # u € U N H we apply the x-Litoff Theorem to find
a symmetric idempotent e € H such that v € eRe = M,,(F)
where m > 4. Thus U N eRe is a nonzero exceptional ideal of
eKe is eRe, a contradiction to theorem 9.1.9.

We now suppose R has zero socle. If for all u € U, 1,u,u?
are F-dependent, it follows that u? = 8 € F. Pick 0 #a € U
(necessarily a € F). For all k,l € K we have [[a, k]?,{] = 0 and
s0 ¢(z1,72) = [[a,z1]?, 72] is a nontrivial GPI for K over F.
But by Corollary 6.2.5 this forces R to be GPI and hence have
nonzero socle. Therefore we must conclude that there exists a €
U such that 1,a,a? are F-independent. Since U is exceptional,
we see from [U o U, U]? = 0 that

la, 1%, [a, k2]|{[a, ks]?, [a, kq]] = O for all ky, ko, ks, ks € K.
Since 1,a,a? are F-independent, one sees that
f(zl) T2, T3, I4) = [[a) Il]za [a7 IZ]][[a, 3;3]2) [a7 I4]]

is a nontrivial GPI for K over F, again forcing the contradiction
that the socle of R is nonzero in view of Corollary 6.2.5. The
proof of the theorem is now complete.

We come now to the main result of this section.

Theorem 9.1.13 Let R be a prime ring with involution % of
the first kind and let U, V be Lie ideals of K. Then:

_ (a) IfU =0, then U = 0 or R = My(F) (* is transpose,
U = K is 1-dimensional);
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(b) If U is exceptional, then U = 0, R = My(F) ( is sym-
plectzc U = K), or R = My(F) (x is transpose, U = K, or

= K,);

(¢) If U is not exceptional, then 0 # Iy C (U) and 0 #
Iy N K, K] C U;

(d) If [U, U2 =0, then U = 0;

(e) If[UV] =0, then U=0,V =0, or R = My(F) ( is
transpose and (say) U = Ky, V = K,).

Proof. to prove (a) and (b) we see from Theorem 9.1.12
that R is PI, whence the conclusions follow from Corollary 9.1.8
((b) and (c)). Part (c) is an immediate consequence of the
definition of Iy and Lemma 9.1.6. To prove (d) and (e), in
view of Corollary 9.1.8 ((b) and (d)) it suffices to show that R
is PI. BY Theorem 9.1.12 we may assume that neither U nor V
is exceptional. Then from part (c) together with Theorem 9.1.10
we see that Iy and Iy N Iy are prime PI rings, whence R is PI.

The import of Theorem 9.1.13 is that except for a couple of
low-dimensional cases every Lie ideal of K contains a nontrivial
standard Lie ideal, (K) is "large” in the sense that it contains
a nonzero ideal of R, and K itself is a "prime” Lie ring in the
sense that the Lie product of any two nonzero Lie ideals cannot
be 0.

The Jordan theory of prime rings (without and with involu-
tion) is a considerably easier affair than the Lie structure (see,
e.g. [116] and [118]), but we shall forego these matter with the
exception of one isolated result (not presented in its full gener-
ality) which will be needed in section 9.4.

Lemma 9.1.14 Let R be a prime ring with involution of the
first kind such that dimg(RC) > 16, and let S denote the set of

symmetric elements of R. Then (S) contains a nonzero ideal of
R, namely, R¥[S, S|R*.
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Proof. From [[s,t], k] = [[s, k], t] +[s, [t, k]] and [s, k], [t, k] €
S for all s,t € S, k € K, it is clear that [S, S] is a Lie ideal of
K. If [S,S] = 0, then K is PI (it satisfies [z*,3%] = 0) and by
Theorem 9.1.10 R is PI. In this situation it is easy to see that
R must be M,(F) under symplectic involution since [S,S] = 0.
Since this case is ruled out by the hypothesis, we conclude that
[S,S] # 0. Since dim¢(RC) > 16, we see by Theorem 9.1.13(c)
there is an ideal I # 0 such that I C ([S, S]) C (S).

9.2 The Lie Extended Centroid
of K

We continue with our assumption that R is a prime ring with
involution of the first kind. Our aim here is to show that, with
the exception of certain low dimensional cases, the Lie extended
centroid of K (which we shall presently define) coincides with
the extended centroid C of R. Theorem 9.1.13(e) shows that K
is (usually) a ”prime” Lie ring and thus suggests that we make
a brief digression into general nonassociative rings (see [101] for
complete discussion).

Let A be an arbitrary nonassociative ring (i.e., all the ring
axioms except for the associative law) with composition denoted
by a-b, a,b € A. We say that A is prime in case U -V = implies

= 0 or V = 0 for any ideals U, V of A. The centroid ®
of A is by definition the set of all endomorphisms of (A4,+)
which commute with all the left and right multiplications of
A. Tt is a straightforward exercise ([101, Theorem 1.1(a)]) to
show that ® is a commutative integral domain with 1 and that
A is ®-torsion free provided A is prime. In the remainder of
this digression we shall assume that A is a prime nonassociative
ring and shall restrict ourselves to ideals which are ®-invariant
(i.e., A is a prime ®-algebra). The multiplication ring M(A)
of A is the subring of Endz(A) generated by all the left and
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right multiplications of A, where Z is the ring of integers. We
proceed to define the extended centroid of A. We begin by
noting that the set F of all nonzero ideals of A is closed under
finite intersections. For U € F a ®-map f : U — A is called
permissible if f commutes with the elements of M(A). Such an
element will be denoted by (f,U). ker(f) ={u € U | f(u) = 0}
and Im(f) = {f(u) | v € U} are ideals of A and we note that
(ker(f)) - (Im(f)) = 0. Hence by the primeness of A either
f = 0or fis an injection. We define (f,U) ~ (g, V) if there
exists W € F such that W C UNV and f = g on W. This
is easily shown to be an equivalence relation. We remark that
(f,U) ~ (g,V) if and only if there exists 0 ## o € U NV such
that f(z) = g(z). We denote by [f,U] the equivalence class
determined by (f,U) and let C(A) be the set of all equivalence
classes. Addition in C(A) is defined by

[£,Ul+1g,VI=[f+g9UNV]

and it is easy to check that this definition is independent of the
representatives.

For (g,V) permissible and U € F, let ¢7}(U) = {v € V|
g(v) € U}. Clearly g~*(U) is an ideal of A and we show that
it is nonzero. If g(V) = 0, then 0 # V C ¢~ }(U). If g(V) # 0,
then g(V)NU # 0. Pick v € V such that 0 # g(v) € U. Hence
v # 0 and v € g~ (U). Now define multiplication in C(A) by

£, Ullg,V]=1fg,97 (V)]

To see that multiplication is well-defined, suppose (f;,U;) ~
(f2,U2) and (g1, V1) ~ (92,V2). Then fi = fo on W1 C Uy NV,
and g; = g on Wy C Vi NV, Set W = Wy n g~ (W)). For all
xeWw,

fi(g1(2)) = fi(g2(z)) = f2(92())

and so multiplication is well-defined. It is then straightforward
to check that C(A) is an associative ring with 1. We shall call
C(A) the extended centroid of A.
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Theorem 9.2.1 The extended centroid C(A) of a prime nonas-
sociative ring is a field.

Proof. We first show that C(A) is commutative. Let A =
[f, U], u=[g,V] € C(A). We set W = ¢g~*(U) N f~(V) and
pick z,y € W. Then

fo(zy) = f(g(x)y) = g(z) f(y) = g(zf(y)) = 9f (zy).

It follows that (fg — gf)(W)W =0, and so (fg — gf)(W) =0,
whence Ay = pA. Next let [f,U] # 0 and note that f(U) # 0
but ker(f) = 0. Define g : f(U) — A by g(f(v)) = u for
all u € U. g is well-defined since f is an injection and in fact
(g, f(U)) is permissible. Clearly [g, f(U)] is the inverse of [f, U],
and the theorem is proved.

This completes our digression and we return to our assump-
tion that R is a prime (associative) ring with involution of the
first kind. We will also make the assumption that dimg(RC) >
16 (this will suffice for our purpose in section 9.4). We are
therefore assured by Theorem 9.1.13(e) that K is a prime Lie
ring, and so K has an extended centroid I' = C(K). Clearly
I' D C =C(R). As a first step in showing that ' = C' it will be
useful to have the following

Lemma 9.2.2 Let R be a simple GPI ring with involution * of
the first kind such that dimc(RC) > 16. Then K is a simple
Lie ring.

Proof. By Theorem 6.1.6 R is its own socle, and by Theo-
rem 9.1.9(b) we may assume without loss of generality that R is
not PI. Let a,b € K, with a # 0. By the x-Litoff Theorem there
exists a symmetric idempotent e in R such that dims(eRe) > 16
and a,b € eRe. Another application of Theorem 9.1.9(b), this
time to the simple ring eRe, shows that eKe is a simple Lie ring.
In particular b lies in the Lie ideal generated by a, and so we
may conclude that K is a simple Lie ring.
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Lemma 9.2.3 If R is a centrally closed prime ring with invo-
lution * of the first kind and dim¢(R) > 16, then I’ = C.

Proof. We assume first that R is not GPI. Let A = [f,U] €
I', pick 0 # a € U, and set b = f(a) € K. For k € K we see
from the fact that (f,U) is permissible that

[[b, k], [a, k]] = [[f(a), k], [a, kl] = [fla, k], [a, k]]
= f[[a" k]’ [a’, k]] = f(0)=0.

Thus ¢(z) = [[b,z],[a,z]] € Re<X > is a GPI on K and so
by Corollary 6.2.5 ¢(z) must be the zero element of Rc<X >,
forcing @ and b to be C-dependent. Hence b = aa for some
a € C. It follows that A = a and so in the non-GPI case we
have shown that C =T.

We now assume that R is GPI. In view of Theorem 6.1.6
R has nonzero socle H. We know that H is a simple GPI ring
with involution of the first kind, centrally closed over C, and
with dimgc(H) > 16. By Lemma 9.2.2 (applied to H) we see
that Ky = K N H is a simple Lie ring. Furthermore we claim
that I' = C(Kg). Indeed, if A = [f,U] € T we know from
dimg(H) > 16 and Theorem 9.1.13(c) that [H N K, K] C U
and hence Ky = [HN K,K| C U. Since Ky = [Ky, Ky|, we
also see that f(Ky) C Kg. Our claim is therefore established,
and it follows that A = [f, U] may be written A = [f, Ky|. We
now form the ring § = H ®¢ I, which is a central simple GPI
ring over I', with dimp(S) > 16, and with involution given by
h® A+~ h*® A By Lemma 9.2.2 again (applied to S) we see
that Ky ®c¢ I is a simple Lie ring. We now define a mapping of
Ky ®c I into Ky according to the rule

k® A f(k), ke Ky, A=[f Ky €.

In view of our previous remarks it is easily seen that this is a well-
defined Lie homomorphism, and because of the Lie simplicity
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of Ky ® I, it is actually a Lie isomorphism. Now pick A =
[f,Kyg) €T and 0 # a € Ky. Then a ® A — f(a) ® 1 maps to
f(a) — f(a) =0, and so a ® A = f(a) ® 1. This forces A € C
and completes the proof that I' = C.

We now remove the assumption that R is centrally closed.

Theorem 9.2.4 Let R be a prime ring with involution x of the
first kind such that dimc(RC) > 16. Then C(K) = C(R).

Proof. We have already pointed out that K is a prime Lie
ring and that C = C(R) C C(K). We claim that C(K) C
C(KC) via the mapping [f,U] — [g,UC], where g(> u;c;) =
3 f(u;)e;. Indeed, the main thing to show is that g is well-
defined. Suppose Y u;c; = 0. Pick v € U and note that

[Z f(ui)ci,v] = Z[f(ui)’v]ci:Z[ui,f(v)]ci
= [XZwew f()] =0.
By the primeness of KC we infer that > f(u;)e; = 0, and

from this it follows easily that the claim is established. By
Lemma, 9.2.3 we see that C(KC) = C(RC), and so from

C(R) C C(K) € C(KC) = C(RC) = C(R)

we conclude that C(R) = C(K).

9.3 Trilinear Symmetric Mappings

Let R be an algebra over a commutative ring ®, and let V be a
®-subspace of R. We shall say that a mapping B : V* — R is
n-linear symmetric if

(1) B(z1,22,..,%n) = B(ZTo)sZo(@)s---»Tom)) for all
Z1,Z2,...,Zn € V and all permutations ¢ € S,,;
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(ii)B(:L‘l,...,:L‘i—}-y“.. ) ( y iy - ..,:L‘n)
+B(z1,. . Yiy.-.,2Tq) for allz = 12 J Ty T1,Z2, .., Tn,
Y,Y2, -, Un €V;

(iii) B(zy,...,¢Ziy...,Zn) = cB(x1,... T4y .., T,) for all
1=1,2,...,n,2,%a,..., T, €V, c€ ®.

In case ® is the ring of integers we shall say that B is n-
additive symmetric. Consider then an n-linear symmetric map-
ping B : V* — R. The mapping T : V — R given by
T(z) = B(z,z,...,z) is called the trace of B ; T is said to
be commuting if [T(z),z] = 0 for all z € V. This last condi-
tion shows that generalized identities arise quite naturally in the
study of such mappings.

The simplest case, V = R a prime ring and n = 1, goes
back to 1957 when Posner [241] showed that the existence of a
nonzero commuting derivation in a prime ring implied that R
was commutative. A variety of results on commuting mappings
have since been obtained by a number of authors (e.g. [224],
P. H. Lee and T. K. Lee [173], [164], [39], [69], etc.). Many of
these isolated results were simultaneously generalized in 1993
by Bresar [62], and we now proceed to present the details of his
result in a series of easy steps (we shall need this result at one
place in section 9.4).

Let R be a ring. A biadditive map B : R x R — R is called
a biderivation if for every x € R the map y — B(z,y) is a
derivation of R and for every y € R the map = — B(z,y) is a
derivation of R. The notion of biderivation arises naturally in
the study of additive commuting maps, namely, the linearization

[f (), y] = [z, f(y)] (9.1)

of an additive commuting map f implies that the mapping
B: R x R — R given by B(z,y) = [f(z),y] is a biderivation.
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Lemma 9.3.1 Let R be a ring and B: R x R — R a bideriva-
tion. Then

B(z,y)zlu,v] = [z, y]zB(u,v) for all x,y,z,u,v € R.

Proof. We compute B(zu,yv) in two different ways. Using
the fact that B is a derivation in the first argument, we get

B(zu,yv) = B(z,yv)u + zB(u, yv). (9.2)

Since B is a derivation in the second argument, it follows from
(9.2) that

B(zu,yv) = B(z,y)vu + yB(z,v)u + £B(u,y)v + 2y By, v).
Analogously, we obtain
B(zu,yv) = B(zu,y)v+ yB(zu,v)
= B(z,y)uv +zB(u,y)v + yB(z,v)u + yzB(u,v).
Comparing the relations so obtained for B(zu,yv) we arrive at
B(z,y)[u,v] = [z,y]B(u,v) forall z,y,u,v € R.

Replacing u by zu and using the relations

[zu, v] = [z, v]u + 2[u,v], B(zu,v) = B(z,v)u+ zB(u,v)
we obtain the assertion of the lemma.

We are now in a position to prove

Theorem 9.3.2 Let R be a noncommutative prime ring and let
B: Rx R — R be a biderivation. Then there exists A\ € C such
that B(z,y) = Az, y] for all z,y € R.

Proof. Let S = R x R and define A: S — R by A(z,y) =
[z,9]; A # 0 since R is noncommutative. By Lemma 9.3.1
the functions A,B : § — R satisfy all the requirements of
Lemma 7.9.11. Hence the result follows.

As a consequence of Theorem 9.3.2 we obtain
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Corollary 9.3.3 Let R be a prime ring. If f : R — R 1is an
additive commuting map, then there ezists A € C and an additive
map u: R — C such that f(z) = Az + u(z) for all z € R.

Proof. Linearizing [f(z), z] = 0 we see that the map (z,y) —
[f(z),y] is a biderivation. Clearly we may assume R is noncom-
mutative. Therefore by Theorem 9.3.2 there exists A € C such
that [f(z),y] = [Az,y] for all z,y € R. Hence we see that for
any = € R the element p(z) = f(z) — Az € C, and the proof is
complete.

Bresar’s characterization of biadditive symmetric mappings
with commuting traces for V = R a prime ring of char(R) # 2
[63] was a landmark achievement, for (along with a variety of
applications) it enabled him to settle a long standing conjecture
of Herstein ([113],) concerning Lie isomorphisms of prime rings.
For us this work of Bresar served as the inspiration to attempt
to characterize trilinear symmetric mappings with commuting
traces for the situation where R is a prime ring with involution
and V = K. It will be seen in section 9.4 how critical a role this
characterization plays in the verification of Herstein’s conjecture
([31, Theorem 3]) concerning Lie isomorphisms of the skew ele-
ments of a prime ring with involution. We now state the main
result we wish to prove. The remainder of this section will be
devoted to its proof.

Theorem 9.3.4 (Beidar, Martindale, Mikhalev [31]) Let
R be a centrally closed prime ring over C with involution * of
the first kind, and with char(R) # 2,3. Furthermore assume
that R is not GPI. Let B : K® — K be a trilinear symmetric
mapping whose trace T is commuting. Then there exist A € C
and a bilinear mapping u: K x K — C such that

6B(2,y,2) = Mayz+ z2y+ yzz + yzz + 23y + 2yT)
+uy, 2)z + plz, 2)y + p(z, y)z
forallz,y,z € K.
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The Proof of Theorem 9.3.4 will follow from a series of obser-
vations and lemmas. Throughout the conditions of the theorem
will be assumed. We also caution the reader of a slight change
of notation (both here and in section 9.4): small letters z,y, ...
will be elements of R and capital letters X,Y,... will denote
variables.

We begin by linearizing our given condition

[B(z,z,z),z] =0 z€ K (9.3)

through various stages. By replacing z by z + y in (9.3) we are
led to

[B(z,z,),y] + 3[B(z, z,y), z] + 3[B(z, z,y), ]
+ 3[B(z,y,y), 7] + 3[B(z,y,v), Y]
+ [B(y,y,y),x] =0 (94)

Replacing y by —y and y by 2y in (9.4) we obtain
[B(.’E, a:,a:),y] + 3[3(1;’ :n,y), il)] =0,
ie.,
1
[B(z,3,0),9] = ~3[B@,3,2), 4 (95)
and
[B(z,z,y),y] = —[B(=,y,v), 2| (9.6)
Substitution of z by z + z in (9.5) the results in
2(B(z,y,2),z] + [B(z,2,y), 2] + [B(2,2,2),y] =0 (9.7)
and finally replacement of by x + » in (9.7) leads to
+ [B(y, 2,u), 2] =0 (9.8)
for all z,y, z,u € K.
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Before proceeding to our first lemma, it will be convenient to
define

¢z, () =zly+2lyr+... +yzt, z,y€R,i=0,1,2,...

(it is understood that ¢, 0(y) = y) and then to immediately note
that

doily, 7) = [y, ) (9.9)

Lemma 9.3.5 If z € K is algebraic over C of degree m + 1,
then

B(z,z,z) =Zﬂizi, B;eC,i=0,1,...,m.

Proof. We set b = B(z,z,y), v € K, a = B(z, z,z), noting
from (9.5) that [b,z] = —3[a,y]. From (9.9) we have ¢, ;[b,z] =
[b, 2%, 4 =10,1,2,.... Writing X7 ;7' = 0, o; € C, amy1 =
1, we see that

i m ) m+1 .
Zai+1¢x,i[b, CE] = [b’ Zai+1z1+1] = |:b’ z ajil?{l =0,
1=0 =0 i—0

J:

whence Y70 a1 05,4[a, y] = 0 for all y € K. By Corollary 6.2.5
the element f(Y) = Y% 15,40, Y] must be the zero element
of Re<X>. This means in particular that

Y Qitiézgla,y] =0 (9.10)
1=0

for all y € R. With the help of Theorem 2.3.6, equation (9.10)
may be translated into the tensor product equation

iaiﬂi(zi'j@zj)(a@l—l@a) =0 (9.11)

=0 7=0
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Reversing the summation and rewriting (9.11) we have

> { > ai+1$i_ja} ®z! - { > ai+1$i—]} ®az’ =0

Jj=0 j<gism j=0 | j<i<m
(9.12)

For each summand of the tensor product in (9.12) let us agree
to call the factor to the left of the tensor sign the coefficient of
the factor to the right of the tensor sign. From our assumption

that z is algebraic of degree m+1 we know that 1,z,...,2™ are
C-independent. Suppose (to the contrary of what we are try-
ing to prove) that 1,z,...,z2™,a are C-independent. We make

the important observation that the coefficient of a in (9.12) is
Yoozt = 2™+ Y 04417%, a polynomial in z of degree m.
For j > 0, if az? is a linear combinationof 1, z, ..., 2™, a,az, ...,
az?~! we rewrite (9.12) accordingly and note that the coefficient
of a in the rewritten form of (9.12) remains a polynomial in z
of degree m. A contradiction to 1,z,...,2™,a being indepen-
dent is thereby reached, and so we may finally conclude that
a= B(z,z,z) =Y, 61, 5; € C.

Lemma 9.3.6 If z € K is not algebraic of degree < 6, then
B(z,2,2) =az’ + 22 + vz, «a,B8,7€C.
Proof. Replacing = by 23 in (9.7) we have
2[B(2%,y,2), 2] + [B(%, 2%, y), 2] + [B(2%, 2%, 2),4] = 0 (9.13)

for all y € K. Applying (9.9) to the first summand of (9.13) we
obtain

¢z,22[B(2:3, Y, 2:), 2:] + [B(za) z3’ Y, 2:), 2:] + [B(zarzs) 2:), y] =0
which in view of (9.7) again may be rewritten as

- ¢z,2[B(z, Z, 33))y] - ¢z’2[B(2:,2:,y),2:3]
+ [B(2%, 2%, y), 2] + [B(2%, 2%, 2),y] = 0 (9.14)
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Using (9.9) in connection with the second summand in (9.14)
we then have

- ¢z,2[B(Z,Z,23),y] - z,Q[B(Z,Z,y),Z]
+ [B(22, 2%,y), 2] + [B(2*, 2%,2),9y] = 0 (9.15)

An application of (9.5) to the second summand of (9.15) results
n

~ $.alBlz,2,2°),4] + 382l 7, 2),4)
+ [B(23,2%,9), 2] + [B(2%,2%,2),y] = 0 (9.16)
We then apply ¢, to (9.16) and use (9.9) to obtain
~ BalBlz,2,2%), 4] + 56%lB(z 7, 2,0
+ [B(2%,2%,9), 2] + ¢,2|B(23, 2%, 2),y4] =0 (9.17)
Using (9.5) on the third summand of (9.17) we have

BalB(2,2,2%), 3]+ 363.[B (2, 2,2),1]
———[B(z 22,2%), 9yl + ¢.2[B(23, 23, 2),y] =0 (9.18)

Multiplication of (9.18) by —3 and rearrangement of terms yields

[B(Zsa ZS’ 23)’ y] - 3¢Z,2[B(Zsa 231 Z)u y]
+382,1B(2,2,2°),y] - #3,[B(2,2,2),5] =0 (9.19)

For simplification of notation we rewrite (9.19) as
[d) y] - 3(]52,2[6, y] + 3¢3,2[b’ y] - 2,2[‘1’ y] = 0, Y€ K (920)

where @ = B(z,2,2), b = B(2% 2,2), c = B(2%,23,2), and d =
B(23,2%,23). By Corollary 6.2.5

f(Y) - [d, Y] - 3¢Z,2[C, Y] + 3¢§,2[b, Y] - 2,2[(1) Y]
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must be the zero element of Rc<X> and so in particular
[d’ y] - 3¢Z,2[cv y] + 3¢3,2[b’ y] - 2,2[0" y] =0 (9'21)

for all y € R. Using Theorem 2.3.6 we may translate (9.21) into
the tensor product equation

d®1-1d-3(’®1+202+1®2*)(c®1~1®c)
+322®1+202+102°)*(b®1-1810)
—(?®1+202+1®2°)* (c®1-1®¢) (9.22)

Two side calculations yield

(Z2®14+202+1022)? = 2201+2°°®2+32°®7°
+2:02° +1® 24 (9.23)

(2®@14+202+102%)° = £+3°02+6'®2°
+722 @22 + 622 ® 2!
+3202° +1® 2° (9.24)

Inserting (9.23) and (9.24) in (9.22) and then expanding in full
we see that

d®1-18d—-3{’c®1+2c®@ +c® 2°
—2’Q@c—2z®cz—1® cz?}
+3{z'®1+20®2+30® 22 +2:0® 22 +b® 2*
~-®b-22®bz— 322 @bz — 22 ®b2° — 1 ® bz}
—{fa®1+3a®2+62a® 22+ 700 ® 2
+62°a® 2* + 324 ® 2° + a ® 2°
—-2#®a-3"®az~ 62 ®a? -7 ®ald

—62®az* —320az° —1®a2°} =0 (9.25)

Systematically rearranging the terms of (9.25) we have

(d - 32%c+32% — 2%a) ® 1 + (—3z¢ + 62°b — 32%) ® 2
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+(=3c+ 92%b — 62%a) ® 2* + (62b — T2%a) ® 2°
+(3b—62%a) ®2* — 324 2° —a®2* + 2 @a

+32° ® az + 62* ® a2? + 72° ® a2’

+622®az +32®a2® +1®a®

32 ®b—622®bz — 922 ® bz? — 62® bz — 3@ b2t
+322®@c+32Qcz+3Q®c?~18®d=0 (9.26)

Since z is not algebraic of degree < 6, we may speak of the degree
of polynomials in z whose powers of z do not exceed 6. We know
that 1,z2,...,2% are C-independent. Suppose (contrary to what
we are trying to prove) that 1,z,...,2% a are C-independent.
In a similar fashion to the proof of Lemma 9.3.5 we note that
the coefficient of a in (9.26) is 2% whereas the coefficients of

az,az?,...,a2%,b,bz, ... bzt ¢, cz,c2?,d

in (9.26) are all polynomials in z of degree < 6. Consequently,
writing if necessary any of the above elements as a linear combi-
nation of preceding elements and then rewriting (9.26) accord-
ingly, it follows that the coefficient of a in the rewritten form
of (9.26) remains a polynomial in z of degree 6. This a contra-
diction to 1,z,...,2% a being assumed C-independent and so
a = B(z,2,2) = ¥%_,B:2. Since B(z,z,z2) is skew we finally
have B(z, z,2) = az® + B2* + vz, o, 8,7 € C, as desired.

Lemma 9.3.7 If z € K is not algebraic of degree 6, then there
ezist A\, u € C such that B(z,2,2) = \2> + pz.

Proof. If z is algebraic of degree < 5, then by Lemma 9.3.5
B(z,2z,z) = Y., 82" for some m < 4. But B(z,z,z) is skew
and so B(z,z,z) = B32% + $12z. Therefore we may assume that
z is not algebraic of degree < 6, because z is not algebraic of
degree 6 by our assumption. In the free product Rc <X > we
consider the following sets of elements:
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{M;(2,Y) |i=1,2,...,n}, the set of all monomials of the
form z0Y*1291 | Y*s2Js where jo+j1 + ...+ js < 6 and k; +
ko+ ...+ ks <6,

(Y +2)]i=0,1,...,6},

{(Y —2)|i=0,1,...,6}.

Since 1, z,. . ., 2% are C-independent, each of the above three sets
is a C-independent subset of Rc<X>. By Lemma 6.1.8 there
exists € K such that each of the sets {M;(z,z)}, {(z + 2)'},
and {(z — 2)'} is a C-independent subset of R. We let V' denote
the C-span of the set {M;(z,z)}. Since none of the elements
z,x,r+2z,x—z are algebraic of degree < 6, Lemma 9.3.6 implies
that the traces T(z),T(z),T(z + z), T(z — z) are all elements of
V and in fact are of "degree” < 5 in z and ”degree” < 5 in z.
It then follows from the equations

T(x+2) = T(z)+T(z)+3B(z,z,2)+ 3B(z, 2, 2),
T(x—2) = T(z)—-T(z)—3B(z,z,2) +3B(z, 2, 2)

that B(z,z,z) and B(z,z,z) are also elements of V of degree
< 5 in both z and 2. Using (9.5), we may then conclude from

[B(z,z,z),2] = =3[B(z,z, 2), z]
that B(z, z, z) is of degree 1 in z. Next, using (9.6), from
[B(z,z,2), z] = —[B(z, 2, 2), ]

we see that B(z, z, z) is of degree < 2 in 2. As a result it follows
from

B(z,z,2),2] = —%[B(z,z,z),x]

that B(z, z,z) has degree < 3 in z. Since B(z, z, z) is skew we
then have B(z, z,2) = Az® + pz, A\, € C, as desired.

Lemma 9.3.8 Suppose that z € K is algebraic of degree 6.
Then there exist A, i € C such that B(z,z,z) = A2 + pz.
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Proof. In the free product Ro<X> we consider the follow-
ing five sets:

{M;(2,Y) | 1 = 1,2,...,n}, the set of all monomials of de-
gree < 6 in Y and of degree < 5 in 2,

{Y*|i=0,1,...,6} which is a subset of the first set,

{(Y —2)|i=0,1,...,6},

{{Y +2)|i=0,1,...,6},

{(Y +22)"|i=0,1,...,6}.
Each of these sets is a C-independent subset of Re < X >, so
by Lemma 6.1.8 there exists z € K such that each of the five
sets {M;(z,z)}, {z'}, {(z — 2)}, {(z + 2)t}, and {(z + 22)*} is
an independent subset of R. We let W denote the C-span of
the set {M;(z,z)} and let W’ denote the subspace of W whose
elements are of degree < 3 in z. Since none of the elements
z,T — 2, + 2,z + 2z are algebraic of degree 6, Lemma 9.3.7
implies that the traces T'(z),T(z — 2),T(z + 2),T(z + 2z) all
belong to W’. By adding the equations

T(z+2) = T(z)+T(z)+3B(z,z,2) + 3B(z, 2, 2)
T(z—2) = T(z)—T(z) —3B(z,z,z2)+3B(z, 2, 2)

we have 6B(z,z,2) = T(z + z) + T(z — z) — 2T(z), and so
B(z, z,2) € W'. Next, from the equations

T(zx+22) = T(z)+8T(2)+6B(z,z,2)+ 12B(z, 2, 2)
8T(z+2) = 8T(z)+8T(z)+24B(z,z,2) + 24B(z, 2, 2)

we obtain
8T (z+ z) — T(z + 22) = 7T (x) + 18 B(z, z,2) + 12B(z, 2, 2)
and so B(z,z,z) € W’. In W we have the equation

[B(z,z,z),2] = —3[B(z, z, 2), 7]
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from which we may conclude that B(z,z,z) has degree 1 in 2.
We therefore see from

[B(z,z,2),2] = —[B(z, 2, 2, ), 2]

that B(z,z,z) has degree < 2 in z. Since z is algebraic of
degree 6, we know from Lemma 9.3.5 that B(z, z,2) = Y0, V2",
v; € C, and so [B(z, z, z),z] € W'. Therefore from the equation

[B(z, 2,2),z] = =3[ B(z, 2, 2), 2]

we see that B(z, z, z) is of degree < 3 in z, and the proof of the
lemma is complete.

Together Lemma 9.3.7 and Lemma 9.3.8 imply

Lemma 9.3.9 For all 2 € K there exist \,u € C such that
B(z,2,2) = A\23 + pa.

We next show that ) is independent of 2.

Lemma 9.3.10 There exists A € C such that for all 2 € K
B(z,z,2) = 2% + p(2)z, u(z) € C.

Proof. Let a,b be any elements of K neither of which is
algebraic of degree < 3. In the free product Ro<X> we consider
two sets

{Mi(a,Y) | © = 1,2,...,n}, the set of all monomials of de-
gree < 6 in Y and of degree < 3 in a,

{M;(b,Y)|i=1,2,...,n}, the set of all monomials of degree
<6inY and of degree < 3in b
These are each C-independent subsets of Roc<X > and so by
Lemma 6.1.8 there exists € K such that the sets {M;(a, )}
and {M;(b, z)} are both C-independent subsets of R. Let U de-
note the C-span of the set {M;(a,z)}, and let U’ denote the
subspace of U where elements are of degree < 3 in z. By
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Lemma 9.3.9 T'(z),T(a), T(z +a), T (z — a) all belong to U’ and

so from the equations
T(x+a) = T(z)+
T(x—a) = T(z)-—

~

(a) + 3B(z,z,a) + 3B(z,q,a)
(a) — 3B(z,z,a) + 3B(z, a,q)
(9.27)

~

we conclude that B(z,z,a) and B(z,a,a) both lie in U’. From
[B(z,z,z),a] = —3[B(z,z,a), ]

we see that B(z,z,a) is of degree 1 in a, whence from
[B(z,z,a),a] = —[B(z, q, a), 2]

we see that B(z,a,a) has degree < 2 in a. Next from

[B(z,a,a),a] = —%[B(a, a,a), x|

we see that B(z,a,a) has degree 1 in z, whence from
[B(z,z,z),a] = —[B(z,a, a), ]

we see that B(z,z, a) has degree < 2 in z. Returning to equation
(9.27) and using Lemma 9.3.9 we write

Ma+z)P+ma+z) = Xod®+ pa + A3z’
+usz + 3B(z, 2, a)
+B(z,a,a) (9.28)

for suitable A;,p; € C. Since the degrees of B(z,z,a) and
B(z, a,a) in either z or in a do not exceed 2, we conclude from
(9.28) that Ay = Ay and A\; = A3, whence Ay = A3. In a similar
fashion, writing B(b, b, b) = A,b%+ uhb, our argument shows that
Ay = A3 and therefore Ay = \; = ). In case y € K is algebraic
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of degree < 3 we know by Lemma 9.3.5 that B(y, y,y) = uy, so,
writing y® = ~yy, we have

B(y,y,y) = \® + py = Ay’ = M + (n— v\
The proof of Lemma 9.3.10 is now complete.

Proof of Theorem 9.3.4. By Lemma 9.3.10 there exists
A € C such that

B(z,z,2) = \2® + y(z)z, ~(z) €C (9.29)

for all z € K. We proceed to linearize (9.29) in the usual fashion.
Replacement of z by z + y in (9.29) results in

3B(z,z,y)+3B(x,y,vy) = Mz y+zyz+yz* +oy’+yzy+ys)+hy

(9.30)
for all z,y € K, where h; is a linear term in z and y. Replace-
ment of y by —y in (9.30) then quickly leads to

3B(z,y,y) = Mzy? + yzy + y*z) + hy (9.31)

where hy is linear in z and y. Replacement of y by y + 2z in
(9.31) then results in

6B(z,y,2) = Mayz + 2y + yzz + yzz + 22y + zyz) + h (9.32)

for all z,y, z € K, where
Mz, y,2) = a(z,y, 2)z + Bz, ¥, 2)y + 7(z,9,2)z  (9.33)

and a(z,v, 2), B(z,y,2),v(z,y,2) € C. We note from (9.32)
that h : K3 — K is a trilinear mapping. We define a mapping
p: K x K — C in the following fashion. Given (y,2) € K x K
choose z € K such that z does not lie in the C-span of y and
z (such z exists since K is infinite dimensional over C). Now
write

hz,y,z) = az + By + 2
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and define p(y, z) = . To show that p is well-defined let u € K
such that u & Cy + C=z. Suppose first that u = mz + 7y + 732
(necessarily 73 # 0). Then
h(u,y,2) = mh(z,y,2) + 12(h(y, y,2) + T3h(2,y, 2)
= mi(ax+ By + v2) + 7(B2y + 122) + T3(Bsy + 732)
= a(nz + ny+ nz) + Oy + 1z
= oau+ B4y + 142
We may thus assume that u,z are C-independent modulo Cy+
Cz. In this case we write
h(z,y,z) + h(u,y,2) = h(z + u,y, 2)
whence
az+PBy+yz+au+ fiy+mz = a(z+u)+ Loy + 732 (9.34)

It follows from (9.34) that o = @, and &1 = @ and so @ = oy
as desired.

We next show that p is bilinear. Let y,vy',2 € K, 7 € C,
and choose z € K such that z € Cy + Cy’ + Cz. The following
equations

h(z,y,z) = az+ Py+vz=h(z,2,7y)
hz,y+y',2) uwy+y,2)z+ by +y) +mnz
h(z,y,z) + h(z,y'2)
= (Y, 2)z + Py + Y2z + (Y, 2)T + By’ + 732
Mz, ry,z) = plry,z)z+ Bty + 122
Th(z,y,2) = Tu(y,2)z+70y+ 172

i

il

clearly imply that y is bilinear.
Now let z,v, 2 € K be C-independent. From
h(z,y,2) = ply, 2)z + By + vz
= h(y,z,2) = u(z,2)y + bz + iz
= h(z,2,y) = u(z,y)2 + Bz + 12y
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we then conclude that

h(z,y,z) = p(y, 2)z + u(z, 2)y + p(z,v)2.

Next suppose that y, z are C-independent but z € Cy+ C=.
Choose u &€ Cy + Cz. Then z + u g Cy+ Cz and we have

h(z,y,z) = h(z+u,y,2)— h(u,y,2)
= w(y,2)(z+u)+ p@+u,2)y+ ple +u)z
—p(y, 2)z — p(z, 2)y — u(z,y)2
= p(y, )z + (=, 2)y + plz, y)z (9.35)

Finally, if dimc(Cz + Cy + Cz) = 1, we choose u ¢ Cz +
Cy + Cz and making use of the preceding case together with
equation (9.35) we complete the proof of Theorem 9.3.4.

9.4 Lie Isomorphisms

At his 1961 AMS Hour Talk, entitled ”Lie and Jordan structures
in simple, associative rings”, Herstein posed several problems
he deemed worthy of attention [113]. Among these were the
following questions (which we indicate in a rather loose fashion):

Problem 1. Is every Lie automorphism ¢ of a simple asso-
ciative ring R given by (or ”almost” given by) an automorphism
o or negative of an antiautomorphism o of R?

Problem 2. If R is a simple ring with involution * and K
denotes the Lie ring of skew elements of R under , is every Lie
automorphism ¢ of K induced by (or ”almost” induced by) an
automorphism ¢ of R?

The qualification ”almost” refers to the possibility that ¢
and ¢ may differ by an additive mapping 7 of R into the center
which sends commutators to 0.

The resolution of these problems in the classical case R =
M,(F), F a field, has been well-known for a long time ([132,
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Chapter 10]). In 1951 Hua [130] solved Problem 1 for R a sim-
ple Artinian ring M, (D), D a division ring, n > 3. A more
general situation for Problem 1 was subsequently considered by
Martindale ([201], [203]) in which Lie isomorphisms ¢ : R — R’
(R, R’ primitive in [201] and prime in [203]) were investigated
and in which the matrix condition n > 3 was replaced by the
condition that R contains three orthogonal idempotents whose
sum is 1 (in [203] only two idempotents were required). A close
look at the results of these papers reveals the fact that the im-
age of o in general requires a ”larger” ring than R’ and that the
image of 7 requires a ”larger” field than the center of R'. We
note that it was precisely this necessity to enlarge certain rings
that was the motivation for developing the notions of extended
centroid and central closure which proved so useful in charac-
terizing prime GPI rings [205]. As mentioned in section 9.3,
the final breakthrough on Problem 1 was made by Bresar [63].
Here, as a corollary to a general result on biadditive mappings in
prime rings, he removed the assumption of orthogonal idempo-
tents altogether and thereby settled Problem 1 in full generality.

Theorem 9.4.1 (Bresar [63, Theorem 3]) Let R and R’ be
prime rings of characteristic # 2, neither of which satisfies the
standard identity Sty. Then any Lie isomorphism ¢ of R onto
R' is of the form ¢ = o+ 7, where o is either an isomorphism or
negative of an antiisomorphism of R into the central closure of
R and 7 is an additive mapping of R into the extended centroid
of R' sending commutators to 0.

The present section is concerned with Problem 2. Let R be
a prime ring with involution x, of characteristic # 2,3, with
K the skew elements of R, and C the extended centroid of R.
Throughout this section all involutions will be of the first kind.
(For involution of the second kind the feeling is that the solution
of Problem 2 is inherently easier and should ultimately revert
back to Theorem 9.4.1; partial results have been obtained by
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M. P. Rosen [253]). As we have seen * may be extended to
an involution of the central closure RC according to rc — r*c,
r € R, ce C. Up to 1994 (see [31]) the main result concerning
Problem 2 was the following theorem of Martindale [212], which
we now state carefully since it plays a crucial role in the general
solution of Problem 2.

Theorem 9.4.2 (Martindale [212, Theorem 3.1]) Let R
and R’ be centrally closed prime rings of characteristic # 2 with
involutions of the first kind, with algebraically closed centroids C
and C' respectively, and with skew elements denoted respectively
by K and K'. We assume furthermore that

(a) dim¢s(R) # 1,4,9,16,25,64;

(b) R contains two nonzero symmetric idempotents e; and
es such that e; + ey # 1;

(c) Fori=1,2, ¢; € (e;Re;N[K, K]), the associative subring
generated by e;Re; N [K, K].

Then any Lie isomorphism of [K, K] onto [K', K'] can be ez-
tended uniquely to an associative isomorphism of ((K, K]) onto
(K", K']).

Our aim in this section is to eliminate the requirement of
idempotents assumed in Theorem 9.4.2. We are now ready to
state the main result of this section:

Theorem 9.4.3 (Beidar, Martindale, Mikhalev [31]) Let
R and R' be prime rings with involutions of the first kind and
of characteristic # 2,3. Let K and K' denote respectively the
skew elements of R and R' and let C and C' denote the extended
centroids of R and R’ respectively. Assume that dimg(RC) #
1,4,9,16,25,64. Then any Lie isomorphism o of K onto K'
can be extended uniquely to an associative isomorphism of (K)

onto (K'), the associative subrings generated by K and K' re-
spectively.
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It is interesting to note that the possibility of the mapping 7 :
R — C' appearing in the conclusion of Theorem 9.4.3 does not
in fact occur. We also mention that counterexamples illustrating
the dimension restrictions on dim¢(RC) may be found in [2%2].

In view of Theorem 9.1.13 and Lemma 9.1.4 we have the
following

Corollary 9.4.4 Ifin Theorem 9.4.3 R and R’ are simple rings,

then a can be extended uniquely to an isomorphism of R onto
R.

The proof of Theorem 9.4.3 is self-contained with a single
major exception. Theorem 9.4.2 is required and in fact plays
a decisive role; we refer the reader to [212] for the details of
its proof. For the remainder of this section we shall assume
that the conditions of the Theorem 9.4.3 hold. Our plan of
attack is to consider two cases: Case A in which R is GPI
and Case B in which R is not GPI. In Case A we are able
to make use of Theorem 9.4.2. In case B we set up a certain
trilinear symmetric mapping B : K* — K intimately related to
a. Then, making repeated use of Lemma 6.1.8, we are able to
show (Theorem 9.3.4) that B is of a particular useful form. The
upshot is that both Theorem 9.4.2 in Case A and Theorem 9.3.4
in Case B enable us to prove that (z3) = (z®)? for all z € K,
which by Lemma 9.4.5 is precisely the criterion for lifting o to an
isomorphism of (K') onto (K'). Our main result, Theorem 9.4.3,
will thereby be proved.

We begin by showing that without loss of generality R and
R’ may be assumed to be centrally closed prime rings with C
and C” algebraically closed fields. Indeed, since dim¢g(RC) > 16
we know from Theorem 9.1.13(e) that K is a prime Lie ring
and from Theorem 9.2.4 that C = C(K), where C(K) is the Lie
extended centroid of K. From the Lie isomorphism « we see that
K' is also a prime Lie ring, in which case it follows that C' =
C(K'). The Lie isomorphism o then induces an isomorphism
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¢ — ¢ of C onto C” according to the rule [f,U] — [g,U®] where
g(u®) = f(u)*. We claim that o may be extended to a Lie
isomorphism ¢ : KC — K'C’ given by " zic; = > ¢, z; € K,
¢; € C. Indeed, the main point is to show that ¢ is well-defined.
Suppose ¥ z;¢; = 0 and choose a Lie ideal U # 0 of K such that
Uc; C K for all 1. Then for all ©w € U we have

0="> [zici, u] = D _[zs, ciu] (9.36)
Applying « to (9.36) we obtain

0= Yls, (ew)°] (9.37)

But
(ciu)® = fi(u)* = ¢:i(u®) = &u®
(where ¢; = [f;, U], ¢; = [9;,U?]) and so (9.37) becomes

0= Z[m?’ Eiua] = Z[:E?Ei’ua]

for all u € U. Therefore > z%¢; = 0 and ¢ is well-defined.
Therefore without loss of generality we may assume that R and
R’ are already centrally closed. Now let F' be an algebraic closure
of C and let F’ be an algebraic closure of C’ such that the
isomorphism ¢ — ¢ is extended to an isomorphism A — X of
F onto F'. We then form R = RQ¢ F, R = R ®c F', and
extend « to a Lie isomorphism ¢ : K ®c F — K' ®c F' via
@\ 2%\ z € K, A € F. This mapping is well-defined (the

crucial observation being that (zc)*® A = z°C® A =z*® ¢\ =
z2®(cA), z € K, A € C'). We leave it for the reader to verify the
straightforward details that ¢ is a Lie isomorphism. Clearly we
have the condition that dimp(R) # 1,4,9,16,25,64. Therefore
we may assume to begin with that R = R and R' = R' are
closed prime rings with algebraically closed extended eentroids.

We next present a criterion for extending « to an associative
isomorphism of (K) to (K').
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Lemma 9.4.5 « can be extended to an isomorphism §: (K) —
(K'Y if and only if (°)* = (2*)® for allz € K.

Proof. The "only if” part being obvious, we assume
(z%)* = (%) (9.38)
for all z € K. By Lemma 9.1.5 (K) = K@ Ko K. Replacement
of z by z & y in (9.38) results in
2(zy? + zyz + y22)® = 22%(y*)? + 2y°2°Y* + 2(y*)*z* (9.39)
for all z,y € K. Also we have

(zy* = 2zyz +y2)* = [[z,9],4]* = =%, ¥°], v°]
— xa(ya)z . anxaya + (ya)zxa
(9.40)

Adding (9.39) and (9.40), we see that
(zy® + y°2)* = *(y*)* + (¥*)’z* (9.41)

for all z,y € K. We now define a mapping 5 : (K) — (K')
according to

x@nyr—)x"‘@Z(yf’)z, z;,vy; € K.

To show that 3 is well-defined it suffices to show that if 3" y? = 0,
then Y- (y2)? = 0. Indeed, for z € K we have S y2z+ S xy? =0
whence by (9.41) we see that 3 (y®)2z*+z* ¥ (y2)? = 0. Clearly
s = Y.(y2)? is a symmetric element of (K') which anticommutes
with all skew elements. Hence s commutes with all elements of
the form ab+ba, a,b € K’ and so with all symmetric elements of
(K'). Since dime(R') > 16, by Theorem 9.1.13(¢) (K') contains
a nonzero *-ideal I of R' and so s commutes with all symmetric
elements S(I) of I. One can easily shows that dime (C'T) > 16
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and hence (S(I)) contains a nonzero ideal J of the ring I by
Lemma 9.1.14. From Andrunakievich’s Lemma we conclude that
J contains a nonzero ideal J' of R’ (see [276]). Since s commutes
with J' and R’ is a prime ring, we see that s is a central element
of R'. Recalling that sz = —zs for all z € K’ we infer that s =0
and thus f is a well-defined mapping of (K) onto (K').

From the identity zy = :{(z + y)* — 2® — * + [z, 9]} and
from the definition of § we see that for z,y € K

@) = FHlE+u - P - ) + )}
= Sl = @ - ) + %)
= x"‘ya:xﬂyﬂ (9.42)

Next from the identity 2%y = 2{z o [z, y] + 2% o y} we obtain

() = SEolnu]) + (2 0y)%)
= (%ol 3T+ )0y
= (2%)%y® = (z*)fy° (9.43)
making use of (9.41). Together (9.42) and (9.43) imply
(uz)? =ufzf, we(K), ze K (9.44)

and, since (K) is generated by K, it follows from (9.44) that
B is a homomorphism of (K') onto (K'). By symmetry the Lie
isomorphism z® — z of K’ onto K can be extended to a homo-
morphism v : (K') — (K). Since 8y is the identity on K and
0 is the identity on K' it is clear that (8 is an isomorphism.

At this point we divide our analysis of « into two separate
cases:

Case A: Ris GPI.
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Case B: R is not GPI.

Case A. By Theorem 6.1.6 R has nonzero socle H. Since
dim¢c(R) > 36 we know from the *-Litoff Theorem that H con-
tains a symmetric idempotent e of rank n > 6. Then eRe =
M, (C) and by Corollary 4.6.13 the involution * on eRe is either
transpose or symplectic. In either of these cases it is well-known
that eRe contains orthogonal symmetric idempotents e; and e
each of rank 2. It is then easy to check that for i = 1,2 e; lies
in the subring generated by [K, K] N e;Re;. Finally a clearly
induces a Lie isomorphism oy from [K, K] onto [K’, K'], and so
the conditions of Theorem 9.4.2 have now been met. We may
therefore conclude that « can be extended to an associative iso-
morphism ¢ : T — T, where T = ([K, K]) and T’ = ([K’, K']).
It is easily seen that (K NT)° = K'NT’. Indeed, this follows
from writing z € KN T as

=) (uius...up + (=)™, ... wy), wu; €K, K],

and then applying the isomorphism o. Similarly (S NT) =
S'NT', where S and S’ are respectively the symmetric elements
of R and R'. We also claim that o agrees with o on K N T.
Indeed, for z € KNT, y € [K, K| we have

[2%,9°] = [z,9]* = [z,9]” = [2°,¥°] = [27, ¥°],

whence % —z7 commutes with [K’, K] and so z®—z7 is central
by Theorem 9.1.13(c). But we have already seen that 27 (as well
z®) must be skew, and so z* — 27 = 0 which proves our claim.

By Theorem 9.1.13(c) H C T. We note that H itself is a
simple ring. If I # 0 is an ideal of T, then I N H # 0 is an ideal
of Hand so INH = H,ie., I D H. It follows that H is also
the socle of T. It is easy to show via o that R’ must be GPI
with socle H?.

We now fix t € K. We claim first of all that

[u,8]” =[u?,t%], uveH (9.45)
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Indeed, since (H N K) = H by Lemma 9.1.4 and the sim-
plicity of H, we may assume without loss of generality that
U=I1T2...Tp, T, € HNK. Forn=1

[1,4]7 = [21,8]% = [a7, %] = [a7,17].
Inductively we have

122 T, )7 = {@[22.. 20, 8] + [71, T2 .. Ta}°
= xg[xz---xmt]”+[xl,t]"(xg...xn)"
= z{[(z2...2n)’, t] + [27, t*)(z2 . .. T0)7

= [z7(z2...2,)7, %] = [(z122 ... 2)7, %]

and so our claim is established.
From [u o t,u] = [t,u] o u we see, making use of (9.45), that

[(uot)?,u’] = [t*, u] ou’ = [u” o t*,u’]

for all u € H. In other words 9 : u” — (uot)? — u’ ot is an
additive commuting function on the ring H°. By Corollary 9.3.3
there exist A € C' and p: H? — C’ such that

(uot)? —u ot =’ — pu(u’), weH (9.46)

Choosing © € H N K we see that A = 0 by comparing the skew
and symmetric parts of (9.46). Next, choosing u € SN H, we
see from (9.46) that p(u”) =0, that is

(uot)’ =u’ot*, weSNH (9.47)
Together (9.45) and (9.46) imply that
(ut)? =u’t*, weSNH
whence

(ugug ... unt)? = ufud ... ult*, we€SNH (9.48)
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But (SN H) = H by Lemma 9.1.14 and so (9.48) implies
(ut)? =u’t*, uw€H, te€K.
Similarly (tv)? = t*v°, v € H, t € K and so

w ()7 = (ut®)v’ = (utd)? = {(ut)t(tv)}°
{(ut)t}? (tv)7 = (ut)7t*t%0” = u” (t*)3°

for all u,v € H, t € K. Therefore H°[(t3)* — (t*)3]H° = 0
whence (3)* = (t*)3 for all t € K. Lemma 9.4.5 is thereby
applicable and so we have succeeded in showing in Case A that
« can be extended to an isomorphism of (K) onto (K’).

Case B. we begin by pointing out that necessarily R’ is not
GPI. Indeed, since R is not GPI, it follows that dim¢(K) = oo,
whence dime (K') = oo. If R’ is GPI we have already seen in
our discussion of Case A (with &~! now playing the role of &)
that o~! may be lifted to an isomorphism o’ of (K') onto (K).
Using ¢’ we easily reach the contradiction that R must be GPI.

We define a C’-trilinear symmetric mapping B : (K')} — K’
as follows:

1
B(z%,y%,2%) = g(a:yz + z2y + yrz + y2x + 22y + 2yz)®

for all z,y,2 € K. Its trace B(z*, 2%, z%) is obviously commut-
ing since B(z%, 2%, 2%) = (z*)* and [(z®)%, z°] = [23,z]* = 0 for
all z € K. Thus by Theorem 9.3.4 there exist A € C' and a
C’-bilinear mapping p : K’ x K’ — C’ such that

(zyz + z2y + yrz + y2x + 20y + 2y2)®
:A(aaa [s 290« SANs 4 a,oa o

o Thet A S A AR Thl o TR A 1

+ yazaxa + zaxaya + zayaxa)

+ w(y, 2)z% + p(z, 2)y* + u(z,y)2" (9.49)
for all z,y, 2 € K, where for notational ease we are simply writ-
ing p(z,y) for p(z® y*). Our aim, of course, is to show that
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A =1 and that u = 0, whence (z%)* = (z*)% and Lemma 9.4.5
may accordingly be invoked to obtain the desired conclusion that
a may be extended to an isomorphism of (K) onto (K').

We now proceed to draw some consequences from (9.49).
First setting z = z in (9.49) and dividing by 2, we obtain

(z%y + zyz + yz?)* = A{(z*)%y* + z°y*z® + y*(2*)?}

1
+u(z,y)2® + Sz, 2)y*  (9.50)

Now, setting z = y in (9.50), we have

(z®)* = A(z*)® + %u(z,x)xa (9.51)

From 3zyz = z%y + zyz + yx? — [[y,z], z] we conclude using
(9.50) that
3(zyx)® = M(2%)%y® +z%¢%z* +y*(2*)*} + u(z, y)z®
1
+5u(,2)y" - {(2%)"y" — 227y +y%(2")?}
= (A+2)z%y%z® + (A = 1){(a*)’y* + y*(a*)”

1
+[1,(.’L', y)za + _H’(za x)ya

2
whence
A+2 A—1
(:Ey.’l:)a — 3 zayaza + 3 {(za)2ya + ya(za)Z}
1 1
+§u(z,y)z° + gu(z, z)y” (9.52)

Lemma 9.4.6 A\ =1, i.e,

1 1
(zyz)® = %Yz + gu(x,y)z" + gu(z, z)y“.
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Proof. Choose z* € K’ such that z® is not algebraic of
degree < 6 (such z® exists since otherwise K’ would be PI).
In the free product R <Y > consider the C’-independent sub-
set {M;(z%,Y) |i=1,2,...,n} of all monomials of the form
()oY (g*) ... Y*(z%)% where jo + j1 + ... + jx < 6 and
i1 +i9+ ...+ i < 6. By Lemma 6.1.8 there exists y* € K’ such
that { M;(z®, y*)} is a C'-independent subset of R’. We compute
(z3yz®)® in two different ways and compare the results, being
only interested in the coefficients of (z*)%y* and (z®)°y®z®. On
the one hand

@y = 22 J?: g+ 2 3 (e + g
bl gt e, (959)
where u = A\(z°)® + Su(z, z)z* (see (9.51) and (9.52)). Using

= (@) + M, 2)(5)* + gz, 2 (0

we may write (9.53) as

A—1
(Pyz®)* = —3—/\2 ()%™ + 0 - (%)%y%z* + ... (9.54)
On the other hand
(e®yz®)* = {z(z’ya®)z}
2 A— -1
= /\%zo‘vx"‘ + —3_1(330‘)21) + A 3 v(z)?
1 1
+§u(:c, zlyz?)z® + gu(:c, z)v (9.55)
where
v = (z%y2%)* = {z(zyz)z}*
2 A—1 A—1
= A: rwz® + 3 (%) *w + Tw(a:"‘)2

1 1
+§u(:c, Tyzr)z® + Eu(:r, T)w
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where in turn

w= (xy:z;)a = _;_ xayaxa +

Therefore

(zyz®)* = (A3 1) y*

A+2 /\—1 A—=1A+2A-1
3 3 3

A A2, 05 aa
(3) }(x)syx +...

(9.56)

Equating the coefficients of (z®)%y® and (z®)%y®z* in (9.54) and

(9.56) we have
<,\ - 1)3 _ (%) \2 (9.57)

=0 (9.58)

From (9.57) we find that A = 1 or \? = (%)2, whence \ =

1,—3 or ;. From (9.58) we have A =1 or A = 2. It follows that
A =1 and the lemma is proved.

Lemma 9.4.7 y=0.
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Proof. Let z* # 0 be arbitrary but fixed in K’. In the free
product R'/<Y > we define the C’-independent set {M;(z*,Y") |
i = 1,2,...,n} to be the set of all monomials of the form
(@)oY h ()t . Y (z*)x where jo + j1 + ... + 4k < 4, i1 +
94+ ...+ 14 <3 and

Jq £ 3 if z is not algebraic of degree <3  (9.59)
Jqe £ 2 if z is algebraic of degree 3 (9.60)
Jq <1 if z is algebraic of degree 2 (9.61)

for all ¢ = 0,1,...,k. In case of (9.60) we can replace (z%)*
by Bz%, B € C’, and in case of (9.61) we can replace (z*)? by
v € C'" and hence (z%)® by yz®. By Lemma 6.1.8 there exists
y® € K’ such that {M;(z*, y*)} is a C'-independent subset of R’
We compute (zyzyzyz)® in two ways and compare the results,
being only interested in coefficients of (y*)2z*y*z>.

On the one hand, making use of Lemma 9.4.6, we have

[(zyz)y(zyz))®

= (zyz)*y*(zyz)* + %u(y, zyz)(zyz)® + %u(ryw, zyz)y”
= {z%%" + %u(r,y)m" + éu(m, z)y* ty*

{z%y%z® + %u(r, y)z® + éu(:r, )y}

iy, 2y2) (29 + (o, )" + (e, 2)y%)

+ }éu(my:r, Tyz)y®

= %Yy Yy z* + él-u(:v, ) (y*) %y + ... (9.62)

On the other hand, again using Lemma 9.4.6, we have

[z(yzyzy)=]®
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1 o 1 «a
= 2%(yzyzy)*z® + gﬂ(x,yﬂ:yfﬂy)x + gu(x, z)(yzyzy)

1 «a 1 «a «a
= z*{y*(zyz)*y* + gu(y,xyx)y + gu(y,y) (zyz)*}z

1 (a3
+§u(x, YTYTY)T

1 1 L1 3
+gu(x,x){y"($y$)"y" + gu(y,xyfv)y + gu(y,y) (zyz)*}

1 1 [0 3 [0 90N 4 4
= z%y*{z%y*z* + 5,u(:1:,y):1:°‘+ g,u(:z,:v)y T

a, o, o

1
+§u(y, Tyz)rty*z

1 o a, o, o 1 «a 1 «a «a
+gu(y,y)$ {z%y*z® + gu(l‘,y)x + gu(l‘,x)y }z

1 (a3
+§u(x, YTYTY)T

1 (o 3008 4 1 «a 1 «a a
+gu(x,$)y"{$"y %+ gu(l‘,y)x + gu(l‘,x)y ty
1 o
+ﬁu(x, z)p(y, zyz)y

+%u($, z)u(y, y){zy*e® + %M(x,y)x" + éu(x,x)y“} (9.63)
It is understood that (9.63) will be further rewritten by re-
placing (z®)% by Bz in case (9.60) holds and replacing (z*)?
by v and (z%)® by yz* in case (9.61) holds. Now, comparing
the coefficients of (y*)2z®*y*z® in (9.62) and (9.63) we see that
p(z,z) = p(z* z*) = 0 for all z* € K'. Linearizing we have
p(z®,y*) = 0 for all z%,y* € K’ and the proof of Lemma 9.4.7
is complete.

Together Lemma 9.4.6 and Lemma 9.4.7 imply that (z%)® =
(z®)3 for all z € K and so by Lemma 9.4.5 we have succeeded in
Case B that o can be extended uniquely to an isomorphism of
(K) onto (K'). Our analysis of Case A and Case B combine to
immediately give us the proof of our main result. Theorem 9.4.3,
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a complete statement of which is given near the beginning of this
section.

As a closing note we make two remarks. The analogue of
Theorem 9.4.3 for Lie derivations of K has been proved by Swain
[269]. The condition in Theorem 9.4.1 that R not satisfy St, has
been removed by Blau [55].
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