ERRATA

Page 19: In Problem 1.3.3, £ — z should read z — —=z.

Page 69: Replace ds by dsy in parenthetical remark.

Page 102: The correct reference to Ohm’s Law is Eqn. (5.4.20).

Page 116: In Problem 6.1.4, uv — 2uwv.

Page 190: In the fifth line from bottom, W — V.

Page 276: Problem 9.6.6. Ignore last sentence and answer at the back.
Page 286: Problem 9.7.8: el®l — e~l=l,

Page 311: In Problem 10.2.8, part (i), 42D — 2D.

Page 331: In line 2, “corner ” replaces “edge”.

The following corrections apply to the answers given at the end

Problem 3.1.5: d = 4/+/5.

Problem 3.2.8: V = 128~.

Problem 4.2.4: In part (i) 7 = &.
Problem 4.3.1: Converges for |z| > 1.
Problem 5.2.4: (i) —ga — — 2% (V) 2| = 3, L = 1=y6 _ ;V3:v2
Problem 5.3.2: Argument of 2; is 2tan™" 3.

Problem 6.2.3: cosy — coshy.

Problem 6.2.14: (i) 47 repeated twice.

Problem 9.2.6: a = %}5—2-’;, 8= —3\729", v =8.

Problem 9.6.4: The saddle point is at x =0, y = 1.

Problem 9.7.3: 7 — 3.

Problem 9.7.13: Replace 8 by 32.

Problem 9.7.14: Replace 2 by 22,

Problem 9.9.2: Part (b): The degenerate eigenvalue is 3—;@

Problem 10.4.9: Part (ii) y = % + &
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PREFACE

This book is based on a course I designed a few years ago and have been teaching
at Yale ever since. It is a required course for physics majors, and students wishing
to skip it have to convince the Director of Undergraduate Studies of their familiarity
with its contents. Although it is naturally slanted toward physics, I can see a large
part of it serving the needs of anyone in the physical sciences since, for the most
part, only very basic physics ideas from Newtonian mechanics are employed. The
raison d’étre for this book and the course are identical and as follows.

While teaching many of the core undergraduate courses, I frequently had to digress
to clear up some elementary mathematical topic that bothered some part of the class.
For instance, I recall the time I was trying to establish how ubiquitous the harmonic
oscillator was by showing that the Taylor series of any potential energy function at a
stationary point was given to leading order by a quadratic function of the coordinate.
At this point some students wanted to know what a Taylor series was. A digression
to discuss Taylor series followed. At the next stage, when I tried to show that if
the potential involved many coordinates, the quadratic approximation to it could be
decoupled into independent oscillators by a change of coordinates, I was forced to use
some form of matrix notation and elementary matrix ideas, and that bothered some
other set of students. Once again we digressed. Now, I was not averse to the idea that
in teaching physics, one would also have to teach some new mathematics. For example,
the course on electricity and magnetism is a wonderful context in which to learn about
Legendre polynomials. On the other hand, it is not the place to learn for the first time
what a complex exponential like e?™? means. Likewise, in teaching special relativity
one does not want to introduce sinh and cosh, one wants to use them and to admire
how naturally they serve our purpose. To explain what these functions are at this point
is like explaining a pun. In other words, some of the mathematical digressions were
simply not desirable and quite frustrating for the teacher and student alike.

Now, this problem was, of course, alleviated as the students progressed through
the system, since they were taking first-rate courses in the mathematics department
in the meantime and could soon tell you a surprising thing or two about the edge-of-
the-wedge theorem. But one wished the students would have a grasp of the basics
of each essential topic at some rudimentary level from the outset, so that instructors
could get on with their job with the least amount of digressions. From the student’s
point of view, this allowed more time to think about the subject proper and more
freedom to take advanced courses.

When this issue was raised before the faculty, my sentiments were shared
by many. It was therefore decided that I would design and teach a course that
would deal with topics in differential calculus of one or more variables (including

vii
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trigonometric, hyperbolic, logarithmic, and exponential functions), integral calculus
of one and many variables, power series, complex numbers and function of a com-
plex variable, vector calculus, matrices, linear algebra, and finally the elements of
differential equations.

In contrast to the mathematical methods course students usually take in the
senior year, this one would deal with each topic in its simplest form. For example,
matrices would be two-by-two, unless a bigger one was absolutely necessary (say,
to explain degeneracy). On the other hand, the treatment of this simple case would
be thorough and not superficial. The course would last one semester and be self-
contained. It was meant for students usually in the sophomore year, though it has
been taken by freshmen, upper-class students, and students from other departments.

This book is that course.

Each department has to decide if it wants to devote a course in the sophomore
year to this topic. My own view (based on our experience at Yale) is that such
a preventive approach, which costs one course for just one semester, is worth
hours of curing later on. Hour for hour, I can think of no other course that will
yield a higher payoff for the beginning undergraduate embarked on a career in
the physical sciences, since mathematics is the chosen language of nature, which
pervades all quantitative knowledge. The difference between strength or weakness
in mathematics will subsequently translate into the difference between success and
failure in the sciences.

As is my practice, I directly address the student, anticipating the usual ques-
tions, imagining he or she is in front of me. Thus the book is ideal for self-study.
For this reason, even a department that does not have, as yet, a course at this level,
can direct students to this book before or during their sophomore year. They can
turn to it whenever they run into trouble with the mathematical methods employed
in various courses.
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NOTE TO THE INSTRUCTOR

If you should feel, as I do, that it is not possible to cover all the material in the
book in one semester, here are some recommendations.

To begin with, you can skip any topic in fine print. I have tried to ensure
that doing so will not disrupt continuity. The fine print is for students who
need to be challenged, or for a student who, long after the course, begins
to wonder about some subtlety, or runs into some of this material in a later
course, and returns to the book for clarification. At that stage, the student
will have the time and inclination to read the fine print.

The only chapter that one can skip without any serious impact on the sub-
sequent ones, is that on vector calculus. It will be a pity if this route is
taken; but it is better to leave out a topic entirely rather than rush through
everything. More moderate solutions, like omitting some sections, are also
possible.

Nothing teaches the student as much as problem solving. I have given a lot
of problems and wish I could have given more. When I say more problems, I
do not mean more that are isomorphic to the ones given, except for a change
of parameters, but genuinely new ones. As for problems that are isomorphic,
you can generate any number (say for a test) and have them checked by a
program like Mathematica.

While this course is for all physical scientists, it is generally slanted toward
physics. On the other hand, most of the physics ideas are from elementary
Newtonian mechanics and must be familiar to anyone who has taken a cal-
culus course. You may still have to customize some of the examples to your
specialty.

I welcome your feedback.



NOTE TO THE STUDENT

In American parlance the expression “basic training” refers to the instruction given
to recruits in the armed forces. Its purpose is to ensure that the trainees emerge with
the fitness that will be expected of them when they embark on their main mission.

In this sense the course provides basic training to one like yourself, wishing to
embark on a program of study in the physical sciences. It has been my experience
that incoming students have a wide spectrum of preparation and most have areas
that need to be strengthened. If this is not done at the outset, it is found that the
results are painful for the instructor and student alike. Conversely, if you cover
the basic material in this book you can look forward to a smooth entry into any
course in the physical sciences. Of course, you will learn more mathematics while
pursuing your major and through courses tailored to your specialization, as well as
in courses offered by the mathematics department. This course is not a substitute
for any of that.

But this course is unlike a boot camp in that you will not be asked to do
things without question; no instructor will bark at you to “hit that desk and give
me fifty derivatives of e*.” You are encouraged to question everything, and as far
as possible everything you do will be given a logical explanation and motivation.

The course will be like a boot camp in that you will be expected to work hard
and struggle often, and will emerge proud of your mathematical fitness.

I have done my best to simplify this subject as much as possible (but no
further), as will your instructor. But finally it is up to you to wrestle with the ideas
and struggle for total mastery of the subject. Others cannot do the struggling for
you, any more than they can teach you to swim if you won’t enter the water. Here
is the most important rule: do as many problems as you can! Read the material
before you start on the problems, instead of starting on the problems and jumping
back to the text to pick up whatever you need to solve them. This leads to patchy
understanding and partial knowledge. Start with the easy problems and work your
way up. This may seem to slow you down at first, but you will come out ahead.
Look at other books if you need to do more problems. One I particularly admire is
Mathematical Methods in the Physical Sciences, by M. Boas, published by Wiley
and Sons, 1983. It is more advanced than this one, but is very clearly written and
has lots of problems.

Be honest with yourself and confront your weaknesses before others do, as
they invariably will. Stay on top of the course from day one: in mathematics,
more than anything else, your early weaknesses will return to haunt you later in
the course. Likewise, any weakness in mathematical preparation will trouble you
during the rest of you career. Conversely, the mental muscles you develop here will
stand you in good stead.

Xi
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DIFFERENTIAL CALCULUS OF ONE
VARIABLE

1.1. Introduction

Students taking the course on mathematical methods generally protested vigorously
when told that we were going to start with a review of calculus, on the grounds
that they knew it all. Now, that proved to be the case for some, while for many it
was somewhat different: either they once knew it, or thought they once knew it, or
actually knew someone who did, and so on. Since everything hinges on calculus
rather heavily, we will play it safe and review it in the first three chapters. However,
to keep the interest level up, the review will be brief and only subtleties related to
differential and integral calculus will be discussed at any length. The main purpose
of the review is to go through results you probably know and ask where they come
from and how they are interrelated and also to let you know where you really stand.
If you find any portion where you seem to be weak, you must find a book on
calculus, work out many more problems than are assigned here, and remedy the
defect at once.

1.2. Differential Calculus

Let us assume you know what a function f(z) is: a machine that takes in a value
of = and spits out a value f which depends on z. For example f(z) = 22 + 5 is
a function. You put in z = 3 and it gives back the value f = 32 +5 = 14. We
refer to f as the dependent variable and z as the independent variable. Note that
in some other problem z can be the location of a particle at time ¢ in which case
z(t) is the dependent variable and ¢ is the independent variable.

We will assume the function is continuous: this means that you can draw the
graph of f without taking the pen off the paper. More formally:



2 Chapter 1

Definition 1.1. A4 function f(z) is continuous at z = a if for any ¢ > 0, however
small, we can find a & such that |f(z) — f(a)| < € for |z — a|] < 6.

For example the function

flz) = |z z#0 (1.2.1)
f(0) = 66 z=0 (1.2.2)

is not continuous at the origin even though |f(z) — 0| can be made as small as
we want as we approach the origin, i.e., f(z) has a nice limit as we approach the
origin, but the limiting value is not the value of the function at the origin. On the
other hand if we choose f(0) = 0, the function becomes continuous.

In other words, as we approach the point in question, not only must the values
encountered approach a limit, the limit must equal the value ascribed to that point
by the function, if the function is to be declared continuous.

The derivative of the function, denoted by f'(z), f), Df or %, is defined
by the limit

g _ o fe+A) = @)
—_— = um
dx Az—0 Az

Af

lim —.
Az—0 Az

il

(1.2.3)

Thus the derivative measures the rate of change of the independent variable
with respect to the dependent variable. For example in the case of z(¢),which is
the position of a particle at time ¢, dz/dt is the instantaneous velocity.

Let us now compute a derivative taking as an example, f(z) = z2. We have

flz+Az) = z2+2zAz+ (Az)?
Af = 2zAz+ (Az)?
A
A—ch = 22+ Az. (1.2.4)
If we now take the limit Az — 0, we get
d 2
(%) = 2z.
dx

Clearly the function has to be continuous before we can carry out the derivative
operation. However, continuity may not be enough. Consider for example f(z) =
|z| at the origin. If we choose a positive Az, we get one value for the derivative
(+1), while if we choose a negative Az, we get a different slope (—1). This fact
is also clear if one draws a graph of |z| and notices that there is no unique slope
at the origin.

Once you know how to differentiate a function, i.e., take its derivative, you can
take the derivative of the derivative by appealing repeatedly to the above definition



Differential Calculus of One Variable 3

of the derivative. For example, the derivative of the derivative of z2, also called
its second derivative, is 2. The second derivative of |z| is zero everywhere, except
at the origin, where it is ill defined.

The second derivative is denoted by

d2f " 2 (2)

@=f () =D*f = f¥(x).

The extension of this notation to higher derivatives is obvious.
Let us note that if f and g are two functions

D(af(xz)+bg(x)) =aDf +bDg, (1.2.5)

where a and b are constants. One says that taking the derivative is a linear oper-
ation. One refers to L = af + bg as a linear combination, where the term linear
signifies that f and g appear linearly in L, as compared to, say, quadratically.
Egn. (1.2.5) tells us that the derivative of a linear combination of two functions is
the corresponding linear combination of their derivatives. To prove the above, one
simply goes back to the definition Eqn. (1.2.3). One changes = by Az and sees
what happens to L. One finds that AL is a linear combination of A f and Ag, with
coefficients a and b. Dividing by Az and using the definition of D f and Dy, the
result follows.
One can also deduce from the definition that

D[fgl=gDf + fDg (1.2.6)
as well as the chain rule:
Df(u(z)) = Z—fd—u. (1.2.7)
u dx

Problem 1.2.1. Demonstrate these two resulls from first principles.
For example if u(z) = 22 + 1 and f(u) = u?, then

4 _

e (2u)(2z) = 2(z?% + 1)(2z).

You can check the correctness of this by brute force: express v in terms of z first
so that f is explicitly a function of just z, and then take its derivative.

Problem 1.2.2. Show from first principles that D(1/z) = —1/z2.
Similarly, one can deduce from the definition of the derivative that

D(f/g) = ———ngg_Qng. (1.2.8)
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Problem 1.2.3. Prove the above by applying the rule for differentiating the product
to the case where f and 1/g are multiplied. (In taking the derivative of 1/g you
must use the chain rule.)

Another useful result is

df do
R 1 (1.2.9)

to be understood as follows. First we view f as a function of z and calculate
gé, the derivative at some point. Next we invert the relationship and write = as a
function of f and compute Z—f at the same point. The above result connects these
two derivatives. (For example if f(z) = 22, the inverse function is z = v/f.) The
truth of this result is obvious geometrically. Suppose we plot f versus z. Let us
then take two nearby points separated by (Az, A f), with both points lying on the
graph. Now, the increments A f and Az satisfy

Af Az ]
Az A f
and they will continue to do so as we send them both to zero. But in the limit
they turn into the corresponding derivatives since A f is the change in f due to a
change Az in z (that is to say, the amount by which we must move in the vertical
direction to return to the graph if we move away from it horizontally by Az) and
vice versa.
After these generalities, let us consider the derivatives of some special cases
which are frequently used. First consider f(z) = z™ for n a positive integer. From
the binomial theorem, we have

Af = flz+Az)— f(z)
= (z+Az)"—2"

n
n!

= Z — " " (Az)" —z"
o rin—r)!
= nz" 1Az + O(Az)? (1.2.10)

where O(Az)? stands for terms of order (Az)? or higher. If we now divide both
sides by Az and take the limit Az — 0,we obtain

Dz™ = nz™ L. (1.2.11)

It is useful to see what one would do if one did not know the binomial theorem. 7o
find the derivative, all we need is the change in f to first order in Az, since upon
dividing by Az, and taking the limit Az — 0, all higher order terms will vanish.
With this in mind, consider

(z—{-Ax)":(z+Ax)(m+Ax)~~(w+Aw)l. (1.2.12)

n times
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The leading term comes from taking the z from each bracket. There is clearly
just one contribution to this term. To order Az, we must take an = from every
bracket except one, where we will pick the Az. There are clearly n such terms,
corresponding to the n brackets. Thus

Az™ = nz" Az

fo this order. The result now follows.
Armed with this result, we can now calculate the derivative of any polynomial

n

Pp(z) = Z amz™ (1.2.13)

m=0

by using the linearity of the differentiation process.
What about the derivative of z2? If we blindly use Eqn. (1.2.11), we get

1

1
Dm? = T
2x72

(1.2.14)

However, we must think a bit since the binomial theorem, as we learned it in
school, is established (say by induction) for positive integer powers only. (Since
x™ is defined as the product of n factors of z, this makes sense only for positive
integer n.) We will return to the question of raising = to any power and then show
that Eqn. (1.2.11) holds for all cases, even irrational n. For the present let us just
note that Eqn. (1.2.14) follows from Eqn. (1.2.9). Let f(z) = z2. Then gg = 2zr.

Inverting, we begin with z = f 3, According to equation (1.2.9)

de _ df? 1 1 1

df  df  dfjdz 2z 2s%

which is just Eqn. (1.2.14). Notice that in checking that the two derivatives are
indeed inverses of each other, we evaluate them at the same point in the (z, f) plane,
i.e., we replace = by f7 which is the value assigned to that z by the functional

relation f = z2.

1.3. Exponential and Log Functions

We now turn to the broader question of what zP means, where the power p is not
necessarily a positive integer. (Until we understand this, we cannot address the
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question of what the derivative of 2P is.) What does it mean to multiply = by itself
p times in this case? One proceeds to give a meaning to this as follows.*

The key step is to demand that the fundamental principle, which is true for
positive integer powers:

I ./I‘ == :1“ PRI T .x « o T
o S~
m times n times

= ™M (1.3.1)

i.e., that exponents add upon multiplication, be true even when they are no longer
positive integers. With this we can now define z#, where p is an integer, as that

number which satisfies

gF -z = 1. (13.2)
——r
p times

Thus we define ¢% as that number which when multiplied by itself p times yields
z. (There may well be more than one choice that works, as you know from the
square root case. We then stick to any one branch, say the positive branch in the
case of the square root.) Note that this definition does not tell us a systematic way
to actually find z7. At present, all we see is a trial and error search. Later we shall
find a more systematic way to find 27 For the present let us note that the above
definition gives us enough information to find the derivative of z7. Let y = z7.
We want %g. Let us find ‘;—; and invert it:

dz _ d(yP)
dy — dy
= pyP~! (valid since p is an integer)
dy 1
dr  pyp1L
) (1.3.3)
p

Thus we find that Eqn. (1.2.11) is valid for the exponent %. Once we know x%,

we can define z# for integer q as the g-th power of 27. We can find its derivative
by using the chain rule, Eqn. (1.2.7) and verify that Eqn. (1.2.11) holds for any
rational power £.

LThis example is very instructive since it tells us how a familiar concept is to be generalized. The
basic idea is to list the properties of the familiar case and ask if a more general set of entities can
be found satisfying these conditions. For example in mathematical physics one sometimes needs to
define integrals in p dimensions, where p is not integer. Clearly the notion of the integral as the area
or volume bounded by some curve or surface has to be abandoned. Instead some other features of
integration have to be chosen for the generalization.
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We can also use Eqn. (1.3.1) to define negative powers. What does ™™ mean,
for integer m? We demand that it satisfy

2" er ™ = x(n—m).
It is clear that if we set )
™M=
S——
m times

the desired result obtains. Thus negative powers are the inverses of positive powers.
It also follows that

_7;0 — l_(m—m)
_ ame L
m

-1 (1.3.4)

Thus we have managed to give a meaning to any rational power of x. We are
not done yet for two reasons. First, we still want to finish off the irrational powers,
powers not of the form 2. Second, we do not want a trial and error definition of
powers, we want something more direct, that is to say, a scheme by which given
the base (z in our case) and a power, there is a direct algorithm for computing it.

To this end let us now ask what o* means for any z. Note that = is now the
exponent, not the base. This is because we want to vary the exponent continuously
over all real values, and wish to denote this variable by z. To define a®, we
compute its derivative with respect to z. You may wonder how we can compute
the derivative of something before having defined it! Watch!

Ad® = o&taz) _ g2 (1.3.5)
= a%a®® 1) (1.3.6)
a®(1+In(a)Az +---—1) (1.3.7)

da® z

The above steps need some explanation. In Eqn. (1.3.5) we are just imple-
menting the definition of Ay for the case y = a®. In the next equation we are
using the law for adding exponents. Eqn. (1.3.7) is the most subtle. There we
are trying to write an expression for a®®. It is clear that it is very close to 1.
This is because a® = 1. The deviation from 1 has a term linear in Az, with a
coefficient that depends on a, and we call it the function In(a), pronounced “Ellen
of a”. Higher order terms in Az will not matter for the derivative. Let us get a
feel for In(a), which is also called the natural logarithm of a. Compare for ex-
ample 2:901 to 3:901, The first quantity, when raised to the 1000-th power gives 2,
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while the second gives 3. Approximating 2:°°* and 3:°°! as above, in terms of In 2
and In 3, we find (1 4+ .0011n2)190 = 2 while (1 + .0011n3)'%%° = 3. Clearly
In(3) > In(2). It is also clear that In(a) grows monotonically with a. In addition
In(1) = 0 because 1 raised to any power will never leave the value 1. On the other
hand, if @ < 1, raising it to a positive power will lower its value, thus Ina will be
negative. There is clearly some a > 1 for which Ina = 1. Let us call this number
e. So by definition

de®

dx
We do not know the value of e yet, but let us proceed. By taking higher derivatives,
we find the amazing result

= ¢®. (1.3.9)

D"e” = 7. (1.3.10)

Now I will reveal our strategy. We are trying to find out what a® means for all a.
We first take the case a = e. What we do know about f(z) = €7 is the following:

1. At z = 0, the function equals I, since anything to power 0 equals 1.
2. At the same point, all derivatives equal 1.

It turns out that this is all we need to find the function everywhere. The trick
is to use what is called a Taylor series, and it goes as follows. Let f(z) be some
function which we are trying to reconstruct based on available information at the
origin. Let us say the function is given by

f(z) =6+ 2z + 322 + 523 (1.3.11)

but we do not know that. Say all we have is some partial information at the origin.
To begin with, say we only know f(0), the exact value at the origin. Then the best
approximation we can construct is

fo(z) = f(0) =6 (1.3.12)

where the subscript 0 on fo(z) tells us it is the approximation based on zero
knowledge of its derivatives. Our guess does not follow the real f(z) for too long.
In general it will not, unless f happens to be a constant.0

Suppose now that we are also given f(1)(0), the first derivative at the origin,
whose value is clearly 2 in our example. This tells us how the function changes
near the origin. We now come up with the following linear approximation:

fi(@) = f(0) +2fM(0) =64 2z (1.3.13)

where the subscript on f;(z) tells us the approximation is based on knowledge of
one derivative at the origin. We see that f; agrees with f ar the origin and also
grows at the same rate, i.e., has the same first derivative. It therefore approximates
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0.4 0.2 0.2 0.4

Figure 1.1.  Various approximations to the real f(z). based on more and more derivatives at the origin.
(The number of known derivatives is given by the subscript.) In the present case, three derivatives are
all we need. In general, an infinite number could be required to fully reconstruct the function.

the function f for a small region near the origin and then it too starts differing from
it, as shown in Fig. 1.1:

In general this will happen when we approximate a function by its linearized
version, unless the function happens to be linear, i.e., the function has a fixed rate
of change. But in our case, and in general, the rate of change itself will have a rate
of change, given by the second derivative, which in turn can have a rate of change
and so on.

Suppose now we are also given f2(0) = 6. How we do construct the better
approximation that incorporates this? The answer is that the approximation, called
fa(z) in our notation, is

2
fa(x) = £(0) + 2 fM(0) + %f@)(O) (1.3.14)

Let us check. Setz = 0 on both sides of the top equation, and see that f2(0) = f(0).
Next, take the derivative of both sides and then set 2 = 0. The first term on the
right gives nothing since it is a constant, while the last one vanishes since a single
power of x remains upon differentiating and that vanishes upon setting = = 0.
Only the middle term survives and gives f(1)(0), the correct first derivative at the
origin. Finally consider the second derivative at the origin. Only the last term
on the right survives and contributes a value equal to the second derivative of the
actual function f at the origin. Thus we have cooked up a function that matches
our target function f in three respects at the origin: it has the same initial value,
slope, and rate of change of slope.

If we put in the actual derivatives in the above formula, we will of course
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obtain
fo(z) = 6 + 2z + 322 (1.3.15)

This clearly works over a larger region, as seen in Fig. 1.1. So we put in one more
derivative and see what happens. Since the function has no higher derivatives at
the origin, f3(z) will fully reproduce the function for all .

Imagine now that we have a function for which the number of nonzero deriva-
tives at the origin is infinite. (This is true for the function e® that we are trying to
build here: every derivative equals unity.) The natural thing is to go all the way
and consider an infinite Taylor series:

[e o}

foola) = D2 L5 (0) (13.16)

0

What can we say about this sum? What relation does it bear to the function f?
First, we must realize that an infinite sum of terms can be qualitatively different
from a finite sum. For example, the sum may be infinite, even though the individual
terms are finite and progressively smaller. Chapter 4 on infinite series will tell us
how to handle this question. For the present we will simply appeal to a result from
that chapter, called the ratio test, which tells us that an infinite sum

o0
S=> ana" (1.3.17)
n=0

converges (and defines a function of z) as long as

n+1
\ Jim [T <1 which means (13.18)
— 00 nd
| < R (13.19)
R = lim |-2® (1.3.20)
n—00 [Ap41

where R is called the interval of convergence. The ratio test merely ensures that
each term is strictly smaller in size than the previous term as n — oco.

With all this in mind, we take the following stance. We will take the function
e” to be defined by its infinite Taylor series as long as the sum converges. Since
we have no other definition of this function, there is no need to worry if this is
“really” the function.

The series for e” is, from Eqns. (1.3.10-1.3.16):

GIZZF (1.3.21)
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~3

._’/ X

-2 1 1 2

Figure 1.2. Plot of the function e®. Notice its growth is proportional to the value of the function
itself.

(Recall that every derivative of the function is also e® which equals 1 at = = 0.)
The ratio test tells us that in this case, since a,, = 1/n!,

|
R = lim —(n +1)!

— o0, (1.3.22)

i.e., that the series converges for all finite z. Thus we have defined the functton for
all finite = based on what we knew at z = 0.2

We are now ready to find e: simply set z = 1 in Eqn. (1.3.21). As we
keep adding more terms to the sum we see it converges quickly to a value around
2.7183. We can now raise e to any power. For example, to find ¢9%/12 we just set
z = 95/112 in the sum and compute as many terms as we want to get any desired
accuracy. There is no trial and error involved. We may choose = to be any real
number, say 7 or even e!

Figure 1.2 shows a plot of the exponential function for —2 < z < 2.

There is a second way to define the exponential function. Consider the fol-
lowing function defined by two integers M and N:

efm = (1+ %)M (1.3.23)

If we fix M and let N — oo, the result is clearly 1. On the other hand if we
fix N and let M — oo, the result will either be 0 or oo depending on whether «

2When we study Taylor series later, we will see that this situation is quite unusual. Take for example,
the function 1/(1—x). Suppose we only knew its Taylor series about the origin: 1+z+z2+z3+. ...
The ratio test tells us the series converges only for |z| < 1. One then has to worry about how to
reconstruct the function beyond that interval. This point will be discussed in Chapter 6. For the present
let us thank our luck and go on.
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is positive or negative since a number greater (less than) 1, when raised to large
powers approaches oo (0). To get a nontrivial limit we must consider the case
M o N. Consider first M = N and the object

T — T
eN = eN,N

T\N
= (1+— 1.3.24
1+3) ( )
in the limit N — oco. Now it is not clear how the various competing tendencies
will fare. We will now see that the result is just the function e®. To check this
consider the derivative: N
de¥ 1+%
N - (—# (1.3.25)
dx 1+ %)

where we have used the chain rule. In the limit N — oo, there is no problem
in setting the denominator to unity and identifying the numerator as the function
being differentiated. Since the function equals its derivative, and f(0) = 1, it must
be the function e* since these two properties were all we needed to nail it down
completely. Let us now trivially generalize to the function e** which is given by
a similar series in ax by choosing N = M /a in Eqn. (1.3.23). Its derivative is
clearly ae®*.

The exponential function is encountered very often. If P(¢) is the population
of a society, and its rate of growth is proportional to the population itself, we say

dpP
T aP(t). (1.3.26)
It is clear that P(t) = e%. One refers to this growth as exponential growth. On
the other hand consider the decay of radioactive atoms. The less there are. the less
will be the decay rate:
dP(t)
dt

where q is positive. In this case the function decays exponentially: P(t) = e 9.

The second definition of e® arises in the banking industry as follows. Say a
bank offers simple interest of = dollars per annum. This means that if you put in
a dollar, a year later you get back (1 + z) dollars. A rival bank can offer the same
rate but offer to compound every six months. This means that after six months
your investment is worth (1 + ) which is reinvested at once to give you at year’s
end (1 + %)2 dollars. You can see that you get a little more: 22/4 to be exact. If
now another bank gets in and offers to compound N times a year and so on, we
see that the war has a definite limit: interest is compounded continuously and one
dollar becomes at year’s end

. i N _ =z
lim (1+ N) = ¢” dollars.

N—oo
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cosh x 3
2-
sinh x
2 1 1 2 *
-1 L

Figure 1.3. Plot of the hyperbolic sinh and cosh functions. Note that they are odd and even respec-
tively and approach e* /2 as z — oc.

From the function ¢* we can generate the following hyperbolic functions:

x -z
sinhz = 6—28— (1.3.28)
coshz = % (13.29)

These functions are often called sh z and ch x, where the h stands for “hyperbolic”.
They are pronounced sinch and cosh respectively. Figure 1.3 is a graph of these
functions.

They obey many identities such as

cosh?z —sinh?z = 1 (1.3.30)
sinh(z +y) = sinhz coshy + coshz sinhy (1.3.31)

(which can be proved, starting from the defining Eqs.(1.3.28-1.3.29)) and numerous
other which we cannot discuss in this chapter devoted to calculus. For the present
note that these relations look a lot like those obeyed by trigonometric functions.
The intimate relation between the two will be taken up later in this book. Readers
wishing to bone up on this subject should work through the exercises in this chapter.
Note that cosh z and sinh z are even and odd, respectively, under x — —z.

Problem 1.3.1. Verify that sinh x and cosh x are derivatives of each other. Verify
Eqgns. (1.3.30-1.3.31).
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So far we have managed to raise e to any power z. This power can even be
irrational like v/2 or transcendental like 7: just put in your choice in the Taylor
series for e* and go as far as you want. But what about the original goal of raising
any number a to any power? We now address that problem.

Let us recall that we had

da®

— =In(a)d”

da (a)
and defined e as that number a for which In(e) = 1. This in turn ensured that
every derivative of e® was e® so that the Taylor series became

(1.3.32)

oo "L‘n
e® = Zﬂ")(o)zT (1.3.33)
5 !
® n
= Y = (1.3.34)
0 n.
By exactly the same logic we have for general a,
Da® = In(a)a® (1.3.35)
D%® = (lna)%a® (1.3.36)
and so on leading to the series
e 9) zn
a® = Z(lna)"—n—'— (1.3.37)
5 !
= ¢% Ine, (1.3.38)

It appears that we have a formula for a®, but in terms of the function Ina,
the natural logarithm of a. All we know about this function is that In1 = 0 and
Ine = 1. We will now fully determine this function, solving the problem we set
ourselves.

Setting z = 1 in Eqn. (1.3.38), we find the relation

a=ene (1.3.39)

as an identity in a. This equation tells us two things. First Ina is the power
to which e must be raised to give a. Second, it means that the In function and
the exponential function are inverses, just like the square root function and square
function are inverses: for any positive z it is true that

z= (V)% (1.3.40)

We now find Ina by the same trick of writing down its Taylor series. Taking the
derivative of both sides of Eqn. (1.3.39) with respect to a, we have

1=¢"Dlna=aDlna (1.3.41)
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which implies
1
Dlna = ~. (1.3.42)

a
Since we know how to differentiate negative integer powers, we can deduce that

_ ()™ - )

an

D"lna (1.3.43)
We now know the derivative of the function at any a. However we can’t launch
a series about the point a = 0 (as we did in the case of the exponential function)
since all derivatives diverge at this point. However the logic of the Taylor series
is unaffected by the point about which we choose to expand the function. We can
write in general

flz) = fla) + f(l)(a)(z —a)+ %f(z)(a)(.r — a)z + ... (1.3.44)

for any a. In the case of e*, a = 0 was a nice point since all the derivatives equaled
1 there. For the In function a = 1 is a very nice point since

(=)™ (n - 1)!

afL

D"Ina = = (-1)""n - 1)L (1.3.45)

The Taylor series for Inz about z = 1 is then

-1 2 -1 3
lnx:lnl—i—(x——l)—(xQ) +(I3) o (1.3.46)
where In1 = 0. If we apply the test for convergence we find that the series

converges for

lz -1 <1 or0<z<2. (1.3.47)

It is clear the series cannot go beyond z = 0 on the left since In0 = —o0, i.e., —c0
is the power to which e must be raised to give 0.
Interms of y =z — 1

v? B
1n(1+y)=y—7+?+... (1.3.48)
In using this formula we must remember that y is a measure of = from the point
z = 1 and that the series is good for |y| < 1. The log tables you used as a child
were constructed from this formula. You don’t need those tables any more. Say

you want In 1.25. It is given to good accuracy by just the first two terms
1 1
4 32
which compares very well with the value of .2231 from the tables. If you add one
more term in the series, you get .2240

1
In(1+ ) = ~ 2188 (1.3.49)
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Figure 1.4. Plot of the function In(z). Notice that In1 =0, Ine =1, Inz — —o00 as ¢ — 0 and
Inz — ocoas = — oo.

How are we to get the In of a number > 2? There are general tricks which
will be discussed in Chapter 6, but we will deal with this by deriving and using a
property of the In that you must know.

From the very definition, (Eqn. (1.3.39), for two numbers a and b,

a = e€ne (1.3.50)
b = et (1.3.51)
ab = ematind (1.3.52)
= em® 5o that (1.3.53)
In(ab) = Ina+Inb. (1.3.54)
Using the property
In(ab) =Ina +Inb (1.3.55)

we can obtain the In of a big number ab starting with the In of smaller numbers a
and b which in turn could be dealt with in the same way until we get to the stage
where we need only the In’s of numbers less than 2. For example, knowing In 1.6
and In 1.8 we can get In2.88 as the sum of the two logarithms. Fig. 1.4 depicts
the In function obtained by this or any other way.

We now know how to calculate a* as follows:

a® = (e (1.3.56)
e®lna, (1.3.57)
Note that everything above is well defined: for any given a we can find Ina

using the Taylor series, we can then exponentiate the result using the series for the
exponential function.
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So far we have been considering the possibility of expressing any number a as
e raised to some power, namely In a. One says that e is the base for the logarithm.
We are however free to choose some other base. For example it is easier to think of
100 as 102 rather than as 6%, To accommodate the possibility of other bases,
we introduce the function logy a, which appears in the identity

a = b8 @ (1.3.58)
and call it “log of a to the base b.” Thus

2 = log,, 100. (1.3.59)

Since e had some special properties, and is mathematically the natural choice
for base, log, a is called the “natural logarithm” and denoted by the symbol we
have been using: Ina.3

The relation between logarithms with respect to base e and any other base b
is easily deduced: for any number y we have two identities:

y = elny (1360)
= plogy (1.3.61)

= (eMb)losry (1.3.62)
elnblog, y (1.3.63)

It follows by comparison of the exponents between the first and last equations that

Iny

_ logey (1.3.65)
log, b

In particular In 10 = 2.303.. serves as the conversion factor between the natural
logarithm In and log,,.

Now that we have given an operational meaning to zP for any p,we can deduce
what the derivative of zP is. We proceed as follows:

p plnzx
def _ de (1.3.66)
dx dx
= el"“zf%lﬁ (1.3.67)
T
= mp-pi (1.3.68)
= paP L (1.3.69)

30f course, one can argue that 10 is more natural for humans based on our fingers and that, e = 2.718..
is not natural, unless you have been playing with firecrackers.
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When students in the introductory math course were asked what the derivative
of 281 was, they quickly came up with 6.12%1, but only a few knew the full story
recounted above.

If we use the above result we can develop the Taylor series for (1 4+ z)P about
the point 1:

P12 pE=-D@=-2) 5 370

P _ .
(1+=x) 1 +px+ 5 al

This is the generalization of the binomial theorem for noninteger p.
Problem 1.3.2. Derive the series up to four terms as shown above.

Note two things. First, if p is an integer the series terminates after finite number
of terms and gives the familiar binomial theorem we learned in school for integer
powers. Second, if z is very small we can stop after the second term:

(1+z)?~1+p=z (1.3.71)

for any p. This is a very useful result and you should know it all times.

Let us finally ask: if the In function is the inverse of the e* function, what are
the inverses of sinhz and coshz? Let us define sinh ™'z as that number whose
sinh is . From the graph of sinh z you can see that the answer is unique. We can
find the derivative of this function using the inverse function trick:

y = sinh™'r
z = sinhy
d
g coshy
dy
= 1+ sinh? y
= V1422
dy 1
= = —. (1.3.72
dz V1422 )

You can see from the graph that each value of cosh z has two origins, related by
a sign. The inverse function is uniquely defined if we agree, say, to follow the
positive branch. (This is analogous to the fact that each number has two square
roots.) Unlike the sinh function which always has an inverse which is also unique,
the cosh has an inverse only in the interval 1 < cosh < oo and the latter is double
valued.

Given sinh and cosh, you can form ratios of these, take their derivatives, their
inverses, the derivatives of the inverses, and so on. The fun is endless! We must
relegate some of this to the exercises and move on. You must however have on
your fingertips the following Taylor series which you can read off from the series
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for e® (Eqn. (1.3.21)) (also on your finger tips) and the very definitions of these
functions:

o0 w2n+1
inhz = - 3.
sinh z ;(2n+1)! (13.73)
3 5
_ x+§_'+x_'+... 1.3.74)
oo $2n
coshz = 3 o (1.3.75)
n=0 n
.Z'2 174
= i (1.3.76)

Problem 1.3.3. Demonstrate the above. Observe that sinh and cosh contain only
odd and even powers of x, which is why they are odd and even, respectively, under
T =,

1.4. Trigonometric Functions

Here too we will only deal with some points that involve calculus. Let us begin
with the notion of sines and cosines as ratios of the opposite and adjacent sides to
the hypotenuse in a right triangle. It is assumed that you are familiar with various
identities involving these functions, their ratios (tan, cot, sec), and their addition
formulae. Let us recall one that we will need shortly:

sin(A + B) =sinA cos B + cos A sin B. (14.1)
You are all no doubt aware that:

Dsinz cosz (14.2)

Dcosz = —sinz. (1.4.3)

Do you know where this comes from? A first ingredient in the proof is the result

lim — = 1, (1.4.4)

valid only if the angle is measured in radians. The radian is a way to measure
angles just like degrees. It is however a more natural unit of angular measurement,
as the following discussion will make clear.

Consider the circle of radius r.
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Figure 1.5. Introduction to the radian. Note that if 8 is measured in radians, the arc length s = 6.

By dimensional analysis, its circumference must be given by the formula
C(ry=rf (1.4.5)

where f is function of any dimensionless variable formed out of r and other di-
mensionful parameters specifying the circle. Since there exist no such things,

C(r)=cr (1.4.6)
where c is a constant. By definition it is 27:
C(r)=2nr. (1.4.7)
By the same logic, the area of the circle is
A(r) = er? (1.4.8)

The constant ¢ is now found as follows. Suppose we increase r by Ar. This adds
to the area an annulus of circumference 27r and thickness Ar, so that the change
in the area is

AA =2nrAr (1.4.9)

which means A
P . (1.4.10)

dr

which, upon comparing to the derivative of Eqn. (1.4.8), tells us ¢ = 7 and
A(r) = mr2. (1.4.11)

Consider now an arc of the circle which subtends an angle 6 at the center as
shown in the Fig. 1.5.

The arc length s is a linear function of the angle subtended, #. That is to say,
if you double the angle, you double the arc length. It is also a linear function of
the radius: if you blow up the radius by a factor 2, you double the arc length. (The
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answer also follows from dimensional analysis. Since s has dimensions of length
it must be r times a function of a dimensionless variable formed out of r, of which
kind there are none.) Thus it is possible to write:

s=crf (1.4.12)

where ¢ is some constant. Its value depends on the way we measure angle. For
example if we measure it in degrees, whereby 360 degrees make a full circle,
¢ = 27/360. That is, if you use this ¢ above and set § = 360, you get s = 27r,
which is the correct formula for the circumference, from the very definition of «.
Let us instead measure the angle in units such that ¢ = 1. Call this unit a radian.
How many radians is a full circle? It must be 2x since with ¢ = 1 this is the
value of # that gives the right circumference. Since 27 =~ 6, a radian is roughly 60
degrees. (More precisely a radian is 57.2958 degrees.) It will be assumed hereafter
that all angles are being measured in radians so that the arc length numerically
equals the product of the radius and the angle subtended. To prove Eqn. (1.4.4)
we turn to Fig. 1.5. It is clear from the figure that

POR < POC < POQ.

Using the formulae for the area of the triangles POR and POQ and the segment
POC, this becomes

1 [ 1
5rsin0 r cosf < Eﬂ'?) < 3 rr tand.
If we divide everything by 1r?sin 8 we find
0 1

cosf <

— < .
sin @ cos 6

If we now let § — 0, the ratio in between gets squeezed between two numbers both
of which approach 1 (since cos0 = 1) and the result follows.
A corollary of the above result is that for small angles,

cos§ = (1—sin?g)/? (1.4.13)

= 1-26%+... (1.4.14)

where we have used the generalized binomial theorem (14 z)? ~ 14+ pz +....
Let us now find the derivative of sin @ from first principles:

Asiné

sin(6 + A@) — sin(8) (1.4.15)
sin(9) cos(Af) + cos () sin(Af) —sin(9)  (1.4.16)
= cos(8)A8 + O(A)2+ (1.4.17)
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where we have used the approximations for siné and cosé at a small angle Aé
keeping only terms of linear order since higher order terms do not survive the limit
involved in taking the derivative. It now follows that the derivative of sinf is
cosf. Given this strategy you can work out the derivative of cos, use the rule
for derivative of the product or ratio of functions to obtain the derivatives of tan,
sec, etc. You are expected to know the definitions of these functions and their
derivatives, as well as values of these functions at special values of their arguments
such as 7 /4, 7 /6, etc.

We now have all the information we need to construct the Taylor series for the
sine and cosine at the origin:

3 5

sing = x—%+x—-+"' (1.4.18)

1 n, 2n+1

Z((2n+1 (1.4.19)
2 4

cose = 1—‘2—'+z—|+ (1.4.20)
o n 2n

= Z . (1.4.21)

The ratio test gives the same result as in the case of e”: these series converge
for all finite z. As with the logarithm, you can use these series to get a very
good approximation to any trigonometric function. Say you want sin30 ° which is
exactly .5. The first two terms in the series with z = = /6(radian) give

sinm/6~ /6 — (r/6)3/6 = .499 (1.4.22)

Problem 1.4.1. Derive the above series for the sin and cosine, given D sinz =
cosz, Dcosz = —sinz, cos0 =1, and sin 0 = 0. Show that the series converge
for all finite z.

The above series are remarkable. By knowing all the derivatives at one point, the
origin, we know what the functions are going to do a mile away. For example, the
series for sinz will vanish if you set z = 234456717 where the sin must vanish.
You may wish to try it out on a calculator for just = 7, using some approximation
for =. The series knows that the sine, which starts growing linearly near the origin,
is going to turn around, hit zero at 7, turn upwards again, hit zero at 27, and on
and on.

Given the trig functions, you can define their inverses in the natural way. For
example sin~! z is the angle whose sin is z. There is some ambiguity in this
definition, just as there was in the square root, there being two choices in the
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latter related by a sign and an infinite number here related by the periodicity and
symmetry of the sin function. If however we restrict the angle to lie in the interval
(—m/2,7/2), the inverse sin is unique. (Imagine the sin function in this interval
and note that each value of sin 6 comes from a unique §.) We can then ask what
its derivative is. The trick is to do what we did for the In earlier:

-1

y = sin =z
z = siny
dx os
= cos;
dy Y
= 4/1-siny
= V1-22
dy 1
— = — 1.4.23
< — (1.4.23)

Of course, you cannot ask for the sin™* of 32 since the sin is bounded by 1.

1.5. Plotting Functions

You will be frequently called upon to sketch some given functions. For example the
solution to some problem may be a complicated function, and it is no use having
it if you cannot visualize its key features. In particular, you must be able to locate
points where it vanishes, where it blows up, where it has its maxima and minima,
its behavior at special points such as 0 and oo, and so on. This is something that
comes with practice and you cannot learn it all here. But here is a modest example.
You should draw a sketch as we go along.

Let us look at 0
) = z —5z+66_z/5.
z—1

Far to the left, as we approach —oo, the numerator in the polynomial can be
approximated by the highest power, =2 and the denominator by z, and the ratio by
z. Thus the function behaves as ze /5 which approaches —co as z — —oo. As
for finite z, let us rewrite f as

(1.5.1)

flz) = E=2@=3) s (1.5.2)

z—1

which tells us that we must focus on three special points: z = 1 where the denom-
inator vanishes, z = 2 and 2 = 3 where the numerator vanishes. In addition we
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will focus on x = 0. As we move to the right from —oo, we first come to z = 0
where the function is still negative and has the value —6 and a slope 1/5:

flz)=—-6+z/5+ - (1.5.3)

However as we approach = = 1, the function must blow up due to the vanishing
denominator and the blow up must be towards —oo since none of the factors in
the ratio of polynomials multiplying the exponentials has changed sign. This in
turn means f has a local maximum somewhere between 0 and 1. To the right of
z = 1 the function is large but positive since the denominator has changed sign.
The function then decreases until we reach x = 2 where it vanishes. Now it turns
negative until we get to z = 3 where it vanishes and changes sign due to the factor
z — 3. Thus f has a minimum between = = 2 and x = 3. To the right of x = 3 the
function is positive (as are all the factors z — 1,z — 2, z — 3) all the way to infinity
where it behaves like ze~%/5. Now we have to decide who wins: the growing
factor z, or the declining the factor e=%/5. Stated differently, in the ratio ez%,
which is bigger at large ? The trick to resolving this is to use:

L’Hopital’s rule (given without proof): To determine the ratio of two functions,
both of which blow up or both of which vanish at some point (infinity in this
example), take the ratio of their derivatives; if these cannot give a definite answer,
take the ratio of the next derivatives and so on until a clear limit emerges.

In our example, we are interested in the ratio z/(e®/%), where the numerator
and denominator blow up as = — co.* Upon taking one derivative z turns into 1,
/% becomes e%/%/5 and the ratio of the derivatives, 5/¢%/°, clearly vanishes as
z — oo. Thus the function f(x) has a maximum to the right of x = 3 where it
starts turning downwards to zero.

Note that we did not try to actually locate the maxima and minima too precisely.
This can be tedious, but done if we need this information. Usually the caricature
painted in Fig. 1.6 is already very useful.

You can now compare your sketch with the plot of the function given in
Fig. 1.6.

Problem 1.5.1. Show that z"e™* — 0 as x — oo. Thus the falling exponential
can subdue any power. Use L’Hopital’s rule to show that the growth of lnzx is

Inz

weaker than any positive power zP, ie., 2 vanishes as x — oo for any p > 0.)

4As an example of a case where both functions go to zero, consider the indeterminate ratio (1—cos? z)/x
as ¢ — 0. Upon taking one derivative, we find the ratio (2 sinz cosz/1) which clearly vanishes as
z— 0.
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Yy
2
2 = 4 6 8 10 12"
2
_4.

Figure 1.6. Plot of the function f(z).

Problem 1.5.2. Analyze the function

24+z—6

S =
(z) 4 4 coshz

and compare your findings to Fig. 1.7.

1.6. Miscellaneous Problems on Differential Calculus

Besides some of the tricky points we discussed above, you are of course expected
to know all the basics of differential calculus as well as the properties of the
special functions we encountered. The following set of problems is by no means
an exhaustive test of your background. It should however suffice to give you an
idea of where you stand. If you find any weak areas while doing them, you should
strengthen up those areas by going to a book devoted to calculus.

Problem 1.6.1. Expand the function f(z) = sinz/(coshz + 2) in a Taylor series
around the origin going up to x2. Calculate f{.1) from this series and compare to
the exact answer obtained by using a calculator.
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-10

Figure 1.7. Plot of the function S(z).

Problem 1.6.2. Find the derivatives of the following functions: (i) sin(z> + 2),
(ii) sin(cos(2z)), (iii) tan3z, (iv) In(coshz), (v) tan~lz, (i) tanh™ =z, (vii)
cosh? z — sinh®x , (viii) sinz/(1 + cosz).

Problem 1.6.3. A bank compounds interest continually at a rate of 6% per annum.
What will a hundred dollars be worth after 2 years? Use an approximate evaluation
of e to order z2.

Problem 1.6.4. According to the Theory of Relativity, if an event occurs at a
space—time point (x, t) according to an observer, another moving relative to him at
speed v (measured in units in which the velocity of light ¢ = 1) will ascribe to it
the coordinates

— vt
= jl—__vvz (1.6.1)
t_
¢ = \/1—_% (1.6.2)

Verify that s, the space-time interval is same for both: s =2 — 22 = /2 — ¢'2 =
s'2. Show that if we parametrize the transformation terms of the rapidity 6,

2’ = zcosh# —tsinh@ (1.6.3)
t/ = tcosh® — xsinhé (1.6.4)

the space—time interval will be automatically invariant under this transformation
thanks to an identity satisfied by hyperbolic functions. Relate tanh @ to the velocity.
Suppose a third observer moves relative to the second at a speed v', that is, with
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rapidity 6'. Relate his coordinates (z",t") to (z,t) going via (z'.t'). Show that
the rapidity parameter 8” = 8’ + 6 in obvious notation. (You will need to derive
a formula for tanh(A + B).) Thus it is the rapidity, and not velocity that really
obeys a simple addition rule. Show that if v and v’ are small (in units of c), that
this reduces to the daily life rule for addition of velocities. (Use the Taylor series
SJor tanh8.) This is an example of how hyperbolic functions arise naturally in
mathematical physics.

Problem 1.6.5. A magnetic moment 1. in a magnetic field h has energy Ex = Fph
when it is parallel (antiparallel) to the field. Its lowest energy state is when
it is aligned with h. However at any finite temperature, it has a nonzero
probabilities for being parallel or antiparallel given by P(par)/P(antipar) =
exp[—FE4/T]/ exp|—E-/T| where T is the absolute temperature. Using the fact
that the total probability must add up to 1, evaluate the absolute probabilities for
the two orientations. Using this show that the average magnetic moment along
the field h is m = ptanh(uh/T) Sketch this as a function of temperature at fixed
h. Notice that if h = 0, m vanishes since the moment points up and down with
equal probability. Thus h is the cause of a nonzero m. Calculate the susceptibility,
‘fi—’,ﬂhzo as a function of T.

Problem 1.6.6. Consider the previous problem in a more general light. According
to the laws of Statistical Mechanics if a system can be in one of n states labeled
by an index i, with energies E;, then at temperature T the system will be in
state i with a relative probability p(i) = e PP where 3 = 1/T. Introduce the
partition function Z = ), e“PE+. First write an expression for P (i), the absolute
probability (which must add up to 1). Next write a formula for (V), the mean value
of a variable V that takes the value V; in state i, i.e., (V) is the average over all

allowed values, duly weighted by the probabilities. Show that < E >= —i}ilﬂz.
Give an explicit formula for Z for the previous problem. Show that —‘%i%‘h—z gives the

mean moment along h. Use the formula for Z, evaluate this derivative and verify
that it agrees with the result you got in the last problem.

Problem 1.6.7. A wire of length L is used to fence a rectangular piece of land.
For a rectangle of general aspect ratio compute the area of the rectangle. Use the
rule for finding the maximum of a function to find the shape that gives the largest
area. Find this area.

Problem 1.6.8. Sketch and locate the maxima and minima of f(x) = (z? ~ 5z +
6)e ",
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Problem 1.6.9. Find the first and second derivatives of f(z) = e*/(*=%) at the
origin.

Problem 1.6.10. Imagine a life guard situated a distance d; from the water. He
sees a swimmer in distress a distance L to his left and distance do from the shore.
Given that his speed on land and water are vy and vy respectively, with vi > v,
what trajectory will get him to the swimmer in the least time? Does he rush towards
the victim in a straight line joining them, does he first run on land until he is in
front of the victim and then swim, does he head for the water first and then swim
over, or does he do something else? Pick some trajectory composed of two straight
line segments in each medium (why) and show that for the least time :;%gl = —L
where the angles 0; are the angles of the segments with respect to the normal to
the shoreline.

This problem has an analog in optics. If light is emitted at a point in a medium
where its velocity is v1 and arrives at a point in an adjacent medium where its
velocity is va, the route it takes is arrived at in the same fashion since light takes
the path of least time. The above equation is called Snell’s Law.

Problem 1.6.11. The volume of a sphere is V(R) = @. What is the rate of
change of the volume with respect to R? Does it make sense?

Problem 1.6.12. (Implicit Differentiation). You know how to find the derivative
dy/dx when y(z) is given. Suppose instead I tell you that y and = are related by
an equation, say =% + y% = R? and ask you to find the derivative at each point.
There are two ways. The first is to solve for y as a function of x and then let
your spinal column take over, i.e., by changing x infinitesimally and computing
the corresponding change in y given by the functional relation. The second is to
imagine changing x and y infinitesimally while preserving the constraining relation
(a circle in our example). The latter condition allows us to relate the infinitesimals
Ax and Ay and allows us to compute their ratio in the usual limit. Show that the
derivative computed this way agrees with the first method.

Find the slope at the point (2,3) on the ellipse 3z% + 4y? = 48 using implicit
differentiation.

Problem 1.6.13. Find the stationary points of f(x) = 23 — 3z + 2 and classify
them as maxima or minima.
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f

df Af

_/dx

Xo

Figure 1.8. The meaning of the differentials df and dz.

1.7. Differentials

Consider a function f(z) shown in Fig. 1.8.
If we change « by Az at the point ¢, we write the change in f as

daf

T

Af Az + ... (1.7.1)

Zo

where the dots stand for terms of order (Axz)? and beyond. We expect the latter
to be relatively insignificant as Az — 0. Let us now introduce the differentials df
and dz such that

_ 4

- d 172
dz|, (1.7.2)

Zo

with no approximation or requirement that either differential be small. What this
means is that df is the change the function would suffer upon changing = by dz,
if we moved along the tangent to the function at the point ¢ as in Fig. 1.8.

Note that we always have the option of taking dz vanishingly small, in which
case df, which is the change in f to first order in dz, becomes a better and better
approximation to A f, the actual change in f (and not just along its tangent at xg).
This is always how we will use the differentials in this book, although the concept
has many other uses. Thus when you run into an equation involving differentials
you should say: “I see he is working to first order in the change dx.” The advantage
of using df will then be that I don’t have to keep saying to “to first order” or use
the string of dots.

daf
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1.8. Summary
Of the numerous ideas discussed in this chapter, the following are the key ones and
should be at your fingertips.

e Definition of the derivative, derivative of a product of functions

D(fg) =9gDf+ fDg

a quotient of two functions

(i) — [ng -2ng]

g g

D

chain rule for a function of a function

df(u()) _ df(w) du(a)
dx du dz

e The notion of the Taylor series

fz) = £(0) +zfM(0) + f;ﬂ”m ...

about the origin or about the point a
1 2 o
flatz)=1(a) +2fDla)+ 5P (a) + ...

e The following series to the order shown

.’E_l x_z x3
e’ = +.7:+2! +§

z 1 z N
— lim 1 _] .
€ Ngnoo[+]\r

J'2

cosx:1—§+...
. . -733
smx—:r——?:!——t-...
-1
(1+z)P=1+4pz+ (n)(p ).7:2+
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e Definition of the hyperbolic function, in particular

eZ +e—.’E
coshrz = ———
2
T -z
. e — €
sinhz =
2

their symmetry under x — —z and functional identities, especially
cosh?z — sinh?z = 1.

If you need a formula for cosh 2z or any other identity, you can get it from
the definition of the hyperbolic functions in terms of exponentials. The power
series for these functions can also be obtained from that of the exponential
function.

e The Inz function, the identity

T = elnm
and the series
2 3
In(l+z)=z— —+ 5+
and its derivative )
Dlnz = —.
x
1% = % Inx

o Trigonometric functions, identities and derivatives, radian measure for angles.
These will not be listed here since you must have already learned them by
heart as a child.

e The definition of the differential, that:
df = f'dx

is an exact relation which defines df in terms of the derivative at the point
z, and that as dz — 0, df — Af, the actual change in f.






INTEGRAL CALCULUS

2.1. Basics of Integration

We have so far focused on the question of finding the derivative of a given function
f(z). We are familiar with the constructive procedure for finding this derivative:
change z by some amount Az, calculate the change in the function, take the ratio
of the two changes, and so on.

Often one faces the reverse question: find the function given its derivative.
For example in the case of a falling rock, one is given the acceleration a due to
gravity, and one wants the velocity »(¢). Once the velocity is found, one wants to
do this again, to obtain the position z(¢). Let us consider this problem in general,
using the symbol F(z) to denote the function which is to be determined, given
that its derivative is f(z). (As far as possible, we will use upper and lower case
symbols to denote a function and its derivative. Occasionally we will have to bow
to tradition as in the case of velocity and position.)

Let us now analyze this reverse problem, called the problem of integration.
We are to find F(z) given its rate of change f(x). This is like saying: I have been
putting $50 a month in the bank for the last 5 years, how much money is in my
account? The answer cannot be given, unless I reveal how much I started with.
Similarly, if I tell you a car has been moving at a velocity of 50 mph for six hours
and ask you where it is now, you will want to know where it was at the beginning
of the six hour trip. The initial bank balance and initial car position are examples
of initial conditions. Thus in the general problem too, we must specify not only a
rate of change, but also F(zg), the value of F(z) at some z = z¢. Given this, we
can proceed as follows to find F(x). Take first the simple case when the function
has a steady rate of change, i.e., if f(z) = f is a constant. Clearly

F(z) = F(zo) + (z — 0)f. (2.1.1)
Now for the general case where f(z) varies from point to point, depicted in Fig. 2.1.

To deal with the varying f(z), we divide the interval z — z¢ into N tiny parts
of width Az = (z — zo)/N. Within any one of these tiny intervals numbered : and

33
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f (x;)

X

X, X; X;+AX; X X+AX

Figure 2.1. Graphical integration of f(x). The definite integral is given by the limit in which the
number of intervals goes to infinity, and equals the area under the function between the lower and upper
limits zg and z.

starting at = = x;, we see that z ~ z;, and the function f is essentially constant,
i.e., f ~ f(z;), and the change in F is approximately AF ~ f(z;)Az. Adding all
these changes we get

N

F(z)~ F(zo)+ Y _ f(a:)Ax, (2.1.2)

=1

where we use the ~ symbol to reflect the fact that we are making an approximation
within each segment by treating f as a constant. However if we let N — oo these
errors vanish and we obtain

F(z) = F(zq) +/ f(z)dz, (2.1.3)
where by definition
z N
/xo f(z)dz = A}me;f(zi)m. (2.1.4)

One refers to f:u f(z)dz as the definite integral of the integrand f with respect to
the integration variable z, between the lower limit z¢ and upper limit z. If you
look at Fig. 2.1 you will see that each term f(z;)Ax in the sum on the right-hand
side of the above equation stands for the area of a rectangle of base Az and height
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f(zi), shown by the shaded region on the left. At any large but finite N, these
areas approximate, but do not exactly equal, the area under the function between
zo and z. For example in the one highlighted segment named i, the height of the
function at the left end of the segment, f(z;), is greater than in the rest of the
segment and the area of the rectangle is larger than the area under the curve. The
opposite could easily have happened had the function been on the rise. However in
the limit N — oo, the sum becomes the definite integral as well as the area under
the graph between zo and z.!

Digression on the limit N — oo

The limit N — oo, in which the number of intervals goes to infinity, must be analyzed carefully,
but I will not do so here, referring you to books on calculus. Instead a few points will be raised and
briefly treated. First let us understand how it is that as we let N — oo, we get a finite limit. Say we
send N — oo by doubling it sequentially. Each time we double N, by subdividing each interval into
two, we double the number of terms in the sum, but the contribution from each is roughly halved
since Az gets halved, while f(z,) is essentially same in each of the two segments that evolved from
one parent. Thus the decrease in the segment width (going down as 1/N) is precisely offset by the
increase in the number of segments ( growing as N) and a finite limit emerges. Next, how about the
fact that in each segment we treated f as a constant, when in fact it varies? In other words, was it all
right to evaluate f at the left end of each segment, which led to an error in the area (overestimate,
in the case of our particular function)? While it is true that as we increase N, the segments get
narrower, and the error committed in each segment from treating the function as a constant indeed
decreases; it is also true that the number of segments is growing without limit and the sum of these
errors could end up being finite. After all, as we reduce the segment size, the contribution from
each segment also goes to zero, but we do not drop these, since there are enough of them to build
up the area under the graph. However the error due to the variation of f within each segment is
not of this type, and does indeed become negligible for the following (simplified) reason. Consider
two sums, both approximations to the area, one where we take f at the left end of each segment
(as we did) and one where we take f at the right end of each segment, where z = z; + Az. Even
though f is not a constant, we assume it is smooth enough for us to say that (for small Ax)

dj

flzi + Az) ~ f(z;) + d—];Am. (2.1.5)
The difference between the two sums is given by g-é (Az)? per segment. The sum of these differences
over the N segments will vanish as N — oo (provided the function is not pathological), because
there are N terms in the sum, and each term is of order (Az)? o< 1/N2. Equivalently, look at the
shaded rectangle in Fig. 2.1 at the point z; and note that whereas the area of the rectangle goes
as f(z;)Ax, the excess at the top is shaped like an inverted right triangle of base Az and height
|Af = %Azl. Thus although the contribution of the segment and the error are both infinitesimal,
the latter is an infinitesimal of second order and adds up to nothing even when summed over N

segments as N — 00.2
Although we considered two specific schemes which evaluated f at the end points of each
segment, similar arguments easily show that in general the limit of the sum is the same no matter

where in each segment we evaluate the function.

1We have assumed f is everywhere positive. If f < 0, the contribution to the area will be negative.
Thus if f(z) = sinz, and we measure the area from zg = 0, it will rise until z = 7 (reaching a
value of 2) and then start dropping as sin z turns negative. At the end of a full period (z = 2m) it
will return to zero.

2For yet another version of the argument, notice that since the right edge of each sector is the same as
the left edge of the next one, the two schemes involve the same sums except at the end points, whose
contribution is therefore of order Az.
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So the problem of finding the function given its derivative reduces to finding
the area under it between xq and = (which gives the change in F) and adding on
the initial value F (zg).

How is the area to be evaluated? There two ways.

The numerical or graphical way is to simply plot f on some graph paper and
count the squares. (The size of the squares will be determined by the accuracy
sought). Thus for example, the distance covered by a car traveling at some variable
velocity v(t) between times tg and ¢ is given by plotting the velocity and measuring
the area under it between the times ¢( and ¢. If we add to this the initial position, we
get the position at time ¢. The graphical method is a constructive method, where we
can follow an algorithm. It is essentially what computers often use to numerically
evaluate any integral. Of course they cannot send N — oo but can make it large
enough to reach a point where further increase in N makes changes that are less
then some preassigned measure of accuracy. Defined this way, the graphical method
works for any function you can draw on graph paper. However, it does not promise
exact answers, just answers good to some preassigned accuracy.

In the analytical way, one focuses on the functional form of the answer. For
example in the case of a rock falling under a constant acceleration a, the increase in
velocity over a time ¢, v(¢) —v(0), is given by the area of a rectangle of height a and
width ¢. While this area can be numerically determined by counting squares in the
graphical scheme, it can also be given analytically by the expression v(¢) — v(0) =
at. Or consider a particle moving at a velocity v(¢) = at. The distance it travels
between ¢ = 0 and ¢ = ¢t is the area under the straight line v(t) = at between
these limits. Again we don’t need to count squares for this, we know the area of
this triangle of base ¢ and height at is at2/2, so that z(t) — z(0) = at?/2. In
other words, the area under the curve is itself a function of the upper limit and
we are writing down its functional form. The answers are exact and also solve the
problem once and for all, i.e., for all ¢. In other words, for each given ¢, we do not
draw a new triangle, we simply evaluate at?/2 for the given value of ¢. This is
what we would like to do in general. But the strategy is not to appeal to areas of
well- known figures (like rectangles and triangles) since we will quickly run into
not-so-well-known shapes, but the following.

Let us consider

/ f(z)dz (2.1.6)

as a function of the upper limit z, holding the lower limit fixed. We know that
when ¢ = z¢ this function vanishes. Next we ask how the function grows with
increasing z. To this end we change the upper limit by Az. We see from Fig 2.1
(shaded rectangle at the right) that the integral changes by f(z)Az (plus higher
order terms.) Thus the rate of change of the integral is simply f(z). This is not
surprising since that is how we cooked up the integral in the first place! (We are
simply running our analysis backwards.)
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Let us suppose we can somehow come up with a function F(r). called an
integral of f.> which is any function whose derivative is also f(.r). We cannot yet
say F(r) equals the area integral just because the two have the same derivative:
they could differ by a constant. So let us write

’ f(x)de = F(x) +c @2.1.7)
Jzo
where the constant ¢ is to be determined. We do so by requiring that when r = rq,
both sides vanish:
" f)dr =0 = F(ro)+c (2.1.8)
Jzo
c = —F(ro) (2.1.9)
/If(x)d.l: = F(z) - F(xo). (2.1.10)
o

We have thus manufactured a function which grows at the rate f(.) and
vanishes at rg. It must therefore equal the definite integral from . to .r.

Let us consider as an example the case f(r) = 2, 1o = 1, r = 3, i.e., we
are looking for the area under the graph f(r) = r? between the points 1 and 3. It
is clear that F'(r) = r3/3 is an integral since DF (r) = f(r) = +2. So the area is

given by

3 | 3 3

I o 3 1

dr = — — — = — - —, 2.1.11
/1 fr)dr= 5| =5 3 @11

where f(r)|, means f(r) evaluated at » = a.
There is a problem now since there is more than one choice for the integral of
f. What if we had used F(r) = r3/3 + 17 which also has the same derivative?

Nothing changes:
3 3 3
£ £
“(ar)d.r — + 17 ‘ - =+ 17 ‘
/1 fr)dr (3 " )!3 (3 >!1
33 13 33 13
= (417 - [=+17) =% - —.
(F)-(5+7) =53

In other words, the constant that distinguishes one integral from another drops
out in the formula for the definite integral, which represents the definite area en-
closed between the prescribed limits.

Thus:

To find a definite integral, which denotes the area under a function f(z)
between two end points, we take any integral F (z), or F, etc., and find its difference
between these points.

3Sometimes this is called the primitive or antiderivative of f.
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Often the end points are denoted by z; and z5 in which case
/ f(z)dz = F(zo) — F(z;) = F(a:) z2 —F(x) AR (2.1.13)

Consider the area under f between zq and z. This too is one member of the
family of integrals of f with the special property that it vanishes when = = z.
It can be related to any other member of the family F(z), which does not vanish
at z = z¢, through the difference F(x) — F(zo). This result can be understood
algebraically: the above difference has the twin properties of having the right z-
derivative (f(z)) as well as vanishing at z = z¢. While the two terms in the
difference will vary as we change from one member of the family to another, the
difference will not.

It is sometimes, but not always, possible to associate an area with every integral.
Thus if f(z) = 22, then F(z) = 23/3 stands for the area from the origin to the
point z. We know the area is counted from zo = 0 since F(z = 0) = 0. On
the other hand F(z) = z3/3 — 1/3 stands for the area reckoned from the lower
limit o = 1 since it vanishes when z = 1. Consider however f(z) = sinz. The
function F(z) = — cosz + 97 certainly obeys D F (z) = sin z, but it cannot stand
for the area under the sine function from any point zq to z since the area under this
oscillating function is bounded by 2. In those cases where the area interpretation
is possible, we can understand Eqn. (2.1.13) as follows. The function F(z) equals
the area from some point to the point z, while F () equals the area from the same
point to the point zo. (Imagine the case where the initial point is to the left of
zo which is to the left of z.) Thus their difference is the area between z( and z.
As we go from F to F (assuming the latter also admits an area interpretation) we
merely change the lower limit from which the area is measured.

Let us summarize where we stand in our quest for the function F(z) with a
known derivative f(z) and initial value F'(zo) at zo. We have found

F(z) — F(zo) /fa;)dz (2.1.14)
= F(x)2 (2.1.15)
= ﬁ(m)zl... (2.1.16)

At the left we have F (z)— F(zg), the change in the function we were interested
in, over the interval zg to =, with a rate of change f(z).

This is then expressed as the definite integral over the same interval. This was
clearly progress, since we have identified the definite integral with the area under
f between these limits and we have the choice of computing it numerically.

The subsequent equations relate the definite integral to the difference of any
integral of f(z), F(z), F etc., between these limits. This seems to be a wonderful
result since it gives exact results in analytical form. But the catch is of course that
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the only way to find these integrals is to guess the answer given the derivative is
f(z). But that is the problem we started with! All we seem to have learned is
that our original function F is a member of the family of functions with f as their
derivative and that the change in F is the change in any other member, since the
constant that differentiates them drops out.

All this is correct. The analytical scheme does indeed tell us to guess the
solution. How can we even call it a scheme? Suppose I told you that in addition to
the high school formula (—(b/2a) + Vb2 — 4ac/2a) I have found another way to
find the roots of a quadratic equation az? + bz + ¢ = 0: guess the answer and see
if it satisfies the equation. You will laugh. But guessing the integral of a function
is not in the same league, as we will see.

First, the guessing is not totally wild. In the example considered, f(z) = 22,
it went as follows. We knew that each time we took a derivative of a power of =
we would pull down the exponent and reduce the power by one. So to end up with
22, we had to start with F = Az3, where A is a constant to be fixed. Upon taking
the derivative, we get 3Az2. Setting this equal to z2, we fix A = 1/3 and obtain
F(z) = x3/3. We can similarly guess that

xn+l

n+1

flz) =2" e« F(z) = + ¢, 2.1.17)
where ¢ is any constant. Indeed, every time we take a derivative, we also learn
about an integral by running the calculation backwards. Thus for example, knowing
that D sinz = cosz, we can conclude that

f(z) =cosz « F(z) =sinz + c. (2.1.18)

People have been taking derivatives and keeping records for a long time. Now you
can benefit from all this accumulated wisdom, by buying yourself what are called
Tables of Integrals, which contain an assortment of such results. Since the guessing
game has been going on for centuries, these Tables are quite fat and most sensible
people have a copy at home and one at work. The two integrals given above will
however be listed as follows in the Tables:

$n+1
" = 2.1.19
/ac dx S——) +c ( )
/cosxdz = sinz+¢ (2.1.20)

Notice several things. First no limits are shown. The upper limit is understood to

be z and the lower limit is left unspecified, as is the constant c. Often one does
. . . n+1 .
not bother to write the ¢ on the right-hand side. One refers to %1’ + ¢, with ¢

unspecified, as an indefinite integral of z™. Clearly we can’t associate with it a
numerical value or a geometrical area. What counts here is the functional form
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or z-dependence which ensures (independent of c) that the derivative is f(z). If
however we want an enclosed area, it is easy to get it by evaluating the difference
of the indefinite integral between the end points (wherein the unknown constant
drops out.) ~

One does not also use different symbols F, F' for different integrals of f. In
speaking of any one member one simply refers to it as F(x). Thus one writes

/ J(z)de = F(z)[ @.121)

where F is any integral of f.

To make sure you have understood all the ideas, let us work out a simple
example. A function F(z) is changing at a rate f(z) = z2. It has the value 12 at
z = 1. What is its value at z = 3? What is its value at some general z? As for
the first question, we write

3 33
26
F(S):F(l)+/ v?dz = 12+ %‘ :12+[33/3—13/3]=12+?. (2.1.22)
1 I1

where we have used the integral 23/3 to evaluate the definite integral. Likewise

:1:3 z 3
= =12+[2%/3-1%/3] =

F(:c):12+/1 22dz = 12+ 3 %
1

+ 33—5, (2.1.23)

Whereas the integral we used in evaluating the definite integral in both
Eqgns. (2.1.22-2.1.23) was 23/3, the answer to the second problem we posed is
the integral z3/3 + 35/3. They all belong to the same family of integrals of

z2. The former may be interpreted as the area from z¢ = 0, the latter from

9= +v—-35= —ﬁ.

We have thus far been interested in the area integral as means of solving a
problem of finding a function whose rate of change is given. But the area can
be interesting in its own right. Say we want to know the area of an ellipse of
semi-major axis a and semi-minor axis b. We could draw it on a piece of graph
paper and count squares. This will give a numerical answer, good to any chosen
accuracy. Or we could do the following analytic calculation which will give the
exact answer in terms of the parameters a and b. Let the ellipse be described by

nN
N

+ =1 (2.1.24)

mml 8
SIS

By drawing a sketch, and solving for y as a function of z, one can see that the area
in the first quadrant is given by

a
b
/ —Va? — z2dz, (2.1.25)
0o a
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In the analytical method one first guesses that in this problem
b

2a
is an integral of the given integrand, as you must verify by differentiation. (If you
are new to this game, you may be amazed how one could make this guess. As you
learn more tricks of the trade, you will see how this is done.) In any event, given
this fact, the area of the ellipse is readily found (upon remembering to mulitiply by
4 for the four quadrants):

F(z) [1‘ a? — 22 + a? sin—l(g)] (2.1.26)

Area=4. [:v a2—x2+a231n—1(f)]a=mb. (2.1.27)
2a a’lo

No matter how many tiny squares you count in the numerical scheme, you are not
going to get an analytical, exact formula for the area, in terms of =, a, and b.

It was mentioned earlier that guessing the integrals of functions has been
going on for centuries and there exist Tables of Integrals. People’s attitude to
the use of Tables varies. At one end we have some one like Enrico Fermi who
used to challenge his colleagues that before they could look up an integral in the
library, he would evaluate it himself. At the other end there is someone like myself
who challenges his colleagues with the exact reverse. In any event, it is socially
acceptable to look up integrals in the Tables, and in fact this can take considerable
skill. This is because not every known integral will be listed there as such; one will
have to cast the problem at hand into one of many standard forms using various
properties true for all integrals. We begin with an example, and go on to list more
such properties. Say you want the integrals of 2% and z3. Either you can guess
them yourself or look them up under [ z"™dz. But you will never find the integral
of 322 + 523 in the Tables, (nor should you buy Tables which list it) because you
can relate the latter integral to the former by using the following result.

Linearity property
If the integral of f and g are known (to be F' and G), then

/z(af +bg)dz = aF(z) + bG(x) (2.1.28)

where a and b are constants and where the constant on the right-hand side and
lower limit on the left-hand side are suppressed. The correctness of these results
follows either by differentiation (which tells us that the derivative of the right-hand
side must equal the integrand) or the geometrical definition in terms of areas.

Here are a few more properties of integrals, with more to follow later.

Composition rule

Lbf(x)da: = /lcf(x)dx + /be(x)dx. (2.1.29)
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The truth of this is obvious in the geometrical construction if a < ¢ < b. We will
demand that it be true for other orderings as well. It then follows that

/abf(z)dx + /baf(ac)dx
/a ’ fe)ae

In other words the integral changes sign under the exchange of the limits.

/a f(z)dz = 0 so that (2.1.30)

- /baf(a:)da: (2.1.31)

Integration by parts
Next we consider the integral of a product of functions. Let us begin with

D(FG)=Fg+Gf (2.1.32)

and integrate both sides with respect to = between the limits z; and x5 to obtain:
3} xo
FG|32 = / Fgdzx +/ G fdzr. (2.1.33)
1 T
This is usually written by rearranging terms as follows:

T2 To
/ Fgdx = FG|3? —/ Gfdz (2.1.34)

x) z1

and is referred to an integration by parts. The G F term, coming from the end points
is called a surface term. There is a subtle point connected with Eqn. (2.1.34). The
left hand side has a definite numerical value for any given F' and g. The right-hand
side, however, depends on G, which is not uniquely determined by the given g.
You should do the following exercise to resolve this point.

Problem 2.1.1. Show that if we change G to G + ¢, the right-hand side does not
change, due to a cancellation between changes in the two terms.

Here is an example to show how all this works. Say you know how to integrate
and cosz and want the integral of z cosz. So we choose F = z and g = cosz.
We find

o T2
/ rcoszdr = zsinz|z? — / sinz - 1dz = [zsinz +cosz];’  (2.1.35)
T x

1 1

Notice that had we chosen the integral of cos z to be sin z + 17, nothing would have
changed; two extra terms +17(z2 — x;) would have appeared and canceled in the
middle expression above. Note also that had we chosen F = cosz and g = z, we
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would have obtained another integral equal to the original one, but not any easier
to evaluate, since it would have had z?sin z in the integrand.

Dummy variables
Consider the sum
S=co+c1+ca...c10 (2136)

where the ¢’s are a given set of numbers. The sum can be written in many equivalent
ways, of which two are shown below:

10 10
S=>cn=) cm (2.1.37)
0

n=0 m=

The indices n and m are dummies since nothing depends on the specific name we
use for the index: in both cases the indices m or n run over the same eleven values
and the sum is over the same terms cg through cjg. Likewise the symbol z in the
integral on the left-hand side of Eqn. (2.1.13) is called a dummy variable in the
sense that nothing changes if we replace it by another symbol, say z’. In all cases
the integral stands for the area under the same function between the same limits.
Thus for example
19 19 19
(z)dz = (z")dz' = f(o)de (2.1.38)
3 3 3
and so on.
After this set of rules, we turn to a few tricks of the trade.

Problem 2.1.2. Find the integral of \nx using integration by parts by rewriting
Inz = 1-Inz. Make the right choice for which factor is to be F and which is to
be g.

Problem 2.1.3. Consider the function
o0
F(n) = / z"e %dx (2.1.39)
0
where n is a non-negative integer. Show using integration by parts that F(n) =
nF(n — 1) and that F(n) = n!. The gamma function is defined by T'(n) =
F(n —1). What is 0! as defined by this integral?

Problem 2.1.4. Consider f0" cos? zdz. Give arguments for why this must equal

f0" sin zdz. By adding the two integrals and averaging, and using a well-known
trigonometric identity, show that

™ s
/ cos? zdx = / sinzdz = /2. (2.1.40)
0 0

This is a very useful result.
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2.2. Some Tricks of the Trade

The tricks one uses to evaluate integrals are so numerous that we cannot hope to
cover them all here. There are however two fundamental ploys that are frequently
employed. These are

e Substitution or change of variable.
e Differentiating with respect to a parameter.

As an example of the former consider

F(;L'l,afz) = / i fdx (221)
2 2

Let us say we only know to integrate powers of z. The integrand f here does not
have that form. We will now bring it to that form by a change of variable. Let

u =z (2.2.3)

Our original goal was to plot f as a function of z, chop the region between z; and
zo into segments of width dz, evaluate the products f(z)dx over the segments and
add them all up in the appropriate limit. Our hope is that the job will be simpler in
terms of u. Suppose we express f in terms of v and plot f(u). Along the u-axis
the points u; = x3 and uy = z3 define the limits. Every value that f took as a
function of x it will now take as a function of u at the corresponding point u = z3.
We do not however want the area under f{u) between uy and us., i.e., we do not
want [ f(u)du. We want Y, f(u;)dx, which is the old area we began with. Thus
given two nearby points separated by du, we want to form the product f(u)dz,
where dz is the corresponding separation along the z-axis. It is clear that since z
is a function of u 4
€T

dr = —du. 2.2.4)
du

Thus the integrand for the u-integration is f(u)dz/du, where the factor dz /du is
to be expressed in terms of u. Going back to our problem

v = 3 (2.2.5)
du g2 (2.2.6)
dz
dx 1 1
— = 33" 397 (2.2.7)

du du

(2.2.8)

flode = T 307 = sy 22
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3
) u2=22 du
/m1 f(z)dz /m:x? 3(u + 12 (2.2.9)

Switching once more to v = u + 4 we finally obtain

/z2 z2dx _ /u2=z§+4 dv 2.2.10)
= (11)3 +4)2 ‘U1=ZL':13+4 31}2' L.

1

It is now trivial to integrate 1/v2 between the given limits.

Let us recall the main point in the above manipulations. Given a difficult
integrand, we hope that going to a new variable, we can end up with the simpler
integrand. The new integrand is however not just the old one expressed in terms
of the new variable, but that times the Jacobian

J (%) _ %_ 2.2.11)
Thus (z2)
/ f(x)dz:/ Fz(u)J (f) du (2.2.12)
z1 u(xy) u

with the limits expressed in terms of the corresponding variables.

Our mission is accomplished only if the new integrand is simple. In our
example, the denominator of the original integrand did simplify upon going to
v = z3 + 4, but the numerator did not. But fortunately it got canceled by the
Jacobian. Conversely, the substitution of v would not have been very effective
without the x? in the numerator.

Problem 2.2.1. Evaluate fff a‘ff — by switching to § defined by = = asiné.
Assume 0 < x < /2.

Problem 2.2.2. Show fooo ;% = 5o by switching to 0 defined by r = atand.
Make sure the change of variables is sensible, namely, that every x in the range of

integration be reached by some choice of 6.
Problem 2.2.3. Evaluate [, eVZd. Show that [;° e=%'dz =T(3).

Problem 2.2.4. To get some familiarity with what kind of manipulations are legal,
let us compute C (R), the circumference of a circle £ +y? = R2. We will find that
part that lies in the first quadrant and multiply by 4. Consider two points on the
circle separated by (Ax, Ay). The arc length between them may be approximated
by the pythagorean distance

2
ds = \/(Az)? + (Ay)? = Azyq/1+ <%> .
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The A'’s are however not independent: If (x,y) satisfies the equation for the circle,

so must the displaced point. Show that this implies %g = —% to leading order in

the infinitesimals. Consequently C(R) = [ds = 4f0R W1+ (%)de. FEliminate y

in favor of z in the integrand and evaluate it by a trigonometric change of variables.
What would be the formula for the arc length of a general curve y — f(z) = 0?

Problem 2.2.5. Evaluate foﬂ/ 2 (;‘fsf:;).

Problem 2.2.6. Find the area enclosed between the curve y = z2 and the lines
y = |zl

Problem 2.2.7. Evaluate fol 2%dz.

Let us now consider the second trick of differentiating with respect to a parameter.

Consider
2

Io(a) = /ooe_ax dz (2.2.13)
0

This integral cannot be evaluated by any of the standard means. On the other hand
if the integral in question had been

Ii(a) = / e~ rdg (2.2.14)
0

we could have changed to v = x2 and evaluated the integral.

Problem 2.2.8. Show that I1(a) = 5.

Let us see how far we can get with Ip(a). The notation itself tells us that the
integral depends on just the parameter a. Its dependence on e can be found by
scaling. In terms of u = V/ax,

In(a) = %/0 e du = %c (2.2.15

where ¢ is a constant independent of a. In the next chapter we will learn how to
do this very important integral and find out that ¢ = %i, so that

Io(a) = %\/§ (2.2.16)

Now it turns out that given Ig(a), we can evaluate a whole family of related integrals
by differentiating both sides of Eqn. (2.2.13) with respect to a. Doing this once we
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find
dI © He—as”
;’i") = /0 c ~—da (2.2.17)
1 i * 2\ _—ax?
~E ; = (“'il) )6’ dz so that (2218)
0
I(a) = / (22)e=%" gy = = [T (2.2.19)
0 4a '\ a
This trick can be used to evaluate
oo 2
I, (a) :/ (z™)e % dx (2.2.20)
0

for n even. If n is odd, we can switch to z? as the integration variable. The details
are left to the following exercise.

Problem 2.2.9. Evaluate I3(a), I4(a).

This business of going inside an integral and differentiating with respect to a
parameter like a seems to make some students a bit uneasy. Let us see why this is
perfectly legal in a general case where

F(a)::/f(m,a)dr (2.2.21)

where it is assumed the limits are independent of a. Consider the following sequence
of operations

Fla+ Aad) = /f(L' a + Aa)dx (2.2.22)

F(a+ Aad) — F(a)

/f(x,a—FAa)dx—/f(x,a)dx (2.2.23)

/(f(z,a + Aa) ~ f(z,a))dx (2.2.24)

Dividing both sides by Aa and taking the limit we get the desired result

dF(a)  [0f(z,a)
» —/ o dz. (2.2.25)

Sometimes we have to be more devious. Recall from Exercise (2.2.2.) that

/ _de _ T (2.2.26)
0

z2 + a? 2a
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By taking the a derivative we can show that

/ Y de 7 (2.2.27)
o (

z2+a?)?2  4a3

Suppose we only knew that

® dx s
/0 2i12 (2.2.28)

and wanted to evaluate the integral with (z2 4 1)? in the denominator. We have no
parameter to differentiate. Then we must introduce one! First we view the given

integral as
® dx
0 332 + a2

evaluated at « = 1. Next we can change to « = ez and deduce Eqn. (2.2.26).
Thereafter we proceed as before in taking parametric derivatives. At the end we
set a = 1. The notion of embedding a zero parameter problem into a parametrized
family is very powerful and has many uses.

Problem 2.2.10. Consider

/lt—l
I= .
0 lnt

Think of the t int — 1 as the a = 1 limit of t*. Let I(a) be the corresponding
integral. Take the a derivative of both sides (using t* = e*'™!) and evaluate d1/da
by evaluating the corresponding integral by inspection. Given dI/da obtain I by
performing the indefinite integral of both sides with respect to a. Determine the
constant of integration using your knowledge of I(0). Show that the original
integral equals In 2.

Problem 2.2.11. Given

o k
/ e **sinkxdr = =73
0 a + k

evaluate fooo ze % sinkzdx and fooo ze %% cos kxdz.
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2.3. Summary

Here are the key ideas to remember at all times:

e The equation

/EQ f(z)dz = F(z) — F(zp)

can be viewed in two ways. First, it gives the change in a function F(z)
between z¢ and z given that its rate of change is f(z), in terms of the
definite integral over f between the said limits, assuming the integral can be
found somehow, say as the area under the graph. Conversely, if we know
any integral F of f, this equation expresses the definite integral in terms of
the latter. The members of the family of integrals differ by constants which

drop out in the difference computed in the definite integral.

/f(xdx— / f

/mm><m:Fm l/f G (2)d

/ f(2)dz = /() f<z<u>>d”;(“)du,

where dfigf‘) = J(2) is the Jacobian.
If
T2
= / f(z,a)dzx
then,

dx.

dF(a)  ["*0f(z,a)
—/z Oa

1






CALCULUS OF MANY VARIABLES

We now turn to differential and integral calculus of many variables, in that order.
Most of our discussion will be limited to the case of two variables since it illustrates
most of the new ideas. We will however occasionally discuss three variables since
we live and solve problems in three dimensions.

3.1. Differential Calculus of Many Variables

Let us begin with a function f(z,y) of two variables. For example (z,y) could
label points in the plane and f could be some function such as the temperature
T(z,y) or h(z,y), the elevation above sea level.
The partial derivative with respect to, say z, is defined as
flz+ABz,y) - f(z,9)

of )
— _=__ x = . . 1 . 1
oz fo= lim Az G.L.D

Thus, to find the partial derivative along z, we imagine moving infinitesimally in
just the z-direction and measuring the rate of change. Operationally this means that
while taking the z-partial derivative, we treat y as a constant since it is indeed held
constant. A similar set of relations exist for f,, the derivative in the y-direction.
Consider for example the following function and its partial derivatives:

flz,y) = 2%+ 2zy° (3.1.2)
fo = 3224242 (3.1.3)
fy = dzy. (3.1.4)

Conversely the z-partial derivative determines the change in the z-direction:

0
f($0 + AI, yO) - f(IO»yO) + élﬁo,yoAI + - (315)

where (xg, yo) is some point in the plane and the partial derivative is evaluated
there. The ellipsis refer to higher order terms. What if we wanted to move to a

51
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point displaced in both the z and y directions? We do this in two stages:

f(zo+ Az, yo + Ay) — f(z0,y0)
= f(zo+Az,yo+ Ay) — f(xo + Az, yo) + f(zo + Az,y0) — f(z0,y0)

0 0
= —f Ay + -5]: Az
dy zo+Az,yo z Z0,Y0
0
= ﬂ _f Axr +---
83} Zo,Yo Oz Zo,Y0

where in going to the last equation we have ignored the change in the y-partial
derivative as we move from (zg, yo) to (xo + Ax,yo). This is because we wish to
work to just first order in the infinitesimals. (That is to say, the y-partial derivative,
itself a function of two variables, assumed to be differentiable, will change by an
amount proportional to Az. Due to a prefactor Ay multiplying this derivative, the
neglected term is of order AxAy.)

What about a Taylor series with more terms as in the case of one variable?
For this we need to look at higher derivatives. There are four of them at second
order and are listed below, the expressions in parentheses being the values for the
example f = r3 + 22y

2 _ 0 0f

frz = 3= (=62) (3.1.6)
fyy = %Zé = %% (= 4z) (3.1.7)
fay = 881'28fy = %% (= 4y) (3.1.8)
fye = ai,?afx = 8%%—% (= 4y) (3.1.9)

The last two mixed derivatives are always equal to each other for any nonsingular
function.

Problem 3.1.1. Establish the equality of the two mixed derivatives. Go back to
their definitions (given above) and show that both are given by the limits

f:z:y = fy:c
= limagzay—o f(z+Az,y+Ay)—f(wzigz)—f(x,y+Ay)+f(w,y)‘

The Taylor series now goes as follows:

0 0
flzo + Az, yo + Ay) — f(z0,y0) = 6—fAz + —fAy
T oy

1
+§ [fa::z(A:L‘)2 + fyy(AY)? + foyAzAy + fyzDyAz] + -
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where it is understood that all derivatives are taken at (zg, yg) and where we have
not used the freedom to lump the last two terms using the equality of the mixed
derivatives.

Problem 3.1.2. Find the partial derivatives up to second order for the function
flz,y) = 23 + 2%y5 + y*. Observe the equality of the mixed derivatives.

Let us now consider the question of maxima and minima for functions of many
variables. Let us recall how it goes for the case of one variable. We plot f on
one axis and z along the other. We follow the undulations of f as we vary z. A
stationary point is one where a change in = does not produce a change A f to first
order in Az. Thus the first derivative, which is the ratio of the former with respect
to the latter, vanishes at this point. This point could be a maximum, minimum, or
a point of inflexion. To decide between these alternatives we compute the second
derivative. The three cases listed above correspond to the second derivative being
negative, positive, and zero, respectively. We are generally more interested in the
case of a maximum or minimum.

Consider now a function of two variables, f(z,y). Let us plot above each
point in the x — y plane the value of f measured in the z direction. Consider for
example the function f = /R? — 22 — 42, with |z| ,|y| < R and the positive
branch of the root. It is clear that the profile of f is just the upper hemisphere of
the sphere x2 + y2? + f2 = R2. It is also clear that the north pole, situated on top
of (0,0) is a maximum. How does this come out of a calculation?

Once again we look for stationary points, defined to be points where a change
in x or y produces no change in f to first order in either Az or Ay. This change
is given by

Af = fzAz + fyAy. (3.1.10)

Even though it is the sum which has to vanish at the stationary point, we can
argue that each piece must separately vanish. This is because the first variation
has to vanish for any choice of the Azx or Ay. If we choose just one of them
to be nonzero, the corresponding partial derivative must vanish; there is no room
for cancellations between the two terms. Consequently both the partial derivatives
must vanish at a stationary point:

fz = fy = 0 at stationary point. (3.1.11)
In our example f = \/R? — 22 — y2, we find the partial derivatives
- - ¥
fom ———— b= (11D

indeed vanish at the origin. To further diagnose this as a maximum, we must clearly
look at the second derivatives. A simple calculation shows that at the origin

1

fzx - fyy =T

- (3.1.13)
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with the mixed derivatives vanishing. Going back to the Taylor series

Af = —% [(Az)?+ (Ay)?]  (3.1.14)

f(Az, Ay) = £(0,0)

to quadratic order. Notice that we have dropped the first derivatives since we
are at a stationary point. [t is clear that no matter which direction we move in,
Af < 0. Thus we are at a maximum. (Had we chosen the negative square root for
f carlier, we would have been dealing with the lower hemisphere and the origin
would have been a minimum with Af > 0.) We had no trouble here since Af
had a unique sign which could be seen by inspection. This in turn was because the
mixed derivative vanished, and the infinitesimals (Axz)? and (Ay)? were positive
defimite: if they both multiplied positive (negative) second derivatives, we had a
minimum (maximum).

Consider next a slightly more general stationary point for some f such that
the mixed derivatives are still zero, but fz; and fy, have opposite signs, say with
fzz > 0. This is a case where moving along = causes f to increase, while moving
along y causes it to decrease. This is called a saddle point. This is because the
shape of the function resembles that of a saddle in the vicinity of its center: as we
move along the horse the function rises, while as we move transverse to the horse
it falls.

Consider finally a function with all three second order partial derivatives
nonzero. It is not possible now to say what is happening by just looking at the signs
of the second derivatives, because Af has cross terms Ax Ay in its expansion and
this factor is of indefinite sign. Thus there is no simple relation between the sign of
Af and the signs of the partial derivatives. We shall see how to solve this problem
when we learn about matrices. For the present let us note the following. Consider
the case where near the origin

Af = [A(Az)* + B(Ay)?], (3.1.15)

where A and B are both positive. We clearly are at a minimum since f rises for all
displacements. Let us rotate our axes by 45° and use new coordinates 4 = z—%
In terms of these

Af— [ATB)

[(Az4)? + (Ay-)*] + (A - B)Az Az _|. (3.1.16)
Now we know that despite the cross terms, this is just a minimum in disguise. To
see this, we simply have to go back to the old coordinates in which cross terms
vanish. But what about some other problem with cross terms? Will there be nice
coordinates in which cross terms disappear so that the nature of the stationary point
can be read off by inspection? Matrix theory answers this in the affirmative as you
will learn later in Chapter 9.
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3.1.1. Lagrange multipliers

The final topic in this section pertains to locating the maxima or minima of a
function within a submanifold determined by a constraint. For example let

fla,y) =2 —zy+y° (3.1.17)

be the temperature distribution in the plane. Let some bug be restricted to live in a
circle of radius 5 given by the constraint equation

g(z,y) =z*+y2 - 25=0. (3.1.18)

What is the hottest point in this bug’s world? Since this point need not be a real
maximum of the function in the unrestricted plane, it is not necessarily characterized
by the vanishing of all its first derivatives. The solution to this problem lies in
understanding this point in some detail.

As the bug walks around the circle measuring the temperature, it will find that
as it approaches a maximum (minimum) on the circle, the temperature will first go
up (down) and then start going down (up). At either extremum, the variation to
first order will indeed vanish:

df = fedz + fydy = 0. (3.1.19)

We cannot however conclude that each partial derivative vanishes since dz and dy
are not independent, they are chosen so that the displacement is along the (tangent
to the) circle. In other words, they are chosen such that g remains zero before and
after the displacement:

dg = ggdr+gydy=0 which implies (3.1.20)
dy = -Paz. (3.1.21)
9y

If we feed this into Eqn. (3.1.19) we find the following condition for the stationary
point:
fo _fy
gz 9y

at stationary point. (3.1.22)

We can now find the two coordinates of the stationary point given the above and the
constraint equation g = 0. Turning to the given temperature distribution, equation
(3.1.22) becomes
2r—y 2y-—z
2@ 2

(3.1.23)

which implies
T = +y. (3.1.24)
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This, along with the constraint z? + y2 = 25, tells us there are four stationary
points:

(z.y) = £(5/V2, £5/V2) (3.1.25)

Of course we must do more work to see which of these stationary points is really
a maximum as compared to a minimum or saddle point.

Problem 3.1.3. (Very important). If you want to really check Eqn. (3.1.25), sim-
ply eliminate y in favor of x in f using the constraint. Find the stationary points
of this function of just one variable. Alternatively write x = 5cosf, y = 5siné
and vary with respect to 6.

There is an equivalent way to write Eqn. (3.1.22) for the stationary point:

fz = Mg (3.1.26)
fy = Agy (3.1.27)
g(z,y) = 0, (3.1.28)

where ) is called the Lagrange multiplier. The three equations above determine
the two coordinates and one Lagrange multiplier. (If there are several stationary
points, there can be a different A for each.) In this form the result generalizes to
more variables.

Notice that whether we arrive at this result by eliminating one of dz or dy in
favor of the other, the final equations above are symmetric between the variables.
Lagrange invented a clever trick by which the symmetry between the constrained
variables is retained at all stages in the calculation and the procedure for finding
these equations is reduced to finding the minimum of some other function F with
no constraints. Here is how it works. Consider the bug problem. Let us use polar
coordinates r and @ related to z and y by

x = rcosf (3.1.29)
y = rsind. (3.1.30)

These coordinates are chosen because the constraint is simply g = r? — 25 = 0.
Moving on this fixed r curve, we satisfy the constraint. The other coordinate 6 de-
scribes variations within the constrained space. We can write in these coordinates

df = frdr + fodf (3.1.31)

for a general displacement. At the maximum on the circle r = 5, df = 0, but this
only implies fg = 0 but says nothing about f, since the variation dr = 0. Let us
now introduce a new function

F=f-)g (3.1.32)
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where )\ is a constant to be chosen shortly. Its variation is

dF = df —\dg (3.1.33)
= (fo — Ago)dd + (fr — Mgy )dr (3.1.34)
= (fe)db + (fr — Agr)dr, (3.1.35)

where in the last step we have used the fact that g does not vary with 6 since the
latter is chosen to parametrize the constrained surface ¢ = r2 — 25 = 0. Thus f
and F have the same derivatives along the constraint surface no matter ) is. In
particular when fg vanishes so does Fg. At this point the derivative of F normal
to the surface equals f,. — A\g,. Let us now use our freedom in choosing ) to ensure
that this combination vanishes. For this choice, the point in question becomes
stationary with respect to all variations (radial and tangential). This statement is
of course true even in the cartesian coordinates. Thus the point we are looking for
is the solution to

dF = 0 (3.1.36)
= (fz— Agz)dz + (fy — Agy)dy (3.1.37)

with no constraints on the variations. Consequently the following three equations
locate the stationary point and the lagrange multiplier:

fy = Agy (3.1.39)
glz,y) = 0 (3.1.40)

which is what we had earlier in Eqns. (3.1.26-3.1.28).
To summarize:

1o find the stationary points of f, a function of N variables, subject to the
constraint g = 0, find the extrema of F = f — \g with no constraint. The extremal
point and \ are determined by the resulting N equations (the vanishing partial
derivatives of F) and the equation g = 0.

As an example consider the extremization of

flz,y) = 2%+ 2y (3.1.41)
subject to the constraint
g(z,y) =2 +y* —4=0. (3.1.42)

Thus
Flz,y) =22+ 20y — Mz +y% - 4) (3.1.43)
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and the stationary points obey

OF
— = 2z42y—2> =0 (3.1.44)
oz
8F _ gp_ 22y =0 (3.1.45)
0y

2+ = 4 (3.1.46)

The middle equation tells us x = Ay, which upon feeding into the first we find

Mox-1 =0 (3.1.47)
1+
Ax = 2\/5. (3.1.48)
It is now straightforward to plug these values in and to obtain the stationary points
+1
————[V2(1+V5),V8)] At (3.1.49)
V5 + V5
*1
= [\/5(1 ~ V). \/E)} A (3.1.50)
V5 -5

Shown in Fig. 3.1 is the contour plot of f and the constraint surface. Note that
at the extremal points, the contours of constant f are tangential to the constraint
circle. This will be taken up in Chapter 7.

Problem 3.1.4. Repeat the temperature problem done earlier using a Lagrange
multiplier. This time find the value of A as well for each stationary point.

If you have followed these arguments, you will see that the method generalizes
in an obvious way to more coordinates and more constraints.

For example in the case where f and g depend on (z,y, z), you may show
that by eliminating say dz, that the following four equations determine the three
coordinates of the stationary point and one Lagrange multiplier:

fe = Agz (3.1.50)
Jy = Agy (3.1.52)
fo = Ags (3.1.53)
g(w,y,z) = 0 (3.1.54)

Or you could more easily get the equations by minimizing F = f — Ag.

Problem 3.1.5. Find the shortest distance from the origin to any point on the line
x + 2y = 4 by using Lagrange multipliers. Check this by more elementary means:
by first finding the equation for the line which is perpendicular to the given line
and passing through the origin.
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Figure 3.1. Contours of constant f(z,y) = 22 + 2y and the constraint circle 2 +y? = 4 on which
we want to extremize f. The density of lines reflect the height of the function. Thus the stationary
points in the first and third quadrants are maxima, while the other two are minima. Note the tangency
of the constraint circle and the constant f curves at the extrema.

Finally let us ask what happens if there are three independent variables z,y, z and
two constraints g1(z,y, 2) = 0 g2(z,y, z) = 0. If we want, we can still eliminate
two of the differentials, say d~ and dy in favor of the remaining one. It is however
wiser to follow Lagrange’s idea and use

dF = (fz—A1912—A292z)dx+(fy—A191y—A292y)dy+(fz—A1912—A2g2.)dz = 0

(3.1.55)
to obtain
Jz — AM912 — A2g2s 0 (3.1.56)
fy = Ag1y — Aegay = O (3.1.57)
fz— 21912 — A2g2, = 0 (3.1.58)
g1 = 0 (3.1.59)
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g2 = 0, (3.1.60)

which determine the three coordinates of the stationary point and the two Lagrange
multipliers. Notice that the final set of equations treats all three variables sym-
metrically. In many cases it is possible to find the coordinates of the point without
solving for the multipliers. (Recall the bug example.) One then may or may not
bother to find the latter.

Problem 3.1.6. Show using Lagrange multipliers that among all rectangles of a
given perimeter, the square has the greatest area.

Problem 3.1.7. A Statistical Mechanics Interlude. This example shows how La-
grange multipliers appear in Statistical Mechanics. Consider N particles in a
box. According to quantum mechanics, the energies of the particles are quantized
to some set of values or energy levels, €1, s, .... Let n; be the number of particles
in level © with energy e;. The multiplicity or number of distinct rearrangements of
the particles consistent with any given distribution n;, is given by

W (n1,na....) = (3.1.61)

For example if all the particles are in the lowest energy level, we have ny = N,
rest of then; = 0 and W = 1. (Recall that 0! = 1.) If one particle is in the second
level and the rest are still in the lowest, W = N!/(N — 1)! = N, the multiplicity
reflecting the N ways to choose the one who goes up. The question is this: which
distribution of particles, subject to the constraint that the total number equal N and
the total energy equal E, gives the biggest W? Proceed to find this as follows:

e Work with S = InW. Argue that
Inn!~nlnn —n
for large n by approximating the sum involved in lnn! by an integral.
e Write the constraints on the n;’s due to total number N and energy E.

o Treat all n; as continuous variables, introduce Lagrange multipliers o and
B for N and E and maximize S.

e Derive the Boltzmann distribution n; = e~ >0

The multipliers may then be found by setting the total number and energy coming
from this distribution to N and E, respectively. But this is not our problem here.
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Figure 3.2. Integration of a function of two variables. The domain D is shown on the z — y plane.
The integral equals the volume of the cylindrical object standing on top of the domain. We have chosen
to slice the volume in planes parallel to the £ — f plane.

3.2. Integral Calculus of Many Variables

We begin by recalling how we integrate a function of just one variable. First
we plot f(z) along an axis perpendicular to the z-axis, then we select a domain
of integration bounded by the limits z; and zo, then we take a thin interval of
width Az at z, form the product f(z)Az, which corresponded to the area of a
rectangle “standing” on top of that interval and sum over such areas in the limit of
vanishing Az. Geometrically this corresponded to the area of the figure bounded
by the two vertical lines z = z3, and z = z,, the z-axis, and the function f.
There was however an algebraic way to do it, which did not involve actually
measuring and adding areas. For example in the case f(z) = z2, we simply
evaluated [F(z) = z3/3] : The equivalence of the two schemes stems from the
fact that in the algebraic scheme we are looking for an F'(z) whose derivative is
the given f(z), and area construction is the geometric solution to this problem.

Consider now the following straightforward extension of this notion to f(z, y).
We first choose a domain D in the z — y-plane, as shown in Fig. 3.2.

We want to calculate the volume bounded below by the x — y-plane, bounded
above by the function f(x,y), and in the sides by a cylindrical surface whose cross
section in the z — y-plane is the domain D. We denote this by

”m:/Af“””@' (3.2.1)

The notation also tells how we plan to go about computing this. First we take a
little patch in D, of size Az by Ay at the point (z, y), multiply it by the value of f
there to obtain the volume of the rectangular solid with base given by the selected
patch and height f. We then do a sum over such volumes in the limit of vanishingly
small patches and call it F(D). The subscript D in the right-hand side tells us that
the little patches must cover D no more, no less. We use two integration symbols
to tell us we are integrating a function over a two dimensional domain.
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This is the generalization of a definite integral F(z1,x3) in one variable. In
the case of one variable, we also had the option of calling z, as z and studying
the dependence of F on this z, calling the resulting function (defined up to an
additive constant) the indefinite integral of f. All this was possible because the
one-dimensional domain had disjoint lower and upper boundaries so we could hold
the former fixed and vary the latter. In higher dimensions a natural generalization
of this idea does not exist.

To find the integral algebraically we proceed as follows. First we decide to
find the volume of the slab that lies between the two vertical planes at distances y
and y + Ay from the f — z plane, as shown in Fig. 3.2. This is clearly given by
the area of either sheet lying within the solid times Ay. As for the former, it is just
the integral of f(z.y) with respect to z, between the limits z; (y) and z2(y) shown
in the figure. The limits thus depend on the domain D and the present value of
y. The variable y is treated as a constant during this z-integration, as it indeed is
within the slab. The volume of this slab is a function of y. We finally do the sum
over such slabs, or equivalently the integral over y between the limits y; and y2 as
shown in the figure. In summary

Y2 z2(y)
F(D) = / {/ flz, y)d:z} dy. 3.2.2)
Y1 z1(y)

We thus see that the two-dimensional integral can be reduced to a sequence of
one-dimensional integrals. Note that we could just as easily have sliced the volume
into slabs bounded by planes of constant z.

Let us try a simple example: find V (R), the volume of a sphere of radius R,
centered at the origin. Let us find H (R), the volume of the hemisphere above the
z—y-plane and double the answer. The domain of integration is clearly a circle:

D = (z,y, such that 2% + 4% < R?). (3.2.3)

On top of the point (z,y), the height of the hemisphere is f(x,y) =

VR?% — 12— y2. At a given y, the range for z is 11 = —\/R2— 32, o =
/R2 — y2, as you should convince yourself by drawing a sketch of D or by ex-
amining the above equation for D. Thus

=
H(R) = / [ RZ - 22~ y%dz | dy. (3.24)
—R |J—y/R2—y2

Next we argue that the integration over the full circle is four times what we get
from the first quadrant where both z and y are positive. This is clear if you imagine
the sphere with its symmetries. It is also clear even if you have no imagination but
can see that the integrand is an even function of both variables and the integration
region is symmetric about the origin of coordinates. Thus every patch inside the
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chosen quadrant has identical counterparts in the other three quadrants related by
changing the sign of z, of y, or both. Thus

R[ p/R—y*
H(R) = 4/ / R2 — 22 — y2dz | dy. (3.2.5)
0 0

Let us now do the z-integral by the following change of variables:
z = +/R?2-y2sind (3.2.6)
0 < 6<7/2, 3.2.7)
which leads to

0

/2
R2 — 22 —y2dr = / VR2 —y2cosfy/R?% — y2cos 6d6
0

(R% — y*)r /4. (3.2.8)

where the repeated factors in the integrand come once from rewriting f in terms of
¢ and once from changing from dz to df. It is now easy to do the y-integral and
to multiply the answer by 2 to get V(R) = %WRE}.

Problem 3.2.1. Fill in the missing steps.

Problem 3.2.2. By doing the integral of f = 1 over the same domain obtain the
area of a circle.

Consider now the following problem: to integrate f(z,y) over a square of side 2a
centered at the origin. The answer is

I(D) = /“ [ ’ f(ac,y)dz] dy. 3.2.9)

—a —a

The simplification we notice is that the range of z-integration is independent of y.
Thus cartesian coordinates are very convenient to use if D is bounded by lines of
constant z or y coordinates. Things get even easier if

flz,y) = X(2)Y (y), (3.2.10)

that is, if f factorizes into a product of a function X (z) that depends on just 2 and
Y (y) that depends on just y. Let D still be rectangular in shape so that limits on
z are independent of y. Then

I(D) = /y2 Y (y)dy /’”2 X (z)dz, (3.2.11)

Y1 Ty
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0+ A0

€]
y+ay / r\ \r+ar

Polar Coordinates

X X+AX

Cartesian Coordinates

Figure 3.3. Cartesian and polar coordinate systems.

that is, (D) becomes a product of two one-dimensional integrals. This is as
easy as the problem in higher dimensions can get: factorize into a product of
one-dimensional integrals. But notice that the very same problem can look very
nasty in some other coordinate systems. For example suppose we switched to polar
coordinates (r.6)! shown in Fig. 3.3

They are defined by

ro= Vz2+y2 f=tan" 'Y (3.2.12)
X

or the inverse relations
x = rcosf y =rsind (3.2.13)

In this coordinate system, neither will the integrand factorize nor will the limits on
each variable be independent of the value taken by the other.

By the same token, a problem that looks nasty in one coordinate system could
possibly be simplified by going to a different system. Let us go back to the volume
of the sphere. The integrand and domain were

flz,y) = +/R2%— 22— y? integrand (3.2.14)

22 +y? < R? domain. (3.2.15)

It is very clear that the problem will be a lot simpler if we use polar coordinates.
Indeed we find:

f(r,8) = +/R?%—r2 integrand (3.2.16)
r < R domain. (3.2.17)

1Sometimes the polar coordinates are referred to as (p, ). (p, @), (v, 8), or (v, ¢).
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Notice how f in the new coordinates has simplified: not only is it a product of a
function of r times a function of ¢, the latter is just unity! Next, the domain of
integration is described entirely by one of the coordinates, so that no matter 6 is, r
will go over this range. How do we actually do the integral in these coordinates?
As in one dimension, it is not enough to just rewrite the integrand and limits in
the new system, we must include the Jacobian. In other words, the area element
dzdy does not simply get replaced by drdé. Indeed the latter does not even have the
dimensions of an area. What we need is a Jacobian J (r, ) that needs to be inserted
to ensure that we are still computing the same object (the volume) as before.

The first step is to better understand the cartesian system. Given a plane, we
pick an origin. Then we draw lines of constant r and y, the former are parallel
to the y-axis and the latter are parallel to the z-axis, as shown in Fig. (3.3). The
intersection of two such lines of constant coordinates defines a point. For example
the lines z = 3 and y = 4 meet at the point we call (3,4). To perform a two-
dimensional integral, we draw two constant-z lines with coordinates = and z + Az
and two constant-y lines with coordinates y and y + Ay. Their intersection encloses
aregion of size Az Ay which we then multiply by f(z,y) in doing the integration.
We finally take the limit Az, Ay — 0 in defining the integral. All this is understood
when we write [ dzdy. Figure 3.3 summarizes all this. Let us repeat this with
polar coordinates. To locate a point, we first draw a curve of constant coordinate
r, which is just a circle of radius r. Then we draw a curve of constant §, which
is just a ray going from the origin to infinity at an angle 6 with respect to the
z-axis. The intersection of these two curves defines the point called (r,8). To do
integrals, we draw another constant r curve at r + Ar and another constant  curve
at  + A6 and multiply the enclosed area by f(r.8). What is the enclosed area? It
is clear from the figure that the enclosed area has the shape of a rectangle of sides
rAf and Ar. (All right, it is not quite a rectangle since the constant ¢ lines are
not parallel and the constant r lines are curved. But these objections vanish in the
limit of infinitesimal patches.) Notice that the area is simply given by the product
of the two lengths Ar and r A6 because r, @ are orthogonal coordinates: curves of
constant  and 6 meet at right angles. To summarize, what we have learned is that

de dy — rdrdf (3.2.18)
J(r,80) = r. (3.2.19)

Let us notice that with the Jacobian in place, the integration measure has the
right dimensions. The factor r which converts the infinitesimal change in 0 (at fixed
7) to the corresponding displacement rdf is called the scale factor corresponding
to 6, and is often denoted by hg. The scale for r is unity since dr is itself the actual
displacement, Likewise the scale factors for the cartesian coordinates is unity. The
Jacobian is the product of the scale factors in orthogonal coordinates.

If we go to three dimensions, there are two popular coordinate systems besides
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Figure 3.4. The cylindrical coordinate system.

the cartesian. One is called the cylindrical coordinate system with coordinates:
p = Vz2+y? (3.2.20)
6 = tan"ly/z (3.2.21)
= z. (3.2.22)

[

The system is shown in Fig. 3.4.

The surface of constant p is a cylinder of radius p with the z axis as its axis
since p measures the distance from the z axis. The surface of constant ¢ is like
a door hinged on the z axis, making an angle ¢ with the z — z plane. These
two surfaces intersect on a vertical line where the door penetrates the cylinder.
Finally the surface of constant z is a plane a distance z above the = — y plane. It
intersects this vertical line at one point, called the point (p, ¢. z). Note that this too
is an orthogonal coordinate system. You should prove that the scale factors (factors
which convert a change in one coordinate with the other held fixed) and Jacobian
(product of scale factors for an orthogonal system such as this one) are

hy = lhy=phy=1 (3.2.23)
J(p,¢,z2) = 1-1-p (3.2.24)

This means for example that at fixed p and z, an infinitesimal change d¢ causes
the point to move by hgdé = pd¢. Consequently pdpd¢dz is the volume trapped
between surfaces infinitesimally separated in all three coordinates.

The other popular coordinates are spherical coordinates, shown in Figure (3.5).
They are related to cartesian coordinates as follows:

= 22 +y2 + 22 (3.2.25)
= cos~tz/r (3.2.26)
= tan"ly/z. (3.2.27)
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(r,0,9)

y
X
Figure 3.5. Spherical coordinates.
The inverse of the above is
2 = rcosé (3.2.28)
= rsinfsing (3.2.29)
= rsinfcos¢. (3.2.30)

Since r is the distance from the origin, the constant-r surface is a sphere of radius
r. The constant-¢ surface is once again the door and it cuts the sphere along a
great circle of definite longitude. Finally the constant-4 surface is a cone of opening
angle 260 measured from the z axis. [t cuts the sphere along a circle of fixed latitude.
(Thus @ is zero on the north pole, 7/2 at the equator and = at the south pole.) In
the spherical coordinate system we label a point by picking a sphere of radius r
and then picking a point on it using latitudes and longitudes.

Problem 3.2.3. Show with the aid of figures that

hy = 1 3.231)
he = r (3.2.32)
hg = rsind, (3.2.33)
so that
J(r,0.6) =r2siné. (3.2.34)

Volume integrals (over all of space) are done as follows:

00 oo [e] oo 27 T
/ dzx / dy / dz f(z,y,2) :/ r2dr/ dq‘)/ sinf8déf(r,0, ).
—00 —00 —o0 0 0 0

(3.2.35)
Using the fact that
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s ds

Figure 3.6. Angle subtended by a part of a closed curve.

sinfdf = dcosf = dz, (3.2.36)

T 1
/ sin 6d6 = / dz. (3.2.37)
0 J=-1

This is a commonly used notation. If we are using spherical coordinates, there can
be no confusion between z = cosé and z, the third linear coordinate in cartesian
or cylindrical coordinates.

we may write

Problem 3.2.4. Show that the volume of a sphere is V (r) = %nr3 by integrating
f = 1 over a sphere.

One can easily argue that if the radius of the sphere is increased from r to r + dr,
its volume must increase by S(r)dr, where S(r) is the area of the sphere of radius
r. Conversely, the area of the sphere is

S(r) = dv) _ 4rr2. (3.2.38)

3.2.1. Solid angle

Recall that on a circle of radius r, the arc length ds divided by r gives the angle
subtended by the arc at the center: df = ds/r. Consider next some closed curve,
not necessarily a circle, that encloses the origin as in Fig. 3.6.
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rsin o dé

Figure 3.7. Solid angle.

Next let us divide it into tiny segments small enough that each is approximately
a straight line. If we join the beginning and ending of any one segment to the origin
by straight lines, these lines will have an angular separation df, which is the angular
coordinate difference between the beginning and end of the segment. If ds is the
length of the segment, d¢ will generally not be equal to ds/r, instead

_dScosy

9 (3.2.39)

-
where v is the angle between the normal to line segment and the radial direction.

(Approximating the segment by a straight line and decomposing it vectorially
into radial and tangential part, we see that only the tangential part ds contributes
to change in 4.) Obviously the sum of all these d8’s equals 2. Thus every closed
curve surrounding the origin subtends an angle 2. We wish to generalize these
notions to three dimensions.

The obvious generalization of the circle centered at the origin is a sphere
centered at the origin. Consider a (roughly rectangular) tiny patch on a sphere of
radius r bounded by lines at 8,  + df, ¢ and ¢ + d¢ as shown in Fig. 3.7.

The linear dimensions of this patch are rdf and r sin #d¢ upon invoking the
scale factors for § and ¢. Thus the area of the patch is

dS = rdfrsinfdo (3.2.40)
r2[d cos 6][d¢] (3.2.41)
= r2dzd¢. (3.2.42)
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If we integrate this over both angles or, equivalently, over ¢ and z = cos§ we find
that the area of the sphere is

27 1
r2 / do / dz = 4nr?. (3.2.43)
0 -1

Consider now our patch of area dS on a sphere or radius . We say it subtends a
solid angle d) at the center of the sphere where

Q2 = dS/r?. (3.2.44)

Conversely a patch on a sphere that subtends a solid angle d{2 has an area
r2dQ.
We just saw that the area of a patch of angular width d¢ and d@ on a sphere
of radius r is
dS = r?[d cos6][dg) (3.2.45)

from which it follows that
dQ = [dcosb][d¢] = dzdo. (3.2.46)

A very useful result is that the total solid angle is 47:

27 1
/dQ :/ d(b/ dz = 4r. (3.2.47)
« 0 -1

Let us next surround the origin by any closed surface and divide it into tiny
patches of area dS. Choose the areas so that they are bounded by constant  and
¢ curves. Then each area subtends a solid angle d2 = d cos §d¢ about the origin.
One such patch from a surrounding surface is shown in Fig. 3.7. It subtends the
same solid angle as the smaller one on the sphere. Note that this area will not
generally lie in a plane that is perpendicular to the radial direction, and d©) will
be less than dS/r2 by factor which is the cosine of the angle between the radial
direction and the normal to the area. In other words

dS cos~y

0 =222 (3.2.48)

r
where v is the angle between the normal to the surface (pointing outward if it is
part of a closed surface) and the radial direction.

The sum over all the patches of such solid angles clearly adds up to 47. We
shall return to this point in Chapter 7.

Problem 3.2.5. Find the moment of inertia I of a uniform (constant density) disc
of radius R and mass M about an axis through its center. Recall that for any
object

I= / p(r,0)r?rdrdd (3.2.49)
object
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where p is the density or mass per unit area. Repeat for the case where the density
increases linearly with v, starting at O at the center, but the object has the same
mass. Before doing any calculations, explain which will be larger and why.

Evaluation of the gaussian integral
Now we provide the method for the evaluation of the gaussian integral

I(a) = /oo e~ 4z (3.2.50)
0

First let us calculate 2 by extending the lower limit to —oo. Then we manipulate
as follows:
o0 2 o0 2
/ e dx - / e % dy (3.2.51)

27
/ do / rdre=®" (3.2.52)

21(a)-2I(a)

= 5/ dse ™% (s =r?) (3.2.53)
0
= I (3.2.54)
a
I(a) = %\/? (3.2.55)

The key step consists of recognizing the product of two one-dimensional integrals as
a two dimensional integral over the plane and then switching to polar coordinates.
The Jacobian r now allows us to change variables to s = r2. You should convince
yourself that this trick only works if the limits of the gaussian integration is from
0 to co. What goes wrong if the upper limit is finite?

Problem 3.2.6. Find the volume of a cone of base radius R and height h.

Problem 3.2.7. (Advanced). Consider the change from (z,y) to some more gen-
eral coordinates u(z,y),v(z,y). Thus each point (u,v) corresponds to the in-
tersection of constant-u and constant-v curves. These curves need not even meet
at right angles, i.e., the coordinates need not be orthogonal. What is the Jaco-
bian now? Our job is still to find the area of the patch bounded by the curves
labeled u,u + Au,v,v + Av. We are now looking at the area of a parallelo-
gram rather than a rectangle since the coordinates are not necessarily orthogonal.

N

Now, the area of a parallelogram whose adjacent sides are the vectors @ . b is
—

A=|a x b|=|ab sin9| By drawing a sketch of the constant u,v curves show

that in this case @ = ( i % + Jvau)Au and b = =(1 Bz -+ ] )Av Using the
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fact that the cross product may also be written as azby — ayby show the general
result

J (ﬂ) _ |0z 0y 0z 0y| (3.2.56)

uv [Ou dv ov Ou |

Show that this formula reproduces the Jacobian for polar coordinates derived
earlier.

Problem 3.2.8. Find the volume generated by revolving around the y-axis, the
figure bounded by the z-axis. the line © = 4, and the curve y = r2.

3.3. Summary

Here are the main results from this chapter.

e You must know the definitions of fg,fy, fzy = fyz. €tc., and how to evaluate
them.

e The change in f(z,y) due to a change in its arguments is

9f
Jdy

1
5 [fez(82)® + fuy(B0)* + feyAzAy + fyeByAa] + -

9]
flzo+ Ar,yo + Ay) = flzo,0) = S-A + LAy

There is an obvious generalization to functions of more variables.

e A stationary point of f is where df, the first order change, is zero. At this
point fz = f, = 0. This could be a maximum, minimum, or saddle point.

e To extremize a function f(x, y) subject to the condition g(z, y) = 0, minimize
F = f — Ag, where X is the Lagrange multiplier. The resulting equations are

fz = Agz
fy = /\gy~
glz.y) =0

The generalization to more variables and more constraints is obvious.
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Y2 2 (y)
Fo)= [ [ s(ewie| d
Y1 z1(y)

which means that to integrate a function f(z,y) over a domain D, first fix
y, integrate f at this fixed y as a function of just z (treating y as a constant)
between limits that depend on y and D; and then do the integral over y
between limits set by D. You are also free to integrate in the opposite order.

e Know the relation between polar coordinates (r.6), also called (p.8), or
(p. ¢) and cartesian coordinates in the plane

r =rcosf y =rsind

r =2+ y? 9 = arctan 2.
£

Know that in three dimensional cylindrical coordinates one introduces in
addition a z-coordinate and invariably refers to the coordinates in the z — y
plane as p and &.

e Know the spherical coordinates in three dimensions

V4 1
r= a2 4+y2+ 22 6 = arccos —————— ¢ = arctan <
X

22+ y2? + 22
x = rsinfcos ¢ = rsindsin ¢ z =rcosé.

¢ If you go to noncartesian but orthogonal coordinates u1, ug, ..., first identify
scale factors h; such that h;du; is the displacement under a change in just
u;. Then the Jacobian is J = hiho---. In 2-dimensional polar coordinates
hp =1, hg = p, and in 3-dimensions, h, = 1 = h,, hg = p in cylindrical
coordinates, and h, = 1, hg = r, hg = rsind in spherical coordinates. Thus

for example
oo [ee) o0
/ dw/ dy/ dzf(z,y,2)
- 00 - 00 - 00

oo T 27
—>/ r2dr/ desine/ dof(r.0,6)
0 0 0

Note that often one uses z = cos @ while working with spherical coordinates.

e One calls dcosf do = dz do = df2 an element of solid angle. The total

solid angle is
1 27
/dQ=/ dz/ d¢ = 4r.
-1 0
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e The solid angle associated with a tiny patch of area is

dS cos
40 = _27
r

where ~ is the angle between the normal to the area (pointing away from the
origin if it is part of a closed surface) and the radial direction.

© 2 T
/ e ¥dr = ,/—.
oo a



INFINITE SERIES

In Chapter 1, we made a passing reference to series when we discussed the Taylor
expansion. We now return to the subject of infinite series for a fuller treatment.

4,1. Introduction

A series is a sum of the following form:

N

sN:Zan 4.1.1)

n=0

where a,, is called the n-th term. It is assumed that the algorithm for generating
the term for each n is provided. An example is a,, = Z&T (In some cases the
series may begin with n = 1, for example if a,, = 1/n2.)

We will assume unless stated otherwise that, like in our example, the terms
are all positive and decreasing with n.

If N is finite, so is the sum, since the individual terms are finite. The question
is what happens as N — oo? When will the sum of infinite numbers be finite?
More precisely, will the sum converge, as per the following definition?

Definition 4.1. The series converges to S if
|S —Sn| < e for N > N(eg), (4.1.2)
where S is the sum to N terms.

For the most part we will simply like to know if the infinite sum is finite and
not care about what the finite value of the sum is.

Let us begin with a simple example that sheds light on many of these questions.
Imagine that we have invited an infinite number of guests for a pizza party and we
have just two pizzas. So we make up the following rule for the guests: they enter

75
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one by one and each person gets to eat half of whatever is left. This way no one
goes empty handed. The total consumption is given by the following infinite series

S

14+1/24+1/4+1/8+ -+ (4.1.3)
oo (4.1.4)
0

We know that the sum is bounded by 2 since it represents the total amount of pizza
eaten and we started with just 2. We also know that if we stop the sum at any
finite number of terms, say N, the sum will be less than 2, but this difference can
be made as small as we want by choosing a large enough N. Thus we say that the
series converges to the limit 2. This means that given some ¢ however small, we
can find an N (g) such that the partial sum

N
SN = ZT" (4.1.5)
0

differs from the limit by less than ¢. To analyze this problem more carefully, let us
recognize that it is a special case of a geometric series in which each term is some
positive ratio r times the previous term, » = 1/2 being the value in our example.
Let us choose the first term of the geometric series to be 1, since any other case can
be found by rescaling the answer. Let us determine the partial sum of the geometric
series as follows:

Sy = l4r+r243 4. 42V (4.16)
rSy = r4ri4rd4..pNHL (4.1.7)
Subtracting, Sy(1—r) = 1-rN*1 (4.1.8)
1_,,.N+1
Sy = - (4.1.9)
1—7r
1 N+1
= - (4.1.10)
1—r 1-7r

The last form tells us the whole story. As long as r < 1, the sum approaches the
limit Soo = S = ﬁ, given by the first term, whereas at any finite N the sum
differs from the limit by the second term. In our example this sum is 1_—11/2 =2
as anticipated. As for the approach to the limit, the requirement

PN+1
< ¢ implies (4.1.11)
1—-7r
Ine(l -
N > N(e) ne(l=r) (4.1.12)
Inr

Notice that as long as 7 < 1, such an N can always be found and the series
converges.
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Problem 4.1.1. In our example, if we want 2755 of pizza to be left over, show that
N(2755) = 55. (Choose the base of the logarithm wisely.)

Not all series can be handled as completely as the geometric series where the
convergence and the approach to the limit are so clearly calculable. We now turn
to more general series and ask how we are to know if they are convergent.

4.2. Tests for Convergence

Consider the generic series

S = ian. (4.2.1)

n=1

There are many ways to tell if this series converges. We study a few common tests.

The comparison test
If b, is a convergent series, so is our series if a, < b, for all n.

We will not attempt to prove this result which is intuitively obvious. It is also
clear that even if a,, > b, for a finite number of terms, the result is still the same
since we can do the sum by first setting these terms to zero (thereby restoring the
inequality) and adding back their finite contribution at the end. The main point
is that the convergence of the series is not decided by any finite number of finite
terms at the beginning, but only by the endless string of terms out to infinity. For
example the series with a,, = %29 converges while a,, = m diverges even
though earlier terms in the former dominates their counterparts in the latter.

The converse of the above result is that if a,, > b, and the latter diverges, so
does the former. Nothing definite can be said of a series which exceeds term by
term a convergent series or one that is bounded term by term by a divergent series.

Problem 4.2.1. Consider the series > oo 11/ n? which goes as follows

1+ 1/441/9+1/16+---1/49+1/64 + - + 1/152 + - -
: 4 N ,

N~ v

2 terms 4 terms 8 terms

Bound the sum of each bracketed set of terms by replacing each member in the set
by the largest member in the set. Show convergence by comparing to a geometric
series.

Problem 4.2.2. It was stated that a,, = 1/n is a divergent series. Show this by
comparing it to a series with a, = 1/2 for all n, by grouping terms so that upon
replacing terms in any group by the smallest member of the group we get 1/2.
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Problem 4.2.3. Given that a, = 1/n diverges what can you say about ay =

1
1000v/n °

Ratio test
The series converges if
. Qn+l
r= lim —2F
n—oo  ap

< 1. (4.2.2)

The logic of this test is that if the above condition is satisfied, we may treat the
far end of the series as a convergent geometric series as follows. First note that the
ratio of successive terms approaching the limit » means that it will not deviate from
r, and in particular will not exceed r, by more than some arbitrarily small ¢ after a
corresponding n = N (¢) is crossed. The remaining terms are clearly bounded by
a geometric series with ratio r + ¢ < 1. (Given an r < 1 we can always find an
€ > 0 such that r + ¢ < 1 to proceed with this argument.)

It follows from this argument that if » > 1, the series diverges. If r = 1, more
careful analysis is needed.

Consider as an example the series with a,, = n/3™. The limiting ratio is

p— fim PFL_ L (4.2.3)
n—oo  3n 3
showing the series converges. On the other hand in the case of a,, = 1/n
r= lim —— =1. (4.2.4)

n—oon + 1

We cannot say using this test if the series converges. Note an important fact:
although for any finite n, the ratio is less than 1, this is not enough for convergence
— it is the /imit as n — oo that matters.

The integral test
The sum 3_°7 | f(n), where f is monotonically decreasing, converges or not ac-

cording as fL f(z)dz converges or not, as the upper limit L is sent to co.

The logic of this test is apparent in Fig. 4.1.

It is clear from the figure that ch” f(n) equals the total area of rectangles, of
height f(n) and width 1, the first two of which are shown. It is obvious that the
integral, between the same limits, is less than the sum. Consequently the divergence
of the integral ensures the divergence of the sum.

It is also clear from the figure that the sum from n = 2 onwards, is given once
again by rectangles, but these begin with what used to be the second rectangle in
the sum from n = 1 onwards. Mentally shift the rectangles to the left by one unit
and you can see that the sum is now bounded by the integral from z = 1 to co. It
follows that if the integral converges, so must the sum from n = 2 onwards. Since
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f(x)

\—

1 2 3 X

Figure 4.1. Integral test for convergence.

the n = 1 term makes a finite contribution, it is clear that the sum and the integral
(as the upper limit goes to infinity) converge or diverge together.

Whereas the ratio test was inconclusive for a, = 1/n and a, = 1/n? since
r = 1 in both cases, the integral test tells us that the former is divergent and the
latter is not since

L
d
/ T L xasl — oo (4.2.5)
X
while
Lde
/ S ~1/Las L — oo (4.2.6)
X

In applying the test you can save yourself some trouble by modifying the
integrand without changing the outcome. For example if

£(n) 3n?+4n +6
n)=—
nd+12n3 +4n + 2’

you need just look at the integral of the large n limit of the integrand, f ~ 3/n2.
Likewise you can also replace the given f by another which is everywhere smaller
(larger) and argue that if the latter diverges (converges), so does the given one. For
example you may not be able to integrate f(n) = e’ /(1 + n?), but you know it
converges because the larger integral over just 1/(1 + n?) does. In this example,
as well as in everything else you do, you get a lot more out of what you learn if
you understand why things work.

2 .
Problem 4.2.4. Test for convergence the series with (i) a, = 7»’%-_1 (ii) an =
n! 383"

s, (i) an = 1/(nlnn), (%) an = In(1+1/n), &) an = 5= and (vi)
an = 1/(nn/™). For the last part use z™ = e™"%. Assume all the series begin
with n = 2. Try both the ratio and integral tests.
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Problem 4.2.5. Test the following for convergence: (i) f(n) = m, (i)

fln) = ﬁ (iii) f(n) = =, (V) f(n) = —ri—. Assume in all cases that
the sum goes from n = 2 onwards.

Problem 4.2.6. Test for convergence the series with a, = I O T e
an=(1=1/n)" an = 35 an=In (243).

There are many more tests, but armed with the above you should be able to deal
with just about every situation you will meet as an undergraduate.

Absolute convergence
We will discuss series with nonpositive terms very briefly, offering no proofs.

Definition 4.2. A4 series with terms of both signs converges absolutely if the sum
with all terms replaced by their absolute values converges.

Thus, for example, of Y7°(—1)"*!/n? converges to 72/12 as it stands, and
to 72/6 if we use the absolute values. Thus it is absolutely convergent. On the
other hand the series

S=1-1/2+1/3—1/4+ - (4.2.7)

certainly diverges if we use the absolute values whereas the sum given above con-
verges to In 2.

Definition 4.3. A series which converges with the minus signs in place, but not
without, is said to be conditionally convergent.

In this book we will be only interested in absolutely convergent series. The adjective
absolute may be omitted, but is to be understood.

A result you may find useful is that if the signs alternate and the terms are
monotonically decreasing in magnitude, the series converges. We will not prove
this.

4.3. Power Series in z

The series considered so far had the feature that a,, depended just on n. Thus the
series, if convergent, represented just a number, say 2, in the pizza example. We
now introduce a variable z into the series by considering a power series
[ee)
S)=>_anz™ 4.3.1)

n=0
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We can think of all previous cases as the above restricted to z = 1. But with z in
place, a new feature appears: the series may or may not converge depending on the
value of z. We deal with this series exactly as before. Let us take the ratio, which
now depends on z and ask when it will imply absolute convergence:

n+1
r(z) = lim |22F2 (4.3.2)
n—o00 anx"
= |z] lim |22+ = |z 4.3.3)
n—oo n
It follows that the series converges for |z|r < 1 or
1 . an
|z| < R=—= lim 4.3.4)
T m—0 |any

where R is called the interval of convergence, —R < = < R.}

Since we can associate with every point in this interval a limit, we have defined
a function in this interval. In particular, if the coefficients a,, form a Taylor series,
an = f™(0)/n!, the series defines a function whose n-th derivative at the origin is
f™(0). It should be clear that if = were replaced by z — 2 say, in all of the above,
r would still be the same, but the interval of convergence would be centered at
r=2.

Let us recall how the ratio test went for the exponential series:

> .1'
zﬂ: - (4.3.5)

Since 7 = limp—o0o 1/(n + 1) = O,we see R = oo, and the series converges
for all finite . The same was true for the sine, cosine, sinh, and cosh functions.
On the other hand in the case of

1
LTI T, (4.3.6)

R =1, and we need |z| < 1 for the series to converge to the function on the
left-hand side. Beyond this, the function has a life of its own, but the series is
meaningless. In Chapter 6 we will learn how to get around this.

Problem 4. 3 1. Find R for thefollowing series: (i) ch’o 2“,”,27:2, (i) 37 (1—1)2,

n

(i) Y00 5, (iv) Y0 n(n+1 (v) Consider 5_7° n" and think of 1/x as the

zn
(z=1)"
nx”

variable. (vi) Use a similar trick to find the lnterval of convergence of 31"
(vii) Show that 37" nlz™ has R = 0.

IThis formula needs to be modified if the series does not contain every power of z. For example, an

even function would contain only even powers of z. In this case you must view it as a series in 2,

and R computed from the ratio of successive terms would give the interval of convergence in z2.
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Let us now imagine that we have series for some function f(z) within some
terval of convergence. Here are some properties of such an expansion.

e If f(z) = g(z), they both have the same series. (For example, take f(z) =
2sinz cosz and g(r) = sin 2z.) In other words if

f(z) = > anpz™and (4.3.7)
1

g(z) = > bna” then (4.3.8)
1

f(z) = g(z) implies 4.3.9

an = bp. (4.3.10)

Is this reasonable? In general, given that a sum of terms equals another
sum, we cannot equate the constituents of either sum to their counterparts,
as is known from the well-known case 4 + 5 = 6 + 3. The point is that
here the sums are equal at every point within the interval of convergence
and there is an infinite number of such points, and hence an infinite number
of equations subsumed by the statement f(z) = g(z). It is reasonable that
these in turn lead to an infinite number of related conditions, namely a,, =
bn. As to exactly how this happens, note that the Taylor series is found
by evaluating all the derivatives of the given function at the origin and the
numerical equality of f and g ensures the equality of all the derivatives:
Conversely, is it true that two different functions cannot have the same Taylor
series? Let us first try to manufacture an example that violates this. Let f be
some function with a Taylor series. Let us define g = f + e~1/%. Consider
the derivative of the added term at the origin. It is given by z%e“l/ * which
goes to zero as z is reduced to zero since the exponential vanishes faster than
the power grows. The same goes for all higher derivatives. Thus it appears
that f and g have the same series despite being different functions. The error
in the argument is that we have been approaching the origin from just the
right. Had we approached from the left, we would have found that all the
derivatives were infinite! In other words the added function does not have
a unique derivative at the origin and hence has no Taylor expansion there.
What if we had added e~1/*", for which all the right and left derivatives
are equal to zero? To weed out this possibility, and to make the converse
relation hold, we must view this f () as the value of a function of a “complex
variable” z = z + iy, evaluated on a limited region where y = 0. It will
then turn out that there are “other” directions (of nonzero y), besides left and
right, along which the derivative is infinite. This explanation is not meant to
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make too much sense at this point. All you have to know now is that Taylor
series and functions will have a one-to-one relation only when real variables
are extended to complex variables.

¢ Sometimes we will truncate the infinite series for a function after some num-
ber of terms. If we stop at the =5 term, we say we are working to fifth
order in the expansion. We may choose to keep just the first few terms if
we just want a good approximation to the function for small z. For example
we can approximate sinz by z — £3/6 if = is small (in radians). Consider
the not so small case of 45 °, which is n/4 radians. The exact answer is
1/v/2 = .70710 to five places, while the above approximation gives.70465.
How small an z is small enough? One common criterion is to add one more
term to the approximation and see by how much the sum changes. If the
change is small enough, we stop; if not, we add one more term and so on.

. . . . o
Consider for example the case of relativistic kinematics wherein P = T

The leading term gives P/m = v. The next term adds v3/2. For an object
moving at 1/100-th the velocity of light, this is a relative correction of roughly
one part in 104, If this is the desired accuracy, we stop here. Adding one
more term changes the answer by roughly one part in 106 and so on. It is clear
that at small velocities we are better off using a polynomial approximation
that is so much easier to handle and yet numerically indistinguishable (for a
given tolerance.)

¢ To obtain the first few terms in the series for a function, we will generally
not take the first few derivatives, but follow a shortcut as is illustrated by the
following example.

Consider the series for the function exp [ﬁ] at the origin.> Suppose we

want to go up to z3. The brute force way is to take three derivatives of this
object. (Try it!) An easier way is as follows:

exp [ﬁ}

v i) A (] oy @

l1-x

= 1+x(1+r+1‘2+--~)+%x2(1+$+~--)2+513(1)34-“-
= 1+z+ %z2+ 172$3+O(T4)‘ 4.3.12)
Thus we first expanded the exponential to the desired order, then we expanded

z/(1 — z) to the desired order, dropping all terms of order z* and beyond.
The series is good for |z| < 1.

2The exponential function e® is sometimes written as exp z, especially if the exponent is complicated,
as in this case.
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This is a general strategy: in computing a function which itself is composed
of other functions, we can replace each constituent function by its series
within the common interval of convergence. These series may be truncated
at the desired order to obtain the series for the composite function. Thus to
find the series for f(z) = sin(cosz) to order z*, we can replace cosz by
1 — 22/2! + z*/4! inside the sine and obtain

f(z) =sin(1 — z2/2! + z*/4) (4.3.13)

How many terms should we keep in the expansion of the sine to go to order
x4? An infinite number: if you expand the sine out in powers of its argument,
you will see that contributions to 22 and z* terms come from all terms. For
example the fifth-order term in the sine, (1 — z2/2!+ z4/4!)5/5!, contributes
—522 /215! to the 22 piece of f. So we isolate the 1 in the expansion of the
cosine to write (to order z*)

. 2 2t ) i R g2 gt
sin(1 — o7 + Z) = smlcos(—i + Z) + coslsm(—g + Z)
l?2 .l'4 . 12 I4
= (1- (—? + ZF/Q!)SInl + (—5 + Z)COSI
zrd i x2 xrt
= (1- —(2!2!2!))sm1+ (_E + I)cosl
1 1 in1
= sinl- C°2S 22+ (C‘;Z - S‘g 2t (4.3.14)

Consider now an exact relation between functions such as

sinz + cos?z = 1. (4.3.15)

Now the sine and cosine have expansions:

. I3 1'5
sinr = 1‘-5%—54"” (4.3.16)
12 $4

If we insert these series into the left-hand side of Eqn. (4.3.15), and compare
it to the right-hand side, where the function has just on term, namely a zeroth
order term equal to 1, we should find that all nonzero powers of = must
exactly cancel order by order. For instance if we work to order 22 and set

sinr = z (4.3.18)

cosz = 1-—-— (4.3.19)
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we find
2
=224+ (1- %)2 =22 +1— 22+ higher order terms.
(4.3.20)

(What about the z* term that comes when we square the cosine? We cannot
worry about this term, having neglected similar terms earlier in the calculation.
If you want the z* term to work out correctly, you must keep such a term at
all stages.)

sin? 2 + cos?

Problem 4.3.2. Verify the identity Eqn. (4.3.15) to order 25,

Problem 4.3.3. Consider the Taylor series for (1+x)P, for any real p. What
is the coefficient of z™? What is R, the interval of convergence? Verify that
(1+2)P(1 +2)? = (1 + )P 10 order z3.

Problem 4.3.4. In relativistic mechanics the energy E and momentum P of
a particle are given as a function of velocity v (in units where the velocity
of light is unity) by
m muv
E=—m— P=—
V1— 02 V1— 2

m being the rest mass. Verify that E* = P? + m2. Expand E and P in a
Taylor series keeping up to v* term. Verify that this identity is satisfied to
this order.

e We have seen that as far as functional relations are concerned we may replace
the function by its series. The same goes for derivatives and integrals: if f(z)
has a convergent Taylor series within an interval, we may differentiate it term
by term to get the series for the derivative and integrate it term by term to
obtain the series for the integral, always within the same interval. As an
example, consider the series for In(1 + z):

n
In(1+a)=z—2%/2+23/3+ -+ (-1)"" -4 ... (4320)
n

which converges for |z| < 1 (as you should verify). Taking derivatives of
both sides, we get the series for 1/(1 + z), also in the same interval:
1
1+z

=l-z+z2—23+... (4.3.22)

We could just as well start with Eqn. (4.3.22) integrate term by term from 0
to x to get the series for log(1 + z).
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Problem 4.3.5. Start with

x
du 1
——— =tan " z.
/0 1+ 2

Develop the integrand in a Taylor series at the origin, integrate it term by term by
and shown/4=1-1/3+1/5—-1/7+---

Problem 4.3.6. The exact formula for the period of a simple pendulum of length
Lis

w/2 do
T =4+/L —_——
/g/o V11— k2sin?¢

where g is the acceleration due to gravity and k = sin §, o being the initial
angular displacement. Show that in the limit of very small o this reduces to the
Jormula we all learned as children: T = 2x+/L/g. By expanding the integrand
in a series in k®sin® ¢, develop the next correction. What is the fractional change
in T due to this term for o = n /3?7 The integral in question is called an elliptic
integral. But we do not have to know anything about this fancy object if we just
want to get an answer that is numerically very good for small oscillations. In
general we can deal with many difficult integrals this way. For example, we do
not know how to integrate e~ between finite limits. However if we want a good
approximation to foae“zzdac, Jor small a, we simply expand the exponential and
integrate term by term.

Problem 4.3.7. Expand out to x* the following functions: (i) sin(z + 1)) e,
(iii) In(2 + z).

Sometimes we need to determine the convergence of series of the form:

fo) =3 R , (43.23)
1

7’l2 ’

In this case we can argue that since |sinx| < 1, and the series with all the sines
set equal to unity converges, so does f(z). There are however more complications
in such series where the terms are not just powers of z; there are various notions
like absolute versus uniform convergence. We do not discuss them here but simply
alert you that in such cases you may not be able to differentiate the series to get
the series for the derivative of f.
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44. Summary

Here is the summary of this chapter.

o The series ) . ,an converges to S if |[S — Sy| < e for N > N(e) where
S is the sum of the first N terms.

o The series
o0

Zan

n=0

converges absolutely if the series with a,, replaced by |a,| converges. If a
series converges but not if the terms are replaced by absolute values, then it
converges conditionally.

¢ Know the following about the geometric series

1—pntl
l4+r4+r24 4=
1—7r
o0
1
Zr":—l Ir| < 1
n=0 -r
o The series
o0
> an
n=0

of positive terms converges if a,, < b, for n beyond some value and if the
sum over the positive numbers b,, converges. This is called the comparison
test.

o The series
o0
> an
n=0

converges absolutely if

This is the ratio test.

e The sum of positive monotonic terms ., f(n) converges or diverges along
with [ L f(z)dx as L — co. To do the integral it is enough to use an integrand
that agrees with f for large . You can also trade the given f for another
smaller one (while showing the sum diverges) or a larger one (to show it
converges) if that makes it easy to integrate.



88

Chapter 4

e The power series Y .o a,z™ converges absolutely within the interval of

convergence |z| < R, where

R = lim dn

n—o0

an41

Relations between functions will be satisfied order by order when they are
replaced by their power series. You must know how to expand functions of
functions, out to some desired order within the common interval of conver-
gence.

The power series representing a function may be integrated term by term and
differentiated term by term within the interval of convergence to obtain the
series for the integral or derivative of the function in question.



COMPLEX NUMBERS

5.1. Introduction

Let us consider the quadratic function f(z) = 22 — 5246 and ask where it vanishes.
If we plot it against =, we will find that it vanishes at x = 2 and x = 3. This is
also clear if we write f in factorized form as f(z) = (z — 2)(z — 3). We could
equivalently use the well-known formula for the roots z 1 of a quadratic equation:

az?+bz+c=0 (5.1.1)
namely
b+ Vb2 -4
T4 = Tac (5.1.2)

to find the roots x4 = 2, 3. Suppose instead we consider
2 4+z4+1=0. (5.1.3)

A plot will show that this function is always positive and does not vanish for any
point on the x-axis. We are then led to conclude that this quadratic equation has
no roots. Let us pass from the graphical procedure which gives no solution to the
algebraic one which does give some form of answer even now. It says

_ -1£V=3

5 (5.1.4)

T+

The problem of course is that we do not know what to make of v/—3 since there is
no real number whose square is —3. Thus if we take the stand that a number is not
a number unless it is a real number, we will have to conclude that some quadratic
equations have roots and other do not.

89
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5.2. Complex Numbers in Cartesian Form

This is how it was for many centuries until the rather bold suggestions was made
that we admit into the fold of numbers also those of the form v/ —3. All we need to
know to do this is a set of consistent rules for manipulating such numbers,; being
able to visualize them is no prerequisite. 1t is really up to us make up the rules
since these entities have come out of the blue. The rules must, however, be free of
contradictions. Of course, all this is pointless if the whole enterprise does nothing
but merely exist. In the present case the idea has proven to be a very seminal one
and we will see some of the evidence even in this elementary treatment.

We are dealing here with a case of mathematical abstraction or generalization,
an example of which you have already seen, when we extended the notion of powers
from integers to all real values, and examples of which you will see more than
once in this course, say when we extend the notion of vectors in three dimensions
with real components (which we can readily imagine) to vectors in any number
of dimensions, or vectors with complex components (like v/—3) which we cannot
visualize. A general guideline when embarking on such generalizations is that we
impose on the new entities as many properties of the more familiar entities as is
possible. For example, when we passed from integer powers a™ to arbitrary powers
a® (whatever that meant) we demanded that noninteger powers obey the same rule
of composition, i.e., a®a¥ = a®*¥ for all z and y.

Returning to our problem we will first demand that square roots of negative
numbers (whatever they mean) still obey the rule that vab = \/av/b. Thus /—3 =
V3V/=1. The point of this is that the problem of taking the square root of any
negative number is reduced to taking the root of —1. Thus the basic building block
we need to introduce, called the unit imaginary number, is

i=+v-L (5.2.])
In terms of 4, the answer to Eqn. (5.1.3) is
1 V3

We will postulate that i will behave like a real number in all manipulations involving
addition and multiplication and that the only new feature it will have is the one
that defined it, namely that its square equals —1.

We now introduce a general complex number

z=1x+1iy (5.2.3)

and refer to = and y as its real and imaginary parts and denote them by the symbols
Re z and Im z. A number with just y # 0 is called a pure imaginary number. The
solution to our quadratic equation has a real part z = —% and an imaginary part
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y = +/3/2. We think of = + iy as a single number. Indeed, if the number inside
the radical had been 3 instead of —3, surely we would have treated say —% +3/2
as a single number, as one of the roots. The same goes for —% +iv3/2.

The rules obeyed by complex numbers are as follows. Given two of them z;
and 29,

z1 = z1+iy; (5.2.4)

z9 = 1x9+iyg, we define, (5.2.5)
z1+22 = (x1+x2)+i(y1 +y2) addition rule (5.2.6)
z12z9 = (z172 —y1y2) +i(z1y2 + z2y1) multiplication rule (5.2.7)

where in the last equation we have opened out the brackets as we do with real

numbers and used i2 = —1. If we use these rules, we can verify that z+ = — %i@z
indeed satisfies Eqn. (5.1.1). Note that 2122 = z923.

Problem 5.2.1. Verify that this is so.

It was emphasized that we must think of = = z + iy as a single number. However
it is a single number which has two parts, which can be uniquely identified. Thus
although 7 = 5 + 2 is a single number, the decomposition of 7 into 2 and 5 is not
unique. On the other hand z = 3 + 4i has a real part 3 and an imaginary part 4
and we cannot move things back and forth between the real and imaginary parts
keeping the number fixed. Thus if two complex numbers are equal, their real parts
and imaginary parts are separately equal:

z1=z1+iy1 = 29 =xg+ iy implies (5.2.8)
I = T2 (529)
Y1 = Y2 (5.2.10)

Suppose this were not true. This would imply z1 — x9 = i(y2 — y1), without
both of them vanishing separately. Squaring both sides, we would find a positive
definite left-hand side and a negative definite right-hand side. The only way to
avoid a contradiction is for both sides to vanish, giving us 0 = —0, which is
something we can live with.

Now, given any real number x, we can associate with it a unique number —z,
called its negative. We can do that with a complex number z = z + iy too, by
negating x and y. This number is called —z. But now we have an intermediate
choice in which we negate just y: the result

=z iy (5.2.11)

pronounced “z-star” is called the complex conjugate of . Some people like to
write it z and call it “z-bar”.
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Note that
22t =224 y2 =22 > 0. (5.2.12)

One refers to |z| = y/z2 + y2 as the modulus or absolute value of the complex
number 2. It is useful to know that given 2 and its z*, we can recover the real and
imaginary parts of z as follows:

Rez=z = 2 4;2 (5.2.13)
Imz=y = —= (5.2.14)
2t

Note that we did not ever explicitly define the rules for division of complex
numbers. This is because we can carry out division as the inverse of multiplication.
Thus if z1 /29 = z3, we can multiply both sides by zo (which we know how to do)
and solve for z3 and y3 by equating real and imaginary parts in

x1 +iy1 = (z3 +iys)(z2 + iy2) (5.2.15)

to obtain (upon solving a pair of simultaneous equations)

3 = ﬂw (5.2.16)
Iy + Y3
y1za — Y211
= Zime Jemo 5.2.17)
R R ‘

This result is more easily obtained by using the notion of complex conjugates.
First note that

1 *
e (5.2.18)
z zz
T — 1y
= —_— . .1
e (5.2.19)

Applying this result to the 1/z5 in the ratio z;/22, we can obtain Eqns. (5.2.16,
5.2.17) more easily than before. In other words, by invoking the complex conjugate
we have reduced the problem to division by a real number, namely 2*z, which is
a familiar concept.

Complex conjugation can be viewed as the process of replacing i by —i within
the complex number. Stated this way it is clear that the complex conjugate of a
product is the product of the complex conjugates

(2122)* = 2723 (5.2.20)

as you may check by explicit evaluation of both sides. The same obviously is
true for the sum of two complex numbers. Now, if two complex numbers are
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equal, their real imaginary parts are separately equal. Consider an equation with
complex numbers on both sides. If we replace all the numbers by their conjugates,
the resulting quantities must still be equal. This is because the imaginary parts,
originally equal on both sides, will continue to be equal after signs are changed on
both sides. Thus every complex equation implies another one obtained by complex
conjugation of both sides. The latter does not contain any more or less information:
both tell us the real and imaginary parts are separately equal.
Let us consider an illustrative example. Let

V2+i 144
Z:
1—i T

Let us first simplify z; to the form z + iy by multiplying the numerator and
denominator by the complex conjugate of the latter:

(V2+i)(1+i)  (V2-1)+i(V2+1)

(5.2.21)

zZ1 =

z1 = T-Di+d) 3 (5.2.22)
Since 22 is already in this form, let us move on to compute
(V21 +i(V241) 14
z129 = 2 . 73 (5.2.23)
_ (V?—U+u¢i+n+uv5—U+¢%¢§+1)(5ZM)
22
. 1
= i~ (5.2.25)
and
2 (V2-1)+i(vV2+1)
2 = 5.2.26
22 V2(1 +1) ( )
(V2= +i(V2+ D)L -]
= Vil (5.2.27)
- o 22
1+ 7 (5.2.28)

Problem 5.2.2. Show that 2% = i.

The following exercises should give you some more practice with the manip-
ulation of complex numbers.

Problem 5.2.3. Solve for x and y given

24+ 3i 2

— 240
647 a4y S
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Problem 5.2.4. Find the real part, imaginary part, modulus, complex conjugate,
and inverse of the following numbers: (i) 3z, (ii) (3+4i)%, (iii) 34, (iv) %\/%
and (v) cosf + isiné.

Problem 5.2.5. Show that a polynomial with real coefficients has only real roots
or complex roots that come in complex conjugate pairs.

Problem 5.2.6. (Very important). Prove algebraically that

|Re z| < |z] (5.2.29)

[Im z| < |z|. (5.2.30)

|21+ 22|* = |21]% + | 22]® + 2Re(2123) (5.2.31)
|21 + 22| < |z1] + |22] (5.2.32)

|z122| = |21]]22] (5.2.33)

Problem 5.2.7. (Important). Verify that the numbers zy, z9 from Eqn. (5.2.21)
respect Eqns. (5.2.31-5.2.33).

Recall that all real numbers can be visualized as points on a line, called the z axis.
To visualize all complex numbers we introduce the complex plane which is just the
x — y plane. The complex number z = z + 1y is labeled as shown in Fig. 5.1. The
conjugate is z*. The significance of r and 6 will now be explained.

5.3. Polar Form of Complex Numbers

We begin this section with a remarkable identity due to Euler:

% — cos6 +isinb, (5.3.1)

ot
where we will choose 6 to be real. To prove this identity, we must define what
we mean by e raised to a complex power if. We define e®™¥thin9 to be the
infinite power series associated with the exponential function e* with = replaced
by anything. Thus
(e 9]
eelephant — Z (elephant)" (532)

|
70 n.
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z=x+iy =rel®

z* =X -iy

Figure 5.1. The complex plane.

which converges for any finite sized elephant.
Turning to our problem, we expand the infinite series for the exponential and
collect the real and imaginary parts as follows:

oo
o _ (@8)"
e? = Z; — (5.3.3)
oo oo
_1n02n _1n02n+1
S Erer e 534
= (2n)! oy (2n + 1)!
= cosf +isinf (5.3.5)
where we have used the fact that 2 = —1, 3 = —i, % = 1, and so on, as well

as the infinite series that define the sine and cosine functions. (These expansions
converge for all finite 6, as shown before. The presence of i does not in any way
complicate the question of convergence since it either turns into a +1 or into +3.)
Setting & = © we obtain one of the most remarkable formulae in mathematics:

e+ 1=0. (5.3.6)

Who would have thought that = which enters as the ratio of circumference to
diameter, e, as the natural base for logarithms, 4, as the fundamental imaginary unit
and 0 and 1 (which we know all about from infancy) would all be tied together in
any way, not to mention such a simple and compact way? I hope I never stumble
into anything like this formula, for nothing I do after that in life would have any
significance.

Look at Fig. 5.1 of the complex plane and note that

2 = x4y (5.3.7)
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- r[£+ig] (5.3.8)
T T

= r[cosf + isind] (5.3.9)

= re¥, (5.3.10)

The last equation is called the polar form of the complex number as compared to
the cartesian form we have been using so far. One refers to 6 as the argument or
phase of the number and r as its modulus or absolute value. It is just as easy to
visualize the number in the complex plane given the polar form as it was with the
cartesian form. (As is true with polar coordinates in any context, 6 is defined only
modulo 2, that is to say adding 2« to it changes nothing. We can usually restrict
it to the interval [0 — 27].) All manipulations we did before in the cartesian form
can of course be carried out in polar form, though some become easier and some
harder. Thus if

z = rethen (5.3.11)
¥ = e (5.3.12)
22t = 2 (jz]=r) (5.3.13)
Lo 1w (5.3.14)
z r
2129 = rirget®rT62), (5.3.19)

(We are using the fact that the law of composition of exponents under a product
works for complex exponents as well. Indeed this is built into the exponential
function defined by the infinite series. You may check that this works to any
given order even for imaginary arguments. In Chapter 6, this will be proven more
directly.) The last formula tells us how easy it is to multiply or divide two complex
numbers in polar form:

To multiply two complex numbers, multiply their moduli and add their phases.
To divide, divide by the modulus and subtract the phase of the denominator.

On the other hand to add two complex numbers we have to go back to the
cartesian form, add the components and revert to the polar form.
Let us return to Eqn. (5.2.21) and manipulate the numbers in polar form. First
(VZ-1)+i(V2+1)

_ \/(\/5— 12+ (V2 + 1)2exp ll arctan [ﬂ” (5.3.17)

4 V2 -1

= \/gel““"”. (5.3.18)
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n 1. A .
=5t §€lamta"1 = 'm/4 = 85 (5.3.19)

Now it is easy to form the product and quotient

As for z5,

2129 = \/g 16(1.400+.785)i (5320)
3 )
= \/;62'1851 = 1.224 (c0s2.185 + isin 2.185) (5.3.21)
1
= ——+4i 5.3.22
2t (53.22)
3 )
a \/je(1‘400_'785)l:l.224 (cos .615 + isin .615)
29 2
.
= 1+— 5.3.23
NG (53.23)

in agreement with the calculation done earlier in cartesian form.

Complex numbers z = re® with » = 1 have |z| = 1 and are called unimodular.
We may imagine them as lying on a circle of unit radius in the complex plane.
Special points on this circle are

o = 0 (1) (5.3.24)
= /2 () (5.3.25)
= 7 (-1) (5.3.26)
= —x/2 (=i). (5.3.27)

You are expected to know these points at all times.
Problem 5.3.1. Verify the correctness of the above using Euler’s formula.

When we work with real numbers, we know that multiplication by a number, say
4, rescales the given number by 4. Multiplying a number in the complex plane by
ret®, rescales its length (or modulus) by r and also rotates it counterclockwise by
6. Multiplying by a unimodular number simply rotates without any rescaling.

Problem 5.3.2. For the following pairs of numbers, give their polar form, their
complex conjugates, their moduli, product, the quotient z1/z2 , and the complex
conjugate of the quotient:
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Problem 5.3.3. Express the sum of the following in polar form:
21 = 26"/ 25 = 6e'/3,

Recall from Euler’s formula that for real 8

' 6, _—if
cos§ = Re ¥ = % (5.3.28)
' 6 _ —if
sind — Im e = %— (5.3.29)
1

You should remember the above results at all times.

Problem 5.3.4. Check the following familiar trigonometric identities by expressing
all functions in terms of exponentials: sin®z + cos?z = 1, sin 2z = 2sinz cosz,
cos2z = cos?z — sin? z.

Problem 5.3.5. Consider the series

61'9 + 632'9 e+ 6(271—1)2'9. (5330)
Sum this geometric series, take the real and imaginary parts of both sides and

show that )
sin 2n6

2sin6

and that a similar sum with sines adds up to sin? n8/ sin 6.

cos + cos30 + -+ + cos(2n — 1)8) =

Problem 5.3.6. Consider De Moivre’s Theorem, which states that (cosf +
isinf)™ = cosn® + isinnf. This follows from taking the n-th power of both
sides of Euler’s theorem. Find the formula for cos46 and sin40 is terms of cosf
and sin 6.

5.4. An Application

We will now consider a situation where complex numbers not only help in solving
the problem, but also appear as the natural things to use. Consider the simple LCR
electrical circuit shown in the left half of Fig. 5.2.

Our goal is to calculate the current I(¢) in the circuit at time ¢, given the
applied voltage V (¢). Our strategy will be to first calculate the charge on the
capacitor @ (t), and then use

_4Q

1(t)= =7 (5.4.1)
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SIMPLE LCR CIRCUIT PARALLEL CIRCUIT

Figure 5.2. The LCR circuit.

At any time, we may relate the charge Q(t) to the voltage V (¢) in terms of
the resistance R, inductance L and capacitance C as follows:

L—% +R—=+ 2 =V(1). (5.4.2)

This is called a differential equation: it relates @ and its derivatives to the applied
voltage and we are to determine @ using this information. Since we are not familiar
with differential equations, we cannot take the problem head on. So will try to
finesse the problem in stages.

One problem we can solve at this point is when only R is present. In that case
the equation reduces to Ohm’s Law for the current and gives

(5.4.3)

In other words we have just an algebraic equation for the current. Finding the
response is just as easy as dividing V by R.
To proceed further, let us specialize to the case of considerable practical im-
portance, where
V(t) = Vycoswt. (5.4.49)

This form of voltage is interesting because many AC generators produce an output
of essentially this form and because, as we shall see later, any periodic voltage can
be written as a sum of periodic cosines and given the response to each term in the
sum, the response to the total is the sum of the individual responses.

As stated above, in the absence of L and C we know the answer:

I(t) = % cos wt. 54.5)

Thus the process of finding the current for a given applied voltage reduces to
dividing by a number R, in particular the cosine voltage leads to a cosine current.

Suppose only L is present. Then the equation tells to us find a function Q(t)
such that its second derivative is proportional to coswt. We can readily guess
the answer, Q(t) itself must be proportional to coswt. To find the constant of
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proportionality, we make an ansatz Q(t) = Qg coswt and feed it into Eqn. (5.4.2).
This gives
— w?LQqcoswt = Vg coswt. (5.4.6)

Since coswt is not identically zero, we can cancel it on both sides to find that

Vo
Qo = 7] (5.4.7)

which solves the problem. Notice how we converted the differential equation (5.4.2)
to an algebraic equation (5.4.7) by making the right ansatz. This will be our general
strategy. (This idea of making an educated guess or ansatz with some parameters
in it, feeding it into the equation and determining the parameters is a very useful
one. We shall use it here and in later chapters.)

If we have just the capacitor, the equation for @ is again algebraic and we can
solve for Qg.

We can go a step further and solve the problem with both L and C since the
ansatz of a cosine for the charge would work, with an amplitude determined by the
equation to be

Vo

AL+ 10 G49

Qo =

Problem 5.4.1. Verify the preceding equation.

The problem when all three elements are present is that neither a cosine (nor sine)
ansatz will work. That is to say, neither function gives a cosine when differentiated
once, twice, or zero times.

Suppose however that the applied voltage is an exponential. We can then find
an ansatz that is also exponential and tune its coefficient as dictated by the equation.
This is because the exponential remains an exponential when differentiated any
number of times. But the exponential will either grow or decay indefinitely with time
and such problems are not of much interest. Consider now a complex exponential
et From Euler’s formula we know that its real and imaginary parts execute
bounded oscillations. Indeed its real part is just the cosine we want. But what shall
we do with the imaginary part which inevitably comes along? We deal with this
problem as follows.

If we examine Eqn. (5.4.2) we see that it is /inear. This means that if Q1 is
produced by V1 and Q2 by Vo, then the linear combination aV; + bVs will produce
a response which is given by the same linear combination of charges, aQ1 + bQs.
This is called the superposition principle.

Problem 5.4.2. (Important). Verify this by writing down two equations, one for
Q1, V1 and the other for Qq, Va2 and forming the appropriate linear combinations.

Let us now apply this logic to V1 = Vgycoswt, Vo = Vpsinwt, a = 1 and b = 1.
Thus the total applied voltage is V = V; + iVa = Vpe™t. If we find the total
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@ = Q1 +1iQ2 due to this, the real part of the answer, @Q; is attributable to the real
part of the voltage since we know a real voltage will produce a real current and a
purely imaginary voltage will produce a purely imaginary current. But the real part
of the voltage is precisely the one we began with, Vycoswt. Thus what we must
do is

e Apply the voltage Vpe'»?.
¢ Find the response.
o Take the real part of the answer.

Let us now feed the ansaiz

Q(t) = Qoe™* (5.4.9)

into Eqn. (5.4.2) with V (¢) = Vpe®™? to obtain (upon canceling the exponential
function on both sides),

(—w?L 4+ iwR +1/C)Qo = Vo (5.4.10)
the solution to which is
Vo
- 5.4.11
Qo (—w?L + iwR + 1/C)’ ( )
V. iwt
Q) = o¢ (5.4.12)

(~w2L +iwR+1/C)’
The current is now given by differentiation:

Voeiwt

I(t) = Ige™t = 4.1
(®) o¢ (iwl + R+ 1/(iwC)) (5-4.13)
V twt
= 02 (5.4.14)

which defines the impedance Z. The current in the original problem is then

I(t) = Re [?eiw} . (5.4.15)

Let us analyze this result a bit. Let us assume without loss of generality that Vj is
real.! As for Z, it is generally complex:

Z = (iwl+R+1/(wC)) (5.4.16)

Lif Vp has a phase 1, it will simply change the real part of V(t) from Vp coswt to Vp cos(wt + 9).

We can reset the zero of our clock so as to eliminate this phase. What we are looking for is the phase
difference between the applied voltage and current, which cannot be altered by any such resetting of
clocks.
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= |Z|e*® where (5.4.17)
1Z] = VR2+ (wL —1/wC)? (5.4.18)
tang = (wL__I—ZM (5.4.19)
Thus
Iy = % (5.4.20)
= I‘;—(’Ie*'ﬁ so that (5.4.21)
I(t) = Re [";—‘)'ei(wt*@] (5.4.22)
= %cos(wt—q&). (5.4.23)

Let us observe several things. First, we have managed to solve a differential
equation by reducing it to just an algebraic equation (5.4.20) by the use of complex
numbers: the current (in amplitude) is given by the voltage (in amplitude) divided
by the impedance. This is just like Ohm’s law for a purely resistive circuit.

Next we note that the final current is neither cos wt nor sinwt, it is cos(wt —¢),
which is a linear combination of cosine and sine. We say that the current here lags
the voltage in phase by ¢ with respect to the applied voltage. (This is assuming
¢ is positive; if not, we say it leads by ¢.) This is why we could not get away
with any simple ansatz. Now it is clear in hindsight that an ansatz with a lagging
or leading cosine would do the trick. So who needs complex numbers? There are
several answers to this.

First note that unlike in a problem with just a resistor, where the current is in
phase with the voltage and related to it by a single proportionality factor R, in the
general case, it is shifted in phase as well. Thus we need two pieces of information
to go from the applied voltage to the current it produces. Why not store them
as a pair of real numbers? We can, but note that in the present treatment, the
information is very naturally stored in one complex number Z, which relates the
amplitude of the current to that of the voltage by a natural generalization of Ohm’s
law, Eqn. (5.4.11). We have seen earlier that multiplying (or dividing) a given
number by another complex number has the twin effect of changing the magnitude
of the former as well as rotating it in the complex plane. But this is exactly what
we want to do in going from the voltage to the current. Again one can ask why
we do not store the two pieces of information as a vector in two dimensions. The
problem is that there is no natural way to define division by a vector. Thus even
though complex numbers add like vectors in two dimensions, they behave more like
real numbers in that they can be divided by each other.

For the diehards who will not give up real numbers, here is an example of
a more complicated circuit, shown in the right half of Fig. 5.2. Try guessing the
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current in this problem using just real numbers! But with complex numbers, where
the generalized Ohm’s law works, we have the familiar result for adding resistances
in parallel generalized as follows: the total impedance for this circuit is

1 1 1

S 5.4.

Z =7 + Zs (5.4.24)
Problem 5.4.3. Provide the arguments to validate the above equation. As a warm
up, do the problem with two impedances in series.

Problem 5.4.4. Consider an LCR circuit with R = 1, L = .02 and C = .001 with
an applied voltage V (t) = 100 cos 200t. What is the impedance of this circuit in
cartesian and polar form? What is the amplitude of the current? By how much
does the current lag or lead the voltage? If we can vary the frequency, at what
value will the current have the largest amplitude? This is called resonance.

Problem 5.4.5. If 7, = 3+ 4i and Z5 = 1 + i, in the parallel circuit, what is the
net impedance?

Problem 5.4.6. Consider a circuit in which L, C and R are connected in parallel
to a voltage source at frequency w. What is the impedance?

Transients
Now for a technical point. The solutions Q(¢) and I(t) that we found are not the most general
solutions; it is possible to add to them extra functions of time, called transients, and still satisfy the
circuit equation. This will now be explained.

Suppose you are asked to solve the equation

d%y

2Y _ 5.4.25
72 ( )

and come up with the solution y¥ = z2. You know that while this is a solution, it is not unique:
we can add to it the function yc(z) = Az + B where A and B are arbitrary. This is because the
derivatives on the left-hand-side of the above equation kill this extra piece, called the complimentary
function.

In the same way, we can add to our solution for Q(t) any function Q.(t) that obeys
#Q. . dQc Qe

+ R 4

L
dt? dt C

=0 (5.4.26)

and still have a solution. Equivalently we can say that the applied voltage is V (t) = Voe'wt =
Voe't + 0, and by the superposition principle, Q., the response to 0, must be added to the Q we
got earlier. We shall refer to the latter as the particular solution Qp(t). Thus the full solution is

Q) = Qp(?) + Qc(?). (5.4.27)

The physical origin of Q.. the response to zero applied voltage, is easy to understand. Suppose
we remove the external voltage, charge up the capacitor, and close the circuit. The charge will rush
from one plate to the other to render them both at the same potential. But when this is done, the
inductance, which does not like changes in current, will not let the current die down, it will keep
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it flowing until the capacitor gets charged the other way. The charge and current continue to slosh
back and forth. They will however decay exponentially in amplitude since the resistor is dissipating
the energy and we started out with a fixed amount of stored energy in the capacitor. The precise
form of decay will be discussed in Chapter 10.

In circuit terminology, the complimentary and particular solutions are called the transient and
steady state responses since in the long run, only the response to the applied voltage will survive,
the transients having died down to exponentially small values.

All of this has a mechanical counterpart. Suppose we have a mass m coupled to a spring of
force constant k, subject to a frictional force —y2Z and an external force F(t). The equation of

at
motion
d?z 4 dz
m— -
az "
is identical in form to the one for Q(t) and differs only in the change of labels which do not affect
the mathematics in any way):

+ kz = F(t) (5.4.28)

z o Q (5.4.29)
F o V (5.4.30)
m e L (5.4.31)
v o R (5.4.32)
k < 1/C (5.4.33)

The transient response here corresponds to free oscillations of the system in the absence of
any applied force, say the response we get when we pull the spring and release it.

In both the mechanical and electrical problems, the transient will contain two free parameters.
They will be determined by the conditions at some time, say ¢ = 0. In the mechanical example
these conditions will describe the position and velocity of the mass. Since Newton’s Law only fixes
the acceleration in terms of the applied forces, these parameters are not restricted.

Problem 5.4.7. Find the charge Q(t) when L = .5, R = 6 and C = .02 are
connected in series with a voltage V (t) = 240sin 10t. You are given both I and
Q vanish at t = 0.

5.5. Summary

Here are the highlights.

o If
z =z + 1y,

then z is the real part or Re 2, y is the imaginary part or Im z. This is the
cartesian form of z.

e The polar form is

=z4iy=re? r= Va2 +y?, tand = y/x,
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where we have used Euler’s identity:

e = cosf +ising.

One calls r the modulus and é the phase or argument of z.

From Euler’s theorem, by taking real and imaginary parts, we find

et 4 o—ib ' 10 —if
cosf = — sinf =

Forget these and you are doomed.

The complex conjugate is

*

=z —iy=re ¥,

The modulus squared is given by

Some very useful relations and inequalities to remember:
|Re z| < |2] [Im z| < |z].
|21 + 22|® = |21]% + |22]* + 2 Re(2123)
|21 + 22| < |z1] + |22 |z122] = |21]]22]
(2122)" = 2123

21 _ T ,i(61~62)
22 r2
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FUNCTIONS OF A COMPLEX VARIABLE

6.1. Analytic Functions

Now that we understand complex numbers, we ask about a function of a complex
variable: a machine which takes in a complex number and spits out a complex
number. Just as we can associate with points on the z-axis a function f(z), we
may associate with each point (z,y) in the complex plane a function

flz,y) = u(z,y) +iv(z,y) (6.1.1)

where u and v are real and represent the real and imaginary parts of the function
f. Thus we have manufactured a complex function by patching together any two
real functions of two real variables. Let us assume v and v have first order partial
derivatives that are continuous. Continuity in two variables is defined as it was in
one variable:

Definition 6.1. A4 function of two variables is continuous at a point if

e The function approaches a definite limit as we approach the point from any
direction.

o The limit coincides with the value ascribed to that point in the definition of
the function.

Thus for example

72

T2 + y2

is not continuous at the origin because there is no unique value that we can assign
to the function at the origin. If we simply set z = y = 0 we get the indeterminate
value 0/0. On the other hand if try to define the value at the origin by the limit of
what we encounter as we approach the origin, the answer depends on the direction
of approach.

flz,y) =

107



108 Chapter 6

Problem 6.1.1. Explore the above claim by approaching the origin along the x
and y axes. Then look at all other approaches by writing it in polar coordinates.
What happens at some other point, say (x = 1,y = 1)?

The function in Eqn. (6.1.1) is generally a function of two complex variables
z and z* related to (x,y) as follows:

2 = x4y (6.1.2)
z* = z —1iy or conversely (6.1.3)
s = 2t* (6.1.4)
2
z— 2"
= . 6.1.
y 5 (6.1.5)

That f is generally a function of z and z* follows from the fact that you can only
trade a pair (z.y) for another pair. For example the other pair could have been

zy = zx=xy orconversely (6.1.6)
; = o (6.1.7)
2
_ Ty — T
y o= T (6.1.8)

Expressing z and y in terms of the new variables will produce in general a function
of both new variables. Take for example the function

f=a%—y2 (6.1.9)
We can write it in terms of z 1 as
f=r4 2 (6.1.10)
or in terms of (z.z*) as
z z* 2 z—z* 2
f = z ) - < % ) (6.1.11)
= w (6.1.12)

In either case we see that f depends on both the new variables. It is all right
to study such functions of two variables, take their partial derivatives and so on.
But a special place is reserved for functions of (z,y) that depend on just one of the
two complex variables z or z*. This is no different from f = (x — y)? depending
on just one of the two possible new variables, z and z_, namely the latter.
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Definition 6.2. We say f is an analytic function of z if it does not depend on z*:

f(z,2%) = f(z) (6.1.13)
In other words
flz,y) = flz +iy) (6.1.14)
i.e., z and y enter f only in the combination z + iy.
Suppose we are given f(z,y). We check if it is analytic, i.e., that = and y

enter f only via z = z + iy, as follows. Suppose we change x by dz and keep y
fixed. What happens to f? It only responds to the change in 2, and its response is

d d 0 d
g =Yg 2 H (02 Yy, (6.1.15)
dz dz \ Oz v dz
so that 5 p
of = —f (6.1.16)
ox dz
Suppose we now change just y. Now dz = idy and we get by similar reasoning
8—f:ﬂz 6.1.17)
Jy dz

In other words, if f is a function of only z = = + iy, the partial derivatives with
respect to x and y are related as follows:

fy=ifz (6.1.18)
If we write f =« + iv we find
uy +ivy = i(ug + ivg) (6.1.19)

upon comparing the real and imaginary parts of which we find we obtain the
Cauchy—Riemann Equations (CRE) that define an analytic function of z:

ur = Uy (6.1.20)
uy = —Ug. (6.1.21)
(We could just as easily find the diagnostic for an anti-analytic function, a function
of just z*. But we will not, since the mathematical content of analytic and anti-

analytic functions is identical.)
As an example let us consider

f=z%+2 (6.1.22)

and
f=x%—y? 4 2izy. (6.1.23)
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In the first case we find u; = 2z, uy = 2y, and v = 0. The function is clearly not
analytic. In the second case we find u, = 2z = vy and uy = —2y = —v,. So the
function is analytic.

Problem 6.1.2. Find the equations obeyed by an anti-analytic function.

Problem 6.1.3. For the real function f(z,y) find the condition which ensures that
it depends only on 4.

Do not lose sight of the fact that the CRE merely ensure that f is a function
of just z = z + iy. Thus for example f = z2 — 42 + 2izy is guaranteed to obey
the CRE because it is just (z + iy)? = 22 whereas f = 2% — y2, which we saw
depended on both z and z*, is guaranteed not to satisfy the CRE. Thus if you can
tell by inspection that the given f(z,y) can or cannot be written as some f(z), you
need not bother with the CRE.

Now it is possible that the CRE are obeyed in some parts of the complex plane
and not others.

Definition 6.3. We say a function is analytic in a domain D if the first partial
derivatives of u and v exits, are continuous and obey the CRE equations everywhere
inside it.

(Some of the conditions on u and v can be relaxed without changing many of
the results derived here. But the corresponding proofs are more complicated. We
will not follow that path in this pedestrian course.)

Consider in particular the domain called the e-neighborhood of any point, (or
simply the neighborhood of a point) which is a collection of all points within a disc
of radius ¢ > 0 centered at the given point.

Definition 6.4. We say f = u + iv is analytic at zq if v and v have continuous
partial derivatives that obey the CRE in its e-neighborhood.

No importance is given to functions which obey the CRE only at isolated
points or on lines.

The following is a sample of things that can happen when we test a function
for analyticity.

e Consider f = 22 —y2+2ixy. The CRE are obeyed and the partial derivatives
of v and v are continuous everywhere. The function is analytic at all finite
points in the plane. This is expected since f = 22.
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e Consider f = cosy — isiny. The CRE will require that cosy = 0 = siny
which is impossible. This result is expected from the fact that f is a function
of just y = (2 — 2z*)/2i and therefore clearly a function of z and z*. The
CRE are not satisfied anywhere. The functions is not analytic in any domain.

e Consider f = 22 4+ y2. The CRE are satisfied only at the origin where all
partial derivatives vanish. This is to be expected since f = zz* depends on
z*. This dependence is merely hidden at the origin since 8 f/8z* = 0 there.
At any point off the origin, the CRE fail, i.e., there is no neighborhood where
the CRE are obeyed. We are not interested in this function, we cannot get
any mileage out of its special properties at one point, the origin.

e Consider f = z2 — iy? which satisfies the CRE on the line z = —y. We
can easily see that this f also depends on both z and z*. This will be
apparent in the CRE if we move off the line. We are not interested in this
function. Useful results can be derived only if the function has continuous
partial derivative obeying the CRE in a two-dimensional domain.

Problem 6.1.4. Verify that f = e® cosz + ie® siny obeys the CRE.
Problem 6.1.5. Show that f = 23— 3zy? +i(32%y —y3) is analytic by any means.

Problem 6.1.6. Show by any means that f = z2 + y? is not analytic.

6.1.1. Singularities of analytic functions

Assume now that we have verified that a function obeys the CRE in some domain.
Will it obey them in the entire complex plane? In principle anything can happen
since nothing has been stated about the function outside the domain. But typically
what happens is this. There will be isolated points where the equations fail. These
points are called singularities. Since we have equated the validity of the CRE to the
absence of any z*-dependence the last remark may seem paradoxical. If the CRE
are valid in some domain so that the function is known to have no z*-dependence,
how can they be invalid at some other places? Does z* suddenly creep in at
these points? No, what happens is that the conditions of continuity of the partial
derivatives breaks down. Let us consider the example f = 1/z which will clarify
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these points. Now this f is manifestly a function of just z. It is easily shown that

1 2* T — 1y
- = = 6.1.24
2 zz*  x2 4 y? ( )
2 2
Y- -z
Uy = Uy = m (6.125)
—2zy
uy - — Vg — m (6126)

We see that the CRE hold at any point where the various derivatives are finite
and well-defined. In particular they will hold in any neighborhood that excludes
the origin. As we approach the origin along different directions, we find that the
derivative approaches a different limit. For example along the z axis, u, blows
up as —1/2% whereas along the y axis it blows up as 1/y2. While it is true that
vy is sick in exactly the same fashion (because of the CRE), neither has a definite
value at the origin. Indeed even before we consider these derivatives, we see that
f = 1/=z itself has no unique limit as we approach the origin, blowing up to +oo
as we approach the origin from the right/left and to +ico as we approach it from
below/above.

To conclude, the CRE breakdown at a singularity because the function or its
derivatives (which enter the CRE’s) become ill-defined as we approach that point.

Here is a list of important singularities you will encounter.

e Simple pole The case we just saw, f(z) = 1/z is an example of a simple
pole. Clearly the function ¢/z, where ¢ is a constant, also has a simple pole.
We say the residue of the pole at the origin is c.

Consider next
1 1

(z+1) (2 —1)

f(z)= (6.1.27)
This function has poles at two points = = +i. As we approach » = i, the
factor 1/(z + 1) approaches 1/(2i) and may be replaced by it. On the other
hand, we cannot replace 1/(z — i) by anything simple since the function is
very singular and varies wildly. Thus in the immediate vicinity of z = i we
may trade the given function for %)2 One says the function has a pole at
z =1 with a residue 1/2i. Equivalently, the residue R(z = i) is given by

1

R(z=1)=lim(z — i) f(2) = —. (6.1.28)
z—1 2
The function also has a pole at = = —i with a residue
. . , 1

R(z = —i) = lim(z + i) f(2) = — (6.1.29)

z—1 —2i
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In the present problem we can obtain the above results simply by using partial
fractions in Eqn. (6.1.27):

1 1] 1 1
)= — = — - , 6.1.30
1) (z+i)(z—1) 2 L—i z-‘ri] ( )

More generally, if a function has a simple pole at zg, its residue there is

R(zy) = ZILIIZIO(Z —z0)f(2). (6.1.31)

e n-th order pole We say that f has an n-th order pole at z¢ if

R(z0)

. 6.1.32
(2 — zo)" ( )

flz) =

as z — zg.

The n-th order pole is called a removable singularity: by multiplying the
function by (2 — z¢)™, we can eliminate the singularity.

o Essential singularity A function has an essential singularity at a point zg if
it has poles of arbitrarily high order which cannot be eliminated by multipli-
cation by (z — z9)™ for any finite choice of n. An example is the function

HOEDY ! (6.1.33)

2!

which has poles of arbitrarily high order at the origin.

e Branch point A function has a branch point at zg if, upon encircling zo and
returning to the starting point, the function does not return to the starting
value. Thus the function is multiple valued. An example is

f(z) = 2% =r3e%/2, (6.1.34)

Notice that as we increase 8 from 0 to 27, at some fixed r, the function goes
1 1 . 1 . . .
from r2 to rze'™ = —r2. We say f has a branch point at the origin.

You might think that among analytic functions, those with no singularities
anywhere are specially interesting. This is not so, because the only example of
such a function is a constant. (This can be proven, though we will not prove it
here.) Even polynomials misbehave as z — oco; they blow up.

In this chapter we will mainly emphasize meromorphic functions:

Definition 6.5. 4 function f(z) is meromorphic if its only singularities for finite
z are poles.
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Problem 6.1.7. Locate and name the singularities of f = 1/(1 + 2%) and f =
/(% + 222+ 1).

Problem 6.1.8. Show that dz = (dr + ird8)e®® given z = re*. Interpret the two
factors in dz, in particular the role of the exponential factor. Equating the deriva-
tives in the radial and angular directions. find the CRE in terms of u,, ug, vy, vg.
Begin now with f(r,0) = f(re'®) as the definition of analyticity, relate v and 6
derivatives of f, and regain the CRE in polar form.

Problem 6.1.9. Confirm the analyticity of:
T — 1y
2 4 y?2’
sinx coshy + i cos z sinh y.
You can either use the CRE or find f(z).

6.1.2. Derivatives of analytic functions

When u and v possess continuous partial derivatives that obey the CRE we may
define the z-derivative of f = u+iv as follows. If the function is known explicitly
in terms of z, say f = 22, we take derivatives as we did with a real variable z:

Af = (z4+A2)2-22=22 Az (6.1.35)
d
G (6.1.36)
dz

Suppose we have the function in terms of z and y and only know that it obeys the
CRE, so that in principle it can be written in terms of just 2. Let us vary both z
and y to obtain to first order

0 0
df = —fdx + —fdy (6.1.37)
ox oy
= (ug +ivg)dz + (uy + tvy)dy (6.1.38)
= (ug +ivg)dr + (—iuy + vy)idy. (6.1.39)

If we now invoke the CRE we see that both brackets are equal and the change in
f is proportional to dz + idy = dz. It follows that the derivative is

4

= (uz +ivg) = (—tuy + vy) (6.1.40)
dz  ~——— ——————

af
10y

mlm
8=
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in accordance with Eqn. (6.1.18).
Thus for example the derivative of

f=z%—y?+ 2izxy. (6.1.41)
is d o
a9 oyt oiy =9s, (6.1.42)
dz oz

Notice that the z-derivative of an analytic function is independent of the di-
rection in which we make the infinitesimal displacement that enters the definition
of the derivative. You can choose dz = dx or dz = idy or any general case
dz = dz + idy and get the same answer. The following exercise looks at this in
more detail.

Problem 6.1.10. (Important). Consider df, the first order change in response to
a change dx and dy in the coordinates, of a function f = u + iv where u and v
have continuous derivatives which do not however obey the CRE. The shift in x
and y corresponds to changing z by dz = dx + idy and z* by dz* = dz — idy.
In other words, as we move in the complex plane labeled by x,y, we change both
z and z*. Show that df generally has parts proportional to both dz and dz* by
reexpressing dx and dy in terms of the former. Show that as a result the symbol
% makes no sense in general: it is like trying to define df (x,y)/dx for a function
of two variables, when all one can define is the partial derivative. If however, the
Sfunction of x and y happened to have no dependence on y, we could define the
total derivative with respect to z. That is what is happening with analytic functions

f which depend only on z.

It follows from the preceding discussion that if f is analytic at a point, %
exists in a neighborhood of that point.
From the CRE, we can easily show, by taking derivatives that

Ugz + Uyy = 0 vzg + vyy = 0. (6.1.43)

Note that so far we have only made assumptions about the continuity of first deriva-
tives of u and v. The above equation assumes the second derivatives are also
well-defined. We shall see later that this is not an additional assumption: it will
be shown towards the end of the chapter, (see discussion following Eqn. (6.4.22)),
that if f(z) has a first derivative in a domain, it has all higher derivatives in that
domain.

The equation obeyed by u
0%y 0%
4+ = =0 6.1.44
FyCi 952 ( )

(and similarly v) is called Laplace’s equation and u and v are said to be harmonic
functions.
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Problem 6.1.11. Prove that v and v are harmonic given the CRE.

Problem 6.1.12. You are given that u = 3 — 3xy? is the real part of an analytic
function. (i) Find v. Reconstruct f(z). Verify that w and v are harmonic. (ii)
Repeat for the case v = e~ Ysinz. (iii) You are given u = z3 — 322y and asked to
find v. You run into real problems. Why?

Problem 6.1.13. Prove that (£ + £5)|(2)12 = 4|f'(2)|%

Problem 6.1.14. Given that (u,v) form a harmonic pair, show without brute force
that wv and u® — v? are also such a pair.

6.2. Analytic Functions Defined by Power Series

We can build any number of analytic functions by simply writing down any expres-
sion that involves just z. Take for example the function

fz)=2%+2 (6.2.1)

which assigns definite values to each complex number z. For example at the point
z=3+4i, f(z) = —4 + 28i.
This is a special case of n-th order polynomials P, (z)

Po(z)=a0+ar1z+...+anz" 6.2.2)

which will obey the CRE for any finite z. Equivalently they will have well-defined
derivatives for all finite 2. They will however misbehave as we approach infinity:
the n-th order polynomial will (mis)behave as z™ = r™¢**® blowing up in different
ways in different directions.

Now we turn to a very important notion: analytic functions defined by infinite
series. As a prelude we must discuss the notion of convergence of complex series.

Definition 6.6. The infinite series of complex terms an,
S=) an. (6.2.3)
0

is said to converge if its real and imaginary parts, i.e., the series that sum the real
and imaginary parts of an, converge.
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Since we already to know how to test real series for convergence, no new tools are
needed. Consider for example

o0 ’

S=Y (2" +ie") = ir" +¢§:e*". (6.2.4)
0 0

0

The ratio rest on the real and imaginary parts show that both converge (being
geometric series with » < 1) and the full series itself converges to
B B

T 1-1/2  1—e U

s (6.2.5)

Recall that in the case of real series, we introduced a more stringent notion of
absolute convergence: the series converged absolutely if it converged upon replacing
each term by its absolute value. A similar notion exists here as well:

Definition 6.7. The series -
=3
0

is said to converge absolutely if
oc
S=Y"lan| (6.2.6)
0

does, ie., if

Entll . 6.2.7)

Since the real or imaginary part of a complex number is bounded in magnitude by
its absolute value, both the real and imaginary sums are dominated by the series
with absolute values. Thus a series which converges absolutely also converges.

Problem 6.2.1. Show why the absolute value of a sum of complex numbers is
bounded by the sum of their absolute values. You may do this algebraically (in
which case it is better to square both sides of the inequality) or by graphical
arguments, i.e., by viewing the sum as addition of arrows in the complex plane. In
the first approach you may want to start with a sum with just two numbers if you
are having trouble.

In the real case, absolute convergence meant that the series converged even
without relying on cancellations between positive and negative terms in the series.
Here it means that even if all the complex numbers in the sum (which can be viewed
as vectors in the plane pointing in different directions) were lined up along the real
axis, the sum would still converge.
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Let us now turn to the power series
o0

S = Zanzn. (6.2.8)
0

This clearly defines an analytic function as long as the series converges. We shall
be only interested in absolute convergence. This in turn means that

5| < R = lim —°n
n—00 [ani1]

(6.2.9)

where R is now called the radius of convergence since the series converges for all
z lying strictly inside a circle of radius R centered at the origin. (This is to be
compared to real series which converge in an interval |z| < R.) We could similarly
consider series

S=Y an(z—20)" (6.2.10)
0

which would converge within a circle of radius R centered at zg. In our discussions
we will typically choose zp = 0.

As a concrete example, consider the series with all a,, = 1, which clearly has
R = 1. Within this radius we can sum the series. That is

fE)=14+z+224- (2] <1). (6.2.11)

is a well-defined number for each z within the unit disk, the number being the value
of the convergent infinite sum at each value of z. In the present case we have the
luxury of knowing this limiting value in closed form. Using the trick for summing
a geometric series from Chapter 4, we see that the partial sum with N terms is

1 — ZN+1
1-2z2
so that if |z| < 1, we may drop 2V ! as N — oo and obtain

1
S 1-2
Thus for example, the series will sum to 3/2 at the point z = 1/3 or to m =
l+iatz=(14+1)/2.

Notice that Eqn. (6.2.8) is just a Taylor series at the origin of a function with
F™(0) = ann!. (Verify this by taking the n-th derivative and then setting z = 0.)
Every choice we make for the infinite variables a,, defines a new function with
its own set of derivatives at the origin. Of course this defines the function only
within the radius of convergence. Later we shall see how we can go beyond this
initial circle. For the present let us take series for other known functions of real

(6.2.12)

f(z)
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variables and define complex functions, being content to work within this circle of
convergence. As a concrete example consider

e =) - (6.2.13)

which corresponds to the choice a, = 1/n!. We now replace z by z and obtain a
new function which we call e*:

ef = = (6.2.14)

The radius of convergence of the series for e® is seen to be infinite since
the coefficients are just those of e®. Thus the exponential function is defined by
this series for all finite z. For example its value at the point z = 3 + 4i is
34 = ¢34 — ¢3(cos4 + isin4).

What can we say about this function other than the fact that on the real axis
it reduces to e*?

It obeys

de”?

dz
(as is clear from differentiating the series and noting that the derivative also has
infinite radius of convergence).

Next it satisfies

= e* (6.2.15)

e”!

Ce? = et (6.2.16)

as can be seen by comparing the product of the Taylor series of the factors on
the left-hand side to the series for the term on the right, to any order. Equivalently
consider the function e*e®~* which has zero derivative as per the product and chain
rules. It is therefore a constant, the constant value is e® as can be seen at z = 0.
Thus e*e®™% = e®. Calling 2 as 21, a — z as z2, we get the advertised result.

We now go on and define trigonometric and hyperbolic functions in the same
way:

) oo n z2n+1
sinz = ;(—1) BTl (6.2.17)
s 22n
cosz = ;(—1)"@”)! (6.2.18)
oo 2n+1
X z
sinhz = ; m (6219)
e = ST 6.2.20
coshz = 20:(271)! (6.2.20)
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Let us take a look at these series. We notice that these functions are related to
the exponential function in the same way as they were in the real case. For example
eiz + e—iz

cosz = — (6.2.21)

1z -1z
sinz =S (6.2.22)
2
and likewise for the hyperbolic functions. We shall see towards the end of this
chapter that this fact has a very general explanation.
The series above also have R = oo, as can be seen by the ratio test or by
appealing to their relation to the exponential series which is defined for all finite z.
What are the properties of the trigonometric and hyperbolic function in the
complex plane? Is it true for example that
cos?z +sin’z =1 (6.2.23)
even for complex z? In the case of real z, we could relate these functions to sides
of a right triangle, use the Pythagoras theorem, and prove the result. Clearly this
does not work when the angle > is complex; we have to rely on the series that
define them. While squaring and adding the two series (and keeping as many terms
as we can), will provide circumstantial evidence, it is much easier to relate them to
exponentials and argue as follows:

eiz+e-iz]2+ [eiz _e—izr
2

2iz —2iz 92 _ 2iz __ ,—2iz 2
_e e — T2 (6.2.24)

cos? z +sin’z = [

All the usual properties of these functions are likewise preserved under exten-
sion to the complex plane. A few are taken up in the exercises below.

Problem 6.2.2. Show that the hyperbolic functions obey cosh? z — sinh®z =1 by
writing the functions in terms of exponentials.

Problem 6.2.3. Argue that the old formula for sin(z1 + z2) must be valid for
complex arguments by writing sin z in terms of exponentials. Find the real part,
imaginary part, and modulus of sin(z + iy). Where all does the function vanish in
the complex plane?

Problem 6.2.4. Locate the zeros in the complex plane of sin z, cos z, sinh z, and
cosh z. A suggestion: work with the exponential function as far as possible.
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Problem 6.2.5. Show that |sinz|> = sin?z + sinh®y and |cosz|? = cos?z +
sinh?y. What does this tell you about the zero’s of sinz?

Problem 6.2.6. Show that the solutions to sinz = 5 are z = % +2n7 +icosh™*5

There are also new insights we get in the complex plane. For example we
know that for = = z, sines and cosines are just shifted versions of each other:
sinz = cos(z — m/2). What one function does here, the other does at a related
point. Now we learn that the hyperbolic and trigonometric functions are similarly
related:

cosiz = cosh 2z (6.2.25)
sin¢z = 7 sinh z, (6.2.26)

i.e., what the trigonometric functions do on the real axis, the hyperbolic functions
do on the imaginary axis and vice versa.

So far we have focused on functions (related to e*) whose Taylor series at
the origin converged for all finite z. Thus our detailed knowledge at the origin
sufficed to nail them in the entire complex plane. But this is not generic. Consider
the function f(z) = 1/(1 — z) whose series 1 + z + 22 + ... converges only for
[2] < 1. How are we to give a meaning to the function outside the unit disc? The
closed form of the function tells us the function certainly can be defined outside
the unit disc and that its only genuine problem is at z = 1 where it has a pole.
Suppose we were not privy to this closed form. Could we, armed with just the
Taylor coefficients at the origin, reconstruct the function, say at z = 2 where it
has the value —1? The answer is affirmative and relies on Analytic Continuation,
which will be discussed towards the end of this chapter.

The logarithm
Now we turn to another function in the complex plane, the logarithm. Recall that
when we first discussed logarithms, it was pointed out that we could not define the
log of a negative number since there was no real number whose exponential was
negative. Clearly all this is changed if we admit complex numbers, since we have
for example ¢!™ = —1. Let us consider the In function defined by (the analytic
continuation of) its series

S n+1
In(l+42) = Z %ﬂ (6.2.27)
1

which defines a function within a circle of radius 1. (At the circumference is
a branch point, to be discussed later.) Within this circle, the In and exponential
functions are inverses, that is to say, e®(11t2) =1 4 2.

Problem 6.2.7. Verify e®(112) = 1 + 2 10 order z® by using the respective series.
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The equality of these two functions (e®(1+2) = 1 + > ) within the circle tells us
they are forever equal, a point that will be elaborated on towards the end of this
chapter. Replacing 1 + 2 by z everywhere we have

ez = 5 (6.2.28)

We originally introduced the In function in our quest for arbitrary real powers of

any given number. We found
a® = e®lna, (6.2.29)

Since we could evaluate both the In and exponential functions to any desired accu-
racy via their series, we could give an operational meaning to a”.

Let us now try to see how all this goes in the complex plane, first without
invoking the logarithm. Let us begin with the square root of z = re®. It is clearly
that number, which on multiplying by itself, gives us z. Since this process squares
the modulus and doubles the phase,

1/2 _ 1/2,i6/2 (6.2.30)

z
does the job. Now let = = 4. The above answer gives us z'/2 = 2, which is
fine. But we also know that there is one more solution, namely —2. How does that
emerge from this approach? Perhaps, with the advent of complex numbers there
are even more solutions for the square root?

Starting with the former question, we first observe that we can write z in two
equivalent ways:
z = re'd = petft2m (6.2.31)

since adding 27 to the phase does not affect anything. (Recall Euler’s formula
and the period of the sines and cosines.) But the second version gives us the other
square root, for when we halve the phase there, we get an extra =, leading to

21/2 — r1/2ei9/2+‘iﬂ' — _T1/2ei6/2 (6232)

since e*™ = —1. What if we continue and start with z = r exp(if + 474)? We do
not get any new answers since halving this phase adds an extra 277 to the phase
in the square root and that makes no difference even to the square root. Thus a
complex number has only two square roots. Let us ponder on this, focusing on the
case r = 1, i.e., the unimodular numbers, since » — r1/2 in all cases. Our starting
number is exp(i0), which makes an angle 6 with the z axis. One of its roots makes
half the angle, so that when squared, it gives us the original number. The other
has half the angle plus =, which puts it at the diametrically opposite point. When
squared, doubling the = becomes unobservable and we end up where we did when
we squared the other root.

It is clear what happens when we consider the cube root. There will be three
of them. The first will have one-third the phase of z. The other two will be rotated
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Z

Z3

Figure 6.1. The three cube roots of z = 8. Note that all have length 2 and phases that equal 0 modulo
27 when tripled.

by 120 degrees (27/3) and 240 degrees (47 /3) relative to the first. These extra
phase factors, which distinguish the roots, will all become invisible when the cube
is taken.

Let us consider as an example the cube roots of 8. By the preceding discussion.
they are

z1 =2 z2:262ﬂ/3:—1+i\/§ z3=26_2”i/3:—1—i\/§
(6.2.33)
The roots are plotted in Fig. 6.1.

Problem 6.2.8. (Important). Verify that the cubes of the roots of 8 (in cartesian
form) in the preceding equation indeed give 8.

Consider the function f(z) = z!/2. Let us visualize at each point z the associated
value of the function. Starting with the real branch f = \/r on the positive real
axis, let us go around the origin along the path z = re®®. As we traverse this path,
f is given /7e*/2. When we describe a full circle and return to the starting point,
f returns to the other root, \/re*™. Thus the function is multiple valued: as we
go around the branch point at the origin, f changes from one branch to the other.
Likewise, the function v/1 — z has a branch point at = = 1. Its Taylor series about
the origin, which goes as

flz)=1- %z - %22 NE (6.2.34)

breaks down on the unit circle. This is because this power series of single valued
terms cannot possibly reproduce the double-valuedness around the branch point.
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Problem 6.2.9. What do the N roots of unity look like? Write down explicit carte-
sian forms for the sixth roots. What is the sum of all the six roots?

Problem 6.2.10. Find the roots of 2% — (15+9i)z + (16 +63i). (Hint: the radical
contains a perfect square.)

Let us see how the multiple roots of a complex number emerge from the
logarithm. Suppose we write

2 =en? (6.2.35)

and say
LJUN ok Inz, (6.2.36)

where does the multiplicity of roots arise? It must come from the logarithm. What
is In z? In polar form,

Inz =Inr + 6. (6.2.37)

But we can add any integral multiple of 27 to the phase of z without affecting it.
But each such choice gives a different value for the logarithm:

Inz=1Inr+i(0+ 27mn) (6.2.38)

One says that there are infinitely many branches of the logarithm. Thus there is
no unique value associated with the logarithm of a given number—there is a lot
of latitude! Why were we denied this freedom (along with many others) in high
school? Because back then we insisted that the log be real, and there is just one
branch. Stated differently, we asked for example: to what power must we raise e
to get say, 10?7 The answer was: roughly 2.303. But there are other answers such
as 2.303 + 2mi.

The function In z clearly has a problem at the origin since In z — —oco as we
approach the origin from the right. But the problem there is not a pole but a branch
point. By this one means the following. Start at = = 2. Choose the branch which
is real, i.e., has In2 = .693. Move along a circle of radius 2 and follow what is
happening to the In z function. Its real part will be fixed at .693 while its imaginary
part will grow from 0 to 27 as we return to our starting point. Thus the function
does not have a unique value at every point in the plane: each time we go around
the origin, the imaginary part of the logarithm goes up by 2x. Note that a circuit
that does not enclose the origin does not produce this effect. We say the function
is multiple valued and that the origin is a branch point. To keep the function single
valued, we must draw a line from the origin to infinity and agree never to cross it.

Let us now see how the multiplicity of the logarithm leads to N distinct N -th
roots of z:
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JUN G exp I:% In z] (6.2.39)
1
= exp [ﬁ[lnr +i(6 + 27171)]] (6.2.40)
VP i ey [n=0,1,...N —1].(6.2.41)
N N k) k)

We limit n to take only N values since after that we start repeating ourselves.
This is a special property of the N -th root. We do not find this in the general case
we now turn to: complex powers of complex numbers. We define these by

2% = 0z, (6.2.42)

Since the exponential and In function are defined by their series, the above expres-
sion has an operationally well-defined meaning. This power ¢ can have infinitely
many values because adding 2n7i to In z upstairs can affect the left-hand side since
2nma need not be a multiple of 27 for any n.! That is the bad news. The good
news is that it is still a complex number! By this I mean the following. We did not
go looking for complex numbers. They were thrust upon us when we attempted
to solve equations such as z2 4 1 = 0, written entirely in terms of real numbers.
Thus it is entirely reasonable to ask if equations with complex coefficients will
force us to introduce something more bizarre. How about complex roots or pow-
ers of complex numbers? The answer to all this is that we will never go outside
the realm of complex numbers by performing any of the algebraic operations of
adding, multiplying, and taking roots.

There are however other ways to generalize complex numbers. We can look
for some hyper-complex numbers h which have several distinct separable parts (like
the real and imaginary parts), absolute values which are real and nonnegative and
vanish only if all components do, and multiply when the numbers are multiplied; and
for which division by nonzero » makes sense. There are two extensions possible:
quaternions (which can store four bits of information but do not commute in general
under multiplication, h1ha # hohi) and octonions (which store eight pieces of
information and are not even associative, i.e., (h1h)h3 # hi(hah3)).

Problem 6.2.11. Write down the two square roots of (i) i and (ii) 3+4i in cartesian
Sform.

Problem 6.2.12. Find all the roots of e* + 2 = 0.

IConsider for example (3 + 4i)* = exp[i(log5 + i(2mn + arctan(4/3))] = exp[—(2mn +
arctan(4/3))] exp[i log 5] which has infinitely many values, one for each integer m.
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Problem 6.2.13. Express the following in cartesian form: (i) 3', (ii) In 3%, First
express in polar form and take the square roots of: (iii) (3+4i)(4+3i), (iv) %

Problem 6.2.14. (i) Find the roots of z* + 222 + 1 = 0. How many roots do you
expect? (ii) Repeat with 26 + 223 + 1.

Problem 6.2.15. Write 1 + i in polar form and find its cube roots in cartesian
form. Check that their cubes do give the original number.

Problem 6.2.16. Give all the values of i*.

6.3. Calculus of Analytic Functions

Consider first the derivative of functions represented by infinite series. As in
the real case, the function and the series are fully equivalent within the circle of
convergence. If we multiply the series for two function we will get the series for
the product function assuming we are within the common domain of convergence
for all three.

We will now argue that a power series may be differentiated term by term to
obtain another series with the same radius of convergence. The new series will
converge to the derivative of the original function. Why is this true? Suppose

f(z) = > anz™ and (6.3.1)
0
lm |2 | - g (63.2)
n-—00 |Ant1 |

Consider now the term-by-term differentiation of the series. This sends a,2" to
nanz""! and R — limp o0 R = R. What goes for the first derivative goes
for all higher ones, since convergence properties of f are clearly inherited by its
derivative, which passes it on to the next, and so on.

Problem 6.3.1. Verify that the derivative of the series for In(1+ z) gives the series
for 1/(1 + z). Verify that the derivative of the sine is the cosine by looking at the
series. Make sure R is the same for the function and the derivative.
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Figure 6.2. Integration in the complex plane. (A) Here we observe that the integral along the closed
path from z; to z2 and back, is the difference of two integrals, in which we go from z; to z2 along
the two paths joining these end points. Thus if the integral on the loop vanishes, the integral along the
two paths are equal. (B) Here we see that the sum of the integrals around two adjacent rectangles is
the integral along a large one formed by gluing them and deleting the common edge. (C) We see how
the (counterclockwise) integral around some closed contour is equal to the integral (counterclockwise)
around the tiny rectangles that tile it. (D) The infinitesimal rectangle around which the analytic function
is to be integrated. Since this vanishes by CRE, so does the integral around any bigger loop in the
domain of analyticity.
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Consider now Fig. 6.2A and the integration of a function f(z).

We now define the integral of analytic functions in analogy with the real
integral. First we pick two end points z; and 25 in the complex plane. These two
can however be joined by a variety of paths, a freedom we did not have with a
real variable. So we pick some path P15. We then chop this path into infinitesimal
bits. We form the sum over f(z)Az on all the segments, where Az = Az + iAy
is the change in z between the beginning and end of each segment. In the usual
limit of vanishing Az we obtain the integral

F(z1.29,P) = /22 f(z)dz. (6.3.3)

Let us perform one such integral. Let
flz,y) =ulz,y) +iv(z,y) (6.3.4)

be an analytic function. Let us consider the integral of this function from the origin
to the point z = 1 + 7 along some path. How is this path to be specified? A
standard way is to parametrize points on it with a parameter, say ¢ and specify how
z and y depend on ¢ as we move along the path. (You may think of ¢ as the time
and the path as the trajectory of a fictitious particle as it moves along the plane
from the origin to (x = y = 1). Here is a sample:

z = ¢ (6.3.5)

y = t3 (6.3.6)

which describes motion along the curve y = z3/2. As ¢ varies from 0 to 1, the

point moves from the origin to (z = y = 1). As t changes by dt, z changes by

dr  d
dz = dz + idy = (d—f + i?g)dt = [2t + 3t%]dt (6.3.7)

and the integral is just an ordinary integral over ¢:

141 1
F(zl,zg,P)z/o f(z)dzz/o [u(t2,£3) + iv(t2, £3)][2t + 3t%i]dt.  (6.3.8)

To proceed, we need to assume specific forms for v and v. Let us say
u(z,y) = 2?2 —y?  w(z,y) =2zy. (6.3.9)

Then

147 1 2 2
/ f(2)dz = / [t — & + 2it5][2t + 3t%i]dt = -3+ 3 (6.3.10)
0 0
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In some cases we can use z or y itself as a parameter instead of ¢. For example
in the path z = t, y = t2, we can get rid of ¢ and use just z: thus the path is given
by y = =2, on this path dz = dz + i2zdz and f(z.y) = f(z,22).2

Consider now a function which is analytic inside a simply connected domain
D. We will now see that

Theorem 6.1. The integral of f(z) within a simply-connected domain D depends
only on the end points and is path-independent.

Proof: Let us first understand the condition “simply connected”: it means that
any closed curve in D must be contractible to a point without leaving D. Thus the
interior of a circle (or any smooth deformation of it) is simply connected whereas
an annulus is not: a loop going all the way around cannot be collapsed to a point
without leaving the domain.

The proof will be provided in two stages.

First it will be shown that

f{ f(z)dz=0 (6.3.11)
cebD

which means the integral of f around any closed path C entirely in D vanishes.
Given this fact consider part A of Fig. 6.2, which shows a closed contour with two
points on it called z; and z;. Clearly

]q{ :/ +/ = 0 (given) (6.3.12)
C Py Py,

which states that the closed contour equals the path from 1 to 2 along P and back
from 2 to 1 along P’. Using the fact that the integral changes sign when we reverse
the path (since every dz goes to —dz), we may rewrite the above equation as

/ :/ (6.3.13)
Pro P1/2

by reversing the path P’. This is the advertised result: the integral depends on
only the end points and not the path if the integral on any closed loop vanishes.
The converse is also true: if the integral is the same on all paths with the same
end points, the integral around any closed path is zero. The proof is obtained by
running the above proof backwards.

We now have to prove Eqn. (6.3.11). We use the following general argument.
Consider a rectangle R obtained by gluing together two smaller rectangles R; and
Rs so that they share a common edge, as shown in part B of Fig. 6.2, where the

2Note that the integral is independent of the parametrization. Thus x = 42,y = 83 with [0 < t <
1/2] is also path y = z3/2 joining the origin to (1,1) and will give the same answer as Eqns. (6.3.5
-6.3.6).
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rectangles are slightly displaced for clarity. The integral of f around the perimeter
of R equals the sum of the integrals around R; and Rq, all integrals being done
counter-clockwise. This follows from the fact that when we add the separate con-
tributions from the two rectangles, the common edge occurs twice, with opposite
sign, since its traversed in opposite directions.

By gluing together more and more rectangles we will continue to find that the
shared edges cancel, leaving behind only the exposed edges, i.e., the edges that line
the perimeter of the composite object they form. Conversely, the integral around
a closed curve is the sum of the contributions from smaller pieces that tile the
interior of the given contour. If we make these pieces arbitrarily small we can use
them to tile the area enclosed by any contour C. This is schematically shown in
part C of the figure. Thus to find the integral of f around C, we need to know
the integral around the tiny tiles that make up the area. We will now show that
for an analytic function the contribution from every tiny rectangle is zero, which
establishes our claim.

Now to furnish this last link in our arguments, let us turn to part D of the figure
wherein an infinitesimal rectangle is magnified for our benefit. The integral has
four contributions from the four sides. Let us pair the contributions from segments
I and IIT (which run in opposite directions) as follows:

z+dx T+dz
I+III = / f(z,y)dz —/ flz.y +dy)dz  (6.3.14)
T T

r+dx
- / (——6f<x’y)dy)dx (6.3.15)
T ay
—%Z’y)dz dy + O (cubic) (6.3.16)

In the penultimate equation we have used the definition of the partial derivative,
while in the last we have used the fact that the integral of a function over an infinites-
imal segment equals the integrand times the length of the segment. Where should
the partial derivative be evaluated? The answer is: anywhere in the rectangle. The
difference between any two choices will be proportional to the shift in location and
make a contribution that is cubic in the differentials since we already have a factor
dxdy. (Here is where we assume the continuity of the derivatives.) However in the
sum over tiny areas (which will give the integral around the bounding contour C)
only the contribution proportional to the area itself (dz dy) will survive, (becoming
the double integral over the enclosed area in the limit of infinitesimal arecas) while
higher powers will not. Recall the integral over a function of one variable where
we divide the interval into N slices of width dz and form the product f(z)dz in
each slice and sum over slices. Assume each slice is of the same width for this
argument. One can ask where within the slice the z in f(z) lies. We saw that it
does not matter in the limit N — oo and dz — 0. If we expanded f in a Taylor
series at the left end of the interval z = z, f(z) = f(zr) + f'(zL)z + ..., and
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use f(z ) the additional terms shown are seen to be at least of order f/(z)dz? in
each interval. In the limit dz — 0, the sum over fdz will approach the area and
terms like f’dxz? will be of order dz ~ 1/N times the area and vanish in the limit.
In other words, although dz and dz? are both going to zero, the former is going to
zero as 1/N and is precisely compensated by the corresponding increase in N, the
number of intervals or the number of terms in the sum, while the latter is going as
1/N? and cannot be compensated by the growth in N. Likewise in our problem,
dz dy decreases like 1/N, N being the number of tiny squares, while dz? dy falls
faster and make no contribution in the limit we are taking.
Adding now the similar contribution from sides I7 and IV, we find

f = I+III+114+1V (6.3.17)
= (—fy+ifg)dady (6.3.18)
= [(—uy —ivy) +i(ug + ivz)] dzdy (6.3.19)
= 0 by Cauchy-Riemann. B (6.3.20)

Problem 6.3.2. Calculate the integral of f = (z + iy)? around a unit square with
its lower left corner at the origin and obtain zero as you must.

Now that we know that the integral of f is path independent, how do we go about
evaluating this? Consider the simple case of integrating f(z) = z2 from the origin
to the point 1+:. Since f is analytic (except as we approach infinity, where it blows
up) we know the answer is path independent. Let us try three paths. First let us go
along the -axis to 1+ 0i, then up to 1+i. In the first part f = 22 —y%+2izy = 22
and dz = dz + idy = dz. Doing the = integral gives

1
/ z2%dz = 1/3. (6.3.21)
0

In the second part z = 1 and y varies from 0 to 1 and dz = dz + idy = idy. Thus
it contributes

1
2
/ (12 — y? + 2 - 1-y)idy=i(§+i) (6.3.22)
0

giving a total of %(z —1). We have already seen that the same result obtains on
the path y = 23/2. The same result will obtain if we first go up the y-axis to i
and then turn right and go along the line at 45 °, in which case we can write (since
r=vy), f=1a%—- 22+ 2izz,dz = dz(l +1). Having written everything in terms
of z, we can do the z-integration from 0 to 1 and get the same result.

Problem 6.3.3. Verify that the last two methods reproduce answer derived above.
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There is a short cut for doing this. That is to treat z just like we treat z and write

23 3
- z
/ 22dz = =
z1 3 z1

3
- (“;’) _ ;(ivl) (6.3.24)

which reproduces the earlier result. This is not an accident. More generally we can
assert that

22

(6.3.23)

/ f(z)d" = F(z) (6.3.25)

where F(z) is any function whose derivative is f(z). The proof is as in the case
of real integrals. We take the derivative of F(z) by changing the upper limit by
dz. The increment is then f(z)dz and it follows f = ‘fi—f. Thus F(z) gives
the right dependence of the integral on the upper limit. (The answer does not
depend on the direction in which we change the upper limit. Thus F has a nice
direction-independent derivative at z as an analytic function should.) The above
F is an indefinite integral; there is a free parameter in its definition corresponding
to the free lower limit in the integral, just as in real integrals. But the possible
dependence on path is gone, given the path independence of such integrals. Thus
any two indefinite integrals can only differ by a constant. Notice however that all
this is true only if we are operating within D, the domain of analyticity.

Problem 6.3.4. Evaluate the integral of z* on a rectangular path going from —1
toltol+ito—1+iand back.

Problem 6.3.5. Integrate 2> — 23 from the origin to 1 + i by first going to z = 1
along the real axis and then moving vertically up. Compare to what you get going
at 45° . Now compare this to the short cut in which you treat z just like z.

Once we know how to integrate 2™, we can integrate any function given by a power
series. For example the integral of 1/(1 + 2) is In(1 + z). As for the constant of
integration, it is chosen so that the integral vanishes when z = 0, that is to say, the
integral is from O to z. Inside D, the power series can be integrated term by term
any number of times. The result will converge within the same D as can be seen
by doing the ratio test.

Problem 6.3.6. Verify the above claim by carrying out the ratio test for the integral.

6.4. The Residue Theorem

We close this chapter with a very important result on the integral of a function with
a pole. Consider f(z) = 1/ and a contour that goes around the origin along a



Functions of a Complex Variable 133

circle of radius r so that z = re®® on it. At fixed r, we also have dz = re®ids.
Thus
27 10
?{ldz - / re’idf (6.4.1)
z 0 ret?
2w
= / 6 = 2ri. (6.4.2)
0

First note that we got a nonzero integral. Are we not supposed to get zero when
we integrate an analytic function around a closed loop, and isn’t being an explicit
function of just z a criterion for analyticity? The point is that f(2) = 1/z is indeed
a function of only 2, but has no definite value at the origin, blowing up as we
approach it, in different ways for different paths. For the theorem to work, f must
not only be a function of just z, it must have a unique and finite value. In other
words, the CRE have no real meaning if ug, vy etc., are infinite as is the case in
our problem at the origin. It also follows that if the contour does not enclose the
singular point at the origin, the integral indeed will be zero.

Next note that the radius of the contour dropped out of the answer. Thus the
integral is the same on circles of any radius surrounding the pole. In fact the answer
is the same if we change the circle to any other shape that still encloses the origin.
To understand this, start at some point z; on the circle, leave the circle in favor
of another route and rejoin the circle at z9, say by going along the chord joining
these points. The contribution must be the same from the two paths joining z,
and zq since they lie entirely within the domain of analyticity of this f. Thus the
integral on the circle is equal to that on the contour that differs from it between z;
and zo. Of course if we can do this once and get away with it, we can do it any
number of times and vary the contour at will. We cannot however deform it so as
to exclude the origin, for in doing so we will necessarily be dealing with two paths
that enclose a nonanalytic point, i.e., two paths that do not lie entirely in D.

Consider a non-simply-connected domain D’ that is shaped like an annulus
centered at the origin, but such that the origin is excluded. The given f is analytic
in D’ and yet its integral around a closed loop that goes all the way around the
annulus is not zero. The reason is that the integral over this loop cannot be written
as a sum over integrals around small tiles because the tiling will stop at the inner
perimeter of the annulus which will be another uncanceled boundary in addition to
the loop we started with. '

Returning to the main theme, is clear that if, for some constant A, we integrate
A/z around any contour that encloses the origin, the result will be 274 and that
if we went around clockwise there would be a change of sign.

Consider finally a function f which has several poles at points z; and a contour
that encloses a subset of them. Here is an example:

1

T Ba— 6.4.3
(z+14)(z — ) ( )

f(z) =
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v/

Figure 6.3. Two equivalent contours. We shrink the first one to the second one without crossing any
poles.

It has a pole at z = =i, with residues :i:%. Recall that in general

F2) ~ iGN (6.4.4)

zZ — 23
where R(z;) is the residue at the pole z;. We are now ready to prove

Theorem 6.2. (Cauchy’s Residue Theorem). If f(z) is meromorphic (has only
poles)

féf(z)dz =2ri Y R(z) (6.4.5)

z,€C

where z; € C means the point z; is inside the contour C and the latter is traversed
counterclockwise.

Proof: Consider Fig. 6.3.

At the left we see the contour C' enclosing the poles marked by dots. Using
the freedom to deform the contour without crossing any poles we can modify C to
what we see in the top right of the figure. The circular paths around each pole can
be made infinitesimal. Finally we can ignore the two way paths that connect the
poles since they cancel going and coming. Thus we need to just go around each
pole in an infinitesimally small circle. The contribution from each circle is deduced
as follows. Given that f has a pole at some z; we know that it must have the form

flz) = =2 (6.4.6)

z— 2

in the immediate vicinity of the pole. That is to say, the function factors into a part
which has a pole 1/(z — z;) and thus varies rapidly and a part (the residue) that
is essentially constant over the infinitesimal circle around z;. It is now clear that
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each pole makes a contribution that is 27i times the residue there and Eqn. (6.4.5)
follows. W

Once again consider f(z) = 1/[(z — i)(z +1i)]. If C encloses the pole at i
but not the one at —i, the integral is 2ni - ‘217" while if it encloses the lower pole,
the answer is reversed in sign. What if C encloses both poles? Adding the two
previous results, we get zero. This can also be obtained another way. Let us take
this C' and go on enlarging it. The answer cannot change since we are running
away from the only singularities the function has. But as we go to infinitely large

z the integrand approaches 1/22 and on a circle of radius R,

27 10 -
Re'ido

0. (6.4.8)

The integral vanishes for two reasons. First, the whole thing falls like 1/R which
kills it as R — oo. Secondly, the angular integral is identically zero since the final
integrand e ~* integrates to zero between the limits 0 — 2x. Thus we do not need the
argument based on counting powers of R here. It is provided in view of integrals
where the range of 6 is not the full circle and the integral in question vanishes only

due to the inverse power(s) of R as in the following example. Consider

0
/ - :22. (6.4.9)
0

We already know this equals /2 by doing the integral with a trigonometric substi-
tution. We will now rederive this result using the residue theorem. But this needs
some ground work. First of all, we have a real integral and not a complex one in
the complex plane. That is no problem since we can see the above as the integral
of f(z) = 1/(1+ 22) on the real axis where z = = and dz = dz. The next problem
is that this is not an integral over a closed contour. This we remedy in two stages.
First we extend the limits to —co < 2z < oo and compensate with a factor of %
since the integrand is an even function. We now have a contour going from one
end of the real axis to the other, but it is not yet a closed contour. To fix this up, we
add the contribution from a large semicircle of radius R and argue that as R — oo,
this will not affect the answer. To be precise we consider the contour shown in
Fig. 6.4.

Now we have the good feature that the residue theorem applies, but the bad
feature that this is not the contour given to us! Forging ahead, we find that the pole
at z = ¢ gives us an answer 27ri—21—i = 7, independent of R as long as it is large
enough to enclose the pole at i. Now we let R — oo and two nice things happen:

e The diameter approaches the entire real axis.

o The contribution from the semicircle, which falls as 1/R, vanishes.
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Figure 6.4. Application of the residue theorem.

Dividing the answer by 2 we regain the old result.

What if we had added on a semicircle in the lower half-plane? The answer
would have been the same because the semicircle would still make no contribution,
and two minus signs, one due to the residue at the pole at —: and the other due
to the fact that the residue theorem has an extra sign if we go around the pole
clockwise, would cancel.

Here is another important thing to remember when you use the residue theorem:
the residue is the coefficient of 1/(z — zp). Thus the function 1/(2z — 4) has a pole
at z = 2, the residue there is 1/2. We must always recast the pole so that > has

unit coefficient. In the example considered this means writing 1/(2z — 4) = 211 22

Problem 6.4.1. What is fc % where C is a unit circle centered at z = i?

Repeat when the center is at z = —i.

Let us consider next an example that typifies a frequently encountered family:
o0
d
/ ket (6.4.10)
oo 1+

Let us view this as the integral of a complex function on the real axis. To use the
residue theorem, we must be able to add on the semicircle at infinity. Now we
have a problem. Without the cosine the integral vanishes like 1/R. What does the
cosine do? Let us examine the cosine in the complex plane:

12 —1z
cosz = f’”;—e (6.4.11)
iz—y+ —iz4y
- ¢ _—26 . (6.4.12)

Notice that whereas the first exponential blows up in the lower half plane and
converges in the upper half plane, the second does the reverse. Thus no matter
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which half plane we add the semicircle in, its contribution is not negligible. The
way out is the following. We replace the cosine in the given z integral by e®®,
calculate the integral by closing the contour in the upper half plane and then take
the real part of the answer. The pole at i has a residue

-1
R(z=i)= ", (6.4.13)

which means the integral is 7 /e.

Problem 6.4.2. There was no need to take the veal part of this answer since it
was already real. Can you argue using symmetries of the original integral that
changing cos x to e'® does not change the integral? How would you deal with a
function that had sin x in the numerator instead of cosine?

Problem 6.4.3. (Excellent practice on closing contours). Show that

/°° cosazx + x sinax
0

— , T, .
5.2 dx:ﬂea{fa>0,51fa=0.01fa<0

We finally consider another class of integrals which can be done by contour
integration. Here is a concrete example:

27
do
I= —_— > 1). 6.4.14

/0 a + cosd (a ) ( )
Where is the closed contour here? It appears if we interpret § as the phase of a
unimodular complex number z = e?®. Consider an integral along the unit circle in
the z-plane. We would have (on this circle)

: = e (6.4.15)
dz = idfe® = idfz (6.4.16)
160 —16
cosp = e _ztl/e (6.4.17)
2 2
dz 1
I = ]{ e (6.4.18)
; +1/2
|z|=1 % a + %
- ~2idz (6.4.19)
o |z|=1 2az+z2+1' o

We must now look for the poles of the integrand that lie in the unit circle and eval-
uate the integral by residues. The roots of the quadratic function in the denominator
are readily found and the result is

= (6.4.20)

as detailed in the following exercise.
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Problem 6.4.4. Establish Eqn. (6.4.20) as follows. First show that when a > 1 the
roots are real and their product is unity. Thus both roots must lie on the real axis,
with one inside and one outside the unit circle. Using the contribution from the
former obtain the above result. The case a < 1 is much more complicated. Show
that the roots form complex conjugate pairs lying on the unit circle. Integrals with
poles on the contour are not well-defined. You should consider a more advanced
book if you wish to pursue this. Look for words like Principal Value in the index.

Problem 6.4.5. Evaluate by the residue theorem.
W) fo e
(i) § 82222 op |2 = 1,2,

e z2dx
(iii) jo @2+25) (22 +16)’

27 _cos 6dB
(ZV) f 5+4 cos 8’

27 sin 0dé
(V) f 5+4c059 and

27 sin® 648
(VI) f 54+4cos 8"

Problem 6.4.6. Show that

* inx 1
“) /_m%dag - We_l/ﬁsinﬁ,
* zsin3z 7
B TOMOT L9,
®) /0 240 ¢
/ z2 +ld T
S our = =
o 14zt V2’
D) zsinz __zsinz . _ (4cosl+sin )7
oo T2+ 22+ 17 B 4et

Hints: (A) and (C): Find the roots of z* + 1 = 0. For all problems except (C)
recall sinx = Ime*®. (B) and (D): The hard part here is to show that the big
semicircle can be added for free. There are no inverse powers of R as in the
other two problems. Analyze the exponential function and show that it vanishes as
R — oo except for an infinitesimal angular region which makes an infinitesimal
contribution.

As a final application of the residue theorem, consider the equation

% fz)dz _ F(zo0). (6.4.21)
Tt Jcep % — *0

which states that if f(z)/2mi(z — 2¢) is integrated over a contour C entirely in the
domain D of analyticity of f, the answer is f(zg). The result follows just from the
residue theorem, since by construction, the integrand has only one pole, where we
put it by hand, namely at zo with a residue f(zg).
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This is a remarkable result: given the values of an analytic function on a
closed contour lying inside its domain of analyticity, its values inside the contour
are fully determined. But if we know the function inside, we also know in principle
its derivatives. Indeed by taking the derivative of both sides with respect to 2o we

find
1 f(2)dz _ df (=)
21 Joep (2 — 20)? dzp

. (6.4.22)

In other words, the integral of f around a double pole pulls out the derivative of
the residue.
If we take higher derivatives we will find a similar result:

n! f(2)dz _ d"f(z0)

— = = f™(z). 6.4.23
21i Joep (2 — z0)"H! dzg [ (z0) ( )
Here is an illustration of Eqn. (6.4.23):
?{ coszdz _2m Foosz| _ (6.4.24)
|z|=1 z 2! dz 0

Note that the n-th derivative defined by Eqn. (6.4.23) is well-behaved: the
integrand is nonsingular since f is bounded on C € D as is the factor W
since z lies on the contour while z¢ is strictly in the interior. In the next subsection
we will obtain a more precise bound on such integrals.

Problem 6.4.7. Evaluate § (—Z_—‘éﬁ onlz—3=2and |z -1 =3.

When we first began with analytic functions, we demanded that they have a
first derivative. Now we see that having a first derivative in a neighborhood implies
having all derivatives therein.

Problem 6.4.8. Evaluate f:’; (;o;Ig)I .

6.5. Taylor Series for Analytic Functions

We have seen that within the radius of convergence R, a power series can be used
to define an analytic function. We now consider the theorem which addresses the
reverse question of whether every analytic function can be expanded in a Taylor
series. We will first discuss the proof and then consider the importance of the result.
Even if you are not planning to follow the proof in detail, you may wish to digest
the discussion that follows it.
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Figure 6.5. Taylor series for f(z) about z = a.

Theorem 6.3. (Taylor). Let a be a point of analyticity of an analytic function
f(2) and R the distance to the nearest singularity. Then f can be expanded in a
Taylor series centered at z = a for |z — a| < R.

Proof: Let us consider a circle of radius r < R centered at a as shown in Fig. 6.5.
We then have due to Eqn. (6.4.21)

1 1 1
1) -f@) = 5 16 |5 - 7] & 6.5.1)
T f 1 ager 2—z zZ—a
2 ¢ () e d’ (6.52)
= —_——ac . LD
27 2 —al=r (#/ —2z)(z' —a)
Now we use
1 1
= 6.5.3
Z —z (2’ —a)—(z—a) ( )
_ z—a)]™
- 1 14 220 (z — a)? L (z—a)" 1 [m} (6.5.4)
zZ—a zZ—a (z/__a)z (z’—a)"_l 1— z/—a AN
z'—a
where we have invoked an old result about series:
1 n
1+r+~~r"‘1:1_r—1r_r. (6.5.5)

Here we have chosen r = (z — a)/(z’ — a) and shifted the 7™ /(1 — r) term to the left-hand side.
If we now invoke Egns. (6.4.23,6.5.2) we find

§() = £(@) = (= ) D(@) + 22 = a2 fP(a) + -+ (= )" f V(@) + R, (656)

where the reminder R is given by:

Ndz' _ n+1
R = ZL/ f(;z# (#) . (6.5.7)
i) |2/ —a|=r zl—z 2l —a

On the circle of integration |2/ — a| = r, let us write dz’ = re®®’ and let M be the largest absolute
value of f. Then
M|z —a|"tlp

o (6.5.8)

Rl < 7

The details are left to the following exercise.
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Problem 6.5.1. First recall that the sum of a set of complex number is bounded by the sum of
the absolute values of the individual terms. Since the integral is a sum, this implies the integral is
bounded by one in which we replace the integrand and dz by their absolute values. You can now
bound every factor in the integrand, calculate the length of the integration contour, and argue that
1/(J]z — 2'|) < ||z’ — a| — |z — a||~! by looking at Fig. 6.5.

Returning to Eqn. (6.5.8), since |z — a|/r < 1, and
Mr

Iz —a| — |z — ]

is bounded, we have a series expansion where the reminder after n terms can be made arbitrarily
small by sending n — oo, i.e., a genuine Taylor series. B
Let us note the following points implied by this theorem:

e The Taylor series for a function fails to converge only when a singularity is encountered as

we go outward from the point of expansion. There are no mysterious breakdowns of the
series as in real variables: Why is the series for 1/(1 +z2) ill behaved beyond |z| = 1 when
it is perfectly well-behaved for |z| = 1 and indeed for all z? (We don’t have this query for
1/(1 — z) which has a clear problem at z = 1.) The answer is clear only when we see this
function as 1/(1 + 22) evaluated on the real axis: R = 1 because the function has poles at
z = %i.
Now, it is fairly clear why the series must break down at a pole: the function diverges there.
But it must also break down at a branch point around which the function is not single valued.
The breakdown of the series is mandated here because when the series is convergent, it is
given by a finite single valued sum of single valued terms of the form z"which cannot
reproduce the multiple valuedness around the branch point.

e Here is another mystery from the real axis. Recall the function e~1/2% It has a well-defined
limit and all its derivatives have a well-defined limit at z = 0, namely zero. Thus the origin
seems to be a nonsingular point. Yet we cannot develop the function in a Taylor series there:
the function and all its derivatives vanish. The existence of such functions means that two
different functions, f(z) and f(z) + e~1/7 can have the same derivatives (of all orders)
at the origin. Once again we see the true picture only in the complex plane. There we are
assured that every function has a Taylor expansion about any analytic point. What about the
function e*1/22, you say? How come it cannot be Taylor expanded at the origin, which
seems like a very nice point? In turns out the origin is far from being a very nice point, it
is home to one of the nastiest singularities, as can be seen in many equivalent ways. First,
note that the function is defined by the series

— (-1)"

z22nn!’

eV = (6.5.9)

This is an expansion in the variable 1/22 and the ratio test tells us it converges for all 1/22
that are finite. In particular it does not converge at the origin: the origin is an essential
singularity. While we see no sign of this along the real axis, we see upon setting z = iy that
the function blows up as el/v* as we approach the origin from the imaginary direction. The
same goes for all its derivatives along this axis. Thus the function really has no unique limit
at the origin and its derivatives are likewise highly sensitive to the direction of approach.
The vanishing z-derivatives are not the bona fide direction-independent derivatives of an
analytic function at a point of analyticity. Any notion that we can have a legitimate Taylor
series at the origin is clearly a mistake that comes from looking along just one of infinitely
possible directions in the complex plane. The origin is a singular point, and one has to go
to the complex plane to appreciate that. In short, there are no exceptions to the rule that
an analytic function can be expanded in a Taylor series about any point of analyticity. In
particular, a function with all derivatives equal to zero at a point of analyticity is identically
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Figure 6.6. Analytic continuation.

zero. For this reason, no two distinct functions can have the same Taylor series: it they did,
their difference would have a vanishing Taylor series and would equal zero everywhere, i.e.,
and the functions would be identical, contrary to the assumption.

Consider the question of defining a function outside the radius of convergence of the Taylor
series, taking as an example f(z) = 1/(1 —z) whose Taylor series 1 +z+ 22 +. .. converged
only inside the unit disc, shown by C} in Fig. 6.6.

Inside the unit circle Cy, the series converges. It also reproduces the given function: since
the Taylor series is a geometric series we can sum it (for |z| < 1) and reproduce 1/(1 — z).
We know it diverges at some point(s) on the unit circle. Peeking into the closed form result,
we know this happens at z = 1. If we go outside the unit circle C1, the series has no
meaning, while we know the function itself has a meaning everywhere except at z = 1. We
generate the function outside the unit circle as follows. We first go to another point within
the unit circle, say z = —1/2. Since we know f (from the series) in the neighborhood of this
point, we can compute in principle its derivatives and launch a new Taylor series centered
at this point. The radius for this new series will be determined by the singularity nearest to
this point. Peeking into the closed form solution, we know this is still the pole at z = 1
which now lies 1.5 units away. Thus the expansion will converge within a circle C3 /5 of

radius 1.5 centered at the new point. (If we did not have the closed form answer at hand,
the ratio test would give us the new radius, but not the location of the singularity on the
circumference.) The new series will agree with the old one within the unit circle and define
the function in the nonoverlap region. We have clearly defined the function in a bigger patch
of the complex plane, armed with just the Taylor series at the origin. But will this definition
agree with any other, say the closed form expression? Yes, because the series centered at
the origin, and the closed form expression 1/(1 — z), are numerically equal in the entire
unit circle and in particular at z = —1/2, as are all their derivatives. (Imagine extracting the
derivatives by surrounding the point z = —1/2 by a circle and using Eqn. (6.4.23). Thus the
series representing the function and the closed form for it will generate the same Taylor series
at the point z = —1/2 which therefore agree throughout the circle of radius 3/2 centered
there. This process can be continued indefinitely, as shown by a few other circles centered
at various points. We will find in the end that f can be defined everywhere except at z = 1.
In particular if we work our way to z = 2, we will get the value f(2) = —1. Of course in
the present problem we need not go to all this trouble: the closed form f(z) = 1/(1 — 2)
defines it for all z # 1. But the main point has been to show that the Taylor series at the
origin contains all the information that the closed form expression did, albeit in not such a
compact and convenient form. This is very important since there are many functions which
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we know only through their series about some point.

Here are some details on the Taylor expansion centered at z = —1/2. First let us use the
closed form to generate the Taylor series. There is no need to compute all its derivatives there,
we simply rewrite it to obtain the following Taylor expansion in the variable z — (—%) =

z+%:
1 1
= (6.5.10)
1-2 3-G+3)
2
3
= 3 (6.5.11)
2 1
2 1+2[ +1}+[2( +l)]2+
= = - |lz+ = = =
3 3 2 3 2
2 11"
Zz4 L ] 6.5.12
+ [3(z+2)] + ] (6.5.12)
which converges for %|z + %l < 1 which is the circle of radius 3/2 centered at z = —%
alluded to.

Now we compare this to what we get from the power series at the origin. From the series
for f(z) we find its derivative

d
fW(z) = E[l+z+22+23+~~-] =1422+322 4423+ . +n2z""1 4+ ... (65.13)

The ratio test says the series for the derivative converges for

|zl < R=lim =1, (6.5.14)
n—ncn + 1
i.e., again within the unit circle. Its value at z = —% is
3 4 5 6 7 4
M(—1/2)=1-1+2 -2+ = - —_ = 6.5.15
F=172) 4 8 16 32 + 64 9 ( )

This coincides with the first derivative in the expansion Egn. (6.5.12). In other words, the
derivative of the series for the function is the series for the derivative of the function within
the unit circle. This will keep happening for every derivative. (We are simply using the result
that the series for a function may be differentiated term by term to reproduce the series for its
derivative, both series having the same radius of convergence.) Thus both schemes (based on
the Taylor series at the origin and the closed form expression) will produce the same function
inside C3/, and in all other continuations.

e We consider now the notion called the Permanence of functional relations. Why does a
relation like sin? z + cos? z = 1 holds off the real axis given that it does on the real axis? To
see this consider the function f(z) = sin® z + cos? z — 1. It vanishes everywhere along the
z-axis. Therefore so do all its derivatives along the z-axis, in particular, at the origin. But
the origin is a point of analyticity of this function (which is made of the sine and cosine) and
the z-derivatives in question are the direction independent z-derivatives. Therefore f has a
Taylor expansion and this expansion gives identically zero in the complex plane. Therefore
f will be identically zero, i.e., sin? z will continue to equal 1 — cos? z in the complex plane.
More generally, if f and g are two function which agree on a line segment which lies entirely
within the domain of analyticity of both functions, their continuation outside this domain will
also agree since the difference f — g has a vanishing Taylor series (the derivatives being taken
along the segment) and therefore vanishes. Equivalently, if we construct the Taylor series for f
and g starting at some point on the segment, the series will be identical since the functions are
numerically identical and hence possess identical derivatives. For this reason, the two series
will have the same radius of convergence and run into the same singularities at the boundary.
If we now move to another point in this circle and set up a new series to effect an analytical
continuation, these new series will again be identical for the same reason as before, and the
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two functions will forever be equal. Thus given a relation like coshz = (e* + e~*)/2 on
the real axis, it follows that cosh z = (e* + e~ 2)/2 for all =.

Let us note that the relation in question must be between analytic functions before it can be
analytically continued. Here is an example that is not analytic. Recall that for real z we had

e+ e
cos L = ————. (6.5.16)
2
This is not a relation that is preserved upon continuation. In other words
@]+ [e]”
4 4

cosz # 5 (6.5.17)

for z off the real axis.

Problem 6.5.2. Compare the two sides of the above relation on the imaginary axis z = iy
and show that they do not match.

The problem is that the above relation involves complex conjugation which converts the
allowed variable 2 to the forbidden one 2*. Does this mean we cannot relate the exponential
to the sines and cosines after continuation into the complex plane? Not so, as we have already
seen. Instead of thinking of e** as the complex conjugate of f(z) = e'*, think of it as
f(=z). Then we can view the above relation as

iz —12Z
cosz = % (6.5.18)

evaluated on the real axis. But now we have a relation between the analytic functions cos z,
e+, valid in the complex plane.

Problem 6.5.3. On the real axis we had e!* = cosx +isinz. Is this an analytic relationship which
will survive the continuation to complex z?

Problem 6.5.4. On the real axis we have [e”] [e”} " = 1. Is it true that [eiz] [e”] ¥ =17 Give

reasons for your answer and then the supporting calculation.

6.6. Summary

The highlights of this chapter are as follows.

e The function f(z,y) = u(z,y) +iv(z,y) is analytic in a domain D if u and
v are continuous and obey the Cauchy—Riemann equations:

Up = Uy Uy = —Vg.

These merely ensure that f(z,y) = f(z + iy). The functions v and v are
then harmonic:
Ugz + Uyy = Vzg + Vyy = 0.
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¢ An analytic function can have singularities at isolated points. At a pole it
behaves as

where the residue is given by

R(z0) = lim (2 — 29) f(2).

z—2z

You must know about the existence of higher-order poles, essential singular-
ities and branch points.

e To differentiate a function f(z) treat = just like = of real variable calculus.
Thus dz"/dz = nz""L. If f is given in terms of z and y, take the partial
derivative with respect to x or iy.

e The power series

n=0
converges within a radius
. a
R= lim |—%|.
n=00 | Un4]

Inside this circle of convergence it defines a function f(z). The series may
be differentiated any number of times to yield the series for the corresponding
derivative of f(z). It may likewise be integrated.

(e o) Zn
e® = Z — [l2] < o0]
o !

You must know the first few terms of this series as well as the series for
hyperbolic and trigonometric functions which are related to the exponential
exactly as in real variables.

e The logarithm is the inverse of the exponential

22 23
In(1 —L 44
n(l+z)=z 2+3+

e The N-th root of z = re®® has N values given by

1
MV =N exp[(6 4+ 2mm)]  m=0,1,.N -1,
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e You must know how [ f(z)dz along a path P is defined (as the limit of a sum

over tiny segments of P), and how to evaluate such integrals by parametrizing
the path.

Main properties of complex integrals:
/ N f(2)dz is path independent
7
for paths lying entirely in the domain of analyticity D.
/2 f(2)dz = F(2) +c,

where F(z) is any integral of f and c is a constant depending on the lower

limit. Thus for example
z n+1
Mz = = +c.
n+1

You must know Cauchy’s Residue Theorem for a meromorphic function:

ff(z)dz = 2ri Z R(z),

where the contour goes counterclockwise and enclosed poles labeled i at
points z; with residues R(z;). A special case of the above is the result
f(z)

———dz=27if(20)
z— 29

if the contour lies in D, the domain of analyticity of f(z). Thus a function
is fully determined by its values on a contour surrounding the point z5. By
taking derivatives of both sides with respect to zg one can relate the derivatives
at zg to integrals on the surrounding contour as per

nl f(z)dz _ d™f(z0) _ (),
j{CED = ™ (20).

2mi (z — zg)"H! dzg

To evaluate real integrals, try to first get the contour to run from —oo to oo,
using symmetries. For example the integral of an even function from 0 to oo is
half the integral from —oo to co. Then try to add on the semicircle at infinity.
If only powers of z are involved in the integrand, do a power counting to see
if it is allowed. If the exponential is present, make sure it converges in the
half-plane where you are adding on a semicircle. If trigonometric functions
are involved, break them into exponentials and do the integrals in pieces or
relate the original problem to the real or imaginary part of an exponential.
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o Every function can be expanded in a Taylor series about a point of analyticity.
The series will converge inside the circle that extends to the nearest singu-
larity. Functional relations satisfied in a line segment (which lies within the
region of analyticity) will continue to hold when the functions are analytically
continued. Equivalently, if two analytic function coincide in such a segment,
they coincide everywhere. Thus for example

e =cosz+isinz sin(—z)= —sinz sin®z +cos?z =1

and so on because these relations are true on the real axis.






VECTOR CALCULUS

In this chapter we will combine elementary notions from vector analysis and cal-
culus. We begin with a review of the former topic.

7.1. Review of Vectors Analysis

In Chapter 9 we will discuss vectors in great detail and generality. For the present
we need just the primitive notions you must be familiar with. Let us begin with the
notion of a vector as an arrow, that is, an object with a magnitude and direction.
The example we will often use is that of a displacement vector. Let us assume first
that the vectors lie in a plane, the z — y plane.

. . . — - .
The next notion is that of adding two vectors A and B . The rule for defining
their sum comes naturally if we recall how two displacements combine and is as

follows: place the tail of B at the tip of A and draw a vector which runs from

the tail of A to the tip of B to obtain their sum A + B.
The next notion is that of multiplying a vector by a number c. Consider first

— i . . . — . .
A + A. By our rule this is a vector that is parallel to A and twice as long. Since

— — —
it is natural to call the new vector 2 A4 , it is natural to define ¢ A to be A stretched
out by a factor ¢ if ¢ > 0. We will discuss shortly the case ¢ < 0.

We define the null vector 0 to be vector of zero length. It is clear that adding
—
0 to any vector does not change the vector. Consider now the vector — A defined
— . . ..
to be the reversed version of A, with tail and tip interchanged. Our addition rule

tells us that A + (—7) = 0. In view of this it is natural to identify reversing the
vector with multiplication by —1. It follows that multiplying by ¢ < 0 reverses the
vector and rescales it by |c|.

. ; —- - L
Consider now two unit vectors: i and j pointing along the x and y axes

and of unit length. We say i and 7 form an orthonormal basis meaning they are
mutually orthogonal, their norm or length is unity. Any vector in the plane can be

149
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>|

A

. . . . s —
Figure 7.1. A. Two coordinate systems in two dimensions for describing the vector A. Not shown

: - i = - ’ ’ :
are unit vectors 7 and j along z and y axes and 7’ and j° along z’ and y’ axes. B. A right handed
system in three dimensions for defining the cross product.

written in terms of them:
— — —_
A=A1i +A,7. (7.1.1)

Clearly A is a vector obtained by adding a piece of length A, along the x-axis with
a piece of length A, along the y-axis. We refer to A, and A4, as the components of

— s .. . .

A . Note that the components of A are sensitive to the choice of coordinate axes.
For example if we switch to =’ — y’ axes, as in Fig, 7.1A, rotated with respect to
the z — y axes by an angle 6 in the counterclockwise direction, with unit vectors

— —
i and j' along z’ and y’ axes, (not shown), the same vector will have different

components:

A
A

= Azcosf+ Aysind (7.1.2)
= —Azsinf+ Aycosé. (7.1.3)

’
x
’

Y

On the other hand, the length of the vector, denoted by |A|, and determined
by the Pythagoras theorem, will be unaffected by the rotation:

’

2 42 2 _ ’\2 2
A2 = A2 + A2 = (4,)% + (4,)% (7.1.4)

Problem 7.1.1. Prove Egns. (7.1.2-7.1.4). First draw a sketch of the coordinate

systems and a vector A starting from the origin and terminating at the point
(Az, Ay) in the first system to obtain the coordinate transformation in the first two
equations. Now check the last one algebraically.

These ideas generalize to three dimensions. We introduce a third unit vector

% perpendicular to the other two and oriented along the positive z-axis of a right
handed coordinate system shown in Fig. 7.1B.
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The adjective right-handed means that if you grab the z-axis with your right
hand, your thumb will point along % and the other four fingers will curl from i
to ;.

So far we have discussed addition and scalar multiplication of vectors. We

now consider two kinds of products between a pair of vectors: the dot product
which yields a scalar and the cross product which yields a vector.

The dot product of two vectors A - B is a number whose value is given by
— —
A - B =|A||B|cosfaB (7.1.5)

where |W| is the length of vector W and 6 AB 1s the angle between A and —5,
measured in the plane containing both. (It does not matter to the cosine whether

you measure the angle from A to B or vice versa.) The subscript on the angle
will be suppressed if there is no room for confusion.

The dot product is equivalently given as the length of one vector times the
projection of the other in its direction

A - B =|Alg|B] (7.1.6)

where |A|p = |A| cos 8 4p stands for the projection of A along B.
Note that the dot product is a scalar: its value is unaffected by rotating the

coordinate system. Under such a rotation the components of A and B will change,
but |A|, |B|, and cos # 4p will not.
A special case of the dot product where the vectors are equal gives us:

A A =A% (7.1.7)

The dot product has a very important distributive property:

— —-  — =

A (B+C)=4-B+4.C. (7.1.8)

Problem 7.1.2. Draw a sketch to verify that the projection of B+C along A

equals the sum of the projections of Band C along A. Proceed to prove the
distributive property of the dot product.

The distributive property allows us to express the dot product of two vectors in
terms of their components. Given

et J -7

=1 (7.1.9)

and
— —

-0, (7.1.10)
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we find

A-B = (Azi +A4,7) (Bai +B,7) (7.1.11)
= AyB;+ AyBy. (7.1.12)

Notice that of the four possible terms that could arise on opening up the brackets,
only two survive due to the orthogonality of the basis vectors.
In three dimensions, where every vector has an expansion of the form

A=A,0 +4,7 +A. &, (7.1.13)
the result generalizes to
A B =A,B,+ AyBy + A,B.. (7.1.14)
If the vectors are chosen to be the same we get as a special case,
A-A=|AP =42+ A1 A2 (7.1.15)

in agreement with the Pythagoras theorem.

Suppose we want to wrlte some vector A in the plane in terms of a different

set of basis vectors i’ and ] associated with a rotated system of coordinates as
in Fig. 7.1A. From the figure it is clear that

—

i’ = ?Cosﬁ—l-?sine (7.1.16)
J = —Tsinb+ 7 cos. (7.1.17)

Using the dot product we can easily find out the new components. Starting with

the assumed expansion
T+ a,y (7.1.18)

’
x

A=A

we get, on taking the dot product of both sides with i’ ,

—
/

=
i =A

F L A - (1.1.19)

A=A

where we have used the orthonormal nature of the basis vectors. Thus we find
A= A =(Tcosb+ jsing) (Ay & +A4,7 )= Azcosd + A, sin0
(7.1.20)
as in Eqn. (7.1.2) and a similar result for A,, as given in Eqn. (7.1.3). The
generalization to three (or more) dimensions is obvious. This simple idea will be
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central to a lot of manipulations we will perform later on, and you must make sure
you understand it well.

When you encounter a new concept such as the dot product you should not
only learn all the definitions and rules, but also ask why they are natural, i.e.,
why or how would anyone think of them. In some cases, such as the invention of
analytic functions, the answer is the deep mathematical intuition of the inventors.
However, in most of the cases we study in this book, the origin can be traced to
some problem in physics where the concept arises naturally. In some cases, such
as matrix theory, it is both: the mathematicians invented them from their intuition
and physicists rediscovered them independently to describe a physics problem.

As an example of how the dot product arises in physics, let us begin by
considering how 7 = %mvz, the kinetic energy of a body of mass m moving in
one dimension with velocity v, changes with time when a force F acts:

dT _ dv

— =mv— =vF, (7.1.21)
dt dt

. . . 'Y -
where we have used the one-dimensional version of Newton’s Second Law F =
e . . . . . . . .
m(dv/dt). Consider next motion in two dimensions. The kinetic energy is

1
T = §mv2 = -m(v2 + vfl)
and its rate of change is
dT dvg dv -, =
g{:m(vzﬁﬁ—vyﬁ): v F (7122)

Notice how the final formula for the rate of change of kinetic energy very naturally
involves the dot product. One implication of the formula is that if a force acts
perpendicular to the velocity, the kinetic energy is unaffected. An example is the
force a string exerts on a mass as the latter is twirled in a circle.

Later in this chapter we will run into other examples of the dot product that
naturally arise in physics.

— —
Consider next the cross product of two vectors: A x B, defined to be a vector
of magnitude

|4 x B|=|A||B||sinbaz]| (7.1.23)
and direction perpendicular to the plane containing A and B. (From now on the

subscript on 6 4 g will be dropped.) Since the plane containing the vectors can have
two perpendiculars differing by a sign, we introduce the screw rule: turn a screw

— —_— . .
driver in the sense going from A to B and take the direction of advance of the
screw as the direction of 4 x B. Now, for a pair of vectors A and B there are

— —
always two ways to rotate from A to B. It will be understood that the shortest
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route, i.e., the smallest rotation angle is chosen. This makes the sense of rotation
unique and one will never have to rotate by more than 180 ° . If the vectors are at
180° there is an ambiguity, but the cross product vanishes in this case.

This rule is also called the right hand rule: if you curl your four fingers from

— — — —
A to B, (again along the quickest way to go from A to B), your thumb points
along their cross product. Note that while the dot product is proportional to the
projection of one vector along the other, the cross product is proportional to the
projection of one vector perpendicular to the other.

The cross product changes sign when we reverse the order of the factors:

AxB=-BxA (7.1.24)

which follows from the right hand rule or screw rule in the definition.
The cross product also is distributive:

— — — — — — —
Ax(B+C)=AxB+AxC (7.1.25)

which follows from the fact that the projection of (E + 5)) perpendicular to A

is the sum of the projections of Band C separately in that direction.

Once again classical mechanics illustrates the naturalness of the concept in
question. Suppose you are trying to open a door by pulling on the knob. It is
clear that the further the knob is from the hinge, more effective any applied force
will be. It is also clear that any applied force will be most effective if it is applied
perpendicular to the plane of the door (unless you are trying to rip it off the hinges).
Thus the real turning ability of the force is measured by the forque, which is the
product of the force, the distance from the knob to the hinge and the sine of the
angle between the force and the vector connecting the hinge and knob. This leads
us to define the torque as the vector

—
T

7 x F. (7.1.26)

The magnetic force on a moving charge provides another example. Experi-
ments tell us that the magnetic field is experienced only by moving charges. Thus

—
the magnetic force F depends on the charge ¢, its velocity »' and the magnetic

— — —
field B. So are seeking a vector F that is given by two other vectors » and B.
Experiments further tell us that

—

F=¢0 xB (7.1.27)

showing once again that the cross product is not just a sterile definition but a
preferred notion singled out by nature to express her laws. Notice also that many
implications follow from the force above: for example, since the magnetic force is
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perpendicular to the velocity (involving as it does the cross product of the velocity
and the field) it does not change the kinetic energy of the particle.

Consider finally a parallelogram with adjacent sides given by vectors A and
B. Elementary geometry tells us the area of the figure is |A||B||sind|. If we
define a vector S = A x ?, its length is the area of the figure bounded by these

vectors. How about the fact that S also has a direction (pointing perpendicular
to the plane of the area)? The fact that the area appears as the length of a vector
suggests that it is more natural to associate a vector and not a scalar with an area,
at least a planar one. This is indeed the right thing to do and we shall exploit this
possibility later in the chapter. But you must note that only in three dimensions is
it possible to define a product of two vectors that equals another, or to associate an
area with a vector. The reason is that only in three dimensions do two non-coplanar
vectors define a unique direction, namely the direction perpendicular to the plane
they define. For example in four dimensions, with coordinates (z.y.z.t); given
two vectors in the z — y plane, any vector in the z — ¢ is perpendicular to them.

-
Problem 7.1.3. Consider now three vectors o . b , ¢ not in the same plane. Show

that the box product (also called the scalar triple product) ¢ - @ x b gives the
volume of the parallelepiped with these vectors as three adjacent edges. At least

verify this for the case when the @ is perpendicular to the @ — b plane. Show

that @- b xCT=b-Txa =7-axb either geometrically or algebraically.
What happens to the box product when two of the vectors are parallel?

We now turn to the practical computation of cross products. Recall that in the
case of the dot product, we could either compute the product of the lengths and the
cosine of the angle between the vectors, or if the components were known in any
basis, write

A B =AyBy+ AyBy + A,B, (7.1.28)

where the result follows from expanding the vectors in the chosen basis and using
the distributive property of the dot product. We now wish to do the same for
the cross product. Let us now compute the cross product of the basis vectors.
Eqn. (7.1.23) gives

T x G =k eteyel (7.1.29)
where et cycl means in cyclic permutations: that is we replace i by 7, 7 by

— —
k,and k by 7 and get two more relations.
Using the distributive property of the cross product property we can write

— — — — —
Ax B = (Azi +Ayj +A.,k)x
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g _uf
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r

Figure 7.2. Kinematics in two dimensions.

x (Bsi +Byj +B.k) (7.1.30)
= i (AyB, — A,By) + et cycl. (7.1.31)

7.2. Time Derivatives of Vectors

Consider a particle moving in the z — y plane along some trajectory shown by the
thick line in Fig. 7.2.

. d -0 . . s
In terms of the unit vectors ¢ and j ., we may write the particle’s position
vector T (t) as

T =z(t) i +ylt) ] (7.2.1)
at time ¢ and
T+dt) =zt +dt) i +yt+dt)] =7 + Ar (72.2)

at time ¢ + dt.
We define the rate of change or velocity vector as

—
_ . Ar

voo= Alir—r}oA_t: (7.2.3)
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de — dy—
= —i+—=7. 7.2.4

dt dt ’ (7.24)
To obtain this result more quickly we simply differentiate both sides of Eqn. (7.2.1)
remembering that the unit vectors are constant in time and only the components
vary.

. . . . . — —
Sometimes we like to use a different set of unit vectors in place of ¢ and j .

In polar coordinates one uses unit vectors e, and eg which point in the direction
of increasing » and 6 at each point, as shown in Fig, 7.2.

. d ed . . . . .
Unlike ¢ and j , these vectors vary from point to point since the directions
of increasing ~ and 6 do (unlike the directions of increasing = and y). The position
vector of the particle looks very simple in this system:

T =re. (7.2.5)

How about the velocity? There are two ways to proceed. First we argue that if
the coordinates change by dr and d6 in time dt, then the position vector change is a
sum of two parts, (see Fig. 7.2), one in the radial and one in the angular direction:

dr = dre, +rdfeg so that (7.2.6)
d7r dr de
ar - e Y. 72.7
dt pri el (7.27)

Another way to obtain this result is to go about differentiating Eqn. (7.2.5), taking
into account that the unit vector e, itself changes with the particle’s position which
changes with time. Thus

dr d de,
r r_ [
—_— = . 7.2.8
at  at " ae (7.2.8)
To proceed we must determine %ﬂ. Consider two nearby points. The unit

vectors in the radial direction are different only because of the difference df; had
the points differed only in r, the radial direction and hence unit vectors would have
been the same. As for the change due to d6, it is clear that the new unit vector is
obtained by rotating the old one by angle df. This clearly amounts to adding an
infinitesimal vector of length 1 - d# in the angular direction:

er(r +dr,0 4 df) = & (r,0) + dbeg (7.2.9)
so that
de, do _,
= - = 7.2.10
— 7 %6 and ( )
dr dr,
r = _7' er + rw eg = v (7.2‘.1 1)

dt dt
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where
dé

= E'
To obtain the acceleration we need to differentiate once more and invoke the addi-
tional relation

w

(7.2.12)

deg  db_,
A A (7.2.13)
dt dt

which can be derived the same way we derived Eqn. (7.2.10). The result is

dv
@ = — 7.2.14
a o (7.2.14)
d?r 2 \—» dr dw  _,
= (mvw r)er -f-(QWE +7'E)€9. (7215)

The physics behind the various terms is left to the physics courses.
Problem 7.2.1. Fill in the missing steps in the derivation of the preceding formula.

I have assumed that the topics discussed so far are not new to you, and hence not
many exercises were given. Here are a few, just to let you know where you stand.
If you have problems with these, you should check out a book on this topic and
deal with this material.

Problem 7.2.2. Show that 7 =4 — 7 + 27, W = 47 + 27 and 7 =
~107% — 27 +4% are mutually orthogonal. Find [7 X VT/)[ IW X 7| and

(7 X V| using Eqn. (7.1.31) to compute the cross products. Compare with a
calculation based on Eqn. (7.1.23).

Problem 7.2.3. Show that the triple product ofT> + 27, 47+ 67 + 27, and
37 +37 —6Fk is —54.

Problem 7.2.4. A particle has a position vector 7 = 7 coswt + 7 sinwt. De-
scribe its motion in cartesian coordinates with a sketch, and in words. Compute
its velocity and acceleration. Find the magnitudes of both. Now switch to polar
coordinates. What are r and 0 for this problem? What is a’ as per Eqn. (7.2.15)?

7.3. Scalar and Vector Fields

We just reviewed the dynamics of a single particle, described by the single vector
7 (t). This notion is readily extended to many particles, labeled by some index i so
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that 7; describes particle numbered i. Now we turn to a more complicated object
called a field. A field has infinite degrees of freedom. Here is a simple example: to
each point (x,y, z) is associated a temperature T'(x, y, z). The function T'(z,y, 2)
is a scalar field. The term “scalar” signifies that at each point is defined just one
number (as compared to say a vector) and this number does not change as we rotate
our axes. If we rotate our axes, the point that used to be called (z,y, z) will now
bear a new name (z',y’, z’) but the numerical value attached to that physical point
will still be the same, say 87 ° in the case of the temperature field. Other examples
of scalar fields are P(z,y, z), the pressure at each point; or N (z,y, z), the density
of pollen spores at each point. Note that unlike in the case of particle dynamics,
(z,y,z) do not stand for the dynamical degrees of freedom, but are simply labels
for the field variable, like the label i on r;. Thus for example, the pressure P is
a dynamical variable, and it is labeled by its values at each point in space and in
particular has the value P(z,y, z) at the point (z, y, 2).

We will assume throughout this chapter that the coordinates go over all of
three-dimensional space, or if we restrict ourselves to two dimensions, to all of the
z — y plane. More fancy three-dimensional regions like three dimensional space
minus some points will not be discussed. Likewise when we speak of a surface, we
will mean something like the surface of a sphere or hemisphere; fancier surfaces
like a Mobius strip or Klein bottle will not be discussed. If you do not know what
these are, you are in good shape since you will not get into trouble trying to apply
the results of this chapter to these fancy cases.

Consider now a vector field W(x. y, 2), which associates with each point a
vector, say the wind velocity or the strength of the electric or magnetic field. Not
only do we associate three numbers at each point now; when described in a rotated
system, the three components associated with one and the same point will change
in numerical value. For example the velocity vector which was all in the old
z-direction could now have an z and y component in the new system.

We will now learn how to characterize and describe various scalar and vec-
tor fields. The fields could also depend on time in addition to the three spatial
coordinates, though we will emphasize the latter here.

7.4. Line and Surface Integrals

In this section we define and illustrate the very important ideas of line and surface
integrals of vector fields.

Line integrals

— . .
Let F be a vector field. It assigns to each point in space a vector. Take for
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F(F) 2

\/é'

dr

-t

Figure 7.3. Line integral of F along path P.

definiteness the following field in two dimensions:
F =20y%7 +2275 (7.4.1)

which assigns, for example, the value 8% + J tothe point (1,2). In a physics
problem, this could be a force field. Let us now pick a path P joining end points
71 =1and 7 =2 as in Fig. 7.3.

We imagine this path as made up of tiny arrows [E;«:h = 1...n] laid tip to
tail. We then form the dot product ?(T{) E;; at each segment. (The vector F is
assumed to be a constant over the tiny arrow.) In the physics example this would
be the work done by the force over this tiny segment.

Definition 7.1. The Line Integral of F along P joining points 1 and 2 (where 1
and 2 are short for 71 and T3 respectively) is defined as

2 n
/ F(7) dr = lim S F (7)) drs, (7.4.2)
1 n—oo 4

i=1
i.e., in the limit in which each segment is of vanishing size.

The evaluation of line integrals is very similar to the evaluations of integrals
in the complex plane: one must parametrize the path and reduce everything to an
integral over the parameter ¢. Here is an example from two dimensions.

Let once again

F = 2$y27 + x27 (7.4.3)
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be the vector field and let us integrate it from the origin to the point (1,1) along
the curve z = y2.

The first step is to parametrize the path with a variable ¢, i.e., make up
functions z(¢) and y(t) such that as ¢ varies, the locus of points traces out the
curve in question. If you wish you may pretend that ¢ is really the time and the
curve describes the trajectory of some fictitious particle moving in the z — y plane.
In our problem the following choice will do:

y=t =t 0<t<1] (7.4.4)

which describes motion along the curve = = y2. This choice now leads to

) = P2+ Jt (7.4.5)
ﬁ — —
— = 2 j 7.4.6
= i+ (7.4.6)
T—2> —_— — t2 — d—>
F.dr = / F- 2L (7.4.7)
e t dt

t=1
= / (26220 +tr ) (2t + j)dt  (74.8)
t=0

1

= / (4t + t*)dt (7.4.9)
0

_ 1_2 (7.4.10)

Note that even though the curve lives in high dimensions, it is still one dimensional
and the line integral can therefore be mapped into an ordinary integral in the variable
t. It is the integrand that is calculated from higher dimensional considerations, i.e.,
by evaluating the dot product of the vector field with the displacement. In the
physics case the parametrization has a direct meaning. We are trying to find the
work done by the force as it drags some particle from 1 to 2 along P. If we imagine

—

dr

. . . . =g
the motion as taking place in real time, F - <~ stands for the power expended by

the force and its integral over time is the work done. Thus the line integral becomes

the ordinary integral over ¢ of the power F- % between t; = 0 and t2 = 1.

The extension of this notion to vector fields in three dimensions is straightfor-
ward.

As with integrals in the complex plane, integrals over a closed curve will be
denoted by ¢.

The line integral is generally path dependent. For example if we join the same
end points by a line at 45 °, i.e., the line 2 = y, the result will be 5/6. The details
are left to the following exercise.
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Problem 7.4.1. Verify that the line integral of F = 2xy27 + x27 between the
origin and (1,1) along the line x = y is 5/6. Note that you can use z itself
as a parameter. Show the integral along a path that first goes horizontally (i.e.,

dr = 1 dz, y = 0) to (1,0) and then straight up to (1,1), (ﬁ = Tdy, z=1)
is 1. Show the answer is the same for a path that first goes up to (0,1) and then
horizontally to (1,1).

Problem 7.4.2. Show that the line integral 0}‘? = 7y2 + Txy + ke from the
origin to the point (1,1.1) along a straight line connecting the end points equals
unity and along the curve © = t, y = t?, z = t3 equals 32.

Definition 7.2. Given any vector field F, if the line integral is dependent on just
the end points and not the path we say the field is conservative. An equivalent
definition of a conservative field is that

F.-dr=0 (7.4.11)

for any closed path.

The equivalence of the two definitions is exactly as it was in the case of integration
in the complex plane.

Problem 7.4.3. (i) Calculate the line integral of F = 72xy2 + 7962 between
(0.0) and (1,1) but along y = 2. (ii)What is the line integral around a unit circle
centered at the origin? First make a sensible choice for the parameter t that will
move the coordinates along the circle. Note that even for a nonconservative field
the line integral along certain closed paths can vanish.

Surface integrals
Imagine a steady stream of particles moving a pipe of rectangular cross section,

along the z-axis with a velocity & = ¢ vg, as shown in Fig. 7.4.
Let the density be p particles per unit volume. The current density is defined
as
—
J

=p7, (7.4.12)

and is given by

T =T s (7.4.13)
in our problem. Consider an area (denoted by 'S in the figure) of size S, that
lies transverse to this flow, i.e., in the y — z plane. The number of particles going
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Figure 7.4. The flux.

through the area in one second is called @, the flux through the area. To find it, let
us follow the particles that cross it at ¢ = 0. At the end of this period, they would
have gone a distance L = v,. Thus all the particles that crossed the area in the
last one second lie inside a parallelepiped of base S and length L = v,. The flux
is then

® = pvyS = 4z S. (7.4.14)

Now the flux is a scalar, a number. We are obtaining it from a vector, 7, and an
area. Since one usually gets a scalar from taking the dot product of two vectors, we
ask if we can represent the area as a vector. (I have already hinted at this possibility
earlier.) Given a planar area as in this case, we can associate a vector with it of
magnitude equal to the numerical value of the area and direction perpendicular to
the plane of the area, i.e., the normal. But we can draw two normals to any plane.
So we assign an orientation to the area as follows. We draw arrows around the
perimeter of the area in such a way that as a person walks around the area along
the arrows, she sees the area always to her left or right. For each choice, we
choose the normal vector to point as per the screw rule: the normal points along
the direction of advance of a screw as the screw driver is turned in the same sense
as the arrows along the perimeter.! Thus the area vector in the figure is given by
an arrow parallel to the current for the given choice of arrows along its edges. (If
you stand upstream of the area and look at it, the arrows along the edges will run
counterclockwise.) Using this convention for representing areas as vectors, we can
write the area vector as

— —

S =138 (7.4.15)

and the flux as
N

d=Sj,=8 - (7.4.16)

using the fact that Sj, is really the dot product of two vectors which happen to lie
entirely in the z-direction. But the above equation implies more than that. Suppose

1 An area without this orientation specified is like a vector from which we have erased the head and tail.
Note also that only in three space dimensions can we represent an area as a vector, using that fact the
area (assumed planar) has a unique direction perpendicular to it (up to a sign) which we can assign to
the vector. In four dimensions for example an area in the z — y plane can have an infinity of distinct
vectors perpendicular to it. An analogous statement is that in two dimensions we can define a unique
normal to a curve at each point (up to a sign) while in three dimensions the normal can rotate in the
plane perpendicular to the line at that point.
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we tilt the area so that it no longer lies transverse to the flow of particles, i.e.,
so that its area vector does not lie parallel to the velocity, but enlarge it so that it
still intercepts all the particles that flow in the pipe. The new area called S’ in
the figure is bigger by a factor 1/ cos 8, 6 being the tilt. By construction the flux
through it is the same as through S. Equation (7.4.16) would say the flux through

S'is S - 7', which is correct, since the increased area of S’ is exactly offset by
the cosine of the angle between the area vector and the current vector.

Thus the dot product of a current density vector and the area vector gives the
flux of particles penetrating the area. We use the word flux for the dot product
of any vector with an area even if it does not stand for the flow of anything. For

example if B s the magnetic field vector, its dot product with an area is called
the magnetic flux.

Note that the flux is given by the above formula only if the area is planar and
the current a constant over its extent. But we can generalize the notion of flux as
follows. First, we note that any infinitesimal area can be approximated by a plane

and specified by the above convention. It will be referred to as d3. For example
an area of size 1078 m?, sitting at the north pole of a sphere centered at the origin,

with its normal pointing outward, will be denoted by dS = 108k . Next we
learn how to build up a macroscopic area by patching together little ones. Recall
how the path P was built out of oriented line segments placed end-to-end. Each
arrow was a directed segment with a beginning (tail) and an end (tip), i.e., with two
boundaries. Whenever two arrows were so joined tip-to-tail, one boundary of the
first arrow (its tip) was neutralized by one of the next (its tail) leading to a segment
whose boundaries were the tail of the first and the tip of the second. We similarly
glue areas, each with its boundaries marked by arrows running around in a definite
sense. We bring together two tiny areas and place them next to each other so that on
the adjacent edges the orienting arrows run oppositely as in Fig. 6.2B. (That is, the
area vectors are roughly parallel and not antiparallel.) Thus the common perimeter
gets neutralized and we get a bigger area with a new boundary that is the “sum”
of the old boundaries (where in the sum the common edges have canceled). In this
fashion we build up an undulating surface in three dimensions whose boundary is
made up of the exposed edges of the pieces that tile it. A sample is shown in
Fig. 7.5.
We now define the surface integral:

Definition 7.3. The surface integral of a vector field V' over the surface S is
given by
/ V .dS = lim
S n—oo

where i labels the patches, all of which become vanishingly small as i — oo.

V (73) - dS. (7.4.17)

n
=1

3
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Figure 7.5. An undulating surface built out of smaller planar patches. The orientation of the patches
is specified by the normals instead of arrows running along the perimeter. If you looked at the surface
from above, these arrows would run counterclockwise.

Note that even though the integration is over a two-dimensional region we
use only one integration symbol. This is a simplification that should not cause
any confusion. If the surface in question is closed (like a sphere) we will use the
symbol §.

Imagine a point source of alpha particles at the origin. If we surround it with a
surface and calculate the particle flux, i.e., the surface integral of the current density,
(with area vectors pointing outward) we will get a nonzero number, determined by
the emission rate. On the other hand, if we calculate the net flux out of a surface
not enclosing the origin, we will get zero, since what comes in goes out. Likewise
if the origin has a sink which absorbs particles, we will get a negative surface
integral. .

Let us now work out an example: the surface integral of

W = 7;1733/ + TyQL + k2 (7.4.18)
over a unit cube centered at the origin, as in Fig. 7.6.

First consider the two faces parallel to the y — 2 plane. These have coordinates

x = +1/2 and the area vectors are + 4. On these faces we need just the r-

component of W which is 3y = :!:%y. On the face with area i , the contribution
is
: 1/2 V2, q g2 1/2
dy dzW - i = —/ ydy dz = 0, (7.4.19)
—1/2 ~1/2 8 J 172 —1/2
where the zero comes from the odd integrand in the y-integration. Likewise the

opposite face also gives zero. If we consider the faces with areas £ j , we get a
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Figure 7.6. The unit cube centered at the origin. The faces we can see are at z = 1/2, y = 1/2, or
z = 1/2. The other three are at minus these values.

zero for similar reasons of symmetry, this time due to the z-integration. Finally

”,
consider the two faces with areas 4+ &k . On the face with area up the z-axis, we
have z = 1/2 = W, and the surface integral is

1/2 1/2 11
dx dy - - = —.
—-1/2 —-1/2 2

(7.4.20)

On the opposite face, we get the same contribution because there are two extra
minus signs that compensate, one due to the area vector and the other due to the
change in sign of W,. The total contribution is

—_— —
j{w* -dS =1. (7.4.21)

Sometimes the field is more naturally given in non-cartesian coordinates. Con-
sider thus the field of a point charge ¢ at the origin:

= q
E = u 7.4.22
4rer? € ( )
where e, is a unit vector in the radial direction and eg = 8.85419 - 1012

Coulombs?/(Newton - m?) is a constant called the permittivity of free space. Let
us find the surface integral over a sphere of radius R also centered at the origin.
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Consider a tiny patch of size dS on the sphere. The vector corresponding to it is
N .
e,dS and the flux is

- Ta q —  —
E -dS = r - endS 7.4.23
fs ]{9 4mwegR2 eroe ( )

q ds
= — | = 7.4.24
4reg /S R? ( )
- 2 (7.4.25)
€0

where we have used the fact that the area of the sphere is 47 R2.

. — — — —
Problem 7.4.4. Show that the surface integral of V. = i yz+ j zz+ k xy over
a unit cube in the first octant, with one corner at the origin, is zero.

7.5. Scalar Field and the Gradient

Let ¢ be a scalar field in three dimensions, say the temperature. The first question
one asks is how it varies from point to point, i.e., its rate of change. The change
in ¢ from one point (z,y, z) to a nearby point (x + dz,y + dy, z + dz) is given to
first order by
99 d¢ 99
d¢ = —d —d —dz. 7.5.1
M P T P (7.5.1
Compare this to Eqn. (7.1.12) and notice that it looks like a dot product of
two vectors. We can see that in the present case

F) N
do = 8—¢dz + a—d)dy + —¢dz = V¢ - dr where (7.5.2)
ox oy 0z
= —0¢  —0¢  —0I9
= — — + k —, and 7.5.3
¢ ! ox tJ Jdy + 0z an ( )
dr = ddo+ jdy+ kdz (7.5.4)

. . = .
is the displacement vector. One refers to V ¢ as the gradient of ¢ or more often as

“grad ¢”, where “grad” rhymes with “sad”. At each point in space ﬁqﬁ defines a
vector field built from the various derivatives of the scalar field. For example if

6 =zly+y+ayz (7.5.5)
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then
Vo= 1 (2ey+yz)+ j(@®+1+z2)+ k (zy). (7.5.6)

The gradient contains a lot of information. We just saw that it tells us how much
¢ changes (to first order) when we move in any direction: we simply take the dot
product of the gradient with the displacement vector. Next, if we write the dot
product in the equivalent form as

dg = |V ¢||dr|cos 6 (7.5.7)

we see that for a given magnitude of displacement, |dr|, we get the maximum
change if the displacement is parallel to the vector ?d). Thus ¥ o points in the

direction of greatest increase of ¢ and (Vaﬁl gives the greatest rate of change.

Let us pause to understand the significance of this result. Suppose you were in
a temperature field T'(z, y) in two dimensions and wanted to find the greatest rate of
change. Since the rate of change is generally dependent on direction, you may think
that you would have to move in every possible direction, compute and tabulate the
rates of change, and choose from your list the winner. Not so! You simply measure
the rates of change in two perpendicular directions and make a vector out of those
directional derivatives. This vector, the gradient, gives the magnitude and direction
of the greatest rate of change. To obtain the rate of change in any other direction,
you take the projection of the gradient in that direction: as per Eqn. (7.5.7),

do

—= |V 6| cos b, (7.5.8)

where @ is the angle between the gradient and the direction of interest.
. . . -
In particular, if we move perpendicular to V ¢, ¢ does not change to first

order. If we draw a surface on which ¢ is constant, called a level surface, V o will
be perpendicular to the surface at each point. Let us consider a simple function
which measures the square of the distance from the origin:

b =22 +y? + 22 (7.5.9)

Thus the surfaces of constant ¢ are just spheres centered at the origin. For example
the surface ¢ = 25 is a sphere of radius 5. Clearly

Vo=20i 4297 +2: % (7.5.10)

points in the radial direction (since its components are proportional to that of the
position vector) which is indeed the direction of greatest increase. The rate of

change in this direction is |V 6| = 21/22 + y2 + 22 = 2r, which is correct given
that ¢ = r2. Finally the gradient vector is clearly perpendicular to the (spherical)
surface of constant ¢ or r.
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2 -1 0 1 2

Figure 7.7. The plot of the temperature 7' = y2 — x2: darker regions are at higher temperature. A
few gradient vectors (not exactly to scale) are shown.

Thus suppose you find yourself in a temperature field ¢ = T. If you feel too
hot where you are, you must quickly compute the gradient at that point and move
opposite to it; if you are too celd you must move along the gradient, and if T is
just right and you feel like moving around, you should move perpendicular to the
gradient. Since the gradient changes in general from point to point, you must repeat
all this after the first step. Here is an example. Let the temperature be given by

T=y2 22 with VT =27 +2y7. (7.5.11)

The temperature and its gradient are depicted in Fig. 7.7.

As another example of the gradient, let us revisit the Lagrange multiplier
method. When f(z,y,z) is to be extremized with respect to the constraint
g{z,y,z) = 0, we write the condition as

af ag
— == 7.5.12
or oz ( )
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and similarly for the other two coordinates. These can clearly be written as one
vector equation:

Vf=AVg. (7.5.13)

This means that at the extremum, the normals to the surfaces ¢ = 0 and f = ¢ are
parallel, or that the surfaces are in tangential contact. We can understand this as

follows: if V f had a component along the constant ¢ surface (¢ = 0) we could
move along the surface and vary f to first order. All this will be clearer if you go
back and look at Fig. 3.1 in Chapter 3. As we move along the constraint circle of
radius 2, we cross contours of fixed f. This means that by moving a little further
we change the value of f. When we get to the extremum, the contour is tangent to
the circle and there is no first order change in f.

Problem 7.5.1. Consider a sphere of radius R centered at the origin. Write a
Sormula for h(z,y), the height of the hemisphere above the point (z,y). Calculate
its gradient and compare the results against your expectations.

Problem 7.5.2. Show that

V(ox)=06Vx+xVo (1.5.14)

Problem 7.5.3. (Very instructive). Recall the equations for cylindrical coor-
dinates p, ¢,z (Egqns. (3.2.20-3.2.22)), and spherical coordinates, r,0,¢, (Eqns.
(3.2.25-3.2.27)) in terms of cartesian coordinates. Verify that these are orthogo-
nal coordinates, which means for example that the direction of purely increasing
r(z,y, z), at fixed 0 and ¢, is perpendicular to the direction of increasing 6(z,y, z)
and ¢(z,y, z) with the other two coordinates similarly held fixed. (Argue that the
direction in which just one coordinate increases is perpendicular to the gradients
of the other two coordinates (with all three spherical or cylindrical coordinates ex-
pressed as a function of z,vy, z). Compute the three gradients for each coordinate
system and verify orthogonality.)

Consider now the line integral of W = Va&, between points 1 and 2 (which
stand for ! and r2 respectively). It follows from the definition of the gradient (see
Eqn. (7.5.2)) that

2
/ Vo-dr = 6(2) — 6(1). (7.5.15)
1

In the present case the integral does not depend on the path: as we move along
any chosen path, the integral keeps adding the tiny increments d¢ and these must
necessarily add up to ¢(2)—¢(1) when we are finished. For example let ¢ = h(z,y)
be the height above sea level at a point labeled (z, y) on a map. Let us take a walk
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from point 1 to point 2 along any path. At each step let us add the change in

altitude, which is what Vh-dr represents. It is clear that no matter which path
we take between fixed end points, the total will add up to the height difference
R(2) = h(1).

Thus the gradient is a conservative field. Shorfly we will find a diagnostic for
conservative fields in general and the gradient will pass the test.

7.5.1. Gradient in other coordinates

We now derive an expression for the gradient in polar coordinates in two dimensions.
We begin with

896 96
do = ZLar+ a0 75.16
¢ ar ™ T 5 ( )
06 106
= L+ 2200 75.17
or Tt T e ( )

where we rewrote the second piece with some canceling factors of r because
- — —
dr = epdr + egrdf (7.5.18)

— —
has an angular component rdf and not df and we want to write d¢ as V¢ - dr. It
is now clear upon inspection that

Vo=2e 1% (7.5.19)
T

Notice that the significance of the gradient is still the same: it is the sum over or-
thogonal unit vectors times the spatial rate of change in the corresponding direction.
In the case of other coordinates or three dimensions the gradient is given by

Vo=> e 1 9¢ (7.5.20)

hi Oui’

where h; is the scale factor which converts the coordinate shift du; to the cor-
responding displacement in space and e; is the unit vector in the direction of
increasing u;.

Problem 7.5.4. Write down Vz/; in cylindrical and spherical coordinates in three
dimensions. Show that z.y, z are an orthogonal system of coordinates by evalu-
ating their gradients (after expressing them in terms of cylindrical and spherical
coordinates). (This is just the converse of Problem(7.5.3.)).
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Problem 7.5.5. (i) Given that ¢ = z%y + zy find the gradient in cartesian and

polar coordinates. (ii) Evaluate |$a&| at (z = 1,y = 1) in both coordinates and
make sure they agree. (iii) Find the rate of change at this point in the direction

parallel to 27 + 37. (iv) Integrate Vd)from the origin to (x = 1,y = 1) along
a 45° line. What should this equal? Did you get that result?

Problem 7.5.6. Show that the work done in displacing a pendulum of length L,
bob mass m, by an angle 0 from the vertical is W = mgL(1 — cos8), g being the
acceleration due to gravity.

Problem 7.5.7. You are on a hot volcanic mountain where the temperature is given
by T(z,y) = z? +zy>. (i) If you are located at (z = 1,y = 1), in which direction
will you run to beat the heat? (ii) If your steps are 1/10 units long, by how much
will the temperature drop after the first step? (Work to first order.)

Problem 7.5.8. Find the directional derivative of the following fields in the radial
direction at the point (1,1,1): (i) f = 2®+y2+22, (ii) f = e®TY*2, (iii) zyz. (iv)

Repeat for the direction parallel to T+ 7 —2%. Can you interpret the results?

7.6. Curl of a Vector Field

For a general vector field, the line integral around a closed path will not be zero and
is called the circulation around that loop. The circulation measures the tendency
of the field to go around some point. Consider for example the flow of water as

. - .
you drain the tub: the velocity vector V has a large component in the angular
N i
direction. Let us say itis V = V, e, 4+ Vgeg. Consider a contour that goes around
_ ]
the origin at fixed radius R. Then dr = Rdfeg and the circulation, f02" VoRd6

. . . . - . .
will be nonzero. Likewise the magnetic field B due to an infinitely long conductor
carrying current I coils around the wire: if the current is along the z-axis and we
use cylindrical coordinates,

e — pol
B =eg—, 7.6.1
©6 3mp ( )
where p and ¢ are coordinates in the plane perpendicular to the z-axis and pg =
4710~7 Newtons/Amp? is a constant called the permeability of free space. The

-
line integral of B along a contour encircling the wire and lying in the plane
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X‘y+dy 1] X+dx.y+dy

X,y I x+dx,y

Figure 7.8. The tiny contour for the curl formula.

perpendicular to the wire will be nonzero. We shall have more to say about this
later.

In contrast consider a field W = Wy,e, in the * — y plane. This purely
radial field has no tendency to go around any point and the circulation around a

. . . . . foyencd ud . .
circular path centered at the origin vanishes (since W and dr are perpendicular) in
agreement.

Consider a loop C in the z — y plane and the line integral of W taken in the
counterclockwise direction. Just as in the case of the complex integral (Fig. 6.1) we
can argue that this integral is the sum over integrals around smaller nonoverlapping
tiles or plaquettes that fully cover the area S enclosed by the given contour: the
contributions from edges shared by any two adjacent tiles cancel, leaving behind
just the exposed edges, whose union is just C. Consider therefore the tiny rectangle
from Fig. 7.8

The contributions from edges I and III are computed as in the complex plane:

T+dx z+dz
I+1I1 = / We(z,y)dx ——/ Welz.y +dy)dr (7.6.2)
x x
T+dx .
oW (x, y)
= ———— | dyd: 7.6.3
/I ( oy ) ydr ( )
- —%«”’y)dm dy + O (cubic). (7.6.4)
Yy

Adding now the similar contribution from sides 1T and IV, we find

f = I4+IIT+II+1V = (7.6.5)
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ow oW,
< v _ ) dxdy. (7.6.6)

or 0y

Note that the final contribution is proportional to the area of the plaquette and the
neglected terms are of higher order. Let us recall what we have done so far. We
wanted the line integral around a macroscopic contour C'. We argued that it is the

sum of integrals around tiny plaquettes that tile the area bounded by C. We now

find that each plaquette makes a contribution equal to its area times ( 6gv by OWs )
z oy )

Consequently as we increase the number of tiles enclosed and decrease the area of

each one, we will obtain in the limit the double integral of (6(3_in — aa—vg’ﬂ) over

the enclosed area. The neglected terms (called “cubic” in the derivation above and

proportional to higher powers of the infinitesimals) will not survive in the limit.

The reason must be quite familiar from earlier discussions of the same question.
It is clear that

aw
% W dr —//< )d:cdy (7.6.7)
c=85 dy

C =0S (7.6.8)

where

means that C is the boundary of the region S. This result is called Green'’s
Theorem. 1t allows us to express the line integral of a vector field around a closed
loop as the area integral of the object %’i - 6})4; = called its curl. In particular if
the vector field is conservative, this integral must vanish on any region S which in

turn means that

W W
oWy _ 9 ’”) = 0. (7.6.9)

”/ 1S conservative >

. . - 277 2_,’ .
Consider for example our friend F = 2zy“ i + z< j . This better not be
conservative since its line integral from the origin to (1, 1) was found to be different
on different paths. We find indeed

<6F OF,

=2r—4 7.6.10
hOE aa10

On the other hand we have seen that any gradient is a conservative vector field
since its integral depends only on the difference of the scalar field at the two ends of
the path. It must then be curl-free. If we apply Eqn. (7.6.9) to W=7 62 ¢4 53
we find

9% 9%

dxdy  Oydx
In other words the curl of a gradient vanishes identically. We shall have more to
say on this later.

=0. (7.6.11)
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Problem 7.6.1. Consider the complex integral § f(z)dz, where f = u + iv and
dz = dz +idy over a contour that lies in the domain of analyticity of f. Write the
real and imaginary parts as circulations of two real vector fields and verify that
the CRE ensure that both fields are conservative.

N
Problem 7.6.2. Test each of the following fields to see if it is conservative: (i) W =
- . - . T s 3, 0.2 .2 s - . -

tysinz + j cosy, (i) W = i 2zy°+ j 3y“z=, (iii) W = i sinz + j cosy,

(ivyW = ¢ coshzcoshy + j sinhzsinhy.

We saw that the vector field ?q& is conservative. The converse is also true:
if a field is conservative, it may be written as a gradient of some scalar field. The
corresponding scalar field is not unique: given one member, we can generate a
whole family by adding a constant without changing the gradient. To find any one

member of this family corresponding to a given conservative field W, pick some
point 1 and set ¢(1) = 0. Assign to ¢ at any other point 7 the value

—

-
o(7) =/ W - dr (7.6.12)
1

where the path connecting 1 and 7 is arbitrary. If you change the upper limit
infinitesimally, you will see from the integral that d¢ = W(_r’) - dr. But this must
equal ?qﬁ(?’) - dr. Tt follows that W = V ¢ as promised.

As mentioned earlier, in classical mechanics if F s a force field, the work

done by F s given by its line integral between the starting and ending points of
some path. If the work done is path-independent, the force is conservative and the
corresponding —¢ is called the potential corresponding to the force. (The minus
sign in the definition is merely a matter of convention.)

Suppose you are asked to find the line integral of

—

— —
F = i (coszcosy)— j

(sinz siny)

between the origin and the point (7/4.7/4) along the curve y = z2. You could
do what we did earlier, i.e., parametrize the curve in terms of some ¢, and do the

integral. But a better way would be to observe that F s curl free. It is therefore
the gradient of some ¢. Rather than use Eqn. (7.6.12), we can easily guess that
¢ = sinz cosy. In that case, by Eqn. (7.5.15),

/4,7 /4 RN Jan/4 1
/ F -dr = sinzcosylgy "' = =. (7.6.13)
0,0 ’ 2
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Here is an illustration of what you must do if you cannot guess the scalar field.

. = -0 2 ed 2 . . . .
Consider W = i 2zy“ + j 2z°y which is given to be a conservative field. To
find the potential (up to a constant) we need to evaluate

.Y — — —_ —

oz, y) :/ (i 225+ j25%5)- (i dT + j df) (7.6.14)
0,0

along any path connecting the origin and the point (z,y). (We are calling the

dummy variables (z, §) since (z. y) stand for the end points.) Let us choose the

straight line path:

Z(t) =tz Ft)=ty (0<t<1). (7.6.15)

Thus

1 1

o(z,y) :/ (¢ 2zy2t3+ 5 2I2yt3)~( i zdt+ j ydt) :/ (42223 dt = 2242,
0 0

(7.6.16)

which you may verify is correct. Note that although we know ¢ only up to an
additive constant, the difference in ¢ between two points is free of any ambiguity

. . . ad d
since the constant drops out. Thus the line integral of ( i 2zy? + j 2z%y) between
any two points is given by the difference of z2y? between those points.

Problem 7.6.3. (i) Calculate the work done by F = 2zy7 + 127 along the
straight line path from the origin to the point (1,1). (ii) Repeat using a path that
goes from the origin to (1,0) and then straight up. (iii) Can this force possibly be
conservative? (iv) If yes, find the corresponding potential by inspection.

Problem 7.6.4. Let F = 3x2y7 + x37. (i) Find its line integral on the curve

y = z2 between the origin and the point (1,1). (ii) Show that F can be the
gradient of some scalar and find the latter by inspection. Use this information to
regain the result for the line integral.

— —
Problem 7.6.5. Let W = iz + 72:1/ Evaluate its line integral around a unit
square with its lower left vertex at the origin and edges parallel to the axes. Can
this be the gradient of some scalar?

Problem 7.6.6. If u+iv is an analytic function, show that the curves of constant u
intersect the curves of constant v orthogonally at each point. (Bring in the gradient
to solve this.) For the case f(z) = 22, sketch the curves of constant u and v and
check this claim.
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We would now like to extend Green’s Theorem to three dimensions. So we
ask what the circulation is around a tiny contour C = 3S which bounds a tiny area
suspended in three dimensions. Let us begin by returning to the tiny rectangle in the
z — y plane bounded by a contour C' running counterclockwise. The infinitesimal
area vector corresponding to this is

dS = k dzdy. (7.6.17)

W, oW,
oz dy

. . - ad .
think of this as the dot product of dS = k dxdy with a vector whose z-component
is (awy — oW,

Since the circulation around this loop was )dzdy, it is natural to

) . The complete vector, called the cur! of W . is defined as follows:

ox Oy
= = = (0w ow — [(OW ow — [(OW oW
v W =3 z Yy ; z z L y z )
. ' ( oy 0z >+ J < 0z oz + ox 0y
(7.6.18)

Notice the cyclic fashion in which the indices run. The i-th component of the
curl is the j-th derivative of the k-th component of the field minus the other cross
derivative. To get the j-th component, move all the indices up by one notch
cyclically: ¢ — j — k — i. To get the k-th component do this one more time.
Thus we say that for a tiny loop we considered,

—_— = = —

W.dr =V x W -dS. (7.6.19)

The beauty of writing the result in vector notation is that this formula works for an
area not necessarily in the x —y plane. This is because a dot product of two vectors,
depending as it does only on rotationally invariant quantities such as the lengths or
angles between vectors, it invariant under a rotation of axes. If we therefore rotate
our axes so that the tiny patch in the old z — y plane has some general orientation
now, the circulation will still be given by the dot product of the area and the curl,
though both would have different components now. Thus we come to the general
result that

The circulation of W around a tiny loop bounding an area S is V x W -d8.

To see if this formula is indeed correct, you can look at infinitesimal loops in
the other two planes, as indicated in the following exercise. If you want to know
how exactly it works for a loop in some arbitrary direction, you must work out
Problem (7.6.8.). It will help you understand in what sense an area not along the
principal planes, (or an area vector not along one of the axes), is a sum of areas
(or area vectors) along the principal planes (axes).

Problem 7.6.7. By considering the circulation around loops in the other two planes
confirm the correctness of the other two components of the curl.
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Problem 7.6.8. This exercise will give you a feeling for how many of the above
ideas regarding areas as vectors really work in detail. Consider a planar area in
the first octant (r > 0,y > 0.z > 0) that cuts the three axes at the points (a.0.0),
(0.a.0), and (0.0, a). Sketch it and show its area is

_ v'3a?
T2

Choose the area vector to point away from the origin. Given that the area vector
points in a direction that is an equal admixture of the three unit vectors and has
the above magnitude, show

A

(7.6.20)

- _
7 k

+J o+

-
J

). (7.6.21)

Imagine now integrating a vector W counterclockwise around this area. Show
through a sketch that this contour is the sum of three contours: one in the x — y
plane, one in the y — z plane and one in the z-x plane. (Hint: The area in the x-y
plane is bounded by the two axes and the line x + y = a.) Show that the vectors

22— 2 —
corresponding to the areas bound by these contours are precisely % i , % j and
2 —
% k so that Eqn. (7.6.21) is an expression of this equivalence. Now show that

the circulation around each of these three areas is given by the three terms in the
dot product in Egn. (7.6.19).

There is an analogy between the gradient and curl. The former gives the
magnitude and direction of the greatest range of change (per unit displacement)
of the scalar field and the latter gives the magnitude and direction of the greatest

. . . . . =
circulation per unit area of the vector field. At each point if you compute V ¢, you
know that that is the direction in which the rate of change is a maximum, given by

|€¢|. If you move in any other direction, the rate of change will be diminished
by the cosine of the angle between Vqﬁ and the displacement vector. Likewise, if
you know V x W at some point, you know that the circulation per area will be
greatest around a loop that lies in the plane perpendicular to YV x W (i.e., the area
vector is parallel to V x W)and that the circulation will equal the product of the
area and |$ X WL The circulation around any other differently oriented area will

be reduced by the cosine of the angle between the area vector and V ox W.

Let us take one more look at Eqn. (7.6.19). It says that the circulation around
a tiny loop is the product of the area of the loop times the component of curl
parallel to the area vector. Conversely, the component of curl in any direction is
the circulation per unit area in a plane perpendicular to that direction.

Consider now a surface S in three dimensions. For definiteness imagine this
is a hemisphere. The boundary C = 95 of this surface is the equator. If we
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=
C=98

Figure 7.9. An example of Stokes’ Theorem. The line integral of a vector field along the equator of
the hemisphere is the sum of line integrals around the plaquettes that tile it. The latter sum becomes the
surface integral of the curl in the limit of vanishingly small plaquettes.

now tile the hemisphere with little areas it follows that the circulation around the
equator is the sum of circulations around the tiles, as shown in Fig. 7.9 (Only a
few representative tiles are shown.)

Since the latter are given by Eqn. (7.6.19) we obtain

— e g o
f W-d7':ZV><I/I'~d
C=08S tiles

We do not use the equality sign since as long as the tiles are of finite size, the
contour can only be approximated by the tiles and the question of where in each
tile to evaluate the various derivatives will plague us. However if we consider the
limit of infinitely many tiles of vanishing size, the result becomes exact. In this

|

n

(7.6.22)

limit the right-hand side becomes the surface integral of V x W over the surface

S and
]{ w.z:/vxmf (7.6.23)
C=08 S

which is called Stokes’ Theorem.

Thus Green’s Theorem is Stokes’ Theorem restricted to the plane. Note that
Stokes’ Theorem relates the line integral of a vector around a closed loop to the
surface integral of its curl over any surface bounded by the closed loop. There is
no Stokes’” Theorem for the line integral over an open curve P;o with boundaries 1
and 2.

Note also that for a general vector, the surface integral can depend on the
details of the surface given a fixed boundary. On the other hand, if the vector field
is the curl of another vector field, the answer depends on just the boundary C' = 95S.
This should remind you of line integrals of vector fields that are generally sensitive
only to the path and depending on the boundary points of the path when the vector
field is a gradient. We shall have more to say on this later.
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Let us consider two examples of Green’s Theorem. Suppose we want to
integrate
- - 2
T xy+ J x%y (7.6.24)

counterclockwise around some contour in the z-y plane. The theorem tells us

F . dr—//d dy ( “v) %;”) ://dzdy(Qxy—r). (7.6.25)

Say the contour is a unit square centered at the origin. Then the double integral is
zero since the functions being integrated are odd in z or y or both. Consider then
a unit square in the first quadrant, with its lower left-hand corner at the origin. In
that case

1 1
1 1
//dxdy(?xy—a?)Z/ d;r/ dy(?xy—x)='2‘ 2‘0312‘0—&62\0):0
. JO 0

(7.6.26)
where we get zero due to a cancellation between the two terms. Had the square
been of side two, the result would have been

—
F =

1
5(1‘2|§ yQ‘z — 1:2|§) =6. (7.6.27)

As the second example consider the two dimensional field F = meQT +

1327 whose curl was 2z — 4zy. (See Eqn. (7.6.10) in the worked example.) Since
the curl is nonzero, not only do we know the answer is path-dependent, we can
also relate the difference (in the line integral) between any two paths to the surface
integral of the curl over the area trapped between the paths. Let us recall that the
line integral was 1 if we went along the z-axis to (1, 0) and then up to (1, 1), while
it was equal to 5/6 if one went along z = y. It follows that if we went to (1, 1)
along the first route and came back along the second, the contribution from this
closed counter-clockwise path would be 1 — 5/6 = 1/6. Let us verify that this is
indeed what we get by integrating the curl within the triangular region between the

paths:
2
/dm/ dy[2z — 4zy] = 3

Problem 7.6.9. Recall that the line integral of F = 2ch2 i+ :1r27> between the
origin and (1.1) was equal to 1 along paths that first went up and then to the
right and vice versa. Integrate the curl over the region in question and reconcile
this fact with Green'’s Theorem. Suppose we go to (0, 1), then straight up to (1.1)
and back along » = y2. From the worked example (in the introduction to line
integrals) deduce what we get for this path. Reconcile with Green’s Theorem by
integrating the curl over the appropriate area. Finally reconcile the fact that the
line integral has the same value on paths y = z* and x = y? by integrating the
curl in the region between the two curves.

-1 (7.6.28)

l\)lr—\
|
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Problem 7.6.10. Skow that the line integral of W —= —i(y — Lsin2y)i +

—
zcos?y j counterclockwise around a circle of radius = centered at the point
(x =e,y = e™) equals 7°.

Problem 7.6.11. (i) Find the work done by the force F=Tz+ 7y as one
moves along the semicircle of radius 2 centered at the origin starting from (1,0)
and ending at (—1,0). (ii) How much work is done in returning to the starting
point along the diameter? (iii) What does all this suggest about the force? Verify
your conjecture.

Problem 7.6.12. Show that the area enclosed by a counterclockwise curve C in
the plane is given by } §.(zdy — ydz).

Problem 7.6.13. Evaluate §(ydx — xzdy) clockwise around the circle (z — 2)* +
y% = 2 any way you want.

Problem 7.6.14. Show that the line integral of? = T2y + 7:17 + ?zzfrom the
origin to (1,1,1) along the path 2 + y? = 2z, « = y is 3. Visualize the path
and parametrize it using x. Repeat the integral along the straight line joining the
points. Show that this vector field is not curl free. How do we reconcile this with

the above two results?

Problem 7.6.15. Evaluate §((z — 2y)dx — zdy) around the unit circle first as a
parametrized line integral and then by the use of Green’s theorem and show that
it equals .

7.6.1. Curl in other coordinate systems

Let us say uy,uo,us are three orthogonal coordinates, such as the spherical co-
ordinates. Let h1, ho, h3 be the scale factors that convert the differentials du; to
distances. The curl can then be written as follows:

1 [0(W3h3) 8(Waha)

— —
VxW=¢e - t cycel. 7.6.29
X e1 hoha s s + et cyc ( )
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Let us try to understand this. Consider the component of curl along e;. This is
given by the circulation per unit area on a loop that lies in the plane spanned by
coordinates ug,u3. Consider the roughly rectangular loop bounded by the lines
ug, us +dus, ug, ug + dug. By pairing together line integrals along opposite edges,
we will get as in cartesian coordinates,

O0Wshg B
w9

circulation = [ 3~ 2} duodusg, (7.6.30)

where the scale factors multiply W, because the corresponding infinitesimal line
clements are h;du;. We must then divide this by the area of the loop, hodughsdus,
to get the curl.

Problem 7.6.16. Write the expression for the curl in two dimensional polar coor-
dinates, spherical and cylindrical coordinates.

Problem 7.6.17. Consider once again §((z — 2y)dz — zdy) around the unit circle
from Problem(7.6.15.). Given that this is the line integral of a vector field, extract
the vector field in cartesian coordinates and then express it in polar coordinates.

(Start by writing down 7 and 7 in terms of e, and eg.) Now do the line
integral in polar coordinates. Check using Green'’s theorem in polar coordinates.
Repeat for the following: §(xy dx+x dy) counter-clockwise around the unit circle
centered at the origin.

7.7. The Divergence of a Vector Field

Imagine a closed surface S which is the boundary of some volume V: § = 9V.

Our goal is now to compute the surface integral of W over S. Imagine filling the
volume V' with tiny parallelepipeds, called cubes to save space and avoid spelling
mistakes. (If they are infinitesimal, they can fill any shape.) Each cube has its area
vector pointing outward on each face. Thus adjacent faces of neighboring cubes
have their area vectors oppositely directed. Suppose we know how to compute the
surface integral over any such tiny cube. Then we can express the surface integral
over S as the sum of surface integrals over the tiny cubes that fill it. The reason is
just like in Stokes” Theorem. Consider any cube in the interior. Every one of its
six faces is shared by some other cube. Consequently the surface integral over this
cube is annulled by the contribution from these very same faces when considered
as parts of the surrounding cubes. The reason is clear: we are integrating the same
vector field in the two cases, but with oppositely pointing normals: the outward
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x

Figure 7.10. The infinitesimal cube at the origin on whose faces we compute the surface integral.

pointing normal on our cube is inward pointing according to its neighbors. If the
neighboring cubes themselves have other neighbors, they will experience a similar
cancellation and all we will have in the end is the contribution from the exposed
faces, i.e., the surface S.

To summarize, the surface integral of the vector field over the closed surface
S is the sum of surface integrals over tiny cubes that fill the enclosed volume V in
the usual limit of infinite cubes of vanishing size. So our first job is to compute
the surface integral over an infinitesimal cube shown in Fig. 7.10.

It is centered at the origin (which is a convenience but not a necessity) and has
linear dimensions dz, dy, and dz. Its surface is the union of six planar areas. Each
is represented by a vector normal to the plane and pointing outward. Let us imagine

that this cube is immersed in the vector field W and calculate the flux coming out
of this cube by adding the flux on all six faces, i.e., do the surface integral of w

over this cube. First imagine that W is constant. Then the total flux will vanish.
This is because whatever we get from one face will be exactly canceled by the face
opposite to it since the two normals are opposite in direction while the vector is
constant. If the flux were indeed due to flow of particles, this would mean that
whatever number flows into the cube from one face flows out of the opposite face.
Thus, for us to get a nonzero flux, the field will have to be nonuniform.

Consider two of the cube’s faces that lie in the y — 2z plane. Their areas are
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given by d:?dydz, where the plus/minus signs apply to the faces with . > 0
and @ < O respectively. (The area vectors point along the outward normals to the

surface.) The flux for these two faces comes from just the .--component of 11" and
is given by

d,, = / dydz [Wi(de/2,y,2)] — / dydz [W(=dar/2.y. z)]
z=dz/2 Jr=—dz/2
ow’
= /dyd: [ - zd.lr] (7.7.1)
. ox
= e dyds, (7.7.2)
Jz

where in the first step we have approximated the change in W, by the first partial
derivative times dz, and in the second step, used the fact that the integral of a
function over an infinitesimal patch is the function times the area of the patch.
Adding similar contributions from the other four faces we get

- — oW, oW, oW,
W.dS = ‘ “”+d Y+ = dzdydz. (7.7.3)
ox oy 0z

s

Notice how the cube makes a contribution proportional to its volume. This will

ensure that as we increase the number of cubes in the limit of vanishing cube size,
their contribution will converge to the volume integral of the following function:

oW, oW, oW,

+ +

v.ow 7.
ox oy 0z v (7.7.4)

called the divergence of W and often pronounced “div W” where “div” rhymes
with “give.”

By this definition the flux out of the infinitesimal cube or the surface integral
over the cube is the volume integral of the divergence. Conversely, the divergence
is the outgoing flux per unit volume.

As stated earlier, if we patch together many infinitesimal cubes, we can build
a macroscopic volume V whose boundary surface S = 9V is the union of the
unshared or exposed faces. Thus

]{ W.(Is*’:/ V - Wdazdyd: (7.7.5)
S=0V 14

where it is assumed that we have taken the limit of zero cube size. The above
is called Gauss’s Theorem. Notice that the theorem relates the surface integral of
a vector over a closed surface to the integral of its divergence over the volume
enclosed. An open surface, like a hemisphere, does not enclose a volume and there
is no Gauss’ Theorem for integrals over it.
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Note also another curious fact. In general the integral of a scalar over a solid
volume V' cannot be reduced to an integral of anything over just its boundary surface
S = oV. But if the integrand is the divergence of vector field, this is possible.
Notice once again the analogy to line integrals of gradients and surface integrals
of curls both of which get contributions from the boundary. We shall return to this
point.

Let us now work out an example: the surface integral of

W= iz3y+ 7y2m + k2 (7.7.6)

over a unit cube centered at the origin as in Fig. 7.10. We have already done this
in the introduction to surface integrals and found the answer equals unity.
If we use Gauss’s theorem, the divergence is

—

VW =3c2y + 2zy + 1 (7.7.7)

from the three partial derivatives. So the surface integral equals

1/2 1/2 1/2
dm/ dy/ dz(3z%y +2zy +1) =1 (7.7.8)
—1/2 —1/2 —1/2

where only the third term contributes and the others vanish by symmetry.

Problem 7.7.1. Find the divergence ofW =i cosz + 7 sinz + k 22,

Problem 7.7.2. Consider the surface in Fig. 7.9 with a boundary at the equator.
Slice a piece off the top at the Tropic of Cancer. Now the surface has two bound-
aries. Express the integral of the curl over this S to its boundaries by drawing
little tiles again. Do the similar thing with Gauss’ Theorem by considering a solid
region with a piece scooped out of its insides so that it too has two boundaries. Pay
attention fo the signs of the two boundary contributions. Compare to the simple
result

2
/ Vo dr=o(2) - 6(1), (7.7.9)
1
where 1 and 2 are as usual short for 71 and 73, respectively.
Problem 7.7.3. Find the surface integral ofI/T/ = 7m3y+7y2x+72 over a unit

cube centered at the origin, with edges parallel to the axes, by direct computation
and by Gauss’s Theorem. Use symmetries to save yourself some work.
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— — — —
Problem 7.7.4. Find the surface integral of W = i asin®y+ j 22+ k zcos?y
over a sphere of radius w centered at the point (e, 7®, e™).

— — — —
Problem 7.7.5. Show that the surface integral of F = i y+ jz+ k 22 overa
unit cube in the first octant with one of its corners at the origin and three of its
edges aligned with the axes is unity, without using Gauss’s theorem. Check the
result using Gauss’s theorem. Show likewise that if the closed surface is instead
the upper hemisphere of a unit sphere and the x — y plane, the answer is 3, and
check using Gauss’s theorem. For the hemisphere, note that the unit radial vector

) - -
can be written as (i x+ jy+ kz)/r.

7.7.1. Divergence in other coordinate systems
The formula for divergence in any orthogonal system of coordinates is

- — 1 0 0 0
V- W=———|—(Wihoh — (Wshsh ——(W3h1h .
Fihah [8u1( 1ha 3)+8u2( 2h3 1)+3u;3( 3h1h2)
(7.7.10)

To see why this is correct, recall that the divergence is the flux per unit volume.

Pairing the opposite faces of a cube-like object bounded by the level surfaces
u1,u1 +dui, ug, ug + dug, us, ug + dug, we see that the net contribution from the
two opposite faces in the 2-3 planes is given by

OW1hoh
(l—Hduldugdug,
Ouy

where the scale factors now multiply W because the area element that enters the

flux calculation is hgdughsgdus. Finally when we add the contribution from the
other four faces and divide by the volume element hydujhodushsdus we obtain
Eqn. (7.7.10).

Problem 7.7.6. (i) Find the surface integral of F=T"%az+ 7y + Kz overa
sphere of radius R centered at the origin without using Gauss’s theorem. Check it
using Gauss'’s theorem. Use the right set of coordinates. (ii) Repeat the calculation
for the closed surface bounded by the upper hemisphere and the x — y plane. (iii)
Repeat for the case where the closed surface is a unit cube centered at the origin.
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Problem 7.7.7. Write down the expressions for curl, gradient and divergence in
cylindrical and spherical coordinates.

7.8. Differential Operators

Let us look at the formulae for curl and divergence in cartesian coordinates, Eqn. (7.6.18, 7.7.4).
For example the divergence is

\—7»_W:8W,+6Wy+awz

+ . 7.8.1
oz oy 0z { )
This looks like the dot product of the following object. called “del”
- — 0 7] 7]
V=1i—+4j— — (7.8.2)
¢ oz J oy + Oz

with W. Likewise the curl looks like the cross product of the two objects ¥ and W. (it is to be
understood that the vector W always stands to the right so that the dot or cross product is a sum of

various derivatives of the components of W)
The object in Eqn. (7.8.2) is an example of a vector differential operator. We want to know
what it means. Let us begin with an easier object, a differential operator

=—. (7.8.3)

Clearly D is not a number valued object. It looks like a derivative with its head cut off: what
happened to the f in gﬁ—? Here is an analogy. We all know what sinz means. It is a function,
which gives us a definite number for any given z: the number in question is

3 5

sinz:z—%!—+%+--- (7.8.4)

But what meaning do we attach to just the expression “sin”? This is not a number valued object.

On the other hand given an , it will spit out a number as per the above formula. But even without

the z, sin stands for a sequence of instructions that will be performed on the given =, namely the

infinite sum shown above. The sequence of instructions coded under the name “sin” is called an

operator. It needs an operand, namely z to yield a number. We say the operator sin acts on the
operand z to give the number sin z.

(As an aside let us recall that even in physics we sometimes split a single entity into two parts

and at first we feel uneasy working with half the team. Take for example the electrostatic force

between two charges separated by e;r given by Coulomb's law:

= q1q2e;
7 Laer 7.8.5
4megr? ( )

where €. is a unit vector going from point 1 to point 2 and o is a constant determined from
electrostatic measurements. We then split this expression into two parts: an electric field
—
e qi€r

yo 7.86
4meor? ( )
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due to charge q; at the location of charge g2 which will cause charge g2 to experience a force qgf
when placed there. Thus the field is a result of just one charge and it runs counter to the simpler
notion that it takes two charges for anything to happen. The field is a force waiting to happen. But
we give it a meaning even before the other charge is put there. To get a force out of the field, you
have to introduce the other charge go.)

The object D is similar. Whereas sin takes in a number and spits out a number, D takes in
a function and spits out a function. The function it spits out is the derivative of the input function.
Thus

df

D actingon f = = (7.8.7)
i

Thus D acting on the function z2 gives the function 2z; acting on the function sin z gives cos
and so on. One calls D the derivative operator. It is usually written as % to make its action very
transparent. You can use any symbol you like, but what it does is what it does: take the derivative
of what you feed it.

The derivative operator is a linear operator:

D(af(x) + bg(z)) = aDf(z) + bDg(x). (7.8.8)

That is to say, the action on a linear combination is the sum of the action on the pieces. By contrast,
sin is not linear because sin(z + y) # sinz + siny. However if you were always going to let =
and y be small, or if you were somehow restricted to small z and y, then you could come to the
conclusion that sin is a linear operator since then sinz ~ x and sin(z +y) ~ +y. Many relations
in nature that are really nonlinear appear linear at first sight since experiments initially probe the
situation in a limited range.

The vector differential operator, “del,” in Eqn. (7.8.2) is within our grasp now: acting on a

—
scalar ¢ it gives a vector field ¥V ¢, acting on a vector field via a dot product, it gives a scalar, the
divergence, while acting via the cross product, it gives another vector field, the curl.

Problem 7.8.1. Can you define the operator D?? Is it linear?

The vector differential operator can be written in other orthogonal coordinate systems as

= 5,1 0 1 9 -1 0
v:61h_18_u1+62h_28_u,2+e3h_36_u;3' (7.8.9)
7.9. Summary of Integral Theorems
Let us recall the three integral theorems established in the preceding pages:
/ Vo ot = olop=0(2)—6(1), (79.1)
Py
/ YV xA-dS = f A - dr (Stokes® Theorem), (7.9.2)
s P=35
/ V-4Adav = f T (Gauss’s Theorem). (7.9.3)
Vv S=0V

Note that in all three cases
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e On the left-hand side some sort of derivative of a field is integrated over a
one-, two-, or three-dimensional region.

e On the right-hand side is the contribution of the field from just the boundary
of the region in question in the left hand side.

In general, the line, surface, and volume integrals will not receive their contribution
from just the boundaries of the integration regions. This is so only for the gradient,
curl, or divergence in the three respective cases shown above. It follows for these
special fields that if the integration region on the left-hand side is over a region
with no boundary, we will get zero. This will lead to some identities we discuss in
the next section.

7.10. Higher Derivatives

So far we have computed some first-order derivatives of vector and scalar fields:

— —_— — — —
Vo, V-W and V x W. Let us move on to higher-order derivatives of fields. For
example, we can explore the divergence of the curl or the gradient of a divergence
and so on. We will examine a few second-order derivatives. We start with two that
are identically zero:

VxVe = 0 (7.10.1)
V.-VxW = o (7.10.2)

which you may easily verify by straightforward differentiation. All you will need
is the equality of mixed partial derivatives: f;; = fj;, where i,j = z,y or z.

Problem 7.10.1. Verify these identities.

We can understand these identities in a deeper way. Consider the line integral of
a gradient. It is the same on any two paths with the same end points since all the
contribution comes from the end points. The fact that we get the same answer on
two paths joining the same end points means that the difference, the integral on a
closed path (obtained by going up one path and coming back counter to the other)
is zero. But by Green’s or Stokes’ Theorems, the surface integral of the curl (of this
gradient) had to vanish on the area bounded by this closed path. Since the paths
and hence enclosed area were arbitrary, and could be infinitesimal, the integrand of
the surface integral, which is the curl of the grad, had to vanish everywhere.
Consider now the surface integral of a curl. It is the same on any two surfaces
with the same boundary since the answer comes only from the boundary. In other
words the difference of the two surface integrals is zero. This difference is then
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a surface integral over a closed surface. Let us make sure we understand the last
point, by considering an example. Consider a unit circle on the x — y plane, with
its edges running counterclockwise as seen from above the z — y plane. It is the
boundary of the unit disc in the plane and also of a unit hemisphere sitting above
the z — y plane. In computing surface integrals, we are instructed by the orientation
of the loop to choose the outward normal on the hemisphere and the upward normal
on the disc. In the difference of integrals, we will use the downward normal for the
disc. The difference is then the surface integral over a closed surface formed by
the hemisphere and disc, with all normals pointing outward. With this fact clear,
we now use Gauss’s Law to relate the integral over the closed surface of the curl
to the integral of the divergence (of the curl) over the enclosed volume. Since this
is to vanish for any closed volume, even an infinitesimal one, the divergence of the
curl must vanish.

7.10.1. Digression on vector identities

There is yet another way to understand these identities, another way that tells you the identities had
to be true.? As a prelude to this we require the following theorem stated without proof:

The boundary of a boundary is zero.

Here are some examples to illustrate this. Consider a path Pj2 in the z — y plane going from
point 1 to point 2. Its boundaries are its end points. But the path itself is not the boundary of
anything. But now, let the two extremities be brought together making it a closed curve. Two things
have simultaneously happened:

e The path has become the boundary of a two dimensional region. (In two dimensions this
region is unique. In three dimensions there are many surfaces bounded by this path. Think
of the closed path as the rim of a butterfly net. As the net wiggles in three dimensions, that
rim continues to be its boundary.)

e The path no longer has a boundary.
We summarize this by saying
If P = &S then (7.10.3)
OP=038S = 0. (7.10.4)
Consider next the case of S, the butterfly net. It has a boundary 8S = P, where P is the rim.
Shrink the boundary to a point. Two things happen now:
e The surface S is now closed and is the boundary of a volume W: § = oV
e The surface no longer has a boundary!
Once again we see
IfS
0S = 9oV

OV then (7.10.5)
(7.10.6)

|
=

2This section is purely for your amusement.
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All these cases are summarized by one powerful identity:
8 =o. (7.10.7)

If you want to go beyond our intuitive treatment of this result, you must look it up under the heading
Homology.
It turns out that the identities Eqn. (7.10.1,7.10.2) are related to this identity. Let us begin with

2
/ V- dr = (2) — ¢(1) = ¢lop (7.10.8)
1

(where 1 and 2 are short for 77 and 73 respectively) which states that the contribution to the integral
comes entirely from the boundary of the region of integration. Let us now join the end points so as
to obtain a closed path. Let S be any surface with this closed path as its boundary. Once the path
is closed, two things happen:

e The end point contribution is zero since there is no end point.

e We can now use Stokes’ Theorem relating the line integral to the surface integral over the
enclosed surface.

Thus
/(5’ x V) -dS = f Vo dr (7.10.9)
s P=8S
dlop=sos=0 (7.10.10)
= 0. (7.10.11)

—
Now S is any surface with a boundary. We can take then a very tiny infinitesimal surface dS on
. . —4 k—4g . . . . .
which the vector field (V x V ¢) is essentially constant. In that case the surface integral is just

VxVe- d8. I this is to vanish for any orientation of the surface, (6’ X ¥V ¢) must itself vanish
giving us the identity Eqgn. (7.10.1).
Consider next Stokes' Theorem

/VxW.d_s‘zf w.ar, (7.10.12)
S P=38S

where once again the entire contribution comes from the boundary of S. Let us now shrink the
boundary P = 85 to a point. This closes the surface and makes it the boundary of a volume V:
S = 8V. Evaluating the surface integral above using Gauss's Theorem we find

/?.Vdozdydz = f YV x W -dS (7.10.13)
Vv S=9V
= f{ w.ar (7.10.14)
P=0S=80V =0
= 0 (7.10.15)

In the last step all we are saying is that the circulation on a closed surface (such as the surface of
a sphere) must vanish since every tiny tile is fully surrounded by other tiles so that the contribution
from any edge of any tile to the line integral is canceled by an adjoining tile with which it shares
that edge.

Since the volume integral must vanish for any volume, the integrand itself must vanish, giving
us the identity Eqn. (7.10.2).

To summarize, in Eqn. (7.10.9) we are taking the surface integral of a curl (of a gradient). So
the answer comes entirely from the boundary, as the line integral of the gradient. The line integral
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of the gradient once gives all its contribution at the boundary of the boundary, which is zero. In
Eqgn. (7.10.13) we are doing this again. We are integrating the divergence (of a curl) over a volume.
So the contribution comes from the boundary surface. But on the boundary we are integrating a
curl, which gives all its contribution from the boundary of the bounding surface, which is zero.

Notice that in Egns. (7.10.9-7.10.11) and Eqgns. (7.10.13-7.10.15) we start with the integral of
a (scalar or vector) field that has been differentiated twice. At the first step we trade one derivative
on the field for one & acting on the integration region, giving its boundary. Then we do it again,
trading one more derivative on the integrand and for one more @ acting on the integration region.
But this is one too many boundary operations, for two strikes and you are out in this game.

The advantage of the last way of thinking about vector identities is that it is very general and
applies to all kinds of manifolds in all dimensions.

We now return to our study of higher-order operators.
A second derivative that does not vanish and plays a significant role is called
the Laplacian. 1t is defined as follows:

= = %6 9% 9%
V-V¢ = m-ﬁ-a—zﬂ-i-g; (7.10.16)
= V?. (7.10.17)
A function that obeys
V26 =0 (7.10.18)

is said to obey Laplace’s equation, or to be a harmonic function. (Recall that the

real and imaginary parts of analytic function are harmonic in two dimensions.) The
differential operator
9t 9% 02

+=—+— (7.10.19)

Vi= —
dz2  9r?  9z?

is called the Laplacian.

By combining the expressions for gradient and divergence in other orthogonal
systems, Eqns. (7.5.19, 7.7.10), we can obtain the Laplacian in other coordinates:

oty 1[0 (hahsoo), b (hshioe), o (hahade
_h1h2h3 ouy h1 Ouj Jug ho Oug Ousg hs Oug ’

(7.10.20)

There are only two other second derivatives:
Y(V W), (7.10.21)
VxVxW = V(V-W)- V. (7.10.22)

The first has no name and rarely comes up. The second equation is true in cartesian
coordinates and will be invoked later in this chapter.



Vector Calculus ' 193

Problem 7.10.2. Verify that there are no other second derivatives we can form
starting with scalar and vector fields and the “del” operator.

7.11.  Applications from Electrodynamics

In this section we will discuss some ideas from electrodynamics that will illustrate how the ideas
developed above arise naturally in physics.

We begin with the flow of electric charge. Let p be the density of charge and " its velocity at
some point. First consider a wire along the z-axis and ignore the vectorial character of the velocity.
The current through the wire, I, is given by the amount of charge crossing the cross section of the
wire per unit time. By arguments given earlier in this chapter,

I=pvS (7.11.1)

where S is the cross-sectional area of the wire. The current density j is given as the current per unit
area and is given by

7 =pv. (7.11.2)
In general

T =p7 (7.11.3)

is the current density at a point where the charge density is p and velocity is @’.
Consider some volume V bounded by a surface S. The total charge leaving the surface is
given by the surface integral of j:

charge leaving W = % G- ds. (7.11.4)
s

Now it turns out that the total charge in the universe is conserved, i.e., does not change with
time. Furthermore, the conservation is local: we do not see charge disappear in one region and
instantaneously reappear elsewhere. Instead we see a more detailed accounting: any charge decrease
in a volume V is accounted for by the flow out of that volume. Indeed without this local accounting
of charge, its conservation is quite empty and unverifiable: if some charge is suddenly lost in our
part of the universe, it is pointless to argue over whether this charge is really gone or hiding in some
remote and inaccessible part of our universe. Using the fact that the total charge in V is the volume
integral of p, and the above equation for the flow out of V, we may express charge conservation as

follows:
—f?-ﬁ (7.11.5)
S

—/ v. 7d3r (Gauss’s Theorem) (7.11.6)
1%

b_t v p(z7 Y, 2, t)dST

where d3r is shorthand for dzdydz in this case and for whatever is the element of volume in other
coordinate systems, such as 72 sin 8dfd¢ in the spherical system. Since the volume in the above
equation is arbitrary, the integrands on both sides must be equal, giving us

%p(z,y,z,t)+§’~7:o, (7.11.7)

which is called the continuity equation. This equation also appears in other contexts such as fluid
mechanics, where it expresses the conservation of matter.
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We now turn to Maxwell’s electrodynamics. The cause of every field is the electric charge, at
rest or in motion. The effect is also felt by the charges, at rest or in motion. But we see it as a two
stage process: charges produce fields and fields lead to forces felt by charges. As mentioned earlier,
the electrostatic force

F=_41%2 & (1.11.8)

- T
Amegr2

between two static charges is seen as a two stage process: the first charge produces a field

4 q1 —
E = € 7.11.9
dmeqr? ( )

at the location of the second charge and this field causes a force on the second given by

— —
F =qFE. (7.11.10)

Electric charges in motion also experience another force, called the magnetic force, which was
discussed earlier. Thus the total force on a charge is given by the Lorentz force law:

F =q(FE + 7 x B). (7.11.1D)

To find the electric and magnitude fields at a point, we first put a static charge there and measure
—
the force (by measuring the acceleration times mass), giving us E. Then we put moving charges
-—
with different velocities there and measure the force they feel to find out B.

Problem 7.11.1. Give a set of measurements that will determine B.

This then is one half of the story: how the charges respond to the fields. The other half specifies the
relation between the fields and the charges that produce them.
Let us begin with the electric field due to a static point charge g at the origin in MKS units:

= 9

EF=—— 7.11.12
4meqr? er ( )

. B . - .
where €, is a unit radial vector. If we now calculate the flux of E over a sphere of radius R we

find
?{Ts’-d_s' = fﬁe—;.ads (1.11.13)
S S
- 4:50 /5 R;;Q (7.11.14)
= i, (7.11.15)

where we have used the fact that the infinitesimal area vector on a sphere of radius r is everywhere
radial and has a magnitude 2 sin 6d6d¢ = r2d cos 8d¢ = r2dQ, i.e.,

dS = &' r2d cos 8d¢ (7.11.16)

/dQ=47r. (7.11.17)

-
Observe that the surface integral of E' due to the charge, (g/€0), is independent of the radius of the
sphere. If we increase the radius, the area grows quadratically but the field decays as the inverse
square, exactly compensating. Indeed we will now argue that the answer is insensitive to any change

and that
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of shape of the surface as long as it encloses the origin. Let us go back to Eqn. (7.11.13) but no
longer assume S is a sphere. We find

E.dS = 9 & .38 (7.11.18)
s S4TI'507‘2

= -2 /dQ (7.11.19)
47TE() s

- 4 (7.11.20)
€0

where we have used the fact that & - d3 is the projection of the area vector in the radial direction
(or the projection of the plane of the area in the tangential directions) so that

€ - cﬁ'/r2 =dQ.

Thus the total flux is controlled only by the solid angle enclosed by the surrounding surface and
independent of its detailed shape.

All this sounds very much like Cauchy’s Theorem: there an integral enclosing the pole told
us about the residue of the pole and the answer was independent of the shape of the surrounding
contour; here the surface integral tells us about the charge enclosed and is independent of the
detailed shape of the surface. Even the proof is similar: there we began with a circle centered at
the pole and slowly modified the contour, here we began with a sphere centered on the charge and
slowly deformed it.

What if the surface encloses two charges? The principle of superposition, which is a physical
(and not mathematical) principle based on experiment, tells us that the electric field due to two or
more charges is the sum of the electric fields due to each one. It follows that the same goes for the

. - .
surface integral of E due to a collection of charges. Thus we have the result:

= 7 qi
E .dS = - (7.11.21)
5=8v ey 0

We will now convert this macroscopic relation to a microscopic differential relation as follows. We
express the surface integral on the left hand side in terms of the volume integral of the divergence
using Gauss’s Theorem and write the total charge in the right-hand side as the volume integral of

the charge density to obtain:
V. -Edr= | Ldr (7.1122)
v v €0

Equating the integrands on both sides since the result is true for any volume whatsoever, we
obtain the first Maxwell equation:

V-E =2 (Maxwell )) (7.1123)
€0

This equation tells us that if the electric field has a divergence anywhere it is due to the presence

of charge: every charge is a source of radially outgoing E lines, i.e., a field with a divergence at
the location of the charge. Note that in the radial field of a point charge, the divergence is nonzero
only at the origin: any other surface not enclosing the origin will have as much flux entering it as
leaving it. (What the corresponding statement in the complex plane regarding a pole?)

The integral form of Gauss’s theorem

?{ E.ds= | La3r (7.11.24)
S=8Vv
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is called Gauss’s law in electrodynamics. Together with some symmetry arguments, it can be used
to solve problems that would otherwise be very difficult. Consider first the electric field due to a ball
of charge of radius R and constant charge density p at a distance r > R from the center. Since we
know from Coulomb’s law the field due to a point charge, we can divide the sphere into tiny cubes
each containing charge pdzdydz, find the force due to each cell, and add all the contributions. This
is very hard since each cube is a different distance from the point where we want the field and each
cube contributes a vector that must be added to all the other vectors. Gauss’s law allows to solve
the problem as follows. We first argue that the field must be radial by symmetry: if there is a reason
for it to swerve to one side, there is just as good a reason to swerve to the other, the spherically
symmetric charge distribution allows no room for any kind of preference. Here is another way to
see it. The radially outgoing field distribution has the feature that if I rotate the whole configuration
around the origin, nothing changes. Suppose you came up with a configuration that looked different
after a rotation. We would have a problem, since the charge distribution will look the same after
the rotation and we will have a situation where the same distribution produces two different field
configurations! Continuing, we also know the strength of the field can depend only on r. So we

know E = &7 f(r). Choosing as our surface a sphere of radius r > R, concentric with the charge
distribution, we get

?{ E.d5 = ?{ & f(r) - &:dS (7.11.25)
S=8V S=8Vv
= Adnr?f(r) (7.11.26)
= /ﬁd3r (7.11.27)
v €0
47 R3
= p (7.11.28)
30
from which follows
47rR3p
flr)=—=—, (7.11.29)
Amrieg

which is the field you would get if all the charge in the ball concentrated at the origin. You should
convince yourself that

e The result can be generalized even if p = p(r).

e If p has angular dependence, so will E and given its integral over a sphere, we cannot work
our way to the values at all points on it. Gauss’s law gives us just one equation per surface
and if only one thing is unknown about the field (such as its magnitude at some distance) it
may be determined.

Problem 7.11.2. Consider an infinite wire along the z-axis with charge X per unit length. Give
arguments for why the field will be radially outward and a function only of p, the axial distance to
the wire in cylindrical coordinates. By considering a cylindrical surface of length L, coaxial with
A

. _ _ =
the wire, show that E = € Tvea

Problem 7.11.3. Consider an infinite plane of charge with density o per unit area. By considering
a cylinder that pierces the plane with axis normal to the plane, show that the field is perpendicular
g

to it, has no dependence on distance from the plane and is of magnitude E = g

_
Problem 7.11.4. Consider the radial field E = 4£gr2 . Show that its divergence is zero at any

point other than the origin by using the divergence formula in spherical coordinates. Next calculate
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the surface integral on a sphere of radius r. Argue that if the divergence is zero at the origin as
well Gauss’s Theorem will be violated. Thus the divergence must be given by a function that has
support only at the origin, but have so much punch there that its integral is finite. A function with
this property is called Dirac delta function. It is denoted by the symbol §3(7 — 7g) and it has the
following properties:

8(7—73) = 0for 7T #70 (7.11.30)

/ (T —r)d>r = 1. (7.11.31)
ToEV

Thus 63(7 —7¢) is nonzero only at 7g but so singular there that its volume integral is unity. Express

the divergence of F in this problem in terms of the Dirac delta functions. We shall return to a fuller
study of this function in Chapter 9.

Consider next the magnetic field B. Itisan empirical fact that there are no magnetic charges
producing radial magnetic fields. (How then do we have any magnetic fields? Because moving
electric charges, i.e., currents, can produce a magnetic field. More on this shortly.) The absence of
magnetic charges is expressed by the second Maxwell equation:

V.B =0 (Maxwell Il) (7.11.32)

Now we ask about the magnetic field produced by currents. Consider an infinite wire carrying
a current I up the z-axis. In cylindrical coordinates, we can summarize the experiments by the
equation

B gyl (7.11.33)
2mp

where pg is a constant determined by measuring magnetostatic (time-independent) phenomena. The
line integral of B around a circle of radius p (i.e., ar = €4pdg) centered on the wire and lying in

the z — y plane is given by
27
I
B.dr= polpdd _ 1 (7.11.34)
o 2mp

Notice that the result is independent of the circle radius. Indeed it is independent of the
detailed shape of the contour, as long as it encloses the z-axis.

To see this, first deform the circle as follows (see Fig. 7.11): within an interval d¢, cut out the
arc, pull it radially outward, rescaling it so it subtends the same angle at the center but forms a part
of a circle of radius p’ > p. Thus we first move along the old circle until we come to the modified
sector, go radially outward from p to p,, move along the new radius by d¢, come in radially to
the old radius, and continue as before. This change of contour does not change the line integral
because the newly added radial segments are normal to the field (which is in the angular direction)
while the increased radius on the curved section is exactly offset by the 1/p in the field strength.
Once we can make such a blimp and get away with it, we can do it any number of times and
deform the contour as long as it does not cross the wire.

To see this another way, consider a general closed path lying in the z—y plane and surrounding

the wire. Decompose each segment dr into a radial part €,dp and an angular part e, pd$. Only

the angular part contributes to the line integral with B:

B.dr = Holpdd (7.11.35)
2mp

_  Holdd (7.11.36)
27
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o’

Figure 7.11. Ampere’s Law for one current.

and this is proportional to the angle subtended at the origin. The total line integral is then sensitive
only the fact that the contour surrounds the origin and insensitive to its detailed shape.

If several currents pierce the surface we can use the Principle of Superposition to add their
fields, paying attention to the direction of flow to obtain

?{“ﬁ-d_r’:uozL (7.11.37)

which is called Ampere’s Law.

Problem 7.11.5. Can you find the field at the center of a single loop in the x — y plane carrying a
clockwise current I using the integral theorem above?

N
What if the loop is not planar? We can still break up dr into its components and only the
component along &g will contribute; this contribution will again be proportional to d¢.

Let us now use Stokes’ Theorem on the left-hand side of Eqn. (7.11.37) and write the currents
on the right hand side as the integral of the current density to obtain

/(VX_B’)-E":MO/F’EE'. (7.11.38)
S S

Notice that S is not a unique surface, it is any surface with the loop as its boundary.
Since the surface is arbitrary, we may equate the integrands to obtain

(VxB)=po7. (7.11.39)

This is however not a Maxwell equation since it is incorrect as it stands for situations which are not
static. Consider an ac circuit with a capacitor, as shown in Fig. 7.12.
The current I oscillates with time. So does @, the charge on the capacitor, oscillate as per

I = dQ/dt. Let us consider the line integral of B around a contour C that lies in a plane that
cuts the wire just before it meets one of the capacitor plates. This must equal the surface integral

of Vx B = ,ug7 on any surface with the loop as its boundary. First consider a surface S

on the plane just alluded to. Since the wire passes through it, J is nonzero on this surface and
makes a contribution that equals the line integral. Imagine now pulling the surface out of the plane
(keeping the boundary fixed at the original loop) until it passes between the plates of the capacitor
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) —

S!

Figure 7.12. The displacement current.

and becomes the surface S’. Note that still S’ = C. Now no T passes this surface! Yet the line
integral is the line integral and does not care about what surface you plan to use in Stokes’ Theorem.

. . = =4 red g
It follows that Eqn. (7.11.39) is incomplete, (V x B) must equal pg j plus an additional term

#Ov_’v which kicks in when you cross the region between the capacitor plates. Equation (7.11.39)
has another problem: it violates the continuity equation. If we take the divergence of both sides,
the left vanishes identically, while the right does not. We will first address the latter problem by
enforcing the continuity equation. Let us take the divergence of both sides of

VxB=poj +p. (7.11.40)

The left-hand side vanishes identically so that the right-hand side must satisfy

V. 7+V - W=0 (7.11.41)
But we know
17
v. 7 = —6—? continuity equation (7.11.42)
oV -eoE
= —ZY 207 Maxwell | (7.11.43)
ot
deo E
— O
= -V 7.11.44
ot ( )

Comparing to Eqn. (7.11.41) we learn that the choice

—, 9F
=€
"5t

(7.11.45)

—
N 2 .
respects the continuity equation. The added term W = gg _aaig, is called the displacement current
was put in by hand by Maxwell to arrive the correct equation

-
B
VxB=pj + uoeoaa—t (Maxwell IT). (7.11.46)

While it is necessary that the Maxwell equation respect the continuity equation, we must also
rid
ensure that the displacement current, when integrated over S’ gives the same answer as j when

integrated over S. To verify this you must calculate E between the capacitor plates as a function
of the accumulated charge, relate the latter to the current by the continuity equation. The details
are relegated to the following exercise.
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Problem 7.11.6. Provide the missing steps in this verification. To make life easier, choose S’ so
that it completely encloses the left plate and is planar and parallel to the plates between the plates.

Assume E is perpendicular to the plates in this region and zero outside.
The final Maxwell equation comes from Lenz’s law which states that the line integral of the electric

field (i.e., emf) around any closed loop equals minus the rate of change of the magnetic flux through
it:

1 d —_—
f E-dr:—d— B - dS. (7.11.47)
Cc=08S t /s
Using Stokes’ Theorem on the left hand side, and equating integrands we get
- — 0B
V x B = ——— (Maxwell IV). (7.11.48)

Notice that taking the divergence of both sides, we run into no problems.
Let us now look at the four Maxwell equations:

— — p
. = — Maxwell I, (7.11.49)
€0
_
v-B = 0 Maxwell I, (7.11.50)
—
VxB = pgj +ugsg—8t Maxwell 111, (7.11.51)
8B
VxE = 5 Maxwell IV, (7.11.52)

All of classical electrodynamics is contained in these equations and the Lorentz force law
Egn. (7.11.11). Our main focus has been on the fact that vector calculus is the natural language to
express these equations, just as calculus is the natural language to use to describe Newton’s laws.

Vector calculus also helps us solve these equations. We will look at it at two levels of detail.
First you will be given some instant gratification for plodding through all this vector calculus by
showing how we can unearth a remarkable consequence of Maxwell’s equations. Consider them in
free space, where all charges and currents vanish. Take the curl of the third equation to get

- - — OF
VxVxB = ueV x o (7.11.53)
= — 2—§
V(V-B)-V?B = —ueg 88t2 (7.11.54)
B g 0 (7.11.55)
c _ = o, A1
H0S0 -

where we have recalled Eqn. (7.10.22) and the other Maxwell equations. An identical equation

. -_—
exists for E.

Problem 7.11.7. Derive the corresponding equation for E.
Equation (7.11.55) has the form well-known in classical physics, called the wave equation. For

example if a string of length L, the points in which are labeled by 0 < x < L, vibrates from its
equilibrium position by an amount ¥ (z, t) at time ¢, then v obeys the wave equation

oY _9% _, (7.11.56)
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v being the velocity of propagation. Thus Maxwell was able to deduce that electromagnetic waves
exist in free space and that can travel with a velocity

1

V= . (7.11.57)
VHogo
Great excitement followed when the numbers were put in for 1o and go and one obtained
1
= 2.997925 - 108 n/s (7.11.58)

’U =
v/8.85419 - 10-12 - 47 - 10~ 7

the velocity of light! Thus light and electromagnetic waves were probably the same! (This was
confirmed soon.) This is one of the finest illustrations of how, when we condense our experiments
into equations and go on to solve the latter, some physical predictions emerge from the mathematics.
In other words, once we write down the Maxwell equations, by fiddling with charges and wires etc.,
it is a purely mathematical consequence (of vector calculus, which you have just learned) that there
exist in this theory waves traveling at the speed of light.

We now return for a second look at the solution of Maxwell’s equations to find further ap-
plications of vector calculus. Look at number Il. We know the divergence of the curl is identically
zero. The converse is also true in three dimensional space (with no points excluded etc.): if the

. 3 = . . -
divergence of a field B is zero everywhere, we can find a vector A such that

— P —
B=Vx A. (7.11.59)
In physics literature A is called the vector potential. The above equation has the same content as
Maxwell 1. If we feed this into Maxwell IV, we get
oA
?x(TS’JrE):o. (7.11.60)

Now we use the converse of the other identity, that curl of a gradient is potentials identically zero,
to write
—
0A
E+Z22 - ¢ (7.11.61)
ot
where ¢ is called the scalar potential and the minus sign in the right-hand side is conventional. The
above equation is more commonly written as

-
E=-V¢- 22 (7.11.62)
ot
— —

It is obvious that B and E given by functions of the form Eqn. (7.11.59, 7.11.61) satisfy Maxwell
Il and 1V identically, but the point is that this is the most general solution to these equations. So
the idea is to say the electric and magnetic fields are derivatives of scalar and vector potentials as
prescribed above (which takes care of Maxwell Il and IV) and then go on to determine the potentials

using the other two Maxwell equations.
In looking for the potentials, we must be aware that they are not unique. That is to say, you
can walk into a room and say this or that is the electric or magnetic field at a point (by watching
the response of test charges and invoking the Lorentz force equation) but you cannot say this or that

is the potential. The reason is that if 7 leads to a certain F, 50 does 7 + ?A for any A, since

the curl operation will kill the A term identically. Likewise the scalar potential is also not unique.

In general the electric and magnetic fields in Eqns. (7.11.59,7.11.61) are insensitive to the change
— — —

A — A+ VA (7.11.63)

oA
, - AL
¢ ¢ . (7.11.64)



202 Chapter 7

called a gauge transformation. It is beyond the scope of this book to show that using this freedom,
the potentials can always be chosen (whatever be the fields) to obey the Lorentz gauge condition:

V.- A+ pogo— =0. (7.11.65)
ot
Problem 7.11.8. Show that even with this restriction the potentials are not unique, we can still
perform the gauge transformation with A’s obeying

2

82A
V2A + Hogo o =0 (7.11.66)

Let us now solve Maxwell I and Ill in free space, away from charges. Writing the fields in terms of
the potentials, we get from these two

- = 84
V- (-V¢-——+) = 0 7.11.67
(-¥o- 220 (1167
VxVxA = —(= - — 7.11.68
x V x HOED 6t( Ve o ) ( )
If we now use the Lorentz gauge conditions and recall the identity Eqn. (7.10.22)
VxVxA=V(V-A)-V24 (7.11.69)
we get two beautiful equations for the potentials:
0%¢ 2
“OEOW -V = 0. (7.11.70)
#’A -
poso—5 —V¥A = 0 (7.11.71)

Problem 7.11.9. Derive the equations for the potentials given above.

As stated earlier, the aim of this chapter has not been so much to teach you electrodynamics, as to
show you that the language of vector calculus you are learning here is the one chosen by nature to
express some of her most basic laws.

7.12. Summary

The highlights of this chapter are as follows.

o Know the dot product, its definition in terms of components in an orthonormal
basis and its properties such as linearity. Ditto for the cross product.

o If 7(t) is a function of time then know that

=T at)+ jylt) =er
dr

— = T a(t)+ Ju(t) = eri +rwes,
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which comes from using

—
de,/dt = —feg = —wey,
. . . -— .
Using a similar formula for deg/dt one can get a formula for the acceleration.

o The line integral of a vector field ?(7’) is defined as follows:
2 — — n — —
—/; F(r)-dr:T}Elgo;F(ri)~dri

(where 1 and 2 are short for 77 and 72 respectively) and is found by
parametrizing the path. The answer in general depends on the path and
not just the end points. If the answer is path independent, the field is con-
servative. Equivalently

— —
F -dr=0
for a conservative field.

e The surface integral of a vector field 7(7’) over a surface S is defined as

V.dS=lim Y V(%) ds;,
J 21

1—00

. . . g . .
where the infinitesimal areas dS; have a magnitude equal to size of areas
and direction perpendicular to plane of areas. (The sign is determined by the
sense of arrows running around the edges.)

e The gradient ?(z) enters as follows:

0 0 0 = —
do = —(pdw + —¢dy + —¢dz = V ¢ - dr where
oz oy 0z
vqﬁ = 1 ?

+ +

—0¢  —0¢ ¢
— 4+ j — —, and
ox 0y 0z
dr = T dr + Tdy + * d-.
Since do = V ¢ - dr = |V¢||d_r)| cosf, the gradient gives the direction of
greatest rate of change and equals in magnitude that rate of change.
o The integral of the gradient is path independent:
2
| To-@ = o2) - o1) = olor.

1

where (where 1 and 2 are short for 77 and 73, respectively).



204

Chapter 7

In non-cartesian coordinates

— 1 0¢
v¢ Z hi ou;

Green’s Theorem says if W and the loop C lie in a plane (say the z — y

plane),
f dr =
Cc=85

- . .
W is conservative — (

)da:dy

oW, W,
ox oy

) =0.

The curl is given by

= —  — 0w oW — OW ow — OW oW,

v W — . z _ —y . x . z k,' vy _ Z .
X l(ay 6z)+](8z 6x)+ (61' 6y)

If a field is conservative, its curl vanishes everywhere and vice versa. In
general coordinates the curl has a more complicated expression. Look it up

when needed.
— — — — —
f W-dr:/VxW’~dS
c=88 S

7{ vT/’-cﬁz/ YV - Wdzdydz,
S=90V \4

where V - W = aW’ + 2% aWz is the divergence of w.
ay Oz

Stokes’ Theorem:

Gauss’s Law:

Remember the identities
VxVegp=0
V . V X W =0,
which come from the fact that the boundary of a boundary is zero or that
mixed partial derivatives are independent of the order of differentiation.

The Laplacian V2 is defined as follows:
= <. 0% 0% 0%
ViV gt o T o2
= V2¢.
In general coordinates it has a more complicated expression. Look it up when
needed.



MATRICES AND DETERMINANTS

8.1. Introduction

Consider a family with parents named P; and P, who have very imaginatively
named their two children C; and Cs. Let us say each month the children get an
allowance, also denoted by the symbols C; and C3 which are related to the parents’
income (likewise denoted by P; and P5) as follows:

1 1

= —P;+ =P 8.1.1

C 0Tt ( )

Cy = —1P + 1P (8.1.2)
2 g 1T gt ® o

In other words the father gives %0 of his income to the son and the mother gives %
1

of hers to the son. The daughter similarly receives 5 and % respectively from her
father and mother.

Let us assume that no matter what the incomes of the parents, they will always
contribute these fractions. In that case we would like to store the unchanging

fractions 5, &, 3, & in some form. It is logical to store them in an array or matrix

g

|
—
Ol 5|>—-
[« JERA

] . (8.1.3)

The logic is as follows. The contributions naturally fall into two sets: what the son
gets and what the daughter gets. This makes the two rows. In each row, there are
again two sets: what the father gives and what the mother gives. These make the
two columns. In the general case we can write the parental contributions as

M1y, Mo
M = 8.1.4
[le Moo :| ( )

The matrix element M;; resides in row : and column j and stands for the
contribution to child i from parent j. We can then write in the general case

C1 = MnPi+ Mi2P; (8.1.5)
Co = M21P1+ Ma2Ps. (8.1.6)

205
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Let us generalize this notion of a matrix to an array with m rows and n
columns. A matrix with m rows and n columns will be referred to as an m by n
or m x n matrix. Let us introduce two 2 by ] matrices:

_| &
C = [ P ] (8.1.7)
and
_| £
P= [ Py } (8.1.8)

A matrix with m = n is called a square matrix, a matrix with n = 1 is a called a
column vector, and a matrix with m = 1 is called a row vector. We will be dealing
only with these three types of matrices. In addition, with a few exceptions, the
name matrix will be used to mean a square matrix, while column and row vectors
will be referred to as such.

We next introduce the notion of adding and multiplying matrices. In the world
of pure mathematics one can make up rules as one wants, as long as they are
consistent. However some definitions prove to be more useful than others, as is
true of the ones that follow.

Definition 8.1. [f M and N are two matrices of the same dimensions (same number
of rows and columns) their sum T = M + N has entries T;; = M;; + Nyj.

Definition 8.2. Ifa is a number, a M is defined as a matrix with entries (aM );; =
aM;j.

Definition 8.3. If M is an m by n matrix and N is an n by r matrix, their product
M N is an m by r matrix with entries

(MN)ij = Z M irNrj (8.1.9)

r=1

Whereas the sum is easy to remember, the product takes some practice.

To get the ij matrix element of the product you must take the entries of the
i-th row of the first matrix, interpret them as components of a vector, and take the
dot product with the j-th column of the second matrix, similarly interpreted.

The product is not defined if the number of columns of the first matrix do
not equal the number of rows of the second. Likewise the sum is defined only for
matrices of the same dimension. Here are a few examples.

1 2[4 2 6 8
[3 4”1 3]:[16 ISJ (8.1.10)



Matrices and Determinants 207

11 13 15 1 2 3 10 11 12
17 19 21 | =4 5 6 |+ | 13 14 15 (8.1.11)
23 25 27 7 8 9 16 17 18

HIREA!

where, for example, the number 6 which is in the (1,1) place of the 2 by 2 matrix
in Eqn. (8.1.10) is obtained as follows: 6 = 1-4 + 2- 1. Likewise the 16 in the
(2, 1) place is obtained as 16 = 3 -4 + 4 - 1. You should check the other entries
similarly.

We are now ready to write Eqn. (8.1.6) as a matrix equation:

Ci1 | _ | Mu My Py
BECEaA -

C=MP (8.1.14)

where C, M, and P are matrices whose entries were defined above.

When you first run into the rule for matrix multiplication you might ask how
natural it is, or how anyone would arrive at it. Would it not be more natural
to define the ij element of the product as the product of the :j elements of the
two factors? Such a definition, while allowed, does not have the same range of
applicability as the one quoted above. For example our ability to write the income
relations compactly as C' = M P (Eqn. (8.1.14)) is predicated on using the present
multiplication rule. For another illustration of its virtue, consider the situation where
the parents in our example themselves get all their income from the grandparents
according to

or more compactly as

P =NG (8.1.15)
where G is the (column vector representing the) grandparents’ income and N is
their matrix of contributions. From their income so obtained the parents give to
their children as per the rule C = M P. How do we relate C to G directly? Very
simple:

C = MP (8.1.16)

= MNG. (8.1.17)

where the product M N is evaluated by the rule stated. If we go back to the explicit
form such as Eqn. (8.1.6) and express P;, P, in terms of G , G2 and compared the
relation to C; and Co we will find the result agrees with the above. For example

Ci1 = MnP+ MiaP (8.1.18)

= M11[N11G1 + N12Ga] + M12[N21G1 + N2oGo] (8.1.19)

[M11N11 + M12N21)G1 + [M11N12 + M12N22|G2  (8.1.20)

(]\/IN)11G1—|—(A4N)1202, (8.1.21)
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If we think of the parents’ income as the input and the children’s income as the
output, the matrix M relates the two. As the input changes, that is, as the parents’
income changes the output changes, but the matrix relating the two stays the same.
We also see that the input to this problem, P, can itself be the output of another,
i.e.,, P = NG. In this case matrix multiplication provides the matrix for the direct
conversion for the two-stage problem, in our example from the grandparents to the
children.

Now for yet another example. Consider a point in a plane with coordinates
(x1,z2) with respect to the usual cartesian axes. Suppose we use a different set of
axes, related to the first by a counter-clockwise rotation 6. It is easy to show from
elementary trigonometry that the same point will have coordinates (z},z5) given
by

r] = 1r1c0860 + rosind (8.1.22)

—x18in@ + xo cos (8.1.23)

I

!
T2

which we may write compactly as
X' = RegX (8.1.24)

in obvious notation, where the rotation matrix Rg is

cosf sinf
Ro = [ —sinf cosé ] (8.1.25)

Once again we may think of X and X’ as input and output, related by Rg. The point
of the matrix notation is this: under one and the same physical process, namely the
rotation of axes, each point in the plane gets new coordinates. The matrix Ry does
not care which point you are interested in, it characterizes the rotation once and for
all. Likewise the income the children get varies with the parents’ income, but the
matrix M characterizes, once and for all, the invariant aspect of their contributions.

Instead of saying that the axes were rotated, we could say the vector with
components (z1,z2) was rotated clockwise by 6 into the vector with components
(zll, x;) This is called the active transformation as compared to the above, which
is called the passive transformation. In the active case, the axes are fixed and the
vectors are rotated, while in the passive case the vectors are fixed and the axes are
rotated in the opposite sense.

In either case, consider a sequence of transformation by angles ¢ followed by
¢ generated by matrices Ry and Ry . If X is the final result, it is related to X
by the matrix R = Rg Rg. Now you know that the result should be a rotation by
6 + 6 . You should verify that Rg: Ry indeed equals Rg.¢.

Problem 8.1.1. Verify that Rgr¢: = Re Ryg.
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Let us embed these two examples (income and rotations) in a more general frame-
work. They are both linear transformations: i.e., they involve linear relations
between one set of variables and another. For example the new coordinates are
given as linear combinations of the old ones; there are no higher or lower powers
in sight. Now if a set of variables Z is expressed linearly in terms of a set Y and
the latter itself is now written linearly in terms of a set X, it follows that if we
take the first linear relation and replace every Y there by a linear combination of
X’s, the result will be a linear relation between Z and X. Thus a sequence of
two linear transformations is itself a linear transformation. Now we can assemble
the parameters of each linear transformations in the form of a matrix. The matrix
multiplication rule we use has the property that the matrix corresponding to a
sequence of transformations is given by the product of the matrices corresponding
to the individual transformations.

Problem 8.1.2. Recall from Problem(1.6.4.) in Chapter 1 that the relativistic trans-
Jormation of coordinates when we go from one frame of reference to another is

z’ = xzcoshf —tsinhé (8.1.26)
t' = —zsinh@ +tcoshd, (8.1.27)

where 0 is the rapidity difference between the two frames. Write this in matrix
form. Say we go to a third frame with coordinate x",t", moving with rapidity 6’
with respect to the one with primed coordinates. Show that the matrix relating the
doubly primed coordinates to the unprimed ones corresponds to rapidity 0 + 6.

We now learn some definitions in matrix theory. The zero matrix is like the
number 0: adding it to any matrix makes no difference. We denote it by the symbol
0 and it clearly has all its entries equal to 0:

0 0 0
0 0 0

o=1]: : : = (8.1.28)
00 -+ 0

The unit matrix I is like the number 1: multiplying by I makes no difference:
IM = M for all M. (8.1.29)

Its diagonal elements (I;;) are unity and the rest zero:

I=|: ¢ . (8.1.30)
0 0 0

o
jen)
—
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Problem 8.1.3. Verify that I has the advertised property by using Eqn. (8.1.9).

How about multiplication by the matrix

a 0 - 0
0O a --- 0

al=|: @ 1 |7 (8.1.31)
0O 0 --- a

You may show that this matrix rescales every entry of the matrix it multiplies by

a. We will therefore write al M as simply aM, since this is how we defined
multiplication of a matrix by a number.

Matrix multiplication has a feature that is not shared by ordinary multiplication
of numbers: it is generally noncommutative. This means that in general

MN # NM. (8.1.32)
Take for example the matrix
10
P, = [ 0 0 ] (8.1.33)

which leaves alone the ;- component of the column vector it multiplies and kills

the other component 2 (check this) and the matrix Rg which rotates the vector by
an angle 6. (Since P; projects out the part of the vector in the 1-direction, it is
called the projection operator along direction 1.) First convince yourself (without
actual computation) that the product of these matrices depends on the order of the
factors by considering the fate of a vector with ;7 = 0 and z2 = 1 when these two
matrices multiply it in the two possible orders. Now multiply the matrices in both
orders and note the difference.

Problem 8.1.4. Perform the calculation listed in the preceding discussion involving
Ry and Pl.

Noncommutativity makes it sensible to define the commutator
[M,N]=MN — NM. (8.1.34)

Of course it is possible that in some cases the matrices commute, i.e., their
commutator is zero, as in the case of two rotations Rg and R4 . Do you see why
this is so?

Problem 8.1.5. Show that the unit matrix commutes with all matrices.
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Products of matrices differ from products of ordinary numbers in other remark-
able ways. For example

MN =0 doesnotimply M =0or N =0. (8.1.35)

Problem 8.1.6. Consider as an example the matrices Py and Py which project
out vectors in the 1 and 2 directions, respectively. Convince yourself (without
calculation) that the product of these two will kill any vector. Next write out the
two matrices and show that their product indeed is zero.

Even more bizarre is the case where
M?=0 M #0, (8.1.36)

an example of which is

] , (8.1.37)

O =

Problem 8.1.7. For the pairs M and N given below, find M + N, M?, M N and

[M.N).
12 5 6
iR ERTRE LR

8.2. Matrix Inverses

Consider a linear transformation such as
C=MP 8.2.1)

relating the children’s income to the parents’. Suppose we want to express the
parents’ income in terms of the children’s. If C, M, and P were just ordinary
numbers, we could divide both sides by M and write a formula for P in terms of
C. How are we to do it now? Here is a related problem where the same question
comes up. Say we want to solve a pair of simultaneous equations

4r1 — 3z = 14 (8.2.2)
11—6:02 = -7 (823)
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We can proceed as in our childhood, eliminate say, z5 in favor of 1 by using the
second equation, plug that into the first and find that z; = 5 and z5 = 2. But here
is an alternative using matrices. First we cast the two equations in matrix form as

MX =C (8.2.4)
where
4 -3
M = [ 1 —6 ] (8.2.5)
| | 14
X_[fz] C—[_7] (8.2.6)

The goal here is to find X in Eqn. (8.2.4). Once again if M were a number we
would simply divide both sides by M. We have not however defined what it means
to divide by a matrix. We do so now. Recall that in the case of ordinary numbers
dividing by 4 is the same as multiplying by 1/4, which is the reciprocal or inverse
of 4. The inverse 1/4 has the property that its product with 4 gives the number
1 which is the unique number with the property that multiplying by it makes no
difference. We likewise define M ~1, the inverse of a matrix M, as matrix with
the property

MM =1, (8.2.7)

where I is the unit matrix which leaves all matrices invariant upon matrix multi-
plication.

Postponing for the moment the question of how M ~! is to be found, let us
assume we know it. Then we can solve the simultaneous equations as follows:

MX = C (8.2.8)
M lMx=Ix = M~lc (8.2.9)
X = M~lc. (8.2.10)

Now for the question of how M ~! is to be determined.
Let us start with the 2 x 2 case and then move to bigger things later. I state
that for any 2 x 2 matrix M

1 M -M
-1 _ 22 12
M7= o [ b v ] (8.2.11)

where the determinant of the matrix |M | is given by

M| = M11Maa — M12Mo;. (8.2.12)

4 —31Y —1[7-6 3
[1 _6] :H[—l 4] (8.2.13)

Thus
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and the solution to Eqns. (8.2.2-8.2.3) is

A N E N

Problem 8.2.1. Verify that the inverse given in Eqn. (8.2.11) satisfies M ~*M = I.

Just as the number 0 has no inverse, some matrices will have no inverses. It is clear
from the formula that the inverse matrix will not exist if the determinant vanishes.
You may verify that this is the case for the projection operators.

Problem 8.2.2. Find the inverse of the rotation matrix Rg. Give arguments for
why this had to be the answer. Show that the determinant for the rotation matrix
will never vanish by explicit computation. Argue that this had to be so since every
rotation must have an inverse. What will that inverse do in general?

Theorem 8.1. 4 matrix and its inverse will always commute.

Proof: We first show that just as in the case of numbers, the inverse of the

inverse is the matrix itself:
(M~H=1 =M. (8.2.15)

Let us say (M ~1)~! = G. Then by definition, Eqn. (8.2.7) tells us
GM~t=1. (8.2.16)

Postmultiplying both sides by M and using M ~*M = I, we find that indeed
G = M. Thus
MM=I=MM~' 1 (8.2.17)

Since M ~YM = I we see that the inverse of a matrix undoes whatever the matrix
does. This is why Ry ! = R_,. The reason P; has no inverse is that it kills every
vector that lies along the 2-direction and no finite operator can undo this carnage.

More generally if a matrix kills any nonzero vector, it cannot have an inverse
for exactly this reason. We can see this another way. Suppose a matrix M takes a
vector X to X’. Then its inverse, if it exists, will take X’ back to X in order to
satisfy M !X’ = MM X =1-X = X. Suppose now that M kills a nonzero
vector Y. Then M(X +Y) = MX + MY = MX = X’. Thus both X and
X +Y end up as X'. If there were an M ~! it would not know what to do acting
on X': is it to give X or X + Y? The answer is of course that M ~! does not
exist in this case. Projection operators have no inverses since they kill vectors in
the direction perpendicular to the projection.

Problem 8.2.3. Show by computing a matrix inverse that the solution to
1+ 220 =9 3z1+4x92 =23 (8.2.18)

iSI1=5,.1‘2:2.
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Problem 8.2.4. Find the inverse of Lorentz Transformation matrix from Problem
(8.1.2.) and the rotation matrix Rg. Does the answer make sense? (You must
be on top of the identities for hyperbolic and trigonometric function to do this.
Remember.: when in trouble go back to the definitions in terms of exponentials.)

Problem 8.2.5. Stare at the equations
2r +3y =5
4z + 6y = 10

and argue that a solution cannot be found given this information. Double check
by showing the appropriate determinant vanishes.

Problem 8.2.6. Go back to the income problem and consider the case where each
child receives from each parent the same fraction of the parental income. Thus
if the mother gives 5% to the son and 6% to the daughter so does the father.
Argue that in this case the money received by either child depends only on the
total parental income. Argue on this basis that it must not be possible to find the
individual parental incomes from the children’s incomes. Verify by computing the
appropriate determinant.

Theorem 8.2. The inverse of the product is the product of the inverses in reverse.

(NMY ' =Mm~INTL, (8.2.19)

Proof:
M7INTINM = M7lMm. (8.2.20)
= Im (8.2.21)

Problem 8.2.7. Verify this for a product of three operators.

We now address the question of inverses for bigger matrices. There is a procedure
for that. This however requires some knowledge of determinants of bigger matrices.
To this end we digress to study this subject.

8.3. Determinants

Prior to introducing determinants of larger matrices let us summarize some proper-
ties of the 2 x 2 determinant:

IMN| = |M||N]| (8.3.1)
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MT| = M| (8.3.2)
|Mez| = —[M]| (8.3.3)
[Mg| = a|M| (8.3.4)

where M., is related to M by exchanging any two rows or any two columns,
M, has one of the rows or columns rescaled by a factor a« and M T is the matrix
transpose defined as follows:

Definition 8.4. The transpose of a matrix M, denoted by MT has elements
ME = Mji, (8.3.5)

i.e., the transpose matrix M'T is obtained by exchanging the rows and column of
M.

The last two equations (8.3.3-8.3.4) imply that if two rows or columns of a
matrix are proportional the determinant vanishes. The first implies

1
-1 _
7 = (8.3.6)

Problem 8.3.1. Verify all the above mentioned properties of determinants by ex-
plicit computation on 2 x 2 matrices M and N.

Problem 8.3.2. We saw that |[M| = O if one row is a times another. What does
this mean in the study of simultaneous equations?

We now seek a generalization of the determinant to bigger matrices which has
all the above features.

We will start with the 3 x 3 case which will have the greatest use for you. At
the end the general case will be discussed and it will have no qualitative differences
from this one.

Let

M M2 M3
M = | Mo1 Moy Mo (8.3.7)
M3z Msz Mss.

Definition 8.5. The cofactor matrix Mo has elements

(Mc)i; = (—1)" I determinant of matrix with row i and column j deleted
(8.3.8)

Notice that the cofactor for the 3 x 3 case involves only 2 x 2 determinants which
we know how to evaluate.
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Definition 8.6. The determinant of a 3 x 3 matrix M is
M| = M11(Mg)11 + Mi2(Mc)i2 + M13(Mc)is. (8.3.9)

We will state without proof that this definition preserves the properties of the 2 x 2
determinant that were highlighted. There is one other feature we cannot see in the
2 x 2 case: The 3 x 3 determinant is unchanged by a cyclic permutation of its
rows or its columns. Thus if row 1 goes into row 2 and 2 goes to 3 and 3 goes to
1, nothing happens. Thus is because such a cyclic permutation can be effected by
an even number of row exchanges and this brings about an even number of sign
changes.
Consider as an example of the determinant formula above the case of

a b ¢
A=|d e f (8.3.10)
g h i
In this case
Al = (=Da(ei — fh) + (=1)'*2b(di — fg) + (—1)1T3c(dh — eg).
= a(ei— fh) —b(di — fg) + c(dh — eg). (8.3.11)

So we basically start with a plus sign for the (1. 1) element and alternate the sign
as we go along.

Now it happens that you can also focus on the second row and the write
the determinant as the sum over the product of each entry in that row times the
corresponding cofactor. You can also do it with the entries in a column. But we
will be content with the one method described above. The theory of determinants is
very beautiful and elaborate. We are only interested in them here in order to obtain
inverses. Here is the answer:

MT
- C

M™1l= . (8.3.12)
|M|

Problem 8.3.3. Apply the notion of the cofactor to a 2 x 2 matrix and get back
the definition given in Eqn. (8.2.12). Interpret the determinant of a 1 x 1 matrix
as just the number.)

Problem 8.3.4. Solve the following simultaneous equations by matrix inversion:

3r—y—2 = 2
z—2y—3: =
dr+y+2z = 4
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and
3r+y+22 = 3
2¢ —3y—2z = -2
r+y+z = 1L

Problem 8.3.5. For the matrix

1 2 3
45 6 (8.3.13)
7 8 10

Jind the cofactor matrix and the inverse. Verify that your inverse does the job.

Problem 8.3.6. Show that

2 1 3 1 -2 1
0 1 2 = 2 -5 4
-1 1 1] 1 3 -2
r2 1 377" -4 5 1
4 1 2 = —| 8 -4 -8
0 -1 2] 214 2 o

Problem 8.3.7. Show that the cross product A x B can be formally written as a
determinant as follows:

=

O
AxB=|a, (8.3.14)

Ay A
B, B

<@
N

<
oo
™

I say “formally” since this determinant has vector entries and is itself equal to a
vector and is not a number.
Show likewise that

— — —
N ij Kk
_ 8 ) 9
VxV = % By 5 (8.3.15)
Ve Vy Vi i

Consider the case where A and B have lengths |A| and | B| respectively and
lie in the x-y plane making angles 0 < 04 < 6g < 90°, with respect to the z-axis.
Compute the cross product using the right-hand rule and express the answer terms
of lengths and angles of the vectors. Next write out the cartesian components of the
vectors, evaluate the cross product using Eqn. (8.3.14), and regain the old answer.
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Problem 8.3.8. Show, by referring to Eqn. (8.3.14) that the “box” or scalar triple
product of three vectors can be written as a determinant:

o L Ag Ay A
A (BxC)=|B, B, B, | (8.3.16)
Lo, ¢y C,

By invoking the invariance of the determinant under cyclic change of rows
show that the box or scalar triple product is invariant under the cyclic exchange
of the three vectors. The antisymmetry of the determinant (i.e., its change of sign)
under exchange of rows corresponds to the antisymmetry of the cross product of two
vectors under the exchange. The vanishing of the determinant when two rows are
proportional corresponds to the vanishing of the “box” when two of the adjacent
edges become parallel.

Problem 8.3.9. Consider the passage from cartesian coordinates to some general
nonorthogonal coordinates uw.v,w. What is the Jacobian? Since the coordinates
are not orthogonal, the solid bounded by the surfaces u,v.w and u+du,v+dv,w+
dw does not have perpendicular edges and we cannot write the volume element as
hyhyhydudvdw. But we can use the fact that the box product of three vectors, not
necessarily orthogonal, gives the volume of the rectangular parallelepiped defined
by them. Argue that in this case the infinitesimal solid bounded by the above-
mentioned surfaces has edges given by the infinitesimal vectors:

— (—)327 — 0y —O0z

dr, = — — — | du, 3.17
" _L8u+'78u+ ou “ 8317
— [—~02 —0y —0z

dr, = 7 — e — | d 3.

r -1 30 + 7 ™ + k 81)] v (8.3.18)
—— —Jdzx —0y — 0z

drw = | i —+4 j —+ k — 3.
Tw i ™ + j D + Kk Bur] dw (8.3.19)

By forming the box product show that the Jacobian is

= | 8z/0v  dy/ov  0z/0v (8.3.20)

W dz/dw dy/dw dz/dw

J<l'7y’2) | 9z/0u  Oy/Ou Oz/0u

This means that

/dzdydz ~ /J (xyz ) dudvdw. (8.3.21)

uvw

There is a geometric interpretation of the formula for the matrix inverse which is interesting. Consider
a 3 x 3 matrix whose elements we purposely name as follows:

Az A, A.
M=| B. B, B (83.22)
C. C, C.
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so that each row stands for the components of a vector. These vectors need not be orthogonal or of

. . . . —_— — —
unit length. Let us define their reciprocal vectors A*, B*,C* such that
_— —
A.AF = 1 (8.3.23)
—_— — —_ —
A-B*=A-C* = 0 (8.3.24)

and similarly for the other two. That is, each reciprocal vector has unit dot product with its counter-
part in the original set and is perpendicular to the other two. Suppose we have a means of generating
these vectors. Then the problem of inverting matrix M is done: M1 is given by a matrix whose
columns contain the reciprocal vectors. Indeed

Ty O

Az Ay A Ax B: C: A -i A 'B_> A c;
B, By B. Ay By C; = B.-A* B-B* B.C* [8325)
= I (8.3.26)

—

Let us now determine the reciprocal vectors and complete the problem. Consider A*. It has to be
— — —

normal to B and C'. So we will choose it proportional to B X T As for the actual scale of the

vector, we choose it so that its dot product with A s unity. The answer is clearly

- X B: 6_) (8.3.27)
A-(BxC)
- BxC (8.3.28)
M|

If we put the components of this vector in the first column of a matrix, we see that it agrees exactly
with the first column of the inverse given by Eqn. (8.3.12). The other two columns follow analogously.
(We must remember the invariance of the box product under cyclic permutations.)

How about higher order determinants and inverses of larger square matrices?
The rules for both are exactly as in Eqn. (8.3.8) and Eqn. (8.3.12). Notice that the
N x N determinant is defined in terms of cofactors that involve (N — 1) x (N — 1)
determinants and these in turn are defined in terms of (N —2)x (N —2) determinants,
and so on. Thus if you know how to evaluate a 2 x 2 determinant, you can evaluate
anything bigger.

8.4. Transformations on Matrices and Special Matrices

We will now learn about some additional transformations one can perform on a
matrix and special matrices that respond to these in a simple way.

Let us begin with the notion of a transpose that was discussed earlier. For any
matrix M, the transpose is defined by

(MT)i5 = My, (8.4.1)
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which just means that M 7 is obtained from M by exchanging the rows and columns,
i.e., by writing down the first row of M in the first column of M T and so on. In
general then this process will affect the matrix. If however a matrix satisfies

Mz'j = :I:Mji, (842)

i.e., it equals £ its own transpose it is said to be symmetric/antisymmetric. You can
tell a symmetric matrix by inspection: its elements will be symmetric with respect
to the diagonal. Here is an example

1 2 3
M=12 45 |=MT (8.4.3)
3 5 6

Problem 8.4.1. Show that the diagonal entries of an antisymmetric matrix vanish.
Construct a 4 x 4 example.

The product of two symmetric matrices need not be symmetric. This is because
(MNYT = NTMT (8.4.4)

just like in the case of the inverse of a product. Consequently even if M = M T
and N = NT, (MN)T # M N unless the matrices commute.

We will now verify Eqn. (8.4.4) since the manipulations involved will be useful
to you later.

(MN); = (MN)j; by definition (8.4.5)
= ZMjkaz' (8.4.6)

k
= Y MGNG (8.4.7)

k
= D NIME (8.4.8)

k
= (NTMT);; so that (8.4.9)
(MN)T = NTMT. (8.4.10)

We next define M1, the adjoint of a matrix as follows:

M;rj =M}, (8.4.11)
which means that the adjoint of a matrix is obtained by transposing the given
matrix and taking the complex conjugate of all the elements. One frequently calls
M1 as “M-dagger” and taking the adjoint of M as “taking the dagger of M.”

A matrix that obeys
Mt =+M (8.4.12)
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is said to be hermitian/antihermitian. We shall focus on the former. First note that
any real symmetric matrix is automatically hermitian also since there is nothing to
conjugate. Here is a complex example:

M= [ b ] (8.4.13)

This matrix is not symmetric but it is hermitian: the sign difference between the
off-diagonal imaginary elements is exactly offset when we follow the transposition
by complex conjugation.

Problem 8.4.2. Prove that if M is hermitian
My =M (8.4.14)
i.e., that the diagonal elements of a hermitian matrix are real. Show that (M is
antihermitian.
Problem 8.4.3. Show that
(MNY =nNTMt (8.4.15)

Consequently the product of two hermitian matrices is not generally hermitian
unless they commute.

Next we define a unitary matrix as one whose adjoint equals its inverse

vut = 1=vty (8.4.16)
vt = yt (8.4.17)
For example
1 [1 4
ﬁ[l 1] (8.4.18)

is unitary.
Problem 8.4.4. Verify this.
Problem 8.4.5. Show that the following matrix U is unitary. Argue that the deter-

minant of a unitary matrix must be a unimodular complex number. What is it for
this example?

1+iv3 \/5(\1/4_—1')
4 22
_ VB(1+9) i+v3 : (8.4.19)
2v2 4
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If the matrix happens to be real, there is nothing to conjugate and we define an
orthogonal matrix as one which obeys
ooT = 1=0%0 (8.4.20)
ol = o7 (8.4.21)

The rotation matrix Ry is an example.
Problem 8.4.6. Verify that the rotation matrix Rg is orthogonal.

The above equation means the following: the rows of an N x N orthogonal ma-
trix constitute the components of N orthonormal vectors. The same goes for the
columns.

Problem 8.4.7. Verify this assertion by writing out Eqn. (8.4.20) in some detall,
using the notation for matrix elements we used in Eqn. (8.3.22).

We will mainly discuss just unitary matrices since orthogonal matrices are a
special (real) case.

The product of two unitary matrices is unitary.

The reason is as follows. Let U; and Us be unitary. Then

U1U2'(UlU2)Jr =U1U2-(U2TU1T) =U1U1Jr = (8.4.22)

showing that U1 Us is unitary.
Since we have run across a whole zoo of matrices, here is a summary:

Matrix Elements Remarks

M M;; Generic matrix

MT | ME =M | MT = M — Symmetric/Antisymmetric
0T = 0~! — Orthogonal
Mt | M ); =M | M t = £M — Hermitian/Antihermitian

vt =v-! = Unitary

Functions of matrices
Now that we know how to multiply matrices, we can take any power of a matrix and hence define
functions of a matrix. The simplest example are polynomials such as

F(M)=M*+5M". (8.4.23)

More fancy examples are obtained by taking infinite series. A very common series is defined by

o0 Mn
eM = —. (8.4.24)
n:
0
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Of course the sum has no meaning if it does not converge. The convergence of the matrix series
means that each matrix element of the infinite sum of matrices converges to a limit. The following
simple example should illustrate how this works in a special case you can handle right now. We
will not discuss the general theory of convergence of matrix functions in any detail.

Problem 8.4.8. Show that if

L = [ ? _01 } then (8.4.25)
L} = I (8.4.26)
Now consider
F(L) = L (8.4.27)
and show by writing out the series and using L?> = —~1, that the series converges to a familiar matrix

discussed earlier in the chapter.

The exponential of a single matrix behaves pretty much like the exponential of an ordinary
number since the key difference—noncommutativity—does not show up with just one matrix, since
any matrix commutes with any power of itself. Thus for example

fLedLl _ o(0+0)L (8.4.28)

whereas in general
Ol e®M o fL+oM (8.4.29)

for noncommuting matrices.

Problem 8.4.9. Take the L given in Problem (8.4.8.) and M a matrix with 1 and —1 along the
diagonal. Show that they do not commute. Expand the exponentials in both sides of Eqn. (8.4.29) to
second order in the angles 6 and ¢ and verify that exponents do not simply add beyond first order.

Show to second order that .
e&Leq)M — 6(0L+¢1W+§9¢[L,M]) (8.4.30)

Problem 8.4.10. Show that if H is hermitian,
U=eH (8.4.31)

is unitary. (Write the exponential as a series and take the adjoint of each term in the sum and
re-exponentiate. Use the fact that exponents can be combined if only one matrix is in the picture.)

8.4.1. Action on row vectors
We have so far treated matrices as machines that convert column vectors placed to
their right into new column vectors as the case of the income problem

C=MP (8.4.32)

where the matrix M converts the column vector representing the parental income
P to the column vector representing the children’s income C'.
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But a matrix can also multiply a row vector R placed to its /eft and yield a
new row vector R’:

/ / N N
[Ry Ry ] = [R1 R2] [ N;i N;z ] or (8.4.33)

R' = RN. (8.4.34)

Returning to the income problem you will agree that we could just as well
store the two incomes as row vectors. The rows would be the transposes of the
columns. Thus the children’s income would be represented by

cf=[c1 ;] (8.4.35)

and similarly
PT=[P P ] (8.4.36)

would represent that of the parents. Question: what matrix acting to the left, would
convert CT to PT? The answer is found by taking the transpose of both sides
of Eqn. (8.4.32). The rule that the transpose of the product is the product of the
transpose in reverse holds even if some of the matrices are vectors if we remember
that the transpose of a column vector is a row vector and vice versa.

Problem 8.4.11. Verify by explicit matrix multiplication that the rule holds for a
product of a square matrix and a column vector.

Thus we find
cT=pTyT, (8.4.37)

that is to say, if M converts the parental column to the children’s column by acting
to the right, MT converts the parent’s row to the children’s row by acting to the

left.

Problem 8.4.12. By writing out the matrix elements explicitly verify that the above
equation correctly represents the income flows.

More generally if we associate with each column vector a row vector obtained by
transposition and vice versa, any relation involving vectors and matrices will imply
another one where

o All matrices are replaced by their transposes.
o All factors are written in reverse order.

For example if
C=MNP+V (8.4.38)

is a relation between matrices M, N and column vectors C, P, V, then it is also
true that
cT=PT'NTMT 4+ VT, (8.4.39)
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Consider finally column vectors with complex entries. We define their adjoints to
be row vectors obtained by transposition and complex conjugation. Then we assert
that any relation involving them and complex matrices implies another one where

o All matrices are replaced by their adjoints.
o All factors are written in reverse order.

For example if
C=MNP+V (8.4.40)

is a relation between matrices M, N and column vectors C. P,V then it is also
true that
ct=pPiINTMt LV (8.4.41)

where CT and P are now vectors obtained by transposing and conjugating the
columns C' and P. We say that we have gone from one equation to its adjoint by
“taking the adjoint.”

Recall that every complex equation implies another obtained by complex con-
jugation of both sides. The adjoint operation is the matrix generalization of that.
In fact taking the adjoint is very similar to complex conjugation as the following
discussion will show.

Recall that every complex number can be written as z = = + iy, where z and
y are real. In other words

z+4z* + z—2z*
2 2
where the first number is invariant under complex conjugation, i.e., real; and the

second changes sign under complex conjugation, i.e., is pure imaginary.
Likewise for any matrix

(8.4.42)

z =

M+MY M- MT
M= (8.4.43)
2 2
where the first term in the right-hand side is hermitian (invariant under the dagger
operation) and the second is antihermitian, i.e., changes sign under the dagger. We

can also write the above equation as

oz MMM __MT (8.4.44)
2 2i
so that it resembles z = z + iy. Now the coefficient of ; is hermitian.
Continuing the analogy recall that if 6 is real, e* is unimodular, i.e., the
number times its conjugate is unity. In the matrix case we saw that ' is unitary
(matrix times the adjoint is the unit matrix) if A is hermitian.

Problem 8.4.13. Show that if H is hermitian, so is UTHU, where U is unitary.
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Problem 8.4.14. Show that the determinant of a unitary matrix is unimodular.
Show that the determinant of an orthogonal matrix is £1.

Problem 8.4.15. Show that if M N = 0, one of them must have zero determinant.

Problem 8.4.16. (Very Important). Say hello to the Pauli matrices

azz[? H ay:[? ’OZ] azz[(l) _01] (8.4.45)

which you will see on numerous occasions. (The subscripts 1, 2, and 3 are some-
times used instead of z, y, and z.)
Show that they are hermitian. Show that their square equals the unit matrix. Show
that as a result of these two features they must also be unitary. Verify explicitly.
Show that

[0z 0y = 2ic, et cycl. (8.4.46)

Show that any two of them anticommute, i.e., the anticommutator
[M,N], = MN +NM (8.4.47)
vanishes. Show that as a result
Oz0y = i0,. (8.4.48)

Find the determinants and the inverses of the three matrices by any method you
want. If you can avoid a calculation, that is fine.

Problem 8.4.17. Show that

—

@ @)@ b= bl+ic (T x b

). (8.4.49)
where @ and b are ordinary three dimensional vectors and
= jo0z+ joy+ ko, (8.4.50)
Problem 8.4.18. Using the above result for the case a = ? show that

.7

e'® 7 —cosal +isina 4 -0 (8.4.51)

where a is the length of @ and & = 7 /a.
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Definition 8.7. The trace of a matrix M, denoted by Tr M stands for the sum of

all the diagonal elements:

TTM = Z]Wii.
1
Problem 8.4.19. Skow that
TrTMN = TrNM
TrABC = TrBCA=TrCAB.
TrU'MU = TrM ifU is unitary.

Problem 8.4.20. Consider four Dirac matrices that obey
MM+ M;M; = 26;;1
where the Kronecker delta symbol is defined as follows:

bij=1ifi=j, 0ifi#j.

(8.4.52)

(8.4.53)
(8.4.54)
(8.4.55)

(8.4.56)

(8.4.57)

Thus the square of each Dirac matrix is the unit matrix and any two distinct
Dirac matrices anticommute. Using the latter property show that the matrices are

traceless. (Use Eqn. (8.4.54).)

8.5. Summary

The main points from this chapter are as follows.
e Know that the entry M;; sits at row ¢ and column j.

(M + N)i]‘ = M;; + Nyj
(MN)y =Y MiNy;.
k
ME = My
is the transpose, while
.Mj]- = ]\/[]’4';-

is the adjoint.
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Know that the unit matrix I, has 1’s along the diagonal and 0’s elsewhere
and obeys IM = M for all M. The zero matrix has 0’s everywhere.
The commutator is defined to be

[M,N]=MN — NM.

The matrix M ¢, the cofactor, has as its 75 entry, (—1)*7 times the determi-
nant of the matrix obtained by deleting row 7 and column j from of A .
The determinant for a 2 x 2 matrix is

|M| =M1 Moz — MiaMp.

Know its extension to 3 x 3 and bigger matrices in terms of cofactors. Know
that [M N| = |M||N|, |M| = |[MT| and that |M| changes sign when two
rows or columns are exchanged and vanishes if two rows or columns are
proportional.

The inverse defined by M M ~! = M ~'M = I is given by

o ME
|M|

where M is the transpose of the cofactor.

A matrix is symmetric if MT = M, hermitian if M t=m , and unitary if
Mt =nm-1

The transpose, adjoint, or inverse of a product is the product of the transposes,
inverses, or adjoints in reverse. Thus for example (M N)T = NTMm 7.

The trace of a matrix is the sum of it diagonal entries
TrM = Z Mii~
i
The trace of a product is invariant under cyclic permutation of the factors:
Tr(ABC) =Tr(BCA) =Tr(CAB).

Note also that TrUTMU = Tr M for U a unitary matrix.



LINEAR VECTOR SPACES

9.1. Linear Vector Spaces: Basics

In this section you will be introduced to linear vector spaces. The general strategy
is this. It is assumed you are familiar with the arrows from elementary physics
encoding the magnitude and direction of velocity, force, displacement, torque, etc.,
and know how to add them and multiply them by scalars and the rules obeyed by
these operations. For example you know that scalar multiplication is distributive:
the multiple of a sum of two vectors is the sum of the multiples. We want to
abstract from this simple case a set of basic features or axioms and say that any
set of objects obeying the same, forms a linear vector space. The cleverness lies
in deciding which of the properties to keep in the generalization. If you keep too
many, there will be no other examples and if you keep too few, there will be no
interesting results to develop from the axioms.

The point of this generalization is that any result we can prove starting from
the axioms of a vector space apply uniformly to all cases of it. For example, we
know in elementary vector analysis that any vector can be expressed as a linear

combination of the unit vectors 7 . 7, and k. You may have also heard that it
is possible to express any periodic function as a sum over sines and cosines, i.e.,
as a Fourier series. These two ideas will be seen to be one and the same if viewed
from the point of vector spaces. Or consider the rather obvious result that the dot
product of any two vectors cannot exceed the product of the lengths of the vectors.
In the language of vector spaces, this result is no different from the relation

[/f(r)g(x)dxr < [/f(x)zd;r] [/g(m)zd:r] 9.1.1)

where f and g are some real function defined in some interval. This not-so-obvious
relation is important, and is used to prove the famous Uncertainty Relations of
Heisenberg.

The following is the list of properties the mathematicians have wisely chiosen
as requisite for a vector space. As you read them please compare them to the world

229
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of arrows and make sure that these are indeed properties possessed by these familiar
vectors. (To help you along, the corresponding statements for arrows are briefly
given after the axioms.)

Definition 9.1. A4 linear vector space V is a collection of objects |1), [2), ... |V)
... |[W) ... called vectors, (arrows) for which there exists

(i) a definite rule for forming the vector sum, denoted |V') + |W ), (place the tail
of one on the tip of the other...)

(ii) a definite rule for multiplication by scalars a.b..., denoted a|V') (rescale or
stretch the vector by the scalar factor)

with the following features.

A-I The result of these operations is another element of the space, a
Sfeature called closure: |V) + |W) € V. (sum of two arrows is an
arrow)

A-II Scalar multiplication is distributive in the vectors: a(|[V)+|W))} =
a|V) + a|W). (rescaling the sum of arrows is same as summing
rescaled arrows)

A-III Scalar multiplication is distributive in the scalars: (a + b)|V) =
alV) + b|V). (obvious)

A-IV Scalar multiplication is associative: a(b|V)) = ab|V).(obvious)

A-V Addition is commutative: |V) 4+ [W) = |W) + |V). ( sum of two
arrows is independent of order, i.e., we can place the tail of the
second on the tip of the first or the other way around)

A-VI Addition is associative: |V)+ (|[W)+|2Z)) = (|[V)+|W)) +|Z).
(when adding three arrows, we can add the first two and then the
third or add the first to the sum of the second and third)

A-VII There exist a null vector |0} obeying |[V) + |0) = |V'). (arrow of
zero length)

A-VIII For every vector |V') there exists an inverse under addition, |—V')
such that |V) +| — V) = |0). (inverse is the arrow reversed in
direction)

There is a good way to remember all of these: do what comes naturally.

Note that conspicuously missing above are the requirements that every vector
must have a magnitude and direction, which was the first and most salient feature
drilled into our heads when we first heard about them! So you might think that in
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dropping this requirement the baby is thrown out with the bath water. But you will
have ample time to appreciate the wisdom behind this choice as you go along and
see a great unification and synthesis of diverse ideas under the heading of vector
spaces. You will see examples of vector spaces that involve entities that you cannot
intuitively perceive as having either a magnitude or a direction! While you should
be duly impressed with all this, remember that it does not at all hurt to think of
these generalizations in terms of arrows and to use your intuition to prove theorems
or, at the very least, anticipate them.

Definition 9.2. The set of numbers a, b, . .. used in scalar multiplication of vectors
is called the field over which the vector space is defined.

If the field consists of all real numbers, we have a real vector space, if they are
complex, we have a complex vector space. The vectors themselves are neither real
nor complex; the adjective applies only to the scalars. The usual space of arrows
is a real vector space since we cannot interpret rescaling by a complex number as
a stretching process.

Observe that we are using a new symbol |V') to denote a generic vector. This
object is called ket ¥ and this nomenclature is due to Dirac whose notation will be

discussed at some length later. We purposely do not use the symbol V to denote
the vectors as the first step in weaning you away from the limited concept of the
vector as an arrow. You are however not discouraged from associating with |V') an
arrow-like object until you have seen enough vectors that are not arrows and are
ready to drop the crutch. When discussing the space of arrows in this notation I

may refer to the unit vectors 7 7, and k as [1), ]2), and |3) respectively. The

vector V =37 + 477 will be referred to as |V) = 3|1) + 4]2) and so on.

The set of all arrows, which inspired the idea of a vector space, of course
qualifies as a vector space. But we cannot tamper with it. For example the set of
all arrows with positive z-components do not form a vector space: for one thing,
there is no inverse.

We return to the fact that the axioms make no reference to magnitude or
direction. The point is that while the arrows have these qualities, members of a
vector space need not. Now this statement is empty unless I can give you examples.
Here are two.

Consider the set of all 2 x 2 matrices. We know how to add them and multiply
them by scalars (multiply all four matrix elements by that scalar). The corresponding
rules obey closure, associativity and distributive requirements. The null matrix
has all zeros in it and the inverse under addition of a matrix is the matrix with
all elements negated. You must agree that here we have a genuine vector space
consisting of things which don’t have an obvious length or direction associated with
them. When we want to highlight the fact that the matrix M is an element of a
vector space, we may want to refer to it as, say, ket number 4 or: |4).
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Problem 9.1.1. Do all hermitian 2 x 2 matrices form a vector space under ad-
dition? Is there a requirement on the scalars that multiply them? How about all
unitary matrices for any choice of scalars? How about 2 x 2 matrices with integer
coefficients? Is there a restriction on the scalars multiplying them?

As a second example consider all functions f(z) defined in an interval 0 <
z < L. We define scalar multiplication by a simply as af(z) and addition as
pointwise addition: the sum of two functions f and ¢ has the value f(z) + g(z) at
the point z. The null function is zero everywhere and the additive inverse of f is

—f.

Problem 9.1.2. Do functions that vanish at the end points ¢ = 0 and x = L form
a vector space? How about periodic functions obeying f(0) = f(L)? How about
functions that obey f(0) = 4? If the functions do not qualify, list the things that
g0 wrong.

Let us note that the axioms imply
e |0) is unique, i.e., if |0') has all the properties of |0), then |0) = |0').
e O]V) =|0).
o | —V)=—|V).
e | — V) is the unique additive inverse of |V').

The proofs are left to the following exercise. You don’t have to know the proofs,
but do have to know the statements.

Problem 9.1.3. Verify these claims. For the first consider |0) + |0') and use the
advertised properties of the two null vectors in turn. For the second start with
[0) = (0+ D)|V) + | — V). For the third, begin with |V) + (—|V)) = 0|V) = |0).
For the last, let |W) also satisfy |V) + |W) = |0). Since |0) is unique, this means
[V)+ W) =|V)+ |- V). Take it from here.

Problem 9.1.4. Consider the set of all entities of the form (a.b. c) where the entries
are real numbers. Addition and scalar multiplication are defined as follows:
(ayb.c)+ (die,f)=(a+d,b+e.c+ f)
ala,b,c) = (aa, ab, ac).

Write down the null vector and inverse of (a,b,c). Show that vectors of the form
(a,b, 1) do not form a vector space.
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Linear independence
The next concept in vector spaces is that of /inear independence of a set of vectors
[1),]2)...|n). Let us work our way to this through some examples involving
arrows. Consider first vectors |1),|2), ... that lie along the z-axis. It is evident that
given any two of them, |1) and |2), we can write one as a (positive or negative)
multiple of the other:

[1) = al2). 9.1.2)
Equivalently we can form a linear combination of them which vanishes
[1) — a|2) = 0. 9.1.3)

Notice that on the right-hand side I have used 0 in place of |0). This is strictly
speaking incorrect since a set of vectors can only add up to a vector and not a
number. It is however common to represent the null vector by 0.

If we take two or more colinear vectors, it is clear that

e we can write any one of them as a linear combination of the others,

e or equivalently, that we can form a nontrivial linear combination (with not
all coefficients equal to zero) that gives the null vector.

We summarize all this by saying that a set of two or more colinear vectors is /inearly
dependent.

Next we consider arrows in a plane. Say we take any two nonparallel vectors
[1) and |2). Now it is not possible to write one in terms of the other, or equivalently,
to form a (nontrivial) linear combination of the two which adds up to the null vector.
We say the two vectors are now linearly independent. Suppose we now bring in
a third vector |3). If it is parallel to either one, it can clearly be written as a
combination of the other two (namely as a multiple of the one it is parallel to) or
equivalently, we can form a linear combination of the three vectors that adds up
to zero. (This combination will involve just the two parallel vectors, but is still
nontrivial since not all coefficients in the linear combination vanish.) Thus this
triplet of vectors, in which the third is parallel to one of the first two, is linearly
dependent. It turns out that the triplet of vectors is linearly dependent even if the
third is not parallel to either of the first two. This is because we can write one of
them, say |3), as a linear combination of the other two. To find the combination,
draw a line from the tail of |3) in the direction of |1) as in Fig. 9.1. Next draw
a line antiparallel to |2) from the tip of |3). These lines will necessarily intersect
since |1) and |2) are not parallel by assumption. The intersection point P will
determine how much of |1) and |2) we want: we go from the tail of |3) to P using
the appropriate multiple of |1) and go from P to the tip of |3) using the appropriate
multiple of |2). Thus any three vectors in a plane are linearly dependent.



234 Chapter 9

1>
Figure 9.1. Linear dependence of three coplanar vectors.

We are now ready to extend this notion to a general vector space. Consider a

linear relation of the form "

> aili) =10). 9.1.4)
=1
We may assume without loss of generality that the left-hand side does not
contain any multiple of |0), for if it did, it could be shifted to the right, and
combined with the |0) there to give |0) once more. (We are using the fact that any
multiple of |0) equals |0).)

Definition 9.3. A4 set of vectors is said to be linearly independent if the only such
linear relation as Eqn. (9.1.4) is the trivial one with all a; = 0. If the set of vectors
is not linearly independent, we say they are linearly dependent.

Equation (9.1.4) tells us that it is not possible to linearly combine members
of a linearly independent set to get the null vector except for the trivial case where
we take zero times each vector. On the other hand if the set of vectors is linearly
dependent, such a nontrivial relation will exist, and it must contain at least two
nonzero coefficients (why?). Let us say ag # 0. Then we could write

n

3= 3 = (9.1.5)

a
=1, #3 3

thereby expressing |3) in terms of the others. In other words, if a set of vectors is
linearly dependent, we can express at least one of them as a linear combination of
the others.

Problem 9.1.5. Consider three elements from the vector space of real 2 x 2 ma-

trices: ) ) )
m=[0 3] m=[4 1] w=[3 3]
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Are they linearly independent? Support your answer with details. (Notice we
are calling these matrices vectors and using kets to represent them to emphasize
their role as elements of a vector space.)

Problem 9.1.6. Show that the following row vectors are linearly dependent:
(1,1,0), (1,0,1), and (3,2,1). Show the opposite for (1,1,0), (1,0,1), and (0,1,1).

Definition 9.4. A vector space has dimension n if it can accommodate a maximum
of n linearly independent vectors. It will be denoted by V"(R) if the field is real
and by V™(C) if the field is complex.

In view of the earlier discussions, the plane is two dimensional and the set of
all arrows not limited to the plane define a three dimensional vector space. How
about 2 x 2 matrices? They form a four-dimensional vector space. Here is a proof.
The following vectors are linearly independent:

|1>=[5 8] |2>=[8 é] |3>=[‘1) 8] |4>=[8 ‘1’]

since it is impossible to form linear combinations of any three of them to give the
fourth, since any three of them will have a zero in the one place where the fourth
does not. So the space it at least four dimensional. Could it be bigger? No, since
any arbitrary 2 x 2 matrix can be written in terms of them:

[ Z Z } = all) + b[2) +¢[3) + d[4).

If the scalars a, b, ¢, d are real, we have a real four-dimensional space, if they
are complex we have a complex four-dimensional space.

Theorem 9.1. Any vector |V) in an n-dimensional space can be written as a
linearly combination of n linearly independent vectors |1) ... |n).

Proof: If there were a vector |[V') for which this were not possible, it would
join the given set of vectors and form a set of n + 1 linearly independent vectors,
which is not possible in an n-dimensional space by definition. l

Definition 9.5. A4 set of n linearly independent vectors in an n-dimensional space
is called a basis.

Thus we can write, on the strength of the above, that for any |V') belonging

to the vector space
n

V) =" wili) (9.1.6)
1=1

where the vectors |i) form a basis.



236 Chapter 9

Definition 9.6. The coefficients of expansion v; of a vector in terms of a linearly
independent basis (|i)) are called the components of the vector in that basis.

Theorem 9.2. The expansion in Egn. (9.1.6) is unique.

Proof: Suppose the expansion is not unique. We must then have a second

expansion:
n

V) =" vili). 9.1.7)
i=1
Subtracting Eqn. (9.1.7) from Eqn. (9.1.6) (i.e., multiplying the second by the
scalar —1 and adding the two equations) we get

[0) = Z(vi — v))li) (9.1.8)

which implies that
9.1.9)

/
Vi = U,

since the basis vectors are linearly independent and only a trivial linear relation
between them can exist. l

Note that given a basis, the components are unique, but if we change the basis,
the components will change. We refer to |V') as the vector in the abstract, having an
existence of its own and satisfying various relations involving other vectors. When
we choose a basis the vectors assume concrete forms in terms of their components
and the relation between vectors is satisfied by the components. Imagine for example

—_— = — — — —
three arrows in the plane, A, B, C satisfying A + B = C according to the laws
for adding arrows. So far no basis has been chosen and we do not need a basis
to make the statement that the vectors form a triangle. Now we choose a basis
and write each vector in terms of the components. The components will satisfy
C; = A;+ B, i = 1,2. If we choose a different basis, the components will change

in numerical value, but the relation between them expressing the equality of C to
the sum of the other two will still hold between the new components.

In the case of nonarrow vectors, adding them in terms of components proceeds
as in the elementary case thanks to the axioms. If

\%) va) and (9.1.10)

W)

)
Zwm) then (9.1.11)

V) + W) = > (vi +wi)li), (9.1.12)

1
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where we have used the axioms to carry out the regrouping of terms. Here is the
conclusion:

To add two vectors, add their components.

There is no reference to taking the tail of one and putting it on the tip of the
other, etc., since in general the vectors have no head or tail. Of course if we are
dealing with arrows, we can add them either using the tail and tip routine or by
simply adding their components in a basis.

In the same way, we have:

alV)=a) wili) = avili). (9.1.13)

2 (3

In other words

To multiply a vector by a scalar, multiply all its components by the scalar.

9.2. Inner Product Spaces

The matrix and function examples must have convinced you that we can have a
vector space with no preassigned definition of length or direction for the elements.
However we can make up quantities that have the same properties that the lengths
and angles do in the case of arrows. The first step is to define a sensible analog of
the dot product. Now you might rightfully object that the dot product

V.W =|V||W|cosé (9.2.1)

is itself defined in terms of lengths and angles and we seem to be going around in
circles. But recall that there is another expression for it

VoW = VeWa + VW, + VW, 92.2)

involving just the components. Since we have already defined the notion of compo-
nents of a vector for general vector space, this will be our starting point for gener-
alization. However, we must first fully understand how one goes from Eqn. (9.2.1)
to Eqn. (9.2.2).

Consider two vectors (arrows) in the plane

—

= n 1l +v2 (9.2.3)
W = w1 +v2, (9.2.4)
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where T and 2 are any two linearly independent basis vectors. What is their dot
product in terms of their components, given just definition Eqn. (9.2.1)? We start
by writing

V-W=(11+v22) (w1 L +ws2) (9.2.5)

and ask if we can open up the brackets naively. The answer is yes and it is because
the definition, Eqn. (9.2.1), satisfies the following three axioms:

BiA - B=B A (symmetry)

BiiA-A >0 A-A =0 ifandonlyif 4 = 0 (positive
semidefiniteness)

Biii A-(bB +¢C)=bA-B +cA - C (linearity)

Convince yourselves that this is indeed the case. (The middle axiom will not be
invoked in this discussion and is given for completeness.)

Armed with this result we expand brackeis in Eqn. (9.2.5) as follows. First,
we know from the linearity axiom (B-iii) that the dot product is linear in the second
vector of the dot product. Thus

—

\% ~V7:(v1T+v27)-w1T+(v1T +v2§))~w25" (926)

How do we open up the bracket in the first factor of the dot product? We use

. . —_ and
axiom (B-i1), which says A - B = B - A ; reverse the order of factors, and then
use linearity to obtain

— —

— — — = [ — —_ =
V - W=ww1l- -1+wwval - -2 +wev1 2 -1 +wave2 2. (9.2.7)

At this stage we find that to go any further, we need the dot products of the basis
vectors. All we know is that they are a linearly independent (non-parallel, in this
case) basis. Thus the dot product V -W will involve not only the components of Vv
and VT}, but also four non-zero dot products of the basis vectors among themselves.

We do not usually see this aspect because we use the freedom to trade the given
linearly independent basis for another (by forming suitable linear combinations) in

which the basis vectors e;, [i = 1,2] obey

e . el = L fori=j 8is
€% =0 for i £ j KA

. . — — .
The &; could be the familiar unit vectors i and ;j or any rotated version of these.
Assume from now on that we are working with such a basis, called an orthonormal
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basis.! In this orthonormal basis the dot product simplifies to

VoW =Y v, (9.2.8)

%

which is of the familiar form.

We now want to invent a generalization of the dot product to any linear vector
space called the inner product or scalar product. Given any two vectors |V') and
W)

vy = ) wili) (9.2.9)

W) = > wli) (9.2.10)
J

we are looking for a formula in terms of their components v; and w;. We denote the
inner product by the symbol (V |[W). It is once again a number (generally complex)
dependent on the two vectors. One refers to the first factor in the inner product, as
the bra and the second factor, as the ket. The idea (due to Dirac) is that together
they comprise the bracket (V |W).

If we follow the same route as with arrows, we will reach the stage when we
have to go about expressing the dot products of linear combinations in terms of dot
products of the individual terms, i.e., open up brackets. In the case of arrows we
turned to the axioms B-i to B-iii, (derived from the concrete formula, Eqn. (9.2.1))
for guidance. Here we have no such thing. So we postulate that the inner product
will obey the following axioms:

B-I (VW) = (W]|V)* (skew-symmetry)
B-II (V|V) > 0. 0ifand only if |V) = |0) (positive semidefiniteness)

B-III (V|(a|W)+b|Z)) = (V]aW +bZ) = a(V|W) +b(V|Z) (linearity in
ket).

Note that only the first axiom is different from the one for the dot product—it
says the dot product depends on the order of the two factors. Its significance will
become clear shortly.

What do the axioms say about opening the brackets in an expression like

{aA 4+ bB|cC + dD), (9.2.11)

1Here is a sketch of how to get an orthonormal basis out of two non-parallel vectors in a plane. We first
rescale one of the vectors by its length to get a unit vector. Next, we subtract from the second vector
its projection along the first, and rescale the result. We end up with two vectors whose dot products
with each other is zero, and whose dot product with themselves is unity.
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where the upper case letters stand for vectors and lower case letters for scalars that
multiply them in the linear combination? The third axiom B-III (linearity in ket)
allows us to open up the ket very simply and to obtain

(aA 4+ bB|cC +dD) = c(aA + bB|C) + d{aA + bB|D). (9.2.12)

What about the linear combination in the bra? There is no axiom for that because
the necessary rule follows from the first axiom: it tells us that we can swap the
vectors in the bra and ket if we complex conjugate the answer. Thus

(aA +bB|C) (ClaA + bB)* by B-1
(a{C|A) +b(C|B))*
= a*(C|A)" +b*(C|B)*

= a*(A|C) +b*(B|C), (9.2.13)

I

il

which expresses the antilinearity of the inner product with respect to the bra. In
other words, the inner product of a linear superposition with another vector is the
corresponding superposition of inner products if the superposition occurs in the ket,
while it is the superposition with all coefficients conjugated if the superposition
occurs in the bra. This asymmetry, unfamiliar in real vector spaces, is here to stay
and you will get used to it as you go along. In any event we find

(aA+bB|cC +dD) = a*c(A|C)+b"c(B|C)+a*d(A|D) +b*d(B|D). (9.2.14)

Applying this to the inner product (V |W) we obtain

VW) =33 viwil)- (9.2.15)
ig
As for (i]j), the inner product of basis vectors, we invoke

Theorem 9.3. (Gram—Schmidt). Given a linearly independent basis we can form
linear combinations of the basis vectors to obtain an orthonormal basis, i.e., one

obeying
G |1 fori=j _ N
<Z|]>_{O fOVi?éj :61j'
Postponing the proof for a moment, let us assume that the procedure has been
implemented and that the current basis is orthonormal. Upon feeding this fact into

Eqn. (9.2.15), the double sum collapses to a single one due to the Kronecker delta
to give the very important formula

(VIW) = viw. (9.2.16)

i
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This is the form of the inner product we will use from now on. Note that it looks
just like the dot product except for the complex conjugation of the v;’s. We can
now appreciate the point behind the first axiom that led to this. But for the complex
conjugation of the components of the first vector, (V|V} would not even be real,
not to mention positive. But now it is given by

(V|v) = Z|U,|2 >0 9.2.17)

and vanishes only for the null vector. This makes it sensible to refer to (V|V) as
the length or norm squared of a vector.
Let us consider an example. Let

V) = (3—4i)|1)+ (5 - 60)2) (9.2.18)
Wy = (1-4)|1) + (2 - 30)[2) (9.2.19)

be two vectors expanded in terms of an orthonormal basis |1) and |2). Then we
have

(VIV) = (3+4i)(3—4i)+(5+6i)(5—6i)=86  (9.2.20)
(WIW) = (1+4)(1- ) F(2+3)(2-3)=15 (9.2.21)
(VIW) = (3+4i)(1— i)+ (5+6i)(2— 3i)

= 35— 21:(W|V> (9.2.22)

Having developed the inner product for an arbitrary linear vector space, we can
introduce the notion of length or perpendicularity and use some of the same termi-
nology from the old days of the dot product:

Definition 9.7. We will say that two vectors are perpendicular if their inner product
vanishes.

Definition 9.8. We will refer to \/{(V|V) = |V| as the length of the vector. A
normalized vector has unit norm.

We will also frequently refer to the inner product or scalar product as the dot
product.

Consider next Eqn. (9.2.16). Since the vector |V') is uniquely specified by
its components in a given basis, we may, in this basis, associate with it a column
vector:

V) — : in this basis. (9.2.23)
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Likewise

W) — : in this basis. 9.2.24)

The inner product (V |W') is given by the matrix product of the transpose conjugate
of the column vector representing |V') with the column vector representing |W )

w1
w2

(VIW) = [vl,v5....v}] (9.2.25)

Expansion of vectors in an orthonormal basis
Suppose we wish to expand a vector |V') in an orthonormal basis. To find the
components that go into the expansion we proceed as follows. We take the dot
product of both sides of the assumed expansion with |j): (or (j| if you are a
purist)

vy = Zvih’) (9.2.26)
j = v; (jli 9.2.2
({§lv) Z %Q (9.227)

= v, (9.2.28)

i.e., to find the j-th component of a vector we take the dot product with the j-th
unit vector, exactly as with arrows. Using this result we may write

V) =Y l)GEv). (9.2.29)

Let us make sure the basis vectors look as they should. If we set [V) = |j) in
Eqn. (9.2.29), we find the correct answer: the i-th component of the j-th basis
vector is §;;. Thus for example the column representing basis vector number 4 will
have a 1 in the 4-th row and zero everywhere else. The abstract relation

V) =" wili) (9.2.30)

i
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becomes in this basis

v1 1 0 0
Vg 0 1 0

=v| [ 4ve| O +u, (9.2.31)
Un 0 0 1

Let us work out an example. Consider the vector |V') with components

V)= [ \};ji ] (9.2.32)

where I have abused notation and equated an abstract ket to its components in a
basis. It is to be expanded in a new orthonormal basis |I), |II) with components

) =

—_

1 [ 1
] 1) = — [ o J (9.2.33)

Sl
[\
| ——]

Let us write
VY =vr|I) + vpg|IT) (9.2.34)

and determine vy and vy;. The idea, as in elementary vector analysis, is to take the
dot product of both sides with the corresponding normalized basis vector. Thus

_ _ 1+4 | 1 N
vy = (I|V) = \/5[1’” [ S ] = \/§(l+\/§+21). (9.2.35)
Likewise ]
v = 5(1 -V3). (9.2.36)

As a check on the calculation, let us recompute the norm squared of the vector and
see if it equals |1 4 i|? 4 |v/3 +i|> = 6. We find

1
Jor® +orl = S[1+3+2V3+4+1+3-2V3] =6. (9.2.37)

The following exercises give you more practice. In doing them remember that
if a basis vector is complex, you must conjugate its components in taking the dot
product.

Problem 9.2.1. (Very important).

(i) Repeat the above calculation, of expanding the vector in Egn. (9.2.32),
but in the following basis, after first demonstrating its orthonormality. At the end
check that the norm squared of the vector comes out to be 6.
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1 1 1 1
IN=—| " I =— 9.2.38
S I )
(ii) Repeat all of the above for the basis
14iy/3 V3(1+1)
n=1| \/g“(lﬂ) |II) = %Sii (9.2.39)
V8 4

Gram—Schmidt Theorem
Let us now take up the Gram—Schmidt procedure for converting a linearly inde-
pendent basis into an orthonormal one. The basic idea can be seen by a simple
example. Imagine the two-dimensional space of arrows in a plane. Let us take two
nonparallel vectors, |I) and |IT), which qualify as a basis. To get an orthonormal
basis out of these, we do the following:

o Rescale the first by its own length, so it becomes a unit vector. This will be
the first basis vector.

e Subtract from the second vector its projection along the first, leaving behind
only the part perpendicular to the first. (Such a part will remain since by
assumption the vectors are nonparallel.)

e Rescale the left over piece by its own length. We now have the second basis
vector: it is orthogonal to the first and of unit length.

This simple example tells the whole story behind this procedure, which will
now be discussed in general terms in the Dirac notation.

Let |I),|II),... be a linearly independent basis. The first vector of the or-
thonormal basis will be

1) = 1D where |I| = \/(I|I).

1
Clearly o
(1) = g =1

As for the second vector in the basis, consider

[2') = |[I1) — [1)(1|1T),

which is |II) minus the part pointing along the first unit vector. (Think of the
arrow example as you read on.) Not surprisingly it is orthogonal to the latter:

(12') = (111) - (1) AlI1) = 0.
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We now divide |2') by its norm to get |2), which will be orthogonal to the first and
normalized to unity. Next consider

|83"y = [ITT) — |1)(1|ITT) — |2)(2|IIT)

which is orthogonal to both |1) and |2). Dividing by its norm we get |3), the third
member of the orthonormal basis. There is nothing new with the generation of the
rest of the basis.

Where did we use the linear independence of the original basis? What if we
had started with a linearly dependent basis? Then at some point a vector like |2')
or |3’) would have vanished, putting a stop to the whole procedure. On the other
hand, linear independence will assure us that such a thing will never happen since
it amounts to having a nontrivial linear combination of linearly independent vectors
that adds up to the null vector. (Go back to the equations for |2) or |3’} and satisfy
yourself that these are linear combinations of the old basis vectors.)

Let us work out an example, using the two linearly independent vectors |V')
and |W) from Eqn(9.2.18-9.2.19). Since an orthonormal basis |1) and |2) is already
present in the definition of these vectors, let us use the symbols |G1) and |G2) to
denote the ones arising from the Gram—Schmidt procedure. From [V') let us form

0 NS S P e

as our first normalized basis vector. Then we form the unnormalized vector

IG2") = W) —|GI(G1W) (9.2.41)
= [(1=0)1)+(2-3)[2)] - %(35—22‘)“/) (9.2.42)

—11 + 60 9 - 38i
- I 12 (9.2.43)

Lastly we divide |G2') by its norm (1/61/86) to get |G2).

—
Problem 9.2.2. Form an orthonormal basis in two dimensions starting with A =

—- — = - .
3i +4j and B =2i —6j. Can you generate another orthonormal basis
starting with these two vectors? If so, produce another.

Problem 9.2.3. Show how to go from the basis
3 0 0

NH=|0| In=|1]| |IIn=|2
0 2 5
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to the orthonormal basis

1 0 0
=10 122=1]1/vV5 | 13y=]| -2/v5
0 2/V5 1/vV5

When we first learn about dimensionality, we associate it with the number of perpen-
dicular directions. In this chapter we defined it in terms of the maximum number of
linearly independent vectors. The following theorem connects the two definitions.

Theorem 9.4. The dimensionality of a space equals n |, the maximum number of
mutually orthogonal vectors in it.

Proof: First note that any mutually orthogonal set is also linearly independent.
Suppose we had a linear combination of orthogonal vectors adding up to zero. By
taking the dot product of both sides with any one member and using the orthogonal-
ity we can show that the coefficient multiplying that vector has to vanish. This can
clearly be done for all the coefficients, showing the linear combination is trivial.
Now n, can only be equal to, greater than or lesser than n, the dimensionality
of the space. The Gram—Schmidt procedure eliminates the last case by explicit
construction, while the linear independence of the perpendicular vectors rules out
the penultimate option. l

Two powerful theorems apply to any inner product space obeying our axioms:

Theorem 9.5. (The Schwarz inequality).

(VW) < V(W] (9.2.44)

Theorem 9.6. (The Triangle inequality).
[V +W|<|V]|+ W] (9.2.45)

Proof: The proof of the first will be provided so you can get used to working
with bras and kets. The second will be left as an exercise.

Before proving anything, note that the results are obviously true for arrows:
the Schwarz inequality says that the dot product of two vectors cannot exceed the
product of their lengths and the Triangle inequality says that the length of a sum
cannot exceed the sum of the lengths. This is an example which illustrates the
merits of thinking of abstract vectors as arrows and guessing what properties they
might share with arrows. The proof will of course have to rely on just the axioms.

To prove the Schwarz inequality, consider axiom B-II applied to

W)
w2

|Z) =|V) - [W). (9.2.46)
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We get
(z|Z) = (V- <R/VI|‘;>W - <,L:;/|l‘g>w> (9.2.47)
_ wvviw) (Wv)*(w|v)
= <V|V> - |VV|2 - Iw'|2
L VYW vy v )
|4
> 0, (9.2.48)

where we have used the antilinearity of the inner product with respect to the bra.
Using
(WIV)* = (V|w)
we find
Wv){viw)

vy = T (9.2.49)

Cross multiplying by |[W|? and taking square roots, the result follows. l

Problem 9.2.4. When will this inequality be satisfied? Does this agree with your
experience with arrows?

Problem 9.2.5. Prove the triangle inequality starting with |V +W |2. You must use
Re (VW) < (V|W)| and the Schwarz inequality. Show that the final inequality
becomes an equality only if |V) = a|W) where a is a real positive scalar.

Problem 9.2.6. Verify that |1) = (1/V2)[1, —i, 0]T, 12) = (1/vV2)[1, i. 0T,
13) = [0, 0, 1]T are orthonormal and find the coefficients in the expansion |V') =
[3 — 44,5 — 6i,8]T = all) + B]2) +~(3).

9.3. Linear Operators

An operator € is a machine that takes in vectors in our vector space and spits out
vectors also from the same space. If |V') is the input vector, we denote the output
vector as |[V') = Q|V). We say that the operator Q acts on the ket |V) 1o yield
the ket |V'). An operator is just like a function f which takes in an z and gives
out f(z); here the input is a vector and so is the output. To fully know an operator
we need an infinite amount of information: a table of what happens to each vector
when the operator does its job, that is, all the input-output pairs (|V'), |V’)). This
is the same as saying that if we want to specify a function f(z) we need to know



248 Chapter 9

all the pairs (z, f(z)), that is, the output f(z) associated with each input x, which
is what the graph of f tells us.
Here are some operators that act on arrows:

e The unit operator, I whose instruction is: Leave the vector alone! We don’t
need a fancy table for this one.

¢ The rotation operator R, (8) whose instruction is: Turn the vector around the
z-axis by 6. (The sense of rotation is such that a screw driver turned the
same way would move the screw up the z-axis. When we look down the
z-axis at the z — y plane the points should move counterclockwise.)

e The operator SQ whose instruction is: Square the components of the vector.
We will restrict our study to /inear operators. They satisfy:
QalV) 4+ b)) = aQ|V) + bQIW). (9.3.1)

which means that the output corresponding to a linear combination of vectors is
the corresponding linear combination of the outputs. In this case we need only n?
pieces of information in n-dimensions to know the operator fully. This is because
every vector is a linear combination of n basis vectors and once the fate of the
basis vectors is known, the fate of every vector is known. Thus given the basis
vectors |1) -+ - |n), we need to know their destinations, [1) - - - |n’) under the action
of Q. We can specify each member of the latter set by their n-components, bringing
the total to n? pieces of information.

Consider as an example the rotation operator R, (7 /2). I will now argue that

it is linear. Let ¢ be the sum of @ and b . Thus the three vectors form a triangle.
Now rotate this triangle around the z-axis by 7/2. The rotated vectors will still
form a triangle and each side of the triangle now equals a rotated vector. Thus we
have in Dirac notation

Iy = |a’) + |b') that is (9.3.2)
Rz(”/2)|c> = Rz(”/%l“) + Rz(ﬂ/z),w (9.3.3)
R(m/2)(la) + b)) = R.(n/2)la) + R.(n/2)b) (9:3.4)

showing that R,(7/2) is a linear operator. Its action on the basis vectors 0= |1),
7 =|2) and k = |3) is (check this with a figure!)

Ru(x/2)]1) = [2) (9.3.5)
R.(x/2)2) = —|1) (9.3.6)
R.(n/2)3) = 13). (9.3.7)

Its action on a linear combination

[V = vi|l) 4 va|2) + v3|3) (9.3.8)
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follows:

R:(n/2)IV) = Ru(r/2)(v1]l) +v2]2) + v3|3))
= v1R:(7/2)]1) + v2R.(7/2)|2) + v3R.(7/2)|3)
= v1]2) = va|l) + v3|3). (9.3.9)

Let us carry out this analysis for the general case of a linear operator 2 acting
on the vectors in an n-dimensional space. Let

Qlj) = 17) (9.3.10)

be the action on the basis vectors. We assume ;') is known through its components.
Then

vy = Qv) (9.3.11)
= Q0 v;li) (9.3.12)
J
= qujmj) (9.3.13)
J
= Zvj{j’> (9.3.14)
J

is fully known. Let us be more explicit. Let us write the components of the
transformed or output vector [V’). To find v} we take the dot product with (i:

vi=> w;(li’). (9.3.15)
J

To proceed further (as we did in the rotation example) we must know |j’). This
information we assemble as a matrix with elements €2;; given by

iy = (ili") = GIQU). (9.3.16)

In terms of this matrix Eqn. (9.3.15) takes the form:

ol = ZQUW’ (9.3.17)
J
which is just the matrix equation:
Ui Qll 912 “en an V1
Qo1 Qa2 ... Qo
= ) ) ) ] (9.3.18)
vl Q1 Qpa ... Qun Un



250 Chapter 9

The above matrix relation represents, in the chosen basis, the abstract linear op-
erator ) transforming a vector |V into |V'). Just as abstract vectors turn into
numbers (the components, assembled into a column) in a basis, so do linear opera-
tors turn into matrices. We use the same symbol to represent the matrix as we do to
represent the operator in the abstract. The first column of the matrix contains the
numbers 13, Q23 ... Qp1, which are the components of the first basis vector after
the operator has acted on it. Likewise the j-th column of the matrix contains the
components of the j-th basis vector after the transformation. Given this mnemonic
or Eqn. (9.3.16) we can write down the matrix corresponding to R, (7w /2)

0 -1 0
R,(r/2)=11 0 0 |. (9.3.19)
0 0 1

Problem 9.3.1. Verify Eqn. (9.3.19) using the mnemonic or Eqn. (9.3.16).

Problem 9.3.2. Find the matrices corresponding to the projection operators
Py, Py, P, which preserve the components of a vector in the directions z, y, or z
respectively but kill the other two. Either use the mnemonic or Eqn. (9.3.16). What
do you get when you form the sum of the projection operators? Give arguments
for why the result had to be so.

Problem 9.3.3. Is the operator SQ which squares the components of a vector a
linear operator? Give some explanation.

With the mnemonic still fresh in mind let us pause to note an important property
of matrices describing rotations. Imagine some rigid rotation R that transforms the

. - = - . 7 7 i C e
usual unit vectors 7, j,and k to ¢, j', and k'. By our mnemonic it is given
by the following matrix:

- — - = 5 —
N N . 4 . /
R i -] 1 - k
— — —

R= |77 77 T 0320
A A
k-i k- k-k

that is to say, the n-th column contains the components of the n-th transformed
basis vector. In the present problem, where the transformation is a rigid rotation we

—_— — —_
know that i', j', and k" form an orthonormal set of vectors: the rotation does
not change the lengths or angles between vectors. Thus the sum of the squares of
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each column in R is unity while the dot product of two columns is zero. It turns
out that this makes R an orthogonal matrix

RTR=1. (9.3.21)

To see this, evaluate RTR and remember that

—_— —
A-B = A;B;+ AyB,+A.B,

). (9.3.22)

—  —
You will find that the ij entry of RTR is just ¢’ - j' = §;/:.
Note also that the rows of R are also orthonormal: this is because they contain
the components of the old basis vectors in the rotated basis.

Problem 9.3.4. Verify that the rotation matrix is indeed orthogonal by carrying
out the steps indicated above.

Problem 9.3.5. You have seen above the matrix R, (Eqn. (9.3.19)) that rotates
by ©/2 about the z-axis. Construct a matrix that rotates by an arbitrary angle
about the z-axis. Repeat for a rotation around the x-axis by some other angle.
Verify that each matrix is orthogonal. Take their product and verify that it is
also orthogonal. Show in general that the product of two orthogonal matrices is
orthogonal. (Remember the rule for the transpose of a product).

Problem 9.3.6. Construct the matrix of the operator R, (w/2) that rotates around
the z-axis by 90° . Calculate [R,(7/2), Ry(7/2)].

Problem 9.3.7. Repeat this calculation with both rotation angles equal to 45 ° .

Consider the sum of two linear operators. The matrix representing the sum is
the sum of the corresponding matrices. The proof is left as an exercise. How about
the product?

Consider the relation

[V"y = M(N|V)) (9.3.23)

by which we mean that NV acts on |V) to give

N|V) = |V (9.3.24)
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and then M acts on V') to give |[V"). Let us denote by M N the operator that will
produce the same effect in one step. Thus

v = M|V (9.3.25)
= M(N|V)) (9.3.26)
= (MN)|V). (9.3.27)

What are the matrix elements of M N? We find them as follows. First we dot both
sides of Eqn. (9.3.25) by (i| to get

1"

v, = (i|M|V") (9.3.28)
= > My (9.3.29)
J
= Zf\[l‘jZ]\"J‘}cvk (9.3.30)
j k
= Z(J\IN)ikvk, (9.3.31)

Kk

where in the last line we have the result of dotting both sides of Eqn. (9.3.27) with
(i]. By comparing the last two equations we find

(MN)ik = > Mi;Ny, (9.3.32)
i

which simply means that the matrix corresponding to M N is given by the product
of the matrices representing M and N.

Recall that with each matrix M we can associate an adjoint matrix M ' obtained
by transpose conjugation. The adjoint matrix must in turn correspond to another
distinct but related operator. We call that operator the adjoint of the original
operator and use the dagger in its label as we did with its matrix.

Definition 9.9. An operator is hermitian or unitary if the corresponding matrix is.
Likewise an operator is the inverse of another if the corresponding matrices are
inverses.

For later reference we derive the following result. Consider

*

DD v ujw; (9.3.33)

ioJ

= ) wgu; (9.3.34)
toJ

(viemw)*
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>N wile (9.3.35)
i

= wefv) (9.3.36)
= (W|Q|V) if hermitian (9.3.37)
= (W|Q V) if unitary (9.3.38)

9.4. Some Advanced Topics

Digression on dual spaces

We begin with a technical point regarding the inner product, which is a number we are trying to
generate from two kets |V') and |W), which are both represented by column vectors in some basis.
Now there is no way to make a number out of two columns by direct matrix multiplication, but
there is a way to make a number by matrix multiplication of a row times a column. Our trick for
producing a number out of two columns has been to associate a unique row vector with one column
(its transpose conjugate) and form its matrix product with the column representing the other. This
has the feature that the answer depends on which of the two vectors we are going to convert to the
row, the two choices ((V|W) and (W|V)) leading to answers related by complex conjugation as
per axiom B-I.

But one can also take the following alternate view. Column vectors are concrete manifestations
of an abstract vector |W) or ket in a basis. We can also work backwards and go from the column
vectors to the abstract kets. But then it is similarly possible to work backwards and associate with
each row vector an abstract object (V|, called bra-V. Now we can name the bra’s as we want but
let us do the following. Associated with every ket [V') is a column vector. Let us take its adjoint, or
transpose conjugate and form a row vector. The abstract bra associated with this will bear the same
label, i.e., be called (V'|. Thus there are two vector spaces, the space of kets and a dual space of
bras, with a ket for every bra and vice versa (the components being related by the adjoint operation).
Inner products are really defined only between bras and kets and hence between elements of two
distinct but related vector spaces. There is a basis of vectors |i) for expanding kets and a similar
basis (i| for expanding bras. The basis ket |2) is represented in the basis we are using by a column
vector with all zeros except for a 1 in the i-th row, while the basis bra (| is a row vector with all
zeros except for a 1 in the i-th column.

All this may be summarized as follows:

v1
v2

V) & H[vf,v;,...v;]H(VL 9.4.1)

Un

where — means “within a basis.”

There is however nothing wrong with the first viewpoint of associating a scalar product with a
pair of columns or kets ( making no reference to another dual space) and living with the asymmetry
between the first and second vector in the inner product (which one to transpose conjugate?) After
all, we live with the fact that the cross product is sensitive the order of the factors.

If you found the above discussion heavy going, you can temporarily ignore it. The only thing
you must remember is that in the case of a general nonarrow vector space:
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e Vectors can still be assigned components in some orthonormal basis, just as with arrows, but
these may be complex.

e The inner product of any two vectors is given in terms of these components by Eqgn. (9.2.16).
This product obeys all the axioms.

Adjoint operation
We have seen that we may pass from the column representing a ket to the row representing the
corresponding bra by the adjoint operation, i.e., transpose conjugation. Let us now ask: if (V| is the
bra corresponding to the ket |V) what bra corresponds to a|V') where a is some scalar? By going
to any basis it is readily found that

avy
ava

alV) — — [a*v],a*v3,...a*vi] — (V]a*. (9.4.2)

aun

It is customary to write a|V) as [aV) and the corresponding bra as (aV|. What we have
found is that

{(aV]| = (V]a*. 9.4.3)
As a result, we can say that if we have an equation among kets such as
alV) =b|W) +c|lZ) +--- 5 (9.4.4)

this implies another one among the corresponding bras:
(V]a* = (WIb* +(Z|c* +--- . 9.4.5)

The two equations above are said to be adjoints of each other. Just as any equation involving
complex numbers implies another obtained by taking the complex conjugates of both sides, an
equation between (bras) kets implies another one between (kets) bras. If you think in a basis, you
will see that this follows simply from the fact that if two columns are equal, so are their transpose
conjugates.

Here is the rule for taking the adjoint:

To take the adjoint of a linear equation relating kets (bras), replace every ket (bra) by its bra
(ket) and complex conjugate all coefficients.

We can extend this rule as follows. Suppose we have an expansion for a vector:

V)= Z v, [4) 9.4.6)

i=1

VI=Y (o
i=1

Recalling that v, = (i|V) and v} = (V[3), it follows that the adjoint of

VY= 1alv) 94.7)

i=1

in terms of basis vectors. The adjoint is
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(VI=Y (VI (9.48)
=1

from which comes the rule:

To take the adjoint of an equation involving bras and kets and coefficients, reverse the order
of all factors, exchanging bras and kets and complex conjugating all coefficients.

Taking the adjoint in expressions with operators

Recall that every relation involving matrices, column vectors and scalars implied another one where
we took the adjoint of everything in sight and reversed the order of factors. (For scalars, the adjoint is
just the complex conjugate. Since scalars commute with everything, there is no real need to reverse
their order, but this may be done for uniformity.) This is the concrete representation in a basis of the
statement that every relation between operators, kets and scalars has a counterpart with operators
replaced by their adjoints and kets replaced bv their bras and scalars replaced by their conjugates.
For example

V) = 5iQW) + | Z) (9.4.9)

implies that
(VI =—s4w|Q' +(Z|. (9:4.10)

9.5. The Eigenvalue Problem

We now turn to a basic problem in the theory of linear operators. We first learn
what the problem is and what its solution are, and then turn to applications.
Consider some general nontrivial operator 2. When it acts on a vector |V)
it gives us another one related to it in some complicated way, involving rotations,
rescalings, and so on. But a nontrivial operator (which is not the identity or a
multiple of it) can have some privileged vectors, called its eigenvectors on which
its action is to simply multiply by a number, which is called the corresponding
eigenvalue. Take for example R,(w/2). While its effect on a generic vector is to
rotate it, its action on vectors along the z-axis is to leave them alone. Thus we can
say that any vector along z-axis is an eigenvector of R,(n/2) with eigenvalue 1.
Consider one more example, the operator M which has the following matrix

representation:
01
M= [ 10 } (9.5.1)

This operator exchanges the components of any vector:

[?éHZ;}:“f] (95.2)

This will affect a generic vector in a nontrivial way. But it will have no effect
on a vector with equal components. This statement has a geometric interpretation.
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Figure 9.2. The effect of the operator M is to act as a mirror through the origin at 45 ° .

Imagine the vectors as lying in the z-y plane. Exchanging the components amounts
to reflecting them on a mirror passing through the origin at 45 ° exactly between the
two axes. (Hence the name M .) Clearly any vector along the mirror is unaffected
by this reflection, as shown in Fig. 9.2. Let us choose as a representative from this
direction one with v, = vg = 1.

From the figure it is clear that we can get another set of special vectors: these
lie perpendicular to the mirror and get reflected to minus themselves, i.e., correspond
to eigenvalue —1. These have equal and opposite components. Let us choose as a
representative of this direction one with v; = —vg = 1. Thus

[(1] éHil]Hﬂ[;l] 9.5.3)

It seems apparent that there are no other eigenvectors.
We would like to ask the following questions at this point:

e How are the eigenvectors and eigenvalues to be found in the case of general
operator?

e Will the eigenvalues always be +£1? Will they always be real?

e Will the eigenvectors corresponding to different eigenvalues always be per-
pendicular as in the case of M?
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o Will it generally be true that given one eigenvector, any multiple of it is also
an eigenvector? In other words, will they always be defined only in their
direction (as being parallel or perpendicular to the mirror in our example)?

e Will an n x n matrix always have n eigenvectors and eigenvalues?

So we begin with the general eigenvalue equation:
QV) = wlV). (9.5.4)

Thus |V') is an eigenvector of ! with eigenvalue w. It is common to name the
eigenvector by its eigenvalue. 1 will also use, as far as possible, lower case symbols
for the eigenvalue corresponding to an operator denoted by the corresponding upper
case symbol. Henceforth we will follow this convention and rewrite the eigenvalue
equation as?

Qw) = wlw). (9.5.5)

Suppose we wish to see if an operator has any eigenvectors and if so, what they
are and what the corresponding eigenvalues are. We carry out the following ma-
nipulations on the eigenvalue equation:

Quw) = wjw)=wl|w) (9.5.6)
(Q—-whw) = ]0) (9.5.7)
lw) = (Q—wI)70). (9.5.8)

There, we solved the equation! That is the good news. The bad news is that the
result is trivial since any matrix acting on the null vector (all components zero)
is going to give the null vector. We have just found that the null vectors obeys
the eigenvalue equation for any eigenvalue! Of course what we really want is
a nonzero eigenvector (as in the mirror example) and some way to select out its
eigenvalues (+1) from all possible numbers. Looking at the last equation we see
that the only possible hope is if the inverse operator multiplying the null vector is
infinite. Suppose we go to some basis where all operators have become matrices.
The inverse of any matrix is the cofactor transpose divided by the determinant.
The cofactor of a finite matrix is clearly finite. Thus the determinant of Q — wlI
must vanish if a nontrivial eigenvector is to exist. If you imagine computing the
determinant of such an n x n matrix you will see that it leads to a polynomial in w
of order n. This is called the characteristic polynomial. An n-th order polynomial
will have n roots, i.e., vanish at n points, possibly complex. These are the allowed
eigenvalues. To find the eigenvectors, we must go back to the eigenvalue equation
with this eigenvalue. Let us work out the example of /. The eigenvalue equation
is

M|m) = m|m) (9.5.9)

2This nomenclature tells us at once that the vector |w) is an eigenvector of  with eigenvalue w. This
can be very useful in, say quantum physics, where we may be working with many eigenvectors of
many operators. This nomenclature is not common in mathematics literature.
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where we are labeling the eigenket by the eigenvalue. In concrete form (in our
basis) the characteristic equation becomes

’=m2—1=0 (9.5.10)

with roots +1 as advertised earlier. Let us now find the eigenvector corresponding
to m = 1. Its components obey

0 1 v1 v
[1 OHW}:H[v;}. (9.5.11)

Comparing coefficients we get two equations:

v = vg (9.5.12)
vg = . (9.5.13)

Notice that the two equations are redundant. But let us not complain: this is what
made the determinant vanish and kept the problem alive. But how are we to find the
two-dimensional vector given just one equation? The one good equation residing
in the two equations above tells us the direction of the eigenvector: its components
are equal and it points in the 45° direction, halfway between between the basis
vectors. But what is its length? The eigenvalue equation will never tell us. We
know the reason in the case of the mirror, but what is it in general?

To understand this go back to Eqn. (9.5.5). Multiply both sides by a scalar a
from the left, use the linearity of the operator to slide it past the operator to the ket
as follows

aQw) = awlw) (9.5.14)
Qlalw)) = w(alw)) (9.5.15)

and you see that if |w) is an eigenvector with eigenvalue w so is a|w). Thus
the eigenvalue equation can determine the eigenvector only in its “direction” (i.e.,
determine the ratio of its components) but not its absolute value. One can pick any
vector in this direction. We usually pick one that is normalized. In the present case
that gives
|m~+1)—>i[1:| (9.5.16)
{1 5.
where I use — rather than = because you can’t really equate an abstract vector to
its representation in a basis. Hereafter I will not be so pedantic and use the = sign
which really means “equal in this basis.”
The eigenvector is still not unique, we can multiply all components by a
unimodular phase factor without changing the norm. The usual procedure is to
keep things as simple as possible and stop with the solution above. Note that
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eigenvectors related by rescaling are never counted as different solutions. There is
however a second truly distinct eigenvector corresponding to eigenvalue —1. We
can find it the same way and obtain

e[ 4]

Assembling together the full solution we have:

o L[t U B A
== men=[ L] s

Problem 9.5.1. Provide the details leading to Egn. (9.5.18).

(9.5.17)

Let us return to R,(7/2) and consider its eigenvalue problem. We know that
any vector along the z-axis will be invariant with eigenvalue is 1. Are there any
more eigenvectors? It is hard to imagine any other vector (not along the z-axis)
that will not get changed in its direction by R. Since our intuition stops here, let
us follow the machinery. The characteristic equation for the eigenvalue r is

-r =1 0
1 —r 0 |=@-1DF*4+1)=0 (9.5.19)
0 1-r
with the solutions
r=1,i,—1. (9.5.20)
We already know that the eigenvector corresponding to r = 1 is
0
r=1)= |0 (9.5.21)
1

as you may verify.

It is clear why our intuition did not produce the other two eigenvectors: they
do not correspond to real eigenvalues. Plugging back the eigenvalue ¢ we get the
following equations for the components of the eigenvector:

0 -1 0 v1 v1
1 0 0 V2 =1 | vo (9.5.22)
0 0 1 v3 U3
which tell us
—vg ivy (9.5.23)
v = iv2 (9524)
vy = 1ivs. (9.5.25)
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The last equation tells us vg = 0. The first two parrot each other and tell us
vy = —ivy. So we make a choice v; = 1/v/2,vs = i/V/2,v3 = 0. We can
similarly solve for the third vector. Here is the full set of eigenvectors labeled by
the eigenvalues:

0 1 1 1 1
r=1)=10 r=1i)=—1| 1 —i) = —1 9.5.26
| ) : | ) vl l ) 2l ( )

Problem 9.5.2. Find the eigenvalues and normalized eigenvectors of R, (9).

Problem 9.5.3. Find the eigenvalues and normalized eigenvectors of

1 3 1 0 0 1 1 10

0 2 0 00 0 1 0 1

01 4 1 00 01 1
and

01 0 2 2 0 5 0 V3

1 01 2 2 2 0 3 0

01 0 0 2 2 V3 0 3

You are no doubt wondering what all this is good for. We turn to that after mak-
ing one final set of observations. If you look at the eigenvalues of M, Eqn. (9.5.18),
you will notice that its two eigenvalues are real. Perhaps this is the property of
all real matrices? No, look at the eigenvalues of R.(r/2), Eqn. (9.5.20), which
equal 1, £i. On the other hand the eigenvalues of R,(w/2) and in general R,(9)
(Problem (9.5.2.)) are unimodular. Notice also that in all three cases the eigen-
vectors are mutually orthogonal. (For complex eigenvectors remember to complex
conjugate the components of the first vector in the inner product.) All these results
are covered by the following two very important theorems:

Theorem 9.7. The eigenvalues of a hermitian operator are real and its eigenvec-
tors corresponding to different eigenvalues are orthogonal.

Theorem 9.8. The eigenvalues of a unitary matrix are unimodular and the eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof: Since the proof is similar for the hermitian and unitary cases in the
early stages they will be treated together initially. Thus let Q2 be the operator,
hermitian or unitary and let |w;) and |w2) be two of its eigenkets:

Q|w1> = wllw1> (9527)
Q|w2> = w2|w2>. (9528)
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Dotting the first with (wo| and the second with (w;| we find

(wolQw1) = wi{walwr) (9.5.29)
\.

(w1|Qwa) = wolwi|ws (9.5.30)

Now take the complex conjugate of the lower equations and use Eqn. (9.3.36).3
This gives
(w2|Qw1) = w(walwr) (9.5.31)

Now consider the hermitian case @ = QF. Then the left-hand sides of Eqns. (9.5.29)
and Eqn. (9.5.31) become equal. Subtracting the right-hand sides we get

0= (wl — w%)(w2|w1) (9532)

which means one of the two factors must vanish. If we consider the case where 1
and 2 refer to the same vector we find the eigenvalue is real:

wi =w? (9.5.33)

since (w;lwi) # O for a nontrivial eigenket. If we next consider 1 # 2 with
w1 # wo, we find from the same equation that it is the dot product which must
vanish:

(walw1) =0, (9.5.34)

i.e., the eigenvectors are orthogonal.

Notice that even after saying 1 and 2 referred to two different eigenvectors, it
was additionally required that w; # ws. This is because the operator can be degen-
erate: eigenvalues corresponding to two distinct, nonparallel vectors can sometimes
be equal. The proof fails there. We shall assume for the moment no degeneracy
and return to the degenerate case later.

In the unitary case setting QT = Q~! in Eqn. (9.5.31), we find

(ol Q7 w1) = wilwalwr) (9.5.35)
wilwelw) = wi(walwi) (9.5.36)
0 = (wil—ws)(walwi), (9.5.37)

where we have used the fact that the eigenvector of any operator is also the eigen-
vector of the inverse with the inverse eigenvalue. (Prove this.)

Once again the zero must be either due to the inner product or the prefactor
in brackets. If we choose |w;) = |ws), we find the prefactor vanishes:

wl =wil, (9.5.38)

30r, if you like, take the adjoint, which means we write all factors in reverse order after changing bras
to kets and vice versa, operators to their adjoints and scalars into their complex conjugates.
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i.e., the eigenvalue is unimodular. If we choose the kets to be distinct with distinct
eigenvalues in Eqn. (9.5.37), the inner product vanishes:

(wolw1) =0, (9.5.39)

i.e., the vectors with different eigenvalues are orthogonal. l

An important implication of these theorems is that every hermitian or unitary
operator generates very naturally an orthonormal basis: the basis of its eigen-
vectors. Recall that just like abstract kets or bras have a life of their own, so do
operators, and that they turn into numbers, namely matrices, only in a given basis.
As we change the basis, the matrix representing the operator will change, as will the
components of the vectors. Of course relations between operators and vectors, such
as |V') = Q|V) will remain true even though the numbers representing all three
keep changing with the basis. With all this mind we ask: How does an operator
look in the basis of its eigenvectors? It is diagonal with its eigenvalues on the
diagonal. Recall the mnemonic: the n-th column is the image of the n-th basis
vector after the operator has acted on it. On the eigenbasis, the action is simply
that of rescaling by the eigenvalue. More formally,

<u)j|Q|u)i> = (wjlwilw,-> — u)i(si]‘. (9540)

The action of a diagonal matrix is a lot simpler than that of a nondiagonal one.
Thus if a problem involving a hermitian or unitary operator is given to us, it will
be often profitable to cast the problem in the eigenbasis of the operator to use
its simpler form therein. While all bases are mathematically equal, the eigenbasis
is more equal than others. In the section on applications you will see this point
exploited repeatedly.

Problem 9.5.4. We saw in Problem(8.4.10.) that if H is hermitian, U = e is
unitary. Show that any eigenvector of H with eigenvalue h is also an eigenvector of
U with eigenvalue e'*. Thus the theorem that assures us that hermitian operators
have an orthonormal set of eigenvectors implies the same for unitary operators
which can be written as e*. It turns out (see the next problem) that every unitary
operator can be so written.

Problem 9.5.5. Let us specialize to a complex two-dimensional vector space. It
takes four complex numbers or eight real numbers to fully specify a complex matrix
acting on its vectors. Consider a unitary matrix U and hermitian matrix H. Show
that hermiticity places four real conditions on H, so that it takes four real numbers
to specify H. Show likewise that UTU = 1 reduces the eight potential real degrees
of freedom to four free ones by imposing four real constraints. Thus setting any
given U = ', we will be able to solve for H. The same logic holds in higher
dimensions.
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Problem 9.5.6. The Cayley—Hamilton Theorem states that every matrix obeys its
characteristic equation. In other words, if P(w) is the characteristic polynomial for
the matrix Q, then P(Q)) vanishes as a matrix. This means that it will annihilate any
vector. First prove the theorem for a hermitian Q! with nondegenerate eigenvectors
by starting with the action of P() on the eigenvectors. Next consider a non-
hermitian but nondegenerate matrix. Now the eigenvectors are not assured to
be orthogonal. Prove the theorem by first showing that they are still linearly
independent. (To establish linear independence, show that any assumed linear
relation with nonzero coefficients leads to a contradiction in the following way. If
the vector |w;) is present in the sum, show that multiplication by Q) — w;I, gets
rid of it and none of the others. Proceed in this fashion until you are left with
Jjust one vector times a nonzero coefficient which must equal zero, leading to a
contradiction.)

The Cayley—Hamilton theorem can be used to find inverses. Writing out
P(Q) = 0, we must get an expression of the form

an Q"+ an Q" 4t ag=0. (9.5.41)

Multiplying both sides by Q™' and rearranging, we have an expression for =1
in terms of powers of Q) going up to Q™"1. Show that

13 1170 1 - 1
0 2 0 =|0 1 0 (9.5.42)
01 4 0 -3 1

by following this route. Show likewise that
13 117 11 1
0 2 0 =0 % 0 (9.5.43)
0 41 0 -2 1

Note that the theorem works even if the eigenvalues are not distinct.

9.5.1. Degeneracy

When one or more eigenvalues are repeated in solving for the roots of the charac-
teristic polynomial, we say the operator is degenerate. In the nondegenerate case,
having found the eigenvalues, we went back to the eigenvalue equation, one eigen-
value at a time, and found the corresponding eigenvector (in direction). With an
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eigenvalue repeated, we will clearly have some problems. Consider the following
example of an operator M represented by a matrix (also denoted by M):

1 0 1
M=1]0 2 0]. (9.5.44)
1 01

The characteristic equation is
(m -2)%m =0 (9.5.45)

with roots m = 0.2,2. The case m = 0 is solved as usual to give

1
1

m=0=—1| 0 |. (9.5.46)

| il

The eigenvalue m = 2 gives us the following equations for the eigenvector:

—vy+wvg = 0 (9.547)
0 =0 (9.5.48)
vi—vy = 0. (9.5.49)

Instead of the usual case where one out of three equations is useless, here two
equations are useless. All we can get out of these three equations is

App— (9.5.50)

which does not specify even a direction since nothing is known about vy. /ndeed the
above equation merely ensures that the eigenvector lies in the plane perpendicular
to the vector with m = 0. Thus any vector in this plane is an eigenvector with
eigenvalue 2! We can, if we want, choose any two orthonormal vectors in this plane
as our eigenvectors. One arbitrary choice is setting vg = 1 for the first member of
this pair and choosing the other to be orthogonal to this one:

1 1
1 1
m = 2, eigenvector 1) = — | 1 m = 2, eigenvector 2) = — | —2
(9.5.51)

Thus in the degenerate case there exist infinitely many orthonormal sets of eigen-
vectors.

Problem 9.5.7. Find another set for the above case with vo = 0 for eigenvector
1.
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Problem 9.5.8. Find the eigenvalues and normalized eigenvectors of Py, the pro-
Jection operator in the x-direction.

Problem 9.5.9. Find an orthonormal eigenbasis for the following matrices

1 -1 -1 5
-1 1 -1 0
-1 -1 1 2

2 3
0 1 (9.5.52)
2

(el B el
N OO

1
3
00
In each case find the inverse by the Cayley—Hamilton Theorem. The answers are

not given at the end. If you want, verify the inverse by multiplication with the
given matrix.

There are two main changes in the face of degeneracy. First, the kets cannot be
fully specified by the eigenvalue. Thus |m = 2) does not specify an eigenvector
up a scale factor, but an entire eigenplane. In general, if an eigenvalue is repeated
r-times, there will be r useless equations and an r-dimensional eigenspace will
result. Secondly, even though eigenvectors from different eigenspaces will still be
orthogonal, we can get nonorthogonal eigenvectors within the degenerate space.
Let us note for future reference that if |m, 1) and |m,2) are two eigenvectors of
M with eigenvalue m, so is any linear combination:

M(ailm, 1) + a2lm,2)) = a1 M|m, 1) + aaM|m,2) = m(ay|m, 1) + aa|m, 2)).
(9.5.53)

Problem 9.5.10. Show that the following matrices commute and find a common
eigenbasis;

1 01 2 1 1
M=|]020O0|N=|1 0 -1 (9.5.54)
1 01 1 -1 2

Problem 9.5.11. Important quantum problem. Consider the three spin-1 matrices:

Lo 1o L [0 =i 0 10 0

Sp=—= |10 1| Sy=—=|4i 0 —i| S,=]0 0 0

V2191 0 VZ2ig i o 00 -1
(9.5.55)

which represent the components of the internal angular momentum of some ele-
mentary particle at rest. That is to say, the particle has some angular momentum
unrelated to T x p’. The operator S* = S2+ S2+ S2 represents the total angular
momentum squared. The dynamical state of the system is given by a state vector
in the complex three dimensional space on which these spin matrices act. By this
we mean that all available information on the particle is stored in this vector.
According to the laws of quantum mechanics
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o A measurement of the angular momentum along any direction will give only
one of the eigenvalues of the corresponding spin operator.

o The probability that a given eigenvalue will result is equal to the absolute
value squared of the inner product of the state vector with the corresponding
eigenvector. (The state vector and all eigenvectors are all normalized.)

o The state of the system immediately following this measurement will be the
corresponding eigenvector.

(a) What are the possible values we can get if we measure spin along the z-axis?
(b) What are the possible values we can get if we measure spin along the x or
y-axis?

(c) Say we got the largest possible value for S,. What is the state vector immedi-
ately afterwards?

(d) If S is now measured what ave the odds for the various outcomes? Say we got
the largest value. What is the state just after the measurement? If we remeasure
Sy at once, will we once again get the largest value?

(e) What are the outcomes when S? is measured?

(f) From the four operators Sy, Sy, S,.S?2, what is the largest number of commut-
ing operators we can pick at a time?

(g) A particle is in a state given by a column vector

V)= 2

First rescale the vector to normalize it. What are the odds for getting the three
possible eigenvalues of S,? What is the statistical or weighted average of these
values? Compare this to (V|S,|V).

(h) Repeat all this for S,.

9.6. Applications of Eigenvalue Theory

We will deal with a few examples which involve hermitian and unitary operators.
In all the examples the following notion will be exploited: every hermitian operator
generates an orthonormal basis, namely the basis of its eigenvectors and in this
basis it has its eigenvalues on the diagonal and zeros elsewhere.



Linear Vector Spaces 267

Figure 9.3. The coupled mass system.

9.6.1. Normal modes of vibration: two coupled masses

Consider the problem depicted in Fig. 9.3.

Two masses m are resting on a frictionless table between two walls, as shown
in the following figure. The first mass is connected to the left wall by a spring of
force constant k, and to the second mass by an identical spring; and the second mass
is likewise connected to the right wall by another identical spring. The distance
between the walls is such that when all the masses are at rest and in equilibrium,
none of the springs is stretched or compressed. The z-axis runs from wall to wall
and z; and z4 refer to the displacement of each mass from its equilibrium position.

Let us assume that at time ¢ = 0 all masses are at rest, but displaced from
equilibrium by z;(0) and z2(0), respectively. The problem is to find the subsequent
displacements z1(t). z2(t).

The first step is to write down the equations of motion. If the masses are
displaced by z; and z9, the first experiences a leftward force of magnitude kz;
due to the spring to its left and a rightward force k(z9 — z;) from the (middle)
spring to its right. The second mass experiences a leftward force k(z2 — x;) due
the middle spring and a leftward force kzo due to the right most spring. Thus from
Newton’s Second Law

2k k

Z1(t) = —Exl(t)-}-glq(t) 9.6.1)
a(t) = %xl(t)f%xg(t). 9.62)

This problem is so important we will attack it at various levels.

First note that we are dealing with a pair of simultaneous differential
equations.* Thus the evolutions of z,(¢) and x2(t) are intertwined. (When we
try to solve for x;(t), we find it depends on what xo(¢) is doing and vice versa.)

4No prior knowledge of differential equations is needed to follow this discussion, except for the fact
that a differential equation is a relation in which a function and its derivatives appear.
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This in turn comes from the coupling between the masses due to the middle spring.
Cut that spring out and you see at once that each mass will oscillate with frequency
w = y/k/m. But of course the middle spring is there and we must deal with the
coupled equations.

Let us approach the coupled equations as we did a pair of simultaneous alge-
braic equations: try to form combinations that isolate one or the other unknown.
(In the case of algebraic equations we were just trying to find two fixed numbers
subject to two algebraic equations, while here we are trying to find two functions
of time subject to two differential equations.) If we add and subtract the two equa-
tions and divide both sides by v/2 (where the last operation is not necessary but
convenient) we find

Bt = —%J;J,(t) (9.6.3)
i_(t) = —%x_(t), where (9.6.4)
. _ () £ za(t)

ra(t) = HEEES (9.6.5)

This is very nice. [t means the variables x1 behave like two decoupled
simple harmonic oscillators of frequencies \/k/m and \/3k/m, respectively. As
for the solutions describing these motions, the equation they obey tell us they are
functions which when differentiated twice are proportional to themselves. These
are just sines and cosines of appropriate frequency.> The requirement that the initial
velocity equals zero means we rule out the sines and end up with

z4(t) = xz4(0)cos\/k/mt (9.6.6)
z_(t) = z_(0)cos+/3k/mt. 9.6.7)

Notice that if we set ¢ = 0, both sides reduce nicely to the initial values z(0).
We have now solved the problem we posed ourselves, of finding z;(¢) and
zo(t) given z1(0) and x9(0). Here is the procedure

e From z1(0) and z2(0) form the combinations z 4 (0).

e Go forward in time to evaluate x4 (¢t) which differ from the initial values
simply by the cosine factor of appropriate frequency.

e Revert back to old coordinates to find z;(¢) and z2(t).

Thus for example

5They can also be exponentials, which are equivalent to sines and cosines.
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1(t) = x4 (t)+z_ (1)

V2
_ z4(0)cos \/ k/mt+z_(0)cos\/3k/mt
2
(z1(0)+z2(0)) cos \/ k/mt+(z; (0)—z2(0)) cos \/3k/mit (9.6.8)

V2
= %[xl(o)(COS\/k/mf+cos\/3k/mt)
+  z2(0)(cos \/k/mt — cos \/3k/mt)].

A similar calculation gives

zo(t) = %[ml(O)(cos Vk/mt — cos \/3k/mt)
+22(0)(cos \/k/mt + cos \/3k/mt)]. (9.6.9)

While we have solved this particular coupled mass problem with some inspired
guessing, many questions remain, such as:

e How do we know in general if such magic variables like x4, which describe
decoupled oscillators, exist?

e How are the frequencies of vibration, \/k/m, v/3k/m, related to the param-
eters in the problem?

e How do we go about finding them, especially when we have several coupled
variables?

The answers to these questions lie in the domain of the eigenvalue problem
which we have so far studied without any serious motivation. We will now see how
a systematic procedure for solving such problems emerges from this formalism.

First we write the equations of motion (9.6.1-9.6.2) in matrix form

@1(t) —2 L z1(t)
. = , 9.6.10
i | st G610

or in more compact form and in obvious notation:
F=Mz 9.6.11)
where 2 is a column vector, called the state vector, and M is a 2 x 2 matrix.

Next we recognize that the matrix equation (9.6.11) stands for an abstract
equation

17) = M|z) (9.6.12)
written in a basis [1), |2) where the basis states have the following interpretation:
1 _ mass | displaced by unity
I - [ 0 ] - [ mass 2 undisplaced (9-6.13)

0 _ mass | undisplaced
12) — [ ] = [ mass 2 displaced by unity ] (9.6.14)
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A general state is written as
|z) = z1|1) + z2|2) (9.6.15)

in the abstract, and in this basis as

“;sz[”HQ[?] (9.6.16)

The present basis is very natural physically, since the components of the state
vector, r; and z9, have a direct interpretation as the displacements of the masses.
On the other hand, this basis is inconvenient for the solution of the problem since
M is non-diagonal and couples the variables.

So now we argue as follows. Since the matrix M is a real and symmetric (due
to Newton’s third law), it has its own basis of eigenvectors |m) = |I),|m1) =
|IT) with eigenvalues m and myy. It takes very little time to find that

1 1 k 1 1 3k
,I>:El:lJ mI:_E |II>:EI:-1:| mII:“E. (9.6.17)

So let us expand the state vector as follows:
lz) = 2 f|I) + 2| 1T). (9.6.18)

where x; = (I|z) and a1 = (I1|z). If we go to this basis, M will become diagonal
and the components of |z) in that basis, x; and x5, will evolve independently. In
other words, Eqn. (9.6.12) will become

. k

GLE 4] e

Thus z; and zj; obey the equations of two decoupled harmonic oscillators with
frequencies wy = \/k/m and wy; = \/3k/m.

We now understand x4 from the earlier analysis: they are just the projec-
tions of the state vector on the eigenvectors of M. Likewise, the frequencies of
oscillations are just (square roots of minus) the eigenvalues of M.

That z; and z;; obey these decoupled equations can also be seen as follows.
Let us apply |Z(¢)) = M|z(¢)) to Eqn. (9.6.18). We find

FrOD+E I = Mz Mz = mpz(E)|I)+mppzrr(¢)]1I).

(9.6.20)
Equating the coefficients of the orthogonal vectors on both sides we find the two
equations governing z; and xy;. This analysis also makes clear why we choose
to work with the eigenbasis of M: its action on them is just to multiply by the
eigenvalue. In any event we have

21(t) = z7(0)coswrt (9.6.21)
l’]](if) .’KII(O) coswrrt, (9622)
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which constitutes the complete solution to the problem we set out to solve, except
it is in the new basis. What the solution tells us is this. We want to know the
future given some initial data at ¢ = 0. We are used to giving them in terms of the
initial displacements of the masses: x1(0) and x2(0). Their evolution is coupled.
But suppose we give instead z;(0) and z;(0). Their future values are trivially
determined: multiply each initial value by cosw;t, i = I,II. As for the initial
values, they are the components of the initial state vector in the eigenbasis and so

21(0) = (12(0)) = | 75 %Hﬁ;gg” - 202l e
211(0) = (II|z(0)) = [ 7 A ] [i;gg; ] - 1—1(0)\}2—“’2(0). (9.6.24)

The preceding two equations express the new coordinates in terms of the old
ones at time zero, but these relations clearly hold at all times. Inverting them we
find

zp(t) +zyr(t)

J)l(t) = \/5
_ 21(0)coswy(t) + z11(0) coswyp(t)
V2
(21(0) + z22(0)) coswy(t) —;(11(0) — 22(0)) coswyr(t) (9.6.25)
l‘2(t) - (xl(O) + CL‘2(O))COSw1(t) —2(11(0) - x2(0))COSWII(t).(9.6.26)

which can be written in matrix form as

z1(t) _ 1 cr(t) +crr(t) cr(t) —cyr(t) 21(0)
[ ] 2 [ cr(t) —err(t) er(t) +crr(t) ] [ 22(0) ] (9.6.27)

z(t) = U(t)z(0), (9.6.28)

where ¢;(t) = cosw;t. This is the complete solution to the problem. Given any
initial state vector in the old basis, we are able to find the state vector at all future
times by simply multiplying the initial state by a matrix U (t). This matrix or the
abstract operator it represents is called the propagator.

The eigenvectors have a privileged role as initial states. If at t = 0 we start in
an eigenstate, we remain in a state which is that eigenvector times an overall time
dependent factor. This is clearest from the solutions to the equations of motion in
the eigenbasis: ifatt = 0, x; = 1 and z;; = 0, then at later times z(t) = coswrt
and z77(t) = 0. Coming back to the old basis this means that under time evolution

% [ i ] — % [ 1 ]cos \/gt. (9.6.29)
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Let us understand this. If we start the system with both masses equally displaced,
the middle spring is unaffected. In response to the end springs the masses begin
to vibrate independently at frequency /k/m. Since they are always in step the
distance between them stays fixed and the middle spring never comes into play.
The masses continue to vibrate with equal displacements. This is called a normal
mode of vibration. In a normal mode, the coordinates all have a common time
dependence which can be pulled out of the state vector. The coordinates oscillate in
step. Stated differently, the direction of the state vector never changes. If you look
at the other eigenvector you get the other normal mode: the masses are initially
displaced by equal and opposite amounts. This too will persist with time. The
middle spring is distorted twice as much as the end ones now and the net restoring
force on each mass is three times as due to one spring and we get a frequency
\/3k/m. The masses continue to have equal and opposite displacements for all
times. No other ratio of initial displacements (i.e., “direction” of state vector) is
preserved with time. For example if the first mass is displaced by unity and the
other undisplaced, the initial ratio of displacements does not persist.

Problem 9.6.1. Find the future state of a system with x1(0) = 1 and z4(0) = 0 at
t=0.

Problem 9.6.2. Find the normal modes and eigenfrequencies if the middle spring
has a force constant 2k.

Problem 9.6.3. Find the normal modes and frequencies for a triple mass problem
where there are three equal masses m = 1 hooked up in series with four springs
all having force constant k = 1.

We have introduced the normal modes at the end of the discussion. They can also
enter at the very beginning in an equivalent approach to the problem which will
now be described. Let us go back to the basic Eqn. (9.6.12). Our goal is to find
all solutions to the problem, for all possible initial conditions (with zero initial
velocity). But we first set a more modest goal and look for solutions of special
form
lz(t)) = [2(0))f(¢). (9-6.30)

There is no guarantee that such a solution, with all components sharing a common
time dependence, exists. But let us plug this ansatz into the equation of motion and
divide both sides by f(¢) to find:

f(#)

0 z(0)) = M |z(0)). (9.6.31)
Since the right-hand side has no dependence on time, neither can the left-hand side.
this means that

<

% = constant = —w?, (9.6.32)
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where we have chosen to name the constant —w? in anticipation of what is to

unfold. The solution to this equation with zero initial velocity is
f(t) = f(0)coswt. (9.6.33)

We are not done yet: plugging Eqn. (9.6.32) into Eqn. (9.6.31), we find an eigen-
value equation:
M|z(0)) = —w?|z(0)). (9.6.34)

Thus we find that
o The ansatz Eqn. (9.6.30) will work if f(¢) is a cosine.

o The (negative squared of the) frequency of the cosine must be one of the
eigenvalues of the eigenvalue Eqn. (9.6.34).

o The initial state vector must be the corresponding eigenvector.

So we have found all (two) solutions of the assumed form. What about the general
solution? From the fact that the equation of motion is linear one can readily
verify that given two solutions, any linear combination with constant coefficients
is also a solution. Let us apply this to the normal modes |I(t)) = |I) cosw;t and
|[II(t)) = |IT)coswyst. Thus ‘

lz(t)) = z1(0)|I)coswyt + z17(0)|II) coswyyt (9.6.35)
is also a solution. How general is it? At ¢ = 0, the initial state is
12(0)) = 27(0)1) + z17(0)|11). (9.636)

But the normal modes are the eigenvectors of a hermitian operator and hence form
a complete orthonormal basis. Thus you can form any initial state you want. This
means we can solve the initial value problem with any displacement of the masses.
This simple problem exemplifies the strategy employed to solve a whole family
of problems in mechanics, quantum mechanics, and so on. For example, in quantum
mechanics there is a state vector (recall the spin problem) |¢) which contains all
the information about the system and evolves in time according to Schrodinger’s
equation:
iﬁ% =Hlv) (9.6.37)
where H is a hermitian operator called the hamiltonian. How do we find the state
l(t)) given |¢(0))? Exactly as we did here. We will first find the eigenvectors
of H, go that basis, solve the problem trivially, and come back to the old basis in
which H was given. There will also be normal modes for which the state at a later
time is the initial state times a time-dependent factor. You may remember learning
in some elementary course that a system like the hydrogen atom will remain stable
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if it is in some allowed quantum state with some quantized value of energy. The
normal modes are precisely these states: the stable states of hydrogen are given
by the eigenvectors of the hamiltonian and the corresponding eigenvalues are the
energy levels you learned about.

9.6.2. Quadratic forms

Consider a real function of two variables expanded in a Taylor series about a
stationary point which we take for convenience to be the origin of coordinates:

_ z? v . ay ye ,
flz,y) = f(00)+gfm+—2—fyy+foy+7fyx+h1gher-order terms. (9.6.38)

In this expansion we have no first order derivatives since we are expanding about a
stationary point and we have purposely avoided lumping the cross derivative terms
using the equality fzy = fyz.

This stationary point could be a maximum, minimum, or saddle point. With
just one variable we knew for example that if f,; > 0, then we were at a minimum
since any deviation cause a positive definite increase ’”—;,fm. The problem here is
due to the cross terms xy which have no definite sign. Thus even if all the second
derivatives were positive, we could not guarantee the function would go up in all
directions. On the other hand if these cross terms were absent we could say that
we have a minimum if fzz > 0, fyy > 0, a maximum if both were negative and a
saddle point if they were of mixed sign.

To proceed further let us associate a vector [r) with the displacement from the
stationary point. Clearly in our coordinate system

Ir) — [ ’ ] (9.6.39)

and

l , fza fzy €z

_ %(T|F|T>, (9.6.41)

Af = f(zy) — £(00)

where F is the matrix of second derivatives. It is real and symmetric and has two
orthonormal eigenvectors |I) and |I7). Suppose we expand |r) in terms of these
with coefficients z; and zy;. Then {r|F|r) has no cross terms and

1
Af = f(zy) - f(00) = E(mﬁ + friz?y) (9.6.42)
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where f; and f;; are the eigenvalues of F. Now we know by inspection that
if both eigenvalues are positive, we are at a minimum since no matter what our
displacement from the stationary point, f goes up. Likewise if both eigenvalues are
negative, we are at a maximum. In the mixed case we have a saddle point with a
maximum along the eigenvector with negative eigenvalue and minimum along the
other one. In summary, to decide if a stationary point is a maximum, minimum,
or saddle point, we must solve the eigenvalue problem of the matrix of second
derivatives.

Suppose our f really described the saddle on a horse and that we had chosen
our axes so that they were at some oblique direction with respect to the horse. The
eigenvectors would then end up pointing parallel and perpendicular to the length
of the horse, i.e., aligned with the saddle point’s natural axes. So if in some movie
you see a dashing physicist hesitate for a split second before jumping on the horse,
remember he is diagonalizing a two by two matrix.

Let us consider as an example

f(zy) =zy(d +2) — 2z +y)* (9.6.43)

Since
fe=2z(y—4) fy=z>-2y, (9.6.44)

the stationary points are at

(z=0,y=0), (z=%V8y=4) (9.6.45)
The second derivatives are

foz =2y = 8, fyy = =2, foy = 22. (9.6.46)

At the origin the matrix of second derivatives is diagonal with both entries negative,
i.e, the origin is a maximum. At the other two points it becomes

0 +V32
[i Nl ] (9.6.47)

The eigenvalues are found to be —1 F v/33, so that we are at a saddle point. The
corresponding eigenvectors are [— %23—5 17 and [—%, 7.

All this is depicted in Fig. 9.4.

Problem 9.6.4. Consider f(zy) = = + y — zy — y2/2. Find its stationary point
and see if it is a maximum, minimum, or saddle point. Locate the eigendirections.
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“a i 0 2 n

Figure 9.4. The contour plot of f(z,y) = zy(4 + z) — (2z + y)2. The bright areas are higher.
Besides the maximum at the origin, note the two saddle points with the eigendirections indicated. As
we move along the short direction, the function starts going up (lighter shading) while along the other,
it goes down.

Problem 9.6.5. By solving once and jfor all the 2 x 2 eigenvalue equation for a
general hermitian matrix verify that the sum and product of the eigenvalues equal
the trace and determinant, respectively. Thus if the determinant is negative we
surely have a saddle point. If positive, both eigenvalues have the same sign, but
what is that sign?

Problem 9.6.6. Using the results from the previous problem show that f(z,y) =
(¢ — 1)3 — 3z — 4y? has a maximum at the origin and a saddle point at (2,0).
Show likewise that f(x,y) = z* + y* — 22%(1 — y?) + 2y? has a saddle point at
the origin and minima at (x1,0). How about the stationary points at (0, £1)?

Problem 9.6.7. Find and classify the stationary points of f(z,y) = y(4 + z) —
(2z +y)?
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The expression f = (r|F|r) is an example of a quadratic form. It has obvious
extensions to matrices and vectors in higher dimensions. It is a quadratic function
of the coordinates. Setting the function equal to a constant defines a level surface.
For example if f = z2+y2, the level surface is a circle. Likewise the level surfaces
of

8
[N}
[S]
&

z
+_

f=5tEt s

ol
(V]
s

describe ellipsoids with the axes aligned with the coordinate axes. Suppose we see
the same ellipsoid in a rotated coordinate system. Then f will have cross terms
like zy, zz, etc. Conversely, starting with a quadratic form with cross terms, we
can find the principal axes of the ellipse by finding the eigenvectors of F. This is
called diagonalizing the quadratic form.

9.7. Function Spaces

We have seen that functions can be elements of a vector space. We return to this
theme for a more detailed analysis. We defined addition of two functions to be
the pointwise addition: if f + g = h, then h(z) = f(z) + g(z). On the other
hand we know that to add two vectors, we must add their components. Thus the
Jfunction f has an infinite number of components, namely the values it takes in the
continuum of points labeled by the real variable z. Since we have been working
so far in finite dimensional spaces, let us back off a bit and see if we can start
with what we know. Let us say we want our functions to be defined in the interval
0 < z < L. Let us assume that they are smooth and differentiable. A good example
is the function describing the displacement f(z) of a string clamped at z = 0 and
xz = L. Say we want to tell someone on another planet what our string is doing at
some time. One way is to fax the snapshot. Let us say that we can only send some
digital information by Morse code. Then we can proceed as follows. We divide the
interval of length L into N equal parts and measure the displacements f(z;) = f;
at N points z; |[i = 1,2---N. If N is large enough the person at the other hand
can get a fairly good idea of what the string is doing by connecting the dots. If he
is not satisfied, we can double or triple N. (Even the fax only scans the picture at
a countable number of points!) At fixed N, the functions are elements of a finite
N -dimensional vector space. We can assemble the values of the function into a
column vector. We can add and scalar multiply the column vectors and do all the
standard vector manipulations of a finite dimensional linear vector space.
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Let us associate a ket | f) with each such discretized function. The equation

f1 1 0 0
fo 0 1 0
. = f1 : + fo . + - fN : (9.7.1)
fN 0 0 1

is the concrete realization of the abstract vector equation
[f) = f1l1) + f2|2) + - + fNIN). 9.7.2)

The basis vector |j) describes a situation where the displacement is unity at the
discrete location j and zero elsewhere.
Now consider an inner product. The obvious choice is

N
(flg) =Y figs- (9.7.3)
i=1

It obeys all the axioms. Since we are still speaking of a string, the space is real
and there is no need to conjugate anything.

Now we let N — oo by increasing the number of points without limit. There
is no problem with addition and scalar multiplication. The scalar product however
diverges as we subdivide further and further. The way out is to modify the definition
by a positive prefactor A = L/N which does not violate any of the axioms for the
inner product. But now

N
(flay = Jim > figilh (9.7.4)
=1
L
- [ 1@stes ©.7.5)
0

by the usual definition of an integral. Thus the inner product of two functions is
the integral of their product. We will say that two functions are orthogonal if this
inner product vanishes, and say a function is normalized if the integral of its square
equals unity. The space of square integrable functions is an example of a Hilbert
space. Thus one can speak of an orthonormal set of functions in a Hilbert space
just as in finite dimensions. Here is an example of such a set of functions defined
in the interval 0 < z < L and vanishing at the end points:

2
Im) — m(m)z\/;sinm m=12,...00 (9.7.6)

L
(mln) = —/ sin 2 gin 277 = § . 9.7.7)
0
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Problem 9.7.1. Verify the normalization for the case m = n and the orthogonality
form,n < 2.

Consider another example. Let us forget the string and consider complex
functions in the same interval. We no longer demand that they vanish at the end
points, but only that they be periodic

f(0)=f(L). (9.7.8)

The correct inner product is of course modified as follows

L
o) = [ @ (9.7.9)
0
An orthonormal set for this case is
1 .
Im) — ﬁemﬂ m=0,£1.%2,... . (9.7.10)

Problem 9.7.2. Verify the orthonormality of these functions.

9.7.1. Generation of orthonormal bases

Where did we get these orthonormal functions? By solving the eigenvalue equation
of some hermitian operator of course! The operator in question is related to D,
the derivative operator. It acts on an input function and spits out its derivative:
D|f) = j—f>. ©.7.11)
xT
Since both the input and the output are viewed as vectors, D is no different from
any other operator we have seen before, except for the fact that it acts on infinite-
dimensional vectors. Let us first note that D is a linear operator since the act of
differentiation is a linear operation that does not involve, say, the square of the
function being differentiated. However D is not hermitian. Here is why. Consider
first the finite-dimensional case where a matrix obeys:

M;j = MJ; (9.7.12)
is called hermitian. We have seen that this implies (see Eqn. (9.3.37))
(VIMIW)Y = (W|M|V). (9.7.13)
Let us subject D to this test. Let us ask if

(fIDlg) = (g|D|£)*?
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This is the same as asking if

L
/0 1 ()t

equals

L * L *
(/ g*(:z:)ﬂdm> = / g(a:)df dz (9.7.14)
0 dx 0 dx

L
d
af'lo - / [fa)da (97.15)
0 T

Il

where in reaching the last line, we have used the rule for integral of a product, or
done “integration by parts”. We see that hermiticity of D is lost on two counts.
First we have the surface term coming from the end points. Next the integral in the
last equation has the wrong sign. Both get fixed if we do the following:

e Use the operator —iD. The extra ¢ will change sign under conjugation and
kill the minus sign in front of the integral, as you must check.

e Restrict the functions to those that are periodic: f(0) = f(L). (A special
case of this is f(0) = f(L) = 0.) This amounts to joining the two ends of
the interval into a circle of circumference L and demanding that the functions
are continuous on this circle. This kills the surface term.

To summarize —iD is a hermitian operator on periodic functions. (We could
just as easily use 76iD. The key feature is the introduction of the 7.)
Let us now find its eigenfunctions. They obey
d
- z—f = Af. (9.7.16)
dr
where A is the eigenvalue. This equation asks us to find a function which reproduces
itself under differentiation. The differential operator is a nontrivial operator which
generally changes function to other functions—for example, 22 goes into 22. On
the other hand we know that on the exponential functions its action is simply that

of rescaling. Thus ‘
f(z) = Ae™® (9.7.17)

where A is the arbitrary scale of the eigenfunction. We solved an infinite-
dimensional eigenvalue equation by inspection! There was no characteristic equa-
tion to solve, nothing! (Naively you would think that in infinite dimensions you
will have to find the roots of an infinite-order characteristic polynomial. We got
away easily because the infinite-dimensional vectors we are looking for have com-
ponents f(z) that vary smoothly with the index z.) Notice something remarkable:
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the eigenvalue can be any number you want! In fact A can even be complex. How
about the notion that hermitian operators will have real eigenvalues only? It is alive
and well, only we have failed to weed out functions that do not meet the periodicity
requirement which in turn ensures —:D is hermitian. By demanding

el = (10— (9.7.18)
we find the following restriction on the eigenvalues:

2rm
A=

m=0,+£1.42... . (9.7.19)

The normalization condition is easily found to be 4 = 1/ V'L so that the final set
of orthonormal eigenvectors is given by

Im) — fm(z) = (9.7.20)

1 2mim.r
N exp [ 7 } .
Thus we regain exponential basis functions quoted earlier. Their orthogonality is
assured by repeating the finite-dimensional proof almost verbatim. (The proof is
literally the same in the Dirac notation which does not change its form as we go
to infinite dimensions. The key ingredient—that surface terms vanish—is hidden
in that notation, where we simply assume {f|(—iD)|g) = {(g|(—¢D)|f)*.) There
is however one subtlety with infinite dimensions. True, we have found an infinite
number of orthonormal functions. But do they form a complete basis? In the finite-
dimensional case if we have N orthonormal eigenvectors in N dimensions we are
done. The corresponding statement for infinite dimensions is more complicated.
For example if we drop the functions with m = +67, we still have an infinite
number of orthonormal functions, which are clearly not a complete basis: there is
no way to write e=2767'2/L in terms of the other functions. We have to prove
something called completeness to know we have all of them. This point will be
discussed briefly at the end of the following subsection on the vibrating string. For
the present we ignore this point and proceed to write for any periodic function of
period L

fla) = me% exp [%ZLMJ (9.7.21)
which is the concrete version of
1) =" fmlm). (9.7.22)

The expansion in Eqn. (9.7.21) is called the exponential Fourier series and the
coefficients f,, are called Fourier coefficients. (Note that we take both signs of
the integer m since exp[m%] and exp[—z’”T"“”] are linearly independent and
orthogonal functions.) The expansion of a periodic function in terms of these
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exponentials is analogous to the expansion of an arrow in terms of i . 7 and & .
To find the coefficient of the expansion we simply dot both sides with the basis
vector:

L

As a concrete example consider the function defined as follows inside the
interval [—-1 <z < 1]

o = (mlf) / exp[ Qme]f(:c)dr. (9.7.23)

flz)=2* [-1<z<1] (9.7.24)

and which is periodically repeated outside this interval with perzod L =2 We
can expand it in terms of the function \}— exp[2rimz /2] = exp[nrmx] The

coefficient f,, is

fm — \/_ / lmﬂ'@dl,

_ 2sinmm  4cosmm  4sinmmw
B \/Q m2n2 m3n3
1 (-1)™-4
= — ()—, (9.7.25)
V2 m2r2

where we have exploited the fact that the function is even in z so that e*™"® can
be replaced by its even part cos mmz, and where in the last step, we have assumed
m # 0. As for the case m = 0 you can have fun taking the limit of the above
expression using the Taylor series for the sines and cosines, or more easily, compute
the integral of %ﬂ. In any event, we find

mm

2 : 2(-1)™ iTmz
m==1,+2..

Notice that the 1/3 up front is just the mean value of f over the period. As a check
on the calculation, consider f(1) which equals 1. Thus it must be true that

1 2-1)" | 2
T D - e ) i (9.7.27)
3 m=t1,42. 0T m=t1,42. "

Wl =

which reduces to
oo

S 1 _ =

T m2 6’

which is true, as per any standard Table of Sums.®
To get a feeling for how the series with finite term approximates the real
answer, consider Fig. 9.5.

6By comparing at z = 0, you should find that 1 — 1/4+1/9 — 1/16 +... = w2/12
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3 terms

5terms

Figure 9.5. The Fourier series for f(z) = 22 for —1 < z < 1 and a few more periods. In the second
case, the nonperiodic function 2 is shown for comparison.

At the top is the approximation going up to m = 3. Notice how well the
series fits the function z2, also shown alongside. At the bottom is the fit with
m = 5. Now I show three periods and the non-periodic version of 22 as well as
the version periodicized through the series. The weakest point is at |z| = 1, where
the periodicized function has a cusp and the Fourier series needs more terms to
approximate it satisfactorily there than anywhere else.

Problem 9.7.3. (a): Expand f(z) = 2zh/L for 0 < z < L/2 and f(z) =
2h(L — z)/L for L/2 < z < L in an exponential Fourier series. (b) What do you
think is the value of Y. 44 2z where S 4, stands for the sum over all positive
odd integer?
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Problem 9.7.4. Expand the following functions specified within one period. in
1 - :
terms of exponential series: (a) f(z) = { 0 }(Z: 0 1 j ijr 0

B) flz)=e* —-1<z<L

Problem 9.7.5. A series LCR circuit has R = 60, L =1 and C =2-1075. If the
applied voltage is a wave form which rises linearly from 0 to 200 in .01 seconds,
instantly plunges to zero, and starts its next linear growth, find the steady state
current. (Hint: The term with m = 0 needs to be dealt with some care. You may
have to take the limit as m — 0 instead of simply setting it to zero.)

If you do not like complex basis functions for periodic functions we can get a
real basis by using — D2, the square of the previous operator. This is also hermitian
on periodic functions.

Problem 9.7.6. Verify the hermiticity of D? on periodic functions by integrating
by parts twice.

Let us look at the eigenvalue equation for D?:

&

= 227, (9.7.28)

where we have chosen to call the eigenvalue A? in anticipation of what is coming.
We are now looking for a function that is left alone (except for rescaling) upon
double differentiation. There are two linearly independent candidates

= sinAr 9.7.29)
= cosAr (9.7.30)

flz

)
flz)
for each eigenvalue. Thus we have a degeneracy and we can take any linear
combination of these. In particular we can form e**** from these. That is to
say, the —iD operator can help — D2 make up its mind on choice of basis within
the degenerate space. Conversely, consider linear combinations of two distinct
eigenfunctions of —iD: exp[+2™™2] These will no longer be eigenfunctions of
—iD. However —D? is blind to the sign of the eigenvalue of —iD and accepts
any linear combination as an eigenfunction. If we demand that the combinations
be real functions, we get the sines and cosines.

Proceeding, we will once again find that periodicity will require that A =
27m /L. We do not however consider negative m since we do not get new functions
that way: the cosine is invariant under m — —m and the sine goes into minus
itself. Stated differently, since exponentials with +m and —m were combined to
give the sines and cosines; nothing new will come from starting with —m and +m.
Once more with feeling: in the eigenvalue problem of —D?
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o There is one basis vector for every integer, positive or negative.
e We can associate an exponential function with each.

e We can also pair the nonzero integers of opposite signs and form sines and
cosines for each positive integer. The vector with m = 0 stands by itself: it
is real as such.

The normalization of the trigonometric functions follows from that of the expo-
nentials readily. If |m) and | — m) are normalized exponentials, so are the two
combinations (labeled by a degeneracy index o

moa=1) = MJ:/—'{—’”—) (9.7.31)
Im,a=2) = W (9.7.32)

Multiplying and dividing the right-hand sides by v/2 to bring in the sines and
cosines it is clear that the normalized trigonometric functions are

2 2rma

Im,a=1) — ,/Zcos ”;” (9.7.34)
2 . 2rmz

Im,a =2) — /=sin 0t (9.7.34)
L L

The expansion of a periodic function will now take the form

oo oo
a 2 2mmnx 2 . 2mrx
flz) = _\/OZ + E lam\/ 7087 + E bm\/zsm 7 (9.7.35)
m= m=1

which is the concrete version of

o<} 2
)= fmalma), (9.7.36)
m=0a=1

where o is a label within the degenerate space at each m that tells us if it is a
sine or cosine. (In the sector m = 0, there is no sine.) To find any coefficient of
expansions we dot both sides with the corresponding eigenfunctions. For example

L
bir :/0 \/%sin [w] fz)dz. (9.7.37)

Problem 9.7.7. Repeat problem 9.7.3. in terms of sines and cosines. Compare to
the answer you got with the exponential Fourier series.
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Problem 9.7.8. (i) Obtain the series in terms of sines and cosines for f(z) = el?!
in the interval —1 < z < 1. (ii) Repeat for the case f(x) = cosh .
Show that

sinh 7 >
fla) = — 1+;1

(=)™ :
s (cosnz — nsinnz)

represents the function e® in the interval —n < z < 7 (and its periodicized version
outside.) Show how you can get the series for sinhx and coshx from the above.

Convergence questions
We will not discuss the question of convergence of the Fourier series in any depth.
First note that since the sines, cosines, and exponential functions are bounded by
unity, we may replace the Fourier series with one where all these functions are
replaced by unity and test for convergence. For example

flao) =3 20T (9.7.38)

n
1

converges since the sum over 1/n2 does. But the sum need not always reproduce
the function even if it converges: if the function has a jump, the series will converge
to the average of the two values at the jump. In this sense the Fourier series will
exist for any function which has a finite number of jumps per period, has a finite
number of maxima and minima and [ |f(z)|dz over a period exists.

Unlike in the case of power series, which either converge or do not, for infinite
series of sines and cosines we must distinguish between uniform convergence and
absolute convergence. If we pick a point z where the sum converges, it means that
given an € > 0, we can find an N (¢) such that |f(z) — fn(e)| < e where fy is
the partial sum up to N terms. But N (e¢) can vary from point to point. In other
words, as we approach certain points, it may require more and more terms to come
within ¢ of the limit and stay there.

Definition 9.10. We say the sum converges uniformly in some interval [a < x < b]
if for a given ¢ we can find an N () common to all x.

One can find series which converge absolutely but not uniformly and vice versa.
We do not get into these questions. All you must note at this point is that given a
Fourier series, there is in general no guarantee that its term-by-term derivative will
exist or reproduce the derivative of the function in question. On the other hand it is
safe to integrate the convergent series term-by-term and the result will be a series
that is better behaved. The reason is that each derivative of brings an extra factor
n to the numerator of the Fourier coefficient, while each integration brings an extra
n to the denominator.
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9.7.2. Fourier integrals

We want to extend the notion of a Fourier series for periodic functions to nonperiodic functions by
viewing them as limits of periodic functions whose periods L have gone to infinity.
Let us write the familiar case as

e2mimaz/L
flz) = meT (9.7.39)
L
fm = /e—"’“m/Lf(x)dx. (9.7.40)
o]

Notice that the normalization of the eigenfunctions has been changed: instead of having a factor
1/+/L in the Fourier series and in the inverse { which is the second formula above, which gives the
coefficients in terms of the function) we have just a factor 1/L in the series. You should check that
the above equations still define a consistent pair of Fourier and inverse Fourier transforms. Let us
now introduce a variable

k= msz = mA. (9.7.41)

Note that when m goes up by unity, k goes up by dk = %” = A. In terms of k the two equations
above become

1 2r
f(z) 2 E f e (9.7.42)

fm

L
/ ek f(z)dz, (9.7.43)
0

where we have multiplied and divided by 27 in the first equation. As L — oo, and A — 0, the k
becomes a continuous variable, f, becomes f(k) and the sum over m becomes an integral over

k:
2
- E /dk (9.7.44)
m

so that in the limit of infinite L, we end up with

flz) = / e””f(k)% (9.7.45)
oo 2w
fk) = / e~ f(z)dzx (9.7.46)

which are referred to as the Fourier Transform and Inverse Fourier Transform, respectively. Let us
consider one example, the Fourier transform of the Gaussian:
2

flz)=e"7"". (9.7.47)
For this,
oo
fk) = / e kT gy (9.7.48)
— o0
oo
= / e~ (w=1k/D)? o—k?/4 gy (9.7.49)
hale )
) oo—1k/2 2
= ek /4/ e % dz. (9.7.50)
—oo—1k/2
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In going to the second line we have completed squares in the exponent by adding and subtracting
—k? /4. In the next we have introduced a complex variable z = z — ik/2 and written the limits on
the integral in terms of z. Notice that the z-integral now runs parallel to the real axis, but a distance
ik below it. We now argue that since the integrand is free of singularities in the region between the
real axis and this line, we may shift the contour up to the real axis in the z-integral. Recalling that
this integral equals /7, we find

Flk) = Vme /4 9.7.51)
so that the transform of a gaussian is a gaussian also. Had we chosen our original function to be
f@)=e=/ (9.7.52)

so that this bell-shaped curve had a width of order a, we would have found that its transform f(k)
had a width of order 1/a.

Problem 9.7.9. Verify the above claim. It follows that a gaussian in k of width a transforms back
to a gaussian in x of width 1/a.

In quantum theory we deal with a function f(z) whose height measures the likelihood of finding
the particle at the point = and whose transform f(k) measures the likelihood of finding it with
momentum p = hk, where k is called Planck’s constant. The above example shows that if the
particle is localized in a region of width a its momentum has a spread of order k/a. This is the
origin of the uncertainty principle AzAp ~ k.

Problem 9.7.10. Use contour integration to show that the transform of

1
z2 + a?

f(z) = (9.7.53)

flk) = ge—'kla. (9.7.54)

Invert the transform to get back f(x). Do not use contour integration since f(k) is not an analytic
function. Just do the simple exponential integrals involved.

If we combine the Fourier transform and its inverse we get

< dk oe .
flz) = / 56”“/ dye ™™ f(y) (9.7.55)
= / f(y)R(z — y)dy where (9.7.56)
Rz —y) = / dk ik(z—y). (9.7.57)
oo 2T

Earlier we had introduced the Dirac delta function §(z — y) with the following properties:
o f(z—y)=0ifz#y.
e §(z — y) blows up at z = y in such a way that the area under it equals unity:

/6(m —y)dy =1 (9.7.58)

if the region of integration contains the point y = .
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e As a result of the above if f(y) is any smooth function

r+e
/6(z -yflyydy = / fy)o(z—y)dy € =0 (9.7.59)
r—e e
= f(=) / §(z — y)dy (9.7.60)
= f(x). (9.7.61)

In short the integral of any function with the delta function pulls out the value of the function
aty = x.

It follows from all of the above and Eqn. (9.7.56) that
oo
Rz -y)=é(z—y) = / :—kel’“("y). (9.7.62)
iy
—O0C

This is a very useful formula for the Dirac delta function and will be recalled towards the end of the
next chapter.

9.7.3. Normal modes: vibrating string

Consider a string of length L with points on it labeled by z running between 0 and
L. Let v(z,t) be its displacement from equilibrium at time ¢ at position z. Our
job is to find ¥ (z,t) given v (x,0). Once again we will assume for convenience
that the initial velocity is zero at all points.

This is an extension of the coupled mass problem. There we had only two
coordinates to follow, here we have an infinite number: the displacement at each
point z. (Note that unlike in the coupled mass problem, where = was the dynamical
variable, here it is a label for the vibrating degrees of freedom v (x).)

To proceed we need the equation of motion for the string. This is the wave
equation:

1 0%y 9%y
02 912 9x?’
where v is the velocity of propagation of waves in the string.

At any given time the string is described by a function of z. We may therefore

associate with that function a ket | (¢)). The equation obeyed by the ket is then

(9.7.63)

1) = D2l (1) ©7.64)

which is mathematically the same as the coupled mass problem (compare with
Eqns. (9.6.30 - 9.6.34) except for the fact that the two dimensional vector space
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has been replaced by an infinite-dimensional Hilbert space. The strategy is still the
same. We first look for normal modes:

[w(t)) = [v(0))f(t). (9.7.65)

Once again f will be a cosine and more precisely if

f)

0] = constant = —w? (9.7.66)
then
f(t) = £(0) coswt (9.7.67)
and )
D2y (0)) = =5 1(0)) =~k (0)). (9.7.68)

So what we find is that the ansatz we made, Eqn. (9.7.65), is viable only if
f(t) is a cosine and ¢ (0)) is an eigenket of D?.
Let us note for future use that

w = kv. (9.7.69)
Going back from the ket to the function it represents, Eqn. (9.7.68) becomes:

2
% +k%y(2,0) =0 (9.7.70)

which is readily solved to give
¥(z,0) = Acoskx + Bsinkz. 9.7.71)

But the displacement must vanish at = = 0. This kills the coefficient of the cosine.
As for the sine, the condition that the displacement vanish at the other end gives
either than B = 0, which renders the solution trivial, or

mm

k= — 9.7.72
L ’ ( )

which is the case we are interested in. The normalized eigenfunctions are then

2 mnx
— /= 9.7.73
[m) 7 sin—7 ( )
and the normal modes of vibration are
2 x t
[m(t)) = 4/ 7 sin m;” cos m/’_j” (9.7.74)
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In the case of coupled masses, we saw that we could excite a normal mode
if we pulled the two masses by equal, or equal and opposite, amounts. To excite
a string into a pure normal mode takes more than two hands: you must initially
deform it into a perfect sine wave sin(mmz /L) and let it go. If you just pluck it, you
will excite all the modes that enter the Fourier expansion of the initial deformation.

By mimicking what we did with the coupled masses, we can write the general
solution as

> 2 . mmnzx mmuvt
w(x,t)_;zpm,/zsm L cos ——. (9.7.75)
To find v,,, use
L /2 mnx
o = (m](0)) = / 2 50 ™ (2, 0V, 9.7.76)
o VI L

Consider a specific example where
¥(z,0) =z(L — ) (9.7.77)

in which case

2 L . mnzT 2 413
o = /f/o sin 7 I(L_x)dx:,/zmgﬂe_ m odd. (9.7.78)

Problem 9.7.11. Work out the integral and derive the above result.

Depicted in Fig. 9.6 is the subsequent behavior of the string

8L2 . mrz mmvt
w(:v,t)=§d:m3ﬂ_35m - 00s — (9.7.79)

for the case L = v = 1 over a period 0 < t < 2.

Problem 9.7.12. A string of length L that supports waves at velocity v is displaced
at t = 0 to have a triangular profile, symmetric about its midpoint, where the
displacement is h. Find the displacement at all future times. (First write down a
function that describes the initial displacement.)

Problem 9.7.13. A string of length © has the following initial displacement: rises
linearly between 0 and 7 /4 to reach unit height, drops linearly to height —1 by
3w /4, rises linearly back to zero at the other end. What is its subsequent evolution,
assuming velocity v = 1?
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Figure 9.6. The motion of the string with L = v = 1 and ¢(z,0) = z(L — z) for one full period
0 <t < 2. (We truncate the series at m = 5.)

Sometimes you will be asked to solve the string problem for the case where the
initial displacement is h for the first half of the string and zero for the second. This
configuration violates the condition that the string displacement vanish at the ends.
This initial condition should be interpreted to mean that the displacement grows
from zero to h in a very small distance from the left end and likewise drop to zero
in a very tiny distance around the midpoint. If you expand this initial function in
terms of the normal modes, they will sum to the right answer everywhere except at
x = 0 and x = L/2, where the series will sum to a h/2, the average of the two
values associated with the discontinuity.

Problem 9.7.14. Do the time evolution for the problem where the string of length
L and wave velocity v has an initial displacement h for the left half and zero for
the right half.

We will now discuss the question of completeness within the limited context
of the vibrating string. The question is this: we have an infinite number of basis
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functions, but are they complete in the sense that any displacement of the string can
be written as a sum of these? Take the case of the string displaced into a triangular
shape with a height of » at the midpoint. Suppose we expand it as

flz)= an\/g sin (9.7.80)

8 L . mn

and want to see if we missed some components along the way. Suppose f were
a finite-dimensional vector with components f, in a basis known to be complete
and we had expanded it in another orthonormal basis with components f,/l. In the
new basis we would simply project the vectors along the new basis vectors to find
the new components. If all were going well, we would find that even though the
components change with the basis, the length squared of the vector would come

out the same as before: )
Y=Yk (9.7.82)

If we dropped a basis vector from the new basis, it would still be orthonormal,
but its lack of completeness would be betrayed by the fact that the right-hand side
would come out smaller. (It can happen that the vector we picked did not have a
component in the direction omitted. But some other vector will reveal the problem.)
Let us now transcribe this logic to the case of the string. The original description
of the string in terms of f(z) is obviously complete since f(z) tells us everything
about the string everywhere. The new description in terms of f,, should therefore
satisfy Parseval’s Theorem

where

L oo
/ fa)dz = o (9.7.83)
0 1

(On the right-hand side, we use a sum, as is appropriate to a countable basis, in
finding the norm squared.) The verification of this for the special initial condition
is left as an exercise.

Problem 9.7.15. Show that Parseval’s theorem is satisfied by the coefficients in
Egn. (9.7.81) using

i 1 _ mt

£ (2k— 1)~ 96

As mentioned earlier, lack of completeness can be exposed by even one failure of
Parseval’s theorem while no amount of successful trials can assure us the basis is
complete since it can happen that none of the examples we took had components
in the missing direction(s). Is there a test that will establish once and for all the
completeness of the basis? There is, but it goes beyond the scope of this book.
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9.8. Some Terminology

Suppose |1),2) ... |7) ... |n) is an orthonormal basis. Let us generate a new set of vectors

iy = Ul (9.8.1)
[y = Ul (9.8.2)
'y = Uln), (9.8.3)

where U is unitary. Then the primed vectors form another orthonormal basis. The proof is simple.
Take the adjoint of these equations to get

(i'| = (Ut (9.8.4)
Now dot this with |5/} = Ulj) to get
(@'|5"y = GUTU ) = (il5) = 65 (9.8.5)

Thus a unitary transformation converts an orthonormal basis to another. In other words, unitary
transformations are the generalizations of rotations to complex vector spaces. The converse is also
true: given any two orthonormal bases, we can find a unitary transformation that connects them.
The proof is left to you.

By this argument, the passage from some given orthonormal basis to the eigenbasis |I), |I1)...
of a hermitian operator H must be through some U. That is

|I) = U|1) (9.8.6)

and so on. Let us look at the matrix elements of this U. By the mnemonic, its first column contains
the components of the basis vector after the action of U. But the effect of U is to convert |1)
to the first normalized eigenvector |I). Thus the first column of U contains the first eigenvector
components and likewise for the other columns. You can verify that with these entries, the matrix
will be unitary.

Consider next the statement that a hermitian operator is diagonal in its eigenbasis with eigen-
values on the diagonal. This means that if |I), |J) are the eigenvectors of H:

(I|H|J)y = (§\UT HU|j) = diagonal matrix. (9.8.7)

Thus UT HU s a diagonal matrix in the original basis. We say that H has been diagonalized by the
unitary transformation U. Thus for every hermitian matrix we can find a unitary matrix U (built out
of its eigenvectors) such that Ut HU is diagonal.

Problem 9.8.1. Suppose you are making up eigenvalue problems for a book like this and want
the eigenvalues to be integers and eigenvectors to be not too complicated. How will you use
Eqn. (9.8.7)?

Problem 9.8.2. Consider the coupled mass problem. Explicitly write out U, the matrix of normalized
eigenvectors of M. Show that U MU is diagonal.

9.9. Tensors: An Introduction

Let us begin by recalling the distinction between scalars and vectors. Let ¢(7) be a scalar field

and W(?) a vector field. Under a rotation of axes, the points in space get renamed. The point
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(z1, 2, x3) tumns into

3
’
z, =Y Ry 9.9.1)
J=1
where R is a rotation matrix, parametrized by some rotation angles, obeying
T - p—1L. 9.9.2)

Note that we have switched from (z,y, z) to (z1,z2,z3). The advantage of this notation will
become quite apparent.
If ¢ is a scalar field, its numerical value at a point is unaltered by the change of coordinates.
Thus if it stands for temperature, a person in a rotated coordinate system will ascribe to a given point
the same value of temperature, even though he calls the point by a different name. We express this
by saying
&' (z') = ¢(z) (9.9.3)
where z stands for all three coordinates. Thus a scalar is invariant under a rotation of axes. (It may
also be invariant under other transformations, such as reflections, but we restrict our discussion to
rotations.)

By contrast, if W is a vector field, it will appear to have different components at one and the
same point to the two observers. To be precise,

3
W, (&) = Z Ri, W, (z). (9.9.4)

Note that the components of W transform the same way as the components of 7, as is clear from
Eqns. (9.9.1-9.9.4). Indeed by definition, a vector in three dimensions is any object described by
three components which respond to coordinate transformations the way T does.

We are now ready to discuss tensors. Consider first a situation where one vector, the cause,
produces another, the effect. For example, according to Newton a force F produces an acceleration
@ . The relation between the two is

ma. (9.9.5)

Likewise in a wire, the applied electric field

F =
-
E causes a current density J given by
J

=cE (9.9.6)

which is just Ohm’s law written in terms of the field and current density instead of voltage and
current. The proportionality constant o is the conductivity.

Note that in both cases the effect is linear in the cause and parallel to it, allowing us to relate
the two by a scalar, m or o. But what if the cause and effect are still linearly related but not parallel?
For example if one takes electrons in the = — y plane, and applies a magnetic field perpendicular
to it, one finds that an electric field in the plane will produce a current in the plane, linear in the
field, but no longer parallel to the field. The linear relationship takes the form

Jr = OzzEx+ozyEy 9.9.7)
Jy = UyzEz + oyy Ey (9.9.8)

ji Z o0 E (9.9.9)

You will recognize this as a matrix relation

ji=oE (9.9.10)
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in which the conductivity matrix o, converts the applied field to the current by matrix multiplication.
But it is also a tensor equation and o;; are the four components of a second-rank tensor. This name
implies something very definite about how things look in a rotated frame. So let us see how the

-
above equation appears in a rotated frame. First, since j and E are vectors, the old components
are related to the new ones by

i = Rj (9.9.11)
E' = RE, (9.9.12)
where R is the rotation matrix. Thus Egn. (9.9.10) can be written as

RTj’ = oRTE' (9.9.13)

i’ = RoRTE (9.9.14)

2 2
J. = Z Z RzaRlbUabE[ . (9.9.15)
a=1 b=1

Now, the observer in the primed frame will relate the current density and field using a conductivity

tensor a;l defined by
2

i = Za;lE;. (9.9.16)
1=1
Upon comparing the two preceding equations we find

2 2
oy = Z Z R,oRip04p- (9.9.17)

a=1 b=1

When we compare this transformation law to the one for vectors, we notice that the tensor has two
indices and each gets rotated by its own R matrix. The rank is two because the tensor has two
indices.

In the same fashion, a tensor of rank three will have components T;;, which transform as

follows , 3
T= Y RiaRjoRicTabe. (9.9.18)

a=1 b=1 c=1
It is not possible to view this tensor T" as a matrix.

In general a rank N tensor will have N indices and need a product of N rotation matrices
to rotate each of its indices. In this terminology a scalar has rank 0, and a vector has rank 1. This
definition works in all dimensions.

Einstein proposed that in dealing with tensors we adopt the convention that any repeated index
is to be summed over. In the Einstein convention the above equation is written as

1

T’]Ic = RiaRjpRicTabe- (9.9.19)

We will follow it from now on.
The process of summing over a common index is called contraction or the inner product and
it reduces the overall rank by two. For example in

Jv = 0i; Ej (9.9.20)

we have on the left a rank one object and on the right a sum over products of a rank two object
and rank one object. However the whole right-hand side transforms like a rank 3 — 2 = 1 object
due to the sum or contraction over the index j.
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How does contraction get rid of two indices? Consider a contraction you already know: the
dot product of two vectors

b=ViW, =V - W 9.9.21)

Potentially this has two indices. Let us look at its transformation law:

¢ =V; W, = Ria Ry VaWs, = RL Ry VaWy, = (RT R)ap VoW = 8ap VoW, = VaWa = ¢
(9.9.22)
Thus ¢ is a scalar that goes into itself, i.e., has rank zero. Note how the two R’s neutralized each
other because they were inverses. This is generally what happens in a contraction.
Given two vectors V and W, one can form a second-rank tensor T with elements:

T;; = V\W,. (9.9.23)

This is called an outer product. (In contrast to the inner product or contraction, the outer product of
two tensors gives a tensor of higher rank.) The rotation properties of this object are transparent and
assure us of its rank two tensorial character. In d dimensions it will have d2 components. However
it is possible to form rank two objects with fewer components. Consider in three dimensions the
tensor

Ay = VW5 =W, V;. (9.9.24)

Notice that:
Ay = —Ay (9.9.25)

i.e., the tensor is antisymmetric in its indices. This means in particular that A;; = 0. The six nonzero
components are not fully independent due to antisymmetry: given A;2, A23, A31, the other three
follow. Thus an antisymmetric tensor in three dimensions has by coincidence the same number of
independent components as a vector and can be treated as such. You will no doubt know what this

vector is called: it is the cross product of V' and W. (This coincidence is what makes it possible
to uniquely define the cross product of two vectors as a vector perpendicular to both.)

If you have been following this discussion carefully you will have noted the following: while
it is true that the antisymmetric tensor A has six nonzero components, it remains to be shown that
the components in the rotated frame will be related to those in the old frame before we can call it
a second-rank tensor. Let us verify this:

Ay = VW =WV, (9.9.26)
= RioRjp3VoWp — RigRjpWo Vp (9.9.27)
= RigRjp(Vo Wy — WoWp) (9.9.28)
= RiaRjpAgp. (9.9.29)

The point to note is that the transformed antisymmetric tensor is expressed in terms of the old one
and nothing else.

Sometimes a tensor can have the property that its components are same in all coordinate
systems. Consider the tensor with components

T, = &;. (9.9.30)

In a rotated system the components will be

’

T.; = RiaRjpbab (9.9.31)
= RiaRja = RiaRY; = 6i;. (9.9.32)
Notice that the invariance is with respect to rotations and not some arbitrary transformations.

Since ,
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we may write

’

Rij=—% (9.9.34)
ij ; 9.
and define a vector as one which transforms as
i oz J 9.

and tensors of higher rank in a similar fashion. The power of this definition is that even if the
primed and unprimed coordinates are not linearly related, (as they were in the case of rotations),
the definition holds. | mention this for your future use and will not discuss it further.

Before continuing with more tensor analysis, let us consider a few more examples of tensors.

If you spin an ellipsoid along its long axis going through its center of mass, (call it the y-axis)
with some angular velocity, it will have a certain angular momentum in that direction. If you spin it
around its short axis (call it the z-axis) with the same angular velocity it will have a different (larger)
angular momentum parallel to the angular velocity. It follows that if you spin it along an axis half
way between the two, i.e., such that the angular velocity has equal z and y components, the angular
momentum will not have equal = and y components, i.e., will not be in the same direction as the
angular velocity. Thus in general, we will have

L; = Lijw,, (9.9.36)

where T and @ are the angular momentum and velocity and I;; is called the moment of inertia
tensor. (We have been using I to denote the unit matrix. But I is also a commonly used symbol for
the moment of inertia. To prevent confusion, in this section we will use I to stand for the moment
of inertia only.)

If an object is made of point masses m* with coordinates 1? I is given by
L, = Zmo‘(élj(ro‘)z —rird) = Zlf; (9.9.37)
[23 [23

Thus the moment of inertia tensor I of a collection of objects is the sum over the moment
of inertia tensor I,; of each object. This is a nice example of tensor addition. As with vectors,
the addition of tensors is possible only between tensors of same rank (same number of indices) and
dimension (the indices run over the same range) and done component by component.

Let us consider an example. A rigid body is made of masses placed at the edges of a unit cube
in the first octant, with one corner at the origin and its edges parallel to the axes. At each corner
the mass is m times the sum of the coordinates. For example at (1,1, 1) we have a mass 3m. The
moment of inertia of this object is

16 -5 -5
I=m| -5 16 =5 |. (9.9.38)
-5 -5 16

Problem 9.9.1. Derive this expression for the inertia tensor I.

By writing out the components explicitly, or by inspecting Egn. (9.9.37), we notice that I is a real
symmetric (i.e., hermitian) matrix. This means that it will have three orthogonal eigenvectors. If w

is along one of them, it follows from Eqn. (9.9.36) that T will be parallel to @. These directions
are called the principal axes of the object. Any object, even a (rigid) elephant, will have three such
axes, a fact that is not so obvious physically (but well-known to elephant twirlers) but follows from
the theorem about hermitian matrices.
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Problem 9.9.2. (a): An object is made of eight equal masses m placed at the edges of a unit cube
centered at the origin. Find its moment of inertia tensor for rotations about the origin. Find its
eigenvectors and eigenvalues. Note that due to degeneracy, any axis is an eigen or principal axis.
Now you would have expected this for a sphere but not a cube. The result however follows from
the mathematics done earlier in this chapter.

(b):  Find the moment of inertia tensor if only two of the masses, at coordinates
+(1/2,1/2,1/2) are present. What are the principal axes and moments of inertia? Try to guess
at least some parts of the answer before doing the calculation. (Hint: Can you line up the masses
along some axis? What will be the inertia for this case? Given this axes, where are the other two
axes?)

If the object has a continuous distribution of mass, I can be written as an integral. It will still
be hermitian and all of the above results will hold.

Consider next a crystal to which we apply an electric field. This will cause the cloud of
electrons in each atom to shift away from the nucleus, producing a dipole moment, defined as the
product of the electron charge and the separation from the nucleus. The dipole moment per unit

volume is called B, the polarization. Once again if the crystal has different polarizability in different
directions, the polarization and electric field vectors will not generally be parallel. The two will be
related by

P, = a;; Ej, (9.9.39)

where a,, is called the polarizability tensor.

After these examples, we return to the general study of tensors. Now, we have defined a vector
by the transformation rule Eqgn. (9.9.35) repeated below:

’

V’— 81'7‘/
i _az] J°

. -_
Now | will point out another vector you know which does not obey this rule! Consider V ¢, the
gradient of a scalar. Its components in the primed frame will be

vV, = 8_¢: (9.9.40)
Oz,
- 560, (9.9.41)
c')a:j Oz,
Oz,
= vy, 9.9.42)
c')zi J (
In general
. o,
025 , 02 (9.9.43)
oz, * Oz

and one must make a distinction between the two vectors: those that transform like 7 and are
called contravariant vectors and those that transform like the gradient and are called covariant
vectors. (Tensors of higher rank will be similarly classified with respect to each of their indices.) The
reason we did not make the distinction is that in the case of rotations

ZZ{ — R (9.9.44)
T;
= R (9.9.45)
oz,
= & (9.9.46)

6.Tj '
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For most purposes the above treatment of tensors will do. The notable exception is relativity.
You will learn about the unavoidable distinction between covariant and contravariant tensors in
special relativity. You will also learn the electric and magnetic field are really the six independent
components of an antisymmetric tensor f,.,, where the indices run over four values (three for space
and one for time). As for general relativity, the bad news is that you will need to know a lot more
tensor analysis than we have covered. The good news is that it is usually taught as part of the course.

9.10. Summary

Here are the key ideas from this chapter.

e You must know that there are axioms that define a linear vector space. Prefer-
ably you will know them by heart.

¢ Definition of linear independence, basis, dimensionality, components, unique-
ness of expansion.

e Know how to add abstract vectors (component by component) and multiply
them by scalars.

e Know the concrete formula for the inner product in an orthonormal basis:

VIw) = viws

i

and that it is linear in the ket, antilinear in the bra, and that (V'|V') vanishes
only when the vector does.

e Know how to expand a vector |V} in terms of a given orthonormal basis. In

other words, if
V)= vili)

then the coefficients of expansion are

v; = (i|V).

e Know that there exists a Gram—Schmidt procedure and the key idea behind
it.

e The Schwarz and triangle inequalities:
(VW) < V] W]

[V+W|<|V|+|W].
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Definition of a linear operator
Qa|V) +b|W)) = aQ|V) + QW)
and the mnemonic for finding the matrix elements
Qi = (ils") = GlQlj)-
The eigenvalue problem
Q) = wlw)

is solved by (i) writing all the entities in a basis, (ii) finding the roots of
the characteristic polynomial P(w) = |2 — wI|, (iii) and plugging in the
eigenvalues one at time to get the eigenvectors (up to a scale). Be aware that
if there is degeneracy, special treatment is needed.

Know that the eigenvectors of a hermitian operator are orthogonal and eigen-
values are real. These eigenvectors form a basis.

Good knowledge of coupled mass problem, normal modes and solution for
propagator in terms of the former. In other words, given an equation

&) = M|z)

(i) find the eigenvectors of M (which form an orthonormal basis), (ii) expand
the initial state in terms of them by taking the appropriate inner products, (iii)
attach to the expansion coefficients the simple cosine time dependence (for
the case of vanishing initial velocity) to get the state at future times.

Know that a stationary point of f(z,y) is a maximum, minimum, or saddle
point according as the eigenvalues the matrix of second derivatives are both
negative, positive, or of opposite sign. Know the generalization to functions
of more variables.

Be familiar with the idea of functions as vectors; their inner product

(flg) = /f (z)dz

and the notion of functions being normalized or orthogonal on the basis of
this inner product.

Know that —¢D is hermitian with respect to periodic functions and generate
orthonormal bases functions \/— exp[#%™m2Z] obeying

, L 2nimz | 1 2rim'z
(m|m ) = :/——Eexp —T \/—Eexp T = 6mm'-
0
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In terms of these we obtain the exponential Fourier series:

|f>: Z fm|m> fm:<m|f>

m=0,%1,..

while in concrete form
1 2mimz L 2mimzx
f(x)—;fmﬁexp{ I } fm—A exp [— 7 ]f(a:)dz

Similarly —D? has sines and cosines as its eigenfunctions and permits the
expansion in Fourier trigonometric series:

f(z)= a—0+ ia 2cos 2mrz + ib 2sin Zmrz
NG VI L m:lva L

m=1

which is the concrete version of

oS} 2
= Z mealma

m=0a=1

where « is a label within the degenerate space at each m that tells us if it is a
sine or cosine. (In the sector m = 0, there is no sine.) To find any coefficient
of expansions we dot both sides with the corresponding eigenfunctions. For

example 5
2 27 - 17 -2
bi7 :/ —sin ————— f(z)dz.
o VI L

For nonperiodic functions we resort to Fourier integrals:

fa = [ s = [ e

— 00

The Dirac delta function §(z — z¢) is nonzero only at x = z¢ where it is
infinitely-tall in such a way as to enclose unit area. As a result

/ F(2)8(x — zo)dz = f(z0).
<zo<b

The delta function has the following expansion:

o
5(x—y)=/ Sy,
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e The equation of the vibrating string
1% %
v2 9t2  9z?
(for vanishing initial velocity) is dealt with as follows. We expand v (z, 0)

in terms of the eigenfunctions of D? (vanishing at the ends = 0, L) and
append a cosine time dependence for future times:
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DIFFERENTIAL EQUATIONS

10.1. Introduction

The quadratic equation
az?+bz+c=0 (10.1.1)

is an example of an algebraic equation, one in which the unknown and powers of the
unknown appear, and our task is to determine the unknown given this information.
A differential equation on the other hand, expresses a relation between a function
and its derivatives, using which we are to deduce the function. We have encountered
a few even before we got to this chapter. Here is a familiar example:
2
i—t;-’+w2x=o (10.1.2)
which describes simple harmonic motion. Another example is the wave equation
for the vibrating string:
1 0%y 0%y
v2 9t2  dz?
Another famous example, not discussed in this book is the sine-Gordon equation:

=0. (10.1.3)

10% 8%

v—25t—2—8?+8in1/}=0. (10.1.4)

In each example, we are to find some unknown function given some informa-
tion relating the function and its derivatives. When we do this, we will have solved
the differential equation. We will learn now to classify equations and to solve a
few of the simpler ones. There are many tricks of the trade but nothing changes
the following rule of the game: it doesn’t matter how you get the solution: if you
feed it into the equation and it satisfies it, you win.

A differential equation is said to be a partial differential equation or PDE if
partial derivatives enter the equation. The wave equation and sine-Gordon equation
are such equations. If only ordinary derivatives enter, as in the harmonic motion
example, we have an ordinary differential equation or ODE. A differential equation
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is linear if the function and its derivatives appear linearly in the equation; if not, it
is a nonlinear equation. The sine-Gordon equation is nonlinear and the other two
are linear. A differential equation can have constant coefficients (such as the w? in
the harmonic example) or variable coefficients as in the following example:
2

%H%:o (10.1.5)
where the coefficient of = depends on the independent variable ¢. Finally the order
of the equation stands for the highest derivative occurring in the equation. All three
equations discussed above are second order.

In dealing with these equations, you must remember that z can sometimes
be the dependent variable and sometimes the independent variable. For example
in the harmonic oscillator equation, it is the dependent variable depending on the
independent variable ¢, whereas in the wave equation it is the independent variable
(along with ¢) on which ¢ depends.

We can of course combine adjectives: the harmonic oscillator example is an
ordinary, linear, second-order equation with constant coefficients, while the sine-
Gordon equation is a second-order nonlinear partial differential equation with con-
stant coefficients.

A property of linear equations that will be repeatedly invoked is the principle
of superposition:

Any linear combination of the solutions of a linear equation is also a
solution.

This principle is so important, we will go over it again despite having done
so earlier in the book. We will work with a concrete example leaving its obvious
generalization to you.

Let us be given that

d?z d
7?+t2§+5t3z1 - 0 (10.1.6)
d?z d
d:;2+t2dit2+5t3:c2 - 0 (10.1.7)

so that z; and x5 are solutions to the same linear equation. If you multiply the first
equation by a constant c; and the second by constant co and add them, you can
readily show that the linear combination ¢z + coz2 satisfies the equation as well.
All you need is the fact that taking derivatives is a linear operation: the derivative
of the linear combination is the same linear combination of the derivatives. Notice
that even though there are non-linear terms in the dependent variable t, all that
matters is that = appears only linearly.
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The above equation is linear and homogeneous: every term in the equation
goes as the first power of ». The superposition principle can be generalized to the
case where there are terms that go as the zeroth power of . Thus if

2
d“xq odzy

5 i I+5t3m1 = fi(t) (10.1.8)
d? d
T?th?%mt%g = fa(t) (10.1.9)

then the same manipulations will tell us that c1z, + coxo will satisfy the equation
with ¢3 f1 + c2f2 on the right-hand side. In the harmonic oscillator case such a
nonzero right-hand side will stand for any external force acting on the mass in
addition to the spring and friction. The principle of superposition tells us that the
response to a sum of two forces is the sum of the responses.

Of all the adjectives, the most daunting is the word “nonlinear,” it implies
we cannot form linear combinations of solutions to get new solutions, as we can
in the case of linear equations. We will hardly discuss these. As for the rest, the
only cases we will discuss are those that you will encounter in the near future.
No attempt will be made to get deep into this topic since books can be written on
any one of the cases discussed above. The aim of this chapter is to ensure that
you will recognize a differential equation when you see one, have an idea of how
complicated it is, and in the simpler cases have a notion of how to go about solving
it.

10.2. ODEs with Constant Coefficients

Let us begin with a simple example

dx

— = a. 10.2.1
= ° ( )

The equations tells us that the function grows at a steady rate a. For example z(t)
could be the position of a particle traveling at steady speed a or the money in my
bank with a the rate at which I make deposits. (In the latter case, the deposits are
made not continuously but say once a week. Thus z grows in fits. The differential
equation approximates this into a steady growth. On a time scale much larger than
one week, the equation will be a good description of reality.) The solution to the
equation in any event is

z=at+c (10.2.2)

where c in an integration constant. How did we find this solution? We can use
any one of the tricks of the trade, but here we use the one alluded to earlier: simply
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guess it! The constant c enters because the equation only tells us the rate of change
of the function, and this is not enough to nail it down. For example if a is the
speed of a car and z its position, we cannot find z for all ¢ given just the speed;
we have to know where it was at the outset, ¢ = 0. If this information, z(0), is
given to us we can feed that into the equation

z(0)=a-0+c (10.2.3)
and infer that ¢ = z(0). Thus the solution obeying the given initial condition is
z(t) = z(0) + at. (10.2.4)

But you do not need to be given the position at ¢+ = 0, you can be given z(4), the
position at time ¢ = 4. We then proceed as follows:

z(4) = a-4+c (10.2.5)
c = z(4)-4a (10.2.6)
z(t) = z(4)+a(t —4). (10.2.7)

At a formal level, the constant of integration enters because any constant gets
annihilated by the derivative operation, and hence may be added with impunity.
Suppose the equation is

d%y

dt?
Here we want a function whose second derivative is a constant g. Since each
derivative knocks off a power of t we know we must begin with ¢2. The coefficient
is then adjusted to be g/2 to ensure we end up with g on taking two derivatives.
To this answer we can add anything that gets annihilated by the two derivatives:
namely a function linear in time and a constant. Putting all this together, we obtain

—g (10.2.8)

y(t) = —é—gt2 + vt +c. (10.2.9)

Now we have two free parameters whose formal origin was just explained. More
physically, if g is the acceleration of a falling rock, and y its vertical coordinate,
these parameters reflect the fact that its location cannot be determined unless we are
given two extra pieces of information which will nail down v and c. This stands to
reason: Eqn. (10.2.8) describes every rock that falls under the earth’s pull. If you
want to know what happened to your pet rock you must add for example what its
initial height y(0) and velocity y(0) were. Then you will proceed as follows:

y(0) = %g~02+v-0—}-c:c (10.2.10)

9(0) = g¢g-0+4+v=uv so that (10.2.11)
1

y(t) = =gt +g(0)t + y(0). (10.2.12)

2
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The trend you are seeing is real: an n-th order equation will have n free parameters
in the solution. We shall get a better understanding of this fact as we go along. (The
parameters can enter the solution in various ways, additive constants, multiplicative
constants, etc.) The general solution can then be tailor made to fit a given situation
by imposing n conditions that fix the parameters. A simple choice is to impose the
value of the function and n — 1 derivatives at the initial time. In some situations
other choices suggest themselves. Consider a mass m attached to a spring of force
constant k executing simple harmonic motion at frequency w = /k/m. The motion
is described by Equation (10.1.2). By inspection we see that the solution is

z(t) = Acoswt + Bsinwt. (10.2.13)

We can of course nail down A and B in terms of the initial position and velocity.
But consider the following problem from Lagrangian mechanics where we need to
compute S, the action defined as

t2
Slz1,t1;22,t2) ‘—‘/

t1

2
m., mws 4
—z - —— 10.2.14
[2 T 3 T J dt, ( )

where z(t) is a trajectory that runs through point 1 at t1 and x4 at ta. Thus we
need to tune A and B such that the trajectory runs through the space—time points
(z1.t1) and (z2,t2) and then evaluate S, as a function of these coordinates.

Problem 10.2.1. (Difficult). Show that for the oscillator

Slz1,t1;32,t2] = (22 + %) coswt — 2z179] .
1 2

2sinwt

Problem 10.2.2. Consider the equation ‘fi—f + Az + B = 0. Show that if z(t) is a
solution, so is x(t) + Ce™ A%, where C is an arbitrary constant.
Let us take a second look at

2T L2 =0 (10.2.15)

which we solved by inspection in terms of sines and cosines, and learn how to solve
it by more systematic means. Let us rewrite this as

(D? +whHz =0 (10.2.16)
where D is the derivative operator. Let us assume a solution of the form

= Ae*t. (10.2.17)

Feeding this into the differential equation we find (upon remembering that the
exponential function is an eigenfunction of D)

(0% +w?)Ae =0, (10.2.18)
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which tells us that if A # 0, then o must obey

o2 +w?=0 (10.2.19)
or
a = tiw. (10.2.20)
Thus we find two solutions: .
Ty = ApeTt (10.2.21)

where the parameters Ay are arbitrary.! The most general solution is an arbitrary

linear combination ‘ '
z(t) = Ape™ + A_e ™t (10.2.22)

If we want, at this stage we can rewrite this in terms of sines and cosines as
z(t) = C coswt + D sinwt (10.2.23)
which in turn could be written as
z(t) = E cos(wt — @). (10.2.24)
Problem 10.2.3. Find E and ¢ in terms of C and D above.

Thus we see that the differential equation with constant coefficients can be reduced
to an algebraic equation by looking for solutions of the exponential form. Once
again I remind you that this is possible because the action of D on exponential
functions, which are its eigenfunctions, is multiplicative. More generally if

(@anD™ 4+ an_1D" ' 4. 4 ag)z=0 (10.2.25)

the answer is a sum of exponentials
n
T = ZA,-eW, (10.2.26)
1=1
where «; are the roots of the algebraic equation

(ana™ +an_1a™ 1+ - +ag) = 0. (10.2.27)

Problem 10.2.4. Find the general solution to (D* — w?)z = 0. Find the parame-
ters that ensure that x(0) = 2, z(0) = 0.

Problem 10.2.5. Find the general solution of (D3 — D? + D — 1)z = 0. (Find
one root by inspection and then proceed.)

LIf we want to describe a problem where x(t) is real, we must choose these constants to be complex
conjugates.
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There is clearly a problem when two of the o’s become equal: we can only obtain
one solution from our procedure. We proceed as follows. We argue that if o3 and

ag are roots then
ealt _ 6a2t

w=""°" (10.2.28)

Qa1 — a2

is also a solution by linearity. In the limit of equal roots, this solution is finite and

reduces to
de at

do
Thus the general solution when both roots equal «, is the linear combination

Y = = te® (10.2.29)

z(t) = (A + Bt)e™. (10.2.30)
Problem 10.2.6. Verify that Eqn. (10.2.30) is indeed a solution to (D — a)%z = 0.

There is another way to deal with the degenerate roots case which I mention
because the same strategy works in many places when faced with a degeneracy. If
o is a repeated root, so that 2; = e®! is a solution, we look for another solution of
the form

zo(t) = z1(t) f(t), (10.2.31)

where f(t) is to be determined by feeding this ansatz into the differential equation.
The details are left to the following exercise.

Problem 10.2.7. First show that (D — «)e®t f(t) = e**D f. Then show that (D —
a)?et f(t) = e®* D2f. Argue on the basis of the above that (D — a)?z = 0 has a
solution of the form e®t f(t), where D?f = 0. Make contact with Eqn. (10.2.30).

Problem 10.2.8. Find the solutions to

() (D2 +42D + 1)z(t) =0 with z(0) =1, £(0) =0
(ii) (DA +1)z(t) =0
(iti) (D3 —-3D?-9D —5)z(t) =0 (5is a root)
(iv) (D4 1)%(D* - 256)z(t) =0

Let us study a problem of some physical interest in some detail. Consider the usual
mass spring system with an additional frictional force —2m~z so that the equation
of motion is

(D2 +2yD +w?)z = 0. (10.2.32)

We will (i) find its general solution, (ii) analyze the different domains of parameter
values.
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The roots now obey
o2+ 2va+w?=0 (10.2.33)

a=—vEv2 - w (10.2.34)

There are three classes of solutions.

and are hence given by

e w > v underdamped
e w = ~ critically damped
e w < v overdamped
In the underdamped case the solutions are of the form
z(t) = e M[Ae™t + Be ™Y (10.2.35)
e~ "[C cosw't + D sinw't], (10.2.36)
where A, B, C, D are free constants, w’ = y/w? — v2, and I have written the answer
both in terms of exponential and trigonometric functions.
In any event, this solution corresponds to oscillations that get damped with

time and become negligible for vt >> 1.
In the case of critical damping, the roots are equal (to —~) and the solution is

z(t) = (A + Bt)e . (10.2.37)

There are no oscillations.
Finally, in the overdamped case, we have two falling exponentials:

z(t) = Ae™ "+t 4 BeT -1, (10.2.38)
where
v+ =9 F V2% - w2 (10.2.39)
Consider now an extension of Eqn. (10.2.25) to the inhomogeneous version:
(@anD™ 4+ an_1 D™+ tag)z = £(1). (10.2.40)

In the mass spring case, this would correspond to turning on an external force f.
Let us begin with a special case

f(t) = Fe'® (10.2.41)
with the usual understanding that the real part will be taken at the end. In this case
we assume that z(t) has the form

z(t) = zoe™™® (10.2.42)
and solve for the prefactor z¢. It is readily seen that

Feiﬂt

(@n ()™ + an_ 1)L + -+ ag) (10.2.43)

r =
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Problem 10.2.9. Provide the missing steps in the above result.

What happened to the n free parameters expected in an n-th order equation?
As explained towards the end of Chapter 5, they are still lurking around, since we
can add to this solution the solution when we had no f(t): the linearity of the
equation allows us to add the responses when we add the forces and we adding
the response to the forces f(t) and 0. The final answer is

T =ap(t) + 2c(t), (10.2.44)

where xp, the particular solution is given by the function in Eqn. (10.2.43) and is
dependent on the applied “force” f(t), the complimentary function z . is specified
by Eqns. (10.2.26,10.2.27) and is present even if f is absent. In the mass spring
case, the latter corresponds to what happens when we give the oscillator a kick and
let it vibrate on its own. In the circuit case an example of a complimentary function
(or transient) occurs when we charge up a capacitor in an LCR circuit and close
the switch.

If the right-hand side is a sum of exponentials, we can again use linearity and
add the corresponding particular solutions to get the net particular solution.

Here is a simple example. Suppose we are to solve

Z + 3% + 2z = 2cosh 3t (10.2.45)

The roots are @« = —2,—1 for the complimentary part. As for the particular
solution, let us use 2cosh¢ = e3! + ¢3¢ and deal with one exponential at a time.
The particular solution to the problem

i+ 3%+ 2r = €3t (10.2.46)
is (upon making the ansatz z(t) = Ae3?),

é,313

zp(t) = m (10.2.47)
The solution for the other exponential is
—3t
#(t) = 5 :3_(_3) ) (10.2.48)
Thus the general solution to the original problem is
_, o 3t o3t
z(t)=Be "+ Ce " + (3253.349) + (—3253 (=312 (10.2.49)

If we want to impose some initial conditions, such as z(0) = 5,z2(0) = 0, we may
do so by imposing the conditions
1
3243342 (3243 (-3)+2)
3 3

0 = —B—2C+(32+3'3+2)—((_3)2_‘_3.(_3)4_2). (10.2.51)

9 = B+C+ (10.2.50)
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There is some problem obtaining the particular solution if the exponential on
the right side of the equation is one of the complimentary exponentials. Thus let
us say we are looking at

(D —a1)...(D — an)z(t) = . (10.2.52)

If & # a;, we can assume z(t) = Ae®®, where A is a constant and solve for A as
usual: 1
A= (10.2.53)

(a —ay)...(a—agn)
What are we to do if o = a; for some i? Let us say it happens for i = n. Now
we make an ansatz z(t) = A(t)e*. Note that A now depends on ¢t. We find

(D —ai)...(D —a)A(t)e® = e (10.2.54)

Now note that
(D — a)A(t)e™ = e*[DA(t)) (10.2.55)

(as you should verify by using the rule for the derivative of a product or recalling
Problem (10.2.7.)). So we are down to
(D —aj)...(D — an_1)e*[DA(t)] = e (10.2.56)

We will now try to see if we can make the ansatz that D A(¢) is a constant C. In
this case the D’s on the left act only on the exponential and turn into «’s giving
us

(@ —a1)... (@ — ap_1)Ce™ = e (10.2.57)
Cancelling the exponentials on both sides, we can solve for C' and obtain
1
C = (10.2.58)

(a —ay)...(a —anp_q)’
Given DA(t) = C, it means A = Ct + B and

teal

(¢ —a1)...(@ —an-1)

z(t) = + z.(t) (10.2.59)
Note that I have not shown the part proportional to B: it can be absorbed in
z(t) which contains the function e®?.

Problem 10.2.10. Consider a damped oscillator subject to a cosine force:
(D? +2yD + wd)z = F cos (10.2.60)

Show that the frequency at which the steady state solution has maximum amplitude,
i.e., resonance, is given by 02 = wg — 22 Let F =25,wp =1, 2y = Q = 2wy.
(i) What can you say about the transient (complementary) part? (ii) Write down
the solution that has initial displacement and velocity zero. (iii) Repeat for the
case where the initial position is unity and velocity is zero and (iv) vice versa.
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Since any periodic function can be written in terms of exponentials, we can find the
response to any periodic force. It follows that in any LCR circuit we can find the
charge (or current) for any applied voltage since @ and = obey the same equations
except for the change of notation (Q — z. I — v etc.).

Problem 10.2.11. Solve the following subject to y(0) =1, y(0) =0

(i) j—y—2y=e*
(ii) (D*-2D + 1)y =2cosz
(iii) y" + 16y = 16 cos 4z
(iv) y” —y = coshzx

10.3. ODEs with Variable Coefficients: First Order

A common case has the form:

— +p(z)y =0. (10.3.1)
dzx
We solve this as follows:
& _ —p(z)dz (10.3.2)
Yy
Y2 ZTo
/ d_y = - / p(z)dz (10.3.3)
v y x;
2 = P(z1) - Plz2) (10.3.4)
Y1
y2 = y(z2) = y(z1)eXE)e P2, (10.3.5)

In the above steps, P(z) is the indefinite integral of p(z). Notice that the constant
of integration drops out in the difference P(z;) — P(x3). Let us now call the upper
limit 2o simply as = and write the solution as

y(z) = y(z1)eP @) PE) = go=P@), (10.3.6)

where we have lumped all the prefactors into a constant A. This is done to show
that the first-order equation has one free parameter in the solution as it should.
Alternately we could go back to the earlier form which relates the free constant to
y(z1) which we are free to choose at will.
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Next consider the extension to the inhomogeneous case:

Z—y + p(z)y = q(z). (10.3.7)
x

Now we look for a solution of the form:
y = e F@y(2) (10.3.8)

and determine v from the equation. Notice that this is getting to be a habit: when-
ever we are trying to solve a problem related to an earlier one, we make an ansatz in
which the solution is the product of the old solution and an undetermined function.
There is no loss of generality here since v is unspecified. Indeed you can look for a
solution of the form V' (z) sinz and solve for V. But the hope is that my v would
be simpler than your V since my v had some relevant information (the solution to
the homogeneous equation) built in.
Feeding this ansatz in we find that v obeys

d
= g(2)eP@ (10.3.9)
dz

which is readily solved to give
z 7

v(z) = / q(z)ePdz’ + ¢ (10.3.10)
y(z) = e F@ [/ g(z")eP@dz’ + ¢ (10.3.11)

Note that the solution has a free parameter c as is expected of a first-order equation.
What about the freedom to add a constant to P(x), the indefinite integral of p? You
may check that it merely redefines c. What about the lower limit in the integral
over z’? When we change it, this too changes c. Thus our only real freedom is in
the choice of c. Let us make this very explicit. Let y = yo at = = zo. This tells
us what ¢ is, and feeding that back we get

x
y(z) = e~FE) U q(z")e)dz’ + yoe”“)] : (10.3.12)
zo

Problem 10.3.1. Solve for ¢ and obtain this result. Verify that when = = zg, y
indeed reduces to yo. Verify also that adding a constant to P makes no difference.

As an example of this approach let us consider

—x
1te ¢ (10.3.13)

y' +
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for which
1
p = 1+ —
T
= z+Inz
z e—z’
y = —z—Inzx / e 1?, - d:I"+C
z
e—I
= —(x+0)
z

Suppose we want the boundary condition

y(1) =0.

This is achieved by demanding

from which we obtain finally

Problem 10.3.2. Show that the solution to

dy 2z
< _y=e
dz y

is

y = ce® + .

Problem 10.3.3. Solve z2y'+2zy—x+1 = 0 (where prime denotes
with y(1) = 0.

Problem 10.3.4. Solve y' +y = (z + 1)? with y(0) = 0.
Problem 10.3.5. Solve =%y’ + 2zy = sinhz with y(1) = 2.

Problem 10.3.6. Solve y' + T + 2z — z? = 0.

Problem 10.3.7. Solve y' + £~ +z — 22 =0
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Problem 10.3.8. Solve (1 + z2)y’ =1+ xy

Problem 10.3.9. Bernoulli’s equation. We will make an exception and handle the
following nonlinear equation since it can be made linear by a trick:

m

v +p(z)y =q(z)y

Show that if we set v(z) = y1™™, v obeys a linear equation

’

v+ (1 —m)p(z)v = (1 — m)q(z).
Use this trick to solve
/ 2
a:y +try==zxy
b:3zy +y+ziyt=0

10.4. ODEs with Variable Coefficients: Second Order and Ho-
mogeneous

Many problems in physics reduce to the following differential equation:
v +p(z)y’ +q(z)y = 0. (10.4.1)

First consider the case where p and ¢ are analytic at the origin z = 0. The strategy is
to follow the method of Frobenius: assume the answer has a power series expansion
about the origin and determine all the coefficients of the series using the equation.
This will give us the answer within the radius of convergence of the series. To
illustrate the method, let us consider a problem where we know the answer:

v +wly=0. (10.4.2)
Assume
o0
y=> cnz" (10.4.3)
0
and feed that into the equation to obtain:
oo
Z [n(n - Dz" 2, + wzcn:v"} =0. (10.4.4)
0

On the left we have sum over different powers of = and on the right a zero. For this
to work, each power must have zero net coefficient: this is because the functions
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z™ are linearly independent (you cannot write one power of = as a sum of other
powers) and the only linear combination that adds up to zero is the trivial one. Let
us now look at the various powers. The first term in the brackets seems to start out
with z 2 corresponding to n = 0. However due to the factor n(n — 1), this one
and the next one, 2! are both absent. Thus both series begin with z°. Equating
the coefficients of successive powers of z to zero, we find the following infinite
set of relations:

22 (22-1ez+w?p) = 0 (10.4.5)
2 (3(3—1)ez +w?e) = 0 (10.4.6)
"% (n(n—ep+weny) = 0 (10.4.7)

The first of these equations relates co to cg:

2

g = —%co. (10.4.8)
while the second relates c3 to cy:
2
c3 = —%cl. (10.4.9)

Thereafter every equation relates c,, to ¢, o by a recursion relation:

w2 w4

a0 " 2T R —)(n—2)n—3) "t

(10.4.10)

Cp =

all the way back to cp or c¢; depending on whether n is even or odd. We are
completely free to pick cp and c1; once this is done, the rest of the coefficients are
fixed: cg fixes co, which in turn fixes ¢4 and so on, while the odd coefficients are
similarly slaved to c;. The general solution is then

2.2 4.4 w2n‘r2n 3I3

w wrx o (D)t ) ez — 3

2 T al (2n)!

_|_..._|_)

(10.4.11)
which we recognize to be an arbitrary linear combination of coswz and sinwz.
Having found the solution this way, we must find the radius of convergence of
the series. In the present case it is infinite. Of course it will be a long way from
there to the other properties of these functions, such as their periodicity, functional
identities (sin + cos? = 1) and so on.

y =co(l—

Problem 10.4.1. Solve the equation y' + ay = 0 using this method.
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We will now consider a problem that arises in quantum mechanics. (Stop shaking
now! You do not have to know any quantum mechanics to follow this discussion.
The example is chosen to bring some drama into your life and to give a feeling
for how real problems are solved by a combination of intuition and mathematical
machinery.) Imagine a tiny particle like an electron that is attracted to some center
by a potential V = 1kz2. In classical mechanics we know it will oscillate with an

%

angular frequency w* = k/m. As for its energy, it can have any value, depending
on zo, its amplitude of oscillation: E = 1kz3 = imw?z?. The lowest energy
is zero, in which case the particle sits at the origin. In quantum theory the whole
description is different. We are told that only certain energies are allowed and these

are given by the solution to the following eigenvalue equation:

v (y) — yPu(y) = —2ev(y) (10.4.12)

In the above, ¢ is the energy F' measured in some units appropriate to the problem:
e=— (10.4.13)

where £ is called Planck’s constant, and likewise y is z measured in some new
units. Thus the allowed energies are (up to a factor -2) the eigenvalues of the
operator D? — y2 whose action on any function is to take its second derivative
and subtract from the result 2 times the function. In general this sequence of
operations will alter the input function in a serious way. But we are looking for
eigenfunctions on whom the effect will be simply rescaling. If the eigenvalue is
the energy, what of the corresponding eigenfunction? Quantum theory tells us
that the absolute value squared of the eigenfunction gives at each point P(y), the
probability density of finding the particle there. In other words P(y)dy is the
absolute probability of finding the particle between y and y +dy. Since the overall
scale of the eigenfunction is determined by the eigenvalue equation, it will be chosen
so that the total probability of finding the particle anywhere adds up to unity:

1=/ P(y)dy=/ V2 (y)dy. (10.4.14)

If we try to solve Eqn. (10.4.12) by the power series method, we will run into
the following problem. If we feed the ansatz

o0

v = Z cny™ (10.4.15)

0

into the differential equation we will find that a given power of y, say y™ has the
following coefficient for generic n:

((n+2)(n + Depyo — cna + 2ecy) (10.4.16)
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which must vanish. This gives a three term recursion relation relating three co-
efficients at a time. Since there are no negative powers of y in the problem, the
equations for n = 0, 1 will contain only two coefficients. For example when n = 0
we will get a relation ecg + ca = 0. If we choose cg arbitrarily, we can solve for
c2 in terms of it. Armed with this, we can go the n = 2 equation and solve for cq
in terms cp, c2 and finally reduce it to an expression involving just cg. Likewise
we can build up all the odd coefficients in terms of ¢;. But if you carry out the
calculation, you will find that it gets very unwieldy in contrast to the case of the
two term recursion relation where each ¢, is a factor times ¢, _o, which in turn is
a factor times c,,_4 and so on.

Problem 10.4.2. Show that

ca = —ecg (10.4.17)

co — 2ecy 1+ 22
= - 10.4.18
4 12 12 0 ( )

Thus we must find a way to convert this to an equation with a two term
recursion relation. (That Eqn. (10.4.12) would give a three term recursion relation
is clear on inspection: in the first term on the left, taking ", we lose two powers
of y, in the second term we put in two extra powers of y, while in the right-hand
side we simply multiply by a constant. It follows that a given power of y then
drags in three different ¢’s.)

Now there is no simple trick for converting this problem to one with a two
term recursion relation. However the following steps, which are pretty standard,
lead to the desired goal. First we ask how the solution behaves at small and large y.
At small y, we ignore the y2 term in the equation and see that the answer is given
by a superposition of sine and cosine. Neglecting terms of order y2 and higher in
the solution (as we did in the equation), we find the solution goes as a + by. At
very large y, we ignore the right-hand side and are left with

v" = y2y (10.4.19)
which is solved in this limit by
b = y™e=V'/2 (m finite) (10.4.20)
since
" = lim (ym+2eﬂ:y2/2 [1 n 2m ;F 1 + m(m4— 1)]) (10.4.21)
y—oe Yy Yy
— %y (10.4.22)

We will reject the growing exponential since we wish to normalize the square
integral of ¢ to unity and this is not possible if it blows up at infinity. We therefore
write )

¥ =u(y)e ¥ /2 (10.4.23)
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where u will go to a constant as we near the origin and grow as y™ for large y.
It is our hope that having fed all the extra information at various limits into the
ansatz, the solution of u will prove a lot easier. The equation for u is easily seen
to be

u” —2yu’ + (26 — Du = 0. (10.4.24)

This does not look any easier, but if you have been following the earlier discussion
you will see that it admits a two term recursion relation: the first term knocks out
two powers of y, while the remaining two do not change the power — the last one
because it is simply multiplicative and the middle one because it reduces a power
by differentiation and puts it right back when multiplying by y. The equation tells
us that if

o0

u=> any" (10.4.25)
0
then
> [y (ann(n — 1)) + y"an(2e — 1 - 2n)] =0. (10.4.26)
0

Due to the factor n(n — 1), the first sum (involving y™~?) really begins with n = 2.
Defining a new label m = n — 2, which runs from 0 upwards the first sum becomes

Dy (amaa(m +2)(m +1)). (10.4.27)
0

Let us now change the dummy index m into n and combine the two sums to

>y [(any2(n +2)(n+1) +an(2e —1—20)] =0 (10.4.28)
0

from which we deduce the two term recursion relation valid for all n:

1+ 2n — 2¢

An42 = man. (10429)

As in the case of the sines and cosines, we can once again choose ap and a3
arbitrarily and the rest will be determined by the above relation.

This is fine as far as the equation goes, but the physics isn’t quite right. You
might have learned in elementary physics courses that the energy of a quantum
oscillator is limited to some special values. In our solution we saw no restriction—
indeed, ¢ did not even have to be real!

Now the inventors of quantum mechanics could not quote physics text books
yet to be written! What did they do at this point? They responded to an internal
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alarm that goes off at this point. Suppose we continue with the process and try to
choose the overall scale of the eigenfunction so that

1 = /oo P(y)dy (10.4.30)
= /oow2(y)dy (10.4.31)
= /w eV u2(y)dy. (10.4.32)

It is clear that no choice of overall prefactor will allow us to normalize the eigen-
function to unity if the integral of 2 is divergent. Now the function e~V can
overcome any finite power of y at large y and render the integral convergent. How-
ever our power series solution go on forever. You may check for yourselves that
the ratio of successive coefficients in both the even and odd series both series obey

an+2
an

2
— — for large n (10.4.33)
n

which is exactly how the series for eV’ behaves. Thus ¥ is going like e~V /2y ~
e~V'/2ev" = ¢¥’/2 which makes it impossible to normalize the probability. Now
we have gone from riches to rags: from having two solutions at any energy, we are
reduced to having none! Before reading on you should think what you would do if
you had invented quantum mechanics and had come this far.

The answer lies in the recursion relations Eqn. (10.4.29). Observe that if the
energy ¢ just happened to be a half integer, ie., 2c¢ = 2m + 1, where m is an
integer, then am+o would vanish as would all subsequent coefficients that relied
on it. For example if ¢ = 7/2, then a5 = a7 = --- = 0 while if ¢ = 9/2, we
would have ag = ag = --- = 0. The strategy is clear: if the even powers stop after
m terms, we kill the odd series by choosing a; = 0, while if the odd series is a
polynomial, the even series is killed manually. In either case, we have quantization
of the energy

E =chw =(m+1/2)hw (10.4.34)

and a corresponding set of normalizable eigenfunctions. The polynomials we get
as solutions for v are called Hermite polynomials and these are denoted by H,(y).

Problem 10.4.3. Show that the first four Hermite polynomials are

Hy = 1 (10.4.35)

H = 2 (10.4.36)

Hy = —2(1-2y% (10.4.37)
2 3

Hy = -12(y - 2v°) (10.4.38)
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where the overall normalization (choice of ag or a1) is as per some convention
we need not get into. To compare your answers to the above, choose the starting
coefficients to agree with the above. Show that

{o o}
/ eV Ho(y)Hum(y)dy = 6nm(v72™n!) (10.4.39)
— 00

Jor the cases m,n < 2. Notice that the Hermite polynomials are not themselves
orthogonal or even normalizable, we need the weight function eV’ in the inte-
gration measure. We understand this is follows: the exponential factor converts
u’s to ’s, which are the eigenfunctions of a hermitian operator (hermitian with
respect to normalizable function that vanished at infinity) and hence orthogonal
Jfor different eigenvalues.

Problem 10.4.4. Consider the Legendre Equation
(1—2?)y” =22y +1(1+1)y =0 (10.4.40)

Argue that the power series method will lead to a two term recursion relation and
find the latter. Show that if | is an even (odd) integer, the even(odd) series will
reduce to polynomials, called P;, the Legendre polynomials of order I. Show that

Py = 1 (10.4.41)
P = =z (10.4.42)
Py, = %(3x2—1) (10.4.43)
Py = %(5x3—3$) (10.4.44)

(The overall scale of these functions is not defined by the equation, but by conven-
tion as above.) Pick any two of the above and show that they are orthogonal over
the interval —1 < z < 1.

Problem 10.4.5. The functions 1, x, x2,--- are linearly independent—there is no
way, for example, to express x3 in terms of sums of other powers. Use the Gram—
Schmidt procedure to extract from this set the first four Legendre polynomials (up
to normalization) known to be orthonormal in the interval —1 < z < 1.

10.4.1. Frobenius method for singular coefficients

Consider now the differential equation

22y + 2y + (422 - 3)y = 0. (10.4.45)
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The ansatz
oo

y = chx" (10.4.46)
0

leads to the conclusion that ¢cg = ¢; = 0 upon considering the coefficients of z°
and z. Since the recursion relation relates c,, t0 cj2, it follows that only a trivial
solution (zero) of this form exists. On the other hand, the equation does have some
nontrivial solutions. The point is that these are not analytic at the origin as was
assumed in the ansatz. This becomes more manifest if we divide the whole equation
by 22 so that the coefficients of ' and y diverge as 1/z and 1/z2 at the origin.
Frobenius’s idea is to assume that a solution in the form of a generalized power
series:

(e 0]
=2°) cna” (10.4.47)
exists for some suitable s; that is to say, apart from one prefactor, the solution has
a Taylor series. (Note that by definition cg # 0, since if you say the series begins

with ¢;, you are merely shifting s to s + 1. Thus given that the smallest power in
the series is s, we must have cg # 0.) Proceeding as usual, we find:

Z (n+s)(n+s—1)+(n+s)—3lz" e, + 42" T2, =0, (10.4.48)
0

Setting the coefficient of z° and z°*! to zero we find

(s2=38)cp = 0 (10.4.49)
[(1 + 3)2 — 3] c; = 0 (10.4.50)
from which we see that
s = +V3. (10.4.51)
¢c; = 0. (10.4.52)

Equation (10.4.49) which determines the value of s is called the indicial equation.
Equating the coefficients of 51", n > 2, we find the recursion relation

4
. S 10.4.53
Cn+2 12t s2 3" ( )

and we get two solutions corresponding to the two choices of s.
Problem 10.4.6. Write the general solution out to cs.

I will briefly discuss the general situation for equations of the form

22y + zp(z)y’ +q(z)y =0 (10.4.54)
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where p(z), ¢(z) have a Taylor series at the origin.2 Here is a list of possibilities
when the indicial equation is solved.

o The indicial equation has distinct roots, s1 and s3. There will be two linearly
independent solutions of the form z°! or z°2 times a power series starting
with the zeroth power of z. The coefficients of the series are to be found
from the recursion relation. The starting coefficients will be arbitrary in
each solution and constitute the two free parameters in the solution of this
second-order equation.

e The roots are degenerate, s; = s2 = s. One solution y; will be of the
assumed form, the generalized series, starting with z°. The second solution
will have the form

[e o)
y2=yi1lnz +2°) bna", (10.4.55)
0

where the coefficients can be determined by feeding in this ansatz. We can see
why the solution has this form and also how the coefficients of this solution
are related to the general solution of the recursion relation as follows.

Let us view the degenerate case as the limit of s; and s5 that approach each
other. Then the linear combination

51 Zgo an(sy)z™ — %2 Zgo an(s2)z™ (10.4.56)
s$1 — S2

is also a solution, where the coefficients a,(s1,2) are the solutions to the
recursion relation for the cases s1 2 with ag(s1) = ao(s2). The latter is done
so the coefficients in the two series approach each other as the roots do.
With this choice we see that the solution above is simply a derivative with
respect to s:

Y2

is [x Zan(s)x"] (10.4.57)

0

d
= Inz z° Zan s)z" + z° Z an(s ;l:" (10.4.58)
which has the form stated in Eqn. (10.4.55). We are of course free to multiply
the whole solution by any overall factor and also add to it any multiple of y;.

o The roots differ by an integer. What can be the problem now? Can we not
use the recursion relations and get two solutions each beginning with different

2The series could be centered at any other point. We shift our coordinates until it becomes the origin.
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powers, and obviously linearly independent? Not always! This will now be
illustrated via Bessel’s equation

x2y” + xy’ + (x2 — 1/2)y = 0_ (10.4.59)

Feeding in the series we find

D an[(n+8)? =022 4> ana T =0, (10.4.60)
0 n

Equating the coefficient of z* and z°*! we find from the indicial equation

s==%xv, a1 =0. (10.4.61)

If v is not an integer, we get two linearly independent solutions, called
J+u(z), the Bessel functions of the first kind and of order tv.

Let us look at the general recursion relation

an_2
n=——a 10.4.62
@ (n+s)2 - v2 ( )
for the case v an integer and the choice s = so = —v, the smaller root.

Notice that when n = 2v, (which is the difference between the two roots),
an blows up! To avoid this we must choose all the preceding coefficients
ap,a2...ap—2 to be equal to zero. It follows that the solution yo actually
begins with z 7*+2” = ¥ and coincides with y;.

If one chooses the coefficients continuously in v one finds in fact that

Jn(z) = (1) J_n(2). (10.4.63)

To find the second solution for v = n, called the Neumann Function we must
form the linear combination

Na(z) = lim cos(m./)J,, - J_,,.
v—n sin(rv)

(10.4.64)

These functions are singular at the origin. When you learn about Bessel
functions later, you will surely delve deeper into these points.

Let us return to the general case of s; = s + m, focusing on the solution yo
corresponding to the smaller root. You can show (see the following exercise)
that if we proceed naively a,, will blow up, (just as in the case of the Bessel
functions), since the formula for it will involve dividing by the left-hand-side
of the indicial equation with the replacement s — so +m = s;. Unless a
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compensating zero occurs miraculously in the numerator (in which case we
can proceed naively) the following modification is needed: one must assume

e o]

y2(z) = Ayi(z) In(z) + 2% Y anz”
0

and solve for a,, and A. The latter will vanish in the miraculous case alluded
to, as in part ¢ of Problem (10.4.8.). Also, in some cases the coefficients
in a, will not be totally determined. Do not worry when this happens (as
in parts g and h of Problem (10.4.8.)): the indeterminate parts will define
a function proportional to y;, which can always be added to any valid ys2.
(In the answers given at the end, this part is ignored, or if you want, lumped
with y1.)

Problem 10.4.7. Consider the case where p(z) = Y, pnz™, q(z) = >, qnz™ in
Egn. (10.4.54). Solve for the indicial equation and the recursion relation for a.,
for the smaller root and verify the claims made in the previous discussion.

Problem 10.4.8. Solve the following equations by the method of indicial equations.
Go up to x* or to all orders if a pattern is found.

a: zr+ )Y +(1-2Yy + (@ -1y =
b x(l—z)y” +2(1—-22)y —2y =

1"

c: 2 42y -9y =
1
d: zy"+ -Q—y' +2 =

e: x2y"—xy'+y —

fi: 22y —y' +2y =
gt wy’+ay -2 =
h: z(x—1)2%" -2y

o O O o o o o o

Problem 10.4.9. Solve the following equations both ways: using Eqn. (10.3.11) as
well as generalized power series:

(i) y -2 -22=0,
(i) y +2-23=0

Problem 10.4.10. Solve Laguerre’s Equation which enters the solution of the hy-
drogen atom problem in quantum mechanics

ey’ +(1—xz)y' +my =0 (10.4.65)
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by the power series method. Show that there is a repeated root and focus on the
solution which is regular at the origin. Show that this reduces to a polynomial
when m is an integer. These are the Laguerre polynomials L.,. Find the first four
polynomials choosing co = 1. Show that L1 and Ly are orthogonal in the interval
0 <z < oo with a weight function e*. (Recall the gamma function.)

10.5. Partial Differential Equations

In this section we will discuss just a few of the linear partial differential equations
that you will encounter, once again with the view that you are not trying to learn
all the equations you will ever encounter (there will be enough time for that) but
just a few so as to get a feeling for the subject.

10.5.1. The wave equation in one and two space dimensions

Let us begin with the wave equation which we have discussed at some Iength in the
chapter on vector spaces. We will approach it in a different way here. The wave
equation and boundary conditions for a string of length L are given by

10% 9%
=2 = 2 (10.5.1)
Yz =0,t)=yv(x=Lt) = 0, (10.5.2)

where v is the velocity of propagation of waves in the string. Now we use the trick
called separation of variables which lies at the heart of most of what we shall do
with PDEs. We look for a solution of the form

Pz, t) = X (2)T(t). (10.5.3)

While this is not the most general solution, let us see how far we can go with this.
Feeding in this ansatz we find from the wave equation:
1 d°T d*x
X2)s—=T(t)—5.

(3:)1)2 dt? (*) dz?
Note that partial derivatives have disappeared and ordinary derivatives have taken
their place since the functions in question depend on just one variable. Dividing
both sides by X T (since it is not identically zero) we find

11d%r 142X

= 10.5.5
T v? dt? X dz? ( )

(10.5.4)
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Next we argue that since the left-hand side is a function only of ¢, and this equals the
right-hand side, which has no idea of t, the left-hand side likewise ¢-independent.
By the same logic the right-hand side cannot depend on z. Thus both must equal
some constant, which we call with some foresight, —k2. Thus we have a pair of
ordinary differential equations in place of the original PDE:

d’T

1
S = g2 (10.5.6)
1d 2

N

= —k2 5.
53 (10.5.7)

The solution to the first, with zero initial velocity (a convenient choice, but not a
necessity for this approach to work) is

T(t) = Acosvkt. (10.5.8)
The solution to the second, with the condition that X vanish at z = 0, L is
X(z) = Asinkz k:"L—” n=1,23.... (10.5.9)

Thus we have found an infinite number of solutions of the product form:

T nunt

.n
Yn(z,t) = AnsmTcos 2 (10.5.10)
By linearity any linear combination
— nwx numt
w(x,t)zzl:AnsinTcos 7 (10.5.11)

is also a solution. Consider now some initial value data v (z, 0) that is given. This
allows us to solve for the A,,’s:

oo
nmwxr

¥(z,0) = ;Ansm i (10.5.12)
Since the sines form a complete basis for functions that vanish at both ends, we
can fit any given initial profile with some set of A,’s. Given this the future state
of the string follows uniquely. We will not discuss this case further since you have
seen it in Chapter 9.
Let us instead consider wave propagation in a membrane such as a drumhead.
First consider a square drum of sides L, the type you will find in any physics party.
The wave equation and boundary conditions for the displacement v (z, y,t) are

18% 9% 8%

= = = V2 10.5.13
v2 912 9x2 t 52 oy v ( )
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Y(z=0,y,t) =¢(z =L,yt) =v(z,y =0,t) =¢(z,y = L,t) = 0.
(10.5.14)
(The drum head has one edge at the origin and lies in the first quadrant.) Now we
look for solutions of the form

Y(z,y.t) = X (2)Y (y)T(t). (10.5.15)
Feeding this in and dividing by XY T, we find

11d*r 14d%x 14d%

S =TT Tt o5 10.5.16

Tv2dt2 X dz?2 Y dy? ( )
Once again we argue that the functions of ¢, z, y that appear above cannot depend on
their arguments since they are equal to sums (or differences) of two other functions

that do not depend on them. Thus we write

11d*r 1d2x 1d%

= =t —— 10.5.17
T v2 dt2 X dx? + Y dy? ( )
S——— N ——
=—k2 k2 =—k2 —k2
We are thus left with three ODEs in place of the original PDE:
T"+w?T = 0 w?=(kZ+k2)? (10.5.18)
X"+kK2X = 0 (10.5.19)
Y"+k2Y = 0. (10.5.20)

Solving the equations subject to the boundary conditions we find that the most
general solution is

oo oo
(@) = Y Y Anmsin 7 sin

Y cos(vy/(nm/L)2 + (mm/L)? t).

n=1m=1
(10.5.21)
Problem 10.5.1. Provide the steps leading to the above equation.
The initial value data will be expanded as follows:
nmx mm
(z,y,0 Z Apm sin — 7 sin 7 Y (10.5.22)

The double sine series can be used to expand any function of z and y vanishing at
the boundary according to the following argument. First hold y fixed and expand
the function of z using the sines in z with y-dependent coefficients:

$(@,9,0) = Y An(y) sin 1. (10.5.23)
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Since the functions A4, (y) themselves vanish at y = 0, L they may be expanded as

mTy

An(y) = ) Apmsin T (10.5.24)
m=1

Combining the preceding two equations, the double series follows. To find the coef-
ficient A, we multiply both sides by sin *7= sin ™7 and integrate, remembering
that these functions are not normalized.

For example, let

Y(z,y,0) =2(L — z)y(L —y). (10.5.25)
Then
2 L L
Anm [é] = /0 /o dz dy z(L — z)y(L — y) sin EZ—$ sin m;ry
L
. nwx
= [/ dz z(L — ) sm—:, -z = y,mn — m]
0 L

413 413

= 33,33 [n, m, odd) (10.5.26)

64L* 1 nwe mmy wut
= i i 2 2
¥(z,y,t) 3 E E 33 Sin I sin cos[ vVme+n ] .

L
(10.5.27)
Figure (10.1) shows the vibrations of the membrane. Unlike in the case of the
string, the frequencies in the sum are not all multiples of a fundamental frequency.
Hence the motion will generally not be periodic.

Problem 10.5.2. Show that A, has the value quoted in Eqn. (10.5.26) by doing
the integrals.

Problem 10.5.3. What is the lowest frequency of vibration in the square membrane
described above? What is the corresponding ¢ (z,y,t)? Is there any degeneracy
in the frequencies?

Consider now a drumhead that is more realistic: a circle of radius . While
it is permissible to use cartesian coordinates, it is not wise to do so. Even though
the equations separate into three ODEs as before, the boundary conditions on the
solutions will mix the coordinates up. Whereas in the square membrane, the con-
dition on X (x) was independent of y (and likewise for Y (y)), this will no longer
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Figure 10.1. The vibrating membrane with L = v = 1 and initial condition % (z,y,0) = (L —
z)y(L — y) for selected times. Note the change of scale in the last plot.
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be true for the circle. We must clearly go to polar coordinates where the boundary
condition is that v'(r = a,,t) = 0 for all ¢.
To this end we must write the Laplacian in polar coordinates and begin with

18% 10 [ 0y 1 8%y
—_——= | r— ——. 10.5.28
v2 9t2 r or (T or ) r2 2 ( )
The ansatz
(r,¢,t) = R(r)®(¢)T(t) (10.5.29)
gives as usual
T" +v%*T = 0 (10.5.30)
11d ( dR 11d°®
— = (=4t ==——+kZ = 0. 10.5.
err(rdr>+¢r2d¢2+ (10.5.3)
Once again the solution for T is
T(t) = Acosvkt. (10.5.32)

Look at the equation for R and ®. In its present form the ¢ dependent part is
contaminated by the factor 1/r2. So we multiply both sides by r? and end up with
something that separates as follows:

rd [ dR s o 1d%@
A (R - o 10.5.33
Rdr(rdr>+ T 3 a2 ( )

N——r

:m2 :—m2

where the separation constant has a form that anticipates what is about to develop.
The two ODEs are then

S (r-@> + (k32— m>DR = 0 (10.5.34)
dr dr
d*® 9
W +m“d = 0. (10.5.35)

The solution to the ¢ equation is
®,, = Ape'™® + Be”iMm? (10.5.36)

where m must be an integer for the solution to be unaffected by the change ¢ —
¢ + 27 which should make no physical difference. (If this condition is not satisfied
we will not be assigning a unique value for the displacement of the membrane at
each point on its surface.) We are then left with the radial equation

r2R" +rR + (k27‘2 _ m2)R = 0. (10.5.37)
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1
0.5l \J0X)
0.6}
0.4 J1(X)

0.2 W X

Figure 10.2. The first two Bessel functions Jp and J;. Note that the zeros are not evenly placed as
in trigonometric functions.

Changing from r to z = kr we get
2?R" + 2R + (2> —m?)R =0 (10.5.38)

(where primes now denote derivatives with respect to x), which we recognize to be
Bessel’s equation (10.4.59) with v = m. Since roots of the indicial equation are
s = +£m, we will have the regular solution which goes as z*® times a power series
and the singular one, the Neumann function which blow up at the origin. We set
the coefficient of the latter to zero since the membrane distortion is finite at the
origin. Thus the solution regular at the origin is

O(r,o,t) = Jpm(kr)(Ae'™® + Be "™%) cos vkt. (10.5.39)

Problem 10.5.4. First and second-order Bessel functions. Show, by going back to
Egn. (10.4.62) that

B N (=)™ sz\2n
Jolz) = 20: o (5) (10.5.40)
B > (-1 I\ 2n+1

Observe that Jy does not vanish at the origin and is even while J; is odd and
hence vanishes at the origin. Look at Fig. 10.2.

We have so far not addressed the boundary condition that ¢y = 0 at r = a.
Now the Bessel function J,,,(z) is known to have an infinite number of zeros at the
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points z,,;. These are however not evenly spaced as in the trigonometric functions
as clear from Fig. 10.2.
We must then demand that at each m,

k= kpyy = L (10.5.42)
which in turn controls the allowed frequencies

w=vk = 2™ (10.5.43)
a
For example if m = 0, Jg has its first zero at zo; =~ 2.4 so that the lowest frequency

of vibration is
w = (2.4v)/a. (10.5.44)

From the linearity of the equation, the general solution is some linear combination
of these solutions (Eqn. (10.5.39)).

Problem 10.5.5. In quantum mechanics one defines a box as a region to which
the particle is confined. Consider a square box in two dimensions of sides L with
its lower left corner at the origin. The allowed energies for the particle of mass
m are given by E, which is defined by the following eigenvalue equation:

ﬁ2
- 5=V = Ey (10.5.45)

and the boundary condition that v = 0 at the walls of the box. Show that the
h2n2(n24n?)

. . , e .
allowed energies are E = — 25—, where n’s are positive integers. Find the

lowest energy state in this box. Assuming the solution is rotationally invariant,

2,2
show that the lowest energy state in a circular box of radius a is E = %‘%
where xg1 ~ 2.4 is the first zero of Jo(z).

10.5.2. The heat equation in one and two dimensions

Consider a homogeneous body in three dimensions. Let u(z,y,z,t) be the tem-
perature at time ¢ at the point (x,y,z). I will sketch the derivation of the heat
equation, which governs the evolution of ». First it is clear that any decline in u
with time is due to the net outflow of heat from the vicinity of the point in question,

which in turn is given by the divergence of j , the heat flux or current (in calories
per unit area per second). In other words, we have the equation of continuity:

=0, (10.5.46)
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where all positive constants of proportionality have been set to unity. Next we ask
why heat ever flows: it flows in response to a temperature gradient, from hot to
the cold regions. In other words

— —

j =—-Vu, (10.5.47)
where once again all positive constants of proportionality have been set to unity and

the minus sign tells us that the current flows from hot to cold, i.e., opposite to the
gradient. Combining this with the continuity equation we get the heat equation

ou

— =V?u. 10.5.48

ot Y ( )
We will study this equation in one and two spatial dimensions to learn the basics.

In one dimension

ou  0%u

Let us apply this to a rod of length L whose ends are held at some fixed tem-
perature u.,./; at the left and right ends. Let us assume that the rod is in equilibrium
so that nothing is changing with time. In this case (since u depends only on z),

d%u
A 10.5.50
12 ( )
u = a+bzx (10.5.51)
- ul+“T;“’.r. (10.5.52)

(You may wish to think about how one solves for the free parameters a and b in
terms of u,/.) Observe that the temperature rises linearly from one end to the
other.

Consider now the following nonequilibrium problem. At ¢ = 0. the rod has
some temperature distribution u(x,0). At this instant its ends are jammed into
ice trays at u = 0. It is clear that asymptotically the whole rod will reach zero
temperature. The question is how this limit is approached in time. This is what the
heat equation will tell us.

First we look for solutions to Eqn. (10.5.49) of the form:

u(z,t) = X (z)T(t). (10.5.53)
Following the same routine and using a separation constant —k? we get two ODEs:
dT

dt
X"+k*x = 0. (10.5.55)

= —k%r (10.5.54)
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The first equation has an exponential solution while second equation has the usual
solution

k
X = sin TI k=nr/L (10.5.56)
when we insist v vanish at the ends. This gives us the general solution
u(z,t) = leunsin ”zxe*W/Lﬁ (10.5.57)

Now we proceed as we did with the string and fit the initial value data u(z, 0) to
a sum of sines with appropriate coefficients. The subsequent evolution is given by
the expansion above with these coefficients.

Let us consider an example. Say a rod of length 100 has its ends at zero
degrees and starts with the following temperature distribution:

w(z.0) = 150° 0<az<50 (10.5.58)
0" 50 < & < 100. (10.5.59)

At ¢t = 0 its ends are jammed into ice trays at zero degrees.

Our goal is to find u(x.t). All we need is a,, of Eqn. (10.5.57). Multiplying
both sides of it by sin 77 at t = 0 and integrating, we see (upon recalling that the
sine-squared averages to a half over half a period),

100 100 :
an:— = /0 u(z,0)sin %dz (10.5.60)
Thus 50
1 . nwzx 300 nmw
an =5 | 180sin Torde = S [1 - cosT} (10.5.61)
so that
. 300 nmw nrzx 2
u(z,t) = ; — [1 — cos 7] sin 7 e~ (/L) (10.5.62)

Rather than show the cooling of the rod with time, I show in Fig. 10.3 what happens
when we try to fit the initial condition to a sum of sine waves. Note that the series
has a hard time with the discontinuities. As we increase the number of terms in
the sum, there is overshoot equal to roughly 9% of the jump or discontinuity in
the function. By bringing in more terms, we can reduce the width of these “Gibbs
Oscillations” but not eliminate them.

Problem 10.5.6. Consider a bar of length L. Given u(zx,0) rises linearly from 0
at the left end to U at the middle and comes down linearly to zero at the right
end, find u(x.t) for all future times. (The ends are jammed into ice trays that
hold them fixed at zero degrees.) Note that the sines are not normalized to unity
in Eqn. (10.5.57).
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u(x,0) | 7>

Do,
0.2 0.4 \ ¥.6 0.8 X1

Series with 40 terms

100
u(x,0) 77
50

25

Series with 200 terms

Figure 10.3. The sum of sines is not able to really deal with the discontinuous initial condition. No
matter how many terms there are, there will always be an overshoot at the discontinuity points of about
9%. This is called the Gibbs phenomenon.



340 Chapter 10

Consider now a variation of the problem where at ¢ = 0 the two ends are placed in
contact with reservoirs at temperatures u; and u.,, respectively. Now the limiting
temperature at infinite time is

Ur — U]

L

z. (10.5.63)

u(z.00) = u, +

Since the ends are no longer at zero temperature so that it appears as if the old
solutions with vanishing temperature at the ends are no longer appropriate. But the
following trick allows us to use the old solutions. First define

v(z,t) =u(z,t) — u(x.o00) (10.5.64)

and observe that

e v(z,t) obeys the heat equation since is a difference of two functions which
do.

e v tend to zero as t — oo.

o For all positive times, v(0,¢) = v(L,t) = 0 since the values v is forced to
take by the reservoirs placed at the ends coincide with the values that will
prevail at ¢t = oo.

What all this means is that we may apply to v the solution we previously used for
u. Thus

o(@,1) =Y vpsin %f‘”"/“”. (10.5.65)
1

If you want to see it all in terms of u, here it is:

o0
u(z,t) = u(z,00) + 3 vy sin e~ (/D (10.5.66)
- L

where v, is the expansion coefficient of v(z,0) = u(z,0) — u(z, ).

Problem 10.5.7. Consider once again the initial temperature given in problem
(10.5.6.) (isosceles triangle of height U) but assume that at t = 0 the reservoirs
connected at the left and right ends are at w = 0 and u = 2U respectively. Find
the temperature for all future times. Remember that the sines are not normalized
to unity in Eqn. (10.5.66).

Consider finally the heat equation in two dimensions but in equilibrium, so that the
operative equation is
0%y 0%

) 5.67
527t a7 =0 (10.5.67)
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Consider a two-dimensional region of width L in the z-direction and semi-infinite
in the y-direction, with its lower left-hand comer at the origin. We are given that
the edge at y = 0 is held at some distribution «(x,0) and the other two edges
parallel to the y-axis (at z = 0 and x = L) as well as the edge at y = oo are at zero
temperature. We are to determine u in the interior given this boundary condition
and the heat equation.

Separation of variables gives us:

1 1
—X"4+=Y"=0 10.5.68
x5 Ty ( )
_k2 k2
with the solutions
X(z) = Asinkz k=nr/L n=12. (10.5.69)
Y(y) = e M. (10.5.70)

Notice that we reject the exponentially growing solution in y since u must vanish
as y — oo. (Note also that had we chosen hyperbolic functions for the z-direction
and trigonometric functions for the y-direction, we would not have been able to
meet the boundary conditions.)

The general solution is then

o0
u(z,y) = Zansmn—zgﬁ e~/ (10.5.71)
1

where a,, are the Fourier coefficients of u(x, 0). Let us consider an example where

u(z,0) =z(L —z) (10.5.72)
We already know from Eqns. (10.5.25-10.5.26) that
8L?
an = —5— [n odd] (10.5.73)
n<m
from which it follows that
. 8L2 nrx
— : —nny/L
u(z,y) = _EOddmsmT e~y (10.5.74)

The solution is depicted in Fig. 10.4.

Problem 10.5.8. Consider the problem of the semi-infinite strip of width L given
above. (i) Given u(z,0) = z, and u = 0 on the other three sides, find u at
all interior points. (ii) Repeat with uw(z.0) = cos(zn/L). Hint: In integrating
trigonometric functions, write them in terms of exponentials, use sinz = Im e,
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Figure 10.4. The temperature distribution in a square sheet with L = 1 and boundary condition
u(z,0) = z(L — z) and u = 0 on the other sides.

There are more and more variations possible such as the case where the two-
dimensional body is finite in both directions or that the temperature is non-zero
on two edges. But we move on to the next topic, leaving the interested to try the
following problems.

Problem 10.5.9. Consider a sheet of width a along the x axis and b along the y-
axis, with its lower left corner at the origin. You are given that the edge aty = b is
at u(z,b) = 100 and that the other edges are at zero degrees. Find the temperature
in the interior. Here are some suggestions: Use separation of variables, in the y-
direction admit a superposition of hyperbolic functions and finally kill the coshy
part using the conditions at y = 0 to reach an expansion of the form

u(z,y) = Z Apsin(nmz/a)sinh(nry/b).
Set y = b, use the boundary conditions and solve for A,
Problem 10.5.10. So far we have only considered cases where the sheet has

nonzero temperature on only one of its edges. What about a plate which has
T # 0 on all four edges? We simply solve four problems in each of which T # 0
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on just one edge and then we add these solutions. It is clear that the sum has the
right boundary conditions and satisfies the heat equation due to linearity.

Consider a square plate of edge 10 with its lower left corner at the origin and
with T = 100 on the edges running along the axes and t = 0 on the other two.
Show that

u(z,y) = g Z 1 [Sinh(nn(lO —v)/10) sinjnrz/10] + [z — y].

—n sinhnt
Consider finally the solution of the heat equation in polar coordinates. Let us say
we have a circular sheet of radius a with a temperature distribution u(a, ) on the
circumference. This determines the temperature inside. Laplace’s equation for the

radial function is (for assumed angular dependence e*™?)

r?R" + rR' —m?R =0, (10.5.75)
the solution to which is

R(r) = Arl™ 4 Br=Iml (10.5.76)

The details are left to the following exercise.

Problem 10.5.11. Derive the above equation by trying a series solution. Only one
term will survive. Notice that the equation has scale invariance: it is unaffected
by r — ar. This means that if R(r) is a solution, so is R(ar). Pure powers have
this property. Analyze the special case m = 0 separately. Show that the general
solution is (A + Blnr)(C + D6). In other words, besides r°, Inr is a possible
solution for the radial function R(r) and likewise, the angular function for m = 0
is not just % but of the form A + B#. Why must we choose B = D = 0?

Returning to the Eqn. (10.5.76), we drop the negative powers since they blow up
at the origin. The general solution is then

(o ¢]
u(r,6) = ZAmrlmleim" (10.5.77)
—oo

where )
1 4 me’ 46’
Ap = a_lml—/ u(a, 8 )e ™ —
2w Jo 2m

which we get by setting » = a in Eqn. (10.5.77) and dotting both sides with the
exponential function.
If we feed this result into Eqn. (10.5.77) we find

(10.5.78)

[ee)

2w
u(r,9) = Z(r/a)lml/ ™0~ (a,0")dp’". (10.5.79)

0

—00
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It is straightforward to do the geometric sum over m and to obtain

1 2 a?—r? N
u(r,8) = Z/o [02 7~ Zra cos(6 = 0) u(a,0")do’, (10.5.80)

which is a result due to Poisson.

Problem 10.5.12. Do the sum over the geometric series to obtain the above for-
mula.

Note that the above formula expresses » in the interior of the circle in terms of
its values at the boundary. This sounds like complex variables are at work, and
they indeed are! Recall that the real and imaginary parts of an analytic function
f = u + iv obey Laplace’s equation and that an analytic function is determined
inside a closed contour by its values on the boundary. Let this boundary be our
circle of radius a. Then

2n 6’
f(re®y = ﬁ/ %[ae“’ idf'). (10.5.81)
At this point you may be tempted to take the real part of both sides to obtain a
formula for u(re*®). Unfortunately the real part in the integral will involve both u
and the imaginary part v. We get around this as follows. We note that if we replace
e in the denominator of the right-hand side by another number which lies outside
the circle of radius a, the integral will give zero by Cauchy’s Theorem, since there
are no singularities inside the contour of integration. So we can subtract such an
integral for free. Let choose for the outside point one at a2/ (re~*%). By subtracting
the corresponding integral (which is zero) from the right side of Eqn. (10.5.81), we
will obtain Poisson’s formula.

Problem 10.5.13. Provide the missing steps between Eqn. (10.5.81) and the Pois-
son formula.

10.6. Green’s Function Method

When we combine the Maxwell equation

v.E=2 (10.6.1)
€0
with
R
- - 0A
E=-vVe¢— 22 10.6.2
¢ En ( )

in the static case we find Poisson’s Equation

—vp=L (10.6.3)
€0
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relating the scalar potential to the charge density that produces it. A generalization of this equation
is the Screened Poisson Equation

(-V2 +m2)p = 2. (10.6.4)
€0
(Note that m is not an integer here.)
Our goal is to find ¢ corresponding to a given p. Suppose we can find a Green’s Function

G(7 — ) such that

(~V2 +m2) (T — 1) =8(F - 1) (10.6.5)
where
(T —7) = b(z — )by — y')6(z — ') (10.6.6)

vanishes unless all 7 = 7’ in which case it blows up in such a way that
—
/63(7’ —)d3 =1 (10.6.7)

—
assuming the region of integration includes 7. Thus the Green'’s function G(7 — 7' )) is, up to a

-
factor g9, the potential at 7 due to a point charge at v’ .
Given G we can write down the solution to the problem as follows:

#(7) = /G(T’ - 7)””1)(13#. (10.6.8)

To verify this act on both sides with (—V?2+m?2), where V¥ acts on the variable r. On the right-hand

_
side this operator goes into the integral (where r enters as a parameter) acts on G(7 — ') to give

— —
83 (7 — "), which pulls out p(eg ) upon doing the ' integration.

So let us find the Green’s function obeying
(—V2 +m)G(F — 7 ) =6(F - 7). (10.6.9)

— —
Since everything depends on just 7 — r’, let us choose ' = 0. Next we write G and the delta
function in terms of their Fourier integrals:3

d31€ — ? -
G(T) = ——G(k)'F' T 10.6.10
(™) / o)’ (k)e ( )
&k EFF
s(7) = ik 10.6.11
() / PTSEN ( )
We now feed these expressions into Eqn. (10.6.8) and use the fact that
V2 kT g2 kT (10.6.12)
to arrive at
a3k - e &k JE5
e e ik 10.6.13
/(277)3( +m*)G(k)e (277)36 ( )

3We are using the obvious generalization of the one-dimensional Fourier transform to three dimensions.
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Since the exponentials at different % are linearly independent, we may equate their coefficients on
both sides:

(k2 +m2)G(

G(

%) = 1 (10.6.14)
— 1
k = —— 10.6.1

) k2 + m?2 (10.6.15)

which gives us the transform of G. We just have to invert the transform and go back to G(7) using

- d3k 1 %7
G(r):/wmel . (10.6.16)

We are trying to do an integral in k-space. Let us choose the k,-axis along the direction of 7 so

that k - 7 = krz, where z = cos#. Since nothing depends on ¢ we can do that integral knocking
off a 27 to get
k2dkdz 1 ;
Clr) = = eikrz 10.6.17
(r) (2m)? K2 +m2* ( )
where we write G(r) instead of G(7) since the answer is seen to depend only on r. Doing the
z-integral between —1 and 1, we obtain

1 [ k%dk sinkr

We now use the fact that the integrand is even to extend the limits to Zco (taking care to divide by
2) and evaluate the integral by the residue theorem to obtain:

e—mr

4mr

G(r) = (10.6.19)

Problem 10.6.1. Provide the missing steps involving contour integrations that link Eqn. (10.6.18)
to Eqn. (10.6.19). First write the integral in question as the imaginary part of an integral with e'*"
instead of sin kr. Note that for large k, the integrand behaves as e**" /kr. Argue that on a semi-
circle in the upper-half-plane of radius R — oo, the exponential kills the integrand except in an
infinitesimal angular range near the real axis which makes an infinitesimal contribution.

To get the Green’s function for Poisson’s equation we set m = 0 above and obtain

G(r) = — (10.6.20)

so that the potential corresponding to a given charge density is
- 1 N3
HT)= [ ————p(r")d%. (10.6.21)
dmeg| ™ — 77|

Let us test this on a unit point charge sitting at the origin:

p(r") =83(r"). (10.6.22)
Feeding this into the 7/ integral we find
1
#(7) = . (10.6.23)
4meqgr

which agrees with Coulomb’s law and the idea that G is the potential of a point charge.
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10.7. Summary

Here are the highlights of Chapter 10.

e Learn to identify the nature of the differential equation. If the dependent
variable and its derivatives occur linearly, it is a linear equation and a su-
perposition of solutions with constant coefficients is also a solution. If it is
nonlinear, go find another problem.

¢ If the equation has constant coefficients and is of the form
(anD™ 4+ an_1 D™ 4 -+ ag)z(t) =0
then the solution is "
z(t) =Y At
i=1
where A; are constants and «; are the roots of the algebraic equation
(ana™ + an—10™" 1 4+ .. +ap)=0.
If a1 = a, the solution is of the form (4 + Bt)e®®.

e If the equation is inhomogeneous, i.e., has nonzero function f(t) on the
right-hand side, the solution is a sum z(t) = z.(t) + zp(t). where z., the
complimentary function, is the solution with f = 0; and the particular solution
zp, Which is the response to f. The latter can be found easily if f(t) is a
sum of exponentials. Thus if

(D —a1)...(D — ap)z(t) = e
we can assume z p(t) = Ae®!, where A is a constant and solve for A:

1

A= (¢ —ay)...(a = an)

as long as a # «a;. Ifit s,

e The solution to
is

where P(z) = fzp(x')dx'.
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o If the equation is of the form

y" +p(a)y’ +qlx)y =0

and p and q are analytic at the origin, try a solution of the formy = Y 0° cpz™.
Find a recursion relation between coefficients. If you are lucky, it will be
a two-term relation so that given co and c;, the rest will follow. In many
physical problems the requirement that the solution behave well all over the
region of interest may require the parameters in the equation to be quantized
to some special values that turn the infinite series into a polynomial.

If
22y + zp(a)y’ +qla)y =0

and p and ¢ are analytic at the origin, try a generalized series y =
23 cnz™. Solve the indicial equation for s. If you get two distinct
roots, not differing by an integer, you are done—you have your two solu-
tions. If the roots coincide or differ by an integer, go back to some book (like
this one) and see what is to be done.

Let us recall the partial differential equations we have discussed
1ot _o%
v? 9t2  Oa?
Y(x=0,t)=y¢(x=L,t)=0,
which is the one-dimensional wave equation for a string of length L,
10% 0% 0%
v2 9t2  9z2  9y?
V(@ =0,yt) =9z =L,y t)=v¢(z,y=0,t)=¢(z,y = L,t) =0,

which is the two-dimensional wave equation for a square membrane of sides
L,

= V2w

10% 10 ( 0y 1 0%y
- S (. —
v? Ot? r or or r2 9¢2
which is the membrane equation, but in polar coordinates,
— = V2,
ot ¢

which is the heat equation in its general form. (The Laplacian will assume
different forms in different dimensions in different coordinate systems.)

There is just one set of rules for dealing with them. Assume a solution of
the product form. For example in the case of ¥ (z,y, z,t) assume

v(z,y,2,t) = X (2)Y (y)Z(2)T(¢).
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Feed into the equation and decouple it into ordinary differential equations, one
for each factor. Solve each one subject to the boundary conditions. Throw
out options that blow up in the region of interest (at the origin, at infinity
etc.). The most general solution is a linear superposition of such factorized
solutions. The coefficients in the linear superposition are determined by
boundary conditions.






ANSWERS

Chapter 1

1.6.1. /3 — 23/9,.0332224 (from series) and.0332222 (calculator).
1.6.2. (i) 3xz%cos(2 + %), (i) —2cos[cos(2x)]sin(2z), (i) 3sec?ztan?z,

(iv) tanhz, (v) 1/(1 + 22), (vi) 1/(1 — z?), (vii) 0, (viii) 1/(1 + cos z).
1.6.3. 100e-12 ~ $112.72.

1.6.4. v = tanh ¢

1.6.7. Square of side L /4.
1.6.9. 1,3

1.6.12. —3%

1.6.13. z = 1 is a minimum; x = —1 is a maximum.

Chapter 2

212. zlnz —

2.2.1. sin™? 2 sin™? =
2.23.2

2.2.5. 1n(3/2)

2.2.6. 1/3

22.7.1/(In2)

229. I3 = 1/(2a2), Iy = $ L5

242
2.2.11. (a22_:_l,,:2)2; (:2_;:2)2
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Chapter 3

3.1.2. fo = 32% + 2245, fy = 5%yt + 4y3, foy = 102y* = fuu
3.1.5.d=5/V5

3.2.5.1 = MR?/2, (3MR?)/5

328.V=nx/2

Chapter 4

4.2.3. Diverges

4.2.4. (i) ratio test is inconclusive, integral test says divergent.
(ii) r = €2/27, convergent by ratio test.

(iii) Divergent by integral test.

(iv) Ratio test inconclusive, integral test says divergent.

(v) r = e, divergent.

(vi) Ratio test inconclusive, integral test says divergent.

4.2.5. (i) C, (ii) C, (iii) C (iv) C.

426.C,C,D, D, D.

43.1. R = ()V2, (ii) 1, (iii) 1, (iv) 1, (v) 1. (vi) The series converges for 1/2
T < 0. , . .

434 E=m(1+ %5 +3% + 55 +..), P=1E.

43.6.T =2r+/I/g(1+ 5 +..)), 6T/T = 1/16.

<

43.7. (i) %{1 +a—2%/2-2%/6], (i) 11+ 2+ 2%/2+ 23/6), (i) In2 + 2 /2 —

x2/8 + 23/24.

Chapter 5

_ 137 _ 761 .
5.23. 2 = 3577 — 33170

524. (i) Rez = 6/25, Imz = —8/25, |2| = 2/5, z* = 6/25+ 8/254, 1/z
3/2 4+ 24, (ii)) Rez = =7, Imz = 24, |2| = 25, 2* = -7 — 244, 1/z
—(7/625) — (14/625) ¢, (iii)) Rez = —7/25, Imz = 24/25, |z| = 1, z*
—(7/25) — (24/25)i, 1/=z = —7/25+ 24/254,
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(iv) Rez = 1_4\/6. Im: = ‘/51"/51' 1/z = 1_—3‘/6 — \/5_3\/5) i, (v) Rez =
cosf, Imz =sinf. 1/z = 2* = cosf — isinf.

5.3.2. (i) 21 = /4, 75 = 2e77/6 2129 = 2ei7/12 21/z9 = .5edmi/12,

(ii) 21 = eiarctan4/3. 29 = .5evi7r/2‘

5.3.3. |21 + 22| = 7.95, Phase is .98 radians.

544,z =1—1i=+2e""/% Iy =100/v/2. current leads by = /4, resonance at

w = 223.6 rads.
54.5. 7 = 31433

— R
54.6. 7 = 1+iR(wC—1/(wL))"
54.7. Q(t) = e %4 cos 8t + 3sin 8] — 4 cos 10t

Chapter 6

6.12. uz = —vy uy = vz

6.13. fo = f,

6.1.7. Poles at (+1 4 4)/v/2, double pole at z = +i
6.1.8. up = vg/r, v, = —ug/T

6.1.12. (i) f = 23, f = €**, (iii) u is not harmonic.

6.1.13. Hint: Relate the Laplacian to %;z*

6.1.14. Hint: Consider f2.

6.2.3. sinz cosy. cosz sinhy. v/sin® z + sinh? y, [t =nm.y=0]
6.24. z =nn. (n+1/2)7, inw, i(n+ 1/2)7

6.2.9. e27n/N n — (,1....N — 1. Roots add to zero.

6.2.10. 3 + 47, 12 4+ 5i

6.2.11. (1) (1 +4)/V?2, (i) £(2+1)

6.2.12. In2 + (2m + 1)ir

6.2.13. (i) cosIn 3 + isinln 3 (i) in /2 (iii) £5¢*™/* (iv) £e*™/3
6.2.14. (i) £i\/2 repeated. (ii) Repeated twice: [¢™/3, ~1,e~"/3]
6.2.15. \/2e'™/4. The cube roots are (2)1/8(ei™/12, ¢i(r/12)%(2mi/3))
6.2.16. ¢ ~m2n+1/2]

6.4.1. £7/e

6.4.5. (i) = /(2%/2), (ii) 0,0 (iii) 7 /18, (iv)—=/3, (v) O, (vi) 7 /4
6.4.8. 1/(27¢3)
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6.5.3. Yes
6.5.4. No

Chapter 7

7.4.3. (i) 5/6, 0.

751 h=/R?— 2% —y2, Vh =~ Ty T

7.5.4. Cylindrical: h, = 1. hg = p h, = 1. Spherical: h, =1, hg =7, hg =
rsind,

7.5.5. (ii) V13, (iii) 12/V/13, (iv) 2.

7.5.7. (i) Towards the origin (i) AT = —3v/2/10

7.5.8. (i) 23, (ii) V3e3, (iii) V3, (iv) All gradients were radial, this direction is
perpendicular to radial. 7.6.2. (i) no, (ii) yes, (iii) yes (iv} yes

7.6.3. (i) 1, (ii) 1, (iii) Possibly. (iv) o = z2y.

7.6.4. (i) 1, (ii) ¢ = z3y

7.6.5. (i) no, (i) 1/2.

7.6.11. (i) 0, (i), O, (iii) conservative, F = ?qﬁ,qﬁ = (22 +y2)/2

7.6.13. 2n

7.6.14. 11/16. The curl has no component in the plane containing the contours for

two line integrals.
7.7.1. —sinx + 2z

7.7.3.1
7.7.4. 42
7.7.6. (i) Ax R3. (ii) 2= R3, (iii) 3.

Chapter 8

[6 8 . [ 7 10
siaew=[ 8 8w 2)]

19 22 4 -12
MN‘[43 50] [M’N]‘{m 4 ]
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8.3.4. (1,2, ~1); (=3, —4,8)

2 4
‘z N
835 | -2 U4 2

Chapter 9

9.1.1. yes, real scalars, no, U; + U, is not unitary, yes with integer field
9.1.2. yes, yes,no

9.1.5. No: [3) =|1) — 2|2)

92.1. () vr = (2+i(1 - V3))/V2,vir = (V3 +1)i/ V2.

(i) v = (i = D(i + V3)(V6 — 1)/4, vy = 1+ /3/2.

9.2.2. 137 +47) ((104)% + (78)%)~1/2[104 i — 787 ]

9.2.4. When |V) = ¢|W)

9.2.6. a = (9—i)/V2, 8= (-3+9)/V2,y=8

9.5.2. [eigenvalue](eigenvector components)

[1] (0,0,1) [e*%] Z5(1,+i,0)

9.5.3. The answers are given in the same format as the matrices in the assigned

problem. The three eigenvalues and eigenvectors for each matrix are given one
below another.

[1] (1,0,0) [-1] % (-1,0,1) [— 1]—\}—5 (1,-2,1)
2] 5(-5.-2.1)  [0] (0,1,0) [1]% (-1,0.1)
[4] —5(1,0.3) 1] (1,0,1) 2] (1.1.1)
0] Z5(~1,0,1) 2] Z5(-1,0,1) 2] 75(-v3,0,3)
[_\/ﬁ 2(1,-v2,1) [2(1—2\/5)], %(1,—\/5,1) 3] (0121.0)
V2] 3(Lv2 1) 200+v2)) 3(L,v21) 18] 3(V3.0.1)
9.5.7. [0] %(—1,0, 1) [2] %(1,0.1) [2] (0,1,0)
9.5.8. [1] (1,0.0) [0,0] (a® +b%)71/2(0,a,b) 9.5.9.
[ ] = (17151) [1] %(_17072) [2] (070’1)
[2] ( 1,0,1) [1] (0,1,0) 2] 25(~1,1,0)
[] \/‘( 17170) [6] %( 70’1) [4] %(171 0)

9.5.10. [~ 1]f -1,2,1) [2] %(-1,-1,1) [3] %(1,0,1) for N
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9.5.11. (@) [1,0,~1], (®) [1,0,~1], ©) (3, 75: 3)>
(@ P(1) == (—1) P(0) = 1; (1,0,0); no, (&) 2, (/) two
® V)= 77(1,.2,3) P()=4 PO) =4 P(-1)=2
Average = — % = (V[S V).

_ 1| cosy/k/mt+cos/3k/mt
961 [z (1)) [ k/mt — cos \/3k/mt ]

9.6.2. Same as in worked example, but with \/3k/m — \/Sk/m.

9.6.3. The square brackets are eigenfrequencies:

[V2] (-1.0.1); { 2—\/5} (L.vV2,1); [ 2+\/§] (1, —v2,1).
9.6.4. (x = 0,y = 0) saddle point, f”:[ 0 *1]

-1 -1
Eigenvalue and eigenvector [%‘/ﬂ = (1, #)
9.6.6. At the points (z, =1), the function is a minimum along y and flat (to second

order) along z.
9.6.7. (-12/7),32/7) is a maximum.

9.73. (@) f(x) = ﬁ(l - Zodd ,rzl:nz e2mi7rz/L). (b) %2 Look at x = L/2
9.74. (@) 3+ L3 445
(b) Z ( l)n (1 1mﬂ)smhl innz
+n§71'§
. 1004 200nmit
9.75. 1= Zn #0 60n7'r+2'(22(t130'n.27r2 —2500)
978 (l)f _ e—1 1 +221 TnQ)T)COSTLﬂ-x

1)" cosnnx
f—smh1[1+22°°( DA ]

+n7'r

mnx m7rvt
9.7.12. ¢ (z, t) 21 m2sm L sin 75T cos T

9713U(J‘,t = FZO WSIU(Q +4TL)IL‘ COS(2+4n)t.
9.7.14.9(z,t) = 2 377 1(1 — cos 2F) sin ZFE cos 22t
9.8.1. Take a diagonal matrix D with integer entries and undiagonalize into M =

vipu , where U is a unitary matrix built out of some “nice” set of eigenvectors
from some other problem.
992(3.) Iij = 4m6ij
2 -1 -1
Mz -1 2 -1
-1 -1 2
[0] (1,1,1) Masses lined up along axis through origin.
[2,2] (-1,0,1) and (—1,1,0) Anything in plane perpendicular to (1,1,1).
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Chapter 10

10.2.4. 2 cosh wt
10.2.5. Aet + Be®t + Ce

10.2.8. (i)(1+t)e ™", (ii) Aexp[ L]+ B exp[ -5 1]+C exp[ 7]+ D exp[ = F],

(iii) AeSt + (Bt + C)e™, (iv) (A + Bt)e™t + Ce*t + De™ + Ee®t + D48,

10.2.10. (i) Critically damped (ii) e™%[3 — 5t] — 3cos2t + 4sin2t (iii) e~ *[4 —
4t) — 3cos 2t + 4sin 2t (iv) e74[3 — 4t] — 3 cos 2t + 4sin 2t

10.2.11. (i) (2/9)e®® + (7/9)e™® + £ (i) €% — sin, (iii) cosdz + 2z sin 4z,
(iv) coshz + Zsinhz

1033.y =% -1+ 5%

1034. y=224+1—-¢"7

10.3.5. y = Z(coshz + 2 — cosh 1).

10.3.6. y = (1/2)(z — 1)(z% - 22 + C — 2In(z — 1))

10.3.7. y = (1/2)(z — 1)(z? + 20C)

103.8. y =z +CV1+ 22

10.3.9. a: y = (1 + Ce® /%)~ b: y = (22 + Cz)~3

10.4.8.2: y=(1+z)(A+ Blnz)

b: y = (Az+B)

z(x—1)
c. y=Az34 Bz73
. 8,2 32 3, 32 4 1/2 4 8 2 82 3
d~32y4~A(1—4$+§x — 234 2ot )+ Bal2(1 - fr 4 2 - a4
58357 )
e y=x(A+ Blnxz)

2 3 4 2 2 2 3

4
5-7-29?114! +

g y=A@2+22)+B((22+2x)Inz +1+5z — & + Z +...]
h: y=AZ 4 p[Zhe 4 4 g

10.4.9. (i): y=a%(z +C)

(i) y= 323 + Cz?

10.4.10. Lo = 1

L1 =1-=z 2
L2:2—4:§+$

L 3= 6— 18z-%912 —z°

(2m+1)2n2
SGmE

10.5.6. u(.r, t) = i—[{ Zgo (2(;:_):’)7 sin (2m-zl)7'rze t.
10.5.8. () u(z,y) =237 (—1T)ln+1 sin 272 e
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(i) u(z,y) = % Yot —2—4n2n I Sin nr e ™

10.5.9. u(a: y 400 Z —odd Sln nﬂz)sinhnwy{a

a /sinhnrmb/a



INDEX

Absolute convergence, 80, 118

Absolute value, 92

Action, 309

Active transformation, 208

Adjoint matrix, 220

Adjoint operation, 254

Ampere’s Law, 198

Analytic continuation, 142

Analytic function, 107, 109
analytic continuation of, 142
branch points of, 113
Cauchy—Riemann Equations for (CRE), 109
derivative of, 114
diagnostic for, 109
domain of analyticity of, 110
essential singularities of, 113
exp(z), 119
harmonic functions—relation to. 114
hyperbolic functions. 119
integrals of, 128
Laplace’s equation—relation to, 115
In(z), 121
meromorphic functions, 113
permanence of functional relations, 143
poles of. 111
power series definition of, 116
removable singularity of, 113
residue theorem for, 132, 134
singularities of, 111
Taylor series for, 139
trigonometric functions, 115

Anti-analytic functions, 109

Antiderivative, 37

Antihermitian, 221

Antilinearity of inner product, 240

Antisymmetric tensor, 297

Area vector, 155

Axioms of vector space, 230

Bernoulli’s equation, 318, 327

Bessel’s equation, 327

Bessel functions, 335

Binomial Theorem, 18

Box product, 155; see also Scalar triple product

Bra, 239, 253
Branch point, 113
of In function, 124

Cauchy’s Theorem, 132, 134
Cauchy-Riemann Equations (CRE), 109
Cayley—Hamilton Theorem, 263
Chain rule, 3
Characteristic polynomial, 257
Circulation, 172
Cofactor matrix, 215
Column vector, 206
Commutator, 210
Comparison test for series, 77
Complementary function, 103, 313
Complex numbers, 89
absolute value of, 92
application to LCR circuit, 98
argument of, 96
cartesian form of, 90
complex conjugate of. 91
Euler’s identity for. 95
imaginary part of, 90
phase of. 96
polar form of, 94
purely imaginary. 90
real part of, 90
unimodular, 97
Complex variable, 107; see also Analytic function
Complimentary function, 313
Components of vector, 236
Conditional convergence, 80
Conservative field, 162
Constraints, 55
Continuity equation
for charge, 193
for heat, 336
Continuity of function
in one variable, 1
in two variables, 107
Contraction of tensors, 296
Contravariant tensor, 299
Convergence of series, 75
absolute convergence, 80, 118
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Convergence of series (cont.)
conditional convergence, 80
complex series, 116
radius of, 118

Coupled mass problem. 267

Covariant tensor, 299

Cross product, 153
in terms of components, 156
as a determinant, 217

Curl, 172, 174, 177
as a determinant, 217
in noncartesian coordinates, 181

Current density, 162

Cylindrical coordinates, 66

D operator, 187, 279
eigenbasis of —tD, 279
Fourier series, 281

D? operator, 284

Dagger, 220
de Moivre's Theorem, 98
Definite integral, 34
lower limit of, 24
upper limit of, 24
Degeneracy, 263
Dependent variable, 1
Derivative, 2
Determinant, 212, 214
Determinants, 214
and cross product, 217
and curl, 217
Differential calculus, 1
chain rule, 3
dependent variable, |
differentials, 29
exponential and log functions, 5
hyperbolic functions, 13
implicit differentiation, 28
independent variable, |
inverse hyperbolic functions, 18
inverse trigonometric functions, 22
L Hopital’s rule, 24
linearity of derivative, 3
In(1+y). 15
plotting functions, 23
radian measure, 19
series for hyperbolic functions, 19
Taylor series, 8
trigonometric functions, 19
Differential equations, 305
for damped oscillator, 311

Index

Differential equations (cont.)
Frobenius method, 318
Green’s function method for, 344
heat equations, 336
linear. 306
nonlinear, 306
order of, 306
ordinary, 305: see also Ordinary differential
equations
partial, 305: see also Partial differential
equations
superposition principle for, 306
wave equations, 329
Differential operators. 187
Differentials, 29
Dimensionality, 235, 246
Dirac delta function, 197, 288
Dirac matrices, 227
Displacement current, 199
Divergence, 182
in other coordinates, 186
Domain
of analyticity, 110
of integration, 61
simply connected, 129
Dot product, 151
in terms of components, 151
and inner product, 237

Drum
circular, 332
square, 330

Dual spaces, 253

Dummy variable, 43

e—the base of natural logs
power series definition, 7
second definition, 12

Eigenfunction, 280

Eigenvalue problem, 255
characteristic polynomial, 257
of coupled masses, 263
of D operator, 310
of D? operator, 284
degenerate case, 263
of —iD operator, 279
of quadratic forms, 274

Eigenvalues, 255

Eigenvectors, 255

Einstein convention, 296

Electrodynamics, 193



Index

Electrodynamics (cont.)
Ampere’s law, 198
continuity equation, 193
displacement current, 199
Lorentz force law, 194
Maxwell’s equations, 200
scalar potential, 201
vector potential, 201
wave equation, 200, 202

Epsilon neighborhood, 110

Essential singularity, 113
relation to Taylor series, 142

Euler’s identity, 94

Exponential function
exp(elephant), 94
exp(z), 5, 12
exp(z), 119

Field
scalar and vector, 158
vector space, 231
Field of vector space, 231

First order ordinary differential equation, 315

Flux, 163
Fourier integrals, 287
Fourier series, 281
coefficients of, 281
completeness of, 292
convergence of, 286
exponential form. 281
trigonometric, 285
uniform convergence of, 286
Fourier transform. 287
Frobenius method, 318
indicial equation, 325
recursion relation in, 318
with singular coefficients, 324
Function spaces, 277
eigenvalue problem of —iD, 279
eigenvalue problem of D?, 284
inner product in, 278
orthonormal basis for, 279

Gamma function, 43

Gauge transformation, 202

Gauss’s Theorem, 184

Gaussian integral, 71

Gibbs’ oscillation, 338

Gradient, 167
and Lagrange multipliers, 170
in noncartesian coordinates, 177

Gram—Schmidt Theorem, 240, 244

applied to Legendre polynomials, 324

Green’s function method, 344
Green’s Theorem, 174

Hamiltonian, 273
Harmonic function, 115
Heat equation, 336
derivation of, 337
ind =1, 337
ind =2, 340
in polar coordinates, 343
Hermite polynomials, 323
Hermitian, 221
Hermitian operators
and coupled masses, 267
diagonalization of, 294
and orthogonal functions, 279
orthogonality of eigenvectors, 260
and quadratic forms, 274
reality of eigenvalues, 260

Higher derivative vector operators, 189

Hilbert space, 278
Homology, 191
Hyper complex numbers. 125
Hyperbolic functions, 13
in complex plane, 119
Power series for. 19

relation to trigonometric functions. 121

Imaginary part, 90
Impedance. 101
Implicit differentiation. 28
Indefinite integral, 39
Independent variable, 1
Indicial equation, 325
Inner product spaces, 237, 239
postulates of, 239
Integral calculus, 28
in many variables, 61
Integral test for series, 78
Integrals
analytical way, 36
antiderivative, 37
basics, 33
change of variables in, 44
composition law for, 41
in cylindrical coordinates, 66
definite, 34
dummy variables in, 43
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Integrals (cont.)
and evaluation of areas, 37, 40
of gaussian function, 71
integrand, 34
integration by parts, 42
Jacobian, 45
linearity of, 41
lower limit of, 32
multiple, 61
numerical way, 36
parametric differentiation, 46
in polar coordinates, 64
primitive, 37
scale factor, 65
of solid angle, 70
in spherical coordinates, 66
tricks of the trade, 44
upper limit of, 34
variable of, 34
Integrand, 34
Integration by parts, 42
Integration variable, 34
Interval of convergence, 10, 81
Inverse hyperbolic functions, 18
miscellaneous problems in, 25
Inverse matrix, 211, 212, 216
Inverse trigonometric functions, 22

Jacobian, 45, 65
as a determinant, 71 218

L’Hopital's rule, 24
Lagrange multipliers, 55
and gradients, 170
Laguerre’s equation, 328
Laplace’s equation, 115, 340, 344
Laplacian, 192
LCR circuit, 98
impedance, 101
mechanical analogy, 104
transients in, 103
Legendre’s equation, 324
Legendre polynomial, 324
Level surface, 168
Line integral, 159
Linear combination, 3
Linear dependence, 233
Linear independence, 233
Linear operators, 247
adjoint of, 252
D and —iD operators, 279

Linear operators (cont.)
definition of, 248
eigenvalue problem of, 255
matrix elements of. 249
product of, 251, 252

Linear transformation, 209

Linear vector spaces, 229
adjoint operation. 254
axioms of. 230
basis for, 235
over complex field, 231
dimension of. 235, 246
dual spaces, 253
eigenvalue problem, 255
examples, 239
expansion of vectors in, 242, 243

Index

expansion of vectors in orthonormal basis,

242
field of, 231
function spaces, 277
generation of basis for, 279

Gram—Schmidt procedure for, 244

inner product for, 237, 239
linear operators acting on, 247
real, 231

Schwarz inequality, 246
Triangle inequality, 246

In
branch point of, 124
branches of, 124
In(x), 15
In(z), 121

log; see In

Lorentz force law, 194
Lorentz gauge condition, 202

Matrix
adjoint, 220, 225
analogy to numbers, 225
antihermitian, 221
antisymmetric, 220
commutator of. 210
dagger, 220
determinant of, 211
Dirac, 227
elements, 205
functions of, 222
hermitian, 221
inverse, 211, 216
null, 209
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Matrix (cont.)
orthogonal, 222
Pauli, 226
product of, 206
for rotation, 208
simultaneous equations, 212
sum of, 206
symmetric, 220
table of properties, 222
trace of, 227
transpose, 215
unit, 209
unitary, 221
Matrix inverse, 211, 212, 216
Matrix product, 206
Matrix sum, 206
Matrix transpose, 215
Maxima, minima and saddle points, 274
Maxwell’s equations, 200
Meromorphic functions, 113
Mixed derivative, 52
Modulus, 90
Moment of inertia tensor, 298

Natural logarithm, 7, 8

Norm of a vector, 149

Normal modes, 267, 272
of coupled masses, 267
in quantum mechanics, 273
of string, 289

Null vector, 149, 230

Ohm’s Law, 295
Ordinary differential equation (ODE), 307
Bessel’s equation, 327
classical oscillator, 311
complimentary function, 313
Frobenius method, 318, 324
Hermite’s equation, 322
initial conditions, 308
integration constants, 307
Laguerre’s equation, 328
Legendre’s equation, 324
particular solution, 313
quantum oscillator, 320
with constant coefficients, 307
with variable coefficients (first order), 315
with variable coefficients (second order), 318
Orthogonal coordinates, 65
Orthogonal matrix, 221
Orthonormal basis, 149, 239

363

Orthonormal basis (cont.)
expansion of a vector in, 242
Oscillator
action for, 309
analogies to LCR circuit, 104
equations for, 104, 311
quantum, 320
types of behavior, 311
Outer product, 297

Parseval’s Theorem, 293

Partial derivative, 51

Partial differential equation (PDE), 329
heat equation in d = 1, 2, 336
polar coordinates, 334, 343
separation of variables, 329
solution by Green'’s functions, 344
wave equation in d = 1,2, 329

Particular solution, 103, 313

Passive transformation, 208

Pauli matrices, 226

Permeability of free space, 172

Permanence of relations. 143

Permittivity of free space, 166

Pi (7), 20

Planck’s constant, 288

Plotting functions, 23

Poisson’s solution, 344

Polar coordinates, 64

Polar form, 94

Polarizability tensor, 299

Poles
n-th order, 113
residue at, 112
simple, 112

Position vector, 156

Potential, 175

Power series
absolute convergence, 80, 116
hyperbolic functions, 19, 119
in z, 80
in z, 116
interval of convergence of, 10 81
In(1 + x), 15, 85
radius of convergence, 118
tests for convergence, 80
tricks for expansion in, 83
trigonometric functions, 22, 119

Primitive, 37

Principal axes, 298



