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Preface

Geometrical objects and structures are studied in many branches of science and
engineering. Often these objects have non-regular random shapes or are randomly
scattered in space. If the number of the objects under study is very great then
statistical analysis makes sense and is indeed necessary. Many methods exist for
such analyses; some of the more recent attempt to consider spatial dependences or
other complicated correlations.

The aim of this book is to present some statistical methods in a way that may
also be understood by non-mathematicians, in particular by materials scientists,
geologists, environmental researchers and biologists. We assume that the reader
has a basic knowledge of mathematics and statistics, although some concepts
and methods that may be unfamiliar to non-mathematicians are explained in the
appendices.

Our aim was to write a clear and popular text that is nevertheless mathematically
correct. Although many parts of the book may interest applied mathematicians or
statisticians, these readers have to accept that this book does not contain proofs — it
merely outlines the mathematical ideas.

We treat three different subjects: fractals, random shapes and point fields
(processes). In discussing these we always restrict attention to planar structures.
From the reaction to the book Stochastic Geometry and its Applications by Stoyan,
Kendall and Mecke, we know that many applied researchers are deeply interested
in the first two topics.

Part I gives an introduction to the theory of fractals. This should familiarise
the reader with the methods of measuring fractal dimensions. These are used to
describe extremely irregular geometric structures. Furthermore, important mathe-
matical models involving fractals are explained, including some of a stochastic
nature. We explain the notion of fractal dimension in more detail than is customary
for applied mathematicians. Thus Part I has some difficult passages. However, a
reader interested only in applications is led quickly to the measurement techniques.

In Part II we recount important modern methods for the statistical analysis of
random shapes. Random shapes are studied in such diverse areas as biology and
particle science. Biological shapes result from growth process, so that often the
geometries correspond to life functions; typically such objects have points on their
contours or in their interiors that play specific biological roles. Such points do not
usually occur in particles resulting from geological or technological processes.
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We consider three approaches: (1) describing objects by their contours and using
methods for the analysis of functions; (2) considering them as random compact
sets; and (3) describing them as k-tuples of points. These points, frequently called
landmarks, are characteristic points on the boundaries or in the interiors of the
objects. The mathematics behind these methods is not simple, and hence some
expositions are given in outline only. Those interested should consult the relevant
references. On the other hand, we hope that our treatment will encourage non-
mathematicians to use these statistical methods.

Finally, Part III presents an introduction to the statistical theory of point fields,
with and without marks. An important area of application is the analysis of homoge-
neous systems of particles where the ‘points’ are particle centres and the ‘marks’
particle characteristics such as size or orientation. We try to give the theory in an
elementary form, with emphasis on the aspects of analysis currently of greatest
interest. We also discuss some important classes of point field models, in particular
Gibbsian processes. Here some quite modern results are presented. Furthermore,
Part I1I contains, in condensed form, an exposition of the theory of correlations of
marked point fields and their statistics, which has been developed during the last
decade.

All three parts can be read independently. However, in contrast to the German
edition, there is only one list of references, and some German references have
been eliminated. Also the chapter and figure numbering is from 1 to N throughout
the book. Because of the varied topics considered, it was inevitable that often
one symbol will stand for different things in different contexts. This should not,
however, lead to any confusion.

We wish to thank many colleagues for their help and support. In particular, we
are grateful to the late Ulrich Zihle, who, even in the year of his early death
(1989), read Part I of this book and helped with many useful comments. A. Enoch
generated the fractal images and A. Bandt supported us with hints on the theory
of fractals. Several colleagues sent us their papers, sometimes at precisely the
most opportune moment. We mention in particular F. L. Bookstein, C. D. Cutler,
I. L. Dryden, W. Gille, K. V. Mardia and H. Ziezold, with whom we had very
useful personal discussions. D. G. Kendall helped us to understand the theory of the
landmark method. L. Muche and W. Nagel read sections of Part II with care. In the
analysis of sand grains we have had the support of R. Schuberth. A. Schwandtke
and P. Grabarnik made some calculations for Part 1Il. We thank N. Bamber and
R. B. Johnson for translating the book into English. Last, but not least, we thank
H. M. Clarke for his meticulous copy-editing and for his improvements to the text.

D. and H. Stoyan
Freiberg, May 1994
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CHAPTER 1

Introduction

Fractals are mathematical models for very irregular, very detailed sets such as
given by Figs. 3, 4, 6, 8, 11, 12, 13 and 17. The degree of their ‘wildness’ or
‘roughness’ can be characterized by the so-called fractal dimension. In the case of
planar sets (only such sets are considered in this book) this lies between O and 2
for sets of discrete points and between 1 and 2 for sets of curves. The rougher and
wilder a structure is, the greater its fractal dimension. The mathematical theory of
fractals is rather complicated — even the sketch given in this book has difficult
passages. On the other hand, the methods of measurement of fractal dimension are
easily understood, and they also give the user a feeling of the underlying meaning.
Therefore non-mathematicians may wish to read up to the end of this chapter and
then start again at Chapter 5.

Fractal dimensions

Usually, systems of points have dimension zero and curves dimension one. These
values are the topological dimensions. In the case of infinite, very dense systems
of points or systems of curves of infinite lengths in bounded areas, it makes sense
to make more subtle distinctions. For this purpose fractal dimensions may serve.

The ‘denser’ the points or the ‘longer’ (rougher) the curves are, the greater the
fractal dimension. The images of fractals shown in this book give an impression
of the possibilities that the fractal dimension approach holds for characterizing
irregularity and roughness. Of course, there are quite different fractals with the same
dimensions: one could not expect that one single number could be sufficient for a
unique description of irregularity. (A further parameter, describing the ‘rippedness’
of fractals, is the lacularity; see Mandelbrot (1982).)

The reader should note that there are several mathematical definitions of fractal
dimension, which may lead to different values of dimension for some sets. Never-
theless, many work on the assumption that the different definitions should produce
the same results for a given object; frequently several variants of measurement,
which are connected with several definitions, are used for the same object with
the aim of measuring the same quantity in different ways. If significant differ-
ences appear then this may be considered as a sign of a particularly high degree
of complexity of the structure studied. There is also a local form of dimension
definition, which can be used to describe fluctuations in roughness.
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Scale invariance and self-similarity

In nature there are many processes forming structures in which, at decreasing scales,
similar principles of formation persist. For example, in biological growth, certain
branching processes happen step by step in increasing detail; for example in corals
or the cauliflower. Many solid body structures are formed by agglomeration of
particles, which may be big initially, but later only smaller ones can be included.
Nevertheless, the principles of construction remain the same throughout. Then
structures as in Figs. 6, 8, 11 and 12 arise, where small parts have a form similar
to that of the whole. In practical measurement one not infrequently observes that
under a microscope or pocket-lens parts of the object have similar properties (e.g.
random variability) as the whole or those parts visible to the eye.

In such situations one speaks about scale invariance and self-similarity. The
theory contains mathematical definitions of self-similarity for both deterministic
and random structures. In the case of self-similarity the fractal dimension can be
determined by formulae. Self-similar sets are excellent mathematical models, which
may help to understand many real-life structures.

Dusts

Sometimes in applications point sets are studied that consist of ‘extremely many’,
‘very small’ subsets, e.g. systems of very small pores. In mathematical idealization
one could say that such a set consists of uncountably many points but does not
contain any piece of a curve. Such sets are here called ‘dusts’. A classical mathe-
matical example is the Cantor set or Cantor dust.

Example 1: Cantor Dust C. The set C is a subset of the real axis (x-axis). It is
obtained by deleting step by step open sub-intervals of [0,1]. The intervals deleted
are

Step 1: (%

2
3
Step 2: (5. 3). (5:3)» (3 5)

Step n: ((3k —2)/3", 3k — 1)/3"), k=1,...,3""!

(see Fig. 1). (In this process some subintervals are deleted several times, but this
does not influence the final result.)
The set C can be written as follows:

3n—-1

— [0 1]\ UU(3k_2’3k3:l)~

It is possible to show that C consists of uncountably many points, but the length
of C (more precisely, the one-dimensional Lebesgue measure on the x-axis) is
zero.
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Figure 1 Schematic description of the Cantor dust; see the text for explanation.

0o
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Figure 2 Schematic description of a square dust. At every stage of refinement every square
is replaced by four smaller ones. The dimension of the resulting fractal is log4/log3 = 1.26

(p. 25).

Example 2: Square Dust (. The set Q is a planar set. It is obtained by taking
from the unit square step by step cross-shaped subsets, as shown in Fig. 2. This
set also contains uncountably many disconnected points.

Rough curves and boundaries

Figures 3 and 4 show the fracture lines and the boundary of a planar section of
a particle. These curves are very rough. It is plausible to suppose that one could
observe similar spikes and cusps at smaller scales if the printing were finer or a
pocket-lens were used. In this case length measurement is not easy.

If one considered the smallest spikes as well then the time for measurement
would be rather long and the resulting length gigantic, which would not be very
easy to deal with. In a mathematical idealization one could imagine that the spikes
occur again and again at smaller scales and that the curve length becomes infinite.
A classical example is the von Koch snow flake.

Example. von Koch Snow Flake S The von Koch snow flake S is constructed
iteratively as shown by Fig. 5. In every step all line segments of the figure
are replaced by suitably diminished generators, where the vertices always point
outwards. Figure 6 shows a computer-generated snow flake.
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N e A

Figure 3 Two fractal lines in ceramics of different structures. Such curves can be
considered to some approximations as fractals.

Figure 4 Planar section through a graphite particle in cast iron. The structure is so irregular
that a fractal model seems to be suitable. The fractal dimension of the contour has been
estimated at 1.4 (p. 49).
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/N A

Initiator Generator

L

Figure 5 Schematic description of the construction of the von Koch snow flake. At every
stage every edge is replaced by a suitably diminished copy of the generator. The fractal
dimension of the final structure is log4/log3 (p. 25).

s
o

L{lﬁ j}

Figure 6 A computer-generated image of the von Koch snow flake.
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Measures of roughness

Fractal dimensions are frequently used as measure of roughness of curves or
surfaces (Underwood and Banerji, 1986; Dauskardt et al., 1990). The idea is that
a large fractal dimension is related to a high degree of roughness. A disadvantage
of this approach is that only one number, the fractal dimension, is used for the
characterization. It is interesting to note that there are several different, perhaps
better roughness measures (see e.g. Banerji, 1988).

For a curve, as in Fig. 3, the roughness R, is described by the length L of the
curve (measured with maximum accuracy) divided by a length L, of its projections
on a horizontal line:

Ry =L/L,.

An excellent characterization of roughness is also possible using the length-
weighted distribution of angles of approximating polygons. Additionally, the
quantities used in Part II for the description of the texture of figures can serve
as roughness measures. To characterize the degree of disorder (of ‘chaos’) in
physics, further parameters are used; for example Lyapunov exponents and entropy
characteristics.

Mathematical and natural fractals

For a long time mathematicians have studied geometrical structures as shown in
Figs. 6, 8 and 13; see also the historical text of Mandelbrot (1982, 1988). Mathe-
matical idealization makes it possible to assume that the processes of refining
used for plotting these figures can be continued indefinitely. In nature one often
observes structures and phenomena with similar behaviour (Mandelbrot, 1982;
Falconer, 1990) . These are the boundaries of very rough and irregular objects, such
as fracture surfaces, systems of pores or fractures in artificial or natural materials
(Hornbogen, 1987; Pape et al., 1987; Avnir, 1989; Dauskardt et al., 1990; Herman
and Roux, 1990; Kaye, 1993; Genske et al., 1992), complicated physical struc-
tures such as gels and polymers (Orbach, 1986); or systems of caves (Curl, 1986),
geographical structures (Goodchild and Mark, 1987; Goodchild, 1988) ecological
systems with many hierarchy levels (Frontier, 1987; Hastings and Sugihara, 1993),
irregular biological structures (Rigaut, 1989), rapidly varying processes such as
showers of rain (Lovejoy and Mandelbrot, 1985), fluctuations of share prices
(Mandelbrot, 1982) or attractors of chaotic motions. Here also one is speaking of
fractal phenomena. The book by Turcotte (1992) is a systematic treatment of fractals
in geology and geophysics. In particular, fragmentation, seismicity, tectonics, ore
distribution and geomorphology are considered. Of course the behaviour of natural
phenomena resembles that of mathematical fractals only up to a certain scale. (In
particular, infinite refining is impossible in nature; it is limited at least by the
size of elementary particles.) But this does not create serious difficulties in many
applications because frequently just that scale is of practical interest and acces-
sible for measurement in which the real objects have their fractal-like behaviour.
It is one of the great merits of the theory of fractals to suggest a systematic study
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of the behaviour of measurements under increasing accuracy. One parameter for
characterizing this is the fractal dimension.

Warning! One should not be too enthusiastic in applying the theory of fractals.
In nature there are no objects that are fractals in the mathematical sense. Power
laws, which are related to scale invariance, have been known for a long time,
and are not necessarily to be interpreted in fractal-theoretic terms. As well as the
fractal dimension, there are other characteristics that describe similarity properties
of geometrical structures.

Stochastic models of fractals

There are a range of stochastic models of fractals, in other words, models of
stochastic processes, sets and construction principles that generate fractals. While
Mandelbrot (1982) and many physicists have tried to model natural phenomena by
such means, this book presents stochastic models principally to enable readers to
simulate random fractals and to test measurement methods of fractal dimensions
before implementation.

Measurement of fractal dimension

Today many methods of measurement are known. They consist in the analysis of
geometrical structures by measurements of varying accuracy, where the correlation
of the results with accuracy is systematically studied. Mostly it is assumed that
the structure studied can be characterized by a unique value of the dimension and
does not consist of various parts with various dimensions. There have been only
a few theoretical investigations into fractal statistics; an important problem is the
particular role of measurement in the case of high accuracy, where measurement
errors have a great influence. One also has to struggle with this problem in the use
of image analysers. The investigation of boundaries of rough particles is particularly
difficult.



CHAPTER 2

Hausdorff Measure and
Dimension

2.1 THE HAUSDORFF MEASURE IN R?

To fully understand the notion of fractal dimension and empirical methods of
measurement, it is first necessary to have some knowledge of measure theory
in the real plane R?. The following is only a sketch; for a full treatment see
Falconer (1985, 1990) and Rogers (1970). The usual measures in R? are the
Lebesgue measure and the one-dimensional Hausdorff measure. (See Appendix A,
where the fundamentals of measure theory are explained.) The Lebesgue measure
A(B) of a ‘sufficiently reasonable’ set B is equal to its area; for a curve or a
countable set of discrete points the Lebesgue measure is zero. The one-dimensional
Hausdorff measure yields the lengths of curves. The length of a ‘sufficiently
smooth’ curve is obtained by approximating it by line pieces, adding the corre-
sponding lengths and refining the approximation; the limit of length sums is then
the curve length.

Hausdorff suggested in 1918 a measure definition that generalizes the above
notions. First an important special case is explained, namely the (spherical)
a-dimensional Hausdorff measure ‘H*, where @ > 0. It is defined by

HE(B) = w, lim inf %:r;’ :BC (Lgb(x,-,r,-),r,- <85 2.1
i i

For integer «, w, denotes the volume of the unit sphere in R%. In general,

”a/Z

rii+la) “ P E e @E

Wy =

(The symbols inf, sup, liminf and limsup are explained in Appendix B.) For a
regular set B the quantity H%(B) is equal to the length (« = 1) or the area
(¢ =2).

The definition of H can be explained as follows. The subset B of R? that is to
be measured is covered by closed discs b(x;, r;),
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B | b, ),
(i)

with radii all smaller than a given positive number 8. Then the sum

Wy Z re
(i)

is formed. Of course, there are many such coverings; that is, there is freedom in
choosing x; and r;. Of particular interest is that choice which yields the smallest
value of the above sum. That value is denoted by S5 (B). It is not difficult to see
that for elementary B, in the case @« = | and o = 2, §§(B) yields the length
and area of B respectively. Namely, if B is a straight line segment then B can
be completely covered by circles that are touching. Consequently, Sg(B) is then
equal to the length of B. If B is a square then it is intuitively clear that B can
be covered by disc of radii smaller than §, with only a small amount of overlap.
Therefore S5 (B) is practically the area of the square.

A large § may lead to unreasonable values. For example, if B is a circle of radius
r and if § > r then B is covered by one disc of radius r with the same centre as
B. Taking a = 1 since a curve is to be measured, this gives &5 (B) = 2r, which
is clearly smaller than 27rr. Thus only those coverings that use small discs are of
practical interest. Hence it is reasonable to define

H;(B) = lim 7 (B), 2.2)

which is the same as (2.1).
It is possible to show that H® is a Borel measure on R2. Furthermore, for all
Borel sets B
H5(B) = A(B), 2.3)

for every smooth curve C
H!(C) = length of C, (2.4)
and for every set D of n points
HY(D) = n. (2.5)

Of course, A(C) = A(D) = 0. The topological dimensions of C and D are @ = |
and @ = 0, and H! and H? respectively give sensible values.

The above coverings may be modified by replacing the discs b(x;, r;) by arbitrary
compact subsets B; of R?, so that each B; is contained in some discs of radius less
than 8. Let rad(B,) denote half of the maximum distance of two points in B;. Then
the «-dimensional Hausdorff measure H® is given by

H*(B) = we lim inf ;rad(B,-) :B C QB,-, rad(B;) <8 p . (2.6)
» i £
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‘H¢ is also a Borel measure. Since the infimum corresponding to H® is obtained
by considering a larger set of coverings than for ‘HY,

H(B) < HZ(B). @.7)

Federer (1969, §§2.10.35 and 3.2.26) gives sufficient conditions for equality. In
general,
o . 3\a/2
cH*(B) < H%(B), withc=(3) (2.8)

and
H* =H: = A. (2.9)

There are many other definitions of measure with similar properties. For example,
instead of r; — r or rad(B;) — rad(B;)“, other functions can be considered,
or coverings with discs of equal size can be used (Taylor, 1986b). Furthermore,
so-called packing measures are used, for example the following counterpart of H:

P (B) =limsup $ Y ri : b(x;, r;) disjoint, x; € B,0 < r; <8 (2.10)
A T

(Taylor, 1986a,b). (Here systems of non-overlapping discs with centres in B are
considered.)

Particularly important with respect to statistical methods is the Minkowski
content M. It is based on the following intuitive conception. Let B be a smooth
curve of length /(B). The outer parallel set B, = B @ b(o,r) is formed, i.e. B
is blown up to a sausage (‘Minkowski sausage’) of thickness 2r. For small r the
area of B is to a good approximation equal to 2r!/(B). Consequently, /(B) can be
obtained by

. A(B))
I(B) = lim
ri0 2r
In the case of a ‘rough’ curve this limit does not necessarily exist. Therefore
corresponding infima and suprema are considered, which yield for B ‘lower’ and
‘upper’ lengths

.. A(B)
1,(B) = lim inf
ri0 r
and
. . A(B,)
I*(B) = limsup .
ri0 r

Once again a positive real number @ (0 < o < 2) may be introduced and used to
define the lower and upper «-dimensional Minkowski contents

A(B,
ME(B) = lim jnf -2 @.11)
ri0 r aa)z__a
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and
A(B,
M*Q(B) = lim sup 2_57’)
ry0 r

@W2—q

2.12)

(Note that AM% and M** are not measures.) For @ = 0, 1 and 2 this gives number,
length and area as in the case of the Hausdorff measure. If M%(B) = M**(B)
then the notation M (B) is used.

2.2 FRACTAL DIMENSION

Now the notion of fractal dimension can be explained. In contrast to the topological
dimension, which is O for sets of discrete points, 1 for curves and 2 for areas, the
fractal dimension can also take non-integer values.

For a given set B the function

fl@)y=H(B) (0<a <o)

is considered. It has quite a simple form. Namely, there is a number D between 0

and 2 with
+o0  (a < D),

fley = {O (¢ > D).

The value of f(D) may be zero, infinite or a positive real number. This behaviour
of f(a) is a straightforward consequence of the inequality

S3(B) 2 8*7*S{(B) (@ <P

and the fact that for any § with 0 < § < 1 the function S5 (B) is non-increasing in «.

Proof of monotonicity and inequality. Let o < B. Choose a covering of B that
yields (in the sense of p. 12) a value close to S5 (B). Because

RS

(1) @)

for r; < 1, the infimum of the sums ), riﬂ taken over all coverings of B cannot
exceed S¢(B). Furthermore, because o — 8 < 0,

Zr}’ =Zriﬂr,a“ﬂ > Zriﬂzﬁ"“ﬂ,

@) () )

which yields the inequality.

It is obvious that the value D plays a special role. For sets of positive area it is
equal to 2, for smooth curves it is equal to 1, and for countable sets of points it is
0; in these cases D is ec_lual to the topological dimension. Therefore it is natural to
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define

H-dim(B) = inf{a: o > 0, H{(B) =0} =sup{a:a > 0, H{(B) = 0o}
(2.13)
The value H-dim( B) is called the Hausdorff-Besicovich dimension of B. Because
of (2.6) and (2.7), the same value is obtained if HY is replaced by H®.
Analogously, packing dimensions can be defined, starting from P (Taylor,
1986a,b). If the starting point of an analogous definition is the lower (upper)
a-dimensional Minkowski content then the lower (upper) Minkowski-Bouligand
dimension M,-dim (M*-dim) is obtained:

M,-dim(B) = inf{e : & > 0, M (B) = 0} = sup{a : @ > 0, M (B) = 0}.

(2.14)
The following formulae can be used for calculating this dimension:
log A(B;
M, -dim(B) = 2 — lim sup ~£2(5r) (2.15)
ri0 lOg r
or
log [A(B,)/r*
M,-dim(B) = lim ing 108 [ABN/7] (2.16)
ri0 log (1/r)

For the determination of M*-dim, sup and inf have to be interchanged.

The determination of fractal dimension is very complicated if particular
properties of the sets considered cannot be used, for example self-similarity
(§3.2.2). Falconer (1990) describes systematic methods for determining fractal
dimensions. 1t is still more complicated to determine the value of the corresponding
measure, for example the Hausdorff measure.

Since in §3.2.2 the formulae for the self-similar case will be given without proof,
an example of dimension calculation is given here.

Determination of the fractal dimension and of the Hausdorff measure of the
Cantor dust C

For the Cantor dust

log 2
H-dim(C) = —£< = 0.6309 (2.17)
log 3
and
HP(C)=2"Pwp = 1.035 (2.18)

for D = log2/log 3.

Proof: Let D = log2/log3. In the jth step of the construction described on
P- 4 a subset C; of the x-axis is obtained that is contained in C and that consists of
2/ closed intervals of lengths 37/, The intervals can be considered to be diameter



16 HAUSDORFF MEASURE AND DIMENSION

lines of discs that cover C. For § = 337/ one obtains
SHC) <2 (437)% w,.
In particular, for @ = D, since 3 = 2,
S§§(C) <27 Pwp.

This implies
HP(C) <27 Pwp.

To prove the converse inequality, an arbitrary covering of C by discs is
considered. By slightly enlarging the discs in this covering and using the
compactness of C, one can change to a finite covering. Obviously, it is economical
to set the disc centres on the x-axis, and thus in the following only finite coverings
of this kind are considered. For these, the discs are chosen in such a way that any
covering disc b(x,, r;) has an intersection of the form J U K U J’ with the x-axis,
where K is in the complement of C, and J and J’ are intervals contained in C,
and C;, with suitable indices j and j'.

By construction, the sum of the lengths of J, J' and K is not smaller than %
times the sum of the lengths of J and J’. Thus if /(X) is the length (the one-
dimensional Lebesque measure) of the subset X of the x-axis, the radius r; of a
covering disc satisfies

@r)P = [T +1J) + 1(K)TP
{31y + 19137
2[4y + Lian)®
1P +1(J)P.

v

v

Here the inequality 3° = 2 and the concavity of the function f(x) = x? (since
D < 1) have been used. Thus if b(x,, r;) is replaced by two discs of diameters
[(J) and [(J'), the sum of the rP-values is not increased. Using an analogous
argument, one can replace the original covering by a covering for which all discs
have diameter 37% for a suitably chosen k and the sum of rP”-values does not
exceed the original sum. Since for every k

2 (137" =270,

one obtains
HP(C) > 27 Pwp.

This and the inequality above yield
HP(C) =27 Pwp,

and consequently the Hausdorff dimension of C is D.

12
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It is not difficult to show that
HP(C) = HP(C).
Furthermore, it is possible to prove that
M,-dim(C) = M*-dim(C) = H-dim(C),

but the values of M, (C) and M*(C) differ from H?(C).

The foregoing proof is typical in as far as it is often easier to give upper bounds
for the Hausdorff dimension than lower ones. As for the Cantor dust, it can be
shown for the square dust Q of Fig. 2 that its H-dimension is equal to — log 4/ log k.
In this case, £ takes any value in the range 0 < k < %; thus the dimension can
take any value in the interval [0, 2).

There are a number of other definitions of dimension and similar characteristics
for irregular sets (Tricot, 1982; Falconer, 1985, 1990; Taylor, 1986b; Cutler, 1991;
Jensen, 1993). These show the following basic properties:

monotonicity
B C B' = dim(B) < dim(B'); (2.19)
invariance with respect to motions and dilations
dim(AT (B)) = dim(B)

for all Euclidean motions T and all positive dilatation factors A;

o -stability

dim (U B,) = supdim(B;). (2.20)
) [}

Fortunately, for many sets (if they are sufficiently ‘regular’) some, if not all,
definitions of dimension lead to the same values (Tricot, 1982; Taylor, 1986b;
Falconer, 1988, 1990). A general inequality is M,-dim(B) > H-dim(B).

Methods of determining M*-dim and M,-dim can be obtained from (2.15) and
(2.16). For small r the area of B & b(0, r) is determined and then the limit as
r | 0 is estimated. In contrast, a measure in the spirit of the Hausdorff dimension
is hardly possible, because it would be necessary to determine the infimum over
all coverings. An important starting point for developing measurement methods is
the following result of Tricot (1982): for any bounded set B

log N, (B
M.-dim(8) = — lim sup £ (8) @2.21)
r40 logr
. log M, (B
M.-dim(B) = — lim sup &r(5). 2.22)

r40 logr
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. 1 (B
M,-dim(B) = —limsup ﬂ(—)
40 logr

(2.23)
Here N,(B) is the smallest number of closed discs of radius r that cover B, and
M, (B) is the maximum number of open discs of radius r and centre in B that do
not overlap. Finally, Q,(B) is connected with a division of the plane in quadratic
meshes of width r. The number of squares containing points of B is denoted by
0-(B).

The right-hand limit in (2.21) is sometimes called the ‘entropy dimension’
(Hawkes, 1974), that in (2.22) the ‘metric dimension’ (Kolmogorov and Tihomirov,
1961) and that in (2.23) the ‘logarithmic density’ (Tricot, 1973), ‘quadrat count
dimension’ or ‘box dimension’. The latter is closely related to the so-called ‘capacity
dimension’. The paper by Hunt (1990) contains a detailed analysis of the errors
which arise in the practical determination of this dimension. Methods for the
empirical determination of dimensions based on these ideas are considered in
Chapter 5.

2.3 LOCAL HAUSDORFF DIMENSION AND
DIMENSION DISTRIBUTION

Sometimes it is useful to apply the so-called local Hausdorff dimension, see §5.7.
This assigns to every point x of the plane a number D, (x), which may be connected
with the dimension of a given set. If this set consists of components of different
dimension (it is then called a ‘multifractal’) then D, (x) may help to find and to
describe these differences. Let u be a probability distribution on R?. Associate u
with a random point X for which the probability that X lies in E is equal to

Pr(X € E) = u(E) (2.24)

for any Borel set E. In particular, u(b(x, r)) denotes the probability that X lies in
the disc b(x, r). Then the local Hausdorff dimension D, (x) is defined by

log p(b(x, 1))

(2.25)
logr

D,(x)= llrrnl%]nf

(Cutler and Dawson, 1989). The term ‘pointwise dimension’ is also used
(Mandelbrot, 1982; Farmer et al., 1983).

Now let the distribution 1 of X be such that there is a compact set B of Hausdorff
dimension D with

Pr(Xe€eE)=1and Pr(X € E) =0
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for all subsets E of & with H-dim(E) < D. Then for p-almost all «F
D,(x)=D (2.26)
An example of such a distribution is the ‘uniform distribution’ of B,

HP(BNE)

HPB) where 0 < H?(B) < o0.

u(E) =

If B is the Cantor dust C then the distribution is closely related to the Cantor
function (or ‘Devil’s staircase’). The set C is interpreted as a subset of the x-axis,
and X is a random point on the x-axis with the uniform distribution corresponding
to HP,

HP(BNE) log2
WE) = "5 ——, D=t

H"(B) log3

The distribution function of X is
Pr(X < x) = u(10, x)) = C(x),
where C(x) denotes the Cantor function, (Fig. 7), which is defined by

(b <xs

—

Cx)=

(5<x<
(

and so on (the continuation is analogous to that for the Cantor dust). Interesting
physical applications of the Cantor function are discussed in Mandelbrot (1977,
1982) and Bak (1986). More generally, now let B be the union of n pairwise-
disjoint compact sets of Hausdorff dimensions D; (i = 1,...,n). Let

oloe WOl Wik
—

—

BlW B— N

O~

<x <

PI‘(XE B,’):[),‘ >0

and
P(X e E)=0 (i=1,...,n)

for any subset E; of B; with H-dim(E;) < D;. Then D,(x) takes the value
D; for almost all x € B;. The values D, (x) can be interpreted as samples of
a random variable D, (X). While X denotes a random point in R?, D,(X) is
the corresponding random dimension. The distribution of D, (X) is given by the
probabilities p;:

Pr(D,(X)=D)=P(X e Bi)y=p;, (i=1,...,n).

TThere is a set N with Pr(X € N) =0, so that (2.26) holds for all x € N¢.
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| |
1 2 1
3 3

X —»

Figure 7 An approximation of the Cantor function (Devil’s staircase). Further refining
yields more jump points with decreasing jump heights; see text for explanation.

However, note (2.20); the Hausdorff dimension of the set B above satisfies

H-dim(B) = rr(lg;x H-dim(B;).
!

The dimension distribution function is given by
Fp(a) = sup{u(FE) : E is a Borel set with H-dim(E) < «}.

It satisfies
Fp(a) = Pr(D,(X) < a),

(Cutler, 1986, 1990; Cutler and Dawson, 1989).

24 FRACTALS

A subset B of R? is said to be a fractal if its topological dimension is smaller than
H-dim(B). Taylor (1986b) requires additionally that other definitions of dimension
give the same value. According to him, nearly all examples in Mandelbrot (1977,
1982) satisfy this condition. Many non-mathematicians seem to believe that all
‘natural’ fractals have this property. (However, it is known, for example, that for
certain attractors different definitions of dimension give different numbers.)

Note that irregular sets with positive area (‘islands’) are not fractals, since both
their topological and fractal dimensions are equal to 2. However, their boundaries
(coastlines) may be fractals.



CHAPTER 3

Deterministic Fractals

3.1 GENERAL PROPERTIES OF FRACTALS

Falconer (1985,1990) gives an extensive description of the geometric properties
of fractals (in the sense of Hausdorff dimension) in RY. The following is a short
sketch for the case RZ.

Every set B of Hausdorff dimension zero with 0 < H%(B) < oo is a finite point
set. Sets of greater dimension may be unions of sets of different dimension. By
(2.20), the subset of maximum dimension determines the dimension of the whole
set. Therefore, in the following, only this set is considered. (The Hausdorff measure
‘HP of the rest vanishes.)

A set B of dimension 1 with 0 < H!(B) < 0o consists of two parts: a ‘regular’
and an ‘irregular’ one. The regular part is a countable union of rectifiable curves (of
finite length), while the irregular part is completely disconnected. Sets of dimension
D with0O < D < 1 (and D # %) are always totally disconnected. Sets of dimension
D with D > 1 are always ‘irregular’ in a certain sense. They do not necessarily
consist of curve segments.

There are sets of dimension 2 that only consist of curve segments.

3.2 EXAMPLES OF DETERMINISTIC FRACTALS

3.2.1 Curves of fractal dimension’

Let B be the graph of a continuous real function f(x) on [0, 1], i.e.
B ={(x, f(x)), 0=x =<1}

If f(x) is sufficiently irregular then B may be a fractal. It is possible to estimate
the dimension of B if f(x) satisfies the following Lipschitz condition:

| f(x+h)— f(x)|< ch®™ (3.1

TFalconer (1985, 1990).



22 DETERMINISTIC FRACTALS
for all x and all & with O < & < hg, where ¢ and hg are positive constants. Then
H*(B) < oo. (3.2)

As interesting functions of this kind, consider function series of the form
o0
f) =Y afin,
i=1

where the f;(x) oscillate increasingly with increasing i. Examples are
fi(x) =sin(®’x), b > 1, (3.3)

or

fi(x) = g(Aix) 3.4
with A; — 00, where 0 < x < 4,

X O=<x<l),
gx) =<K 2—-x (I <x <3),
x—43=<xx<4),

and g(x) is periodically continued outside [0, 4] (‘zigzag function’).

If (3.3) is used with ¢; = b~ (1 < s < 2), the Weierstrass function is
obtained. The corresponding fractal dimension is probably s (Falconer, 1985, 1990;
Mauldin, 1986; Ledrappier, 1992). In the case of (3.4) the H-dimension can be
calculated: let

a,-=}»:»’_2, |l <a <2,

and for all i let

A >0,
>"l’+l > A;, with >"i+l/}"i — 00,
but
log Aiy
i»oo logh;
Then
H-dim(A) = a.

3.2.2 Self-similar sets

An important class of fractals are the self-similar sets. These consist of subsets
that are geometrically similar to the whole. For self-similar sets it is very easy to
calculate the fractal dimension using (3.6). Examples of such sets are the Cantor
dust, the square dust Q and the three parts of the von Koch snow flake (see below),
The definition of such sets follows Hutchinson (1981).
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A mapping W of R? into itself is called a contraction if for all x,y € R?
W) - ll<cllx=yl,

with ¢ < 1. The smallest such c¢ is called the ratio c(W) of the construction ¥. In
particular there are (contracting) similarities; these transform any subset of R? to
a geometrically similar set. Thus they comprise translations, rotations, reflections
and dilatations. The ratio of a similarity is equal to the dilatation factor.

Let ¥y, ..., ¥, be m contractions. The set B is said to be invariant with respect
to ¥y, ..., ¥, if

B = U W, (B). (3.5)

i=1
If the W, are similarities and if there exists a positive 8 with
HP(B) > 0 and HA(W;(B)NW;(B) =0 (i # j)

then B is said to be self-similar. (The additional assumption ensures that any overlap
of the W; (B) does not produce undesired effects.)

Example 1: Square. Any square can be interpreted as a union of four squares of
half-side length. Thus here m =4 and c(¥) =1 (i =1,...,4).

Example 2: Cantor dust C (interpreted as a subset of the real axis)
i) = 3x, V() =32 +x).

The similarity ¥; maps C onto the left part of itself contained in [0, %], while ¥,
makes the mapping on the right part. Both parts are geometrically similar to C.
Thus m =2 and c¢(W) = ; (i = 1,2).

Example 3: Square dust Q (Fig. 2). Obviously, Q is geometrically similar to each
of the subsets lying in the corners of the original square. Thus the similarities
Wy, ..., ¥, have to be chosen in such a way that they produce a contraction of the
ratio £ and a shift of the square centre to the centres Z,, ..., Z; of the subsquares
in the first step of the construction of the dust. Here m = 4 and ¢(¥;) = k
(i=1,...,4.

Example 4: von Koch snow flake S (Fig. 6). The set S consists of three congruent
subsets, which are each self-similar. Each has m = 4 similarities with the ratio %

The construction process used for the von Koch snow flake may be generalized,
following Mandelbrot (1982). Then one speaks of initiators, substituands and gener-
ators. The substituands are those parts of the sets that are replaced by another (more
complicated) part during the iteration process. In the case of the snow flake the
substituands are line segments, while for the square dust of Fig. 2 they are squares.
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Those parts that go suitably contracted into the positions of the substituands
are called generators (Fig. 5 shows the generator of the snow flake). Finally the
construction is determined by the starting figure or the initiator, which determines
the arrangement of the first substituands. In the case of the snow flake the starting
figure is an equilateral triangle. Figure 1 shows the generator of the Cantor dust.
The initiator here is the interval [0, 1]; the line segments are substituands.

The existence of self-similar sets for given similarities and the convergence of
iteration procedures is ensured by the following. (Here, even general contractions
may be considered.) Let W¥; be contractions of R? with the factors c(¥;) (i =
1,...,m). With these, a mapping x is defined by

x(E) = | Jw(B).

(This mapping assigns a set to another set; if E is compact then so is x(E). Thus
x is interpreted as a mapping of the set X of all compact subsets of R? into K.)
The corresponding kth iteration is x*:

x'(E) = x(E) = Ey,

XY(E)=x(x*"E)) = Ex (k> 1).

It is possible to show that there is a unique non-empty compact set B such that
= x(B) = U Wi(B)

if c(¥) < 1 for all i. For any non-empty compact set K the sequence {x*(K))
converges to B with respect to the Hausdorff metric (the proof of this statement
uses Banach’s fixed point theorem). This makes it possible to plot self-similar sets
iteratively (see e.g. Hayashi, 1985; Heesterbeek et al., 1990).

In the following let the W; (I = 1,...,m) be similarities. The similarity
dimension of B is that real number D which satisfies

deP=1 (3.6)

It is positive and uniquely determined.

Example 1: Square

m=4, ¢ =---=¢=

Example 2: Cantor dust C
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Example 3: Square dust Q

log4
m=4, ¢ =---=cs=k: D=£.
logk
Example 4: von Koch snow flake S
log4
m=4, C1='--=C4=%1 D: Og .
log3

Moran (1946) showed that the similarity dimension of the invariant set B is
equal to its Hausdorff dimension,

H-dim(B) = D, (3.7)

if the following non-overlapping condition is satisfied (Hutchinson, 1981; Falconer,
1985, 1990): there is an open set O with

x(0) C 0 and ¥;(0)NW;(0) =8 (i #J). (3.8)
For the corresponding Hausdorff measure
0 < H?(B) < o0, (3.9)
and the set B is self-similar, i.e. it satisfies (3.5) and also
HP (W (B)NW;(B) =0 ( #))

The latter is clear because of (3.9)

> HP(W(B) =Y rPHP(B) = HP(B),

=1 =1

and because ‘H? is additive.
It is easy to see that HP(B) < oo. For any &, B can be written in the form

Thus B;, ;. is geometrically similar to B with the ratio ¢;, ---¢;, < ¢ < I, with

¢ = max; ¢;. The radii of the smallest covering discs satisfy

k

Y ndB, )= Y radB)’(c, ;)P = rad(B)P.

(TS [CATNTS)

The second equation follows from

Z (Cil "'Cik)D = l:
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which follows from the definition of similarity dimension. Choosing § = c* rad(B)
in (2.1) yields
HP(B) < wp rad(B)®.

Further very important examples of deterministic fractals are ‘strange attractors’
(e.g. Julia and Mandelbrot sets) (see e.g. Mandelbrot, 1982; Schuster, 1984;
Falconer, 1985, 1990; Peitgen and Richter, 1986; Peitgen and Saupe, 1988;
Devaney, 1990; Hastings and Sugihara, 1993; Jensen, 1993).

3.2.3 A program for the generation of generalized von Koch snow flakes

The following is a sketch, by means of an example, of how one could generate
approximations of fractal curves by computers. The algorithms used for this may
help to understand the architecture of these sets, and the figures obtained can be
used to test measurement methods of fractal dimensions. Methods for the gener-
ation of figures of fractals are systematically treated in Devaney (1990), Hastings
and Sugihara (1993) and Peitgen and Saupe (1988). Our aim here is plotting a
generalized von Koch snow flake as in Fig. 8 by computer.

The initiator of the figure is an equilateral triangle of side length /; all line
segments are substituands. Figure 9 shows the generator, its parameters are the
side length /, the angle @ and the ratio @ (<0.5). The ratio b is given by
_i-a

cosa

The fractal dimension D of the snow flake is the solution of the equation

a®+bP =1 (3.10)
which is a particular case of (3.6). Figure 10 shows the dependence of D on a
and a. The values above the thick curve are only formal solutions of (3.9); under
it the non-overlapping condition (3.8) is satisfied. The open triangle ABC dilated
by the factor / plays the role of O in (3.8). A procedure that plots the generator is

sketched as follows:

Procedure Generator(L);
Begin;
plot a line segment of length L - a;
rotate the pen by a degrees to left;
plot a line segment of length L - b;
rotate the pen by 2 - « degrees to right;
plot a line segment of length L - b;
rotate the pen by « degrees to the left;
plot a line segment of length L - a;
End;

.
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Figure 8 Computer-generated image of a generalized von Koch snow flake. The model
parameters are @ = (.46 and o = 85°. The fractal dimension is 1.78.

Figure 9 Generator for the generalized von Koch snow-flake. The quantities a and « are
model parameters.

Only a few changes are necessary to obtain a procedure that constructs a third
of the snow flake. Instead of a line segment, a diminished copy of the generator
must be plotted at every stage. The reduction is controlled by the factors a and
b. The recursive character of the construction is realized by a recursive procedure.
The plotting is halted after some fixed number of steps, called the ‘depth’.

Procedure Generator(/,depth);
if depth = 0 then plot line segment of length /
else Generator(/ - a,depth-1);
rotate the pen by « degrees to left;
Generator(/ - b,depth-1);
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Figure 10 Dependence of the fractal dimension of the generalized von Koch snow flake
on the parameters @ and «. Only the region below the curve in bold corresponds to fractals,
since above the curve the components of the sets generated overlap.

rotate the pen by 2 - o degrees to right;
Generator(! - b,depth-1);
rotate the pen by « degrees to left;
Generator(/ - a,depth-1);
end if
End;

The final program plots three figures of this kind so that their base lines form
an equilateral triangle.

Set pen in start position;
Generator(/,depth);
rotate pen by 120 degrees to right;
Generator(/,depth);
rotate pen by 120 degrees to right;
Generator(/,depth).



CHAPTER 4

Random Fractals

4.1 RANDOM SELF-SIMILAR SETS

Falconer (1986, 1990), Mauldin and Williams (1986) and Graf (1987) (see also Graf
et al., (1988)) have developed a stochastic analogue to the theory of deterministic
self-similar sets of Moran and Hutchinson, which was sketched in §3.2.2. Some of
its results will be given in this section. But first two examples of compact random
self-similar sets are considered.

Example 1: Random Cantor dust C; (Falconer, 1986). The central part of the
interval [0, 1] is removed in such a way that the remaining two outer parts have
the same length L, where L < % Here L is a random variable with density function
f(s). From each of these intervals the central part is again removed independently
of other removals, where the random length fraction of the remaining outer intervals
has the same distribution as L and they are stochastically independent of L. This
procedure is continued infinitely, and a random compact set C;, is obtained. It has

fractal dimension
H-dim(C;) = D,

where D is the positive solution of the equation
—2ELP = 2/st(s)ds =1; @.1)

see also (4.6). If f(s) is the density function of the uniform distribution on [0, %],
then D = 0.457. By suitable choice of f(s), it is possible to obtain any value
between 0 and 1 for H-dim(C;). If L = % then the classical deterministic Cantor
dust C is obtained.

Example 2: Random von Koch snow flake S, , (Falconer, 1986). As for the
deterministic snow flake, the starting figure is an equilateral triangle, but now
a randomized form of the construction principle of §3.3 is used. Now a and
a are random variables with density functions f,(s) and f,(8). In each step of
the construction in which the suitably diminished figure of Fig. 9 replaces a line
segment, a and « are chosen independently of all earlier replacements. This process
yields a random compact set S, o, whose distribution depends on f,(s) and f,(é).
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The Hausdorff dimension D is the positive solution of the equation

//

In the particular case where g is uniformly distributed on [3, 2] and ¢ = 60°,
D is the solution of the equation

250 4 252 )] fa($) fa(8)ds db = 1. 4.2)

27037 = Lpy . (4.3)

Thus D = 1.145. (As Fig. 10 shows, there are no overlappings in this case.)
Figure 11 shows two simulated curves for this model.

The construction of further random self-similar sets is possible similar to the
procedure of §3.2.2 (Falconer, 1986, 1990; Graf, 1987; Graf et al., 1988; Patzschke
and Zihle, 1990).

Starting with an initiator, in every step substituands are replaced by random
generators, which are independent and each identically distributed. The result is a

a)

Figure 11  Simulated samples of random Koch snow flakes: (a) & = 60°, uniform in [},
(b) & = 85°, uniform in [0.465, 0.5]. «
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.

b
Figure 11 (continued) )
random compact set B with the following properties:
B = v, (4.4)
j=1
BL B (j=12,..,m. (4.5)

Here X = ¥ means that X and ¥ have the same distribution. The B; are stochasti-
cally independent mutually and of (¥, ..., ¥,), and the ¥; are similarities with
the ratios ¢; < 1. They belong to a set S of similarities, from which they are taken
according to a certain distribution. A non-overlap condition analogous to (3.8) must
be satisfied (Falconer, 1986, 1990; Graf, 1987).

It can be shown that the Hausdorff dimension of the set B has the value D that
is the positive solution of the equation

E(> P | =1 (4.6)
Jj=1

The mean has to be calculated according to the distribution of the similarities.
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The Hausdorff measures of such sets have been investigated by Graf et al. (1988).
The Hausdorff dimension is now calculated for the examples given at the
beginning of this section.

Example 1: Random Cantor dust Cr. Here m = 2, and the set S of similarities
consists of two families of similarities {W;;} and {W,} with 0 <s < 3. A point
x of the x-axis is mapped by {\IJI,S} and {\II,‘S} onto sx and 1 —s+sx respectively.
The ratio of both mappings is s. Consequently the sum in (4.6) is 2s”, and the

mean equals

12
2/ sP f(s)ds.
0

Example 2: Random von Koch snow flake S, o. The family S of similarities now
consists of four families {Wy,}, {W2,}, {Ws,} and {W,,} with 0 < 5,7 < 1.
The similarities W, ; and W, refine the two base pieces of the generator in the
construction of the Koch snow flake; W, , and W3, do the same for the sides of the
triangle. Their ratios are s and ¢, with ¢t = (1 — 2s)/(2cos ). The mean in (4.6) is

e"s‘{ |

hp'
%
o

‘5

Figure 12 Simulated sample of a random snow flake. At each replacement of a line segment
by a generator, the chosen generator is with equal probability 0.5 that of the Koch snow
flake or the quadratic snow flake (Mandelbrot, 1982).
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/]

Interesting random fractals are obtained if in each step of the construction a random
choice is carried out from a set of qualitatively different generator. Figure 12 was
obtained in this way.

equal to

2s” + ] fa(8) fu(8) ds d8.

4.2 MANDELBROT-ZAHLE CUT-OUTS

Mandelbrot (1972) studied a class of random fractals on the real axis called by him
‘random cut-outs’, Zihle (1984b) considered generalizations in R, A particular
case is the following model. T, is a random union of discs. The random set X is
what remains after infinitely many such ', have been deleted from the plane.

The base of the construction is a Boolean model I' with open convex grains,
see Appendix F. The intensity of the corresponding F Poisson point field of germs
is A. The mean area and mean perimeter are A and U respectively, where 0 < A,
U < o0.

Now imagine infinitely many independent sets ') with the same distribution as
I' (n=1,2,...). They are reduced in such a way that new sets I',, are obtained:

r,=r"T" (n=12,..),

where r > 1. Thus I, is again a Boolean model, and its intensity is A", and the
mean perimeter of the grains is Ur " and the mean area Ar~?". The cut-out set X
is then

o0
X = R?\ U r,.
n=l

This is a closed set of area zero. Plates 322-325 in Mandelbrot (1982) show
simulated samples of such a set. The Hausdorff dimension of this set is
LA

H-dim(X) =2 —
logr

if this number is non-negative; otherwise X is empty. Physicists have studied the
fractal boundaries of irregular Boolean models; see Hermann (1991).

4.3 RANDOM FRACTALS CONNECTED WITH BROWNIAN MOTION

Brownian motion (or the Wiener process) in R' is a stochastic process {W,};»¢
with the following properties:
®
Wy =0,

which means that the process starts at the origin;
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(i) it has independent increments, i.e. for all » and all ¢, < --- < ¢, the differ-
ences
W, — W,

n th—17 " "

< Wtz - Wt]

are stochastically independent;
(iii) the increments are normally distributed and depend only on the time
difference:

Wr2 - Wr

1

is normal with mean 0 and variance o2(t; — ¢,); 0% > 0.

The graph of this process is the curve {(¢, W;),0 < ¢ < 1} in the (¢, w)-plane.
This curve has fractal (Hausdorff) dimension 1.5. A further fractal is the Brownian
bridge. This is the stochastic process {B: }o<:<|, With

B =W —tW;, (0<t=<l).

It satisfies Bo = B; = 0. The graph of {B,}, i.e. the curve {(¢, B;), 0 <t < 1} also
has fractal dimension 1.5. The same is true for the contours of smooth star-shaped
sets (such as discs or ellipses) that are noised by an isotropized Brownian bridge;
see Fig. 40 and §7.6 4. '

‘Still more irregular’ curves are given by the Brownian path, constructed as
follows. Given two stochastically independent Brownian motions

{Xr}Osrsl and {Yr}osrsl,

assign to each value ¢ the point P, = (X,,Y,) in R2. The set of all points P,
(0 <t < 1) is a connected curve. A simulated piece of it is shown in Fig. 13. The
fractal dimension (Hausdorff and packing) is 2, for all o (Taylor, 1986b). Also, if
Wiener processes ‘with drift’ are considered, where

EW, = e,

then fractal curves are obtained. Their dimensions coincide with those for ;& = 0.
Computer simulation of these random fractals is not difficult, the key being the
simulation of the Brownian motion {W,} (Ripley, 1987; Saupe, 1988). Most of
these simulations are two-step methods.
In the following let {S;} be the simulated process approximating {W,}.

Step 1: Simulation of Brownian motion in discrete time steps. Choose a small
time length At and determine the values S$:

§0 = S(iAt) withi=1,...,n, where nAr=1.

Thus
S+ — sy L 7. §O

The Z; form a series of independent normal random numbers with mean O and
variance o2A¢.
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1Y

Figure 13 Simulated sample of a Brownian path. Its fractal dimension is 2.

Several methods are known for the generation of normal random numbers
(Devroye, 1986; Ripley, 1987). A simple method is the sum-of-12 method based
on the central limit theorem. If u(, uy, ... are uniform random numbers produced
by a random number generator (e.g. RND in BASIC) then sums of the form

12 24

V]=Zui—6, V2=Zu,-—6,

i=| i=13

are random numbers with mean 0 and variance 1. Their distribution is close to
normal. The V; obtained can be transformed into the required Z; by multiplying

by o At.

Step 2: Determination of the intermediate values. Starting from the S, the values
S for ¢ between i At and (i + 1)At are determined. If At is very small then linear
interpolation is possible:

SU+h _ g

—_ )
S, =8+ A7

(t—iAt) (At <t<({i+DA?).
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Otherwise random trajectories between S and S¢*! are generated, using one of
several methods. A popular one is the midpoint displacement method suggested by
Levy. It is based on the following property of Brownian motion {W,}. If ¢; and £,
are two arbitrary instants between 0 and 1 and if ¢ is between ¢, and f, then

W, =nu@) o)z,

where
(o =W+ —t)W2
n() = )
h—nh
2
L=t —t
iy = UG
h—1n

Here Z, is a normal random variable with mean O and variance 1 that is independent
of all W, for 0 <5 < t; and t, < s < 1. This suggests the following method to
obtain Sii/)z’ which corresponds to Wiar+ar2 using S and S¢+D: Generate a
normal random variable V with mean O and variance 1 and set

S0y = LI(SD + SUD) + o VALV

Then one can either linearly interpolate between S, Sf'))z and SU* or make further
refinements using S}Z and ngl,, etc.; for programs see Saupe (1988). Figure 13
shows a simulated Brownian path generated in a 630 x 350 raster.

4.4 SELF-SIMILAR STOCHASTIC PROCESSES

Certain important classes of random fractals are closely connected with so-called
self-similar processes. A real-valued stochastic process {Y;}p< <00 18 called A-self-
similar (or ‘scaling at the origin’, Mandelbrot and van Ness, 1968) if for all ¢ > 0
and all t > 0

Yo =Y, @7
that is, if Y, and ¢"Y, have the same distribution.

Example: Brownian motion. In this case Y, = W, (cf. §4.3) is normal with mean
0 and variance o?¢, where o2 is a model parameter. Obviously, for any ¢ > 0
the random variable Y, has a normal distribution with mean 0 and variance co?:.
Consequently, /cY, has the same distribution as ¥,,. The Brownian motion is thus
%-self—similar.

The situation is different in the case of Brownian motion with drift, where

Y, ~ N(ut, azt).

Here Y, is normal with mean ¢t and variance ca?t, and there is no A such that
(4.7) is true if u # 0.
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Sometimes the notion of self-similarity is defined more strictly. It is supposed that
for all ¢ > 0, for all # and for all ¢, ..., t, > O the random vectors (Y., ..., Ye,)
and (c" Yiooons c"Y,,) have the same distribution. Brownian motion is self-similar
in this sense.

There is a vast literature on self-similar processes, see e.g. Sinai (1976), Verwaat
(1985) and Taqqu (1986, 1988).

Those values of 4 that are interesting for applications lie between 0 and 1. The
connection to fractals is given by the following. Assuming regularity, the graph of
{Y,} (the curve given by {Y,} in the (y, f)-plane) has fractal dimension

D = max{l1,2 — h} 4.8)
(Kdno, 1986; U. Zihle, 1988). Important moment formulae follow from (4.7):
EY, = "Ey,,
E|Y,| = ("Ey,,
varY, = t2"varY1.

They are the starting points of statistical methods (Mandelbrot and Wallis, 1969;
Fairfield-Smith, 1983; Kiinsch, 1986, 1987). An important class of self-similar
processes comprises the h-self-similar processes with stationary increments and
0 < h < 1. These are important stochastic models for phenomena with extensive
dependency. Such a process {Y,} is h-self-similar, and the distributions of its incre-
ments

Yoy — Y,

are independent of ¢. It is & = 1. In the case h =1
Y, =11

An example of a %-self—similar process with stationary increments is Brownian
motion, which is a famous example of a process with independent increments.
With the exception of # =1,

EY, =0

always holds. The covariances satisfy

EY,Y, = Sa%(t/* + |s|* — |t — 5|,

where 2 = varY;

Important examples of such processes are so-called fractional Gaussian noise
and fractional Brownian motion (Sinai, 1976; Mandelbrot, 1977, 1982; Graf,
1983; Taqqu, 1986, 1988). Saupe (1988) describes their simulation. Many authors
have studied statistical methods (Mandelbrot, 1975; Mandelbrot and Taqqu, 1979;
Mohr, 1981; Graf, 1983; Fox and Taqqu, 1986; Beran, 1986, 1991; Kiinsch, 1987;
Taqqu, 1987; Samarov and Taqqu, 1988). Self-similar random measures have also
been studied (Daley and Vere-Jones, 1988; U. Zihle, 1988). The support sets of
such measures are fractals.






CHAPTER 5

Methods for the Empirical
Determination of Fractal
Dimension

5.1 INTRODUCTION

There is no generally applicable empirical method of determining fractal dimen-
sions. Rather, there is a range of different methods, which are applied according to
the data and the nature of the phenomenon investigated. The methods are closely
connected with certain definitions of dimension. It is commonly held among fractal
statisticians that for real geometrical structures all definitions of dimension should
yield the same value; that is, that the real structures are ‘regular’ in some sense.
Sometimes different methods are used for the same structure, and (nearly) equal
values are then taken as a ‘proof’ of the correctness of the results.

For nearly all natural fractals difficulties appear owing to the limited accuracy of
measurement and rounding errors at small scales. Consequently the results do not
always behave as for mathematical fractals. Frequently one observes fractal-like
behaviour only in a certain region of scales. However, it is reasonable to assume
that ‘fractal dimensions’ that are suitable at these scales are useful as irregularity
and roughness parameters. In passing, it should be noted that in the production and
analysis of mathematical (i.e. ‘true’) fractals on image analysers similar phenomena
are observed; that is, the behaviour is not fractal-like at very small scales. Starting
from this observation, Rigaut (1989) has introduced so-called asymptotic fractals
and asymptotic fractal dimensions. The latter are essentially the fractal dimensions
which are what one would estimate if one was using with care the results for large
and medium scales.

Complicated problems appear on using image analysers. The high accuracy of
measurement makes it necessary to consider the geometry of the digital raster on
the monitor. The structures investigated are digitized and thus simplified, and for
small interpixel distances only rough approximations, e.g. of discs (see Fig. 19),
are possible. A particularly difficult case is that where the set to be studied is
the very irregular boundary of a particle. It is non-trivial to define the boundary
of a set in terms of the digital raster and to measure its length with sufficient
precision.
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Until now, there have been only a few theoretical investigations into the problem
of statistical estimation of dimensions. Self-similar stochastic processes (§4.4) and
local dimensions (§5.5) have been the most studied. Surveys have been given by
Berliner (1992), Chatterjee and Yilmaz (1992), and Isham (1993).

For the systematic empirical measurement of dimension, pilot studies are useful,
which may gauge the measurement method by analysing mathematical fractals.
These should be similar to the natural objects to be analysed, and should be
presented in the same form (pictures on paper or patterns of pixels on the monitor
of an image analyser).

Note that there are also physical methods of dimension measurement, e.g. small-
angle X-ray scattering (Schmidt, 1989).

The methods described in this chapter are designed with dusts, systems of curves
and particle boundaries particularly in mind.

5.2 DIVIDER STEPPING METHOD

The divider stepping method or yardstick method is a proven and precise method
for manual determination of fractal dimensions of planar curves on paper. These
curves should be orientated or be capable of being orientated (e.g. the boundary of
a particle or a coast line).

The measurement goes as follows. First a starting point S (an endpoint or an
arbitrary point on a closed curve is selected on the curve B). Then the dividers are
adjusted to width r;. One point is placed at S, and then the point of intersection
of B and the circle centred at S of radius r, is determined. This new point is
the next point at which these dividers are placed. (If there is more than one point
of intersection then the point nearest S when travelling along the curve B should
be chosen; see Fig. 14.) The process is repeated as necessary. Let N(r;) be the
number of divider widths that can be placed in B. This procedure is repeated for

4

7

Figure 14 Determination of intersection points for the divider stepping method. If the
curve is orientated from left to right then the next intersection point after S is the point
indicated by the arrow.
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the widths ry, r3, ... with r{ > ro > r3 > --.. Then one obtains approximations
I(r)), (r2), ... for the length of B:

I(r)=riN@r) (=1,2,..).
If B is a fractal then one expects
I(ry =cr'=", .1

or
logl(r)y =1logc+ (1 — D)logr, 5.2)

where D is the fractal dimension. Readers who are unhappy with the dimensionality
of (5.1) can follow Underwood to rewrite this equation as

1-D
r
lr =10 (_> »
ro

where r( is an arbitrary constant with dimensions of length, and /y is a further
length constant.

An estimate of D can be obtained by plotting the points (r{, L(r;)) on double
logarithmic paper, thus obtaining a regression line. The slope is an estimate of D.
Since all L(r;) come from the same picture, there are complicated relationships
between the L(r;). Thus, for the sake of precision, a generalization of the least-
squares method should be used (Cressie and Laslett, 1987; Cutler, 1991; Taylor
and Taylor, 1991). It is clear that for any r; the discs corresponding to the circles
drawn cover B completely. Thus N (r;) can be interpreted as an approximation of
the disc number in (2.22). Consequently, the divider stepping method is closely
related to the Minkowski dimension.

5.3 BOX-COUNTING METHOD

The box-counting method can be used for arbitrary planar structures. It is well
suited to image analysers, where the structures are processed as pixel patterns
(here it is assumed that there is a square raster). The pixel patterns may be systems
of isolated pixels (‘dust’) or curve-like patterns. Particle boundaries can also be
treated using this method, as explained below. First the case of dust or curves is
considered.

As a first step all pixels belonging to the structure are counted. The screen is then
divided into squares, 2 pixels by 2 pixels, and the number of squares intersecting
the structure is counted (Fig. 15). The same is then done for all 3 x 3 and 4 x 4
pixel squares, etc. This yields the numbers

q91,. 92, ... .
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N

Figure 15 An irregular curve and those pixels and groups of four pixels that are in contact
with it. The numbers of these pixels and pixel groups are used in the box-counting method.

Using (2.23), the fractal dimension can now be estimated. For this purpose the
points (1, q1), (2, g2), . - ., are plotted on double logarithmic paper, and a regression
line y = a + bx is determined. Its slope b (b < 0) yields as an estimate of the
fractal dimension as

D = —b. (5.3)

This method can be justified as follows. The formula (2.23),

log O, (B
lim sup &2 B) _

-D,
rlo logr

corresponds to
Q.(B)=r"

for small r. Using the notation above, this is
gn = ()",
where c is the scaling factor. Taking logarithms gives
logg, = a — Dlogn.

Tests carried out on mathematical fractals on an image analyser lead to the
suggestion that only the points (k, gi), .. ., (N, gn) rather than (1, ¢1), ..., (N, gn)
should be used; for example with k = 4 and N = 10. These tests show also
that the sausage method (§5.4) is more precise than the box-counting method.
Taylor and Taylor (1991) have shown that the accuracy of the box-counting
method can be increased by filtering the image to be analysed before making
the measurements.

Liebovitch and Toth (1980) and Block et al. (1990) discuss the problem of an
effective numerical computation of the box-counting dimension and generalizations.
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If the fractal is the boundary of an irregular particle as on Fig. 4 then first a
boundary set should be generated by means of image analysis and then the method
described above can be used.

In image analysis there are several definitions of boundary (Kovalevski, 1989).
From comparisons of a series of mathematical fractals, it turns out that relatively
good measurement results can be obtained using the so-called inner 8-boundary.
(Experience shows that this overestimates slightly.) The corresponding definition

a) b)

Figure 16 Definition of the inner 8-boundary and the inner 4-boundary. A (+)-pixel of a
set of pixels is a boundary pixel if at least one of the (*)-pixels does not belong to the set.
Obviously, the inner 8-boundary consists of more pixels.

a) b)

Figure 17 Inner 4- and inner 8-boundaries for the graphite particle of Fig. 4 (a) and (b).
The inner 8-boundary is slightly longer and more irregular.
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7

Figure 18 Inner pixels that touch pixels in contact with the curve shown in Fig. 15.

say that a (+)-pixel of the particle is a boundary pixel if one of the (*)-pixels as
in Fig. 16 does not belong to the particle. Figure 17 shows the inner 8-boundary
of the graphite particle of Fig. 4; for comparison, the so-called inner 4-boundary
is also presented, which, as experience shows, underestimates slightly.

Tricot (1986) (see also Tricot et al. 1987) suggested the determination of ‘inner’
and ‘outer’ dimensions for closed particle boundaries. The inner dimension is
obtained by counting the number of squares of side length k (k = 1,2,...) that
touch squares of the same side length containing points of the particle (Fig. 18).
These numbers qf”, qé”, ... are used to determine, using (5.3), an inner dimension
number D;. Analogously, an outer dimension D, is determined based on the squares
outside the particle. The larger of the two numbers D; and D, is then taken as an
estimate of D. As in the case of the divider stepping method, b in (5.3) is obtained
from the regression line — possibly using a generalization of the least-squares
method (p. 41).

54 SAUSAGE METHOD

The sausage or boundary dilation method is still more closely connected to the
use of image analysers than the box-counting method (Flook, 1978). The structure
analysed is a pixel pattern. It is enlarged by dilation with discs, whose radii increase
at each stage. That is, each point of the pattern is taken as the centre of a disc,
and the union of all disc pixels is then the dilated set. In every step the number
n, of pixels in the dilated set is noted, and the points (r, n,) are plotted on double
logarithmic paper. Let b be the slope of the resulting regression line; then the
dimension should be :
D=2—b. (5.4)
The theoretical basis of this method is (2.15) (thus it is related to the Minkowski
dimension); the rest of the argument applies similarly to that for the box-counting
method. Since digital raster discs cannot be presented exactly, it may be helpful
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here to say something about disc approximations. It is reasonable to use those disc
approximations that are suggested by the image analyser. An example is the series
shown in Fig. 19. It is important to use the corresponding appropriate ‘radii’. These

are given by
A\ 12
r= (—) , (5.5)
4

where A is the area of the corresponding pixel figure. For the figures of Fig. 19
the radii are (1/7)'/2, (4/m)"/?, (9/m)"/? and (12/7)'/?, expressed as multiples of
the pixel distance.

For systems of curves, Flook (1982b) suggested a correction that considers exten-
sions at the curve ends (Fig. 20). For each curve end the value ar (%n) " has to
be subtracted from the area of the structure, when dilated to radius r. Here « is an
apriori estimate of the unknown fractal dimension.

If the set investigated consists of particle boundaries then the inner 8-boundary
should be constructed and analysed.

Tests on mathematical fractals, given in a quadratic raster, have shown that
acceptable results can be obtained if 5-10 sizes of disc are used. Theoretical dimen-
sions greater than 1.5 are often underestimated. Better results can be obtained if the
method given in §5.5 is used and the most frequent value, the mode, of the distri-
bution is taken as the estimate. Creutzburg et al. (1992) discuss a fast algorithm

for computing the dimension of binary images by the sausage method.

LT « s

L . /

Figure 19 First members of a series of discrete ‘discs’ in the square raster.

Overshoot area

Edge of dilated curve

Figure 20 Schematic description of extensions of curve ends. They are considered in the
sausage method.
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5.5 ESTIMATION OF LOCAL DIMENSION

Several widely used estimation methods are based on the notion of local Hausdorff
dimension (p. 18). This includes nearest-neighbour methods or methods for
estimating the ‘correlation dimension” (Grassberger and Procaccia, 1983; Gucken-
heimer, 1984; Badii and Politi, 1985; Holzfuss and Mayer-Kress, 1986). Cutler and
Dawson (1989) suggested a statistical method for the determination of the local
Hausdorff dimension D, (x). Using this method, it is possible to obtain information
on the variability and distribution of D, (x). If for a given set B it is possible to
find a distribution @ with

D, (x) = H-dim(B) for p-almost all x

then the dimension of B can also be estimated using the same method. This idea is
used below to estimate fractal dimensions of pixel patterns using image analysers.

To apply this method of Cutler and Dawson, it is necessary to generate a series
of independent points X, X5, ... that have the distribution w. Let

On(x) = ,-fllin,, I x—X:|l
be the minimum distance between x and the X;. If x belongs to the support of
w1 then g,(x) converges to zero with probability one. Furthermore, the sequence
{D;l(x)} defined by

DIl(x) = loglag.(I1 |5 ) (5.6)

log (b/n)

almost certainly converges towards [D,(x)]~". This gives a consistent estimate of
D, (x). Here a and b are positive numbers determining the speed of convergence.
For a distribution concentrated in a disc of radius 1 Cutler and Dawson (1989)
characterized the asymptotic behaviour of D, (x). Cutler and Dawson (1990)
considered asymptotic normality of related quantities.

Some practical methods can be interpreted as applications of the above method,
where @ is the uniform distribution (in the sense of the Hausdorff measure corre-
sponding to the required fractal dimension) on the set R under investigation. It
is approximated by the uniform distribution on the pixels of B. To estimate the
dimension of B, m test points ¢, ..., !, are used that are chosen according to the
uniform distribution on the pixels of B. For every test point #; the number s;(r) of
pixels of B in the disc b(t;, r) of radius r centred at t is determined. As in §5.4,
the discs are approximated by pixel figures.

For test points near the boundary of the monitor a boundary correctign is useful.
This can be obtained by multiplying s;(r) by the factor f(¢;), where

77."‘2

area of b(t;, r)NW

f) =
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Then the averages s(r)
l m
s(r) = p_ ;si(r)

are found for various values r; of r. The points (log ry, logs(r;)) are then plotted
to give a regression line, whose slope is assumed to be an estimate of D. Practical
experience suggests that often modal values instead of averages yield better results;
see also p. 48.

This method is closely related to a way of estimating the so-called ‘correlation

dimension’

3 I
b = lim 28N (5.7)
rio  logr

where N(r) is the number of pixel pairs with a distance smaller than r. Statistical
properties of this method, which is called the Grassberger-Procaccia procedure,
are discussed in Wolff (1990) and Smith (1992).

If one has to assume that the structure investigated consists of components
of different fractal dimension (a multifractal) then, one may try to determine
local dimensions and a dimension distribution. For each of the test points f;
introduced above an individual dimension value D; is determined. This is done
analogously to the above procedure by determining a regression line for the points
(log ry, log s; (r)) with a series of radii r;. A frequency distribution of the D; values
gives some impression of the variability of the irregularity and roughness of the
geometrical structure under investigation. Another way to characterize multifractals
is using a generalized box-counting method and the corresponding generalized
dimension (Grassberger, 1983). Here the numbers of pixels in boxes are considered.

5.6 FURTHER METHODS

There are further methods for the determination of dimensions and related charac-
teristics; see e.g. the surveys by Tricot et al. (1987), Cutler (1991) and Isham
(1993). For curves the following method is useful. The given rough curve is approx-
imated by a smooth curve, and the intersection points of the original curve and the
approximating curve form a dust, whose dimension is more easily determined. The
dimension of the original curve is obtained by

D =1 + Dyyy, (5.8)

where Dy,q is the dimension of the dust (Mattila, 1975, 1981).

It is also possible to measure the dimension of sets with so-called ‘variable
grey tone’ — that is structures that vary in intensity between black and white
(Rigaut, 1988). These methods are used, for example, for considering the roughness
of surfaces. Still other methods use correlation functions or variograms.
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If the fractal considered is a planar section of a three-dimensional fractal then
the fractal dimension Ds of the latter can be obtained as

Di=1+D (5.9)

where D is the fractal dimension of the section figure.

Ogata and Katsura (1991) suggested point field statistical methods for deter-
mining the fractal dimension of some ‘dusts’ (epicentres of shallow earthquakes).
The pair correlation function g(r) is here proportional to r ~2=2) for small r. (Note
that there are non-fractal point fields whose pair correlation function has the same
property (see p. 257).

5.7 ESTIMATING THE FRACTAL DIMENSION OF THE BOUNDARY
OF A GRAPHITE PARTICLE

For the sake of comparison, some of the methods described have been applied to
the boundary of the graphite particle in Fig. 4. The results given are those obtained
for the inner 8-boundary and the inner 4-boundary in a 630 x 350 raster. The
box-counting method yields

1.28 for the 4-boundary,

1.31 for the 8-boundary.
For the sausage method five disc sizes were used, beginning with those of Fig. 19.
Here the measurement results were

1.34 for the 4-boundary,

1.39 for the 8-boundary.

I Snow tlake

I:I Carbon particle

0/ ]

0 0.5 1.0 1.5 2.0
Local dimension ——= -

Figure 21 Histogram of the ‘local dimension’ of the inner 4-boundary of a graphite particle
and a von Koch snow flake. Theoretically, the local dimension of the latter should be
constant.
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Measurements of mathematical fractals suggest the estimate D = 1.39. A honest
statistician should not end up with such a result in a practical application : 1.4
could be a realistic value.

Finally, to investigate the variability in the wildness of the particle boundary,
the measurement method suggested in §5.5 was employed. There the same discs as
for the sausage method were used, and all points of the 8-boundary were used as
test points, leading to the histogram of Fig. 21. To avoid illusions, this figure also
shows the histogram for the generalized von Koch snow flake of Fig. 8 obtained
by the same method. The dimension of the snow flake is 1.78. However, since the
distribution for the graphite particle is broader than that for the snow flake, this can
be taken as a hint of some variability of local dimension for the graphite particle
boundary, while for the snow flake the local dimension is constant, 1.78. Note that
for the snow flake the modal value is closer than the mean to the theoretical value.






PART 11

The Statistics of Shapes
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CHAPTER 6

Fundamental Concepts

In many statistical problems samples of geometrical objects must be studied, for
example particles, pattems or living things (or parts of thereof). The aim of the
investigations is to obtain information on the form (size and shape) of these objects,
because of the influence on technological or biological processes.

e Itis hoped to be able to classify the objects with respect to form, as in taxonomic
problems. Either the given objects have to be separated into meaningful classes,
or single objects or groups of objects have to be assigned to previously given
classes.

e It is desirable to describe variations in form statistics.

o Finally, systematic trends in shape and size development have to be detected and
described, as they appear in biological or technological processes. Frequently,
changes of the form indicate changes in the process; knowledge of form fluctu-
ation may thus help to control processes.

Usually, the form of an object is characterized by a series of real numbers: so-
called form parameters. These parameter sets are analysed by means of multivariate
statistics.

Figures

In this book only two-dimensional objects or two-dimensional images of three-
dimensional objects (projections or sections) are considered. It is assumed that
the two-dimensional information is sufficient for a reasonable characterization.
(Compare the interesting discussion in Dowdeswell (1982), which tries to justify
the use of planar images for sand grains.)

It is always assumed that the objects are sets (in the sense of mathematical set
theory), but not grey tone functions (for which see Serra, 1988). It is assumed that
the sets are compact and closed in the topological sense. In the following such sets
are called figures.

Size and shape

There are close connections between the size and shape of geometrical objects. State-
ments about size depend heavily on ideas about the shape of the objects considered,
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since they determine what is measured. Conversely, quantitative shape parameters
are based on measurement. Frequently, size and shape are closely connected — in
the way that, e.g., small objects are smooth and round but big ones are rough and
angular. Therefore it is often necessary to investigate size and shape simultaneously,
i.e. to investigate form. The choice of form parameters depends essentially on the
aim of the investigation. It makes a big difference whether a parameter is needed that
characterizes packing properties or one that is connected with local roughness. This
is important, for example, in chemical processes. It is frequently desirable to have
parameters that can be interpreted physically or biologically.

In most cases one cannot expect that form parameters uniquely determine figures
in the sense that a reconstruction is possible.

Shape parameters

The shape of geometrical objects is often a difficult concept. An essential property
is the independence of the shape of a figure X of its position or orientation in
the plane. Likewise, scale changes do not change shape. These properties can be
formulated mathematically as follows. A shape parameter y is a set function

y=f(X).
For any X and all translations T and rotations R we have
f(X)= f(TX) (6.1)
and
f(X) = f(RX). (6.2)
Furthermore,
f(X)=f(AX) for all A>0. 6.3)

Example. Let f(X) be the area of X. This function f;(X) satisfies (6.1) and
(6.2), but not (6.3). Thus, area is not a shape parameter. In contrast, the following

quantity
area of X

)= ————
f2(X) (perimeter of X )2

is a shape parameter.

Tools of form statistics

Taking form statistical measurements is frequently expensive and, when involving
manual work, lengthy. Sometimes it is sufficient to measure some distances by ruler
or a measuring tape, as in the case of larger biological objects. However, manual
work cannot usually be recommended for large samples or for routine work. Partic-
ularly difficult are cases of very small objects (investigated by microscope) and very
irregular shapes, when even the manual determination of area and perimeter is very

»
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difficult. All these observations suggest the use of image analysers and computers.
The first step is very important — saving images in computer memory. Once this
has been done, simple image analysis is straightforward; in principle, any personal
computer with graphics suffices.

In form analysis it is usual to analyse binary images, i.e. images consisting only
of black and white points (pixels). Such analysis is done by means of specialized
hardware or by suitable software; in the latter case good graphics is required.

Mathematical approaches

This book presents three approaches to form statistics: the objects investigated are
treated as subsets of RZ, or sequences of discrete points are assigned to them, or
they are described using functions.

Set description. The geometrical object to be analysed is considered as a compact
subset of R?, that is as a figure. Ideas of set geometry and mathematical morphology
in the sense of Matheron and Serra (Serra, 1992) are used in the analysis. The
corresponding elementary characteristics are area and perimeter. Many form param-
eters are based on these and similar characteristics. A typical method of this
approach is ‘deviation from convexity’. This approach is widely used; certainly
it is well suited to description of particles but not so well suited to biological
objects.

Point description. A series of typical points are assigned to the geometrical
objects. Usually, these ‘landmarks’ (cf. Bookstein, 1978) have a particular meaning;
the tips of the nose and chin are natural landmarks of skull profiles. Sometimes,
landmarks are defined geometrically as points of extreme curvature or of particular
tangent directions. These points or secondary characteristics (e.g. distances between
certain landmarks or angles between connecting lines) are then used for statistical
analysis. This method is very appropriate for biological objects.

Function description. The contour of the geometrical object is described by a
function. There are two main variants.

(a) The contour function may be periodic. An example is the radius-vector
function; here the distances of the contour points from a suitably chosen
central reference point are considered as a function of the angle that this line
makes.

(b) If the object is symmetric with respect to a line then one may take the
orthogonal distance of the contour point from the line as a function of position
on the line (Fig. 24).

In particular, variant (a) often leads to the use of Fourier series. Then Fourier
coefficients serve as form parameters.

This method, which could be called contour parametrization, is used both for
biological and technological problems. It is rather expensive, particularly in measur-
ing the contour; thus image analysers should be used for this.
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There are close connections between these three descriptive approaches. In
different ways they make it possible to use a method which can be formulated
abstractly as follows. The figures analysed are considered as samples of a random
compact set X. The distribution of X has to be determined. For simplicity, X
is transformed into another random variable, whose values lie in a space mathe-
matically simpler than the space K of all compact subsets of R%. Such spaces of
particular interest are R!, R? and certain function spaces.

Very simple random variables assigned to X are its area A(X) and its perimeter
U (X). More complicated random variables are obtained by, for example, describing
the contour by a function. For instance, pairs of random variables are obtained when
the contours are considered as ellipses and are described by the lengths of their
semi-axes. Finally, contour functions can be interpreted as elements of function
spaces.

Another important approach in form statistics is the theory of Grenander
(Grenander 1976, 1978, 1981, 1989; Grenander and Keenan 1989; Grenander et
al., 1991). This considers configurations obtained by forming random geometrical
objects from combinations of random generators. Markov models are of particular
interest.

Biological objects and particles

In this book two types of geometrical objects are considered. In the first case
particular points on the contour or in the interior of the object are selected with a
certain meaning (‘landmarks’). Clearly these play an important role in quantitative
analyses — such a point can be taken as a starting point for a parametric description
of the contour. Since this case is typical for objects resulting from growth processes,
the term biological object will be used in the sequel. This is a slight abuse of
language, and it should not be taken to mean that the corresponding methods are
of no interest to non-biologists.

Objects are frequently of a quite different nature. They may have convexities
and concavities, but neither plays a role comparable to the landmarks of biological
objects. (Of course, particular points could be selected here as well, e.g. points of
large curvature or very large deviation from the centre of gravity. However, such
points are clearly different from, say, nose tips.) As an example consider the sand
grains in Fig. 65. When describing their contours by functions, the starting points
are chosen arbitrarily (or one is not quite certain of the right choice, if, say, a
particular extremum has been chosen as the starting point). In such cases the term
particles will be used. Again, this name should not lead non-engineers to conclude
that the corresponding methods are of no interest.

Form problems in pattern recognition

Further problems appear in connection with problems of pattern recognition and
artificial intelligence, when automata have to recognize and classify figures. Patterns
of points or dots are a special case. Here the first problem is to find, extract or

»
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filter out structures and relations; ‘landmarks’ are not given a priori and have to be
defined. For typical methods for the analysis of point patterns by graphs (like the
stick-man representation) and drawings see Radke (1988) and Toussaint (1988b).
One may also determine ‘contours’ or ‘hulls’ (shape hulls) for point patterns,
perhaps by taking the union of discs of chosen radii centred at appropriate points
(Edelsbrunner et al., 1983).

Stochastic models

Stochastic models may help is gaining better understanding of shape fluctua-
tions. They are mathematical models of random sets, functions or point systems.
Practicable stochastic models are based on an intuitive principle of construction
containing easily interpreted components depending on only a few parameters.
These parameters are statistically estimated, and the goodness-of-fit of the models
tested.

Form and growth processes

Form changes during both biological growth processes, and technological processes,
(e.g. by baking or erosion). The methods presented in this book may help to demon-
strate these differences statistically. The mathematical descriptions of the change
processes are considered only marginally — in the literature there are few approaches
in this direction, see §8.5, Firey (1974), Grenander (1976) and Bookstein (1978).

Normalization

Many methods of shape statistics require normalization of the figures in order to
eliminate size differences. All figures must be of ‘equal size’ in some sense; so, for
example, the scale may be changed, making length, area or perhaps the distance
from the nose-tip to the chin equal for all objects.

Homologization
Besides normalization, so-called homologization is often useful, particularly for
biological objects. The aim is to inter-relate equal landmarks. For example, a
coordinate system may be chosen in such a way that a particular landmark h as
the same (x, y)-coordinates (e.g. nose tip at the origin) for all figures. By suitable
normalization it is possible to have a further landmark that has the same coordinates
(e.g. x =1, y =0) for all figures.
Homologization may also consist in orientating the figures so that the line
connecting two particular landmarks is the same for all figures (e.g. the x-axis).
Consequently the scaling of the variate t may vary between the different landmarks.

Image analysers for form statistics
These are, in effect, the main ways of acquiring an image:

e ‘direct’ imagery, e.g. by camera, video or microscopy,
e ‘reconstructed’ imagery, e.g. by using radar, ultrasound or X-rays.
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Figure 22 Schematic description of an image analysis system.

Reconstructed imagery is distinguished by the fact that the incoming data are
‘signals’ which are not directly visualisable; reconstruction involves solving an
inverse problem.

Figure 22 shows schematically a possible configuration of devices for the acqui-
sition phase of image analysis. In commercial systems, often some of the elements
(given in Fig. 22) are united in one device or are omitted. The input of images is
made by a scanner, TV camera, or a digitizing board. If it is not already in a digital
form it is necessary to transform it into the language of the computer. This is done
by analogue-digital converter. The digitized images are shown on the monitor,
where they can be observed and perhaps corrected by means of a light pen or other
instrument. The grey-scale image can be reduced to a binary image by operations
such as thresholding, in which grey values lighter than a chosen threshold are set
to white, and others to black. Operations of mathematical morphology, such as
opening or closing (Appendix D) may be used to computer-enhance the images yet
further. The computer then analyses the images geometrically, statistically, etc. An
efficient image memory is useful.

This book does not consider problems of computational geometry, although they
play an important role in form analysis on computers. The reader is referred to
Toussaint (1988a) and references therein.

Shape, roundness and boundary structure

In the analysis of particles, form is sometimes described by three (somewhat vague)
aspects (Barrett, 1980). As sketched in Fig. 23, one speaks of

e ‘shape’ for large-scale variations;
e ‘roundness’ for the smoothness at vertices, and more generally for larger varia-
tions from a given shape;

e surface texture for short-range fluctuations superposed on the shape and
roundness fluctuations.
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Roundness

Figure 23 A typical particle and several aspects of its description. The general form can be
given approximately by an ellipse or a polygon. The situation on the contour at greater scales
may be characterized by roundness, while the notation of boundary texture is connected with
fine small-scale deviations.

In the case of elliptical particles variations in the ratio of the semi-axis lengths are
considered as roundness variations. If the boundaries of the ellipses are roughened
then the corresponding local variations in shape are considered as texture variations.

Non-geometrical methods of form analysis for three-dimensional particles

In engineering several methods of form analysis are used that are based on physical
principles (see e.g. Willetts and Rice, 1983; Huller, 1985). The form of particles
may also be characterized by means of sieving and weighting (see e.g. Willetts et
al., 1982; Nielsen, 1985).

Methods of multivariate statistics in form statistics

After analysing the form, a series of parameters is given for each object. These
data are analysed using multivariate statistics. The aim is to find relations between
each groups of objects, to classify the objects by means of the parameters and
to determine which parameters are closely reiated to the form of the object. The
following are used as parameters:

e distances between landmarks and other lengths of characteristic parts of the
objects;

e further geometrical characteristics (perimeter, area, appropriate angles);

e results of shape analysis (e.g. normalized Fourier coefficients).
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Before statistical analysis, it may be useful to transform the data to obtain data
of the same order and dimension; or it may be useful to take logarithms. It is also
useful to try a pilot analysis with relatively many parameters, so that experience
can be obtained and uninteresting parameters eliminated.

The following are particularly important methods for application in form
statistics.

Discriminant analysis helps to separate samples of objects into one or more
groups. The division is made by a so-called discriminant function which is based
on the form parameters. An example is given on p. 172.

Principal component analysis helps to reduce a large number of parameters
describing the analysed object to a smaller set of new parameters. The new param-
eters should reflect the variety of the object. It may be that every object is originally
given by three parameters and thus can be considered as a point in R>. If the object
points form a cloud shaped like an ellipsoid then it is natural to use a new coordinate
system corresponding to the axes of the ellipsoid. The variable corresponding to
the longest axis may be a useful new parameter.

Experience in statistics shows that the variate representing maximum variability
is often closely related to the size of the object (§10.1).

Cluster analysis helps to classify sets of objects, that is, to divide them into
groups or clusters. Objects come into the same cluster that are in a certain sense
‘close’ together. An application is given in §10.2.

Reyment et al., (1984) have described in detail the application of multivariate
statistics in morphometry.



CHAPTER 7

Representation of Contours

7.1 INTRODUCTION

An important method of characterizing a figure is the representation of its contour
by a function, which might be

the cross-section function (for symmetric figures);
the radius-vector function (for star-shaped figures);
the support function (mainly for convex figures); or
the tangent-angle function.

Large data sets should be processed automatically using image analysers. Early
applications are described by Flook (1982b), Lohmann (1983) and Huller (1985).
The first author used the QTM 720 and the second a Digital Graphics Systems
CAT-100/C real-time Video Digitizer. Many other image analysers can be used
in a similar way. Frequently, a smoothing of the contours before measurement is
useful (§7.3).

The automatic processing of contours is usually done in the following steps:

(1) loading and saving the figure;

(2) smoothing;

(3) normalization and homologization;

(4) choosing the interpolation nodes of the contour function;
(5) measurement of the function values;

(6) transformation of the measurement results into a series of equidistant inter-
polation nodes.

The approximating functions are then chosen as in §7.5 and the corresponding
coefficients are determined numerically. The latter are frequently used as form
parameters. Finally, one may look for suitable stochastic models. To orientate
the reader, the following are some advantages and disadvantages of the function
description method. Advantages are

e effective data reduction: frequently only a few coefficients of approximating
functions are needed for rather precise form description;
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e a convenient description of complicated forms understandable by anybody
accustomed to working with functions;

e an intuitive characterization of many form properties, such as small form fluctu-
ations around a ‘mean’ figure.

Disadvantages of the function description method are

e the necessary choice of a reference point taken to be the origin (e.g. the centre
of gravity or a certain contour point, which often appears to be arbitrary);

e the complicated formulae for functions and characteristics/even for simple and
common figures such as ellipses.

7.2 DEFINITION AND MEASUREMENT OF CONTOUR FUNCTIONS

7.2.1 Cross-section functions for symmetric figures

Symmetric figures as in Fig. 24 are particularly considered in biological investi-
gations. It is natural to describe the form by the cross-section function q(x), the
half-breadth at x.

Problems occur if there is more than one contour point on the line through x
orthogonal to the symmetry axis (x-axis), as is the case for x’ in Fig. 24. This
ambiguity can be removed by choosing the mean distance as the function value.
Thus for the value x’ in Fig. 24 one sets

Y =q(') =301 + v + ¥

Another possibility is choosing the outer contour point, namely y’ = yj.

Such difficulties can be avoided by smoothing the contours before the statistical
analysis (§7.3). Of course, these simplifications may destroy essential features, and
so the cross-section function may not be a good basis for form analysis. In this
case the tangent-angle function should be used.

If a figure is given, for which the half-breadth can be uniquely determined for
every value of x then measurement yields a sequence of function values

y
y ¥
A
a(x)
24
0
X x’ X

Figure 24 Definition of the cross-section function for a symmetric figure. At x’ the function
value may be q(x') = $(y| + y; + ¥}).
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The x; are usually chosen equidistantly. The number » should be in a reasonable
proportion to the number p of parameters of the approximating function; something
like n > 2p is desirable.

In the case of small samples and no microscopic objects the values g(x;) can be
determined manually. Otherwise image analysers are necessary, with their possi-
bilities for measurement of chord lengths.

7.2.2 Radius-vector functions

Frequently, the contour of a figure X is described by the radius-vector function. For
this, it is necessary to choose a reference point in the interior of X. This may be,
for example, the centre of gravity, the centre of the smallest disc that completely
contains X or a biologically important point. Then the figure is translated such that
this point lies at the origin o. For simplicity of notation, the translated figure X
will in the following also be denoted X.

It 1S\Qecessary) that X be star-shaped wi with respect to o. That is, for any contour
pomt x of X the whole line segment from o to x lies within X. Figure 25 shows
a star-shaped and a non-star-shaped set.

If the star-shapedness is violated only by small irregularities in the contour, one
may try to recover it by pre-smoothing.

The radius-vector function rx(¢) depends on the angle ¢ made by a ray
emanating from o with the x-axis (Fig. 25a). The quantity ry(¢) is equal to the
length of the line segment from o to the contour point x in which the g-ray inter-
sects the boundary. The radius vector function precisely characterizes X: if ry (@)
is given, then X can be uniquely reconstructed. Clearly,

nx(@) =irx(@), X CY = rx(p) <ry(p).

)R

%

J
a) b)

Figure 25 (a) A star-shaped figure. Each ray starting at o forms only one line segment in
it. The length of the line segment for a ray of direction ¢ (0 < ¢ < 27) is denoted by rx (¢).
This is the radius-vector function. (b) A non-star-shaped figure. There are rays starting at o
that cross the boundary more than once.
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The map X — ry transforms figures into elements of a function space. If the figures

have the property that the radius-vector function is continuous then the Banach

space C[0, 2] is suitable, subject to the acceptability of the supremum norm.
Formulae for ry(¢) can be given for some geometrical figures.

Example. Let X be an ellipse with principal semi-axis lengths @ and b, (a > b),
and ¢ = 0 in direction of the longer semi-axis; then

2 .2 —1/2
cos“@  sin‘ ¢
TX((O) = ( (12 + ) .

b2

Integrating 7x (¢) yields the perimeter and area of X:
2n 12
UX) = / [P (@) +r*@)] " do, (7.1
0

2
AX) = %/0 r(p) do. (7.2)

A further geometrical parameter (depending on the choice of the reference point)
is the mean radius-vector length

2n

r= r(g)de.

27 Jo
The formulae for ry(¢) are often rather complicated, and it seems natural to
consider figures X for which rx(¢) has a simple analytical form. An example
is the piecewise-linear continuous radius-vector function
rx(e) = ‘%RHI + (1 - %) R;
(i <9 <¢iy;i=0,1,...,n—1),
Ai =¢iyi—¢i, Ro=R,, ¢o=0, ¢,=27

Figure 26 shows the case n = 4 with ¢, = %i 7. In particular, there are ‘radial
rhombi’ as in §7.4.2. The contours of figures with piecewise-linear radius-vector
functions are curved outwards. The points corresponding to ¢ = ¢; are cusp points,
which may also be pulled into the interior; thus these figures are not necessarily
convex. It is easy to give a necessary and sufficient condition on rx(¢) for the
convexity of X. Given any ¢, and ¢, with 0 < ¢, — ¢ < 7, for any ¢ with
@ < ¢ < @, the value rx(¢) has to satisfy

rx (@)rx (¢2) sin(ez — ¢1)
rx (@1) sin(p — @) + rx(¢2) sin(g — @)

rx(¢) =

If equality holds then the corresponding contour point lies on the line connecting
(@1, rx (¢1)) and (g2, rx (¢2))-
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Figure 26 Figure with piecewise-linear radius-vector function ry (¢) with four interpolation
nodes at ¢ = %in; it=1...,9.

R

o), (0
0
Figure 27 Determination of the radius-vector function by an image analyser. Referring to

the estimated centre of gravity ¢ (which need not be a pixel), the distances to all boundary
pixels of the figure are measured.

The measurement of radius-vector functions can be carried out manually for
small samples and non-microscopic objects. The radius-vector lengths are measured
for an equidistant series of angles of ¢;. However, in the case of large samples or
smallish objects image analysers are again necessary.

The centre of gravity can be determined from the pixels corresponding to the
object, and is generally not a pixel. Then the image analyser determines all contour
points pq, ..., pmn of X. (In solving this problem for regular objects the form of
the definition of the boundary does not have such heavy consequences as when
determining fractal dimensions as in Part L.) It is easy to calculate for every point
pi the angle ¢ and the radius-vector length ry(¢;) (Fig. 27). Thus the ¢; are
in general not equidistant. Frequently, these data are modified by interpolation
to obtain equidistant interpolation nodes. If the raster is fine enough, the errors
connected with this manipulation may be neglected.

7.2.3 Support functions

Support functions are frequently used for the description of convex sets. For a
compact subset X of R? the support function is defined as follows. Let 8, be the
orientated line through the origin with direction ¢ (0 < ¢ < 27). Furthermore, let
gé be the line orthogonal to g, with the property that the set X lies completely
in that half-plane determined by g, with g N X # @, which is opposite to the
direction of g, (Fig. 28).
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X ga
q)\ g$ +T
0

Figure 28 Definition of the support function of a figure.

The absolute value of the support function is equal to the distance from o to gj,
and sx(¢) is negative if X lies behind gj as seen from the origin; that is,

sx(¢) = max{e, - x} = max{x; cos¢ + x; sin ¢},
xeX xeX

where e, = (cos ¢, sing) is the unit vector along g, and x = (xi, x2).

If 0 is an element of X then sx(¢) > O for all ¢. It is obvious that the support
function of X coincides with that of the corresponding convex hull conv X. Thus
there exist different non-convex figures with the same support function. In contrast,
convex figures are uniquely determined by their support functions. (For non-convex
X another definition of the support function is also used, an additive extension of
the convex form to the convex ring, the class of finite unions of convex compact
sets.)

The support functions of convex compact sets are dealt with in detail in Matheron
(1975) and Gruber and Wills (1993). Some fundamental properties are

forY = A X sy(@) = Asx(9),
for X cY sx (@) < sy(e),
forZ=XoY sz(@) = sx(@) + sy ().

For any X the support function is continuous in ¢. The distance between two
convex compact sets X and Y with respect to the Hausdorff metric satisfies

h(X,Y)= sup |sx(¢)—sy(®)l.
¢el0,27]

Consequently, the convex compact sets can be embedded isometrically in the
Banach space C[0, 2] of all continuous functions on [0, 27]. For simple geomet-
rical figures the support function can be easily given.

Example 1: For a disc b(x, r) with centre x = (x;, x2) and radius r,

sx(@) = xjcose +xzsing+r (0 <¢ <2m).
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Example 2: For square of side length a centred at o with one edge paralle] to the
direction given by ¢ = 0,

I2acos(jn—¢) (0<¢=<in),
N 3 27
R R i )

If the convex figure X has a smooth boundary, then the support function sx(¢)
determines the curvature. If px(¢) is curvature radius corresponding to ¢, then

px(9) =sx(@) +s5x(®) (0 =<¢ <2m),

see Kallay (1974, 1975).
The perimeter U (X) and the area A(X) satisfy

2
UX) =/0 sx (@) do

and

2
A(X) = 3 / sx(@)lsx (@) + sy (9)1de
0
Closely connected with the support function is the width function wx (¢):

wy (@) =s5sx(@) +sx(p+7m) (0 <9 =<m.

Obviously, wx(go) is the breadth of X in the direction ¢ (Fig. 28): it is the support
function of X@®X, X = —X. For form analysis the width function has the advantage
that for all x

Wy (@) = wx (@),

i.e. it is invariant with respect to translation. In contrast, rotations do change
the width function (with the exception of rotations through an angle n). If X is
symmetric then

sx() =sx(@+n) O=<¢=<m.

In this case the width function determines the figure X uniquely. In general, the
form of X is not uniquely given by the function wy (¢). Figure 29 shows a set that
has, as the disc, a constant width function (it is called the Reuleaux triangle; Santalo,
1976). Mathematicians study sets of constant width systematically (Chakerian and
Groemer, 1983; Gruber and Wills, 1993).

The width function yields the perimeter U (X) by

2
UX) = /0 wx (¢)do.
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Figure 29 Reuleaux triangle. This figure has the same width in all directions.

However, the area A(X) of X is not uniquely determined by wy (¢). It is

2
Amin < ACX) < 1 / W @[5 @) + 0§ @)1 = Ay,
0

with Amin > 2 Amax, see Amit and McCullagh (1993).

This paper also gives a formula for the boundary curve of the maximal set and
a construction of the minimal set. The latter has, if X is smooth, three corners,
similarly as the Reuleaux triangle. Kallay (1974, 1975) characterizes the set of all
convex sets with the same width function.

- %)

Figure 30 Explanation of the tangent angles 6(0) and 6(/), and the corresponding value
¢ () of the tangent-angle function. The latter is equal to the negative angle shown in the
right lower corner of the figure. ¢(0) is equal to zero.
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7.2.4 Tangent-angle functions

Sometimes the tangent angle of the contour is used for the description of figures
(Zahn and Roskies, 1972). Of course, it must be assumed that the contour of the
figure X considered is piecewise-smooth so that a tangent is non-existent at only
a finite number of points.

Let the perimeter of the figure X be U (X) = L. Every point p; on the contour of
X can thus be identified with a number /, with 0 </ < L, run through clockwise. A
pointer is placed at py so that its zero position coincides with the tangent direction.
If the position of the pointer moves on the contour then the pointer changes its
direction in such a way that it is always in the direction of the tangent, where its
orientation is given by the direction of movement.

The angle given by the pointer direction in p; is denoted ¢ (/), where —27 <
¢() <2m, $(0) = 0 and ¢ (/) = —2x (Fig. 30). The function ¢ (/) is called the
tangent-angle function or angular-bend function. Figure 31 gives an example.

For shape analysis it is helpful to normalize the function ¢ (/). A useful variant
has been suggested by Zahn and Roskies (1972):

X
a)

2nk
1
= — !
RS —_— —— [ —

.1'- —_— —_—

-2n} .

b)
f _
//
=~ " —
= - — - /L
< - — 2
t —

cl

Figure 31 The tangent-angle function of a polygon X. (a) The polygon; the left upper
vertex is the starting point {I = 0). (b) The tangent-angle function ¢x (/) of X. (c) Normalized
tangent-angle function ¢% (¢), satisfying ¢% (r) = ¢y (Lt/27) +¢.
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60 =6 (£)+r ©sr=2m.
$x(0) = ¢5(2m) =0.

The perimeter length is eliminated by the normalization, and the function is then
defined on [0, 2], like the radius-vector and the support function. Of course, the
variable ¢ plays a role quite different to ¢ in the other two functions.

For a disc ¢%(t) vanishes identically. The figures X and AX have the same
tangent-angle functions for all positive A.

The manual determination of the tangent-angle function is quite difficult, and
the use of an image analyser is suggested. Using it, the contour is approximated
by a polygon. With the vertex coordinates of the polygon, it is easy to determine
¢ (l;) for an arbitrary series of interpolation nodes /; between 0 and L.

7.2.5 Comparison of the three variants of contour functions

The three functions described in §§7.2.2-7.2.4,

the radius-vector function ryx (@),
the support function sx (@),
the tangent-angle function @5 (¢),

have certain advantages and disadvantages. The definition of ry(¢) is easier to
understand than that of sx (@) or ¢%(¢). Similarly, rx (¢) is preferable with respect
to robustness from digitization errors and to convenience of use in automatic image
analysis.

The field of application for ¢ (¢) is the largest; it is ‘only’ required that the
contour of the figure X be smooth. In contrast, the radius-vector function requires
the figure to be star-shaped, while for the support function convexity is desirable.

All three functions depend on the choice of a reference point. Its influence is
strong in the case of the radius-vector function; the same figure may have quite
different radius-vector functions for different reference points. In the case of the
support function the translation by (a, b) of the reference point (origin of the
coordinate system) generates an additional term a cos ¢ + bsin ¢. Also the form of
¢ (t) depends on the choice of starting point on the contour; but it is quite easy
to transform the function corresponding to a certain starting point into that starting
at another point. Scale changes leave ¢y (¢) invariant, while rx(¢) and sx(p) are
multiplied by the scaling factor.

7.2.6 Smoothing of contours

When describing contours as functions, rough boundaries lead to problems. These
problems can be reduced if the contours are smoothed prior to the analysis. Two
methods are suggested here. They should be tested before routine application to
ensure that the smoothing process does not destroy essential information.

[
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b)

Figure 32 Two ways to smooth the contour of the figure in Fig. 24: (a) convex hull;
(b) closing with the given square.

Forming the convex hull

Instead of the set X, its convex hull convX is analysed. Its boundary is often
smoother than that of X . Figure 32(a) shows the convex hull for the figure in Fig. 24.
The cross-section function for the convex hull can be determined without difficulty.

Closing

Instead of X, its closure X g with a suitably chosen structuring element B is analysed
(Appendix D). The operation of closing smooths small inlets and closes gaps. A good
choice of the structuring element is a disc or a regular polygon (according to the type
of image analyser). The size of B (the radius) should be chosen after some tests;
the larger B is, the smoother X is. If B is too big then information can be lost.
Figure 32(b) shows the figure of Fig. 24 after closing with a square.

7.3 INVARIANT PARAMETERS OF CONTOUR FUNCTIONS
FOR PARTICLES

The contour functions f(x) discussed in §7.2 all depend in some manner on the
choice of a reference point or a coordinate system. In the case of particles without
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natural landmarks this choice is arbitrary. Therefore quantities that are connected
with the contour function used but are independent of the choice of the reference
point are of particular interest. In the following some simple quantities of this
kind are discussed. They are of use if the radius-vector function, the breadth
function or the tangent-angle function are used. They may be used as starting
points for forming form parameters. It is always assumed that f(x) is continuous
and continuously differentiable, with the expectation of a finite number of cusp
points.
The mean value of the function is given by
_ 1 2n
f=—— fx)dx. (7.3)
2 0

The variance of the function is given by

l 27r _
a%h=5;0[ﬂn—ffm. (7.4)

Clearly,
2

1 -
o (fr=5- [ fode-f
T Jo
If f(x) is the radius-vector function then (7.2) yields
A
oi(r) = = -7, (1.5)
T

where A is the area of the figure.

Contour distribution function. The quantities f and o( f) can be interpreted
as mean and variance corresponding to a distribution function Fy, defined as
follows: '

1
Fr=—L{p: flp) <x;0<¢ <21} (x=0).
2

Here L denotes the Lebesgue measure of R!; For a regular set A, L(A) is its
length. Of course, different contour functions may have the same distribution
function.

The variance of the derivative is given by
1 2n '
(=5 S, (7.6)
T Jo

and
2

fr= A f(x)dx = f2m) — f(0) = 0. (7.7
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Thus the name ‘variance’ is justified.

The contour covariance function is given by

27 _ _

1
xr@) = [f) = fIlf(x+e)— fldx (0 <¢ <2m). (7.8)
0

Here it is f(2m +1t) = f(¢) forall ¢.
The contour covariance function xr(¢) does not determine f(x) uniquely; there
are different f with the same xr(¢) (§7.5.4). We have

X7 (0) = a(f). (7.9)
Obviously
xr (@) = xy(2m — @) (7.10)
for ¢ > m; thus xs(¢) is given only for 0 < ¢ < m. Also
x7(0) = 0. (7.11)
Finally, o2(f") and x;(g) are related by
a’(f") = —x{ ), (7.12)

which can be shown by integration by parts.
Further invariant form parameters are the Fourier coefficients A, (§7.5.4).
Which form properties are characterized by the quantities introduced above?

e [ is a size parameter.

e o?(f)and F ' (x) are size, shape and roundness parameters.

e 02(f") describes local properties, i.e. roundness and texture variations of the
contours.

e x7(¢) describes many aspects of form fluctuations, both local and global ones.
For example, a shape property such as n-poleness can be very well diagnosed.

The normalized function x;(¢)/xs(0) characterizes the shape of the corre-
sponding figure.

These parameters are used in §10.1 for the statistical analysis of three samples
of sand grains.

74 TWO CLASSES OF FIGURES
7.4.1 Superellipses

A large class of figures is formed by the so-called superellipsesT (Gardner 1965).
These are figures with two symmetry axes as in Fig. 33. The contour in the first

1‘LThis word was coined by the Danish poet Piet Hein, who in his youth was interested in mathematics
and physics.
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= A 8
Y e,

Figure 33 Four superellipses. For ¢ = 2 an ellipse is obtained (not shown here), and for
¢ =3 a figure with a shape between an ellipse and a rectangle. In the extreme cases ¢ = |
and ¢ = oo a thombus and a rectangle are obtained respectively, while for ¢ < | non-convex
figures are obtained.

quadrant of the (x, y)-coordinate system is given by
X (s y (4
2 +(3) =1
<a) b

Here a and b are positive parameters with a > b, the so-called semi-axis lengths.
The positive parameter ¢ determines the shape and roundness of the figure. That
is, for ¢ > 1 the figure is convex, for c = | a rhombus is obtained and for ¢ = 2
an ellipse, while as c¢ tends to infinity the figure approaches a rectangle with the
side lengths 2a and 2b.

The calculation of geometrical parameters for superellipses is generally not easy.
Its radius-vector function is

¢ i ~1/c
s sin
r(g) = (Co L.(p + (,q)) (0<e<in). (7.13)
a b
Of course,
rit—¢) (3m<¢<m),
r(p) =
rig—m) (p=m)
The area is

42 2Ira/or
T e

where I denotes the gamma function. The factor before ab is the area £ of the
super-unit-disc (a = b = 1), obtained by integration as follows:

(7.14)

| e 4 ! e tye 2[C/e))?
_ AN V1e - _ — ) /eyle=N/c i S
E_4./0 (1—x9""dx C./o (1=y)'“y | dy c TR/ (7.15)

In the case of an ellipse (¢ = 2)

A = mab, (7.16)
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and for the perimeter U the approximation formula
U =~ m[1.5(a + b) — Vab] (7.17)

is well known. The mean radius-vector length r satisfies

2b b?
=N - = (a=b), (7.18)
T a

where

n/2 dx
N(k) = / e
0 VI1—k2sin®x

For the calculation of the elliptic integral the series expansion

n 1\? , 1-3\? n - D12
NKk) = =314+ [ =) 24—} k4 |2 ...
=T () e (35) e Bt e+

can be used, where i!! =1-3.5-..7 for odd i. However, its convergence is not

very fast.
The contour covariance function x(¢) can be determined by numerical

integration. Since

r(g) =r(p+m) and r() = r(T — ¢),

X () —

-0.2 -

03

Figure 34 Contour covariance functions for ellipses of different semi-axis length ratios.
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the relations
X +m) = x (¢) (7.19)

and
X (@) = xr(p — 1) (7.20)

hold for all ¢. Thus it is sufficient to calculate y,(¢) for 0 < ¢ < %n.

Figure 34 shows contour covariance functions for ellipses. There are large differ-
ences for different ratios of axis lengths. In contrast, the normalized functions
X-(®)/x.(0) are nearly independent of this ratio.

74.2 Radial-rhombi

Radial-rhombi are figures with a particularly simple radius-vector function. They
form a class of figures that at first glance look somewhat strange (Fig. 35). They
have two axes of symmetry, and their radius-vector function in the first quadrant
of the (x, y)-coordinate system is

r(¢)=a-2gn—bq) (0<@<jm). . (7.21)
Here a and b are positive parameters with a > b, which could be called ‘semi-axis
lengths’. A radial-thombus is convex only if a = b; then it is a disc of radius a.
Otherwise, it has a cusp at ¢ = 0 (on the x-axis) and a slot at ¢ = %n (on the
y-axis). The area is

A=in@+ab+b) (7.22)

and the mean radius-vector length
F=1La+b) (7.23)

If a # b then the formula for the perimeter is rather complicated:

as — bt a—+s
U=2 +x1 7.24
( X xogb+t> ( )

with 5
x = ;'(a —b), s=(@*+xH"2 1t =B +xH2.

VAR
N

Figure 35 A radial-thombus with a semi-axis ratio 2 : I. The radius-vector function is
piecewise-constant, but, in contrast to the figure in Fig. 26, this figure has two axes of
symmetry.
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Figure 36 Contour covariance function for radial-rhombi of different axis-length ratios.
Since the radius-vector lengths are uniformly distributed on [b, a], the variance of
radius-vector length, az(r), is

o’(r) = &(a—b)?, (7.25)
and that of the derivative of the radius-vector function is

_ 2
o2y = X (7.26)
T

The contour distribution function F,(x) is the distribution function of a uniform
random variable on [b, a].

The contour covariance function x,(¢) satisfies, as in the case of ellipses, the
relations (7.19) and (7.20), and for 0 < ¢ < %n is given by

Xr(@) = (@ —b) (1 — 6x> +4x%], x =2¢/m (7.27)

Figure 36 shows the contour covariance functions of radial-rhombi.

7.5 DETERMINATION OF APPROXIMATING CONTOUR FUNCTIONS

7.5.1 Introduction

Using the methods given in §7.2, contour functions can be determined for figures.
These empirical functions (often given only in the form of lists) are mostly too
complicated for statistical analysis. Therefore they are frequently approximated
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by simpler functions, and these are then analysed. In many cases only a few
form parameters are needed. Then rough approximations, reflecting only the main
aspects, are sufficient, even if local details are lost.

Approximations by Fourier series are particularly popular. (There are also in the
literature approximations by polynomials, Walsh or Hadamard functions (Flook,
1982b, 1987, Meloy, 1977).) As form factors, the first coefficients of the function
series are used. Their intuitive interpretation is often difficult, in particular for
polynomial approximations or Fourier approximations if no periodicity is visible
in the contours.

Let there be given a sequence of interpolation nodes x; and function values
i (l = 1,...,)’1):

X1 )

Xny ¥n

A suitable approximation by mathematically simple functions has to be deter-
mined. Thus a function F(x;cy,...,c,) is chosen with parameters cy,...,cp,
which are to be determined such that the sum of squares of deviations,

n
D lyi— Fliier,. el
i=1

is minimized. The Marquardt procedure is an effective numerical method for deter-
mination of the ¢; (Ortega and Rheinhold, 1970; Dennis and Schnabel, 1983). A
popular form is

P
F(x;ep,...,cp) = chgj(x).
j=1
where the g;(x) are certain functions, for example
gj(x) = x/ (‘polynomial approximation”)

or
g;(x) =sink;x and cosk;x (‘Fourier series approximation’)

In addition to these two variants, there is the possibility of choosing particular
functions appropriate for a given problem. An important method of this kind is
that of eigenfunctions (Lohmann, 1983; Full and Ehrlich, 1986; Rohlf, 1986; Rice
and Silverman, 1991); cf. p. 94. '

7.5.2 Approximation by ellipses and radial-rhombi

There are various methods for estimating the principal axis lengths of approxi-
mating ellipses or radial-rhombi. The choice is determined by the possibilities for

-
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measurement and the deviations of the figures from the ideal. Five possibilities are
as follows.

(1) The Dpyax method. This involves measurement of area A and determination
of the line g that has the maximum intersection with X. If dmax is the length of
gNX,

2a = dmax, (7.28)
2A
b = . (7.29)
7T dmax

(2) The A-U method. Measurement of U and A leads to a and b using the
formulae for U and A in §7.4. In particular, for ellipses

A\ V2
a=a-+ (az — —) , (7.30)
i1

A\ v
By
14 14
Similar methods for three-dimensional figures have been suggested by Riss

(1988) and Riss and Grohier (1986).

(3) The R method. This involves the measurement of r and A and determination
of a and b by means of the formulae in §7.4. In particular, for radial-rhombi

where

o =

, b= —. (7.31)

W=

a= r+-3o(), (1.32)
b= 7F—v300), (7.33)

with A
alr) == —-r. (7.34)

b g

(4) The covariance method. This involves the determination of x,(¢) and the
choice of @ and b such that x,(¢) and the theoretical counterpart (dependent on a
and b) are close in the sense of the least-squares method.

(5) The radius-vector function approximation. Approximating ellipses or radial-
rhombi are determined by the least-squares method, using rx(¢). The centre of
gravity of the figure is chosen as the origin of the coordinate system; by the
optimization procedure, not only @ and b but also the directions of the axes are
determined.

The A-U method is somewhat unstable in the case of a rough contour or for
large deviations of the figure from an ellipse or a radial-thombus. The fourth and
fifth methods are rather complicated. All methods can be stabilized by replacing
X by conv cX, where c is chosen such that A(conv cX) = a(X).

In §7.7.3 the first three methods are compared for a stochastic model of fluctu-
ations of X around an ellipse.
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7.5.3 Fourier analysis

Introduction

Contour functions are frequently approximated by Fourier series:

p
fx) ~ag+ Z(ak cos kx + by sinkx) (7.35)
k=1
or
p
fx) = A+ Z Ag cos(kx + o), (7.36)
k=1
with
AO = Qaop, (737)
A} = aj +b;, (1.38)

(7.39)

o =

arctan(—by /ay) (ar > 0),
arctan(—by/ay) + 1 (ar < 0),

with k = 1,2, ..., p. The coefficient A; is called the kth harmonic amplitude, and
oy the kth phase angle. The numbers a; /Ao, and by/Ag, or Ax/Ap and oy, serve
as shape factors.

The approximation of a function f(x) by a Fourier series may be recommended
for the following reasons:

e there exist good numerical methods and programs for calculation of the Fourier
coefficients a; and by;

e frequently a non-mathematical interpretation of the a; and by, or the A; and oy,
is possible; this is the case if shape properties are discussed that are connected
with periodicity (e.g. n-poleness).

Fourier approximation is discussed in detail in Schwarcz and Shane (1969),
Beddow and Philip (1975), Beddow (1980, 1984), Beddow and Meloy (1980),
and Huller (1985). Frequently, the approximation by Fourier series has a formal
character only. In particular, this is the case for biological objects, which do not
show any periodicity, for example human skull profiles. The a, by, Ay and o are
then formal form parameters only, The critical evaluation of the Fourier approxi-
mation by Bookstein er al. (1982) makes worthwhile reading.

Some facts on Fourier series

The function f(x) defined for 0 < x < 27 has to be approximated by a function
gp():

P
gp(x) =ao+ Z(ak cos kx + by sinkx).
k=1



DETERMINATION OF APPROXIMATING CONTOUR FUNCTIONS 81

For this the least-squares method is used, i.e. the a; and by are determined so that
the integral of squared deviations is minimized.

S = [f(x) — gp(x)}* dx — Min.
0

The integral can be interpreted as a function of the ag, ..., a, and by, ..., b,. The
optimal values of ap, ..., b, are obtained by taking the derivatives of § with respect
to dp, ..., b, and setting them equal to zero. This method leads to the following
formulae:
1 2
a = — f(x)dx, (7.40)
27 0
l 2
ap = — f(x)cos kxdx, (7.41)
T Jo
l 2
by = — A fx)sinkxdx (k=1,...,p). (7.42)

Thus the Fourier coefficients can be determined independently, and they do not
depend on p. On increasing the number of terms from p to p + p’, the first p
coefficients remain the same, and only the new coefficients apyi, ..., apyp and
bpii1, .., bpyp have to be computed.

Sometimes also the infinite series

oo
g(x) =ap+ Z(ak coskx + by coskx)
k=1

is considered, with the a; and by being defined by (7.40)-(7.42), under the condition

that
2

f(x)?dx < oo.
0

The functions f(x) and g(x) almost coincide if the so-called Dirichlet condition
is satisfied, i.e. if
(1) f(x) is bounded in [0, 2], and
(2) f(x) hasin [0, 27] only a finite number of maxima, minima and discontinu-

ities.
Then f(x) = g(x) holds at all points of continuity, x, while at points of disconti-
nuity, x,

g() =3[f(x ~0) + f(x +0)].
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As n — 00, the coefficients a;, b, and A; tend to zero because
00 00 1 2
202+ (@ +bHr =242+ Al =— [f ) dx. (7.43)
0 kz=1 k k 0 kZ:I (= R

The speed of convergence is higher for a ‘smooth’ function f(x) than for a ‘rough’
one with discontinuities or cusps.

If f(x) is given by a formula then formulae can frequently be given for the
Fourier coefficients (Lighthill, 1958).

Example. Let f(x) be the radius-vector function of a square of unit area (with
origin at the centre, and sides parallel to the coordinate axes). Then

r(x) = Ag + Agcos(4x + ) + Agcos8x + - - -, (7.44)
with

Ay = (2/m)c, (7.45)

ay

_1)" ‘
s 2‘/—2 @ — 1)(@& —3) (7.46)

c= log(1++2), 1=12,...

(Bandemer et al., 1985). All other Fourier coefficients vanish. The first three coeffi-

cients are
Ag = 0.561, A4 =0.078, Ag=0.025.

A good approximation of the square is already obtained with these values (Fig. 37).

Properties and interpretation of Fourier coefficients

(a) The coefficient aq is equal to the mean f of f(x) on the interval [0, 2r]. If
f(x) is the radius-vector function then ay is equal to the mean radius of the figure
considered. If f(x) is the support function of a convex figure X then

UX)
27

ag = (7.47)

© (b) If f(x) is the radius-vector function, then
QA + AT+ AT+

is equal to the area of the figure.

(c) The Fourier coefficients depend in different ways on the form of the object.
The ai, by and A with small indices £ (up to & = 5) tend mainly to describe
the global characteristics, while the coefficients for large k& describe roughness
(boundary texture), see Fig. 38 and §10.1.
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Beddow et al. (1977) suggested for the case of the radius-vector function the
following form parameters:

parameters of global structure
2,
Ln = Akv

parameters of roughness:

n3
R =" AL
k=ny
Here ny, n, and n3 are suitable natural numbers chosen with the figures to be
analysed in mind (e.g. n; = np = 5 and n3 = 20). Zahn and Roskies (1972)
considered relations between shape and Fourier coefficients for the case of the
tangent-angle function.

(d) Let the function f(x) have a smaller period than 27, namely 27 //, where /
is a natural number greater than one. Then if g, is excluded, only the coefficients
a; and b; with

k=Im (m=1,2,..)

differ from zero. The same is true for the A;. Thus symmetry properties of figures
are reflected by the Fourier coefficients.

Example 1. For the unit square / = 4, so that only the coefficients A4, Ag, ... are
different from zero; see (7.47).

Example 2. Schuberth (1987) calculated the coefficients A; corresponding to the
radius-vector function for some figures. Table 1 shows some of the results (see also
Rosler et al., 1987). For these figures the A; decrease continuously with increasing
approximation to a disc. (For a disc all A; vanish for £ > 1.) A similar result holds
for ellipses.

(e) The operation that assigns to a function f(x) its Fourier coefficients a; and
by is linear. That is, let f(x) be given in the form

SO =) "vifix
i=1

and let a,f.i) and b,((i) be the Fourier coefficients of the functions f;(x). Then the

Fourier coefficients of f(x) satisfy

a = ) va (7.48)
i=1

i=1
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Table 1 Fourier coefficients A; = (Ax/Ap) x 1000 for a regular n-gon and a rectangle.
(a) Regular n-gon.

A cos(r/n) [I +sin(rr/n)]
0= 2n 1 —sin(z/n) ’

and r is the distance of the comer from the centre.

A
n\" 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 — — 2151 — — 1043 — — 537 — — 323 — — 215 —
4 — — — 1394 — — — 40 — — — 29 — — — 121
5 — — —  _ 856 — — — — 248 — — — — 114 —
6 — — — — — 82 — — — — —16] — — — —
7 — — — - - - £2 — — — — — —14 — -—
§ — — — — — — 30 — — — — — — — 85
9 — — — - - 252 - = = - = - —
0 — — — — — — - - 203 — — — - - -

(b) Rectangle:

b a+ Va2 +p? a o + b2 —
Ap=—log| ——— | —=log | — | .
i b i a

and a, b are the side lengths (@ > b), c = a/b.

Ak

C\k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

— 1394 — 40 — 209 -- 121 — 78 — 55 — 41 — 31
4000 174 758 574 124 175 219 96 46107 74 01 54 55 16 25
597.1 1935 19.0 48.1 58.1 4I.1 165 42156174122 40 34 76 81 54
7164 322.6 1243 18.6 328 504 47.8 348 183 3.1 8.1 142154 128 8.0 24
1000.7 672.1 480.1 348.5 251.7 177.9 120.8 76.3 41.9 15.6 4.0 18.2 27.8 33.8 36.7 37.1

O bW N~

An analogous relation does not hold for A; and «.
(f) The A, are invariant with respect to shifts of the variable x. That is, instead
of the function f(x), the function f,(x) is considered where

[ fax+a (x +a <2m),
fa(x) = { f(x +a—2m) otherwise.

Here a is a fixed number between 0 and 27. The Fourier series corresponding to
f2(x) is obviously

x> x>
fa(x) = Ap+ Z Apcoslk(x +a) + ap] = Ag + Z A cos(kx +ka+ o).
k=1 k=1

Thus the function f,(x) has the same coefficients A; as f(x). This property
is very important for form description by means of the radius-vector, support and

-
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tangent-angle functions. The choice of the starting point (¢ = x = 0) does not
influence the A;. These quantities are thus invariant function parameters in the
sense of §7.3. If figures have to be analysed for which the choice of the starting
point is arbitrary (e.g. for particles) then the A;/Aq are reasonable shape param-
eters. In the case of biological objects the situation is different. Here the starting
point is a certain landmark, and it is frequently not sufficient to consider the A
alone.

Example 1. The first three non-vanishing terms of the Fourier series corresponding
to the radius-vector function of a unit square yield the function g(x),

g(x) = Ag + A4 cos(4x + 1) + Agcos 8x

(p- 82). Figure 37 shows the corresponding figure. It is quite similar to a square.
If instead of the correct phase angles oy = m, g = O the values a4 = %n and
og = %n are used then the dotted figure in Fig. 37 is obtained, which differs more

from a square.

Example 2. Figure 38 shows a simplified fish profile and the approximating radius-
vector contours comresponding to 19 and 36 Fourier coefficients A;. (The direction
¢ = x = 0 corresponds to a line from the centre to the middle of the tail. 72
interpolation nodes were used in the calculation.) If all phase angles are set equal
to zero then the fourth curve is obtained, which only vaguely resembles a fish.
Corresponding to the dipole character of the fish profile, the coefficient a; is the
largest after ay. Those values a;/ay that are absolutely greater than 0.05 are

(12/(10 = 0.335, (17/(10 = 0.058,
asfag =0.128, ag/ap = 0.056,
ag/ap = 0.088, bs3/ap = —0.124.

Davies and Hawkins (1979) also tried to transform the oy into parameters that
are independent of the choice of the starting point (x = 0).

~

,

\ ’\

I\
\
i}
! I3
L]
\

\\\ _r"")

~ -

Figure 37 Approximation of a square by a figure that corresponds to a Fourier series using
the first three A, different from zero (k = 0, 4, 8). The dotted contour has been obtained by

replacing the right phase angles oy = 7 and ag = 0 by oy = 37 and o5 = L.
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c) d)

Figure 38 (a) Fish profile and approximations to (b) 19 and (c) 36 Fourier coefficients
Ay. (d) The figures with phase angle set to zero — the unbroken curve being generated by
nineteen A;, and the broken by only two.

Calculation of Fourier coefficients

Suppose we are given the function values y; = f(x;) for n interpolation nodes, j =
0, 1,...,n— 1. Then the Fourier coefficients can be calculated using (7.40)-(7.42)
by numerical integration. The particular form of the integrals and properties of the
trigonometric functions enables essential simplifications. Consequently, there are
elegant algorithms, for example the well-known ‘fast Fourier transform’ (Chatfield,
1980; Nussbaumer, 1981; Elliot and Rao, 1982). Here particular formulae are given.
Let n be even and let the interpolation nodes be equidistant, i.e.

. . . 2w
xp=jA, j=01,...,n—1, w1thA=7.
Then altogether n Fourier coefficients can be determined, namely aq, ai, ..., @2,
by, ..., byo—1. They are calculated using the formulae
n—1
a0 = % Yjs
j=0
ar = Z"_l . kx; k=1 Ly
k= & o yjcoskx; (k=1,...,3n—1),
i=0
:_1 (7.50)
anpy = % =17y
j=0
by = 25 ) sinkx, - 1y
P = 5 y; sinkx; (k—l,...,zn 1).

.
Il
<
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The corresponding Fourier series is then

n/2 n/2—1
gn2(X) =ap + Zak coskx + Z by sinkx
k=0 k=0

It has the property that for all j
gn2(x)) =Y = f(x;);

thus g,/2(x) is an interpolation function.

In passing, the formulae above are interpretable as the result of averaging of two
numerical integration procedures by the so-called Simpson method; the error is of
order A% (Zurmiihl, 1963).

Zahn and Roskies (1972) give particular formulae for the case when f(x) is a
tangent-angle function.

Relations between the contour covariance function and Fourier coefficients

As in the theory of stochastic processes, there is a close connection between the
contour covariance function x;(¢) and the Fourier coefficients A, of a given
function f(x). That is,

o0
X7 (@) =%ZA cos kg (7.51)
k=1

and
2 2n
AZ:—/ Xf(@)coskpdp (k=1,2,..), (7.52)
T Jo

with Ag = f. The formula (7.51) shows that the contour covariance function does
not uniquely determine the contour function f(x), because the Fourier coefficients
A (without the a;) do not determine f (x) uniquely. The validity of (7.51) follows
from f(x) - f = S o, Axcos(kx + ay), using the definition of xs(¢):

oo

2n
Xr (@) = —/ ZAkcos(kgo+ak)ZA cos(ng +neg +a,) de

n=1

2n
AZ / cos(kg + ay) cos(tke + ko +a,) de
0

I
9|~
Mg

=~
I
-

2n
A? / cos? kg cos kg dp
0

)
5§~

RN

)
F-

oo
Ajm coskg = 4 Z A coskg.
n=1

=~
I
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The formula (7.52) is a consequence of (7.51), since, as in the calculation above,

2”cos cosmedyp = 7 (n=m),
0 ne $A9 =10 otherwise.

7.6 STOCHASTIC MODELS FOR THE CONTOUR FUNCTION
APPROACH

7.6.1 Invariant contour function parameters of random figures

Let X be a random ﬁ_gure with random contour function F (x). Then the parameters
introduced in §7.3, f, a¥( f) etc., become random variables, denoted by F, o%(F)
etc.

It is useful to introduce in addition to o?(F) and xr(p) the quantities o%(F)

and xr(g):

2n

0¥ (F) = 1 [F(x) — EF)dx, (7.53)
27[ 0
1 2 _ _
Xr(@) = oy [F(x) — EF][F(x +¢) — EF]dx, (7.54)
0

where o (F) is the standard deviation of F away from the expected mean, rather
than its own mean. They satisfy

0%(F) = 0*(F) + (F — EF)? (7.55)

and ) )
xXF(®) = xr(p) + (F — EF). (7.56)

The random Fourier coefficients A, of F are related to xr(¢) by

) 2r
Al = ;/ xr(@cosnpdp (n=1,2,...) (7.57)
0

(in (7.57) it makes no difference whether xr(¢) or xr is used.) Now let F be the
sum of two stochastically independent components:

F=F +F,.

This makes sense for the radius-vector or support function, but not for the
tangent-angle function. Then ~ ~ ~
F=F+F
and

Eo?(F, + F,) = Ec?(F)) + Eo%(F), (7.58)
Exr+m (@ = Exr(9) +Exp () (7.59)
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(but not necessarily Eo2(F, + F;) = Eo?(F))+Eo?(F,)). Analogously, the Fourier
coefficients A,(F) of F satisfy

EAX(F) = EAZ(F) +EAXF) (n=1,2,...). (7.60)

Let the contour function F(x) now have the same mean EF(x) and the same
variance var F(x) for all x (this is true if the figure X is isotropic). Then the
expected value of F, 0%(F) etc. can be expressed by quantities that depend on an
arbitrary (but fixed x):

EF = EF(x),
Eo?(F) = var(F(x)), }
Eo?(F) = var(F(x)) —varF (0 < x <2m).

7.6.2 Random radial-rhombi

Let X be a radial-thombus with random semi-axis lengths A and B. Let the
corresponding means be m4 and mp, the corresponding variances o2 and o} and
the correlation coefficient g4 5. Then the invariant parameters of the radius-vector
function R, (p) satisfy

R= 3(A+B), (7.61)
ER = 1(m4 +mp), (7.62)
varR = 1E(A+ B —my —mp)? (7.63)
or
var R = (0} + 05 +20450405). (7.64)
Furthermore, by (7.25),
o*(R) = (A — B)? (7.65)

and
Eaz(R) = éDp, with D, = (m,4 — mg)? + ori + oré —204p040p8. (7.66)
Because of the symmetry of the radial-rhombus, equations analogous to (7.19)

and (7.20) hold for the contour covariance function xz(¢). Thus xz(¢) is needed
only for0 < ¢ < %n. For these ¢-values

XR(@) = 15(A — B)A(1 — 6x% +4x%), (7.67)
with x = 2¢/m, or, more briefly,

Xr(9) = {5(A — B)’c(p).
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This formula can be used to obtain xz(¢) by means of (7.56). The expected value
Exz(p) is given by

Exr(9) = 3(0f + 0} +20430408) + 15 D,pc(9). (7.68)

7.6.3 Randomly disturbed figures

This class of models is described for the case of the radius-vector function, for
which it makes most sense (but it is not clear, for example for particles, that the
deviations always appear in the radial direction). These figures fluctuate randomly
around a mean deterministic figure:

R(p) = D(p)+E(p) (0 < ¢ <2m). (7.69)

Here D(gp) is the deterministic radius-vector function of the mean figure, and £(¢)
is a disturbing radius-vector function. T Figure 39 shows two examples, where D (¢)
corresponds to an ellipse and £(g) is a disturbing function of the type considered
in §7.6.4. Suppose that for all ¢

EE(p) =0.

Figure 39 Two randomly disturbed ellipses. A tooth contour was used as the disturbing
function, (p. 91).

This implies
ER(p) = D(¢), varR(p) = var&(y).

Note that R(¢) and the corresponding characteristics are related to the central point
(perhaps the centre of gravity) of the figure corresponding to D ().
Obviously,

ER = ED, (7.70)

TSimilarly Underwood (1980) considered discs disturbed by deterministic sine curves.

*
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Eo?(R) = Eo?(D)+ Eo?(€) (7.7D)

and
Exr(¢) = xp(®) + Exe(e). (7.72)

The mean area of the figure X corresponding to R(y) is
EA(X) = A(D) + nEo?(€) (7.73)

where A(D) is the area of the figure corresponding to D(g). There is no such
simple formula for the perimeter (§7.7.3). In particular, for particles it seems to be

natural to assume that £(g) is isotropic.;t Under this condition for all ¢,

var R(¢) = varE(p) = Ea?(£).

7.6.4 Three disturbance models

Tooth contour

A fairly simple model for an isotropic disturbance function follows, which will
be used in (7.69) and which is a rough model for particles. This model has as
parameters a natural number / and a distribution function F(x). Let ¢ be a random
variable uniformly distributed on [0, 2], and let Z,, ..., Z; be random variables
with distribution function F(x), mean m and variance o2, which are independent
of & (I > 4). Then £(g) is the following random function on [0, 27]:

E@)=rZ; + (1 = V) Ziyy

for
p=rpi +( -y O=<Ai=<],
with
gi=¢+iA, i=1,...,1, A=2xn/l;
Here values of ¢ and ¢; greater than 27 are interpreted as ¢ — 27 and ¢; — 2m,
respectively, and Z;, is set equal to Z,.

Figure 39 shows how these functions change the form of ellipses (for details see
§7.7.3).

'tThis means that the functions &, (¢) defined by

_[Ee+a) (@ +a <2m).
Ealp) = { E(@+a—27) otherwise

have the same distribution for any a between 0 and 2x.
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By construction, £(p) is isotropic; thus E€ = E£(¢) and Eo?(€) = varE(p)
for all ¢. We have independent of / or A for all ¢

EE(p) = m, (7.74)
var€(p) = 202 (7.75)
Furthermore,
Exe(@) =ExeQn —¢)
and
@ —-6x2+3x%) (p <),
2-x)? (A <@ <2n),
= lg2 7.76
Exe@ =57"x 1 kA < ¢ < (k+ DA, (7.76)
with k <1 —2),
with x = ¢/A and
1 " o 2
Eo’(€) = ~[Exe@)j =2(3) - (7.77)

Isotropized Brownian bridge

The following model will also be used in (7.69) as a disturbance function £ (¢),
and may be used for particles. In contrast to the tooth contour, it has infinitely
many tiny roughnesses. The construction is as follows. Let {X(¢)} be a Wiener
process with parameter o2; X (¢) is thus normally distributed with mean zero and
variance go2. The corresponding Brownian bridge (on [0, 27]) is {Y (¢)}:

Y(p) = X(p) - %XQN) (0 < <2m). (7.78)

The random function Y (¢) is continuous on [0, 277 ] and zero for ¢ = 0 and ¢ = 2.
‘Isotropization’ of Y (¢) yields £ (¢):

E@)=Y@+), (7.79)

where ¢ is a random variable uniformly distributed on [0, 2] and independent of
{X(@)}. If ¢ +¢ > 27 then the Y-value corresponding to ¢ + ¢ — 27 should be
taken. ]

Some properties of £(g) (which is nowhere-differentiable) may be derived quite
easily:

EE(p) =0, (7.80)
var€(g) = ymo?, (7.81)
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and

2
Exe(g) = 275° {_; iy (%) +1 (%) } ©<g<n). (7.82)

Figure 40 shows a curve that has been obtained by superimposing an isotropized
Brownian bridge onto a disc. The corresponding theoretical curve has fractal
dimension 1.5. For a statistical application of this model see Stoyan and Lippmann
(1993).

It is possible as well to perturb a unit circle by means of other random processes.
For this, put as in (7.79)

Y(p) = £(p) — %z(zn) 0 < ¢ <2m)

where ¢ (@) is a right-continuous random process on [0, 27] such that £(0) = 0. (If
¢ is not continuous, then the closure of the perturbed set has to be taken.) Then,
similar to (7.80), it is possible to isotropize the process Y.

g,

fm\/v‘ y’“*"“m
: . 1",-4’%

N\ Ay

@N& N

5
f + £
<
; é,;; %
! £

Nmf

Figure 40 Simulated isotropized Brownian bridge, which was used as a disturbance
function to randomly disturb a circle.



94 REPRESENTATION OF CONTOURS

Eigenshapes
The following model is frequently used, particularly for biological objects:

X (@) = D)+ >_ Cefily), (7.83)
k=1

where the f;(¢) are deterministic functions, and the C; are independent random
variables with
EC, =0

and
varCpr =y, (k=1,2,...).

Since isotropy is not assumed, the covariance function of £(g) has to be used,
which is more complicated than Ex (1):

k(p, ) =EE@EW) O <o, ¥ <2m).

It is easily shown that

k(0 ¥) =Y _ Ve ful@) ). (7.84)

k=1

The y, are the eigenvalues of the kemel « (g, ¥), and the fi(p) are the corre-
sponding eigenfunctions. Frequently they can be interpreted biologically or physi-
cally. Usually the f; (¢) corresponding to large y, characterize global form variation
while the others reflect local irregularities.

7.7 STATISTICAL ANALYSIS FOR THE CONTOUR FUNCTION
APPROACH

7.7.1 Values of the invariant parameters of single figures

The determination of the values of £, 02(f), 02(f’) and xs(¢) for a given function
f(x) is a problem of numerical mathematics. Starting from the function values

fi=f) (i =1,..., N) corresponding to the nodes of interpolation x;, integrals
such as
1 2r 2r
— fx)dx or fAx)dx
2 0 0

must be calculated. If there are sufficient nodes and they are equidistant then the
integrals may be approximated by the following sums:

- 1 &
f%N;fi-
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1 N
~ N2
O DY E
i=1

| & ) _
xr k&) ~ > (fi = D five = ),

i+1
where
2
fN+l = fla A= W
There are several ways of calculating o2 (f”):
|- ((fim2 = 8fimi +8fin — fi)
208 n L i—2—8fi i+1 — Ji+ 785
(N~ 5 Z( o ) (7.85)

i=1

or Xr (D) +4x,20) + 9x,(3A) — 14y, (0)

A% 49?2

(7.86)

The first formula is derived by approximating the derivative f’(A); the second
comes from (7.12). There xy(¢) is approximated by a parabola of the form

xr (@) = xr(0) +ag?,

obtained by the least-squares method. (There is no linear term, because x} 0 =0)
The values xr(0), xr(A), xp(2A) and xy(3A) are used in the approximation. The
optimal coefficient is

xr(A) +4xr(2A) +9xr(3A) — 14x,(0)
= 9842 '

If A is not ‘very small’ then the results of the two methods differ, and are only rough
approximations to o2(f’). Nevertheless, the values can be compared for different
figures, and are thus useful parameters for describing the boundary texture if the
same formula is always used.

7.7.2 Statistical determination of distributional characteristics of the
invariant parameters

Let X, ..., X, be a random sample of independently identically distributed figures
with contour functions F;(x), ..., F,(x). Quantities of interest include

EF, Ea(F), Exs(p).

On account of the independence assumption, the methods of classical statistics are
applicable. Thus this section is very short. An unbiased asymptotically normally
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distributed estimator of EF is given by

ol
X |-

2": ‘. (7.87)
i=1

If measurements are given for N nodes of interpolation then one may use

Fyj. (7.88)

n N
=1

o~ 1
F=q 2=

i=] j

Here F;; is the function value of the ith figure at the jth node of interpolation.
The variance of F is estimated by

s3(F) =

LS (F- P2 (7.89)
i=1

n—1¢4
Analogously, all other means and variances may be estimated.

7.7.3 Statistics for randomly disturbed functions

Let the observed radius-vector functions R;(¢) have the form (2.69),

Ri(¢) = D(p) + & (9),

where the random functions £;(¢) are identically and independently distributed
and isotropic with E&;(¢) = 0. The aim of the statistics is the estimation of the
deterministic function D(g) and of the distributional characteristics for £(¢). There
are two cases that have to be considered.

(1) The position ¢ = 0 corresponds to a landmark, as in the case of biological
objects. Then it:makes sense to determine means and variances for selected
values of ¢.

(2) The position ¢ = 0 has been chosen arbitrarily on the contour as in the case
of particles. In this case invariant contour parameters should be studied.

In the simpler first case D(¢) may be estimated as
N,
Dip) = — Z Ri(9). (7.90)
i

A smooth estimate of D(¢) can be obtained by the least-squares method. It may
be useful to apply a penalized least-squares approach, where smoothing parameters
are introduced in order to diminish the roughness of the estimations (Rice and
Silverman, 1991).
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Now the characteristics of £(¢) will be estimated:

1 & __
var&(p) : s*(g) = — > [Ri(p) - D@, (7.91)
i=1
Eo(€) : s%(€) = %ZO’Z(R,' - Dy, (7.92)

1o~ 1 [ _
Exe(@):ke(@) = Y5 [ 1RO - D)
i=1

x[Ri (¥ +¢) — DY + p)]dy, (7.93)
where the integral may be replaced by a sum, as in §7.7.1.

Example. Let D(g) be the radius-vector function corresponding to an ellipse with
semi-axis lengths ¢ = 2 and b = 1. Let £(¢) be a tooth contour function with
! = 8 and F(x) corresponding to a uniform distribution on [—0.5, 0.5].

By simulation, 10 figures as in Fig. 39 have been generated and then used as a
sample. The function D(gp) is then estimated by (7.92); Fig. 41 shows the result.
The estimate of Ea?(€) is s2(£) = 0.0561, while the theoretical value is 0.0555.
Table 2 shows the true and estimated values of E xg(¢). The accuracy of estimation
for this example is quite good.

If the figures to be analysed belong to a sample of independent identically
distributed figures then it is possible to use the methods of classical statistics
to evaluate the quality of the estimates. For example, for large » or normally
distributed £(g) the following confidence interval based on the z-distribution can
be used:

(D( ) — ﬁtn Li—a2 < D(g) < D(p) + \(/(-{) bhit,1—as2

NG ) =1l—a. (7.94)

Example (continued). Since the function £(g) is isotropic,
Eo?(€) = varE(p)

for all ¢. Thus, s2(£) is an acceptable estimate of var £ (¢) for any ¢.

Figure 41 Mean of 10 randomly disturbed ellipses as in Fig. 39. This is an estimate of
the ellipse contour function D(g).



98 REPRESENTATION OF CONTOURS

Table 2 Estimated and true values of the expectations
Exe (@) of the random contour covariance function of
the disturbance function.

® ke(p) Exe (¢)

0° 0.0561 0.0555

8° 0.0539 0.0532
16° 0.0483 0.0469
24° 0.0403 0.0382
32° 0.0312 0.0284
40° 0.0221 0.0190
48° 0.0141 0.0113
56° 0.0078 0.0060
64° 0.0031 0.0027
72° —0.0005 0.0009
80° —0.0029 0.0002
88° —0.0046 0.0000

For a = 0.05 and n = 10 the ¢-value is
19.0.975 = 2.262,
so that the following confidence interval for D(g) is obtained:

(D(g) — 0.040, D(gp) + 0.040).

Statistics for eigenshape analysis

The model parameters y; and f,(¢) are statistically estimated using a sample of
independent figures with X (¢), ..., X, (¢). D(p) is estimated and then the discrete
data values x;; are analysed:

xip=Xi(g) = D(g) G=1,....n; j=1,....5).

The ¢; might be equidistant interpolation nodes. Then the covariance matrix I'
is calculated for the x;;:

I = (& (@, ¢1))»
and

N
ko, @) = inkxil k,1=1,...,5).

i=1

The corresponding eigenvalues are estimates for the first y; and the corresponding
eigenvectors estimates for the f;(¢). Applications in shape statistics can be found
in Lohmann (1983) and Full and Ehrlich (1986).

Connections with Fourier analysis are discussed by Rohlf (1986), who also
discusses the formal similarity to principal component analysis. Rice and Silverman
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(1991) describe a smoothed form of the analysis; however, they do not assume that
the fi (@) are periodic. As an example, they analyse a sample of curves.

Now it is shown by an example how the more complicated second case of
p- 96 can be treated, using the methods of §7.5.2. The figures to be analysed are
generated by simulation as above. That is, one considers ellipses with semi-axis
lengths @ = 2 and b = 1, roughened by a tooth contour with / = 8 and deviations
uniformly distributed on [—0.5, 0.5]. These figures are approximated by ellipses,
and the lengths of the corresponding semi-axes have to be estimated.

The methods used will be the D, method, the A-U method and the R method.
(the latter is based on measurement of area and mean radiusTF). The calculation
of semi-axis lengths is carried out using (7.16) and (7.18). The complexity of the
formula for 7 necessitates the application of the regula falsi to calculate b after
elimination of @ by A = mab. By the way it is not possible to determine suitable
a and b for all values A and r.

Mean values of a and b for samples of figures yield estimates of the semiaxis
lengths. Another possibility is to determine means of A, U and d.« for the samples
and to then use (7.28)-(7.31).

An exact theoretical investigation of the properties of these three estimates seems
to be difficult, even for the simple disturbance model used in the simulations. Note
that the means of area and perimeter of the random figures are greater than the
area and perimeter of the original ellipses. Namely, by (7.73)

EA = mab + nEo?(€).

For the values used in the simulation this gives EA = 6.4577 (instead of 6.2832 for
the original ellipse). Simulation yielded the value EU = 10.09 (instead of 9.6943
for the ellipse).

By simulation, the properties of the estimators for a and b have been investigated
for all three methods. This has been done both by estimating @ and b for each figure
separately (and then averaging) and also using sample means for A, U and dyax.
The calculations show the latter procedure to be preferable.

Of the three methods, the Dy,,x method turned out to be clearly the best, yielding
estimates of @ and b closest to 2 and 1. While the A-U method still gives acceptable
values, the quality of the estimates from the R method is rather poor. For samples
of each 10 figures the valyes of bias (= mean of estimate — true value) and standard
deviation are given in Table 3.

As the variability of £(p) decreases, the quality of the estimators increases. For
an interval of variation [—0.25, 0.25] (instead of the original interval [—0.5, 0.5])
all three methods have bias close to zero; even for the R method they turned out
to be (a) 0.04 and (b) —0.02.

7 pertains to the radius-vector function of the disturbed figure, whose centre of gravity does not
usually coincide with the centre of the original ellipse,
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Table 3 Bias and estimated standard deviations for the estimators for a and b using three
estimation methods.

D max method A-U method R method

a b a b a b
Bias 0.01 -0.03 0.14 —0.95 0.41 —0.16
Standard deviation 0.07 0.04 0.08 0.03 045 0.14

7.7.4 Statistics for random radial-rhombi and related figures

As in §7.6.2, random radial-rhombi are now considered. The parameters m 4, mg,
04, 0B and g4p must be estimated from a sample of independent radius-vector
functions R;(g), ..., R,(¢), and the distributions of A and B must be deter-
mined.

The mean values m 4 and mp may be estimated by the method of moments using
(7.62) and (7.65). This yields the unbiased estimators

Ma =R +v3 7(R) | (7.95)
and _
mp=2R —1a (7.96)
Here
I
R= — R;
n “
i=l1
and

n

-1
o(R) = — Z VOo2UR).

i=1

Further distributional characteristics can be obtained by determining the parameters
a; and b; separately for each function R;(¢) using the formulae in §7.4.2 and
subsequent statistical analysis:

a; = R +[3c*(R)]'?, b =2R; —a;,

with

One obtains 4 = a and an analogous estimator for mp. An unbiased estimator

of 02 is given by
1< -
53 =7 g (a, — @)%

n—1
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o2 can be estimated analogously. The empirical correlation coefficient r4p for
the series (ay, by), - .. (a, b,) is an estimator for the parameter g45.

The empirical distribution function corresponding to the @; and b; is an estimator
of the distribution function of A and B, respectively.

If these methods are applied to figures that are only approximately radial-rhombi
then the quality of the approximation must be characterized. This can be done, for
example, using the mean contour covariance function Exg(¢). The theoretical
values corresponding to radial-rhombi,

Exr(p) = (03 + 0} +20480403)
+5lma —mp)? + 03 + 0

2 3
~20mman [1-6(%) +4(%) |0 <o <4m
Exr(p) = Exr(m —¢) (%7{ <@ <),

can be compared with the statistically obtained values
S (R 2 4 = =
xx(@) = ~ Z/ [R:(x)— RI[Ri(x + ¢)— R]dx.
i=1 70

The degree of concurrence of both functions characterizes the goodness-of-fit of
the radial-rhombus model.






CHAPTER 8

Set Theoretic Analysis

8.1 INTRODUCTION

The methods of form analysis considered in this section are based on analysis of
the objects as figures, i.e. as subsets of R2. For these sets, geometrical character-
istics are considered. Since the description of form is the aim, those characteristics
are considered that are independent of the position and orientation of the figures.
Examples are area and perimeter or the distribution of chord lengths formed by
random lines.

Ideas from the theory of random sets are used to obtain means and variances.
The results desired determine whether or not the figures are normalized and homol-
ogized. The same is true for a smoothing before the analysis.

The use of image analysers is recommended; without such devices even area
measurement is barely feasible for large samples of figures.

8.2 SIMPLE GEOMETRICAL SHAPE RATIOS

There are many shape ratios, often describing in a very intuitive manner certain
geometrical properties (or complexes of properties). Experience shows that if the
aim is discrimination and classification, the use of shape ratio is frequently equiv-
alent to or more effective than more complicated methods. 1t is useful to consider
those quantities which are somehow related to the actual problem; for example, the
contour should be considered if relations between particles and their neighbourhood
are of interest.

Area-perimeter ratio
47 A(X)

faw ) = <o

(8.1

where A(X) is the area of the figure X and U(X) its perimeter. This shape ratio
characterizes, for example, deviations from circular form. For any disc f4y = 1,
while for all other figures fay < 1 (this is a consequence of the so-called isoperi-
metric inequality; Hadwiger, 1958). The smaller f,4y is, the greater is the deviation
from circular shape. For example, an ellipse with ratioa = a : b (> 1) of semi-axis
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lengths satisfies
4

(151 +a)/va — 1)2;

fau decreases monotonical with .

Schmidt-Kittler (1986) describes similar parameters for objects given only as
fragments.

Note that shape ratios that use the perimeter are of dubious value in the case of
very rough contours. Sometimes pre-analysis smoothing may be useful. Bandemer
et al. (1989) have studied a fuzzy version of f4;, which may be useful when only
a vague definition of the contour is possible.

fav(X) =

Circularity shape ratio (Wadell, 1935)

diameter of the circle with area A(X)
Jk(X) = L : (8.2)

where L(X) is the maximum distance of a pair of contour points of X. For
connected X, L(X) is the same as the so-called Feret diameter, the maximum
length of the orthogonal projection of X on a line. fx is also.equal to one for a
disc, and otherwise is less than one. Similar shape ratios are obtained using in-
circle radius or circum-circle radius. (The in-circle radius, the radius of the largest
circle in X, can be obtained by means of an image analyser, applying the erosion
operation with discs. A method for the determination of the circum-circle radius
has been suggested by Jourlin and Laget (1988).)

Symmetry factor of Blaschke

A(X)
X)) =1— ———. (8.3)
A(S(X))
Here S(X) denotes the so-called ‘central symmetrization” of X:
s =LlixeX),
where X is the set reflected at the origin, X = {x : —x € X}. For convex X,

Rademacher’s inequality (Burago and Zalgaller, 1988) gives
A(X) < A(S(X)) < 3A(X),

or
1
3 < f(X) <L

For symmetric convex sets f; = I, while for triangles it is % (Moreau and Rubio,
1987; Jourlin and Laget 1988). These authors describe in detail the determination
of f;(X) by means of image analysers.

Further symmetry characteristics are discussed in Jourlin and Laget (1988).
Matheron and Serra (1988) have studied a relation for convex sets that gives an
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ordering with respect to their degree of asymmetry. They coined the term ‘totally
symmetric’.
Convexity ratio
A(X)

fe(X) = A(conv X)'

(84)

where A(conv X) is the area of the convex hull of X. This shape ratio characterizes
deviations from convexity. Clearly a convex figure X has the convexity factor
fc(X) =1, while in all other cases fc(X) < 1.

Another shape ratio, also characterizing deviations from convexity, is given by

AX) — Ax(X)

fcostar(X) = —AX) y (8.5

Here Ay (X) is the mean of the area of the ‘star’ in X seen from a random point
in X (Fig. 42). For convex sets feostar(X) = 0; otherwise feostar(X) > 0.
See Wegmann (1980) for more non-convexity characteristics.

Roundness factor (Wadell, 1935)

n~! j:r,»(X)
i=1

radius of the in-circle of X~

fr(X) =

(8.6)

It is assumed that the contour of X contains n points of large curvature P, ..., P,
where the radius of curvature at P; is r;(X), (Fig. 43). (Here n is a quantity that
depends on the shape of X.) For a disc fg(X) = 1; otherwise fr(X) < 1. This
shape ratio, which was for a long time not easy to obtain in practice and which
appears somewhat vague, is used successfully in petrology (Pettijohn, 1975). For
example, Krumbein (1941) used it to describe the relationship between the degree
of abrasion of stones in a tumbling barrel and the duration of the abrasion process
(Fig. 49). Pirard (1992, 1994a,b) shows how f,(X) can be measured by means of
an image analyser.

The measurement of curvatures is also discussed in detail in Russ (1989).

Figure 42 Definition of the ‘star’ of a figure. The non-shaded part is visible from x and
forms the star with respect to x.
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Figure 43 Definition of ‘roundness ratio’. For the given figure radii of curvature have to
be determined.

e )

Figure 44 Definition of ‘elongation ratio’ — maximum Feret diameter L(X) and corre-
sponding breadth B(X).

Length ratios. For many biological objects length ratios are valuable shape
parameters. Mainly landmark distances and their ratios are considered (see e.g.
Mosimann, 1970). Applications are also given in Schmidt-Kittler (1984) and §10.2.

Elongation factor
B(X)

fI(X):‘lTX), (8.7)

where B(X) is the breadth of X measured orthogonally to the line L(X) connecting
the two most extreme points on X (Fig. 44).

Further shape ratios characterize figures in comparison to certain geometrical
figures.

Ellipse ratio
a.(X)
be(X)

fen(X) = (8.8)

where a.(X) and b, (X) are the lengths of the long and short semi-axes respectively
of the ellipse of area A(X) and perimeter U (X). They are determined by the A-U
method, i.e. by (7.30) and (7.31).
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Radial-rhombus ratio
a,(X)

fr(X) = by (X)’

(8.9)

where a,(X) and b,(X) are the lengths of the long and short semi-axes respec-
tively of the radial-rhombus of area A(X) and mean radius vector 7(X). They are
calculated using (7.32) and (7.33).

A further shape ratio is the ratio of side lengths of the smallest rectangle
containing the figure; sometimes the sides are taken parallel to the axes of a given
coordinate system. Worth reading for general discussions of shape indices are Exner
(1987) and Pirard (1994a,b).

8.3 CHARACTERISTICS OF RANDOM COMPACT SETS

8.3.1 Introduction

Under certain conditions, ideas and results of the theory of random sets can be
used in form statistics. This is possible if the position of the figures is given.
Frequently this situation can be generated in a natural manner by introducing a
‘natural’ coordinate system connected with the landmarks, (§10.2). This situation
also holds with spreading processes. For example, Vorob’ev (1984) has studied
those figures X that describe the area during a forest fire that is either burning or
in ashes at a given instant. Cressie (1984) has studied the growth of tumours using
the starting point of the tumour as the origin of the coordinate system.

Of particular importance for applications are the covering function and various
means and medians. Furthermore, sets can be described by functions independently
of their position and orientation in the plane. Examples are the set covariance
function, the erosion function and the chord length distribution function.

8.3.2 Random compact sets

Let K be the set of all compact subsets of R%. On K the Hausdorff metric 4 is
defined by

h(Kl, Kz) = il’lf{f >0: Kl - Kz @b(O, 6),/(2 < Kl @b(O, 6)}
(Appendix E). Under the metric k, K is a complete separable metric space. The
corresponding open subsets generate a o -algetra, the Borel o-algebra By of K.

A random compact set is a measurable function from a probability space
[2, A, Pr] into [K, Bg]. Random compact sets in this sense are also random
closed sets as in Matheron (1975). Consequently their distribution is given by
the probabilities

Pr(XNK=¢) (K eKk).
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In passing, it should be noted that the distribution of a random compact convex set
is also given by the system of all inclusion probabilities Pr(X C K) (Vitale, 1983;
Cressie and Laslett, 1987).

For K = {x} the probability Pr(x € X) is obtained, which satisfies

Pr(x €e X) =1—Pr(x € X).
Thus the covering function Px(x) is given by
px(x)=Pr(x € X) (x € R?). (8.10)

Of course, px(x) can also be interpreted as the mean of the indicator function
1x(x):
px(x) = Elx(x).

The covering function takes values between O and 1. The set b, of all x € R? with
px(x) > 0 is called the support of X. The set K, of all x € R? with px(x)=1is
called the kernel, the set of fixed points, or essential minimum e(X). If X, X5, ...,
is a sequence of i.i.d. random compact sets, then almost surely

ﬁX,» = e(X)

i=1

and NY_, X; converges almost surely to e(X).

8.3.3 Mean value formulae for compact convex sets

Let Y and Z be two independent random compact convex sets with finite mean
areas EA(Y) and EA(Z) and perimeters EU(Y) and EU(Z). Furthermore let Z
be isotropic;T then for the set X = Y & Z the following relations hold:

1
EA(X):EA(Y)+§—EU(Y)EU(Z)+EA(Z) (8.11)
, T
and
EUX)=EUY)+EUZ). (8.12)
These formulae are generalizations of the famous Steiner formula (Matheron, 1975,
p- 85).
8.3.4 Means of random compact sets

In the literature one may find several attempts at defining the mean of random
compact sets. Here those variants which are particularly important for applications
are discussed.

*This means that Z and any random set obtained by rotation around the origin have the same
distribution.
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Aumann’s definition. This is closely connected with convexity and support
functions, and thus is not very attractive for non-convex sets. A selection point & of
a random compact set X is a random variable on the probability space [, A, Pr]
with values in R?, i.e. a random vector or a random point, for which almost certainly
tEeX.

Example. Let X be a random line segment with endpoints u(X) and o(X). Then
u(X), o(X) and the centre of the line segment are selection points.

The Aumann mean E 4 X of a random compact set X is the set of means of all
selection points:

E,X = {E£ : £ is a selection point and E£ € R?} (8.13)

(Aumann, 1965).

With respect to compactness and convexity of E4 X, the following can be said.
The norm || X|| of a random compact set is that random variable which yields the
distance of X to the singleton {o} with respect to the Hausdorff metric:

1 X1l = h({o}, X).

The set E4 X is compact if and only if E| X| < oc.

If the distribution of X is free of atoms (i.e. there is no compact set X; with
Pr(X = X,) > 0) then E4 X is even convex (Richter, 1963). The same is true if the
o-algebra A of the probability space [, A, Pr] is ‘sufficiently rich’. This means
that for any A with 0 < A < 1 and any pair of selection points & and &; there is a
random event A, with Pr(A;) = A that is independent of X, &, and &, (Kruse and
Meyer, 1987). In this case the following random variables are also selection points

O <A<l

_ {El(w) (w e Ay)
N= B (@€ A9

Clearly, the mean of n, satisfies
Eni = Pr(Ay)EE + Pr(A5)E&, = AEE + (1 — 1)E&,.

Thus for two arbitrary points of E4 X the whole connecting line lies completely in
E X.

Because of these properties, only compact convex sets X are considered from
now on. It is natural then to work with support functions (§7.23). Since it is possible
to embed the set of support functions of convex sets isometrically into the Banach
space C[0, 27] of continuous functions on [0, 2], the theory of random variables
on Banach spaces and, in particular, the corresponding limit theorems can be used
(Araujo and Gine, 1980). The mean may be defined by means of the so-called
Bochner integral. The support functions of X and E4 X satisfy

seax(9) = BEsx(p) (0 <¢ <2m). (8.14)
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This offers a simple method for the determination of E4X. For all ¢ the mean of
sx (@) is determined, and then E4 X is that convex set whose support function is
Esx ().

If X is discrete, i.e. if there are convex sets K, K5, ... with Pr(X = K;) = p;

and }_ p; = 1, then
@)
EsX=pKi®pK:®--- (8.15)

Matheron (1975, Chapter 9) has given a more general integral formula.

If X is isotropic then E4X is a disc centred at 0. That is, in the isotropic case the
random variable sy (g) has the same distribution for all ¢, and Esx(g) is constant.

Example. Let X be a line segment of random length /(X) centred at o. Let the
orientation of X be uniform. Clearly, X is isotropic. The Aumann mean E X is
the disc b(o, r) with

1
r=—EI(X).
i

Certainly many shape statisticians would not like this result. Instead, they would
rather measure the lengths of line segments and then formulate their result as

‘shape: line segment, size = mean length: E/(X) .

Note that variances connected with the Aumann mean may also yield form infor-
mation (§8.3.5).
Two geometrical statements about E4 X are possible. If X is convex then the

perimeters satisfy
UELX) =EUX) (8.16)

In general, the mean areas satisfy the inequality

VAELX) = EV/A(X) (8.17)

(Vitale, 1987a).

The first statement is a simple consequence of a well-known theorem of Cauchy
(that the perimeter of a planar convex set can be expressed in terms of the mean
breadth (Santalo, 1976, p. 3)), the relationship between width and support functions,
and (8.14). By the way, it is

Es@ X1 ®- - ®a,Xy) =aE4x X, ®--- D aEsX,

for real @, and random compact X;. )

Artstein and Vitale (1975) proved a law of large numbers for compact sets. Let
X1, X3, ... be a sequence of independent identically distributed random compact
sets with E[| X || < oo. Then, almost certainly,

1
;(Xl @---® X,) = Ea(conv X))
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in the sense of convergence with respect to the Hausdorff metric. The case of
dependent X; was studied by Schiirger (1983). Weil (1982a) proved a central limit
theorem for random compact sets (convergence to ‘Gaussian’ random sets).

Vitale (1990) suggested a modification of Aumann’s definition, which yields
non-convex means as well. Let E;.qX denote the Vitale mean of a random compact
set X For applications it may be sufficient to say that in the case of a set X with
a discrete distribution

EedX =P X ® - @ pu Xy, (8.18)
analogously to (8.15), but the X; do not need to be convex. In general,
EredX < EAX (819)

The definition of E.qX is based on selection points as in E4X. However, these
points are not defined as maps from [€2, A, Pr] to R%. Rather, they are mappings
of the ‘canonical’ probability space [K, Bk, Px] to R?. Here Py is the distribution
of X on the Borel o-algebra By. The points are called K-selection points. The
definition of the mean is then

EraX = (E£ : & is a K -selection point and E£ € R?}. (8.20)

For a discrete distribution of X, the notion of K-selection point § is defined as
follows. For every set X; an element &; is chosen. If X (w) = X; then £(w) = §;.

If the samples of X form a continuous one-parameter family then E4X is given
by the so-called Stieltjes—Minkowski integral (Matheron, 1975, Chapter 9).

Another generalization of the Aumann expectation is given in Molchanon
(1993a). It is determined by the family of functions on the setting space. The
Aumann expectation appears then as a particular case when all these functions are
linear.

Radius-vector mean. Let the random compact set be star-shaped and contain the
origin with probability one. Then the radius-vector function ry (¢) can be used to
describe X. Let Ery(¢) < C < oo for all ¢. The radius-vector mean of X is the
compact set E, X that has the radius-vector function

r(p) =Eri(p) (0<¢ <2m).

Naturally, it is not necessarily convex.
As in the case of the Aumann mean, E, X is a disc when X is isotropic. In
general,
E. X CE.sX CEAX. (8.21)

The difference between E4 X and E, X can be quite considerable. The mean area
satisfies the inequality
EA(X) > A(E, X).
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Fréchet’s definition. Compact sets can be considered as elements of the metric
space K with Hausdorff metric 4. For particular classes of sets other metrics are
also used (§9.4). Therefore it is interesting for form statistics that there is a general
theory of means in metric spaces (Ziezold, 1977, 1989).

Let X’ be an abstract set and d a metric on X’. Furthermore, let X be a random
variable with values in X'. Suppose that

Ed(X,a)? < 00
for any element a of X. Then any element m of X’ such that

Ed(X, m)* = jnf Ed(X, a)? (8.22)

is called a mean value element of X (Fréchet, 1948). The set £7X of all mean
value elements of X is called Fréchet mean of X. In particular, if X = K and
d = h, each of these elements is a compact set.

In most cases the determination of mean value elements is a rather complicated
optimization problem. Unfortunately, this is true also of the case X = K and
d=h.

Fréchet’s definition is not satisfactory for shape statistics if the position and
orientation of the figures in space is uninteresting and directly congruent figures
cannot be distinguished (two sets are directly congruent if they can be transformed
into each other by translation and rotation). In such cases a quotient space K¢ with
the corresponding quotient metric h¢ is considered instead of K. All figures that
are directly congruent to a given figure form a class. The set of all these classes is
K¢. On K¢ a metric h¢ is given by

he(Ac, Be) = s,}ng{h(TA, §B)} (Ac, Bec € K¢),

where A and B are arbitrary elements of A and B¢ respectively. Here M is the
set of all proper Euclidean motions (translation and rotations) in the plane,

A definition of mean for classes of figures is then possible analogously to (8.22)
with d = h¢. The practical determination of such mean value elements is even
more complicated than that discussed above.

Covering function. A natural way of defining a mean for random compact sets
is the use of the covering function as a mean. In this case the mean is not a set
but a function taking values between O and 1. Perhaps one can consider px (x) as
the membership function of a fuzzy set EfX (Dubois and Prade, 1980; Kruse and
Meyer, 1987). In terms of the theory of fuzzy sets, py(x) expresses the degree of
membership of x in EfX. The mean area of X satisfies

EA(X) = /RZ Px(x) dx. (8.23)
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If X is isotropic then py(x) depends only on the distance r = ||x|| of X from
the origin 0. The symbol py is used for the corresponding function px (r):

px(r)=px(x) (xll=r).

The mean area can be written in the form
00
EA(X) = 27r/ rpx(r) dr. (8.24)
0

Figures 52 and 55 give examples of px(r), and Fig. 74 presents a statistically
determined covering function.

Vorob’ev's definition. Let X be a random compact set with 0 < EA(X) < oo
and let there exist a positive p with the property that the compact set

S, ={x € R*: px(x) = p} (8.25)

has area EA(X). (If p is not unique then take the infimum of all such p.) The
Vorob’ev mean EvX of X is then the set S, (Vorob’ev, 1984). (While Vorob’ev
considered sets with finitely many points, e.g. sets of pixels, which are of interest
in image analysis, subsets of R? with positive area are considered here.) Vorob’ev’s
definition is not so artificial as it perhaps looks. The set Ey X satisfies the inequality

EA(XAEv(X)) < EA(XAB) (8.26)

for all Borel sets B with A(B) = EA(X) (Stoyan, 1989b). Here A denotes the
symmetric difference operator:

CAD = C\DUD\C.
In this sense Ey X is that set of area EA(X) that is best fitted to the set X.

8.3.5 Variances of random compact sets

Until now there has been no generally accepted definition of the variance of random
compact sets. (For the particular case of sets in R', Kruse (1987) suggested a
variance definition that unfortunately has some disadvantages.)

It seems to be useful to proceed as in the case of random variables. For a random
variable £ the variance var§ is defined by

var§ = E(§ — E§)?,
and it is well known that E§ is the solution of the following optimization problem:

‘Determine x such that E(§ — x)? is minimal’,
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In the case of convex sets it is natural to use the support function and to interpret it
as an element of the Banach space C[0, 2x]. Thus the following definitions make
sense.

The inf-variance of a random compact convex set X is the quantity

var; X = KGIE{IC) Isx — skll2, (8.27)

where sk and sy are the support functions of K and X and || - || is the supremum
norm: C(K)) is the set of all compact convex subsets of R?. The quantity

var; X = E|lsx — sex|l? (8.28)

is called the E-variance; sg,x is the support function of E4X.
It is easy to see that these variances may differ; the situation in the case of
random sets is thus more complicated than for random variables.
Clearly,
var; X < vargX. (8.29)

The E-variance is perhaps easier to calculate. Nather and Albrecht (1990) deter-
mined it for a random closed interval on the real axis having the form

X=1§-86 &+,
where £ and 8§ are independent random variables with finite variances. They give
vareX = of + af + 2EI£|E[5]. (8.30)

In the sense of the theory of random variables with values in Banach spaces, var;
and varg could be interpreted as ‘strong’ variances. ‘Weak’ variances are defined
in terms of linear functionals. The following functions are of interest in the case
of convex sets and when applying support functions — the variance function

+ varsx(¢) = E(sx () — Esx(9))?,

(i.e. the variance of the support function value at @), for the first and the covariance
function

K(p, ¥) = E(sx(¢) — Esx(9))(sx(¥) — Esx (¥)).

for the second, If X is isotropic then varsx(g) is constant, and K (g, ¥) depends
only on the difference ¢ — .

Of course, variances can be also defined starting from the covering function or
the radius vector function (Stoyan 1989b).

The following variance corresponds naturally to the Fréchet mean:

varr X = inf Ed(X, a).
acX

In the case of X = K and d = h this is identical to var; X.
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8.3.6 Medians of random compact sets

It is not difficult to define medians of random sets. Until now this notion appeared
only (implicitly) in Vorob’ev (1984). The Vorob’ev median of a random compact
set is defined by

X={xeR:pxX)>1}. (8.31)

The name ‘median’ can be justified as follows.

(a) The median m(x) of the value lx(x) of the indicator fungtion of X at x is
equal to one if px(x) > % and zero otherwise. Obviously, X is that set which
has m(x) as its indicator function.

(b) It is well known that the median of a random variable £ minimizes the quantity
E|£ — a|; —00 < a < 00. The set X has a similar property:

EA(XAX) < EA(XAB) (8.32)
for every Borel set B (see Stoyan, 1989b). Here, as is (8.26), A denotes the

symmetric difference operator.

Further median definitions are possible. For example, analogously to Aumann’s
mean definition a median could be defined by selection points taking the geomet-
rical median instead of E. (The geometrical median can be defined as that point of
R? which minimizes E||& — a| (Small, 1990).) Molchanov (1990) has also defined
quantiles of random compact sets. A g-quantile of X is

X,={xeR*: p(x)>1-gq) 0<gq <.

8.3.7 Some simple statistical methods

Estimation of the Aumann mean. Let X|, ..., X, be a sample of compact convex
sets. The X; are assumed to be independent and identically distributed. If they are
not convex then their convex hulls are taken. The sample mean

~ 1

is an unbiased and consistent estimator of E4 X . If Vitale’s mean is employed, then
the same estimator may be used, but the X; need not be convex.

Estimation of the covering function. Let X, ... X, be a sample as above. The
function

l n
Px(n)==3 " 'Xi(x) (xR (8.34)
i=l

Similarly, quantiles and probabilities Pr(X N K # @) can be estimated for
compact K (Molchanov 1989, 1990).
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Estimation of mean and median in the sense of Vorob’ev.
Estimators of Ey X and X can be obtained using estimators of the covering

function. X is an estimator of the median, where

X={xeR: px(x)> i}, (8.35)

Figure 74 shows an estimate obtained in this way.

Estimating Ey X is more complicated. First the mean area of X has to be
estimated, for example by A(X), the arithmetic mean of the areas of the X;. Then
that p has to be determined for which the set

S, =1{x € R*: px(x) = p}

has area A(X). This set is an estimator of Ey X.

Estimation of mean and variance in the sense of Fréchet.

Estimators M and S? of £ X and varg X can be obtained as follows. (They are
given here for a general metric space X with metric d.) The mean estimator M is
an element of X with

. 2 _ X;, a)?,
;‘d(x,,M) a‘é‘f(;d( i\ a)

and S? is given by
1’!
§2=-3 dX:, M)~
ng( )

Both estimators are consistent in a certain sense (Ziezold, 1989).

84 FOUR FUNCTIONS FOR DESCRIPTION OF FIGURES

8.4.1 Introduction -

As an alternative to the contour functions treated in Chapter 7, there are four further
functions that describe planar figures in a quite different manner, of particular
interest are the chord length distribution function L(/) and the spherical erosion
function Q;(r). All functions are independent of the positions of the figures in
the (x, y)-plane, thus they coincide for congruent figures. It is not necessary to
define ‘centres’ in the figures. That is why these functions are well suited to form
statistics.

Both the spherical erosion function Q(r) and the chord length distribution
function L(/) may be easily determined using image analysers. The determination
of L(l) has a long tradition of application to collections of figures forming struc-
tures in metal and ceramics. The series of formulae for chord length distribution
functions may be of use in finding suitable models when empirical distribution
functions are given. They also have an independent interest.
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8.4.2 Chord length distribution functions

Random lines (Appendix H) generate chords of random length in convex sets. The
corresponding distribution function is called the chord length distribution function
and is denoted by L(!/). (Note that there are many other ways of defining random
chords; see Solomon (1978) and Coleman (1989) and literature on the so-called
Bertrand paradox.)

In the case of deterministic compact convex sets many formulae are to be found
in the literature. Some will be given here. The mean chord length E{ is given by

TA(X)

E¢ = . 8.36
U (8.36)
The third moment of the chord length is
3A(X)?
Ee’ = 8.37
U (8.37)

(Santalo, 1976). For the second moment of the chord length there exists no general
formula comparable to (8.36) or (8.37). Voss (1982) has given formulae for several
figures X; for example,

E-U(X)= %R

for a disc of radius R and

Ee?.U(X) = ta (ﬁ+log\/3+2~/§'

for a square of side length a.
The chord length distribution function is known for many figures. The following
formulae give the corresponding density functions /(£):

(@) X = a disc of radius R,

(b) X = an ellipse with semiaxis lengths @ and b (a > b);
(c) X = a rectangle with side lengths @ and b (@ > b);
(d) X = an equilateral triangle of side length a.

{a) Disc

I(6) = (0 < £ < 2R). (8.38)

V4
2R\/4R? — ¢2
(b) Ellipse

u !
1(0) = 16asz£/ dx,
¢ x0Vx2 —4p2\/x2 — £21/4a% — x2

where g = max({¢, 2b}. This integral can be determined numerically, but this is not
very easy. Figure 45 shows chord length density functions for two ellipses and a
disc, and Fig. 46 those for a square and rectangles.
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Figure 45 Chord length distributions for ellipses with a

b=1.5.
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Figure 46 Chord length distributions for a square (side length 1) and a rectangle (sid

lengths 1 and 2).
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(c) Rectangle (Gille, 1988)

1
a¥B 0= =<b),

2
ab (b <t<a),

106) = { € a+b)/ 2 -
(a < € <+/a%?+b?).

ab a b 1
+ —
(a + b)e? (‘/gz_az ,/gz_bz) a+b

(d) Equilateral triangle (Sulanke, 1961)

[T
+
Sfw

(ST

(0<¢=<3V3,

1) = 3
1—-£—+al[1 2 (fa)](fa<f<a)

oy —

— arcsin
4¢? 2 33 f

The form of the chord length density function is related to certain features of
the corresponding figure. For example, poles of this function are related to parallel
pieces of the contour and the form of /(£) for/ close to its maximum is essentially
related to smaller details of the contour.

For examples of cases where /(£) does not characterize the form of convex figures
uniquely see Figure 1 in Mallows and Clarke (1970), but see also Gates (1982a,b,
1987), Waksman (1985) and Nagel (1993).

In the case of a random convex figure X the chord length distribution function
L(?) is the perimeter-weighted mean of the chord length distribution functions of
the realizations. If, for example, X is a disc of random radius R then

1 (o9}
L) = -E_R/O rL;(€) dFg(r).

where Fg(r) is the distribution function of R and L, (1) is the chord length distri-
bution function of a disc of radius r. (The perimeter weighting is here replaced by
a radius weighting.)

More generally, let Px be the distribution of the random compact convex set X.

Then .
L) = W/U(E)Le(f)l’x(dé), (8.39)

where L (€) is the chord length distribution function of the realization & of X and
U (&) is the corresponding perimeter.

Perimeter-weighted averaging is based on the following idea. Let there
be a homogeneous and isotropic structure described by a germ-grain model
(Appendix J). This means that the structure consists of particles whose centres
form a homogeneous and isotropic point field. Particles shifted so that their centres
are at the origin form random sets with the same distribution Pyx. The structure is
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intersected by a line (e.g. the x-axis or a random line). The ‘number distribution’ of
the chords obtained is the chord length distribution corresponding to the structure or
the germ-grain model. (All chords are included in the number distribution with the
same weight. A corresponding sample is obtained by taking n subsequent chords
on the line of intersection. Another form of weighting is where long chords have
a greater weight and have more influence on the mean chord length etc.) Since the
probability of intersection of a convex set with a random line is proportional to
its perimeter, the chord length distribution function corresponding to the number
distribution coincides with the distribution function L(£) given by (8.39).

There are close relations between the chord length distribution function and other
functions describing random compact sets. Particularly important is the relation to
the linear erosion function

1 r
0 =2 /0 [ — L(ey) de, (8.40)

where EZ£ is the mean chord length (Stoyan et al., 1987).
The relationship with the isotropized set covariance function yx (r) (§8.4.3) is
also of note: ‘

b1 d _
—yx(r) (r=0). (8.41)

=L =-0="gma

As Piefke (1978, 1979) has shown in the convex case there is a close connection
between L(£) and yet another distribution function, namely that of the distance
between two independent uniformly distributed points in X. Let the corresponding
density function be P(r); sometimes this is called the distance distribution. It is
given by

2U(X) [ FRmax

P =
O=2x2" )

(€ —r) dL(®), (8.42)

where R,y is the maximum distance between two points in X. The chord length
moments and the moments corresponding to P(r) satisfy

R R
/ rkP(r) dr = 20X 3 / 53 dL) *k=-1,0,1,..).
0 R+B+KHAX) Jo
(8.43)

Chords in non-convex sets

In non-convex sets intersection with a line can produce more than one line segment.
If these segments are suitably connected then generalizations of the formulae for
the moments of the chord lengths can be given (Miles, 1972, 1985).

The mean (total) chord length satisfies

A

EE——M(X)’

(8.44)
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where M (X) is the mean projection length of X on a random line. If X is connected,
then

M(X) = Ul(conv X)/m,

where conv X is the convex hull of X.

Instead of the kth power of the total length £ of the segments, the so-called
‘k-linc’ is used (the word ‘lin¢c’ comes from line section of non-convex domain).
If the section figure consists of n segments and if £;; is the distance between P;
and P; (Fig. 47) then the k-linc [£*] is given by

2n 2n
=" > 1/~

i=1 j=i+l

If n = 1 (i.e. if there is only one line segment), then [£4] = ¢*. In general, [£'] = ¢
and [£?] = £2. If there are two line segments (n = 2) then [£] = (£,4£,)>+6x£,£5,
where the £; are the lengths of the segments in X and x is the distance between
Pz and P;.

Miles (1972) showed that

34%X)

3=
E[E]_nM(X)'

(8.45)

Statistical estimation of chord length distribution functions

Chord length distribution functions are mainly used in practical applications where
the figures considered are particles in a structure as discussed on p. 119.

In this case the chords on test lines are considered. For a given £ the number
N(£) of chords longer than ¢ that are completely contained in the window of
observation is determined. Then L(£) is estimated as

N ()¢t

Ly=1 -—m,

(8.46)

where ¢ is the total length of the test lines. The term ¢/(¢+ — /) gives a boundary
correction in favour of long chords (Ohser and Tscherny, 1988).

Figure 47 Representation of chords intersecting a non-convex set.
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8.4.3 Isotropized set covariance function

The set covariance function or geometric covariogram of a deterministic compact
convex set X is the function on R? defined by

yx(h) = A(X N (X + h))
or

yx(h)=/ 1x(x)lx(x —h) dx (h € R?). (8.47)
R2

Obviously, yx (h) is the area of the intersection of X and X shifted by # (Fig. 48).

X+h

X

Figure 48 Definition of the set covariance function. The area of the shaded region is yx (k).

Using polar coordinates & = (r, ¢), one can write

vx(h) = yx(r, ).

By averaging over ¢, the isotropized set covariance function py (r) is obtained:

1 2
Yx(r) = g /0 vx (r, @) do. (8.48)

This function is considered in detail in Matheron (1975). It is monotonically
decreasing in the interval (0, r,,4.), where rp,, is the smallest value of r for which
yx (r) vanishes. For small r a good approximation is

UX
P () ~ A(x) = LX)

r. (8.49)

The relation to the chord length distribution function is given by (8.41). Thus yx (r)
can in principle be determined using L(£). Nevertheless, yx(r) is given here for
two examples.

A disc of radius R

7x(r) = 2R? arccos (é) —3rvVAR? —r2 (0 <r <2R) (8.50)
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A very precise approximation is
2 r’
yx(r)~ R —2Rr+6—R. 8.51)
A rectangle of area A and side length ratio § (= 1)

2

PR ©<x<1)
T —2x — — 4+ — ,
B B
- A 2arcsfm(l)—l—2(x—u) 1<x<8,
}’x(r)=; * B
. 2
2 arcsin (ﬂ zuv) +2u+%—ﬂ— 1;x (B<x<+/B2+1),
X
L0 (x=+/B?2+1),

where

x:\/g_ﬂ, u=+vx2-1, v=+x*-p%L

As L(£), also px(r) does not uniquely characterize the set X. Nagel (1993) has
shown that yx (k) (h € R?) characterizes bounded convex polygons uniquely up to
translations and central reflection. Because of

AX® (o, h) = AXU (X +h) =24(X) - AX N (X + h))

this is equivalent to the unique (up to translations and central reflections) charac-
terization of X by the arecas of X dilated by two-point sets. As LeSanovsky and
Rataj (1990) and Rataj (1994) have shown, non-convex sets are not uniquely (up to
translations and central reflections) determined by such areas. But, if dilations with
three-point sets are considered, then the characterization is unique up to translations.

8.4.4 Erosion functions

The spherical erosion function Qy(r) is defined as

_ EA(Xebl,r)
QS(O =1- T(X) r=0). (8.52)

This definition is based on the following idea. According to the uniform distri-
bution, a random point x is thrown into the random set X. Let x be the contour
point of X nearest to x, and let d(x) be the distance of x from r(x). Of course,
d(x) is a random variable. Its distribution function is O (r).

The linear erosion function Q;(r) is given by

EA(X ©s(0, 1))

Qi(ry=1- EACX)

(r =0y, (8.53)
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where s(0, r) denotes a random line segment of length » whose endpoint lies in o.
‘Random’ here means that the orientation of the segment is uniform in [0, 27 ].
Analogously, the pair erosion function Q,(r) is defined as

_EAx efo.r)

EA) (r = 0. (8.54)

Qp(r) =1
In this case, instead of the line segment s(o, r), its endpoints appear.

Of course, Q,(r) and Q,(r) coincide for convex X.

The linear erosion function Q;(r) is closely connected with the chord length
distribution function (see (8.40)), while the pair erosion function is up to a factor the
same as the isotropized set covariance function. Erosion functions are in a certain
sense complementary to the so-called ‘contact distribution functions’, (Stoyan, et
al., 1987).

The above erosion functions can also be explained in a way similar to the chord
length distribution function L(£) for random X. Let there be a structure consisting
of grains that are (after shifting to the origin) random sets with the same distribution
as X. A random point x is thrown into the structure. If it falls in one of the
grains then the shortest distance d(x) to the boundary of the grain is determined.
The distribution function of d(x) is called the spherical erosion function. It is an
area-weighted average of the spherical erosion functions Q;(r) of the realizations
of X:

1
0.0) = Facs / AE) Qs (F) Py (@) (r = 0). (8.55)

The function
fx(r)=EAX &bo,r)) =0,

which is used in the definition of the spherical erosion function (8.52), has been
studied (Miles, 1974; Matheron, 1975; Weil, 1982b). The set X © b(o, r) is called
the ‘inner parallel set’. If the contour is sufficiently smooth then

fx(0) = —-EU(X). (8.56)
Under certain conditions, fx(r) is a quadratic polynomial in r. But the form
fx(r)=EAX) — rEU(X) + 7r? (8.57)

is not the only possibility. (It does not hold for a rectangle. Conditions for its
validity have been given by Miles (1974).)
Like the erosion functions, functions that include ‘opened’ or ‘closed’ sets are
also used, for example
A((X ©blo,r))®blo,r))
Giry=1- > 0).
(r) AX) (r=0
(Note # @ A = @!). See Serra (1982, p. 333ff), Ripley (1988, Chap. 6) and
Appendix D.




STOCHASTIC MODELS OF RANDOM COMPACT SETS 125

Statistical estimation of erosion function

For the statistical estimation of erosion functions image analysers that can carry
out erosions should be used. For a sample X, ..., X, of sets the areas A(X;) of
the eroded sets X; are measured as functions of r. In the case of the spherical
erosion function an estimator of Q;(r) is

> A(X;©b(o,r))
O,(ry=1- 1=t r > 0). (8.58)

> AX)
i=1

In the case of the linear or pair erosion function the areas of the eroded sets
are determined for various directions (of line segments or point pairs) and then
averaged. Frequently it appears that the X; belong to a homogeneous and isotropic
structure. Then the measurement can be carried out for the union U of the X;. An
estimator of Q(r) is then

Ao AUBSbo,r)
O;(n=1 a0 (8.59)

8.5 STOCHASTIC MODELS OF RANDOM COMPACT SETS

8.5.1 Poisson polygon

Let there be given a homogeneous and isotropic Poisson line field with parameter p
(Appendix H). It divides the plane into convex polygons. These are shifted so that
the centre of gravity is at the origin o. If all polygons are given equal weight
(‘number law’) then the distribution of a random convex set X, called the Poisson
polygon, is obtained. Many distributional characteristics of this random set are
known.

The mean number of vertices is 4; the distribution of the number of vertices is
given in Table 4. There

pp=2—1in" pa=ntlog2— 41— Za?—1(1+273+37 4+,

The mean of the inner angle at any vertex is %n. the corresponding density function
Jala) is

fal@y=1isine O<a<m).

Example. Figure 49 shows limestone fragments at several stages of abrasion
characterized by the amount of time spent in a tumbling barrel. The original and
other less rounded stones suggest that a description by convex polygons may make
sense. Can one assume that they are Poisson polygons? The mean inner angle of
the stones belonging to 0 and 0.5 miles is 110.3° with standard deviation 24.1°.
The inner angles are thus greater than expected for Poisson polygons. (A mean
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Table 4 Probabilities p, for the number
of corners of the Poisson polygon.

n

Pn

00~ N bW

0.355
0.381
0.192
0.059
0.013
0.002

J\!L
OﬂY

<L

(7

Ay @Oéit

QC

/'\f\

Figure 49 Limestone fragments abraded to different degrees (measured in miles) in a
tumbling barrel; the longer the treatment the smoother the stones. (After Pettijohn (1975).)

inner angle of 90° is also obtained for polygons resulting from a homogeneous
non-Poisson line process with the property that no more than two lines ever cross

Cﬁ
5 4

’Y\(\O(

20

at the same point.) Two possible conclusions are:

(a) in Fig. 49 small fragments are absent, e.g. triangular pieces with small inner

angles;
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(b) the process in which the fragments are generated cannot be modelled by a
line or plane process where fracture generation is uninfluenced by fractures
already existing.

The means of the area and perimeter are
4 4
EAX) = —, BUX) = —.
o (o)

The variances of area, perimeter and vertices number are

872 — 16 272 —8
— varU(X) = Qz
o

varA(X) =

and
varN(X) = %nz —4,

The correlation coefficients are
QAU = 0864, 0AN = 0487, OUN = 0.564.

The density functions of area and perimeter have until now only been obtained
by simulation (Crain and Miles, 1976). They are similar to density functions of
exponential distributions.

The Poisson polygon is an isotropic random set and the Aumann mean is a disc
of radius 2/mo. Thus for the Poisson polygon

mean of area = area of Aumann mean

(Mecke, 1987).

Matheron (1975, p. 183), has given the distribution of the width function w(g)
defined on p. 67. (Because of the isotropy, the distribution is the same for all
@.) The chord length distribution function and the linear and spherical erosion
functions of the Poisson polygon are easily obtained if properties of the Poisson
line tessellation are used. Since it is known that the intersection of the lines of the
process with the x-axis generates a linear Poisson point process of intensity g,

L) =1—e® =>0.

Because of (8.40), the linear erosion function Q(r) is also an exponential distri-
bution function with parameter p, i.e.

Qe(r)=1—-¢e (=0).

The spherical erosion function Q(r) can be obtained as follows. The quantity
1 — Q4 (r) is the probability that the disc b(o, r) is not hit by one of the lines of
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the generating Poisson line process. Since in general the number of lines hitting a
convex set K has a Poisson distribution with parameter oU (K),

Qs(r) =1—e 7 (r>0).

The fact that both L(£) and the erosion functions are exponential distribution
functions can be used for testing the goodness-of-fit of Poisson polygons by a
given sample of polygons.

The determination of functions such as the covering function or the contour
covariance function is difficult if the centre of gravity of the polygon is the reference
point. However, if one starts from the Poisson line tessellation, the origin is taken to
be the reference point and one considers the polygon containing o then it is easier to
obtain formulae. (The corresponding quantities can be interpreted as area-weighted
variants of px(x) or xg(¥).) In particular,

Py =e (r=>0),

and the contour covariance function corresponding to the radius-vector function
Ex9(¥) is given by

1 (=0,
2EL00 0y ) 4 _l—cosgp 2
e"Exr(v) = I+7 +cosg [l l+cos<p10g(l —cosgo)] O<g<m),
0 (p=m)

(Cowan, 1987).
Finally, note that an effective method for simulating single Poisson polygons is
described in George (1987).

8.5.2 Dirichlet polygons

Let there be given a Dirichlet tessellation with respect to a homogeneous and
isotropic point field N of intensity A (Appendix D). It divides the plane completely
into convex cells where each contains just one point of N. Each cell is translated
so that the original point process point lies at the origin. If all cells are given the
same weight (‘number law’) then the distribution of an isotropic random compact
convex set X is obtained, which is called the Dirichlet polygon.

The mean area of the Dirichlet polygon is

EAX) =17\ (8.60)
Its mean number of vertices is 6, with the exception of the degenerate case of a

lattice N.
Further formulae are known almost only in the case that N is a Poisson process.
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Table 5 Probabilities p, for the number of
vertices of the Poisson-Dirichlet polygon.

=

Pn

0.011
0.107
0.259
0.294
0.199
0.090

=B I = R S

Poisson-Dirichlet polygon

The distribution of the number of vertices is given in Table 5. The mean perimeter
is 427172,
The variances of area, perimeter and number of vertices are

var A(X) = 0.28017%, varU(X) = 0.94717"

and
var N(X) = 1.782.

and the correlation coefficients of area, perimeter and number of vertices are
oav = 0953, gan =0.568, gyny =0.502.

These numbers have been obtained by numerical integration or simulation (see also
Stoyan et al., 1987). Note that it is possible to simulate single Dirichlet polygons
without constructing the whole tessellation (Hinde and Miles, 1980). The density
functions of area and perimeter have until now only been simulated (Hinde and
Miles, 1980).

For the areas a form was obtained similar to gamma distribution densities, while
the distribution of perimeters can be approximated by a normal distribution.

The inner angles at the vertices have mean %n, variance %nz — % and density
function

fale) = §sina(sina —acosa) (0 <o <m).

The maximum of the density function is at 0.727. The probability for the occur-
rence of angles less than 37 is ¢ (Icke and van de Weygaert, 1987). The joint
distribution of all three angles at a vertex is given in Miles (1988), see also p. 157.
The mean chord length is
1y —1
Z]T)\. .

Formulae and diagrams for the chord length distribution function L(£) and the
spherical erosion function Q(r) are given in Muche and Stoyan (1992); Fig. 50
shows the density function for L (£). The isotropized set covariance is discussed in
Brumberger and Goodisman (1983).
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Figure 50 Chord length density function of the Poisson-Dirichlet polygon for A = 1.

The covering function px(r) is given by
px(r) = exp(—=Amr?) (r > 0). (8.61)

This formula can be obtained as follows. By definition, the origin o is the generating
point of the Dirichlet polygon X. An arbitrary point r at distance r from o also
belongs to X if the disc b(r, r) contains in addition to o no further point of the
Poisson point process. This is an easy consequence of the Dirichlet tessellation
construction principle. Because of the properties of the Poisson point field, this
probability is equal to exp[—A x area of b(r,r)].

The formula (8.61) yields the distribution function F(r) of the radius-vector
length: '

F(r)=1—px(r) =1 —exp(—inr®) (r >0). (8.62)

Thus the radius-vector mean E, X is the disc centred at o with radius r, = A71/2,
It is also easy to calculate the means E4 X and Ey X. Both are discs centred at
o, with radii 4 and ry:

2 1
=AMy = a2
v : 4

ra =

Also the median X is a circle centred at o; its radius is

1/2
i log2 /)\_1/2.
bis
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General case: N is not a Poisson point field

Hermann et al. (1990) have determined the distribution of the area of the Dirichlet
polygon for various point field models N. As expected, the areas are more variable
for cluster point fields than for hard-core point fields. Also for these models the
density function f(a) of A(X) can be approximated relatively well by gamma
distribution densities

f@) =bla""'e™/T(q) (a=0),

see also Lemaitre er al. (1993). If the statistically determined parameters b and g
are represented for the various models in a diagram then Fig. 51 is obtained.

It is possible to calculate the covering function px(r) for a general homoge-
neous and isotropic point field N. The basis of this is the idea in the proof
of (8.61). Figure 52 shows the covering functions px(r) for two non-Poisson
point fields. Davy and Guild (1988) have found an approximation to the distri-
bution function F(r) of the random radius-vector length of the Dirichlet polygon
for a further point field model. They considered the Poisson hard-core point field
(816.3). This field is a stochastic model for the centres of a random system of

Hard-Core
2 -
Ng =20
I ~_ o2
05 0.020
N ¢ \_\+_+ 0.023
ey 1 08 Poisson
Cluster 08
/ 0.5
0F ¢ ,to2
/ Ny=2
! ! !
0 1 2

|qu —

Figure 51 Dependence of the parameters b and ¢ of the gamma distribution densities.
These approximate the density functions of areas of Dirichlet polygons on the type of
generating point field with fixed intensity. In the case of a cluster field N, is the mean
number of points per cluster (Poisson-distributed number). The parameter ¢ characterizes
the distance of the daughter points from the cluster centre; it is inversely proportional to
c. In the case of a hard-core field p characterizes the degree of order in the field, which
increases with increasing p. See Hermann et al., (1990).
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P_(r)

Figure 52 Covering functions for the Poisson-Dirichlet polygon and for Dirichlet polygons
for two further point field models of intensity 1. The origin is always at the generating point;
so that px(0) = 1. The dotted curve corresponds to a particular mixed Poisson point field,
the dashed curve to a particular Gauss—Poisson field. (For an explanation of these point
field types see Stoyan et al. (1987).) Both point fields are more variable than the Poisson
field. The dot-dashed curve represents the approximation formula (8.63) of Davy and Guild
(1988) with p = 0.3, R = 0.309 and & = 0.531.

non-overlapping discs of radius R. The approximation formulae are

F(r) = 1 —e kiR (r = R),

v(x) = % [(x2 -2) arccos% +V21| (x> D). (8.63)

Here £ is the solution of the equation

2/wxe"‘”‘”dx _1=r
1 p

where p is the area fraction of the homogeneous and isotropic random set that
results from the union of the discs. If A is the intensity of the point field then
clearly

p=ArR 2,

For p = 0.1, 0.3 and 0.5 the values of k are 0.1197, 0.5510 and 1.4677 (Davy and
Guild, 1988). The latter paper also contains further information on F(r), and for
the analogous three-dimensional case.

8.5.3 Rounded polygons

Sometimes objects are considered that look like polygons but have rounded vertices.
Figure 49 shows examples. The rounding may be a result of natural or technical
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(e.g. abrasion or baking) processes. A rough approximation for a set X of this kind
is
X=Y®b(o,R),

where R is a random variable and Y is a random convex polygon. Y can be
interpreted as the original particle and as the thickness of new outer layers. Some
characteristics of X are given by

EA(X) = EA(Y)+EREU(Y) + ER?, (8.64)

EUX) = EU(Y) +27ER, (8.65)

Qs(r) = / q:(r)dF (1), (8.66)
0

where F(¢) is the distribution function of R and ¢, (r) is the spherical erosion
function of Y & b(o, t):

EA(Y)+EUY) +nr?

N Eam+Ev@ 3 T
q(r) =
qo(r)EA(Y)
5 (r>1).
EA(Y) +tEUY) + ¢
A further model is
X =Y 6&b(o, R)] ®b(o, Ry). (8.67)

Here again Y is a polygon, and R| and R, are random variables. To give formulae
for this case is not easy. A particular case will be considered that is close to the
situation

Y = Poisson polygon and R, =R;=r.

The formula (8.67) is not directly applicable to Poisson polygons, since ¥ &
b(o,r) = @ is possible with positive probability. But, of course, the empty set is
not contained in samples of particles. A reasonable approach may be to consider
only that polygons Y for which Y & b(o, r) is non-empty. As Matheron (1975)
has shown, the collection of all polygons of a Poisson line tessellation eroded with
b(o, r) but not empty after the erosion has the same distribution as the polygons of
the original tessellation. See also the discussion in Serra (1982, p. 516, on ‘condi-
tional invariance’). Thus, if (8.67) is interpreted in the ‘conditional sense’ then
the rounded polygons considered have the same distribution as Poisson polygons
dilated by addition of b(o, r). That means, in the case of Poisson polygons, that
(8.63) and (8.67) lead to practically the same figures.

It is easy to generate on an image analyser rounded polygons starting from
normal polygons, since the required operations of Minkowski addition (for (8.63))
and opening (for (8.67)) are standard operations of image analysis.
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As a generalization of the sets considered until now, let us also consider sets of
the form
X=Y®Z,

where Y and Z are random sets. Here Z can be interpreted as a random defor-
mation of Y; Grenander (1976) speaks about ‘Minkowski deformation’. If Y and Z
are convex and Z additionally isotropic then fundamental characteristics of X can
be easily given, using the generalized Steiner formula (8.11) and the additivity of
support functions (§7.2.3). Statistical methods should exploit the particular geomet-
rical shape of the figures. In the case X = X @ b(o, r) the figures of a sample can
be individually eroded by discs with increasing radii until polygons are obtained.
So a sample of radii and polygons is obtained.

In the case X = (Y © b(o, R)) @ b(o, R) the original polygons can be recon-
structed by elongating the edges.

If Y is deterministic and Z a convex random compact set with known Aumann
expectation E4Z, then an estimator of Y for a sample Xy, X5, ... is

N 1
Y= ;(XIEB---EBX,,)GEAZ,
see Lin, Wei and Attele (1991).

8.54 Convex hulls of random figures

An intensively studied class of stochastic models of random compact sets comprises
convex hulls of finitely many points, discs or other sets. Figure 53 shows two
examples of such sets. Such figures must be realistic models for particles generated
by abrasion processes; the points or discs stand for particularly resistant regions
that are undamaged.

Surveys of the known mathematical results are given in Buchta (1985), Schneider
(1988) and Weil and Wieacker (1993).

Py

a) b)

Figure 53 The convex hull of a set A is the smallest convex set conv A that contains A
The figure shows the convex hull of (a) a set of 7 points and (b) the union of 5 discs.
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Convex hulls of points in convex sets

Let K be a compact convex set. In K, n independent points are scattered according
to the uniform distribution. Their convex hull H, is a random compact set.
Beginning with work by Renyi and Sulanke (1963, 1964) the asymptotic properties
of H, have been most thoroughly investigated, and asymptotic formulae have been
found for the means of vertex numbers, perimeter and area. For example, the area A
of K and the mean area A, of H, are related by

e (2)" feraso(l)

where I" is the gamma function, §K is the contour of K and « is the curvature
of the contour (which is assumed to be sufficiently smooth’) and ds is the length
element.

Exact formulae for A, are known in some particular cases, for example for
ellipses and convex polygons (Buchta, 1984b). Note also that other scattering
principles for the points in X have been considered; for example random points
on the contour of K (Affentranger, 1987) or rotationally symmetric normal distri-
butions (Efron, 1965).

A—Ay=(

wIing

Convex hulls of points in discs

The case where K is a disc is well studied. It is sufficient to consider the unit disc
b(o, 1). Explicit formulae can be found for A, (= EA(H,)), U, (= EU(H,)) and
e, (= mean vertex number of H,). We have, first,

An 2 1 [ . .
—=l+——/ (x — sinx)" sin x dx;
T 32m)" Jo

see Buchta (1984c¢), who also gives formulae to help in the numerical calculation of
the above integral. EA(H,) can be calculated recursively from the values EA(H,)
(j < n) (Affentranger, 1988). For n = 3, 4 and 5 the means are 35/487, 35/24n
and 175/72m — 23023/691273. Secondly,

n—-2
_ AN k(M= 2\ acak
U,,—l27r<2)y3 Z}-l)( . )yl I(n—2—k,54k k),
with
b1
1(r,s,t)=/ x"sin®xcos' xdx (r,5,t=0,1,2,...),
0

Yo=1% va=R2ri+Dpl™ (=1,2..)

TAsymptotic formulae are also known for convex polygons (Buchta, 1984a; Dwyer, 1988; Affen-
tranger and Wieacker, 1989)
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For n = 2, 3 and 4 the values are 1.81, 2.71 and 3.27. Finally,

n—2
_ef” k(M =2\ a2k
e,,_8<2)y3 E -1 ( ‘ )}’1 I(n—2—k,4+k, k).

k=0

For n = 4 and 5 the values are 3.70 and 4.26.

These formulae are given in Buchta and Miiller (1984), where the numerical
calculation of the integrals is also explained.

Since ellipses can be obtained from discs by affine transformations, the formulae
for area and vertices number also hold for the convex hulls of n points in arbitrary
ellipses of area 7.

Obviously, in the circular case H, is an isotropic random set. Thus E4 H,, is a disc
b(o, ry). Its radius r,, can be obtained from (8.16) if the mean perimeter is known:

U,
T an
Little is known on further distributional characteristics of H,,.

The covering function py, (r) takes the value O on the boundary of the disc, and
for the centre (r = 0) Wendel (1962) found

Fn

n
pu, (0) =1~ ST (8.68)

Lemma 2 in Buchta (1987) contains an integral formula that can be used for the
calculation of pp, (r) (also in the non-circular case):

2

PH,(r) =1~ %n A {ﬂr(a)"gl +[1 - ﬂr(a)]"_l})‘r(a) do,

with
@) = A@)—A(@+m)+1 (0<a <),
HOZ M@ - Ale—7) (1 <a <2m)

and

A = d A
() = a ().

Here A, () is the area of the hatched region in Fig. 54. For 0 < a < 7 it satisfies
1
Ar(@) = z—[8(a) —rsiné(a)],
2

with
8(a) = o — arcsin(r sina),

and fora > 7w
A@)=1—-A, Q1 —a).

Figure 55 shows pp, (r) for n = 3, 5 and 10.
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%

//
@

Figure 54 The function value A, (a) is equal to the area of the hatched region in the unit
disc.

n

Py, (0

0 0.5 1.0

Figure 55 Covering functions for the convex hull H, of n uniformly distributed
independent random points in the unit disc. Since it is possible that the origin (r = 0)
does not lie in H,, py, (0) < 1.

Jewell and Romano (1985) describe a general method for calculating probabilities
of the form Pr(K C H,) for compact sets K.

Note that (8.63) shows that the median H; is an empty set, since py,(r) <
Puy (0) = 0.25 < 0.5 for all r.

Groeneboom (1988) and Cabo and Groeneboom (1994) have proved central limit
theorems for A,, U, and e, for K = disc and K = polygon.

Convex hulls of discs

Clearly in some cases the convex hull of n random discs is a realistic particle
model. Unfortunately, only a little is known about this set. Its mean perimeter is
equal to 277 plus the mean perimeter of the convex hull of the centres if all discs
are of the same radius r. Similarly the mean area can be calculated by the Steiner
formula
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AX @ bo,r)) = AX) + UX)r +nr2.

Affentrager and Dwyer (1993) consider the problem of finding the convex hull of
balls and study geometrical properties of this set.

8.5.5 Gaussian random sets

Since the normal distribution plays an important role in statistics, it would be
interesting to investigate random sets related to this distribution. For example,
consider the Gaussian random sets defined by Lyashenko (1983). A planar compact
convex set X is called Gaussian if for any ¢ the value of the support function
sx(p) has a normal distribution. Lyashenko (1983) and Vitale (1984) have shown
that Gaussian random sets have a very simple structure. Any such set X has the

form
X=M+rx, (8.69)

where M is a deterministic compact convex set and x is a normally distributed
random vector.

8.5.6 Inhomogeneous Boolean models
The random compact set X considered has the form
x = JIse) +x1.
xeN

Here N is an inhomogeneous Poisson point field with intensity function A(x)

satisfying
/ A(x)dx < oo.
R2

The S(x) are independent, identically distributed random compact sets with finite
mean area (e.g. discs). Figure 56 shows a sample of such a set.
The covering function py(x) has the form

px(x) =1 —exp [— /2 p(x, z)l(z)dz] (x € R?), (8.70)
R

with p(x, z) = Pr(x € S+z). Here S is a ‘prototype’ of the sets S(x), i.e. a random
set with the same distribution as the S(x).

The formula (8.70) is proved like (3.1) in Stoyan et al. (1987). The proof is
based on a theorem of Prekopa, which says that the independent position-dependent
thinning of a Poisson field again yields a Poisson field. In the case S = b(o, r)

I (Jlx —z|l 1),
0 otherwise.

p(X,Z) = {

Analogously, probabilities of the form Pr(X N K # #) may also be determined.
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9

Figure 56 Sample of an inhomogeneous Boolean model with disc-shaped grains S(x). The
intensity function has its greatest value at the centre of the figure, which implies a high point
density and nearly complete covering.

As an example, consider the tumour model of Cressie (1984, 1989), where S =
b(o,r) and A(x) = Al (x) for a given set A. Cressie and Hulting (1992) describe
statistical methods for the estimation of model parameters, and show that the model
is useful for the geometrical description of ‘artificial’ tumours.

8.5.7 Vorob’ev’s forest-fire model

Vorob’ev (1984) studied Markovian processes {X,} whose states are subsets of the
integer lattice. The processes start with Xy = {0}. The random set X, results
from X, by

Xo1 = |J (S5 + ).

xeXy

Here the S, are independent, for all x and n identically distributed random sets
with Pr(0 € S,(x)) = 1. The distribution of S, is as follows: Let S be a discrete
random compact set with the same distribution of the S,, a ‘prototype’ of the S,.
The points of S lie in a lattice rectangle R around the origin 0. The probability
that the lattice point y € R belongs to S is p(y), where p(0) = 1. The points of S
are independent , i.e. for arbitrary y, ..., y; of the lattice

Pr(yi €S,...,% €85 =pQ)---p(y)-

Vorob’ev systematically studied such sets by simulation, and developed approxi-
mation methods for determining their characteristics. He used these processes as
models for the spread of forest fires; X, is the area aflame or in ashes at time n.
There are connections, with models of the theory of interacting particle systems
(Richardson model) (Durrett, 1988a, b; Liggett, 1985). Durrett (1988b) has studied
a still better forest-fire model in which the burnt-out areas do not spread the fire
further.
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Union-stable convex-stable random sets

Other models of random compact sets can be obtained as weak limits of scaled
unions
a'(X,u---UXx,)

or convex hulls of independent identically distributed “simple” random sets
X),..., X,. These sets can be chosen to be points, balls, triangles etc. 1t any case
their distributions should be regularly varying in a certain sense, see Molchanov
(1993a, b). Say, for a random ball its center and radius must have a regularly
varying density.

The corresponding weak limits for unions are said to be union-stable. In other
words, a random set X is said to be union-stable if the union X; U-.-U X, of
any number of its independent copies has the same distribution as a,X for some
a, > 0, see Matheron (1975). A full characterization of such sets is given in
Molchanov (1933b). In many interesting cases the capacity functionals and the
Aumann expectations of such stable sets are easy to compute.



CHAPTER 9

Point Description of Figures

9.1 INTRODUCTION

It is assumed in this chapter that each of the figures of the sample considered
can be described by ! points, the so-called landmarks. These points py, ..., p;
usually lie on the contour of the figure, but inner points (e.g. a centre) are also
possible. Each of the landmarks has a certain biological meaning or is defined
by geometrical properties. Possible choices are local maxima of curvature, spikes,
points on an axis of symmetry; Mardia (1989) sketches a method for determining
such ‘mathematical landmarks’. Of course, the numbering of landmarks is the same
for all figures of the sample, so that it makes sense to interrelate, for example, the
kth points (k = 1, ..., /). If the figures are skull profiles then p, might be the nose
tip and p, the chin tip.

In statistical analyses either the / points are considered as a whole or geomet-
rical quantities formed from them are studied. For example, distances d;; between
certain landmarks p; and p; or triangles formed by landmark triplets are frequently
analysed. The following sections present methods for the exploratory analysis of
landmark data. It will be shown how mean configurations can be calculated from
samples of landmark configurations. Differences and similarities of form can be
detected by Procrustean analysis. The case of triangles and triplets of points is
studied in detail. Finally, a simple stochastic model of landmark configurations —
the Bookstein model — is discussed.

The treatment here is based on Bookstein (1986, 1991) and Kendall (1984, 1989).
Excellent surveys have been given by Small (1988) and Goodall (1991).

9.2 DESCRIPTION OF LANDMARK CONFIGURATIONS AND
THEIR SIZE

In the following, landmark configurations are denoted by Roman capital letters P,
Q etc. Thus P has the form

4

P=(p17---’pl)’

with
Px = (x4, y¢) (x- and y-coordinates) k=1,...,1
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For the determination of the coordinates x; and y, there are various possibilities,
depending on the nature of the figures analysed. For example, the figures can
be arbitrarily placed in the plane, in which an (x, y)-coordinate system is given,
and then landmark coordinates measured. In this case the absolute values of the
coordinates are not so interesting — only the relative positions of landmarks are
of importance. Configurations that are directly congruent (i.e. those that coincide
after suitable translation and rotation) are considered as equal.

In other cases it makes sense to measure the landmark coordinates with respect to
a coordinate system connected with the figures. For example, an axis of symmetry
or the connecting line of two very important landmarks can be identified with the
x-axis. (See the example in §10.2, which analyses the form of hands.) In this case
the absolute values of the coordinates have a much greater meaning than above,
and it may be inappropriate to rotate or translate the landmark configurations.

Sometimes it is useful to work with complex numbers. Then p, = (xx, yi) is
replaced by

U = X+ iy ©.1)

and analogously ¢, by wy, (k=1,...,1).
The centre of gravityJr of the landmark configuration P is denoted by

p= (7)),

i
1 1
ith x = —E , '=—E . 9.2
with x lk_lxk y=7 Yk 9.2)

k=1

Sometimes the landmark configuration is translated so that its centre of gravity is
at 0. The resulting configuration P° has the form

PP=(p),....p0), withxl=x, —%, YW=y~-5 (k=1,....,). (9.3)

The size of the landmark configuration P is described by
) 172

sPY= Y a =P+ -9 . 9.4)

k=1

This quantity is not changed by translations or rotations of the figure.

9.3 DISTANCES AND TRANSFORMATIONS OF LANDMARK
CONFIGURATIONS

9.3.1 The general problem

Let P and Q be two planar configurations of points:

P=p....p) and Q=1(q,....q).

TThis centre of gravity does not necessarily coincide with that of the corresponding figure
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The differences in the shape of the two configurations are to be measured, and it
is to be shown how P may be transformed into a shape as close as possible to Q.
Following Kendall (1984), a measure of deviations is considered that is symmetric
in P and Q. (Sibson (1978) has considered other deviation measures, which are
asymmetric in P and Q. He also used reflections as transformations. This leads to
other formulae.) Let 7 be a set of admissible transformations for configurations
(e.g. the set of all Euclidean motions that are combinations of translations and
rotations). Every point of a configuration is transformed by the same transformation.
Thus, by the transformation T € 7T, the configuration P is transformed into the
configuration

TP = (Tpl, fey Tp])

If two configurations P and Q are given, one may ask for transformations T and
U such that TP and U Q are ‘close together’; that is, those that minimize

i
> T = Ugil.

k=1

This question does not make sense in all cases — for example not if T and U are
allowed to be dilations (see p. 144 and Appendix D). If both dilation factors are
zero then P and Q are transformed into the same trivial configuration (o, ..., 0).
Thus a more appropriate deviation measure is

i
> ITpe = Ugill?

Ary(P, Q) = ——= , 9.5)

S UITpe—cl*+ ) IUgq —cl?
k=1 k=1

Here c is a suitable reference point (e.g. the common centre of gravity of the trans-
formed configurations). Transformations T and U in 7 that minimize A7 (P, Q)
have to be determined. Depending on the choice of T, different minima A and
different minimizing T and U are obtained.

When using complex numbers, the transformations T and U are interpreted as
transformations of complex numbers, and the deviation measure is then

1
D ITu = U,

Ary(V, W) = ——*=! . 9.6)

i
DoITv—cP+ > [Uwy —cf?

k=1 k=1
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9.3.2 Formulae for some classes of transformations

The sets 7 of transforms considered in this book are algebraic groups. Such a
group is either equal to one of the following four groups, or their elements are
formed by combining transformations from them:

translations;

translations parallel to the x-axis;
rotations around the origin o;
dilations.

A dilation is a transform

(x,y) = (ox,0y), ¢>0.

An example of a set T of this type is the set of all transformations formed by
combinations of x-translations and dilations. (Obviously, it does not make much
sense to combine x-translations and rotations.) The choice of the group of trans-
formations 7" depends on the problem and on the nature of the figures analysed.
For example, translations parallel to the x-axis are of interest if the landmarks are
measured with respect to a coordinate system such that the x-axis is an axis of
symmetry. Note that ‘affine’ transforms

x —>ax+by, y—>cx+dy

do not yield interesting results. For them the infimum of Ar y (P, Q) is obtained
for vanishing or infinitely large coefficients a, ..., d.

If T contains general translations then it is assumed that both configurations
have their centre of gravity in the origin o. If this is not the case then P and Q
are transformed using (9.3). (The ‘O’ superscripts on p, etc. are omitted in the
following.) If the set T contains x-translations but no general translations then the
figures have to be translated parallel to the x-axis so that the x-coordinates of the
centres of gravity vanish; the x; and x, are transformed as above, while the y; and
¥, remains unchanged.

The reference point ¢ is the common centre of gravity of the transformed configu-
rations T P and U Q in the case of general translations. In the case of x-translations
one sets ¢ = (x,0), where x is the x-coordinate of the common centre of gravity
of TP and U Q.

It is possible to show that under the assumptions about centre of gravity and
reference points, translations no longer need be considered. Further translations (in
addition to those into the centre of gravity), do not improve the degree of fit. (The
assumptions above have been made just to eliminate translations; see also the proof
on p. 146.) ’

If the set 7 does not contain translations (e.g. if 7 is the group of all transforms
formed by rotations and dilations) then the assumptions about the centres of gravity
can be omitted. The formulae given below are then true if ¢ = 0. Such sets 7 make
sense if the landmarks are measured with respect to a coordinate system closely
connected with the configurations (see the example in §10.2).
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If T is a group of transforms formed by rotations around o then, independently
of the other components of the transforms, the optimal rotation angle

]
Z(Xkyl — YiXp)

w(P, Q) =arctan [—*—— | 9.7)

Z(Xky;( + exy)

k=1

The rotation parts of the transforms 7 and U can be chosen such that P is not
rotated while Q is rotated by the angle w (P, Q). Analogously, there exists a unitary
optimal dilatation factor

I 1/2 I —1/2
o(P, Q) = (Z ||pk||2> (Z ||qk||2) : 9.8)
k=1 k=1

or
~1/2

12 ¢
[Z(x}f +35)
k=1

The dilation part of the transform can be chosen so that P is not dilated while Q
is dilated with factor o(P, Q). The dilation factors

i —l2 i
(Z ||pk||2> and (Z ||qk||2>
k=1 k=1

can also be chosen. Using (9.7) and (9.8), the optimal values of A(P, Q) can be
determined.

i
o(P. Q) = [Z(x,f + )
k=1

—-1/2

Dilations and translations

i
> Re(viy)
k=1

AV.W)=1-—— 1 e (9.9)

(Z Y |wk|2>

k=1 k=1
(w; denotes the conjugate of wy), or
i

, > e+ o)

AP, Q) =1~ =l . (9.10)

172

! !
D> +yd
k=1 k=1
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Because of the assumptions concerning the centre of gravity, this formula holds
for both the general case and the case of x-transformations.

General translations and rotations

2

1

E Vg Wy
k=1
1 1

bl

2
w2+l
k=1 k=1

AV, W) =1~ .11

or

2
+

] ] 2
2 lZ(mL + Yy > (uxg - ykyl)]

k=1 k=1
AP, Q)=1- 9.12)

i
SRR+
k=1

(Ziezold, 1989).

General translations, dilations and rotations

This case has been considered by Kendall (1984), and is the most complicated one.
Here the derivation is sketched. As on p. 142, complex numbers are used.
The possible transforms are given by

voax+i, w-—>Bwt+pu

where a, B, X and p are complex numbers. The reference point ¢ is the common
centre of gravity of the transformed configurations; thus ¢ = %(k+u). The deviation
measure Aty is then .

i
> love = Bwe + (1 = I

k=1

! ! )
S love+ i - w + 3 |Bun - s - w]*
k=1 k=1

Taking squares yields

i
> leve = Bwil* + [k = pl?
k=1

i . i )
D olaw? + > 1Bl + Fn — pl?
k=1 k=1
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Since a function f(x) of the form

a+ bx?
c+dx?

fx)= (a,b,c,d > 0)

takes its minimum at x = Q, the above quotient is minimized for fixed a and 8 at
A = w. It remains to determine the minimum of

i

2
> lave = puy

k=1

] ]

2 2
E vy +§ [Bwe]
k=1 k=1

with respect to @ and B. Dividing numerator and denominator by |a|? (the case
a = 0 is uninteresting) yields

i

I
Z'vk_;w“z Re ((ZWW)
k=1

=l =1-2

i i i i ?

2 2 2 2 2 2
DIl fwl S P+ 112D lunl
k=1 k=] k=1 k=1

where ¢ = B/a = gel®. Setting the first derivatives with respect to @ and @ of
the last expression to zero yields the optimal dilation factor g(P, Q) = g, and the
optimal rotation angle w(P, Q) = w:

| 1/2 | 1/2

> lul? > G+ 9D

o=|E—| . or oP.O)= |2

I

> lwnl? >+

k=1 k=1

(cf. (9.8)) and
I
~ Im (Z ﬁkwk)
w = arctan —"T;
Re (Z Uk wk)
k=l

’
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or

i
> Caxi + v
k=1

i

> (rexi = yivp)

k=1

w(P, Q) = arctan | —

(cf. (9.7)). Using the optimal ¢ and @ gives the minimal deviation

|
E Vg Wi
k=1

AV W) =1-— 1 7 (9.13)
(Z o) |wk|2>
k=1 k=1
In terms of landmark coordinates, this is
i 2 i 2y 12
[Z(xkx,’( +y0| + D wxi - Xky,ﬁ)]

k=1 k=1

AP, Q) =1~ ®.19)

1/2 ’

i i
lei +3) S+

k=1 k=1

with T and U chosen as follows:

T = identity transformation;
U = dilation with factor g(P, Q)
and rotation by an angle w(P, Q).

Of course, the A-value for the case just considered is smaller than that in the case
of translations and dilatations only.

9.4 MEANS OF PLANAR CONFIGURATIONS OF POINTS

94.1 A metric for point configurations

The aim of this section is the determination of means of point configurations with
respect to the definition by Fréchet (p. 112). For this, the following metric § on
equivalence classes of direct congruent configurations is used. Two configurations
are equivalent if one can be transformed into the other by proper Euclidean motions
(i.e. by translation and rotations).

The equivalence class to which the configuration P belongs is denoted by P,; if
P is described by complex numbers and denoted by V then the symbol V, is used.
It is assumed that the class representatives lie at 0. Following Ziezold (1989), the

-
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metric & is chosen as
i
2 _ ip 2
S(Ve, Wo)" =inf » |y —e¥wy|”.
¢
k=1

Methods of differential calculus yield the formula

i i i
SV, W2 = [ulP+ > w> =2 wiu, (9.15)
k=1 k=1 k=1
or
i
8(Pe, Q) = Y G+ W+ +yD
k=1
i 2 i 2) 12
-2 lme,z |+ DOk = xky,ﬁ)] . (9.16)
k=1 k=1
In these formulae v, and wy, and xy, ..., y;, are the coordinates of the landmarks

of arbitrary representatives V and W, and P and Q, of the equivalence classes V..
and W,, and P, and Q,, respectively.

9.4.2 Calculation of mean configurations

Let P, ..., P, be n configurations. Let the corresponding equivalence classes be
Py, ..., P,. Corresponding representatives are obtained by translating the centre
of gravity of the P; to the origin o (application of (9.2) and (9.3)). An equivalence
class M. with

1 1
28(&-, M)? =inf 3 8(Pic, Po)? CAY)
i= i=1

has to be determined. Here the infimum is taken over all equivalence classes P,
of configurations with / landmarks; § is the metric introduced by (9.15) or (9.16).
Each configuration M of M, (or M, itself) is called a mean configuration analogous
to (8.22). The determination of M, is an optimization problem, where 2/ numbers
(the x- and y-coordinates of a representative of M,) have to be determined. If
! is not too large then standard methods of numerical mathematics can be used;
for example, the Gauss-Newton method, since § is differentiable with respect
0 xg, ..., y;. The following heuristic optimization method (suggested by Gower
(1975) and Zierold (1989)) that uses properties of the mean is very simple. It
proceeds as follows.

Start;  Shift the centres of gravity of the P; into the origin, replacing the P; by the
translated configurations. Choose a starting configuration M, for the mean,
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for example
i
1
M, = - ;Pi or M,:=P,.
k:=0.
1: Calculate the optimal rotation angles w(M,, P;) (i =1, ..., n) using (9.8),
and rotate the P; by these angles. Replace the P; by the rotated configura-
tions.

2: Calculate the new configuration M, as

i

Mk+1 = -’I;Z P,‘.

i=1

End: if My, is close to M,.
Else: k :=k+ 1, go to 1.

Practical experience shows that this algorithm frequently yields a minimum after
only 3-5 steps (see also Goodall, 1991). ‘

9.5 PROCRUSTEAN ANALYSIS

9.5.1 The problem

Procrustean analysis is a valuable method of exploratory data analysis for configu-
rations of points. Its aim is to detect similarities in sets of point configurations and
to determine the degree of similarity. Originally Procrustean analysis was used in
factor analysis and in connection with multi-dimensional scaling (Sibson, 1978).
There somewhat different approaches were used from those described here. A
detailed exposition of methods of Procrustean analysis in shape statistics is given
in Goodall (1991).

Consider n figures X,,..., X,, with corresponding point configurations
Py,...P, For any i and j (i # j) one must determine how closely P; can
be transformed into P;. P; and P; can be transformed as in §9.3, and the aim is to
minimize the quantity A7y (P;, P;) as in (9.5).

The choice of the set 7 of transformations depends on the nature of the figures
and the method of measurement of landmarks. If the position of the figures in the
coordinate system is arbitrary then 7 should consist of arbitrary translations and
rotations. If the scales differ for the figures then dilations should also be included.
If, in contrast, the positions of the figures are uniform with respect to the coordinate
system then maybe translation or rotation should be omitted. If the x-axis coincides
with a symmetry axis of the figures then general translations do not make sense,
and only x-translations should be considered. If the origin of the coordinate system
is at a certain landmark then translations should be completely excluded. Also, if a
further landmark always lies on the x-axis then rotations should not be considered.
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Given a particular set 7 of transformations, the corresponding formulae from
§9.3.3 can be used. If T contains translations then first the coordinates of landmarks
have to be modified in such a way that the centre of gravity of all landmarks for
every figure lies at o or has zero x-coordinate.

The formulae then yield the deviation measures A(P;, P;) and the transformation
characteristics o(#;, P;) and w(F;, P)).

9.5.2 Using the results of Procrustean analysis

Procrustean analysis can be used to describe deviations from an ideal configuration
or for characterizing relationships between configurations. It is also possible to
apply regression analysis to shape-changing processes (Goodall, 1990b, 1991).

Relating to reference configurations

Possible reference configurations are mean configurations or particular ‘ideal’
configurations. Such configurations are included in the Procrustean analysis together
with the configurations to be analysed. Then series of A-values and o-values are
obtained:

A; = Alreference configuration, ith configuration),
0; = o(reference configuration, /th configuration) (@ =1,...,n).

These values can be analysed with the usual methods for samples of univariate
data.

Relations between configurations

For n configurations Procrustean analysis yields two matrices ((A;;)) and ((g;;)),
where

A;;j = A(ith configuration, jth configuration),
0;; = o(ith configuration, jth configuration) (i,j=1,...,n).
The A;; behave like ‘proximities’ (Davison, 1988), where
Aij = Aj; Aiy=0 G, j=1,...,n),

and a large value of A;; implies a large difference in shape. By a suitable trans-
formation, the same holds for the o-values:

o sip=|llogoyl (G, j=1,...,n).

(There g;; = Q,;', SO Sij = 5ji.)

The quantities g;; and s;; characterize size differences. The analysis of config-
urations based on the matrices ((A;;)) and ((s;;)) is performed in the same way.
Thus in the following the neutral symbol ¢, is used.
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Two methods of analysis of a matrix ((;;)) of proximity values are useful for
shape analysis: cluster analysis and multidimensional scaling.

Cluster analysis

The matrix of proximities ((4;)) is interpreted as a distance matrix, for which the
usual methods of cluster analysis are applied (see e.g. Dillon and Goldstein, 1984).
As an example, the average linkage method is described here. This is a particular
hierarchic agglomerative method. The corresponding algorithm has the following
principal form:

1. Start with the finest partition, in which each configuration forms a single cluster,
N.:=n.

2. Determine these clusters C; and C; of minimal distance fy;, & = mingj) ¢;;.
Combine C; and C; into a new (bigger) cluster, N. := N, — 1.

Determine the new distance matrix by deleting the ith line and row and
replacing the elements of the kth line and row by

b i= 5 (i =+ tin)-
5. If N. =1 then END; else go to 2.

An example of the application of this method to results of Procrustean analysis is
given in §10.2.

Multidimensional scaling

The aim is to assign to each configuration a point in the plane (or in R¢ with small
d). There the distance d;; of the points should be close to the given proximities ¢;;.
For the solution of this optimization problem many algorithms and programs exist
(see e.g. Dillon and Goldstein, 1984; Davison, 1988). Various optimality criteria
are used; for example

Z(d,’j - [ij)z — Min,
()]
or

Z(dij —4;)?

. j)

2.4

@.j)

— Min.

As an example, an application of multidimensional scaling is given in §10.2, where
the first criterion is used.
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9.6 SHAPE ANALYSIS FOR TRIANGLES AND POINT TRIPLETS

9.6.1 Introduction

An important and thoroughly investigated special case of landmark configurations
is that of triangles or point triplets. The analysis of more general configurations
can be reduced to the analysis of triangles and triplets (Bookstein and Sampson,
1990; Bookstein, 1991). The two cases are as follows.

Triangles. Here the numbering of vertices is uninteresting, and, besides trans-
lation, dilatations and rotations, reflections also preserve shape.

Triplets of landmarks. Now the numbering is important; two congruent triangles
are considered as different if their vertices are differently numbered. In this case
only translations, dilations and rotations preserve shape.

The shape theory of Kendall (1984, 1985, 1989) shows that it is useful to describe
point triplets and triangles by points on the sphere S?(3) of radius 1 centred at the
origin of R3. A shape metric corresponds to this description, and very elegant shape
distributions are obtained for important models of random triangles. This theory is
not given here save for the resulting calculation techniques. It is explained how to
obtain the corresponding points on the sphere SZ(%) for given triangles or point
triplets. In this way samples of triangles or point triplets are transformed into point
patterns.

The sphere has to be projected into the plane in order to plot such patterns. A
possible method is the area-preserving Lambert or Schmidt transform. Thus the
polar coordinates r and y are assigned to a triangle or point triplet.

9.6.2 Triangles

Let the triangle to be analysed have angles «, o, and 2, where © is the smallest
and 2 the largest.Jr Then define the angles ¢ and 0 by

4 arct 2 sinw sin(w + 2)
= 7 + arctan ,
¢ snQw+ 2 —7)
60 = 2arctan [ e ] .

~/§sin(<p + w)

Figure 57 shows the geometrical meaning of ¢ and

|
sin @

"~ sin(p + )

TThe degenerate cases with w = 0 are here not treated, as in Kendall’s theory.
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Cc

A B

Figure 57 A triangle ABC, with angles @ and €, showing the variables ¢ and m.

™~

' X

Figure 58 View on the sphere S(3). All points that correspond to triangles lie in the
region LMN.

The angles ¢ and 6 are transformed into the points X, ¥ and Z on the sphere
S2(3):
X = 15cost9, Y= %sinG cosp, Z= %sinG sin @.

If 6 is interpreted as geographical latitude then the north pole of the sphere lies on
the X-axis. All possible triangles lie in a sixth of the upper sphere, as shown in
Fig. 58. The three vertices of the spherical triangle L, M and N shown in Fig. 58
have coordinates as given in Table 6. N corresponds to an equilateral triangle,
while L and M correspond to isosceles triangles, where the angle between the
sides is O for L and 180° for M.

Table 6 Coordinates of the three comers L, M and N.

X Y Z @ 0
L : —41\/3 0 7 i
M : 0 0 i 0
N 0 0 % %71 %71
X Y Z ] 0
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To plot point patterns, the spherical triangle LM N has to be mapped into the
plane-preserving area. (Area preservation is necessary to correctly represent the
densities.) By these means, the projection is chosen so that the north pole of the
sphere is on the Z-axis. §’ is the corresponding geographic latitude (= 0 for the
north pole), ¢’ is the corresponding geographical longitude (= O for the X-axis,
= 90° for the negative Y-axis). Thus

6’ = arccos(sin 6 sin @), (9.18)
in @
¢’ = arcsin (—w) . (9.19)
sin 6

The Lambert or Schmidt projection should be used, assigning the polar coordinates
r and v to the angles 6’ and v/’, and we have

r =sin 3, (9.20)
v=9¢. 9.21)

In this way the triangle LM N is transformed into a sector of angle 60° and side
length \/g
Since the arccos function makes some difficulties, an algorithm is given here

that transforms  and €2 into r and . It uses only the arctan function (ATN). The
angles are given in degrees.

9 S =1/SQR (3): Y = SIN ()
10 X =SIN @2 *w+ Q2 — 180): IF X = 0 THEN ¢ = 90: GOTO 20
11 ¢ = 180 + ATN (2 % Y  SIN (& + Q)X)
20 X = SIN (¢ + w): IF X = 0 THEN ¢ = 2 % ATN(S): GOTO 30
21 8 =2 % ATN (Y % §/X)
30 Y = SIN (¢):Z = SIN (6):X = Y % Z:
IF X = 0 THEN 6’ = 90: GOTO 40
31 6 = ATN (SQR (I — X * X)/X)
40 X = SIN (9"):IF X = 0 THEN ¢’ = 0: GOTO 50
41 X=7Zx*SQR (1 — Y x Y)/X:IF X = 1 THEN ¢ = 0: GOTO 50
42 ¢ = ATN (X/SQR (1 — X * X))
50 r = SIN(0.5 % 0'):fp = ¢

The algorithm should yield » = 0.1638 and ¥ = 51.38 for v = 45 and Q = 70.
Figure 59 shows the positions of particular triangles in the sector. The upper vertex
belongs to equilateral triangles, while the lower circular arc corresponds to triangles
that have degenerated into line segments. The sides of the sector represent isosceles
triangles. The right-hand side represents isosceles triangles for which the equal
sides are shorter than the third, the left those in which the third is the shorter.
The asymmetric form has been chosen in order to prepare for a more detailed
description (see Fig. 63).
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Figure 59 View of the region LM N of Fig. 58 after Schmidt projection. The corresponding
triangles lie at the positions marked on the base lines of the triangles. The maximum angle
is always at the upper comer. On the circular arc the triangles have degenerated into line
segments.

Figure 60 shows line systems that may help to find the positions of triangles in
the sector. The lines correspond to triangles with = const, and £2 = const.

Stochastic models for triangles

Kendall and his colleagues have studied various stochastic models of triangles
(see e.g. Kendall, 1984, 1985, 1989). Of particular interest are triangles formed by
three uniform points in a given set. The mathematical problem is to determine the
probability density on the sphere or in the 60° sector.

Here only two simple cases are considered.

Normally distributed vertices. Suppose that in the plane there is a symmetric
two-dimensional normal distribution (centre at the origin o, equal variance of x- and
y-coordinates). According to this distribution, each of the three independent points
are generated and the corresponding triangles formed. Of course, their shape varies
greatly. 1t is very interesting that the shape ‘distribution of these triangles is the
uniform distribution in the 60° sector. (The probability that the shape parameters r
and  of such a triangle lie in an arbitrary domain of the sector is equal to the area
of this domain divided by the area of the sector.) Dryden and Mardia (1990) have
also given the shape distribution for the case of correlated normally distributed
points. They also considered figures with more than three vertices.
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70
80 50
90 e
100 < 40
110
120 30
130
140 20
150

10

160
170
a) n 180 b} w

¥ e

Figure 60 Isolines on which the triangles of fixed €2(a) and w(b) are positioned with
respect to Kendall’s parametrization.

Poisson-Delaunay triangles. To the Poisson-Dirichlet tessellation belong
triangles that have their vertices at the points of the generating Poisson field and
that do not contain further points of this field (Appendix I). Its shape has been
investigated by Miles (1970) and Kendall (1983). For the joint distribution of the
three angles at the vertices the density function has the following beautiful form:

fla, B,y) = §(sin’ ¢ +sin® B + sin® y)*. 9.22)

Figure 61 The shape density of the Delaunay triangles given by isolines.
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This density has its maximum at @ = 8 = y = 60°. Figure 61 shows the isolines
of this density function in the 60° sector.

9.7 POINT TRIPLETS

Following Kendall, point triplets are transformed into points on the sphere Sz(%).
The transformation is a generalization of that for triangles given above, and goes
as follows.

Let the three points of the triplet be A = (a., a,), B = (b, by) and C = (¢4, c)).
The point triplet is moved and dilated such that the distance between A and B is
2 and the direction from A to B is the reference direction (i.e. the x-axis). The
vector going from the centre of the side AB to C forms an angle ¢ with AB; its
length is denoted by m (Fig. 62).

Then spherical coordinates ¢ and 6 are introduced, where 6 is obtained by

¢ = 2 arctan \/gm

The corresponding point (X, Y, Z) on the sphere S2(3) has coordinates
X = %cose, Y = %Sin9cos¢), Z = %sin@ sing.

Here the north pole of the sphere is given by the point § = (. As in the case
of triangles, the spherical coordinates are now transformed in such a way that the
north pole comes to lie on the Z-axis. 8 is the corresponding geographical latitude
(= 0 for the north pole) and ¢’ is the corresponding geographical longitude (= 0
for the X-axis, = 90° for the negative Y-axis). The corresponding transformation
formulae are refinements of (9.18) and (9.19):

¢ =arccos(singsin ), (9.23)
c
m
A s o\ s
A B
m
c

Figure 62 Two triangles and the corresponding variables ¢ and m. In contrast to Fig. 57,
the maximum angle is not necessarily at the corner C.
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B (6 <90°),
¢ = { 180°— B8 (8 > 90°), (9.24)

. sin 6 cos ¢

B =arcsin | ————
sin 6

If ¢’ < 0 then the value 360° + ¢’ should be used. The sphere is now mapped

into the plane-preserving area by the Lambert or Schmidt transform, where the

northern hemisphere (8" < 90°) and the southern hemisphere (6’ > 90°) are each

transformed into a disc of radius \/g . The plane polar coordinates are denoted by
r and ¢ in both cases, and

sin 159’ 6" <90°),
r={ 1 ] (9.25)
sin 5(180° — 6") (6 > 90°)

and
v=¢. (9.26)

The corresponding algorithm is as follows (the angles are given in degrees):Jr

9 S=1/SQR (3
10 D1 =0.5 % (ax + by): D2 = 0.5 % (ay + b)):
U=¢ —Dl:V=¢, -D2:X=UxU+V%xV:Q=0:P=0
12 U=b, -DI:V=b,—-D2: Y=UxU+V=xV:
IFY =0 THEN ¢ = 90 : 8 = 90: GOTO 24
14 1IF (¢, — ay) * (by — a,) < (by — ay)(cx — a;) THEN Q = 180
16 Z =SOQR (Y): M =SOQR (X): U=c¢, —b,:
V=c,—bp:R=UxU+VxV:X=X+Y-R/2*xMxZ)
m = M/Z: IF X = 0 THEN ¢ = 90 + Q: GOTO 22
18 ¢ = ATN (SQR (1 — X x X)/X):
IF ¢ <0 THEN ¢ = ¢ + 180
20 IF Q = 180 THEN ¢ = 360 — ¢
22 6 =2%ATN (m % S)
24 'Y =SIN (6): X =Y « SIN (¢):
IF X = 0 THEN 6’ = 90: GOTO 28
26 6’ = ATN (SQR (1 — X x X)/X):
IF0" <OTHEN ¢’ =6’ +180: P = 1
28 X = SIN (¢’): IF X = 0 THEN ¢ = 0: GOTO 33
29 X =-Y % COS (¢)/X: IF X ¥« X = 1 THEN v = 90:
IF X < 0 THEN ¢ = 270: GOTO 33
30 IF X = 1 THEN GOTO 33
31 ¢ = ATN (X/SQR (1 — X % X)):

T The degenerate cases, where A, B and C lie on one line, are not treated as in Kendall (1985, 1986).
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IF 6§ > 90 THEN ¥ = 180 — v
32 IFy <O THEN y = 360 + ¢
33 D=¢:1IF¢ > 90 THEN D = 180 — ¢’
34 r = SIN (0.5 « D)

If P = 0 then the point lies on the northern hemisphere, while for P =1 it is in
the southern.

For A = (0,0), B=(1,1) and C = (3, 0) the algorithm should yield r = 0.419,
¥ = 214.7° and P = 1 (southern hemisphere).

Figure 63 shows the position of 12 congruent triangles on Sz(li), where, with
the northern hemisphere on the right and the southern hemisphere on the left, the
side AB is always shown horizontally and A is its left endpoint. The 60° sector
that is used for representing triangles as in Fig. 59 is shown in bold.

Another variant of describing triplets has been introduced by Bookstein. The
triplet (A, B, C) is transformed and dilated as above. A coordinate system is intro-
duced, the x-axis of which goes through the points A and B with the origin in the
middle of the side AB. The transformed points then have the following coordinates:

A:(—1,0
B:(1,0)
C: (@, 0.

The quantities #, and @, describe the shape of the triangle ABC. They can be
calculated as

2
9, = ﬁ[(b" ~a;)(cx —a;) + (by —ay)(cy, —ay)]— 1, 9.27)

2
ﬁy = 8_2[(bx - ax)(c)' —ay) — (by - ay)(cx —ay)], (9.28)

[N
= =

DN

Figure 63 Positions of congruent triangles on the sphere Sz(%) in the Schmidt projection.
The triangles differ with respect to the notation of the corners and their positions. The
comers A and B always lie on the line —, where A is the left endpoint.
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with

5= /(@ ~b? + (ay ~ by 9.29)

Obviously ¥, and 1, can take arbitrary real values: in Bookstein’s shape description
the whole of R? is used for describing the shape of triplets.

The parameters ¥, and ¥, can easily be interpreted geometrically. If the side
AB is denoted as baseline then ¥, is equal to twice the ratio of height to length
of baseline; ¥, describes the horizontal deviation of the vertex C from the right
bisector of the baseline.

Since the shapes of triplets are given as points on the sphere by Kendall's shape
description, it is clear that in Bookstein’s shape description the ‘shape points’
often have greater distances. Therefore it is frequently better suited to visualizing
shape differences between triplets or samples of triplets. In particular, this is true
for obtuse triangles. For description of deviations from an equilateral basic shape,
both variants give similar results. Bookstein (1991) has shown using his shape
parameters how changes in growth processes can be described.

9.8 STATISTICS FOR THE BOOKSTEIN MODEL

9.8.1 The Bookstein model

Bookstein (1986) suggested the following model for planar random point config-
urations. Suppose there are deterministic fixed points zj, ..., z; with x- and y-
coordinates z;, and zy, (k = 1,...,/). These points are modified by independent
random translations d, . .., d; such that the random configuration P = (p,, ..., p;)
1s formed:

pe =z +di, (9.30)

Xp=Zix +die, Wk=Ziy+dyy (k=1,....D.

The random variables dy, and d, are independent and normal with mean O and
variance o}:
die ~ N(©,00),  diy ~ N(0,0)).

Thus the configuration P can be interpreted as a result of / independent diffusions
described by Brownian motions in R? with starting points at z,, ..., z.

This relatively simple model has been used in various statistical studies, for
example by Bookstein (1986) and Mardia and Dryden (1989a,b). Frequently,
however, it is too simple (§10.2). In any case it can be used as a ‘null model’: its
validity is assumed and the nature of its deviations from the data are considered.
The first step of generalization consists in using correlated d;; anisotropic two-
dimensional normal distributions for the d can also be used (Goodall, 1991;
Goodall and Mardia, 1991). Such more general cases are also considered in Dryden
and Mardia (1991, 1992), where approximations and examples are also discussed.
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Goodall and Mardia (1993) present a systematic and extended treatment of shape
densities using noncentral multivariate analysis.

Statistical analyses for the Bookstein model aim to get information about the
akz and the deterministic centres zj, ..., z;, starting with samples of identically
independent distributed configurations P, ..., P,, formed analogously to (9.30).
This problem would be quite easy if the configurations were given by their coordi-
nates in a fixed coordinate system. However, it is typical in shape statistics that the
landmark positions are given only relatively to each other. The situation is — one
may say — that the configurations are first generated according to the Bookstein
model, but then arbitrarily shifted and rotated and finally given to the poor statis-
tician. For her/him it is unreasonable to estimate z,, ..., z;; though it makes sense
to ask for the distances dj,, of the centres z; and z,,, for the variances and for the
form of triplets z, z, and z, of centres etc.

9.8.2 Estimation of distances and variances

In this section it is assumed that all configurations are given to the same scale.
Thus it make sense to ask for the distances di, and the variances. The problem
of their estimation can easily be solved by statistical methods of the x- and xZ-
distributions. Namely, let D be the random distance between the kth and the mth

landmarks p; and p,,,.T Then

D= [ +¢+dn?"”,

where 1 and ¢ are independent normal random variables with mean O and variance
2.
Oyt

0122 = 012 + 022. 9.31)

Consequently, D /o), has a so-called non-central x-distribution with non-centrality

parameter d?,_/cZ, and two degrees of freedom (Evans et al., 1993). The density
function of the distribution is

_ _ xd
f(x) p—t Xglzz exp [_%alzz(xz +d122)] 10 (0—212) s
12

where /y(z) is the modified Bessel function of order zero. The second and fourth
moments of D are
py = dh + 20} (9.32)

and
pa = dfy + 8dhoh + 80, (9.33)

These formulae lead to estimators of di; and o2 by replacing the theoretical

¥ For simplicity of notation, k = 1, m = 2 and p = 3 are used without loss of generality.

~
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moments with empirical ones:

diy = 12m3 — my) /4, (9.34)

and
6% = 5lmy —dp|, (9.35)

with

1 n
_ § : k
mp = ; dlZ,i'

k=1

Here d,; denotes the distance between the landmarks p); and py; in the ith
configuration.

As Anderson (1981) has shown, when 7,3 « d)32, these estimators are practically
of the same quality as the much more complicated maximum likelihood estimators.
Simulations (Stoyan, 1990) have shown that Anderson’s approximations for the
variances of estimation of the maximum likelihood estimators can also be used for
the estimators in (9.34) and (9.35):

A 1 0122
var(dip) = —opp | 1+ 5= |, (9.36)
n dj
2 2
var(@l) ~ ~of (1 + %) . 9.37)
12

The bias (difference between means of estimators and true values) turns out to be
very small.

The formula (9.35) at first gives only the sum of the variances o and 0. The
single variances can be estimated by considering triplets of landmarks. That is, if
in addition to p, and p; the landmark p; is also considered then three variance
sums are available, which are connected with the single-landmark variances by

2 _ 2, 2 2 _ 2, 2 2 _ 2, 2
O =0y +0;, Oj3=0]+03, 0;3=0;+0;.

Of course,

21,2 2 2
op = 3(0; + 03— 0p3)

etc. This leads to the estimators

— — e

- ot = %(0122 +od — o), (9.38)
of = 3ok + 0} — o). (9.39)

— —

0} = 3(0h + 0k — o), (9.40)
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where 0, 07 and 0% are determined by (9.35). As simulations have shown, these
estimators give acceptable results for samples of sufficient size (n > 50). However,

the variances of estimation are much greater than for o, in particular if o}, o}

and 032 have greater differences (Stoyan, 1990).

9.8.3 Shape statistics for the Bookstein model

Shape parameters are of value if not all configurations are given at the same scale
and if the scales are unknown. Suppose for now that / = 3 and

0] = 0 = 03.

For I > 3 see the literature; of course, any configuration of more than three
landmarks can be divided into appropriate triangles.

The aim of the statistics is to estimate the shape parameters #, and ¥, for the
ideal triplet z), z; and z3. Furthermore, the quantity t is estimated which is defined
by

Q
()

|

, ‘
= 9.41
=5 (9-41)

]

where § is the distance between z; and z;. The starting point of the statistics is a
sample of n identically independently distributed triplets P; = (p;1, piz, pi3)(i =
1,..., n). The numbering of the points should be such that the side 1-2 is the (on
average) longest. The quantities ¥;, and ¥;, are calculated for each i as

2
Bix = ?[(pnx ~ pit)(pisx — Pirx) + (Pizy — piry) (pisy — piry)l — 1, (9.42)
i

2

ﬁty = ?[(pﬂx - pilx)(pi3y - pily) - (piZy - pily)(pi3x - pilx)]y (943)
i .

di = lpn—piall G=1,....n). 9.44)

In Mardia and Dryden (1989a) the distribution of the pair (¢, %) in the Bookstein
model was given. Furthermore, it was shown under which conditions on 7 and on
the shape of the triplet (z), z7, z3) the distribution is approximately normal (see
also Bookstein, 1991). The general case of dependent normal dy, and d;, was
considered in Goodall and Mardia (1991). The parameters of the approximating
two-dimensional normal distribution are the mean-value vector

(02, 3y)

and the covariance matrix
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with
o’ 2 2
e B+ oy + 7).
This approximation can be used if 7 is ‘small’: for large values of 92 + 92 (> 3),
7 should be smaller than 0.01. For small values of 97497 larger t-values are still
admissible; for example, v < 0.075 for ¥2 + #? = O (triangles degenerated to a
line segment).

In statistical applications the approximation can still be used for larger t-values
up to 0.2 (Mardia and Dryden, 1989a).

In the case where the normal approximation can be used Mardia and Dryden
(1989a) suggested the Bookstein estimators:

gt=2

- 1<

b= 2D P (9.45)
i=l

_ 1

By = 52O (9.46)
i=l1

o~ 1 n _ _

2= e S (01 ~ 92+ (9 ~ 9,7, (9.47)

4n(3 + 0} +0) <=
They are maximum likelihood estimators for the above normal distribution. The
P -estimators have infinite variance and a bias towards smaller values.

Mardia and Dryden (1989a) also gave the exact log-likelihood function and
the corresponding likelihood equations. They suggested a numerical solution for
determining maximum-likelihood estimators.

Using the estimators methods of §9.7.2, a further method of estimating ¥, and ¥,
can be suggested (Stoyan, 1990). (However, it has been assumed that all config-
urations P; are given at the same scale.) The method consists simply in using
the estimators for the side lengths d),, dj3 and d3, where (9.34) is used analo-
gously. The shape parameters 7" and 97" of the triangle with these side lengths

are estimators of ¥, and ¥, which are of the same accuracy as J, and f)y and the
maximum likelihood estimates, as simulations have shown, see Stoyan and Frenz
(1993). However, for larger values of t, t > 0.3, the maximal-likelihood estimator
should be used, see Mardia and Dryden (1994). The calculation uses

R I
_diptdy—dpy

9 =1
72
dj

X

(9.48)

and

;2 1/2
o7 = [ 2 —(1- 19_;")2} . (9.49)
dip

Finally, this is a test that can be used to test the hypothesis that the form (shape)
of the ideal figures given by the z are equal for two samples of landmark configu-
rations, see Goodall (1991) and Ziezold (1990).






CHAPTER 10

Examples

10.1 THE FORM OF SAND GRAINS

The form of sand grains has been intensively studied for many years (see e.g.
Mason and Folk, 1958; Friedman, 1961, 1967; Folk, 1964; Fiichtbauer and Miiller,
1970; Miiller, 1970; Pettijohn, 1975; Engelhardt, 1979; Dowdswell, 1982; Willets
et al., 1982; Willets and Rice, 1983). An important aim of these studies has been
a greater understanding of sedimentation conditions.

In particular, sand formations such as dunes have been considered by
Bagnold (1941) and Barndorff-Nielsen et al. (1983). Barndorff-Nielsen (1986)
and Barndorff-Nielsen and Christiansen (1988) studied the size of sand grains,
and found that the so-called log-hyperbolic distribution (Barndorff-Nielsen, 1978)
describes the mass and volume distribution of sand grains very well, both for
aeolic and for fluvial and maritime sands. Nielsen (1985) found that superellip-
soids (three-dimensional analogues of superellipses) are good models of the shape
of sand grains. The process of formation of sand grains and pebbles by abrasion
has also been studied, for example by Krumbein (1941) and Rayleigh (1942). By
experiment, it could be shown that there is in these processes a tendency to approx-
imate a sphere and that surface regions of greater curvature are abraded preferably.
Firey (1974) studied the shape changes of three-dimensional convex sets in an
abrasion process theoretically under the assumption that surface regions of greater
curvature are preferentially abraded. He showed mathematically that these bodies
converge towards balls in the Hausdorff metric. (see also Rogers (1976), who
considered ‘convergence’ towards ellipsoids.)

Tables are used for the visual classification of sand grains (and analo-
gously for pebbles and stones, for example those of Russell-Taylor-Pettijohn
(Schneiderhon, 1954); see Fig. 641 Using these tables, a rapid classification
of sand grains is possible with respect to the degree of rounding or abrasion.
Pettijohn (1975) has given the following relation for the roundness factor f in
§8.2:

T Another series of particle shapes is given by the Hausner figures (Hausner, 1966; Underwood, 1980).
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Figure 64 Degrees of roundness for sand grains and pebbles according to Rus-
sel-Taylor-Pettijohn: (a) angular; (b) subangular; (c) subrounded; (d) rounded; (e) well-
rounded.
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angular 0-0.15
subangular 0.15-0.25
subrounded 0.25-0.4
rounded 0.4-0.6

well rounded 0.6-1

Three sand grain samples

To demonstrate various statistical methods of form statistics of technical particles,
three samples each of 24 sand grains will be studied. The starting point is a
collection of photographs, i.e. images of orthogonal projections. It is assumed that
the grains were photographed lying on their broadside. The sand grains have been
taken from

the Baltic Sea (a beach at Trassenheide);
the River Selenchuk in the Caucasus;
the Gobi Desert.

Figure 65 show the contours of the 72 sand grains. The expected form differences
are visible. The river sand grains, for which the abrasion process is less advanced,
are more angular than for the other two types. It is also not surprising that the sea
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Figure 65 72 sand grains to scale 30 : [; (a) Baltic Sea; (b) River Selenchuk; (c) Gobi
Desert.

sand grains are relatively small. But it is obvious that the variation in the grains
of all three types is so great that single sand grains may not always be classified.
In contrast, it will be shown that samples can be classified very effectively. Many
geometrical characteristics of the 72 sand grains have been measured and used to
calculate shape factors such as

fau, fer and  fc
(§8.2).

Taking the centres of gravity of the grains as reference points, the radius-vector
functions are determined and the corresponding Fourier coefficients A, are calcu-
lated. This yields further shape factors, namely

20 a 2 20 a
— k — k
Lo=3 %, RP=3 4
k=1 k=6

=4 =4 =4
ﬂ]_ ﬂz_A()’ ﬂ3—z(l)

Their means and standard deviations are shown in Table 7.



170 EXAMPLES

Table 7 Mean values and standard deviations of the eight shape ratios for the sand grains.

Ratio Sea River Desert
X s X s X s
Sfav 0.862 0.031 0.808 0.063 0.860 0.050
fe 0.988 0.017 0.965 0.028 0.987 0.015
fon 0.531 0.040 0.470 0.067 0.533 0.040
Ly 0.368 0.103 0.500 0.173 0.378 0.135
RY 0.090 0.031 0.131 0.059 0.073 0.020
B 0.012 0.009 0.040 0.112 0.012 0.010
B 0.130 0.057 0.179 0.102 0.166 0.081
B 0.072 0.040 0.087 0.037 0.063 0.037

Table 8 Correlation coefficients for the eight shape ratios and A, U for the sand grains.

fav  fc Sen Lo RY B B B3 A U
fav 1 0658 0989 —0.905 —0.744 —0.397 —0.678 —0417 —0.230 —0.315
fe 1 0636 —0.614 —0.671 —0.281 —0.284 —0.323 —0.358 —0.423
fou 1 —0.895 —0.718 —0.372 —0.663 —0.437 —0.203 —0.287
L 1 0.740 0459 0811 0465 0.143  0.197
RY® 1 0.231 0323 0367 0.134 0222
B 1 0.382 0274 0.295 0.075
B 1 0.077 0.039 0.073
B 1 0216  0.207
A 1 0.950
U 1

Obviously the shape factors are not useful for discriminating between sea and
desert sand. But there are clear differences between river sand on one hand and sea
and desert sand on the other. The differences in the values of f4;; and f,; and the
Fourier coefficients reflect the greater variability and length of the river sand grains.

Table 8 shows the correlation coefficients for these shape factors and for area
and perimeter of the grain projections. There the 72 grains are considered as one
sample in order to find general relations. (The coefficients of correlation for the
various types in part differ remarkably from these ‘mean’ values.)

The correlations between f,y and fo; and between A and U are strong. As
one would expect, the coefficient of correlation between f.y and U is negative.
The correlations between A and the shape factors are small. The relatively large
correlation coefficients for L,y and Réo, and L,y and B,, result from the fact that
Aj is rather larger in general, and clearly for large Ag, ..., Ay and A, the sum of
Ay, ..., Ay is also large.

Principal-component analysis (see e.g. Dillon and Goldstein, 1984) yielded the
results shown in Tables 9 and 10. The numbering of variables is the same as in
Table 8.
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Table 9 Eigenvalues and proportions of variance for
the principal-component analysis.

Factor Eigenvalue % Proportion of variance
l 5.15 515
2 1.85 18.5
3 0.98 9.8
4 0.88 8.8
5 0.59 59
6 0.29 29
7 0.21 2.1
8 0.01 0.1
9 0.01 0.1

Table 10 Component loadings of the first three factors
of the sand grain analysis.

Variable Component loadings
1 2 3
| 0.95 -0.15 0.02
2 0.76 0.18 0.28
3 0.94 -0.17 0.05
4 -0.94 0.27 0.06
5 -0.78 0.11 -0.41
6 —-0.50 0.02 0.57
7 -0.67 0.38 0.49
8 -0.51 -0.10 -0.34
9 -0.39 —0.89 0.22
10 -0.44 -0.86 0.05

The first component is dominated by the shape ratios fay, fen and Lo
(variables 1, 3 and 4). Large absolute values of this component correspond to
longish non-round grains. The second component is probably dominated by grain
size. Here large values correspond to small grains. The third component is more
difficult to interpret. Here the Fourier coefficients have a great influence. Large
values seem to correspond to large deviations from circular shape.

Figure 66 shows the 10 variables in the coordinate system corresponding to the
first two components. Figure 67 shows an independence graph (Whittaker, 1990)
for the shape and size variables. It shows that they could be separated into three
groups of more strongly correlated variables. It is interesting that the classical shape
and size parameters (fay, fen, A, U, and B1) form one group, while the Fourier
coefficient shape parameters form the other, larger group. In the group of classical
parameters there are two pairs of strongly correlated parameters: fay and fe, and
Aand U.
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Figure 66 Result of the principal-component analysis: 10 variables in the coordinate system
corresponding to the first two components. It is obvious that the first component is related
to shape variables, and the second one to the size variables A and U.

Figure 67 Independence graph of the shape and size parameters based on partial correlation
coefficients greater than 0.4. The graph is not connected, but it consists of three subgraphs:
the first one consists only of the vertex f, the second one has as vertices the classical size

and shape parameters, while the third one is connected with the Fourier coefficient shape
parameters. Thick edges mark partial correlation coefficients greater than 0.8.

The principal-component analysis suggests describing the form of sand grains
by two variables: a size and a shape variable. For the following the variables A
and f,; are chosen; other possibilities could be pairs (A, fay) or (U, fau)-

Figure 68 shows the 72 sand grains in the (fe, A)-plane. The discrimination
between the three sand types is quite good, with the exception of extremely large or
small grains. The lines shown are the discriminance lines corresponding to discrim-
inant analysis (Dillon and Goldstein, 1984, Chap. 10 — assumption of normal
distribution) if pairs of sand types are considered. They lead to the following
simple classification of single sand grains into the three types:

Sea if A <1.23fy +0.15;
River if A > 5.56 foy — 1.63;
Desert  otherwise.
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Figure 68 Plot of the 72 sand grains in the (fo, A)-coordinate system. The lines arise
from discriminant analysis. T, Trassenheide Beach; S, Selenchuk River; G, Gobi Desert.

The two inequalities correspond to the discriminant lines sea-desert and
river-desert.

Using this classification for the grains of the sample, the following misclassifi-
cations are observed:

River sand grains: 8 classified as desert sand grains;
Desert sand grains: 8 classified as sea sand grains,

3 classified as river sand grains;
Sea sand grains: 2 classified as river sand grains.

As an alternative shape description, radial-thombi are used. The formulae (7.32)
and (7.33) in §7.5.2 were used to determine the lengths @ and b of the semi-
axis. Figure 69 shows the 72 sand grains in the (a, b)-plane. The means, standard
deviations and correlation coefficients of the three sand types are given in Table 11.
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Figure 69 Plot of the 72 sand grains in the (a, b)-coordinate system corresponding to the
rhombus description. As in Fig. 68, the lines come from discriminant analysis.

Table 11 Mean values a, and b, standard deviations s, and s,, and correlation coefficients
rap for the radial-thombus description of sand grains.

a Sa b Sp Fab
Sea 035 0.085 0.533 0.108 0.75
River 0.439 0.101 0.764 0.146 0.27
Desert 0.422 0.108 0.674 0.097 0.60

- The one-dimensional distributions of a and b are similar to normal distribution
for all three types. At least for the sea and desert grains the hypothesis of a two-
dimensional normal distribution of (a, b) seems to be not bad. The nearly triangular
shape of the cloud of points is particularly interesting. The sand grains approach a
point at ¢ = 0.2 and b = 0.2, i.e. a ball of radius 0.2 mm with increasing degree
of abrasion.

The lines in Fig. 69 are discriminant lines for discriminant analysis just like those
in Fig. 68. As with the description of the sand grains by A and f), the following
classification can be used:
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Sea if a <0.261b + 0.502;
River if a > 0.212b 4 0.628;
Desert  otherwise.

For this classification method the following misclassifications are observed:

River sand grains: 9 classified as desert sand grains,
2 classified as sea sand grains;

Desert sand grains: 7 classified as river sand grains,
4 classified as sea sand grains;

Sea sand grains 5 classified as desert sand grains,
1 classified as river sand grains.

Thus the success of the description by A and f is greater than by radial-rhombi.

To further check the radial-rhombi model, the contour covariance functions have
been determined and compared. These are estimates of Ey(g) for the radius-
vector function, compared with theoretical functions for radial-rhombi calculated by
(7.68). For the parameters m 4, mg, ..., 0ap the empirical values a, b,..., rap are
used. (Approximation of the empirical functions by contour covariance functions
of radial-rhombi with parameters obtained by the least-squares method is no
better.) Figure 70 shows the estimated mean contour covariance functions and
their theoretical counterparts in normalized form. For values of ¢ below 45° the
fit is acceptable, while for values greater than 90° the deviations are rather great.
Besides essential deviations from the radial-rhombus model, they also result from
asymmetries and local roughness.

Note that the mean empirical contour covariance functions shown in Fig. 70
differ distinctly for the three sand types. Thus these functions could be used for
practical classifications. The differences are clearly connected to the shape of the
grains: the sea grains are roundest (the function is close to 1) and least rough
(nearly the same values for ¢ = 0 and ¢ = ). In contrast, the river grains are
longish (the functions have a deep minimum near ¢ = %n) and very rough (the
value for ¢ = 7 is much smaller than ¢ = 0). The desert grains have a mean
position.

In both variations of description (¢ and b, and A and f.)) the success in the
classifications of single grains is clearly not very great. But it seems to be useful
to apply the above classification methods to the means of @ and b, or A and
fen, for small samples of sand grains of the same type. This was checked by an
experiment for the sample sizes n = 5 and n = 10. A simple resampling method
(see e.g. Efron and Tibshirani, 1993) has been used. By computer, using random
numbers, new samples of sizes 5 and 10 were generated out the set of the 24
sand grains. (In this resampling process some grains may appear more than once.
Such a sample of size 10 could for example consist of the grains of numbers 2,
4,7, 7, 12, 15, 15, 16, 17 and 22.) For each new sample, using the value of
a and b, or A and fen, in the memory of the computer, the means @ and b, or
A and fiy, are calculated. According to the classification rules, the samples are
then classified. For 1000 samples the results given in Table 12 are obtained. It is



176 EXAMPLES

Eoseplyl)

0

c) .

'em]:\_

Figure 70 Estimates of the contour covariance ‘function Ex(¢) compared with the
theoretical functions for radial-thombi. The functions are normalized in such a way that
they have the value one at ¢ = 0. (a) Baltic Sea; (b) River Selenchuk; (c) Gobi Desert;

——, theoretical; —---, empirical.
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Table 12 Results of the single grain classification after the radial-thombus and the fy -A
classifications.

Radial-rhombus classification

n=>5 n=10
River Desert Sea River Desert Sea
Sea — 6l 939 — 9 991
River 758 235 7 833 166 |
Desert 132 842 26 65 931 4
feu—A classification
n=>5 n=10
River Desert Sea River Desert Sea
Sea 2 — 998 — — 1000
River 943 57 — 984 16 —
Desert 17 866 177 | 963 36

Table 13 Standard deviations, and minimum and
maximum values of Q,(3) for the 24 sand grains.

s min max
Sea 0.064 0 0.168
River 0.079 0.042 0.346
Desert 0.087 0 0.359

obvious that the classification method using A and f;) is better than that based on
radial-rhombi.

Finally, the spherical erosion functions Q.(r) of the sand grains are determined.
Figure 72 shows the (area-) averaged curves for the three types. The curves decrease
for small values of r at a nearly linear rate corresponding to the roundness of the
grains. The different slopes at r = 0 correspond to different area : perimeter
ratios, where the area weighting also plays a role. It is interesting that Q.(r)
strongly discriminates between sea and desert sand grains (of course, the variations
of Q(r) for single grains are considerable). For example, the standard deviations
and minimum and maximum values of Q,(3) are shown in Table 13. (here no area
weighting was made).

Comparison of the curves of Figs. 71 and 72 shows that the contour covariance
function E x (¢) differentiates the sand type better than Q,(r). However, the effort
in determining Ex z(¢) is somewhat greater than for Q(r).

Prod’Homme et al. (1991) studied in a similar way BaTiO; and Al,O3 powders,
mainly by using shape factors.
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Figure 71 Plot of the three empirical contour covariance functions of Figs. 70(a-c). There
are clear differences between these functions for the three types of sand.
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Figure 72 Spherical erosion functions Q,(r) for the three sand types. The curves are
area-weighted means of each 24 curves.

10.2 THE FORM OF HANDS

The form of human organs is intensively studied by anthropologists, human geneti-
cists, ergonomicists and designers. There is a vast literature on this topic. Usually
certain lengths or perimeters are measured. Shape ratios have been used only rarely
until now. For hands, the hand perimeter, the hand breadth and thickness, and finger
lengths are often considered.

Fundamental facts on the form of hands are known by everybody. Male hands
are usually bigger than female ones, and it is believed that female hands are more
slender than male ones. In this section the form of hands will be studied.
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20 student hands

The authors have studied the form of left hands of students aged between 20 and
24 : 10 males and 10 females. (These small sample sizes mean that the statistical
analysis is largely a methodological example. For general statements on the form
of students’ hands they are much too small.)

The basis of the analysis is the hand contour. Since they have a natural longitu-
dinal direction, it seems natural to use an adapted coordinate system as shown in
Fig. 73.

Using this coordinate system, a set theoretic form analysis is possible. In
particular, the covering function px(x) can be estimated. Figure 74 shows this
function given by some isolines separated for both sexes. It is obvious that there
are remarkable deviations of form. The 0.5 isoline gives the Vorob’ev median. It
clearly shows the differences of size, while shape differences are not so easily
detected.

The shape differences are studied by the landmark approach. For each hand
contour nine landmarks are chosen as in Fig. 73. The coordinates of these points
are collated in Table 14. As a first step, quite elementary methods of form statistics
are used. The hand size is characterized by the distance dsg of landmarks 3 and 8.

| B

N

9

Figure 73 A left hand with nine landmarks and an adapted coordinate system.

(@ (b)

Figure 74 Plot of the empirical covering function py (x) for (a) male and (b) female hands.
The outer curves are the 0 isolines, the inner isolines the | lines and the mean isolines the
0.5 lines. The latter define the Vorob’ev medians.
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Table 14 Coordinates of the nine landmarks for 20 hands. For an explanation of d3g, f and s(P), see
text.
1 2 3 4 5 6 7 8 9 dig  f s(P)
Male
1 52 -55120 —18 131 0 117 17 84 34 0 46 —61 31 —71 =31 —13 —64 205 1.85 249.7
2 40 —58 110 —18 120 0 112 13 85 31 0 47 —62 38 —73 —38 —28 —62 196 1.75 247.]
3 51 =50114 —19 1250 114 16 83 34 0 46 —57 34 —69 —34 —18 —61 198 1.82 242.]
4 4] —45103 —14 1150 104 14 77 33 0 45 —66 28 —76 —28 —26 —57 193 1.83 234.8
5 43 —44 109 —18 122 0 111 16 80 30 0 43 —73 3] —82 —3]1 —29 —63 206 1.88 249.9
6 55 —58 116 —16 1290 117 15 87 29 0 48 —79 2] —86 —2] —3]1 —60 216 1.92 264.0
7 35 -57 94 -201070 99 14 69 28 0 40 —57 19 =75 —19 —27 —66 184 1.67 223.4
8 41 —63 104 —15 1200 112 16 84 36 0 54 —66 39 —68 —39 —22 —63 192 1.61 247.3
9 40 —53 102 —191120 9916 75 20 0 47 —64 25 —70 —25 —25 —60 193 1.67 228.4
10 47 —53 108 —16 124 0 112 15 82 29 0 46 —67 31 —64 —31 —24 —56 190 1.81 240.0
Female
11 41 —41 99 —14 110 0 101 13 75 25 0 39 —49 26 —57 —26 —18 —49 169 1.88 207.6
12 52 -39 109 —13 117 0 104 12 75 26 0 41 —50 26 —61 —26 —8 —48 180 2.01 214.7
13 40 —48 98 —16 108 0 87 14 70 29 0 42 —55 19 —65 —19 —21 —52 175 1.81 210.0
14 30 —51 8 —17 98 0 87 11 60 25 0 35 —54 26 —66 —26 —23 ~53 166 1.83 200.8
15 36 —49 102 —17 1100 99 9 74 24 0 38 —55 27 —64 —27 —28 —6] 176 1.71 220.0
16 42 —45 98 —17 1090 98 13 71 27 0 43 —40 31 —62 —3] —18 —52 175 1.80 208.3
17 36 —43 98 —15 1090 88 13 71 30 0 45 —59 33 —63 —33 —23 —49 175 1.81 214.3
18 39 —45 91 —14 950 88 1] 61 23 0 35 —53 23 —61 —23 —20 —50 159 1.81 195.7
19 45 —34 94 —13 1020 90 16 62 3] 0 45 —40 25 —63 —25 —12 —46 167 1.82 195.6
20 35 —46 96 —15 1050 97 12 71 30 0 43 —54 30 —65 —30 —27 —54 172 1.7]1 215.0

As the numbers in Table 14 show, even for the smallest male hand dsg is greater

than for all female hands. The means and standard deviations are as follows:

They also show clearly the sex-specific size differences.

Male
Female

dn
d3g

Table 14 also contains the size parameters s(P) of the hands calculated by (9.4).

A useful shape ratio for hands is

= 197.3,
= 171.4,

_du
deo’

538 = 93,
538 = 6.2.

where dgg is the distance between landmarks 6 and 9. Large values of f appear
for slender hands. The f-values of the students’ hands are also given in Table 14.
Again they show sex-specific differences, but these shape differences are smaller
than the size differences. The means and standard deviations of f are as follows:

Male

Female

f =178,
F=182,

Sy = 010,
Sf = 008

Thus female hands are slightly more slender than male ones.
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Figure 75 Plot of the 20 hands in (r, ¥ )-coordinates. +, male, o, female.

A further statistical method is to use triangle analysis.Jr The shape of a hand is
described by the triangle Asge, Whose vertices are landmarks 3, 6 and 9. Figure 75
shows the points in the (r, y)-diagram which correspond to the triangles (§9.6.2).
Figure 76 shows the most extreme male and female hands. The latter is very slender,
while the male hand is rather short. The triangle shape ratios ¥, and ¢, defined by
(9.38) and (9.39) have been calculated for A = py, B = p3 and C = ps, yielding
the following estimates 9, and ,:

Dy Uy
Male —0.181, 1.138;
Female —0.223, 1.143.

The differences are very small, but again the female hands appear to be more
slender. (The female #-values correspond to a more acute angle at the landmark
corresponding to the tip of the middle finger.) Multidimensional scaling has been
used to demonstrate geometrically the variability. The A;; obtained by (9.13) have
been used as proximities. The so-called ALSCAL algorithm of SAS gave Fig. 77.
Here the points corresponds to hands, and the means of all male hands (m), all
female hands (f) and of all hands (¢) are also shown. The result is similar to the

THere the numbering of the triangle comners is essentially as described in the case of a point triple on
P. 158. That is, for all Asge the longest side is between landmarks 3 and 6, and the shortest between 6
and 9, so that the triangle lies in the distinguished sector of Fig. 63. This corresponds to the description
of triangles as on p. 153.
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Figure 76 The two extreme hands: 8 (male) and 12 (female) (see Fig. 74).
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Figure 77 Result of multidimensional scaling applied to the A-proximities of the 20 hands.

(r, ¥)-diagram of Fig. 75 with respect to the fact that there is no clear discrimination
between female and male hands; again the extremal hands of both sexes lie at great
distances from the centre of the points cloud.

Further statistical work was based on Procrustean analysis. The hands are first
compared with a ‘mean’ hand P. Its landmarks are the means of the landmarks
of the 20 hands. Because of the choice of the hand-related coordinate system, the
difference from the mean figure obtained by the algorithm in §9.4 is vary small; the
differences are of the order of 0.1 mm, i.e. less than the precision of measurement.
In Procrustean analysis three cases of transformations have been considered.
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(a) dilations alone;
(b) x-translations and dilations;
(¢) translations, dilations and rotations.

In the hand sample the numbers r and v for these three variants differ only a little.

The fact that in the given sample the male hands are bigger than the female ones
is reflected by dilation ratios ¢; = (P, P;) that are greater than 1 for the male
hands but less than 1 for the female. The g, are similar to the quantities dsg/(mean
of all dsg). But for equal dsg the o-values may be different. For the relatively long
hand 4 and the relatively short hand 9 the same value d3s = 1.93 is obtained; the
corresponding r-values are 1.043 and 1.020.

For the delta-values corresponding to case (c) (multiplied by 10*) the following
stem-and-leaf plot has been obtained:

710 5567777
(12) | 1 02256
8|2 1124
4|3 5568

The bold numbers correspond to male hands. It is obvious that the male hands vary
in shape more than the female ones. The most extreme hands with 3.6 and 3.8 are
hands 8 and 6; while 8 is very broad and short, 6 is very long.

The A;;j-values were then analysed by cluster analysis. Figures 78 and 79 show
the corresponding dendrograms. In case (b) there are many hands that form single
clusters. For example, in the 7-cluster solution these are hands 6, 7, 8, 12, 17, and
19. Somewhat bigger clusters are obtained in case (c). The better structuring may
perhaps be explained by the greater set of transformations and thus the possibility
of a better fit. Figure 78 is an attempt to order the hands according to the shape
ratio f. Figure 79 is an attempt to plot the dendrogram in such a way that female
and male hands are separated. Again the female hands are more slender. But, since
in the central part of the dendrogram female and male hands appear mixed, sex
differences have only a small influence on the shape of hands, if described by our
nine landmarks. There is a series of extremal hands forming single clusters. Hands
7, 8 and 9 are typical short strong male hands, hand 6 is a very long male hand,
and hands 12, 17 and 19 are slender female hands.

Finally, the hand data have also been analysed using the Bookstein method. The
formulae on p. 162 applied to the triangle Asgo yielded for the male hands the
values (distances, in mm)

dy = 129.0,
dsy = 1572,
dso = 1102,
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6 7 82021514169 13 3 1 181011 4 517 19 12

Figure 78 Dendrogram resulting from a cluster analysis of the hand data. The proximities
used are the A-values corresponding to x-translations and dilations.
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Figure 79 As Fig. 78, but the proximities are now the A-values corresponding to all
Euclidean motions and dilations.

and (landmark variances, in mm)

032 = 374,
062 = 12.1,
092 = 29.

The large differences in the variances are remarkable. By simulation, it can be
shown that they are not compatible with the assumption of equal variances (as

»
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assumed in the original Bookstein model) (Stoyan, 1990). Perhaps some readers
will consider the great variance around the tip of the middle finger as plausible,
since it reflects the fluctuations of hand lengths. Probably, the assumption of a
radial normal distribution of the deviations from the landmark centre is not true.
One of the more general models may fit the data better.

A quite different approach in that modelling hands is that of Chow et al. (1991)
and Grenander and Keenan (1987), who considered the hands as closed curves
consisting of curve pieces that are stochastically deformable. There Markovian
dependences were assumed.






PART II1
Point Field Statistics






CHAPTER 11

Fundamentals

Random point fields

Random point fields are mathematical models for irregular ‘random’ point patterns,
like those shown in Figs. 80, 81, 82, 86 and 87. While mathematicians study point
fields in spaces of arbitrary dimension, only planar point fields are considered in
this book; this is the most important case in connection with geometrical problems.
In the literature the term ‘point processes’ tends to be used rather than ‘point field’,
even when time-independent phenomena are being considered.

There is a vast literature about point processes. Cox and Isham (1980) and
Daley and Vere-Jones (1988) provide good introductions. Stoyan et al. (1987) also
contains introductory chapters. The present text is meant to be an introduction for
non-mathematicians, where the aim is to make accessible the fundamental notions
and the important statistical methods.

The random point field studied is denoted by N. For a given Borel set B, N(B)
is the random number points of N contained in B. It is assumed that all point
fields considered are ‘simple’, that is there are no multiple points. Thus the set of

all points x, x3, ... is a random sel.T It is written as
N ={x,}and x € N.
‘X € N’ means that the point x is a point of the field. A further piece of notation

must be explained. Suppose one is given a function f(x). Consider the sum S of
all function values f(x,) as x, runs through 7. It may be written as

S= flx)= /Rz FIN(dx).

XpeN

If the summation only ranges over the points in a Borel set B, it is written as

> fx) or Y 1p(n) f(%e) or /f(x)N(dx)'
B

xpeNNB XpeN

TThe points of the point field will be shown in bold, in contrast to variables or other points of RZ.
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Here 13(x) is the indicator function of B.

1 (xeB),
1‘*()‘)_{0 (x & B).

Probabilities connected with random point fields are written as

Pr(N(B) = i) = probability that i points of
N lie in the set B.

As usual, means are denoted by the E-symbol:
EN(B) = mean number of points of N in B.

A random point field is a random variable in the sense of probability theory.
Corresponding to this is a random mechanism, which, in principle, can generate
infinitely many point patterns. Each is called a sample of the point field.

Marked random point fields

Marked random point fieldsT are a refinement of random point fields. Each point
has a ‘mark’ distinguishing it to a greater extent. Many different quantities can be
used as marks, for example

e qualitative marks to distinguish different groups; for example if forests are
being investigated (0 = pine, 1 = spruce, 2 = birch);

e quantitative marks to characterize the object; for example ‘stem diameter’ for
points thought of as trees or ‘particle area’ for points thought of as particle
centres;

e descriptive marks for finer characterization of the objects; for example, let the
marks be a series of form parameters where points represents particle centres.

Marked fields are denoted by N, as for unmarked fields. N, denoting the set of
all marked points [xy; m ], [x2; m2], ..., is written as N = {[x,; m,]}. The x, are
points of the plane and the m, are the marks. The latter belong to the mark set M.
This could have finitely many elements or it could be the set of all real numbers.
Still more complicated cases are also possible, such as M = K = set of all compact
subsets of R2. (In the mathematical literature it is assumed that M is a so-called
Polish space.) If B is a Borel set of R? and C is a subset of M then N(B x C) is
the number of points in B with a mark in C.

Of course, any marked point field can be interpreted as a non-marked point field
in a more general space, namely in the product space S = RZ x M. If A is a
subset of S then N(S) denotes the number of (marked) points in S. But, in the
theory of point fields, the points and marks are treated differently. 1f a marked

TThe adjective ‘random’ is often omitted.
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point field is translated then only the points are changed, but not the marks. After
translation by a vector x € R?, the marked point field N = {[x,; m,]} becomes
N = {[x, + x; m,]}. The situation is similar for rotations.

Finite and infinite point fields

All point patterns analysed by statisticians are finite. Nevertheless, it makes sense
to use models that correspond to infinite point fields. The choice depends on the
given situation. There are point patterns that are finite in principle, because they
correspond to strictly locally limited phenomena. Some simple examples are

e the centres of bullet marks on a target;
o the positions of seedlings grown in one year from one plant;
e the centres of pores in the surface of a block of steel.

In other cases the given point pattern may be considered as a part of a much
larger pattern in which the points are distributed according to the same law as in
the window of observation. (At least it may be plausible to assume this.) Examples
are
e the positions of trees in forests;

e the grain centres in planar sections of probes of materials such as metals or
ceramics;

o the positions of seedlings that are generated in one year from a community of
plants (e.g. a forest).

In these cases the point pattern is usually a small part of a much larger pattern.
It is also possible that a forest analysed is only a small island in a landscape of
meadows and fields. Even in such a case it may make sense to analyse tree positions
by methods designed for infinite point fields, perhaps after excluding the trees at
the boundary.

Usually, if one decides to analyse a point pattern assuming an infinite point field
then further assumptions are made, namely those of homogeneity and frequently
also of isotropy.

Homogeneity and isotropy
An assumption frequently made in the analysis of planar point patterns is that of
homogeneity or stationarityT. It is fundamental for many statistical methods, and
many characteristics of point fields make sense only for homogeneous point fields.
A point field N = {x,} is called homogeneous if N and the translated field
N = {x, + x} have the same distribution for all x € R?. Less mathematically,
homogeneity means the following. If the point field is observed from different
regions of the plane then similar point configurations are observed. Differences only
result from random fluctuations, which follow the same laws. Figures 81, 86, 87,

In mathematical texts the term ‘stationarity’ is usually used.
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96, 98, 118 and 119 show patterns of a form that mathematicians associate with the
term ‘homogeneous pattern’. But note that many physicists and material scientists
make another use of the word ‘homogeneous’. For them it means ‘uniform’; thus
they would not call the patterns in Figs. 87 and 118 homogeneous. But in our
sense, if it can be assumed that the point clusters on these figures are scattered
similarly on the whole plane, the word ‘homogeneity’ makes sense.

There are many possibilities for deviation from homogeneity.

e The point density may vary systematically. An example is the tree density in
mountain forests, which decreases with increasing height.

e The frequency of occurrence of certain point configurations may be different in
different regions of the plane. For example, it is possible that the points appear
in clusters in one part of the plane but not in another, or that the cluster size is
location-dependent.

The strict proof that a given point pattern behaves like a sample of a homoge-
neous point field is very difficult. If, as is usual in spatial statistics, only one pattern
in a bounded window is given then such a proof is, in a strict sense, impossible.
Namely, in a bounded window a homogeneous field may (with small probability)
have samples that appear inhomogeneous.

Conversely, an inhomogeneous field may fool the statistician and show
homogeneous-like behaviour in a bounded window. It is helpful to use special
ecological or other scientific arguments to justify homogeneity. (In the case of
a forest an argument could be that there are unigue geological and climatic
conditions.)

If more than one sample is given, and if this can be considered to be independent,
then at least some aspects of homogeneity can be tested.

Example. In a fixed rectangular window W, n samples of a point field are given,
which are assumed to be independent. It is suspected that in the upper part of
the window the point density is greater than in the lower one. Let the distfibu-
tional properties and abservation conditions be such that theorems on asymptotic
normality of point numbers (Ivanoff, 1982, Heinrich and Schmidt, 1985) are appli-
cable. Then the test for comparing the means of two independent samples (Sachs,
1984) may be used. Here the values of the first sample are the point numbers in
the upper part of the window, and those of the second sample the point numbers
in the lower part, where both parts have the same area. (For example, each part
could be a fifth of the whole area.)

In some situations it is possible to work with weaker homogeneity properties. A
suitable notion is that of statistical homogeneity (Cowan, 1989). Here it is supposed
that the mean point numbers are translation-invariant, i.e.

EN(B) = EN(B,) (11.1)

for all compact B and all x.
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Figure 80 Inhomogeneous point pattern with a similar local point distribution around any
point.

Matheron (1989) has suggested using ‘local’ homogeneity properties. Indeed, in
small neighbourhoods of points there are often similar distributional situations in
spite of a clearly inhomogeneous global distribution of points. A simple example
is shown in Fig. 80. Obviously, the point pattern looks ‘rather inhomogeneous’.
But the nearest neighbour distances and the point numbers in small discs around
points behave quite similarly. Therefore characteristics originally introduced for
homogeneous fields can also be used in the inhomogeneous case if related to short
interpoint distances.

The latter remark is more important than it first appears. Matheron (1989) has
discussed comprehensively the possibility of contrasting quantities defined in the
homogeneous case to such characteristics that

e also make sense in the inhomogeneous case, and

e are interpretable in the language of the data and are falsifiable in the Popperian
sense.

As a simple example the intensity A is discussed here. For a homogeneous point
field this is the mean point number in any set B of unit area:

A =EN(B),

where the position and shape of B are irrelevant. In contrast, in the inhomogeneous
case EN(B) may depend on the position and shape of B, and it is impossible to
define an intensity.

Now it has to be considered that the notion of homogeneity is a mathematical
idealization and the intensity a mathematical fiction. Nevertheless, if a real point
pattern is given, one can speak of a ‘mean point density’, which is simply point
number divided by area. If the pattern is ‘sufficiently homogeneous’ then this mean
point density plays almost the same role that the intensity plays in the mathematical
theory in the homogeneous case. But in the inhomogeneous case the notion ‘mean
point density’ can also be given a meaning. Imagine a test disc of unit area. It is
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placed in the window W at random (this means that every location in W with the
property that the disc centred at it is completely in W has the same chance to be
chosen as centre). Then the number of points in the test disc is a random variable,
whose mean is nearly the mean point density.

Isotropy is a property similar to homogeneity. Instead of translations, rotations
around the origin o are considered. Let R, be a rotation by the angle ¢ (0 <« <
27 around o. If x is a point of R? with coordinates & and 1 then R,x is the point
with coordinates

&, = Ecosa + nsing,
Ny = —&sina 4+ ncosa

(for positive « the rotation is anticlockwise). The point field N is called isotropic
if N = {x,} and R,N = {R,X,} have the same distribution for any «.

If a point field is both homogeneous and isotropic then it is called motion-
invariant. Then rotations around arbitrary points (# ¢) do not change the distri-
bution either.

In the case of marked point fields the definitions of homogeneity and isotropy
are analogous. Note that translations and rotations leave the marks invariant; the
point x, + x of the point field N shifted by x has the same mark as x, of N etc.

Ergodicity

In point process statistics ergodicity is frequently assumed in addition to
homogeneity (and isotropy). This property ensures that one sample (one point
pattern) is sufficient to obtain statistically secure results, assuming that a sufficiently
large window W is used. For example, if ergodicity holds then

lim N(W)/A(W) = A, (11.2)
W1R?

where A is the intensity. Here W 1 R? is taken to mean that W contains a disc of
radius 7, such that r tends to infinity. The formal definition is not given here; see
the literature on point processes.

A sufficient condition for ergodicity is the following mixing property. A homoge-
neous point field N is called mixing if for all .4 and B

Pr(*N has the property A, N, has the property B’)
— Pr(‘N has the property .A’) Pr(‘N, has the property B’)

as ||x|| — oo. For example, .4 may mean that the disc b(o, r) does not contain a
point and B may mean that the same disc contains two points. Then for mixing N

Pr(N(b(o,r)) =0, N(b(—x,r)) =2)
— Pr(N(b(o,r)) = 0) Pr(N(b(o,r)) =2).

An example of an ergodic (and mixing) point field is the homogeneous Poisson
field (Chapter 13). In contrast, a so-called mixed Poisson field (Stoyan et al., 1987)

-~
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is not ergodic. The lattice point fields where the points are at the nodes of a regular
lattice, which may be randomly positioned in the plane, are also non-ergodic.

Matheron (1989) has used the notion ‘local ergodicity’ similarly to ‘local
homogeneity’ as discussed on p. 193. If this property holds then many statis-
tical methods originally developed for homogeneous and ergodic point fields can
be used.






CHAPTER 12

Finite Point Fields

12.1 INTRODUCTION

This chapter deals with point fields that cannot be interpreted as parts of larger

homogeneous, isotropic point fields. Rather, they are locally bounded and strictly

inhomogeneous. For example consider the positions of point defects on the surface

of a silicon wafer or geological objects of volcanic origin in a restricted region.
In statistical analyses two main cases have to be distinguished.

1. The sample consists of one point pattern. The aim of the analysis is a description
of the point distribution and, if possible, a statistical model explaining the
variation in the pattern.

2. The sample consists of m independent point patterns with the same probability
distribution. The window of observation is always the same (e.g. the area of
the wafer surface). In this case the probability distribution of the number n of
points per pattern is of interest (e.g. the number of point defects per wafer).
Then, as for case 1, the distribution of the points in the pattern is investigated,
which may depend on n. An alternative aim is a stochastic model for the point
field.

In the following, point fields of a fixed number of points are considered first.
Then some theoretical distributions of random numbers are discussed briefly,
for example, the Poisson and binomial distributions. Point fields with a random
number of points are also considered. Two examples of the fixed-point-number case
conclude the chapter; examples of the random point number case are considered
in Chapter 13 in connection with inhomogeneous Poisson fields.

12.2 POINT FIELDS OF A FIXED NUMBER OF POINTS

12.2.1 Two stochastic models

{(a) The binomial field

Let W be a window (e.g. a rectangle or another compact set with inner points),
within which » points are independently and uniformly distributed. This means the
following.
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1. The n points xy, . .., X, are stochastically independent, i.e. the probability that
x; lies in the Borel set By C W, ..., that x, lies in the Borel set B, C W
satisfies the product formula

Pr(x; € By,...,x, € By) =Pr(x; € B)---Pr(x, € B,). (12.1)
2. Each of the points Xy, ..., X, is uniformly distributed in W, i.e. for any i =
1,...,n and any Borel set B C W
Pr(x; € B) = %((%)5 (12.2)
The probability that x; lies in B is proportional to the area of B. The sequence
of points xy, ..., X, forms the binomial field.
Important formulae. The mean number of points per unit area is
A =n/A(W). (12.3)
The mean number of points in the Borel set B is
EN(B) = AA(B). (12.4)
The one-dimensional number distributions are
Pr(N(B) = k) = (:),)’;,(1 —pp)"F (k=0,1,...,n), (12.5)

where pg = A(B)/A(W). Thus the number N(B) of points in B has a binomial
distribution — hence the name of this point field. The m-dimensional number distri-
butions (for pairwise-disjoint B;, By U---U B,, = W) are
n!  AB)M - A(BW)"
Pr(N(By) =ky,....,N(By) =kp) = , (12,6
(N(B1) =k (Bm) ) PRI AW) (12.6)
where k; + - -+ + k,, = n. Note that the point numbers N (B;) and N(B;) are not
independent, even if B; and B; are disjoint.

Emptiness probability. This is given by
[A(W) — ABB)I"
AW)"

Simulation. First suppose the window W is the rectangle of side lengths a
(parallel to the x-axis) and b (parallel to the y-axis) with left lower corner at the
origin: W = [0, a] x [0, b]. A point pattern that behaves like a sample of a binomial
field of n points is obtained by generating a uniform point in W n times. A BASIC
program which generates a list of the corresponding coordinates is as follows:

10 FORI=1TOn
20 X = a x RND(0)
30 Y = b x RND(@0)
40 PRINT X, Y

50 NEXT I

Pr(N(B) = 0) =
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Figure 81 Simulated sample of a binomial field in a rectangle. The number of points, n,
is 50.

Figure 81 shows a point pattern generated in this way. It is clear that a good
random number generator is essential for ‘quality’ (the degree to which uniformity
and independence properties are satisfied). Devroye (1986) and Ripley (1987) are
recommended as references on random numbers. If W has another form then the
rejection method is used. (Particular methods are used for circular W (Devroye,
1986).) A rectangle W* is chosen that contains W. Then independent uniformly
distributed points in W* are generated. Each point that lies in W is accepted; points
outside are rejected. This procedure is used until # points in W are obtained.

Statistics. If W and n are given then the statistician has only to test the validity
of the model assumptions. This can be done using quadrat count methods described
in §13.2.5. The L-test (p. 224) can also be used. (Ripley’s and Koen’s simulations
have only been made for patterns of a fixed point number, that is, for a binomial
field but not for a Poisson field.)

The two examples considered in §12.2.3 demonstrate the application of these
tests,

(b) I-I-point field

Take a two-dimensional probability density function f(x), x = (x;, x2). The
density of the two-dimensional normal distribution provides an example.

1 1
fOn )= ——————exp{ —
27'[0’10’2 1— Q2 2(1 Y )

(1 — ) —2 (O — 1) (2 = o) e _“2)2] } ‘

2
(o g102 0’22
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The point field is formed by n points that are stochastically independent (‘I’) and
identically distributed (‘I’) with respect to f (x;, x). It is theoretically possible that
the points lie in the whole of RZ.

Clearly, the binomial field is a particular case of the I-I-point field where

W ’
Fn =4 Ay G €W

0 (x ¢ W).

It is easy to see that the random number N (B) of the points in the Borel set B has
a binomial distribution. But its parameter p depends on the position of B.

The simulation of such point fields consists in simulating n independent random
points with the density function f(x). In the particular case of the normal distri-
bution the following log-tri-algorithm is useful (Jansson, 1964); it yields the coordi-
nates of a normally distributed point (x, y):

10 Ul = RND(0) : U2 = RND(0)
20 x = p1 + o1 * SQR(—2 x LOG (Ul)) *
(SQR(1 ~ @%) *
COS(2 x T * U2) 4+ ¢ * SIN(2 * m * U2))
30 y = 2 + 07 * SQR(=2 * LOG(U1)) * SIN(2 * m * U2)
40 RETURN

Statistical analyses use methods of statistics for random vectors, which are well-
known in the case of normal distribution; see the following example.

12.2.2 Two geological examples

(a) Basaltic formation in the area of the Swabian Alps

Figure 82 shows the centres of Tertiary basaltic formations in the Swabian Alps.
Clearly, the points are randomly distributed and concentrated in the central region.
Thus it is natural to try to describe them by an I-I-point field with a normal
distribution density. It is known that the normal distribution density has ellipses as

isolines; the equations of the ellipses are
2 2
x — — — —_—
(X1 — uy) 20 (x1 — 1) (x2 — pa) (x2 — u2) Cz,

2 2
o 0107 o,

where ¢ is a constant. In the ellipse given by the constant ¢ the probability mass

P(c) is given by
Pcy=1—ex —‘C—z
B YTy

The coordinates belong to an a priori coordinate system. In the example the
x1-axis is the lower edge of the figure (W-E direction) and the x,-axis is the left
edge (S-N direction). The meaning of the parameters is simple; 1 and u, are the
means of the x;- and x,-coordinates respectively, o and o} are the corresponding

.
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Figure 82 Distribution of Tertiary basalt bodies in the Swabian Alps. The centre of the
point pattern is near the town Dettingen on the Erms. The circles are 50%, 70% and 90% lines
of an approximating two-dimensional normal distribution. The squares are outer quadrats
used in the dispersion index test.

variances, and g is the correlation coefficient of the point coordinates. Estimators
of these parameters are x; , xs, slz, s% and r, i.e. the usual estimators of classical
statistics.

The centre of the ellipses introduced above lies at the point (i, ¢2). The major
semi-axis lies on the line given by the equation

o 1 (0>1),

x2 = pp +sign(e)—(x; — 1), sign(@)=< 0 (0 =0),
[o)]

—1 (0 < 0).

In the case ¢ = 0 circles are obtained. With n = 105 the example given here yields
the values

x;1 =15.6, 51 =6.0,

iz = 14.9, Sy = 59,

r =0.027

(the lengths are given in km as in Fig. 82). These values are used as estimates of
the parameters p,, ... o. Figure 82 shows the density ellipses for the probabilities
0.5, 0.7 and 0.9. They are practically circles — as is perhaps expected by many
readers. The point proportions for the areas between the ellipses and outside the
90% ellipse are close to the theoretically expected values.

Obviously, the points are not uniformly distributed. This can be shown by the
dispersion index test (p. 221). That is, the point numbers in 72 squares of size
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4 km x 4 km are counted. Figure 81 shows four external quadrats, and the reader
can easily imagine the positions of the other ones. Mean and variance of point
number per quadrat are

¥=144 and s*=4381.

For k = 72 quadrats this gives 237.2 as the value of the dispersion index, which
leads to rejection of the uniformity hypothesis. The large value of / corresponds
to the clustered distribution of the points.

(b) Sinkholes in a region of the South Harz

Figure 83 shows the centres of 47 sinkholes in a region of the South Harz.
Obviously, the points are randomly distributed with more disorder than for the
basaltic formations. There are two types of points: ‘old’ and ‘new’ sinkholes.

The first step of the statistical analysis is to test the uniformity hypothesis. This
is done by the dispersion index test (p. 221). The number k of subrectangles is 54,
and the mean and variance of the point numbers are

=085 and =149,

This yields a dispersion index I = 92.9. The corresponding critical value is
Xs3:005 = 71.0. Thus the uniformity hypothesis has to be rejected again — the
clustering in the pattern is too strong.

Because of the small number of points, it is difficult to perform further statistical
analysis. Figure 84 shows an isolines plot of the local point density, which was
obtained by the methods of Chapter 13. Maybe this plot will tell some readers
more than the original Fig. 83.

Figure 83 Distribution of sinkholes in a region of the South Harz, divided into four
subregions. The length of the lower edge of the rectangle is 4.1 km. +, old sinkhole; o,
new sinkhole.
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Figure 84 Isolines for the local point density of the sinkhole pattern. It was constructed
using the method described on p. 235 with & = 0.4 km.

Finally, the distribution of the new sinkholes is discussed. One could make the
hypothesis that it follows the same law as the old ones. A test of this hypothesis can
be performed as follows. The region of observation is divided into four subregions,
as shown in Fig. 83. For every subregion the numbers of new and old sinkholes
are determined, O; and N; (i =1, ...,4). Then the test variable T is calculated:

4 2
1 0; N,

T = —_— 1,
on;0i+Ni(0 ”)

where 0 and n denote the number of all old and new sinkholes respectively.
(Quantities of this form have approximately a y2-distribution if o, n and the O,
and N; are large. Despite the fact that these numbers are not large in this example,
the x2-test is used.) For @ = 0.05 the uniformity hypothesis is rejected if T is
greater than x32:0_05 = 7.82. Since T = 3.60, the hypothesis is not rejected. One
may conclude that the new and old sinkholes are distributed according to the same
law. (Of course, the way in which this result was obtained is somewhat dubious,
and it should be treated with caution.)

12.3 POINT FIELDS WITH A RANDOM NUMBER OF POINTS

12.3.1 Introduction

Certain important aspects of the distribution of a point field with a random number
of points can be analysed only if some independent samples can be analysed. This
situation holds, for example, when analysing industrial products (the points are
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then centres of defects, pores etc.). It also holds in many biological studies, where
the same organs of different individuals are considered. The points may be nuclei
of interesting cells.

The basis of the statistical analysis is a collection of m point patterns Ny, ..., Ny,
in the same window of observation W. The latter means that, for example,

e for m steel blocks the defects have to be determined in the corresponding
regions of the blocks;

e for m specimens of organs the cell nuclei have to be considered in the same
part of the organ and in regions of equal size and shape;

e from a very large homogeneous sample m directly congruent subsamples must
be taken that are at such great distances that uniformity can be assumed (as in
a large forest with uniform conditions of growth).

For each of the patterns the number of points is determined:
Xi=NW) (=1,...,m).

The investigation of their distribution is usually the first step of statistical analysis.
In §12.3.2 tools for this will be given. If the point number has a Poisson distribution
then the methods of Poisson fields in Chapter 13 can be used.

The second step consists in the investigation of the distribution of the points
in W as a function of the point number X;. Usually one aims to find a uniform
model for all numbers. A typical example is an I-I-point field with random n,
but uniform density function f(x). Of course, in general one has to assume that
qualitative changes in the type of point distribution occur depending on the number
of points. A typical example is a random packing of discs of fixed radius in a given
area. For small n the discs may be distributed nearly randomly, but for large n they
necessarily form an almost regular pattern.

12.3.2 Some distributions of random numbers

(a) The binomial distribution

The binomial distribution is closely connected with the so-called Bernoulli schema.
It assumes the following. One makes n independent trials, and in each of them there
are only two possible outcomes depending on chance: ‘success’ or ‘failure’. The
probability of success is p for all trials. The number of successes in 7 trials is
denoted by X, and is given by

n

PX =k) = (k

)p"(l oYt k=0,1,....n). (12.7)

One says that X has a binomial distribution in the parameters # and p. It is

EX =np (12.8)
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(12.9)

and
varX = np(l — p).
If the notion of ‘trial’ is suitably interpreted then many situations can be described

by this model. Two examples are as follows.

In a crystal lattice there are n sites that can be randomly occupied by foreign
atoms. Let the probability of occupying a certain site be p and let it be the
same for all sites. Then the total number X of occupied sites has a binomial

1.

_ A(B)

In a region W, n independent points are uniformly distributed. Let X be the
T AW)

distribution with parameters n and p.
number of points that lie in a subregion B. It has a binomial distribution in

p

the parameter n and
If n is known then only p has to be

(p. 198).
Statistics for the binomial distribution.
estimated. If m numbers X, ..., X,, are given then p is estimated by
p = —_ 12.10
b ; . (12.10)

In this case formulae for confidence intervals for p are known (Sachs, 1984; Freund
and Walpole, 1987). Furthermore, there are tests for the hypothesis that p has a
(12.11)

If n is unknown then it can be estimated as follows:
¢
) Xmax )

given value pg.
fi = max { §?
¢ —1

(%= (1+y3) ).

where _
X

2

¢ = S Xmax - XI
max ‘T, 1+ «/5} otherwise.

Here
X = ! Emjx
- m P IR

1 & _
$T= D (Xi- X7
i=1
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Xmax = greatest value from among Xy, ..., Xpn-

The estimator given by (12.11) is a stabilized form of the moment method
estimator (Olkin et al., 1981). The maximum-likelihood estimator also has to be
stabilized. Sometimes the application of Bayesian methods is to be recommended,
i.e. the use of a priori distributions of p (Carroll and Lombard, 1985; Giinel and
Chilko, 1989). Of particular practical interest is the case of a beta distribution with
integer parameters a and b, where the density function of p is proportional to
p®(1 — p)b. Then the maximum of L(v) has to be determined, where

-1
mv+a+b)
a—}-ZX,'

=1

m

L =] (;

i=1

) (mv+a+b+ l)( (v > Xma)- (12.12)

i

The v-value yielding the maximum is an estimator of n. Where n has been estimated
by (12.11) or (12.12), p can be estimated by (12.10), where 7 is replaced by 7.

The goodness-of-fit for the binomial distribution can be tested by the x2-test.
The same is also true for the other distributions in this section.

The Poisson distribution

The Poisson distribution plays an important role in the theory of point fields,
because it appears in connection with the Poisson field. The number of points from
a homogeneous Poisson field X = N(B) in a given Borel set B, has a Poisson
distribution.
A random variable X has a Poisson distribution if
k

Pr(X=k):%e"‘ k=0,1,...:p>0). (12.13)

The parameter i is equal to the mean and the variance of X:
EX =varX = pu. (12.14)

The Poisson limit theorem may explain the occurrence of the Poisson distribution.
Let there be a sequence of Bernoulli schemes with number of trials 7 and success
probability p,(rn = 1,2, ...). Let the success probabilities tend towards zero with
np, = p for all n. Then the number of successes X, in the nth scheme satisfies

u*
lim Pr(X, =k) = —e™* (k=0,1,...).
n—oc k!

Therefore the term ‘law of rare events’ is sometimes used. For structures that
contain relatively few irregularly distributed small objects, one may expect a
Poisson distribution of the number of objects in a given test set.
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Statistics for the Poisson distribution. Let there be a sample of m numbers
X1, ---, Xm- Then the parameter p is estimated by

A=—Y X =X (12.15)
i=1

|-

An approximate confidence interval for the level | — « is
1/, =\ 2 1y, _ 2
— (Y= VmX) u = — (Jn+ VmE+1) (12.16)

for large mX. Here z, s2 is the 1 — %a quantile of the normal distribution: z,,; =
1.65, 1,96 and 2.58 for a = 0.10, 0.05 and 0.01 respectively.

For further statistical methods for the Poisson distribution see Crow and
Gardner (1959), Sachs (1984) and Freund and Walpole (1987) (for example a
test of the hypotheses that 4 = o or ;) = w3 is given there).

The binomial and Poisson distribution are not sufficiently flexible for all appli-
cations. Thus the following two important classes of discrete distributions are
presented that have many applications in spatial statistics (Pielou, 1977; Cliff and
Ord, 1981).

Compound distributions

So-called compound distributions are obtained by making one (or more) parameters
of a given distribution random. This is illustrated here by the Poisson distribution
(there is a close connection to so-called Cox processes). 1t depends on the parameter
., which is the mean. If now u is a random variable then the random numbers are
generated in a two-step process. First, by a random mechanism, the actual value of
u is determined (according to a density function f(u)). Then a Poisson-distributed
random number is generated, where the parameter of the Poisson distribution is the
newly determined w. The probabilities of the corresponding distribution are given
by

Pr(X = k) = / Pe(u0) f (1) dps, (12.17)
1]

where Py(u) = (u*/kVe ™™ (k =0, 1,...). If the first and second moments of
f () are m; and m; respectively,

m,=/ X fyde (=1,2) (12.18)
0

then
EX =m, (12.19)

and
EX?=m, + m,. (12.20)
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This implies
varX =m, +m; —m?. (12.21)
An important particular case is where f (i) is a gamma distribution density:
0—’ r—1_-o
fw =——u "’ (uz20, >0, r>0)
r'@)

(the parameters of the gamma distribution are r and o).
Here X has a so-called negative binomial distribution:

'(r +k)o"

Pr(X =k) = —— % 4=0,1,..), 12.22
X =0 = red+or™ ) (12.22)
Ex = L, (12.23)
g
varx = (4D (12.24)
g

These formulae can be used to estimate the parameters r and o by the method of
moments.

Another explanation of the negative binomial distribution is as follows. Consider,
as in the case of the binomial distribution, a Bernoulli scheme. Let the success
probability be (1 + o)~!. Denote by X, the random number of success between
the (i — 1)th and ith failure; i = 1, 2, .. .. Consider the random variable X,

X=X +X+-+X.

It has a negative binomial distribution with the parameters  and o.

(d) Generalized distributions

So-called generalized distributions can be used to describe numbers of objects that
are formed by groups of random sizes. The corresponding random number X is
assumed to be given in the form

X = Ev:C,,
i=1

where the C; are non-negative integer identically and independently distributed
random variables, which can be interpreted as group sizes. The number of the
groups is then v, where v is a further integer random variable independent of
the C;.

The mean and variance of X satisfy the well-known formulae

EX = EvEC, (12.25)
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and
varX = EvvarC, + (EC))? varv. (12.26)

The probabilities p, = Pr(X = k) can be calculated by means of so-called gener-
ating functions:

00
HE) = Y pt,
k=0

G(z) = ZPr(v = k)z*,

k=0

gl2) = > _Pr(C, = k),
k=0
k

HE@) =G@g@) = Y Prv=k | Pr(Ci=j)
k=0 =0

If v and the C; are Poisson-distributed, with parameters u, and . respectively,
the generalized distribution is called the Poisson—Poisson distribution. Here

EX = woite,
varX = p,uc(1+ pe),
G(z) = e#v(f_l),

gz) = etth.

Thus
H(z) = exp(p, e’ D —1).

Let v now have a Poisson distribution with parameter p and let the C; have a
‘logarithmic’ distribution;

ak

PI'(Cl = k) = ——klogTa—)

O<a<l; k=1,2,..).

Then X has a negative binomial distribution with parameters

| -« o
o= and r = ————.
o log(l + 1/a)

Serfozo (1990) has discussed the problem of occurrence of negative binomial distri-
butions in the theory of point processes.






CHAPTER 13

Poisson Point Fields

131 INTRODUCTION

Poisson point fields {or more briefly Poisson fields) are the simplest and most
studied models of random fields. Their distribution satisfies very strong independent
conditions. In particular, the point numbers in disjoint (mutually non-intersecting)
sets are stochastically independent. It is clear that, under such assumptions,
formulae for distributional characteristics are obtained relatively easily. Also, statis-
tical problems can be solved with powerful and elegant methods.

In many applications it may be assumed that the distribution of points is totally
random or at least that it is so with local variations in the point density. In such cases
a Poisson field is a useful model. If such independence conditions do not hold then
Poisson fields are still of value, either as rough approximations or as null models.
That is, even a rough stochastic model is frequently useful instead of a purely
deterministic approach, just to get a feeling for the influence of randomness. Then
it is useful to have access to some theory and not merely to employ large computer
simulations. In other cases the statistician can make, despite better knowledge or
feeling, the assumption that the given field is a Poisson field. If this hypothesis
is confirmed by statistical tests then he/she may conclude that it is unnecessary
to look for complicated distribution laws in the pattern. Otherwise, the search for
better models can begin.

Poisson fields are also important as components of more complicated
models. Two important examples are Neyman-Scott fields and Boolean models.
Neyman-Scott cluster fields are constructed as follows. In the plane so-called parent
points are first scattered according to a Poisson field. Around each parent point,
daughter points are scattered. The set of all daughter points forms the cluster field
(see also §16.2). (A biological situation in which this model may perhaps be used
is as follows: the parent points are positions of plants, and the daughter points
stand for plants which result from seeds of the parent plants.)

The Poisson field of primary (or ‘germ’) plants is also the basis of the Boolean
model. Around each primary point, a random set (‘primary grain’) is positioned.
The set theoretic union of all these sets is a new random set called Boolean model.
Two examples where it can be used as a stochastic model are:



212 POISSON POINT FIELDS

Germ: germ point of a trefoil plant in a grass-plot,

Primary grain: area covered in a certain instant by those trefoils
which stem from a given germ;

Germ: germ point of a pore in bread dough,

Primary grain: pore developed starting from a certain germ.

In the second example the independence assumption is probably true only at the
beginning of the process of forming of the pores; later there will be interactions

between them.
Clearly, the Neyman-Scott field is a special case of the Boolean model. Some

basic facts about the Boolean model are given in Appendix F.
13.2 THE HOMOGENEOUS POISSON FIELD

13.2.1 Fundamental properties

The homogeneous Poisson field has two fundamental properties.

1. Ifkis any integer and if By, .... By are any disjoint (mutually non-intersecting)
Borel sets then the random variables N(B)), ..., N(By) are stochastically
independent.

2. The number N(B) of points in any bounded Borel set B has a Poisson distri-
bution with parameter AA(B). A(B) denotes the Lebesgue measure of B, i.e.
the area of B.

The parameter A has quite a simple meaning: it denotes the intensity or the mean
point density as given by
EN(B) = AA(B) 13.1)

for any Borel set B. (Of course, it is always assumed that 0 < A < 00.) It is clear
that properties 1 and 2 imply that the point field is homogeneous and isotropic.

The following property is very important for understanding the kind of
randomness of the homogeneous Poisson field. Let B be any bounded Borel set
and suppose that the point field has exactly n points in B. Then these #n points are
uniformly and independently distributed in B. This fact is used in the simulation
of homogeneous Poisson fields (p. 217).

The homogeneous Poisson field is already uniquely determined by property 1
above; there are no other homogeneous point fields with similar strong indepen-
dence properties. More precisely, a point field that is simple (no two points have
the same location in the plane), homogeneous and has the independence property
1 is necessarily a homogeneous Poisson field.
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13.2.2 Some important formulae

One-dimensional number distributions:

| k
Pr(N(B)) = k) = %e-“(‘” (k=0,1,...; A(B) < 00). (13.2)

m-dimensional number distributions (pairwise-disjoint B; of finite area):

Pr(N(B1) = ki, ..., N(Bn) = km)
K km m 13.3
= BAEE . BAGBDI oy |2 S a)| bk 20
' m: i=l1

1
Emptiness probabilities:
Pr(N(B) = 0) = e *®, (13.4)

Particular emptiness probabilities are given by the so-called contact distribution
functions. These are defined as

Hg(r) =1—-Pr(N(rB)=0) (r>0).

Here B is a compact ‘test set’ with A(B) > 0 containing the origin o; r B denotes
the dilation of B by a factor r: rB = {rx : x € B}. Of particular interest is the
spherical contact distribution H;(r). Here B is the unit disc, B = b(o, 1), and
H;(r) is given by

Hy(r) =1 —Pe(N(b(o,r)) = 1) = | — e~ (13.5)
The corresponding density function hg(r) is
hy(r) = 2re™"  (r > 0).

Obviously, Hs(r) is the distribution function of the distance from the origin to that
point of the Poisson field closest to o.

The strong independence properties of the Poisson field also make it possible to
calculate certain conditional probabilities. A typical example is the distribution
D(r) of the nearest-neighbour distance. Heuristically, this distribution can be
described as that of the distance of a randomly chosen point to its nearest neighbour.
There the term ‘randomly chosen’ is somewhat vague. Statistically, this means the
following: if n points are given in a window of observation, then for each of them
the nearest neighbour and the corresponding distance d; is determined. The d; form
a sample, and the corresponding empirical distribution function
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X 1<
D) =—3  lion(d)
i=]

approximates D(r). D(r) is obtained by probabilistic methods as follows, studying
the neighbourhood relationship of a single point. By the homogeneity of the point
field, this can be done for a point close to the origin 0. The conditional probability

D(r) =1 —Pr(N(b(o,r)\b(0,€)) =0 | N(b(o,£)) = 1) (r>0),

is similar to what is wanted, namely the probability that the nearest neighbour of
a point in a small disc b(o, €) lies at a distance not greater than » from o, where
r > €. As ¢ tends to 0, D.(r) tends to the desired distribution function D(r).

By the definition of conditional probability,

Pr(N(b(o,r)\b(o,€)) =0, N(b(o,¢)) = 1)

De(r)y =1~ Pr(N(b(o,€)) = 1)

The independence property 1 of p. 212 enables the simplification

_ Pr(N(b(o,r)\b(o, £)) = 0) Pr(N(b(o, €)) = 1)
Pr(N(b(o,€)) = 1)
1 —Pr(N(b(o, r)\b(o, g)) = 0)

D.(r) =1

which yields
D.(r) = 1 —exp[—AA(b(0,)\b(0, £))]

= l—exp[-An(r?—e?)] (r = 0).

On letting ¢ — 0,
D) =1—e™ (+>0). (13.6)

The corresponding density function is
d(r) = 2axre ™™ (r > 0).
Comparison with (13.5) yields
Hy(r) = D(r) (r=0). (13.7)

Because of the homogeneity of the Poisson field, this property can be expressed as
follows: the distance to the nearest point of the point field seen from an arbitrary
location of the plane has the same distribution as the distance to the nearest
neighbour of a randomly chosen point of the field.

This statement is a particular case of a general property of the Poisson point field,
which is known under the name ‘Slivnyak’s theorem’ (Stoyan et al., 1987, p. 50).
This theorem says that the point field seen from the position of a randomly chosen
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point, which for simplicity is translated to the origin o, has the same distribution
as the original point field plus a point in o.
The mean and variance of D(r) are

1

mp = —, (13.8)
Sy

o= L _ L (13.9)
T T :

The distribution functions D2(r), D3(r), ... of the distances to the 2nd, 3rd, ...
nearest neighbours can also be given as

k=1
1 .
Di(r)y=1- e F(—mrz)f r > 0). (13.10)
j=0 :

The corresponding density function is

2yk
2wt o0

rk— D! (r=0

di(r) =

(Fig. 85).
The jth moment is
T (k+3))

G—DiomZ UsbhZeo

mk,j =
Finally, the mode (maximum of density function) is

=y

k=1,2,..).
Y ( )

ry =

The function value dy(r«) for small & is only weakly dependent on k: in the case
A=1,itis 1.52 for k = 1 and 1.42 for k = 10.

1 2 345678910

0 1 2 3

o —

Figure 85 Density functions of the distances to the kth nearest neighbours (k¢ =
1,2,...,10) for a homogeneous Poisson field of intensity one.
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13.2.3 Second-order characteristics

In the theory of point fields second-order characteristics play an important role,
in particular for the description of distribution and in statistics. In the case of a
Poisson field they have a particularly simple form.

The original aim is to determine quantities such as

EN(B))N(Bz) or varN(B).
The variance can be expressed as
var N(B) = EN(B)* — [EN(B)T,
and the formula for the variance of the Poisson distribution yields
var N(B) = AA(B). 13.1D)

Simple calculations also yield EN(B|)N(By). If By N B, = @ (i.e. B; and B; are
disjoint) then

EN(B))N(B;) = EN(B,)EN(B;) = A2A(B,)A(B2) (13.12)

because of the independence property 1 (p. 212). Otherwise, B, = C; U D and
B, = C2, U D, where D = By N Bz, C;y = B)\D and C; = B2\D. Then

N(B)N(B,) = [N(C}) + N(D)IIN(C3) + N(D)],
and, from the independence of the point numbers in disjoint sets,

EN(B)N(B2)

= EN(C)EN(C2) + EN(D)EN(C2) + EN(C)EN(D) + EN(D)?
= E[N(Cy) + N(D)IE[N(C}) + N(D)] + EN(D)* — [EN(D)
=EN(B))EN(By) + EN(B, N By)* — [EN(B, N BT

The means in the last line can be calculated using (13.1); if additionally EX? =
w? +  is used for a Poisson-distributed random variable X with u=ArA(B;NBy)

then finally
EN(B))N(B2) = A2A(B))A(B2) + AA(B, N By) (13.13)

is obtained. This generalizes (13.12).
Now consider two disjoint infinitesimally small discs By and B, of areas dF,
and dF;,. Let the distance of the centres be . Then

EN(B)N(By) = A2 dF, dF,.
Since B; and B; are infinitesimally small,

EN(B))N(By) = P(N(B)) =1, N(By) = 1)
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holds with negligible error. The formula (13.3) yields
Pr(N(B)) = 1, N(By) = 1) = A2 dF, dF; = 0'?(r) dF, dF,.

In the language of the general theory of point fields, the factor o (r), is called
the second-order product density (Chapter 14). The calculations above show that
in the case of a Poisson field it has the trivial form

Q(z)(r) = A2

The function g(r) = o®(r)/Ar is called the pair correlation function. For the

Poisson field
gr)y=1.

The pair correlation function and the K-function are, in the general theory, the
most important second-order characteristics. The K-function is defined such that
AK (r) is the mean number of points in a disc of radius r centred at a ‘randomly
chosen’ point of a point field, which is itself not counted. Because of the general
property of Poisson fields mentioned on p. 213 (Slivnyak’s theorem) this mean is
equal to the mean number of points in the disc b(o, r). The latter is equal to Amr?
by (13.1), which yields
AK(@r) = Amr?

and
Kry=nrt @ >0). (13.14)

In passing note that there is a general relation between K (r) and g(r):

gr) = dK(r)/Zfrr,
dr

which is of course satisfied in the case of the Poisson field.
In point field statistics the K-function is frequently not used, but rather a simpler
function, the so-called L-function

L(r) = K—;r—) (r=0)

is employed. One of the reasons for using this function is its simple form for the
Poisson field:
Lry=r @r=>0). (13.15)

13.2.4 Simulation of a homogeneous Poisson field

The simulation of Poisson fields is a very important problem. It is needed in
Poisson field statistics (p. 227), and it is a starting point for the simulation of more
complicated structures.
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Here the case where the points lie in a rectangular window W of side lengths a
and b is described. (If the window has another form then a rectangle that contains
W may be used, and a Poisson field is simulated therein. The points in W then
form a sample with the necessary properties.) The simulation requires two steps:

1. Generation of the number n of points in W, where » is a sample of a Poisson-
distributed random variable with parameter i = Aab;

2. Generation of a sample of a binomial field of » points in W.

Details of the first step are given in Devroye (1986) and Ripley (1987). If n
is not too large then a linear Poisson process is first simulated. If its intensity is
unity then the number of points in the interval (0, 1] has a Poisson distribution
with parameter u. The simulation of a linear Poisson process of unit intensity
is straightforward using the fact that the distances between subsequent points are
independent and have an exponential distribution with parameter unity.

Thus exponentially distributed random numbers have to be generated first. This
is possible using the inversion method: if z is a uniform random number on [0, 1],
then e = —logz is an exponentially distributed random number on the parameter
unity. If (¢;) is a sequence of such random numbers, then the desired Poisson
random number is the smallest n with ‘

n
E € > .
i=l

A BASIC program for generating Poisson distributed random numbers has the form

10 P=1:N=0:T=EXP(—uw)

20 Z = RND(0)

30 P=PxZ

40 IFP > TTHEN N =N + [: GOTO 20
50 NZ = N: RETURN

The execution of 'step two has already been described in §12.2.1. Lewis and
Shedler (1979) have suggested to perform both steps jointly: Generate a linear
Poisson process of intensity A in [0, @] and take its points as x-coordinates. The
corresponding y-coordinates are taken as uniform random numbers on [0, b].

13.2.5 Statistics for the homogeneous Poisson field

In Section 13.1 it has been mentioned that the homogeneous Poisson field plays
a fundamental role in the theory of point fields, as a basis for models and as
a null model. Therefore there are various.statistical methods for Poisson fields,
particularly for testing the hypothesis that a given point pattern is part of a sample
of a Poisson field. Some of them are described here (see also Cox and Lewis, 1966;
Snyder 1975; Brillinger 1978; Ripley 1981, 1987; Diggle 1983; Karr 1986; Stoyan
et al., 1987).
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It is assumed here that the point pattern is given in a rectangular window W.
Generalization to other window shapes is also possible. If more than one window
can be analysed then the corresponding statistical quantities are obtained by area-
weighted averaging.

(a) Estimation of the intensity

The distribution of a homogeneous Poisson field depends only on the parameter A;
if it is known then all interesting quantities and distributions can be calculated, as
the formulae in §13.2.2 show. The maximum-likelihood estimator

N(W)

AW (13.16)

i =
is usually used to estimate A. It is unbiased and consistent (i.e. its accuracy increases
with increasing window area; see also (11.2)).

For some applications it is convenient to estimate A using interpoint distances
(‘distance methods’). The interested reader is referred to Ripley (1981) and
Diggle (1983).

It is possible to give a confidence interval for A, which is based on the fact that
the point number in the window, N (W), has a Poisson distribution (and that this
is asymptotically normal) of the parameter AA(W). Using (12.16), one obtains the
interval

2 2
[$7ar2 = VN < 2AW) < [Jzan + VNOW) T 1] (13.17)

at the confidence level 1 — c.

This confidence interval can be used in planning experiments to choose that
window area A(W) necessary for a given accuracy. Starting with a given breadth
J of the confidence interval, the required A(W) is determined. The equation

[0+ VAAD] — [0~ V3R]

AW)

yields the approximation

4rz2
AW) ~ 8;/2. (13.18)

The unknown A appears in the formula. An approximation must be used for A,
which is obtained by a priori knowledge or a pilot study.

Example. Figure 86 shows a system of nearly planar silver particles on a polished
steel plate, which are treated as discs. Here the system of the disc centres is
analysed.
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Figure 86 Silver particles on the surface of a steel body. See the text and Stoyan and
Wiencek (1991). The centres of the particles approximated by discs form a point field of
weak short-range order.
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The area A(W) of the quadratic window is 144 cm? magnified 2280-fold, and
the number N (W) of .discs is 53. Thus an estimate of the intensity is given by

A= “= 0.368 cm ™2

It was assumed that the point pattern belongs to a Poisson field, though some
readers may doubt this, since the discs are relatively regularly distributed within
the window. If (13.18) were used for ¢ = 0.05 and § = 0.06 for calculating the
necessary window area then the result would be

4 x 0.368 x 1.962
0.062

Thus a 40 x 40 window or eleven 12 x 12 windows are necessary. This result
has been obtained assuming a Poisson distribution, which presupposes greater

A(W) = = 15708 cm™2.
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variability than that in Fig. 86. It may be assumed that with the calculated window
area an error less than § = 0.06 may be obtained.

(b) Test of the distribution assumption

To test the assumption that a given point pattern can be interpreted as part of a
sample of a homogeneous Poisson field, various methods are known (Ripley, 1981;
Diggle, 1983; Stoyan et al., 1987). Here two groups of such methods are described,
which are used particularly frequently: quadrat count methods and L-function tests.

Quadrat count methods. The window W is divided in k subregions of equal area
(e.g. small quadrats). The number v; of points in each subregion is determined.
Assuming a Poisson field, the v; are independent and identically distributed; the
mean number per subregion is AA(W)/k. Large deviations in the v; from this value
or a behaviour that is too uniform indicate deviations from the Poisson hypothesis.

Dispersion index test. One calculates

k — 1)s?
b

I= (13.19)

where & is the number of subregions, s2 is the sample variance of point numbers in
subregions, v is the mean number of points per subregion and is equal to N(W)/k =
n/k. The Poisson hypothesis is rejected if

2 2
1> Xi—1a O I < Xi— 11—

Here « is the probability of an error of type I and X,ﬁ,ﬁ the 1 — B quantile of
the y’-distribution with m degrees of freedom. (k should be greater than 6 and
AA(W)/k greater than 1.)

In the first rejection case it may be assumed that the points appear in clusters. In
contrast, the second one implies more regularity than is typical for a homogeneous
Poisson field.

Remark. The dispersion index test can be interpreted as a x2-goodness-of-fit
test. To understand this, the & subregions should be interpreted as k classes and the
hypothesis should be tested that a uniform distribution is given (p. 212). Then the
test variable of the y2-test is

k

wi—n/k?  (k=Ds} 5t
Z n/k T n/k _(k_l)g'

i=]

Example (silver particles, continued). The window is divided into k = 64 quadrats
of size 1.5 x 1.5. The quadrat numbers are then
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1100 1 1 11
111 11011
o1 1 2 1 1 11
001 1 01 02
01 1 1 01 1 0
2 0 1 1 1 2 1 1
01 1 1 100 3
2 1.0 01 1 1 0
This yields
5= 2 _ 0828, 52 =10.399, [=63x 0399 _ 30.36.

64 0.828

With x&.00s = 82.5 and x2.q0s = 45.7, one obtains a clear rejection of the Poisson
field hypothesis, and the value of I suggests a more regular distribution.

Greig—Smith test. The Greig-Smith test is a refined variant of the dispersion
index test. Here not only the point numbers in the subregions are considered, but
also the neighbourhood relations. It is assumed that the window is rectangular. By
successive bisection of subrectangles, k = 29 subrectangles (SR) are obtained. The
following quantities are then calculated:

[S1E

2 number in the ith\?2
St = Z( ) -
@ SR 2 2
Py (number in the ith) | (numbet in the mth)
2
(m)

52 = % \pair of SR quadruple of SR

number in the mth 2
{my \pair of SR ’

In the case ¢ = 6 or k = 64 the SR can be numbered as on the chess square. Pairs
of SR are then (al, a2), (a3, ad), ..., (bl, b2), (b3, b4) etc.; quadruples of SR are
(al, a2, bl, b2), (a3, a4, b3, b4) etc.

The sj2 are used to calculate the quantities

Since the quantities sj2 /297 are estimators for the variance of the point number in
the SR as S2, the /; behave as / in the dispersion index test. But the number n of
degrees of freedom for the corresponding x2-distributions is 297/.

As in the dispersion index test, the Poisson field hypothesis can then be tested
for j = 1,2, .... It may happen that the outcome is different for different j. This
may lead to statements about the size of clusters or the scale of regularity. If,
for example, I3 is greater than the critical y2-value then there is clustering in the
range of quadruples of SR. If then /4 has a mean value, one may conclude that the
quadruple-sized clusters are randomly distributed.
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Example (silver particles, continued). The data for the SR-pairs, quadruples etc.

are as follows:

Pairs

2 2 1 1 2
o 1 2 3 1
2 1 2 2 1
2 2 1 1 2
Octuples

5 7 6 8

7 6 7 17

Groups of 16

1 2
2 1
3 2
11
12 14
13 14

L = o N

Quadruples

4 2 3 4
I 5 3 4
3 4 4 3
4 2 3 4

Groups of 32
25 28

Table 15 contains the I; and the critical x2-values. As expected, /; is smaller
than x322.0_95, which indicates a regularity tendency at small scale. For larger units,
then, the /; behave as in the case of a completely random distribution (if /s is

ignored).

Example. For the sample of the cluster field shown in Fig. 87 the following data

are obtained:

O AW O WV X
O = NO = OO -

SO OO BN

BR =0 =0

—_—0 = W~ O WO

SO O N — O

0

O O WUnNN AN -

0

Calculations as in the preceding example yield Table 16. The [;-values reflect

the cluster structure of the point pattern very well.

Other tests analyse various distances; interpoint distances and distances to test
points; see (13.7) (Ripley, 1981; Diggle, 1983; Shaw, 1990). In the latter paper the
interpoint distances in subsquares are used, and boundary effects are considered.

Table 15 Results of the Greig-Smith tests for the
silver particles.

j Degrees of Xeos I Xeos
freedom
1 32 20.1 19.9 46.2
2 16 8.0 11.5 26.3
3 8 2.7 15.1 15.5
4 4 0.7 54 9.5
5 2 0.1 0.6 6.0
6 1 0.0 54 38



224 POISSON POINT FIELDS

~ L) - LIS Ll : hd -« =
oy, - . " I. L .: <%
- L] L]
T .
= " . e Je -
w e :.l' *a ll:. N -
.-l. - : . - .-l
" L -. (]
- "u L] - ewa ® . -
.. . « " . . :. ~ -.—.
L] L ) .. - . . 'l . :
f * &~
- =
. .l l..l
A * =t
l..l " g
. .
. u
LI ]
(] ...
" e
' an

Figure 87 Simulated sample of a cluster field. The cluster centres (parent points) form a
Poisson field of intensity S0. Each cluster consists of 5 points; they are uniformly distributed
in a disc of radius 0.05. (The length of the lower edge of the rectangle is 1.) See §16.2 for
details of cluster fields.

Table 16 Results of the Greig-Smith tests for the
simulated cluster field.

j Degrees of Xios ], Xéos
freedom
1 32 20.1 106.3 46.2
2 16 8.0 136.0 26.3
3 8 2.7 50.4 15.5
4 4 0.7 125.9 9.5
5 2 0.1 705.5 6.0
6 1 0.0 254.2 3.8

McKendrick (1991) suggested a test that uses the number of non-empty subre-

gions of W. He compared its power by simulation with that of several other Poisson
field tests.

The L-test The following test needs somewhat more calculations (namely the
calculation of the empirical L-function (p. 279) but it handles the deviations from
the distributional properties of a Poisson field in a more sensible way. It uses the
fact that the L-function of a homogeneous Poisson field satisfies

Lry=r (=>0).

Therefore the test variable

T :max]i(r)—rl (13.20)
r<rp
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is used, where L(r) is an estimate of L(r) and rq is an upper bound on the interpoint
distance r.

If ¢ is very large then the hypothesis that the point pattern is a subsample
of a Poisson point field must be rejected. (The alternative hypothesis is ‘not a
Poisson field’, without further qualification.) For the case that L(r) is determined by
Ripley’s estimator (see pp. 279, 282 and (15.7)), critical values for 7 are determined
by simulation. Ripley (1988) has suggested the critical value

v A(W)

=145Y—~ 13.21
T0.95 N W) ( )
for @ = 0.05. This can be used if N (W)U (W)r3/A(W)? is ‘small’. The dependence

of rq is said to be weak.

The results of Koen (1991) are more detailed (Tables 17 and 18). They are based
on 1000 simulations and give critical values for a quadratic window of unit side
length. In the case of side length a the values in the tables must be multiplied by
a. The value of rq is connected with the auxiliary additional parameter ¢ by

va

= N

Example (silver particles, continued). Figure 88 gives the empirical L-function
and the 5% limits of Ripley and Koen. The formula (13.21) yields a critical value
To.9s = 0.33. For r smaller than 1.8 cm, L(r) is clearly less than » — 0.33, so that
the Poisson field hypothesis must also be rejected by the L-test.

Table 17 Approximate critical points tgos for the L-test (after Koen, 1991).
n 2

1.5 25 5.0 15 10.0 15.0

10 1.13E~1 1.24E—1

20 5.59E-2 559E—-1

30 4.56E—2 4.56E—2 4.56E—2

40 2.59E-2 2.84E-2 3.15E-2

50 1.98E—2 2.13E-2 2.45E-2

60 1.82E-2 1.87E-2 1.98E-2 2.45E-2

70 1.40E—2 1.51E-2 1.72E-2 2.06E-2

80 1.31E-2 1.38E—-2 1.45E-2 1.72E-2

90 1.10E-2 1.13E-2 1.29E—2 1.44E-2

100 9.86E—3 1.08E—2 1.14E-2 1.31E-2 1.66E—2
200 4.95E-3 5.27E-3 5.67E-3 6.21E-3 7.10E-3
300 3.13E-3 3.39E-3 3.65E—3 3.85E-3 4.46E—3 7.40E-3

Read 3.13E—3 as 0.00313 etc.
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Table 18 Approximate critical points ty49 for the L-test (after Koen, 1991).
n 2

1.5 25 5.0 7.5 10.0 15.0

10 1.58E—1 1.58E—1

20 6.05E-2 6.65E—1

30 4.56E—2 4.56E-2 5.09E—2

40 3.95E-2 3.95E-2 3.95E-2

50 2.53E-2 2.63E-2 2.99E-2

60 2.05E-2 2.12E-2 233E-2 3.05E-2

70 1.85E—-2 1.85E-2 2.03E-2 2.61E-2

80 1.51E-2 1.59E-2 1.78E—2 2.14E-2

90 1.38E—2 1.38E-2 1.48E—2 1.76E—-2

100 1.31E-2 1.37E-2 1.38E-2 1.61E—-2 2.12E-2
200 5.88E—-3 6.18E—3 7.92E-3 7.71E-3 9.18E-3
300 3.80E-3 3.96E-3 4.65E-3 4.73E-3 5.73E-3 9.70E—3

Read 1.58E—1 as 0.158 etc.

4k i
3 -
&
-~ 2 -, .
Ripley - fimit
Koen - limit
1
< 1 L
0 1 2 3 4

Figure 88 The empirical L-function for the centres of the silver particles of Fig. 87 is
indicated by . The critical regions belonging to 1,45 are indicated by --- (Koen) and

--— (Ripley).
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The calculation using Koen’s tables is performed with n = 60 and

1
WA 0.0686.
If one chooses # = 5.0 then, since @ = 12, a value 4.1 is obtained for ry. The
critical value here is 7595 = 0.0245a = 0.294; it is slightly smaller than Ripley’s
value. Consequently, the invalidity of the Poisson field hypothesis is still clearer.

If the Poisson hypothesis is rejected, the form of the empirical L-function
provides information about the type of point distribution in the pattern. Of particular
importance are deviations of L(r) from r for small r. If L(r) is less than r then
this suggests greater regularity in the point distribution than is typical for a Poisson
field. Conversely, if L(r) is greater than » then one must assume that there is a
tendency for clustering of points.

If the variants of the L-test described above are not acceptable (whether because
of doubts in the accuracy of (13.21) or the point number N (W) not being in the
tables, or because of greater deviations of the window shape from a square or a
rectangle, and if a good computer is available, then a Monte Carlo test may be
used. One chooses a suitable value of rg, for example the half diagonal length for
a rectangular window. Then independent binomial fields with exactly N (W) points
are simulated 999 times in a window that is congruent to the given window W.
For each sample the L-function is estimated, and then the quantities

t(i):maxlii(r)—rl (i:l,...,999)
r=rp

are determined. The t® and the corresponding value t of the empirical L-function
are ordered according to magnitude:

r*(l) < r*(Z) <...< .L,*(IOOO)_

If the index of 7 in this series is greater than 950 or 990 then the Poisson process
hypothesis is rejected for & = 0.05 or 0.01 respectively.

Test for homogeneity
In general, only certain aspects of homogeneity can be tested. This is particularly
problematic if only one sample is given.

Differences in the point density can be tested as follows. Let W, and W; be
two subregions of the window W. They have to be chosen a priori, i.e. before
determining the points (examples include the boundary region or interior of W,
lower and higher regions of a forest, head and foot regions in the example of
p. 232). It would be methodically incorrect to choose the subregions a posteriori,
when the point pattern is already known. This might be done in such a way that
the point density is large in one of them and low in the other.

Under the assumption of a homogeneous Poisson field, the quantity

F_ AW)@na+ 1)
AWy)(@2ny + 1)
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has an approximate F-distribution (Sachs, 1984). The degrees of freedom are 2n; +
1 and 2n; + 1, where n; is the number of points in W;: n, = N(W;) (i = 1,2).
There the indices are such that F > 1.

The homogeneity assumption is rejected if

F > Fani1,2004150/25

where « is the probability of an error of type I

Example. The point pattern considered here is that of Fig. 90. W, and W, are the
upper and lower halfs of the observed rectangle, so that

n; =10, A(W;)=1485, n, =27, A(W,) = 1485.
Thus F = 2.619. For o = 0.05 the critical F-value is
Fony11,2n 41502 = Fa1,550025 = 2.20,

i.e. the difference in point density has to be considered significant.

13.3 INHOMOGENEOUS POISSON FIELDS

13.3.1 Fundamental properties

Inhomogeneous Poisson fields are stochastic models of point patters with determin-
istic differences in the point density. Instead of the intensity A an intensity function
A(x) or an intensity measure A is used. These fields have the same independence
property 1 (p. 212), as the homogeneous Poisson field. Property 2 is modified as
follows.

2’.  The number N (B) of points in a bounded Borel set B has a Poisson distri-
bution of the parameter A(B). Here A is a measure, the so-called intensity
measure. A is diffuse, i.e. there is no x with A({x}) > 0 because otherwise
there would be multiple points. In the homogeneous case

A(B) = LA(B). (13.22)

There is often a density function (with respect to the Lebesgue measure) A(x) of
A so that
A(B) :/A(x) dx. (13.23)
B

The function A(x) is called the intensity function. The mean number of points in B
is A(B). The probability that in an infinitesimally small disc of centre x and area
dF there is a point belonging to the field is A(x) dF.

If A(R?) = v < oo then the point field has only finitely many points; their
number has a Poisson distribution with parameter v.
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Figure 89 Simulated inhomogeneous Poisson field. The point density is proportional to
exp(—+/x? + x2), where the origin is at the centre.

Example. Let the intensity function A(x) have the form

A(x) = aexp (—b\/)cl2 + x%) , X = (x1,x2).

This means that the point density is maximal at the origin o0 and decreases exponen-
tially with increasing distances from the origin. Figure 89 shows a simulated point
pattern with parameters ¢ = 5 and b = 1. The mean number of points in the disc
b(o, r) centred at o with radius r is

EN(b(o,r)) = na/ ey du = 7[%[1 — (1 +br)e ",
0

using polar coordinates (u? = x? + x7). This intensity function satisfies

wa
AR =v= 7

13.3.2 Important formulae

Analogous formulae hold for the number distribution as in the homogeneous case;
though AA(B) should be replaced by A(B). The same is true for emptiness proba-
bilities and contact distribution functions. It is also possible in principle to define
distance distribution functions corresponding to D(r). They depend, however, on
the position of the reference point. (In the above example the nearest-neighbour
distances for points close to o are smaller than for points very distant from o.)
They can be obtained by limiting procedures as in §13.1.2.
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The formulae for second-order characteristics are also similar to those in the
homogeneous case. In particular,

var N(B) = A(B) (13.24)

and
EN(B))N(By) = A(B;)A(By) + A(B; N By). (13.25)

Product densities can be expressed in terms of the intensity function A(x). The
probability that there is a point in each of two infinitesimally small discs centred
at x; and x, with areas dF; and dF; is

0@ (x1, x2) = A(x1)A(x2) dF, dFa.

Poisson fields have an important thinning property. Let p(x) be a function with
0 < p(x) <1 and consider a Poisson field of intensity function A(x). It is decided
randomly and independently of the others whether or not each individual point
is eliminated, where the probability for a point at x of being retained is p(x).
The result of this thinning procedure (called a ‘location-dependent independent’
thinning) is a new point field. It is, as perhaps expected, a Poisson field with

intensity function
Ap(x) = A(x)p(x). (13.26)

The corresponding intensity measure satisfies

Aam=/pmunM=Apmmmy
B

13.3.3 Simulating an inhomogeneous Poisson field

An elegant way of simulating an inhomogeneous Poisson field with intensity
function A(x) is to thin a homogeneous Poisson field. One assumes that A(x)
is bounded, i.e. theré is a number A* such that

Alx) < A*
for all x. The function
(x) A9
X) =
p A.*

is used as location dependent thinning function.

In the first step of the simulation a homogeneous Poisson field of intensity A*
is generated in the window (§13.2.4). Then it is independently decided whether or
not the points thus obtained are eliminated. To do this, p(x) is calculated for every
point x, and a random number z is generated. If

z > p(x),
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the point x is rejected; otherwise it is a member of the sample of the inhomogeneous
Poisson field.

13.3.4 Statistics for an inhomogeneous Poisson field

The most important task of statistics for inhomogeneous Poisson fields is the deter-
mination of their intensity functions. This is the sole problem to be considered here.
The statistical methods are described for the case of a single point pattern. If there
are k independent patterns (belonging to the same intensity function and the same
window) then the superposition of the k patterns can be formed, and the corre-
sponding intensity function can then be determined by the methods below. It is
then divided by k to yield the required intensity function.

Parametric methods for estimating the intensity function

A parametric form for A(x) frequently make sense, for example
Ax) =A(x, x2) = pe™, x,x20, x=(x,x) (13.27)

Here the point density decreases exponentially in the direction of the x;-axis (see
the example on p. 232). This function depends on the two-dimensional parameter
6 = (u,a).

The determination of such an unknown parameter 6 of an intensity function
A(x,0) of a Poisson field can be done using the maximum likelihood method. The
corresponding likelihood function is

L(xp, ..., x250) = A(x1;6)---A(x,; 8) exp [—/ Alx; G)de (13.28)
w

(Snyder, 1975; Karr, 1986). The parameter 6 is chosen such that the likelihood
function or its logarithm are maximized. This leads to the following mathematical
problem:

maximize the quantity

> log A(xi; 6) — / A(x; 0)dx
i=1 w

by a suitable choice of 6.

Frequently the solution can be obtained by differentiating with respect to 6
and setting the derivatives equal to zero. The following example demonstrates the
solution for the particular case (13.27).

First a heuristic explanation of (13.28) will be given. The quantity
L(xy,...,xn;8)dx;---dx, may be interpreted as the probability that a point of
the field lies in each of the infinitesimally small area elements of area dx; - - - dx,,.
No further points should lie outside these areas. These events are independent on
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account of the independence of the Poisson field. Their probabilities are equal to
A(x;; 0) dx respectively. The probability that no further points lie outside these area

elements is
exp [—/A(x;é’)dx] ,

where the integration is taken over

W\ U (area elements).
i=1
Clearly the area elements are negligible and may be forgotten. Thus the integration
is over the whole of W.

In the modern statistical literature so-called likelihood quotients are used instead
of likelihood functions with respect to the distribution of a homogeneous Poisson
field (Karr, 1986, p. 118ff). But this leads to the same estimates as the method
above.

Example (Siegel et al., 1990). Figure 90 shows the distribution of n = 37 defect
pores on one side of a cut steel block of length L = 90 cm and breadth b = 33 cm.
The pores are randomly distributed in the observation area, with an increased
density near the so-called head. It seems natural to choose an inhomogeneous
Poisson field with an intensity function of the form (13.27). The parameters p and
« are to be estimated. Instead of u, the quantity u* is estimated, where

u* = ub

and the originally two-dimensional problem is considered as one dimensional.
The log-likelihood function is

L n
I(u*,a) = / wre ¥ dx + Z log(u*e ™)
0 i=l

= —%(1 —e L)y 4+ nlogu* —aZx;.

i=1
The x;» are the x;-coordinates of the pore centres. Setting the derivatives with
respect to @ and p* equal to zero gives
al

0= — l—e” " i*
« 0

and s

- ale®t — (1 —e™@h)

0=-) xi—u ' . 13.29)
; m 7 (
This yields the following formula for p*:
. an
K==L

T 1—e”
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Figure 90 Defect pores on a side of a steel block.

Combining this and (13.29) yields the following equation for «:
n 1 —(1+aL)e™t

0=-) xi+
Z ! a(l —e™@D

i=1

This can be solved numerically, for example, by regula falsi. The following
estimates are obtained for the example: @ = 0.031 cm~' and i* = 1.16 cm™'. This
gives the value for w: the estimate i = 0.035 cm~'. Exactly the same solution
would be obtained when considering the problem as a two-dimensional one: the
integral in the log-likelihood is then a double integral over the rectangular block.
To check the hypothesis of an inhomogeneous Poisson field, one conducts the
following test (Ogata, 1988). It is based on a ‘time’ transform for a linear non-
stationary (inhomogeneous) Poisson process {¢} of intensity function A(¢):

i —> 1 =A®),

with A(t) = fo' A(u)du. If the ¢; are points of a linear Poisson process then the
7; have positions in the interval [0, A (oo)] and behave like independent uniform
points ordered in ascending order.
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Table 19 Class frequencies after the ‘time’ transfor-
mation.

Classes Frequencies

0-4.9
5-9.9
10-14.9
15-19.9
20-24.9
25-299
30-34.9
35-374

|\oc~u|u|-¢>-4>-¢>~

In the particular case of the pores in the steel block the x;-coordinates x; are
transformed according to

"*

—(1 e ).

Under the Poisson process hypothesis, a uniform distribution of the t; in [0, f*/&]
= [0, 37.4] can be expected. The true class frequencies are given in Table 19. If
one ignores the values in the two final classes, then the result is in good agreement
with the uniformity hypothesis.

If the intensity function A(x) satisfies the condition

/ Ax)dx =v < o0
R2

then A(x) can be written as

A(x) = vf(x).

v is the mean total number of points per point pattern, and f(x) is a two-
dimensional density function.
Statistically, v is estimated from k point patterns by

k
D= Z N;(R?) (13.30)

where N, (R?) is the total number of the jth point pattern. The density function f (x)
is then determined by methods for estimating two-dimensional density functions.
For example, if f(x) is a normal distribution density as in §2.2.2 then the formulae
given there can be used to estimate the parameters of the distribution.

Example (defect pores, continued). This example can be also considered with the
classical method of statistics, if the ‘censoring’ resulting from the finiteness of the
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block length L is ignored. The known methods for the exponential distribution give

o=

3

| o—

where ¥ is the mean of the xj-coordinates of the defect pores. For the example
% = 31.89 yields & = 0.031 cm™!, which was already obtained on p. 233. A
natural estimate of i* is

nt=an.
For large « and L this differs little from the formula given on p. 232 for w*. For
the example the value ji* = 1.16 cm™' is again obtained.

(b) Non-parametric methods for estimating the intensity function

Kernel estimators The choice of the form of A(x,8) as above is sometimes
unnatural, particularly if there is no physical or biological law that determines the
point density. Therefore it is desirable, in particular for exploratory data analysis,
to obtain estimates for A(x) that are free of such decision. A powerful method for
solving this problem is the use of kernel estimators (see also Appendix L). A quite
simple form is the estimator given by Diggle (1985):

N(b(x, b))

—3 (13.31)

Ah(x) =

Here the intensity function at the location x is estimated by the mean point density
in a disc centred at x with radius h. It is clear that the parameter & has great
influence on the form of the function i;, (x). If h is large then the function i;, (x)
is smooth and local point density fluctuations are compensated. Conversely, An(x)
may be very rough and variable for small ~. Thus the same data lead to different
results for different choices of 4, and the question arises as to which 4 is the ‘right’
or ‘optimal’ value.

Example (defect pores, continued). Figure 91 shows isolines of i,,(x) for the
defect pores of Fig. 90 with values # = 10 and £ = 20. Near the boundary of the
window W the formula

N(W Nb(x,r)

M) = W Abe )

has been used. (This is a form of edge-correction. Sometimes it leads to local
maxima, if there are points quite close to the boundary.)
A more general approach uses a kernel function &, (z). Here

A, (x) = > kn(x = x;) (13.32)
i=1
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Figure 91 Isoline plots of the estimated intensity function for the pores of Fig. 90.
Obviously, the choice of the smoothing parameter i has great influence on the result. The
plot for h = 20 appears to be acceptable.

is an estimator for A(x). The particular choice

lb(a,h)(z)
wh?

gives the estimator of (13.31). Another possibility is the planar Epanenikov kernel

kn(z) =

8
ky(z) = %—heh(llzn),
where

t2
ety = ) 2 (“h‘f) (It] < b,

otherwise.
Also a ‘quadratic’ version of the Epanecnikov kernel has been used:

kn((Z',2") = en(ZNen(Z")  (Z=(Z'.2")).
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The simple notation A, (x) will be used from now on, even in the case of a general
kernel function.

Choice of parameter h. Frequently a reasonable way of choosing A is to
determine the functions A, (x) for different 4 and to choose that which gives the
most pleasing or reasonable result.

An easy numerical method is the likelihood cross-validation method. The expla-
nation given in Silverman (1986, pp. 52, 53), can be transferred to the situation
considered here as follows. Suppose y is a further member of the point field in
addition to the points given in W. If A(x) is the true (unknown) intensity function
then the value of the log-likelihood function belonging to y is

logk(y)—/ A(x)dx.
w

Here it is natural to replace A(x) by the estimator An(x) and to consider h as a
parameter to be estimated.

But there is no additional point y. Thus, one proceeds so that first the point x;
is removed from the set of n original points. For the remaining points an estimate
)A\,;;,(x) of the intensity function is determined for the kernel with parameter 4. This
yields for x; the log-likelihood value

lOgii,h(xi)_/ Aip(x)dx.
w

Since all points are of the same kind, it is averaged and the quantity

PL(h) = ;11- > <logi,»,h<x,»> - / i.-,h<x>dx>
w

i=1

is considered. This quantity is maximized by optimal choice of 4. Since the integrals
are obviously equal to n — 1 for all i, it suffices to maximize the sum

Zlogi,;;,(x,-) = Zlong,,(xi —X;).
i=1 i=1 j=1
i

This can be easily done on a computer by determining the double sums for a series
of h-values and choosing that 4 which yields the biggest double sum. Unfortu-
nately, this method frequently gives rather small values of 4. Thus the optimization
is modified by introducing so-called penalty functions, which ensure sufficiently
smooth results (see e.g. Silverman, 1986; Ogata and Katsura, (1988).

Berman and Diggle (1989) have chosen the smoothing parameter # in (13.31)
such that a mean quadratic error is minimized. For the quadratic Epane¢nikov
kernel (p. 236), Diggle (1981) has recommended the value

h = 0.68n~°2
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for a quadratic window W. (As always, n is the number of points observed in W.)
The same author has also suggested edge corrections (see Diggle, 1985).

It is clear that there is a close connection with estimating two-dimensional density
functions. Thus the methods used there (Silverman, 1986) can be applied here as
well.

Example (defect pores, continued). As above, it is assumed that A(x) = A(x;), i.e.
that the intensity function depends only on the x;-coordinate, namely the distance
from the head side. Thus to estimate A(x), only the x,-coordinates of the defect
pores are used. Using the Epanecnikov kernel, A(x;) is estimated as

An(x) = Zeh(xl —-X;),

i=l

where X is the x;-coordinate of the ith point.

The function P L(h) has a clear maximum at # = (.8; thus the likelihood cross-
validation estimate of & is 0.8. Unfortunately this value is too small, and 5\0.8 (xy)
does not look reasonable (Fig. 92). Since the function PL(k) is monotonically
decreasing in A for h > 0.8, the smallest value for 4 should be taken at which
additional smoothness and positivity properties of A(x;) hold.

Figure 93 shows several estimated intensity functions for different values of 4.
For h = 6 a function is obtained that is practically positive, but this function is

L
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0.04

(x4}

0.03
0.02

0.01

X4y (inem) ——»

Figure 92 Estimated intensity function A(x,) for the pores of Fig. 91 with # = 0.8. Here
the Epanecnikov kernel was used. The meaning of / differs from that in Fig. 91.
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Figure 93 Several estimates of the intensity function A(x,) for the pores of Fig. 91. Again

the Epanec¢nikov kernel was used. The parametric estimate of p. 233 is labelled ‘exponential’.
A is that value which belongs to the assumption of a homogeneous Poisson field.

too still rough. A smooth curve is obtained only for a bandwidth A = 20; it is
interesting to see that it clearly differs from an exponential function.






CHAPTER 14

Fundamentals of the Theory
of Point Fields

14.1 INTRODUCTION

The aim of this chapter is to present the reader with the important facts of the
theory of point fields in an elementary manner. The aim is to help in understanding
those characteristics that are of importance in point process statistics. Furthermore,
a formalism is introduced in which the statistical estimators of Chapter 15 are
given.

The first- and second-moment measures and the related characteristics play a
central role. In some sense they correspond to mean and variance of random
variables and to the mean value and covariance function of stochastic processes.
Furthermore, distance distributions are considered.

More detailed expositions of the theory are given by Cox and Isham (1980),
Stoyan et al. (1987), Daley and Vere-Jones (1988), Reiss (1993), Karr (1986) and
Kerstan er al. (1976), in increasing order of difficulty.

142 THE INTENSITY MEASURE

The intensity measure plays a similar role in the theory of point fields as the mean
does for random variables. It is defined by

A(B) = EN(B) (14.1)

for any Borel set B; thus A(B) is the mean point number in the set B. Often there
exist a density function A(x) for A with

A(B)=/k(x)dx. (14.2)
B

The function A(x) is called the intensity function. If the point field N is homoge-
neous then the intensity A completely describes the intensity measure:

A(B) = LA(B). (14.3)
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This is a simple consequence of EN (B) = EN(B,) (because of homogeneity) or
A(B) = A(B,) and the fact that the Lebesgue measure A is the only translation-
invariant measure on R? up to constant factors that assigns a finite value to the
unit square.

In taking B to be of unit area, it becomes clear that A may be interpreted as a
point density or a mean point number per unit area. A local interpretation of A is
also possible. Let C be a small disc of infinitesimal area d¥. Then the probability
that C contains exactly one point of the point field is

AdF + o(dF).

The probability that C contains more than one point is o(dF); see the literature for
a rigorous mathematical formulation of these facts. Using the intensity measure,
important means may be written elegantly. In particular, the Campbell theorem

holds.
Let there be a measurable function f (x), which assigns to each point x of R? a
non-negative number. One wishes to determine the mean

EY 00 =E [ fwnan.

xeN

For each point x of N the value f(x) is found, and then the sum of the function
values is considered. The result is a random variable. Then

E/f(x)N(dx):/f(x)A(dx). (14.4)

Using the intensity function A(x), the right-hand side can be rewritten as

/ FxO)A(x) dx.

If the point field is homogeneous then (14.4) simplifies further:

E/f(x)N(dx):k/f(x)dx. (14.5)

In the case of marked point fields the mean value theory is somewhat richer. First
the field may be considered without marks and the intensity measure and intensity
can be defined. Alternatively, the full intensity measure Ay of the marked point
field can be used. It is defined by

Au(S) = EN(S),
where S is a subset of R? x M. In particular,
Ay(BxC)=EN(B x )

is the mean number of points in B with a mark in C.
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If the marked point field is homogeneous, Ay simplifies as in the case without

marks. Then
Au(B x C) = AA(B)M(C). (14.6)

Here A is the intensity, and M is the so-called mark distribution. M(C) may be
interpreted as the probability that the mark of an ‘arbitrarily’ chosen point lies in
the mark set C. (‘Arbitrarily’ means that a selection scheme is used in which every
point has the same chance to be selected.) Another interpretation is that M(C) is
the probability that the mark of the ‘typical’ point lies in C.

In many applications the marks are real-valued and one requires a density
function m(m) for the mark distribution. Then it makes sense to speak about a
mean mark, which is calculated as

m= /oo mm(m) dm.

A Campbell theorem also holds for marked point fields. In the homogeneous
case

E > f(x,m)=k//f(x,m)M(dm)dx. (14.7)

[x;m]leN

Here f(x,m) is a function that depends on both a point and its mark. If the marks
are real numbers and there is a density function m(m) then the right-hand side of
(14.7) can be written as

k//f(x,m)m(m)dmdx.

If the marks of a marked point field N are positive numbers then it has an associate
random measure, the so-called mark sum measure Sy, defined by

Sn(B) = Z 1g(x)m.
[x;m]eN

Here the marks of all points in B are added. For any B, Sy (B) is a random variable.
If N is homogeneous then so is Sy, and

ESn(B) = AmA(B). (14.8)

14.3 EMPTINESS PROBABILITIES

If K is a compact subset of R?, then the corresponding emptiness probability is
given by
v(K) =Pr(N(K) =0).

Emptiness probabilities play an important role in the theory of point fields: The
system of all v(K) for compact K determines the distribution of N uniquely. Thus
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the function v(K) has a meaning similar to that of the distribution function for
random variables.

In practice emptiness probabilities are used for homogeneous point fields of
positive intensity A, and also when only particular ‘test sets’ K are used. The case
where K is the disc centred at o with radius r is particularly important:

K =b(o, r).
It is related to the so-called spherical contact distribution function
H(ry=1-Pr(N(b(o,r))=0) (r=0 (14.9)
The function H;(r) is monotonically increasing, and

H,(0)=1-Pr(o g N) =0,
H(o0)=1—~Pr(N(RH =0) = 1.

The function H(r) can be interpreted as the distribution function of the distance
from the origin o to the nearest point of the point field. Another interpretation is
that of the distribution function of the distance of a random test point independent
of the point field to its nearest neighbour.

Formulae for H(r) are known for Poisson, Cox and Neyman-Scott fields
(pp. 213 and 312).

144 SECOND-ORDER CHARACTERISTICS

14.4.1 Definitions and formulae

Second-order characteristics describe variation and correlation in point fields. There
is some similarity to correlation functions of stochastic processes.

In this section it is assumed that the point field is homogeneous; in addition
isotropy is often (and explicitly) supposed.

The exposition begins with Ripley’s K-function. Each point of the point field
N = {x,] is taken as the centre of a disc of radius r. The number of points in
the disc b(x, r) excluding the point x is denoted by n,(x) and can be used as a
mark, and thus the field may be regarded as a homogeneous marked point field
{[x,; n,(x,)]}. Let the mean mark be n,. This gives Ripley's K-function by

AK(r)=n, (r=0). (14.10)

Heuristically speaking, one says that AK (r) equals the mean number of points
that have a distance smaller than r from the ‘typical’ point (see also §14.9). Usually,
the function K (r) is of order r2 for large r. In particular, for a homogeneous Poisson
field

K(ry=nrt (r=>0). (14.11)
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Graphs of K-functions may be difficult to interprete because of their parabolic
form. It is convenient to use the so-called L-function, which is given by

K(r)
T

L(r) = (r=0). (14.12)

In the case of the Poisson field it takes the simple form
Liry=r (r=0). (14.13)

Since Poisson fields are frequently used as null models, this is a natural definition
of the L-function. In Chapters 15 and 16 examples of its use in statistical analysis
are given.

Instead of discs, other sets can also be used. Let B be an arbitrary Borel set.
To the point x the number npg(x) of points in the set By = B + x is assigned as a
mark, where x is once again not counted (if it is in B):

np(x) = N(B\{x}).

Thus a marked point field {[x,, n5(x,)]} is obtained. The mean mark of this marked
point field is written in the form

ng = AR (B). (14.14)
Here 8 is a Borel measure, the so-called reduced second-moment measure. Clearly
K(r)=R(®b,r)) (r=0).

Some readers might wonder why the characteristics introduced are called second-
order characteristics, although they are defined as means. The explanation is as
follows. The original second-order quantities are the so-called moment measures.
The second-moment measure is given by ‘

u® (B, x By) = EN(B))N(B,). (14.15)
An equivalent is
nP(Bi x B =E Y 3 1p,(x)1p,(%2). (14.16)
X1 €N xpeN

By and B, are Borel sets. (Standard constructions of measure theory lead to a
measure on the product space B2 ® B2.) In terms of the means of @ and A, the
variance of point number N (B) in the Borel set B can be expressed as

var N(B) = u'®(B x B) — [A(B)]?
and in the homogeneous case

var N(B) = u?(B x B) — [AA(B)]~. (14.17)
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A similar formula is true for the covariance of the numbers N(B;) and N (B;):

cov(N(B1), N(By)) = EN(B|)N(B;) — EN(B))EN(B,)
w®@ (B x By) — AA(B)AA(B,).

It

In the theory of point fields the factorial moment measure a® is frequently used
instead of u®. This is given by

@By x B =E Y Y lpx)lsx).
Xj€EN xeN
(2#x;)
This is the mean of all point pairs with one member in B; and the other in B;
where both members are different. Obviously,
u?(By x By) = P (By x B)) +E 3 15,(0)15,(x)
xeN
= am(B; x By) + A(B; N By)
= a@ (B x By) + AA(B; N By).

The name ‘factorial moment measure’ is used since
(B x B) = EN(B)[N(B) - 1].

For an integer random number X the quantity EX (X — 1) is called the second
factorial moment.
The last formula for u® gives

var N(B) = P (B x B) — [AA(B))* + AA(B). (14.18)
For any measurable non-negative function f (x|, x3)
ES Y fxow = [fonwu®@m) (1419
X|EN X9eN

EY. D foux)= / £, 2@ d(x1, x2)). (14.20)

X1EN x5eN
(x2#X))

The summation is over all pairs of points of N with distinct members.
Frequently, o? has a density function 9(2) (x1, x2) so that

a@ (B x By) =/ / 0@ (x1, x2) dxp dxy.
By v B
Using this function, the right-hand of (14.20) can be written in the form

//f(xlax2)9(2)(xl’x2) dxy dx;y.

The density function 0@ (x|, x,) is called the second-order product density.
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In particular, consider
Flxy, x2) = 1, (x) 1, (2 — x1) = 1, (x1) 1 gy, (X2).

By (14.20),
/13. ()1, (2 — 2@ (d(x,, x2)

=E> Y Ip,&x)lpx—x)

x| EN xyeN
(x2#X1)

=ED . D> ln&)lam (x2)

xj €N x;eN
(X2#X))

=E > 15 &x)NBy + x\[x1).

x)EN

The last mean equals the mean of the mark sum measure for B, if the mark of the
point x is the number N (B; + x\{x}). The formulae (4.8) and (4.14) lead to the
value A2A(B;)R(B,), thus

EY" > fxix) =22AB)HK(B).
X|EN xpeN
(x2#X})

This formula is a particular case of the following which is true for all non-negative
measurable functions f(xj, x3):

EY. S f(x,,x2):k2//f(x,x+h)5{(dh)dx. (14.21)
Xj €N xyeN
(x2#x1)

(In the particular case considered above f(x,x +h) =1 8, (X)1p,(h).)

Now that it is clear that for given A the measure St determines uniquely the
second-order factorial moment measure and, because of the relation between o®
and um, the second-order moment measure as well. Also, the name ‘reduced
second-order moment measure’ is now justified on account of (14.21) with the
factorization of a(?.

If the point field N is isotropic then A and K (r) already determine uniquely
the second-order factorial moment measure. Therefore Ripley’s K -function, the
L-function and & are indeed second-order characteristics.

The variance of the point number N (B) in the Borel set B satisfies

var N(B) =k2/y3(h)51(dh)+xA(B) — [AA(B)]2. (14.22)
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Here yp(h) denotes the area of the intersection of B and By:
y(h) = A(B N By).

The formula (14.22) follows easily from (14.18) and (14.21), with

fx1, x2) = 1p(x)1p(x2).

The integral on the right-hand side of (14.21) then takes the form

k2//13(x)13(x+h)dx51(dh).

The inner integral is equal to yg(h), which is called the set covariance function
of B, see p. 122.
In the isotropic case, and analogously to (14.22),

var N (B) =x2/ 78(r) dK (r) + AA(B) — [LVA(B)]. (14.23)
0

Here yp(r) is the isotropized set covariance function, which was considered in
detail in §8.4.3. There formulae are also given for particular sets B.

The quantities &, K(r) and L(r) together with A determine all second-order
moments involving point numbers. In statistics they are used extensively, in
particular for goodness-of-fit tests. Their interpretation is not always simple, and
therefore they are not suitable for exploratory data analysis. Other functions are
used that have the character of densities; particularly important is the so-called pair
correlation function.

The product density 0 (x;, x,) has already been mentioned above. (Its existence
is not always evident. For example, in the case of lattice point processes there is
no product density — only in the sense of the theory of generalized functions.) It
is considered now in more detail.

Its meaning can be understood intuitively as follows (see also p. 242). Let C,
and C; be two infinitesimally small discs centred at x; and x, and of areas dF; and
dF, (because of the smallness of the discs it can be assumed that they are disjoint).
Then the probability that in each of the discs there is a point of the point field N
is approximately

0@ (xy, xp) dF| dF;.

If the point field N is homogeneous then 0@ (x,, x;) depends only on the difference
h = x; — x,. The distance between the points x; and x; and the direction of the
line through x; and x; are the only important considerations. Therefore the value
of the product density corresponding to 4 is written in the simple form o'® (k). It
is sometimes useful to use polar coordinates

h=(r,9) O=<g¢<m),



SECOND-ORDER CHARACTERISTICS 249

and to employ the symbol 0@ (r, ). In the homogeneous case the symbols
0P (x1, x2), 0® (h) and 0@ (r, ¢) mean the same.

In the isotropic case the direction of the line through x; and x, is uninteresting.
The product density depends only on the distance r of the points x; and x; or
on the length of A. For simplicity, the symbol is not changed: o (r) denotes the
product density, which depends only on r.

It is useful to normalize the function 0@ (r) and to define a new function

(2)
glr) = & kfr) (r=0. (14.24)

g(r) is called the pair correlation function.
In the homogeneous case, when using the function 9(2) (h), the moment formulae
above simplify, starting from (14.20),

EDY . > fixix) = / [, x)a®dxy, x2))

x| eN X2eN
(x2#x1)
= //f(x;,xz)gm(x;,m)dx;dx2
= //f(x,x+h)g<2>(h)dhdx.
Thus
E>. > f(X;,Xz)=//f(x,x+h)g‘2)(h)dhdx. (14.25)
x| €N x,eN
(x27xy)

Comparison with (14.21) shows that
AZR(dh) = 0@ (h) dh.
In the isotropic case one has analogously
A2dK (r) = 2nro@(r)dr.

Consequently

glry= LiK(r) (r =0). (14.26)
2nr dr

Finally, (14.23) can be written in the form

var N(B) = 2nk2/0 ve(Nrg(r)dr + AA(B) — [MA(B)2. (14.27)
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It is obvious that the variance of point number in B is determined by two aspects
of the problem: by the variability of the point field N, expressed by g(r), and by
the geometry of the set B, expressed by yz(r).

For ‘large’ B (‘spherically infinite’ in the sense of Girling, 1982) the approxi-

mation
var N(B)

~ 2 7 _
AB) ~k—+—2nk/0 (g(ry— Drdr (14.28)

can be used.

14.4.2 Interpretation of pair correlation functions '

An important tool for exploratory statistical analysis of point fields is the pair corre-
lation function. This section aims to help the reader in interpreting empirical pair
correlation functions. First, the relationship between the form of the pair correlation
function and the point distribution is discussed. Later, pair correlation functions are
described for important point field models and typical point patterns.
First,
g(r) =0,

and
lim g(r) =1
r—>00

for mixing point fields. The value unity is thus an asymptote of the pair correlation
function.

Large values of g(r) show that point pairs of distance r appear frequently; small
values occur if point pairs with this distance are rare. g(r) is exactly zero if the
interpoint distance r never occurs. Pair correlation functions may have poles:

lim* g(r) = o0.

In particular, poles for r* = O are not rare; for example, they appear for cluster
fields.

Figure 94 shows a pair correlation function with a form typical in many appli-
cations. Its form will now be explained.

First, it is obvious that the corresponding point field must have the hard core
distance ry. Interpoint distances smaller than ry are impossible. If the points are
centres of mutually non-intersecting discs then their diameters have to be smaller
than rg.

The maximum of g(r) at r = r; characterizes the range of the most frequent
short interpoint distances. From the point of view of a randomly chosen point of

THere only the pair correlation functions of planar point fields are discussed. Three-dimensional
point patterns and their pair potentials are discussed in the physics literature. Their interpretation is
similar to that of the planar case.
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Figu‘re 94 Typical form of the pair correlation function of a point field with weak short-
range order. The meanings of ro, ry, 1> and r; are explained in the text.

5 A

\

o;———-*- '4-__7)

Figure 95 Neighbourhood relations at a point e. The points denoted by + are the direct
neighbours of e; those denoted by © could be called ‘second order neighbours’.

the field, the maximum refers to its direct neighbours (Fig. 95) (one of them is
the nearest neighbour). The existence of a clear maximum of the pair correlation
function shows that the direct neighbours have a relatively uniform distance to the
reference point. The more uniform the distance is, the sharper is the maximum; its
sharpness is thus a measure of the order in the point pattern.

The second maximum at » = r3 is connected with those points that lie behind
the direct neighbours (they are the direct neighbours of these points). Again the
sharper the second maximum is, the more ordered is the point distribution. Its
existence is already an indicator of short-range order. Typically r3 < 2r;. Finally,
the minimum at r = r; results from a gap in the point distribution; behind the
direct neighbours there are relatively few points before the next points appear. The
deepness of the maximum is again connected with the degree of short-range order
in the point pattern.

A simple parameter for characterizing the degree of short-range order is

_ 8 —gry) (14.29)
rs —r

M

The greater M is, the more short-range order one can expect. For a Poisson field M
is precisely 0; this corresponds to the case of no short-range order. However, note
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Figure 96 Planar section through a Cd-Zn eutectic with rod-shaped Zn. The centres of
gravity of the sections of the Zn rods form the point pattem to be analysed. For more detailed
analysis marks are also considered: the maximum Feret diameters (maximum projection
lengths), and the directions of these diameters.

that great values of M are possible for quite different forms of point distribution,
both for rather regular point distribution (as in Fig. 96; see also the pair correlation
function in Fig. 97) and also for cluster fields with a hard core distance (Fig. 102).
But this does not cause problems, in practical investigations because in general
the types of point field analysed are known a priori and mostly only fields of
the same type are analysed. An example of the application of M as a short-range
characteristic is given by Stoyan and Schnabel (1990).

A further parameter is the range, which is equal to r4: this is the distance for
which g(r) = 1 for all r > r4. (For empirical pair correlation functions irregular
fluctuation of g(r) around 1 is observed.)

Pair correlation functions for some point field models
Poisson field. The pair correlation function is constant in this case:
gy =1

(p. 217). This form reflects the complete randomness of the point distribution.
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Figure 97 Statistically determined pair correlation function for the Cd-Zn eutectic. The
high degree of order is reflected in the form of the pair correlation function.

Lattice point fields. Lattice point fields have a regular point distribution like that
of atoms in a crystal lattice. Only certain discrete values are possible as interpoint
distances. A pair correlation function can be defined only in a generalized sense. It
is non-zero only for discrete interpoint distances and it does not converge to unity

as for r — oc.
Here the case of a quadratic lattice of mesh width a is discussed. Its intensity is

A=a

The mean number of points, AK(r), in a disc centred at a point of the lattice

satisfies
0 (r <a),

4 (a<r< ﬁa),

8 (vV2a<r <2a),
AK(r) =19 12 (2a < r < +/5a),

20 (\/ga <r< 2«/511),
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Analogously to the relation

") = 5Ky
gr_271rdr ’

which is true in the case of a differentiable K-function, the ‘function’
1 o0
g(r)y = — ;‘Sr,-(r)ci

is now considered, where r| = a, r; = ﬁa, r3y=2a,ry= V3a, rs = 2V2a, ...,
ci = 4a%, c3 = 4a%, c3 = 4a®, c4 = 8a?, cs = 4a?, ... . Here 8,(r) is the Dirac
delta function, which has the properties 8,(r) = 0 (r # @) and ff; 8o(rydr = 1.

Randomly disturbed lattices. The points lie in the neighbourhood of the lattice
points of a lattice, scattered according to some law. In real structures patterns are
observed similar to that of Fig. 96.

For a disturbed quadratic lattice the pair correlation function has maxima at
r = a,~/2a,2a, ..., and minima between them. The sharpness of the maxima
depends on the degree of disturbance. ]

Figure 97 shows the empirical pair correlation function for the pattern of Fig. 96.
There are three clear maxima, which belong to the distances to the Ist, 2nd and
3rd neighbours, and two minima, which belong to the gaps between the 1st and
2nd, and the 2nd and 3rd neighbours. For increasing r the curve approaches the
value 1.

Random packings. Many point patterns are systems of centres of non-overlapping
particles. If the area fraction of the area covered by the particles is large the term
‘random packings’ is sometimes used. There are several mathematical models of
such packings, see e.g. Cowan (1984) or Chapter 16. The pair correlation functions
of such point patterns have in general at least two maxima and one minimum, thus
reflecting some degree of short-range order.

Figure 98 shows a random packing of discs produced by Cowan (1984). The
corresponding pair correlation function is shown in Fig. 99. The pattern of basaltic
column cross-sections shown in Fig. 100 may also be interpreted as a packing. The
pair correlation function of the polygon centres is given in Fig. 101; see also the
detailed discussion in Stoyan and Stoyan (1990a).

Cluster fields. If the points appear in clumps or clusters as shown in Fig. 87
then the pair correlation function is large for small » and increases for increasing r.
It is possible that g(0) = oc. The particular form of g(r) depends on the type of
distribution of the cluster centres; for a point distribution in the clusters that allows
very small interpoint distances g(r) has a form like the dashed curve on Fig. 102,
If the interpoint distances in the clusters do not fall below a fixed value r, then
the other curve of Fig. 102 is obtained. In both cases the range characterizes the
spatial size of clusters. (If the cluster points lie in discs of fixed radius R then the
range is less than or equal to 2R.)
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Figure 98 A random packing of discs (Cowan, 1984). The system of disc centres shows

a far-reaching order.

gr) —

! 1
30

0 10 20
r (inmm) —-»

_Figure 99 Statistically determined pair correlation function for the pattern of disc centres
in Fig. 98. The form of the pair correlation function clearly expresses the high degree of

order in the pattern.
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Figure 100 Cross-sections of basaltic columns at Burg Stolpen. The centres of the polygons
form a point pattemn that is rather regular. The point pattem of the vertices has quite different
properties. Here there are points of very small separation, and the pattern has similarities to

a cluster field.

05

I 1 \
0 0.2 0.4 0.6

r(inm) ——»

Figure 101 Statistically determined pair correlation function for the pattern of polygon
centres in Fig. 100.
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Figure 102 Statistically determined pair correlation function for the vertices of the
polygons in Fig. 100. The form of the curve (—) is between that of a cluster field and
a hard core field. The second curve (- - -) belongs to a Neyman-Scott cluster field.

If, in contrast, the cluster centres are not randomly scattered (i.e. not according
to a Poisson field) then g(r) may take very complicated forms that reflect both the
cluster geometry and the distribution of centres.

Points on curves. Somewhat strange forms of the pair correlation function are
observed if the points lie on random curve systems. A simple case is that where the
points on the single curve are distributed according to a Poisson process (this leads
to a particular so-called Cox field). In particular, if the curves are lines then the
point distribution can be understood as follows. On each line an origin is chosen
independently of the other lines. Then points are scattered on the line in such a
manner that their distances from the origin and from another are independent and
exponentially distributed. The union of all points is then the point field considered.
(Another field of points on lines is that of the intersection points of the lines; but
this is more complicated.)

The pair correlation function equals that of the line field. If it is a Poisson line
field of line density L 4 then

=1
8 + Lamr
(Stoyan and Stoyan, 1986; Stoyan er al., 1987). Clearly there is a pole at » = 0.
If the line field is obtained by adding to each line of a Poisson line field a further
parallel line of distance d then the pair correlation function has two poles: one at
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r = 0 and one at r = d. It satisfies
14+ h(r
gry=1+ ﬁ,
anA
with
0 (r <d,
I (r > d).

hr)y= { __r
V52— q?

Here L, is the line density of the double line field — not that of the original

Poisson line field.
Dirichlet tessellation, as shown by L. Muche, see also (Stoyan and Stoyan, 1990a).

Soft core fields. With respect to the strength of the intersection of the points,
so-called soft core fields are intermediate between random packings and Poisson
fields. They can be used as models of the centres of non-overlapping discs of
variable diameter. Figure 86 shows such a system of non-overlapping discs, and
Fig. 103 shows the corresponding pair correlation function. Its form is typical of a

A pole also has the pair correlation function of the vertex points of the Poisson-

soft core point field.
of the pair correlation function and the depth of the possible following minimum.

Such a minimum is frequently only very weak or even non-existent; often pair

The strength of existing interactions is shown both by the height of the maximum
correlation functions are observed as in the second curve of Fig. 103.
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Figure 103 Statistically determined pair correlation functions for two point fields with
weak interaction, so-called ‘soft core fields’: —, pair correlation function for a pattern of
sea anemones on a rock (Stoyan, 1987); - - -, pair correlation function for the centres of the

silver particles in Fig. 86.
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14.5 CHARACTERISTICS OF THIRD AND HIGHER ORDER

Third- and higher-order characteristics enable refinements of the results obtained by
second-order characteristics. Since these are more complicated than second-order
characteristics, they are not used so frequently. The aim of this section is to sketch
the theory and to discuss the third-order and related characteristics found in the
literature.

The nth-moment measure 4™ is defined by

/»L(")(Bl X e X B") = EN(B[) N(B")

where By, ..., B, are Borel sets. Thus nth-order moments of point number can be

expressed as
EN(B)" = u™(B x --- x B).

For any non-negative measurable function f(x,,..., x,)
E D> fxi....x)= /f(xl, e XM, e X))
Xfv Xn €N

The factorial nth-moment measure o™ is that measure which satisfies for any
non-negative measurable functions f(xy, ..., x,) the equation

#
E Z f(xl,...,x,,)=/f(x,,...,x,,)a(")(d(xl,...,x,,)). (14.30)

). ST xpeN

The inequality sign means that the summation only ranges over n-tuples of pairwise
different x;. This is the difference from p("; n-tuples containing two or more equal
points are not included in (14.30).

Assuming that o is suitably continuous, a density function o (x|, ..., x,)
exists:

a™(By x---x B,) = / / 0" (xy, ..., xp) dxy - - - dx,,. (14.31)
By n
It is called the nth-product density. In terms of o™, (14.30) can be rewritten as

#
E Z f(x,,...,x,,):/f(xl,...,x,,)g(")(xl,...,x,,)dxl~~~dx,,. (14.32)

). ST xpeN

Here o™ (xy, ..., x,) is a generalization of ¢® (x,, x3) on p. 246. Let C,, ..., C,
be infinitesimally small discs with pairwise-ditferent centres x|, ..., x, and areas
dFy, ..., dF, (because of the smallness of the discs they can be considered as non-
intersecting). Then, as on p. 248, the probability that each of the discs contains just
one point of the point field N is approximately equal to

0" (x1,...,x,)dF, ---dF,.
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In the case of a homogeneous Poisson field of density A
0 (X, ..., xy) = A",
and for an inhomogeneous Poisson field with intensity function A(x)
0 (xyy ., Xn) = A(xy) - A(Xp)-

In the following, only third-order product densities are considered. In the absence
of homogeneity and isotropy assumptions ¢® (x|, x, x3) depends on the point
triplet x,, xo and x3. Even for directly congruent triangles of different positions
and orientation, the values may be different. If the point field is homogeneous then
the product density takes the same values for triplets that can be translated into
one another. Then

0P (x1, x2, x3) = 0P(0, x2 — x1, x3 — x1).

If one assumes that # = xp — x; and &k = x3 — x,, the product density can be
denoted by o®(h, k). As in (14.25), the equation

EZ Z Z f(xy, X2, X3)

XN xjeN  x3eN
(X27X1) (X3#£X],X2)

:///f(x,x+h,x+k)g(3’(h,k)dhdkdx (14.33)

holds for all non-negative measurable functions f (x|, x5, x3). Finally, if the distri-
bution of the point field is also invariant with respect to rotations and reflections
(this is more than isotropy) then the same values are obtained for congruent
triangles. Since a congruent triangle is given by the lengths of two sides and
the included angle, the second-order product density can be given as a function of
a distance r and a vector 4 in the motion-invariant case (Fig. 104). There

r>0, r,>0 and 0<g¢ <2m

Thus one arrives at the function o™ (r, #). Because of the dependence on three real
variables, it is still rather complicated, and simplified functions are used that, of
course, do not contain all the information of 9(3)(r, h).

X3

X4 0 Xp

Figure 104 Describing a point triplet (x;, x2, x3) by r and A, or r, r, and ¢.
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Figure 105 Test rectangle with side lengths a and b, which is used in the definition of
23 (r). The origin is denoted by o and a point at a distance » from o by r.

First a function z}(r) related to the pair correlation function is considered:

. 15(h)o(r, b)
zB(r)=/Bk3Tdh r > 0). (14.34)

Here B is a rectangle of side lengths a and b, with central line on the x-axis,
as shown in Fig. 105 (it is assumed that r > a). The numerator in (14.34) can
be interpreted as follows. As in the interpretation of ¢® (x|, x2), two infinitesimal
discs of areas dF, and dF, are considered, with distance r between their centres.
If there is a point of the point field N in both discs then the number of points
in the rectangle that lies between the two points is determined. It is a random
variable that is equal to zero (if one of the discs does not contain a point) or to the
point number in the rectangle (which can, of course, vanish too). The mean of this
random variable is equal to the numerator in (14.34) multiplied by dF, and dF;.
In the case of a homogeneous Poisson point field

zp(r)=1 (r=0). (14.35)
Under the mixing assumption,
l_i}m zp(ry=1. (14.36)

If there is local anisotropy in the point field in the sense that some points frequently
lie on or near to a line segment then this can be shown by the function z}(r),
assuming the rectangle sides to be suitably chosen. Then it takes values greater
than one.

Because of the density character of zj(r), its statistical estimation is difficult,
especially for small point patterns. Therefore it may be useful not only to consider
point pairs of the distance r, but also to average over a certain range of r values.
A suitable characteristic of this kind is given by

2 1g(hyro® (r, hydhdr
Z(r1,r2) = : 14.37
s = [ [ e (1437)

The normalization guarantees that in the case of a Poisson point field

Zy(ri,r) = 1.
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The characteristics Z3(ry,r;) and z3(r) can be modified in two ways. First,
instead of the rectangle, a rhombus can be used, as suggested by Hanisch and
Stoyan (1984). (The suggestion of using a rectangle was made by Kendall (1989).)
Secondly, the rectangle can be adapted to the distance r by choosing for each r
a rectangle B, that lies symmetrically between the points 0 and r such that r —a
is fixed as in Fig. 105. (A similar case, but for rhombi, has been considered by
Hanisch and Stoyan (1984).)

The normalization (division by A*A(B)) in the definition of z}(r) can be
improved. A more informative function is

[ Leme® (b
ZB(r)_/—Q2(r)kA(B) dh (r > 0), (14.38)

where g2(r) > 0.

Without the term AA(B), the right-hand side of (14.38) can be interpreted as a
conditional mean of the point number in the set B given that at each of o and r
that are positioned relative to B in Fig. 105 there is a point of the point field N.
The function zg(r) satisfies relations analogous to (14.35) and (14.36).

If zg(r) is greater than unity then B contains more points than expected in the
case of a uniform distribution of points. The presence of points at o0 and r then has
an ‘exciting’ influence on the point number in B. Large values of zg(r) are thus
indicators of a tendency for alignment. In §15.5 the function zp(r) is statistically
determined for a particular example. The values greater than unity obtained there
show that the given local anisotropy may be quantified by zg(r). Similarly to z3(r),
Z%(ry, r2) can also be modified. The new characteristic is

& 15(h)o™ (r, h)
Z = 4.3
B / /H[K(rz)—K(rl)]A(B) dhdr, (14.39)

assuming K (r2) # K (ry). It has been used in a slightly different form by Hanisch
and Stoyan (1984).

Third-order characteristics are also obtained if the marking used on p. 244
for explaining the K-function is modified. Instead of the marks n,(x,), the
squared marks n,(x,)? are used. In contrast, the marking +/n,(x,) used by
Getis and Franklin (1987) leads to characteristics outside the field of third-order
characteristics.

14.6 SECOND-ORDER CHARACTERISTICS OF MARKED
POINT FIELDS

For marked point fields there are further second-order characteristics in addition to
the pair correlation function and the K- and L-functions. They describe the corre-
lations between the marks. First the case of ‘continuous’ real marks is considered
(discrete marks are treated on p. 264). Particularly important is the mark correlation
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function kg(r). lts definition starts with a non-negative test function f(m’, m”),
depending on the marks m’ and m” of two points x’ and x"”. Examples of f(m’, m")

are
film’,m"y = m'm” (14.40)

and
Hm',m"y =min{|m’ —m"|, 7 — |m — m"|}. (14.41)

The first function is used if the marks describe the sizes of objects that are
represented by the marked points. Large-values of f(m’, m") are then obtained if
both marks are large.

The second function is adapted to the case where the marks are angles between
0 and m. They describe, for example, orientations of particles. If two lines have
directions m’ and m” (i.. angles with the x-axis) then small values of f(m’, m”)
are obtained for nearly parallel lines.

Analogously to a‘®, the measure a}2) is defined by

aBrx By =Y. > flm.m)lgx)lg(X). (14.42)
[XismileN [xp:mpleN
(x2#X1)

As for @, the summation is over all pairs [x,; m,], [X2; m2] of marked points of
N in B and B;, where x| # x,.

Assuming continuity, there is a density function for a}2), o5 (x|, x2), which could
be called the f-product density in analogy with the product density introduced on
p. 246. An interpretation of g (xy, x,) is possible as for 0P (xy, x2). Let C; and
C; be two infinitesimally small discs centred at x; and x, and with areas dF, and
dF,;. A random variable is considered that vanishes if one of the discs does not
contain exactly one point of the field and is otherwise equal to f (m’, m”), where
m’ and m" are the marks of the points in C; and C;. The corresponding mean is
approximately equal to 9}2) (x1, x2) dF, dF,. The quotient

2
0P (xy, x2)

2)
. 0¥ (xy,x2) #£0,
0@ (xy, x2)

kp(xy, x2) =

can be interpreted as a conditional mean, namely as the mean of f(m |, m;) given
that there is a point of the field at both locations x; and x, with marks m, and m,
Tespectively.

In the homogeneous case polar coordinates can be used with a function kp(r, ¢)
analogous to ¢‘?(r, ¢). In the isotropic case only distance plays a role, and the
functions 0@ (r), o7 (r) and ks (r) are used.

All of these functions describe the correlations of the marks. Thus the test
function f(m’,m”) has to be chosen according to the problem and the type of
the marks. The above functions are not the only possibilities.
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In order to give «k¢(r) still more of the character of a correlation function, it is
normalized. The result is the mark correlation function

ko(ry = L0

= (r>0). (14.43)
K7 (00)

The quantity «(oc0) can be calculated by means of the mark distribution M if the
point field (as assumed) has some mixing properties,

kr(00) = //f(m’, m YM(dm"YM(dm”"),
or, if there is a density function m for M,
Kr(00) = / / fm', m"Ym(m Ym(@m') dm’ dm”.

For the function f|(m’, m”) one obtains

2

Kkf(00) =m (square of the mean of the marks), (14.44)

and for f,(m’, m"), assuming isotropy,
Kf (00) = {7. (14.45)

In the following ks (r) and kj(r) are always denoted by knn,(r) and k4(r)
respectively.

Figure 124 in Chapter 15 shows the estimated mark correlation function 12,,,,,, (r)
for the pattern of silver particles in Fig.86. Here the marks are the diameters.
It is obvious that there is a tendency for the particles close together to be small.
Figure 107 shows the estimated mark correlation function k4 (r) for the line segment
field in Fig. 106 (the points here are the segment centres and the marks the angles
between the segments and the lower edge, 0 < m < m). The local parallelism
tendency present in Fig. 106 is well reflected by Izd (r). For small values of r, Izd )
is small.

In the case of discrete marks the approach is similar. Here each point has a mark
in the set of integers 1, ..., M (characterizing, for example, a qualitative property
like the type of tree represented by the point). In principle, as above, functions
f(i, j) of pairs of marks could be considered and corresponding mark correlation
functions could be used. But more appropriate to the discrete case is the use of
indicator functions, which leads to the use of product densities g, (x|, X2). As
for the interpretation of gy, (xy, X2), 0im (X1,-Xx2)dF, dF; can be interpreted as the
probability that C, and C; each contain a point, namely an /- and an m-point. The
quantity
Qim (X, X2) (14.46)

Pim(xy, x2) =
" 0@ (xy, x2)
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Figure 106 Positions of flies on a leaf. Each fly is shown by a line segment. The pattern
can be described by a marked point field, where the centres are the points and the directions
(with respect to the lower edge of the figure) the marks. For a detailed discussion see
Penttinen and Stoyan (1989).
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Figure 107 Estimated direction correlation function &4(r) for the flies of Fig. 106. The
values of k;(r) less than unity reflect the tendency towards local parallelism.

can be interpreted as the conditional probability that one of the points x; and x; is
an /-point and the other is an m-point, under the condition that they are points of
the field. In the isotropic case the function

Qim (r)

O e Lm=L...M (14.47)

Pim (r) =

is used. For any r

M
> pmlny =1

=1 m=1
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Analogously to the mark correlation function, the normalized functions

km(ry = 2D S0 f = M (14.48)

Pim (0)
may also be used. Here the relations

22X Am
mﬂwh=i2 ¢ #m)

and

A
pu(e) =L (im=1.... M)

have to be considered, where A, is the intensity of the sub-point field of /-points.
Finally, the functions g, () can be used; these are defined by

Oim(r) = MAm8im(ry (r=0;, Im=1,..., M), (14.49)

similarly to the pair correlation function.

147 NEAREST-NEIGHBOUR CORRELATION

The nearest-neighbour correlation characteristics are parameters 7 that are defined
like the function ks(r) by means of a test function f(m’, m”). This is done as
follows. For each point x of the point field let its nearest neighbour be denoted
x(. Let the corresponding marks be m(x) and m(x‘). Then f(m(x), m(x™)) is
a new mark ny(x) for the point x. The mean of these marks is denoted by ny and
used as the nearest-neighbour correlation coefficient.

For the silver particles of Fig. 86 the estimated nearest-neighbour correlation
coefficient is iy = 64.8 for diameter marks and f(m’, m”) as in (14.40). Since
the mean diameter is 8.4 and its square 72.6, it is clear that particles close together
tend to be smaller than isolated ones. For the eutectic structure in Fig. 96 with
f(m’, m") as in (14.41) the estimate 7y = 0.262 is obtained, which corresponds to
an angle of 15°. This value indicates very clearly the tendency towards parallelism
of particles, since ny = %n for a completely random orientation.

14.8 DISTANCES TO NEIGHBOURS

In addition to second-order characteristics, quantities related to interpoint distances
can also be considered. They give on the one hand further information about the
point distribution, and on the other a means by which distributional statements that
have been obtained from second-order characteristics can be checked.

Usually the distance from a point to its nearest neighbour is of particular
interest, but sometimes the distances to the second, third and kth neighbours are
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also considered. The distribution function corresponding to the kth neighbour is
denoted by D®(r); the symbol D(r) is used for D'V (r). The corresponding density
functions are d(r) and d*)(r), and the means are denoted by mp and m(,f) .

Mathematically, the D®(r) are defined similarly to the K-function. Each point
x of the point field is marked by §*)(x). This is the distance from x to the kth
neighbour, Then D®(r) is given by the intensity A*)(r) of the sub-point field of
those points whose mark is less than r:

A5
oy =2 (50 (14.50)
If B is a Borel set of positive area then
ADW()AB) =E > 11on(d® (0)15(x). (14.51)

XeN

For some models of point fields D(r) and (with some difficulty) the D® (r) can
be given (§§13.2.2 and 16.2).

As in the case of the K-function, D®)(r) can also be explained by referring to
the ‘typical’ point. That is, D®)(r) is the distribution function of the distance of
the ‘typical’ point to its kth neighbour.

In general, D(r) is ‘less informative’ than K (r), though it must be noted that
qualitatively different properties are described. It is not difficult to give examples
of point fields that have the same D(r) but quite different distributions. Figure 108
shows a simple example.

However, the set of all functions D® (r) contains more information than the
K -function:

x
AK(r) = Z D®&y (r > 0). (14.52)
k=1
This follows by the well-known formula for the mean of a non-negative random
integer X:
x
Ex = ZPr(X > k)
k=1

(in the current case X = N(b(0, r))).

a) b) e o

Figure 108 Two point patterns with same nearest-neighbour distances.
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For marked point fields, distance distribution functions D;;(r) can also be
considered, which give the distribution of the distance of an /-point to its nearest
neighbour with the mark ;.

149 PALM CHARACTERISTICS

Quantities connected with the so-called Palm distribution play an important part
in the theory of point fields. Their precise mathematical definition requires rather
complicated mathematical tools, which will not be given here. (For an introduction
see Stoyan et al., 1987.) What follows aims to give the reader an idea of how these
quantities work. The following exposition is in the spirit of Matthes (1963).

Let f(N) be a function that assigns a real number to a point field N, for example

Jfi(N) = N(b(o, r)\ {o}) the number of points in the disc b(o, r),
where a point at o is not counted;

f2(N) = N(B\ {o}) the number of points in the Borel set B,

where a point at o is not counted (if 0 €
By, '

1 if the distance of the nearest neighbour of o from
f3(N) = 0 is less than r,
0 otherwise;

HNY = Y oy, where ¢ (r) is a suitable function and ||y||
yenN is the distance of y from the origin o.

Now every point x of the point field N obtains a mark m,(x) given by
mg(x) = f(N_x),

with
N={x;,xz,...} and N_y=1{x;—x,x3—X,...}.
The point field is translated so that the point x lies at the origin, and then the

function value is determined. In the case of the functions above, ms(x) can be
calculated directly, for example

myi(x) = N(b(x, r) \ {x}).

Now let the mean mark m corresponding to f(N) be finite for a homogeneous N.
Because of the reference to the origin, this mean is denoted by Eq f(N). It is a
mean in the sense of the so-called Palm distribution. Such means have already been
considered in the §14.4.1. This mean satisfies

Eofi(N) =h, = AK(r),
Eo f2(N) = AR(B)
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and
Eofs(N) = D(r) (r=0).

One often thinks of Eq f(N) in the following ways.

e Eof(N) is the mean of f(N) under the condition that a point of the field lies
at 0. (For a homogeneous point field the probability of this condition is equal
to zero, and it is mathematically difficult to justify this interpretation.)

e Eof(N) is the mean of f(N) seen from the ‘typical’ point of the field N.

1410 ANISOTROPY CHARACTERISTICS FOR MARKED AND
NON-MARKED POINT FIELDS

Many homogeneous point fields are anisotropic; in fact, isotropic fields are really
the exception. There are many varied forms of anisotropy. They are particularly
multifarious for marked point fields. For example, they include

—  anisotropic arrangement of the points;
— anisotropic behaviour of marks if they describe orientations;
— combination of anisotropic point distribution and anisotropic mark behaviour.

In the following some simple anisotropy characteristics are described; see also
Stoyan (1991b) and Stoyan and Bene§ (1992).

Anisotropic point distribution
A simple characterization uses the ‘anisotropic’ pair correlation function

0@ (r, )

7 20 0<g<m,

g(r.p) =
It is sufficient to consider only values of ¢ between 0 and =; for ¢ and ¢ + 7
the same values are obtained. The form of g(r, ¢) for different ¢ closely reflects
the form of the anisotropy. In applied problems those ¢-values at which the differ-
ences are greater must be found. Clearly, the precise determination of g(r, ¢) is
difficult for small or medium-size point patterns, since it is a density function of
two variables.

Figure 109 shows the function g(r, ¢) with three angles ¢ for the pattern of
the centres of the particles of Fig. 96. Figure 110 shows g(r, ¢) for fixed r as a
function of ¢.

A rougher form of anisotropy analysis is the orientation analysis suggested by
Ohser and Stoyan (1981). This uses the directional distribution of line segments
connecting point pairs of the point field analysed. There only those pairs are
considered which are between r; and r, apart. The corresponding distribution
function is denoted by O,,,(¢) and is equal to the probability that a randomly
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Figure 109 Plot of the anisotropic pair correlation function g(r, ¢) for the particle centres
of Fig. 96. Three values of ¢ are considered: ¢ = 40°, 50° and 140°. The differences
demonstrate anisotropy.
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Figure 110 Plot of the anisotropic pair correlation function g(r, ¢) for the particle centres
of Fig. 96. For two values of r (11 um and 21 um) the dependence on ¢ is shown. This
clearly demonstrates the main directions of the particles.
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chosen line segment forms an angle with the x-axis smaller than ¢ (0 < ¢ < 7).
This point pair orientation distribution function O,,,,(¢) can be expressed in terms
of the reduced second-moment measure & by

RS (ry, 12, 9))
R(b(0, r2)) — R(b(o, 1))

Orn(p) = O=<gp<m, (14.53)
where it is assumed that the denominator is positive. S(ry, r2, ¢) is the sector
annulus shown in Fig. 111.

In many cases there is a density function o, ,,(¢) for O, ,,(¢), with

@
0!‘1!‘2(‘)0) = / 0!‘1"2(‘/’) d!/,‘
0

This density function is a good characteristic of the anisotropy of a point distribution
if the distances r; and r; are suitably chosen. For example, the values r; and r;
are particularly interesting if they include the r-range in which the pair correlation
function has its first maximum.

Figure 112 shows two empirical density functions with r; = 6.25 um and r; =
18.75 pum or 25 pum for the particle centres of Fig. 96. 1t is not surprising that
the function corresponding to the larger r, is smoother than that for the smaller
r2. (However, the smoother form here also results from a somewhat greater kernel
parameter (§15.4.5).)

In the case of marked point fields the points may be weighted by the marks
(Stoyan, 1991b).

Anisotropy of marks

If the marks of the point field are angles then the distribution of these angles
alone can be used. This distribution can be interpreted as the rose of directions

S(ry.r2.9)

Figure 111 The sector annulus S(r, r,, ¢) used in the definition of Or,r, (9).
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rn=625r,= 18.75
r=6.25,r,=25.00

Onl I3 ®) —=

1
0 40 90 180

Q(in®) —

Figure 112 Estimated density functions o;,,,(¢) for the point pair orientation distribution
function O,,,,(p) of the particle centres in Fig. 96: . r = 6.25, r, = 18.75; ---
ri = 6.25, r, = 25.00 (lengths in wm). Note the different bandwidths: & = 5° and 20° for
ri = 18.75 pum and r, = 25.00 um respectively.

(Stoyan et al., 1987, p. 235) of that line segment field which consists of segments
of unit length centred at the point and having directions given by the angle marks.
Figure 113 shows the estimated directional distribution for the angle marks of the
particles on Fig. 96. The mean orientation of the marks around 0.7 (40°) is obvious;
angles greater than 7 do not appear.

This approach can be refined if the points have pairs of marks: an angle and a
size mark. Then a segment field can be considered, which is constructed as above
but with the segment lengths equal to the size marks.

(o)

jm,:

¢

Figure 113 Estimated direction density function for the particles of Fig. 96. It describes
the orientations of single particles, i.e. the directions of the lines that belong to the maximum
Feret diameters.
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Nearest-neighbour direction correlation

Local anisotropies can be expressed by the quantity 74 introduced in §14.7. For
the pattern of Fig. 96 the estimate of ny is 0.262 (15°). This small value expresses
the high degree of parallelism of neighbouring particles. In contrast, for the line
segment field of Fig. 106, n=07 (40°), which is close to %n, the value corre-
sponding to complete randomness. It is interesting that the estimated direction mark
correlation function k4 (r) for this pattern has values clearly less than unity for small

r, which reflects the obvious /ocal tendency to parallelism.






CHAPTER 15

Statistics for Homogeneous
Point Fields

151 INTRODUCTION

This chapter discusses important methods of exploratory data analysis for homoge-
neous planar point fields. These methods yield fundamental characteristics without
particular model assumptions, but of course assume homogeneity and often also
isotropy. These characteristics are intensity, second-order characteristics and some
further characteristics introduced in Chapter 14. They help to detect and quantify
important distributional properties. (Section 14.4.2 has shown in detail what pair
correlation functions tell one about point fields.) Based on the exploratory statistics
model assumptions can then be made. At the end of the chapter tests and parameter
estimations are also discussed.

It is always assumed that the point fields investigated are given in one or
k windows W;,...W,. (When k£ > 1, it is assumed that the point patterns
are independent samples corresponding to the same point field.) The following
exposition assumes that there is only one window W; for several windows the
characteristics are obtained by area weighting.

Some statistical notions will now be explained.

The counterparts of the quantities of Chapter 14 that are statistically obtained
by the point pattern in the window W are called estimators. The particular result
for a particular window is called an estimate. When constructing estimators, it is
important to assume that the estimator is unbiased. In other words, suppose that
there is a point field with some characteristics such as the intensity or the K-
function K(r) that the statistician aims to determine. But he/she can analyse only
one (or more) samples and calculate estimates for these. They will be different for
each sample; thus the estimators (e.g. A and K(r)) are random variables. Usually
they have a mean (e.g. EA and EK (r)). If this mean is equal to the true parameter
then the estimator is called unbiased. For example, this is the case if

Ei=x2 and EK@()=K(@).

In this case the estimator yields the right result on average.
A further important property of estimators is that of consistency. If the point field
analysed is ergodic then estimators can be constructed that become more accurate
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with increasing window size. Their variances decrease. (‘Increasing window size’
means that increasingly larger squares or discs can be placed therein; for details
see Stoyan et al. (1987, p. 171).) Another form of consistency is given if averaging
over several windows gives increasingly accurate values for an increasing number
of windows.

A third important property of estimators is their asymptotic normality (many
frequently used methods of classical statistics are based on asymptotic normality
(e.g. the x2-goodness-of-fit test)). This property has been intensively studied for
estimators in spatial statistics (for example Heinrich, 1988, 1993; and references
therein). Of course, asymptotic normality is a quantitative property (corresponding
estimates of the speed of convergence have in many cases only theoretical value),
and it is quite often difficult to say which window size or point number is necessary
to assume asymptotic normality.

In order to ensure unbiasedness, so-called edge corrections are frequently
necessary. For points near the boundary of the window, the information necessary
for correct evaluation is frequently not given. An example is the determination of
the nearest neighbour, which may be outside of the window for points close to the
boundary. There are several methods of edge correction, which will be discussed
in the following sections. Their aim is a possibly complete use of the information
given by the point pattern in W. For particularly important cases program sketches
are given. Some examples illustrate the application of the estimation methods.

The reader should note that some of the estimators and estimation methods may
make sense for inhomogeneous patterns too (p. 193). Some knowledge of the type
of inhomogeneity and a good understanding of the estimation method used and its
behaviour in the given case is necessary.

15.2 ESTIMATING THE INTENSITY AND THE INTENSITY MEASURE

The beginning of a statistical analysis of point patterns is usually the investigation
of the point density.

If it may be assumed that the given data belong to a homogeneous point field
then it is sufficient to estimate the intensity A. The usual estimator is

number of observed points _ n
area of the window(s)  A(W)’

A= (15.1)

Here and in the following n denotes the number of points in W:

n = N(W).
There are further estimators of A for particular point fields, especially Poisson
fields. Distance methods are particularly important (p. 219). Sdrkka (1992) discusses

distance methods for non-Poisson fields, where a certain fraction of the points is
marked for the statistical analysis.
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Under the assumptions of homogeneity and ergodicity, it makes sense to estimate
A using only one sample. The situation in the inhomogeneous case is quite different.
If no distributional assumptions can be made (e.g. that a Poisson field is given;
§13.3.4) then several (k) point patterns must be taken from the same window W to
estimate the intensity measure. In this case A(B) (B a subset of W) is estimated

by

. 1
AB) =+ ZN,-(B), (15.2)
=1

where N;(B) denotes the number of points in the ith pattern in B. If the £ point
patterns are independent then the usual methods of classical statistics can be used
to investigate the properties of f\(B).

It is sometimes more interesting to estimate the intensity function A(x). If there is
no a priori information on the distribution of the point field then Diggle’s estimator
should be used, which was already considered in the Poisson case:

AW N b(x, b))

AW Nbi, h))’ (153)

An(x) =

The choice of the radius # is a complicated problem. It is reasonable to use
different values of # and then to choose that value which gives the ‘best’ results,
An(x) may be given by isolines, and a ‘good’ form of X, (x) is one that is sufficiently
smooth but still shows important details of the inhomogeneity.

As a form of data analysis, the method described can also be used for a single
point pattern. Sometimes an isoline plot may be more instructive than a point
pattern. The example in §12.2.2 illustrates this method.

In some statistical problems estimators of A2 are needed. Of course, the A of
(15.1) can be used and squared. But this estimator is in general not unbiased. In
the case of a Poisson field

p-r—l (15.4)
A(W)
is unbiased (note that A2 is less than A2). This estimator is also used frequently for
non-Poisson fields.

15.3 ESTIMATING MARK DISTRIBUTIONS AND RELATED
QUANTITIES

Together with the intensity, mark parameters are considered as first-order charac-
teristics. In the case of real-valued marks the mean # of the marks or the mark
distribution function M () are important (M (u) is the probability that the mark of
the ‘typical’ point is less than u; i.e. M (u) = M(—00, u]).
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The mean mark of a homogeneous marked point field is estimated by

Sn(W)
—

m= (15.5)
Sn (W) denotes the sum of the marks of the points in W as in §14.2. In the case
of positive marks Sy is the mark sum measure.

Since both Sy (W) and n (= N(W)) are random, the distribution of m may
be rather complicated; furthermore, m is not always unbiased. (However, under
suitable assumptions on the marked point field, asymptotical unbiasedness is given
for a ‘large’ window W. In the case of an ergodic field m is consistent.) In contrast,
the quantity Am has an unbiased estimator, namely

Sn(W)
AW) '

The mark distribution function M (u) can be estimated similarly by

M(u) _ number of points in W with mark < u, (15.6)
n

or

N(W x (—o0, ul)

M(u) = .

Example (silver particles, continued). The system of particles is now considered
as a sample of a marked point field, where

point = particle centre, mark = particle diameter.

T

T T T
0 5 10
r(in mm) —

Figure 114 Histogram of the diameters of the silver particles of Fig. 86.
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A histogram of the marks, which is an empirical counterpart of the mark distri-
bution density function, is given in Fig. 114. Perhaps it may be approximated by
a normal distribution.

15.4 ESTIMATING SECOND-ORDER CHARACTERISTICS

15.4.1 Estimating &(B), K(r) and L(r)

General

Usually A2K (r) and A2 (B) are first estimated, and estimates of K(r) and &(B)
are then obtained by dividing through by A? itself obtained from (15.4). Estimators
of A2K (r) and A2R(B) in the anisotropic case are given by (15.11) and (15.12)
below. In the isotropic case (15.13) and (15.14) give estimators, with (15.13) being
easier to compute but (15.14) being more accurate. If assumptions of isotropy are
unwarranted then (15.11) should be used.

The L-function is estimated by

K(r)
V4

i,(r) =

(r = 0y, (15.7)

where K (r) is an estimator for K (r).

The K- and the L-functions are usually used in the final stages of analysis, in
particular for goodness-of-fit tests. For exploratory statistics the pair correlation
function is more suitable, since it is easier to interpret.

Explaining and deriving the estimators for A>K (r) and AR (B)

It is always assumed that there are n points X, ..., X, in the window W; n =
N(W). The x- and y-coordinates of x; are denoted by &; and n; respectively.

First let us discuss a naive, almost trivial estimator for AK (r). According to
§14.4.1, LK (r) is equal to the mean number of points that lie in a disc of radius r
centred at the ‘typical’ point of the field, which itself is excluded. This interpretation
suggests the following method. The points x; are considered in turn, and for each
the number N (b(x;, r)\{x;}) is found. This is the number of points in the disc
b(x;, r), not counting the centre x;. The corresponding mean is an estimator & ()
for LK (r):

l n
ki) ==Y NbGi. I\x) (2 0). (15.8)
i=1

Investigation of the distributional properties of this estimator k;(r) is very difficult,
since both the numerator and denominator are random. It is in general biased.

Rather it is natural to use the estimator (15.1) for A, A = n/A(W), and to
introduce the estimator
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I\ N (b, H\{x:))
ka(ry = —— (r>0). (15.9)
2T aw)

This is an unbiased estimator for AK (r) (this can be shown as for k(r) below).
Unfortunately this estimator has the disadvantage that it uses information that
cannot be completely obtained from the window. It may happen that parts of
the discs b(x;, r) are outside W (it is assumed that information outside W is not
available in principle).

Note that k,(r) can also be written in the form

ka(r) = Z Z lb:l(r)W(;‘J) Z Z Lpo, :;((":V)— X;) ’

i=1 j=1
(J#) (J#l)

where 1y (x) denotes the indicator function of the set X. (The reader should under-
stand that these formulae are equivalent to (15.9). The summation with respect to
J ranges over all points of the point field different to x;.)

If the window W is very large and r relatively small then only a negligible error
is made when N (b(x;, r)\{x;}) is replaced by N(W N b(x;, r)\{x;}). Obviously,
this method gives a value slightly too small for AK (), on account of the excluded
points outside W. In this situation there is a primitive form of edge correction:
so-called ‘minus sampling’. To estimate AK (r), points x; are used for which the
disc b(x;, r) lies completely inside W (Fig. 115). This gives the unbiased estimator

Z N(bx;, N\{x;}D

= A(W) 6 b0, 1)

(r > 0). (15.10)
x;eWob(o.r)

Its disadvantage is that only the inner points (i.e. those in (W) © b(o, r)) are disc
centres. The information given by the point pattern is obviously only partially used.

Figure 115 For the point x; the disc b(x;, ) is not completely in W. Thus it is possible that
there are points of a point pattern in the disc which are outside W. If this is not considered,
estimation errors result. In W & b(o, ) there are all points x in W for which the whole disc
b(x, r) is contained in W.
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Of course the r-values are heavily restricted from above; if W is a square of side
length a then r in (15.10) has to be less than 1a.

There are more effective methods. The following estimator k(r) of A2K (r) does
not have the above disadvantages:

l o,r — A
k(r) = ZZ :(W),‘(xrjwwf)) r > 0). 15.11)

i=1 j=i
(J#1)
Here W, denotes the window translated by z (Fig. 116). The difference from k,(r)
is that the summation always ranges over the points in W (and thus the estimator
is realistic), A(Wy; N Wy,) rather than A(W) being the denominator. Since the area
of two shifted windows is in general smaller than that of the original window, the
corresponding summand is increased, compensating for the contributions of the
points outside of W. It should be noted that

AW, NW,) = AWNW, ) = AW NW,_).

In the case of a rectangular window with side lengths @ and b (@ > b) one requires
that » = b. Otherwise, the denominator in (15.10) can vanish.
Analogously, A2R(B) can be estimated by

k(B) = ZZ A(l;‘(,x’n;,’)) (15.12)

i=l j=
(J#l)

Proof of the unbiasedness of k(B).
EkB) = EY. Y lw(X)lw(Y)A(l;(,yn -
X yeN
y#x

_ 32 15(h)
= A //lw(x)l(W)(x +h)—A(Wx+hﬂWh) dx K!(dh)

W, W, 0 W,

X

Wy

w y

0

Figure 116 The windows W, W, and W,. The latter are W translated by x and y respec-
tively. The shaded area is the intersection W, N W,.
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- ﬁ//lw(x)1<W)<x+h)ﬂ')—dxmdh)

AW N W)
- ﬁ/[/lwml(w)(XM)dx 13R(dh)
AW N W)
= A2/1351(dh)
= A2R(B).

The second equality follows from (14.21) and the third from A(X) = A(X,) for
any X and z, i.e. from the translation invariance of the Lebesgue measure.

Note that in the proof only homogeneity has been used. More accurate estimators
are possible assuming isotropy. Two estimators for the homogeneous and isotropic
case will be given in due course. But first let us note a particular advantage of the
estimator (15.11).

Very often one must estimate the K-function, i.e. the quantity !(b(0, r)), r > 0.
Then it may be that the point pattern, which was assumed to be isotropic, has in
fact considerable anisotropies. Nevertheless, it belongs to an homogeneous model.
Often (15.11) still gives good estimates, while the estimators that are unbiased in
the isotropic case may yield unacceptable values (Stoyan, 1991b). This suggests a
general use of the estimator k(r).

Ohser’s estimator for A2K (r) (homogeneous and isotropic case) (Ohser, 1983)

Lo (X — %))
k § § 2lo,nWIRY; — X1 0). 15.13
PP AT T (19

#0)
Here yw (r) is the isotropized set covariance function of the window W, (§8.4.3). It
gives the mean area of the intersection of W with a copy of W shifted by a random
vector of length r. For a rectangular window r can be as large as the diagonal.
Instead of 1o (l[(x; ~x;)||), one may also write 15, ,,(X; — X;). The proof of the
unbiasedness of this estimator is given by Ohser (1983).

Ripley's estimator for A*K (r) (homogeneous and isotropic case) (Ripley, 1976;
Ohser, 1983)

n n

kR(r) = E E l[O,r](”xj X, ”)

=1 j=1
G#0
(0 <r<r*=sup{r: A(W) > 0)).
Here W' = {x € W : 3b(x,r) N W #£ #} is the set of all points x of the window
W such that a circular arc of radius r centred at x is not completely outside W.
For small r, if the window W is convex, W = W’. Furthermore,

2r
bij = o
ij

A—(m (15.14)



ESTIMATING SECOND-ORDER CHARACTERISTICS 283

where «;; is the sum of all those central angles that belong to arcs of the circle
centred at x; of radius ||x; — x,|| and lying in W (Fig. 117).

For rectangular W, r* is equal to the diagonal length.

A sketch of the proof of unbiasedness of this estimator can be found in Hanisch
and Stoyan (1979).

Ripley (1988, p. 35ff) compared the estimated variances of kg(r) and ko (r)
for the case of a Poisson field. By means of some approximations he found that
the variances of both estimators are practically the same; only for large values of
Amr?, is kg(r) more accurate. The question still remains as to which estimator is
better for other point field models. The estimator k(r) is not so accurate as ko (r);
however, for circular W, k(r) and ko (r) coincide.

Note that the above estimators only yieldA)?K () and A2R(B). Estimators of
K (r) and R(B) are obtained by division by A2. Here the property of unbiasedness
may disappear. This effect may be increased further when estimating the L-function
using (15.6). Doguwa and Upton (1989) showed that for small point numbers
(n < 100) these errors can be considerable. It seems that the following biased
estimator of A K (r) behaves better and gives more precise estimates of K(r) and
L(r):

i NW N b(x;, r)\{)n(i})rtr2

. 1
AR =4 AW N bx;, 1))

This is used to obtain an estimator for K(r) by dividing by A

Three outlines for programs

Sketches of BASIC programs follow that yield estimates for AK(r) by (15.11),
(15.13) and (15.14). The window is a rectangle of side lengths a and b, where
the point coordinates satisfy 0 < & < g and 0 < n; < b. It is assumed that r is
sufficiently small that A(Wy, — Wy;) is always positive and W™ = W.

Version using (15.11).

=0
FOR/i=2TOn
FOR j=1TOi-1
compute ¢ = ||x, — x;||

AW -

X,
1 (!2
O 4

Figure 117 For the points x, and x;, o;, = 27 — @) — a,.
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5  IF ¢ > r THEN GOTO 30
10 C=(a~1&-§&Dx*®—In—nl
20 S=S8+2[C

30 NEXT j
40 NEXT i
50 k(r)=S

In Line 10 A(W,, N ij) is calculated.
Version using (15.13). Line 10 must be replaced by

10 C=yw(o.
A formula for yy (g) for rectangular W is given on p. 123.

Version using (15.14). Replace lines 10 and 20 in the first program sketch by
the following:

10 W=2n:P=rxr

11 E=¢& :IFE < o THEN GOSUB 16

12 E=a-§& :IFE < o THEN GOSUB 16

13 E=1y; :IFE < g THEN GOSUB 19

14 E=b-—pn;:IFE < g THEN GOSUB 19

15 GOTO 25

16 S=SQRMP—-ExE):H=ATN(S/E) W=W —-2xH:
IFn +S>bTHEN W =W + H — ATN ((b — 1;)/E)

17 IFn —S <O0OTHEN W = W + H — ATN (,/E)

18 RETURN

19 =SQR(P-E*E):H=ATN(S/E): W=W —-2xH
IF& +S >a THEN W =W + H — ATN ((a — §)/E)

20 IF§ — S <OTHEN W =W + H — ATN (§/E)

21 RETURN '

25 S=S+27a/W

15.4.2 Estimating the pair correlation function

As in the case of estimating R(B) and K(r), the product density o'® (r) is first
estimated, and an estimate of g(r) is then obtained by dividing by X2, It is useful
to apply kernel estimators.

For the homogeneous and isotropic case the following estimator of @ (r) is

recommended:
k;.(r = Ix; — x: 1D
_ 15.15
2nr Z Z A(Wy; N Wy) ( )
(J;ér)

Here and in the following k;(¢) denotes the kernel function. The popular
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Epanecnikov kernel (Appendix L) is always used

3 2
en(t) = 4 1—;!7 (=h <t <h),

0 otherwise.

As for density functions, one may expect that small differences in the kernel
function do not have a strong influence on the estimation process, but the choice
of the bandwidth is important. Simulations and practical experience suggest that
the value # for the Epane&nikov kernel should be

h=cr" 2, withe=0.1-0.2. (15.16)

Note that small values of # produce ‘rough’ functions g(r) showing more detail,
while larger values of & produce ‘smoother’ curves.

By comparing (15.15) and (15.11), the idea behind the kernel estimator can
easily be understood. Instead of all point pairs of a distance less than or equal to
r, only those pairs are considered that are separated by a distance approximately
equal to 7.

As Fiksel (1988a) has shown, the estimator given by (15.15) has a property
similar to unbiasedness:

Eo(r) = / ky(s)0® (r + hs) ds. (15.17)

As h — 0, one obtains ¢@ (r) if the product density is continuous at r.
Isotropy is better used with the following estimator, which corresponds to

(15.14):

ki (r = lI%; — x:1)by;
Or(r )——ZZ ”(rA(v"'/’;’xﬂf‘”)'l) L (15.18)

(J;éz)

It is convenient that the estimator corresponding to (15.13) has a simple form:

do(r) = 7= (r)Zka lIx; — xill) (15.19)

=1 j=1
(J#0)

(Ohser and Tscherny, 1988). yw (r) is the isotropized set covariance function of W.
For fixed r the factor 1/yy (r) — making the edge correction — need be computed
only once! If isotropy is assumed then this estimator is the most elegant. In the
physical literature similar formulae appeared before Ohser’s work; see Hosemann

and Bagchi (1962), p. 218.
Furthermore, simulations have shown that there are no great differences between
the estimators given by (15.18) and (15.19) and an estimator using Ripley’s edge
correction (Doguwa, 1990). This contrasts the process of estimating K (r) or L(r).
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The paper Stoyan, Bertram and Wendrock (1992) discusses the problem of the
accuracy of pair correlation function estimators. For the case of a Poisson point
field it gives exact bounds for the estimation variance of 9(r) given by (15.19).
(Here Ripley’s ideas are used, which have been mentioned on p. 283.) For general
point fields a Poisson approximation suggests the following approximation of the
estimation variance ¢2(r) of 8o(r):

go(r) = do(r)/2?
0.6c(r)g(r)

e (r = 0) (15.20)

o(ry =

where
c(ry = (ryw ()™’

As simulation experiments have shown, (15.20) yields values which are quite good
for Poisson point fields and point fields with short-range order. However, for cluster
processes (with heavy clustering) the real estimation variances are much greater
than those predicted by (15.20).

The qualitative form of o (r) taken as a function of r is 1nterest1ng

o(r) has a pole for r — 0, is then nearly constant and increases then with
increasing r. Clearly, the pole results from the ‘r’ in the denominator in (15.19).
This denominator causes a further problem. If g(r) has positive values for r — 0,
then for small » estimates which are too high have to be expected. In such cases
the recommendation is to use a series of bandwidths /4, and to use the results with
small # for small r and with great & for larger r.

In the anisotropic case there is an estimator analogous to (15.12) for @ (r, ¢):

(15.21)

. "o K — xi, (r, 0) + KX — X, (1, 9 + 7))
_ 1 / '/
Q(r"p)_2zz A(anw.) :
i=t =1 X b Y
{j#i)

Here K is a suitable kernel function, which may for example be defined by

1
K —xi, (r,9) = )__kh,(”xi = x;[| — kg, (@(x;, X;) — @),

where kj, (¢) and kj,, (B) are Epane¢nikov kernels with suitable bandwidths #, and
h,. Here a(x;, xj) denotes the angle between the directed line from x; to x; and
the x-axis. As in §14.4.1, (r, ¢) denotes the point with polar coordinates r and
@ (r>0;0 < ¢ < 2m). Since

K(B) = K(B)

and
0@ (h) = 0P (—h),
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it suffices to consider only the range 0 < ¢ < m. The averaging of & = (r, ¢)
and —h = (r,¢ + m) in (15.21) improves accuracy. Figures 109 and 110 show
estimated anisotropic pair correlation functions.

Programs for calculating 9(r), 0o (r), 0r(r) and o(r, ¢) are very similar to those
for A2K (r). Line 5 must be replaced by

5 IF NOT r — h < ¢ < r +h THEN GOTO 30

and lines 10-25 must be modified according to the estimator used. For example,
in the case (15.15) it suffices to use

10  as on p. 284, line 2
20 S=S+1/Cxky(r—0)/(nr)

Doguwa (1990) discusses the properties of estimators for the pair correlation
function. He considers (15.18) and (15.19), where g(r) is obtained by dividing
by n(n — 1)/ A(W). Interestingly this gives no great differences in the quality of
the estimates, in contrast with the case for K (r) and L(r).

&7

+
N7

Figure 118 Positions of young pines in a 10m x 10m square in a Finnish forest. The circles
characterize the tree heights, where three classes are considered (1, 3 and 5 m).
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Figure 119 Positions of spruces in a rectangle 56 mx38 m in the Tharandt Forest near
Dresden. The circles characterize the stem diameters, where four classes (10, 20, 30 and
40 cm) are considered. The two stars do not belong to the original pattern. Their individual
L-functions will be calculated later (p. 291).

Example: Estimating the pair correlation functions for positions of young pines
and older spruces. Figures 118 and 119 show positions of young pines in a Finnish
forest and 60-year-old spruces in the Tharandter Wald near Dresden respectively.
For the pines the circles show the tree heights and for the spruces the stem
diameters. While the pine forest has grown naturally, the spruce forest has been
planted and later cleared by foresters. The result is that the trees in the pine forest
have quite irregular positions and even appear in clusters, while the spruces are
distributed regularly. If one uses the models of Chapter 16, a cluster field and a
Gibbs field with repulsion would probably be appropriate.

Figures 120 and 121 show pair correlation functions obtained using (15.15) for
several bandwidths A4 (in m). The functions clearly show the expected qualitative
differences. The influence of the bandwidth A on their form is also shown. In the
case of the pines the pair correlation function becomes large as r — 0; perhaps a
model for which g(0) = oo is appropriate. For the very small bandwidth # = 0.1 m
the low value of g(0.1) results from the minimum distance between the pines. The
curve for # = 0.2 m (corresponding to (15.16) with a factor 0.2) is perhaps most
appropriate to the situation.

The most suitable graph of g(r) seems to be that obtained from (15.16) with
¢ = 0.2. There is a positive minimum distance between the trees; namely 1.0 m.
Therefore values of g(r) for r < | are unrealistic. The final estimate of g(r) shown
in Fig. 122 has been obtained by modifying the curve for A = 1 m of Fig. 121
using the reflection method (Appendix L)
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L |
0 1 2 3

r{inm) —=

Figure 120 Estimated pair correlation functions for the pattern in Fig. 118 (pines)
different bandwidths were used: — - — ,04 m; —,02m; ---, 0.1 m.
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Figure 121 Estimated pair correlation function for the pattern in Fig. 119 (spruces).
were three different bandwidths: — - — 2 m; — , I m; -~-, 0.5 m.
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rinm — =

Figure 122 [Improved estimate of the pair correlation function for the point pattern of
Fig. 121 (spruces). The bandwidth is # = | m, and the minimum intertree distance (1 m)
has been used for the reflection method.

15.4.3 Individual L- and g-functions

It may be that a given point pattern contains single points which play a particular
role. These may be points of a different origin from the main body of the points or
that have erroneously come into the pattern. In such a case one hopes to observe
neighbourhood relationships with the ‘normal’ points that are different from the
usual ones. These differences may be characterized by the following ‘individual’
L- and g-functions compared with the usual L- and g-functions (Getis and Franklin,
1987).

Let x be an extra point, and let Xy, ..., X, be the ‘normal’ points of the pattern.
Then the individual functions are defined by

Lo(r) = —A(W)A’:;b(x’ ) (15.22)

and .
AW) D kn(r =[x = xi[)

ax(r) = =l . . (15.23)

Example. In Fig. 119 there are two additional points; they are marked by *. The
functions L, (r) have been computed for both of them (Fig. 123). These functions
differ from L(r), particularly for the upper additional point. In its neighbourhood
the pattern is rather crowded. In contrast, the central additional point is somewhat
isolated from the points of the pattern.

The problem of outlying points is also discussed in Wartenberg (1990). He
discusses ways of detecting positional anomalies such as the isolation of an
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Figure 123 Individual L-functions for the additional points of Fig. 119: I, central point;
2, upper point.

individual data point or point clustering. Nearest-neighbour distances or areas of
Dirichlet cells may help here.

15.4.4 Estimating mark correlation functions

The estimation of mark correlation functions and related characteristics is based on
that of g7(r) and 0'?(r). An estimator of «/(r) is given by

or(r)

o(r) rz0)-

ke(r) =

The formulae (15.15), (15.18) and (15.19) yield estimators p(r) for o'?(r). Analo-
gously, «¢(r) can be estimated by

R 1 & f(mi, mpku(r — |Ix; — x;1)
_ U , 15.24
er (") 2mr Z Z AWy N Wy) ( )
-
G#i)

where my is the mark of x,(k = i, j). This estimator corresponds to (15.15).
Analogously, g;,,(r) can also be estimated:

llm k P — .
Oim(r) = —ZZ ¢ i‘)(v’{,i:ny‘zi) ulb (15.25)

(J#')
where 1 (i, J) = 1 if the points x; and x; have the marks / and m, or m and /.

Example (silver particles, continued). As before, the points are the particle centres
and the marks the particle diameters. Now the mark correlation function k., (r)
is considered. With bandwidth A = 3.8 mm the curve in Fig. 124 is obtained.
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| | | | | | L
0 4 8 12 16 20 24 28

r{inmm) —

Figure 124 Estimated mark correlation function k,.m(r) for the silver particle diameters.
Values less than unity are obtained for r-values under 15 mm; this indicates the inhibition
of the particles.

It quantifies the a priori plausible ‘inhibition’ of the particle diameters for short
distances. This influence extends to a range of 15 mm. (For a detailed discussion,
see Stoyan and Wiencek (1991).)

As an example of the use of discrete marks, the same data are analysed again.
Particles of diameter less than 9 mm get the mark | and all others the mark 2.
Figures 125 and 126 show estimates of the functions py,(r) and g;,(r) (/,m =
1,2). These give similar information on the particle system to k., (r). The limits
of the functions p;, as r — oo are 0.388 ({ =m = 1), 0470 (! = m = 2) and
0.142 (! = m = 2). These functions also suggest a correlation up to r = 15 mm.
The relative maximum of k,,,(r) at r = 25 mm and the maximum of py,(r) and
the minimum of pq;(r) for this r-value obviously correspond.

j%}f\/\
1 I | 1 1

0 4 8 12 16 20 24 28
r (inmm) ——

Figure 125 Estimated discrete mark correlation functions p,, (r) for the silver particles.
I, small particles; 2, large particles.
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Figure 126 Estimated mark pair correlation functions g;,(r) for the silver particles (cf.
Fig. 125).

For further applications of mark correlation functions see Penttinen et al. (1992)
and Stoyan and Lippmann (1993). There the points are tree positions and the marks are
quantities such as trunk diameters and degrees of damage by environmental factors.

15.4.5 Orientation analysis

One possible way of describing anisotropies in point patterns is to estimate and
interpret the anisotropic pair correlation function g(r, ¢). For point patterns of a
small number of points this procedure is not possible. Here it is better to average
over ranges of distances and to estimate the function O,,,,(¢) defined by (14.53).
Its estimation is based on (15.11) and (15.12), where B is the time sector annulus
S(ry, r2, @) introduced in §14.9:

k(S(r, r2, ¢))
k(r2) — k" (ry)

It is perhaps more instructive to use the corresponding density function Oy, ().
If no normalization is necessary then the following estimator can be used:

Or,ry (@) = 0 <¢<m). (15.26)

LU = x;Dks (9 — @)
A [r1.r2 i T Aj h - &jj
0 = 0 <@ <m), 15.27
i () ;‘,2} AW, (0 W) O<p<m), (1527
=1 j=
(#i)
where «;; is the angle between the line through x; and x; and the x-axis. The kernel
function k;(¢) may be chosen to be the Epane€nikov kernel. The calculations must
be made modulo 7; angles near 0 and m have to be considered as close together.

Figure 112 shows two estimates of o,,,,(¢) for the particle centres of Fig. 96.
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15.5 ESTIMATING THIRD-ORDER CHARACTERISTICS

In the following it is shown how to estimate the quantity zg(r) defined by (14.38).
Further third-order characteristics can be similarly estimated (Hanisch, 1983).

* z (r)—/————l‘*(h)g(3)(r’ Man >0
BT 0@ raB) =

The quantities A and Q(z) (r) in the denominator are estimated by (15.1) and by
(15.15), (15.18) or (15.19) respectively. To estimate the integral in the numerator,
one uses

n n n

NN Kp(r — |I%; — x;1D18;; (x0)
=53 > > AW W) (15.28)

i=1 j=1 k=i
Al k#f)

where B;; is that rectangle which lies between the points x; and x; like that in
Fig. 105 between o and r.

The estimator Zg(r) has an ‘unbiasedness’ property similar to (15.17). This
follows from (14.33).

Example 1. Figure 127 shows the positions of extinctions in a body of steel in
planar section. Since extinctions tend to appear at dislocation lines and Fig. 127
shows chains of points, zg(r) was used to quantify this ‘inner alignment tendency’.
The values of r used were 10, 20, 30 and 40 mm (length units as in Fig. 127),
where the rectangle B depended on the actual r-value: @ = 0.5r, b = 0.2r. The
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Figure 127 Extinctions in steel shown with high magnification in a planar section. It is
known that the extinctions tend to lie on dislocation lines. Therefore it may be reasonable
to believe that the pattern has an inner alignment tendency.
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Table 20 zz(r) as a function of r for extinctions in
steel.

r zg(r)

10 0.80

20 0.88

30 1.12

40 1.00

295

calculation using (15.25) yielded the values as in Table 20. They are close to units;

the alignment tendency expected is not shown by the values of zg(r).

Example 2. Figure 128 shows a point pattern obtained as follows. A point was
assigned to the centre and both endpoints of each line segment of a random system
of line segments. The mean length of the segments was about 11 mm. Thus one
expects large values of zg(r) for r around 10 mm and for suitable rectangles
B. With side lengths as in Example I, the values in Table 21 were obtained.
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Figure 128 Simulated point pattern with ‘inner alignment’. The points lie at the ends and
centres of a system of line segments obtained by simulation.

Table 21 zz(r) as a function of r for the line segment

point field.

r , zg(r)
4 0.46
6 0.32
8 0.46

10 1.58

12 1.47

14 1.08
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The results are as expected; here zg(r) indicates ‘inner alignment’ in the point
pattern.

15.6 ESTIMATING NEAREST-NEIGHBOUR DISTANCE
DISTRIBUTIONS

A naive method of statistical estimation of D(r) and D®(r) is to determine for
each point of the pattern in the window the nearest neighbour and to measure the
corresponding distance. All these distances form a sample, which can be analysed
by the classical methods of statistics. An estimator of D(r) is then the corresponding
empirical distribution function, and the corresponding mean mp can be estimated
by the sample mean.

Acceptable results are obtained if the window W is very big. For smaller W
the results tend to be too large. The reason for this is simple: for points near the
boundary of W the true nearest neighbour is often outside W and thus cannot be
considered. Consequently an edge correction is necessary, as for K(r), L(r) and
g(r). Several such possibilities are discussed by Stoyan et al. (1987). Here only
the edge correction by Hanisch (1984) is treated. It is easily programmed and is
not difficult to understand.

Instead of the original problem of estimating D(r) and D®(r), the quantities
G(r) = AD(r) and G®(r) = ADW(r) are estimated. This does not lead to diffi-
culties in practice, since nearest-neighbour analysis is usually performed then only
if the intensity A is known accurately. The estimator f}(r) of G(r) is

fn = lwebo,smn (i) _
=3 26 hesoy L1CE) (=0, (15.29)

i=1
where 6 (x) is the distance from X to its nearest neighbour.
A sketch of a program for calculating G(r) follows. Given n points with coordi-
nates (&;, n;) in a rectangular window W of side lengths ¢ and b (0 < & <a, 0 <
n; < b), we have

G(r)=0

FORi=1TOn

B = min{min(&;, a — &), min{n;, b — 1))

Determine the distance §; of x; to

its nearest neighbour in the window W.

5 IF 8 > §; AND §; < r THEN
G(r)=Gr)+1/(a—25)/(b - 25)

6 NEXT i

W -

Using an estimator A for A or f;(oo), for G (o0), an estimator for D(r) is obtained

as
ﬁ(r) = GEr) or ﬁ(r) = AG(r) .
A G (00)
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As Hanisch (1984) has shown, é(r) is unbiased if r is not too large and the
denominator in (15.29) does not vanish.

In calculating G(r), only those points for which it is certain that their nearest
neighbour is in W are considered. Their number divided by A(W) would be a
plausible estimator for G(r). However, it would be too small, since many points in
W at distances less than r from this nearest neighbour would be ignored. This effect
is compensated for by dividing through by A(W & b(0, 5(x))), which increases the
quotient.

It is desirable to use all points x in W with §(x) < r to estimate G(r). Of course,
there could also be points among these whose nearest neighbour is not in W (but
maybe instead the second neighbour). An estimator of this kind has been suggested

1
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a) rinm) — »
1 23 89 10
0.5 ~ ‘ \
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02 -
0.1

1 | | | 1 |

0 2 4 [ 8 10

b) rinm) —m

Figure 129 Estimated density functions of the distances to the kth neighbour for the point
patterns of Figs. 118 and 119. (a) Pines: the curves are rather chaotic, there are qualitative
differences between &k = 1-4 and & = 7-10. (b) Spruces: The curves show a regular form,
which corresponds to the order in the point pattern.
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by Doguwa and Upton (1990). However, it is not mathematically justified and only
approximately unbiased. It is an open problem to construct an unbiased estimator
of this kind.

An estimator of G® (r) is given by

S . lWe(b(o,s (x-))(xi)
G(k) — E kX O (X; k=2,3,..), 15.30
(r)= !(W eb( ’ak(xi)))l[o,rl( k( i) ( 3 ) ( 5 )

i=1

where 8, (r) is the distance from x to its kth neighbour. The ‘mean’ Am(l],‘) of GV (r)
can be estimated similarly by

Llwowo.s0x, ) Xi)
Am(k) — &k Xy
V=2 AW © b0, 5, (x))

i=1

=1,2,..). (15.31)

Finally, the density function d®(r) of D™ (r) is sometimes of interest if it may
be assumed that it exists (this is not the case for a lattice point field). A kernel
estimator constructed analogously to (15.29) is given by

n

5 Lwowo.s,x)) Xi) |
RIGED L — 8i(x; 15.32
d(r) AW S b0, (Sk(x,-)))kh(r (%)) (r = 0), (15.32)

i=1

where k;(z) is the kernel function"'.

Example (pines and spruces, continued). In order to make the statistical analysis
of the forest data complete, the neighbour distances have also been considered. For
both woods, estimates of the density functions d® (r) of the distances to the kth
neighbours have been determined by the method given above. Figure 129 shows
the results, and Table 22 gives the corresponding means mg). The numbers for
‘Matern cluster’ belong to the cluster field considered in §16.2.

The fact that for the pines the estimated mean distances are smaller than the
corresponding theoretical values for a Poisson field of equal intensity for all k
shows clearly that this is a point pattern with clustering.

Conversely, for the spruces the estimated mean distances are larger than in
the Poisson field case, which is related to the existing short-range order with a
tendency to regularity. (Originally the spruces were planted as rows!) The tendency
to regularity is also demonstrated in the relatively small variance of the neighbour
distance given by the slenderness of the estimated density functions (Fig. 129b).
In contrast, the skewness of the estimated density functions in Fig. 129a for the
pines is clearly greater than for a Poisson field. A particular characteristic of these
density functions is the bimodality for k£ > 4. On account of the smaller sample
size (126 trees), the densities are not so smooth.

1LDoguwa (1989) discusses this and similar estimates.
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Table 22 Ratios of the mean distances to the kth neighbour m%’ /mp.

k Pines Spruces Poisson field Matern
(equal intensity) cluster
1 I (038 m) 1 (256 m) | (045 m: pines) I (034m)
(1.99 m; spruces)
2 1.59 1.37 1.50 1.64
3 2.02 1.60 1.88 2.09
4 2.41 1.87 2.19 2.55
5 2.76 2.11 2.46 2.94
6 3.04 2.30 2.71 334
7 341 2.55 2.93 3.63
8 3.53 272 4.14 393
9 3.68 2.87 3.34 4.23
10 395 2,99 352 4.59

The italic numbers refer to the labels on the curves in Fig. 129.

15.7 ESTIMATING PALM MEANS

This section shows how to estimate a Palm mean m, or Eof (N). Quantities of
this kind were introduced in §14.9 as means of marks. Therefore it is natural to
use the estimators described in §15.3.

Consequently, an unbiased estimator of Amy is given by

n

iy =3 ,:l\f((vf/i)) (15.33)

i=1

where, as in §14.9, the mark m;(x) of x; is equal to f(N_4,;). Unfortunately, it has
similar disadvantages to k2 (r) in (15.9), since it is typical for many functions f(N)
that m,(x) can only then be determined if all points of a certain neighbourhood of
x are given. Because this is not always the case for points near the boundary of
the window W, edge effects have to be considered, as in the estimation of K (r)
or D(r).

There is no universal method for edge correction. The methods described for
second-order characteristics do not always ensure unbiasedness.

If f(N) is such that only points at a distance less than R from o have to
be considered (e.g. if, the function ¢(r) in f4(N) on p. 268 has the property
@(r) = 0 for r > R) then for large windows minus sampling can be used. In
(15.33) the summation is only over the points in W & b(o, R), and instead of
A(W) one divides by A(W © b(o, R)). In this way unbiasedness is ensured, but
the estimation variance may become rather large because of the potentially small
effective window W & b(o, R). An alternative is to use heuristic edge corrections,
which follow the example of Ripley’s estimator for the K-function (p. 282). An
example of the application of this idea is given in §16.3.2.
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158 GOODNESS-OF-FIT TESTS FOR POINT FIELD MODELS

In point field statistics it is frequently necessary to perform tests, for example
testing

e whether or not given model parameters are compatible with the given data for
a fixed model; or
e whether a certain model is acceptable.

Their performance is in general rather complicated on account of the complexity
and variability of the possible distributions. In Chapter 13 the relatively simple
case of a Poisson field has already been considered. It is still possible to solve the
test problem in this case with formulae and tables if rough tests are accepted. But
even in the Poisson field case it is sometimes suitable to apply Monte Carlo tests.
Such tests are for most models (with the possible exception of Cox fields) the most
appropriate method. Clearly, they require powerful computers.

In the following the idea of such methods will be described briefly. They were
first applied in point field statistics by Ripley (1977) and Besag and Diggle (1977).
Note that the hypotheses to be tested in point field statistics are rather numerous,
since there are many possible models. Furthermore, the observation conditions can
be very different. For example the windows may have many sizes and shapes.
Therefore it does not make sense to produce tables with critical values for all
possible variations. Rather, it seems to be better to develop a suitable test for each
particular test problem, which is characterized by a model, parameter and window.
Monte Carlo tests are well suited to this purpose.

In such tests one selects a characteristic A that describes the deviations of
certain empirical characteristics of a sample from the corresponding theoretical
model characteristics of that point field. For example consider the following four
characteristics:

A* =i — Aul,
where A is the estimated intensity and Ay the intensity of the model field;

A,y = |L(ro) — Ly(ro)l,

where i(ro) is the estimator of the L-function for a given r-value ro and L (ro)
the theoretical value of the L-function for the model;

. |
at = [(ho) - Lur P o
0

where L(r) is the estimated L-function, L (r) the theoretical L-function for the
model, f(r) the weight function and R the upper bound of the r-values (e.g. the
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half-diagonal length for rectangular W); and
R ~
a? = [(1be) ~ Du)P 1)
0

where ﬁ(r) is the estimated distribution function of the nearest-neighbour distance
and Dy (r) the theoretical distribution function of the nearest neighbour distance
for the model.

All four A-characteristics are chosen so that large positive values suggest
rejection of the model hypothesis. The ideal is that the distribution of the charac-
teristic A be known under the assumption that the model describes the data. Then
it would be possible to construct an exact test. But, unfortunately, the prospects
for this are poor, perhaps with the exception of the characteristic A* (which is in
practice not so interesting). Therefore the following approach is in many cases the
only possibility for constructing a significance test with probability a of an error
of type 1.

1. Determine the critical value of the characteristic A’ for the given point
pattern.

2. Generate by simulation k point patterns in W. For k the values £k = 99
(¢ = 0.05) and k& = 999 (a = 0.01) are suggested in the literature.

3. Determine for these & patterns the values Ay, ..., A; of the characteristic
A.
4, Order the numbers A’, Ay, ..., A; in ascending order. Reject the hypothesis

if A’ belongs to the upper tail of this sequence. More precisely, reject the
hypothesis if A’ is the (k — k, + 1)th, ..., (k + 1)th number in the sequence.
The critical &, is given by

(15.34)

A major problem is of course how to arrive at the hypothesis. Only rarely it is
given a priori, as in the case of the Poisson field hypothesis. In most cases it is
typical that the hypothesis is posed only after exploratory data analysis. After using
a suitable model, the model parameters are chosen such that they fit the given data.
In particular, it is often possible to force the model intensity Ay to equal A (Thus
A* is often uninteresting for applications.) The test described above does not then
have the level «. Rather, one should expect that it is more ‘hypothesis-friendly’
than actually suited to the a-value chosen. The model parameters have been fitted
to the data!

The difficulty described here is well known for other goodness-of-fit tests (for
the case of the Kolmogorov-Smimov test, see Sachs (1984, p. 331) and Lilliefors
(1969, 1971)). In the case of point field statistics it is probably very difficult to
overcome. The test above would have level « only if those point patterns were
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generated that consistently have the same estimated model parameters. In the case
of the Poisson field this is simple. All simulated point patterns have to consist of
exactly n points. Thus the approach of §13.2.5 is justified. For more complicated
models it seems to be difficult to satisfy this requirement. For example, the authors
do not know a method of performing such simulations for Matern cluster fields.
Each pattern has to produce the same estimates of A,, R and x by the methods
described in §16.2. In the case of Gibbs field a first step is to simulate only fields
of n points (Ripley, 1988, p. 48).

For the particularly interesting characteristic A,, the choice of rg is problematic.
Furthermore, it is unsatisfactory to consider only one r-value. Therefore when
using L-functions, the following approach is popular. Let k, be even. For all &
simulated point patterns the L-function is estimated. For all r with 0 < r < R the
%ka—smallest and ( — %ka + l)—largest L(r)-values are determined (here R is a
suitable upper limit of the interpoint distances). Thus two functions are obtained:
a lower, Luin(r), and an upper, Luax(r). If the empirical L-function for the pattern
lies between the envelopes Lmin(r) and Lpax(r).

Loin(r) < L(r) < Laax(r) (0 <r < R), (15.35)

then the hypothesis may be accepted. If the empirical L-function exceeds the limits
set by Lmin(r) and Lmax(r) then the hypothesis should be rejected. However, the
probability of an error of type I is not exactly a! For each fixed r the probability
of satisfying (15.35) is clearly 1 — . But (15.35) has to be satisfied for all r with
0 < r < R. Of course, the events that (15.35) is satisfied for r = ry and r = r,
(0 < r;,r2 < R) are not stochastically independent, and the probability for their
joint occurrence cannot be computed easily.

Therefore if proceeding as described above then the probability of an error of
type I is not known; it is certainly greater than the chosen a.

Optimistic statisticians hope that the inaccuracies described above compensate
one another. (The first is favourable to the hypothesis, the second unfavourable.)

A rapid method of this kind is to simulate 19 times and choose L,(r) and
Lmax(r) as the minimum and maximum of the 19 L(r)-values. This method corre-
sponds to a = 0.05. An example is given in §16.2.

At the end of this section a certain hypothesis is treated that does not depend
upon estimated parameters. It says that for a marked point process

Hy : the marks are independent

Of course, this is an important problem in many applications.

One way of testing it is to use the following Monte Carlo test. First, k¥ marked
point patterns are generated. The points x, ..., X, are those of the original point
pattern. The marks are determined independently according to the empirical one-
dimensional mark distribution. This can be done by the following algorithm.

1 FORI=1TOn
2 Z=RND®)
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3 J=INT(Z xn) + 1
4 M(I) = MEQJ)
5 NEXT 1

Here M E(J) denotes the original mark of the jth point x; and M (/) the mark
of the ith point in the simulated point pattern. The test is carried out similarly to
above. A characteristic A is chosen that is closely related to correlations in the point
pattern, and the empirical A-characteristic is compared with the A-characteristic
that belongs to the simulated point patterns.

While the L-function has been used above, the use of the following function
Ls(r) is suggested. Here L(r) is connected with a mark function f(m’, m") by

Le(r) = 1/ﬂ (r > 0). (15.36)
Ticr(00)

Here «(0co) is defined as on p. 264, and K;(r) is related to ¢ (r) by
_22n [T o
Krn==3 | oy Wudu (r=0)
0

(Penttinen and Stoyan, 1989).
An estimator of L;(r) is given by

N k
Py =L >0, (15.37)
TCr A
where k¢(r) is obtained as
= oo —x) f(m, m))
k(=33 AT 0w (15.38)
i=l j=| j Xi
(ﬁ‘#i)
and
R 1 n n
& =— SN fomm)). (15.39)
=l ;=1
(i‘#i)

Thus the estimation process is similar to that for the K-function, and it is clear
how (15.38) has to be modified using Ripley’s or Ohser’s edge correction in the
isotropic case.

Example (silver particles, continued). By the method described above, 19 marked
point patterns have been generated that differ only with respect to the marks. For
them and the origin pattern the Ls-functions were estimated for

flmy,my) =my mj.
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Table 23 Upper and lower envelopes and empirical
L,.m-functions for the silver particles.

r me.min(r) me (r) me.max (r)
7 0 0 0
8 13 1.5 24
9 13 1.5 24
10 2.1 2.5 34
11 4.0 4.2 5.6
12 53 53 6.8
13 6.8 6.9 8.4
14 8.7 8.9 10.2
15 10.4 103 11.5
16 11.4 11.5 12.6
17 13.5 13.9 14.7
18 15.4 15.7 16.2
19 17.0 17.3 17.8
20 17.8 18.1 18.6
21 18.9 19.2 19.6
22 20.1 20.6 20.6
23 21.0 21.7 21.7
24 22.5 232 * 23.0
25 231 23.8 * 23.6
26 23.4 24.6 * 242
27 25.1 26.0 * 25.6
28 26.3 27.0 * 26.8
29 27.1 28.0 * 27.8
30 279 287 * 28.6

Table 23 contains values of the empirical L,,,-functions and the maximum and
minimum envelope L, max(r) and Lpm min(r). It can be seen that the empirical
Lmm-function is outside the range determined by Ly, min(r) and L., max(r) only
for very large r. Thus the correlation between the particle diameters is not so strong.

Similar applications with Ly4(r) for directional marks are given by Stoyan and
Benes$ (1991). Harkness and Isham (1983) tested by simulation the hypothesis that
two point fields in the same window are independent.

15.9 METHODS FOR ESTIMATING MODEL PARAMETERS

To estimate the parameters of point field models the usual methods of mathematical
statistics can be used; for example the maximum-likelihood method, the method
of moments or the minimum-contrast method. Until now, the application of the
maximum-likelihood method has been possible only in the case of particular point
fields, namely Poisson, Cox and Gibbs fields. This is discussed in §§13.3.4, 16.2
and 16.3.
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If formulae for model characteristics are given then the method of moments
can be applied. Example are given in §16.2. The minimum-contrast method is
sometimes used in point field statistics in the following manner.

Assume that for the point field model to be examined the calculation of the
L-function is possible (this is not an essential restriction, since an approximation
by simulation for given model parameters is always possible). Let Ly(r) be the
model L-function with parameter 6, where § may also be a vector. Then that 6
which minimizes the integral

R
/ [L(r) — Lo F () dr
0

is a minimum-contrast estimator of 8 (here f(r) is a weight function). Instead of
the L-function, the pair correlation function or the distribution function of nearest-
neighbour distance can also be used.

In practical applications the integral is replaced by a sum, and suitable
optimization methods are used to determine the optimum §-value. After estimating
6 by any method, a model test as suggested in §15.8 should be applied. It is
recommended that point field characteristics different from those in the estimation
be used. If § had been determined by means of the L-function then in the test the
nearest-neighbour distance distribution function should be used.






CHAPTER 16

Point Field Models

16.1 INTRODUCTION

The theory of point fields offers many mathematical models of such fields. Readers
of this book may be interested in Ripley (1981, 1988), Diggle (1983), Stoyan et
al. (1987) and Daley and Vere-Jones (1988).

Many important models are constructed from Poisson fields, especially Cox fields.
Details are given by Snyder (1975), Grandell (1976) and Karr (1986). Sometimes
these fields are also called doubly stochastic Poisson fields, on account of their
construction by a two-step random mechanism. In the first step an intensity function
is chosen according to a certain distribution, and in the second a Poisson field
having this function as intensity function is formed. The so-called mixed Poisson
field where A(x) is a constant for each sample is a special case. Samples of this field
behave like samples from a homogeneous Poisson field, but the intensity varies from
sample to sample. If only one sample is given then it is impossible to distinguish
it from a Poisson field. The situation for general Cox fields is similar. If there
is only one sample then it is impossible to distinguish it from an inhomogeneous
Poisson field. But if there are several samples then the distribution that generates the
different A(x) can be estimated (Karr, 1986). For spatial statistics the case where
the A(x) are samples of an ergodic homogeneous continuous random field is of
particular interest. Then the corresponding Cox field is also ergodic. In applications
Cox fields are frequently a first step of generalization of the Poisson field. For
them many calculations are still possible with acceptable expense. Therefore they
are used extensively in physics. However, it should be noted that homogeneous
Cox fields are still ‘more variable’ than homogeneous Poisson fields; for example,
the random point number N(B) in any bounded Borel set B has a greater variance
for a homogeneous Cox field than for a homogeneous Poisson field of the same
intensity.

Another important class of models comprises the so-called cluster fields. There
the points appear in clusters or clumps. The idea that there are ‘parent points’ around
which the so-called ‘daughter points’ lie randomly scattered is quite popular. In
many models it is the set of all daughter points that forms the cluster field. A
particular class of cluster field models will be treated in §16.2; there the parent
points belong to an homugeneous Poisson field. These fields are also ‘more variable’
than homogeneous Poisson fields. There is no strict border between cluster and Cox
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fields; rather, there is a large class of point fields that are both cluster and Cox
fields.

A third important class of models is given by hard core fields. These are mathe-
matical models of random systems of centres of non-overlapping discs of fixed
radius R. An example of such a point field is the Poisson hard core field mentioned
on pp. 318 and 323. A mathematically rather difficult hard core model that can be
simulated easily is the SSI (simple sequential inhibition) field, which is discussed
in detail by Diggle (1983). It is generated in a bounded window W, and its samples
are obtained as follows. First, according to the uniform distribution in W, a random
point is chosen, which is the first point x; of the field. It is taken as the centre
of a disc of radius # = 2R. Then another independent uniform random point is
chosen from W. If it lies in the disc b(x;, h) then it is rejected and a further random
point is chosen, etc. When finally a point outside b(x;, #) has been obtained, it is
denoted by xy; it is the second point of the SSI field. The simulation is continued
analogously until a planed number n is obtained or until no further point can be
placed in W. The result of this procedure is a sample of a hard core field of disc
radius R.

The SSI model can be modified in several ways. For example, it is possible to
choose the radius R randomly for each disc to use other shapes (e.g. line segments;
Penttinen and Stoyan, 1989), which must not mutually intersect.

Sometimes the term ‘soft core fields’ is used in the case of variable disc radii,
in contrast to the terminology of Ogata and Tanemura (1989).

There are further hard and soft core fields, constructed quite differently. The
starting point is a homogeneous Poisson field. According to certain rules, some of
its points are eliminated so that a hard core field is obtained. Matern (1960,1986)
suggested two such thinning rules for which mathematical calculations are possible.
The more interesting of them is as follows. All points of the original homogeneous
Poisson field independently receive marks that are uniformly distributed on the
interval [0, 1]. Points with smaller marks are older and more powerful than those
with larger marks. They suppress all younger points, which are closer than h. All
points not suppressed form the hard core field. Note that suppressed points can
nevertheless suppress other, still weaker, points. Formulae for this point field are
given by Matern (1960, 1986) and Stoyan et al. (1987).

The model has been generalized by Stoyan and Stoyan (1985); see also
Stoyan (1987, 1988) and Cressie (1991). There the radii R may vary as functions of
the age marks introduced for the construction. This leads to soft core fields. Mecke
et al. (1990) give a simulated point pattern for the generalized Matern model,
together with the program used. Finally, Penttinen and Stoyan (1989) discuss a
model where the discs are replaced by line segments that do not intersect.

Finally, Gibbs point fields should be mentioned here. They will be discussed in
detail in §16.3.
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16.2 CLUSTER FIELDS: NEYMAN-SCOTT FIELDS

16.2.1 Model description

Neyman-Scott fields form a popular class of cluster fields. They are frequently
used in spatial statistics, since they are rather flexible and since some formulae are
derived easily.

The basis of the model is a homogeneous Poisson field of intensity A,; its points
are called ‘parent points’. A cluster of ‘daughter points’ is scattered around each
parent point, and the union of all daughter points forms the Neyman-Scott field.
All clusters are mutually independent and generated by the same law. The random
numbers of daughter points in the clusters are identically distributed. Let ¢ be
a random variable having this distribution. In each of the clusters the points are
scattered around the cluster centre (the corresponding parent point) independently
and according to the same density function. Imagine the cluster centre translated to
the origin o. Then the position of the ith daughter point is given by a random vector
X;, where the X, are identically independently distributed with the same probability
density function d(x). It is frequently assumed that the X; are isotropic. Then it
suffices to find the density function d(r) of the distance of the daughter points from
the cluster centre.

Example: Matern cluster field. Here the number ¢ of points per cluster has a
Poisson distribution with parameter u. The X; are uniformly distributed in the disc
of radius R centred at 0. Thus

1
Ay = 7R (Ixl < R),

0 otherwise,
or
2r
d(ry=< R?
0 otherwise.

(r <R,

If the number of points per cluster has a Poisson distribution (as for the Matern
cluster field) then the cluster field is also a Cox field (Stoyan et al., 1987, p. 145).

The simulation of Neyman-Scott fields is easy. As is typical for many applica-
tions it is assumed that there is a distance R such that the density function d(r)
vanishes for r > R (distances from the cluster centre to the daughter points larger
than R are impossible).

First a sample of a Poisson field of intensity A, is generated in W @ b(o, R).
(By taking cluster centres outside W, edge effects are avoided, i.e. patterns too
thin at the boundary of W.) Then a cluster is generated for each parent point. First
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a random integer is determined that is equal to the number of daughter points (in
the case of a Matern cluster field a Poisson random number of the parameter y
is generated). Then for each daughter point two random numbers are generated,
giving polar coordinates.

the distance from the parent point, according to the density function
d(r)

and

the angle of the ray parent point — daughter point with the x-axis, by
the uniform distribution on [0, 27].

Figure 87 shows a sample of a Neyman-Scott field with A, = 50 and exactly 5
points per cluster, which are uniformly distributed in discs of radius R = 0.05.

16.2.2 Formulae for Neyman=Scott fields

First- and second-order characteristics

By construction, any Neyman-Scott field is homogeneous; if the clusters are
isotropic then so is the cluster field. The intensity A is given by

A= A, (16.1)

where ¢ = Ec is the mean number of points per cluster. In the isotropic case the
K -function has the form

AK(r) = anr? + E{Ec(c —DF@FE) (r=0) (16.2)

(Stoyan et al., 1987). Here F(r) is the distribution of the distance of two
independent random isotropic points, whose distance from o is distributed according
to the density function d(r). The formula (16.2) leads to the pair correlation function
1
gr)=1+———Ecc— Df(r) (r=0), (16.3)
2ah.Cr

where f(r) is the density function of F(r). The calculation of F(r) from d(r) is
possible, but not so easy, using

F(r) = / / F(rlri, r)d(ro)d(ra) dry dra,
0 0

where F(r|r(,r2) is the conditional distribution function of the distance of two
points with distances r; and r, from o respectively. It suffices to consider the case
ry <r

F@ry= 2/ / F(r|ry < r)d(r)d(ry) dry drs.
0o Jo
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The distribution function of the random distance g between the points under the
condition that the distances from o are r| and r, respectively, with r| < ry, is
obtained by geometrical argument as follows.

The random angle ¢ between the rays from o to the ry and r, points is uniformly
distributed on [0,27]. By symmetry arguments, it suffices to consider only the
case 0 < ¢ < 7. The probability that ¢ < r can be expressed by a ratio of angles,

because
2 2 2
ri+ry—o )

@ = arccos
2"17’2

and g is increasing as a function of ¢. Thus the probability is

1 ri4ri—r?
— arccos | —=————
T 2rin

for r, —r; <r < rp+ r, and zero otherwise. Thus

0 (r <rp—ry),
1 R r
F(rlry £n)=4q garccos | ———— | (n—r <r <r +n),
. 2"1"2
1 (r > ri+n).

In the particular case of the Matern cluster field the following formulae hold.

Moment formulae for the Matern cluster field. The intensity A of the field is
A= Aeld. (16.4)

The pair correlation function satisfies

_ fr)
girny=1+ mher (r =0). (16.5)
if the formula
Ec(c— 1) = 2

is used for a Poisson-distributed random integer ¢ of the parameter y. There,

4r rc ( r ) d 1 r’ 0<r<2R
—= arccos | — ) — — - —
firy=< nR? 2R/ 2R 4R? O=r=2k,

0 (r >2R).

In particular,

1
O =1+ .
8O TA.R?
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The K -function is given by

2+ 7%[(822 — 4) arccos z ~ 2 arcsin z
K(ry=mr’+ — x +4z/(1— 222 — 624/T— 22] (r <2R),
1 (r > 2R),

where z = r/2R.

If the disc b(o, R), in which the daughter points are scattered, is replaced by an
arbitrary compact set K, but otherwise the properties of the Matern cluster field
are retained, then (16.5) takes a generalized form: f(r) must be replaced by the
distance distribution P(r) of K, which is considered in §8.4.3.

Another particular model is the so-called Thomas field. Here the number ¢ of
points per cluster has a Poisson distribution, but the points follow a symmetric
normal distribution of variance o around the parent points. Its pair correlation

function is
2
exp | ——
P 40?
———=  (r=0).

ry=1+
8 47T)\e02

Nearest-neighbour distance distribution function. The nearest-neighbour distance
distribution function satisfies

D(r)y =1—-[1=H)]D:(r)y (r=0),

where H(r) is the spherical contact distribution function of the cluster field and
D.(r) is the probability that in a disc of radius r centred at an arbitrary cluster
point there is no other point of the same cluster.

Since the spherical contact distribution function is of interest in its own right in
the statistics of Neyman-Scott fields (Baudin, 1981), this is discussed first.

Spherical contact distribution function H(r). By definition, H(r) is the proba-
bility that in the disc b(o, r) there is at least one point of the cluster field. It can be
obtained by means of the formulae for the Boolean model. The germs are the parent
points, the grains the clusters. The probability that this Boolean model intersects
the disc b(o, r) is H;(r). The general formulae for the Boolean model give

Hy(r) = 1 —exp[—A.EA(Xo ® b(o,r))] (r>0),

where X denotes the random set that has as elements the points of a cluster centred
at o.

Thus there is the geometrical problem of determining the mean area of the union
X, of the discs b(x;, r) with x; in Xg. It is difficult, since these discs may overlap.
A possible solution is as follows.
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The desired mean area is determined as an integral over the covering function
Dx, (1)
[o.2]
EAXo® b(o,r)) =2m / tpx, (t)dt, (16.6)
0

where
px, () =Prte X;), |t =+

The calculation of py,(¢) for the Matern cluster field is relatively easy. Here
px,(t) is equal to the probability that a homogeneous Poisson field of intensity
w/m R? has at least one point in the intersection of the discs b(o, R) and b(t, r).
If A(t, r, R) denotes the area of this intersection then

WA, r, R)
TR?
To determine A(t, r, R), the formula in Appendix K can be used. The lower limit

of the integral in (16.6) is here R +r.
If the distance density function d(r) is given then px, (¢) can be computed as

px, (1) =1—exp [— ] t > 0).

px, (1) =1-E[1 - p®I Zl—p(t) Pk,  pr =Pr(c=k).
k=0

Here p(t) is the probability that a random disc of radius r, whose centre has a
distance from o distributed with density d(«), contains a fixed point t at distance
¢t from o. Then

p<z>=/ #d( uy du, (16.7)
0

where b(u) is the length of the circular arc of radius u around o in the disc b(t, r).
This length is

0 t>u+r,u>t+r),
2mu (r>u+1t),
b(u) = w42 —r?
2u arccos (———) otherwise.
2ut

The probability D.(r) can be obtained similarly:

D(r) = ka(l—nr)k ' =0).

k {

Here 1, is the probability that the disc of radius r, centred at a point of random
distance from o with density function d(r), contains an independent random point
with the same distance density function. It satisfies

7T,=/ P(t)d(t)dt,
0
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where p(¢) is the function defined by (16.7). If there is an R with
dit)y=0 (¢ =R)

then |
D(ry=zpi (1=2R).

In the case of the Matern cluster field

De(ry=e*" (r <2R),

with
2 R
= —0 tA(t,r,R)d:.
TR 0
For all r > 2R
D.(ry=¢e*.

16.2.3 Statistical methods for Matern cluster fields

Statistical analysis of Neyman-Scott fields can be carried out using of the functions
D(r), Hs(r), g(r) and K(r). The approach is the minimum-contrast method
(Diggle, 1983; Heinrich, 1992). Model parameters are chosen so that the differ-
ences between empirical and theoretical functions are small. The application of
the maximum likelihood method leads to great difficulties (Baudin, 1981). In the
following the case of the Matern cluster field is discussed mainly by means of an
example; the approach for other models may be similar.
For r > 2R
Ec(c—1)

c

AK(r) = Amr? +

where for the Matern cluster field ¢ = x and Ec(c — 1) = u?. Thus the difference
AK(ry — amr?

should be independent of r for large r and take the value w. Therefore there is a
theoretical possibility of direct estimation of w in the case of the Matern cluster
field. However, simulation experiments show that this method gives useful results
only for very large point patterns (Stoyan, 1991a).

To estimate the parameters of a Matern cluster field, the minimum contrast
method is recommended, using g(r), K(r) or L(r). The arguments for this are the
simple formulae (in comparison with those for D(r) and H(r)) and the general
experience that statistical analysis for point fields should be done with second-order
characteristics rather than with D(r) or H (r). Furthermore, D(r) and H,(r) are not
very sensitive to changes of the model parameters. The biases of the pair correlation
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function estimators for small r play an important role in the cluster process case:
they deform the shape of the function graph in its most interesting part. Therefore,
particular care is necessary in the estimation. Following the recommendations on
p. 286 three bandwidths 4 should be used, with ¢ in (15.16) as 0.05, 0.1 and 0.2.

Simulation experiments with this method have yielded acceptable results,
(Stoyan, 1991a). Also Barendregt and Rottschifer (1991) used this method with
success. In order to check the quality of their estimators, these authors used
a modified bootstrap method, the ‘delta-strap-method’. The following example
demonstrates the estimation method with the use of L(r).

Example (pines, continued). The estimate X of the intensity A is 126/100 m2.
Figure 130 shows the empirical pair correlation function obtained using (15.15),
which has a form which is typical for a cluster field.

Estimates i(r,-) of the L-function yield estimates of R and A,. (Thus u is
estimated from A and A, by (16.4).) Let L(r;A,, R) be the L-function of the
Matern cluster field with parameters A, A, and R. For a given R that value of A,

g(r)

|
0 1

riinmy ——»

Figure 130 Empirical pair correlation function for the young pines (unbroken line). This
function has the typical form of the pair correlation function for a cluster field. For
comparison, the broken line shows the pair correlation for a Matern cluster field with the
parameters estimated usirg the given data. It can be seen that the strength of clustering in
the young pines is greater than that for the Matern cluster field.
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is determined for which the following quantity takes a minimum by the Marquardt

procedure:
n

S L) = L he, B

i=1

for r = 0.2i, n = 10, where R = 0.4,0.45, ...,0.6. The R-value from among
those five, which yields the smallest value of the sum of squared deviations with
the optimum A, is taken as the estimate. For the data this is R = 0.45 m. The corre-
sponding A,-value is 0.82 m~2. Finally, the value 1.53 is obtained for . Figure 130
shows, in addition to the empirical pair correlation function, the theoretical pair
correlation function for these parameters The fit is quite good. This is also shown
by the L-function. Figure 131 shows the empirical L-function and the envelopes
of L-functions obtained by 19 simulations of the Matern cluster field with the
estimated parameters. Only for r smaller than 0.4 m does the upper envelope
slightly intersects the empirical curve. (As a further model, the Thomas field has
also been tried. But the results were worse.)

The results obtained suggest the following model. In the pine stand the trees
grow in clusters where the mean number of clusters per m? is 0.82. The number
of trees per cluster is random, with a Poisson distribution with parameter 1.53. For
each cluster the trees are randomly scattered in a disc of radius 0.45 m. (If discs
overlap then the point density is increased accordingly.)

The relatively large values of the empirical pair correlation function for small r
suggest that perhaps the true degree of clustering is stronger than for the Matern
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Figure 131 Empirical L-function (unbroken line) for the young pines. The broken lines
show the upper and lower envelopes of 19 simulated L-functions. The Matern cluster field
was simulated in the same window as the young pine data (cf. Fig. 118). The arrow points
to where the upper envelope intersects the estimated L-function.
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cluster field, and that the trees are more concentrated around the cluster centres.
This is supported by the calculations in §15.7, where the mean distances mg) to the
kth neighbour for the pines are compared with those for the Matern cluster field.

Baudin (1983) studied the complicated problem of statistical determination of
the cluster centres of a Neyman-Scott field. By definition, they form a Poisson
field, and thus are completely randomly distributed. However, if a sample of the
cluster field is given then the problem of reconstructing the cluster centres make
sense — they will lie in areas of a great point density of the cluster field.

16.3 GIBBS FIELDS

Since the end of the 1970s Gibbs fields (or random Markov fields with interaction)
have been intensively used in spatial statistics. They serve as models for many
types of point patterns, particularly those with inhibitions, which are more regular
than Poisson fields. The distribution of such fields can be characterized by a small
number of parameters, which is attractive for applications. On the other hand, it is
complicated to calculate the distributional characteristics introduced in Chapter 14.
For this and other reasons, simulation methods are important in the theory of Gibbs
fields.

16.3.1 Describing the models

Gibbs fields are defined and analysed both as finite point fields in bounded regions
and as homogeneous point fields in R?.

Gibbs fields with a finite point number

Let n points be randomly distributed in a bounded region B . The joint distribution
of the n points is given by a density function f(xi,...x,). Since all points are
considered to be alike, f (x,, ...x,) does not depend on the order of the x;.

The density function has the particular form

Gy = Zi"exp ~3° 3 a5 G x) € By (168)

i=1 j=i+1

Here ¢ (r) is the so-called pair potential. It takes values in the range —oo <
@(r) < +o0, with the convention that exp(—oo) = 0. The normalizing constant Z,
(‘configurational partition function’) ensures that f(x,,...x,) is indeed a density
function. Its determination is in general very difficult.

TIn the theory of Gibbs fields Aﬁnite point systems with a random number of points are also studied.
There it is possible that witn an inappropriate choice of pair potential the distribution may degenerate
(Ripley, 1988). For statistical applications the case with a constant number of points usually suffices.
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—-

o)

Repulsive

Figure 132 Typical pair potential, as used in physics. It results frorn the combination of
different attracting and repelling forces.

The formula (16.8) shows how n, ¢(r) and B determine the density function.
Positive values of ¢(r) leads to ‘repulsion’, so that interpoint distances r are
rarely observed. Conversely, negative values of ¢ (r) lead to ‘attraction’, so that the
interpoint distance r appears frequently. Figure 132 shows a typical pair potential.
If ¢(r) = oo for r < h then interpoint distances smaller than A are impossible; A
is called the hard core distance. (It is clear that n, B and A can be chosen so that
no reasonable density function is possible: large hard core distance h and great n
and small region B.) In the case

— oo (r .<_ h)’
¢ = {o r > h),
the Gibbs field is called a Poisson hard core field.

The form of the density function (16.8) is not arbitrary. It results from the
physically motivated demand for fixed total energy

/.../U(xl,...,x,,)f(xl,...,x,,)d.x1"-d.x,,,
B B :

with

Ui, oum) =Y > ¢dlx — x5,

i=1 j=i+1
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and maximized entropy

—// fxa, .. x)log f(x, ..., xp)dxy -+ - dx,.
B B

There are several methods for the approximate determination of Z,; see e.g.
the surveys by Diggle et al. (1994) and Ripley (1988). Usually large areas with a
smooth boundary and a small point density are assumed in these approximations.

The so-called Poisson approximations suggested by Penttinen (1984), which can
be used for ‘rare’ point patterns with weak interactions are particularly simple
(Ripley, 1988). It is assumed that some random numbers approximately follow a
Poisson distribution.

Example: Strauss field

_ B (r=ro),
¢(r)_{0(r>r0) 0 < B < 00).

Here |
fi...,x) = Z—exp[—ﬂt(ro; DT 1 (16.9)

n
where ¢ (rg; xq, ..., x,) is the number of point pairs with a distance less than or

equal to ro; (x;, x;) and (x;, x;) are identified.

It is assumed that ¢ (rg; x;, ..., x,) is approximately Poisson-distributed. For the

parameter p of this Poisson distribution the formula

_ nn—1) nrg

> A (16.10)

is plausible. The first factor is the number of all pairs, the second is an approxi-
mation to the probability that the distance of a randomly chosen pair is less than
ro. The integral

Zo= [ [exp |- 3 3 bl = x| dui--ed,
B B i=1 j=i+1
is, by (16.9), equal to
Z, = A(BY"E expl—Bt(ro; xi, ..., xp)]

This yields, with (16.10),

(16.11)

2
Z" ~ A(B)" exp I:_Mnrovf } ,

2 AB)

where y = 1 —e .
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Virial expansions are frequently used, as in statistical physics (Ogata and
Tanemura, 1981, 1986; Diggle ef al., 1994). A simple form is the second cluster
approximation

n(n—1)/2
] , (16.12)

z ~AB"[1———V2

with

v, =21 / (1 —e*Dyrdr.
0

This approximation can be used only if the pair potential is close to zero, when
the Gibbs field behaves like a Poisson field. Better approximations are obtained by
higher virial expansions (Diggle et al., 1994).

Example (Strauss field, continued). The second cluster approximation (16.12)

gives
n(n—1)/2
nrévf]

Z, ~ A(B) [1 ~ A

A more precise formula is

~ _n(n— l)7tl/fr§ _ O.2932516n2n(n — D(n — 2)1//3r3
log Z, ~ nlog A(B) TA(B) 6A(B)7
_nn—1n—-2)n— 3)7T3
24A(B)’

x (—0.27432784° + 2.18542074y° — 1.37886114y*)r$

(Diggle et al., 1994). The first two terms in the expression for log Z, yield the
same as (16.11).

Homogeneous Gibbs fields

Homogeneous Gibbs: fields have infinitely many points, which are distributed in
the whole plane. Their formal mathematical definition is more complicated than in
the case of a finite point number. For an introduction see Stoyan et al. (1987).

Two basic facts are important for the following and for applications. The distri-
bution of an homogeneous and isotropic Gibbs field is given by two characteristics:
the chemical activity a and the pair potential ¢ (r). As in the case of a finite point
number, ¢ (r) determines the character of the point distribution (hard core, cluster
etc.), while @ determines the intensity. For fixed pair potential, A increases with
decreasing o; « can also take negative values.

The distribution of a homogeneous and isotropic Gibbs field satisfies some conti-
nuity properties and the following important mean-value relation:

AEo(T(N\{o}) = E {T(N) exp [—a - Z¢(IIXII)} } : (16.13)

xeN
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On the left-hand side there is a Palm mean, as explained in §14.9; T(N) is any
measurable function that assigns to a point field a non-negative number.

A heuristic interpretation of (16.13) is given by Stoyan et al. (1987, p. 157). For
a point pattern X the expression

Ex, X)=a+Y ¢(x-yl) xeX)

yex

is interpreted as the energy needed for adding the point x to X. The function
E(x, X) is called the local energy.

It is a rather difficult problem to calculate the characteristics described in
Chapter 14 for Gibbs fields in terms of @ and ¢(r). Much work has been done
by physicists, who are particularly interested in the pair correlation function in the
three-dimensional case. The following is a sketch of methods for the approximate
determination of the pair correlation function g(r) and the distribution function
D(r) of the nearest-neighbour distance.

The Percus-Yevick approximation. In the statistical mechanics of fluids the
Percus—Yevick approximation is frequently used; it gives approximations of the
pair correlation functions g(r) if the intensity A and the pair potential ¢(r) are
known. It is given by

G
P(r) = e 7 0) (16.14)

(Percus, 1964; Hansen and McDonald, 1986; Diggle et al., 1987). c(r) is a further
function, the so-called ‘direct correlation function’, which is given implicitly as the
solution of the Ornstein—Zernike equation:

c(r) = h(r) — A(c x h)(r) (16.15)

with A(r) = g(r) — | and

27 00
(c % h)(r) = / / c(Yh((r* + s* — 2rscos £)1/%) ds d€.
o Jo

Combining (16.14) and (16.15) yields an integral equation for g(r).

Mase’s mean-value approximarion. Mase (1990) suggested an approximation
for means of the form
EJ] 7o

xeN
The function f(x) might be
fix) =1~ 1g(x)

for a Borel set B or
Fa(x) = [1 — 1 g(x)Je®0D,
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In the first case

EJ] /i® = Elin)=0) = Pr(N(B) = 0);

xeN

thus the mean is the void probability for the set B. In the second case (16.13) gives

E H f2(x) = Ae"Eol(vay=0}-

xeN

In the particular case B = b(o, r) the mean is the same as D(r), the distribution
function of the nearest-neighbour distance,

D(ry=1 —E{H fz(x)} — =0

xeN

Mase (1990) calculated the spherical contact distribution function H(r) for a
Poisson hard core field. Comparison with simulated results shows that the accuracy
of the approximation decreases with increasing «. The numerical and computational
expense is large.

Generalizations

Sometimes interactions are considered that generalize those given by (16.8). The
pair potential ¢(r) is replaced by more general functions describing the mutual
influence of neighbouring points. These point fields are called random Markov
point processes. Baddeley and Mgller (1989) is an excellent reference.

A special case of such general interactions is given by marks. (If the marks
result directly from the point field, like 7, (x) or 8% (x) on pp. 244 and 267 respec-
tively, then the situation is close to the examples considered by Baddeley and
Mgiller (1989).) In this case the pair potential also depends on the marks: instead
of ‘

édlx—yl),

the function

o(Ix — yll, m(x), m(y))

is used, where m(z) is the mark of z. In the case of homogeneous and isotropic
fields three characteristics are used to describe the field: «a, ¢ (r, m’, m"”) and a
‘primary’ mark distribution M;. The formula (16.13) generalizes to

)\/E,,,,,,(T(N, m))M(dm)
(16.16)
= [ETW.mep |~atm— 3> o(ixl mex,m) | Miam).

[x,m(x)]eN
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Here M is the ‘usual’ mark distribution as introduced in §14.1. E,,, is a Palm
mean-value operator, which gives means under the condition that there is a point
with the mark m at o.

Example: Random systems of non-overlapping discs. The pair potential has the

special form
b o Joo ifr<r4+r",
$lrr,r) = { 0 otherwise.

The marks are here interpreted as radii; therefore m is replaced by r in the
following. If all marks are equal to the fixed number %h then a Poisson hard
core field is obtained. Replacing ‘oo’ by B gives a point field that is similar to a
generalization of the Strauss field discussed in Baddeley and Mgller (1989).

If there are density functions then the corresponding density functions m(r) and
m, (r) are used instead of the mark distributions M and M;. (It is possible to show
that the existence of a density function for M, implies the existence of one for M.)

The formula (16.16) gives a useful relation between m(r) and m;(r) obtained
by quite a simple test function T (N, m) that is independent of N. For a given x

let
1 (r <x),

T(N'm)z{O(r>x),

so that the relation
)\/' m(r)dr = / e Ol — Hy(r)Im(r)dr (x> 0) (16.17)
0 0

is obtained (Mase, 1986; and Stoyan, 1989a).
An equivalent form is

am(r)y = e O — Hy(r)Im(r). (16.18)

H;(r) is the spherical contact distribution function of the union set of all discs.

16.3.2 Simulating Gibbs fields

A very popular method of simulating Gibbs field uses so-called spatial birth-
and-death processes. (Another possibility is the so-called Metropolis method, see
Ripley, 1992.) The simulation begins with a start configuration which is then
changed step by step, where points disappear (‘die’) and new ones are generated
(‘born’). In principle, any pattern can serve as start configuration. Often Poisson
field samples are chosen or, for patterns with greater order, SSI patterns (p. 308).
The given pattern to be analysed can also serve as a start configuration. According
to Ripley (1987), for the method described below, the influence of the start config-
uration vanishes after roughly 10n steps, where n is the number of points in the
pattern. After this point, patterns at a distance of 2n, ..., 4n steps can be considered
as ‘independent’.
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Fixed point number n in a region B (Ripley, 1979,1987,1990,1992)

Here there are alternating ‘deaths’ and ‘births’. One point from n is chosen at
random with uniform probability. This point is then deleted. Then a new point is
generated. This happens according to some probabilistic rules. Before explaining
them, two simple special cases are described.

Poisson hard core field. Consider the point pattern just after a death. Each of
the n — 1 points in B is taken as the centre of a disc of radius 4. A uniformly
random point is chosen in B. If it lies outside all discs then it is the newly born
point of the pattern. Otherwise it is rejected and a new random point is generated,
and so on.

Systems of non-overlapping discs. The simulation method above is modified.
Now each point has an individual disc radius. For the new point a radius is generated
according to the density function m; (), and it is rejected if the corresponding disc
intersects at least one of the discs (with variable radii) centred at the existing n — 1
points. Otherwise it is the newly born point.

General case. After a birth there are n points. The number of the point dying
then is determined by
k=14 int(un),

where u is a uniform random number on [0,1]. The position of the new point x is
generated according to the conditional density function

f(X|X1, ey X1 X1, ooy X,,).

While f(x;,...,X,) is given by (16.8), it is now

FEIXG o X, Xt xn>——exp Zas(nx—x,n) ,
(/#k)

with a normalizing constant ¢,.
Let M be an upper bound of the function

¢(x) = exp Z o(lx - x| (x€B).
(/#k)

The generation of x is carried out by the rejection method. A uniform random point
& is generated in B and an independent uniform random number w on [0, 1]. One
takes

x=§



GIBBS FIELDS 325

(€)= M.

Otherwise £ is rejected and a new point must be generated.

Example: Simulating a Strauss field. Here
@(§) = exp[—BN (x, ro)],

where N (x, rp) is the number of points in the sequence Xi, ..., Xs_1, Xpt1, ...,
X, that are at a distance less than ry from x. The upper bound M can be chosen to
be 1. The number N (€, ry) has to be determined for the random point &, and it is
taken as the new point if

exp[-BN (&, r0)] = w.

Sample of a homogeneous Gibbs field in a rectangular region B (Stoyan et al.,
1987)

The simulation of a sample of a homogeneous Gibbs field is similar to the method
used in the case of a fixed point number. The simulation begins with a suitable
start configuration, which is changed by birth and deaths. But in this case births
and deaths do not strictly alternate, but rather occur randomly. Furthermore, by
so-called periodic continuation, patterns are obtained that behave like samples of
homogeneous fields. The rectangle B is surrounded by eight further rectangles, as
shown in Fig. 133. During the simulation, each outer rectangle contains a copy of

+ + B +
* + + + + +
+ + +
+ + + + + +
+ + +
* + * + * +

Figure 133 Representation of the periodic continuation of a point field in B. In all
rectangles around B there lies a copy of the same point field. For any point in B all
points in neighbouring rectangles that intersect the circle are considered.
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the point pattern in B. Then for a point near the boundary of B the ‘neighbour
points’ are not only in B but also those in the neighbouring rectangle(s). If B is
large enough, there is no danger of undesirable correlations between the points at
the edges of B.

Let E(x, X) be the local energy as in §16.3.1, where x € B and X is the actual
point pattern in B and the eight neighbour rectangles:

Ex X)=a+) ¢(lx—xl).

yex

Using E, it is decided at each step whether there is a birth or a death. First the
quantities

wi =explEx;, X\{x;Dl (=1,....k

(where k is the actual number of points in B), are calculated;
Hit+1 = A(B).

Then the quantities

k+1
Pt
X 3P
i=|

are computed. The decision ‘death or birth’ is made using a uniform random number
uon [0, 1]. If '

po+pi+-Fpy<u<pot+pi+---+pi
then the ith point dies, while if
U>po+---+ pg

a new point is born. The new point x is chosen as a uniform random point in B.

Note the difference from the case of n points, where each point has an equal
chance of death, while here the positions of the points in the pattern play a role.
But the position of the new point is independent of the pattern. (This form of
simulation is simpler than one where the birth process is analogous to the above,
since otherwise the birth probabilities would have a rather complicated form.) In
the case of a hard core field it may happen that the newly born point is generated
in the hard core region of an already existing point: if so, then it is deleted and the
normal process of births and deaths is continued.

16.3.3 Statistical methods for Gibbs fields

In the case of finite Gibbs fields maximum-likelihood and pseudo-likelihood
methods are most commonly used, see Ripley (1988, 1992) and Diggle et al. (1994).
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The window of observation is denoted by W; it is identified with B in the
formulae of §16.3.1.

Approximate maximum-likelihood estimation
The likelihood function of a Gibbs field is given by the density function
FXty ooy Xn):

LO;Xy,....X) = fO;%1,....%y) (Xg5...,X, € W);

the additional parameter 6 describes the parameter dependence of the pair potential
¢(r). For given points x;,...,x, in W the 6 that maximizes the expression

l n n
LOxts o Xn) = z=goexp (=D, D, ¢ % —x1)
n i=! j=it+i

must be determined. In principle, this is not complicated to do by numerical
optimization, However, in fact the problem is not so simple, since Z,(6) is difficult
to obtain. Ogata and Tanemura (1981, 1986) suggested the application of the
approximations for Z,(8) described in §16.3.1. Diggle er al. (1994) have shown
that this method gives acceptable estimates if the interaction in the point field is
weak; that is, if ¢(r) is close to zero. The asymptotic normality of maximum
likelihood estimates is studied in Jensen (1991, 1993); Mase (1992) proved the
asymptotic efficiency of these estimates.

In a particular case maximume-likelihood estimation is quite easy. Namely, if a
Poisson hard core field is given, i.e.

0o (r < h),
() =
0 (r>h),
then the estimator for 4, the only unknown model parameter, is the minimum
interpoint distance in the point pattern.
Sometimes the window W lies in a much larger region, with more points

belonging to the same pattern. Ogata and Tanemura (1989) suggested the use of
‘edge corrections’ in such situations. One possibility is to replace the sum

> ¢6; Ix — x5l
j=t1
Ji

by
> 60 1% —x; )by

j=!
J#i

where b,;l is the length fraction of the circular arc centred at x; of radius ||x; — X; |l
in W (p. 282).
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Example (Strauss field, continued). The parameter 8 of the Strauss field can
be estimated using the approximation formula (16.11) for Z,. The log-likelihood
function is then approximately

(n—1) nrg

n
—Bt(ro; Xy, ..., X,) —nlog A(B) + > A(B)

(1 - e_ﬁ).

Taking the derivative with respect to 8 and setting it equal to zero gives

n(n—1) nrg _8

2 A(B)

t(ros Xg, ..., Xp) =

This yields the estimator

2t(ro; X1, ..., X)) A(B)

16.19
n(n — l)nrg ( )

B = —log

Moyeed and Baddeley (1991) have suggested calculating the maximum-likelihood
estimate recursively, by so-called ‘stochastic approximation’. This includes a
simulation of the Gibbs field for each estimate obtained. The case of the Strauss
potential is discussed in detail. Here the maximum-likelihood equation may be
reduced to A

M(@B) = t@ro; xq, ..., X)), (16.20)

where M (8) is the mean of ¢(rg; Xy, .. ., X,) for a Strauss field with parameter 8.
B can be estimated by the Robbins-Monroe method.

Mase (1992) has also studied the maximum likelihood estimation in the homoge-
neous case and was able to show that it has asymptotic optimality properties.
Furthermore, he proved that the maximum likelihood estimator in the canonical
case is as efficient asymptotically as that in the grand canonical case.

Pseudo-likelihood estimation

Besag (1978) suggested the following estimation method. The parameter 8 is
estimated by maximizing

Ly(0) = n(log n — 1) + Y _ logly (xi|N')] — nlog [/ y(x|N)d.x]. (16.21)
i=1 w

Here N denotes the total point pattern in W, and N’ the point pattern in W without
the point x;, N* = N\{x;}, and

y(x1X) =exp [— Y ¢ @ lIxi — )

x;€X
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The integral in (16.21) has to be determined numerically. Care is necessary since
the integrand is in general a complicated function with many local extrema. In
Diggle et al. (1994), where W was the unit square, after some experiments the
integration was replaced by a summation over a 40 x 40 lattice.

The theoretical justification is difficult for fields of fixed point number. In the
theory of homogeneous Gibbs fields a direct explanation is possible (Diggle et al.,
1994). Besag (1978), Ripley (1988), Jensen and Mgller (1990) and Diggle et al.
(1994) use arguments including approximations by lattice fields for the case of
finite point fields. The name ‘pseudo-likelihood’ results from the approximation
of the true likelihood function by a simpler term; the simplification results from
independence assumptions. The function L,(¢) is the corresponding log-pseudo-
likelihood function.

Example (Strauss field, continued). A pseudo-likelihood estimator of 8 can be
obtained as follows. It is

logly (x;|N)] = — i ¢ B Ixi —x;1) = —BN (b(xi, ro)\{x;}).
0%
Thus the sum in (16.20) is
—2Bt(ro; X1, ..., Xn),

and the integral there is
| expl=pN @ ron1ds.
w

Taking the derivative of L,(8) (formed according to (16.20), with 8 = 8), with
respect to B and setting it equal to zero yields the equation

21 (3 X -+ Xe) / expl— BN (b(x; ro))] dx
W (16.22)

=1 [ NG ro) expl=pN (bx, rop] d
w
for B. The integrals have to be determined numerically.

Takacs—Fiksel method

The Takacs -Fiksel method is a method for homogeneous Gibbs fields. Therefore it
can only be applied if the analysed point pattern can be considered as a sample of a
homogeneous point field. The original idea stems from Takacs (1983, 1986), while
Fiksel (1988b) generalized it to the form given here. (The paper by Mase (1984)
can be considered as a predecessor.) Tomppo (1986) developed a variant of this
method that uses nearest-neighbour distances, and this is suitable for measurements
in situ (e.g. in forests, without measurement of tree coordinates).
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The basis of the Takacs—Fiksel method is (16.13). The idea consists in

e choosing a series of test functions Ty (N) (k = 1...m); m should be not less
than the number of parameters of the pair potentials;

e calculating estimators ik (a, #) and ﬁk (a, 8) for the left- and right-hand sides
of (16.13) for any k;

e choosing the parametersT a and @ so that the sum of squared differences

S(a.6) = Z[Lk«r 6) — Ri(@.0)

k=1
is minimized.
Since Takacs (1983), various test functions T;(N) have been tried. It now seems
that two forms are particularly useful:

T.(N) = N(b(o, r)) exp

@+ B:; ||x||>]

xeN

and ‘
T, (N) = N(b(o, re)) = number of points in the disc b(o, ry).

Both forms have some computational advantages. In the case of T]/(N), ﬁk (a, 6)
takes the simple form
Ry(a,8) = n)\r,f.

Thus there is no (direct) dependence on « and €. The estimator is simply
Ri(a, 6) = Anr. (16.23)

An estimator of the left-hand side of (16.13) is

Li(@.0) = A(W)2N<wmb<x,,rk>\{x,}>exp at 3 66 I~ )
j=1
G#)

It is not edge-corrected. For an edge correction (which unfortunately does not
ensure unbiasedness) it is suggested that one replaces L} («, €) by

Ly@,0) = N(Wﬂb(x,,ro\{x,})a,exp @+ oE;lIx, —x, )by
A(W) .
(i#l)
(16.24)

¥ Note that for homogeneous Gibbs fields a is an additional parameter, which in the Takacs- Fiksel
method must be estimated alongside 6.
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Here X
Tr;

T AGX, ) NWY

a;

while b;; is defined as on p. 282.
In the case of T}'(N), Li(a, ) takes the form

MK (ry),

since

AEo(N (b(o, ro\o))) = A2 K (re),

where K(r) is Ripley’s K-function. For an unbiased estimation the methods
described in §15.4.1 may be used.

An estimator of Ry (w, ) can be obtained using a point lattice {y;} (j = 1,...,))
in W:

1 n
. 1
Re@,0) =7 > N®G;, e exp |—a = 3 (% =yl 6)bis |«
j=! i=1
with
. ar?
TAGG, N W)

It is also possible to use ¢; = 1 if the lattice points are ‘deeper’ in the interior of
W. (f ¢(r) = oo for r < ry then the distance of the y; from the boundary of W
should be at least ry.)

To choose the test function T} (N), experience shows that with a ‘repulsive’ pair
potential (¢ (r) positive), the form T;”(N) gives better results. For as ‘attractive’
pair potential (¢ (r) is negative for some r) T;(N) is preferable.

In Diggle er al. (1994) the point lattice was quadratic, / = 196 (= 14 x 14). The
number of test functions was m = 10.

The ry should be chosen as

R
nn=k— *k=1,...,m),
m
where R is a relatively large number with R(= 1.2~1.5) ryax and ry,y is the smallest
r-value such that

¢r)=0 forall r > rpux.

In the case of the homogeneous Strauss field the authors do not know of such a
simple estimation method as that based on the maximum-likelihood method. The
two parameters 8 (potential parameter) and « (chemical activity) must be estimated,
and about 10 radii ri should be used, where rp. = ro.
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Comparison of estimation methods

In Diggle er al. (1994) the three methods described above were compared. Gibbs
fields were simulated in squares of 100 points with weak to strong repulsion and
for three different pair potentials and different parameters. 1t was assumed that
the methods for the homogeneous case can also be applied to these patterns.
Then the model parameters were re-estimated by the various methods. Thus it
was possible to investigate the bias and estimation variances. Two main results
were obtained.

(a) The fairly negative opinion of Ripley (1988) on the Takacs -Fiksel method is
not justified. Rather, it may compete with the other two methods. It is not as
good only for very weak interactions (for ‘almost-Poisson fields’). A practical
disadvantage of the application of the Takacs-Fiksel method to point patterns
of a density function (16.8) is the need to estimate the chemical activity a,
which does not appear in (16.8) at all.

(b) In the case of stronger interactions between the points the maximum-likelihood
method becomes inaccurate. Since the assumptions under which the approxi-
mations of Z, have been obtained do not remain true, this is not surprising.
Also, with the pseudo-likelihood method the estimation errors increase with
increasing interaction (see also Sirkkd, 1993).

Implementation of the Takacs-Fiksel method and the pseudo-likelihood method
is possible given a unified plan for arbitrary pair correlation functions. In contrast, in
the maximume-likelihood method for each pair potential an adapted and sometimes
complicated approximation Z, must be found.

Cusp point method

For homogeneous Gibbs fields it has sometimes been suggested that one estimate
the parameters using approximations for the pair correlation or the K-function (or
similar characteristics). For example, Diggle er al. (1987) used (16.14) and (16.15).
This method needs very precisely estimated pair correlation functions and a careful
use of numerical methods. A special case is the cusp point method for the case of
a hard core Strauss potential (or ‘well potential’)

oo (r < h),
o(ry=< P (h <r <ry),

0 (r>rg.

Hanisch and Stoyan (1983) showed that the K -function of the corresponding Gibbs
field has a cusp point at r = rg with

lim K'(r)

rtrg _ e_ﬁ
lim K'(r)

rlrg



GIBBS FIELDS 333

Thus the pair correlation function has a jump at r = ry. These properties can
be used to estimate rg and 8, where both the K-function and the pair correlation
function may be used (Stoyan and Grabarnik, 1991). Clearly, / is estimated by the
minimum interpoint distance in the pattern.

As simulations have shown, this leads to useful estimators of ry and 8. The error
in the estimation of B8 increases with increasing absolute value of 8.

When using the K-function, one may proceed as follows.

Choose some values Ry, ..., R; as possible candidates for ry. This should be
done using the empirical K-function, and the R; should lie in an interval that
contains the sharpest cusp point of K (r).

Determine the minimum S’ of

SN =Y1K — Ke(riio.DF (j=1.2,....k

i=t
with respect to the variables o and t, where

o(rt —h?) r <o),

Ko(riom) = {U(Q2 —hYy 4+ 12— ) (r > o).

The value of m should be between 10 and 20. The r; should lie equidistantly
in an interval that contains all R;, with left endpoint greater than 4 and with
the cusp point near the centre. The optimum values of o and 7 are

o — A1Ar — c3A3A4 . A3 —O0CAy
T AdlAs 4 (m — 1) 4 c2a2 Ay

where

[ m A
A=Y Kr?—rH+c Y K,
i=1

i=l+1
Ar= 3 (=0 As= Y R)e?-oh,
i=I+1 i=l+1
m ! ~
Av= ¥ (7=, As=3(7—h"?
i=l+1 i=1

and ¢ = 92 — h? for n<pandr4; > o0.
Choose as estimator of ry that R; for which the number SV is smallest.

Estimate 8 by

*

p= —logF,

where o* and t* correspond to the optimum R-value.
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An example of the application of this method can be found in Stoyan and
Grabarnik (1991).

Marked Gibbs fields

There are similar statistical methods for marked Gibbs fields as in the case without
marks (Harkness and Isham, 1983; Ogata and Tanemura, 1984, 1985; Takacs and
Fiksel, 1986; Stoyan, 1989; Grabamik and Sirkki, 1992; Sarkkd, 1993).

Example: Random systems of non-overlapping discs. For the model discussed on
p. 323 the chemical activity a (considered here as a constant) and the density
function m; (r) must be estimated. For this (16.18) may be the starting point. The
formula (16.18) gives

. Am(rye?
m(r) = —IT(r) r>0),

where 1 is the estimated intensity, m(r) is an estimator of the radius mark density
distribution and H,(r) is an estimator of the spherical contact distribution function
of the union set of discs. (An estimator for H,(r) is given by the area fraction of
that subset of the window W that is not covered by the discs obtained from the
original discs by increasing the radii by r.) The quantity & is chosen so that

/ m;(r)dr = 1.
0

An example is studied in Stoyan (1989a).
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APPENDIX A

Measure and Content

Measures and contents are set functions. That is, they is assign numerical values
to sets. The area content is a well-known example:

X - AX).

A somewhat more complicated example depends on a mass distribution given by

n(X) =/Xf(x,y)dxdy,

where f(x,y) is a density distribution.
Such set functions may in general be defined on rings or o-algebras. A ring is
a collection R of subsets of a universe X with the following properties:

(R1) # € R (@ is the empty set);
(R2) if B, C € R then B\ C € R;
(R3) if B, C e Rthen BUC € R.

For example the collection of all finite unions of half-open intervals in the real line
is a ring,

A o-algebra satisfies more restrictive conditions. (All o-algebras are rings.) A
o-algebra is a collection § of subsets of a universe X where
S X € S;

(S2) if Be Sthen X\ B =B ¢ S,

(S3) if By, By, B;, ..., € S then UB,, €s.

n=1

Then one can further show that
VeS,

if B,C eSthen B\C €S;

if B;, B2, B3, ... € S then ﬂB,,eS.

n=1
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The Borel o-algebra B* in R? is a particularly important case. It is the smallest
o-algebra that contains all open subsets of R?. Roughly speaking, it contains all
‘sufficiently well-behaved’ sets and also all fractals. All subsets of R¢ in this book
are Borel. (In fact, it is difficult to give examples of non-Borel sets.)

A set function u on a ring R is called a content if it has the following properties:

(I n@) =0,
(I2) u(B)>0forall B e R;
(I3) w(BUC) = wu(B)+ u(C) for all B,C € R, where BNC = 0.
A measure is a set function on a o-algebra & with the properties
M1 u@) =0,
(M2) w(B) >0 forall BeS;
(M3) if B, B2,...,€ S and B; N B, = 0 for | # k then

u (G Bk) =S ).

k=1 k=1

The Lebesgue measure L is especially important, since it is the d-dimensional

volume for all elementary geometrical objects. For countable point sets or for

curves in R? (d > 2) the Lebesgue measure is 0. In the text £2 is written as A.
A Borel measure means a measure on B¢,
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sup and inf, lim sup and
lim inf

Each finite subset A of the integers (or of R') has a largest and smallest element
max A and min A. With infinite sets this need not be the case.

Consider for example the set A = {x,}, x, = 1/n (n =1,2,...). It has | as the
maximum but no minimum, since 0 cannot be written in this form. However, O is
the so-called infimum of A. By the infimum of a subset A in R' one means the
largest number y (written inf A) with

y <x forall x € A.
Analogously there is the supremum of A, the smallest z (written sup A) with

z>x forall x e A.

In mathematical notation one often sees
x= lim{x,} or y= 1;3)1 fx).
In the first case x is the limit of the sequence {x,}. The number x has the property
that for all small positive reals € there is some n(e) such that
|x —x,| < € forall n > n(e).
In the second case one means that for each € > O there is a 5(¢) > 0 such that
ly — f(x)] <€ forall x >0 with x < 3(e¢).

The concepts of lim sup and lim inf are less familiar. It can happen that a sequence
{x»} has subsequences with different limits. For example consider

_J1+1/n (neven),
"1 =1—=1/n (n odd).

This {x,} has two subsequences with values 1 and —1 respectively. The supremum
of all limits of convergent subsequences is denoted by lim sup x,,, and likewise the
infimum by liminf x,,.

Analogously there is the notation lim, o sup f (x). This is the supremum of the
set Hj?, where z is an clement of Hj? if and only if for all €,8 > 0 there is an
x € (0,8) with |f(x) —z| < €.
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Basic Ideas in Topology

At some points in this book ideas such as ‘open set’ or ‘closed hull’ are used.
These ideas are sketched below — for a thorough treatment see the literature.

All sets considered here are in R2. For a typical open set consider the open disc
b°(0, r) about the origin with radius r. The circumference is not part of the disc.

In general a set O in R? is open if for all points x in O there is some € > 0 such
that the open disc b°(x, €) lies completely in O. A rectangle without side edges
satisfies this definition. Any line segment or disc including its circumference is not
open.

The closed disc b(o, r) about o with radius r is an example of a closed disc; the
edge belongs to b(o, ). In general one says that a subset A of R? is closed if all
convergent sequences of elements from A converge to some element of A. Each
line or line segment (including endpoints) is a closed set, as is a rectangle with
side edges.

There are sets that are neither open nor closed, for example the closed disc
b(o, r) without the centre, i.e. b(o, r)\{o}.

For every subset X in R? there is a smallest closed subset X containing X . This
is the closure or closed hull of X. It contains all limits of convergent sequences of
elements of X. For example the closed hull of b°(o, r) is b(o, r).

The boundary of a closed set A is the subset A of all those points x for which
there is no r > 0 such that b(x, r) C A. The boundary db(o, r) of the disc b(o, r)
is the circle around o with radius r.

A set B is called bounded if for some finite r

B C b(o,r).

If B is closed and bounded, it is said to be compact.
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Set Operations

In addition to those set theoretic operations that are undoubtedly familiar to the
reader, geometric statistics involves a large family of other operations.

In the following A and B denote subsets of R? and b(x, r) is the closed disc of
radius r about the centre x.

Dilations (multiplication by a real scalar 1)
={Aix:x € A}.

The set AA consists of all points of the form Ax, where Ax = (Ax’, Ax"), x =
(x’, x""). For example, if A is the square with corners (1,1), (3,1), (1,3) and
(3, 3) then 2A is the square with corners (2, 2), (6,2), (2,6) and (6, 6). In the
special case A = —1 one writes —A as A. A is said to be symmetric when A = A

Translation
A,=A+x={y+x:ye Al (xeR>.
A, is the set A shifted by the vector x.
Minkowski addition

A®B={x+y:xcA,yecB). (D.1)

The set A can be enlarged, displaced or deformed by Minkowski addition by
suitable choice of the structuring element B. The special case B = b(o,r) is
important. The set A, = A @ b(o,r) is known as the outer parallel set of A.
Figure 134 shows A, for a rectangle and also for a non-convex set.

Equivalently to (D.1), we have

AoB=|]A,=]B.

yeB x€eA

The operation A — A @ B is often known as dilation. However, in this book the
term is reserved for the operation described above.

Minkowski subtraction
ASB= ﬂ Ay. (D.2)
yEB
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A r

J A r

Figure 134 Outer parallel sets for two sets.

In general this operation is unrelated to Minkowski addition. It is not necessarily
true that either (A © B) & B =Aor (AS I§) @ B = A. For the special case
B = b(o,r) the set A" = A © b(o, r) is known as the inner parallel set of A.
Figure 135 shows A" for the same rectangle and non-convex set as above. A" is
the set of all those points x of A for which the open disc b°(x, r) is completely
contained by A.

The formula (D.2) can also be written as

AS B ={z:(B), C A).

The operation A - A S B is often known as erosion. One says that A is eroded
by B. In this book we are interested above all in the case B = b(o, r), for which
B =B.

Since Minkowski addition and subtraction are enlargement and reduction respec-
tively, they are of little use for smoothing and simplification purposes. However,
the following operations of closing and opening are useful tools.

Closin
’ A =A@ B)oB.

A is always contained in A%, though the difference between the two is often not
great. The set A? is smoother and possesses less fine detail than A. Cracks and
small notches are removed. Naturally, the choice of B plays a particular role, and
the above remarks hold particularly when B = b(o, r). In the special case when
A = b(o, R), A® is equal to A for all radii R.

A
’ —l_:f
A '
———r,.] A
1,

Figure 135 Inner parallel sets for two sets.
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Opening
Ap=(AS B)®B.

Ap is contained in A, but as above there is usually little difference between the
two. Again A is smoother and simpler than A. Thin appendages are removed and
components disjoint from the main body made more distant.

In the special case A = b(o, R) and B = b(0,r), Ag = Aif R>r,and Ag =0
otherwise.
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The Euclidean and Hausdorff
Metrics

A metric gives distances between two points of a set. A simple example is for
the plane R2. Here the Euclidean metric may be used, which is the usual distance
between the two points in the plane. That is,

Il = xall = /(] = )2+ (] — 12,

where x; = (x}, x{') fori =1,2.
Another example is given by the set X of all compact subsets of R?, each subset
being viewed as a point of X. There is a metric on K, the so-called Hausdorff

metric, given by
MK,G)y=inflr >0: K CG®b(o,r),G C K& b(o,r)}

for K, G € K. Equivalently,

xek

h(K, G) = max{supd(x, G), supd(y, K)},
yeG

where d(x, K) = inf,c¢ ||x — z||.

Corresponding to K, there is the smallest parallel set K @ b(o, ry) containing
G; and likewise for G and rg. The larger of rg and r¢ is the ‘distance’ h(K, G)
between K and G.

Example. Let K be the unit disc b(0, 1) and G the unit square with sides parallel
to the coordinate axes and the bottom left corner at the origin. The smallest parallel
set for K (for G) that contains G (respectively K) is K@b(o, V2 1) (GHb(o, 1)),
which one may easily check. Thus h(K, G) = max{~/2 — 1,1} = I.

With the Hausdorff metric, K is a complete separable metric (i.e. Polish) space.
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Boolean Models

The Boolean model is an important model of random sets. It is usually defined
as a closed set, but occasionally as an open set as well (p. 33).

It can be defined constructively. Let N be a homogeneous Poisson field of
intensity A and {X,} an independent sequence of random compact sets. The points
of N are called germs or germ points. The sets X, (n = 1,2, ...) are identically
distributed and mutually independent; one calls them grains or primary grains.
Moreover, let X, be another random compact set with the same distribution as X,,,
which one calls the ‘prototype grain’ or ‘typical grain’. In the following it will be
assumed that its mean area A = EA(X)) is finite.

The Boolean model is the union X of the grains X, translated by the x, in N:

X = U (Xn +Xn)-

XpeN

The set thus defined is, in the sense of the theory of random sets, homogeneous
(or stationary). Clearly this property can be explained as on p. 191 (for a precise
definition see the literature). If the X,, are isotropic (e.g. X,, = b(0, r,,) with random
r,) then X is also isotropic.

Figure 136 shows a simulation of a Boolean model with circular grains.

The grains do not necessarily have to be convex (however, the convex case has
been extensively discussed). An important special case of the Boolean model with
non-convex grains is when X, consists of finitely many points. The corresponding
Boolean model is the so-called Poisson cluster field; under special assumptions on
the distribution, one obtains a Neyman-Scott field (cf. §16.2).

The above definition can be generalized in three ways.

(i) The grains could be bounded open sets. Then X is a random open set.

TThe concept of ‘Boolean model’ derives from Matheron’s school in Fontainebleau. They originally
considered those random fields {Z(x)} whose values vary continuously. For example these may serve
as models of geological deposits; so that Z(x) is the thickness of the deposit at x. The Boolean model
can be interpreted as a random field, where only the values Z(x) = 1 and Z(x) = 0 are possible — that
is, whether or not x lies in the model. Many mathematicians associate quantities that take only the
values 0 or 1 with Boole’s name.
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Figure 136 Realization of a Boolean model with disc-shaped grains.

(ii) It is possible to remove the requirement of homogeneity on N; N is thus
an inhomogeneous Poisson field. The corresponding Boolean model is then
inhomogeneous.

(iii) Instead of a Poisson field, a general point field could be used.

In the first two cases one calls the resulting set X Boolean as before: in (i) X
is open; in (ii) inhomogeneous. In case (iii) one speaks of the germ-grain model
(Appendix ).

A very important quantity for the homogeneous Boolean model is the area
fraction py:

px =EAXN Q)  0=[01]x[0,1].

One can show that the same value is obtained if Q is replaced by a Borel set B
with A(B) = 1. The quantity py is also the probability that the origin o (or any
other fixed point) lies in X. It satisfies

px =1—e,
where A = EA(Xo).

In the inhomogeneous case px(x) is the probability that the point x is in X.
This can be given as an integral:

px(x) =1 —exp [—/ p(x, 2)A(z) dz] (x € Rz).
R2
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Here A(z) is the intensity function and p(x, z) the probability that the prototype
grain X, when translated by z contains x:

p(x,z) =Pr(x € Xg+z) =Pr(x —z € Xp).

Finally, for a homogeneous Boolean model one obtains a formula for the spherical
contact distribution function H;(r). This is precisely the probability that the set X
intersects with the circle b(o, ) under the condition that 0 ¢ X:

Hy(ry=1- 1= exp[—AEA(Xo & b(o, r))] (r = 0).

X

If X is compact and convex then the mean value EA(Xo @ b(o, r)) can be calcu-
lated easily with the help of the Steiner formula on p. 108.
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The Convex Hull

A subset C of R? is said to be convex when for each two points xj, x2 in C the
whole line segment from x; to x; lies in C, i.e.

A+ (1 —=-AxeC for 0 <A <I1.

The disc b(o, r) is an example of a convex set. The boundary db(o, r) is non-
convex.
For each non-convex subset A of R? there exists a smallest convex set conv A
such that
A C convA.

One calls this the convex hull of A. The convex hull of db(o,r) is b(o,r).
Figures 32 and 53 show the convex hull for another set.
If A is bounded and closed then convA has these properties as well.
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Random Lines and Line
Fields

Parametrization of lines
In the following let G be the set of all infinite lines g in the (x, y)-plane. Every
such line g may be written as

y=a+bx (H.1)

for some a and b. g is uniquely defined by @ and b. In analytical geometry other
parametrizations are used. As shown in Fig. 137, g may be characterized by p and
¢. That is, p is the perpendicular distance of g from the origin o, and ¢ is the
angle that the perpendicular makes with the positive x-axis. (In other words, (p, ¢)
are the polar coordinates of the foot of the perpendicular to g from o.)

We have

0<p<oo

and
0<¢ <2m.

The relationship to the above line representation is given by the so-called Hesse

normal form
xcos¢ + ysing = p.

DN

Figure 137 Representation of a line and the corresponding parameters p and ¢.

X
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Under the (p, ¢)-parametrization, the set G of all lines in the (x, y)-plane is equiv-
alent to the infinite strip

S={(p,®):0<p<00,0<¢ <2m}

Each point of the strip corresponds to a line, subsets of S correspond to sets of
lines.

Example 1: Let G, ) be the set of all lines that intersect the disc (o, r). Clearly
the corresponding subset of S is the region

Spory ={(p,#):0<p=<r, 0<¢ <2n}.

Example 2: Let Gy be the set of all lines that cut the square = [—%, %] X
[—1, ;1. The corresponding subset of S is

So={(p.¢): p=3(sing +cosg); 0<¢<2r}

(Fig. 138).

Line measure

In many geometrical problems it is necessary to assign a measure to sets of lines.
Usually one uses the Lebesgue measure A on the strip S (which is considered as
a subset of R?). Let y be the resulting line measure on G. If G’ is a (measurable)
subset of G then

¥(G") = A(S),
where §’ is the subset of S corresponding to G’. For the examples above
Y (Gbo,r) = AlSpo,r)) = 2mr (H.2)

and
y(Go) = A(Sg) = 4.

| I |
0o T = n 3n 2n
4 2

o —

Figure 138 The region between the ¢-axis and the bow curve is the set Sy, which corre-
sponds to the lines intersecting the square Q = [~%, 15] x [—15‘ %].
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In integral geometry (see Santal6, 1976; Gruber and Wills, 1993) it is shown that
for each bounded convex set the set G ¢ of lines that intersect K satisfies

y(Gg) = U(K), (H.3)

where U (K) is the circumference of K.

The line measure y possesses an important invariance property. Let G’ be a set of
lines and MG’ the set of lines that arise from applying a Euclidean transformation
M (translation or rotation) to the elements of G’, i.e.

MG ={Mg:geG'}.

Then
y(G) =y(MG").

Random lines

A random line is one with a uniform distribution under y. Let G’ be a set of
lines in the (x, y)-plane and §’ the corresponding subset of the strip S. Then for
every random line in G’ there is a corresponding point in §’ whose position has
the uniform distribution. Thus corresponding probabilities can be calculated in the
spirit of the theory of geometrical probability for random lines. For example, the
probability that a random line cuts the disc b(o, r), assuming that it cuts the larger
disc b(o, R), is
Y(Gbeo.r))

¥ (Gro.r))
By (H.3), this gives the value r/R.
Furthermore, let G¥% be the set of lines that intersect the set K producing a chord

of length less than £. Then the distribution function L(¢) of the random segment
is

L(¢) = Pr(segment length < £ | K intersects the line)
vy (G)

y(Gk)

Random lines are easy to simulate. If one wishes to generate a random line that
intersects the discs b(o, r), one takes two independent random variables u and v
uniformly distributed on [0, 1] and derives the parameters by

p=ru, ¢=2mv.
A random line that intersects the square Q can be generated as follows.

1  u = RND(0)
2 IF u > 1/SQR(2) THEN 5
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\

Figure 139 Section of a simulation of a Poisson line field.

3 v = RND()

4 p=u/SQRQ2): ¢ =2 * m x v: RETURN
5 v=RNDO:¢=2x%m*v

6 T = SQR(2) * (SIN (¢) + COS (o))

7 IFu> TTHEN 1

8 p = u/SQR(2): RETURN

Line fields

Let there be a point field in R%. Those points that lie in S form a sub-point field.
Each of these points corresponds to a line in the (x, y)-plane, and the set of these
lines is called a line field.

For each line field there is a corresponding fibre field (Stoyan et al., 1987). A
fibre field is the random subset of the (x, y)-plane that is the union of all lines in
the line field.

Poisson line field

The Poisson line field is a very important example, which is derived from a homoge-
neous Poisson point field of intensity A in R%. The points lying in S correspond to
a random set of lines. This is called the Poisson line field with parameter o = 22,
and it has a number of important properties.

(a) It is motion-invariant. That is, if all lines are transformed by the same
Euclidean motion, one obtains a new line field with the same distribution
as the origin.

(b) The intersection points with a fixed line form a linear Poisson process with
intensity ¢ = 2). The intersecting angles are independent from one another
and have distribution function % sina (0 < @ < 7). The number of lines that
intersect the plane set K has a Poisson distribution with parameter AA(Sg).
(c) The mean total length L 4 of the line segment of the field in a region of area
1 is ). In the theory of fibre fields the quantity L, is known as the line

density or intensity.
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(d) The probability that more than two lines intersect at some point is exactly 0.

(e) Suppose one chooses a random line from the field (the meaning of the word
‘random’ can be defined using the theory of Palm distributions). One then
translates the field so that the selected line lies on the x-axis. Then the new
line field with x axis removed has the same distribution as the original one.

(f) The lines of the Poisson line field define a mosaic in the plane, the Poisson
line mosaic. Its typical cell is known as a Poisson polygon.

Simulation of the Poisson line field

Often one has the task of generating a random set of segments that form the lines
of a Poisson line field in a set K (e.g. a square). This can be achieved as follows.

1. Find the set Sk in § and its Lebesgue measure. (If K is convex this is the
measure of the boundary of K.)

2. Generate a Poisson-distributed random number »n with parameter AA(Sk).
3. Generate n independent random lines using the method sketched on p. 357.






APPENDIX I

The Dirichlet Mosaic
and the Delaunay
Triangulation

Let N = {x,} be a sequence of points in R2. One may assign an open set Z°(x;)
to each point x;, consisting of all those points in R? nearer to x; than any other
point of N. For each x;, Z°(x;) is convex. The Z%(x;) are arranged as in a mosaic
in R?. One speaks of the Dirichlet mosaic relative to N (often it is also denoted as
the Voronoi or Thiessen mosaic).

The closed hulls Z(x;) of the Z%(x;) are known as the cells or polygons of the
mosaic. They are derived from the Z°(x;) by the addition of edges and corners.
The x; are called generating points.

Figure 140 shows two such mosaics where (a) one is generated by a finite
sequence (so that some cells are unbounded) and (b) the other is on regions from
a mosaic generated by an infinite sequence.

Apart from special latticed arrangements, each corner point of the Dirichlet
mosaic is the comer point of exactly three cells.

Each Dirichlet mosaic with this property can be assigned a Delaunay triangu-
lation. This consists of those triangles that have comner points in N and whose sides
join neighbouring cells. Figure 140 shows some triangles of the triangulation for
one of the mosaics.

Many programs exist for generating the Dirichlet mosaic from a given point
sequence N,
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Figure 140 (a) A Dirichlet mosaic, whose points are the centres of the district towns of
the former GDR. (b) Section of a Dirichlet mosaic of a simulated unbounded point field. In
the centre there are some Delaunay triangles shown.



APPENDIX J

Germ—Grain Models

Germ-grain models are models for random sets; they are much more general than
Boolean models (Appendix F). As before, one obtains the required random set by
taking the union of compact sets X,,, which are shifted by the germs x,:

X = G(X,, +X,).

n=|

The x, need not form a Poisson field, nor do the X, need to be independent from
one another or from the {x,}. Under certain assumptions on the distribution, it is
possible for the structure to consist of disjoint grains (or particles), as in Figs. 86
and 96.

A homogeneous germ-grain model is one where the pairs (x,, X,) form a
homogeneous marked point field; the mark space in this case is X, the set of all
compact subsets of R?. The corresponding mark distribution describes the distri-
bution of the ‘typical’ grains. It is denoted in this book by Py.

Some formulae for germ-grain models may be found in Stoyan et al. (1987)
and Hall (1988).






APPENDIX K

The Area of Intersection of
Two Discs

In various calculations in stochastic geometry one requires the area of intersection
of two discs of radius r and R respectively whose centres are separated by a
distance ¢ (Fig. 141).

Forr~-R<t<r+R

2 2 2
—R
A(t,r,R) = r? {arccos (L>
2tr

2, .2 2
t —R
_ 4;:22 [4t2r2—(l‘2+r2—R2)2]1/2}
r
2 22
t“+ R —r
R? { arccos | ———
o fasos (T
t? + R? — 2

42 R2 [4:*R* — (1* + R* —~ rz)z]l/z} . (KD

For r = R this simplifies to

t
A(t, r) = 2r* arccos (2—) - %t(4r2 -2, (K.2)
r

Figure 141 Two mutualiy intersecting discs, with the intersection shown shaded. This area
is denoted by A(¢, 7, R).






APPENDIX L

Kernel Estimators for
Density Functions

The estimation of (probability) density functions is not simple. The definition of
histograms or frequency distributions is well known: the sample values x,, ..., x,
are sorted into classes and the frequencies displayed in a bar chart. Histograms
show in a rough way the form of the density functions. In particular, when one is
using neither a model nor parameters, the histogram is often inadequate because
one requires an estimate of the density function that is first sufficiently smooth and
secondly describes the true distributions. Here kernel estimators offer a good way
out.

Let f(x) be an unknown density function, which is to be estimated. Furthermore,
let k(x) be another density function, the kernel function. It is usually taken to be
symmetric:

k(x) = k(—x).

Then

fox) = Zk(x - xi)

is an estimator for f(x). There are many possible kernel functions to choose from.
An often used example is the so-called Epanecnikov kernel

3 1—)‘—2 (~h<x<h
en(x) =< 4h h? sxsh,

0 otherwise.

Note that the choice of this kernel is based on certain optimization considerations.
Experimental measurement shows that the particular choice of the form is not as
decisive as the bandwidth k. For large h one obtains smooth density functions,
which smooth the details of the distribution; for small / the estimated function is
rough and may obscure the fundamental structure of the distribution. The correct
choice of h is a difficult problem, frequently discussed in the literature. In a large
study a preliminary investigation with various bandwidths is recommended.
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Consider also the following problem. It is often the case that
fx)=0 (x<a),

where f is the density function to be estimated. In particular, it may be that all
data are positive, so that a = 0.

Under suitable circumstances a symmetric kernel function k(x) yields an
estimator f such that near a

fx) >0,

even for x < a. A viable means of ensuring a density function that vanishes for
X < a is to use the so-called reflection method:

)+ fQRa—x) (x>a),
0 otherwise.

f(x)={

Kernel estimators are also used in point field statistics. Similar principles to
the above hold in this case as well, although the method of choosing optimal
bandwidth that was developed for density function estimation is random samples
does not apply.
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Index

convexity ratio, 105
covariance method, 79
covering function, 108
cross-section function, 62
cusp point method, 332

activity, chemical, 320
anisotropy, 261, 269
area-perimeter ratio, 103
Aumann mean, 109
A-U-method, 79

deformation, random, 90

band width, 237, 285, 367 dilation, 144, 343
basalt columns, 256 dimension, fractal, 15
basaltic formations, 200 Dirichlet polygon, 128
binomial distribution, 204 discriminant analysis, 172
negative, 208 dispersion index test, 221
binomial field, 197 distance,
birth and death process, 325 to nearest neighbour, 214, 266, 296
Bookstein model, 161 distribution,
Boolean model, 349 compound, 207

inhomogeneous, 138 generalized, 208
Borel measure, 338 divider stepping method, 40

Borel set, 338 Dmax-method, 79

Borel o-algebra, 338 dust, 4
box-counting method, 41
Brownian motion, 33 edge correction, 280-283, 296, 330
bridge, 34, 93 eigenshape, 94, 98
path, 34 ellipse ratio, 106
energy, local, 321
Epanecnikov kernel, 367

Campbell’s theorem, 242, 243 ergodic, 194
Cantor function, 19 erosion function
Cantor dust, 4 linear, 123
chord length distribution function, 117 spherical, 123
circularity shape ratio, 104
closing, 71, 344 figure, 53
cluster analysis, 152, 183 randomly disturbed, 90, 96
cluster field, 309 forest burning model, 139
compact, 341 Fourier analysis, 80
contour function, 62ff. Fourier coefficient, 81, 86
mean-value, 72 fractal, deterministic, 20
statistics, 94 random, 29
variance, 72 Fréchet mean, 112

contour covariance function, 73
convex, 353 gamma-distribution, 131





