Applications of Percolation Theory

Muhammad Sahimi

University of Southern California

e

Taylor &Francis




Preface

Chapter 1

Chapter 2

Chapter 3

Contents

Connectivity as the essential physics of disordered systems

1.0
1.1
1.2
1.3

Introduction
What is percolation?
The scope of the book
Applications of percolation that are not discussed in
this book
1.3.1 Percolation model of galactic structures
1.3.2 Multicomponent percolation
1.3.3 Glass transition
1.3.4 The behavior of supercooled water
1.3.5 Dynamic percolation
References

Elements of percolation theory

2.0
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
29

Introduction
Definitions and percolation thresholds
Computer generation of percolation clusters
Percolation quantities
The structure of the backbone at or near percolation
Universal scaling laws for percolation quantities
Fractals and percolation
Percolation in finite systems and finite-size scaling
Percolation in random networks and continua
Conclusions

References

Characterization of porous media

30
31
3.2
33

34

Introduction

Diagenetic processes and the formation of rocks
Geometrical models of diagenetic processes

Pore space geometry: mercury porosimetry and
percolation

Pore space geometry: adsorption—desorption and
percolation

vii

xiii

W= =

[o =N DN E B e W@ Yl @)Y

10
12
12
14
14
16
17
18
21
22

23
23
23
25

27

34



Chapter 9

Chapter 10

Chapter 11

Chapter 12

Contents

8.6 Flow and deposition of colloidal particles and stable
emulsions in porous media
8.7 Conclusions
References

Fractal diffusion and reaction kinetics
9.0 Introduction
9.1 Fractal diffusion in percolation systems
9.2 Diffusion-controlled reactions on percolation clusters
9.2.1 Diffusion-controlled trapping
9.2.2 Diffusion-controlled annihilation
9.3 Conclusions
References

Vibrations and density of states of disordered materials

10.0 Introduction

10.1 Vibrations and density of states of homogeneous rigid
structures

10.2 Vibrations and density of states of fractal and
percolation networks

10.3 Experimental verification

10.4 Conclusions

References

Structural, mechanical. and rheological properties of

branched polymers and gels

11.0 Introduction

11.1 Percolation model of polymerization and gelation

11.2 Mechanical, rheological, and structural properties of
branched polymers and gels

11.3 Comparison of experimental data for the structural
properties of branched polymers and gels with the
percolation predictions

11.4 FElastic percolation networks

11.5 Comparison of the scaling properties of the viscosity
and elasticity of branched polymers and gels with the
percolation predictions

11.6 Kinetic gelation and dynamic percolation

11.7 Conclusions

References

Morphological and transport properties of composite

materials

12.0 Introduction

12.1 DC conductivity and elastic moduli of powders and
polymer composites

141
143
144

145
145
145
149
150
151
155
155

157
157

158

160
163
167
168

169
169
170

171

176
181

185
189
191
191

193
193

194



Contents

12.2 DC conductivity and percolation properties of
metal-insulator films
12.3 AC conductivity and dielectric properties of composite
media
12.4 Hall conductivity of composite media
12.5 Percolation properties of granular superconductors
12.6 Conclusions
References

Chapter 13 Hopping conductivity of semiconductors

13.0 Introduction

13.1 The Miller—-Abrahams network

13.2 Percolation models of hopping conductivity

13.3 Effect of a variable density of states on hopping
conductivity

13.4 Effect of Coulomb interactions on hopping
conductivity

13.5 Effect of a fractal structure on hopping conductivity

13.6 Conclusions

References

Chapter 14 Percolation in biological systems

Index

14.0 Introduction
14.1 Antigen—antibody reactions and aggregation
14.2 Network formation on lymphocyte membranes
14.3 Percolation aspects of immunological systems
14.4 Protonic percolation conductivity in biological
materials

14.5 Conclusions

References

xi

201

207
217
219
222
222

225
225
226
230

233

236
238
240
241

243
243
244
245
247

249
252
252

255



oriented chemical engineer. New applications of percolation are still being
developed. and in the coming years such applications will find widespread use
in many branches of science and technology.

Over the past decade Dietrich Stauffer has greatly contributed to my
understanding of percolation theory, disordered systems, and critical phenom-
ena. He has done this through his “referee’s reports™, e-mail messages, letters,
and our collaborations on various problems. Without his constant encourage-
ment and support this book would not have been written. He also read most
of the book and offered constructive criticism and very useful suggestions. I am
deeply grateful to him. T would also like to thank Ted Davis and Skip Scriven
who introduced me to percolation, and Barry Hughes for his many stimulating
discussions and fruitful collaboration. Many other people have contributed to
my understanding of percolation theory. a list of whom is too long to be given
here. I would like to thank all of them.

Most of this book was written while 1 was visiting the HLRZ Supercomputer
Center at KFA Jiilich, Germany, as an Alexander von Humboldt Foundation
Research Fellow. I would like to thank Hans Herrmann and the Center for
their warm hospitality, and the Foundation for financial support.

Muhammad Sahimi
Los Angeles,
April 1993



1
Connectivity as the essential physics of
disordered systems

1.0 Introduction

It is a fact of life, which is as challenging to the mind of the scientist as it
is frustrating to his or her aspirations, that nature is disordered. In nowhere
but the theoretician’s supermarket can we buy clean, pure, perfectly char-
acterized and geometrically immaculate systems. An engineer works in a
world of composites and mixtures (how much more so the biologist). Even
the experimentalist who focusses on the purest of subtances, exemplified by
carefully grown crystals, can seldom escape the effects of defects, trace
impurities, and finite boundaries. There are few concepts in science more
elegant to contemplate than an infinite, perfectly periodic crystal lattice,
and few systems as remote from experimental reality. We are therefore
obliged to come to terms with disordered structures; variation in shape and
constitution often so ill-characterized that we must deem it to be random if
we are to describe it ~ apparent randomness in the morphology of the
system. The morphology of a system has two major aspects: ropology, the
interconnectiveness of individual microscopic elements of the system: and
geometry, the shape and size of these individual elements.

As if this were not bad news enough, we know that however random the
stage upon which the drama of nature is played out, it is also at times very
difficult to follow the script. We believe, at least above the quantum
mechanical level, in the doctrine of determinism, yet important continuum
systems exist in which deterministic descriptions are beyond hope. Typical
examples are diffusion and Brownian motion where, over certain length
scales, we observe an apparent random process, or disordered dynamics.

Nature, then, is disordered both in her structure and the processes she
supports. Indeed the two types of disorder are often concurrent and
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~oupled. An example. dear to the heart of the author, s fluid flow through
i porous medium where the interplay between the disordered structure of
he pore space and the dynamics of fluid motion gives rise to a rich variety
of phenomena. some of which will be discussed in this book.

Despite the rather obvious randomness in nature. these topics were. for
several decades. famihar to most physicists. engineers, and others only in
the form of statistical mechanics. or in the application of such equations as
the Boltzmann equation. Research in these fields made remarkable progress
by taking advantage of periodic structures. However. as one always has to
confront the real world. it became apparent that a statistical physics of
disordered systems must be devised to provide methods for deriving macro-
scopic properties of such svstems from laws governing the microscopic
aorld. or alternatively for deducing microscopic properties of such systems
from the macroscopic information that can be obscrved by experimental
techniques. Such a statistical physics of disordered systems should take into
account the effect of hoth morphology and geometry of the systems. While
the role of geometry was already appreciated in the early years of this
century. the effect of topology was ignored for many decades, or was
treated in an unreahistic manner, simply because it was thought to be too
ditficult 10 be taken into account.

A study of the history of science also shows that progress in any research
ficld is not usually made with a constant rate, but rather in a sporadic
manner. There are periods when a problem looks so difficult that we do not
even know where to start, and periods when some epoch-making discoveries
or inventions remove an obstacle to progress and thus enable a great
advance. An example is the discovery of a new class of superconducting
matenals in 1986. Bednorz and Muller (1986) showed that it is possible to
have superconductivity in (La, Ba)CuO alloys at temperatures 7, > 30K.
Subsequently 1t was shown by Tagaki et ol (1987) that the phase
La-_ Ba,CuQOy with v ~ 0.15 is responsible for bulk superconductivity with
T ~ 35K. Since then hundreds. and perhaps thousands, of research papers
have been written on the subject of high-temperature superconductivity,
ind the literature on the subject has become very forbidding. The discovery
had such an impact on the subject that Bednorz and Muller were honoured
with a Noble Prize in physics in 1989, Over the past two decades. statistical
physics of disordered systems has been in this rapidly moving stage of
progress. partly because standard methods for calculating the average
properties of disordered systems have been established from the theoretical
side. and also more and more experimental results have been accumulated
thanks to many novel experimental techniques. But perhaps the most
important reason for the rapid development of the statistical physics of
disordered systems is that the role of interconnectivity of the microscopic
zlements of a disordered system and its effect on the macroscopic properties
of the system has been appreciated. This has been possible through the
development and application of percolation theory. the subject of this book.
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However. this is an applications oriented book written by a chemical
engineer, not a book on mathematical or computational methods of a
theoretical physicist. As such, the book is necessarily biased.

1.1 What is percolation?

When 1 was a graduate student. 1 was living in Minneapolis, Minnesota,
and attending the University of Minnesota. Minneapolis is a wonderful city
of many lakes and naturally 1 tried to live near a lake to enjoy the beautiful
summer, and to watch little kids skate on the lake during the long winter.
The magnificent Mississippi river runs through Minneapolis, dividing the
campus of the university into east and west bank sections. and the chemical
engineering department where I was a graduate student was on the east
bank. 1 was living in southeast Minneapolis near Lake Calhoun. about eight
miles from the campus. Every winter we had many snow storms that would
cause temporary closure of many streets in one or both directions for
sweeping the snow. Even during the long summer some streets would be
closed for repairing the damage caused by the long winter. There are many
other types of defects or disorder in the structure of the streets of
Minneapolis. There is a big K-Mart store that blocks Nicolete Avenue. one
of the most important routes in the city that starts in the downtown area
and ends in the suburb in the south. Many railways also cut the streets, and
many lakes have created natural blockage for many streets. It often seemed
as if the streets were closed at random! Now suppose that we idealize the
streets of Minneapolis as the bonds of a very large square network. and
block at random some of the streets by a heavy snow, a rail track. a lake.
or a store like K-Mart (see Fig. 1.1). As a PhD student of two of the most

Railroad < , | East Bank
[ | (UofM)
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Figure 1.1 Idealization of streets of Minneapolis.



:complished and famous chemical engineering professors in the country in
ne of the top-ranked departments, | was expected to work on my research
ypics six days a week, from Monday through Saturday, and many Sundays.
would leave my apartment 1o go to the department and wonder what
action of streets of Minneapolis would have to be open to traffic in order
>r me to reach the department from my apartment. Obviously, if too many
reets were closed, 1 could not reach the department, and therefore would
ot get anything done. On the other hand, if most streets were open, almost
ny route would take me to the department. Therefore, there must be a
ritical value of the fraction of open streets below which 1 would never
sach the department. but above which I could always get to work.

Let us consider another example. Suppose that, instead of representing
1e streets of Minneapolis, the bonds of the square network of Fig. 1.1
spresent resistors. We assign a unit resistance to the open bonds, and an
wfinite resistance to the closed ones (i.e., the closed bonds are insulators).
uppose also that we impose a unit voltage at point A in Fig. 1.1, and a
ero voltage at B. What fraction of the bonds have to have a finite
esistance in order for electrical current to flow from A to B? This is an
mportant question because its answer tells us what (volume) fraction of a
lisordered material, such as carbon black composites that are routinely
ised in many applications, has to be conducting in order for the composite
s a whole to be conducting. The reader can probably see the similarity
setween the flow of current in the composite and traffic flow in the streets
f Minneapolis. As in the first example, if too many bonds are insulating, no
nacroscopic current will flow from A to B, whereas for a sufficiently large
wmber of resistors one can have electrical current between the two points.

Consider a third example. Imagine that the bonds of the network of
ig. 1.1 are pores of a porous medium, e.g.. an underground oil reservoir.
n reality. no porous medium looks as regular as the square network, but as
in idealization this network serves a useful purpose. Now suppose that the
yores are filled with oil. and that there are two wells in the system, one at
\ and the other at B. We would like to push oil out of this porous medium
»y injecting water into the system at A (the injection well) and producing
’it at B (the production well). Oil and water do not mix with each other,
ind therefore we assume that each pore is filled with either oil or water. As
he water is injected and pushed into the reservoir, it tries to find the
simallest pores that it can reach and expel the oil from it (why this is so is
xplained in Chapter 7). In reality, the process is more complex than this.
»ut we ignore all the complications. The expelled oil is produced at well B.
WVhat fraction of the pores are filled with water when it reaches the
sroduction well at B for the first time (this is called breakthrough point)? In
sther words. we would like to know what fraction of the pores lose their
’il, and how much oil is produced at well B at the breakthrough point. This
s obviously an important question. In the early 1980s when the price of oil
~as as high as $40/barrel and the United States suffered a traumatic energy
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crisis, intense research was done to answer this and related questions. Even
with the relatively cheap oil currently available, intense research is still
going on.

Questions such as these are answered by percolation theory. Percolation
tells us when a system is macroscopically open to a given phenomenon. For
example, it can tell us when one can have flow of traffic from one side of a
town to its opposite, when electrical current can flow from one side of a
composite to the opposite, and how much oil one can extract from an oil
reservoir. The point at which the percolation transition between an open
system and a closed one takes place for the first time is the percolation
threshold of the system, and the behavior of the system close to this point
is of prime interest and importance. Because a percolation network is
created by simply blocking bonds at random, percolation is also useful as
a simple model of disordered systems. Moreover, since the main concepts
of percolation theory are very simple, writing a computer program for
simulating a percolation process is straightforward, and so percolation can
also serve as a simple tool for introducing students to computer simulations.
Deutscher er al. (1983), Bunde and Havlin (1991), Stauffer and Aharony
(1992). and Hughes (1993) have emphasized the foundations of percolation
theory. This book attempts to summarize some important applications of
percolation.

1.2 The scope of the book

Over the past two decades percolation has been applied to modeling a wide
variety of phenomena in disordered systems. It is impossible to discuss all
such applications in one book. In selecting those applications that are
discussed in this book, three criteria were used.

(1) The application is quantitative, in the sense that there 1s a quantitative
agreement between the predictions of percolation and experimental
data.

(if) The problem is of broad interest, or has broad industrial, technological,
or scientific importance.

(i1i) This author has a clear understanding of the problem and how the
application of percolation is made.

Based on these criteria, 1 selected twelve classes of problems to which
percolation has been applied. In discussing each case, it is assumed that the
reader already knows the essence of the problem. Stauffer and Aharony
(1992) provide an excellent and simple introduction to the percolation
concepts. Therefore, Chapter 2 contains only a summary of the main
properties that will be used in the rest of this book. Every effort is made 10
explain the percolation approach in simple terms. In all cases, the predic-
tions are compared with the experimental data to establish the relevance of
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percolation concepts and their application to the problem. We also give
what we believe are the most relevant references to each subject, or provide
the reference to a recent review on the subject.

We finish this chapter by mentioning a few other applications of percolation
which, although they do not meet at least one of the above three criteria,
represent important and useful applications of percolation theory. The
literature cited below and in the subsequent chapters is not necessarily the
first or the best work on the subject. It represents what was known to me at
the time of writing this book, or what I considered to be the most relevant.

1.3 Applications of percolation that are not
discussed in this book

Now that we know what kind of applications of vercolation are discussed
in this book, let us mention a few other important applications and
references to them that will not be discussed here.

1.3.1 Percolation model of galactic structures

It has been shown that the process of star formation may be a percolation
process, and that the percolation transition from a disconnected to a
connected state plays an important role in the stabilization and control of
star formation. For example, for galaxies whose formation can be described
by a percolation process. the main feature, namely, the presence of spiral
arms, 1s a consequence of the proximity to the percolation transition. The
interested reader should consult Seiden and Schulman (1990) for a review
of this interesting application of percolation.

1.3.2 Multicomponent percolation

In all cases that are discussed in this book, the percolation system is
essentially a binary mixture of two components. For example, in the above
examples one has a two component mixture of open and closed streets,
resistors and insulators, and pores filled with o0il and water. However, there
are many cases in which the system may consist of three or more compon-
ents. For example. charge transfer salts are random mixtures of a metal
M. with another metal or element M, in which M, and M, react and
produce MiM;3 , if M, and M, are in close proximity. The reaction is
reversible. and can reproduce M, and M, again. Examples are Cs,_Te,.
Csi-,Sby, Na, _(Sn,, and many others. One is interested in the conductiv-
ity of this system, which can be treated by a three-component (M,, M,, and
MiM; ) percolation model. This and many other applications of multicom-
ponent percolation are discussed by Halley (1983).
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1.3.3 Glass transition

It may not be obvious to the reader how the transition between a liquid and
glassy state may have anything to do with percolation, since percolation in
its fundamental form is a static process. whereas the liquid-glass transition
is the result of the system moving away from complete metastable equili-
brium. However, it has been shown that percolation can help us understand
certain aspects of liquid-glass transition, although this application of
percolation remains controversial. Earlier reviews were given by Grest and
Cohen (1983) and Zallen (1983). For the most recent reference on the
subject see Wittmann et al. (1992).

1.3.4 The behavior of supercooled water

A snapshot of liquid water shows that this system, which is a hydrogen-
bonded liquid, has the structure of a network above its percolation thresh-
old. However, the network is well above its percolation threshold, and
therefore the classic random percolation discussed in the above examples is
not applicable to this problem. Instead, a correlated percolation model has
been found to explain many unusual properties of supercooled water. For
the most recent references on the subject see Stanley ez a/. (1983), Blumberg
et al. (1984), and Sciortino et al. (1990).

1.3.5 Dynamic percolation

In the classical percolation problem the configuration of the system does
not change with time. That is, the probability that a bond is open or closed
is independent of time. In many situations this description of a disordered
system is inadequate since the configuration of the system changes with
time. For example, in polymeric ionic conductors above the glass transition
temperature, the electrical conductivity is dominated by microscopic motion
of the medium. Another example is the problem of oxygen binding to
haemoglobin and myoglobin. It is known that the entrance to the haeme
pocket is blocked by a number of side chains and thus oxygen could not
bind if the side chains were fixed at their equilibrium positions. Because of
the dynamic nature of proteins one may expect that a gate would fluctuate
between open and closed positions. Thus one has to deal with a diffusion
process in a disordered medium whose structure varies with time.

To deal with such problems. various dynamic percolation models in
which the probability that a bond or site of a network is open varies with
time have been proposed by Druger et al. (1985). Harrison and Zwanzig
(1985), Sahimi (1986), and Bunde er al. (1991); see also Granek and Nitzan
(1989, 1990). and Loring (1991). Another type of dynamic percolation was
developed by Bunde and coworkers for solid ionic conductors; see Bunde
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et ul. (1986a. b), Harder er ul. (1986), and Roman et al. (1986). Finally,
quite different dynamic percolation models have been suggested for gelation

phenomena, and microemulsion systems. They are discussed in Chapters 11
and 12.
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2
Elements of percolation theory

2.0 Introduction

Percolation processes were first developed by Flory (1941) and Stock-
mayer (1943) to describe how small branching molecules react and form
very large macromolecules. This polymerization process may lead to gela-
tion, i.e., to the formation of a very large network of molecules connected
by chemical bonds, the key concept of percolation theory. However, Flory
and Stockmayer developed their theory of gelation for a special kind of
network, namely, the Bethe lattice, an endlessly branching structure without
any closed loops (see Fig. 2.1). We return to the Flory—Stockmayer theory
in Chapter 11.

In the mathematical literature, percolation was introduced by Broadbent
and Hammersley (1957). They originally dealt with the concept of the
spread of hypothetical fluid particles through a random medium. The terms
fluid and medium were viewed as totally general: a fluid can be liquid,
vapor, heat flux. electric current, infection, a solar system, and so on. The
medium — where the fluid is carried — can be the pore space of rock, an
array of trees, or the universe. Generally speaking, the spread of a fluid
through a disordered medium involves some random elements, but the
underlying mechanism(s) for this might be one of two very different types.
In one type, the randomness is ascribed to the fluid: the fluid particles
decide where to go in the medium. This is the familiar diffusion process. In
the other type. the randomness is ascribed to the medium: the medium
dictates the paths of the particles. This was the new situation that was
considered by Broadbent and Hammersley (1957). Hence it also demanded
its own terminology. It was decided to name it a percolation process, since
it was thought that the spread of the fluid through the random medium
resembled the flow of coffee in a percolator.

9
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Figure 2 1 Some regular lattices. (A) The Bethe lattice (Z = 3). ( B) The honeycomb
lattice. Z=13). \C} The square lartice Z=4). (D) Kagomé lattice (Z=4).
+E The triangular lattice (Z = 6).

2.1 Definitions and percolation thresholds

We first discuss percolation processes on regular networks, and then
discuss them for random networks and continua. The classical percolation
theory centers around two problems. In the bond percolation problem, the bonds
of the network are either occupied (i.c.. they are open to flow, diffusion and
reaction. they are microscopic conducting elements of a composite, etc.).
randomly and independently of each other with probability p. or are vacant
(i.c.. they are closed to flow or current, or have been plugged. they are
insulating elements of a composite. etc.) with probability 1 — p. For a large
network. this assignment is equivalent to removing a fraction 1 — p of all
bonds at random. Two sites are called connected if there exists at least one
path between them consisting solely of occupied bonds. A set of connected
sites bounded by vacant bonds is called a cluster. If the network is of very
large extent and if p is sufficiently small, the size of any connected cluster
1s small. But if p is close to 1, the network should be entirely connected,
apart from occasional small holes. At some well-defined value of p, there is



Elements of percolation theory 11

a transition in the topological structure of the random network from a macro-
scopically disconnected structure to a connected one; this value is called the
bond percolation threshold, p. This is the lurgest fraction of occupied bonds
below which there is no sample-spanning cluster of occupied bonds.

Similarly, in the site percolation problem sites of the network are occupied
with probability p and vacant with probability 1 — p. Two nearest-neighbor
sites are called connected if they are both occupied. and connected clusters
on the network are again defined in the obvious way. There is a site
percolation threshold p.s above which an infinite (sample-spanning) cluster
of occupied sites spans the network. We should point out that, depending
on a specific application, many variants of bond or site percolation have
been developed, some of which will be discussed in this book.

The derivation of the exact values of p., and p., has been possible to date only
for certain lattices related to the Bethe lattice and for a few two-dimensional
lattices. The percolation thresholds of three-dimensional networks have
been calculated numerically by Monte Carlo simulations or other tech-
niques. For the Bethe lattice it can be shown that (Fisher and Essam 1961)

1

Peb = Pes = 71 (2.1)
where Z is the coordination number of the lattice, i.e.. the number of bonds
connected to the same site. Figure 2.1 shows some regular two-dimensional
lattices. We compile the current estimates of p. and p, for common
two- and three-dimensional lattices in Tables 2.1 and 2.2 respectively. In
general, p.p < p.s. These tables show that the product B, = Zp is essentially
an invariant of percolation networks. For a d-dimensional system,
B = d/(d - 1). The significance of B. is discussed below.

Table 2.1 Currently accepted values of the percolation thresholds of some two-
dimensional networks

Network z Peb Be = Zpep Pes
Honeycomb 3 1 —2sin{r/18) == 0.6527* 1.96 0.6962
Square 4 1/2* 2 0.5927
Kagomé 4 0.522 2.088 0.652
Triangular 6 28in(w/18) = 0.3473* 2,084 172*

*Exact result,

Table 2.2 Currently accepted values of the percolation thresholds of some three-
dimensional networks

Network Z Deb B, =Zpch Pes
Diamond 4 0.3886 1.55 0.4299
Simple cubic 6 0.2488 1.49 0.3116
BCC 8 0.1795 1.44 0.2464
FCC 12 0.198 1.43 0.119
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2.2 Computer generation of percolation clusters

Generating a percolating lattice by randomly removing sites or bonds, although
easy. is often not suitable for practical applications because, in addition to
the sample-spanning cluster, this method also generates isolated finite clusters.
In most applications one works only with the sample-spanning cluster (or the
process of interest starts with a single cluster). and therefore we must first
delete all isolated clusters from the system, which is time-consuming. Altern-
atively. we can use a method, developed by Leath (1976) and Alexandro-
wicz (1980), that generates only the sample-spanning (or the largest) cluster.
In this method one starts with a single occupied site at the center of the
lattice, identifies its nearest-neighbor sites and considers them occupied and
adds them to the cluster if random numbers 0 < r < 1, attributed to the
neighbors, are less than the fixed value p. The perimeter sites, the nearest-
neighbor empty sites of the occupied sites, are found and the process of
occupying such sites continues in the same manner. If a selected perimeter
site is not occupied, then it remains unoccupied forever. The generalization
of this method for generating a cluster of occupied bonds is obvious,

An important task in computer simulations of percolating systems is to
count the number of clusters of a given size, or the fraction of occupied sites
or bonds that belong to the sample-spanning cluster. For example, during
displacement of a fluid A by another immiscible fluid B in a porous medium
we may need to know the number of islands or blobs of fluid A of a given size
that are completely surrounded by B. which is equivalent to knowing the
number of clusters of a given size within the context of a percelation model of
fluid displacement in a porous medium (see Chapter 7). An efficient algorithm
for doing this was developed by Hoshen and Kopelman (1976). A computer
program implementing their method is given by Stauffer and Aharony (1992).

2.3 Percolation quantities

In addition to the percolation thresholds, the topological properties of
percolation networks are characterized by several important quantities.

(1) Percolation probability P(p). This is the probability that, when the
fraction of occupied bonds is p, a given site belongs to the infinite
(sample-spanning) cluster of occupied bonds.

(ii) Accessible fraction X*(p). This is that fraction of occupied bonds
belonging to the infinite cluster.

(iii) Backbone fraction X®(p). This is the fraction of occupied bonds in the
infinite cluster which actually carry flow or current, since some of
the bonds in the cluster are dead-end and do not carry any flow. The
backbone of a percolating system plays a fundamental role in its
transport properties, because the tortuosity of the transport paths is
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controlled by the structure of the backbone. We shall discuss the
structure of the backbone shortly.

(iv) Correlation length E,(p), This is the typical radius of the connected
clusters for p < p.. and the length scale over which the random network
is macroscopically homogeneous (i.e., the length scale over which the
properties of the system are independent of its linear size L) for p > p..
Thus, in any Monte Carlo simulations of percolation we must have
L >> &, for the results to be independent of L.

(v) Average number of clusters of size s (per lattice site) ny(p). Since sny is
the probability that a given site is part of an s-cluster, a mean cluster

size Sp(p) can be defined by
2
Sy(p) = Zss7ns (2.2)

IR

(vi) Effective electrical conductivity g.. This is the electrical conductivity of
a random resistor network in which a fraction p of bonds are conduct-
ing and the rest are insulating. Similarly, if a network represents the
pore space of a porous medium in which a fraction p of the pores are
open to flow or diffusion, an effective diffusivity D, and a hydro-
dynamic permeability k can also be defined.

(vil) Effective elastic modului G. These are the elastic moduli of the network

in which a fraction p of the bonds are elastic elements (e.g., springs), while
the rest have no rigidity or stiffness (i.e., they are cut). Figure 2.2 shows
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Figure 2.2 The dependence of some of the percolation quantities on p, the fraction of
occupied sites, in site percolation on a simple cubic lattice.
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the typical behavior of some of the percolation properties for a simple
cubic network in site percolation, where X’(p) is the fraction of isolated
occupied sites, i.e., A7(p) = p — X *(p). The topological properties such as
the accessible or backbone fractions are usually calculated by Monte
Carlo simulations. For example, Stauffer et al. (1982) give a computer
program for calculating X *(p). while Liem and Jan (1988) discuss a method
for calculating Y®(p). The transport properties, such as the effective
conductivity or the elastic moduli, can be calculated by Monte Carlo
simulations or by the analytical approximations discussed in Chapter S,

24 The.structure of the backbone at or near
percolation threshold

Of particular interest is the structure of the backbone near or at the
percolation threshold, since the backbone plays a fundamental role in any
transport process in percolating systems. Following Stanley (1977), we can
divide the bonds of the backbone into two groups. In one group are those
that are in the hlobs, i.e., the multiply connected part of the backbone. In
the second group are the red bonds, those that, if cut, would split the
backbone into two parts. The reason for calling such bonds red is that in a
percolating electrical network they carry all of the current between two
biobs, and thus they are the hottest bonds in the backbone,

2.5 Universal scaling laws for percolation quantities

The numerical value of every percolation quantity for any p depends on the
microscopic details of the system, such as its coordination number. But near
the bond or site percolation threshold p., most percolation quantities obey
scaling laws that are largely insensitive to the network structure and its
microscopic details. The quantitative statement of this insensitivity is that,
near p, we have the following scaling laws

P(p) ~(p - pO™. (2.3)
X'(p)y ~ (p = pO™. (2.4)
X%(p) ~ (p - po¥®, (2.5)
En(p) ~ |p—pe| ™™ (2.6)
Spp) ~ |p=pe| 7. 2.7
ge(p) ~ (p - po. (2.8)

G(p)~(p - p. (2.9)

The topological exponents Bg. Bp. Vp and y, are completely universal, i.e., they
are independent of the microscopic details of the system, and depend only
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on the dimensionality of the system. Even long, but finite, range correlations
do not change this universality, although they do change the value of p.. The
transport exponents p and fare also largely universal. Later in this chapter we
discuss the conditions under which the universality of 1 and f may be violated.

The scaling behavior of the effective diffusivity D, is related to that of
g«(p). According to Einstein's relation, g, and D, are related through,
ge ~ noDe, where n, is the density of the electrons. Diffusion can take place
both on the sample-spanning cluster as well as the finite clusters. But in
most cases, only diffusion on the sample-spanning cluster contributes
significantly to the long-time transport properties of the system (the case in
which the finite clusters can also contribute significantly is discussed in
Chapter 9). In this case, n, ~ X*(p), and therefore

De(p) ~ (p— p)* ™" (2.10)

Similarly, near p. the permeability & of a percolating network obeys the
following scaling law

k(p) ~(p = pe)’- (2.11)

For network models, e = p. But for percolating continua, e can be signific-
antly different from .

Two other transport properties that will be used in this book are as
follows. Imagine that in a percolation network a fraction p of bonds are
perfect conductors (their resistance is zero), while the rest are normal
conductors (their resistance is finite). Then, below p, only finite clusters of
perfect conductors are formed and ge is finite. As p, is approached from
below, clusters of perfect conductors become larger and g, increases,
Finally, g, diverges at p. such that near p, we have

gp)~(pe—p)~" (2.12)

In two dimensions, L = s, but there is no known relation between s and p
in three dimensions. Similarly, if a fraction p of the bonds are totally rigid
springs (their spring constant is infinite), while the rest are soft (their spring
constant is finite), then the elastic moduli are finite below p,, but diverge as
pc is approached from below as

G~ (p.-p) " (2.13)

The relevance of s and  to practical applications is discussed in Chapters
11 and 12. Obviously, when the bonds are elastic springs, one can invent
many types of percolation networks by simply changing the force laws that
govern the deformation of the springs, and thus the numerical values of the
elastic moduli would depend on the type of the force laws that are used. We
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show in Chapter 4 that such elastic networks are relevant to modeling of
fracture of disordered solids and rock. In Chapters 11 and 12 we demon-
strate the relevance of such elastic networks to modeling the viscosity and
elastic moduli of polymer networks and other disordered materials.

For large clusters near p., ns(s) obeys the following scaling law

ns~ s TfI(p - pe)s?l. (2.14)

where 1, and ¢, are also universal and f(0) is not singular. The geometrical
exponents are rnot all independent. For example, one has, 1, =2 + B,0, and
vpd =B, + 1/0, = 2B, + . and in fact knowledge of v, and another exponent
is sufficient for determining most of the geometrical exponents. Unlike these
exponents, the implied prefactors in all of the above scaling laws do depend on
the type of network, which is why the numerical values of percolation
quantities depend on the details of the system. If two phenomena are described
by two different sets of critical exponents. they are said to belong to two
different universality classes, in which case the physical laws governing the two
phenomena must be fundamentally different. Thus, critical exponents can help
one to distinguish between different classes of problems and the physical laws
that govern them. An accurate technique for estimating these exponents is the
finite-size scaling method discussed below. In Table 2.3 the values of the critical
exponents in two and three dimensions are compiled. For comparison, the
corresponding values for the Bethe lattices are also given.

Table 2.3 Currently accepted values of the critical exponents and fractal dimensions
for a d-dimensional system. Rational or integer values are exact results

d=2 d=3 Bethe lattices

B 5726 0.41 1
Bss 0.48 1.05 2
Vp 4/3 0.88 172
Y 4318 1.82 I
op 36/91 045 12
T 187/91 2,18 572
D, 91,48 2,52 4
Dpsp 1.64 1.8 2
Dmin 1.13 1.34 2
u 1.3 2.0 3

§ 1.3 0.73 0

f see Chapter 11

¢ see Chapter 11

2.6 Fractals and percolation

For any length scale L >>§, a percolating system is macroscopically
homogeneous. But for L <<, the system is not homogeneous and the
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macroscopic properties of the system depend on L. In this regime, the
sample-spanning cluster is on average self-similar, i.e., it looks the same at
all length scales up to &, and its mass M (its total number of bonds or sites)
scales with &, as

M ~EJe, (2.15)

where D, is called the fractal dimension of the cluster. However, D, is not
a totally new quantity and is given by

Dczd_.ﬁﬁ. (2.16)
Vp

For L >> &p, D, = d. Similarly, for L << &, the backbone is a fractal object
and its fractal dimension Dgg is given by

DBB= - & (2]7)

Vp

Note that if L < §,, one should replace &, in (2.15) by L. Note also that
€, is divergent at p = p,, so that then the sample-spanning cluster is a fractal
object for any L.

For L <<&, the number of red bonds M,s scales with L as,
Myeg ~ LP and thus D,es is the fractal dimension of the set of the red
bonds. Coniglio (1981) proved that D,.s= 1/v,. Another important concept
is the minimal or chemical path between two points of a percolation cluster,
which is the shortest path between the two points. This concept was first
discussed by Alexandrowicz (1980) and Havlin and Nossal (1984). For
L << &, the length Ly, of the path scales with L as

Lmin ~ L, (2.18)

and therefore D,y is the fractal dimension of the minimal path. Chapter 13
shows that the minimal path plays an important role in hopping conductiv-
ity of semiconductors. The current values of these fractal dimensions are
also listed in Table 2.3.

Once it is established that a system is a fractal, many classical laws of
physics have to be significantly modified. For example, Fick’s law of
diffusion with a constant diffusivity is not appropriate for describing
diffusion processes in fractal systems; this is discussed in Chapters 9 and 10.

2.7 Percolation in finite systems and finite-size scaling

So far we have discussed percolation in infinitely large systems. Percolation
in finite systems deserves discussion because practical applications usually
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involve finite systems, The effect of finite size of the system manifests itself
mostly near p, where &, is large, and thus we need to study its effect in this
region. Fisher (1971) investigated the effect of finite size of a thermal system
on its critical properties near the critical temperature, and developed a
theory for such finite systems, usually called finite-size scaling, which can
be adopted for percolation processes. In a finite system, as p, is approached,
Sp eventually becomes comparable to the linear size of the network.
Therefore. following Fisher (1971), the variations of any property P, of a
system of linear size L is written as

P~ L™ f), (2.19)

where, u=L"'""(p - p) ~ (L/E,)" ", and f(0) is nonsingular. If near p, and
in the limit L — oo, one has P.. ~ (p - pc)s, then one must have x = &/v,. The
finite size of the network also causes a shift in the percolation threshold
(Levinshtein er al. 1976),

Pe — p('(L) ~L7'", (220)

Here p, is the percolation threshold of the infinite system, and p.(L) its
effective value for a finite system of linear size L. Although (2.19) and (2.20)
are valid for large values of L, very large systems cannot easily be simulated
in practice and therefore an equation such as (2.19) is modified to

Py~ L Y[a) + axgi (L) + arga(L)], (2.21)

where g; and g» are two correction-to-scaling terms, particularly important
for small and moderate values of L; ¢, and a» are constants. For transport
properties (e.g., conductivity, diffusivity, elastic moduli), g = (In L)™', and
g = L' often provide accurate estimates of x (Sahimi and Arbabi 1991).
Equation (2.21) also tells us how to estimate the critical exponents: Calculate
P, at p. for several values of L, and fit the results to (2.21) to estimate x.

2.8 Percolation in random networks and continua

The use of regular networks for investigating various phenomena in dis-
ordered systems i1s popular. But percolation in continua and in topologically
random networks, those in which the coordination number varies from site
to site, 1s of great interest. This is because many practical situations deal
with such systems. There are at least three ways of realizing percolating
continua. For a review of continuum percolation see Balberg (1987); for
the most recent references see Alon et «l. (1991) and Drory et al. (1991). In
the first method, one has a random distribution of inclusions, such as
circles, spheres or ellipses, in an otherwise uniform system, an example of
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Figure 2.3 Two-dimensional Swiss cheese model of random continua.

which is shown in Fig. 2.3. In such systems percolation is defined either as
the formation of a sample-spanning cluster of the paths between untouching
inclusions, or as the formation of a sample-spanning cluster of touching or
overlapping inclusions. In the second method, one divides the space into
regular or random polyhedra, a fraction of which is occupied (conducting),
while the rest are unoccupied; an example is shown in Fig. 2.4. In the third
method, one distributes at random conducting sticks of a given aspect ratio,

Figure 2.4 Two-dimensional Voronoi tessellution (thin lines) and Vorvnoi network
(thick lines).
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or plates of a given extent. The last class of disordered continua may be
relevant to modeling fracture networks of rock (see Chapter 4).

More formally, one can define percolation in continua as follows. Con-
sider a random and continuous function A(r) at point r, defined for the
entire space, with the property that {h(r))=0, where (.) denotes an
averaging. We now paint all regions of space for which, A(r) < R black,
where R is a real number, while the rest are white. If R changes from — e
to + oo, then the volume of the black region can vary from zero to . If R
is small, we can only form small black islands. But as R becomes larger,
black islands can merge and, finally, at a critical R, form a sample-span-
ning black island. The function /(r) can be thought of as a potential, such
that when it reaches a certain level, the system can percolate.

One of the most important discoveries for percolating continua (Scher
and Zallen 1970) is that the critical occupied volume fraction ¢., which is
defined as

Oc = Ppes/is (2.22)

where f; is the filling factor of a lattice when each of its sites is occupied by
a sphere in such a way that two nearest-neighbor impermeable spheres
touch one another at one point, appears to be an invariant of the system
whose value is about 0.45 for d=2 and 0.15-0.17 for d = 3. Shante and
Kirkpatrick (1971) generalized this idea to permeable spheres, and showed
that the average number of bonds per sites B, at p. (Tables 2.1 and 2.2) is
related to ¢, by

d)(‘ = l - Cxp(— B(/S), (223)

and that the value of B. for percolating continua is the limiting value of
PesZ. when Z — . Accurate estimates of B. for many systems were
obtained by Haan and Zwanzig (1977). If ¢. is truly an invariant of
continuous systems. then R, is given by

0c= JR‘ hmdv, (2.24)

oo

where V' is the volume of the system.

It has been established that the topological critical exponents defined
above are the same for lattice and continuous systems (for a review see
Balberg 1987). But transport (e.g., conduction) in percolating continua can
be quite different from that in discrete networks. Consider, for example, the
two-dimensional Swiss cheese model, shown in Fig. 2.3, in which circular
inclusions (spherical inclusions in three dimensions) are punched at random
in an otherwise uniform system. If transport takes place through the
channels between the nonoverlapping circles, then the system can be
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mapped onto an equivalent percolation problem in a random network made
of the edges of Voronoi polygons (polyhedra) (Kerstein 1983); see Fig. 2.4.
If we construct the dual of this network. i.e., connect the centers of the
neighbouring polygons (polyhedra), we obtain a Voronoi network. also
shown in Fig. 2.4. The average coordination number of a Voronoi network
1s 6 in two dimensions and 15.5 in three dimensions. Kogut and Straley
(1979) and Feng et al. (1987) used various models and techniques to show
that the critical exponents .. e., and, f, defined for the conductivity, elastic
moduli, and permeability of continua. are quite different from p. e, and f
defined above for percolating networks. The reason is that transport in a
system such as the Swiss cheese model can be dominated by the narrow
necks between the nonoverlapping circles (or spheres). Since the widths of
such necks can vary throughout the system, there will be a distribution of
local transport properties such as the neck conductance g. If this distribu-
tion is singular near g = 0, then the universality of u and other transport
exponents can be violated. No such singularities appear in percolation on
networks, unless the bond conductances are distributed according to such
singular distributions. Feng ef al. (1987) showed that in a three-dimensional
Swiss cheese system pe=p + 1/2 and e, = | + 5/2. For the two-dimen-
sional system U, =p and e, = p + 3/2.

Jerauld er al. (1984) showed that as long as the average coordination
number of a random network and the coordination number of a regular
network (e.g., the two-dimensional Voronoi and triangular networks) are
about the same, many transport properties of the two systems are, for all
practical purposes, identical, provided that the same bond conductance
distribution is used for both networks. Therefore, in many applications.
especially those that involve large-scale computer simulations, a regular net-
work is used as it is much easier to handle. But if we use a random network
to represent a disordered continuum, we need the distribution of transport
properties of the bonds to closely mimic the properties of the transport paths
in the continuum. On the other hand, since the topological exponents are
totally universal, we can always use a random or even a regular network to
study percolation in a continuum.

2.9 Conclusions

Percolation theory tells us whether a system is macroscopically connected
or not. This macroscopic connectivity is of fundamental importance to
many phenomena involving disordered media. Moreover. universal scaling
laws near the percolation threshold tell us which aspects of a given
phenomenon are important in determining its macroscopic properties. and

which aspects are not relevant, and therefore we do not have to worry about
them.
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3
Characterization of porous media

3.0 Introduction

In this chapter we discuss how percolation ideas have been used to study and
model various morphological properties of porous media. The morphology
of a porous medium consists of its geometrical properties — the shape, size,
and volume of its pores — and its topological properties — the way the pores
are connected to one another. There are now many sophisticated experi-
mental techniques for characterizing the morphology of porous media. These
techniques are extensively discussed by Sahimi (1993). But what we are
interested in here are those experimental methods that use percolation to
interpret the data. The porous media considered in this chapter can vary
anywhere from porous catalysts to reservoir rocks. The structure of a porous
medium depends upon its heterogeneity and the length scale at which
the medium is inspected. Therefore, we restrict our attention in this chapter to
porous media that are macroscopically homogeneous (although microscopic-
ally disordered), i.e., those whose properties are, for a large enough sample,
independent of their linear dimension. In Chapters 4 and 6 we discuss
macroscopically heterogeneous porous media, those that contain hetero-
geneities that vary in space, and whose properties may depend on the length
scale of measurements. But, before we discuss porous media characterization
using percolation, it may be useful to describe the processes that give rise to
the present porous rocks. These are called diagenetic processes, and percola-
tion ideas have also been used to model such processes.

3.1 Diagenetic processes and the formation of rocks

Rock formation starts with deposition of sediments and is followed by
compaction and alteration processes that cause drastic changes in the
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morphology of the reservoir. Consider sandstones for example. Sandstones
are assemblages of discrete grains with a wide variety of chemical com-
pounds and mixtures. If the environment around sandstones changes, the
grains start to react chemically and produce new compounds, which deposit
on the surface of the sand grains. As a result, the mechanical properties of
the grains. such as their resistance to fracturing, also change. The chemical
and physical changes in the sand after this deposition constitute diagenetic
processes. The main features of diagenetic processes are: (i) mechanical
deformation of grains: (ii) solution of grain minerals; (i1i) alteration of
grains; and (iv) precipitation of pore-filling minerals, cements, and other
materials. These features have a key influence on the volume of the content
of the reservoir because they control the porosity ¢ of the rock, which is the
volume fraction of its open pores.

Immediately after deposition diagenesis starts and continues during burial
and uplift of the rock until outcrop weathering reduces it again to sediment.
These changes produce an end product with specific diagenetic features,
whose nature depends on the initial mineralogical composition of the
system, and also on the composition of the surrounding basin-fill sediments.
Given a system with a particular mineralogical composition, its diagenetic
history depends on several factors which are time-dependent exposures to
varying temperatures, pressures, and chemistry of the pore fluid. These
factors constitute the historical aspects of a reservoir and affect strongly its
quality. The ability of reservoir rock to produce, e.g., oil, is closely related
to its diagenetic history.

Porosity of reservoir rocks is either primary or secondary. Primary porosity
is due to the original pore space of the sediment. Secondary porosity is due
to the fact that unstable grains or cements have undergone chemical and
physical changes through reactions that form water; they have partially or
entirely passed into solution. If the pore space is somehow restored, the
original porosity. protected from precipitation by deposition of minerals. is
converted into secondary porosity. It is believed that solution pores provide
more than half of all the pore space in many sedimentary rocks. The
significance of secondary porosity in sandstones was only relatively recently
recognized. It is now well established that five different kinds of pores with
various shapes and sizes can contain secondary porosity. We group four of
these together and simply call them “pores™. The fifth type. open fractures,
are different from the other four; they are discussed separately in Chapter 4.
The existence of secondary porosity can sometimes be recognized even with
the naked eye.

These diagenetic processes lead to a morphology whose porosity is
smaller than the initial porosity, and in which pores can take on essentiaily
any shape or size. Perhaps the most important result of diagenetic processes
is that pores remain interconnected even when the porosity is very low. For
example. it has been found by scanning electron microscopy that some
pores can be connected to up to 20 other pores. This implies that the critical
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porosity ¢, of the system for having a sample-spanning cluster of open
pores (i.e., the percolation threshold of the system) is very low. Random
percolation cannot model the formation of rock pore spaces and rock
porosity. Table 2.2 shows that random percolation predicts critical poros-
ities that are too large; more general models are needed for diagenetic
processes. We consider here two such models. The interested reader can
consult Schmidt and McDonald (1979) for a discussion of many aspects of
diagenetic processes.

3.2 Geometrical models of diagenetic processes

How can we model diagenetic processes? Since diagenetic processes for
rocks seem to be similar, and because there appear to be many similarities
between the geometries of various rocks, we may hope that many fun-
damental elements of pore formation processes are universal, independent
of many microscopic properties of rocks. If so, we may be able to develop
a general model of pore formation and growth which can explain, at a
fundamental level, many features of various rocks. A study of the literature
shows that there are essentially two types of modeling approaches to this
problem. The first approach, which we call chemical modeling, relies on the
continuum equations of transport (diffusion and convection) and reaction (see
Sahimi er al. 1990, for a review), but ignores the effect of the morphology, and
in particular, connectivity, of the pore space which 1s the main theme of this
book. The second approach is what we call geomerrical modeling in which the
details of reaction kinetics and transport processes are ignored. Instead,
the diagenetic process is modeled by starting from a model of unconsolidated
pore space and making several simple assumptions about the rate of change
of grain and pore shapes and sizes. This approach can take into account the
effect of connectivity and percolation of pores and grains. Two main models
for granular media, such as sandstones, are that of Wong et al. (1984),
usually called the shrinking tube model, and that of Roberts and Schwartz
(1985), known as the grain consolidation model, which we now discuss.

In the model of Wong e al. (1984) we start with a network of intercon-
nected bonds, where each bond represents a resistor whose resistance R; is
selected from a probability distribution. These resistors represent cylindrical
fluid-filled tubes with random radius r;. To mimic the consolidation process
and the reduction of the porosity during the diagenetic process, a tube is
selected at random and its radius is reduced by a fixed factor x.

W Vi — Xri, (31)

where 0 < x < 1. This simple model cannot really simulate the effect of
deposition of irregularly shaped particles in an irregularly shaped pore. But
it has two attractive features: (i) it preserves, for any x > 0, the network
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connectivity, even when the porosity has almost vanished (thus the critical
porosity is almost zero); and (ii) the amount of change in the pore radius
r,at any step of the simulation (time) depends on the value of r, at that time.
Both of these are also true for diagenetic processes. Wong et al. (1984) used
this model to qualitatively explain several empirical laws which relate the
electrical conductivity and permeability of a porous medium to its porosity.
Such empirical laws have proven to be very accurate under a wide variety
of conditions, although the reason for their accuracy is not completely
understood yet. These are discussed in Chapter 5. Note that the limit
x = 0 represents random percolation. and therefore the model is essentially
a sort of generalized percolation.

In the grain consolidation model we start with a dense pack of spherical
grains of random radii R (Fig. 3.1(a)). The radii of the particles are then
allowed to increase in unison, as a result of which the system’s porosity
decreases. In the region where the spheres overlap, the grains are truncated.
This can be continued to yield a series of percolating porous media with
various values of porosity (Fig. 3.1(b)). For the system shown in Fig. 3.1(c),
¢, = 0.030 % 0.004. The initial (primary) and final porosities of the system
depend on how the particles are originally distributed in the system. For
example. in the system shown in Fig. 3.1, the particles are initially dis-
tributed randomly in such a way that they do not overlap with each other.

{J]

Figure 3.1 Cross sections of three stages of the grain consolidation model of sandstone.
The porositics of the systems are, (a) ¢ =0.364, (b ¢=0.2 and (¢} ¢ =¢.=0.030
tafter Roberts and Scinvartz 1985).
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The initial porosity of this system is 0.364. On the other hand. if we start
with a simple cubic lattice in which spherical grains of unit radius are placed
at its nodes and follow this algorithm. then we find that ¢, = 0.349, close to
that for random sphere packing. But, if we start with a body-centered cubic
lattice of spheres, we obtain ¢, = 0.0055. Therefore. the model is very
flexible. and because the porosity of sandstones and similar rocks is usually
less than 0.4, it provides a reasonable model of the diagenetic process.
Moreover, the resulting porous media closely resemble natural sandstones.
Schwartz er al. (1989) also considered an extension of the model in which
the initial grains were not spherical but ellipsoidal. in order to model
anisotropic or layered media which are abundant in nature. The diagenetic
processes that give rise to many sedimentary rocks, such as sandstones, tend
to favor distribution of grains that are roughly equal in size, in which case
the algorithm of Roberts and Schwartz (1985) is very efficient (see Chapter 5).
In Chapter S5 we discuss transport properties of porous media and compare
the predictions of this model with the experimental data.

These two models have been useful in developing a unified framework for
the description of many properties of granular media such as sandstones.
However, such porous media possess pore or solid phases that have
relatively simple characteristics. Other porous media, e.g.. carbonate rocks
(such as those of Iran), are more complex and their pore and solid phase
geometries are not as simple as those of granular porous media. For
example, most minerals in carbonate rocks are relatively soluble carbonate
materials, whereas sandstone’s grains originate through erosion of existing
rocks with transportation of the minerals by fluid flow to the site of
deposition. The grains in carbonate rocks pack more loosely than those in
sandstones, and they are usually large with shapes like twigs. rods, and
flakes, instead of cylinders or tubes. No percolation model of the types
covered in this book has yet been proposed for such rocks.

The description of diagenetic processes and their two percolation-based
models is now complete. The end product of diagenetic processes is the
present porous rock. We now use percolation concepts to discuss charac-
terization of morphological properties of porous media.

3.3 Pore space geometry: mercury porosimetry and
percolation

We discuss geometrical properties of porous media and the experimental
methods for measuring then. Interpretation of the data is not straightfor-
ward and requires proper modeling. We are interested only in those
methods that use percolation for interpreting the data. Other methods and
models are reviewed by Sahimi (1993).

One of the most important quantities for characterizing pore space
geometry is the pore size distribution. But, while practically every paper and
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book on porous media talks about “pores™ and “pore size distribution,”
most of them do not clearly define what is meant by either one of them.
Careful examination of natural porous media reveals that what is usually
referred to as pores can in fact be divided into two groups. In the first group
are pore bodies where most of the porosity resides, while in the second group
are pore throats. which are the channels that connect the pore bodies. We
usually assign effective radii to pore bodies and throats which are roughly
the radii of spheres that have the same volume as those of the pore body
and pore throat. Porous media are often represented by a network of bonds
and sites: the pore bodies are represented by network sites and the pore
throats are represented by network bonds. We define the pore size distribu-
tion as the probability density function that gives the distribution of pore
volume by an effective or characteristic pore size. Even this definition is
somewhat vague. The pores are interconnected so the volume we assign to
a pore can depend upon the experimental method and the model of pore
space we employ to interpret the data.

Two widely used methods of measuring pore size distributions that use
percolation to interpret the data are mercury porosimetry and adsorption—
desorption experiments. In mercury (Hg) porosimetry. the porous medium
is evacuated and immersed in Hg, which starts to penetrate the pore space
if an external pressure is applied to the system. The applied pressure is then
gradually increased and the volume of Hg penetrated into the porous
medium is measured as a function of the pressure. Larger and larger
pressures are needed to penetrate the increasingly smaller pores. The pressure
is then lowered back to atmospheric pressure, as a result of which the Hg s
retracted from the pores. During this process there is a characteristic shift,
or hysteresis. between the injection and retraction curves. There is also some
Hg that stays in the medium. At the end of retraction, Hg can be reinjected
into the medium to obtain a second injection curve. But this is not the same
as the first curve (there is hysteresis again). This technique was first
developed in the 1940s, and has remained popular ever since. It is usually
used for pores between 3 nm and 100 pm.

While mercury porosimetry is a relatively straightforward experiment,
interpretation of the data is not simple. The data are usually interpreted
using the Washburn equation

_ 26
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P, cos(8 + ), 3.2)

where P, is the applied pressure. often called the capillary pressure, Gpy 18
the interfacial tension between mercury and the vacuum, 6 is the contact
angle between mercury and the surface of the pores, and ¢ is the wall
inclination angle at which the pore radius is r, with r, < r < rs, where r, and
rp are. respectively. the pore throat and the pore body radii. Equation (3.2)
results from a capillary force balance on a cylindrical tube. Dullien (1979)
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gives a long list of references for capillary pressure curves of various porous
media.

Mercury porosimetry belongs to the general class of two-phase flows in
porous media (see Chapter 7). In general. if a nonwetting fluid (in this case
Hg). one for which the contact angle is larger than 90°. is to displace a
perfectly wetting fluid. one for which the contact angle is nearly zero, it
must overcome a capillary pressure at the pore throat,

G"ll
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Pl':Pn_Pn':z (33)
where P, and P, are the pressures in the nonwetting and wetting phases,
respectively, and G, the interfacial tension between the phases. Similarly,
for the wetting phase to displace the nonwetting phase in the pore segment,
the capillary pressure is related to the pore body
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Po=2 (3.4)

Thus, in general. the shapes of capillary pressure curves can be charac-
teristic of the pore size distribution and the wettability of the pore space.
Typical curves for various wettability conditions are shown in Fig. 3.2.
Although the effect of pore space interconnectivity on mercury porosi-
metry, or more generally, on any two-phase flow problem in porous media,
had been appreciated for a long time (Meyer 1953, Ksenzhek 1963). it was
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Figure 3.2 Capillary pressure P (in kg cm™2) versus mercury saturation Sug for Becher
dolomite (left) with porosity ¢ =0.174, and Midale dolomite (right) with ¢ =0.23,
Arrows indicate the direction of infection or withdrawal of Hg (after Larson and
Morrow 1981)
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only relatively recently that the connection between this phenomenon
and percolation was recognized. Chatzis and Dullien (1977) and Larson and
Morrow (1981) were among the first to recognize the connection between
percolation. mercury porosimetry, and capillary pressure phenomena.
These authors (and many others; for a review see Sahimi 1993) recognized
that a bundle of parallel capillary tubes that had been traditionally used
for modeling a pore space is grossly inadequate for interpreting mer-
cury porosimetry data. Injection and retraction processes take place in a
pore space of interconnected pores. and the connectivity of the pore
space greatly affects these processes. Pores that are close to the external
surface of a porous medium can be reached more easily than those that are
in the middie of the medium, since if a pore in the interior of the medium
is to be penetrated by Hg, a connection with the external surface via the
penetrated pore bodies and pore throats has to be established. If this
percolation effect is not taken into account. we obtain a wrong pore size
distribution.

Let us now use percolation concepts and describe a simple model for
penetration of a porous medium by Hg and the properties of such a process.
A percolation picture for describing any two-phase flow phenomena in
porous media is appropnate if the capillary pressure across a meniscus
separating the two fluids (e.g., Hg and the vacuum) is greater than any
other pressure difference in the problem. e.g., due to buoyancy. The second
condition is that frictional losses due to viscosity must be small compared
to the capillary work. We define a capillary number Ca by

_ne

Ca=-
Omv

(3.5)

where v is the average fluid velocity and 1 is the average viscosity. Then
we must have Ca « 1 in order to fulfill this criterion. The porous medium
is represented as a three-dimensional network of pore bodies and pore
throats. For now, we ignore the inclination angle ¢, and the size of the pore
bodies and consider a pore size distribution f(r) for the pore throats.
Because of hysteresis, during injection and retraction, the subdistributions
of the pores accessible to and occupied by Hg are different from each other
and different from the overall pore size distribution of the pore space.
Equation (3.2) indicates that when a nonwetting fluid such as Hg invades a
pore space. it first penetrates the largest pores (for which the required P.
is the smallest). Thus, for a given P, there is a minimum effective radius
rma sUch that no pore with r < rm;y is penetrated by Hg, and the fraction of
pores that are allowed (or open) to Hg (Heiba et al. 1992), 1.e., those pores
that can be potentially occupied by it, is

Xi(rmm) = J'w f(r)dr. (36)

'min
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Therefore, X, plays the same role as p. the fraction of open bonds, in
random percolation. But only a smaller fraction of such pores can actually
be reached by Hg, because some of the larger pores are connected to those
with r < r, and cannot be reached. The eligible pores that can be reached,
called accessible pores, will eventually form a sample-spanning cluster filled
with Hg. Their accessibility is defined in the same sense as the accessibility
of accessible bonds in percolation (see Chapter 2). Hence, the fraction of
such pores is X*(X;), and the distribution fi(r) of the pore radii that are
occupied by Hg during injection is (Heiba et al. 1992)

f,(r) _ {j(;(r)/XA r= rmin. (3.7)

¥ < Imin

Consider now the retraction process during which Hg is expelled from the
pore space. As the pressure is lowered, Hg 1s first expelled from the smallest
pores (see Fig. 3.2). The allowed fraction of such pores, i.e., those pores
from which Hg can be potentially expelled. is (Heiba et al. 1992)

r0 A4 . oo
X, = f F()dr +[1 - %] f firydr. (3.8)
0 it r,

o
where ro is the radius of the pore at a given capillary pressure P, such that
Hg is expelled from all pores with radius r < ro, X, = Xi(rmin.e). and rmin.,
is the pore radius at the end of the injection process. The first term of
the right side of (3.8) is the fraction of pores from which Hg is expelled,
if at the end of injection there were no pores that were not inaccessible to
it. At the end of injection, a fraction 1 — X“(X:.,)/ X;., of the pores could not
be reached by Hg (even though they were allowed) and, consequently, the
second term of the right side of (3.8) is the fraction of pores that were not
invaded by Hg at the end of injection. Hence. the size distribution of the
pores from which Hg is expelled is given by

f0l, - X(Xig
Xr Xi.l

., r>ro

f'(r) =1 f(r) {l - XA(Xi") ':l - XA(Xr):I}~ Fmin.i1 < ¥ <rgp (39)
Xr Xl.l X’
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Let us specify clearly all the assumptions of the model: (1) the pore space
is infinitely large: (i1) the entire process can be described by a random bond
percolation; and (iii) entrapment of Hg in isolated clusters is ignored. The
first assumption is essential if we are to use X for percolation processes on
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infinitely large lattices. But finite-size scaling (see Chapter 2) allows us to
investigate systematically the effect of sample size. Strictly speaking, the
second assumption is not correct. It is true the injection process is control-
led by the radn of pore throats (3.3) and therefore can be considered as a
bond percolation process but the same is not true of retraction. Retraction
1s controlled by the size of the pore bodies (3.4) and is similar to a site
percolation process. Therefore. a complete modeling of mercury porosi-
metry as a percolation problem should involve a mixture of bond and site
percolation. and size distributions for hoth pore bodies and pore throats,
whereas the above formulae are derived assuming only one size distribution
for the pore space. The accessibility function for a mixed bond-site percola-
tion is more complex than discussed in Chapter 2, and has been discussed
by Parlar and Yortsos (19%9).

The assumption that the entire phenomenon is a random percolation
process is not strictly correct. In practice, the pore space is invaded by the
mercury from its exrernal surface. so the phenomenon is an invasion
percolation process. Chapter 6 shows that the error caused by this assumption
is often very small and can be neglected. Although the third assumption is
not completely correct, the resulting error is not large. We may consider a
percolation problem in which trapping of clusters of one kind is allowed if
they are surrounded by clusters of another kind (Sahimi and Tsotsis 1985),
but computer simulations (Dias and Wilkinson 1986) have shown that, at
least for three-dimensional networks. the effect of trapping is so small that
it can be neglected.

What is the effect of sample size on the capillary pressure curves? The main
effect is increased accessibility of pore space, which causes reduction in the
sharpness of the injection curve knee. Injection curves for unconsolidated
packings indicate rather strong dependence on sample thickness for systems
up to about 10 particle diameters or about 30 pore throat diameters. For
thicker media, the dependence is relatively weak, and if the thickness exceeds
20 particle diameters. no appreciable sample size can be detected. Finite-size
scaling can be used to investigate such effects. Larson and Morrow (1981)
carried out an extensive study of the effect of sample size on capillary
pressure curves using a percolation model; see also Thompson er al. (1987).

Given this percolation picture of mercury porosimetry, how do we
correlate or predict capillary pressure curves? Consider the injection pro-
cess. for which the Hg saturation Sy (i.e.. the volume fraction of the pores
filled with Hg) is given by

I:ninfi(r) [/p(r)d_r

She = X (X)) D .
ne ) [of(")Vp(’)d’

(3.10)

where F,(r) is the volume of the pore throat of radius r (recall that pore
bodies were neglected). Equation (3.10) is nothing but the weighted volume
fraction of pores occupied by Hg during injection. Thus, the Hg saturation
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Figure 3.3 Percolation predictions of Pe/Gmy versus the nonweiting phase saturation
(e.g., mercury) Smy for a porous medivm with a narrow (left) or broad (right) pore size
distribution. Compare these with those in Fig. 3.2 (after Larson and Morrow 1981).

during any process can be determined by a similar reasoning. Equation
(3.10) tells us that a functional form for V,(r) and hence a pore shape have
to be assumed. We also need to know the function X*, which means that
either the average coordination number Z of the pore space has to be
known from measurements, or it must be treated as an adjustable parameter
of the system in order to fit the percolation model to the data. Now, given
any value of P, and a f(r), one calculates rmin (3.3) from which Syg 1s
obtained. In this way the P. vs. Syg curve is obtained. Figure 3.3 shows the
predicted curves if we use a Bethe lattice of coordination number Z = 4 (for
which X* can be determined analytically) and f(r) = 2rexp(—r’). They
compare favorably with typical experimental data (Fig. 3.2), even though
the pore space model or the pore size distribution may not seem very
realistic. This is principally because the main controlling factor in mercury
porosimetry — the connectivity (percolation) effect — has been explicitly
taken into account. Capillary pressure curves depend on the wettability of
the porous medium, and the model discussed here is appropriate for the
case when one fluid is strongly wetting, while the other fluid is completely
nonwetting. Heiba er al. (1983) also developed percolation models for the
case when none of the fluids is strongly wetting (intermediate wettability),
and the case in which a fraction of the pores are wetted by one of the fluids,
while the rest are wetted by the other fluid (mixed wettability). We can of
course use a network model and extensive computer simulation to explicitly
simulate the invasion of the system by Hg, in which case considerable
details can be incorporated into the model (Tsakiroglou and Payatakes
1990). But even these models make implicit use of pore connectivity and
accessibility. The interested reader is referred to Sahimi (1993) where
extensive references to percolation modeling of porosimetry can be found.
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How can we extract the overall pore size distribution of the pore space
using the percolation model? Given that ruyy, ~ P, ', and that Sug and P, are
both measurable. we can assume an f(r) as an initial guess and iterate (3.10)
many times until it is satisfied. Normally we assume a particular form of
f(r) with one or two adjustable parameters. The parameters are varied until
a satisfactory fit is found. But for p < p.. X' =0, so we cannor obtain the
complete pore size distribution; nor can we get information about the
largest pores that are penetrated by the mercury. If we use the retraction
data. we obtain information about the size distribution of the pore bodies
but this too is incomplete. One way of resolving this difficulty is to do the
measurements in small samples which have small percolation thresholds, as
a result of which more information could become available. We need to

take care to ensure that the small sample used is representative of the actual
porous medium,

3.4 Pore space geometry: adsorption—desorption
and percolation

Another method of determining the pore size distribution of a porous
medium is using adsorption—desorption isotherm data. Liquid nitrogen is
normally used in such an experiment although, in principle, gases can also
be used. Let us consider first nitrogen adsorption in a single pore in which
the pressure 1s increased, as a result of which an adsorbed film of nitrogen
forms on the pore walls whose thickness increases with increasing pressure.
At condensation pressure P, the pore is filled with a (liquid-like) condensed
phase. which results in a step increase in the adsorption isotherm. The
condensation pressure is given by the Kelvin equation for a pore of radius r

P( 0
Py

= expl— 20n VL/(RTY)], 3.1

in which Py is the saturation pressure, o5 the liquid—vapor surface tension,
R the gas constant. T the temperature. and V, the molar volume of the
hquid. Thus, at any P./Po the adsorption process can be uniquely para-
meterized by an effective radius, from here on denoted r,. Adsorption pro-
cesses correspond to an increase in r,; desorption processes correspond to
a decrease in r,. During adsorption, all pores are equally accessible, vapor
condenses in all pores of size r > r,, and liquid nitrogen fills the pores. For
r < rq. pores fill rapidly and continuously with nitrogen. Thus, during this
adsorption process. often called primary adsorption. connectivity of the
pores plays no role. All that matters is the effective size of the pores.
Consider now the primary desorption process. As the pressure is reduced,
the desorption isotherm does not retrace that of adsorption but. similar to
mercury porosimetry, forms a hysteresis loop before rejoining the adsorp-
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Figure 3.4 Typical adsorption—desorption isotherms. The adsorbed mass is in mg
(after Mason 1988 ).

tion isotherm. Unlike the primary adsorption process, the geometry and
interconnectivity of a pore do matter. A pore with an effective radius r is
allowed to desorb (to contain vapor) if r > r,, and if it has access to either
the bulk vapor in primary desorption, or the isolated vapor pockets in
secondary desorption, which occurs after the secondary adsorption. Typical
adsorption—desorption isotherms are shown in Fig. 3.4. The primary
desorption isotherm is similar to the percolation curves shown in Chapter 2.

Somewhat similar to the injection stage of mercury porosimetry, desorp-
tion is controlled by pore throats. Let f,(r) be the size distribution of the
pore throats. Desorption starts at the percolation threshold at which a
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sample-spanning cluster of pore throats containing vapor is formed. There-
fore. using (3.6), the onset of primary desorption is defined in terms of a
radius r, such that

J Jpr)dr = pes. (3.12)

On the other hand, adsorption is controlled by the pore bodies. Let Vpu(r)
be the volume of a pore body and fps(r) its size distribution. Percolation and
connectivity play no role during the primary adsorption, so the saturation
Si 4 of the liquid during adsorption is given by

Sy 1 -l ) V)

= 3.13
.[o Soo(r) Vpp(r)dr ( )

Note the similarity between (3.10) and (3.13).

Primary desorption begins at the end of primary adsorption. During this
process, a pore filled with liquid vaporizes if r > r,, and if it is accessible to
a sample-spanning vapor phase. Thus. the fraction of pore bodies or pore
throats actually occupied by the vapor is given by

X;=X! j=pb, pt, (3.14)

where X/ is the percolation accessibility function (Chapter 2). The size
distribution of the liquid-filled pores is simply given by

frir = {f’(’)/(l - X © ISTe o pb, pt (3.15)

Sin( = Xilpdl(d = Xj), r>rq
where the quantity p; is given by
pi= J filrydr,  j=pb, pt, (3.16)

and is simply the fraction of pore bodies or pore throats that have a radius
greater than r,. The corresponding liquid saturation during desorption is

Jme 6(r) Vop(r)dr
Sto = (h= X = T : (3.17
- ” [o Sob(r) Vpp(r)dr )

Similar equations can be derived for secondary adsorption and desorption
processes (see Parlar and Yortsos 1988). Similar to mercury porosimetry,
(3.15) and (3.17) provide methods for correlating the data and determining
Jos(r). We assume a functional form for V,s(r)-and use an estimate of the
average coordination number Z to determine the function X;'. If we ignore
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pore bodies and attribute everything to the pore throats, then the equations
for desorption can be used for obtaining a pore size distribution for the
pore space. If we assign effective sizes to both pore bodies and pore throats
then, since the effective radii of all pore throats that are connected to the
same pore body must be smaller than the effective radius of the pore body
itself, the size distributions of the pore bodies and pore throats must obey
certain restrictions (this is also true for mercury porosimetry). The connec-
tion between percolation and desorption was first noted by Wall and Brown
(1981). Many other authors have discussed and investigated this connec-
tion; see Sahimi (1993) for a review.

In addition to pore size distribution, the geometry of a pore space is also
characterized by its porosity and the roughness of the surfaces of its pores.
It is now well-established that, over certain length scales, pore surface and
pore volume of most porous media are fractal, although their fractal
dimensionalities are probably not related to those of percolation. The
fractality of pore surfaces and pore volumes was demonstrated in a series
of beautiful papers by Katz, Thompson. and coworkers and by many other
authors. These works have been reviewed extensively by Thompson er al.
(1987) and Sahimi (1993). Based on the fractal picture, it has been suggested

that
i-D,
_ 4
b=rc (l—] . (3.18)

where ¢ is a constant of order unity, /; and /; are the lower and upper length
scales for fractal behavior, and D, is the fractal dimension of the pore space.
The predictions of this equation agree well with the measured values for
many porous media. Pfeifer e7 al. (1984) proposed that the total volume V
of pores of diameters = 2r obeys

—_——~
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(3.19)

where D; is the fractal dimension of the pore surface. This equation can thus
be used to extract a pore size distribution for the pore space. Pore surface
areas can also be measured (using, e.g., adsorption methods) and correlated
with Ds; see Pfeifer ez al. (1984).

3.5 Pore space topology: adsorption—desorption and
percolation

One of the simplest concepts for characterizing the topology of a porous
medium is the coordination number Z, loosely defined as the number of
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pore throats connected to a pore body of the medium. For regular pore
structures, such as cubic arrays of spheres, it is easy to determine Z,
whereas estimating Z for an irregular pore space is usually difficult and
often ambiguous. We have to define an average coordination number Z,
and the averaging has to be taken over a large enough sample. For
microscopically disordered, macroscopically homogeneous media, Z is inde-
pendent of sample size.

How can we determine the average coordination number and other
topological properties of a porous medium? Many methods of estimating
such properties have been reviewed by Sahimi (1993). What we are inter-
ested in here is a method that uses percolation to interpret data and
estimate, e.g., Z. Mason (1988), Seaton (1991), and Liu er al. (1992) have
developed a method that uses percolation concepts and adsorption—
desorption data for estimating Z. We follow Seaton (1991) in describing this
method.

This method is based on finite-size scaling analysis discussed in Chapter 2.
We write

X'(p)y =L P fl(p — py L], (3.20)

which can be rewritten as

ZX'(py= L fl(Zp - B)L'™"), (3.21)

exploiting the fact that B, = Zp.» is almost an invariant of the system (see
Chapter 2). Consider now, as an example, the desorption curve which has
three typical segments (see Fig. 3.4). In the first segment we have an almost
linear isotherm, because of decompression of the liquid nitrogen in the
pores. In the corresponding percolation network, p, the fraction of open
pores (i.e., those in which the nitrogen pressure is below the condensation
pressure) increases, but X" is still zero, because a sample-spanning cluster
of open pores has not been formed yet. At the end of this interval, the
network reaches p., a sample-spanning cluster of open pores is formed, and
the metastable liquid nitrogen in the pores of the cluster vaporizes. If we
further decrease the pressure, we increase the number of pores containing
metastable nitrogen and the number of pores whose nitrogen has vaporized.
Around the knee of the curve, almost all pores in which the nitrogen
pressure 1s below their condensation pressure can also vaporize, and
therefore X* = p.

Thus, this method consists of two steps: (i) X*(p) is determined from the
adsorption—desorption data: and (it) Z and L are determined by fitting
(3:21) to X*(p). Now we need to assume a relation between the pore radius
and length. For example, we may assume that the length and the radius of
a pore are uncorrelated. The quantity X“(p)/p. i.e., the ratio of the number
of pores in the percolation cluster to the number of pores below their
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condensation pressures, can also be written as N,/Np. where N is the
number of moles of nitrogen which would desorb if all the pores containing
nitrogen below its condensation pressure had access to the vapor phase, and
N, is the number of moles of nitrogen which actually have desorbed at that
pressure. Let N, be the number of moles of nitrogen present in the pores at
a given pressure during the adsorption experiment; let Np be the number of
moles of nitrogen present in the pores at that pressure during the desorption
experiment, and let Nr be the number of moles of nitrogen which would
have been present in the pores at that pressure during the desorption
experiment if no nitrogen had vaporized from the pores which contain
nitrogen below its condensation pressure. Then N,= Nr— Np and
Np= Nr— N, and

X“(p) _Nr- ND’
14 Ne— Ny

(3.22)

so that X“(p)/p is written in terms of measureable quantities. The final step
is to determine p, so that X“(p) can be calculated from (3.22). But this is
straightforward because for a given pressure p; we have from (3.6)

p= rf(X)dx, (3.23)

where r is the pore radius in which nitrogen condenses at P, Therefore.
given the pore size distribution f(r), we can determine p and X'(p). Having
determined X“(p). we can use (3.21) to estimate Z. Seaton (1991) used this
method for estimating the average coordination number of catalyst par-
ticles; the results are in satisfactory agreement with the data.

3.6 Conclusions

Percolation provides a tool for interpreting experimental data and gaining
insight into the structure of porous media. It tells us that old models of
porous media, based on bundles of parallel capillary tubes are totally
inadequate for interpreting mercury porosimetry and adsorption—desorp-
tion data, and they lead to serious errors and wrong conclusions. Percola-
tion theory opens the way for a comprehensive and meaningful modeling of
porous media and any phenomena that take place in them.
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4
Earthquakes, and fracture and fault
patterns in heterogeneous rock

4.0 Introduction

The discussion of characterization in Chapter 3 is limited to porous media
that are microscopically disordered, but macroscopically homogeneous, i.e.,
those whose properties, on a large enough scale are independent of their
linear size or extent. Conversely, macroscopically heterogeneous porous
media exhibit large-scale spatial variations of their properties. Many pract-
ical applications deal with such media, so they too are considerably
important. A complete description of all properties of such systems is well
beyond the scope of this book. The interested reader is referred to Haldor-
sen ez al. (1988) for a fuller exposition to this important subject. Here, we
restrict our attention to morphological properties of the largest-scale
heterogeneities in rock that interfere with fluid flow — fractures and faults —
and discuss how percolation may be relevant to their description. The effect
of such heterogeneities is so severe that many of the smaller scale hetero-
geneities, such as those at the pore or laboratory scales, may seem simple
when compared to them. We also discuss the possible relevance of percola-
tion to the occurence of earthquakes and the spatial distribution of their
hypocenters. We provide evidence that the spatial distribution of earth-
quake hypocenters may closely be related to the structure of fracture and
fault patterns of rock and to percolation.

The presence of fractures, natural or man-made, is crucial to the economics
of oil production from underground reservoirs, extraction of heat and
vapor from geothermal reservoirs for use in power plants, and development
of groundwater resources. In all cases, fractures provide high permeability
paths for fluid flow in reservoirs that are otherwise of very low per-
meabilities and porosities, and would not be able to produce at high rates.

Al
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With the increasing importance of groundwater pollution, there is an even
greater need to better understand the structure of fracture networks. Fault
patterns. on the other hand, which are closely related to fracture networks,
play a fundamental role in generating earthquakes. Despite their obvious
significance. characterization of fracture and fault patterns is not as
well developed as characterization of porous media without fracture. But
this is changing very fast. Modern ideas. such as fractals and percolation
concepts. are beginning to find their proper place in this field.

Chapter 3 briefly discusses diagenetic processes for sandstones and
carbonate rocks. Such porous media do not usually contain large fractures.
The sedimentologic. tectonic, and diagenetic histories of fractured rock are
complex and very different from conventional porous media. This gives rise
to significant differences between the two. Fracture porosities are generally
in the range 1-6%. whereas the pore porosity is usually larger than 10%.
Because rational development of fractured rocks and maximum recovery of
their contents are closely related to an accurate representation of their
internal structure. development of an accurate three-dimensional map of
fracture distribution is essential for any meaningful study of such complex
reservoirs. This chapter discusses characterization of topological properties
of fracture and fault patterns. Chapter 5 discusses fluid flow through a
fracture network.

4.1 Morphological properties of fracture and fault
networks

Let us now summarize the most important parameters for characterizing the
morphology of a fracture network. then discuss past studies that provide
strong evidence for the connection between fracture networks and fault
patterns of heterogeneous rocks and percolation.

Fracture aperture is the crucial parameter which determines its perme-
ability: the volumetric flow rate g through a fracture is proportional to
its aperture cubed (for a pore, g is proportional to the fourth power of its
effective radius). For rough fractures, the dependence is more sensitive,
depending on powers of the aperture as high as six. It has been found that
the frequency of inverse aperture, when plotted against the inverse aperture,
follows a power law. a strong indication of self-similar and fractal behavior.

Fracture density and spatial geometry are both important parameters in
reservoir modeling. The areal fracture density is defined as the sum of
fracture trace lengths per unit area. For an isotropic network, this is the
same as fracture area per unit volume.

Fracture connectivity of a network, similar to the coordination number of
a pore space, has an important effect on its properties. It can be quantified
by the ratio of three types of fracture termination: (i) a blind termination in
which a fracture ends in the rock matrix; (ii) an abutting termination in
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Figure 4.1 Three types of fractures in heterogeneous rock The fracture porosity is
exaggerated.

which a fracture ends when it intersects another fracture; and (iii) a crossing
in which two fractures intersect but neither terminates (see Fig. 4.1). Among
these properties, fracture connectivity and density are the most relevant to
our discussions in this chapter. Fracture aperture is relevant to fluid flow
in Chapter 5.

4.2 Fractal properties of fracture and fault
networks and their relation with percolation

We now discuss past experimental and theoretical studies of fracture and
fault patterns that indicate a strong connection between them and percola-
tion. Many authors have studied fracture networks of heterogeneous rock
masses around the world and have found them to have fractal pattern. One
way of estimating the fractal dimension Dy of the pattern is to count the
number N, of fractures of length €, which for a fractal network follows a
power law

N~ €7 4.1)

This is called the box counting method of estimating a fractal dimension. It
has been generally found that at large length scales (of the order of one
kilometer or more) thin sections of fractured rock (an essentially two-
dimensional system) are characterized by Dy = 1.9. whereas at small scales
(of the order of several meters) they are characterized by Dy = 1.6-1.7.
One well-known example of such fractal fracture networks is the Yucca
Mountain formations in Nevada. whose structure was investigated by
Barton and Hsieh (1989) for the US Department of Energy as a potential
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Figure 4.2 Fracture pattern of the surface of the Geysers geothermal field (after
Sahimi et al. 1993).

underground repository for high-level radioactive wastes. Using the box
counting method, they found that the fracture surface of the rock has a
fractal structure, and that for fractures ranging from 20 ¢cm to 20 m the
fractal dimension Dyris about 1.6-1.7. Results similar to those for the Yucca
Mountain formations have also been found for the Monterey formation in
California, an important source of heavy oil, and other rocks. For some
Japaness formations Hirata (1989) found that for large fracture surfaces,
Dr= 1.9, whereas for smaller scales, Dy =~ 1.7.

Another important example is the Geysers geothermal field in Northeast
California. It covers an area of more than 1.4 x 10® m? and represents one
of the most important geothermal fields in the world. Sahimi er al. (1993)
studied the fracture pattern of this field. Their results for thin (two-dimen-
sional) sections of the field are shown in Fig. 4.2, from which Dr=1.9.

The above studies were restricted to fracture surfaces and thin sections.
Three-dimensional fracture networks can also be studied by a few methods.
In the case of the Geysers field we can obtain a reasonably accurate map of
the fracture network through drilling, since large fractures, when hit by the
drilling equipment, produce a sudden and measurable increase in the steam
pressure on the ground. Analysing such data, it was found that as larger
and larger samples of the field are examined, the fractal dimension of the
fracture network increases and tends toward 2.5 for large systems.

Another way of obtaining information about three-dimensional structure
of fracture and fault patterns is through seismic waves. Known in seismic
literature as coda, such data are the late acoustic or seismic signals that we
measure in a remote station, several seconds after the first seismic signal
that has emanated from an earthquake is received by the station. Since
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earthquake hypocenters are located on the fault or fracture network of
rock, the coda reflects the scattering of seismic waves by large-scale
three-dimensional fracture or fault structures of rock. The coda data can be
analysed in two different ways. In the first method, the backscattering
coefficient gy is estimated from

Ust] Peo(®)

2P exploi/ Q(w)], (4.2)

8hs(®) =

where v is the average wave velocity, 7 is a fixed time, and ® is the
frequency. There are three measurable quantities in (4.2): Q(w), the quality
Jactor of the medium; P, the measured coda power; and P (), the source
power spectrum. Q(w) represents the intrinsic and scattering attenuation
effects and is obtained experimentally from the slope of coda envelopes;
Because Ps(w) varies greatly for each earthquake. (4.2) is averaged over
many earthquakes. If gss varies with ® with a power law

gbs(0) ~ ©", (4.3)
then the fractal dimension is given by
Dy=3-H. (4.4)

Alternatively, we can calculate the one-dimensional power spectrum of the
seismic waves from

Wiky) = —_4g;§‘”) K, (4.5)
B

where kp = w/vs, and Z; is given by
dZ\ 12
Zy={(== , 4.6)
B < Zo>

and Z, and 8Z are, respectively, the average value and the perturbation of
the medium impedance. The quantity Zp is roughly constant for many
different rocks. If W(kp) scales with kp as

Wi(kp) ~ k§, 4.7)

then the fractal dimension is given by, Dy=1+38. Wu and Aki (1985)
analyzed several sets of coda data and found evidence of fractal behaviour
for three-dimensional large scale heterogeneities in the lithosphere with,
Dy = 2.46-2.52. Finally, Chelidze and Gueguen (1990) studied the three-
dimensional fracture patterns of Stockbridge dolomite marble (in Connecti-
cut) and found Dy = 25,
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So far we have discussed experimental data for fracture patterns of
heterogeneous rock. These data indicate that at large length scales the
fracture pattern of rock is fractal with a fractal dimension indistinguishable
from those of percolation clusters. namely. Dy= 1.9 and 2.5 in two and
three dimensions, respectively. Later we explain why the fractal dimension
of the fracture network of rock at small scales is not the same as the fractal
dimension of percolation clusters. But now we discuss some theoretical
evidence in support of the connection between fracture patterns of rock at
large length scales and percolation.

Computer simulation studies of Long er al. (1991) provided strong
evidence for the connection between fracture and fault patterns and percola-
tion. Suppose that we have some limited amount of information about a
fractured rock, e.g.. we know the amount of fluid that it can produce at
certain locations, and we would like to develop a fracture network model
for the rock that honors (reproduces) our limited amount of data. To do
this, Long er al. (1991) developed a method called simulated annealing. Such
methods were originally developed by Kirkpatrick er al. (1983) and others
for statistical mechanical and thermal systems, where one attempts to find
a configuration of the system whose energy is minimum. Starting with a
particular configuration of a fracture network as the initial guess for the
structure of the rock, we change systematically the connectivity of the
fractures in the network and calculate the quantities for which some data
are available. For example, we can start with a network in which some
bonds represent the fracture through which fluid flow takes place, and the
rest of the bonds are closed to flow. If a particular configuration of the
network reproduces the data to within a certain tolerance, then we accept
that configuration as the optimum structure of the fracture network of the
rock. Otherwise, we change that configuration once again and the quantities
of interest are recalculated and compared with the data. and so on. Long
et al. (1991) showed that, even if we start with a fully connected fracture
network with a regular structure, the optimum configuration is always a
network which, although it contains a large number of fractures, is barely
connected, i.e., removal of a few fractures divides it into several large and
dense but disconnected blobs of fractures, precisely the structure of the
largest percolation cluster at the percolation threshold discussed in Chapter 2.

Finally. if, instead of the entire fracture or fault pattern, we analyze the
surface of a single major fault, such as the San Andreas fault in California,
we find that the fault is not a straight line but a fractal with, D; = 1.1-1.2
(Okubo and Aki 1987). Therefore, the accumulated experimental and
theoretical studies leave little doubt that rock fractures and fault patterns
are fractal. that their fractal dimension depends on the length scale of
observation. and that at the /argest scales the fracture or fault patterns may
have the structure of a percolation cluster. But, can we develop a unified
model which predicts all of these data? We now show that a percolation-
based model may be able to do this.
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4.3 Percolation models of fracture processes

We represent the rock (or its surface) by a network of interconnected bonds.
In classical mechanics a solid phase is represented by a spring. Likewise. in
our network the bonds are springs and represent the solid matrix of the
rock. To include the porosity of the rock in the model, we can remove a
fraction of the springs either at random or in a correlated fashion. The
fraction of absent bonds is a measure of the prefracture porosity. Every
site of the network is characterized by the displacement vector u,=
(Uix, uiy, ui-), and nearest-neighbor sites are connected by the springs. We
consider here the case of brittle fracture for which a linear approximation
is valid up to a threshold defined below. This means that the springs follow
the laws of linear elasticity if they are not stretched more than a critical
length, or if the stress that they suffer is not greater than a critical value,
but break irreversibly if such critical values are surpassed.

We now have to specify the force laws that the springs follow. A
convenient way of representing such force laws is through the elastic energy
of the system. Chapter 2 shows we can use a wide variety of force laws that
the springs obey. Here we consider a network whose elastic energy E 1s
given by

% 2 [(u; —uy) - R,-j]ze,-j+ g 2 (Sﬂjik)zeije,-k, (4.8)
()] (jiky

E =

where a and B are the stretching and angle-changing force constants,
respectively, Ry is a unit vector from site i to site j, and e; is the elastic
constant of the spring between i and j. Here {jik) indicates that the sum is
over all triplets in which the springs j—i and i—k form an angle whose vertex
is at i. The first term in (4.8) represents the contribution of the stretching
forces, while the second term is due to the forces that change the angle
between two springs connected to the same node. If we assume that even the
angle between the springs that make a 180° angle with one another can change
during deformation of the network, then (Kantor and Webman 1984)

80,1, = (u,; x R,j —ux XRy) - (R,‘j x Ry)/ | R,j]' X Rikl R,; not parallel to R
st | (ug + ug) x Ry R, parallel to Ry (4.9)

where. u, = u; — u;. For all two-dimensional networks, (4.9) simplifies to
891','/\- =(u; — llj) X R,']' —(u;, — ) X Ry (4.10)
We can use many different forms of the elastic energy: (4.8) is only one of

them. We may use a network of beams instead of springs (de Arcangelis et
al. 1989); then, in addition to the stretching and angle-changing forces, the
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torsional or bending forces also contribute to E (since beams can actually
bend). Although such a model 1s presumably appropriate for the case in
which the system i1s under compressive forces, (4.8) is a realistic model for
representing many disordered media. Moreover, fractal properties of a
fracture network are not sensitive to whether torsional forces are present or
not. Chapter 11 uses elastic percolation networks to explain and predict the
experimental data on elastic properties of gel polymers.

Sahimi and Goddard (1986) first introduced elastic percolation models
for stimulating brittle fracture. They discussed three general classes of dis-
order. (1) Deletion of a fraction of the bonds. discussed above. (2) Random
or correlated distribution of elastic constant e of the bonds. The idea is that
in real rocks (or solid materials) the shapes and sizes of the channels
through which stress transport takes place vary greatly, resulting in different
elastic constants for different springs. (3) Random or correlated distribution
of the critical thresholds. For example, in shear or tension the breakage of
a spring can be characterized by a critical length /., such that the spring
breaks if it 1s stretched beyond /.. In compression. each bond (representing
a beam) can be characterized by a critical torsional force. such that the
beam breaks if it suffers a force or stress more than the critical value. The
idea is that because of rock heterogeneities, different parts of a system can
offer different resistances to fracture. For our discussion in this chapter, we
combine the first and the third type of disorder. The interested reader can
consult Herrmann and Roux (1990) or Sahimi (1992) for a more complete
review of this important research field. Hence, we introduce a threshold
value /, for the length of each spring, which is selected according to a
probability density function. Any distribution can of course be used, but we
use the following distribution

P(ly=( -y, 4.11)

where, 0 < y< 1. This distribution has the advantage that by varying y we
can simulate both a narrow distribution (y = 0) and a broad one (y = 1).
We now start our fracture simulation by applying an external stress or
strain to the system in a given type of experiment (shear. tension, or
compression). We then calculate the nodal displacements u, by minimizing
the elastic energy E with respect to u;, i.e., by writing down 0E/du; = 0 for
every node i. This results in a set of N simultaneous linear equations for
the nodal displacements for a d-dimensional network of N nodes. This set
can be solved by either a direct method, such as Gaussian elimination, or
by an iterative method, such as the conjugate gradient method, particularly
suitable for use in vector computers such as Cray Y-MP. We then examine
the bonds to see whether any of them has exceeded its critical threshold.
Fracture is initiated by breaking the spring with the largest deviation from
its threshold. i.e., the weakest spring. We then recalculate the nodal
displacements for the new configuration of the network, select the next
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spring to be broken, and so on. If no spring meets the failure criterion, we
gradually increase the external stress or strain. The computations are very
intensive, because we have to compute the solution of a very large set of
linear equations a very large number of times (of the order of thousands).
Simulation stops when a sample-spanning fracture is formed and the system
fails macroscopically. Although various properties of such fracture models
have been investigated by many authors, here we are only interested in the
structure of the resulting fracture network. The interested reader can
consult Herrmann and Roux (1990) or Sahimi (1992) for more details on
many other properties of such fracture models.

Let us now discuss the predictions of this model. The shape of the
fracture network depends on the distribution of the heterogeneities. If the
distributions of the thresholds and ej; are narrow, then the system is
essentially homogeneous. In such a system, once a microcrack is nucleated
the stress or force at its tip is greatly enhanced, which means that the next
microcrack will almost surely develop at the tip of the existing crack. The
macroscopic fracture network formed in this process is not very complex:
we have a single fracture spanning the system, plus some microcracks
distributed in the system. Thus, the failure of such a system is very abrupt.
That is, although most springs remain intact, a sample-spanning fracture is
formed very quickly; this breaks the system into two pieces. The single
fracture formed in this way is similar to the single major fault in natural
rock mentioned above. On the other hand, if the system is highly hetero-
geneous with many weak and strong springs distributed throughout the
system, microcracking can happen in many places. In this case, the devel-
opment of the macroscopic fracture network is more gradual, and the
fracture network has a complex structure. Thus, from a practical point of
view, we should try to make our solid materials as heterogeneous as
possible in order to make them more resistive to fracture.

If the distribution of the thresholds is narrow, then the sample-spanning
fracture that is formed in a two-dimensional network is fractal with
Dr=1.1-1.2, whereas if we analyzes all fractures (the sample-spanning
fracture plus the isolated cracks), we find that Dy= 1.6-1.7. These are in
agreement with the data mentioned above. But the third fractal dimension,
Dy == 1.9, pertains to large scales and cannot be obtained with such a model
and simulation. The reason is that at large scales rock is highly hetero-
geneous and its properties vary spatially. There are also correlations between
the properties of various regions (Hewett and Behrens 1990). Such large-
scale heterogeneities are absent in the network used in the simulations. To
include such large-scale heterogeneities in the model, we divide the network
into blocks, each of which represents a region of a heterogeneous rock.
Within each block. the properties are constant (rock is homogeneous on the
scale of the block size) but the effective properties vary between the blocks.
If we now repeat the same type of simulations but with block hetero-
geneittes. we find that (Sahimi er al. 1993), Dr = 1.85, in good agreement with
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Figure 4.3 Log-log plot of the number of fractures Ny versus the radius r obtained by
the rracture model (after Sahini et al 1993 ).

two-dimensional percolation (Fig. 4.3). Thus, 1t appears that fracture
networks of macroscopically heterogeneous rocks are similar to percolation
clusters.

Fracturing is dependent upon the stress field in the system, whereas
percolation is completely random and independent of the stress field. So
why are large-scale fracture networks similar to percolation clusters? Per-
haps this is the explanation. Once a microcrack is initiated in a given region
of the rock, it can only grow as long as it has not hit another region which
is much stronger than the present region. But because the rock is hetero-
geneous, the growing fracture does eventually hit such a strong region, in
which case its growth stops. and another crack in another region of the rock
is nucleated. The growth of the new fracture also continues only as long as
it has not encountered another strong region of the rock. and so on. Thus,
viewed from a large scale. the nucleation and growth of fractures in highly
heterogeneous rocks are more sensitive to their heterogenetties than to the
stress field, and take place more or less at random, i.e., like a percolation
process. independent of the stress field. From this perspective, fracture
processes in macroscopically homogeneous and heterogeneous media are
quite different, because in a homogeneous medium fractures grow almost
always at their tip. It has been suggested (Sahimi and Arbabi 1992) that
fracture processes can be divided into two distinct groups. One of them
corresponds to fracture in a macroscopically homogeneous medium, e.g.,
disordered materials in which nucleation and propagation of fractures
depend on the stress field in the entire system, with D; = 1.7 in two
dimensions. The other corresponds to fracture in a heterogeneous medium,
e.g.. reservoir rock. which is essentially equivalent to a percolation process.
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Why are such large-scale fracture networks similar to percolation clusters
at the percolation threshold p, but not similar to percolation clusters above
p.? During the initial stages of fracture propagation. large stress concentrations
are generated in the system. Large stresses help the fracture growth until
the fracture network becomes sample spanning; then they are released and
the stress concentration becomes totally localized. This means that fracture
growth cannot continue on a large scale. The significance of this is that,
while fracture patterns in disordered materials are not similar to percolation
clusters, large-scale fracture networks of rock can be constructed in terms
of percolation clusters whose properties are well understood. This makes it
much easier to model fluid flow and heat transfer in such rocks.

4.4 Generation of percolaiion models of fracture
networks

If we accept that fracture networks in heterogeneous rocks are percolation
clusters, how do we model them? Consider first a two-dimensional system.
We may represent the fractures by line segments of a given length / (see. for
example, Englman er al. 1983). As such, results of continuum percolation
discussed in Chapter 2 can be used for modeling fracture networks.
Alternatively, we may assign the fracture lengths from a given distribution.
One of the simplest models is the Poisson model in which a L x L plane is
used, and the x- and y-coordinates for centers of the fractures are selected
at random from a uniform distribution in (0, L). We then select the
orientations of the fractures from a distribution. If the fractures cross the
boundaries of the system, they are truncated. Figure 4.4 shows a typical
fracture network generated by this method. The next question is how to

/
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Figure 4 4 A typical two-dimensional fracture network generated by the Poisson model.
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relate the parameters of the fracture network to those of percolation
networks such as p. the fraction of conducting bonds, and Z, the average
coordination number of percolation networks. We may use the average
number of intersections per fracture Z; as the measure of the connectivity
of the fracture network. Suppose now that the average fracture length is /.
the orientation distribution is #(8), and the density of fracture centers is
peen- Then. it 1s not difficult to show that

Z/ = meT:G(e). (412)
where G(0) 1s defined by

G(6) = J J sin |6 — 64| h(8)h(6,)d6 d6,. (4.13)

0 JoO

For example, when the fracture orientation is uniformly distributed.
h(®)=1n. GO)=2/m, and Z;=2peenl /m. Now, for every Zy there is a
corresponding ps(Z;). which is the analog of p for percolation, the average
fraction of a fracture which is available for flow (remember the three types
of fracture terminations discussed above). Consider now a fracture of
constant length / with n(/) intersections, and suppose that the fractures are
placed in the system at random, which means that n(/) is a Poisson process.
Then. the average fraction of a fracture available for flow, i.e., the fraction
between the two end sites on Iy is [n(!) — 1)/[n(!) + 1]. Therefore, if Py is the
probability that n(/) = n, then P, = Zje” “//n!, and (Hestir and Long 1990)

. n—1 2 -z 4
7 P, =[1+= +e - . 4.14
pr(Zy) Ezn 2 ( Zf](l e Zf ( )

Given this equation, all standard results of percolation discussed in Chapter 2
can now be used for fracture networks, provided that we replace p everywhere
with p. Thus. an exact one-to-one correspondence between fracture and
percolation networks can be made. For other types of fracture networks we
can derive a relation between p; and other parameters of the system; see Hestir
and Long (1990). Generation of three-dimensional fracture networks can be
done in a similar way, assuming a shape for the fractures. The interested reader
can consult Sahimi (1993) for more discussions and references.

4.5 Earthquakes, fracture and fault patterns. and
percolation

The distribution of energy released during earthquakes has been found to
obey the famous Gutenberg-Richter law (Gutenberg and Richter 1956).
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This law is based on the empirical observation that the number N of
earthquakes of size greater than m is given by

logioN =a — bm, (4.15)

where values of @ and b depend on the location, but generally b is in the
interval 0.8 <b < 1.5. The energy E released during the earthquake is
believed to be related to m by

logoE = ¢ — em, (4.16)

so that the Gutenberg—Richter law is essentially a power law connecting the
frequency distribution function with the energy release E (or other physical
quantities). If we combine (4.15) and (4.16), we obtain

logioN = a, — biloguwE, (4.17)

a power law describing the fact that the larger the earthquake the fewer the
occurrences. Equation (4.17) is reminiscent of (2.14) for ny(p), the cluster
number; and s, the cluster size in percolation theory.

Otsuka (1979) appears to be the first to attempt relating percolation
properties with the empirical dependence of N on E. He argued that the
surface matter of the earth’s crust is always being somewhat distorted, and
that earthquakes occur when this distortion exceeds a certain threshold
value. Moreover, he argued that each unit volume of rock contains an
energy distortion (preceding an earthquake) of e;~2x 10*ergem™, and
thus he proposed that numerically E = V, where V is the volume of the
crust about to produce an earthquake. In this way. he drew a closer analogy
between occurrence of earthquakes and percolation, since (4.17) can be
rewritten in terms of the number and “volume” associated with the “clusters”
of the severely distorted earth’s surface matter.

In Otsuka’s model. the role of the probability p of percolation is played
by the probability that a particular piece of the crust is severely distorted.
Thus, this parameter must depend on the specific sample region and the
geological conditions during the period of observation. In particular, the
power law of earthquake “clusters™ will nos be observed unless p = p.. By
comparing the earthquake frequency data from various regions of the
world, Otsuka demonstrated that this is indeed consistent with the data, i.e.,
the power law (4.17) is an oversimplification. His figures do seem to indicate
that certain regions, e.g., northern Japan, correspond to p < p., while others,
e.g., South America, perhaps to p> p.. Of course, every earthquake is
restricted to a finite region, and thus no earthquake “cluster” is treated as
infinite, even if p > p.. However, Otsuka’s quantitative results are not directly
comparable with percolation quantities discussed in Chapter 2 as he did not
use proper normalization, did not use suitable quantities to plot. and used
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Figure 4.5 Variations of the minimum number of occupied cubes N, of edge L (m
kilometers) to campletely cover the dutu set ut various length scales L for all four sets
of earthquuke duta. The slopes of all dutu sets are about 1.8 (after Sahimi et al, 1993 ).

a Bethe lattice of coordination number Z = 3. Chelidze (1981). Trifu and
Radulian (1989), and Stark and Stark (1991) also attempted to make a
connection between the earthquake statistics and percolation, but no
comparison was made between the predictions of their model and experi-
mental data.

A more quantitative connection between earthquake statistics and perco-
lation was made by Sahimi er «l. (1993) who investigated the fractal
properties of the spatial distribution of earthquake hypocenters. These
authors analyzed four seismic data sets from four different regions in
California. For each set, the fractal dimension D; of the set was estimated
by counting the minimum number of cubes N, of edge length L to
completely cover the three-dimensional data set at various length scales L,
where L was taken to be location error of the set. Figure 4.5 presents their
results, from which D, = 1.8 for all cases.

What is the interpretation of this value of D;? Geologic features are rarely
stmple planes. Most faults are comprised of many shear fractures, which are
visible at a number of scales. Therefore, given that fracture networks of
rock at large scales appear to be the largest percolation clusters at p., the
fault patterns should also be percolation clusters with D; = 2.5 in three
dimensions. The vast majority of earthquakes are distributed on the regional
fault networks. But the hypocenters have to belong to the active part of
the network. i.e.. the part where finite strain deformation can take place.
The easiest way for this to happen is if the hypocenters belong to the
hackbone of the fault network. Indeed, the result D; = 1.8 is in complete
agreement with the fractal dimension Dgg = 1.8 of three-dimensional
percolation backbone (see Table 2.3). Moreover, the fact that all four data
sets yielded the same Dy is consistent with the universality of Dgg.
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Kagan and Knopoff (1981) studied the spatial distribution of earthquakes
but found D, = 2, which they interpreted as meaning that earthquakes occur
on planes. But, they also found that if they explore larger depths and
areas, the estimated Dy would decrease. If the hypocenters considered by
Sahimi er al. (1993) are plotted in three-dimensional space and rotated
around all three axes, there does not seem to be any one plane about which
the earthquakes cluster. The San Andreas-Elsinore (SA-EL) earthquakes
are located between two major faults and over a very wide zone of
deformation, whereas the Parkfield earthquakes are located over a relatively
thin zone of deformation along the SA faults, yet they both have Dy = 1.8.
There usually exists a large length-scale cutoff in the three-dimensional
distribution of earthquake hypocenters, namely, the brittle crust length,
beyond which we may expect a crossover to a quasi-two-dimensional
distribution. However, even in the SA-EL case, where the earthquakes are
distributed over a very wide region, such a crossover is not evident. As a
further check of this hypothesis, Nakanishi et al. (1993) studied dynamical
properties, e.g., diffusion properties. of the clusters formed by earthquake
hypocenters. They found them to be completely consistent with those of
percolation backbones, thus providing further support that earthquakes,
fault and fracture patterns, and percolation are closely related phenomena.

For an alternative view of earthquakes and their dynamical properties see
Bak and Tang (1989) and Sornette and Sornette (1989)

4.6 Conclusions

Fracture and fault patterns in macroscopically heterogeneous rock may be
similar to percolation networks. If so, the vast knowledge about percolation
networks can be used for modeling fracture networks. This in turn would
facilitate modeling flow phenomena in fractured rocks. an important but
unsolved problem. Earthquakes may also have close connections with per-
colation which would help us better understand this complex phenomenon.
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5
Single-phase flow and transport in
porous media

5.0 Introduction

In this chapter we discuss the application of percolation theory to transport
and flow of one fluid in porous media and fractured rocks. We focus on
low Reynolds number (low velocity) flow, where Darcy’s law is applicable.
In Chapter 3 we learnt that porous media can often be represented by a
network whose sites and bonds represent, respectively, the pore bodies and
pore throats of a pore space. Transport properties of such networks are
controlled by the throats, which is why the role of pore bodies is usually
neglected (no volume is assigned to the sites). Chapter 4 told us that
large-scale fracture networks may be nothing but percolation clusters. Thus,
we can develop a unified approach to tranport and flow in both porous
media and fractured rock, and use various percolation-based methods for
estimating the permeability k and electrical conductivity ¢ of fluid-saturated
rock (the conductivity of the solid matrix is ignored). Of course, as a result
of Einstein’s relation (Chapter 2), the electrical conductivity is proportional
to the effective diffusivity of the system. Every method discussed in this
chapter can also be used for calculating the effective properties of dis-
ordered materials such as polymers, glasses, powders, and metal films, and
in fact the literature on this subject is very large. This class of applications
of percolation concepts is discussed in Chapter 12.

5.1 Exact results and rigorous bounds

It has not yet been possible to calculate &k and o exactly for a porous
medium of arbitrary microstructure. The available exact results are for a

=
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few models of porous media with simple microstructure, in which no
disorder is allowed and, moreover, most of the results are restricted to high
porosities. Even then most of the exact results are for periodic arrays of
spherical particles, in which the spheres have the same radius R and are
placed at the nodes of a regular lattice. These models are idealizations of
unconsolidated porous media. Hasimoto (1959) was the first to treat slow
fluid flow through a dilute cubic array of spheres. He derived the periodic
fundamental solution to the Stokes’ equation

~-VP+pg+nVv =0, (5.1

to derive an expression for k. Here P is the pressure, p, n and v are,
respectively, the density, viscosity, and the average velocity of the fluid, and
g is the gravity vector. Since Hasimoto’s paper, many other authors have
studied this problem. In particular, Sangani and Acrivos (1982) obtained
expressions for the permeability of various lattice models of spheres. For
example, if ¢ is the volume fraction of the spheres, then their result for a
simple cubic lattice of spheres is given by

% =1-1.7601c"? + ¢ — 1.5593¢* + 3.9799¢%* — 3.0734¢'” + O(c""?), (5.2)

where k=2 R*/(9¢) is called the Stokes’ permeability. Sangani and Acrivos
(1982) also presented the numerical coefficients in the above expansions for
body-centered cubic (BCC) and face-centered cubic (FCC) lattices, and
two-dimensional square and hexagonal lattices of parallel cylinders. They
also showed that these expansions are convergent for 0 < ¢/cmax < 0.85,
where ¢max is the maximum volume fraction of the spheres for a given
packing and, Cmax= /6, 3"*1/8, and 2'’n/6 for simple cubic, BCC, and
FCC lattices, respectively. Since the spheres or the cylinders do not overlap,
these results may be relevant to unconsolidated porous media. On the other
hand, if we consider flow through a random array of spheres, the following
asymptotic expression for k is obtained (Hinch 1977, Kim and Russel 1985)

%:1+-\/‘1.—2—c"1+%clogc+l6.456c... (5.3)

For a more complete discussion of these results see Sahimi (1993).
Another set of rigorous results for random porous media is obtained
when, instead of trying to solve the problem exactly, we derive upper and
lower bounds to the properties of interest. These bounding methods have
been reviewed by Torquato (1991). For example, one can obtain upper and
lower bounds to the permeability of the Swiss cheese model discussed in
Chapter 2, or a model in which the spheres have a specific degree of
impenetrability (remember that in the Swiss cheese model the spheres have
an arbitrary degree of impenetrability). The degree of impenetrability
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affects the percolation threshold ¢ of the particle (sphere) phase. We have
¢ = 0.34 for the Swiss cheese model and ¢ = 0.64 for the totally impenetrable
sphere model.

In all the above studies, the Kozeny-Carman empirical formula

ks _ 10¢

k™ (-0

(5.4)

(recall that 1 — ¢ = ¢ is the porosity) falls within 15% of the results for at
least one of the three types of periodic packings if ¢ > 0.5, and in the case
of the random sphere model it is relatively close to the lower bound.

The main problem with all of these results is that, they are not very useful
for the highly disordered (and consolidated) porous media that are of
interest to us in this book. If ¢ = 1 — ¢ is close to the percolation threshold,
then all of the above formulae break down. I fact, no bound, no matter
how accurate, can predict the existence of a nontrivial (not zero or unity)
percolation threshold.

5.2 Effective-medium approximation

Effective-medium approximation (EMA) is a method of determining the
effective properties of a disordered medium, in which the medium is
replaced with a hypothetical uniform medium with unknown properties. An
excellent review of this subject is given by Landauer (1978). In its original
form, the EMA had nothing to do with percolation. But it was the first
analytical approximation able to predict a nontrivial percolation threshold
and, for this reason, it has been closely tied to percolation. There are two
typical EMAs, but the one that is of interest to us was originally developed
by Bruggeman (1935) and Landauer (1952). In this approach, the dis-
ordered medium is replaced by a uniform system of unknown properties,
which is supposed to mimic the disordered system. The distribution of the
field (pressure, voltage, stress, etc.) in this uniform medium is also uniform,
and can be calculated analytically. An inclusion of the original system,
which in principle can have any shape, but in practice is either spherical or
ellipsoidal (or is a bond in the network models; see below), is then inserted
in the uniform medium. This insertion induces an extra field in the uniform
medium. We insist that the average of this extra field, when the averaging
is taken with respect to the distribution of disorder in the original system,
must be zero. This self-consistent condition yields an equation for the
unknown property of the uniform system, which is also an estimate for the
property of the disordered medium.

Kirkpatrick (1973) extended the Bruggeman-Landauer EMA to percola-
tion networks of bonds with random conductances. Consider a regular
network of coordination number Z and pore conductance distribution
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h(gp). Then, EMA predicts that g, the effective conductance of the network
is the solution of the following equation

- 8p — e
h(gp) ——F————dgp,=0, (5.5)
J0 pgp+(Y1_1)ge ?

where y = 2/Z. The same equation was derived by Bruggeman and Landauer
with "' = dfor a d-dimensional continuous system. Using this equation, we
calculate the permeability and conductivity of a porous medium. Consider
an effective-medium network where each bond or pore has a conductance ge.
We fix the pressures at two opposite faces of the network so as to produce
an average pressure gradient (V P). The total fluid flux ¢ crossing any plane
perpendicular to (VP) is the sum of the individual fluxes in the bonds
intersecting the plane. Each flux is the pressure difference across the
bond times g./n. If we approximate the local pressure difference as the
projection of the average pressure gradient along the bond length I, we find

q=2%<VP) I (5.6)

If we divide ¢ by the area S of the plane, we obtain an average velocity which,
when compared with Darcy’s law, yields an estimate of the permeability

k:g,?(éZl -n), (5.7)

where n is a unit vector along the pressure gradient. But, if the medium is
statistically homogeneous and isotropic, any unit vector can be used.
Equation (5.7) shows clearly why, for random networks, k¥ and g. obey the
same scaling law near the percolation threshold (see Chapter 2). In a similar
way. the electrical conductivity ¢ of a fluid-saturated network, which is
simply proportional to g.. can be calculated.

In this kind of approach, we neglect the pressure drop in a pore body and
we assume that most of the pressure drop occurs in the pore throats of the
network. We do not do the case in which both pore bodies and pore throats
are considered. So long as pore bodies are large and compact and pore
throats are long and narrow, the approximation is valid.

A stringent test for any theory of transport in porous media is its ability
to predict the percolation threshold of the system. Despite its simplicity the
EMA can predict a nontrivial percolation threshold for various networks.
If we use, h(g,) = (1 — p)6(g,) + pf(gp). i.€., a network in which a fraction
(1 — p) of the pores are nonconducting (do not allow any fluid flow), and
the conductance of the rest is selected from the distribution f(g,), then
EMA predicts that g, vanishes at p. = 2/Z. This prediction is accurate for
two-dimensional networks, but not for three-dimensional networks (see
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Tables 2.1 and 2.2). If we take f(g,) = 8(gp — go). i.e., all conducting bonds
have the same conductance g, with probability p. then (5.5) predicts that

8 _p-2Z p-pc
g 1-21Z 1-p’

(5.8)

i.e., a straight line between p = 1 and p = 2/Z = p.. Thus. EMA predicts that
the conductivity critical exponent U is one in all dimensions, which is a
wrong result (see Table 2.3). In general, EMA is very accurate if the system
is not close to p, regardless of the structure of 4(g,). Its predictions are also
more accurate for two-dimensional networks than for three-dimensional ones.

5.2.1 Effective-medium approximation for transient diffusion
and conduction

Equation (5.5) is valid for steady state transport, but can be extended to
time-dependent diffusion and conduction processes. The time-dependent
transport equation is given by

9 ¥ Witk - P, ¢
i

which can be viewed as a description of the motion of a diffusing particle
on a lattice. Equation (5.9) i1s usually called the master equation. Here
Pi(1) is the probability that the particle will be at site i at time 1, and Wj; is
the transition rate (probability) between sites / and j, taken to be nonzero
only if sites i and j are nearest neighbors. The transition rates are randomly
distributed variables and are usually independent of time (see dynamic
percolation in Chapter | for the case in which Wj; is time dependent). To
derive an EMA for this problem we have to treat it in the Laplace transform
space. Then, it can be shown that EMA predicts that (Odagaki and Lax
1981, Webman 1981. Sahimi er al. 1983a)

. | N
J O T e Go® + ol — eGo@lerwy = 619

Here, p.=2/Z. € =A/W,, where )\ is the Laplace transform variable con-
jugate to the time, W, is the Laplace transform of the effective (time-
dependent) transport coefficient, thus, g.= W,,(0), and G(€) is a Green
function which, for a d-dimensional simple cubic network, is given by

Gole) =J exp{-%x(2d+ e)]lg‘(x)dx, (5.11)

0
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where Io(x) is the modified Bessel function of order zero. For a table of the
Green functions for other networks see Sahimi er al. (1983a). In the limit,
A =0 (i.e., very long times), (5.10) reduces to (5.5). If we set A = iw, where
i=V=1 and o is the frequency, then (5.10) can be used for estimating
frequency-dependent transport properties (i.e., AC properties) of disordered
media, discussed in Chapter 12.

5.2.2 Effective-medium approximation for anisotropic systems

Many disordered media such as fracture networks are anisotropic, and
therefore are characterized by a permeability or conductivity tensor. Thus,
the effective network should be characterized by three effective conduct-
ances ge1, g£¢2, and ge1, one for each principal direction of the network. Each
principal direction is also characterized by its own conductance distribu-
tion. Bernasconi (1974) developed an EMA for anisotropic media which, for
a d-dimensional simple cubic network, is given by

J hi) 8" X ax =0, i=1,..., d, (5.12)
. S,

X + D

where 4; is the conductance distribution in the ith direction. For a square
network

arctan(gea/ge)"?

Si = ,
A arctan(ge/gen)

(5.13)

and S- is obtained by interchanging ge: and ge>. For a simple cubic network

arctan[gzll (8e18e2 + Ze18e3 + gelgﬂ)]”z
1 = ’
al'C[an[gel(gelgez+gelge3+gezge3)] 12

S =ge (5.14)

and S, and S; are obtained by cyclic rotation of g1, ge2. and ges. These
equations allow one to calculate the permeability tensor of a fracture
network. Hereafter, we refer to (5.5) and (5.12) as the isotropic and aniso-
tropic EMA, respectively. We take, for example, h(g,) = pd(g, — 10) +
(1 — p)8(gp). and hi(gp) = pd(gy, — 1) + (1 — p)3(g,). The results for ger and
ge» for the square network are shown in Fig. 5.1. They show very good
agreement with Monte Carlo simulation results. Unlike the isotropic case,
the results do not follow straight lines.

Koplik et al. (1984) analyzed in detail a Massilon sandstone, mapped its
pore space onto an equivalent random network. and employed the isotropic
EMA to calculate its permeability and conductivity. They found that the
predictions for k differ from the data by about one order of magnitude,
while those for o differ by a factor of about 2. They attributed the difference
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Figure 5.1 Effective conductivities ge1 and gex for the anisotropic bond percolation on
the square network. The curves represent the EM A predictions; circles are Monte Carlo
data (after Bernasconi 1974).

to the fact that most sedimentary rocks are highly heterogeneous and
anisotropic, none of which is adequately taken into account by the isotropic
EMA. Doyen (1988) analyzed transport properties of Fontaineblau sand-
stones and used the isotropic EMA to predict their & and o, and found that
both of them can be predicted to within a factor of 3. Benzoni and Chang
(1984) used the isotropic EMA to estimate the effective diffusivity of
high-area alumina catalyst particles. Their results are shown in Fig. 5.2 and,
in this case, the agreement between the predictions and the experimental
data is excellent. Harris (1992) used the anisotropic EMA to calculate the
permeability tensor of heterogeneous and fractured rock. The application
of EMA 1o predicting transport properties of other kinds of disordered
media is discussed in Chapter 12.

5.2.3 Archie’s law

A useful empiricism for sedimentary rocks is Archie’s law given by
c=o0or¢", (5.15)

where oy is the conductivity of the fluid saturating the porous medium
(usually brine). The exponent m has been found to vary anywhere between
1.3 and 4, depending upon consolidation and other factors. Archie’s law has
been found to hold for a wide variety of rocks. It implies that the fluid
phase remains connected and its percolation threshold is always zero.
Percolation concepts and EMA have been used by Sen er al. (1981) and
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Figure 5.2 Comparison of the EMA predictions of the dependence of the effective
diffusivity De of alumina catalyst particles with high surface area on the porosity ¢
(curves) with the experimental data. The porous medium is modeled by a simple cubic
nenwork of macropores and micropores. The upper curve represents the case
a =0.025 where a is the ratio of micro and macro diffusivities; the lower curve is for
a=0.004 Dw is the molecular diffusivity. Triangles and circles are the data at
pressures 1 atm and 10 atm. respectively (after Benzoni and Chang 1984 ).

Mendelson and Cohen (1982) for deriving Archie’s law, showing that,
m=Z/(Z - 2). Thus. consistent with experimental observations, m is not
universal.

One drawback of an EMA-based derivation of (5.15) is that it pertains
only to a microstructure whose solid component is disjoint, whereas in
reality the solid matrix is continuous and sample-spanning. This difficulty
can be circumvented by using an EMA for a three-component system
consisting of fluid. solid and cement material. This was done by Sheng (1990)
who also showed that such an EMA reproduces Archie’s law with m =
(5 - 3LY/[3(1 — L%)]. where L is the depolarization coefficient of the grains.
For a more complete discussion of this important subject see Sahimi (1993).

Although EMA has been successful in providing a derivation of Archie’s
law, its use for understanding the behavior of rocks is not without
conceptual difficulty. Generally speaking, rocks have porosities less than
40%. This is far from the regime in which the assumptions, based on which
(5.15) 1s derived, can be justified. If the porosity of the pore space is low,
then the grains are in close contact with one another and the interaction
between them 1s important. Such interactions cannot be taken into account by
EMA. Moreover, rocks with very similar grains can have very different values



Single-phase flow and transport in porous media 65

of m, and rocks with very dissimilar grains can have very similar values of
m. These cannot be explained with such EMAs.

5.3 Position—space renormalization group methods

The main assumption behind any EMA is that the mean fluctuations in the
potential field in the system, and thus in the transport properties are small.
However, if the fluctuations are large as in, e.g., a fractal porous medium,
or one that is near its p., or in a macroscopically heterogeneous medium
with a broad distribution of the permeabilities, EMA breaks down and loses
its accuracy. In such cases, a position-space renormalization group (PSRG)
method is more accurate. We describe a PSRG method for a random
network model of pore space. Its generalizations to other more complex
systems are reviewed by Stanley er al. (1982).

For a percolating network, a PSRG method can be used for simultaneous
prediction of the percolation threshold p., the correlation length exponent
vp, and the conductance g. and its critical exponent p. Calculating all of
these quantities by the same method is a distinct advantage of PSRG
methods. Consider, for example, a square or a cubic network in which each
bond is conducting with probability p. The idea in any PSRG method is
that, since our network is so large that we cannot calculate its properties
exactly, we partition it into b x b or b x b x b cells, where b is the number
of bonds in any direction, and calculate their properties, which are hope-
fully representative of the properties of our network. The shape of the cells
can be selected arbitrarily, but it should be chosen in such a way that it
preserves, as much as possible, the properties of the network. For example,
an important topological property of the square network is that it is
self-dual. The dual of a network is obtained by connecting the centers of the
neighbouring polygons (or polyhedra) that constitute the network. For
example, if we connect the centers of the hexagons in a hexagonal network,
we obtain the triangular network, and vice versa. Thus, these networks are
duals of each other. However, if we connect the centers of the squares in a
square network, we again obtain a square network, and thus this network
is self-dual. This self-duality plays an important role in the percolation
properties of the square network, and therefore it would be desirable to
partition it into cells which are also self-dual. Figure 5.3 shows an example
of such b =2 cells for the square and cubic networks. The two-dimensional
cell is self-dual.

The next step in a PSRG method is to replace each cell with one bond in
each principal direction. If in the original network each bond is conducting
with probability p, then, the bonds that replace the cells would be conduct-
ing with probability p” = R(p); this is also shown in Fig. 5.3 R(p) is called
the renormalization group transformation, and is the sum of the probabilities
of all conducting configurations of the RG cell, obtained as follows. Since
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Figure 5.3 Two- and three-dimensional RG cells (left) and their renormalized equival-
ents (right).

we are interested in percolation and transport in our network, and because
the RG cells are supposed to represent the network, we solve the percola-
tion and transport problem in each cell by applying a fixed potential
difference across the cell in a given direction. For example, consider the
2 x 2 cell of Fig. 5.3, displayed again in Fig. 5.4. Since we are interested in
diffusion and flow, which are linear problems, the magnitude of the
potential difference across the cell is not important. Thus, we hold sites A
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and B (on the left) at a unit potential, and sites C and D (on the right) at
zero potential. Since A and B, and C and D have the same potential they
are equivalent, and therefore can be reduced to just two nodes A and C.
This means that as far as percolation and transport are concerned, the
2 x 2 cell of Fig. 5.4 is equivalent to the circuit shown there, which is usually
called the Wheatstone bridge. Thus, for this cell we only need to deal with
five bonds. for the 3 x 3 cell we only have to worry about the 13-bond
circuit, and for the 2 x 2 x 2 cell we have an equivalent 12-bond circuit (see
Fig. 5.4). To obtain R(p), we find all configurations of such circuits, with
some bond conducting and some insulating (missing), such that there is a
transport path from left to right (or from top to bottom), or if we start
walking along the conducting bonds from the left, we can find a path to
reach the opposite, which is also the usual definition for percolation. Thus,
for the 2 x 2 cell we obtain

P=R(p)=p’+5p°q+8p°¢"+2p°¢, (5.16)

whereas the 3 x 3 cell yields

p =p13 + 13p12q + 78p”q2 + 283[)10q3 + 677pgq4 + 1078‘1)3q5 + 10891)7q6
+627p°¢" + 209p°¢" + 38p°° + 3p°¢"°, (5.17)

and for the 2 x 2 x 2 cell we have

p=p P+ 12p" g+ 66p"°" + 220p° ¢’ + 493p°q* + 776p ¢’ + 856p°q°
+616p°q" +238p°q® + 48p°q° + 4p°q", (5.18)

where g =1 — p. To see how these equations are obtained, consider (5.16)
for the 2 x 2 cell. There is only one conducting cell configuration with all
five bonds conducting (probability p°), five conducting configurations with
four bonds conducting and one bond insulating (probability 5p*g), eight
conducting configurations with three bonds conducting and two bonds
insulating (probability 8p°¢%), and only two conducting configurations with
two bonds conducting and three bonds insulating (probability 2p°¢%).

At p. the sample-spanning cluster is self-similar at all length scales (see
Chapter 2). Thus, partitioning the network into cells, and replacing them
with bonds should not change the properties of the network at p., because
the network should look the same at p. at any length scale, and replacing
the cells with bonds only changes the length scale. This means that the RG
transformation should remain invariant at p.. The same thing should be true
at p=1and p =0, i.e., under any transformation full and empty networks
should be transformed to full and empty networks again. The points
p=p 0. 1 are called the fixed points of the network. Since the RG
transformation should not change anything at these points, the implication
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is that at these points the probability of having a conducting bond in the
original network p and the probability of the bonds that replace the cells

[p” = R(p)] should be the same. Thus, the fixed points should be the solution
of the equation

p=R(p). (5.19)

Indeed this equation has three roots: p=0, p = 1. and p = p*, where p* is
the RG prediction for p,, which may or may not be the same as the true
value of p.. For the RG cells of Fig. 5.4 we obtain p* = 1/2 for both 2 x 2
and 3 x 3 cells, which is also the exact bond percolation threshold of the
square network. In fact, it can be shown that the RG transformations for
such cells for any b would always predict the exact value p. = 1/2. For the
2 x2x2 cell we obtain p* = 0.208, which should be compared with the
numerical estimate p. = 0.2488.

Each time the RG cell is replaced with one bond in each direction, the
correlation length is reduced by a factor b, since the length of the bonds
replacing the cells is b times larger than those in the original network. That
is, &p = bEp, where £ is the correlation length in the network built up of the
bonds that have replaced the cells. In the original network the correlation
length follows the scaling law., &, ~ (p — pc)”"” near p., and in the new
network we have &, ~ (p’ — p*)™ "7 ~ [R(p) — R(p*)] . Thus, if we linearize
R(p) about p.(p*), then it is not difficult to see that

v, = Ind
P lnkp’

(5.20)

where A, = dR(p)/dp, evaluated at p*. Thus, for the 2 x 2 and 3 x 3 cells we
obtain v, = 1.43 and 1.38, respectively, which should be compared with the
exact value v, = 4/3. For the 2 x 2 x 2 cell we get v, = 1.03, which should
be compared with the true value v, = 0.88. As b increases. the estimate of
v, approaches its true value.

We can now discuss the PSRG approach for conductivity and per-
meability of percolation networks. Suppose that the distribution of the pore
conductance (or permeability) of the network is A¢(gp). Since we partition
our network into cells and replace them with one bond in each principal
direction, the conductance distribution of these bonds is no longer /o(g,)
because, as discussed above, these bonds are conducting with probability
p’ = R(p). which is the sum of the probabilities of all conducting configura-
tions of the cell. Suppose that the conductance distribution of these bonds
is h1(gp). This new distribution is related to ho(gp) through the following
equation

hi(gp) = J ho(g1)dgi ho(g2)dga . . . ho(gn)dgnd(gp — &), (5.21)
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where g, . ... gn are the conductances of the » bonds of the RG cell, and
g’ 1s the equivalent conductance of the bond replacing it. For example, for
the 2 x 2 cell of Fig. 5.4 we have

g = 81(8283 + 8284 + 8384) + 85(81 + £2)(83 + 84) (5.22)
(g1 +8a)(g2+ &) + &5(81 + 82+ 8+ &)

If ho(gp) = (1 — p)8(gy) + pd(gp — go), then (5.21) becomes very simple and
ylelds

hi(gp) = [1 — R(p)]6(gp) + Ziai p)d(gp — &)- (5.23)

where g; is the conductance of a conducting configuration of the cell that
occurs with probability a;(p), and the sum is over all conducting cell
configurations. The meaning of the first term on the right side of (5.23) is
clear: Since R(p) is the probability that the bonds replacing the cells are
conducting, 1 — R(p) is the probability that they are insulating. To under-
stand how the various terms of the sum in (5.23) arise, consider those
conducting configurations of the 2 x 2 cell of Fig. 5.4 in which three bonds
are conducting and two bonds are insulating. As (5.16) indicates, there are
eight such configurations. The conductance of two of them is go/3. hence
ai(p) = 2p’¢% and g; = go/3. The conductance of the other six configurations
is go/2, and therefore a;(p)=6p>¢q> and g;=g¢/2. In this manner, the
conductance of all conducting configurations and their corresponding
probabilities can be calculated. It may be obvious that, X;a:(p) = R(p).
Thus, for the 2 x 2 cell we find

h(gp) =[1- R(p)Id(gp) + Zp’qu{gp - % go)+ 2p°(1 + 2p)q28(gp - %go)

+ 4p’q8[gp - %go} +p*d(gp — &), (5.24)

which is already more complex than /o(g)).

We now partition our new network with pore conductance distribution
h(gy) into b x b cells, and replace each cell with one bond in each principal
direction. The conductance distribution of these new bonds is h2(gp). This
new distribution will also have the same form as (5.23), except that the sum
term has many more terms than that for /,(g,). If this iteration continues.
we will finally obtain a distribution %..(g,) whose shape does not change
under further interations. In analogy with the fixed points of the RG
transformation, we call this the fixed-point distribution. The conductivity of
our original network would be the average of this distribution. But it is
difficult to carry on this iteration process analytically more than once or
twice, because the number of d-functions in (5.23) increases very rapidly
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Figure 5.6 Comparison of the REMA predictions of the conductivity ge of a simple
cubic network ( curve) with the Monte Carlo data ( circles). The dashed line represents
the EMA predictions (after Sahimi et al. 1983b).

5.5 Critical path method

Another method of estimating transport properties of disordered media was
developed by Ambegaokar, Halperin, and Langer (AHL) in 1971, who argued
that transport in a disordered medium with a broad distribution of conductances
is dominated by those conductances whose magnitudes are larger than some
characteristic value g.. which is the largest conductance such that the set of
conductances, {g, | g» > & }. forms a conducting sample-spanning cluster. Thus,
all conductances that are smaller than g. can be set to be zero, and transport
in a disordered medium with a broad conductance distribution reduces to a
percolation problem with threshold value g.. These ideas were used for
estimating hopping conductivity of semiconductors, discussed in Chapter 13.

Katz and Thompson (1986, 1987) extended the ideas of AHL to estimate
the permeability and electrical conductivity of porous media. In a porous
medium the local hydraulic conductance is a function of the pore length /,
and therefore g, defines a characteristic length /.. Since both flow and
electrical conduction problems belong to the class of scalar percolation
problems (Chapter 2). the length that signals the percolation threshold in
the flow problem also defines the threshold in the electrical conductivity
problem. Thus, we have a trial solution for g, given by

g = 0g.(H[p) — p*, (5.28)

where the porosity ¢ ensures a proper normalization of the fluid or the
electric charge density. The function g.(/) is equal to ¢/ for the flow
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problem and ¢/ for the conduction problem. For appropriate choices of the
function p(/), the conductance g.(/) achieves a maximum for some
Lnax < .. In general Iém for the flow problem is different from Iy for the
conduction problem, because the transport paths have different weights for
the two problems.

If p(I) allows for a maximum in the conductance, and if the maximum
occurs for lyex < I, then we can write

Brax =l = Alp=1.{1 = W[l + p+ Lup” ) p U} (5.29)
Drax=1lc = Ale=1{1 — W3+ W+ Lup” )/ p U]} (5.30)

If the pore size distribution of the medium is very broad. then
Leup” (I} p' () << 1, and using U = 2 for three-dimensional systems yields

thax = 101 = W1 +40] = S L, (5.31)
Eoax = L[1 — w/[3 + )] = %IC. (5.32)
Now, writing
6 = @10 plmax) — pcl*, (5.33)
and
k = a30(Hhax)*Lp(Thav) = pel*. (5.34)

we obtain to first order in Al or in Aly,

PHS) —pe=—Alrep' o). (535

To obtain the constants a, and a,, Katz and Thompson (1986) assumed that
at a local level the rock conductivity is oy, the conductivity of the fluid that
saturates the pore space, and that the local pore geometry is cylindrical.
These imply that a; = 67 and a, = 1/32. Therefore, one obtains

k = asl}io/oy, (5.36)

where a3 = 1/226. A similar argument leads to

O _ lmax r )
o5 1. 0S(lnax), (5.37)
where S(/max) is the volume fraction (saturation) of connected pore space
involving pore widths of size I5,,x and larger.

Equations (5.36) and (5.37) involve no adjustable parameters: every para-
meter is fixed and precisely defined. To obtain the characteristic length [,
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Figure 5.7 A typical curve of the volume injected versus the pressure during mercury
porosimetry. The knee denotes formation of a sample-spanning cluster.

Katz and Thompson proposed mercury porosimetry discussed in Chapter 3.
Consider a typical mercury porosimetry curve in which the pore volume of
the injected mercury is obtained as a function of the pressure; see Fig. 5.7.
The initial portion of the curve is obtained before a sample-spanning cluster
of pores, filled with mercury, is formed. There is also an inflection point
beyond which the pore volume increases rapidly with the pressure. This
inflection point signals the formation of the sample-spanning cluster. There-
fore, from the Washburn equation (3.2) we must have, /| = — 40, cos 6/ P;,
for the portion of the curve beyond the inflection point, where P; is the
pressure at the inflection point, and o©; is the interfacial tension. Then,

I, = — 40; cos 6/ P; defines the characteristic length /.. Thus, the procedure to
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Figure 5.8 Comparison of the percolation predictions of the permeability k (in millidarcy)
of rocks with the data. Dashed lines denote a factor 2 of possible error (after Katz and
Thompson 1986 ).
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use this method is as follows. From a mercury porosimetry experiment the
parameter /. is estimated, then (5.36) and (5.37) are used to estimate & and ©.

Figure 5.8 compares the permeability of a set of sandstones, predicted by
(5.36), with the data. The dashed lines mark a factor of two. No adjustable
parameter has been used and the agreement between predictions and theory
appears to be very good. Similarly good agreement is obtained for the
conductivity of the porous medium (Katz and Thompson 1987). Normally,
/. can be estimated from mercury injection curves with an error of at most
15%. The exponent pu used in (5.31) and (5.32) can take on its value for
continuum percolation discussed in Chapter 2. This depends on the struc-
ture of the pore size distribution of the pore space.

The ideas of AHL and Katz and Thompson can also be extended for
calculating the permeability of fractured rocks. Indeed, Charlaix er al.
(1987) used arguments very similar to those of Katz and Thompson to
calculate the permeability of fracture networks with a broad distribution of
fracture apertures.

5.6 Random walk methods

Diffusion can be simulated by using random walk processes. A random
walker, usually a massless particle, is put in the system to execute a ran-
dom walk. If the porous medium is modeled by a random pore network with
distributed pore conductances, then at each step of the walk the particle
selects its next step with a probability proportional to the pore conductances.
If a pore is closed (its conductance is zero), the walker is not allowed to move
into that pore. We then repeat this random walk for a large number of
particles, starting at randomly selected points of the system, and for a long
enough time, where each time unit is equivalent to one step of the walk. The
mean-square displacement (r?) of all walkers, in a d-dimensional network
and after a long enough time ¢, is related to the effective diffusivity D, by

(r’y=2dDet. (5.38)

There are now three possibilities. (i) (*) grows linearly with ¢. Then. (5.38)
tells that D, is a constant. This is the familiar ordinary diffusion known
as Fick’s law. (ii) (r*) grows with ¢ slower than linearly. Thus, the motion of
the particles is very slow and D, vanishes at long times. We call this sub-
diffusion or anomalous diffusion, or fractal diffusion, which is the situation
that one encounters if (r?)"? is less than the correlation length or the
dominant length scale of the system. Thus, diffusion is always very slow in
fractal and self-similar media, since the dominant length scale of such systems
is either infinite, or as large as their linear size. This regime of diffusion will
be discussed in detail in Chapter 9. (iii) (*) grows with ¢ faster than
linearly. Hence, the motion of the particles is very fast, and D, diverges at
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long times. We call this superdiffusion. often encoutered in groundwater
flow (see Chapter 6). turbulence. and many other practical situations. Sub-
diffusion and superdiffusion cannor be described by the classical continuum
equation of diffusion with constant, or even time-dependent. diffusivity.

The first application of this idea for determining transport properties of
disordered systems appeared in a paper of Haji-Sheikh and Sparrow (1966),
who studied heat conduction in a composite solid. But the method was
popularized by de Gennes (1976), who made an analogy between the motion
of a random walker in a disordered medium and the motion of an ant in a
labyrinth. Havlin and Ben-Avraham (1987) provide an extensive review of
this subject. The computer algorithm for random walks in random conduct-
ance network models of porous media can be vectorized for use in
computers such as Cray Y-MP, and it can be highly efficient; see Sahimi
and Stauffer (1991) for details and a computer program.

If, instead of a random pore network, we have to deal with diffusion and
flow in a disordered continuum of the type discussed in Chapter 2, then the
problem is more complex. A traditional method, such as the finite-element
technique, will be notoriously time-consuming for such systems, because even
if we use only 20 grains (a modest number), a very fine finite-element mesh
with roughly 10° nodes (and. thus, 10° equations) would be required to solve
accurately a simple equation such as the Laplace equation for steady state
conduction, a prospect which is totally impractical. For this reason alone,
random walk methods are the preferred technique for estimating diffusivity
and conductivity of porous media. One way of facilitating the random walk
simulations in disordered continua is by using the first passage time (FPT)
method. The idea is that if a random walker moves in a homogeneous region
of the continuum, there is no need to spend unnecessary time to simulate
detailed motion of the walker in that region. The walker can take long steps
to quickly pass through the homogeneous region and arrive at the interface
between the two phases. The necessary time for taking long steps can often
be calculated analytically. In conventional simulations in random networks,
each time a step is taken, the time is increased by one unit; in FPT, the
walker takes long steps (as long as they do not take it outside of a phase)
and the time is increased by an amount appropriate to that step. This basic
idea was first used by Zheng and Chiew (1989) and Kim and Torquato (1990)
for simulating reaction and diffusion in continuum models of porous media.

In an FPT simulation, we construct the largest (imaginary) concentric
sphere of radius r, centered at the present position of the walker, which just
touches the multiphase interface. The mean time t., for the particle to reach
a randomly selected point on the surface of the sphere can be calculated by
using (5.38). tm(r) = r*/(2do;), where o; is the conductivity of the phase in
which the particle is moving. This time is recorded, and the process of
constructing the imaginary sphere and calculating the time that a point on
its surface is reached by a random walker is repeated. until the random
walker comes within a very small distance of the multiphase interface. We
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then compute the mean time necessary for crossing the boundary, 1,. and
the probability of crossing the boundary, proportional to the ratio of the
conductivities or diffusivities of the two phases. If the random walker
crosses the interface and enters a new phase, it finds itself in a new
homogeneous phase: the process of sphere construction is repeated and the
mean-square displacement of the particle is computed which, after a long
enough time, yields D, and . This method is particularly effective for
simulating transport in disordered continua. The efficiency of the method
decreases as the porosity of the pore space decreases, since the search for
the construction of the imaginary sphere becomes time-consuming, and near
pe the method is not efficient at all.

Another method of speeding up the random walk simulations is to use a
weak bias in the simulations (Schwartz er al. 1989), such that the walker is
more likely to move in the direction of macroscopic transport (or bias) than
in the other directions. This bias causes the walker to sample the pore space
more efficiently, because in the direction of the bias the traveled distance is
proportional to N; rather than N;~, where N; is the number of steps.

Random walk methods are particularly useful for estimating the electrical
conductivity of porous media comprised of an insulating granular matrix
saturated with a conducting pore fluid. For example, Schwartz and Banavar
(1989) used random walk simulations to calculate the electrical conductivity
of the grain consolidation model of Roberts and Schwartz discussed in
Chapter 3, with multisize granular particles. The results, shown in Fig. 5.9,
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Figure 59 Comparison of random walk predictions of the dependence of the formation

Jactor F of a model consolidated porous medium on the porosity ¢ (+) with the
experimental data (circles) (after Schwartz and Banavar 1989).
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in terms of the formation factor F = o;/0, are in excellent agreement with
the experimental data.

In contrast with D, and o, there is no random walk method for estimating
k. because in general there is no exact relation between & and D,, and
therefore k cannot be related to the mean-square displacement of a random
walker. Thus, estimating & has always been much more difficult than D, or ©.

5.7 Conclusions

Effective-medium approximations are the simplest method of estimating
transport properties of porous media. They are accurate over a wide range
of porosity, and can easily provide an order of magnitude estimate of the
properties of interest. But they are not accurate near p.. Renormalization
group methods can provide a more accurate description of the transport
properties near p., but for three-dimensional systems the computations
become complex. A simple combination of EMA and PSRG appears to
provide the most accurate analytical approximation to the transport proper-
ties over the entire range of interest. The critical path methods are also very
accurate for predicting permeability and conductivity of porous media, but
they require as an input a parameter that can only be estimated by an
experiment.
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6
Hydrodynamic dispersion and
groundwater flow in rock

6.0 Introduction

Chapter 5 discusses flow and transport processes in rock that involve only
one fluid and one fluid phase. At the next level of complexity are those that
involve at least two fluids but still one fluid phase. The most important of
such phenomena is hydrodynamic dispersion, discussed in this chapter.
Hydrodynamic dispersion is particularly important to groundwater flow
pollution and for this reason has been studied for a long time.

6.1 The phenomenon of dispersion

When two miscible fluids are brought into contact, with an initially sharp
front separating them, molecular diffusion gives rise to a transition zone
across the initial front, the two fluids slowly diffuse into one another, and
the original front becomes a diffused mixed zone whose composition changes
from one pure fluid to the other. The net transport of one of the fluids across
any arbitrary plane can be represented by the classical diffusion equation.
This mixing process is independent of convective flows. However, if the
fluids are flowing and the .fluid velocity is not uniform, then some addi-
tional mixing of the two fluids is caused by the nonuniform velocity field,
which in turn may be caused by the morphology of the medium, the fluid
flow condition, and chemical or physical interactions with the solid surface
of the medium. This mixing process, called hydrodynamic dispersion, is
important to a wide variety of processes. Dispersion is important to miscible
displacements used in enhanced recovery of oil. When oil production from
a reservoir declines, a fluid is injected into the reservoir to mobilize the oil

K1
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B

Figure 6.1 Miscible displacement patterns. The displacing fluid is injected at A to
produce the displaced fluid at B. Different fronts are shown with increasing time. The
top diagram is for M = 2.5, where M s the ratio of the viscosities of the displaced and
displacing fluids: the bottom diagram is for M = 117.5,

and increase the production. The injected fluid can be immiscible or miscible
with the oil in place. Injection of immiscible fluid produces a two-phase
flow problem, discussed in the next chapter. If the viscosity of the displac-
ing miscible fluid is less than that of oil, then large fingers of the displacing
fluid are formed that advance thoughout the medium, and leave behind a
large amount of oil; see Fig. 6.1. Dispersive mixing of the displacing fluid and
the oil can help the fingers join and displace more oil, thus increasing the
efficiency of the process. Dispersion is also important to saltwater intrusion
in a coastal aquifer. where fresh and salt waters mix by a dispersion process,
to in situ study of the characteristics of an aquifer, where a classical method
of determining such characteristics is injecting fluid tracers in it to mix with
the water and measuring their travel times between two points, to the
pollution of the subsurface water because of industrial and nuclear wastes,
and to flow and reaction in packed-bed chemical reactors.

Dispersion in flow through a porous medium is characterized by the first
passage time distribution (FPTD) of tracer particles traveling in the flowing
fluid. Suppose that we inject into a porous medium a population of fluid particles
that are miscible with the flowing fluid in the medium. This population of
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particles passes the entrance plane to the medium at the same instant. but will
mix with the flowing fluid and arrive at the exit plane, for the first time, with
a distribution of transit times, called the FPTD, because each fluid particle
selects a different path for its journey, and therefore spends a different amount
of time to arrive at the exit plane. If the FPTD is measured at the exit plane
and in the direction of the macroscopic flow, then its broadness is a measure
of longitudinal dispersion in the medium, i.e., mixing of the two fluids and
spreading of the injected fluid in the direction of the macroscopic flow.
However, a population of particles entering the medium at the same point will
not follow entirely the mean flow to the exit plane, but will also be dispersed
in the transverse directions (perpendicular to the macroscopic flow) with a wider
distribution of exit locations than that of entrance locations. The associated
FPTD, measured at the same transverse plane is a measure of transverse
dispersion in a porous medium. If the macroscopic flow is unidirectional,
then, the mean flow velocity in the transverse direction is zero, and therefore
transverse dispersion (mixing) is always smaller than longitudinal dispersion.

Two basic mechanisms drive dispersion in macroscopically homogeneous,
microscopically disordered porous media. The first mechanism is kinematic:
streamlines along which the fluid particles travel divide and rejoin repeated-
ly at the junctions of flow passages in the pore space. The consequent
tangling and divergence of streamlines is accentuated by the widely varying
orientations of flow passages and the coordination numbers of the pore
space. The result is a wide variation in the lengths of streamlines and the
downstream transverse separations of the streamlines. The second mechan-
ism 1s dynamic: the speed with which a given flow passage is traversed
depends on the flow resistance or hydraulic conductance of the passage, its
orientation, and the local pressure field. The two mechanisms conspire to
produce broad FPTDs, and hence extensive convective mixing.

These two fundamental mechanisms of dispersion do nor depend on
molecular diffusion. Diffusion modifies convective mixing not only by
transferring the particles into and out of the stagnant regions of the pore
space, but also by moving them out of the slow boundary layers that are
usually formed near the solid surfaces. Thus, the modification of dispersion
by diffusion depends on pore space morphology and how it in turn affects
local flow and concentration fields. This discussion should give the reader
some feeling about the significance and complexity of dispersion processes.
Among the various flow phenomena occuring in porous media, dispersion
is perhaps the one most capable of application in different fields, as is
evident from the foregoing practical applications.

6.2 The convective diffusion equation

One of the most important tasks in modeling dispersion is developing
the appropriate equation for the evolution of the solute (fluid particles)
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concentration. Traditional modeling of dispersion processes in microscopic-
ally disordered and macroscopically homogeneous porous media is usually
based on the convective diffusion equation (CDE)

9C v .ve=0,2C 4 pvic (6.1)
ot ox’

where v is the macroscopic mean velocity, C the macroscopic mean
concentration of the solute, and V7 the Laplacian in transverse directions.
Thus. dispersion is modeled as anisotropic diffusion of the solute or the
injected fluid augmented by the flow field. represented by v - VC: the
diffusivities are the longitudinal dispersion coefficient D, (in the direction
of mean flow) and the transverse dispersion coefficient Dy. The anisotropy
1s dynamic and is caused by the flow field since the fluid particles mix with
and spread in the flowing fluid better in the longitudinal direction than the
transverse direction. Dispersion is said to be macroscopically diffusive or
Gaussian if it obeys the CDE. If a particle population is injected into the
medium at the point ro = (x¢, yo. Z¢) at time 7 =0, for macroscopically
diffusive dispersion the probability density P(r.r) obeys the Gaussian
distribution

2 2 .-32 (x—x0-v t)z (y- }'0)2 - :")2
Y S S _ - . (62
P(r.n)= (8" D, Dr1) e"P[ 4Dt ADrt 4Dpt ] (©2

where P(r, f)dr is the probability that a particle is in a plane between r and
r+drattime f, v = |v|. and r=(x, y, 2). P(r,1) is proportional to C/C,
where C, is the concentration at ¢ =0. If we define Q({ — Lo, 1)dt as the
probability that a particle. beginning in the plane at {, will cross, for the
first time, a plane at { between r and r + dr, then from (6.2) we can easily
obtain the FPTD

O — Lo 1) = | § — Co| @Dty expl— (§ — Lo — vet)/4Det],  (6.3)

where Dy and v; are the dispersion coefficient and the mean flow velocity
in the {-direction, respectively. Various moments of Q yield information
about the flow field and the dispersion processes. For example, for the
longitudinal direction we have

(==L, (6.4)

|~

and

2 g2 2D,
(r7)y=A(1) [1+ i ] (6.5)
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where L = { — (. In general, we can easily show that, for diffusive disper-
sion and large L, and to the leading order we have, (") ~ (¢)" where n > 1
is any integer number. Therefore, one way of showing that the CDE cannot
describe a dispersion process is to show that (t")/()" (n > 1) depends on ¢
and is not a constant.

The description of dispersion in terms of the CDE is purely phenomeno-
logical. It provides no insight into how D, and Dy depend on the morpho-
logy of the pore space. For this reason, there have been many studies of
dispersion processes in rocks using a wide variety of techniques and models
of pore space that vary anywhere from a single capillary tube to a complex
network of pores and/or fractures. We shall only discuss the most important
results to which percolation is relevant. The interested reader is referred to
Sahimi (1993) for a more complete discussion of this subject. We first
discuss the most important experimental facts about dispersion in porous
media, so that we have a clear picture of what we are supposed to model
and predict.

6.3 Classification of dispersion in porous media

Experimental studies have shown (for a review see Sahimi 1993) that
dispersion processes in consolidated and unconsolidated porous media are
similar, and thus we do not need to distinguish between them. If we define
a Péclet number, Pe = dyv/D,,, where d, is the average diameter of a grain,
and Dy, is the molecular diffusivity, then experimental data show that,
depending on the value of Pe, we may have several distinct regimes of
dispersion.

(i) Pe < 5 is the pure diffusion regime, because convection is so slow that
diffusion controls dispersion almost completely. Moreover. it can be shown
that

D = Dr = ae (6.6)
Dm Dm F(l) ’ ’

where, as in Chapter 5, F is the formation factor of rock and ¢ is its
porosity. The quantity 1/(F¢) varies commonly between 0.15 and 0.7,
depending on the porous medium.

(i) 5 < Pe < 300 is the regime where convection dominates dispersion. but
the effect of diffusion cannot be neglected; we have

%"L, ~ peM, 6.7)
Dr _ petr. (6.8)

D "
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The average values of B; and Br from all the available experimental data
arc. B, = 1.2 and B, =095 We call this regime the boundary laver
dispersion (Koch and Brady 1985), since in this regime the main role of
diffusion is to transfer the solute out of the slow boundary layer zones near
the solid surface. This regime of dispersion was first discussed by Saffman
(1959). who also showed that

D, _ Peln Pe. (6.9)
m
g’: ~ Pe. (6.10)

1t can be shown that (6.7) and (6.9) are consistent with each other. because
Pe InPe can be accurately represented by PeP-.

(iii) 300 < Pe < 10" is the regime where the effect of diffusion is negligible and
one has pure convective mixing. Simple dimensional analysis indicates that.

g’i ~ Pe, 6.11)
Dy
-~% ~ Pe. (6.12)
Dl"

This is usually called mechanical dispersion. In this case dispersion is simply
the result of a stochastic velocity field induced by the randomly distributed
effective pore radii. The same is true about dispersion in macroscopically
heterogeneous rock where the stochastic velocity field is caused by the
spatial variations of the permeability.

(iv) Finally, there is a distinct dispersion regime, the so-called holdup
di.s-persionﬁ?och and Brady 1985)) first studied by Turner (1959) and Aris
(1959). In this regime the solute is trapped in a dead-end or stagnant region,
or inside the solid grains. from which it can escape only by molecular
diffusion. We have

Di _ pe:

~ pé, 6.13
D, e (6.13)
3,: ~ Pe. (6.14)

In this regime, the strength of mixing due to diffusion into and out of the
stagnant zones is comparable to the convective mixing. In a porous medium
near its percolation threshold p., there are many such dead-end pores or
stagnant zones. and therefore this regime is relevant to such a porous medium.
The above results have been obtained and confirmed by numerous authors.
For example. Bacri er al. (1987) measured D, for three different porous media
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and showed that disorder strongly affects D, and its dependence on Pe.
They were able to observe power laws (6.7)-(6.14), depending on the broadness
of the pore size distribution and the connectivity of the pore space.

Let us discuss three experimental studies that directly relate dispersion to
percolation. Charlaix er al. (1988) carried out dispersion experiments in
two-dimensional hexagonal networks of pores whose effective diameters
were of the order of millimeters. They found that as the fraction of open
pores decreased, D, increased sharply, and that (6.7) was obeyed. But even
when D; was measured quite close to the p, of the medium, (6.13) was not
obeyed. presumably because the exchange time between the flowing fluid
and the dead-end pores was so large that its effect could not be detected
during the experiment. Hulin er al. (1988) measured D, in bidispered
sintered glass materials prepared from mixtures of two sizes of beads. When
the porosity was decreased from 30% to 12%. they observed that D,
increased by a factor of 30. These two studies also indicated that dispersion
is more sensitive to large-scale inhomogeneities than to the Jocal structure
of a porous medium. Finally, Gist e al. (1990) measured D, in a variety of
natural and synthetic porous media and observed that it sharply increases
as the porosity of the medium decreases. We now discuss two percolation
models that can explain all of these data.

6.4 Network and percolation models of dispersion

Sahimi er al. (1983) were the first who used percolation and random
network models of porous media (Chapter 5) for simulating dispersion.
Their method first determines the flow field in the network. A macroscopic
pressure gradient is applied to the network in one direction. and periodic
or cyclic conditions are used in the other directions. The total mass of the
fluid reaching any node of the network is a conserved quantity. Thus,
assuming that the pores are cylindrical tubes whose radii are selected from
a distribution function, and that one has laminar flow in the pores, we can
write, g;j = TAPR;}/(8n!). for the volumetric flow rate g; of pore ij with
radius R;; and length /, along which a pressure drop AP has been imposed.
where 1 1s the fluid viscosity. Thus, for each node i we can write

> qi=0. (6.15)

where the sum is over all pores ij connected to node i. Writing this equation
for all internal nodes of the network results in a set of N simultaneous linear
equations for the nodal pressures of a network of N internal nodes.
which can be solved numerically by a direct or an iterative method. From
the solution of the set, the pore flow rates and mean velocities
Um=APRj/(801), are calculated.
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The CDE implies that dispersion can be thought of as anisotropic
diffusional mixing of a solute with a miscible solvent augmented by a flow
field. Since diffusion can be simulated by a random walk process (Chapter 5),
we can also model dispersion by a random walk. Thus, after calculating
the flow field throughout the network. a large number of fluid particles are
injected into the network at random positions at the upstream plane,
x=0. Each particle selects a streamline at a radial position r, within a
pore of radius R. whose speed is determined from, v, = 2v,(l — ¥*/R*). and
travels along this streamline. The convective travel time for a given pore is
given by. t=1t, = Il/v,. Complete mixing at the nodes of the network is
assumed. and therefore, once a fluid particle passes through the pore and
arrives at a node. it completely forgets its past history. Then, a new pore is
selected with a probability that. because of complete mixing at the node, is
proportional to the flow rate in that pore, Thus, pores that are nearly in the
direction of macroscopic flow have the highest probability of being selected,
but those pores that are nearly perpendicular to the direction of macro-
scopic flow can also be selected. albeit with a much smaller likelihood. No
nodal residence time is assumed (i.e.. the fluid particle leaves the nodes
instantly). A streamline in the new pore is selected. the travel time along
which is computed, and so on. The total travel time of a fluid particle is
simply the sum of its travel times in various pores. The FPTDs for the
particles are computed by fixing the longitudinal and transverse positions
and measuring the time r at which the particles arrive at these positions for
the first time, from which D, the dispersion coefficient in the {-direction is
calculated

D; = (%) (6.16)

where {o(xy) is the starting position of the particles. o; = (x — X, — vt)".
0 =(§ —Lu)” for { = or =, and the averaging is taken over all particles.
Equation (6.16) is written in analogy with random walk processes dis-
cussed in Chapter 5. Using (6.3), it can also be shown that D, =
v((t7) = (£)H(2L) for a network of linear size L.

In this model both D, and D; depend linearly on v, because if we double
the macroscopic pressure gradient. we also double the flow velocities of the
pores. and thus dispersion coefficients are also doubled. This is in agree-
ment with (6.11) and (6.12), therefore this model is appropriate for mech-
anical dispersion. since pore-level molecular diffusion has been ignored.
Pore-level molecular diffusion is important to dispersion in the boundary
lavers near the pore surface. To include the effect of molecular diffusion
and simulate boundary layer dispersion, the following method is adopted
(Sahimi and Imdakm 1988). The convective time ¢, for travelling along a
streamline is first calculated. If the streamline along which the particle
intends to travel is close to the pore walls, then 7, > t,, where ¢, is the radial
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Figure 6.2 The Péclet number Pe dependence of the longitudinal dispersion coefficient
Dy, as predicted by the percolation model. Dy, is the molecular diffusivity. The slope
of the line is about 1.2 (after Sahimi and Iindakm [988).

diffusion time scale, of the order of R*/(8D,,). the time for diffusion to a
streamline at a radial position r = R/2. Then. one sets., t =t + 1, since the
fluid particle has enough time to diffuse to a faster streamline. Otherwise,
diffusion in the pore is ignored. As soon as such diffusion time scales are
included in the total travel time of the particle, the linear dependence of
D; and D7 on v is destroyed, because diffusion time scales are independent
of the flow field. To simulate holdup dispersion. the fluid particles are
allowed to diffuse into the dead-end pores of the network. Mixing in dead-end
pores is only by molecular diffusion, therefore the time to travel along such
pores is tg = I’/(2Dy). In a series of papers, Sahimi et al. (1983, 1986) and
Sahimi and Imdakm (1988) showed that these network models can accurately
predict the most significant features of dispersion, in particular (6.9)-(6.14).
For example, Fig 6.2 presents the dependence of D./Dm on Pe. The slope
of the line is about 1.2, which agrees well with the data discussed above.
Koplik et al. (1988) proposed another method in which a one-dimensional
CDE is assumed to hold for each pore
oC oC 9°C
n a.\") -

—T+U'"_=D, ~

6.17
J ox ( )
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Consider now a network of pores {ij}. The concentration Cj in each pore
obeys (6.17). At each internal node of the network (not those at which the
external pressures are specified), we have conservation of mass. which
means that

oC;
> S,-j[v,-jC,-j— '"a_ng . =0, (6.18)
U X,‘j:()

tirt

where S; is the cross-sectional area of pore i, and v;; the mean flow velocity
in that pore. Equation (6.17) is easily solved in Laplace transform space.
Denoting the Laplace transform of Cj(x, ) by C,(x, A), the solution is
given by

é,-,—(x, A) = A, exp(a,x) + Biyexp(Biix). (6.19)

12

i, By = [vg * (Ui + 4DimA)"’1/ 2 D). (6.20)
where the coefficients A4; and By are determined from the boundary
conditions for the pores, which are Ci(0, ¢) = Coj(f), and Cy(l, r) = Ci(1).
Writing down (6.18) for every internal node of the network yields a set of
simultaneous linear equations for the (Laplace transformed) nodal concen-
trations (remember that Cop; and Cj are unknown). The set of linear
equations for nodal concentrations is solved for several values of the
Laplace transform variable A, and the inverse Laplace transform of
the numerical solution for the concentration field is obtained numerically.
From this solution the dispersion coefficients can be calculated. This model
too can predict certain features of experimental data on dispersion dis-
cussed above. Roux er al. (1986) proposed the same model but solved the
governing equations by a different method.

6.5 Comparison with experimental data

The model of Sahimi et al. can predict the most important features of
dispersion in porous media. Moreover. the network and percolation models
described above predict that as p, is approached, D; and Dy increase
sharply. If we define the dispersivities by o, = D;/v and oy = Dy/v, then an
increase in D, or Dr implies an even larger increase in the dispersivities,
because as p, 1s approached the average fluid velocity decreases (v =0 at
pe). Figure 6.3 shows the increase of D, in flow through a percolating square
network as p, is approached. This dramatic increase of D, is due to the fact
that near p, the paths of the fluid particles are very tortuous, since many
pores are closed to flow; this results in a broad FPTD and large D;. This is
in complete agreement with the experimental observations of Charlaix ez al.
(1988). Hulin er al. (1988), and Gist er al. (1990). The increase in o, can
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Figure 6.3 Variations of the longitudinal dispersion coefficient Dy with the fraction of
open bonds p in a square network. Circles denote the results for the case in which
diffusion into the dead-end pores has been taken into account: triangles show the
results for dispersion in the backbone only (after Sahimt and Irndakm [988).

also be understood by the following argument. Physically, o, represents
the macroscopic length scale for the homogeneity of the system and the
applicability of the CDE for describing dispersion. As p, is approached, the
correlation length &, of percolation increases. For length scales L <<§,
the sample-spanning cluster and its backbone are fractal objects, in which
case a continuum equation such as the CDE cannot describe dispersion.
Therefore, &, is similar to o,, and an increase in §, should also cause a
corresponding increase in ;.

Gist et al. (1990) used percolation concepts and the model of Sahimi er
al. to quantitatively predict their own data. Using (2.4) and (2.6). we can
write, Ep/dg ~ (X*)"*"®. Since for three-dimensional percolation networks,
Vp/B, = 2. and because X” is roughly proportional to the saturation (vol-
ume fraction) of the fluid S, we obtain §,/d, ~S™° If we now define
0, = 0;/d,, then the numerical simulations of Gist er al. (1990), using a
method similar to that of Sahimi ef al., incidate that

EY s
172 6.21
o [a’g S ( )

_Although their data, shown in Fig. 6.4, have considerable scatter, the power
law exponent obtained from the data agrees well with (6.21). Thus, perco-
lation models can provide quantitative predictions for the experimental data
, on dispersion.
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Figure 6.4 Variations of oy, the ratio of longitudinal dispersivity and the grain size, with
the product of the porosity ¢ and the formation factor F. for sandstones (squares),
epoxies (iriangles), and carbonates (diamonds). The solid line is the fir of the data
for sandstones, while the dashed line is that of the carbonates ( after Gist et al. 1990).

6.6 Percolation models of scale-dependent
dispersion in heterogeneous rock

We now discuss dispersion in heterogeneous porous media, those with
large-scale, spatially varying properties such as permeability. This problem
has attracted considerable attention from hydrologists and politicians, as a
result of growing concerns about pollution and water quality. Intensifying
exploitation of groundwater and the increase in solute concentrations of
aquifers, due to saltwater intrusion, leaking repositories, and use of fertil-
izers. have made dispersion in heterogeneous porous media a main topic of
research. Dispersion is the main mechanism of carrying the pollutants and
mixing them with unpolluted water.

The above network models of dispersion can also be used for macroscopic-
ally heterogeneous media. In this case, each bond of the network repres-
ents a region of the pore space over which the medium is homogeneous.
Thus, the permeability that we assign to a bond is that of the region and
not of a pore. In macroscopically heterogeneous rock, the permeabilities of
various regions of the rock are not distributed randomly but are usually
highly correlated. The permeability of the bonds should be assigned in a
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Figure 6.5 Dependence of the longitudinal dispersivity o on the distance Ly from the
injection point. Both quantities are in meters (after Arva et al. 1988).

correlated manner, in which the range and type of correlations should be
compatible with the available experimental data.

Pore-level diffusion does not play an important role in dispersion in
macroscopically heterogeneous media, since dispersion is caused principally
by large-scale fluctuations in the velocity field. and the fluctuations are
caused by the spatial variations of the permeability field. Dispersion in
fractured rocks can also be modeled by methods very similar to those we
have discussed here. This is because large-scale fracture networks are
similar to percolation networks (Chapter 4).

There have been several field studies of dispersion, e.g.. those by Molz
er al. (1983) and Sudicky et ol (1985), indicating that the dispersion coeffi-
cients and dispersivities are scale-dependent. Arya er al. (1988) collected
over 130 dispersivities o, from the literature. They vary anywhere from less
than 1 mm to over 1 km, collected on length scales that vary from less than
10 cm to more than 100 km; see Fig. 6.5. The data show large scatter, but
the straight line obtained by regression analysis and drawn through the data
indicates that at least 75% of the data do follow the regression line with 95%
confidence. The data shown in Fig. 6.5 indicate that

o ~ L%, (6.22)

where L; is the length scale of measurements or distance from the source
(where tracer particles are injected into the porous medium). Neuman
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(1990) presented another regression analysis of these and other data. He
proposed that there are in fact two regimes, one for L, << 100 m, for which
the exponent 1n (6.22) was found to be about 1.5, and another one for
L,>>100m for which the exponent was found to be about 0.75, in
agreement with (6.22). Before the application of percolation, and especially
fractal. concepts to porous media became popular, (6.22) was considered a
mystery. because classical models based on a CDE could not predict
scale-dependent dispersivities. We show that percolation and fractals pro-
vide a simple explanation for (6.22).

To explain these data, a fractal approach was developed by Hewett
(1986), Philip (1986). Arya er al. (1988), Ababou and Gelhar (1990), and
Neuman (1990). Consider a stationary stochastic process By(x) with the
following mean and variance

(BH(.\') - BH(.\'Q) )—': 0. (623)
([Br(x) = Bu(xo)]*) ~ |x = xo|*". (6.24)

where x and xg are two arbitrary points, and # is called the Hurst exponent
(Mandelbrot and Van Ness 1968). This stochastic process is called fractional
Brownian motion (fBm). The usual Brownian motion or random walk
corresponds to H =1/2. A remarkable property of fBm is that it generates
correlations that are essentially of infinite extent. For example, if a correla-
tion function is defined by

(= By(~ x) Bu(x))

Cx) = :
< (Bu(x))

(6.25)

we find that C(x) =2°%"'~ 1, i.e., this correlation function is independent
of x. Moreover, the type of correlations can be tuned by varying H. If
H>1 2, then fBm displays persistence, i.e., a trend (a high or low value of
the variable) at x is likely to be followed by a similar trend at x + Ax,
whereas if H < 1/2, then fBm generates antipersistence, i.e., a trend at x is
not likely to be followed by a similar trend at x + Ax. For H = 1/2 there are
no correlations of the above type. and the overall shape of fBm traces is
similar to that of a random walk. Thus, varying / allows us to generate highly
correlated or anticorrelated heterogeneities by fBm. The above one-dimen-
sional distribution can be easily extended to higher dimensions. We write

([Bu(r) - BH("O)]z Y~ |r - TOIZH, (6.26)

where r = (x, ¥, z) and ro¢ = (x. y, ). A convenient method of representing a
distribution function is through its spectral density S(k) which is the
Fourier transform of its variance. For fBm in J dimensions it can be shown
that
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where k = (k; ... kg). Note that fBm is not differentiable, but it can be
made so by smoothing it over an interval. Using this technique, the
derivative of fBm, called fractional Gaussian noise (fGn). can be obtained
whose spectral density in, e.g., one dimension, is given by

Sk) ~ 6.27)

1

Hewett (1986) analyzed vertical porosity logs of many reservoirs and
found that they follow fGn with H = 0.7-0.8, indicating long range positive
correlations. Moreover, the permeabilities follow fBm with essentially the
same value of H as that found for the porosities. Hewett (1986) and others
then analyzed dispersion in heterogeneous porous media with such distribu-
tions of permeabilities and porosities, and argued that the dispersivity o,
increases with time as

o, ~ ", (6.29)

so that with H = 0.75 we obtain o, ~ ¢*°. This equation appears to provide
accurate predictions for the available data. We now show that a percolation
model of dispersion can predict essentially the same equation.

Chapter 2 discusses the scaling behavior of the permeability £ and
diffusivity D, of a percolating system near p,. What are the scaling laws for
D, near p,? We define a time scale T, such that for times 7 > t, dispersion
is diffusive and follows a CDE, whereas for r<< 1, dispersion is not
Gaussian, with a crossover taking place at about 1 = t,. For dispersion near
Do, this time scale can be estimated from

8
D

Ts (6.30)

and therefore we must obtain the scaling of D, near p, in order to obtain
the scaling laws for 7,. But since mechanical dispersion seems to be the
dominant mechanism in heterogeneous rocks, it is sufficient to study this
limit. Assuming that the macroscopic flow is in the x direction, we
introduce a random walk fractal dimension d, defined by

(AX?Y ~ ¥, (6.31)

where (Ax?) = ((x —.(x.))z) =(x%) = (x)’. If dispersion is diffusive. then
dy =2, and the de§cr1pt10n of dispersion by a CDE is adequate. But we may
also have d. > 2, in which case (Ax”) grows with time slower than linearly
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(subdiffusion), and therefore D, is zerv after a long enough time (6.16).
Alternatively, we can have d, <2, in which case (Ax”) grows with time
faster than linearly (superdiffusion), and D, will diverge after a long enough
time. In both of these cases dispersion is not described by a CDE.

For dispersion in a percolating network two average flow velocities can
be considered. If the fluid particles spend a considerable amount of time in
the dead-end pores (holdup dispersion). then the average velocity should be
defined in terms of the total travel time in the network (dead-end pores plus
the backbone). Then, near p, the average particle velocity v, in the network
scales as. v, ~ k. X' (remember that only a fraction X of the pores are in
the sample-spanning cluster). Using (2.4) and (2.11) we obtain

Ve~ (p— po)t P~ L0 (6.32)

where, 8 = (1L - Bp)/vp. On the other hand, if the fluid particles spend a
negligible amount of time in the stagnant or dead-end pores (mechanical
dispersion). then the average particle velocity should be defined only in
terms of the travel times in the backbone. The average particle velocity v,
in the backbone is given by vz~ k/X®, or

vs~(p—p)* P~ g% (6.33)

where, 85 = (L — Bp)/v,. We also define a macroscopic Péclet number

vEp

PeIHZE

(6.34)

where. depending on whether we have holdup or mechanical dispersion, v
can be either v, or vg. Chapter 2 shows that, for L << &,, we replace &, in
the above equations by L. Having defined these, we can now investigate the
scaling of D; and 14 near p..

If the permeabilities of a heterogeneous rock are distributed according to
fBm. then their distribution is very broad. Consequently, there should be
regions of very low permeabilities that contribute very little to fluid flow in the
rock. Mechanical dispersion seems to be operative in a heterogeneous rock,
so the low permeability zones should not contribute to dispersion. Follow-
ing the critical path method discussed in Chapter 5, we eliminate such low
permeability zones from the system. and thus obtain a percolating backbone.
According to (6.11) for mechanical dispersion we have D;/D,, ~ Pe. It is not
unreasonable to replace Du. the pore-level molecular diffusivity. with D,.
the network-level effective diffusivity, and Pe, the local Péclet number,
with Pe,, the macroscopic one. Therefore, we obtain D ~ & vz~ p %~
(p — po)* ~ P77, Using the numerical values of W, Bs and v, given in Table
2.3. we obtain. D; ~ (p -~ p))"** in two dimensions and D. ~ (p — p)** in
three dimensions. This demonstrates the strong effect of the backbone
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structure on dispersion. Chapter 2 shows the backbone can be approximated
by links and blobs. The blobs are very dense in two dimensions. providing
a wide variety of paths for the fluid particles with a broad FPTD. As a result,
D, diverges as p, is approached. On the other hand, the blobs are not very
dense in three dimensions, which means that the FPTD is not broad enough
to give rise to a divergent D;. For L « §,, we replace §, with L to obtain,
D.~L'"%. On the other hand, D, ~ d(Ax")/dr~ L'=% ~ (Ax*)"' "2 A
simple integration then yields (Ax®) ~ r*" *®)_ that is,

dy. =1+ 6. (6.35)
Equation (6.35) implies that, (Ax?) ~ '* (superdiffusion) in two dimen-
sions, and (Ax?) ~ 1" (subdiffusion) in three dimensions. The time scale
s 1s obtained from (6.30) and is given by

T~ (p-p) PP~ gL (6.36)

which, for L « &p, yields 7,~ L'*% ~ (0,)' *%. These results were first
given by Sahimi (1987). On the other hand, (6.33) tells us that vB~§,')°",
and therefore in the fractal regime, ve~ L %~ (Ax) " ®. Since vs=
d(Ax) /dt ~(Ax) %, we obtain (Ax) ~ 1 ®* " and vy~ 1% ®* Y Therefore

o~ %l (6.37)

Thus, using the value of 65 in two dimensions we obtain o, ~ ** in
excellent agreement with the prediction of (6.29).

What is the implication of this result? For length scales L «< &, a
percolating network is fractal and macroscopically heterogeneous (see
Chapter 2). A fractal structure implies the existence of long-range correla-
tions in the rock. Although not of the same type. such correlations in a
percolating structure are consistent with the results of Hewett (1986) and
others that indicate that there are long-range correlations between the
permeabilities of various regions of heterogeneous rocks. Thus, a simple
percolation model provides a clear explanation for the observed dispersiv-
ities of heterogeneous rocks and aquifers. Scale-dependence of D, or o
implies that dispersion in heterogeneous rock is not diffusive, and cannot
be described by the CDE. The exact form of the equation that describes
dispersion in a heterogeneous rock remains an unsolved problem.

6.7 Conclusions

Percolation and network models provide a quantitative tool for modeling
dispersion in microscopically disordered but macroscopically homogeneous
rocks. All of the important mechanisms of dispersion can be incorporated
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in such models. Moreover, percolation provides a simple explanation for
the observed scale-dependence of dispersivities in heterogeneous rocks, in
terms of the fractal structure of the rock and the long-range correlations
that such fractal structures imply.
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7
Two-phase flow in porous media

7.0 Introduction

We now turn our attention to the flow of two immiscible fluids in a porous
medium. A large number of factors can affect this phenomenon, including
capillary, viscous, and gravity forces, material properties of the two fluids,
e.g.. their viscosities and the interfacial tension separating them. chemical
and physical properties of the surface of the pores, i.e., whether or not there
are surface active agents, or whether the surface is rough and fractal, the
morphology of the pore space. and the wettability of the fluids. Among these
the wettability deserves special attention because it has considerable influ-
ence on how the two fluids are distributed in the pore space, and how one
fluid displaces another one. Thus, we first define wettability and discuss its
effect on capillary pressure.

7.1 Wettability

Generally speaking, the solid surface-fluid interactions are what we call
wettability. Consider, as an example, a situation in which a drop of water is
placed on a surface immersed in oil. Then, a contact angle is formed that can
vary anywhere from 0° to 180°. A typical situation is shown in Fig. 7.1. The
three different surface tensions are related by the Young-Dupre equation

CowCOS 9 = Ops — Ows, (71)

where oo is the interfacial tension between oil and water, and 6,5 and Gus
are the surface tensions between oil and the solid surface, and water and
the solid surface, respectively. Normally, the contact angle © is measured
through the water phase. Strictly speaking, if 6 >90°, the surface is
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Figure 7.1 Formation of contact angles between iwo liquids with different wettability
and solid surface.

preferentially oil-wet. However, in practice, 8 < 65° for water-wet systems,
while 105° <6 < 180° for oil-wet systems. If 65° < 0 < 105°. the system is
said to be intermediately wet, and has no strong preference for any of the
two fluids. Another important case is mixed wettability, in the sense that the
wettability of the surface changes from pore to pore or from one portion of
the surface to another. This is caused by chemical heterogeneity of the
surface, and is actually the situation in most oil reservoirs. Many methods
have been devised for measuring the wettability of a system, and Anderson
(1986) has given a thorough discussion of them.

The study of moving contact lines and contact angles goes back to 1921
when Washburn proposed (3.2). This equation is invalid if the length of the
tube is much longer than its diameter, and if the diameter is so small that
gravity cannot have a significant effect on the shape of the moving contact
line or meniscus. There is a considerable amount of experimental evidence
in support of this equation. But the Washburn equation neglects the details
of the surface and its effect on the moving contact line; it provides only an
overall picture of what happens. Roughness, chemical heterogeneity, and
other factors can make the system so complex that the Washburn equation
may no longer be valid. Since there is a strong correlation between the
shape of the capillary pressure curves of a medium and its transport
properties. we first discuss the effect of wettability on capillary pressure.
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7.2 Effect of wettability on capillary pressure

Chapter 3 introduces capillary pressure curves. They can be used to extract
information about the pore size distribution of a porous medium. Before we
discuss the effect of wettability on capillary pressure curves, we cover the
terminology frequently used in the oil industry. In drainage a nonwetting
fluid displaces a wetting fluid from a porous medium, while during imbibi-
tion a wetting phase displaces a nonwetting one. In general, we can study
two kinds of processes. Primary displacement i1s the reduction of the
saturatio. of a reference phase from 100% to the residual saturation (RS)
by injection of a nonreference phase. The RS of a phase is its saturation at
the percolation threshold, i.e., the point at which the fluid phase becomes
disconnected, and no sample-spanning cluster of it exists. Secondary dis-
placement follows primary displacement. It is reduction of the nonreference
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Figure 7.2 Variations of capillary pressure P. for various wettability regimes as a
Sunction of the water saturation Sw. The numbers on the arrows indicate the displace-
ment mode. (a) Wetted regime, where 1 is drainage, 2 is spontaneous imbibition,
3 is forced imbibition, and 4 is secondary drainage (ai the end of imbibition).
(b) Nomvetted porous medium, where 1 is drainage, 2 is spontaneous imbibition, and
'3 forced imbibition. (c) Mixed wettability (after Morrow and McCaffery 1978).
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phase saturation to the RS by injection of the reference phase. On the basis
of the capillary pressure behavior in the sequence of primary and secondary
displacements. we can identify three regimes of wettability: (i) werted, in
which primary displacement is drainage and secondary displacement is
imbibition: (i1) intermediate wettability, in which primary and secondary
displacements are both drainage, and (iii) nonwetted, in which primary
displacement is imbibition and secondary displacement is drainage.

Figure 7.2(a) shows typical capillary pressure curves for nonwetted
porous media. These curves were obtained in an oil-wet Berea sandstone
treated with Drifilm (to render it strongly oil-wet). These should be
compared with those shown in Fig. 6.2(b) which are typical of the wetted
regime. The measurements were done on a water-wet Berea sandstone. In
the primary process (drainage), denoted by 1 on the curve, oil displaces
water: it ends at A. This is followed by process 2 (imbibition of water), up
to point B at which the capillary pressure P. = 0. Beyond B, the water has
to be forced into the medium (process 3), characterized by a negative P..
until point C is reached. Finally, Fig. 6.2(c) shows capillary pressure curves
for typical intermediately wet systems. They demonstrate the value of
capillary pressure curves for understanding wettability of a porous medium.

7.3 Immiscible displacements

The displacement of one fluid by another immiscible fluid is controlled and
affected by factors given at the beginning of this chapter. We have discussed
the effect of wettability and contact angles on capillary pressure, and later
we shall discuss their effect on transport properties of the porous medium
in two-phase flow. The effect of gravity is discussed in Section 7.10. Among
the remaining factors, the capillary number Ca (3.5) and the mobility ratio
M of the two fluids have the greatest importance. The mobility of a fluid is
the ratio of the permeability and the viscosity of the fluid. Generally
speaking. drainage processes are all percolation phenomena, whereas im-
bibition processes are more complex. Some of their features are related to
percolation, while some of them are not. A very careful discussion and
classification of displacement processes was given by Payatakes and Dias
(1984). Two of such displacement processes that are related to percolation
are as follows.

7.3.1 Quasistatic imbibition

In this process at any given step only one pore is invaded by the displacing
fluid. This can be done by adjusting the backpressure so that the narrowest
pore throat is invaded, while the interface at other larger throats remains
essentially motionless. Since even the largest pore throats are smaller than the
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pore body to which they are connected, once a pore body is invaded, all of
the throats that are connected to it are also invaded. As soon as the interface
enters such throats, the smallest pore body that is connected to those
throats is invaded and so on. Thus, at any given step of the displacement,
the smallest accessible pore body (in the percolation sense) is invaded.

When the displacing fluid forms a sample-spanning cluster of invaded
pore bodies (and the associated pore throats), a breakthrough is achieved.
Just before breakthrough, the displaced fluid, in a three-dimensional porous
medium, is mostly connected. As the displacement proceeds, small blobs of
the displaced fluid are formed and become trapped. At the end of this
process, we may end up with a large number of isolated blobs whose total
saturation depends on the morphology of the pore space. In unconsolidated
media it varies between 0.14 and 0.2. whereas in consolidated rocks it is
anywhere between 0.4 and 0.8.

Experimental data indicate that the size distribution of the blobs, when
expressed in terms of the number n,, of pore bodies they occupy. follow a
power law

ng, ~ 57, (7.2)

reminiscent of (2.14), the scaling law for the number of finite percolation
clusters of s sites. Indeed, an appropriate percolation model can be devised
to model such a quasistatic displacement.

7.3.2 Dynamic invasion at constant flow rates

The driving force for this process is an applied pressure drop. and the role
of capillary forces is of secondary importance. If M > 1, we will have a
complex unstable displacement (see Sahimi 1993 for a more complete
discussion). Thus, we only consider the case M < 1. Suppose that the
capillary pressure is negligible compared to the applied pressure. If so, at
any stage of the displacement we will have several advancing interfaces in
as many pores. Because the driving force is the applied pressure, the
microscopic interfaces choose the largest accessible pore throats to mini-
mize the resistance. Thus, the structure of the sample-spanning cluster of
the displacing fluid is very different from the structure of the imbibition
process; it resembles a drainage process. But this does not necessarily mean
that smaller throats will not be selected; local pressures are also important
and can cause the invasion of smaller throats by the advancing fluid.

At the end of these two processes. the displaced fluid exists only in the
form of isolated blobs of finite sizes that cannot be displaced by secondary
drainage or imbibition. The distribution of the blobs is similar to the
distribution of the clusters at or below the percolation threshold, where
each cluster represents an isolated blob.
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7.4 Relative permeabilities to two-phase flow

There are essentially two classes of models of two-phase flow and displace-
ment in porous media. One class relies on continuum equations, averaged
over suitably defined representative volume. This is the classical engineering
approach: the literature on this class of models is enormous and I refer the
reader to Marle (1981). The other class contains discrete or statistical
models, some of which are discussed in the context of single-phase flow and
dispersion in Chapters 5 and 6. The literature on this class of models has
also grown dramatically in the last few years. It would be impossible to
discuss everything so the reader is referred to Sahimi (1993) for a more
complete discussion. We only discuss percolation-based models.

Modeling two-phase flow in porous media is usually done by using the
concept of relative permeability (RP). Starting with the continuity and
Stokes’ equations for each phase (Chapter 5). and using the appropriate
boundary conditions, we can derive the following equations for the average
flow velocities and saturations Sg and Sy of the phases B and v at time ¢

K
Vg = —T]EB : (V(PB)B - ppg) + Kpy - vy, (7.3)
3Sp
a[ VB ( )
Vo = K, (Vip)t - )+ Ky - (7.5)
LA Py P8 YB - VB, -
as
a_ty‘f’V‘Vy:O. (76)

The right sides of (7.3) and (7.5) contain two terms. The first term is the
usual Darcy's law, written for each phase, while the second term couples
the two phases. Equations (7.3)~(7.6) are valid if Ca << 1, and if the process
is in a quasisteady state condition. However. the coupling terms in (7.3) and
(7.5) are not significant unless 13 = nyand, for this reason, such cross terms
are generally neglected. The phase permeabilities K and K, are supposed to
be known. but in practice we calculate them using the relation

Kp = Kk, (1.7)

where K is the permeability tensor, and kg is the RP to the B-phase (with
a similar equation for the y-phase). A major problem in any two-phase flow
in porous media is the prediction of the RPs. Unlike the absolute perme-
ability, k.; has been found to depend on many parameters, including
saturation and saturation histories of the fluids, the pore space morphology,
the wetting characteristics of the fluids. Ca, and sometimes M. Moreover,
40 years ago it was recognized (Richardson et al. 1952) that the RP tn o
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phase typically becomes very small or altogether negligible when its satura-
tion is less than a critical value, which is distinctly above zero. This is of
course the signature of a percolation problem discussed below.

There are many ways of measuring RPs and phase saturations (see
Anderson 1987). In a routine method, the porous medium is initially filled
with the wetting phase and a mixture of wetting and nonwetting fluids is
injected into the medium at a constant flow rate. When the steady state has
been reached, the pressure drop across the medium is recorded. From the
knowledge of the flow rate and pressure drop, the phase permeabilities
kg and k, are calculated using (7.3) and (7.5). The simplest way of measuring
the saturation is by weighing the sample before and after injection. Since the
absolute permeability of the medium is already known (see Chapter 5), the
RP to the wetting phase at this particular saturation is calculated. In the next
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Figure 7.3 Typical relative permeability curves for a water-wet porous medium (1op).
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stage, the injected amount of nonwetting fluid is increased, and the proce-
dure is repeated. In this way, the RP to the wetting phase is obtained. By
reversing the procedure we can obtain the RP to the nonwetting phase.

7.5 Effect of wettability on relative permeability

Similar to capillary pressure, wettability and contact angles also affect
significantly the RPs. Figure 7.3(a) shows typical oil-water RP curves for a
strongly water-wet system, while Fig. 7.3(b) shows the same for a strongly
oil-wet porous medium. While the difference between the two cases for the
RP to the oil phase is not very large, there is a dramatic difference between
the RPs to the water phase in the two cases. Normally, if a system is
strongly water-wet, there is little or no hysteresis in the RPs to the water
phase, and this can be clearly seen in any experiment. Thus, RP curves can
also be characteristic of the wettability of a porous medium.

7.6 Percolation models of capillary-controlled
two-phase flow and displacement

We now discuss percolation models of two-phase flow and displacement in
porous media which are, strictly speaking, applicable only when Ca 1s very
small. There are also a few network models for the case when Ca is finite (in
which case both capillary and viscous forces are relevant). But such models are
not generally related to percolation and, therefore, are not discussed here. The
reader can consult Sahimi (1993) for a review of this class of models.

7.6.1 Random percolation models

At the outset we should point out that the fundamental assumption in all
percolation models of two-phase flow is that the bond occupation prob-
ability p, defined in Chapter 2, is proportional to the capillary pressure.
Without this assumption, it would be difficult to make a one-to-one
correspondence between a percolation model and the two-phase flow problem.
Although in some percolation models, such as invasion percolation, the
occupation probability is not used, an analog of this quantity can be defined.

Fatt (1956) was the first to use a network model for simulating two-phase
flow in a porous medium, and Melrose and Brandner (1974) were the first
to suggest that percolation may be useful for describing two-phase flow in
porous media. but the first random percolation model of two-phase flow
in porous media was suggested by Larson er «/. (1977), with the full details of
their work given in Larson et al. (1981a,b). Larson et al. (1981a) proposed
a model for drainage in which the porous medium was represented as a
cubic network of bonds and sites with distributed sizes. It was assumed that
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a bond next to the interface between the displaced and displacing fluids is
penetrated by the displacing fluid if the capillary pressure at that point
exceeds a critical value. This implies that the radius of that bond has
to exceed a critical radius r,,, defined by (3.6). All bonds that are connected
to the displacing fluid by a path of bonds with effective radius larger than
rmin are considered as accessible; the accessibility is defined in the sense of
percolation discussed in Chapter 2. It was also assumed that any accessible
bond whose radius is at least as large as rmn is filled with the nonwetting
fluid. This is of course not true, since an interface which starts at one
external face of a porous medium has to travel a certain path of eligible
bonds before it reaches an accessible and potentially eligible bond.

In another paper. Larson er al. (1981b) proposed a percolation model of
imbibition in order to calculate the residual nonwetting phase saturation and
its dependence on Ca. They modeled the creation of isolated blobs of
the nonwetting phase by a random site percolation (Chapter 2). At the site
percolation threshold of the network, they calculated the fraction g(s) of the
occupied sites that are in clusters of length s in the direction of flow, and
argued that this represents the desired blob size distribution. To calculate the
RS of the nonwetting phase S, they assumed that once a blob is mobilized,
it is permanently displaced. This is not always true, because a blob can get
trapped again, can join another blob and create a larger one, and so on.

The fundamental assumption behind the Larson er al. models is that
pore-level events are controlled by capillary forces. It is possible to devise
simple scaling arguments to estimate the Ca for which this assumption is
valid. The capillary pressure across the interface is proportional to

_ OowCOS 0

P,
dg

(7.8)

where d; is a typical grain size. On the other hand, the viscous pressure drop
is proportional to

w d
Pri.\' ~ m—‘ (79)
k
where 1. is the viscosity of the wetting phase. Therefore,
Pviv Ca
-~ 7.10
P, ka (7.10)

where k4= k/d; is a dimensionless permeability, which is small (of the order
of 107" or smaller), because k is controlled by the narrowest throats in the
medium. It follows that for capillary-controlled displacements, we must
have Cu << 1, and in practice we have Ca~ 10"° - 107° In many experi-
ments it has been observed that S,,. is constant for Ca < Ca., where Ca, is
the critical value of Ca for capillary-controlled displacement, and S
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decreases only when Cu > Ca,. Larson er al. (1981b) compiled a wide variety
of experimental data that supported this: the significance of their work is
that it was the first attempt for using percolation ideas for quantitative
modeling of two-phase flow in porous media.

Heiba er al. (1982) further developed these ideas and applied them to the
calculation of RPs. Full details are given by Heiba et al. (1992). Heiba et al.
(1982) distinguished between pore throats that are allowed to a phase, and
those that are actually occupied by the phase. Then, given a pore size
distribution of the pore space. they calculated the pore size distribution of
the allowed and occupied pores. Consider. for example, a displacement
process in which one fluid is strongly wetting, while the other one is
completely nonwetting. Then, according to their model, during primary
drainage the pore size distribution of the pores occupied by the displacing
phase is given by (3.7). since the lurgest throats are occupied by the
displacing fluid. During imbibition the pore size distribution of the pores
occupied by the displacing phase is given by (3.9), because the smallest
pores are occupied by this phase. We can. in a similar fashion. derive
expressions for the pore size distribution of the pores occupied by the
displacing and displaced fluids during secondary imbibition and drainage.
Once these pore size distributions are determined, calculating the per-
meability or hydraulic conductivity of each fluid phase (and, therefore, the
RP) reduces to a problem of percolation conductivity, because when we
calculate the permeability to a given phase. the flow conductance (or
effective radii) of the bonds occupied by the other phase can be set to zero,
since the two phases are immiscible. Therefore, any of the methods dis-
cussed in Chapter 5 can be used for calculating the RPs (see, for example,
Sahimi 1988, Heiba er al. 1992). Figure 7.4 shows the predictions of this
model using a cubic network: all important aspects of the experimental data
(Fig. 7.3) are reproduced by the model. Permeability and RPs are controlled
by the pore throats. and therefore pore bodies do not play any important
role. However, their volumes have to be taken into account when calculat-
ing the phase saturations. This random percolation model can also be
extended for calculating the RPs for the intermediate and mixed wettability
conditions; see Heiba et al. (1983).

7.6.2 Invasion percolation

This model was proposed by Lenormand and Bories (1980) and Chandler
et al (1982). In this model the network is initially filled with the fluid to be
displaced, often called the defender. To each site of the network is assigned
a random number uniformly distributed in [0,1]. Then. the displacing fluid,
or the invader. 1s injected into the medium and displaces the defender at
each time step by choosing the site on the interface that has the smallest
random number. If we interpret the random numbers as the resistance that
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Figure 7.4 Relative permeability ky versus wetting phase saturation Sy for a strongly
wetting, completely nomvetting porous medium. as predicted by the random percolation
model using a simple cubic nenyork.

the sites offer to the invader, then choosing the site with the smallest
random number is equivalent to selecting a pore with the largest size, hence
this model simulates a drainage process. A slightly more tedius procedure
can be used for working with bonds instead of sites. Invasion percolation
is a dynamic cluster growth process; random percolation is quasistatic.
Two versions of this model have been studied. In one model, the defender
is an incompressible fluid. Thus, if a blob of it is surrounded by the invader,
it cannot be penetrated and is rrapped. Computer simulations of Wilkinson
and Willemsen (1983) indicated that in two dimensions the fractal dimen-
sion of the invader cluster is about 1.82, smaller than that of random
percolation which is 91/48 = 1.896. But no significant difference was ob-
served in three dimensions. In the second model, the defender is assumed
to be compressible, so that even if a blob of it is surrounded by the invader,
it can still be penetrated. There is a close connection between this version
of invasion percolation and the random percolation model. This was
demonstrated by Wilkinson and Barsony (1984) who showed that the
exponent A, = B, + Y, (Chapter 2) is the same for both random and invasion
percolation models in both two and three dimensions. Therefore, this form
of invasion percolation is in the universality class of random percolation.
From a fundamental point of view, invasion percolation is definitely a
more appropriate model of immiscible displacements than the random
percolation model. The most obvious reason for this is the fact that there
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v a well-defined interface that starts from one side of the system and
displaces the defender in a systcmatic and realistic way. Thus. the history
and the sequence of invading pores. according to a physical rule. have been
naturally built into the model.

Let us mention some experimental evidence in support of the mvasion
percolation model of two-phase flows: for a more complete discussion see
Sahimt (1993) Lenormand and Zarcone (19835a) displaced oil (the wetting
fluid) by air (the nonwetting fluid) in a large and transparent two-dimen-
sional ctched network and obtained a fractal dimension of about 1.82,
consistent with two-dimensional computer simulations of invasion percola-
tion with trapping. Shaw (1987) showed that if a porous medium, filled with
water, i1s dried by hot air. the dried pores (those filled with air) form an
invasion percolation cluster with the same fractal dimensionality as that
found in computer simulations. Lenormand and Zarcone (1985b) used
two-dimensional etched networks and a variety of wetting and nonwetting
fluids (oil. different water-sucrose solutions, air). and showed that their
drainage experiments are all completely consistent with an invasion percola-
tion description of this phenomenon.

Invasion percolation has some interesting and unusual properties. For
example. Furuberg er al. (1988) studied the probability P(r.1) (where
r=|r|) that a site, a distance r from the injection point. is invaded at time
1. They found that a dynamic scaling governs P(r.1)

P(r.t) ~r 1. (7.11)

where D. is the fractal dimension of the invasion percolation cluster, and
flu) is a scaling function with the unusual property that, f(u) ~ u“'(u < 1)
and. fay ~ u”“(u > 1), i.e.. flu) vanishes at both ends. This dynamic scaling
mplies that the most probable growth takes place at r ~ ¢' ”. The reason
for this unusual limiting behavior of f(u) is that at time 7, most of the region
within the distance r has already been invaded, and new sites close to the
interface that can be invaded are rare. Roux and Guyon (1989) argued that
the exponents a; and a: are given by. ¢, = 1. and «> =1, + 6p — Dn/D, — 1.
where 1,. 0, and D, are the usual percolation exponents and fractal
dimension (Chapter 2). and Dy is the fractal dimension of the hull (or
surface) of percolation clusters, where Dp(d=2)=1+l.vp=7/4, and
Ditd = 3y = D,.

7.6.3 Random percolation with trapping

Computer simulations of invasion percolation with trapping by Wilkinson
and Willemsen (1983) in two dimensions indicated that the fractal dimen-

sion of the invasion cluster is about 1.82, as compared with
N = 01.48 == 1 ROA for randam nercalatinn (Chanter 7V The exneriments nf
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Lenormand and Zarcone (1985a) supported this. Random percolation with
trapping was first developed by Sahimi and Tsotsis (1985) to model a
completely different phenomenon, namely, catalytic pore plugging of por-
ous media, which will be discussed in Chapter 8. It was further investigated
by Dias and Wilkinson (1986) as a model of two-phase flow in porous
media. whose results indicated that the scaling properties of this model in
both two and three dimensions are the same as those of the usual random
percolation discussed in Chapter 2.

For calculating the RPs, the predictions of most percolation models are
very similar. But the random percolation model has the advantage that it
enables us to derive analytical formulae for the pore size distributions of
various phases during both imbibition and drainage. discussed above and
in Chapter 3. We can employ these formulae with the methods discussed in
Chapter 5 to estimate the RP to both phases during imbibition and
drainage: see Blunt er al. (1992) and Sahimi (1993) for a more complete
discussion of this.

7.7 Crossover from percolation to compact
displacement

Although we discussed RP curves for borh imbibition and drainage in terms
of a percolation model. there are qualitative differences between the two
that need to be discussed. A clue to these differences is already evident in
the RP curves (Fig. 7.4). The RP to the nonwetting phase during primary
imbibition by a strongly wetting fluid vanishes only at S = 0. i.e.. the
nonwetting phase is completely expelled from the system and the wetting
phase fills the system. However, during drainage by a completely nonwet-
ting fluid the RP to the wetting phase vanishes at a finite value of S,,, i.e.,
the nonwetting phase does not fill the porous medium, and a fractal
percolation cluster is formed.

A definitive study of this phenomenon was made by Cieplak and Robbins
(1990), who represented the porous medium by a two- dimensional array of
disks with random radii, where the underlying lattice was either a triangular
or a square network. The limit of low Ca was considered, and the
displacement dynamics were modeled as a stepwise process where each
unstable section of the interface moved to the next stable or nearly stable
configuration. Their simulations showed that there are three basic types of
instability and corresponding growth mechanisms. (i) Burst happens when.
at a given P., no stable arc connects two disks and, therefore, the interface
simply jumps forward to connect to the nearest disk. (ii) Touch happens
when an arc that connects two disks intersects another disk at a wrong
contact angle 6. In this case. the interface connects to this third disk.
(iii} Overlap haopens when two nearbv arcs overlan. There is no need for
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The roughness of the interface can be characterized by the width w(L),
which is defined as w(L) = ((h(x) — (h);)*)' %, where h is the height of the
interface at position x, and (), is its average over a horizontal segment of
length L According to the scaling theory of Family and Vicsek (1985) for
growing Wone has the following scaling form at time ¢

—_———

h(x) = Chy ~ 1Pf(x/ %), (7.13)

where o and B are two critical exponents that satisfy the following scaling
relation

a+2=2 (7.14)

o
§
The scaling function f()) has the properties that, | f(u)| < ¢ for u > 1, and

fluy ~ L*f(Lu) for u << 1, where ¢ is a constant. Given (7.13), it is easy to
see that

w(L.1) ~ tPg(t/L*"?y, (7.15)

where g(u) is another scaling function, and therefore
w(L, o)~ L% (7.16)

Note that w(L. 1) is a measure of the correlation length along the direction
of growth. A variety of surface growth models and the resulting dynamical
scaling can be described by the stochastic differential equation proposed by
Kardar, Parisi, and Zhang (1986)

%:0,V%h+v7g|Vh|2+N(r,t), (7.17)

where G, corresponds to the effect of surface tension, vg is the growth
velocity perpendicular to the interface. and N is a noise term that somehow
represents disorder. Kardar er al. (1986) considered the case in which the
noise was assumed to be Gaussian with the correlation

(NI DN, D) =248 -x".1 - 1"), (7.18)

where 4 is the amplitude of the noise. For this model it has been proposed
that (Kim and Kosterlitz 1989, Hentschel and Family 1991)

o= hnd |3—_——’ 7.19

for a d-dimensional system A related stochastic differential equation was
proposed by Koplik and Levine (1985)
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%’t’- =6;iVih +vg+ AN(r h), (7.20)

so that the term representing the noise is more complex than that of Kardar
et al. (1986). It is now easy to see why a pinning transition occurs. Consider
(7.20) in zero transverse dimension

% = v+ AN(H). (7.21)

If vg> ANuav, where Nuay is the maximum value of N, then d/4/dr > 0 and
the interface always moves with a velocity fluctuating around v, If,
however, vy < ANpqy, the interface will eventually arrive at a point where,
Ug+ AN = 0. and get pinned down. Therefore, there has to be a pinning
transition at some finite value of A, if we fix v,.

Let us now go back to the experiments of Rubio er ¢l. (1989) and Horvath
et al. (1991a). Rubio et al. (1989) found that o = 0.73, significantly different
from o = 1/2, predicted by (7.19). Horvath et al. (1990) reanalyzed the
Rubio er al. data and obtained, o = 0.91, even larger than o = 1/2. while
for their own experiments they obtained, oo = 0.81, and B = 0.65. Although
their oo and B satisfy (7.14), they are still significantly different from the
predictions of (7.19).

How can we explain these beautiful, but unexpected results? A key idea
may be that a disordered porous medium generates noise that is not
necessarily Gaussian, as assumed by Kardar er al. (1986). Several models
with various forms of noise have been introduced. but the model proposed
by Zhang (1990) in which the distribution of the noise amplitude is of power
law form

H(A)~ A~'%*D (7.22)

is interesting and may be relevant, because Horvath er al. (1991b) showed
that with such a distribution, the above experimental data can be fitted if
8 = 2.7. However, the origin of this power law noise, and why it should be
present in a porous medium, is not clear yet. P - “*“::
A possible connection between the roughening and pinning/of the inter-
face in imbibition and a variant of percolation, called directed percolation,
was proposed bwnd Tang and Leschhorn (1992). In
directed percolation (for a review see Kinzel 1983), the bonds of a network
are directed and diode-like. Transport along such bonds is allowed in only
one direction. If the direction of the external potential is reversed, no
transport in the diode-like bonds takes place. This induces a macroscopic
anisotropy. so we need fwo correlation lengths for characterizing the
system. One, &, is for the longitudinal (external potential) direction, while
the other. &7, is for the transverse (perpendicular to the external potential)
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direction. The percolation thresholds p.s of directed networks are much
larger than those of ordinary percolation discussed in Chapter 2, Near p.y
we have

Ec~(p—pa) ™, (7.23)
Er~(p—pa) " (7.24)

Buldyrev et ul. (1992) carried out an interesting experiment in which they
formed an interface by dipping paper (a two-dimensional system) into a
fluid. and allowing it to invade the paper. They and Tang and Leschhorn
(1992) argued that, w(L)~&;. L ~&,, ie., Eris the characteristic length
scale for the width, while &, sets characteristic scales for horh the distance
parallel to the interface and the time. Therefore

o= - ‘. (725)

which for d=2 with v, = 1.73 and v; = 1.1 yields. a = 0.63, in perfect
agreement with their measurement. But it is not clear that their elegant
experiment is relevant to imbibition in real rocks and porous media.
Moreover. their value of o is lower than that of the above experiments, so
the problem is not solved yet.

7.9 Finite size effects on capillary pressure and
relative permeability

Our theoretical discussion so far has been limited to systems that are
essentially of infinite extent. If the system is of finite size, the dependence
of the macroscopic properties on the size L of the system can be investigated
using finite-size scaling discussed in Chapter 2. Let us now discuss the effect
of the size of a porous medium on its capillary pressure and RPs. Thompson
et al. (1987) measured the electrical resistance of sandstones during mercury
injection. and found that the resistance decreases (the permeability or
relative permeability increases) in a stepwise manner; see Fig. 7.7. The
observed steps were irreversible in that small hysteresis loops did not retrace
the steps and the steps were not reproduced on successive injections. When
the number N,r of resistance steps larger than AR was plotted versus AR,
a power law relation was found

Nar ~ (AR)®. (7.26)

Az which was found to vary between 0.57 and 0.81, presumably depends on
the strength of the competition between capillary and gravitational forces.
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Figure 7.7 Resistance R of a sample sandstone as a function of the injection pressure
P during mercury porosimetry (after Thompson et al. 1987).

& = 0.57 signifies the limit in which gravitational forces are absent. while
Ar = 0.8] represents the limit in which gravitational forces are prominent.
The reason for this stepwise decrease in the sample resistance is that in a
finite sumple, penetration of any pore by mercury causes a finite change in
the resistance. but as the sample size increases, the size of the change
decreases; for a very large sample the step size should vanish and the
resistance curve should become continuous. Using a percolation model.
Roux and Wilkinson (1988) showed that for a three- dimensional porous
medium of size L

NaR - L%(p-v,,) (u+jv,,)(AR)~ 3\',, (u+3v,,)‘ (727)

so that. Az = 3v,/(u + 3v,) = 0.57, which agrees well with the experimental
result in the absence of gravity. Thus. while sample size effects are
important. the stepwise decrease in the resistance of the sample during
mercury injection is still consistent with a percolation description of this
process, discussed in Chapter 3. and with a two-phase flow description,
discussed here.

7.10 Immiscible displacements under the influence
of gravity:[gradient percolatim

So far, we have neglected the effect of gravity on immiscible displacements.
But in three-dimensional porous media. the hydrostatic component of
pressure adds to the applied pressure. and this creates a vertical gradient in
the effective injection pressure. Because of this gradient. the fraction of
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and in imbibition
Di~ (Sp = Spuy)H 7 Pr 2ot Be, (7.38)

These results agree with both simulations and experimental data. For
example, (7.37) and (7.38) imply that D, ~ Spe® and Dy ~ (Sme ~ Srm) "
for drainage and imbibition, respectively. These are in agreement with the
experimental data of Delshad er al. (1985), which indicate weak divergence
of D, near the RSs.

7.12 Conclusions

Percolation theory has given us a much deeper understanding of two-phase
flows in porous media. Not all aspects of two-phase flows in porous media
can be explained by percolation. It is also true that the classical random
percolation may have to be modified in several significant ways in order to
become a quantitative tool for modeling two-phase flows in porous media.
But the fundamental concept of percolation — the macroscopic connectivity
of a fluid phase — has led us to a much better appreciation of mechanisms
of flow phenomena in porous rocks.
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8
Transport, reaction, and deposition in
evolving porous media

8.0 Introduction

Earlier chapters discuss flow and transport in porous media. Those phe-
nomena are passive in the sense that they do not cause any changes in the
morphology of porous media. In the present chapter we discuss the applica-
tion of percolation to several phenomena in porous media that cause
dynamical changes in the morphology of the pore space. These are, (1) non-
catalytic gas-solid reactions with fragmentation; (2) noncatalytic gas-solid
reactions with solid products; (3) catalyst deactivation; and (4) flow and
deposition of colloidal particles and stable emulsion droplets in porous media.

8.1 Noncatalytic gas—solid reactions with
fragmentation

We discuss this phenomenon by giving a specific example. Gasification of
a single char particle in CO,

C(s) + COy(g) » 2CO(g), (8.1

the so-called Boudouard reaction, is an important phenomenon that has
been studied for many years. The char particles are porous and contain a
large number of small pores. Two important regimes to be considered are
the kinetic regime, in which the concentration of CO-, is the same every-
where and diffusion does not play any role. and the diffusion-limited regime
in which the reactants have to diffuse into the pore space before they react.
We first consider the kinetic regime.
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8.1.1 Noncatalytic gas—solid reactions in the kinetic regime

Various studies indicate that a Langmuir Hinshelwood kinetic expression
can correlate the experimental data on reaction (8.1), and that the expres-
sion reduces to a first order reaction in CO., if its partial pressure 1s low.
Therefore. the recaction rate R per unit accessible area is written as

R = kuexp(— E R, T). (8.2)

where 4. is the preexponential factor. E is the activation energy, Ry is the
gas constant and 7 is the temperaturc of the system. Because in the kinetic
regime the concentration of CO: is the same everywhere, the knowledge of
the rate of consumption of carbon 1s enough for describing the gasification.
A simple mass balance on a volume element of C yields

Ao M ;s
-T="=RS", 8.3
dt p (8.3)

where ¢ 1s the porosity of the carbon particle. M and p are its molecular
weight and densitv. respectively. and S' is the accessible surface area of
the particle. We have assumed that there are no impurities in the carbon
particle. It should be clear that CO, can only reach that part of the
carbon particle that is accessible from the outside, and therefore the
accessibility that we define here 1s exactly in the same sense as in percolation
defined in Chapter 2. This makes it clear that coal gasification in the kinetic
regime 18 a percolation phenomenon. Moreover, as (8.3) indicates, to study
this problem we only need to keep track of the evolution of the perimeter
of the external surface of the particle, i.e.. a purely geometrical problem.
An important consequence of gasification is the phenomenon of fragmenta-
tion. which can occur both in the kinetic regime and in the diffusion-limited
regime. when diffusion 1s not very fast. If the reaction and consumption of
the carbon particle continues, 1ts porosity increases and at some well-defined
value o, the parucle fragments into several pieces. In some cases, e.g..
fragmentation during devolatilization. we might have a pressure-induced
fracture and fragmentation of the particle. But if the consumption rate of
the particle is low enough. as is the case 1n most practical situations,
fracture-induced fragmentation can be safely neglected. Fragmentation in
the diffuston-limited regime is usually called perimeter fragmentation, since
it occurs mainly on the external surface or perimeter of the particle.
Fragmentation of coal particies is believed to be responsible for decreased
burnout times. enhanced production of fly ash, weight loss in coal combus-
tors. and increased emission of submicrometer unburnt carbon and NO,
from pulverized coal combustion systems. This phenomenon was studied
experimentally by Sundback et al. (1984). Kerstein and Niksa (1984), and
Sadakata er al. (1984). Particle fragmentation can be inferred from image
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analysis of char particles following coal devolatilization (Sundback er al.
1984). or from size measurements of char particles retrieved from fluidized
beds uand char particle breakup (Kerstein and Niksa 1984). In the early
studies of gasification. fragmentation was cither ignored completely. or was
dealt with in an empirical way by treating ¢; as an adjustable parameter of
the model without any regard for particle morphology. For example. based
on experimental observations Gavalas (1981) assumed that. ¢; = 0.8. This
value of ¢; implies that the critical volume fraction of the sohd matrix for
fragmentation is about 0.2, close to 0.17. the critical volume fraction for
percolation of continua discussed in Chapter 2.

8.1.2 Noncatalytic gas—solid reactions in the
diffusion-limited regime

In this regime, transport of the reactants into the pore space both by ordinary
and pressure diffusion controls the overall mass transfer of the reactants and
the ga51ﬁcat10n process. We introduce two effective transport coefficients L
and L{, which describe the contributions of diffusion and permeability of
the pore structure of the particle. where ij refers to transport of component
i in the mixture of / and j. Thesc coefficients are given by (Jackson 1977)

1
LY =-- . 8.4
"T I D+ (1 +8,8,) D P) (84

1 + Dupi/ Dy(P) kpP

Lf: +
"D+ (1 + 8,X) ' Dg(PY T M

(8.5)

Here Dk and Dy are, respectively. the effective Knudsen and pressure
diffusivities at pressure P. X; the mole fraction of /. 6,,=(M,/M,)l T
essentially represents the ratio of the molecular weights of 7 and j. &, is the
permeability of a single pore. and n,, is the effective viscosity of the mixture.
The evolution of the system is described by a diffusion reaction equation
(8.6) that tells us how the reactant is transported within the pore space. and
how the particle is consumed. Moreover, we need a mass balance at the
external surtace of the particle to express the fact that the diffusive flux
there is equal to the rate of mass transfer (8.9). Thus, for a spherical particle
the concentration C, of component / at time ¢ is governed by

¢, 1 13 X, oP )
Lhp o2y x84 s ks, 8.6
31 RgTrar[ Sy PP (56)
Cilr. 0y = 0. (8.7)

9C (0. =0, (8.8)
-
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I (,0p0Xi . ,py OP /
I'P—'_‘ A | = th — L), -
RgT[L, S+ LiX ar] K(Cin— C} (8.9)

where s; is the stoichiometric coefficient of 7/ in the reaction, K is the mass
transfer coefficient. Ci is the concentration of i in the bulk, and C{ is the
concentration of i at a radial position ry where fragmentation occurs. If the
process is highly nonisothermal, then the transport coefficients depend on
temperature, and we have to add the energy equation to the above model.
Because the pore space evolves during gasification and the porosity increases,
the transport coefficients also vary with ¢. Thus. we have to estimate them
as a function of ¢. a problem discussed in Chapter 5.
We now write down a4 mass balance for a particle of radius R

8¢ M 5 4 a¢ aR
T p RS +ar 3 (8.10)
with the initial condition that, ¢(r. 0) = ¢,. where ¢, is the initial porosity of
the system. The second term of the right side of (8.10) is due to the fact that
the radius of the particle shrinks with time as a result of the reaction on the
external surface of the particle and perimeter fragmentation. The contribu-
tion of the reaction can easily be accounted for by writing a mass balance
on the external surface of the particle which yields

f{z_ 1‘4

= R. 8.11
dt p ( )

with r((0) = ry. If perimeter fragmentation starts at a time ¢,, then

dry ‘Mléaq)/ar
_ = 8.12
i oSt ( )

with, r,(t;.) = r/(t;.). Obviously. for r < 1, (8.12) should not be used because
fragmentation has not begun yet.

8.2 Percolation models of noncatalytic gas—solid
reactions and fragmentation

How do we model this phenomenon? Theoretical investigation of this
process goes back to Petersen (1957) who modeled the pore structure as an
idealized network of randomly intercepting cylindrical pores. Many more
models have been developed since Petersen’s work which have been com-
pletely discussed by Sahimi et al. (1990). Here we are only interested in
percolation models of gasification. There have been two types of such
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models for reactive porous media and, in particular, gasification. The first
type is what we call hybrid continuum models, while the second type are the
usual network models used in percolation modeling of many phenomena.

8.2.1 Hybrid continuum models

These models are based on solving (8.6)—(8.9) and calculating the consump-
tion rate of the coal particle. At each time step, (8.6)-(8.9) are solved
numerically. Since the porosity of the system increases with time, the
effective morphological properties (e.g., accessible surface area) and trans-
port coefficients of the system also vary with porosity and time. This
variation with porosity is of course a percolation effect and is included in
the model by assuming a certain model of the pore space and calculating
all the percolation quantities that are needed for use in (8.6)—(8.9). As such,
these models are a hybrid of the classical equations of transport and
reaction, and percolation methods of estimating the effective transport
properties of a disordered medium discussed in Chapter 5. Mohanty er al.
(1982) were the first to develop a percolation model of reactive porous
media. They represented the porous medium by a cubic tessellation in which
a randomly selected fraction p of the cubic polyhedra represented the pores.
The increase in the porosity as a result of gasification was modeled by
simply increasing p (i.e.. gasification was modeled as a random percolation
process). This problem is similar to immiscible displacement of a fluid by
an invading fluid and invasion percolation, discussed in Chapter 7, in which
there is a well-defined interface between the displaced and displacing fluids.
There is a reaction front between the reactants and the solid matrix. As a
result, the increase in the porosity should be modeled by consuming the
solid polyhedra adjacent to the percolating pore cluster or the reaction front.
As such, the model of Mohanty et al. is not completely satisfactory. Reyes
and Jensen (1986) improved this model by representing the pore space as a
Bethe network of cylindrical pores with distributed radii, to take into
account the effect of the pore size distribution of the particle, but they also
modeled the porosity increase by random percolation. For the kinetic
regime, they obtained good agreement between the predicted reaction rates,
at various values of conversion (i.e., the consumed fraction of the particle).
and experimental data; see Fig. 8.1. Shah and Ottino (1987a) also modeled
gasification by solving (8.6) and (8.9), but representing the pore space as a
cubic network. But unlike the earlier models, porosity was increased in a
physical way by monitoring the evolution of the morphology and the reaction
front that was constantly moved to the edge of the remaining matrix.

The hybrid continuum models are subject to a fundamental criticism.
(8.6)(8.9) may not be valid near the fragmentation point, which is a
percolation threshold. As ¢/ is approached (i.e., as the matrix is consumed
and ¢ is increased). the percolation correlation length &,, pertaining to the
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Figure 8.1 Comparison of percolation predictions of char-air gasification rates (in s™")
with the experimental data (symbols). The pore space was modeled by a Bethe lattice
of coordination number Z = 1. The curves are. fromn top, for temperatures 753K, 728K,
03K, and 673K (after Reyes und Jensen 1986 ).

solid matnx. also increases without bound. Thus, over length scales L <&,
the solid matrix has a fractal structure, in which case continuum equations
such as (8.6) and (8.9) are not valid.

8.2.2 Network models

These models were developed by Kerstein and Bug (1986), Kerstein and
Edwards (1987). and Sahimi and Tsotsis (1987, 1988). The details of their
models are not the same, but the main ideas are identical. We start with a
network in which a fraction p of the bonds represents the pores; the rest
represent the solid matrix. We identify the solid bonds on the external
perimeter of the pore space. They are then consumed and redesignated as
pores. the process time is increased by one unit. the perimeter solid bonds
in the new configuration of the network are identified, and so on. If the
consumption of the solid bonds is continued, then at a porosity ¢, the solid
particle disintegrates into finite fragments (clusters) with a wide variety of
shapes. sizes, and masses. The precise value of ¢, depends on the micro-
scopic details of the solid matrix and its chemical composition, just as p.
depends on the coordination number Z of the network. For example, if a
portion of the matrix were nonreactive. fragmentation would occur at a
lower ¢,. The presence of such impurities can easily be accounted for by
designating a fraction of the bonds as nonreactive. Figure 8.2 shows the
dependence of the reaction rate, i.e.. the fraction of consumed solid bonds
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Figure 8.2 The dependence of the reaction rate on the initial fraction p of solid bonds in
a percolation model of gasification, compare this with Fig. 8.1 (after Sahimi 1991 ).

per unit time, on total conversion in a three-dimensional network with
Z = 14. For small values of p, we observe a maximum in the reaction rate,
which is observed frequently in the experiments. This maximum is caused
by two competing geometrical factors. At low values of conversion, the
consumption of the matrix increases the length of the perimeter of the solid
matrix (cluster of solid bonds). This causes an increase in the reaction rate
proportional to the perimeter length. At high conversions, the length of the
perimeter decreases with consumption. This causes the reaction rate to
decrease monotonically. Kerstein and Bug (1986) showed that in this model
the solid matrix is consumed in a time ¢ where

e ~In(e™"), (8.13)

and € = ¢; — 0, so that we have a simple way of estimating the burning time
as a function of the porosity.

How do we account for the effect of diffusion? Kerstein and Edwards
(1987) assigned to each solid bond a random burning time selected from an
exponential distribution, f(r) = A exp(— A1), and related A to the mass m of
the solid matrix via, A = am™", where b is an adjustable parameter. The idea
is that different portions of the particle have different burning times.
because the diffusing reactants reach them later. After fragmentation. a
distinct value of A is used for each fragment. Although the model 1s
somewhat ad hoc, it does appear to provide reasonable fit to some
experimental data.
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In the model of Sahimi and Tsotsis (1987), diffusion is represented by a
random walk of the reactants that arc injected into the system at the
external surface of the network. The random walk is executed on the bonds
that represent the pores, and the probability of selecting any pore is
proportional to its conductance. When the reactant hits a solid bond it
reacts with it with probability p, = R ko. 1.e., the normalized reactivity of
the matrix. Thus. the effect of pore size distribution, temperature, and other
influencing factors are taken into account. If reaction does take place, the
reactive molecule disappears and a fraction of the solid bond is consumed.
Since we use finite networks to represent char particles of micrometer size.
each bond represents a macroscopic mass unit. Thus, each solid bond has
to be hit by the molecule, in a reactive collision, n. times (s, is a parameter).
before it is totally consumed. If p, = 1, then only the most exposed part of
the matrix 1s consumed at the initial stages of the process. The net effect is
the removal of all irregularities of the external surface of the matrix, making
1ty shape smooth and regular. Thus, at most, perimeter fragmentation can
occur. On the other hand. if p, is small, the reactive molecules penetrate
deep into the pore space and consume the weak points of the matrix. As a
result, matrix fragmentation occurs and many fragments with a wide variety
of shapes and sizes appear. Thus, the limits p, =1 and p, = 0 represent,
respectively, the diffusion-limited and the kinetic regimes. Varying p, be-

3
10’»

St 1
10 | ]
s=295
| 1 N
102 10% 10°
Time

Figure 8.3 Time-dependence of number of fragments ng(t) of size s. The reactive
porous medium was modeled by the sumple-spanning cluster on a simple cubic lattice
at its site percolation threshold (after Sahimi 1991 ).
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tween zero and one enables us to study a variety of situations in which the
relative importance of kinetic and transport effects can be varied.

To describe the evolution of fragment size distribution. a dynamic scaling
of the following form is assumed (Sahimi and Tsotsis 1987, Sahimi 1991)

ns~ s f(s/t7), (8.14)

where n; is the number of fragments (per network bond) of s bonds, w, =,
and 1 are dynamical exponents. and f(x) is a scaling function. These
exponents are universal and do not depend on the microscopic details of the
system. e.g., the pore size distribution of the particle. The exponent u- is
positive before a characteristic time ¢,, is reached, at which the number of
fragments reaches a maximum, and is negative for t > t,,. The quantity ¢"
reflects the time evolution of the number of fragments. and distinguishes
(8.14) from the percolation equation (2.14). A similar equation has also
been used in polymer chain degradation, and even porous rock fragmenta-
tion (Englman et al. 1984). Thus, (8.14) may be a general property of all
fragmentation processes. Figure 8.3 shows the variations with time of ng(t).
calculated on a cubic network. It indicates that w = 1. Cai et al. (1991) and
Gyune and Edwards (1992) developed a scaling theory and a linear rate
equation for fragmentation with mass loss and derived (8.14).

8.3 Noncatalytic gas—solid reactions with solid
products

This class of phenomena is encountered in several important chemical
processes. For example, limestone is used to control SO- emissions from
fludized-bed combustors. Metal oxides are used in coal gas desulphuriza-
tion processes. In both cases solid products are formed by noncatalytic gas—
solid reactions. When the stoichiometric volume ratio of the system, i.e.,
the ratio of the molar volume of the solid product and stoichiometrically
equivalent volume of the solid reactant, exceeds one, the solid product
occupies more space than the original solid, the porosity of the porous
medium decreases as the reaction continues and pore plugging occurs,
implying that this is a percolation phenomenon. Similar to gasification with
fragmentation, this problem has also been investigated by many authors,
using a variety of ideas and methods. These models have been reviewed by
Sahimi et al. (1990). As usual, we are only interested in the percolation
models of this phenomena, which we now discuss.

During any noncatalytic gas-solid reaction with solid products in a
porous structure (and also in catalyst deactivation discussed in the next
section), all pores of the porous medium can be divided into three distinct
groups (Sahimi and Tsotsis 1985): (1) Pores that are completely plugged:
(2) pores that are partially plugged (with reduced radii), and are still
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accessible to the reactant; and (3) pores that are not completely plugged but
arc surrounded by plugged pores and cannot be reached by the reactants.
The first difference between noncatalytic gas-solid reactions and random
percolation is that some of the open pores are trapped by the plugged pores
in noncatalytic gas-solid reactions. Therefore, this is a percolation
phenomenon with trapping, discussed in Chapter 7.

We now consider a specific example and develop a percolation model for
it. We consider the sulphation of calcined limestone particles, which is given
by the reaction

CaO(s) + SO(g) + % O1(g) — CaSO4(s). (8.15)

Experimental data show that during this reaction the solid volume increases
by a factor of about 3.1, and that in excess O-, the reaction is first order
with respect to the partial pressure of SO.. Similar to gasification, we can
consider both the kinetic and diffusion-limited regimes. But in practice the
kinetic regime is hardly ever realized, therefore we develop the model for
the diffusion-limited case. A percolation model for the kinetic case is given
by Yortsos and Sharma (1986) and Yu and Sotirchos (1987). For the most
recent study see Sotirchos and Zarkanitis (1993). In the diffusion-limited
regime, the governing equations for a spherical porous medium are given
by (Reyes and Jensen 1987)

aC| 1 o 2 aC| N A
9G _ 1 9 (2 9G] pe,st, 8.16
at r: ar [r 1 ar J RC_S ( )
ﬁ(o H=0 (8.17)
D, 25 = K(Cin - Cay). (8.18)

where D, is the effective diffusivity of SO»-O,, C, and C; are the SO,
concentrations at the gas-solid and solid-solid interfaces, respectively, and
the rest of the notation is as before. Equations (8.16)—(8.18) are similar to
(8.6)-(8.9). except that for the present case the contribution of pressure
diffusion i1s negligible. We need an equation for C- to express its variations
within the solid layer that is building up In every pore. Since transport
within the layer is by diffusion. we must have

a -1 aC"

- Dy =0. 8.19

318 [g of ] ( )
D aC7 (’\\) = RC’(rn) (8.20)

Ca(ri) = G, (8.21)
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where D, is the diffusivity within the layer, { is measured in the direction
perpendicular to the reacting surface, r,, is the radius of the solid—solid
interface, and & is a geometrical factor such that 8=1.2.3 for slabs.
cylinders. and spheres, respectively. Experimental data for D; are used in
(8.19) and (8.20), because its theoretical estimation is difficult.

We also need an equation for the consumption rate of CaQ. Suppose that
¢, 1s the volume fraction of CaO in the particle. Then, a simple mass
balance gives

do, oA
e RS, (8.22)

\

where M, and p, are the molecular weight and density of the solid.
respectively, and ¢.(t = 0) = ¢,. Because of the formation of solid products.
the pore radius R(r, 1) continuously shrinks, and since volume is conserved.
R(r.1) is related to the initial pore radius Ry, and r,s by the following
equation

Rir.ty=e,Ro+ (1 —e)rslr. 0, (8.23)

where ¢, is the expansion coefficient (about 3.1). The last thing to do is
to write down an evolution equation for the pore size distribution f(r, f)
of the porous medium. Only accessible pores are of interest to us, and
therefore

Ao'fr. 01, 3
ot or

fir.n, (8.24)

4 dR] _d¢*
|:¢ S0 ?} =4

where ¢* is the accessible porosity of the system, f{r.0)= fo(r). and
Slr,0) = 0. where fo(r) is the initial pore size distribution of the pore space.
The second boundary condition arises because after a long time all pores
will be plugged.

The evolution with time or position of all quantities of interest can now
be calculated. Percolation enters this model in two different ways. One is
through D,, the effective diffusivity of the SO,—O- pair. Since the pores
are plugging, D, has to be calculated for a percolation network whose
porosity is shrinking, a problem discussed in Chapter 5. Percolation also
enters the model through ¢, the accessible porosity (accessible fraction of
the pores), which also decreases as the system evolves. To use the model.
assume a network model of pore space and estimate its ¢ and D, as the
pore space evolves (as ¢ decreases), substitute them into the above equa-
tions, and solve for the properties of interest.

This is a hybrid continuum model, and therefore it is also subject to the
same criticism as that for gasification. But its predictions are reasonably
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Figure 8.4 Percolution predictions of CaO conversion versus time t (in niin} and their

comparison with the experimentul duta (symbols). The results are, from top. at
temperatures 1023K, 1HI3K. 1163K. and 1213K (after Reves and Jensen 1987).

accurate. For example. Fig. 8.4, adopted from Reyes and Jensen (1987),
compares the predicted conversion of CaQO as a function of time with the
experimental data. The pore space model was assumed to be a Bethe
network with Z = 6. For short times, the agreement is excellent, but at
loniger times the predictions and the experimental data show some dif-
ference. Other variations of this basic model, as well as other approaches to
this phenomenon are reviewed by Sahimi et al. (1990).

8.4 Catalyst deactivation

Another phenomenon to which the concepts of percolation theory have
been applied is deactivation of porous catalysts. This phenomenon is
typically caused by a chemical species which adsorbs on and poisons the
catalyst’s surface and its active sites, where catalytic reactions occur, and
frequently blocks its pores. We often find that reactants, products, and
reaction intermediates, as well as various reactant stream impurities, also
serve as poisons and/or poison precursors. As a result, the morphology of
the catalyst evolves with time, and its pore volume decreases. After some
time. no sample-spanning cluster of open pores exists, and the catalyst
deactivates and loses its effectiveness, which means that catalyst deactiva-
tion is a percolation process. Because of its industrial significance, numer-
ous theoretical and experimental investigations have been devoted to
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catalyst deactivation. A general review of the subject is given by Hughes
(1984). As usual, we are interested only in the percolation models of catalyst
deactivation.

Early studies of catalyst deactivation either used a bundle of parallel
capillary tubes to represent the pore space of the catalyst. or employed
continuum equations of transport and reaction in which the transport
coefficients and other important parameters were inputs to the model. But
these models were inadequate because they could not take into account the
important effect of the interconnectivity of the catalyst pore space and its
time evolution during deactivation. Improvements to these models began in
the late 1970s. An interesting class of catalyst deactivation models was
developed by Froment and coworkers (see Nam and Froment 1987, Beeck-
man et al. 1987, for references to their earlier papers). in which probabilistic
arguments were used to derive expressions for the activity or reaction rate
of the catalyst. To represent the pore space, they used a variety of models,
such as a single pore. the bundle of parallel pores. and a Bethe lattice with
Z = 3. Using this lattice, Froment and coworkers were the first to recognize
that, in agreement with the experimental observations, the catalytic activity
of a catalyst undergoing deactivation vanishes much earlier than predicted
by the bundle or parallel tube model. This is caused by the interconnectivity
of the pores, the main idea in percolation, but they did not recognize it.
Catalyst deactivation was first identified as a percolation phenomenon by
Sahimi and Tsotsis (1985). To discuss percolation models of catalyst
deactivation, we again distinguish between the kinetic and diffusion-limited
regimes.

8.4.1 Percolation model of catalyst deactivation in the kinetic
regime

For concreteness, we discuss the model that was developed by Sahimi and
Tsotsis (1985). A porous catalyst, in an isothermal reactor, with the
catalytically active material uniformly distributed in its pores (at an initial
concentration Cy) is reacting while simultaneously undergoing slow deactiva-
tion. The overall reaction rate R in a single pore of radius R and length /,
of the catalyst is given by

R=2nRI,Re(Co - C;)" (8.25)

where C, — C; is the active site concentration at time ¢, 1@0 is the reaction
rate per unit area, and m is the order of reaction. A parallel deactivation
reaction process results in the deposition of a contaminant (a deposit with
an average volume b per unit weight of sites), which poisons active sites and
simultaneously blocks part of the pore volume. The rate of change in the
concentration of poisoned sites is given by
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A€\ Ry(Co- Coy 8.26
dt—d(ﬂ_ 5) (8.26)
where R, is the deactivation reaction rate per unit area, and »n is the
reaction order. The chemistry of the reactions is embedded in R, and Ry.
To a partially plugged pore with the initial radius R, we assign an effective

radius R.. the radius of a cylindrical pore with the same open volume and
length, and is given by

I}

142
R.= Rl,[l -a g(e)} (8.27)
Ro
where

1-[l+wn-16]" n<l, 6<x,
g(® =41 - exp(—0) n=1,
l1-[1+@m-D106]" n>1

with v=(1 —»)"". and
o =2Ceb. (8.28)
0=R,CI™" (8.29)

where 0 is the dimensionless time, and o is the effective size of the deposit.
If o< Ro. R, >0 at all times, while for o = Ry, R.= 0 after a finite time
0,. This establishes a one-to-one correspondence between R, and its
plugging time 6,. A pore of initial radius Ry 1s plugged at time 6, as long
as Ru < 0g(0). As the deactivation proceeds. larger and larger isolated
islands of partially plugged pores appear that are surrounded by the
completely plugged pores. Such pores can no longer contribute to the
catalytic activity of the catalyst. At or below a critical volume fraction of
the plugged pores, we intuitively expect no sample-spanning cluster of open
pores to exist. Realistically of course, the assumption of kinetic control may
not be valid near this point, because after some pores are plugged, the
reactants have to diffuse in the pore space to reach the active sites of
the catalyst. Thus. the model is oversimplified, but it is useful because it
clearly demonstrates the role of percolation during catalyst deactivation.
Similar to noncatalytic reactions with solid products, catalyst deactiva-
tion i1s a percolation phenomenon with rrapping. In both phenomena, the
effect of trapping is only significant if the pore size distribution of the pore
space 1s broad enough to allow for a wide variety of pore sizes in the
catalyst. Otherwise, the effect of trapping is small and the deactivation
process is essentially the same as the random bond percolation discussed in
Chapter 2.
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Figure 8.5 Reaction rate versus dimensionless time during a kinetically controlled
deactivation process. The reaction rate has been normalized by its value when no pare
has been plugged yet. The catalyst was modeled by a simple cubic network with
log-normal pore size distribution (after Sahimi and Tsotsis 1985 ).

How do we simulate this process? We start with a pore network with
distributed pore sizes, estimate the effective radii of the pores at any given
time (which are decreasing with time) using (8.27), and identify the com-
pletely plugged pores, the partially plugged but accessible pores, and the
trapped pores. In the subsequent steps of simulations, the trapped pores are
ignored, since they cannot be reached by the reactant. The simulations
continue until a sample-spanning cluster of open pores no longer exists.
Normally, the reaction rate of the catalyst is proportional to its accessible
surface area. Figure 8.5 presents the time variations of the reaction rate of
a catalyst calculated with a simple cubic network and a log-normal pore size
distribution. It is clear that the reaction rate vanishes at a finite 0,. The
knee of the curve is typical of deactivation processes in the kinetic regime,
which has been observed in experiments.

8.5 Catalyst deactivation in the diffusion-limited
regime

Catalyst deactivation is usually accompanied by diffusional limitations.
Similar to gasification, percolation models of catalyst deactivation in this
regime can also be divided into two groups: the hybrid continuum models,
and the network models.
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8.5.1 Hybrid continuum models

In this approach. we use differential equations of diffusion and reaction,
similar to those used for gasification and noncatalytic gas—solid reactions
with solid products. For concreteness, we discuss and develop a model of
catalyst deactivation for hydrodemetallation (HDM). During catalytic hy-
droprocessing for sulfur and nitrogen removal, nickel and vanadium por-
phyrins. which are the principal metals in petroleum and other metal-
bearing molecules, undergo HDM reactions leading to metal deposition and
catalyst poisoning. It has been suggested that the mechanism of HDM
involves an intermediate B

k) ka
A=B5C (8.30)
ke~

where A4 represents the metalloporphyrin compound in oil, B the hydrogen-
ated intermediate metallochlorin in oil, C metal deposited on the pore
surface. and ki, k.. and k. are three kinetic constants. The reactions are
believed to be first order, and therefore the concentrations C4 and Cp of 4
and B obey the following diffusion reaction equations

%:V-(D4VC4)—/<|C4+I(3CB, (8.31)
ACs , L,
E —V '(DBVCB)+,\|C,4_(,\3+,\1)CB. (832)

In spherical coordinates, these equations are similar to (8.6) and (8.16). The
main difference between catalyst deactivation and noncatalytic gas—solid
reactions with sohid products is that, catalytic reactions occur only at
the active sites of the catalyst, and therefore the deposition of the solid
products on the pore surfaces may not be as simple as that in the
noncatalytic cases.

During deactivation the deposition mode in any pore can be either
uniform or discrete. In the first case we assume that the thickness of the solid
layer formed on the pore surface is the same everywhere. This implies that
the fraction of the active sites covered by the deposits increases rapidly from
zero to one. Physically, this is possible if the deposit is porous enough to
allow the reactants to reach the active sites. or if it contains catalytically
active materials itself. In discrete deposition we assume that a fraction of
the catalyst’s active sites becomes nucleated by the product, after which
deposition occurs only on such sites. Therefore, we no longer have a
uniform laver of deposits on the pore surface, but a series of discrete lumps.
Once we make up our mind about the mode of pore deposition, we can
proceed to calculate various properties of the catalyst as deposition takes
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place. For example, in uniform pore deposition, the pore radius R changes
with time according to

a_R - M(IRdYec‘ (8.33)
at Pd

with R(t = 0) = Ry, where M, and pg are the molecular weight and density
of the deposits, respectively, Ry is the rate of deposit production per unit
area, 7y is the degree of catalytic activity relative to the original surface, and
O, is the fraction of the active sites covered by the deposits. We have
assumed that the pore is cylindrical and that the reaction is first order. Note
the similarity between (8.3), (8.11), (8.12), (8.22) and (8.33).

The following steps are taken. We assume a model of the pore space to
determine its effective diffusivity during various stages of deactivation. We
solve (8.31) and (8.32) numerically. We use (8.33) to keep track of the
evolution of the pore sizes, and thus update the structure of the pore net-
work. The numerical solution of (8.31) and (8.32) stops when the pore
network reaches its percolation threshold. This approach was developed by
Shah and Ottino (1987b), Melkote and Jensen (1989), and Beyne and
Froment (1990). It is relatively successful but is subject to the same criticism
discussed for gasification and noncatalytic gas—solid reactions with solid
products regarding the applicability of the continuum equations as the
percolation threshold is approached.

8.5.2 Network models

In this approach we represent the pore space as a network of interconnected
pores with distributed pore sizes. If the pores are cylindrical, and if
diffusion is mainly in the axial direction, then the pore diffusion and
reaction equations are simplified to

aC 9°C
atA Dy, a.\"A kKi\Cyq+k:Cp. (8.34)
aaCI:B:DB/’ aaCB+,‘ Cy— (ka+ k3)Cs. (8.35)

These equations are valid for every pore provided that for every pore
I/R>>1. Normally, a steady state condition is assumed because the
changes in the catalyst pore space are much slower than diffusion and
reaction. Note that D4 and Dy are macroscopic diffusivities, whereas D 4
and Djp represent microscopic or pore-level diffusivities. Equations (8.34)
and (8.35) are then solved with the boundary conditions C,(x =0) = Cy,
Ci(x=1,)= Ca1, Cplx =0) = Cpy, and Cs(x =1,) = Cp1, where the boundary
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concentrations are still unknown. To obtain the concentration profile of C
in the entire network, we write down a mass balance for every node of the
network

Y Sy(Ja)y=0. (8.36)
Y. Sy(Js)y= 0. (8.37)

where S is the cross-sectional area of pore ij. and J, is the diffusive flux of
4. Using the analytical solutions of (8.34) and (8.35) the fluxes J, and Jp are
determined and substituted into (8.36) and (8.37). These fluxes contain the
nodal concentrations C4o, Cys, Cgo. and Cg. Writing (8.36) and (8.37)
for every node of the network results in a set of simultaneous equations for
the nodal concentrations. By solving these equations we obtain the concen-
tration profiles of 4 and B, and thus C.= 1,,k;C;s in the entire network.
The quantity T,, i1s the measurement time. Once the concentration profile of
C in every pore is known, a pore deposition mode is assumed and the
deposit profile in every pore is calculated. Normally, the reactive molecules
are relatively large with an effective diameter R,, comparable to those of the
pores. If so, the pore diffusivities D,, and Dg, are a function of A = R,/R,
and since metals or coke continuously deposit on the pore surface and
reduce R, the pore diffusivities also decrease continuously. In this case, we
can use an equation that relates the pore diffusivity to A; a well-known
example is given by (Brenner and Gajdos 1977)

W/ Winax

X/L

Figure 8.6 Comparison of percolation predictions of the weight W of the deposit C
during an HDM process with the experimental daia (circles). Wmax is the maxinmum
weight of C in the profile. and X is the distance from the center of the catalyst particle.
The purticle wus modeled by an L x L x L cubic network (after Arbabi and Sahimi 1991).
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g—"‘ﬁ =1+ 1.125MnA + 0.416) + 2.250°InA., (8.38)
Aoco
which is accurate for A = 0.4, where D,.. is the bulk diffusivity (in an
unbounded fluid).

This network model is valid both near and far from the percolation
threshold of the catalyst (i.e., the deactivation point), and is free of the
limitations of the hybrid continuum models. This model was developed by
Arbabi and Sahimi (1991) and can be used for any pore structure or pore
size distribution, and any diffusion reaction mechanism. Figure 8.6 com-
pares the weight profile of C in a catalyst particle. represented by a cubic
network of linear size L, with the experimental data for an HDM process.
Given the complexities of such phenemona. the agreement is excellent.
Arbabi and Sahimi (1991) also showed that their model can be used for
studying deactivation with kinetic schemes more complex than (8.30).

8.6 Flow and deposition of colloidal particles and
stable emulsions in porous media

So far we have discussed phenomena that change the structure of a porous
medium by chemical reactions. We now discuss a class of phenomena that
change the morphology of a porous medium not by a chemical reaction but
by physical interactions. The physical interactions are between the pore
surfaces and the fluid and between the pore surfaces and the fluid contents.
This class of phenomena includes deep-bed filtration. migration of fines
(small, solid. and electrically charged particles), and flow of stable emul-
sions in a porous medium. These phenomena occur in many processes of
industrial significance such as gel permeation and enhanced recovery of oil.
Since all three phenomena are in many ways similar, we only discuss fines
migration, and only note its differences with the other two.

Fines migration is caused by the contact of the solid matrix of a porous
medium with an incompatible brine solution. If a sandstone core, saturated
with a brine solution, 1s flushed with brine solution and followed by the
injection of distilled water, the permeability of the core decreases. The
reason is that fines, in the form of clays or other small particles, deposit on
the surface of the pores and reduce the porosity, and thus the permeability.
This causes severe problems for enhanced recovery of o1l as the reduction
in the permeability decreases the amount of oil that can be produced.

Stable emulsions, on the other hand, are generated in situ in the porous
medium, or sometimes they are injected into it. In miscible displacement of
ol by an agent, if the viscosity of the displacing fluid is less than that of
oil, the process would be unstable and very inefficient. To make the process
more stable and efficient, stable emulsion droplets are used to increase the
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viscosity of the displacing fluid. But the droplets can deposit on the surface
of the pores and reduce the permeability of the pore space. As such, the
phenomenon is very similar to fines nugration. The main difference between
the two 1s that emulsions only form monolayers on the pore surface,
whereas fines can deposit on top of each other. Obviously, in both problems
the reduction 1n the permeability of the pore space 1s a percolation process.

How do we model this class of phenomena? As with the other three
phenomena discussed above, there have been many studies of these processes
by a variety of methods and techniques. Most of them have used a continuum
approach in which the behavior of the phenomena is approximated by
differential equations with no regard for the pore space structure. These studies
were reviewed by Tien and Payatakes (1979), and are not of interest to us.
More recently. a few models have been developed in which the pore space is
represented by a network of interconnected pores, to take into account the effect
of the pore space topology and percolation. These models have been reviewed
and discussed by Sahimi et al. (1990). Here, we discuss one such model.

The percolation model we discuss was developed by Sahimi and Imdakm
(1991) and Imdakm and Sahimi (1991). In their model, the porous medium
is represented by a network of interconnected cylindrical pores with dis-
tributed radii, and the calculations are carried out in several stages. In the
first stage. the initial flow field within the network is computed (see
Chapters 5 and 6). Particles are assumed to be spherical with distributed
radii; they are selected from a particle size distribution, then injected into
the network. The exact trajectory of each particle within a pore is then
determined by writing a force balance for each particle and taking into
account the effect of various forces acting on it. Some of these forces are
gravitational, molecular dispersion, double-layer interaction, and drag
forces and torques. If this trajectory takes the particle to the pore surface,
then the condition for its deposition is inspected. If the attractive forces are
larger than the repulsive ones, then the particle deposits on the surface. But,
if the pore surface is perfectly smooth, the particle will simply roll on it and
leaves the pore. In reality the pore surface is not smooth, therefore it is
necessary to include a measure of surface roughness in the model. Imdakm
and Sahimi did this by distributing overhangs of various heights on the pore
surface. If the particle does deposit, its location is recorded. The fluid flow
exerts a drag force on the deposited particle, which increases the resistance
to the flow in that pore. This increase in the resistance is equivalent to a
decrease’in the effective radius of the pore. After each deposition, the pore
radius is updated. Moreover, particle deposition affects the flow field in the
network. Hence, each time a few particles are deposited on the pore
surfaces. the flow field in the entire network is recalculated, from which the
permeability of the pore space at that time is obtained.

If the particle is not deposited, it travels through the pore, arrives at a
node, and selects its next pore with a probability proportional to the flow
rate in that pore. The motion of the particles is biased by the flow field in
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Figure 8.7 Comparison of percolation predictions of the variutions of the permeubility
k of porous media with the injected pore volume q during flow of fines and emulsion
droplets with the experimental data (symbols). k has been normalized by its value at
g =0 (after Sahimi and Imdakm 1991).

favor of the pores that carry a larger flux of fluid. This is similar to
hydrodynamic dispersion in Chapter 6. If the effective radius of the
particles is larger than the radius of the pore, the pore is completely plugged
by the particle. Otherwise, the trajectory of the particle within the new pore
is calculated and the process continues. If deposition of the emulsions is
modeled, only monolayer formation is allowed. Figure 8.7 compares ex-
perimental data with the predicted permeabilities for fines migration and
for flow of stable emulsions; the agreement is excellent. Also shown are the
predicted permeabilities for a smooth pore surface. The permeability of the
porous medium obeys a scaling law near the percolation threshold that is
different from (2.11) for random percolation. Complete details can be found
in the original papers of the authors.

8.7 Conclusions

Reaction, deposition, and transport processes in a porous medium that
cause dynamical changes in the morphology of the medium are percolation
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processes. Percolation allows us to develop microscopic models for a large
class of such phenomena, and to make quantitative predictions for their
various properties. Given the success of such models, we may use them for
designing better structures for our porous media, such as catalyst particles,
so they can better resist the dynamical changes in their structures and have
a much longer useful life time.
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9
Fractal diffusion and reaction kinetics

9.0 Introduction

Chapter 8 discusses the application of percolation to transport and reaction
in porous media. In this chapter we consider the effect of a percolating
structure on diffusion and reaction kinetics. Diffusion in a disordered
system is strongly influenced by its structure. Our main goal in this chapter
1s to study the effect of a fractal structure on diffusion, an extreme but
rather common form of disorder. Reaction kinetics in systems as diverse as
catalytic materials, membranes, and molecular aggregates can also be
influenced by their structure and, if the reactions are diffusion-controlled,
the effect of disorder is amplified. The reactions that we consider here are
mostly heterogeneous, i.e., they take place at the interface between two
different phases, e.g., 2 gas and a solid phase, as in porous catalysts.
The key difference between this chapter and the previous chapter is that. the
diffusion—reaction processes in Chapter 8 cause dynamical changes in the
structure of the media in which they take place, whereas the processes in
this chapter do not cause such changes. Instead. they are greatly affected
by the structure of the media, and their behavior shows dramatic departure
from the classical laws of diffusion and reaction. Moreover, there are many
systems in which a nonchemical reaction takes place. For example, excita-
tion recombination and quenching in photosynthetic units are in this class
of nonchemical reactions. Depite their fundamental difference with chem-
ical reactions. many features of the two phenomena are the same.

9.1 Fractal diffusion in percolation systems

Chapters 5 and 6 show that diffusion can be simulated by a simple random
walk. A random walker is put on an occupied site of the network. which at

1AK
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each time step takes one step to one of the nearest neighbor occupied sites
of the node at which it is currently residing. If the bond conductances are
distributed. then the probability of taking a step from site i to site j is
proportional to the conductance of the bond ij. If all open bonds have the
same conductance, then the walker selects a nearest neighbor occupied site with
probability 1 Z, where Z is the coordination number. This basic idea was first
used by Brandt (1975) to study diffusion of noble gasses in glasses, modeled
as a percolation network. However, the idea was popularized by de Gennes
(1976). who made an analogy between the motion of the random walker in
the percolation network and that of an ant in a labyrinth, followed by the
numerical simulations of Mitescu and Roussenq (1976). For the most recent
works see Roman (1990) and Sahimi and Stauffer (1991). For recent reviews
see Havlin and Ben-Avraham (1987) and Haus and Kehr (1987).

One of the most important properties of the random walk is the average
probability (P(r. f)) that the diffusing particle is at point r at time t, where
r=|r| and the averaging is over all initial positions of the diffusing
particles. For ordinary diffusion in a d-dimensional and macroscopically
homogeneous but microscopically disordered system, {P(r.t)) is given by
the Gaussian distribution

(P(r.0))y ~ ™ exp[— 4’D t], 9.1)

and obeys the classical diffusion equation. The mean-square displacement
(+") is given by {r’) = 2dD.1, where the effective diffusivity D, is constant
and independent of time. Since { P(r. 1)) is proportional to the concentration
of the diffusing particles (see Chapter 6), these are just another way of
expressing Fick’s law of diffusion. We recall the precise conditions under
which (9.1) is valid. If r,= {+*)' %, then (9.1) is valid if r; is much larger than
the length scale over which the system is macroscopically homogeneous.
This length scale for percolation systems is the correlation length §,, and
therefore only for r,>>§, one has Gaussian diffusion with a constant
diffusivity. From (9.1) it also follows that the probability of being at the
origin at time f. (Po) = (P(0,1)), is given by

‘ (Po)y~ 1742, 9.2)

However. as the percolation threshold p. is neared §, becomes large. and
therefore at least at the initial stages of diffusion r, will be smaller than &,.
At p, the correlation length is divergent. the largest percolation cluster is a
fractal object, hence diffusion cannot be Gaussian at any time. When
r, << Ep. {(r’y grows nonlinearly and subdiffusively with the time ¢ such that

Py~ 9.3)
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where d,, is called the fractal dimension of the random walk (Chapter 6). A
transport process characterized by (9.3) is called anomalous (Gefen et al.
1983) or fractal diffusion (Sahimi et al. 1983). Gaussian diffusion is just a
special case of fractal diffusion when d, = 2. Equation (9.3) is valid for all
fractal systems, for which one always has, d,, > 2. The implication of (9.3)
is that, D, =d{r?)/dt is time-dependent and vanishes as t — . Hydro-
dynamic dispersion studied in Chapter 6, and turbulent diffusion, are two
examples where d,, can be smaller than two.
Let us now define a new quantity d, by

Dy
ds = =, 9.4
d. 9.4

where Dy is the fractal dimension of the system; for the largest percolation
cluster Dy= D, as given by (2.16). This quantity is called the spectral or
fracton dimension, a term that was first used by Alexander and Orbach
(1982). One motivation for introducing this quantity was to obtain (Py) for
a fractal medium. Diffusion in a fractal medium is said to be recurrent, i.e.,
given enough time the random walker will visit most points of the medium.
Thus, (Po) should be proportional to 1/V, where V is the volume that the
random walker explores. Since, V ~ ({r’))”’?, we obtain, using (9.3),
(Po) ~ 1792 Another motivation for introducing this quantity is discussed
in Chapter 10, but let us note that in some sense d; is a measure of the
interplay between the fractal geometry of the system (measured by D) and
the dynamics of diffusion (measured by d,;). For nonfractal (homogeneous)
media, dy, = 2, Dy=d, and d; = d. This tells us immediately that the role of
d; for fractal systems is similar to that of d for Euclidean systems, and we
shall see that this is indeed the case.

For percolation networks we can relate d,, to the other exponents defined
in Chapter 2. Suppose that diffusion takes place only on the sample-span-
ning cluster. Then, from (2.10) we have, D.~ (p— p)* P ~E,° where
6=(1— B,)/vpy Since we are interested in the fractal diffusion regime
where r; < &), we can replace §, with (r*)'"? and write, D, ~(r*)" % On the
other hand, D.~d{r*)/dt~(r*y"*%, which after integration yields
(r*y ~ (¥¢*® implying that (Gefen et al. 1983)

do=2+ 2B 9.5)

which shows that d.. > 2 (since |1 > B,). Equation (9.5) also tells us that, in
order to estimate p, we can calculate d.. by a simple random walk (Pandey
et al. 1984). This idea turned out to be a rather accurate method of
estimating p, although not as accurate as once hoped. More accurate
methods are now available. Random walk simulations can be vectorized for
use in supercomputers such as the Cray Y-MP, which allows us to study
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diffusion in very large systems (see Sahimi and Stauffer 1991, where the
computer program for doing this is described and given). Equation (9.5) can
be rewritten as, di.=2-d+ u/vp+ D, which means that d.> D, and
therefore d; < 2. If we use the values of the critical exponents (Chapter 2) we
find that. d(d =2) = d«(d = 3) = 1.32, and ds(d = 6) = 4/3. Alexander and
Orbach (1982) conjectured that ds = 4/3 at all dimensions. If this conjecture
were true, it would have provided a simple relation between M, which is a
dynamic exponent, and B, and v,. which are static (geometrical) exponents.
It is now believed this conjecture is wrong, but d; = 4/3 is still an excellent
approximation for percolation clusters and many other fractal systems.

When does a crossover from fractal to Gaussian diffusion take place?
Because for r, << &, diffusion is fractal, while it is Gaussian for ry > E,, the
crossover time I, is when r; ~ E,. Since diffusion time is of the order of
ri/D., we must have, tc,~ &,/ D, ~ 5", Using the scaling laws for &, and
D,. (2.6) and (2.10), we obtain

teo ~ (p—pe) TP P, (9.6)

But — 2v, — u + B, is always negative, which means that as p. is approached
the crossover time ., becomes very large, and we have to wait a very long
time to observe Gaussian diffusion. This has an important implication for
experimental studies of diffusion in percolating systems, e.g., a porous
medium near its percolation threshold. If D, is measured at < 1, it will be
dependent upon the measurement time, whereas for r>> 1, it will be a
constant, At p. the crossover time 1, is divergent, which explains why
diffusion is always fractal at p..

For fractal diffusion the probability (P(r, 1)) is no longer given by (9.1),
and does not obey the classical diffusion equation. The proper form of
{P(r. 1)) for diffusion on fractals was a controversial subject for several
years. It now appears that the following equation

- de2 _ r ‘
(P(r.1)) ~t exp[ [(rz(t))m] :l, (CH))

originally suggested by Guyer (1985), can provide accurate representation
of diffusion on fractals. where

d\’
de—1"

U=

(9.8)

Equation (9.7) is not in general exact, but it is a very good approximation;
see Havlin and Ben-Avraham (1987) for a discussion of this. Equation (9.7)
also tells us that for fractal systems

(Po) ~ 1797, 9.9)
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derived above using a scaling argument. A comparison of (9.9} with (9.2)
confirms our assertion that, for fractal media, d; plays the same role as d
for Euclidean systems.

What happens if the random walk is performed over al/ percolation
clusters (as in, e.g., a diffusion experiment in a porous medium in which the
the molecules diffuse in both the isolated and connected regions of the pore
space)? Chapter 2 shows that at p. there is a distribution of clusters with a
wide variety of sizes. We need to average (r*) over the cluster size
distribution (2.14). This was done by Gefer} et al. (1983), who showed that
diffusion is still fractal but with {r*) ~ t*“" where a denotes an averaging
over all clusters, and di = 2d./(2 — B,/v). Moreover, since only the sample-
spanning cluster is fractal. but the collection of all clusters is not fractal,
(9.9) is no longer valid. We need to average (9.9) over all clusters whose
distribution is given by (2.16). Because we have finite clusters as well as the
sample-spanning (infinite) cluster, { Po) will approach a constant for long
enough times, and we obtain

(PY0.1) = P(0.00)) ~ 1T, (9.10)

where, ds = 2d/d,. Nonfractality of all clusters causes D. to be replaced by d.

9.2 Diffusion-controlled reactions on percolation
clusters

Before discussing various diffusion-controlled reactions, we introduce a key
quantity, S(), which is the number of distinct sites visited by a random
walker. What is the physical meaning of S(¢)? Since S(f) counts the number
of distinct points that have been reached by the random walker, dS(1)/dt,
the number of distinct sites visited per unit of time, or the volume of the
system explored per unit of time (if we give a unit volume to each site), is
in some sense a measure of the efficiency of the random walker for reaching
various regions of the system (de Gennes 1983). For example, if reacting
molecules are diffusing thoughout a system, their ability to reach one
another and react. i.e., the reaction rate, should be related to dS(¢)/dt. For
diffusion in homogeneous media, S(¢) and {Py(t)) are related through their
Laplace transforms (Montroll and Weiss 1965)

S0 =% (Bo(M)), ©.11)

where A is the Laplace transform variable conjugate to ¢. Using (9.2) we
immediately obtain
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1 od=1
S()~1tlnr d=2 9.12)
t d=3

Self-similarity of fractal media means that (9.11) cannot be expected to hold
at short or intermediate times, because the effect of the origin of the random
walk is strong at such times. But for sufficiently long times, we expect (9.11)
to be applicable to fractal media. and using (9.9) we obtain for ds < 2

Sty ~ 12, (9.13)

which was first given by Rammal and Toulouse (1983) We now consider
several types of diffusion-controlled reactions in disordered media, and
discuss the main results and their experimental realization.

9.2.1 Diffusion-controlled trapping

Consider the reaction
A+B—> B 9.14)

where 4 is a diffusing reactant with concentration C,, and B is a stationary
absorbing reactant or trap with concentration Cj distributed randomly
throughout the system. We would like to know how C, varies with the time
t. This problem was of great interest for a long time, as it is directly relevant
to excition trapping and recombination in disordered materials (for a review
see Blumen er al. 1986). It has been shown that the long-time behavior of
C, 1s dominated by the diffusion of A4 into the regions that contain no B at
all, which are very rare. Using this, the following relation has been derived
(see, e.g.. Donsker and Varadham 1975, Grassberger and Procaccia 1982,
Kayser and Hubbard 1983)

Cqi ~ exp[—aCy+ 29+, (9.15)

where « is a constant. If the B molecules are distributed in a fractal medium.
then (9.15) would still be valid provided that we replace d with d;. Since for
percolation dys = 4/3. we obtain

pa

C, ~exp(—aCy’t" %y, ©9.16)

However. since C, is controlled by rare events, experimental confirmation
of (9.16) is very difficult if not impossible.
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9.2.2 Diffusion-controlled annihilation

Consider next the reaction

A+A -0, (9.17)

where molecules A, initially distributed randomly in the system, diffuse until
they collide with each other and disappear. In classical kinetics this reaction
is considered as second order, which means that the rate of reaction R is
given by

R=KC}, (9.18)

where K is a constant. On the other hand, the rate of reaction is, by
definition, the rate of change of C, with respect to time, i.e.. R = — dC/dt,
which, when substituted into (9.18) and integrated, yields

1 1
— ———=Ki, 9.19
Cs Cao )

where C, is the initial concentration of 4. Equation (9.19) tells us that the
dimensionality of the system plays no role in this reaction. This is similar
to a mean field treatment and, indeed, implicit in the derivation of (9.19) is
that the system can be represented by a mean concentration. This is true if
the system is well mixed, i.e., if C, is uniform everywhere. However, if this
uniformity cannot be achieved, then (9.19) is not expected to be valid, at
least for low-dimensional systems, because the fluctuations of C,
throughout the system cannot be ignored. For this case, Kang and Redner
(1985) showed that

Cq= Cat™ (9.20)

which is valid for d < 2. For d = 2, we have C, ~ t~', which is essentially
the same as (9.19).

What happens if (9.17) is carried out in a fractal system? From our
discussions so far it is easy to guess that

— fael l
Cy~t e ——, 9.21
A t S(t) ( )

which is valid for d; < 2. Since for percolation, ds = 4/3, (9.21) takes on a
simple form, Cs=t"" and simulations confirmed this (Meakin and
Stanley 1984). Equation (9.21) also implies that the rate coefficient K is no
longer a constant. In this case we write (de Gennes 1983)

K ~ dS(t)’

22
pr (9.22)
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which. together with (9.13) yields

K~ (9.23)

Note that K is a constant only if d,=2. If we now use ds=4/3 for
percolation systems. we obtain

K~t'*~CV (9.24)

Equations (9.21) and (9.24) have been confirmed experimentally. Here we
discuss these experiments briefly and refer the reader to Kopelman (1988)
for their full details. In one experiment an exciton fusion reaction was
studied in which two triplet excitations fused and produced a singlet
excitation. The reaction takes place inside a mixed crystal of naphthalene
alloy. made of C\¢Hs and CjoDs. The naphthalene molecules are distributed
randomly among the alloy’s lattice sites, and the excitons are restricted to
the C,,H« clusters. If the mole fraction x of C,oHs is not large enough, the
excitons are restricted to small clusters and cannot diffuse very far. But if
x is larger than the percolation threshold x, in this case x, = 0.08, then the
excitons can explore a large cluster. At or very close to x. we expect (9.24)
to hold, whereas for x > x,, we expect to obtain the classical result that X
is independent of time. Figure 9.1 shows the results of the experiment for
x. = 0.08. i.e.. at the percolation threshold of the naphthalene clusters, and
the slope of the curve is 0.32 + 0.03. in complete agreement with (9.24).
Another interesting experiment which confirmed (9.24) is naphthalene
photodimerization in porous membranes. This is. a reaction of the type,

1.0}

|0g10 K

0.1 "
10 100 1000

t

Figure 9.1 Logarithmic plot of the reaction rute K versus time t (in ms) for the exciton
fusion reaction in isotopically mixed nuphthalene crystals at the percolation threshold.
The slope of the line is ds,2 — 1 =~ 0.321 0.03 (after Kopelman 1988).
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A* + A* 5 A** 5 A + A + a photon, where A* is a naphthalene molecule
excited to its first triplet state, and A** is the intermediate dimer in its
first excited singlet state. The experiments were carried out in a solution
embedded in many types of porous membranes. The slope of the InK versus
Int plot was again found to be about 1/3, in good agreement with (9.24).

What happens if reaction (9.17) is carried out under steady state condi-
tions, where C4 does not depend on time? In this case classical kinetics does
not have much to offer: it still tells us that the reaction is second order. But
suppose that reaction (9.17) is carried out at steady state in a fractal system.
If we write

dC,

R:—iTzkdzkﬂm**k (9.25)

where K is a constant, and integrate this equation we obtain

1 1 :% td;lZ

T d (9.26)
Thus, as C; — 0 (or as t — o), we have
ds o 2id,
r~ (2K0J i, 9.27)
which, when substituted into (9.25), yields
R =Ko (i, (9.28)
n=l+%, (9.29)

so that with ds = 4/3, we obtain n=5/2, distinctly different from the
classical value, n = 2. Equation (9.29) implies that if the reaction is carried
out in a one-dimensional system (ds = 1), e.g., a molecular thin wire, its
order would be three, although the reaction is still bimolecular. Moreover,
there are fractal systems whose fractal dimension is less than one. Such
systems were called dust fractals by Mandelbrot (1982). A practical example
may be catalytic islands on noncatalytic support, which are in fact quite
common. For dust fractals, we have 0 < ds < 1. and hence, 3 < d; <o, i€,
we may have a reaction with a very large order. Equation (9.29) has also
been confirmed experimentally (see Kopelman 1988).
Consider now the diffusion-controlled reaction

A+B -0, (9.30)

where 4 and B are initially distributed randomly throughout the system.
Classical kinetics tells that
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dC, dCg
R:——:——: .
i 7 KC,Cs. (9.31)

If ¢ = Cpy — C . then. the solution of (9.31) is easily found to be

Ci(ty = ¢ , 9.32
(0 (1 + e/ Ca)exp(Kct) — 1 ( )

whereas if C,0 = Cg. then,

_Caw

G = ke

(9.33)

Similar to reaction (9.17), while concentration fluctuations are important to
reaction (9.30). especially at low dimensions, (9.32) and (9.33) do not take
them into account. That is. even if reaction (9.30) takes place in a
nonfractal. but low-dimensional system, we may still observe drastic devia-
tions from the predictions of classical kinetics. For this case, Kang and
Redner (1985) presented the following scaling argument to obtain the
relation between C4 and 1. Assume that initially Cs = Cg = Co, and con-
sider a region of linear size L. In this region there are GLY+[C L 4
molecules (and similarly for B), where the second term represents the
fluctuations in the concentration due to the initial random distribution of
the molecules. After a time ¢ ~ L*/D,,. where D,, is the microscopic diffusiv-
ity. all pairs of the molecules will be consumed, and we will be left with only
about (C,L%)' > molecules of 4 or B, so that the concentration of A or B
will be. €y~ (CoeL")' */LY. which means that

Ci=Cot™ ™", (9.34)
which is valid for d = 4. Only when d = 4, do the predictions of (9.33) and
(9.34) become comparable. The same type of argument can be used for deriv-

ing (9.20). To obtain the corresponding expression for a fractal system, all
we have to do is replace LY with L? and 1 ~ L* with ¢ ~ L". This results in

C,= Cot™ ¥4, (9.35)

which means that d is simply replaced with d;. Equation (9.35) also implies
that for percolation systems

C,=Cu"? (9.36)

These results were also confirmed by numerical simulations (Kang and
Redner 1985. Meakin and Stanley 1984).
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9.3 Conclusions

The main conclusion of this chapter is that concentration fluctuations can
play a dominant role in diffusion-controlled reactions. Percolation-like
disorder amplifies such fluctuations, and therefore gives rise to unusual
kinetics that cannot be predicted by the classical and mean field theories.
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10
Vibrations and density of states of
disordered materials

10.0 Introduction

Disordered and rigid materials can have unusual properties. Consider, for
example, gel polymers that are of great practical importance. The gelling
solution at the gel point, i.e., the point at which there is a transition from
a liquid-like system (sol) to a solid-like system (gel), has unique properties:
Its viscosity is infinite, whereas all of its elastic moduli are zero. Moreover,
the gel network has a fractal structure at the gel point. Chapter 11 shows
that the gel point is in fact a percolation threshold. Another example is
carbon-black composites, which are made out of rigid particles in a soft
matrix. The rigid components form very large fractal clusters that resemble
those near the percolation threshold p,, much like the gel networks. If
we try to deform such materials, the distribution of the forces that are
exerted on the monomers of the gel network, or on the rigid and soft
particles of the carbon-black composites, depends on the topology of
the system, and if the system is fractal, this distribution will not follow
classical laws of mechanics, just as flow, diffusion, and reaction kinetics
in fractal media do not follow the usual classical laws (Chapter 9). The
same applies to the vibrational properties of such materials. In the pre-
vious chapters, the effect of fractal and percolation structures on diffusion.
flow, and reaction Kinetics are discussed. In the present chapter we
focus on vibrations of rigid percolation networks, discuss the effect of a
fractal structure on the vibrational properties, and review their experimental
realization.
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10.1 Vibrations and density of states of
homogeneous rigid structures

Consider an L x L x L network in which each site contains a particle of
mass m. The particles are connected to each other by springs. Suppose that
u, = (U, U,, u.) is the displacement of the particle at i. Then, the equation
of the motion for this particle at time ¢ is given by Newton’s law

du
I = F. 10.1
m % Z ( )

where F is any kind of force that is acting on the particle. If the springs that
connect the particles are harmonic and can only tolerate stretching forces,
then F is given by Hooke’s law (force = spring constant x displacement),
and the equation of motion becomes

a-;;,- =Y kil(u; - u) - Ry, (10.2)
()]

m

where Rj; is a unit vector from i to j, k; is the spring (elastic) constant of
the spring between i and j, and the sum is over all particles j that are
connected to i. For simplicity we take m = 1. Of course we can include other
types of forces in (10.2), e.g., the bond-bending or angle-changing forces
that are discussed in Chapters 4 and 11.

The standard method of analyzing (10.1) for vibrational properties is to
assume. u; = Ajexp(— [®f), where © is the frequency of vibrations, A;is an
unknown vector to be determined, and i = V- 1. Substituting this into (10.1)
yields a set of n = L simultaneous linear equations for the A; which has n
positive eigenvalues ®7, ©3, . .. .. and n eigenvectors Aer, Aea, .. ... Then,

the solution to u, is given by

u; = ReI:ZC,-Aejexp(—imjt)], (10.3)

I

where the ¢; are complex numbers that have to be determined from the
initial conditions, and Re denotes the real part of the complex number.
Having determined the u,, we can obtain all vibrational properties of the
system. One of the most important properties is N(w), called the vibrational
density of states. N(w)dw is the number of vibrational modes with a
frequency between © and o+ do. This is an important quantity for
obtaining the specific heat and thermal conductivity of the system, and can
itself be obtained from the distribution of the eigenmodes ;. But there is a
much simpler way of obtaining the dependence of N(w) on .
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Consider, for example. (10.2) and take its Fourier transform

-0’ = Y k(- 1) - Ry). (10.4)
)

where u;(w) is the Fourier transform of u; If we write (10.4) for one
principal direction of the network, say x, we obtain

~ = Y k(i — i) (10.5)
ip

Consider now the diffusion equation in discretized form (5.9)

9F;

3 2 Wil Pi@) = Pi(0), (10.6)

n

where P;(t) is the probability of finding a diffusing particle at site i of the
network at time ¢, and Wj; is the transition rate, i.e., the probability that the
diffusing particle jumps from site i to site j per unit time (or the conductance
of the bond between i and j). If we take the Laplace transform of (10.6),
and ignore the term that arises from the initial condition, we obtain

APi(L) = Z Wy(P; - P), (10.7
(i

where 13,-(7t) is the Laplace transform of Pi(f), and A is the Laplace transform
variable conjugate to . If we now compare (10.5) and (10.7), we see that
they are very similar: The role of i, is played by P;, and that of - w? by A.
We may then interpret A as the frequency for diffusion, just as © is the
frequency for vibrations.

Consider now (Po(r)), the average probability of being at the origin at
time ¢ (see Chapter 9), where the averaging is taken over all initial positions.
Equation (9.2) tells us that for macroscopically homogeneous media we have

(Po(t)y~ ™7, (10.8)

where d is the dimensionality of the system. N(®) should in principle be
obtained from u(w). But it can be shown that N(®) and {Py(r)) are related
to each other through the following equation (Alexander et al. 1978)

20

Nw) =——
T

Im {Py(— 0, (10.9)
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where Im denotes the imaginary part of the complex number. If we take the
Laplace transform of (10.8), and substitute it in (10.9), we obtain

N(w) ~ v, (10.10)

a well-known result. Equation (10.10) is valid at low frequencies (i.e., long
wavelengths or large length scales over which the system is homogeneous),
such that o < w.,. where o, is some cutoff or crossover frequency. It can
be shown that even if we obtain N(w) from the solution of (10.1), it would
still follow (10.10). provided that the system is macroscopically homogeneous.
This is also clear in (10.10). There is nothing in this equation that tells us
whether V() was obtained from the solution of (10.1) or (10.6). Only the
dimensionality of the system has entered this equation. Vibrational states in
homogeneous systems, expressed by (10.10). are usually called phonons,

10.2 Vibrations and density of states of fractal and
percolation networks

What happens if our network is fractal? For example, suppose that we have
a percolation network with L << §,. where £, is the correlation length
defined in Chapter 2. Then, the sample-spanning cluster is a fractal object
with a fractal dimensionality D,. Our network is no longer macroscopically
homogeneous, so we do not expect (10.10) to hold. The density of states of
fractal networks was first discussed by Alexander and Orbach (1982). If
L <« Ep. then (9.9 tells us that

(Po(n))~ 177, (10.11)

where d, is the spectral dimension introduced and discussed in Chapter 9.
At first we may be tempted to use (10.11) in (10.9) to obtain the correspond-
ing expression for N(w) for fractal networks. But we cannot do this
straightforwardly. To see this, recall that d, = 2D./d, then substitute D, =
d—Bp/vp (2.16) and d\. = 2 + (1 = PBp)/v, (9.5) in this equation, to obtain

0 Vpd—Bp
2vp+u—PBp

3

(10.12)

Observe that the exponents v, and B, are purely topological properties and
do not depend on the equation governing a given phenomenon in a
percolation network, but p is the exponent for conductivity and diffusivity
of percolation networks, both governed by (9.6). On the other hand, recall
that in a percolation network of springs near p,., the effective elastic moduli
G(p) of the system obey the following scaling law (2.9)
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G(p)~ (p - pe). (10.13)

where in general f'# . Therefore, in this case the nature of the equation from
the solution of which N(w) is to be extracted, or more precisely, the nature
of the forces that are exerted on the particles of our network, is important.
If we wish to take into account the true vector nature of the vibrational
density of states (important if the system is fractal) then we are forced to
introduce a new quantity d.,, called the elastic spectral dimension and defined
by replacing pt by fin (10.12). According to Webman and Grest (1985)

vpd — Bp
2vp+f—PBp

We are also forced to define rwo different densities of states for the
vibrations of the sample-spanning cluster in the fractal regime. N() is the
density of states when the governing equation is scalar, such as (10.6); using
(10.11) in (10.9) this yields

N(o) ~ 0! (10.15)

The second quantity is the elastic density of states N.(®) which, in analogy
with (10.15), is given by

Ne(®) ~ @7 ! (10.16)

Equations (10.15) and (10.16) are valid for high frequencies (i.e., short
wavelengths or short length scales), such that ® > wq. Vibrational states
on fractal structures, expressed by (10.15), were called fractons (phonons on
fractals) by Alexander and Orbach (1982).

What is the cutoff frequency at which a crossover between (10.10) on one
hand and (10.15) (10.16) on the other takes place? Consider, for example,
the crossover between (10.10) and (10.15). In this case, the crossover
between phonons and fractons is similar to the crossover between normal
and fractal diffusion discussed in Chapter 9; it takes place at a time scale
tco such that (9.6)

teo~ (p—po) 2P H B~ (p = poy v, (10.17)

This time scale corresponds, in the Laplace transform space, to a crossover
. 2 .
value 1/A¢. Since ®zo ~ Aso, We oObtain

©po ~ (p _ pc)vﬁ +n-PBpry2 (p _ p(‘)vpd..-rl” (1018)

which is the equation derived by Alexander and Orbach (1982) using a
different analysis. We can rewrite (10.18) in terms of the percolation
correlation length &, the result is
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a

Weo ~ Ep T 7~ £ (10.19)

Chapter 2 discusses finite-size scaling; for an L x L x L system such that
L «< Ep. (10.19) is equivalent to

h

O~ L™ 2~ [P, (10.20)

so that as L increases (but L/, << 1), the cutoff or crossover frequency
decreases. Alternatively, we can convert (10.20) into an equation for a
cutoff length scale L., at which a crossover between (10.10) and (10.15)
takes place

-dy' D¢

L(U ~ W¢o (10.21 )

With the help of (10.18) we can write (10.10) and (10.15) in a unified form

N(©) ~ 0" h(0/0.), (10.22)

where /i(x) is a scaling function. Since for w << ®,, we want to recover
(10.10) we must have /i(x) ~ x4 for x << 1. On the other hand, we also
want to recover (10.15) in the limit ® >> w., which means that 4(x) ~ con-
stant for x >> 1. This also implies that for L >> £, we have

N(w ~ (p- p()v\,,d..(tl_\ - 2(1)([_ [ m:{(;—dmtl—l (1023)

Equation (10.23) implies that the ratio of (10.15) and (10.23) is a constant
at ® = We. The quantity N(w) can also be calculated by an effective-medium
approximation discussed in Chapter 5 (Sahimi 1984, Derrida et al. 1984),
since the Green function Gy defined by (5.11) isl}'ust the Laplace transform
of (Pu(r)). The EMA results are, N(o) ~ o ¢ *0?"" for the phonon regime,
and N(w) = constant for the fraction regime. Equations (10.15) and (10.16)
are valid for the sample-spanning cluster. If we are interested in the
vibrational density of states for al/l clusters. then (10.15) and (10.16) can still
be used. except that D, should be replaced with d. because only the
sample-spanning cluster is a fractal object for L << £, and the collection of
all clusters is space filling and not fractal.

The difference between (10.15) and (10.16) is dramatic. Chapter 9 shows
that for both two- and three-dimensional percolation networks at p.,
d, = 4,3 which implies that

N ~o'’ (10.24)

If N(w) decreases with . then the medium is mechanically stable. To
understand this, recall that small frequencies imply larger length scales; if
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over such length scales N(w) decreases, the implication would be that there are
fewer and fewer vibrational modes, i.e., the system is mechanically stable.
On the other hand, if we use the value of f for three-dimensional percolation
systems in which both stretching and bond-bending forces are important
(see Chapter 11), f= 3.75, we obtain des; = 0.87 and (10.16) implies that

Ne(®) ~ ", (10.25)

As o decreases there are larger and larger number of vibrating modes. This
implies that such systems may not become too large, because if they do. they
might lose their mechanical stability, have to restructure themselves, and
cross over to another structure. If only central forces are important (10.2)
then (see Chapter 11) f= 2.1, and N(w) ~ %, almost identical with (10.24).
But we should keep in mind that while (10.24) is valid for fractons in a
scalar-like system, a network of springs with central forces is still a vector
system.

Is there a crossover between (10.15) and (10.16)? Feng (1985) argued that
in a percolation network in which stretching and bond-bending forces are
both present, another length scale L, in addition to &p, is important. If
Lpp >> Ep, then at low frequencies (10.10) and at higher frequencies (10.15)
governs the density of states, with a crossover at ®q. If Ly << &p low
frequencies dictate the phonon regime until a characteristic frequency s
is reached at which there is a crossover from (10.10) to (10.16). When the
higher frequency we is reached. there is a second crossover from (10.16) to
(10.15). From (10.19) we guess that

@pp ~ &P (10.26)

According to Feng. the characteristic length scale L is given by
Le»~ (Bloy'?, (10.27)

where o and P are respectively, the stretching and bond-bending force
constants, discussed in Chapters 4 and 11.

10.3 Experimental verification

Over the past several years many authors have investigated the validity and
generality of the above results. For example. Yakubo er al. (1990) carried
out extensive simulations and calculated the density of states of fractal
structures to check the validity of (10.15) in two and three dimensions. They
found that to a very good degree of accuracy (10.15) holds. Rammal et al.
(1984) carried out random walk simulations on the sample-spaning cluster
of percolation networks for 2 < d < 6, and found that d, = 4/3, an indirect
confirmation of (10.15). As usual. we are interested in the experimental
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verification of such results. Here we discuss a few experimental studies that
support the above theoretical results. The reader should consult Courtens
et al. (1989) and Kjems (1991) for more complete discussions of past work.
Most of these studies involve aerogels, so we discuss briefly their prepara-
tions and properties.

Aerogels are highly porous solid materials that have a very tenuous
structure. Their porosity can be as high as 99%, so they often have unique
or very unusual properties. For example, they can be made in transparent
form, they have very small thermal conductivity, and because of their large
porosity they possess large internal surface area. Their properties give them
a wide range of applications, from catalyst supports to thermal insulators
and radiators. They can be prepared by a variety of methods using different
materials, but silica aerogels have received the widest attention. They are
produced by hydrolysis of Si(OR),, where R represents either CHj3 or
C,Hs. A catalyst, either an acid or a base, is also used; this strongly
influences the reaction. The degree of hydrolysis is controlled by the ratio
[Si(OR),)/[H:0], and the final density of the aerogel is controlled by
[Si(OR),})/[ROH], where [ .. .] denotes concentration. Because of the acidic
or basic catalyst, the pH of the solution also has a strong effect on the
structure of the gel. Hydrolysis produces -SiOH groups which then poly-
merize into -Si-O-Si-. Particles start to grow in the liquid solution and after
some time form a gel network. The solvent is removed to obtain the solid
porous structure. Aerogels are obtained if the solvent is removed at a
temperature above its critical point. A more complete discussion of aerogel
preparation is given by Courtens er al. (1989).

L T 1 L] I' 1]
10}
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>~ 101} / 7
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10? 10°
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Figure 10.1 Young modulus Y of silica aerogels gels (in GPa) versus their apparent
density (in kg m~"} (after Woignier et al. 1988).
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Silica aerogels appear to have the structure of percolation networks.
Evidence for this comes from two different directions. Woignier et al. (1988)
measured the Young modulus Y of silica aerogels as a function of density
and volume fraction. Figure 10.1 shows their results. Over nearly one order
of magnitude, Y scales with the volume fraction € of the solid as

Y~(€-e), (10.28)

where €. is the critical volume fraction or the percolation threshold of the
network. As this figure indicates, f = 3.8, in excellent agreement with the
three-dimensional elastic percolation networks discussed in Chapters 2, 4,
and 11. The other evidence comes from the measurement of the fractal
dimension of the gel. One way of determining the fractal dimension is
through small-angle neutron scattering (SANS). If we define a correlation
function C(r) by

Cr)~ Y, s()s(r + '), (10.29)

r

where s(r) =1, if a point at a distance r from the origin belongs to the
network, and s(r) = 0 otherwise, then the scattering intensity I(g;) is the
Fourier transform of C(r), with g5 = 47 sin(0,/2)/€, where 0; is the scattering
angle and & is the wavelength. For fractal structures with a fractal dimen-
sionality Dy, C(r) ~ r®/~¢ and therefore for g, >> 1 we have

I(g) ~ g ™. (10.30)

Figure 10.2, taken from Vacher er al. (1988), presents typical data obtained
by SANS. The fractal dimension of silica aerogels was found to be,
Dr = 2.45, very close to the fractul dimension of three-dimensional sample-
spanning percolation clusters, D, = 2.5 (see Chapter 2). It seems that at
least one class of silica aerogels are essentially percolation fractals.

The next step is to verify the scaling law for the density of states, (10.15)
or (10.16). One way of doing this is by plotting the crossover or cutoff
frequency ., as a function of ¢s. Since g5 is inversely proportional to the
length scale L, (10.20) tells us that

Weo ~ gPI'%. (10.31)

This plot should yield, ®q ~ g+ if silica aerogels are percolation fractals
and d; = 4/3. Figure 10.3, taken from Courtens and Vacher (1989), shows
such a plot for a series of aerogels with various densities. The data were
obtained by Brillouin scattering of visible light and indicate that, ®co ~ gs’.
in very good agreement with the theoretical prediction. The density of states
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Figure 10.2 Scartering intensities (relative 1o H10) for 11 silica aerogel samples. The

top 10 samples are unreacted and neutral, whereas the bortom one is an oxidized

sample The density of the samples increases from top to bottom. gs is in A™! (after
Vacher er al. 1988 ).
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Figure 10.3 The fracton dispersion curve obtained from the Brillouin determination of
the cutoff frequency W and scattering vector qs. Symbols are the same as in Fig. 10.2.

itself can also be measured directly by incoherent neutron scattering. In this
method, protons are chemically bonded to the surface of the particles in the
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network. Because protons have a large cross-sectional area, they can
dominate incoherent scattering from a network that contains a small
number of hydrogen atoms, such as the aerogels. On the other hand,
deuterons have a small cross section. From the difference between the
scattering from two different samples in which small amounts of OD and
OH have been bonded to the sample, the density of states can be measured.
This was done by Vacher et al. (1989), who obtained N(w) ~ ©*®*%13 which
does not agree with (10.15) or (10.16). This difference may be explained in
various ways. One is that the networks used in this study are not simply
sample-spanning percolation clusters. In addition to the main gel network,
many other smaller clusters are also grown. When the solvent is removed,
we have a distribution of clusters. We are not measuring the incoherent
scattering from just one percolation cluster, but from a collection of them.
Thus, we should have N(w)~ ©*¥4v-1" rather than the usual
N(®) ~ ©*/'% =1 because the collection of all percolation clusters is not
fractal, only the sample-spanning cluster is fractal. This reasoning predicts
N(w) ~ ©*, reasonably close to the experimental measurements. Vacher et al.
gave a rather different reason for this difference. They argued that the finite
clusters attach themselves to the sample-spanning cluster, making it denser,
thereby increasing the effective value of ds from its theoretical value of
about 4/3 to a larger value of 1.85. A recent computer simulation study by
Nakanishi (1993) using perculation networks supports this. We may also
argue that energy resolution in the experiment was not sufficient to yield
enough accuracy. Indeed, the experiments of Schaefer er al. (1990), using
more accurate techniques, yielded ds = 1.22 £ 0.14, again consistent with
the theoretical expectation.

Finally, the crossover between (10.15) and (10.16) was studied in the
experiments of Vacher er al. (1990) using silica aerogels. They measured
the density of states of the gels and found that at low frequencies their
data can be fitted with des; = 0.9, in good agreement with the theoretical
expectation discussed above. At higher frequencies the data can be fitted
with ds = 1.7+ 0.2, once again higher than d; = 4/3. It is not yet clear
whether this discrepancy can be explained by the same type of reasoning
discussed above. For the most recent discussion of this sce Alexander et al.
(1993).

10.4 Conclusions

Fractal properties play a central role in the vibrational properties of
disordered materials. Vibrational properties do not follow the classical laws
derived for homogeneous media. The result, d; = 4/3, obtained from
percolation networks, seems to explain many sets of experimental data for
various materials. It points to the crucial role of percolation in such
materials.
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11
Structural, mechanical, and rheological
properties of branched polymers and gels

11.0 Introduction

Two key works in the early 1970s demonstrated clearly how polymers can
be studied both theoretically and experimentally. de Gennes (1971) showed
that there is a close connection between linear polymers (i.e., those whose
monomers have functionality Z =2) and a statistical mechanical model,
namely, the n-vector model. If no two polymer parts occupy the same point
in space, the linear polymer corresponds to the limit » — 0. If this restric-
tion can be ignored, the polymer corresponds to a random walk or the
n=—2 limit of the model. This discovery enabled us to apply modern
methods of statistical mechanics, such as renormalization group theory, to
the study of linear polymers. On the experimental side, Cotton (1974) used
small-angle neutron scattering, and a labeling technique in which the
hydrogen atoms along the polymer chain were replaced by deuterium, to
show that it is possible to detect one polymer chain among many others in
a solution. Thus. we can analyze a single polymer chain and compare the
experimental results with the theoretical predictions.

The works of de Gennes and Cotton were restricted to linear polymers,
1.e., those in which each monomer is connected to two neighboring mono-
mers. However, if we use monomers with functionality Z > 2, where each
monomer is connected to up to Z neighboring monomers. then at least two
other classes of polymers can be obtained. If the reaction time ¢ is relatively
short and below, but close to, a characteristic time tg, then we obtain
branched polymers in the solution, usually called a sol, that form a viscous
solution. These branched polymers are large but finite clusters of mono-
mers. On the other hand. if the reaction time is larger than ¢, a very large
solid network of connected monomers appears that is usually called a

169
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chemical gel. or simply a gel. The gel network has interesting structural,
mechanical. and rheological properties. The characteristic time ¢, is called
the gelation time, and the point at which the gel network appears for the
first time is called the gel point (GP). Familiar such sol-gel transformations
may be the milk-to-cheese transition, pudding, gelatine, etc. This chapter
models various properties of the sol and gel phases, especially near GP.
Gelation is the phase transition from the sol phase to the gel phase; it has
been described by a percolation model.

11.1 Percolation model of polymerization and
gelation

Consider a solution of molecules or monomers with functionality Z = 3. To
understand the connection with percolation, suppose that the monomers
occupy the sites of a periodic lattice. With probability p, two nearest-neigh-
bor monomers (sites) can react and form a chemical bond between them. If
p is small, only small polymers are formed. As p increases, larger and larger
polymers (clusters of connected monomers) with a broad size distribution
are formed. This mixture of clusters of reacted monomers and the isolated
unreacted monomers represents the sol phase. For p > p., where p. is a
characteristic value that depends on Z (or, the number of nearest-neighbors
of a monomer of the lattice), an “infinite” cluster of reacted monomers is
formed. This cluster represents the gel network discussed above. Near GP
the gel usually coexists with a sol such that the finite polymers are trapped
in the interior of the gel. As p — 1, almost all monomers react, and the sol
phase disappears completely. Thus, p. signals a connectivity transition: for
P > P, an infinite cluster exists and the system is mainly a solid gel (with
possibly a few finite polymers). The fraction of chemical bonds formed at
GP (related to the fraction of reacted monomers at GP) is the analog of the
bond percolation threshold pe defined in Chapter 2. Therefore, the forma-
tion of branched polymers and gels is very similar to a percolation process.
In reality, the monomers do not react with each other randomly. and there
are usually some correlations between the reaction of monomers with one
another, but this does not change the main results of this chapter.

This model of polymerization and gelation was essentially invented by
Flory (1941) and Stockmayer (1943), who were interested in the formation of
large branched polymers. However, Flory and Stockmayer considered what
we call percolation on a Bethe lattice, a branching, but loopless. structure
(see Chapter 2). Although they did not use the terminology of percolation
processes, it is now recognized that the Flory-Stockmayer theory represents
the rmean field limit of percolation. Stauffer (1976) and de Gennes (1976)
were first to recognize the relevance of percolation on three-dimensional
lattices to the critical behavior of branched polymers and gels.
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Physical gels, as opposed to chemical gels., are formed when no permanent
chemical reaction takes place between the particles or monomers: Only a
reversible association links the particles to each other. In physical gels,
monomers are usually nonreactive small solid particles. They are formed when
the solid particles are somehow attached to each other and form long chains.
Two examples: silica aerogels and structures formed during the gelation of
silica particles in pure water or NaCl solutions. Now we describe some
important properties of sol and gel phases and their percolation modeling.

11.2 Mechanical, rheological, and structural
properties of branched polymers and gels

What is the signature of the sol-gel phase transition? Experimental studies
of sol-gel transitions usually proceed by measuring the time evolution of
the rheological or mechanical properties (e.g., viscosity or elastic moduli)
during the chemical reaction leading to gelation, assuming that the ex-
perimental parameter, time or frequency, and the theoretical one, the
number of cross-links, are linearly related in the vicinity of GP. Rheological
measurements are usually performed by using a cone and plate rheometer
or by the more accurate magnetic sphere rheometer. The ranges of shear
rates, deformations, and times of measurements of these devices allow the
determination of the steady state zero-shear viscosity 1 and the steady state
linear elastic moduli G up to the vicinity of the phase transition at GP, but
it has proven to be almost impossible to do such measurements ar GP.

All the experimental data for the elastic moduli of gel networks above
GP, but close to GP indicate that the elastic moduli G of the network obey
a scaling law given by

Sol gel

Pc

Figure 11.1 Typical variations of viscosity ©| and elastic moduli G with the fraction of
reacted monomers p during gelation.
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G~(p-p), p>pe. (11.1)

On the other hand, the viscosity of the sol phase diverges as

N~ -p) % p<pe (11.2)

Typical variations of N and G with p are shown in Fig. 11.1. In practice, it
is precisely this divergence of 7 that signals the formation of a gel network.
Experimental determination of k is more difficult than determination of f.
The major obstacles are that accurate determination of GP is often difficult
and, moreover, the measurements cannot be made atr GP and in the limit of
zero frequency. To estimate k we usually define a frequency-dependent
complex modulus G*(w) = G’ (w + iG” (w) at frequency , where i = V= 1. At
GP and for low frequencies. we have

G ~G” ~ o, (11.3)
with
S
A=—— 11.4
Tk ( )

where G’ (storage modulus) and G” (loss modulus) describe storage and
dissipation in an oscillating strain field of constant amplitude. Typical
variations of G’ and G” with © are shown in Fig. 11.2 for a polycondensed
gel very close to GP.

The complex moduli G*(w) is sometimes written as G* = G + ion, for
which Durand er al. (1987) proposed that

G*(0, €) ~ ¢/h (ioe’*5), (11.5)

0.01 0.1 1 10
o/2r
Figure 11.2 Frequency dependence of the storage modulus G* and loss modulus G” for
a polycondensed gel close 10 the gel point (after Durand et al. 1987 ).
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where € = | p — pc|. and hi(x) is a scaling function. The significance of this
scaling equation is that it allows us to collapse the data for all values of €
and o onto a single curve, usually called the master curve by polymer
researchers. In the low-frequency regime. we do not expect G* to depend on
e, and depend only on ®. Then we find that G* ~ ©™**, equivalent to (11.3).
Moreover, there is a loss angle 8 defined by tand = G’/G”. The remarkable
property of § is that at GP it takes on a value &, given by

n_k
(l A) = 2f+k (11.6)
so that, if the critical exponents fand k are universal. the loss angle §, will
also be universal.

An important problem in polymerization and gelation is the determina-
tion of GP, cither for avoiding it to prevent gelation so that a polymer with
certain properties can be processed, or for making materials very close to
GP, since such materials have unusual properties. GP depends on the
functionality of the polymer. Chapter 2 shows that percolation thresholds
decrease with increasing coordination numbers, which are the analog of
polymer functionality. Thus, polymers with cross-links of high functionality
gel very early. Holly er al. (1988) proposed using the loss angle & for
locating GP. They argued that since as GP is reached tan(8) becomes
independent of the frequency (11.6), the intersection of the various curves
in a plot of tan(d) versus time at various frequencies should give the
location of GP. Figure 11.3, taken from Lin et al. (1991), shows how this
method is used for locating the GP for a physical gel.

tan o

™~

0.1
10 100

t

Figure 11.3 Determination of gel point from data for loss angle 8. Time 1 z.s in
minutes The data correspond to frequencies 31.6 rads” (dzamonds) 1.0 rads™! (+),
and 0.0316 rad s™ (squares) (after Lin et al. 1991).
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Viscosity and elastic moduli are rheological and mechanical properties of
branched polymers and gels. They characterize the dynamics of the poly-
merization. We may measure, directly or indirectly, the distribution of
relaxation times H(¢) in the reaction bath. The moments are directly related
to the viscosity and the elastic moduli. To obtain H(t), we define a complex
viscosity n*(®) = G*(w)/(iw), which is related to the distribution of relaxa-
tion times by (see. e.g., Ferry 1980)

H(1)
*w)y=| ———d 11.7
(@) J 1 + it ! ¢ )
Then, using (11.5), we can back-calculate H(r) (Daoud 1988)
H(t) ~ 1 2hy(1e/ 5y, (11.8)

where h; is another scaling function. This equation indicates that in the
scaling regime near GP. H(t) is a slowly decaying power law. Daoud (1988)
calculated rwo distinct average or characteristic times:

T = J H(t)dt/J [H(t)/fldt ~ gk~ n. (11.9)
and
T, =J tH(t)a’t/J H(tydr ~g %~ % (11.10)

Note that T is the longest characteristic time of the system. The existence
of the distribution of relaxation times and its scaling form given by (11.8)
means that any relaxation property in the intermediate time or frequency
range is not exponential, but follows a power law. The divergence of T and
T, is responsible for the fact that measurements of m or G fail at GP,
because steady state conditions cannot be reached in a finite time.

There are also several important structural (static) properties of branched
polymers and gel networks that can be measured directly or indirectly. The
gel fraction GF(p) is the fraction of the monomers that belong to the gel
network. It is obvious that GF(p) > 0 only if p > p., and that GF is the
analog of percolation fraction or percolation probability P(p) defined in
Chapter 2. Of particular interest to us is the behavior of GF(p) near p,. It
is found in this region that

GF(p)~ (p - po)®. (11.11)

completely similar to (2.3). The gel fraction can be measured by simply
weighing the solid gel at different times during polymerization. The correla-
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tion or connectivity length & of branched polymers diverges as p. is
approached, according to the scaling law

E~|p-pc|™, (11.12)

which is the analog of (2.6). Above GP the correlation length of polymers
can be interpreted as the mesh size of the gel network. For any length scale
greater than & the gel network is essentially homogeneous. Below GP the
correlation length is the typical radius of the polymers in the sol phase. In
this case, those polymers whose radii are much larger than § are described
by a different set of critical exponents. At GP the gel network is nor
homogeneous but is a self-similar fractal object with a fractal dimension
D, that in d-dimensions is given by

p,=d-E, (11.13)
v

the same as (2.16). The number distribution of polymers, i.e., the prob-
ability Q(n,€) that a polymer of the sol phase contains » monomers at a
distance € from GP, can also be defined. This quantity is the analog of nj,
defined in Chapter 2. Thus, in analogy with (2.14) we can write

Q(n,€) ~ n”"ha(en®), (11.14)

where /3 is another scaling function. Using this distribution. we can define
two distinct mass averages. The weight average molecular weight is given by

2
”,=J”_QM~E-Y (11.15)
[ nQ(n.e)dn
The quantity M, is the analog of S,(p), the mean size of percolation clusters
defined by (2.2), where the sum in that equation has been replaced here by
an integral. In the polymer literature M, is also called the degree of
polymerization. The second mass average is defined by

3

M_-=anQ(n’€)dn~€'“° (1116)

I n Q(n.€)dn
where 6 = (T — 2)/B, as in percolation (see Chapter 2). The existence of two
distinct mass averages is similar to the existence of two distinct average
relaxation times defined above. But the average (M) = [ nQ(n,e)/| Q(n.€)
does not diverge at GP. We are now in a position to compare measurements
of various polymer properties with the predictions of percolation theory.
Since one of the main predictions of percolation is the existence of universal
critical exponents and fractal dimensions, and since the numerical values of
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any polymer property are not universal and depend on the microscopic
structure of the polymer, we focus here on a comparison between the
measured universal exponents and fractal dimensions and the predictions of
percolation.

11.3 Comparison of experimental data for the
structural properties of branched polymers and gels
with the percolation predictions

After a polymer is formed by a chemical reaction, the experimentalist
usually analyzes its structure by diluting it in a good solvent. Such branched
polymers in a dilute solution of a good solvent may swell and have a radius
larger than their extent at the end of the chemical reaction. Thus. it is
important to consider typical polymers and swollen polymers. Let us now
discuss the experimental evidence for the applicability of a percolation
model for describing the structural properties of gels and the structural
properties of branched polymers in a dilute solution of a good solvent.
Consider first a swollen branched polymer in a good solvent whose radius
is lurger than the polymer correlation length &. Its structural properties are
described by lattice animals, which are percolation clusters below the
percolation threshold whose radii are larger than the percolation correlation
length &,. Although lattice animals have a close connection with percola-
tion, their scaling properties are different from those of percolation clusters.
To see this, let us first define a few key properties of lattice animals. Let
As(p) be the average number (per lattice site) of clusters and ay», be the total
number of geometrically different configurations for a cluster of s sites and
perimeter m. Thus, As(p) = Xm asmp’(1 — p)”. For large s. the asymptotic
behavior of 4(p) is described by the power law

As(p) ~ Ags®. (11.17)

where 0 is a universal exponent independent of the coordination number of
the lattice, whereas the growth parameter A, is not universal. Moreover, if
H, is the number of monomers (sites) in a lattice animal of radius R, then
for large values of n,, a fractal dimension D, is defined by

na ~ R (11.18)

Lubensky and Isaacson (1978) and Family and Coniglio (1980) showed that
the exponents 8 and D, are not related to any of the percolation exponents
defined in Chapter 2. Moreover, Parisi and Sourlas (1981) showed that

d-2
1, 11.19
D, + ( )

0=
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and that
D,=2, d=3. (11.20)

There are two other differences that distinguish lattice animals from
percolation clusters. The exponents 6 and D, defined above are valid for
any p <pc (remember that the percolation exponents are defined for
p = pc). All we require is Rg >> &j,. The upper critical dimension for lattice
animals is eight, two more than for percolation. The upper critical dimen-
sion is the dimension at which the mean field approximation to the critical
exponents becomes exact.

We can also define a pair correlation function C(r}, i.e., the probability
that two monomers or sites, separated by a distance r, belong to the same
polymer or cluster. For a fractal structure and large r we expect the
correlation function to decay as

C@r) ~rPa (11.21)

so that C(r) - 0 as r —» . A similar equation also holds for percolation
networks at p. if we replace D, by D,, the fractal dimension of the largest
percolation cluster. The Fourier transform of C(r) is proportional to the
scattered intensity I(gs) in a static or neutron scattering experiment with a
polymer solution, where ¢ is the momentum transfer given by

4 . 95
s = P [} '2
gs = sm(zJ (11.22)

where A is the wavelength of the radiation, and 0; is the scattering angle.
By Fourier transforming (11.21), it is not difficult to show that

I(gs) ~ g5 ™. (11.23)

Experimental evidence for (11.20) is actually provided through (11.23).
Bouchaud et al. (1986) carried out small-angle neutron scattering experi-
ments on a monodisperse polyurethane sample and measured the scattered
intensity as a function of ¢s. Figure 11.4 presents their results, from which
we obtain

D,=198+0.03, (11.24)

in excellent agreement with (11.20). In real applications, polymer solutions
are almost always polydisperse and contain polymers of all sizes with radii
smaller or larger than &. We need to define average properties, where the
averaging is taken over the polymer size distribution. An average polymer
radius is defined by, {R;) = Xn,naRa0Q/ X n,nzQ. Using (11.14) and (11.18)
then yields a relation between n, and (R;), n,~ (R,)", where D, is
interpreted as the effective fractal dimension of all branched polymers in the
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Figure 11.4 Small-angle neutron scattering results for branche ers. The_ upper
curve is for a polydisperse polymer solution, whose slope is 1.6. 3 r curve is for a
single polymer in a dilute good solvent, whose slope is 1.98 (after ™ p01ym”d et al. 1986).
" he lowe

solution. Daoud et al. (1984) showed that for a polydi Bouchapolymer in a
dilute solution of a good solvent k\

perse
De = Du(3 - 7) (11.25)

Thus, (11.25) mixes the animal exponent D, with the per m or polymer
exponent T. If a percolation description of polymerizati'y ) pplicable, we
should have (see Chapter 2) 1(d=3) = 1p(d=3) = z_lg’l\colz}tlg means that
v'on is ¢
De = 164, d= 3, whick (1126)

indicating that the effective fractal dimension is smally a for a single

branched polymer. Since we have defined an effective ft..\e dimension for

a dilute polydisperse polymer solution, the scattering int"er thafor a solution
of polydisperse polymer should also be modified to R\*act.al
iensity

I(qs) ~ q;DaG—T) (11.27)

In practice, (11.27) is used in a scattering experiment fq nating D, and
confirming or rejecting the prediction (11.26); this has b‘\\ _one by sev.eral
sets of careful experiments. For example, Bouchaud et a)°T €stii6) synthesized
a natural polydisperse polyurethane sample and carri'qbeen <t srr}all-angle
neutron scattering on a dilute solution of it. Figure 11.4\i,_k1{- (1935 their results,
from which we obtain tried

4 shoy

D, = 1.6+0.05, (11.28)
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in good agreement with (11.26). Adam er al. (1987) carried out static light
scattering experiments in dilute polydisperse polyurethane solutions and re-
ported D, = 1.62 + 0.08, again in good agreement with (11.26). Leibler and
Schosseler (1985) measured the average radius of polystyrene, cross-linked by
irradiation by elastic light scattering and found D, = 1.72 + 0.09, consistent
with (11.26). Patton et al. (1989) performed both quasielastic and elastic light
scattering experiments on branched polyesters and reported D, = 1.52 + 0.1.
somewhat lower than (11.26) but still consistent with it. A different experiment
was carried out by Dubois and Cabane (1989) on a silica gel. a physical gel
which has a more complex structure than the polymers used by the other
researchers (see Chapter 10). Silica gels have a maximum in their scattered
intensity curve in the semidilute range, not seen in the other branched polymers
discussed above. Moreover, above GP and depending on the pH of the
solution, their fractal dimension indicates an anomalous dependence on the
concentration, this has not been explained yet. Despite these significant
differences, Dubois and Cabane reported that D, = 1.58, quite close to (11.26).

We now compare the experimental data for the scaling behavior of other
structural properties of branched polymers and gels and compare them with
the percolation predictions. The experimental results for D, and D, dis-
cussed above all imply that t= 2.2, in excellent agreement with the
percolation prediction, T, = 2.18. In their experiments with irradiated
polystyrene solution in cyclopentane, Leibler and Schosseler (1985) coupled

102

Distribution
=
T
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Figure 11.5 Normalized polymer size distribution as a function of the sice s of the
polymers, where smax is the maximum size. Percolation predicts that the slope of the line
should be | — 1, which then yields Tt = 2.3 £ 0.1 (after Leibler and Schosseler 1985)
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gel permeation chromatography and light scattering and obtained the
polymer size distribution, which provides a direct means of measuring the
exponent 1. Figure 11.5 presents their measurements, from which we obtain
T = 2.3 1 0.1, consistent with the percolation prediction, T, = 2.18. Lapp et
al. (1989) further checked this result by doing similar experiments in a
system made by chemical end-linking of polydimethylsiloxane, and Patton
et al. (1989) did the same in a system in which polyester was made by bulk
condensation polymerization. The results of both of these groups were
consistent with the percolation prediction for the exponent 1. The polymer
fractal dimension D, is related to 1 by

Dy = , (11.29)

so these results also imply that D, = 2.5, in agreement with the percolation
prediction, D, = 2.52.

Equation (11.15) was tested by Adam et al. (1987), who performed static
light scattering measurements on a polyurethane sol, and by Candau et al.
(1985) who carried out their experiments on polystyrene systems cross-
linked with divinylbenzene. Figure 11.6 shows the results of Adam et al.
(1987), from which we obtain y=1.71 £ 0.06, close to the percolation
prediction (see Chapter 2) y, = 1.82. A similar result was obtained by
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Figure 11.6 The dependence of degree of polymerization M\, on p.— p for a poly-
urethane sol. The slope of the line is —y (after Adam et al. 1987).
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Figure 11.7 The dependence of the degree of polymerization M. on the gel fraction
GF during anionic copolymerization of divinylbenzene with styrene. The slope of the
line is —yIB (after Schmidt and Burchard 1981).

Candau et al. (1985). On the other hand, (11.11) and (11.15) can be
combined to give M. ~ GF Y?, and thus a plot of log(M,) versus log(GF)
can yield an estimate of y/B. Schmidt and Burchard (1981) carried out
anionic copolymerization of divinylbenzene with styrene and obtained
branched polymers and gels. Light scattering was used to measure various
properties of interest. When they plotted log(M.) versus log(GF). as shown
in Fig. 11.7, they obtained a straight line with a slope v/ = 4.5, in good
agreement with the percolation prediction, y,/B, = 4.44. For more recent
and accurate experiments regarding these exponents see Trappe et al. (1992).
We may conclude that three-dimensional percolation provides a very good
description of the universal properties of branched polymers and gel networks.
Finally, we should point out that the Flory-Stockmayer theory of polymer-
ization predicts that D; = Dc =4, y=B =1, and 1 = 5/2, which are nothing
but the mean field critical exponents of percolation discussed in Chapter 2,
and do not agree with most of the experimental data discussed above.

11.4 Elastic percolation networks

We now describe dynamical properties of percolation networks and their
application to modeling of the viscosity and elastic moduli of sols and gels.
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Suppose that in a percolation network a fraction p of bonds represent
resistors with conductance ¢ and the remaining bonds are resistors with
conductance b. Both g and b can be selected from any probability density
function /(g) but we consider the simplest case

h(g) =pd(g—a)+ (1 —p)d(g - b). (11.30)

If 5=0 and a is finite, we have a percolation network of conductors and
insulators whose conductivity g. should vanish at p = p.. Near p., g. obeys
(2.8). On the other hand. if b is finite and a = «, we have a percolation
network of normal conductors and superconductors whose conductivity gs
is finite for p < p,, but diverges at p, according to (2.12).

In an analogous way the elastic properties of percolation networks can be
defined. Consider a percolation network whose bonds represent elastic
springs that can be stretched and/or bent. The elastic energy of the system
is given by (Kantor and Webman 1984)

E= % > lw—up-Ryl e, + % 2 ®0u) ege, (11.31)
[C}) k)

where the first term of the right side represents the contribution of the
stretching or central forces (CFs), whereas the second term represents the
contribution of angle-changing or bond-bending (BB) forces. Here o; and
o are the central and BB force constants, respectively, u; = (u,y, uj, u;) is
the (infinitesimal) displacement of site 7, R, is a unit vector from i to j, ej;
is the elastic constant of the (spring) between i and j, and (jik) indicates that
the sum is over all triplets in which the bonds j-i and i~k form an angle
whose vertex is at i. The change of angle 80, is given by (see also Chapter 4)

(u; X Ry —uax X Rix) - (R x Rir)/ | Ry x R |, Ry not parallel to R
80 = (11.32
| (ui+uir) x Ry, R;j parallel to Ru

where. uy = u; — u,. We can now define the elastic properties of percolation
networks. Suppose that the elastic constants e; can be chosen from a
distribution like (11.30), i.e., h(e) = pd(e — a) + (1 — p)d(e — b), 1.e., a frac-
tion p of the springs have an elastic constant a and the rest have an elastic
constant b. Thus, similar to the case of the electrical conductivity, we can
define G, as the effective elastic moduli of the network when a is finite and
b=0, and G; as the effective elastic moduli of a superelastic percolation
network when ¢ = e (i.e., infinitely rigid bonds) and b is finite. For an
experimental realization of a superelastic percolation system see Benguigui
and Ron (1993). Then, as discussed in Chapter 2, G, vanish near p. with a
critical exponent f, whereas G diverge as pc is approached from below with
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another critical exponent {. Unlike the electrical conductivity case. the
critical exponents f and { are not completely universal; they depend on the
presence or absence of BB forces, at least for three-dimensional systems of
interest to us. If o, =0, only stretching forces are present and we refer
to such systems as CF networks. The bond percolation threshold pc
of a CF network is very different from p., the usual bond percolation
threshold defined in Chapter 2 (Feng and Sen 1984). For a triangular
network, p.. = 0.641 and p., = 2sin(n/18) = 0.347, and for a BCC network,
pee = 0.737and p.p = 0.1795. The reason for this anomalous behavior is that
many sample-spanning configurations of a CF network are not rigid, in the
sense that all their elastic moduli are zero. In general, for a d-dimensional
CF network p.. = 2d/Z, where Z is the coordination of the network, so that
a CF network has nonzero elastic moduli if Z > 2d and p > p... Thus, a
meaningful study of CF networks is restricted to certain lattices, e.g., the
triangular and BCC networks. For d-dimensional cubic networks, p.. = 1, so
we cannot use them to study percolation in CF systems. We denote the critical
exponents of CF networks by f. and {.. On the other hand, the percola-
tion thresholds of the BB models are the same as those of ordinary
percolation if each site of the network interacts with at least d(d — 1)/2 of
its nearest-neighbors in d dimensions. We denote the critical exponents
of such BB models by f; and {p. Near the percolation threshold G, obeys
the following scaling law (Feng and Sen 1984; Kantor and Webman 1984)

G ~ (r- (Pl‘)x’
X =ﬁ'* fbﬁ (1133)
©¢ = Pces Pcbs

whereas G follows the power law (Sahimi and Goddard 1985; Feng 1985)

Gs ~ ((P( - p)_‘r.

(11.39)
y = g"’ gb'

Let us describe briefly how the elastic moduli of an elastic or a super-
elastic percolation network are calculated. We minimize the elastic energy
Hg with respect to the nodal displacement u;, d E/Ju; = 0. Writing down this
equation for every interior node of the network results in a set of dN,
simultaneous equations for a d-dimensional network of N, internal nodes.
The boundary conditions depend on the quantity that we would like to
calculate. For example, to calculate the shear modulus of the system. we
shear the network by a given strain S, and impose periodic boundary
conditions in the other directions. The resulting set of equations are then
solved numerically by, e.g., Gaussian elimination or by an iterative method.
From the solution of the set of equations for nodal displacements we
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Figure 11.8 Variations of the shear modulus in elastic and superelastic networks in bond
percolation on a simple cubic network. Below the percolation threshold pc = 0.2488, p

represents the fraction of completely rigid bonds; above p., p represents the fraction of
intact (uncut) bonds.

calculate F and hence the elastic modulus G = 2E/S?. Figure 11.8 shows
typical curves for G and G, for a percolation network (compare this figure
with Fig. 11.1). The critical exponents are calculated by finite-size scaling
discussed in Chapter 2.

Table 11.1 lists the most accurate estimates of these exponents for d = 3,
along with those in the mean field approximation obtained on a Bethe
lattice. Sahimi (1986). and later Roux (1986), proposed that

fo= 1+ 2v,, (11.35)

where v, 1s the critical exponent of percolation correlation length. The main
idea behind (11.35) is that the scaling of G, and g, differ only by a factor
(length)” or &,. The predictions of (11.35) seem to be in perfect agreement
with the numerical data (see Table 11.1). Unlike f. and f3, which seem to be
quite different for three-dimensional networks, the numerical values of (.
and {, are not very different. This is because superelastic networks are
dominated by singly disconnected bonds, i.e.., soft bonds (for which e is
finite) that connect superelastic (rigid) clusters. If singly a disconnected bond
1s removed. the two rigid clusters become separated. This is in contrast with
elastic percolation networks in which the deformation of blobs (clusters of
multiply connected bonds) and the singly connected bonds. which connect
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the blobs, are both important (see Chapter 2). For this reason, we use { to
denote the critical exponent of G; for both CF and BB models, and do not
distinguish between {; and (..

Table 11.1 Critical exponents of elastic and superelastic percolation networks for
three-dimensional systems and in the mean field approximation valid for d = 6.

H s Je Jb € Ca
d=3 2.0 0.73 2.1 3.75 0.65 1.35
d=6 3 0 3 4 0 0

11.5 Comparison of the scaling properties of the
viscosity and elasticity of branched polymers and
gels with the percolation predictions

Let us now summarize the experimental data for f, k£, and A. Most of the
experimental measurements of fhave been done for what we called chemical
gels and have yielded a value of f mostly in the range of 1.9-2.2. Examples
include measurements of f for hydrolyzed polyacrylamide (Allain and
Salomé 1987), and for tetraethylorthosilicate reactions (Hodgson and Amis
1990). A few measurements for chemical gels have yielded much higher
values of f. An example is the measurements of Adam et al. (1985) who
reported f = 3.2 + 0.6 for polycondensation. However, all measurements of
f for physical gels have yielded f =~ 3.8.

The experimental data for k can be divided into two groups. The first
group of measurements indicate a value of & mostly in the range 0.6-0.9.
Examples include the work of Adam er al. (1979) for copolymerization of
styrene divinylbenzene in the reaction bath, and that of Allain and Salomé
(1987) for hydrolyzed polyacrylamide. The second group of measurements
have mostly yielded a value of k in the range 1.3-1.5. Martin et al. (1988)
obtained k = 1.4 for the viscosity of epoxy resins. Finally, measurements of
A have all indicated a value around 0.7. Examples are the works of Martin
et al. (1988), Rubinstein et al. (1989), and Hodgson and Amis (1990).

What is the theoretical explanation for the measured values of f and &7
de Gennes (1976) proposed that the elastic moduli G of gel polymers near
GP and the conductivity g, of percolation networks near p. belong to the
same universality class, that is, f= p. But it is not clear why the scaling of
a vector property such as G should be similar to that of a scalar property
such as g.. Moreover, even if this analogy were exact, we would still be
left with the task of explaining the observed scaling behavior of gel
networks because various measurements indicate two distinct values for f,
one in the range 1.9-2.2, the other in the range 3.2-3.8; u is unique for
three-dimensional percolation networks. When de Gennes made his sugges-
tion, elastic percolation networks had not been investigated and his-suggestion
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provided a theoretical framework for a qualitative explanation of some of
the data.

de Gennes (1979) also suggested that the divergence of the viscosity 1 of
a sol is similar to the divergence of g5, thus k =s. I contend there is no
analogy between 1 and g, because, in general, the rotation and deformation
of finite polymers in local viscous shears should make k smaller than s.
These deformation and rotational motions also make the field equations for
gs lotally different from those for n. Indeed, n is related to a tensor quantity,
namely, the complex modulus G*, whereas g is a scalar quantity, and
therefore there is no reason to believe that the scaling of 1| may be related
to that of g,. Moreover, as in the case of G, even if this analogy were exact.
it still could not provide an explanation for the fact that the exponent s is
unique for three-dimensional superconducting percolation networks, where-
as experimental data for & clearly indicate two distinct values for k. Despite
such inconsistencies, these analogies are still used and advocated by some
researchers in this field; see the review of Daoud and Lapp (1990).

We now use elastic and superelastic percolation networks and provide a
consistent explanation for all of the data. In physical gels, BB forces are
mmportant. When deformed. any three mutually touching particles roll on top
of one another. This motion and the displacement of their centers with
respect to one another, create forces that are similar to BB forces. Ex-
perimental measurements of f for physical gels (Gauthier-Manuel et al. 1988:
Woignier er al. 1988) confirm this; f is found to be about 3.8, in excellent
agreement with the result for three-dimensional BB models, f5 = 3.75,
estimated by Arbabi and Sahimi (1988). Thus, for physical gels we have

f=/n physical gels. (11.36)

In most chemical gels, BB forces are usually not important; the only
important force between the monomers seems to be the central or stretching
forces. Numerous experimental measurements of f for such gels have
yielded a value of f in the range 1.9-2.2, which does not agree with the
exponent of the BB model but agrees nicely with the exponent of the three-
dimensional CF models, f, = 2.1, estimated by Arbabi and Sahimi (1993).
Therefore, in this case we have

f=/e chemical gels. (11.37)

The fact that the critical exponent f; is close to the conductivity exponent
i does not imply that the two models belong to the same universality class.
This scaling picture is perfectly consistent with what we discussed above and
with what we know aboul physical and chemical gels. Alexander (1984)
argued that in some gels and rubbers under internal or external stress, some
terms in the elastic energy of the system are similar to the so-called Born
model. the elastic energy of which is given by
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where o is another constant. In three dimensions the critical exponent of
this system is fz=p = 2. The second term of the right side of (11.38) is
purely a scalar term and is similar to (11.30). Near p. the second term
dominates the first term (which is due to central forces). But these rubbers
and gels differ from the Born model in several important ways, such as the
presence of nonlinear terms in their elastic energy and the possibility of
negative as well as positive Born coefficients. It is not clear, therefore, that
the Alexander result f=fp= | is applicable to such systems. With our
interpretation of the experimental data, in the polymers used by Adam et
al. (1985) the BB forces might be important since they reported that,
f=3.2%0.6, consistent with (11.36). In some polymers entropic effects are
important, whereas in the elastic energy given by (11.31) such effects cannot
be taken into account. It is not yet clear that if such effects are taken into
account, the various elasticity critical exponents would remain the same as
those found with (11.31). Daoud and Coniglio (1981) suggested that the
elasticity exponent for such systems is equal to v,d. For three-dimensional
systems this predicts f = 2.64, quite different from the exponents of CF and
BB models. Whether the Daoud-Coniglio relation is exact and how the
crossovers between these various regimes take place are still not under-
stood, but the result of Adam et al. (1985), f=3.2+0.6, can also be
interpreted with the Daoud-Coniglio relation. Thus, we may have three
universality classes for the critical properties of the elasticity of polymers,
but this possibility remains an open question.

How can we explain the experimental data on the scaling behavior of n
near the GP? Sahimi and Goddard (1985) proposed that the scaling
behavior of 1 near the GP is analogous to that of the shear modulus G of
a superelastic percolation network near p.. The relation between 1 and the
shear modulus of an appropriate elastic system can be inferred, in a
straightforward and rigorous way, from the continuum equations of elas-
ticity, see, e.g., Christensen (1982). The viscosity coefficient that is obtained
from such a continuum theory of elasticity is actually the zero-shear rate
viscosity, for it is necessary to have a vanishingly small rate of deformation
in order to be able to define the viscosity coefficient. The analogy between
7 and the shear modulus G; of a superelastic percolation network is made
simply because they both diverge as the percolation threshold, or GP, is
approached. Even the analogy between T and G; is not nearly enough to
explain the scaling of 1 near the GP since, as reviewed above. experimental
data indicate that the value of k is either in the range 0.6-0.9, or in the
range 1.3-1.5, whereas the shear modulus G; of a three-dimensional super-
elastic percolation network is characterized by a unigue value of {. As Arbabi
and Sahimi (1990) explained (see also Sahimi and Arbabi 1993), the reason
for having two distinct values of & is that the dynamics of the two systems
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ire totally different. In one case, the dynamics of the solution corresponds
o the so-called Zimm limit, while in the other case the solution obeys the
o-called Rouse dynamics.

In the Zimm limit there are strong hydrodynamic interactions between
nonomers and also between polymers of various sizes. In this regime,
olymeric cluster relaxation is governed by Stokes—FEinstein diffusion. The
urroundings of any polymer are composed of smaller polymers which are
tationary on the molecular time scale. Thus. there is no significant
liffusion of the polymers in the reaction bath. Hence, a superelastic
sercolation network, which is a static system in which the totally rigid
:lusters are motionless may be used to simulate the Zimm regime. Indeed,
he estimated value of { for such a system, { = 0.65, obtained by Arbabi
ind Sahimi (1990) supports the idea that gelling solutions with k& values
).6-0.9 are in fact close to the Zimm regime. Moreover, Arbabi and Sahimi
1990) proposed that

k=C=v,- %, Zimm regime. (11.39)

Kertész (1983) and Sahimi and Hughes (see Sahimi 1983) had suggested that
i=vp— Bp/2, using various arguments. However, it is now clear that
1> v, — Bp/2. (except for d = 6, where s =v, — B,/2=0), and that (11.39)
nay be exact. This is also consistent with the suggestion of Limat (1989)
hat { < s, and with the experimental result of Benguigui and Ron (1993),
o =067

On the other hand, the gelling solution can also be in a state in which
‘here are no hydrodynamic interactions between the polymers of various
iizes (1., the Rouse regime), and therefore the polymers can diffuse
:ssentially freely in the reaction bath. Hence, a static superelastic percola-
Jon network cannot model this regime of polymerization. To model this
regime Arbabi and Sahimi (1990) proposed a dynamic superelastic network
n which each cluster of the rigid bonds represents a polymer, and there 1s
of course a wide size distribution of such polymers or clusters in the
network. The soft bonds (those for which the elastic constant e is finite)
represent the liquid (solution) medium in which the rigid clusters move
randomly. with equal probability, in one principal direction of the network.
This simulates the diffusion of the polymers in the reaction bath. Two rigid
clusters cannot overlap but they can temporarily join and form a larger
cluster. which can be broken up again at a later ume. It was shown that the
shear modulus of this dynamic system diverges with an exponent {4 which,
in three dimensions, is {s = 1.35. This supports the idea that those gelling
solutions whose values of k are in the range 1.3-1.5 are in fact close to the
Rouse limit. Moreover, Arbabi and Sahimi (1990) proposed that

k=Ca=2v,—B,. Rouse limit. (11.40)



Structural. mechanical, and rheological propertics 18y

The relation, k = 2v, — B, had already been suggested by de Gennes (1979).
What Arbabi and Sahimi (1990) did was to show that the elastic moduli of
a dynamic superelastic percolation network have the same critical exponent.
Therefore, static and dynamic elastic and superelastic percolation networks
provide a consistent explanation for the scaling properties of the viscosity
of gelling solutions below and near GP, and those of the elastic moduli of
the gel network above and close to GP. The Flory-Stockmayer theory
predicts that f=3, and that n diverges as n ~log(p. - p). i.e.. k=0, in
disagreement with the experimental data.

There are some experimentally observed deviations of k from { or {4. As
reviewed above, experimental determination of & and f usually involves
measuring the complex shear modulus G* at a finite (albeit small) frequency
w. Strictly speaking, the scaling laws for G and 1 are valid only in the limit
® — 0, whereas in practice it is highly difficult to achieve such a limit,
therefore the reported values of k show some deviations from { or {,. These
deviations can be attributed to transient effects, which should diminish as
lower frequencies are achieved. Using this scaling description for G and n.
we can find upper and lower bounds for the exponent A = fI(f+ k). If for
chemical gels we use /= f, = 2.1 and use (11.39) and (11.40) for estimating
k, we obtain

0.6l = A=<0.75, (11.41)

where the lower and upper limits correspond to the Rouse and Zimm
regimes, respectively. Thus, changing &k by a factor of two causes only a 20%
change in A. Moreover, the average value of A is about 0.68, very close to
the measured value A = 0.7. Thus, because of the relative insensitivity of
A to the value of k, measurement of A is not an accurate means of assessing
the dynamics of gelling solutions.

11.6 Kinetic gelation and dynamic percolation

The large elastic moduli and low solvent absorption of some highly
cross-linked polymers make them highly desirable for various applications.
They can be made by free-radical homopolymerization of tetrafunctional
monomers such as diacrylates and dimethacrylates, which polymerize very
rapidly at room temperature if initiated by ultraviolet light and suitable
photoinitiator. Typical results of such a homopolymerization include auto-
acceleration Kkinetics, formation of a glassy polymer, and attainment of a
maximum conversion beyond which no reaction occurs even when un-
reacted initiator is still in the reactor. The percolation model discussed above
cannot be used for free-radical polymerization, since this is a kinetic process
and random percolation is a static phenomenon. Although several altern-
ative models have been proposed, we describe kinetic gelation, a variation of
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* percolation model that appears to explain many features of free-radical
lymerization.

Cinetic gelation was first proposed by Manneville and de Seze (1981). In
ir model each site of a lattice represents either a di- or tetrafunctional
momer. At time ¢ = 0 a fraction of the sites are assumed to represent an
ive radical. This is called fast initiation, since it is done before any
lymerization has taken place. At each time step an active radical is
ected at random and moved to an adjacent site that has at least one
reacted functional group. A bond is formed between the two sites and the
» site also becomes a radical. If a site is occupied simultaneously by two
licals, then termination occurs. Radicals in an actual free-radical poly-
rrization sometimes have greatly reduced mobility, and can have lifetimes
a year or even longer. This phenomenon is also observed in the kinetic
ation model of Manneville and de Seze when none of the nearest-neigh-
r sites of a radical has unreacted functional units; it is called radical
pping. In any event, it is possible to form a sample-spanning gel similar
a percolation cluster. As such, kinetic gelation can be thought of as a
namic percolation process, different from random and static percolation
icussed so far.

Herrmann et al. (1982) and Bansil et al. (1984) modified this basic model
adding the effect of a solvent and a mobile monomer. This does not
ect the GP but decreases slightly the effect of radical trapping. Certain
nds observed in experiments, such as an increase in the GP conversion
her as the fraction of tetrafunctional monomers decreased, or as initiator
ncentration increased, or as solvent concentration increased, were repro-
ced by this model. Boots er al. (1985) developed a kinetic gelation model
th slow initiation in which only one active radical is present in the lattice
any given time. At time =0 a monomer is randomly selected and
signated as an active radical. When this radical is surrounded by sites
thout unreacted functional groups and is trapped, another randomly
ected monomer is initiated. Therefore, no termination of radicals can
cur in this model. It can adequately predict the pendant double-bond
iction per monomeric unit in the polymer for the reaction of 1,6-hexa-
diol diacrylate, and can give rise to inhomogeneous structures, which
sult in higher reactivity at low conversions of the pendant double bond
ative to the monomeric double bond. Such inhomogeneous structures
ve been obtained in various experiments.

Simon et al. (1989) have used kinetic gelation models to determine, within
perimental error, the fraction of constrained and unconstrained double
mds over a wide range of conversions in the polymerization of ethylene
ycol dimethacrylate. The rules for determining constraint in the model are
at all pendant double bonds and all monomers in a pool of six or less are
nstrained. Monomers in pools of seven or more are assumed to be
iconstrained. The reactivity is not affected by whether a site is constrained
not. The structure of the gel networks formed during kinetic gelation has
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been analyzed (see, e.g., Herrmann et al. 1982), and it has been shown that
the critical exponents characterizing it are the same as those of random
percolation described above and in Chapter 2. Thus, kinetic gelation
models, which are nothing but dynamic percolation processes, appear to
provide adequate models of free-radical polymerization. And free-radical
polymerization is far more complex than ordinary gelation phenomena.
Moreover, many other variants of the random percolation model have been
invented for studying certain aspects of polymerization, e.g., for taking into
account effects of the solvent which we ignored. An excellent discussion of
these models is given by Stauffer er al. (1982).

11.7 Conclusions

In this chapter, we discussed the available experimental data on structural,
mechanical, and rheological properties of branched polymers and gels, and
showed that appropriate percolation models may be developed that can
provide theoretically consistent explanations for most if not all of the
experimental data.
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12
Morphological and transport properties
of composite materials

12.0 Introduction

Composite materials and media constitute a large class of naturally occur-
ring or man-made disordered systems. Included in this class are granular
materials, composite solids, metal-insulator films, porous media, polymers
and aggregates, colloids, and many others. Currently, composite materials
are the subject of intensive research, not only for the fundamental scientific
questions that have been raised by their interesting structural and transport
properties, but also for their practical applications. In this chapter we
discuss the application of percolation concepts to predicting the effective
properties of composite media. Calculation of the effective properties of
porous media and gel polymers is discussed in earlier chapters, so we do not
considered it here. Far from the percolation threshold p.. the effective
properties of composite materials can be accurately predicted by the
effective-medium approximation (EMA) discussed in Chapter 5. Garland
and Tanner (1978), Lafait and Tanner (1989), and Cody et al. (1990)
contain references on the applications of Chapter 5 methods to composite
media. As in Chapter 11, we restrict most of our discussion to the scaling
behavior of the composites in the critical region near p,, where percolation
effects are dominant and universal properties, independent of the micro-
scopic details of the system, may be observed. Later we shall see that the
critical region is often quite broad, therefore such universal scaling laws can
be very useful for predicting the effective properties of a composite medium
over a broad range of the volume fraction of the components constituting
the composite.
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12.1 DC conductivity and elastic moduli of powders
and polymer composites

One of the simplest three-dimensional composite systems is a random close
packing of hard spheres. The spheres can be considered as one phase of the

aterial, while the host medium between the spheres, or the matrix,
constitutes another phase. Although this two-phase system may seem too
simple. its effective properties are directly relevant to those of a wide variety
of systems of practical importance. For example, if the spheres are conduct-
ing and the matrix is insulating, the packing can be used for studying the
electrical conductivity of disordered composites such as powders. If we
imagine that the matrix is the pore space through which a fluid can flow,
the packing can be used for studying flow phenomena in unconsolidated
porous rocks. a subject discussed in Chapters S to 7. Finally, rheological
properties of a system in which hard spheres are suspended in a fluid have
been of interest for a long time. It has been found that the viscosity of the
suspension follows the following scaling law

N~ (0c— )", (12.1)

where ¢ 1s the volume fraction of the solid spheres, and ¢. is its critical value
at which the viscosity diverges. Equation (12.1) is similar to (11.2) for the
viscosity of a gelling solution. Thus, percolation is certainly relevant to
nodeling the viscosity of a suspension.

Historically. the work of Malliaris and Turner (1971) was probably the
rst in which the electrical conductivity of a compacted powder of spherical
Jarticles was measured, and a clear reference was made to percolation. These
wthors prepared powder samples of high-density polyethylene particles
with radius R, = 150um) and nickel particles (with radius R, =4-7um).
I'hey then observed that the electrical conductivity of the powder was
:ssentially zero unless “the composition of the metal reached a critical
value.™ This critical value, the percolation threshold of the metallic phase,
vas found to depend on R,/R,. The electrical resistivity of the powder
Iropped 20 orders of magnitude at the percolation threshold p. = 0.06 for
samples with nickel segregated on the outside of the polyethylene spheres,
ind at p. = 0.35 for samples prepared so that the nickel penetrated the
spheres. Malliaris and Turner (1971) also remarked that, “the critical
:omposition for a sudden increase in the electrical conductivity of the
system was assumed to correspond to the first nonzero probability for
nfinitely long chains of contiguously occupied lattice sites,” a clear refer-
:nce to the formation of a percolating cluster of metallic particles. Although
hey did not refer to percolation explicitly, they used bond percolation
hresholds of various lattices computed by Domb and Sykes (1961) to
nterpret their experimental data.
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Fitzpatrick et al. (1974) were the first to explicitly study percolation and
electrical conduction in random close packed spheres, as part of a first-year
physics course at Harvard University. All the spheres had the same
diameter. The conducting spheres were made of aluminum, the insulating
ones of acrylic plastic. The system was pressed between two parallel
electrodes made of crumpled aluminum, and the measurements were made
with an ohmmeter at high resistances and with a simple Wheatstone bridge
at low resistances. The overall conductivity of the system was measured as
a function of the volume fraction of the conducting spheres. It was observed
that the conductivity of the system vanishes at a finite value of the volume
fraction of the conducting spheres. Independently, Clerc er al. (1975)
studied mixtures of conducting and insulating confectioner’s dragées, which
were neither spherical nor closely calibrated.

The first systematic and extensive study of percolation and conduction
properties of packings of particles appears to have been carried out by
Ottavi et al. (1978). They carried out experiments with molded plastic spheres,
all having the same diameter, in which a fraction of them were electroplated
with a copper coating to make them conducting. The spheres were poured
into a cylinder equipped with a pair of electrodes, one on the rigid bottom
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Figure 12.1 Variations of the electrical conductivity ge of a mixture of conducting and

nonconducting spheres as a function of the fraction p of the conducting spheres (afier
Ottavi et al. 1978).
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the cylinder. the other at the top. Their results, shown in Fig. 12.1,
licate that the effective conductivity g, vanishes at p, = 0.29 + 0.02. Since
 filling factor f; (see Chapter 2) of such packings is about 0.6, we obtain
= fip. = 0.17, in agreement with the theoretical prediction of Scher and
llen (1970) for the percolation threshold of random three-dimensional
rcolating continua discussed in Chapter 2. The data of Ottavi er al. (1978)
.0 indicated that near p,

ge(p) ~ (p — po*, (12.2)

thpu = 1.7 £ 0.2, reasonably close to p = 2.0 for three-dimensional percola-
m discussed in Chapter 2. Deptuck er al. (1985) investigated sintered,
bmicrometer silver powder with a volume fraction ¢ ~ 0.4, commonly
ed for millikelvin and submillikelvin cryostats. The sinter remains elastic
i«d percolating for ¢ as low as 0.1. They also investigated submicrometer
pperoxide—silver powder. routinely used in heat exchangers for optimiz-
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figure 12.2 Conductivitv and Young's modulus of swntered. submicrometer. silver-

wowder beams as a function of 1 ¢ — ¢¢). where o = 0.062 The two conductivily curves
-epresent the data at 78K (upper curve) and 300K (after Deptuck et al. 1985).
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ing heat transfer to dilute liquid ‘He-*He mixtures. In these composites. the
silver component behaves as a percolating system with ¢. < 0.1. Deptuck et
al. carried out a systematic study of the electrical conductivity and the
Young modulus of these powders and measured them in the same range of
¢. This made it possible to compare their critical behavior in the same range
of ¢. Their results, shown in Fig. 12.2, indicate that the conductivity
vanishes with a critical exponent p = 2.15 + 0.25, completely consistent with
p = 2.0 for three-dimensional percolation, while the Young modulus G
vanishes according to the scaling law

G~ (6 -6, (12.3)

with f = 3.8, in excellent agreement with the critical exponent f; = 3.75
of elastic percolation networks with stretching and bond-bending forces
discussed in Chapter 11. As Fig. 12.2 indicates, the critical region is quite
broad. Similar results were obtained by Lee et al. (1986) who used
silver-coated glass-Teflon composites. The Teflon powder used was com-
posed of particles with diameters of about 1 um. The powder was then
mixed with glass spheres coated with a 600A silver layer which provided
high conductivity. The conductivity of the mixture was then measured as a
function of the volume fraction of the conducting particles. Lee er al. found
that ¢, = 0.17, in good agreement with the percolation threshold of three-
dimensional continuum percolation predicted by Scher and Zallen (1970).
Moreover, when they fitted their conductivity data to (12.2), they found
p=20%0.2, in excellent agreement with that of three-dimensional per-
colation conductivity. Lee et al. also found that the critical region in which
(12.2) was applicable was quite broad. Deprez er al. (1989), who measured
the electrical conductivity of sintered nickel samples, also found that (12.2)
(with p = 2.0) was applicable over the entire range of the volume fraction.

Hsu and Berzins (1985) studied percolation effects in perfluorinated
ionomers, with general formula, [(CF1),CF),,~O-R-S0:X, where n is typ-
ically 6-13, R is a perfluoroalkylene group which may contain ether oxygen,
and X is any monovalent cation. They are comprised of carbon-fluorine
backbone chains with perfluoro side chains containing sulfonate, carboxyl-
ate, or sulfonamide groups. possess exceptional transport, chemical, and
mechanical properties, and have been used as membrane separators, acid
catalysts, and polymer electrodes. Percolation effects are important in these
composites because of a spontaneous phase separation occuring in the wet
polymer: the conductive aqueous phase is distributed randomly in the
insulative fluorocarbon phase. The effective properties of these polymers
are dominated by the distribution and connectivity of the clusters of the
conductive phase in the midst of an insulating phase; this is a percolation
phenomenon. Hsu and Berzins (1985) measured the electrical conductivity
and elastic moduli of these polymer composites, and found their measure-
ments to be consistent with the predictions of percolation theory. For
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example. they found that for 107" < p — p, < 0.8, a very broad region, the
conductivity of the polymers obeyed (12.2). which again indicates the broad
apphcability and usefulness of a universal scaling law such as (12.2).

Many composite materials are anisotropic and the effect of the anisotropy
on their cffective properties near p, is particularly important. Smith and
Lobb (1979) measured the conductivities of two-dimensional conductor -
insulator networks generated photolithographically from laser speckle pat-
terns. When they measured the conductivity of isotropic samples, they
found that it vanishes at p. = 0.59, in agreement with the site percolation
threshold of a square network. with a critical exponent p = 1.3, in complete
agreement with two-dimensional percolation conductivity (see Chapter 2).
When they measured the conductivities of anisotropic samples, they found
that the conductivity anisotropy. measured in terms of the difference
between the conductivity of the system in different directions, decreased as
p was approached

Troadec et al. (1981) measured thermal and electrical conductivity of
conducting WTe» and semiconducting WSe» powders, characterized both by
a geometrical anisotropy (grain shapes and sizes) and by anisotropy in a
transport property. These mixtures belong to the family of dichalcognides
of transition metals. TX,. Their structure is layered with a hexagonal
arrangement within each plane, which gives rise to the anisotropy of the

gt 8ot~ 1
.
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Figure 12.3 Measured conductivity anisotropy gedger— 1 of a mixture of WTes and
WSe: powders. as a function of the fraction p of WTe: in the mixiure, al (A)
T=300K. (B) T=200K, and (C) T = 100K (after Troadec et al. 1981).
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system. The main difference between the crystallographic structures of
WSe, and WTe- is in the coordination number of the W atoms. In WSe.,
W is at the center of a trigonal prism of Se atoms, whereas in WTe,, W has
an octahedral environment but is not precisely at the center of the octahe-
dron. Moreover, WSe, has a semiconductor character. in contrast with the
semimetallic character of WTe.. Troadec et al. used powder grains that were
single crystal platelets having a thickness of about 1 to 2pum and a
horizontal hexagonal shape with a largest dimension of about 20 um. The
mixed powder was outgassed under secondary vacuum for 2h before being
sintered in the same pressure and temperature conditions. The packing
fraction was about 92%. Figure 12.3 shows their measured anisotropy in the
electrical conductivity, expressed as g./ge — 1, where g (ge) is the conduct-
ivity in the direction parallel (perpendicular) to the applied potential, and
p 1s the fraction of WTe; in the mixture. The anisotropy Shows a minimum
at the percolation threshold of the WTe., phase. This is expected, since as
the percolation threshold of a phase is approached, its conducting paths
become very tortuous, so that the current cannot distinguish between different
directions. Indeed, Shklovskii (1978) suggested that near p, we must have

B~ (p-por, (12.4)

et

where A, is a universal critical exponent. If the system always remains
conducting, then the anisotropy should be minimum at p., and this is
consistent with the data shown in Fig. 12.3. The conductivity of anisotropic
systems can also be predicted by EMA, (5.12)-(5.14), and indeed EMA
predicts that the conductivity anisotropy vanishes at p. It is not clear
whether A, is related to the other percolation exponents or whether it is a
completely independent exponent.

Results very similar to those of Troadec et al. were also obtained by
Balberg et al. (1983), who measured the resistivity of a composite composed
of elongated carbon black aggregates embedded in an insulating plastic,
polyvinylchloride. Because of the elongation of the aggregates, the system
is anisotropic. Measurements of the anisotropy of the system produced
results very similar to those shown in Fig. 12.3, except that the curves ended
at the percolation threshold, since the plastic matrix was insulating, in
agreement with (12.4).

What 1s the effect of the thickness of the sample on the percolation
properties of such systems? It is not difficult to show that

R llvp‘
Pe(€) = pe(=) ~ C[Yp) . (12.5)

where p.(f) is the effective percolation threshold of a sample of thickness
€, pe(e=) is the corresponding threshold for € — o, ¢ is a constant, and vp'
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Figure 12.4 Variations of the percolation threshold p. of a mixture of conducting and
mnsulating spheres with the thickness | of the sample. vy is the correlation length
exponent of three-dimensional percolation (after Clerc et al. 1980).

is the correlation length for three-dimensional percolation. Equation (12.3)
1s identical to (2.20). where we discussed the effect of finite size of a network
on its percolation threshold. Clerc et al. (1980) studied this effect by varying
the thickness € of a system made of layers of particles with a diameter R,,.
Figure 12.4 shows their results for various thicknesses, from which we obtain
vp' = (.85, in very good agreement with v, = 0.88 for three-dimensional
percolation (Chapter 2). The finite thickness of the sample also affects the
conductivity of the system. Using (12.2) it is not difficult to show that

¢ (W3- pa)ivp?
Ba _[£2 . (12.6)
8e2 éI

where gn(ge2) 1s the conductivity of a sample of thickness €,(€.), and
M:(M3) is the critical exponent of conductivity for two-dimensional (three-
dimensional) percclation. The experimental data of Clerc et al. (1980) for
the conductivity of their system was also in agreement with (12.6).

What is the effect of a particle size distribution on the transport proper-
ties? If, instead of using particles of the same size. we use particles of
various diameters, the resulting packing will be disordered compared with
a packing of monosize particles. Harris (1974) developed a criterion according
to which we can determine whether introduction of relatively weak disorder
into a system can change its critical behavior. According to his criterion. if
in a d-dimensional percolation system the quantity o, = 2 — v,d is positive,
then introduction of disorder can change the critical behavior of the system.
Otherwise. the critical exponents will remain unchanged. Since o,(d = 2) =
-2/3 and o,(d=3) = -0.64, the conclusion is that introduction of a
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particle size distribution does not change the critical properties of a packing
of particles. This has been confirmed in several experiments.

12.2 DC conductivity and percolation properties of
metal-insulator films

Thin metal films are two-phase mixtures of metal and nonmetal compon-
ents. They have interesting structural and transport properties. Their
electrical conductivity varies continuously as the volume fraction of the
metallic phase is changed. If the volume fraction of the metallic phase is
large enough, the metal phase forms a sample-spanning cluster in which the
nonmetallic phase is dispersed in it in the form of isolated islands. In this
regime, the electrical conductivity of the system is large (or it is metallic)
and its temperature coefficient of resistance is positive. If the volume
fraction of the metallic phase is close to its percolation threshold, we have
a complex system of isolated metallic islands, a tortuous and sample-span-
ning cluster of the metallic component, and islands of the nonmetallic
component. If the nonmetallic phase forms a sample-spanning cluster. the
system 1s in the dielectric regime, and its electrical conductivity is very small.
Transmission electron microscopy (TEM) shows that thin metal films have
a discontinuous structure in which the metallic phase constitutes only a
fraction of the total volume of the system. Such films have a nearly two-
dimensional structure and are formed in the early stages of film growth by
a variety of techniques such as evaporation or sputtering. The metallic
phase first forms isolated islands that at later stages of the process join
together and form a continuous film. Generally speaking, a metal film is
considered as thin if its thickness / is less than the percolation correlation
length &, of the three-dimensional film.

Thick films of metallic and nonmetallic components, i.e., those with a
thickness greater than §p, also have interesting properties and have been
studied for a long time. They can also be produced by cosputtering or
coevaporation of two components that are insoluble in each other; the
nonmetallic component and the metallic phase. They have been studied for
their novel superconducting and magnetic properties. However, the dis-
covery by Abeles ef al. (1975) that the electrical conductivity of such films
near p. follows (12.2) made them the subject of many studies. Thick films
are mainly composed of a metal with a bulk lattice structure. The non-
metallic phase is amorphous and often in the form of isolated islands. They
are often called granular metal films because inspection of their structure
shows that the metal grains are often surrounded by very thin amorphous
layers of the nonmetallic component, so that metallic grains remain separ-
ated. Granular composites always have high percolation thresholds, which
can be close to the random close packing fractions, if the grain size is
constant and the insulator is relatively thick. Examples of such composites
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are Ni-SiO:, Al Si, and Al-Ge. Unlike thin metal films, we cannot easily
find clusters of metallic grains in granular metals, therefore it is more
difficult to interpret their structure in terms of percolation properties. There
are also strong correlations in the structure of thick metal films, so that the
random percolation model discussed so far may not be totally suitable.
Deutscher er al. (1978) proposed that thick metal films have a granular
structure if their nonmetallic phase is amorphous, but should be considered
as random composites if the insulating phase is crystalline. By random we
mean a system in which the two phases cannot be identified from their
structures, so that they both play a symmetric role. Let us now discuss
several properties of metal films and relate them to percolation quantities.

The first application of percolation to the interpretation of various
properties of very thin (two-dimensional) metal films appears to have been
made by Liang et al. (1976). They prepared ultrathin films which were 1.5 mm
wide with preevaporated indium electrodes spaced 25 mm apart. The sub-
strate was S10 film deposited on a glass microscope slide. Several kinds of
metallic compounds were evaporated and studied. They found that the sudden
drop of the resistivity of semimetal bismuth ultrathin films was very steep,
signaling a percolation transition. When they plotted the conductivity of the
system versus the area fraction ¢ of the conducting phase, they found that near
the percolation threshold the conductivity follows (12.2) with p = 1.15,
reasonably close to p = 1.3 for two-dimensional percolation discussed in
Chapter 2. However, they also found that ¢, = 0.67, quite different from
0. = 0.5, the prediction of Scher and Zallen (1970) for two-dimensional
continuum percolation (Chapter 2). The difference can be attributed to the
existence of correlations that are usually present in such films, but were
absent in the Scher-Zallen theory for random and continuum percolation.

Beautiful studies of the morphological properties of thin metallic films
were carried out by Voss ef al. (1982) and Kapitulnik and Deutscher (1982),
the results of which were published in two back-to-back papers in Physical
Review Letters. Voss et al. prepared Au films by electron beam evaporation
onto 30 nm thick amorphous Si;N, windows grown on an Si wafer frame,
A range of samples were prepared simultaneously which were from 6 to 10
nm thick and varied from electrically insulating to conducting. Trans-
mission electron micrographs were digitized, and with the use of threshold
detection and a connectivity-checking algorithm the individual Au clusters
were isolated and their statistical properties were analyzed. Figure 12.5
shows one of their samples at a fractional Au coverage p = 0.71, just below
the percolation threshold of the Au phase, p, = 0.74. Voss et al. found that
the Au clusters were irregularly shaped and ramified. At large scales most
of the film properties were uniform, but at small scales they were not. Since
the deposited Au atoms have some initial mobility, the Au clusters were not
totally random, as a result of which the percolation threshold of the system,
p. = 0.74. was larger than 0.5, the expected value for two-dimensional
continuum percolation. But at p. Voss er al. found that the largest Au
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Figure 12.5 Au clusters at p = 0.71 (after Voss et al. 1982).

cluster is a fractal object with a fractal dimension of about 1.9, in excellent
agreement with that of two-dimensional percolation (Chapter 2),
= 91/48 = 1.896.

Figure 12.6 The sample-spanning cluster (top) and its backbone (bottom) of Pb films
(after Kapitulnik and Deutscher 1982).
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Kapitulnik and Deutscher (1982) prepared samples by successive deposi-
tion of amorphous Ge as the substrate, and of thin Pb films as the metal.
This allowed them to obtain deposition with only short-range correlations.
The size of the Pb crystallites as the average Pb thickness was about 200 A.
Since the continuity of the metallic cluster is controlled by its thickness,
varying the sample thickness is equivalent to generating percolation net-
works with varying fractions of conducting components. Figure 12.6 shows
part of the sample-spanning cluster of Pb and its backbone. Kapitulnik and
Deutscher (1982) deposited the thin films on TEM grids and photographed
them in the TEM with a very large magnification. The pictures were then
analyzed for various percolation properties. Figure 12.7 shows their results
for the mass M of the sample-spanning cluster and its backbone. Over
about one order of magnitude the sample-spanning cluster and its backbone
show fractal behavior, with D. = 1.9 for the cluster and Djpp = 1.65 for the
backbone, in excellent agreement with the results for two-dimensional
percolation (Chapter 2). Kapitulnick and Deutscher (1982) also calculated
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Figure 12.7 The mass M of the sample-spanning cluster and its hackbone of Pb films
~e o functinn of the linear size L of the film (after Kapitulnik and Deutscher 1982 ).
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Figure 12.8 The number of clusters ny of size s in Pb films (after Kapitulnik und
Deutscher 1982).

ns, the number of metallic clusters of mass s below p.. Figure 12.8 shows
their results. Equation (2.14) tells us that

ns~ s 2, 2.7

and from Fig. 12.8 we obtain 1, = 2.1 + 0.2, completely consistent with 1, =
187/91 = 2.054 for two-dimensional percolation. Qualitatively similar results
were obtained by Laibowitz er al. (1982). They prepared thin Al-Al.O;
films by thermal evaporation and calculated the size distribution of the
metallic regions. They found that this distribution obeys (12.7), although
their estimate of 1, was somewhat lower than the prediction of percolation.
Papandreou and Nédellec (1992) prepared Pd films with a typical thick-
ness of about 100 A. They deposited them using electron gun evaporation
on a quartz substrate for conductivity measurements and on an NaCl
substrate for TEM observations. The substrates were coated with a SiO
layer of 150 A, which ensured similar growth conditions, regardless of the
substrate below SiO. The samples were then irradiated under normal
incidence with a 100keV Xe ion beam, after which their conductivities were
measured. They found that as the percolation threshold was approached.
the conductivity of the sample vanished according to (12.2) with p = 1.3, in
complete agreement with the prediction of two-dimensional percolation.
Let us now discuss some of the experimental results for thick films. In a
seminal paper, Abeles et al. (1975) studied the growth of the grains of the
metals W or Mo in the insulators Al.O; or SiO. using cosputtering. They
changed the volume fraction of the metal in the mixture in the range
0.1 <¢ =<1 and obtained very finely dispersed grain structures. With
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Figure 12.9 Log-log plot of the conductivity of W-Al10s films versus the volume
fraction ¢ of W, where ¢ is the percolation threshold (after Abeles et al. 1975 ).

annealing. we can change the size of the metal grains over a wide range. The
advantage of using the W or Mo is that annealing does not cause the metal to
precipitate. The metal remains uniformly dispersed within the insulator. The
conductivity of the films was determined at various values of the metallic
phase volume fraction. Because of correlations, the metal-insulator transition
occured at ¢ = 0.47, considerably higher than the Scher-Zallen prediction
for three-dimensicnal continuum percolation, ¢, = 0.15-0.17. Figure 12.9
shows the measured conductivity of the samples prepared by Abeles et al.
as a function of the volume fraction of the metallic phase. The straight
line has a slope p = 1.9+ 0.2, in very good agreement with y = 2.0 for the
critical exponent of three-dimensional percolation conductivity (Chapter 2).

Using percolation networks of resistors, Cohen ez al. (1978) showed that
we may simulate systems that have high percolation thresholds such as
granular composites. Their model starts with an initial network already
containing a certain fraction p, of metallic bonds arranged in a configura-
tion of noncontacting metallic regions. [t replaces at random the noncon-
ducting bonds with metallic ones and estimates the conductivity and
percolation threshold of the system. In this manner, correlations are
introduced 1nto the model, and there is a systematic bias towards the
formation of isolated metallic regions. as observed in the films studied by
Abeles er ul. The percolation threshold of the system depends on p,, and
Cohen et al. showed that the conductivity data of Abeles et al. can be
quaniitatively predicted by their model. Webman et al. (1975) used percola-
tion networks of resistors to predict the electrical conductivity of several
types of disordered materials such as metal-amonia solutions, and alkali-
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tungsten-bronzes which undergo metal-insulator transitions, similar to
those found in the study of Abeles et al. (1975). They showed that such
percolation networks provide quantitative predictions of the electrical
conductivity in all the cases they studied.

Results similar to those of Abeles ef al. were also reported by Kapitulnik
and Deutscher (1983). They prepared Al-Ge films by coevaporating
them onto glass substrates from two electron beam guns through a mask
with slits, and measured their electrical conductivity. The conductivity of
thick samples near the metal-insulator transition obeyed (12.2) with
p=2.1%0.5 completely consistent with the prediction of three-dimen-
sional percolation. For thin samples the corresponding exponent was found
to be p=09+0.25 smaller than for two-dimensional percolation,
p = 1.3, but close to it. The crossover between two- and three-dimensional
films were also studied by Kapitulnik and Deutscher (1983). They found
that the percolation threshold of the system depended on the thickness of
the sample and obeyed (12.4), as expected. More recent experimental data
for Al-Ge films are given by Kapitulnik et al. (1990), and for In-Ge thin
films are given by Tessler and Deutscher (1989).

Optical properties of percolating metal films have alsc been measured and
explained. We do not discuss them here, but refer the interested reader to
Yagil and Deutscher (1988), Gadenne and Gadenne (1989), Gadenne et al.
(1989), and Robin and Souillard (1989) for details.

12.3 AC conductivity and dielectric properties of
composite media

In this section we discuss percolation models of AC conductivity and
dielectric properties of composite materials. Equation (5.10) shows that
EMA can be used for predicting the AC conductivity of disordered systems
that are far from their percolation threshold. In this section we focus on the
scaling behavior of these properties near p.. Consider first a regular or
random network in which each bond has a conductance equal to either a
with probability p, or to b with probability ¢ = | — p. Using dimensional
analysis, we can show the effective conductivity g, of the network is a
homogeneous function and takes the form

ge(p. a, by=aF(p, h). (12.8)

where h = b/a can assume any complex or (positive) real value. By definition
the effective conductivity g. is invariant under the interchange of a and b,
and therefore we must have

g(p. a. b) = ge(q, b, a) (12.9)
F(p. h)y= hF(q, 1/h). (12.10)
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Chapter 2 gives two limiting cases of the system; the case in which b=10
and ¢ 1s finite (conductor—insulator mixtures), and the case in which g = o0
and b is finite (superconductor-conductor mixtures). Both cases correspond
to h =0, and therefore the point h =0 at p = p. is particularly important.
Let us therefore focus our attention on this singular point. In the critical
region near this point, where both |p - p.| and h are small, the effective
conductivity g, follows the scaling law

ge~alp—pc|'®s(h|p-p |7, (12.11)

where the critical exponents P and s are defined in Chapter 2, and ®. and
®. are two homogeneous functions corresponding. respectively, to the
regions above and below p.. Equation (12.11) was first proposed by Efros
and Shklovskii (1976) and Straley (1976). Similar to the exponents p and s,
these scaling functions are universal and do not depend on the network type
once h and p - p. are fixed.

For any fixed and nonzero value of k, the effective conductivity ge has a
smooth dependence on p - p.. This becomes clearer if we rewrite (12.11) in
the following form

ge ~ ah ™ Iy[|p = pe| 71T, (12.12)
where y(x) = X'®,(x™* %) = (- x)'®_[(~ x) ¥ ’]. The scaling function y(x)

possesses a Taylor expansion around x =0, y(x)=y(0) + y;x + yaxt 4.,
which means that at p = p. and for | h| << 1 we must have

ge ~ W(O)a@’ b)) = y(0)ah". (12.13)
where
u:uts. (12.14)

Note that u is the analog of A defined in (11.4) for gel polymers. Equation
(12.13) implies that ®_(x) ~ ®.,(x) ~ y(0)x"*, which shows clearly the homo-
geneous nature of these functions. Many other properties of these scaling
functions are discussed by Clerc er al. (1990). to whom the interested reader
is reierred.

These results can now be used for modeling the AC conductivity and
dielectric properties of a disordered composite near p.. Many authors have
studied this problem, and among the earliest ones we should mention Efros
and Shklovskii (1976), and Bergman and Imry (1977). A comprehensive
review of this subject is provided by Clerc et al. (1990). Here we only
summarize the main theoretical results, and discuss their experimental
verification. A percolation model can be developed for the AC conductivity
and dielectric properties if we view ¢ and b as complex conductances.
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Consider a percolation network in which a fraction p of the bonds are
purely resistive, while a fraction ¢ =1 — p of the bonds behave as perfect
capacitors. Thus we set

a:lR, b=iCo, (12.15)

where R is the resistance of the bond, C is the capacitance, ® is the
frequency, and i = V- 1. The conductance ratio 4 is then given by

h="'2 (12.16)
(O

where we = 1/(RC). In the static limit (® = Q) the capacitors become insul-
ators, and the model reduces to the usual percolating conductor-insulator
mixture already discussed in Chapter 2. This model is usually referred to as
the R—C model. The key result is that if p is close to p., the R—C model
possesses scaling properties, and the effective conductivity g.(p, ®) of the
system obeys the following scaling law

1 M in -p-s
, W) ~—|p—p PPl = |p—pc| ", 12.17
ge(p, ) ~ 4 ip - pcl t(molp pel ) ( )

which follows directly from (12.11). An immediate consequence of (12.17)
is the existence of a time scale 75 that diverges as p is approached from both
sides

ts~wg' |p—pe| " (12.18)

The significance of ¢ is discussed below.
We now define the frequency-dependent complex dielectric constant
£(p, w) of the system by the following equation

e(p. )

_ & @) (12.19)
H O]

which is generalization of the usual static dielectric constant go. For an
insulating dielectric medium g. = iweo as w — 0. By using some general
analytic properties of the effective complex dielectric constant of a random
mixture, Bergman and Imry (1977) derived the following scaling relations,
which can be obtained from (12.17) and (12.19)

ge(pe, ©) ~ ©F, (12.20)
E(Pe, ®) ~ ©77, (12.21)
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where the exponents x and y satisfy the following relation

x+y=1. (12.22)

Equation (12.22) is a direct consequence of the fact that a complex
conductivity is an analytic function of i®w. Bergman and Imry (1977) argued
that the main contribution to the AC properties is due to polarization
effects between various percolation clusters in the disordered medium.
Based on this argument. they proposed that

x:pi‘s. (12.23)
y= His. (12.24)

so that in two dimensions where p =s, we have x = y = 1/2. Gefen et al.
(1983), who studied fractal diffusion on percolation clusters (see Chapter 9),
argued that the fractal nature of diffusion and of percolation clusters at
length scales up to £, dominate the contributions to the AC properties.
They proposed instead that

n

= 2.
v (2 +8) (12.25)
2Vp By
v,,(2 10y (12.26)

which also obey (12.22). We shall discuss the experimental verification of
these equations later.

An important consequence of (12.17) is the scaling behavior of g in the
critical region near p.. Using the Taylor expansion of ®; discussed above,
we can show

~A:+Clp-pc|~°, (12.27)

that is. the static dielectric constant diverges as p. is approached from both
sides: the critical exponent that characterizes this divergence is s, the critical
exponent of a percolation network of superconductor-conductor bonds
discussed in Chapter 2. This spectacular result was first derived by Efros
and Shklovskii (1976). In (12.27). A, and A. represent the amplitudes
of gy above and below p.. respectively. Although (12.27) 1s supposed to be
valid in the limit ® =0, its validity extends to higher frequencies as
long as ® << 11, where ¢, is given by (12.18). An important property of
the amplitudes 4. is that their ratio 4.,/A4_ is a universal quantity, inde-
pendent of the microscopic details of the system. If we now write
g(p. W =g +ig”" =ime(p, w)=iw(e —ie”), then a loss angle can be
defined by
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tand= 2. =& (12.28)
g €

and it is clear that 0 < § < n. This loss angle is defined in a manner
completely analogous to that of gelling solutions discussed in Chapter 11.

Consider now the effective conductivity of the R—C model at p.. Equa-
tion (12.13) tells us that

_ Y0 (ioY
ge(p, ) R [0)0) , (12.29)

so that at p, the loss angle 8. is universal and is given by

T n s
. PR . 12.30
5 2(l 4 2pu+s’ ( )

which is completely analogous to (11.4) for gelling solutions. Although
(12.30) is supposed to be valid exactly at p = p,, it is important to remember
that the universal loss angle 8. can also be observed in a broad frequency
range if | p — pc| is small enough, which implies that 1/7; << ® << ©,. Since
for any two-dimensional system we have s =, we must have 8. = 7/4,
another remarkable result.

Let us now discuss the experimental verification of these percolation
predictions for the AC conductivity and dielectric constant. One of the
earliest experimental studies of dielectric properties was reported by Castner
et al. (1975). They measured the static dielectric constant of n-type silicon.
About 1200 A of Au was evaporated on thin disk samples which consisted
of two imperfect Schottky barriers with thin (about 5-10 A thick) oxide
barriers bounding from 0.2 to 1.0 mm of bulk semiconductor. They varied
the concentration ¢4 of the donor, and showed that g, diverges as ¢4
approaches a critical concentration from the insulating side. Although
percolation was not mentioned in this work, the divergence of g€ i1s a clear
indication of the percolation transition indicated by (12.27). To explain
these data, Dubrov er al. (1976) developed a model in which each bond of
a percolation network represented a 300 ohm resistor and a 0.5 uF capa-
citor in parallel. Starting with a square network with only capacitors, they
added resistors to the network at randomly selected bonds and made
measurements of the conductivity of the system at very low frequencies. As
the fraction of the resistors approached the percolation threshold of the
network, the dielectric constant of the network appeared to diverge.
Dubrov et al. did write down a scaling law for this divergence that was
similar to (12.27), although they did not attempt to estimate the associated
critical exponent, since the network they used was too small.

A definitive experimental study of dielectric constant cf composite ma-
terials near p, was undertaken by Grannan er al. (1981). The composite
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Figure 12.10 The dielectric consiant & of two series of Ag-KCIl composites versus the
volume fraction ¢ of Ag. The solid line represents the best fit of the data to (12.27)
(after Grannan et al. 1981 ).

consisted of small spherical Ag particles randomly distributed in a noncon-
ducting KC1 host. The metal particles were prepared by evaporating Ag in
the presence of argon gas and a small amount of oxygen. The particles were
polydisperse, their sizes varied between 60A and 600A, and the overall size
distribution was log-normal. The composite was prepared by mixing a given
amount of Ag particles and KCl powder and by compressing the mixture
into a solid pellet under high pressure. The dielectric constant of the sample
was measured by a capacitance bridge operated at 1 kHz. Figure 12.10
shows their results as a function of the volume fraction of Ag. The dielectric
constant appears to diverge at p. = 0.2, somewhat larger than ¢, = 0.15-
0.17 for three-dimensional percolating continua predicted by Scher and
Zallen (1970). Figure 12.11 shows a logarithmic plot of the same data, all
of which appear to lie on a straight line indicating that €, diverges as p. is
approached with an exponent s = 0.73 + 0.01, in perfect agreement with the
percolation prediction s = 0.735 (see Chapter 2). Similar results were
obtained by Nicklasson and Grangvist (1984).

Laibowitz and Gefen (1984) prepared a series of samples of Au films on
SiaN, with varying thicknesses selected to span the entire metal-insulator
transition. Insulating samples below p. were easily achievable, indicating
that the contribution of tunneling and hopping to the conductivity can be
ignored in the more metallic samples. The AC conductivity and capacitance
{proportional to the dielectric constant) of the samples were then measured.
When the data were fitted to (12.20) and (12.21), they obtained
x =0.9510.05 and y = 0.13 £ 0.05. These values are in rough agreement
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Figure 12.11 Logarithmic plot of the data shown in Fig. 12.10 (after Grannan et al. 1981 ).

with (12.22). But (12.23) and (12.24) predict that for two-dimensional
systems (where L =5) x =y =1/2, while (12.25) and (12.26) predict that
x = 0.34 and y = 0.66, neither of which agree with the experimental data.

Song et al. (1986) measured the AC electrical properties of a powder
mixture of amorphous carbon and Teflon in the frequency range 10Hz to
13 MHz. Because of its stability, Teflon powder was used as the insulating
component. Moreover, the low conductivity of amorphous carbon powder
made it possible to easily observe the change of the conductivity as a
function of p. The samples were prepared by mixing the carbon and Teflon
powder to the desired volume fraction and were then compressed. The
electrical conductivity was then measured near p. and was found to obey
(12.2) with p = 1.85 £ 0.25, in very good agreement with three-dimensional
percolation conductivity. The dielectric constant, in the static limit, was
found to diverge according to (12.27) with s = 0.68 + 0.05, in good agree-
ment with the theoretical expectation. The AC conductivity and the dielec-
tric constant were also measured, from which it was estimated that
x=0.86+0.06 and y = 0.12% 0.04 They do not agree with (12.23) and
(12.24) which predict that x = 0.6 and y = 0.4, nor do they agree with the
predictions of (12.25) and (12.26), x = 0.73 and y = 0.27.

The resolution of this apparent disagreement between theory and ex-
perimental data was provided by Hundley and Zettl (1988). They measured
the AC conductivity and dielectric constant of thin Au films, similar to
those of Laibowitz and Gefen (1984), but extended the frequency range to
between 100Hz and | GHz. Their measurements, shown in Fig. 12.12,
indicate that in the intermediate frequency regime, corresponding to that of
Laibowitz and Gefen and Song et al., x = 1.0 and y = 0. in agreement with
the data of Laibowitz and Gefen (1984). At higher frequencies x = 0.32, in
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Figure 12.12 Frequency dependence of the resistance R and capacitance C of an Au
fractal film ar T = 300K. The critical exponents x and y are defined by (12.20) and
(12.21) (after Hundley and Zertl 1988 ).

excellent agreement with the prediction of (12.25), and y = 0.8, in rough
agreement with the prediction of (12.26). Thus, the fractal nature of
percolation clusters seems to play an important role in the AC conductivity
and dielectric properties of disordered materials at high frequencies.
Laugier et al. (1986) measured AC conductivity of random mixtures of
glass microbeads; a varying fraction of them had their surface coated with
silver but this did not appreciably change the density of the powder. The
average diameter of the beads was about 30 um and the frequencies used
were as large as 50 MHz. The loss angle 8 was also measured. Equation
(12.30) predicts that at p. we must have tan 8. = 0.45, while the measured
value was tan &, = 0.5, in good agreement with the predictioi.
Microemulsions are another class of disordered systems whose AC conduct-
ivity and dielectric properties have been measured. They are thermo-
dynamically stable, isotropic, and transparent dispersions of two immiscible
fluids, such as water and oil, with one or more surfactants that are surface
active. A water in oil (W/O) microemulsion usually consists of small
spherical water droplets surrounded by 2 monomolecular layer of surfactant
and dispersed in a continuous oil phase. The W/O microemulsions usually
have a small macroscopic conductivity because the water droplets are
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Figure 12.13 Dielectric constant €y and DC conductivity ge of two different micromul-
sions as a function of the volume fraction ¢ of water. The data are for
Wo=|H,0){40T]| =25 and T=318K (circles), and for Wy=35 and T=313K
(after van Dijk 1985).

separated by the surfactant layers and the oil phase. Ionic surfactants
can donate an ion to the water phase and increase its conductivity. If
the volume fraction ¢. of the water phase exceeds a critical value ¢,
the conductivity increases sharply, usually by several orders of magnitude.
This large conductivity rise is due to the fact that charge carriers are
able to move along connected paths in the microemulsion. Thus, the con-
ductivity transition in microemulsions is a percolation phenomenon. which
can also be induced by increasing the temperature while holding ¢.
constant.

van Dijk (1985) was probably the first to measure the dielectric constant
of a microemulsion at ¢... His system was a microemulsion of AOT, sodium
di-2-ethylhexylsulfosuccinate (an anionic surfactant with an SO3 head
group and two hydrocarbon tails), water and isooctane. The volume
fraction of water was changed by varying the amount of oil and keeping the
molar ratio water/AOT constant. Figure 12.13 shows the data which
indicate a sharp peak for the dielectric constant and a dramatic increase for
the electrical conductivity, both at ¢,., in agreement with the predictions of
percolation. Moreover, (12.30) tells us that at ¢.. the loss angle &, is
independent of frequency, and Fig. 12.14 indicates that over more than one
order of magnitude this is indeed the case. We also obtain u = 0.62 + 0.02,
reasonably close to the percolation prediction u = W/(u + s) = 0.73. More
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Figure 12.14 Logarithmc plot of the loss angle 8¢ versus frequency o for three different
microemulsions. The horizontal line indicates 1an(d;) =0.67 (after van Dijk 1985).

extensive measurements for the same microemulsions were reported by van
Dijk er al. (1986).

Moha-Ouchane er «al. (1987), Clarkson and Smedley (1988), and Pey-
relasse er al. (1988) have all measured the AC conductivity and dielectric
constant of the same microemulsion system as that of van Dijk et al. These
authors found that the static dielectric constant diverges at ¢.. with an
exponent §° = 1.6. significantly larger than s = 0.73, predicted by (12.27).
Grest et al. (1986) argued that in microemulsions we have to take into
account the effect of cluster diffusion that rearranges the system and
dynamically changes the structure of the system. They proposed a dynamic
percolation model in which the percolation clusters diffuse randomly in the
network. very similar to the model of Arbabi and Sahimi discussed in
Chapter 11 for the Rouse regime of gelation. Based on this argument. Grest
et al. (1986) argued that the exponent, s, characterizing the divergence of
the static dielectric constant, should be replaced by s" = 2v, — B, identical
to (11.36) for the viscosity of gelling solutions in the Rouse limit. Equation
{12.26) also implies that s should be replaced with s’. But even s = 1.35
seems to be in disagreement with the measurements of Moha-Ouchane et
al.. Clarkson and Smedley, and Peyrelasse er al., and the disagreement
between the measurement and the predictions remains unexplained. See
Clarkson (1988) for an extensive discussion of various properties of
microemulsion systems and a comparison between experimental data and
the predictions of percolation.
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12.4 Hall conductivity of composite media

A popular tool for investigating electrical transport in composite mixtures
of good and poor conductors is to look at the properties of the system in
the presence of a magnetic field H. Then, the conductivity of the system is
described by a tensor g which has nonzero off-diagonal terms, even if the
system is isotropic. Some of the off-diagonal terms are symmetric and even
in the magnetic field H, while others are antisymmetric and odd in H.
Suppose that an electric field E has also been imposed on the system. Then,
the system has an electrical (ohmic) conductivity g., and a Hall conductivity
gr. For an isotropic medium and small H, gx is proportional to H and is
defined by the Kirchhoff’s law relating the current density J and the electric
field E

J=gE+Exgy. (12.31)

If (12.31) is inverted for small H, the Hall coefficient Ry = gn/(Hg:) appears
along the ohmic resistivity p = 1/g.: E=pJ + Rp(H x J). Thus, one main
goal has been calculating the Hall conductivity and coefficient in disordered
composites, and investigating the scaling behavior of g, and Ry near p..
Juretschke er al. (1956) pioneered such calculations by treating various
types of disorder in three-dimensional systems. They also obtained the exact
general solution for the Hall effect at low H in isotropic two-dimensional
composites. Cohen and Jortner (1973) developed an EMA for the problem,
an extension of the EMA discussed in Chapter 5. Unlike the case of g, the
presence of the magnetic field makes the development of a network model
for calculating g» and Ry a quite complex task. For example, the general
circuit element of a bond of the network cannot be a simple resistor, but
has to be a conductance matrix. Straley (1980b), Bergman et al. (1983), and
Duering and Bergman (1989) have proposed various network models for
calculating gy and Rj.

The study of the scaling behavior of g» and R, near p. was initiated
by Levinshtein er al. (1976), Shklovskii (1977), and Straley (1980a). A
complete scaling theory was developed by Bergman and Stroud (1985).
Consider a two-component network in which each bond has good ohmic
and Hall conductivities 6, and 65, with probability p. and poor ohmic and
Hall conductivities 6; and G4, with probability 1 — p. Bergman and Stroud
(1985) proposed that for or2/on1 << 1 and for p close to p..

Bh=Om _ |, _ p | F|—Om/Om | (12.32)
Ohi — On2 lp—pc|***

where T is a new critical exponent characterizing the scaling behavior of
gn near p. when p>p., 6:=0, and o4, =0. Equation (12.32) has been
written in complete analogy with (12.11). The scaling function F(x) has the
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properties that, F(x) ~ constant if x << 1 and p > p. (Regime 1), F(x) ~ x*
for v<<1 and p <p  (Regime 1I). and F(x)~ x""*® for x>>1 and
p = p. (Regime III).

A better way of understanding (12.32) is in terms of the Hall coefficient
R,. To each bond we assign a Hall coefficient Ry, = 6,,/07 with probability
p. OF Ryz= Opa/03 with probability 1 — p. Then. according to the scaling
theory of Bergman and Stroud (1985) we have

Ri~aiRulp —pe| %+ biRu2(G2/01) | p — pe |7, (12.33)

in Regime 1.

Ry~ a:Ru{p - pe| ¥+ b2Rua|p — pe| >, (12.34)

in Regime Il. and

Ry~ a; Ry 1(62/61) F Y + by Rpa(62/6,) M+, (12.35)

in Regime 111, where a, and b; are constant, and g is a critical exponent that
characterizes the divergence of R, as p, is approached from below, and is
related to p and T by

g=2L-T. (12.36)

1t 1s not yet clear whether 1 (or g) is an independent exponent, or is related
to the other percolation exponents defined so far. Straley (1980a) proposed
that

g=2[u~-d- 1)vpl. (12.37)

This equation predicts that g(d = 3) = 0.48, fully compatible with the
numerical estimate g = 0.49 + 0.06. It also predicts that in the mean field
limit g =1, in agreement with the exact calculation of Straley (1980b).
Equation (12.37) also predicts that g(d = 2) = —0.03, in disagreement with
the exact result g(d = 2) = 0 obtained by Shklovskii (1977). As pointed out
by Bergman and Stroud (1985). the important point to remember is that in
Regime 1 (12.33) the ratio of the second to the first term 1s of the order
©Onior)|p—pe] ", and therefore, depending on the parameters of the
system, either term may dominate, so that the experimental verification of
these scaling laws 1s not straightforward.

One of the first experimental studies of Hall conductivity and coefficient
in a composite was carried out by Levinshtein er al. (1976). They performed
Hall experiments on 20 mm x 60 mm conducting graphite paper sheets with
holes randomly punched in them. For three-dimensional experiments a
compressed stack of 15 individually punched graphite sheets was used. The
results confirmed the divergence of Ry as p. is approached. Sichel and
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Gittleman (1982) measured g; and Ry in the granular metals Au-SiO; and
W-Al,0; near their percolation thresholds. Beautiful experimental verifica-
tion of (12.33)—(12.35) was provided by Palevski et al. (1984) who showed
that the Hall coefficient does indeed remain finite in a two-dimensional
(thin) metal film, and by Uri er al. (1987) who studied the problem in
three-dimensional Al-Ge metal-insulator films. In Regime I. the poor
conductor was Al-doped Ge, which was found to dominate the Hall effect.
To make the first term of (12.33) dominant, Uri et al. dissolved the metallic
aluminum in KOH. This left the doped Ge as the good conductor; the poor
conductor role was now played by the vacuum. In this situation, the first
term of (12.33) is dominant, therefore the critical exponents g and T could
be measured directly. The results were T = 3.8+ 0.2 and g = 0.38+£ 0.05,
which should be compared with accurate simulation results based on
percolation networks T = 3.56 + 0.06 and g = 0.49 + 0.06. Theory and ex-
periment are in agreement with each other. Since the EMA of Cohen and
Jortner (1973) can be used for estimating g» and Ry, away from p., we now
have a fairly complete theory of Hall effects in composite materials.

12.5 Percolation properties of granular
superconductors

Percolation theory can also explain some of the observed properties of
granular superconductors. These materials are composed of superconduct-
ing grains separated by thin insulating grains; they are called Josephson
junctions. A granular superconductor can be characterized by two para-
meters: the size of the grains and the energy barrier between the grains. The
grains size distribution is measured by electron microscopy, while the
properties of the barriers are deduced from measurements of normal
state (nonsuperconducting) resistivity. These two parameters determine the
Josephson energy coupling E,. Garland (1989) has reviewed many granular
properties of superconducting materials.

Deutscher et al. (1980) proposed a percolation model for the onset of
superconductivity. They assumed that the grains are coupled if E; > ksT,
where kj is the Boltzman constant, and 7T is the temperature. Because the
coupling energy depends on 7, more and more grains become coupled as T
is lowered. The coupling was obtained randomly with a probability that
depended on T. This defines a percolation process, because a sample-span-
ning cluster of coupled superconducting grains is formed when the coupling
probability is equal to the percolation threshold. If the temperature is still
lowered, the sample-spanning cluster of the superconducting grains grows
in size. The distribution of the grain sizes and the junction resistances give
rise to randomness in the coupling energy. In their model, the coupling
between the grains can be very strong, in which case electron microscopy
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Figure 12.15 Comparison of percolation prediction of temperature dependence of the
heat capacity of Al-Al2O films (curve) with the experimental data (circles) (after
Deutscher et al. 1980).

shows that the grain size distribution is quite broad. In this case the
randomness in the coupling energy is due to the dependence on the grain
size of the temperature at which a grain becomes superconducting. Alterna-
tively. if the grain size distribution is narrow, the coupling can be weak. The
model of Deutscher er al. was developed for weak coupling. They used a
dense random packing of hard spheres in which each sphere represented a
grain. The sphere sizes were about 30A, small enough that only the
sample-spanning cluster of the superconducting grains was the main con-
tributor to the specific heat of the system, the main property that was
calculated. The coupling energy was calculated by assuming that the normal
state resistances of the junctions obey a normal distribution whose variance
was assumed to be proportional to its mean. The mean of the distribution
was treated as the only free parameter of the model. Using this model, the
temperature dependence of the specific heat of the system was calculated.
Figure 12.15 compares the percolation predictions and the experimental
data for granular Al-Al.O; films: the agreement is excellent.

Several other properties of granular superconductors can also be pre-
dicted by percolation. Although there is Josephson tunneling through the
junctions, it does not generate any potential difference between the grains
up to a critical current J.. If the temperature of the system 1s decreased
below the critical temperature T, of the system, the number of supercon-
ducting links N, (per unit cross-sectional area) increases, and percolation
theory can be used for estimating N, the critical current J., and the critical
temperature T, at which the material becomes superconducting. In the
percolation model of Deutscher et al. (1980) T is close to the temperature
at which the specific heat attains its maximum (see Fig. 12.15). Alternative-
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ly, T can be defined as the temperature at which 50% transition in the
resistivity occurs. As another example, consider the scaling behavior of J..
Near p. we have the scaling law

Je~(p—pe)’, (12.38)

where v is a new critical exponent. To relate v to the other percolation
exponents we argue as follows. Near p, the granular superconductor can be
viewed as a network of superconducting blobs connected by links (see
Chapter 2). The links are quasilinear chains of Josephson junctions. The
current that flows through parallel links is inversely proportional to Ne, and
the distance between the links is roughly proportional to the percolation
correlation length §,. For a d-dimensional system, N¢ is of the order
1784 Since J. ~ Ne, we obtain

Je~(p~pd° ~(p - p)r? ", (12.39)

so that v may be a purely topological exponent. This prediction was
confirmed by Monte Carlo simulations in two-dimensional percoiation
networks (Kirkpatrick 1979, Lobb and Frank 1979), and by careful experi-
ments of Deutscher and Rappaport (1979) who prepared thin (two-dimen-
sional) superconductor-semiconductor films of Pb~Ge, and measured their
critical currents. They obtained v = 1.3 £ 0.1. in very good agreement with
the prediction v = v, = 4/3.

How does a magnetic field affect the behavior of a granular superconduc-
tor? There are two types of superconductors that behave quite differently in
an external magnetic field. Type I superconductors remain superconducting
and expel the magnetic field up to a critical field H.. They then abruptly
cross over to the normal state. Type II superconductors allow the magnetic
field to penetrate into the system if H is greater than a lower critical field
Hq but lose their superconductivity at an upper critical field H.. A
characteristic length scale of granular superconductors is their superconduct-
ing coherence length &, which can be defined as the diffusion length over a
characteristic time ¢, for the relaxation of the order parameter at a given T.
Therefore, we have &s ~ VDt., where D is a diffusion coefficient. Moreover,
t. is given by t.~(T.- T)"'. The homogeneous regime is defined by
Es>Ep, and Hea ~ (T — T) near T.. The upper critical field of a Type Il
superconductor is proportional to ;2. In the inhomogeneous regime.
s << & we have fractal diffusion (Chapter 9), instead of normal diffusion.
Since &; is-defined as a diffusion length scale, £ should be proportional to
(r?), the mean-square displacement of a random walker given by (9.3) and
(9.5). Therefore, we obtain He ~ &5 ~ re”?*® which implies that

sz ~ (T( _ T)2/(2+9), (1240)
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where 6 = (1 — B,)/v,. defined in Chapter 9. Equation (12.40) was confirmed
experimentally by Gerber and Deutscher (1989). They measured the upper
critical field of thin semicontinuous lead films on germanium substrates and
found that He ~ (T, — ) with y=0.66+ 0.06. Since in two dimensions
6 = 2.87. the percolation prediction y=2/(2+0) = 0.7 is in very good
agreement with the measured value.

A final issue that can be investigated with the aid of percolation is the
crossover between percolation and the classical Anderson localization,
relevant to the conductivity and the onset of superconductivity in thin metal
-insulator films. Deutscher er al. (1985) introduced two parameters. One
of them is = = §/&,. where &, 1s the localization correlation length, which
diverges as (p— po)”" and is different from the percolation correlation
length &,. The other is w = pge’/(LH), where p, is the resistivity of the
sample at a minimum length scale L over which it can be defined, e is the
electron charge. and # is the Planck’s constant. Using the ideas of
Abrahams et «l. (1979) regarding the location of Anderson localization,
Deutscher et al. (1985) showed that = = w*?"*~*"'(p — p.)”*' and proposed the
following scenario for the crossover. (1) If - << 1, then percolation domin-
ates and the resistance p of the sample is given by the usual scaling law,
D~(p-p)* (2) If ->>1, then localization effects are dominant and
D~ (p - p)~"" Deutscher er al. (1985) showed that this scenario is complete-
ly consistent with the experimental data. Thus. the relation between perco-
lation and classical localization was clarified.

12.6 Conclusions

Percolation provides a quantitative description of morphological properties,
electrical and Hall conductivities, elastic moduli, and dielectric constants of
a wide variety of disordered media and materials, ranging from powders
and polvmer composites, to metal-insulator films, granular superconduc-
tors, and microemulsions. The main prediction of percolation, universal
scaling laws such as (12.2) and (12.3), are valid only in the critical region.
This region is supposed to be near p. but is often very broad. So scaling
laws can be very useful for quantitative modeling of the effective properties
of disordered materials as well as providing insights into the structure of
the svsitem and mechanisms for transport.
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13
Hopping conductivity of semiconductors

13.0 Introduction

Hopping conduction in semiconductors was first associated with the observa-
tion that the activation energy of the conductivity in doped Ge exhibits
a break at low temperatures 7. This observation was first made by Hung
and Gliessman (1950) who attributed it to a distinct mechanism of conduc-
tion at low values of 7. Mott (1956) and Conwell (1956) proposed a model
of conduction in which electrons conduct by thermally activated tunneling
from a filled site to a vacant one, a process that is usually called phonon-
assisted hopping. This model was modified and extended by several re-
searchers. The best-known extension is perhaps the model of Miller and
Abrahams (1960). They developed a model consisting of two parts, the
quantum mechanical theory of the wave functions and of the transition
rates Wy from a localized state i to a localized state j, and a statistical
mechanical theory of transport that employs such transition rates. They
also showed how their model can be reduced to a random resistor network
and be used for computing the hopping conductivity of disordered solids.
It took researchers over a decade to discover certain deficiencies of the
Miller-Abrahams resistor network model. Moreover. it was realized inde-
pendently by Ambegaokar, Halperin, and Langer (1971), Shklovskii and
Efros (1971), and Pollak (1972) that hopping conduction in semiconductors
can be modeled successfully by using the concepts of percolation theory.
Since their seminal papers, several electronic properties of semiconductors
have been successfully predicted by percolation theory. This chapter sum-
marizes the important elements of this successful application of percolation
to a technologically important problem. Our discussion is by no means
exhaustive as the number of published papers on the subject is too large.
A thorough discussion can be found in the monograph of Shklovskii and
Efros, (1984). An older account is given by Pollak (1978). We discuss the
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Miller—-Abrahams resistor network. then the application of percolation to
predicting the hopping conductivity of disordered solids. This utilizes a
modification of the Miller—Abrahams network model. We also discuss
recent studies of fractal structure and hopping conductivity.

13.1 The Miller-Abrahams network

The starting point is the Bolizmann equation

JdP; .
5 = 2 WiPi(l = Py = WPl = P, (13.1)
K

where P, is the probability that site i is occupied. It is implicitly assumed
that the occupation probabilities are uncorrelated. If repulsion can cause
strong correlations, then the exclusion factor (1 — P) should be omitted. In
the linear (ohmic) regime. the current is proportional to the applied field.
and we linearize (13.1) by writing

Pi= P! + AP, (13.2)
Wi = Wy + AWj. (13.3)

where 0 denotes the equilibrium value, and A an increment proportional to
the applied field. This linearization implies that AWj;=— AWj;. We thus
obtain the linearized version of (13.1)

a—’gtﬁ + ) AiAPi - Y AiAP =Y BuihW;, (13.4)
j j j
where
A= Wij(1 - P}y + W;P;, (13.5)
By = P(1 - P)y+ P)(1 — P{). (13.6)

Equation (13.4) is a set of linear equations for the unknown AP, The
equilibrium values P} are given by the Fermi distribution
0 1

P = , (13.7
exp(EdkpT) + 1 (13.7)

where FE, 1s the energy of a carrier on site i, measured from the Fermi level,
and kp is the Boltzmann constant, The equilibrium values W are given by

0 Ujj

Wi = - .
"7 \expl(E - E)ksT] 1]

(13.8)
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with
uy= u,-,-=,tioexp(— 2rila). (13.9)

In (13.9) 1/10 is of the order of a phonon frequency, ry is the distance
between i and j, and « is a Bohr radius. It is assumed that To depends only
weakly on rijand T.

Suppose that F is the intensity of an applied field, and r, is the radius
vector of site i. The applied field changes the energy difference A, between
the energies of sites i and j. Thus, in a linearized theory we should have

dWi;
AW,"=—!(.’F' (l'i—l'j)=

eF-(ri—-r)
i 13.10
aa, j (13.10)

S Ui,
sinh’>(Ay/ks T)

where e is the charge of an electron. Miller and Abrahams defined a new
variable V; such that

1
P, = P,'0+AP,'E . 13.11
|expl(Ei— eVi)/kpT] + 1] ( )
so that to first order
0 :
aP= 4 oy, - eV , (13.12)
dEi 4kb Tcosh (E,'/Zka)

In the linear regime the variable V;is proportional to F. We can transform
the set of linear equations for P; to another set for V. The resulting set of
linear equations is then given by

D,-%:ED,,-V,-—ED,-,V,—+EGUF-r,-,-, (13.13)
j i j

where D; = PY(1 — P}), Dy = D;Aj;, and G;; = By WjWglu,,.

We can now discuss the construction of a network model for calculating
the hopping conductivity. Consider first the steady state. We define a
temperature dependent conductance G;; by

ks TGy
be2 = PO(1 - POYWE = PY(1 - Py Wy. (13.14)

If we substitute (13.14) into the steady state limit of (13.13), we obtain

i Wo 0 cr( W0 0
2{[Vi‘_—‘L_—J‘—F ity + WI)]'[W‘_'L—‘LF ULLAs W’)]}G.—,:o, (13.15)
; Uij Ujj
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where (Wjj + Wi)/uy = coth(|A;;|/2k»T). We are mainly interested in the
regime for which coth(} A;{/2k,T) ~ 1. in which case (13.15) becomes

Vi~ F-rt)—(V,-F-r)]G;=0. (13.16)

J

Equation (13.16) represents a network of resistors if we think of (V- F - 1))
as the potential at site i. Then, Z,; = 1/Gj; is the resistance between sites i
and j. and (13.16) is simply Kirchhoff’s equation for site j. Miller and
Abrahams treated Z; more generally and considered it as an impedance.

For the unsteady state, the time-dependent term of (13.13) does not
vanish, and (13.16) must be rewritten as

Ple*(l - P)) oV,
_"I(%_T__)aa—[=2[(Vi~F-r,)-(Vj-F~rj)]Gij- (13.17)
:

To make a more general network for this case, we define a capacitance
C=Ple*(1 = P/ kyT with a potential V, across it. We now refer all the
potentials to “ground” potential, which is zero. Because F - r, is the applied
potential at i, it is represented as an output from a generator connected in
series with C between the ground and site i. There is an impedance Zj
connected between any two junctions i and j. There is also a capacitor C;in
series with a generator connected to the ground. Using the expression for
P! and W), and restricting our attention to the case where various site
energies are of the order or larger than k,T, we obtain

CXp[(IE,‘I + |E!| + |E,'—Ej|)/2ka]

Zij=kpT 5 (13.18)
e‘uj
6’2
i = — EilkpT. 13.19
G kaeXp( vT) ( )
Using (13.9). we can rewrite (13.18) as

kpT

Zj= "= exp(EjlksT + 2rijla)To, (13.20)
e

where Ej; is either the energy of the site farther from the Fermi energy, or
Ej=(|E| + | Ej| + | Ei— E;{)/2. Equations (13.18) and (13.19) have an
important implication. Even if the site energies are moderately distributed. the
exponential dependence of Z; and C; on these energies makes them enorm-
ously broadly distributed. This can be used to reduce the computations of
the effective properties of the network, since the broadness of the distribution
of Z; implies that there are many small conductances that can be removed
from the network. The resulting network is called the reduced network.
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The procedure for constructing the reduced network is discussed in great
details by Pollak (1978). Here we give a summary of his discussion. As the
first step, we select only the largest capacitances (for example. those within
a given factor) that exist in the network. All such capacitances are then
considered as equal with the common value C. All other capacitances and
their associated sites are then deleted from the network. Next, a resistance
Z¢ = 2/(0C) is determined, where  is the frequency at which the properties
of the network are to be calculated. We then discard all resistances that are
larger than Ze, and replace all resistances that are smaller than Z by shorts.
At high frequencies Z; is very small, so there are very few resistances smaller
than or equal to Z,. But as the frequency is lowered, clusters of connected
resistors appear. These clusters merge together and form a sample-spanning
cluster when a critical frequency ®, is reached. This is similar to the
formation of sample-spanning clusters in percolation networks. We have a
critical resistance Z.= 2/(w,C), at which a sample-spanning cluster is
formed for the first time. If we use a frequency smaller than .. the
reduction procedure becomes ineffective; replacing the resistances by shorts
produces a macroscopic short throughout the network.

Miller and Abrahams were the first to calculate the hopping conductivity
G of semiconductors using reduced netiworks. They assumed that the
statistical distribution of the resistances depends only on r;; and not the site
energies. This was justified because the experimental data for some semi-
conductors indicated that impurity conduction exhibits a well-defined
activation energy. But Mott (1968) pointed out that the exponential depend-
ence of the resistances on the site energies cannot be ignored in most cases;
if the activation energy of a nearest-neighbor site is large, a hop to a distant
site whose energy is lower may be easier than one to a nearest-neighbor site.
How far the hopper can go depends on the ease of activation to higher
energies, therefore the hopping distance, and thus the resistance, depends
on the temperature. This mechanism of hopping conduction is usually
called variable range hopping. It contrasts with the original work of Miller
and Abrahams, which was restricted to nearest-neighbor hopping. It is now
generally believed that variable range hopping is the appropriate mechan-
ism at low temperatures, whereas nearest-neighbor hopping may be appro-
priate at high temperatures. At low temperatures, Mott showed that

G = Goexp[- (To/ )], (13.21)

an important characteristic of variable range hopping conductivity. It is now
one of most famous results for hopping conductivity of semiconductors. In
general, o depends on the density of states near the Fermi level. In Mott’s
theory the density of states (see Chapter 10) was assumed to be constant,
which results in o= 1/(d + 1) for a d-dimensional system, G, and T, are
some constants, and
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_ ra’
kyN’

To (13.22)

where N is the density of states (see Chapter 10) at the Fermi level Er, and
A 15 a dimensionless parameter. Equation (13.21) is particularly accurate for
amorphous Ge in the range 60K < T =< 300K. with Tp = 7 x 10’ K. Similar
temperature dependences have also been found in amorphous silicon and
carbon, and in vanadium oxide. According to Pollak (1978), unless G is
measured over several orders of magnitudes, a T~"* behavior should be
treated with caution and should not automatically be interpreted as evid-
ence for vanable range hopping conductivity. Hill (1976) analyzed most of
the published experimental data and showed that most of them do follow
(13.21) with o = 1/4. We discuss shortly the conditions under which G might
deviate from o = 1/4.

Over a decade after the original work of Miller and Abrahams (1960).
Ambegaokar er al. (1971). Shklovskii and Efros (1971), Pollak (1972), and
Brenig et al. (1971) reexamined the transport paths. They realized the paths
that Miller and Abrahams had thought to be carrying most of the current
in the network do not in fact carry any current in most situations. The first
three groups used percolation to find the correct current-carrying paths. If
we always proceed through nearest-neighbors as in the Miller—Abrahams
theory, we are certain to arrive at a site where our nearest-neighbor is a
large distance away, so it may be more efficient to go through nonnearest-
neighbors. That is why the Miller-Abrahams paths do not usually carry
current. We now discuss the percolation models for calculating the hopping
conductivity of semiconductors. We follow Ambegaokar et al. (1971) whose
work 1s very elegant and conceptually simple.

13.2 Percolation models of hopping conductivity

Ambegaokar et al, argued that an accurate estimate of G is the critical
percolation conductance G,, which is the largest value of the conductance
such that the subset of the network with G; > G, still contains a conducting
sample-spanning cluster. They divided the network into three parts. (1) A
set of 1solated clusters of high conductivity: each cluster consists of a group
of sites connected together by conductances G, >> G.. (2) A small number
of resistors with G, of order G, which connect together a subset of high
conductance clusters to form the sample-spanning cluster. This was called
the critical subnetwork . essentially the same as the static limit of the reduced
network discussed above. (3) The remaining resistors with G; << G.. The
resistors in (2) dominate the overall conductance of the network. The same
ideas were used by Katz and Thompson for estimating the permeability of
a porous medium with a broad pore size distribution; see Chapter 5. The
condition that G, > G.. together with (13.20), can be expressed as
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rj 1Eil + | E| + | Ei - Ej|

= ] 13.23
- 2E, . ( )

where r, = aln(Gy/G.)/2 is the maximum distance between any two sites
between which a hop can occur, and E,, = ks TIn(Gy/G,) is the maximum
energy that any initial or final state can have.

To construct the critical subnetwork, Ambegaokar er al. considered an
empty network and, starting with the smallest resistors, inserted them in the
network one by one. As more resistors are inserted, clusters of connected
resistors are formed until the critical value Z. = 1/G, is reached at which a
sample-spanning cluster is formed. To calculate Z. they used (13.20) and
assumed that T, is constant. Moreover, they also assumed that the density
of states N is constant near the Fermi level, N(E) = N(E). Thus, Z; is a
monotonic function of the random variable { = Ey/k,T + 2r,/a, and the
critical value Z. defines a corresponding critical value .. Around each site
i such that E; < Lk, T/2, a sphere of radius

a(€ E
=a(5_ B 13.24
r 2(2 ka] (13.24)

is drawn. The radius of the sphere increases with {. When two spheres
overlap, a band 1s inserted between the two sites with overlapping spheres.
This happens only if (13.23) is satisfied. Percolation occurs at {. cor-
responding to a critical radius r.. Ambegaoker er al. formulated this
problem as a site percolation process. Pollak (1972) treated it as a bond
percolation phenomenon; this allowed him to include the effect of short-
range correlations but his basic results are the same as those of Ambe-
gaokar et al. Equation (13.24) tells us that there is a maximum radius
rm=al/4 and a maximum energy E,, = {ckpT/2. with .= 2In(Go/G,). If
two sites are separated by a distance larger than ry. or farther from energy
level E,, they will not contribute significantly to the hopping conductivity.
The volume of the sphere defined by (13.24) is (/6)a™({/2 — Eilks T)", and
the volume averaged over all sites with a sphere of nonzero radius (i.e.,
those for which E; < {k,T/2) is (V) given by

(V)zﬁaﬁﬁ:‘%rg,_ (13.25)

The volume fraction ¢, of the spheres at the percolation threshold, is given
by ¢ = n{V), where, assuming that the density of states is constant,
n= Nk, T is the fraction of the sites with a sphere, i.e., those with an energy
in the interval (- E,. E».). Ambegaokar er al. estimated that ¢, = 1/4,
somewhat larger than ¢ = 0.15-0.17, estimated by Scher and Zallen (1970; see
Chapter 2) for three-dimensional percolating continua. We can also calculate
the number of bonds per site B, of the network. We learned in Chapter 2
that for bond percolation B. = d/(d — 1). For three-dimensional amorphous
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materials (or continuum percolation), B, = 4nnr:/3. and computer simulations
of Pike and Seager (1974) indicated that B, = 2.8 for three-dimensional
systems. On the other hand, B, is related to the density of states N(E) by

+ Em + Em
J_E N(E,)dE,-J . (T + 315D + 3ruDin) N(E)dE

B(. =

Az (13.26)

+Em 4
J_E N(E)dE;
where D, 1s the mean size of the sites. Combining ¢. = n (V) = 1/4 with
(13.25), or using (13.26) together with the lattice or continuum value of B,
and the appropriate expression for r,,, we finally obtain

G. = Goexpl— (To/ TH"). (13.27)
16a°
Ty = i i
0 ko N (13.28)

Comparing (13.28) with (13.22) indicates that the percolation model of
Ambegaokar er «l. predicts that A = 16. Their model not only predicts the
T™'* behavior proposed by Mott, it also provides an estimate of the
temperature 7o defined by (13.21).

The preexponential factor G, has also been calculated by several research
groups, since quantitative prediction of G, requires an accurate value of Go.
For example. using some of the ideas of Kurkijarvi (1974), Shklovskii and
Efros (1975) proposed that Zy = 1/ Gy = re(2rc/a)’? Ry, where v, is the correla-
tion length exponent of three-dimensional percolation, and Ry is the resistance
for { = {,. Kirkpatrick (1974) suggested the same expression. except that in
his equation v, is replaced by (u — 1), where p is the critical exponent of the
conductivity of three-dimensional percolation. Pollak (1972), Butcher and
Mclnnes (1978). Butcher (1980). Movaghar er al. (1980a, b), and Movaghar
and Schirmacher (1981) also calculated the preexponential factor Go. although
their results did not involve any critical exponent of percolation. The predic-
tions of Butcher, and Movaghar and coworkers are particularly accurate.

Equation (13.27) gives a lower bound to the true hopping conductivity of a
network whose individual conductances vary over a broad range. That (13.27)
is a lower bound to the true G is because the critical subnetwork corresponds
to replacing all G; < G by 0. and all G, = G, by G, in the original network.
Equation (13.27) is exact only in the limit 77— 0. If T> 0. hops with
conductance less than G, also contribute to the macroscopic conductivity: this
means that the optimal cutoff should be somewhat larger than G.. Moreover,
the percolation approach of Ambegaokar er al. cannot be used for one-
dimensional. or quasi-one-dimensional conductors. since percolation disorder
divides a linear chain into finite segments and the problem becomes meaning-
less. The physical systems to which this situation may be relevant are two
classes of compounds that consist of weakly coupled parallel chains of strongly
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Figure 13.1 Temperature dependence of the DC conductivity of NMP-TCNQ. T is in
kelvin, and the straight lines are the best fit to the data (after Shante 1977 ).

coupled atoms or molecules. Their conductivity is highly anisotropic, therefore
they may be treated as essentially one-dimensional conductors. Well-known
examples are salts of the organic ion-radical tetracyanoquinodimethane
(TCNQ) and the square planar complexes of transition metals such as
platinum and iridium. Shante (1977) proposed a modification of the percola-
tion model of Ambegaokar er al. that appears to take into account the effect
of such complexities. The model is a bundle of chains in which hopping can
occur along the chains and between them. Interchain hopping was assumed
to be much more difficult than intrachain hopping, but it was still allowed.
Shante’s model also allowed the possibility of intrachain hoppings in either
one or two dimensions. At low temperatures Shante’s model corresponded
to two- and three-dimensional percolation, respectively, consequently 7'
and T~'* behaviors were obtained. At high temperatures the percolation
model is no longer applicable, and Shante obtained a T~' behavior. Figure
13.1 compares the predictions of his model with the experimental data for
N-methylphenazinium-TCNQ compounds, and the agreement is excellent.

13.3 Effect of a variable density of states on
hopping conductivity

In the percolation model discussed above, we assumed the density of states
is constant near the Fermi level. Although the basic 7~'* law has been
observed in many systems (see, e.g., Knotek et al. 1973, Viscor and Yoffe
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1982, among others), criticism of this formulation was raised by many (see,
€.g., Szpilka and Viscor 1982), mainly because the predicted and measured
values of G, differed by several orders of magnitude. It has been suggested
that the assumption of a constant density of states in the above percolation
model may not be justified; instead we have to use a variable density of
states, i.e., (13.26) with a variable density of states.

Ortuno and Pollak (1983) investigated this problem and proposed that,
if the density of states is concave, then an appropriately modified percola-
tion model can explain the data and remove the disagreement between
the predictions and the experimental data. They used (13.26) with
N(E) = N(Er)exp(E/Ey), where Ej is the exponential decay rate and treated
the problem in details. They compared the predictions with the experimental
data for amorphous Si and amorphous Ge, and found good agreement
between the predictions and the data. Moreover, the predicted value of G, was
of the order of the experimental data. Maloufi er al. (1988) used the theory of
Ortuno and Pollak to fit their conductivity data for amorphous Si,Sn,_,
with y = 0.47-1. Figure 13.2 shows the fits of their data by this theory, and
the agreement appears to be excellent over much of the temperature range.

As another example, consider the case for which N(E) ~ | E|®, where P is
a positive constant. This case was treated by Hamilton (1972) and Pollak
(1972). Using (13.26) we obtain (13.21) with o= (B + 1)/(B + 4), which
reduces to (13.21) when § = 0. The limit B — e is also interesting because

0 —
|
-4}
(&)
& ]
=
-8t 1
-12 - - —
0.2 0.4 0.6
T -1/4

Figure 13.2 Comparison of the predicted temperature dependence of hopping conduct-
ivity G of a-SiySn _y (straight lines), obtained with an exponential density of states.
with the experimental data (symbols). The data are, from right to left, for y=0.47,
0.62. 0.77, 0.9, and I, and T is in kelvin (after Maloufi et al. 1988).
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Figure 13.3 Temperature dependence of hopping conductivity G of doped and compens-
ated GaAs. Symbols are experimental data. The straight lines on the right represent
T~"* fits, while those on the left represent T~ fits (after Redfield 1973).

it corresponds to a system that has a sudden onset of states away from the
Fermi level; we thus obtain a T~' behavior. An experimental realization of
a power law density of states was provided by Redfield (1973), who carried
out a careful study of hopping conductivity of heavily doped and strongly
compensated GaAs. His results indicated a 7~ "? behavior rather than
T~"*. Redfield showed that, although T~ "* might look plausible, his data
could be fitted extremely well by a 7~'% law; see Fig. 13.3. His data can be
easily interpreted if we take B = 2.

Sheng and Klafter (1983) studied hopping conductivity of disordered
granular media, where conduction results from tunneling of electrons and
holes from charged grains to neutral ones. Electrons have to be transferred
from one neutral grain to another. This requires each grain to be charac-
terized by a charging energy E. = ¢*/(e D). where ¢ is the dielectric constant
and D is the grain size. A disordered granular medium is thus characterized
by a distribution f(E,), related to the grain size distribution. and the density
of states is related to this distribution by

1 E
NE)=—— | fE)dE., 13.29)
(E) (AE) Lf( ) (

where (AE) is the average electronic level separation inside conducting
grains. Thus, a given distribution of energies f(E.) can be immediately
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translated into one for the density of states. Normally, we expect that
N(@©)=0. But in any composite material we can have energy states other
than those in the conducting grains. That is, we can have impurities
that could contribute a finite MFE) at E = 0; there is some experimental
evidence for this. Thus, Sheng and Klafter (1983) assumed that
N(E)= No+ 1/(AE) and a log-normal distribution for f(E.), where No=N(Ep).
Then they calculated the hopping conductivity of a granular medium using
(13.26). In their two-parameter fit of the results, the fitting parameters were
the width of the distribution f(E) and x = tnD,/6. By varying these two
parameters they could obtain a variety of conductivity behavior, ranging
from T7'* to T7'* If, instead of the density of states that Sheng and
Klafter used, we use N(E)= N, + cEP, where ¢ is a constant, we obtain
(13.21) with o= (B + 1)/(B + 2). This may correspond to a system with a
broad particle size distribution; Mehbod er al. (1987) showed how it fits
very well with their experimental data for hopping conductivity of polymer-
conducting carbon black composites. Randomly dispersed in the matrix are
particles that have a broad size distribution. The polymeric matrices were
polystyrene, polvethylene, ethylene—propylene - copolymer, and styrene-
butadiene copolymer.

13.4 Effect of Coulomb interactions on hopping
conductivity

The 7' behavior of hopping conductivity has been observed in several
systems. Although, a variable density of states, such as N(E) ~ E® or
N(E)= Ny + cE®, can explain the data, the origin of these power laws was
not clear for some time. An explanation for them was proposed by Efros
and Shklovskii (1975). They suggested that Coulomb interactions between
localized electrons (which are long-range interactions) can create a soft gap
(called a Coulomb gap) in the density of states near the Fermi level. This
means that in a narrow gap centered around the Fermi level. the density of
states cannot be constant, and has to vary with the energy. whereas outside
the gap the density of states vanishes. If 8 is the width of this gap, Efros
and Shklovskii (1975) showed that N(8) ~ &’ in three dimensions and
N(®) ~ 8 in two dimensions. As a result, they suggested that in three
dimensions there should be a crossover from T~ '* behavior at relatively
high temperatures, where the Coulomb gap is not effective, to 7'
behavior at lower temperatures. Although T~ ' behavior had been reported
by several groups. the temperature below which the gap could be detected by
conductivity measurements is usually too low in amorphous semiconductors,
Generally speaking, the Coulomb gap does not affect the conductivity
of amorphous semiconductors. Moreover, the Coulomb gap cannot be
found in good metals. It can only affect systems that have localized
electronic states. A Coulomb gap affects the conductivity of doped crystallic
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semiconductors, and experimental evidence for the crossover from T~ "* to
T~'"? behavior was provided by these systems.

The first convincing experimental evidence for this crossover was prob-
ably provided by Zhang er al. (1990). They measured resistivity of five
insulating compensated n-type CdSe samples — doped semiconductors.
Their data clearly indicated a crossover from T~ "* behavior to T~ ' as the
temperature was decreased by about three orders of magnitude from 15 to
0.04K. Over this temperature range the hopping energy becomes com-
parable and then smaller than the energy gap. discussed by Efros and
Shklovskii (1975). The crossover temperature T,, was found to decrease as
the concentration of the donor was increased; this is expected. Aharony et
al. (1992) proposed a scaling theory for this crossover. They proposed that
the resistivity Z = 1/G of the sample obeys the following scaling law

In(Z/Zo) = AK(T/ T.p), (13.30)

where the scale factor 4 and the crossover temperature T, depend on the
sample properties, but the scaling function A(x) is universal and has the
limiting behaviors, h(x) ~x "* for x>>1 and h(x)~x""? for x<<1.
Moreover, using the percolation model, Aharony et al. proposed that

x4+ Vx4 1 1]

h(x)—m. (13.31)
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Figure 13.4 Temperature dependence of hopping conductivity G of carbon black-
polymer composites. T is in kelvin The slope of the line is o = 2:3 (after van der
Putten et al. 1992).
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and provided expressions for 4 and the crossover temperature T.. The
implication of (13.30) and (13.31) is that, if In(Z/Z,) for various samples are
plotted as a function of 7/T,, all the data should collapse onto a single
curve. Figure 13.4 shows such a collapse for the data of Zhang et al., and
the agreement is excellent. This agreement lends strong support to the
scaling hypothesis of Aharony et al. and the validity of (13.30) and (13.31).

13.5 Effect of a fractal structure on hopping
conductivity

A T' 7 behavior for hopping conductivity can be explained in terms of the
Coulomb interactions and gap. But the Coulomb interactions are believed
not to play any role in many semiconductors which do exhibit a 7'
behavior: we need a different theoretical explanation for them. Although a
variable density of states has been proposed as the source for this behavior,
there has recently been some experimental evidence that one reason for the
T™'* behavior can be a fractal structure for the semiconductor. Deutscher,
Lévy. and Souillard (1987). using ideas of Lévy and Souillard (1987),
proposed a new mechanism that may give rise to a conductivity behavior
almost like T ', Lévy and Souillard (1987) suggested that, if a system is a
fractal object, the impurity quantum states are superlocalized, i.c., their
wave functions yi(r) decay with distance r fuster than exponentially,
y(r} ~ exp(—r') with y> 1 (in the classical Anderson localization, y=1).
Experimental evidence for superlocalization was provided by Tsujimi ez al.
(1988). They carried out very low-frequency depolarized Raman scattering
measurements on fractal silica aerogels. If I(w) is the total scattering
intensity at frequency o, it can be shown that

I(®) _  -21-dewbp 13.32
N ® . (13.32)

where Dy is the fractal dimension of the system. Here ds=2Dy/dy is
the spectral or fracton dimension discussed in Chapter 10, where dy is the
fractal dimension of a random walker in anomalous diffusion in the fractal
system, discussed in Chapter 9. Measurements of Tsujimi er al. yielded
v> 1. indicating superlocalization. Lévy and Souillard also argued that for
percolation clusters at the percolation threshold pe, or, if the system is above
p.. for length scales smaller than the percolation correlation length §,, we
have y=d./2, see (9.5). This yields y= 1.43 and 1.9 for two and three
dimensions, respectively.

Based on the arguments of Lévy and Souillard, Deutscher er al. suggested
that, as p. is approached, the behavior of hopping conductivity should
follow (13.21) but with



Hopping conductivity of semiconductors 23y

Y
o= .
Y+ De

(13.33)

in which they used y = d,,/2, where D, is the fractal dimension of the largest
percolation cluster at p. (see Chapter 2). More generally, D, may be
replaced by the fractal dimension Dy of any fractal object whose random
walk fractal dimension is d., and thus the potential applicability of (9.33)
is not restricted to percolation systems. Chapter 10 shows that the spectral
dimension for percolation systems d, =2D./d, is essentially constant and
ds = 4/3, for both d=2 and 3. If we assume v =d,/2 and use (13.33), we
obtain a = 3/7 = 0.43 for both d = 2 and 3. Based on this result, Deutscher
et al. argued that the observed T~ '? behavior of hopping conductivity may
in fact be a T’ behavior caused by the fractal structure of the system.
They discussed the conditions under which their prediction may be observed
in experiments.

However, Harris and Aharony (1987) and Aharony and Harris (1990)
argued that (13.33) is incorrect. They argued that we have to distinguish
between the behavior of a system with a typical geometry and the behavior
of a system averaged over all the possible geometries. For typical geo-
metries, they proposed that

max(vp',1) << Dyin, (13.34)

where v, is the critical exponent of percolation correlation length, and
Dyir is the fractal dimension of the minimum or chemical path, discussed in
Chapter 2. Using the numerical values of v, and Dmin, we obtain
l =vy(d=2)=<1.13and 1.14 < y(d = 3) = 1.34. Hence the proposal of Lévy
and Souillard that y=d,/2 cannot be correct. Harris and Aharony also
showed that an average over all the possible geometries yields y=1.
Lambert and Hughes (1991) used very accurate numerical simulations to
obtain y=1.13+0.06 and 1.39% 0.07 for two- and three-dimensional
percolation networks, respectively. Thus, the upper bound of Harris and
Aharony may in fact be an exact result, i.e., Y= D Earlier, and presumably
less accurate, simulations of de Vries er al. (1989) had yielded
Y(d=2)=1.0, i.e., we do not have superlocalization in two dimensions.
Harris and Aharony also suggested that for hopping conductivity of a
percolation system in the fractal regime

Dmin
o= — 13.35
D¢ + Duiin ( )
consistent with ¥y = Dy, Equation (13.35) then yields oo = 0.37 and 0.35 for
d =2 and 3, respectively, indicating that the existence of a fractal structure
cannot by itself explain the observed T~ ' behavior of hopping conductivity
of semiconductors in which Coulomb interactions are unimportant.
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Figure 13.5 Temperature-dependence of the hopping conductivity G of carbon black-
polymer components (after van der Putten et al. 1992).

But (13.35) has not yet been confirmed by any experiment. van der Putten
et al. (1992) measured the conductivity of carbon black—polymer composites
as a function of carbon black concentration from a point in the vicinity of
the percolation threshold up to 33p.. and in the temperature range 4-300 K.
Their data are shown in Fig. 13.5, from which we obtain o == 2/3. This does
not agree with the prediction of (13.35). To interpret this result, they
assumed a power law density of states, N(E) ~ EP. and modified the result
of Deutscher et al. to obtain

YB+ 1)

If we now use a=2/3, D= 252 and Y= Dmin=1.34, we obtain
B = 11/4. Their data can be best explained by a combination of a percolat-
ing fractal structure and a power law density of states. Moreover, if we take
B =1, then (13.36) predicts that o = 1/2. This means that a linear density
of states and a percolating fractal structure may be responsible for the
observed T~'? behavior of hopping conductivity of semiconductors when
Coulomb interactions may be unimportant.

13.6 Conclusions

Hopping conductivity of semiconductors can be predicted quantitatively by
percolation theory. The results of this chapter also show that fractal
structures formed near the percolation threshold may at least be partly
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responsible for the experimentally observed deviations from Mott’s law
(13.21) with a. = 1/4.

Other properties of hopping conduction in semiconductors can also be
predicted by percolation theory. The reader is referred to the monograph of
Shklovskii and Efros (1984) for a detailed discussion.
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14
Percolation in biological systems

14.0 Introduction

Most biological systems are so complex they preclude any reasonable
description of them in terms of the basic interactions among their fun-
damental constituents. For this reason application of statistical physics of
disordered systems, in particular percolation theory, to biological problems
has thus far been relatively limited. But there are biological processes
that are particularly statistical in nature and in which the role of connectiv-
ity of different elements or constituents is prominent. Examples include
self-assembly of tobacco mosaic and other simple viruses (see, e.g.,
Hohn and Hohn 1970), actin filaments (Poglazov et al. 1967) and flagella
(Asakura er al. 1968), lymphocyte patch and cap formation (Karnovsky
et al. 1972), and many precipitation and agglutination phenomena. Some
of these phenomena, such as precipitation, occur spontaneously if
the functional groups are sufficiently reactive. Thus, these phenomena
depend on their level of chemical complexity and that of the solvent
in which they occur. Other factors are not directly related to the solvent
but have great influence on the outcome of biological processes. For
example, in antigen-antibody reactions, clusters of all sizes react with one
another forming complex branched networks, which grow in size as time
progresses. We may also have reactions which can proceed by rapid
addition of monomers to growing chains after a slow initiating event. These
processes are therefore similar to percolation processes. This chapter
discusses application of percolation concepts to such phenomena. We start
with a discussion of antigen-antibody reactions and aggregations, then
discuss a few other biological processes to which percolation may be
relevant.

243
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14.1 Antigen—antibody reactions and aggregation

Under suitable conditions, mixtures of antigen and antibodies — systems
comprised of bifunctional and multifunctional monomers - form large
networks or aggregates that contain many antigen and antibody molecules.
In general, these networks or branched structures react reversibly with one
another. They are often insoluble and hence will precipitate. Since we are
interested in the concentrations of antibodies and antigen as a function of
tume, it is important to examine the conditions under which precipitation
may be expected to occur.

The first theory of antigen-antibody aggregation was developed by
Goldberg (1952), who used combinatorial methods to derive results that are
equivalent to those obtained for various percolation properties on a Bethe
lattice. His work was extended by several authors including Aladjem and
Palmiter (1965), Bell (1971), and Delisi (1974). Delisi and Perelson (1976)
treated the problem extensively and derived several analytical results for
various properties of interest.

Consider the aggregation of two types of monomers, S and L, of
functionality 2 and Z = 2, respectively. The S monomers can be any of a
number of substrates. e.g.. IgG. while the L monomers might be some
appropriate ligand or antigen. The functional units on these monomers are
equivalent to the sites in percolation on random networks discussed so far.
Three basic assumptions were made by Goldberg (1952): (1) all free sites are
equivalent; (2) no intramolecular reactions can occur; and (3) during the
aggregation process cyclization reactions do not occur. Closed loops are not
formed; this immediately points to the similarity with percolation on Bethe
lattices. Delisi and Perelson (1976) relaxed the second assumption to allow
for intramolecular reactions. In the immunological literature such reactions
are often referred to as monogamous bivalency.

Several parameters are introduced: (1) ps, the probability that an antibody
site picked at random is bound; (2) p,. the probability that an antigen site
picked at random is bound; (3) pn, the probability that an antibody site is
bound and has not reacted intramolecularly; and (4) pgr, the probability that
an antigen site is bound and has not reacted intramolecularly. Consider now
an aggregate composed of v Z-functional antigens and x — 1 + n bifunc-
tional antibodies. where n is the number of antibodies that do not serve as
connectors. Of these antibodies. », are bound univalently and n. bivalently.
An aggregate with compositions x, n,, n: is called an (x. ny, n2)-mer. The
main quantity of interest is C,, n-(¢. p), the concentration of such aggreg-
ates. To find this quantity. we define P(x, ni, n2) as the probability that a
free site picked at random is part of an (x, n,, n2)-mer. If closed loops are
not formed. then

The number of free sites on (x, ni, n2)-mers

P(x. ni. nz) = '
(X, m. nz) Total number of free sites

(14.1)
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which means that

(Zx = 2x + 2 = 2m3) Cp,.mo(x, P)
L+S ’

P(x, ni, na) = (14.2)

where L and S are the number of the two types of monomers. The
probability P(x, n,, nz) can be written as

P(x, nm, n2) = proQ; + P58y, (14.3)

where I and s label free antigen and antibody sites respectively. Here p; is
the probability that the root is a free antigen site, o, the probability that
the root is on an (x, n\, n2)-mer given that it is a free L site, and €, the
number of ways an (x, n,. n-)-mer can form given that the root is a free L site,
with analogous definitions for p;, w,, and Q;. Each of these quantities
can be calculated using the methods developed by Flory and Stockmayer
for their theory of gelation discussed in Chapter 11, or by percolation on
Bethe lattices. If closed loops are forbidden. then Goldberg (1952) showed
that for

P=Pg=—-—"7, (14.9)

there is a finite probability that an infinitely large aggregate exists. This is
the same as the site (or bond) percolation threshold of a Bethe lattice of
coordination number Z (2.1).

The problem with this formulation is that the formation of closed loops
is forbidden. Thus, the results that were obtained represent the mean field
limit of percolation, i.e., a system whose spatial dimension is six or higher.
In reality, antigen-antibody aggregation is a three-dimensional phenom-
enon, and therefore we have to use percolation on finite-dimensional lattices,
and in particular three-dimensional ones, for explaining antigen—antibody
aggregation phenomena. But to the best of my knowledge, this has not been
attempted yet.

14.2 Network formation on lymphocyte membranes

According to modern versions of the clonal selection theory, the cells of the
immune systems arise from division and differentiation of the stem cells in
the bone marrow (Burnet 1959). Those cells that are potentially able to
secrete antibodies are know as B-lymphocytes. These lymphocyte cells insert
a homogeneous set of antibody-like receptor molecules on their membrane
surface where they are used for recognition of complementary antigens. The
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population of B-cells is itself heterogeneous, i.e., different cells may have
different types of membrane-bound receptor molecules. Under appropriate
conditions, binding of complementary antigen to the receptors on a B-cell
will activate that cell to differentiate and/or proliferate into antibody
secreting cells. Moreover, the antibody secreted by the progeny of a
particular B-cell is assumed to have specificity for the antigen, identical to
that of the receptor molecules on the B-cell progenitor. Therefore, the role
of antigen is cellular selection and amplification and its mission is mediated
by interaction with cellular receptors.

The process of proliferation and secreting large amounts of antibody is
preceded by cross-linking of antigens to the receptors until a macroscopic-
ally large patch is first formed on the surface. This patch or network is the
two-dimensional analogue of three-dimensional aggregation, discussed in
the preceding section. a process called nerwork or lattice formation.
Antigen-stimulated lymphocyte lattice formation may play a key role in
triggering immunocompetent cells. For immunogens with repeating arrays
of antigenic determinants, e.g., polysaccharide flagellin, triggering is
possible without the aid of helper cells. while other immunogens require the
presence of T-cells or their products. It has been suggested that the T-cell
requirement results from having to present the immunogen to the B-cells in
an aggregated or network form. thus increasing its valence.

The relationship between network formation and biological activity is not
completely clear yet. It is presumed that lattice formation provides some
sort of stimulatory signal, but this may not be enough to trigger a cell. In
any event, it is not unreasonable to assume the triggering to be a function
of the strength of antibody-receptor interaction. Delisi and Perelson
(1976) assumed that lattice formation is the two-dimensional analogue of the
three-dimensional precipitation reaction discussed above. They treated
the problem in a similar way. To simplify the problem they assumed that
the effect of intramolecular reactions is unimportant. A well-understood
characteristic of immune response to antigens is an increase in antigen—
antibody affinity with time after immunization. The implication is that
some aspects of the antigen receptor interaction is equilibrium-controlled.
However, since antigens bound by more than one receptor dissociate very
slowly. such binding may be effectively irreversible on the time scale of
lattice formation. Delisi and Perelson (1976) derived several analytical
results for the problem, using (implicitly) percolation on Bethe lattices (by
a method similar to that of Fisher and Essam (1961), including the cluster
size distribution. the critical behavior of the system near the point at which
a large lattice is formed, i.e., near the percolation threshold, and membrane
transport. Their results cannot be directly compared with any experimental
information, as the results with a Bethe lattice are certainly not relevant to
a two-dimensional system. But their work definitely indicates the relevance
of percolation to such biological phenomena.
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14.3 Percolation aspects of immunological systems

While immunology is an old research field, applications of percolation
concepts to it are quite new, and some of our discussion here may not be
upheld by research in the years to come.

The deadly disease of smallpox has been eradicated from the earth for
many years, but against AIDS (acquired immunodefficiency syndrome) no
cure has been found at the time of writing (1993). These two examples are
perhaps the extreme cases of success, and the lack of it, in applications of
immunology. So how does the immune system work? If we get the flu in
one winter, we will not normally get the same sickness shortly thereafter.
Our body’s white blood cells or lymphocytes produce antibodies or other
cells which are able to neutralize the foreign virus or other antigen. These
antibodies fit the antigens like a lock fits a key. Apart from small
inaccuracies, one type of antigen fits only specific antibodies, and vice
versa. If we get a new virus, some antibodies accidentally (through muta-
tions) may fit this antigen, our immune system notices this fit, produces
more of these specific antibodies, and in this way combats the disease.
When we get healthy again, a few very long-lived memory cells survive and
allow a quicker response of our body once the same virus returns. Vaccina-
tion produces a controlled amount of sickness so that antibodies and
memory cells are formed for this specific disease. The human immunodefi-
ciency virus HIV seems to escape destruction by the immune system, and
instead destroys slowly the T4 white blood cells, which are crucial as
“helper” cells for the functioning of the immune response.

According to the now widely believed ideas of Nobel laureate Niels Kai
Jerne (1974), antibodies can be treated in turn as antigens by the immune
system. which then produces antiantibodies, antiantiantibodies. etc. More-
over, the inaccuracies of the lock-and-key relation between the various
types of molecules let the same antibody fit slightly different antigens, and
the same antigen may be neutralized by slightly different antibodies. In this
way, all possible antibody shapes are connected, directly or indirectly, by
antibody-antigen relations in a Jerne network spanning the whole shape
space.

What does this have to do with percolation? When we are ill, we take a
medicine specific for that illness; not all possible types of medicines have
been invented yet. Similarly, our immune system would destroy us if a flu
infection could trigger all possible shapes of antibodies. Thus, the immune
response should be very specific, i.e., the antibodies triggered by one
specific antigen should form a finite cluster in the topological network of
possible shapes. They should not percolate throughout this shape space. In
other words:

! This section was written by Dietrich Stauffer.
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WARNING: Immunology has determined that
percolation is dangerous to your health!

de Boer and coworkers (1989, 1992) and Stewart and Varela (1991) have
therefore investigated the conditions under which the immune response
remains limited to a few types of antibodies, once a foreign antigen
enters our body. 1.e., the conditions under which percolation does not
occur. Inherent in percolation theory, as presented in this book, is the
clear distinction between occupied and empty sites. Thus, percolation is
the easiest to apply to immunology if antibody molecules are either there
or not there. without a more quantitative and more realistic distinction
between such molecules according to their concentration. Indeed, such
“cellular automata™ approximations (i.e., discrete systems in which each site
can be in one of only two states, sick or healthy, and nothing in between)
have already been developed in immunology by Kaufman er al. (1985)
before percolation aspects were investigated. The combination of percola-
tion and cellular automata methods then allowed computer simulation of
five- to ten-dimensional shape spaces (Stauffer and Sahimi 1993a, b). as
required for natural immune systems according to Perelson and Oster
(1979).

Such studies of localization versus percolation can be done in two ways.
We may look at the immune response, if no element of the immune system
has yet been triggered. Then our clusters are simply the sets of activated
antibody types connected by Jerne network bonds (Neumann and Weisbuch
1992). Alternatively, we may look at an immune system which has already
evolved into some stationary equilibrium of present and absent antibody
types and check for the changes made to this dynamic equilibrium by one
specific type of antigen (Stauffer and Weisbuch 1992, Stauffer and Sahimi
1993a, b). This is analogous to the chaos studies in dynamical system and
has been used before in genetics (Kauffman 1969) and Ising magnets
(Creutz 1986); physicists often call it “damage spreading” whereas pattern
recognition neural networks experts talk about the “Hamming distance™.
Damage is the number of sites which differ in their spin or other charac-
teristic values in a site-by-site comparison of two lattices, if the initial
configurations of the two lattices differ by only one site. Hamming distance
is used in neural networks to describe the number of pixels which differ in
a comparison of two pictures. In particular, if one picture is the original
aim and the other picture is an attempt to restore that original picture from
a blurred or noisy version of it. Thus, in this sense damage spreading and
the Hamming distance are the same.

At present it seems that for the immunological models investigated, the
question of whether the immune response remains localized or percolates
through the whole system depends on the parameters we choose, hardly a
surprise to anyone familiar with the concept of a percolation threshold.
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14.4 Protonic percolation conductivity in biological
matenals

Water-macromolecule interactions can influence folding, enzymatic activ-
ity, and other properties of globular proteins. One way of studying various
properties of such biological systems is through measuring their hydration-
dependent dielectric losses and electrical conductivity in the hydration
range critical for the onset of enzymatic function. Behi et al. (1982) showed
that hydrated protein powders exhibit dielectric dispersion at three different
frequencies. The first one, Ae,, occurs at frequencies near 1 Hz, with a
corresponding change in the DC conductivity of the system, which has been
attributed to an isotope effect. The second and third dispersions, A€> and
Ag, occur at much higher frequencies. 10° and 10'° Hz, respectively. Bone
et al. (1981) and Behi et al. (1982) proposed that these two dielectric
dispersions are due to Debye relaxation of water bound on the surface of
the macromolecule.

Careri et al. (1985) made careful measurements of dielectric losses for
lysozyme powders of various hydration level in the frequency range 10 kHz
to 10 MHz. The powders were prepared from Worthington thrice crystal-
lized and salt-free proteins. The dielectric permittivity of the protein is not
measured directly because the sample is only one part of the composite
condenser that consists of a layer of the powder included between layers of
dry air and glass. However, in the frequency of interest to Careri et al. glass
does not display appreciable dielectric loss. Thus, the system is essentially
a capacitor consisting of two layers of similar thickness, one of which has
a vanishingly small conductivity and a dielectric constant close to that of
the vacuum. The dielectic relaxation time t4 is then predicted to be

ty=EN1 r e, (14.5)
8e

where €0 is the vacuum permittivity, € is the relative dielectric constant, and
ge is the conductivity of the hydrated protein. It was confirmed that the
system is insensitive to slight changes in thickness of the air or powder
layers. In the frequency range of interest, the hydration dependence of € is
much weaker than that of g.. Thus, a plot of 74 versus A. the hydration level,
is essentially equivalent to a plot of g, versus A.

Figure 14.1 displays the resulting conductivity as a function of the
hydration level 4. In order to remove the nearly negligible contribution of
nonpercolative processes and systematic errors in the evaluation of capa-
citor geometry to the total conductivity, the value of g, at the percolation
threshold is subtracted from g. at any other hydration level h. It was
established that protonic conduction is the dominating contribution to the
dielectric relaxation 8¢, in the frequency range in which the experiments
were carried out. This relaxation is attributed to proton displacements on a
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Figure 14.1 The dependence of the effective conductivity ge on the hydration level h
in lvsozyme powder for pH =17, at 301 K. g, has been normalized with the conductivitv
of the dryv sumple (after Careri et al., 1988).

single macromolecule. Since h is proportional to p, the usual occupation
probability in percolation, we can write

ge(h) = ge(hc) ~ (h = he)* (14.6)

where #, is the hydration level at the percolation threshold. The critical
exponent | was evaluated by Careri et al. (1988) for three different samples,
namely. native lysozyme hydrated with H,O, native lysozyme hydrated with
D,0. and 1 : 1 complex with (GlcNAc), hydrated with H-O. The results are
shown in Fig. 14.2. There are two distinct regions; a region where we obtain
a critical exponent p = 1.3 and a region where we obtain p = 2.0. The first
region is interpreted as being an essentially two-dimensional system, since
the system is relatively thin. In the second region, at higher hydration levels,
intermolecular water bridges are established, giving rise to a higher-dimen-
sional system. Both exponents are in excellent agreement with those of
two- and three-dimensional percolation (see Table 2.3).

What is the mechanism for this percolative conduction? Careri et al.
(1988) argued that this percolation process consists of proton transfer along
a thread of hydrogen-bonded water molecules adsorbed on the protein
surface. In this interpretation, water molecules are equivalent to the con-
ducting elements in percolating systems. The mean free path of the protons
at or above A, is the distance between the poles of the macromolecules set
by the boundaries of the molecule. The local structure of the protein itself
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Figure 14.2 Estimation of the critical exponent u of the effective conductivity of
lysozyme powders of pH =1. Symbols denote the data for native lysozyme hydrated
with H,O0 and D0, and a sample of 1: complex of lysozyme with (GIcNAJa, hydrated
with H,0 (after Careri et al. 1988).

is not important, only the structure of the clusters made of water molecules
acting as interconnected conducting elements is important.

These results have important biological consequences. The protein system
used in these studies, with its surface sparsely covered by water or conducting
elements, is similar to a protein membrane whose internal surface is sparsely
populated, although the membrane itself is immersed in a solvent of near
unit water activity. Percolation then suggests that membrane conduction is
possible with channels only partly filled with conducting elements. More-
over, conduction can be turned off or on by adding or subtracting a few
conducting elements, without changing the basic structure of the mem-
brane. Finally, since percolation focusses on the effect of randomness on
conduction, we can bypass the need for a high level of structure extending
over the full thickness of the membrane or its hydrocarbon core.

Rupley er al. (1988) extended these studies to lightly hydrated purple
membranes, more complex than the protein systems. The conduction paths
may be predominantly within one of several regions of the membrane, such
as the lipid surface, the lipid-protein interface, or entirely within the
protein. The existence of such preferred paths may give a two-dimensional
character to the conduction process in such membranes. Indeed, the
measured critical exponent p = 1.23 is close to that of two-dimensional
percolation, although the structure of the system may be three-dimensional.
Bruni et al. (1989) extended such studies to a dry tissue where a conductivity
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process will be integrated in complex, living systems. They used tissues of
maize seeds, where water-induced effects lead to the onset of integrated
metabolism, and thus to germination. The protonic nature of the conduc-
tion process in such tissues was established by deuterium substitution. The
critical exponent for the conduction process was found to be u = 1.23, close
to that of two-dimensional percolation.

14.5 Conclusions

Percolation theory can explain certain aspects of the complex behavior of
some biological systems. Moreover. percolation helps us to understand
certain features of immunological systems, which are so crucial to the
survival of living beings. Finally, the experimental verification of percola-
tion conductivity scaling law in biological systems is not only a nice
demonstration of the wide applicability and usefulness of such scaling laws,
it also has practical implications for the structure of biological membranes.
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