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Foreword

The present monograph is based on the Aisenstadt lectures given
by the author in October 1993 at the Université de Montréal on “Dy-
namical Zeta Functions”. But the emphasis is different. On one hand
two excellent reviews of the subject already exist, due to Parry and
Pollicott [33], and to Baladi [3]. On the other hand the theory of zeta
functions for hyperbolic dynamical systems is in a state of flux because
of current work by Rugh [45] and Fried. Hyperbolic systems are thus
not discussed in detail here. After a general introduction (Chapter 1)
we concentrate on piecewise monotone maps of the interval, and give
a detailed proof of a generalized form of the theorem of Baladi and
Keller [4] (Chapter 2). The Baladi-Keller theorem is typical of what
one wants to prove about zeta functions associated with various kinds
of dynamical systems, and the version presented here appears reason-
ably final.

October 1993 David Ruelle

vii



CHAPTER 1
An Introduction to Dynamical Zeta Functions

It is not immediately obvious that the dynamical zeta functions
that we shall introduce below are interesting mathematical objects.
QOur purpose in this Chapter 1 will be to give arguments showing that
they are indeed natural and interesting objects of study. We shall at
the same time introduce concepts needed for Chapter 2, making the
monograph reasonably self-contained. ‘

For more details pertaining to this Chapter 1 we refer to the mono-
graph of Parry and Pollicott [33] and the review article by Baladi [3];
these sources also contain extensive references to the literature on dy-
namical zeta functions.

Note that in this Chapter 1 we have priviledged readability over
strict logical organization and completeness: this is an introduction
rather than a review.

1. Counting periodic orbits for maps and flows.
Let f: M — M be a map, and write Fix f™ = {z : f™z = z}. Let
@ : M — M4(C) be a matrix-valued function. If Fix f™ is finite for all
m, we may define the formal power series

o0 ,m m~1
(1.1) {(2) = exp Z_ % S o]l (p(fk:z:).

z€Fix fm k=0

Let (f');>0 be a one-parameter semigroup of maps f* : M — M
(semi-flow), and (¢*)s>0 : M — M4(C) a family of matrix-valued func-
tions such that ¢° = 1 and ¢*™(z) = ¢*(fiz)p’(z). We denote by P
the set of periodic orbits, and by T'(+y) the period of v € P. If z,, is an
arbitrary point of v, we define

(1.2) ¢= ] [des(1- ¢ (zy))]

YEP

-1

(We ignore convergence problems at this point).
1



2 1. AN INTRODUCTION TO DYNAMICAL ZETA FUNCTIONS

In particular, given B : M — C we may choose ¢* (with d = 1)
such that ¢*(z) = exp f; (B(f":z:) - s) du and we find

-1

¢=¢s) =11 [1 - GXP/OTM (B(ftx'y) - s) dt}

yeEP
Taking B = 0 gives

¢s)y=T1 (1 - e“”T('V))—l.

YEP

There are obvious variations of (1.1) and (1.2) where the matrix-
valued functions ¢ or ¢* are replaced by vector bundle maps over f or

F.

The product formula (see Section 4 below) will show that the defi-
nitions (1.1) and (1.2) are intimately related. We shall refer loosely to
objects of the type just introduced as dynamical zeta functions. They
count periodic orbits (for maps or flows) with weights (associated with
the function ).

2. Subshifts of finite type.

Let I be a (nonempty) finite set, called alphabet. (We may take
I={1,..., cardI}). Let also t = (¢;;) be a matrix indexed by I x I,
and with elements 0 or 1, called transition matriz. The set I with the
discrete topology is compact, and therefore the product I? with the
product topology is also compact. A closed subset A of IZ is defined
by

A= {(fk)kez : tepgp,, = 1 for all k}
and a continuous map 7: A — A is defined by

(T(€°))l = &1
The pair (A, 7) is called a subshift of finite type, and the map 7 is called
shift.

PROPOSITION 2.1 (Bowen-Lanford formula). The zeta function

ox zm
((z) =exp Y —T;ca.rd Fix ™

m=1
extends to the rational function

1
¢(2) = det(1 — 2t)



§3. THE PRODUCT FORMULA FOR MAPS. 3
The basic observation is that
card Fix 7™ = tr ™.
Using also the general formula
detexp A = exptr A
we find

o zm
{(z) =exp Y =—cardFixr™
m=1 m
o zm
= — trt™
exp Y, —tr

= exp 1,:1;'=[— log(1 — 2t)]
= [det(1 — z2)] "

as first noted by Bowen and Lanford [9].

3. The product formula for maps.

If « is a periodic orbit of (minimal) period n for f : M — M, and
z, € vy, we write

ng—1

N =tr [T o(f*ey)
k=0

)]

Let Per(n) be the set of periodic orbits of minimal period n. We then
have

Z trH ( ) Z Z n®(y™™)
z€Fix f™ k=0 nim ~y€EPer(n)

where n | m means that n divides m. Therefore

)=exp 3. Z-—z > (™M)

m=1 n|m y€EPer(n)

—epy X3

p=1 ~y€Per(p) 9=1

—expy Y [_ trlog (1 _ z”:iitp(szv))}

p=1 ~€Per(p)
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8 ool

p=1 ~y€Per(p)

We have obtained the product formula

-1 1 [det(l—z"n (frz ))r.

p=1 y€Per(p) k=0

If we write p(«y) for the (minimal) period of 7, this is:

=z =11 [det (1 — 2P Mﬁlw(ka.,))} _1.

YEP k=0

In particular, when ¢ is the constant scalar function 1 we have

m

o0
¢(z) =exp 3 °= card Fix f™
m=1 m
oo
= H(]‘ . zp)——ca.rd Per(p)‘

p=1
Note that, at this point, all the formulae hold only at the level of formal
power series.

EXAMPLE 3.1. The map = — 1— uz? of the interval [—1, 1] to itself

for the Feigenbaum value p = 1.401155... has one periodic orbit of
period 2" for each integer n > 0. Therefore

2n+1 -1 2"

() = exp Z

n=0

= H (1 - zzn)—l

n=0
o0
= H (1 -+ Z2n)n
n=0
where the last step used the identity
o0 n
(1-2)1= ]__I(l+z2 )
n=0
4. The product formula for semifiows.

Suppose that the semiflow (f*) has a global section X. Every orbit
(f*z)i>o thus intersects T, and there is a function ¢ : ¥ — R such that
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t(z) is the smallest real > 0 with the property f{@z € £. We define
f:X > by fz= @z, and write p(z) = ¢*®(z). Then

¢=11I {det(l - wt(”(zv))]—l

= ﬁ II [det(l—pf[ (f’”z,,))‘l
p=1 ~y€Per(p) k=0
= )| _,

This formula (where convergence questions have been ignored) relates
the zeta function for a semiflow and the zeta function for a map.

5. The Lefschetz formula.

" If M is a compact manifold, one can define the index L(z, f) €
Z of an isolated fixed point z for a continuous map f : M — M.
If f is differentiable at z, and 1 — D, f is invertible, then L(z, f) =
signdet(l — D;f). The sum 3¢ s L(z, f) (defined when Fix f is
finite) is a homotopy invariant.

The Lefschetz number of f is defined by

dim M

A(f) = Zo (=1 tr fus

where f,; is the automorphism induced by f on the i-th (singular)
homology group H;(M, Q) with rational coefficients. We have then the
Lefschetz trace formula

2 Lz, f) = M)

z€Fix f
Deﬁne a Lefschetz zeta function
~ e Zm
()=expdy, — Y Lz, f™
m=1 "' zcPix fm

(where we suppose that Fix f™ is finite for all m). Then

-~ X 2m .
{(z)=expy = (1) tr 7}
m=1 T 7

H[ i om (‘Ui
= exp tr —f:"}
i m=1 m '

= H[det(l - zf*i)](_l)m.
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This function is therefore rational, and has a homological interpreta-
tion.

Let z be hyperbolic with minimal period p (D, f? has no eigenvalue
A with |A| = 1), and let E* be the subspace corresponding to the
eigenvalues A of D, f? with |A| > 1. Denoting by v = {z,..., fP"1z}
the orbit of z we write u(y) = dim E* and A(y) = %1 depending on
whether D fP preserves or reverses the orientation of E*. Following
Smale [46] we remark that

L(z, f77) = (-1)*MA(y).

Therefore if all periodic points of f are hyperbolic, we have a product
formula

() =epy T (—1)““)22’—;%(7)4

P v€Per(p)
I IO [-am2]™"
P ~ePer(p)
= 1 [1 = A@er] V7
YEP

Note that in the holomorphic case A(y) = 1, u(v) is even, and ((z)
reduces to {(z).

A natural idea is now to introduce dynamical Lefschetz zeta func-
tions of the type

=y e ¥ Lo fm )trﬂw(f")

m=1 M pcPig gm

In general one will try to reduce the study of dynamical zeta functions
to that of Lefschetz zeta functions (the latter are in some sense more
natural and certainly easier to analyze).

In order to proceed, and in particular to study the convergence of
the formal power series {(z), we shall have to make specific choices for
the dynamical system considered and the functional space of the weight
function . It turns out that some rather different choices are possible
and interesting. But this also means that the theory of dynamical zeta
functions tends to split up into a number of specialized branches: all are
related but different, and a unifying theory is missing. (Chapter 2 of
this monograph will explore in detail one of the “specialized branches”,
where f is assumed to be a piecewise monotone map of the interval).
To gain perspective on the subject, it is convenient at this point to
digress on the history of zeta functions.
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6. Historical note: From the Riemann zeta function to
dynamical zeta functions.
We may write (for real s > 1)

2 ni = IT @-p)™

p prime

This product formula was discovered by Euler (18-th century), but the
detailed analytic study of ¢ (aimed at number-theoretic applications)
is due to Riemann (19-th century) hence the name of Riemann zeta
function.

Given an integer m > 0, the residue classes (n) mod m with
(n,m) = 1 form a multiplicative group. Let x be a character of that
group, and write x(n) = 0 if (n,m) # 1. The Dirichlet L-function is
defined by

Various other functions similar to the Riemann zeta function and
Dirichlet L-function have been introduced later, often in view of num-
ber theoretic applications, and with typically the following properties!:

l;[(l ~xmp~) "

(i) Meromorphy in the whole complex plane. [The position of
poles and zeros has been a prime object of study: the Rie-
mann zeta function has a simple pole at s = 1, simple zeros
at s = —2,—4,...,—2n,... (trivial zeros), and the Riemann
hypothesis asserts that all other zeros are on the line Res = -;-
(nontrivial zeros)].

(ii) Dirichlet series expansion ¥, a,e~**.

(iii) Euler product expansion.

(iv) Functional equation. [For the Riemann zeta function, if we
write £(s) = r”/zf(g)C(s), the functional equation is £(s) =
§(1-9)].

Let k be a finite field with q elements and V' a projective nonsingular
algebraic variety of dimension n defined over k. [Note that the points
of V have coordinates in the algebraic closure of k, but the defining
equations have coefficients in k]. If N,, is the number of points of V'
with coordinates in the extension field of degree m of k, one defines the

1For a general discussion see the article “Zeta functions” in the Encyclopedic Dictionary of
Mathematics (Nihon Sugakkai [30]).
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zeta function of V as

o zm
Z(z,V) = n—-
(2,V) = exp mZ=1 Nop —
Note that
N,, = card Fix F™

where F is the Frobenius morphism, which replaces the point of coor-
dinates (z;) by the point (z{). Certain conjectures proposed by Weil
on the properties of Z(2,V) led to a lot of work by Weil, Dwork,
Grothendieck and others, and a complete proof was finally obtained
by Deligne. It is found that Z(z,V') is a rational function of z:

2n
Z(z,V) =[] P(z)V™"
1=0

where the zeros of the polynomial P, have absolute value ¢~*/2? and

the P, have a cohomological interpretation. [Roughly, P,(z) = det (1 —

2F*|H I(V)) where F is the action of the Frobenius morphism on co-
homology].

If the Frobenius morphism of the algebraic variety V is replaced
by a diffeomorphism f of a smooth compact manifold, one obtains the
definition

m

(6.1) ((2)=exp ¥ % card Fix f™.
m=1
Artin and Mazur [1] have shown that, for a C'-dense set of diffeomor-
phisms,
1
lim sup - log card Fix f™ < o©

and therefore the zeta function (6.1) has a strictly positive radius of
convergence. Smale [46] then conjectured that, for the Axiom A diffeo-
morphisms, which he had introduced, the Artin-Mazur zeta function
is rational. This was later proved by Guckenheimer [17] and Manning
[25] (also Bowen (8], Fried [13]).

Let {7y} be the set of closed geodesics on a compact surface M of
constant negative curvature —1, and I(y) the length of v. The Selberg
zeta function is defined by

(6.2) Z(s)=T1 ﬁ (1 _ e—(3+k)l('y)) .

Y k=0

It is an entire function of order 2 and satisfies a functional equation.
It has “trivial zeros” at 0,—1,...,—n,... and “nontrivial zeros” with
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Res = 1, except for a finite number on the interval (0,1). (The non-
trivial zeros of Z are related to the eigenvalues of the Laplace operator
on M).

One may interpret I(+y) as the period of a periodic orbit for the
geodesic flow on M. This suggests defining a zeta function for the flow

(f) by
(6.3) () =TI (1-e ™)™

yeP

where P is the set of periodic orbits, and T'(7) is the period of v. [In
the case of the geodesic flow on a compact surface of curvature —1,
we have ((s) = Z(s + 1)/Z(s). Smale [46] proposed to define the zeta
function of a flow by (6.2), but this definition is reasonable only for the
geodesic flow with curvature —1; in general (6.2) does not behave well
under changes of time scale].

As we have seen, the consideration of arithmetic zeta functions leads
naturally to the definitions (6.1) and (6.3) of zeta functions counting
periodic orbits of dynamical systems. The ideas of equilibrium statis-
tical mechanics suggest however to count periodic orbits with weights,
i.e., to replace (6.1), (6.3) by

(6.4) {(2) = expmi;1 zT:— el%;fm exptz:;A(sz)
or )
(6.5) ((s) = };L [1 — exp (— /OT(W) (s - B(f‘:l:,,)) dt)} B

where z., € 7. These formulae define dynamical zeta functions.

Note that the trivial choice B = 0 in (6.5), which reproduces (6.3),
corresponds by the product formula of Section 4 to a non-trivial choice
of A in (6.4). This makes the introduction of a weight ¢ = e very
natural. The definitions (6.4) and (6.5) were introduced and studied
by Ruelle [36, 37, 38] (in the case of Axiom A dynamical systems).

It turns out that the dynamical zeta functions are closely related
to problems of ergodic theory (decay of correlations, thermodynamic
formalism).

7. Properties of dynamical zeta functions.

If we compare the properties of number-theoretic zeta functions and
dynamical zeta functions, it can be seen that the latter have

(i) analyticity properties that can be analyzed in detail,
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(ii) Dirichlet series expansion in the semi-flow case,
(iii) a product formula,
(iv) perhaps something like a functional equation (see Ruelle [44]).

The parallelism is thus striking. If however we look at the (co)ho-
mological interpretation of the Lefschetz zeta function (Section 5) we
see that it is completely spoilt by the introduction of weights. What
happens is that instead of being able to express the zeta function in
terms of the action of the dynamical system on finite dimensional coho-
mology groups, we have it only in terms of the action of the dynamical
system on infinite dimensional cochain groups.

Let us mention at this point that Atiyah and Bott [2], in a classical
paper, have analyzed situations where it is possible to “pass to the
quotient” and reach the level of cohomology groups.

The action of the dynamical system on cochain groups referred to
above is given by so-called transfer operators, and dynamical zeta func-
tions will be expressed in terms of determinants of transfer operators.
In some cases, these determinants will simply be Fredholm determi-
nants (in the sense of Grothendieck, see below, Section 11). But in
other cases the theory of Fredholm-Grothendieck will have to be gen-
eralized.

It is remarkable that Dwork, at an early date, has used transfer
operators in a p-adic setting to study the zeta functions of algebraic
hypersurfaces over a finite field. His study is analogous to the later
studies made in a Holder, differentiable, or analytic setting.

8. Transfer operators.

As earlier we consider a map f : M — M, but we replace the
matrix-valued function ¢ by a scalar function g : M — C. (Matrix-
valued functions will reappear in a minute). We define the transfer
operator L by

Lo(z)= 3 9(y)3(y)

y:fy=z

acting on functions ® : M — C. Note the important property
L(@-(@of))=2-(CO).

The interesting situation is of course when f is not invertible but
has a finite (or at least discrete) set of inverse branches v,,. (Often one
can usefully convert a problem with invertible f into a problem with
noninvertible f). One can rewrite £ in terms of the inverse branches
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%, or more generally define a (generalized) transfer operator C by
K&(z) = Z%(z)@(%z)
or

= [ m(dw)e.(2)8(p.2)

where the 1), are homeomorphisms of subsets of M to subsets of M,
and m(dw) is a measure. The operator K acts on a Banach space B of
functions on M (continuous functions usually), or more generally on a
space of sections of a vector bundle.

If M and f are smooth, we may replace g by the “matrix-valued”
function g - A'(T*4,,), we obtain thus a transfer operator £® acting on
I-forms for | = 0,...,dim M, and £© is the original transfer operator
L.

9. Traces and determinants.

If M and f are smooth and the graph of f is transversal to the
diagonal A C M x M, it is natural to define a “trace”?

Tl = 9(=)
zg;(f [det(1 — D, 71|

where D, f is the derivative of f acting in the tangent space T, M. This
is a natural definition because, using a local chart near the fixed point
z, we have

[ £(emse ~mydedn = [ g(m)s(n— £71)e(¢ ~ m) de d
= [9(©8(s - £7%¢) de
= g(z)/|det (1~ Dof )]

according to distribution theory (we have defined the kernel £(£,n) so
that L&(§) = J L(§, m)®(n) dn).

The above definition extends naturally to the transfer operators
£O:

tr(A' D, f!
g(z)tr(A Do f

0 —
L zepixfldet(l—sz_l)l

2or “flat trace”, see Atiyah and Bott (2], Guillemin and Sternberg [18].
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(where tr denotes the trace of an operator in the finite dimensional
space A! T,M). We have then the miraculous result

dim det(1— D,f1)
1) Tr LV =
2.0 22, a1 D))
= ¥ g@)L(z, 7).
z€Fix f

(The Lefschetz index L(z, f~!) is simply related to L(z, f) and will in
many cases be 1).

In terms of the “traces” Tr, let us now define a “determinant” Det
by the usual formula

00 zm
Det(1 - zL) = exp— 3. —T;’I‘rﬁm.

m=1

Then we have

dim M (-1
(=)= 11 (Det (1 - zE(l)))

=0

where (* is a Lefschetz zeta function.

The difference between (* and { is not a serious worry (the two
functions are often simply related). The serious problem is to make
sense of the Det(1 — L") as analytic functions in a reasonably large
domain, and not just as formal power series. This will involve the
spectral theory of the transfer operators and depend on the class of
dynamical systems and functional spaces considered.

We shall now turn for a while to the theory of Fredholm determi-
nants which give one well understood example of functional determi-
nants of the type Det(1 — 2L).

10. Entire analytic functions.

It is convenient to recall here some results about entire analytic
functions.

Let the entire analytic function f(z) vanish of order m at 0, and
let (ax) be the sequence of the further zeros repeated according to
multiplicity and arranged by increasing modulus. If A > 0 we write

SN = ||
and define the ezponent of convergence pg of the zeros by

po = inf{A : S(A) < +o0}.
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If po is finite we define the genus p to be the least integer > 0 such that
S(p+1) < +oo. [Therefore p = [py] except that, when py is an integer
> 1, we may have p = pp — 1]. We may then write, as a special case of
the Weierstra8 product formula,

(10.1) f(z) = 2"’ I (1 - ?f_,,) P (aik)

where go = 0, g,(2) = Th_; ikli, and g is an entire function.
The order p of the entire analytic function f(z) = ¥ axz* is defined
by

1
=i —1
p = limsup og log max | f(2)]

r—

THEOREM 10.1. We have
po < p.
If p is finite, then g in (10.1) is a polynomial of degree < p and py = p
unless p is an integer > 1.
11. The theory of Fredholm-Grothendieck.

(See Grothendieck [15, 16]).
If Fy,..., E, are Banach spaces, a norm || - |[; on ® E; is defined

by
lully = inf 3 lzall - lzill - - - lzml]
i
where the infimum is taken over all representations

u=z$,’1®l’i2®"'®zin-
i

The completion of ®E; with respect to || - ||; is a Banach space @E;
(the projective temsor product of the E;). The elements of this space
are called Fredholm kernels by Grothendieck.

If E, F are Banach spaces, and E’ denotes the dual of E, there is
a canonical map E'®F — L(E, F), with obvious definition. This map
is norm-reducing®. If u € E'®F, its image & € L(E, F) is called a
trace-class or nuclear operator E — F, such operators are compact.

3The map E'®F — L(E, F) is often injective, and E'@F can then be identified with a subspace
of L(E,F).
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In particular, the image of E'®F is an ideal of L(E). An element
u € EQF can be written as a convergent series

U= Z/\iz,-@yi
i=1

where z; € B, y; € F, ||z < 1, flill € 1, i > 0 and ¥ < [lufls +¢
for arbitrarity small € > 0.
If we adjoin 1 to the algebra E'® E (when FE is infinite dimensional),

and take
[o ]
u= Z.’L‘: ®x;
i=1
with z; € F, z! € F', it is natural to define

(11.1) Det(1+u)=1+ i Z det(<1':,,zi;,>)

n=1 i1< n<lin

(11.2) =1+ Z an(u)

where ((z,l, z,-,‘)) denotes an n x n matrix with elements indexed by
ki=1,..
Iful,...,u,. € F' ® E, we may write

o0
/
Up =Y T; ® Tpi
=1

fork = 1,...n, and define an n-linear symmetric function &, : (E'®E)"

— C by
Qn(uy, ..., u,) = Z .- Zdet((z:l,zki,,)).

It is no restriction to take }|z![| = 1, hence

|G (w1, - - )| < Z >3 H( V2|24, 1)
=2 [ S ol

k=1 ¢
so that |@n(u1,...,u.)] < n"2|luglly... ||uall;. We see that (11.2)
defines an entire analytic function « — Det(1l + u) on E'®FE since
ay(u) = @p(y,..., u).
THEOREM 11.1. The following conditions are equivalent:
(a) the operator 1 — @ s invertible in L(E),
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(b) 1 — u is invertible in the algebra obtained by adjoining 1 to
E'®F,
(c) Det(1 —u) #0.

One may then write

~1_ R(u)
1-u)™= Det(1 — )

where R(u) is an operator-valued entire analytic function of u (of which
the coefficients may be explicitly specified).

THEOREM 11.2. If X is an eigenvalue of multiplicity n of the oper-
ator i defined by u € E'®F (i.e., if n is the dimension of the corre-
sponding generalized eigenspace), then A~} is a zero of order ezactly n
of the entire function z — Det(1 — zu).

Remarks 11.3. (a) The trace X z; ® z; — Y (z}, z;) extends to
a continuous linear form Tr : E'®E — C, and we have the
identity

[o ¢] zﬂ
Det(l — zu) =exp— Y — Tru"
n=1 n
between power series converging in a neighborhood of 0. In
particular, if z — Det(1 — zu) has order < 1, hence genus 0,
then ¥ |A;| < oo (where the \; are the eigenvalues of @) and
Tru=3Y A
(b) By our estimates of the coefficients of 2z — Det(1 — zu), this
entire function is of order < 2, and Grothendieck [15, Ch. 2,
p. 18] shows that
Det(1 — zu) = e *™* [ — zx)e™
T
where the product is over the non-zero eigenvalues \; (re-
peated, as always, according to multiplicity). If 3 ;A\ < oo,
then
Det(1 — zu) = e"** [J(1 — zX)

where o = Tru — 3, A;.

(¢) If M and L are compact spaces and m is a measure on L, a
continuous kernel K : M x L — C defines an element u €
C(L)Y'® C(M), corresponding to the operator

i:0— [K(9)e@m(dy)
and we have
lully = [ max K (z, y)| (m(dy)-
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This situation covers the classical case considered by Fredholm,
to which Grothendieck’s theory therefore applies. Grothen-
dieck also gives several non classical examples where the same
theory applies.

12. Analyticity improving linear maps.

Let V be a d-dimensional complex manifold, and m a bounded
measure with continuous density > 0 on V. For open U C V we
denote by E(U) the subspace of holomorphic functions in L?(U, m|U),
and by || - ||y the corresponding norm. (More generally we could let
E(U) be the Hilbert space of square integrable holomorphic sections of
a holomorphic vector bundle over U).

PROPOSITION 12.1. Let F be a Banach space and @ : E(V) — F a
linear map such that

li®|| < const.|@|ly

where U is open with compact closure U C V. Then i is associated with
u € E(V)'®F and one can write u = 332, \eTh ® yr where ||z}]| < 1,
lyell < 1 and 0 < Ay < exp(A — BkY4) with real constants A, B such
that B > 0.

We may choose open sets Wy, W, with compact closures Wy, W,
such that

ﬁCWlC:WlCWzCWzCV

Using the Cauchy formula we see that the restriction maps E(W;) —
E(W,) — E(U) are defined by bounded continuous kernels. Since
these are square integrable they correspond to elements 3 A\;v; ® v; with
S < oo, W) £ 1, ||lvs)] < 1. By composition, the restriction map
E(W,) — E(U) corresponds therefore to 3~ \,w} ® w; with 3 [A;] < oo,
lwi]] < 1, |lws|] < 1. The construction gives w; € L% U, m|U) but by
projection we may take w; € E(U).

For € E(V'), we may estimate the w/(®) in terms of the Taylor
expansion of ® at finitely many points a; and the derivatives at the a;
in terms of Cauchy integrals. This gives

wi(®) =3 Y ak1+m+kd§4ﬁk1.-.ka“}kl...kd(‘I’)
7 K1, kg>0

where 0 < a < 1 and

[Aijk,..kg| < const., ||

b kall < const.

By assumption, @ is obtained by composing the restriction map E(V)
— E(U) and a bounded linear map ¢ : E(U) — F. Finally, we see
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that u is associated with

S X a0 3 e s(em)

J ki,-ka20

which is of the desired form. Note that o can be chosen arbitrarily
small > 0, and therefore B arbitrarily large.

COROLLARY 12.2. Take F = E(V'), which means that i is analyt-
icity improving, then the entire function z — Det(1 — zu) is of order
0, and more precisely there are constants C, D such that

| Det(1 — zu)| < exp(C + D(log+ |z|)d+1)

see [12, Lemma 6] .

EXAMPLE 12.3. Let 9 : V' — U be holomorphic, and ¢ € E(V).
We define an operator on square integrable holomorphic [-forms on V
by

€o)e) = o) (A(0)) (20 02)

where T4 is the adjoint of the tangent map T4 at z. If U is a compact
subset of V', the above proposition and corollary apply to the transfer
operator L. More generally, these results apply to linear combinations
of the form [ u{dw)L,, under natural conditions on ¢, ¥, and p.
We note the following results, which are useful in applications.

LEMMA 12.4. Let V C C4, V connected and ¢ : V — U be holo-
morphic, with compact U C V. Then

N7
=1

consists of a single point Z. The eigenvalues of the derivative v}, are
strictly less than 1 in modulus. _
See [38, Lemma 1] (take D bounded open connected, with D D U).

PROPOSITION 12.5. With the above notation and assumptions

_ or (N v%)

e det(1 — )

see [38, Lemma 2.
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13. Non-Fredholm situations.

If the dynamical system (M, f) is holomorphic (or real analytic)
as well as ¢, and if f is expanding, the results in the last section can
be used to show that £ is analyticity improving. There is therefore
a well-defined Fredholm determinant Det(1 — zL£), which is an entire
analytic function of z. This leads to a zeta function meromorphic in
the whole complex plane.

But there are other situations where £ is not a trace-class operator,
or even compact, and one can nevertheless prove that the formal power
series Det(1 — zL£) has a non trivial radius of convergence. We shall
discuss one example at length in the second part of this monograph,
following a general approach which we outline here, and which has
proved effective in several different situations.

First one has to make a definite choice for the Banach space B on
which £ acts (Hélder, differentiable, or bounded variation functions).
One estimates then the spectral radius of £ by the formula

spectral radius = lim_ ||C™|*/™.

Let r be such that there are only finitely many eigenvalues A of £
(each of finite multiplicity) with |A| > 7. The infimum of such s is
the essential speciral radius and

ess. spectral radius < lim ||C™ — E,|*™

when the E,, are finite rank operators (Nussbaum [31] has shown that
for suitable choice of the E,,, the right-hand side is in fact the essential
spectral radius). With luck and a clever choice of the E,, one gets an
estimate of the essential spectral radius that is strictly less than the
spectral radius, and therefore non trivial spectral information.

There is a trick due to N. Haydn [19] which has permitted to show
in several cases that Det(1 — zL£) is an analytic function of z for

lz] < (ess. spectral radius)~’.

Furthermore the zeros of z — Det(1 — z£) in the above region are
precisely the inverses of the eigenvalues of £, with the same multiplicity.
(An explicit example will be discussed in Chapter 2 of this monograph).

Finally, when the weight ¢ is positive, there is “normally” an eigen-
value A\g of £ equal to the spectral radius, and which has the expression

A =exp P(logg)

where P is the pressure to be described in the next section.
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The program oulined above has been made to work in a certain
number of examples that we review now briefly.

First let us note that the Fredholm theory (for analyticity improving
operators) applies to analytic expanding maps (Ruelle [38], Fried [12]),
and to a large class of rational maps of the Riemann sphere (Levin,
Sodin and Yuditskii [23, 24]). It can also be made to work (using
Markov partitions) for hyperbolic maps and flows when the stable and
unstable foliations are analytic (Ruelle [38], Fried [12]). This last
condition can however be relaxed as noted by Rugh [45] and Fried.

To study expanding or hyperbolic dynamical systems that are not
holomorphic, but only differentiable or Holder, it is natural to use
Markov partitions (introduced by Sinai, Ratner, Bowen). This reduces
the study of the original dynamical system to symbolic dynamics, i.e.,
to the study of a subshift of finite type (see Section 2). For this ap-
proach we refer to the monograph of Parry and Pollicott [33], and in
particular to the references given there to the work of Ruelle, Pollicott,
Haydn, etc.

The use of symbolic dynamics has however disadvantages: it is
not canonical, and it neglects some of the information contained in
the differentiability assumptions. This situation has been progressively
improved in a series of papers by Tangerman [47], Ruelle [40, 41], and
Fried [14].

Nontrivial analyticity results have also been obtained for the zeta
functions associated with piecewise monotone maps of the interval.
For such maps, Hofbauer has constructed a “Markov extension” (in
effect an infinite Markov partition), and the dynamics has been studied
in great detail by Hofbauer and Keller (and many others in different
directions). The first result on zeta functions is due to Baladi and
Keller [4]. For further work see Keller and Nowicki [22], and Ruelle
[43]. Chapter 2 of the present monograph proves an extended version
of the Baladi-Keller theorem.

Another approach to zeta functions for piecewise monotone maps
of the interval originates with the work of Milnor and Thurston [29];
see also Preston [34], Baladi and Ruelle [5].

14. Thermodynamic formalism.

If p is an invariant probability measure for the dynamical system
(M, f), the entropy (Kolmogorov-Sinai invariant) h(p) = hs(p) mea-
sures the creation of information by f'with respect to p (see Billingsley
[7]). If M is compact, f continuous, and A : M — R is also continuous,
an interesting quantity to consider is the pressure (see Ruelle [35, 39],
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Walters [48, 49], Denker, Grillenberger and Sigmund [11])
P(4) = sup(h(p) + p(4)-

In various cases one can prove that k is upper semi continuous (with
respect to the vague topology on measures) and the sup is reached by
some measures called equilibrium measures. (For a general discussion
see Bowen [8], Ruelle [39]).

In Section 13 we have stated the fact that “normally”, when ¢ > 0,
the number exp P(logyg) is an eigenvalue g of the transfer operator
L, and equal to the spectral radius. In fact “normally”, )¢ is a simple
eigenvalue, and more is true: £ has an eigenvector ® > 0 corresponding
to Ag, and the adjoint £* has an eigenvector u which is a positive
measure. Furthermore, (under the normalization condition p(®) = 1)
the product & - u is the unique equilibrium state for log g.

We can at least check that p = ® - is an f-invariant measure, i.e.,
p(Ao f) = p(A) for all continuous 4 : M — R. We have indeed

p(Ao f)=p(®- (Ao f)) =3 (L'w)(®- (40 f))
= ,\glu(z:(@ (Ao f)))

=X5'u(4-£(2))

= (A~ ®) = p(4)
where we have made use of an identity stated at the beginning of Sec-
tion 8.

An interesting question is that of decay of correlations for the equi-
librium state p = ® - u: does the correlation function

C(n) =p(A-(Bo )
decay exponentially for n — oco? (We take p(A) = p(B) = 0 for
simplicity). To study this question we analyze the Fourier-Laplace
transform

> emC(n) = 3 e ML) (®A - (B o /)

n>0 n>0

=3 ey (c" (®4-(Bo f")))

n>0

=3 e™\"u(B - L*(D4))

n2>0

- ,u(B(l - e“‘/\o‘lﬁ)—l(@A)).
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Since the resolvent of £ appears in the right-hand side, we see that the
decay of correlations is linked with the spectral properties of the trans-
fer operator, and thus with the analytic properties of the corresponding
dynamical zeta function.

15. Ties with other parts of mathematics.

The Riemann zeta function was introduced to study statistical
properties of prime numbers. We have seen in the last section that
dynamical zeta functions are related to the thermodynamic formalism,
hence to ergodic theory and again to statistical properties. This gives
an idea of the relations that dynamical zeta functions have with more
traditional areas of mathematics.

For instance Parry and Pollicott {32] have studied the zeta functions
associated with the geodesic flow on a manifold of negative curvature
(not necessarily constant) and obtained a theorem on the distribution
of closed orbits which is analogous to the prime number theorem.

Another example is Mayer’s [27] study of zeta functions associated
on one hand with geodesics on the modular surface, on the other with
the continued fraction transformation (the equilibrium measure here is
the Gauss measure).

Let us conclude with a problem that appears completely open. It is
known that the geodesic flow on a compact surface of constant negative
curvature is exponentially mixing (Ratner). Does this remain true for
non constant negative curvature? (We have seen that the decay of cor-
relations for maps is simply related to spectral properties of a transfer
operator, but the situation for flows appears much less tractable).






CHAPTER 2
Piecewise Monotone Maps

In this part we shall study zeta functions associated with systems
(X, f,g) where X is a compact subset of R, f : X — X is piecewise
monotone, and ¢ : X — C is of bounded variation.

Some references on piecewise monotone maps relevant for the prob-
lems discussed here are Hofbauer [20], Hofbauer and Keller [21], and
Milnor and Thurston [29]. There is also a vast literature on other
aspects of the theory of maps of the interval.

The main result on zeta functions is due to Baladi and Keller [4].
We shall prove an extension this result here using a new method.

An announcement of the results in this Chapter 2 is in Bull. A.M.S.
(to appear).

1. Definitions.

Let X be an ordered topological space equivalent, for its order and
topology, to a compact subset of R. For simplicity we shall say that
X is a compact subset of R. An important example is the interval
0,1 c R.

We say that J is an interval of X is J = X NI where [ is an interval
of R. If I is closed then J is a closed interval of X, ie., J = ¢ or

J={zeX :u<z<uw}
for suitable u,v € X, u <v. Amap f:J — X is strictly monotone if
it is strictly increasing (:v <y=>flz)< f (y)) or strictly decreasing

(:v <y= f(z) > f(y)) If furthermore fJ is an interval of X (i.e.,

f takes all intermediate values between fu and fv) we say that f has
the Darbouz property; in particular f is continuous and therefore a

homeomorphism?!.
We say that f : X — X is piecewise monotone if X is covered
by closed intervals Jy, ..., Jy such that f|J; is strictly monotone and

1A strictly monotone map with the Darboux property is the same thing as a monotone home-
omorphism of an interval to an interval.

23
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has the Darboux property for i = 1, ..., N (therefore f|J; is a mono-
tone homeomorphism of J; to a subinterval of X). We assume that
(J1,--.,Jn) is a minimal cover of X by closed intervals, i.e., if an-
other such cover (Jj,...,Jy) satisfies J| C Ji, ..., Jy C Jn, then
(Ji,---,Jy) = (J1,.-.,Jn). (In particular J; N J; consists of at most
one point when i # 7; of course a partition is a minimal cover). We
also assume that no J; is empty, that J; < J» < -+ < Jn, and that
N>1

If J; is reduced to a point we make an arbitrary decision that f|J;
is either increasing, or decreasing (this will be convenient later).

Let {by,...,bs} be the set of common endpoints of intervals J;, Ji41.
We define e(z) = 0ifz € {by,...,b,},and e(z) = £1ifz & {b1,...,b,s}
depending on whether f is increasing or decreasing on J; 3 z. The set
Per f = Umy1 Fix f™ contains the following subsets:

m—1
Fix* f™ = {z €Fixf™: [] ¢(ffz) = ¢1}
k=0
Per®(f,m) = {z € Fix® f™ : m is the minimal period of z}.

We call z a negative (resp. positive) periodic point if z € Per™(f, m)
(resp. z € Per*(f,m)) for some m. If (J1,...,Jn) is a partition every
periodic point is either negative or positive; in general there may be
finitely many exceptions.

We say that (Ji,...,Jw) is a Markow® cover for f if, for every i,
fJ; is a union of intervals J;. We say that (Ji,...,Jy) is a generating
cover if every intersection

) F"Jimy
n=0

consists of at most one point.
Given g : X — C, where card X > 1, we let

var g = sup i lg(a:) — g(ai-1))

where the sup is over finite subsets of points of X, ordered such that
a < a; < --+ < a,. We say that g is of bounded variation if var g < oo.
We can similarly define var(g|A) where A is any interval of X (not
necessarily closed).

2By this definition a Markov partition need not be generating.
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The space B of functions of bounded variation ® : X — C is a
Banach space with respect to the norm Var defined by

Var = s (|8(a0)] + 3 10(a0) ~ @(01)] +12()]

where the sup is over finite subsets of points of X withag < a; <--- <
an. Note that in the definition of var and Var the sup may be replaced
by a lim over finite sets ordered by inclusion.

If X = {a}, we let varg = 0 and Var® = 2|®(a)|. With these
definitions the norm Var is equivalent to the norm || - ||q + var. In fact

1
oo <  Vara

var® < Var ®
Var ® < 2||®||o + var .

We have also
Var(® - ¥) < ||®|lo Var ¥ + var &||¥||p < Var ® - Var ¥

and
ar(® o ¢p) = Var ®

if ¢ is strictly monotone and has the Darboux property.

Given Y C X we shall denote by By the subspace of B consisting of
the functions @ vanishing outside Y, and by B\y the quotient Banach
space B/By.

2. Construction of new systems.

Let the system (X, f,g) consist of a compact subset X of R, a
piecewise monotone map f with an associated minimal cover by closed
intervals (Ji,...,Jn), and a function g of bounded variation. From
these data we shall construct in various ways a new system (55 , f,
d), and a cover (jl, ey jN) with desirable properties: the intervals
(jl, J ) form a partition, or ( Ju, .. J ~) is Markov, or generating,
or g is contmuous at periodic points.

The set X obtained by construction is in general not an interval of
R (even if X is); this explains why we do not want to restrict attention
to such intervals.

Remember that B denotes the Banach space of functions of bounded
variation X — C. We denote by B the similar space of functions of
bounded variation X — C. We also let BA be the subspace of functions

vanishing outside of a set Y C X, and use the notation B, - 7 = =B /B
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PROPOSITION 2.1 (Producing a partition (Js-.., Jn)?). We may
choose (X f, 8), (Jo, .. JN), and#: X — X order—PTeSCmng con-
linuous surjective such that r o f= fo#, g=gof, and #Ji = J; for
i=1,..., N. Furthermore Jy, ..., Jn are disjoint and # is two-to-one
on a countable set, one- to—one elsewhere

IfZ={re X, cardi™lz = 2}, Y = Un»o f*Z, and Y = 771,
each point of Y is a limit of points in X\Y and each point of Visa
limit of points in X\Y.

The map ® — ® o7t defines an isomorphism By — 5\? of Banach
spaces.

Let b4, ..., b, be the points of X belonging to two distinct intervals
J;. Suppose that ¢ € X, that f*¢ € {by,...,b,} for some k > 0, and
choose the smallest such k. If £ > 1 also assume that & is not an
endpoint of one of the J;. Under these conditions replace ¢ by two
points £_ < £, and insert a gap of length eof between them. We
assume 0 < a < 1/N so that the total length of the inserted gaps is
< sg(1 — Na)~!. We obtain thus a compact set X C R; the collapse
map 7 : X — X is order preserving, and 7 is two-to-one on a countable
set, one-to-one elsewhere.

Defining § by § = g o % we see that var§ = varg < co.

fJ={zeX: a,§z<ﬂ,}wedeﬁneJ ={teX:a<t<b}
where #8; = oy, #6; = B;; if 7r’1a, = {ai, oy} we take &; = 45 if

#7168 = {Bi-, ﬁ,+} we take §; = B;_. With this definition the J; are
disjoint and 7rJ = J.

The map f is entirely specified by the condition that f be a mono-
tone homeomorphism of J; to a closed interval of X fori= 1, , N,
and that # o f = fo #.

We will now show that points of Y (resp. Y) are limits of points of
X\Y (resp. 5(\\)7). Since (Ji, ..., Jy) is a minimal cover, the points

1, -- ., bs belonging to two different J; must be limit points from the
left and from the right of other points of X. Remember that
Y=z
n>0
and

Z={z€X:cardfr_lx=2}=UZk

k>0
where

Zg = {b1,...,bs}

3See Hofbauer and Keller [21] for the case X = [0, 1].
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and, for k > 1,

Zx = [ Zk-\Z
= {endpoints of intervals J;} U Z; U---U Z;_;.

By induction on k all points of Z are limit points (from the left and
from the right) of other points of X. Therefore all points of Y are
limits (from one side at least) of other points of X.

Suppose now that y € Y and y is not a limit of points in X\Y,
i.e., there is an open neighborhood V of y such that X NV =Y NV.
Every points in Y NV is thus a limit of other points in Y N V. For
all n > 0 we can therefore construct (by successive doubling) finite
sets Yy,,Y, C Y such that cardY, = cardY, = 2", and ¥y = {y},
YoNY,=¢, Yor1 =Y, UY,. We may assume that for each n there is
€n-> 0 such that the mutual distance of points of ¥,, is > &, and each
point of Y] has distance < 3e, to a different point of ¥,. The closure
of U,>o Yn is then a Cantor set K ¢ X and K NV is uncountable
contrary to the assumption that KNV € XNV =Y NV, which is
countable. Therefore Y is in the closure of X\Y.

To obtain the corresponding result for Y= #~1Y, notice that Y=
Unso f*Z where Z = #~1Z and all points of Z are limits (from one
side) of other points of X. Therefore all points of ¥ are limits (from
one side at least) of other points of 5('\ and the proof proceeds as before.

The map & — ® o 7 identifies B with the subspace of B consisting
of those ® such that ®(¢) = &(¢’) when 7€ = #t¢’. Given ¥ € B let

® € B be in the class of T: we may change ® at the points of Y to
obtain & such that &'(£) = <I>’ (¢) when #¢ = #¢', and Var ¥ < Var ®.
Therefore & = & o # and, if ¥ € B\y is the class of @,

||| = inf Var & = inf Var ® o
= inf Var & = ||¥||.

The map ¥ — ¥ is thus an isomorphism By — 3 ¢ of Banach spaces.
Remarks 2.2. (1) Except for the finitely many periodic orbits
through by, ..., b,, the map # defines a bijection Fix f"‘
Fix f™ for every integer m > 1.

(2) Since the points by, ..., b, are doubled by the construction,
it is possible to start with “functions” f and g which are two-
valued at these points (with a “left value” and a “right value”).
In this manner one can deal with piecewise monotone maps
f:[0,1] — [0,1] with discontinuities.
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PROPOSITION 2.3 (Producing a Markov partition (Jl, jN) ).
If (J1, ..., Jn) is a a partition, we may choose (X, £, 8), (Ji, -,
JN): and T:X - X order-presemzng continuous injective such that
fo7r—-7rof,go7r_-g,and7rJ C J; fori=1, ..., N. Furthermore
(Ji, ..., Jn) is a Markov partition.

Use now 7 to identify X with a subset ofX so that f, g extend f,
gand J;=J;,NX fori=1,..., N. Then Y = X\Xzstheumonofa
family (U,) of disjoint open znte'r'uals each contained in some J;, and
for each Uy there isn > 0 such that U,, f Uy --.s f"Ua are intervals in
the family (U,) and §|f"U, = 0. Each interval U, is separated either
Sfrom the Ug below it or from those above it by a point z € X = 5(\\17

The map ® — &|X defines an isomorphism B\? — B of Banach
spaces.

We recall the assumption J; < :-- < Jy and write g(i) = +1
depending on whether f is increasing or decreasing on J;.

Let X, iy, Jiy..ipi D€ copies of X and J; with the original order if
l'I,_I e(zr) = +1 and the reverse order if [[*_, (3,) = —1. Supposing
41 = J15 -+ 41 = fi-1 and 4 < 7, let

-1
Xil...ik < le-njk if H €(ir) = +1

r=1
-1

Xil...ik > X]]]k lf H E('lr) =-L
r=1

This defines an order on the disjoint union

X® = U Xiin = U Jiy inie

i1..3g LSRR PR

for k > 1; we also write X = X.
The restriction of f to J; defines a map J; — X, hence also

Jil...ikik+1 - Xu Akl
and therefore also a map
g : X% = U Jil---ik;kﬂ - X(k+1)

which is an order preserving homeomorphism of X®*) to its image
20 XE)  xE+D).

4See the Appendix of Ruelle [43] for the case.where (J1,...,Jy) is generating,
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Let #(%) : X+ _, X&) be defined by

Gk : Ko
{7 et

min or maxJ; if re Xil...i;.+1\7r(")Ji

1...ikik+1 1-"ikik+1

where the choice of min or max is made so that #%) is non decreasing.
In particular

#®x®) = jdentity of X*).
We define X = lim X® to be the inverse limit of

XO 2 x) L x® E® ey

and let # : X — X© = X be the associated map. The set X is
compact, ordered, and may be viewed as a compact subset of R; # is
continuous and order preserving. We also define 7 : X — X by

T = (z,w(o)z,w(l)w(o)z, .. ) .
This is an order preserving homeomorphism of X to its image, and
#mw = identity of X.
Write J® = J; and
Ji(k+1) = U Xus, C X (k1)

igig
for k+ 1 > 1. Since Xy, ; and X, are copies of X there is a
naturally defined monotone homeomorphism of J**Y onto X®), hence
a piecewise monotone map

JARED Ca il Ji(k+1) - X®

and it is easily verified that
FERD o 4D = 2 8) o B
£ o 7etD) = 40) o plktD).
If ¢ = {zo,21,...,Zn,..-) € X, let

f&’ = (f(O)zl’ f(l)xz’ e, f(n)xn+1, - ) )

The set
Ji =lmJ® = #71Y;
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is mapped by f homeomorphically onto 5(\ preserving or reversing the
order according to whether £(z) = +1; f is thus piecewise monotone

X — X we have
for=mof
and (Jy,. .., Jw) is a Markov partition for f. Furthermore J; = #~!(#o
m)Ji O ;.
Let x1 be the characteristic function of the union cf the ¥ intervals
[min 7J;, max 7J;] in X. We define then

9(8) = xa(§) o g(#¢)
which is of bounded variation (because Varx; < 2N and Vargo # =
Var g).
If o is any triple (n,4,¢) where n > 0,1 <i < N, and € = +1 we
let

Ua = {£=(zo,z1,...) € Ji:
Trp =7®r fork=0,... n—land 2, S 7r(n):,;n}

where < means < if ¢ = —1, > if ¢ = +1. We have thus U, U, =
X\rX =Y. Ifn >0, fU, is an interval Us in the family (U,). [
see this use f("+1)7r("+1) = 7B f®)] If n = 0, then ¢ € U, means
z; ¢ 70J;, ie., x1(£) = 0 hence §(£) = 0.

Note also that U, is separated from the Uy either above it or below
it by the point 77 U,.

The restriction & — $o n defines a norm reducing map B — B, but
for each ® € B one can find & such that Var<I> Var® and Bor = ®,
therefore ® — & o 7 defines an isomorphism B ¢ — B.

PROPOSITION 2.4 (Producing a generating partition ( Jiy.ooy In)%)
If (Ji,...,Jdwn) is_a partition, we may choose (X £8), (Ui,...,Jn),
and 7 : X — X order preserving conilinuous surjective such that
for=mof, §(6) = g(x~¢) when cardn~1¢ = 18, and nJ; = J;
fori=1,..., N. Purthermore (Jy, ..., Jy) is a generating partition.

The set ¥ = {¢ € X : card w7 1€ > 1} s countable and the closed
intervals U, = n~1¢ with £ € ¥ are of the form Nkzo f*Jixy. Each
U, is mapped by f into another interval Ug of the same family: fU, C
Us. If we write Y = x7'Y = U, U,, the map ® — & o x defines an
1somorphism B\ — B\y of Banach spaces.

5See Baladi and Ruelle [8] for the case of intervals of R.
SFurther conditions will be imposed in Remark.2.5 (1) and Proposition (3.2) below.
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If (J1,..., Jn) is @ Markov partition, then (Ji,...,Jn) isa gener-
ating Markov partition. Each £ € Y is a limit of pomts in X \Y and,
for each interval U,, either the upper or the lower endpoint is a limit
of points in X\Y.

For z,y € X we write z ~ y if f*z, f*y belong to the same Jyx)
for all ¥ > 0. This is an equivalence relation because we have assumed
that Ji,...,Jy are disjoint. Every equivalence class [z] is a closed
interval which we call U, if it contains more than one point. We have
thus diam U, > 0, which can happen only for countably many U,. Let

X - X collapse each U, to a point; X is thus a compact subset of
B 7 is order preserving, and card 7'z = 1 outside of a countable set
Y.

The properties for = wo f and 7J; = J; define f and a parti-
tion (Ji,...,Jn) associated with f. By construction, this partition is
generating,.

For the moment we only impose on § the condition §(¢) = g(r~1¢)
when card 771€ = 1, this is certainly compatible with Var § < co.

Because f restricted to U,(C J;) is a homeomorphism, f maps
Ua = Nixo ™ Jiy into Ny F5 1 Tiky = Nieso S5 Jik+1) = U, where
cardUz > 1.

The map ® — & o 1 defines a norm reducing map 3\9 — B\y. But
if ¥ € B\y there is a ® in the class of ¥ which is constant on each
U, and such that Var® = ||¥||; we may thus write & = ® o w with
Var® = Var® = ||¥||. This shows that B — B\y is isometric.

If (J1,.-.,JIn) is a Markov partition, clea.rly (jl, .. jN) is a Mar-
kov partltlon and X =nX isa Cantor set. Since Yis counta.ble every
point of ¥ is a limit of points in X \Y Therefore also each U, contains
a point which is a limit of points in X\Y.

Remarks 2.5. (1) = defines an injective map

Fix~ f™ — Fix™ f™

and we may take j(rz) = g(z) for z € Fix™ f™.

[Since f™om=mo f™ we have 7 Fix f™ C Fix f™, and also
7 Fix™ f™ C Fix™ f™. Suppose that z € Fix~ ™ yeFix™ f°
and 7z = 7wy = £. We have then ¢ € Fix~ f* and we may
assume that %k is the minimal period of £, so that m = kp,
n = kq, and p, q are odd. Since f*P? induces a decreasing map

71¢ — 771¢, the fixed points £ and y coincide. Therefore

7~1¢ contains at most one negative periodic point for f, and
the map Fix~ f™ — Fix~ f™ is injective. The injectivity of
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Fix~ f™ — Fix™ f™ < X allows the definition d(nz) = g(z)
when z € Fix™ f™].

(2) If f is piecewise expanding (i.e., if f|J; expands by a factor
> 01> 1fori=1,...,N) the partition (Ji,...,Jn) is gen-
erating. The map 7 constructed in the proposition is then the
identity.

(3) The constructions of Propositions 2.3 and 2.4 can be applied
successively, and they almost commute. Independently of or-
der of application one obtains a full shift (X, f) and a map
7 : X — X such that f om = 7mo f. Depending on the order
of application of Propositions 2.3 and 2.4, g is replaced by §
or g, which may be different. But if corresponding choices are
made in the construction of §;, §2, then g, — §; vanishes on
nX.

COROLLARY 2.6. Let 0 = ap < a1 < +-- < ay = 1. We assume
that f : [0,1] — [0,1] is continuous and strictly monotone on the inter-
vals [a;_1,a;], and that g is of bounded variation”. Let then (f JF ),
(J1s---,JIn), 1 be obtained by application of Proposition 2.1 to (lo, 1],
f: g): ([aO; al]’ ey [a'N—I’ a'N]); also let (X: f;’g)r_gjlv v JN); 7ty be
obtained by application of Proposition 2.4 to (X, f, g), (Jl, . Jdn).
With this notation, Tz defines a bijection Fix™ fm — Fix™ f’", and we
may take §(F2z) = g(z) for r € Fix~ f™.

By construction each set #; '£ is an interval of R (i.e., connected). If
¢ € Fix™ f™, then f™ maps the interval % 1¢ into itself, and therefore
73 1¢ contains a fixed point z € Fix~ f"‘ This shows that 72 maps
Fix~ f™ onto Fix~ f™ and the corollary follows from Remark 2.5 (1).

PROPOSITION 2.7 (Producing § continuous at periodic points). If
(Ji,...,JN) is a generating partition and S denotes the set of peri-
odic points, we may choose (5(\, f, d), a partition (jl, ey jN), and 7 :
X — X order preserving continuous surjective such that # o f = fom,

(5) g(7€) if 7€ ¢ S and § is continuous at the points of #~1S;
Ji =#%"YJ; fori=1, ..., N. The partition (Jy,..., Jn) is in general
not generating. The map fr is two-to-one on a countable set, one-to-one
elsewhere. Furthermore the entropy of f-invariant probability measures
ish=homr, so that h is u.s.c.

There is a countable set Y, containing {z € X : card 7'z = 2} and
the periodic points of discontinuity of g, such that fY C Y and each

7f and g may be two-valued at ay,...,ay~1, 5ee Remark 2.2 (2).
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point of Y is a imit of points in X\Y. Correspondingly, zf Y =#1Y,
then fY c Y and each point of Y is a timit of points in X \Y

The map ® +— ® o defines an isomorphism By — B ¢ of Banach
spaces. .

If X is a Cantor set, then also X is a Cantor set.

Let Xo, X1, X, consist of those points of X which are isolated (Xp),
or limits of other points of X on one side only (X;), or limits of other
points of X on both sides (X;). A point z € X, N J; cannot be an
endpoint of J;, and since f|J; is a monotone homeomorphism, we have
again fr € Xo. Thus fX, € X,. Similarly fX; C X; U Xs, and of
course fXo C XoU X U Xo.

If we write Sp = SN Xo, S1 = SN Xy, 82 = SN Xy, it follows that
fSO':SOv fsl ZSI) fS2= S2-

We define Zy = S5 and, by induction,

Zr=f"" Zk_l\({endpoints of intervals J;} U ZO).

To construct X we replace each £ € Z = Uy 2 by two points {_ < £,.
If n = f¥¢, where £ € Zy and 71 has period I, we insert a gap of length
ea®t! between £_ and &, (with 0 <a< 1/N). We let # be the collapse
map X — X and define j #~1J; for i = 1,...,N. The map f
is uniquely defined by # o f = f o 7 and the condmon that f |J isa
monotone homeomorphism of J; to an interval of X.

We choose Y = S; U Z. Since g is continuous at the points of S,
we see that Y contains the periodic points of discontinuity for g; Y
also contains {z € X : card#~'z = 2} = Z. Since fZ C Z, we have
fY CY. If we define ¥ = #~1Y, then1rof f o7 yields fYCY

Let us now show that each point in ¥ is a limit of points in X\¥.
By assumption each § € #715;, #715; is a limit (on one side) of other
points of X. By induction on k this is also true for points £ € #7124
(remember that Zy = S;). Therefore each £ € Y =25V 2)is
a limit of other points of X. As in the proof of Proposition 2.1 this
implies that ¢ is a limit of points in X\¥. [Otherwise there would be a
neighborhood V" of { such that V' NX = VNY and one could construct
a Cantor set K C X with £ € K C V in contradiction with the fact
that Y is countable]. This result also implies that each point in Y is a
limit of points in X\Y.

If # ¢ S1US2 we let (&) = g(#§). #€ € 51US, then ¢ is a one-side
limit of points n of X (or even of X \Y) and we take §(&) = lim g(7n).
This limit exists because g has bounded variation. With this definition,
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§ is of bounded variation, continuous at the points of #71.5 and satisfies
3(6) = g(#E) i REE S.

If p is an f-invariant probability measure we may write g = ago +
(1—a)p where po (resp. p1) is an atomic (resp. nonatomic) probability
measure. Since the entropy of atomic measures vanishes, and 7 is an
isomorphism with respect to nonatomic measures, we have

h(p) = eh(po) + (1~ e)h(p1)
= (1 - Q)h(p1) = (1 — e)h(tp)
= ah(ipo) + (1 — a)h(ip)
= h(#p).
Since (Ji,...,Jn) is a generating partition, h is u.s.c. for the vague
topology®, and since # is (vaguely) continuous we see that also h is

u.s.C.
The proof that ® +— ® o 7 defines an isomorphism By — B\? is

easy, and essentially the same as in Proposition 2.1.

__ Finally, since the construction of X does not create isolated points,

X is a Cantor set when X is.

3. The functional ©.

Given a compact subset X of R, and a piecewise monotone map f,
we shall define a functional g — © on functions g of bounded variation.
(This functional was introduced by Hofbauer and Keller in the case of
maps of the interval).

If z is a left and/or right limit of points of X, let

g(xi _) = k/q;g(y)
9(z, +) = lim g(y).

Also let
f(SU, —) = (fl', '—) resp. (fSU, +)

if f is increasing (resp. decreasing) to the left of z and

f(SU, +) = (fxi +) réesp. (f.’L‘, —)
if f is increasing (resp. decreasing) to the right of z.
We say that (x, %) is a virtual periodic point if f™(z, +) = (z, £).
A periodic point z of (minimal) period m may be accompanied either
by a virtual periodic point of (minimal) period 2m or by at most two
virtual periodic points of (minimal) period m.

8See the Appendix (Section 7).
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If z € Fix f™, let
m—1 1/m
o(z) = | [T 9(f*z)

k=0

If (z, %) is a virtual periodic point of period n, let

T o(7(z, %)

k=0

1/n

B(z, %) =

If p is an f-invariant probability measure on X, let

6(p) = exp [ p(dz) loglg ().
PROPOSITION 3.1. Define
: 1/m
© = lim sup
m—oo Z’GX

T (%)

. 1 m—1 .
= explgf:gg—rz Iglog‘g(f z)l

Then © = max{© er, Ovir, Ocrg} where O e is the sup of S(z) over
periodic points, O is the sup of ©(z, ) over virtual periodic points,
and Oy is the sup of ©(p) over nonatomic f-ergodic measures p.

First note that if

C(m) = sup g log |g(f*z)|

we have

C(m +n) < C(m)+C(n)
hence

lim lC’(m) = inf —%C(m)

m—oo m
which justifies the definition of 8.
Taking z periodic, or tending to a periodic point, or p-almost any
z, we find that © > Oper, Ouir, Oug. It remains to show that © <
max{Oper, Ovir, Oerg }, and it suffices to consider the case © # 0. Let
then z(a), m(a) be such that m(a) — co and
m(a)—1

1 kz_: log Ig(f’“z(a))' — log ©.

m(a)

By going to a subsequence we may assume that p(a) = 1/m(a) %
Zz;(g)—l 8rz(q) tends vaguely to a probability measure p on X. We
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write p = pg + p; where pg is atomic (hence carried by periodic orbits)
and p; is nonatomic.

We shall now choose pg(a), p1(c) such that p(a) = po() + p1(a)
and po(a) — po, p1(@) — p1 vaguely. If ©,,; = Oy = 0 then pp =0
and we also take pg(a) = 0. Otherwise let § > 0; we take po(a) =
’n‘[(l?) 3" 4k4(a) Where, for given @, 3= is over long stretches of values of
k such that f*z(a) is close to a finite set of periodic orbits; in particular
we may suppose that

L

= 3 ogo(2(a)] < n(@)l (o8 max(p, Bui} + ).

We only have to consider the case p; # 0. Suppose first that
p(loglg]) = —o0o0. Given N > 0 we may choose € > 0 such that if
|gls(z) = max{|g(z)|, €} then p;(log|gl:) < —N. Note that p; gives
zero measure to the set of discontinuities of log |g|. which is a bounded
function of bounded variation, hence p;(a)(log|gl.) — p,(loglgl:) <
—N. Therefore

log © = lim p(a)(log |4])
< llpoll (1og max{Oper, Oyic} +6) — N

for all N > 0, hence © = 0 contrary to our assumption.
We have thus p; (log |g|) > —oo and we may choose ¢ > 0 such that

p(log|gl:) < pr(loglgl) + lpall - 6.

Since p; gives zero measure to the set of discontinuities of log |g|. we
have p1(a) (loglgl:) — p1(log|gle) bence

log © = lim p(c)(log |g|)
< |10l (log max{per, Bic} + 6) + [lpall (log ©(o}) +6)

where p} = p1/||p1||. The pointwise ergodic theorem, and Bogoliubov-
Krylov theory, imply that ©(p}) < 6(p') for some ergodic p, and since
6(p') < max{Oper, Berg}, we have finally log® < § + log max{Bper,
Ovir, Oerg} proving the proposition.

PROPOSITION 3.2. Let © be associated with the system (X, f, g)
and © stmilarly associated with the system (5(\ , f, §) occuring in Propo-
sitions 2.1, 2.3, 2.4, 2.7. For Propositions 2.1, 2.3 we have ®=86. For

Proposition 2.4 we may choose § so that ® < 0, and for Proposition
2.7 we have 8 < O.
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In the situation of Proposition 2.1, passing from the first system to
the second may replace some perlodlc orbits by others with the same
©, leaving virtual periodic points and ergodic measures unchanged,
therefore 0 =06.

In the situation of Proposition 2.3, the choice of § is such that if
€ lef"‘ we have B(£) = 0 unless ¢ = 7z with z € Fix f™, in which
case o(¢) = B(&). If (¢, £) is a virtual periodic point for f, we have
©(¢, £) = 0 unless £ = nz and z is f-periodic, in which case either
(z, £) is a virtual periodic point for f and 8(¢, ) = 6(z, %), or

6(¢, ) = 0. Finally, if j is f-ergodic, and 8(p) > 0, then j is carried
by points of the form 7z, so that p = mp where p is f-ergodic, and
6(p) = ©(p). In conlusion 6 = O.

In the situation of Proposition 2.4, we first have to extend the
definition of § to all of X If £ is f—peI'lOdlC of period m, then the
closed interval m~1¢ is mapped into itself by f™. Choose a point z €
n~1¢ N Fix f™ if this set is not empty and define §( fre) = a( f*z)
for £ > 0. If 716 N Fix f™ = ¢ then £ € Fix™ f™ and there exists
z € m~1¢ N Fix f>™; we define then

3(7%€) = (s(7*2) - o(5™*a)) "

for k > 0, where the square root is chosen such that g( f"{), g(fkz),

g(f™**z) lie in the same half complex plane with boundary through
the origin. This definition implies that

(3.1)

9(F2) = o(£*a)| + |o(F7*) — 5(F*2)| < 2 Jo (™) - o(f*)]
[by an easy geometric argument using similarity of triangles]. Having
defined §(¢) when ¢ is periodic we take §(£) € g(w~1¢) for other &.
(The above definition is compatible with those of Proposition 2.4, and
Remark 2.5 (1). In view of (3.1), Varg < 2Varg.

By construction eper < Bpe. If pis f-ergodlc nonatomic, it gives
probability 0 to the countable set {£ : card #~'¢ > 1}, therefore there
is an f-ergodic measure p with mp = 5 and ©(p) = 6(p), hence B <
Oerg. Let (€, —) be a virtual periodic point of period m for f,and &, /
& ifzo € 77, and 7, /7, then z € Fix f™ and lim §(&,) = lim g(z.)
so that @)(E, —) = ©(z, —), and similarly with (¢, +). Therefore B, <
6,:. So finally & < 6. R R

In the situation of Proposition 2.7, By = Oy and ey = Oerg-
The values of © associated with periodic points of the new system are
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values of © associated with the periodic or virtual periodic points of
the old system. Therefore 6 < ©.

4. The transfer operator L.

As usual we consider a system (X, f,g) consisting of a compact
subset X of R, a piecewise monotone map f, a function g of bounded
variation, and we choose a minimal cover (Ji,..., Jy) associated with
f. We call transfer operator the operator £ on the Banach space B (of
functions X — C of bounded variation) defined by

(LB)(z)= Y. 9(»)®(v)

y:fy=cz
and we write?
R=lim (Il€™o) "™
i.e., R is the spectral radius of £ acting on bounded functions X — C.

THEOREM 4.1. (a) The spectral radius of L, acting on B, is
> 0 and < R.

(b) The essential spectral radius of £ is < ©.

(¢) If g =2 0, the spectral radius of £ is R. If furthermore © < R,
then R is an eigenvalue of L, and there is a corresponding
eigenfunction ®y > 0.

We shall see in Section 6 that B < ma.x(e, exp P(log|g|)) where
P denotes the pressure.
PROOF OF PART (a). For each m > 0 choose y,, such that

T a(Frym)| 2 "i:[ a(f*v)

k=0
and let ®,, take the value 1 at y,,,0 elsewhere. The spectral radius of
L is then

er—l

1 1/m
dim e > i Fme )
-1 1/m
(Foum) ) =0

9Elsewhere (Ruelle [42]) we have used R to denote the spectral radius of || acting on bounded
functions, where |L£| is the operator obtained when g is replaced by {g| in the definition of L.

1/m 1
> lim (— sup
2y

:i:[:y(f’“y)
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and we also have

1/m

. mp /™ . m
R= lim (1£™o) "™ > lim(||£™@xmllo)
m~1 1/m
k=0
Let J; C J; be such that (Jy, ..., Jy) is a partition of X, and let 1; be
the inverse of f|J;. Writing

<pi1~-<ik(z) = g(whz) . g(d’izd"ilz) e g(¢ik . 7/)1'1"”)

we have then

L(z) = Y @i im(€)®(Wi, ... Y1, T)

i1..4m

Var L& = éstxlplg(f’“‘zz) .. .g(fx)g(z)| : ZVar(g o1;,)

= lim

Z (Pik_,_l“.im (¢Iky)¢(¢im e wiky)

‘l‘k+14.-‘l‘m

+sup ‘g(f""lz) .. .g(fz)g(a:)l - Var ®.

sup

Therefore if ® > 6, R > R, there are C,C’ > 0 such that

Mp=)
VarL™® < C[Z Vargo;- 3. O 1R™*|2|lo + O™ Var &

< (m+1)C (ma.x(@, R))m - Var @
hence
lim {|£™]]Y/™ < max(6, R) = R.

PROOF OF PART (b). Using the notation of the proof of part (a),
let z;,. ;. be in the domain of definition of ¥;_, o--- o4, (if this is not
empty) and define

(Km®)(z) = Z Gir i (E)R (Wi -« Wi\ Ty i )-

21...bm
The operator K,,, has finite rank, and if we prove

(4.1) limsup ||£™ — Ko [|V/™ < ©
m-—o0
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then Nussbaum’s essential spectral radius formula [31] implies that
the essential spectral radius of £ is < ©. We follow the calculation of
part (a), with L™® replaced by £L™® — K,,®. Note that

Z. "(I) o ’(/)im 0-++0 1/1ik - q)(wim ¢--+0 7/)1'1: (wik—l s w"lzil-"i'")) “0

ikt1eebm
< var®
so that
Var(L™® — K, ®)
<C|Y Vargoy;-Y 6F1.0™F .yar® + 6™ -2Var®
i k=1

< (m+1)C'8™ Var @

which implies (4.1).
PROOF OF PART (c). Since g > 0 we have

lim [|C™|Y™ > lim (Var(c™1))""
. m /m . mny \1/m
2 lim (1£™1o) ™ = lim (Jl€™o) " =R
so that the spectral radius of £ is > R. Therefore, part (a) of the
theorem shows that the spectral radius of £ is equal to R.
We assume now that © < R and prove that R is an eigenvalue of
L, and has an eigenfunction ®5 > 0. We may write

J
where, for each 7, ¥; is in the generalized eigenspace of an eigenvalue
Aj of £, with |A;| = R; furthermore

™y
lim Var £ _

m—oo rm

0
with 0 < r < R. In view of (4.2)
.1 m
Al_{rgoglogVar(C 1)=1logR
and therefore the ¥; do not all vanish.

Writing the restriction of £ to the generalized eigenspaces corre-
sponding to the A; in Jordan normal form we see that there is an



§4. THE TRANSFER OPERATOR L. 41

integer k£ > 0 such that

,,P_argml P LT =2

C<I> = \;®;
for all j, and ®; # 0 for some j. We have

£™1 L AN\ L
< P p— i J
0= RomF - RomF X]: (R) AP m*

and therefore
Aj

(4.3) )3 (;,,—) 8, > —¢(m)
j
where 0 < g(m) — 0 when m — oo. Note that the sum in the left-hand
side is finite and that |A;/R| =1 for all j.
Let (...)m denote the average over m € Z; (4.3) yields then

<(1 + cosam)z (’;)m@j> >0

<(1tsmam>2( BDE

/'
If \; # R for all j we would have

(T(®) ) =0

m

(2)) -

m

for all real . But then ®; = 0 for all j: a contradiction. Therefore R is
an eigenvalue, say Ag = K. Furthermore ®; does not vanish identically,

and & = (T, (%) ®;)m > 0.

LEMMA 4.2. Let (U,) be a family of disjoint intervals of X (not
necessarily closed), and writeY = U, U,. We assume that each U, is
contained in some J; and that either

(a1) fU, is contained in another interval Ug of the family, or

(az) g vanishes on U,.

We also assume that for each U, either
(b1) if Ug < U, there exists T, € X\Y with Ug < z45 < Ua, or

hence
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(b2) #f Ug > U, there exists yog € X\Y with U, < 2,5 < Up.

The conditions (a) imply that LBy C By. An operator L\y on By
15 thus defined such that Lyyw = wl if w : B — Byy is the quotient
map.

The conditions (b) imply that L|By has spectral radius < ©. There-
fore if |\| > © and E*, Ey are the generalized eigenspaces of £, Liy
to the eigenvalue X, then w : B — B\y induces a bijection E* — Ei\y.

Suppose that ¥ vanishes outside of Y, then (L ¥)(z) vanishes unless
¢ = fywithy € U, and g(y) # 0, hence z € Ug C Y by the conditions
(a). Therefore LBy C By and Ly is well defined.

The conditions (b) imply that if ¥ € By

Var ¥ < 3" Var(¥|U,) < 2 Var 0.

[The second inequality is because, in evaluating
Var ¥ = lim (|¥(ao)] + 30 [%(as) = ¥(ai-1)| + [ ¥(an)])

we may assume that each stretch of a}s in a given U, is immediately
preceded or followed by some a; with ¥(a;) = 0].
We have thus, if ¥ € By,

Var L™¥ < Y Var(£L™¥|Up)
8
< Y Var(£™(x, 1))

and, if v; is the inverse of f|J;,

L™ (xva¥) = (gots)...(gothy o 0 1/1im)((XUa‘1’) ot 00000 1/11'.,,)-

Given € > 0 we may bound a product of k£ factors g on an orbit of f
by C(© + ¢)*, therefore

Var(£™(xp, ¥)) < mC*(© +¢)™* - Varg - Var(¥|U,)
and finally
Var L% < mC?*(© +¢)™ . Varg-2Var .

Therefore
|1£™ By || < 2mC’2(6 + E)"'_1 -Varg

and the spectral radius of £|By is < ©, from which the lemma results.
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PROPOSITION 4.3. Suppose that £, Y, © satisfy the conditions of
Lemma 4.2, and similarly L, Y, 6 with O < ©. If there is an isomor-
phism By ~ B 4 identifying C\y with £, \p we say that the transfer

operators £ and L are ©-equivalent: their eigenvalues A with Al > 6
are the same and the generalized eigenspaces E*, E* are in natural
correspondence. We extend the notion of ©-equivalence by transitivity.

The constructions of Proposition 2.1 (producing a partition), Propo-
sition 2.3 (producing a Markov partition), Proposition 2.4 when 6 < ©
(producing a generating partition), and Proposition 2.7 (produczng g
continuous at periodic points) yield ©-equivalences £ ~ L.

In the case of Proposition 2.4 we shall at first consider the subcase
where (J1,...,Jn) is a Markov partition. The conditions of applica-
bility of Lemma 4.2 have already been checked in Propositions 2.1, 2.3
(with Y = ¢), 2.4 (in the Markov subcase), and 2.7. Furthermore it
is clear by construction that the isomorphisms B\y =~ B\? defined by
® — & o 7 (Proposition 2.1), | X «—® (Proposition 2.3), o7 — &
(Proposition 2.4) and ® +— @ o # (Proposition 2.7) identify £\y with
E\?.

Apart from the Markov restriction in the case of Proposition 2.4 we
have thus established the announced ©-equivalence £ ~ L.

For the general case of Proposition 2.4 we use the fact that one
can apply Propositions 2.3 and 2.4 in either order, getting almost the
same result, as noted in Remark 2.5 (3). If we mark by (x) or () the
application of Propositions 2.3 and 2.4 respectively, we have transfer
operators £, L* , L, £* and (L£*)~with ©-equivalences £ ~ L* ~ (L*)
L ~ L*. But by Proposition 2.3 and Remark (3) after Proposition 2.4
we also have (L*)~~ L*. By transitivity we have thus finally £ ~ L.

Remarks 4.4. Suppose that X is a Cantor set. Let By = {<I> €B:

{z:®(z)#0}is countable} and define £y, w = wL where
w:B — B\ =B/Byg

is the quotient map. Then the eigenvalues A with |A] > © coincide for
L and Ly, and w induces a bijection E* — E{_ of the corresponding
generalized eigenspaces.

Fixing ¥ € By, let Z = {z : ¥(z) # 0} and Y = Upyo f™Z. We
may apply Lemma 4.2 because every point of the countable set Y is a
limit of points of X\Y (X is a Cantor set). Therefore (as in the proof
of Lemma 4.2)

I£™ || < 2mC*(© + &)™ Varg - ||¥||
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hence the spectral radius of £|B,, is < 6, and this justifies the Remark.
Remarks 4.5. Suppose that X is a Cantor set, that Var § < oo, that
{z : §(z) # g(z)} is countable, and that

I 3(*)

k=0

1/m

<6.

lim sup
m—oo 4

Then the transfer operator £ associated with § is ©-equivalent to L.
We use Remark 4.4 and notice that £y, = Lyco-

5. Zeta functions.

At the level of generality considered here, the study of zeta func-
tions for piecewise monotone maps was initiated by Baladi and Keller
[4] who discussed the case where X is an interval of R and the minimal
cover (Jq,...,Jn) is generating. Their proof simplifies if one assumes
that (Ji,...,Jn) is a generating Markov partition (and X a Cantor
set); we shall examine that case first, and then use the machinery de-
veloped earlier to handle more general cases (and recover in particular
the Baladi-Keller theorem).

PROPOSITION 5.1. Let X be a Ceantor subset of R, f : X — X
a piecewise monotone map, ¢ a function of bounded variation, and
(J1,...,Jn) a partition associated with f.

We assume that (Jy, ..., n) is generating, that fJ; = X fori=1,
..., N (in particular (Jy, ..., Jn) is a Markov partition), and we define
a zeta function by

oo m m—1
((2) =exp Y e > II g(sz).
m=1 m z€Fix f™ k=0
Then 1/{(z) is analytic for |z| < ©7! and its zeros there are the in-
verses A™! of the eigenvalues \ of the transfer matriz L, with the same
multiplicity.

The original idea of the proof is due to Haydn [19], who worked with
Holder continuous g. Haydn’s argument was adapted to the present
situation by Baladi and Keller.

If A, is the set of sequences £ = (&, &, ...) with & € {1,...,N},
and 7 is the shift : 7¢& = (&, &, ...), we may identify (X, f) with (A,
T) by taking z — (&, &, ...) such that f*z € J;,. We shall freely
change notation in accordance with this identification.

We write B
Cm = Z H g('rké)

£eFix ™™ k=0
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so that
1
1/¢(z) = exp— 3 “=(nz™
m=1 m

According to Theorem 4.1 (b) we may choose ©, with 0 < & — ©
arbitrarily small, such that there is no eigenvalue A of the transfer
operator £ with |A\| = O, and finitely many (say M) with |\] > ©.
The projection P corresponding to the part of the spectrum of £ in
{X : |A\| < 8} is a bounded operator in B and we may write

M
LE= A > Sja-(Lj)apoia(@) + PLE

j=1  ap
M

78 =37 ;'j Sja- (L}') ,0i0(®) + PL™®
j= [+3

where © < |)\j| < R, (S;.) and (o},) are dual bases of the generalized
eigenspaces of £ and L£* corresponding to the eigenvalue A;, and the
matrices L; may be assumed to be in Jordan normal form (L7 is the
m-th power of the matrix L;). We let m; be the multiplicity of A;, i.e.,

m; = tr Lj.
Fixing m > 0 we let 3, be the sum over words 7 of length m, i.e.,
elements of {1, ..., N}™. We denote by n* the periodic concatenation'’

T*=nVnV--- €A Let x, € B be such that x,(§) = 1 if £ begins
with the word 7, xy(§) = 0 otherwise. Then

m—1
(L™xa)(€) = T 9(v*(nV ©)).
k=0
Note that -
”CmXWHO S Cflem
for some constant C1, hence
Var L™x, < mVarg - C;6™ .
Since © may be slightly changed we can get rid of the factor m and

write

Var L™x, < C,0™.
We have

(=TI o(v*n7) = Z"ﬁlg(f'“(n V7))

n k=0 n k=0

10The concatenation 17V 7' of a word 7 of length m and a word 7' of length m’ is a word of
length m + m/.
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=Y (L™Xn)(7")

M
=X LZ X3 Sjaln) - (L), 503800) + (PC"‘xn)(n*)J

7 j=1 af
M
= Z: Z( m)aﬂ%'ﬂ (Z Sja(ﬂ*)xn) + 2 (PL™xn)(n")

e

where
M
G =3 mA?
j...l
i= of K
(@ = Z(PE"'Xn)(n')~
n
We have

exp— 3. EC’('?)ZM = 11 = A2)™.
m=1

J=1
Therefore the proposition follows from Lemma 5.2 and Lemma, 5.3 be-
low.

LEMMA 5.2. There is a constant C such that
1KY < co™.

We have the formula,

£0s0 = N 2 (L7) 030

Therefore
M
== Zl/\}"zﬂ(l/?)a ojp ( ZS,a(n )xn)
j= «
M
== Zl 2.(L™05a) (S,-a -3 Sja(fl*)xu)
j=1 7

3 Yo (c’" (S?-a - ; Sja(n*)xn))

=1 a
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M
==Y 0a(L™Sjo ~ KmSja)
j=], a
where K, is an operator of finite rank defined by
K,=L"E,

(Em®)(£) = 3 (1) x(8)-

¥, =Xy (- En)®=xy- (‘I) - <I>(n*)) we have
Y Var¥, <3Var®
n

so that
Var(£™® — Kn®) = Var(Lu(1 — En)®) = Var Y_ L™,
n
<3 Var L™, - Var ¥, < 3C,0™ Var &

n
hence ||£™ — K| < 3C26™. Finally
Wl<c-em
as announced.
LEMMA 5.3. There is a constant C' such that
(@] < c'am.

Fix7j € A,. If g is a word of length k, we define

{C’“Xnk —gm Vi) L¥ X, fE>2

Y, =
™ Lxn ifk=1

k

where 71 is the word of length & — 1 obtained by application of the
shift, and X, is the characteristic function of elements of A, with
as initial word. We have, if k > 2,

VarY,, = Var|(g(m V) = g V ) - (£ xon,)C)

< g Varg - Var C"'lxﬂn
< gVaIg - C0F ! = C36F.

This inequality will be used in a moment.
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Writing 7,, = 1 we have

m—1
L% = 3 gV i)...q(r*'n Vi) Ye,

k=0
hence
(;(1?) = Z(Pﬁqu)(n*)
7
m-—1
=Y Y gV i) ...g(r* Vi) - (PYa,)(n")
n k=0
=a+b
where
m-—1
a=Y Y gmV)...g(* Vi) [(PYog)(7) = (PYran)(n V )]
k=0 7
m~1
b=3 3 gV a)...g(r" Vi) - (PY,)(n V7).
k=0 n
Furthermore
m—1
lal < Y- Ylo(ViD)...g(r* 0 v )| - var(PYos,ln v Ay)
k=0 7
m~1
<Y 8+ Y varPy, ,
k=0 Nm—k
m-1
< 3 C8HPY-Cs6™F
k=0
=m||P| - C:C,0™.
Also
m~—1
b= Z Z (EkPqu-k)(nm—k \' ﬁ)
k=0 Mm-x
hence

H<S 3P Vary,,

k=0 Mm—k

m—1
< 3 0.8* - gyEm
k=0

= ngC4ém.



§5. ZETA FUNCTIONS. 49

Since © may be slightly changed we can get rid of the factor m and
obtain

1¢?)| < la] + o] < '™
as desired.

Representative set of periodic points. Starting from the dy-
namical system (X, f) and the minimal cover (Ji,..., Jxy) we obtain
by applying successwely Propositions 2.1 and 2.4 ﬁrst a system (X f)
then a system (X f) The elements of X are of the form (§k)k>o,
i.e., sequences of symbols from the alphabet {1,...,N}, and f is the
shift. When the orbit ( frz ) k>0 avoids the set {by,...,b,} of common

endpoints of mtervals Ji, Jir1, the point z has a well-deﬁned image
az = (& )k>o0 € X such that ffz e Jgk In particular if Per f, Per f
are the sets of periodic points for f, f , there are finite sets P,, P, such
that
a(Per f\P,) = Per f\P,.
We say that an f-invariant set S C Per f is a representative set of
periodic points if a induces a bijection

8 : S\finite set — Per f\finite set

such that the f—period of Bz is equal to the f-period of z.

As in Section 1 we let Per®(f,m) be the set of points in Per f\P,
which are positive (+) or negative (—) periodic points with minimal
period m. Similarly Per*(f,m) is the set of points in Per f which are
positive or negative with minimal period m. Note that « preserves the
period m of z if and only if it preserves its sign +, but that we may
have z € Per™( £, 2n) and az € Per ( f,n). For a positive periodic
point ¢ € Pert(f,m)\ P, there is always z € o 2¢NPert(f, m). If X is
an interval of R, Corolla.ry 2.6 shows that for a negative periodic point
¢ € Per~(f,m)\P, there is ¢ € a~'¢ N Per (f,m), and z is unique.
Therefore if X is an interval of R there is always a representative set
of periodic points. This is part (a) of the following proposition.

PROPOSITION 5.4. Let X be a compact subset of R, f a piecewise
monotone map of X, and (Jy,...,Jn) an associated minimal coverl.
(a) If X is an interval of R there is always a representative set S
of periodic points.
(b) In the following cases Per f itself is a representative set of pe-
riodic points:
11As noted in Remark 2.2 (2), we may allow f to be two-valued at the common endpoints by,
., bs of consecutive intervals J;, Jit1.
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(b1) (Ja,-..,Jn) is generating.
(b2) X is an interval of R and f is piecewise affine with slopes

o1, -.., on such that [[o[™ # 1 whenever the integers
my,...,my are > 0 and > m; > 0.
(b3) X is an interval of R and f is of class C3 with negative

Schwarzian derivative'?:

DA AN

Part (a) has been proved above.

In case (b;), application of Proposition 2.1 changes only a finite
number of periodic points, and application of Proposition 2.4 does not
change them, hence a induces a bijection of periodic points up to finite
sets and preserves the period. R

In case (bs) let ¢ € Per®(f,m)\P,. Then f™ maps a~'¢ into itself,
and is affine on this interval, with slope # 1, hence it has a unique fixed
point z € Per*(f,m). Therefore o induces a bijection of Per f\P, to
Per f\ P, preserving the period.

To discuss case (b3) we have to recall some facts about negative
Schwarzian derivatives. (The importance of the condition Sf < 0 in the
present context was first noted by D. Singer; for a discussion of interval
maps with Sf < 0 see for instance Preston [34], de Melo [28], Martens
[26]. One basic fact is that if Sf; < 0, Sf2 <0 then S(fao f1) <0; in
particular the condition of negative Schwarzian derivative is preserved
by iteration.

Suppose now that Sf < 0 and that f is strictly increasing on [a, b];
one then checks that f’ cannot have a local minimum in (a,b). There
can thus be at most one repelling fixed point z.of f in (a,b) (ie.
fz =z and f'(z) > 1). If z is any fixed point of f, either fu > u for
all u € (a,z), or fu < u for all 4 € (z,b), or z is repelling. We apply
now these results to ™ restricted to an interval NP> f _kJE(k), where
(&) € Per*(f,m). In the above interval there is at least one fixed
point of f™, and there is at most one repelling fixed point of f2™; the
other fixed points of f>™ are of the form lim f*™"u, where 0 < k < 2m

and f*u is arbitrarily close to one of the division points ag,...,an.
This implies that the periodic orbits of f which are not repelling form

12This condition can be weakened. We assume as always that f is continuous and strictly
monotone on the intervals J; = [a;—1,a;]. Suppose also that f is continuously differentiable on
(@i—1,4;) and that |f’|~1/2 is strictly convex: these conditions are sufficient for part (b3) of the
proposition to hold (see Preston [34]).
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a finite set. Therefore a induces a bijection
Per f\finite set — Per f\finite set
and this bijection preserves the period.

THEOREM 5.5. Let X be a compact subset of R, f : X — X a
piecewise monotone map, g : X — C a function of bounded variation,
and (J1,...,Jn) a minimal cover associated with f.

If § is a representative set of periodic points we define the zeta
function

oo m m—1
G =ep Y = ¥ ]I ¢(f*).
m=1 M sesnFixfm k=0
If Per f 1s itself a representative set of periodic points we let

Z)—epo~ > Hy(f" )-
zele ™ k=0
The function 1/(s(2), or 1/{(z), is then analytic for |z] < 67! and
its zeros there are the inverses A\™! of the eigenvalues A of the transfer
operator L, with the same multiplicity'3.

[In the case (by) of Proposition 5.4 where (Ji,...,Jx) is generating
we recover the theorem of Baladi-Keller. In the cases (b2) of a piecewise
affine map and (b3) of a map with negative Schwarzian derivative we
may have attracting as well as repelling periodic orbits|.

To prove the theorem we apply successively Propositions 2.1, 2.4,
2.3 and see how they modify the zeta function (g, the parameter @,
and the transfer operator L.

If we change S by one periodic orbit, of period p through z,, 1/{s(z)
is changed by

exp— Z— p<ng( ))"=exp—1§%(zp’ﬁg(fkl‘p))u

np k=0 k=0
p—1
=1-2]] g(f"zp)
k=0

which is holomorphic and without zero for {z| < ©~1. For the purposes
of the theorem we may thus change S by a finite number of periodic
orbits. Since S is a representative set of periodic orbits we may, by
application of Propositions 2.1 and 2.4 replace (s by the function ¢
corresponding to a system with generating partition (we define § in

13The multiplicity of an eigenvalue A of the operator L is the dimension of the corresponding
generalized eigenspace.
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the second step in accordance with the proof of Proposition 3.2 so that
§laz) = g(z) if z € S/finite set). Application of Proposition 2.3 does
not modify (. )

Application of Proposition 2.1, 2.4, and 2.3 can only decrease ©
(Proposition 3.2).

Finally, by Proposition 4.3, the transfer operators obtained by suc-
cessive applications of Propositions 2.1, 2.4, and 2.3 are all ©-equivalent,
and have thus the same eigenvalues A with the same multiplicity for
1Al > 8.

We have thus reduced the situation of Theorem 5.5 to that of Propo-
sition 5.1, concluding the proof.

COROLLARY 5.6. 4 In the situation of the theorem let X be an
interval of R and J; = [a;, 44 fori = 1,...,N. Definee : X —
{—1,0, +1} such thate(ap) = --- = e(ay) =0, and € is 1 on (a;—1, a;)
depending on whether f is increasing or decreasing on that interval.
Define the negative zeta function

oo ,m m—1
CE=ep2y = ¥ [ e(f*s)
m=1 " ,epix= fm k=0
where Fix™ f™ = {z € Fix f™ : [ ¢(f*z) = —1}. Then ¢~ (2) is
meromorphic for |z| < ©7! and its order™® at A1 is n€(A) ~n()) where
n(A) and n(A) are the multiplicities of A as eigenvalue of L = L, and
Lf = L, respectively.
Since X is an interval, there exists a representative set S of periodic
points (Proposition 5.4 (a)). According to Section 5 (and Corollary 2.6)
S contains, up to a finite set, the set

JPer™(f,m) = | JFix™(f,m)

of negative periodic points. For the analyticity properties of {~ we may
ignore the finite set and write

m-—1 m—1
2 ¥ TMelfz)=2 ¥ T e(s*)
z€Fix™ fm k=0 z€SNFix~ fm k=0
m~1 m—1
- 3 (Tt - Tetro()
z€8NFix fm  \k=0 k=0

14T his ig a special case of a conjecture made in Ruelle [42] and partially proved in Baladi and
Ruelle [6].

15We define the order of the meromorphic function { at 20 to be the unique n € Z such that
(z ~ z9)~™((2) is holomorphic and non zero at zg.



§6. THERMODYNAMIC FORMALISM. 53

so that
(" (2) = (s(2)/¢5(2)

where (§ is computed from g instead of g. From this the corollary
immediately results.

6. Thermodynamic formalism.

THEOREM 6.1. Let X be a compact subset of R, f a piecewise
monotone map, g a function of bounded variation, and (Jh,...,Jn)
a minimal cover associated with f.

Ifg >0, R= max(e,exp P(logg)) is the spectral radius of L
acting on B, where

P(log g) = sup(h(p) + p(log g))
peT

(T is the set of f-invariant probability measures on X, and h(p) the
entropy of p € T).
By Theorem 4.1, we know that the spectral radius of £ is

R~ lim (Icm1) " 2 €.

Therefore what we have to prove is that if ma.x(R, exp P(log g)) >0
then R = exp P(logg). Furthermore we shall assume © > 0 because
© = 0 implies R = exp P(logg) = 0.

We consider now several special cases leading to the general situa-
tion.

Case A (FUuLL SHIFT, CONTINUOUS g > 0). The “full shift” hy-
pothesis means that (Jq, ..., Jy) is a generating partition with fJ; =
X fori=1,...,N. By standard theory (see Walters [49], Ruelle [35])
we have then

m—1 1/m
exp P(logg) = lim_ ( > 10 g(f"a:)) .
2€Fix fm™ k=0

Since g > 0 the right-hand side is also the inverse =1 of the radius of
convergence r of

00 m m—1
(R =exp ) — 3 L o(r*2)-
m=0 z€Fix fm k=0

Theorem 5.5 and Theorem 4.1 (c) imply that if r > ©~! then r = R™?,
and if r = ©7! then R = O so that in all cases R = exp P(logg) > 6.
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CASE B (GENERATING MARKOV PARTITION, g > 0). Here and in
what follows “Markov” means fJ; = X fori = 1,..., N. Using Propo-
sition 2.7 we construct (X f, g) such that § is contmuous at periodic
points. Notice that X is a Cantor set, and therefore also X is a Cantor
set. Let § be the smallest u.s.c. function > §; the difference § — §
vanishes outside a countable set which contains no periodic point; fur-
thermore ¥ ¢ §(z) — §{z) < +00.

Let (A,) be a decreasing sequence of continuous functions > 0
tending to log §. We have, with obvious notation,

6,\.06=6<06

where the first step follows from the definition of 6, the second form
Proposition 3.1 and the third from Proposition 3.2. Let us show that
also

R.\\E=R, R=max(R ).

The first step follows from the definition of R, the second from Corol-
lary 4.5; the last equality follows from the © equivalence of £ and L
(Proposition 4.3).

If exp P(log g) > © we may in the formula

P(logg) = sup(h(p) + p(10g 9))
assume that h(p) > 0, and also that p is nonatomic. Therefore
P(An) 2 P(log ) = P(log §) = P(logg) > ©.
Since exp P(A,,) = R, by case (A), we have
R.\N\R=R=R>06.

It remains thus to prove R = exp P(logg) under the assumption
R > © > 0, and we already know that

0, \6=6<6
R.,\N\E=R=R.
Writing R/© = €% we see that for n large enough
R,/©n > R/Oe® = €.
Since R, = exp P(Ay) by case (A) we have also
A(pn) + pn(An) = P(4y) > log©, +¢
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for suitabie p, € I, which must in particular satisfy iz(pn) > e. Tak-
ing a subsequence of p, tending vaguely to g we have (see Appendiz,
Section 7 below)

P(An) \, P(log ) = h(p) + p(log 7)
h(p) > ¢.

Therefore there is a nonatomic measure j satisfying the same condi-
tions. In particular

P(log §) < P(log 3) = h(p) + p(log §) = h(p) + p(log §) < P(log 3)
so that
P(logg) = P(log §) = h(p) + p(log 3)-
W_e also have
h(p) + p(log §) = h(#p) + (#p)(log g) < P(log g).
Putting these facts together we have
P(An) \« P(log §) = P(log §) < P(logg)
so that for large n
P(logg) > P(A,) —e=logR, —c>logR—¢clog® +e¢.

Therefore the sup in the formula
P(log g) = sup(h(p) + p(log g))

can be replaced by a sup over nonatomic measures p with h(p) > €; p
is thus of the form #5 and this shows that

P(log §) = P(logg).
Summarizing
P(A,) \, P(logg) = P(log§) = P(logg)

and since we already know that R, \, R = R =R, and R, =
exp P(A,), we have finally R = P(logg).

CASE C (MARKOV PARTITION, g > 0). We use Proposition 2.4 to
relate the Markov partition to a generating Markov partition. We have
thus © > © and, by Proposition 4.3,

R= max(f?, 6)

where R = exp P(log §) by case (B).
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a. First we make the assumption exp P(log g) > ©. The sup in
P(logg) = sup(h(p) + p(log g))

may then be restricted to measures p with h(p) > ¢ for some € > 0 (for
instance € = 3(P(log g) — log ©)). If ¢ is an invariant measure carried
by 7Y =Y = U, U, (as defined in Proposition 2.4), the countability
of ¥ implies that 7o is carried by a union of periodic orbits. If 7o is
carried by a single periodic orbit we may suppose that p(U,) = + and
Uy C U,; then h(o) = 0 because f*|U, is a homeomorphism. More
generally A(c) = 0 if o is carried by Y = 7~1¥. We may thus assume
that P(logg) is given by a sup over p so that p(Y) = 0; therefore

P(log §) = P(log g)-
We have thus

-~

R =exp P(logg) = exp P(logg) > ©
hence R = R = P(log 9)- R
b. We now assume that B > ©, hence R = R = exp P(log j).
Writing R/© = €% we have
exp P(log §) = e*0 > e%*6.
Therefore the sup in
P(log g) = sup (h(p) + j(log 7))

may be taken over measures p with h(5) > ¢, and we may also take p
nonatomic. We have thus g(Y) = 0 and p = wp with p € 7 and

h(p) + p(log g) = h(p) + p(log ).

Therefore exp P(logg) > exp P(logd) = R > © and we are brought
back to case A.

CASE D (GENERAL PARTITION, g > 0). We use Proposition 2.3 to
relate the general partition to a Markov partition. We have here 6=oe.
Identifying X with a subset of X we know that if p € Z and p(log §) is
finite then supp p C X. Therefore

P(log 3) = sup(h(p) + p(log 3))
pET

= ilég(h(p) + p(log g)) = P(log g).

If exp P(log g) > ©, hence P(log §) > ©, we have R = exp P(log §) by
case (C), hence R > ©. Therefore the assumption max (R, exp P(log g))
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> O implies max(R, ﬁ) > © = 6 hence, by Proposition 4.3, R= R >
8, hence R = R = exp P(log §) by case (C), hence R = exp P(log g).
CASE E (GENERAL CASE). We use Proposition 2.1 to relate the
minimal cover to a partition. We have here © = 6. If exp P(logg) > ©
the usual arguments give P(log g) = P(log §), and since exp P(log §) =
R by case (D), we have R > ©. So the assumption max (R exp P(log g))
> © implies ma.x(R, R) > O, hence (using Proposition 4.3) R = R >
© = ©. Since R = exp P(log §) by case (D) we have exp P(log§) > 8.
Again by the usual arguments we obtain thus P(logg) = P(log§) so
that R = R = exp P(log 3) = exp P(log g) which concludes the proof.

THEOREM 6.2. '6 If g > 0 and exp P(logg) > O, then the set of
equilibrium states

A= {pEI h(p) + p(logg) = P(logg)}

is non empty; A is a simplex and its vertices are ergodic measures with
entropy h > P(logg) — log ©.

(We make the usual assumptions on X, f, g, in particular g has
bounded variation).

If the entropy h is u.s.c. on 7, and g u.s.c. on X then

p — h(p) + p(log g)

is affine w.s.c. on Z, hence reaches its maximum P(logg) on a face A
of the Choquet simplex Z, and A is also a simplex. Furthermore the
vertices (= extremal points) of A are ergodic measures because A is a
face of T.

In the proof of Theorem 6.1 we have reduced the general case to
that of a system (X, f, §) (see part (b) of 6.1) where & and g are w.s.c.
The set

A= {p €T : h(p)+ p(logg) = P(logg)}

is thus a face of Z, a simplex, and its vertices are ergodic measures.
Since p(log §) < log© we have h(p) > P(logg) — log® > 0 for p € A,
hence A consists of nonatomic measures. We use the vague topology
onZ T and A, ie., the topology of pointwise convergence on the space
C of continuous functxons X > C. We do not change this topology on
A if we replace C by C U B where B is _the space of functions X —
C with bounded variation (elements of B define continuous functions
on A because A consists of nonatomic measures). Again we do not

16The proof of this theorem uses Choquet theory (simpiexes, faces, etc.) for which see for
instance Choquet and Meyer [10}.
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change the topoiogy on A if we replace CU B by B (this gives a weaker
Hansdorff topology, therefore equivalent to the original topology). In
conclusion the vague topology of A is also the topology of pointwise
convergence on B. The constructions in the proof of Theorem 6.1 give
a linear homeomorphism A — A where the topology on A is that of
pointwise convergence on B, i.e., also the vague topology. Therefore A
is not empty, it is a simplex, and its vertices are ergodic measures with
entropy h > P(logg) — log©.

7. Appendix: Extension of the definition of pressure.

Let X be compact metrizable, and f : X — X continuous. We say
that f is ezpansive if, given an allowed metric d, there is € > 0 such
that d(f*z, f¥y) < € for all k > 0 implies x = y. With the terminology
of Chapter 1, we see in particular that if X C R and (X, f) has a
generating partition, then f is expansive.

We denote by Z the set of f-invariant probability measures on M,
with the vague topology (such that T is compact). If p € Z, the
entropy h(p) is either > 0 or +00. The function A(-) is affine, and if
f is expansive, h(-) is finite and u.s.c. (upper semicontinuous). [See
Walters [49], Ruelle [39], and note that the inverse limit construction
allows one to pass from a map (an expansive map) to a homeomorphism
(an expansive homeomorphism, defined so that d(f*z, f*y) < ¢ for all
k € Z implies T = y)].

For continuous A : X — R, the pressure P(A) is defined by

P(A) = igg(h(p) + p(4)).

[There is another definition of the pressure, and its equivalence with
the above formula is Walters’ [49] theorem. The concept of pressure
comes from statistical mechanics, see Ruelle [35]]. We say that p € T
is an equilibrium state if h(p) + p(A) = P(A). In particular when A(:)
is u.s.c. there is always at least one equilibrium state for A.

One can also define the pressure (by the above formula) and equi-
librium states for some non continuous A. We now indicate a case
where this extension is useful.

If A is finite u.s.c. on 7 and g u.s.c. on M, g > 0, then

(7.1) p > h(p) + p(log g)

is affine u.s.c. : T+ RU {—o0c} and one may define

P(logg) = Igggc(h(p) + p(log g)).
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If (A,) is a decreasing sequence of continuous functions tending to
log g, then P(A,) — P(logg). If p, is an equilibrium state for A,, and
Pon — p (vaguely), then p is an equilibrium state for logg.

[Note that p = p(log g) is limit of the decreasing sequence of con-
tinuous functions p — p(A,) hence u.s.c., so that (7.1) is also u.s.c.
Since

P(A'n) = h(pn) + pn(A'n)

and p, — p, we have
P(logg) < lim P(An) < h(p) + p(An) — h(p) + p(log g) < P(logg)
hence P(A,) — P(logg) and p is an equilibrium state for log g].
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