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Chapter �

Introduction

The topic of this course is the application of mathematics to physical problems� In practice�
mathematics and physics are taught separately� Despite the fact that education in physics
relies on mathematics� it turns out that students consider mathematics to be disjoint
from physics� Although this point of view may strictly be correct� it re�ects an erroneous
opinion when it concerns an education in physics or geophysics� The reason for this is that
mathematics is the only language at our disposal for quantifying physical processes� One
cannot learn a language by just studying a textbook� In order to truly learn how to use a
language one has to go abroad and start using a language� By the same token one cannot
learn how to use mathematics in physics by just studying textbooks or attending lectures�
the only way to achieve this is to venture into the unknown and apply mathematics to
physical problems�

It is the goal of this course to do exactly that
 a number of problems is presented
in order to apply mathematical techniques and knowledge to physical concepts� These
examples are not presented as well�developed theory� Instead� these examples are presented
as a number of problems that elucidate the issues that are at stake� In this sense this
book o�ers a guided tour
 material for learning is presented but true learning will only
take place by active exploration�

Since this book is written as a set of problems you may frequently want to consult
other material to refresh or deepen your understanding of material� In many places we
will refer to the book of Boas����� In addition� the books of Butkov���� and Arfken��� are
excellent� When you are a physics of geophysics student you should seriously consider
buying a comprehensive textbook on mathematical physics� it will be of great bene
t to
you�

In addition to books� colleagues either in the same 
eld or other 
elds can be a great
source of knowledge and understanding� Therefore� don�t hesitate to work together with
others on these problems if you are in the fortunate positions to do so� This may not
only make the work more enjoyable� it may also help you in getting �unstuck� at di�cult
moments and the di�erent viewpoints of others may help to deepen yours�

This book is set up with the goal of obtaining a good working knowledge of mathe�
matical geophysics that is needed for students in physics or geophysics� A certain basic
knowledge of calculus and linear algebra is needed for digesting the material presented
here� For this reason� this book is meant for upper�level undergraduate students or lower�
level graduate students� depending on the background and skill of the student�

�



	 CHAPTER �� INTRODUCTION

At this point the book is still under construction
 New sections are reg�

ularly added� and both corrections and improvements will be made
 If you

are interested in this material therefore regularly check the latest version at

Samizdat Press
 The feedback of both teachers and students who use this

material is vital in improving this manuscript� please send you remarks to�

Roel Snieder

Dept� of Geophysics
Utrecht University
P�O� Box ������
���� TA Utrecht
The Netherlands

telephone� ����������������
fax� ���������������	

email� snieder�geo�uu�nl
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Chapter �

Summation of series

��� The Taylor series

In many applications in mathematical physics it is extremely useful to write the quantity
of interest as a sum of a large number of terms� To 
x our mind� let us consider the
motion of a particle that moves along a line as time progresses� The motion is completely
described by giving the position x�t� of the particle as a function of time� Consider the
four di�erent types of motion that are shown in 
gure ����

x(t)

t

position
constant

(a)

x(t)

t

constant

x(t)

t

constant

x(t)

t

(c)(b) (d)

velocity
variable

acceleration acceleration

Figure ���� Four di�erent kinds of motion of a particle along a line as a function of time�

The simplest motion is a particle that does not move� this is shown in panel �a�� In
this case the position of the particle is constant�

x�t� � x� � �����

The value of the parameter x� follows by setting t � �� this immediately gives that

x� � x ��� � �����

In panel �b� the situation is shown of a particle that moves with a constant velocity� in
that case the position is a linear function of time�

x�t� � x� � v�t � �����

Again� setting t � � gives the parameter x�� which is given again by ������ The value of
the parameter v� follows by di�erentiating ����� with respect to time and by setting t � ��

�



� CHAPTER �� SUMMATION OF SERIES

Problem a� Do this and show that

v� �
dx

dt
�t � �� � �����

This expression re�ects that the velocity v� is given by the time�derivative of the position�
Next� consider a particle moving with a constant acceleration a� as shown in panel �c��
As you probably know from classical mechanics the motion is in that case a quadratic
function of time�

x�t� � x� � v�t�
�

�
a�t

� � �����

Problem b� Evaluate this expression at t � � to show that x� is given by ������ Di�er�
entiate ����� once with respect to time and evaluate the result at t � � to show that
v� is again given by ������ Di�erentiate ����� twice with respect to time� set t � �
to show that a� is given by�

a� �
d�x

dt�
�t � �� � ���	�

This result re�ects the fact that the acelleration is the second derivative of the
position with respect to time�

Let us now consider the motion shown in panel �d� where the acceleration changes
with time� In that case the displacement as a function of time is not a linear function of
time �as in ����� for the case of a constant velocity� nor is it a quadratic function of time
�as in ����� for the case of a constant acceleration�� Instead� the displacement is in general
a function of all possible powers in t�

x�t� � c� � c�t� c�t
� � � � � �

�X
n��

cnt
n � �����

This series� where a function is expressed as a sum of terms with increasing powers of the
independent variable� is called a Taylor series� At this point we do not know what the
constants cn are� These coe�cients can be found in exactly the same way as in problem
b where you determined the coe�cients a� and v� in the expansion ������

Problem c� Determine the coe�cient cm by di�erentiating expression ����� m�times with
respect to t and by evaluating the result at t � � to show that

cm �
�

m�

dmx

dtm
�x � �� � �����

Of course there is no reason why the Taylor series can only be used to describe the
displacement x�t� as a function of time t� In the literature� one frequently uses the Taylor
series do describe a function f�x� that depends on x� Of course it is immaterial how we
call a function� By making the replacements x � f and t � x the expressions ����� and
����� can also be written as�

f�x� �
�X
n��

cnx
n � �����
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with

cn �
�

n�

dnf

dxn
�x � �� � ������

You may 
nd this result in the literature also be written as

f�x� �
�X
n��

xn

n�

dnf

dxn
�x � �� � f��� � x

df

dx
�x � �� �

�

�

d�f

dx�
�x � �� � � � � ������

Problem d� Show by evaluating the derivatives of f �x� at x � � that the Taylor series
of the following functions are given by�

sin �x� � x� �

��
x� �

�

��
x� � � � � ������

cos �x� � �� �

�
x� �

�

��
x� � � � � ������

ex � � � x�
�

��
x� �

�

��
x� � � � � �

�X
n��

�

n�
xn ������

�

�� x
� � � x� x� � � � � �

�X
n��

xn ������

��� x�� � �� �x�
�

��
� ��� �� x� � �

��
� ��� �� ��� �� x� � � � � ����	�

Up to this point the Taylor expansion was made around the point x � �� However�
one can make a Taylor expansion around any arbitrary point x� The associated Taylor
series can be obtained by replacing the distance x that we move from the expansion point
by a distance h and by replacing the expansion point � by x� Making the replacements
x� h and �� x the expansion ������ is given by�

f�x� h� �
�X
n��

hn

n�

dnf

dxn
�x� ������

The Taylor series can not only be used for functions of a single variable� As an example
consider a function f�x� y� that depends on the variables x and y� The generalization of
the Taylor series ����� to functions of two variables is given by

f�x� y� �
�X

n�m��

cnmx
nym � ������

At this point the coe�cients cnm are not yet known� They follow in the same way as the
coe�cients of the Taylor series of a function that depends on a single variable by taking
the derivatives of the Taylor series and by evaluating the result in the point where the
expansion is made�
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Problem e� Take suitable derivatives of ������ with respect to x and y and evaluate the
result in the expansion point x � y � � to show that up to second order the
Taylor expansion ������ is given by

f�x� y� � f��� �� �
�f

�x
��� �� x�

�f

�y
��� �� y

� �
�

��f

�x�
��� �� x� �

��f

�x�y
��� �� xy � �

�

��f

�y�
��� �� y� � � � �

������

Problem f� This is the Taylor expansion of f�x� y� around the point x � y � �� Make
suitable substitutions in this result to show that the Taylor expansion around an
arbitrary point �x� y� is given by

f�x� hx� y � hy� � f�x� y� �
�f

�x
�x� y� hx �

�f

�y
�x� y� hy

� �
�

��f

�x�
�x� y� h�x �

��f

�x�y
�x� y� hxhy �

�
�

��f

�y�
�x� y� h�y � � � �

������

Let us now return to the Taylor series ����� with the coe�cients cm given by �������
This series hides a very intriguing result� It follows from ����� and ������ that a function
f�x� is speci
ed for all values of its argument x when all the derivatives are known at
a single point x � �� This means that the global behavior of a function is completely
contained in the properties of the function at a single point� In fact� this is not always
true�

First� the series ����� is an in
nite series� and the sum of in
nitely many terms does not
necessarily lead to a 
nite answer� As an example look at the series ������� A series can
only converge when the terms go to zero as n � �� because otherwise every additional
term changes the sum� The terms in the series ������ are given by xn� these terms only go
to zero as n � � when jxj � �� In general� the Taylor series ����� only converges when
x is smaller than a certain critical value called the radius of convergence� Details on the
criteria for the convergence of series can be found for example in Boas�� or Butkov���

The second reason why the derivatives at one point do not necessarily constrain the
function everywhere is that a function may change its character over the range of parameter
values that is of interest� As an example let us return to a moving particle and consider
a particle with position x�t� that is at rest until a certain time t� and that then starts
moving with a uniform velocity v �� ��

x�t� �

�
x� for t � t�
x� � v�t� t�� for t � t�

������

The motion of the particle is sketched in 
gure ���� A straightforward application of �����
shows that all the coe�cients cn of this function vanish except c� which is given by x��
The Taylor series ����� is therefore given by x�t� � x� which clearly di�ers from �������
The reason for this is that the function ������ changes its character at t � t� in such a way
that nothing in the behavior for times t � t� predicts the sudden change in the motion
at time t � t�� Mathematically things go wrong because the higher derivatives of the
function do not exist at time t � t��
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t

x(t)

Figure ���� The motion of a particle that suddenly changes character at time t��

Problem g� Compute the second derivative of x�t� at t � t� �

The function ������ is said to be not analytic at the point t � t�� The issue of analytic
functions is treated in more detail in the sections ���� and �����

Problem h� Try to compute the Taylor series of the function x�t� � ��t using ����� and
������ Draw this function and explain why the Taylor series cannot be used for this
function�

Problem i� Do the same for the function x�t� �
p
t�

Frequently the result of a calculation can be obtained by summing a series� In section
��� this is used to study the behavior of a bouncing ball� The bounces are �natural� units
for analyzing the problem at hand� In section ��� the reverse is done when studying the
total re�ection of a stack of re�ective layers� In this case a series expansion actually gives
physical insight in a complex expression�

��� The bouncing ball

In this exercise we study a problem of a rubber ball that bounces on a �at surface and
slowly comes to rest as sketched in 
gure ������ You will know from experience that the
ball bounces more and more rapidly with time� The question we address here is whether
the ball can actually bounce in
nitely many times in a 
nite amount of time� This problem
is not an easy one� In general with large di�cult problems it is a useful strategy to divide
the large and di�cult problem that you cannot solve in smaller and simpler problems
that you can solve� By assembling these smaller sub�problems one can then often solve
the large problem� This is exactly what we will do here� First we will solve how much
time it takes for the ball to bounce once given its velocity� Given a prescription of the
energy�loss in one bounce we will determine a relation between the velocity of subsequent
bounces� From these ingredients we can determine the relation between the times needed
for subsequent bounces� By summing this series over an in
nite number of bounces we
can determine the total time that the ball has bounced� Keep this general strategy in mind

when solving complex problems� Almost all of us are better at solving a number of small
problems rather than a single large problem�
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. . . .

Figure ���� The motion of a bouncing ball that looses energy with every bounce�

Problem a� A ball moves upward from the level z � � with velocity v� Determine the
height the ball reaches and the time it takes for the ball to return to its starting
point�

At this point we have determined the relevant properties for a single bounce� During each
bounce the ball looses energy due to the fact that the ball is deformed anelastically during
the bounce� We will assume that during each bounce the ball looses a fraction � of its
energy�

Problem b� Let the velocity at the beginning of the n�th bounce be vn� Show that
with assumed rule for energy loss this velocity is related to the velocity vn�� of the
previous bounce by

vn �
p
�� � vn��� ������

Hint� when the ball bounces upward from z � � all its energy is kinetic energy�

In problem a you determined the time it took the ball to bounce once� given the initial
velocity� while expression ������ gives a recursive relation for the velocity between subse�
quent bounces� By assembling these results we can 
nd a relation for the time tn for the
n�th bounce and the time tn�� for the previous bounce�

Problem c� Determine this relation� In addition� let us assume that the ball is thrown
up the 
rst time from z � � to reach a height z � H� Compute the time t� needed
for the ball to make the 
rst bounce and combine these results to show that

tn �

s
�H

g
��� ��n��� ������

where g is the acceleration of gravity�

We can now use this expression to determine the total time TN it takes to carry out N
bounces� This time is given by TN �

PN
n�� tn� By setting N equal to in
nity we can

compute the time T� it takes to bounce in
nitely often�

Problem d� Determine this time by carrying out the summation and show that this time
is given by�

T� �

s
�H

g

�

��p�� �
� ������
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Hint� write �� � ��n�� as
�p

�� �
�n

and treat
p
�� � as the parameter x in the

appropriate Taylor series of section ������

This result seems to suggest that the time it takes to bounce in
nitely often is indeed

nite�

Problem e� Show that this is indeed the case� except when the ball looses no energy
between subsequent bounces� Hint� translate the condition that the ball looses no
energy in one of the quantities in the equation �������

Expression ������ looks messy� It happens often in mathematical physics that a 
nal
expression is complex
 very often 
nal results look so messy it is di�cult to understand
them� However� often we know that certain terms in an expression can assumed to be
very small �or very large�� This may allow us to obtain an approximate expression that
is of a simpler form� In this way we trade accuracy for simplicity and understanding� In
practice� this often turns out to be a good deal� In our example of the bouncing ball we
assume that the energy�loss at each bounce is small� i�e� that � is small�

Problem f� Show that in this case T� �
q

�H
g

�
� by using the leading terms of the appro�

priate Taylor series of section ������

This result is actually quite useful� It tells us how the total bounce time approaches in
nity
when the energy loss � goes to zero�

In this problem we have solved the problem in little steps� In general we will take
larger steps during this course� you will have to discover how to divide a large step in
smaller steps� The next problem is a �large� problem� solve it by dividing it in smaller
problems� First formulate the smaller problems as ingredients for the large problem before
you actually start working on the smaller problems� Make it a habit whenever you solve

problems to �rst formulate a strategy how you are going to attack a problem before you

actually start working on the sub�problems� Make a list if this helps you and don�t be

deterred if you cannot solve a particular sub�problem� Perhaps you can solve the other

sub�problems and somebody else can help you with the one you cannot solve� Keeping this
in mind solve the following �large� problem�

Problem g� Let the total distance travelled by the ball during in
nitely many bounces
be denoted by S� Show that S � �H���

��� Re�ection and transmission by a stack of layers

Lord Rayleigh���� addressed in ���� the question why some birds or insects have beautiful
iridescent colors� He explained this by studying the re�ective properties of a stack of thin
re�ective layers� This problem is also of interest in geophysics
 in exploration seismology
one is also interested in the re�ection and transmission properties of stacks of re�ective
layers in the earth� Lord Rayleigh solved this problem in the following way� Suppose
we have one stack of layers on the left with re�ection coe�cient RL and transmission
coe�cient TL and another stack of layers on the right with re�ection coe�cient RR and
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Figure ���� Geometry of the problem where stacks of n and m re�ective layers are com�
bined� The notation of the strength of left� and rightgoing waves is indicated�

transmission coe�cient TR� If we add these two stacks together to obtain a larger stack
of layers� what are the re�ection coe�cient R and transmission coe�cient T of the total
stack of layers� See 
gure ����� for the scheme of this problem� Note that the re�ection
coe�cient is de
ned as the ratio of the strength of the re�ected wave and the incident
wave� similarly the transmission coe�cient is de
ned as the ratio of the strength of the
transmitted wave and the incident wave� For simplicity we will simplify the analysis and
ignore that the re�ection coe�cient for waves incident from the left and the right are in
general not the same� However� this simpli
cation does not change the essence of the
coming arguments�

Before we start solving the problem� let us speculate what the transmission coe�cient
of the combined stack is� Since the transmission coe�cient TL of the left stack determines
the ratio of the transmitted wave to the incident wave� and since TR is the same quantity
of the right stack� it seems natural to assume that the transmission coe�cient of the
combined stack is the product of the transmission coe�cient of the individual stacks�
T � TLTR� However� this result is wrong and we will try to discover why this is so�

Consider 
gure ����� again� The unknown quantities are R� T and the coe�cients A
and B for the right�going and left�going waves between the stacks� An incident wave with
strength � impinges on the stack from the left� Let us 
rst determine the coe�cient A
of the right�going waves between the stacks� The right�going wave between the stacks
contains two contributions
 the wave transmitted from the left �this contribution has a
strength ��TL� and the wave re�ected towards the right due the incident left�going wave
with strength B �this contribution has a strength B �RL�� This implies that�

A � TL �BRL � ������

Problem a� Using similar arguments show that�

B � ARR � ����	�

T � ATR � ������
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R � RL �BTL � ������

This is all we need to solve our problem� The system of equations ������������� consists
of four linear equations with four unknowns A� B� R and T � We could solve this system
of equations by brute force� but some thinking will make life easier for us� Note that the
last two equations immediately give T and R once A and B are known� The 
rst two
equations give A and B�

Problem b� Show that

A �
TL

���RLRR�
� ������

B �
TLRR

���RLRR�
� ������

This is a puzzling result� the right�going wave A between the layers does not only contain
the transmission coe�cient of the left layer TL but also and additional term �����RLRR��

Problem c� Make a series expansion of ���� � RLRR� in the quantity RLRR and show
that this term accounts for the waves that bounce back and forth between the two
stacks� Hint� use that RL gives the re�ection coe�cient for a wave that re�ects from
the left stack� RR gives the re�ection coe�cient for one that re�ects from the right
stack so that RLRR is the total re�ection coe�cient for a wave that bounces once
between the left and the right stack�

This implies that the term �����RLRR� accounts for the waves that bounce back and forth
between the two stacks of layers� It is for this reason that we call this term a reverberation
term� It plays an important role in computing the response of layered media�

Problem d� Show that the re�ection and transmission coe�cient of the combined stack
of layers is given by�

R � RL �
T �
LRR

���RLRR�
� ������

T �
TLTR

���RLRR�
� ������

In the beginning of this section we conjectured that the transmission coe�cient of the
combined stacks is the product of the transmission coe�cient of the separate stacks�

Problem e� Is this correct� Under which conditions is it approximately correct�

Equations ������ and ������ are very useful for computing the re�ection and trans�
mission coe�cient of a large stack of layers� The reason for this is that it is extremely
simple to determine the re�ection and transmission coe�cient of a very thin layer using
the Born approximation� Let the re�ection and transmission coe�cient of a single thin
layer n be denoted by rn respectively tn and let the re�ection and transmission coe�cient
of a stack of n layers be denoted by Rn and Tn respectively� Suppose the left stack consists
on n layers and that we want to add an �n� ���th layer to the stack� In that case the
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right stack consists of a single �n� ���th layer so that RR � rn�� and TR � tn�� and the
re�ection and transmission coe�cient of the left stack are given by RL � Rn� TL � Tn�
Using this in expressions ������ and ������ yields

Rn�� � Rn �
T �
nrn��

���Rnrn���
� ������

Tn�� �
Tntn��

���Rnrn���
� ������

This means that given the known response of a stack of n layers� one can easily compute
the e�ect of adding the �n � �� � th layer to this stack� In this way one can recursively
build up the response of the complex re�ector out of the known response of very thin
re�ectors� Computers are pretty stupid� but they are ideally suited for applying the rules
������ and ������ a large number of times� Of course this process has to be started when
we start with a medium in which no layers are present�

Problem f� What are the re�ection coe�cient R� and the transmission coe�cient T�
when there are no re�ective layers present yet� Describe how one can compute the
response of a thick stack of layers once we know the response of a very thin layer�

In developing this theory� Lord Rayleigh prepared the foundations for a theory that later
became known as invariant embedding which turns out to be extremely useful for a number
of scattering and di�usion problems�	��	���

The main conclusion of the treatment of this section is that the transmission of a com�
bination of two stacks of layers is not the product of the transmission coe�cients of the two
separate stacks� Paradoxically� Berry and Klein��� showed in their analysis of �transparent
mirrors� that for a large stacks of layers with random transmission coe�cients the total
transmission coe�cients is the product of the transmission coe�cients of the individual
layers� despite the fact that multiple re�ections play a crucial role in this process�
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Spherical and cylindrical

coordinates

Many problems in mathematical physics exhibit a spherical or cylindrical symmetry� For
example� the gravity 
eld of the Earth is to 
rst order spherically symmetric� Waves
excited by a stone thrown in water usually are cylindrically symmetric� Although there
is no reason why problems with such a symmetry cannot be analyzed using Cartesian
coordinates �i�e� �x� y� z��coordinates�� it is usually not very convenient to use such a
coordinate system� The reason for this is that the theory is usually much simpler when one
selects a coordinate system with symmetry properties that are the same as the symmetry
properties of the physical system that one wants to study� It is for this reason that
spherical coordinates and cylinder coordinates are introduced in this section� It takes a
certain e�ort to become acquainted with these coordinate system� but this e�ort is well
spend because it makes solving a large class of problems much easier�

��� Introducing spherical coordinates

In 
gure ����� a Cartesian coordinate system with its x� y and z�axes is shown as well as
the location of a point r� This point can either be described by its x� y and z�components
or by the radius r and the angles � and 	 shown in 
gure ������ In the latter case one uses
spherical coordinates� Comparing the angles � and 	 with the geographical coordinates
that de
ne a point on the globe one sees that 	 can be compared with longitude and �
can be compared with co�latitude� which is de
ned as �latitude � �� degrees�� The angle 	
runs from � to �
� while � has values between � and 
� In terms of Cartesian coordinates
the position vector can be written as�

r �x�x�y�y�z�z � �����

where the caret � �� is used to denote a vector that is of unit length� An arbitrary vector
can of course also be expressed in these vectors�

u �ux�x�uy�y�uz�z � �����

We want to express the same vector also in basis vectors that are related to the spherical
coordinate system� Before we can do so we must 
rst establish the connection between
the Cartesian coordinates �x� y� z� and the spherical coordinates �r� �� 	��

��
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.
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Figure ���� De
nition of the angles used in the spherical coordinates�

Problem a� Use 
gure ����� to show that the Cartesian coordinates are given by�

x � r sin � cos	
y � r sin � sin	
z � r cos �

�����

Problem b� Use these expressions to derive the following expression for the spherical
coordinates in terms of the Cartesian coordinates�

r �
p
x� � y� � z�

� � arccos
�
z�
p
x� � y� � z�

�
	 � arctan �y�x�

�����

We now have obtained the relation between the Cartesian coordinates �x� y� z� and the
spherical coordinates �r� �� 	�� We want to express the vector u of equation ����� also in
spherical coordinates�

u �ur�r�u��� � u��� � �����

and we want to know the relation between the components �ux� uy� uz� in Cartesian co�
ordinates and the components �ur� u�� u�� of the same vector expressed in spherical coor�
dinates� In order to do this we 
rst need to determine the unit vectors �r� �� and ��� In
Cartesian coordinates� the unit vector �x points along the x�axis� This is a di�erent way
of saying that it is a unit vector pointing in the direction of increasing values of x for
constant values of y and z
 in other words� �x can be written as� �x ��r��x�
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Problem c� Verify this by carrying out the di�erentiation that the de
nition �x ��r��x

leads to the correct unit vector in the x�direction� �x �

�
B� �

�
�

�
CA�

Now consider the unit vector ��� Using the same argument as for the unit vector �x we
know that �� is directed towards increasing values of � for constant values of r and 	� This
means that  � can be written as �� � C�r���� The constant C follows from the requirement
that �� is of unit length�

Problem d� Use this reasoning for all the unit vectors �r� �� and �� and expression �����
to show that�

�r �
�r

�r
� �� �

�

r

�r

��
� �� �

�

r sin �

�r

�	
� ���	�

and that this result can also be written as

�r �

�
B� sin � cos	

sin � sin	
cos �

�
CA � �� �

�
B� cos � cos	

cos � sin	
� sin �

�
CA � �� �

�
B� � sin	

cos	
�

�
CA � �����

These equations give the unit vectors �r� �� and �� in Cartesian coordinates�

In the right hand side of ���	� the derivatives of the position vector are divided by �� r
and r sin � respectively� These factors are usually shown in the following notation�

hr � � � h� � r � h� � r sin � � �����

These scale factors play a very important role in the general theory of curvilinear coordi�
nate systems� see Butkov���� for details� The material presented in the remainder of this
chapter as well as the derivation of vector calculus in spherical coordinates can be based
on the scale factors given in ������ However� this approach will not be taken here�

Problem e� Verify explicitly that the vectors �r� �� and �� de
ned in this way form an
orthonormal basis� i�e� they are of unit length and perpendicular to each other�

��r � �r� �
�
�� � ��

�
� ��� � ��� � � � ������

�r � ��
�
� ��r � ��� �

�
�� � ��

�
� � � ������

Problem f� Using the expressions ����� for the unit vectors �r� �� and �� show by calculating
the cross product explicitly that

�r� �� � �� � �� � �� � ��r � ����r � �� � ������

The Cartesian basis vectors �x� �y and �z point in the same direction at every point in space�
This is not true for the spherical basis vectors �r� �� and ��
 for di�erent values of the angles
� and 	 these vectors point in di�erent directions� This implies that these unit vectors
are functions of both � and 	� For several applications it is necessary to know how the
basis vectors change with � and 	� This change is described by the derivative of the unit
vectors with respect to the angles � and 	�
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Problem g� Show by direct di�erentiation of the expressions ����� that the derivatives
of the unit vectors with respect to the angles � and 	 are given by�

��r��� �  � ��r��	 � sin � ��

������ � ��r �����	 � cos � ��

������ � � �����	 � � sin � �r� cos � ��

������

��� Changing coordinate systems

Now that we have derived the properties of the unit vectors �r� �� and �� we are in the
position to derive how the components �ur� u�� u�� of the vector u de
ned in equation
����� are related to the usual Cartesian coordinates �ux� uy� uz�� This can most easily be
achieved by writing the expressions ����� in the following form�

�r � sin � cos	 �x� sin � sin	 �y � cos � �z
�� � cos � cos	 �x� cos � sin	 �y � sin � �z
�� � � sin	 �x� cos	 �y

������

Problem a� Convince yourself that this expression can also be written in a symbolic form
as �

B� �r
��

��

�
CA �M

�
B� �x

�y

�z

�
CA � ������

with the matrix M given by

M �

�
B� sin � cos	 sin � sin	 cos �

cos � cos	 cos � sin	 � sin �
� sin	 cos	 �

�
CA � ������

Of course expression ������ can only be considered to be a shorthand notation for the
equations ������ since the entries in ������ are vectors rather than single components�
However� expression ������ is a convenient shorthand notation�

The relation between the spherical components �ur� u�� u�� and the Cartesian compo�
nents �ux� uy� uz� of the vector u can be obtained by inserting the expressions ������ for
the spherical coordinate unit vectors in the relation u �ur�r�u��� � u����

Problem b� Do this and collect all terms multiplying the unit vectors �x� �y and �z to show
that expression ����� for the vector u is equivalent with�

u � �ur sin � cos	� u� cos � cos	� u� sin	� �x
� �ur sin � sin	� u� cos � sin	� u� cos	� �y
� �ur cos � � u� sin ���z

����	�

Problem c� Show that this relation can also be written as��
B� ux

uy
uz

�
CA �MT

�
B� ur

u�
u�

�
CA � ������
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In this expression� MT is the transpose of the matrix M� MT
ij � Mji � i�e� it is the

matrix obtained by interchanging rows and columns of the matrixM given in �������

We have not reached with equation ������ our goal yet of expressing the spherical coor�
dinate components �ur� u�� u�� of the vector u in the Cartesian components �ux� uy� uz��

This is most easily achieved by multiplying ������ with the inverse matrix
�
MT

���
� which

gives� �
B� ur

u�
u�

�
CA �

�
MT

����B� ux
uy
uz

�
CA � ������

However� now we have only shifted the problem because we don�t know the inverse�
MT

���
� One could of course painstakingly compute this inverse� but this would be a

laborious process that we can avoid� It follows by inspection of ������ that all the columns
of M are of unit length and that the columns are orthogonal� This implies that M is an
orthogonal matrix� Orthogonal matrices have the useful property that the transpose of
the matrix is identical to the inverse of the matrix� M�� �MT �

Problem d� The property M�� �MT can be veri
ed explicitly by showing that MMT

and MTM are equal to the identity matrix� do this�

Note that we have obtained the inverse of the matrix by making a guess and by verifying
that this guess indeed solves our problem� This approach is often very useful in solving
mathematical problems� there is nothing wrong with making a guess �as long as you check
afterwards that your guess is indeed a solution to your problem�� Since we know that

M�� �MT � it follows that
�
MT

���
�
�
M����� �M�

Problem e� Use these results to show that the spherical coordinate components of u are
related to the Cartesian coordinates by the following transformation rule��

B� ur
u�
u�

�
CA �

�
B� sin � cos	 sin � sin	 cos �

cos � cos	 cos � sin	 � sin �
� sin	 cos	 �

�
CA
�
B� ux

uy
uz

�
CA ������

��� The acceleration in spherical coordinates

You may wonder whether we really need all these transformation rules between a Cartesian
coordinate system and a system of spherical coordinates� The answer is yes� An important
example can be found in meteorology where air moves along a sphere� The velocity v of
the air can be expressed in spherical coordinates�

v �vr�r�v��� � v��� � ������

The motion of the air is governed by Newton�s law� but when the velocity v and the force F
are both expressed in spherical coordinates it would be wrong to express the ��component
of Newton�s law as� �dv��dt � F�� The reason is that the basis vectors of the spherical
coordinate system depend on the position� When a particle moves� the direction of the
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basis vector change as well� This is a di�erent way of saying that the spherical coordinate
system is not an inertial system� When computing the acceleration in such a system
additional terms appear that account for the fact that the coordinate system is not an
inertial system� The results of the section ����� contains all the ingredients we need�

Let us follow a particle or air particle moving over a sphere� the position vector r has
an obvious expansion in spherical coordinates�

r �r�r � ������

The velocity is obtained by taking the time�derivative of this expression� However� the unit
vector �r is a function of the angles � and 	� see equation ������ This means that when we
take the time�derivative of ������ to obtain the velocity we need to di�erentiate �r as well
with time� Note that this is not the case with the Cartesian expression r �x�x�y�y�z�z
because the unit vectors �x� �y and �z are constant� hence they do not change when the
particle moves and they thus have a vanishing time�derivative�

An as example� let us compute the time derivative of �r� This vector is a function of �
and 	� these angles both change with time as the particle moves� Using the chain rule it
thus follows that�

d�r

dt
�

d�r��� 	�

dt
�

d�

dt

��r

��
�
d	

dt

��r

�	
� ������

The derivatives ��r��� and ��r��	 can be eliminated with �������

Problem a� Use the expressions ������ to eliminate the derivatives ��r��� and ��r��	 and
carry out a similar analysis for the time�derivatives of the unit vectors �� and �� to
show that�

d�r

dt
� !� ���sin � !	 �� �

d��

dt
� � !� �r�cos � !	 �� � ������

d��

dt
� � sin � !	 �r� cos � !	 �� �

In this expressions and other expressions in this section a dot is used to denote the time�
derivative� !F � dF�dt�

Problem b� Use the 
rst line of ������ and the de
nition v �dr�dt to show that in
spherical coordinates�

v � !r�r�r !��� � r sin � !	 �� � ������

In spherical coordinates the components of the velocity are thus given by�

vr � !r

v� � r !�
v� � r sin � !	

������

This result can be interpreted geometrically� As an example� let us consider the radial
component of the velocity� see 
gure ������ To obtain the radial component of the velocity
we keep the angles � and 	 
xed and let the radius r�t� change to r�t�"t� over a time
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}}
∆ tr(t +     )

r∆ ∆ t ∆ trv= =
dr
dt

x-axis

y-axis

z-axis

r(t)

Figure ���� De
nition of the geometric variables used to derive the radial component of
the velocity�

"t� The particle has moved a distance r�t�"t�� r�t� � dr�dt "t in a time "t� so that
the radial component of the velocity is given by vr � dr�dt � !r� This is the result given
by the 
rst line of �������

Problem c� Use similar geometric arguments to explain the form of the velocity compo�
nents v� and v� given in �������

Problem d� We are now in the position to compute the acceleration is spherical coordi�
nates� To do this di�erentiate ������ with respect to time and use expression ������
to eliminate the time�derivatives of the basis vectors� Use this to show that the
acceleration a is given by�

a �
�
!vr � !�v� � sin � !	v�

�
�r�

�
!v� � !�vr � cos � !	v�

�
���� !v� � sin � !	vr � cos � !	v�� �� �

����	�

Problem e� This expression is not quite satisfactory because it contains both the compo�
nents of the velocity as well as the time�derivatives !� and !	 of the angles� Eliminate
the time�derivatives with respect to the angles in favor of the components of the ve�
locity using the expressions ������ to show that the components of the acceleration
in spherical coordinates are given by�

ar � !vr �
v�� � v��

r



�� CHAPTER �� SPHERICAL AND CYLINDRICAL COORDINATES

a� � !v� �
vrv�
r

� v��
r tan �

������

a� � !v� �
vrv�
r

�
v�v�
r tan �

It thus follows that the components of the acceleration in a spherical coordinate system are
not simply the time�derivative of the components of the velocity in that system� The reason
for this is that the spherical coordinate system uses basis vectors that change when the
particle moves� Expression ������ plays a crucial role in meteorology and oceanography
where one describes the motion of the atmosphere or ocean ����� Of course� in that
application one should account for the Earth�s rotation as well so that terms accounting
for the Coriolis force and the centrifugal force need to be added� see section ������� It also
should be added that the analysis of this section has been oversimpli
ed when applied to
the ocean or atmosphere because the advective terms �v �r�v have not been taken into
account� A complete treatment is given by Holton�����

��� Volume integration in spherical coordinates

Carrying out a volume integral in Cartesian coordinates involves multiplying the function
to be integrated by an in
nitesimal volume element dxdydz and integrating over all volume
elements�

RRR
FdV �

RRR
F �x� y� z�dxdydz� Although this seems to be a simple procedure�

it can be quite complex when the function F depends in a complex way on the coordinates
�x� y� z� or when the limits of integration are not simple functions of x� y and z�

Problem a� Compute the volume of a sphere of radius R by taking F � � and integrating
the volume integral in Cartesian coordinates over the volume of the sphere� Show

rst that in Cartesian coordinates the volume of the sphere can be written as

volume �

Z R

�R

Z p
R��x�

�pR��x�

Z pR��x��y�

�
p
R��x��y�

dzdydx � ������

and carry out the integrations next�

After carrying out this exercise you probably have become convinced that using Cartesian
coordinates is not the most e�cient way to derive that the volume of a sphere with radius
R is given by �
R���� Using spherical coordinates appears to be the way to go� but
for this one needs to be able to express an in
nitesimal volume element dV in spherical
coordinates� In doing this we will use that the volume spanned by three vectors a� b and
c is given by

volume � det� a � b � c � �

�������
ax bx cx
ay by cy
az bz cz

������� � ������

If we change the spherical coordinate � with an increment d�� the position vector will
change from r�r� �� 	� to r�r� � � d�� 	�� this corresponds to a change r�r� � � d�� 	� �
r�r� �� 	� � �r��� d� in the position vector� Using the same reasoning for the variation of
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the position vector with r and 	 it follows that the in
nitesimal volume dV corresponding
to changes increments dr� d� and d	 is given by

dV � det�
�r

�r
dr �

�r

��
d� �

�r

�	
d	 � � ������

Problem b� Show that this can be written as�

dV �

�������
�x
�r

�x
��

�x
��

�y
�r

�y
��

�y
��

�z
�r

�z
��

�z
��

�������	 
z �
J

drd�d	 � Jdrd�d	 � ������

The determinant J is called the Jacobian� the Jacobian is sometimes also written as�

J �
� �x� y� z�

� �r� �� 	�
� ������

but is should be kept in mind that this is nothing more than a new notation for the
determinant in �������

Problem c� Use the expressions ����� and ������ to show that

J � r� sin � � ������

Note that the Jacobian J in ������ is the product of the scale factors de
ned in equation
������ J � hrh�h�� This is not a coincidence
 in general the scale factors contain all
the information needed to compute the Jacobian for a curvilinear coordinate system� see
Butkov���� for details�

Problem d� A volume element dV is in spherical coordinates thus given by dV � r� sin � drd�d	�
Consider the volume element dV in 
gure ����� that is de
ned by in
nitesimal incre�
ments dr� d� and d	� Give an alternative derivation of this expression for dV that
is based on geometric arguments only�

In some applications one wants to integrate over the surface of a sphere rather than
integrating over a volume� For example� if one wants to compute the cooling of the Earth�
one needs to integrate the heat �ow over the Earth�s surface� The treatment used for
deriving the volume integral in spherical coordinates can also be used to derive the surface
integral� A key element in the analysis is that the surface spanned by two vectors a and
b is given by ja� bj� Again� an increment d� of the angle � corresponds to a change
�r��� d� of the position vector� A similar result holds when the angle 	 is changed�

Problem e� Use these results to show that the surface element dS corresponding to
in
nitesimal changes d� and d	 is given by

dS �

�����r�� � �r

�	

���� d�d	 � ������
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dϕ

dθ

x-axis

y-axis

z-axis

dr

r

Figure ���� De
nition of the geometric variables for an in
nitesimal volume element dV�

Problem f� Use expression ����� to compute the vectors in the cross product and use this
to derive that

dS � r� sin � d�d	 � ������

Problem g� Using the geometric variables in 
gure ����� give an alternative derivation
of this expression for a surface element that is based on geometric arguments only�

Problem h� Compute the volume of a sphere with radius R using spherical coordinates�
Pay special attention to the range of integration for the angles � and 	� see section
������

��� Cylinder coordinates

Cylinder coordinates are useful in problems that exhibit cylinder symmetry rather than
spherical symmetry� An example is the generation of water waves when a stone is thrown
in a pond� or more importantly when an earthquake excites a tsunami in the ocean� In
cylinder coordinates a point is speci
ed by giving its distance r �

p
x� � y� to the z�

axis� the angle 	 and the z�coordinate� see 
gure ����� for the de
nition of variables� All
the results we need could be derived using an analysis as shown in the previous sections�
However� in such an approach we would do a large amount of unnecessary work� The key is
to realize that at the equator of a spherical coordinate system �i�e� at the locations where
� � 
��� the spherical coordinate system and the cylinder coordinate system are identical�
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x-axis

y-axis

z-axis

(x, y, z)
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ϕ
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r

Figure ���� De
nition of the geometric variables used in cylinder coordinates�

see 
gure ������ An inspection of this 
gure shows that all results obtained for spherical
coordinates can be used for cylinder coordinates by making the following substitutions�

r �
p
x� � y� � z� � p

x� � y�

� � 
��
�� � ��z
rd� � �dz

����	�

Problem a� Convince yourself of this� To derive the third line consider the unit vectors
pointing in the direction of increasing values of � and z at the equator�

Problem b� Use the results of the previous sections and the substitutions ����	� to show
the following properties for a system of cylinder coordinates�

x � r cos	
y � r sin	
z � z

������

�r �

�
B� cos	

sin	
�

�
CA � �� �

�
B� � sin	

cos	
�

�
CA � �z �

�
B� �

�
�

�
CA � ������

dV � rdrd	dz � ������

dS � rdzd	 � ������
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2 2x  + y  = constant

2 constant2 2x  + y  + z  =

θ = π
2

x-axis

y-axis

z-axis

Figure ���� At the equator the spherical coordinate system has the same properties as a
system of cylinder coordinates�
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Problem c� Derive these properties directly using geometric arguments�
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Chapter �

The divergence of a vector �eld

The physical meaning of the divergence cannot be understood without understanding what
the �ux of a vector 
eld is� and what the sources and sinks of a vector 
eld are�

��� The �ux of a vector �eld

To 
x our mind� let us consider a vector 
eld v�r� that represents the �ow of a �uid that
has a constant density� We de
ne a surface S in this �uid� Of course the surface has an
orientation in space� and the unit vector perpendicular to S is denoted by �n� In
nitesimal
elements of this surface are denoted with dS � �ndS� Now suppose we are interested in
the volume of �uid that �ows per unit time through the surface S� this quantity is called
#� When we want to know the �ow through the surface� we only need to consider the
component of v perpendicular to the surface� the �ow along the surface is not relevant�

Problem a� Show that the component of the �ow across the surface is given by �v � �n��n
and that the �ow along the surface is given by v��v � �n��n� If you 
nd this problem
di�cult you may want to look ahead in section �������

Using this result the volume of the �ow through the surface per unit time is given by�

# �

ZZ
�v � �n�dS �

ZZ
v � dS � �����

this expression de
nes the �ux # of the vector 
eld v through the surface S� The de
nition
of a �ux is not restricted to the �ow of �uids� a �ux can be computed for any vector 
eld�
However� the analogy of �uid �ow often is very useful to understand the meaning of the
�ux and divergence�

Problem b� The electric 
eld generated by a point charge q in the origin is given by

E�r� �
q�r

�
��r�
� �����

in this expression �r is the unit vector in the radial direction and �� is the permittivity�
Compute the �ux of the electric 
eld through a spherical surface with radius R with
the point charge in its center� Show explicitly that this �ux is independent of the
radius R and 
nd its relation to the charge q and the permittivity ��� Choose the
coordinate system you use for the integration carefully�

��
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Problem c� To 
rst order the magnetic 
eld of the Earth is a dipole 
eld� �This is
the 
eld generated by a magnetic north pole and magnetic south pole very close
together�� The dipole vector m points from the south pole of the dipole to the north
pole and its size is given by the strength of the dipole� The magnetic 
eld B�r� is
given by �ref� ����� p� �����

B�r� �
��r��r �m��m

r�
� �����

Compute the �ux of the magnetic 
eld through the surface of the Earth� take a
sphere with radius R for this� Hint� when you select a coordinate system� think
not only about the geometry of the coordinate system �i�e� Cartesian or spherical
coordinates�� but also choose the direction of the axes of your coordinate system
with care�

��� Introduction of the divergence

In order to introduce the divergence� consider an in
nitesimal rectangular volume with
sides dx� dy and dz� see 
g ����� for the de
nition of the geometric variables� The

{{
vx{dz {

dy

dx

Figure ���� De
nition of the geometric variables in the calculation of the �ux of a vector

eld through an in
nitesimal rectangular volume�

outward �ux through the right surface perpendicular through the x�axis is given by
vx�x � dx� y� z�dydz� because vx�x � dx� y� z� is the component of the �ow perpendicular
to that surface and dydz is the area of the surface� By the same token� the �ux through
the left surface perpendicular through the x�axis is given by �vx�x� y� z�dydz� the � sign
is due to the fact the component of v in the direction outward of the cube is given by �vx�
�Alternatively one can say that for this surface the unit vector perpendicular to the sur�
face and pointing outwards is given by �n � ��x�� This means that the total outward �ux
through the two surfaces is given by vx�x � dx� y� z�dydz � vx�x� y� z�dydz � �vx

�x dxdydz�
The same reasoning applies to the surfaces perpendicular to the y� and z�axes� This means
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that the total outward �ux through the sides of the cubes is�

d# �

�
�vx
�x

�
�vy
�y

�
�vz
�z



dV � �r � v� dV� �����

where dV is the volume dxdydz of the cube and �r � v� is the divergence of the vector

eld v�

The above de
nition does not really tell us yet what the divergence really is� Dividing
����� by dV one obtains �r � v� � d#�dV � This allows us to state in words what the
divergence is�

The divergence of a vector �eld is the outward �ux of the vector �eld per unit

volume�

To 
x our mind again let us consider a physical example where in two dimensions �uid
is pumped into this two dimensional space at location r � �� For simplicity we assume
that the �uid is incompressible� that means that the mass�density is constant� We do not
know yet what the resulting �ow 
eld is� but we know two things� Away from the source
at r � � there are no sources or sinks of �uid �ow� This means that the �ux of the �ow
through any closed surface S must be zero� ��What goes in must come out��� This means
that the divergence of the �ow is zero� except possibly near the source at r � ��

�r � v� � � for r ���� �����

In addition we know that due to the symmetry of the problem the �ow is directed in the
radial direction and depends on the radius r only�

v�r� � f�r�r� ���	�

Problem a� Show this�

This is enough information to determine the �ow 
eld� Of course� it is a problem that we
cannot immediately insert ���	� in ����� because we have not yet derived an expression for
the divergence in cylinder coordinates� However� there is another way to determine the
�ow from the expression above�

Problem b� Using that r �
p
x� � y� show that

�r

�x
�

x

r
� �����

and derive the corresponding equation for y� Using expressions ���	�� ����� and the
chain rule for di�erentiation show that

r � v ��f�r� � r
df

dr
�cilinder coordinates�� �����

Problem c� Insert this result in ����� and show that the �ow 
eld is given by v�r� �
Ar�r�� Make a sketch of the �ow 
eld�
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The constant A is yet to be determined� Let at the source r � � a volume V per unit time
be injected�

Problem d� Show that V �
R
v�dS �where the integration is over an arbitrary surface

around the source at r � ��� By choosing a suitable surface derive that

v�r� �
V

�


�r

r
� �����

From this simple example of a single source at r � � more complex examples can be
obtained� Suppose we have a source at r� � �L� �� where a volume V is injected per unit
time and a sink at r� � ��L� �� where a volume �V is removed per unit time� The total
�ow 
eld can be obtained by superposition of �ow 
elds of the form ����� for the source
and the sink�

Problem e� Show that the x� and y�components of the �ow 
eld in this case are given
by�

vx�x� y� �
V

�


�
x� L

�x� L�� � y�
� x� L

�x� L�� � y�



� ������

vy�x� y� �
V

�


�
y

�x� L�� � y�
� y

�x� L�� � y�



� ������

and sketch the resulting �ow 
eld� This is most easily accomplished by determining
from the expressions above the �ow 
eld at some selected lines such as the x� and
y�axes�

One may also be interested in computing the streamlines of the �ow� These are the lines
along which material particles �ow� The streamlines can be found by using the fact that
the time derivative of the position of a material particle is the velocity� dr�dt � v�r��
Inserting expressions ������ and ������ leads to two coupled di�erential equations for x�t�
and y�t� which are di�cult to solve� Fortunately� there are more intelligent ways of
retrieving the streamlines� We will return to this issue in section �������

��� Sources and sinks

In the example of the �uid �ow given above the �uid �ow moves away from the source
and converges on the sink of the �uid �ow� The terms �source� and �sink� have a clear
physical meaning since they are directly related to the �source� of water as from a tap�
and a �sink� as the sink in a bathtub� The �ow lines of the water �ow diverge from the
source while they convergence towards the sinks� This explains the term �divergence��
because this quantity simply indicates to what extent �ow lines originate �in case of a
source� or end �in case of a sink��

This de
nition of sources and sinks is not restricted to �uid �ow� For example� for the
electric 
eld the term ��uid �ow� should be replaced by the term �
eld lines�� Electrical

eld lines originate at positive charges and end at negative charges�
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Problem a� To verify this� show that the divergence of the electrical 
eld ����� for a point
charge in three dimensions vanishes except near the point charge at r � �� Show also
that the net �ux through a small sphere surrounding the charge is positive �negative�
when the charge q is positive �negative��

The result we have just discovered is that the electric charge is the source of the electric

eld� This is re�ected in the Maxwell equation for the divergence of the electric 
eld�

�r �E� ���r����� ������

In this expression ��r� is the charge density� this is simply the electric charge per unit
volume just as the mass�density denotes the mass per unit volume� In addition� expres�
sion ������ contains the permittivity ��� This term serves as a coupling constant since it
describes how �much� electrical 
eld is generated by a given electrical charge density� It is
obvious that a constant is needed here because the charge density and the electrical 
eld
have di�erent physical dimensions� hence a proportionality factor must be present� How�
ever� the physical meaning of a coupling constant goes much deeper� because it prescribes
how strong the 
eld is that is generated by a given source� This constant describes how
strong cause �the source� and e�ect �the 
eld� are coupled�

Problem b� Show that the divergence of the magnetic 
eld ����� for a dipole m at the
origin is zero everywhere� including the location of the dipole�

By analogy with ������ one might expect that the divergence of the magnetic 
eld is
related to a magnetic charge density� �r �B� �coupling const� �B�r�� where �B would
be the �density of magnetic charge�� However� particles with a magnetic charge �usually
called �magnetic monopoles�� have not been found in nature despite extensive searches�
Therefore the Maxwell equation for the divergence of the magnetic 
eld is�

�r �B� � �� ������

but we should remember that this divergence is zero because of the observational absence
of magnetic monopoles rather than a vanishing coupling constant�

��� The divergence in cylinder coordinates

In the previous analysis we have only used the expression of the divergence is Cartesian
coordinates� r � v � �xvx � �yvy � �zvz� As you have �hopefully� discovered� the use
of other coordinate systems such as cylinder coordinates or spherical coordinates can
make life much simpler� Here we derive an expression for the divergence in cylinder
coordinates� In this system� the distance r �

p
x� � y� of a point to the z�axis� the

azimuth 	�� arctan�y�x� � and z are used as coordinates� see section ������ A vector v
can be decomposed in components in this coordinate system�

v �vr�r�v����vz�z ������

where �r� �� and �z are unit vectors in the direction of increasing values of r� 	 and z
respectively� As shown in section ����� the divergence is the �ux per unit volume� Let
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Figure ���� De
nition of the geometric variables for the computation of the divergence in
cylinder coordinates�

us consider the in
nitesimal volume corresponding to increments dr� d	 and dz shown in

gure ������ Let us 
rst consider the �ux of v through the surface elements perpendicular
to �r� The size of this surface is rd	dz and �r � dr�d	dz respectively at r and r � dr�
The normal components of v through these surfaces are vr�r� 	� z� and vr�r � dr� 	� z�
respectively� Hence the total �ux through these two surface is given by vr�r�dr� 	� z��r�
dr�d	dz � vr�r� 	� z��r�d	dz�

Problem a� Show that to 
rst order in dr this quantity is equal to �
�r �rvr� drd	dz� Hint�

use a 
rst order Taylor expansion for vr�r � dr� 	� z� in the quantity dr�

Problem b� Show that the �ux through the surfaces perpendicular to �� is to 
rst order
in d	 given by �v�

�� drd	dz�

Problem c� Show that the �ux through the surfaces perpendicular to �z is to 
rst order
in dz given by �vz

�z rdrd	dz�

The volume of the in
nitesimal part of space shown in 
gure ����� is given by rdrd	dz�

Problem d� Use the fact that the divergence is the �ux per unit volume to show that in
cylinder coordinates�

r � v �
�

r

�

�r
�rvr� �

�

r

�v�
�	

�
�vz
�z

� ������

Problem e� Use this result to re�derive equation ����� without using Cartesian coordi�
nates as an intermediary�
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In spherical coordinates a vector v can be expended in the components vr� v� and v�
in the directions of increasing values of r� � and 	 respectively� In this coordinate system
r has a di�erent meaning than in cylinder coordinates because in spherical coordinates
r �

p
x� � y� � z��

Problem f� Show that in spherical coordinates

r � v �
�

r�
�

�r

�
r�vr

�
�

�

r sin �

�

��
�sin � v�� �

�

r sin �

�v�
�	

����	�

��� Is life possible in a ��dimensional world	

In this section we will investigate whether the motion of the earth around the sun is stable
or not� This means that we ask ourselves the question that when the position of the
earth a perturbed� for example by the gravitational attraction of the other planets or by
a passing asteroid� whether the gravitational force brings the earth back to its original
position �stability� or whether the earth spirals away from the sun �or towards the sun��
It turns out that the stability properties depend on the spatial dimension� We know that
we live in a world of three spatial dimensions� but it is interesting to investigate if the orbit
of the earth would also be stable in a world with a di�erent number of spatial dimensions�

In the Newtonian theory the gravitational 
eld g�r� satis
es �see ref� ������

�r � g� � ��
G� � ������

where ��r� is the mass density and G is the gravitational constant which has a value of
	�	� � ���� cm�g��s��� The term G plays the role of a coupling constant� just as the
�$permittivity in ������� Note that the right hand side of the gravitational 
eld equation
������ has an opposite sign as the right hand side of the electric 
eld equation ������� This
is due to the fact that two electric charges of equal sign repel each other� while two masses
of equal sign �mass being positive� attract each other� If the sign of the right hand side
of ������ would be positive� masses would repel each other and structures such as planets�
the solar system and stellar systems would not exist�

Problem a� We argued in section ����� that electric 
eld lines start at positive charges
and end at negative charges� By analogy we expect that gravitational 
eld lines end
at the �positive� masses that generate the 
eld� However� where do the gravitational

eld lines start�

Let us 
rst determine the gravitational 
eld of the sun in N dimensions� Outside the
sun the mass�density vanishes� this means that �r � g� ��� We assume that the mass
density in the sun is spherically symmetric� the gravitational 
eld must be spherically
symmetric too and is thus of the form�

g�r� � f�r�r � ������

In order to make further progress we must derive the divergence of a spherically symmetric
vector 
eld in N dimensions� Generalizing expression ����	� to an arbitrary number of
dimensions is not trivial� but fortunately this is not needed� We will make use of the

property that in N dimensions� r �
qPN

i�� x
�
i �
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Problem b� Derive from this expression that

�r��xj � xj�r � ������

Use this result to derive that for a vector 
eld of the form �������

�r � g� �Nf�r� � r
�f

�r
� ������

Outside the sun� where the mass�density vanishes and �r �g� �� we can use this result to
solve for the gravitational 
eld�

Problem c� Derive that

g�r� �� A

rN��
�r � ������

and check this result for three spatial dimensions�

At this point the constant A is not determined� but this is not important for the coming
arguments� The minus sign is added for convenience� the gravitational 
eld points towards
the sun hence A � ��

Associated with the gravitational 
eld is a gravitational force that attracts the earth
towards the sun� If the mass of the earth is denoted by m� this force is given by

Fgrav � � Am

rN��
�r � ������

and is directed towards the sun� For simplicity we assume that the earth is in a circular
orbit� This means that the attractive gravitational force is balanced by the repulsive
centrifugal force which is given by

Fcent �
mv�

r
�r � ������

In equilibrium these forces balance� Fgrav � Fcent � ��

Problem d� Derive the velocity v from this requirement�

We now assume that the distance to the sun is perturbed from its original distance r
to a new distance r � 
r� the perturbation in the position is therefore 
r �
r �r� Because
of this perturbation� the gravitational force and the centrifugal force are perturbed too�
these quantities will be denoted by 
Fgrav and 
Fcent respectively� see 
gure ������

Problem e� Show that the earth moves back to its original position when�

�
Fgrav � 
Fcent� � 
r � � �stability� � ������

Hint� consider the case where the radius is increased �
r � �� and decreased �
r � ��
separately�
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Figure ���� De
nition of variables for the perturbed orbit of the earth�

Hence the orbital motion is stable for perturbations when the gravitational 
eld satis
es
the criterion ������� In order to compute the change in the centrifugal force we use that
angular momentum is conserved� i�e� mrv � m�r � 
r��v � 
v�� In what follows we will
consider small perturbations and will retain only terms of 
rst order in the perturbation�
This means that we will ignore higher order terms such as the product 
r
v�

Problem f� Determine 
v and derive that


Fcent � � �mv�

r�

r � ������

and use ������ to show that


Fgrav � �N � ��
Am

rN

r ����	�

Note that the perturbation of the centrifugal force does not depend on the number of
spatial dimensions� but that the perturbation of the gravitational force does depend on
N �

Problem g� Using the value of the velocity derived in problem d and expressions �������
����	� show that according to the criterion ������ the orbital motion is stable in
less than four spatial dimensions� Show also that the requirement for stability is
independent of the original distance r�
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This is a very interesting result� It implies that orbital motion is unstable in more than
four spatial dimensions� This means that in a world with 
ve spatial dimensions the solar
system would not be stable� Life seems to be tied to planetary systems with a central star
which supplies the energy to sustain life on the orbiting planet�s�� This implies that life
would be impossible in a 
ve�dimensional world� Note also that the stability requirement
is independent of r� i�e� the stability properties of orbital motion does not depend on the
size of the orbit� This implies that the gravitational 
eld does not have �stable regions�
and �unstable regions�� the stability property depends only on the number of spatial
dimensions�



Chapter �

The curl of a vector �eld

��� Introduction of the curl

We will introduce the curl of a vector 
eld v by its formal de
nition in terms of Cartesian
coordinates �x� y� z� and unit vectors �x� �y and �z in the x� y and z�direction respectively�

curl v �

�������
�x �y �z

�x �y �z
vx vy vz

������� �
�
B� �yvz � �zvy

�zvx � �xvz
�xvy � �yvx

�
CA � �����

It can be seen that the curl is a vector� this is in contrast to the divergence which is a
scalar� The notation with the determinant is of course incorrect because the entries in a
determinant should be numbers rather than vectors such as �x or di�erentiation operators
such as �y � ���y� However� the notation in terms of a determinant is a simple rule to
remember the de
nition of the curl in Cartesian coordinates� We will write the curl of a
vector 
eld also as� curl v � r� v�

Problem a� Verify that this notation with the curl expressed as the outer product of the
operator r and the vector v is consistent with the de
nition ������

In general the curl is a three�dimensional vector� To see the physical interpretation
of the curl� we will make life easy for ourselves by choosing a Cartesian coordinate
system where the z�axis is aligned with curl v� In that coordinate system the curl

is given by� curl v � ��xvy � �yvx��z
 Consider a little rectangular surface element
oriented perpendicular to the z�axis with sides dx and dy respectively� see 
gure
������ We will consider the line integral

H
dxdy v �dr along a closed loop de
ned by the

sides of this surface element integrating in the counter�clockwise direction� This line
integral can be written as the sum of the integral over the four sides of the surface
element�

Problem b� Show that the line integral is given by
H
dxdy v �dr �vx�x� y�dx�vy�x�

dx� y�dy � vx�x� y � dy�dx� vy�x� y�dy� and use a 
rst order Taylor expansion
to write this as I

dxdy
v � dr � ��xvy � �yvx�dxdy � �����

��
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Figure ���� De
nition of the geometric variables for the interpretation of the curl�

This expression can be rewritten as�

�curl v�z � ��xvy � �yvx� �

H
dxdy v � dr
dxdy

� �����

In this form we can express the meaning of the curl in words�

The curl of v is the closed line integral of v per unit surface area�

Note that this interpretation is similar to the interpretation of the divergence given
in section ������ There is� however� one major di�erence� The curl is a vector while
the divergence is a scalar� This is re�ected in our interpretation of the curl because
a surface has an orientation de
ned by its normal vector� hence the curl is a vector
too�

��� What is the curl of the vector �eld	

In order to discover the meaning of the curl� we will consider again an incompressible
�uid and will consider the curl of the velocity vector v� because this will allow us
to discover when the curl is nonzero� It is not only for a didactic purpose that we
consider the curl of �uid �ow� In �uid mechanics this quantity plays such a crucial
role that it is given a special name� the vorticity ��

� �r� v � �����

To simplify things further we assume that the �uid moves in the x� y�plane only �i�e�
vz � �� and that the �ow depends only on x and y� v � v�x� y��

Problem a� Show that for such a �ow

� �r� v � ��xvy � �yvx��z � �����
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We will 
rst consider an axi�symmetric �ow 
eld� Such a �ow 
eld has rotation
symmetry around an axis� we will take the z�axis for this� Because of the cylinder
symmetry and the fact that it is assumed that the �ow does not depend on z� the
components vr� v� and vz depend neither on the azimuth 	 �� arctan y�x� used
in the cylinder coordinates nor on z but only on the distance r �

p
x� � y� to the

z�axis�

Problem b� Show that it follows from expression ������ for the divergence in cylin�
der coordinates that for an axisymmetric �ow 
eld for an incompressible �uid
�where �r � v� �� everywhere including the z�axis where r �

p
x� � y� � ��

that the radial component of the velocity must vanish� vr � ��

This result simply re�ects that for an incompressible �ow with cylinder symmetry
there can be no net �ow towards �or away from� the symmetry axis� The only
nonzero component of the �ow is therefore in the direction of ��� This implies that
the velocity 
eld must be of the form�

v � ��v�r� � ���	�

see 
gure ����� for a sketch of this �ow 
eld� The problem we now face is that

^ϕ

Figure ���� Sketch of an axi�symmetric source�free �ow in the x�y�plane�

de
nition ����� is expressed in Cartesian coordinates while the velocity in equation
���	� is expressed in cylinder coordinates� In section ���	� an expression for the curl
in cylinder coordinates will be derived� As an alternative� one can express the unit
vector �� in Cartesian coordinates�

Problem c� Verify that�

�� �

�
B� �y�r

x�r
�

�
CA � �����

Hints� make a 
gure of this vector in the x� y�plane� verify that this vector is
perpendicular to the position vector r and that it is of unit length� Alternatively
you can use expression ����	� of section ������
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Problem d� Use the expressions ������ ����� and the chain rule for di�erentiation
to show that for the �ow 
eld ���	��

�r� v�z �
�v

�r
�
v

r
� �����

Hint� you have to use the derivatives �r��x and �r��y again� You have learned
this in section ������

��� The �rst source of vorticity
 rigid rotation

In general� a nonzero curl of a vector 
eld can have two origins� in this section we
will treat the e�ect of rigid rotation� Because we will use �uid �ow as an example we
will speak about the vorticity� but keep in mind that the results of this section �and
the next� apply to any vector 
eld� We will consider a velocity 
eld that describes
a rigid rotation with the z�axis as rotation axis and angular velocity %�

Problem a� Show that the associated velocity 
eld is of the form ���	� with v�r� �
%r� Verify explicitly that every particle in the �ow makes one revolution in
a time T � �
�% and that this time does not depend on the position of the
particle�

Problem b� Show that for this velocity 
eld� r� v � �%�z�

This means that the vorticity is twice the rotation vector %�z� This result is derived
here for the special case that the z�axis is the axis of rotation� �This can always
be achieved because one is free in the choice of the orientation of the coordinate
system�� In section �	���� of Boas���� it is shown with a very di�erent derivation
that the vorticity for rigid rotation is given by � �r � v � ��� where � is the
rotation vector� �Beware� the notation used by Boas is di�erent from ours in a
deceptive way��

We see that rigid rotation leads to a vorticity that is twice the rotation rate� Imagine
we place a paddle�wheel in the �ow 
eld that is associated with the rigid rotation� see

gure ������ This paddle�wheel moves with the �ow and makes one revolution along
its axis in a time �
�%� Note also that for the sense of rotation shown in 
gure �����
the paddle wheel moves in the counterclockwise direction and that the curl points
along the positive z�axis� This implies that the rotation of the paddle�wheel not only
denotes that the curl is nonzero� the rotation vector of the paddle is directed along
the curl� This actually explains the origin of the word vorticity� In a vortex� the
�ow rotates around a rotation axis� The curl increases with the rotation rate� hence
it increases with the strength of the vortex� This strength of the vortex has been
dubbed vorticity	 and this term therefore re�ects the fact that the curl of velocity
denotes the �local� intensity of rotation in the �ow�
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Figure ���� The vorticity for a rigid rotation�

��� The second source of vorticity
 shear

In addition to rigid rotation� shear is another cause of vorticity� In order to see this
we consider a �uid in which the �ow is only in the x�direction and where the �ow
depends on the y�coordinate only� vy � vz � �� vx � f�y��

Problem a� Show that this �ow does not describe a rigid rotation� Hint� how long
does it take before a �uid particle returns to its original position�

Problem b� Show that for this �ow

r� v � ��f
�y

�z � �����

As a special example consider the velocity given by�

vx � f�y� � v� exp
�
�y��L�

�
� ������

This �ow 
eld is sketched in 
gure ������

Problem c� Verify for yourself that paddle�wheels placed in the �ow rotate in the
sense indicated in 
gure �����

Problem d� Compute r � v for this �ow 
eld and verify that both the curl and
the rotation vector of the paddle wheels are aligned with the z�axis� Show that
the vorticity is positive where the paddle�wheels rotate in the counterclockwise
direction and that the vorticity is negative where the paddle�wheels rotate in
the clockwise direction�

It follows from the example of this section and the example of section ����� that both
rotation and shear cause a nonzero vorticity� Both phenomena lead to the rotation
of imaginary paddle�wheels embedded in the vector 
eld� Therefore� the curl of a
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Figure ���� Sketch of the �ow 
eld for a shear �ow�

vector 
eld measures the local rotation of the vector 
eld �in a literal sense�� This
explains why in some languages �i�e� Dutch� the notation rot v is used rather than
curl v� Note that this interpretation of the curl as a measure of �local� rotation
is consistent with equation ����� where the curl is related to the value of the line
integral along the small contour� If the �ow �locally� rotates and if we integrate
along the �uid �ow� the line integral

H
v � dr will be relatively large� so that this line

integral indeed measures the local rotation�

Rotation and shear each contribute to the curl of a vector 
eld� Let us consider once
again a vector 
eld of the form ���	� which is axially symmetric around the z�axis�
In the following we don�t require the rotation around the z�axis to be rigid� so that
v�r� in ���	� is still arbitrary� We know that both the rotation around the z�axis
and the shear are a source of vorticity�

Problem e� Show that for the �ow

v�r� �
A

r
������

the vorticity vanishes� with A a constant that is not yet determined� Make a
sketch of this �ow 
eld�

The vorticity of this �ow vanishes despite the fact that the �ow rotates around the
z�axis �but not in rigid rotation� and that the �ow has a nonzero shear� The reason
that the vorticity vanishes is that the contribution of the rotation around the z�axis
to the vorticity is equal but of opposite sign from the contribution of the shear� so
that the total vorticity vanishes� Note that this implies that a paddle�wheel does
not change its orientation as it moves with this �ow�
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��� The magnetic �eld induced by a straight current

At this point you may have the impression that the �ow 
eld ������ is contrived
in an arti
cial way� However� keep in mind that all the arguments of the previous
section apply to any vector 
eld and that �uid �ow was used only as an example to

x our mind� As an example we consider the generation of the magnetic 
eld B by
an electrical current J that is independent of time� The Maxwell equation for the
curl of the magnetic 
eld in vacuum is for time�independent 
elds given by�

r�B � ��J � ������

see equation ������ in ref� ����� In this expression �� is the magnetic permeability
of vacuum� It plays the role of a coupling constant since it governs the strength
of the magnetic 
eld that is generated by a given current� It plays the same role
as �$permittivity in ������ or the gravitational constant G in ������� The vector
J denotes the electric current per unit volume �properly called the electric current
density��

For simplicity we will consider an electric current running through an in
nite straight
wire along the z�axis� Because of rotational symmetry around the z�axis and because
of translational invariance along the z�axis the magnetic 
eld depends neither on 	
nor on z and must be of the form ���	�� Away from the wire the electrical current J
vanishes�

Problem a� Show that

B �
A

r
�� � ������

A comparison with equation ������ shows that for this magnetic 
eld the contribution
of the �rotation� around the z�axis to r�B is exactly balanced by the contribution
of the�magnetic shear� to r�B� It should be noted that the magnetic 
eld derived
in this section is of great importance because this 
eld has been used to de
ne the
unit of electrical current� the Amp&ere� However� this can only be done when the
constant A in expression ������ is known�

Problem b� Why does the treatment of this section not tell us what the relation
is between the constant A and the current J in the wire�

We will return to this issue in section ������

��� Spherical coordinates and cylinder coordinates

In section ������ expressions for the divergence in spherical coordinates and cylinder
coordinates were derived� Here we will do the same for the curl because these
expressions are frequently very useful� It is possible to derive the curl in curvilinear
coordinates by systematically carrying out the e�ect of the coordinate transformation
from Cartesian coordinates to curvilinear coordinates on all the elements of the
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involved vectors and on all the di�erentiations� As an alternative� we will use the
physical interpretation of the curl given by expression ����� to derive the curl in
spherical coordinates� This expression simply states that a certain component of the
curl of a vector 
eld v is the line integral

H
v � dr along a contour perpendicular to

the component of the curl that we are considering� normalized by the surface area
bounded by that contour� As an example we will derive for a system of spherical
coordinates the 	�component of the curl� see 
gure ����� for the de
nition of the
geometric variables�

^r^ϕ

θd

rdθ

y

x

z

θ^θ

ϕ

dr

r

Figure ���� De
nition of the geometric variables for the computation of the curl in spherical
coordinates�

Consider in 
gure ����� the little surface� When we carry out the line integral
along the surface we integrate in the direction shown in the 
gure� The reason for
this is that the azimuth 	 increases when we move into the 
gure� hence �� point
into the 
gure� Following the rules of a right�handed screw this corresponds with
the indicated sense of integration� The area enclosed by the contour is given by
rd�dr� By summing the contributions of the four sides of the contour we 
nd using
expression ����� that the 	�component of r� v is given by�

�r� v�� �
�

rd�dr
fv��r � dr� ���r � dr�d� � vr�r� � � d��dr � v��r� ��rd� � vr�r� ��drg �

������
In this expression vr and v� denote the components of v in the radial direction and
in the direction of �� respectively�
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Problem a� Verify expression �������

This result can be simpli
ed by Taylor expanding the components of v in dr and d�
and linearizing the resulting expression in the in
nitesimal increments dr and d��

Problem b� Do this and show that the 
nal result does not depend on dr and d�
and is given by�

�r� v�� �
�

r

�

�r
�rv��� �

r

�vr
��

� ������

The same treatment can be applied to the other components of the curl� This leads
to the following expression for the curl in spherical coordinates�

r� v � �r �
r sin �

n
�
�� �sin �v��� �v�

��

o
� �� �

r

n
�

sin �
�vr
�� � �

�r �rv��
o
� ���

r

n
�
�r �rv��� �vr

��

o
����	�

Problem c� Show that in cylinder coordinates �r� 	� z� the curl is given by�

r� v � �r
n
�
r
�vz
�� � �v�

�z

o
� ��

n
�vr
�z � �vz

�r

o
� �z�r

n
�
�r �rv��� �vr

��

o
� ������

with r �
p
x� � y��

Problem d� Use this result to re�derive ����� for vector 
elds of the form v � v�r����
Hint� use the same method as used in the derivation of ������ and treat the
three components of the curl separately�
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The theorem of Gauss

In section ����� we have determined the gravitational 
eld in N �dimensions using as only
ingredient that in free space� where the mass density vanishes� the divergence of the
gravitational 
eld vanishes
 �r � g� � �� This was su�cient to determine the gravitational

eld in expression ������� However� that expression is not quite satisfactory because it
contains a constant A that is unknown� In fact� at this point we have no idea how this
constant is related to the mass M that causes the gravitational 
eld� The reason for this
is simple� in order to derive the gravitational 
eld in ������ we have only used the 
eld
equation ������ for free space �where � � ��� However� if we want to 
nd the relation
between the mass and the resulting gravitational 
eld we must also use the 
eld equation
�r � g� � ��
G� at places where the mass is present� More speci
cally� we have to
integrate the 
eld equation in order to 
nd the total e�ect of the mass� The theorem of
Gauss gives us an expression for the volume integral of the divergence of a vector 
eld�

��� Statement of Gauss� law

In section ����� it was shown that the divergence is the �ux per unit volume� In fact�
equation ����� gives us the outward �ux d# through an in
nitesimal volume dV 
 d# �
�r�v�dV � We can immediately integrate this expression to 
nd the total �ux through the
surface S which encloses the total volume V �I

S
v � dS �

Z
V
�r � v�dV � �	���

In deriving this expression ����� has been used to express the total �ux in the left hand
side of �	���� This expression is called the theorem of Gauss��

Note that in the derivation of �	��� we did not use the dimensionality of the space�
this relation holds in any number of dimensions� You may recognize the one�dimensional
version of �	���� In one dimension the vector v has only one component vx� hence �r�v� �
�xvx� A �volume� in one dimension is simply a line� let this line run from x � a to x � b�
The �surface� of a one�dimensional volume consists of the endpoints of this line� so that
the left hand side of �	��� is the di�erence of the function vx at its endpoints� This implies
that the theorem of Gauss is in one�dimension�

vx�b�� vx�a� �

Z b

a

�vx
�x

dx � �	���

��
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This expression will be familiar to you� We will use the ��dimensional version of the
theorem of Gauss in section ����� to derive the theorem of Stokes�

Problem a� Compute the �ux of the vector 
eld v�x� y� z� � �x � y � z��z through a
sphere with radius R centered on the origin by explicitly computing the integral
that de
nes the �ux�

Problem b� Show that the total �ux of the magnetic 
eld of the earth through your skin
is zero�

Problem c� Solve problem a without carrying out any integration explicitly�

��� The gravitational �eld of a spherically symmetric mass

In this section we will use Gauss�s law �	��� to show that the gravitational 
eld of a body
with a spherically symmetric mass density � depends only on the total mass but not on
the distribution of the mass over that body� For a spherically symmetric body the mass
density depends only on radius� � � ��r�� Because of the spherical symmetry of the mass�
the gravitational 
eld is spherically symmetric and points in the radial direction

g�r� � g�r��r � �	���

Problem a� Use the 
eld equation ������ for the gravitational 
eld and Gauss�s law
�applied to a surface that completely encloses the mass� to show that

I
S
g�dS �� �
GM � �	���

where M is the total mass of the body�

Problem b� Use a sphere with radius r as the surface in �	��� to show that the gravita�
tional 
eld is in three dimensions given by

g�r� � � GM

r�
�r � �	���

This is an intriguing result� What we have shown here is that the gravitational 
eld
depends only the total mass of the spherically symmetric body� but not on the distribution
of the mass within that body� As an example consider two bodies with the same mass�
One body has all the mass located in a small ball near the origin and the other body
has all the mass distributed on a thin spherical shell with radius R� see 
gure �	����
According to expression �	��� these bodies generate exactly the same gravitational 
eld
outside the body� This implies that gravitational measurements taken outside the two
bodies cannot be used to distinguish between them� The non�unique relation between the
gravity 
eld and the underlying mass�distribution is of importance for the interpretation
of gravitational measurements taken in geophysical surveys�
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R
M

Same Mass

g ( r ) g ( r )

Figure 	��� Two di�erent bodies with a di�erent mass distribution that generate the same
gravitational 
eld for distances larger than the radius of the body on the right�

Problem c� Let us assume that the mass is located within a sphere with radius R� and
that the mass density within that sphere is constant� Integrate equation ������ over
a sphere with radius r � R to show that the gravitational 
eld within the sphere is
given by�

g�r� � � MGr

R�
�r � �	�	�

Plot the gravitational 
eld as a function from r when the distance increases from
zero to a distance larger than the radius R� Verify explicitly that the gravitational

eld is continuous at the radius R of the sphere�

Note that all conclusions hold identically for the electrical 
eld when we replace the
mass density by the charge density� because expression ������ for the divergence of the
electric 
eld has the same form as equation ������ for the gravitational 
eld� As an example
we will consider a hollow spherical shell with radius R� On the spherical shell electrical
charge is distributed with a constant charge density� � � const�

Problem d� Use expression ������ for the electric 
eld and Gauss�s law to show that
within the hollow sphere the electric 
eld vanishes� E�r� � � for r � R�

This result implies that when a charge is placed within such a spherical shell the electrical

eld generated by the charge on the shell exerts no net force on this charge
 the charge
will not move� Since the electrical potential satis
es E � �rV � the result derived in
problem d implies that the potential is constant within the sphere� This property has
actually been used to determine experimentally whether the electric 
eld indeed satis
es
������ �which implies that the 
eld of point charge decays as ��r��� Measurement of the
potential di�erences within a hollow spherical shell as described in problem d can be
carried out with very great sensitivity� Experiments based on this principle �usually in
a more elaborated form� have been used to ascertain the decay of the electric 
eld of a
point charge with distance� Writing the 
eld strength as ��r��� is has now be shown that
� � ����	 ����� ����	� see section I�� of Jackson���� for a discussion� The small value of
� is a remarkable experimental con
rmation of equation ������ for the electric 
eld�
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��� A representation theorem for acoustic waves

Acoustic waves are waves that propagate through a gas or �uid� You can hear the voice
of others because acoustic waves propagate from their vocal tract to your ear� Acoustic
waves are frequently used to describe the propagation of waves through the earth� Since
the earth is a solid body� this is strictly speaking not correct� but under certain conditions
�small scattering angles� the errors can be acceptable� The pressure 
eld p�r� of acoustic
waves satisfy in the frequency domain the following partial di�erential equation�

r �
�
�

�
rp



�
��

�
p � f � �	���

In this expression ��r� is the mass density of the medium while ��r� is the compressibility
�a factor that describes how strongly the medium resists changes in its volume�� The right
hand side f�r� describes the source of the acoustic wave� This term accounts for example
for the action of your voice�

We will now consider two pressure 
elds p��r� and p��r� that both satisfy �	��� with
sources f��r� and f��r� in the right hand side of the equation�

Problem a� Multiply equation �	��� for p� with p�� multiply equation �	��� for p� with
p� and subtract the resulting expressions� Integrate the result over a volume V to
show that�Z

V

�
p�r �

�
�

�
rp�



� p�r �

�
�

�
rp�


�
dV �

Z
V
fp�f� � p�f�g dV � �	���

Ultimately we want to relate the wave
eld at the surface S that encloses the volume V
to the wave
eld within the volume� Obviously� Gauss�s law is the tool for doing this�
The problem we face is that Gauss�s law holds for the volume integral of the divergence�

whereas in expression �	��� we have the product of a divergence �such as r�
�
�
�rp�

�
� with

another function �such as p���

Problem b� This means we have to �make� a divergence� Show that

p�r �
�
�

�
rp�



� r �

�
�

�
p�rp�



� �

�
�rp� � rp�� � �	���

What we are doing here is similar to the standard derivation of integration by parts�
The easiest way to show that

R b
a f��g��x�dx � �f�x�g�x��ba�

R b
a ��f��x�gdx� is to integrate

the identity f��g��x� � ��fg��dx � ��f��x�g from x � a to x � b� This last equation
has exactly the same structure as expression �	����

Problem c� Use expressions �	���� �	��� and Gauss�s law to derive that

I
S

�

�
�p�rp� � p�rp�� � dS �

Z
V
fp�f� � p�f�g dV � �	����
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This expression forms the basis for the proof that reciprocity holds for acoustic waves�
�Reciprocity means that the wave
eld propagating from point A to point B is identical to
the wave
eld that propagates in the reverse direction from point B to point A�� To see
the power of expression �	����� consider the special case that the source f� of p� is of unit
strength and that this source is localized in a very small volume around a point r� within
the volume� This means that f� in the right hand side of �	���� is only nonzero at r�� The
corresponding volume integral

R
V p�f�dV is in that case given by p��r��� The wave
eld

p��r� generated by this point source is called the Green�s function	 this special solution is
denoted by G�r� r��� �The concept Green�s function is introduced in great detail in chapter
��� � The argument r� is added to indicate that this is the wave
eld at location r due to a
unit source at location r�� We will now consider a solution p� that has no sources within
the volume V �i�e� f� � ��� Let us simplify the notation further by dropping the subscript
��� in p��

Problem d� Show by making all these changes that equation �	���� can be written as�

p�r�� �

I
S

�

�
�p�r�rG�r� r���G�r� r��rp�r�� � dS � �	����

This result is called the �representation theorem� because it gives the wave
eld inside
the volume when the wave
eld �an its gradient� are speci
ed on the surface that bounds
this volume� Expression �	���� can be used to formally derive Huygens� principle which
states that every point on a wavefront acts as a source for other waves and that interference
of these waves determine the propagation of the wavefront� Equation �	���� also forms
the basis for imaging techniques for seismic data� see for example ref� ����� In seismic
exploration one records the wave
eld at the earth�s surface� This can be used by taking
the earth�s surface as the surface S over which the integration is carried out� If the Green�s
function G�r� r�� is known� one can use expression �	���� to compute the wave
eld in the
interior in the earth� Once the wave
eld in the interior of the earth is known� one can
deduce some of the properties of the material in the earth� In this way� equation �	����
�or its elastic generalization� forms the basis of seismic imaging techniques�

Problem e� This almost sounds too good to be true� Can you 
nd the catch�

��� Flowing probability

In classical mechanics� the motion of a particle with mass m is governed by Newton�s law�
m�r � F� When the force F is associated with a potential V �r� the motion of the particle
satis
es�

m
d�r

dt�
� �rV �r� � �	����

However� this law does not hold for particles that are very small� Microscopic particles
such as electrons are not described accurately by �	����� It is one of the outstanding
features of quantum mechanics that microscopic particles are treated as waves rather than
particles� The wave function ��r�t� that describes a particle that moves under the in�uence
of a potential V �r� satis
es the Schr�odinger equation�����

� 'h

i

���r� t�

�t
� � 'h�

�m
r���r� t� � V �r���r� t� � �	����
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In this expression� 'h is Planck�s constant h divided by �
�

Problem a� Check that Planck�s constant has the dimension of angular momentum�

Planck�s constant has the numerical value h � 	�	�	 � ����� kg m��s� Suppose we are
willing to accept that the motion of an electron is described by the Schr�odinger equation�
then the following question arises� What is the position of the electron as a function
of time� According to the Copenhagen interpretation of quantum mechanics this is a
meaningless question because the electron behaves like a wave and does not have a de
nite
location� Instead� the wavefunction ��r� t� dictates how likely it is that the particle is at
location r at time t� Speci
cally� the quantity j��r� t�j� is the probability density of 
nding
the particle at location r at time t� This implies that the probability PV that the particle
is located within the volume V is given by PV �

R
V j�j�dV � �Take care not to confuse

the volume with the potential� because they are both indicated with the same symbol V ��
This implies that the wavefunction is related to a probability� Instead of the motion of the
electron� Schr�odinger�s equation dictates how the probability density of the particle moves
through space as time progresses� One expects that a �probability current� is associated
with this movement� In this section we will determine this current using the theorem of
Gauss�

Problem b� In the following we need the time�derivative of ���r� t�� where the asterisk
denotes the complex conjugate� Derive the di�erential equation that ���r� t� obeys
by taking the complex conjugate of Schr�odinger�s equation �	�����

Problem c� Use this result to derive that for a volume V that is 
xed in time�

�

�t

Z
V
j�j�dV �

i'h

�m

Z
V
���r�� � �r����dV � �	����

Problem d� Use Gauss�s law to rewrite this expression as�

�

�t

Z
V
j�j�dV �

i'h

�m

I
���r� � �r��� � dS � �	����

Hint� spot the divergence in �	���� 
rst�

The left hand side of this expression gives the time�derivative of the probability that the
particle is within the volume V � The only way the particle can enter or leave the volume
is through the enclosing surface S� The right hand side therefore describes the ��ow� of
probability through the surface S� More accurately� one can formulate this as the �ux of
the probability density current�

Problem e� Show from �	���� that the probability density current J is given by�

J �
i'h

�m
��r�� � ��r�� �	��	�

Pay in particular attention to the sign of the terms in this expression�
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As an example let us consider a plane wave�

��r� t� � A exp i�k � r� �t� � �	����

where k is the wavevector and A an unspeci
ed constant�

Problem f� Show that the wavelength � is related to the wavevector by the relation
� � �
� jkj� In which direction does the wave propagate�

Problem g� Show that the probability density current J for this wavefunction satis
es�

J �
'hk

m
j�j� � �	����

This is a very interesting expression� The term j�j� gives the probability density of the
particle� while the probability density current J physically describes the current of this
probability density� Since the probability current moves with the velocity of the particle
�why��� the remaining terms in the right hand side of �	���� must denote the velocity of
the particle�

v �
'hk

m
� �	����

Since the momentum p is the mass times the velocity� equation �	���� can also be written
as p � 'hk� This relation was proposed by de Broglie in ���� using completely di�erent
arguments than we have used here����� Its discovery was a major step in the development
of quantum mechanics�

Problem h� Use this expression and the result of problem f to compute your own wave�
length while you are riding your bicycle� Are quantum�mechanical phenomena im�
portant when you ride you bicycle� Use your wavelength as an argument� Did you
know you possessed a wavelength�
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Chapter �

The theorem of Stokes

In section 	 we have noted that in order to 
nd the gravitational 
eld of a mass we have
to integrate the 
eld equation ������ over the mass� Gauss�s theorem can then be used to
compute the integral of the divergence of the gravitational 
eld� For the curl the situation
is similar� In section ����� we computed the magnetic 
eld generated by a current in a
straight in
nite wire� The 
eld equation

r�B ���J ������ again

was used to compute the 
eld away from the wire� However� the solution ������ contained
an unknown constant A� The reason for this is that the 
eld equation ������ was only used
outside the wire� where J � �� The treatment of section ����� therefore did not provide
us with the relation between the 
eld B and its source J� The only way to obtain this
relation is to integrate the 
eld equation� This implies we have to compute the integral of
the curl of a vector 
eld� The theorem of Stokes tells us how to do this�


�� Statement of Stokes� law

The theorem of Stokes is based on the principle that the curl of a vector 
eld is the closed
line integral of the vector 
eld per unit surface area� see section ������ Mathematically
this statement is expressed by equation ����� that we write in a slightly di�erent form as�

I
dS
v � dr ��r� v� � �n dS � �r� v� �dS � �����

The only di�erence with ����� is that in the expression above we have not aligned the z�
axis with the vector r� v� The in
nitesimal surface therefore is not necessarily con
ned
to the x� y�plane and the z�component of the curl is replaced by the component of the
curl normal to the surface� hence the occurrence of the terms �n dS in ������ Expression
����� holds for an in
nitesimal surface area� However� this expression can immediately be
integrated to give the surface integral of the curl over a 
nite surface S that is bounded
by the curve C� I

C
v � dr �

Z
S
�r� v� �dS � �����

��
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This result is known as the theorem of Stokes �or Stokes� law�� The line integral in the
left hand side is over the curve that bounds the surface S� A proper derivation of Stokes�
law can be found in ref� �����

n̂

n̂

or

Figure ���� The relation between the sense of integration and the orientation of the surface�

Note that a line integration along a closed surface can be carried out in two directions�
What is the direction of the line integral in the left hand side of Stokes� law ������ To
see this� we have to realize that Stokes� law was ultimately based on equation ������ The
orientation of the line integration used in that expression is de
ned in 
gure ������ where
it can be seen that the line integration is in the counterclockwise direction� In 
gure �����
the z�axis points out o� the paper� this implies that the vector dS also points out of the
paper� This means that in Stokes� law the sense of the line integration and the direction

of the surface vector dS are related through the rule for a right�handed screw�

There is something strange about Stokes� law� If we de
ne a curve C over which we
carry out the line integral� we can de
ne many di�erent surfaces S that are bounded by
the same curve C� Apparently� the surface integral in the right hand side of Stokes� law
does not depend on the speci
c choice of the surface S as long as it is bounded by the
curve C�

S2

S1

z

x

y

C

Figure ���� De
nition of the geometric variables for problem a�
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Problem a� Let us verify this property for an example� Consider the vector 
eld v � r���
Let the curve C used for the line integral be a circle in the x� y�plane with radius
R� see 
gure ���� for the geometry of the problem� �i� Compute the line integral in
the left hand side of ����� by direct integration� Compute the surface integral in the
right hand side of ����� by �ii� integrating over a circle of radius R in the x� y�plane
�the surface S� in 
gure ����� and by �iii� integrating over the upper half of a sphere
with radius R �the surface S� in 
gure ������ Verify that the three integrals are
identical�

S1

S2

C

Figure ���� Two surfaces that are bouded by the same contour C�

It is actually not di�cult to prove that the surface integral in Stokes� law is independent
of the speci
c choice of the surface S as long as it is bounded by the same contour C�
Consider 
gure ����� where the two surfaces S� and S� are bounded by the same contour
C� We want to show that the surface integral of r� v is the same for the two surfaces�
i�e� that� Z

S�
�r� v� � dS �

Z
S�
�r� v� � dS � �����

We can form a closed surface S by combining the surfaces S� and S��

Problem b� Show that equation ����� is equivalent to the conditionI
S
�r� v� � dS �� � �����

where the integration is over the closed surfaces de
ned by the combination of S�
and S�� Pay in particular attention to the sign of the di�erent terms�

Problem c� Use Gauss� law to convert ����� to a volume integral and show that the
integral is indeed identical to zero�

The result you obtained in problem c implies that the condition ����� is indeed satis
ed
and that in the application of Stokes� law you can choose any surface as long as it is
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bounded by the contour over which the line integration is carried out� This is a very
useful result because often the surface integration can be simpli
ed by choosing the surface
carefully�


�� Stokes� theorem from the theorem of Gauss

Stokes� law is concerned with surface integrations� Since the curl is intrinsically a three�
dimensional vector� Stokes�s law is inherently related to three space dimensions� However�
if we consider a vector 
eld that depends only on the coordinates x and y �v � v�x� y��
and that has a vanishing component in the z�direction �vz � ��� then r� v points along
the z�axis� If we consider a contour C that is con
ned to the x� y�plane� Stokes� law takes
for such a vector 
eld the formI

C
�vxdx� vydy��

Z
S
��xvy � �yvx� dxdy � �����

Problem a� Verify this�

This result can be derived from the theorem of Gauss in two dimensions�

Problem b� Show that Gauss� law �	��� for a vector 
eld u in two dimensions can be
written as I

C
�u � �n�ds �

Z
S
��xux � �yuy�dxdy � ���	�

where the unit vector �n is perpendicular to the curve C �see 
gure ������ and where
ds denotes the integration over the arclength of the curve C�

v̂

û

n^

t^

Figure ���� De
nition of the geometric variables for the derivation of Stokes� law from the
theorem of Gauss�
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In order to derive the special form of Stokes� law ����� from Gauss� law ���	� we have to
de
ne the relation between the vectors u and v� Let the vector u follow from v by a
clockwise rotation over �� degrees� see 
gure ������

Problem c� Show that�

vx � �uy and vy � ux � �����

We now de
ne the unit vector �t to be directed along the curve C� see 
gure ������ Since
a rotation is an orthonormal transformation the inner product of two vectors is invariant
for a rotation over �� degrees so that �u � �n� � �v ��t��

Problem d� Verify this by expressing the components of �t in the components of �n and
by using ������

Problem e� Use these results to show that ����� follows from ���	��

What you have shown here is that Stokes� law for the special case considered in this section
is identical to the theorem of Gauss for two spatial dimensions�


�� The magnetic �eld of a current in a straight wire

We now return to the problem of the generation of the magnetic 
eld induced by a current
in an in
nite straight wire that was discussed in section ������ Because of the cylinder
symmetry of the problem� we know that the magnetic 
eld is in the direction of the unit
vector �� and that the 
eld only depends on the distance r �

p
x� � y� to the wire�

B �B�r��� � �����

The 
eld can be found by integrating the 
eld equation r�B ���J over a disc with radius
r perpendicular to the wire� see 
gure ������ When the disc is larger than the thickness of
the wire the surface integral of J gives the electric current I through the wire� I �

R
J �dS�

Problem a� Use these results and Stokes� law to show that�

B �
��I

�
r
�� � �����

We now have a relation between the magnetic 
eld and the current that generates the 
eld�
hence the constant A in expression ������ is now determined� Note that the magnetic 
eld
depends only on the total current through the wire� but that is does not depend on
the distribution of the electric current density J within the wire as long as the electric
current density exhibits cylinder symmetry� Compare this with the result you obtained in
problem b of section �	����
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I

B

Figure ���� Geometry of the magnetic 
eld induced by a current in a straight in
nite wire�


�� Magnetic induction and Lenz�s law

The theory of the previous section deals with the generation of a magnetic 
eld by a
current� A magnet placed in this 
eld will experience a force exerted by the magnetic

eld� This force is essentially the driving force in electric motors
 using an electrical
current that changes with time a time�dependent magnetic 
eld is generated that exerts
a force on magnets attached to a rotation axis�

In this section we will study the reverse e�ect
 what is the electrical 
eld generated by
a magnetic 
eld that changes with time� In a dynamo� a moving part �e�g� your bicycle
wheel� drives a magnet� This creates a time�dependent electric 
eld� This process is called
magnetic induction and is described by the following Maxwell equation �see ref� ������

r�E � � �B

�t
������

To 
x our mind let us consider a wire with endpoints A en B� see 
gure ���	�� The
direction of the magnetic 
eld is indicated in this 
gure� In order to 
nd the electric 
eld
induced in the wire� integrate equation ������ over the surface enclosed by the wire

Z
S
�r�E� � dS � �

Z
S

�B

�t
� dS � ������

Problem a� Show that the right hand side of ������ is given by ��#��t� where # is the
magnetic �ux through the wire� �See section ����� for the de
nition of the �ux��

We have discovered that a change in the magnetic �ux is the source of an electric 
eld�
The resulting 
eld can be characterized by the electromotive force FAB which is a measure
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B n

B

^

A

C

Figure ��	� A wire�loop in a time�dependent magnetic 
eld�

of the work done by the electric 
eld on a unit charge when it moves from point A to point
B� see 
gure ���	��

FAB �
Z B

A
E � dr � ������

Problem b� Show that the electromotive force satis
es

FAB � � �#

�t
� ������

Problem c� Because of the electromotive force an electric current will �ow through the
wire� Determine the direction of the electric current in the wire� Show that this
current generates a magnetic 
eld that opposes the change in the magnetic 
eld
that generates this current� You have learned in section ����� the direction of the
magnetic 
eld that is generated by an electric current in a wire�

What we have discovered in problem c is Lenz�s law� which states that induction currents
lead to a secondary magnetic 
eld which opposes the change in the primary magnetic 
eld
that generates the electric current� This implies that coils in electrical systems exhibit
a certain inertia in the sense that they resist changes in the magnetic 
eld that passes
through the coil� The amount of inertia is described by a quantity called the inductance
L� This quantity plays a similar role as mass in classical mechanics because the mass of
a body also describes how strongly a body resists changing its velocity when an external
force is applied�
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�� The Aharonov�Bohm e�ect

It was shown in section ����� that because of the absence of magnetic monopoles the
magnetic 
eld is source�free� �r �B� ��� In electromagnetism one often expresses the
magnetic 
eld as the curl of a vector 
eld A�

B � r�A � ������

The advantage of writing the magnetic 
eld in this way is that for any 
eldA the magnetic

eld satis
es �r �B��� because r � �r�A� � ��

Problem a� Give a proof of this last identity�

The vector 
eld A is called the vector potential� The reason for this name is that it plays
a similar role as the electric potential V � Both the electric and the magnetic 
eld follows
from V and A respectively by di�erentiation� E � � rV and B � r � A� The vector
potential has the strange property that it can be nonzero �and variable� in parts of space
where the magnetic 
eld vanishes� As an example� consider a magnetic 
eld with cylinder
symmetry along the z�axis that is constant for r � R and which vanishes for r � R�

B �

�
B��z for r � R
� for r � R

������

see 
gure ����� for a sketch of the magnetic 
eld� Because of cylinder symmetry the vector
potential is a function of the distance r to the z�axis only and does not depend on z or 	�

Problem b� Show that a vector potential of the form

A � f�r��� ����	�

gives a magnetic 
eld in the required direction� Give a derivation that f�r� satis
es
the following di�erential equation�

�

r

�

�r
�rf�r�� �

�
B� for r � R
� for r � R

������

These di�erential equations can immediately be integrated� After integration two integra�
tion constants are present� These constants follow from the requirement that the vector
potential is continuous at r � R and from the requirement that f�r � �� � �� �This
requirement is needed because the direction of the unit vector �� is unde
ned on the z�axis
where r � �� The vector potential therefore only has a unique value at the z�axis when
f�r � �� � ���

Problem c� Integrate the di�erential equation ������ and use that with the requirements
described above the vector potential is given by

A �

�
�
�B�r�� for r � R
�
�B�

R�

r �� for r � R
������
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Figure ���� Geometry of the magnetic 
eld�

The important point of this expression is that although the magnetic 
eld is only
nonzero for r � R� the vector potential �and its gradient� is nonzero everywhere in space�
The vector potential is thus much more non�local than the magnetic 
eld� This leads to
a very interesting e�ect in quantum mechanics
 the Aharonov Bohm e�ect�

Before introducing this e�ect we need to know more about quantum mechanics� As
you have seen in section �	��� microscopic �particles� such as electrons behave more like
a wave than like a particle� Their wave properties are described by Schr�odinger�s equa�
tion �	����� When di�erent waves propagate in the same region of space� interference can
occur� In some parts of space the waves may enhance each other �constructive interfer�
ence� while in other parts the waves cancel each other �destructive interference�� This is
observed for �particle waves� when electrons are being send through two slits and where
the electrons are detected on a screen behind these slits� see the left panel of 
gure ������
You might expect that the electrons propagate like bullets along straight lines and that
they are only detected in two points after the two slits� However� this is not the case�
in experiments one observes a pattern of fringes on the screen that are caused by the
constructive and destructive interference of the electron waves� This interference pattern
is sketched in 
gure ����� on the right side of the screens� This remarkable con
rmation of
the wave�property of particles is described clearly in ref� ����� �The situation is even more
remarkable� when one send the electrons through the slits �one�by�one� so that only one
electron passes through the slits at a time� one sees a dot at the detector for each electron�
However� after many particles have arrived at the detector this pattern of dots forms the
interference pattern of the waves� see ref� ������
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Figure ���� Experiment where electrons travel through two slits and are detected on a
screen behind the slits� The resulting interference pattern is sketched� The experiment
without magnetic 
eld is shown on the left� the experiment with magnetic 
eld is shown
on the right� Note the shift in the maxima and minima of the interference pattern between
the two experiments�

Let us now consider the same experiment� but with a magnetic 
eld given by equation
������ placed between the two slits� Since the electrons do not pass through this 
eld
one expects that the electrons are not in�uenced by this 
eld and that the magnetic

eld does not change the observed interference pattern at the detector� However� it is
an observational fact that the magnetic 
eld does change the interference pattern at the
detector� see ref� ���� for examples� This surprising e�ect is called the Aharonov�Bohm
e�ect�

In order to understand this e�ect� we should note that a magnetic 
eld in quantum
mechanics leads to a phase shift of the wavefunction� If the wavefunction in the ab�
sence is given by ��r�� the wavefunction in the presence of the magnetic 
eld is given by

��r�� exp
�
ie

hc

R
P A � dr

�
� see ref� ����� In this expression 'h is Planck�s constant �divided

by �
�� c is the speed of light and A is the vector potential associated with the magnetic

eld� The integration is over the path P from the source of the particles to the detec�
tor� Consider now the waves that interfere in the two�slit experiment in the right panel
of 
gure ������ The wave that travels through the upper slit experiences a phase shift

exp
�
ie

hc

R
P�
A � dr

�
� where the integration is over the path P� through the upper slit� The

wave that travels through the lower slit obtains a phase shift exp
�
ie

hc

R
P�
A � dr

�
where the

path P� runs through the lower slit�

Problem d� Show that the phase di�erence 
	 between the two waves due to the presence
of the magnetic 
eld is given by


	 �
e

'hc

I
P
A � dr � ������

where the path P is the closed path from the source through the upper slit to the
detector and back through the lower slit to the source�
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This phase di�erence a�ects the interference pattern because it is the relative phase be�
tween interfering waves that determines whether the interference is constructive or de�
structive�

Problem e� Show that the phase di�erence can be written as


	 �
e#

'hc
� ������

where # is the magnetic �ux through the area enclosed by the path P �

This expression shows that the phase shift between the interfering waves is proportional
to the magnetic 
eld enclosed by the paths of the interfering waves� despite the fact that

the electrons never move through the magnetic �eld B� Mathematically the reason for
this surprising e�ect is that the vector potential is nonzero throughout space even when
the magnetic 
eld is con
ned to a small region of space� see expression ������ as an
example� However� this explanation is purely mathematical and does not seem to agree
with common sense� This has led to speculations that the vector potential is actually a
more �fundamental� quantity than the magnetic 
eld�����


�� Wingtips vortices

Figure ���� Vortices trailing form the wingtips of a Boeing ����
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If you have been watching aircraft closely� you may have noticed that sometimes a little
stream of condensation is left behind by the wingtips� see 
gure ������ This is a di�erent
condensation trail than the thick contrails created by the engines� The condensation trails
that start at the wingtips is due to a vortex �a spinning motion of the air� that is generated
at the wingtips� This vortex is called the wingtip�vortex� In this section we will use Stokes�
law to see that this wingtip�vortex is closely related to the lift that is generated by the
air�ow along a wing�

C

Figure ����� Sketch of the �ow along an airfoil� The wing is shown in grey� the contour C
is shown by the thick solid line�

Let us 
rst consider the �ow along a wing� see 
gure ������� A wing can only generate
lift when it is curved� In 
gure ������ the air traverses a longer path along the upper
part of the wing than along the lower part� The velocity of the airstream along the upper
part of the wing is therefore larger than the velocity along the lower part� Because of
Bernoulli�s law this is the reason that a wing generates lift� �For details of Bernoulli�s law
and other aspects of the �ow along wings see ref� �	����

Problem a� The circulation is de
ned as the line integral
H
C v � dr of the velocity along

a curve� Is the circulation positive or negative for the curve C in 
gure ������ for
the indicated sense of integration�

Problem b� Consider now the surface S shown in 
gure ������� Show that the circulation
satis
es I

C
v � dr �

Z
S
��dS � ������

where � is the vorticity� �See the sections �������������

This expression implies that whenever lift is generated by the circulation along the contour
C around the wing� the integral of the vorticity over a surface that envelopes the wingtip
is nonzero� The vorticity depends on the derivative of the velocity� Since the �ow is
relatively smooth along the wing� the derivative of the velocity 
eld is largest near the
wingtips� Therefore� expression ������ implies that vorticity is generated at the wingtips�
As shown in section ����� the vorticity is a measure of the local vortex strength� A wing
can only produce lift when the circulation along the curve C is nonzero� The above
reasoning implies that wingtip vortices are unavoidably associated with the lift produced
by an airfoil�
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Figure ����� Geometry of the surface S and the wingtip vortex for an aircraft seen from
above�

Problem c� Consider the wingtip vortex shown in 
gure ������� You have obtained the
sign of the circulation

H
C v�dr in problem a� Does this imply that the wingtip vortex

rotates in the direction A of 
gure ������ or in the direction B� Use equation ������
in your argumentation� You may assume that the vorticity is mostly concentrated
at the trailing edge of the wingtips� see 
gure �������

Problem d� The wingtip�vortex obviously carries kinetic energy� As such it entails an
undesirable loss of energy for a moving aircraft� Why do aircraft such as the Boeing
������� have wingtips that are turned upward� �These are called �winglets���

Problem e� Just like aircraft� sailing boats su�er from energy loss due a vortex that is
generated at the upper part of the sail� see the discussion of Marchaj����� �A sail
can be considered to be a �vertical wing��� Consider the two boats shown in 
gure
������� Suppose that the sails have the same area� If you could choose one of these
boats for a race� would you choose the one on the left or on the right� Use equation
������ to motivate your choice�
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Figure ����� Two boats carrying sails with a very di�erent aspect ratio�



Chapter �

Conservation laws

In physics one frequently handles the change of a property with time by considering
properties that do not change with time� For example� when two particles collide� the
momentum and the energy of each particle may change� However� this change can be
found from the consideration that the total momentum and energy of the system are
conserved� Often in physics� such conservation laws are main ingredients for describing a
system� In this section we deal with conservation laws for continuous systems� These are
systems where the physical properties are a continuous function of the space coordinates�
Examples are the motion in a �uid or solid� the temperature distribution in a body� The
introduced conservation laws are not only of great importance in physics� they also provide
worthwhile exercises of the vector calculus introduced in the previous sections�

��� The general form of conservation laws

In this section a general derivation of conservation laws is given� Suppose we consider
a physical quantity Q� This quantity could denote the mass density of a �uid� the heat
content within a solid or any other type of physical variable� In fact� there is no reason
why Q should be a scalar� it could also be a vector �such as the momentum density� or a
higher order tensor� Let us consider a volume V in space that does not change with time�
This volume is bounded by a surface �V � The total amount of Q within this volume is
given by the integral

R
V QdV � The rate of change of this quantity with time is given by

�
�t

R
V QdV �

In general� there are two reason for the quantity
R
V QdV to change with time� First�

the 
eld Q may have sources or sinks within the volume V � the net source of the 
eld Q
per unit volume is denoted with the symbol S� The total source of Q within the volume
is simply the volume integral

R
V SdV of the source density� Second� it may be that the

quantity Q is transported in the medium� With this transport process� a current J is
associated�

As an example one can think of Q being the mass density of a �uid� In that caseR
V QdV is the total mass of the �uid in the volume� This total mass can change because
there is a source of �uid within the volume �i�e� a tap or a bathroom sink�� or the total
mass may change because of the �ow through the boundary of the volume�

The rate of change of
R
V QdV by the current is given by the inward �ux of the current

��
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J through the surface �V � If we retain the convention that the surface element dS points
out o� the volume� the inward �ux is given by � H�V J�dS� Together with the rate of
change due to the source density S within the volume this implies that the rate of change
of the total amount of Q within the volume satis
es�

�

�t

Z
V
QdV � �

I
�V

J�dS�
Z
V
SdV � �����

Using Gauss� law �	���� the surface integral in the right hand side can be written as
� RV �r � J�dV � so that the expression above is equivalent with

�

�t

Z
V
QdV �

Z
V
�r � J�dV �

Z
V
SdV � �����

Since the volume V is assumed to be 
xed with time� the time derivative of the volume
integral is the volume integral of the time derivative� �

�t

R
V QdV �

R
V

�Q
�t dV � It should

be noted that expression ����� holds for any volume V � If the volume is an in
nitesimal
volume� the volume integrals in ����� can be replaced by the integrand multiplied with
the in
nitesimal volume� Using these results� one 
nds that expression ����� is equivalent
with�

�Q

�t
� �r � J� � S � �����

This is the general form of a conservation law in physics� it simply states that the
rate of change of a quantity is due to the sources �or sinks� of that quantity and due to
the divergence of the current of that quantity� Of course� the general conservation law
����� is not very meaningful as long as we don�t provide expressions for the current J

and the source S� In this section we will see examples where the current and the source
follow from physical theory� but we will also encounter examples where they follow from
an �educated� guess�

Equation ����� will not be completely new to you� In section �	��� the probability
density current for a quantum mechanical system was derived�

Problem a� Use the derivation of this section to show that expression �	���� can be
written as

�

�t
j�j� � �r � J� � � � �����

with J given by expression �	��	��

This equation constitutes a conservation law for the probability density of a particle� Note
that equation �	���� could be derived rigorously from the Schr�odinger equation �	���� so
that the conservation law ����� and the expression for the current J follow from the basic
equation of the system�

Problem b� Why is the source term on the right hand side of ����� equal to zero�



���� THE CONTINUITY EQUATION ��

��� The continuity equation

In this section we will consider the conservation of mass in a continuous medium such as a
�uid or a solid� In that case� the quantity Q is the mass�density �� If we assume that mass
is not created or destroyed� the source term vanishes� S � �� The vector J is the mass
current� this quantity denotes the �ow of mass per unit volume� Let us consider a small
volume 
V � The mass within this volume is equal to � 
V � If the velocity of the medium
is denoted with v� the mass��ow is given by � 
V v� Dividing this by the volume 
V one
obtains the mass �ow per unit volume� this quantity is called the mass density current�

J � �v � �����

Using these results� the principle of the conservation of mass can be expressed as

��

�t
�r � ��v� �� � ���	�

This expression plays a very important role in continuum mechanics and is called the
continuity equation�

Up to this point the reasoning was based on a volume V that did not change with time�
This means that our treatment was strictly Eulerian
 we considered the change of physical
properties at a 
xed location� As an alternative� a Lagrangian description of the same
process can be given� In such an approach one speci
es how physical properties change as
they are moved along with the �ow� In that approach one seeks an expression for the total
time derivative d

dt of physical properties rather than expressions for the partial derivative
�
�t � These two derivatives are related in the following way�

d

dt
�

�

�t
� �v � r� � �����

Problem a� Show that the total derivative of the mass density is given by�

d�

dt
� ��r � v� �� � �����

Problem b� This Lagrangian expression gives the change of the density when one follows
the �ow� Let us consider a in
nitesimal volume 
V that is carried around with the
�ow� The mass of this volume is given by 
m � �
V � The mass within that volume
is conserved �why��� so that 
 !m � �� �The dot denotes the time derivative�� Use
this expression and equation ����� to show that �r � v� is the rate of change of the
volume normalized by size of the volume�


 !V


V
� �r � v� � �����

We have learned a new meaning of the divergence of the velocity 
eld� it equals the
relative change in volume per unit time�
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��� Conservation of momentum and energy

In the description of a point mass in classical mechanics� the conservation of momentum
and energy can be derived from Newton�s third law� The same is true for a continuous
medium such as a �uid or a solid� In order to formulate Newton�s law for a continuous
medium we start with a Lagrangian point of view and consider a volume 
V that moves
with the �ow� The mass of this volume is given by 
m � �
V � This mass is constant� Let
the force per unit volume be denoted by F� so that the total force acting on the volume
is F
V � The force F contains both forces generated by external agents �such as gravity�
and internal agents such as the pressure force �rp or the e�ect of internal stresses �r���
�with � being the stress tensor�� Newton�s law applied to the volume 
V takes the form�

d

dt
��
V v� � F
V � ������

Since the mass 
m � �
V is constant with time it can be taken outside the derivative
in ������� Dividing the resulting expression by 
V leads to the Lagrangian form of the
equation of motion�

�
dv

dt
� F � ������

Note that the density appears outside the time derivative� despite the fact that the density
may vary with time� Using the prescription ����� one obtains the Eulerian form of Newton�s
law for a continuous medium�

�
�v

�t
� �v � rv � F � ������

This equation is not yet in the general form ����� of conservation laws because in the 
rst
term on the left hand side we have the density times a time derivative� and because the
second term on the left hand side is not the divergence of some current�

Problem a� Use expression ������ and the continuity equation ���	� to show that�

���v�

�t
�r � ��vv� � F � ������

This expression does take the form of a conservation law
 it expresses that the momen�
tum �density� �v is conserved� �For brevity we will often not include the a�x �density�
in the description of the di�erent quantities� but remember that all quantities are given
per unit volume�� The source of momentum is given by the force F� this re�ects that
forces are the cause of changes in momentum� In addition there is a momentum current
J � �vv that describes the transport of momentum by the �ow� This momentum current
is not a simple vector� it is a dyad and hence is represented by a �� � matrix� This is not
surprising since the momentum is a vector with three components and each component
can be transported in three spatial directions�

You may 
nd the inner products of vectors and the r�operator in expressions such
�������confusing� and indeed a notation such as �v �rv can be a source of error and confu�
sion� Working with quantities like this is simpler by explicitly writing out the components
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of all vectors or tensors and by using the Einstein summation convention� �In this con�
vention one sums over all indices that are repeated on one side of the equality sign�� This
notation implies the following identities� v � rQ �

P�
i�� vi�iQ � vi�iQ �where �i is an

abbreviated equation for ���xi�� v
� �

P�
i�� vivi � vivi and an equation such as ������ is

written in this notation as�

�
�vi
�t

� �vj�jvi � Fi � ������

Problem b� Rewrite the continuity equation ���	� in component form and redo the
derivation of problem a with all equations in component form to arrive at the
conservation law of momentum in component form�

���vi�

�t
� �j��vjvi� � Fi � ������

In order to derive the law of energy conservation we start by deriving the conservation
law for the kinetic energy �density�

EK �
�

�
�v� �

�

�
�vivi � ����	�

Problem c� Express the partial time�derivative ���v����t in the time derivatives ���vi���t
and �vi��t� use the expressions ������ and ������ to eliminate these time derivatives
and write the 
nal results as�

�����vivi�

�t
� ��j

�
�

�
�vivivj



� vjFj � ������

Problem d� Use de
nition ����	� to rewrite the expression above as the conservation law
of kinetic energy�

�EK

�t
�r � �vEK� � �v � F� � ������

This equation states that the kinetic energy current is given by J � vEK � this term de�
scribes how kinetic energy is transported by the �ow� The term �v � F� on the right hand
side denotes the source of kinetic energy� This term is relatively easy to understand� Sup�
pose the force F acts on the �uid over a distance 
r� the work carried out by the force is
given by �
r � F�� If it takes the �uid a time 
t to move over the distance 
r the work per
unit time is given by �
r�
t�F�� However� 
r�
t is simply the velocity v� and hence the
term �v � F� denotes the work performed by the force per unit time� Since work per unit
time is called the power	 equation ������ states that the power produced by the force F is
the source of kinetic energy�

In order to invoke the potential energy as well we assume for the moment that the
force F is the gravitational force� Suppose there is a gravitational potential V �r�� then
the gravitational force is given by

F �� �rV � ������

and the potential energy EP is given by

EP � �V � ������
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Problem e� Take the �partial� time derivative of ������� use the continuity equation ���	�
to eliminate ����t� use that the potential V does not depend explicitly on time and
employ expressions ������ and ������ to derive the conservation law of potential
energy�

�EP

�t
�r � �vEP � � ��v � F� � ������

Note that this conservation law is very similar to the conservation law ������ for kinetic
energy� The meaning of the second term on the left hand side will be clear to you by
now� it denotes the divergence of the current vEP of potential energy� Note that the right
hand side of ������ has the opposite sign of the right hand side of ������� This re�ects the
fact that when the force F acts as a source of kinetic energy� it acts as a sink of potential
energy
 the opposite signs imply that kinetic and potential energy are converted into each
other� However� the total energy E � EK �EP should have no source or sink�

Problem f� Show that the total energy is source�free�

�E

�t
�r � �vE� � � � ������

��� The heat equation

In the previous section the momentum and energy current could be derived from Newton�s
law� Such a rigorous derivation is not always possible� In this section the transport of heat
is treated� and we will see that the law for heat transport cannot be derived rigorously�
Consider the general conservation equation ����� where T is the temperature� �Strictly
speaking we should derive the heat equation using a conservation law for the heat content
rather than the temperature� The heat content is given by CT � with C the heat capacity�
When the speci
c heat is constant the distinction between heat and temperature implies
multiplication with a constant� for simplicity this multiplication is left out��

The source term in the conservation equation is simply the amount of heat �normalized
by the heat capacity� supplied to the medium� For example� the decay of radioactive
isotopes is a major source of the heat budget of the earth� The transport of heat is a�ected
by the heat current J� In the earth� heat can be transported by two mechanisms� heat
conduction and heat advection� The 
rst process is similar to the process of di�usion� it
accounts for the fact that heat �ows from warm regions to colder regions� The second
process accounts for the heat that is transported by the �ow 
eld v is the medium�
Therefore� the current J can be written as a sum of two components�

J � Jconduction�Jadvection � ������

The heat advection is simply given by

Jadvection � vT � ������

which re�ects that heat is simply carried around by the �ow� This viewpoint of the process
of heat transport is in fact too simplistic in many situation� Fletcher ���� describes how
the human body during outdoor activities looses heat through four processes
 conduction�
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advection� evaporation and radiation� He describes in detail the conditions under which
each of these processes dominate� and how the associated heat loss can be reduced� In
the physics of the atmosphere� energy transport by radiation and by evaporation �or
condensation� also plays a crucial role�

T

Tlow

high

T

T

Tlow

high

T

J
J

Figure ���� Heat �ow and temperature gradient in an isotropic medium �left panel� and
in a medium consisting of alternating layers of copper and styrofoam �right panel��

For the moment we will focus on the heat conduction�This quantity cannot be derived
from 
rst principles� In general� heat �ows from warm regions to cold regions� The
vector rT points from cold regions to warm regions� It therefore is logical that the heat
conduction points in the opposite direction from the temperature gradient�

Jconduction � ��rT � ������

see the left panel of 
gure ������ The constant � is the heat conductivity� �For a given
value of rT the heat conduction increases when � increases� hence it measures indeed the
conductivity�� However� the simple law ������ does not hold for every medium� Consider
a medium consisting of alternating layers of a good heat conductor �such as copper�
and a poor heat conductor �such as styrofoam�� In such a medium the heat will be
preferentially transported along the planes of the good heat conductor and the conductive
heat �ow Jconduction and the temperature gradient are not antiparallel� see the right panel
in 
gure ������ In that case there is a matrix operator that relates Jconduction and rT �
Jconductioni � ��ij�jT � with �ij the heat conductivity tensor� In this section we will restrict
ourselves to the simple conduction law ������� Combining this law with the expressions
������� ������ and the conservation law ����� for heat gives�

�T

�t
�r � �vT � �rT � � S � ����	�

As a 
rst example we will consider a solid in which there is no �ow �v � ��� For a
constant heat conductivity �� expression ����	� reduces to�

�T

�t
� �r�T � S � ������

The expression is called the �heat equation�� despite the fact that it holds only under
special conditions� This expression is identical to Fick�s law that accounts for di�usion
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processes� This is not surprising since heat is transported by a di�usive process in the
absence of advection�

We now consider heat transport in a one�dimensional medium �such as a bar� when
there is no source of heat� In that case the heat equation reduces to

�T

�t
� �

��T

�x�
� ������

If we know the temperature throughout the medium at some initial time �i�e� T �x� t � ��
is known�� then ������ can be used to compute the temperature at later times� As a special
case we consider a Gaussian shaped temperature distribution at t � ��

T �x� t � �� � T� exp

�
� x�

L�

�
� ������

Problem a� Sketch this temperature distribution and indicate the role of the constants
T� and L�

We will assume that the temperature pro
le maintains a Gaussian shape at later times
but that the peak value and the width may change� i�e� we will consider a solution of the
following form�

T �x� t� � F �t� exp
�
� H�t�x�

�
� ������

At this point the function F �t� and H�t� are not yet known�

Problem b� Show that these functions satisfy the initial conditions�

F ��� � T� � H��� � ��L� � ������

Problem c� Show that for the special solution ������ the heat equation reduces to�

�F

�t
� x�F

�H

�t
� �

�
�FH�x� � �FH

�
� ������

It is possible to derive equations for the time evolution of F and H by recognizing that
������ can only be satis
ed for all values of x when all terms proportional to x� balance
and when the terms independent of x balance�

Problem d� Use this to show that F �t� and H�t� satisfy the following di�erential equa�
tions�

�F

�t
� ���FH � ������

�H

�t
� ���H� � ������

It is easiest to solve the last equation 
rst because it contains only H�t� whereas ������
contains both F �t� and H�t��
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Problem e� Solve ������ with the initial condition ������ and show that�

H�t� �
�

��t� L�
� ������

Problem f� Solve ������ with the initial condition ������ and show that�

F �t� � T�
Lp

��t� L�
� ����	�

Inserting these solutions in expression ������ gives the temperature 
eld at all times t 
 ��

T �x� t� � T�
Lp

��t� L�
exp

�
� x�

��t� L�

�
� ������

Problem g� Sketch the temperature for several later times and describe using the solution
������ how the temperature pro
le changes as time progresses�

The total heat Qtotal�t� at time t is given by Qtotal�t� � C
R�
�� T �x� t�dx� where C is

the heat capacity�

Problem h� Show that the total heat does not change with time for the solution �������
Hint� reduce any integral of the form

R�
�� exp

���x�� dx to the integral
R�
�� exp

��u�� du
with a suitable change of variables� You don�t even have to use that

R�
�� exp

��u�� du �p

�

Problem i� Show that for any solution of the heat equation ������ where the heat �ux
vanishes at the endpoints ���xT �x � 	�� t� � �� the total heat Qtotal�t� is constant
in time�

Problem j� What happens to the special solution ������ when the temperature 
eld
evolves backward in time� Consider in particular times earlier than t � �L�����

Problem k� The peak value of the temperature 
eld ������ decays as ��
p
��t� L� with

time� Do you expect that in more dimensions this decay is more rapid or more slowly
with time� Don�t do any calculations but use your common sense only�

Up to this point� we considered the conduction of heat in a medium without �ow
�v � ��� In many applications the �ow in the medium plays a crucial role in redistributing
heat� This is particular the case when heat is the source of convective motions� as for
example in the earth�s mantle� the atmosphere and the central heating system in buildings�
As an example of the role of advection we will consider the cooling model of the oceanic
lithosphere proposed by Parsons and Sclater�����

At the mid�oceanic ridges lithospheric material with thickness H is produced� At the
ridge the temperature of this material is essentially the temperature Tm of mantle material�
As shown in 
gure ����� this implies that at x � � and at depth z � H the temperature
is given by the mantle temperature� T �x � �� z� � T �x� z � H� � Tm� We assume that
the velocity with which the plate moves away from the ridge is constant�

v �U�x � ������
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Figure ���� Sketch of the cooling model of the oceanic lithosphere�

We will consider the situation that the temperature is stationary� This does not imply
that the �ow vanishes
 it means that the partial time�derivatives vanish� �T��t � ��
�v��t � ��

Problem l� Show that in the absence of heat sources �S � �� the conservation equation
����	� reduces to�

U
�T

�x
� �

�
��T

�x�
�
��T

�z�

�
� ������

In general the thickness of the oceanic lithosphere is less than ��� km� whereas the width
of ocean basins is several thousand kilometers�

Problem m� Use this fact to explain that the following expression is a reasonable ap�
proximation to �������

U
�T

�x
� �

��T

�z�
� ������

Problem n� Show that with the replacement � � x�U this expression is identical to the
heat equation �������

Note that � is the time it has taken the oceanic plate to move from its point of creation
�x � �� to the point of consideration �x�� hence the time � simply is the age of the oceanic
lithosphere� This implies that solutions of the one�dimensional heat equation can be used
to describe the cooling of oceanic lithosphere with the age of the lithosphere taken as the
time�variable� Accounting for cooling with such a model leads to a prediction of the depth
of the ocean that increases as

p
t with the age of the lithosphere� For ages less than about

��� Myear this is in very good agreement with the observed ocean depth�����

��� The explosion of a nuclear bomb

As an example of the use of conservation equations we will now study the condition under
which a ball of Uranium of Plutonium can explode through a nuclear chain reaction� The
starting point is once again the general conservation law ������ whereQ is the concentration
N�t� of neutrons per unit volume� We will assume that the material is solid and assume
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there is no �ow� v � �� The neutron concentration is a�ected by two processes� First� the
neutrons experience normal di�usion� For simplicity we assume that the neutron current
is given by expression ������� J � ��rN � Second� neutrons are produced in the nuclear
chain reaction� For example� when an atom of U��� absorbs one neutron� it may 
ssion and
emit three free neutrons� This e�ectively constitutes a source of neutrons� The intensity
of this source depends on the neutrons that are around to produce 
ssion of atoms� This
implies that the source term is proportional to the neutron concentration� S � �N � where
� is a positive constant that depends on the details of the nuclear reaction�

Problem a� Show that the neutron concentration satis
es�

�N

�t
� �r�N � �N � ������

This equation needs to be supplemented with boundary conditions� We will assume that
the material that 
ssions is a sphere with radius R� At the edge of the sphere the neutron
concentration vanishes while at the center of the sphere the neutron concentration must
remain 
nite for 
nite times�

N�r � R� t� � � and N�r � �� t� is finite � ������

We restrict our attention to solutions that are spherically symmetric� N � N�r� t��

Problem b� Apply separation of variables by writing the neutron concentration asN�r� t� �
F �r�H�t� and show that F �r� and H�t� satisfy the following equations�

�H

�t
� �H � ������

r�F �
��� ��

�
F � � � ������

where � is a separation constant that is not yet known�

Problem c� Show that for positive � there is an exponential growth of the neutron con�
centration with characteristic growth time � � ����

Problem d� Use the expression of the Laplacian in spherical coordinates to rewrite �������
Make the substitution F �r� � f�r��r and show that f�r� satis
es�

��f

�r�
�

��� ��

�
f � � � ������

Problem e� Derive the boundary conditions at r � � and r � R for f�r��

Problem f� Show that equation ������ with the boundary condition derived in problem
e can only be satis
ed when

� � ��
�
n


R


�
� for integer n � ����	�
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Problem g� Show that for n � � the neutron concentration vanishes so that we only
need to consider values n 
 ��

Equation ����	� gives the growth rate of the neutron concentration� It can be seen that
the e�ects of unstable nuclear reactions and of neutron di�usion oppose each other� The
��term accounts for the growth of the neutron concentration through 
ssion reactions� this
term makes the inverse growth rate � more positive� Conversely� the ��term accounts for
di�usion� this term gives a negative contribution to ��

Problem h� What value of n gives the largest growth rate� Show that exponential growth
of the neutron concentration �i�e� a nuclear explosion� can only occur when

R � 


r
�

�
� ������

This implies that a nuclear explosion can only occur when the ball of 
ssionable material is
larger than a certain critical size� If the size is smaller than the critical size� more neutrons
di�use out of the ball than are created by 
ssion� hence the nuclear reaction stops� In
some of the earliest nuclear devices an explosion was created by bringing two halve spheres
that each were a stable together to form one whole sphere that was unstable�

Problem g� Suppose you had a ball of 
ssionable material that is just unstable and that
you shape this material in a cube rather than a ball� Do you expect this cube to be
stable or unstable� Don�t use any equations�

��� Viscosity and the Navier�Stokes equation

Many �uids exhibit a certain degree of viscosity� In this section it will be shown that
viscosity can be seen as an ad�hoc description of the momentum current in a �uid by
small�scale movements in the �uid� Starting point of the analysis is the equation of
momentum conservation in a �uid�

���v�

�t
�r � ��vv� � F ������ again�

In a real �uid� motion takes places at a large range of length scales from microscopic eddies
to organized motions with a size comparable to the size of the �uid body� Whenever we
describe a �uid� it is impossible to account for the motions at the very small length scales�
This not only so in analytical descriptions� but it is in particular the case in numerical
simulations of �uid �ow� For example� in current weather prediction schemes the motion
of the air is computed on a grid with a distance of about ��� km between the gridpoints�
When you look at the weather it is obvious that there is considerable motion at smaller
length scales �e�g� cumulus clouds indicating convection� fronts� etc��� In general one
cannot simply ignore the motion at these short length scales because these small�scale
�uid motions transport signi
cant amounts of momentum� heat and other quantities such
as moisture�

One way to account for the e�ect of the small�scale motion is to express the small�scale
motion in the large�scale motion� It is not obvious that this is consistent with reality� but
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it appears to be the only way to avoid a complete description of the small�scale motion of
the �uid �which would be impossible��

In order to do this� we assume there is some length scale that separates the small�
scale �ow from the large scale �ow� and we decompose the velocity in a long�wavelength
component vL and a short�wavelength component vS �

v � vL � vS � ������

In addition� we will take spatial averages over a length scale that corresponds to the
length scale that distinguishes the large�scale �ow from the small�scale �ow� This average

is indicated by brackets� h� � �i� The average of the small�scale �ow is zero �
D
vS
E
� �� while

the average of the large�scale �ow is equal to the large�scale �ow �
D
vL
E
� vL� because

the large�scale �ow by de
nition does not vary over the averaging length� For simplicity
we will assume that the density does not vary�

Problem a� Show that the momentum equation for the large�scale �ow is given by�

���vL�

�t
�r � ��vLvL� �r � �

D
�vSvS

E
� � F � ������

Show in particular why this expression contains a contribution that is quadratic in
the small�scale �ow� but that the terms that are linear in vS do not contribute�

All terms in ������ are familiar� except the last term in the left hand side� This term
exempli
es the e�ect of the small�scale �ow on the large�scale �ow since it accounts for
the transport of momentum by the small�scale �ow� It looks that at this point further
progress in impossible without knowing the small scale �ow vS � One way to make further

progress is to express the small�scale momentum current
D
�vSvS

E
in the large scale �ow�

J S

vL

Figure ���� he direction of momentum transport within a large�scale �ow by small�scale
motions�

Consider the large�scale �ow shown in 
gure ������ Whatever the small�scale motions
are� in general they will have the character of mixing� In the example of the 
gure� the
momentum is large at the top of the 
gure and the momentum is smaller at the bottom� As
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a 
rst approximation one may assume that the small�scale motions transport momentum
in the direction opposite to the momentum gradient of the large�scale �ow� By analogy
with ������ we can approximate the momentum transport by the small�scale �ow by�

JS �
D
�vSvS

E
� ��rvL � ������

where � plays the role of a di�usion constant�

Problem b� Insert this relation in ������� drop the superscript L of vL to show that
large�scale �ow satis
es�

���v�

�t
�r � ��vv� � �r�v � F � ������

This equation is called the Navier�Stokes equation� The 
rst term on the right hand side
accounts for the momentum transport by small�scale motions� E�ectively this leads to
viscosity of the �uid�

Problem c� Viscosity tends to damp motions at smaller length�scales more than motion
at larger length scales� Show that the term �r�v indeed a�ects shorter length scales
more than larger length scales�

Problem d� Do you think this treatment of the momentum �ux due to small�scale mo�
tions is realistic� Can you think of an alternative�

Despite reservations that you may �or may not� have against the treatment of viscosity
in this section� you should realize that the Navier�Stokes equation ������ is widely used in
�uid mechanics�

��
 Quantum mechanics � hydrodynamics

As we have seen in section �	��� the behavior of microscopic particles is described by
Schr�odinger�s equation

� 'h

i

���r� t�

�t
� � 'h�

�m
r���r� t� � V �r���r� t� � �	���� again

rather than Newton�s law� In this section we reformulate the linear wave equation �	����
as the laws of conservation of mass and momentum for a normal �uid� In order to do this
write the wave function � as

� �
p
�� exp

�
i

'h
	



� ������

This equation is simply the decomposition of a complex function in its absolute value
and its phase� hence � and 	 are real functions� The factor 'h is added for notational
convenience�



��
� QUANTUM MECHANICS 
 HYDRODYNAMICS ��

Problem a� Insert the decomposition ������ in Schr�odinger�s equation �	����� divide byp
� exp

�
i

h	
�
and separate the result in real and imaginary parts to show that � and

	 satisfy the following di�erential equations�

�t��r �
�
�
�

m
r	



� � � ������

�t	�
�

�m
jr	j� � 'h�

�m

�
�

��
jr�j� � �

�
r��



� �V � ������

The problem is that at this point we do not have a velocity yet� Let us de
ne the
following velocity vector�

v � �

m
r	 � ������

Problem b� Show that this de
nition of the velocity is identical to the velocity obtained
in equation �	���� of section �	����

Problem c� Show that with this de
nition of the velocity� expression ������ is identical
to the continuity equation�

��

�t
�r � ��v� �� � ���	� again

Problem d� In order to reformulate ������ as an equation of conservation of momentum�
di�erentiate ������ with respect to xi� Do this� use the de
nition ������ and the
relation between force and potential �F ��rV � to write the result as�

�tvi �
�

�
�i�vjvj� �

'h�

�m

�
�i

�
�

��
jr�j�



� ��i

�
�

�
r��




�

�

m
Fi � ����	�

The second term on the left hand side does not look very much to the term �j��vjvi�
in the left hand side of ������ To make progress we need to rewrite the term �i�vjvj� into
a term of the form �j�vjvi�� In general these terms are di�erent�

Problem e� Show that for the special case that the velocity is the gradient of a scalar
function �as in expression ������� that�

�

�
�i�vjvj� � �j�vjvi� � ������

With this step we can rewrite the second term on the left hand side of ����	�� Part of the
third term in ����	� we will designate as Qi�

Qi � � �

�

�
�i

�
�

��
jr�j�



� ��i

�
�

�
r��




� ������

Problem f� Using equations ���	� and ����	� through ������ derive that�

�t ��v� �r � ��vv� � �

m

�
F�'h�Q

�
� ������
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Note that this equation is identical with the momentum equation ������� This im�
plies that the Schr�odinger equation is equivalent with the continuity equation ���	� and
the momentum equation ������ for a classical �uid� In section �	��� we have seen that
microscopic particles behave as waves rather than point�like particles� In this section we
discovered that particles also behave like a �uid� This has led to hydrodynamic formu�
lations of quantum mechanics����� In general� quantum�mechanical phenomena depend
critically on Planck�s constant� Quantum mechanics reduces to classical mechanics in the
limit 'h � �� The only place where Planck�s constant occurs in ������ is the additional
force Q that multiplied with Planck�s constant� This implies that the action of the force
term Q is fundamentally quantum�mechanical� it has no analogue in classical mechanics�

Problem g� Suppose we consider a particle in one dimension that is represented by the
following wave function�

��x� t� � exp

�
� x�

L�

�
exp i �kx� �t� � ���	��

Sketch the corresponding probability density � and use ������ to deduce that the
quantum force acts to broaden the wave function with time�

This example shows that �at least for this case� the quantum force Q makes the wave
function �spread�out� with time� This re�ects the fact that if a particle propagates with
time� its position becomes more and more uncertain�
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Scale analysis

In most situations� the equations that we would like to solve in mathematical physics
are too complicated to solve analytically� One of the reasons for this is often that an
equation contains many di�erent terms which make the problem simply too complex to be
manageable� However� many of these terms may in practice be very small� Ignoring these
small terms can simplify the problem to such an extent that it can be solved in closed
form� Moreover� by deleting terms that are small one is able to focus on the terms that
are signi
cant and that contain the relevant physics� In this sense� ignoring small terms
can actually give a better physical insight in the processes that really do matter�

Scale analysis is a technique where one estimates the di�erent terms in an equation
by considering the scale over which the relevant parameters vary� This is an extremely
powerful too for simplifying problems� A comprehensive overview of this technique with
many applications is given by Kline�����

Many of the equations that are used in physics are di�erential equations� For this
reason it is crucial in scale analysis to be able to estimate the order of magnitude of
derivatives� The estimation of derivatives is therefore treated 
rst� In subsequent sections
this is then applied to a variety of di�erent problems�

��� Three ways to estimate a derivative

In this section three di�erent ways are derived to estimate the derivative of a function f�x��
The �rst way to estimate the derivative is to realize that the derivative is nothing but the
slope of the function f�x�� Consider 
gure ��� in which the function f�x� is assumed to
be known in neighboring points x and x� h�

Problem a� Deduce from the geometry of this 
gure that the slope of the function at x
is approximately given by �f�x� h�� f�x�� �h�

Since the slope is the derivative this means that the derivative of the function is approxi�
mately given by

df

dx
� f�x� h�� f�x�

h
�����

��
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x x+h

f(x)

f(x+h)

Figure ���� The slope of a function f�x� that is known at positions x and x� h�

The second way to derive the same result is to realize that the derive is de
ned by the
following limit�

df

dx
� lim

h��

f�x� h�� f�x�

h
� �����

If we consider the right hand side of this expression without taking the limit� we do not
quite obtain the derivative� but as long as h is su�ciently small we obtain the approxima�
tion ������

The problem with estimating the derivative of f�x� in the previous ways is that we
do obtain an estimate of the derivative� but we do not know how good these estimates
are� We do know that if f�x� would be a straight line� which has a constant slope� that
the estimate ����� would be exact� Hence is it the deviation of f�x� from a straight line
that makes ����� only an approximation� This means that it is the curvature of f�x�
that accounts for the error in the approximation ������ The third way of estimating the
derivative provides this error estimate as well�

Problem b� Consider the Taylor series ������ of section ���� Truncate this series after
the second order term and solve the resulting expression for df�dx to derive that

df

dx
�

f�x� h�� f�x�

h
� �

�

d�f

dx�
h� � � � �����

where the dots indicate terms of order h��

In the limit h � � the last term vanishes and expression ����� is obtained� When one
ignores the last term in ����� for 
nite h one obtains the approximation ����� once more�

Problem c� Use expression ����� to show that the error made in the approximation �����
depends indeed on the curvature of the function f�x��

The approximation ����� has a variety of applications� The 
rst is the numerical
solution of di�erential equations� Suppose one has a di�erential equation that one cannot
solve in closed form� to 
x out mind consider the di�erential equation

df

dx
� G�f�x�� x� � �����



���� THREE WAYS TO ESTIMATE A DERIVATIVE ��

with initial value

f��� � f� � �����

When this equation cannot be solved in closed form� one can solve it numerically by
evaluating the function f�x� not for every value of x� but only at a 
nite number of x�
values that are separated by a distance h� These points xn are given by xn � nh� and the
function f�x� at location xn is denoted by fn�

fn � f�xn� � ���	�

Problem d� Show that the derivative df�dx at location xn can be approximated by�

df

dx
�xn� �

�

h
�fn�� � fn� � �����

Problem e� Insert this result in the di�erential equation ����� and solve the resulting
expression for fn�� to show that�

fn�� � fn � hG�fn� xn� � �����

This is all we need to solve the di�erential equation ����� with the boundary condition
����� numerically� Once fn is known� ����� can be used to compute fn��� This means
that the function can be computed at all values of the grid points xn recursively� To start
this process� one uses the boundary condition ����� that gives the value of the function at
location x� � �� This technique for estimating the derivative of a function can be extended
to higher order derivatives as well so that second order di�erential equations can also be
solved numerically� In practice� one has to pay serious attention to the stability of the
numerical solution� The requirements of stability and numerical e�ciency have led to many
re
nements of the numerical methods for solving di�erential equations� The interested
reader can consult Press et al����� as an introduction and many practical algorithms�

The estimate ����� has a second important application because it allows us to estimate
the order of magnitude of a derivative� Suppose a function f�x� varies over a characteristic
range of values F and that this variation takes place over a characteristic distance L� It
follows from ����� that the derivative of f�x� is of the order of the ratio of the variation
of the function f�x� divided by the length�scale over which the function varies� In other
words� ���� dfdx

���� � variation of the function f�x�

length scale of the variation
� F

L
� �����

In this expression the term � F�L indicates that the derivative is of the order F�L� Note
that this is in general not an accurate estimate of the precise value of the function f�x��
it only provides us with an estimate of the order of magnitude of a derivative� However�
this is all we need to carry out scale analysis�

Problem f� Suppose f�x� is a sinusoidal wave with amplitude A and wavelength ��

f�x� � A sin

�
�
x

�



� ������
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Show that ����� implies that the order of magnitude of the derivative of this function
is given by jdf�dxj � O �A���� Compare this estimate of the order of magnitude
with the true value of the derivative and pay attention both to the numerical value
as well as to the spatial variation�

From the previous estimate we can learn two things� First� the estimate ����� is only
a rough estimate that locally can be very poor� One should always be aware that the
estimate ����� may break down at certain points and that this can cause errors in the
subsequent scale analysis� Second� the estimate ����� di�ers by a factor �
 from the true
derivative� However� �
 � 	��� � � � which is not a small number� Therefore you must be
aware that hidden numerical factors may enter scaling arguments�

��� The advective terms in the equation of motion

As a 
rst example of scale analysis we consider the role of advective terms in the equation
of motion� As shown in expression ������ of section ��� the equation of motion for a
continuous medium is given by

�v

�t
� v � rv �

�

�
F � ������

Note that we have divided by the density compared to the original expression ������� This
equation can describe the propagation of acoustic waves when F is the pressure force� it
accounts for elastic waves when F is given by the elastic forces in the medium� We will
be interested in the situation where waves with a wavelength � and a period T propagate
through the medium�

The advective terms v � rv often pose a problem in solving this equation� The reason
is that the partial time derivative �v��t is linear in the velocity v but that the advective
terms v � rv are nonlinear in the velocity v� Since linear equations are in general much
easier to solve than nonlinear equations it is very useful to know under which conditions
the advective terms v � rv can be ignored compared to the partial derivative �v��t�

Problem a� Let the velocity of the continuous medium have a characteristic value V �
Show that j�v��tj � V�T and that jv � rvj �V ����

Problem b� Show that this means that the ratio of the advective terms to the partial
time derivative is given by

jv � rvj
j�v��tj �

V

c
� ������

where c is the velocity with which the waves propagate through the medium�

This result implies that the advective terms can be ignored when the velocity of the
medium itself is much less than the velocity which the waves propagate through the
medium�

V � c � ������

In other words� when the amplitude of the wave motion is so small that the velocity of
the medium is much less than the wave velocity one can ignore the advective terms in the
equation of motion�
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Problem c� Suppose an earthquake causes at a large distance a ground displacement of
� mm at a frequency of � Hz� The wave velocity of seismic P �waves is of the order
of � km�s near the surface� Show that in that case V�c � �����

The small value of V�c implies that for the propagation of elastic waves due to earthquakes
one can ignore advective terms in the equation of motion� Note� however� that this is not
necessarily true near the earthquake where the motion is much more violent and where
the associated velocity of the rocks is not necessarily much smaller than the wave velocity�

Figure ���� The shock waves generated by a T�� �ying at Mach ��� �a speed of ��� times
the speed of sound� as made visible as made visibible with the schlieren method�

There are a number of physical phenomena that are intimately related to the presence
of the advective terms in the equation of motion� One important phenomenon is the
occurrence of shock waves when the motion of the medium is comparable to the wave
velocity� A prime example of shock waves is the sonic boom made by aircraft that move
at a velocity equal to the speed of sound����� Since the air pushed around by the aircraft
moves with the same velocity as the aircraft� shock waves are generated when the velocity
of the aircraft is equal to the speed of sound� A spectacular example can be seen in

gure ��� where the shock waves generated by an T�� �ying at a speed of Mach ��� at
an altitude of ������ ft can be seen� These shock waves are visualised using the schlieren
method ��	� which is an optical technique to convert phase di�erences of light waves in
amplitude di�erences�

Another example of shock waves is the formation of the hydraulic jump� You may not
known what a hydraulic jump is� but you have surely seen one� Consider water �owing
down a channel such as a mountain stream as shown in 
gure ���� The �ow velocity is
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c

v

c+v

c-v

v

c

c+v
v

c

v<c v>c v=c

Figure ���� Waves on a water �owing over a rock when v � c �left panel�� v � c �middle
panel� and v � c �right panel�

denoted by v� At the bottom of the channel a rock is disrupting the �ow� This rock
generates water�waves that propagate with a velocity c compared to the moving water�
When the �ow velocity is less than the wave velocity �v � c� see the left panel of 
gure ����
the waves propagate upstream with an absolute velocity c� v and propagate downstream
with an absolute velocity c � v� When the �ow velocity is larger than the wave velocity
�v � c� see the middle panel of 
gure ���� the waves move downstream only because the
wave velocity is not su�ciently large to move the waves against the current� The most
interesting case is when the �ow velocity equals the wave velocity �v � c� see the right
panel of 
gure ����� In that case the waves that move upstream have an absolute velocity
given by c� v � �� In other words� these waves do not move with respect to the rock that
generates the waves� This wave is continuously excited by the rock� and through a process
similar to an oscillator that is driven at its resonance frequency the wave grows and grows
until it ultimately breaks and becomes turbulent� This is the reason why one can see strong
turbulent waves over boulders and other irregularities in streams� For further details on
channel �ow and hydraulic jumps the reader can consult chapter � of Whitaker�	��� In
general the advective terms play a crucial role steepening and breaking of waves and the
formation of shock waves� This is described in much detail by Whitham�		��

��� Geometric ray theory

Geometric ray theory is an approximation that accounts for the propagation of waves
along lines through space� The theory 
nds is conceptual roots in optics� where for a
long time one has observed that a light beam propagates along a well�de
ned trajectory
through lenses and many other optical devices� Mathematically� this behavior of waves is
accounted for in geometric ray theory� or more brie�y �ray theory��

Ray theory is derived here for the acoustic wave equation rather than for the prop�
agation of light because pressure waves are described by a scalar equation rather than
the vector equation that governs the propagation of electromagnetic waves� The starting
point is the acoustic wave equation �	��� of section 	���

�r �
�
�

�
rp



�
��

c�
p � �� ������

For simplicity the source term in the right hand side has been set to zero� In addition�
the relation c� � ��� has been used to eliminate the bulk modulus � in favor of the wave
velocity c� Both the density and the wave velocity are arbitrary functions of space�
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In general it is not possible to solve this di�erential equation in closed form� Instead
we will seek an approximation by writing the pressure as�

p�r� �� � A�r� ��ei	�r�

 � ������

with A and � real functions� Any function p�r� �� can be written in this way�

Problem a� Insert the solution ������ in the acoustic wave equation ������� separate the
real and imaginary parts of the resulting equation to deduce that ������ is equivalent
to the following equations�

r�A	 
z �
��


� A jr�j�	 
z �
��


� �

�
�r� � rA�	 
z �

��


�
��

c�
A	 
z �

��


� � � ����	�

and

� �rA � r�� �Ar�� � �

�
�r� � r��A � � � ������

The equations are even harder to solve than the acoustic wave equation because they
are nonlinear in the unknown functions A and � whereas the acoustic wave equation is
linear in the pressure p� However� the equations ����	� and ������ form a good starting
point for making the ray�geometric approximation� First we will analyze expression ����	��

Assume that the density varies on a length scale L�� that the amplitude A of the
wave�
eld varies on a characteristic length scale LA� Furthermore the wavelength of the
waves is denoted by ��

Problem b� Explain that the wavelength is the length�scale over which the phase � of
the waves varies�

Problem c� Use the results of section ��� to obtain the following estimates of the order
of magnitude of the terms ���� ��� in equation ����	��

���r�A
��� � A

L�
A

A jr�j� � A

��

������ �r� � rA�
���� � A

LAL�

��

c�
A � A

��
������

To make further progress we assume that the length�scale of both the density variations
and the amplitude variations are much longer than a wavelength� �� LA and �� L��

Problem d� Show that under this assumption the terms ��� and ��� in equation ����	�
are much smaller than the terms ��� and ����

Problem e� Convince yourself that ignoring the terms ��� and ��� in ����	� gives the
following �approximate� expression�

jr�j� � ��

c�
� ������

Problem f� The approximation ������ was obtained under the premise that jr�j � ����
Show that this assumption is satis
ed by the function � in �������



�	 CHAPTER �� SCALE ANALYSIS

Whenever one makes approximations by deleting terms that scale�analysis predicts to be
small one has to check that the 
nal solution is consistent with the scale�analysis that is
used to derive the approximation�

Note that the original equation ����	� contains both the amplitude A and the phase �
but that ������ contains the phase only� The approximation that we have made has thus
decoupled the phase from the amplitude� this simpli
es the problem considerably� The
frequency enters the right hand side of this equation only through a simple multiplication
with ��� The frequency dependence of � can be found by substituting

��r� �� � ���r� � ������

Problem g� Show that the equations ������ and ������ after this substitution are given
by�

jr��r�j� � �

c�
� ������

and

� �rA � r�� �Ar�� � �

�
�r� � r��A � � � ������

According to ������ the function ��r� does not depend on frequency� Note that equa�
tion ������ for the amplitude does not contain any frequency dependence either� This
means that the amplitude also does not depend on frequency� A � A�r�� This has im�
portant consequences for the shape of the wave�
eld in the ray�geometric approximation�
Suppose that the wave�
eld is excited by a source�function s�t� in the time domain that is
represented in the frequency domain by a complex function S���� �The forward and back�
ward Fourier�transform is de
ned by the equations ������� and ������� of section ������
In the frequency domain the response is given by expression ������ multiplied with the
source function S���� Using that A and � do not depend on frequency the pressure in the
time domain can be written as�

p�r� t� �

Z �

��
A�r�ei
��r
e�i
tS���d� � ������

Problem h� Use this expression to show that the pressure in the time domain can be
written as�

p�r� t� � A�r�s�t� ��r�� � ������

This is a very important result because it implies that the time�dependence of the wave�

eld is everywhere given by the same source�time function s�t�� In a ray�geometric ap�
proximation the shape of the waveforms is everywhere the same� The are no frequency�
dependent e�ects in a ray geometric approximation�

Problem i� Explain why this implies that geometric ray theory can not be used to explain
why the sky is blue�

The absence of any frequency�dependent wave propagation e�ects is both the strength
and the weakness is ray theory� It is a strength because the wave�
elds can be computed
in a simple way once ��r� and A�r� are known� The theory also tells us that this is an
adequate description of the wave�
eld as long as the frequency is su�ciently high that
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� � LA and � � L�� However� many wave propagation phenomena are in practice
frequency�dependent� it is the weakness of ray theory that it cannot account for these
phenomena�

According to expression ������ the function ��r� accounts for the time�delay of the
waves to travel to the point r� Therefore� ��r� is the travel time of the wave�
eld� The
travel time is described by the di�erential equation ������� this equation is called the
eikonal equation�

Problem j� Show that it follows from the eikonal equation that r� can be written as�

r� � �n�c � ������

where �n is a unit vector� Show also that �n is perpendicular to the surface � �constant�

The vector �n de
nes the direction of the rays along which the wave energy propagates
through the medium� Taking suitable derivatives of expression ������ one can derive the
equation of kinematic ray�tracing� This is a second�order di�erential equation for the
position of the rays� details are given by Virieux�	�� or Aki and Richards����

Once ��r� is known� one can compute the amplitude A�r� from equation ������� We
have not yet applied any scale�analysis to this expression� We will not do this� because
it can be solved exactly� Let us 
rst simplify this di�erential equation by considering the
dependence on the density � in more detail�

Problem k� Write A���B� where the constant � is not yet determined� Show that the
transport equation results in the following di�erential equation for B�r��

���� �� �r� � r��B � �� �rB � r�� � �Br�� � � � ����	�

Choose the constant � in such a way that the gradient of the density disappears from
the equation and show that the remaining terms can be written as r � �B�r�� � ��
Show 
nally using ������ that this implies the following di�erential equation for the
amplitude�

r �
�

�

�c
A��n



� � � ������

Equation ������ states that the divergence of the vector
�
A���c

�
�n vanishes� hence the �ux

of this vector through any closed surface that does not contain the source of the wave�
eld
vanishes� see section 	��� This is not surprising� because the vector

�
A���c

�
�n accounts

for the energy �ux of acoustic waves� Expression ������ implies that the net �ux of this
vector through any closed surface is equal to zero� This means that all the energy that
�ows in the surface must also �ow out through the surface again� The transport equation
in the form ������ is therefore a statement of energy conservation� Virieux�	�� or Aki and
Richards��� show how one can compute this amplitude once the location of rays is known�

An interesting complication arises when the energy is focussed in a point or on a surface
in space� Such an area of focussing is called a caustic� A familiar example of a caustic is
the rainbow� One can show that at a caustic� the ray�geometric approximation leads to
an in
nte amplitude of the wave�
eld �	���
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Problem l� Show that when the amplitude becomes in
nite in a 
nite region of space
the condition �� LA must be violated�

This means that ray theory is not valid in or near a caustic� A clear account of the physics
of caustics can be found in refs� ��� and ����� The former reference contains many beautiful
images of caustics�

��� Is there convection in the Earth�s mantle	

The Earth is a body that continuously looses heat to outer space� This heat is a remnant
of the heat that has been converted from the gravitational energy during the Earth�s
formation� but more importantly this heat is generated by the decay of unstable isotopes
in the Earth� This heat is transported to the Earth�s surface� and the question we aim to
address here is� is the heat transported by conduction or by convection�

Hot

Cold Cold

Hot

Conduction Convection

Figure ���� Two alternatives for the heat transport in the Earth� In the left panel the
material does not move and heat is transported by conduction� In the right panel the
material �ows and heat is tranported by convection�

If the material in the Earth would not �ow� heat could only be transported by con�
duction� This means that it is the average transfer of the molecular motion from warm
regions to cold regions that is responsible for the transport of heat� On the other hand� if
the material in the Earth would �ow� heat could be carried by the �ow� This process is
called convection�

The starting point of the analysis is the heat equation ����	� of section ���� In the
absence of source terms this equation can for the special case of a constant heat conduction
coe�cient � be written as�

�T

�t
�r � �vT � � �r�T � ������

The term r � �vT � describes the convective heat transport while the term �r�T accounts
for the conductive heat transport�

Problem a� Let the characteristic velocity be denoted by V � the characteristic length
scale by L� and the characteristic temperature perturbation by T � Show that the
ratio of the convective heat transport to the conductive heat transport is of the
following order�

convective heat transport

conductive heat transport
� V L

�
������
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This estimate gives the ratio of the two modes of heat transport� but it does not help
us too much yet because we do not know the order of magnitude V of the �ow velocity�
This quantity can be obtained from the Navier�Stokes equation of section ��	�

���v�

�t
�r � ��vv� � �r�v � F ������ again

The force F in the right hand side is the buoyancy force that is associated with the �ow
while the term �r�v accounts for the viscosity of the �ow with viscosity coe�cient �� The
mantle of Earth�s is extremely viscous and mantle convection �if it exists at all� is a very
slow process� We will therefore assume that the inertia term ���v���t and the advection
term r � ��vv� are small compared to the viscous term �r�v� �This assumption would
have to be supported by a proper scale analysis�� Under this assumption� the mantle �ow
is predominantly governed by a balance between the viscous force and the buoyancy force�

�r�v � �F � ������

The next step is to relate the buoyancy force in the temperature perturbation T � A
temperature perturbation T from a reference temperature T� leads to a density perturba�
tion � from the reference temperature �� given by�

� � ��T � ������

In this expression � is the thermal expansion coe�cient that accounts for the expansion
or contraction of material due to temperature changes�

Problem b� Explain why for most materials � � �� A notable exception is water at
temperatures below �

�
C�

Problem c� Write � �T� � T � � ��� � and use the Taylor expansion ������ of section ���
truncated after the 
rst order term to show that the expansion coe�cient is given
by � � �����T �

Problem d� The buoyancy forces is given by Archimedes� law which states that this force
equals the weight of the displaced �uid� Use this result� ������ and ������ in a scale
analysis to show that the velocity is of the following order�

V � g�TL�

�
� ������

where g is the acceleration of gravity�

Problem e� Use this to derive that the ratio of the convective heat transport to the
conductive heat transport is given by�

convective heat transport

conductive heat transport
� g�TL�

��
������
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The right hand side of this expression is dimensionless� this term is called the Rayleigh
number which is denoted by Ra�

Ra � g�TL�

��
� ������

The Rayleigh number is an indicator for the mode of heat transport� When Ra
 � heat
is predominantly transported by convection� When the thermal expansion coe�cient � is
large and when the viscosity � and the heat conduction coe�cient � are small the Rayleigh
number is large and heat is transported by convection�

Problem f� Explain physically why a large value of � and small values of � and � lead
to convective heat transport rather than conductive heat transport�

Dimensionless numbers play a crucial role in �uid mechanics� A discussion of the Rayleigh
number and other dimesion�less diagnostics such as the Prandtl number and the Grashof
number can be found in section ���� of Tritton�	��� The implications on the di�erent values
of the Rayleigh number on the character of convection in the Earth�s mantle is discussed
in refs� ���� and �	��� Of course� if one want to use a scale analysis one must know the
values of the physical properties involved� For the Earth�s mantle� the thermal expansion
coe�cient � is not very well known because of the complications involved in laboratory
measurements of the thermal expansion under the extremely high ambient pressure of
Earth�s mantle��	��

��� Making an equation dimensionless

Usually the terms in the equations that one wants to analyze have a physical dimension
such as temperature� velocity� etc� It can sometimes be useful to re�scale all the variables
in the equation in such a way that the rescaled variables are dimensionless� This is
convenient when setting up numerical solutions of the equations� but in general it also
introduces dimensionless numbers that govern the physics of the problem in a natural
way� As an example we will apply this technique here to the heat equation �������

Any variable can be made dimensionless by dividing out a constant that has the di�
mension of the variable� As an example� let the characteristic temperature variation be
denoted by T�� the dimensional temperature perturbation can then be written as�

T � T�T
�
� ������

The quantity T
�
is dimesion�less� In this section� dimensionless variables are denoted with

a prime� Of course we may not know all the suitable scale factors a�priori� For example�
let the characteristic time used for scale the time�variable be denoted by � �

t � �t
�
� ����	�

We can still leave � open and later choose a value that simpli
es the equations as much
as possible� Of course when we want to express the heat equation ������ in the new time
variable we need to specify how the dimensional time derivative ���t is related to the
dimensionless time derivative ���t

�
�
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Problem a� Use the chain�rule for di�erentiation to show that

�

�t
�

�

�

�

�t�
� ������

Problem b� Let the velocity be scaled with the characteristic velocity �������

v �
g�T�L

�

�
v
�
� ������

and let the position vector be scaled with the characteristic length L of the system�
r � Lr

�
� Use a result similar to ������ to convert the spatial derivatives to the new

space coordinate and re�scale all terms in the heat equation ������ to derive the
following dimensionless form of this equation

L�

��

�T
�

�t�
�
g�T�L

�

��
r� �

�
v
�
T

�
�
� r��T

�
� ������

where r�
is the gradient operator with respect to the dimensionless coordinates r

�
�

At this point we have not speci
ed the time�scale � for the scaling of the time variable
yet� The equation ������ simpli
es as much as possible when we choose � in such a way
that the constant that multiplies �T

�
��t

�
is equal to unity�

� � L��� � ������

Problem c� Suppose heat would only be transported by conduction� �T��t � �r�T �
Use a scale analysis to show that � given by ������ is the characteristic time�scale
for heat conduction�

This means that the scaling � of the time variable expresses the time in units of the
characteristic di�usion time for heat�

Problem d� Show that with this choice of � the dimensionless heat equation is given by�

�T
�

�t�
�Rar� �

�
v
�
T

�
�
� r��T

�
� ������

where Ra is the Rayleigh number�

The advantage of this dimensionless equation over the original heat equation is that
������ contains only a single constant Ra whereas the dimensional heat equation ������
depends on a large number of constant� In addition� the scaling of the heat equation has
led in a natural way to the key role of the Rayleigh number in the mode of heat transport
in a �uid�

Problem e� Use ������ to show that convective heat transport dominates over conductive
heat transport when Ra
 ��
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Problem f� Suppose that this condition is satis
ed and that heat conduction plays a
negligible role� Show that the characteristic time�scale of the dimensionless time t

�

is much less than unity� Give a physical interpretation of this result�

Transforming dimensional equations to dimensionless equations is often used to derive
the relevant dimensionless physical constants of the system as well as for setting up al�
gorithms for solving systems numerically� The basic rationale behind this approach is
that the physical units that are used are completely arbitrary� It is immaterial whether
we express length in meters or in inches� but of course the numerical values of a given
length changes when we change form meters to inches� Making the system dimensionless
removes all physical units from the system because all the resulting terms in the equation
are dimensionless�



Chapter �	

Linear algebra

In this chapter several elements of linear algebra are treated that have important appli�
cations in �geo�physics or that serve to illustrate methodologies used in other areas of
mathematical physics

���� Projections and the completeness relation

In mathematical physics� projections play an extremely important role� This is not only
in linear algebra� but also in the analysis of linear systems such as linear 
lters in data
processing �see section ������ and the analysis of vibrating systems such as the normal
modes of the earth� Let us consider a vector v that we want to project along a unit vector
�n� see 
gure ������� In the examples of this section we will work in a three�dimensional
space� but the arguments presented here can be generalized to any number of dimensions�

vP

n̂

v

v

ϕ

Figure ����� De
nition of the geometric variables for the projection of a vector�

We will denote the projection of v along �n as Pv� where P stands for the projection
operator� In a three�dimensional space this operator can be represented by a ��� matrix�
It is our goal to 
nd the operator P in terms of the unit vector �n as well as the matrix

���
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form of this operator� By de
nition the projection of v is directed along �n� hence�

Pv �C�n � ������

This means that we know the projection operator once the constant C is known�

Problem a� Express the length of the vector Pv in the length of the vector v and the
angle 	 of 
gure ������ and express the angle 	 in the inner product of the vectors
v and �n to show that� C � ��n � v��

Inserting this expression for the constant C in ������ leads to an expression for the pro�
jection Pv�

Pv � �n ��n � v� � ������

Problem b� Show that the component v� perpendicular to �n as de
ned in 
gure ������
is given by�

v� � v � �n ��n � v� � ������

Problem c� As an example� consider the projection along the unit vector along the x�
axis� �n � �x� Show using the equations ������ and ������ that in that case�

Pv �

�
B� vx

�
�

�
CA and v� �

�
B� �

vy
vz

�
CA �

Problem d� When we project the projected vector Pv once more along the same unit
vector �n the vector will not change� We therefore expect that P�Pv� � Pv� Show
using expression ������ that this is indeed the case� Since this property holds for
any vector v we can also write it as�

P� � P � ������

Problem e� If P would be a scalar the expression above would imply that P is the
identity operator I� Can you explain why ������ does not imply that P is the
identity operator�

In expression ������ we derived the action of the projection operator on a vector v� Since
this expression holds for any vector v it can be used to derive an explicit form of the
projection operator�

P � �n�nT � ������

This expression should not be confused withe the inner product ��n � �n�� instead it denotes
the dyad of the vector �n and itself� The superscript T denotes the transpose of a vector or
matrix� The transpose of a vector �or matrix� is found by interchanging rows and columns�
For example� the transpose AT of a matrix A is de
ned by�

AT
ij � Aji � ����	�
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and the transpose of the vector u is de
ned by�

uT � �ux� uy� uz� when u �

�
B� ux

uy
uz

�
CA � ������

i�e� taking the transpose converts a column vector into a row vector� The projection
operator P is written in ������ as a dyad� In general the dyad T of two vectors u and v

is de
ned as
T � uvT � ������

This is an abstract way to de
ne a dyad� it simply means that the components Tij of the
dyad are de
ned by

Tij � uivj � ������

where ui is the i�component of u and vj is the j�component of v�
In the literature you will 
nd di�erent notations for the inner�product of two vectors�

The inner product of the vectors u and v is sometimes written as

�u � v� � uTv � �������

Problem f� Considering the vector v as a � � � matrix and the vector vT as a � � �
matrix� show that the notation used in the right hand sides of ������� and ������ is
consistent with the normal rules for matrix multiplication�

Equation ������ relates the projection operator P to the unit vector �n� From this the
representation of the projection operator as a � � ��matrix can be found by computing
the dyad �n�nT �

Problem g� Show that the operator for the projection along the unit vector �n � �p
��

�
B� �

�
�

�
CA

is given by

P �
�

��

�
B� � � �

� � 	
� 	 �

�
CA �

Verify explicitly that for this example P�n � �n� and explain this result�

Up to this point we projected the vector v along a single unit vector �n� Suppose we
have a set of mutually orthogonal unit vectors �ni� The fact that these unit vectors are
mutually orthogonal means that di�erent unit vectors are perpendicular to each other�
��ni��nj� � � when i �� j� We can project v on each of these unit vectors and add these
projections� This gives us the projection of v on the subspace spanned by the unit vectors
�ni�

Pv �
X
i

�ni ��ni � v� � �������

When the unit vectors �ni span the full space we work in� the projected vector is identical
to the original vector� To see this� consider for example a three�dimensional space� Any
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vector can be decomposed in the components along the x� y and z�axis� this can be written
as�

v �vx�x�vy�y�vz�z � �x ��x � v� ��y ��y � v� � �z ��z � v� � �������

note that this expression has the same form as �������� This implies that when we sum
in ������� over a set of unit vectors that completely spans the space we work in� the right
hand side of ������� is identical to the original vector v� i�e�

P
i �ni ��ni � v� � v� The

operator of the left hand side of this equality is therefore identical to the identity operator
I�

NX
i��

�ni�n
T
i � I � �������

Keep in mind that N is the dimension of the space we work in� if we sum over a smaller
number of unit vectors we project on a subspace of the N �dimensional space� Expression
������� expresses that the vectors �ni �with i � �� � � � � N� can be used to give a complete
representation of any vector� Such a set of vectors is called a complete set� and expression
������� is called the closure relation�

Problem h� Verify explicitly that when the unit vectors �ni are chosen to be the unit
vectors �x� �y and �z along the x� y and z�axis that the right hand side of ������� is
given by the �� � identity matrix�

There are of course many di�erent ways of choosing a set of three orthogonal unit vectors
in three dimensions� Expression ������� should hold for every choice of a complete set of
unit vectors�

Problem i� Verify explicitly that when the unit vectors �ni are chosen to be the unit
vectors �r� �� and �� de
ned in equations ���	� for a system of spherical coordinates
that the right hand side of ������� is given by the �� � identity matrix�

���� A projection on vectors that are not orthogonal

In the previous section we considered the projection on a set of orthogonal unit vectors�
In this section we consider an example of a projection on a set of vectors that is not
necessarily orthogonal� Consider two vectors a and b in a three�dimensional space� These
two vectors span a two�dimensional plane� In this section we determine the projection of
a vector v on the plane spanned by the vectors a and b� see 
gure ������ for the geometry
of the problem� The projection of v on the plane will be denoted by vP �

By de
nition the projected vector vP lies in the plane spanned by a and b� this vector
can therefore be written as�

vP � �a��b � �������

The task of 
nding the projection can therefore be reduced to 
nding the two coe�cients
� and �� These constants follow from the requirement that the vector joining v with its
projection vP � Pv is perpendicular to both a and b� see 
gure �������
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Pv

v

a.

.

.
b

Figure ����� De
nition of the geometric variables for the projection on a plane�

Problem a� Show that this requirement is equivalent with the following system of equa�
tions for � and ��

� �a � a� � � �a � b� � �a � v�
� �a � b� � � �b � b� � �b � v� �������

Problem b� Show that the solution of this system is given by

� �

�
b�a� �a � b�b� � v
a�b� � �a � b�� �

� �

�
a�b� �a � b�a� � v
a�b� � �a � b�� � �����	�

where a denotes the length of the vector a� a � jaj� and a similar notation is used
for the vector b�

Problem c� Show using ������� and �����	� that the projection operator for the projec�
tion on the plane �Pv � vP � is given by

P �
�

a�b� � �a � b��
�
b�aaT � a�bbT � �a � b�

�
abT � baT

��
� �������

This example shows that projection on a set of non�orthogonal basis vectors is much more
complex than projecting on a set of orthonormal basis vectors� A di�erent way of 
nding
the projection operator of expression ������� is by 
rst 
nding two orthogonal unit vectors
in the plane spanned by a and b and then using expression �������� One unit vector can
be found by dividing a by its length to give the unit vector �a � a� jaj� The second unit
vector can be found by considering the component b� of b perpendicular to �a and by
normalizing the resulting vector to form the unit vector �b� that is perpendicular to �a�
see 
gure �������
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Problem d� Use expression ������ to 
nd �b� and show that the projection operator P
of expression ������� can also be written as

P � �a�aT � �b��bT� � �������

Note that this expression is consistent with ��������

b

n^

a^

v

.

.

. Pv

Figure ����� De
nition of the normal vector to a plane�

Up to this point the plane was de
ned by the vectors a and b �or equivalently by the
orthonormal unit vectors �a and �b��� However� a plane can also be de
ned by the unit
vector �n that is perpendicular to the plane� see 
gure ������� In fact� the unit vectors �a�
�b� and �n form a complete orthonormal basis of the three�dimensional space� According
to equation ������� this implies that �a�aT��b��bT���n�nT� I� With ������� this implies that
the projection operator P can also be written as

P � I� �n�nT � �������

Problem e� Give an alternative derivation of this result� Hint� let the operator in equa�
tion ������� act on an arbitrary vector v�

���� The Householder transformation

Linear systems of equations can be solved in a systematic way by sweeping columns of the
matrix that de
nes the system of equations� As an example consider the system

x� y � �z � �
�x� �z � �

�x� y � �z � �
�������
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This system of equations will be written here also as��
B� � � � j �
�� � � j �
� � � j �

�
CA �������

This is nothing but a compressed notation of the equations �������� the matrix shown
in ������� is called the augmented matrix because the matrix de
ning the left hand side
of ������� is augmented with the right hand side of �������� The linear equations can
be solved by adding the 
rst row to the second row and subtracting the 
rst row twice
from the third row� the resulting system of equations is then represented by the following
augmented matrix� �

B� � � � j �
� � � j 	
� �� �� j ��

�
CA �������

Note that in the 
rst column all elements below the 
rst elements are equal to zero� By
adding the second row to the third row we can also make all elements below the second
element in the second column equal to zero��

B� � � � j �
� � � j 	
� � � j �

�
CA �������

The system is now in upper�triangular form� this is a di�erent way of saying that all matrix
elements below the diagonal vanish� This is convenient because the system can now be
solved by backsubstitution� To see how this works note that the augmented matrix �������
is a shorthand notation for the following system of equations�

x� y � �z � �
y � �z � 	

z � �
�������

The value of z follows from the last equation� given this value of z the value of y follows
from the middle equations� given y and z the value of x follows from the top equation�

Problem a� Show that the solution of the linear equations is given by x � y � z � ��

For small systems of linear equations this process for solving linear equations can be
carried out by hand� For large systems of equations this process must be carried out on a
computer� This is only possible when one has a systematic and e�cient way of carrying
out this sweeping process� Suppose we have an N �N matrix A�

A �

�
BBBB�

a�� a�� � � � a�N
a�� a�� � � � a�N
���

���
� � �

���
aN� aN� � � � aNN

�
CCCCA � �������
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We want to 
nd an operator Q such that when A is multiplied with Q all elements in the

rst column are zero except the element above or on the diagonal� i�e� we want to 
nd Q
such that�

QA �

�
BBBB�

a
�

�� a
�

�� � � � a
�

�N

� a
�

�� � � � a
�

�N
���

���
� � �

���

� a
�

N� � � � a
�

NN

�
CCCCA � �����	�

This problem can be formulated slightly di�erently� suppose we denote the 
rst columns
of A by the vector u�

u �

�
BBBB�

a��
a��
���

aN�

�
CCCCA � �������

The operator Q that we want to 
nd maps this vector to a new vector which only has a
nonzero component in the 
rst element�

Qu �

�
BBBB�

a
�

��

�
���
�

�
CCCCA � a

�

���e� � �������

where �e� is the unit vector in the x��direction�

�e� �

�
BBBB�

�
�
���
�

�
CCCCA �������

The desired operator Q can be found with a Householder transformation� For a given
unit vector �n the Householder transformation is de
ned by�

Q � I� ��n�nT � �������

Problem b� Show that the Householder transformation can be written as Q � I� �P�
where P is the operator for projection along �n�

Problem c� It follows from ������ that any vector v can be decomposed in a component
along �n and a perpendicular component� v � �n ��n � v� � v�� Show that after the
Householder transformation the vector is given by�

Qv � ��n ��n � v� � v� �������

Problem d� Convince yourself that the Householder transformation of v is correctly
shown in 
gure �������

Problem e� Use equation ������� to show that Q does not change the length of a vector�
Use this result to show that a

�

�� in equation ������� is given by a
�

�� � juj�



����� THE HOUSEHOLDER TRANSFORMATION ���

v

^n

n(n  v ).^^

Qv

v

Figure ����� Geometrical interpretation of the Householder transformation�

With ������� this means that the Householder transformation should satisfy

Qu � juj�e� � �������

Our goal is now to 
nd a unit vector �n such that this expression is satis
ed�

Problem f� Use ������� to show if Q satis
es the requirement ������� that �n must satisfy
the following equation�

��n ��n � �u� � �u� �e� � �������

in this expression �u is the unit vector in the direction u�

Problem g� Equation ������� implies that �n is directed in the direction of the vector
�u� �e�� therefore �n can be written as �n �C ��u� �e��� with C an undetermined con�
stant� Show that ������� implies that C � ��

p
� ��� ��u � �e���� Also show that this

value of C indeed leads to a vector �n that is of unit length�

This value of C implies that the unit vector �n to be used in the Householder transformation
������� is given by

�n �
�u� �e�p

� ��� ��u � �e���
� �������

To see how the Householder transformation can be used to render the matrix elements be�
low the diagonal equal to zero apply the transformation Q to the linear equation Ax � y�

Problem h� Show that this leads to a new system of equations given by�
BBBB�
juj a

�

�� � � � a
�

�N

� a
�

�� � � � a
�

�N
���

���
� � �

���

� a
�

N� � � � a
�

NN

�
CCCCAx � Qy � �������
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A second Householder transformation can now be applied to render all elements in the
second column below the diagonal element a��� equal to zero� In this way� all the columns of
A can successively be swiped� Note that in order to apply the Householder transformation
one only needs to compute the expressions ������� and ������� one needs to carry out a
matrix multiplication� These operations can be carried out e�ciently on computers�

���� The Coriolis force and Centrifugal force

As an example of working with the cross�product of vectors we consider the inertia forces
that occur in the mechanics of rotating coordinate systems� This is of great importance in
the earth sciences� because the rotation of the earth plays a crucial role in the motion of
wind and currents in the atmosphere and in the ocean� In addition� the earth�s rotation
is essential for the generation of the magnetic 
eld of the earth in the outer core�

In order to describe the motion of a particle in a rotating coordinate system we need to
characterize the rotation somehow� This can be achieved by introducing a vector � that
is aligned with the rotation axis and whose length is given by rate of rotation expressed
in radians per seconds�

Problem a� Compute the direction of � and the length % � j�j for the earth�s rotation�

q=

q.b

q

Ω

Figure ����� Decomposition of a vector in a rotating coordinate system�

Let us assume we are considering a vector q that is constant in the rotating coordinate
system� In a non�rotating system this vector changes with time because it co�rotates with
the rotating system� The vector q can be decomposed in a component q�� along the
rotation vector and a component q� to the rotation vector� In addition� a vector b is
de
ned in 
gure ������ that is perpendicular to both q� and � in such a way that �� q�
and b form a right handed orthogonal system�
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Problem b� Show that�

q�� � ��
�
�� � q

�
�

q� � q� ��
�
�� � q

�
b � ��� q

�����	�

Problem c� In a 
xed non�rotating coordinate system� the vector q rotates� hence it
position is time dependent� q � q�t�� Let us consider how the vector changes over a
time interval "t� Since the component q�� is at all times directed along the rotation
vector �� it is constant in time� Over a time interval "t the coordinate system
rotates over an angle %"t� Use this to show that the component of q perpendicular
to the rotation vector satis
es�

q��t�"t� � cos �%"t� q��t� � sin �%"t� b � �������

and that time evolution of q is therefore given by

q�t�"t� � q�t� � �cos �%"t�� �� q��t� � sin �%"t� b �������

Problem d� The goal is to obtain the time�derivative of the vector q� This quantity can
be computed using the rule dq�dt � lim�t���q�t � "t� � q�t���"t� Use this� and
equation ������� to show that

�q �%b � �������

where the dot denotes the time�derivative� Use �����	� to show that the time deriva�
tive of the vector q is given by

�q � �� q � �������

At this point the vector q can be any vector that co�rotates with the rotating coordinate
system� In this rotating coordinate system� three Cartesian basis vectors �x� �y and �z can
be used as a basis to decompose the position vector�

rrot � x�x� y�y � z�z � �������

Since these basis vectors are constant in the rotating coordinate system� they satisfy
������� so that�

d�x�dt� �� �x �
d�y�dt� �� �y �
d�z�dt� �� �z �

�������

It should be noted that we have not assumed that the position vector rrot in �������
rotates with the coordinate system� we only assumed that the unit vectors �x� �y and �z

rotate with the coordinate system� Of course� this will leave an imprint on the velocity
and the acceleration� In general the velocity and the acceleration follow by di�erentiating
������� with time� If the unit vectors �x� �y and �z would be 
xed� they would not contribute
to the time derivative� However� the unit vectors �x� �y and �z rotate with the coordinate
system and the associated time derivative is given by ��������
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Problem e� Di�erentiate the position vector in ������� with respect to time and show
that the velocity vector v is given by�

v � !x�x� !y�y � !z�z��� r � �������

The terms !x�x � !y�y � !z�z is the velocity as seen in the rotating coordinate system� this
velocity is denoted by vrot� The velocity vector can therefore be written as�

v � vrot��� r � �������

Problem f� Give an interpretation of the last term in this expression�

Problem g� The acceleration follows by di�erentiation expression ������� for the velocity
once more with respect to time� Show that the acceleration is given by

a ��x�x� �y�y � �z�z���� � !x�x� !y�y � !z�z� ��� ��� r� � �������

The terms �x�x � �y�y � �z�z in the right hand side denote the acceleration as seen in the
rotating coordinate system� this quantity will be denoted by arot� The terms !x�x� !y�y� !z�z
again denote the velocity vrot as seen in the rotating coordinate system� The left hand
side is by Newton�s law equal to F�m� where F is the force acting on the particle�

Problem h� Use this to show that in the rotating coordinate system Newton�s law is
given by�

marot � F��m�� vrot �m�� ��� r� � �����	�

The rotation manifests itself through two additional forces� The term ��m�� vrot de�
scribes the Coriolis force and the term �m�� ��� r� describes the centrifugal force�

Problem i� Show that the centrifugal force is perpendicular to the rotation axis and is
directed from the rotation axis to the particle�

Problem j� Air �ows from high pressure areas to low pressure areas� As air �ows in the
northern hemisphere from a high pressure area to a low�pressure area� is it de�ected
towards the right or towards the left when seen from above�

Problem k� Compute the magnitude of the centrifugal force and the Coriolis force you
experience due to the earth�s rotation when you ride your bicycle� Compare this
with the force mg you experience due to the gravitational attraction of the earth�
It su�ces to compute orders of magnitude of the di�erent terms� Does the Coriolis
force de�ect you on the northern hemisphere to the left or to the right� Did you
ever notice a tilt while riding your bicycle due to the Coriolis force�

In meteorology and oceanography it is often convenient to describe the motion of air or
water along the earth�s surface using a Cartesian coordinate system that rotates with the
earth with unit vectors pointing in the eastwards ��e��� northwards ��e�� and upwards ��e���
see 
gure ����	�� The unit vectors can be related to the unit vectors �r�  	 and  � that are
de
ned in equation ����� of section ������ Let the velocity in the eastward direction be
denoted by u� the velocity in the northward direction by v and the vertical velocity by w�
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^e1

^e2

^e 3

θ

Ω

Figure ���	� De
nition of a local Cartesian coordinate system that is aligned with the
earth�s surface�

Problem l� Show that�
�e� �  	 � �e� � � � � �e� � �r � �������

and that the velocity in this rotating coordinate system is given by

v �u�e� � v�e� � w�e� � �������

Problem m� We will assume that the axes of the spherical coordinate system are chosen
in such a way that the direction � � � is aligned with the rotation axis� This is a
di�erent way of saying the rotation vector is parallel to the z�axis� � � %�z� Use
the 
rst two expressions of equation ������ of section ����� to show that the rotation
vector has the following expansion in the unit vectors �r and  ��

� �%
�
cos � �r� sin �  �

�
� �������

Problem n� In the rotating coordinate system� the Coriolis force is given by Fcor �
��m�� v� Use the expressions ��������������� and the relations ������ of section
����� for the cross product of the unit vectors to show that the Coriolis force is given
by

Fcor � �m%sin � u �r��m%cos � u  � � �m%�v cos � � w sin ��  	 � �������

Problem o� Both the ocean or atmosphere are shallow in the sense that the vertical
length scale �a few kilometers for the ocean and around �� kilometers for the atmo�
sphere� is much less than the horizontal length scale� This causes the vertical velocity
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to be much smaller than the horizontal velocity� For this reason the vertical velocity
w will be neglected in expression �������� Use this approximation and the de
nition
������� to show that the horizontal component aHcor of the Coriolis acceleration is in
this approach given by�

aHcor � �f�e� � v � �������

with

f � �%cos � �������

This result is widely used in meteorology and oceanography� because equation �������
states that in the Cartesian coordinate system aligned with the earth�s surface� the Coriolis
force generated by the rotation around the true earth�s axis of rotation is identical to the
Coriolis force generated by the rotation around a vertical axis with a rotation rate given
by % cos �� This rotation rate is largest at the poles where cos � � 	�� and this rotation
rate vanishes at the equator where cos � � �� The parameter f in equation ������� acts as
a coupling parameter� it is called the Coriolis parameter� �In the literature on geophysical
�uid dynamics one often uses latitude rather than the co�latitude � that is used here� for
this reason one often sees a sin�term rather than a cos�term in the de
nition of the Coriolis
parameter�� In many applications one disregards the dependence of f on the co�latitude �

in that approach f is a constant and one speaks of the f �plane approximation�However� the
dependence of the Coriolis parameter on � is crucial in explaining a number of atmospheric
and oceanographic phenomena such as the propagation of Rossby waves and the formation
of the Gulfstream� In a further re
nement one linearizes the dependence of the Coriolis
parameter with co�latitude� This leads to the ��plane approximation� Details can be found
in the books of Holton ���� and Pedlosky ��	��

���� The eigenvalue decomposition of a square matrix

In this section we consider the way in which a square N � N matrix A operates on a
vector� Since a matrix describes a linear transformation from a vector to a new vector�
the action of the matrix A can be quite complex� However� suppose the matrix has a set
of eigenvectors �v�n
� We assume these eigenvectors are normalized� hence a caret is used
in the notation �v�n
� These eigenvectors are extremely useful because the action of A on
an eigenvector �v�n
 is very simple�

A�v�n
 � �n�v
�n
 � �������

where �n is the eigenvalue of the eigenvector �v�n
� When A acts on an eigenvector� the
resulting vector is parallel to the original vector� the only e�ect of A on this vector is
to either elongate the vector �when �n 
 ��� compress the vector �when � � �n � �� or
reverse the vector �when �n � ��� We will restrict ourselves to matrices that are real and
symmetric�

Problem a� Show that for such a matrix the eigenvalues are real and the eigenvectors
are orthogonal�



����� THE EIGENVALUE DECOMPOSITION OF A SQUARE MATRIX ���

The fact that the eigenvectors �v�n
 are normalized and mutually orthogonal can be ex�
pressed as �

�v�n
 � �v�m

�
� 
nm � �������

where 
nm is the Kronecker delta� this quantity is equal to � when n � m and is equal to
zero when n �� m� The eigenvectors �v�n
 can be used to de
ne the columns of a matrix V�

V �

�
BB�

���
���

���

�v��
 �v��
 � � � �v�N


���
���

���

�
CCA � �������

this de
nition implies that

Vij � v
�j

i � �����	�

Problem b� Use the orthogonality of the eigenvectors �v�n
 �expression �������� to show
that the matrix V is unitary� i�e� to show that

VTV � I � �������

where I is the identity matrix with elements Ikl � 
kl� The superscript T denotes
the transpose�

Since there are N eigenvectors that the orthonormal in an N �dimensional space� these
eigenvectors form a complete set and analogously to ������� the completeness relation can
be expressed as

I �
NX
n��

�v�n
�v�n
T � �������

When the terms in this expression operate on a arbitrary vector p� an expansion of p in
the eigenvectors is obtained that is completely analogous to equation ��������

p �
NX
n��

�v�n
�v�n
Tp �
NX
n��

�v�n

�
�v�n
 � p

�
� �������

This is a useful expression� because is can be used to simplify the e�ect of the matrix A
on an arbitrary vector p�

Problem c� Let A act on expression ������� and show that�

Ap �
NX
n��

�n�v
�n

�
�v�n
 � p

�
� ����	��

This expression has an interesting geometric interpretation� When A acts on p� the vector

p is projected on each of the eigenvectors� this is described by the term
�
�v�n
 � p

�
� The

corresponding eigenvector �v�n
 is multiplied with the eigenvalue �v�n
 � �n�v
�n
 and the

result is summed over all the eigenvectors� The action of A can thus be reduced to
a projection on eigenvectors� a multiplication with the corresponding eigenvalue and a
summation over all eigenvectors� The eigenvalue �n can be seen as the sensitivity of the
eigenvector �v�n
 to the matrix A�
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Problem d� Expression ����	�� holds for every vector p� Use this to show that A can
be written as�

A �
NX
n��

�n�v
�n
�v�n
T � ����	��

Problem e� Show that with the de
nition ������� this result can also be written as�

A � V�VT � ����	��

where � is a matrix that has the eigenvalues on the diagonal and whose other
elements are equal to zero�

� �

�
BBBB�

�� � � � � �
� �� � � � �
���

���
� � �

���
� � �N

�
CCCCA � ����	��

Hint� let ����	�� act on a arbitrary vector� use the de
nition �����	� and see what
happens�

���� Computing a function of a matrix

The expansion ����	�� �or equivalently ����	��� is very useful because it provides a way
to compute the inverse of a matrix and to complete complex functions of a matrix such
as the exponential of a matrix� Let us 
rst use ����	�� to compute the inverse A�� of the
matrix� In order to do this we must know the e�ect of A�� on the eigenvectors �v�n
�

Problem a� Use the relation �v�n
 � I�v�n
 � A
��
A�v�n
 to show that �v�n
 is also an

eigenvector of the inverse A�� with eigenvalue ���n�

A���v�n
 �
�

�n
�v�n
 � ����	��

Problem b� Use this result and the eigenvector decomposition ������� to show that the
e�ect of A�� on a vector p can be written as

A��p �
NX
n��

�

�n
�v�n


�
�v�n
 � p

�
� ����	��

Also show that this implies that A�� can also be written as�

A��� V���VT � ����		�

with

����

�
BBBB�

���� � � � � �
� ���� � � � �
���

���
� � �

���
� � ���N

�
CCCCA � ����	��
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This is an important result� it means that once we have computed the eigenvectors and
eigenvalues of a matrix� we can compute the inverse matrix very e�ciently� Note that
this procedure gives problems when one of the eigenvalues vanishes because for such an
eigenvalue ���n is not de
ned� However� this makes sense
 when one �or more� of the
eigenvalues vanishes the matrix is singular and the inverse does not exist� Also when one
of the eigenvalues is nonzero but close to zero� the corresponding term ���n is very large�
in practice this gives rise to numerical instabilities� In this situation the inverse of the
matrix exist� but the result is very sensitive to computational �and other� errors� Such a
matrix is called poorly conditioned�

In general� a function of a matrix� such as the exponent of a matrix� is not de
ned�
However� suppose we have a function f�z� that operates on a scalar z and that this function
can be written as a power series�

f�z� �
X
p

apz
p � ����	��

For example� when f�z� � exp �z�� then f�z� �
P�

p�����p��z
p� Replacing the scalar z by

the matrix A the power series expansion can be used to de�ne the e�ect of the function
f when it operates on the matrix A�

f�A� �
X
p

apA
p � ����	��

Although this may seem to be a simple rule to compute f�A�� it is actually not so useful
because in many applications the summation ����	�� consists of in
nitely many terms and
the computation of Ap can computationally be very demanding� Again� the eigenvalue
decomposition ����	�� or ����	�� allows us to simplify the evaluation of f�A��

Problem c� Show that �v�n
 is also an eigenvector of Ap with eigenvalue ��n�
p� i�e� show

that

Ap�v�n
 � ��n�
p
�v�n
 � �������

Hint� 
rst compute A��v�n
 � A
�
A�v�n


�
� then A��v�n
� etc�

Problem d� Use this result to show that ����	�� can be generalized to�

Ap� V�pVT � �������

with �p given by

�p�

�
BBBB�

�p� � � � � �
� �p� � � � �
���

���
� � �

���
� � �pN

�
CCCCA � �������

Problem e� Finally use ����	�� to show that f�A� can be written as�

f�A� � Vf ���VT � �������
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with f ��� given by

f ����

�
BBBB�

f ���� � � � � �
� f ���� � � � �
���

���
� � �

���
� � f ��N �

�
CCCCA �������

Problem f� In order to revert to an explicit eigenvector expansion� show that ������� can
be written as�

f�A� �
NX
n��

f ��n� �v
�n
�v�n
T � �������

With this expression �or the equivalent expression �������� the evaluation of f�A� is simple
once the eigenvectors and eigenvalues of A are known� because in ������� the function f
only acts on the eigenvalues� but not on the matrix� Since the function f normally acts
on a scalar �such as the eigenvalues�� the eigenvector decomposition has obviated the
need for computing higher powers of the matrix A� However� from a numerical point of
view computing functions of matrices can be a tricky issue� For example� Moler and van

Loan���� give nineteen dubious ways to compute the exponential of a matrix�

���
 The normal modes of a vibrating system

An eigenvector decomposition is not only useful for computing the inverse of a matrix or
other functions of a matrix� it also provides a way for analyzing characteristics of dynamical
systems� As an example� a simple model for the oscillations of a vibrating molecule is
shown here� This system is the prototype of a vibrating system that has di�erent modes
of vibration� The natural modes of vibration are usually called the normal modes of that
system� Consider the mechanical system shown in 
gure ������� Three particles with
mass m are coupled by two springs with spring constants k� It is assumed that the three
masses are constrained to move along a line� The displacement of the masses from their
equilibrium positions are denoted with x�� x� and x� respectively� This mechanical model
can considered to be a grossly oversimpli
ed model of a tri�atomic molecule such as CO�

or H�O�

k1 k2 k3

m1 m2

x2 x3
x1

mm m

Figure ����� De
nition of variables for a simple vibrating system�

Each of the masses can experience an external force Fi� where the subscript i denotes
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the mass under consideration� The equations of motion for the three masses is given by�

m�x� � k�x� � x�� � F� �
m�x� � �k�x� � x�� � k�x� � x�� � F� �
m�x� � �k�x� � x�� � F� �

�����	�

For the moment we will consider harmonic oscillations� i�e� we assume that the both the
driving forces Fi and the displacements xi vary with time as exp�i�t� The displacements
x�� x� and x� can be used to form a vector x� and summarily a vector F can be formed
from the three forces F�� F� and F� that act on the three masses�

Problem a� Show that for an harmonic motion with frequency � the equations of motion
can be written in vector form as��

A�m��

k
I

�
x �

�

k
F � �������

with the matrix A given by

A �

�
B� � �� �
�� � ��
� �� �

�
CA � �������

The normal modes of the system are given by the patterns of oscillations of the system
when there is no driving force� For this reason� we set the driving force F in the right hand
side of ������� momentarily to zero� Equation ������� then reduces to a homogeneous sys�
tem of linear equations� such a system of equations can only have nonzero solutions when
the determinant of the matrix vanishes� Since the matrix A has only three eigenvalues�
the system can only oscillate freely at three discrete eigenfrequencies� The system can
only oscillate at other frequencies when it is driven by the force F at such a frequency�

Problem b� Show that the eigenfrequencies �i of the vibrating system are given by

�i �

s
k�i
m

� �������

where �i are the eigenvalues of the matrix A�

Problem c� Show that the eigenfrequencies of the system are given by�

�� � � � �� �

s
k

m
� �� �

s
�k

m
� �������

Problem d� The frequencies do not give the vibrations of each of the three particles
respectively� Instead these frequencies give the eigenfrequencies of the three modes
of oscillation of the system� The eigenvector that corresponds to each eigenvalue
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gives the displacement of each particle for that mode of oscillation� Show that these
eigenvectors are given by�

�v��
 �
�p
�

�
B� �

�
�

�
CA � �v��
 �

�p
�

�
B� �

�
��

�
CA � �v��
 �

�p
	

�
B� �
��
�

�
CA �������

Remember that the eigenvectors can be multiplied with an arbitrary constant� this
constant is chosen in such a way that each eigenvector has length ��

Problem e� Show that these eigenvectors satisfy the requirement ��������

Problem f� Sketch the motion of the three masses of each normal mode� Explain phys�
ically why the third mode with frequency �� has a higher eigenfrequency than the
second mode ���

Problem g� Explain physically why the second mode has an eigenfrequency �� �
p
k�m

that is identical to the frequency of a single mass m that is suspended by a spring
with spring constant k�

Problem h� What type of motion does the 
rst mode with eigenfrequency �� describe�
Explain physically why this frequency is independent of the spring constant k and
the mass m�

Now we know the normal modes of the system� we consider the case where the system is
driven by a force F that varies in time as exp�i�t� For simplicity it is assumed that the
frequency � of the driving force di�ers from the eigenfrequencies of the system� � �� �i�
The eigenvectors �v�n
 de
ned in ������� form a complete orthonormal set� hence both the
driving force F and the displacement x can be expanded in this set� Using ������� the
driving force can be expanded as

F �
�X

n��

�v�n
��v�n
 � F� � �������

Problem i� Write the displacement vector as a superposition of the normal mode dis�
placements� x �

P�
n�� cn�v

�n
� use the expansion ������� for the driving force and
insert these equations in the equation of motion ������� to solve for the unknown co�
e�cients cn� Eliminate the eigenvalues with ������� and show that the displacement
is given by�

x �
�

m

�X
n��

�v�n
��v�n
 � F�
���

n � ���
� �������

This expression has a nice physical interpretation� Expression ������� states that the total
response of the system can be written as a superposition of the di�erent normal modes
�the

P�
n�� �v

�n
 terms�� The e�ect that the force has on each normal mode is given by
the inner product ��v�n
 � F�� This is nothing but the component of the force F along the
eigenvector �v�n
� see equation ������� The term ��

�
��
n � ��

�
gives the sensitivity of the

system to a driving force with frequency �� this term can be called a sensitivity term�
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When the driving force is close to one of the eigenfrequencies� ��
�
��
n � ��

�
is very large�

In that case the system is close to resonance and the resulting displacement will be very
large� On the other hand� when the frequency of the driving force is very far from the
eigenfrequencies of the system� ��

�
��
n � ��

�
will be small and the system will give a very

small response� The total response can be seen as a combination of three basic operations�
eigenvector expansion� projection and multiplication with a response function� Note that
the same operations were used in the explanation of the action of a matrix A below
equation ����	���

���� Singular value decomposition

In section ������ the decomposition of a square matrix in terms of eigenvectors was treated�
In many practical applications� such as inverse problems� one encounters a system of
equations that is not square�

A	
z�
M �N
matrix

x	
z�
N

rows

� y	
z�
M
rows

�������

Consider the example that the vector x hasN components and that there areM equations�
In that case the vector y hasM components and the matrixA hasM rows and N columns�
i�e� it is an M �N matrix� A relation such as ������� which states that A�v�n
 � �n�v

�n


cannot possibly hold because when the matrix A acts on an N �vector it produces an
M �vector whereas in ������� the vector in the right hand side has the same number of
components as the vector in the left hand side� It will be clear that the theory of section
������ cannot be applied when the matrix is not square� However� it is possible to generalize
the theory of section ������ when A is not square� For simplicity it is assumed that A is
a real matrix�

In section ������ a single set of orthonormal eigenvectors �v�n
 was used to analyze the
problem� Since the vectors x and y in ������� have di�erent dimensions� it is necessary to
expand the vector x in a set of N orthogonal vectors �v�n
 that each have N components and
to expand y in a di�erent set of M orthogonal vectors �u�m
 that each have M components�
Suppose we have chosen a set �v�n
� let us de
ne vectors �u�n
 by the following relation�

A�v�n
 � �n�u
�n
 � �������

The constant �n should not be confused with an eigenvalue� this constant follows from the
requirement that �v�n
 and �u�n
 are both vectors of unit length� At this point� the choice
of �v�n
 is still open� The vectors �v�n
 will now be constrained that they satisfy in addition
to ������� the following requirement�

AT �u�n
 � �n�v
�n
 � �����	�

where AT is the transpose of A�

Problem a� In order to 
nd the vectors �v�n
 and �u�n
 that satisfy both ������� and
�����	�� multiply ������� with AT and use �����	� to eliminate �u�n
� Do this to show
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that �v�n
 satis
es� �
ATA

�
�v�n
 � �n�n�v

�n
 � �������

Use similar steps to show that �u�n
 satis
es�
AAT

�
�u�n
 � �n�n�u

�n
 � �������

These equations state that the �v�n
 are the eigenvectors of ATA and that the �u�n
 are the
eigenvectors of AAT �

Problem b� Show that both ATA and AAT are real symmetric matrices and show that
this implies that the basis vectors �v�n
 �n � �� � � � � N� and �u�m
 �m � �� � � � �M� are
both orthonormal� �

�v�n
 � �v�m

�
�
�
�u�n
 � �u�m


�
� 
nm � �������

Although ������� and ������� can be used to 
nd the basis vectors �v�n
 and �u�n
� these
expressions cannot be used to 
nd the constants �n and �n� because these expressions
state that the product �n�n is equal to the eigenvalues of ATA and AAT � This implies
that only the product of �n and �n is de
ned�

Problem c� In order to 
nd the relation between �n and �n� take the inner product of
������� with �u�n
 and use the orthogonality relation ������� to show that�

�n �
�
�u�n
 �A�v�n


�
� �������

Problem d� Show that for arbitrary vectors p and q that

�p �Aq� �
�
ATp � q

�
� �������

Problem e� Apply this relation to ������� and use �����	� to show that

�n � �n � �������

This is all the information we need to 
nd both �n and �n� Since these quantities are
equal� and since by virtue of ������� these eigenvectors are equal to the eigenvectors of
ATA� it follows that both �n and �n are given by the square�root of the eigenvalues of
ATA� Note that is follows from ������� that the product �n�n also equals the eigenvalues
of AAT � This can only be the case when ATA and AAT have the same eigenvalues�
Before we proceed let us show that this is indeed the case� Let the eigenvalues of ATA

be denoted by (n and the eigenvalues of AAT by )n� i�e� that

ATA�v�n
 � (n�v
�n
 � �������

and

AAT �u�n
 � )n�u
�n
 � �������
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Problem f� Take the inner product of ������� with �v�n
 to show that (n �
�
�v�n
 �ATA�v�n


�
�

use the properties ������� and ATT � A and ������� to show that ��n � (n� Use
similar steps to show that ��n � )n� With ������� this implies that AAT and ATA

have the same eigenvalues�

The proof that AAT and ATA have the same eigenvalues was not only given as a check
of the consistency of the theory� the fact that AAT and ATA have the same eigenvalues
has important implications� Since AAT is an M �M matrix� it has M eigenvalues� and
since ATA is an N � N matrix it has N eigenvalues� The only way for these matrices
to have the same eigenvalues� but to have a di�erent number of eigenvalues is that the
number of nonzero eigenvalues is given by the minimum of N and M � In practice� some
of the eigenvalues of AAT may be zero� hence the number of nonzero eigenvalues of AAT

can be less that M � By the same token� the number of nonzero eigenvalues of ATA can
be less than N � The number of nonzero eigenvalues will be denoted by P � It is not know
a�priori how many nonzero eigenvalues there are� but it follows from the arguments above
that P is smaller or equal than M and N � This implies that

P � min�N�M� � �������

where min�N�M� denotes the minimum of N and M � Therefore� whenever a summation
over eigenvalues occurs� we need to take only P eigenvalues into account� Since the
ordering of the eigenvalues is arbitrary� it is assumed in the following that the eigenvectors
are ordered by decreasing size� �� 
 �� 
 � � � 
 �N � In this ordering the eigenvalues for
n � P are equal to zero so that the summation over eigenvalues runs from � to P �

Problem g� The matrices AAT and ATA have the same eigenvalues� When you need
the eigenvalues and eigenvectors� would it be from the point of view of computational
e�ciency be more e�cient to compute the eigenvalues and eigenvectors of ATA or
of AAT � Consider the situations M � N and M � N separately�

Let us now return to the task of making an eigenvalue decomposition of the matrixA� The
vectors �v�n
 form a basis in N �dimensional space� Since the vector x is N �dimensional�

every vector x can de decomposed according to equation �������� x �
PN

n�� �v
�n

�
�v�n
 � x

�
�

Problem h� Let the matrix A act on this expression and use ������� to show that�

Ax �
PX
n��

�n�u
�n

�
�v�n
 � x

�
� �����	�

Problem i� This expression must hold for any vector x� Use this property to deduce
that�

A �
PX
n��

�n�u
�n
�v�n
T � �������

Problem j� The eigenvectors �v�n
 can be arranged in an N � N matrix V de
ned in
�������� Similarly the eigenvectors �u�n
 can be used to form the columns of an



��	 CHAPTER ��� LINEAR ALGEBRA

M �M matrix U�

U �

�
BB�

���
���

���

�u��
 �u��
 � � � �u�M


���
���

���

�
CCA � �������

Show that A can also be written as�

A � U�VT � �������

with the diagonal matrix � de
ned in ����	���

This decomposition of A in terms of eigenvectors is called the Singular Value Decomposi�

tion of the matrix� This is frequently abbreviated as SVD�

Problem k� You may have noticed the similarity between the expression ������� and the
equation ����	�� for a square matrix and expression ������� and equation ����	���
Show that for the special case M � N the theory of this section is identical to the
eigenvalue decomposition for a square matrix presented in section ������� Hint� what
are the vectors �u�n
 when M � N�

Let us now solve the original system of linear equations ������� for the unknown vector x�
In order to do this� expand the vector y in the vectors �u�n
 that span the M �dimensional

space� y �
PM

m�� �u
�m


�
�u�m
 � y

�
� and expand the vector x in the vectors �v�n
 that span

the N �dimensional space�

x �
NX
n��

cn�v
�n
 � ��������

Problem l� At this point the coe�cients cn are unknown� Insert the expansions for y
and x and the expansion ������� for the matrix A in the linear system ������� and

use the orthogonality properties of the eigenvectors to show that cn �
�
�u�n
 � y

�
��n

so that

x �
PX
n��

�

�n

�
�u�n
 � y

�
�v�n
 � ��������

Note that although in the original expansion �������� of x a summation is carried out
over all N basisvectors� whereas in the solution �������� a summation is carried out over
the 
rst P basisvectors only� The reason for this is that the remaining eigenvectors have
eigenvalues that are equal to zero so that they could be left out of the expansion �������
of the matrix A� Indeed� these eigenvalues would give rise to problems because if they
were retained they would lead to in
nite contributions ����� in the solution ���������
In practice� some eigenvalues may be nonzero� but close to zero so that the term ��� gives
rise to numerical instabilities� In practice� one therefore often leaves out nonzero but small
eigenvalues as well in the summation ���������

This may appear to be a objective procedure for de
ning solutions for linear problems
that are undetermined or for problems that are otherwise ill�conditioned� but there is a
price once pays for leaving out basisvectors in the construction of the solution� The vector
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x is N �dimensional� hence one needs N basisvectors to construct an arbitrary vector x�
see equation ��������� The solution vector given in �������� is build by superposing only
P basisvectors� This implies that the solution vector is constrained to be within the P �
dimensional subspace spanned by the 
rst P eigenvectors� Therefore� there it is not clear
that the solution vector in �������� is identical to the true vector x� However� the point
of using the singular value decomposition is that the solution is only constrained by the
linear system of equations ������� within the subspace spanned by the 
rst P basisvectors
�v�n
� The solution �������� ensures that only the components of x within that subspace
are a�ected by the right�hand side vector y� This technique is extremely important in the
analysis of linear inverse problems�
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Chapter ��

Fourier analysis

Fourier analysis is concerned with the decomposition of signals in sine and cosine waves�
This technique is of obvious relevance for spectral analysis where one decomposes a time
signal in its di�erent frequency components� As an example� the spectrum of a low�C on
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Low C on soprano saxophone

Figure ����� The energy of the sound made by the author playing a low C on his soprano
saxophone as a function of frequency� The unit used for the horizontal axis is Hertz
�number of oscillations per second�� the unit on the vertical axis is decibels �a logarithmic
measure of energy��

a soprano saxophone shown in 
gure ����� However� the use of Fourier analysis goes far
beyond this application because Fourier analysis can also be used for 
nding solutions of
di�erential equations and a large number of other applications� In this chapter the real
Fourier transform on a 
nite interval is used as a starting point� From this the complex
Fourier transform and the Fourier transform on an in
nite interval are derived� In several

���
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stages of the analysis� the similarity of Fourier analysis and linear algebra will be made
apparent�

���� The real Fourier series on a �nite interval

Consider a function f�x� that is de
ned on the interval �L � x � L� This interval is of
length �L� and let us assume that f�x� is periodic with period �L� This means that if one
translates this function over a distance �L the value does not change�

f�x� �L� � f�x� � ������

We want to expand this function in a set of basis functions� Since f�x� is periodic with
period �L� these basis functions must be periodic with the same period�

Problem a� Show that the functions cos �n
x�L� and sin �n
x�L� with integer n are
periodic with period �L� i�e� show that these functions satisfy �������

The main statement of Fourier analysis is that one can write f�x� as a superposition of
these periodic sine and cosine waves�

f�x� �
�

�
a� �

�X
n��

an cos �n
x�L� �
�X
n��

bn sin �n
x�L� � ������

The factor ��� in the coe�cient a� has no special signi
cance� it is used to simplify
subsequent expressions� To show that ������ is actually true is not trivial� Providing
this proof essentially amounts to showing that the functions cos �n
x�L� and sin �n
x�L�
actually contain enough �degrees of freedom� to describe f�x�� However� since f�x� is a
function of a continuous variable x this function has in
nitely many degrees of freedom
and since there are in
nitely many coe�cients an and bn counting the number of degrees
of freedom does not work� Mathematically one would say that one needs to show that the
set of functions cos �n
x�L� and sin �n
x�L� is a �complete set�� We will not concern us
here with this proof� and simply start working with the Fourier series �������

At this point it is not clear yet what the coe�cients an and bn are� In order to derive
these coe�cients one needs to use the following integrals�Z L

�L
cos� �n
x�L� dx �

Z L

�L
sin� �n
x�L� dx � L �n 
 �� � ������

Z L

�L
cos �n
x�L� cos �m
x�L� dx � � if n �� m � ������

Z L

�L
sin �n
x�L� sin �m
x�L� dx � � if n �� m � ������

Z L

�L
cos �n
x�L� sin �m
x�L� dx � � all n�m � ����	�

Problem b� Derive these identities� In doing so you need to use trigonometric identities
such as cos� cos � � �cos��� �� � cos��� ��� ��� If you have di�culties deriving
these identities you may want to consult a textbook such as Boas�����
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Problem c� In order to 
nd the coe�cient bm� multiply the Fourier expansion ������ with
sin �m
x�L�� integrate the result from �L to L and use the relations �����������	�
to evaluate the integrals� Show that this gives�

bn �
�

L

Z L

�L
f�x� sin �n
x�L� dx � ������

Problem d� Use a similar analysis to show that�

an �
�

L

Z L

�L
f�x� cos �n
x�L� dx � ������

In deriving this result treat the cases n �� � and n � � separately� It is now clear why
the factor ��� is introduced in the a��term of ������
 without this factor expression
������ would have an additional factor � for n � ��

There is a close relation between the Fourier series ������ and the coe�cients given in
the expressions above and the projection of a vector on a number of basis vectors in linear
algebra as shown in section ������� To see this we will restrict ourselves for simplicity to
functions f�x� that are odd functions of x� f��x� � �f�x�� but this restriction is by no
means essential� For these functions all coe�cients an are equal to zero� As an analogue
of a basis vector in linear algebra let us de
ne the following basis function un�x��

un�x� � �p
L
sin �n
x�L� � ������

An essential ingredient in the projection operators of section ������ is the inner product
between vectors� It is also possible to de
ne an inner product for functions� and for the
present example the inner product of two functions f�x� and g�x� is de
ned as�

�f � g� �
Z L

�L
f�x�g�x�dx � �������

Problem e� The basis functions un�x� de
ned in ������ are the analogue of a set of
orthonormal basis vectors� To see this� use ������ and ������ to show that

�un � um� � 
nm � �������

where 
nm is the Kronecker delta�

This expression implies that the basis functions un�x� are mutually orthogonal� If the
norm of such a basis function is de
ned as kunk �

p
�un � un�� expression ������� implies

that the basis functions are normalized �i�e� have norm ��� These functions are the
generalization of orthogonal unit vectors to a function space� The �odd� function f�x�
can be written as a sum of the basis functions un�x��

f�x� �
�X
n��

cnun�x� � �������
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Problem f� Take the inner product of ������� with um�x� and show that cm � �um � f��
Use this to show that the Fourier expansion of f�x� can be written as� f�x� �P�

n�� un�x� �un � f�� and that leaving out the explicit dependence on the variable x
the result is given by

f �
�X
n��

un �un � f� � �������

This equation bears a close resemblance to the expression derived in section ������ for the
projection of vectors� The projection of a vector v along a unit vector �n was shown to be

Pv � �n ��n � v� ������ again �

A comparison with equation ������� shows that un�x� �un � f� can be interpreted as the
projection of the function f�x� on the function un�x�� To reconstruct the function� one
must sum over the projections along all basis functions� hence the summation in ��������
It is shown in equation ������� of section ������ that in order to 
nd the projection of
the vector v onto the subspace spanned by a 
nite number of orthonormal basis vectors
one simply has to sum the projections of the vector v on all the basis vectors that span
the subspace� Pv �

P
i �ni ��ni�v�� In a similar way� one can sum the Fourier series �������

over only a limited number of basis functions to obtain the projection of f�x� on a limited
number of basis functions�

ffiltered �
n�X

n�n�

un �un � f� � �������

in this expression it was assumed that only values n� � n � n� have been used� The
projected function is called ffiltered because this projection really is a 
ltering operation�

Problem g� To see this� show that the functions un�x� are sinusoidal waves with wave�
length � � �L�n�

This means that restricting the n�values in the sum ������� amounts to using only wave�
lengths between �L�n� and �L�n� for the projected function� Since only certain wave�
lengths are used� this projection really acts as a 
lter that allows only certain wavelengths
in the 
ltered function�

It is the 
ltering property that makes the Fourier transform so useful for 
ltering data
sets for excluding wavelengths that are unwanted� In fact� the Fourier transform forms the
basis of digital 
ltering techniques that have many applications in science and engineering�
see for example the books of Claerbout���� or Robinson and Treitel�����

���� The complex Fourier series on a �nite interval

In the theory of the preceding section there is no reason why the function f�x� should be
real� Although the basis functions cos�n
x�L� and sin�n
x�L� are real� the Fourier sum
������ can be complex because the coe�cients an and bn can be complex� The equation
of de Moivre gives the relation between these basis functions and complex exponential
functions�

ein�x�L � cos�n
x�L� � i sin�n
x�L� �������
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This expression can be used to rewrite the Fourier series ������ using the basis functions
exp in
x�L rather than sine and cosines�

Problem a� Replace n by �n in ������� to show that�

cos�n
x�L� � �
�

�
ein�x�L � e�in�x�L

�
�

sin�n
x�L� � �
�i

�
ein�x�L � e�in�x�L

�
�

�����	�

Problem b� Insert this relation in the Fourier series ������ to show that this Fourier
series can also be written as�

f�x� �
�X

n���
cn e

in�x�L � �������

with the coe�cients cn given by�

cn � �an � ibn��� for n � �
cn � �ajnj � ibjnj��� for n � �

c� � a���

�������

Note that the absolute value jnj is used for n � ��

Problem c� Explain why the n�summation in ������� extends from �� to� rather than
from � to ��

Problem d� The relations ������ and ������ can be used to express the coe�cients cn in
the function f�x�� Treat the cases n � �� n � � and n � � separately to show that
for all values of n the coe�cient cn is given by�

cn �
�

�L

Z L

�L
f�x�e�in�x�Ldx � �������

The sum ������� with expression ������� constitutes the complex Fourier transform over
a 
nite interval� Again� there is a close analogy with the projections of vectors shown
in section ������� Before we can explore this analogy� the inner product between two
complex functions f�x� and g�x� needs to be de
ned� This inner product is not given by
�f � g� �

R
f�x�g�x�dx� The reason for this is that the length of a vector is de
ned by

kvk� � �v � v�� a straightforward generalization of this expression to functions using the
inner product given above would give for the norm of the function f�x�� kfk� � �f �f� �R
f��x�dx� However� when f�x� is purely imaginary this would lead to a negative norm�

This can be avoided by de
ning the inner product of two complex functions by�

�f � g� �
Z L

�L
f��x�g�x�dx � �������

where the asterisk denotes the complex conjugate�

Problem e� Show that with this de
nition the norm of f�x� is given by kfk� � �f �f� �R jf�x�j� dx�
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With this inner product the norm of the function is guaranteed to be positive� Now that we
have an inner product the analogy with the projections in linear algebra can be explored�
In order to do this� de
ne the following basis functions�

un�x� � �p
�L

ein�x�L � �������

Problem f� Show that these functions are orthonormal with respect to the inner product
�������� i�e� show that�

�un � um� � 
nm � �������

Pay special attention to the normalization of these functions
 i�e� to the case n � m�

Problem g� Expand f�x� in these basis functions� f�x� �
P�

n��� �nun�x� and show
that f�x� can be written as�

f �
�X

n���
un �un � f� � �������

Problem h� Make the comparison between this expression and the expressions for the
projections of vectors in section �������

���� The Fourier transform on an in�nite interval

In several applications� one wants to compute the Fourier transform of a function that
is de
ned on an in
nite interval� This amounts to taking the limit L � �� However� a
simple inspection of ������� shows that one cannot simply take the limit L � � of the
expressions of the previous section because in that limit cn � �� In order to de
ne the
Fourier transform for an in
nite interval de
ne the variable k by�

k � n


L
� �������

An increment "n corresponds to an increment "k given by� "k � 
"n�L� In the
summation over n in the Fourier expansion �������� n is incremented by unity� "n � ��
This corresponds to an increment "k � 
�L of the variable k� In the limit L � � this
increment goes to zero� this implies that the summation over n should be replaced by an
integration over k�

�X
n���

�� � ��� "n

"k

Z �

��
�� � �� dk �

L




Z �

��
�� � �� dk as L�� � �������

Problem a� Explain the presence of the factor "n�"k and show the last identity�

This is not enough to generalize the Fourier transform of the previous section to an in
nite
interval� As noted earlier� the coe�cients cn vanish in the limit L � �� Also note that
the integral in the right hand side of ������� is multiplied by L�
� this coe�cient is in
nite
in the limit L��� Both problems can be solved by de
ning the following function�

F �k� � L



cn � �����	�

where the relation between k and n is given by ��������
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Problem b� Show that with the replacements ������� and �����	� the limit L � � of
the complex Fourier transform ������� and ������� can be taken and that the result
can be written as�

f�x� �

Z �

��
F �k�eikxdk � �������

F �k� �
�

�


Z �

��
f�x�e�ikxdx � �������

���� The Fourier transform and the delta function

In this section the Fourier transform of the delta function is treated� This is not only
useful in a variety of applications� but it will also establish the relation between the
Fourier transform and the closure relation introduced in section ������� Consider the delta
function centered at x � x��

f�x� � 
 �x� x�� � �������

Problem a� Show that the Fourier transform F �k� of this function is given by�

F �k� �
�

�

e�ikx� � �������

Problem b� Show that this implies that the Fourier transform of the delta function 
�x�
centered at x � � is a constant� Determine this constant�

Problem c� Use expression ������� to show that


 �x� x�� �
�

�


Z �

��
eik�x�x�
dk � �������

Problem d� Use a similar analysis to derive that


 �k � k�� �
�

�


Z �

��
e�i�k�k�
xdx � �������

These expressions are very useful in a number of applications� Again� there is close analogy
between this expression and the projection of vectors introduced in section ������� To
establish this connection let use de
ne the following basis functions�

uk�x� � �p
�


eikx � �������

and use the inner product de
ned in ������� with the integration limits extending from
�� to ��

Problem e� Show that expression ������� implies that

�uk � uk�� � 
�k � k�� � �������

Why does this imply that the functions uk�x� form an orthonormal set�
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Problem f� Use ������� to derive that�Z �

��
uk�x�u

�
k�x�� dk � 
 �x� x�� � �������

This expression is the counterpart of the closure relation ������� introduced in section
������ for 
nite�dimensional vector spaces� Note that the delta function 
 �x� x�� plays
the role of the identity operator I with components Iij � 
ij in equation ������� and that
the summation

PN
i�� over the basis vectors is replaced by an integration

R�
�� dk over the

basis functions� Both di�erences are due to the fact that we are dealing in this section
with an in
nitely�dimensional function space rather than a 
nite�dimensional vector space�
Also note that in ������� the complex conjugate is taken of uk�x��� The reason for this is
that for complex unit vectors �n the transpose in the completeness relation ������� should
be replaced by the Hermitian conjugate� This involves taking the complex conjugate as
well as taking the transpose�

���� Changing the sign and scale factor

In the Fourier transform ������� from the wave number domain �k� to the position domain
�x�� the exponent has a plus sign exp ��ikx� and the coe�cient multiplying the integral
is given by �� In other texts on Fourier transforms you may encounter a di�erent sign
of the exponent and di�erent scale factors are sometimes used in the Fourier transform�
For example� the exponent in the Fourier transform from the wave number domain to the
position domain may have a minus sign exp ��ikx� and there may be a scale factor such
as ��

p
�
 that di�ers from �� It turns out that there is a freedom in choosing the sign of

the exponential of the Fourier transform as well as in the scaling of the Fourier transform�
We will 
rst study the e�ect of a scaling parameter on the Fourier transform�

Problem a� Let the function F �k� de
ned in ������� be related to a new function *F �k�
by a scaling with a scale factor C� F �k� � C *F �k�� Use the expressions ������� and
������� to show that�

f�x� � C

Z �

��
*F �k�eikxdk � �����	�

*F �k� �
�

�
C

Z �

��
f�x�e�ikxdx � �������

These expressions are completely equivalent to the original Fourier transform pair �������
and �������� The constant C is completely arbitrary� This implies that one may take any
multiplication constant for the Fourier transform
 the only restriction is that the product
of the coe�cients for Fourier transform and the backward transform is equal to ���
�

Problem b� Show this last statement�

In the literature� notably in quantum mechanics� one often encounters the Fourier trans�
form pair using the value C � ��

p
�
� This leads to the Fourier transform pair�

f�x� �
�p
�


Z �

��
*F �k�eikxdk � �������
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*F �k� �
�p
�


Z �

��
f�x�e�ikxdx � �������

This normalization not only has the advantage that the multiplication factors for the
forward and backward are identical ���

p
�
�� but the constants are also identical to the

constant used in ������� to create a set of orthonormal functions�
Next we will investigate a change in the sign of the exponent in the Fourier transform�

To do this� we will use the function *F �k� de
ned by� *F �k� � F ��k��

Problem c� Change the integration variable k in ������� to �k and show that the Fourier
transform pair ������� and ������� is equivalent to�

f�x� �

Z �

��
*F �k�e�ikxdk � �������

*F �k� �
�

�


Z �

��
f�x�eikxdx � �������

Note that these expressions only di�er from earlier expression by the sign of the exponent�
This means that there is a freedom in the choice of this sign� It does not matter which
sign convention you use� Any choice of the sign and the multiplication constant for the
Fourier transform can be used as long as�


i� The product of the constants for the forward and backward transform is equal

to ���
 and 
ii� the sign of the exponent for the forward and the backward a

transform is opposite�

In this book� the Fourier transform pair ������� and ������� will mostly be used for the
Fourier transform from the space �x� domain to the wave number �k� domain�

Of course� the Fourier transform can also be used to transform a function in the time
�t� domain to the frequency ��� domain� Perhaps illogically the following convention will
used in this book for this Fourier transform pair�

f�t� �

Z �

��
F ���e�i
td� � �������

F ��� �
�

�


Z �

��
f�t�ei
tdt � �������

The reason for this choice is that the combined Fourier transform from the �x� t��domain
to the �k� ���domain that is obtained by combining ������� and ������� is given by�

f�x� t� �

�ZZ
��

F �k� ��ei�kx�
t
dkd� � �������

The function ei�kx�
t
 in this integral describes a wave that moves for positive values of
k and � in the direction of increasing values of x� To see this� let us assume we are at a
crest of this wave and that we follow the motion of the crest over a time "t and that we
want to 
nd the distance "x that the crest has moved in that time interval� If we follow
a wave crest� the phase of the wave is constant� and hence kx� �t is constant�
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Problem d� Show that this implies that "x � c"t� with c given by c � ��k� Why does
this imply that the wave moves with velocity c�

The exponential in the double Fourier transform ������� therefore describes for positive
values of � and k a wave travelling in the positive direction with velocity c � ��k�
However� note that this is no proof that we should use the Fourier transform ������� and
not a transform with a di�erent choice of the sign in the exponent� In fact� one should
realize that in the Fourier transform ������� one needs to integrate over all values of �
and k so that negative values of � and k contribute to the integral as well�

Problem e� Use ������� and ������� to derive the inverse of the double Fourier transform
��������

���� The convolution and correlation of two signals

There are di�erent ways in which one can combine signals to create a new signal� In this
section the convolution and correlation of two signals is treated� For the sake of argument
the signals are taken to be functions of time� and the Fourier transform pair ������� and
������� is used for the forward and inverse Fourier transform� Suppose a function f�t�
has a Fourier transform F ��� de
ned by ������� and another function h�t� has a similar
Fourier transform H����

h�t� �

Z �

��
H���e�i
td� � �������

The two Fourier transforms F ��� and H��� can be multiplied in the frequency domain�
and we want to 
nd out what the Fourier transform of the product F ���H��� is in the
time domain�

Problem a� Show that�

F ���H��� �
�

��
��

�ZZ
��

f�t��h�t��e
i
�t��t�
dt�dt� � �����	�

Problem b� Show that after a Fourier transform this function corresponds in the time
domain to�

Z �

��
F ���H���e�i
td� �

�

��
��

�ZZZ
��

f�t��h�t��e
i
�t��t��t
dt�dt�d� � �������

Problem c� Use the representation ������� of the delta function to carry out the integra�
tion over � and show that this gives�

Z �

��
F ���H���e�i
td� �

�

�


�ZZ
��

f�t��h�t��
�t� � t� � t�dt�dt� � �������
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Problem d� The integration over t� can now be carried out� Do this� and show that after
renaming the variable t� to � the result can be written as�Z �

��
F ���H���e�i
td� �

�

�


Z �

��
f�t� ��h���d� �

�

�

�f � h� �t� � �������

The ��integral in the middle term is called the convolution of the functions f and h� this
operation is denoted by the symbol �f � h�� Equation ������� states that a multiplication
of the spectra of two functions in the frequency domain corresponds to the convolution
of these functions in the time domain� For this reason� equation ������� is called the
convolution theorem� This theorem is schematically indicated in the following diagram�

f�t��� F ���
h�t��� H���

�
�� �f � h��� F ���H���

Note that in the convolution theorem� a scale factor ���
 is present in the left hand side�
This scale factor depends on the choice of the scale factors that one uses in the Fourier
transform� see section �������

Problem e� Use a change of the integration variable to show that the convolution of f
and h can be written in the following two ways�

�f � h� �t� �
Z �

��
f�t� ��h���d� �

Z �

��
f���h�t� ��d� � �������

Problem f� In order to see what the convolution theorem looks like when a di�erent scale
factor is used in the Fourier transform de
ne F ��� � C *F ��� � and a similar scaling
for H���� Show that with this choice of the scale factors� the Fourier transform of
*F ��� *H��� is in the time domain given by ����
C� �f � h� �t�� Hint� 
rst determine
the scale factor that one needs to use in the transformation from the frequency
domain to the time domain�

The convolution of two time series plays a very important role in exploration geophysics�
Suppose one carries out a seismic experiment where one uses a source such as dynamite to
generate waves that propagate through the earth� Let the source signal in the frequency
domain be given by S���� The waves re�ect at layers in the earth and are recorded by
geophones� In the ideal case� the source signal would have the shape of a simple spike� and
the waves re�ected by all the re�ectors would show up as a sequence of individual spikes�
In that case the recorded data would indicate the true re�ectors in the earth� Let the signal
r�t� recorded in this ideal case have a Fourier transform R��� in the frequency domain�
The problem that one faces is that a realistic seismic source is often not very impulsive�
If the recorded data d�t� have a Fourier transform D��� in the frequency domain� then
this Fourier transform is given by

D��� � R���S��� � �������

One is only interested in R��� which is the earth response in the frequency domain� but
in practice one records the product R���S���� In the time domain this is equivalent to
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saying that one has recorded the convolution
R�
�� r���s�t � ��d� of the earth response

with the source signal� but that one is only interested in the earth response r�t�� One
would like to �undo� this convolution� this process is called deconvolution� Carrying out
the deconvolution seems trivial in the frequency domain� According to ������� one only
needs to divide the data in the frequency domain by the source spectrum S��� to obtain
R���� The problem is that in practice one often does not know the source spectrum S����
This makes seismic deconvolution a di�cult process� see the collection of articles compiled
by Webster�	��� It has been strongly argued by Ziolkowski�	�� that the seismic industry
should make a larger e�ort to record the source signal accurately�

The convolution of two signal was obtained in this section by taking the product
F ���H��� and carrying out a Fourier transform back to the time domain� The same steps
can be taken by multiplying F ��� with the complex conjugate H���� and by applying a
Fourier transform to go the time domain�

Problem g� Take the similar steps as in the derivation of the convolution to show thatZ �

��
F ���H����e�i
td� �

�

�


Z �

��
f�t� ��h����d� � �������

The right hand side of this expression is called the correlation of the functions f�t� and
h��t�� Note that this expression is very similar to the convolution theorem �������� This
result implies that the Fourier transform of the product of a function and the complex
conjugate in the frequency domain corresponds with the correlation in the time domain�
Note again the constant ���
 in the right hand side� This constant again depends on the
scale factors used in the Fourier transform�

Problem h� Set t � � in expression ������� and let the function h�t� be equal to f�t��
Show that this gives�

Z �

��
jF ���j� d� �

�

�


Z �

��
jf�t�j� dt � �������

This equality is known as Parseval�s theorem� To see its signi
cance� note that
R�
�� jf�t�j� dt �

�f � f�� with the inner product of equation ������� with t as integration variable and with
the integration extending from �� to �� Since

p
�f � f� is the norm of f measured in

the time domain� and since
R�
�� jF ���j� d� is square of the norm of F measured in the

frequency domain� Parseval�s theorem states that with this de
nition of the norm� the
norm of a function is equal in the time domain and in the frequency domain �up to the
scale factor ���
��

���
 Linear �lters and the convolution theorem

Let us consider a linear system that has an output signal o�t� when it is given an input
signal i�t�� see 
gure ������� There are numerous examples of this kind of systems� As an
example� consider a damped harmonic oscillator that is driven by a force� this system is
described by the di�erential equation �x��� !x���

�x � F�m� where the dot denotes a time
derivative� The force F �t� can be seen as the input signal� and the response x�t� of the
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oscillator can be seen as the output signal� The relation between the input signal and the
output signal is governed by the characteristics of the system under consideration� in this
example it is the physics of the damped harmonic oscillator that determines the relation
between the input signal F �t� and the output signal x�t��

Note that we have not de
ned yet what a linear 
lter is� A 
lter is linear when an input
c�i��t��c�i��t� leads to an output c�o��t��c�o��t�� when o��t� is the output corresponding
to the input i��t� and o��t� is the output the input i��t��

output
Filter

input

Figure ����� Schematic representation of a linear 
lter�

Problem a� Can you think of another example of a linear 
lter�

Problem b� Can you think of a system that has one input signal and one output signal�
where these signals are related through a nonlinear relation� This would be an
example of a nonlinear 
lter� the theory of this section would not apply to such a

lter�

It is possible to determine the output o�t� for any input i�t� if the output to a delta
function input is known� Consider the special input signal 
�t� �� that consists of a delta
function centered at t � � � Since a delta function has �zero�width� �if it has a width at
all� such an input function is very impulsive� Let the output for this particular input be
denoted by g�t� ��� Since this function is the response at time t to an impulsive input at
time � this function is called the impulse response�

The impulse response function g�t� �� is the output of the system at time t due
to an impulsive input at time � �

How can the impulse response be used to 
nd the response to an arbitrary input function�
Any input function can be written as�

i�t� �

Z �

��

�t� ��i���d� � �������

This identity follows from the de
nition of the delta function� However� we can also look
at this expression from a di�erent point of view� The integral in the right hand side of
������� can be seen as a superposition of in
nitely many delta functions 
�t � ��� Each
delta function when considered as a function of t is centered at time � � Since we integrate
over � these di�erent delta functions are superposed to construct the input signal i�t��
Each of the delta functions in the integral ������� is multiplied with i���� This term plays
the role of a coe�cients that gives a weight to the delta function 
�t � ���
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At this point it is crucial to use that the 
lter is linear� Since the response to the
input 
�t � �� is the impulse response g�t� ��� and since the input can be written as the
superposition ������� of delta function input signals 
�t � ��� the output can be written
as the same superposition of impulse response signals g�t� ���

o�t� �

Z �

��
g�t� ��i���d� � �������

Problem c� Carefully compare the expressions ������� and �������� Note the similarity
and make sure you understand the reasoning that has led to the previous expression�

You may 
nd this �derivation� of ������� rather vague� The notion of the impulse response
will be treated in much greater detail in chapter ���� because it plays a crucial role in
mathematical physics�

At this point we will make another assumption about the system� Apart from the
linearity we will also assume it is invariant for translations in time� This is a complex
way of saying that we assume that the properties of the 
lter do not change with time�
This is the case for the damped harmonic oscillator used in the beginning of this section�
However� this oscillator would not be invariant for translations in time if the damping
parameter would be a function of time as well� � � ��t�� In that case� the system would
give a di�erent response when the same input is used at di�erent times�

When the properties of 
lter do not depend on time� the impulse response g�t� ��
depends only on the di�erence t� � � To see this� consider the damped harmonic oscillator
again� The response at a certain time depends only the time that has lapsed between the
excitation at time � and the time of observation t� Therefore� for a time�invariant 
lter�

g�t� �� � g�t� �� � �����	�

Inserting this in ������� shows that for a linear time�invariant 
lter the output is given by
the convolution of the input with the impulse response�

o�t� �

Z �

��
g�t� ��i���d� � �g � i� �t� � �������

Problem d� Let the Fourier transform of i�t� be given by I���� the Fourier transform of
o�t� by O��� and the Fourier transform of g�t� by G���� Use ������� to show that
these Fourier transforms are related by�

O��� � �
G���I��� � �������

Expressions ������� and ������� are key results in the theory in linear time�invariant 
lters�
The 
rst expression states that one only needs to know the response g�t� to a single
impulse to compute the output of the 
lter to any input signal i�t�� Equation �������
has two important consequences� First� if one knows the Fourier transform G��� of the
impulse response� one can compute the Fourier transform O��� of the output� An inverse
Fourier transform then gives the output o�t� in the time domain�

Problem e� Show that G���e�i
t is the response of the system to the input signal e�i
t�
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This means that if one knows the response of the 
lter to the harmonic signal e�i
t at any
frequency� one knows G��� and the response to any input signal can be determined�

The second important consequence of ������� is that the output at frequency � does
depend only at the input and impulse response at the same frequency �� but not on other
frequencies� This last property does not hold for nonlinear systems� because in that case
di�erent frequency components of the input signal are mixed by the non�linearity of the
system� An example of this phenomenon is given by Snieder���� who shows that observed
variations in the earth�s climate contain frequency components that cannot be explained
by periodic variations in the orbital parameters in the earth� but which are due to the
nonlinear character of the climate response to the amount of energy received by the sun�

The fact that a 
lter can either be used by specifying its Fourier transform G��� �or
equivalently the response to an harmonic input exp�i�t� or by prescribing the impulse
response g�t� implies that a 
lter can be designed either in the frequency domain or in
the time domain� In section ������ the action of a 
lter is designed in the time domain�
A Fourier transform then leads to a compact description of the 
lter response in the
frequency domain� In section ������ the converse route is taken
 the 
lter is designed in
the frequency domain� and a Fourier transform is used to derive an expression for the 
lter
in the time domain�

As a last reminder it should be mentioned that although the theory of linear 
lters
is introduced here for 
lters that act in the time domain� the theory is of course equally
valid for 
lters in the spatial domain� In the case the wave number k plays the role that
the angular frequency played in this section� Since there may be more than one spatial
dimension� the theory must in that case be generalized to include higher�dimensional
spatial Fourier transforms� However� this does not change the principles involved�

���� The dereverberation �lter

As an example of a 
lter that is derived in the time domain we consider here the description
of reverberations on marine seismics� Suppose a seismic survey is carried out at sea� In
such an experiment a ship tows a string of hydrophones that record the pressure variations
in the water just below the surface of the water� see 
gure ������� Since the pressure at
the surface of the water vanishes� the surface of the water totally re�ects pressure waves
and the re�ection coe
cient for re�ection at the water surface is equal to ��� Let the
re�ection coe
cient for waves re�ecting upwards from the water bottom be denoted by r�
Since the constrast between the water and the solid earth below is not small� this re�ection
coe�cient can be considerable�

Problem a� Give a physical argument why this re�ection coe�cients must be smaller or
equal than unity� r � ��

Since the re�ection coe�cient of the water bottom is not small� waves can bounce back and
forth repeatedly between the water surface and the water bottom� These reverberations
are an unwanted artifact in seismic experiments� The reason for this is that a wave that
has bounced back and forth in the water layer can be misinterpreted on a seismic section
as a re�ector in the earth� For this reason one wants to eliminate these reverberations
from seismic data�
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r   i(t-2T)2

water

solid earth

i(t) - r i(t-T)

Figure ����� The generation of reverberations in a marine seismic experiment�

Suppose the the wave
eld recorded by the hydrophones in the absense of reverberations
is denoted by i�t�� Let the time it takes for wave to travel from the water surface to the
water bottom and back be denoted by T �

Problem b� Show that the wave that has bounced back and forth once is given by�r i�t�
T �� Hint
 determine the amplitude of this wave from the re�ection coe�cients it
encounters on its path and account for the time delay due to the bouncing up and
down once in the water layer�

Problem c� Generalize this result to the wave that bounces back and forth n�times in
the water layer and show that the signal o�t� recorded by the hydrophones is given
by�

o�t� � i�t�� r i�t� T � � r� i�t� �T � � � � �
or

o�t� �
�X
n��

��r�n i�t� nT � �������

see 
gure �������

The notation i�t� and o�t� that was used in the previous section is deliberately used here�
The action of the reverberation in the water layer is seen as a linear 
lter� The input
of the 
lter i�t� is the wave
eld that would have been recorded if the waves would not
bounce back and forth in the water layer� The output is the wave
eld that results from the
reverberations in the water layer� In a marine seismic experiment one records the wave
eld
o�t� while one would like to know the signal i�t� that contains just the re�ections from
below the water bottom� The process of removing the reverberations from the signal is
called �dereverberation�� The aim of this section is to derive a dereverberation 
lter that
allows us to extract the input i�t� from the recorded output o�t��

Problem d� Can you see a way to determine i�t� from ������� when o�t� is given�
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Problem e� It may not be obvious that expression ������� describes a linear 
lter of the
form ������� that maps the input i�t� onto the output o�t�� Show that expression
������� can be written in the form ������� with the impulse response g�t� given by�

g�t� �
�X
n��

��r�n 
�t� nT � � ����	��

with 
�t� the Dirac delta function�

Problem f� Show that g�t� is indeed the impulse response� in other words� show that
if a delta function is incident as a primary arrival at the water surface� that the
reverbarations within the water layer lead to the signal ����	���

You probably discovered it is not simple to solve problem d� However� the problem
becomes much simpler by carrying out the analysis in the frequency domain� Let the
Fourier transforms of i�t� and o�t� as de
ned by the transform ������� be denoted by
I��� and O��� respectively� It follows from expression ������� that one needs to 
nd the
Fourier transform of i�t� nT ��

Problem g� According to the de
nition ������� the Fourier transform of i�t� �� is given
by ���


R�
�� i�t � �� exp i�t dt� Use a change of the integration variable to show

that the Fourier transform of i�t� �� is given by I��� exp i�� �

What you have derived here is the shift property of the Fourier transform� a translation
of a function over a time � corresponds in the frequency domain to a multiplication with
exp i�� �

i�t� �� I���
i�t� �� �� I��� exp i��

����	��

Problem h� Apply a Fourier transform to expression ������� for the output� use the shift
property ����	�� for each term and show that the output in the frequency domain is
related to the Fourier transform of the input by the following expression�

O��� �
�X
n��

��r�n ei
nT I��� � ����	��

Problem i� Use the theory of section ������ to show that the 
lter that describes the
generation of reverberations is in the frequency domain given by�

G��� �
�

�


�X
n��

��r�n ei
nT � ����	��

Problem j� Since we know that the re�ection coe�cient r is less or equal to � �see prob�
lem a�� this series is guaranteed to converge� Sum this series to show that

G��� �
�

�


�

� � rei
T
� ����	��



��	 CHAPTER ��� FOURIER ANALYSIS

This is a very useful result because it implies that the output and the input are in the
frequency domain related by

O��� �
�

� � rei
T
I��� � ����	��

Note that the action of the reverberation leads in the frequency domain to a simple division
by �� � r exp i�T �� Note that this expression ����	�� has a similar form as equation
������ of section ����� that accounts for the reverberation of waves between two stacks of
re�ectors� This resemblance is no coincidence because the physics of waves bouncing back
and forth between two re�ectors is similar�

Problem k� The goal of this section was to derive the dereverberation 
lter that produces
i�t� when o�t� is given� Use expression ����	�� to derive the dereverberation 
lter in
the frequency domain�

The dereverberation 
lter you have just derived is very simple in the frequency domain�
it only involves a multiplication of every frequency component O��� with a scalar� Since
multiplication is a simple and e�cient procedure it is attractive to carry out derever�
beration in the frequency domain� The dereverberation 
lter you have just derived was
developed originally by Backus����

The simplicity of the dereverberation 
lter hides a nasty complication� If the re�ection
coe�cient r and the two�way travel time T are exactly known and if the water bottom is
exactly horizontal there is no problem with the dereverberation 
lter� However� in practice
one only has estimates of these quantities� let these estimates be denoted by r� and T � re�
spectively� The reverbarations lead in the frequency domain to a division by ��r exp i�T
while the dereverberation 
lter based on the estimated parameters leads to a multiplica�
tion with � � r� exp i�T �� The net e�ect of the generation of the reverberations and the
subsequent dereverberation thus is in the frequency domain given by a multiplication with

� � r� exp i�T �

� � r exp i�T

Problem l� Show that when the re�ection coe�cients are close to unity and when the
estimate of the travel time is not accurate �T � �� T � the term given above di�ers
appreciably from unity� Explain that this implies that the dereverberation does not
work well�

In practice one does not only face the problem that the estimates of the re�ection coef�

cients and the two�way travel time may be inaccurate� In addition the water bottom
may not be exactly �at and there may be variations in the re�ections coe�cient along the
water bottom� In that case the action of the dereverberation 
lter can be signi
cantly
degraded�

���� Design of frequency �lters

In this section we consider the problem that a time series i�t� is recorded and that this
time series is contaminated with high�frequency noise� The aim of this section is to derive a
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lter in the time domain that removes the frequency components with a frequency greater
than a cut�o� frequency �� from the time series� Such a 
lter is called a low�pass 
lter
because only frequencies components lower than the threshold �� pass the 
lter�

Problem a� Show that this 
lter is in the frequency domain given by�

G��� �

�
� if j�j � ��
� if j�j � ��

����		�

Problem b� Explain why the absolute value of the frequency should be used in this
expression�

Problem c� Show that this 
lter is in the time domain given by

g�t� �

Z 
�

�
�
e�i
t d� � ����	��

Problem d� Carry out the integration over frequency to derive that the 
lter is explicitly
given by

g�t� � ��� sinc ���t� � ����	��

where the sinc�function is de
ned by

sinc �x� � sin �x�

x
� ����	��

Problem e� Sketch the impulse response ����	�� of the low�pass 
lter as a function of
time� Determine the behaviour of the 
lter for t � � and show that the 
rst zero
crossing of the 
lter is at time t � 	
����

The zero crossing of the 
lter is of fundamental importance� It implies that the width of
the impulse response in the time domain is given by �
����

Problem f� Show that the width of the 
lter in the frequency domain is given by ����

This means that when the the cut�o� frequency �� is increased� the width of the 
lter in
the frequency domain increases but the width of the 
lter in the time domain decreases�
A large width of the 
lter in the frequency domain corresponds to a small width of the

lter in the time domain and vice versa�

Problem g� Show that the product of the width of the 
lter in the time domain and the
width of the same 
lter in the frequency domain is given by �
�

The signi
cance of this result is that this product is independent of frequency� This implies
that the 
lter cannot be arbitrary peaked both in the time domain and the frequency
domain� This e�ect has pronounced consequences since it is the essence of the uncertainty
relation of Heisenberg which states that the position and momentum of a particle can
never be known exactly� more details can be found in the book of Mertzbacher����
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The 
lter ����	�� does actually not have very desirable properties� it has two basic
problems� The 
rst problem is that the 
lter decays only slowly with time� This means
that the 
lter is very long in the time domain� and hence the convolution of a time series
with the 
lter is numerically a rather ine�cient process� This can be solved by making
the cuto� of the 
lter in the frequency domain more gradual than the frequency cut�o�

de
ned in expression ����		�� for example by using the 
lter G��� �
�
� � j
j


�

��n
with n

a positive integer�

Problem h� Does this 
lter have the steepest cuto� for low values of n or for high values
of n� Hint� make a plot of G��� as a function of ��

The second problem is that the 
lter is not causal� This means that when a function is
convolved with the 
lter ����	��� the output of the 
lter depends on the value of the input
at later times� i�e� the 
lter output depends on the input in the future�

Problem i� Show that this is the case� and that the output depends on the the input on
earlier times only when g�t� � � for t � ��

A causal 
lter can be designed by using the theory of analytic functions shown in chapter
����� The design of 
lters is quite an art� details can be found for example in the books
of Robinson and Treitel���� or Claerbout�����

����� Linear �lters and linear algebra

There is a close analogy between the theory of linear 
lters of section ������ and the
eigenvector decomposition of a matrix in linear algebra as treated in section ������� To
see this we will use the same notation as in section ������ and use the Fourier transform
������� to write the output of the 
lter in the time domain as�

o�t� �

Z �

��
O���e�i
td� � �������

Problem a� Use expression ������� to show that this can be written as

o�t� � �


Z �

��
G���I���e�i
td� � �������

and carry out an inverse Fourier transform of I��� to 
nd the following expression

o�t� �

�ZZ
��

G���e�i
tei
� i���d�d� � �������

In order to establish the connection with linear algebra we introduce by analogy with
������� the following basis functions�

u
�t� � �p
�


e�i
t � �������

and the inner product

�f � g� �
Z �

��
f��t�g�t�dt � �������
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Problem b� Show that these basisfunctions are orthonormal for this inner product in the
sense that �

u
 � u
�
�
� 
�� � ��� � �������

Problem c� These functions play the same role as the eigenvectors in section ������� To
which expression in section ������ does the above expression correspond�

Problem d� Show that equation ������� can be written as

o�t� �

Z �

��
G���u
�t� �u
 � i� d� � �����	�

This expression should be compared with equation ����	�� of section ������

Ap �
NX
n��

�n�v
�n

�
�v�n
 � p

�
����	�� again �

The integration over frequency plays the same role as the summation over eigenvectors in
equation ����	��� Expression �����	� can be seen as a description for the operator g�t� in
the time domain that maps the input function i�t� onto the output o�t��

Problem e� Use the equations �������� ������� and �����	� to show that�

g�t� �� � �


Z �

��
G���u
�t�u

�

���d� � �������

There is a close analogy between this expression and the dyadic decompostion of a matrix
in its eigenvectors and eigenvalues derived in section �������

Problem f� To see this connection show that equation ����	�� can be written in compo�
nent form as�

Aij�
NX
n��

�n v
�n

i  v

�n
T
j � �������

The sum over eigenvalues in ������� corresponds with the integration over frequency
in �������� In section ������ linear algebra in a 
nite�dimensional vector space was
treated� in such a space there is a 
nite number of eigenvalues� In this section� a
function space with in
nitely many degrees of freedom is analyzed
 it will be no
surprise that for this reason the sum over a 
nite number of eigenvules should be
replaced by an integration over the continuous variable �� The index i in �������
corresponds with the variable t in ������� while the index j corresponds with the
variable � �

Problem g� Establish the connection between all variables in the equations ������� and
�������� Show speci
cally that G��� plays the role of eigenvalue and u
 plays the
role of eigenvector� Which operation in ������� corresponds to the transpose that is
taken of the second eigenvector in ��������
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You may wonder why the function u
�t� � exp ��i�t� �p�
 de
ned in ������� and not
some other function plays the role of eigenvector of the impulse respons operator g�t� ���
To see this we have to understand what a linear 
lter actually does� Let us 
rst consider the
example of the reverberation 
lter of section ������� According to ������� the reverberation

lter is given by�

o�t� � i�t�� r i�t� T � � r� i�t� �T � � � � � ������� again

It follows from this expression that what the 
lter really does is to take the input i�t��
translate it over a time nT to a new function i�t�nT �� multiply each term with ��r�n and
sum over all values of n� This means that the 
lter is a combination of three operations�
�i� translation in time� �ii� multiplication and �iii� summation over n� The same conclusion
holds for any general time�invariant linear 
lter�

Problem h� Use a change of the integration variable to show that the action of a time�
invariant linear 
lter as given in ������� can be written as

o�t� �

Z �

��
g���i�t � ��d� � �������

The function i�t��� is the function i�t� translated over a time � � This translated function
is multiplied with g��� and an integration over all values of � is carried out� This means
that in general the action of a linear 
lter can be seen as a combination of translation in
time� multiplication and integration over all translations � � How can this be used to explain
that the correct eigenfunctions to be used are u
�t� � exp ��i�t� �p�
� The answer does
not lie in the multiplication because any function is eigenfunction of the operator that
carries out multplication with a constant� i�e� af�t� � �f�t� for every function f�t��

Problem i� What is the eigenvalue ��

This implies that the translation operator is the reason that the eigenfunctions are u
�t� �
exp ��i�t� �p�
� Let the operator that carries out a translation over a time � be denoted
by T� �

T�f�t� � f�t� �� � �������

Problem j� Show that the functions u
�t� de
ned in ������� are the eigenfunctions of the
translation operator T� � i�e� show that T�u
�t� � �u
�t�� Express the eigenvalue �
of the translation operator in the translation time � �

Problem k� Compare this result with the shift property of the Fourier transform that
was derived in ����	���

This means that the functions u
�t� are the eigenfunctions to be used for the eigenfunction
decomposition of a linear time�invariant 
lter� because these functions are eigenfunctions
of the translation operator�

Problem l� You identi
ed in problem e the eigenvalues of the 
lter with G���� Show
that this interpretation is correct� in other words show that when the 
lter g acts
on the function u
�t� the result can be written as G���u
�t�� Hint� go back to
problem e of section �������
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This analysis shows that the Fourier transform� which uses the functions exp ��i�t� is so
useful because these functions are the eigenfunctions of the translation operator� However�
this also points to a limitation of the Fourier transform� Consider a linear 
lter that is
not time�invariant� that is a 
lter where the output does not depend only on the di�er�

ence between the input time � and the output time t� Such a 
lter satis
es the general
equation ������� rather than the convolution integral �������� The action of a 
lter that
is not time�invariant can in general not be written as a combination of the following op�
erations� multiplication� translation and integration� This means that for such a 
lter the
functions exp ��i�t� that form the basis of the Fourier transform are not the appropriate
eigenfunctions� The upshot of this is that in practice the Fourier transform is only useful
for systems that are time�dependent� or in general that are translationally invariant in the
coordinate that is used�
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Chapter ��

Analytic functions

In this section we will consider complex functions in the complex plane� The reason
for doing this is that the requirement that the function �behaves well� �this is de
ned
later� imposes remarkable constraints on such complex functions� Since these constraints
coincide with some of the laws of physics� the theory of complex functions has a number of
important applications in mathematical physics� In this chapter complex functions h�z�
are treated that are decomposed in a real and imaginary parts�

h�z� � f�z� � ig�z� � ������

hence the functions f�z� and g�z� are assumed to be real� The complex number z will
frequently be written as z � x� iy� so that x � ��z� and y � ��z� where � and � denote
the real and imaginary part respectively�

���� The theorem of Cauchy�Riemann

Let us 
rst consider a real function F �x� of a real variable x� The derivative of such a
function is de
ned by the rule

dF

dx
� lim

�x��

F �x�"x�� F �x�

"x
� ������

In general there are two ways in which "x can approach zero
 from above and from below�
For a function that is di�erentiable it does not matter whether "x approaches zero from
above or from below� If the limits "x � � and "x � � do give a di�erent result it is
a sign that the function does not behave well� it has a kink and the derivative is not
unambiguously de
nes� see 
gure �������

For complex functions the derivative is de
ned in the same way as in equation ������
for real functions�

dh

dz
� lim

�z��

h�z �"z�� h�z�

"z
� ������

For real functions� "x could approach zero in two ways� from below and from above�
However� the limit "z � � in ������ can be taken in in
nitely many ways� As an example
see 
gure ������ where several paths are sketched that one can use to let "z approach
zero� This does not always give the same result�

���
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∆x> 0∆x< 0

x

F(x)

Figure ����� A function F�x� that is not di�erentiable�

Figure ����� Examples of paths along which the limit can be taken�
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Problem a� Consider the function h�z� � exp���z�� Using the de
nition ������ compute
dh�dz at the point z � � when "z approaches zero �i� from the positive real axis�
�ii� from the negative real axis� �iii� from the positive imaginary axis and �iv� from
the negative imaginary axis�

You have discovered that for some functions the result of the limit "z depends critically
on the path that one uses in the limit process� The derivative of such a function is not
de
ned unambiguously� However� for many functions the value of the derivative does not
depend on the way that "z approaches zero� When these functions and their derivative
are also 
nite� they are called analytic functions� The requirement that the derivative
does not depend on the way in which "z approaches zero imposes a strong constraint on
the real and imaginary part of the complex function� To see this we will let "z approach
zero along the real axis and along the imaginary axis�

Problem b� Consider a complex function of the form ������ and compute the derivative
dh�dz by setting "z � "x with "x a real number� �Hence "z approaches zero
along the real axis�� Show that the derivative is given by dh�dz � �f��x� i�g��x�

Problem c� Compute the derivative dh�dz also by setting "z � i"y with "y a real
number� �Hence "z approaches zero along the imaginary axis�� Show that the
derivative is given by dh�dz � �g��y � i�f��y�

Problem d� When h�z� is analytic these two expressions for the derivative are by de
�
nition equal� Show that this implies that�

�f

�x
�

�g

�y
� ������

�g

�x
� ��f

�y
� ������

These are puzzling expressions since the conditions ������ and ������ imply that the real
and imaginary part of an analytic complex functions are not independent of each other�
they are coupled by the constraints imposed by the equations above� The expressions
������ and ������ are called the Cauchy�Riemann relations�

Problem e� Use these relations to show that both f�x� y� and g�x� y� are harmonic func�
tions� These are functions for which the Laplacian vanishes�

r�f � r�g � � � ����	�

Hence we have found not only that f and g are coupled to each other
 in addition the
functions f and g must be harmonic functions� This is exactly the reason why this theory is
so useful in mathematical physics because harmonic functions arise in several applications�
see the examples of the coming sections� However� we have not found all the properties of
harmonic functions yet�

Problem f� Show that�
�rf � rg� � � � ������
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Since the gradient of a function is perpendicular to the lines where the function is
constant this implies that the curves where f is constant and where g is constant intersect
each other at a 
xed angle�

Problem g� Determine this angle�

Problem h� Verify the properties ������ through ������ explicitly for the function h�z� �
z�� Also sketch the lines in the complex plane where f � ��h� and g � ��h� are
constant�

Still we have not fully explored all the properties of analytic functions� Let us consider a
line integral

H
C h�z�dz along a closed contour C in the complex plane�

Problem i� Use the property dz � dx� idy to deduce that�I
C
h�z�dz �

I
C
v�dr� i

I
C
w�dr � ������

where dr �

�
dx
dy

�
and with the vectors v and w de
ned by�

v �

�
f
�g

�
� w �

�
g
f

�
� ������

Note that we now use x and y both as the real and imaginary part of a complex number�
but also as the Cartesian coordinates in a plane� In the following problem we will �perhaps
confusingly� use the notation z both for a complex number in the complex plane� as well
as for the familiar z�coordinate in a three�dimensional Cartesian coordinate system�

Problem j� Show that the Cauchy�Riemann relations ������������� imply that the z�
component of the curl of v and w vanishes� �r� v�z � �r�w�z � �� and use
������ and the theorem of Stokes ����� to show that when h�z� is analytic everywhere
within the contour C that�I

C
h�z�dz � � � h�z� analytic within C � �������

This means that the line integral of a complex functions along any contour that encloses
a region of the complex plane where that function is analytic is equal to zero� We will
make extensive use of this property in section ���� where we deal with integration in the
complex plane�

���� The electric potential

Analytic functions are often useful in the determination of the electric 
eld and the po�
tential for two�dimensional problems� The electric 
eld satis
es the 
eld equation �	�����
�r � E� � ��r����� In free space the charge density vanishes� hence �r �E� � �� The
electric 
eld is related to the potential V through the relation

E � �rV � �������
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Problem a� Show that in free space the potential is a harmonic function�

r�V �x� y� � � � �������

We can exploit the theory of analytic functions by noting that the real and imaginary parts
of analytic functions both satisfy �������� This implies that if we take V �x� y� to be the
real part of a complex analytic function h�x � iy�� the condition ������� is automatically
satis
ed�

Problem b� If follows from ������� that the electric 
eld is perpendicular to the lines
where V is constant� Show that this implies that the electric 
eld lines are also
perpendicular to the lines V � const� Use the theory of the previous section to
argue that the 
eld lines are the lines where the imaginary part of h�x � iy� is
constant�

This means that we receive a bonus by expressing the potential V as the real part of a
complex analytic function� because the 
eld lines simply follow from the requirement that
��h� � const�

Suppose we want to know the potential in the half space y 
 � when we have speci
ed
the potential on the x�axis� �Mathematically this means that we want to solve the equation
r�V � � for y 
 � when V �x� y � �� is given�� If we can 
nd an analytic function h�x�iy�
such that on the x�axis �where y � �� the real part of h is equal to the potential� we have
solved our problem because the real part of h satis
es by de
nition the required boundary
condition and it satis
es the 
eld equation ��������

Problem c� Consider a potential that is given on the x�axis by

V �x� y � �� � V� exp
�
�x��a�

�
� �������

Show that on the x�axis this function can be written as V � ��h� with

h�z� � V� exp
�
�z��a�

�
� �������

Problem d� This means that we can determine the potential and the 
eld lines through�
out the half�plane y 
 �� Use the theory of this section to show that the potential
is given by

V �x� y� � V� exp

�
y� � x�

a�

�
cos

�
�xy

a�



� �������

Problem e� Verify explicitly that this solution satis
es the boundary condition at the
x�axis and that is satis
es the 
eld equation ��������

Problem f� Show that the 
eld lines are given by the relation

exp

�
y� � x�

a�

�
sin

�
�xy

a�



� const� �����	�
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Problem g� Sketch the 
eld lines and the lines where the potential is constant in the half
space y 
 ��

In this derivation we have extended the solution V �x� y� into the upper half plane
by identifying it with an analytic function in the half plane that has on the x�axis a
real part that equals the potential on the x�axis� Note that we found the solution to this
problem without explicitly solving the partial di�erential equation ������� that governs the
potential� The approach we have taken is called analytic continuation since we continue
an analytic function from one region �the x�axis� into the upper half plane� Analytic
continuation turns out to be a very unstable process� This can be veri
ed explicitly for
this example�

Problem h� Sketch the potential V �x� y� as a function of x for the values y � �� y � a
and y � ��a� What is the wavelength of the oscillations in the x�direction of the
potential V �x� y� for these values of y� Show that when we slightly perturb the
constant a that the perturbation of the potential increases for increasing values of y�
This implies that when we slightly perturb the boundary condition� that the solution
is more perturbed as we move away from that boundary�

���� Fluid �ow and analytic functions

As a second application of the theory of analytic functions we consider �uid �ow� At the
end of section ����� we have seen that the computation of the streamlines by solving the
di�erential equation dr�dt � v�r� for the velocity 
eld ������������� is extremely complex�
Here the theory of analytic functions is used to solve this problem in a simple way� We
consider once again a �uid that is incompressible � �r � v� � � � and will specialize to the
special case that the vorticity of the �ow vanishes�

r� v � � � �������

Such a �ow is called irrotational because it does not rotate �see the sections ����� and �������
The requirement ������� is automatically satis
ed when the velocity is the gradient of a
scalar function f �

v � rf � �������

Problem a� Show this�

The function f plays for the velocity 
eld v the same role as the electric potential V for
the electric 
eld E� For this reason� �ow with a vorticity equal to zero is called potential

�ow�

Problem b� Show that the requirement that the �ow is incompressible implies that

r�f � � � �������

We now specialize to the special case of incompressible and irrotational �ow in two
dimensions� In that case we can use the theory of analytic functions again to describe
the �ow 
eld� Once we can identify the potential f�x� y� with the real part of an analytic
function h�x� iy� we know that ������� must be satis
ed�
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Problem c� Consider the velocity 
eld ����� due to a point source at r � �� Show that
this �ow 
eld follows from the potential

f�x� y� �
V

�

ln r � �������

where r �
p
x� � y��

Problem d� Verify explicitly that this potential satis
es ������� except for r � �� What
is the physical reason that ������� is not satis
ed at r � ��

We now want to identify the potential f�x� y� with the real part of an analytic function
h�x� iy�� We know already that the �ow follows from the requirement that the velocity is
the gradient of the potential� hence it follows by taking the gradient of the real part of h�
The curves f � const� are perpendicular to the �ow because v � rf is perpendicular to
these curves� However� it was shown in section ������ that the curves g � ��h� � const�
are perpendicular to the curves f � ��h� � const� This means that the �ow lines are
given by the curves g � ��h� � const� In order to use this we 
rst have to 
nd an analytic
function with a real part given by �������� The simplest guess is to replace r in �������
by the complex variable z�

h�z� �
V

�

ln z � �������

Problem e� Verify that the real part of this function indeed satis
es ������� and that
the imaginary part g of this function is given by�

g �
V

�

	 � �������

where 	 � arctan �y�x� is the argument of the complex number� Hint� use the
representation z � r exp i	 for the complex numbers�

Problem f� Sketch the lines g�x� y� � const� and verify that these lines indeed represent
the �ow lines in this �ow�

Now we will consider the more complicated problem of section ����� where the �ow
has a source at r� � �L� �� and a sink at r� � ��L� ��� The velocity 
eld is given by the
equations ������ and ������ and our goal is to determine the slow lines without solving
the di�erential equation dr�dt � v�r�� The points r� and r� can be represented in the
complex plane by the complex numbers z� � L� i� and z� � �L� i� respectively� For
the source at r� �ow is represented by the potential V

�� ln jz � z�j� this follows from the
solution ������� for a single source by moving this source to z � z�

Problem g� Using a similar reasoning determine the contribution to the potential f by
the sink at r�� Show that the potential of the total �ow is given by�

f�z� �
V

�

ln

� jz � z�j
jz � z�j



� �������
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z+

-r +r

-z

-ϕ ϕ+

z

Figure ����� De
nition of the geometric variables for the �uid �ow with a source and a
sink�

Problem h� Express this potential in x and y� compute the gradient and verify that this
potential indeed gives the �ow of the equations �������������� You may 
nd 
gure
������ helpful�

We have found that the potential f is the real part of the complex function

h�z� �
V

�

ln

�
z � z�
z � z�



� �������

Problem i� Write z � z� � r� exp i	� �with r� and 	� de
ned in 
gure �������� take
the imaginary part of �������� and show that g � ��h� is given by�

g �
V

�

�	� � 	�� � �������

Problem j� Show that the streamlines of the �ow are given by the relation

arctan

�
y

x� L



� arctan

�
y

x� L



� const� �����	�

A 
gure of the streamlines can thus be found by making a contour plot of the function in
the left hand side of �����	�� This treatment is de
nitely much simpler than solving the
di�erential equation dr�dt � v�r��



Chapter ��

Complex integration

In chapter ���� the properties of analytic functions in the complex plane were treated�
One of the key�results is that the contour integral of a complex function is equal to zero
when the function is analytic everywhere in the area of the complex plane enclosed by
that contour� see expression �������� From this it follows that the integral of a complex
function along a closed contour is only nonzero when the function is not analytic in the
area enclosed by the contour� Functions that are not analytic come in di�erent types� In
this section complex functions are considered that are not analytic only at isolated points�
These points where the function is not analytic are called the poles of the function�

���� Non�analytic functions

When a complex function is analytic at a point z�� it can be expanded in a Taylor series
around that point� This implies that within a certain region around z� the function can
be written as�

h�z� �
�X
n��

an�z � z��
n � ������

Note that in this sum only positive powers of �z � z�� appear�

Problem a� Show that the function h�z� � sin z
z can be written as a Taylor series around

the point z� � � of the form ������ and determine the coe�cients an�

Not all functions can be represented in a series of the form ������� As an example consider
the function h�z� � exp���z�� The function is not analytic at the point z � � �why���
Expanding the exponential leads to the expansion

h�z� � exp���z� � � �
�

z
�

�

��

�

z�
� � � � �

�X
n��

�

n�

�

zn
� ������

In this case an expansion in negative powers of z is needed to represent this function� Of
course� each of the terms ��zn is for n 
 � singular at z � �� this re�ects the fact that the
function exp���z� has a pole at z � �� In this section we consider complex functions that
can be expanded around a point z� as an in
nite sum of integer powers of �z � z���

h�z� �
�X

n���
an�z � z��

n � ������

�	�
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However� it should be noted that not every function can be represented as such a sum�

Problem b� Can you think of one�

���� The residue theorem

It was argued at the beginning of this section that the integral of a complex function
around a closed contour in the complex plane is only nonzero when the function is not
analytic at some point in the area enclosed by the contour� In this section we will derive
what the value is of the contour integral� Let us integrate a complex function h�z� along a
contour C in the complex plane that encloses a pole of the function at the point z�� see the
left panel of 
gure ������� Note that the integration is carried out in the counter�clockwise
direction� It is assumed that around the point z� the function h�z� can be expanded in
a power series of the form ������� It is our goal to determine the value of the contour
integral

H
C h�z�dz�

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

ε

-C

C+
z0

CC

Figure ����� De
nition of the contours for the contour integration�

The 
rst step in the determination of the contour integral is to recognize that within
the shaded area in the right panel of 
gure ������ the function h�z� is analytic because we
assumed that h�z� is only non�analytic at the point z�� By virtue of the identity �������
this implies that I

C�
h�z�dz � � � ������

where the path C� consists of the contour C� a small circle with radius � around z� and
the paths C� and C� in the right panel of 
gure �������

Problem a� Show that the integrals along C� and C� do not give a net contribution to
the total integral� Z

C�
h�z�dz �

Z
C�

h�z�dz � � � ������

Hint� note the opposite directions of integration along the paths C� and C��
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Problem b� Use this result and expression ������ to show that the integral along the
original contour C is identical to the integral along the small circle C� around the
point where h�z� is not analytic�I

C
h�z�dz �

I
C�
h�z�dz � ����	�

Problem c� The integration along C is in the counter�clockwise direction� Is the inte�
gration along C� in the clockwise or in the counter�clockwise direction�

Expression ����	� is very useful because the integral along the small circle can be evaluated
by using that close to z� the function h�z� can be written as the series ������� When one
does this the integration path C� needs to be parameterized� This can be achieved by
writing the points on the path C� as

z � z� � � exp i	 � ������

with 	 running from � to �
 since C� is a complete circle�

Problem d� Use the expressions ������� ����	� and ������ to derive that

I
C
h�z�dz �

�X
n���

ian�
�n��


Z ��

�
exp �i�n� ��	� d	 � ������

This expression is very useful because it expresses the contour integral in the coe�cients
an of the expansion ������� It turns out that only the coe�cient a�� gives a nonzero
contribution�

Problem e� Show by direct integration that�

Z ��

�
exp �im	� d	 �

�
� for m �� �
�
 for m � �

������

Problem f� Use this result to derive that only the term n � �� contributes to the sum
in the right�hand side of ������ and thatI

C
h�z�dz � �
ia�� �������

It may seem surprising that only the term n � �� contributes to the sum in the right
hand side of equation ������� However� we could have anticipated this result because we
had already discovered that the contour integral does not depend on the precise choice of
the integration path� It can be seen that in the sum ������ each term is proportional to
��n��
� Since we know that the integral does not depend on the choice of the integration
path� and hence on the size of the circle C�� one would expect that only terms that do not
depend on the radius � contribute� This is only the case when n� � � �� hence only for
the term n � �� is the contribution independent of the size of the circle� It is indeed only
this term that gives a nonzero contribution to the contour integral�
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The coe�cient a�� is usually called the residue and is denoted by the symbol Res h�z��
rather than a��� However� remember that there is nothing mysterious about the residue�
it is simply de
ned by the de
nition

Res h�z�� � a�� � �������

With this de
nition the result ������� can trivially be written asI
C
h�z�dz � �
iRes h�z�� �counter � clockwise direction� � �������

This may appear to be a rather uninformative rewrite of expression ������� but it is the
form ������� that you will 
nd in the literature� The identity ������� is called the residue
theorem�

Of course the residue theorem is only useful when one can determine the coe�cient
a�� in the expansion ������� You can 
nd in section ������ of the book of Butkov���� an
overview of methods for computing the residue� Here we will present the two most widely
used methods� The 
rst method is to determine the power series expansion ������ of the
function explicitly�

Problem g� Determine the power series expansion of the function h�z� � sin z
z� around

z � � and use this expansion to determine the residue�

Unfortunately� this method does not always work� For some special functions other tricks
can be used� Here we will consider functions with a simple pole� these are functions where
in the expansion ������ the terms for n � �� do not contribute�

h�z� �
�X

n���
an�z � z��

n � �������

An example of such a function is h�z� � cos z
z � The residue at the point z� follows by

�extracting� the coe�cient a�� from the series ��������

Problem h� Multiply ������� with �z � z��� take the limit z � z� to show that�

Res h�z�� � lim
z�z�

�z � z��h�z�� �simple pole� � �������

However� remember that this only works for functions with a simple pole� this recipe gives
the wrong answer �in
nity� when applied to a function that has nonzero coe�cients an
for n � �� in the expansion �������

In the treatment of this section we considered an integration in the counter�clockwise
direction around the pole z��

Problem i� Redo the derivation of this section for a contour integration in the clockwise
direction around the pole z� and show that in that caseI

C
h�z�dz � ��
iRes h�z�� �clockwise direction� � �������

Find out in which step of the derivation the minus sign is picked up�



����� APPLICATION TO SOME INTEGRALS �	�

Problem j� It may happen that a contour encloses not a single pole but a number of
poles at points zj� Find for this case a contour similar to the contour C� in the
right panel of 
gure ������ to show that the contour integral is equal to the sum of
the contour integrals around the individual poles zj � Use this to show that for this
situation�I

C
h�z�dz � �
i

X
j

Res h�zj� �counter � clockwise direction� � �����	�

���� Application to some integrals

The residue theorem has some applications to integrals that do not contain a complex
variable at all� As an example consider the integral

I �

Z �

��
�

� � x�
dx � �������

If you know that ���� � x�� is the derivative of arctan x it is not di�cult to solve this
integral�

I � �arctan x���� �



�
�
�
�

�



� 
 � �������

Now suppose you did not know that arctan x is the primitive function of ���� � x��� In
that case you would be unable to see that the integral ������� is equal to 
� Complex
integration o�ers a way to obtain the value of this integral in a systematic fashion�

First note that the path of integration in the integral can be viewed as the real axis
in the complex plane� Nothing prevents us from viewing the real function ���� � x�� as a
complex function ���� � z�� because on the real axis z is equal to x� This means that

I �

Z
Creal

�

� � z�
dz � �������

where Creal denotes the real axis as integration path� At this point we cannot apply the
residue theorem yet because the integration is not over a closed contour in the complex
plane� see 
gure ������� Let us close the integration path using the circular path CR in
the upper half plane with radius R� see 
gure ������� In the end of the calculation we will
let R go to in
nity so that the integration over the semicircle moves to in
nity�

Problem a� Show that

I �

Z
Creal

�

� � z�
dz �

I
C

�

� � z�
dz �

Z
CR

�

� � z�
dz � �������

The circular integral is over the closed contour in 
gure ������� What we have done is that
we have closed the contour and that we subtract the integral over the semicircle that we
added to obtain a closed integration path� This is the general approach in the application
of the residue theorem
 one adds segments to the integration path to obtain an integral
over a closed contour in the complex plane� and corrects for the segments that one has
added to the path� Obviously� this is only useful when the integral over the segment that
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x

x

R

z = i

z = -i

Figure ����� De
nition of the integration paths in the complex plane�

one has added can be computed easily or when it vanishes� In this example the integral
over the semicircle vanishes as R��� This can be seen with the following estimations�����

Z
CR

�

� � z�
dz

���� �
Z
CR

���� �

� � z�

���� jdzj �
Z
CR

�

jzj� � �
jdzj � 
R

R� � �
� � as R�� �

�������

Problem b� Justify each of these steps�

The estimate ������� implies that the last integral in ������� vanishes in the limit R���
This means that

I �

I
C

�

� � z�
dz � �������

Now we are in the position to apply the residue theorem because we have reduced the
problem to the evaluation of an integral along a closed contour in the complex plane� We
know from section ������ that this integral is determined by the poles of the function that
is integrated within the contour�

Problem c� Show that the function ���� � z�� has poles for z � �i and z � �i�

Only the pole at z � �i is within the contour C� see 
gure ������� Since ���� � z�� �
��f�z � i��z � i�g this pole is a simple �why���

Problem d� Use equation ������� to show that for the pole at z � i the residue is given
by� Res � ���i�
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Problem e� Use the residue theorem ������� to deduce that

I �

Z �

��
�

� � x�
dx � 
 � �������

This value is identical to the value obtained at the beginning of this section by using that
the primitive of ���� � x�� is equal to arctan x� Note that the analysis is very systematic
and that we did not need to �know� the primitive function�

In the treatment of this problem there is no reason why the contour should be closed
in the upper half plane� The estimate ������� hold equally well for a semicircle in the
lower half�plane�

Problem f� Redo the analysis of this section when you close the contour in the lower half
plane� Use that now the pole at z � �i contributes and take into account that the
sense of integration now is in the clockwise direction rather than the anti�clockwise
direction� Show that this leads to the same result ������� that was obtained by
closing the contour in the upper half�plane�

In the evaluation of the integral ������� there was a freedom whether to close the
contour in the upper half�plane or in the lower half�plane� This is not always the case� To
see this consider the integral

J �

Z �

��
cos �x� 
���

� � x�
dx � �������

Since exp ix � cos x� i sinx this integral can be written as

J � �
�Z �

��
ei�x����


� � x�
dx

�
� �������

where ��� � �� again denotes the real part� We want to evaluate this integral by closing this
integration path with a semicircle either in the upper half�plane or in the lower half�plane�
Due to the term exp �ix� in the integral we now have no real choice in this issue� The
decision whether to close the integral in the upper half�plane or in the lower half�plane
is dictated by the requirement that the integral over the semicircle vanishes as R � ��
This can only happen when the integral vanishes �faster than ��R� as R��� Let z be a
point in the complex plane on the semicircle CR that we use for closing the contour� On
the semicircle z can be written as z � R exp i	� In the upper half�plane � � 	 � 
 and
for the lower half�plane 
 � 	 � �
�

Problem g� Use this representation of z to show that���eiz��� � e�R sin� � �����	�

Problem h� Show that in the limit R�� this term only goes to zero when z is in the
upper half�plane�

This means that the integral over the semicircle only vanishes when we close the contour
in the upper half�plane� Using steps similar as in ������� one can show that the integral
over a semicircle in the upper half�plane vanishes as R���



�	� CHAPTER ��� COMPLEX INTEGRATION

Problem i� Take exactly the same steps as in the derivation of ������� and show that

J �

Z �

��
cos �x� 
���

� � x�
dx �


p
� e

� �������

Problem j� Determine the integral
R�
��

sin�x����

��x� dx without doing any additional calcu�

lations� Hint
 look carefully at ������� and spot sin �x� 
����

���� Response of a particle in syrup

Up to this point� contour integration has been applied to mathematical problems� How�
ever� this technique does have important application in physical problems� In this section
we consider a particle with mass m on which a force f�t� is acting� The particle is sus�
pended in syrup� this damps the velocity of the particle and it is assumed that this damping
force is proportional to the velocity v�t� of the particle� The equation of motion of the
particle is given by

m
dv

dt
� �v � f�t� � �������

where � is a parameter that determines the strength of the damping of the motion by the
�uid� The question we want to solve is� what is the velocity v�t� for a given force f�t��

We will solve this problem by using a Fourier transform technique� The Fourier trans�
form of v�t� is denoted by V ���� The velocity in the frequency domain is related to the
velocity in the time domain by the relation�

v�t� �

Z �

��
V ���e�i
td� � �������

and its inverse

V ��� �
�

�


Z �

��
v�t�e�i
tdt � �������

You may be used to seeing a di�erent sign in the exponents and by seeing the factor �

in a di�erent place� but as long as the exponents in the forward and backward Fourier
transform have opposite sign and the product of the scale factors in the forward and
backward Fourier transform is equal to ���
 the di�erent conventions are equally valid
and lead to the same 
nal result� This issue is treated in detail in section ������� The
force f�t� is Fourier transformed using the same expressions
 in the frequency domain it
is denoted by F ����

Problem a� Use the de
nitions of the Fourier transform to show that the equation of
motion ������� is in the frequency domain given by

�i�mV ��� � �V ��� � F ��� � �������

Comparing this with the original equation ������� we can see immediately why the Fourier
transform is so useful� The original expression ������� is a di�erential equation while
expression ������� is an algebraic equation� Since algebraic equations are much easier to
solve than di�erential equations we have made considerable progress�



����� RESPONSE OF A PARTICLE IN SYRUP �	�

Problem b� Solve the algebraic equation ������� for V ��� and use the Fourier transform
������� to derive that

v�t� �
i

m

Z �

��
F ���e�i
t�
� � i


m

� d� � �������

Now we have an explicit relation between the velocity v�t� in the time�domain and the
force F ��� in the frequency domain� This is not quite what we want since we want to 
nd
the relation of the velocity with the force f�t� in the time domain�

Problem c� Use the inverse Fourier transform ������� �but for the force� to show that

v�t� �
i

�
m

Z �

��
f�t��

Z �

��
e�i
�t�t�
�
� � i


m

� d� dt� � �������

This equation looks messy� but we will simplify it by writing it as

v�t� �
i

m

Z �

��
f�t��I�t� t�� dt� � �������

with

I�t� t�� �
Z �

��
e�i
�t�t

�
�
� � i


m

� d� � �������

The problem we now face is to evaluate this integral� For this we will use complex integra�
tion� The integration variable is now called � rather than z but this does not change the
principles� We will close the contour by adding a semicircle either in the upper half�plane
or in the lower half�plane to the integral ������� along the real axis� On a semicircle with
radius R the complex number � can be written as � � R exp i	�

Problem d� Show that
���e�i
�t�t�
��� � exp ��R sin	 � �t� � t���

Problem e� The integral along the semicircle should vanish in the limit R � �� Use
the result of problem d to show that for t � t� the contour should be closed in the
upper half plane and for t � t� in the lower half�plane� see 
gure �������

Problem f� Show that the integrand in ������� has one pole at the negative imaginary
axis at � � �i��m and that the residue at this pole is given by

Res � exp

�
� �

m
�t� t��



� �����	�

Problem g� Use these results and the theorems derived in section ������ that�

I�t� t�� �

�
� for t � t�

�i exp
�
� 


m�t� t��
�

for t � t�
�������

Hint
 treat the cases t � t� and t � t� separately�
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t’ > t t’ < t

X X

Figure ����� The poles in the complex plane and the closure of contours for t� larger than
t �left� and t� smaller than t �right��

Let us 
rst consider �������� One can see from ������� that I�t � t�� is a function that
describes the e�ect of a force acting at time t� on the velocity at time t� Expression �������
tells us that this e�ect is zero when t � t�� In other words� this expression tells us that the
force f�t�� has no e�ect on the velocity v�t� when t � t�� This is equivalent to saying that
the force only a�ects the velocity at later times� In this sense� equation ������� can be
seen as an expression of causality
 the cause f�t�� only in�uences the e�ect v�t� for later
times�

Problem h� Insert the equations ������� and ������� in ������� to show that

v�t� �
�

m

Z t

��
exp

�
� �

m
�t� t��



f�t��dt� � �������

Pay in particular attention to the limits of integration�

Problem i� Convince yourself that this expression states that the force �the �cause��
only has an in�uence on the velocity �the �e�ect�� for later times�

You may be very happy that for this problem we have managed to give a proof of the
causality principle� However� there is a problem hidden in the analysis� Suppose we switch
o� the damping parameter �� i�e� we remove the syrup from the problem� One can easily
see that setting � � � in the 
nal result ������� poses no problem� However� suppose that
we would have set � � � at the start of the problem�

Problem j� Show that in that case the pole in 
gure ������ is located on the real axis
rather than the negative imaginary axis�

This implies that it is not clear how this pole a�ects the response� In particular� it is
not clear whether this pole gives a nonzero contribution for t � t� �as it would when we
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consider it to lie in the upper half�plane� or for t � t��as it would when we consider it to
lie in the lower half�plane�� This is a disconcerting result since it implies that causality
only follows from the analysis when the problem contains some dissipation� This is not
an artifact of the employed analysis using complex integration� What we encounter here
is a manifestation of the problem that in the absence of dissipation the laws of physics
are symmetric for time�reversal� whereas the world around us seems to move in one time
direction only� This is the poorly resolved issue of the �arrow of time��
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Chapter ��

Green�s functions� principles

Green�s function play a very important role in mathematical physics� The Green�s function
plays a similar role as the impulse response for linear 
lters that was treated in section
������� The general idea is that if one knows the response of a system to a delta�function
input� the response of the system to any input can be reconstructed by superposing the
response to the delta function input in an appropriate manner� However� the use of Green�s
functions su�ers from the same limitation as the use of the impulse response for linear

lters
 since the superposition principle underlies the use of Green�s functions they are
only useful for systems that are linear� Excellent treatments of Green�s functions can be
found in the book of Barton��� that is completely devoted to Green�s functions and in
Butkov����� Since the principles of Green�s functions are so fundamental� the 
rst section
of this chapter is not presented as a set of problems�

���� The girl on a swing

In order to become familiar with Green�s functions let us consider the example of a girl on
a swing that is pushed by her mother� see 
gure ������� When the amplitude of the swing
is not too large� the motion is of the swing is described by the equation of a harmonic
oscillator that is driven by an external force F �t� that is a general function of time�

�x� ��
�x � F �t��m � ������

The eigen�frequency of the oscillator is denoted by ��� It is not easy to solve this equation
for a general driving force� For simplicity� we will solve equation ������ for the special case
that the mother gives a single push to her daughter� The push is given at time t � � and
has duration " and the magnitude of the force is denoted by F�� this means that�

F �t� �

���
��

� for t � �
F� for � � t � "
� for " � t

������

We will look here for a causal solution� This is another way of saying that we are looking
for a solution where the cause �the driving force� precedes the e�ect �the motion of the
oscillator�� This means that we require that the oscillator does not move before for t � ��
For t 
 " the driving force vanishes and the solution is given by a linear combination of

���
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Figure ����� The girl on a swing�

cos ���t� and sin ���t�� For � � t � " the solution can be found by making the substitution
x � x� � F��m��

o �

When t � � and t 
 " the function x�t� satis
es the di�erential equation �x���
�x � ��

This di�erential equation has general solutions of the form x�t� � A cos ���t��B sin ���t��
For t � � the displacement vanishes� hence the constants A and B vanish� This determines
the solution for t � � and t 
 "� For � � t � " the displacement satis
es the di�erential
equation �x � ��

�x � F��m� The solution can be found by writing x�t� � F��m��
� � y�t��

The function y�t� then satis
es the equation �y � ��
�y � �� which has the general solution

C cos ���t��D sin ���t�� This means that the general solution of the oscillator is given by

x�t� �

���
��

� for t � �
F�
m
��

� C cos ���t� �D sin ���t� for � � t � "

A cos ���t� �B sin ���t� for " � t

� ������

where A� B� C and D are integration constants that are not yet known�

These integration constants follow from the requirement that the motion x�t� of the
oscillator is at all time continuous and that the velocity !x�t� of the oscillator is at all time
continuous� The last condition follows from the consideration that when the force is 
nite�
the acceleration is 
nite and the velocity is therefore continuous� The requirement that the
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both x�t� and !x�t� are continuous at t � � and at t � " lead to the following equations�

F�
m
��

� C � �

��D � �
F�
m
��

� C cos ���"� �D sin ���"� � A cos ���"� �B sin ���"�

�C sin ���"� �D cos ���"� � �A sin ���"� �B cos ���"�

������

These equations are four linear equations for the four unknown integration constants
A� B� C and D� The two upper equations can be solved directly for the constants C and D
to give the values C � � �F��m��

�

�
and D � �� These values for C and D can be inserted

in the lower two equations� Solving these equations then for the constant A and B gives
the values A � � �F��m��

�

�
��� cos ���"�� and B �

�
F��m��

�

�
sin ���"�� Inserting these

values of the constants in ������ shows that the motion of the oscillator is given by�

x�t� �

����
���

� for t � �
F�
m
��

f�� cos ���t�g for � � t � "
F�
m
��

fcos ��� �t�"��� cos ���t�g for " � t

������

This is the solution for a push with duration " delivered at time t � �� Suppose now
that the push is very short� When the duration of the push is much shorter than the
period of the oscillator ��"� �� In that case one can use a Taylor expansion in ��" for
the term cos ��� �t�"�� in ������� This can be achieved by using that cos ��� �t�"�� �
cos ���t� cos ���"�� sin ���t� sin ���"� and by using the Taylor expansions sin�x� � x �
x��	 �O�x�� and cos�x� � �� x��� �O�x�� for sin ���"� and cos ���"�� Retaining term
of order ���"� and ignoring terms of higher order in ���"� shows that for an impulsive
push ���"� �� the solution is given by�

x�t� �

�
� for t � �
F�
m
��

���"� sin ���t� for t � " ����	�

We will not bother anymore with the solution between � � t � " because in the limit
"� � this interval is of vanishing duration�

At this point we have all the ingredients needed to determine the response of the
oscillator for a general driving force F �t�� Suppose we divide the time�axis in intervals of
duration "� In the i�th interval� the force is given by Fi � F �ti� where ti is the time of
the i�th interval� We know from expression ����	� the response to a force of duration "
at time t � �� The response to a force Fi at time ti follows by replacing F� by Fi and by
replacing t by t� ti� Making these replacements it this follows that the respond to a force
Fi delivered over a time interval " at time ti is given by�

x�t� �

�
� for t � ti
�

m
�
sin ��� �t� ti�� F �ti�" for t � ti

������

This is the response due to the force acting at time ti only� To obtain the response
to the full force F �t� one should sum over the forces delivered at all the times ti� In the
language of the girl on the swing one would say that equation ����	� gives the motion
of the swing for a single impulsive push� and that expression ������ gives the response of
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the swing to a sequence of pushes given by the mother� Since the di�erential equation
������ is linear we can use the superposition principle that states that the response to
the superposition of two pushes is the sum of the response to the individual pushes� �In
the language of section ���� we would say that the swing is a linear system�� This means
that when the swing receives a number of pushes at di�erent times ti the response can be
written as the sum of the response to every individual push� With ������ this gives�

x�t� �
X
ti�t

�

m��
sin ��� �t� ti�� F �ti�" � ������

Note that in ������ the response to a push at time t before the push at time ti vanishes�
For this reason one only needs to sum in ������ over the pushes at earlier times because
the pushes at later times give a vanishing contribution� For this reason the summation
extended to times t 
 ti�

Suppose now that the swing is not given a 
nite number of impulse pushes but that the
driving force is a continuous function� This case can be handled by taking the limit "� ��
The summation in ������ then needs to be replaced by an integration� This can naturally
be achieved because the duration " is equal to the in
nitesimal interval dt used in the
integration� What we really are doing here is replacing the continuous function F �t� by a
function that is constant within every interval " at times ti � see 
gure ������� and then
taking the limit where the width of the intervals goes to zero "� �� A similar treatment
may be familiar to you from the theory of integration� When the limit " � � is taken

t i

t i

F(t)

t

F(t)

t

F( )

∆

Figure ����� A continous function �left� and an approximation to this function that is
constant within 
nite intervals �right��

the summation over ti can be replaced by an integration�
P

ti �� � ��" � R
�� � �� d� � The

integration variable � plays the role of the summation variable ti and the time�interval "
is replaced d� � The response of the oscillator to a continuous force F �t� is then given by

x�t� �

Z t

��
�

m��
sin ��� �t� ���F ���d� � ������

The integration is only carried out over times � � t because in the summation ������
extends only over the times ti � t�
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With a slight change in notation this result can be written as�

x�t� �

Z �

��
G�t� ��F ���d� � �������

with

G�t� �� �

�
� for t � �
�

m
�
sin ��� �t� ��� for t � �

�������

The function G�t� �� in expression ������� is called the Green�s function of the harmonic
oscillator� Note that equation ������� is very similar to the response of a linear 
lter that
was derived in equation ������� of section ������� This is not surprising� in both examples
the response of a linear system to impulsive input was determined� it will be no surprise
that the results are identical� In fact� the Green�s function is de
ned as the response of
a linear system to a delta�function input� Although Green�s functions often are presented
in a rather abstract way� one should remember that�

The Green�s function of a system is nothing but the impulse response of a

system	 i�e� it is the response of the system to a delta�function excitation�

���� You have seen Green�s functions before�

Although the concept of a Green�s function may appear to be new to you� you have already
seen ample examples of Green�s function� although the term �Green�s function� might not
have been used in that context� One example is the electric 
eld generated by a point
charge q in the origin that was used in section ������

E�r� �
q�r

�
��r�
����� again

Since this is the electric 
eld generated by a delta�function charge in the origin� this 
eld
is very closely related to the Green�s function for this problem� The 
eld equation ������
of the electric 
eld is invariant for translations in space� This is a complex way of saying
that the electric 
eld depends only on the relative position between the point charge and
the point of observation�

Problem a� Show that this implies that the electric 
eld at location r due to a point
charge at location r� is given by�

E�r� �
q

�
��

�r� r��
jr� r�j� �������

Now suppose that we don�t have a single point charge� but a system of point charges qi
at locations ri� Since the 
eld equation is linear� the electric 
eld generated by a sum of
point charges is the sum of the 
elds generated by each point charge�

E�r� �
X
i

qi
�
��

�r� ri�

jr� rij�
�������
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Problem b� To which expression of the previous section does this equation correspond�

Just as in the previous sections we now make the transition from a 
nite number of
discrete inputs �either pushes of the swing or point charges� to an input function that is
a continuous function �either the applied force to the oscillator as a function of time or a
continuous electric charge�� Let the electric charge per unit volume be denoted by ��r��
this means that the electric charge in a volume dV is given by ��r�dV �

Problem c� Replacing the sum in ������� by an integration over volume and using that
the appropriate charge for each volume element dV show that the electric 
eld for a
continuous charge distribution is given by�

E�r� �

ZZZ
��r��
�
��

�r� r��
jr� r�j� dV

� � �������

where the volume integration is over r��

Problem d� Show that this implies that the electric 
eld can be written as

E�r� �

ZZZ
G�r� r����r��dV � � �������

with the Green�s function given by

G�r� r�� �
�

�
��

�r� r��
jr� r�j� �����	�

Note that this Green�s function has the same form as the electric 
eld for a point charge
shown in ��������

Problem e� Show that the Green�s function is only a function of the relative distance
r� r�� Explain why the integral ������� can be seen as a three�dimensional convo�
lution� E�r� �

RRR
G�r� r����r��dV ��

The main purpose of this section was not to show you that you had seen an example of
a Green�s function before� Instead� it provides an example that the Green�s function is
not necessarily a function of time and that the Green�s function is not necessarily a scalar
function
 the Green�s function �����	� depends only on the position and not on time and
it describes a vector 
eld rather than a scalar� The most important thing to remember is
that the Green�s function is the impulse response of a linear system�

Problem f� You have seen another Green�s function before if you have worked through
section ������ where the response of a particle in syrup was treated� Find the Green�s
function in that section and spot the equivalent expressions of the equations �������
and ������� of this section
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���� The Green�s function as impulse response

You may have found the derivation of the Green�s function in section ������ rather complex�
The reason for this is that in expression ������ the motion of the swing was determined
before the push �t � ��� during the push �� � t � "� and after the push �t � "��
The requirement that the displacement x and the velocity !x were continuous then led to
the system of equations ������ with four unknowns� However� in the end we took the
limit " � � and never used the solution for time � � t � "� This suggests that this
method of solution is unnecessarily complicated� This is indeed the case� In this section
an alternative derivation of the Green�s function ������� is given that is based directly on
the idea that the Green�s function G�t� �� describes the motion of the oscillator due to a
delta�function force at time � �

�G�t� �� � ��
�G�t� �� �

�

m

�t� �� � �������

Problem a� For t �� � the delta function vanishes and the right hand side of this ex�
pression is equal to zero� We are looking for the causal Green�s function� this is the
solution where the cause �the force� precedes the e�ect �the motion of the oscillator��
Show that these conditions imply that for t �� � the Green�s function is given by�

G�t� �� �

�
� for t � �
A cos ��� �t� ��� �B sin ��� �t� ��� for t � �

�������

where A and B are unknown integration constants�

The integration constants follow from conditions at t � � � Since we have two unknown
parameters we need to impose two conditions� The 
rst conditions is that the motion of
the oscillator is continuous at t � � � If this would not be the case the velocity of the
oscillator would be in
nite at that moment�

Problem b� Show that the requirement of continuity of the Green�s function at t � �
implies that A � ��

The second condition requires more care� We will derive the second condition 
rst math�
ematically and then explore the physical meaning� The second condition follows by in�
tegrating expression ������� over t from � � � to � � � and by taking the limit � � ��
Integrating ������� in this way gives�Z ���

���
�G�t� ��dt� ��

�

Z ���

���
G�t� ��dt �

�

m

Z ���

���

�t� ��dt � �������

Problem c� Show that the right�hand side is equal to ��m� regardless of the value of ��

Problem d� Show that the absolute value of the middle term is smaller than ����
� max �G��

where max �G� is the maximum of G over the integration interval� Since the Green�s
function is 
nite this means that the middle term vanishes in the limit � � ��

Problem e� Show that the left term in ������� is equal to !G�t � ���� ��� !G�t � ���� ���
This quantity will be denoted by

h
!G�t� ��

it����
t�����
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Problem f� Show that in the limit � � � equation ������� gives�

h
!G�t� ��

it����
t���� �

�

m
� �������

Problem g� Show that this condition together with the continuity of G implies that the
integration constants in expression ������� have the values A � � and B � ��m���
i�e� that the Green�s function is given by�

G�t� �� �

�
� for t � �
�

m
�
sin ��� �t� ��� for t � �

�������

A comparison with ������� shows that the Green�s function derived in this section is iden�
tical to the Green�s function derived in section ������� Note that the solution was obtained
here without invoking the motion of the oscillator during the moment of excitation� This
also would have been very di�cult because the duration of the excitation �a delta function�
is equal to zero� if it can be de
ned at all�

There is however something strange about the derivation in this section� In section
������ the solution was found by requiring that the displacement x and its 
rst derivative
!x were continuous at all times� As used in problem b the 
rst condition is also met by
the solution �������� However� the derivative !G is not continuous at t � � �

Problem h� Which of the equations that you derived above states that the 
rst derivative
is not continuous�

Problem i� G�t� �� denotes the displacement of the oscillator� Show that expression
������� states that the velocity of the oscillator is changes discontinuously at t � � �

Problem j� Give a physical reason why the velocity of the oscillator was continuous in
the 
rst part of section ������ and why the velocity is discontinuous for the Green�s
function derived in this section� Hint� how large is the force needed produce a 
nite
jump in the velocity of a particle when the force is applied over a time interval of
length zero �the width of the delta�function excitation��

How can we reconcile this result with the solution obtained in section �������

Problem k� Show that the change in the velocity in the solution x�t� in equation ������
is proportional to F �ti�"� i�e� that

� !x�ti��ti�� �
�

m
F �ti�" �������

This means that the change in the velocity depends on the strength of the force times
the duration of the force� The physical reason for this is that the change in the velocity
depends on the integral of the force over time divided by the mass of the particle�

Problem l� Derive this last statement also directly from Newton�s law �F � ma��
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When the force is 
nite and when "� �� the jump in the velocity is zero and the velocity
is continuous� However� when the force is in
nite �as is the case for a delta function�� the
jump in the velocity is nonzero and the velocity is discontinuous�

In many applications the Green�s function is the solution of a di�erential equation
with a delta function as excitation� This implies that some derivative� or combination of
derivatives� of the Green�s function are equal to a delta function at the point �or time�
of excitation� This usually has the e�ect that the Green�s function or its derivative are
not continuous functions� The delta function in the di�erential equation usually leads to
a singularity in the Green�s function or its derivative�

���� The Green�s function for a general problem

In this section� the theory of Green�s functions are treated in a more abstract fashion�
Every linear di�erential equation for a function u with a source term F can symbolically
be written as�

Lu � F � �������

For example in equation ������ for the girl on the swing� u is the displacement x�t� while
L is a di�erential operator given by

L � m
d�

dt�
�m��

� � �������

where is understood that a di�erential operator acts term by term on the function to the
right of the operator�

Problem a� Find the di�erential operator L and the source term F for the electrical

eld treated in section ������ from the 
eld equation �������

In the notation used in this section� the Green�s function depends on the position vector
r� but the results derived here are equally valid for a Green�s function that depends only
on time or on position and time� In general� the di�erential equation ������� must be
supplemented with boundary conditions to give an unique solution� In this section the
position of the boundary is denoted by rB and it is assumed that the function u has the
value uB at the boundary�

u�rB� � uB � �������

Let us 
rst 
nd a single solution to the di�erential equation without bothering about
boundary conditions� We will follow the same treatment as in section ������ where in
equation ������� the input of a linear function was written as a superposition of delta
functions� In the same way� the source function can be written as�

F �r� �

Z

�r� r��F �r��dV � � �����	�

This expression follows from the properties of the delta function� One can interpret this
expression as an expansion of the function F �r� in delta functions because the integral
�����	� describes a superposition of delta functions 
�r� r�� centered at r � r�
 each of
these delta functions is given a weight F �r��� We want to use a Green�s function to
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construct a solution� The Green�s function G�r� r�� is the response at location r due to a
delta function source at location r�� i�e� the Green�s function satis
es�

LG�r� r�� � 
�r � r�� � �������

The response to the input 
�r� r�� is given by G�r� r��� and the source functions can
be written as a superposition of these delta functions with weight F �r��� This suggest that
a solution of the problem ������� is given by a superposition of Green�s functions G�r� r��
where each Green�s function has the same weight factor as the delta function 
�r� r�� in
the expansion �����	� of F �r� in delta functions� This means that the solution of �������
is given by�

uP �r� �

Z
G�r� r��F �r��dV � � �������

Problem b� In case you worked through section ������ discuss the relation between this
expression and equation ������� for the output of a linear function�

It is crucial to understand at this point that we have used three steps to arrive at ��������
�i� The source function is written as a superposition of delta functions� �ii� the response of
the system to each delta function input is de
ned and �iii� the solution is written as the
same superposition of Green�s function as was used in the expansion of the source function
in delta functions�


�r� r�� � F �r� �
R

�r � r��F �r��dV �

� �
G�r� r�� � uP �r� �

R
G�r� r��F �r��dV �

�������

Problem c� Although this reasoning may sound plausible� we have not proven that uP �r�
in equation ������� actually is a solution of the di�erential equation �������� Give
a proof that this is indeed the case by letting the operator L act on ������� and by
using equation ������� for the Green�s function� Hint� the operator L acts on r while
the integration is over r�� the operator can thus be taken inside the integral�

It should be noted that we have not solved our problem yet� because uP does not
necessarily satisfy the boundary conditions� In fact� the solution ������� is just one of the
many possible solutions to the problem �������� It is a particular solution of the inhomo�
geneous equation �������� and this is the reason why the subscript P is used� Equation
������� is called an inhomogeneous equation because the right�hand�side is nonzero� If
the right�hand�side is zero one speaks of the homogeneous equation� This implies that a
solution u� of the homogenous equation satis
es

Lu� � � � �������

Problem d� In general one can add a solution of the homogeneous equation ������� to a
particular solution� and the result still satis
es the inhomogeneous equation ��������
Give a proof of this statement by showing that the function u � uP �u� is a solution
of �������� In other words show that the general solution of ������� is given by�

u�r� � u��r��

Z
G�r� r��F �r��dV � � �������
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Problem e� The problem is that we still need to enforce the boundary conditions ��������
This can be achieved by requiring that the solution u� satis
es speci
c boundary
conditions at rB � Insert ������� in the boundary conditions ������� and show that
the required solution u� of the homogeneous equation must satisfy the following
boundary conditions�

u��rB� � uB�rB��
Z
G�rB � r

��F �r��dV � � �������

This is all we need to solve the problem� What we have shown is that�

the total solution 
�
���� is given by the sum of the particular solution 
�
����

plus a solution of the homogeneous equation 
�
���� that satis�es the boundary

condition 
�
�����

This construction may appear to be very complex to you� However� you should realize
that the main complexity is the treatment of the boundary condition� In many problems�
the boundary condition dictates that the function vanishes at the boundary �uB � �� and
the Green�s function also vanishes at the boundary� It follows from ������� that in that
case the boundary condition for the homogeneous solution is u��rB� � �� This boundary
condition is satis
ed by the solution u��r� � � which implies that one can dispense with
the addition of u� to the particular solution uP �r��

Problem f� Suppose that the boundary conditions do not prescribe the value of the
solution at the boundary but that instead of ������� the normal derivative of the
solution is prescribed by the boundary conditions�

�u

�n
�rB� � �n �ru�rB� � wB � �������

where �n is the unit vector perpendicular to the boundary� How should the theory
of this section be modi
ed to accommodate this boundary condition�

The theory of this section is rather abstract� In order to make the issues at stake more
explicit the theory is applied in the next section to the calculation of the temperature in
the earth�

���� Radiogenic heating and the earth�s temperature

As an application of the use of Green�s function we consider in this section the calculation of
the temperature in the earth and speci
cally the e�ect of the decay of radioactive elements
in the crust on the temperature in the earth� Several radioactive elements such as U���

do not 
t well in the lattice of mantle rocks� For this reason� these elements are expelled
from material in the earth�s mantle and they accumulate in the crust� Radioactive decay
of these elements then leads to a production of heat at the place where these elements
accumulate�

As a simpli
ed example of this problem we assume that the temperature T and the
radiogenic heating Q depend only on depth and that we can ignore the sphericity of the
earth� In addition� we assume that the radiogenic heating does not depend on time and
that we consider only the equilibrium temperature�
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Problem a� Show that these assumptions imply that the temperature is only a function
of the z�coordinate� T � T �z��

The temperature 
eld satis
es the heat equation derived in section ������

�T

�t
� �r�T �Q ������ again

Problem b� Use this expression to show that for the problem of this section the temper�
ature 
eld satis
es

d�T

dz�
� � Q�z�

�
� �������

Earth’s surface

Q(z)=Q

Q(z)=0

Crust

Mantle

z=0

z=H

z=DT=T

T=0

0

0

Figure ����� De
nition of the geometric variables and boundary conditions for the tem�
perature in the earth�

This equation can be solved when the boundary conditions are speci
ed� The thickness of
the crust is denoted by H� see 
gure ������� The temperature is assumed to vanish at the
earth�s surface� In addition� it is assumed that at a 
xed depth D the temperature has a

xed value T�� This implies that the boundary conditions are�

T �z � �� � � � T �Z � D� � T� � �������

In this section we will solve the di�erential equation ������� with the boundary con�
ditions ������� using the Green�s function technique described in the previous section�
Analogously to expression ������� we will 
rst determine a particular solution TP of the
di�erential equation ������� and worry about the boundary conditions later� The Green�s
function G�z� z�� to be used is the temperature at depth z due to delta function heating
at depth z��

d�G�z� z��
dz�

� 
�z � z�� � �����	�

Problem c� Use the theory of the previous section that the following function satis
es
the heat equation ��������

TP �z� � � �

�

Z D

�
G�z� z��Q�z��dz� � �������
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Before further progress can be made it is necessary to 
nd the Green�s function� i�e� to
solve the di�erential equation �����	�� In order to do this the boundary conditions for the
Green�s function need to be speci
ed� In this example we will use a Green�s function that
vanishes at the endpoints of the depth interval�

G�z � �� z�� � G�Z � D� z�� � � � �������

Problem d� Use �����	� to show that for z �� z� the Green�s function satis
es the di�er�
ential equation d�G�z� z���dz� � � and use this to show that the Green�s function
that satis
es the boundary conditions ������� must be of the form

G�z� z�� �

�
�z for z � z�

��z �D� for z � z�
�������

with � and � constants that need to be determined�

Problem e� Since there are two unknown constants� two conditions are needed� The 
rst
condition is that the Green�s function is continuous for z � z�� Use the theory of sec�
tion ������ and the di�erential equation �����	� to show that the second requirement
is�

lim
���

�
dG�z� z��

dz

�z�z���
z�z���

� � � �������

i�e� that the 
rst derivative makes a unit jump at the point of excitation�

Problem f� Apply these two conditions to the solution ������� to determine the constants
� and � and show that the Green�s function is given by�

G�z� z�� �

�
�
�
D�z�
D

�
z for z � z�

� z�

D �D � z� for z � z�
�������

In this notation the two regions z � z� and z � z� are separated� Note� however� that the
solution in the two regions has a highly symmetric form� In the literature you will 
nd
that a solution such as ������� is often rewritten by de
ning z� to be the maximum of z
and z� and z� to be the minimum of z and z��

z� � max�z� z��
z� � min�z� z�� �������

Problem g� Show that in this notation the Green�s function ������� can be written as�

G�z� z�� � � D � z�
D

z� � �������

As a particular heating function we will assume that the heating Q is only nonzero in
the crust� This is a 
rst�order description of the radiogenic heating in the shallow layers
in the earth� The reason for this is that many of the radiogenic elements such as U���


t much better in the crystal lattice of crustal material than in mantle material� For
simplicity we will assume that the radiogenic heating is constant in the crust�

Q�z� �

�
Q� for � � z � H
� for H � z � D

�������
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Problem h� Show that the particular solution ������� for this heating function is given
by

TP �z� �

��
�

Q�H�

��

n
� � zH �� � z

H

�
�� H

D

�o
for � � z � H

Q�H�

��

�
�� z

D

�
for H � z � D

�������

Problem i� Show that this particular solution satis
es the boundary conditions

TP �z � �� � TP �z � D� � � � �����	�

Problem j� This means that this solution does not satisfy the boundary conditions
������� of our problem� Use the theory of section ������ to derive that to this partic�
ular solution we must add a solution T� of the homogenous equation d�T��dz

� � �
that satis
es the boundary conditions T��z � �� � � and T��z � D� � T��

Problem k� Show that the solution to this equation is given by T��z� � T�z�D and that
the 
nal solution is given by

T �z� �

��
� T�

z
D � Q�H�

��

n
� � zH �� � z

H

�
�� H

D

�o
for � � z � H

T�
z
D � Q�H�

��

�
�� z

D

�
for H � z � D

�������

Problem l� Verify explicitly that this solution satis
es the di�erential equation �������
with the boundary conditions ��������

As shown in expression ������ of section ����� the conductive heat��ow is given by
J� ��rT� Since the problem is one�dimensional the heat �ow is given by

J � ��dT
dz

� �������

Problem m� Compute the heat��ow at the top of the layer �z � �� and at the bottom
�z � D�� Assuming that T� and Q� are both positive� does the heat��ow at these
locations increase or decrease because of the radiogenic heating Q�� Give a physical
interpretation of this result� Use this result also to explain why people who often
feel cold like to use an electric blanket while sleeping�

The derivation of this section used a Green�s function that satis
ed the boundary
conditions ������� rather than the boundary conditions ������� of the temperature 
eld�
However� there is no particular reason why one should use these boundary conditions� To
wit� one might think one could avoid the step of adding a solution T��z� of the homogeneous
equation by using a Green�s function *G that satis
es the di�erential equation ������� and
the same boundary conditions as the temperature 
eld�

*G�z � �� z�� � � � *G�z � D� z�� � T� � �������

Problem n� Go through the same steps as you did earlier in this section by constructing
the Green�s function *G�z� z��� computing the corresponding particular solution *TP �z��
verifying whether the boundary conditions ������� are satis
ed by this particular
solution and if necessary adding a solution of the homogeneous equation in order to
satisfy the boundary conditions� Show that this again leads to the solution ��������
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Problem o� If you carried out the previous problem you will have discovered that the
trick to use a Green�s function that satis
ed the boundary condition at z � D did
not lead to a particular solution that satis
ed the same boundary condition at that
point� Why did that trick not work�

The lesson from the last problems is that usually one needs to add to solution of the ho�
mogeneous equation to a particular solution in order to satisfy the boundary conditions�
However� suppose that the boundary conditions of the temperature 
eld would be homoge�
neous as well �T � �z � �� � T �z � D� � ��� In that case the particular solution �������
that was constructed using a Green�s function that satis
es the same homogeneous bound�
ary conditions ������� satis
es the boundary conditions of the full problem� This implies
that it only pays o� to use a Green�s function that satis
es the boundary conditions of
the full problem when these boundary conditions are homogeneous� i�e� when the function
itself vanishes �T � �� or when the normal gradient of the function vanishes ��T��n � ��
or when a linear combination of these quantities vanishes �aT � b�T��n � ��� In all other
cases one cannot avoid adding a solution of the homogeneous equation in order to satisfy
the boundary conditions and the most e�cient procedure is usually to use the Green�s
function that can most easily be computed�

���� Nonlinear systems and Green�s functions

Up to this point� Green�s function were applied to linear systems� The de
nition of a linear
system was introduced in section ������� Suppose that a forcing F� leads to a response
x� and that a forcing F� leads to a response x�� A system is linear when the response
to the linear combination c�F� � c�F� �with c� and c� constants� leads to the response
c�x� � c�x��

Problem a� Show that this de
nition implies that the response to the input times a
constant is given by the response that is multiplied by the same constant� In other
words show that for a linear system an input that is twice as large leads to a response
that is twice as large�

Problem b� Show that the de
nition of linearity given above implies that the response
to the sum of two forcing functions is the sum of the responses to the individual
forcing functions�

This last property re�ects that a linear system satis
es the superposition principle which
states that for a linear system one can superpose the response to a sum of forcing functions�

Not every system is linear� and we will exploit here to what extent Green�s functions
are useful for nonlinear systems� As an example we will consider the Verhulst equation�

!x � x� x� � F �t� � �������

This equation has been used in mathematical biology to describe the growth of a popu�
lation� Suppose that only the term x was present in the right hand side� In that case
the solution would be given by x�t� � C exp �t�� This means that the 
rst term on the
right hand side accounts for the exponential population growth that is due to the fact
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that the number of o�spring is proportional to the size of the population� However� a
population cannot grow inde
nitely� when a population is too large limited resources re�
strict the growth� this is accounted for by the �x� term in the right hand side� The term
F �t� accounts for external in�uences on the population� For example� a mass�extinction
could be described by a strongly negative forcing function F �t�� We will consider 
rst the
solution for the case that F �t� � �� Since the population size is positive we consider only
positive solutions x�t��

Problem c� Show that for the case F �t� � � the change of variable y � ��x leads to the
linear equation !y � �� y� Solve this equation and show that the general solution of
������� �with F �t� � �� is given by�

x�t� �
�

Ae�t � �
� �������

with A an integration constant�

Problem d� Use this solution to show that any solution of the unforced equation goes to
� for in
nite times�

lim
t��x�t� � � � �������

In other words� the population of the unforced Verhulst equation always converges to the
same population size� Note that when the forcing vanishes after a 
nite time� the solution
after that time must satisfy ������� which implies that the long�time limit is then also
given by ��������

Now� consider the response to a delta function excitation at time t� with strength F��
The associated response g�t� t�� thus satis
es

!g � g � g� � F� 
�t� t�� � �������

Since this function is the impulse response of the system the notation g is used in order to
bring out the resemblance with the Green�s functions used earlier� We will consider only
causal solution� i�e� we require that g�t� t�� vanishes for t � t�� g�t� t�� � � for t � t�� For
t � t� the solution satis
es the Verhulst equation without forcing� hence the general form
is given by �������� The only remaining task is to 
nd the integration constant A� This
constant follows by a treatment similar to the analysis of section �������

Problem e� Integrate ������� over t from t� � � to t� � �� take the limit � � � and show
that this leads to the following requirement for the discontinuity in g�

lim
���

�g�t� t���
t���
t��� � F� � �������

Problem f� Use this condition to show that the constant A in the solution ������� is

given by A �
�

�
F�
� �

�
exp t� and that the solution is given by�

g�t� t�� �

�
� for t � t�

F�
���F�
e��t�t���F�

for t � t�
�������
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At this point you should be suspicious for interpreting g�t� t�� as a Green�s function� An
important property of linear systems is that the response is proportional to the forcing�
However� the solution g�t� t�� in ������� is not proportional to the strength F� of the
forcing�

Let us now check if we can use the superposition principle� Suppose the forcing function
is the superposition of a delta�function forcing F� at t � t� and a delta�function forcing
F� at t � t��

F �t� � F�
�t� t�� � F�
�t� t�� � �����	�

By analogy with expression ������� you might think that a Green�s function�type solution
is given by�

xGreen�t� �
F�

��� F��e��t�t�
 � F�
�

F�
��� F��e��t�t�
 � F�

� �������

for times larger than both t� and t�� You could verify by direct substitution that this
function is not a solution of the di�erential equation �������� However� this process is
rather tedious and there is a simpler way to see that the function xGreen�t� violates the
di�erential equation ��������

Problem g� To see this� show that the solution xGreen�t� has the following long�time
behavior�

lim
t��xGreen�t� � � � �������

This limit is at odds with the limit ������� that every solution of the di�erential equation
������� should satisfy when the forcing vanishes after a certain 
nite time� This proves
that xGreen�t� is not a solution of the Verhulst equation�

This implies that the Green�s function technique introduced in the previous sections
cannot be used for a nonlinear equation such as the forced Verhulst equation� The reason
for this is that Green�s function are based on the superposition principle
 by knowing the
response to a delta�function forcing and by writing a general forcing as a superposition of
delta functions one can construct a solution by making the corresponding superposition
of Green�s functions� see �������� However� solutions of a nonlinear equation such as the
Verhulst equation do not satisfy the principle of superposition� This implies that Green�s
function cannot be used e�ectively to construct behavior of nonlinear systems� It is for
this reason that Green�s function are in practice only used for constructing the response
of linear systems�
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Chapter ��

Green�s functions� examples

In the previous section the basic theory of Green�s function was introduced� In this
chapter a number of examples of Green�s functions are introduced that are often used in
mathematical physics�

���� The heat equation in N�dimensions

In this section we consider once again the heat equation as introduced in section ������

�T

�t
� �r�T �Q ������ again

In this section we will construct a Green�s function for this equation inN space dimensions�
The reason for this is that the analysis for N dimensions is just as easy �or di�cult� as
the analysis for only one spatial dimension�

The heat equation is invariant for translations in both space and time� For this reason
the Green�s function G�r�t
 r�� t�� that gives the temperature at location r and time t to a
delta�function heat source at location r� and time t� depends only on the relative distance
r� r� and the relative time t� t��

Problem a� Show that this implies that G�r�t
 r�� t�� � G�r� r�� t� t���

Since the Green�s function depends only on r� r� and t � t� it su�ces to construct the
simplest solution by considering the special case of a source at r� � � at time t� � �� This
means that we will construct the Green�s function G�r�t� that satis
es�

�G�r�t�

�t
� �r�G�r�t� � 
�r�
�t� � ������

This Green�s function can most easily be constructed by carrying out a spatial Fourier
transform� Using the Fourier transform ������� for each of the N spatial dimensions one

nds that the Green�s function has the following Fourier expansion�

G�r� t� �
�

��
�N

Z
g�k� t�eik�rdNk � ������

���
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Note that the Fourier transform is only carried out over the spatial dimensions but not over
time� This implies that g�k� t� is a function of time as well� The di�erential equation that
g satis
es can be obtained by inserting the Fourier representation ������ in the di�erential
equation ������� In doing this we also need the Fourier representation of r�G�r�t��

Problem b� Show by applying the Laplacian to the Fourier integral ������ that�

r�G�r� t� �
��

��
�N

Z
k�g�k� t�eik�rdNk � ������

Problem c� As a last ingredient we need the Fourier representation of the delta function
in the right hand side of ������� This multidimensional delta function is a shorthand
notation for 
�r� � 
�x��
�x�� � � � 
�xN �� Use the Fourier representation ������� of
the delta function to show that�


�r� �
�

��
�N

Z
eik�rdNk � ������

Problem d� Insert these results in the di�erential equation ������ of the Green�s function
to show that g�k� t� satis
es the di�erential equation

�g�k� t�

�t
� �k�g�k� t� � 
�t� � ������

We have made considerable progress� The original equation ������ was a partial di�er�
ential equation� whereas equation ������ is an ordinary di�erential equation for g because
only a time�derivative is taken� In fact� you have seen this equation before when you have
read section ������ that dealt with the response of a particle in syrup� Equation ������
is equivalent to the equation of motion ������� for a particle in syrup when the forcing
forcing is a delta function�

Problem e� Use the theory of section ������ to show that the causal solution of ������ is
given by�

g�k� t� � exp
�
��k�t

�
� ����	�

This solution can be inserted in the Fourier representation ������ of the Green�s function�
this gives�

G�r� t� �
�

��
�N

Z
e��k

�t�ik�rdNk � ������

The Green�s function can be found by solving this Fourier integral� Before we do this� let
us pause and consider the solution ����	� for the Green�s function in the wave�number�time
domain� The function g�k� t� gives the coe�cient of the plane wave component exp �ik � r�
as a function of time� According to ����	� each Fourier component decays exponentially
in time with a characteristic decay time ��

�
�k�

�
�

Problem f� Show that this implies that in the Fourier expansion ������ plane waves with
a smaller wavelength decay faster with time than plane waves with larger wavelength�
Explain this result physically�
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In order to 
nd the Green�s function� we need to solve the Fourier integral ������� The
integrations over the di�erent components ki of the wave�number integration all have the
same form�

Problem g� Show this by giving a proof that the Green�s function can be written as�

G�r� t� �
�

��
�N

�Z
e��k

�
�t�ik�x�dk�


�Z
e��k

�
�t�ik�x�dk�



� � �

�Z
e��k

�
N
t�ikNxNdkN



������

You will notice that the each of the integrals is of the same form� hence the Green�s
function can be written as G�x�� x�� � � � � xN � t� � I�x�� t�I�x�� t� � � � I�xN � t� with I�x� t�
given by

I�x� t� �
�

�


Z �

��
e��k

�t�ikxdk � ������

This means that our problem is solved when the one�dimensional Fourier integral ������
is solved� In order to solve this integral it is important to realize that the exponent in
the integral is a quadratic function of the integration variable k� If the integral would be
of the form

R�
�� e��k

�
dk the problem would not be di�cult because it known that this

integral has the value
p

��� The problem can be solved by rewriting the integral ������

in the form of the integral
R�
�� e��k�dk�

Problem h� Complete the square of the exponent in ������� i�e� show that

��k�t� ikx � ��t
�
k � ix

��t


�
� x�

��t
� �������

and use this result to show that I�x� t� can be written as�

I�x� t� �
�

�

e�x

����t
Z ��ix���t

���ix���t
e��k

��tdk� � �������

C

C

CC

R
Im k = 0

κtIm k = -x/2

Figure ����� The contours CR� CC and C in the complex k�plane�
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With these steps we have achieved our goal of having an integrand of the form exp
���k���

but have paid a price� In the integral ������ the integration was along the real axis CR�
see 
gure ������� In the transformed integral the integration now takes place along the
integration path CC in the complex plane that lies below the real axis� see 
gure �������
However� one can show that when the integration path CC is replaced by an integration
along the real axis the integral has the same value�

I�x� t� �
�

�

e�x

����t
Z �

��
e��k

�tdk � �������

Problem i� When you have studied section ������ you have seen all the material to give
a proof that ������� is indeed identical to �������� Show that this is indeed the case
by using that the closed integral along the closed contour C in 
gure ������ vanishes�

Problem j� Carry out the integration in ������� and derive that

I�x� t� �
e�x

����t

p
�
�t

� �������

and show that this implies that the Green�s function is given by

G�r� t� �
�

��
�t�N��
exp

�
�r����t

�
� �������

Problem k� This result implies that the Green�s function has in any dimension the form
of the Gaussian� Show that this Gaussian changes shape with time� Is the Gaussian
broadest at early times or at late times� What is the shape of the Green�s function
in the limit t � �� i�e� at the time just after the heat forcing has been applied�

Problem l� Sketch the time�behavior of the Green�s function for a 
xed distance r� Does
the Green�s function decay more rapidly as a function of time in three dimensions
than in one dimension� Give a physical interpretation of this result�

It is a remarkable property of the derivation in this section that the Green�s function
could be derived with a single derivation for every number of dimension� It should be
noted that this is not the generic case� In many problems� the behavior of the system
depends critically of the number of spatial dimensions� We will see in section ���� that
wave propagation in two dimensions is fundamentally di�erent from wave propagation
in one or three dimensions� Another example is chaotic behavior of dynamical systems
where the occurrence of chaos is intricately linked to the number of dimensions� see the
discussion given by Tabor�����

���� The Schr�odinger equation with an impulsive source

In this section we will study the Green�s function for the Schr�odinger equation that was
introduced in section �	����

� 'h

i

���r� t�

�t
� � 'h�

�m
r���r� t� � V �r���r� t� �	���� again
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Solving this equation for a general potential V �r� is a formidable problem� and solutions
are known for only very few examples such as the free particle� the harmonic oscillator and
the Coulomb potential� We will restrict ourselves to the simplest case of a free particle� this
is the case where the potential vanishes �V �r� � ��� The corresponding Green�s function
satis
es the following partial di�erential equation�

'h

i

�G�r� t�

�t
� 'h�

�m
r�G�r� t� � 
�r�
�t� � �������

Before we compute the Green�s function for this problem� let us pause to 
nd the meaning
of this Green�s function� First� the Green�s function is for r ��� and t��� a solution of
Schr�odinger�s equation� This means that jGj� gives the probability density of a particle
�see also section 	���� However� the right hand side of ������� contains a delta function
forcing at time t � � at location r � �� This is a source term of G and hence this is a
source of probability for the presence of the particle� One can say that this source term
creates probability for having a particle in the origin at t � �� Of course� this particle
will not necessarily remain in the origin� it will move according to the laws of quantum
mechanics� This motion is described by equation �������� This means that this equation
describes the time evolution of matter waves when matter is injected at t � � at location
r ���

Problem a� The Green�s function G�r� t
 r�� t�� gives the wave�function at location r and
time t for a source of particles at location r� at time t�� Express the Green�s function
G�r� t
 r�� t�� in the solution G�r� t� of �������� and show how you obtain this result� Is
this result also valid for the Green�s function for the quantum�mechanical harmonic
oscillator �where the potential V �r� depends on position��

In the previous section the Green�s function gave the evolution of the temperature 
eld
due to a delta function injection of heat in the origin at time t � �� Similarly� the Green�s
function of this section describes the time�evolution of probability for a delta function
injection of matter waves in the origin at time t � �� These two Green�s functions are
not only conceptually very similar� The di�erential equations ������ for the temperature

eld and ������� for the Schr�odinger equation are 
rst order di�erential equations in time
and second order di�erential equations in the space coordinate that have a delta�function
excitation in the right hand side� In this section we will exploit this similarity and derive
the Green�s function for the Schr�odinger�s equation from the Green�s function for the heat
equation derived in the previous section rather than constructing the solution from 
rst
principles� This approach is admittedly not very rigorous� but it shows that analogies are
useful for making shortcuts�

The principle di�erence between ������ and ������� is that the time�derivative for
Schr�odinger�s equation is multiplied with i �

p�� whereas the heat equation is purely
real� We will relate the two equation by introducing the new time variable � for the
Schr�odinger equation that is proportional to the original time� � � �t�

Problem b� How should the proportionality constant � be chosen so that ������� trans�
form to�

�G�r� ��

��
� 'h�

�m
r�G�r� �� � C
�r�
��� � �����	�
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The constant C in the right hand side cannot easily be determined from the change
of variables � � �t because � is not necessarily real and it is not clear how a delta
function with a complex argument should be interpreted� For this reason we will
bother to specify C�

The key point to note is that this equation is of exactly the same form as the heat equation
������� where 'h���m plays the role of the heat conductivity �� The only di�erence is the
constant C in the right hand side of �����	�� However� since the equation is linear� this
term only leads to an overall multiplication with C�

Problem c� Show that the Green�s function for the Green�s function can be obtained
from the Green�s function ������� for the heat equation by making the following
substitutions�

t �� it�'h

� �� 'h���m
G �� C G

�������

It is interesting to note that the �di�usion constant� � that governs the spreading of the
waves with time is proportional to the square of Planck�s constant� Classical mechanics
follows from quantum mechanics by letting Planck�s constant go to zero� 'h� �� It follows
from ������� that in that limit the di�usion constant of the matter waves goes to zero� This
re�ects the fact that in classical mechanics the probability of the presence for a particle
does not spread�out with time�

Problem d� Use the substitutions ������� to show that the Green�s function for the
Schr�odinger equation in N �dimensions is given by�

G�r� t� � C
�

��
i'ht�m�N��
exp

�
imr���'ht

�
� �������

This Green�s function plays a crucial role in the formulation of the Feynman path

integrals that have been a breakthrough both within quantum mechanics as well as in
other 
elds� A very clear description of the Feynman path integrals is given by Feynman
and Hibbs�����

Problem e� Sketch the real part of the exponential exp
�
imr���'ht

�
in the Green�s func�

tion for a 
xed time as a function of radius r� Does the wavelength of the Green�s
function increase or decrease with distance�

The Green�s function ������� actually has an interesting physical meaning which is based
on the fact that it describes the propagation of matter waves injected at t � � in the
origin� The Green�s function can be written as G � C ��
i'ht�m��N�� exp �i#�� where the
phase of the Green�s function is given by

# �
mr�

�'ht
� �������

As you noted in problem e the wave�number of the waves depends on position� For a
plane wave exp�ik � r� the phase is given by # � �k � r� and the wave�number follows by
taking the gradient of this function�
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Problem f� Show that for a plane wave that

k �r# � �������

The relation ������� has a wider applicability than plane waves� It is shown byWhitham�		�
that for a general phase function #�r� that varies smoothly with r the local wave�number
k�r� is de
ned by ��������

Problem g� Use this to show that for the Green�s function of the Schr�odinger equation
the local wave�number is given by

k �
mr

'ht
� �������

Problem h� Show that this expression is equivalent to expression �	���� of section �	����

v �
'hk

m
�	���� again

In problem e you discovered that for a 
xed time� the wavelength of the waves decreases
when the distance r to the source is increased� This is consistent with expression �	����

when a particle has moved further away form the source in a 
xed time� its velocity is
larger� This corresponds according to �	���� with a larger wave�number and hence with a
smaller wavelength� This is indeed the behavior that is exhibited by the full wave function
��������

The analysis of this chapter was not very rigorous because the substitution t� �i�'h� t
implies that the independent parameter is purely imaginary rather than real� This means
that all the arguments used in the previous section for the complex integration should be
carefully re�examined� However� a more rigorous analysis shows that ������� is indeed the
correct Green�s function for the Schr�odinger equation���� However� the approach taken
in this section shows that an educated guess can be very useful in deriving new results�
One can in fact argue that many innovations in mathematical physics have been obtained
using intuition or analogies rather than formal derivations� Of course� a formal derivation
should ultimately substantiate the results obtained from a more intuitive approach�

���� The Helmholtz equation in ����� dimensions

The Helmholtz equation plays an important role in mathematical physics because it is
closely related to the wave equation� A very complete analysis of the Green�s function
for the wave equation and the Helmholtz equation in di�erent dimensions is given by
DeSanto���� The Green�s function for the wave equation for a medium with constant
velocity c satis
es�

r�G�r� t
 r�� t��� �

c�
��G�r� t
 r�� t��

�t�
� 
�r� r��
�t� t�� � �������

As shown in section ������ the Green�s function depends only on the relative location
r� r� and the relative time t� t� so that without loss of generality we can take the source
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at the origin �r� � �� and let the source act at time t� � �� In addition it follows from
symmetry considerations that the Green�s function depends only on the relative distance
jr� r�j but not on the orientation of the vector r� r�� This means that the Green�s
function then satis
es G�r� t
 r�� t�� � G�jr� r�j � t� t� !� and we need to solve the following
equation�

r�G�r� t�� �

c�
��G�r� t�

�t�
� 
�r�
�t� � �������

Problem a� Under which conditions is this approach justi
ed�

Problem b� Use a similar treatment as in section ������ to show that when the Fourier
transform ������� is used the Green�s function satis
es in the frequency domain the
following equation�

r�G�r� �� � k�G�r� �� � 
�r� � �������

where the wave number k satis
es k � ��c�

This equation is called the Helmholtz equation� it is the reformulation of the wave equation
in the frequency domain� In the following we will suppress the factor � inthe Green�s
function but it should be remembered that the Green�s function depends on frequency�

We will solve ������� for ��� and � space dimensions� To do this we will consider the
case of N �dimensions and derive the Laplacian of a function F �r� that depends only on

the distance r �
qPN

j�� x
�
j � According to expression ������ �r��xj � xj�r� This means

that the derivative �F��xj can be written as �F��xj � ��r��xj� �F��r � �xj�r� �F��r�

Problem c� Use these results to show that

��F �r�

�x�j
�

x�j
r�

��F

�r�
�

�
�

r
� x�j

r�

�
�F

�r
�������

and that the Laplacian
PN

j�� �
�F��x�j is given by

r�F �r� �
��F

�r�
�
N � �

r

�F

�r
�

�

rN��
�

�r

�
rN��

�F

�r



� �����	�

Using this expression the di�erential equation for the Green�s function in N �dimension is
given by

�

rN��
�

�r

�
rN��

�G

�r



� k�G�r� �� � 
�r� � �������

This di�erential equation is not di�cult to solve for �� � or � space dimensions for locations
away from the source �r �� ��� However� we need to consider carefully how the source 
�r�
should be coupled to the solution of the di�erential equation� For the case of one dimension
this can be achieved using the theory of section ������� The derivation of that section needs
to be generalized to more space dimensions�

This can be achieved by integrating ������� over a sphere with radius R centered at
the source and letting the radius go to zero�
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Problem d� Integrate ������� over this volume� use Gauss� law and let the radius R go
to zero to show that the Green�s function satis
esI

SR

�G

�r
dS � � � �������

where the surface integral is over a sphere SR with radius R in the limit R � �� Show
that this can also be written as

lim
r��

Sr
�G

�r
� � � �������

where Sr is the surface of a sphere in N dimensions with radius r�

Note that the surface of the sphere in general goes to zero as r � � �except in one dimen�
sion�� this implies that �G��r must be in
nite in the limit r � � in more than one space
dimension�

The di�erential equation ������� is a second order di�erential equation� Such an equa�
tion must be supplemented with two boundary conditions� The 
rst boundary condition
is given by �������� this condition speci
es how the solution is coupled to the source at
r ��� The second boundary condition that we will use re�ects the fact that the waves
generated by the source will move away from the source� The solutions that we will 
nd
will behave for large distance as exp�	ikr�� but it is not clear whether we should use the
upper sign ��� or the lower sign ����
Problem e� Use the Fourier transform ������� and the relation k � ��c to show that the

integrand in the Fourier transform to the time domain is proportional to exp
��i��t� r

c

�
�

Show that the waves only move away from the source for the upper sign� This means
that the second boundary condition dictates that the solution behave in the limit
r �� as exp��ikr��

The derivative of function exp��ikr� is given by ik exp��ikr�� i�e� the derivative is ik times
the original function� When the Green�s function behaves for large r as exp��ikr�� then
the derivative of the Green�s must satisfy the same relation as the derivative of exp��ikr��
This means that the Green�s function satis
es for large distance r�

�G

�r
� ikG � �������

This relation speci
es that the energy radiates away from the source� For this reason
expression ������� is called the radiation boundary condition�

Now we are at the point where we can actually construct the solution for each dimen�
sion� Let us 
rst determine the solution in one space dimension�

Problem f� Show that for one dimension �N � �� the di�erential equation ������� has
away from the source the general form G � C exp�	ikr�� where r is the distance to
the origin� r � jxj� Use the result of problem e to show that the plus sign should
be used in the exponent and equation ������� to derive that the constant C is given
by C � �i��k� �Hint� what is the surface of a one�dimensional �volume��� Show
that this implies that the Green�s function in one dimension is given by

G�D�x� �
�i
�k

eikjxj � �������
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Before we go to two dimensions we will 
rst solve the Green�s function in three dimensions�

Problem g� Make for three dimensions �N � �� the substitution G�r� � f�r��r and
show that ������� implies that away from the source the function f�r� satis
es

��f

�r�
� k�f � � � �������

This equation has the solution C exp�	ikr�� According to problem e the upper
sign should be used and the Green�s function is given by G�r� � Ceikr�r� Show
that the condition ������� dictates that C � ����
� so that in three dimensions the
Green�s function is given by�

G�D�r� �
��
�


eikr

r
� �������

The problem is actually most di�cult in two dimensions because in that case the
Green�s function cannot be expressed in the simplest elementary functions�

Problem h� Show that in two dimensions �N � �� the di�erential equation of the Green�s
function is away from the source given by

��G

�r�
�

�

r

�G

�r
� k�G�r� � � � r �� � � �������

Problem i� This equation cannot be solved in terms of elementary functions� However
there is a close relation between equation ������� and the Bessel equation

d�F

dx�
�

�

x

dF

dx
� ��� m�

x�
�F � � � �������

Show that the G�kr� satis
es the Bessel equation for order m � ��

This implies that the Green�s function is given by the solution of the zeroth�order Bessel
equation with argument kr� The Bessel equation is a second order di�erential equation�
there are therefore two independent solutions� The solution that is 
nite everywhere is
denoted by Jm�x�� it is the called the regular Bessel function� The second solution is
singular at the point x � � and is called the Neumann function denoted by Nm�x�� The
Green�s function obviously is a linear combination of J��kr� and N��kr�� In order to
determine how this linear combination is constructed it is crucial to consider the behavior
of these functions at the source �i�e� for x � �� and at in
nity �i�e� for x 
 ��� The
required asymptotic behavior can be found in textbooks such as Butkov���� and Arfken���
and is summarized in table �������

Problem j� Show that neither J��kr� norN��kr� behave for large values of r as exp ��ikr��
Show that the linear combination J��kr� � iN��kr� does behave as exp ��ikr��

The Green�s function thus is a linear combination of the regular Bessel function and the
Neumann function� This particular combination is called the �rst Hankel function of
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J��x� N��x�

x� � �� �
�x

� �O�x�� �
� ln �x� �O���

x
 �
q

�
�x cos

�
x� �

�

�
�O�x�����

q
�
�x sin

�
x� �

�

�
�O�x�����

Table ����� Leading asymptotic behaviour of the Bessel function and Neumann function
of order zero�

degree zero and is denoted by H
��

� �kr�� In general the Hankel functions are simply linear

combinations of the Bessel function and the Neumann function�

H
��

m �x� � Jm�x� � iNm�x�

H
��

m �x� � Jm�x�� iNm�x�

�����	�

Problem k� Show thatH
��

� �kr� behaves for large values of r as exp��i �kr��i
����

q
�
�kr

and that in this limit H
��

� �kr� behaves as exp��i �kr� � i
����

q
�
�kr� Use this to

argue that the Green�s function is given by

G�r� � CH
��

� �kr� � �������

where the constant C still needs to be determined�

Problem l� This constant follows from the requirement ������� at the source� Use �����	�
and the asymptotic value of the Bessel function and the Neumann function given
in table ������ to derive the asymptotic behavior of the Green�s function near the
source and use this to show that C � �i���

This result implies that in two dimensions the Green�s function of the Helmholtz equation
is given by

G�D�r� �
�i
�
H

��

� �kr� � �������

Summarizing these results and reverting to the more general case of a source at location
r� it follows that the Green�s functions of the Helmholtz equation is in one� two and three
dimensions given by�

G�D�x� x�� �
�i
�k e

ikjx�x�j

G�D�r� r�� �
�i
� H

��

� �k jr� r�j�

G�D�r� r�� �
��
��

eikjr�r�j

jr�r�j

�������

Note that in two and three dimensions the Green�s function is singular at the source
r��
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Problem m� Show that these singularity is integrable� i�e� show that when the Green�s
function is integrated over a sphere with 
nite radius around the source the result
is 
nite�

There is a physical reason why the Green�s function in two and three dimensions has an
integrable singularity� Suppose one has a source that is not a point source but that the
source is constant within a sphere with radius R centered around the origin� The response
p to this source is given by p�r� �

R
r��RG�r� r��dV � where the integration over the variable

r� is over a sphere with radius R� It follows from this expression that the response in the
origin is given by

p�r ��� �

Z
r��R

G�r ��� r
�
�dV

�
� �������

Since the excitation of this 
eld is 
nite everywhere� the response p�r � �� should be 
nite
as well� This implies that the integral ������� should be 
nite as well� which is a di�erent
way of stating that the singularity of the Green�s function must be integrable�

���� The wave equation in ����� dimensions

In this section we will consider the Green�s function for the wave equation in ��� and �
dimensions� This means that we consider solutions to the wave equation with an impulsive
source at location r� at time t��

r�G�r� t
 r�� t��� �

c�
��G�r� t
 r�� t��

�t�
� 
�r� r��
�t� t�� ������� again�

It was shown in the previous section that this Green�s function depends only on the
relative distance jr� r�j and the relative time t� t�� For the case of a source in the origin
�r� � �� acting at time zero �t� � �� the time domain solution follows by applying a
Fourier transform to the solution G�r� �� of the previous section� This Fourier transform
is simplest in three dimensions� hence we will start with this case�

Problem a� Apply the Fourier transform ������� to the �D Green�s function ������� and
use the relation k � ��c and the properties of the delta function to show that the
Green�s function is in the time given by

G�D�r� t� � � �

�
r



�
t� r

c



� �������

Problem b� Now consider the wave equation with a general source term S�r�t��

r�p�r� t�� �

c�
��p�r� t��

�t�
� S�r� t� � �������

Use the Green�s function ������� to show that a solution of this equation is given by

p�r� t� � � �

�


Z S
�
t� jr�r�j

c

�
jr� r�j dV � � �������
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Note that since jr� r�j is always positive� the response p�r� t� depends only on the source
function at earlier times� The solution therefore has a causal behavior and the Green�s
function ������� is called the retarded Green�s function� However� in several applications
one does not want to use a Green�s function that depends on excitation on earlier times�
An example is re�ection seismology� In that case one records the wave 
eld at the surface�
and from these observations one wants to reconstruct the wave 
eld at earlier times while it
was being re�ected o� layers inside the earth� �See the treatment in section 	�� and paper
of Schneider������ A Green�s function with waves that propagate towards the source and
are then annihilated by the source can be obtained by replacing the radiation condition
������� by �G��r � �ikG� The only di�erence is the minus sign in the right hand side�
this is equivalent to replacing k by �k�

Problem c� Apply the Fourier transform ������� to the �D Green�s function ������� with
k replaced by �k and show that the resulting Green�s function is in the time given
by

G�D� advanced�r� t� � � �

�
r



�
t�

r

c



� �������

and that the following function is a solution of the wave equation ��������

p�r� t� � � �

�


Z S
�
t� jr�r�j

c

�
jr� r�j dV � � �������

Note that in this representation the wave 
eld is expressed in the source function at later
times� For this reason the Green�s function ������� is called the advanced Green�s function�
The fact that the wave equation has both a retarded and an advanced solution is that the
wave equation ������� is invariant for time�reversal� i�e� when one replaces t by �t the
equation does not change� In practice one works most often with the retarded Green�s
function� but keep in mind that in some application such as exploration seismology the
advanced Green�s functions are crucial� In the remaining part of this section we will focus
exclusively of the retarded Green�s functions that represent causal solutions�

In order to obtain the Green�s function for two dimensions in the time domain one
should apply a Fourier transform to the solution �������� This involves taking the Fourier
transform of a Hankel function� and it is not obvious how this Fourier integral should be
solved �although it can be solved�� Here we will follow an alternative route by recognizing
that the Green�s function in two dimensions is identical to the solution of the wave equation
in three dimensions when the source is not a point source but a cylinder�source� In other
words� we obtain the �D Green�s function by considering the wave 
eld in three dimensions
that is generated by a source that is distributed homogeneously along the z�axis� In order
to separate the distance to the origin from the distance to the z�axis the variables r and
� are used� see 
gure �������

Problem d� Show that

G�D��� t� �

Z �

��
G�D�r� t�dz � �����	�
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r

ρ

r= ρ2
+z2

x-axis

y-axis

z-axis

Figure ����� De
nition of the variables r and ��

Problem e� Use the Green�s function ������� and the relation r �
p
�� � z� to show that

G�D��� t� � � �

�


Z �

�




�
t�

p
���z�

c



p
�� � z�

dz � �������

Note that the integration interval has been changed from ������ to ������ show
how this can be achieved�

The distance r in three dimensions does not appear in this expression anymore� Without
loss of generality we variable � can therefore be replaced by r�

Problem f� The integral ������� �with � replaced by r� can be solved by introducing
the new integration variable u � p

r� � z� instead of the old integration variable z�
Show that the integral ������� can with this new variable be written as

G�D�r� t� � � �

�


Z �

r



�
t� u

c

�
p
u� � r�

du � �������

pay attention to the limits of integration�

Problem g� Use the property 
�ax� � 
�x�� jaj to rewrite this integral and evaluate the
resulting integral separately for t � r�c and t � r�c to show that�

G�D�r� t� �

�
� for t � r�c
� �

��
�p

t��r��c� for t � r�c �������
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Three dimensions

Two dimensions

One dimension

t=r/c

Figure ����� The Green�s function of the wave equation in �� � and � dimensios as a
function of time�

This Green�s function as well as the Green�s function for the three�dimensional case is
shown in 
gure ������� There is a fundamental di�erence between the Green�s function for
two dimensions and the Green�s function ������� for three dimensions� In three dimensions
the Green�s function is a delta function 
�t�r�c� modulated by the geometrical spreading
����
r� This means that the response to a delta function source has the same shape
as the input function 
�t� that excites the wave 
eld� An impulsive input leads to an
impulsive output with a time delay given by r�c and the solution is only nonzero at the
wave front t � r�c� However� expressions ������� shows that an impulsive input in two
dimensions leads to a response that is not impulsive� The response has an in
nite duration
and decays with time as ��

p
t� � r��c�� the solution is not only nonzero at the wave front

t � r�c� but it is nonzero everywhere within this wave front�� This means that in two
dimensions an impulsive input leads to a sound response that is of in
nite duration� One
can therefore say that�

Any word spoken in two dimensions will reverberate forever 
albeit weakly��

The approach we have taken is to compute the Green�s function in two dimension
is interesting in that we solved the problem 
rst in a higher dimension and retrieved
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the solution by integrating over one space dimension� Note that for this trick it is not
necessary that this higher dimensional space indeed exists� �Although in this case it does��
Remember that we took this approach because we did not want to evaluate the Fourier
transform of a Hankel function� We can also turn this around
 the Green�s function �������
can be used to determine the Fourier transform of the Hankel function�

Problem h� Show that the Fourier transform of the Hankel function is given by�

Z �

��
H

��

� �x�e�iqxdx �

�
� for q � �
�
i�

�p
q��� for q � � �������

Let us continue with the Green�s function of the wave equation in one dimension in
the time domain�

Problem i� Use the Green�s function for one dimension of the last section to show that
in the time domain

G�D�x� t� � � ic

�


Z �

��
�

�
e�i
�t�jxj�c
d� � �������

This integral resembles the integral used for the calculation of the Green�s function in
three dimensions� The only di�erence is the term ��� in the integrand� because of this
term we cannot immediately evaluate the integral� However� the ��� term can be removed
by di�erentiating expression ������� with respect to time� and the remaining integral can
be evaluated analytically�

Problem j� Show that
�G�D�x� t�

�t
�

c

�



�
t� jxj

c



� �������

Problem k� This expression can be integrated but one condition is needed to specify the
integration constant that appears� We will use here that at t � �� the Green�s
function vanishes� Show that with this condition the Green�s function is given by�

G�D�x� t� �

�
� for t � jxj �c
c�� for t � jxj �c �������

Just as in two dimensions the solution is nonzero everywhere within the expanding wave
front and not only on the wave front jxj � ct such as in three dimensions� However� there
is an important di�erence
 in two dimensions the solution changes for all times with time
whereas in one dimension the solution is constant except for t � jxj �c� Humans cannot
detect a static change in pressure �did you ever hear something when you drove in the
mountains��� therefore a one�dimensional human will only hear a sound at t � jxj �c but
not at later times�

In order to appreciate the di�erence in the sound propagation in �� � and � space
dimensions the Green�s functions for the di�erent dimensions is shown in 
gure �������
Note the dramatic change in the response for di�erent numbers of dimensions� This change
in the properties of the Green�s function with change in dimension has been used somewhat
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jokingly by Morley���� to give �a simple proof that the world is three dimensional�� When
you have worked through the sections ������ and ������ you have learned that both for the
heat equation and the Schr�odinger equation the solution does not depend fundamentally
on the number of dimensions� This is in stark contrast with the solutions of the wave
equation that depend critically on the number of dimensions�
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Chapter ��

Normal modes

Many physical systems have the property that they can carry out oscillations only at
certain speci
c frequencies� As a child �and hopefully also as an adult� you will have
discovered that a swing on a playground will move only with a very speci
c natural
period� and that the force that pushes the swing is only e�ective when the period of the
force matches the period of the swing� The patterns of motion at which a system oscillates
are called the normal modes of the system� A swing may has one normal mode� but you
have seen in section ���� that a simple model of a tri�atomic molecule has three normal
modes� An example of a normal mode of a system is shown in 
gure �	��� Shown is the

Figure �	��� Sand on a metal plate that is driven by an oscillator at a frequency that
corresponds to one of the eigen�frequencies of the plate� This 
gure was prepared by John
Scales at the Colorado School of Mines�

pattern of oscillation of a metal plate that is driven by an oscillator at a 
xed frequency�
The screw in the middle of the plate shows the point at which the force on the plate is
applied� Sand is sprinkled on the plate� When the frequency of the external force is equal
to the frequency of a normal mode of the plate� the motion of the plate is given by the
motion that corresponds to that speci
c normal mode� Such a pattern of oscillation has
nodal lines where the motion vanishes� These nodal lines are visible because the sand on

���
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the plate collects at the these lines�

In this chapter� the normal modes of a variety of systems are analyzed� Normal modes
play an important role in a variety of applications because the eigen�frequencies of normal
modes provide important information of physical systems� Examples are the normal modes
the Earth that provide information about the internal structure of our planet� or the
spectral lines of light emitted by atoms that have led to the advent of quantum mechanics
and its description of the internal structure of atoms� In addition� normal modes are used
in this chapter to introduce some properties of special functions such as Bessel functions
and Legendre functions� This is achieved by analyzing the normal modes of a system in
�� � and � dimensions in the sections �	�� through �	���

���� The normal modes of a string

In this section and the following two sections we assume that the motion of the system is
governed by the Helmholtz equation

r�u� k�u � � � ��	���

In this expression the wave�number k is related to the angular frequency � by the relation

k �
�

c
� ��	���

For simplicity we assume the system to be homogeneous� this means that the velocity c is
constant� This in turn implies that the wave�number k is constant� In the sections �	��
through �	�� we consider a body with size R� Since a circle or sphere with radius R has
a diameter �R we will consider here a string with length �R in order to be able to make
meaningful comparisons� It is assumed that the endpoints of the string are 
xed so that
the boundary conditions are�

u��� � u��R� � � � ��	���

Problem a� Show that the solutions of ��	��� that satisfy the boundary conditions ��	���
are given by sinknr with the wave�number kn given by

kn �
n


�R
� ��	���

where n is an integer�

For a number of purposes is it useful to normalize the modes� this means that we require
that the modes un�x� satisfy the condition

R �R
� u�n�x�dx � ��

Problem b� Show that the normalized modes are given by

un�x� �
�p
R

sinknr � ��	���

Problem c� Sketch the modes for several values of n as a function of the distance x�
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Problem d� The modes un�x� are orthogonal� which means that the inner product
R �R
� un�x�um�x�dx

vanishes when n ��m� Give a proof of this property to derive thatZ �R

�
un�x�um�x�dx � 
nm � ��	�	�

We conclude from this section that the modes of a string are oscillatory functions with
a wave�number that can only have discrete well�de
ned values kn� According to expression
��	��� this means that the string can only vibrate at discrete frequencies that are given by

�n �
n
c

�R
� ��	���

This property will be familiar to you because you probably know that a guitar string
vibrates only at a very speci
c frequencies that determines the pitch of the sound that
you hear� The results of this section imply that each string does not only oscillate at
one particular frequency� but at many discrete frequencies� The oscillation with the lowest
frequency is given by ��	��� with n � �� this is called the fundamental mode or ground�tone�
This is what the ear perceives as the pitch of the tone� The oscillations corresponding
to larger values of n are called the higher modes or overtones� The particular mix of
overtones determines the timbre of the signal� If the higher modes are strongly excited
the ear perceives this sound as metallic� whereas the fundamental mode only is perceived
as a smooth sound� The reader who is interested in the theory of musical instruments can
consult Ref������

The discrete modes are not a peculiarity of the string� Most systems that support waves
and that are of a 
nite extend support modes� For example� in 
gure ���� of chapter �� the
spectrum of the sound of a soprano saxophone is shown� This spectrum is characterized
by well�de
ned peaks that corresponds to the modes of the air�waves in the instrument�
Mechanical systems in general have discrete modes� these modes can be destructive when
they are excited at their resonance frequency� The matter waves in atoms are organized
in modes as well� this is ultimately the reason why atoms in an excited state emit only
light are very speci
c frequencies� called spectral lines�

���� The normal modes of drum

In the previous section we looked at the modes of a one�dimensional system� Here we will
derive the modes of a two�dimensional system which is a model of a drum� We consider a
two�dimensional membrane that satis
es the Helmholtz equation ��	���� The membrane
is circular and has a radius R� At the edge� the membrane cannot move� this means that
in cylinder coordinates the boundary condition for the waves u�r� 	� is given by�

u�R�	� � � � ��	���

In order to 
nd the modes of the drum we will use separation of variables� this means that
we seek solutions that can be written as a product of the function that depends only on
r and a function that depends only 	�

u�r� 	� � F �r�G�	� ��	���
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Problem a� Insert this solution in the Helmholtz equation� use the expression of the
Laplacian in cylinder coordinates� and show that the resulting equation can be writ�
ten as �

�

F �r�
r
�

�r

�
r
�F

�r



� k�r�



	 
z �

�A


� � �

G�	�

��G

�	�	 
z �
�B


��	����

Problem b� The terms labelled �A� depend on the variable r only whereas the terms
labelled �B� depend only on the variable 	� These terms can only be equal for all
values of r and 	 when they depend neither on r nor on 	� i�e� when they are
a constant� Use this to show that F �r� and G�	� satisfy the following di�erential
equations�

d�F

dr�
�

�

r

dF

dr
�

�
k� � �

r�



F � � � ��	����

d�G

d	�
� �G � � � ��	����

where � is a constant that is not yet known�

These di�erential equations need to be supplemented with boundary conditions� The
boundary conditions for F �r� follow from the requirement that this function is 
nite
everywhere and that the displacement vanishes at the edge of the drum�

F �r� is 
nite everywhere � F �R� � �� ��	����

The boundary condition for G�	� follows from the requirement that if we rotate the drum
over �	�	� every point on the drum returns to its original position� This means that the
modes satisfy the requirement that u�r� 	� � u�r� 	��
�� This implies that G�	� satis
es
the periodic boundary condition�

G�	� � G�	� �
� � ��	����

Problem c� The general solution of ��	���� is given by G�	� � exp
�	ip�	�� Show that

the boundary condition ��	���� implies that � � m�� with m an integer�

This means that the dependence of the modes on the angle 	 is given by�

G�	� � eim� � ��	����

The value � � m� can be inserted in ��	����� The resulting equation then bears a close
resemblance to the Bessel equation�

d�Jm
dx�

�
�

x

dJm
dx

�

�
�� m�

x�

�
Jm � � � ��	��	�

This equation has two independent solutions
 the Bessel function Jm�x� that is 
nite
everywhere and the Neumann function Nm�x� that is singular at x � ��
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Problem d� Show that the general solution of ��	���� can be written as�

F �r� � AJm�kr� �BNm�kr� � ��	����

with A and B integration constants�

Problem e� Use the boundary conditions of F �r� show that B � � and that the wave�
number k must take a value such that Jm�kR� � ��

This last condition for the wave�number is analogous to the condition ��	��� for the one�
dimensional string� For both the string and the drum the wave�number can only take
discrete values� these values are dictated by the condition that the displacement vanishes
at the outer boundary of the string or the drum� It follows from ��	��� that for the
string there are in
nitely many wave�numbers kn� Similarly� for the drum there are for
every value of the the angular degree m in
nitely many wave�numbers that satisfy the
requirement Jm�kR� � �� These wave�numbers are labelled with a subscript n� but since
these wave�numbers are di�erent for each value of the angular order m� the allowed wave�

numbers carry two indices and are denoted by k
�m

n � They satisfy the condition

Jm�k�m

n R� � � � ��	����

The zeroes of the Bessel function Jm�x� are not known in closed form� However� tables
exists of the zero crossings of Bessel functions� see for example� table ��� of Abramowitz

and Stegun���� Take a look at this reference which contains a bewildering collection of
formulas� graphs and tables of mathematical functions� The lowest order zeroes of the
Bessel functions J��x�� J��x�� � � � � J��x� are shown in table �	���

m � � m � � m � � m � � m � � m � �

n � � ������� ������� �����	� 	�����	 ������� �������
n � � ������� ������� ������� ���	��� ����	��� ������	�
n � � ��	���� �������� ���	���� �������� �������� ��������
n � � �������� ������	� �������� �	������ ���	���� ��������
n � � �������� �	����	� �������� ������� �����	�� ��������
n � 	 �������	 ���	���	 �������� �������� �������� ��������
n � � ������	� ����	��� �������� �������� �������� ���	�		�

Table �	��� The zeroes of the Bessel function Jm�x��

Problem f� Find the eigen�frequencies of the four modes of the drum with the lowest
frequencies and make a sketch of the associated wave standing wave of the drum�

Problem g� Compute the separation between the di�erent zero crossing for a 
xed value
of m� To which number does this separation converge for the zero crossings at large
values of x�

Using the results of this section it follows that the modes of the drum are given by

unm�r� 	� � Jm�k�m

n r�eim� � ��	����
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Problem h� Let us 
rst consider the 	�dependence of these modes� Show that when
one follows the mode unm�r� 	� along a complete circle around the origin that one
encounters exactly m oscillations of that mode�

The shape of the Bessel function is more di�cult to see than the properties of the functions
eim�� As shown in section ��� of Butkov���� these functions satisfy a large number of
properties that include recursion relations and series expansions� However� at this point
the following facts are most important�

� The Bessel functions Jm�x� are oscillatory functions that decay with distance� in a
sense they behave as decaying standing waves We will return to this issue in section
�	���

� The Bessel functions satisfy an orthogonality relation similar to the orthogonality
relation ��	�	� for the modes of the string� This orthogonality relation is treated in
more detail in section �	���

���� The normal modes of a sphere

In this section we consider the normal modes of a spherical surface with radius R� We only
consider the modes that are associated with the waves that propagate along the surface�
hence we do not consider wave motion in the interior of the sphere� The modes satisfy the
wave equation ��	���� Since the waves propagate on the spherical surface� they are only a
function of the angles � and 	 that are used in spherical coordinates� u � u��� 	�� Using
the expression of the Laplacian in spherical coordinates the wave equation ��	��� is then
given by

�

R�

�
�

sin �

�

��

�
sin �

�u

��



�

�

sin� �

��u

�	�

�
� k�u � � � ��	����

Again� we will seek a solution by applying separation of variables by writing the solution
in a form similar to ��	����

u��� 	� � F ���G�	� � ��	����

Problem a� Insert this in ��	���� and apply separation of variables to show that F ���
satis
es the following di�erential equation�

sin �
d

d�

�
sin �

dF

d�



�
�
k�R� sin� � � �

�
F � � � ��	����

and that G�	� satis
es ��	����� where the unknown constant � does not depend on
� or 	�

To make further progress we have to apply boundary conditions� Just as with the
drum of section �	�� the system is invariant when a rotation over �
 is applied� u��� 	� �
u��� 	� �
�� This means that G�	� satis
es the same di�erential equation ��	���� as for
the case of the drum and satis
es the same periodic boundary condition ��	����� The
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solution is therefore given by G�	� � eim� and the separation constant satis
es � � �m��
with m an integer� Using this� the di�erential equation for F ��� can be written as�

�

sin �

d

d�

�
sin �

dF

d�



�

�
k�R� � m�

sin� �

�
F � � � ��	����

Before we continue let us compare this equation with expression ��	���� for the modes of
the drum that we can rewrite as

�

r

d

dr

�
r
dF

dr



�

�
k� � m�

r�

�
F � � ��	���� again

Note that these equations are identical when we compare r in ��	���� with sin � in ��	�����
There is a good reason for this� Suppose the we have a source in the middle of the drum�
In that case the variable r measures the distance of a point on the drum to the source�
This can be compared with the case of waves on a spherical surface that are excited by
a source at the north�pole� In that case� sin � is a measure of the distance of a point to
the source point� The only di�erence is that sin � enters the equation rather than the
true angular distance �� This is a consequence of the fact that the surface is curved� this
curvature leaves an imprint on the di�erential equation that the modes satisfy�

Problem b� The di�erential equation ��	���� was reduced in section �	�� to the Bessel
equation by changing to a new variable x � kr� De
ne a new variable

x � cos � ��	����

and show that the di�erential equation for F is given by

d

dx

��
�� x�

� dF
dx



�

�
k�R� � m�

�� x�

�
F � � � ��	����

The solution of this di�erential equation is given by the associated Legendre functions
Pm
l �x�� These functions are described in great detail in section ��� of Butkov����� In fact�

just as the Bessel equation� the di�erential equation ��	���� has a solution that is regular
as well a solution Qm

l �x� that is singular at the point x � � where � � �� However� since
the modes are 
nite everywhere� they are given by the regular solution Pm

l �x� only�
The wave�number k is related to frequency by the relation k � ��c� At this point it is

not clear what k is� hence the eigen�frequencies of the spherical surface are not yet known�
It is shown in section ��� of Butkov���� that�

� The associated Legendre functions are only 
nite when the wave�number satis
es

k�R� � l�l � �� � ��	��	�

where l is a positive integer� Using this in ��	���� implies that the associated Leg�
endre functions satisfy the following di�erential equation�

�

sin �

d

d�

�
sin �

dPm
l �cos ��

d�



�

�
l �l � ��� m�

sin� �

�
Pm
l �cos �� � � � ��	����
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Seen as a function of x �� cos �� this is equivalent to the following di�erential
equation

d

dx

��
�� x�

� dPm
l �x�

dx



�

�
l �l � ��� m�

�� x�

�
Pm
l �x� � � � ��	����

� The integer l must be larger or equal than the absolute value of the angular order
m�

Problem c� Show that the last condition can also be written as�

�l �m � l � ��	����

Problem d� Derive that the eigen�frequencies of the modes are given by

�l �

p
l�l � ��R

c
� ��	����

It is interesting to compare this result with the eigen�frequencies ��	��� of the string�
The eigen�frequencies of the string all have the same spacing in frequency� but the eigen�
frequencies of the spherical surface are not spaced at the same interval� In musical jargon
one would say that the overtones of a string are harmonious� this means that the eigen�
frequencies of the overtones are multiples of the eigen�frequency of the ground tone� In
contrast� the overtones of a spherical surface are not harmonious�

Problem e� Show that for large values of l the eigen�frequencies of the spherical surface
have an almost equal spacing�

Problem f� The eigen�frequency �l only depends on the order l but not on the degree m�
For each value of l� the angular degree m can according to ��	���� take the values
�l��l � �� � � � � l � �� l� Show that this implies that for every value of l� there are
��l � �� modes with the same eigen�frequency�

When di�erent modes have the same eigen�frequency one speaks of degenerate modes�
The results we obtained imply that the modes on a spherical surface are given by

Pm
l �cos ��eim�� We used here that the variable x is related to the angle � through the

relation ��	����� The modes of the spherical surface are called spherical harmonics� These
eigen�functions are for m 
 � given by�

Ylm��� 	� � ����m
s

�l � �

�


�l �m��

�l �m��
Pm
l �cos ��eim� m 
 � � ��	����

For m � � the spherical harmonics are de
ned by the relation

Ylm��� 	� � ����m Yl��m��� 	� ��	����

You may wonder where the square�root in front of the associated Legendre function comes
from� One can show that with this numerical factor the spherical harmonics are normalized
when integrated over the sphere� ZZ

jYlmj� d% � � � ��	����
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where
RR � � � d% denotes an integration over the unit sphere� You have to be aware of the

fact that di�erent authors use di�erent de
nitions of the spherical harmonics� For example�
one could de
ne the spherical harmonics also as *Ylm��� 	� � Pm

l �cos ��eim� because the
functions also account for the normal modes of a spherical surface�

Problem g� Show that the modes de
ned in this way satisfy
RR ���*Ylm���� d% � �
� ��l � ���

�l �m����l �m���

This means that the modes de
ned in this way are not normalized when integrated over
the sphere� There is no reason why one cannot work with this convention� as long as one
accounts for the fact that in this de
nition the modes are not normalized� Throughout
this book we will use the de
nition ��	���� for the spherical harmonics� In doing so we
follow the normalization that is used by Edmonds�����

Just as with the Bessel functions� the associated Legendre functions satisfy recursion
relations and a large number of other properties that are described in detail in section ���
of Butkov����� The most important properties of the spherical harmonics Ylm��� 	� are�

� These functions display m oscillations when the angle 	 increases with �
� In other
words� there are m oscillations along one circle of constant latitude�

� The associated Legendre functions Pm
l �cos �� behave like Bessel functions that they

behave like standing waves with an amplitude that decays from the pole� We return
to this issue in section �	�	�

� There are l�m oscillations between the north pole of the sphere and the south pole
of the sphere�

� The spherical harmonics are orthogonal for a suitably chosen inner product� this
orthogonality relation is derived in section �	���

A last and very important property is that the spherical harmonics are the eigen�functions
of the Laplacian in the sphere�

Problem h� Give a proof of this last property by showing that

r�
�Ylm��� 	� � �l �l � �� Ylm��� 	� � ��	����

where the Laplacian on the unit sphere is given by

r�
� �

�

sin �

�

��

�
sin �

�

��



�

�

sin� �

��

�	�
� ��	����

This property is in many applications extremely useful� because the action of the Laplacian
on a sphere can be replaced by the much simpler multiplication with the constant �l �l � ��
when spherical harmonics are concerned�
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���� Normal modes and orthogonality relations

The normal modes of a physical system often satisfy orthogonality relations when a suit�
ably chosen inner product for the eigen�functions is used� In this section this is illustrated
by studying once again the normal modes of the Helmholtz equation ��	��� for di�erent
geometries� In this section we derive 
rst the general orthogonality relation for these nor�
mal modes� This is then applied to the normal modes of the previous sections to derive
the orthogonality relations for Bessel functions and associated Legendre functions�

Let us consider two normal modes of the Helmholtz equation ��	���� and let these
modes be called up and uq� At this point we leave it open whether the modes are de
ned
on a line� on a surface of arbitrary shape or a volume� The integration over the region of
space in which the modes are de
ned is denoted as

R � � � dNx� where N is the dimension of
this space� The wave�number of these modes that acts as an eigenvalue in the Helmholtz
equation is de
ned by kp and kq respectively� In other words� the modes satisfy the
equations�

r�up � k�pu � � � ��	��	�

r�uq � k�quq � � � ��	����

The subscript p may stand for a single mode index such as in the index n for the wave�
number kn for the modes of a string� or it may stand for a number of indices such as the
indices nm that label the eigen�functions ��	���� of a circular drum�

Problem a� Multiply ��	��	� with u�q � take the complex conjugate of ��	���� and multiply
the result with up� Subtract the resulting equations and integrate this over the region
of space for which the modes are de
ned to show thatZ �

u�qr�up � upr�u�q
�
dNx�

�
k�p � k��q

� Z
u�qupd

Nx � � � ��	����

Problem b� Use the theorem of Gauss to derive thatZ
u�qr�upd

Nx �

I
u�qrup � dS�

Z �
ru�q � rup

�
dNx � ��	����

where the integral
H � � � � dS is over the surface that bounds the body� If you have

trouble deriving this� you can consult expression �	��� of section 	�� where a similar
result was used for the derivation of the representation theorem for acoustic waves�

Problem c� Use the last result to show thatI �
u�qrup � u�pruq

�
� dS�

�
k�p � k��q

� Z
u�qupd

Nx � � � ��	����

Problem d� The result is now expressed in the 
rst term as an integral over the boundary
of the body� Let us assume that the modes satisfy on this boundary one of the
three boundary conditions� �i� u � �� �ii� �n �ru � � �where �n is the unit vector
perpendicular to the surface� or �iii� �n �ru � �u �where � is a constant�� Show
that for all of these boundary conditions the surface integral in ��	���� vanishes�
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The last result implies that when the modes satisfy one of these boundary conditions that�
k�p � k��q

� Z
u�qupd

Nx � � � ��	����

Let us 
rst consider the case that the modes are equal� i�e� that p � q� In that case the
integral reduces to

R jupj� dNx which is guaranteed to be positive� Equation ��	���� then
implies that k�p � k��p � so that the wave�numbers kp must be real� kp � k�p � For this reason
the complex conjugate of the wave�numbers can be dropped and ��	���� can be written
as� �

k�p � k�q

�Z
u�qupd

Nx � � � ��	����

Now consider the case of two di�erent modes for which the wave�numbers kp and kq are

di�erent� In that case the term
�
k�p � k�q

�
is nonzero� hence in order to satisfy ��	���� the

modes must satisfy Z
u�qupd

Nx � � for kp �� kq � ��	����

This 
nally gives the orthogonality relation of the modes in the sense that it states that
the modes are orthogonal for the following inner product� hf � gi � R

f�g dNx� Note that
the inner product for which the modes are orthogonal follows from the Helmholtz equation
��	��� that de
nes the modes�

Let us now consider this orthogonality relation for the modes of the string� the drum
and the spherical surface of the previous sections� For the string the orthogonality relation
was derived in problem d of section �	�� and you can see that equation ��	��� is identical
to the general orthogonality relation ��	����� For the circular drum the modes are given
by equation ��	�����

Problem e� Use expression ��	���� for the modes of the circular drum to show that the
orthogonality relation ��	���� for this case can be written as�Z R

�

Z ��

�
Jm��k

�m�

n� r�Jm��k

�m�

n� r�ei�m��m�
�d	 rdr � � for k�m�


n� �� k�m�

n�

��	����
Explain where the factor r comes from in the integration�

Problem f� This integral can be separated in an integral over 	 and an integral over r�
The 	�integral is given by

R ��
� ei�m��m�
�d	� Show that this integral vanishes when

m� �� m�� Z ��

�
ei�m��m�
�d	 � � for m� �� m� � ��	����

Note that you have derived this relation earlier in expression ������ of section ����
in the derivation of the residue theorem�

Expression ��	���� implies that the modes un�m��r� 	� and un�m��r� 	� are orthogonal
when m� �� m� because the 	�integral in ��	���� vanishes when m� �� m�� Let us now
consider why the di�erent modes of the drum are orthogonal when m� and m� are equal
to the same integer m� In that case ��	���� implies thatZ R

�
Jm�k�m


n� r�Jm�k�m

n� r� r dr � � for n� �� n� � ��	��	�
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Note that we have used here that k
�m

n� �� k

�m

n� when n� �� n�� This integral de
nes

an orthogonality relation for Bessel functions� Note that both Bessel functions in this
relation are of the same degreem but that the wave�numbers in the argument of the Bessel
functions di�er� Note the resemblance between this expression and the orthogonality
relation of the modes of the string that can be written asZ �R

�
sinknx sinkmx dx � � for n �� m � ��	����

The presence of the term r in the integral ��	��	� comes from the fact that the modes of
the drum are orthogonal for the integration over the total area of the drum� In cylinder
coordinates this leads to a factor r in the integration�

Problem g� Take you favorite book on mathematical physics and 
nd an alternative
derivation of the orthogonality relation ��	��	� of the Bessel functions of the same
degree m�

Note 
nally that the modes un�m��r� 	� and un�m��r� 	� are orthogonal when m� �� m�

because the 	�integral satis
es ��	���� whereas the modes are orthogonal when n� �� n�
but the same order m because the r�integral ��	��	� vanishes in that case� This implies
that the eigen�functions of the drum de
ned in ��	���� satisfy the following orthogonality
relation� Z R

�

Z ��

�
u�n�m�

�r� 	�un�m��r� 	� d	 rdr � C
n�n�
m�m� � ��	����

where 
ij is the Kronecker delta and C is a constant that depends on n� and m��
A similar analysis can be applied to the spherical harmonics Ylm��� 	� that are the

eigen�functions of the Helmholtz equation on a spherical surface� You may wonder in
that case what the boundary conditions of these eigen�functions are because in the step
from equation ��	���� to ��	���� the boundary conditions of the modes have been used� A
closed surface has� however� no boundary� This means that the surface integral in ��	����
vanishes� This means that the orthogonality relation ��	���� holds despite the fact that
the spherical harmonics do not satisfy one of the boundary conditions that has been used
in problem d� Let us now consider the inner product of two spherical harmonics on the
sphere�

RR
Y �
l�m�

��� 	�Yl�m���� 	�d%�

Problem h� Show that the 	�integral in the integration over the sphere is of the formR ��
� exp i �m� �m�� d	 and that this integral is equal to �

m�m� �

This implies that the spherical harmonics are orthogonal when m� �� m� because of the
	�integration� We will now continue with the case that m� � m�� and denote this common
value with the single index m�

Problem i� Use the general orthogonality relation ��	���� to derive that the associated
Legendre functions satisfy the following orthogonality relation�Z �

�
Pm
l� �cos ��P

m
l� �cos �� sin �d� � � when l� �� l� � ��	����

Note the common value of the degree m in the two associated Legendre functions�
Show also explicitly that the condition kl� �� kl� is equivalent to the condition l� �� l��



�	��� BESSEL FUNCTIONS ARE DECAYING COSINES ���

Problem j� Use a substitution of variables to show that this orthogonality relation can
also be written as Z �

��
Pm
l� �x�P

m
l� �x�dx � � when l� �� l� � ��	����

Problem k� Find an alternative derivation of this orthogonality relation in the literature�

The result you obtained in problem h implies that the spherical harmonics are or�
thogonal when m� �� m� because of the 	�integration� whereas problem i implies that
the spherical harmonics are orthogonal when l� �� l� because of the ��integration� This
means that the spherical harmonics satisfy the following orthogonality relation�ZZ

Y �
l�m�

��� 	�Yl�m���� 	�d% � 
l�l�
m�m� � ��	����

The numerical constant multiplying the delta functions is equal to �� this is a consequence
of the square�root term in ��	���� that pre�multiplies the associated Legendre functions�
One should be aware of the fact that when a di�erent convention is used for the normal�
ization of the spherical harmonics a normalization factor appears in the right hand side of
the orthogonality relation ��	���� of the spherical harmonics�

���� Bessel functions are decaying cosines

As we have seen in section �	�� the modes of the circular drum are given by Jm�kr�eim�

where the Bessel function satis
es the di�erential equation ��	��	� and where k is a wave�
number chosen in such a way that the displacement at the edge of the drum vanishes� We
will show in this section that the waves that propagate through the drum have approxi�
mately a constant wavelength� but that their amplitude decays with the distance to the
center of the drum� The starting point of the analysis is the Bessel equation

d�Jm
dx�

�
�

x

dJm
dx

�

�
�� m�

x�

�
Jm � � ��	��	� again�

If the terms �
x
dJm
dx and m�

x� would be absent in ��	��	� the Bessel equation would reduce
to the di�erential equation d�F�dx��F � � whose solutions are given by a superposition
of cosx and sinx� We therefore can expect the Bessel functions to display an oscillatory
behavior when x is large�

It follows directly from ��	��	� that the term m��x� is relatively small for large values
of x� speci
cally when x
 m� However� it is not obvious under which conditions the term
�
x
dJm
dx is relatively small� Fortunately this term can be transformed away�

Problem a� Write Jm�x� � x�gm�x�� insert this in the Bessel equation ��	��	�� show that
the term with the 
rst derivative vanishes when � � ���� and that the resulting
di�erential equation for gm�x� is given by

d�gm
dx�

�

�
�� m� � ���

x�

�
gm � � � ��	����
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Up to this point we have made no approximation� Although we have transformed the 
rst
derivative term out of the Bessel equation� we still cannot solve ��	����� However� when
x 
 m the term proportional to ��x� in this expression is relatively small� This means
that for large values of x the function gm�x� satis
es the following approximate di�erential
equation d�gm�dx

� � gm � ��

Problem b� Show that the solution of this equation is given by gm�x� � A cos �x� 	��
where A and 	 are constants� Also show that this implies that the Bessel function
is approximately given by�

Jm�x� � A
cos �x� 	�p

x
� ��	����

This approximation is obtained from a local analysis of the Bessel equation� Since all values
of the constants A and 	 lead to a solution that approximately satis
es the di�erential
equation ��	����� it is not possible to retrieve the precise values of these constant from the
analysis of this section� An analysis based on the asymptotic evaluation of the integral
representation of the Bessel function ��� shows that�

Jm�x� �

r
�


x
cos

�
x� ��m� ��




�



�O�x����� � ��	����

Problem c� As a check on the accuracy of this asymptotic expression let us compare the
zeroes of this approximation with the zeroes of the Bessel functions as given in table
�	�� of section �	��� In problem g of section �	�� you found that the separation of
the zero crossings tends to 
 for large values of x� Explain this using the approximate
expression ��	���� How large must x be for the di�erent values of the order m so
that the error in the spacing of the zero crossing is less than �����

Physically� expression ��	���� states that Bessel functions behave like standing waves
with a constant wavelength and which decay with distance as ��

p
kr� �Here it is used

that the modes are given by the Bessel functions with argument x � kr�� How can we
explain this decay of the amplitude with distance� First let us note that ��	���� expresses
the Bessel function in a cosine� hence this is a representation of the Bessel function as
a standing wave� However� using the relation cos x �

�
eix � e�ix

�
�� the Bessel function

can be written as two travelling waves that depend on the distance as �exp	ikr� �pkr
and that interfere to give the standing wave pattern of the Bessel function� Now let us
consider a propagating wave A�r� exp �ikr� in two dimensions� in this expression A�r� is an
amplitude that is at this point unknown� The energy varies with the square of the wave�

eld� and thus depends on jA�r�j�� The energy current therefore also varies as jA�r�j��
Consider an outgoing wave as shown in 
gure �	��� The total energy �ux through a ring
of radius r is given by the energy current times the circumference of the ring� this means
that the �ux is equal to �
r jA�r�j�� Since energy is conserved� this total energy �ux is
the same for all values of r� which means that �
r jA�r�j� � constant�

Problem d� Show that this implies that A�r� � ��
p
r �

This is the same dependence on distance as the ��
p
x decay of the approximation ��	����

of the Bessel function� This means that the decay of the Bessel function with distance is
dictated by the requirement of energy conservation�
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A(r)e

r

ikr

Figure �	��� An expanding wavefront with radius r�

���� Legendre functions are decaying cosines

The technique used in the previous section for the approximation of the Bessel function
can also be applied to spherical harmonics� We will show in this section that the spherical
harmonics behave asymptotically as standing waves on a sphere with an amplitude decay
that is determined by the condition that energy is conserved� The spherical harmonics
are proportional to the associated Legendre functions with argument cos �� the starting
point of our analysis therefore is the di�erential equation for Pm

l �cos �� that was derived
in section �	���

�

sin �

d

d�

�
sin �

dPm
l �cos ��

d�



�

�
l �l � ��� m�

sin� �

�
Pm
l �cos �� � � ��	���� again

Let us assume we have a source at the north pole� where � � �� Far away from the source�
the term m�� sin� � in the last term is much smaller than the constant l �l � ���

Problem a� Show that the words �far away from the source� stand for the requirement

sin �
 mp
l �l � ��

� ��	����

and show that this implies that the approximation that we will derive will break
down near the north pole as well as near the south pole of the employed system of
spherical coordinates� In addition� the asymptotic expression that we will derive will
be most accurate for large values of the angular order l�

Problem b� Just as in the previous section we will transform the 
rst derivative in the
di�erential equation ��	���� away� here this can be achieved by writing Pm

l �cos �� �
�sin ��� gml ���� Insert this substitution in the di�erential equation ��	����� show
that the 
rst derivative dgml �d� disappears when � � ����� and that the resulting
di�erential equation for gml ��� is given by�

d�gml
d��

�

��
l �

�

�


�
� m�

sin� �
� �

�

cos� �

sin� �

�
gml ��� � � � ��	��	�
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Problem c� If the terms m�� sin� � and cos� ��� sin� � would be absent this equation
would be simple to solve� Show that these terms are small compared to the constant�
l � �

�

��
when the requirement ��	���� is satis
ed�

Problem d� Show that under this condition the associated Legendre functions satisfy the
following approximation

Pm
l �cos �� � A

cos
��
l � �

�

�
� � �

�
p
sin �

� ��	����

where A and � are constants�

Just as in the previous section the constants A and � cannot be obtained from this analysis
because ��	���� satis
es the approximate di�erential equation for any values of these
constant� As shown in expression �������� of Ref� ���� the asymptotic relation of the
associated Legendre functions is given by�

Pm
l �cos �� � ��l�m

r
�


l sin �
cos

��
l �

�

�



� � ��m� ��




�
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This means that the spherical harmonics also have the same approximate dependence on
the angle �� Just like the Bessel functions the spherical harmonics behave like stand�
ing wave given by a cosine that is multiplied by a factor ��

p
sin � that modulates the

amplitude�

A(θ)e
i(l+1/2) θ

Figure �	��� An expanding wavefront on a spherical surface at a distance � from the
source�

Problem e� Use a reasoning as you used in problem d of section �	�� to explain that
this amplitude decrease follows from the requirement of energy conservation� In
doing so you may 
nd 
gure �	�� helpful�

Problem f� Deduce from ��	���� that the wavelength of the associated Legendre functions

measured in radians is given by �
�
�
l � �

�

�
�
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This last result can be used to 
nd the number of oscillations in the spherical harmonics
when one moves around the globe once� For simplicity we consider here the case of a
spherical harmonic Y �

l ��� 	� for degree m � �� When one goes from the north pole to
the south pole� the angle � increases from � to 
� The number of oscillations that 
t in
this interval is given by 
�wavelength� according to problem f this number is equal to


�
�
�
�

�
l � �

�

��
�
�
l � �

�

�
��� This is the number of wavelenths that 
t on half the globe�

When one returns from the south pole to the north pole one encounters another
�
l � �

�

�
oscillations� This means that the total number of waves that 
t around the globe is given

by
�
l � �

�

�
� It may surprise you that the number of oscillations that one encounters making

one loop around the globe is not an integer� One would expect that the requirement of
constructive interference dictates that an integer number of wavelengths should �
t� in

this interval� The reason that the total number of oscillations is
�
l � �

�

�
rather than the

integer l is that near the north pole and near the south pole the asymptotic approximation
��	���� breaks down� this follows from the requirement ��	�����

The fact that
�
l � �

�

�
rather than l oscillations 
t on the globe has a profound e�ect

on quantum mechanics� In the 
rst attempts to explain the line spectra of light emitted
by atoms� Bohr postulated that an integer number of waves has to 
t on a sphere� this
can be expressed as

H
kds � �
n� where k is the local wave�number� This condition could

not explain the observed spectra of light emitted by atoms� However� the arguments of
this section imply that the number of wavelengths that 
t on a sphere should be given by
the requirement I

kds � �


�
n�

�

�



� ��	����

This is the Bohr�Sommerfeld quantization rule� which was the earliest result in quantum
mechanics that provided an explanation of the line�spectra of light emitted by atoms��

More details on this issue and the cause of the factor �
� in the quantization rule can be

found in the Refs� ���� and �����

The asymptotic expression ��	���� can give a useful insight in the relation between
modes and travelling waves on a sphere� Let us 
rst return to the modes on the string�
which according to ��	��� are given by sinknx� For simplicity� we will leave out normal�
ization constants in the arguments� The wave motion associated with this mode is given
by the real part of sinknx exp ��i�nt�� with �n � kn�c� These modes therefore denote

a standing wave� However� using the decomposition sinknx �
�
eiknx � e�iknx

�
��i� the

mode can in the time domain also be seen as a superposition of two waves ei�knx�
nt
 and
�The fact that �l����� oscillations of the spherical harmonics �t on the sphere appears to be in contrast

with the statement made in section ���� that the spherical harmonic Y m
l has exactly l �m oscillations�

The reason for this discrepancy is that the sperical harmonics are only oscillatory for an angle � that
satis�es the inequality ����		�� This means for angular degree m that is nonzero the spherical harmonics
only oscillate with wavelength ��� �l � ���� on only part of the sphere� This leads to a reduction of the
number of oscillations of the spherical harmonics between the poles with increasing degree m� However

the quantization condition ����	�� holds for every degree m because a proper treatment of this quatization
condition stipulates that the integral is taken over a region where the modes are oscillatory� This means
that one should not integrate from pole�to�pole
 but that the integration must be taken over a closed path
that is not aligned with the north�south direction on the sphere� One can show that one encounters exactly
�l� ���� oscillations while making a closed loop along such a path� This issue is explained in a clear and
pictorial way by Dahlen and Henson 
����



��	 CHAPTER �	� NORMAL MODES

e�i�knx�
nt
� These are two travelling waves that move in opposite directions�

Problem g� Suppose we excite a string at the left side at x � �� We know we can
account for the motion of the string as a superposition of standing waves sinknx�
However� we can consider these modes to exist also as a superposition of waves e�iknx

that move in opposite directions� The wave eiknx moves away from the source at
x � �� However the wave e�iknx moves towards the source at x � �� Give a physical
explanation why in the string travelling waves also move towards the source�

On the sphere the situation is completely analogous� The modes can be written according

to ��	���� as standing waves cos
��
l � �

�

�
� � ��m� �� ��

�
�
p
sin � on the sphere� However�

using the relation cosx �
�
eix � e�ix

�
�� the modes can also be seen as a superposition of

travelling waves ei�l�
�
� ���

p
sin � and e�i�l�

�
����

p
sin � on the sphere�

Problem h� Explain why the 
rst wave travels away from the north pole while the second
wave travels towards the north pole�

Problem i� Suppose the waves are excited by a source at the north pole� According to
the last problem the motion of the sphere can alternatively be seen as a superpo�

sition of standing waves or of travelling waves� The travelling wave ei�l�
�
� ���

p
sin �

moves away from the source� Explain physically why there is also a travelling wave

e�i�l�
�
����

p
sin � moving towards the source�

These results imply that the motion of the Earth can either be seen as a superposition
of normal modes� or of a superposition of waves that travel along the Earth�s surface in
opposite directions� The waves that travel along the Earth�s surface are called surface

waves� The relation between normal modes and surface waves is treated in more detail by
Dahlen���� and by Snieder and Nolet�����

���
 Normal modes and the Green�s function

In section ������ we analyzed the normal modes of a system of three coupled masses� This
system had three normal modes� and each mode could be characterized with a vector x
with the displacement of the three masses� The response of the system to a force F acting
on the three masses with time dependence exp ��i�t� was derived to be�

x �
�

m

�X
n��

�v�n
��v�n
 � F�
���

n � ���
������� again �

This means that the Green�s function of this system is given by the following dyad�

G �
�

�
m

�X
n��

�v�n
�v�n
T

���
n � ���

� ��	�	��

The factor ���
 is due to the fact that a delta function f�t� � 
�t� force in the time�domain
corresponds with the Fourier transform ������� to F ��� � ���
 in the frequency�domain�
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In this section we derive the Green�s function for a very general oscillating system that
can be continuous� An important example is the Earth� which a body that has well�
de
ned normal modes and where the displacement is a continuous functions of the space
coordinates�

We consider a system that satis
es the following equation of motion�

��u�Hu � F � ��	�	��

The 
eld u can either be a scalar 
eld or a vector 
eld� The operator H is at this point
very general� the only requirement that we impose is that this operator is Hermitian� this
means that we require that

�f �Hg� � �Hf � g� � ��	�	��

where the inner product of is de
ned as �f � h� � R
f�g dV � In the frequency domain� the

equation of motion is given by

����u�Hu � F ��� � ��	�	��

Let the normal modes of the system be denoted by u�n
� the normal modes describe
the oscillations of the system in the absence of any external force� The normal modes
therefore satisfy the following expression

Hu�n
 � ���
nu

�n
 � ��	�	��

where �n is the eigen�frequency of this mode�

Problem a� Take the inner product of this expression with a mode u�m
� use that H is
Hermitian to derive that �

��
n � ���m

��
u�m
 � �u�n


�
� � � ��	�	��

Note the resemblance of this expression with ��	���� for the modes of a system that obeys
the Helmholtz equation�

Problem b� Just as in section �	�� one can show that the eigen�frequencies are real by
setting m � n� and one can derive that di�erent modes are orthogonal with respect
to the following inner product��

u�m
 � �u�n

�
� 
nm for �m �� �n � ��	�		�

Give a proof of this orthogonality relation�

Note the presence of the density term � in this inner product�
Let us now return to the inhomogeneous problem ��	�	�� where an external force F ���

is present� Assuming that the normal modes form a complete set� the response to this
force can be written as a sum of normal modes�

u �
X
n

cnu
�n
 � ��	�	��

where the cn are unknown coe�cients�
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Problem c� Find these coe�cients by inserting ��	�	�� in the equation of motion ��	�	��
and by taking the inner product of the result with a mode u�m
 to derive that

cm �

�
u�m
 � F

�
��
m � ��

� ��	�	��

This means that the response of the system can be written as�

u �
X
n

u�n

�
u�n
 � F

�
��
n � ��

� ��	�	��

Note the resemblance of this expression with equation ������� for a system of three masses�
The main di�erence is that the derivation of this section is valid as well for continuous
vibrating systems such as the Earth�

It is instructive to re�write this expression taking the dependence of the space coordi�
nates explicitly into account�

u�r� �
X
n

u�n
�r�
R
u��n
�r��F �r��dV �

��
n � ��

� ��	����

It follows from this expression that the Green�s function is given by

G�r� r�� �� �
�

�


X
n

u�n
�r�u��n
�r��
��
n � ��

� ��	����

When the mode is a vector� one should take the transpose of the mode u��n
�r��� Note
the similarity between this expression for the Green�s function of a continuous medium
with the Green�s function ��	�	�� for a discrete system� In this sense� the Earth behaves
in the same way as a tri�atomic molecule� For both systems� the dyadic representation of
the Green�s function provides a very compact way for accounting for the response of the
system to external forces�

Note that the response is strongest when the frequency � of the external force is close
to one of the eigen�frequencies �n of the system� This implies for example for the Earth
that the modes with a frequency close to the frequency of the external forcing are most
strongly excited� If we jump up and down with a frequency of �Hz� we excite the gravest
normal mode of the Earth with a period of about � hour only very weakly� In addition� a
mode is most e�ectively excited when the inner product of the forcing F �r�� in ��	���� is
maximal� This means that a mode is most strongly excited when the spatial distribution
of the force equals the displacement u�n
�r�� of the mode�

Problem d� Show that a mode is not excited when the force acts only at one of the nodal
lines of that mode�

As a next step we consider the Green�s function in the time domain� This function
follows by applying the Fourier transform ������� to the Green�s function ��	�����
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Problem e� Show that this gives�

G�r� r�� t� �
�

�


X
n

u�n
�r�u��n
�r��
Z �

��
e�i
t

��
n � ��

d� � ��	����

The integrand is singular at the frequencies � � 	�n of the normal modes� These singu�
larities are located on the integration path� as shown in the left panel of 
gure �	��� At
the singularity at � � �n the integrand behaves as �� ���n �� � �n��� The contribution of
these singularities is poorly de
ned because the integral

R
�� �� � �n� d� is not de
ned�

x x
x x

? ?

Figure �	��� The location of the poles and the integration path in the complex ��plane�
The poles are indicared with a cross� Left panel� the original situation where the poles are
located on the integration path at location 	�n� Right panel� the location of the poles
when a slight anelastic damping is present�

This situation is comparable to the treatment in section ���� of the response of a
particle in syrup to an external forcing� When this particle was subjected to a damping ��
the integrand in the Fourier transform to the time domain had a singularity in the lower
half plane� This gave a causal response
 as shown in equation ������� the response was
only di�erent from zero at times later than the time at which the forcing was applied�
This suggests that we can obtain a well�de
ned causal response of the Green�s function
��	���� when we introduce a slight damping� This damping breaks the invariance of the
problem for time�reversal� and is responsible for a causal response� At the end of the
calculation we can let the damping parameter go to zero� Damping can be introduced by
giving the eigen�frequencies of the normal modes a small negative imaginary component�
	�n � 	�n � i�� where � is a small positive number�

Problem f� The time�dependence of the oscillation of a normal mode is given by e�i
nt�
Show that with this replacement the modes decay with a decay time that is given
by � � ����

This last property means that when we ultimately set � � � that the decay time because
in
nite� in other words� the modes are not attenuated in that limit�

With the replacement 	�n � 	�n� i� the poles that are associated with the normal
modes are located in the lower ��plane� this situation is shown in 
gure �	��� Now that
the singularities are moved from the integration path the theory of complex integration
can be used to evaluate the resulting integral�
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Problem g� Use the theory of contour integration as treated in chapter �� to derive that
the Green�s function is in the time domain given by�

G�r� r�� t� �

�����
����

� for t � �

P
n

u�n
�r�u��n
�r��
�n

sin�nt for t � �

��	����

Hint� use the same steps as in the derivation of the function ������� of section ����
and let the damping parameter � go to zero at the end of the integration�

This result gives a causal response because the Green�s function is only nonzero at
times t � �� which is later than the time t � � when the delta function forcing is nonzero�
The total response is given as a sum over all the modes� Each mode leads to a time signal
sin�nt in the modal sum� this is a periodic oscillation with the frequency �n of the mode�
The singularities in the integrand of the Green�s function ��	���� at the pole positions
� � 	�n are thus associated in the time domain with a harmonic oscillation with angular
frequency �n� Note that the Green�s function is continuous at the time t � � of excitation�

Problem h� Use the Green�s function ��	���� to derive that the response of the system
to a force F �r� t� is given by�

u�r� t� �
X
n

�

�n
u�n
�r�

Z Z t

��
u��n
�r�� sin�n

�
t� t�

�
F �r�� t�� dt�dV �� ��	����

Justify the integration limit in the t��integration�

The results of this section imply that the total Green�s function of a system is known once
the normal modes are known� The total response can then be obtained by summing the
contribution of each normal mode to the total response� This technique is called normal�

mode summation� it is often use to obtain the low�frequency response of the Earth to an
excitation ����� However� in the seismological literature one usually treats a source signal
that is given by a step function at t � � rather than a delta function because this is a
more accurate description of the slip on a fault during an earthquake���� This leads to
a time�dependence ��� cos�nt� rather than the time�dependence sin�nt in the response
��	���� to an delta function excitation�

���� Guided waves in a low velocity channel

In this section we will consider a system that strictly speaking does not have normal
modes� but that can support solutions that behave like travelling waves in one direction
and as modes in another direction� The waves in such a system propagate as guided

waves� Consider a system in two dimensions �x and z� where the velocity depends only
on the z�coordinate� We assume that the wave�
eld satis
es in the frequency domain the
Helmholtz equation ��	����

r�u�
��

c��z�
u � � � ��	����
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In this section we consider a simple model of a layer with thickness H that extends from
z � � to z � H where the velocity is given by c�� This layer is embedded in a medium with
a constant velocity c�� The geometry of the problem is shown in 
gure �	��� Since the
system is invariant in the x�direction� the problem can be simpli
ed by a Fourier transform
over the x�coordinate�

u�x� z� �

Z �

��
U�k� z�eikxdk � ��	��	�

Problem a� Show that U�k� z� satis
es the following ordinary di�erential equation�

d�U

dz�
�

�
��

c�z��
� k�

�
U � � � ��	����

It is important to note at this point that the frequency � is a 
xed constant� and that
according to ��	��	� the variable k is an integration variable that can be anything� For
this reason one should at this point not use a relation k � ��c�z� because k can still be
anything�

z=H

z=0

c

c

c0

1

0

Figure �	��� Geometry of the model of a single layer sandwiched between two homogeneous
half�spaces�

Now consider the special case of the model shown in 
gure �	��� We require that the
waves outside the layer move away from the layer�

Problem b� Show that this implies that the solution for z � � is given by A exp ��ik�z�
and the solution for z � H is given by B exp ��ik�z� where A and B are unknown
integration constants and where k� is given by

k� �

s
��

c��
� k� � ��	����

Problem c� Show that within the layer the wave�
eld is given by C cos k�z � D sink�z
with C and D integration constants and k� is given by

k� �

s
��

c��
� k� � ��	����

The solution in the three regions of space therefore takes the following form�

U�k� z� �

���
��

A exp ��ik�z� for z � �
C cos k�z �D sink�z for � � z � H
B exp ��ik�z� for z � H

��	����
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We now have the general form of the solution within the layer and the two half�spaces
on both sides of the layer� Boundary conditions are needed to 
nd the integration constants
A� B� C and D� For this system both U and dU�dz are continuous at z � � and z � H�

Problem d� Use the results of problem b and problem c to show that these require�
ment impose the following constraints on the integration constants�

A� C � � �
ik�A� k�D � � �

�Beik�H � C cos k�H �D sink�H � � �
ik�Be

ik�H � k�C cos k�H � k�D sink�H � � �

��	����

This is a linear system of four equations for the four unknowns A� B� C and D� Note that
this is a homogeneous system of equations� because the right hand side vanishes� Such a
homogeneous system of equations only has nonzero solutions when the determinant of the
system of equations vanishes�

Problem e� Show that this requirement leads to the following condition�

tan k�H �
��ik�k�
k�� � k�o

��	����

This equation is implicitly an equation for the wave�number k� because according to
��	���� and ��	���� both k� and k� are a function of the wave�number k� Equation ��	����
implies that the system can only support waves when the wave�number k is such that
expression ��	���� is satis
ed� The system does strictly speaking not have normal modes�
because the waves propagate in the x�direction� However� in the z�direction the waves only
�
t� in the layer for very speci
c values of the wave�number k� These waves are called
�guided waves� because they propagate along the layer with a well�de
ned phase velocity
that follows from the relation c��� � ��k� Be careful not to confuse this phase velocity
c��� with the velocities c� and c� in the layer and the half�spaces outside the layer� At
this point we do not know yet what the phase velocities of the guided waves are�

The phase velocity follows from expression ��	���� because this expression is implicitly
an equation for the wave�number k� At this point we consider the case of a low�velocity
layer� i�e� we assume that c� � c�� In this case ��c� � ��c�� We will look for guided waves
with a wave�number in the following interval� ��c� � k � ��c��

Problem f� Show that in that case k� is real and that k� is purely imaginary� Write
k� � i�� and show that

�� �

s
k� � ��

c��
� ��	����

Problem g� Show that the solution decays exponentially away from the low�velocity
channel both in the half�space z � � and the half�space z � H�

The fact that the waves decay exponentially with the distance to the plate means that the
guided waves are trapped near the low�velocity layer� Waves that decay exponentially are
called evanescent waves�
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Problem h� Use ��	���� to show that the wave�number of the guided waves satis
es the
following relation

tan

s
��

c��
� k�H �

�

s
k� � ��

c��

s
��

c��
� k�

��

�
�

c��
� �

c��


 ��	����

For a 
xed value of � this expression constitutes a constraint on the wave�number k of
the guided waves� Unfortunately� it is not possible to solve this equation for k in closed
form� Such an equation is called a transcendental equation�

Problem j� Make a sketch of both the left hand side and the right hand side of expres�
sion ��	���� as a function of k� Show that the two curves have a 
nite number of
intersection points�

These intersection points correspond to the k�values of the guided waves� The correspond�
ing phase velocity c � ��k in general depends on the frequency �� This means that these
guided waves are dispersive	 which means that the di�erent frequency components travel
with a di�erent phase velocity� It is for this reason that expression ��	���� is called the
dispersion relation�

Dispersive waves occur in many di�erent situations� When electromagnetic waves
propagate between plates or in a layered structure� guided waves result ����� The atmo�
sphere� and most importantly the ionosphere is an excellent waveguide for electromag�
netic waves����� This leads to a large variety of electromagnetic guided waves in the
upper atmosphere with exotic names such as �pearls�� �whistlers�� �tweaks�� �hydro�
magnetic howling� and �serpentine emissions�
 colorful names associated with the sounds
these phenomena would make if they were audible� or with the patterns they generate in
frequency�time diagrams� Guided waves play a crucial role in telecommunication� because
light propagates through optical 
bers as guided waves��	�� The fact that these waves are
guided prohibits the light to propagate out of the 
ber� this allows for the transmission
of light signals over extremely large distances� In the Earth the wave velocity increases
rapidly with depth� Elastic waves can be guided near the Earth�s surface and the di�erent
modes are called �Rayleigh waves� and �Love waves����� These surface waves in the Earth
are a prime tool for mapping the shear�velocity within the Earth��	��

Since the surface waves in the Earth are trapped near the Earth�s surface� they propa�
gate e�ectively in two dimensions rather than in three dimensions� The surface waves
therefore su�er less from geometrical spreading than the body waves that propagate
through the interior of the Earth� For this reason� it is the surface waves that do most
damage after an earthquake� This is illustrated in 
gure �	�	 which shows the vertical
displacement at a seismic station in Naroch �Belarus� after an earthquake at Jan�Mayen
island� Around t � ���s and t � ���s impulsive waves arrive� these are the body waves
that travel through the interior of the Earth� The wave with the largest amplitude that
arrives between t � 	��s and t � ���s is the surface wave that is guided along the Earth�s
surface� Note that the waves that arrive around t � ���s have a lower frequency con�
tent than the waves that arrive later around t � ���s� This is due to the fact that the
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Figure �	�	� Vertical component of the ground motion at a seismic station in Naroch
�Belarus� after an earthquake at Jan�Mayen island� This station is part of the Network of
Autonomously Recording Seismographs �NARS� which is operated by Utrecht University�

group velocity of the low�frequency components of the surface wave is higher than the
group�velocity of the high�frequency components� Hence it is ultimately the dispersion of
the Rayleigh waves that causes the change in the apparent frequency of the surface wave
arrival�

���� Leaky modes

The guided waves in the previous section decay exponentially with the distance to the
low�velocity layer� Intuitively� the fact that the waves are con
ned to a region near a
low�velocity layer can be understood as follows� Waves are refracted from regions of a
high velocity to a region of low velocity� This means that the waves that stray out of the
low�velocity channel are refracted back in the channel� E�ectively this traps the waves
near the vicinity of the channel� This explanation suggest that for a high�velocity channel
the waves are refracted away from the channel� The resulting wave pattern will then
correspond to waves that preferentially move away from the high velocity layer� For this
reason we consider in this section the waves that propagate through the system shown in

gure �	�� but we will consider the case of a high�velocity layer where c� � c��

In this case� ��c� � ��c�� and we will 
rst consider waves with a wave�number that is
con
ned to the following interval� ��c� � k � ��c��
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Problem a� Show that in this case the wave�number k� is imaginary and that it can be
written as k� � i��� with

�� �

s
k� � ��

c��
� ��	����

and show that the dispersion relation ��	���� is given by�

tan i��H �
��k���
��� � k�o

� ��	��	�

Problem b� Use the relation cos x �
�
eix � e�ix

�
�� and the related expression for sinx

to rewrite the dispersion relation ��	��	� in the following form�

i tanh��H �
��k���
��� � k�o

� ��	����

In this expression all quantities are real when k is real� The factor i in the left hand side
implies that this equation cannot be satis
ed for real values of k� The only way in which the
dispersion relation ��	���� can be satis
ed is that k is complex� What does it mean that the
wave�number is complex� Suppose that the dispersion relation is satis
ed for a complex
wave�number k � kr� iki� with kr and ki the real and imaginary part� In the time domain
a solution behaves for a 
xed frequency as U�k� z� exp i �kx� �t�� This means that for
complex values of the wave�number the solution behaves as U�k� z�e�kix exp i �krx� �t��
This is a wave that propagates in the x�direction with phase velocity c � ��kr and that
decays exponentially with the propagation distance x�

The exponential decay of the wave with the propagation distance x is due to the
fact that the wave energy refracts out of the high�velocity layer� A di�erent way of
understanding this exponential decay is to consider the character of the wave�
eld outside
the layer�

Problem c� Show that in the two half�spaces outside the high�velocity layer the waves
propagate away from the layer� Hint� analyze the wave�number k� in the half�spaces
and consider the corresponding solution in these regions�

This means that wave energy is continuously radiated away from the high�velocity layer�
The exponential decay of the mode with propagation distance x is thus due to the fact
that wave energy continuously leaks out of the layer� For this reason one speaks of leaky
modes�	��� In the Earth a well�observed leaky mode is the S�PL wave� This is a mode
where a transverse propagating wave in the mantle is coupled to a wave that is trapped
in the Earth�s crust�

In general there is no simple way to 
nd the complex wave�number k for which the
dispersion relation ��	���� is satis
ed� However� the presence of leaky modes can be seen
in 
gure �	�� where the following function is shown in the complex plane�

F �k� � ��

�
i tanh��H �

�k���
��� � k�o



� ��	����

Problem d� Show that this function is in
nite for the k�values that correspond to a leaky
mode�
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Figure �	��� Contour diagram of the function F �k� for a high�velocity layer with velocity
c� � ���km�s and a thickness H � ��km that is embedded between two halfspaces with
velocity c� � �km�s� for waves with a frequency of �Hz� The horizontal axis is given by
kr�� and the vertical axis by ki�

The function F �k� in 
gure �	�� is computed for a high�velocity layer with a thickness of
��km and a velocity of ���km�s that is embedded between two half�spaces with a velocity
of �km�s� The frequency of the wave is �Hz� In this 
gure� the horizontal axis is given by
�e �p� � kr�� while the vertical axis is given by �m ��p� � ki� The quantity p is called
the slowness because �e �p� � kr�� � ��c���� The leaky modes show up in 
gure �	�� as
a number of localized singularities of the function F �k��

Problem e� What is the propagation distance over which the amplitude of the mode
with the lowest phase velocity decays with a factor ��e�

Leaky modes have been used by Gubbins and Snieder��	� to analyze waves that have
propagated along a subduction zone� �A subduction zone is a plate in the Earth that
slides downward in the mantle�� By a fortuitous geometry� compressive wave that are
excited by earthquakes in the Tonga�Kermadec region that travel to a seismic station in
Wellington �New Zealand� propagate for a large distance through the Tonga�Kermadec
subduction zone� At the station in Wellington� a high�frequency wave arrives before the
main compressive wave� This can be seen in 
gure �	�� where such a seismogram is shown
band�pass 
ltered at di�erent frequencies� It can clearly be seen that the waves with
a frequency around 	Hz arrive before the waves with a frequency around �Hz� This
observation can be explained by the propagation of a leaky mode through the subduction
zone� The physical reason that the high�frequency components arrive before the lower
frequency components is that the high�frequency waves �
t� in the high�velocity layer
in the subducting plate� whereas the lower frequency components do not 
t in the high�
velocity layer and are more in�uenced by the slower material outside the high�velocity
layer� Of course� the energy leaks out of the high�velocity layer so that this arrival is very
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Figure �	��� Seismic waves recorded in Wellington after an earthquake in the Tonga�
Kermadec subduction zone� from Ref� ��	�� The di�erent traces correspond to the waves
band�pass 
ltered with a center frequency indicated at each trace� The horizontal axis
gives the time since the earthquake in seconds�

weak� From the data it could be inferred that in the subduction zone a high�velocity layer
is present with a thickness between 	 and �� km��	��

����� Radiation damping

Up to this point we have considered systems that are freely oscillating� When such systems
are of 
nite extent� such a system displays undamped free oscillations� In the previous
section leaky modes were introduced� In such a system� energy is radiated away� which
leads to an exponentially of waves that propagate through the system� In a similar way�
a system that has normal modes when it is isolated from its surroundings� can display
damped oscillations when it is coupled to the external world�

As a simple prototype of such a system� consider a mass m that can move in the
z�direction which is coupled to a spring with spring constant �� The mass is attached to
a string that is under a tension T and which has a mass � per unit length� The system
is shown in 
gure �	��� The total force acting on the mass is the sum of the force ��z
exerted by the spring and the force Fs that is generated by the string�

m�z � �z � Fs � ��	����

where z denotes the vertical displacement of the mass� The motion of the waves that
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x

z

Figure �	��� Geometry of an oscillating mass that is coupled to a spring�

propagate in the string is given by the wave equation�

uxx � �

c�
utt � � � ��	����

where u is the displacement of the string in the vertical direction and c is given by

c �

s
T

�
� ��	����

Let us 
rst consider the case that no external force is present and that the mass is not
coupled to the spring�

Problem a� Show that in that case the equation of motion is given by

�z � ��
�z � � � ��	����

with �� given by

�� �

r
�

m
� ��	����

One can say that the mass that is not coupled to the string has one free oscillation with
angular frequency ��� The fact that the system has one free oscillation is a consequence
from the fact that this mass can move only in the vertical direction� hence it has only one
degree of freedom�

Before we couple the mass to the string let us 
rst analyze the wave�motion in the
string in the absence of the mass�

Problem b� Show that for any function f�t � x

c
� satis
es the wave equation ��	�����

Show that this function describes a wave that move in the positive x�direction with
velocity c�

Problem c� Show that any function g�t �
x

c
� satis
es the wave equation ��	����� Show

that this function describes a wave that move in the negative x�direction with velocity
c�

The general solution is a superposition of the rightward and leftward moving waves�

u�x� t� � f�t� x

c
� � g�t�

x

c
� � ��	����
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This general solution is called the d�Alembert solution�
Now we want to describe the motion of the coupled system� Let us 
rst assume

that the mass oscillates with a prescribed displacement z�t� and 
nd the waves that this
displacement generates in the string� We will consider here the situation that there are no
waves moving towards the mass� This means that to the right of the mass the waves can
only move rightward and to the left of the mass there are only leftward moving waves�

Problem d� Show that this radiation condition implies that the waves in the string are
given by�

u�x� t� �

�
f�t� x

c � for x � �
g�t� x

c � for x � �
��	����

Problem e� At x � � the displacement of the mass is the same as the displacement of
the string� Show that this implies that f�t� � g�t� � z�t�� so that

u�x� t� �

�
z�t� x

c � for x � �
z�t� x

c � for x � �
��	��	�

T
F = T sin+ φφ

Figure �	���� Sketch of the force exerted by the spring on the mass�

Now we have solved the problem of 
nding the wave motion in the string given the
motion of the mass� To complete our description of the system we also need to specify
how the motion of the string a�ects the mass� In other words� we need to 
nd the force Fs
in ��	���� given the motion of the string� This force can be derived from 
gure �	���� The
vertical component F� of the force acting on the mass from the right side of the string is
given by F� � T sin	� where T is the tension in the string� When the motion in the spring
is su�ciently weak we can approximate� F� � T sin	 � T	 � T tan	 � Tux�x � ��� t��
In the last identity we used that the derivative ux�x � ��� t� gives the slope of the string
on the right of the point x � ��

Problem f� Use a similar reasoning to determine the force acting in the mass from the
left part of the spring and show that the net force acting on the spring is given by

Fs�t� � T
�
ux�x � ��� t�� ux�x � ��� t�

�
� ��	����

where ux�x � ��� t� is the x�derivative of the displacement in the string just to the
left of the mass�

Problem g� Show that this expression implies that the net force that acts on the mass
is equal to the kink in the spring at the location of the mass�

You may not feel comfortable with the fact the we used the approximation of a small angle
	 in the derivation of ��	����� However� keep in mind that the wave equation ��	���� is
derived using the same approximation and that this wave equation therefore is only valid
for small displacements of the string�

At this point we have assembled all the ingredients for solving the coupled problem�
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Problem h� Use ��	��	� and ��	���� to derive that the force exerted by the spring on the
mass is given by

Fs�t� � � �T

c
!z � ��	����

and that the motion of the mass is therefore given by�

�z �
�T

mc
!z � ��

�z � � � ��	����

It is interesting to compare this expression for the motion of the mass that is coupled
to the string with the equation of motion ��	���� for the mass that is not coupled to the
string� The string leads to a term �T

mc !z in the equation of motion that damps the motion
of the mass� How can we explain this damping physically� When the mass moves� the
string moves with it at location x � �� Any motion in the string at that point will start
propagating in the string� This means that the string radiates wave energy away from the
mass whenever the mass moves� Since energy is conserved� the energy that is radiated
in the string must be withdrawn from the energy of the moving mass� This means that
the mass looses energy whenever it moves
 this e�ect is described by the damping term
in equation ��	����� This damping process is called radiation damping� because it is the
radiation of waves that damps the motion of the mass�

The system described in this section is extremely simple� However� is does contain
the essential physics of radiation damping� Many systems in physics that display normal
modes are not quite isolated from their surroundings� Interactions of the system with
their surrounding often lead to the radiation of energy� and hence to a damping of the
oscillation of the system�

One example of such a system is an atom in an excited state� In the absence of external
in�uences such an atom will not emit any light and decay� However� when such an atom
can interact with electromagnetic 
elds� it can emit a photon and subsequently decay�

A second example is a charged particle that moves in a synchrotron� In the absence of
external 
elds� such a particle will orbit forever in a circular orbit without any change in
its speed� In reality� a charged particle is coupled to electromagnetic 
elds� This has the
e�ect that a charged particle that is accelerated emits electromagnetic radiation� called
synchrotron radiation����� The radiated energy means an energy loss of the particle� so
that the particle slows down� This is actually the reason why accelerators such as used
at CERN or Fermilab are so large� The acceleration of a particle in a circular orbit with
radius r at the given velocity v is given by v��r� This means that for a 
xed velocity v
the larger the radius of the orbit is� the smaller the acceleration is� and the weaker the
energy loss due to the emission of synchrotron radiation is� This is why one needs huge
machines to accelerate tiny particles to an extreme energy�

Problem i� The modes in the plate in 
gure �	�� are also damped because of radiation
damping� What form of radiation is emitted by this oscillating plate�
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Potential theory

Potential 
elds play an important role in physics and geophysics because they describe the
behavior of gravitational and electric 
elds as well as a number of other 
elds� Conversely�
measurements of potential 
elds provide important information about the internal struc�
ture of bodies� For example� measurements of the electric potential at the Earth�s surface
when a current is send in the Earth gives information about the electrical conductivity
while measurements of the Earth�s gravity 
eld or geoid provide information about the
mass distribution within the Earth�

An example of this can be seen in 
gure ���� where the gravity anomaly over the
northern part of the Yucatan peninsula in Mexico is shown����� The coast is visible as a
thin white line� Note the clear ring�structure that is visible in the gravity signal� These
rings have led to the discovery of the Chicxulub crater that was caused by the massive
impact of a meteorite� Note that the diameter of the impact crater is about ��� km�
This crater is presently hidden by thick layers of sediments� at the surface the only visible
imprint of this crater is the presence of underground water�
lled caves called �cenotes�
at the outer edge of the crater� It is the measurement of the gravity 
eld that made it
possibly to 
nd this massive impact crater�

The equation that the gravitational or electrical potential satis
es depends critically
on the Laplacian of the potential� As shown in section ��� the gravitational 
eld has the
mass density as its source�

�r � g� � ��
G� ������ again

The gravity 
eld g is �minus� the gradient of the gravitational potential� g � �rV � This
means that the gravitational potential satis
es the following partial di�erential equation�

r�V �r� � �
G� � ������

This equation is called the Laplace equation� it is the prototype of the equations that
occur in potential 
eld theory� Note that the mathematical structure of the equations of
the gravitational 
eld and the electrical 
eld is identical �compare the equations ������
and �������� therefore the results derived in this chapter for the gravitational 
eld can be
used directly for the electrical 
eld as well by replacing the mass density by the charge
density and by making the following replacement�

�
G	 
z �
Gravity

� �����	 
z �
Electrostatics

� ������

���
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Figure ����� Gravity 
eld over the Chicxulub impact crater on the northern coast of
Yucatan �Mexico�� The coastline is shown by a white line� The numbers along the vertical
and horozontal axes refer to the latitutde and longitude respectively� The magnitude of
the horizontal gradient of the Bouguer gravity anomaly is shown� details can be found in
Ref� ����� Courtesy of M� Pilkington and A�R� Hildebrand�

The theory of potentials 
elds is treated in great detail by Blakeley�����

�
�� The Green�s function of the gravitational potential

The Laplace equation ������ can be solved using a Green�s function technique� In essence
the derivation of the Green�s function yields the well�known result that the gravitational
potential for a point�massm is given by�Gm�r� The use of Green�s functions is introduced
in great detail in chapter ��� The Green�s function G�r� r�� be the potential at location r

generated by a point mass at location r� satis
es the following di�erential equation�

r�G�r� r�� � 

�
r� r�

�
� ������

Take care not to confuse the Green�s function G�r� r�� with the gravitational constant G�

Problem a� Show that the solution of ������ is given by�

V �r� ��
G

Z
G�r� r����r��dV � � ������
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Problem b� The di�erential equation ������ has translational invariance� and is invariant
for rotations� Show that this implies that G�r� r�� � G�jr� r�j�� Show by placing
the point mass in the origin by setting r� � � that G�r� satis
es

r�G�r� � 
 �r� � ������

Problem c� Express the Laplacian in spherical coordinates and show that for r � �
equation ������ is given by

�

r�
�

�r

�
r�
�G�r�

�r



� � � ����	�

Problem d� Integrate this equation with respect to r to derive that the solution is given
by G�r� � A�r �Br� where A and B are integration constants�

The constant B must be zero because the potential must remain 
nite as r � �� The
potential is therefore given by

G�r� � � A

r
� ������

Problem e� The constant A can be found by integrating ������ over a sphere with radius
R centered around the origin� Show that Gauss� theorem implies that

R r�G�r�dV �H rG �dS� use ���� in the right hand side of this expression and show that this gives
A � ���
� Note that this result is independent of the radius R that you have used�

Problem f� Show that the Green�s function is given by�

G�r� r�� � � �

�


�

jr� r�j � ������

With ������ this implies that the gravitational potential is given by�

V �r� � �G
Z

��r��
jr� r�jdV

� � ������

This general expression is useful for a variety of di�erent purposes� we will make exten�
sive use of it� By taking the gradient of this expression one obtains the gravitational
acceleration g� This acceleration was also derived in equation �	��� of section 	�� for the
special case of a spherically symmetric mass distribution� Surprisingly it is a non�trivial
calculation to derive �	��� by taking the gradient of �������

�
�� Upward continuation in a �at geometry

Suppose one has body with variable mass in two dimensions and that the mass density is
only nonzero in the half�space z � �� In this section we will determine the gravitational
potential V above the half�space when the potential is speci
ed at the plane z � � that
forms the upper boundary of this body� The geometry of this problem is sketched in

gure ����� This problem is of relevance for the interpretation of gravity measurements
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V(x,z=0) z=0

z>0V(x,z)

Figure ����� Geometry of the upward continuation problem� A mass anomaly �shaded�
leaves an imprint on the potential at z � �� The upward continuation problem states how
the potential at the surface z � � is related to the potential V �x� z� at greater height�

taken above the Earth�s surface using aircraft or satellites orbits because the 
rst step
in this interpretation is to relate the values of the potential at the Earth�s surface to the
measurements taken above the surface� This process is called upward continuation�

Mathematically the problem can be stated this way� Suppose one is given the function
V �x� z � ��� what is the function V �x� z�� When we know that there is no mass above the
surface it follows from ������ that the potential satis
es�

r�V �r� � � for z � � � �������

It is instructive to solve this problem by making a Fourier expansion of the potential in
the variable x�

V �x� z� �

Z �

��
v�k� z�eikxdk � �������

Problem a� Show that for z � � the Fourier coe�cients can be expressed in the known
value of the potential at the edge of the half�space�

v�k� z � �� �
�

�


Z �

��
V �x� z � ��e�ikxdx � �������

Problem b� Use Poisson�s equation ������� and the Fourier expansion ������� to derive
that the Fourier components of the potential satisfy for z � � the following di�eren�
tial equation�

��v�k� z�

�z�
� k�v�k� z� � � � �������

Problem c� Show that the general solution of this di�erential equation can be written as
v�k� z� � A�k� exp �� jkj z� �B�k� exp �� jkj z� and explain why the absolute values
of the wave number k in the exponent can be taken �

Since the potential must remain 
nite at great height �z � �� the coe�cient A�k�
must be equal to zero� Setting z � � shows that B�k� � v�k� z � ��� so that the potential
is given by�

V �x� z� �

Z �

��
v�k� z � ��eikxe�jkjzdk � �������

This expression is interesting because it states that the di�erent Fourier components of
the potential decay as exp �� jkj z� with height�
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Problem d� Explain that this implies that the short�wavelength components in the po�
tential 
eld decay must faster with height than the long�wavelength components�

The decrease of the Fourier components with the distance z to the surface is bad news when
one wants to infer the mass�density in the body from measurements of the potential or from
gravity at great height above the surface because the in�uence of mass perturbations on
the gravitational 
eld decays rapidly with height� the measurement of the short�wavelength
component of the potential at great height therefore carries virtually no information about
the density distribution within the Earth� This is the reason why gravity measurements
from space are preferably carried out using satellites in low orbits rather than in high
orbits� Similarly� for gravity surveys at sea a gravity meter has been developed that is
towed far below the sea surface����� The idea is that by towing the gravity meter closer
to the sea�bottom� the gravity signal generated at the sub�surface for short wavelength
su�ers less from the exponential decay due to upward continuation�

Problem e� Take the gradient of ������� to 
nd the vertical component of the gravity

eld� Use the resulting expression to show that the gravity 
eld g is less sensitive
to the exponential decay due to upward continuation than the potential V �

This last result is the reasons why satellites in low orbits are used for measuring the Earth�s
gravitational potential and why for satellites in high orbits one measures gravity� In fact�
presently a space�born gradiometer���� is presently being developed� This instrument
measures the gradient of the gravity vector by monitoring the di�erential motion between
two masses in the satellite� Taking the gradient of the gravity leads to another factor of k
in the Fourier expansion so that the e�ects of upward continuation are further reduced�

We will now explicitly express the potential at height z to the potential at the surface
z � ��

Problem f� Insert expression ������� in ������� to show that the upward continuation of
the potential is given by�

V �x� z� �

Z �

��
H�x� x�� z�V �x�� z � ��dx� � �������

with

H�x� z� �
�

�


Z �

��
e�jkjze�ikxdk � �����	�

Note that expression ������� has exactly the same structure as equation ������� of section
���� for a time�independent linear 
lter� The only di�erence is that the variable x now plays
the role the role of the variable t in expression �������� This means that we can consider
upward continuation as a linear 
ltering operation� The convolutional 
lter H�x� z� maps
the potential from the surface z � � onto the potential at height z�

Problem g� Show that this 
lter is given by�

H�x� z� �
�




z

z� � x�
� �������
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Problem h� Sketch this 
lter as a function of x for a large value of z and a small value
of z�

Problem i� Equation ������� implies that H�x� z� � 
�x�� with 
�x� the Dirac delta
function� Convince yourself of this by showing that H�x� z� becomes more and more
peaked round x � � when z � � and by proving that for all values of z the 
lter
function satis
es

R�
��H�x� z�dx � ��

�
�� Upward continuation in a �at geometry in �D

The analysis of the previous section is valid for a �at geometry in two dimensions� How�
ever�the theory can readily be extended to three dimensions by including another horizon�
tal coordinate y in the derivation�

Problem a� Show that the theory of the previous section up to equation �����	� can
be generalized by carrying out a Fourier transform over both x and y� Show in
particular that in three dimensions�

V �x� y� z� �

�ZZ
��

H�D�x� x�� y � y�� z�V �x�� y�� z � ��dx�dy� � �������

with

H�D�x� y� z� �
�

��
��

�ZZ
��

e�
p
k�x�k

�
yze�i�kxx�kyy
dkxdky � �������

The only di�erence with the case in two dimensions is that the integral ������� leads to a
di�erent upward continuation function than the integral �����	� for the two�dimensional
case� The integral can be solved by switching the k�integral to cylinder coordinates� The
product kxx� kyy can be written as kr cos	 where k and r are the length of the k�vector
and the position vector in the horizontal plane�

Problem b� Use this to show that H�D can be written as�

H�D�x� y� z� �
�

��
��

Z �

�

Z ��

�
ke�kze�ikr cos�d	dk � �������

Problem c� The Bessel function has the following integral representation�

J��x� �
�

�


Z ��

�
eix sin �d� � �������

Use this result to write the upward continuation 
lter as�

H�D�x� y� z� �
�

�


Z �

�
e�kzJ��kr�kdk � �������

It appears that we have only made the problem more complex� because the integral of
the Bessel function is not trivial� Fortunately� books and tables exist with a bewildering
collection of integrals� For example� in equation �	�	����� of Gradshteyn and Ryzhik����
you can 
nd an expression for the following integral�

R�
� e��xJ���x�x���dx�
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Problem d� What are the values of �� �� � and � if we would like to use this integral to
solve the integration in ��������

Take a look at the form of integral in Gradshteyn and Ryzhik����� You will probably be
discouraged by what you 
nd because the result is expressed in hypergeometric functions�
which means that you now have the new problem to 
nd out what these functions are�
There is however a way out� because in expression �	�	����� of ���� gives the following
integral� Z �

�
e��xJ���x�dx �

���
np

�� � �� � �
o�

p
�� � ��

� �������

This is not quite the integral that we want� because it does not contain a term that
corresponds to the factor k in the integral �������� However� we can introduce such a
factor by di�erentiating expression ������� with respect to ��

Problem e� Do this to show that the upward continuation operator is given by

H�D�x� y� z� �
�

�


z

�x� � y� � z�����
� �������

You can make the problem simpler by 
rst inserting the appropriate value of � in
��������

Problem f� Compare the upward continuation operator ������� for three�dimensions with
the corresponding operator for two dimensions in equation �������� Which of these
operators decays more rapidly as a function of the horizontal distance� Can you
explain this di�erence physically�

Problem g� In section ���� you showed that the integral of the upward continuation
operator over the horizontal distance is equal to one� Show that the same holds
in three dimensions� i�e� show that

RR�
��H�D�x� y� z�dxdy � �� The integration

simpli
es by using cylinder coordinates�

Comparing the upward continuation operators in di�erent dimensions one 
nds that
these operators are di�erent functions of the horizontal distance in the space domain�
However� a comparison for �����	� with ������� shows that in the wave�number domain
the upward continuation operators in two and three dimensions have the same dependence
on wave�number�� The same is actually true for the Green�s function of the wave equation
in ��� or � dimensions� As you can see in section ���� these Green�s functions are very
di�erent in the space domain� but one can show that in the wave�number domain they are
in each dimension given by the same expression�

�
�� The gravity �eld of the Earth

In this section we obtain an expression for the gravitational potential outside the Earth
for an arbitrary distribution of the mass density ��r� within the Earth� This could be
done be using the Green�s function that is appropriate for the Laplace equation �������
As an alternative we will solve the problem here by expanding both the mass density and
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the potential in spherical harmonics and by using a Green�s function technique for every
component in the spherical harmonics expansion separately�

When using spherical harmonics� the natural coordinate system is a system of spherical
coordinates� For every value of the radius r both the density and the potential can be
expanded in spherical harmonics�

��r� �� 	� �
�X
l��

lX
m��l

�lm�r�Ylm��� 	� � �������

and

V �r� �� 	� �
�X
l��

lX
m��l

Vlm�r�Ylm��� 	� � �����	�

Problem a� Show that the expansion coe�cients for the density are given by�

�lm�r� �

Z
Y �
lm��� 	���r� �� 	�d% � �������

where
R
�� � �� d% denotes an integration over the unit sphere�

Equation ������ for the gravitational potential contains the Laplacian� The Laplacian in
spherical coordinates can be decomposed as

r� �
�

r�
�

�r

�
r�

�

�r



�

�

r�
r�

� � �������

with r�
� the Laplacian on the unit sphere�

r�
� �

�

sin �

�

��

�
sin �

�

��



�

�

sin� �

��

�	�
� �������

The reason why an expansion in spherical harmonics is used for the density and the
potential is that the spherical harmonics are the eigenfunctions of the operator r�

� �see p�
��� of Butkov������

r�
�Ylm � l �l � �� Ylm � �������

Problem b� Insert the expansions ������� and �����	� in the Laplace equation� and use
������� and ������� for the Laplacian of the spherical harmonics to show that the
expansion coe�cients Vlm�r� of the potential satisfy the following di�erential equa�
tion�

�

r�
�

�r

�
r�
�Vlm�r�

�r



� l �l � ��

r�
Vlm�r� � �
G�lm�r� � �������

What we have gained by making the expansion in spherical harmonics is that �������
is an ordinary di�erential equation in the variable r whereas the original equation ������ is
a partial di�erential equation in the variables r� � and 	� The di�erential equation �������
can be solved using the Green�s function technique that is described in section ����� Let
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us 
rst consider a mass 
�r � r�� located at a radius r� only� The response to this mass is
the Green�s function Gl that satis
es the following di�erential equation�

�

r�
�

�r

�
r�
�Gl�r� r

�
�

�r

�
� l �l � ��

r�
Gl�r� r

�� � 

�
r � r�

�
� �������

Note that this equation depends on the angular order l but not on the angular degree m�
For this reason the Green�s function Gl�r� r

�� depends on l but not on m�

Problem c� The Green�s function can be found by 
rst solving the di�erential equation
������� for r �� r

�
� Show that when r �� r

�
the general solution of the di�erential

equations ������� can be written as Gl � Arl�Br��l��
� where the constants A and
B do not depend on r�

Problem d� In the regions r � r� and r � r� the constants A and B will in general have
di�erent values� Show that the requirement that the potential is everywhere 
nite
implies that B � � for r � r� and that A � � for r � r�� The solution can therefore
be written as�

Gl�r� r
�� �

�
Arl for r � r�

Br��l��
 for r � r�
�������

The integration constants follow in the same way as in the analysis of section ����� One
constraint on the integration constants follows from the requirement than the Green�s
function is continuous in the point r � r�� The other constraint follows by multiplying
������� by r� and integrating the resulting equation over r from r� � � to r� � ��

Problem e� Show that by taking the limit �� � this leads to the requirement

�
r�
�Gl�r� r

�
�

�r

�r�r���
r�r���

� r�� � �������

Problem f� Use this condition with the continuity of Gl to 
nd the coe�cients A and B
and show that the Green�s function is given by�

Gl�r� r
�� �

�����
����
� �

��l � ��

rl

r��l��

for r � r�

� �

��l � ��

r��l��


r�l��

for r � r�

�������

Problem g� Use this result to derive that the solution of equation ������� is given by�

Vlm�r� � � �
G

��l � ��

�

rl��
R r
� �lm�r

��r��l��
dr�

� �
G

��l � ��
rl
R�
r �lm�r��

�

r��l��

dr� �

�����	�

Hint� split the integration over r� up the interval � � r� � r and the interval r� � r�
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Problem h� Let us now consider the potential outside the Earth� Let us denote the
radius of the Earth with the symbol a� Use the above expression to show that the
potential outside the Earth is given by

V �r� �� 	� � �
�X
l��

lX
m��l

�
G

��l � ��

�

rl��

Z a

�
�lm�r��r��l��
dr� Ylm��� 	� � �������

Problem i� Eliminate �lm and show that the potential is 
nally given by�

V �r� �� 	� � �
�X
l��

lX
m��l

�
G

��l � ��

�

rl��

Z a

�
��r�� ��� 	��r�lY �

lm��
�
� 	��dV � Ylm��� 	� �

�������
Note that the integration in this expression is over the volume of the Earth rather
than over the distance r� to the Earth�s center�

Let us re�ect on the relation between this result and the derivation of upward continu�
ation in a Cartesian geometry of the section ����� Equation ������� can be compared with
equation �������� In ������� the potential is written as an integration over wave�number
and the potential is expanded in basis functions exp ikx� whereas in ������� the potential
is written as a summation over the degree l and order m and the potential is expanded
in basis functions Ylm� In both expressions the potential is written as a sum over basis
functions with increasingly shorter wavelength as the summation index l or the integration
variable k increases� This means that the decay of the potential with height is in both
geometries faster for a potential with rapid horizontal variations than for a potential with
smooth horizontal variations� In both cases the potential decreases when the height z �or
the radius r� increases� In a �at geometry the potential decreases as exp �� jkj z� whereas
in a spherical geometry the potential decreases as r��l��
� This di�erence in the reduction
of the potential with distance is due to the di�erence in the geometry in the two problems�

The expressions ������ and ������� both express the gravitational potential due a den�
sity distribution ��r�� therefore these expressions must be identical�

Problem j� Use the equivalence of these expressions to derive that for r� � r the following
identity holds�

�

jr� r�j �
�X
l��

lX
m��l

�


��l � ��
Ylm��� 	�Y

�
lm��

�
� 	��

r�l

rl��
� �������

The derivation of this section could also have been made using ������� as a starting
point because this expression can be derived by using the generating function Legendre
polynomials and by using the addition theorem for obtaining the m�summation� However�
these concepts are not needed in the treatment of this section that is based only on the
expansion of functions in spherical harmonics and on the use of Green�s functions�

As a last exercise let us consider the special case of a spherically symmetric mass
distribution� � � ��r�� For such a mass distribution the potential is given by

V �r� � � GM

r
� �������
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where M is the total mass of the body� The gradient of this potential is indeed equal to
the gravitational acceleration given in expression �	��� for a spherically symmetric mass
M �

Problem i� Derive the potential ������� from ������� by considering the special case that
the mass�density depends only on the radius�

�
�� Dipoles� quadrupoles and general relativity

We have seen in the section 	�� that a spherically symmetric mass leads to a gravitational

eld g�r� � �GM�r�r�� which corresponds to a gravitational potential V �r� � �GM�r�
Similarly� the electric potential due to a spherically symmetric charge distribution is given
by V �r� � q��
��r� where q is the total charge� In this section we investigate what
happens if we place a positive charge and a negative charge close together� �Since there
is no negative mass� we treat for the moment the electrical potential� but we will see in
section ���	 that the results also have a bearing on the gravitational potential��

+

-

+q

-q r

r=+ a

a/2

/2

= -

Figure ����� Two opposite charges that constitute an electric dipole�

Consider the case that a positive charge �q is placed at position a�� and a negative
charge �q is placed at position �a���

Problem a� The total charge of this system is zero� What would you expect the electric
potential to be at positions that are very far from the charges compared to potential
for a single point charge�

Problem b� The potential follows by adding the potentials for the two point charges�
Show that the electric potential generated by these two charges is given by

�
��V �r� �
q

jr� a��j �
q

jr� a��j � �������

Problem c� Ultimately we will place the charges very close to the origin by taking the
limit a� �� We can therefore restrict our attention to the special case that a� r�
Use a 
rst order Taylor expansion to show that up to order a�

�

jr� a��j �
�

r
� �

�r�
�r � a� � �������
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Problem d� Insert this in ������� and derive that the electric potential is given by�

�
��V �r� � � q �r � a�
r�

�������

Now suppose we bring the charges in 
gure ���� closer and closer together� and suppose
we let the charge q increase so that the product p � qa is constant� then the electric
potential is given by�

�
��V �r� � � ��r � p�
r�

� �������

where we used that r � r�r� The vector p is called the dipole vector� We will see in the next
section how the dipole vector can be de
ned for arbitrary charge or mass distributions�

In problem a you might have guessed that the electric potential would go to zero
at great distance� Of course the potential due to the combined charges goes to zero
much faster than the potential due to a single charge only� but note that the electric
potential vanishes as ��r� compared to the ��r decay of the potential for a single charge�
Many physical systems� such as neutral atoms� consists of neutral combinations of positive
and negative charges� The lesson we learn from equation ������� is that such a neutral
combination of charges does generate a nonzero electric 
eld and that such a system will
in general interact with other electromagnetic systems� For example� atoms interact to
leading order with the radiation �light� 
eld through their dipole moment����� In chemistry�
the dipole moment of molecules plays a crucial role in the distinction between polar and
apolar substances� Water would not have its many wonderful properties if it would not
have a dipole moment�

Let us now consider the electric 
eld generated by an electric dipole�

Problem e� Take the gradient of ������� to show that this 
eld is given by

E�r� �
�

�
��r�
�p� ��r ��r � p�� � �������

Hint� either use the expression of the gradient in spherical coordinates or take the
gradient in Cartesian coordinates and use ������

The electric 
eld generated by an electric dipole has the same form as the magnetic

eld generated by a magnetic dipole as shown in expression ����� of section ������ The
mathematical reason for this is that the magnetic 
eld satis
es equation ������ which
states that �r �B� � � while the electric 
eld in free space satis
es according to equation
������ the same 
eld equation� �r � E� � �� However� there is an important di�erence� the
electric 
eld is generated by electric charges� In general� this 
eld satis
es the equation
�r � E����r����� In the example of this section we created a dipole 
eld by taking two
opposite charges and putting them closer and closer together� However� the magnetic 
eld
satis
es �r �B� � � everywhere� The reason for this is that the magnetic equivalent of
electric charge� the magnetic monopole	 has not been discovered in nature�

Problem f� The fact that magnetic monopoles have not been observed in nature seems
puzzling� because we have seen that the magnetic dipole 
eld has the same form as
the electric dipole 
eld that was constructed by putting two opposite electric charges
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close together� Can you think of a physical system or device that does generate the
magnetic dipole 
eld but that does not consist of two magnetic monopoles placed
closely together�

+
-

+ -

+

+

-

Monopole Dipole Quadrupole

�

Figure ����� The de
nition of the monopole� dipole and quadrupole in terms of electric
charges

We have seen now the electric 
eld of a single charge� this is called the monopole� see

gure ����� The 
eld of this charge decays as ��r�� If we put two opposite charges close
together we have seen we can create a dipole� see 
gure ����� as derived in expression
������� this 
eld decays as ��r�� We can also put two opposite dipoles together as shown
in 
gure ����� The resulting charge distribution is called a quadrupole� To leading order
the electric 
elds of the dipoles that constitute the quadrupole cancel� and we will see in
the next section that the electric potential for quadrupole decays as ��r� so that the 
eld
decays with distance as ��r��

You may wonder whether the concept of a dipole or quadrupole can be used as well
for the gravity 
eld because these concept are for the electric 
eld based on the presence
of both positive and negative charges whereas we know that only positive mass occurs in
nature� However� there is nothing that should keep us from computing the gravitational

eld for a negative mass� and this is actually quite useful� As an example� let us consider
a double star that consists of two heavy stars that rotate around their joint center of
gravity� The 
rst order 
eld is the monopole 
eld that is generated by the joint mass of
the stars� However� as shown in 
gure ���� the mass of the two stars can approximately

++ = ++ +
-

+
-

Figure ����� The decomposition of a double star in a gravitational monopole and a gravi�
tational quadrupole�

be seen as the sum of a monopole and a quadrupole consisting of two positive and two
negative charges� Since the stars rotate� the gravitational quadrupole rotates as well� and
this is the reason why rotating double stars are seen as a prime source for the generation
of gravitational waves����� However� gravitational waves that spread in space with time
cannot be described by the classic expression ������ for the gravitational potential�

Problem g� Can you explain why ������ cannot account for propagating gravitational
waves�
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A proper description of gravitational waves depends on the general theory of relativity
����� This is the reason why huge detectors for gravitational waves are being developed�
because these waves can be used to investigate the theory of general relativity�

�
�� The multipole expansion

Now that we have learned that the concepts of monopole� dipole and quadrupole are
relevant for both the electric 
eld and the gravity 
eld we will continue the analysis with
the gravitational 
eld� In this section we will derive the multipole expansion where the
total 
eld is written as a superposition of a monopole 
eld� a dipole 
eld� a quadrupole

eld� an octupole 
eld� etc�

r

r’

Figure ���	� De
nition of the integration variable r� within the mass and the observation
point r outside the mass�

Consider the situation shown in 
gure ���	 where a 
nite body has a mass density
��r��� The gravitational potential generated by this mass is given by�

V �r� � �G
Z

��r��
jr� r�jdV

� ������ again�

We will consider the potential at a distance that is much larger than the size of the body�
Since the integration variable r� is limited by the size of the body a �large distance�
means in this context that r 
 r�� We will therefore make a Taylor expansion of the term
�� jr� r�j in the small parameter �r��r� which is much smaller than unity�

Problem a� Show that ��r� r�
�� �q

r� � � �r � r�� � r�� �����	�

Problem b� Use a Taylor expansion in the small parameter r��r to show that�

�

jr� r�j �
�

r

�
� �

�

r

�
�r � r��� �

�r�

�
�
�
�r � r��� � r��

�
�O

�
r�

r


�
�

�
�������

Be careful that you properly account for all the terms of order r� correctly� Also be
aware of the distinction between the di�erence between the position vector r and
the unit vector �r�
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From this point on we will ignore the terms of order �r��r���

Problem c� Insert the expansion ������� in ������ and show that the gravitational po�
tential can be written as a sum of di�erent contributions�

V �r� �Vmon�r��Vdip�r��Vqua�r� � � � � � �������

with

Vmon�r� � �G
r

Z
��r��dV � � �������

Vdip�r� � �G

r�

Z
��r��

�
�r � r�� dV � � �������

Vqua�r� � � G

�r�

Z
��r��

�
�
�
�r � r��� � r��

�
dV � � �������

It follows that the gravitational potential can be written as sum of terms that decay with
increasing powers of r�n� Let us analyze these terms in turn� The term Vmon�r� in �������
is the simplest since the volume integral of the mass density is simply the total mass of
the body�

R
��r��dV � � M � This means that this term is given by

Vmon�r� � � GM

r
� �������

This is the potential generated by a point mass M � To leading order� the gravitational

eld is the same as if all the mass of the body would be concentrated in the origin� The
mass distribution within the body does not a�ect this part of the gravitational 
eld at all�
Because the resulting 
eld is the same as for a point mass� this 
eld is called the monopole
�eld�

For the analysis of the term Vdip�r� in ������� is us useful to de
ne the center of gravity
rg of the body�

rg �
R
��r��r�dV �R
��r��dV � �������

This is simply a weighted average of the position vector with the mass density as weight
functions� Note that the word �weight� here has a double meaning�

Problem d� Show that Vdip�r� is given by�

Vdip�r� � � GM

r�
��r � rg� � �������

Note that this potential has exactly the same form as the potential ������� for an electric
dipole� For this reason Vdip�r� is called the dipole term� we will refer to this term also as
the �dipole term��

Problem e� Compared to the monopole term� the dipole term decays as ��r� rather than
��r� The monopole term does not depend on �r� the direction of observation� Show
that the dipole term varies with the direction of observation as cos � and show how
the angle � must be de
ned�
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Problem f� You may be puzzled by the fact that the gravitational potential contains a
dipole term� despite the fact that there is no negative mass� Draw a 
gure similar
to 
gure ���� to show that a displaced mass can be written as an undisplaced mass
plus a mass�dipole�

Of course� one is completely free in the choice of the origin of the coordinate system� If
one chooses the origin in the center of mass of the body� then rg � � and the dipole term
vanishes�

We will now analyze the term Vqua�r� in �������� It can be seen from this expression
that this term decays with distance as ��r�� For this reason� this term will be called
the quadrupole term� The dependence of the quadrupole term on the direction is more
complex than for the monopole term and the dipole term� In doing so it will be useful to
use the double contraction between two tensors� This operation is de
ned as�

�A � B��
X
i�j

AijBij � �������

The double contraction generalizes the concept of the inner product of two vectors �a � b� �P
i aibi to matrices or tensors of rank two� A double contraction occurs for example in the

following identity� � � ��r ��r� ���r � I�r� � ��r�r � I�� where I is the identity operator� Note
that the term �r�r is a dyad� If you are unfamiliar with the concept of a dyad you may 
rst
want to look at section �����

Problem g� Use these results to show that Vqua�r� can be written as�

Vqua�r� � � G

�r�
��r�r � T� � �����	�

where T is the quadrupole moment tensor de
ned as

T �

Z
��r�

�
�rr� Ir�

�
dV � �������

Note that we renamed the integration variable r� in the quadrupole moment tensor
as r�

Problem h� Show that T is in explicit matrix notation given by�

T �

Z
��r�

�
B� �x� � y� � z� �xy �xz

�xy �y� � x� � z� �yz
�xz �yz �z� � x� � y�

�
CA dV � �������

Note the resemblance between �����	� and �������� For the dipole term the directional
dependence is described by the single contraction ��r � rg� whereas for the quadrupole term
directional dependence is now given by the double contraction �r�r � T� This double con�
traction leads to a more rapid angular dependence of the quadrupole term than for the
monopole term and the dipole term�

To 
nd the angular dependence� we will use that the inertia tensor T is a real sym�
metric � � � matrix� This matrix has therefore three orthogonal eigenvectors �v�i
 with
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corresponding eigenvalues �i� Using expression ����	�� of section ������ this implies that
the quadrupole moment tensor can be written as�

T �
�X
i��

�i�v
�i
�v�i
 � �������

Problem i� Use this result to show that the quadrupole term can be written as

Vqua�r� � � G

�r�

�X
i��

�icos
�+i � ����	��

where the +i denote the angle between the eigenvector �v�i
 and the observation
direction �r� see 
gure ���� for the de
nition of these angles�

^

v̂

v̂ v r3 1

2

Ψ2

3Ψ Ψ1

Figure ����� De
nition of the angles +i�

Since the dependence of these angles goes as cos�+i � �cos�+i � �� �� this implies that
the quadrupole varies through two periods when +i goes from � to �
� This contrast with
the monopole term� which does not depend on the direction� as well as with the dipole
term that varies according to problem e as cos �� There is actually a close connection
between the di�erent terms in the multipole expansion and spherical harmonics� This can
be seen by comparing the multipole terms ��������������� with expression ������� for the
gravitational potential� In the latter expression� the di�erent terms decay with distance as
r��l��
 and have an angular dependence Ylm��� 	�� Similarly� the multipole terms decay
as r��� r�� and r�� respectively and depend on the direction as cos �� cos � and cos �+
respectively�

�
�
 The quadrupole �eld of the Earth

Let us now investigate what the multipole expansion implies for the gravity 
eld of the
Earth� The monopole term is by far the dominant term� It explains why an apple falls
from a tree� why the moon orbits the Earth and most other manifestations of gravity
that we observe in daily life� The dipole term has in this context no physical meaning
whatsoever� This can be seen from equation ������� which states that the dipole term only
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depends on the distance from the Earth�s center of gravity to the origin of the coordinate
system� Since we are completely free in choosing the origin� the dipole term can be made
to vanish by choosing the origin of the coordinate system in the Earth�s center of gravity�
It is through the quadrupole term that some of the subtleties of the Earth�s gravity 
eld
becomes manifest�

Problem a� The quadrupole term vanishes when the mass distribution in the Earth is
spherically symmetric Earth� Show this by computing the inertia tensor T when
� � ��r��

The dominant departure of the Earth�s 
gure from aspherical shape is the �attening
of the Earth due to the rotation of the Earth� If that is the case� then by symmetry
one eigenvector of T must be aligned with the Earth�s axis of rotation� and the two
other eigenvectors are perpendicular to the axis of rotation� By symmetry these other
eigenvectors must correspond to equal eigenvalues� When we choose a coordinate system
with the z�axis along the Earth�s axis of rotation the eigenvectors are therefore given by the
unit�vectors �z� �x and �y with eigenvalues �z� �x and �y respectively� These last eigenvalues
identical because of the rotational symmetry around the Earth�s axis of rotation� hence
�y � �x�

Let us 
rst determine the eigenvalues� Once the eigenvalues are known� the quadrupole
moment tensor follows from ����	��� The eigenvalues could be found in standard way by
solving the equation det �T��I�� but this is unnecessarily di�cult� Once we know the
eigenvectors the eigenvalues can easily be found from expression ��������

Problem b� Take twice the inner product of ������� with the eigenvector �v�j
 to show
that

�j � �v�j
 �T � �v�j
 � ����	��

Problem c� Use this with expression ������� to show that the eigenvalues are given by�

�x �

Z
��r�

�
�x� � y� � z�

�
dV �

�y �

Z
��r�

�
�y� � x� � z�

�
dV � ����	��

�z �

Z
��r�

�
�z� � x� � y�

�
dV �

It will be useful to relate these eigenvalues to the Earth�s moments of inertia� The moment
of inertia of the Earth around the z�axis is de
ned as�

C �
Z
��r�

�
x� � y�

�
dV � ����	��

whereas the moment of inertia around the x�axis is de
ned as

A �
Z
��r�

�
y� � z�

�
dV � ����	��

By symmetry the moment of inertia around the y�axis is given by the same moment
A� These moments describe the rotational inertia around the coordinate axes as shown
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Figure ����� De
nition of the moments of inertia A and C for an Earth with cylinder
symmetry around the rotation axis�

in 
gure ����� The eigenvalues in ����	�� can be related to these moments of iner�
tia� Because of the assumed axi�symmetric density distribution� the integral of y� in
����	�� is equal to the integral of x�� The eigenvalue �x in ����	�� is therefore given by�
�x�

R
��r�

�
x� � z�

�
dV �

R
��r�

�
x� � y� � y� � z�

�
dV � C �A�

Problem d� Apply a similar treatment to the other eigenvalues to show that�

�x��y � C �A � �z � ���C �A� ����	��

Problem e� Use these eigenvalues in ������� and use �����	� and expression ����� for the
unit vector �r to show that the quadrupole term of the potential is given by�

Vqua�r� �
G

�r�
�C �A�

�
� cos� � � �

�
� ����		�

The Legendre polynomial of order � is given by� P �
� �x� � �

�

�
�x� � �

�
� The quadrupole

term can therefore also be written as�

Vqua�r� �
G

r�
�C �A�P �

� �cos �� � ����	��

The term C � A denotes the di�erence of the moments of inertia of the Earth around
the rotation axis and around an axis through the equator� see 
gure ����� If the Earth
would be a perfect sphere� these moments of inertia would be identical and the quadrupole
term would vanish� However� the rotation of the Earth causes the Earth to bulge at the
equator� This departure from spherical symmetry is responsible for the quadrupole term
in the Earth�s potential�

If the Earth would be spherical� the motion of satellites orbiting the Earth would satisfy
Kepler�s laws� The quadrupole term in the potential a�ects a measurable deviation of the
trajectories of satellites from the orbits predicted by Kepler�s laws� For example� if the
potential is spherically symmetric� a satellite will orbit in a 
xed plane� The quadrupole
term of the potential causes the plane in which the satellite orbits to precess slightly�
Observations of the orbits of satellites can therefore be used to deduce the departure of
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the Earth�s shape from spherical symmetry����� Using these techniques it has been found
that the di�erence �C �A� in the moments of inertia has the numerical value�����

J� �
�C �A�

Ma�
� �����	�	 � ���� � ����	��

In this expression a is the radius of the Earth� and the term Ma� is a measure of the av�
erage moment of inertia of the Earth� Expression ����	�� states therefore that the relative
departure of the mass distribution of the Earth from spherical symmetry is of the order
����� This e�ect is small� but this number carries important information about the dy�
namics of our planet� In fact� the time�derivative !J� of this quantity has been measured�	��
as well� This quantity is of importance because the rotation rate of the Earth slowly de�
creases because of the braking e�ect of the tidal forces� The Earth adjusts its shape to this
deceleration�� The measurement of !J� therefore provides important information about the
response of the Earth to a time�dependent loading�

�
�� Epilogue� the �fth force

Gravity is the force in nature that was understood 
rst by mankind through the discovery
by Newton of the law of gravitational attraction� The reason the gravitational force was
understood 
rst is that this force manifests itself in the macroscopic world in the motion
of the sun� moon and planets� Later the electromagnetic force� and the strong and weak
interactions were discovered� This means that presently� four forces are operative in nature�

In the �����s� geophysical measurements of gravity suggested that the gravitational

eld behaves in a di�erent way over geophysical length scales �between meters and kilo�
meters� than over astronomical length scales ����� km�� This has led to the speculation
that this discrepancy was due to a 
fth force in nature� This speculation and the obser�
vations that fuelled this idea are clearly described by Fishbach and Talmadge����� The
central idea is that in Newton�s theory of gravity the gravitational potential generated by
a point mass M is given by ��������

VN �r� � � GM

r
� ����	��

The hypothesis of the 
fth force presumes that a new potential should be added to this
Newtonian potential that is given by

V��r� � � �
GM

r
e�r�� � �������

Note that this potential has almost the same form as the Newtonian potential VN �r�� the
main di�erence is that the 
fth force decays exponentially with distance over a length �
and that it is weaker than Newtonian gravity by a factor �� This idea was prompted by
measurements of gravity in mines� in the ice�cap of Greenland� in a 	��m high telecom�
munication tower and a number of other experiments that seemed to disagree with the
gravitational force that follows from the Newtonian potential VN �r��

Problem a� E�ectively� the 
fth force leads to a change of change of the gravitational
constant G with distance� Compute the gravitational acceleration g�r� for the com�
bined potential VN �V� by taking the gradient and write the result as �G�r�M�r�r�
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to show that the e�ective gravitational constant is given by�

G�r� � G

�
� � �

�
� �

r

�



e�r��



� �������

The 
fth force thus e�ectively leads to a change of the gravitational constant over a
characteristic distance �� This e�ect is very small� in ���� the value of � was estimated
to be less than ���� for all estimates of � longer than �cm �����

In doing geophysical measurements of gravity� one has to correct for perturbing ef�
fects such as the topography of the Earth�s surface and density variations within the
Earth�s crust� It has been shown later that the uncertainties in these corrections are much
larger than the observed discrepancy between the gravity measurements and Newtonian
gravity����� This means that the issue of the 
fth force seems be closed for the moment�
and that the physical world appears to be governed again by only four fundamental forces�
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