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Preface

The theory of random graphs originated in a series of papers published in the
- period 1959-1968 by two outstanding Hungarian mathematicians, Paul Erdds
and Alfred Rényi. Over the forty years that have passed since then, the
theory has developed into an independent and fast-growing branch of discrete
mathematics, located at the intersection of graph theory, combinatorics and
probability theory, with applications to theoretical computer science, reliabi-
lity of transportation and communication networks, natural and social sciences
and to discrete mathematics itself. Aside from applications, random graphs
continue to serve as nontrivial, but simple enough models for other, more
complex random structures, paving the road for more advanced theories.

In the early days, the literature on the subject was scattered around se-
veral probabilistic, combinatorial and general mathematics journals. In the
late seventies, Béla Bollobas became the leading scientist in the field and
contributed dozens of papers, which gradually made up a framework for his
excellent, deep and extensive monograph Random Graphs, printed in 1985.
The appearance of that book stimulated the research even further, shaping
up a new theory.

Two other ingredients that added to this trend were the ongoing series
of international conferences on random graphs and probabilistic methods in
combinatorics held biennially in Poznani, Poland, since 1983, and the journal,
Random Structures and Algorithms, launched by Wiley in 1990. Both have
established a forum for the exchange of ideas and cooperation in the theory
of random graphs and related fields.
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It is not accidental then that tremendous progress has been made since
1985. Over the last decade several new, beautiful results have been proved and
numerous fine techniques and methods have been introduced. Our goal is to
present many of these new developments, including results on threshold func-
tions (Ch. 1), small subgraphs (Ch. 3), generalized matchings (Ch. 4), phase
transition (Ch. 5), limit distributions (Ch. 6), chromatic number (Ch. 7), par-
tition and extremal properties (Ch. 8), Hamiltonian cycles in random regular
graphs (Ch. 9), and zero-one laws (Ch. 10). We emphasize new techniques and
tools such as the martingale, Talagrand and correlation inequalities (Ch. 2),
the orthogonal decomposition (Ch. 6), the Regularity Lemma of Szemerédi
(Ch. 8), the Contiguity Theorem (Ch. 9), and the analysis of variance (Ch. 9).

In a sense, our book can be viewed as an update on Bollobas’s 1985 book.
However, the topics selected for the book reflect the interest of its authors and
do not pretend to exhaust the entire field. In fact, in order not to duplicate
Bollobés’s work, we do not include subjects which are covered there, on which
only a little progress has been made. In particular, we have no sections on
degree sequences, long paths and cycles, automorphisms, and the diameter.
Moreover, we restrict ourselves to the main core of the theory and focus
on the basic models of random graphs, making no attempt to present such
rapidly developing areas as random walks on graphs, randomized algorithms or
complexity of Boolean functions. Likewise, we exclude random cubes, directed
graphs and percolation.

It has been our goal to make the book accessible to graduate students in
mathematics and computer science. This has led to simplifications of some
statements and proofs, which, we hope, result in better clarity of exposi-
tion. The book may be used as a textbook for a graduate course or an
honors course for undergraduate senior mathematics and computer science
majors. Although we do not provide problems and exercises separately, we
often leave to the reader to complete parts of proofs or to provide proofs of re-
sults analogous to those proven. These instances, marked by the parenthetic
phrase “(Exercise!)”, can easily be picked up by the instructor and turned
into homework assignments. The prerequisites are limited to basic courses
in graph theory or combinatorics, elementary probability and calculus. We
believe that the book will also be used by scientists working in the broad
area of discrete mathematics and theoretical computer science. It is both an
introduction for newcomers and a source of the most recent developments for
those working in the field for many years.

We would like to thank several friends and colleagues, without whom this
book would be a.a.s. worse than it is. Among those whose insightful remarks
and suggestions led to improvements of earlier drafts are: Andrzej Czygrinow,
Dwight Duffus, Ehud Friedgut, Johan Jonasson, Michal Karonski, Yoshiharu
Kohayakawa, Michael Krivelevich, Justyna Kurkowiak, Jifi Matousek, Bren-
dan Nagle, Yuejian Peng, Joanna Polcyn, Vojtéch Rédl, Jozef Skokan, Joel
Spencer, Edyta Szymanska, Michelle Wagner, and Julie White.
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Preliminaries

1.1 MODELS OF RANDOM GRAPHS

The notion of a random graph originated in a paper of Erd8s (1947), which
is considered by some as the first conscious application of the probabilistic
method. It was used there to prove the existence of a graph with a specific
Ramsey property. .

The model introduced by Erdés is very natural and can be described as
choosing a graph at random, with equal probabilities, from the set of all 2(3)
graphs whose vertex set is [n] = {1,2,...,n}. In other words, it can be
described as the probability space (2, F, P), where €2 is the set of all graphs
with vertex set [n], F is the family of all subsets of 2, and for every w € Q2

P(w) = 2"(;).

This probability space can also be viewed as the product of ('2‘) binary
spaces. In simple words, it is a result of ('2‘) independent tosses of a fair coin,
where “turning up heads” means “drawing an edge”.

Generally speaking, a random graph is a graph constructed by a random
procedure. In accordance with standard definitions in probability theory, this
is formalized by representing the “random procedure” by a probability space
(22, F,P) and the “construction” by a function from the probability space into
a suitable family of graphs. The distribution of a random graph is the induced
probability distribution on the family of graphs; for many purposes this is the
only relevant feature of the construction and we usually do not distinguish
between different random graphs with the same distribution. Indeed, it is

1



2 PRELIMINARIES

often convenient to define a random graph by specifying its distribution; that
is, we specify a family of graphs and a probability distribution on it. Note,
however, that it is not sufficient to formally define a random graph as a prob-
ability distribution only, as is sometimes done in the literature; an important
case in which this would not do is when several random graphs are considered
at once, for example, in the two-round exposure described at the end of this
section.

The word “model” is used rather loosely in the theory of random graphs.
It may refer to a specific class of random graphs, defined as above, or perhaps
to a specific distribution. Usually, however, there is also a parameter involved
which measures the size of the graphs and typically it tends to infinity; there
may also be other parameters. Needless to say, the whole theory of random
graphs is thus asymptotic in its nature.

Two basic models

Nowadays, among several models of random graphs, there are two basic ones,
the binomial model and the uniform model, both originating in the simple
model introduced by Erd8s (1947). In this book we will mainly restrict our-
selves to studying these two models.

Given a real number p, 0 < p < 1, the binomial random graph, denoted by
G(n,p), is defined by taking as Q the set of all graphs on vertex set [n] and
setting

P(G) = pe (1 - p)(3)—ec

where eq = | E(G)| stands for the number of edges of G. It can be viewed as a
result of (3) independent coin flippings, one for each pair of vertices, with the
probability of success (i.e., drawing an edge) equal to p. For p = 1/2 this is
the model of 1947. However, most of the random graph literature is devoted
to cases in which p = p(n) — 0 as n = co.

The binomial model is a special case of a reliability network. In this more
general model, 2 is the family of all spanning subgraphs of a given graph F’
and P(G) = p®S(1 — p)¢F ~¢5. By a spanning subgraph we mean a graph G
such that V(G) = V(F) and E(G) C E(F). Thus, in a reliability network,
the edges of a given graph (network) are independently destroyed, each with
failure probability 1 — p. One can generalize this model even further, by
allowing different probabilities of failure at different edges. (Binomial models
are sometimes called Bernoulli.)

Taking F = K,, the complete graph on n vertices, we obtain the model
G(n,p). Taking F = K n, the complete bipartite graph (here either m
is a function of n, or they are two independent parameters, typically both
tending to infinity), we obtain the bipartite random graph G(m,n,p). Other
popular models, not discussed here, are those in which the initial graph F
is the hypercube or the n x n square lattice. The reliability network based
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on the infinite square lattice belongs to percolation theory (Grimmett 1992a)
which too, as all infinite models, is beyond.the scope of this book.

The main advantage of the binomial model G(n,p) is the independence
of presence of edges, but the drawback is that the number of edges is not
fixed; it varies according to a binomial distribution with expectation (3)p. If
one conditions on the event that |E(G(n,p))| = M, then a uniform space is
obtained. This space can be defined directly.

Given an integer M, 0 < M < (7), the uniform random graph, denoted by
G(n, M), is defined by taking as 2 the family of all graphs on the vertex set
[n] with exactly M edges, and as P the uniform probability on (,

n

P(G) = ((A'})) _1, Gen.

This model, closely related to enumerative combinatorics, was apparently
considered already in 1939 in an unpublished work of Erdés and Whitney on
the connectedness of almost all graphs with n vertices and about M = %n logn
edges. This was the model used throughout by Erdés and Rényi in their series
of papers between 1959 and 1968, which gave rise to the theory of random
graphs. (For an account of the contents of these eight fundamental papers,
see Karonski and Rucinski (1997).)

The two basic models are in many cases asymptotically equivalent, provided
(3)p is close to M (see Section 1.4).

The uniform random graph G(n, M) belongs to a broad family of uniform
random graphs defined by taking the uniform distribution over a family of
graphs F. The pioneering model from Erdds (1947) belongs here too, with
F being the family of all graphs on a given set of vertices. Other popular
models of this type are random trees (not studied in this book), where F
is the family of all n™~2 trees on n labeled vertices, and random r-regular
graphs (see Chapter 9), where F is the family of all graphs on n vertices of
equal degree r, provided nr is even. We will use G(n,r) to denote a uniform
random r-regular graph. It may look dangerous to use the notation G(n,p),
G(n, M) and G(n,r) for three different things: What is G(n,1)? In practice,
however, the correct meaning is always clear from the context. (As for the
three models: G(n,p) with p = 1, G(n, M) with M == 1, and G(n,r) with
r = 1, each one is rather dull.)

Both the binomial and the uniform model have their counterparts for di-
rected graphs. Besides these, there are interesting, natural random directed
graphs which do not have analogues in the undirected case. Let us mention
the k-out model, in which every vertex independently chooses k out-neighbors
(including or excluding itself); the case of random mappings (i.e., k = 1) is
well studied (Kolchin 1986, Aldous and Pitman 1994). Random tournaments,
in which every edge of a complete graph assumes randomly one of the two pos-
sible orientations, have a broad literature too (Moon 1968, Gruszka, Luczak
and Rucinski 1996, Andersson 1998).
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There are still other random graphs which do not fall into either category
(binomial or uniform). For instance, in some reliability networks the vertices
but not the edges are destroyed. Furthermore, some random graphs result
from more complex probabilistic experiments, and here the sky is the limit.
Restricted random graph processes constitute an interesting class of such ex-
periments, but we should better define the unrestricted case first.

Random graph processes

In general, a random graph process is a stochastic process that describes a
random graph evolving in time. In other words, it is a family {G(¢)}: of
random graphs (defined on a common probability space) where the parameter
t is interpreted as time; the time can be either discrete or continuous. The
processes studied here will have a fixed vertex set (typically [n]), and they will
start without any edges and grow monotonically by adding edges according
to some rule but never deleting any.

A simple and important random graph process {G(n, M)} (sometimes
called the random graph process) was introduced by Erdés and Rényi (1959)
and has been well studied since then. It begins with no edges at time 0 and
adds new edges, one at a time; each new edge is selected at random, uniformly
among all edges not already present. Hence this random graph process is a
Markov process, with time running through the set {0,1,...,(3)}. The M-th
stage of this process can be identified with the uniform random graph G(n, M).
The process, however, allows one to study the random graph G(n, M) as it
evolves with M growing from 0 to ('2‘) For example, a typical result, meaning-
ful only for random graph processes, says that, with probability approaching
1 as n — oo, the very edge which links the last isolated vertex with another
vertex makes the graph connected (Bollobias and Thomason (1985); see also
Bollobéas (1985)).

A related continuous time random graph process can be defined by assign-
ing a random variable T, to each edge e of the complete graph K,, such
that the ('2‘) variables T, are independent with a common continuous dis-
tribution, and then defining the edge set of {G(t)}: to consist of all e with
T. < t. Clearly, the resulting random graph {G(t)}:, at a fixed time to can
be identified with the binomial random graph G(n,p), where p = P(T, < tp).
Furthermore, since almost surely no two values of the random variables T, co-
incide, we may define T};y as the random time at which the i-th edge is added.
Then, by symmetry, G(T{;) is the uniform random graph G(n,%), and the
sequence {G(T(;))} fori=1,..., (%), equals the ordinary random graph pro-
cess {G(n, M)} defined above. Hence, this continuous time random graph
process is a joint generalization of the binomial random graph, the uniform
random graph and the standard discrete time random graph process.

Clearly, different choices of the distribution of T, affect the model only
trivially, by a change in the time variable. The continuous time evolving
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model was introduced by Stepanov (1970) with T, exponentially distributed;
we prefer the uniform distribution over the interval [0, 1], in which case p =
P(T. <t) =t 0 <t <1 Thus, we may unambiguously use the notation
{G(n’ t)} te

Recently, a number of restricted random graph processes have been stud-
ied. In general, such a process can be defined as a random graph process
in which edges are chosen one by one uniformly from a dynamically mod-
ified set of available pairs of vertices until this set becomes empty. More
formally, consider a Markov chain of random edge sets Ey = 0, E1, ..., E,,
where E; = {e1,...,e;} and e; is chosen uniformly from a set A; which de-
pends only on the set E;_.;.

In one of these restricted models, studled by Ruciriski and Wormald (1992),
the maximum degree is bounded from above by a given integer d. Thus, the
set A; contains only those pairs whose addition to the set E;_; does not create
a vertex of degree d + 1. The graph at the end of the process may not be
d-regular, though it is shown to be so with probability approaching 1. See
also Wormald (1999a), where, moreover, further related processes are defined
and studied.

Another restricted process is studied by Erdés, Suen and Winkler (1995),
in which it is not allowed to create a triangle. In this model it is even an open
problem to determine the length of a typical process, measured by the number
of edges in the final graph. It is only known that with high probability the
process takes more than ¢;n3/2 but fewer than cyn®/2logn steps, where ¢
and cq are positive constants. Recently, this result was generalized to a wide
class of forbidden subgraphs by Osthus and Taraz (2000+).

By forbidding cycles, one obtains a process which creates a non-uniform
random tree (Aldous 1990), while forbidding components with more than one
cycle leads to a random graph which still is to be studied.

Random subsets

The two basic models of random graphs fall into the framework of random
subsets of a set. Monotonicity, equivalence and threshold behavior of the
probabilities of properties of random graphs can often be proved at no extra
cost in this general setting. Other principal examples of random subsets of a
set include random sets of integers and random hypergraphs. In the remaining
sections of this chapter (as well as in parts of Chapter 2) we will mainly study
this more general random set framework. For an arbitrary set X and an
integer k, let [X]* stand for the family of all k-element subsets of X. If

= [n], we will simplify this notation to [n]*.

Let I be a finite set, [[| = N,let 0 < p<land 0 < M < N. Then
the random subset I', of I is obtained by flipping a coin, with probability
p of success, for each element of I' to determine whether the element is to
be included in T'p; the distribution of ', is the probability distribution on
Q = 2T given by P(F) = plFl(1 — p)ITI- ~(F for F C I'. Similarly, let I'as be
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a randomly chosen element of [['|™; that is, s, has the uniform distribution
P(F) = (M)~ for F € [T]M.
Taking I = [n]? we obtain the two basic models of random graphs defined
above, G(n,p) and G(n, M). |
The binomial model I', can be generalized to I'p, ... ,~, Where the element
7 is included with probability p;, independently for allz=1,...,N.

Two-round exposure

The two-round exposure is a successful proof technique applicable to the bi-
nomial model. It relies on viewing I', as a union of two independent random
subsets I'p, and I'p,, where p, and p; are such that p = p; +p2 — pip2. (It
is easy to see that this union indeed is distributed as I', — Exercise!) In the
special case of random graphs we first generate a random graph G(n,p; ) and
then, independently, another random graph G(n,p2) on the same vertex set.
By replacing double edges by single ones, we obtain G(n, p).

An argument typically used in applications of the two-round exposure can
be expressed in the following general form. Let P, be the probability distri-
bution associated with I'p,, and let Pr be the conditional probability in I',
under the condition I';; = F. Then for any two families A and B of subsets
of I

P(A) > D Pr(A)Pi(F) > Pr, (A) P1(B), (1.1)
FeB

where Fyp minimizes the probability Pr(A) over all F € B. Thus, knowing
that P,(B8) — 1, in order to prove that also P(A) — 1, it is enough to
show that Pr(A) — 1, for every F € B. In practice, computing the last
probability means fixing an instance of I'y, € B and throwing in new elements
independently with probability p, (the second round of exposure).

1.2 NOTES ON NOTATION AND MORE

Graph theory

All graphs are simple and undirected, unless otherwise stated. We use stan-
dard notation for graphs. For example, V(G) is the vertex set of a graph G,
E(G) is the edge set, vg = |V(G)] is the number of vertices and eg = |E(G)|
is the number of edges; for typographical reasons we sometimes write the
latter two as v(G) and e(G). In this book the size of G always means v(G)
(and not e(G) as sometimes used by other authors). However, we also will
call v(G) the order of G.

Moreover, let d(G) = eg/vg be the density and m(G) = maxpcg d(H)
the mazimum density of G. (Note that d(G) equals half the average degree
of G, and that some authors define d(G) as the average degree, which is twice
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our value.) Another measure of the density of a graph G, ranging between 0

and 1, is defined as p(G) = e(G)/(*'$). (It is sometimes called the relative
density of G.)

Furthermore, §(G) is the minimum degree, A(G) is the mazimum degree,
x(G) is the chromatic number, D(G) = maxpgcg 6(H) is the degeneracy num-
ber, a(G) is the stability number (the size of the largest stable, or independent,
set of vertices), and aut(G) is the number of automorphisms of G.

We let N(v) = Ng(v) denote the neighborhood of a vertex v in G, that
is, the set {w € V(G) : vw € E(G)}. Its size is called the degree of v and
is denoted by deg(v) = degqg(v). Similarly, if S C V(G), its neighborhood
Ng(S) = Uyes Na(v) \ S is the set of all vertices outside S adjacent to at
least one vertex in S. Moreover, we let Ng(v) = Ng(v) U {v} and Ng(S) =
Ng(S) U S denote the corresponding closed neighborhoods, which include v
and S, respectively.

Any graph without edges will be called empty, while the graph with no
vertices (and thus no edges) will be called the null graph and denoted by 0.

Some special graphs are: the complete graph K, on n vertices, the complete
bipartite graph K,, , on m + n vertices, the cycle Cy with k vertices, and the
path Py with k edges and thus k + 1 vertices. A star is any graph K, ,,n > 0.
We let jG denote the union of j vertex-disjoint copies of G. A matching is a
forest consisting of isolated edges only (i.e., a graph of the form 7K, j > 0).

If G is a graph and V C V(G), then G[V] denotes the restriction of G to
V, defined as the graph with vertex set V and edge set E(G)N[V]?; similarly,
if E C [V(G)])?, G[E] denotes the graph with vertex set V(G) and edge set
E(G) N E. A subgraph of G of the type G[V] is called induced or spanned
by V, while a subgraph of the type G[E] is called spanning. The number of
edges in the subgraph G[V] is sometimes denoted by e (V) = e(V'), while for
two disjoint subsets A, B C V(G), the quantity eg(A4, B) counts the number
of edges of G with one endpoint in A and the other in B.

By a copy of a given graph G inside another graph F' we mean any, not
necessarily induced, subgraph of F' which is isomorphic to G. If the subgraph
happens to be induced, we call it an induced copy of G.

Although we define our random graphs as labelled, we are mainly inter-
ested in properties that are independent of the labelling, that is, properties
that depend on the isomorphism type only. Such properties are called graph
properties. (In contrast, “vertex 1 is isolated” is not a graph property; such
properties will occasionally be studied too.)

Probability

We use Bi(n,p), Be(p) = Bi(1,p), Po()\) and N(u,0?) to denote the binomial,
Bernoulli, Poisson and normal distributions, respectively. We further write
X € £, meaning that X is a random variable with distribution £ (e.g., X €
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N(0,1)). The distribution of a random variable X is occasionally denoted by
L(X).

We denote by 1[£] the indicator function of the event £, which equals 1
if £ occurs and 0 otherwise. We will often consider random variables that
are the indicator functions of some events; such random variables will be
called indicator or zero-one random variables. They clearly have Bernoulli
distributions with p = P(£), where £ is the corresponding event.

The expected value and the variance of a random variable X (if they ex-
ist) will be denoted by E X and Var X, respectively. Thus, the well-known
Chebyshev’s inequality, which will be frequently used throughout the book,
can be stated in the following, standard form. If Var X exists, then

Var X

2’

P(X -EX|>t) <

t>0. (1.2)

Similarly, Markov’s inequality states that, if X > 0 a.s., then

P(X > 1) < g, £ 0. (1.3)

We denote the covariance of two random variables X and Y by Cov(X,Y).
Recall that the variance of a (finite) sum of random variables is given by
Var(zi X,) = Zi Zj COV(X,‘, Xj)

The conditional expectation of X given an event £ is denoted by E(X | £).
We similarly write E(X | Y7,...,Y%) for the conditional expectation of X given
some random variables Y3,...,Y%; note that this conditional expectation is
a function of (Y;j,...,Y%) and thus itself a random variable. When using
martingales (Section 2.4), we will more generally denote by E(X | G) the
conditional expectation of X given a sub-o-algebra G of F.

Quite frequently our proofs will rely on the elementary law of total probabil-
ity which states that for any partition of the probability space Q@ = & UE; ...
and any random variable X defined on (2,

EX =3 E(X|&)PE) .

In particular, if X = 1[€], then P(€) = 3, P(£ | &) P(&;).

If X,,X5,... are random variables and a is a constant, we say that X,
converges in probability to a as n — oo, and write X, B a, if P(| X, —a| >
g) — 0 for every € > 0; see, for example, Gut (1995, Chapter VI).

One similarly defines X, & Y, where Y is another random variable, but
then Y and every X, have to be defined on the same probability space; this
can be reduced to the preceding case, since X, B Y if and onlyif X,-Y 5.

Let X,,X2,... and Z be random variables. We say that X, converges in
distribution to Z as n — 00, and write Xn = Z, if P(X, < 1) = P(Z < z) for
every real z that is a continuity point of P(Z < z) (Billingsley 1968, Gut 1995).
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If X;,Xo,... and Z are integer-valued then, equivalently, X, 4 Zifand only
if P(X, = k) = P(Z = k) for every integer k.

Note that convergence in distribution is really a property of the distribu-
tions of the random variables and does not require the variables to be defined
on the same probability space. Nevertheless, it is customary (and convenient)
to talk about convergence of random variables. We also use hybrid notation

such as X, 3 N(0,1), which means X, 4 Z for some (and thus every)
random variable Z € N(0,1).

An important special case is one in which Z is a (non-random) real con-
stant. It is easily shown that convergence in distribution to a constant is the

same as convergence in probability, that is, X, 4 aif and only if X, 5 a for
a € R. A useful fact is that if X, 4 7 and ) N a, where a is a constant,

then X, +Y, 4 Z+aand Y, X, A az (Cramér’s theorem), see, for example,
Gut (1995, Theorem VI1.7.5).

The definition of convergence in distribution extends to random vectors
with values in R for every fixed k; this is also expressed as joint convergence
in distribution of the components of the vectors. A powerful method for
extending results on the real random variables to the vector-valued ones is
known as the Cramér-Wold device (Billingsley 1968, Theorem 7.7). It states

that (Xn1,...,Xnk) = (Z1,...,2) if and only if 3,8 Xn = 3,12 for
every sequence of real numbers ¢,,...,¢;. For more details, as well as for the
convergence of random variables with values in even more general spaces, see
Billingsley (1968).

Remark 1.1. Convergence in distribution does not, in general, imply con-
vergence of the sequence of means or variances. However, in many specific
applications we find that these sequences do, in fact, converge to the mean
and variance of the limit distribution.

Asymptotics

We will often use the following standard notation for the asymptotic behavior
of the relative order of magnitude of two sequences of numbers a, and by,
depending on a parameter n — oo. The same notation is also used in other
situations, for example, for functions of a variable ¢ that tends to 0. We will
often omit the phrase “as n — co” when there is no risk of confusion. For
simplicity we assume b, > 0 for all sufficiently large n.

® a, = O(b,) as n — oo if there exist constants C and ng such that
|an| < Cbp for n > nyg, i.e., if the sequence a, /b, is bounded, except
possibly for some small values of n for which the ratio may be undefined.

e a, = Q(b,) as n — oo if there exist constants ¢ > 0 and ng such that
an > cby for n > ng. If a, > 0, this is equivalent to b, = O(an).
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e a, = O(b,) as n = oo if there exist constants C, ¢ > 0 and ng such that
cbp < ap < Cby, for n > ny, e, if a, = O(by) and a, = Q(b,). This is
sometimes expressed by saying that a, and b, are of the same order of
magnitude.

® ap X by, if a, = O(by).
® a, ~byifa,/bp — 1.

e ap, = 0(b,) as n — o if ap/bp — 0, i.e., if for every € > 0 there exists
ne such that |an| < €b,, for n > n..

e a, KL by or by > a, if a, > 0 and ap, = o(by).

Since most results in this book are asymptotic, we will be frequently as-
suming in the proofs that n is sufficiently large, sometimes without explicitly
saying so.

Probability asymptotics

We say that an event &£,, describing a property of a random structure depend-
ing on a parameter n, holds asymptotically almost surely (abbreviated a.a.s.),
if P(€p,) = 1 as n — oo.

Remark 1.2. In many publications on random structures the phrase “almost
surely” or a.s. is used. However, we wish to reserve that phrase for what it
normally means in probability theory, i.e. that the probability of an event
equals exactly 1. It seems that the first paper where the phrase a.a.s. and
not a.s. was used is Shamir and Upfal (1981). (Some authors use the phrase
“almost every” or a.e. which we reject for the same reason as “almost surely”.
Others write “with high probability”, or whp.)

When discussing asymptotics of random variables, we avoid expressions like
“Xn = 0(1) a.a.8” or “X, = o(1) a.a.s.”, which may be ambiguous, since
they combine two asymptotic notions. As a substitute we give probabilistic
versions of some of the symbols above, denoting them with a subscript p or C.
Let X, be random variables and a, positive real numbers. We then define:

o X, =0,(ap) as n — oo if for every § > 0 there exist constants Cs and
no such that P(|X,| < Csa,) > 1 — 6 for every n > nyo.

e X, = Oc(an) as n — oo if there exists a constant C such that a.a.s.
| Xn| < Can.

e X, =0,(a,) as n = oo if for every 6 > 0 there exist constants ¢s > 0,
Cs > 0 and ng such that P(csan < Xn < Csan) > 10 for every n > nyp.

e X, = Oc¢(an) as n — oo if there exist positive constants ¢ and C such
that a.a.s. ca, < X, < Cay,.
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® X, =o0p(an) as n — oo if for every € > 0, a.a.s. | Xy| < €a,.

Note that X, = Oc(a,) implies X, = Op(an), but not conversely; indeed,
Xn = Oc(ap) if and only if the constant Cjs in the definition of O, can
be chosen independently of §. For example, any sequence X, of identically
distributed random variables is O,(1), but such a sequence is O¢(1) only if
the common distribution has support in a finite interval.

Similarly, X, = ©¢(an) implies X, = ©,(a,), but not conversely. On the
other hand, X, = oy(an) implies X, = Oc(an,).

Remark 1.3. It is easy to verify (Exercise!) that X, = O,(ay,) if and only if
for every function w(n) — oo, | Xn| < w(n)an, a.a.s. Similarly, X, = op(an) if
and only if for some function w(n) — 00, | X,| < an/w(n) a.a.s.

Such notation with an unspecified sequence w(n) is common in publications
on random structures, but we believe that the equivalent notation O, and o,
is clearer.

It is an immediate consequence of the definitions (Exercise!) that X, =
op(an) if and only if X,/a, B 0. Conversely, X, & a if and only if X, =
a+o0p(1) (and X, B Y if and only if X, =Y + 0,(1)).

Remark 1.4. The symbol O, can also be expressed by equivalent standard
probabilistic concepts. In fact, a sequence X, is bounded in probability, or
tight, if X, = Op(1). Hence, X, = Op(a,) if and only if the sequence X,/an
is bounded in probability (or tight).

Dependency graphs

Let {X;}icz be a family of random variables (defined on a common probability
space). A dependency graph for {X;} is any graph L with vertex set V(L) =Z
such that if A and B are two disjoint subsets of Z with e (A, B) = 0, then
the families {X;}ica and {X;};ep are mutually independent.

Dependency graphs will be used several times in this book. They are partic-
ularly useful when they are sparse, meaning that there is a lot of independence
in the family {X;}.

Example 1.5. In a standard situation, there is an underlying family of inde-
pendent random variables {Y, }ac 4, and each X; is a function of the variables
{Yy}aca, for some subset A; C A. Let S = {A; : ¢ € Z}. Then the graph
L = L(S) with vertex set Z and edge set {ij : A;N A; # 0} is a dependency
graph for the family {X;};cz (Exercise!).

Example 1.6. As a special case of the preceding example, let {H;}icz be
given subgraphs of the complete graph K, and let X; be the indicator that
H; appears as a subgraph in G(n,p), that is, X; = 1[H; C G(n,p)], ¢ € .
Then L(S), with S = {E(H;) : 1 € I}, is a natural dependency graph with
edge set {ij : E(H;) N E(H;) # 0} (Exercise!).
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Remark 1.7. In particular, if L is a dependency graph for {X;}, then two
variables X; and X, are independent unless there is an edge in L between 1
and j. Note, however, that this is only a necessary condition, and does not
imply that L is a dependency graph (Exercise!).

Remark 1.8. Another context, outside the scope of this book, in which de-
pendency graphs are used is the Lovdsz Local Lemma (Erdés and Lovasz
(1975); see also Alon and Spencer (1992)). There it actually suffices to use
a slightly weaker definition, considering only singletons B in the definition
above.

Remark 1.9. In our applications, there exists a natural dependency graph,
but it should be observed that, in general, there is no canonical choice and
the dependency graph is not unique, even if it is required to be minimal
(Exercise!).

The subsubsequence principle

It is often convenient to use the well-known subsubsequence principle, which
states that if for every subsequence of a sequence there is a subsubsequence
converging to a limit a, then the entire sequence must converge to the same
limit. This holds for sequences of real numbers, vectors, random variables
(both for convergence in probability and for convergence in distribution) and,
in general, for sequences in any topological space.

For example, this means that if we want to prove a limit theorem for
G(n,p), we may without loss of generality assume that an expression such as
n®p® converges to'some ¢ < oo (provided, of course, that the result we want
to prove does not depend on the limit c).

We will be using this principle throughout the book (see, e.g., the proof of
Proposition 1.15), sometimes without explicitly mentioning it.

And finally . ..

The base of all logarithms is e, unless specified otherwise.

1.3 MONOTONICITY

A family of subsets Q C 2T is called increasing if A C B and A € Q imply that
B € Q. A family of subsets is decreasing if its complement in 27 is increasing,
or, equivalently, if the family of the complements in I' is increasing. A family
which is either increasing or decreasing is called monotone. A family Q is
conver if AC BC C and A,C € Q imply B € Q. We identify properties of
subsets of I" with the corresponding families of all subsets having the property;
we thus use the same notation and terminology for properties.
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In the special case in which ' = [n]?, any family Q C 2T is a family
of graphs and, if it is closed under isomorphism, it can be identified with
a graph property. Some examples of increasing graph properties are “being
connected”, “containing a triangle” and “having a perfect matching”. Au-
tomatically, the negations of all of them are decreasing. Natural decreasing
graph properties include “having at least k isolated vertices”, “having at most
k edges” and “being planar”. The property of “having exactly k isolated ver-
tices” is an example of a convex but not monotone property, whereas “the
largest component is a tree” is not even convex (Exercise!).

It is reasonable to expect that the probability of a random set falling into
an increasing family of sets gets larger when the (expected) size of the random
set does. This is indeed the case. Lemma 1.10 below appeared first in Bollobas
(1979).

Lemma 1.10. Let Q be an increasing property of subsets of ', 0 < p; < p2 <
1land 0 < M; < My < N. Then

P(Tp, € Q) <P(Tp, € Q)
and

P(Cr, € Q) <P(Ty, € Q).

Proof. To prove the first inequality we employ a simple version of the two-
round exposure technique (see Section 1.1). Let pp = (p2—p1)/(1—p1). Then
['p, can be viewed as a union of two independent random subsets, ['p, and I',,.
As then I'p; C T'p, and Q is increasing, the event “I'p, € Q” implies the event
“Tp, € @7, completing the proof of first inequality.

For the second inequality, we construct a random subset process {U'ar}as,
similar to the random graph process defined in Section 1.1, by selecting the
elements of I" one by one in random order. Clearly, I'3s can be taken as the M-
th subset in the process. Then 'y, C I'ar,, and, as in the first part, the event
“I'ny; € Q7 implies the event “I'pr, € Q”, which completes the proof. [

Trivially, each monotone property is convex. In a special case this can
be, in a sense, reversed: if Q is convex, and for some M we have [[]¥ C Q
then, for M’ < M, Q behaves like an increasing property, and in particular
P(Cpr € Q) < Py € Q) for all M' < M” < M (Exercise!). Similarly,
for M" > M, Q can be treated as decreasing. A probabilistic version of this
simple observation is stated in the next lemma.

Lemma 1.11. Let Q be a conver property of subsets of I', and let M1, M, M,
be three integer functions of N satisfying 0 < M)} < M < M2 < N. Then

P(Tp € Q) > P(Cas, € Q) +P(Tar, € Q) — 1.

Hence, if P(Cp, € Q) = 1 as N = 0o, then P(Tpr, € Q) < P(Cyr € Q)+0(1)-
In particular, if P(Cpr, € Q) = 1 as N = 00,1 =1,2, then P(T'yr € Q) = L.
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Proof. The following simple proof was observed by Johan Jonasson (personal
communication). It is easily seen that a convex property Q is the intersection
of an increasing property Q' and a decreasing property Q". (Exercise! — Note
that the converse is obvious.) Thus

Py € Q) >PTyeQ)+PTye’)-1
>PCp, € Q)+PTr,€ Q") -1
>P(Cp, € Q) +P(Tp, € Q) — 1. [

1.4 ASYMPTOTIC EQUIVALENCE

In this section we examine the asymptotic equivalence of the two models I,
and I'js; recall that this includes the random graphs G(n,p) and G(n, M) as
a special case. Our goal is to establish conditions under which convergence of
P(I', € Q) implies convergence of P(I'ys € Q) to the same limit and vice versa.
One expects such equivalence when M is near Np. Since I', is a mixture of
Ir’s for different M, the above implication is more straightforward in the
direction from the uniform to the binomial model and then does not require
any restriction on Q. The only tools we use are the elementary law of total
probability and Chebyshev’s inequality. Most results in this section are based
on Luczak (1990a); in the case in which the limit is one they already appeared
in Bollob4s (1979, 1985).

Let I'(n) be a sequence of sets of size N(n) = |['(n)| = co. (In the example
of main concern to us, viz. random graphs, I'(n) = [n]? and thus N(n) =
(3).) We further consider a property Q of subsets of these sets; formally the
property corresponds to a sequence Q(n) C 2T(™) of families of subsets of
[(n), n = 1,2,.... Finally, p(n) is a given sequence of real numbers with
0 < p(n) < 1, and M(n) is a sequence of integers with 0 < M(n) < N(n).
We usually omit the argument n and write I';, N, Q, p and M; moreover, we
letg=1-—p.

Proposition 1.12. Let Q be an arbitrary property of subsets of I' = I'(n) as
above, p = p(n) € [0,1] and 0 < a < 1. If for every sequence M = M(n) such
that M = Np+ O(v/Npq) it holds that P(Tys € Q) = a as n — oo, then also
P(T, € Q) = a as n — oo.

Proof. Let C be a large constant and define (for each n)

M(C)={M :|M - Np| < C/Npqg}.
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Furthermore, let M, be the element M of M(C) that minimizes P(T'y; € Q).
By the law of total probability,

N
PT,eQ) = ) P(lpe Q[T = M)P(T,| = M)
M=0

N
=Y P(Cu € QP(lp| = M)
M=0

> Y PB(Tw. € QP(T,| = M)

MeM(C)
=P(Tp. € Q) P(|T,| € M(C)).

By assumption, P(I'ys, € Q) — a, and using Chebyshev’s inequality (1.2), we
also have P(|T,| ¢ M(C)) < Va.1r|I‘,,|/(C'\/7\7pq)2 = 1/C?. Consequently,

.. .. —2
lim inf P(I, € Q) > aliminf P(|T,| € M(C)) 2 a(1-C?).
Similarly, if M* maximizes P(I'ys € Q) among M € M(C),
P(Tp € Q) <P(Ty- € Q) +P(|Tp| ¢ M(C)) < P(Ty- € Q) +C72,

and
limsupP(lp € Q) <a+C72.
n—oo
The result follows by letting C' — oo. [ |

In the other direction no asymptotic equivalence can be true in such gener-
ality. The property of containing exactly M edges serves as a simplest coun-
terexample (Exercise!). However, the additional assumption of monotonicity
of Q suffices.

Proposition 1.13. Let Q be a monotone property of subsets of ' =T'(n) as
above, 0 < M < N and 0 < a < 1. If for every sequence p = p(n) € [0,1]
such that p = M/N + O(\/M(N — M)/N3) it holds that P(T, € Q) — a,
then P(T'pr € Q) = a as n — oo.

Proof. We consider only the case in which Q is increasing (the decreasing case
is similar). Let C be a large constant, pp = M/N, g0 = 1 — po, and define

p+ = min(po + C'v/pogo/N,1) and p_ = max(po — C\/pogo/N,0). Arguing

as in the proof of Proposition 1.12 and using Lemma 1.10, we have

P(Tp, € Q)2 Y P(Tar € QP(Ty, | = M)
M'>M

>P(Tm € QP(ITp, | > M)
> P(Cax € Q) — P(IT,, | < M) (1.4)
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and similarly
P(T,. € Q) <PTrm € Q)+ P(Tp_ | > M). (1.5)

The cases M = 0 and M = N are trivial (Exercise!), so we may further
assume 1 < M < N —1, and thus Npogo = M(N —~ M)/N > 1/2. Since |T,_|
has the binomial distribution with mean Np_ and variance

Np_(1~p-) < M(1-po+ C+v/pogo/N) < Npogo + C+/Npogo,
Chebyshev’s inequality (1.2) yields, with §(C) = C~2% + v2C !,

Np_(1-p-) < Npogo + C+/Npogo
(Npo — Np_)? — C?Npoqo

P(ITp_| > M) < < 4(C),

and similarly P(|T',, | < M) < §(C). Since
nang<> P(Tp, € Q) = nleréo P(Tp. €Q)=0a
by assumption, the inequalities (1.4) and (1.5) yield

¢~ 6(C) < liminf P(Ty € Q) < limsup P(Tx € Q) < a+6(C),

n—oo
and the result follows by letting C' — oo, which implies §(C') — 0. |

Remark 1.14. In the above proof one can relax the monotonicity of Q and
instead require only that in the range M’ = M + O(\/M (N — M)/N)

Py € Q) < P(Tar € Q) +0(1)
for M' < M, and
P(Tar € Q) > P(Tar € Q) + o(1)

for M' > M. By Lemma 1.11, these conditions are satisfied whenever Q is
convex and for some M’ with M' — M > /M (N — M)/N, it holds that
lim, 00 P(Car € Q) = 1 (Exercise!).

The next result simplifies Proposition 1.13 for a = 1 by showing that for
convex properties Q, we have a.a.s. I'ys € Q provided a.a.s. T'py/yv € Q.

Proposition 1.15. Let Q be a conver property of subsets of T and let 0 <
M<N. If P(Cyyv € Q) 2 1 asn — oo, then P(Tyr € Q) — 1.

Proof. We assume for simplicity that M (N — M)/N — oo, leaving the cases
in which M or N — M is bounded to the reader (Exercise!). (Note that the
subsubsequence principle implies that it suffices to consider these three cases
- Exercise!)
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Let M, and M; maximize P(I'p; € Q) among M’ < M and M' > M,
respectively. Arguing as in the proof of Proposition 1.12, we then have

P(TCam/v € Q) SP(Tum, € QP(Tpyn| < M)+ P(|Tpr/n| > M)
and thus, since P(|Tys/n| < M) = 1/2 by the central limit theorem,
1= nl_1+rréo ]P(FM/N € Q)< %lig{l_)io%fP(FMl € Q)+ %,
which implies that lim, oo P(T'ar, € Q) = 1. Similarly, lim, ,o P(Tps, €
Q) = 1. Since M} < M < M;, Lemma 1.11 yields P(I'ps € Q) — 1. [ |

If the convergence of P(I', € Q) to 1 is reasonably fast, then the passage
from the binomial to the uniform model can be made without any restriction
on Q. Indeed, by the law of total probability, for any M,

N
P(T, ¢ Q) = S P(Tx ¢ Q) (],f )p"u — )N
k=0

N
> P(Cm ¢ Q) ( M)p’”(l -p)" M,
from which it easily follows (Exercise!) that, taking p = M/N,

P(Ty € Q) <3VMP([Ta/n € Q). (1.6)

This inequality (Bollobas 1985, p. 35) is a slight sharpening of a result by
Pittel (1982), and is therefore known as Pittel’s inequality.

The following simple corollary of Propositions 1.15 and 1.12 (Exercise!) is
stated here for future reference.

Corollary 1.16. Let Q be an increasing property of subsets of ', and let
M = M(n) = oo. Assume further thaté > 0 is fized and 0 < (1£6)M/N < 1.

(i) If P(Crynv € Q) = 1, then P(Ty € Q) — 1.
(ii) If P(Cpyv € Q) = 0, then P(Tpr € Q) — 0.
(iii) If P(Ty € Q) = 1, then P(T145ym/v € @) = 1.
(iv) If P(Tam € Q) = 0, then P(T1_symynv € Q) = 0. n

Remark 1.17. The results of this section indicate that in a vast majority of
cases the properties of random graphs G(n,p) and G(n, M), where M ~ (3)p,
are very similar to each other. Even if the equivalence statements do not
apply directly, typically repeating a proof step by step leads to an analogous
result for the other model. Thus, in this book we very often state and prove
theorems only in one of the two basic models. However, one should bear in
mind that there are exceptions to this “equivalence rule of thumb” (compare,
e.g., Theorem 3.9 with Theorem 3.11, or Theorem 6.52 with Theorem 6.58).
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1.5 THRESHOLDS

The most intriguing discovery made by Erd6és and Rényi in the course of
investigating random graphs is the phenomenon of thresholds. For many
graph properties the limiting probability that a random graph possesses them
jumps from 0 to 1 (or vice versa) very rapidly, that is, with a rather small
increase in the (expected) number of edges. This behavior is not just a feature
of random graphs; as shown by Bollobis and Thomason (1987), it holds for
monotone properties of arbitrary random subsets (Theorem 1.24 below).

We consider in this section, as in the previous one, a property Q of random
subsets of a sequence I'(n) of sets, with N(n) = |I'(n)|. Throughout we
assume that we exclusively deal with properties that are neither always true
" nor always false.

For an increasing property Q, a sequence p = p(n) is called a threshold if

0 if p<kp,

1.7
1 if p>p (1.7)

P(T, € Q) = {

Thresholds M = M. (n) for the uniform model are defined analogously by

0 if M<«M,
P(T g 1.
(MGQ)_’{l if M> M. (1.8)

There is really no need to insist that M is an integer, but we can always
replace M by [M |. In order to avoid trivial complications we assume M >1,
or at least me(n) > 0.

Thresholds for decreasing families are defined as the thresholds of their
complements.

Throughout the book we will often refer to the first line of (1.7) or (1.8)
as the 0-statement and to the second line as the I-statement of the respective
threshold result.

Remark 1.18. Corollary 1.16 implies that p is a threshold for a monotone
property if and only if M = p|[| is (Exercise!). Hence it does not matter
which of the two basic models for random subsets we use. .

Remark 1.19. Strictly speaking, a threshold is not uniquely determined
since if p is a threshold and p' =< p, then p’ is a threshold too (and simi-
larly for M ). Nevertheless, it is customary to talk about the threshold; this is
convenient but it should be remembered that the threshold really is defined
only within constant factors.

Example 1.20. If T = [n] then ', and I'ys are random subsets of integers.
Let Q be the property of containing a 3-term arithmetic progression. We will
show in Example 3.2 that p = n~2/3 is the threshold for Q in I',, and so

M = nl/3 is the threshold for Qin Ty
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Example 1.21. In the case in which [' = [n]? we deal with random graphs.
We will soon learn (Theorem 3.4) that the threshold for containing a triangle

isp=1/nin G(n,p)., and thus M = n in G(n, M).

Remark 1.22. Suppose that we construct a random subset sequentially by
adding random elements one by one; in other words, we consider the random
subset process {T'ss}{ as in the proof of Lemma 1.10. Define a random

variable M as the number of elements selected when the random set first
satisfies a given increasing property Q; M is often called the hitting time of
Q. Then M < M if and only if T'y; € Q, and thus

P(M < M) =P(Cy € Q). (1.9)

Hence M is a threshold if and only if M = G),,(]T/I\ ) (Exercise!).

In order to investigate thresholds further, we introduce some more notation.
For a given increasing property @ and 0 < a < 1, we define p(a) as the number
in (0, 1) for which

IED(I‘p(a) €Q)=a
(The existence and uniqﬁeness of this number follow because p — P(I', € Q)
is a continuous, strictly increasing function; c¢f. Lemma 1.10. — Exercise!) We

similarly define
M(a) = min{M : P(Cp € Q) > a}

(in this case, of course, we should not expect to have P(T'y(q) € @) = a); it
follows that '

P(Taray)—1 € Q) <a <P(Tpa) € Q). (1.10)
Since @ and I" depend on a parameter n, we also write p(a;n) and M(a;n).

Proposition 1.23. Suppose that Q is an increasing property of subsets of
[ =T'(n). Then p(n) is a threshold if and only if p(a;n) < p(n) asn — oo, for
every a € (0,1). Similarly, ]/\/I\(n) is a threshold if and only if M (a;n) < J/\/I\(n)
for every a € (0, 1).

Proof. Suppose first that M is a threshold. If0 < a < 1 but M (a) # M , then
there exists a subsequence s = (ny,no,...), along which either M (a)/ Moo
or M(a)/]T/f — oco. In the first case, by (1.8), P(T'p(a) € Q) — O along
s, which contradicts (1.10). In the second case, along s, M(a) — 1 > M
and thus (1.8) yields P([pr(q)—1 € Q) — 1, which again contradicts (1.10).
Consequently, M (a) =< M holds for every a € (0,1). -

Conversely, suppose that Mis not a threshold. Then there exists a sequence
M = M(n) such that either M/M — 0 and liminfP(Ty; € Q) > 0, or
M/]/\/I\—) oo and limsup P(T'ps € Q) < 1.
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In the first case, there exist a > 0 and a subsequence along which P(['y; €
Q) > a, and thus M(a) < M < M ; in the second case, similarly there exist
a < 1 and a subsequence along which M(a) > M > M. In both cases
M(a) % M.

The proof for p is almost identical so we omit it here. [

Theorem 1.24. FEvery monotone property has a threshold.

Proof. Without loss of generality assume that Q is increasing. Let 0 < e < 1,
and let m be an integer such that (1—&)™ < €. Consider m independent copies
T .. 10 of [pe)- Their union is Ty, with p’ = 1 — (1 —p(e))™ < mp(e),
and hence by Lemma 1.10

PCW U+ UL € Q) < P(Tp(e) € Q).

On the other hand, since Q is increasing, if any ' € @, then T()y. - .UT(™) ¢
Q, and thus

POC®y-.-urm™ ¢ Q) < P ¢ Q for every i) = (1-P(Tp) € Q)"
=(l-¢)"<e.

Consequently,
P(Tpp(ey € Q) > PCPU---UT™ e Q) >1-¢
and thus p(1 — €) < mp(e). Hence, if 0 < € < 1/2,

p(e) < p(1/2) < p(1 —¢€) < mp(e),

with m depending on € but not on the parameter n; this implies that p(e) =
p(1/2) < p(1 — €), and Proposition 1.23 shows that, for example, p(1/2) is a
threshold. .

The existence of a threshold M for G(n, M) can be proved similarly; it
follows also by Remark 1.18. [ ]

For non-monotone properties one adopts a “local” version of the definition
of a threshold, with (1.7) being satisfied only in the vicinity of p. Observe
that a property may have no threshold at all or it may have countably many
thresholds (see Spencer (1991) for more on this). Convex properties have at
most two thresholds, one of the 0—1 form and one in reverse.

1.6 SHARP THRESHOLDS

We end this chapter with a discussion of some recent general results on the
widths of thresholds. We continue with the assumptions of the preceding
section, and let 6(¢) = p(1 —¢€) —p(e), 0 < € < 1/2. We should think here of
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as fixed and very small; then 6(¢) is a measure of the width of the threshold.
We may similarly define das(e) = M(1—¢e)— M (g) for the uniform model; note
that by (1.9), dar also measures the concentration of the random variable M
(Exercise!).

Theorem 1.24 shows that for every fixed ¢, 6(5) = O(p). More precisely,
the proof of Theorem 1.24 implies that, for any increasing property Q and
0<e<1/2,

1<p(l—€)/p(e) < [e7 loge™], .

and hence p(€)/p(1/2) is bounded from above and below by universal con-
stants for every fixed € € (0, 1). (For the uniform model I"p; we similarly have
1< M(1-¢)/M(e) < [e7 ' loge™!].)

However, certain monotone properties enjoy sha.rper thresholds than those
guaranteed by Theorem 1.24. Sometimes

N
1 if p>(l1+n)p

for every n > 0; in this case p is called a sharp threshold. Note that while
thresholds in general are defined up to the asymptotic relation =< (see Re-
mark 1.19), we have defined sharp thresholds up to ~. The existence of a
sharp threshold is equivalent to p(e;n)/p(1/2;n) - 1 as n — oo for every ¢
with 0 < £ < 1, and further to §(g) = o(p) for every fixed ¢ (Exercise!).

In contrast, if there exists £ > 0 such that é(¢) = ©(p), then the threshold
is called coarse.

Similarly, we define sharp and coarse thresholds for I'ss; it is easily seen
by Corollary 1.16 that if p P and M = p|T| are corresponding thresholds for '),
and T, and moreover M — oo (to rule out some trivial counterexamples),
then pisa shagz threshold if and only if Mis. Moreover, using the notation of
Remark 1.22, M is a sharp threshold if and only if M /M(1/2) B 1 (Exercise!).

Let us now restrict attention to random graphs G(n,p) and graph proper-
ties.

Example 1.25. A classic example of a sharp threshold is the threshold p =
logn/n for disappearence of isolated vertices; in this case §(¢) = ©(1/n), see
Corollary 3.31. This coincides with the thresholds for connectivity and for
the existence of a perfect matching (for n even); see Chapter 4.

Example 1.26. The property of containing a given graph as a subgraph,
studied in detail in Chapter 3, has a coarse threshold; see, e.g., Theorem 3.9.

Remark 1.27. There are quite natural properties with (coarse) thresholds
which are sharp on one side but not on the other; for example “G(n, p) contains
a cycle”. Another example can be seen in Theorem 8.1. We abstain from
giving a formal definition of such “semi-sharp” thresholds.
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Friedgut and Kalai (1996) showed that §(¢) = O(1/ logn) for every mono-
tone graph property; this was improved by Bourgain and Kalai (1997) to
o(1/ log2_6 n) for every § > 0, and it is conjectured that the absolute width
is actually O(1/log? n), which is achieved by simple examples. (In view of
5(e) = O(p), this result is of interest mainly for thresholds that are constant
or tend to 0 very slowly.)

Friedgut and Kalai (1996) gave also the following version, which implies
the O(1/logn) estimate for arbitrary p and improves it for p — 0.

Theorem 1.28. For every € with 0 < € < 1, there exists a constant C. such
that for every monotone graph property

p(1 —&:m) < ple;n) + C,PE™ l(iiézn/p(e;_n)) . (1.11)

In particular, it follows that a threshold p such that logl/p = o(logn)
is always sharp. However, if p decreases as some power of n, as for most
properties treated in this book, Theorem 1.28 yields only an O(p) estimate,
just as the simpler and more general Theorem 1.24. (The assertion in Friedgut
and Kalai (1996) that C; in (1.11) can be taken as C'log 1/¢ for some universal
constant C' is not correct; there are counterexamples with rapidly decreasing
e = e(n) and p(e;n).)

A recent result by Friedgut (1999) shows that Examples 1.25 and 1.26 are
typical, in the sense that, roughly speaking, graph properties that depend on
containing a large subgraph have sharp thresholds. (This is not literally true,
as is seen by the example “a random graph contains a triangle and has at least
log n edges”; this property is essentially the same as “contains a triangle”, and
has the same coarse threshold, since the probability of obtaining a triangle in
a random graph with fewer than logn edges is very small.) More precisely,
Friedgut’s result says that a monotone graph property with a coarse threshold
may be approximated by the property of containing at least one of a certain
(finite) family of small graphs as a subgraph. A precise formulation (slightly
different from Friedgut’s) is as follows.

Theorem 1.29. Suppose that €,m > 0 and ¢ > 1. Then there exists k =
k(e,n,c) such that for every monotone graph property Q and every m for
which p(1 —&;n)/p(e;n) > ¢, there exists some p with p(e;n) <p < p(l—¢;n)
and a family Gi,...,Gm of graphs with at most k vertices, such that if Q' s
the property “contains a subgraph isomorphic to some G;”, then

P(G(n,p) € QAQ') <. ]

Remark 1.30. Note that the theorem is stated for a fixed n rather than as
an asymptotic result; this is because, in general, the approximating property
Q' may depend on n, unless we restrict attention to a subsequence. Indeed,
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nothing prevents us from defining graph propertles that depend on, say, the
parity of n in some trivial explicit way.

Moreover, the theorem claims only that Q' is a good approximation for
some p € [p(e; n),p(1—¢;n)]; it is easy to construct (artificial) examples where
different approximations are required for different p, and good approximations
are absent for some choices of p.

For a “natural” property, these complications are not to be expected, and
it is reasonable to hope that the same Q' works for all n and p.

A related result (indeed, a corollary of Theorem 1.29) by Friedgut (1999)
shows that a coarse threshold for a monotone graph property may only be of
the type n™¢ for some rational o, except that again it may be necessary to
consider subsequences.

Theorem 1.31. Suppose that a monotone graph property has a coarse thresh-
old p(n). Then there ezists a partition of N = {1,2,...} into a finite num-
ber of sequences Ny,...,N,, and rational numbers a,...,am > 0 such that
p(n) xn~% forneN;. H

Theorems 1.29 and 1.31 and related results (Friedgut 1999, Bourgain 1999)
can be used to show that certain properties have sharp thresholds, by showing
that otherwise the conclusion of these results would yield a contradiction; see,
for example, Achlioptas and Friedgut (1999) (the property of having at least
a given chromatic number) and Friedgut and Krivelevich (2000) (Ramsey
properties).

We emphasize that while Theorem 1.24 holds for arbitrary monotone prop-
erties of general random subsets, the more refined results discussed here re-
quire some symmetry assumptions; we have for simplicity stated them for
random graphs and graph properties, that is, for properties that are invari-
ant under permutations of the vertices. We consider the random graphs as
random sets of edges, so the graph properties are properties of subsets of [n]?
that are invariant under the permutations induced by the permutations of [n].
The same or similar results have been shown for other cases of random sub-
sets with certain symmetry assumptions, including random hypergraphs; see
Friedgut and Kalai (1996), Bourgain and Kalai (1997), Friedgut (1999). The
results depend on the type of symmetry assumed (Bourgain and Kalai 1997).
Related results without symmetry assumptions are given by Talagrand (1994)
and Bourgain (1999).



Exponentially Small
Probabilities

A common feature in many probabilistic arguments is the need to show that
a random variable with large probability is not too far from its mean. One
simple, but very useful, result of this type is Chebyshev’s inequality (1.2),
which holds for any random variable with finite variance. In this chapter we
give several stronger inequalities valid under more restrictive assumptions,
which for suitable random variables X and (positive) real numbers ¢ yield
estimates of the probability P(X > E X + t) that decrease exponentially as
t — oo.

In most cases we use the method, going back at least to Bernstein (1924),
of applying Markov’s inequality (1.3) to Ee¥*X. Thus, for every u > 0,

P(X >EX +t) = P(e*X > e“EXF1)) < g uEXH | ouX (2.1)
and similarly, for every u <0,
P(X <EX —t) < e “EX-) geuX, (2.2)

Then the moment generating function (or Laplace transform) Ee*X is esti-
mated in some way, and an optimal or near-optimal u is chosen.

An estimate of P(|JX — EX| > t) may obviously be obtained by adding
estimates of P(X > EX +¢) and P(X < EX —t¢). We will often give only
one-sided estimates below, leaving the corresponding two-sided estimates to
the reader.

An important special case is estimating P(X = 0), which can be done by
taking t = EX in (2.2) (assuming EX > 0). We give several such results
explicitly.

25
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In the first section we consider random variables X that can be written as
sums of independent terms. In the following sections we give extensions in
various directions, covering cases with dependent summands.

2.1 INDEPENDENT SUMMANDS

An important case is that in which the random variable X can be expressed
as a sum | X; of independent random variables. Then (2.1) can be written

P(X >EX +1) < e EXTIE X = g vEXHD TTE evXe, (2.3)

=1

and it remains to estimate the individual factors Ee%Xi. Here we will be
mainly interested in the case in which each X; is a random indicator variable;
thus X; € Be(p;) where p; =P(X; =1)=EX;. Let \=EX =) Tpi.

The binomial case

Consider first the case of a binomially distributed random variable X €
Bi(n, p); this is of the type above with all p; = p. (Thus A\ = np.) Then
(2.3) yields

P(X>A+1t) < e~ v+ (1 — p + pe¥)™, u > 0.

The right-hand side attains its minimum at e* = (A + t)(1 — p)/(n — A — t)p,
assuming A + ¢ < n. This yields

A )A+t( n—A )"_’\_t’ 0<t<n-2; (24)

PX2EX+0< (55) (o3
for t > n — X the probability is 0. This bound is implicit in Chernoff (1952)
and is often called the Chernoff bound. (It appears explicitly in Okamoto
(1958).) '

For applications, it is usually convenient to replace the right-hand side of
(2.4) by a larger but simpler bound. Two such consequences of (2.4) are
presented in the next theorem, together with their lower tail counterparts.
Any of these bounds or their numerous consequences contained in Corollaries
2.2 - 2.4 will be referred to as to Chernoff’s inequality.

Theorem 2.1. If X € Bi(n,p) and A = np, then, with p(z) = (1+z)log(1l+
z)—z,z > -1, (and o(z) = o0 for z < —1)

P(X >EX +t) <exp (—Acp(%)) < exP(_EC\—-t:T/:}j)’ t>0; (2.5)

t2

PIX<EX-t)< exp(—/\cp(:/\—t)) < exp(—ﬁ), t>0. (2.6)
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Proof. We can rewrite (2.4) as +

]P(XZEX+t)5exp(—)\<p(§)—(n—)\)cp(n—__ix)), 0<t<n-A

Replacing X by n — X, or by a similar argument using (2.2), we obtain also

]P(XSIEX—t)Sexp(—/\cp(:/\E)—(nwx\)cp(n—é——x)), 0<t< A\

Since ¢(z) > 0 for every z, we immediately obtain the first inequalities in (2.5)
and (2.6). (These inequalities are trivial for ¢ > n— X and ¢ > A, respectively.)
Since ¢(0) = 0 and ¢'(z) = log(l + z) < z, we have p(z) > z2/2 for
—1 < z < 0; hence the second inequality in (2.6) follows.
Similarly, ©(0) = ¢'(0) = 0 and

N 1 B z? "
@) =172 T+z/3° (2(1+x/3)) ’

whence p(z) > £2/(2(1 + z/3)). Thus the second inequality in (2.5) follows.
[

Note that the exponents in the estimates in (2.5) are O(¢?) for small ¢, say
t < A, but for larger ¢ only ©(tlogt) (the first estimate) and ©(¢) (the second
estimate).

For small ratio t/)\, the exponent in (2.5) is almost t2/2)X. The follow-
ing corollary is sometimes convenient (¢f. Alon and Spencer (1992, Theorem
A.11)).

Corollary 2.2. If X € Bi(n,p) and A\ = np, then

2t

Proof. The bound follows from (2.5), since (A +¢/3)"' > (A —¢t/3)/A>. W
Another immediate corollary is the following two-sided estimate.

Corollary 2.3. If X € Bi(n,p) and € > 0, then
P(|X —EX|>ecEX) < 2exp(—¢(e) E X), (2.8)

where @(€) = (1 + €)log(1 + €) — €. In particular, if € < 3/2, then

2
]P(|X—EX|Z€]EX)§2exp(—%-EX). (2.9)
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Proof. The first estimate is immediate by Theorem 2.1, since p(—¢) > ()
(Exercise!). The second one follows because p(e) > €2/[2(1+¢/3)] > €2/3. B

For larger deviations, we state another handy version of (2.5). Note that
A does not appear explicitly in the estimate.

Corollary 2.4. If X € Bi(n,p), A =np and ¢ > 1, then

P(X > z) < exp(—c'z), z > cA, (2.10)
where ¢’ =logc—1+1/c > 0. In particular,

P(X > z) < exp(—2), z > 7M. (2.11)

Proof. Apply (2.5) with ¢ = z — X and note that Ap(z/\ — 1) = zy(z/)N),
where 9¥(y) = logy — 1 + 1/y is increasing for y > 1. Finally, note that
P(7) > 1. [

Remark 2.5. Another simple bound is, still assuming X € Bi(n, p),
2t2
P(X >EX +1) Sexp(—T), t>0; (2.12)

the same bound holds for P(X < EX —t) by symmetry. For p = 1/2 these
bounds are better than (2.5) and (2.6), but they are worse for small p (note
that the denominator of the exponent is n, not A). Inequality (2.12) can be
derived from (2.4) (Exercise!). It is also a special case of Azuma’s inequality
in the version given in Remark 2.28 below (Exercise!).

Remark 2.6. As a limiting case, obtained by taking p = A/n for any fixed
A > 0 and letting n — oo, (2.5)-(2.12) hold for a Poisson distributed random
variable X € Po(\) too.

Remark 2.7. The estimate (2.5) would not hold without the term ¢/3 in the
denominator; this can be seen by considering a limiting Poisson distribution
as in Remark 2.6, in which case P(X > EX +t) = exp(—0O(tlogt)) as t - oo
(Exercise!).

The general case

Now we return to the general case in which X; € Be(p;) with (possibly)
different p;. Let Y € Bi(n,p) with p = A\/n = >_ p;/n. It is easily seen, taking
the logarithm and using Jensen’s inequality, that for every real u,

Ee'X = H(l +pi(e® — 1)) < (1+p(e* —1))" =Ee*Y.

1

Consequently, every bound for P(Y —EY > t) derived from (2.1) applies to
X too; since A = EX = EY, the following theorem holds.
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Theorem 2.8. If X; € Be(p;), i = 1,...,n, are independent and X
ST X, then (2.5)~(2.12) hold, with A\ =E X.

Remark 2.9. By the proof above, also (2.4) holds under the conditions of
Theorem 2.8, and yields sharper bounds than (2.5) and (2.6). Further similar
bounds under the same conditions and, even more generally, for any indepen-
dent random variables X; such that 0 < X; < 1, are given, for example, by
Bennett (1962), Hoeffding (1963) and Alon and Spencer (1992, Appendix A).
We mention the following which use the variance of X rather than the mean.

Let 02 = Var X = Y ' pi(1 — p:), and let o(z) = (1 + z)log(l + z) — z as
above. Then (Bennett 1962, Hoeffding 1963),

P(X >EX +t) < exp(—a?p(t/d?)), t >0; (2.13)
t2

PIX>EX +1¢) < —_—— > 0 ' .

(X >EX + )_exp( 2(02”/3)), t>0; (2.14)

and, by symmetry,

P(X <EX -t) < exp(—o?p(t/o?)), t > 0; (2.15)
2
P(X <EX —¢) Sexp(—i(a,zt_'_—t/:s)), t>0. (2.16)

The bound (2.14) is due to Bernstein, while the sharper (2.13) is due to
Bennett (1962). Note that these are sharper than (2.5) because ¢ < A, but
for small p;, the difference is small and often negligible. For fairly small ¢,
these bounds are quite sharp and not far from what might be hoped for, based
on the asymptotics given by the central limit theorem (for ¢t < o). However,
for large t, they can be substantially improved.

The hypergeometric distribution

Let m, n and N be positive integers with max(m,n) < N. The hypergeometric
distribution with parameters IV, n and m is the distribution of the random
variable X defined by taking a set I" with |I'| = NV and a subset I'' C T" with
|T’| = m, and letting X = |[', NT"|, where I',, is a random subset of ' with n
elements as in Chapter 1. (E.g., we can take I' = [N] and I" = [m].)

In other words, we draw n elements of I" without replacement, and count the
number of them that belong to I''. Note that drawing with replacement would
yield a binomial random variable; it seems reasonable that drawing without
replacement tends to produce smaller random fluctuations, and indeed the
bounds obtained above still hold (Hoeffding 1963).

Theorem 2.10. Let X have the hypergeometric distribuﬁon with parameters
N, n and m. Then (2.5)=(2.12) hold, with A= EX = mn/N.

Proof. Let Y € Bi(n,m/N). It is not difficult to show that Ee¥X < EevY
(Hoeffding 1963) for any real u, which yields (2.5) and (2.6), and thus (2.7)-
(2.12) too, by the argument above (Exercise!).
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Alternatively, as a special case of a result by Vatutin and Mikhailov (1982),
X has the same distribution as a certain sum of n independent indicator ran-
dom variables. (The proof is algebraic, and based on showing that the proba-
bility generating function has only real roots; there is no (known) probabilistic
interpretation of these random indicators, which, in general, have irrational
expectations.) Consequently we can apply Theorem 2.8. |

Remark 2.11. The second proof shows that, in fact, all bounds (2.4)-(2.16)
hold with A = EX = mn/N and 02 = Var X = nm(N—n)(N—-m)/N?(N-1).
(The first proof yields all the bounds involving A, but it only gives weaker
versions of (2.13)-(2.16) with 62 = VarY > Var X.)

2.2 BINOMIAL RANDOM SUBSETS

The FKG inequality

We begin by quoting a celebrated correlation inequality known as the FKG
inequality (Fortuin, Kasteleyn and Ginibre 1971). (For a simple proof, see
Grimmett and Stirzaker (1992, Problem 3.11.18(b)); for a powerful combi-
natorial generalization, see Ahlswede and Daykin (1978) or Bollob4s (1986).)
Consider a binomial random subset I', as in Chapter 1, or more generally
Lp,,....on» Which is defined by including the element ¢ with probability p;,
independently of all other elements, : = 1,..., N (assuming I' = [N] for no-
tational convenience). We say that a function f : 2T — R is increasing if for
A C B, f(A) < f(B), and decreasing if f(A) > f(B).

Theorem 2.12. If the random variables X, and X, are two increasing or
two decreasing functions of I'p,

E(X1X2) > E(X1) E(X>3).

In particular, if @; and Q2 are two increasing or two decreasing families of
subsets of I, then

IP’(]--‘m,...,pN € Ql N Q2) Z IP’(]--‘p;,...,pN € QI)P(Fm,...,pN € Q2) |

As an important application consider a family S of non-empty subsets
of I and for each A € Slet Iy = 1[A C Ty, .. pn]- Note that every I, is
increasing. Finally, let X =3 , 5 4, i.e. X is the number of sets A € S that
are contained in I'y, . o -

Corollary 2.13. For X =} s Ia of the form just described,

EX
]P(X = 0) 2 exp{—m} .
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Proof. By Theorem 2.12 and induction we immediately obtain

P(X =0) > [[(1-EL).
AeS

Now, using the inequalities 1 — 2 > e~%/(!=%) and E I4 < maxp; we conclude
that

- EX EX
P(X:O)Zexp{—l_maXAElA}Zexp{—m}. [ |

We will soon give some similar exponential upper bounds on P(X = 0). First,
however, we show a more general large deviation result.

Upper bounds for lower tails

We continue to study random variables of the form X = 7, s Ia as in the
preceding subsection. For the lower tail of the distribution of X, the following
analogue of Theorem 2.1 holds (Janson 1990b).

- Theorem 2.14. Let X = 7, 514 as above, and let \ = EX =3 ,El,
and A = 22 anBxzo E(JalB). Then, with o(z) = (1 + z)log(l + z) — =, for
0<t<EX,

P(X <EX —t) <exp (—ﬂ_—%—/y—:\i) < exp (—%) .

Remark 2.15. Note that the definition of A includes the diagonal terms
with A = B. It is often convenient to treat them separately, and we define

A=% >SN E(lalp).

A#B, ANB#)

(The factor 3 reflects the fact that A is the sum of E(4Ip) over all unordered
pairs {A, B} € [S]? with AN B #0.) Thus A = )\ + 2A.

Remark 2.16. Clearly, A > 0 and thus A > ), with equality if and only if
the sets A are disjoint and thus the random indicators I4 are independent.
In the independent case, the bounds in Theorem 2.14 are the same as (2.6);
Theorem 2.14 is thus an extension of (the lower tail part of) Theorem 2.1.
More importantly, in a weakly dependent case with, say, A = o()) and thus
A ~ )\, we get almost the same bounds as in the independent case.

Remark 2.17. There can be no corresponding general exponential bound
for the upper tail probabilities P(X > EX + t), as is seen by the following
example (for another counterexample, see Remark 2.50). Let A be an integer,
let T = {0,...,2A%} with pp = A™%, p; = 1 —A™% for 1 < i < A? and
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pi=A" = A"t + X8 for A2 +1 < i< 2X2, and consider the family S of the
subsets A; = {0,7} for 1 < ¢ < A% and A4; = {i} for A2 + 1 < i < 2)2. Then
EX = X and A < 1. Nevertheless, for any ¢ < oo and € > 0, if A is large
enough,

P(X >cA) > A4 (1 - 29N > 1A > exp(—e)).
Some partial results for the upper tail are given in Section 2.6.

Proof of Theorem 2.14. Let ¥(s) = E(e*X), s > 0. We will show first that
—(log ¥(s)) > Ae~SB/A s >0, (2.17)

which implies

' s — 2 —_
—log ¥(s) > / Ae ¥A Ady = %(1 — e 7B/, (2.18)
0

In order to do this, we represent —¥’(s) in the form

—¥'(s) = E(Xe™*X) = > E(lae™*¥) (2.19)
A

and for every A € S we split X =Y, + Z4, where Y, = ZBnA;éQ) Ig. Then,
by the FKG inequality (applied to I'p,,... p5 conditioned of Iy =1, which is a
random subset of the same type) and by the independence of Z4 and I4 we
get, setting pa = E(14),

E(Tae=*%) = paE(e=*Y4e™%Z4|I4 = 1) > pa E(e™*Y4|I4 = 1) E(e™*%4)
> DA E(C_SYAlfA = 1)\1’(3). ( )
2.20

Recall that A = Y, pa. From (2.19) and (2.20), by applying Jensen’s in-
equality twice, first to the conditional expectation and then to the sum, we
obtain

~log¥(s)) = 5 > S pAB AL =)

1
> —p E(sYallqa =1

> ;/\Aexp{ (sYalla = 1)}
> /\exp{ —PAE (sYalla = 1)}

% YAIA)} = =98/,
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We have shown (2.17) and thus (2.18). Now, by Markov’s inequality (2.2)
together with (2.18),

2 —
logP(X <A —t) <logE(e™**) +s(A —t) < —%(1 —e B L s(A —t).

The right-hand side is minimized by choosing s = —log(1 — ¢t/A)A/A, which
yields the first bound (for ¢ = A, let s — oc); the second follows because
@(z) > 2?/2 for < 0 as shown in the proof of Theorem 2.1. ]

The probability of nonexistence

Taking ¢ = EX in Theorem 2.14, we obtain an estimate for the probability
of no set in § occuring, which we state separately as part of the following
theorem (Janson, Luczak and Rucinski 1990).

Theorem 2.18. With X =3 514, A=EX and A as above,
(i) P(X =0) <exp(—A+A)

N /\2 /\2
() B =0)<exp (_/\ + QA) - <_ZZAHB;&0 IEUAIB)) '

Remark 2.19. Both parts are valid for any A and A, but (i) is uninteresting
unless A < A. In fact, (i) gives the better bound when A < A/2, while (ii) is
better for larger A (Exercise!).

Proof. Taking t = X in Theorem 2.14, or directly letting s — oc in (2.18) and
observing that lim,_, o, ¥(s) = P(X = 0), we immediately obtain (ii).
For (i), we obtain from the proof of Theorem 2.14, with Y}, = Y4 — I4,

—logIP’(X=O)=—/ (log\Ils))ds>/ ZpAIE YA | I, =1)ds
0
=2A:pAIE(Y—A’IA=1).

When I4 =1, we find 1/Y4 =1/(1+Y}4) > 1— Y} (since Y} is an integer),
and thus

—loglP(X=0)>ZpAIE 1-1Yi|Ia=1)
_ZpA—— IAYA)) A—A. .

Remark 2.20. Boppana and Spencer (1989) gave another proof, resembling
the proof of the Lovész Local Lemma, of a version of Theorem 2.18(i), namely,

P(X =0) < exp{A/(1- &)} [[(1 —~EL4) <exp{-A+A/(1-¢)}, (2:21)
A
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where ¢ = maxps. See also Spencer (1990) for another proof of Theo-
rem 2.18(ii), but with an extra factor 3 in the exponent. Finally, note that
a slightly weaker version of Theorem 2.18(i) with the bound exp(—A + 2A)
follows directly from (ii), because A2 > (X — 2A)(\ + 24).

Remark 2.21. Although the bound in Theorem 2.18 and the first bound in
(2.21) are quite close when € = maxp, is small, neither of them dominates
the other. It is intriguing to note that the conceivable common improvement
exp{A} 14 (1 —EI,) fails to be an upper bound for P(X = 0); this is seen by
the simple example where X = I + I, with I = I, € Be(p), for which A =p
and P(X =0) =1 - p > eP(1 — p)?, see Janson (1998) for further discussion.

The quantity A is a measure of the pairwise dependence between the I4’s
(cf. Remark 2.16). If A = o()\), then the exponents in Theorem 2.18 are
-EX(1+ 0(1)), matching asymptotically the lower bound Corollary 2 13,
provided further maxp; — 0.

The development of the exponential bounds in this section were stimulated
by the application in which X counts copies of a given graph in the random
graph G(n,p). This will be presented in detail in Chapter 3 (cf. Theorem 3.9).

For a generalization of Theorem 2.14 see Roos (1996).

2.3 SUEN’S INEQUALITY

A drawback of the inequalities in Section 2.2 is that they apply only to the sum
of random indicator variables with a very special structure. For example, they
apply, as stated above, to the number of copies of a given graph in G(n,p),
but they do not apply to the number of induced copies.

An inequality much more general than Theorem 2.18(i), and only shghtly
weaker, was given by Suen (1990). We do not give Suen’s original inequality
here, but rather the following related results, proved by Suen’s method. For
further similar results, see Janson (1998) and Spencer (1998).

The Suen inequalities use the concept of a dependency graph, defined in
Section 1.2. Although formally valid for the sum of any family of random
indicator variables, the inequalities are useful in cases in which there exists
a sparse dependency graph. (No assumption is made on the type of the
dependencies.)

Theorem 2.22. Let I; € Be(p;), i € Z, be a finite family of Bernoulli random
variables having a dependency graph L. Let X =Y, I; and A\=EX =3}, p;.
Moreover, write i ~ j if ij € E(L), and let A = 3 > i~; E(Iil;) and
0= max; Zkrvi Dk - Then

i) P(X =0) < exp{—\+ Ae?};

(ii) lP’(X=0)§exp{ mln(é\i /2\ 6/\5)} [
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Theorem 2.23. Let I; € Be(p;), i € Z, be a finite family of Bernoulli random
variables having a dependency graph L. Let X = Y . I; and A = EX, and
let also A and & be as in Theorem 2.22. Moreover, let A = \ + 2A =
A+ 220 B(LI). If 0<t < A, then

2t
<A=-1) < —min| —, —) ). .
P(X <A-1t) < exp( mln(4A7 66)) (2.22)
For simplicity, we give only the proof of Theorem 2.23 here; the proof of
Theorem 2.22 is similar (Janson 1998). Note that taking ¢t = A in Theo-

rem 2.23 we obtain an inequality which is only slightly weaker than Theo-
rem 2.22(ii).

Remark 2.24. We have given results similar to Theorems 2.14 and 2.18,
but with somewhat worse constants, and extra terms (typically negligible)
involving 4. It is not known whether the terms with § really are needed; in
fact, it is conceivable that the estimates in Section 2.2 hold also under the
weaker assumptions in this section.

Proof of Theorem 2.23. Define, for real s, the random function
F(s) — es/\—sX7

and, for each subset A CZ, X4 = Y ;.4 Ii and Fa(s) = exp(s(E X4 — Xa))-
We differentiate and obtain -

F'(s) = AF(s) — Y _LF(s). (2.23)
¥ _
For each index 1 € Z,let N; = {i}U{j € T:i~j} and U; =1\ N;; then
X =Xn, + Xy, and
Le X = pie™X + (I; — pi)e™ XY — (I; — p;)(1 — e *XM)e™oXvi | (2.24)
Now assume that s > 0. Then, for any set A CZ,
0<1—e%%4 < sXy,
and thus, considering the cases I; = 0 and I; = 1 separately,
(I; —pi)(1 - e“’X") <IisX4. (2.25)
Choosing A = N;, (2.23), (2.24) and (2.25) imply

F'(s) < AF(s) — Zpieq/\—sx _ Z(Ii _ pi)esz\—qul- + Z sIiXn, eSA—sXu;
i i

i

= —e* ) (L —pi)e”* XUt + ¢ > sLiXne*Xvi.
i 1
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Since, by the definition of a dependency graph, I; and Xy, are independent,
E((I; - pi)e”**vi) = 0. Moreover, Xy, > Xy,nu,, which is independent of
Iin, and

A —EXvinu, = Z Pe <) D& + Y pr < 26.

kgU;nU; k~i k~j
Hence,
EF,(S) S es/\ Z Z SE(Iine—sXUl-) S ses;\ Z Z E(Iine—sXUl.nt)
i JEN; i jJEN;
=5e™ > > E(LL)Ee vy
i JEN;
< se?% Z Z E(L;I;) E Fy;nu; (s), s> 0.
i JEN;
(2.26)
We claim that
EF(s) < e2s"Be* s > 0. (2.27)

In fact, using induction over |Z|, the number of random indicator variables,
we may assume that the corresponding inequality holds for E F4(s) for every
proper subset A of Z (and all s > 0). Since the corresponding values A 4 and
64 for a subset A satisfy Ay < A and §4 < 6, it then follows from (2.26) that

EF'(s) < se?%* Z Z ]E(Iin)e%82Ke25" — o205} phs7Be
i JEN;

d A s
< a;(e%"me% ), s > 0.

Hence (2.27) follows by integration, since it obviously holds for s = 0.
Markov’s inequality (2.2) and (2.27) yield, for any s > 0,

P(X < A—1t) <P(F(s) > e®) < e @ EF(s) < e*t352¢™ (2,98
We choose here s = min(t/24,1/35); then e2** < ¢*/% < 2, and thus
1s%Ae?* < s?A < stf2.
Consequently, (2.28) yields
P(X < A—t) <e 2

which is (2.22). u
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2.4 MARTINGALES

Martingales were first applied to random graphs by Shamir and Spencer
(1987), followed by the spectacular success of Bollobas’s (1988a) solution of
the chromatic number problem. (These results are presented in Chapter 7.)

We begin by recalling the definition of a martingale. Note, however, that
for applications to random subsets, and to random graphs in particular, one
usually uses Corollary 2.27 below, where martingales are not explicitly men-
tioned.

Given a probability space (Q2, F,P) and an increasing sequence of sub-o-
fields 7o = {0,Q} C F, C --- C F, = F, a sequence of random variables
Xo,X1,...,X, (with finite expectations) is called a martingale if for each
k=0,...,n—1 E(Xg+1 | Fx) = Xk- In this case (with a finite sequence),
every martingale is obtained from a random variable X by taking X = E(X |
Fr), k =0,...,n. Then X9 = EX and X,, = X. Also, we always have
]E(Xk+1) = E(Xk) A

In combinatorial applications, often {2 is a finite space and F is the family
of all subsets; each Fj then corresponds to a partition Py of {2, with coarser
~ partitions for smaller k. If PP is the uniform probability measure on {2, then

a sequence (Xj) is a martingale if and only if each X is a function § =+ R
that is constant on the blocks of the partition Pj, with the value on each
block being the average value of X, on that block. If P is another probability
measure, then this still holds if we use suitably weighted averages.

Azuma’s inequality

The following result appears in Azuma (1967) and is often called Azuma’s
inequality, although it also appears in Hoeffding (1963).

Theorem 2.25. If (Xi)% is a martingale with X, = X and Xo =EX, and
there exist constants cx > 0 such that

| Xk — Xk—1] < ck

for each k < n, then, for every t > 0,

t2
P(X >EX +1) < exp( = ——m—s ), 2.29
(X 2EX+9) S exp(~ 55 7) (2:29)
P(X <EX t)<exp( L) (2.30)
= = 231/

Proof. Set Yy, = X — Xi—1 and S = Z?=1 Y; = X — Xo. For any u > 0, by
Markov’s inequality (2.1), we have

P(X —EX >t) =P(Sp > t) < e “E(e“). (2.31)



38 EXPONENTIALLY SMALL PROBABILITIES

Because S,—; is a F,,—,-measurable function we also have
E(e“*") = E[E(e*%" | Fno1)] = E[e* "' E(e*Y" | Fnui))-

Now we need the following fact: If a random variable Y satisfies EY = 0
and —a <Y < a for some a > 0, then, for any u,

E(e*Y) < e¥' /2, (2.32)
To prove (2.32), note that by the convexity of e*¥,

a+Yeua+a—Y

. e—ua

euY <
- 2a 2a

Hence,
]E(euY) < %eua | %e ua o pu‘a /27

where the last inequality follows by comparing the Taylor expansions (see
Alon and Spencer (1992, Lemma A.6) for another proof).
Coming back to the proof of Theorem 2.25, we conclude that E(e*¥» |

Frn-1) < e**ca/2 and thus
E(eusn) S eu2cﬁ/2 E(eus,,_.l).

Iterating this inequality n times, we find E(e*9») < eu’ i/ 2, and thus by
(2.31)

P(X —EX >t) < e ute® Xek/2,

substituting u =t/ 3 ¢ we find (2.29).
The inequality (2.30) follows by symmetry. n

Remark 2.26. After a minor modification, (2.29) extends to supermartin-
gales and (2.30) to submartingales; see Wormald (1999a).

Combinatorial setting

In the applications to random graphs, we will use the following consequence
of Theorem 2.25. Note that the notion of a martingale has disappeared from
the statement. In most applications, one simply has ¢y = 1. (We tacitly
assume that the function f is measurable; in the case of finite sets, this holds
trivially.)

Corollary 2.27. Let Z,,...,Zn be independent random variables, with Zy
taking values in a set A,. Assume that a function f : Ay x Ag x---x Ay = R
satisfies the following Lipschitz condition for some numbers ci:
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(L) If two vectors z,z' € Hiv A; differ only in the kth coordinate, then
|f(2) =~ f(2')] < ck.

Then, the random variable X = f(Z,,...,Zy) satisfies, for any t > 0,

t2

P(X >EX +t) <exp|———, 2.33
| (2zf¢) (239
t2 '

P(X <EX —t) <exp|————). 2.34
*(rzra) o

Proof. Let us define F}, to be the o-field generated by Z,,. .., Zx and consider
the corresponding martingale defined by Xx = E(f(Z1,...,2Zn) | Fi), k =
0,...,N. The assumption about f implies that X; and Xj_, differ by at
most ¢ (Exercise!). The corollary now follows from Theorem 2.25. [ ]

Remark 2.28. A more careful proof along the same lines shows that (2.33)
and (2.34) hold with exp{—2t2/ 3N c2} on the right-hand side, that is, the
exponents in the estimates may be multiplied by a factor 4 (McDiarmid 1989).

Returning to the random set I',, one typically defines the random variables
Zy via the random indicators I, = 1[y € I',], v+ € I'. Given a partition
Ay,..., AN of T, each Zj is then taken as the random vector (I, : v € Ag) €
{0, 1}4*, and for a given function f : 2 — R, the Lipschitz condition (L)
in Corollary 2.27 is equivalent to saying that for any two subsets A,B C T,
|f(A) — f(B)| < ¢x whenever the symmetric difference of the sets A and B is
contained in Ag. (We identify the set of subsets 2T and the set of sequences
{0,1)7)

When I = [n]? and so I', = G(n,p), there are two common choices of the
partition [n]?2 = A;U---UApN. The vertez exposure martingale (used by Shamir
and Spencer (1987)) corresponds to the choice N = n and Ay = [k]2\ [k — 1)2.
The edge exposure martingale (used by Bollobds (1988a)) is one in which
N = ('2‘) and |Ax| = 1 for each k. Note that vertex exposure requires a
stronger condition on the function f than edge exposure, but it also gives a
stronger result when applicable. (With ¢x = 1, edge exposure is applicable
provided the random variable X changes by at most 1 if a single edge is added
or deleted, while vertex exposure is applicable provided the random variable
changes by at most 1 if any number of edges incident to a single vertex are
added and/or deleted.) A

For further similar results (and applications), see the surveys by Bollobas
(1988b) and McDiarmid (1989).

2.5 TALAGRAND'’S INEQUALITY

Talagrand (1995) has given several inequalities yielding exponential estimates
under various conditions. In particular, one of his results leads to estimates
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that are similar to those obtained by Azuma’s inequality in the preceding
section, but often much stronger. _

Here we will treat only one of Talagrand’s inequalities. Moreover, the
general version (Theorem 2.37, below) is rather technical; we thus begin with
a special case which is easily applied in a number of combinatorial settings.
For further results and many applications, see Talagrand (1995). Other proofs
of Theorems 2.37 and Theorem 2.39 (and of further related inequalities) are
given by Marton (1996) and Dembo (1997).

Combinatorial setting

In the sequel we assume, as for Corollary 2.27, that N > 1 is an integer and
that Z,,..., Zn are some independent random variables, taking values in some
sets Ay, ..., An, respectively. (In many applications, A; = --- = Ay and the
Z; are identically distributed, but that is not necessary.) We write z = (z;)¥,
for an element of the product space A = Hf{ A;. (To be precise, the sets A;
are measurable spaces, that is, sets equipped with o-fields of subsets, and
the function f is tacitly assumed to be measurable; in the case of finite sets,
this assumption is trivially true.) The two common choices of Z; and A in
random graph theory are given by vertex exposure and edge exposure, just as
discussed for martingales at the end of the preceding section.

Recall that a median of a (real valued) random variable X is a number m
such that P(X < m) < 1/2 and P(X > m) < 1/2. A median always exists,
but it is not always unique.

Theorem 2.29. Suppose that Z1,...,ZxN are independent random variables
taking their values in some sets Ay, ..., Ay, respectively. Suppose further that
X = f(Zy,...,ZN), where f : Ay x --- x AN = R is a function such that,
for some constants cx, k =1,...,N, and some function ¢, the following two

conditions hold:

(L) If 2,2 € A = Hiv A; differ only in the kth coordinate, then |f(z) —
f(2)] < ek

(C) If z€ A andr € R with f(z) > r, then there exists a set J C {1,...,N}

with Y ";c; ¢ < (r), such that for all y € A with y; = 2; wheni € J,
we have f(y) >r.

Then, for everyr € R andt > 0,
P(X <r—t)P(X >71) < et /90, (2.35)
In particular, if m is a median of X, then for everyt > 0,

P(X <m —t) < 2e~t/4(m) (2.36)
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and

P(X >m+1t) < 2e~t"/4%(m+t), (2.37)

Remark 2.30. The Lipschitz condition (L) is the same as the condition in
Corollary 2.27.

Remark 2.31. Note that the set J in (C) generally depends on z and r. The
vector (z;)ies, which forces f > r, is called a certificate (of f > 7).

We postpone the proof of the theorem until the end of this section and
first discuss some consequences and applications. Note that the function 1
formally may be chosen arbitrarily such that (C) holds; however, we want to
find a small v since the bounds the theorem yields are better the smaller 1
is.

Remark 2.32. In most applications, ¢ = 1 for all k. In this case, the first
condition on J in (C) is |J| < ¢(r); thus, ¥(r) = N will always do, but smaller
bounds on |J| give better estimates.

Comparison with Azuma’s inequality

Every function f trivially satisfies (C) with ¢ (r) = 21 c2 for all r; just take
J=1{1,...,N}. Thus Theorem 2.29 yields, for example, the estimate

P(X —m| >t) <4e~t/4Z ¢>0, (2.38)

for any function f satisfying (L). This is very similar to Corollary 2.27. The
conditions are the same and the conclusions differ only in that here we get
worse constants and that the median is used instead of the mean. These
differences are typically not important; note that Corollary 2.27 implies that
ifa>EX + (210g22c%)1/2, then P(X > a) < 1/2 and thus m < a, which,
together with a similar lower bound, yields

|EX —m| < (210g22ci)1/2.

(This, with another constant, follows also from (2.38), using arguments as in
Example 2.33 below. — Exercise!) The constant may be improved by using
Remark 2.28.)

In many applications, (C) holds with a much smaller ¢; this leads to
stronger estimates that significantly surpass Azuma’s inequality.

Example 2.33. In several interesting cases, X assumes non-negative integer
values only, (L) holds with ¢; = 1, and (C) holds with 3(r) = r for integers
r > 1. (Equivalently, (C) holds w1th Y(r) = [r] for r > 0.) In this case,
(2.35) yields

P(X < a)P(X >r) < e~ (r=)/dr (2.39)



42 EXPONENTIALLY SMALL PROBABILITIES

for every integer 7 > 1 and real a < r. Since (r — a)?/r is an increasing
function of r > a and P(X >r) = P(X > [r]), (2.39), in fact, holds for any
real a and r with @ < r. (The case a < 0 is trivial.)

Consequently, if m is a median of X, then

P(X <m—t) <2 /%™ >0, (2.40)
and
2e~t*/8m )<t <m
P(X > m+1t) < 2t /4m+t) < U=t =T 2.
(X2 )< ~ | 2e-t/8, t>m. (2:41)
Hence,
4e~t/8m  og<t<m
P(X —m|>t) < o=t =T 2.42
( [2%) < {2e-t/8, t > m. (2.42)

In particular, it follows that
o0
IEX —m| <E|X —m| =/ P(IX — m| > t) dt
0

m o0
< / 4e~t/8m gt 4 / 2et/8 dt < 2v/87m + 16
0

m

(the constants can be improved). Hence, using also %m <mPX >m) <
EX,

|IEX —m| = O(VEX),

which implies estimates similar to (2.40)-(2.42) for X — E X; for example, for
some universal constant v > 0,

P(X —EX|>t) <d4e " /EX+) ¢ (2.43)

We see that if m (or, equivalently, E X)) is much smaller than N, then Theo-
rem 2.29 yields much stronger estimates than Corollary 2.27.

Example 2.34. A simple instance of the situation in Example 2.33 is a bi-
nomial random variable, or, more generally, a sum of independent Bernoulli
random variables. In this case, we let the sets A; equal {0,1} and let X =
f(Z1,...,ZN) = Z1 +---+ Zn. It is easy to see that (L) and (C) hold with
¢i = 1 and ¥(r) = r when r is a non-negative integer, and thus (2.39)-(2.43)
hold. This yields estimates similar to those given in Theorem 2.1 (although
with inferior constants).

This example shows that it is not possible to improve the estimate (2.41) to
P(Z > m+t) < 2e~t°/4™ or something similar with other constants; consider
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for example the limiting case of a random variable with distribution Po(1) (or
the family Bi(n,1/n)) and large t; compare with Remark 2.7.

Example 2.35. A more interesting application is obtained by letting X be
the stability number a(G(n,p)) of the random graph G(n,p), that is, the
order of the largest independent set of vertices. It is easily seen that, using
vertex exposure, the conditions in Example 2.33 are satisfied (Exercise!); a
certificate of @ > r (for an integer r > 1) is just any independent set of
order r. Consequently (2.39)-(2.43) hold. We will return to this application
in Theorem 7.4.

The same applies to the clique number of G(n, p), that is, the order of
the largest complete subgraph (which is just the independence number of the
complement of the graph).

Remark 2.36. In general, say that a function f: Hiv A; = {0,1,...}is a
configuration function if for each J C [N] there exists a set Ay C [];c;A; of
“configurations” such that:

(1) If (xj)je_] € Ay and J' C J then (IEj)jeJl € Ay,

(i) f(2) = max{|J|: (zj)jes € As}-

In other words, the configurations are certain sequences (zj,, ..., Z2j,), a sub-
sequence of a configuration is a configuration and f is the size of the largest
configuration included in (z1,...,2zx). The independence and clique numbers
in Example 2.35 above are obvious examples.

Every configuration function satisfies (L) and (C) with ¢y = 1 and ¢(r) =r
for integers r > 0, so the conclusions in Example 2.33 hold. (Conversely, it
may be shown that every such f with values in {0,..., N} is a configuration
function. See also Talagrand (1995, (7.1.7)) for yet another characterization.)

Moreover, Boucheron, Lugosi and Massart (2000+) have recently shown
that for configuration functions, the inequalities (2.5) and (2.6) hold, which
yield somewhat sharper (and simpler) estimates than the inequalities above.

General form of Talagrand’s inequality

In order to state the general form of Talagrand’s inequality, we need more
notation.

Assume, as above, that Ay, ..., Ay aresets. Assume further that py,..., un
are probability measures on Ay, ..., Ay, respectively, and let P be the product
measure gy X --- X gy on A =A; x --- X An.

We define a kind of distance between a point z € A and a subset A C A in
the following way. We first define two subsets U4 (z) and Va(z) of RY:

Ua(z) = {(s:)) € {0,1}" : 3y € A such that z; = y; for all i with s; = 0}
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and V4(z) is the convex hull of Uys(z). Thus Ux(z) contains the vectors
(1[z; # vi])YV, y € A, but also vectors with more 1's. We then define

d(A,z) = inf{||v||]2 : v € Va(z)},

where |[v|l2 = (3 v?)!/2 is the usual Euclidean norm in RY; thus d(4,z) is
the Euclidean distance from 0 to V4(z). (If A =0, then Ua(z) = Va(z) = 0
and we set d(A, z) = co. On the other hand, if A is non-empty, then d(4, z) is
finite for every z because at least (1,...,1) € Us(z). Moreover, the infimum
in the definition of d(A,z) is attained, since U4(z) is a finite set and thus
Va(z) is compact.)

Note that

d(A,z) =0 <= 0€Vy(z) < 0€Uxs(z) < z € A
With this notation, we may give the general form of Talagrand’s inequality.

Theorem 2.37. For every (measurable) subset A of A,

1d%(A) 1
/A e aP(z) < grp- (2.44)

Remark 2.38. We assume that the set A is measurable, but even so the
function d(A,z) is, in general, not measurable, so the integral in (2.44) is
not always defined as an ordinary Lebesgue integral. Of course, there is no
problem for finite sets, and it is easy to give further sufficient conditions
for d(A,z) to be measurable, but a simpler and more general approach is
to allow d(A,z) to be non-measurable and interpret the integral in (2.44)
as an iterated upper integral ["---[". The theorem is then valid without
any further assumptions (by the proof given below and simple properties of
the upper integral). Moreover, there is no problem in using this version in
applications such as the proof of Theorem 2.39, below. (Recall that the upper
integral [~ g of a non-negative function g is defined to be the infimum of [ A
over all measurable functions h with A > g; this infimum is always attained.)

Before proving Theorem 2.37, we use it to prove Theorem 2.29. We begin
with a simple corollary of Theorem 2.37 (Talagrand 1995).

Theorem 2.39. Suppose that A and B are two (measurable) subsets of A
such that for some t > 0 the following separation condition holds:

(S) For every z € B, there exists a non-zero vector o = (a;)Y € RV such
that for everyy € A,
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Then
P(A) P(B) < e~t'/4.

Remark 2.40. Note that Condition (S) is not symmetric in A and B; the
vector a may depend on z but not on y.

Proof. Suppose that z € B and let a be as in Condition (S). We may assume
that a; > 0 for every i; otherwise we replace a; by |a;|. Then, denoting the
scalar product in RV by (-, ),

(a,5) > tlall

for every s € Ua(z). Since a — (a, s) is a linear functional, this extends to
all s in the convex hull V4(z), and thus, by the Cauchy-Schwarz inequality,
for every s € Vu(2),

tllallz < (e, s) < |Isllzllall2

and hence t < ||s|]l2. Consequently d(A,z) > t, for every z € B, which,
together with Theorem 2.37, yields

t2/4 1d%(A,z) < _1__ )
e '*P(B) < /Ae4 dP(z) < P(A)
Next, we use Theorem 2.39 to prove Theorem 2.29.

Proof of Theorem 2.29. Let A= {z € A: f(z) <r—tjand B={z€ A:
f(z) > r}. For z € B, let J be as in (C) and define

o = ci, 1€ J,
: 0, i¢J;

thus, by (C), |lallz < V¥ (r). .If, furthermore, y € A, define ¥y’ € A by
N KT 1€ J,
Vi = Yi, ) ¢ J.

Then f(y') > r by (C), and thus f(y') — f(y) > t, while (L) implies

f@) - fOHIS D, a= ), a

1€J:yiFz: LYy #2Zi

Consequently,

S a2t () ol

LyiFzi
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If ¢ > 0, this also shows that a # 0, and (2.35) follows by applying Theo-
rem 2.39 with ¢ replaced by ¢/1/¥(r). The case t = 0 is trivial.
Finally (2.36) and (2.37) follow by takingr = mand r = m+tin (2.35). W

Remark 2.41. The conclusion of Theorem 2.39 can be improved to

Vlog(1/P(A)) + /1og(1/ P(B)) > t/v/2

(Talagrand 1995, Corollary 4.2.5), which, by the argument above, implies, for
example, that (2.36) can be improved to the smaller, but more complicated,
bound

- Viog2) ), 2 v/2log2uim).

: t
P(X <m-—t) < exp(———
, v
It remains to prove Theorem 2.37. We follow Talagrand (1995), and begin
with a simple lemma.

Lemma 2.42. Suppose that 0 < r < 1. Then

. 2 -
inf e" /4Tl <21
0<r<L1

Proof. Taking 7 = min(2log(1/r), 1), it suffices to show that ife™'/2 <r <1,
then

elog2 rr—2log r—1 S 2 —r.
Substituting r = e~* and taking logarithms, we have to show that
h(t) =log(2—e *) +t> -t >0

for 0 < t < 1/2. But this, in fact, holds for all ¢ > 0 because elementary
calculations yield h(0) = A'(0) = 0 and A"(t) = 2 — 2e~¢/(2 —e™*)2 > 0 for
t>0. n

Proof of Theorem 2.37. We use induction in N, starting with the simple case
N = 1. (The bold reader may start with the really trivial case N = 0 instead.)

If N =1, and A is any non-empty subset of A = A;, then, as is easily seen
from the definition, d(A4,z) = 0 when z € A and d(A,z) = 1 when 2z ¢ A,
Consequently, using e}/ < 2 and (2 — t) < 1 for real ¢,

1

i (A) = IP( 1/4(1 = P(A)) € 2—P(A) < ——.
| A=) 4P = BA) + €/ (1~ B(A) <2~ B(4) <

Now assume that the result holds for some N > 1. Let us write A%) =
]1;[(;;]1)\1 agd/\l?kAz H'f 1i, and denote elements in AW by (z,)), with z €
an € AN41.



TALAGRAND'S INEQUALITY 47

Let A be a (measurable) subset of A(N*1) and define, for every A € Ay,
AN = {z € AN : (z,)\) € A} (a section of A) Define also B = U, A()) (the
projection of A on A(™¥)). Each A()) is measurable, but, in general, B is not;
thus we also select a measurable subset By C B of maximal Py measure. Note
that thus Px(Bo) > Py (A(N)) for every \. We may assume that Py (Bp) > 0,
since otherwise Py,1(A) =0 and the result is trivial.
The basic observation is that, for any z € A‘/M) and X € An41,
s € Uapny(z) = (5,0) € Ua((z,N)),
teUg(z) = (t,1) € Ua((z, N)).
It follows that if s € V4(n)(z), t € VB,(z) C VB(z) and 0 < 7 < 1, then
(5,0) € Va((z,A)) and (t,1) € Va((z,A)), and thus also ((1 — 7)s + 7t,7) €
Va((z, X)), which yields, using the convexity of the function u ~— u2,

N

(A, (z,N) < (1 =Ps+ 78,73 =S ((1 = 7)si + 7t:) " + 72

1
< (@ =)lslE +liellz + 72,

Taking the infimum over s and ¢, we thus obtain, for every A€ Ayy and
T € [0, 1],

d? (A, (z,\) < (1 -1)d?(A(\), ) + 7d*(Bo, z) + 7°.
Holder’s inequality and the induction hypothesis now yield

/ ld2(A (z,A)) d]PN( )
AN)

}r2 32 (AN),2) T / ¢ 4d%(Bo,2)
es dP dPn(z
(/1;(N) N( )) ( ALN) N( ))

e

IA

F

IA

Tz(m)l T(]PN(IBO))T

1 a2 (Py(AN)) !
Pn(Bo)* (]P’N(Bo)) ‘

By Lemma 2.42 with r = Py(A4()\))/ Pn(Bo) < 1, we obtain by taking the
infimum over

142(A (z, 1 _ Pn(A(A))
[y FEAED aBx @) < s (2 )

Finally, we integrate this over )\, using Fubini’s theorem and the inequality
2—t<1/tfort >0, to obtain :

/ esd (42) 4Py 4 (2) <
A(N+1)

1 Prny1(A)
P (Bo) (2- Pr(Bo) )
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2.6 THE UPPER TAIL

Asremarked above (Remark 2.17), the upper tail counterpart of Theorem 2.14
is not true, in general. As an exponential bound is often needed also for the
upper tail, we present here briefly a few simple ideas on how to cope with this
problem in certain situations. For a more thorough account see Janson and
Rucinski (2000+).

Recall that in a random set I'p, each element of I' is included with the same
probability p. Furthermore, as in Section 2.2, let S be a family of subsets of I".
For the sake of clarity, we confine ourselves here to the slightly simplified case
in which all members of S are of the same size s.

One possible idea is to convert an upper tail probability into a lower tail
and then to apply Theorem 2.14. This can be done by setting Z = |T|,
S=[P\S, and X =3 4,514 = (%) — X. As this approach is limited in
applications only to large families S, we will not pursue it any further.

The first result we do present was stimulated by the following problem
(R6d] and Ruciniski 1994) on a random graph obtained by a random deletion
of vertices (cf. Section 1.1).

Example 2.43. Let G = (V, E) be a graph with |V| = n and |E| < 5(3),
0 <n <1, and let R =V, be a binomial random subset of the vertex set V,
0 < p < 1. Using Proposition 2.44 below one can show that with probability
1 — e~%("P) we have |[R]ZN E| < 27)(“2?') (Exercise!).

The underlying idea is to break the family S into disjoint subfamilies of
disjoint sets, and apply Theorem 2.1 to one subfamily. Set L = L(S) for the
standard dependency graph of the family of indicators {14 : A € S}, where
an edge joins A and B if and only if AN B # 0 (see Example 1.5). Note that
the maximum degree A(L) can be as large as |S| — 1. The following result has
appeared in a slightly more complicated form in R6dl and Rucinski (1994).

Proposition 2.44. With the notation of Section 2.2, for every t > 0,

2
P(X>EX +t) <(A(L)+ 1)exp (—4(A(L) +t1)(/\+_t/3)) .

Proof. A matching in S is a subfamily M C S consisting of pairwise disjoint
sets. We claim that the family S can be partitioned into A(L) + 1 disjoint
matchings, each of size equal to either [|S|/(A(L) +1)] or [|S|/(A(L) +1)].
Indeed, by the well known Hajnal-Szemerédi Theorem (Hajnal and Szemerédi
1970, Bollob4s 1978), the vertex set of the graph L can be partitioned into
A(L) + 1 independent sets of the above order, which correspond to matchings
M, i=1,...,A(L) +1,in S. Note that for each i, | M| > |S|/2(A(L) +1).

If X > X +t, then, by simple averaging, there exists a matching M; such
that |[Tp]°*NM;| > p°| M| +t|M,|/|S|. Since |[['p]°NM;] is a random variable
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with the binomial distribution Bi(|M;|, p®), we conclude by Theorem 2.1 that

D+1 2| M;
P(X 2A+8) < Y exp (——2|S|(1\—+t|/35)

=1

t2
<(A(L)+1 - ) |
< (AD) + Dexp ( AL+ )+ t/3))
As our next example shows, Proposition 2.44 can be applied to quite sparse
families S.

Example 2.45. Let S be the family of all edge sets of triangles in the com-
plete graph [n]?. Then A(L(S)) = 3(n— 3), and by Proposition 2.44, for fixed
p > 0 and with X = Xk, denoting the number of triangles in G(n, p),

P(X > (1+ p) EX) = O(n) exp (—O(n?p%)) ,

which is a fair bound provided p 3> n=2/31og!/3 n.

The next idea also uses disjoint sets to force independence, and is based on
Spencer (1990) (see also Alon and Spencer (1992) and Janson (1990b)). Let
Sp be the subfamily of S consisting of those sets which are entirely contained
in I'p. Consider also the intersection graph L, = L(S,) of Sp, in which each
vertex represents one set and the edges join pairs of vertices representing pairs
of intersecting sets. (Clearly, L, is an induced subgraph of L defined above.)
Let Xo count the largest number of disjoint sets of S which are present in
[p. So, X is the number of vertices and X is the independence number of
L,. Furthermore, set T = A(Lp) and X, for the size of the largest induced
matching in L,. Then it follows by an elementary graph theory argument
that X < Xo+ 2T X, (Exercise!). Hence, if ad hoc estimates can be found for
both T and X, then it remains only to bound the upper tail of Xj.

Lemma 2.46. Ift > 0, then, with p(z) = (1+z)log(l+z)—z and A =EX,

P(Xo > EX +1t) < exp (—/\w(ﬁ)) < exp (—m) .

Proof. Let k be an integer (0 < k£ < [A + t]) and consider the number Z of
k-element sequences of disjoint sets of Sp. Clearly, we have

EZ < |S|kp°* = A*.

If Xo> A+t then Z > (A+ t)x = [I5g (A + ¢ — ), and thus, by Markov’s
inequality (1.3),

N Bl
< = _—.
P(Xo 2 A+0) SP(Z 2 (\+04) S g E)AH_Z-
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If we increase k by 1, the right-hand side is multiplied by A/(A+t— k), which
is less than 1 for k < ¢. Hence, the right-hand side is minimized by choosing
k = [t]. Consequently,

[t]-1
logP(Xo > A+1t) < Z log(A/(A+t—1)) < /t log(A/(A+t —z)) dx,

i=0 0

which implies the first inequality of Lemma 2.46 by a straight-forward inte-
gration. The second inequality follows by the lower bound on ¢(z) established
at the end of the proof of Theorem 2.1. |

Remark 2.47. By choosing k¥ = A + t (assumed to be an integer) in the
above proof, we obtain the weaker estimate (Erd6s and Tetali 1990, Alon and
Spencer 1992), valid for any integer k > 0,

A e\ * t
logP(Xo > k) < S (?) = exp (/\— /\cp(x)) .

Remark 2.48. Note that X satisfies the Lipschitz condition (L) of Corollary
2.27 with all ¢; = 1, as well as the condition (C) of Theorem 2.29 with
Y(r) = s[r]. Therefore, similar but weaker versions of Lemma 2.46 can be
derived from these results (cf. Theorem 3.29 in Section 3.5).

Example 2.49. Let X = Xk, be the number of triangles in G(n,p), np —
0o. Then X, is the maximum number of edge disjoint copies of the diamond
graph K, (see Figure 4.7), and Lemma 2.46 can be applied to it. The random
variable T can easily be bounded by using Theorem 2.1. For example, if p > 0
is fixed and np? — 0, one can prove (Exercise!) that

P(X > (1+p)EX) < 2e~00'%") 4 p2e=00/ne").

This bound is meaningful if n*p® — 0o, and better than that of Example 2.45
if p = o(n~3/5) (Exercise!).

Remark 2.50. Using a variant of the martingale approach, very recently Vu
(2000+) has proved that for a class of graphs G on k vertices, the inequalities

exp {—@ ((]E)(G)z/’c logn)} <P(Xe>(1+pEXg)
| < exp {—@ ((]EXg)l/(k‘l))}

hold in a wide range of p = p(n). Here X¢ is the number of copies of G in
G(n, p).

The lower bound provides another counterexample to the existence of an
upper tail analogue of Theorem 2.14 (c¢f. Remark 2.17). The upper bound
competes well against the results of this section. In particular, when G = K3,
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Vu’s bound is better than that in Example 2.49, but for p > n~!/3 it is not
as good as the bound presented in Example 2.45.

Our final idea for establishing a bound on the upper tail of X incorporates
some kind of cheating. We allow ourselves to delete some elements of T,
and claim the concentration of X in the remainder. Surprisingly, such results
turned out to be useful and even crucial in the context of partition properties
of random graphs. This approach was developed in R6dl and Ruciniski (1995)
and is based on two elementary lemmas. We conclude this section with these
technical lemmas. The first of them can easily be proved by a method similar
to that used in the proof of Lemma 2.46 -(Exercise!).

Lemma 2.51. Let S C [[']° and 0 < p < 1. Then, for every pair of integers

k and t, with probability at least 1 — exp ("%\%—T))f there exists a set Ey C ')

of size k such that 'y \ Ey contains at most A+t sets from S. H

Hence, substantially exceeding the expectation is exponentially unlikely,
provided we are allowed to destroy some of the subsets in the count, by deleting
a certain number of elements from the random set. Then, of course, there is
the danger of losing other properties held by the random set. It turns out,
however, that monotone properties held with exponential probabilities survive
the deletion. The next lemma, also from R6dl and Rucidski (1995), makes
this precise.

For an increasing family Q of subsets of a set I' and for a nonnegative
integer k, let

Qx={ACT: VBCA, if |B|<k, then A\ B€ Q}.

In other words, given a property Q, the property Q assures that @ holds
even after deleting up to k arbitrary elements from the set. For instance, if
Q is the graph property of being connected, then Qy is the property of being
(k + 1)-edge-connected.

Lemma 2.52. Let ¢ and § < 1 satisfy
| §(3—1logd) <c (2.45)

Then, for every increasing family Q@ = Q(N) of subsets of an N-element
set T, and for every k, 0 < k < 6Np/2, if P(T-g)p ¢ Q) < e~ NP then

IP(FP ¢ Qk) < 3\/Npe"(c/2)NP + e—(52/8)Np. -

Thus, if a random binomial subset has an increasing property with proba-
bility extremely close to 1, then a slightly enlarged random subset will enjoy
the same property, and with similar probability, even after a small fraction
of its elements are arbitrarily destroyed. The elementary proof is left to the
reader (Exercise!).

In Chapter 8, in the outline of the proof of Theorem 8.23, we indicate
how Lemmas 2.51 and 2.52 were utilized to establish thresholds for Ramsey
properties of G(n, p). In the same proof, Lemma 2.52 alone is also applied.



Small Subgraphs

3.1 THE CONTAINMENT PROBLEM

In 1960 Erdés and Rényi published the most fundamental of their random
graphs papers (Erdés and Rényi 1960). The first problem studied there was
that of the existence in G(n, M) of at least one copy of a given graph G. Since
the graph G is fixed and the random graph G(n, M) grows with n — oo, copies
of G in G(n, M) are called small subgraphs, regardless whether G is a triangle
or a graph with one billion vertices, as opposed to subgraphs of G(n, M) which
grow with n like, say, a Hamilton cycle.

Erdés and Rényi (1960) found the threshold for the property of containing
G only in the special case in which G is a balanced graph (see Section 3.2 for
the definition). Twenty-one years later Bollobas (1981b) settled the problem
in full generality. Still later a simpler proof was found by Rucinski and Vince
- (1985) and we will present it here. It is a classical example of an application of
the commonly used methods of the first and the second moment. This problem
is also instructive in that it shows that the behavior of the expectation alone
can be sometimes misleading.

To better comprehend this feature and to have a gentle start, we will con-
sider first the somewhat simpler problem of finding the threshold for the
containment of at least one arithmetic progression of length k in a random
subset of integers [n],, where, recall, [n] = {1,2,...,n} and p = p(n) is the
probability of including each element of [n], independently of the others, in
the random subset [n],.

53
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The first and second moment methods

Before presenting the applications, let us describe the first and the second
moment methods. As a special instance of the Markov inequality (1.3), for
every non-negative, integer valued random variable X, the inequality

P(X >0) <EX (3.1)

holds. The first moment method relies on showing that E X,, = o(1), and
thus concluding by (3.1) that X,, = 0 a.a.s. The second moment method is
based on Chebyshev’s inequality (1.2), which implies (Exercise!) that for every
random variable X with EX > 0

Var X
(EX)?

P(X =0) < (3.2)

~ Hence, by showing that the right-hand side of (3.2) (with X replaced by X,)

converges to 0, one concludes that X, > 0 a.a.s. By the same token one
obtains a stronger statement, which also follows from Chebyshev’s inequal-
ity: If Var X,,/(E X,)? = o(1) then X, = EX, + 0,(E X,,) or, equivalently,
X./EX, 51 In particular then, X, = @c(]E Xn).

Remark 3.1. Inequality (3.2) may be improved. The Cauchy-Schwarz in-
equality applied to X = X1[X # 0] yields (EX)? < EX2P(X # 0), that
is,

(E X)?
and thus
E X)? X X
P(X=0)<1— X)) _ VarX __ Var (3.4)

EX2 ~ EX?2 (EX)2+VarX’

For the purpose of showing X,, > 0 a.a.s., (3.2) is just as good as the improve-
ment (3.4), but in Chapter 7 we will see a situation where the improvement
is essential.

Example 3.2 (arithmetic progressions). Let X; be the number of arith-
metic progressions of length & in [n],, where & > 2 is a fixed integer. (We
suppress the subscript n here.) To compute E{Xx) we need to know the num-
ber f(n,k) of all arithmetic progressions of length k in [n]. In fact, we only
care about the order of magnitude of f(n,k) which equals n?, since every
arithmetic progression is uniquely determined by its first two elements. Let
us number the arithmetic progressions of length k£ in [n] by 1,..., f(n, k) and,
for each i = 1,..., f(n, k), define a zero-one random variable (indicator) I;
equal to 1 if the i-th arithmetic progression of length k is entirely present in
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[n]p and equal to O otherwise. With this notation, Xy = Z{L’I’“) I; and, by
the linearity of expectation,

E(Xk) = f(n,k)p* = ©(n’p*).

Hence, if p < n~%/k then E(X;) — 0 as n — oo and, by the first moment
method, (i.e. by (3.1)), P(X; > 0) = o(1).

If, on the other hand, p > n~%/% then E(X}) — oo, but this fact alone
is not sufficient to claim that P(X; > 0) — 1. One has to work for it, using
the second moment method. Observe that I; and I; are independent if the
i-th and j-th arithmetic progressions have no element in common; in that
case the covariance Cov(I;, I;) equals zero. In the remaining cases, we use the
inequality Cov(l;,I;) < E(L;I;). There are O(n®) pairs (I;,I;) which share
one element and then E(I;I;) = p**~!, and only O(n?) pairs which share two
or more elements, in which case E(I;I;) < p*. We thus can estimate the
variance of X as follows:

f(n,k) f(n,k)
Var(X;) = Z Z Cov(I;, I;) = O(n®p**~! + n?p*).
=1 j=1

Consequently, by the second moment method, (i.e., by (3.2)), if p > n~%/%,
then

np n?p
Together, these results show that the threshold for existence of a k-term arith-
metic progression in [n], is n=%/%.

P(Xk=0)=0<l+ lk) = o(1).

Thresholds for subgraph containment

Returning to small subgraphs of random graphs, we let X stand for the
number of copies of a given graph G that can be found in the binomial random
graph G(n,p). Let v = vg and e = eg stand for the number of vertices and
edges of G, respectively. There are exactly f(n,G) = (7)v!/aut(G) copies
of G in the complete graph K,, where, recall, aut(G) denotes the number
of automorphisms of G. For each copy G’ of G in K, define the indicator
random variable I = 1[G(n,p) 2 G']. Then

0 ifpgnv/e

E(Xg) = f(n,G)p = 0(n"p%) — {OO if p > n-v/e

and, by the first moment method,
P(Xg >0)=0o(1) ifp<n?/e. (3.5)

Is it then true that P(Xg > 0) = 1 — o(1) if p > n~?/¢? Consider first an
example.
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Example 3.3. Let Hy be the graph with 4 vertices and 5 edges and let Gy
be a graph obtained by adding one vertex to Hy and connecting it to just one
vertex of Hy. (There are two nonisomorphic ways to do so, and it does not
matter which one we choose - see Figure 3.1 for one version of Gy.) Take
any sequence p = p(n) such that n=5/® « p « n=4/3 say, p = n=%/11. Then
E Xg, = ©(n°p®) = oo, but by (3.5) applied to Hp, a.a.s. there is no copy of
Hy in G(n, p), and therefore there is no copy of Gy either.

Hence, things are more complicated for graphs than for arithmetic progres-
sions. It should be clear at this point that the behavior of the expectation
is deceptive in case of Go, because Gy contains a subgraph (viz. Hy) denser
than itself, and that the right threshold should be n=%/3. Indeed, this was
confirmed by Bollobds (1981b) in the following, general result.

Recall that m(G) is the ratio of the number of edges to the number of
vertices in the densest subgraph of G, that is,

m(G)=max{z—H:H§G,vH>0}. (3.6)
H

Theorem 3.4. For an arbitrary graph G with at least one edge,

) 0 ifp<gn-t/m@),
Am B(G(n,p) 5 G) = {1 i;i > n=1/m(©),
Proof. There are two statements to be proved, the O-statement, and the 1-
statement. To prove the former one, assume that p <« n~1/™G) and let H’
be a subgraph of G for which e(H')/v(H') = m(G). Then, by (3.5), a.a.s.
there is no copy of H’, and thus, no copy of G in G(n, p).

To prove the 1-statement we use the second moment method; we then need

to bound the variance of X from above. For future reference, we state the
result as a lemma. We define

&g = Pg(n,p) = min{E(Xpy): H C G, eqg > 0} (3.7)
and note that
~ 3 VH €H.
g < pcin  nt (3-8)

this quantity will be useful on several occasions in the sequel.

Lemma 3.5. Let G be a graph with at least one edge. Then

Var(XG) = (1 — p) Z nZUG‘Uszec—eH

HCG,en>0
(EXG)2 (EXG)2
A —_— m ———— 1— '————’ 3-9
(1 p)HgG,aé);(;>0 EXy (1-p) e (3.9)
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where the implicit constants depend on G but not on n or p. In particular,
Var X¢ = O((E X¢)?/®¢), and if p = p(n) is bounded away from 1, then
Var X¢ < (E Xg)?/%¢.

Proof. .Using the fact that I and I are independent if E(G')NE(G") = 0,
and that for each H C G there are O(n?#n2(v6—v#)) = @(n2Yc~vH) pairs
(G',G") of copies of G in the complete graph K, with G’ N G” isomorphic
to H, we have

Var(XG) = Z COV(IGI,IGII‘) = Z [E(IG’IG”) — E(IGI) E(IGII)]
G',G" . E(G")NE(G")#0

= . E : n2vc—vH (pZeG—eH _pZeG)
HCG,eu>0

= Z n2vc—va2ec—eH(1 — p). (310)
HCG,eyg>0

The simple observation below is often useful.
Lemma 3.6. The following are eqm'valent, for any graph G with eg > 0.
(i) np™ = co.
(il) nY#p®H — oo for every.H C G with vy > 0.
(iii) E(XH) — oo for every H C G with vy > 0.
(iv) &g — oo.

Proof. By (3.6) (and p < 1), (i) holds if and only if np¢#/?# — oo for every
H C G with vg > 0; since

E Xy xnHpH = (np/vH)va,

this is equivalent to both (ii) and (iii). Finally, by the definition (3.7), Con-
dition (iv) is equivalent to E(Xg) — oo for every H C G with ey > 0; this is
equivalent to (iii) since the case vy > 0 and ey = 0 is trivial. |

To complete the proof of Theorem 3.4, we observe that if p > n—1/m(G)

then by Lemma 3.6 &g — oo. Consequently, (3.2) and Lemma 3.5 yield

' Var(X,
P(G(n,p) 3 G) = P(Xa = 0) < 22X6) _ 0(1/86) = o(1). -
(E Xe)
Remark 3.7. It follows from the above proof that if ®g(n,p) — oo, then
not only P(G{n,p) 2 G) — 1 but further X¢/E(Xg) 5.
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Go FO

Fig. 3.1 A non-balanced graph and a balanced extension of it.

Remark 3.8. As we mentioned before, Erdos and Rényi proved Theorem 3.4
already in 1960, but only in the special case of balanced graphs, that is, graphs
G with m(G) = eg/vg, while the general case was proved much later by
Bollobds (1981b). Another approach to the general case was suggested by
Karonski and Rucinski (1983b), who proposed a “deterministic” argument to
derive Theorem 3.4 from the Erdds and Rényi result for balanced graphs. It
was based on a conjecture proved a few years later (Gyori, Rothschild and
Rucinski 1985, Payan 1986) that every graph G is a subgraph of a graph F,
called a balanced extension of GG, which is balanced and, what is crucial here,
is not denser than the densest subgraph of G, that is, m(F') = er /vr = m(G).
The validity of the 1-statement of Theorem 3.4 for F' implies its validity for
G, since, trivially, P(Xg > 0) > P(XF > 0).

An example of a balanced extension Fp of the graph Gq is presented in
Figure 3.1. (The smallest balanced extension of a graph G can be much
larger than G; see Rucinski and Vince (1993).)

An exponential rate of decay

Analyzing the proof of Theorem 3.4, one comes to the conclusion that a de-
cisive role is played by the quantity ®s. Indeed, the two parts of the above
proof can be combined into one pair of inequalities

1-®¢ < P(G(n,p) 2 G) <O(1/%0¢), (3.11)

which together imply Theorem 3.4, since 8¢ — oo if and only if np™) — oo
by Lemma 3.6, and by a similar argument &g — 0 if and only if np™() — 0.
What is especially nice about the inequalities (3.11) is that both sides can be
strengthened to an exponential rate of decay.

Theorem 3.9. Let G be a graph with at least one edge. Then, for every
sequence p = p(n) < 1,

exp { 11— | < P(B(n,p) 3 G) < exp(-0(%a)}
—-p

Proof. The left-hand inequality follows immediately from Corollary 2.13, a
consequence of the FKG inequality, with X replaced by Xy, where E(X g ) =



THE CONTAINMENT PROBLEM 59

®c. The other inequality is implied by Theorem 2.18(ii) with S = X¢ and
the I4’s replaced by Ig’s. Indeed, the denominator of the exponent there
becomes

DD Pzec'e"é@((EXa)'z/@G) (3.12)

HCG,en>0 G' G"NG'=H
and the right-hand inequality in Theorem 3.9 follows. [ |

Note that Theorem 3.9 implies Theorem 3.4.

Remark 3.10 (Martingale approach). There are at least two other ways
to deduce the right-hand inequality of Theorem 3.9; they are based, respec-
tively, on the martingale and Talagrand inequalities given in Chapter 2. Here
we present the martingale approach and the other one will be given in Sec-
tion 3.5.

We confine ourselves to the special case in which for every proper subgraph
H of G with ey > 0, E(Xg) > ®¢. In particular, &¢ = E(Xg). (The
general case is quite involved and we refer the reader to Janson, Luczak and
Rucinski (1990).) Let f = ¢®¢ for a suitably chosen constant ¢ > 0, and
let # = (Ai1,...,Ay) be an arbitrary partition of the set [n]? into sets of size
|4;| < n?/f,i=1,...,f. Two copies of G are called n-disjoint if for each
index ¢ at most one of them has an edge in A;. Let D, ¢ be the maximum
number of w-disjoint copies of G in G(n,p). Then, by Corollary 2.27,

P(Xg = 0) = P(Dr,g = 0) < P(|Dn,g — t| > t) < 2exp{—t*/2f},

where t = E(D, g) < ®¢. Now we need to bound ¢ from below. Let Y g be
the number of non-7-disjoint pairs of copies of G. Clearly, Dr ¢ > X¢—Yx,G,
and so t > &g — E(Y;,c). When computing E(Y; ¢) asymptotically, we may
ignore all pairs of G sharing at least one edge, as their expectation is o(®¢).
The expected number of the other non-n-disjoint pairs is

o (1(" ! Jrtvampee) = 0@/ ).

Hence, for sufficiently large ¢, t = Q(®¢g) and the right-hand inequality of
Theorem 3.9 follows.

The uniform model G(n, M)

In this section we consider the containment problem for the uniform ran-
dom graph G{n,M). We note first that by Corollary 1.16 (or Remark 1.18),
Theorem 3.4 immediately implies the corresponding result for G(n, M): the
threshold is n?~!/™(G), (This can also be shown directly by the first and
second moment methods.)

For the exponential bounds in Theorem 3.9, the situation is somewhat
more complicated. Not only do neither part of the proof of Theorem 3.9 carry
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over to G{n, M), but the result cannot be true in general. Indeed, for dense
graphs Turén’s theorem (see, e.g., Bollobas (1998)) shows, for example, that
if G = K3 and M > {n® ~ 2(7), then G(n, M) always contains a copy of
G, so P(G(n, M) 7 G) = 0. More generally, by the Erdés—-Stone-Simonovits
Theorem (Erdés and Stone 1946, Erdés and Simonovits 1966, Diestel 1996,
Bollobas 1998), the same holds for any graph G and for M > c(’;), provided
c>1-1/(x(G)—1) is fixed and n is large enough. However, if M is not too
large, both inequalities in Theorem 3.9 have counterparts for G(n, M).

For a sequence M = M(n) < (}), define ®¢ by (3.7) with p= M/(}), and
note that (if G is non-empty) ®¢ < E(Xk,) = (})p =M. '

Theorem 3.11. Let G be a graph with at least one edge.
(i) If M > eg, then
P(G(n, M) 3 G) < exp{-0(33)}.

(ii) If, in addition, either ®c < cM, where c is some small positive constant
depending on G, or G is not bipartite and M < c(’;), where ¢ < 1 —
1/(x(G) — 1) is fized, then

P(G(n, M) 3 G) = exp{-O(%c)}.

Proof. We will give several arguments which are valid for different ranges
of M and together yield the results. We let ¢;,c2,... denote some positive
constants depending on G only. Note that we may assume that n is large,
since the results are trivial for any finite number of small n.

(i) For &g > logn, the estimate in (i) follows immediately from the upper
bound in Theorem 3.9 and Pittel’s inequality (1.6).

Alternatively and more generally, we find by monotonicity and the law of
total probability, as in (1.5),

P(G(n,p/2) D G) < P(G(n,M) D G) + P(e(G(n,p/2)) > M)

and thus, using the Chernoff bound (2.7) (or (2.5)), Theorem 3.9 and the fact
that ®g(n,p/2) > 2= dg(n,p), we get
P(G(n,M) 3 G) < P(G(n,p/2)  G) + e~ M/
< e—Cl‘PG(nyP/z) + e"M/G
< e2%0 4 g~ M/S, (3.13)
Since M > & as remarked above, (3.13) yields the upper bound 2e~%%c

which yields the sought bound e~©(®c) provided &g > ¢y =1 /c3, say.
For &g < ¢4, (3.13) implies further

P(G(n, M) 3 G) < 1—cs®g + e M8,
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which implies the result provided M > log2 n and thus e~ M/¢ < Lo &g for
large n; note that &g > n~2¢¢ for M > 1.

Finally, in the rather uninteresting case in which e¢ < M < logzn, we
assume for simplicity that every component of G has at least three vertices.
(The general case follows easily by treating isolated edges and vertices sepa-
rately. — Exercise!) It is then easy to see that if we let Xg be the number of
copies of G in G(n, M), then E(Xg) < n'¢p*s = &g and E(X%) ~ E(X5),
and thus, by (3.3),

1
2

P(G(n, M) 3 G) =P(Xg =0) <1 - csd¢ < exp{—cs®c}-
(ii) To obtain a lower bound, we argue similarly. By monotonicity,
P(G(n,2p) 2 G) < P(G(n, M) 2 G) + P(e(G(n, 2p)) < M)
and thus, using Theorem 3.9 and the Chernoff bound (2.6),
P(G(n, M) 3 G) > e~ 7% — ¢~ M/4,

If 1/2 < ¢ < cgM, say, this yields the desired lower bound e~¢9%¢,
If ®¢ < 1/2, let Ho be a subgraph of G with E Xp, = ®¢ (in G(n,p)),
and observe that then E X g, < ®&¢ (in G(n, M)). Hence,

]P(G(TL,M) 2 G) < ]P’(G(n,M) D) HO) SEXHO < P < 1_6010‘1’0.

For the remaining case in which ®¢ > csM, and thus &g = O(M), the
above approach may be useless. Note that in this case, the lower bound
e~©(n*P) in Theorem 3.9 can be obtained by just considering the event that
G(n,p) is empty, which, of course, does not happen in G(n, M), M > 1.
Fortunately, a simple and entirely different argument still yields the desired
lower bound for graphs which are not bipartite. Let kK = x(G) > 3, where
X(G) is the chromatic number of G. Clearly, if G(n, M) is (k — 1)-partite,
then there is no room for a copy of G. Let us fix a partition of the vertex
set [n] into k — 1'sets of size |n/(k — 1)] or [n/(k — 1)]. It is easy to show
(Exercise!) that, as long as M < ¢(3}), the probability of no edge of G(n, M)
falling within any of the sets is at least (1 — 1/(k — 1) — ¢)™. [ ]

For non-bipartite graphs G, we thus have an almost complete description:
P(G(n, M) 2 G) = exp(—0(®¢)) almost all the way up to the point where
the probability becomes zero by the Erdés—Stone-Simonovits Theorem.

For bipartite graphs, the result is less satisfactory. Clearly, the final ar-
gument in the proof above does not work. The condition ®g < cM in the
theorem is equivalent (Exercise!) to M < ¢'n2~!/ m®(G) where m®(G) is
defined in (3.18) in the next section, and for larger M we have no precise
description of P(G(n, M) 2 G). Indeed, for a general bipartite G, it is not
even known when this probability vanishes.
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In fact, it is conjectured that if G is bipartite and M > n2-1/m*(C) then
the probability that G(n, M) contains no copy of G tends to 0 with n faster
than in the binomial case, and we have

—log P(G(n, M) 3 G) = o(M). (3.14)

This conjecture has been verified for cycles C4 by Fiiredi (1994) (see also
Kleitman and Winston (1982)) and for all even cycles Cyi, k > 2, by Haxell,
Kohayakawa and Luczak (1995). For further results in this direction see Ko-
hayakawa, Kreuter and Steger (1998) and Luczak (2000), where it is shown,
using a slightly generalized version of the Szemerédi Regularity Lemma (cf.
Section 8.3), that (3.14) holds for all bipartite graphs G for which Conjec-
ture 8.35 of Chapter 8 holds.

3.2 LEADING OVERLAPS AND THE SUBGRAPH PLOT

Leading overlaps

When p = p(n) — 0, the logarithm of the lower bound in Theorem 3.9 becomes
asymptotically equal to —®g. When can the same be concluded about the
upper bound? To answer this question we introduce a related concept.

A subgraph H' of G with ey > 0 is called a leading overlap of G (for a given
sequence p(n)) if liminf E(Xg/)/®c < oco. In other words, H' is a leading
overlap if and only if E(Xpg/) > ®c does not hold. If we, for simplicity,
assume that the sequence p(n) is sufficiently regular, so that lim E(Xx)/®¢
exists in [1, 00] for every H C @, this is equivalent to E(Xn') = O(®¢); in
other words, a leading overlap is a subgraph of G, which, up to a constant,
achieves the minimum in &g = ming E Xpg. (For general p(n), this holds at
least along a suitable subsequence.)

Leading overlaps owe their name to the fact that they correspond to the
leading terms of the asymptotic expression (3.9) for the variance of X¢g as
well as in (3.12).

Returning to Theorem 3.9, a detailed analysis of expression (3.12) reveals
that the coefficient hidden in the © term in the upper bound in Theorem 3.9
becomes 1—o0(1) if there is just one leading overlap H’ of G, and the uniqueness
holds in the strong form, that is, there is just one copy of H' in G. (The
converse holds if we assume that p(n) is regular as above.)

Thus, we arrive at the following corollary.

Corollary 3.12. If p = p(n) = 0 in such a way that H is a unique leading
overlap of G then

log P(G(n,p) 2 G) ~ — E(H) . (3.15)
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QV

1 2 3 4 5
Fig. 3.2 A graph and its subgraph plot.

Subgraph plot

The leading overlaps vary with p = p(n), but there is an easy geometrical way
to detect them all at once, by plotting in the zy-plane points that represent
subgraphs of G and focusing on the upper boundary of the convex hull of the
obtained set of points.
Formally, the subgraph plot of a graph G is defined as the set of points in
the zy-plane
2(G) = {(vh,en) : H C G, vy > 2}.

Remark 3.13. Note that we do not include (0, 0) or (1, 0); for other purposes
it might be convenient to define versions of the subgraph plot containing one
or both these points. Similarly, it may be natural to consider only induced
subgraphs H in the definition; for our purposes this makes no difference.

We call the upper boundary f)(G) of the convex hull of ¥(G) the roof, and
we say that a subgraph H lies on the roof if the point (vy, eq) does. Observe
that f)(G) is a piecewise linear curve, with endpoints in (2,1) and (vg,eg)-
An example of a graph and its subgraph plot is presented in Figure 3.2.

Elementary calculations yield a full description of the entire spectrum of
leading overlaps of G. If, for simplicity, G lacks isolated vertices, then a
subgraph H of G is a leading overlap of G for some range of p = p(n) if and
only if it lies on the roof 3(G) of the subgraph plot £(G). Moreover, the
range of p p(n) in which H is a leading overlap is determined by the slopes
ay and aj; of the straight hne segments to the left and to the right from
(ve,en). (Note that ap; > at; we set ay, = 0o and at = 0 for convenience.)

Indeed, H is a leading overlap as long as np®# = O(1) and, at the same time,

np® of = Q(1); this condition is necessary too if p(n) is regular as above. (If
G has isolated vertices, and Gy is the subgraph obtained by removing them,
then the possible leading overlaps are the subgraphs on the roof E(Go) which

equals E(G) without its final, flat part where ay; = 0.)
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As one can see in Figure 3.2, the points (s, max,,=sey), s =3,...,vg — 1,
do not necessarily lie on the roof. In fact, there are graphs with only two roof
subgraphs, K> and G. They are easily characterized, assuming vg > 3, by
the condition that for all H C G with 2 < vy < vg the inequality

eg —1 eg —1

on =2 ve—2 (3.16)

holds. On the other extreme, there are graphs G with as many as about
2yg of their subgraphs being leading overlaps for various (mutually distinct)
ranges of p. For this and other related results, see Ruciriski (1991) and Luczak
and Rucinski (1992).

Measures of graph density

The subgraph plot can also be used to visualize several other useful concepts.

First, the density d(G) = eg /vg of G (with vg > 0) equals the slope of the
line Ly from (0,0) to the top point (vg, eq).

The mazimum density m(G) = max{d(H) : H C G, vy > 0} equals the
slope of the least steep line Ly, from (0, 0), such that the entire subgraph plot
lies below or on L,,; in other words, L, is the tangent from (0, 0) to the roof.

A graph G is called balanced if m(G) = d(G), that is, if d(H) < d(G) for
every H C G. (In words: G does not contain a subgraph denser than itself.)
This is equivalent to Ly = L,,, and thus G is balanced if and only if the
subgraph plot lies below or on Ly. In Example 3.3, Hy is balanced and Gy is
not.

A graph G is called strictly balanced if d(H) < d(G) whenever H C G,
which is to say that every proper subgraph of G is strictly less dense than the
graph itself; equivalently, the subgraph plot lies strictly below L4, except for
the top point. Trees, regular connected graphs as well as the graph Hy from
Example 3.3 are all strictly balanced. An example of a balanced graph that is
not strictly balanced is the union of a cycle and a path (of length > 1) which
are disjoint except that one endpoint of the path lies on the cycle. Another
example is given by the disjoint union of two copies of any balanced graph,
or by any balanced extension of a non-balanced graph (cf. the graph Fj in
Figure 3.1).

We will further use some related notions, which are natural, for example,
when considering graphs with a distinguished vertex or edge. For a graph G
with vg > 2, define dV(G) = eg/(vg — 1); let dV(K,) = 0. Then define

m(G) = max{dV(H) : H C G}. (3.17)

When vg > 2, dV)(G) and m{V)(G) are the slopes of the line Lgl) from (1, 0)
to the top point, and of Lﬁ,i’, the tangent from (1,0) to the roof.
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Similarly, for a graph G with vg > 3, define d®(G) = (e¢; - 1)/(vg — 2);
let 2 (K,) = d®(2K,) = 0 and d® (K>) = 1/2. Then define

m?(G) = max{d? (H) : H C G}. (3.18)

The definition of d(®)(K,) may look artificial but turns out to be convenient
(cf. Remark 3.14 below). Note that if eg > 2, then m(?(G) = max{d® (H) :
H C G, vy > 3}, so the special case does not matter.

When eg > 2, d®(G) and m®(G) are the slopes of the line L? from

(2,1) to the top point, and of Lg), the tangent from (2, 1) to the roof.

In analogy with the above, a graph G is called K-balanced if m)(G) =
dV(G), or equivalently, dV) (H) < d)(G) for all H C G; furthermore, graphs
with dV(H) < dV(G) for all H C G are called strictly K-balanced. Anal-
ogously, we define K;-balanced and strictly K;-balanced graphs. These no-
tions have applications in the study of solitary subgraphs (see Section 3.6),
G-factors (see Chapter 4), and Ramsey properties of random graphs (see Sec-
tion 7.6 and Chapter 8).

Remark 3.14. Below we collect some simple but useful facts about the pa-
rameters m(G), m(!)(G) and m®)(G). The proofs are left to the reader (Ex-
ercise!). '

For convenience, let m(9(G) = m(G). Let Gi,...,Gy be the connected
components of G. Then m(*(G) = max; m(*(G;) for ¢ = 0,1,2. This implies
that strictly balanced, strictly K-balanced, and strictly K,-balanced graphs
are all connected.

We have m{¥(G) = 0 if and only if G is empty, that is, eg = 0, for every
i. Moreover, m(G) < 1 if and only if G is a forest (and then m(G) =1-1/s,
where s is the order of the largest component), and m(G) = 1 if and only if
the densest component of G is unicyclic. For all other graphs, m(G) > 1.

As far as m(V)(G) is concerned, m(!)(G) = 1 if G is a non-empty forest,
and m()(G) > 1if G is not a forest.

Finally, m(?) (G) = 1/2 when the maximum degree A(G) =1 (i.e., when G
consists of isolated edges and possibly some isolated vertices), m*(G) = 1 if
G is a forest with A(G) > 2, and m(?(G) > 1 if G is not a forest.

In Chapter 6, we will use the following observation.
Lemma 3.15. If np™ — oo, then every leading overlap is connected.

Proof. Suppose that H C G with ey > 0. If H is the disjoint union of two
proper subgraphs H; and H,, where, say, e(H;) > 0, then Lemma 3.6 yields
n¥(H2)pe(H2) _ o5 and thus

nUHpeH — nv(Hl)pe(Hl)nv(Hg)pe(Hz) > nV(H) pe(H) o E(XH,) > ®c.

Consequently, H is not a leading overlap. [ |
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Remark 3.16. For e¢ > 2, the slope a};_ defined above equals m(?)(G).
Hence, under this condition, K3 is a leading overlap when np™” (¢) = Q(1),
and the only leading overlap when npmm(G) — 0.

Remark 3.17. Assume vg > 3. Then the condition (3.16) characterizing
graphs G with only two roof subgraphs (viz. K2 and G) may be expressed as
d®(H) < d®(G) for all H C G with vy > 3; this is equivalent (Exercise!)
to G being strictly K»-balanced, except for the two cases G = 2K, and G
being a union of an edge and an isolated vertex. Consequently, if G lacks
isolated vertices, then G has only two possible leading overlaps if and only if
G is strictly Kz-balanced or G = 2K5.

Remark 3.18. The arboricity of a graph is defined as the least number of
forests that together cover the edge set of the graph. This seemingly unrelated
notion is, in fact, closely connected to the quantities just defined; by a theorem
of Nash-Williams (1964) (see e.g. Diestel (1996)), the arboricity of G equals
[mM(G)].

3.3 SUBGRAPH COUNT AT THE THRESHOLD
When p = O(n~/™%), we have &g = ©(1) and, by Theorem 3.9,

0< lirgian(G(n,p) D G) < limsupP(G(n,p) D G) < 1.

n-—>00

This ensures that the threshold in Theorem 3.4 cannot be sharpened. For this
range of p = p(n) the derivation of lim, o P(G(n,p) D G) may not be easy.
However, for the class of strictly balanced graphs defined in the preceding
section, not only the precise value of lim, o P(G{(n,p) D G), but the entire
limiting distribution of X can be computed.

The following result was proved independently in Bollobas (1981b) and
Karonski and Ruciriski (1983a), and generalizes earlier results about trees
(Erdés and Rényi 1960) and complete graphs (Schiirger 1979).

Theorem 3.19. If G is a strictly balanced graph and np™ ) — ¢ > 0, then
Xe 3 Po(), the Poisson distribution with expectation A = c¥¢ [ aut(G).

Proof. This proof exemplifies the technique called the method of moments,
which is presented in detail in Chapter 6; we use here the version given in
Corollary 6.8.

Consider the factorial moments of Xg, defined as E(Xg)x = E[X¢(Xa —
1)---(Xg — k+1)]. We have, for k=1,2,...,

EXe)k= Y. PUe, --Ig, =1) = E + E,
Gi1,...,Gg
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where the summation extends over all ordered k-tuples of distinct copies of G
in Kr, and E; is the partial sum where the copies in a k-tuple are mutually
vertex disjoint. It is easy to verify (Exercise!) that

Ej ~ (EXg)* ~ (c*° [ aut(G))*.

This implies that X¢ is asymptotically Poisson if E}/ = o(1), and it remains
to be proved that E; = o(1). Let e; be the minimum number of edges in a
t-vertex union of k£ not mutually vertex disjoint copies of G.

Claim. For every k > 2 and k <t < kvg, we have e; > tm(G).

Proof of Claim. For a graph F' define fr = m(G)vg — er. Note that fo =0
and, since G is strictly balanced, fy > 0 for every proper subgraph H of G.
We are to prove that for every graph F which is a union of k not mutually
vertex disjoint copies of G, fr < 0. We will do it by induction on k, relying
heavily on the modularity of f, that is, on the equality

fRur = fR + fR — fROR (3.19)

valid for any two graphs F} and F,. Let F = Ule G;, where each G; is a
copy of GG, and the copies are numbered so that G; N G # 0. For k = 2,
(3.19) yields fg,uc, = —fe,nG, < 0, because Gy N G, is a proper subgraph
of G. For arbitrary k > 3 we let ' = |J*7! G; and H = F' N Gy. Then H
may be any subgraph of G including G itself and the null graph, but in any
case fg > 0. Moreover, fr: < 0 by the induction assumption. Thus

fr=fr+ fe,— fu <0. ' ]

Having proven the claim, we easily complete the proof of Theorem 3.19
with one line. Indeed

kv—1

EH_ZO te,)_o() ]

Remark 3.20. Using Theorem 6.10, Theorem 3.19 can be extended to joint
convergence of several subgraph counts, with the limit variables independent
(Exercise!).

Still assuming that p = ©(n~!/™(9)), consider graphs other than strictly
balanced graphs. If G is nonbalanced, then the expectation of Xg tends to
infinity. It turns out that there is a nonrandom sequence a,(G) — oo, such
that the asymptotic distribution of X¢g/a.(G) coincides with that of X,
where H is the largest subgraph of G for which d(H) = m(G). Clearly, H is
balanced and we are back to the balanced case. The sequence a,(G) is equal
to the expected number of extensions of a given copy of H to a copy of G in
the random graph G(n,p). For details, see Rucinski (1990).
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If a graph G is balanced but not strictly balanced, then the limiting dis-
tribution of X is no longer Poisson. Although, in principle, as shown by
Bollobds and Wierman (1989), the limiting distribution can be computed,
there is no compact formula. We give only three simple examples, illustrating
typical phenomena.

Example 3.21. We consider three balanced but not strictly balanced graphs.
All three have m(G) = 1, and thus we assume p = ¢/n for some ¢ > 0.

First, if G = 2Cs5, a union of two disjoint triangles, then a.a.s. Xg =
1 X0, (X, —1) (Exercise!). Since Xo, > Zs € Po(c®/6) by Theorem 3.19, and
continuous functions preserve convergence of distribution (Billingsley 1968,

Section 5), we obtain Xg 4 323(Z3 — 1). In particular, for the probability
of no copy of G, P(Xg =0) = (1 + ¢3/6) exp(—c®/6).

Second, if G is a disjoint union of a C3 and a C4, then a.a.5. Xg = X¢, Xc,-
By Remark 3.20, (Xc,, Xc,) = (Zs,Z4), with Z3 € Po(c®/6) and Z; €

Po(c?/8) independent. Consequently, X¢ LY Z3Z4. In particular, P(Xg =
0) = 1 — (1 —exp(—c®/6)) (1 — exp(—c*/8)).

Third, if G is the whisk graph K7, that is, a triangle with a pendant edge
(see Figure 3.3), then Xg LY Z:Z=31 Wi, where W; € Po(3c) are independent
of Z3 € Po(c®/6) and of each other. In particular, P(X¢ = 0) — exp(—(1 —
e~3¢)c®/6). The idea behind this is that, asymptotically, there is a Po(c®/6)
distributed number of triangles, and each triangle has a Po(3c) distributed

number of pendant edges, each creating one copy of K;. For details, see
Bollobas and Wierman (1989) or Janson (1987).

Finally, let us mention that for p > n~1/™(® X has an asymptotic
normal distribution (Theorem 6.5).

3.4 THE COVERING PROBLEM

The next topic covered in this chapter deals with covering every vertex of a
random graph by a copy of a given graph G. The graph property that every
vertex belongs to a copy of G will be denoted throughout this chapter and
Chapter 4 by COVg. If G contains an isolated vertex (and n > vg), then,
trivially, the property COV¢ coincides with the presence of a copy of H, where
H is obtained from G by removing one isolated vertex. Since this property
has been discussed before, throughout this section we will be assuming that
the minimum degree of G is at least 1.

For a particular vertex 7 € [n], there are possibly several positions it may
take in a copy of G which covers it. For the purpose of classifying them,
let us introduce the notion of a rooted graph (v,G), where G is a graph and
v € V(G) is the root. For example, there is only one (up to isomorphism)
rooted version of K3, while the whisk graph K3 enjoys three nonisomorphic
rooted versions (see Figure 3.3).
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Fig. 3.3 Three rooted versions of the whisk graph; the roots are indicated by open
circles.

For a rooted graph (v, G), with vg > 1, let d(v,G) = eg/(vg — 1) and let

m(v,G) = max d(v,H).
H:weHCG

(Thus, d(v,G) = dV)(G) does not depend on v, but m(v, G) does, in general.)

A rooted graph (v,G) is called balanced if d(v,G) = m(v,G) and strictly
balanced if d(v,H) < d(v,G) for every proper subgraph H of G containing
the vertex v. For instance, among the three rooted versions of K7 only one is
strictly balanced, while the other two are not balanced (Exercise!). Note that
a graph is strictly Kj-balanced if and only if all its rooted versions are strictly
balanced (Exercise!). In particular, all cycles and complete graphs have only
one rooted version, and that is strictly balanced.

For ¢ € [n] and v € V(G), let U;(v) be the number of copies of (v,G)
contained in the random graph G(n,p), in which vertex ¢ takes the role of
the root v, and let U; be the total number of copies of G containing ¢. Then,
similarly to the problem of containment of ordinary subgraphs, p = n=1/™(®:6)
is the threshold for the property “U;(v) > 0” (Ruciriski and Vince 1986) and
consequently, p = n~1/ minvec m(v.G) i5 the threshold for the property “U; > 0”
(Exercise!).

For instance, as soon as p > n~3/4 a fixed vertex, say vertex 1, a.a.s.
belongs to a copy of K7, but only when p > n=2/3, does it belong to a
triangle.

However, we are mainly interested in the random variable

n

We=I|{i€hn]:Ui=0} =) 1[U;=0],

1

which counts the vertices of G(n, p) not covered by copies of G; hence COVg
is equivalent to “Wg = 0”. Theorem 3.22 below provides thresholds for the
events COV¢g which, of course, depend on the structure of G.

For a graph G, let m, = miny,egm(v,G) and M(G) = {v € V(G) :
m(v, G) = m.}. For a vertex v € M(G) let C, be the family of all subgraphs H
of G which contain v and satisfy the conditions d(v, H) = m. and Ng(v) # 0,
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the latter condition just saying that v is not an isolated vertex in H. Further,
let s, = mingec, e(H), with s, = 0 if (, = @, and s = MaXye p(G) Sv-
Finally, set a = |M(G)|/ aut(G).

Theorem 3.22. Let G be a graph with minimum degree at least 1.

(i) If for every v € M(G) the rooted graph (v, G) is strictly balanced, then

; vg—1,€c _1 _
lim P(G(n,p) € COVg) = 0 #fan’™p —logn = —oo
n—00 1 ifan¥e~1p®¢ —logn — oo.

Moreover, if an¥¢~1p®¢ — logn — ¢, —0o < ¢ < oo, then
We 4 Po(e~¢), and hence P(G(n,p) € COVg) — exp(—e~°).

(ii) If s < 0o, then there ezist constants ¢,C > 0 such that

0 if p < c(logn)!/*n=1/m-,

Aizm P(G(n,p) € COVe) = {1 if p > C(log m)!/*n=1/m=_

(iii) If s = o0, then

0 ifp<n-l/m

lim P(G(n,p) € COVg) = {1 if p > n=1/m-

n-—=>o00

It is easy to check that the assumption in (i) is a special case of that
in (i), with m. = dV(G) and s = eg (Exercise!). In Case (iii), which is
the complement of (ii), the parameter m. coincides with m(G) appearing
in Theorem 3.4 (Exercise!); hence the threshold for covering by copies of G
coincides with the threshold for existence of any copy at all.

Remark 3.23. Note that the nicer the structure of G, the sharper thresh-
old one can prove. Indeed, in Case (i), a~1/¢c (logn)'/¢¢n=1/m+ is a sharp
threshold. In Case (ii), it follows from Theorem 1.31 that there exists a sharp
threshold, although we do not know it exactly. By (ii) above, the sharp thresh-
old is of the form b(n)(logn)!/*n=1/™- for some b(n) with ¢ < b(n) < C; it
is reasonable to conjecture that b(n) is a constant, but at present we cannot
rule out the possibility that it oscillates somehow.

In Case (iii), in contrast, the threshold is coarse. In fact, if p = en~1/™m- for
any fixed ¢ > 0, and H is a minimal subgraph of G such that d(H) = m(G),

then Theorem 3.19 shows that Xg LY Po(A) for some A < oo, and thus
P(Xg =0) >P(Xyg =0) = e > >0, so P(G(n,p) € COVg) # 1.

Part (i) was proved independently by Ruciriski (1992a) and, in a slightly
disguised form, by Spencer (1990). We will present the proof of part (i) only.
The proofs of the other two parts follow from more general results by Spencer
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L, Ly Lj

Fig. 3.4 The lollipop graphs.

(1990) on extension statements; see the end of this section. Before presenting
the proof of (i), we give a few examples.

Example 3.24. The graphs K3 and K7 have strictly balanced rooted ver-
sions and, by Case (i) of Theorem 3.22, the respective thresholds for the
properties COVg, and COV .+ are (logn)'/3n=2/3 and (logn)*/*n=3%/4, re-
spectively. In particular, for (logn)!/4n=3/% « p(n) « n=?/3 a.a.s. every
vertex belongs to a copy of K3, but since there are only o(n) triangles, most
vertices take the “off-triangle” position.

Example 3.25. The threshold for COVg, equals n=2/5log'/*®n by Theo-
rem 3.22(i). Consider now the lollipop graphs L, obtained from a clique K3
by attaching to it a path P, (see Figure 3.4).

Let ¢ denote the vertex of degree one (the tail vertex). The lollipop L; has
m = 11/5 and M = {t}, and the rooted graph (¢, L;) is strictly balanced,;
thus Case (i) applies. For Ls, we have m = 2 and again M = {t}, but this
time the rooted graph (¢, L,) is balanced, but not strictly balanced. Moreover,
C: = {L2},s0s = s; = e(Ly), and thus Case (ii) applies. Hence, the thresholds
for covering every vertex of G(n,p) by copies of L, and L2 are, respectively,
n=3/1(logn)!/!! and n=1/2(logn)'/2,

Finally, consider lollipops with » > 3. We have m = 2 and ¢ € M, but this
time the only pair (¢, H) which achieves d(v, H) = m is such that H is the
clique K5 together with the tail vertex ¢, which is isolated in H. Thus C; = 0,
s¢ = oo, Case (iii) applies, and the threshold for COV_ coincides with that
for the existence of Kj, that is, n=!/2. In other words, as soon as copies of K3
begin to appear in G(n,p), every vertex is at distance at most three from one
of them. This particular observation follows also from the known fact that
the threshold for diameter three is n=2/3log!/® n (Bollobas 1985, Chapter X),
which is well below the threshold for existence of K.
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Proof of Theorem 3.22(1). We use a mixture of the second moment method
and the correlation inequality of Theorem 2.18(i). By the monotonicity of the
property COVg we may assume that n'¢~1p¢¢ = O(logn). Since for every
v & M(QG), P(Ui(v) > 0) = o(1), the decisive role in covering the vertices of
G(n,p) is played by the rooted versions (v,G), where v € M(G). Let {v;},
i =1,...,1, be a maximal collection of vertices of M(G) for which the rooted
graphs (v;, G) are pairwise nonisomorphic. Set U; = Z§'=1 Ui(v;) and observe
that

> Ui =|M|Xg.
=1

Hence, by symmetry, E(T,) = ]%l E(Xg) = an¥e~1pfe + o(1).

Further, for each v ¢ M(G), choose a minimal subgraph H, C G containing
v such that d(v, Hy) = m(v,G) > m., let U¥(v) be the number of copies of
(v, Hy) in G(n,p) rooted at ¢, and let U = 3 o) Ui (v). Then EUY =
o(1).

Since E(Wg) = nP(U; = 0), we need a sensitive asymptotic for P(U; = 0).
Note that U; + Uy = 0 implies U; = 0. Thus, by Corollary 2.13 we have

P(U, =0) > P(0, + U} =0) > e~ E(O1+UD)/(1-p) = o—E(D1)+o(1)

For an upper bound, let S be the family of all edge sets of rooted copies of
(v;,G), j =1,...,1, in the complete graph K, with vertex 1 as the root. For
each A € S, we set

T4 =1[A C G(n,p)].

We then have

Z Z ]E(IAIB) =0 (Z nzvc_s_lpzec—t)

A B#A, BNA#D (s,t)

=0 <n2vc—2p2€c Zn—(s—l)p—t) ’

(s:t)

where s and ¢ represent, respectively, the number of common vertices and
edges of a pair of two copies of G, each rooted at a vertex of M(G) and both
containing vertex 1 as the root. Such an intersection is a proper subgraph of
G containing a vertex v € M(G) and hence, by the fact that (v, G) is strictly

balanced, we always have
t eG

< .
s—1 vg — 1

Thus, in our range of p(n), n®=1pt > nf for some € > 0. This together with
Theorem 2.18(i) implies that

P(U, = 0) < B(T, = 0) < e~ MO+,
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Hence,
E(Wg) = nP(U; = 0) = ne~ HOV+0(l) — pe-an"@7'p"0 +o1) (3 90)

If an¥¢~1pe¢ —logn — oo, then E(Wg) = o(1) and, by the first moment
method, P(Wg > 0) = o(1). On the other hand, if an¥¢~!p®¢ —logn — —oo,
then E(Wg) — oo and we apply the second moment method to Wg. To this
end, as Wg is a sum of mutually dependent indicators, it is convenient to
express the variance of W in the form

Var(Wg) = E(We(We — 1)) + E(We) — (E(Ws))*.
We have
EWeg(Wg —1)) =n(n - 1)P(U, = U, =0) < n(n — 1)P(U, =T, =0)

and, by another application of Theorem 2.18(i) (this time to the family of all
edge sets of copies of (v;,G), j =1,...,1, rooted at 1 or 2),

P(ﬁl — Uz =0) < e—2]E(U1)+o(1).

Altogether,

—-1->0.

Var(Wo) _ EWe(We 1)) = 1

FWe =0 < ey =~ ®We)? T E(We)

Similarly one can prove that when an¥¢~!p®¢ — logn — ¢, and thus
E(Wg) — e~ by (3.20), the k-th factorial moment E[Wg(Wg —1)---(Wg —
k + 1)] of Wg converges to e~k for every k > 1. This proves, by Corol-
lary 6.8, that Wg converges to the Poisson distribution with expectation e=¢.
Alternatively, one could apply here Stein’s method (¢f. Theorem 6.24). [

Extension statements

Spencer (1990) considers a related problem with some applications to the
zero-one laws for random graphs discussed in Chapter 10.

Let R = {v1,...,v,} be an independent set of vertices in a graph G. The
pair (R,G) will be dubbed a rooted graph. For |R| = 1 this is the notion
introduced at the beginning of this section. We say that a graph F satisfies
the extension statement Ext(R,G), or briefly, F' € Ext(R,G), if for every r-
tuple R’ = {v},...,v.} of vertices of F' there is a copy of G in F with v}
mapped onto v;, j =1,...,7.

Example 3.26. If G = K, and |R| = 1, then F' € Ext(R, G) means that there
are no isolated vertices in F. If G = K3 and |R| = 1, then F € Ext(R,G)
is equivalent to F© € COVg. The same is true for every vertex-transitive
graph G; more generally, if R = {v}, then F' € Ext(R,G) means that every
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vertex in F' belongs to a copy of G where it corresponds to v. If G = P, and
R is the set of the endpoints of Py, then F' € Ext(R, G) says that every pair
of vertices of F is connected by a path of length k.

We will now define notions which are straightforward generalizations of
the case (v, G) treated above. For a rooted graph (R,G), with r = |R]|, let
d(R,G) =eg/(vg —r) and let

m(R,G) = max d(R,H).
H:RCHCG

The rooted graph (R, G) is called balanced if for every subgraph H of G, such
that V(H) D R, we have d(R,H) < d(R,G), and strictly balanced if this
inequality is strict for all proper subgraphs H of G, such that V(H) 2 R.

As a generalization of the families C, appearing before Theorem 3.22 we
now define a subgraph H containing R to be primal if d(R, H) = m(R,G)
and grounded if at least one of vy, ..., v, is not isolated in H. We let sg be
the smallest number of edges in a grounded primal subgraph H, with sgp = 0o
if no such subgraph exists. Finally, let b; be the number of automorphisms
of G that fix every element of R, and let b2 be the number of permutations
of R that can be extended to some automorphism of G. Then, the following
results hold; for the proof we refer to Spencer (1990).

Theorem 3.27. Let G be a graph with minimum degree at least 1, and let
R # 0 be an independent set of vertices in G.

(i) If the rooted graph (R,G) is strictly balanced, then

lim P(G(n,p) € Ext(R,G)) =

n—>o0

0 if n¥e~"p¢ —byrlogn - —o0
1 ifnYé~"pé — brlogn — oo.

Moreover, if n¥¢ ~"p®e — byrlogn — ¢, —00 < ¢ < 00, then P(G(n,p) €
Ext(R,G)) — exp(—e~/b1/by).

(ii) If sg < oo, then there exist constants c,C > 0 such that

lim P(G(n,p) € Ext(R,G)) =

n-—+o00

0 if p < c(logn)t/srp=1/mR.G)
1 if p>C(logn)/srp~V/m(EG),

(iii) If sp = oo, in which case m(R,G) = m(G), then

0 -1/m(G)
lim P(G(n,p) € Ext(R,G)) = { fpLn

n-—>o00

1 ifp>n /™9, n
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The 1-statements in parts (ii) and (iii) (with |R| = 1) immediately imply
the corresponding statements in Theorem 3.22. This is not so for the 0-
proofs as for the corresponding 0-statements in Theorem 3.27 given in Spencer
(1990). (For the O-statement in (iii), this is just applying Theorem 3.4.)

Example 3.28. For a graph G, one may ask what the threshold is for the
property that for every vertex of G(n,p) the subgraph induced by its neigh-
borhood contains a copy of G. Let G + K be the graph obtained by joining
a new vertex w to every vertex of G. Then this property is equivalent to
Ext({w},G + K1). For a strictly balanced (in the ordinary, unrooted sense)
graph G, the rooted graph (w,G + K) is strictly balanced and, by The-
orem 3.27(i), the desired threshold is (logn)!/(ve+ec)p—ve/(va+ec) (which
coincides with the threshold for COVg4 k,) (Exercise!).

3.5 DISJOINT COPIES

In this section we consider a problem which will be further developed in Sec-
tion 4.2. The question we address here is: How many disjoint copies of a given
graph G are there in a random graph G(n,p)? As the disjointness may be
meant with respect to vertices or with respect to edges, we define two ran-
dom variables D¢ and D¢ equal to the cardinality of the largest collection of
vertex- and edge-disjoint copies of G, respectively. Trivially, D& < Dg < Xg,
but also Dg < D§; for every non-empty subgraph H of G and D¢ < DY, for
every non-null subgraph H of G. Define

®%(n,p) = P5 def min{E(Xy) : H C G, vy > 0} = min(®g,n),

denote ®% = &g, where & was defined in Section 3.1, and observe that

& — oo if and only if % — oo (¢f. Lemma 3.6). We know from Section 3.1
that when ® — oo, then Xy = O¢(EXy) for H C G (since &G — oo
implies ®¢; — o0) and thus D% = O¢(®g) and D& = Oc(®g). In fact, the
above quantities provide the correct orders of magnitude for the two random
variables in question.

Theorem 3.29. If &g — oo, then Dg = O¢(®g) and Dg = O¢(9g).

Proof. The proof below is a slight modification of that from Kreuter (1996)
and relies on the second moment method.

Consider first the vertex case and define an auxiliary graph I" with vertices
being the copies of G in G(n,p) and edges connecting pairs of copies with
at least one vertex in common. Thus, vr = Xg and er = ) Xp, where
the sum is taken over all unions F = G; U G of two copies of G sharing at
least one vertex. Also, any independent set of vertices in I" corresponds to a
vertex-disjoint collection of copies of G in G(n,p). Hence, it follows from the
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Turan Theorem (see, e.g., Berge (1973, p. 282)) that

X2
D¢ > g . 3.21
G = XG + 221&‘ XF ( )
In view of this, all we need to show is that
X 2
Xr =Oc¢ ((E UG) ) | (3.22)
L fe

for every union F' of two vertex-intersecting copies of G.
For convenience, set ¥y = n p*F and note that EXr = O(¥g). The
reason we prefer to use ¥ rather than E Xy is the log-modularity property

YrurYmnrm =Y ¥R

holding for arbitrary graphs Fy and F>. Note also that Yy = O(E Xy) =
Q(®g) if H C G and vy > 0.

Now assume that F = G, UG, where G; and G; are two copies of G, and
let H =G, NGz have vy > 0. Then

_ _ol¥\_,(%
EXF_@(QF)_G(E)_O(%).

In order to bound X by the same quantity as E Xr we will apply Cheby-
shev’s inequality. For this we need to estimate the variance of X, which, by
Lemma 3.5, is of the order ¥%/®%. To bound, in turn, % from below, as-
sume that L C F withey, >0andlet L; = LNG;,i=1,2. Then L = L,UL-,
LUH = (LUH)U(L;UH), and (L UH)N(L:UH) = H. Two applications
of the log-modularity of ¥ yield

¥, = YivrYrne _ Yr,uEY oY LAl
YUy 2, )
Here L, UH, Lo, U H and LN H are all subgraphs of G. Thus, if vprg > 0,
then ¥, = (( 1C’;)3/\Ifj’5,).

In the special case vprg = 0, the graphs L; and L, are disjoint and at least
one of them is non-empty. Assume that ey, > 0. Then, taking into account
that ¥, > &% — oo if vy, > 0 and ¥, = 1 otherwise, we obtain

(2%)°

\I’L = \I’LI\I’L2 2 \I’LI ZQ <—\Ilz_) .
H

Consequently,

e . o [ (®8)°
‘I’F‘e’i‘L%EXL‘Q< %2,

and, using the log-modularity of ¥ again,

i =0 (8) =0 (888) -0 (5

Q
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Hence, by Chebyshev’s inequality and the assumption that &% — oo,

2
P(Xe 2 EXe+ 32) = 0(1/25) = o),
G

which proves (3.22) and completes the proof of Theorem 3.29 in the vertex
case.

The proof for D¢ follows along the same lines. But instead of repeating the
same argument for the edge case, we present an alternative approach involving
Markov’s and Talagrand’s inequalities.

Building the auxiliary graph I" in a similar way with the obvious modifi-
cation that now the edges of I join edge-intersecting copies of G in G(n, p),
we have, by Markov’s inequality (1.3), that with probability at least 3, er <
4E(er). We have 4E(er) < a1(E Xg)?/®%, for some ¢; > 0, and thus, by
(3.21) modified to the edge case, and by the fact that Xg = O¢(E X¢), there
is another constant c; > 0 such that D§ > co®§ with probability at least,
say, =.

N gw, using Talagrand’s inequality, we will convert £ to 1 —o(1) as required.
As we are heading toward an application of Theorem 2.29, let us define Z; to
be the indicator of the presence of the i-th edge of the random graph G(n, p),
i=1,2,...,N = (3). Then D§ = f(Z,...,ZnN), where the function f clearly
satisfies the Lipschitz condition (L) with all ¢; = 1. The other assumption of
Theorem 2.29, Condition (C), holds with the function ¥ (r) = egr for integer
r > 0 (and thus with ¥(r) = eg[r]| for any real r > 0). Indeed, for any
integer r, and for any graph F' containing r edge-disjoint copies of G, choose
J to be the index set of all egr edges belonging to these copies. Then any
other graph coinciding with F on the given edges contains r edge-disjoint
copies of G too. Therefore, by (2.35) (¢f. Example 2.33), for 0 < ¢35 < c2 and
with ¢t = (62 - Cg)‘b%,

P(D < c38%) < 2P(Dg < c385) P(D > [e:25])

_ 2 e \2
S2exp{—(cz4e?c)2<1(>gc) } = exp{-0(25)} =o(). M

Note that the last bound in the proof provides yet another proof of the
right-hand inequality of Theorem 3.9. Indeed,

P(X¢ = 0) = P(Dg = 0) < P(Dg < c38%).

3.6 VARIATIONS ON THE THEME

There are several other properties related to that of containing a copy of G.
One such property is the containment of at least one induced copy of G in
the random graph G(n,p). Another variation is counting only those copies of
G which are vertex disjoint from all other copies of G contained in G(n,p).
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Fig. 3.5 The only solitary triangle in this graph is drawn in bold.

Below we call them solitary (see Figure 3.5). Finally, we consider a special
case of solitary subgraphs: the isolated copies of G.

Induced subgraphs

Let us denote by Y5 the number of induced copies of G in G{n,p). As we will
see in Chapter 6, for p constant, the behavior of Yg may significantly differ
from that of Xg. However, for p = o(1) they are asymptotically the same.
Here we only explain why the event “Yg > 0” has the same threshold as the
event “Xg > 0”. The 0-statement of Theorem 3.4 holds for induced copies
simply because Yo < X¢g. Let Jgr be a zero-one random variable equal to 1
if G’, a copy of G in K, actually becomes an induced copy of G in G(n,p).
For an application of the second moment method, observe that, assuming
p=o(1),
E(Jo) = pe (1 - p)(F) ¢ ~ E(ls)

and, consequently,
E(Ye) ~ E(Xeg).

Moreover, for any two copies G’ and G” of G which share at least one edge

Cov(Jg, Jgr) < E(JgrJgr) < ]E(IGrIGH) ~ COV(Igr,IGH),

while for any two copies with at most one vertex in common, Cov(Jg:, Jgr) =
0. Finally, for any two edge-disjoint copies sharing t vertices, where t > 2,
Cov(Jgr, Jg) < p*¢¢, and the number of such pairs is O(n2?¢~t). Hence, as
in the case of ordinary subgraphs, we have (Exercise!)

= o(1).

There is another way of deducing the above fact. Assume again that p =
o(1). By Markov’s inequality, P(X¢ — Yo > +E(Xg)) = o(1) and so a.a.s.
Yo > Xg — ;E(Xg). On the other hand, we know that when &g — oo,
Xc/E(Xg) 2 1 and, in particular, a.a.s. X¢ > 2E(Xg). Hence, a.a.s.
Yo > %E(XG) > 0.
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The presence of an induced copy of G is not a monotone property (except
in the trivial cases in which G is either complete or empty). It is not even
convex (Exercise!), however, it has a second (disappearence) threshold toward
the end of the evolution of G{n,p). In terms of ¢ = 1 — p, it corresponds to
the threshold for “Xge > 0” in the complementary random graph G{n,q),
where G°¢ is the complement of G. Hence, the second threshold is roughly
1 — ©(n~Y/m(G9)) (Exercise!).

Solitary subgraphs

Let us denote by Zg the number of solitary copies of G. Clearly, Z¢ < D%,
where D has been defined in the previous section. Observe that E(Zg) =
E(Xg)Ig, where I1g is the conditional probability that a fixed copy of G is
solitary, given that it is present in G(n, p).

For a nonbalanced G, lim,_,., P(Zg > 0) = 0, since as soon as copies of G
emerge, it can be seen by Theorem 2.18 that IIg is exponentially small with
a power of n in the exponent, and hence P(Zg > 0) < E(Zg) = E(Xg)Ig =
o(1) (Exercise!). With some additional effort one can prove that for a balanced
but not strictly balanced G, we have P(Zg > 0) = o(1) as soon as P(Xg >
0) — 1 and thus limsup P(Zg > 0) is never equal to 1 (Exercise!).

Let us assume now that G is strictly balanced. If p = ©(n~1/4(5)), then, as
we showed in the proof of Theorem 3.19, a.a.s. there are no intersecting pairs
of G at all, and so Zg = X¢. In other words, when copies of a strictly balanced
graph G first emerge, they are all solitary. This holds true even beyond the
threshold, when np* %) — oo sufficiently slowly. But the containment of a
solitary copy is not monotone either, and with more and more edges in the
random graph, the solitary copies of G become rarer until complete extinction
occurs. The second (disappearence) threshold was detected for strictly K-
balanced graphs by Suen (1990), and for a slightly larger subclass of strictly
balanced graphs (including trees) by Kurkowiak and Rucidski (2000). It is
determined, roughly, by the equation E Xg = O(nlogn).

The difficulty we are facing here is that the probablity IIg depends on all
pairs in [n]? and, rather than finding an exact expression, one can only bound
it, using results like Theorem 2.18 and Theorem 2.12. We remark that this
problem was a motivation for Suen to develop his correlation inequality, some
versions of which were discussed in Section 2.3.

Isolated subgraphs

A much simpler situation takes place when one counts the isolated copies of
G, that is, assuming G is connected, the connected components of G(n, p)
which are isomorphic to G. Let Tg count the isolated copies of G. This time
E(Tg) = E(Yg)(1 — p)v¢(®v¢) = O(nv¢p®ce~v¢"P); hence, if eg > vg, we
have P(Tg > 0) < E(Tg) = o(1), and there are a.a.s. no isolated copies of G.
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The same is true if e = vg and further p € 1/n or p > 1/n. We urge the
reader (Exercise!).to show that T has a limiting Poisson distribution when G
is connected with eg = vg and p ~ ¢/n, 0 < ¢ < oo (Erdés and Rényi 1960);
see Example 6.29.

It remains to consider connected graphs G such that e¢ < vg, that is,
trees. These are the only small graphs which a.a.s. become components of a
random graph. Instead of focusing on a single tree, we will count all trees of
a given order at once. Let T, denote the number of all v-vertex isolated trees
in G(n,p), v=1,2,.... Then, provided np? — 0,

Uv—2

E(Ty) = (:) 'Uv—zpv—l(l _p)v(n-—v)+(‘2’)_v+1 ~ Tnvp”"le—vnp.

This quantity converges to a constant if either n?p*~! — ¢ > 0 or vnp —
logn — (v — 1)loglogn — ¢ € (—o00,00). The following result, proved al-
ready by Erd6s and Rényi (1960), asserts that these two conditions determine
two thresholds for the property T, > 0. (See also Theorem 6.38 and Exam-
ple 6.29.)

Theorem 3.30. Let ¢, = vnp — logn — (v — 1) loglogn. Then

0 ifn’p* ! =0 o0rc, = oo,
P(T, >0
(T )_){1 ifn’p*~! = oo and ¢, = —c0.
Moreover, if n¥p*~! — ¢ € (—00,00) or ¢, = ¢ > 0, then T, 4 Po()A),
where A = lim,—, o E(T,) € (0, 00). |

The case v = 1 is special here. The random variable T} is the number
of isolated vertices in G(n,p) and n'p’~! = n. Hence there is only one
threshold. Furthermore, the loglogn term drops out and we arrive at the
following corollary.

Corollary 3.31. Let ¢, = np — logn and let Ty be the number of isolated
vertices in G(n,p). Then

0 ifc, — oo,
P(Ty > 0) —
(T > 0) {1 if cn = —00.
Moreover, if ¢, = ¢ € (—00,00), then T 2 Po(e™°). [ |

The proof of Theorem 3.30 follows the lines of those of Theorems 3.4, 3.19
and 3.22 (Exercise!). Another proof will be given in Example 6.28.




Matchings

Perfect matchings play an important role in graph theory. On the one hand,
they find a broad spectrum of applications. On the other hand, they are the
subject of elegant theorems. The two results which characterize their exis-
tence — Hall’s and Tutte’s theorems — are truly beautiful pearls of the theory.
No wonder that Erdds and Rényi, after settling the question of connectivity
(Erd6s and Rényi 1959, 1961), turned their attention to the problem of find-
ing the thresholds for existence of perfect matchings in random graphs (Erdés
and Rényi 1964, 1966, 1968).

The results they obtained reveal a special feature of random graphs one
could call “the minimum degree phenomenon.” Namely, it is frequently true
that if a minimum degree condition is necessary for a property to hold, then
a.a.s. the property holds in a random graph as soon as the condition is sat-
isfied. This phenomenon is discussed to larger extent in Section 5.1. Here
we just mention that as soon as the last isolated vertex disappears, the ran-
dom graph becomes connected (Erdés and Rényi (1959) and, for the hitting
version, Bollobas and Thomason (1985)). Moreover, as we will learn later in
this chapter (Corollary 4.5 and Theorem 4.6), provided n is even, from that
very moment the random graph also contains a perfect matching (Erd6s and
Rényi 1966, Bollobis and Thomason 1985).

In the first section of this chapter we present a new proof of the threshold
theorem for perfect matchings, which is based on Hall’s rather than Tutte’s
theorem. This approach was originally designed to solve the problem of perfect
tree-matchings (Luczak and Ruciniski 1991), a special instance of G-factors,
where one looks for a vertex-disjoint union of copies of a given graph G which
covers all vertices of G(n,p). Ordinary matchings correspond to the case
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G = K,. Section 4.2 collects results on G-factors and partial G-factors in
random graphs. Finally, in Section 4.3 we present recent advances on two long-
standing open problems: finding the threshold for triangle-factors in G(n, p)
and for perfect matchings in random 3-uniform hypergraphs, the latter known
as the Shamir problem.

4.1 PERFECT MATCHINGS

A matching in a graph can be identified with a set of disjoint edges. A perfect
matching is one which covers every vertex of the graph. Sometimes a perfect
matching is called a 1-factor, because it is, in fact, a l-regular spanning
subgraph. A necessary condition for the existence of a perfect matching in
a graph is the absence of isolated vertices. It turned out that in a random
graph this is a.a.s. sufficient. Because of the simplicity of Hall’s condition, it
is quite straightforward to prove this result for random bipartite graphs.

Random bipartite graphs

Recall that a random bipartite graph, denoted here by G(n,n,p), is the relia-
bility network with the initial graph being the complete bipartite graph K, ,
with bipartition (V1,V2), |Vi| = |V2| = n. In other words, G(n,n,p) is ob-
tained from K, , by independent removal of each edge with probability 1 —p.
Assume that logn — loglogn < np < 2logn and suppose that the random
graph G(n,n,p) does not have a perfect matching. Then, by the Hall Theo-
rem, there is a set S C V; for some i = 1,2, which violates Hall’s condition,
that is, |S| > |N(S)|, where N(S) is the set of all vertices adjacent to at least
one vertex from S. Let S be a minimal such set. Then (Exercise!),

(i) 15| =IN(S)| +1,
(ii) |S] < [n/2],
(iii) every vertex in N(S) is adjacent to at least two vertices of S.

Set s = |S|. If s = 1, then S is an isolated vertex. If s = 2, then .S consists
of two vertices of degree 1 adjacent to the same vertex. Let us call such a
structure a cherry (see Figure 4.1)) and let X count cherries in G(n,n, p).

Then :

1 ? log?
E(X) = O(npe2?) = 0 (n ( °§") °§2"> =o(l),  (41)
meaning that a.a.s. there are no cherries in G{(n,n, p).
Let A denote the event that there is a minimal set .S of size s > %_vxlrhich
violates Hall’s condition. Then, using (i)-(iii), and bounding by (;)"  the
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Fig. 4.1 A cherry in a graph marked with bold lines.

number of choices to realize (iii), we obtain

r%] n n s s—1
IP(.A) < (s) (s - 1) (2) p2s—2(1 _ p)s(n—s+1)
s—-1
en\° [ en 2(s—1)
< ( s ) (s - 1) °
2logn 2~V logn  loglogn
X ( - ) exp (— 5 St — o S

2 1pg/2 11/2 |
(zlogn)2 Z (46 135_ ) =0 (%) =o(l). (42

In conclusion, the threshold for having a perfect matching coincides with that
for the disappearance of isolated vertices. The latter can be routinely found
(Exercise!) by the method of moments (see Corollary 3.31 and Example 6.28).
Thus, we obtain the result of Erdés and Rényi (1964).

Theorem 4.1.

0 if np —logn — —oo,
P(G(n,n,p) has a perfect matching) — { e~2¢"" if np —logn — c,
1 ifnp—logn »0c0. M

Remark 4.2. Consider a random bipartite graph process {G(n,n, M )}’1{;=0
defined in analogy with the standard random graph process (Section 1.1) and
define the hitting times 7, = min{M : §(G(n,n, M)) > 1} and 7pm = min{M :
G(n,n, M) has a perfect matching}. (Thus, trivially, 71 < Tpm.)

The proof of Theorem 4.1 above yields also the stronger result that a.a.s.
7om = 71. Indeed, if for convenience we instead consider the corresponding
continuous time random graph process {G(n,n,t)}o<t<1, the same calcula-
tions as in (4.1) and (4.2) show that a.a.s. there is no minimal subset S of
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size s > 2 violating Hall’s condition for any ¢ € [(logn—loglogn)/n,2logn/n],
and the result follows easily (Exercise!).

Remark 4.3. For future reference we explicitly state the error probability
estimate -

P(G(n,n, p) has no perfect matching) = O(ne™"?), (4.3)

which is valid for all n and p. This too follows by the argument above; the
probabilities of having an isolated vertex or a cherry are easily seen to be of this
order (Exercise!), while a minor modification of (4.2) shows that, assuming,
as we may, np > logn,

[P(.A) < Zezsnzs—lpzs—Ze—snp/Z’ — O(n5p4e—3np/2) — O(ne""”)_y
' $2>3

Ordinary random graphs

Let us return now to the ordinary random graph G(n,p), n even. Fixing an
n/2 by n/2 bipartition of the vertex set and ignoring the edges within each of
the two sets, we immediately see that Theorem 4.1 implies that G(n,p) has
a perfect matching a.a.s. as soon as np — 2logn — oco. We will show how to
reduce the above value of p by half so that, again, the threshold is the same
as for the disappearance of isolated vertices (cf. Corollary 3.31).

In fact, we will show an even stronger result due to Bollobas and Thomason
(1985). But first let us extend the notion of a perfect matching by saying that
a graph satisfies property PM if there is a matching covering all but at most
one of the nonisolated vertices. It can be routinely checked (Exercise!) that
as soon as 2np —logn —loglogn — oo, there are only isolated vertices outside
the giant component (c¢f. Chapter 5). Note that this holds already when the
number of edges in G(n, p) is only about %n logn — roughly half the threshold
for the disappearance of isolated vertices.

However, the main obstacle for PM is now the presence of cherries. Two
or more of them make it impossible. If there is exactly one cherry, PM is
still possible, provided the number of nonisolated vertices (as well as isolated
vertices) is odd. The expected number of cherries is

] (g)Pz(l — p)2(n73) < n3peT2PHEP = (1)

if 2np — logn — 2loglogn — oo, which also holds already when there are
about -}n logn edges in G(n,p). Again, as proved by Bollobas and Thomason
(1985), this trivial necessary condition becomes a.a.s. sufficient.

Theorem 4.4. Let y, = 2np — logn — 2loglogn. Then
0 2.fy'n. — _OQa
P(G(n,p) € PM) = < (1 + 11—66"3)6'%‘3_c if yn = C,
1 if yn — 0.
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Consequently we obtain a result of Erdés and Rényi (1966).
Corollary 4.5.

0 if np —logn - —oo,
P(G(n,p) has a perfect matching) = S e~ " if np —logn — ¢,
1 if np —logn — oo. |

The proof below is easily modified to give the corresponding hitting time
result too (Exercise!).

Theorem 4.6. The random graph process {G(n, M)}y is a.a.s. such that
the hitting times 11 = min{M : §(G(n,M)) > 1} and 7pm = min{M :
G(n, M) has a perfect matching} coincide. [

The original proofs of the 1-statements of Theorem 4.4 and Corollary 4.5
were both based on Tutte’s theorem. Here we propose an alternative approach,
via Hall’s theorem, by Luczak and Ruciniski (1991). This approach relies on
the following technical lemma. Given two disjoint sets of vertices in a graph,
the bipartite subgraph induced by them consists of all edges with one endpoint
in each set.

Lemma 4.7. Let np = ©O(logn). For every ¢ > 0, a.a.s. every bipartite
subgraph, induced in G(n,p) by two sets of equal size and with minimum
degree at least clogn, contains a perfect matching.

Proof. Set u = n(loglogn)® By the first moment method it is easy to check

logn
(Exercise!) that a.a.s.

(i) for every pair of disjoint subsets of vertices of size bigger than u
there is in G(n,p) an edge between them,

(ii) every set S of at most 2u vertices induces in G(n,p) fewer than
(loglogn)3|S| edges.

The rest of the proof of Lemma 4.7 is purely deterministic. Suppose G is
an n-vertex graph satisfying (i) and (ii), and B is a bipartite subgraph of G
induced by the bipartition (W), Ws), |Wi| = |W2| = w, §(B) > clogn, but
without a perfect matching. Then, by Hall’s theorem there is S C W, such
that |[Ng(S)| < |S].

Case 1: |S| <wu.

Then |S U Ng(S)| < 2u, but since all the edges with one endpoint in S
have the other endpoint in Ng(S), there are at least clogn|S| such edges - a
contradiction with (ii).

Case 2: |[Ng(S)| > w —u.

Then |[W, \ S| < [W2 \ Ng(S)| < u and all the edges with one endpoint in
W2\ N5(S) have the other endpoint in W; \ .S - again a contradiction with (ii).
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Case 3: |S| > u,|Np(S)| < w —u.
Now |W2 \ Ng(S)| > u, but there is no edge between S and W2 \ Ng(S) - a
contradiction with (i). .

Proof of Theorem 4.4. Throughout the proof we assume that logn < np <
2logn and n is even.

If y, = —oo, the second moment method yields that a.a.s. there are many
cherries in G(n,p) (Exercise!). Since already the presence of two cherries
makes PM impossible, the 0-statement follows.

If y, — ¢, the number of cherries has asymptotically the Poisson distribu-
tion with expectation ;-e‘c. It can also be proved that the probability that
there is exactly one cherry and the number of isolated vertices is odd, con-
verges to ll—se'c exp(—ée‘c). (Advanced Exercise! Hint: Apply the two-round
exposure — cf. Section 1.1 — with ps so small that during the second round a
fixed cherry cannot be destroyed.)

If y, — oo, then, as was shown above, a.a.s. there are no cherries at all.
Thus, in order to prove the two latter parts of the theorem, we have to show
that the only obstruction for PM is the presence of either at least two cherries
or one cherry while the number of isolated vertices is even.

The idea of the proof is as follows: Suppose that we have a graph on n
vertices which has either no cherries at all or exactly one cherry, but then
the number of isolated vertices is odd. Fix an arbitrary bipartition of the
vertex set into two halves called sides. Call a vertex bad if it has either fewer
than %6 log n neighbors within its own side or fewer than %6 log n neighbors
on the other side. Assume that the graph satisfies the hypothesis of Lemma
4.7 (say, with ¢ = z35) and some other properties held a.a.s. by G(n,p) (viz.
Claim below).

Match the bad vertices first (except for the isolated vertices, of course). If
there is an odd number of them, leave one out. If the graph has a cherry, the
left-out vertex must be a degree one vertex of that cherry. Remove all bad
vertices and their partners (which do not need to be bad) from the graph.
Then adjust the bipartition so that it becomes even again, but so that the
minimum degree of the induced bipartite subgraph has not dropped much.
Finally, apply Lemma 4.7 and obtain a matching covering all but at most one
of the nonisolated vertices.

Now we turn to the details. Let X be the number of bad vertices in G(n, p),
and let Y € Bi(%,p). Then E(X) = nP(vertex 1 is bad) and, by (2.6), for
sufficiently large n,

P(vertex 1 is bad) < 2P(Y < siglogn) < n™%2L.

Hence, by Markov’s inequality (1.3), a.a.s. X < n%/5.

We still need to distinguish another class of vertices of low degree. Call a
vertex small if its degree in G(n,p) is at most three. We claim that neither
small nor bad vertices can cling together too much.
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Claim. For every fized integer k, a.a.s. there is no k-vertex tree in G(n,p)
which contains more than two small vertices or more than four bad vertices.

Proof. Let Z € Bi(n —k+1,p). It is straightforward to show (Exercise!) that
for every fixed z

l z
P(Z < z) = O((np)*e™) = O ( O\g/ﬁ") = O(n~99).
The expected number of k-vertex trees containing three or more small vertices
can now be bounded from above by

(:) RE2ph! (';) [P(Z < P = O(n*p*~In14T) = o(1).

Similarly, the expected number of k-vertex trees with more than four bad
vertices is

(Z) kk—2pk—1 (’;) 2P(Y’ < silogn)]® = O(n*pt='(n=021)%) = o(1),

where Y’ € Bi(3 — k + 1,p). |

As a final preparatory step, it can be easily checked that a.a.s. the maximum
degree of our random graph is at most 8 logn (Exercise!).

We are now ready to complete the proof of Theorem 4.4. Consider a graph
on n vertices which has either no cherries at all or exactly one cherry, but then
the number of isolated vertices is odd. Suppose further that this graph satisfies
the hypothesis of Lemma 4.7 (with ¢ = %6) and, for a fixed bipartition, the
hypothesis of the above claim for £ up to 11. Furthermore, assume that
there are fewer than n4/% bad vertices and that the maximum degree A is at
most 8logn. Note that all these properties hold a.a.s. for the random graph
G(n,p). We will show that each such a graph satisfies property PM.

Remove the isolated vertices and, if there is an odd number of them, remove
one additional vertex of degree one, destroying the cherry if there is any. Order
the remaining bad vertices by degrees, from low to high:

deg(v1) < deg(v2) < ...deg(wr).

We will match them one by one with some vertices u;, uz, ..., u;, always
choosing as u; a vertex of a smallest possible degree. We begin with isolated
edges as their endpoints are matched naturally.

Suppose vy, . ..,v;_; are already matched with u;,...,u;— (some v; may
be matched with some vy, but then, clearly, u; = vy and u, = v;). Let V;—;
denote the set {vy,u;,...,vi—1,u;—1}. If v; € V;_1, it is already matched to
some vertex; otherwise we choose u; as follows.

If deg(v;) = 1, then take as u; the neighbor of v;. It is available, since we
follow the degrees from low to high, and since there are no cherries left in the
graph.
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(a) (b)

Fig. 4.2 Scenes from the proof of Theorem 4.4.

If 2 < deg(v;) < 3, then v; has at most one neighbor within the set V;_,,
since otherwise there would be three small vertices on a small tree (Exercise!).
Thus we may choose u; as one of the neighbors of v; outside V;_;.

If deg(vi) > 4, then v; has at most three neighbors within the set V;_,,
since otherwise there would be five bad vertices on a small tree (Exercise! ~
see Figure 4.2(a)). Again, we may choose u; as one of the neighbors of v;
outside V;_;.

Hence, a.a.s. all nonisolated bad vertices can be matched. The removal of
bad vertices and their partners does not affect the degrees of other vertices
by more than eight (Exercise! — see Figure 4.2(b)). However, the remaining
vertices may no longer form an even bipartition. In order to apply Lemma 4.7
we have to balance them back by moving across up to n%/5 carefully chosen
vertices. To minimize the effect on degrees in the induced bipartite graph, we
use for this purpose a 2-independent set of vertices, that is, an independent
set of vertices no two of which have a common neighbor (thus, the degree of
a vertex may drop further by at most one). Trivially, there is always such a
set of size at least n/(A? + 1) (Exercise!), which is more than is needed. The
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obtained bipartite subgraph has, therefore, minimum degree at least

1 l 1

200 ogn—9> ﬁlogn,

and, by Lemma 4.7, it contains a perfect matching, which together with the
previously constructed matching {vy,u1},..., {v;,w} forms a matching cov-
ering all but at most one of the nonisolated vertices. This completes the proof
of Theorem 4.4. [

Disjoint 1-factors

Erdds and Rényi, after establishing a threshold for the existence of at least one
perfect matching in the bipartite random graph G(n,n,p), went on and gener-
alized their result to the existence of at least r disjoint 1-factors in G(n, n, p)
(Erd6s and Rényi 1966). Trivially, if a graph possesses fewer than r disjoint
1-factors, then the removal of all the edges of a maximal family of disjoint
1-factors results in a graph with no 1-factor at all and with all the degrees
decreased by at most 7 — 1. Thus, if the original graph had minimum degree
at least r, then, after the removal, there would be no isolated vertices left,
and Hall’s condition would have to be violated in a nontrivial way. By an
argument similar to that used in the proof of Theorem 4.1 this can be shown
to be unlikely for G(n,n,p) (Exercise!), and it follows that the threshold for
containing at least r disjoint 1-factors in G(n,n,p) coincides with that for
minimum degree r. The latter can easily be found by the method of moments
(Exercise!). The respective hitting time result holds too.

The corresponding problem for an ordinary random graph G{(n,p) was
solved much later by Shamir and Upfal (1981) via an algorithmic approach.
Since every even Hamilton cycle is a union of two disjoint 1-factors, the so-
lution also follows, together with the hitting time version, from a result of
Bollobés and Frieze (1985) (see Section 5.1). However, the proof of Theo-
rem 4.4 presented above can easily be adapted to yield the threshold for r
disjoint 1-factors as well. It boils down to showing that a.a.s. after removing
the edges of an arbitrary subgraph of maximum degree at most r — 1, the
remainder of G(n,p) will contain a perfect matching. The definition of a bad
vertex remains unchanged, while a small vertex is now one with degree at
most 7+ 2. The details are left to the reader (Exercise!). It follows that a.a.s.
the hitting time for having r disjoint 1-factors coincides with the hitting time
for having minimum degree at least 7.

4.2 G-FACTORS

In this section we study thresholds for containment of spanning (or almost
spanning) subgraphs in G(n,p) which are unions of vertex disjoint copies of
a given graph. For a graph G, every disjoint union of copies of G is called
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Fig. 4.3 A graph with a P;-factor marked with bold lines.

a partial G-factor. If G = K, this is the notion of a matching. A partial
G-factor which is a spanning subgraph of a graph F is called a G-factor in F
(see Figure 4.3). Our main objective is to find a threshold for the property
of containing a G-factor by the random graph G(n,p). Observe that when
G = Ko, this is just the property of containing a perfect matching. Note
further that using the notation of Section 3.5, G(n, p) contains a G-factor if
and only if D% = n/vg.

Luczak and Ruciniski (1991) have shown that for every nontrivial tree T, the
threshold for possessing a T'-factor is the same as that for the dlsappearance
of isolated vertices. (Again, the corresponding hitting time result holds too.)

Theorem 4.8. For every tree T with t > 2 vertices, assuming n is divisible
by ¢,

0 if np —logn — —oo,
P(G(n,p) has a T-factor) > < e~ ¢~ ifnp—logn — c,
1 if np — logn — oo. |

The proof, which we omit (Advanced Exercise!), is very similar to that
of Theorem 4.4. Instead of a bipartition, we now take a t-partition, and
construct a T-factor from ¢t — 1 perfect matchings between the appropriate
sets of the partition. The existence of these perfect matchings follows by the
same argument as in the case T = K.

Clearly, Theorem 4.8 remains true for forests without isolated vertices. In
general, the threshold for the property of having a G-factor is not known and
the triangle G = K3 is the smallest unknown case. But already for the whisk
graph K (see Figure 3.3), the problem becomes relatively easy. It seems that
the structural asymmetry of K3 helps here. In fact, there is a broad family
of graphs G for which the threshold has been found.
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Partial G-factors

Before we prove this result, we will consider the related, weaker property Fg(¢)
of having a partial G-factor covering all but at most en vertices of G(n, p). For
this property we can pinpoint the threshold very precisely (Ruciniski 1992a).
By Theorem 3.29, for Fg(¢) to hold, one needs to have ®c = 2(n). Recall
that the condition &z — oo a.a.s. guarantees the existence of at least one
copy of G in G(n,p), and is equivalent to assuming that n=2/™&) = o(p) (see
Theorem 3.4 and Lemma 3.6). Similarly, one can show that &5 = ((n) if and
only if p = Q(n‘l/m“)(G)), where m(1)(G) is defined in (3.17). This is indeed
the right threshold.

Theorem 4.9. For every graph G with at least one edge and for everye > 0
there are positive constants ¢ and C such that

- _J0, ifp< en~1/mV(G),

n.ll)ngo IP’((G'('n,p) € FG(E)) - {1, pr 2 Cn‘l/m“)(G).

Proof. By the monotonicity of Fg(g) we may assume that &¢ — oo. If p <
en~1/ m“)(G), then &5 < c¢'n, where ¢’ can be made arbitrarily small by picking
c small enough. Let H achieve the minimum in ®g. Then &g = &5 = E(Xy)
and, by Chebyshev’s inequality and by Lemma, 3.5 (see Remark 3.7),

, 100Var(Xg) [ 1\ _
P(|XH - ]E(XH)l > TﬁE(XH)) < W =0 (E) = 0(1)

Hence a.a.5. Xy < %c’n < Q—;—EM for ¢ small enough, and it is impossible

to cover all but at most en vertices of G(n,p) by vertex disjoint copies of G.

Let p > Cn~Y/ m™(G) and suppose that G(n,p) € Fg (). Then there exists
a subset of at least en vertices which does not contain any copy of G. The
probability that this happens is, by Theorem 3.9, at most

(r;]) P(G([en],p) 2 G) < 2re=<"%ellenln),

where ¢” > 0 depends on G only. By choosing C large enough, ®¢([en],p) >
(c")~'n, and we conclude that the above quantity, and thus also P(G(n, p) ¢
Fe(€)), converges to 0. =

Thresholds for G-factors

Based on the last result, one can find the threshold for the property of contain-
ing a G-factor for a broad class of graphs G. Let §(G) stand for the minimum
degree of G. The following result was proved independently by Alon and
Yuster (1993) and Rucinski (1992a).
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Theorem 4.10. Let G be a graph with v vertices, satisfying §(G) < m™M(G).
There are positive constants ¢ and C such that

if p < en—1/mM(G).
nango P(G(vn,p) has a G-factor) = {(1)1 :;f) ; ccnn—l/m‘”(c;.
Proof. The 0-statement follows immediately from the O-statement in Theo-
rem 4.9, so we only have to prove the l-statement. In this proof we utilize
the “two-round exposure” technique described in Section 1.1.

For clarity we will demonstrate the proof in the smallest case G = KJ .
Here m(1)(G) = 3/2. By Theorem 4.9 (with ¢ = 1/4), there are a.a.s. n
disjoint triangles in G(4n,p;), where py = p/2. This is our property B. Now,
fix one graph F satisfying B and choose one vertex from each triangle of a
collection of n vertex disjoint triangles in F.

Let A be the set of chosen vertices, and let B denote the set of vertices not
belonging to any of these triangles. If there is a matching M of n edges, each
with one endpoint in 4 and the other one in B, then these edges, together with
the triangles, constitute a K3 -factor. To prove the existence of M, consider
the random bipartite graph G(n,n,p2) with vertex classes A and B. As

1
p2 >p/2=Q(n %) > Oin’

by Theorem 4.1 there is a.a.s. a perfect matching in G(n,n,p2).

When §(G) = h > 1, we treat h-tuples of vertices as single vertices of the
bipartite graph (side A) and require that p" > '—°§,ﬂ This argument remains
valid for any G as long as 0 < 6(G)/mM(G) < 1 (Exercise!). When §(G) = 0,
we are done already after the first round. |

Remark 4.11. The same technique can be extended to spanning subgraphs
other than G-factors. For example, the proof of Theorem 4.10 presented
above, gives for free the existence of a “triangle necklace” of length n, that
is, a cycle of length n with every vertex adjacent to one vertex of a triangle,
the triangles mutually disjoint and also disjoint from the cycle (see Figure
4.4). The reason is that the random graph on the set B has the edge proba-
bility p, large enough to ensure (a.a.s.) the existence of a Hamilton cycle (cf.
Section 5.1).

Remark 4.12. Alon and Yuster (1993) observed that the technique from
the above proof can be used to enlarge the family of graphs G for which
n=1/m®(G) is 3 threshold for the property of possessing a G-factor. Indeed,
such a family can be recursively constructed by first including all graphs G
for which d¢ < m{V(G), and then producing new members by splitting an
existing member into two unions of its components, and inserting fewer than
m() (H) edges between them. The proof of this statement is by induction on
the number of applications of the above recursive rule (Exercise!). Both sets
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Fig. 4.4 The triangle necklace.

Fig. 4.5 A cubic graph obtained from graphs satisfying §(G) < m)(G) by the proce-
dure described in Remark 4.12; the added edges are numbered in the order of addition.

of vertices of the auxiliary bipartite graph, A and B, appearing in the proof
of Theorem 4.10, can now consist of sets of the original vertices. Surprisingly,
some highly regular graphs can be obtained this way (see Figure 4.5).

Despite all these efforts, there are still many graphs for which the threshold
for containing a G-factor is not known. Theorem 4.9 provides a lower bound.
A better lower bound can sometimes be obtained by looking at the threshold
for the property COV¢ that every vertex belongs to a copy of G (c¢f. Theo-
rem 3.22), which is a natural necessary condition. Although the conjecture
that these two thresholds must always coincide (as is the case of trees) turned
out to be false (e.g., the case G = K;; see Example 3.24 and Theorem 4.10),
it is still plausible to hope that it is so at least for complete graphs. If G = K3,
the threshold for the property COVg is, by Example 3.24, (logn)'/3n=2/3, a
logarithmic improvement over the lower bound given by Theorem 4.9.

General spanning subgraphs

A general upper bound on the threshold for the existence of a spanning sub-
graph in terms of its maximum degree is provided by the following argument
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from Alon and Fiiredi (1992). Let H, be a sequence of n-vertex graphs with
maximum degree A = A,, n = 1,2,.... We are interested in the increasing
property “G(n,p) 2 H,”. The result below says that the threshold does not
exceed (‘B2)1/4

Theorem 4.13. If Kg—"ﬁp" —logn — oo, then

lim P(G(n,p) O Hp) = 1.

n—o0
In particular, this holds for p > 3('31513)1/ A

Proof. Recall that the Hajnal-Szemerédi Theorem (Hajnal and Szemerédi
1970) (cf. Bollobés (1978)) asserts that the vertex set of every graph G can
be partitioned into D independent sets of size ||V (G)|/D] or [|V(G)|/D], for
each integer D satisfying A(G) < D < |V(G)|- Recall also that in a graph
an independent set is 2-independent if the neighborhoods of its members are
mutually disjoint, and that the square of a graph G is a graph on the same
vertex set with edges between those pairs of vertices which are at distance
at most two in G. Now, let u = |n/(A? + 1)|. By applying the Hajnal-
Szemerédi Theorem to the square of H, one can split V(H,) into D = A2 +1
2-independent sets Uy, ...,Up, of size u or u + 1 (Exercise!).

Let us make a corresponding split [z] = Vj U--- U Vp with |V;| = |Uj|,
t=1,...,D. We will show by induction on ¢ that with probability at least
1- (i —1)Q, where Q = O(u exp(—upA)), the subgraph G(n,p)[V1 U---UV]]
contains a copy of the subgraph HY = H, [UyU---UU;] (property A;). This
is trivial for ¢ = 1, and for ¢ = D it implies Theorem 4.13, as (D — 1)@ =
O(n exp(—up®)) = o(1) by assumption.

We expose the edges of G(n, p) in rounds, first the edges in [V;]?, then the
edges in [V3 U V2]? \ [V1]?, and so forth. Assume that ¢ > 2 and that A4,

holds. Set V =V, U---UV;_; and fix a copy of H,(,i_l) on V. (The choice of
this copy should depend only on the edges exposed so far.) Let N, be the set
of vertices of V' corresponding to the neighbors of x € U; in the graph H,(,’).

Consider the auxiliary bipartite random graph with bipartition (U;, V;),
where an edge is drawn between = € U; and y € V; if and only if y is adjacent
in G(n,p) to all vertices in IV, (see Figure 4.6). It should be clear now that
we are after a perfect matching in this bipartite graph.

Due to the 2-independence of U;, the appearances of the edges in the aux-
iliary graph are independent events with probabilities bounded from below
by p®. Hence we may look at the random bipartite graph G(u;,u;,p®) in-
stead, where u; = |U;| € {u,u + 1}. By Remark 4.3, we conclude that
with probability at least 1 — O(uexp(—up®)) = 1 — Q there is a perfect
matching in the auxiliary bipartite graph, and thus A; holds. Consequently,
P(A:) > (1- Q) P(A;_,) and, by induction, P(A;) > (1-Q)*~! > 1-(i—-1)@,
which completes the proof. |
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H G(Ui,ui,p) G(nap)

Fig. 4.6 The battleground of the proof of Theorem 4.13.
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Example 4.14. The above result is so general that it can be applied to span-
ning d-cubes. It follows that a.a.s. there exists such a d-cube in G(n,p),
n = 2¢, if p > 1/2 is fixed (Exercise!). Estimates of the expectation have
suggested (cf. Alon and Fiiredi (1992)) that the threshold should be around

= 1/4 (Exercise!). This has been recently confirmed by Riordan (2000),
who applied the second moment method supported by a detailed analysis of
variance.

Remark 4.15. In the case in which H, is a union of disjoint copies of G,
that is, when we are after a G-factor, the above bound can be easily improved
to O(logn/n)}/P(S) where D(G) = maxycg 6y is the degeneracy number of
G. Indeed, for any graph G one can order its vertices so that each vertex has
at most D(G) neighbors among its predecessors (Exercise!). Now, provided
npP{@) — y(G)logn — oo, one can repeat the above proof with U; being the
set of the i-th vertices taken from all the copies of G which make up H,,. The
sets U; are clearly 2-independent.

This, however, does not improve the bounds for the threshold for the exis-
tence of a K3-factor. The above results yield only that, ignoring some loga-
rithmic terms, the threshold lies somewhere between n=2/3 and n=1/2. Real
progress on this problem has been made recently by Krivelevich (1996a). In
the last section of this chapter we outline his ingenious approach.

4.3 TWO OPEN PROBLEMS

Triangles in graphs and triples in 3-uniform hypergraphs are, undoubtedly,
related combinatorial objects. One can build a 3-uniform hypergraph, the
edges of which are the triangles of a graph and, conversely, the triples of a
3-uniform hypergraph can be replaced by triangles to form a graph. Two of
the most challenging, unsolved problems in the theory of random structures
are finding the thresholds for the existence of a Kj-factor in the random
graph G(n, p) and for the existence of a perfect matching (a collection of n/3
disjoint triples) in a random 3-uniform hypergraph. The latter, known as
the Shamir problem, goes back to at least Schmidt and Shamir (1983). The
former, discussed in greater generality in the previous section, was probably
first stated in Ruciriski (1992b).

Some believe that these two problems are immanently related and a solu-
tion of one of them will yield a solution of the other one. Let us point out,
however, that in the hypergraph case the triples are (in the binomial model)
independent from each other, while the triangles of G(n,p) are not. What
certainly links these two problems is that, after a quiet period, recently sig-
nificant progress was made with respect to both of them. In this section an
account on this progress is given.
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Fig. 47 Two diamonds and a vertex, linked by a triangle, contain a Kj-factor (des-
ignated by bold lines).

Triangle-factors

We begin with the result of Krivelevich (1996a). Throughout, it is assumed
that n is divisible by three.

Theorem 4.16. There ezists a constant C > 0 such that if p= Cn~3/5, then
a.a.s. the random graph G(n,p) contains a Ks-factor.

Proof (Outline). Let us explain the mysterious fraction 3/5 right away. It
is simply the reciprocal of the parameter m(!)(K;) = 5/3 of the graph K
obtained from the complete graph K, by removing one edge. This graph,
called here the diamond, is the ‘building block’ of a K3-factor in the proof.
The removal of a vertex of degree two from it leaves a triangle. Therefore,
the two vertices of degree two are called removable.

The key observation is that two diamonds, D; and D,, and one vertex v,
linked together by a triangle with one vertex being v and the other two being
removable vertices of, respectively, D, and D;, form a subgraph that contains
a K3-factor (see Figure 4.7).

A naive strategy for proving Theorem 4.16 could thus be as follows (for
simplicity we assume that n is divisible by nine). Apply the two-round expo-
sure. In round one, by the 1-statement of Theorem 4.9, with € = 1/9, a.a.s.
there is a partial diamond-factor of G(n,p) consisting of 2n/9 diamonds. All
we need in the second round is to link each of the outstanding n/9 vertices,
via a triangle, with two diamonds as described above. It seems that we are
on the right track, because, for a fixed vertex v, the expected number of such
triangles is O(n?p®) = O(n®2), and by Theorem 2.18(i), a.a.s. there is at least
one for each vertex v (Exercise!).

Unfortunately, the n/9 pairs of diamonds must be disjoint, so we have to
proceed greedily one by one. The problem we immediately face is that toward
the end of this procedure the expected number of available triangles drops
dramatically. At the very extreme, it is only 4p3 for the last vertex. And
here comes a second crucial idea. At this late phase we need to use something
bigger than diamonds. This bigger structure should have many removable
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Fig. 4.8 A diamond tree; the removable vertices are designated by open circles.

vertices and be likely to occur frequently in G(n,p). Both these requirements
are provided by diamond trees, which we now define recursively.

We call a vertex in a graph remowvable if the removal of this vertex leaves
a graph with a Kjs-factor. The diamond itself is the smallest diamond tree.
Given any diamond tree T and a removable vertex v in it, a new diamond
tree is obtained by taking the union of T' and a copy of the diamond in which
v is a vertex of degree two and the other three vertices do not belong to T.
Each time a diamond is added in this way to a diamond tree, the number of
vertices increases by three, while the number of removable ones increases by
one (the other vertex of degree two in the diamond). Hence, in every diamond
tree more than 1/3 of the vertices are removable (Exercise! - see Figure 4.8).

Note that, given two disjoint diamond trees T;, T, and a vertex v, the
expected number of triangles with one vertex at v and the other two being
removable vertices of, respectively, T and T5, is at least (Exercise!)

LV(T)||V(T2)lp® = ©(|V(T1)||V (T2)|n~%/3).
9

Thus, both diamond trees should be large enough to guarantee the presence
of the desired triangle. And we would need many of them.

Since, obviously, one cannot fit too many large, vertex-disjoint subgraphs
within the frame of n vertices, we will build the desired Kj3-factor in rounds,
using originally more, but smaller diamond trees, and gradually turning to
the bigger ones. In any case, we need to have many disjoint diamond trees
at hand. As the expected number of diamonds is linear in n, on average
each vertex belongs to a (large) constant number of them, which allows the
diamond trees to grow without any bound. This is specified in the following
technical lemma. We refer the reader to Krivelevich (1996a) for the proof.

Lemma 4.17. If p = Cn=3/3, C > 6, then for every integer k = k(n) satis-
fying 4 <k <n/6 and k = 1 mod 3, the random graph G(n,p) contains a.a.s.
|n/(6k)| vertex disjoint diamond trees, each of order k. |

Equipped with this lemma, we can now furnish the proof of Theorem 4.16
in just twenty steps. Except for the first, simple step, and for the last one, all
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these steps are quite similar and, therefore, we organize them into an inductive
statement, with the first step serving as a kick-off.

Lemma 4.18. For every: = 1,2,...,19, there is a constant C; such that if
p=Cin=%/5 then a.a.s. the random graph G(n, p) contains a partial K3-factor
covering all but at most n'~*/20 yertices.

Before we outline the proof of Lemma 4.18, let us show the last step of the
proof of Theorem 4.16. Apply the two-round exposure. After round one with
p = Cn=%/5 C > 6, by Lemma 4.17 there are a.a.s. 2n%% vertex disjoint
diamond trees, each of order n%% /12 (we ignore floors here). These diamond
trees occupy together a vertex set V' of size n/6.

Round two is generated in two subrounds, as in the proof of Theorem 4.13.
First, expose the pairs of [n] \ V with p = C19(5n/6)~3/% and conclude by
Lemma 4.18 (i = 19) applied to G([n] \ V,p), that there is a partial K3-factor
T covering all but n'/2° vertices of [n] \ V. (We assume for simplicity that
n'/?0 is an integer divisible by three.)

In the second subround expose the pairs with at least one element in V' and
repeatedly connect each of the uncovered vertices of [n]\ V with two diamond
trees, by a triangle linking that vertex with one removable vertex in each of
the two trees. The probability of failure, by an application of Theorem 2.18(i),

is smaller than n!/20e=9(n*") (Exercise!). Thus, a.a.s. all remaining vertices
are included to 7, creating a Kj3-factor of G(n,p). [ ]

The proof of Lemma 4.18 is quite similar to the above argument, although
a little bit more involved.

Proof of Lemma 4.18. We use induction on i. The case 7 = 1 follows, as in the
proof of the 1-statement of Theorem 4.9, by using Theorem 3.9 (Exercise!).

Assume that the lemma is true for some i, 1 < ¢ < 19. Apply the two-
round exposure. In round one, with p = Cn=3/5, C > 6, apply Lemma 4.17
to have a.a.s. 2n!=#20 4 p1=(i+1)/20 yertex disjoint diamond trees of order
k ~ n*/20/12 each. Let us denote the union of the vertex sets of these diamond
trees by V. Notice that |V| ~ n/6.

In round two take p = C;(n — |V|))~3/® and first conclude, by the induc-
tion assumption, that a.a.s. there is a partial Kj3-factor 7 covering all but
n1~i/20 vertices of [n]\ V. Then, reduce the number of uncovered vertices by
incorporating them, together with some diamond trees, into 7 at a rawe of
two diamond trees per vertex. Since the diamond trees are smaller now, we
seek the linking triangles among all triangles with one vertex being a fixed
uncovered vertex of [n]\ V and the other two vertices belonging to any two
diamond trees which are available at this stage.

During this procedure the number of available diamond trees decreases
steadily by two, but, owing to the excess we have, even at the end there are
still at least n!—{*+1)/20 disjoint diamond trees around. Thus, at any given
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time, the expected number of such triangles is at least of the order
@(n2-—(i+1)/10ni/10p3) _ @(nl/IO) ’

and the probability of failure is as small as before (Exercise!). The procedure
ends when all vertices of [n] \ V are covered by T, leaving at that point
n1=(+1)/20 vertex disjoint diamond trees. Each of the diamond trees can be
broken into a subgraph with a Kj3-factor and a single vertex. Summarizing,
a.a.s. there is a partial Ks-factor covering all but at most n!~(+1)/20 yertices
of G(n, p). : |

It is worthwhile to notice that the above proof can be applied to K, -factors
as well as to the Shamir problem; however, in the latter case, it yields a result
only slightly stronger than that of Schmidt and Shamir (1983) (c¢f. Krivelevich
(1996a)).

Perfect matchings in random hypergraphs

Let Hs(n, M) be the random hypergraph ([n]®)s, defined as the uniform
model of a random subset, where the initial set is the set of all triples of [n].
Schmidt and Shamir (1983) showed that if M/n3/2 — oo then a.a.s. there
is a perfect matching in Hj(n, M). This was improved by Frieze and Janson
(1995). :

Theorem 4.19. If M/n%/3 - 0o then a.a.s. there is a perfect matching in

H; (n, M).

Proof (Qutline). Let us begin by introducing an interim model of a random
hypergraph, simpler to analyze than Hj (n, M), but sufficient for our task. It is
based on a random sequence x = (z,,...,Z3n), chosen uniformly at random
from the set Q(n, M) of all 3M-element sequences of integers from [n]. Then
we define a random hypergraph H(x) as the hypergraph on vertex set [n]
with the edges being consecutive triples of elements of x, that is, {z1,z2,z3},
{z4,z5,26}, ..., {T3m—2,Z3m—1,Z30m}. Observe that the hypergraph H(x)
may have repeated edges as well as deficient edges with less than three vertices.
Therefore, let F(z) be the hypergraph obtained from H(x) by deleting both
repeated and deficient edges. _ _

For M' < M, conditioning on the event that [H(z)| = M’, H(z) is dis-
tributed exactly as Hg(n, M’), because each hypergraph with M’ triples and
vertex set [n] arises from the same number of sequences x in this way (Exer-
cise!). Moreover, if H(x) has a perfect matching then H(z) does (Exercise!).
The above two facts, together with the monotonicity of the property of con-
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taining a perfect matching, imply that

P(H(x) has a perfect matching) = P(H(x) has a perfect matching)

= Z P(H(z) has a perfect matching | |H(z)| = M') P(|H(z)| = M)
MI<M

= Z P(Hz (n, M') has a perfect matching) P(|H(z)| = M’)
M'<M

< P(Hs(n, M) has a perfect matching).

Thus, our goal is to show that

P(H(x) has a perfect matching) — 1

as M/n%/3 — co. This will be achieved by breaking the space (n, M) ac-
cording to the degree sequence.

The degree of an element v € [n] in a sequence x is defined as d, =
deg,(v) = |{¢ : z; = v}|]. For € > 0, a degree sequence d = (d,,...,d,) is
called e-smooth if the degrees dy, ..., d, do not fluctuate too much, in a precise
technical sense for which we refer the reader to Frieze and Janson (1995). It
can be routinely proved that a.a.s. the sequence deg, (v) is n*/3/M-smooth.

Hence, to complete the proof it suffices to show that given for each n an
e-smooth sequence d, where ¢ = e(n) — 0, a random sequence x chosen
uniformly from the family X(d) = {x € Q(n, M) : deg, = d} yields a.a.s.
a random hypergraph H(x) which contains a perfect matching. (Here the
probability of failure should be o(1) uniformly for all e-smooth sequences d.)

This can be shown using a configuration model similar to that discussed in
detail in Chapter 9. In this model, surprisingly, the second moment method
works! Indeed, after some tedious calculations, it was shown in Frieze and Jan-
son (1995) that if Y denotes the number of perfect matchings in the random
hypergraph H(x) with x chosen uniformly from X'(d), then E(Y)2?/E(Y?) — 1
as n — oo and thus, by (3.2), P(Y > 0) — 1. [

Remark 4.20. The idea of the proof of Theorem 4.19 relies on the observa-
tion that although the second moment method does not apply directly to the
unconditional number of perfect matchings (the right-hand side of (3.2) does
not tend to zero unless M/n3/2 — o), it can be used if we first condition on
a suitable variable (in this case the degree sequence) which is responsible for
most of the variance. A previous instance of combining the second moment
method with conditioning was given by Robinson and Wormald (1992), see
Chapter 9 of this book.

It is believed that the actual threshold for the existence of a perfect match-
ing in Hs (n, M) coincides with that for the disappearance of isolated vertices,
that is, it occurs around 3nlogn.
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Remark 4.21. The fractional version of Shamir’s problem asks for the exis-
tence of a nonnegative function, defined on the triples of a hypergraph, which
totals n/3, and which for every vertex totals 1 on all the triples containing that
vertex. The existence of a perfect matching is easily seen to be equivalent to
the existence of such a function taking the values 0 and 1 only. It was proved
by Krivelevich (1996b) that the threshold for the presence of a perfect frac-
tional matching in Hj (n, M) is roughly %nlog n. Moreover, Krivelevich also
provided the expected hitting time version: in the naturally defined random
hypergraph process (see Remark 1.22), a.a.s. a perfect fractional matching
exists as soon as the last isolated vertex disappears.



The Phase Transition

Undoubtedly, the most important and by far the most influential paper about
random graphs which has ever appeared was. the article of Erd6s and Rényi
(1960), where the authors studied the changes in the structure of G(n, M)
as M grows from 0 to (3), identifying main features of the evolution of the
random graph. A large part of their impressive work was devoted to the
phase transition, the spectacular period of the random graph evolution when
the size of the largest component of G(n, M) rapidly grows from O¢(logn)
to O¢(n). In this chapter we try to describe and understand this intriguing
phenomenon. We begin with some highlights of the evolution of the random
graph and make a “historic” journey reproving, at least partly, Erd6s and
Rényi’s result on the sudden “jump” of the size of the largest component.
Then we ourselves jump over twenty years ahead to Bollobas’s paper (1984a),
which opened a new era of study of the phase transition in G(n, M). Finally,
in the last four sections of the chapter, we present more recent developments
concerning various features of the random graph process in this fascinating
period.

5.1 THE EVOLUTION OF THE RANDOM GRAPH

The tale of G(n, M)

Let us consider how the properties of G(n, M) vary when n is fixed but large,
and M grows from 0 to (3). Clearly, when the random graph becomes denser
its properties change; the moment when a new property appears (or disap-
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pears) can often be characterized by the threshold function (see Sections 1.5
and 1.6 for a more elaborate treatment of this subject and the proof that
for every monotone property the threshold function exists). Since the pub-
lication of Erdés and Rényi (1960), identifying the threshold functions for
different properties has been a major task in the theory of random graphs.
Nowadays, the threshold functions for most (but by no means all) impor-
tant graph properties have been found and the picture of the evolution of the
random graph is fairly complete.

The beginning stages of the random graph process are easy to study and
describe. It is an immediate consequence of Theorem 3.4 that for a fixed & > 2
and every sequence M = M(n) such that n(F=2/(k=1) « M « plk-D/k
a.a.s. G(n, M) is a forest, which contains copies of all trees of size at most
k and no trees with more than k vertices. If M <« n but M = n!=°(1) then
a.a.s. G(n, M) has no cycles (Exercise! — Note that this fact does not follow
from Theorem 3.4), and the size of the largest component, although clearly
unbounded, is o,(logn).

The evolution of G(n, M) for M = ©(n) is far more interesting. Let M =
cn/2 where c is a positive constant. If ¢ is small, a.a.s. all components of
G(n, M) are trees or unicyclic, the largest of them having ©¢(logn) vertices.
As the process evolves the components increase their size, however, as long
as ¢ < 1, the largest components of G(n, M) merge mainly with small trees
of size Oc(1); thus they grow slowly and quite smoothly. Nonetheless, at
some point of the process, the largest components become so large that it
is likely for a new edge to connect two of them. Note that the addition
of such an edge can increase the size of the largest component significantly;
furthermore, a new component resulting from such a fusion has greater chances
to be joined to another component of a similar size. Thus, fairly quickly, all
the largest components of G{n, M) merge into one giant component, much
larger than any of the remaining ones. This spectacular phenomenon, now
called “the phase transition”, is the main theme of the following sections of
this chapter. In particular, we will learn that the giant component is formed
from smaller ones during the so called critical period, or the critical phase,
where M = n /24 0(n?/3). The critical period separates the subcritical phase,
where M —n/2 « —n?/3, from the supercritical phase, where M —n /2 > n?/3.
We will also soon see (Theorem 5.4) that the random graphs G(n,0.49n) and
G(n,0.51n) are dramatically different: G(n,0.49n) has no components larger
than O¢(logn), while the giant component of G(n,0.51n) already has ©¢(n)
vertices.

As M increases, the giant component of G(n, M) grows, catching other
components of the graph. Because larger components are easier game and
they are less frequent than smaller ones, they disappear from the graph earlier,
merging with the giant. In particular, if M is about nlogn/4, then a.a.s.
G(n, M) consists only of the giant component and some number of isolated
vertices. Finally, when the last isolated vertex joins the giant, which occurs
when M = nlogn/2 + O,(n), the graph becomes connected. At the very
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same moment a perfect matching a.a.s. can be found in G(n, M) (provided,
of course, that the number of vertices n is even). All these results were already
shown by Erddés and Rényi (1959, 1966), but their strongest “hitting time”
versions (see Theorem 4.6) were proved much later by Bollobas and Thomason
(1985) (see also Bollobds (1985, Chapter VII)).

Soon after the random graph becomes connected, for M = Z(logn + (k —
1) loglogn + Op(1)), where k > 2 is a fixed natural number, the last vertex of
degree k' — 1 vanishes and a.a.s. at the very same time G{(n, M) becomes k-
connected (see Erd6s and Rényi (1961) and Bollobas and Thomason (1985)).
The question of whether the thresholds for 2-connectivity and Hamiltonicity
coincide remained for a long time the major open problem of the theory of
random graphs and, finally, was settled in the affirmative by Komlés and
Szeméredi (1983) and Bollob4s (1984b). (Later, Luczak (1991e) proved that
at this threshold G(n, M) becomes pancyclic, i.e. contains cycles of all lengths
¢ =3,4,...,n.) More generally, let My denote the property that a graph G
on n vertices contains |k/2]| edge-disjoint Hamilton cycles and, if k is odd,
a matching of size |n/2], disjoint from the cycles. Then, a.a.s. the random
graph G(2n, M) has My at the very moment when the last vertex of degree
smaller than k disappears (Bollobds and Frieze 1985).

As the process evolves, G(n, M) becomes denser and denser. Its minimum
degree and the connectivity grow, and dense subgraphs gradually appear (see
Chapter 3). When M9n=9-1 = 21=d1ogn 4+ O,(1) and d > 2, its diameter
drops from d + 1 to d (Burtin (1973), Bollobds (1981a); see also Bollobds
(1985, Chapter X)). For M ~ a(}), where 0 < a < 1 is a constant, any two
vertices share ©¢(n) neighbors and the largest complete subgraph of G(n, M)
has ©¢(logn) vertices (Theorem 7.1). Finally, for M = (3), G(n, M) becomes
a complete graph.

The k-core of G(n, M)

Note that for the connectivity, the existence of a perfect matching, and the
existence of a Hamilton cycle, an obvious necessary condition that the mini-
mum degree is large enough turns out to be a.a.s. sufficient for the random
graph G(n, M). How deep is this “probabilistic equivalence” of, say, the prop-
erty My and the property that a graph has minimum degree at least k? This
problem can be addressed in two ways. Bollobds, Fenner and Frieze (1990)
studied the structure of G(n, M)|s>x — a graph chosen at random from the
family of all graphs with vertex set {1,2,...,n} and M edges which have min-
imum degree at least k. In particular, they proved that for a fixed k > 1, the
threshold for the property that G(n, M)|s>x has My is M = ©¢(nlogn) and
is related to the fact that at this moment some “local” obstruction for My, dis-
appears from G(n, M)|s>,. However, G(n, M)|s>x is typically very different
from G(n, M); moreover, there is no obvious way to obtain G(n, M + 1)|s>«
from G(n, M)|s>k. An alternative, more natural approach was proposed by
Bollobés (1984b). It is based on the elementary observation that if a graph G
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contains a subgraph H of minimum degree k, then the maximal subgraph of G
with this property is unique (Exercise!). We call such a maximal subgraph
the k-core of G and denote it by crg(G). (If G contains no subgraph with
minimum degree k we say that the k-core of G is empty.) Thus, in partic-
ular, cr;(G) is obtained from G by removing all its isolated vertices, while
cr2(G) consists of all cycles of G and the paths joining them. Now, instead
of G(n, M), consider the behavior of cr(G(n, M)) as M grows from 0 to (3).
Is it a.a.s. k-connected? When does the 1-core of G(n, M) a.a.s. contain a
matching saturating all but at most one of its vertices? For which M is the
2-core of G(n, M) a.a.s. Hamiltonian?

The study of the evolution of the k-core cri(G(n, M)) was initiated by
Bollobés (1984b), who noticed that if k¥ > 3 is fixed then a.a.s. crg(G(n, M))
is k-connected even at very early stages of the evolution, when M = O(n).
This result was strengthened by Luczak (1991d), who proved that for some
constant a > 0, which depends neither on n nor on &, a.a.s. the random graph
process is such that for every M,0 < M < (3), and every k,3 < k < n—1, the
k-core of G(n, M) is either empty, or larger than an and k-connected. Note
that, in particular, this result implies that the k-core emerges very rapidly:
for almost every graph process one can find a critical moment Mg such that
the k-core of the graph at the Mg™-th stage of the process is empty, while
at the very next stage the size of the k-core “jumps” to ©¢(n). The proof
that M exists is not very hard, especially for large k; the reader is invited to
show that for every € > 0 there exists k. such that for k > k. we have a.a.s.
|MT — kn/2| < en (Exercise!). On the other hand, determining M§* for a
given k > 3 up to a factor of 1 +0,(1) is a challenging task accomplished only
recently by Pittel, Spencer and Wormald (1996), who also provided precise
bounds for the size of the k-core at the moment it emerges.

Unlike in the case of k-connectivity, replacing G(n, M) by its k-core does
not help very much with respect to the property My. The threshold for
cr1(G(n, M)) to have a matching which covers all except at most one of its
vertices occurs only when M ~ nlogn/4 and is related to the existence of pairs
of vertices of degree one adjacent to the same vertex (see Theorem 4.4). More
generally, for arbitrary k, the k-core of G(n, M) has property My when M is of
the order nlogn (Luczak 1987) — as in the case of G(n, M)|5>k, at this point
a certain local obstruction disappears from crg(G(n, M)). The property that
the chromatic number of G(n, M) is at least k + 1, for some k > 3, does not
seem to be related to the existence of any “local” substructure of G(n, M)
at all. Clearly, the k-core of a graph with such a chromatic number must
be non-empty (see Lemma 7.6), but the fact that cry(G(n,M)) # 0 is not
a.a.s. sufficient for x(G{(n, M)) > k + 1. For large k this follows immediately
from the fact that M{® is close to kn/2, and thus x(G(n, M{')) is about
k/2logk (see Theorem 7.16). However, for small k, especially for kK = 3, the
problem whether a.a.s. the thresholds for the properties cri(G(n, M)) # 0
and x(G(n, M)) > k + 1 coincide is more involved and was settled (in the
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negative) only recently by Molloy (1996) and Achlioptas and Molloy (1997)
for details see Section 7.5.

5.2 THE EMERGENCE OF THE GIANT COMPONENT

In-this section we reprove a part of Erdés and Rényi’s theorem on the (un)ex-
pected “jump” of the size of the largest component which occurs in the random
graph when it has about n/2 edges. Although soon we will give a much more
precise description of this phenomenon, we feel that the branching process
argument used here can provide a better understanding of this feature and,
most importantly, it explains why the abrupt change of the structure of the
random graph takes place when the average degree of its vertices approaches
one.

Branching processes

Since our approach is based on branching processes let us first recall some
elementary definitions and facts concerning them. (For proofs and a more
elaborate treatment of this topic see Athreya and Ney (1972), or any textbook
on probability theory.) Let X be a random variable which takes values in the
non-negative integers. The Galton-Watson branching process defined by X
starts with a single particle, which produces Z; other particles, where the
number Z; of first-generation particles has the same distribution as X. Each
of the offspring particles produces, in turn, its own children, whose number
has distribution X, independently for each particle, and so on. If by Z; we
denote the number of offspring in the i-th generation, then Zy = 1, while for
i > 1 the variable Z; is the sum of Z;_, independent copies of X; clearly,
this observation can also be used as an equivalent definition of the random
variables Z;. Note that if Z,, = 0 for some n, then Z,, = 0 for all m > n.
The most basic fact about branching processes states that if the expectation
of X is larger than one, then with positive probability the process will continue
forever, while otherwise, except for the degenerate case, with probability one
the process will die out, that is, for some n we have Z,, = 0. More precisely,
let f:[0,1] = R denote the probability generating function of X, defined as

fx(@) = fl@) = T B(X = ).
i>0

Moreover, let Z = 3", Z; be the total number of offspring in the branching
process. The probability p = px of extinction of the branching process is

defined as
p=P(Z < o0) = nll,néoIP(Z" =0).

Then the following holds.
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Theorem 5.1. For EX < 1 we have px = 1, unless P(X = 1) = 1. If
EX >1 and P(X =0) >0, then px = zo, where z, is the unique solution of
the equation f(x) = x which belongs to the interval (0,1). n

Example 5.2. Let X € Po(c). Then

fx(z) = Z C;Tle—c = exp(c(z — 1)).

1=0

Thus, if ¢ > 1, the probability px that the branching process defined by X
dies out is equal to 1 — B(c), where 8 = B(c) € (0,1) is uniquely determined
by the equation

B+ePe=1. (5.1)

Example 5.3. Let Y, € Bi(n,p), where np - ¢ > 1 as n — oco. Since

fr.(z) = i (7:) gp(1-p)"* =(1-p+azp)”,

i=0

for every real number = we have

Jim_fy, (z) = exp(c(z — 1)) = fx(z),
that is, the probability generating function of Y;, tends pointwise to the prob-
ability generating function of X € Po(c), precisely as one might expect. Thus,
as n — 0o, the probability of extinction p(n,c) of the branching process de-
fined by Y, converges to 1 — B(c), where 3(c) is defined as in (5.1).

The giant component

We will use branching processes to study the rapid growth of the size of the
largest component in G(n,p) - the analysis of the behavior of G{n, M) is
similar, but the fact that in G(n,p) edges appear independently from each
other makes the argument simpler. Thus, let p = p(n) = c¢/n, where c is
a positive constant. We reveal the component structure of G(n,p) step by
step, using the following procedure. Choose a vertex v in G(n,p), find all
neighbors vy, ..., v, of v, and mark v as saturated. Then, generate all vertices
{vi1,...,v15} from [n]\ {v,v,...,v,} which are adjacent to v, in G(n,p),
so v; becomes saturated, and continue this process until all vertices in the
component of G(n,p) containing v are saturated.

If during the above procedure we saturate first the vertices which lie closer
to v, the process resembles very much the branching process. However, in
our case, the number X; = X;(n,m,p) of new vertices we add to the com-
ponent in the i-th step, provided m of its elements have already been found,
has binomial distribution Bi(n — m,p), whereas in the branching process the
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distribution of the immediate offspring of a particle does not depend on the
previous history of the process. Nonetheless, while m is not very large, the
process of generating the component containing a given vertex can be closely
approximated by the branching process defined by a variable with binomial
distribution Bi(n,p). Thus, one may expect that the probability that a vertex
is contained in a “small” component is roughly given by the probability that
the process dies out, which happens with probability 1 for ¢ < 1. On the
other hand, if ¢ > 1, then with some positive probability 1 — p. the process
continues for a long time and thus we may expect that (1 — p. +o0(1))n vertices
of G(n, p) belong to one giant component.

Theorem 5.4. Let np = ¢, where ¢ > 0 s a constant.

(i) If ¢ < 1, then a.a.s. the largest component of G(n,p) has at most
(1_—3cY7 log n vertices.

(ii) Let ¢ > 1 and let B = B(c) € (0,1) be defined as in (5.1). Then G(n, p)
contains a giant component of (1+0,(1))Bn vertices. Furthermore, a.a.s.
the size of the second largest component of G(n, p) is at most zcl_—elc)'f logn.

Proof. Let us assume first that pn = ¢ and ¢ < 1. Note that the probability
that a given vertex v belongs to a component of size at least k = k(n) is
bounded from above by the probability that the sum of k¥ = k(n) random
variables X; is at least kK — 1. Furthermore, X; can be bounded from above
by X, where all X;" have the same binomial distribution Bi(n,p) and the
random variables X",... X are independent; note that for such random
variables we have ZLI X € Bi(kn,p). Thus, from (2.5) we infer that for
n large enough the probability that G(n,p) contains a component of size at
least k > 3logn/(1 — c)? is bounded from above by

k k
nP(ZXj >k— 1) =nP(Zx;r 2ck+(1—c)k—1)
=1

((1—(;)=Ic—1)2 (102
2

ck+ (1 —c)k/3)

Snexp(—Q( ) gnexp(— k)=0(1).

Now let ¢ > 1. Set k— = %z logn and ky = n?/3. First we will show
that a.a.s. for every k, k_ < k < k4, and all vertices v of G(n,p), either
the process described above which starts at v terminates after fewer than
k_ steps, or at the k-th step there are at least (¢ — 1)k/2 vertices in the
component containing v that have been generated in the process but which
are not yet saturated. In particular, no component of G(n,p) has k vertices,
with k_ < k < k4. Note first that in order to check if the process which starts
at v produces after each k step at least (c — 1)k/2 unsaturated vertices in the
component containing v, we need only to identify at most k + (¢ — 1)k/2 =
(c+1)k/2 vertices of this component. Hence, as in the previous case, for each
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i, where 1 < i < k, we can bound X; from below by X;” € Bi(n — &Lk*,p),
where all variables X,  are independent. Furthermore, the probability that
either after the k first steps we produce fewer than (¢ — 1)k/2 saturated
vertices, or that the process dies out after the first k steps, is smaller than the
probability that

k k
— (c—1)k
: <k-—1+-—"I",
ZX, SZX,_k 1+—
1=1 =1
Thus, from the large deviation inequality (2.6) the probability that it happens
for some vertex v of G(n, M) and for some k, k— < k < k., is, for n large
enough, bounded from above by

k4 k k4
n Z IP’(ZX; Sk—1+-(c—_2%) <n Z exp(—(c;gjlg—ki)
k=k_ i=1 k=k_

2
< nk4 exp(—E—-écl—)k_) =o(1).

Now let us consider a pair of vertices v’ and v" which belong to components

of size at least k,. What is the probability that they belong to different

components? Let us run the process of identifying vertices of the component

of G(n, M) containing v’ for the first k4 steps. According to the fact we

have just proved, at the end of this procedure we are left with some set V'

of vertices of the component containing v, such that at least (¢ — 1)k;/2

vertices from V' are unsaturated. Let us now run a similar process starting

at the vertex v"”’. Then, either we join v" to some of the vertices which belong

to V', or end up with some set of vertices V"' of the component containing

v", among which at least (¢ — 1)k+/2 have yet to be saturated. Now the

probability that there are no edges between as yet unsaturated vertices of V'
and V" is bounded from above by

(1-— ;o){(c‘l)'°+/2]2 < exp(—(c—1)%en/3/4) = o(1/n?).

Consequently, the probability that G(n, M) contains two vertices v’ and v”
which belong to two different components both of size at least k4 tends to 0
as n — o0.

Thus, we have shown that a.a.s. the vertices of G(n, p) can be divided into
two classes: “small” ones, which belong to components of size at most k_, and
“large” ones, contained in one large component of size at least k.. Now to
complete the proof we need to estimate the number of small vertices. Observe
that the probability p(n,p) that a vertex is small is bounded from above by
the extinction probability p = p4+(n,p) of the branching process, in which
the distribution of the immediate offspring of a particle is given by the bino-
mial distribution Bi(n — k—,p). On the other hand, p(n,p) is bounded from
below by p_ + o(1), where p_ = p_(n,p) is the probability of extinction for
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the branching process with distribution Bi(n,p) (the term o(1) bounds the
probability that the branching process dies after more than k_ steps.) We
know (Example 5.3) that if np = ¢ and n — o0, then both p_. and p, converge
to 1 — B, with 8 = f(c) < 1 defined as in (5.1). Hence the expectation of the
number Y of small vertices is (1 — 3 + o(1))n. Furthermore,

E(Y(Y 1)) < np(n, p)(k= + np(n — O(k-),p)) = (1+o(1)) (EY)”.

Hence from Chebyshev’s inequality (1.2), G(n,p) contains (1 — 3 + 0p(1))n
small vertices and the assertion follows. , [ |

The double jump

Although Theorem 5.4 tells about the behavior of G(n,p), from the equiva-.
lence of G(n,p) and G(n, M) (Proposition 1.13) we infer that a similar sudden
change of the size of the largest component occurs also for G{n, M), the model
of the random graph used by Erdés and Rényi (1960). Hence, it remains to
study the structure of G(n, M) when the expected degree of each of its ver-
tices is close to 1, that is, for M ~ n/2. Erdés and Rényi suggested that
in this case a “double jump” occurs: the largest component of G(n, M) has
©,(n?/3) vertices and near the point M ~ n/2 the largest component changes
its size twice — first from Oc(logn) to ©,(n?/?), and then from ©,(n?3) to
©c(n). (Note that, as was mentioned in the previous section, in the evolu-
tion of the k-core of G(n, M) for k > 3, a somewhat similar “single jump”
can be observed). Thus, in particular, Erdés and Rényi expected that what-
ever function M = M(n) we choose, the number of vertices L;(n, M) in the
largest component of G(n,p) can only be either Oc(logn), or ©,(n?/?), or
maybe O¢(n).  However, it seems that the proof of Theorem 5.4 works also
for ¢ = 1 4+ e(n), provided that €(n) > 0 tends to 0 with n slowly enough. As
can be easily checked expanding B(c) = B(1 + €) in a Taylor’s series, in this
case the largest component should a.a.s. have about 2en vertices (Exercise!).

Let us mention yet another piece of evidence against such an abrupt change
in the size of the largest component. Choose any function r = r(n), say

r = n/5. Now, for every n and each of the (})! increasing sequences of

graphs G = (Go,G1,...,Gn), where N = (3) and the graph G; has ¢ edges for
0 < i < N, choose the maximum value M (G) such that the largest component
in G has at most r vertices. Finally, let M, = M,(n) be a median of all V!
values of M(G). Then, by the choice of M,,

]P(Ll(naM’l‘) S 7‘) Z 1/2a
but at the same time we have also
P(Ly(n,M,) >1/2) > P(Li(n,M, +1) > 1) >1/2,

because by adding one edge to a graph we can at most double the number of
vertices in the largest component. Hence, L,(n, M) must grow more or less
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“smoothly” with n. (Note, by the way, that this argument cannot be applied
to the evolution of the k-core, when k > 2; in this case the addition of one
edge can immensely increase the size of the k-core of a graph.) It is somewhat
surprising that the fact that near the point M ~ n/2 the size of the largest
component must grow gradually with M was not noticed, or at least was not
studied, for over twenty years. It was addressed only by Bollobés (1984a),
who first described in detail the behavior of G(n, M) for M ~ n/2.

Let us also mention that the size of the largest component of G(n, M) is
indeed ©,(n?/3) when M = n/2 (see Theorem 5.20 below); thus, if M = cn
and cis required to be a constant independent of n, as the value of ¢ grows from
zero to infinity, at ¢ = 1 a “double jump” does occur, precisely as described
by Erdés and Rényi.

5.3 THE EMERGENCE OF THE GIANT: A CLOSER LOOK

Theorem 5.4 stated that if M = ¢n/2 and ¢ < 1 then a.a.s. G(n, M) consists of
small components, while for ¢ > 1 a.a.s. the structure of G{(n, M) is dominated
by one giant component which contains a positive fraction of all vertices.
The aim of this section is to study to what extent this description remains
true when 2M/n — 1. Thus, we show that in the subcritical phase, when
M =n/2 — s and s > n*3, no component of G(n, M) is significantly larger
than the remaining ones. More precisely, if by L.(n, M) we denote the number
of vertices in the r-th largest component of G(n, M), then in the subcritical
phase we have La(n, M) > (1 + 0,(1))L1(n, M) — 1 (Theorem 5.6). On the
other hand, in the supercritical phase when M = n/2 + s and s > n%3,
the largest component exceeds by far all its competitors, that is, La(n, M) =
0p(Li(n, M)) (Theorems 5.7 and 5.12). Finally, it should be mentioned that
a systematic study of the phase transition was started by a remarkable paper
of Bollobds (1984a) which described the most characteristic features of this
phenomenon.

The subcritical phase

Let us first introduce some notation. A component H of a graph is an ¢-
component if it has k vertices and k + £ edges for some k > 1; in such a case
we call ¢ the ezcess of H. Note that we always have £ > —1. Furthermore,
£ = —1 only for tree components while each 0-component is unicyclic. We
call an ¢-component complez if its excess £ is positive, that is, if it contains at
least two cycles. Our first result states that if M is much smaller than n/2,
then a.a.s. G(n, M) contains no complex components.

Theorem 5.5. Let M = n/2 — s, where s = s(n) > 0. Then, the probabil-
ity that G(n, M) contains a compler component is smaller than n?/4s3. In
particular, if s > n?/3, then a.a.s. G(n, M) contains no complex components.
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Proof. If a graph contains a component with at least two cycles, it must

contain a subgraph which either consists of two cycles joined by a path (or

sharing a vertex), or is a cycle with a “diagonal path”. Let X be the number

of such subgraphs in G(n, M). Since on k given vertices one can bu11d no
more than k?k! of them (Exercise!), we have

X>O)<Z()k2kv(M) :_—11)((1‘2411))—1
<L (e

In the proof of the above result we estimated the number of complex com-
ponents very crudely; in order to study the phase transition phenomenon, we
will need more precise information on the number of Z—components at different .
stages of the random graph process. Thus, let Y (k, £) = Y, a(k, £) denote the
random variable which counts Z—components of G(n, M) on k vertices. Then,
for the expectation of Y, ar(k,£), we have

st (owo(, 00 ) (D), ea

where C(k, £) is the number of connected labelled graphs with k + ¢ edges on
a given set of k vertices. We estimate the value of EY (k, £) using Stirling’s
formula

n! = (1+0(1/n))V2rn(n/e)”, (5.3)
the expansion of the logarithm which for 0 <z < 1/2 gives
1 -z =exp(—z —z%/2 —2%/3 — O(z*)), (5.4)

and the asymptotic formula for the falling factorial which follows from them

(n)k=nkexp(—25:;—:%—0(f—z+%)). (5.5)

In order to simplify our further calculations, let us assume that £ > —1
does not depend on n, k = O(n?/3) and M = n/2 + s, where k < |s| = o(n).
Then, using (5.5), from (5.2) we get

E Y, 0 (k, £) ~ C(Il:!, £) (n ; k)2(M—k—£) (Aﬂjlﬁl
' 2 3
x (%)k(i—ﬂf)lexp(—s—n - %) . (5.6)
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while (5.4) and (5.5) give
(n - k)n+2s—2k—2£

k2 93 2
~exp(—k+3 + k 2sk sk)

n 2277.3377.2__277._77.2
27.2
(%I)cﬁ-te ~ exp(—lg— - %2- 2:7‘]; 3+ O(%:—)) (5.7)
k
(1) (2 - 255 0(22)).

Hence, (5.6) becomes

k 2k 2 3 3
EY, p(k,£) ~ S0 exp(—k—QfZ L3k _k +0(3—E)). (5.8)

nt k! 2 n?  6n2 n3
Finally, let us recall that the number of forests with vertex set {1,2,...,k}
which consist of ¢ trees such that vertices 1,2,...,: belong to different trees

is given by ik¥~*~!. Thus, in particular, C(k,—1) = k*~2, while for C(k, 0)
we have (Exercise!)

k .
C(k,0)=)_ (’:) G = D i 1+ 00 /VE)/7 /812, (5.9)

1=3 2

Although (5.8) applies only for k = O(n?/3), it is not hard to show that
if |s| > n?/3 the expected number of isolated trees and unicyclic components
larger than n2/3 quickly tends to 0 as n — co.

Note also that for any given £

EYn Mk, &) (Yom(k,8) —1) =EYn pm(k, O) EYo g pr—r—e(k, £),
while for k; # k»
E Yn,M(kl ’ Z)Yn,M(k% Z) =K Yn,M(kl ’ Z) E Yn—k1 M~k —E(k2a Z) .

Hence, for any k_ < k. = O(n?/3), the variance of the number of trees or
unicyclic components of size k, where k_ < k < k4, can be estimated using
calculations similar to the ones above. Using a somewhat more precise version
of (5.8), the first moment method and Chebyshev’s inequality, one can, after
some work, arrive at the following result.

Theorem 5.6. Let M =n/2 — s, where s = 5(n) is such that n?/® < s < n.
Moreover, let r be a fired natural number, which does not depend on n, and
finally, let o = a(n) < 1/3 but a > max {s/n,log™"/*(s3/n?)}. Then, forn
large enough, with probability at least 1 — (n2/s%) the r-th largest component
of G(n, M) is a tree and

2 3 n2 3

n $ $
- — — < — —. ]

(1-20) 557 log — < L;(n,M) < (1+ 2a) 557 log —
Thus, for M = n/2—s, n?/3 « s K n, the r largest components of G(n, M)
are all trees with (1/2+0,(1))(n2s~2)log(s*n~2) vertices. As a matter of fact,
one can use (5.8) to show a much more precise result on the limit distribution

of L.(n, M) (see Luczak (1990c, 1996)).
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The supercritical phase

As we have just proved, in the subcritical phase, when M = n/2 — s and
s > n?3 aa.s. G(n, M) consists of small trees and unicyclic components
(Theorems 5.5 and 5.6), and thus its structure is rather easy to study. The
properties of G(n, M) in the supercritical phase, when M = n/2 + s and
s > n?/3, are much harder to investigate.

Let us start with a simple but profound observation on the formula (5.8):
if k& = O(n?/3), then the leading factor containing s, exp(—2s2k/n?), does
not depend on the sign of s. Thus, all estimates of the moments of Y (k, £)
for k = O(n?/3) which are true for the subcritical phase are expected to hold
also in the supercritical phase and the behavior of the components of size
k = O(n?/3) in both G(n,n/2 + s) and G(n,n/2 — s) should be similar. We
will soon see that this is indeed the case and this vague remark can be stated
in a rigorous way as a symmetry rule (Theorem 5.24). Here we only mention
that estimates of the moments of Y, as(k, £), similar to those which led us to
Theorem 5.6, give the following result.

Theorem 5.7. Let M = n/2 + s, where s = s(n) is such that n?/3 € s
n. Furthermore, let r > 1 be fired and let o = a(n) < 1/3 be such that
a > max {s/n,log_l/ 2(s%/n?)}. Then, for n large enough, with probability
at least 1 — (n?/s®)* among all trees and unicyclic components of G(n, M)
the r-th largest is a tree, of size contained between (1/2 — a)n?s~2log(s3n—2)
and (1/2 + a)n?s~2log(s3n~2). |

Now it is time to look at the behavior of complex components of G(n, M) in
the supercritical case. Note that our sketchy proof of Theorem 5.6 is implicitly
based on the fact that in the subcritical phase there are many components of
sizes close to L;(n, M). Thus, we can count them, show that their expected
number tends to infinity, and then use Chebyshev’s inequality to show that
their number is close to its expected value. Theorem 5.4 suggests that in
the supercritical phase, if M = n/2 + o(n) and the term o(n) is positive
and tends to zero slowly enough, then a.a.s. G(n, M) contains precisely one
large complex component and so computing moments of Yy ar(k, £) does not
seem to be of much use. Hence, instead of counting complex components of
G(n, M) at one value of M, we look at the stages of the random graph process
{G(n, M)} s when such components have been created.

Let G be a graph and {v,w} be a pair of its vertices which is mnot an
edge of G. We call {v,w} a k-internal juncture if both » and w belong
to the same unicyclic component of G of k vertices. Similarly, we call a
pair {v,w} a (ky, k2)-proper juncture if v belongs to a unicyclic component
on k; vertices and w is a vertex of a different unicyclic component on k2
vertices. Let Z! (M), Ma; k) [Z))(My, M2; ky, k2)] denote the number of M’s,
M, < M < M, such that the edge added to the graph at the M-th step
of the random graph process {G(n, M)} is a k-internal juncture [(k;, k2)-
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proper juncture| of G(n, M — 1). Furthermore, let

k/2
Zn(My, Mo k) = Z),(My, Mas k) + Y Z3(My, Mas ki, k — ki)
k1=3

and
n
Zn(My, My) = Zn(My, Ma; k).
k=4
Note that adding a juncture to a graph is the only way of creating a “new”
complex component. Thus, at each moment of the random graph process,

the number of complex components is bounded from above by the number of
junctures added to the graph so far, and for every M, 1 < M < (g), we have

Y(n,M) =) Yom(k,f) < Zo(1,M). (5.10)
k o£>1

We use this fact to investigate the behavior of the complex components in
G(n, M). Observe first that

n ("5 (3 — & ((")

! M+ 1;k) = k 2 2 2
EZ'(M+1,M +1;k) (k)C( ’O)(M—k) 0 —M v
which looks very much like the formula for EY (k,0) given in (5.2). Thus,
after calculations similar to those given at the beginning of this section, for

k = O(n?/3) and M = n/2 + s, where s = o(n), we arrive at the following
analog of (5.8):

, kZC(k,O)
252k sk® k3 sk k1
xexp(—k— 2 T o +O(F+?+E))
1k 2s?k  sk? K 1 sk®  s3k
NZ;z-e (— 2 +n2_6n2+0(7—lz+F+?))'

Similarly, for k; and k2 such that k) + k2 = k, and M =n/2 + s, we get

1 -k
EZII(M+1’M+1;k17k2) = ]__m(]:) (n k2 l)
1K2

(n—ké—kz) ) ki1ko ((;))
x C(ky,0)C(kz,0) (M —k—k) () -M M
11 (_23% L
~ 1+ 5k1k2 -8_77.5 o

n2 n2  6n?
1 1 +sk3+s3k))'

+O(\/E+\/k_2 = T3
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Hence, for such k and M,

5k (_232k N sk? k3
16n2 exp n? n?2  6n2
1 _sk3 s3k

+O(ﬁ + 2+ 5)). Gay

We will use (5.11) to prove the following result on complex components
(Janson 1993).

EZ(M+1,M+1;k) ~

Theorem 5.8. Let w = w(n) > 1 be a function of n.

(i) . n o5
nlLIIgOIEZ(-l, (2)) =5 =L (5.12)
In particular,
.. n o .
1ﬂgfm(z(1, (2)) _1) >2- Ue = 0865, (5.13)

and, for n large enough,

]P(Z(l, (’;)) > w) < L% (5.14)

(ii) The probability that during the random graph process {G(n, M)}r for
some M, 0 < M < (3), the graph G(n, M) contains a complex compo-
nent with fewer than n?/3 /w vertices is, for large n, smaller than 1/w.

(iii) If My = n/2 £ wn?/3, then, for large n,
IP(Z(l,M_) + Z(M+, (’2’)) > o) <1jw. (5.15)

Remark 5.9. Janson (1993) used the method of moments (Section 6.1) to
show that the random variable Z(1, (})) converges in distribution and so the
limit in (5.13) exists (for its value see Theorem 5.29, below).

Proof. Elementary but somewhat tedious calculations, which we omit here,
show that the main contribution to

Ez(l, (’2’)) =S "STEZ(M +1,M +1;k)
k M

comes from the terms for which k£ = O(n?/3) and M = n/2 + O(n?/3). Thus,

using (5.11) and replacing the sums over k and s with integrals over z =
sn~2/3 and y = kn~%/3 one arrives at



118 THE PHASE TRANSITION

]EZ(l, <g)) (1+o(1)) / / yexp(—2z2y + zy® — y3/6) dz dy

=(1+ 0(1)) / / yexp(—2y(z — y/4)% —y /24) dz dy,

which, after elementary calculations, gives (5.12). Note that the random graph
process ends with a complete graph, so Z,(1,(})) > 1. This fact, together
with (5.12), implies (5.13), while (5.14) is an immediate consequence of (5.12)
and Markov’s inequality (3.1). Furthermore, (ii) follows using the estimate

1/w
16 / yexp(—222y + zy? —y%/6)dzdy < 1/w.
Finally, in order to show (iii) we observe that
5 o0
—/ / yexp(—2z%y + zy? —y3/6)drdy < 1/w. ]
6 |z|>w

Let us note an important consequence of the above statement.

Theorem 5.10. Let M > n/2+ s, where s > n?/3. Then with probability at
least 1 — 6n2/ 9/51/3 the random graph G(n, M) contains exactly one complex
component.

Proof Let M_ = n/2 + [s/2] and set w = s/3n=%/%. Theorem 5.8(i,ii)
implies that with probability at least 1 — 3/w, G(n, M_) contains at most w
complex components, each of at least n?/3/w vertices. On the other hand,
Theorem 5.8(iii) states that with probability at least 1 — 2/w no new complex
components appears in the random graph process after the moment M_.
Thus, since the final stage of the random graph process, the complete graph
on n vertices, has a positive excess (provided n > 4), there must be at least
one complex component in G(n, M_).

Now consider the graphs G(n, M_) and G(n, M ) as two stages of the same
random graph process. Given that G(n, M_) is as in the preceding paragraph,
the probability that some pair of complex components of G(n, M_) is not
joined in G(n, M) by at least one edge is bounded from above by

(O ) (G
< P exp(-2n*w? / (’2’)) < Lw?exp(—w) < 1w

Since, as we have already observed, with probability at least 1 — 2/w, no
new complex component is created during the process after M_ step, the
component obtained from merging all complex components of G(n, M_) is
the only complex component of G(n, M). [
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Theorems 5.7, 5.8, and 5.10 tell us that in the supercritical case G(n, M)
consists of some number of small trees and unicyclic components of size
0p(n?/3) each, and one complex component of size €,(n?/3). Thus, it re-
mains to estimate the size of the largest component more precisely. In order
to do it we follow the original argument of Bollobds (1984a), who used the
formula (5.6) to compute the number of vertices which are contained in small
components; this, in turn, will give us a precise estimate of the size of the
giant complex component. The proof of Bollobds’s result, stated below as
Theorem 5.11, is very ingenious and quite complicated; thus, instead of pre-
senting it here in full detail, we just say a few words on the main idea behind
it. :
One can easily check that in the subcritical phase, where M_ = n/2 — 3,
and 5 > n?/3 only a negligible number of vertices (more precisely, O,(n?/5?)
of them) are contained in unicyclic components and most of the vertices of
G(n, M) belong to isolated trees. Hence, for such an M_, the value of

[n2/2]
fr,M_)= Y kEYna (k,—1)

k=1

is very close to n. Now suppose that we would like to estimate the value of
f(n, My) for My =n/2+s. If follows from (5.6)—(5.8) that the leading terms
which contain s are: exp(—2sk/n), which comes from (1 — k/n)"*29-2k and
(2M/n)* = (1 + 2s/n)*. Thus, let us choose 5 > 0 in such a way that

(Do) = (1+ Z)eu(-Z). G0

Then the terms of f(n, M) become very similar to those of f(n,M_), which,
as we know, is roughly equal to n. As a matter of fact, the main difference

comes from the factor (2M/n)¢ in (5.6); now, when £ = —1, we may expect
that

n/2—§ — M_ ~ f(n7M+) ~ .f(naM+)

n/2+s My~ f(n,M.)" o

where here by a, ~ b, we mean that a,, and b,, agree up to the second-order
term, in our case 1 — a, ~ 1 — b,,. Bollob4s (1984a) (see also Bollobas (1985,
Chapter VI)) showed that, indeed, the value of the three fractions above are
very close to each other; furthermore, he used Chebyshev’s inequality to prove
that the expectation f(n, M,) closely approximates the number of vertices
contained in small trees of G(n, M,.).

Theorem 5.11. Let M = n/2 + s, where s = s(n) > n?/3, and let 5 be the
function defined in (5.16). Then, for any w = w(n) = oo and large enough
n, with probability at least 1 — 1/w

I-n2/3'| 2

n
Z:g kY, m(k,0) < wog
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and

Ea 25
n — 28 n
E kY, k,—-1) — < Ww—.
’ — . (k, =1) n+2 _w\/E .

Let us remark that, roughly, the first part of Theorem 5.11 says that the
total number of vertices contained in small unicyclic components is O, (n?/3)
and thus negligible. Furthermore, since from the Taylor expansion we get

3

5 s 435 s '
-=n 3t o0s) (5.17)

Theorem 5.11 implies that if s 3> n?/3, then, up to an error of 0,(n?/3),

n—23 2(s+35)n _ s?
e Py —4s+0(—n—) (5.18)

vertices belong to components which are either larger than n2/3 or contain
more than one cycle.

From Theorems 5.7,-5.10, and 5.11 we immediately get the main result of
this section characterizing the structure of G(n, M) for M = n/2 + s, where
n?/3 « s « n. The theorem below was proved by Bollob4s (1984a), under
the somewhat stronger assumption that M —n/2 > n?/3,/logn/2, which was
later replaced by M —n/2 > n?/3 by Luczak (1990c). (Although Theorem 5.7
is valid only for s < n, we state the result for all s > n2?/3, so it covers the
whole supercritical phase of the evolution of the random graph.)

Theorem 5.12. Let M = n/2+s, where s = s(n) > n?/3 and let 5 be defined
as in (5.16). Then, for large enough n, with probability at least 1 —Tn2/9s=1/3

2(s + 3)n <n2/3
n+2s 1~ B

Li(n, M) —

and the largest component is complex, while all other components are either
trees or unicyclic components, smaller than n?/3. |

Let us mention that the proof of Theorem 5.12 presented in Bollobés
(1984a) (and Luczak (1990c)) was slightly different and relied strongly on
estimates for the expected number of complex components in the supercrit-
ical phase. In order to evaluate EY,, ar(k,£), Bollobds had to find a way to
deal with C(k,£), which appears in the formula (5.2). In Bollobés (1984a)
he obtained a particularly useful upper bound for C(k, £), showing that, for
some absolute constant A, and k,£ > 1,

£/2
C(k,0) < (%) Ert3e-1/2 (5.19)

Luczak (1990b) observed that the right-hand side of the above inequality with
A = e/12 approximates the value of C(k, £) quite precisely, as long as £ is large
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but £ = o(k); at the same time, Bender, Canfield and McKay (1990) found a
fairly complicated asymptotic formula for C'(k, ¢) for every function £ = ¢(k)
as k = 0o. One can use their powerful result to provide a description of the
asymptotic distribution of L;(n, M) better than that given by Theorem 5.12.
For instance, one can show that for M = n/2 + s, where n?/® « s = O(n),
the distribution of the random variable L,(n, M) is asymptotically normal.
The idea of the proof is very simple. For a constant r, 0 < r < 1, choose a
function k, = k,(n, M) such that for the random variable

Y, =Y. (n,M) = Z Z Yo nm(k,0)

£>1 k<k.

we have EY, — r, and for each 7 > 2 the factorial moment E(Y,); tends to 0
as n — co. Then, from a special (and, in fact, obvious) case of the method of
moments (see Theorem 6.7) we infer that

P(Y, =1) ~P(Li(n, M) < ky) = 1

as n — 0o. We should remark, however, that, because the formula for C(k, £)
. is quite involved, finding k,(n, M) in this way is a long and not very exciting
task (see Pittel (1990) for another approach to this problem).

5.4 THE STRUCTURE OF THE GIANT COMPONENT

In this section we consider the behavior of G(rn, M) in the “early supercritical
phase”, when M = n/2 + s and n?/® « s < n. In particular, we study
the structure of the giant component soon after it emerges. Unfortunately,
most of the results given here have lengthy and complicated proofs; thus, this
part of the chapter consists mainly of heuristic arguments which, hopefully,
shed some light on the nature of this intriguing period of the evolution of the
random graph.

We already know that in the supercritical phase the largest component is
complex, but what we can say about its excess x(n, M)? Note that a.a.s. no
new complex component can emerge in the supercritical phase (Theorem 5.8).
Thus, an edge added to G(n, M) in the supercritical stage can increase the
value of x(n, M) only by one, if it either connects two vertices of the largest
component, or joins the giant to one of the unicyclic components. We first
estimate the number «'(n, M) of edges which, at the moment they are added to
the graph, have both ends in the largest component of the graph. It is not hard
to check (Exercise!) that for My = n/2+0(n?/3) we have E«'(n, Mp) = O(1)
and thus &'(n, Mp) = Op,(1). Hence, it is enough to study the evolution of
G{(n,M) for M —n/2 > n?/3.

Let M; = n/2 + 4. Clearly, '(n, M) is the sum of the random variables
X;, where X; = 1 if the edge added at the M;-th stage of the random process
is contained in the largest component of G(n, M; — 1), and X; = 0 otherwise.
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Since we restrict ourselves to the supercritical period of the random graph
process, when, by Theorem 5.12 and (5.18), the size of the largest component
of G(n, M;) is close to 47, we have

& e

EX;=P(X;=1) ~ ~ 22
( ) (3) —n/2—1i n2

and thus

3 3 -2 3

K (T, ~ P~ _—~—,
VRIS SR PO
1=|n2/3] i=|n2/3| n n

Furthermore, it is easy to check that if M; = n/2 + i and ¢ 3> n?/3, then
©,(n?/i?) vertices of G(n, M; — 1) belong to unicyclic components. Thus,
arguing as before, the expected number of edges added to the process before
the moment M = n/2 + s, which joined the largest component of the graph
with one of the unicyclic components can be bounded from above by

i (i; O_(:jézz_), = O(log(s/n?/?)) < s*/n?.
i=ln2ro) 2

Thus, we expect that if M = n/2 + s and n?/® « s < n, then the value of
k(n, M) should be about 16s3/3n2%. The following theorem by Luczak (1990c)
states that this is indeed the case. (See also Janson, Knuth, Luczak and Pittel
(1993, Lemma 5) for a sharper concentration result when s < 0.5n3/4.)

Theorem 5.13. Let w = w(n) = 00 and M = n/2 + s, where s > n?/3w bui
s < nj/w. Then, with probability at least 1 — w01,

3 3
163 < w—O.ls_ .

n(n, M)— '5;;'2— n2 [ |

Remark 5.14. The random variable x(n, M), appropriately normalized, has
asymptotically normal distribution (see Janson, Knuth, Luczak and Pittel
(1993, Theorem 13); one can also show this fact using the “straightforwarc
approach” described at the end of the previous section). Then, for the stan-
dardization of k(n, M), instead of 16s3/3n? one should use the more precise
expression 2(s? — 52)/(n + 2s) with 5 defined by (5.16), which closely approx-
imates the value of k(n, M) for all M = n/2 + s, where n?/? « s = O(n).

Before we describe the internal structure of the giant component let us
recall that the 2-core or simply the core of a graph G, denoted by cr(G), i
the maximal subgraph of G with minimum degree two. By the kernel ker(G) o
a graph G whose components are all complex we mean a multigraph, possibly
with loops, obtained from the core of G by replacing each path whose interna
vertices are all of degree two by a single edge (see Figure 5.1). Note that the
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Fig. 5.1 A graph, its core and its kernel.

minimum degree of a kernel is at least three and both the core and the kernel
of G' have the same excess as the graph itself.

Let us consider first the behavior of | cr? (n, M)|, the random variable which
counts vertices in the core of the largest component of G(n, M) for M =
n/2 + s, where n?/3 & s « n. Theorems 5.12 and 5.13 state that for such
an M the largest component of G(n, M) has k = (4 + 0,(1))s vertices and
k + £ edges, where £ = (16 + 0,(1))s3/3n%. Furthermore, once we condition
on the event that the largest component £(n, M) of G(n, M) has vertex set
V' and k + £ edges, all connected graphs with vertex set V' and k + £ edges
are equally likely to appear as L£(n, M). Thus, the size and structure of
| crl(n, M)| should be similar to that of the core of C(k, £), the graph chosen
uniformly at random from the family of all connected graphs with vertex set
[k] and k + £ edges, provided k ~ 4s and £ ~ 1653/3n2. One can show that
if £ = £(k) tends to infinity as kK — oo, then with probability tending to 1
as k — oo, all except a negligible fraction of edges in the core of C(k,¥) lie
on cycles. Hence, since there are no cycles outside the core, the number of
edges in the core of C(k, £) should be roughly the same as the number of edges
of C(k,£) whose removal does not disconnect the graph. Note that deleting
such an edge from a connected graph on k vertices and k + £ edges results
in a connected graph on the same number of vertices and k + £ — 1 edges.
Furthermore, each such graph can be obtained as the result of this deletion
procedure from precisely (g) — k — £+ 1 connected graphs with k + £ edges.
Hence, the average size of the core of C(k,£) should be close to

(2) cwa

which, because of (5.19) and the comment following it, is roughly equal to
v/3kf. Consequently, as long as £(k) = o(k), we may expect that the core of
C(k,£) contains about v/3kf — £ ~ v/3kZ vertices, which, in turn, gives 8s/n
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as an estimate for |cr?(n, M)|, for M = n/2+ s and n?/® € s K n. As we
will soon see this is indeed the case.

Since so far our intuitive argument works quite well, let us proceed further
and estimate the number of vertices of degree three and four in crl(n, M).
Recall that x(n, M) = (1+0,(1))16s3/3n?, so the number of vertices of degree
at least three in the core (and thus in the kernel) is at most 2x(n, M) ~
32s%/3n2?. Furthermore, if the core of the largest component has roughly
8s?/n vertices, the average size of a tree rooted at any vertex of the core
is about n/2s. A moment of reflection reveals that the most probable way
to obtain a vertex of degree four in the core of the largest component is to
connect a vertex from a tree rooted at a vertex of degree three in the core
with some other vertex of the giant. The probability that it happens at the
M-th stage of the process, where M = n/2 + s, should be close to

4 3253 n / n 12853
*3nz 25/ \2 3nd
Thus, the expected number of vertices of degree at least four in the core

created in the process in the first M = n/2 + s stages can be approximated
by

~y

i 128t3 325
3n3 3n3 -’

t= |_n2/3j .

Note that the number of vertices of degree at least four in the core is, for
s = o(n), much smaller than the number of vertices of degree at least three.
Thus, we should expect that the core contains roughly 32s%/3n? vertices of
degree three in it. Observe also that the expectation of the number of vertices
of degree at least four tends to 0 for s € n3/4; thus, they do not appear in the
process until the moment when M = n/2 + Q(n3/*). The same heuristic can
be used to guess the number of vertices of degree 7 in the core. Nonetheless, we
should mention that the following result from Luczak (1991a), which confirms
our speculations, has been proved by somewhat different techniques.

Theorem 5.15. Let M = n/2 + s, where n?/3 « s K n, and, fori> 2, let
D; = Dy(n, M) denote the random variable which counts vertices of degree 1
in the core of G(n,M). Then

852
Dy, =(1+ Op(l))—n‘ ,

3253
Ds =(1+ Op(l))—gﬁ'z— :

Moreover, for a given i > 4, D; = Op(s*/ni~1). If s < n'"Y/% aas.
no vertex of G(n, M) has i neighbors (or more) in cr(G(n, M)), while for
n'~1% « s € n, we have

222’ Si

D; = (1+0,(1) m

ni_l -
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Remark 5.16. Since in the supercritical phase a.a.s. G(n, M) contains no
complex components except the giant one, a.a.s. all vertices which have more
than three neighbors in the core belong to the largest component of the ran-
dom graph. Furthermore, the expected number of vertices that belong to the
cycles in the unicyclic components is of the order n/s (Exercise!). Thus, in
the supercritical phase | cr(G(n, M))| = (1 + o0,(1))| crf(n, M)|, and the vast
majority of the vertices of G(n, M) which have two neighbors in the core of
G(n, M) is contained in its largest component.

The above result implies that in the supercritical phase, as long as n?/3 «
s < n, most of the vertices of the kernel of the largest component of G(n, n/2+
s) are of degree three. A stronger 8-regularity principle was shown by Luczak
(1991a). It states, roughly speaking, that if M = n/2 + s and n?/? € s < n,
then G(n, M) contains an induced topological copy of a random cubic graph on
(32 + 0,(1))s®/3n? vertices, where, clearly, all vertices of this copy of degree
three must belong to ker(G(n,M)). On the other hand, as was proved by
Robinson and Wormald (1992) (see Theorem 9.20) a.a.s. the random cubic
graph contains a Hamilton cycle. Thus, a.a.s. there exists a cycle that goes
through nearly all vertices of the kernel, and thus contains roughly two-thirds
of its edges. However, vertices of degree two in the core are placed on the edges
of the kernel in a random manner. Thus, roughly two-thirds of all vertices
of crl(n, M), that is, about 16s2/3n of them, should lie on the cycle which
corresponds to a Hamilton cycle of the kernel. On the other hand, each cycle
must be contained in the core, so it cannot have more than |cr?(n, M)| =
(8 + 0,(1))s?/n vertices. In fact, we can slightly improve this bound, since at
least one-third of the paths which connect vertices of degree at least three in
the core do not belong to such a cycle. Thus, after some computations, one
can arrive at the following result (Luczak 1991a).

Theorem 5.17. Let M = n/2 + s, where n?/3> « s < n. Then the length
of the longest cycle in G{n, M) lies between (16 + 0,(1))s?/3n and (7.496 +
0p(1))s?/n. |

The above theorem estimates the length of the longest cycle contained in
the giant component; we conclude this section with a few words about other
cycles that emerge in G(n, M). As one can expect, the subcritical case is easy
to study. If M =n/2 — s and n*/® « s < n the largest unicyclic component
of G(n, M) is of size ©,(n?/s?), and the longest cycle has length ©,(n/s).
(Exercise! Hint: use (5.9). See also Remark 5.16.) It is not much harder
to check that in the supercritical phase, when M = n/2 + s and s > n?/3,
the size of the largest cycle of G(n, M) which is not contained in its largest
component is ©,(n/s) as well (Exercise!). Hence, in the supercritical phase,
typically the size of the largest cycle outside the largest component decreases
when the process evolves; thus we infer that the unicyclic components with
long cycles must merge with the largest components quite quickly and, con-
sequently, the shortest cycle inside the giant must be of length Op(n/s). It is
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somewhat surprising at first sight that at the same time the largest compo-
nent of G(n, M) contains no cycles that are much shorter than n/s. Hence,
in the supercritical phase, basically all long cycles are contained in the giant
component, while all short ones lie outside it (Luczak 1991a).

Theorem 5.18. Let s = s(n) be a function such that n?/® € s K n.

(i) If M = n/2 — s, then the length of the longest cycle in G(n, M) is
©,(n/s).

(i) If M = n/2 + s, then the length' of the longest cycle not contained in
the largest component of G(n, M) is ©p(n/s). Furthermore, the same is
true for the length of the shortest cycle contained in the giant component

of G(n, M). n

5.5 NEAR THE CRITICAL PERIOD

Now (at last!) we have a quick look at the critical phase, crucial for the
phase transition phenomenon, when the giant component is just about to
emerge. From Theorems 5.8 and 5.12 we know that this is the only time of the
evolution when more than one complex component may simultaneously appear
in G(n,M). Theorem 5.8 tells us also that all complex components created
in the critical period must be quite large and they are not very numerous.
Let us first show that all of them are of size O,(n?/3) (in fact, ©,(n?/%) - see
Theorem 5.8) and their total excess is bounded in probability.

Theorem 5.19. Let M = n/2 + O(n*?) and and let ry denote the num-
ber of £-components in G(n,M). Then }_‘_423 lre = Op(1) and all complex

components of G(n, M) have O,(n*/?) vertices combined.

Proof. Let w = w(n) be any function such that w — oo as n — oo but,
say, w = o(logn), and let M, = n/2 + w'/4n?/3. Consider G(n, M) as
the M,-th stage of the random graph process {G(n, M)} . Theorem 5.12
states that a.a.s. G(n, M, ) contains only one complex component of at most
wn?/3 vertices and Theorem 5.13 says that a.a.s. the excess of this component
k(n, M) is less than w. Since all complex components that appear at the earlier
stages of the process {G(n, M)} are vertex-disjoint subgraphs of the giant
component of G(n, M), the assertion follows. u

Somewhat surprisingly, not much beyond what follows from Theorems 5.8
and 5.19 can be said with probability tending to 1 as n — co about the
component structure of G(n, M) in the critical period. It turns out that with
probability bounded away from both 0 and 1, every possible configuration
not excluded by the above results can appear in G(n, M), provided we do
not restrict the sizes of largest components up to a factor of 1 + o(1). In
order to make this vague statement precise, let us consider a family of triples
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T = (¢;a,b), where £ > —1 is an integer and 0 < a < b < 0. We call such
a triple regular if £ > 1, or £ = ~1,0, but a > 0. Two triples T = ({;a,b)
and T' = (¢;d',b) are non-intersecting if either ¢ # ¢', or the intervals
[a,b] and [a’,b'] are disjoint. For a positive constant d, a family of regular
pairwise non-intersecting triples T = ((¢1; a1,b1), (€2;a2,b2) ..., (€m; @m, b))
and a sequence of natural numbers t = (t1,¢2,...,tn), let A(d,T,t) denote the
event that G(n, M) contains precisely ¢; £;-components whose sizes lie between
ain?/? and b;n?/3, fori = 1,2,...,m, in G(n, M) there are no other complex
components and, finally, no other isolated trees and unicyclic components of
size at least dn?/® appear in G(n, M). The following result has been proved
by Luczak, Pittel and Wierman (1994) and Luczak (1996). )

Theorem 5.20. Let ¢, d be constants such that —oo < ¢ < o0 and d > 0,
and M = n/2 + cn?/®. Then for every family of regular pairwise non-
intersecting triples T = (11,7, ...,Tn) and every sequence of natural num-
bers t = (t1,ta,...,tm), the limit

p(c;d,I,¢t) = lim P(A(d,T,¢))

n—o0
exists and 0 < p(c;d,T,t) < 1. _ [ |

The proof of Theorem 5.20 relies on precise estimates of the moments of an
appropriate multidimensional random variable, and since it is long and quite
technical we omit it here.

A consequence of Theorem 5.20 (almost equivalent to it) is that if we denote
the components of G(n, M), arranged in decreasing order, by C;, Cs, ... , and
X(n) is the sequence of pairs (n=2/3|C1|,e(C1) — v(C1)), (n™%/3|C2|,e(C2) —
v(C3)),..., then the random sequence X(n) converges in distribution, as
n — oo, to some random sequence X = ((X{,X{), (X3}, X%),...). Aldous
(1997) gave a proof of this form of the result (for G(n,p)) by a quite different
method, which furthermore identifies the limit in terms of the excursions of
a certain modified Brownian motion. Aldous’s argument is based on expos-
ing the component structure vertex by vertex (as in the branching process
argument in Section 5.2) together with martingale convergence techniques.

It follows immediately from Theorems 5.17 and 5.18 that for M = n/2 +
O(n?/3) each cycle contained in the largest component of G(n, M) has length
©,(n'/3). As a matter of fact, since the core of a complex component is
obtained from its kernel by randomly placing vertices of degree two on its
edges, it is not hard to see that the following slightly stronger statement
holds (Luczak, Pittel and Wierman 1994).

Theorem 5.21. Let M = n/2 + O(n*?). Then any two vertices of degree
three in the core of G(n, M) lie at distance ©,(n'/3) from each other. |

In particular, in the critical period a.a.s. G(n, M) contains no cycles with
diagonals. We challenge the reader to find a heuristic argument that shows
that such cycles appear in the process when M = n/2 + ©(n®/*) (Exercise!),
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well before M = n/2+0(n?/3) as the very first look at Theorems 5.15 and 5.17
may suggest (for the limit probability of this property see Luczak (1991a)).
Finally, let us say few words about the threshold for the property that
a graph is planar, which was addressed already by Erd6s and Rényi (1960)
(see the comments on their result by Luczak and Wierman (1989)). Since for
M = n/2 + O(n*?), a.a.s. all vertices of the core have degree two or three
(Theorem 5.15), a.a.s. G(n, M) contains no topological copy of K5. Does
it contain a copy of K33? Certainly not with probability 1 — o(1), since
from Theorem 5.20 it follows that at any moment of the critical period, with
probability bounded away from 0, G(n, M) consists only of trees and unicyclic
components. However, for a given ¢, once an ¢-component appears in G(n, M),
with a non-vanishing probability its kernel can be any 3-regular multigraph
with excess £. (Although it is not true that all such multigraphs are equally
likely to appear as the kernel of such a component, for a small £ the corre-
sponding limit probabilities are easy to work out.) Thus, since Theorem 5.20
implies that the probability that G(n, M) contains an #-component with £ > 3
is larger than some positive constant, the probability that G(n, M) is planar
is also bounded away from zero. With some more work, one can prove the
following, somewhat stronger result (Luczak, Pittel and Wierman 1994).

Theorem 5.22. Let M = n/2 + cn®/? for some constant c. Then the prob-
ability that G(n, M) is planar tends to a limit ppi(c), where 0 < ppi(c) < 1.
Furthermore,

lim ppi(c) =1 while cllglo ppi(c) =0. N

c—>—00

Unfortunately, we do not know how to find the value of pp(c), although, in
principle, we can approximate it with arbitrary precision. For instance, the
best known bounds for ppi(0) are given by Janson, Knuth, Luczak and Pittel
(1993, Theorem 8), who showed that

0.987074 < ppi(0) < 0.999771.

5.6 GLOBAL PROPERTIES AND THE SYMMETRY RULE

So far we have dealt mainly with properties that hold a.a.s. for the random
graph G(n, M); in this section we will be interested in properties of the random
graph process {G(n,M)}sr. Thus, for instance, instead of approximating
some random variable X, s, defined for G(n, M), for a given function M =
M(n), we will try to obtain uniform bounds for X, » which a.a.s. remain
valid at many or all stages of the process {G(n, M)} .

Let us start with a simple example of one such global statement.
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Theorem 5.23. Let w = w(n) = o0 as n — oo, with w < nl/8. Moreover,

for M =n/2+s, let

1 ) n? o |s|3
252 8z

kt(n, M) = (1 + (5.20)

loglogw
Then a.a.s. for the random graph process {G(n, M)} the following hold:
(i) f —n/w < s < —wn?3, then

k=(n,M) < Ly(n,M) < kt(n,M);

(i) if —wn?? < s <wn?3, then

n2/3/w2 < Li(n, M) < 5wn?/3;

(iii) if wn?? < s < njw, then

|Ly(n, M) — 4s| < w™4s.

Proof. Let s; = wn?/3(1+1/logw), where i = 0,1,...,t and t is the smallest
natural number for which s; > n/w. Furthermore, let M;” =n/2 —s; and

2

- 1 n |s[3
kE(n,M) = . .
(n, M) (1 + 2loglogw) 252 log n? (5:21)

Then, Theorem 5.6 implies that with probability at least

t
1 _Z(Z_:)l/tlloglogw —1-o(1),

1=0 t

for alli =0,1,...,t, we have k= (n, M) < Ly(n, M[) < k*(n, M]"). Now it
is enough to observe that for every M = n/2 — s, for which s;—; < s < s5;, we
have k~(n, M~) < k~(n,M[") and k*(n, M) > k*(n,M_,). Hence, a.a.s.
for each such M

k“(n,M) < Li(n,M]) < Ly(n,M) < Ly(n,M_,) < k+(n,M).

In the very same way one can deduce (iii) from Theorem 5.12 and (5.18).
Finally, the statement (ii) follows immediately from (i) and (iii), applied with
s = twn?/3.

The above argument strongly relies on the fact that the value of the ran-
dom variable L;(n, M) cannot decrease during the random process. Suppose,
however, that we would like to show a similar uniform bound for the size of the
second or, more generally, the r-th largest component of G(n, M) for a fixed
r > 2. The subcritical phase is rather easy to deal with. Clearly, the uniform
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upper bound for L, (n, M) given in Theorem 5.23 is at the same time the up.
per bound for L.(n, M). On the other hand, Theorem 5.6 and Theorem 5.23
imply that a.a.s. the random graph process is such that for all M =n/2 -
for which s > n%/3 we have L.(n, M) < L.(n, M+1). It is in the supercritica]
phase that the problem of studying L.(n, M) becomes interesting: now the
size of Lr(n, M) can increase when the r-th largest component merges with
some small component, but-the value of L(n, M) can also drop significantly,
when one of the largest components is joined to the giant one. In this section
we learn one method of dealing with such non-monotone random variables:
the symmetry rule.

Suppose that M = n/2+s, where n?/® « s < n, and let G* (n, M) denote
the graph obtained from G(n, M) by deleting all vertices of the largest compo-
nent. (In the unlikely case in which there are several components of maximum
size we pick one of them uniformly at random.) Then, from Theorem 5.12
and (5.18), GI'(n, M) has n' = n — (4 + 0,(1))s vertices. Furthermore, due to
Theorem 5.13, it has

M =n/24+s5—(4+0,(1))s—0p(s) =n/2—(34+0,(1))s =n'/2—(1+0,(1))s

edges. Thus, properties of G* (n, M) should be roughly the same as those of
G(n', M"), wheren' = (14+0(1))n and M’ = n'/2—s. The following symmetry
rule states this fact in a rigorous way.

Theorem 5.24. Let A be any graph property. If M = n/2+s, where wn?/3 <
s < njw for some function w = w(n) — oo, then for n large enough

P(G* (n, M) has A) < max{P(G(n', M') has A) :
In' — (n —4s)| Sw™ %, [M' = (n'/2 - 5)| < w "%} + 8n2/%s~1/3,
Proof. Let n’ and M’ denote the number of vertices and edges in GX (n, M),

respectively. Theorem 5.12 implies that, except for an event with probability
at most 7n2/°/s!/3

[n3/3] [n2/3]
Z KYom(k,=1) + > kYaa(k,0),
k=1
rnm] RN (5.22)
M= (k=DYam(k,—1)+ Y k¥num(k,0).
k=1 . k=1

Assuming this, Theorem 5.11, with w replaced by s%/2 /nw, and (5.18) show
that, except with probability at most nw/s%2 < n1/3/s1/2,

2

|n—(n—4s)|< + n/ +Oc(s)=00(5).
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Moreover, by estimates as in Section 5.3, it can be shown that if M = n, /2 -5,
then
2/3]

]E( Z Yo, m(k,—1) — Mn )‘ = O(n),
where

Y =§—S+§n—2+0

Mn-M) n 1653 st n s

W (=) (Z):

which, in fact, implies Theorem 5.13 when s is large, s > wn®/6 (Exercise!).
Thus by Chebyshev’s inequality, again assuming (5.22),

n s nw? 1/3 n2/3
Bl - 0= (5 -5)|> 2) =0(5) =0(™) = 0(%-).

Observe that the graph GY(n, M), once we condition on the number n’
of its vertices and the number M’ of its edges, can be viewed as a graph
chosen uniformly at random among all graphs with n’ vertices and M’ edges
in which the largest component is not larger than n—n' (a negligible additional
weighting factor emerges in the case when the largest component of G* (n, M)
has precisely n—n' vertices). Moreover, the values of n’ and M’ we are dealing
with ensure that G(n', M') is in the subcritical phase of the evolution of the
random graph. Therefore, we can use Theorem 5.6 with & = 1/3 to infer that,
with probability at least

1-[(n")?/(n'/2 - M')‘q']l/3 >1-2n%3/s>1-05n*%"1/3,
G(n', M) contains no component larger than n2/3, and the result follows. W

Thus, as we have already anticipated by looking at the formula (5.8), for
n?/3 « s < n the graph G* (n,n/2 + s) behaves roughly like G(n,n/2 — s)
with respect to any property A not vulnerable to small changes in size of the
random graph (see also Theorem 5.18). It can be shown that an analogous
relation between the structures of G* (n,n/2+ s) and G(n',n'/2 — s') remains
true also for s = Q(n). (However, in this case the dependence of n’ and ¢’
on n and s is more involved and the “mirror symmetry rule” is not valid any
more.) Thus, the evolution of GL (n, M) in the supercritical phase is simi- -
lar to the evolution of G(n, M) in the subcritical phase running backwards:
for M /n — oo all cycles in G- (n, M) disappear, the size of the largest com-
ponent of GF (n, M) decreases and, just before G(n, M) becomes connected,
a.a.s. GL'(n, M) consists of isolated vertices. However, the importance of the
symmetry rule goes beyond the fact that it could give us better insight into
the nature of the evolution of the random graph; it can be also a useful tool
in studying global properties of the random graph process.
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Theorem 5.25. Let r > 2 be a natural number which does not depend on p,
and let w = w(n) — 00 as n — 00. Moreover, for M =n /2 + s, let

1 )n2 | |53

kX(n,M) = (1% :
(m, M) ( loglogw / 2s2 %8 2

(5.23)

Then a.a.s. the random graph process {G(n, M)} is such that for all M <
n/2 + s, where wn?/3 < |s] < n/w, we have

k~(n,M) < L.(n,M) < k*(n,M).

Proof. As in the proof of Theorem 5.23, set s; = wn?/3(1 + 1/logw)?, where
¢t = 0,1,...,¢t and ¢t is the smallest natural number for which s; > n/w.
Furthermore, let M;” = n/2 — s; and k%(n, M) be defined as in (5.21). Using
Theorem 5.6 as before, a.a.s. for all 2 = 0,1,...,¢t we have I}“(n,Mi‘) <
L.(n, M) < k*(n, M;"). Then, using the upper bound for L, (n, M,") given
by Theorem 5.23, and the “a.a.s. monotonicity” of L.(n, M) in the subcritical
phase discussed above, we infer that a.a.s. for every ¢ = 1,2,...,¢, and every
M =n/2 — s for which s;_; <5< s;,

k= (n, M) <k~ (n,M;) < Ly(n, M)
<Ly(n,M) < Ly(n,M_,) < k+(n> M) <kt (n,M).

Now set M;" =n/2+s; for i = 0,1,...,t. Then, arguing as before but
now using Theorem 5.7, one can show that a.a.s. for allz = 0,1,...,¢ we have

k=(n, M}") < Lo(n, M;") < k*(n, M;").

Nonetheless, as we have already observed, this fact does not imply that
k~(n,M) < L.(n,M) < kt(n,M) for all Mt < M < M, since dur-
ing the random graph process the largest components merge with the giant
component and so the value of L.(n, M) can go up and down. Thus, for
1 =0,1,...,t — 1, let A4} be the following property of a graph G: if we add
to G si+1 — s; edges, chosen uniformly at random from all pairs of vertices
of G which have not yet become edges of G, then the probability that the
largest component of such a graph is larger than k*(n, M;t) = k*(n, M) is
smaller than (n2s;3)!/20loglogw  Gimilarly, for i = 1,2,...,t, let A} denote
the property that a graph G is such that if we delete from it s; — s;_; ran-
domly chosen edges then the probability that the r-th largest component of
the graph obtained in this way is smaller than k™ (n, M;") = k=(n, M) is at
most (n?s;3)1/20leglogw  (We define 4! and A! false if there is not room in
G to add or delete this number of edges.) Let us emphasize that, although
probability is involved in the definition of 4! and A}, they are purely “de-
terministic” graph properties; for instance, A!' says, roughly, that G contains
a lot of large trees whose sizes do not drop rapidly when we delete from the
graph a moderate number of randomly chosen edges.



GLOBAL PROPERTIES AND THE SYMMETRY RULE 133

Now suppose that (1-5/w)n < n’ < nand |s' —s;| < w™%%s;. We will show
first that the probability that the property A; does not hold for G(n',n'/2—s')
is bounded from above by

n2s3 1/20loglog w n? 1/20log log w
: <2 = .

(8 + 8i — 8i41)8 83

Indeed, otherwise the probability that the largest component of G(n', n’ /2 -
' — 8i + si1) is larger than k*(n, M;”) would be bounded from below by

nzsf' 1/20log logw n? 1/20log logw
(S' + s5; — Si+1)6 33

1

n? . 1/10loglogg
(8" + 8i — 8i41)? ’

contradicting Theorem 5.6. Similarly, the probability that G(n',n’'/2—s') has

A is at least
n2 1/20log log w
1-2 (—3—) ,

Si

since otherwise the graph G(n,n/2—s' — s;+si—;) obtained from G(n',n’/2 -
s') by deleting s;—s;_, randomly chosen edges, would contradict Theorem 5.6.
Now apply the symmetry rule (Theorem 5.24) to infer that for each i =
0,1,...,t — 1, with probability at least

2\ 1/20loglogw 2/9 2\ 1/20loglogw
1—2(’-’—) _8n >1—3(7—’—) ,

3 13 = 3
S si/ S

G~ (n, M;") has property A’, and for each i = 1,2,...,¢, with probability at

least :
n? 1/20log log w
1-3(%) ,

Si

the property A} holds for G* (n, M;).

Now, in the evolution of G(n, M) for M = M;" to M} ;, we add si41 — s
edges. Some of them may have one or two endpoints in the largest component
of G(n, M;), which only may decrease the size of the largest component of
GY(n, M), and since the property that a graph contains a component larger
than k*(n, M;) is monotone, it follows that the probability that the largest
component of GE (n, M) is larger than k*(n, M) > k*(n, M;") for some M =
n/2 + s with s; < s < s;41 is bounded from above by the probability that
we create a component larger than k+ (n, Mi+ ) if we add s;+1 — s; randomly
chosen edges to GL (n, M;"). Thus, from the definition of Aj it follows that
this probability is at most

n2 1/20log logw n?2 1/20log logw
(G0, 1) ¢ ) + (T ) <4(%) .

3
i 5
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Consequently, the probability that for some M =n/2 + s, where so < s < s,
the largest component of GZ (n, M) is larger than k*(n, M) is bounded from

above b
Y t—1 n? 1/20 log log w

1=0

For the lower bound, we instead for M:_"H > M > M} regard G(n, M ) as
obtained from G(n, M:L ) by randomly deleting edges one by one. Some of the
removed edges may have belonged to the largest component of G(n, M,

i+1)s
but we continue and delete edges until s;4+1 — s; of them have been removed

from G* (n, M}, ), and denote the resulting subgraph of GX (n, M} ) by H;.
Let V =V (G(n, M) = V(H;).

If for some such M the r-th largest component of G(n, M) is smaller than
k=(n, M) < k= (n, Miy1), so that G(n, M) has less than r components of order
at least k= (n, M;,), then the same holds for the subgraph G(n, M)[V], and if
we continue to delete edges, and assume that all components of GL (n, M)
have orders less than 2k~ (n, M;,,), we see that also H; has less than r com-
ponents of order at least k- (n, M;y1). By the definition of A}/ ,, and ob-
serving that 2k~ (n, M;y1) > k* (n, Mit1), it follows that the probability that
L.(n,M) < k~(n,M) for some M =n/2+s, 3; < s < 8it1, is at most

L ' 2\ 1/20l0glogw
P(G" (n, M) ¢ Ai) +B(GH (n, M) ¢ Al + (—)

i

2\ 1/20loglogw
n
8¢

1

Summing over all ¢ < ¢, we see that the the probability that L.(n, M) <
k=(n,M) for some M =n/2+ s, 5o < s <8 is o(l) as n — oo. |

5.7 DYNAMIC PROPERTIES

In the previous section we showed how to use the symmetry rule to extend
results about G(n, M) to theorems about the behavior of the random graph
process {G(n, M)} . Now we mention a few “genuine” properties of the
random graph process which do not correspond to any property of G(n, M).

The first problem we will consider is Erdés’s question about the length &,
of the first cycle which appears during the random graph process. The limit
distribution of &, is given by the following result of Janson (1987) (see also
Bollobas (1988b)).

Theorem 5.26. For every j > 3

1 .
/ =1t/ 28214 /T "¢ dt .

0]

lim P(¢, = j) =

n—oo

N =
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Proof. We just give the idea of the proof, omitting all technical details and
computations which can be easily filled in by the reader (Exercise!). Thus,
let n > 0. Choose j > 3 and a large constant A. For i =0,1,...,[(1 — n)A4]
set M; = t;n/2, where t; = i/A. One can apply the method of moments
(Section 6.1) to show that for every such M; the probability that G(n, M;)
contains no cycle tends to

o0
exp (— Z tf/2k> = eti/2+ti/4 T ¢,

k=3

Furthermore, one can use Chebyshev’s inequality to verify that for every ¢ the
number of pairs of vertices of G(n, M;) connected by a path of length j —1 is
equal to (1/2+ o,,(l))tf"ln. Note that the property that a graph contains no
cycle is decreasing and that the number of pairs of vertices joined by a path of
length j — 1 can only increase when a new edge is added to the graph. Thus,
since A can be chosen arbitrarily large, we infer that for every € > 0 a.a.s.
for every M = tn/2, where 0 < t < 1 — 5, the number of pairs of vertices of
G(n, M) connected by paths of length j—1 is contained between (1/2—¢)t?~!n
and (1/2 + €)t?~n. Moreover, if M = tn/2, where 0 < ¢t < 1 — 7, then the
probability that G(n, M) contains no cycle is (1+o(1))et/2+t*/4,/T—¢. Hence
the probability that in the first (1—n)n/2 stages of the process a cycle of length
J appears as the first one is given by

(1—m)n/2

o) Y CMIPYTR ot T30

fra (2)

1-7
= (%+o(1))/ ti=1et/2+8/4 /T "L dt .
0

Thus, letting n — 0, for each j > 3 we get

1
liminf P(¢, = ) > p; = 1 / ti=1et/2+*/4 /T "¢ dt. (5.24)
n—+00 - 2 Jo

However, it is easy to check that ijs p; = 1, thus (5.24) implies that
lim P(, =) = pj
n—ro0
for every j > 3. |

Let us remark that the limit distribution of &, has infinite expectation;
thus E&, — oo and, since E&, < n, one can ask about the order of E&g.
Flajolet, Knuth and Pittel (1989) computed all the moments of the length of
the first cycle and of the size of the component containing it; in particular,
they showed that
r/20(1/3) /6

E&n ~ 91/632/3
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The proof, based on the study of the behavior of a certain generating function,
is much harder than that of Theorem 5.26, thus we do not give it here, but refer
the interested reader to the original paper (see also Janson, Knuth, Luczak
and Pittel (1993, Section 26)).

Two other problems we would like to mention in this chapter concern the
way the giant component emerges. Erdds proposed that we view the evolving
graph as a “race of components”. In order to express his idea in a rigorous
way, we define recursively the leader of this race. For a graph with only one
edge, the leader is the only component with two vertices. Now suppose that
we add a new edge e to a graph G, in which one of the largest components,
say, H, has been chosen as the leader. Then, e may miss the leader and
connect two other components whose combined size is larger than |H|; in
this case we say that a change of leader occurred and nominate the newly
created largest component to be the leader of the graph. In all other cases
the leader of G + e is the component that contains all the vertices of the “old”
leader H. Erdds asked when in the random graph process the last change of
leader takes place. Note that Theorems 5.23 and 5.25 imply that a.a.s. no
changes of the leader occur when n?/® « M — n/2 < n, and the reader is
invited to check that the same remains true for all M = n/2+Q(n) (Exercise!).
However, it is, in principle, possible that already in the subcritical phase one
component starts to dominate, although its superiority becomes evident only
later. The following result by Luczak (1990c), which we give without proof,
shows that this is not the case, and that the last change of leader occurs at
M =n/2+ 0p(n?/3).

Theorem 5.27. Let Lead(n, M) denote the largest number r such that the
leader of G(n, M) does not change in the next r stages of the random graph

process {G(n, M)} .
(i) Ifn%® < s < n, then

Lead(n,g - s) = @p(m) .

(ii) If s> n?/3, then a.a.s. Lead(n,n/2+s) = (}) —n/2—s, in other words,
the largest component of G(n,n/2 + s) will remain the leader until the
very end of the random graph process {G(n, M)} . [

Finally, let us look once again at the number of complex components cre-
ated during the process {G(n, M)} . Theorem 5.8 says that a.a.s. all complex
components are created in the critical phase when M = n/2 +O(n?*3). What
is the probability that only one complex component appears in the process
{G(n, M)} p and no other complex component ever emerges? Theorem 5.8,
the remark following it, and Theorem 5.20 imply that this probability tends
to a limit v, where 0 < v < 1. In order to find the value of v, we describe the
changes of the structure of G(n, M) during the critical period in yet another
way, as a Markov chain whose stages are “graph configurations”.
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Thus, we say that [ry,72,...,7,] is the configuration of a graph G, if G
contains precisely ry ¢-components for { = 1,2,...,q and no ¢-components
with £ > g appear in G. It is not hard to see that if we add a new edge to
a graph the value of }~, fr¢ increases by at most one; for instance, adding a
juncture as an edge to a graph changes its configuration [ry,72,...,r,] into
[r1 + 1,72,...,7¢]. The following “switching theorem”, proved in Janson,
Knuth, Luczak and Pittel (1993) by a careful analysis of an appropriate gener-
ating function, describes quite precisely the way the configuration of G(n, M)
evolves during the random graph process.

Theorem 5.28. Let ry +2ra +---+qry =7 and &, + 262+ --- = 1. Then
the limit probability that in the random graph process {G(n, M)} the config-
uration [r1,72,...,74] is followed by [ry + 81,72 + 82,...,74 + 84, 0041,...] 45
equal to

H@r+DB+3) if s=1
95(j + Vri/Br+ )Br+3) i & =-1, §j4 =1
95°rj(r; = 1)/(3r+ 3)3r +35) i
18jkrjrr/(3r + 3)(3r + 3)  if

(=]

j = =2, 02541 =1

(=

i =—1,6k=—1,8j4k+1 =1, 5 <k

and there are no other possibilities. Moreover, asymptotically these probabili-
ties are independent of the history of previous configurations. |

Note that, in a way, the above theorem nicely supplements Theorem 5.20.
Theorem 5.20 implies that, in particular, for any sequence ry,...,7, (e.g.,
0,2,1) of natural numbers, with probability bounded away from zero, for
some M the graph G(n, M) has configuration [ry,...,7,] (e.g., [0,2,1]). The-
orem 5.28 states that we may choose not only such a configuration but also
the way it was created (e.g., [1] — [0,1] — [1,1] = [0,2] — [0,1,1] = [1,1,1]
— [0,2, 1]); still the probability that the configurations of G(n, M) during the
random graph process followed such an “evolutionary path” tends to po > 0
as n — 0o, where po = po(r1,...,74) can be explicitly computed.

Now the question about the limit probability that during the random graph
process no two complex components appear at the same time, finds its sur-
prisingly simple answer.

Theorem 5.29. The probability v(n) that in the process {G(n, M)}s for
every M, 0 < M < ('2‘), G(n, M) contains at most one complex component

tends to
92(¢+ 1) o

Y =£Il (3¢+1/2)(3¢+5/2) 18 0.872...

as n — 0.

Proof. Theorems 5.8, 5.10 and 5.13 imply that for every £ > 0 there exists
a constant C = C(e) such that the following holds: with probability at least
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1—¢, the random graph process is such that if in G(n, M) an ¢-component wit},
¢ > C appears, it will remain the only complex component of the graph unt;]
the very end of the random graph process. Thus, the probability v(n) can be
approximated up to € by the probability that the first C steps of the evolution.
ary path are [1] — [0,1] — [0,0,1] = --- —= [0, ...,0,1]. From Theorem 5.98
the probability of this event tends to HE’;I 92(€ + 1)/(3¢+1/2)(3¢ +5/2).
Now, to complete the proof, it is enough to let C — oo. n



Asymptotic Distributions

Many questions for random combinatorial structures are qualitative; we ask
whether some property is satisfied, for example, the existence of a certain
substructure. Other questions are quantitative; we study some numerical
characteristic of the random structure, for example, the number of copies of a
certain substructure. Since the structure is random, this becomes a random
variable and we may ask about its distribution.

Exact formulas for the distributions of interesting combinatorial variables
are rare, and even when they exist, they are often too complicated to be of
much use. The main interest, therefore, centers on asymptotics and limit
theorems. We will in this chapter describe several methods that have been
used to prove such results, and illustrate their use with applications to random
graphs. We concentrate on presenting the methods rather than presenting new
results; thus we prove some results several times by different methods.

The appropriate probabilistic notion is convergence in distribution, as de-
fined in Section 1.2. We will mainly state results on convergence in distribu-
tion of single random variables, but most of the results extend easily to joint
convergence of several variables. For example, the Cramér-Wold device (see
Section 1.2) applies with ease to extend all results in this chapter on normal
convergence (Exercise!).

Typically, random variables converge only after rescaling. We use special
notation for the most natural and common choice: For a random variable X
with finite non-zero variance, we define

X = (X —EX)/(Var X)/;

thus X is standardized to have E X = 0 and Var X = 1.
139
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6.1 THE METHOD OF MOMENTS

The method of moments is one of the oldest methods to prove convergence in
distribution, but it is still widely used, both because it is conceptually simple
and because it is powerful and well adapted to combinatorial problems. The
drawback is that it usually requires long and messy estimates. As a result,
many theorems have first been proved by the method of moments but later
reproved in more elegant ways by other methods.

The moments of a random variable X are the numbers EX*, k > 1. We
consider here only variables such that all moments exist, that is, E|X|* < oo
for every k > 0; we say that such random variables have finite moments.

It is clear that the moments of a random variable are determined by the
distribution. The converse does not always hold (see, e.g., Chung (1974)),
but it holds in many important cases. We thus say that the distribution of
X is determined by its moments if X has finite moments and every random
variable with the same moments as X has the same distribution. A sufficient
condition for the distribution of X to be determined by its moments is that
the moment generating function E e*X is finite for ¢ in some interval around 0;
in particular, this holds if X has a normal or Poisson distribution.

The standard version of the method of moments can be stated as follows;
see Chung (1974, Theorem 4.5.5) for a proof.

Theorem 6.1. Let Z be a random variable with a distribution that is de-

termined by its moments. If X,,Xo,... are random variables with finite

moments such that EXF — EZ* as n — oo for every integer k > 1, then
d

Xn— Z. [

The method of moments thus requires estimation of all moments of X,
which often leads to long calculations. Two versions of the method, which are
formally equivalent but often more convenient for applications, are given in
separate subsections below.

The method of moments also applies to vector-valued variables, or, in other
words, to joint convergence in distribution of several random variables; we now
have to consider all mixed moments. We write Z* = Z* --- Z3¢ for vectors
Z = (Zl,...,Zd) and a = (al,...,ad).

Theorem 6.2. Let Z = (Z,,...,Z4) be a random vector with a distribution

that is determined by its moments. If X, = (Xn1,...,Xnd) are random
vectors with finite moments such that EXS — EZ® as n — oo for every
multi-indez a = (o, ...,04), then X, 4z [ ]

A particularly important case is convergence to a normal distribution. We
recall that the semi-factorial n!! is defined to be n(n—2) - - - 3-1 = (2m)!/2™m!,
when n = 2m — 1 is odd.
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Corollary 6.3. If X,,X,,... are random variables with finite moments and
an are positive numbers such that, as n — oo,

— 1\ gk k .
E(X, —EX,)* = (k . Day + o(ayz), whenk >2 z.s even,
o(a), when k > 3 is odd,

then a7} (Xn —E X,) 5 N(0,1) and X, 3 N(0,1).

Proof. Let X € N(0,1) be a standard normal variable and let my = E X*,
k=1,2,..., be its moments. Then, as is well known, my = (k — 1)!! when k
is even and my = 0 when k is odd.

Let Y, = a;'(X, —EX,). Then EY,, = 0 = m; and, by the assumption,
EY* — my as n — oo for every k > 2. Consequently, Y, 4 N(0,1) by
Theorem 6.1.

Finally, by the assumption with k¥ = 2, Var(X,)/a2 — 1 and, thus, using

Cramér’s theorem (Section 1.2), X, = (a2/ Var X,)/2Y, % N(0,1) too. W

Example 6.4. Consider the subgraph count Xs in G(n,p), where n - o0
and p = p(n) is a function of n. Asymptotic normality under various condi-
tions has been shown by several authors. The complete result (Rucifiski 1988)
is as follows; as is shown after the proof, the conditions on p are necessary
too.

Theorem 6.5. Let G be a fized graph with eg > 0. If n — oo and p = p(n)
is such that np™&) — oo and n2(1 - p) = oo, then Xg 4 N(0,1).

Proof. There are (7)v!/ aut(G) copies of G in the complete graph Kn; for
each such copy G’ we define, as in Chapter 3, the random indicator variable
I = 1[G’ C G(n, p)]; note that EIs = p®¢. Then Xg = > Ig» and thus,
for every m > 1,

E(X¢ -EXe)"= Y. E(Us, —Els)Us, —Elg,) - (Is,, —Elg,)),
(6.1)
summing over all m-tuples G,,...,G,, of copies of G in K,,. Let us write
T(G1,...,Gm) =E((Ig, —Elg,) - (Ig,. —Elg,.)),

and for each such term in the sum, define a graph L = L(G,,...,Gx) with
vertex set {1,...,m} and an edge ij whenever G; and G; have at least one
edge in common. Thus L is a dependency graph for the variables I, , ..., Ig,,,
see Example 1.6. A

We now group the terms in the sum in (6.1) according to the structure
of the graph L. Consider first the case when m is even and L consists of
m/2 disjoint edges. There are (m — 1)!! such graphs L, and each gives the
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same contribution to the sum in (6.1); moreover it is easy to see that each
contribution is (Var Xg)™/%(1 + O(1/n)). We claim that every other graph
L with m (even or odd) vertices contributes o(Var Xg)™/?; since there are
finitely many possible L for each m, the result then follows by summing over
L and applying Corollary 6.3, with a2 = Var Xg.

In order to verify the claim, observe first that if L has an isolated vertex i,
then every term T(G1,...,Gy) yielding the graph L vanishes, because then
Ig, — E g, is independent of the product of the other factors. Consequently,
such L give no contribution at all.

In the remaining cases, every component of L has at least two vertices,
and some component has at least three. We let ¢ = ¢(L) be the number of
components; it follows that ¢(L) < m/2. Moreover, we may, for convenience,
assume that the indices are reordered in such a way that the components of
L have vertex sets {1,...,m}, {1 +1,...,72}, ..., {re<1 +1,...,7c = m},
and that if j ¢ {1,7; + 1,72 + 1,...,7c.—1 + 1}, then L contains an edge ij
with i < j. ,

Consider a term T(G1,...,Gy,) in (6.1) with such an L, let G = |} G,
and let F; be the (possibly empty) subgraph of G which corresponds to
GU-b n G, under an isomorphism G; = G. Note that by our assumption
on L, e(F;) =0 exactly when j € {1,711 + 1,72 +1,...,7c—1 + 1}.

If p < 1/2, we estimate the term T(G1,...,Gm) by taking absolute values:

IT(Gy,-..,Gm)| <E((g, +Elg,) - (g, +Elg,)).

The product can be expanded as a sum of 2™ terms, and it is easily seen that
among them, Ig, --- Ig,, has the largest expectation, namely, pe(G(m)). Thus

|T(G1, e ,Gm)l S 2m E(IGI .. IGm) — O(pe(G(m)))
If 1/2 < p <1, we instead use the estimate

(L)

IT(G,...,Gm)| <E[] 6., —Els,, |,
k=1

keeping only one factor for each component of L. These ¢(L) factors are
independent, and each has the expectation

E|lg, —Elg,| =2p*(1 —p*°) < 2(1 - p*) < 2eg(1 - p).

Consequently,
T(Gy,...,Gm) = O((1 — p)°D).

We may combine the two cases by introducing redundant factors in each
of the estimates; thus, for all p € [0, 1],

T(Gl’ ) Gm) = O((]. — p)c(L)pe(G("‘))).
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Now, as is easily seen, e(G()) = jeg — Z{ e(F;), so, in particular, e(G(™) =
mea — 2y e(F;). Similarly, v(G'™) = mvg — Y7 v(F;) and thus there are
at most O(n™ve ~X1 ¥(F1)) possible choices of Gy, ..., Gy, yielding L and a
particular sequence F,..., F,,. Consequently, fixing L and F},..., Fy,, gives
a contribution to the sum in (6.1) of the order

O(nmvc—zr ‘U(Fi) (1 _ p)C(L)pmeG_Z;n e(F,')) . (62)

We next recall that ¢(L) of the F; have no edges, and thus n?(Fi) pe(Fi)
n?(F) > 1, while the m — ¢(L) others have e(F;) > 1 and thus n?(F:)pe(F)
E(XF,) > ®¢g, cf. (3.7). Hence, using Lemma 3.5,

(AVANT

nmvg—Z;" v(F;)(l _ p)c(L)pmeg—Z;" e(AF,-)
m
= (1 - p)) (nvepes)™ H(n”(F‘)pe(F‘)) -
i=1

< (1—p)® (nvepre)™ 18 =" < (1 - p) B (E Xg)m G
< (Var Xg)™2((1 - p)&g) "V ™2, (6.3)

Now the assumptions np™(G) — oo and n%(1 —p) — oo imply (1 —p)®g —
0. Indeed, as remarked in Chapter 3, np™(&) — o is equivalent to &g — oo,
which implies (1 — p)®s — oo provided p < 1/2. On the other hand, when
p>1/2, &g < n? and thus (1 — p)®g < n%(1 — p) = co.

Moreover, as observed above, ¢(L) < m/2. Consequently, by (6.2) and
(6.3), the contribution to the sum in (6.1) by terms corresponding to L
and Fy,...,Fn is o((Var X¢)™?). Summing over the finitely many possi-
ble sequences F,..., F,,, this verifies our claim that the contribution by L is
o((Var X¢)™/?), which completes the proof as shown above. |

To see that the conditions np™(¢) — oo and n2(1—p) — oo are necessary for
the conclusion, we observe that if they are violated, then for some subsequence
either np™ 5 4 < o0 or n?(1 —p) = b < co. In the first case (along the
subsequence) sup ¢ < oo and thus, by Theorem 3.9, inf P(Xg = 0) > 0;
in the second case P(G(n,p) = K,) = e~%2% > 0, and thus inf P(Xg =
f(n,G)) > 0, where f(n,G) is the number of copies of G in the complete
graph K,. In both cases X thus assumes a single value with probability
not tending to zero, which obviously rules out asymptotic normality (for any
normalization).

Remark 6.6. It is easily seen by the argument above that the conditions
np™&) — oo and n%(1 — p) — oo are together equivalent to (1 — p)®g — oo.
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Factorial moments

The factorial moments of a random variable X (with finite moments) are the
numbers

E(X)s =EX(X-1)---(X—k+1)], k>0

(with E(X)o = 1). Since the monomials {z/}%_, and the (descending) facto-
rials {(z); ;’:0 form two bases of the vector space of polynomials of degree at
most k, there exist numbers ax; and bx; (independent of X), such that

k
E(X)r=» agEXI

§=0

and
k
EX* =" b E(X);
rt

for every random variable X with finite moments. (The coefficients ax; and
br; are the Stirling numbers, see, e.g., Graham, Knuth and Patashnik (1989),
but their values do not matter here.) It follows that if X;, X5,... and X are
random variables, then EX* — E X* for every k if and only if E(X,)r —
E(X) for every k. Consequently, Theorem 6.1 can be reformulated as follows.

Theorem 6.7. Let X be a random variable with a distribution that is de-

termined by its moments. If X;,Xso,... are random variables with finite

moments such that E(X,;,)r — E(X)r as n — oo for every integer k > 1, then
d

X, = X. |

This form of the theorem is particularly convenient for proving convergence
to a Poisson distribution, since the factorial moments of X € Po()) have the
simple form E(X)r = M, £ > 0. (In contrast, the moments of a Poisson
variable have a more complicated form.)

The method of moments is often applied to counting variables of the form
S = Zae 4 1o, where I, are indicator variables; in this case (S)x counts the
number of (ordered) k-tuples of objects with I, = 1, that is,

(S)k = Ia1 : Iah P
Qly.eeey s 3%
where 3" denotes summation over all sequences of distinct indices a1, ..., ax,
and thus the factorial moments have the useful expression
ES)k= Y, E(la Io)= Y, Ploy=-=Iy=1). (64
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Corollary 6.8. Let S, = ZaeAn I, o be sums of indicator variables I, . If
A > 0 is such that, as n — oo,

EGSn)k = Y. P(na = =Inay = 1) = A, (6.5)
Q1.0 Qe .
for every k > 1, then S, 4 Po(}). [ |

Example 6.9. In Theorem 3.19, we studied the subgraph count Xg of a
strictly balanced graph G at the threshold (np™&) — ¢ > 0), and showed
that then (6.5) is satisfied and thus X¢g < Po()), with A = ¢¥¢ / aut(G).

With only minor modifications in the computation of the expectatlons the
same argument applies to the random graph G(n, M), with n(M/(3))™( —
C.

Theorem 6.7 extends easily to multivariate limits. In particular, for Poisson
limits we have the following result.

Theorem 6.10. Let (Xr(ll), ... ,Xr(lm) ) be vectors of random variables, where
m > 1 is fixed. If \1,...,A\;n > 0 are such that, as n — oo,

E[(X)ky - (XE k] = AL oo A

for every ky,...,km >0, then (X,(II),...,X,([”)) 4 (Z1y...,2Zm), where Z; €

Po(A;) are independent. |
We leave the corresponding extension of Corollary 6.8 to the reader (Exer-

cise!).

Cumulants

Suppose that X is a random variable with finite moments. Then the charac-
teristic function px (t) = Ee#X is infinitely differentiable, and

EX*=4iF il (0).

Similarly, log ¢ x (¢) is infinitely differentiable in an interval around 0, and we
define the cumulants (also known as semi-invariants) of X by

. dF
J‘fk(X)zz dklog‘PX(O)

ke
In other words ox (t) and log x () have the Taylor series 3°0° E X * G5 and
30 e (X)) B -, respectively.
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Remark 6.11. In general, these Taylor series do not have to converge for
any t # 0. However, we are mainly interested in random variables such that
E et!X| exists for some ¢t > 0, and then

= ZEX'“Z—, = exp(sz(X)%)
0 : 1 )

with sums converging at least for all complex z with |z| sufficiently small.

Example 6.12. If X has the normal distribution N(u,02), then px(t) =
exp(iut — 02t2/2), and thus 3 = p, 70 = 02 and s, =0, k > 3.

Example 6.13. If X has the Poisson distribution Po(/\) we have px(t) =
exp(A(eit — 1)), so logpx (t) = Ale®t — 1) = 37 A& " and 3, =\, k> 1.

It is obvious by successive differentiations of log wx and px = exp(logyx)
that there are simple algebraic relations between the moments and cumulants:
s = (EX,...,EX*) and EX* = q}(50,...,%), where gx and g} are
some polynomials not depending on X. Explicit expressions are easily given

(cf- Proposition 6.16(vi, vii) below), but are not important for us, with the
exception of

wa =EX, (6.6)
=EX?- (EX)? = Var X. (6.7)
It follows that if X, X2,... and X are random variables, then EXF —

E X* for every k if and only if s (X, ) — s (X) for every k. Consequently,
Theorem 6.1 can be reformulated as follows.

Theorem 6.14. Let X be a random variable with a distribution that is de-

termined by its moments. If X;,X,,... are random variables with finite

moments such that s, (X,) = s (X) as n — oo for every integer k > 1, then
d

X,— X. [ |

Cumulants are particularly convenient for proving convergence to a normal
distribution. It follows easily from the definition that if X is a random variable
and a and b are real numbers, then

azl(X)+b, k= ].,

a(aX +b) = {akzk(X), k>2.

Hence, Theorem 6.14 and Example 6.12 yield the following result for normal
convergence.

Corollary 6.15. If X;,X,,... are random variables with finite moments
and a,, are positive numbers such that, as n = o, »#3(X,)/a2 — 02 >0 and
s#x(Xn) = o(ak) when k > 3, then a;' (X, — EX},) 4 N(0,0?) and, provided
o2 >0, X, 3 N(0,1). ]
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Mixed cumulants

For the results in the last subsection to be useful, we have to be able to
compute, or at least estimate, the cumulants s (X,,). This can often be done
using mixed cumulants as follows.

If Xi,...,Xk, k > 1, are random variables defined on the same probability
space, then their joint characteristic function is

Oxy ... xk(tl,...,tk)=]E(exp(Zithj)).
i

If further X, ..., X\ have finite moments, this function is infinitely differen-
tiable on R* and we define the mized cumulants by

o*
«—k
J{(Xl, “en ,Xk) =1 —-————6t1 - '6tk loggoxl,,,,,xk (0)

Some basic properties of the mixed cumulants are collected in the next propo-
sition. We omit the simple proofs (Leonov and Shiryaev 1959).

Proposition 6.16. For any random variables X, X, ... with finite moments
(defined on the same probability space), the following holds:

(1) sex(X) = (X,...,X), where X is repeated k times.

(i) »(X1,...,Xx) is symmetric, i.e., 2(X1,..., Xx) = 2(Xo1), -+, Xo(x))
for every permutation o of {1,...,k}.

(iii) se(aXi1,X2,...,Xk) = ax(X1,Xo,...,Xk), for any real a.
(iv) 2e(X] + X7, Xa, .o, X) = 56(X1, Xay oo Xi) + (XY, Xy oo X2).
(v) #(X1,...,Xx) = 0 4f {Xi1,...,Xk} can be partitioned into two (or

more) non-empty sets of random variables which are independent of
each other.

(vi) »(Xy,...,Xk) = ZII,,,,,I,(_I)"’I(Z - 1)!le=1]EH-€IF X;, summing
over all partitions of {1,...,k} into non-empty sets {I,..., I}, 1 > 1.

(vil) E(Xy---Xk) =320 1, le=1 »({X; :1 € I.}), summing as in (vi). B
By Holder’s inequality, | E [T, X;| < [1;c/(E|X;[*)/* when |I| < k, and

thus (vi) implies the useful estimate

k
(X1, ..., Xx)| < Cx [JEIX;1F)!7*,
1 .
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where C) depends on k only. We will use a more refined estimate, which we
state as a lemma (Mikhailov 1991); recall the definition of dependency graph
in Section 1.2 and let

Nplay,...,ar) = U{ﬁ €V(L):8=a;ora;8€ E(L)} (6.8)
i=1

denote the closed neighborhood of {ai,...,a,} in L.

Lemma 6.17. Suppose that S = ) 4 Xo, where {Xa}aca is a family of
random variables with dependency graph L. Suppose, moreover, that v > 2
and that M and T are numbers such that

Y E|Xal <M

acA

and, for every ai,...,a,_1 € A,

> E(|Xal | Xags---sXany) ST

QENL (a1 ,...,a,.._l)

Then
|2,(S)| < CrMT™1,
where C, is a constant that depends on r only.

Proof. By Proposition 6.16(i, ii, iv)

w5 (S) =3(S,...,8) = > x(Xay,.-, Xa,),

QY yeeey Oy
where, by Proposition 6.16(v), every term in the sum for which {ey,...,a,}
forms a disconnected subgraph of L vanishes. In each of the remaining terms,
the indices a,...,a, may be reordered such that oy, € Np(ay,...,as-1)
when 2 < s <r. Hence
e (S) <1t D0 (X, Xa)l, (6.9)
[s SETEXTIS 10

where_z* denotes the sum over a; € A4, az € Np(ay), a3 € Np(a1,a2), ...,
ar € Np(ai,...,ar-1)-
Define, for every sequence ay,...,0s in A, s > 1,

k
Yal,...,a, = Z ]:[IE H |Xai|,

L. I, j=1 i€l;
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summing over all partitions {Iy,..., I} of {1,..., s}; by Proposition 6.16(vi),
|7#(Xayy ooy Xa )| < ClYay,... a0 (6.10)

Now consider a sequence aj,...,as—; in A, with2 < s <r. Let {[;,.. .,Ik}
be a partition of {1,...,s}. We may assume that s € I;; then let I} = I, \ {s}.
By assumption (since we may define a; = a,—; for s < j <), ’

ST SR

a€ENL(a1,...,0s-1)

Xal,...,Xa,_l) <T

and thus
IE(H 1 X o > | X4 Xal,...,Xa,_l) <T ] 1Xal.
iel] a€ENL(01,e,05-1) i€l

Taking the expectation of both sides, we see that

S e[l -l Y X

s, ENL(a1,...,05—1) €N i€l a,ENL(at,...,05-1)

<TE H |Xa.‘|'

i€l

]

Multiplying this inequality by H;?:z ELic I | X«;| and summing over all par-
titions {I;,...,Ix}, we obtain on the right-hand side T times a sum, whose
terms coincide with the terms in Yy, . ,_,, each repeated at most s times.
Consequently,

z : Yalv'“aas S STYala"'vas—l'
a,EﬁL(al,...,a,_l)
We next sum this inequality over oy, ...,as;—1 and obtain
* *
> Yaywa 8T D Yayaum, 258
QY yee, Oty Q1 ,..-,Q05-1

Since )_,, Yo, = 2, E|X4| < M by assumption, induction now yields
3 Yoo SSIMTTH 1<s<r (6.11)

The result follows by (6.9), (6.10), and (6.11). [

Applications to asymptotic normality

The lemma above leads to the following sufficient condition for asymptotic
normality (Mikhailov 1991).
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Theorem 6.18. Suppose that (S,,)}° is a sequence of random variables such
that S, = ZaeA,, Xna, where for each n, {Xna}a s a family of random
variables with dependency graph L. Suppose further that there exist numbers
M,, Q, and B, such that

> E|Xpa| < My (6.12)
acA,
and, for everyn andr > 1, and ay,...,a, € A,,
> E(|Xnal | Xnays---r Xnar) < BrQn. (6.13)

Let 02 =Var S,,. If, as n — o,

M Q7

p -0 (6.14)

then _
' S, 5 N(0,1).

Proof. By Lemma 6.17, with T = B,_1Qp,
|5¢-(Sp)| £ CrBIZIMLQT™Y,  r>2, (6.15)

and thus, with C. = C,.BI_],

= , M,Qr1 M,Q2\""%( o2 \77?
F(Sn)| < CLE2En | Thdn n .
Ier (3)] < €1 MnC c,( ’ ) (MnQn)

n

Since 02 = 2(S,) < ChM,Q,, by (6.15),

_ 2\ r—2
@l scuoy (M) a0, r2a

n

The result follows by Theorem 6.14. (Note that %1(§n) = 0 and z2(§n) =
1.) |

Example 6.19. Consider again the subgraph count Xg in G(n,p), where
n — oo and p = p(n) is a function of n. We will use Theorem 6.18 to give a
new proof of Theorem 6.5.

This time we denote the family of subgraphs of K,, that are isomorphic
to G by {Ga}aca,- Welet I, = 1[G, C G(n,p)] and X, = Io — El,, for
simplicity omitting subscripts n. (If we assume that p(n) is bounded away
from 1 (for example, p < 1/2), we can also apply the theorem with X, = I,.
We leave this slightly simpler version to the reader. — Exercise!) Define the
graph L, with vertex set A, by connecting every pair of indices a and 3
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such that the corresponding graphs G, and G have a common edge; this is
evidently a dependency graph for {X,} (Example 1.6).

We verify the conditions of the theorem. First, observe that E|X,| =
2EI,(1-El,) < 2ug(1-p)EI,, and thus Yaea, E|Xa| £ 2v6(1-p)E Xg,
that is, (6.12) holds with M,, = 2vg(1 —p) E Xg.

Next, suppose that 7 > 1 and oy, ..., ar € A, are given. Define F = G,, U
-+-UG,, and, for every o € A,, Fy = Go,NF. Notethat o € N_(a,..., o)
if and only if e(Fy) # 0. There are fewer than 2YF < 27%¢ such subgraphs of
F, and for each subgraph H C F there are O(n"¢ ~V#) choices of « such that
F, = H, each with

E(|Xal | Xay,-- 1 Xary) SE(Ia | Xagre oy Xar_,) + EI, < 2p6eH,

Since, further, each F, is isomorphic to a subgraph of G, it follows that

EXe . EXg

E(|Xa| | Xay,..., X < B, =B,——
- Z (al | Xay, s Xeroy) < Hggl,l?,,zl EXgy ®c ’
aENLn(al ..... a,)

for a suitable B,, depending on r and G. Consequently, (6.13) holds with
Qn = EXo/%.

Finally, by Lemma 3.5, 02 = Var(Xg) < (1 — p)(E Xg)?/®c. It follows
that

MaQ%  2vue(1-p)(EXg)305°

o3 = o(1-p*85"%).  (6.16)

This verifies (6.14), since, as shown in the proof of Theorem 6.5, the conditions
imply (1 —p)®g — .

Theorem 6.18 thus applies; since Xg = ) Ia, and thus Xg —EXg =
Yo Xa, the result follows.

Remark 6.20. The results above may be improved by weakening the as-
sumptions; in fact, we know of two such improvements in different directions.
(We do not know whether they can be combined.)

First, as will be shown later by a different method (Theorem 6.33), it
suffices to verify condition (6.13) in Theorem 6.18 for r = 2.

Second, by using a theorem by Marcinkiewicz (1939), which states that the
normal distributions are the only ones with all but a finite number of cumu-
lants vanishing, it follows (Janson 1988) that in Theorem 6.14 it is enough to
assume that the condition 3¢ (X,) — 3 (X) holds for k¥ > m, for any fixed
m < oo. (See also Grimmett (1992b).) This improvement is useful in cases
where there is a general method to obtain desired estimates for all cumu-
lants of sufficiently large order, although the method fails for a few low-order
ones. In particular, it leads to the following strengthening of Theorem 6.18
(Mikhailov 1991). For an application to random graphs, see Janson (1988).
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Theorem 6.21. Suppose that the assumptions of Theorem 6.18 hold, excepi
that (6.14) is replaced by

M Q5!

p -0 (6.17)

for some real s > 2. Then the conclusion still holds, that 1s,
S, 3 N(©,1).

Proof. If r > s, then

=2 2 — | M.O1 =2
Un < C,,., nQn
M.Qn - ol

by (6.15) (with r = 2) and, thus, by (6.15) and (6.17), 3.(S,) — 0. The
result follows by the improvement of Theorem 6.14 just mentioned. n

Y ki

M.Qu' (MnQ;"f‘ )

r 38
Un Un

Note that the proof shows that the assumption (6.17) becomes weaker as s
increases. It can be reformulated as

% (g'l)s_l — 0.

On \On

6.2 STEIN’'S METHOD: THE POISSON CASE

A method to show convergence to the normal distribution was given by Stein
(1972). The method has later been extended to several other limit distri-
butions; we will here only consider the simplest and most important cases,
namely, Stein’s original normal case (which is treated in the next section)
and Chen’s (1975) version for the Poisson case (which is treated below). The
method was introduced in the theory of random graphs by Barbour (1982).

Stein’s method is well adapted to the type of sums of random variables that
appear in many combinatorial applications; it then often leads to calculations
very similar to those needed for estimating the second and (for the normal
case) third moments when applying the method of moments. Consequently,
Stein’s method often requires less effort and simpler combinatorial arguments
than the method of moments, where we have to estimate moments of arbitrary
order. '

An important feature of Stein’s method is that it does not only give con-
vergence; it actually gives an explicit upper bound for the distance between
the distribution of a given random variable and a suitable normal or Poisson
distribution. In other words, it is really a method to prove normal or Poisson
approzimation rather than convergence. Hence it leads to estimates of the
rate of convergence, which, in practice, often turn out to be of the right order
of magnitude.
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Here we have talked about the ‘distance’ between two distributions without
explaining what it is. In fact, several possible distances can be defined; for
Poisson approximation the most useful is the following.

The total variation distance between the distributions of two random vari-
ables X and Y is, in general, defined by

drv(X,Y) =sup|P(X € 4) - P(Y € 4)],
A

taking the supremum over all Borel sets A. If X and Y are integer valued, as
in the cases we consider below, this is equivalent to

drv(X,Y) _2Z|IPX k) —P(Y = k)|

We also use hybrid notation, such as dry (X, Po())).
It is easily seen that if (X,,)§° is a sequence of random variables, and (A,)§°
is a sequence of positive numbers with A,, = A, then dry (X,,,Po(A,)) — 0 if

and only if X,, % Po()\). Moreover, if drv (Xn, Po(A,)) = 0 and A, — oo,
the central limit theorem for Po()\,) implies that (X, — An) //\1/ 24 — N(0,1).

In particular, if further A, = E X, and Var(X,) ~ A,, then X, 4 N(0, 1).
Hence estimates of the total variation distance to a Poisson distribution can
imply convergence to both Poisson distributions and normal distributions.
(Not all cases of normal convergence are obtained in this way, however; typi-
cally we may obtain the cases when the mean and variance are asymptotically
equal.)

For the theoretical background for the Stein—Chen method for Poisson ap-
proximation we refer to Chen (1975), Stein (1986) and Barbour, Holst and
Janson (1992). These references also show how the method leads to explicit
results such as the ones below (as well as others). A useful and rather general
result obtained by the Stein-Chen method is the following (Barbour, Holst
and Janson 1992).

Theorem 6.22. Suppose that X = ) .4 I, where the I, are random in-
dicator variables, and suppose that, for each o € A, there ezists a family of
random indicator variables Jga, B € A\ {a}, such that

L({Jsa}p) = L({Is}s | I = 1), (6.18)

that is, the joint distribution of {Jza}s equals the conditional distribution of
{I3}s given I, = 1. Then, with mq =EI, and \=EX =3} ., Ta,

drv (X,Po(\)) < min(A™1,1) ¥ 7q (7ra + S ElJpa - 1,3|). (6.19)
a€A B#a
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One way to apply Theorem 6.22 without explicit construction of the vari-
ables Js, is via a dependency graph. In fact, if the family {I,} has a de-
pendency graph L, then there exist random variables Jg, with the right
distribution (6.18) such that Jgo = Ig when a8 ¢ E(L), so in (6.19) it
suffices to consider B that are adjacent to . For such 8 we may crudely use
|Jga — 18| < Jpa + I3 together with the general relation

TaEBJga =T E(lg | Io =1) =P(Ig = I, = 1) = E(I,13), (6.20)

which yields
o B |Jﬁa — Igl < ]E(Iafg) + TaTg.

This leads to the following result.

Theorem 6.23. Suppose that X = ) 4 I, where the I, are random in-
dicator variables with a dependency graph L. Then, with 7y = EI, and
A=EX =3 c47a (and with summation over ordered pairs (a,8)),

drv(X,Po())) < min(A~!,1) (Z w2+ Y (E(lals) +EL EIﬁ))
a€A o,B: afE€E(L)

:min(/\_1,1)<Va.rX—IEX+2 Z 7ra7r/3+2Z7ri).
a,B8: aBEE(L) acA
]

A simple case of Theorem 6.22 is when Jg, — I3 has constant sign. We say
that the random indicator variables (I,)oca are positively related if, for each
a € A, there exist random variables Jg, with the distribution (6.18), such
that Jgo > I for every 8 # a; similarly, the variables are negatively related
if, for each o € A, there exist such Jgo with Jgo < Ig for every 8 ;é Q.

For positively rela.ted variables, (6.20) yields

o E |Jﬁa —Ig| = 7o E(Jga —Ig) = ]E(Iafg) — TaTg, (6.21)

which leads to the following consequence of Theorem 6.22; note that the
variables Jgo do not appear explicitly (although their existence is essential).
See further Barbour, Holst and Janson (1992), where also a corresponding
result for negatively related variables and other similar results are given.

Theorem 6.24. Suppose that X = ) ., l., where the I, are positively
related random indicator variables. Then, with 7o = EI, and A = EX =

ZaEA Moy

drv(X,Po()) < min(A™},1) (Va.rX —EX +2 Z wg)
a€A

Var X
_ , m
S Ex lTImArTe
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Returning to asymptotics, with variables depending on a parameter n —
00, we thus see that for sums of positively related variables, a sufficient con-
dition for Poisson approximation (with an error tending to 0 as n — o0) is
that the individual probabilities tend to O (uniformly) and that the variance
is asymptotic to the mean. Since any Poisson distribution has the variance
equal to the mean, the latter condition is very natural.

Remark 6.25. Indicator variables that are positively (negatively) related are
positively (negatively) correlated, but the converse does not hold. Correlation
is only a pairwise property, whereas being positively or negatively related
depends on the joint distribution of the whole family.

Example 6.26. Consider again Xg, the number of copies of a fixed graph
G in G(n,p), and suppose that G is strictly balanced. We proved in Theo-

rem 3.19, using the method of moments, that if np™(© — ¢ > 0, then X¢g LY
Po(A) with A = ¢Y¢ /aut(G). Here we show how this result follows by the
Stein—Chen method. The method further gives an explicit estimate O(n=")
of the rate of convergence, with 3 = min{vg—en/d(G) : H C G, e > 0} > 0,
which we, however, leave to the reader (Exercise!).

We write Xg = ), Ig' as in the proof of Theorem 6.5 and observe that
the sum has (1 + o(1))n?¢ / aut(G) terms, each having expectation p¢. Thus

E Xg ~ n’p%S [ aut(G) = (npHP)¥¢ / aut(G) — \- (6.22)

Moreover, since G is strictly balanced, a similar calculation yields E Xy — co
for every proper subgraph H of G. It follows as in (3.10), considering the
terms with G' = G and thus H = G separately,

2
Var(Xc) =ZVa.r(IG,)+0( > —(FEXXC;) )
=

HCG,ex>0
= (1-p*®)E Xg + o(1).

Hence Var Xg/E X¢ — 1 and, since further maxE Ig: = p°¢ — 0, the result
follows by Theorem 6.24, provided we can show that the variables I are
positively related. This can be verified as follows.

Fix a copy G' of G in K,. The conditional distribution of G(n,p) given
Ig = 1 is the same as the distribution of the union G(n,p) U G’, obtained
by adding the edges in G’ to G(n,p). Consequently, we may define Jong' =
1[G" C G(n,p) U G'] with G" ranging over the copies of G in Kj,; these
variables have the correct joint distribution (6.18) and evidently Jgrg' > Ig».

In this example we may alternatively apply Theorem 6.23 with L as in the
proof of Theorem 6.5; this yields the same result (without having to verify
that the variables are positively related), with only a slightly worse bound for
drv (X, Po(N)).

In the preceding example, as in many others, it is easy to construct ex-
plicitly variables Jg, to show that the variables I, are positively related. An
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alternative is to deduce the existence of suitable Js, by the following abstract
result. (Recall that we do not really care what the variables Jz, are, once we
know that they exist with (6.18) and Jgo > Ig.) For a proof, using the FKG
inequality (Theorem 2.12), see Barbour, Holst and Janson (1992, Section 2.2)
and the references given there.

Theorem 6.27. Suppose that the indicator variables {Io}aca all are increas-
ing functions of some underlying independent random variables {Y;}. Then
the variables {I4}aca are positively related; in particular, Theorem 6.24 ap-
plies to their sum. n

For example, the subgraph counts in Example 6.26 are increasing funcions
of the edge indicators, and we see immediately that they are positively related.

Example 6.28. Let X be the number of isolated vertices in G(n,p). Clearly,
X = YT, where I; = 1[vertex i is isolated]. In this case, the indicator
variables I; are decreasing functions of the edge indicators in G(n,p), but
that is just as good; we can apply Theorem 6.27 with Y; being the edge
indicators in the complement of G(n, p), or use the explicit construction Jj;; =
1[j is isolated in G;], where G; equals G(n,p) with all edges from vertex i
removed. Either way, it follows that the I; are positively related. (In this
example, Theorem 6.23 is not useful.)
For example, if p = logn/n + ¢/n for some fixed real constant ¢, then

EX=n(l-p)" ! ~ne ™ =¢"°
and

Var X = (1 - (1 —p)n—l) EX + n(n — 1)((1 _ p)2n—3 _ (1 _p)z(n_l))
=EX +0(1),

and Theorem 6.24 shows that X 3 Po(e™¢). In particular,

P(G(n,p) has no isolated vertices) = P(X = 0) — e~

(This yields another proof of Corollary 3.31.)

The number of vertices of degree at most a given number d > 0 can be
treated in the same way. A similar argument works also for the number Sy
of vertices of degree exactly d, but this time the corresponding indicators I;
are not positively related, and we use Theorem 6.22. This yields the result,
first proved by Erdés and Rényi (1960) by the method of moments, that

Sa 4 Po(c) if ES; — ¢ < oo (which, for d > 1, happens in two ranges of p).
For details, see Karonski and Ruciriski (1987) and Barbour, Holst and Janson
(1992), where also further examples are given.
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Example 6.29. Let, as in Section 3.6, T be the number of isolated copies
of G in G(n,p). Then Xg = Y ., I¢r, where, as in Example 6.26, G' ranges
over the copies of G in K,,, but now I is the indicator that G’ is an isolated
subgraph of G(n, p).

In order to define suitable random variables Jg g, we first define, for a
given G', a modification G of G(n,p) by adding all edges in G’ and deleting
every other edge in G(n, p) incident with a vertex in G'. We then define Jgn g
to be the indicator that G" is an isolated subgraph of G. Then G is a random
graph distributed as G(n,p) conditioned on Ig: = 1, and thus the variables
Jarg' have the correct joint distribution (6.18). Moreover, Jorgr = 0 if
G'NG" #0, but G' #G", while Jgng > Ig» if G'NG" = 0.

It is easily seen that if G is connected and unicyclic and np — ¢ > 0,
or if G is a tree of order v and either np*~! — ¢ > 0 or vnp — logn —
(v—1)loglogn — ¢ € (—00,0), then ETg = A < co. In these cases,

Theorem 6.22 yields Tg 4 Po(\) by straightforward calculations (Exercise!).
(Compare with Section 3.6.)

The same argument applies also to the random varible T, counting all
isolated trees of order v (and not just copies of a specific trees), which proves
the final part of Theorem 3.30.

(These results were originally proved by Erdds and Rényi (1960) by the
method of moments.)

Example 6.30. We have so far applied the Stein—-Chen method to the ran-
dom graph G(n,p), but it applies also to G(n, M). For example, consider
the subgraph count X¢ as in Example 6.26, but now for G(n, M). The main
difference from the G(n,p) case is that for G(n, M), we can use neither The-
orem 6.23 (because there does not exist a sparse dependency graph) nor The-
orem 6.24 (because the indicator variables I are not positively related);
instead we use Theorem 6.22 with the following construction.

The conditional distribution of G(n, M) given Ig: = 1 is the same as the
distribution of the random graph G obtained from G(n, M) by first adding all
edges in G’ that are not already present, and then deleting the same number
of edges, randomly chosen among the edges outside G'. We may thus define
JG"G’ = I[G” C G] and VG' ZG” el JG"G'

It is straightforward to estimate ]E|JGHGI — Ig|, which, by (6.19), yields
an estimate of dry (Xg, Po(E X)) for G(n, M), but we omit the details (Ex-
ercise!).

Similar constructions apply to the other examples above.

6.3 STEIN'S METHOD: THE NORMAL CASE

The original version of Stein’s method yields normal approximation; see Stein
(1972, 1986) for a general description. The method was applied to random
graphs by Barbour (1982) and Barbour, Karoniski and Rucinski (1989), to
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which we refer for further details. In particular, Stein’s method yields the
following rather general result (Barbour, Karonski and Rucinski 1989), based
on constructing a suitable decomposition of the studied random variable. We
let d, denote the distance between distributions defined by

di(X,Y) = sup{| ER(X) — EA(Y)] : sup |h(z)| + sup |h'(z)| < 1};
z€R z€R

note that d;(X,,Y) — 0 implies X, 4y, (This distance is well adapted to
Stein’s method, although other distances are more commonly used in other
contexts; ¢f. Barbour, Karonski and Rucinski (1989).)

Theorem 6.31. Suppose that W is a random variable which can be decom-
posed as follows: For some finite index sets A and By, a € A, and square
integrable random variables Xo, Wo, Zo, Zap, Wap and Vog, 2 € A, B € By

W= Xa;

acA

Lo = 2{: Zﬁﬁa a € A4;
BEB,

Wa:Waﬁ+Vaﬁ, CYEA,,BEBO,;

where, further, E X, =0, W, is independent of X, and Wyg is independent
of the pair (Xa, Zap). Then, for some universal constant C, 02 = Var W and

W =0c"1W,

d (W,N(0,1)) < Co~* (Y B(|XalZ2
acA

+3° 3 (ElXaZapVas| + E|XaZapl E|Za + Vaﬁ|)). (6.23)
a€A BEB,

In applications, one has to construct decompositions as above of a given
variable, keeping the right-hand side of (6.23) small. For sums of random
variables with a lot of independence, as measured by a suitably sparse de-
pendency graph, there is a straightforward construction, which leads to the
following result.

Theorem 6.32. Suppose that W = 3,4 Xa, where {Xa}aca is a family
of random variables with dependency graph L and, further, EX, =0, a € A.
Let 02 = VarW and assume that 0 < 0% < co. Then, for some universal
constant C and with Nr(a) the closed neighborhood of o as in (6.8),

& (W,N(0,1)) <Co2 Y Y (E|XaXpXy| +E|XaXs|E|X,]).
€A g,yeNr(a)
(6.24)
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Proof. We apply Theorem 6.31 with B, = Nr(a), W, = Zggﬁr(a) X3,

Za = Zﬁeﬁr(a) Xﬁ’ Zaﬁ = Xﬁ, Waﬁ = Zqéﬁr(Q)Uﬁr(@) X—y and Va[j =
Z'yeﬁr(ﬁ)\ﬁr(a) X,. It is then easily seen that

Y E(XalZ2) + D D (ElXaZapVapl + E|XaZag|E|Zo + Vag|)
a€A a€A BEB,

<2y > (E|XaXpX,|+E|XaXp|E|X,|)
acA ﬁ,'yeﬁz,(a) :

and the result follows. (We may assume that E X2 < oo, since otherwise the
right-hand side of (6.24) is infinite.) ]

In particular, this yields an improvement of Theorem 6.18.

Theorem 6.33. Suppose that (5,){° is a sequence of random variables such
that Sp = .,ca, Xna, where for each n, {Xna}a is @ family of random
variables with dependency graph L,. Suppose further that there exist numbers
M, and Q, such that

> E|Xnal < M, (6.25)
aEAn

and for every ay,as € Ay,

> E(lXnal | Xnar> Xnaz) < @n- (6.26)

QGNL,. (al 7a2)

Let 02 = Var S,,. Then

o MnQ?;,
dy (8., N(0,1)) = 0( i )
In particular, if
2
Mnln _, o, (6.27)
a‘n.

then -y

S, = N(0,1).

Proof. By replacing Xpo by Xna — EXna (and S, by S, — ES,), we may
assume that E X,, = 0; note that (6.25) and (6.26) still hold if we replace
M, and @, by 2M,, and 2@Q),.

It follows, arguing as in Lemma 6.17, that

3 Y (ElXaXsX,|+E|XaXg E|X,|) < 2MaQ7
a€A B veNL(a)
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and the result follows by Theorem 6.32. n

Example 6.34. Consider again the subgraph count X¢ in G(n,p), where
n — oo and p = p(n) is a function of n.

We have Xg —EXg = 3 c4 Xa, where A, and X, are as in Exam-
ple 6.19. As already shown in Example 6.19, with the dependency graph
L, defined there, (6.25) and (6.26) hold with M, = O((1 - p)E X¢)) and
Qn = O(E Xg/®¢), which yields, as in (6.16),

MnQ%/o% = O((1 — p)~/28;'/).

Consequently, Theorem 6.33 yields a new proof of Theorem 6.5, with the
additional information that

d1 (Xa,N(0,1)) = O((1 — p)~/285'/?).

Theorem 6.31 is more flexible than Theorem 6.32 and can be applied also to
sums where all summands X, are dependent. One such case is when counting
the number of subsets of (the vertex set of) G(n, p) that satisfy a given semi-
induced property, that is, a property that depends only on the edges with at
least one endpoint in the set. We begin with an example.

Example 6.35. Denote the number of vertices of degree d in G(n,p) by Sg.
We consider a fixed d > 0 and let n — oo with p = p(n). Then (assuming for
simplicity np? = o(1); for larger p, ES; — 0 rapidly),

n—1

lESd=n< d

)pd(l _ p)n—l-—d ~ dL!nd+1pde—-np.

Consequently,

ESy » 00 <= n*'p? - o and np — logn — dloglogn — —co.

Let I; = 1[¢ has degree d in G(n,p)], and X; = I; —EI;; then Sy —E Sy =
Y1 Xi. In this case, there is (in general) no independence between any two
X; and X, and we use the following construction.

Let, for a set F' C [n] and ¢ € [n],

IF — 1[¢ has degree d in G(n,p) \ F], i ¢ F,
‘o, i€F,

and let Xf = If —EIF. Moreover, for ¢, j € [n], let B; = A = [n] and
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Zy=1; -1,
n
Z; = Z Zij
j=1

n

wi=> x{-Ez,
Jj=1
n

Vij = Z(Iéi} - Iéi’j}),

k=1
n
Wy =Y X -EVy; -EZ.
k=1

The conditions of Theorem 6.31 then are satisfied, and it is not difficult
to show that both sums in (6.23) are O(E Sy); see Barbour, Karonski and
Rucinski (1989) for details. Consequently,

dy (Sa,N(0,1)) = O((Var Sg)*/?E Sy).
Moreover, a simple calculation yields

Var Sy = n

2
no1 (n i 1) (n=1)p—d)*p**~} (1-p)**2*—*+E S4—n " (E 5)?,

and it is easily seen that if d > 1 or d = 0 and np = 2(1), then
Var Sg < E Sq,

and consequently _
d1 (S4,N(0,1)) = O((E Sa)~"/%);

in particular, Sy 4N (0,1) if furthermore E Sy — oo.

In the remaining case d = 0 (isolated vertices) and np — 0, we have E Sy ~
n and Var So ~ 2n%p, whence we only obtain di (Sp, N(0,1)) = O(n~2p~3/2);
this proves Sy — N(0, 1), provided n=4/3 « p « n~!. This result can be
extended to the full range where Var Sq — oo, that is, when E 5o — oo and
n?p — oo. In fact, when np — 0, VarSp ~ VarS; ~ — Cov(So, S1) ~ 2n’p,
and thus Var(Sp + S1) = o(n?p) = o(Var Sp); consequently, So = —S; + 0p(1),
and the result follows since, as just shown, S 4N (0, 1) provided furthermore
n?p — 0. (See, further, Barbour, Karoniski and Rucinski (1989) and Kordecki
(1990).)

Since Var Sy — oo is necessary for asymptotic normality, we have proved:
the following result.

Theorem 6.36. Ifd >0, then 53 = N(0,1) if and only if Var Sy — co. For
d > 1, this is equivalent to ESy — oo, i.e., nitipd 5 0o and np — logn —
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dloglogn — —oo; for d = 0 it is equivalent to n?p — oo and np - logn —
—00. : n

Remark 6.37. As remarked in Section 6.2, S; has an asymptotic Poissop
distribution when ES; = ¢ < co. In fact (Karoriski and Ruciniski 1987),
the Stein-Chen method yields Poisson approximation also when E Sy — oo,
provided np — 0 and d > 2, or np — oo (in these cases Var Sq ~ E S;), which
gives another proof (historically the first) of Theorem 6.36 in these cases.

For a general semi-induced property P, we similarly construct a decompo-
sition of W = " I,,, where o ranges over the subsets of [n] of a given size and
I, is the indicator that a has the property P, by defining

IF =

a

1[a has the property P in G(n,p) \ F|, anF =0,
0, anF #0,

and then proceeding as above. Another example of this is the following
(Barbour 1982, Barbour, Karonski and Rucidski 1989).

Theorem 6.38. Let T} be the number of isolated trees of order k in G(n,p),
where k > 2 is fired. Then Ty 5 N(0,1) if and only if ETx — oo, that is,
when n*pF~! — oo and knp —logn — (k — 1) loglogn — —oo.

Sketch of proof. We apply Theorem 6.31 with the construction just indicated.
The sums in (6.23) are both O(E T}) and Var T} < E T}; thus

di (Te,N(0,1)) = O((]ETk)‘l/z). ]

Again, as stated in Theorem 3.30 and Example 6.29, Erdés and Rényi

(1960) proved that T 4 Po(c) when ET; — ¢ < oo (in both ranges of p).
Note further that the first (threshold) part of Theorem 3.30 follows easily
from Theorem 6.38.

6.4 PROJECTIONS AND DECOMPOSITIONS

A standard method when studying asymptotic distributions is to approximate
the studied random variable by another one, which is simpler in some sense.

Indeed, by Cramér’s theorem (see Section 1.2), if X, — Y, K 0and Y, 4z ,
d
then X,, = Z too.

The first projection

Consider a random variable X which is a graph functional, that is, a (real-
valued) variable that depends only on the isomorphism type of G(n,p). Then,
the simplest choice of an approximating variable is a linear function aL + b
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of the number of edges L = e(G(n,p)) = Xk,. (Here a and b are constants
that may depend on n and p = p(n).) Since L € Bi((}),p), the central limit

theorem yields I 3 N(0, 1), provided that n?p — oo and n?(1 — p) = oo, so
it remains only to study the error X — aL — b.

We choose the coefficients a and b such as to minimize the L2-norm of
the error, that is, ¥ = aL + b is the projection in L?(P) of X onto the
two-dimensional subspace of linear functions of L. This is the usual linear
regression, and as is well known, then X — Y is orthogonal to 1 and L, which
leads to

_ Cov(X,L) Cov(X, L)

VarL — (2)p(1-p)’
b=EX —-aEL.

Moreover,
E(X - Y)? =Var(X - Y) = Var(X —aL) = Var X — a® Var L.

Now L = }_, I, summing over all edges e in K, where I, is the indicator
1[e € G(n,p)]. By symmetry, Cov(X,I.) is independent of e and thus, for
any edge e,

a = Cov(X, L)/ (3)p(1 - p) = Cov(X, I)/p(1 - p)
= (E(XI.) - pEX) / p(1 —p)
= (E(X | e € G(n,p)) —EX) / (1-p).

The approximating variable aL + b is known as the first projection of X,
and this approach to proving normality is called the first projection method.
It can be summarized as the following theorem.

Theorem 6.39. Suppose that X, is a graph functional of G(n,p), with p =
p(n), and let

n=E(Xn|e€G(n,p) —-EX,

for an edge e € K,,. If n®p — 00, n?(1 — p) = oo and
Var X, ~ (’2‘) p(1—p)~'al, (£.28)

then )?n 4 N{0,1).

Proof. By the discussion above, we let Y, = a, Ly, +bp, with ap = (1—p)"lan
and b, =E X, —a,E L,, and find

E(X, — Yy)? = Var X,, — a2 (3)p(1 — p) = o(Var X,).
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Hence, if 0}, = VarX,, then E|(X, - ¥,)/0on|* — 0 and, furthermore,
Var Y, ~ Var X,,. Consequently,

Xn-EXn _Ya-EYa Xa-Ya
On - On on

’

where (Y,—EY,)/o, = (Var Y,/ Var X,)"/2L, % N(0,1) and (X,—Y,) /0, &
0. The result follows by Cramér’s theorem (Section 1.2). n

Example 6.40. Consider again the subgraph count Xg. Given an edge e ¢
K, there are eg(n)y /(3) aut(G) copies of G in K, that contain e, and thus

an=E(X |I.=1)—-EX =eg(n)w ((3) :cxut(G'))_l(peG_1 — p°9)
~ 2egn?c 2 (aut(G))_lpeG‘l(l - p).

It is easily seen that (’2‘) p(1—p)~'a2 asymptotically equals the contribution
to Var(Xg) from the terms in (3.10) corresponding to two copies of G that
intersect in a single edge (Exercise!). Consequently, the condition (6.28) is
equivalent to K> being the only leading overlap of G, that is, to npmm(G) —
oo; see Section 3.2.

This example is typical; the method of the first projection is (usually) very
easy to apply, but it works only sometimes and often does not give the full
result.

Higher projections

It is natural to try to extend the range of the first projection method by
projecting onto a larger space of variables, thus reducing the error in the
approximation.

The first projection uses only information on subgraphs of G(n,p) with
two vertices; the next step (sometimes called the second projection) is to use
information on the subgraphs with three vertices. Each such subgraph has 0,
1, 2 or 3 edges, and is determined up to isomorphism by its number of edges,
so the second projection is a linear combination of the random variables 79,
71, T2 and 73, where 7; counts the number of triples of vertices in G(n,p) with
J edges between them. Equivalently, by simple algebra, the second projection
can be expressed as a linear combination of the constant 1 and the three
subgraph counts Xk, = L, Xp, and Xk,, where P, is the path of length 2.

In neither of these representations, however, are the four basis variables
orthogonal, so it will be more convenient to use a third representation. It can
be constructed from the subgraph counts above by the usual orthogonalization
procedure, but we prefer to define it directly in the next subsection, at the
same time generalizing it to larger subgraphs.
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A general decomposition

Let H be agraph. Consider the (n),, different injective mappings from the
vertices of H into {1,...,n}. Each such mapping ¢ maps H onto a copy @(H)
of H in K,, and we define

Sn(H) = Spp(H) =Y. [ (L -p), (6.29)

¥ ecp(H)

where, as above, I, = 1[e € G(n, p)].

In other words, we sum [],.z (I — p) over all copies H' of H in Kj,
counted with multiplicities aut(H). Note that if we replace (I. — p) by I, in
(6.29), we obtain aut(H)Xp.

It is obvious that S,(H) depends only on the isomorphism type of H.
Hence we may regard {S,(H)}y as a family of random variables, indexed by
unlabelled graphs H.

The simplest examples are

Sn(0) =1 (trivial but useful)
Sp(K1)=n (trivial and less useful)

Sa(K2) =2 ) (I. — p) = 2(e(G(n,p)) — (3)p)-

ecKn,

It is easily seen that if H has any isolated vertices, removing them changes
Sp(H) only by a non-random factor (depending on n). Hence we may restrict
attention to H without isolated vertices.

Since the variables I, — p are independent and have mean 0, two products
[I(I. — p) are orthogonal unless they coincide, and the following results are
easily obtained.

Lemma 6.41. Suppose that H and K are graphs without isolated vertices.
Q) If H #0, then ESu(H) = 0.
(i) If H #0, then
Var Sp(H) = E Sp(H)? = aut(H)(n) v, (p(1 — p))**.
(iii) If H and K are non-isomorphic, then Sp,(H) and S,(K) are orthogonal:
Cov(Sn(H), Sn(K)) = E[Sn(H)Sn(K)] = 0. ~

We next show that the variables S,(H) can be used to decompose any
graph functional.

Lemma 6.42. Every graph functional X of G(n,p) has a unique expansion

X =) Xu(H)S.(H) (6.30)
H
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for some real coefficients X, (H) = X’n'p(H ), where H ranges over the unlg-
belled graphs with no isolated vertices and at most n vertices. Furthermore,
the terms in (6.30) are orthogonal and

VarX = 3 Xa(H)? Var Sp(H) = S aut(H)(n)u, (p(1 — ) X (H)?.

H#0 H#0
(6.31)
Proof. Trivially, :
X= x@[[L]I[0-1),
G e€G  e¢G :
where we sum over all graphs G with vertex set {1,...,n}. If we substitute

I. = (I, — p) + p and expand, X will be expressed as a linear combination of
terms [[, .5 (Ie —p), H C K,, and (6.30) is obtained by collecting terms with
isomorphic H together.

Lemma 6.41 implies that the terms in (6.30) are orthogonal, and that (6.31)
holds. Moreover, Lemma 6.41 and (6.30) yield also

Xn(H) = E(XSn(H))/ES.(H)?,
and thus the term X,,(H) is uniquely determined. |

Here X, (0)Sn(0) = X.(0) = EX, so the randomness enters through the
terms in (6.30) with H non-null.

The first projection equals X,,(0)S,(0) + Xn(K2)S,(K2), and is thus ob-
tained by ignoring all terms in (6.30) with vy > 3. Similarly, the second pro-
jection equals X, (0)S,(0)+ X, (K2)Sn(K2)+Xn(P2)Sn(P2)+ X (K3)Sn(K3),
that is, the sum of the four terms with vy < 3. More generally, we can select
any set of graphs H and consider only the sum of the corresponding terms in
(6.30) as an approximation of X.

In order to use this idea to obtain asymptotic distributions from the de-
composition (6.30), we have to know asymptotic distributions of the basis
variables S, (H). We already know that S, (K2) = 2(L — E L) is asymptoti-
cally normal, provided p is not too close to 0 or 1; this extends to every S, (H)
with H connected, while disconnented H give other limits. More precisely, we
have the following theorem, proved using a continuous time martingale limit
theorem in Janson (1994a). (For fixed p, it was earlier proved by the method
of moments (Janson 1990a, Janson and Nowicki 1991).)

Theorem 6.43. Suppose that p = p(n) = pg as n — oo, with 0 < pp <
1. Then there exist random variables U(H), where H ranges over unlabelled
graphs, such that if H is any graph without isolated vertices for which

np™H) 5 oo, (6.32)
then, as n — oo,

n~vH/2pmen/2g (HY S U(H). (6.33)
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The convergence in (6.33) holds jointly for any finite number of graphs H
that satisfy (6.32). The limit variables U(H) are determined by the following
properties:

(i) If H is connected and ey > 0, then U(H) has a normal distribution
with mean EU(H) = 0 and variance

EU(H)* = aut(H)(1 — po)°¥. (6.34)

(ii) If H,...,Hn are different (i.e., non-isomorphic) connected unlabelled
graphs, then U(H,),...,U(H,,) are independent.

(iii) If H has connected components H,,..., H,,, each having at least one
edge, then U(H) is a polynomial in U(H,),...,U(H.), known as the
Wick product :U(H,)---U(Hp):, see, e.g., Janson (1997) for a defini-
tion. In particular, for m = 2,

U(H) = :U(Eh)U(Hy): = U(H)U(Hz) — E(U(EL)U(Hy)).  (6.35)

Furthermore, (6.34) holds for every H, and EU(H,)U(H,) = 0 if H, and H»
are two different unlabelled graphs without isolated vertices. [

We return to the study of a general graph functional X, or more formally,
a sequence X, of functionals of G(n,p), where p = p(n) is a given sequence.
Then X, has a (unique) expansion (6.30).

The simplest case is when only a finite set of graphs H, independent of n,
is needed in the expansion (6.30). Assume further that (6.32) holds for these
graphs H. The asymptotic behavior of X, then follows from Theorem 6.43,
provided we know the asymptotic behavior of the coefficients X,(H). Both
normal and non-normal limits may be obtained by this procedure. In fact, X,
is asymptotically normal if and only if the terms with H connected dominate
the decomposition (6.30).

Even if no finite set of graphs suffices for the expansion of every X,, it is
frequently the case that a finite set gives a good approximation. In general,
let # be a family of non-null unlabelled graphs without isolated vertices. We
say that X, is dominated by H (for the given sequence p(n)) if, as n — oo,

Var X, ~ »  Xn(H)? Var S,(H).
HeH

In this case, X, has the same asymptotic distribution (if any) as the projection
D oHen X,(H)S,(H). In particular, if there exists a finite dominating family
H, we may apply Theorem 6.43 to this projection and obtain limit results just
as for the case of a finite expansion.

Remark 6.44. The first and second projection methods can now be rec-
ognized as the special cases of this procedure with the dominating families
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H = {K2} and H = {K>, P», K3}, respectively. Note that in these cases, a]]
graphs H € H are connected, and thus X, is always asymptotically norma]
when these methods apply.

The method extends through a truncation argument to a more genera]
situation, called here asymptotically finitely dominated, where H is infinite,
but for every € > 0 a finite subset (independent of n) of H suffices to yield at
least (1 — ¢) Var X, in (6.31).

This method yields the following rather general result, where we define

X:(H) = n'#/2pea/2 X (H).
Note that by Lemma 6.41 we have, for H # 0,
Var(X,(H)S,(H)) ~ (1 — p)°# aut(H) X (H)>. (6.36)

Theorem 6.45. Let X, be a graph functional of G(n,p), where p = p(n).
Suppose that p — po € [0,1], that B, is a sequence of positive numbers, and
that H is a family of non-null graphs without isolated vertices such that, for
every H € H,

np™H) 5 o (6.37)
and
a(H) = lim X*(H)/Bn ezists. (6.38)
n—>oQ
Suppose further that
Var(X,)/B2 = > a(H)?aut(H)(1 - po)** < 0. (6.39)
HeH
Then,
Zn—BXn 4 S G (H)UH), (6.40)
P HeH

where U(H) is as in Theorem 6.43. (If H is infinite, the sum is interpreted
in L2.)

Sketch of proof. The case pp = 1 is trivial (and is better handled by studying
the complementary graph, which is G(n,1 — p)).

Thus assume 0 < py < 1. Given € > 0, we may choose a finite subset H.
of A such that ¥ a(H)2aut(H)(1 — po)®™ > ¥ pey o(H)? aut(H)(1 -
po)¢# — €. It follows by Lemma 6.41, (6.36) and (6.38) that if Y;; is the pro-
jection ¥ yyeq, Xn(H)Sn(H), then Var(Y,/B8,) = X yen, a(H)? aut(H)(1—
po)¢¥ and, consequently, by (6.39), for n large,

X,—-EX Yen2 Xn Ye
E(Z2 _——7__2) —=Var———Var-2 <e.
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Since further Theorem 6.43 implies that Y5 /8 < .y, a(H)U(H) as n —
00, (6.40) follows by Billingsley (1968, Theorem 4.2). |

Corollary 6.46. Under the assumptions of Theorem 6.45, if further, every
graph H € H is connected and at least one a(H) # 0, then X, is asymptoti-
cally normal,

X, 3 N(0,1). (6.41)

Proof. If every H is connected, then each U(H) is normal and so is the sum
S a(H)U(H); (6.41) follows by (6.34) and (6.39). [

Corollary 6.47. Under the assumptions of Theorem 6.45, if further, py < 1,
H is finite and a(H) # 0 for some disconnected H € H, then X, has a
non-normal asymptotic distribution.

Proof. If some H is disconnected (and pg # 1), then U(H) is a polynomial of
degree > 2 in normal variables and it is easily seen that the sum in (6.40) is
such a polynomial too. Such a polynomial has a distribution with too large
tails to be normal, see, for example, Janson (1997, Theorem 6.12). [ |

Remark 6.48. Suppose that py < 1 and that not all a(H) = 0. If H is finite,
then (6.39) is, by (6.38) and Lemma 6.41, equivalent to the condition that X,
is dominated by #H. If H is infinite, (6.39) is stronger and, in fact, equivalent
to X, being asymptotically finitely dominated by H.

In the normal case, we may replace the assumption (6.38) on convergence
of the coefficients by a suitable upper bound.

Theorem 6.49. Let X, be a graph functional of G(n,p), where p = p(n).
Suppose that p — po € [0,1], and that X, is dominated by a family H of
connected graphs such that, for every H € H, np™H) — oo and the numbers

b(H) = sup X (H)/(Var X,)'/? (6.42)
are finite and satisfy
> b(H)? aut(H) < 0. (6.43)
HeH
Then,
X, 3 N@,1).

Proof. Let B, = (Var X,)Y/2. Then, since X, is dominated by #,

1=VarX,/B%~ > Var(X,(H)Sn(H)/Bs)
HeH

= Y n7v#p=en X2 (H)? Var Sn(H)/B;. (6.44)
HeH
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Since X’,’;(H)[ﬁn = O(1) for H € H by (6.42), there exists a subsequence
along which X, (H)/B, — a(H) for every H € 1 and some a(H). Along this
subsequence, each term in the sum in (6.44) converges, by Lemma 6.41, to
a(H)?aut(H)(1 — po)°# and is bounded, using also (6.42), by b(H)? aut(H),
Consequently, we may by (6.43) apply the dominated convergence theorem to
(6.44), obtaining

1=VarX,/B% = > a(H)?aut(H)(1 — po)”
HeH
and thus (6.39) holds. By Theorem 6.45, applied along the subsequence,

Xn 4N (0,1) along the subsequence.

Moreover, given any subsequence, this argument shows that there is a sub-
subsequence with X, 4N (0,1), and the result follows by the subsubsequence
principle. a

Applications to subgraph counts in G(n, p)

We use the decomposition method to obtain old and new results for subgraph
counts.

Example 6.50. Consider again the subgraph count X¢g in G(n,p), where
n — oo and p = p(n) is a function of n. We will use the results above to give
yet another proof (our last) of Theorem 6.5.

We can write, c¢f. (6.29) and the discussion there,

. ‘
= — I 4
¥ e€p(G)
summing over all injective mappings from the vertices of G into {1,...,n}.

As in the proof of Lemma 6.42, if we substitute I, = (I, — p) + p, expand the
product in (6.45) as'a sum of terms of the type Heecp(H)(Ie — p)p°¢ ~¢H with
H C G and rearrange the terms, we obtain an orthogonal expansion (6.30)
with only H C G (and without isolated vertices) appearing. Furthermore, it
follows from this argument that, for such H,

Xgn(H) x nve~vaptc—en
and thus (omitting the subscript n)

X5(H) < nveva/2pee—en/2, (6.46)

Now consider p = p(n). If p = py, 0 < po < 1, then X’&(H) = nY6~vH/2 and
thus X¢ is dominated by the H # 0 with smallest vy, that is, by {K2}. By
a simple application of Theorem 6.49, X¢ is asymptotically normal. (This is
essentially the first projection method; see Remark 6.44 and Example 6.40.)



PROJECTIONS AND DECOMPOSITIONS 171

If p = 1, X still is dominated by {K.}, and, assuming n?(1 — p) — oo,
asymptotic normality follows similarly.

If p — 0, then, by (6.46), X¢ is dominated by the set of non-null H C G
for which n="#/2p=¢#/2 i5 of largest order, that is, of the leading overlaps
defined in Section 3.2. The assumption np™% — co implies by Lemma 3.15
that all leading overlaps a.re connected. Since also m(H) < < m(G) for H C G,

Theorem 6.49 yields Xg 3 N(0,1).

Example 6.51. We next consider induced subgraph counts. Let Yg(G(n, p))
be the number of induced subgraphs of G(n, p) that are isomorphic to G. We
see, as before, that Y has a finite decomposition (6.30), but now the sum has
to be taken over all graphs H (without isolated vertices) with vy < vg.

In the case p — 0, it is easy to see that the decomposition (6.30) is dom-
inated by the same terms as in the decomposition for X¢, that is, by the
terms corresponding to leading overlaps of GG, except in the case when G has
no edges. Hence, by the argument in Example 6.50, Yg is asymptotically .
normal provided np"‘(G) — 00. (In the exceptional case eg = 0, X¢ is de-
generate but not Yg; Yg is dominated by {K2} and is thus asymptotically
normal provided n?p — c0.) We leave the details to the reader (Exercise!).

The case p — 1 is reduced to the case p — 0 by considering complements;
Ye(G(n,p)) equals the number of induced copies of the complement of G in
the complement of G(n, p), that is, in G(n,1 — p).

The case p — po € (0,1) is more interesting. Let us, for simplicity, assume
that p(n) = p is constant. In this case, a detailed calculation shows that, with
0 = (N)yg / aut(G),

To(Kz) = ooy (e = () o7 (1= p)(F) 7o,

n(n —

More generally, for every H there is a polynomial Qg such that

Vo (H) = %’iczﬂ(m.

In particular, Yg(H) = O(n*¢~?#) and thus Y4(H) = O(n¥s ~*#/2); more-
over, O can here be replaced by © if Qg (p) # 0, while Yo(H) = YC’,S(H) =0
if Qg (p) = 0. Consequently, Y is dominated by the smallest non-null graphs
H with Qg(p) #0.

If p #ec/(*S), then Qk,(p) # 0 and thus Y is dominated by {K2} (just
as X is); consequently, Y5 is asymptotically normal by Theorem 6.49. (This
is essentially the first projection method; see Remark 6.44.) In this case,
Var Yo =< )A"C’;(Kg)z < n2ve—2,

If, however, p = eg/(°¢), then Y5(K2) = 0 and we have to study larger H.
The next possibility is vy = 3, which holds for two graphs H, namely, P> and
K3. (Recall that we only consider graphs H without isolated vertices.) Hence,
if further Yg(P2) # 0 or Yo(K3) # 0, then Yg is dominated by {P, K3}
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Since both P, and K33 are connected, Y is asymptotically normal in this case
too by Theorem 6.49. (This is essentially the second projection method; see
Remark 6.44.) In this case, however, Var Yg x n?ve =3,

The remaining possibility is that Yg(K3) = Yo (P,) = Ya(K3) = 0. Graphs
G that satisfy these conditions are known as p-proportional. For such G and p,
it may be shown that Yg(2K 2) # 0, where 2K is the graph consisting of two
disjoint edges. Hence the list of possible cases ends here: Yg is dominated
by {H : vy = 4} and Var(Yg) < n?¥¢—4. Furthermore, since 2K is discon-
nected, Corollary 6.47 shows that Yg is not asymptotically normal.

More precisely, this argument yields the following result; see Barbour,
Karoniski and Ruciniski (1989) and Janson (1990a, 1995a) for further details.

Theorem 6.52. Consider G(n,p) where p is fized, 0 < p < 1.

(i) We have
n'= (Yg — EYg) % N(0,02),

for some 2 > 0;

(i) 03 =0 if and only if p=ec/(*¢), and then

n¥/27ve (Yo —EYg) 5 N(0,03),
for some o2 > 0;
(iii) 02 = 0% = 0 if and only if G is p-proportional, and then
n2=ve (Yo —EYg) 3 a(22 ~ 1) + b2,

where Zy,Z> € N(0,1) are independent, a,b are constants, and a < 0.
This limit is non-degenerate and not normal. _ [ ]

The parameters in the limit distributions may be given explicitly; here we
only remark that a calculation shows that, for (iii),

1 v v
0 = 201 = P)Ques ) = = g (6 ) o1 - U)o,

Remark 6.53. It is not trivial to construct proportional graphs, and not
even obvious that any exist at all. The smallest proportional graphs have
eight vertices; the first example was given in Barbour, Karonski and Rucinski
(1989), and another example is the wheel consisting of a cycle of seven vertices,
all joined to a central vertex. Deterministic and probabilistic constructions
showing that p-proportional graphs exist for every rational p € (0, 1) are given
by Janson and Kratochvil (1991), Karrman (1993), and Janson and Spencer
(1992).

Karrman (1994) has further constructed a graph (with 64 vertices) that is
proportional (with p = 1/2) and, furthermore, such that Y& (H) = 0 for every
H with vy = 4 except 2K>; in this case the constant b vanishes.
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Applications to subgraph counts in G(n, M)

We have so far treated the decomposition method for G(n,p). In fact, the
results extend to the continuous time random graph process {G(n, t)}; defined
in Chapter 1, with a random graph evolving in time. The method then yields
results on convergence of graph functionals as stochastic processes. See Janson
(1994a) for details; an example treated there is the asymptotic normality of
the maximum number of isolated edges during the evolution of a random
graph.

The process version of the method also leads to results for G(n, M) by
considering the random time when the evolving graph has exactly M edges.
We let p = M/(}) and define the variables S,(H) by (6.29), now letting I, be
the edge indicators for G(n, M). The expansion (6.30) is still valid, with the
same X, (H) as for G(n, p), but the terms are no longer orthogonal. Note that
Sn(K2) = 0 for G(n, M), so clearly the term with H = K, disappears from
(6.30). Moreover, a further analysis shows that also terms where H contains
an isolated edge (i.e., a component K3) require special treatment. This leads
to the following result; for the proof we again refer to Janson (1994a), which
also contains some extensions.

Theorem 6.54. Let X, be a graph functional of G(n, M), where M = M(n)
— 00, such that there is a finite family H with X,(H) = 0 for H ¢ H (for
every p). Let p = M(n)/(3), and let H' be the subfamily of all graphs in
H with at least three vertices. Suppose that p — po < 1, and that 3, is a
sequence of positive numbers such that for every H € H’,

a(H) = lim X:(H)/B, exists.
n—o0

Suppose further that a(H) = 0 for every H € H' with two or more isolated
edges, and that if H € H' with a(H) # 0, then np™H) 5 0o, Then,

N > a(H)U(H), | (6.47)

HeH

where # = {H € H' : every component of H has at least three vertices},
U(H) is as in Theorem 6.43 and o, equals the expectation of X, calculated
for G(n, p).

In particular, if a(H) = 0 for every H € H with two or more components
with at least three vertices, but a(H) # 0 for some H € H', then X, 1s
asymptotically normal. u

Note that the smallest H that gives a non-normal term in (6.47) is the
union of two copies of Py, which has six vertices.

Comparing the limits in Theorems 6.45 and Theorem 6.54, we see that
the following holds, at least provided both theorems apply (and, presumably,
more generally): If a graph functional is dominated by a family of graphs
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that have no isolated edges, then it has the same asymptotic distribution for
G(n,p) and G(n, M), with M ~ p(3). On the other hand, if the functiona]
is dominated by K> (ie., the situation when the first projection applies),
then the asymptotic distributions may be completely different; moreover, the
variance for G(n,p) is of a larger magnitude than the variance for G(n, M).
(See Pittel (1990) for a different approach to the relation between asymptotic
distributions for the two models.)

Example 6.55. We may now study the subgraph counts X¢g (arbitrary sub-
graphs) and Yg (induced subgraphs), where G is fixed, for the random graph
G(n, M), M = M(n); see Examples 6.50 and 6.51 for the corresponding re-
sults for G(n,p). We define p = M/(}), and begin by studying Xg.

Since the term with H = K> in the decomposition (6.30) plays no role for
G(n, M), we consider the graphs H # 0, K> and find the ones with largest
order of X (H); by (6.46), these are the subgraphs H C G with vy > 3 and
smallest order of n"H#p®H .

Let us first assume that G has a component with three or more vertices, that
is, G has a subgraph P2, and assume that np™% — co. Then the argument in
the proof of Lemma 3.15, together with n?(2K2)pe(2K2) 5, nv(P2)pe(P2) ghows
that every such extremal H is connected, and it follows by Theorem 6.54 that
Xc(G(n, M)) is asymptotically normal. We see further that the asymptotics
of X¢ are the same for G(n, M) as for G(n,p) when M is so small that
K, is not a leading overlap, but not for larger M. In the case M = p(3)
with p € (0,1) fixed, Var Xg =< n?¥¢~2 for G(n,p) but Var Xg =< n?¥¢~3 for
G(n, M) (dominated by P, and possibly K3, when K is ignored).

In the exceptional case when every component of G has at most two ver-
tices, that is, G consists of isolated vertices and edges, X is deterministic
if eg < 1. If e¢g > 2, a modification of the argument above shows that
Xg is asymptotically normal in this case too, provided n3/2p — oo and
n3/2(1 — p) = 0o; we omit the details.

The normalization used in Theorem 6.54 is not the natural one by the mean
and variance of Xg, but it may be shown that in this case (and many others),
all moments of the normalized variable converge to the corresponding mo-
ments of N(0, 1), and hence convergence holds with the natural normalization
too. We may summarize the result as follows.

Theorem 6.56. If eg > 1, M = M(n) > n'/2, (3) = M > n'/? and
np™ &) — oo, where p= M/(}), then Xc(G(n, M)) 4 N(0,1). |

Turning to the induced subgraph count Yz, we see by similar arguments
that when p — 0, we have (just as for G(n, p)) the same dominating graphs H
as for Xg, provided P, C G, and thus Y is asymptotically normal provided
M is not too small. Again, this may be shown also in the exceptional case
when G consists of isolated edges and vertices, provided vg > 3 (otherwise
Ye is constant).
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Theorem 6.57. If vg > 3, M = M(n) » n!'/?, p = M/(}) - O and
np™ ) = oo, then Yo(G(n, M)) 3 N(0,1). N

Again the case M/(}) — 1 can be handled by considering the complements,
and we obtain asymptotic normality in this case too, provided (g) — M is not
too small.

Finally, in the case M =~ p(g), p fixed, Theorem 6.54 yields the following
analogue of Theorem 6.52; see Janson (1994a, 1995a) for details. We let up
denote the set of unlabelled graphs with k vertices, none of them isolated, and
let Uy denote the subset of connected graphs with k& vertices.

Theorem 6.58. Let 0 < p < 1 be fized and consider G(n, M) where (for
simplicity) M = M (n) = | (3)p].

(i) We have
n3/27v (Y —EYg) % N(0,02)

for some o2 > 0;

(ii) o2 =0 if and only if Yo(H) =0 for H € U = {P,, K3}, and then

n2~% (Yg — EYg) 3 N(0,02)
for some g2 > 0;
(iii) 02 = 0% =0 if and only if Yo(H) = 0 for H € UQ UUS, and then
n3/2=v6 (Y5 - EYg) 5 N(0,02)

for some o2 > 0;

(iv) 02 = 02 =02 =0 if and only ifYo(H) =0 for H € U VU UUE, and
then
n37 (Yo —EYg) 3 a(Z22 — 1) + (22 — 1) + ¢Zs,

where Z,,2Z5,7Z3 € N(0,1) are independent, a,b,c are constants, and
a # 0. This limit is non-degenerate and not normal. |

Kérrman’s (1994) example shows that there exists a graph G such that
case (iii) occurs. We do not, however, know if there exists any graph such
that case (iv) happens; thus we do not know whether Y (G(n, M)) is always
asymptotically normal.

In any case, as remarked in connection with Theorem 6.52, a p-proportional
graph G has Y5(2K3) # 0, and thus is not an example of (iv) in the present
theorem. In other words, the classes of graphs that yield non-normal limits
in Theorems 6.52 and 6.58 are disjoint.
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Other projections

We have in this section studied projections using the variables S,(H) only.
Other projections are useful in other situations; we mention a few examples
. and references.

A similar decomposition has been used by de Jong (1996) to extend The-
orem 6.5 to random hypergraphs.

Andersson (1998) has studied (directed) subgraph counts in a random tour-
nament, obtaining results similar to Theorem 6.52. In that case, however,
there is an infinite list of possible cases.

Janson (1994b) studied the numbers of spanning trees, Hamilton cycles or
perfect matchings in G(n, p) and G(n, M). For G(n, M), with M > n3/2 and
(3) — M > n, these random numbers are shown to be asymptotically normal,
by approximating with a linear function of Xp,; a kind of “first projection”
for G(n, M). For M < n®?2 as well as for G(n,p) with p = Q(n"!/2) and
1 —p > n~2, the numbers are shown to be asymptotically log-normal.

Furthermore, in Chapter 9 we will prove results on asymptotic distributions
for random regular graphs by projecting onto functions of the cycle counts
Z;; in that case the basic variables Z; have asymptotic Poisson distributions
and the resulting asymptotic distributions are quite different from the ones
obtained here, see Theorem 9.12.

6.5 FURTHER METHODS

Finally, we briefly mention a couple of other methods.

Martingales

As mentioned above, the proof of Theorem 6.43 is based on a martingale limit
theorem; another martingale limit theorem is used by de Jong (1996). Such
theorems may also be used directly in situations where the methods described
above fail. We will not go into details, which are rather technical, and mention
only one example.

Example 6.59. Barbour, Janson, Karoniski and Ruciniski (1990) studied the
number Xy of cliques of a given fixed size d > 2 in G(n,p), where a clique is
defined as a maximal complete subgraph, that is, a K4 that is not contained
in a Kg4,. It was shown that if p = p(n) is such that EXy — A < oo, then
X4 % Po()), and if E Xy - o, then Xg 3 N(0,1).

The Poisson part was proved using the Stein-Chen method. For the normal
part, different methods were used for different ranges of p; for certain p the
first projection method works, and for a larger range it is possible to use
Corollary 6.46 (with the family H consisting of K3, K3, Kq and the ‘multistars’
M, , obtained by adding r > 1 vertices to Kg, joining them to all vertices
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of K4). For p close to the upper threshold, this fails, since then (6.39) does
not hold; instead a martingale limit theorem was invoked directly.

Generating functions

A method that is widely used to find asymptotics, including asymptotic distri-
butions, for combinatorial problems is to define a suitable generating function
and obtain results through a study of its asymptotics. This method has, how-
ever, been used rather sparsely for random graphs. We refer to Pittel (1990)
and to Janson, Knuth, Luczak and Pittel (1993) for examples.



The Chromatic Number

In this chapter we present results on the chromatic number which, due to
their elegance and importance, range among the very best in the theory of
random graphs. We begin with Frieze's beautiful method, which combines
the second moment method with large deviation inequalities to estimate the
independence number of random graphs. In Section 7.4 we describe Bollobds’s
ingenious argument for determining the chromatic number of dense random
graphs — probably the most important and celebrated result on random graphs
for the last years. Then we analyze an expose-and-merge algorithm, based on
Matula’s original idea, which is used for estimating the chromatic number in
the sparse case. Finding the chromatic number can be viewed as a vertex
partition problem. In the last part of the chapter we discuss this problem in
a more general form.

7.1 THE STABILITY NUMBER

Let us recall that a set of vertices of a graph G is independent, or stable, if
it contains no edges of G. The size of the largest among such sets, denoted
by a(G), is called the independence (or stability) number of G. In this section
we study the behavior of a(G(n,p)) — a random variable closely related to
the chromatic number x(G(n,p)). Note that the independence number of a
graph is the same as the clique number of the complementary graph, so the
results below can also be stated in terms of the clique number of G(n,1 — p).

179
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Let us start with a classic result due to Bollobas and Erdds (1976) ang
Matula (1976). Its proof, based on the second moment method, can be found
also in Bollobéas (1985, Chapter XI).

Theorem 7.1. Fore >0 and b=1/(1 —p), set
kie = |2log, n — 2log, log, np + 2log,(e/2) + 1+ ¢/p). (7.1)

Then, for p = p(n). such that p > n=% for every § > 0 but p < ¢ for some
c<1, aa.s.

k- < a(G(n,p)) < k. m

Remark 7.2. In fact, Bollobas and Erdés (1976) and Matula (1976) proved
that in the above range of p(n), the stability number a(G(n,p)) is asymptot-
ically concentrated on at most two points, that is, there is a sequence I}(n)
such that a.a.s. k(n) < a(G(n,p)) < k(n) + 1.

In this section we will concentrate on the case when p = p(n) < log™*n
Then, in order to avoid dealing with logarithms of base b, instead of k4. it is
convenient to use the functions k.., defined as

2 .
kie = |_Z—)(log np —loglognp +1 —log2 + e)J . (7.2)

Elementary calculations show (Exerase’) that for p < log n,e>0,and n
large enough, we have k_35 <k_.< k_E and k <k < k35, and so it does
not matter very much whether we use ki, or k4. to estimate a(G(n, p)).

Let X (k) = X (k;n,p) denote the number of stable sets of size k in G(n, p).
Since a(G(n,p)) > k if and only if X (k) > 0, the most natural way of han-
dling a(G(n, p)) is to study the behavior of X (k). First we will estimate the
probability P(X (k) > 0) for k_. < k < k., using the second moment method.
The following lemma shows that this approach works well for p = p(n) which
does not tend to 0 too fast.

Lemma 7.3. Let ¢ > 0, and k. be defined as in (7.2). Then there exists a
constant C; > 0 such that for C./n < p =p(n) < log™%n, we have

P(X (ke) > 0) < EX(k:) = 0 (7.3)

and
EX(k_-.) = o0

as n — 0o. Furthermore, if logZn//n < p < log™%n, then

P(X(k_.) > 0) = 1 — o(1) (7.4)
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and if C./n < p < log®n//n, then for large n

P(X(k_¢) > 0) > exp (— 3 ) > exp (————2——> . (7.5)
log® np plog® np _

In particular, if log® n/\/n < p < log™%n, then a.a.s.

k—e < a(G(n,p)) < k.. (7.6)

Proof. The first moment of X (k.) is rather easy to handle. For instance, for
np large enough,

enp p(ks - 1) ke
. B < —Che .
- (2(lognp — loglog np) exp ( 2 )) < exp(—€ke/2) —» 0

We leave to the reader an elementary verification (Exercise!) that if np > C.,
where C; is a sufficiently large constant, then for large n

E X (k_.) > exp(ek_c/2) — oo, (7.7)

and concentrate on the proof of (7.4) and (7.5).

Let us set, for convenience, k = k_. and X = X(k), and assume that
C./n < p < log™%n with C, large enough. As we have already mentioned,
our proof is based on a standard second moment argument, that is, we will
estimate E X2 and then deduce (7.4) and (7.5) from (3.3). Note first that

ex? | Qa-pOTL OGH0-pEE
(E X)? - . : -
(a-p®)] e
(5) (29 6%
SZT(I—;}) 2 =Zai7
i=1 k =

where
_ ______(]__p)_(;) for 1=12,...,k.
Furthermore, let

@iy (k — ) —i
P = = — - 1-— .
b a; (z+1)(n—2k+z+1)( P)

It is not hard to see that for small ¢, the sequence b; decreases with ¢ because
of the factor i + 1 in the denominator, for intermediate ¢ it grows due to the
factor (1—p)~* and, finally, when the difference k—i becomes small, b; declines
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again. Thus, a; achieves its largest value either at 43 = min{i > 1:b; < 1},
or at i = max{i < k: b; > 1} + 1. The reader can easily verify (Exerc1sev)
that 4; is much smaller than k, so the factor (1 — p)~* is almost negligible
and i; = O(1 +k?/n); more precisely, if k2/n < 1, then i; = 1, and otherwise
i1 < k%/n (in fact, iy ~ k?/n if k¥*/n = oo and np — o). In order to find a
lower bound for iy, set i, = [k(1 — 1/ log® np)]. Then

byt > ——k—exp(z p + O(i5p%)) > ~ TP 1

271 = onlog® np 2 log"? np ’

and so ip > 5. ‘
Let us estimate the value of a;,. The inequalities 2 > 1, = [k(1 —
1/log® np)] and (7.7) imply that for 35 < k we have

_ (zl;) (::zl;) (3)-(2) (kfig) (:—_zl;)
= W(l —p) < EX
e

2 ~is
warmeg)
< (e2nplog10 npexp(—glogs np))l/plogSnp = o(n”Y,

while for i, = k, directly from (7.7), we get a;, = ar = 1/EX = o(n™}).
Thus, the contribution to ), a; coming from the terms with large indices is
negligible, and the sum is dominated by terms with indices close to ;.

Let us consider two cases. If p > log? n/+/n, then k < 2¢/n/logn, i; = 1
and, furthermore, for every i < i3 = [lognp] and n large enough,

_OGD) —() < 2 (M= K)k— 2k
az—————(g——(l—p) <k —(;)-k———exp(z p/2)<(n ) ,
so a;; = o(n~!). Hence,

Zai < Z (——)z + kmax{ai,z,a;, } < % +0(1) = o(1). (7.9)

Next, suppose that C:/n <p < log® n /+/n for some large constant C. > 0.
Then, rather crudely,

ai, < (1—p)~ (D < exp((1/2 + o(1))pi?) < exP(2log—3np)

and

f )—1. (7.10)

k
Zai < kmax{a;,,ai, } < kexp(2log—3np) < exp(log o

=1
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Now, in order to get (7.4) and (7.5), it is enough to put the values of E X
and E X? given by (7.7), (7.8), (7.9) and (7.10) into (3.3) - a stronger form
of the second moment method. |

Let us remark that, although inequality (3.2) is slightly weaker than (3.3),
for most random graph problems it works just as well. Here, however, it is
not the case - for small p the inequality (3.2) gives a worthless negative lower
bound for the probability P(X (k;) > 0). ‘

On the other hand, at first sight, the estimate (7.5) does not look terribly
useful either ~ although positive it tends to 0 faster than exp(—+/n/2log” n).
One might hope that this is because our estimates were too crude. Indeed,
one can bound the variance of X more carefully and show that (3.3) yields
(7.4) also for some p which tends to 0 faster than log® n//n. However, for
p = p(n) which tends to 0 very quickly the second moment method utterly
fails. It is not hard to understand why it does so poorly in this case: if,
say, p = n~3/4, then the largest stable sets are larger than n%*, and the
majority of pairs of such sets share a substantial amount of elements which
makes E(X?) much larger than (E X)2. Quite surprisingly, (7.5) can still be
used for the evaluation of a(G(n,p)), provided it is supplemented with a large
deviation inequality of a martingale or Talagrand type. We owe this profound
observation to Frieze (1990), who showed that the estimates for a(G(n,p))
given by (7.6) remain valid also for p « 1//n.

Theorem 7.4. Lete > 0 and let k+. be defined as in (7.2). Then there exists
a constant Ce such that for C./n < p=p(n) <log™%n a.as.

k—e < a(G(n,p)) < k..

Proof. By Lemma 7.3, the assertion holds for log2 n/v/n<p< log_2 n, and
for the whole range of p = p(n) a.a.s. a(G{(n,p)) < k.. Thus, it is enough to
show that if C./n < p < log® n//n, then a.a.s. a(G(n,p)) > k_..

Note that Talagrand’s large deviation inequality, Theorem 2.29, can be
applied to a(G(n,p)) with ¢; = 1 and ¥(r) = [r] (see Examples 2.35 and
2.33), and thus by (2.35) we get

P(a(G(n,p)) < k- — 1) P(a(G(n,p)) > k_c/2)

(k—5/2 —k_e + 1)2
< —
- e?cp( 4k_5/2 )

(7.11)
< ex (__<€_/£L) _ exp(_i),
= ©XP 8lognp/p 8plognp
Thus, combining (7.11) and (7.5) (for €/2), it follows that, for large n,
g2 2
< —
P(a(G(n,p) < k) S exp( oo+ — )
2
< ————} =0(1) . =
= exp( 16plogn) o(1)
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7.2 THE CHROMATIC NUMBER: A GREEDY APPROACH

Let us recall that the chromatic number x(G) of a graph G is the smallest
integer £ such that the vertex set of G can be partitioned into ¢ stable sets.
The problem of computing the value of the chromatic number of a graph has
drawn much attention in graph theory, but in this chapter we will not use
any sophisticated results from this area, relying mainly on known elementary
facts about x(G) (see, e.g., Bollobds (1998) or Diestel (1996)).

We begin our study of x(G(n,p)) with the simple observation that for
any graph G with n vertices and stability number a(G), the chromatic num-
ber x(G) is bounded from below by [n/a(G)]. Thus, the upper bounds
for a(G(n,p)) given by Theorem 7.1 and 7.4 yield immediately that a.a.s.
x(G(n,p)) > n/k. if p is a constant (or p = p(n) tends to 0 slowly enough),
and x(G(n,p)) > n/k. if C./n < p = p(n) < log™%n for a large enough con-
stant C' = C.. Replacing these bounds by simpler, slightly smaller expressions
we arrive at the following result.

Corollary 7.5.

(i) If p=p(n) > n=? for every 6 > 0 but p < ¢ for some ¢ < 1, then a.a.s.

) > .
™P)) = 2log, n — log, log, n’

x(G(

where b=1/(1 — p).
(ii) There exists a constant Cy such that if Co/n < p = p(n) <log™%n, then
a.a.s.

np
G > ' "

The main question about x(G(n,p)) is whether the vertex set of G(n,p)
can be partitioned into stable sets of nearly maximum size, that is, whether

x(G(n,p)) = (1+ 0p(1))n/a(G(n, p)). (7.12)

In this section we examine an algorithmic approach to this problem, and
describe a simple algorithm coloring the vertices of G(n,p) which a.a.s. uses
only twice as many colors as anticipated in (7.12).

Let D(G) = maxgcg 0(H) be the degeneracy number of a graph G and, as
in Section 3.1, let m(G) = maxgcg |E(H)|/|V(H)|. Much of our argument
will rely on the following well-known simple upper bound on x(G).

Lemma 7.6. There exists a polynomial time algorithm which colors the ver-
tices of every graph using at most 1 + D(G) colors. In particular,

X(G) < 1+ D(G) <1+ 2m(G). N
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The above fact is particularly well suited for small subgraphs of a random
graph, which are quite sparse and thus can be effectively colored with only
a few colors. Throughout this chapter we will use the following estimates of
the density of small subgraphs of G(n,p). Statements (i)-(iii) below can be
easily verified using the first moment method (Exercise!). In order to prove
(iv) it is enough to compute the expected number of subgraphs of G(n,p)
with m(F) > 1.45 and fewer than 0.05n vertices, and use the fact that if
np < 1.001 then a.a.s. the size of the largest component of G(n, p) is smaller
than 0.05n (see Theorem 5.4).

Lemma 7.7.

() There exists a constant Co such that for np > Co a.a.s. every sub-
graph F' of G(n,p) with fewer than n/log® np vertices satisfies m(F) <
np/log® np.

(ii) Ifp <log®n/\/m, then a.a.s. for every subgraph F of G(n,p) with fewer
than 2y/nlogn vertices we have m(F) < log3 n.

(iii) Ifp < n=%/7 then a.a.s. for every subgraph F of G(n,p) with fewer than
70v/nlogn vertices m(F) < 1.45 holds.

(iv) If np < 1.001, then a.a.s. m(F) < 1.45 for every subgraph of G(n,p).
In particular, a.a.s. x(G(n,p)) < 3. o

Note that although it follows from the proof of Theorem 7.4 that the ex-
pected number of stable sets of size (1 — o(1))a(G(n,p)) is quite large, such
sets have a natural tendency to cluster together and so, possibly, they do
not cover all vertices of the random graph. However, in the first attempt to
estimate x(G(n,p)) from above, we will defer this problem for a while, and
instead look more closely at the stable sets which are about half the size of
the largest one. More specifically, the following fact can be shown using the
first moment method (Exercise!). A stable set is called mazimal if it is not
contained in any other stable set.

Lemma 7.8.

(i) There exists a constant Cy such that if Co/n < p < log™2n, then with
probability 1 — o(n~2), G(n,p) contains no mazimal stable set smaller
than (lognp — 3loglognp)/p.

(ii) Ifp > log™3 n but p < ¢ for some ¢ < 1, then with probability 1 — o(n™?)
every mazimal stable set of G(n,p) is larger than log, n — 3log, log, n,
where b=1/(1 - p). ]

Lemma 7.8 tells us that a.a.s. each stable set much smaller than 3a(G(n,p))
can be extended to a bigger one. In particular, every vertex belongs to a stable
set of size about a(G(n,p))/2. As was observed by Grimmett and McDiarmid
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(1975), one can use this fa.cf to describe an algorithm which colors the vertices
of G(n,p) with (2 + 0,(1))n/a(G(n,p)) colors.

Theorem 7.9. There exists a polynomial time algorithm CHR for which the
following hold:

(i) there exists a constant Co such that if Co/n < p < l/log2 n, then a.a.s.
CHR wuses no more than np/(log np— 6loglog np) colors to properly color
the vertices of G(n,p);

(ii) if p > log™2n but p < ¢ for some ¢ < 1, then a.a.s. the number of colors
used by CHR to color the vertices of G(n,p) is bounded from above by
n/(log, n — 6log, log, n), where b=1/(1 - p).

Proof. We will show only the first part of the assertion; the proof of (ii) is
similar. Note first that in a random graph G{(n,p) one can find a maximal
stable subset S by examining only those pairs of vertices of G(n,p) which
have at least one end in S. Indeed, to construct S greedily start from any
vertex, put it into S, then check for every other vertex if it ‘has neighbors
among the vertices already in S; if this is not the case add such a vertex to S.
Now color the vertices of S using the first color. Then, the graph obtained
from G(n,p) by deleting the vertices of S can be viewed as the random graph
G(n — |S|,p), so we can repeat the above greedy procedure over and over
again, until the number of vertices in the graph drops below n/log? np. If Cy
is sufficiently large, then, due to Lemma 7.8, the number of colors used so far
is a.a.s. bounded from above by

np np
< .
log(np/ log® np) — 3loglog(np/ log? np) ~ lognp — 5loglog np

Furthermore, Lemmas 7.6 and 7.7(i) imply that a.a.s. the remaining vertices
of the graph can be effectively colored by at most 2np/log?np + 1 colors.
Consequently, a.a.s.

I RSP —
Sloglognp  log® np log np — 6loglog np

X(@(n,)) < e

Can we do better than the algorithm CHR and effectively color G(n,p)
using a substantially smaller number of colors? Clearly, in order to reduce
the number of colors by a constant factor, we need to describe a fast procedure
IND(d) which a.a.s. finds in G(n, p) a stable set larger than (1/2+6)a(G(n,p))
for some § > 0. (The problem of the existence of IND(4) was posed by Karp
(1976) and, as was observed by Juels and Peinado (1998), has some interesting
cryptographic consequences.) In fact, Matula (1987) showed that, having such
a procedure as a subroutine, one could devise an algorithm which a.a.s. colors
the vertices of G(n,p) with fewer than (2 — ¢')n/a(G(n,p)) colors, for some
positive constant &'
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However, at this moment neither do we know what IND(4) should look like,
nor do we have any idea how to show that such a procedure does not exist.
Although it is possible to find in G(n, p) stable sets slightly larger than those
whose existence is assured by Lemma 7.8, and describe algorithms which a.a.s.
color the vertices of G(n, p) with fewer colors than CHR does, all improvements
are only with respect to the second-order terms: all these procedures produce
stable sets of size (1/2+ 0,(1))a(G(n,p)). (Examples of such algorithms were
given, e.g., by Bollobds and Thomason (1985), Pittel and Weishaar (1997),
and Jerrum (1992); a survey on the algorithmic theory of random graphs was
published by Frieze and McDiarmid (1997).) Thus, the problem of existence of
IND(J) continues to be the most important open question of algorithmic flavor
in the theory of random graphs. To illustrate our ignorance concerning this
subject let us mention that even the following problem, posed independently,
in various variants, by Jerrum (1992) and Kucéera (1995), has not been settled
so far.

Problem 7.10. Let 0 < a < 1/2, 0 < p < 1, and let G, po be a random
graph obtained from G(n,p) by choosing randomly a subset S of size |n®]
of the vertex set of G(n,p) and removing from G(n,p) all the edges with both
ends in S. Describe a polynomial time algorithm which a.a.s. finds a mazimum
stable set in G p o for every a > 0.

Note that if @ > 0, then a.a.s. S is the unique maximum stable set of G, 5 4
(Exercise!). Alon, Krivelevich and Sudakov (1998) provided an algorithm
which a.a.s. finds S in a polynomial time for @ = 1/2. Moreover, as observed
by Kucera (1995), if a > 1/2, then the problem has an immediate solution:
in this case all vertices of S a.a.s. can be identified just by inspecting their
degrees (Exercise!).

7.3 THE CONCENTRATION OF THE CHROMATIC NUMBER

From Theorems 7.1, 7.4 and 7.9 we know that for every 6 > 0 and ¢ < 1,
and for every function p such that Cs/n < p < ¢ for some constant Cs,
the chromatic number x(G(n,p)) a.a.s. lies between n/a(G(n,p)) and (2 +
d)n/a(G(n,p)). But is it sharply concentrated, in other words, is there some
function A(n) = h(n,p) such that a.a.s. x(G(n,p)) = (1 + 0p(1))h(n)?

One can immediately see using the vertex exposure martingale and Corol-
lary 2.27 that x(G(n,p)) is concentrated in an interval of length Op(y/n). This
fact, however, does not answer our question in the case of a sparse random
graph, when the chromatic number is of an order smaller than v/n. Nonethe-
less, Shamir and Spencer (1987) proved a sharp concentration of x(G(n,p))
throughout the entire evolution of G(n,p). Here we present a somewhat
stronger version of their result given by Luczak (1991c), based on an idea
of Frieze.
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Theorem 7.11. For every sequence p = p(n) there exists a function h(n)
such that the following hold:

(i) i p>n=57, then x(G(n,p)) = (14 0p(1))h(n);
(ii) if p < n~9/7, then a.a.s. h(n) < x(G(n,p)) < h(n) + 1.

Proof. As we indicated earlier, statement (i) is easy for a sufficiently dense ran-
dom graph. If p > py = log® n/+/n, then, by Corollary 7.5, a.a.s. x(G(n,p)) >
X(G(n,po)) > v/nlogn/2. Corollary 2.27 applied to the vertex exposure mar-
tingale, gives

P(|x(G(n,p)) — Ex(G(n,p))| > v/nloglogn) = o(1),

that is, in this case the assertion (i) follows with h(n) = E x(G(n, p)).
Assume now that p < log®n//n and let h = h(n) be the smallest natural
number for which
P(x(G(n,p)) < h) > 1/logn.

Consequently, P(x(G(n,p)) < h) < 1/logn, and so a.a.s. x(G(n,p)) > h.
Denote by Y the number of vertices in the largest induced subgraph of G(n, p)
which can be colored by at most h(n) colors, and set Y = n — Y. We first
prove that EY < +/nlogn. Indeed, suppose that EY > +/nlogn. Since
altering the presence of the edges incident to a single vertex cannot affect the
value of Y by more than one, Corollary 2.27 applies to the random variable Y
with vertex exposure. This gives

P(x(G(n,p) <hA)=P(Y =0) <P(Y <EY — y/nlogn)
<exp(—logn/2) < 1/logn,

contradicting the choice of h. Thus EY < y/nlogn and, once again using
Corollary 2.27, we get

P(Y >2y/nlogn) <P(Y >EY + y/nlogn) < exp(—logn/2) < 1/logn.

Hence a.a.s. all except at most 2v/nlogn vertices of G(n,p) can be colored
using at most h colors. Moreover, Lemmas 7.6 and 7.7(ii) imply that for such
a function p a.a.s. each subgraph of G(n,p) with at most 2y/nlogn vertices
can be colored using at most 2log® n + 1 colors. Thus, in this case a.a.s.

h < x(G(n,p)) < h+2log*n + 1. (7.13)

Note now that if p > n~%/7, then, by Corollary 7.5, a.a.s. x(G(n,p)) >
n!/7/logn. Thus, (7.13) implies that 2log® n+ 1 = o(h) and, again by (7.13),
the assertion (i) follows.

The argument for p < n~%7 is slightly more involved. Let us start with
some comments on the rather uninteresting case np < 1.001. If np — 0, then
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a.a.s. G(n,p) is a forest (see Section 5.1) and so a.a.s. 1 < x(G(n,p)) < 2. If
n~1/10 < np < 1.001, then a.a.s. G(n,p) contains at least one edge, and thus,
by Lemma 7.7(iv), a.a.s. 2 < x(G(n,p)) < 3.

Thus, we may and will assume that 1.001/n < p < n=%/7. Then, with prob-
ability 1 —o(1/logn), G(n,p) contains an odd cycle of size 2| (loglogn)?| +1,
(Exercise!) and so h > 3. Hence, Lemma 7.7(iii) and the argument presented
above imply that there exists A = h(n) > 3 such that a.a.s. G(n,p) has the
following properties:

(i) all except at most 24/nlogn vertices of the graph can be colored with
at most h colors;

(ii) for every subgraph F of the graph with fewer than 70v/nlogn vertices
we have m(F) < 1.45.

Now to complete the proof it is enough to show that every graph G = (V, E)
with the above two properties can be colored using at most A + 1 colors.

Let S be a subset of V such that |S| < 2v/nlogn and the vertices of V\S can
be colored with at most h colors. We recursively define an ascending sequence
of sets S =Sp C S; C--- CS; CV in such a way that |S;] < 62y/nlogn
and the neighborhood of S; is a stable set in G. The recursive step is simple:
if the set S; has already been found and the neighborhood of S; contains an
edge {v,w}, we put S;3; = S; U {v,w}. Note that |Si+1| = |Si| + 2 and that
e(Si+1) > e(S;) + 3, where e(S;) is the number of edges of G contained in S;.
Hence, after ¢ steps,

|S;| =|S|+2i and e(S;) > 3i.
But, due to property (ii), as long as'¢ < 34y/nlogn we have
3i < e(Si) <1.45|S;| = 1.45|S| + 2.9¢ < 3y/nlogn + 2.9

and so the procedure must end after at most ¢ < 30v/nlogn steps. Conse-
quently, G contains a set S; of size smaller than | S| + 2t < 62/nlogn such
that its neighborhood N (S;) is stable in G and all vertices outside S; can be
colored by at most h colors.

Now one can color the vertices of G with at most h+1 colors in the following
way. All the vertices not belonging to S; U N(S;) are colored with the first h
colors, while the vertices of N(S;) are colored by the (h + 1)st color. Finally,
the set S;, which due to Lemma 7.6 spans a subgraph with chromatic number
at most three, can be colored by any three of the first h colors. u

Recently Alon and Krivelevich (1997), adding to the above argument one
more ingredient, the Lovdsz Local Lemma, showed that x(G(n,p)) is asymnp-
totically concentrated on at most two points as long as p < n~1/2-¢, They
also observed the following consequence of the two-point distribution, leading,
by a suitable choice of p(n), to a one-point distribution.



190 THE CHROMATIC NUMBER

Corollary 7.12. For every € > 0 and every positive integer sequence r =
r(n) < nl/2=¢ there ezists a probability sequence p = p(n) such that for suffi-
ciently large n

P(x(G(n,p)) =7) 21 ~¢.

Proof. We may assume that € < 1 and r > 1. Define p = p(n) as the infimum
of all real numbers p € (0, 1) such that

P(x(G(n,p)) <r) <e/2.

Corollary 7.5 implies that p < n~1/27¢/2) and thus we may apply Theo-
rem 7.11(ii) (in the extended range). It follows that h(n) = r — 1, but
P(x(G(n,p)) =r—1) <e/2. u

Let us compare the obtained concentration of x(G(n,p)) with that of
a(G(n,p)). From Theorem 7.11 we know that x(G(n,p)) is concentrated
on at most two points when p(n) tends to 0 quickly enough, while Remark 7.2
states that a similar two-point concentration holds for a(G(n,p)) when p
tends to 0 very slowly with n. This connection is probably due to the relation
X(G) > n/a(G) which, for random graphs, tends to become an asymptotic
equation. The fact that Theorem 7.11 does not specify the function A(n),
while the concentration function of a(G(n,p)) is explicit, indicates that deal-
ing with the chromatic number is more difficult. The reason is not hard to
understand: the stability number is a local parameter of a random graph,
while the chromatic number characterizes its overall structure. Nevertheless,
in the next two sections we will find the asymptotic value of h(n).

7.4 THE CHROMATIC NUMBER OF DENSE RANDOM GRAPHS

When Shamir and Spencer (1987) used Azuma’s inequality (Theorem 2.25)
to show that both the stability number and, more importantly, the chromatic
number of G(n, p), are sharply concentrated around their expectations, it was
not expected that martingales could help in finding the asymptotic value of
x(G(n,p)). As we saw in the previous section, Shamir and Spencer proved
that, in particular, for every constant p there exists a sequence h(n) such that
x(G(n,p)) = (1+ 0p(1))h(n). In view of Corollary 7.5(i) and Theorem 7.9(ii)
we have, with b = 1/(1 — p),

n

<h(n) < :
2log,n — (n) < log, n

It came as a great surprise when Bollobds (1988a) used martingales to show
that the truth lies at the left endpoint of the above interval. His paper estimat-
ing x(G(n,p)) for dense random graphs was based on a beautiful, insightful
and, at the same time, very simple argument. By the second moment method
it was known (see Theorem 7.1) that if 0 < p < 1 is a constant, then a.a.s.
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G(n,p) contains a stable set of size k ~ 2log,n. Bollobas observed that
one can use large deviation inequalities to show that a.a.s. each subgraph of
G(n,p) on at least n/ log? n vertices contains a stable set of size k not far
from k. But then we are done! Indeed, we can color greedily disjoint, k-
element stable sets of G(n,p), until the number of uncolored vertices drops
below n/ log? n. Finally, we color the uncolored vertices by new, distinct colors
(since n/ log? n is much smaller than the anticipated value of x( G(n,p)) this
does not increase significantly the number of colors used in the procedure).
A crucial ingredient of the above argument is an exponential upper bound
for the probability that G(n,p) contains no large stable set; Bollobds derived
it from the martingale inequalities in Corollary 2.27 using an elegant thinning
argument. We will instead deduce this bound from Theorem 2.18.

Lemma 7.13. Let 0 < p < 1 be a constant and b = 1/(1 — p). Then the
probability that G(n,p) contains no stable set of size [2log, n —2.1log log, n]
is bounded from above by exp(—(1 — p)n?/33logs n).

Proof. Recall that X (k) stands for the number of stable k-element sets of the
random graph G(n,p). By Theorem 2.18(ii), applied to the cliques in the
complement G(n,1 — p) of G(n, p), we have

P(X (k) =0) < exp (— 5 E,BEA)f](;))](A'XA" ) , (7.14)

where
1 if A is stable in G(n, p)
Xa=
0 otherwise,

and the sum in the denominator is taken over all pairs A’, A” such that
|A’| = |A"| = k and |A' N A"”| > 2. As in Section 7.1, setting k = [2log, n —
2.1log,, log, n], one obtains

SYEXaXan i, (,:) (71::,:)(1 —P)(;)_(2)
[EX(K)] E X (k) '

Elementary, though tedious calculations (Exercise!) show that in the above
sum the first term is the largest one. Thus

SSEXwXe _ (=D EHa-pE
EX(&)]? ~ E

(
5 n ke
< =t (1) -G < 33log; n

< EX (k) “T-pmz

Bollobés’s result on the chromatic number of dense random graphs follows
from the above lemma almost immediately (we present it here in a slightly
weaker version).
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Theorem 7.14. Let 0 < p < 1 be a constant and b =1/(1 — p). Then a.as.

n n
< x(G(n,p)) < .
2log, n — logy log, n — x(G(n,p)) < 2log, n — 8logy log, n

Proof. Since the lower bound for x(G(n,p)) is given by Corollary 7.5, we need
only to prove that a.a.s. the vertices of G(n,p) can be properly colored by
no more than n/(2log, n — 8log, log, n) colors. Note first that a.a.s. each
subgraph of G(n,p) on at least n/log® n vertices contains a stable set of size
at least

n n
2log, (log2 n) — 2.1log log, (10g2 -

) > 2log, n — 7log, log, n.

Indeed, due to Lemma 7.13, the expected number of subgraphs of G(n,p)
induced by at least n/log® n vertices containing no stable sets of this size is
bounded from above by

n 1 - p)n?/log*n n n?
2 exp(—( ps) / g2 ) <2 exp(——lo——) — 0.
33log, (n/log” n) log'" n

Thus, a.a.s. one can greedily color all except at most n/log? n vertices of
G(n,p) with at most n/(2log, n — 7log, log, n) colors. Clearly, the remaining
vertices can be generously colored each by a new color and so a.a.s.

n n
T
2log, n — 7log,logyn  log®n
< n .
~ 2log, n — 8logy log, n

x(G(n,p)) <

Remark 7.15. With a little more work, Bollobés’s method yields the sharper
estimate (McDiarmid 1989)

n
2log, n — 2logy log, n + Oc(1)

x(G(n,p)) =

for p constant; moreover, with the error term replaced by O¢(1/p), this holds
for p — 0 too, provided p > n~9 for every § > 0.

7.5 THE CHROMATIC NUMBER OF SPARSE RANDOM GRAPHS

Unfortunately, Bollob4s’s ingenious argument cannot be used to determine
the chromatic number of G(n,p) in the whole range of p = p(n). Although
it works very well for p > n~%, where & is a small positive constant, we are
in deep trouble when the probability p = p(n) tends to zero very quickly.
Then, the left-hand side of the inequality (7.14) tends to one as n — oo
and, as we have already seen when proving Theorem 7.4, finding the correct
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asymptotic size of the largest stable set in G(n,p) requires a combination of
a large deviation inequality and the second moment method. One may still
hope that Frieze’s approach can be used to show that the probability of G(n, p)
containing no large stable sets of size £ ~ a(G(n,p)) tends to 0 much faster

than (:)_l, as required in Bollobds’s method. However, a quick inspection
of the proof of Theorem 7.4 reveals that it is based on the large deviation
inequality (7.11), which cannot “capture” probabilities smaller than exp(—k),
where k ~ a(G(n, p)). ‘

Thus, in order to deal with small edge probability p we will need a new
idea: Matula’s ezpose-and-merge approach (see Matula (1987) and Matula and
Kucera (1990), where it was used to determine, independently from Bollobés,
the correct size of the chromatic number of G(n,1/2)). We follow Luczak
(1991b) and combine this method with Frieze’s argument used in the proof of
Theorem 7.4 to find the correct asymptotic order of the chromatic number of
a random graph basically for all values of p > C/n, where C is a sufficiently
large constant. Here we consider only p = p(n) for which p < log™" n; if
p > log™"n but p < ¢ for some ¢ < 1, then one can get better estimates for
x(G(n,p)) using Bollobas’s argument presented in the previous section (see
Remark 7.15).

Theorem 7.16. There exists Co such that for every p = p(n) satisfying
Co/n < p<log™"n a.as.

np
40loglognp’

np
< x(G(n, <
2lognp — 2loglognp+1 — x(G(n,p)) < 2lognp —

The proof of Theorem 7.16 is based on Lemma 7.18 below, which, in turn,
relies on a strengthening of Theorem 7.4 given by Luczak (1991b). This result,
stated as Lemma 7.17, can be verified by following closely Frieze’s original
argument, but since its computational part is much more involved, we state
it without proof.

Lemma 7.17. Let € > 0 and k = |2(lognp — loglognp + 1 —log2 —€)/p].
Then there ezists a constant C. such that for C./n < p(n) < log™ " n, with
probability at least 1 —o(n™!), G(n,p) contains [nlog™®(np)/k] disjoint stable
sets, each of k vertices. u

Lemma 7.18. There is a constant Cy such that for Co/n < p < log™ " n,
and n large enough, with probability greater than 1 — log~! np, more than
n — 2nlog~3 np vertices of G(n,p) can be properly colored with fewer than
np/(2lognp — 38loglognp) colors.

Proof. We will show the statement using Matula’s “expose-and-merge” tech-
nique. Let Co/n < p < log™" n, where Co is assumed to be large enough for
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later estimates. Furthermore, set

k = [(2lognp — 37loglognp)/p],
¢ = [n/(klog” np)],

m = [nlog™'" np].

Choose a subset A, of [n] uniformly at random among all subsets of [n] with
m vertices. Since the subgraph H, induced in G(n,p) by A; can be viewed
as G(m,p), by Lemma 7.17, with probability at least 1 — o(m™!) there are ¢
disjoint stable sets in H,, each of size k. Let us choose uniformly at random
one such family, I},...,I}. This extra randomization gives each k-element
subset of A; the same overall chance of being chosen as one of these stable
sets. We mark all vertices from the set W = Uf=1 I} as used and all pairs of
vertices {v,w} with v,w € A4, as ezposed.

Now choose another set A;, uniformly at random among all subsets of
[n] \ W of m vertices, and let H} be the graph induced by Az in G(n,p).
We would like to apply Lemma 7.17 to H but, although H} can be viewed
as G(m,p), its structure may depend on the structure of H;, because some
pairs of vertices from A; could be already exposed. Here comes Matula’s
ingenious recipe. Let us ignore all exposed pairs, at least for a moment, and
for each exposed pair {v,w} perform another random experiment in which the
probability of success is p, and connect v and w by an edge according to its
outcome. The graph obtained this way from Hj is denoted by H>. Note that
H; can no longer be viewed as a subgraph of G(n,p) — when we expose the
exposed pairs for the second time, we might have drawn an edge between two
vertices which are not adjacent in G(n,p), and vice versa. However, H> has
one great advantage: it can be identified with a random graph G(m, p) which
is independent of H;, because H, and H> were generated in separate sequences
of random experiments. Thus, we can apply Lemma 7.17 and choose in Ho,
again randomly, a family of £ disjoint sets I?,...,I7, which are stable in Hy
(but not necessarily in G(n,p)). Finally, we include all vertices of Uf=l I? in
the set W containing the used vertices, and all pairs from A; in the set of
exposed pairs (some of them may have been already marked as exposed).

Let us repeat this procedure r = [log®? np — log!'® np] times. According to
Lemma 7.17, the probability that for some graph H;, 1 < ¢ < r, we have not
succeeded with the choice of the family Ii,...,I} is o(r/m) = o(log™" np).
Thus, let us assume that during the procedure we have produced a family of
rf disjoint sets I}, where for each i, 1 < i < r, all sets [}, 1 < j < £, are
stable in H;. We will use them to define a proper coloring of all except at
most 2n log™2 np vertices of G(n, p).

As we have already noticed, a set I ; may not be stable in G(n,p), because
when generating H;, we could have included in I} a pair {v,w} which was
an edge of G(n, p), but which was exposed at one of the earlier stages of the
algorithm. Let s be the smallest index for which {v,w} € H;. We denote the
number of such troublesome edges by Y.
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Now we estimate the expectation of Y. Since 1 < s < t < r, there exist (;)
choices for s and t. At the s-th stage, when we picked a set A4, of size m, the
ends v,w € A; of a troublesome edge could be chosen in one of (’2") ways; the
probability that the pair {v,w} appeared as an edge of H, and thus of G(n, p)
is, of course, p. Now it remains to bound the probability that both v and w
belonged to one of the sets I, IS...,I;. Note first that at the ¢t-th stage of
the procedure the set A4,, and thus also the sets I}, If ..., I, were chosen from
at least n — rfk > 0.5nlog ™% np vertices. Since |[I}| =k foralli =1,2,...,¢,
the probability that v belonged to Uf=l It is smaller than 2¢k/nlog~3 np.
Similarly, the probability that w was contained in the set I¢ which contained
v is bounded from above by 2k/n log™% np. Thus,

e (r) (m) a(k)2e
=\2/\2/) log~®np
log**np  n? 8nlog’ np

= 2nlog™° np.
= 2 2log* np n?log?np & mp

Hence, from Markov’s inequality, we get

P(Y > nlog™3np) < 2log™?np < 0.5log™ ' np .
Consequently, with probability at least 1 —log™" np, the procedure described
above generates a system of disjoint sets I}, 1<i<r 1< j<¢¥ which
contain not more than nlog™2 np troublesome edges. Let us delete one end
of each such edge from |J,_, U5=1 I}. Then, the resulting set has at least

rék —nlog 3 np > n—2nlog 3 np

vertices and, on the other hand, it can be colored using not more than

n np
£< -
e tr< 2lognp — 38loglognp

colors. [ |

Proof of Theorem 7.16. The lower bound for x(G{(n,p)) is given by Corol-
lary 7.5. In order to get the upper bound for the chromatic number of G(n, p)
observe that, due to Lemma 7.18, with probability at least 1 — log™! np all
except at most 2nlog™3 np vertices of G(n,p) can be colored using at most
np/(2lognp—38loglognp) colors. Furthermore, Lemmas 7.6 and 7.7(i) imply
that with probability 1 — o(1) the subgraph induced in G(n,p) by the uncol-
ored vertices can be colored using at most 2nplog~2 np 4+ 1 additional colors.
Consequently, with probability at least 1 — o(1) — log™" (np),

np 2np
+——+1
2lognp — 38loglognp  log* np (7.15)
np
< .
— 2lognp — 39loglog np

x(G(n,p)) <
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Thus, for say, np > logn, a.a.s. the chromatic number is bounded from
above by np/(2lognp —39loglognp). Finally, if Co < np < logn, then (7.15)
together with Theorem 7.11 implies that a.a.s.

P +1< e
39loglognp — 2lognp — 40loglognp

X(G(n D) < 51 "

The above theorem states that for np being a large enough constant the
chromatic number of G(n, p) is a.a.s. about np/(2lognp). But how large must
this constant be to guarantee that the chromatic number is at least k, for a
given natural number k£ > 4?7 Recently, Achlioptas and Friedgut (1999) have
shown the existence of a sequence di(n) such that a.a.s. G(n, (di (n) —€)/n)
has chromatic number at most k, while G(n, (dx (n) + €)/n) does not. The
sequence di(n) is certainly bounded, but it is not known (although widely
believed) that it converges to a limit. To avoid this problem one can define
the threshold constant cg, setting

ck =inf{d: a.a.s. x(G(n,d/n)) > k}.
Theorem 7.16 states that for large £ we have
ck = (2+0(1))klogk, (7.16)

where the o(1) stands for a quantity which tends to 0 as ¥ — oo. For small
values of k the constants ¢y have been estimated by Chvatél (1991), Molloy
(1996), and Achlioptas and Molloy (1999). In particular, it turns out that
for k > 3, during the evolution of G(n,p), the first subgraph of G(n,p) of
minimum degree k appears before the chromatic number of the random graph
jumps to k + 1 (see Molloy (1996) and Achlioptas and Molloy (1997)). Note
also that if k is large then the non-empty k-core appears in the random graph
when its expected average degree is about k (see Section 5.1). Thus, for
large k, (7.16) implies that the k-core, at the moment it emerges in G(n, p),
a.a.s. has chromatic number smaller than k.

7.6 VERTEX PARTITION PROPERTIES

The concept of chromatic number can be modified in various ways, and quite
a few of its variants have been studied in the theory of random graphs (see,
e.g., Bollobds and Thomason (1995, 1997)). In this section we consider one
such generalization of the chromatic number, closely related to Ramsey the-
ory. Note that having chromatic number greater than r is equivalent to the
property that every r-coloring results in an edge with both endpoints of the
same color. This is nothing else but a special case of a general Ramsey prop-
erty for graphs, often depicted by the following Erdés-Rado arrow notation.
Given two graphs F' and G, we write

F o (G)}
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if for every r-coloring of the vertices of F' there is a monochromatic copy of G
in F'. (A similar notion but with respect to edge-coloring will be thoroughly
studied in the next chapter.) Thus, x(F) > r if and only if F' — ( K,)1. With
this extent of generality in mind, we will refocus our interest as compared to
the case G = K3 studied in the previous sections of this chapter, anqd instead
of asking for an analogue of the chromatic number, that is, for the smallest
number of colors r = r(n, p) for which

G(n,p) = (G)r,

we will fix r and look for a threshold probability function for the above prop-
erty.

Intuitively, the threshold should be determined by the requirement that for
each subgraph H of G, the number of copies of H in the random graph G(n, p)
is of the order of the magnitude of n. Let us explain the reason behind thig
heuristic. The copies of G contained in G(n, p) are fairly uniformly distributed
and so, when the number of copies of G is much smaller than n, most of these
copies are almost disjoint (see Section 3.5). Thus, it seems plausible that one
can color the vertices of G(n,p), even with just two colors, and not create a
monochromatic copy of G. On the other hand, if a vertex of G(n, p) belongs
on average to many copies of G, then coloring all vertices of G(n,p) one by
one we may expect that sooner or later we will put ourselves in a position in
which coloring a new vertex inevitably leads to a monochromatic copy of G.

As for every three graphs H C G, and F, the property F — (G)} implies
F — (H)L, the same heuristic applies to every subgraph H of G. Note now
that for each H C G,

E(Xg) = O(n""p™) = @(n(npe"/(”"_l))”"_l). (7.17)

Hence, we anticipate that the threshold for the property G(n,p) — (G)X
should be of the form n—1/m"(&) where, let us recall, for a graph G with at
least two vertices,

mM(G) = max °H__
HCG,vu>2 vg — 1

Note that, not surprisingly, the same function appeared in Theorem 4.9 as
the threshold function for the property Fg(g) that all but at most en vertices
of G(n,p) can be covered by vertex disjoint copies of G.

Theorem 7.19. For every integer r, r > 2, and for every graph G which
contains at least one edge and, if r = 2, satisfies A(G) > 2, there exist
positive constants ¢ and C such that

0 ifp<ent/mV©),

. 1 _.
nlLIEoP(G("’p) = (@)r) = {1 if p> Cn~YmP (@),

Remark 7.20. Note that the number of colors r does not appear in the
exponent of the threshold function, but is hidden in the constants.
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Remark 7.21. The case in which G is a matching and r = 2 is somewhat
different. One can show using the second moment method (Exercise!) that
if pn = ¢ > 1 then a.a.s. G(n,p) contains at least loglogn vertex disjoint
cycles of odd length and thus a.a.s. G(n,p) = (G)i. However, if np = ¢ and
0 < ¢ < 1, then one can use the method of moments (see Section 6.1) to show
that the number of odd cycles converges in distribution to Poisson distribution
Po(A) for some positive constant A = A(c) (Exercise!). Furthermore, in this
case a.a.s. G(n,p) consists of trees and unicyclic components (Theorem 5.5),
and for such a graph F and a matching G we have F' — (G)} if and only if F
contains at least 2e(G) — 1 odd cycles (Exercise!). Thus,

lim P(G(n,p) - (G)z) = a(c),

where

0<a(c) = Z e < 1.
i=2¢(G)-1

Hence, in order to have a.a.s. G(n,p) 4 (G)}, we need p K n~1.

Remark 7.22. It is tempting to conjecture that for given G and r the two
constants ¢ and C can be chosen arbitrarily close to each other, that is, there
is a single constant C such that we can take c = C —¢ and C = C + ¢ for
every € > 0. There is at present not much hope, however, to determine or
even show the existence of such a C. As we mentioned in the previous section,
this problem remains open even in the simplest case G = K.

A partial result has recently been obtained by Friedgut and Krivelevich
(2000), who proved that if G is strictly K;-balanced, then the threshold is
sharp in the sense defined in Section 1.6; in this case it means that there
exists such a C = C(n) = ©(1), which, however, possibly depends on n.

Proof of Theorem 7.19. Suppose that G(n,p) # (G)!. Then the largest color
class of any coloring with no monochromatic G spans a G-free subgraph of size
at least n/r. The probability that this happens is, by Theorem 3.9, smaller
than
2" P(G(n/r,p) 7 G) < 2" exp{—cc®c(n/r,p)},

where ®¢(n,p) = min{E Xy : H C G, ey > 1} and the constant cg depends
on G only. It follows from (7.17) that for p > Cn=™" (%) we have &¢(n, p) >
C'n, where C' grows to infinity as a function of C, so that the probability of
G(n,p) # (G)}! tends to 0 for C sufficiently large.

For the proof of the O-statement of Theorem 7.19 we assume that p <
en~1/m(G) where c is a sufficiently small positive constant. The reader can
easily check that if m{)(G) = 1, that is, if G is a forest with at least one edge,
then Theorem 5.5 implies that the assertion holds whenever ¢ < 1 (Exercise!).
Thus, without loss of generality we may assume that vg > 3 and that for
every proper subgraph H of G with at least two vertices

€H €G
vg — 1 < vGg — 1’
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that is, G is strictly K,-balanced (see Section 3.2). (If this was not the case,
one could replace G with its smallest subgraph H for which ey /(vy — 1) =
m1)(G).) This assumption implies that there are no isolated vertices in G
and that, for each proper subgraph H of G with at least two vertices,

n?"~lpfH = Q(nf) (7.18)

for some € > 0.

Our proof will consist of two parts: a deterministic one, where we show
that every graph F' with F — (G)} contains a dense subgraph of a special
type, and a probabilistic one, where we prove that a.a.s. such dense subgraphs
do not appear in G(n, p).

In order to show the first part of the statement we will need a number
of definitions. Let us recall that a hypergraph # is a pair (V,&), where V
denotes the set of vertices and £ is a family of subsets of V, called hyperedges.
A hypergraph H has chromatic number x(#) at least three if every 2-coloring
of vertices of H leads to at least one monochromatic hyperedge. We say that
‘H is 3-edge-critical if x(H) > 3 but the deletion of any hyperedge results in
losing this property. For graphs F and G, let H(F,G) be the hypergraph
with vertex set V(F'), whose hyperedges are the vertex sets of all copies of G
contained in F'. Note that for each hyperedge A of H(F,G), we have |A| = vg.
We denote by G(A) a copy of G in F which corresponds to the hyperedge A of
H(F,G), and by G(Ho) the graph |J 4¢,, G(A), where H; is a subhypergraph
of H. Note that F — (G)} if and only if the chromatic number of H(F',G) is at
least three. Furthermore, we may assume that H(F,G) is 3-edge-critical, since
otherwise we could replace H(F,G) with a 3-edge-critical subgraph, ignoring
some copies of G in F. In our further considerations we will use the following
result about 3-edge-critical hypergraphs, the simple proof of which is left to
the reader (Exercise!).

Proposition 7.23. If H is a 3-edge-critical hypergraph, then for every hy-
peredge A of H and every vertex v € A there is a hyperedge A’ such that
ANA' = {v}. |

A linear path (A,,...,A) is a hypergraph with hyperedges A,,..., Ay,
¢ > 1, such that
1 ifj=ix1,

|4; N A;| = .
0 otherwise.

A linear [quasi-linear] cycle (Ao, A1, ..., Ag) is a hypergraph which consists
of a linear path (A4;,..., A), £ > 2, and a hyperedge Ag such that

1 ifi =1,
|[Ao N A4;] =<0 fori=2,...,0—1,
S ifi=¢,
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where s = 1 [s > 1], respectively). A cycle which is quasi-linear but not linear
we will call spoiled.

Let P be the longest linear path in % = H(F,G). By Proposition 7.23, P
contains at least two hyperedges. Let z and y be two vertices which belong
only to the first hyperedge of P, and let A; and A, be two hyperedges of
‘H (which, of course, correspond to two copies of G contained in F) whose
existence is guaranteed by Proposition 7.23, that is, A. N A, = {2}, z = z,y.

By the maximality of P, [V(P)N A;| > 2, 2 =z,y. Let i, = min{s > 2.
A:NA; # 0}, z = z,y, and assume that, say, i, < i;. The hyperedges
Ay,...,A;,, A; form a quasi-linear cycle C, which is linear if and only if |A; N
A;,| = 1. Otherwise C is spoiled. We also have |4, N V(C)| > 2. Moreover,
there is an edge in G(A,) which does not belong to G(C). Indeed, as 6(G) > 1,
take any edge of G(A,) incident to y. We call the pair (C, Ay) a cycle with
handle. So, we have just proved a deterministic statement that if F' = (G)}
then the hypergraph H(F, G) contains a quasi-linear cycle with handle.

Now we will show that a.a.s. no such structure does exist in H(G(n, p), G).
Let X, Y and Z be random variables counting, respectively, linear paths
of length at least Blogn, spoiled cycles C = (Ag,...,A:), and linear cycles
with handles (C, A) of length less than Blogn + 1, in the random hypergraph
H(G(n,p),G), where B = B(c,G) is a big enough constant. Straightforward
estimates show that their expectations all converge to 0 as n — oo. Indeed,

E(X)< Y nftoVtpro <pn 30 (o) = o(1),

t>Blogn' t>Blogn
E(Y) < Z Z nt(vc-l)—(vy—l)ptec—ey — 0(1)
t>2 HCG
and
Blogn
]E(Z) =0 ( Z Z n(t+1)(vc—1)—(vy-—l)(logn)va(t+1)ec-—eH) — 0(1)’
t=3 HCG

where the inner sums extend over all proper subgraphs H of G with at least
two vertices and correspond, in case of Y, to all possible shapes of the in-
tersection G(Ap) N G(A:) and, in the case of Z, to all possible shapes of the
intersection G(A) N G(C). The index ¢ stands for the number of hyperedges
in a path or cycle. The logarithmic factor in the last estimate represents the
number of choices of the vertices at which the handle A is attached to the
cycle. Finally, we made use of formula (7.18).

Thus, by Markov’s inequality, P(X =Y = Z = 0) = 1 as n — oo, which
completes the proof of Theorem 7.19. |



Extremal and Ramsey
Properties

As the reader has undoubtedly noticed, statements of many results in this
book could well begin with the phrase: “Let G be a fixed graph and let
G(n,p) be the random graph such that p(n) = ...”. Let us recall that in
Section 3.1 we studied the probability that G(n,p) contains a copy of G for
different values of p = p(n), while in Section 3.3 and Chapter 6 the asymptotic
behavior of the random variable X which counts copies of G in G(n, p) was
thoroughly analyzed. In Section 3.4 we dealt with the property that every ver-
tex of G(n,p) belongs to a copy of G and in Section 4.2 a connection between
this property and the property that G(n,p) has a G-factor was considered.
Finally, in Section 7.6, by estimating the order of the largest G-free subset of
V(G(n,p)), we proved that n=1/™"(G) is the threshold for the property that
every coloring of the vertices of G(n, p) with a fixed number of colors leads to
a monochromatic copy of G.

In this chapter we investigate further variations of this familiar theme which
are the edge versions of the questions from Section 7.6. Specifically, we will
study the size of the largest subgraph of G(n, p) that contains no copy of G and
look for the threshold function p = p(n) which guarantees that each coloring
of the edges of G(n,p) with a fixed number of colors creates a monochromatic
copy of G.

It turns out that dealing with edges rather than vertices makes the above
two problems much different from their vertex counterparts. This is apparent
already when G = K;. From the proof of Theorem 4.9 it follows that if
n2p® = oo then a.a.s. every induced subgraph of G(n,p) of order en contains
a triangle, while, on the other hand, it is very well known that every graph
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contains a triangle-free subgraph with at least half of the edges. Thus, before
we proceed any further, we will examine some heuristics leading to the main
results of this chapter.

8.1 HEURISTICS AND RESULTS

An edge partition problem

Following the Erdés-Rado arrow notation, for two graphs F' and G and a
natural number r, r > 2, we write F — (G)? if every coloring of the edges
of F with r colors creates a monochromatic copy of G. Since in the whole
chapter we always color the edges, not vertices, we will omit the superscript 2,
writing just F — (G),. Our first goal is to determine for what p = p(n) a
random graph has the Ramsey property G(n,p) — (G)-.

Let us notice that for given G and r the property F — (G), is increasing,
so it has a threshold function (Theorem 1.24). In the vertex case the threshold
was determined by the requirement that the number of copies of G should be
of the order of n, the number of vertices in G(n, p). When coloring the edges
we are facing a similar situation. If the number of copies of G is much smaller
than the number of edges of G(n, p), most copies of G are edge disjoint, and
the edges can be colored so that no copy of G is monochromatic. Although this
fact is hardly surprising, its proof is rather tedious. It is similar to but more
involved than the proof of the 0-statement of Theorem 7.19 in Section 7.6.
Copies of G may locally cluster together and a substantial amount of work is
needed to show that a proper coloring does exist (Rodl and Ruciriski 1993).
On the other hand, if the number of copies of G is much larger than the number
of edges, one may expect that they are so uniformly distributed around the
graph that each coloring leads to many monochromatic copies of G. The
quantities Xg and Xk, are of the same order of magnitude when, setting as
usual vg = |V(G)| and e¢ = |E(G)|,

n'?pe = O(n’p).

But the property F' — (G), is hereditary with respect to taking subgraphs
of G and, just as in studying the containment problem in Chapter 3 or the
vertex coloring problem in Section 7.6, one has to consider all (non-empty)
subgraphs of G, which leads to the condition

. v(G) pe(G)Y — ©(n2
aga’,’ﬁ%»om P~} (n"p),

or, using the notation of Chapter 3, &8¢ = ©(n?p).
Hence, the threshold function for the property G(n,p) — (G), should be

p =p(n) = n~1/m?(G) where m?)(G) was defined in (3.18).
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Fig. 8.1 A sunshine graph.

The following result proved by Rodl and Ruciriski (1995) states that this
is indeed the case, except for star forests (i.e., forests where every component
is a star). Recall that P is the path with 3 edges.

Theorem 8.1. Let r > 2, and let G be a graph with at least one edge.

(i) If G is a star forest, then the threshold function for G(n,p) — (G), is
n—1-1/((A(G)~1)r+1)

(ii) If r =2 and G is a forest consisting of stars and P3’s, with at least one
P;, then there exists a constant C such that

) 1o, ifpx n~-1/m®(G) = 1/n,
A B(Gln,p) = (G)s) = {1, if p> Cn=1/m®© = C/n,
(iii) In every other case, there exist constants ¢ = ¢(G,r) and C = C(G,r)
such that

. 0, ifp<en-i/m?©G)
nll’n;o.IP(G(n,p) — (G)r) = {1’ z;;) ; Cn_l/m(z)(G).
Proof of (i) and (i1). Case (i), a star forest, is easy. If, for example, G is
a single star K i, then F — (G), for every F with A(F) > (k- 1)r +1,
while F' A (G), if F is a forest with smaller A(F) (Exercise!). It then follows
that the threshold for G(n,p) — (G), coincides with the threshold for the
existence of a K (x_1)r4+1 given by Theorem 3.4. Note that by Theorem 3.19,
this is a coarse threshold which cannot be tightened as in Cases (ii) or (iii).
For (ii), the other special case, assume for simplicity that G = P3;. As was
first observed by Friedgut (personal communication), the O-statement in (ii)
cannot be improved as in (iii), since F — (P;), if F is the sunshine graph
in Figure 8.1 (or any other graph obtained by adding pendant edges at every
vertex of an odd cycle of length at least 5). This observation also yields the
1-statement in (ii), with C = 1.35, the solution of C(1 —e~¢) = 1 (Advanced
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Exercise!). The 0-statement follows because G(n,p) is, for p € 1/n, a.a.5. 5
forest (see Section 5.1), and if F is a forest then F' 4 (P;); (Exercise!). n

An extended outline of the proof of the 1-statement in (iii), which utilizeg
the Szemerédi Regularity Lemma, will be presented in Section 8.4. The special
case G = K3 was first proved for an arbitrary number of colors in Rédl and
Ruciniski (1994). For the proof of the 0-statement, see Luczak, Rucinski and
Voigt (1992) and R&dl and Ruciniski (1993).

Remark 8.2. Note the different types of dependency on r for the different
cases. If G is a star forest, then the threshold function is a power of n where
the power depends on r. For other G, the rate does not depend on r, which
affects the result only through the constants ¢(G,r) and-C(G,r); if G is as in
(ii), we have a coarser type of threshold for r = 2 than for r > 3.

Note also that in Case (iii) we necessarily have C(G,r) = o0 as r — oo.
In fact, with 3r colors arranged in r groups of three colors each, let p =
(G, 3)rn=1/ m®(G) and assign randomly one of the color groups to each edge
of G(n,p). This exhibits G(n,p) as the union of r disjoint copies of G(n, p/r),
each of which a.a.s. can be properly colored with the three corresponding
colors; hence a.a.s. G(n,p) /A (G)sr, and thus C(G,3r) > ¢(G,3)r. (We do
not know the true order of growth of C(G,r); the upper bound given by the
proof is enormous.)

Remark 8.3. Just as for the vertex case in Theorem 7.19, it is tempting
to conjecture that in Case (iii), for given G and r there is a single constant
C = C(G,r) such that we can take c = C —¢ and C = C + ¢ for every € > 0.
A proof of this statement seems difficult even for the simplest choices of G and
r. A partial result has recently been obtained by Friedgut and Krivelevich
(2000), who proved that if r = 2 and G is a tree other than a star or Ps, then
the threshold is sharp, in the sense defined in Section 1.6, which means that
there exists such a quantity C = C(n), which, however, possibly depends on

n.

A Turan-type problem

Another problem which continues to stimulate research in the theory of ran-
dom graphs has the flavor of extremal graph theory, rather than Ramsey the-
ory. Instead of partitioning the edges of G(n,p) into several classes, one tries
here to determine the minimum size of a subgraph of G(n, p) which guarantees
the containment of a copy of G. This problem, unlike the partition problem,
in general remains open.

Let us introduce some notation. For two graphs F' and G, we denote by
ex(F, G) the number of edges in the largest subgraph of F' containing no copy
of G and set €X(F,G) for the fraction of the number of edges of F' in such a
subgraph, that is,

ex(F,G) =max{ey :GZ HC F}
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and
eX(F,G) = ex(F,G)/er.
When er = 0, we define eX(F,G) = 1 for every G.

The function ex(K,,G) has been studied extensively in extremal graph
theory (see Bollobés’s (1978) monograph). A celebrated result of Erdés, Stone
and Simonovits (Erdés and Stone 1946, Erdés and Simonovits 1966) states
that for each G with at least one edge

ex(Kn,G) = (1 _ WJ;——T + 0(1)) (g) 1(8.1)

or, equivalently, lim, o €X(K,, G) = ﬁ-g{—f— Thus, the asymptotic behavior
of &X(Kn, G) depends exclusively on the chromatic number x(G) of the graph
G.

If F # K,, the function €X(F, G) is much harder to study. Obviously, one
always has eX(F,G) < 1, and equality holds if and only if G € F (unless F
and G are both empty). Is it true that for a given graph G -one can make
€xX(F, G) arbitrarily small by a suitable choice of F? As was already noticed,
this is not the case when G = K3, since for every graph F' we have &%(F, K3) >
1/2. In general, an easy probabilistic argument (Exercise!) yields ex(F,G) >
lim,, o €X(Kn, G), provided x(G) > 3. This asymptotic inequality turns out
to be exact and holds for bipartite graphs too.

Proposition 8.4. For every graph F on n vertices and for every graph G,
&X(F,G) > &%(Kn, G).

Proof. Let F' be any graph with the vertex set [n] and let H denote a graph
on [n] such that G € H and ey = ex(Kn,G). For a given permutation
o : [n] = [n] let H(o) be the graph obtained from H by relabelling the
vertices according to o and let F(c) = F N H(o). Finally, let 672" be a
random permutation of [n]. The expected number of edges in F'(c7*9) is

cren/(3) = er extiin 6)/ () = exex(kn,G).

so there exists a permutation ¢ such that e(F(oo)) > erpeX(Kn,G). Fur-
thermore F(op), as a subgraph of H(op), contains no copy of G. Thus
ex(F,G) > €x(K,,G) and the assertion follows. [

Corollary 8.5. For every graph G and all m < n, we have €X(Kp,,G) >
ex(Kn, G).

Proof. Apply Proposition 8.4 with F' being the union of a complete graph K,
and n — m isolated vertices. |

Proposition 8.4 suggests that the right “Turdn-type” question to ask about
random graphs is the following: For which functions p = p(n) do we have

&X(G(n, ), G) = (1 + 0p(1)) EX(Kn, G)? (8.2)
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It will follow from the next result that if (8.2) holds for some p;, then it doeg
so for each p; > p;. In this result we technically assume that G(n,p;) and
G(n, p2) are related in the natural way, which is to say that they are two stages
of the same random graph process {G(n, t)}; (just as, e.g., when applying the
two-round-exposure technique).

Proposition 8.6. Let G be a graph with A(G) > 2, and let py = p1(n) and
p2 = p2(n) be such that p, < py. Then

eX(G(n,p1),G) > (1 + 0,(1)) eX(G(n, p2), G).

Proof. We will actually prove the corresponding statement for the uniform
model G(n, M): If A(G) > 2 and My = M (n) < Mz(n) = M., then

eX(G(n, M,),G) > (1 + 0,(1)) &X(G(n, M2), G). (8.3)

The proposition follows by conditioning on the number of edges in both
G(n,p1) and G(n, p2).

Again, we regard G(n, M) and G(n, M3 ) as two stages of the same random
graph process {G(n, M)} . In particular, we may view G(n, M;) as a graph
obtained from G(n, M;) by a random deletion of M; — M; edges. In order to
show (8.3), we consider three cases which, together with the subsubsequence
principle, yield the general result.

(i) M, ex(G(n, M), G) = oo.

Let H be a maximal G-free subgraph of G(n, M, ), and let H' = HNG(n, M,).
Then, clearly, ex(G(n, M;1),G) > e(H') and we need to estimate e(H'). Note
that e(H') has a hypergeometric distribution with mean

]_w_le(H) = Ml ﬁ(G(n, M2), G)a
M,

which, by assumption, tends to infinity. Thus, a standard application of
Chebyshev’s inequality yields

e(H') = (1 + 0,(1)) M, X(G(n, M>), G),

as required.

(ii) M1 &x(G(n, M2),G) < C for some C > 0, but M; — oo.

As M, — 00, a.a.s. one can find more than C disjoint edges in G(n, M, ), and
thus ex(G(n, M1),G) > C > M, eX(G(n, M), G).

(iii) My is bounded.

In this case a.a.s. 8X(G(n, M), G) = 1 (Exercise!) and (8.3) holds trivially. W

Remark 8.7. If A(G) = 1, in which case G is a disjoint union of edges and,
possibly, isolated vertices, the result remains true provided p, > n~!=°()
(Exercise!). However, there are counterexamples with smaller p; and p,. For
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instance, the assertion is false if G = 2K5, p; = an=3/2 with 1 < a < 2 and
p2 = 2n~3/2 (Exercise!).

Remark 8.8. By almost the same argument it follows that if F(1), F() s
a sequence of graphs with v(F'™) = oo, A(G) > 2, p1 = p1(n) < p2(n) = p,

and, furthermore, ex(Fo™”,G) B oo, then

&(Fy,G) > (1+ 0p() &X(FSY, G),
where F,S") is the reliability network created by randomly destroying edges of
F) independently, with probability 1 — p (Exercise!).

Proposition 8.6 suggests that, for a fixed a satisfying lim,_, o eX(Kp, G) <
a < 1, the property that

X(G(n,p),G) <a, (8.4)

although not monotone, behaves very much like a monotone one, and we may
hope to find a threshold function for it.

A necessary condition for (8.4) is not hard to determine. Note that for any
two graphs F and G we have '

ex(F,G) > ep — #{G C F},

where #{G C F} is the number of copies of G contained in F', and that
Property (8.4) is hereditary with respect to taking subgraphs of G. Thus,
if for some p = p(n) a.a.s. eX(G(n,p),G) < a, where a < 1, then, just as
for the partition problem, the number of copies of each subgraph G’ of G in
G(n, p) should be comparable with the number of edges of G(n,p). Hence,
p=n"t m®(G) is, again, our guess for the threshold. The reader is invited
to compute the expectation and variance of appropriate random variables,
making the above argument rigorous, and thus proving the following fact
(Exercise!).

Proposition 8.9. For every graph G with A(G) > 2 and for every0 < a < 1,
there exists a constant ¢ = ¢(G,a) such that a.a.s.

ex(G(n,p),G) 2 q,

provided p = p(n) < cn~V/m®(G), [

Remark 8.10. In the rather uninteresting case in which A(G) = 1, and thus
m(®(G) = 1/2, one should instead assume that pn? — 0 or, otherwise, slightly
modify the assertion (Exercise!).

It is natural to conjecture that if the number of copies of G (or, more pre-
cisely, the number of copies of the subgraph of G most infrequent in G(n, p))
is much larger than the number of edges of G(n, p), the value of X(G(n, p), G)
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approaches 8X(K,,, G) (because of Proposition 8.4 it cannot drop any further),
More formally, one may expect that the following is true.

Conjecture 8.11. For every graph G with A(G) > 2 and for every n > 0,
there exists C = C(G,n) such that a.a.s.

exX(G(n,p),G) < (1 +n)eX(Kn,G)

whenever p = p(n) > Cn~V/m?(©),

Unfortunately, at this moment we are able to verify this conjecture only
for some special cases of G. In Section 8.2 we show its truth for G = K3 and
present an elementary proof of Frankl and Rédl (1986). An alternative proof
for triangles is given in Section 8.5. It relies on-a modified (sparse) version of
the Szemerédi Regularity Lemma and on the observation that Conjecture 8.11
follows from a stronger one, Conjecture 8.35, stating a better-than-exponential
upper bound on the probability of nonexistence of copies of G in a special
model of a random graph. Conjecture 8.35 (or its weaker version, sufficient
for the proof of Conjecture 8.11) is settled in the affirmative for G being
an arbitrary cycle (Haxell, Kohayakawa and Luczak 1995, Kreuter 1997, Ko-
hayakawa, Kreuter and Steger 1998), or the complete graph K4 (Kohayakawa,
Luczak and Ro6dl 1997). Thus, at least in these cases, Conjecture 8.11 holds.
Yet another approach, which verifies Conjecture 8.11 for odd cycles, is pre-
sented by Haxell, Kohayakawa and Luczak (1996).

Let us make a few comments on the connections between Conjecture 8.11
and Theorem 8.1. Note first that if G is bipartite, then, according to the
Erdds—Stone-Simonovits result (8.1), we have €X(K,,G) = o(1) and so Con-
jecture 8.11, if true, would imply the 1-statement of Theorem 8.1. However, if
X(G) > 3, neither statement can be deduced from the other one, although, in
a way, they both reflect the fact that in dense random graphs copies of G are
distributed nearly as uniformly as they are in the complete graphs. The only
case in which the partition and extremal properties get close to each other
is that of G = K3 and r = 2. This fact is utilized in the proof presented in
Section 8.2.

Note also that Conjecture 8.11 and Proposition 8.9 would imply that the
threshold function for the property €X(F,G) < a is not very much affected by
the choice of a as long as lim,_, o €X(K,,G) < a < 1.

We close this introductory section with a brief account of further develop-
ments in the theory of partition and extremal properties of random structures.
Some partial results for nonsymmetric Ramsey properties of random graphs
were obtained by Kohayakawa and Kreuter (1997). A first step into the un-.
explored area of partition properties of random hypergraphs was taken in
R6d]l and Ruciriski (1998). A few results on partition and extremal prop-
erties of random subsets of integers have appeared in R6dl and Rucinski
(1995, 1997), Graham, R6dl and Rucinski (1996), and Kohayakawa, Luczak
and Rodl (1996).
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8.2 TRIANGLES: THE FIRST APPROACH

Counting monochromatic triangles

The goal of this section is to present an elementary proof of Conjecture 8.11
when G = Ks. It will follow from a strengthening of the l-statement of
Theorem 8.1 for G = K3 and r = 2. The strengthening claims not one
but many monochromatic triangles in every two-coloring of G(n,p). There
are so many that there is not enough room for them in any color class with
fewer than (3 —7)(3)p edges. Only slightly weaker versions of this particular
result were proved by Frankl and Rédl (1986) and Luczak, Rucinski and Voigt
(1992). The proof is based on a beautiful and simple idea of Goodman (1959),
who applied it to bound the total number of triangles in a graph and its
complement.

To fully appreciate this idea we begin by considering the deterministic
case of two-colorings of the edges of the complete graph K,, or equivalently,
the random graph G(n,p) with p = 1. Thus, let us first ask, how many
monochromatic triangles are guaranteed if one colors the edges of K,, with
two colors, blue and red. _

A trivial upper bound of (%) is provided by the probabilistic method
(Exercise!). Surprisingly, this is asymptotically the right answer. For a given
coloring and each v = 1,2,...,n, let b, [r,] be the number of blue [red] edges
incident with the vertex v. Then the total number of two-colored triangles is

1 & 1« 0
§;bvrv= §Zb,,(n—l—b,,)gn(n—1) /8.

v=1

This implies Mantel’s theorem (i.e., Turdn’s theorem for triangles - see, e.g.,
Bollob4s (1998)). Indeed, let H be a graph with n vertices and ey > n?/4.
Let us suppose that there is no triangle in H and count the ordered pairs
(e,t), where e is an edge of H and t is a triple of vertices containing e. On the
one hand, the number of such pairs is precisely eg(n —2). On the other hand,
denoting by t;, ¢ = 1,2, the number of triples of vertices containing ¢ edges of
H, there are t; + 2ty < 2(t; + t2) such pairs. By the above upper bound on
the number of two-colored triangles, treating the edges of H as those colored
blue, we have

(n?/4+3/4)(n—2) < em(n —2) < 2(t1 + t2) < 2n(n—1)*/8,

which is a contradiction for n > 4. Hence H contains a triangle.
After this deterministic rehearsal we should be ready to repeat the same
argument for the random graph G(n, p).

Theorem 8.12. For every € > 0 there exists a constant C = C(g) such that
if np? > C, then a.a.s. each two-coloring of the edges of G(n,p) results in at
least (1/4 — €)(3)p® monochromatic triangles.
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The probabilistic part of the proof is contained in the following technica]
lemma, the proof of which is left to the reader. (Exercise! — The only tools
needed are Chebyshev’s and Chernoff’s inequalities.) Let T denote the number
of triangles in G(n, p), d, = deg(v) stand for the degree of vertex v, and N,
(also known as N(v)) be the neighborhood of v. Finally, for a vertex set A,
let e(A) be the number of edges induced in G(n, p) by A.

Lemma 8.13. Suppose that np® = Q(1). Then
@) 1T = (3)P%| = 0p(n®p®);
(i) maxi<v<n |dy — (n — 1)p| = 0p(np);

(iii) maxi<o<n e(Ny) — (3)pl = 0p(n?p?).

(iv) Moreover, for every e > 0 there exists C' = C'(g) such that if np?> > C’,
then a.a.s. for every v = 1,2,...,n and for each A C N,, e(4) >

(I:;I)p _ sn2p3. n

Proof of Theorem 8.12. For a given blue-red coloring of the edges of G(n, p),
let B, [R,] be the set of vertices adjacent to v by edges colored blue [red],
and let z, be the number of edges joining those pairs of neighbors of v which
are adjacent to v by edges of different colors, that is,

zy = e(By, Ry) = e(Ny) — e(By) — e(Ry).

Then, similarly to the deterministic case, there are precisely %Zv 2y two-
colored triangles. Recalling our previous notation b, = |B,| and r, = |R,|,
and using Lemma 8.13(iii, iv) with £ /7, we find that the number of two-colored
triangles is bounded from above by

1 d b r 2
52, [(;)p— (2")?— (;)p+ -en’p’ + 0p(n*p’)
v
D 1 33 3.3
v

provided np? > C’(g/7), where C'(¢/7) comes from Lemma 8.13(iv).

Since by Lemma 8.13(ii), b, + 7, = dy = np+ 0p(np) for each v, uniformly,
we find 3, byry < 3n3p® + 0p(n®p?). This, together with Lemma 8.13(i)
yields Theorem 8.12 with C(e) = C'(g/7). o

A Turan-type theorem for random graphs

As a consequence of Theorem 8.12, we will now derive a special case of Con-
jecture 8.11. It can be viewed as Mantel’s theorem for random graphs.
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Theorem 8.14. For every n > 0 there exists C = C(n) > 0 such that if

p > Cn~12, then a.as. every subgraph of G(n,p) with at least (1/2+n)(})p
edges contains a triangle.

Proof. In order to repeat almost literally the argument used in the determin-
istic case, we need to show first that most edges belong to nearly the expected
number of triangles. Let X;; be the number of vertices joined to both ver-
tices ¢ and j. Then X;; has the binomial distribution Bi(n — 2, p?) and the
expectation around np®. Let Z count the edges {i,j} of G(n,p) for which
Xij < (1 —¢&)np®, where € > 0 satisfies

3(1/2+n)(1 —€) > 3/2 + 2¢. (8.5)
We have

E(Z) = (g)pIP(Xm < (1-¢)np?) < (g)pe—eznpzﬁ

via the Chernoff inequality (2.6). If np? — oo, then E(Z) = o(n?p) and by
Markov’s inequality (1.3), Z = o0,(n2?p). Otherwise, it is quite straightforward
to show that E(Z(Z — 1)) ~ (E(Z))? and thus, by Chebyshev’s inequality
a.a.s5. Z < 2(721)1)6—(50)2/3. Thus, in either case, a.a.s.

Z<2 (’;) pe~(€C)*/3, (8.6)

Let us take C = C(e) as in Theorem 8.12, and so large that the addition

of the term —2e~(¢©)*/3 5 the leftmost brackets of (8.5) is negligible, in the
sense that the inequality

3(1/2+7n—2e"EC/3) (1 —¢) > 3/2 + 2 (8.7)

holds. Note that C depends on 7 through .

Suppose there exists a subgraph H of G(n, p) with ey > (1/2+n)(})p and
containing no triangle. We will show that this event implies either a violation
of (8.6) or a violation of the conclusion of Theorem 8.12, both events having
probability converging to 0. Indeed, assuming they are not violated, let us
count in two ways the ordered pairs (e,t) where e is an edge of H and ¢
is a triangle of G(n,p) containing e. On the one hand, there are at least
(1/2 41 — 2e=(cC)*/3) (3)p(1 — €)np? such pairs. On the other hand, viewing
the edges of H as the blue edges and the remaining edges of G(n, p) as the red
ones, we conclude by Theorem 8.12 that there are no more than 2(3 +¢)(3)p®
such pairs. This yields a contradiction to (8.7).

Remark 8.15. Let us note that the dependence of C on the parameter 7 in
Theorem 8.14 is genuine. In other words, it is not true that there exists an
absolute constant C such that for every n > 0 a.a.s. every subgraph H of
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G(n,Cn~1/?) with at least (1/2+n)(})p edges contains a triangle. It follows
that, for G = K3, the equation (8.2) holds if and only if p > n~1/2,

To find a counterexample, set V; = {1,2,...,n/2}, n even, and V5 =
{n/2+1,...,n}, and fix C > 0. It can be proved routinely by the second
moment method that, for sufficiently small n = 5(C), a.a.s. there are at least
3n (’z‘)p edges with both endpoints in V; and with no common neighbor in V.
Moreover, it is well known that at least one half of these edges form a bipartite
graph. The union of this bipartite graph and the bipartite graph spanned in
G(n,p) between V1 and V; contains no triangle and has at least (1/2+47)(})p
edges (Exercise!).

8.3 THE SZEMEREDI REGULARITY LEMMA

The Szemerédi Regularity Lemma states that, roughly speaking, for every
large graph there exists a partition of its vertex set into a small number of
almost equal subsets, such that in most of the bipartite graphs induced by
pairs of these subsets, the edges are, in a way, “uniformly” distributed. The
Lemma was introduced as an important step in the proof of Szemerédi’s cel-
ebrated density theorem (Szemerédi 1975) and soon after the graph theorists
realized that the presence of such “uniform”, or, as we will call them later,
“regular” partitions could greatly simplify many existing proofs and lead to
solutions of many open problems in graph theory. Nowadays the Szemerédi
Regularity Lemma is one of the most powerful tools of modern graph theory
(see, e.g., Bollobéas (1998), Diestel (1996), Komlés and Simonovits (1996)), as
well as of the theory of random structures. That is why we devote a whole
section to various versions of this important (but purely deterministic) result.

Regular pairs and partitions

In order to state the Szemerédi Regularity Lemma in a mathematically rig-
orous way we need a few definitions. Throughout, H is a graph with vertex
set V(H) and edge set E(H) and 0 < s < 1 is a real number which will
be called the scaling factor. The role played by s will soon become clear;
here we only mention that the two most prominent cases are s = 1 and
s = p(H) = ey /("¥). For two disjoint subsets U,W C V(H) the (s; H)-
density ds (U, W) is defined as

_€H (an)
A0 = o
where ey (U, W) counts the edges of H joining U and W. For 0 <& < 1, we
say that two disjoint subsets U,W C V(H) form an (s; H,¢)-regular pair if
for every pair of their subsets U’ C U, W' C W, such that [U’| > €|U| and
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|[W'| > e|W|, we have
|d31H(UIa WI) - ds,H(Ua W)l S €,

that is, the (s; H)-density of any pair of large subsets of the pair (U, W) does
not deviate much from the (s; H)-density of (U, W).

Furthermore, let II = (Vp, V,..., V%) be a partition of V(H). We say that
this partition is (s; H, €, k)-regular if |Vi| = |Vo| = -+ = |Vi|, Vo] < €vp, and
for all except at most 6(’2‘) choices of the indices 1 <€ 7 < j < k, the pairs
(V;i,V;) are (s; H,¢e)-regular. Note the special status of Vp, which, for that
reason, will be called the ezceptional class of the (s; H,¢e, k)-regular partition
(Vo,V1,...,Vk). We say that a partition (Wo, W1, ..., Wi) is a subpartition
of a partition (Vp,Vi,...,V;) if for every 1 < ¢ < k' there exists 1 < j; < k
such that W; C V},.

Clearly, every graph H on n vertices admits an (s; H,¢, 1)-regular parti-
tion and an (s; H, e, n)-regular partition. In applications, however, one rather
needs an (s; H;¢, k)-regular partition for some k¥ which is bounded from be-
low and from above by some constants m and M. The Szemerédi Regularity
Lemma provides the existence of such a partition, with M depending on ¢
and m only.

The classic case

Let us start with the important case s = 1. It was considered by Szemerédi
(1978) and later in most applications of his result. To simplify the notation,
we drop the index s, when s = 1, using terms like pair density dg (U, W),
(H,e,k)-regular partitions, and so forth. Then, the Szemerédi Regularity -
Lemma can be stated as follows.

Lemma 8.16. For every € > 0 and a natural number m there exists M =
M (e, m) such that every graph H on at least m vertices admits an (H,¢,k)-
regular partition for some k, where m <k < M.

The idea of the proof. It is remarkable that the proof of so deep and insightful
a result is based on a very simple idea. Let Iy = (V4,..., Vi) be any partition
of the set of vertices of a graph H, where |V;| = --- = |V&|. Associate with
II; a real number ind I, called the index of I, setting

E ok
ind I = %Z > (@u (Vi Vy)).
i=1 j=i+1
Note that since the density of a pair of sets is not greater than one, the index
of any partition is bounded by a half.
Now, let I}, = (W),..., W) be a subpartition of Ilx into k' > k equal
parts. Then, clearly, for every 1 <i < j < k, we have

k2
dy(Vi,V;) = —— dg(Ws, Wa).
W) = G 3 duli 9
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Thus, the Cauchy-Schwarz inequality gives

du(Vi, V;))? _(k) DD (du(Wy, W) (8.8)

W! Cv Wu - V
and, consequently,
indII}, —ind I >0, (8.9)

where equality holds in (8.8) (and thus in (8.9)) if and only if all terms on the
right-hand side of (8.8) are equal.

Suppose that the partition Il is not (H,¢e, k)-regular. Then a substantial
fraction of the pairs (V;, V;) are not (H,e¢)-regular, and one can pick a sub-
partition II;, so that for each such pair the densities on the right-hand side
of (8.8) differ significantly from each other. The key observation in the proof
of Lemma 8.16 is that these differences force the index to increase. More pre-
cisely, the following holds. If & is large enough and Il is not (H, ¢, k)-regular,
then there exists a subpartition I}, of Il such that &’ is bounded from above
by a function of k¥ and the difference ind II}, — ind Il is bounded from below
by some positive constant which depends only on £ but not on k.

From this statement the lemma follows almost immediately. We begin with
any partition Iz, of V(H) into ko > m equal parts. If Il is not (H,¢, ko)-
regular, a new partition I, is constructed in such a way that its index is
substantially larger than indIIz,. We continue this way until an (H,¢, k)-
regular partition is found for some k. Since for every r > 1 the difference
ind Iz, —ind IIx__, is bounded from below by a constant which depends only
on £ and, on the other hand, the index of every partition is bounded from
above by a half, the procedure is guaranteed to end after at most a number
of steps, which depends on £ and m only.

Although it is quite easy to believe that this argument works, its detailed
proof is rather tedious and must take care of several technicalities. For ex-
ample, one needs to use a special form of the Cauchy-Schwarz inequality to
control the growth of ind ITx —ind II},. Furthermore, in the description above
we tacitly assumed that k always divides both k¥’ and n, whereas in the origi-
nal proof of Lemma 8.16 this problem is solved by introducing the exceptional
class which, for the sake of simplicity of presentation, does not appear in our
outline. We omit the details, referring the reader to Szemerédi (1978), Diestel
(1996), or Bollobés (1998). u

The argument above can be easily modified to obtain stronger versions of
Lemma 8.16. In particular, if Hy,...,H, are graphs on the same vertex set
V, then one can mimic the proof with ind Il replaced by

indII = T2r ZZ Z (du,(Vi, V3))?,

=1 i=1 j=i+1
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and find a partition which is (H,,¢, k)-regular simultaneously for each £ =
1,...,r. Thus, we arrive at the following strengthening of Lemma 8.16.

Lemma 8.17. For all € > 0 and natural numbers m and r there exists
M = M(e,m,r) such that the following holds: For all graphs H,,...,H,
on the same set V of at least m vertices, there exists a partition of V' which
is (Hy,€, k)-regular for some k, m < k < M, and every £ =1,2,. .. |

Sparse regularity lemma

The Szemerédi Regularity Lemma has proved to be extremely useful in many
combinatorial investigations. We must point out, however, two drawbacks of
its applications. First, Szemerédi’s argument gives a very poor upper bound
on the value of M(g,m,£), which grows so quickly with ¢ — 0 that it is al-
most useless for any quantitative estimates. The other problem is that the
Szemerédi Regularity Lemma, as stated above, is meaningful only when one
deals with graphs of large density. For a graph H with n vertices and, say,
maximum degree at most /n, each partition of V(H) into k equal parts is
(H,¢,k)-regular, provided n is large enough. This is because the density of the
bipartite subgraph induced by any two sets of size (n) is O(1/y/n) = o(1)
and, therefore, does not measure effectively the distribution of the edges.
Nonetheless, as noticed independently by Kohayakawa (1997) and Ro6dl (per-
sonal communication), a simple generalization of the Szemerédi Regularity
Lemma will efficiently work for sparse graphs too. The key observation is
that the proof of Lemma 8.16 still works for the scaled densities d, g in-
stead of the ordinary densities dy, provided there exists a constant b such
that ds; g(X,Y) < b for all pairs of large sets X,Y. The constant b is an
upper bound for an appropriately scaled index function and guarantees that
the procedure of taking subpartitions terminates after a bounded number of
steps.

More precisely, for b > 1 and 8 > 0, call a graph H (s;b,3)-bounded if
for every pair of disjoint subsets U,W C V(H) with |U|,|W| > Bvy we have
ds(U,W) < b. Then, a “scaled” version of the Szemerédi Regularity Lemma
can be stated as follows.

Lemma 8.18. For alle > 0, b > 1 and natural numbers m and r there exist
B = B(e,b,m,r) >0 and M = M(g,b,m,r) such that the following holds:
For every choice of scaling factors si,...,sr, and (s¢;b,3)-bounded graphs
Hy, £ = 1,...,7, on the same set V of at least m vertices, there exists a
partition of V which is (sg; Hy, €, k)-regular for some k, m < k < M, and
every £=1,2,...,r. [ |

Besides the classic case of s; = 1, the other instance of Lemma 8.18 which
will be used in the forthcoming sections is the case in which s, = p(H¢) =
en,/("4¢). To simplify the notation in the latter case, we say that a graph H
is (b, ﬂ) bounded if it is (p(H); b, B)-bounded, a pair is sparsely (H,¢)-regular
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if it is (p(H); H,e)-regular, and a partition is sparsely (H, e, k)-regular if it ig
(o(H); H,e, k)-regular. Below we state this special version of Lemma 8.18.

Lemma 8.19. For alle > 0, b > 1 and natural numbers m and r there exist
B = B(e,b,m,r) >0 and M = M(e,b,m,r) such that the following holds: For
every choice of (b, B)-bounded graphs H,,...,H, on the same set V of at least
m vertices, there exists a partition of V. which is sparsely (Hy, €, k)-regular for
somek, m< k<M, and every£=1,2,...,r. [ ]

8.4 A PARTITION THEOREM FOR RANDOM GRAPHS

This section is entirely devoted to presenting an outline of the proof of the
1-statement of Theorem 8.1. For more details, see R6dl and Rucinski (1995).

Uniformly dense graphs

For 0 < d <1 and £ > 0, we say that a graph F is ({,d)-dense, if for
every V C V(F) with |V| > &vp the induced subgraph F[V] has density at
least d. Note that it suffices to demand this for subsets V' with |V| = [§vFr];
the property then holds for larger subsets by averaging over all their subsets
with exactly [évr]| elements. Observe further that the complete graph K, is
(&, d)-dense for all choices of £ > 0 and 0 < d < 1. It can be easily verified
(Exercise!) that the following is true (R6dl and Ruciniski 1995, Lemma 2).

Proposition 8.20. For each 0 < d < 1 and each graph G, there exists §{ >

0 such that every (£, d)-dense graph on n vertices contains ©(n*(%)) copies
of G. [ |

Thus, in a sense, (£, d)-dense graphs imitate complete graphs.
The heart of the proof of Theorem 8.1 is the following deterministic lemma
which utilizes the Szemerédi Regularity Lemma in a “canonical” way.

Lemma 8.21. For all 0 < ¢ <1 and 0 < d < 1, and for every natural
number r there exist £ > 0, v > 0, and nog, such that if F is a (§,d)-dense
graph onn > ng vertices and E(F) = E,\U---UE,, then there ezist {y € [r] and
V C V(F), |V| > vn, for which the subgraph of F' consisting of the vertices
of V and of the edges of Ey, N F[V] is (¢',d’)-dense, where d' = d/20r.

Remark 8.22. This lemma, together with Proposition 8.20 and inequality
(2.6), implies Theorem 8.1 in the case in which p is a constant. Indeed,
by Chernoff’s inequality G(n,p) is then a.a.s. (§,p/2)-dense for any fixed £
(Exercise!). Thus, by Lemma 8.21, for every r-coloring at least one of the
color classes is (&', p/40r)-dense on a large subset V of [n], and contains, by
Proposition 8.20, many (monochromatic) copies of G. We will see later in this
section how Lemma 8.21 can be applied in the sparse range of p.
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Proof. Set
2 2.05
q= [a-’ ) t= \V E_’ -’ y (8.10)
m = R(q,t,...,1), (8.11)
——

r

where R(g,t,...,t) is the Ramsey number (see, e.g., Graham, Rothschild and
N

Spencer (1992) for definition). Furthermore, set

. 1 d 1
E—,m‘“{éﬁ’m"zr—m}’ (8.12)
_ql-¢) _t1-¢) _20M
€= T V== and no =1, (8.13)

where M = M (e,2m,r) is the constant provided by the Szemerédi Regularity
Lemma 8.17.

Let F be a (£, d)-dense graph on n > ng vertices, and let E(F) = E,U---U
E, be a partition of the edge set of F. Denote by H, = F[E;] the (spanning)
subgraph of F' consisting of the edges of E;, £ = 1,...,7. By Lemma 8.17
there exists a partition V(F) = CoUC U ---U C, 2m < k < M, which is
(H¢,€,k)-regular for each £=1,...,r.

As, by (8.12), at least (1 —re)(f) > (1 - L %2— pairs (C;, C;) are (Hy,e)-
regular for each £ =1,2,...,r, it follows from Turdn’s theorem that there are
m sets, C,...,Cn, say, such that all (7) pairs of them are (Hy,¢)-regular for
each £. .

Consider the (r + 1)-coloring of [m]?, [m]? = Do U D, U---U D,, where

d
{z,]} € Dy if dF(Ci,Cj) < 3 (8.14)

and, for £ € [r],
. . d
{i,j}eD, if dm(C;Cj)> o

(Note that a pair may belong to more than one set D;.) By (8.11), there exists
either a subset K C [m], |K| = q, [K]? C Do, or a subset L C [m], |L| =¢,
[L]? C Dy, for some £ € [r]. The first option is impossible, since then, putting
z = |Ci|, the set C = |J,;cx C; would have, by (8.14) and (8.10), density

e(FIC) _ (D)2 +a() 4 1,
q

CURRN CORE

p(F[C]) =
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This contradicts the fact that F is (£, d)-dense, because, by (8.13), |C| = gz >
qQ:M’-':)ﬁ = ¢n. Thus, for some ¢y € [r], there are t sets, C, ..., C; say, which
satisfy

d
dH‘o (Ci,Cj) > or for all {i,j} € [t]z.

We will prove that the graph H = Hy,[V], where V = C, U - U Cy, is

(¢', 53-)-dense. (Note that, by (8.13) again, [V| = tz > tﬁ_l:ﬁf)ﬁ = un as

required.)
Consider V' C V of size

V| =[¢€VI] = [§'tz].

vl < [(25—05 + 1) E'x] .

Since by (8.13) we have z > ﬁl—j‘jm > 20 and also &' < 1, the right-hand side
above can further be bounded from above by 3.1z, leading to

Then, by (8.10),

V| < 3.1z. (8.15)
Set z; = |V'NCy|,i=1,...,t. Then, owing to (8.15), we infer that

3 (5)<2()+ () <23) ®1

t=1

Let V' = V" U V" be a partition, where V" = |J;., <., V' N C;. Clearly,
|[V"| < tex, and thus, by (8.10) and (8.12), -

|[V"| > (&' —€e)tz > 2z. (8.17)

Let us bound from below the number of edges in the graph H[V'"]. By the
definition of V'" and by the choice of C,...,C,,

fHYV > Y (% _ e) viz;,

where the double summation is taken over all pairs i,j, 1 < ¢ < j <¢, such
that z; > ez and z; > ez. But, by (8.16) and (8.17),

5= () -£(0)2(3) 0o ).

where the single summations are taken over all ¢ satisfying z; > ez. Hence

e(H[V"]) > 0.99 (5‘1; - e) ("" ; 1). (8.18)
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Finally, by (8.15), (8.18) and (8.12),

! " a _ z+1
(" ("5 (*2°
2 2 2
099 /d d d
>S—|——c|>—~|=—-¢| > —
=97 <2r E) =98 <2r E) = 20r
proving that the graph H is (¢', 2—%;)-dense. n

Sketch of proof of the 1-statement of Theorem 8.1

The proof proceeds by double induction on the number of colors r and the
number of edges eg. As often happens with induction, it helps to gener-
alize the statement a little. Our strengthening touches all three aspects of
Theorem 8.1: the random graph space, the property in question, and the
probability with which this property is held by the random graph.

(1) We replace the random graph G(n,p) with the reliability network I,
where T is a (£, d)-dense graph on n vertices.

(2) We replace the partition property I', = (G), with the property that
- every r-coloring results in Q(n¥¢p®c¢) monochromatic copies of G. Moreover,
only copies contained in complete subgraphs of I" count. We call such copies
nested. Note that when I' = K, every copy of G is nested.

(3) We replace the convergence of probability to 1 with the condition that
the probability of the opposite event is 2=%("’P), (In what follows we will
often use the phrase high probability, meaning precisely this.)

More formally, we prove the following general result which implies the 1-
statement of Theorem 8.1.

Theorem 8.23. For every graph G with at least one edge, for all integers
r > 1 and all real numbers 0 < d < 1, there ezist positive numbers €, a, b, C,
and no such that if

(1) n Z no,
(ii) T is a (§,d)-dense graph with n vertices, and
(iii) p> Cn~V/mP(@),

then, with probability at least 1 — 2_”"27’, every r-coloring of the edges of T,
results in at least anCp®¢ monochromatic, nested copies of G.

Sketch of proof. For both initial cases, e = 1, r arbitrary, and 7 = 1, eg
arbitrary, every copy of G is automatically monochromatic, and all we need
in order to validate Theorem 8.23 is to show that I', contains sufficiently many
nested copies of G with sufficiently high probability. Proposition 8.20 shows
that " contains ©(n¥¢) complete subgraphs K, , and a standard application
of Theorem 2.14 gives the required result (Exercise!).




220 EXTREMAL AND RAMSEY PROPERTIES

G J JJ

Fig. 8.2 Graphs G, J, and JJ for G = K.

Assume now that e¢ > 2 and r > 2, and that Theorem 8.23 is true for
all instances with either fewer than r colors or fewer than eg edges. Our
strategy is to apply the two-round exposure technique (cf. Section 1.1), that
is, to represent I'; as a union of two independent random graphs I';, and I'p,,
where p; +p2 —p1p2 = p, and p; and p, are suitably chosen. It is planned that
p2 will be sufficiently bigger than p;, but both of the same order of magnitude.

Let J = J(G, e) be the graph obtained from G by the removal of one fixed
edge e, and let JJ = JJ(G, e) be obtained from the union of two copies of G
sharing e by the removal of e (see Figure 8.2, where G = K3, J = P; and
JJ = C4). By the induction assumption, with high probability, there are many
monochromatic, nested copies of J in every r-coloring of I'5, . Thus, there are
many edges of I", which, when added to a monochromatic, nested copy of J,
form a copy of G, provided there are not too many copies of JJ. It is here
where we use Lemmas 2.51 and 2.52. Indeed, we are satisfied with an upper
bound on the number of copies of JJ on a subset of edges of I',, . By a standard
application of the Cauchy-Schwarz inequality, there are ©(n?) edges in " such
that each of them “closes” as many as Q(nv¢ ~2p®¢—1) monochromatic, nested
copies of J. Most of these edges are not in I';,. Let us denote the subgraph
of I' consisting of all such edges by F', and associate with each edge u of F
the color most frequently appearing in the monochromatic copies of J in I'p,
which, together with u, form a copy of G. The colors associated in the above
way with the edges of F' vary from edge to edge, which naturally imposes a
partition E(F) = E; U ---U E,. Write H; for the spanning subgraph of F
with the edge set E;,i=1,...,r.

In the second round we would like to apply the induction assumption with
r — 1 colors to one of the graphs Hy, £ = 1,2,...,r. For this, however, we
have to show that one of these graphs is (¢',d’)-dense for some &' > 0 and
d' > 0. It turns out that it is easier to show first that with sufficiently high
probability the graph F is (£o,do)-dense for some & and dp, and then apply
Lemma 8.21. Indeed, the proof that F' is (£, do)-dense is similar to showing
that F' has many edges, which we have just described. Then, by Lemma 8.21,
there is a color 4y € [r] and a large subset V' C V(F) such that the graph
H = H,,[V] satisfies the assumptions of Theorem 8.23.

We are now justified in applying the induction assumption with r—1 colors
to H. Thus, provided that color £y, has not been used for the random graph



A PARTITION THEOREM FOR RANDOM GRAPHS 221

Hp,, we might conclude that the second round produces with high probability
plenty of monochromatic, nested copies of G in H,,. On the other hand, every
time color ¢y is used on an edge of H,,, it produces Q(n?c~2p5¢~!) nested
copies of G of color ¢y. Hence, if color £y is used for Hp, at least Q(n2ps)
times, we are done. It remains to clear the case in which the selected color
is used only a few times on the edges of H,,. As all of the above holds
also for (1 — d)ps instead of p,, this last case follows from Lemma 2.52 alone
(Exercise!).

No matter how the adversary colored the edges emerging from the first
round, the outcome of the second round should be successful. Therefore,
the probability of failure in the second round must be much smaller than
the reciprocal of the number of all possible r-colorings h of the edges of I'p,.
The number of edges of I'p, is, by Chernoff’s inequality, with high probability,
fewer than n2p;, and thus the number of such colorings does not exceed ripL
The probability of failure in the second round is forced to be sufficiently small
by choosing p-» sufficiently bigger than p;.

Let us now organize the whole proof a little bit more rigorously. Let A be
the event that there is an r-coloring A : E(T',) — [r] with fewer than an¥ep®e
monochromatic, nested copies of G.

For a copy J' of J in T, let cl(J') be the set of all edges u € T" such that
J' U {u} is isomorphic to G. Given an r-coloring h : E(T',,) — [r], define the
edge sets

Eu(h) = {u € E(T) \ E(Ty,) : |{J' C Ty, :u € cl(J") and h(J') = €}| > 2},

where z = cn?¢~2pf¢~! for some ¢, and set Hy(h) = (V(T),E¢(h)), £ =
1,...,r.

Let B be the event that for every h : E([p,) — [r] there exist an ¢y € [r]
and aset V C V(T') = [n], [V| > vn, such that the graph Hy, (h)[V] is (¢',d')-
dense and that |E(T,, )| < n?p;. Conditioning on T'p, and fixing h, let Ay be
the event that there is an extension of h, h : E(T,) — [r], that is, A = h when
restricted to E(T'p, ), such that there are fewer than an”¢p®¢ monochromatic,
nested copies of G. Then,

P(A) <P(-B) + Y P(A|Tp, = K)B(Ty, = K)
KenB

and
P(A|Tp =K)=P (U Ap [ Tpy = K) < ais P(Ano | I'p, = K),
h

where the summation is taken over all r-colorings h of the edges of I'p, = K
and ho maximizes the conditional probability.
We have just outlined the proofs of the inequalities

P(B) > 1 — 2~%'P)
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and
P(An | Tp, = K) < 279(n7°P2),

the latter for every K € B and for every r-coloring h of the edges of K. These
two facts imply that P(A) = 2=""P) for some small a. n

8.5 TRIANGLES: AN APPROACH WITH PERSPECTIVE

In Section 8.2 we used Goodman’s elegant idea to verify Conjecture 8.11
for triangles and showed that the 1-statement of Theorem 8.1 is valid for
G = K3 and r = 2. Now we present an entirely new approach based on
the sparse version of the Szemerédi Regularity Lemma (Lemma 8.19) and a
better-than-exponential estimate of the probability that a sufficiently “dense”
and “regular” random graph contains a copy of a given graph G. So far, the
method verifies Conjecture 8.11 and yields Theorem 8.1 (for an arbitrary
number r of colors) only in a few small cases of G. But we hope that the
fundamental Conjecture 8.35 stated below will soon be proved, paving the
road to a complete solution of Conjecture 8.11. In this section we will restrict
ourselves to the simplest case G = K.

We switch now to the uniform random graph G(n, M). It has the advantage
over the binomial model G(n, p) that the relative density p(G(n, M)) is fixed
and equal to M/(7). We set

pm = p(G(n, M)) = M / (Z)

for convenience. Thus, in this section we will prove the following result.

Theorem 8.24. For every n > 0 there exists C = C(n) > 0 such that if
M > Cn3/? then a.a.s. every subgraph of G(n, M) with at least (1/2 + n)M
edges contains a triangle.

By Proposition 1.12, Theorem 8.24 implies Theorem 8.14.

The idea of proof

The proof we give contains probabilistic as well as deterministic ingredients.
To some extent, the general framework is analogous to that of the proof of
Theorem 8.23. The notion of a (£, d)-dense graph is replaced by £-uniformity,
and Lemma 8.26 below has the flavor of Lemma 8.21. Both are consequences
of the Szemerédi Regularity Lemma. However, in Section 8.4, owing to the
chosen method of proof, we were able to use its dense version, Lemma 8.17,
despite the fact that Theorem 8.23 deals with sparse random graphs. Here
we do not have this option. We will directly apply the sparse version of the
Szemerédi Regularity Lemma in the form of Lemma 8.19.
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The straightforward approach, so successful in the vertex-coloring case (see
Section 7.6), would be to show that the expected number of the triangle-free
subgraphs of G(n, M) with M’ = (1/2 + n)M edges tends to 0. There are,
roughly, 2™ subgraphs of G(n, M) with M’ edges and each such subgraph
can be viewed as a random graph G(n, M') on its own (formally, turn to the
random graph process {G(n, M)} »r and consider its subprocess of M’ specified
steps). Unfortunately, Theorem 3.11 implies that if, say, n3/2 < M’ < Ln2?
then P(G(n, M’') 2 K3) = e~®M) which may not be sufficient. However, the
lower bound on P(G(n, M) 2 K3) was obtained via a bound on the probability
that G(n, M) is bipartite. The main idea of this proof is that G(n, M) is so
far from being bipartite that each subgraph with M’ edges contains a highly
regular tripartite subgraph which is then extremely likely to contain a triangle.

Before making the above argument rigorous, we must decide how to define
the tripartite structure in precise, mathematical terms. For our purposes,
given n,p,e > 0, an (n, p,e)-triplet is a tripartite graph T with a specified
tripartition V(T') = V; U V2 U V3 such that |V}| = |V2| = |V3| > n, each of the
pairs (V1,V2), (V2,V3) and (V),V3) is sparsely (T, €)-regular and the number
of edges in each of the three bipartite graphs induced by these pairs satisfies

er(Vi, Vi) 2 plVil|Vjl.

If, moreover, er(V;, V;) = [p|Vil|V;l|] for each pair, then the triplet is said to
be ezact.

Hence, in order to prove Theorem 8.24, and thus Conjecture 8.11 for tri-
angles, we will show first that a.a.s. every subgraph of G(n, M) with sub-
stantially more than half of its edges contains a large triplet (Corollary 8.27),
and then that a.a.s. every such triplet contains a triangle (Lemma 8.32).
By conditioning on the number of edges in the triplet, we will reduce our
considerations to tripartite random graphs with a fixed number of edges, and
show that, if highly regular, they contain no triangle with probability (o(1))™
(Lemma 8.30).

Similarly one can conduct the proof of the 1-statement of Theorem 8.1 for
G = K3 and an arbitrary number r of colors. We state without proof an
appropriate fact as part (ii) of Lemma 8.26.

Uniformly sparse graphs

We say that a graph F on n vertices is £-uniform if for every pair of disjoint
subsets X and Y of vertices of F such that | X|,|Y| > £n, its (p(F); F)-density
is close to 1, or, more precisely,

er(X,Y)

BZASLILY Y Y
XY <TE

1-¢<dyrr(X,Y)=
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and the relative density of the subgraph induced by X in F is also close to 1,
that is, '
P(FIX]) _ e(F[X])

p(F) p(F)(Iéfl)

1-¢< <1+¢,

where p(F) = er/(3).

Lemma 8.25. If M/n — oo and £ > 0, then the random graph G(n, M) is
a.a.s. £-uniform. |

The above lemma follows (Exercise!) by an easy application of Chernoff’s
bound for the hypergeometric distribution (see Theorem 2.10 and the inequal-
ity (2.9)).

Next we show, by a nontrivial application of the sparse version of the
Szemerédi Regularity Lemma, that every sufficiently dense subgraph of a &-
uniform graph contains a large triplet.

Lemma 8.26.

(i) For every 0 < n < 1/2 and € > 0 there ezist £ = &£(n,€) > 0 and ng
such that every spanning subgraph H of a £-uniform graph F' onn > ng
vertices satisfying eg > (1/2+n)er contains a (&n,0.1np(F'),€)-triplet.

(ii) For every natural number r and € > 0 there ezist £ > 0 and ng such
that for every partition E(F) = E\U---UE, of the edges of a £-uniform
graph F with n > ng vertices, there exists an €y € [r| such that the graph
Hy, = F[Ey,] contains a ({n, p(F)/2r,€)-triplet.

Proof. We will only prove part (i). Before plunging into this detailed and
slightly tedious proof we strongly encourage the reader to formulate and prove
the special case of part (i) when F' = K,, (Exercise!).

For the general case, we may assume € < 1. Set ¢’ = en/15 and m = [20 /7]
and apply Lemma 8.19 with £/, b =2 and r = 1. Let £ = min(3,1/2M,¢€'),
where 8 = 3(¢’,2,m,1) and M = M(e',2,m,1) are as in Lemma 8.19. Let F’
be a &-uniform graph on n vertices and let H be a spanning subgraph of F'
satisfying ey > (1/2 + n)ep. Since £ is smaller than 7, the graph H is (2, §)-
bounded (Exercise!) and thus, by Lemma 8.19, there is a sparsely (H,¢€’, k)-
regular partition II = (Vp, V4,..., Vi) of vertices of H with m < k < 1/2¢.
Note that |V;| > l‘k""n >¢énfori> 1.

Call a pair (V;,V;), 1 <1 < j <k, good if it is sparsely (H,€')-regular and
satisfies

en(Vi, Vy) > 0.1mp(F)|Vil|Vj . (8.19)

Our goal is to show that the auxiliary graph, the vertices of which are the
sets V4,..., Vi and the edges represent good pairs, has more than k?/4 edges.
Then, by Mantel’s theorem, there is a triangle in this graph. This triangle
consists of three sets V; , V;,, V;,, which induce a tripartite subgraph T of H,
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with every pair being sparsely (H,¢’)-regular and satisfying (8.19). Since, by
(8.19),

3|V 1 1
o) 2 030p(EP (P71 > Lnot) 2 oot

these pairs are also sparsely (7, €)-regular, and it follows that T is a
(én,0.1np(F’), €)-triplet. -

To obtain the required lower bound on the number of good pairs, we will
first bound from above the total number of edges of H which are not within
the good pairs. It will turn out that the majority of the edges of H is indeed
between the good pairs and, as there cannot be too many edges between any
fixed pair, the lower bound on the number of good pairs will follow.

The edges not within the good pairs can be classified into four groups:

(a) Edges with at least one endpoint in the ezceptional class V. For each
1 =1,...,k, let W; be a subset of vertices such that W; D Vo, W;nV; =0
and |W;| = [e'n] > én. Then,

e(lV) < e(F) < (1 +9) (151 () < 0017

and, similarly, for eachi =1,...,k,

yielding a total upper bound of 0.21ner on the number of these edges.

(b) Edges with both endpoints in the same class V;, for anyi=1,...,k. The
number of edges of H contained in the set V; is

e(H1Vi]) < e(F1VD) < (1+8) (1) F) < (1+ EJer/mk < 0.06mer k.

Hence the total number of edges in this category is fewer than 0.06neF.
(c) Edges between the pairs (V;,V;), 1 < i < j < k, which are not sparsely
(H,€")-regular. Note that, since F is £-uniform, for all 1 <4,5 <k

[VillV;l
()
Thus, the number of edges in this category is bounded from above by
e (;) (1+ E)eFlvi(lg#
(d) Edges between the pairs (V;,V;) which violate (8.19). There are no more
e By 1 VIV
( )0.1neF - < 0.1lner

2 (2)

eH(‘/iv ‘/]) S (1 + E)CF

< 0.07ner.
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such edges.
Consequently, at least

eq —0.44nep > (1 +n)er/2

edges of H join good pairs (V;, V}).
On the other hand, we have just noticed in point (¢) above that no bipartite
graph spanned in H by a pair (V;,V;), 1 <i < j <k, has more than

1+ 0er Bl ¢ (1 4 yger /a2

()
edges. Thus, among the pairs (V;,V;), 1 < 4,5 < k, there must be more than

(Ltmer/2 _ 1,
2(1 +n)er/k?* 4

good ones, and the assertion (i) follows.

The second part can be proved in an analogous way, but, instead of Mantel’s
theorem, one must use Turdn’s and Ramsey’s theorems (in this order) as in
the proof of Lemma 8.21. Since this result is needed only for an alternative
proof of Theorem 8.1 in the very special case G = K3, we leave the proof to
the reader (Exercise!). n

Lemma 8.26(i) together with Lemma 8.25 have the following consequence.

Corollary 8.27. For every0 <n <1/2 ande > 0 there exists £ = £(n,€) >0
such that if M /n — oo, then a.a.s. every subgraph H of G(n, M) with e(H) >
(1/2 4 n)M contains a (én,0.1npar, €)-triplet. |

The conclusions of Lemma 8.26 and Corollary 8.27 may be strengthened
to the existence of an exact triplet by the following simple fact, the proof of
which is left to the reader. (Exercise! — Use Theorem 2.10.)

Lemma 8.28. For every € > 0 there ezists C = C(e) > 0 such that if B is a
bipartite graph with bipartition (V1,V2), |Vi| = |V2| = n, with L edges, and the
pair (V1,V2) is sparsely (B,e€)-regqular, then for every K with Cn < K < L
there is a subgraph B' of B with K edges and such that (V1,V2) is sparsely
(B, 2¢)-regular. [

Corollary 8.29. Every (n,p,€)-triplet with pn > C(E) contains an ezact
(n, p, 2€)-triplet. »

Tripartite random graphs

In order to state the main probabilistic ingredient of our argument we need
to introduce one more model of a random graph. Let Gz (n, M) be a graph
chosen uniformly at random from the family of all tripartite graphs F' with
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vertex set V' =V, UV, U V3, where |V)| = |V2| = |V3| = n, such that for each
1<1< <3, er(V;,V;) = M. For this random graph, although “genuinely”
tripartite, the probability of containing no triangls does not drop down to
(o(1))M. Indeed, splitting Vi = V' U V", |V'| = |[V"| = n/2, if M < n?/4,
then with probability at least 16 there is no edge between V; and V' and
no edge between V3 and V" (Exercise!). Hence, with at least this probability,
there is no triangle in Gz (n, M). To make the appearence of triangles more
likely, we condition on the event that each of the three bipartite subgraphs of
Gz (n, M) has a highly regular structure, that is, that Gz (n, M) is a triplet.

Lemma 8.30. For every 0 < € < 0.01 and natural numbers n and M >
(8/5)1/2n3/2,

P(Gs(n, M) is a triangle-free (n, M/n?, )-triplet) < eM/16. (8.20)

We deduce Lemma 8.30 from the following result on random subsets of a
regular pair of sets.

Lemma 8.31. Let0 <e <0.01,¢t> 1, M > 4n?/(et) and let H be a bipartite
graph with bipartition (V', V") such that |V'| = |[V"| =n, e(H) = M and the
pair (V', V") is sparsely (H,c)-reqular. Furthermore, let S; and S} be two
random sets of size t picked independently and uniformly from all t-element
subsets of, respectively, V' and V". Then, the probability that there is no edge
between S; and S!' is smaller than e/*.

Proof. We may assume that ¢ < en, since otherwise the assumption that
(V', V") is sparsely (H,e)-regular implies that there is always an edge be-
tween S and SY. We will show that with probability at least 1 — £*/3 the
neighborhood of the set S; contains all but at most en vertices of V. This
is all we need, as the probability that S}’ is contained in a fixed set of size at

most en is not greater than
EN nY <t
t t) —

P(en(S;,S;') = 0) < &3 + &' < €'/4,

and thus

Let us generate S; sequentially, picking its elements sy,.. ., s¢ one by one,
uniformly at random, from all currently available vertices of V'. For i =
1,...,t, let S; = {s1,...,s;} and let W; denote the set of all vertices of V"
which are not adjacent to any vertices of S;. Set for convenience Wy = V".
Furthermore, let B;, i = 0,...,t, be the set of all vertices of V'\ S; with fewer
than p(H)|W;| neighbors in W;, where, recall, p(H) = p = M/ (3"). Note that
dpg(V',V')=(2n-1)/n>15forn > 2.

Suppose that |W;| > en, and thus |W;| > en for each 0 < i < ¢. Then, for
each 0 < i < t, |B;| < en, since otherwise the pair (B;, W;) with its density
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dy, 1 (Bi, W;) smaller than 1 would yield a contradiction with the assumption
that the pair (V', V") is sparsely (H,¢)-regular. Hence, for each0 < i <t -1,

|B,| < En

]P(Si+IEBi)=n—z n—t

< 1.02¢.

The supposition that [W;| > en has also another consequence. Let us
consider how many times the event {s;+, € B;} holds. Each time we choose
si+1 outside B;, the size of W; is decreased by at least p(H)|Wi| > pen,
that is, |[Wit1| — |[W;| < —p(H)|Wi| < —pen. This means, however, that the
event {|Wy| > en} implies that {s;+; € B;} holds at least t/2 times, since
otherwise |Wy| — |Wy| < —Lpen < —etM/4n < —n, yielding a contradiction.
The probability that {s;+, € B;} holds for at least ¢t/2 indicesi =1,...,¢ can
be bounded from above by

(“; 21)(1.025)“/21 < (4.08¢)t/? < gt/3,

because £ < (4.08)~3. Consequently, P(|W;| > en) < /3. [

Proof of Lemma 8.30. For given € > 0, n and M let A; ; be the event that the
pair (Vi, V;) is sparsely (Gsz(n, M),e)-regular and let 4 = A; 2N A; 3N Az 3.
Further, let X be the event that Gz(n,M) 2 Kj3. Hence the event that
G3(n, M) is a triangle-free (n, M/n?, €)-triplet is X N A.

Let D denote the event that at least n/2 vertices of V; each have more than
t = [M/2n] neighbors in both V> and V3. It can be easily verified (Exercise!)
that the conjunction A; 2N A, 3 implies D with plenty of room to spare. Thus

P(KNA) <P(KNDN Az 3).

Denote by N;(v) the set of all neighbors of a vertex v € Vi which belong to
Vi, 1 = 2,3, and consider the random vectors D; = (|N;(v)| : v € V1), =2,3.
Let A be the set of all pairs of integer vectors of length n and sum M, such
that at some [n/2] coordinates the entries of both vectors are greater than
t. Furthermore, let Gz (n, M)[Vz, V3] be the subgraph of Gz (n, M) induced by
V, and V3, and let H be the set of all bipartite graphs with vertex set (12, V3)
which satisfy property Az 3. Then, by the law of total probability,

P(XNDN Ay )
= > S P(K|{Gs(n,M)[Va, V3] = H} N {D; = 55} N {D3 = s3})

(s2,83)EA HEH

X ]P({D2 = Sz} N {D3 = Sa}) ]P(Gg (n,M)[‘/z,‘/a] = H)
Clearly, to complete the proof it is enough to show that

P(K | {Gs(n, M)[Ve, V3] = H} 1 {Ds = 55} 11 {Ds = s5}) < eM/1°
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for every triple s3,s3, H. Fix one such triple. For a vertex v € V;, let M, be
the event that ey (N2(v), N3(v)) = 0. The event K implies MNvev, My, which,
in turn, implies ﬂvev M., where V is the subset of those vertices of |4 for
which s2(v), s3(v) > t.

Now observe that with all the degrees fixed the choices of neighborhoods
N2(v) and N3(v) are independent of each other for all v € V. Moreover, for
any t,t2 Z t

]P(GH(St,nS;;) = 0) < ]P(CH(Sé,Sé’) = O)a

where S; and S;, are random sets defined as in Lemma 8.31 but of sizes ¢,
and 3, respectively. Hence, by Lemma 8.31,

P(KC | {Gs(n, M)[Va, V] = H} N {Dy = 55} N {Dy = s5})

SP([) Mo | {Gs(n, M)[V2, V3] = H} N {D; =52} N {D3 = s3})
ven

=TI Plen(Si,uy: Stiy) = 0) < Plen(S}, 51) = 0)7l < (e/4)™/2
‘UEV]
< eMs, ]

Proof of Theorem 8.24

The last ingredient of the proof of Theorem 8.24 is the following lemma.

Lemma 8.32. For every n > 0 there ezists € = £(n) > 0 such that for every
£ > 0 there ezists C = C(n,e,£) < 0o such that if M > Cn?3/2, then a.a.s.
every ({n,npm,€)-triplet contained in G(n, M) contains a triangle.

Proof. In view of Corollary 8.29, it suffices to prove that a.a.s. every exact
(&n,npm,€)-triplet contained in G(n, M) contains a triangle. We will do this
with € < 0.01 so small that § = 64¢"/1% < 1, and with C = (9/€¢/2)~!.

For any given ¢ with én < £ < n/3, let V}, 2, V3 be three disjoint subsets of
[n] such that |Vi| = |V2| = |V3| = £. Let G(n, M)[V1, V2, V5] be the tripartite
subgraph of G(n, M) induced by V;, V> and V3 and let Gz (¢; K12, K13, K23) be
the random tripartite graph with vertex set V;UV2UV3 and K;; edges between
the sets V; and V;, 1 < i < j < 3. Furthermore, let M' = M'(£) = [npamt?].

As a guideline for the forthcoming estimates, note that there are at most
8" choices of V, V2, V3. Observe also that for any property P the probability
that Gz (¢; K2, K13, K23) contains a spanning subgraph satisfying P which
has M' edges across each of the three pairs (V4, V2), (W4, V3) and (V2,V3), can
be bounded from above by the probability that Gs(£, M’) € P multiplied by
(¥12) (K13) (K2) (Exercise!). Due to our choice of C, M'/£3/2 > npp /% >
2nC(¢/n)*/? = (8/¢)!/2, and thus we may apply Lemma 8.30 to Gz (¢, M’).
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Consequently, for any K2, K13, K23 < 2ppr¢2 and sufficiently large n,

P(G(n, M)[V1, V2, V3] contains a triangle-free exact (£,npar,€)-triplet
| einary (Vi, V) = Kij, 1 <i < j < 3)
= P(Gs(n; K12, K13, K23) contains a triangle-free exact (£,7p, €)-triplet)

K K K . .
. <MI?) (Ml?) (Mz?) P(Gs (¢, M') is a triangle-free (£, npn, €)-triplet)

< 2K12+K13+K23€M'/16 < 26th’2€17th’2/16 — 5pM£2.

Moreover, owing to Theorem 2.10, the probability that the random tripartit