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Preface

The field of application of difference equations is very wide, especially in the
modeling of phenomena, which increasingly are being considered discrete.
Thus, instead of the usual formulation in terms of differential equations, one
encounters difference equations. In many cases a formulation using a dis-
crete independent variable will suffice, but this severely restricts the available
solution procedures. Further, it is often desirable to embed the original
formulation into the wider class of difference equations with analytic inde-
pendent variable, which not only enlarges the class of solution procedures
but opens the way to answering questions concerning sensitivity, that is, to
differentiation and to wider methods of approximation.

The author, throughout his working career, has served in the capacity of
mathematical consultant. The problems brought to him were of a varied
nature, drawn from engineering, communication, physics, information the-
ory, and astronomy; he was expected to use his mathematical knowledge to
produce practically relevant and usable results. The mathematical tools that
were employed included differential equations,Volterra integral equations,
probability theory, and, especially, difference equations. The techniques
introduced in this book were particularly useful in the construction of
approximations and solutions for many of the practical problems with
which he dealt.

N. E. Noérlund in his great work of 1924, Vorlesungen iber
Differenzenrechnung, introduced a generalization of the Riemann integral

v



vi Preface

that is the basis of this work and that I call the Nérlund sum. It construc-
tively provides a solution of the difference equation AF(z) = ¢(z) that
reduces to a solution of the differential equation DF(z) = ¢(z) for w — 0.
It is used to represent functions important in the difference calculus and
allows representations and approximations to be obtained. It is particularly
important in the solution of difference equations and various types of func-
tional equations.

Chapter 1 is a general overview of the operators and functions important
in the difference calculus. Chapter 2 considers the genesis of difference
equations and provides a number of examples. Also, Casorati’s determinant
is introduced and Heyman’s theorem is proved. A criterion in terms of
asymptotic behavior for the linear independence of solutions, due to
Milne-Thomson, is given.

Chapter 3 defines the Nérlund sum, introducing many of its properties
and, by a summability method, extending the range of its domain.
Representations for the sum are obtained by means of an Euler—
Maclaurin expansion. The homogeneous Noérlund sum is defined and an
integral representation is obtained for summands that are Laplace trans-
forms. It is shown that the homogeneous sum admits exponential eigenfunc-
tions with explicitly defined eigenvalues. An excellent approximation for the
sum in terms of the eigenvalues is derived that is also a lower bound for
completely monotone functions. The value of the representations for prac-
tical computations is illustrated. This chapter is intended to introduce the
reader to the properties and the use of the Norlund sum; the presentation is
largely intuitive especially concerning the asymptotic properties of the
Euler-Maclaurin representation, which are rigorously treated in Chapter 4.

Chapter 4 presents the NoOrlund theory of the real variable Euler—
Maclaurin representation of the Norlund sum and the justification of the
asymptotic relations used in Chapter 3. Fourier expansions for the Nérlund
sum are also studied and examples are given. An interesting class of linear
transformations of analytic functions is studied using a development some-
what different from that usually presented [1], [2]. This permits the repre-
sentation of difference and differential operators in a convenient form for
approximations and the solution of related equations. In particular, the
Euler-Maclaurin representation for the Nérlund sum is extended to the
complex plane; also, an integral representation is obtained for the sum
applicable to a specific class of analytic functions.

In Chapter 35, a study is made of the first-order difference equation, both
linear and nonlinear. The method of Truesdell [3] for differential-difference
equations is discussed and applied to a queuneing model. A class of func-
tional equations of the form G(¢(2)) — I(z2)G(z) = m(z) is introduced and
applied to the solution of a feedback queueing model. A U-operator method



Preface vii

is constructed that is an analogue of the Lie-Grébner theory for differential
equations [4]. This allows the determination of approximate solutions of
these functional equations. A perturbation solution of AZ(t) =6(z) is
obtained and Haldane’s method is also developed for this equation.
Simultaneous first-order nonlinear equations are solved approximately.

Chapter 6 studies the linear difference equation with constant coefficients
and also discusses some methods for partial difference equations. The clas-
sical operational methods utilizing the E and A operators are used.
Application is made to the probability, P(z), that an M/M/1 queue is
empty given that it is empty initially. An asymptotic development for P(¢)
is obtained for large ¢ and a practical approximation is constructed that is
useful for all 7. Under the assumption that the principal sum of a function
has a Laplace transform, a representation is obtained for the sum by means
of a contour integral [5].

Chapter 7 studies the linear difference equation with polynomial coeffi-
cients. The method of depression of order and the uses of Casorati’s deter-
minant and Heymann’s theorem are illustrated. The main technique for
solution, however, uses the m, p operator method of Boole and Milne-
Thompson, which constructs solutions in terms of factorial series.
Application is made to the last-come-first-served (LCFS) M/M/1 queue
with exponential reneging; in particular, the Laplace transform is obtained
for the waiting time distribution. An M /M /1 processor-sharing queue is
introduced [6] exemplifying a method of singular perturbation that can be
useful in a variety of queueing problems [7].

It is with pleasure I acknowledge that my friend Marcel Neuts sug-
gested I write this book and encouraged me in the endeavor. He also
recommended that I speak with Maurits Dekker of the publishing house
of Marcel Dekker, Inc., regarding publication. I also wish to thank my
friend Bhaskar Sengupta for reading early drafts of my material and pro-
viding suggestions and a specifically crafted problem for the text. The
creation of this book took far too many years and I wish to thank the
editorial staff of Marcel Dekker, Inc., for their faith and encouragement
throughout that time. I would also like to thank my daughters, Diane,
Barbara, and Laurie, for their patience and support.

David L. Jagerman
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Operators and Functions

1. OPERATORS

The operators that are of most significance in the theory to follow are
D, E, A, A. These operators are defined for functions u(x) of a complex
w

variable x by

du(x)
dx ’
Eu(x) = u(x+ 1),
Aulx) = u(x + wa)) — u(x) ’
Au(x) = u(x + 1) — u(x).

Du(x) = (LY

The operator D is, of course, the derivative operator; E is the translation
operator; A is the forward difference quotient operator; and A, which cor-
responds t8 A for w = 1, is the forward difference operator. Other operators
of interest afé v, 8, 4 defined by

@w @ w

Xu(x) =u(x)+(x—w)’ | | (1.2)

1



2 Chapter 1

u(x +1w) = u(x — o)

gut = I
I;,W(x) _ux +1w) jo- u(x — o)

and known as the backward difference quotient, the central difference quo-
tient, and the central mean, respectively. The corresponding operators for
w =1 are designated by V, 8, u, respectively.

These operators are capable of repeated application; thus

E*u(x) = E(Eu(x)) = Eu(x + 1) = u(x + 2), (1.3)
Au(x) = A(Au(x)) = u(x + 2) — 2u(x + 1) + u(x)
2
D*u(x) = DDu(x)) = L u(x).
dx
In general, one defines E" by
E u(x)=u(x+r) (1.4)

for all complex r.
The following relation holds between the operators E and A :
@

E°=1+0A (1.5)
thus,
E=(1+wA)y®,  A=wT(E°-1Y. (1.6)

In particular, from

ux+h) = (4o %)"/‘"u(x) (1.7)

and the binomial series, the following formal expansion (Newton’s formula)
is obtained:

u(x + by = i ("j."’)a/' Alu(x). (1.8)
=0 ¢

This expansion plays the same role in the difference calculus as the Taylor
series does in the differential and integral calculus. Clearly,

lim A u(x) = Du(x) (1.9)
=0 w
so that for w — 0, (1.8) goes over to the Taylor expansion of u(x + 4) about

x.
The differences of a function may be obtained from
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A" =(E - 1)'u(x); (1.10)
thus

A'u(x)=§(;)(-1)fu(x+r-j). (1.11)
An important special case occurs when u(x) is a polynomial; accordingly, let

P(x)=apx" +a;xX" ' + .- +a,. (1.12)
Then

AP(x) = nagx" + - .. (1.13)

so that the operator A has depressed the degree of P(x) by one unit. Thus,
differences of order higher than » are all zero when applied to a polynomial
of degree n; also,

A"P(x) = nlay. (1.14)
It follows that Newton’s expansion (1.8) is an identity when applied to a
polynomial,

The relation (Taylor’s series)
o0
1
ux+1)=> J_—'D’u(x) = Pu(x) (1.15)
j=17
implies the corresponding operator relations

E=¢, D=hE. (1.16)

From (1.5), one has

1 1 1,1
D_Zln(l-l_w%)_w(A“’ wA,,,+3 ,,,—n), (.17
in which A, = w A, hence
w
1
Du(x)=5(Awu(x)-%AZ,+%AZ,----). (1.18)
Similarly, from
2 (1 Pl s 1
D= |-(In(1+A) ) == AL — AL +—=Ag+.. |, (1.19)
w w 12
one has
1 11
D*u(x) = = (Ai u(x) — AS u(x) + o Al () + - ) (1.20)
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Formulae (1.18) and (1.20) are often useful for numerical differentiation.
When applied to polynomials, they become identities.

2. FACTORIAL FUNCTION—STIRLING NUMBERS

Operations of the difference calculus are facilitated by use of the factorial
function defined by

X =x(x=1)---(x=n+1), (1.21)
X0 =1,
£ — 1

Tx+D(x+n
for n > 0 and integral. For general », one defines x™ by [8]

£ I'(x+1)
I'x+1-n)

in which I'(x) is the Eulerian gamma function [8]. The salient feature of the
function x™ is expressed in

Ax® = px®=D (1.23)

(1.22)

whose proof is
I'(x+2) I'(x+1)

Ax® — - .
Y STx+2-m Tx+l-n (1.24)
_(_x+1 |\ _T+D
T \x+1-n I'(x+1-n)
_ n I'(x+1)
T x4+ 1l=nl(x+1-n)
o Tx+1)y g
“"Taxr2-m
The function x™ is related to the binomial by
(n)
x x
(n) == (1.25)
hence

NONEN
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Using the notation NO" for A/X" at x = 0, Newton’s formula provides the
representation of x” in terms of factorials; thus

n
Xt = Zx(’jjl' Ao, n>0. (1.27)
=t 7

The name Stirling numbers of the second kind [9] is given to the coefficients
in (1.27) and symbolized by §%; hence

s, =jl’ A", (1.28)

n
x" = Z S X,
=1

Some special values are

$?=0, n>0; S"=1, n>0;, S,=0 j>n (1.29)
Expansion of x” and x**! by means of (1.28) and use of

xx? = XU 4 ) (1.30)
yield the relation

S =S4 8. (1.31)
Using the initial conditions

so=1, Si=0 j>0, (1.32)

the numbers §’, may be obtained step by step. A short table of values is
given in Table 1.

The inverse problem, that of expanding x™ in terms of x’ (1 < j < n) for
n > 0, is solved by use of Taylor’s formula. Using the
notation /0™ for IVx™ at x = 0, one has

n
£ Ex/jl!Dio(n)_ (1.33)
j=]

The name Stirling numbers of the first kind is given to the coefficients in
(1.33) and symbolized by §; hence

KA =j1’1)’of"), (1.34)

£ =38,
J=1
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Table 1: Stirling Numbers of Second Kind
n/j 1 2 3 4 5 6 8 9
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21
8 1 127 966 1701 1050 266 1
9 1 255 3025 7770 6951 2646 36 1
Some special values are

§0=0, n>0, Si=1, n=0, 8&=0 j>n (1.35)
Use of the identity

XD = (x — m)x® (1.36)
in (1.34) yields the relation

S =S -ns] (1.37)
which, together with the initial conditions

=1, S=0 j>0, (1.38)

permits step-by-step determination of §,. A short table of values is given in

Table 2.

Table 2: Stirling Numbers of First Kind

nfj 1 2 3 4 5 6 7 8
1 1

2 -1 1

3 2 -3 1

4 —6 11 —6 1

5 24 =50 35 -10 1

6 -120 274 =225 85 -15 1

7 720 —-1764 1624 —735 175 -21 1

8 —5040 13068 —13132 6769 —1960 322 -28 1
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3. BETA FUNCTION—FACTORIAL SERIES

The Eulerian beta function [8], B(x, y) is defined by

1
B(x,y) = f £l A=Y, x>0,y>0 (1.39)
0
and can be expressed in terms of the gamma function by
Fry)
B(x, y) = =——=; 1.
(x, ) T(x +9) (1.40)

in particular,
AB(x,y)=—B(x,y+1) (1.41)
in which A operates with respect to x, and

. J! (=i-1)
B(x, = =(x- D" 1.42
in which j > 0 is integral. Expansions of the form
[e.°]
Qx) =Y aB(x.j+1) (1.43)
J=0

are very useful in the solution of difference equations. They are called
factorial series of the first kind. A Newton series of the form

F(x) = Z(-l)/aj<"j‘_ 1) (1.44)

=0

is called a factorial series of the second kind. Both series are said to be
associated.

The following theorems of Landau and Noérlund whose proofs may be
found in Ref. 8 provide some background on the nature of associated series.
It is assumed that x is nonintegral. The symbol R(x) designates the real part
of x.

Theorem (Landau): Associated series converge and diverge together.

Theorem (Landan): If a factorial series converges for x = x;, then it con-
verges in the half-plane R(x) > R(x;), and converges absolutely in the half-
plane R(x) > R(x, -+ 1). If the series converges absolutely for x = x,, then it
converges absolutely for R(x) > R(xp)

The preceeding theorems allow the introduction of the abscissa of con-
vergence ) and the abscissa of absolute convergence u. The following theo-
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rem of Landau provides the determination of A. To obtain u, the coefficients
ay are replaced by |a,|. Define o, 8 by

n
D as

s=0

0
2.4

s=n

o= linolo supln /1nn, B= nlingo supln /lan. (1.45)

Then one has

Theorem (Landau): If A > 0, then A = «; otherwise A = 8.
For the condition of uniform convergence, one has the following theo-
rems.

Theorem (Norlund): If the factorial series converges at x; then it converges
uniformly for

~inr+n<argx—x) <im—n
in which 5 > 0 and arbitrarily small,

Theorem (Norlund): If the factorial series converges at x, then it converges
uniformly for

R(x) = R(xp) + ¢

in which £ > 0 and arbitrarily small.
Expansion of a function into a factorial series of the first kind is unique,
for assume

jg(;x(x-"l)"'(x“‘j)_jg(;x(x+1)...(x+j) (1.46)

in which each series is assumed to converge in some right half-plane.
Multiplying both sides by x and letting x —» oo yields ay = by Removing
the terms corresponding to j = 0 and multiplying by x(x + 1) yields a; = b,
for all j > 0. Thus, an inverse factorial series can vanish identically only if a]l
coefficients vanish.

The uniqueness theory for Newton series is not as straightforward. Consider

n—1 1-x
Z(_ly(xf_'l) =(_1)"_1(;:f) “tam "o

Jj=o

(1.47)

in which use is made of the asymptotic relation
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F(I’f (j)h)’”xh, X = 00, (1.48)
then
i(—l)f(x__l) =0, R > 1, (1.49)
=0 J
=1, x=1,
=00, R <1l

Thus, for R(x) > 1, the series provides an example of a null series.
Expansion, therefore, of a function f(x) into a Newton series may not be
unique. Nonetheless, the following holds true.

Theorem: Let f(x) be expansible into a Newton series with convergence
abscissa A, and let it be analytic in the half-plane R(x) > /, then the expan-
sion is unique if /7 < A < 1.

This may be proved by setting
N x—1
F(x) = A’F(l)( , ) (1.50)
2 j

which is the assumed expansion for f(x). Because the expansion is valid for
R(x) > . (A < 1), one has F(j) = f(j) ( = 1) and hence

SN ERS 1.51
P =) M7 )( ; ) (1.51)

so the expansion is unique. Thus, the convergence abscissa of null series
must be greater than one.
Differences of Q(x) (1.43) are readily calculated; thus

o0
A'Q(x) = (—1)" D _aB(x,j+r+1) (1.52)
=0
which follows from (1.41). In particular,

Ay =(-1y")

=

a;

. 1.53
J+r+1 ( )

from which the Newton expansion of Q(x) is immediate.
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4. v-FUNCTION AND PRIMITIVES

For given f(x), a function F(x) satisfying
AF(x) = f(x) (1.54)
will be called a primitive or a sum of f/(x). In order to obtain a sum of ©(x),

it is necessary to introduce another important function of the difference
calculus, the psi function. From the equation

C(x + 1) = xI'(x) (1.55)
satisfied by the gamma function, one obtains by differentiation
I(x + 1) = xT'(x) + I'(x). (1.56)
‘Setting
_I'®

one has, from (1.56) on division by I'(x + 1),
Ay(x) = % (1.58)
Thus, this identifies ¥(x) as playing the same role in the difference calculus

as In(x) does in the infinitesimal calculus. Thus a primitive for £(x) may be
written

AT'Q(x) = ag¥(x) — Y aB(x, ). (1.59)
j=1
Let f(x) be expansible in a Newton series
()= iAf'f(l)<x'. 1); (1.60)
=0 J
then a primitive is given by
_ & o (x—1
atre = (571 ) (1.61)

j=
Since I''(1) =~y (v is Euler’s constant, y = 0.57721566), one has
(1) = —y; also, from (1.58),

(=1~
=

ANy(l) = jz L (1.62)

Hence one has the following elegant Newton expansion:
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w(x)=—y+(x;1)—%("51)+%("§1)—--- (1.63)

whose abscissa of convergence is A = 1. This series provides a practical
means of computing ¥(x) to moderate accuracy for 1 < x < 2, from which,
by use of (1.58), ¥(x) may be computed for other values of the argument.

An immediate application of the sum of a function is to the summation of
series.

Let
AF(x) = f(x), (1.64)
Sy =Y _f() (1.65)
J=0

Then, because

AS, =f(n+ 1), (1.66)
one has

S, = F(x)a*t = F(n+ 1) — F(0). (1.67)

For example, let f(x) = x?; then, from the Newton expansion

x2=<’1‘)+2<’2‘) (1.68)

one has

F(x)=(’2‘)+2(’3‘). (1.69)
Thus

_va_ [n+] n+1

S,,—j;J —( 5 )+2( 3 ) (1.70)

Sy =in(n+1)(2n+ 1), (1.71)
As another example, consider

1
= 1.72

@ =575 (1.72)

and

& 1
=y —— 1.73
S= 25T+ a7
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Since
1 x+1
X(x+2) X+ Dx+2) 479
=50 (x = 1),

one has

F(x) = —xtD =1 = )02 (1.75)

3

and

S=F(oo)—F(1)=%. (1.76).

5. LAPLACE AND MELLIN TRANSFORMATIONS

The Laplace and Mellin transformations are of particular importance in
applied work. As many sources of information are available [10,11], only
certain properties of the transformations and transforms will be cited.

The Laplace transform, f(s), of a function f(¢) is defined by

fls) = fo ” e~ (1) dt (1.77)

for various classes of functions. The correspondence between f(¢) and f (s)
will be indicated by

£~ £, (1.78)

where it is always assumed that f(#) vanishes for negative arguments. A
useful class of functions is the class L defined by

1. f(¢) is Riemann intt;grable over (g, T) for arbitrary ¢ > 0 and T > &.
2, 81irg1+ j;T [F()lde = f; If(2)| dt exists.

3. There exists sy, real or complex, such that Alim f ;° e~ f(£) dt exists.
4, £(¢) has only jump discontinuities in (¢, 7).~
A convergence theorem is the following:

Theorem: f(7) € L = (1.77) converges for R(s) > R(sp) and defines a func-
tion f(s) analytic in that half-plane with f(oc) = 0.

Define ¢(¢) by

t
ot = /0 e~ (W)du. (1.79)
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Then integration by parts establishes

f(s) = (s — 50) f ” e C=0g(1)dt, (1.80)
0
One has the following.
Theorem: f(r) € L = (1.80) converges absolutely for R(s) > R(sy).
For f(1), g(t) € L, define A(?) by
t
K = /f(t — w)g(u) du (1.81)

0

Then 4(f) € L and is called the convolution product of f(r) and g(s). It is
often symbolized by

h(®) =10 * g(1). (1.82)

An important property of the convolution product is expressed in

Theorem: Let the transforms f (s5), £(s) be convergent for the same s;; then
the transform, h(s), of A(t) = f(f) * g(¢) is convergent at s, and

h(s) = f(s) » ().

Concerning the convergence abscissa itself, one has the following results.

Theorem: If the convergence abscissa, A, satisfies A > 0 then

: 1 T
A= zllr’rgosupi,—lnlfo f(® dr.

Theorem: If f(f) > 0, then the convergence abscissa, A, is a real singular
point

A function, N(#), for which
!
/N(u)du:O, t>0
0
is called a null function. One has

Theorem: f(s) determines f(z) to within a null function.

Table 3 gives a short list of operational properties (a > 0, f (&) = df (e)/dr).
The bilateral Laplace transform

/_: e g(x)dx
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Table 3 Laplace Transform Operational Properties

Function Transform
30 1)
1 sf(s) = £(0)
Jof B0
ft—a) e f(s)
1 ~/s
S G

under the change of variables
t=¢,  f()=g(-In)

goes over to the form
fl) = f £ ) dt, (1.83)
0

which is called the Mellin transform (the bar is used to indicate Mellin
transform). Similarly, the unilateral Laplace transform (1.77) takes the form

_ 1
fe) = f @ . (1.84)
0
The convolution product for the Mellin transform is defined by
o0 t du
wo =r0x e = [ rwe() 5 (1.85)

and has the following transform property:

h(s) = f(5)(s). (1.86)

Table 4 gives a short list of operational properties (a > 0, & > 0).
The Mellin transform may be applied profitably to the study of inverse
factorial series (1.43). Use of (1.39) provides the formula

o0

Qx) =) g fo 1 Fl0 —dyadr (1.87)

=0

which suggests the introduction of the function ¢(¢) defined by
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Table 4 Mellin Transform Operational Properties

Function Transform
f® f(s)
S —(s=1fs=1)
v ~5f(s)
) K f(s/h)
J™ K (=s/h)
fa) a~f(s)
O =) al—1y (1.88)
Jj=0

and the relation

1
Q(x) = fo () dt. (1.89)

The function will be called the generating function of the inverse factorial
series. This shows that Q(x) is a Mellin transform over (0,1) and hence
equivalent to a unilateral Laplace transform.

To establish the interchange employed in the transition from (1.87) to
(1.89), it suffices to show that

() = iajr"-l(l — 1y (1.90)

J=0

converges uniformly for 0 < ¢ < 1.Let A be the abscissa of convergence of
Q(x) in (1.43), assuming convergence at x = A, and let o > max(l, A + 2).
Then one may set x = o — 2 in (1.43); hence, using (1.42),

. Majl Y o—24jY) _
jl-}glo(o'— l)a---(a—2+j)_j1-}>rgo|aj|/ j =0. (1.9)

Thus, for sufficiently large j (f > n), one may choose £ > 0 arbitrarily so that

|a| <e("‘f+j), j>n. (1.92)

One now obtains, for R(x) = o,
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Zajt"_l(l — Y| < e} Z (a _; +j)(l )4
Jj>n j>n
<et® 1 - -9~ (1.93)

<Eé&.

As an example of the use of (1.89), consider

o0
Qx) = Za"x(‘j). (1.94)
=1
One has
0 s s
Q(x) = aZa’x('J']); (1.95)
=0
define
o0 ‘/ .
¢ = (11, (1.96)
=4
Then comparison with (1.42) provides
1
Qx)=a / Fe=0qy, (1.97)
0
For another example, consider the expansion of 1/x2. Because
1
i2= -/ #'ntdt (1.98)
X 0
one has
1
dO=—In(Q-Q-H=>») -(1- (1.99)
2]
and thus
1 &l X G-1!
==Y —B(x,j+1)= —. 1.100
= ,;J i+ 1) ;x(xﬂ)m(xﬂ) (1.100)

The generating function ¢(z) of the product of two series £;(x), £;(x)
whose generating functions are respectively ¢;(¢), ¢,(?) is, by (1.85),

o(1) = 1 () * $2(0) (1.101)
in which one must observe that ¢,(¢), ¢.(¢), #(f) =0 fort <0, t > 1.
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6. SOME OPERATIONAL FORMULAE

To conclude this brief summary of operators and functions useful in differ-
ence equation theory, certain operational results concerning the operators E
and D will be presented. It is useful to think of f(x) in terms of a power
series expansion in powers of x, then, since

El=1, (1.102)
one has

FE! = (D). (1.103)
Also, since

EF =a =q. d", (1.104)
one has

f(E)a" =f(a)a". (1.105)
Because, more generally,

Eldu(x)] = @ lu(x + 1) = d*@Bu(x), (1.106)
the shift formula follows, namely

fE)a"u(x)] = &' f(@aE)u(x). (1.107)

The corresponding results for the operator D may be derived indepen-
dently or from the preceeding results for E by using the relation (1.16). They
are

f(D)1 =1(0), (1.108)

FD)e*u(x)] = e*f(D + a)u(x). (1.109)

Examples of these operational formulae will arise in the exercises and in
later applications.

PROBLEMS

1. Solve

W' (x)+ 30/ (x) + 2u(x) =xe™*, '=D.
2. Solve

u(x + 2) — 3u(x + 1) + 2u(x) = x?3%.
3. Show
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& X/ &
e_x faj = _—Ajao.
j=ZOJ! =

4. Show (Euler’s transformation)

1 | 1
ao—a]+a2—---=an—§5Aao+§§A2ao—---.
5. Show
A" sin(ax+b)=(2sin§)" sin[ax+b+na_i2_n],
n _ . gn a+
A cos(ax+b)_(2s1n2) cos[ax+b+n 2”].
6. Show
nl ‘i -y (x-1
x(x+1)---(x+n)_j=on+j+1 i)

7. Show (Vandermonde)
(x+m" = Zo ( ;?):c("'f’h‘f’.
j_..
8. Show.

1‘(c)1‘(x+c—b—1)_1 b(x—l) b(b+1)(x—1)_“'

Te—-blx+c—1) ¢\ 1 e+ D\ 2

with convergence abscissa A =b — ¢+ 1

9. Let
o0 i —1 Jj
F(x>=Z(—1ya,-(" . ) 4=%a,
j=0 J v=0
then show
— = —_— j . X
F(x)_;o( 1)1AJ(].+1).
10. Show

o407 = 2 st

n=r

and, hence,
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11.

12.

13.

14,

LACES PUE s VIO}

Hint: Consider the derivatives of (1 + £)* with respect to x.

Show (Stirling)
00 1 _ 00 (_1)1'—1 a) L
2D (5) ar-1-2

Show

and, hence,
A0 = Y5510 DT,

Hint: Consider the differences of ¢ with respect to x.
Show (the transformation x — x+ m)

Q) =D aB(x,j+1)=) bB(x+mj+1),
Jj=0 Jj=0

U m+v—1
bj=Zaj_\,( v ).

v=0

Hint: Replace the generating function ¢(¢) by ™" ¢(¢)
Let.

Qx) = iajB(x,j +1),

J=0

then show
[e]

Q(x)=— bBx,j+1)
j=].

in which

19
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15.

16.

17.

Show
1 1 1 o /1 ,
;—x+l+x+2—---_22 B(x,j+1).

7=0

Show (Waring’s formula)

# _ _1_ + a ala+1)
x—a x x(x+1) x(x+4+D(x+2)
Show

o

Alnx:l 1 1 1 1

x 2x(x+1) 6x(x+Dx+2)
Hint: Alnx is the Laplace transform of (1 — e¢™)/y.

Chapter 1
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Generalities on Difference Equations

1. GENESIS OF DIFFERENCE EQUATIONS

By the genesis of a difference equation is meant the derivation of a differ-
ence equation valid for a given family of primitives. Consider the equation

F(x, u(x), p(x)) = 0, 2.1)

in which p(x) is an arbitrary periodic function of period one, and the equa-
tion

F(x+1,u(x+ 1), p(x)) = 0. (2.2)
Elimination of p(x) from (2.1) and (2.2) yields a relation of the form
G(x, u(x), u(x+ 1)) = 0. (2.3)

Equation (2.3) is a difference equation satisfied by every member, u(x), of
the family defined in (2.1). Because only the arguments x, x + 1 occur in
(2.3), the equation is said to be of first order.

The following are examples of this procedure. Consider the family

u(x) = p(x)g(x). (2.4)
Then, from

ux) _ 2.5

At = @)

21
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one has
glx)u(x + 1) — g(x + Du(x) = 0. (2.6)

Important special cases are the choices g(x) = a* and g(x) = a™*I'(x + 1),
for which one obtains

u(x + 1) — au(x) =0, 2.7
w41y -2 Jg L) =0, 2.8)

respectively. These correspond to the geometric distribution (1 — a)a* (x =
0,1,2,...) and the Poisson distribution, ¥(x, a), defined by

a
Tx+1)

The function ¥(x, a)~' satisfies (2.8) with initial value #(0) = e®. Similarly,
setting g(x) = a*/T'(x + 1), one has

Y(x,a) =e™*

2.9)

a
x+1

satisfied by ¥(x, a) itself with initial value u(0) = e™°.

The difference equations may be used as recursions for the successive
computation of u(x) at integral points. These values, in turn, may be used
to form the differences at, say, x = 0, from which a Newton expansion (1.8),
with w=1, may be constructed: thus, values of u(x) may often be readily
obtained at non-integral points. Systematic exploitation of this idea occurs
in Chapter §.

Another example is provided by

1

u(x+1) -

u(x) =0 (2.10)

u(x)=p(x)—x (2.11)
from which follows

Al:x—ﬁ] =0 (2.12)
and, hence,

u(xyu(x + 1) +u(x + 1) — u(x) = 0. (2.13)
This is a special case of the general Riccati equation

u(x)u(x + 1) + a(x)u(x + 1) + b(x)u(x) + c(x) = 0. (2.14)

The Clairault difference equation is obtained on considering
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u(x) = xp(x) +f(p(x)) (2.15)
in which f(x) is prescribed. One has

Au(x) = p(x) (2.16)
and, hence, '

u(x) = xAu(x) + f(Au(x)). 2.17)

A two-parameter family, that is, a family in which two arbitrary periodics
D1(x), p2(x) occur, has the form

F(x, u(x), p1(x), p2(x)) = 0. (2.18)
Use of

F(x+ 1, u(x + 1), pi(x), p2(x)) = 0,

F(x+ 2, u(x + 2), p1(x), p2(x)) = 0 (2.19)
together with (2.18) provides the relation

G(u(x), u(x + 1), u(x+2)) =0 (2.20)

which, because of the arguments x, x + 1, x + 2 is called a difference equa-
tion of second order. In general, when F = 0 contains n arbitrary periodics,
D1(x), + - - pu(x), a difference equation of nth order is obtained.

Consider the equation

- u(x) = p(N)a” + py(x)b”* (2.21)
and the additional equations
u(x + 1) = pi(x)a’a + pa(x)b*b,
u(x +2) = p1(x)a*a +py(x)b*b° (2.22)

Then elimination of p;(x)a®, p,(x)b* considered as unknowns provides the
determinant

u(x) 1 1
ux+1) a b|=0 (2.23)
u(x+2) a@ b

and, hence, the second-order difference equation
u(x 4+ 2) — (a + b)u(x + 1) + abu(x) = 0. (2.24)

Illustrations of difference equations arising from model formulations are
plentiful. The following are some examples.
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2. THE M/M/C BLOCKING MODEL

A Poisson arrival stream of a Erlangs is offered to a fully available trunk
group consisting of » independent exponential servers. Let u(n, ) designate
the probability that, at an arbitrary instant of time with the system in
equilibrium, j trunks are busy. Then the balance equation for flow into
state j is

G+ Dun,j+ 1)~ (G +a)u(n,j)+auln,j—1) =0, l<j<n-1,
u(n, 1) = au(n, 0), i u(n,j)=1.
j=0
(2.25)

The quantity B(n, a) = u(n, n), which is the probability that all trunks are
busy, is called the Erlang loss function; it satisfies the following difference
equation:

Bn+ 1,0 = "%:la(n, &' +1,  BO,a@)=1 (2.26)

3. THE M/M/1 DELAY MODEL

A Poisson arrival stream of a Erlangs is offered to an exponential server
with unit mean service rate. Let u(x, f) designate the probability that there
are x units in the system at time ¢ if the system was empty at £ = 0. One has

au(a:;, H_ u(x + 1,0 — (1 +a)u(x, ) +au(x - 1,1, x2=1,

Bu(a()t, D au(0, ) +u(l, 1),  u(0,0)=1, | 227
iu(x, f)=1.

x=0

Equation (2.27) provides an example of a differential-difference equation. In
many forms of stochastic modeling, the generic form of equation expressing
time dependence is
ou(x, t)
ot

in which L is an operator with respect to x. Such equations are often said to
be of Fokker-Planck or semigroup type [12]. :

= Lu(x, f) (2.28)
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4. THE TIME HOMOGENEOUS FIRST-ORDER MODEL

A function Z(¢; z) with Z(0; z) = z is required that satisfies
A Z(t; 2) = 8(Z(t; 2)) ' (2.29)

in which the function 6(z) is specified. This includes the usual one-dimen-
sional theory of branching processes [12,13]. In this role Z(r; z) considered
as a function of z corresponds to the probability generating function of the
population distribution at the rth generation when ¢ is an integer; otherwise
it corresponds to continuous time branching processes. This equation is
studied in Chapter 5.

For further discussion of stochastic modeling, one may refer to Refs.
[12 to 14].

5. THE EULER EQUATION

As an illustration outside the field of stochastic modeling, one may consider
the problem of the extremization of the functional [15,16]

§=3 FGu(). o), ()= Aug). (2.30)

J=0

The function F(x, u, v) is prescribed and it is supposed that suitable bound-
ary conditions have been specified. It is required to determine u(z) (0 < 7 <
n). Differentiation of S with respect to u(r) yields the following Euler
equation:

3 3
EF(I’ u(7), v(1)) = A%F(r —lLu(t=1),v(r-1)) (2.31)

in which A operates with respect to t.

In addition, the various dynamic programming formulations [16] provide
many examples of difference equations.

A homogeneous linear difference equation of order » has the form

(U 4+ 1) + g (u(x 41— 1) + - + ap(Xu(x) = 0. (2.32)

The solution u(x) = 0 will be excluded from consideration in what follows.
It will be assumed that the coefficient functions a,(x) (0 < j < n) have only
essential singularities because, otherwise, multiplication of the equation by a
suitable entire function will remove all poles.

The following are called the singular points of the difference equation:
the zeros of ay(x) and a,(x —n) and the singularities of a,(x) (0 <j < n).
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Given any point a, x is said to be congruent to a if x —a is an integer,
otherwise incongruent.

The principal interest concerning (2.32) lies in finding analytic solutions.
If x is restricted to be integral, then the conditions of a solution satisfying,
say, prescribed initial conditions may be relaxed. In this case, the equation
may be considered to provide a solution through sequential computation
and may more properly be considered a recursion.

Considering the second-order equation

ax(X)u(x + 2) + a; (x)u(x + 1) + ag(x)u(x) = 0 (2.33)
to be typical, and solving for u(x), one has
| a(u(x +2) + @ (ulx + 1)

ao(x) '
If u(x) is prescribed for 0 < R(x) < 2, then, for values of x incongruent to

the zeros of ay(x) and the singularities of the coefficients, u(x) may be
continued to the left. Similarly, by considering

_ai(u(x + 1) + ag(x)u(x)
az(x)

if x is incongruent to the zeros of a,(x — 2) and the singularities of the
coefficients, then u(x) may be continued to the right. Thus u(x) may be
continued throughout the plane except at points congruent to the singular
points of the equation.

A set of functions u;(x), .-, u,(x) satisfying (2.32) is said to form a
fundamental system of solutions if there is no relation of the form

Pr(X)uy(X) + -+ 4 pu(X)u(x) = 0 (2.36)

such that for at least one x incongruent to the singular points of (2.32), the
pj(x) are not all simultaneously zero. The p;(x) are, as introduced earlier,
periodics of period one. One then has that all solutions of (2.32) are spanned
by uy(x), - - -, uy(x). The following theorem of Casorati enables one to deter-
mine whether a given set of solutions constitutes a fundamental system.

u(x) = (2.34)

, (2.35)

Theorem (Casorati): The necessary and sufficient condition that the set
u1(x), -+-,uy(x) should be a fundamental system of (2.32) is that the
Casorati determinant

up (X) - - - uy(X)
wx+ 1) u(x+1)

ul(x+n—1)-:-u,,(x+n-—1)
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should not vanish for any value of x incongruent to the singular points of
(2.32).

Proof. The condition is necessary, for let Uj(x) (1 <j < n) be the cofactors
of the last row, then

n

2 wi(x)Uy(x) =0,

: 2.37)
5 (x4 n — 1)Uy(x) = D(x) = 0,

i=1

in which the last equation follows by assumption. Now Uix + 1) are the
cofactors of the first row, hence

n

> w(x)Ui(x + 1) = D(x) =0,

: (2.38)
. i wx+n—DU(x+1)=0.

i=1

Equation (2.37) determines U;(x)/U;(x) (2 <i < n) and (2.38) determines
Ui(x+ 1)/U (x + 1), hence

Ui(x) _ U,-(x + 1)

U~ s CSTST @39
Thus one may set
Ui(x) _ pi(x) (2.40)

Ui(x)  pi(®)
and consequently, from (2.37),
1@y (X) + - -+ + Pa(X)up(x) = 0 (2.41)

showing that u;(x), - - -, u,(x) does not form a fundamental system.

To establish the sufficiency of the condition, assume u,(x), - - - , u,(x) does
not form a fundamental system, so that a point & incongruent to the singular
points of (2.32) and a set of periodics p;(x), - - -, py(x), not all zero at &, can
be found for which

ZP:‘(“)";‘(“) =0, (2.42)
i=1

then one also has
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Zn:pi(a)u,-(a) =0, 2=<j<n-1 (2.43)
=1

Thus
D(e) =0 (2.44)

and the theorem is proved.

Application of Casorati’s theorem to (2.24) for which a*, b* are known
solutions yields
D(x) = a*b*(b — a), (2.45)

which, for a # b, never vanishes; hence a*, b* constitute a fundamental
system. However, in contrast, for the system a” sin 27x, b, one has

D(x) = &b (b — a) sin 2x (2.46)

which vanishes for all integral values of x. Thus this does not form a funda-
mental system.
As another example, consider the equation

u(x+2) — xu(x) =0 (2.47)
for which a solution set is
x/2p X _p\xax2n (X
2 r(z), (—1)*2 r(z). (2.48)
For the Casorati determinant, one has

D(x) = (_1)x+12x+lﬁr(§)r(x + 1)

2 (2.49)

= (=1)*"144/27T ().
Because D(x) does not vanish at points incongruent to the singular point
x =0, the set (2.48) constitutes a fundamental system.

Casorati’s theorem enables the general form of the solution of (2.32) to be
obtained. Thus, let u;(x), - -, u,(x) be a fundamental system; then, from

i a(x)u(x +1) = 0,

i=0

" (2.50)
Zai(x)uj(x +19) =0, l<j<n,
=0

on eliminating the coefficient functions, a;(x) (0 < i < n), one has
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u(x) w(x) o up(x)
u(x+1) ul(x:+ 1) u(x+ 1) _ @.51)
u(x + n) ul(x.+ n) Uy(x +n)

The minors of the elements of the first column are not zero because
#1(x), - -+, t,(x) form a fundamental system, hence periodics p(x), p;(x), - - -,
Dn(x) exist for which

POYu(x) + pr(x)ur (x) + - -+ + pp(X)in(%) = 0 (2.52)
with p(x) # 0; hence one may also write
u(x) = p1(X)uy (x) + - -+ + Pa(X)thn(%). (2.53)

Thus (2.53) provides the general form of solutions of the nth order, homo-
geneous, linear difference equation (2.32). The importance of a fundamental
system is now evident.

The determinant of (2.51) may be used to construct a difference equation
admitting a given fundamental set of solutions. For example, given u;(x) =
X, tp(x) = 2% one has

u(x) x 2* :
ux+1) x+1 2271 =0, (2.54)
ux+2) x+2 252
and hence the equation is
(x — Du(x +2) — 3x — 2)u(x + 1) + 2xu(x) = 0. (2.55)
The corresponding Casorati determinant is
D(x) = 2%(x — 1). (2.56)

Because the singular points are 0, 1 and D(x) does not vanish at points
incongruent to 0, 1, the system x, 2* is verified to be a fundamental system.
One also has, from (2.53), that all solutions of (2.55) have the form

u(x) = p1(x)x + pa(x)2”. (2.57)

A remarkable result exists for Casorati’s determinant for a given differ-
ence equation, namely that it satisfies a first-order equation. That is the
assertion of Heymann’s theorem.

Theorem (Heymann): Casorati’s determinant, D(x), satisfies

Dix+1) = (- 1)"“"?‘;13( ).
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Proof. One has

w (e + 1) w4+ 1)+ uy(x 4+ 1)
Dix+1)= ; . (2.58)
wy (4 1) (X + 1)+ x4 1)

Multiply the first row by a;(x)/a,(x), and the second row by a,(x)/a,(x) up
to the (n — 1)st row by a,_(x)/a,(x); add the resulting rows to the last row.
From (2.32), one has

- Z:gc; () = Z,l,g; ux+1)+ %"(’C +2) 4+ tu(x+n),  (2.59)
hence the last row of D(x + 1) becomes
—?8*®*$3%@ww—ﬂ3Mﬁ 260

Transferring this to the first row of the determinant establishes the
theorem.

It immediately follows from Heymann'’s theorem that if D(x) vanishes at
a point o then it vanishes at all points congruent to a.

A criterion in terms of asymptotic behavior (x — oc) for ascertaining
that a given system of functions constitutes a fundamental system is con-
tained in the following theorem.

Theorem (Milne-Thomson): If

M:o, l<j<n-1,
rrooty 1 (x+71)

in which r goes through the positive integers, then the system u;(x),---,
u,(x) is fundamental.

Proof. It is supposed all the functions u(x) exist in some half-plane.
Suppose they are not fundamental; then one may write

pi(X)u(x) + - -+ + Pa(X)un(x) = 0 (2.61)

in which not all p,(x) (1 <j <n) are zero. Let p,(x) be the last nonzero
periodic; then

Pr(x)uy(x) + -+ - + po(X)us(x) = 0. (2.62)
Thus, on dividing by u,(x + r),
pi(x) x4 7) + o+ p(x) = 0. (2.63)

us(x +7)
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Letting r — oo in (2.63) and using the stated value of the limits, one obtains
Ds(x) = 0, which is a contradiction.

When the asymptotic behavior of solutions of difference equations is
known, this result can be usefully applied.

PROBLEMS
1. Form the difference equations satisfied by the following families:
_ x _ xp()+1
u(x) = p(x)2*, u(x) = 2o+ 1

2. Form the Euler equation for the minimization of

S= @+ u® =z

J=0
3. Show that the second-order difference equation whose solutions are

I'(x) I'x)

U (x) = -’ up(x) = Tx—a) ¥(x)

is
(x — a)(x — & + Du(x + 2) — (2x + 1)(x — a)u(x + 1) + x2u(x) = 0;
also show
I'(x)?
Mx—a)l(x—a+1)

4. Using the asymptotic criterion of Milne-Thompson, show that the func-
tions u;(x), u(x) of Prob. 3 form a fundamental system.

D(x) =
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NOorlund Sum: Part One

1. INTRODUCTION

The basic problem to which we now turn our attention is the solution of the
equation

A F(x|w) = ¢(x) G.D

for primitives F(x|w) given ¢(x). This constitutes a generalization of the
corresponding problem of the integral calculus, namely the discovery of
primitives F(x) satisfying

DF(x) = ¢(x). 3.2)

Progress in the integral calculus was impeded until a constructive defini-
tion was framed providing one of the primitives of (3.2). This definition—
the Riemann integral—formed the foundation for the theory of integration.
Its properties allowed a fruitful theory to be developed. Similarly, one would
like a constructive definition of a particular primitive of (3.1) that would
possess rich analytic properties permitting a useful theory to be developed.
It should provide simple representations of important functions and have
means of ready asymptotic computation and approximation. For example,
certainly F(x|w) corresponding to ¢(x) being a polynomial should also be a
polynomial; such a primitive exists, as can be seen from the Newton expan-
sion (1.8). The unique determination of F(x|w) should rest on its value at a

32
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single point rather than a specification throughout an interval, and one
would also like hn% F(x|w) to reduce to a solution of (3.2) because

11m A f(x) = Df(x) whenever Df(x) exists.

A11 these properties are provided by the formulation of Norlund [17],
which will now be studied.

2. PRINCIPAL SOLUTION

The definition of the principal solution of Norlund will be given in two
stages. In order to motivate the definition, (3.1) is rewritten in the form

E® -

L P(xlo) = 6(x) (33
using (1.6). Thus
F(x|w) = — E“’ ——5 $(x)
= —[1 +E” + E* + .. +]og(x), (3.4)
= — Z ¢(x +jw)-
Jj=0

Formally, (3.4) is a solution of (3.1), although, without restricting ¢(x),
the series need not converge. It was found by Norlund, however, that the
desired properties were not given by (3.4) without the addition of a suitable
constant. The constant chosen is

f ” &(0) dt (3.5)

in which a is arbitrary. A firm motivation for this choice will emerge when
the definition is completed in the second stage. Accordingly, one has the
following definition.

Definition (Norlund Principal Solution): Let both the integral and sum con-
verge. Then the principal solution of

AF(x|o) = $(x)

or sum of ¢(x) is

F(x|w) = f ” ¢ dt— Y Bx + jo).

j=0

The notation introduced by Norlund for the principal solution is
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F(xle) =S() Az (3.6

and the operation is referred to as “summing ¢(z) from a to x.” The nota-
tion F(x) is used when w = 1. The quantity w is called the “span” of the sum
and, unless otherwise stated, is assumed to be positive.

Examples of evaluations directly from the definition are

E bz, _ ) s we™> _
§e %z_a =% 8 >0, (3.7
éz'”Az: - - —wl“’g(v i) v>1 3.8)
a ® 1—v ‘w/’ .

in which
5w, x )—Z T + 7 (3.9)

is the generalized zeta function [18].

3. SOME PROPERTIES OF THE SUM

A number of properties of the sum flow directly from the definition, that is,
from

Sowaz=[ o0 dr—wgqs(x + jo). (3.10)
One has, of course,

AS () Az =4() @3.11)
Quite simply, one obtains from (3.10) the following relations:

Speraz= [ s0a+Su0az (312

Soz+B)Az=S o)Az | (3.13)

a ®  atb ®

also, for w > 0, one may write

X x/w
S¢(Az=0w a§w Pp(wy)Ay (3.14)
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in which, as is usual, Ay refers to a unit increment.
Let m be a positive integer; then substitution of x +vw/m 0 <v <m —
1) in succession for x in (3.10) and addition of the resulting equations yield

m—1

ZF(x+%|w) =mF($). (3.15)
v=0

This is called the multiplication theorem of the principal solution. The origin
of the name will become evident when application is made to special func-
tions such as the Bernoulli polynomials and the gamma function.

Let £ > 0 be arbitrarily chosen; then, for the next result, the assumption
will be made that ¢(x) = O(x~'~°) for x — oc. Let n be a positive integer
and let A = nw; then

0 dx+jo) =) 60x+jo)+o) ¢+ jw)

Jj=0 J=0 j>n

=w iqb(x +jw) + O(w Z(x + jw)™17),

Jj=0 J>n

(3.16)

Use of an integral comparison gives

03P +0) = 0 3" 0x +J6) + OG) G.17)

uniformly for x > 0. Thus, for fixed A,

0 X+A
wl_l’r{)l_'_w;qb(x + jo) =fx o(t) dt + O(\™®) (3.18)

and, hence, letting A — oo,
o0 o0
wl_l’r&_ 1) ; O(x +jo) = /,: o) dt. (3.19)
From (3.10), one now has

Jlim § pD)Az= f "ot dt. (3.20)

Of course this is what was desired because it provides a solution of (3.2).
Also, clearly,

18 vo 1 [
lim = ZF(x+;|w) =- f F(t|w) dt. (3.21)

m—o0 m £~
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The integral in (3.21) is called the span integral. Dividing (3.15) by m, letting
m — oo, and using (3.20) and (3.21), one obtains the following theorem
under the condition ¢(x) = O(x~'~*):

é fx x+wF(t|w)dt= fa x¢(t)dt. (3.22)

The results of (3.20) and (3.22) already provide justification for the inclusion
of the integral in (3.10).
In (3.22) let x = a; then

f e F(tlw)dt = 0. (3.23)

An immediate application of (3.23) is the following: Let G(x|w) be a primi-
tive of (3.1); then the principal solution is of the form

F(x|w) = G(x|w) + ¢ (3.24)

for some constant ¢. Substitution into (3.23) determines ¢ and yields the
formula

F(x|w) = G(x|w) —é f ™ Gty dt,
F(x|w) = G(x|w) |3,

(3.25)

in which the convenient notation of a vertical bar is used to represent the
computation. Thus, one may construct the principal solution given any
primitive. This is analogous to the evaluation of [ ¢(#)d! from a solution
of DF(x) = ¢(x).

An example is given by the equation

A Glaxlw) = xe % §>0. ' (3.26)
Using (1.6), this may be written

-1 G(x|w) = xe** (3.27)
and hence one has

G(x|) = gpg xe ™ - (3.28)

= Fw—%—_—lx (3.29)

by the shift formula of (1.107). Using (1.5), one now has
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1
G = —we ™ 3 3.30
(x|w) we T x (3.30)

Expansion of (3.30) into positive powers of A yields
@
2 —bw
_ wXx we . 4
G(xlw) = _[1 — + (1 - e—&w)Z]e g (331)

Finally, using (3.25), one obtains

X _52 1 1 _sa wx wze_sw _5

It may be observed that (3.32) could also be obtained from (3.7) by differ-
entiation with respect to 8.

4. SUMMATION OF SERIES

The summation of series is accomplished by the following identity, easily
derived from (3.10):

s #(2) Az~ S¢(z) Az= wz¢(x+jw) (3.33)

Jj=0

An example is provided by (3.8), from which one has

X+Nw — x n-1 1
§ ¥4 %z—?z %Z—w;m, (3.34)
and hence
= X\ _, 1-v X .
Z (x +jw)" ;‘(v, w) @ ;‘(v, ) + n), (3.35)
in particular, for x =1, w =1,
2.1
Z]_—v =t —tw,n+1) (3.36)

J=1

in which ¢(v) = &(v, 1) is the ordinary Riemann zeta function.
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5. SUMMATION BY PARTS

The rule for summation by parts will now be derived. Starting from the
identity

%[u(x)v(x)] = u(x) % v(x) + v(x + w) % u(x) (3.37)
one obtains
é %[u(z)v(z)] % z= é u(z) % (2) % z+ % vz + w) % u(z) % z. (3.38)

Now, applying (3.25) to Alu(z)v(z)] yields the result

X 1 +w
§ %[u(z)v(z)] = u(x)v(x) ~ > /ﬂ u(v(t) dt = u(z)v(z) |7, (3.39

which, incidentally, on comparison with (3.11) shows that the operatorsA, S
do not commute, Finally, using (3.39) in (3.38) and rearranging the tefs,
one obtains the formula for summation by parts.

X X
§ u(z) % v(2) Az = u(z)v(z) |5 — § v(z 4+ w) Au(z) Az (3.40)
It may be observed that the limit of (3.40) for @ — 0+ becomes the usual

formula for integration by parts in the infinitesimal calculus., A simple
“example is given by

1

=

122(z+1)Az' (3.41)

Here, one may set
u(x) =1 v(x) = _L 3.42
-1 = (3.42)

hence, on applying (3.40),

é—l—Az——--l—+l—§—-l—-—Az 3.43
T22z+1)" " X2 2 Tzz4+12"7 7 (.43

Combining the two sums gives

2z 41 1 1

m Z=§—x—2. (344)

S
1
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6. DIFFERENTIATION
The formula for differentiation of the sum follows readily from (3.10);

however, to justify the operations, the assumption is now made that ¢'(x) =
O(x~'"*) for some & > 0. One obtains

d x x

E§ ) A =da)+S ¢'(2) Az (3.45)
For example, consider

F(x) = % e Az (3.46)
One has

F(x)=1—-8F(x) 3.47)
and hence

F(x) = % + ce™x, (3.48)

The constant, ¢, is now determined by use of (3.23); thus

e—Bx

1—e

F(x) = % - (3.49)

.

This result may be compared with (3.7).

7. EXTENSION OF DEFINITION OF SUM

In order to extend the range of application of the definition of the principal
solution of (3.1), a summability approach will be taken. The summability
factor e™** will be used—this is Abel summability. Accordingly, one has the
second stage of the definition.

Definition (summability form): For A > 0,one defines
X X
= 1i —Az
$o@ 4z = i S0 42

whenever the indicated limit exists.

It is possible in the general theory to use other summability factors such
as e but for the purposes of this treatment the preceeding definition
suffices. A function ¢(x) for which the sum exists will be said to be summa-
ble. Clearly, in this extended sense, (3.11) is still valid. In fact, all properties
established for the sum to this point remain valid including the differentia-
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tion rule (3.45), which follows from the summability procedures applied to
the derivative of e **¢(x).

As immediate examples of the definition, one may evaluate § — 0+ in
(3.7) and (3.32) to obtain, respectively,

1

el

z X — 50,

Bp—=

(3.50)

ZAzZ 2—%wx+%w2.

olNx olN=
el

1
'2'X

Clearly, repeated application of summation by parts now shows that the
sum of a polynomial is a polynomial. This fact will again be brought out in
the study of Bernoulli polynomials, when an explicit solution will be given.

The asymEtotic behavior of the sum in (3.10) for small A > 0 when
applied to e ¢(x) is closely imitated by the behavior of the corresponding
integral term. Thus, even if the limits, A — 0+, do not exist individually, the
limit of the difference of integral and sum can exist. This provides the basic
motivation for the inclusion of the integral in the definition of principal
solution.

8. REPEATED SUMMATION

The definition of the repeated principal sum is

Ao) = §(C 720 o az (3.51)
It will now be shown that

A" Fy(xle) = §(0). | (3.52)
One has

AFy(xle) =o"2'S ((xn afe )¢( )Az
_wn—Zé((x_z)/w_l

n—1

(3.53)

a

)¢(z) % z.
The identity (1.26) | :
((x —nz)_/ci)— 1) ((xn—_z)l/w) _ ((x —nz)_/c;— 1) (3.54)

used in the second term of (3.53) yields



Norlund Sum: Part One
%F,,(xlw) = w"‘z[ S ((xn Dfw )¢(2)Az

Z((xn— 7)/w ) o) Az]

o (x—2)/w—1
S( n—2

The term in brackets is zero because

x§w((x_z)/ )¢()A (( "z)/“’)qb()m

(oo
-

n—

)¢(z) % z,

)¢(>|,_x—o ns 1.

Thus
—2)fw—1

A Fy(x|w) = o2 é((x
® a n-—2

)¢(2) Az,
= Fy_(x|w).
since
A Fi(xlw) = @(x)

and one has (3.52).

9. SUM OF LAPLACE TRANSFORMS

41

(3.55)

(3.56)

(3.57)

(3.58)

Quite often functions to be summed are, in fact, transforms, so it is of
interest to obtain a representation for their sum. This representation will
enable accurate numerical computation to be performed and will also permit

the derivation of accurate bounds. Accordingly, let

fo= fo " e () di

(3.59)

which is assumed to converge absolutely for z > 0, and let x > a > 0, then

one has the following.
Representation Theorem:

Sf(z)Az_-

- -w;lf(t) dt.
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Proof. In order to establish the representation, the extended definition of
the earlier section will be used. For the construction of the sum, consider
first [*° e™**f(u) du; one has

fa e (u) du = f " M gy /:v e () dt
= fo " fyde fa " gt gy (3.60)

oce—(k+r)a
=_/0 A+tf(t)dt'

The interchange is justified by the absolute convergence of f (2) for z> 0.
Because if(z)‘ < M for some constant M uniformly for z > a, the series

o0
0 Y e EHIf(x 4 jo) (3.61)
=0
is absolutely convergent; also, because

jzoe"(k+f)]w < jzoe—kjw - e_kw , t> 0, (3.62)

the series is absolutely and uniformly convergent for ¢ > 0. One now has

‘”Z NI F (x4 o) = ‘”Z g~ o) f &~OHIL () gy

Jj=0 Jj=0

= f o M- "‘f(t)w Z (0o gy (3.63)
=0

—(k+t)x
f T—o-awaa! O .

Setting
e
F@y) = 1= (3.64)
and using (3.60) and (3.63), one may write
Sef(Haz= f FQO. + /@) dt (3.65)
a w 0
and hence

§ f@az=lim /:v FO A 7(0) dt. (3.66)
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The function F(y) is continuous for all y € [0, co] with

FO)=x—a- %w, F(o0) = 0. (3.67)
Hence
kl_i’x(r)x*_ FQ + 0/ () = FQO)f (9. (3.68)

Further, for A > 0, ¢ > 0, one has |F O+ t)| < M uniformly in A, ¢; also, for
A>20,126>0,0<3<a, one has |F(x +£)¢”| < M uniformly in 1, 7
hence

|F(x + 07 ()| < Me™¥|F (9)] (3.69)

uniformly for A > 0, # > 0. Because this is integrable on [0, oc), one now has
Sf@)Aaz= f F@y (1) at, 3.70)
a @ 0

which is the stated representation.

The following are examples of the representation formula:

X _ e_—t_ we—xt tv—l

?z %z = /:v( 1= ) oo dt, v>0, 3.71)
x 1 00 e-r we—xr .

?zz +1 %z - _/0. (T 1= e“‘") sin(®) i, (3.72)
xlnz 00 e—t we—xr

?—z-%z— —-/0. (T—lTe_F,)(}/+lnt)dt (3.73)

in which y is Euler’s constant. The case v =1 of (3.71) defines the general-
ized y-function y(x|w), that is,

V(xlw) = %%%z. (3.74)
The case w = 1 is the ordinary ¥ — function,(1.57); thus,
(x|1) = )—élA —fw e dt (3.75)
4% _W(x—lz z_o t l1—=et*)7" '

The integral of (3.75) is called the Gauss representation. One may express
¥(x|w) in terms of yY(x) as follows. From (3.74), one has

xfw |
=S -A 3.76
Vi) = S ~ Ay (3.76)
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obtained from the substitution z = wy. Also,

Vdt  xe1

i x/w |
1/r(x|w)=f T+ ?;Ay: new+ ?;Ay

1/w

and hence

V(xlw) = Inw + "’(‘E)

10. HOMOGENEOUS FORM AND BOUNDS
The identity (3.12), namely

Soeraz= [ owdi+Sowas
indicates that one may profitably study the form

H(x|w) = %qb(z) %z.

Chapter 3

(3.77)

(3.78)

' (3.79)

(3.80)

This form has a number of useful properties, among which is convenience of
numerical evaluation, as will become apparent in this chapter. The differ-

ence and derivative of H(x|w) have simple forms; thus,

1 x+w 1x
SHG)=5,8,00 5258004+

Il

#e+w) Az -89 Az

C+o)-90) ,
(/2] w

% o(2) % z.

© =N

I
wH 2Nx | —

To determine H'(x|w), one may differentiate

Heo) = [ o0di—03 6+

Jj=0

to obtain

(3.81)

(3.82)
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H(xlo) = —¢(x) — @) ¢ (x+jw)

j=0

= f i ¢'(t) dt—w iqb’(x + j@) (3.83)
x pry
= % (@2 Az,
The generalization of (3.83) by use of summability is as follows:
H(xlo, A) = %e‘“qb(z) AZ; (3.84)
hence, by (3.83),
H'(x|w, A) = %e’“qb’(z) % zZ—2A é eMoz) % z. (3.85)
Letting A — 0+, one again obtains
H(x|w) = § $@ Az (3.86)

It is now seen that the opgrators A and D commute with S .That could
have been expected because S commutes with translation, that i is,
x+a

S ¢(z)Az = S¢(z+a)Az (3.87)

Because ¢~ * is the eigenfunction for A andD, one expects this also to hold
for S Indeed, setting

1

AQ) = ; 1= (3.88)
one has from (3.7),
§ e Az = wh(wd)e ™™ (3.89)

so that the corresponding eigenvalue is wi(w8). The representation formula
of the earlier section now takes the form

§ 1@ Az= /:v e wr(wt)f (¢) dt, (3.90)

showing that § f (2) A z is itself a Laplace transform.
X w
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To proceed further, it is important to determine properties of A(y). A
useful inequality for this purpose is Jensen’s [19]; that is, let f(x) be convex
for x in an interval I and let p(x) > 0 for x € I, then

f P (x> £ (1) f () d,
I

I

(3.91)
w=[xotoas [ oan
1 1
Thus, from
1
1-e” =yf e™du (3.92)
0
follows
1—e™ > ye, (3.93)
One has, from (3.88),
1 e’
V)= -5+——— 3.94
0=+ 57 (3.94)
and hence, using (3.93),
1 1
Vo) —-=5+—5=0. (3.95
69 R )

Because A(0) = —1, A(00) = —1, the monotone decreasing character of A(y)
establishes

—1<A(y)_<_—%,

3.96
—i<ap)+i<o. (3.96)

Bounds for H(x|w) may now be obtained from the representation of
(3.90). Let |f(#)| < M, then, since

1n£ - 1/,(%) =- fo " ) dt > 0, (3.97)
one has
‘%f(z) az| < M[nZ-y(3)], (3.98)

and from
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1n£ _ w(i) - % =— fo " e (wh(ot) + lw)dt > 0 (3.99)
and

§ f@ Az+ial() = [i° @A) + o) () dr, (3.100)
it also follows that

§f(z)%z+§wf(x) < M[ln%— w(ﬁ) -%] (3.101)

Equation (3.99) also implies the useful inequality
1
Y(x) 5lnx—ﬂ, x>0, (3.102)

A further result is obtained from (3.100) on assuming f(¢) > 0, thus, from
(3.96),

8/t az <~ Jof . (3.103)

It is clear, from (3.59), that £(¢) > 0 implies f(z) is of constant sign for
z > 0 and alternates with respect to r, that is,

~1fP@ 20,  r=01,2--. (3.104)

Such a function is called completely monotone. The Bernstein theorem [11]
implies that if f(z) is completely monotone for z > 0, then f(#) > 0; hence
the condition for_(3.103) may be restated in terms of f(z), namely the
requirement that f(2) be completely monotone.

It will now be shown that A(y) is convex for y € [0, 00). This will permit
the construction of an accurate lower bound for H(x|w). Direct calculation
shows that

e +e ¥
(1-e?)
It is sufficient to show that A”(y) > 0 for y > 0. Setting 1 —e™ = a so that
0 <a <1, one has

e — 2 _(1—&)(2—&)'
V') = Cin(l —a)f " ; (3.106)

thus A”(y) > 0 is implied by

—In(1 - )7’ 2
[ o ]S(l—a)(Z—a)' (3.107)

V() = 33 _ (3.105)
y
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The corresponding power series expansions are

[ In(l — oz):| Z"J

) =0 (3.108)
— = Y -2
(l-a)2—-a) j;o
Since
—ln(l-a) X 1 o
b Clall) N S Y 3.109
o #Zoj+1 ( )
one has
—-n(l -a)]® &,
{_a_] = b (3.110)
=0
with
U 1 1 2 &
b, = = hl 3.111
i ,};fj+1—11+1 jt2&T (3.111)
thus,
J 1 2 k+1 31 2
% = kzgj+1—kk+2}:1 (3112

Observing that

1 2 2 1 1
J'+1—kk+2"j+3[/+1_k+k+2:|’ | (3.113)
one may write aj in the form
k1 k1

% J+3Zj+1—kzl ,+3Zk+2}:, (3.114)

One further modification of the form for a; is needed. It is observed that

2
1 I:—ln(l —a):| (3.115)

l-a a
generates the coefficients
] k+1

S TR @116
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and hence, from (3.111),

J 1 k+1 J k+l
;H - ; ; ; 7 (.117)
The final form for g; is now
6 & 1
"Tzk_ZY (3.118)

Since the double sum of (3.118) is monotone increasing, in fact O(In%j), it
follows that a; reaches a maximum before decreasing to zero. This occurs at
Jj=5,for Wthh a; < 1.95417. The coefficients 2 — 2 ~/ are monotone increas-
ing and 2—27 > g, for 0 <j <5 (2—27° = 1.96875); hence a; <2 —27
for all j > 0, Thus A”(y) > 0 and A(y) is convex on y > 0.

It is now possible to prove the following theorem.

Lower Bound Theorem: Let f (2) be completely monotone and absolutely
convergent for z > 0; then

S Sf@azz f(x)wk|: A ’(x)} x> 0.
f(x)

Proof. The representation of (3.90) is applicable; also, one has f(£) > 0 as a
consequence of the complete monotonicity of f(z). One may now use
Jensen’s inequality, (3.91), with p(f) = e~™f(r), the convex function being,
of course, wA(wt). A simple calculation shows that 1 = —f'(x)/f(x), hence
the inequality of the theorem follows.

Comment: _Equality occurs for f(z) = e7* (5 > 0) which however, is not in
the set of f(z) considered. If the class of Laplace-Stieltjes transforms, f(z),
defined by

7o) = fo °_° & dF (1) (3.119)

were considered [F(f) monotone increasing], then e* would be included.
Further, the case 8 < 0, is, in fact, also included in the set of equality but the
range of values of § for which the sum exists has not yet been established;
this will be done in Chap. 4.
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Corollary: If the sum and integral converge then

wj;iof(x +jw) < f f(eyar - f(x)wk(-wj}((;‘))) £>0.

Example 1: Since

X1
Y(x|w) — §; (3.120)
one has
w
- 121
Y(xlw) > Inx + 1 A= (3.121)
Example 2: For f(z) =z, v> 1, one has
1 w
. 3.122
Z (x+ jw)" v — Dxv! + x'(1 — e=@v/%) ( )
Similarly, the mequality of (3.103) yields
1 w
—. 12
]z_; (x +jw)" (v—Dx! o (3.123)

11. BERNOULLI’'S POLYNOMIALS

The Bernoulli polynomials and numbers arose in the investigations of Jacob
Bernoulh (Ars Conjectandi Basilaese, 1713) concerning the sum 1% +2* +
-+ n*. Subsequently, they have become very useful in asymptotic investi-
gations. They can be quite conveniently studied by means of the Nérlund
sum theory developed here. Detailed accounts may be found in Refs. [9 and
20].
The Bernoulli polynomials [17], B,(x), are defined by

By =1, Byx)= %vz"'lAz, v 1. (3.124)
The enhanced polynomials, B,(x]w), defined by
B,(x|w) = §vz“-1 Az (3.125)
@

occur frequently and also allow ready deduction of properties of B,(x). The
substitution z = wy in (3.125) shows that
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B (X
B,(x|o) = o Bv(w). (3.126)
From (3.124) follows

AB,(x) = vx""!,

DB‘,(JC) = va_l(x), (3.127)

which are often taken as the defining relations for B,(x). An expansion for
B,(x + h) in powers of A is obtained as follows

B+h=Y X DB

=0 J
= Z ( )h’B‘,_j(x)

in which use was made of the derivative relation of (3.127). The numbers
B, = B,(0) are called the Bernoulli numbers. One now has, from (3.128),

B,(x) = Z (}))xva_j. (3.129)

j=0

(3.128)

Setting 7 = 1 in (3.128) and using the difference relation of (3 127) provides
the following formula

v—1

)3 (}))B,(x) =w"l,  v>1, (3.130)

/=0

which may be used as a recursion for the determination of B,(x). Setting x =
0 in (3.130) yields the following recursion for the B, :

v=1
By =1, Z(}))Bj=0, V> 2. (3.131)

=0

The first few Bernoulli polynomials and numbers are given in Tables 1 and
2.
Using (3.124) in the form

E vy, Bu(xlw)
%z %z_. 1 (3.132)

and (3.33) provides the following solution of the original problem of
Bernoulli:
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Table 1 Bernoulli Polynomials

By(¥) =1

1
Bl(x)=x—-2—
By(x) =x —x+é

= 3__ it
By(x) =x 2Jc2+2x

1
Byx)=x" =28 +x* ——

30

Bs(x)=x* —%x“ +§x3 —%x
Bs(x)_x —3x° +2x —%x +412
Bi(x)=x —-;-x +;x5 %x3+éx
By(x) = x* — 4x’ +134x5—-73- 4+§ 2 ?16
By(x) =% —%xs +6x" — 251 5423 —%x
Bio(x) = x'° — 55° +175x8 —7x8 + 5x* — i.wc2 —{--65—6

wg(x +jw)f = Bp(x+ "‘Iljj’_)l_ Bk+1(x|w); (3.133)
equivalently,

g(x + )t = kak+1[(x/w)kt"3 = By (x/0) (3.134)

Replacing » by n+ 1 and setting x =0, w =1 gives

n
k _ Brpi(n+1) — By
> = E1 : (3.135)

Applying the multiplication theorem of the principal sum to B,(x|w), that
is, substituting into (3.15), one has

B(512) = 5.3 8x + 12 0); 6136
j=
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Table 2 Bernoulli Numbers

By=1
pe-]
hel
ok
ok
it
By = %

Bz %
By, =%
Bis= —%

thus, replacing x by mx and setting o = m,

1 m=—1
B,(mx) = ;ZBV(mx +jlm), (3.137)
j=0
S J
— V= —
=m ;Bv(ﬂm). (3.138)

This is the multiplication theorem for the Bernoulli polynomials.

The arguments, x, @ — x, are called complementary. The following con-
siderations introduce the relation expressed by the general complementary
argument theorem to be discussed in Chap. 4. From

%F(xlw) = ¢(x), (3.139)
that is,
Fx+ “’""a)) —F) _ 0, (3.140)

one obtains
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F(x| —w)— F(x—o| -0) _
— =

o(x) (3.141)

on replacing w by — and assuming that the principal sum F(x| — o) exists.
But (3.141) implies

A F(x — 0| — w) = ¢(x) (3.142)

from which one has
F(x — w| — w) = F(x|w) + p(x) (3.143)

in which p(x) is a periodic of period w. This is called the complementary
argument formula. The character of ¢(x) determines p(x).

For application of these ideas to B,(x), observe that (—1)"+le+1(1 —-X)
satisfies

ADHB (1 —x) = v+ Dx’, (3.144)
which is verified directly; hence,
By(®) = (1) B, (1 — %) + p(x). (3.145)

Since B,(x) is a polynomial, p(x) can only be a constant. Thus, differentia-
tion yields the result

B,(x) = (—=1)"By,(1 — x), (3.146)
which is the complementary argument theorem for the Bernoulli polyno-

mials. It is now seen that B,(x) is symmetric about x = 4, and By, 1(}) = 0.
From (3.127), one has

B,(l)=B, vx2, (3.147)
and, from (3.146),

B, =(-1)’B,(1)=(-1)’B,, v=z2, (3.148)
hence

By =0, vx>1 (3.149)

Further properties of the numbers B, follow from the generating function
for B,(x), to be derived now. Let

gt x) = i B”T(,x)t“, (3.150)
v=0 '
then (D = d/x)
Dg(t, x) = 1g(t, x), (3.151)

hence
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g(t, x) = Ae*'. (3.152)
One has (3.127)
Ag(t, x) = A — 1) = te*, (3.153)
and hence
1
glt,x) = (3.154)

¢ _ 1 ¢
Similarly, one derives

Xt

wte X, B,(x|w
= o(41®) . (3.155)

e — !

v=0

Clearly, the series of (3.155) converges for |f| < 27/w, hence B,(x|w)/v! is
O((w/2m)"). The generating function for the Bernoulli numbers follows from
(3.154), namely

o]

Loy By (3.156)

!
=0 v

The known expansion [21]
2

L= t+2it— (3.157)
e—1 " 2 T4 anin? '

for the generating function can be written in the form

-1 1—_+ZZ( 1)v+1(27m) v’ (3.158)

n=1 v=

hence, interchanging the order of summation,

— _1 S _ 1yl v,
il 2+2§( 1) e )2v§(2 lad (3.159)
Here
=Y (3.160)
n=1

is the Riemann zeta function. Equating coefficients of (3.156) and (3.159)
provides the result

2(2)!

— (11
2v"( 1y (271’)2v

L), v>1 (3.161)
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from which one has
(-1)"*'B,, > 0. (3.162)

Since ¢{(o0) = 1, (3.161) gives the asymptotic behavior of B,, for v large. In
view of the recursion (3.131), the Bernoulli numbers may be assumed com-
pletely known, hence (3.161) in the form

(1 1 (271_)2\1
provides the value of ¢(2v). Special cases are
2
7
4
=2 3.164
o) = 5. (3.164)
6
7
86) =55

12. COMPUTATIONAL FORMULAE

The material of this section is concerned with various practical expansions
and with the means of numerical evaluation. These expansions are derived
in a formal manner with no attention given to their range of validity. This
may seem somewhat unusual but, in numerical practice, one usually cannot
ascertain a priori the conditions of validity; however, pointwise error esti-
mates will be derived in terms of derivatives.

The first expansion to be considered is Norlund’s version of the Euler-
Maclaurin formula to be studied in Chap. 4. Let

F(x + holw) = x+§hw #(2) Az, (3.165)

then

d x+hw
F(x+ holw) = / o(2)dz + § o(2) %z
’ o (3.166)
=/ o(2)dz + §¢(x+z)%z.

Substituting the Taylor expansion for ¢(x + z) in powers of z into (3.166),
one has
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>3 ho .V
F(x + holw) = / $@)dz+S > %qb(")(x) Az
a =0 V' )

. , < }g) v (3.167)
_j; o(2) Z+§ﬁ¢ (x) Sz %z.
Since
ho B, (hwlw) ™!
v _ D+l _
Sz Az=—"1 —v+13v+1(h), (3.168)
one obtains
>3 o) wv+1
P+ holo) = [ 0@ s+ Y s Bt (), (3.169)
a = v+ 1)
and hence,
x+hw X X’
S ¢(zx)Az= / ¢z + ) %Bv(h)qa(“-l)(x). (3.170)
a 2] a = Vi
The special case # = 0 is of particular importance, thus
S (z)Az—f¢(z)dz+f:“’—vB =D(x) (3.171)
p ¢ > - g - v! l)¢ . *

This expansion is asymptotic for x — oo and also for w — 0+; it is not
usually convergent. It provides, however, excellent approximations. It is, of
course, exact when ¢(x) is a polynomial.

Let
_[ @ o )

Oniie) = [ o@)ds + 32 58,4 (3.17)
and define R,,(x|w) by

$6(2) A7 = Qn(310) + Ry(3l0). (3.173)
Then, by (3.171), one may take

™! o)
Ry(x|w) = m3m+1¢ () (3.174)

in which m may be increased to obtain the first nonvanishing term. An exact
representation of R, (x|w) is given in Chap. 4. An example of (3.173) and
3.174) is
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S0 8z = [ 620 — ho(x) + ™ () + Ro(xlo),
a (3.175)

Rutala) 2 =272

2T 207
Nérlund’s formulation of InT'(x) is
InT(x) = Inv27 + SlnzAz (3.176)

Application of (3.175) yields

InMx) ~ (x-Hlnx—x+Inv2r+ 4, X — 00,
R 1 3.177)
o e —
2 % = o
which is, of course, Stirling’s formula.
Apphcatxon of (3.171) to the evaluation of Se 5 Az yields

By 52
Mo) = 2 Z(2k), L (3.178)

which, in fact, converges for |§| < 2. The expansion could also have been
obtained from (3.88) and (3.156).
The asymptotic property of (3.171) implies that, for large enough m,

F(x|w) — Qm(xl@w) — 0, X — 00, 3.179)
The function Q,,(x|®), therefore, provides an increasingly good approxima-

tion to F(x|w) the larger x is. It is, however, possible to obtain an approx-
imation when x is not large by the following device. From (3.33), one has

r—1
F(xlw) = F(x + rolw) — o )_ ¢(x + jo), (3.180)
J=0

hence

F(x|w) = F(x + ro|w) — Qp(x + ro|w)

r—1
+ Q% + rolw) =0 Y ¢(x + jo); (3.181)
j=0
thus
r—1
F(x|w) = Qu(x + rojw) — o Z¢(x + jw) (3.182)
J=0

in which the error is precisely
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F(x + rolw) — Om(x + rolo). | (3.183)
In view of (3.179), one also has

F(x|w) = lim [Qm(x + rolw) — w Z; #(x + ja)):l (3.184)
or, equivalently, )

F(x|w) = Qm(xl0) + ]Za [A Q(x + jwolw) — ¢(x + jo)]. (3.185)

As an illustration of (3.182), the computation of In'(x) to an accuracy
better than 10~ uniformly for x > 1 may be accomplished by choosing

Q) =(x—Hlnx—x+In2r+ 1k (3.186)

and approximating by

9
InT(x) & Qa(x +10) = Y _ In(x + ). (3.187)
=0

Define

¢'(x)
¢(x)”

which is the expression used in the lower bound theorem; then L(x|w) pro-
vides an excellent approximation even when summing a function that is not
completely monotone or even a Laplace transform. Let R(x|w) designate the
error, so that one has

Lx|w) = ¢p(x)wr(—0——= (3.188)

§¢(z) Az = L(x|o) + R(x|o). (3.189)

Then an estimate for R(x|w) may be obtained using (3.171) and (3.178), and
the following expansion is obtained,

L(xlw) = w¢(x) + 50 9(x) - 720 ”;(("))2 bl (3.190)
Use of (3.171) yields the expansion
S¢(Z)Az = —-w¢(x) + o 2¢'(x) — 72060 " (x) + (3.191)

hence
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¢l(x) "
R(x|w) = =5 |:¢( 2 —-¢ (x)]- (3.192)
An interesting implication of (3.192) is the inequality
¢ (x) 1 3.193)
o 2 = ¢"(x) (

valid for completely monotone functions with equality occurring for ¢(x) =
e~%. Generally, however, the sign of R(x|w) depends on x and w.

The numerical computation of Q,(x|w), Ry(x|w), L(x|w), and R(x|w) may
be accurately and conveniently accomplished by use of numerical differen-
tiation. Let

8, = EM* — EH2, (3.194)
then the following formulae are suggested:

3 3 1
P'(x) =~ ( 8o — % = 0an + 25 56h)¢(x)
(3.195)

9"(x) = Paiqﬁ(x)-

The integral in the expression for Q,,(x|w) may be evaluated by use of
standard quadrature rules such as the Simpson or Gauss-Legendre rules
[22]. The Gauss-Legendre rules are particularly efficient when applied to
sufficiently smooth functions; an n-point rule has degree of precision
2n — 1. Writing the rule in the form

1 n
f $(2)dz =Y AP, (3.196)
-1 k=1
then the nodal points, z}c , and weights, A;c"), are symmetric with respect to
z =0; that is,

Agcn) = Aﬁ'ﬁkﬂ, chn) = —Zn—k+1(1). (3.197)

Thus, it is sufficient to tabulate only for 0 < zgc") < 1. Table 3 lists the values
for n =10,

The numerical evaluation of S} f(z) Az directly from (3.90) is readily
effected by use of the Gauss-Laguerre qfiadrature rule. This rule takes the
form

(e <]
f e”'f(H)dt = ZA(")f(t(")) (3.198)
0 k=1
and also has degree of precision 2n — 1. Writing (3.90) in the form
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Table 3 Data for Gauss-Legendre Rule

200 A0

.97390 65285 06667 13443

.86506 33667 .14945 13492

.67940 95683 .21908 63625

.43339 53941 .26926 67193

.14887 43390 .29552 42247
X~ ., (o [t
Siirgem [Ty ) |
Sf@Az fo e 2A(Z2)/(5) 4 (3.199)

one may identify (3.199) with (3.198). Table 4 provides a list of £/® and
AL

kThe negative numbers in parentheses indicate the power of 10 by which
the Ago) are to be multiplied.

A quadrature evaluation proceeding by successive derivatives, such as
(3.170), is said to be of Euler’s type. One may also obtain evaluations in
terms of successive differences, in which case they are called Laplace’s type.
An expansion analogous to (3.170) will now be derived.

From (1.8), one has

S(x+2) = i ( 2/ “’) ALg(%), (3.200)

v=0 v

hence, using (3.166),

Table 4 Data for Gauss-Laguerre Rule

tgclo) AgclO)
13779 34705 30844 11158
72945 45495 40111 99292
1.80834 29017 21806 82876
3.40143 36979 62087 45610 (-1)
5.55249 61401 95015 16975 (-2)
8.33015 27468 75300 83886 (-3)
11.84378 58379 28259 23350 (-4)
16.27925 78313 42493 13985 (-6)
21.99658 58120 18395 64824 (-8)

29.92069 70123 99118 27220 (-12)
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"o az= fx¢(z)dz+h§z (Z{Jw)AZ,qb(x)Az
w a v=0 @

= ./ax¢(z)dz+§:Az,¢(x)%u(z{Jw) %z.

v=0

The evaluation of the inner summation is
h h
éu(z/w) AzZ= wS(z)Az
0 v w o\v
h 1
=w( )—wf( v )dv.
v+ 1 0o \v+1

The numbers L, defined by

L,=f0](3)dv

are called the Laplace numbers. One now has

Chapter 3

(3.201)

(3.202)

(3.203)

(3.204)

Fowar= [ oai+o);(})aris o) Larie,
w a v=1 v=1

which is analogous to (3.170). The important case # =0 is

x X 0

So)az= [ s -w) LAL o),
w a v=1

and, when a = x,
X 0 1
— ey V=
S¢az= w;LvAw $().
The generating function, g(¢), for the L, namely

o0

g(t) = ZLvtv»
v=0

is readily obtained from (3.204); thus

(3.205)

(3.206)

(3.207)

(3.208)
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g(t) = 2]0] (g)z“ dv

1
0
_ t
T In(l+9’
which converges for |¢| < 1. The corresponding recurrence relation is
1 1 1 -1
Lv=—2-Lv_1—§LU_2 +21-L|,_3—---+(u_|_1 Ly. (3.210)

Table 5 lists the first few numbers.
The Laplace numbers may be written in terms of Stirling numbers of first
kind; thus from (1.34),

v v .
(v) = ; al
hence, using ('3.204),

Table § Laplace Numbers

Ly=1
1
Ll = 5
1
L2 = - 1—2'
1
Ly = ﬂ
19
Li==-73
3
Ls=1s
863
Ls = - 50450
_ 215
7724192
_ 33953
8 = T 3628800
57281
% = 7257000
3250433
Lig=-

479001600
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1 sj
L = \ 3.212

The mean value theorem applied to (3.204) yields

L,= (9), 0<6<l, (3.213)
v
which has a fixed sign for any choice of 8 € (0, 1), hence
(-H*'L, >0, v>1. (3.214)

Pointwise error estimates for the Laplace expansion may be obtalned
simply by considering the next term. Consider the expansion to Alg(x)
and define R(x|w) by

H(xlw) = — 0p(x) + 5 08,8(x) — 3 0A50(x) + R(x|w); (3.215)
then

R(x|w) = 2 wA)d(x). (3.216)
Since

A,=E°-1=e¢’—1=wD+--, (3.217)
one has

wALH(x) = '¢"(X) + - (3.218)
so that one may use

R(x|w) & S w " (x) (3.219)

if the denvatlve form is more convenient. Error estimates obtained in this
manner presume, of course, convergent or asymptotic behavior of the infi-
nite expansion for the function represented so that the basic error is due to
truncation.

When the infinite integral and series both converge, then (3.207) becomes
the classical Gregory-Laplace quadrature formula [20]

00 b= © ,
fx ¥ dz=w ; ¢(x +jw) (3.220)
—J0p(x) + f0A,$(x) — FwAle(x) +-

This formula is very useful when numerically solving integral or differential
equations producing the values ¢(x -+ jw), j > 0 and the value of the integral
is required. If ¢(x + jw) has been computed for sufficiently large values of j
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so that the truncation error of the infinite sum is negligible, then the correc-
tion terms can provide high accuracy.
Consider the following example. The Volterra integral equation

o) =3¢ +.3 f ’ HEY ¥V dE (3.221)
0

arose in an M/G/1 queueing problem with reneging (see Chap. 5); it is
required to compute fg’° &(») dy.The exact solution is known for this exam-
ple, namely

#y) =3I 67"
/ooqb(y) dy = (15¢° — 24)/9 = 370198,
0

hence a control is available for the quadrature method of (3.220). The choice
o = .l was made and a numerical solution of (3.221) was constructed. The
values obtained are

150
1) ¢(.1j) = 385373,
J=0

(3.222)

#(0) = .300000,

(3.223)
A,¢(0) = —.020488,
A2¢(0) = .001028,
A3 ¢(0) = —.000002.
Use of (3.220) up to the term AZg(0) yields
fo ” (»)dy = 370198, (3.224)

which is seen to be correct to the last figure. The error estimate of (3.216)
yields

R(0].1) = —5.28*107°, (3.225)

The evaluation of
H,(xla) = S p(2)(2) A 2 (3.226)
in which o(z) is a given weight function is often useful. One may write
Hy(x|w) = % olx + 2)p(x + 2) 13 z, (3.227)

hence, using (3.200),
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Hyxio) = 3 Ala)ALH0), (3.228)
v=0
with
0
A (x|w) = % olx+2) (z/w) % z, (3.229)

The important special case p(z) = e~ yields”
0

A(x, 8|w) = we™ % Pl (':') Az. (3.230)

Define A,(w) by
S e 3.231

Ajw) = w§e (':')Az, (3.231)
then comparison of (3.231) with (3.230) shows that

Ay(x, 8lw) = %e-*‘xA,(aw); (3.232)

thus only A,(w) need be investigated. The generating function for 4,(w),
namely

[+2]
g =) A @) (3.233)
v=0
is
0
g =ow % e (1 + *Az. (3.234)
This can be written in the forms
g(t) = oM —In(1 + p)), (3.235)
1 w
g(t) = (3.236)

1—- (/o) +0 1-0+pHe "

The first few coefficients A4, (w),may be obtained by direct expansion of g(¢);
Table 6 provides a listing.

*It was pointed out to the author that F. D. Burgoyne in 1963 had obtained a similar
quadrature formula for the evaluation of an integral. :
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Table 6 Coefficients for Exponential Weight

Ae) =1 —7—=.
we™®
A1) =~ et
1 we™ %
Ayw)=—5~7-= T—eoyp'
11 we™
A3((0) ="3" "2

1_i 11 we™*

In practice, one uses (3.229) for p(z) = e~* in the form

Hy(x|w)= —e—a" A4,(80)A,¢(x),
f Z; (3.237)

R(x|w)= le-""A4(aw)A B(x).
The error, R(x|w), is estimated by the next term of the expansion. Values of

w smaller than .01 should not be used in the formulae of Table 6 because of
severe loss of numerical accuracy. It will be proved in Chap. 5 that

-4 @) >0, w>0v>1l; (3.238)
)

a consequence of the proof will be an expansion for 4,(w) permitting accu-
rate computation when e is small.
An example is given by the evaluation of

e—z

142z 2
Here p(x) = e™" so that (3.237) will be used. One has from (3.234)

Ap(.2) = —.103331,

A;(.2) = .016633,

A5(.2) = —.008151, (3.240)
A3(.2) = .005103,

A,(.2) = —.003600.

1
S: (3.239)

Thus, for the Norlund sum, one gets

e—Z

1+

1
S —Az= 019311 (3.241)

N
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Table 7 Coefficients for p(z) = z

ot = L%,
Cixlw) = ‘;’—;‘,2
Cato) = =45
Catr) = 2220
with
R(1].2) = —6.7*107". (3.242)

The weight function p(z) = z is important in applications such as com-
puting means; it may be derived from p(z) = % by differentiation with
respect to § at § = 0. Define C,(x|w) and g(¢) by

0
C(xlw) =w %(x + z) (z;) Az,
00 (3.243)
g(t) = ) _ Cy(xlo)t";

v=0
then g(¢) is
g(t) = wxi(—In(1 + 1)) — *N(=1n(1 + £)). (3.244)

The determination of C,(x|w) is simply accomplished by use of (3.178) and
the expansion of In(1 + ¢) in powers of ¢. The first few coefficients are given
in Table 7.

PROBLEMS

1. Show

+1 (-n+1)
R
a n-1/, n-1

2. Show

X 2 1 1
ST ek it £
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3

10.

Show

Z2+z+1
Z+DE+2)E+3)

% Az =x — 63(x + 1) + 201n2

1 29 4 20 29 1

_Z e il .
2T I T xF 1 2+ D12

Hint: Consider the Newton expansion in forward differences of z> + z +
1 about z = —3.

. Show
x _wsinm(x—4w) sinma
§ cosmzAz=5 sin(mw/2) m
. Show
x B wcosm(x —1w) cosma
§ slamzAz=—3 sin(mw/2) m
. Show

$:(0)a=x(,20) - (523) - [T 1) - (22

Show that the repeated sum F(x|w) for vx"~! (v > 1) on the range (0, x)
is

Fy(x|e) = (x — ) B,(x|) — F”IBM (*¥l).

. Obtain the following expansion for the y¥-function:

o (DML,

1ﬁ(x)=1nx—vz=; T D D)

. Obtain the approximation (p > 0)

L L0y, L
j=01+pei“’ w 21 +p

Obtain the following asymptotic formulae:

S ~tantx— i 1

§22+1 tan™ x 22+1, X — 00,
L 1 1 1 1

~ 24/ Ly —
- S 2vn+1 +;(2) ;— 24(”+1)m’
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11.

12.

13,

14,

15.

16.

Chapter 3

Let f (2) be completely monotone for z > 0 and « > 0 and then show

fv e f(x+dt —w i e Y°f (x + jw)
0 j=0

> wf(x)A (w(a —%) ) .
Show

A =— i (-1 1L, =78y,
v=]

Show
o0
—M=In(l +8) =Y Lyt
v=0
Show that the coefficients, C,(x|w), in (3.243) can be expressed in the
form
C(x|lw) = = [VLypy + (v + DLyya] —wxLy,;, v 0.
Define g(r) by
0 7
0= 8rern
show
n 1 1
2() T ssins s—1
Define the Binet function, w(x), by

Inl(x) = (x —HInx — x +In V27 + u(x)
and ¢(x) by
¢(x) = (x+HAlnx -1,

and then show
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> 1
= L T TG

w0 =3 - S o)Az,

wx) =D o(x +J).

J=0
17. Obtain the expansion (§ > 0)

& —z—eh - (_ l)l —(1+/8)x .
§e Az = Z Te wA(w(l +j8)).
= F

18, It is expected that L(x|w) (3.188) will constitute an exceptionally good
approximation for functions ¢(x) satisfying

¢ (X)
o(x)*
Show that

K[cosh(cx + d)]*3,
K[sinh(cx + d)]*3,

K, ¢, d constants, are solutions.

~¢"x =0.

19 Obtain the following expansion for the Riemann zeta function;

;(s)——+2y,(s

Jj=0

(=1y (lnz)’
T 1

i = i

20. Show
1
{) <57~ 26)
21. Solve
u(x + 1) — u(x) = xsinx.
22. Define ¢,(x) v =0, 1, 2,...) by

$(x) = (u-)ic-l)

and then show
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23.

24,

Chapter 3

$ 4,87 = 6,1 (3)

_ Gy
a0 =0
1+ 57D 25 g

y=0

Let (see Prob. 22)

)= ch¢v(x);

v=0

show

X
¢y, = AV / f(®dtl—y,  a arbitrary,
a

S$7@A7=Y e, (¥)

y=0

Obtain the following numerical results for y,, ¥, of Prob. 19:

1
Yo = —?%Az =.57722,

1
"= §1325 Az = 07282

Hint: The use of L(x|w) (3.188) or of (3.207) serves as an excellent
means of computation; (3.207) is often used to tenth differences.
These formulae are readily coded for use on a desktop computer.
Because many functions have the property that high-order differences
at a point x are small when x is large, high accuracy may be achieved by
computing

$/@)Az
for large x and then using the following identity obtained from (3.12)
and (3.33):
x % x+mw m=1 :
Sf@az= [ f@di+ 8 @) Az=0Y f(x-+u)
w a X+-mw j—'=0

The integral may be evaluated by a quadrature rule such as the Gauss-
Legendre rule (3.196).

25. Simpson’s rule for the infinite interval may be written in the form
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[ 80t = 51900)+ 490 + 2620) + 4630) + -+ 1+ R

show
R(@) =}86() Az +2§¢() Az + 500
®)=3 0 w 30 (Z 2w 3 ),
4
o
26. Simpson’s rule for the interval (a, ) is
h h
S =¢ [f(a+jh) +4f(a+§+jh) +f(a+h+jh)], b=a+nh
0
Define Rf by

b
Rf = / (@) dz - Sf,

then show

Rf =§ i h—:(zz-v ~ DB,V (@) ~ V@),

~ 1 1" _ v
B =5t (170 0 - g @ =10
27. Show
=1 ~In(e” - 1) 5
ZF-1 T w +4+144 ©=>0+.
28. Show
0 ) . 20
Se¥JAz= (__1)/+1 Z (v _ 1)(1) vgv—1 —J j>0.
0 © v—j+1

29. Show (a > 0)

J=1

30. Obtain the following numerical values:
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o0
= = 3.195947,
j; 4.5+ 3)3/2
o0
2= > = 14.96410.
=02+, IJ)lln(2 +.1))]
31. Let
Q(x) = 24/x = 2In(1 + /%),
then show
x 1 ,
0 1
ST ﬁAz = —.646439,
&1 Q(n) + .646439 _L 1 n— 0o
S+ ) 21+ /n’
32. Show
0 1 w T
STZ8 =3 Fe T

33. The Euler constant, y(¢|w), of a function ¢ relative to span w. is defined
by

Y@lw) = —SP(z2) Az

Show that the Mellin transform with respect to w is
- 11-

o9 = 16+ 1 - HJdts + .

34. Show
(n+1)w
MW)MPZWO/ mﬂ

if and only if
(n+Dow
im S ¢(2) A z=

n—00 (n4-1)w

in particular, this condition is met if ¢(z) is a Laplace transform.
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NOorlund Sum: Part Two

1. INTRODUCTION

The Norlund principal sum will be further developed. The Nérlund form of
the Euler-Maclaurin expansion (3.70) will be rederived in a rigorous fashion
and trigonometric developments for the sum will also be obtained. A special
class of linear transformations will be studied whose domain is the class of
entire functions of exponential type. Application of these transformations to
the solution of certain functional equations will be made.

The subset of entire functions for which various expansions converge
uniformly in the complex plane will be determined. These expansions
include the Newton forward difference formula and the Euler-Maclaurin
formula. Application is further made to the extension of the Norlund sum
to complex values of x, 4, . This extension finally allows a version of the
complementary argument theorem to be proved.

2. THE EULER-MACLAURIN EXPANSION

The periodic Bernoullian functions, B,(x), are defined by
B(x)=B,x)0=<x<l,

- _ 4.1)
B,(x+ 1) = B,(x), Vx.

75
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Since B,(1) = B,(0), v> 1, the functions B,(x) are continuous, and from
(3.127),
DB,(x) = vB,_,(x), v> 1. 4.2)

Thus _f?v(x) has continuous derivatives up to order v— 2. The function
D" B,(x) is discontinuous at the integers, x = 0, £1, £2, ...; this follows
from the discontinuous character of B;(x); thus
Bi(x)=x-1,0<x <1,
B, (0+) = -4, 4.3

Consider the summation formula, (3.170), applied toA ¢(x)
w

x4-hw 1 -+
S A¢DAz=g(x+ho) -~ | $a)dz
x w 4.4
= [ as@dz+ Y 2Bk 40000
w v=1 i w

a

Thus
o(x + hw) = / o(2)dz + Z — Bv(h) A "V (x). 4.5)

Since (3.170) is exact for polynomials, so is (4.5). It is the present object to
generalize (4.5) to apply to a wider class of functions. For this purpose, let
#™(x) exist and be continuous and let

R, = -—w"'f "'(h )¢("‘)(x + wz) dz, O0<h<]l. 4.6)
0
-Successive integration by parts yields
m wv _ _
Ru==2 5B 44700 + R, @7)
V=

Taking into account the jump discontinuity of B;(h — z) at z = A, one has

Ry = ~(h =~ D(x) + (h — P(x + @)

1 fte T (4.8
-2 @(2) dz + ¢(x + hw).

x

Hence, finally, the usual form of the Euler-Maclaurin formula:



Norlund Sum: Part Two 77

1 @ (v-1)
d(x + hw) = Z)/x P(2)dz + ; T!B"(h) % &%) + R 4.9
A simple application of (4.9) is to ¢(x) = €%; then
ho m m+1 l 7]
we _ m(h _ Z) wz
= Z=: B,(h) ~ 5 e dz. (4.10)
Since, for |w| < 2, lim,,_,o R, = 0, one has again (3.155), the generating
function of the Bernoulli polynom1a1s namely
hw o0 v
we ®
o =ZOWB,,(h). 4.11)
y= .

Consider now ¢(x)=cosx,h=1,x=—-w/2, then, after some
manipulation,

m

_cot vz( 1y (2 ),

( l)m 2m4-2 B () (412)
_- 2m4182) . _ I
Ssnwf2 )y @m+ @90z
Similarly, for || < 2, lim,,_, o R, = 0, hence
@ w_ o . w2v
ECOtE-— ;(—1) (2—‘))!32‘,. (4.13)

3. EXISTENCE OF THE PRINCIPAL SUM

The Né6rlund theory [17] will be presented to establish the form of the Euler-
Maclaurin expansion given in (3.170) and to provide conditions ensuring the
existence of the principal sum. The following conditions will be imposed on

$(x):
1. For some order m, ¢™(x) exists and is continuous for x > b, also

¢™(00) =0
2. The integral

/ ” B, (—2)¢"™ (x + wz) dz (4.14)
0

is uniformly convergent for b < x < B in which B may be arbitrarily
large.
Use of 'Hépital’s rule and condition (1) implies
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(m—v)
7N o, y=0.1,--.m. (4.15)

Climy e o

Condition (2) is implied by
3. The sum

o0

Y p"(x + jo) (4.16)

j=0

is uniformly convergent for b < x < B.
To see this, consider

o+l np el
f B (~2)¢™(x + wz)dz = Z f B,(—2)¢"(x + wz) dz
m j=n k
n+p

1
= Z./o Bo(—2)¢"™ (x + wz + wj) dz

J=n

1 Htp
= [ B2 Y ¢ + w2+ s
0

i=n

417
Thus the uniform convergence of the series of condition (3) implies
condition (2).

It may be observed that both conditions (1) and (2) are met if, for some
m, ¢ (x) exists and is continuous for x > b and if also for some fixed & > 0,
one has

lim %™ (x) = 0. (4.18)

X500

In the Euler-Maclaurin expansion of (4.9), namely

1 [+ 2w’
sxtho) = [ p@d+ Y S B0 4600
W Sy —1 Vi w
ol 4.19)
- %f B,,(h ~ )¢ (x + wz) dz, 0<h<l,
“Jo
the values x,x+w, -+, (n— )w are substituted in succession and the

resulting equations are added; also, the function ¢(x) is replaced
by e™*¢(x) (» > 0) and ~ e ¢(z) dz is added to both sides. The resulting
equation is
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X+nw n—1 .
/ e M Y(2)dz — w Z e MR 4 4 heo + jw)
a ]=0

- f T e g(e) dz + Z_;“;—,Bv(h)b“'l e ()]
o = 4.20)
_ Z a:—’Bv(h)Dv_l[e—A(x+W)¢(x + nw)]
v=1

wm+l

m!

+ f ,, B, (h — 2)D™[e D g(x + wi)] dz,
0

in which D refers to differentiation with respect to x. It will be assumed that
a>b,x>b.
Set

F(x|w: 1) = §e—“¢(z) Az @4.21)

and let n — oo in (4.20); then, using (4.15), the left-hand side of (4.20) exists
and, observing that the limit of the third term on the right-hand side of
(4.20) is zero, one has

F(x + holw; A) = / M)z + f: (::—:Bv(h)D"’][e“"cp(x)]
a v=1 7'

wm+l

+
m!

/ ” B,,(h - 2)D"[e T (x + wz)] dz.
0
(4.22)

The investigation will proceed by examining the limit A — 0+ of the
remainder term of (4.22). Using (1.110), one has

D"[e™¢(x)] = e™*(D — A)Y"(x), (4.23)
hence integrals of the form

L= /0 " Bo(h — e e 4 w2) de (4.24)
must be studied. It will now be shown that

Al_i)r&_ I, =0, v>0. 4.25)

Integration by parts will be applied to (4.24); accordingly, introducing the
function
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¥z, A) = / T B (b d (4.26)

one obtains
1, = 2 ¢ ) (x)y (0, A)

oo 4,27
+ wrle™™ / " D(x + w2)y (2, A) de. (427)
0

The behavior of the function ¥, (z, A) for A — 0+ is obtained as follows:
Y1(z, A) = e~* /@ e B, (h—z—1)dt
o 0

00 il _
=et Y / e B (h—z—1)dt

., o i _ (4.28)
= g~ Z e~ / e B (h—z—~1)dt
0

=0

1
- / e "B, (h—z~1)dt.
0

=W

e—sz

Integration by parts applied to the last integral in (4.28) yields

D _ —Awz 1 _
Buh—2) _e Ao / e B (h—z— D,

L —Awz _
Vilz.d)=e m+1 m+11—e>o f,

4.29)
and, hence,
. _Bu(h—2)
AE}& Yi(z, A) = 1l (4.30)
It now follows that there exists a constant ¢ for which
[91(z, 2)| < ce™* 4.31)

for all A > 0 and arbitrary z.
The first term of I, clearly vanishes for A — 0+ because Alir&‘ ¥1(0) exists

while the limit of the second term is zero in view of (4.15) and (4.31), hence
(4.25) has been proved. For the integral

o0
Iy= / e *HA B (h— 2)¢™(x + wz) de, 4.32)
0

integration by parts will again be used. Set
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Wa(2) = f ” B,,(h — 0™ (x + wi) dt; (4.33)
then
Iy = e *(0) — Aw f ” e~ MOy () dz. (4.34)
0

Because of condition (2), the limit of the second term is zero, hence
w -
lim Iy = y,(0) = f B,,(h — 2)¢"™(x + wz) dz. (4.35)
~ 0
One now finally has

Fa+hola) = [ o@ds + 32 B, (000
a = Vv

wm+1

+ !
m.

fw Bu(h—2)¢"™(x + wz)dz, O0<h<l.
0
(4.36)

Since all limits are uniform for b < x < B, F(x + hw|w) is continuous for x >
b. The expansion (3.170) is now made precise by (4.36), and the existence of
the principal sum has been established under conditions (1), (2) or (1), (3).
The differentiation formula of (3.45) may be derived from (4.36).
Assuming conditions (1), (3), F(x + hw|w) may be written in the form

Far+hola) = [ @ e+ 3% B0
a = v
4.37)

m+1  pl 0
+w f B, (h —Z)Z¢(m)(x+wz +jw) dz.
0

|
m =0

For m > 1, differentiation with respect to 4 yields

m—1_y
DF(x+ holw) = = B,(W$”(x)
v=0
+_Lfl B_i(h— z)i¢(m)(x+wz +jw) dz,
(m—1)Jy ™" =0

(4.38)

in which D indicates differentiation with respect to x. Letting 4 — 0 in (4.38)
now gives
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256 az=5¢@) Az +0(@. (4.39)

Continuing the differentiation of (4.38) with respect to A up to order m,
observing the jump at z = h of By(h — z), and letting A — 0 yield

D"F(xlw) = ¢" V(%) — @) _ " (x + jo)
Jj=0

' 1 oo
+wf Z¢(m)(x+wz + jw) dz.
0

=0

(4.40)

Hence

D"F(xlw) = ¢ D(x) —w ) _ ¢"(x +jo) + w fv ™ (x + wz) dz,
0

J=0
(4.41)
and, finally,

D"F(x|w) = lim ") —w Y ¢ (x + jw). (4.42)
j=0

Thus the principal sum has continuous derivatives up to order m; further,
since ¢ (o0) exists, one has, from (4.42),

Jlim D"F(x|w) = " D(o0). (4.43)

This property is characteristic of the principal solution of (3.1); any other
solution differs from the principal solution by a periodic, p(x), hence
lim, 00 p("')(x) must be a constant that can only be zero. Thus, only the
principal solution has the property expressed in (4.43).

The asymptotic properties of F(x|w) with respect to x = oo and w — 0+
asserted after (3.171) will now be established. As in (3.173), set

0no) = [[ grds + 3 560 444
wm+1 00 _
Rl = % [ =26+ i) d (445)
then
F(x1a) = Qp(xla) + Rp(xla), (4.46)

which is (4.36) for A = 0. Conditions (1) and (2) imply
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Jim R,(xlw) =0, 4.47)
hence
1im [F(x|w) — @m(x|w)] = 0, (4.48)

which is (3.170).
To study the asymptotic character with respect to w, the condition is now
imposed that

/bm |¢<'")(x)|dx, m> 1, (4.49)

be convergent. This clearly implies condition (2). From (4.45), for some
constant ¢,

| Rp(xl0)| < ca™! fv |¢<m)(x+ wz)‘ dz < caf” f ” |¢<"')(z)| dz,  (4.50)
0 b

hence |@™™ R,,(x|w)| is uniformly bounded in x and w. Also, from

m
Rppe1(¥10) = = Bpg™ () + Rp(xle), (4.51)
one has
. Rpi(xlw)
thus
R, (x|w) = o(™), m> 1. (4.53)
Defining Ry(xlw) = — wg(x) + Ry (xlw), (4.54)
one has
Ry(x|w) = o(1) (4.55)
and, hence,
1ir51+ F(xlw) = f &(2) dz, (4.56)

which reestablishes (3.20) under condition (4.49). -
It is possible to obtain a very simple bound for R, (x|w) in (4.46) that is
often used in practice. For this purpose the following assumptions are made:

¢™(x) is continuous for x > b.

(=]
> ¢(2’")(x + jw) is uniformly convergent for b < x < B (B arbitrary).
J=0
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lim ¢ VD(x) = 0.
X—0C
#*"(x) does not change sign (x > b).

Observing that By, (—z) = By,(2), one may write

X w m—1 w2v 2v)
F) = [ 9 =5000+ 2 0Bt W) + R 457
w2m+] 00 _ )
Ron =550 fo (Bom(2) — Bom)6® (x + w2) dz. (4.58)

Thus:
2 ,
o = Gt 22 |, Ban®) = B 5 4o+ ),
Jj=!
w2m+]

~ @m)

1 m (4.59)
‘/0‘ (Bom(2) — Byp) Z ¢(2"')(x +jw + wz)dz.
J=

Setting m = 2 in the multiplication theorem (3.138) yields
B, =@ -1B,; (4.60)

hence, since the maximum of |Byu(z) — Byn| on (0,1) is |Boym(}) — Byw| =
2(1 — 2'2"')|B2,,, , the Darboux mean value theorem applied to (4.59) yields
2m

w
2m)!

Thus, the error is smaller in absolute value than twice the next term of the
summation in (4.58); this is characteristic of asymptotic expansions.

Rom =0—By,¢® V(x), 16l <2. 4.61)

4. TRIGONOMETRIC EXPANSIONS

Trigonometric expansions for F(x|w) can be readily obtained whose coeffi-
cients are simply expressed in terms of ¢(x). These representations are some-
times useful for direct numerical computation and usually provide ready
means of truncation error estimation. The condition expressed in (4.49)
will be assumed so that F(x|w) will possess a continuous first derivative.
A Fourier series for F(x|w) will be constructed for xy < x < % + w, xy > b,
of period w which, by the condition assumed, will be convergent [23].
Accordingly, set

> 2mnx 2mnx
=1 - 1
F(x|w) = 3ay + E (ao cos —— + by sin ” ) (4.62)

n=1
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for which the Euler formulae for the coefficients are

2 X+

ay = —f F(x|w) dx, (4.63)
@ Jy,
2 [ate 2mnx

a, = —f F(xjw) cos—— dx, n>1, (4.64)
@ Jx o

2 X+
by == f Faloysin 2% gx,  n> 1. (4.65)

X

The integral of (4.63) is recognized to be the span integral, (3.22), hence
X
ag =2 f o(x) dx. (4.66)
a

For the integrals of (4.64) and (4.65), it will be convenient to combine them
into a single integral, namely

2 X0+ 2
a, + ib, =~ f F(xjw)e®™®dx, n>1, (4.67)
Xo
in which i is the imaginary unit, +/—1. Consider again the function
X
F(xlw; ) = S eMp(z) Az, (4.68)
o
which is given by the uniformly convergent expansion
00 =]
F(x|w; ») = f eMp2)dz — w Y _ e g(x + jw). (4.69)
a j=0
From (4.62), since F(x|w; A) = F(x|w) uniformly, one has
2 X +w 2 X+ 5
- f F(x|w)e?™/® dx = lim = F(x|w; A)e*™ dx. (4.70)
@ Jx, r—0+ W %o

The representation (4.69) may now be substituted into (4.70); interchange of
summation and integration is permissible by uniform convergence, hence
one gets

2 [rote 2 AX+2
— f F(x|w)e®™/® dx = — lim 2 [ P(x)e™PFTETE g, 4.71)
@ X A—04 X0

0

The desired coefficients are now given by

o0 2nnx
—__ 1 —AX
a, = AI-IE&- 2 fx e @(x) cos = dx, (4.72)
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, 2
b, =— AE?+2 /:: e M ¢(x)sin X

The integrals of (4.72) and (4.73) are not usually convergent at A =0;
however, integration by parts will permit the limit to be evaluated in terms
of convergent integrals. As an example, consider

dx. 4.73)

F(x) = §2zAz = By(x) (4.74)
for 0 < x < 1; then
a =0, (4.75)
00
a, = — lim e *4x cos 2nx dx,
A=0+ Jo
a (4.76)
b,=— lim e " 4x sin 2mnx dx.
A0+ Jo

In this case the integrals are easily evaluated and one finds
dmn? — 32 1

a, = lim = s
n A0+ (47[‘2”2 + AZ)Z 772”2 (4 77)
. 4rn )
b, = —11m4(4 5 2+Az)=0’
hence
- . cos 2mnx
B=) —>— (4.78)
~ min
As another example, consider
- & —8z _ l _ e
F(x) = ?e Az = 5 1= o3 4.79)
for 0 < x < 1, then
ay = 0,
* Gt
= — [ —(+8)x
a, = A1_1514’_2 [; e cos 2mnx dx, (4.80)

Lo )
b, =~ lim 2 f e~ O+ in 2mnx dx;
A0+ 0

hence,
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28
B . B
b= dm
" dmin? + 8%’
and
>, 28 cos 2mnx + 4mnsin 2wnx
Fx)=- ; dmin? + 52

87

(4.81)

(4.81b)

The Fourier expansion of the y-function will now be obtained for x; <

x < xp + 1. Since
x1
Yx) =S-Az
one has

X
a0=2ﬁ %dz=21nx0,

. Zix 2
a, = — lim e~ Zcos 2mnx dx,
A0+ PR X
. ax2 .
b, =— lim e Zsin 2nnx dx.
A=0+ xp X

Using the cosine and sine integrals defined by [24]

ci(x) = _]mcost
si(x) = fv snf

the formulae for a,, b, become
a, = 2ci(2wnxy),
b, = 2si(2mnxy);

thus the expansion for ¥(x) is

oc
Y(x) =Inxp + 2 Z (ci(2mnxy) cos 2mnx + si(2mnxg) sin 2wnx).

n=1

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

When the function F(x|w) has jump discontinuities, the Fourier coeffi-
cients are Q(1/n) and the series is not rapidly convergent. To improve its use
for numerical computation, the rate of convergence should be increased; this
can be accomplished by removing the discontinuity. For this purpose define

G(x|w) by
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G(xlw) = S@(@) — (%)) A (487)
Then A G(xp|w) = 0, so no jump is present, and
Fuwr=aﬂm+¢aw@—a—§) (4.88)
The coefficients of G(x|w) are designated by ay, aj, b}, and are given by
=2 [ (609 - $x0) d.

d,=— AH%I+ 2 f ” e~ (p(x) — P(xp)) cos 2mnx dx, (4.89)

b,=— lim 2 f e~ (¢(x) — ¢(xp)) sin 2mwnx dx.
A0+ xo

The evaluation in terms of ay, a,, b, is
[
, — — — — —
ay = ap 2¢(x0)(x a 2)’
sin 2mwnx,
@y = ay — Px0)————,

b, = by + ¢(x0)

(4.90)

cos 27mx0

As an example, consider the function defined in (4.79) for which a =0,
xp = 0, ¢(xy) = 1; one has

ap =0,
o B
4r’n? + 82’ (4.91)
52
A N—
"7 an(4min? + §2)’

the coefficients are now O(1/n%) so that the convergence has been much
improved. The Fourier series for G(x|w) is

o0 82 .
G(x|w) = "Z=1: |: o cos 2wnx + msm 2n'nxi|, (4.92)
and
F(x|lw) = G(x|w) + x— 1. (4.93)

Another representation of F(x|w) will now be obtained from the Fourier
series of (4.62) that is applicable for any x > b. If the formulae for the
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coefficients, (4.66), (4.72), and (4.73), are substituted into (4.62), the follow-
ing equation is obtained:

F(xlw) = f Co@dz—23 Jim. f " o002 2 — ).
a n=1 Xg
(4.94)

It is desired to set x = x;; however, at a point of discontinuity, the sum of
the Fourier series equals the average of the left- and right-hand limits. Let
S(x) denote the Fourier series for F(x|w), i.e., the right-hand side of (4.94),
then

_ (=) + SCoh)

S(xp) 3
_ F(xy + w|w) + F(xp|w) (4.95)
2
= F(xolw) + Swg(xp);
thus,
F(xo|w) = S(xg) — jwd(xo)- (4.96)

Now, setting x = xg, the required expansion is

27rzd2l

>3 o0 00
F(xlw) = dz —log(x) -2 li f —h z
o) = [ 0(6)dz — Joo) > tim [ Mo+ e’
(4.97)
In this form, the infinite series is seen to express the difference F(x|w) and
the asymptotic approximation provided by the first two terms.

5. A CLASS OF LINEAR TRANSFORMATIONS

A certain class of transformations will be studied whose properties readily
enable one to discuss the convergence of finite difference expansions and to
solve various forms of functional equations. Application will be made later
in the chapter to the extension of the Nérlund expansion of (4.36) into the
complex plane. Nérlund’s own discussion of the extension of the Nérlund
sum into the complex plane is in Ref. 17. A deeper version of the material to
be presented here may be found in Ref. 1.

A sequence of numbers (o;)g° is of exponential order u if there exists
some r > 0 for which

lox| = OCF), k> o0 (4.98)
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and
u =infr. (4.99)

The linear vector space Q(u) is the space of all functions ¢(z) of the complex
variable z = x + iy (x, y real) given by

o(z) = Zak 5 (4.100)

k=0

in which the sequence (o) is of exponential order not exceeding p. Let M(r)
be the maximum modulus of ¢(z), that is,

1|n|ax|¢(z)| = M(r); (4.101)
2l=r
then, clearly, ¢(z) is entire and

M@ =0E#),  &>0. (4.102)

An entire function satisfying (4.102) is said to be of exponential type u;
conversely, a function of exponential type r < w is in Q(w). This follows
from Cauchy’s inequality

]¢<")(0)] <KM@, r>o. (4.103)
The choice r = k/(u + €) and the use of Stirling’s formula for k! show that
6%0)| = 0(( + 9. (4.104)
The function ®(¢) of the complex variable { = & + in (&, n real) defined by

() = Z T (4.105)

k=0

for |¢] = p > w is called the associated function of ¢(z). One also refers to
& (%) as the Borel transform of ¢(2). One has the following relation connect-

ing ¢(2) and ®(¢).
Representation Theorem:
R >
80 = 5 [ o).

The path I' is a circle of radius o > u about the origin in the ¢-plane.
Proof. From (4.98), there is a X > 0 for which

lox| <K(u+ef, &>0, (4.106)
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hence

< KePr BT 22 (u+¢& )k

P T e<ew (4.107)

Y
;--H

Thus the series

_Z e e (4.108)

is uniformly convergent on I'. Observing that

27i Jr

1 o1 P
—"-feC;Tﬁdf:ic‘!’ (4.109)

one now has

1 : 2, 1 "
2—7:7_/‘;2;’“1 df:;“kz,, ¢ c"“ d¢ = ¢(2). (4.110)

Consider the analytic function
[e ]
LR =) a @.111)
=0

in which it is assumed that the series converges for |¢| = py > p so that L(¢)
is analytic on and within T'. The integral

6(2) = = f FLEOE) dy @112)

defines the entire function 6(z). The linear transformation T belongs to the
class A(w) if and only if the domain of T is the space (u) and the image of

¢(2) € Q(u) is &(2); that is,
T¢(z) = 6(2). (4.113)

The function L(Z) is called the generating function of 7.
Theorem: The transformation T transforms the space Q(u) into itself, i.e.,
6(2) € Q(u).
Proof. The series
gak{" and Za, :f“ (4.114)

converge absolutely and uniformly on I, hence
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o0 00

LOPG) =YY @ty —— ;,_kﬂ-

k=0 j=0

OLGEDYD (Z aj— fa,) i (4.115)

T T

00

3 (z ) o
7=0

=1

The second summation in (4.115) is analytic on and within I', hence its
contribution to 6(z) in (4.112) is zero. Set

B, = iaj_,aj  (4.116)
=7 )

and

ew = i o+ 4.117)

=0

then

6(z) =ﬁ fr e 0(0) de. (4.118)
From (4.111), one has

|a| = 0(o5™), (4.119)
hence

|aj_co| = O(o5™ (1t + 6Y) (4.120)
and, therefore,

B: = O((u + #)°). (4.121)

Also, from (4.1 17) and (4.118), one has

o(z) = Zﬂf = | 4.122)

=0
thus 6(z) € Q(u).
Uniqueness Theorem: The generating function L(¢) uniquely determines its

transformation; conversely, a given transformation uniquely determines its
generating function
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Proof. T¢(z) =0 for all ¢(z) € Q(u) => L(;) 0. To show this, consider
2"/n! with the associated function ¢™'. From (4.111) and 4.117), the
associated function of the image is

eQ) = Z L | (4.123)
= &
However,
0(z)=0=a, =0, 0<k<n _ (4.124)
Since » is arbitrary, it follows that
a =0, k>0 (4.125)

and hence L(¢) = 0. The first assertion of the theorem follows from (4.112).
The converse statement follows from the next theorem.

Theorem: The function ¢* is an eigenfunction of T whose eigenvalue is the
corresponding generating function L(a); thus,

Te™ = L{a)e*™. (4.126)
Proof. One has ¢ € Q(Ja|), and the associated function is 1 /(¢ — «); thus,
1
oz __ ;z
Te =5 f e (;)—— de¢ @.127)

in which the radius of T" is gy > |a|. The only singularity within I is the
simple pole at ¢ = «; hence, by residue theory,

Te™ = L(a)e™. (4.128)
The sum T + T, of two transformations in 4A(u) is defined by

(T1 + T2)¢(2) = T19(2) + T29(2). (4.129)
The generating function of Ty + T is L (¢) + Ly (¢) because

(T) + T)é* = Tye + Tye? = [Ly(¢) + Ly(¢))e". (4.130)
Also T T is defined by

' Tx¢(z) = Th[T1¢(2)]. (4.131)
Thus the generating function is L;(¢)L,(¢). Clearly,

Ty + Ty =T+ T,,T,T; = T, T}. (4.132)

The identity transformation I is defined by
I9(z) = ¢(2) (4.133)
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and hence L(¢) = 1. The transformation 7~! with the property

TT'=1 (4.134)
is called an inverse transformation of T.
Theorem: A transformation 7 € A(u) has a unique inverse T e A(p) if
the generating function L(¢) of T is not singular at the origin and the

distance of the nearest s1ngu1ar1ty from the origin is greater than u. The
generating function of 7! is then 1/L(Y).

Proof. Let the generating function be I(¢), then

LI =1; (4.135)
thus one must have
I(¢) = ﬁ (4.136)

Since L(¢) is analytic in the neighborhood of the origin, the zeros of L(¢) are
isolated. Also, it is assumed that L(¢) does not vanish at the origin; hence,
L(¢) is analytic in a circle about the origin whose radius extends up to the
zero of L(f) nearest the origin. If the radius is greater than u, L(¢)™'
uniquely determines a transformation of class A(u). By (4.135), this trans-
formation is inverse to T'.

A sequence of transformations (7},)5° satisfying T}, € A(/.L) for all » is said
to converge to a transformation T € A(u) if

Ta9(z) = 6,(2),
4.137
T9) = 62) :
implies
,,ll,IE_, 8,(z) = 6(z) (4.138)
for all z and all ¢(z) € ©2(u). The convergence is expressed symbolically by
nl_l’rg T,=T. (4.139)

Theorem: Let the generating functions of T,, T € A(w) be L,(&), L(¢)
respectively, then

nllglo I,=T= nllglo L,(%) = L)
for all ¢ within the path T'.
Proof. Let ¢(z) = €, then



Norlund Sum: Part Two 95

T,&% = L,(a)e™,
Te*” = L(a)e™, (4.140)
lim Ly(@)e™ = L(@)e™.

Since e never vanishes, the result follows.

Convergence Theorem: If the sequence (L,(¢))5° of generating functions of
T, € A(u) converges uniformly on a circle that includes the circle I" to L(¢),
then L(¢) is a generating function of a transformation T € 4(u); further, the
sequence (T)¢° converges to T.

Proof. The limit of a uniformly convergent sequence of analytic functions
is an analytic function, hence L(¢) is analytic on and within I" and thus
defines a transformation T € 4(u). Let 9,(z), 6(z) be the images under T,
T respectively, of a ¢(z) € Q2(u); then (representation theorem)

00 = 6,2) = 7 [ FILE) - LN . (4.141)
By the uniform convergence of L,(¢) to L(¢), one has ‘

m;leL(f) - L) <s,  n>N). (4.142)
Let

K= mrgx|¢(;)|e‘°°’, |z| = r; (4.143)
then

|6(2) — 6,(2)| K <, n > N(s); (4.144)
hence,

Jlim 6,(2) = 6(2) (4.145)

for all z and ¢(z) € 2(u). In fact, (4.144) shows the convergence to be
uniform in any compactum of the z-plane.

An immediate corollary is the following.

(o]
Corollary: 3 L,(¢) converges uniformly to L(¢) on a circle including I
o0 k=0 .
implies > T =T.
k=0
For convenience, the generating functions for the commonly used opera-
tors are listed here. They may all be obtained from (4.128). Note that in
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these formulae w is an arbitrary complex number. The notation — will be
used to relate an operator to its generating function.

Dk > ;k ,
E® — &%,
e —1

A— )
w

— e
Vo l—e ’ (4.146)
w w

2, .1
ﬁ—) zslnhzw;,
- Ec h1
/:; @ 08, Ew;‘
6. APPLICATIONS TO EXPANSIONS AND FUNCTIONAL

EQUATIONS

The operational form of Newton’s forward difference interpolation,

petw =Y (u{cw) o & 6(2), (4.147)
k=0 @
is
E'=(14+wA)*; (4.148)
in terms of generating functions, one has
Lp(@) =1+ Ly@)"* = 3 (”/“’)L @,
£ g kz=; k) (4.149)
Lp@) =€, Ly@)=e*-1,

in which the subscripts designate the corresponding operators. To obtain
uniform convergence, one must have

Ly®)

=l -1 <1 (4.150)
which is satisfied by |¢| < In2/|w|; thus the following theorerﬂ.

Theorem: Newton’s expansion is valid for all complex w # 0 and ¢(z) €
Q(u) provided u < In2/|w|. The convergence to ¢(z + ) is uniform.
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As another application, consider the differential-difference equation

&' (2) + ad(z + w) = 6(z). (4.151)
Let

Té(z) = ¢'(z) + ag(z + u); (4.152)
then

L(¢) = ¢ + ae™. (4.153)
The inverse transformation is given by

™ ;—;27 (4.154)
thus 7! exists for || < y in which y satisfies

Y +ae” =0 (4.155)

and is the zero of L(t) nearest the origin. One may solve (4.151) for ¢(z) by
use of the power series expansion
1 o0

T = > et (4.156)

k=0
whose radius of convergence is (y[ The solution for ¢(z) has the form

$(z) = fj c6®(2), (4.157)

k=0

and the solution is valid for all 8(z) € Q(u), u < |y| The first four co-
efficients are

1
o
1 {1 2 2 (4.158)
2= (a“’) —z)
a=—|—-{-4o] +|-Fo]o"——].
o o a 6

An alternative form of solution may be obtained from the expansion

L _ i("l)k s (4.159)
t+ae” = okt
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This series converges for |¢| < 7 < |y| where r is determined by re'®"/|o| = 1.
The solution is represented by the uniformly convergent series

o) k
¢@)=) :k_i)]_ ¥z — (k + 1w) (4.160)
k=0

for all 6(z) € Q(u), 1 < r.
Consider the first-order difference equation

A ¢(z) = 6(2). (4.161)

Since the generating function (¢ — 1)/w vanishes at ¢ = 0, no inverse exists
for A; however, define T by
w

e —1

L) = o (4.162)
so that (4.161) takes the form
T¢'(z) = &(2), (4.163)
then 7! is given by
1 wt
0 = (4.164)
provided |¢| < 2n/|w|. From (3.155), one has
w; S BU V ¥
m=27w;’ (4.165)
z U

hence the following theorem.

Theorem: The Euler-Maclaurin expansion

¢(z) = Z%wve(v)(z)

v=0

is the unique solution of (4.161) for all w # 0 and &(z) € Q(u) provided
u < 2m/|w|. The series converges uniformly and ¢(z) € €2(u). The expansion
above may be compared to (4.5).



Norlund Sum: Part Two 99
7. APPLICATION TO THE NORLUND SUM
The Norlund sum

F(x + holw) = xgw 6(2) (4.166)

and the corresponding expansion (4.36) will now be investigated by means
of the transformation theory of the earlier section on linear transformations.
Define T by

weh wl 1

L(§)=m—z, (4.167)

which coincides with the eigenvalue belonging to & for
x+hw
Te(x)= S ¢(mAv (4.168)

when ¢ < 0 and z, 4 real. The function L(¢) is meromorphic and the pole
nearest the origin occurs at 27i/w. Thus the expansion

L) = ZB”T(!}')w“c”‘l (4.169)

v=1
converges for |¢| < 27/|w|. One may now define F(z + hw|w) for complex
w, z, h, and all ¢(2) € Qu) (u < 27/|w|) by
- ? = Bv(h) v (v=-1)
F(z+holw)= | ¢(x)dt+) '), (4.170)
a v=1 ‘

This is consistent with the previous definitions, which are restricted to real
z, 0<h<l,w>0.

As an immediate application of (4.112), an integral representation for
F(z + hw|w) will be obtained.

Theorem: One has

F( h|)—fz()d Lfe" wet l<1>()d (4.171)
zZ + holw) = a¢t T+2ﬂ'ir Py $de. .
in which the radius, p, of I satisfies p < 27/|w|.

Since it is a straightforward task to implement the numerical evaluation

of a contour integral around a circle, the representation of the theorem is
convenient for the numerical computation of F(z + hw|w).
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~

An application may now be made to the complementary argument for-
mula of (3.143). In the formula

F(z — 0| — w) = F(z|w) (4.172)
replace z by z + w/2, then

F(z—§|—w)=F(z+§|w),- (4.173)

which shows that the complementary argument formula is equivalent to the
evenness of F(z + w/2|w) as a function of w. Setting A =1/2 in (4.170) and
using (4.60), one obtains

21—2k -1

Fe+io) = [smdre 3 T Bt e, @
a k=1 '

which shows that F(z + w/2|w) is, in fact, an even function of w.
Theorem: The complementary argument formula

F(z - 0| — w) = F(zlw)
is valid for ¢(z) € Qu), 1 < 27/|w|.

The expansion
& -V —X = v
SeTp() Av=e ; A () ALd(x) (4.175)

obtained from (3.229) with p(z) = ¢™* and A4,(w) defined by (3.231) will now
be investigated. One has

0
LE)=S§e™ Av = oo - wb), (4.176)
hence, also,
L(¢) = wh(w — In(1 + Ly ). 4.177)

As a function of L, , the singularity occurs at —1; hence, one must have

le* =1 < 1. (4.178)

Theorem: The expansion (4.175) is valid for all complex w # 0 and ¢(z) €
Q(u) provided u < In2/|w|.
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8. BOUND, ERROR ESTIMATE, AND CONVOLUTION
FORM

It is useful to have a bound on the magnitude of 8(z) as given in (4.112), One
has immediately

6(2)] < pe”" max|L(z)| max|(2). (4.179)
The transformation Er given by the generating function
(o]
E)= )Y af, nz-1 (4.180)
k=n+1

is useful in error investigations. One may note that the associated function
of a polynomial of degree not exceeding n is P(§) = Y ;o ¥%/¢ +1 and,
hence, the product P(¢)Er(¢) is analytic within and on I'; thus the image
is identically zero. An estimate of the magnitude of 6(z) = Er(¢(z)) may now
be obtained from (4.179); thus,

(C)

|6(z)| < p™+2e max| max|<1>(;‘i| (4.181)

which follows because Er(;)/ "1 is analytic on and within T".

A convolution integral representation of a transformation 7" will now be
obtained. Let ¢ > 0 and u < ¢; let ¢(z) € (), and S(u) be a summable
function over (—oo, 00) satisfying S(u) = O(e~™). Then one has the follow-
ing theorem.

Theorem: The transformation
T6E) =0 = [ ot~ 0w d

belongs to A(u), and the generating function L({) of T is given by the
bilateral Laplace transform of S(u), namely

Lg)= f " e S du.

—00

Proof. By the order condition on S(u), the integral converges for all 4 in
the strip —c < & < ¢ with £ = Re ¢. Thus the image of ¢ exists and is given
by

00 00
T (%) = f &S () du = & f e~ S(w) du; (1.182)
—0Q

—-00

this establishes the formula for L(¢).
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An estimate for 8(z) = Er(¢(z)) may also be obtained from the convolu-
tion integral representatlon Let S(u) be the integral kernel corresponding to
Er(®)/¢"; then, since "' ®(2) is the associated function of ¢"+V(z), one
has

8(z) = /: > "V (z — w)S(u) du,

o) < [ °;

Let S(u) vanish outside (a, ) with a, b not infinite; then the mean value
theorem of the integral calculus may be applied to (4.183). Thus,

(4.183)
"Dz — u)| |S(w)| du.

00
e < |60 -9 [ Iswldu  ge @) (4.184)
~00
Theorem: Let S(u) vanish outside (a, b) and let S(x) > 0 then

n+1

n zZ
6(z) = ™Dz - E)Er((n sy

), & e(a,b).

Proof. The mean value theorem may now be applied to the integral (4.183)
for 8(z) to obtain

6(z) = " V(z — &) / ” S(u) du, £ € (a, b). (4.185)
Choosing ¢(z) = 2**!/(n + 1)! yields
zn+l
/ S(u)du = Er ( an 1)'), (4.186)

which completes the proof.

9. CONSIDERATION OF SOME INTEGRAL EQUATIONS
Consider

1
6(z) = fo K)oz + ) du,

T¢(z) = 0(z),
then

(4.187)
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1
L = /0 S K () du. (4.188)

Let L(0)  0; then 1/L(Z) is analytic at the origin and 7! exists uniquely
and the solution of (4.187) for ¢(z2) is

8(z) = T~ '¢(z). (4.189)

The evaluation of 7~' may be carried out by a suitable expansion theorem
for its generating function.

Example: To obtain ¢(z) from the integral transform
8,(2) = % f e‘i¥"¢(z + u) du, A > 0, nintegral. (4.190)
-4

It may be noticed that 6,(0) are the Fourier coefficients of ¢(z) over the
interval (—A/2, A/2). Defining T, ¢(z) = 6,(2), the generating function is

L@ =2=17 smhzl;;ir (4.191)
and, hence, the generating function of 7! is
—IYAE — ]
L,.l(c) - 21) Ascinhl;:: ' (4.192)
Consider
s 2nm Z“k(")ik (4.193)

in which the singularity at the origin of (4.192) has been removed by multi-
plication by ¢; the nearest singularity now occurs at ¢ = i2/A.Thus ¢'(z) €
Q(u) for u < 2m/A is uniquely determined by the series

#(2) = f a(mpP(2). (4.194)

k=0

For n =0 set

M2
TV Zbk;" (4.195)

then ¢(z) € Q(u) is uniquely determined for u < 27/A by
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#(z) = i be8$(2). (4.196)

k=0

Certain types of integral equations of the second kind (inhomogeneous
equations) may be solved by the present methods. Consider

o(2)=6(z)— 2 '/: ” S(uye(z — u) du (4.197)

in which S() = O(e~™). Define the transformation T by

Te(z) =6(z) + /w S@)p(z — u) du; (4.198)
then the generating function L(¢) is
L) =1+2 / ” e 4 S(u) du. (4.199)

The function ¢(z) will be uniquely determined in some class Q(u) if L(0) #
0. It may happen that for special values of A, called eigenvalues, uniqueness
is lost; this requires special consideration. Of course, one has

1

() = T S

(). (4.200)

Example: To solve for ¢(z) :

&(2) = 6(z) — A /w e~ o(z — u) du, O<a<c (4.201)
One has
24 g — P2
L) = %,
: RN - (4.202)
L@ o +20r-8°
Thus

2

cz“—f_ _
R e L 0L 203

#(2) € Qu), w <o <ol + 2,

One has ¢(z) is uniquely determined for A # —a/2 When A=—a/2, then
¢"(2) is determined. Clearly
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¥ @ =5 [ 6 - e,
¢'(2) = 6'(2) — 2*6(2).

(4.204)

10. BANDLIMITED FUNCTIONS

A class of functions of importance in communication theory consists of the
functions representable in the form

8= [ dgtw (4.205)

in which g(u) is a real-valued function of bounded variation with variation
V7 ,(g). The quantity o is called the radian bandwidth and g(u) is called the
spectrum of ¢(z). Clearly, ¢(z) is entire and belongs to Q(¢). To see this, one
observes that

#90) = [ rdgw
69| < [ dgtu) = V)

This class is designated B, (Bernstein class). Newton’s interpolation applied
to ¢(z) requires the equidistant values ¢(kh), £ =0, 1,2,.... The quantity
h > 0 is the sampling interval and 1/4 is the sampling rate. One now has the
interpolation formula

(4.206)

00

¢)=) (zéh) He AQO),  oh< In2. (4.207)

k=0

A significant aspect of (4.207) is that ¢(z) is completely reconstructed for all
z using only the sample values on the half-line.

PROBLEMS
1. Let 0 < o|w| < 27 and
f2) = / g(u) cos uz du;
0

then show

0 W
S/ Az=—3f()
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Let 0 < o|lw| < 27 and

fl@= [ g(u)sin uz du;

then show

0
S@a=-30- [ sw(Goots-1)%

u

Consider the expansion

s P2 Az = Z C()8™(0).

v=0

Show

Cw) = ('v—i)vw““x(”)(w),

o) = (- 1)“*‘2(’3;’;,( —1)o, vz,

®
1 -’

G =1-*(125)"

e~® +e—2w ) 3
Colw)=1- 2 (1 - e“") '

Co(@) =1~

Also show that the expansion is valid for ¢(z) € Q(u), u < 2n/|w| - 1.

Show

é L Az =tan” Tx — / SZmzz dz.
0l +zw 21+x 1+(x+z) w
Set

1#(x)=—fx}e coszlfdt
x W

00
x(x) = —/ e smm dt;
x @

then the Fourier coefficients a,, b, in (4.72), (4.73) can be expressed in
the form
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10.

2nnx,

=2 o) sin 2 tim [ &
= gt sin T2 42 lim [ $Cowa d,

By = — = g(xs)cos

o0
0 : /
2mn +2 ;.1—1>r(1>1+ /xo ¢ ()x(x) dx.

In particular, show that the necessary and sufficient condition for the

absolute convergence of the Fourier series (4.62) is ¢(x,) = 0. Hint: use
the formula

—ax
W(x) = em fe“ coszﬂ(x+ f) dt
e " —1Jo w

and the corresponding formula for x(x); also continue the integration
by parts another step.

. Show
- 2(2v)! S cos 27rnx
— v+l
B2v(x) - (_1) (2 )2\; Z
- orp 220 + 1)! N, 2mnx
B (@) = (=1)"*! ; ;
(2”)2 +1 "Z n2 +1

. Show that in the asymptotic expansion (x — o0)

1 2 w
SSAz~——-— ——=B m>2
2% 2x2 Z 2k+T D2k ’

the error has the same sign as the next term and that its magnitude does
not exceed that of the next term.

. Show that (Newton’s backward interpolation formula)

Bt =Y (1) (/e ot g ot

k=0
converges for all ¢(z) € Q(u) with u < (In2)/|w|.

. Show that

0 1Yk
d =23 T akgto
k=1

converges for all ¢(z) € Q(w) with u < (In2)/|w|.
Show that the root y of (4.156) is given by

-1

y = Z( l)k—aw -l low| < 1/e.
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11, Discuss the following integral equations for ¢(z) given 6(z) € Q(u):
1) = [ o+
&) =6(2) + A -/:q e iz — u)du, a>0,

o(2) = 8(2) + %e'““db(z —u) % u.

12. Let f (2) be completely monotone (z > 0);. show

X o ~ 2 ~
Sf@azz —zf@+ /@, x=zb>0.

13. Let f(?) be convex on [0, co), and define
4'(x)

A(x) = — '/; e M wr(w?) dt, ux) = — A0

show
§ () Az < —AG W)

14. Let ¢'(x) > by (x = 00), x > b > 0; show
Se()Az> —°§ $0).

15. Letm> 1, x > b > 0, (—1)""1¢® > 0 }(x — o0); show
0

m 2v
S _@ @ g 42D
Se()Azz —5 () + ; G 228”7
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The First-Order Difference Equation

1. INTRODUCTION

This chapter discusses the first-order difference equation and certain func-
tional equations resolvable with its help. The next section discusses the
linear homogeneous equation; exact solutions are obtained and, also, a
general approximation. Application is made to the gamma function.

Then the linear inhomogeneous equation is studied and the general solu-
tion is obtained. Application is made to the Erlang loss function of tele-
traffic theory. The level crossing technique used in queueing theory is
introduced and applied to the M/G/] queueing model with exponential
reneging.

The method of Truesdell for the solution of certain classes of differential-
difference equations is introduced. A GI/M/] queueing model is chosen to
exemplify the technique.

The following section is concerned with the computation of the deriva-
tives of a function defined by a first-order difference equation. A simple
approximation for the derivative is obtained that can also be extended to
obtaining higher order derivatives, This is applied to the Erlang loss func-
tion to obtain 3B(x, a)/dx (see Prob. 3). These formulae have been applied to
real-time teletraffic computations. An application is also made to the M/G/1
queue with reneging discussed earlier to obtain an approximation for the
mean work in the system.,

109
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Functional equations and first-order nonlinear difference equations are
then discussed. The infinitesimal generator of a difference equation is intro-
duced. A special difference equation is solved that provides iterates of a
bilinear form. The use of functional equations is illustrated by a queueing
model with a recycling customer. Branching processes are defined and used
to illustrate nonlinear difference equations. A standard birth-death model is
solved. _

Covered next is the solution of the first-order nonlinear equation. The U-
operator method is introduced and a Newton expansion is given for the
solution. The relation to semigroup theory is discussed. Acceleration of
convergence of the Newton series is achieved by comparison with an invar-
iant function; this is numerically illustrated. An expansion is obtained for
the infinitesimal generator.

Critical points of a difference equation are then defined and classified and
criteria are developed for their classification. After this, the construction of
an approximation for the probability generating function of discrete branch-
ing processes is presented.

The next two sections provide powerful means of approximating the
solution of the difference equation when the span is small. First, a perturba-
tion solution for Z(z; z|h) is obtained in powers of the span. Second, the
Haldane solution for the infinitesimal generator is presented. This, of
course, allows the technique of differential equations to be used to approx-
imate the solution of a given difference equation.

In the next-to-last section, a return is made to the problem of solution of
functional equations. A general procedure is discussed and an example is
given. The solution of the queueing model introduced earlier is completed.

The final section extends the U-operator method and Newton expansion
to the solution of autonomous, simultaneous, first-order equations. The
relation of the Lie-Grébner theory of differential equations is shown.
Infinitesimal generators and characteristic functions are defined. Three
examples are given. The first example illustrates the conversion of a non-
autonomous system to autonomous form. The second example provides the
background for the introduction of Euler summability in order to increase
the range of applicability of the Newton expansion. The third example
obtains an interpolation formula for the Erlang loss function that is much
used. Finally, an approximation is obtained for the infinitesimal generators.

2. THE LINEAR HOMOGENEOUS EQUATION

The equation to be studied is
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u(x + w) — a(x)u(x) = 0, w > 0. .1
An alternative form is

Alnu(x) = éln a(x) (5.2)
from which, if conditions 1 and 2 of Chap. 4 are satisfied by In a(x), one has

u(x) = p(x)e GJ—) éln a(z)Az (5.3)
in which p(x) is an arbitrary periodic of period w. The required conditions
are met if there is a ¢ so that for some ¢ >0, m >0

D™Ina(x) = O(x~'7%), x>¢ bxc. (5.4)

Further, if the principal solution is required (4.43), then p(x) reduces to a
constant.

The following example will illustrate the solution (5.3) and also the use of
the multiplication formula (3.15). Consider

u(x + w) — xu(x) = 0; ‘ (5.5)
then, from (5.3),
1=
1nu(x)=c+a§lnz%z (5.6)

in which ¢ is an arbitrary constant. Norlund’s definition of the generalized
gamma function, ['(x|w), is obtained by setting ¢ = In /2n/w; hence,

2r 11X
InT(x|w) = ln\/;+a§lnz£z. (5.7)
One has I'(x|1) = I'(x) (3.176). The change of variable z = wy in (5.7) yields
x x
InT(x|o) = (5 - 1)+ r(a), (5.8)
I(x|w) = r(g)e"‘/“’")'“’. (5.9)

The multiplication formula, with w = 1, applied to the principal sum wInT"

(x|w) — wln 27/w yields

g[lnr(x +%) - 1n~/2_7r] = 1nl"(x| %) — In~/2m. (5.10)

Since, from (5.8),

In l"(x|%) = InT(mx) — (mx — 1)Inm, (5.11)



112 : Chapter 5

one has

InT(mx) = (mx — }) Inm — (m-1)1n¢2n+21nr(x+ )
v=0
(5.12)

rmn) = @) - (51 "'x"nl"(x+—)

which is the Gauss multiplication formula. The important special case m = 2
is called the Legendre duplication formula, namely

2x-1
N

The case in which a(x) has the form
(x+a) - (x+a,)

I'2x) =

D) (x + 3). (5.13)

= 5.14
9 = e By (¥ b,) (5.14)
can be solved in terms of the gamma function. One has
1x
In u(x) = Z)§ In a(z) % z,
L&y
p Z n(z+aj)%z
: é " 1 (5.13)
- =5 ,; n(z+6)Az
1 x
+—SlncAz
w0 )
hence, a solution is
I'(x+aj|w)---T(x + ay|w)
= c*®
or, equivalently, by use of (5.9),
r{X+ta _”P(x+a,)
u(x) = (c” Hy*® ( “ ) (5.17)

p(_’#g p(fi_b&) .

As a simple example, consider
(2x + 2)u(x + @) — (6x + 3)u(x) = 0. (5.18)
One has
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X+ %
x+1

hence a solution is

3x/w P((x + 1/2)/‘9)
T((x+ 1)/w)

Another form of solution may be obtained by setting b = oc in (5.3), thus

ux+w) -3

u(x) =0, (5.19)

u(x) = (5.20)

" .
u(x) - el/woso]na(z)ez

00 5.21
= l_[ a(x +jw)'1. .21

J=0

Of course, convergence of the infinite product is assumed. An example is
given by

ux+o)—(1+e ux)=0 (5.22)
for which
u(x) = ﬁ (14 7)1, (5.23)

=0

In this regard it is useful to have some criteria for the convergence of an
infinite product [] (1 + v;). Such criteria are [25]:

J
. 0<sy=<lor-1<v<0,}3v converges = I;[(l + v;) converges

Evj diverges = H(l + v;) diverges;

j J
2. 3, converges =
Hj(l + ;) converges if E v; converges,
J
diverges to oo if E vy diverges to oo,
J

diverges to 0 if E v, diverges to — oo,
J

oscillates if E v; oscillates;
J

3. 3" v, converges absolutely =
J



114 : Chapter 5

H(l + v;) converges absolutely.
J

With respect to uniform convergence, the following theorem is useful:
Theorem: Let v;(») be continuous for y € [a, b] for each j, and let |v;(»)| <

v, (¥ €la, b)) with Zvj convergent, then ]_[(l +v;(») is a continuous

function of y for y € [a, b].

Application of this theorem to the solution in (5.23) shows u(x) to be a
continuous function for all x.

The form of solution in (5.21) satisfies the boundary condition u(oc) = 1
under uniform convergence. An approximation to this solution may be
obtained by use of the Norlund expansion (3.171); thus,

Inu(x) = % g na(z) Az

1x 1 [
=a§lna(z)%z~—5/; In a(z) dz (5.24)
L _L ©d()
_—w/; Ina(z) dz 21na(x)+1:2 pres )+

An approximation to u(x) is, accordingly,

u(x) = a(x)" P exp [—— f In a(z) dz + 1“’2‘;((5:))] (5.25)

in which the error may be estimated from the next term of the expansion in
(5.24), namely —(w’/720)D*Ina(x). Since, for convergence of (5.21), one
must have a(oo) = 1, if also, d'(o0) =0, then the approximation satisfies
the required boundary condition at x = 00

For the example of (5.22), one has

L1 IR e ]
u(X)—l—+e.—xexP[ wj;-_f_e “RE il (5.26)

The error estimate to be used in the exponent of (5.26) is (w>/720) e*(e* —
1)/(¢* + 1). It may be observed that the approximation (5.25) is particularly
useful when w is small because then the product (5.21) is slowly convergent.
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3. THE INHOMOGENEOUS EQUATION

The complete equation of first order is
u(x + w) — a(x)u(x) = b(x), w > 0. (5.27)

The solution may be constructed from the solution, v(x), of the correspond-
ing homogeneous equation

v(x + w) — a(x)u{x) =0, (5.28)
which, from (5.3), may be taken to be

(1/w) é In a(z) % z

vix)=e (5.29)

The summation without a lower limit expressed is here used as an indefinite
summation symbol. Thus, let

u(x) = v(x)H(x); (5.30)
then substitution into (5.27), yields

A1) =w_v(b;f"%}3' (531)
One now has

u(x) = (%) [p(x) + éé v(f(j)w) A z]. (5.32)

As in the case of the homogeneous equation, the principal solution is
obtained by replacing the periodic, p(x), by a constant.
For many applications, a useful form of solution is

b(2)

1 x
u(x) = _c;v(x)gv(z+w)%2 (5.33)
—_ i b(x +je) (5.34)

= a(x)a(x + w) -+ a(x + jw)’

The ratio test shows that the series is absolutely convergent if

- b(x +jo + ) 1
1 1 535
I?—l»igp b(x+jw) a(x+jo+w) < (5.35)
and also uniformly convergent if (5.35) holds uniformly in x. Let
. b(x + jw) _
=, 20 5.36
sSoaax+ o) -ax i) T (5.36)
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and let (5.34) converge uniformly in x, then u(x) satisfies the boundary
condition

u(o0) = — iaj. (5.37)
J=0

The general solution may now be written

S b(x +jw)

u(x) = cv(x) — ; g VR S S (5.38)
in which c is to be determined from the boundary condition on u(x).
Returning to (5.32), the general solution may be written
_ [ 1x b2
u(x) = v(x) _C+asv(z+w)%z:|’ (5.39)
and, in particular, if «(0) is specified,
_ [u(0) 1x b(2) 18 b(2)
u(x) = v() _v(0)+w§v(z+w) it w%v(z+w)Az ' (5.40)

This solution, of course, is not subject to the condition of (5.33).
Approximations may be constructed to this form of solution by means of
Norlund’s expansion (3.171), (3.188), or (3.206).

Consider the example

u(x + w) — au(x) = b(x) (541)
in which a is constant. Since

v(x) = &/ (5.42)
one has, from (5.39),

1x
u(x) = cd/® + =~ S d*=/%p(z) A z. (5.43)
w

Let

. blx +jo + w)

lim sup|————+«— , 44

lj->£p b(x + jw) <la (544)

then one has (5.34)

u(x) = — i a7 b(x + jw). ' (5.45)
j=0

If the series is uniformly convergent in x and |a| > 1, b(00) = b, then
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u(o0) = — p f T (5.46)
If (5.44) is met, the complete solution is
o0
u(x) = cd”’® =Y a7 b(x + jo). (5.47)

J=0

The solution given by (5.40) takes the form
0
u(x) = a** [u(O) + 1847 =1pz) Az ~ lg a~ @1 pz) A z]. (5.48)
w0 ) w0 )

For the choice b(x) = x, one has, by use of (3.32) with a = ¢**,

1/ 1 w x w
—(x/w)-1 L _ —-x/w
Legtortipz= (lna+(1na)2) (a_1+(a_1)2)a ,

(5.49)
hence
gl * v 0
) = [u) + e - 2 (5.50)
The case a = | leads to
x* — wx
u(x) = u(0) + T (5.51)
Consider the equation
u(x + ) — xu(x) = b(x). (5.52)
In this case, one may take
x (X
v(x) = wwl"(a—)), (5.53)
hence
(x—2)/w—1
Rl p w
U(x) = bl ( ) + r( ) StareTn?a% (5.54)
Let
, b(x + jo + w) 1 }
1 1 5.55
‘fﬂf‘,‘.fp bx+jw) x+jo+o = (5:33)

then
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& b(xtiw)
u(x) = ;x(x +w) (x4 jw) (5.56)

If (5.55) holds uniformly in x and b(o0) = b, then u(oc) = 0. The general
solution is

_ x/w i _ = b(x+jw)
u(x) = cw r(w) ;x(x+w)--- e (5.57)

The queueing model M/M/n [26] consisting of a Poisson stream of calls
with parameter A (calls/unit time), » iid exponential servers each with rate p,
and no additional waiting positions (see Chap. 2) is fundamental in tele-
traffic theory. This model is normally called the Erlang blocking model after
A. K. Erlang, The system is considered to be in statistical equilibrium. Let
P; be the probability an arriving call sees j servers busy, then the balance
equation of up and down transitions can be written

APy =pG+ )Py, =0, ,n—1L (5.58)
Thus
d A
Pj.:cj—!, a=ﬁ. (5.59)

The quantity a is called the offered load. Since

Y p=1, (5.60)
Jj=0
one has
a /j!
P ) 0<j<n (5.61)

I @y’

In particular, the probability P,, which is designated B(n, a) and called the
Erland loss function, is especially important because an arriving call does not
find a server and, hence, is refused (lost); thus

a"/n!

Yoimold /)

Set u(n) = B(n, @)”!, then it is readily verified (see Chap. 2, blocking model)
that

B(n, @) = (5.62)
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n41

u(n+1) — o

uln) =1, u(0)=1. (5.63)

The extension of the function B(n, a) to B(x, a) in which x is continuous is
needed in many applications, including economic considerations in the sizing
of trunk groups [27], approximations to the blocking model performance
when the arriving stream of calls is not Poisson [28], and the construction
of approximations of other important functions in teletraffic and queueing
theory. The extension should be an analytic function of minimal growth and
be uniquely determined by the condition B(0, @) = 1. Those conditions are
met by the principal solution of the system

x4 1 —
U =1 w0=1, (5.64)

B(x,a) = u(x)"L.

ulx+1)—

To solve (5.64), one may use

v(x) =a *T'(x + 1); (5.65)
thus,
x gt
u(x)=ca*T(x+ 1) +a*T(x+1) SmAz. (5.66)
The solution provided by (5.38) is
& d
= % - TN s '6
u(x) = ca *I'(x + 1) E(x+l)---(x+j) (5.67)
thus,
I S d
T =éa" - —_— 5.68
B(x, a) a*T(x+1) ;(x+l)~-(x+j) (5.68)

This expansion is excellent for computation when a is not much greater than
x.
The form of solution given by (5.40), namely

— x az-l-l 0 az-l-l
u(x):a 1"(x+1) 1+§mAZ—§mAZ , (5.69)

when directly interpreted by the definition of sum (Chap. 3), leads back to
(5.68); also, using the identity (3.33), one again obtains (5.62) when x is an
integer. Let x be an integer; then, by (5.62),
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_ Tx+1) -
B, = Y TR D e
=0
= Zx(’)a"l (5.70)

1=0

= i (Jf)l!a_l,

1=0

hence
A'B0,a)™! = 1ta™'. (5.71)

The Newton expansion, for x not necessarily integral, is, accordingly,

B(x, a)_1 = i (ch)l!a"

=0 (5.72)

o™ () -1
—;xa .

This expansion is not convergent for any x not a positive integer; never-
theless, because of its asymptotic character [29], it provides an excellent
means of computation for a greater than x. For this purpose the expansion
is continued until [x + 4] ([y] = integral part of y).

An integral representation for B(x, a)~! may be obtained from (5.72).
Substituting

o0
lla’'=a f e~ dt (5.73)
0
yields the Fortet integral formula
o0
B(x,a) ' =a f e~ (1 + 0" dt (5.74)
0

from which other properties may be derived [29].

A technique that is useful in the study of the M/G/1 queueing system
consists of equating the rate of up and down crossings of the level of work
in the system. Denote the level of work in the system, considered to be
in equilibrium, by y, and let the corresponding density function be f(3).
Consider the (¢, y) plane and the strip (¥, y + dy), dy > 0; then the probabil-
ity the level of work in the system is in the strip is f(») dy.

Now consider a down crossing of the sample path of work in the system
through the strip due to depletion of the work by the server; the time
required to traverse the strip is df. Let N be the mean number of down-
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crossings per unit time; then, because the arrival stream is Poisson, the
probability the work level is in (y, y + dy) is also given by N df; hence

fO)dy=Ndt. (5.75)
Define the server rate g(y) by
_b,
8) =— (5.76)
then
fO)e(y) = N. (5.77)

The next example to be considered is an M/G/1 queue with exponential
reneging. Let the complementary distribution of service time be 8(y) and the
complementary distribution of reneging be ¢~*”; thus, when a customer
joins the queue, he may leave at any time before starting service with prob-
ability @ dz. Once service is started, he will not leave until service completion.
The arrival rate is A, the service rate is i, and the server rate is one. From
(5.77), the following integral equation of Volterra type is obtained:

'y
£0) = APBG) + A fo FEBY — e de | (5.78)

in which P is the probability the system is empty.

The terms of (5.78) arise as follows. The left-hand side is the rate of
down-crossing. The term APA(y) means a customer arrives to find an
empty queue and brings work in excess of y, thus causing an up-crossing
of level y; alternatively, the arriving customer could find an amount of work
already in the system in the interval (&, £ 4+ d§) for which the probability is
f(&) d&, brings work in excess of y — &, and will not renege until past the time
&. The integral provides the total contribution of these customers, each one
of which causes an up-crossing; thus, the right hand side is the total up-
crossing rate. Since the queue is in equilibrium, (5.78) is obtained. It may
also be observed that, since A is the arrival rate, the quantity f(y)/A or,
equivalently,

PBGY) + fo " F©B — et dt (579

is the probability an arriving customer causes an up-crossing of work level y.
Using Laplace transforms, (5.78) becomes

fe+w)-218)7 ) =-P,  floo)=0. (5.80)

To satisfy the boundary condition, the form of solution (5.34) will be used;
accordingly, one has
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-~ 0 J -~
fs)=PY [T B+ kaw)). (5.81)
j=0 k=0
Clearly, conditions (5.35), (5.36) are met with o; = 0 (j > 0). From
jo= [ row=1-r (5.82)
0
one has
0 J
Pl =1+ T](*8kae)). (5.83)
J=0 k=0

This provides a practical way to obtain the emptiness probability P; how-
ever (5.81) is usually difficult to use for the explicit inversion of f(s) to
obtain f(»). The M/M/1 case may, however, be carried through. Let

1

PO =€ PO = (5.84)
then

- ) Py,

f(s)=)\Pj;0 Y s e (5.85)
From

1 a—ey | 5.86

GFDexp Tl (5.86)

one has
1 e ™ [l —e J

CrmGtato) - Gruatio) ( o ) (5.87)

and hence

f() = APe 0=,

Pl=1+4 /w e W HO/aNI=) gy,
0

The =, p operators to be studied in Chap. 7 can provide a solution in
inverse factorial series; this can supply a practical means of inverting f(s).

(5.88)

4. THE DIFFERENTIAL-DIFFERENCE EQUATION

The form of equation to be considered is
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%u(w, x) = A(w, X)u(w, x) + B(w, x)u(w, x 4 1). (5.89)

Such equations were studied by Truesdell [3], who developed a technique of
solution based on the equation

d
E)EF(Z’ x)=F(z,x+1) (5.90)

which he called the *“F-equation”. Let z; be a fixed value for which
Flzo,x+r)=¢(x+7r) (5.91)

is known for all integral r > 0; then the unique solution of the F-equation
satisfying the boundary condition (5.91) is given by

F(z,x) = Z(z Y o +7). (5.92)

r=0
Equation (5.92) follows on observing that

9
= F(z x)l, = (x+1) (593)

and then using Taylor’s series. A theorem guaranteeing this result is the
following (Truesdell): let |¢(a)| < M for some M and all R(a) > ay; then
a unique solution, F(z, @), of the F-equation exists such that F(zg, @) = ¢(x)
for R(a) > «y, is an integral function of z for each «, and is represented by
the Taylor series of (5.92). Thus a solution of the original differential-
difference equation (5.89) would be available if it could be transformed
to the F-equation.
The first step in the reduction procedure is the substitution

gL - (5.94)

This leads to the equation

viw, x)=¢e

iv(w, x) = c¢(w, x)v(w, x + 1),

ow , (5.95)
c(w, x) = B(w, x)ej:“o AA(y.x)dy’

in which A operates with respect to x. Further reduction of the equation

cannot be accomplished unless ¢{w, x) has the form

c(w, x) = D(w)E(x). (5.96)

This will now be assumed so that

aiv(w x) = D(W)E(x)v(w, x + 1). (5.97)
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Let

z= fw D(y)dy, v(w, x) = h(z, x),

w1
then
a%_h(z, x) = E(x)h(z, x + 1).
The final change of variable is

F(Z, x) - e§olnE(z)Az

then

h(z, x),

3
gF(z, x)=F(z,x+1).

Examples of solutions of the F-equation (5.90) are [3]

é,

. T
sin (z -3 x),
™ T(x)z7%,
" T'(x + 1)F(b, c; —x; a), hypergeometric,
"~ L)(z), Laguerre,
¢* 2271 B(x, z)”!, Erlang B,
" z7*/2J (24/Z), Bessel..

An example of (5.89) is

%u(w, x) = —(A + ux)u(w, x) + w(x + Du(w, x + 1),z = 0.

Chapter 5

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

The condition imposed is that #(0, x) is specified. Using (5.94) with wy = 0,

one gets

(Atpux)w

v(w, X) =€ u(w, x),

%v(w, x) = pu(x + De " v(w, x + 1),
in which the condition (5.96) is met. From (5.98), one has

1—e#
= ;

u
The choice w; = 0 is made, ensuring w =0 & z = 0. Thus

(5.104)

(5.105)
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a%_h(z, x) = u(x + h(z, x+ 1). (5.106)

Use of (5.100) leads to

F(z, x) = u*T'(x + Dh(z, x),

] (5.107)
&F(z, x)=F(z,x+1).

Stepping back from (5.92) through the changes of variables yields the
solution

u(w, x) = g~ i (1 —e™**) (x + r) u(0,x+r) (5.108)
r=0 r

in terms of the initial data (0, x + r). The expansion provides the unique
solution of (5.103) if |u(0, @)| < M for R(a) > &, R(x) = aq.

The following example concerns the GI/M/1 queueing model. The arriv-
ing stream of customers is assumed to constitute a renewal process with
interarrival time distribution F(y) and mean arrival rate A. The service dis-
tribution is 1 — e™**. Define g(z) by

_f(@
80 = Fecs (5.109)
in which
/(@) =FQ), (5.110)

Fé(z) =1 - F(z).

The expression g(7) dt is the probability of an arrival in (7, 7 + dt) given
that the last arrival point is 7 units of time back. The function g(z) is called
the “rate function™ of the arrival stream. The queue is assumed to be in
equilibrium and the state is (», 7) at the observation time ¢. Thus, at time ¢,
there are » customers in the system and the last arrival occurred 7 units of
time ago. It is required to determine the cotrresponding density function

(7).
Since
4n(D) + (1t + g(1))gn(7) (5.111)
is the rate of leaving the state (n, 7) and
1Gn41(7) (5.112)

is the rate of entering, one has the state equation
4n(7) = —( + 8(qn(7) + Ugpa(r),  n= L. (5.113)
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For n =0, one has the boundary condition
go(?) = —8(v)90(7) + 1q1(2). (5.114)
Using (5.94)

ey U8 = gur e (g), (5.115)
and setting
va(7) = e“TF(2) ' g, (2), (5.116)
one gets
V() = UVpy1 (7). (5.117)

Thus, use of the Taylor series and substitution back to q,,(t) provide the
solution

o= FoY 0y o) (5.118)
r=0 rl

Since it is known [30] that the probability, m,, that an arriving customer
sees n in the system is

T, = (1 — w)o”, n>0, (5.119)
in which w satisfies the equation
fuwl-w)=w, O<w<l, . (5.120)

it seems reasonable to assume the form Aw"(r = 1) for ¢,(0) for some 4, w.
Thus, from (5.118), one has

gn(7) = Awe O Fe(p), (5.121)
The boundary condition
00
9n1(0) = fo gn(v)g(r) dr ' (5.122)
and (5.121) yield (5.120) thus identifying this o with that in (5.119). Let P,

be the probability that there are n in the system at the observation time ¢;
then

00
P,,=f q,(7) dr, n>1,
o ° (5.123)
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To determine Py, the following conservation argument may be used: in
equilibrium, the mean rate of arrivals into the queueing system must
equal the mean rate of departures; thus

A=(l- Py,
5.124
Pp=1- A (5.124)
7
From (5.121), (5.123), and (5.124), one gets
l-w
A= AT, (5.125)
thus,
gn(@) = Ml — @)™ leMI=Fe (), m> 1,
A -1
P,,=-‘u-’(1—w)w 3 nz 1, (5.126)
A
Pp=1——.
° u

For the function gy(z), the boundary condition (5.114) gives
q0(z) = [qo(0) + A — Ae "V IFe(r), (5.127)

To obtain go(0), one may use

o0 1— Flu(l -
Po= [ e =aon a2 EED o gont 4o 2,
(5.128)

Thus g¢(0) = 0 and
go(®) = A[1 — e #(=9]Fe(q), (5.129)

A further example of the Truesdell reduction is given by an application to
the coefficients 4,(w) (3.231). A representation will now be obtained that
will permit computation when w is small and will also prove (3.238).

Setting

_ Ay (w)
au(w) = ——(:)— (5.130)
so that
o () = %e""” (z) Az, (5.131)

one has (3.204)
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au(o) = _Lu-f-]’ v= Oa
d L (5.132)
Eau(w) =- % e z(ﬁ) Az
Use of the identity

z(g) = v(zu') + v+ 1)(V£1) (5.133)

provides the equation

%av(a}) = —va,(@) — (v + Doy (w), (5.139)
which has the required form (5.89).
Let

o (w) = e v, (), (5.135)
then

d -

o () = —(v+ De “v,1(w). (5.136)
The substitutions

z=1-¢"°
' 5.137

0(@) = h(@) G137
yield

d

Ehu(z) = —(v + Dhyp1(2). (5.138)
Using the notation

@o=1@,=a@+1)---(a+r-1, rzl, (5.139)
one has

& |

7 @ = (=1 (v + Dyhyr(2) (5.140)
and, hence, the Taylor expansion of A,(z) about z = 0 is

00 (_l)r—l ,
hy(z) = Zl 0+ D (07 (5.141)

Stepping back through the substitutions (5.137), (5.135) and using the
boundary values (5.132), the following expansion is obtained:
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00 ¢ 1y—1
af@) =Y Lt DL -y, (5142)
r=0 '

The final expansion is now obtained after use of (3.214) and (5.130), that is,

A,@) = (-1yHoew 3 LD,

|
o r

|Lygrpt|(1 — €72, v<0.

(5.143)

5. DERIVATIVE

The derivative, #/(x), with respect to x of the solution, u(x), of (5.27) will be
considered. This often provides important information concerning physical
models described by the difference equation. Of course, if one has a suffi-
ciently tractable explicit solution, then the derivative may be obtained imme-
diately. One may also use the following difference formulation for «/(x)
obtained from (5.27):

W (x + w) — a(x)ud (x) = d (X)u(x) + b'(x). (5.144)

This presupposes that u(x) has been obtained and that a suitable boundary
condition on «/(x) is available. Thus from

Fx+1)—xI'(x) =0 (5.145)
one gets
M =1 D= (5.146

For the Erlang loss function, the derivative, 8B(x, a)/dx, is especially
important in the economic sizing of trunk groups in teletraffic studies
[27,31] and in real-time computations for the routing of teletraffic through
networks [32]. Thus, from (5.64), (5.74) one has

x+1
a

de+ D) -2l = ),
(5.147)

00
W (0) = —af e In(l +t)dt.
0

In this case, however, one may also write

00
aBg;’ 9. —B(x, a)’a f e “(1+ )" In(1 + 1) dt. (5.148)
0
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For the M/G/1 model of (5.78), the quantity —f"(0) is the mean work in
the queueing system and, hence, the mean waiting time of a customer in first
out, first in discipline. This may be obtained from (5.80) by differentiation;
thus,

Fisy= APZAJ(nﬂ(s+k )) Z';((SLI:Z))

j=0 k=0 k=0

FO =23 ¥ (]’I ko )) Zi(‘,’:“’))

Jj=0

(5.149)

It may be observed that the formulae of (5.147), (5.148), while useful for
the study of dB(x, a)/dx, are not suitable for convenient real-time computa-
tion. Similarly, (5.149) is awkward for computation. Thus, because of the
importance of the general problem, it would be useful to obtain an approx-
imation for #/(x) of (5.27) that would be suitable for rapid computation.
Accordingly, rewriting (5.27) in the form

u(x + wyu(x)"! = a(x) + b(x)u(x) ", (5.150)
one has

Alnu(x) = -i-) In(a(x) + b(x)u(x)"") (5.151)
and, hence,

Inu(x) = ¢ + i é In(a(z) + b)) ™) A 2 (5.152)

Differentiation yields
u,(x) 1z ~1y
——==—S8[lna(z) + b(2u(z)"' 1 Az
wx) % w (5.153)
+ = In(a(xo) + b(xo)u(x0) ™).
Finally, using the Nérlund expansion (3.171) for v=1 and solving for
1/ (x)/u(x), one gets
w(x) _ ™! (a(x) + b)) — 3 (@ (%) + b/ (Rux)™! )
u(x) a(x) +4 b(x)u(x)‘

(5.154)

This provides a reasonably accurate approximation to «/(x)/u(x) on the
supposition that #(x) has already been obtained.
Application of (5.154) to (5.145) yields the familiar
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Table 1 Approximation of —B~!aB/ox.

x a —B~'3B/ox  Approx.
5 1.3608 1.4025 1.4044
10 44612 0.8626 0.8630
20 12.0306 0.5406 0.5406
50 37.9014 0.2956 0.2956
V() = Inx — —— (5.155)
~ 7 .

An important application is to (5.64) from which one gets

_18B(x,0) _ (2a0)”' —Ina
B(x’ a) 0x - 1- B(x, a)/?.a ’ (5.156)
o= xT-{—l + B(x, a).

Table 1 illustrates the accuracy of (5.156). Throughout the table,
B(x, a) =

An apphcatlon of (5.154) will now be made to the M/G/1 model of (5.80)
in order to approximate —f'(0) and hence the mean waiting time. One has

a(s) = A~ By, (5.157)
b(s) = —-P, ‘

The quantity (0) = 4~ is the mean service time and  is the service rate;
also, p = A/u is the offered load in Erlangs. Hence

0) =
. P (5.158)

The quantity @'(0) = —A~"' B(0)"2(0) is equal to 4 p~' uu, in which u, is the
second moment of the service distribution. The recurrence time, R (mean
unexpended service time of the one in service), is equal to %uuz [33], hence

d0)=p"'R (5.159)
Let w be the mean waiting time; then the approximation obtained is

Jo'R—o7! (o7 - P/(l — P)In(p™ — P/(1 = P))
w=(l- Pl T 1P/-B)

(5.160)
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It is clear from (5.151), that (5.160) produces the exact result, w=
oR/(1 — p), for w — 0 +.

The following numerical example will provide a rough idea of the per-
formance of the approximation. Let

Bp)=te¥ +1le™”, A=2 w=1, (5.161)
then
12 5 13
M:‘g, p—g, R—%. (5.162)
The value of P is found from (5.83) with

~ 11 11
pls) = 22+s+§3+s’
it is P = .3771. Numerical solution of the integral equation (5.78) for this
problem and subsequent numerical evaluation of f;° yf(y) dy gave the result
w = 401, while the preceding approximation gives w = .395. These values
can be considered to be in acceptable agreement.
It is clear that the second derivative, #’(x), may be approximated by
starting from the difference equation for #/(x), (5.144), and applying (5.154).

(5.163)

6. FUNCTIONAL EQUATIONS

A number of important stochastic models are represented by functional
equations of the form

G(¢(2)) ~ I(2)G(z) = m(2). (5.164)

Usually ¢(z), I(z), m(z) are specified and G(z) is to be determined. As an
illustration, consider an M/M/1 queue with arrival rate A and service rate u,
associated with these customers termed ordinary, and let there be a single
customer whose rate is u, and who always cycles back after service comple-
tion to the end of the queue. The discipline is first in, first out. It is required
to find the generating function, G(z), of the number of ordinary customers in
the system assumed to be in equilibrium.

To formulate the equation for G(z), let J(¢) be the sojourn time distribu-
tion (time spent by a customer in the system from arrival until departure);
then the number of arrivals during the sojourn time is also the required
number in the system. Let P, be the probability of » arrivals, then

-

P, = f Z O o, (5.165)
b}

and
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(o]
G(z) =) P, (5.166)
n=0
Substitution for P, into (5.166) yields
G(z) = J( — Az2) (5.167)
in which
R lo0]
J(s) = f e~ dI(t) (5.168)
0

is the Laplace-Stieltjes transform of J(7).

One may obtain J(s) directly on observing that the Laplace-Stieltjes
transform of service time for the ordinary customers is /(s + u;) and
that for the cycling (feedback) customer is w,/(s + u3); hence, if there are
n arrivals, then the transform of the sojourn time distribution is (1, /(s +

m2))(p1 /(s 4 p1))"; accordingly,

J(s) = LG(L) (5.169)
S+ 2 \S+ M

The functional equation for G(z) may now be obtained from (5.167) and
(5.169), namely

1 1
C&) =10 —z)G(l o —-z))’ G =1,
(5.170)
p=i, r=&1-.
2] M2

This equation will be resolved later; also, another view of its derivation and
a generalization will be discussed in connection with branching processes.
The nonlinear difference equation

Z(t+ 1) = ¢(Z(1)), Z(0)=z (5.171)
is fundamental in the study of (5.164). For our purposes, the more general
form

%Z(z) = 6(Z(?)), Z(0)=z h>0 (5.172)

is of greater utility. The full notation Z(¢; z|h) will be used when dependence
on all arguments is emphasized; otherwise just Z(¢; z), Z(¢), or even Z as the
occasion permits. The variable ¢ is always considered to be continuous. It
will be assumed that a unique solution, Z(z; z|h), of (5.172) exists possessing
a derivative, Z, with respect to ¢. An important function is

Z(0; z|h) = g(z1h), (5.173)
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which, in view of the time homogeneity of (5.172) and the uniqueness of the
solution, provides the following differential equation:

Z(y=gZ(), ZO0)==z (5.174)

which is, therefore, equivalent to (5.172).
From (5.174), one immediately obtains

Z v
— =1, 5.175

./z g(v) 5.173)
and, in particular,

1 z-+ho(z) dv

- — =1, 5.176

o A 176
from which Z(¢), 8(z) may be calculated. An example is given by

g(z) =2, (5.177)
then

z 7

Usually, however, 6(z) is initially specified and is often independent of 4;
thus the determination of Z(¢) from (5.175) rests on obtaining g(z|h).

One may obtain a partial differential equation that implies (5.172) as
follows:

Z(t; 2) = Z(t — dt, Z(dt)) = Z(¢t — dt; z + g(2)dt), (5.179)
hence

8Z 8Z

== (5.180)

This equation reduces to (5.173) at ¢ = 0 and, hence, also implies (5.174).
Depending on the specific nature of ¢(z), (5.171) may be solved explicitly
[34]. The following example is from Mickens:

Z(t+1)=2Z(1 - 2), Z(0) =z " (5.181)
The substitution

Z=11-"), Vi0)y=1-2z (5.182)
yields

V(t+ 1) = V@), (5.183)

InV({t+1)=2ln V() = 0; (5.184)
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hence
V()= (1 -2z, (5.185)
zo=il1-(1-22"], z<}. (5.186)
From (5.173), one obtains
2(z) = _lnTZ(l —2z)In(1 — 22), z < % (5.187)

Of importance is the following example:
a+bZ(1)

20+l =" s 20)=z ad=be#0 (5.188)
with constant a, b, ¢, 4. One has

Z(t + 1)(c + dZ(t)) = a + bZ(1) (5.189)
which is of Riccati form; see. Chap. 2 (2.14). The substitution

¢+ dZ(i) = ”(L(J;)l) (5.190)
leads to

Wt +2) ~ (b + eyt + 1) ~ (ad — beyu(t) = 0. (5.191)

The theory of linear difference equations with constant coefficients will be
covered in Chap. 6; however, for the present the model of Chap. 2 (2.21)-
(2.34) may be followed. Define a, 8 to be the roots of

X2 — (b + ¢)x — (ad — bc) = 0; (5.192)
then, for a # 8,
w(t) = Ao’ + BB, (5.193)

One may now write Z(?) in the form

1at+1 +Kﬂt+] ¢

20=a+rF @ (5194
and, hence,
_l(c+dz~ Bt ~ (¢ + dz — )8! ¢
20 = d (c+dz—pB ~—(c+dz —a)ff d’ @ #p. (5.195)

For a = 8, it may be verified that
v(t) = (4 + BHa'; (5.196)
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thus,
Z() ==L - (5.197)
and one now has
aa+(c+dz—-a)(t+l) c

2= a+(c+dz—ay d o=p. ‘(5'198)

For the corresponding infinitesimal generators, one gets

lng(z—a;c)(z—ﬂ;c), Py (5.199)

¢@) = fﬂ

—\2
g(2) = —§<z -2 . C) . a=g (5.200)

The difference equation (5.171) is important in the theory of branching
processes [13,14,35] a sketch of which will now be given. A branching pro-
cess may be considered to be a description of a birth-death population
model. Let a single individual exist at time zero and let a probability dis-
tribution p; (j = 0) be defined with the interpretation that p, is the prob-
ability the individual dies after one unit of time, p; is the probability the
individual survives but has no progeny, and p; (j = 2) is the probability the
population consists of j individuals. After another unit of time, each indi-
vidual acts independently with the same associated probability distribution.
Let xy = 1 and let x, des1gnate the population at the end of r units of time
also let p =plx, = j] (thus p; M = = p;), then the following generating func-
tions may be defined:

$o(2) = z,
® 5.201
#0=Y pe D=1 (200
Jj=0
The function Z(r; z)defined by
Z(r + 1; 2) = HZ(r; 2), Z(0;2) =2z (5.202)

and considered as a function of z is the generating function of p(’ (r = 0).
This constitutes a discrete branching process.

Of interest in these processes is Z(oo 2), p(°°) Since ¢(z) is monotone
increasing, Z(r; z) is also monotone increasing in r; further, since Z(r; z) is
bounded, one must have Z(oo; z) = ¢, in which ¢ is the smallest root of
#(z) = z. Let m be the mean of the one-step population distribution, that
is, m = ¢/(1); then, by the convexity of ¢(z) for z € [0, 1], m > 1 implies ¢ <
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1, and m < 1 implies ¢ = 1. Thus, unless m > 1, extinction is certain. One
may obtain this condition analytically by setting

f@)=¢(2) -z (5.203)
then f(1) =0, /(1) =m~1, f(z) > 0 (z € [0, 1]), hence

H2)=z+@E—Dm-1) (5.204)
and

¢-Dm-1=<0. (5.205)

It follows that m> 1= ¢<l,andm<1=¢=1.

The function g(z) = Z(0; z) may be interpreted in terms of multiplicative
processes in continuous time. Let x(¢) be the population size at the time ¢
with x(0) = 1, then

Z(t; z) = Ez*, (5.206)
Since

Z(d) = az = at,

(df) =z+ z+¢(2) (5.207)

x(dt) = 1 +dx,
one has )

z + g(z)dt = E[z*%]. (5.208)
Let infinitesimal transition rates, 4, a;, be defined by

= — 1

Pldx = k] a dt, k=1, (5.209)

Pldx = -1] = ndt,
then

0
Pldx =0]=1- [p,-{-Zak}dt (5.210)
k=1
and
0 0
E[z*¥ =2+ I:y,— [;;,-{-Zak} +Zakz"+l}dt; (5.211)
k=1 k=1

thus,

g =p-— [u-{-iak}z-{-iakzk"']. (5.212)
k=1 k=1
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One may observe that g(1) = 0. The corresponding population size generat-
ing function, Z(t; z), and the one-step (step size k) finite form, ¢(z), may be
obtained from (5.175) and (5.176), respectively (¢(z) = z + h8(2)).

The simple birth-death model in which u is the death rate and A is the
birth rate is, accordingly, given by

g@)=pu—@u+Mz+rz . (5.213)

The corresponding Z(t) is obtained from

fz w—Dv—p) (5.214)

One has
z—1 z—1
_ (A—u)t

Z—u/h  z—p/n’ (5.215)

and, hence,
— (A—u)t
Z(t) = — (2= Due 5216

Az — j — (z — DAel—wr’
The case A = 4 may be obtained as the limiting form of (5.216); it is

z~-1

The one-step forms are

_ (A—u
R o A S (5218
z—1
Thus Z(?) satisfies
Z(t+h) =Z(1), Z0) =z (5.220)

for continuous ¢ = 0.

The question of the solution of functional equations of the form (5.164)
will be reconsidered after the development of methods for the solution of
difference equations (5.172).
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7. U-OPERATOR SOLUTION OF %Z =0(2)
Methods will now be discussed for the solution of (5.172). Newton’s inter-

polation, Chap. 1 (1.8), will form the basis for the first approach. From
(5.172), one has

Z(t+h) = Z(t) + o, w = ho(Z(1)). (5.221)
The operator U is now introduced and defined by
Uf (@) =0(2) Af(2) (3.222)

in which f(2) is any given function (the domain of U and thus restrictions of
the operator will depend on the applications). Thus

U@ = AZDlmo

1 (5.223)
=2+ 16(2) =/ (2)].
Similarly, one has
Uf@ = Af @10 (5224)
Thus Newton’s formula provides the following solution:
f@w)y=y (,’-/ )H Uf (2); (5.225)
j=0
and, in particular,
m .
z=Y (}/”)h’ Uz, (5.226)

=

The expansions (5.225) and (5.226) are formal; i.e., convergence is not
implied. Normally the expansion is used in the form

m—1

Z2(1) = MW Uf (2) + Ry
£(Z@) FZ‘S(,) Z 227

R, = (f/,”)h’" U™f (2).

Thus the error is estimated by the next term.

The operator U is a direct analogue of the Lie-Grdbner operator [4] used
in the study of simultaneous differential equations. In fact, for 2 — 0+, one
expects
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Z(t) = 6(Z(1),
Uf (@) = 6(2)f (2),

0 4
fzay=>y_ 7Ur@, (5.228)
=0
o L
Zy =) —U:z
= /!
if the limits exist. One may write (5.225), (5.226) in the symbolic forms

f(Z@) = (1 + hUY"1(2),

Z(ty= (1 + hU)hz. (5:229)
Similarly, for # — 04, one has
/)
fzm) =% @), (5.230)

Z(t) = &'z

One may establish a relationship of (5.229) to semigroups [36]. Define the
norm of f(z) by

V@ = suplfia)] (5.231)

and the family of operators T'(¢f) by
T(HZ(0; 2) = Z(¢; 2),

5.232
T(0) = I (identity map); ( )
then
T(t) = (1 + U™, (5.233)
The infinitesimal generator, 4, of the semigroup is defined by
.1
4@ = lim ZIT(Y @)~ T (5.234)
hence
1
4= Zln(l + hU) (5.235)
and
Af(2) = '(2),
f(2) = 822 (5,236

Az = g(2).

Hille’s representation of the semigroup is
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&
Z(;2) = Jim ; 7 A Z(0; 2), (5.237)

which, for functions Z(¢; z) analytic in a circle about the origin, may be
written
S
Zt, )= ) Az,
= (5.238)
= ez,
The differential equation (5.174) is now an immediate consequence of
(5.238). The differential equation (5.180) follows directly from the semi-

group property
Tt+1v)=TOT(7), (5.239)

which is taken to be the defining relation for semigroups. The approach
through semigroup theory will not, however, be pursued further here.

The partial sum of (5.227) is, of course, exact when ¢ has one of the values
0,h,...(m— 1A and may be expected to be accurate for ¢ € [0, (m — 1)A];
however the accuracy also depends on 4 and the choice of f(z). An example
of the latter dependence is given by the function F(z) defined by

UF(z) =1 (5.240)
for which (5.225) yields immediately
FZ@)=F(@2) +1t, (5.241)

which is exact for all 7. The function F(z) is an invariant of the operator U;
it is simply related to the infinitesimal generator. Differentiation of (5.241)
with respect to ¢ at z = 0 provides the relation

F'(2)g(z) = 1. ) , (5.242)
Guided by this relation, (5.228) shows that the function f(z) defined by

f'(2)6(z) = 1 in (5.227) may be expected to provide good accuracy.
Consider the example

1 .
== =z 5.24
Using f(z) = z, m = 3 in (5.227), one has
Uz = l,
2y (5.244)
2 .
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and hence
Zap =zt CH (5.245)
TR T T 2R+ k)
Alternatively, choosing f(z) = 2%/2, which satisfies /'6 = 1, one has
2
! o, (5.246)
L 2k th
2 222+ hy
and hence
R\ e —h) 2h2 + K
s z|h)? ~ 22 - . 5247
Z(t; z|h) ~ z° + t(2 +;§—) T 2GR ( )

Noting that Uz?/2 differs from 1 by 4/(2z%), accuracy may be expected to be
good when h/22* is small. Evaluation of Z(.7, 5|.5) by (5.227) using m =9
yields the value 5.139444480 correct to the last figure. Use of (5.245) yields
5.139450980 with the error —6.5¢ — 6, and (5.247) yields 5.139444332 with
the error 1.48 — 7, providing a reduction of error of 44 times.

For another example consider

A ZN=-Z@)?,  Z(0) =z (5.248)
For f(z) = z, one has
Z(t zlh) ~z— 12 + @23(2 — hz), (5.249)
and for the choice f(z) = 1/z, one gets
1 1 t tt—h) hz* (5.250)

ZEaR -z =k 2 (-l -zt )

Since Ul/z = 1 + hz/(1 — hz), one may expect good accuracy if Az is less
than 1 and small. Using (5.227) with m = 9 yields Z(.3;.5|.2) = .4287462
correct to the last figure. From (5.249), one computes .4287211 with the
error 2.5¢ — 5, while from (5.250) one gets .4287455 with the error 6.5¢ — 7,
thus a reduction of error of 38 times is achieved.

The value of ¢, as previouly noted, should be chosen within the range of
nodal points used in order to maintain the interpolatory character of the
Newton expansion. For the first example, they are 0, .5, 1 and for the second
example 0, .2, .4. The computation of Z(?) for values of ¢ outside the nodal
point range may be done in stages by successively using the values Z(?)
obtained as initial values for succeeding computations.
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An expansion for g(z) may be obtained from (5.235) and (5.236), thus

8)'@) = 7 In(1 + hUY (),

o _1y-l . (5.251)
sy =Y v

J=1

Thus one may again obtain (5.242) from (5.240). One may, accordingly,

expect the same sort of improvement in the computation of g(z) from
(5.251) by the use of f(z) defined in (5.244). For this choice, one has

8) = o(z)Z( Vg [ 2

B(vy
(5.252)
9(2) z+h9(z) dv
g = T
p 6(v)
Applying (5.252) to the problem of (5.243), one gets
L K 22 +h
8(z) = +53 +?Zﬂ(—?+—h)2‘ (5.253)
For the problem of (5.248), one gets
2 2.4
z 1 h'z
g(z)~ — =73 (5.254)

2(1 = hz)(1 — hz + K22)

8. CRITICAL POINTS

From here on, 8(z) of (5.172) is assumed to be independent of 4. The zeros,
a, of 8(z) are termed the critical points of the difference equation or points of
equilibrium. Clearly, Z(?) is identically equal to « for any choice of 4 if
z = a; thus Z(?) is also identically zero, hence g(z) also vanishes at a. A
critical point is termed repulsive if, for z in a half-deleted neighborhood of
a,Z(t) moves away from « as ¢ increases; conversely, if Z() moves toward «,
that is lim,_, ., Z(?) = «, then « is termed attractive. To obtain a criterion for
deciding the character of «, let

Z(t) = a+ (), (5.255)
then, from (5.172),
% &(t) = 6(a + e(®), e0)=z—«a (5.256)
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Let r be the first index for which 6”(a) # 0; then, using the Taylor expan-
sion of 6(z) about « and ignoring terms beyond &(z)", one has

ey,  h>0, &0) = &. (5.257)

For r =1, one has

&(t + h) = (1 + ho' (@))e(?), : (5.258)
hence, « is attractive if .
|1+ 46 ()| <1 (5.259)

and repulsive if
|1+ 48 @) > 1. (5.260)

A simple criterion for r > 1 and 4 sufficiently small may be obtained by
replacing (5.257) by

()
sy =2 rf“) e,  &(0) =& (5.261)
Thus .
1Oy 17D
o(t) = [850-1) - W zi| : (5.262)

consequently, « is attractive if 6”(a) < 0 and repulsive if 67 (e) > 0 when
gy > 0. If gy < 0 then the same conclusion is reached for r odd; however, the
conditions are reversed for r even. These conditions for » > 1 are summar-
ized in Table 2.

Consider the following examples:

1. 9(z)=%(£—z),P>0.

z
a=+P,0@)=-1, r=1,

Table 2 Classification of Critical Points for r > 1

Attractive Repulsive
g0 > 0,67() <0 g0 > 0,07() > 0
g9 <0, r odd, () <0 g9 <0, rodd 67() > 0

gg <0, reven 6) >0 g9 <0, reven 60(@) <0
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hence, for 0 < h < 2, « is attractive,
2. 02)=c(z=1)(z=9), ¢>0.
a=1¢ (D)=cl=-9), @) =c¢—-1).

Thus: 0 < ¢ < 1= a=1isrepulsive,and for0 <2 <2/c(1 =), a=¢
is attractive; £ > 1 = o = lisattractivefor 0 < h < 2/¢(( — 1), anda =
¢ is repulsive; ¢ = 1 yields a double root for which 6”(1) = 2c, hence, &,
<0=>a =1 is attractive, g, > 0 = a =1 is repulsive for sufficiently
small h.

3. 6(2) = z(1 — 2z).

@=04,00)=1, &) =-1.

Thus « = 0 is repulsive, and « = § is attractive for 0 < 4 < 2.
4. 6(z) =24z - 1).

a=0, 1, 9(0) = -2, §(1) = 1.

Hence « = 1 is repulsive, and, for 4 small enough, a = 0 is attractive
when g3 > 0, otherwise repulsive for ¢y < 0.

9. A BRANCHING PROCESS APPROXIMATION

A function, ¢(z), is said to be absolutely monotone on z € [0, 1] if
V@ =0, r=0,12,... (5.263)

It is known ¢(z) is necessarily analytic, and if further ¢(1) =1, then it is a
probability generating function. For this class of functions, an approxima-
tion will be obtained for the system

Z(t+ 1) = ¢(Z(1)), Z0) =z (5.264)

Three cases are distinguished according to ¢'(1) > 1, ¢/(1) < 1, and ¢'(1) =
1. The infinitesimal generator of the approximations will always have the
form

g =cz-1)(z-9). (5.265)
Case 1: ¢'(1) > 1 (supercritical case).

It is clear that there is just one number ¢ € (0, 1) satisfying ¢(¢) = ¢. This
is taken for ¢ in g(z). Using (5.175) or, equivalently, (5.216), one obtains the
following approximation, Z(; z) to Z(t; z).
z—¢— (2= Dt
z—¢—(z—1)eU-9¢"

Z(t 2) = (5.266)
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The mean number in the population, m(r), is given by
O = 2 20 ey = £ (5.267)

Let m = m(1); then, since ¢(z) is the exact one-step generating function, one
may take m = ¢'(1), hence the final approximation is

m=¢'(1),
S _z—;‘-—(Z—l);mt
Z(n2)=—— =—(@-Dm’ (5.268)
m(t) = m',
80 =T = =),

Case 2: ¢'(1) < 1 (subcritical case).

It will be assumed that ¢(z) may be analytically continued so that a value
¢ > 1 exists satisfying ¢(¢) = ¢. The smallest such root is chosen and used in
g(z). Again, setting m = ¢/(1), one finds exactly the same solution, which is
given in (5.268).

Case 3: ¢'(1) = 1 (critical case).

One may take

g2) =c(z— 1) (5.269)
yielding
= z—1
Zit,zn) =1+ m (5.270)
Since the mean satisfies m(f) = 1, the constant c is determined by requiring
Z(1; 0) = ¢(0); . (5.271)
hence
1
c=r-1. 5.272
T=60) (5:272)

Let the probability distribution generated by ¢(z) be py, py, . . ., then (5.272)
ensures that Z(z; z) generates the same value of py. _

It is clear, from the construction of the approximations, that Z(t; z) is
exact when ¢(z) is a bilinear form.

Example: Let B(x) be the distribution function of 2 nonnegative random
variable with Laplace-Stieltjes transform B(s), i.e.,
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B(s) = /0 io e~ dB(x); (5.273)

then, since B(s) is completely monotone, it follows that ¢(z) = B0, = Az)
(A > 0) is absolutely monotone; further, since ¢(1) = B(O) =1, ¢(z) is a
probability generating function that may be used to define a branching
process. If A is the arrival rate of a Poisson stream and B(x) the service
time distribution of a queue, then m = ¢/(1) is the offered load p; the known
stability condition, p < 1, implies the subcritical case, which further implies
m(t) - 0, t > oo.The function Z(n; z) (n=1,2,...) is the probability gen-
erating function of the number of arrivals after n consecutive services, For
the choice B(x) = 1 — ¢™#*, the approximation is exact, in this case, £ = 1/p.

10. A PERTURBATION SOLUTION OF iiZ: 0(2)

It will be assumed that Z(¢; z|h) is analytic in 4 about 4 = 0; further, 6(z) is
taken to be 1ndependent of A Terms of the perturbation expansion in
powers of 4 up to A will be obtained. This can also provide significant
information concerning the dependence of Z on ¢ and z. Accordingly, let

Zy(t, 2) = Z(1; 2I0),

9z
Z,(t:2) = 5 =0, (5.274)

¥z
Zz(t Z) h2 |h—0! etc.

so that
)
Z=Zo+hzl+322+"' (5.275)
with the initial conditions
Zo =2z,
Z, =0, (5.276)
Zz = 0, etc.

the corresponding expansion for 4(Z) is

U(Z) =6(Zo) + hZ,6/(Zy)
% (5.277)
+ 5 [2260/(Z0) + 230" (Zo)] + -

The difference equation and initial condition may be written in the form
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t 0
ZH)=z+ §G(Z(u)) % u— §G(Z(u)) % u. (5.278)
Thus, as far as #?, one has
t
Z(0) =z +3[6(Zo) + hZ,6(Z,)
P
+5120(Z0) + ZI9'(Zo)} + -1 Au
o (5.279)
~36(Z) + hZ,6"(Z,)
)
+512:8(20) + ZI6(Zo)t + - 1A w.
Use of the Nérlund expansion yields
t
Z() =z +/ Zy) du
0
! .
+H [ 2@ du— 30020+ §62) (5.280)

+ K1} fy 1226/ (Zo) + Z36"(2Z0)) du
—1Z,0(Zy) + 50(Z0) — 9] + -+ -
Equating corresponding powers of 4 in the expansions of (5.275) and (5.280)
and subsequent differentiation yields the following differential equations
Zy = 6(Zy),
Z, = Z,6(2Zo) - 1206 (Zy),
Zy = 12,6(Zy) +1 236" (Zy)

(5.281)
~1Z10(Zy) — 1 Z)Zo0"(Z,) + 55 208 (Zy).
Defining M(z) by
26/ (u)?
M(2) = du, 5.282
@ = S (5.282)
one may verify the following solutions of (5.281):
o(z
= —G(Zo)l 7 ((Z))
&(Zy) (5.283)
2 0/ / .
Z, = Z1 _G(Z y Z.9'(Zy)

+3l0'(Z0) — 6(2) + M(Z,) — M(2)).
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Thus the perturbation solution, (5.275), is now

_ 2+ oz 20
Z = Zo <+ 9(20)1119(20)
o .
*3 [zf 9((50)) - 219’(20)] (5-:284)

+16(Z0) = (2) + M(Zo) ~ ME@Y] +-+-.

Applying (5.284) as far as the first power of 4 to the examples of (5.243) and
(5.248), one obtains respectively

Zty=vV2a+z22+ Wln(l+ )+ vy
Z

(5.285)
F4 F4
Z(’)"1+zz_h(1 +tz) In(l +22) 4.
An additional example is provided by
AZ = ez, Z0)=z (5.286)
for which one easily obtains
- _In(1 + ™)
Z Z
ZWO=z+In(l +¢e )+ 3¢ gt (5.287)

11. HALDANE'S METHOD FOR %Z =0(2)

The final method of solution to be discussed is due to J. B. S. Haldane [8]. It
consists of determining the function F(z) of (5.240) or, equivalently, by
(5.242), g(z)"!. One has

Fo)= [ o) db,

(5.288)
Fz+ho(z))— F(2) =
Let
o0 hs—l
g0 =Y = Ak (5.289)

s=1

then, from (5.288),

00 hs—l z+h0(z)
h=Y r / fiw)av. (5.290)
s=1 ' z




150 Chapter §

For the integrals in (5.290), one may write

z+h6(z) o0
/ fs(v)dv=z G(Z)Vf("'l)(z) (5.291)
z v=1
hence,
o0 ps—1 00 v
n=3 > Lawre e,
s=1 v=1 ¢
ey L gy o (5.292)
=LKt @

Equating corresponding powers of 4 provides the following formulae:

f(@) = 9()

] I—s+1
z) ~s
W OO 122

(5.293)

By successive use of the recurrence of (5.293), the functions f(z) are
obtained; thus,

0 =32,

5@ = ;6;((2)) %9”(2),

fo@) = 6;((?; +26(2)0" (), (5.294)
fs(2) =% [ -19 6;((?)4 — 590 (2)’0"(z) — 6(2)¢" (z)°

+260(2)6 (26 (2) + 9(2)29(4)(2)].

For g(z)—l, one now has

2
g@) =007 + gZ—(%) - % (9;((2)) +6'(z ») (5.295)

Examples are:
1
1. 9(2) = —Z— ,
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oW
—1— A — - m— e
8@ =z—g @t
1, & h
F(Z)—EZ —Elnz+g+-~
2. 6(z) = —e2?,
(Z)_l——L+ﬁ+&z+
g T ez 2
1 h’e
F(z)—e—z+h1nz+Tz+---
3. 6(z) =%,
2.2
g = B ey

ol g, he Ha o,
F(z) = il +zm

The determination of Z may be accomplished either by solution of the
system (5.174), namely

Z=g(Z), ZO0)=:z (5.296)
or by solution of the finite equation [see (5.175)]
F(Z)y=F(z)+1t. (5.297)

12. SOLUTION OF G(¢(2)) — I(2)G(2) = m(z2).

Having discussed the nonlinear difference equations (5.171) and (5.172), it is
possible now to return to the original equation (5.164). Define Z(¢) as in
(5.171); then the functional equation may be written as

G(Z(t + 1)) = UZ(1))G(Z(t)) = m(Z(2)). (5.298)
Let
U@ = GZ@,
a(?) = (Z(1)), (5.299)

b(t) = m(Z(1)).
Then (5.298) takes the form
Ui+ 1)—a()U(r) = b(2), (5.300)

which was discussed earlier. Of course, one now obtains G(z) from
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G(z) = U(0). (5.301)

It is now possible to solve the functional equation (5.170) for the'M/M/l
queue with a feedback customer. Defining Z(r) by

1

Zt+1)= T/ =Z0)’ Z0)=z (5.302)
and using (5.195), one finds
_1—pz—(1-2)p'
Z(n = T—pz—( =2 (5.303)
Setting
U() = G(Z(), (5,300

a(®) =1+rp(1 - Z(2)),
the functional equation becomes
U+ 1) —a(hU(r) = 0, U(co) = 1. (5.305)

The boundary condition follows from Z(co) =1, G(1) = 1. Thus, the
required solution for U(?) is

U(t) = 3™, (5.306)
hence,
1]
G(Z) — eoSOa(w)Aw;
00 . (5.307)
=[]0 +re1 = ZG) ™.
j=0

A perturbation solution for G(z) when r is near one is readily obtained; let
r=1+¢g, then

a(®) =1+ p(1 — Z(2)) + ep(1 — Z(?)), (5.308)
and
Gz) = ex:p[é In(1 + p(1 — Z(w))Aw]exp [é 1n(1 4o PA—=Z(W) ) Aw]

1+ p(1 = Z(w)
00 _ -1
l1-p (1+ p(l —Z(w)) )

=1—pzj=0 £1+p(1—Z(W))
_l-p . & (1-2)(1-p)p
_-l—pz(1 €j=]1—pz—p(l—z)p"+ )

(5.309)
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A simple general formulation for the solution of the equation

G(#(2)) — G(2) = m(2)

is obtained as follows. The substitutions (5.299) lead to

AU = b(2)

and, hence, to

G(Z() = K(2) + %m(Z(w))Aw.

Differentiation with respect to ¢ at ¢t = 0 yields

G(2(@) = m(z) + § mZOZ(W)Aw

which permits determination of G(z).
Consider the example

G(l iz) —G@) =z

One has
-_Z = 2
Z0=1, &@)=-7
hence
, 1 1
G(2)= ——+S—Aw.
0(1+ wz)
The change of variable w = y/z gives
1 180 1
G@)=—-=-+-S——Ay,
O="2 B ar?
and the further change w=1+y gives
1 1!
G =—-- ~+- S
From Chap. 3 (3.74) one has
1
Yixlz) = S=Aw,
hence

11
v(lz)=1- ?F W,

153

(5.310)

(5.311)

(5.312)

(5.313)

(5.314)

(5.315)

(5.316)

(5.317)

(5.318)

(5.319)

(5.320)
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Since, from (3.78),

g = Ly (X
Vil =1y (z) (5.321)
one gets
, 1 (1
G(z) = -;v/(;), (5.322)

and, finally,
G(2) = w(é) (5.323)

13. SIMULTANEOUS FIRST-ORDER EQUATIONS

Here, the theory of the first-order nonlinear difference equation is extended
to a system of simultaneous equations. In what follows, it will be useful to
use the notation X for the vector (x;, x,--, x,) with scalar components
1 < i < n. The general form of the system to be discussed is
AZ(D)=0(2), Z(0;3) =z, l<i<n,
5 1 i i (5324)

Z= (21722’ "',Zn)!
in which 6;(Z) are independent of ¢. Define the infinitesimal generators g;(Z)
by

80 = | (5.325)
then, because of time homogeneity, the following system of differential
equations is equivalent to (5.324):

Z—u zO=z 1sisn (5.326)
The consideration

Zi(t+8); 8) = Zy(t; Z(5; 2),

N (5.327)
~Z{(LZ+ gé), §—0
shows that the partial differential equation
5z 4 5Z
w—gl@éz'l"“+gn(5)5; (5.328)
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is also equivalent to (5.324); the solutions of (5.328) are the » functions
Z(1; 7).

In order to construct the solution of the system (5.324), a U-operator
approach will be followed. The total difference quotient with respect to ¢, A,
implies h

AFC@) =7+ 1) - FED (5.329)
Setting

w;=h3), Zh) =z +w; (5.330)
one has

ASEDimo = TG +) - 1)} (5331)
The U-operator is now defined by

UF) = 711G+ &)~ 1) (53%2)
hence

U@ = AfZ(@Dimo- (5.333)

Clearly, one also has
V@ = AfZDior 20 (5.334)

in which U° is taken to mean the identity operator.
It is possible to put the definition of U into another form that is suggest-
ive of partial differentiation [8]. Define A by

M@ =fE + ) -fQ), (5.335)
in which the w, are treated as constants; then
A=E™...E»—1; (5.336)

the E; are translation operators each referring only to the respective z;.
Define A; to be the partial difference quotient operating only with respect

to z,, then
A=E"...E" — | + w, A E* .. Eo (5.337)
Wy

n—1

and, by induction,
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Af(5)=wl glf(zl’---:zn)

+wy Ay f(z1 +o1,. .., 2,)
aw

: (5.338)
‘e Ayf(zi o,z 4w, .., 2+
w3

+w, A f(zy + 01,00y 2y + Opqy Zn)
Wy

Thus, in terms of the partial difference operators A,, one may write U in the
form

Uf @) =91(5)$1f(21= cois Zp)

+92(5)A2f(21 +0)], v .,Z")
wy
- (5.339)
+63(z2)A3f(z1 4wy, 20+ W,y Zy) + .
@3
+9n(_;) Anf(zl +on 2+ @2 +wn—lazn)-
Wy

The partial difference operations are carried out with w; constant and then
their values are assigned as given in (5.330).
Newton’s expansion is now used to express the solution of (5.324); thus,

1d=Y("were. (5.340)
i=0
In symbolic form this becomes
f@ = +h" (). (5.341)
Differentiation with respect to ¢ at ¢ = 0 and use of (5.328) yield
e )m+ 4 (2 )af(” Lt + KUY (7) (5.342)

n

or, in expanded form,

) _; ) x -1 =1 i P e
a@X e XD S EV i, (5.343)
09z, 0z, 71 J
In particular, choosing f to be a function only of z;, one has

fzy=3" (T wore (5.344)

=
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and

df(z 1y~
s L2 - Z(Yifwmo (5.345)
=1
These expansions may be used in the same manner as (5.225) and (5.251).
If limiting forms exist for A — 0+, the previous formulae become the
well-known Lie-Grobner formulae [4] for the solution of a system of differ-
ential equations; thus,

% 6@, ZO =z 1<i<n,
- X ¢/ —
F&) =Y LU,
=10 (5.346)
£(Z) =& (7). |

0@ =660L2+. e

+6,(z) 2=
The last expression for U is the 11m1t1ng form obtained from (5.339).
A function G(Z) satisfying
UG=0 (5.347)

is called an invariant function of the difference equation system. It is deter-
mined by

JAC T 5349
and, from (5.340), satisfies

G(Z(t) = G@). (5.349)
The related function F(Z) given by

UF@) = 1 (5.350)
may be determined from '

(O w5 - sas

and satisfies

F(Z()) = F@) +1. | - (5.352)

These functions provide useful insight into the nature of the solutions 2,-(t);
for example, conservation type results.
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The nth order equation

Z+nh)+a(DZ(@+ (n— D)+ -+ a,(DZ(0) = g(2), (5.353)
Z(G-Dhy =z, l=<izn '
may be rewritten as an autonomous system of first order by setting

Z(®O=Z@+ (G- Dh), l<i<n,
Zya( =1

thus, one has

(5.354)

AZi=3@ui=Z),  1sisn-l,

1
% Z, = Z[g(ZnH) - (al(Zn+1) + l)Z,, = an(Zn+1)Zl]v (5_355)
Z =
% n+1 1,
Z0)=z,1<i<n+1.

Example 1: %Z = ¢(r). Let Z1(¢) = Z(¢), Z,(¢) = ¢, then
A Z) = ¢(Zy),

5.356

AZZ =1 ( )
h
Since

Uz = U ¢(zy),

5.357
UZ;_) =1, ( )

one has from (5.344)

Zi =2+ (tj—h)h’ U19(zy),
J=1

Z()=2zy +t.

(5.358)

Example 2: Z(1+2)-5Z(t+1)+6Z(f)=0. This equation is more
directly solved by the methods of Chap. 6; however, it will be discussed
here as an illustration of the present method and as an example of the
divergence of (5.344). Let Z() = Z(¢), Z,(t) = Z(z + 1), then
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AZ, =2Z,-2Z;,
AZ,=42Z, -6Z,, (5.359)
6, =23 — 2z, 0y =4z, — 6z;.

Clearly, U7z, has the form
Uz, = a;z; + b;zy; (5.360)

hence, from 171z, = U(U/z,), the following matric equation is obtained:

-1 =6|[a|_|an ,
[1 4][bj]—[bj+1]’ jz0. (5.361)

with the initial values @y = 1, by = 0. Since the eigenvalues of the matrix are
1,2, a; has the form

a=A+BY, (5.362)
hence

a=3-2. Y,

b=? -1, (5.363)
and

Vz,=3-2-z,+(@ =1z, j20. (5.364)

Substitution of U’z into (5.344) yields a divergent series; however, using the
expansion

i (;)a’ = (1 +a) (5.365)
J=0

as though it were valid for @ > 1, one gets the correct solution, namely
Z,(8) = (3z; — 2)2" + (2, — 22,)3". (5.366)

The foregoing procedure can, in fact, be justified by use of summability
methods [37]. The Euler (E,q) method is particularly suitable because it
sums a power series beyond its circle of convergence and may also be useful
for numerical computation. Let

=D (5.367)

=0

)

be a given series and let ¢ > 0 be chosen; then a} , & are defined by
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49 = ( )qi—aa,
j (q + 1)[+1 g i
9 — Zaj(q)_

j=0

(5.368)

One defines the Euler sum of Ej—o a; by lim,_, o 59 = 4 and writes
' Z a;=AE, 9. (5.369)
=0

The case of convergence corresponds to ¢ =0.
An example is given by the power series a; = x'. One has

@__1 (9+x x)j- 5.370
% q+1(q+1 ' (5-370)
hence, the series is summable in the circle

lg+x| <q+1, (5.371)

that is, with center —g and radius ¢ + 1.
The following holds for summability (E,q) [37]:

d>q D a=AE =) a=AEq) (5.372)

j=0 j=0

This property is called consistency; the special case g = 0 is called regularity.
Thus, every convergent series is summable (E, ¢) to the same sum.
The power series example of (5.730) may be generalized. Let

fx)= i b;x’, (5.373)
J=0

a = bj-x’, and let ¢ be the singularity of f(x) nearest the origin; then the
power series is Euler summable within the circle

|9 + x| < (@+ Digl. (5.374)
This may be applied to the Newton expansion

> ( .)x’ =(1+ % (5.375)

=\ ,

for which ¢ = —1; hence, the expansion is summable in the circle
|x—q| <g+1. (5.376)
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Applying Euler summability to (5.344) on substituting (5.364) and using
(E, 1), the solution given in (5.366) is obtained. Also, in this case, the infi-
nitesimal generators are easily found, namely

8 3
gl(zlv 22) =2z 1n§+ Zy ln'é',

gZ(Zl’ 22) = 621 1n-2- +2z; ln'2—7'

3 4

(5.377)

Example 3: The Erlang loss function (Chap. 2;: M/M/c Blocking Model)
satisfies the equation (2.26)

Bi+1,a)" = %B(t, a7+ 1. (5.378)

From the point of view of numerical accuracy obtainable from a given
number of terms of (5.344), it is sometimes advantageous to transform the
dependent variable. In this case, because of the exponential behavior of
B(t, a), it is better to treat In B(¢, @). Accordingly, setting

Z,(t) =In B(1, a), Zy(t) =1, (5.379)
one has
AZ, = —ln[zz;r ! +e2'],
AZ, =1, (5.380)
01=—1n[22+1+ezl], 92:1-
Thus,
Uz, = —ln[z—z—:—-—l+ e"],
Uz = —ln[¥+e"+gl] +1n[22 +1 e":l, (5.381)
Z,=z; +tUz +t(t—_l)U221 +ee

2

In fact, this solution finds much use in teletraffic network studies and in real-
time traffic systems.

A useful, simple approximation to the infinitesimal generators, g;(2),
1 <i < n, may be obtained from
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2() = 2+ §6GW) A v SOEM) Av. (5.382)

Differentiation with respect to ¢ at # = 0 yields
39; (Z o)

gD =6, + S Z Z,v) Av (5.383)
hence, approximately,
' A 89,
&= 0,~ - EJZ_:; a—zjgj. (5.384)
It is useful to introduce the matrix M defined by
h | 86; o
M—I+§[£j],151,]5n (5.385)
in which 7 is the identity matrix. Defining the column vectors
£ 6,
&n En
the system of equations (5.384) takes the form
MG =6. (5.387)

Thus, solution of (5.387) provides approximations to the generators g;.
Equation (5.387), in fact, subsumes the approximate derivative formula of
(5.154), which may now be seen to be an approximate construction of the
infinitesimal generator for the complete equation (5.27) when written in the
form (5.151).

PROBLEMS

1. Solve
u(x + 1) — e¥u(x) =
(e + 2)u(x + 1) — 2{x + De*u(x) =
w(x + 1) — u(x) = xsin x,
u(x + 1) — xu(x) = xp”,
u(x + 1) — e¥u(x) = xé* .
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2. Solve

w%u(w, x) = (w + Duw, x) — wu(w, x + 1),

wa—av;u(w, x) = (W + x — Qu(w, x) + wu(w, x + 1),

w%u(w, x) = —(x + Du(w, x) + (x + Du(w, x + 1)
3. For the Erlang loss function, B(x, a), let
B, = 3B/bx, B,, = 8°B/3x*,  r = B,/B,
rp=B, /B, a=x+1-r".
Obtain the approximation
In(a/a) — o
1+ 1/Qar)
4, Show that for any functions, m(z), n(z), one has
Ulm(2)n(2)] = m(z + hB(2))Un(z) + n(2)Um(z).
5. Show that for Z(t + 1) = aZ(?)%, Z(0) = z, one has
g(z) = zIn(az)In2,

_ Inin(az)
F(Z) = ——1;1—2—— .
6. Solve approximately (in all cases Z(0) = z):
A Z=y14+2*-2,
AZ= In(1 + %) - Z,
" Z
z="_,
415z

AZ=e¥D_7Z
h

7. Show that the mean, m, of the distribution generated by G(z), (5.170), is

=P
m=q_ >
8. For G(z) defined by (5.310), show
o [P g L Ly
G(z) =~ mdv 2m(z) + 5" (2)g(2).
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9. Using the Haldane method, the solution of
UG=m

may be obtained in the form

[e) hs-—-l
G6) = LA
Obtain the following formulae for the j;(z).
! /~s+1
_nm 8 -9
fi=g ;s!(l Sl @ = lz2,
fr= 8 fi=—30f~
_ d m _3d[,dm 2 & m
=973 f3_2d2[0d20:| 0d220

Py
G(z) =i +5f2 +€f3 +
10. Let ¢,(z) be the nth iterate of ¢(z), and let
F(z, w) =z + w(z) + Wrn(2) + -
then show
F(z, w) = z+ wF(@(z), w).
11. Let Z(¢t+ 1) = ¢(Z(?)), Z(0) = z; show that the function F(z,w) of
Prob. 10 satisfies
0 .
F(z,w)lnw + a—i(F(z, w)g(z) = ~z — % w[Z(W) Inw + Z(W)]Av.

12. The equation AZ =6(Z), Z(0) =z may be rewritten in the form

Aan_%ln(l +h0(Z))

hence, obtain the approximation

o0 =Fn(1+4%2) -2 L (14429

13. Solve

1
—_ viz—1)
G(z) = G(Z—z)e .
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14. g-gamma function [38]. Define

k=1
(@ ) =] [(1 - a9). (& oo = lim (@ g)s.
j=0

(q; q)oo 1—x
Iyx) =—""—"(1- , 0<g<l.
400 2 q)oo( 9 q
Show
lir? Iy(x) = T'(x),
g—1-
1-4*
Fx+1)= T=s p r,,r,()=1,

Ty(x) = q"‘“""'z”zrl,q(x), g>1,

' Doo 1=g™ mx—(m=+1)/2 m—1
T (mx) = (q(z; Z?nm ( (lq_)q)mx_l 1_[ Ty (x + %)

§=0

15. Solve

G(ﬁ) —-G(2)=1z

16. Obtain the solution

_Injlnz] | & (Inzy
@) =3 +j§=;jz(2f Y
of
G(z) - G() =z, z>0, z# 1

17. For the equation
%Z:eaz—l—Z, Z(0) =z, 1—%<a<1, a=1-h+ ha,

show
Z(t) ~ c(2)a'’, Schrdder equation [39],
e(z + h(e” — 1 — 2)) = ac(z),

Z() = ¢ (e,
ha* 1

2 P e
Tal-a° T

c(2)=z+
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18. Consider a perturbation solution of
%Z =aZ —eZ", Z(0)=z;
Z=2Zy+eZ+--+, Zy0)=2z, Z,0)=0,:--.
Show
1
0, —=
r#1,a# p

— (1 + ha)-D/h
1= (1 + ha)!

Z = 21 + ha)™ — ehz' (1 + ha)P= 1

1

r=1, a#0, ~

Z =z(1+hay" — sze(1 + ha) P~ 4.

a=0

Z=z—ct2 +.--,
19. Show that (5.226)

= {t/h
Z(t) = MY 274
0=3 ( / ) :

formally satisfies

A Z()=06(Z(t), Z(0)=z.
20. Define ¢,(z) as in Prob. 10; ¢o(z) = z, ¢1(z) = ¢(z). A function ¢(z) is

said to be periodic with period r if n is the smallest index for which
¢x(2) = z. For functions ¢(z) of period n, show that the solution of

G¢(2) —aG(z)=m(z), a#l

is
R
Gz) = T_—an“j;“" Tm(gy-1(2))-
21. Show that the solution of UG = m may be expressed by
! > (_1)’_1 1yp-1
G(2)8(2) = 2—7——}:" U m(z).
J=1

22. Show
Ulf'(2)g(2)] = [Uf (2)]'g(2), Ug(z) = 6 (2)g(2);
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23,

24

25,

hence, obtain the expansion

2
8(2) = 6(2) — 260 (2) + 1= 040 (2 + 0@ + -

Consider the equation of (5.164). Define v(z) by

Wz) = eU"(ln l(z)),

in which U™! is an inverse of U, then the solution G(z) may be written

m(z) :I
v(@()]

Consider the following one-step probability generating function for a
population growth model:

Gz) = v(z)U™! [

¢(z) = population arising after one generation from a single individual.
#(1) =1, mean is u = ¢(1).

I(z) = immigration into population during one generation.

I(1) =1, mean is v = I'(1).

Let G(z) be the generating function, in equilibrium, of the augmentation
of population during one generation with mean m = G'(1); also define
Z(?) by

Za+ ) =¢2Z@), ZO) =z
Show

6(2) = GBI,

6() = ﬁ zi),  w<l,

v

m=1_u,

! 1'(Z(t))Z(t):|
HZ(@)

G(Z(t) ~ I(Z()/2 exp [ f ” Inl(Z(u)) du — Bo1ze |

Consider

G(z)=G(Il___p>, 0<p<l.

Pz

Show
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26.

27.

- Chapter §
_(1=p—p2)(1=p) = (1 —p)1—2)'
20 = (1—p—pz)(1 —p) = p(1 —2)0" ’ wtl,
_z+(—2p =1
1+ =2 -

__1 P e

o) =1y =9 (l=p=p2,  w#l
=(1-z?% u=L

(Refer to Probs. 24, 25.) Let

I(z) = &V,
Show
g((z))g( Yy=vl-2)— vSZ('u)A'u
() ~ [1 2 ;ZPZ:I vm‘_/&z:”e—(v/z)(l—z)—(v/lz)g(z), p<l,
= V), =1,
In G(z) = — v(1 — pz)(1 —z)i / <1

S —p—p)l—p) — ol -2 "

The following problem was formulated and solved by B. Sengupta in a
study of computer scheduling. Consider a queue with compound
Poisson arrivals and general service time. The Poisson arrival rate is
A, the generating function of the bulk size distribution is 6(z), and the
LST of service time distribution is B(s) The service times are assumed to
be independent. The queue has a waiting area and a service area. An
arrival into an empty system goes into service immediately and newly
arriving customers must wait until service is completed. On completion
of service, the server takes all waiting customers into the service area
and serves them according to the processor sharing discipline. Again, all
newly arriving customers during the service of this batch must wait in
the waiting area. This process of rendering service to batches continues
until the queue becomes empty. Let the mean service time be o and the
mean batch size be 8. Let the generating function of the distribution of
the number of customers in a batch be p(z) and let ry be the probability
that the server finds an empty queue after serving a batch. Show that
p(z) satisfies

p(@(2)) — p(z) = ro(1 — 6(2))
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where
#(z) = O(B(A — A2)).
If AaB < 1 and Z(t + 1, 2) = ¢(Z(t, 2)) with Z(0, z) = z, show that
p)=1-ry Yy (1-6(Z(.2))
J=0
with
ot =) (L-6ZG)).
j=0
28. Define Zy(t) and f(z) by
Zyt) =6(Zo®),  Zo(0) =2,
(26 =1
Show that the solution of

is given by
20 = Z, i (’/.")h’ V() |.
J=1 J
Thus, an approximation to Z(¢) is, for example,
Z(1) = Zy(tUf (2)).
29. Obtain the following solution of UG =m :

G'(2)g(z) = m(z) - >_ LU [ (2)g(z)]
v=1

in which the L, are Laplace numbers.
30. Consider the following method of successive approximations for the
solution of

% Z(t) = (Z(1)). Z(0) =z
Define the sequence Z;(f) by Zy(¢) = z and

t 0 '
Zi() = 2+ SHZM) Aw—SOZ WM Aw,  j20;
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then the function Z(t) is taken as an approximation to Z(z). Show that
for the equations

zZ

%Z=1+—Z, Z(O)=Z,
1
Az—zy %(O)—Z,

one has, respectively,

2 2
zi() =241 - 122 [w(“ i ”) - w(—(l £ )}

s o2)-49)

31. Determine the character of the critical points of the following equations:
A Z=Z(Z-1) '

AZ=2Z%Z - 1),
AZ=snZ-~Z.

32. Consider the branching process for which B(x) =1 — e H (section on
branching process approximation).
Show

1 (p—=1A=pz) _,
20 p Al-z) ©

1 p=1_,
Po() ~=—=——p .
o(®) P pz P

33. Let « be an attractive critical point of
AZ=62), ZO)=2z

p>1 t— o0,

Let a = 1 + h¥'(«); show

Z() ~ a + c(z)d’™, t— 00,

c(z + hO(z + a)) = ac(z) (Schroeder equation)
34. Consider

AZ=2Z 2Z Z(0) = z.

1
Z ’
Show
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3s.

36.

37.

Z(t)~i2"', t—>o00, 0<z<l,
Zn __z 9t
1-Z(@#) 1-:z

For Example 2 of the last section, show that the invariant function
G(z1, z;) is given by

_ (321 _ 22)1/(1n2)
G(z1,23) = ¢[W

in which ¢(x) is arbitrary.
Obtain the following results for the system

AZi=eT 0 =2,
%Zz =1, Zz(O) = Z3.

a1 —e™®
Z, =z +he azzl_e—ah’
Zy =125+,
ah _
s
& = 1,
Ger,2) = 21 + T g™

Consider the system
AZ,=2,-2y, Zi(0)=2z, Z30)=2z,
AZz = Zl'

Obtain the solution:

Z,() = —lﬁ[(zz _ Bzl + (az — )B),

2, =2, +1),
_14+4/5 g=L= V35
2 2
Show that the Newton expansion for Z;, using 17z, is neither con-
vergent nor even summable (E, g) for any g > 0.

o
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The Linear Equation with Constant
Coefficients

1. INTRODUCTION

The homogeneous equation is discussed with application to the differential-
difference equation for the transient behavior of the number in the system of
an M/M/1 queue. The solution is obtained in the form of a Laplace trans-
form for which an approximate inversion is constructed for the probability
that the system is empty and which is applicable over the entire range
te(0, 00). The operational method of Boole is presented as an alternative
procedure for the solution of the homogeneous equation.

The solution of the inhomogeneous equation by means of the Boole
operational method is given. The Nérlund sum is applied in order to provide
the general solution for arbitrary forcing functions. The method of Broggi
and Laplace’s method are exemplified. A general representation is derived
for the principal sum in terms of the Laplace transform, thus providing
further illumination of the nature of the sum.

A class of equations with variable coefficients is introduced for which a
procedure is given that reduces them to equations with constant coefficients.

Partial difference equations occur frequently in applied problems, e.g.,
games of chance, queueing models, and combinatorics. The method of
Boole, Lagrange’s method, and the method of separation of variables are
given. A game of chance is discussed, and application is made to the single-
server finite source model useful in the discussion of computer performance.

172
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2. THE HOMOGENEOUS EQUATION

The equation to be studied is

Lu=ulx+n+a_ux+n—1D+. - +aux)=0 6.1)
in which ag, 4, ..., a, are independent of x. Let

(x) = prv(x); - (6.2)
then

Lu=p"[0"E" + a0 ' E" 4 o 4 apu(x). (6.3)
Define the characteristic function, f(o), by

fO) =p"+ a0+ +a; (6.4)
then .

Lu = L(p*v) = p*f (pE)v. (6.5)
It follows from

f(0E) = {0+ o) = (8) + B (DA + 31 (D)AT 4 - (6.6)

that if the roots of the characteristic equation, f(p) = 0, are simple then
v(x) =1 provides the general solution of Lu = 0. Thus, let p;, -, o, be
the roots; then

u(x) = p\pi + -+ + PuPr- (6.7)
The functions py, - - -, p, are arbitrary periodics of period one. It is easily
verified that, by use of Casorati’s determinant, py, -, p, forms a funda-

mental system. Corresponding to a root, p;, of multiplicity v, one has
fo) =0,---,/% V() =0, F¥(p) #0, hence, one must also have
A"y =0. Thus

v(x)=py +pax 4 px (6.8)
and the corresponding contribution to u(x) is

pilpr + pax + -+ + pox” '] (6.9)
Consider the example

u(x+2)— Su(x+ 1)+ 6u(x) =0 (6.10)
for which

f@)=p"=50+6=(p—2(p-3); (6.11)

hence,
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u(x) = p12* + p,3%. : (6.12)
In the following, a repeated root is present:
u(x +3) + u(x +2) — 21u(x + 1) — 45u(x) = 0. (6.13)
One has
f(0) =0+ 0 =21p~45=(p+3)%(p - 5), (6.14)
hence the general solution is
u(x) = (p1 + p2x)(=3)" + p35%. (6.15)

For the next example, an M/M/1 queueing model, starting empty, will be
considered. Let P(z, x) be the probability that there are x customers in the
system at time . Let A designate the arrival rate, & the service rate, and p =
A/u the offered load (Erlangs); then the rate of leaving the state x is
P(1, %) + (A + w)P(t, x), and the rate of entering is uP(t, x) + AP(t, x — 1);
hence, the state equation is

P, x)=uP(lt,x+1) - A+w)PEx)+APtx—1) x>1, (6.16)
The boundary condition for the case x =0 is

B(1,0) = —AP(t, 0) + wP(1, 1). 6.17)
In addition, one has the following boundary conditions:

P0,00=1, P@O,x)=0 (x=1),

x
Y Ptx)=1,  P(t,00)=0. (6.18)
x=0

The last condition follows from the convergence of the series. One may also
require that p < 1 to ensure the stability of the queue and the existence of an
equilibrium state.

To solve the differential-difference equation system (6.16), (6.17), the
Laplace transform with respect to ¢ will be used. Let «(x) = P(s, x); then

uu(x + 1) — (s + A + wu(x) + rAu(x — 1) =0, x=>1, (6.19)

in which the initial condition P(0, x) = 0, x > 1 was used; the transform of
the boundary condition (6.17) using the initial condition P(0,0) =1 is

uu(l) = (s + Du(0) = —1. (6.20)
The characteristic equation of the difference equation (6.19) is
@ =uz>—(s+Ar+wz+x (6.21)

whose roots, py, 05, are
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1 2
P1 —iz(s+k+u—\/(s+k+u) —‘4}\#,,

1 (6.22)
p2=§z(s+k+u+\/(s+k+u)2—4ku.
Thus the general solution of the difference equation is
u(x) = Apf + Bp3. (6.23)

The Laplace transform is completely determined by its values for s > 0.
For those values of s, one easily shows that p; < p and, from p;0; = p, that
p2 > 1; hence, the boundary condition #(oo) = 0, which follows from (6.18),
implies that B = 0. Thus the solution takes the form

u(x) = Ap}. (6.24)

In order to use (6.24), however, it is necessary to extend the validity of the
difference equation (6.19) to x < 0 consistently with the boundary condition
(6.20). Substitution of (6.20) into

(1) = (s + A + w)u(0) + Au(—1) = 0 (6.25)
yields
~1 — uu(0) + Au(—1) = 0. (6.26)

This yields the proper extension of u(x). Substitution of (6.24) into (6.26)
now yields

~1—Au+Arpr' =0,

1 1 1 1 (6.27)
A=——F—=— .
mepr =1 upp—1

The final solution for the Laplace transform 2(s, x) is
~ 1 1
P(s, x) = ————p1, x>0 6.28
(5,%) = o ol (6.28)

The following calculations allow the determination of the equilibrium
distribution.

Je A+ uP =4 =y~ 02 420+ ws + 8

~\/(u,—k)2+2(k+u,)s, s — 0+

~pap B (6.29)
U—A
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P1 > p
r

w=2x

pr~ 1+

Thus,

s l—p ,
P(s, x) — A s — 0+, (6.30)

P(oo,x)=(1-p)p*, p<l.
The exact inversion of (6.28) for P(z, x) is given by Saaty [40] and is

P(t, x) = e 2L 20/ Aw) + o1 (204/3u0)
x
+(1=p)p" Y pT L2t/ Aw).

k=x+2

(6.31)

It should be observed that (6.31) is not restricted to p < 1. This makes it
useful for the study of buffer requirements in the short-term buildup of an
overloaded queue. This expression is of a complicated nature and is difficult
to compute; thus, it is desirable to replace it by an approximate but simpler
formula that is suitable for engineering applications To illustrate the
method, a simple approximation suitable for engineering applications w111
be constructed for P(z, 0).

The approximation sequence f,(#), n=10,1,2,--. of the Laplace trans-
form [41,42] is defined as follows:

50 = CL MO e m 20,
fold)=+f (1)
HO=-3 (%),

£ -—2—7 ”(::) etc.

Each member of the approximation sequence preserves certain properties of
the original f(¢): these include monotonicity, complete monotonicity, abso-
lute monotonicity, convexity, and log-convexity. Also from a <f() < b
follows a < f,() <b and, at zero and infinity, f,(0) = f (O) £,(0) =11 (0)

Jn(00) = f(00), and f,,(oo) = (00). Further, each member is progressively
more accurate numerically and the approximation to f(¢) is uniform on [0,

oo]. This allows the construction of remarkably simple approximations that
behave essentially like the original function; the numerical accuracy is con-

(6.32)
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trolled by the order of derivative employed. For ease of computation, f(#)
will be used to approximateP(z, 0). Thus the approximate inversion formula
for the transform is

ﬂg:-%ﬁ@) t>0. (6.33)

To use this formula most advantageously, one should remove the singularity
at the origin and, assuming all other singularities are to the left, the one
nearest the origin is called the dominant singularity. The transform is then
translated to that point. This makes good use of the facts already known
and thus greatly enhances the accuracy of the final result. This will be
applied to the approximation of P(z, 0).

According to (6.30), P(s, 0) has the singularity (1 — p)/s, hence the trans-
form 1/(u(o; — 1)) — (1 — p)/s will be considered; this no longer has a sin-
gularity at the origin. The dominant singularity is now the branch point at
which the square root vanishes, that is, at s = —(/u — ~/A). Setting

o= (V& - Vi,
o=s+0a, (6.34)
() < g,

the new transform to be considered, after some simplification, is

I:i 02-1-40\/@—0—2@)'1'/’]- ' (6.35)

2u

80) =

The relation between P(z, 0) and g(9)is ‘
P(1,0)=1—p+e%g(0). (6.36)

Applying (6.33) to (6.35) yields the following approximation for g(z)

g(t):m(\/l +20/Au— 1 =t/ + Ad)

2 l+t/Au
wmQ2-en)\J/1+2t/ag /)

This approximation serves for all z > 0 and, in fact, is most accurate near
the endpoints, that is, ¢ near zero and near infinity. Table 1 compares some
exact values obtained by inversion of the Laplace transform with approx-
imate values obtained from (6.36), (6.37).

An exact expansjon for P(¢,0) especially useful for computation for ¢
small may be constructed using the following theorem [5]: '

(6.37)
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Table 1 Comparison of Exact with Approximate Values for M/M/1

A=2u=1 A=8u=1
t Exact Approx. t Exact Approx.
1 981 981 1 927 929
1.0 .881 .888 1.0 591 642
10 .801 .801 40 220 231

~ 00 '
Theorem: Let f(s) = 3} a,s " " be convergent for s > 4> 0 and v > 0,
then n=0

+v— 1

fin= Zan for all £ > 0.

The proof follows from the inversion integral. This will be applied to the
inversion of g(o). One has, using the binomial expansion,

o+ do /A =0 1+4 A
o 11 (6.38)
=y ( )(4,/ w's™, o >4/
u=0
Thus, from (6.35),
~ 5 1/2 / v_~v+l p
8 2u,cr otuzz(v)(4 Mu)o to—a
(6.39)

1/2 v, P
oo — a)Z(v+2)(4\/m)cr to—a

The expansion coefficients of 1/(c — ) in powers of o™ are ¥, Forming the
convolution of the two sets of coefficients for o™ yields

. 2
(=) (kl : 2) v,

a’ o > max(|a|, 4/ Au).

(6.40)
g(o) = 8io~

=0

The inversion theorem may now be applied to (6.40) to obtain the following
expansion for P(t, 0) convergent for all ¢ = 0:
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+1

o0
P(t,0)=1+8x™Y ;)
; d+ 1)

2 3
P(t,0) = 1+Ae""(—-t + (—a+2/ ) % + (—?+2 /Ao — SAM)%+ .. )

(6.41)

The operational method of Boole may also be used to solve Lu = 0. The
difference equation can be written in the form

f(E)u(x) =0 (6.42)
in which f(p) is the characteristic function. In factored form, (6.42) is

(E=oy)' - (E — o) *u(x) =0. (6.43)
A solution of the typical form

(E —a))'u(x) =0, l<i<k (6.44)

will satisfy (6.42) as a consequence of the commutativity of the factors; thus
the sum of all solutions contributed by the factors of (6.43) constitutes the
general solution of (6.42). One has, by use of the shift formula (1.107)

(E — o)"'u(x) = (E — )" o ot “u(ix)
= o (o E — o) oy Fu(x) (6.45)

= of A" (o Fu(x)).

Setting

Ao u(x)) =0 (6.46)
yields

U(x) = @y +pax+ -+ ppax’ e} (6.47)
in which py,--+,p,—; are arbitrary periodics. Thus the same solution is

obtained as in (6.9).

3. THE INHOMOGENEOUS EQUATION

The linearity of L implies that the general solution of the complete equation
Lu(x) = g(x) ' (6.48)

may be obtained in two parts, namely the sum of the general solution of
Lu = 0—the complementary solution— and any solution of Ly = g—a par-
ticular solution. Boole’s operational method is especially convenient when
g(x) consists of the sum of terms of the form &*P(x) in which P(x) is an
algebraic polynomial. This will now be discussed.
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To evaluate

a*P 6.49
) = 755" P (6.49)

the shift formula is used. Thus

u(x) = a* —— P(x)
f(a El) (6.50)
=q f—(a +ab) P(x).

The simplest case occurs when f(a) # 0; then the expansion of 1/f(a + aA)
in powers of A yields

= P(x) = Zcu YP(x).

v=0

1 _
f@+ab) (6.51)

Since beyond a certain point all terms of the series are zero, (6.51) is, in fact,
an identity. Important special cases are

I
& fay
BRETNS B (6.52)
fE " f@
Example 1:
u(x + 3) = u(x + 2) + 26u(x + 1) — 24u(x) = 1 + 5 + 6", (6.53)
One has '
f(p) = p* — 9% +26p— 24,
L, _1 1
& T e
ELEV N 15
f(E) O M
1 6* 2 _ 1 2 6" 1
BT = mn” =S TEren (6.54)
f(6+6A) =24 + 156A + 324A% +
11 )
f(GTGA)_ﬁ(I —6.5A+2?.75A ),
1 ;1
76T 68)" =37 = 13x 4 51).
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These calculations provide a particular solution. Since

F(p) = (p—=2)(p—3)(p —4), (6.55)
the general solution of the equation is
u(x) = p12* + py3* + pyd* — L+ 157 4 L6%(x* — 13x + 51). (6.56)
Example 2:
u(x + 2) + o*u(x) = x. (6.57)
One has
f(0) = 0 +0* = (p+ io)(p — iv),
1 1 1
F® TE? T TP+ 2a AT (6.58)
x 2

=1+o.2_(1+o,2)2'

Thus the general solution is

X ., T X 2

u(x) = (p1 cos—2-+p2 sm—;)a" + T2 T (6.59)
Example 3:
The case f(a) = 0 is termed a resonance condition. One has

flp)=p-3,

R S (PRI E R (6.61)

F—3° =¥ po!=¥ Rl=va
hence

u(x) = (o1 + %37, (6.62)

For forcing functions, g(x), not of the preceeding form, resolution of
1/f(p) into partial fractions is useful. Thus

J% = Z A (p—a)™ (6.63)

leads to the need for the interpretation of the typical form
A(E — a)""g(x). (6.64)
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One has
A(E -~ o) "g(x) = Aa* AT Fg(x); (6.65)
thus, use of (3.51) provides the interpretation
- A(x—z-1 X—~Z—~F
A(E —a) "g(x) = §(——r—:—l—) Ao g(2)Az. (6.66)
Example 4:
u(x + 3) — Tu(x + 2) + 16u(x + 1) — 12u(x) = g(x). (6.67)
For this case
) =(p =20 - 3), (6.68)
and
1 1 1
flp) = (6.69)

p=3 p=2 (p-2F
Therefore the general solution is
X
u(x) = p13* + @2 + p30)2* + S — (x — 2 = 12 () A
(6.70)

If £(0) # 0 then 1/f(E) may be expanded in powers of E. The method of
Broggi [8] for the evaluation of (1/f(E))g(x) uses this expansion as follows:

1 [o ¢] [o ¢]
T = VE g(x) = W8(x + V). (6.71
75 & éa g(x) éagx v )

Let o be the modulus of the zero of f(p) nearest the origin; then, by
Cauchy’s root test, the series converges if

limsup|g(x + V)| < a. (6.72)
U000
Example 5:
u(x + 2) — Su(x + 1) + 6u(x) = % (6.73)

In this case
f(E)=E*—SE+6=(E—2)E-3), (6.74)

hence
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11 1
f(E) 2-E 3—-E

i(z"" —3™)Ev L, (6.75)
=1

The general solution is now

" N o0 -V — 3—U
u(x) =p12* +p,3" + ;m (6.76)
Example 6: The solution of (3.4) for the equation
A u(x) = g(x) (6.77)
@

depends on the characteristic function f(p) = (0* — 1)/w; Broggi’s method
was used to obtain

u(x) = —wiE”“’g(x) = —wig(x + ww). (6.78)

v=0 v=0

Since the singularity nearest the origin is 1, the root test yields

lim sup|g(x + vw)/*| < 1. (6.79)
U—=00

Laplace’s method of solution depends on the representation of g(x) in the
form

5 = 5 f 1G(o)dp (6.80)

in which the path ¢ does not pass through any of the zeros of the character-
istic function f(p). In particular, such a representation is available when g(x)
is a Laplace transform. The segment (0, 1) of the real axis may then be used
provided f(p) does not vanish on (0, 1). It follows that

) = L [ 180
u(x) = 5— f Ll (6.81)

4

This may be seen by setting

ux) = g f o é(0) dps (6.82)
then
1
Lu=o f o (o) dp = 5 f #1G(o) dp (6.83)

(4 (4
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- from which

_ G 6.84
#(p) 70 (6.84)

Example 7:
u(x + 1) — au(x) =§, a¢fo,1] (6.85)

Since

1
1_ f o~ dp, (6.86)
X 0

one has immediately

1 px—l
u(x) = dp. (6.87
@=[ 2= d )
Example 8:
u(x + 1) + au(x) = I'(x), a>0. .(6.88)
From
I(x) = f” o le™P dp, (6.89)
0
follows
16" 4 6.90
w = [ o (690)

Conversely, if it is assumed that u(x) is transformable, then the Laplace
transform may be used to solve difference equations. In particular, this
approach will provide additional insight into the nature of the principal
sum. For this purpose, the Laplace transform of u(x + w) (w > 0) may be
written in the form

u(x + w) = i(s) — /ﬂ e u(x) dx. | (6.91)
0

The principal solution of

% u(x) = ¢(x) (6.92)
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will be obtained by imposing certain conditions on u(x) [5]. It will be
assumed that ¢(s) is analytic in the half-plane R(s) > —a (o > 0).
Transforming (6.92) yields

i) = w(s) + e’;wf{ el'”‘u(x) dx '

(6.93)

The transform has poles at s = 2xik/w (—o00 < k < oo) that would result in
an arbitrary periodic component in #(x). This component is suppressed by
requiring #(s) to be analytic at s = 2mik/w except at k =0. Thus the
condition
- ik .
w(z%) + f” @Iy dx =0, k#0 (6.94)
0

is imposed. The similarity of this condition to the relation (4.71) may be
noted.

To proceed, use will again be made of the complex inversion integral
(6.34). Applying this to i(s), the path, I''may be taken to the left of the
imaginary axis except for a loop around the origin and to the right of the
vertical through —«, (Fig. 1).

One now has

1 - " @ . 1 . esw j: e~ "u(v)dv
- — —_— ds. 6.95
u(x) mee, e‘w—1¢(s)ds+2n'i/es prp (6.95)
I r
The function
I
A
T
Y a
~0 o/ o

Figure 1
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e’ /ﬂ e u(v)dv (6.96)
0

is analytic on and to the right of I' so that the only singularity of the
integrand of the second integral occurs at s = 0. The residue will be made
zero by requiring the additional constraint

/ﬂ u(v)dv =0; (6.97)
0
hence
1 5X w g
M(X) = Z—TH/e esw__l¢(S) ds. (698)
r

To show that (6.98) coincides with the principal sum, the contribution at
s = 0, namely,

'/vo o(x) dx, (6.99)
0

may be removed and a new path, I", consisting of the vertical to the right of
—« and to the left of the imaginary axis is used. On this vertical R(s) < 0,
hence

L —_ S 250 3 1
go 7= el e e+ (6.100)
thus, from (6.98), one has
u(x) = /de(x)dx—deJ(x + jw) =§¢(z)Az. (6.101)
0 =0 w

An example of (6.98) is given by

—Z

F(xlw) = § jﬁ Az (6.102)
Since
e* 1
N — Nt (6.103)
one has a branch point at =1 and
F(x|w) =2an' f e’xz,f’jﬁds. (6.104)
r

The contribution at s =0 is 1, thus,
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1 y @ 1
F/

It is convenient to move the branch point to the origin by introduction of
o = s+ 1. A branch cut is introduced and the path is deformed to I'" as in
Fig. 2. _

Set o = Re” on the quarter-circles; then it is easily shown that the con-
tribution vanishes for R — 0c. Also set o = pe” on the small loop around
the origin; here also the contribution vanishes for p — 0, Setting o = re”™ on
the upper parallel to the branch cut and o = re™'" on the lower parallel now
yields the evaluation

_ ] ~(r+1)x d dar
F(xlw) =1 —;‘/owe WU—(D w (6.106)

An alternative means of evaluating F(x|w) is available from the represen-
tation theorem for the sum of Laplace transforms (Chap. 3). This follows on
viewing e"*//mx as a Laplace transform; namely

e—x

fn=0, t<l, (6.107)
=l 1 ) t>1.
nJt—1

This approach provides

branch cut

3/

Figure 2



188 Chapter 6

F(x|w)=;1r- /1 [1- ‘“e__w,] a_ (6.108)

t l—e¢ t—1

4. EQUATIONS REDUCIBLE TO CONSTANT
COEFFICIENTS

The following class of equations is reducible to the constant coefficient case:

u(x + 1) + a1 §(XJu(x + 1 — 1) + a2¢(X)p(x — Du(x +n—=2) + -
+ app(x)p(x — 1) - - ¢(x — n + Du(x) = g(x).

(6.109)

Let 6(x) designate a solution of

AG(x) = In¢(x + 1), (6.110)
for example,

8(x) = Slné(z + DAz, 6.111)
and let

u(x) = X My(x), (6.112)
then .

V(x4 1) + @G v(x + 18— 1)+« + gu(x) = e"*Pg(x). (6.113)

An example is given by
u(x + 2) — Sxu(x + 1) + 6x(x — Du(x) = 1. 6.114)
Here, one has

d(x) =x,0(x) =InT(x+1),
u(x) = I'(x — Du(x),

1 (6.115)
-5 - .
v(x + 2) — Sv(x + 1) + 6v(x) T+ D)
Using Broggi’s method (6.74), the particular solution obtained is
2~ _
u(x) =T(x — 1) Z (6.116)

(x +J)
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5. PARTIAL DIFFERENCE EQUATIONS

The difference equation in more than one independent variable, e.g.,
Lu(x, y) = 0, will be discussed here by means of Boole’s operational method,
Lagrange’s method, and the method of separation of variables; more infor-
mation is available in [Refs. 8, 9, and 34]. The operators E, A will be sub-
scripted to show the variable to which the operator refers. Boole’s method is
illustrated in the following examples.

Example 1. Lu=u(x+1,y)—au(x,y+1)=0.
One may write

u(x +1,y) — aEyu(x,y) = 0; 6.117)
hence, treating E, as a constant,

u(x,y) =a"Ejc(y) = a’c(y + x); (6.118)

here an arbitrary function takes the place of the usual arbitrary constant.
One may also introduce the arbitrary periodic P(x, y) of period one in each
variable and write

u(x, y) = P(x, y)a“c(y + x); (6.119)

however, this will be omitted in the succeeding examples.

Example 2. Lu = u(x+ 1,y + 1) —u(x,y + 1) — u(x, y) = 0.
One has

Eyu(x +1, y) - Eyu(x’ y) - u(x’ y) =0,
u(x+1,) = (1 + E u(x, y) = 0,

u(x, ) = (1 + E;'Ye(), (6.120)
u(x, ) = (e -
Jj=0

This is not the only form of solution of this equation; one may also write

Ecu(x,y +1) —u(x,y + 1) —u(x,y) =0, (6.121)

u(x, y) = A7e(x). (6.122)

Pascal’s triangle is contained in this equation. Consider the boundary con-
ditions u(0,0) =1, u(0,y) =0 (¥ # 0); then ¢(0) = 1, ¢(y) = 0 (¥ # 0) and,
hence, u(x, y) = (}).
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Example 3 Bernoulli trials:
ulx+ 1,5+ 1) = pu(x, y) + qu(x, y + 1),
p+g=1,p20,¢20, u0,0)=1, u0,y)=0( #0).

One may interpret x as the total number of trials and y as the number of
successes with p the probability of success in any one trial. One has

Eyu(x +1, y) - quu(x’ y) _pu(x! J’) =0,
u(x+1,5) — (g + pE; u(x, ») = 0,

u(x, ) = (¢ + PE; e (6.123)
=Y )P -1,
J=0
The boundary conditions imply ¢(0) = 1, ¢(y) = 0 (y # 0), hence
u(x, y) = ()P, (6.124)

that is, the probability of y successes in x trials.

1t is seen that the operational method reduces a partial difference equa-
tion in two independent variables to an ordinary equation containing opera-
tor coefficients. Clearly, variable coefficients may occur in the variable to
which the operator does not refer,

Example 4 Lu=u(x+1,y)—axu(x,y+1)=0.

One has
ux+1,y) = axEu(x, y) =0,
u(x, y) = @ T(x)Eyjc(y), (6.125)

u(x, y) = a*T(x)e(x + ).

The method of Lagrange applies to equations with constant coefficients;
it consists in assuming a solution of the form

ulx,y)=o"p. (6.126)
A frelation is established between «, B so that one constant may be elimi-
nated.
Example 5 Lu=u(x+1,y+1)—u(x,y+1)—u(x,y)=0
Let

u(x, y) = o p; (6.127)
then



The Linear Equation with Constant Coefficients 191

:ﬂ: ;_1 (11+—ﬂ())” (6.128)
and, hence,

u(x,y) = B (1 + B e(p) (6.129)
in which ¢(g) is an arbitrary function of 8 . Hence also

ws) = [ B0+ pre@ s (6.130)
Example 6 Lu = u(x+2,y) — c*u(x,y — 1) = 0.
Here, one has two values for

a=opf 1?2, —ap 12, (6.131)
hence '

ws) =0 [ e+ -or [ pra@dp,

-0 ~00 (6.132)
= o)‘C(y - g) + (—a)xD(y - ;)

in which C(2), D(z) are arbitrary functions.
Example 7 w(x+2,)—2u(x+ 1,y + 1)+ u(x,y+2)=0.
The resulting equation

(@-p>=0 (6.133)
shows that o = 8 is a double root, hence

B, x gt : (6.134)
are independent solutions; it follows that

u(x,y) = c(x+y) + xd(x+ y) 6.135)

in which ¢(2), d(z) are arbitrary functions.
The technique of separation of variables consists of substituting

u(x, y) = o(x)B() (6.136)

and reexpressing the equation so that a function only of x appears on one
side of the equation and a function only of y on the other side. Each side
may then be equated to an arbitrary constant, thus providing two decoupled
ordinary difference equations for the determination of a(x), 8(3).
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Example 8 Same as Example 4.
One has

a(x + Q) = axa(x)p(y + 1),
a(x+1) pr+1) (6.137)
wxa(x) | BO)

Thus the two equations are

a(x + 1) = yvaxa(x),
AU + 1) = yB0).

Since the solutions are
a(x) = y'a'I(x),
) =7

one has

(6.138)

(6.139)

)= T(x e(y) dy,
u(x, y) (x) . Y e(y)dy (6.140)
= aT(x)C(x + y)

which agrees with (6.125),
Example 9 Stirling equation. Equation (1.31) satisfied by the Stirling num-
bers of the second kind can be written in the form

ulx+1,y+1) =@+ Dule+ 1, p) + u(x, y). (6.141)
Use of (6.136) and separation of variables yield

ax) _BO+1)
ax+1) . O

x+1+4

a(x+1)+ ri_—yot(x) =0, (6.142)
By +1) — yB() =0.
Thus one has
’ eirrx
d(x)=—r(x+1_y)’ |
BOY =7, (6.143)

_ inx %0 yy
=& [ Tt
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X
To obtain the Stirling numbers, S , one restricts x, y to integral values;

hence the following sum may be considered:
S 4
— X —_ 3
u(x, y) = (~1) ; o (6.144)
The boundary condition to be satisfied is

S§=0, x>0,

1
-1, = 0. (6.145)
The Newton null series
X L
X
N—1) =0, x>0,
; O(=1) (6.146)
=1, x=0
provides the required key, Setting
1y
o(i) = (—l'll (6.147)
now yields the explicit formula
X (""l)x 3 X iy
8§ =" DD, (6.148)

i=0

Laplace observed that if in Ly, x + y, or x — y, is constant in the argu-
ments of u in each term, then the equation can be reduced to ordinary form.
Let, for example, x + y = a; then the substitution

u(x, ¥) = y(x, a — x) = v(x) (6.149)

results in an ordinary difference equation for v(x).

Example 10 Lu=u(x+1,y+1)— (x+ Du(x,y)=0.
In this equation y — x is constant in each term, hence setting

y—x=a,
u(x,y) =ulx,a+x) = v(x) (6.150)
one has
v(x+1) —(x+ Dov(x) =0, 6.151)

Thus
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v(x) = I'(x + D,
u(x, ) =T(x + De(y — x).

Example 11 (Boole) [43]: A4 and B engage in a game, each step of which
consists of one of them winning a counter from the other. At the commence-
ment, 4 has x counters and B has y counters. In each successive step the
probability of A’s winning a counter from B is p, and therefore of B’s
winning a counter from A4 is g(p + ¢ = 1). The game is to terminate when
either of the two has n counters. What is the probability of A’s winning it?

Let u(x, y) denote the probability 4 wins starting from state (x, y). If 4
gains a counter (with probability p), then the state becomes (x + 1,y — 1)
and u(x + 1, y — 1) is the probability 4 wins thereafter. Also if 4 loses a
counter (probability g ) then u(x — 1, y + 1) is the probability 4 wins; hence
the required difference equation is

ux, ) =pulx+1,y—D+qux-1,y+1). (6.153)

It is observed that x + p is constant in each term. Let the total number of
counters be a, then

(6.152

x+y=a,
u(x, y) = u(x, a — x) = v(x), (6.154)
pu(x+ 1) —v(x) + qu(x — 1) = 0.
Let y = q/p; then the solution is
v(x) = c+dy¥, vy#1,
= +dx, y=1,
hence
ux ) =cx+nN+dx+yy, rv#L
=clx+y)+dx+px, y=1L
The boundary conditions are u(n, a — 1) = 1, u(a — n, n) = 0; hence
C@+d@y =1,  y#1,
c(a) +d(a)y"™ =0, vy # 1,

(6.155)

(6.156)

c(a)y+d(an =1, y=1, 6.157)
c(@) +d@(a—n)=0, y=1
The required probability is now
it 2
u(x!y)':—_n! vy#1,
vi-v (6.158)

n—a-+x

2n—a ’ r=1
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A player is said to be ruined if he loses all his counters; thus, setting n = a
yields the probability that player B is ruined. One has

P(B is ruined) =§:—i, y#1, 6
; . (6.159)
_n, y_

Example 12 (Finite Source Model): The finite source model to be discussed
[26] consists of n sources and one server. The service rate is 4. With rate y, a
source is expected to generate a request for service; after a request is placed,
it cannot generate further requests until the required service is completed.
Requests are held in a first in, first out queue awaiting start of service. A
source that can generate a request is called “idle’” and is said to be thinking;
the mean think time is ~!. A source that has placed a request is termed
“busy’; the mean waiting time, w, is the time from initiation of the request
until the start of service. The mean service time is u~'. The total mean
request rate over all time is designated A; thus, A/n is the request rate per
source and n/A is the mean time between requests. The relationship between
these mean times is shown in Fig. 3.
The following conservation relation holds

w+pu Tty =ml (6.160)

To analyze the system in equilibrium, let x be the number of busy
sources, y the number of idle sources, and let u(x, y) designate the prob-
ability the system is in state wu(x, y). Considering the neighboring states
(x+1,y=1), (x—1,y+1), the following rate equation may be written:

(ry+wux, )=y +Dux -1, y+) + pu(x+ 1,y —1), O<x<n,

(6.161)
- w t pt t o —
! ! ! |
request start end next
service service request

Figure 3
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in which the left side is the rate of leaving state (x, ») and the right side is the
rate of entering (x, y) from the neighboring states. The boundary conditions
at x =0, n are
ynu(0, n) = pu(l,n— 1),
wu(n, 0) = yuin — 1, 1).
Since x + y = n, one may introduce
v(x) = u(x, n— x). (6.163)
Rewriting (6.161), (6.162) and setting @ = y/u, one has
[a(n — x) + 1u(x) = d(n — x + Dv(x — 1) +v(x + 1),
anv(0) = v(l), (6.164)
v(n) = av(n — 1).

(6.162)

Observing that

v(x + 1) — a(n — x)v(x) = v(x) — a(n — x + Do(x — 1), (6.165)
it follows that

vx 4+ 1) —an — xux) =c¢ (6.166)
in which the constant ¢ may be evaluated from

¢ = v(1) — anv(0). (6.167)

The boundary condition shows, however, that ¢ = 0; hence one has the first-
order equation

v(x + 1) — a(n — x)v(x) = 0. (6.168)

Since, for this model, x is an integer, the appropriate solution of (6.168) and
(6.164) is

ux)=AnPF,  O<x<n. (6.169)

The value of 4 follows from

n

D ux) =1 (6.170)
x=0
and hence
" -1
A= |:Z n(")&"] = B(n,a"") (Erlang loss function). (6.171)
x=0

The identification with the Erlang loss function stems from (5.72). The
required probability distribution of busy sources is now
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v(x) = nP& B(n, 471). (6.172)

Since the rate of requests entering the queue must equal the rate leaving
the server, one has

A =(1— B & H)u, (6.173)
hence the total offered load a = A/u is
a=1-B@nadl). (6.174)

Let L be the mean number of busy sources and I that of idle sources; then
L+ I =n. One has

A=y, (6.175)
hence

I=(1—-Bmaha! =a/a,
( ( ))‘ a 1/ . (6.176)
L=n—-(l—Bna))a =n-—a/a

The mean waiting time, w, is simply obtained from (6.160), One may also
write

w=La"— | (6.177)

A particular solution of the inhomogeneous form Lu(x, y) = g(x, y) may
be obtained by the same methods employed earlier for the ordinary equation

Lu(x) = g(x).

Example 13. Lu=u(x+1,y) —au(x,y+1) =b*(x+y). A particular
solution is given by

U= ;b"(x +)) = (x+» (6.1.78)

oL
E, —aE, bE, — aE,

in which the shift theorem was used. Thus
1

X

u= et bA, —an, "t

=b"[b1a - 1 G2 s, aAy)+---:|(x+y) (6.179)
_ XxX+y—1

=b 5= b#a.

For the case b = a, one gets
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= A + AF2A, + - (x + 1) (6.180)

=a1(x? — x + x).

Example 14 Lu=u(x+1,y+ 1) — u(x, y+ 1) — u(x, y) = 2*3”. One has
I S
E.E, ~E,—1
1
=2x 3)’
2E.E,—E, -1 (6.181)
1
= L e
23 6E,cEy—3Ey-—11

=21,

u 2¥3

The solution obtained in (6.130) may now be added to the particular solu-
tion to form the general solution.

PROBLEMS

1. Solve

u(x + 3) — 9u(x + 2) + 26u(x + 1) — 24u(x) = 0.
2. Solve

u(x + 3) — 8u(x + 2) + 26u(x + 1) — 24u(x) = 0.
3. Solve

u(x + 3) — u(x + 2) + 27u(x + 1) — 27u(x) = 0.
4. Solve

u(x + 2) — 3u(x + 1) + 2u(x) = x23*.
5. Solve using the Nérlund sum

u(x + 2) — (@ + Bu(x + 1) + apu(x) = g(x).
6. Solve using Broggi’s and Laplace’s methods

u(x + 2) + Su(x + 1) + 6u(x) =%.

7. (Boole) A person’s professional income is initially $a which increases in
arithmetic progression every year with common difference $b. He saves
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10.

1/m of his income from all sources, laying it out at the end of each year
at r percent per annum. What will be his income when he has been x
years in practice?

There are only two states of weather, fair and poor. The probability on
day zero of fair weather is p and the probability that the weather on day
n+ 1 continues the same as on day » is g? What is the probability, p,
that the weather is fair on day ».

Using (6.98), evaluate the following:

X
F(x|w) =Se *sinz Az,
o [}
el 71
F(xlw)= S erfel/z Az,
w
(erfcx is the complementary error function)

Solve for the eigenvalues A, and eigenfunctions u,(x)
Alu(x — D)+ u(x) =0, u©0) =0, uN+1)=0, x=1,...,N.



7

Linear Difference Equations with
Polynomial Coefficients

1. INTRODUCTION

This chapter presents methods for the solution of linear difference equations
with polynomial coefficients and applications to two queueing models. The
next section discusses the technique of depressing the order of a difference
equation when at least one solution of the homogeneous equation is known.
For the case of the second-order homogeneous equation, the use of
Casorati’s determinant and Heymann’s theorem is shown to provide the
second solution,

Of the many methods that can be used to solve a difference equation with
variable coefficients, expansion into factorial series of first and second kinds
appears to be of broad applicability. The = and p operators introduced by
George Boole [43] and further developed by Milne-Thomson [8] are studied.
These are particularly useful in obtaining factorial expansions. Application
is made to difference equations of specialized forms expressible solely in
terms of either p or w. Application is made in Section 4 of the m, p operators
to the general homogeneous equation. A procedure is discussed that permits
reduction to a canonical form from which the factorial series expansions of
the solutions are obtained. Some exceptional cases arise when the roots of
the indicial equation are zero, multiple or differ by an integer. The relevant
methods of solution are introduced, and the complete equation is solved by

200
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means of expansion of the inhomogeneous term in series and also by use of
the Lagrange method of variation of parameters.

The last come, first served (LCFS) M/M/C queue with reneging is impor-
tant in certain teletraffic models, e.g., delay until a dial tone is received [44].
The Laplace transforms conditioned on all servers busy of various perfor-
mance parameters of interest are obtained. The representation of these
parameters by means of the transform is then introduced, after which the
explicit solution of the model is obtained. We then obtain mean values and a
simplification of the waiting time transform that permits accurate inversion
for the values of data encountered in practice.

The M/M/1 processor-sharing queue used, for example, as a model in
round-robin computer communication systems is introduced [46]. The state
equation is established for the Laplace-Stieltjes transform of the response
time conditioned on the number present in the system [6]. This provides a
backdrop for introducing the method of singular perturbations, which is
then used to solve the problem.

2. DEPRESSION OF ORDER

Introducing the operator L by

Lu = a,(x)u(x + n) + a1 ()ulx +n— 1)+« + ag(x)u(x) 7.1
in which a;(x) (0 < i < n) are polynomials, the equation to be studied is

Lu(x) = g(x). (7.2)
If a solution, v(x), of Lv = 0 is known, the order of L may be depressed. Let

u(x) = v(x)t(x); (7.3)
then

Lu=a,(x)v(x +n)tx +n) + a_1(ux +n—Dtx+n-1) (7.4)

+ oo G ag()u(x)(x).

Use of Newton’s formula

Hx+r) = Z () & t(x) (7.5)

=0

in (7.4) results in an equation in which #(x) is absent. This occurs because the
corresponding coefficient is Lv = 0. Setting At(x) = w(x), an equation of
lower order is obtained for w(x). This procedure, of course, is applicable
even when the a,(x) (o < r < n) are not polynomials. One may observe, in
particular, that knowledge of one solution of the homogeneous form of a
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second-order equation permits reduction to first order of the complete equa-
tion and, hence, permits solution by the methods already presented.
An example is given by

Lu=(2x - Du(x+2)— (8;c — Dux + 1) + (6x + Iu(x) = g(x) (7.6)
for which

L(3") = 0. 7.7
Accordingly, set
u(x) = 3°1(x), w(x) = At(x); (7.8)
then
(18x — 9i(x + 2) — (24x — 6)t(x + 1) + (6x + 3)¢(x) = 3% g(x). (7.9
Using .
tx + 1) = 1(x) + w(x),
(7.10)
H(x +2) = #(x) + 2w(x) + Aw(x),
one gets
(18x — NAw(x) + (12x — 12)w(x) = 37 g(x), 7.11)

(6x — 3)w(x + 1) — 2x + Dw(x) = 37" g(x).

Instead of solving this equation by the methods already given, the solution
will be obtained by Lagrange’s method of variation of parameters, to be
discussed later. .

If the complete solution of the homogeneous equation Lu = 0 of second
order is to be obtained and one solution w(x) is known, then an alternative
to the method of depressing the order is the use of Casorati’s determinant
and Heymann’s theorem (Chap. 2). Thus, for the operator L of (7.6), let
w(x) = 3* and let v(x) be the second solution; then Casorati’s determinant is

_ v(x) 3" _ax _
D(x) = oxt1) 3= 3*(Bu(x) — v(x + 1)). (7.12)
Heymann’s theorem yields
_ _6x+3
Dx+1)= = 1D(x) (7.13)
whose solution is
D(x)=3*(2x —1). (7.14)

Combining this with (7.12) provides the equation
vx+1)=3u(x)=1-2x (7.135)
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whose solution is v(x) = x. This is often a convenient method of solution.

3. THE OPERATORS =~ AND p

An operational method introduced by Boole [43] and later developed by
Milne-Thomson [8] will be used to effect the solution of difference equations
in factorial series by techniques that resemble the Frobenius method for
differential equations. The definitions of Milne-Thompson will be used for
the operators , p.

Let r be arbitrarily chosen for convenience depending on the difference
equation and set x' = x — r, then the definition of p is

mon_ DX+, o T +1) B
olu(x) = e +1- m)E u(x) = oo +i=m u(x — m). (7.16)
Thus:
ou(x) = Xu(x — 1),
Plu(x) = u(x),
() = x,;_l_lu(x+ D, (7.17)
P u(x) = —I"(x’ Sy u(x —1/2).
The operator p obeys the index law; thus,
ma o~ DA+l o, T +1) _
UMD = = m” T 11— ")
X+ T +1-m) u(x — m— 1)
TT(X4+1-mT+1—-m—n) (7.18)
_ I'(x' +1) u(x — m—n)
TT(X+1~m—n) ,
=p'"+"u(x).

When the operand u(x) = 1, it is convenient to write just ¢” so that

m __ .r(x, + 1) - x/(m)_

il e (7.19)

An expression of the form ¥ 20, a,/slp"+* is immediately interpretable as a
Newton series:
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o0
& kts _ I"(x + 1)
; 1 T A 1-k & Z (7.20)

Similarly, the sum Y22, a,s!05~° yields a series of inverse factorials:

S e T+ 1) ays!
;ass!p —ml:°+z(x’+l—k) (x+s—k):|'
(7.21)

The expansion of functions g(x) in Newton series or series of inverse factor-
ials will be useful in the solution of equations.
A monomial equation in the operator p, f(p)u(x) = g(x), has the form

Gou(%) + @y Xu(x — 1) + + - - + a, X Pu(x — n) = g(x) (7.22)
in which f(p) is a polynomial in p. Since

AN + Du(x)] = T'(x' + Du(x — m), (7.23)
the substitution

u(x) = T(x" + 1v(x) (7.24)

reduces (7.22) to an equation w1th constant coefficients (see Chap. 6).
Alternatively, resolution of f (0)”! into partial fractlons makes the solutlon
depend on the interpretation of the form (« — p)~*. To interpret (& — o)}
consider

(2 — pu(x) = g(x),

au(x) — (x — Nu(x — 1) = g(x) (7.25)
whose solution is
W) = Tt 1= ® g4 D, (7.26)

cT(t+2—-17)

Repetition of this operation or use of (3.51) will interpret (¢ — p)~*

Solution of (7.22) in terms of factorial series of the form (7.20) or (7.21)
may be obtained by expressing g(x) in factorial series in terms of p and
either assuming an appropriate expansion for u(x) in terms of p and equat-
ing coefficients or by expanding f(o)~!

Example: The function satisfied by the Erlang loss function B(x, q) in the
form u(x) = B(x, @)™}, (5.64), is

au(x) — xu(x — 1) = a. (7.27)
Thus (r =0)
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u(x) = s (7.28)
and, using (7.26),
_ F(x +1) gl—x+
u(x) = I‘(t+2) At (7.29)
see (5.69).
Expanding a/(a — p) in positive powers of p yields
o0 ]
u(x) = Z a”’p’ = Z a~*x®, (7.30)
5s=0 5=0

This is a known asymptotlc solution (¢ — o0) [29] useful for the computa-
tion of #(x) when a is large. Expanding now in powers of p! yields

_— a
u(x)=—§a’p = ;(x+1)---(x+s)' (7.31)

This is a very useful convergent representation of u(x)—see (5.67)—espe-
cially when a is not large compared with x. This result could also be
obtained from (7.29) by setting ¢ = o0

The operator 7 is defined by

mu(x) = X _A1 u(x) = x'(u(x) — u(x — 1)). (7.32)

The operation may be repeated so that #” is defined for integral n > 0. The
equation

au(x) = u(x) (7.33)
has the solution

7 u(x) = ¢+ §”—(t)— At (7.34)
al—r-i
hence 7! % 7' unless ¢ is specially chosen. This will always be assumed
although the value of ¢ will rarely be needed. Henceforth one will have «
n~! = n~ ', Clearly, 7" obeys the index law with n° designating the identity
for positive and negative ». It may be observed that exactly the same diffi-
culty occurred with the operator A, which, however, did not occasion any
problems.
An important relation for the present purposes is the following shift

formula:
S@p"u(x) = p"f (x + m)u(x) (7.35)

valid for any rational function f. To show this, consider



206 Chapter 7

moey_ o D+
o) =M £ 1= m)
_ XT+1) _
ST lom ™
=F$—Tj)rr§[x'”(x‘m)—(f — mu(x —m — 1)],
__TWD
T+ 1-m)

= o"(w + m)u(x).

u(x — m)),

X' T(x)

mu(x -_m-— 1)]‘

(7.36)

E™M[(X + mu(x) — x'u(x — 1)),

Thus

" u(x) = 2o (T + mu(x)],

7.37
= ™ + m)*u(x), 30

and, inductively, for integral n > 0

7" u(x) = p"(w + m)"u(x). (7.38)

Because of the obvious linearity of the operators, this establishes (7.35) for
polynomial f. To extend (7.35) to rational f, in view of partial fraction
expansions, one need only consider the form (x +m)™" (n > 0). One may
define

(w4 m)™ = g g, | (1.39)
then
(r+ m)(w +m) " u(x) = (w4 m)p " M u(x) = p " o™ u(x)
= u(x),
(o +m)7 (r + myu(x) = o7 o+ myu(x) = p~"n " mp u(x)
= u(x).
(7.40)

Thus the definition of (7.39) preserves the commutativity of (7 + m)", (7 +
m)’ for any integral n, p and (7.35) is established for rational f.

For the special case u(x) = 1, the operand will not be shown explicitly.
One also has

f(mp™ =f(m)p™. (7.41)

Since
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f@p"™ = p"l[f(m) + ' (m)m + -]
= p"f (m),
(7.41) follows.

207

(7.42)

A formula of some use in connection with monomial equations in 7 to be

considered next is
n(k)u(x) = x® _Zl u(x),
that is,
= 1) (= k4 D) = X (X = 1) (F — k4 1)_Z1u(x).
From
n—j=prp”,
one has

(7t—k+1)(7t—k+2)---7t=pk—lnp_k+1pk_27tp_k+2-~-7t

= o (o~'m)".
Also,
o~ tmu(x) = p X u(x) — Xu(x — 1)]
=E Al u(X);
hence,
(o7 = B A
and

k
pk(p—l n,)k — X}(k)E—kEk Al

k
=x'(k)A1.

(7.43) now follows.
In view of (7.43), the typical monomial equation in 7, namely

S (mu(x) = g(x),

may be considered to have the form

a,x'™ A;’ u+ a,_ XY A:"_l U+ Fau=g.

(7.43)

(7.44)

(7.45)

(7.46)
(7.47)

(7.48)
(7.49)

(7.50)

(1.51)

(1.52)

(1.53)

(1.54)
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The homogeneous equation

f@u=0 (7.55)
has the solution #(x) = * if f(k) = 0, since
fmp* =1 k)" = 0. (7.56)

2
Example: Lu=x® Al u—2x A1 u + 2u = 0. Thus

L=nar-1)-2r+2=n-37+2 (7.57)
with roots k =1, 2; hence the solution is
u(x) = p1 (X)X + pa(x)x'(x" = 1) (7.58)

with p;(x), py(x) arbitrary periodics.
If the root k = « has multiplicity v, then (k — «)" is a factor of f'(k); hence
3’f(k)/0k’|t=o = 0 for s =0, ..., v— 1. Thus one may consider

S (myu(x) = f (k)" (7.59)
and

T = T e (1.60)
Since, by the Leibniz rule,

P S rwet = ZO ak‘,_,f( o el (7.61)

it follows that 3’/8k’ O lkmas J =0, +++,v—1 are solutions of (7.55), that is,
FxX+1) 8 TE+1) ! (X +1)

TX+1-a) i@ +1-a) s Ix+l-a) (7.62)
Example: Lu = x'?® ilu - 5x A1 u + 9z = 0, One has

L=ma(r—1)=57+9=(r-3)"% (7.63)
Since

8 I +1) 0

mmb:s = xY(x - 2), (7.64)

the complete solution is

u(x) = X (py (x) + p2(X)Y(X — 2)). (7.65)



Linear Equations with Polynomial Coefficients 209

For the inhomogeneous equation (7.53), a convenient method of solution
is to expand g(x) into a Newton series of the form (7.20) or into a series of
inverse factorials of the form (7.21). The interpretation of each term of the
form f ()~} p¥** is then f'(k + 5)0*** from (7.41) provided k = s is not a zero

of f(x).

Example: (7% — 37 + 2)u(x) = (_x’+1_)(x’+_2)
One may write

(7% — 37 + Qu(x) = p~2, (7.66)
hence a particular solution is
1 L, 1 1 1
D)= a3z =P “RE+DE L) (7.67)

This plus the solution (7.58) of the homogeneous equation yields the com-
plete solution of the example.

When f(k £ 5) = 0 for some k, s, the interpretation of /() ~1 0*%5 may be
carried out by use of (7.39). If £+ s is a multiple root, one may use the
inductive extension of (7.39), i.e.,

@+m™" =p a7, (7.68)

Example: (7 — 2)(7 + 1)u(x) = ¢**, @ < In2. From the Newton expansion

= Z (€ —1°C) (7.69)
5s=0 .
valid for @ < In 2, one has

_ & (ea_l)s 1 5, ;
ux) =2 -2+ D" : (7.70)

s=0
thus
GRS 1 =1y x©
M) = = Dm+ D’ Z G+ s—2 .71)
J#Z
The exceptional term yields
(& — 1)? 1 7= Ca —1)
2 (@-2@+1) 6 m (7.72)

a 2
=(—;—1)—>((x’ — D)X — 1),
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Another solution of this example may be obtained from

1 11 11
S37-2 3m+l NE!
@-2)m+1) 37-2 3m+1 (7.73)
Since
1
_ o m
X =)
-ml_ TG +1)
—_ m__ T _
mg 1 T(t+1-7)
= — m)At
g St+1-rr(,+1_,_m)g(t+l m)
(X +1) *xm 1 T(t4+1—7r)
- S t+1—m)At,
r'(x'+l+m) t+1_’rr(t+1—r—m)g(+ m)
' (1.74)
one has, for m = =2, 1 and g(x) = &**,
‘=1 ot
W) = (¢ — e S 54
3 2rel as
120D x'12 1 (7.75)
—3537 O (1 ——)e"”At.
3x 41 t

.4. GENERAL OPERATIONAL SOLUTION

The solution of the general difference equation with polynomial coefficients
is effected by use of both the 7 and p operators. For the following, it will be
convenient to define the operator L by

Lu = ap()u(x) + a1 (Xu(x — 1) + - -+ 4 @,(x)u(x — m) (7.76)
with g;(x) (0 < i < n), as previously, polynomials. The complete equation

Lu(x) = g(x) (1.77)
may always be put into the form

[Bo(x) + b1 (x)p + - + - + ba(x)0"Ju(x) = h(x) (7.78)

by multiplication of (7.77) by ¥ = x'(¥ —1)--.(x = n+ 1) and subse-
quent use of

pu(x) = Xu(x — 1), pfu(x) =x'(xX' — Du(x—2),... (7.79)
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An alternative procedure, which, however, leads to an equation for a dif-
ferent dependent variable, is the substitution

u(x) = —IT;),Q_%S (7.80)
From (7.16) and (7.32), one observes that
(T+p+ru=xu (7.81)
and, hence,
T+pop+r=x. (7.82)

Thus x may be replaced by 7 + p+ in the polynomials b(x) (0 <i < n)
and (7.78) may be rewritten in the form

[fo(m) +/i(@)p + -+ + fulm)o"lu(x) = h(x). (7.83)
According to Boole and Milne-Thompson, this will be called the canonical
form of (7.77). The index m is called the order of the operator. When m =0,
one has the monomial equation (7.53) already discussed.

If the equation is given in the form
-1

a6(x) A u(x) + 1) A @) + -+ + () = £(), (7.84)

it may be simpler to multiply the equation by x™ and then to use (7.43) to
obtain
by ()" u(x) + by ()T u(x) + - - - + by(x)u(x) = h(x); (7.85)

subsequent replacement of x by = + p + 7 in b;(x) will produce the required
form.

A formal solution of the homogeneous canonical equation will be sought
by expansion into a series in powers of p.The determination of the expan-
sion coefficients becomes simpler the smaller the order, m, of the operator.
Introduction of a parameter, u, by the substitution

u(x) = p*v(x), (7.86)

before reduction to canonical form, often permits reduction of the order by
appropriate choice of u. Thus (7.77) takes the form

By V(x) + @ (O™ o(x — 1) + -+« + au(x)v(x — 1) = " g(x).
(7.87)

An example of these reductions is given in the next example.

Example 1: 2(x — Du(x) — 3(2x — Du(x — 1) = 0. Set
u(x) = wru(x); (7.88)
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then

2(x = Duw(x) — 3(2x — Do(x — 1) = 0. (7.89)
Multiplication of Eq. (7.89) by x’ yields

Ly = 2x'(x — Duv(x) — 3(2x — 1)pv(x) = 0. (7.90)

In the substitution of x by w+ p+r and x’ by 7 + p, one must recall the
noncommutative nature of m, p; thus, using (7.35), one has

o= (r—Dp. (7.91)
The expression for L now becomes

L= +2(r - Dm)u

) (7.92)
+ ((4u —6)m+2(r—2)u — 6r +3)p+ Ru — 6)p".
The choice u = 3 reduces the order of L, and one now has
L =67+ 6(r — )i + (67 — 9)p. (7.93)

An attempt will now be made to solve the equation by means of an
inverse factorial series of the form

vx) = aopt + a1 e T (7.94)
Introducing the functions
folm) =6m*+6(r— D,  fi(m)=6r—9 (7.95)

and using (7.94) yield

Lv = (fo(m) + imeNaod* +a1p ™+ 4 ap ™ +-.)=0.  (7.96)
Thus,

aofi(k + D! + (cfo(R) + arfitk)o* + - +
(@-1folk +1 =8+ afitk+1—95)p "+ =0.
The coefficients of the successive powers of p must all be equated to 0. The
equation fj(k + 1) = O resulting from the highest power of p is called the

indicial equation, which here yields k = 1/2. The following recurrence rela-
tion is obtained:

(O —6s)E+7—s)
5 = 6s Cs1,

and hence, by (7.21) and (7.88),

(7.97)

s > 1, ay arbitrary, (7.98)
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T+ 1)
u(x)—3r(x,+l)lio+z( D (x+s )J. (7.99)

The parameter r plays a useful role in the expansion (7.99). The choice
r=1/2in (7.98) results in a; = 0 (s > 1) so that (7.99) becomes

T(x+3)
I'x) °
This solution may also be obtained by use of (5.18).
In the general case, a choice of u is made to reduce the order of the
operator; a solution is obtained for each choice of u, and (7.86) yields the

corresponding u(x). Substituting (7.94) into the canonical form (7.83) (A(x)
= 0) yields the following system:

agfm(m + k) =
arfm(m+k — 1)+ agfy_(m+k—1)=0,

u(x) = 03 (7.100)

afmm+k =)+ o tfpam+k—8)+ - +o_nfylm+k—5s)
=0,s=0
(7.101)

Since oy # 0, one must have

Jm(m+k) =0, (7.102)
which is the indicial equation. One obtains a solution for each value of k.
However, if there are roots differing by an integer, then (7.100) will not
determine a,; also, if there are multiple roots, then not all solutions will
be obtained. These exceptional cases will be studied later.
Example 2 (Milne-Thomson):

(x—=2u(x)— 2x —Nu(x - 1) - 3(x— Nu(x - 2) =
Substitution of

u(x) = u*v(x) (7.103)
and multiplication by x(r = 0) yield

w20 = 2)xv(x) — w@x — xv(x — 1) = 3x(x — Do(x —2) =0.  (7.104)
Thus Lv may be written in the form

Lv = [u*(x — 2)x — u(2x — 3)p — 3p7Ju(x) = 0. (7.105)
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Replacing x by 7+ p and expanding in powers of p yield the following
canonical form of order 2:

[ = 27 + (W2 = W7 = o+ +@? —2u — 3w =0.  (7.106)

The coefficient of p? is independent of 7 hence, for . = 3, —1, the o term is
absent and the order of the operator reduces to 1; accordingly, one has

u=3 [B(r*-21)+2027 -3 =0,

1
uw=-1, [n* — 27 + 227 — 3)plv = 0. (7.107)
Thus, the functions fy(7), f1(7) are
_ — A _ - _
u=3, Jo(@) = 3(=° - 27), fi(m) =202n -3), (7.108)

p=-1, fomy=m-2m,  fi(r)=20Qm7-3).

An expansion in inverse factorials (7.94) will now be tried for v(x). The
indicial equation (7.102) for u = 3, —1 yields

21+k)—-3=0, k=1, (7.109)
and, from (7.101),

5716 s s=b
1 (25— 3)@2s+1) (7.110)
s = Ef“s—l’

respectively. The solutions for a, are

T'(s = Hr 3
IL=3: as=_a0§ L)i-i-_z)’ sZO,
4 7s!
(7.111)
_ 1. . 1T(s—Hr(s+3)
w=-=1: as——aoﬁ—m‘!——, s> 0.
Since
pi—s=p1/2p—s
— Hl/2,(-9)
‘I‘j x1 1 (7.112)
_T'x+1) o> 1,

CTEHDEHD s =D >

the solutions for u(x) are
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u=3:
0 s _ I 3 7
u(x) = aosx F(x + ]1') 1 - Z(E) F(S 2)]_"(5' + 2) 1 l .
I(x+3) —\4 s! (x+7)---(x+s—7)_j
u= —1:
T+ 1] & 1T —HE+3d) 1 ]
u(x) = 1) 2 .
() = eo(=1) 1"(x+%)[ 2 s (x+%)---(x+s—12-)J
(7.113)
Set t, equal to the terms of the series for u = 3, then
fi 3 G-D+d 3
A+ Dx+s+) & T (7.114)
Similarly, for 4 = -1,
B 1
‘ =3 (7.115)
hence both series are absolutely convergent.
Solution in Newton’s series may be sought by substituting
u(x)=ozopk+ozlpk+l +---+aspk+:+~~~ (7.116)
into (7.83) (A(x) = 0); this yields
Jfok) =0, indicial equation, (7.11n
and the recurrence relation
afolk+ )+ a1 fitk+8)+ -+ aufulk+5) = (7.118)
Example 3: (2x — Du(x) — 2x(x 4+ Du(x — 1) + 2x(x — Du(x — 2) = 0. The
value x =1 leads to the canonical form
Lu=Q27r-1-2 =0,
u=(2r mou =0 (7.119)
Jfo(m) =2 — 1, fi() = —2m,
hence
2k—1=0, k=1 (7.120)
The recurrence relation for a; is
1
a_r=s—-:2as_l, s> 1; (7.121)

hence,
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2 T(s+ 2)
=0y— AR §>0. (7.122)
Substitution of (7.122) into (7.116) gives the solution
u(x), = otp— ~/_ 1/221“(s+3z)("-1/2) (7.123)
§=0
and hence
2 Tx+ e 3 x—1/2
u(x I'(s+ ) (7.124)
) =% 7 ‘/— w(x+ 2) Z

Let z > 0 be an integer; then the series converges for x = z + 1/2 and for
no other values; however, a convergent integral representation may be
obtained as follows:

T(s+3)=fye ' a,

&0 7.125
Z F(s+%)(x—;/2) =/ e—tt1/2 Z (x—sl/Z)tJ dt; ( )
§=0 0 s=0
thus,
o0
u(x) = 2 Tx+1) e V(1 + o V2 gy (7.126)

a r—
AT+ Jo

This procedure may be compared with the derivation of the Fortet integral
for the Erlang loss function (5.75). Since the solution (7.124) is convergent
and consists, in fact, of finitely many nonzero terms for x = z + 1/2, the
interchange of summation and integration and the use of the binomial
expansion to arrive at (7.126) are justified. Thus (7.126) interpolates u(x)
at x =z+ 1/2 and provides an analytic extension to the half-plane Re(x)

> —1/2.
Another solution may be obtained using descending factorials (7.101),
The indicial equation yields k = —1 and the solution for «, is the same as in

(7.122), thus

T'(s + 3/2) 1
u(x)_a—;; TG eIy (7.127)

The ratio test shows that, except for the poles at —1, -2,..., the series
converges for all x.



Linear Equations with Polynomial Coefficients 217
5. EXCEPTIONAL CASES

The occurrence of multiple roots in the indicial equations of (7.102) and
(7.117) means that only one solution is obtained for that value of k. Let

v(x, k) = iaspk_s; (7.128)

§s=0

then the coefficient equations are solved for o; as a function of k.
Calculation of

o0
Lv=L) ap" (7.129)
5s=0
produces
Lv = agfyu(m + k) g+, (7.130)

Let k = o be a multiple root of f,,(m + k) = 0; then one solution is v(x, ).
Since

-E% A+ K™ ey =0, (7.131)

it follows that 8v/dk|, is also a solution. This argument may be continued to
arrive at the following: if « is a root of multiplicity v, then v, 8v/dk, .-+,
3~!/0k""! all at k = @ are solutions of Lv = 0.
Example:
ux) + (x—2)(x —dhu(x - 1)
—(x=DRx—Nulx =2) + (x — )(x — Qu(x—3)=0.
Let u(x) = u*v(x) and multiply the equation by x then
L=ux+p (x=2)(x—4)p—uRx—7o*+ ¢’ (7.132)
After substituting x = m + p, one obtains
L=p@n+ulu+ (v —2)(w - 4o
+ wlu = D@ = D + (u— 1?0
The choice u = 1 yields

(7.133)

L=n+(r—23)p, u=nu.
An expansion in descending factorials is assumed, that is,

ulx, k) = aopk + ozlp""1 + azpk'2 +.-- (7.135)
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The indicial equation is (k — 2)*> = 0, and one has for o

k—2-5Ya,+(k+1—8a,_, =0, s>1. (7.136)
Thus
k - kk—1) 4 ]
k) = a| o — 1 -l (7137
5, = ao| e (7.137)
For k = 2,0 = =20, o =4, &, =0, s> 3, one has the solution
u(x) = ag(p® — 20 + 3) = ap(x* — 3x + ). ‘ (7.138)

According to (7.130), (7.131), to obtain the other solution corresponding
to k£ = 2 one must calculate du(x, k)/0k|;=2. Setting

S =3 a2
I_Zas( )akp |k=2v

5s=0
(7.139)
X, s Bk
5= 20,
then
du(x, k
W )|k=2=S1+S2- (7.140)

ok
Since, for any /,
2 ; 0 I"(x -+ 1)

a’ TATx+1-1)

(7.141)
T+
= m’#(x +1-D,
(7.137) yields
Sy = ap(x(x — Dp(x — 1) — 2x¥(x) + S 9(x + 1)) (7.142)

To obtain S,, it is convenient to work from the recurrence relation (7.136);
by differentiation, the recurrence formula for o} is obtained at k= 2,
namely,

(s + D2y — (s — el = 2(s + Dty — . (7.143)
Thus
=0, o) =-50, oh=3%a, o)=—tay,
;=_2(_s_s_!2_3£’ i3 (7.144)

hence the second solution is
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u(x) = ap(x(x — DY(x — 1) = 2x9(x) + 3 ¥(x + 1))
- 3) 1 (7.145)

(s
— an(5x = - 2“§ S GAD o (rs=2)

Newton series will be used to obtain the third solution. Referring to
(7.116), (7.117), and (7.118), one finds

_ 2
k=0, a=- s3) o, s> 1 (7.146)
Hence
a = —4a0, o) = 2(!0, a, =0, §>3
u(x) = ag(1 — 4p +2p%) (7.147)

= (1 — 6x 4 2x7).

When the indicial equation f3(k) = 0 for Newton’s expansion has muiti-
ple roots then, from

Lu = apfy(k) 0", (7.148)

by differentiation with respect to &k, one may find the additional solutions
following the same procedure as for expansions in inverse factorials.

Example: x*u(x) — 2x*u(x ~ 1) + x(x — Du(x — 2) = 0. One easily obtains
L=(n+p’-2r+pp+0

(7.149)
= -p.
Assuming the form (7.116) yields
o0
Lu =ak?d + )[Rk + 97 — a1t
s=1
1
(k) =——a,(k 7.150
ay(k) Tro” 1(k) (7.150)
2
Ik +1) > 0.

STk 1 +97
Thus
S T+1
x,k 5
u(x, k) = °SZ_;1“(k+1+s)2 (7.151)
Lu(x, k) = agk*p".
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The solution for k=0 is
u(x) = o Z ,zp % Z 5 6)- (7.152)
.v=0 .v—O

The second solution du(x, k)/0k|,—q is obtainable from (7.151); after some
simplifications, one obtains

D) S e+ 1= = 201+~ 2715 C) (7.153)

s=0

in which y = .57721566 is Euler’s constant. Observe that when x is a positive
integer, the singularity of y is canceled by the zero of the binomial.

The next example illustrates the case in which roots of the indicial equa-
tion differ by an integer.

Example: (4x? — Du(x) — 8x%u(x — 1) + dx(x — Du(x — 2) = 0.
Straightforward reduction yields

L=4n* —1—4dp. (7.154)
Clearly, no expansion is available in inverse factorials; accordingly, assum-
ing

u(x, k) = app* + o1 0+, (7.155)

one obtains

Lu = ay(4k* — 1)o",

o (7.156)
0= e ®, a2 L
Thus
oyl = K DOG 5 53 0. (7.157)

k+lroT+ir” =

The indicial equation 4k* — 1 =0 yields k = —1/2,1/2. One solution is
obtained for k = 1/2, namely,

o0
() = aop' +aar 3 (Tnp

158
F'x+1) E x_1/2 (7.155)
T TG+ 1/2) & @+w )
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The solution corresponding to k= —1/2 cannot be obtained using
(7.156) because a; is undefined. To overcome this, a double root will be
created in the indicial equation for k¥ = —1/2 so that the technique for
multiple roots will be applicable. Consider the equation

Lu(x, k) = ok + H@k? — 1)0"; (7.159)
since —1/2 is a double root, one has

3 .

b;u(x, k)'k——l/Z =0. (7160)
Hence one must solve (7.159); for this purpose assume

u(x, k) = ap(k +Dp* + o + g™ 4. (7.161)

One has that (7.159) is satisfied and
1

o) = ———=0, .
k+3/2
o, (k) = L a,(k) s> 1, (7162
T R+ Ik +i+s) =
thus
1\2 1
() = EFDTE D’ s> 1 (7.163)

C+3+9Tk+i+s7 0
For u(x, k), one has

1 . (k+)Tk+dH?
u(x, k) = ag(k + 2)p* + @ 2 2 s,
(. ) = ool + o OFZl(k+%+s)1"(k‘+%+s)2
Let S;(x) be the result obtained from 8/8kp** at k = —1/2, and S,(x) the
result obtained by differentiation of the coefficients at £ = —1/2; then, from
(7.160), the second solution is

(7.164)

a
chu(x’ R)li=—172 = S1(x) + S2(x). (7.165)
It will be convenient to write (7.164) in the form

1 e
u(x, k) =k + )p +k+3-

1 ket
g =k+1.
+§y+s[(y+1) O+s—DP" y=&T2

(7.166)
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Using (7.141), Sl (x) is seen to be

I'(x+1)

I(x+3)
l"(x +1) S
l"(x +H < Z

Sl(x) =

P(x +3
(7.167)
x+1/2 w(x_}_i__s)

1)|
Logarithmic differentiation applied to (7.166) readily yields the derivatives
of a,(k) so that for S,(x) one has

Mee+1) T(x+1)
Nx+3 I+ %)

P+ (=+172) [ 1]
F(x+2)z 1)| & 21/’(5)+2J’+s L]

s_2

Sz(x) =

(7.168)

in which y is Euler’s constant. Thus the final result for the second solution,
u(x), is
M(x+1) TIx+1)

Tt | TGrd)

PGS cr12 NN
r‘(x+§)§2:(s 1)|(+s )[‘/’(x'i'% 5) = 2y(s) — 2y s]-

u(x) =

Wx+p -1

(7.169)

6. THE COMPLETE EQUATION

To solve the complete equation Lu = g, it will be assumed that the para-
meter u under the substitution ¥ = p*v has been found and that the equa-
tion has been put into the canonical form

@ +A@E)p + -+ + fru(m)™ v = A (7.170)
If a representation of 4 is available of the form

h=bog +bp" !+ kb 4, (7.171)
then, assuming

k—m—1

v =0app" ™ +ayp +oota T (7.172)

one obtains the coefficient equations
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(k) = bg,
@i fmk — 1) + aofip_1(k = )= by,

(7.173)
fon(k = 8) + Qg1 fn_1(k = 5) + - - - + &_pfo(k = 5) = b,

Successive solution of these equations determines the a.
Alternatively, one may use a representation of 4 in the form

h=cop* + a1+ +a g+ . (7.174)
and, correspondingly,

v=apo +a 0 a4 (7.175)
for which the coefficient equations are

2ofo(k) = ¢,

a]_fb(k+ 1) +auf1(k+ 1) =<y,
(7.176)

folk +5) + @ 1fi(k +8) + - + Ay_mfu(k +5) = ¢,
The following example illustrates (7.176).

Example: xu(x) — (x + Du(x — 1) = x — 1. Multiplication by x and reduc-
tion to canonical form yield

(7 + (v — 2)p)u = p%; (7.177)
hence, from (7.174) and (7.176) with k£ =2,
wol
0= 7
4
s 1 (7.178)
o+ +(s+3)'2a’ 0 szl
Thus
1)
o, = (=1) 520, (7.179)

(s+ Dis+2)(s +2)°

The final result for u(x) is

u(x) = ): li)s (7.180)
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Since the equation is of first order, the method of (5.33) may be used. For
this assume

u(x) = (x + 1(x) (7.181)
because x + 1 is the solution of the homogeneous equation. This yields
x zZ
t(JC) = Sm Az (7.182)

and hence a particular solution is
u(x) =1+ (x + Dy(x + 2). (7.183)

Lagrange’s “variation of parameters’ method [8] generalizes the second
procedure of the previous example to equations of higher order when the
complete solution of the homogeneous equation isknown. Let v(x), ..., v,(x)
constitute a fundamental system for the nth order equation Lv=0; to
solve Lu =g, set

u(x) = A;(x)v1(x) + - - - + 4, (x)vy(x) (7.184)
with the functions 4;(x), - -+, 4,(x) to be determined. One has
Au(x) = A, (DA () + - + A, (X)Avy(%)
+v(x+ DAA (X)) + - - + v,(x + 1)AA,(X).

A condition will now be imposed on the functions 4;(x) (1 < i < n) in order
to simplify the form of u(x), namely

(7.185)

vi(x + DAA(X) + -+ - + v,(x)AA4,(x) = 0. (7.186)
Thus Au(x) now has the form
Au(x) = A () Av(x) + - - - + 4, (x) Av,(x), (7.187

that is, precisely the same form it would have were the 4;(x) constant.
Similarly, one has

AMu(x) = A () A%, (X) + - - - + A(X) A0, (x) (7.188)
with the condition
Avy(x + DAA(X) + -+ - + Avy(x)Ad,(x) = 0. (7.189)

Proceeding in this manner, one calculates all differences up to A" 'u(x).
Now let the original difference equation (7.1) be written in terms of u(x),
Au(x), -+, A"u(x), then the equation Lu =g yields the last condition,
namely

8(x)
an(x)’

A"y (x4 DAL (X) + -+ + A", (x) Ad,(x) = (7.190)
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The preceding system of equations determines A4 (x), -+, A,(x). One
may now write a particular solution of Lu = g in the form

u(x) = .:Sc’[vl(x)AAl(z) F o ()AL (2)]Az. (7.191)
As a simple illustration consider the following:

Example: u(x + 2) — Su(x + 1) + 6u(x) = g(x). A fundamental system is
v1(x) = 2%, vy(x) = 3*; hence one has

27FIA A (%) + 35T Ad,(x) = 0,

7.192
2HAA (%) + 2 35T A4, (x) = g(x%) (7.192)
whose solution is
A4 (x) = =27 g(x),
() = ~2"gt 199
Ady(x) =377 g(x).
Thus a particular solution for u(x) is
u(x) = S[3**1 = 27" g(n)Az. (7.194)
[
- Setting ¢ = 00, one has the form
o0
ux)==-3 (37 —27Ng(x+)) (7.195)

j=0

which, using (6.75), is convergent if lim sup|g(x + )| Y/ < 2. Tt may be noted
that this is the same solution ond Would obtain using Broggi’s method
(6.71).

To provide a further illustration, the example of (7.6) will now be
completed. From (7.7), (7.15) a fundamental system for (7.6) is v(x) = 3%,
vy(x) = x; thus,

u(x) = 3°A4,(x) + xA,5(x). (7.196)
The pair of equations

AL (%) + (x + 1)Ady(x) = 0,
2(%) (7.197)

. x+1 —
2.3 AL () + Ada(x) = 5

has the solution
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Ady(x )— 3""‘ £(x),
' (7.198)
Ady(x) = — 1g(x).
Thus a particular solution for #(x)is
Trax—z—1 g(z)
= - : .199
u(x) ,§[3 z+1)—x] 12— 1 Az (7.199)
Again setting ¢ = oo yields
o (=l i +J)
ux) = — 37 x4+ 1 _xg(x— 7.200
x) Zoj[ G 1) =Xl (7.200)

which is convergent for jlinoxo sup|g(x + j)|1/j <1

7. THE LCFS M/M/C QUEUE WITH RENEGING—
INTRODUCTION

In many teletraffic applications a good model for the delay experienced from
the time of request for a line until a dial tone is received is the last come, first
served queue in which a customer is allowed to renege before receiving the
dial tone. This is the LCFS queue. This queue will be studied under the
condition that all C servers are busy and the queue is in equilibrium. The
formulations and solution will provide a good illustration of the methods of
this chapter. It will be assumed that the arrival stream is Poisson with rate A
(there is no restriction on ) and that the service distribution is exponential
with C identical, independent servers. The total service rate over all servers
is taken to be unity. These assumptions permit the use of a birth-death
model for the problem formulation.

The concept of a test customer has been found useful in the analysis. A
test customer in this investigation is one who arrives to find all servers busy,
does not receive service, and cannot renege. The complementary waiting
time distribution for such a customer who just arrived is designated vy(2).
Test customers who are already waiting are ranked in accordance with the
number of customers who will receive service ahead of them; v,(¢) designates
the complementary waiting time distribution of a test customer who must
wait for n other customers to be served. Following Riordan [44], a differ-
ential-difference equation will be formulated for v,(¢). Using Laplace trans-
formation, a difference equation for the Laplace transform, o,(s), is
obtained. The following three quantities for actual customers may be related
to w,(?) : wy(f), complementary waiting time distribution; s,(f), complemen-



Linear Equations with Polynomial Coefficients 227

tary waiting distribution of the customers who receive service; and #,(¢),
complementary waiting time distribution of those who renege. The subscript
n has the same meaning as for v,(¢), so that wy(s), so(f), ro(t) refer to the
actual customer who just arrived. It is assumed that the reneging propensity
is exponential with rate a.

It is clear that w, () is related to v,(¢) by

w,(2) = e~ v, (1), (7.201)
and hence
W,(5) = ,(s + @). (7.202)

Since —e~*'dv,(¢) means the test customer starts (but does not receive) ser-
vice and the actual customer does not renege, one has

5,(0) = /;w e dv,(x)/ /:c e dv,(x) (7.203)

and, in terms of Laplace transforms,

5(5) = [5,,@ ta)+a M] /(1 — iy (@)). (7.204)

Also, since ae *wv,(f) dt means the test customer has not yet reached the
server while the actual customer reneges at ¢, one has

ra() = /f e v, (x) dx/ /; " e, (x) dx, (7.205)

and, accordingly,

_ Un(a) — Up(S + )

) = (7.206)

Let ¥,, W,, Su, R, designate the corresponding mean values; then the
values of the transforms for s — 0+ provide the following:

Vi = 0,(04),

W, = ﬁn(a)v

o _ o) +at@) - (7.207)
Tl —ad,(e) ]

R, = ~,(c)/7(c)

in which the prime indicates differentiation with respect to s at s = a. One
may note the following relation obtained from (7.207):

(1 —aW,)S, +aW,R, = W,, (7.208)
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which may be compared with the similar relation in Ref. 40 for the first
come, first served system with reneging. The quantity oW, is simply the
probability of reneging.

8. FORMULATION AND SOLUTION

For the birth-death formulation, the system is assumed to be in state », that
is, the test customer finds » ahead in the line at time #; the balance equations
are obtained by considering the net changes in the time interval (¢, £ + dt),
thus _
v,(t +dt) = (1 + an)dtv,_ () + (1 = (1 + X + an)dt)v, ()
+ Adtv, (D), n=1, (7.209)
vo(t + d8) = (1 — (1 + A)dve(?) + Adtv, (¢).

Accordingly, the differential-difference equation system obtained is

U(®) = (1 + am)v,_1 () — (1 + 2 + an)u,()
A, oz, (7.210)
o(®) = —(1 + Ave(e) + Avy(2).

Since all servers are busy, one has v,(0+) = 1. Taking the Laplace transform
of the system in (7.210), the following system satisfied by ©,(s) is obtained:

A~ (1 +A+5s—a+an)i,_((s)
+ (1 —a+an)i,_(5) = -1, n>2, (7.211)
A1(8) — (L + A +9)7p(s) = —1.

It will be useful to consider the independent variable » to be continuous
and to make the substitution

n=x— é, Tp(8) = u(x) (7.212)

in which explicit indication of s is not needed at this point. Thus, from
(7.211), one has
Aux) — (A +5s—a+ax)ulx — 1) +alx — Dulx — 2) = —1, (7.213)

Multiplying this equation by x and reducing to operational form, one
obtains

Lu=QArn—(s—a+an)ou=—p. (7.214)
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To obtain a particular solution, one may use the method described in
(7.174), but here advantage will be taken of the special form of L. An
operator of the form

L = fo(m) + £ ()™ (7.215)
is called binomial of order m [8]. The substitution u = x(7)w leads to
So@x(7) + fn() x(7x — m) o™ (7.216)

from which x(7) may be determined to effect a simplification of the opera-
tor; for example, by requiring the algebraic relation

X(@) +fm(m)x(r — m) = 0. (7.217)
Thus, substituting
s
- I‘(zr+a)w (1.218)
in (7.214), one obtains
1 1
This equation is of first order with solution
1 a\*
~ i@ +s/a)+c(1 +3) (7.220)
hence,
1 s a\*
u=;+CF(7r+E)(1 +I) . (7.221)
From
(1+3)= i ("‘)up—u (1.222)
T = = \A/) Wl '

the evaluation of the operator I'(m + s/¢) is immediate and the particular
solution

B

is obtained. It may be noted that the assumption Y oo Q0™ for u(x)
would simply lead one back to (7.223).

To obtain the second solution an expansion in inverse factorials
Yoo et ™ will be assumed; as will be seen, this is particularly relevant
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because the final solution of (7.211) is to be a Laplace transform. The
indicial equation yields k£ = —s/a. The recursion for the coefficients is

Am+sa
Uyt =~ +/l Qpys m=0. (7.224)
Using the Pochhammer notation [18] for the ascending factorial
_T(n+a)
= la) 7.225
=ala+1)---(a+n-1), n>1, (7.225)
=1, n=_0,
the solution in inverse factorials is
o0 m
u(x) = D Fix+1) Z (s/@), (A/a) g (7.226)

M(x+1+s/a)é= (x+1+s/a), m!

m=0
Since the confluent hypergeometric function [24], ¢(a, b; x), is defined by
(@ X"
a b, x)= , 7.227

9(a, b; ) n;, B (7.227)
u(x) takes the form

N T'(x+1) P A

) = Dt oS x k14 5:5). (7.228)
The complete solution of (7.213) is, by (7.223) and (7.228),

an=Ls S @0 0
Dm%Jrl—s)/a“’(s *+1+3 }‘)

Since 7,(00) = 0, one must have C = 0; accordingly, »(x) simplifies to
1 F'(x+1) s A
u(x) = P +D Tt 1 +s/a)¢( x+1 + ) (7.229b)
One may now revert back to the original variables, n, and 4,(s) through n =
x — 1/a to obtain
F(n+1+1/a)
L'((s + 1)/a)

In order to determine D, the same method that was used in (6.25) for the
solution of the M/M/1 queue will be used. The validity of the difference

(7.229a)

Un(8) = + D (7.230a)

¢( +1+s"'1 }‘)
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equation (7.211) will be extended to include the boundary condition. Setting
n=11in (7.211), one has

A1(8) = (1 + A + 8)To(s) + Dy (s) = —1. (7.230b)

Subtracting the boundary equation from this provides the extension condi-
tion ¥_;(s) = 0. One now determines D from this condition applied to
(7.230) with n = ~1; thus,

I,(s+1) |
D=_§ F() ¢(s s+1 A) (7.23)

The solution for 7,(s) after simplifying the gamma function expressions is,
accordingly,

1

- s+1 A
Lo 11 (“)n+1 ¢(a ntl+ ) 7.232)
v,,(s)_s—s s+ 1 ss+1 A (7.232)
¢C 7
o n+1
In particular for n = 0,in (7.232), one obtains
s+ 1 A
i 1 (— 14 )
vg(s) == . (7.233)

s ss+1) ¢(s ﬁ A)

In many applications of this model, the parameter « is small, a possible
set of values is A = 1.1, @ = .0025. The solution of (7.233) is not well suited
for computation for such values. Thus it is important to obtain another
solution of the system suitable for small @. This will be done by constructing
a perturbation solution in a of (7.211). Since a appears as a polynomial in
(7.211) only in the coefficients of 7,_1(s), ¥,_2(5), @ power series solution in o
exists; thus, one may write .

Ful(s) = i 0 (s)e. (7.234)
k=0

Only 70(s), 3"(s) will be determined. Replacing 7,(s) in (7.211) by #V(s) +

a?i(s) and equating correspondmg coefﬁcwnts of " on both sides of the

equation, the system obtained for 7 )(s) is
MO — (1 4+ 4 + 950, +79, = -1,

(7.235)
AO — 1+ 2+ 050 = -1
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This is an equation with constant coefficients. A particular solution is 1/s.
The characteristic equation has the roots

1+k+s—\/(1+3~+8)2—43~ ‘1
=, 7.236
o 02 ( )

pL =
Thus the general solution of the equation is

~(0) 1 n n

U = + Cpl +Ddh. (7.237)
Because 3,(oc) = 0, one must have D = 0 and

.1 n

s =7 + Cpl. (7.238)
Extending the boundary condition to negative n, provides the condition
9.1(s) =0 and hence C = —p, /5. The solution for 79 is, accordingly,

0 1-— n+1
T(s) = ———

S (7.239)
i =—2.

This solution corresponds to the case of no reneging and has already been

obtained [44]. In this case one must have A < 1 to ensure an equilibrium

condition; however, in the perturbation solution being developed as an

approximation to the reneging case no restriction on A need be imposed.
The system of equations for ¢ v, (s) is

AP -1+ 2+ 950, + 10, = (n - 1DED, - 5

n—2/
(7.240)
P S o
Using the result of (7.239) in (7.240) yields
M0, = (14 A+ 98, + 0 = (4 D12 pl . (7.241)

A particular solution is obtained operationally as follows:



Linear Equations with Polynomial Coefficients

- 1 '

~(1) _ P n+1
Ty = n+1 )
As (E—m)(E—pz)[( o]

l-p 1 [ nel 1 :|
= n+ 1)},
s E—p P p1E—Pz( )

_l-p 1 [pn+1("+1_ o1 )]
as E-p pr=p2 (o1 —p)/ )

l-p; »1 ( n+1 o1 )
= P1 Z — - 7
As pL—pP2 (p - pz)

1-p o 1 ( )
As(p1 — p2 )
__l-p p(n(n+1) )
As(pr — p2)
_p(l=p) (nn+1) kp?m 7
s -1\ 2 a2 —1)"
Thus
2
(1) _ pil=p) nr+1) Ao n
Un C + (kpf—l)( P }‘p%_ln)pl'
The boundary condition is ¥_;(s) = 0, hence
_ _ Ml =pp)
s(ho? — 1)?

For 7(s), 17(()1)(s), one has

W _ ol A —pp) (n(n+1) Aot
"= [(xp )( 2 -1

_apil—py)
st = D2
Aol = 1)
s(upF ~ 1)
The final approximations for 7,(s), Tp(s) are
Ba(s) = TO(s) + 2D (s),

1-p1  Aol(l=pp)
e e
§ s(hor = 1)

W= -

’ljo(s) o
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(7.242)

(7.243)

(7.244)

(7.245)

(7.246)
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9. AN M/M/1 PROCESSOR-SHARING QUEUE

The processor-sharing discipline requires that a server that operates at rate
w serve each customer present simultaneously by sharing its capacity; thus if
i customers are present each customer receives service at the rate p/i. This
discipline is well approximated by the round-robin discipline when the quan-
tum of service is small and becomes exact when the quantum has limit zero
[45]. The Java programming language, for example, incorporates processor
sharing in its multipriority, multithreading aspects [46].

Let X denote the number of customers seen by an arrival, including itself;
then a performance parameter of interest is the response time T of the
customer conditioned on X = x, that is, the total time spent in the system
from arrival to departure. Define

u(x, 8) = Ele”*7|X = x]; (7.247)

then a difference equation will be formulated satisfied by u(x, s) [6]. The time
to the first event, whether arrival or departure, is exponentially distributed
with rate A+ and Laplace-Stieltjes transform (A + w)/(A 4+ i + ).
Consider the state x + 1; if there is an arrival, then the LST of the remaining
response time is u(x + 2, §) and the probability of this is A/(A + u). Tag the
customer under consideration; if the event is a departure but not that of the
tagged customer, then the LST of the remaining response time is u(x, ) with
probability (ux/(x + 1))/(» + u). If the tagged customer departs, then the
remaining response time is zero and the LST is one; this occurs with prob-
ability (u/(x + 1))/(» + u). Thus, the equation takes the form

A
ux+1,8) = %{Lﬁ-é‘[k-}- u(x + 2, S)+ lu(x,s)
I 1
et BT (7.248)
At A
1,s)= S
uh) k+u+s(k+u( D+3 A+ )

The boundary condition arises because a departure other than the tagged
customer is not possible. Equivalently, the equation takes the form

A+ Du(x 4+ 2) = (A + p +8)(x + Du(x + 1)

+ pxu(x) =—-p,  x=0, (7.249)

in which, for convenience, dependence of u on s is not indicated. It may be
observed that the boundary condition is included in (7.249) assuming
xu(x) =0 for x = 0.
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Equation (7.249) degenerates to first order when A = 0. Thus one may
think of the two-dimensional manifold of solutions as consisting of the
union of two one-dimensional manifolds in which one manifold consists
of functions regular in A at A = 0 and the other not. Since it may be assumed
that the processor-sharing model is meaningful in the neighborheod of A =
0, one may assume a solution of the form

u(x) = i w()N; (7.250)
Jj=0

that is, one may assume the required solution is regular. This is called a
singular perturbation expansion [7]. Substitution of (7.250) into (7.249)
yields the following system of first-order equations:

~1

e+ Dug(x + 1) — (1 +%)-]xuo(x) - (1 +i) ,
w( = (1+5)7,
(x+ Duy(x +1) — (1 +£)_1xuj(x) (7.251)

-1
=l(1 +i) (x+ DAy_;(x +1) jz1
1 1

-1
(1) = [l,L (1 + ;%) Auy_y(1),

in which A operates with respect to x. The solution of this infinite system is

up(x) = six [1 - (1 +£—)-x],

1 & s\ x1 (7.252)
u;(x) = — 1+—) - 1A (D), i > 1.
0=z (14 WON
Since
1 s -r _ ([,Lt)r_]
1 +_) pp— , 7.253)
i ( p r—1D! (
the termwise inversion of (7.250) is easily accomplished. Define
F(t,x) = P[T > t|X = x] (7.258)

- 1 —u(x,s),
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then inversion of (7.250) provides a convenient means for the evaluation of
F(t, x). Clearly, for the existence of the equilibrium regime, one must have
A/ < 1; the rapidity of convergence is reduced the closer A/u is to one.

PROBLEMS

. Solve u(x + 1) — e*u(x) = xe*

. Solve (x + 2)u(x + 1) — 2(x + 1)e*u(x) = 0.

. Solve u(x + Du(x) + 2u(x + 1? —3u(x)=2,u0)=0.

. Let P() = Au(), S, =375 (uG)* + P()*). Minimize S, subject to
w0 =1, un) =0.

5. Obtain the complete solution of

(x—=Dux+2)— Bx—u(x+ 1)+ 2xu(x) =0

given one solution is u(x) = x..
6. Solve xu(x) — (x+ Du(x— 1) =a".
7. Obtain the complete solution of

u(x +2) — a(@ + Du(x + 1) + au(x) = 0.

8. Obtain a particular solution

AW N =

u(x + 3) + @ u(x + 2) + a*u(x + 1) + a*u(x) = .
9. Solve: u(x + 3) — 7u(x + 2) + 16u(x + 1) — 12u(x) = 1/x.
10. Using the Laplace transformation, solve

aiwu(w, x) = —x*u(w, x) + (x + D2u(w, x +1)

for (s, x).

11. Solve u(x) + 7xu(x — 1) + 10x(x — Du(x — 2) = x2.

12. Solve u(x) — 3xu(x — 1) + 9x(x — Du(x — 2) = ™.

13. Solve (x? — A)u(x) — 2x* — x)u(x — 1) + x(x — Du(x - 2) = 0.

14. Obtain a perturbation expansion in ¢« to two terms of the solution to
u(x+1)— (x + )u(x) = 0.

15. Obtain a singular perturbation expansion in & to two terms of the solu-
tion regular in e about the origin of

eu(x +2) —u(x + 1) + 2u(x) = 0.
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infinite product solution, 113
multiplication formula, 111
solution in terms of gamma
function, 112
Linear transformation, 91
class A, 91
eigenfunction, 93
generating function, 91
inverse, 94
sum and product, 93
Lower bound theorem, 49

M

M/G/1 queue with reneging, 121
difference equation, 121
M/M/1 case, 122
Volterra integral equation, 121

M/M/1 delay model, 24
differential-difference equation,

24
semigroup type, 24
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M/M/1 processor sharing queue,
234
singular perturbation solution,
235
tagged customers, 234
M/M/1 queue transient solution,
174
exact inversion, 176
Laplace transform of solution,
175 '
M/M/1 queue with feedback, 132
M/M/C Erlang blocking model, 24
Mellin, 14
convolution, 14, 15
inverse factorial series, 14
operational properties, 14, 15
product of series, 16
Milne-Thomson, 30
asymptotic criterion, 30
Monomial equations in m, 207
multiple roots, 208
Monomial equations in p, 204
Erlang loss function, 204
use of factorial series, 204

N

Newton’s expansion, 2
defined, 2
uniqueness, 8
Nonlinear difference equation, 133
generating function g(z|h), 133
ordinary differential equation,
133
partial differential equation, 134
Nérlund, 8
uniform convergence, 8
Noérlund principal sum, 75
Norlund sum for complex
arguments, 99
complementary argument
formula, 100
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[Nérlund sum for complex
arguments]
complementary argument
theorem, 100
expansion for, 99
integral representation, 99
Norlund’s expansion, 56
asymptotic properties, 57
error estimate, 57
homogeneous sum, 59
representation of sum, 59
Null function, 13
Numerical differentiation, 60
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Operational formulae, 17
shift formula, 17
Operational method of Boole,
179
Operators, 1
Operator x, 205
Operators 7 and p, 203

P

Partial difference equations, 189
Bernoulli trials, 190
Pascal’s triangle, 189
Perturbation solution, 147
Norlund sum expression, 147
perturbation solution, 148
Principal solution, 33
limits and span, 33
Nérlund definition, 33
sum, 33
Properties of sum, 34
limiting form, 36
linear change of variable, 34
multiplication theorem, 35
span integral, 35
sum from primitive, 36
Psi-function, 10

245

Q

Quadrature formula for sum, 62
Quadrature of homogeneous sum,
65
coefficients for exponential
weight, 66
coefficients for linear weight, 68
Queueing model M/M/n, 118
asymptotic expansion, 120
differences of 1/B(0,a), 120
Erlang loss function, 118
expansion for 1/B(x,a), 119
extension to continuous
argument, 119
Fortet integral, 120

R

Reduction of order, 213
Repeated summation, 40
Representation theorem, 90
Riccati form, 135
inifinitesimal generators, 136
solution, 135
Roots differing by an integer, 220

S

Separation of variables, 191
Sequence of transformations, 111°
convergence of generating
functions, 95
convergence theorem, 95
Shift formula, 205
Simultaneous first-order equations,
154
equivalent differential equations,
154
equivalent partial differential
equations, 154
limiting form, 157
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[Simultaneous first-order equations]

Newton’s expansion, 156

partial differences, 156

U-operator method, 155
Solution in Newton series, 215

descending factorials, 216

example — integral form of

solution, 216
indicial equation, 215

Solution of functional equation, 152

example, 153
example of M/M/1 queue with
feedback, 152

solution of special case, 153
Stirling equation, 192
Stirling numbers, 4

first kind, 5

second kind, 5
Sum of Laplace transforms, 41

representation theorem, 41
Summapbility, 39
Summation by parts, 38
Summation of series, 11

from sum of function, 37

T

Taylor’s series, 3
Time-homogeneous model, 25
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Trigonometric expansions, 84

coefficients for, 85

example of, 86

y-function example, 87
removal of discontinuity, 87
sum of exponential, 86

U

Uniqueness theorem, 92
U-operator solution, 138

accuracy dependent on h, 141

Hille’s representation, 140

infinitesimal generator, 140

invariant function, 141

modification for good accuracy,
141

Newton’s series expansion, 139

reduction to Lie-Grobner
operator, 139

relation to semigroups, 140

Use of Laplace transform, 184

example, 186
principal solution, 184

v

Volterra integral equation, 65



