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Preface

The discoveries of the last decades in the field of nonlinear science brought a
new understanding of the behaviour of dynamical systems. It became clear
that nonlinear systems should be classified by their intrinsic structure rather
than by the number of degrees of freedom, finite or infinite. Equations of
soliton theory such as the Korteweg—de Vries, the nonlinear Schrédinger and
some others, were interpreted as analogs of completely integrable systems of
classical mechanics, while the inverse-scattering method was interpreted as a
recipe for finding action-angle type variables. Thus, an impetus to the develop-
ment of infinite-dimensional Hamiltonian theory was given.

This book investigates general Hamiltonian structures and their role in
integrability. A rigorous algebraic approach is presented that is irrelevant to
the specific properties of the phase space of the system. Some important classes
of infinite-dimensional Hamiltonian structures are described in terms of
differential geometry, theory of Lie algebras and group representation theory;
corresponding integrable systems are considered.

Some basic knowledge of classical mechanics and nonlinear phenomena is
desirable for the reader, though from the formal point of view the exposition is
self-contained.
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1 Introduction

In order to introduce the reader to infinite-dimensional Hamiltonian theory
there is a need to recall some notions of classical Hamiltonian mechanics (see
Arnold, 1974 for a modern exposition).

The Hamiltonian description of motion of a mechanical system in its
canonical form is the system of differential equations

dg; aof

dt  op; (L.1)
dp, _ _of

de dq;’

where g; and p; denote coordinates and momenta respectively, i runs from 1 to
n, n being the number of degrees of freedom, f = f(p,,...,Pn 41, - -, 4,) is the
Hamiltonian of the system, being a function on the coordinate-momentum or
phase space. From the differential-geometric point of view, the right-hand side
of (1.1) is a vector field h on the phase space, such that

o= —df, (1.2)
where w =Y dp; A dg; is the canonical 2-form,

. i) )
i,o(h,) =w(h,h,), df = Z ( fdp,+é;fd )
i
The invariant approach to Hamiltonian theory considers as the phase space
of the system a symplectic manifold X that is a finite-dimensional manifold
endowed with a nondegenerate skew-symmetric closed 2-form . The defini-
tion of a Hamiltonian vector field h on X is that given by formula (1.2). The
dynamics of the system is interpreted as motion along the integral trajectories
of h.
This scheme can be presented in a slightly different way, as follows.
The symplectic structure, being nondegenerate, produces a one-to-one
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correspondence
he —iw
between the space U of vector fields on X and the space Q! of 1-forms on X. So

there arise two mutually inverse linear operators I and H, acting in opposite
directions:

H
As QL.
1

The skew-symmetry of w and the fact that dw = 0 impose some restrictions
on the tensor fields I =(I;;) and H =(H"). In fact, w(h,h,)=(h,Ih,), and
therefore the condition dw = 0 is expressed in terms of I as

I;=—1

5= i

oy ol ol _
oxk  oxt oax

(1.3)

Operators I: A - Q! that satisfy these conditions, will be called symplectic
below.
The same restriction in terms of the operator H turns out to be

Hl’j= —H‘ii,
OHY . OoH* . OHM .
*+—HY)|=0. 1.4
;(6x“H +6x°‘H +6x“‘ 0 (14)

Operators H: Q! — that satisfy (1.4), will be called Hamiltonian.

According to the definition given above, a vector field is a Hamiltonian one
if h=Hdf, that is

) = Of
f= U=, 1.5
h ; H Em (1.5)
The same property expressed in terms of the operator I is Ih = df, that is
. of
I .h=-L, 1.6
; ij ax; ( )

Denote by Q° the space of functions on the symplectic manifold X. The
Poisson bracket defined by the formula

4 %
ox’ ox*

{f.g}=X H

iJj

1.7

endows Q° with the structure of a Lie algebra, i.e. it is skew-symmetric,

{fxafz}=“{fz,f1}’ (1.8)
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and satisfies the Jacobi identity
{{fl’fz}’f3} + {{fzaf3}’fl} + {{f:’nfl}’fz} =0. (19)

Two functions f, f,€Q° are said to be in involution with respect to the
Poisson bracket, if {f;, f,} =0. A function feQP° is called an integral (or a
conservation law) of a dynamical system associated with a vector field he, if

;;—)ﬁh"=0. (1.10)

If X is 2n-dimensional and if n conservation laws mutually in involution are
known, then under certain assumptions on their independence the Liouville
theorem (see Arnold, 1974) allows us to describe in full the motion of the
dynamical system in special action-angle variables. The systems satisfying the
requirements of the Liouville theorem are called completely integrable.

In contrast to systems with finite-dimensional phase spaces, an evolution
equation

u, = h(u,u,,...,u"™)

defines motion on an infinite-dimensional space of functions u(x). The ques-
tion arises: what is the correct analogue of the concept of complete integrabil-
ity? The crucial step in understanding the situation was made by Gardner,
Greene, Kruskal, and Miura who discovered in 1967 a procedure of integrat-
ing evolution equations called the inverse scattering method. The foundations
of soliton theory were laid down in a series of papers by Gardner et al. (1967),
Miura et al. (1968), Lax (1968), Gardner (1971), Zakharov and Faddeev (1971),
Novikov (1974), Zakharov and Shabat (1974), Ablowitz et al. (1974), Gardner
et al. (1974) and Gelfand and Dikii (1975), the number of publications growing
incredibly after 1975.

At present soliton theory is a diversified mathematical discipline, and there
are a considerable number of books reflecting its various aspects, including
Miura (1976), Bishop and Schneider (1978), Lonngren and Scott (1978),
Zakharov et al. (1980), Bullough and Caudrey (1980), Boiti and Pempinelli
(1980), Ablowitz and Segur (1981), Toda (1981), Calogero and Degasperis
(1982), Shabat (1982), Dodd et al. (1984), Newell (1985), Leznov and Saveliev
(198S5), Olver (1986) and Takhtajan and Faddeev (1986).

The present book is devoted to Hamiltonian structures of evolution equa-
tions and their interrelations with integrability.

The Hamiltonian approach to integrability for evolution equations has its
starting point in the well-known papers by Zakharov and Faddeev (1971) and
Gardner (1971) referring to the Korteweg—de Vries (KdV) equation

\

u, = u,,, + 6uu,.
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This evolution equation was interpreted as a Hamiltonian system with an
infinite-dimensional phase space. It was demonstrated that the beautiful
properties of the KdV equation discovered with the help of the inverse-
scattering method reflected some kind of complete integrability. Moreover,
the inverse-scattering method turned out to be the procedure for finding
action-angle-type variables for this Hamiltonian system.

Considerable progress in the infinite-dimensional Hamiltonian theory has
been achieved in the subsequent decades, both in finding new examples and in
building up the fundamentals of the general theory.

In this book an attempt is made to go as far as seems possible in building up
a rigorous theory of Hamiltonian structures, appropriate for dynamical
systems with both finite-dimensional and infinite-dimensional phase spaces.
This goal is achieved by implementing a scheme, algebraic in its nature, that
does not rely on any specific properties of the phase space.

The notion of a Dirac structure is basic in this scheme. Objects called Dirac
structures were introduced by Dorfman (1987) as natural algebraic analogues
of finite-dimensional structures first considered by Courant and Weinstein
(1986).

The concept of a Dirac structure originates from the fact that in some
situations it is useful to consider conditions (1.3) and (1.4) separately, not
imposing the requirement of invertibility on the operators I and H. These
situations are described with the help of the notions of presymplectic manifold
and Poisson manifold, respectively.

A Poisson structure on a manifold X (see Kirillov, 1976; Lichnerowicz,
1977) is a field of skew-symmetric tensors H* that generates by formula (1.7) a
bracket satisfying conditions (1.8) and (1.9). It can be demonstrated that this
requirement is equivalent to (1.4). The Kirillov—Kostant construction (see
Kirillov, 1972) gives a canonical example of a Poisson structure: the adjoint
space to any Lie algebra is a Poisson manifold that splits into symplectic
manifolds, these being the orbits of the coadjoint representation. Also in
general any Poisson manifold splits into symplectic ones, at least in domains
where HY is of constant range (Kirillov, 1976).

Presymplectic manifolds arise in situations connected with constrained
dynamics. If (X, w) is a 2n-dimensional symplectic manifold, and if a sub-
manifold 'Y< X is determined by m independent constraints ¢,(x)=
@,(x) = -+ = @,,(x) =0, then w restricted to Y remains closed, but can become
degenerate. The restricted @ is nondegenerate if and only if the matrix
composed of the Poisson brackets ® = || {¢;, ¢;} || is nondegenerate. In this
case Y is a symplectic manifold, and the Poisson bracket arising on Y takes the
form

{ﬁg}o={ﬂg}—Eé{prj}cjk{wk,g}, (1.11)

where C = ||c; || is the matrix inverse to the matrix composed of Poisson
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brackets:
C=0"1

The bracket (1.11), which was discovered by Dirac, is known as the con-
strained or Dirac bracket (see Dirac, 1950, 1964).

The other case is when the restricted w is degenerate, and Y is then a
presymplectic manifold. If in some domain of Y the range of w is constant,
then the so-called characteristic foliation can be considered (see Section 2.4
below). It is easy to show that the dimension of the characteristic foliation
cannot exceed m. Any manifold Y’ of the complementary dimension in Y,
transverse to this foliation, is a symplectic manifold.

This construction was first developed by Faddeev (1969) for the case
{01, 0;} = Xc;j 0, that produces on the null level-set the maximal range of
degeneracy. In fact, the Hamiltonian fields with Hamiltonians ¢; belong to the
characteristic foliation and hence the leaves of the characteristic foliation are
m-dimensional. Correspondingly Y’ is (2n — 2m)-dimensional. Therefore m
additional constraints y,(x) = :+- = x,(x) = 0 must be imposed to produce a
symplectic manifold; they are known as Faddeev’s auxiliary conditions. This
argument is a general one, as any presymplectic manifold, at least locally, splits
into symplectic ones.

The final two steps in working out the concept of a Dirac structure, as
mentioned above, were made by Courant and Weinstein (1986) and Dorfman
(1987) in order to introduce objects combining the properties of Poisson and
presymplectic structures in finite-dimensional and abstract theory, respective-
ly. A Hamiltonian formalism can be associated with any Dirac structure, as
well as with a Poisson or a presymplectic structure.

The advantages of presenting Hamiltonian theory in terms of Dirac struc-
tures can only be demonstrated with difficulty within the framework of
finite-dimensional manifolds. In fact, by appropriate splitting of a manifold
one can reduce Dirac structures to symplectic structures on the leaves of some
foliations (see Theorem 2.2 on page 20). The infinite-dimensional theory has a
crucial distinction that makes Dirac structures very useful in the Hamiltonian
theory of evolution equations. This idea will be discussed later, but a few words
will be said now.

The KdV equation u, =u_ , + 6uu, can be considered as a Hamiltonian
dynamical system; one such way is to write it in the form

d? d 6 (u?
u,—(a?+4ua+2ux>ajidx (1.12)

which corresponds to formula (1.5) with H = (d3/dx?) + 4u(d/dx) + 2u, and
the Hamiltonian j(uz/Z) dx. The corresponding operator I, being nonlocal,
cannot be described in terms inherent in the theory.
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Another example is the so-called Krichever—Novikov equation

— 3,,-1,.2
ut_uxxx_zu u

X xx"*

for which one of the possible Hamiltonian presentations is

d 6 (u;?u?
u;la(u;lu,)=aj‘%dx, (113)
which corresponds to (1.6). We see that in contrast to the KdV case, in this
case I =u_ }(d/dx)ou_ ! is a local operator, but H is clearly nonlocal.

There are still other examples, in which neither I nor H can be found within
the class of local operators. Nevertheless a rigorous Hamiltonian approach
using the concept of a Dirac structure can be applied. It was these examples
that gave the author the impetus to develop the theory of Dirac structures
in a general algebraic framework, applicable both to finite- and infinite-
dimensional cases.

This framework has as its base the notion of a complex over a Lie algebra
as introduced by Gelfand and Dorfman (1980). The de Rham complex of
differential forms on a finite-dimensional manifold X is an example, being the
basis of finite-dimensional differential geometry and classical Hamiltonian
mechanics. In the theory of evolution equations this complex is replaced by the
so-called complex of formal variational calculus.

The exposition in this book is organized as follows. We start by presenting
in Chapter 2 the algebraic framework of the theory of Dirac structures.
Chapter 3, also purely algebraic, throws a bridge over to integrability. The
basic notion in this chapter is that of a Nijenhuis relation. Links with
deformations, pairs of Dirac structures, and the so-called Lenard scheme of
integrability are discussed here. Chapter 4 considers the complex of formal
variational calculus needed for rigorous exposition of the theory of Hamil-
tonian structures of evolution equations. Chapters 5 and 6 deal with particular
classes of local Hamiltonian and local symplectic operators that arise in the
Hamiltonian theory of evolution equations. Chapter 7 describes an alternative
scheme of integrability, not connected with Nijenhuis relations, and indicates
some links between this scheme and the previously introduced Lenard scheme.

Let us have a few words about the mathematical language adopted in this
book. There are two main approaches to interpretation of the symbol u
present in an evolution equation. The first, an informal one, considers u as a
representative of a concrete space of functions u(x). The second, a formal one,
considers u as an abstract symbol, u, as another symbol, and so on, admitting
some natural rules when dealing with the symbols. The informal approach
forces us to rely on properties of the underlying space and for that reason
requires us to be careful in making the foundations. The formal approach is
more rigid, allowing us to develop the theory rigorously, but on the other hand
it sometimes prevents our embracing all the interesting examples. In this book
we follow the formal approach systematically, going as far as possible with
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rigorous statements. However, we refer to informal theory when it seems
necessary, indicating it each time by special remarks.

It deserves mention that when an evolution equation is under consideration,
one must explain what integrability really means. More than two meanings
can be given to the term, the most restrictive of which is that one can describe
the dynamics in full. In this book, a less restrictive meaning of the term is
admitted, namely, the existence of an infinite series of mutually commuting
symmetries. For Hamiltonian evolution equations integrability in this context
means the existence of an infinite series of conservation laws being in involu-
tion with respect to the corresponding Poisson bracket.

The book is introductory in its nature; it does not seem possible to give a
detailed description of many significant achievements of recent years. In
particular, completely untouched is the theory of Hamiltonian structures in
multidimensions (Santini and Fokas, 1988; Fokas and Santini, 1988, 1989;
Magri et al., 1988; Dorfman and Fokas, 1992). In some cases references and
short notes indicate ways of obtaining further information.



2 Algebraic theory of Dirac structures

The main goal of this chapter is to provide the Hamiltonian theory of
evolution equations with rigorous foundations. The general algebraic scheme
developed below does not rely on any specific properties of the phase space
and is therefore applicable both to finite- and infinite-dimensional realizations
of the theory. The principal notions here are the notion of a complex over a Lie
algebra, which is the algebraic counterpart of the de Rham complex of
differential forms, and also the concept of a Dirac structure, giving rise to
abstract Hamiltonian formalism.

2.1 Graded spaces, complexes, cohomologies

We need some notions from the theory of graded spaces (see Kac, 1977, Leites,
1983). A grading in a linear space L is a decomposition of it into a direct sum of
subspaces, with a special value of some function p (grading function) assigned
to all the elements of any subspace. In our exposition, p takes values either in
Z, orin Z, i.e. the decompositions considered are

L=L°@L!

L= é—ju

Elements of each subspace are called homogeneous. In the case of Z,-grading,
elements of L° and L' are called even and odd, respectively.

A bilinear operation x, y— x°y, defined on L, is said to be compatible with
the grading if the product of any homogeneous elements is also homogeneous,
and if

or

p(x°y) = p(x) + p(y)
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We recall that a Lie algebra is a linear space endowed with a bilinear
operation x, y—[x,y], called the commutator (Lie bracket), that is skew-
symmetric,

[x’y] = - [y, X:],

and satisfies the Jacobi identity

[[x,y1,2]+ [[y,2],x] + [[2,x], y]1 =0.

We also need the Z,-graded version of this notion, that is the notion of a Lie
superalgebra. A Lie superalgebra is a Z,-graded linear space with a bilinear
operation x, y+—[x, y];, called the supercommutator, that is compatible with
grading and satisfies two conditions:

[x, y]s = - (_ l)p(x)p(y)[y, x]s
and
(_ l)p(x)p(z)[[x, y]s’ z]s + (_ l)p(y)p(x)[[y’ Z]s, x]s + (_ l)p(z)p(y)[[z, X]s, y]s =0.

We get a natural example of a Lie superalgebra if we consider the space of all
linear automorphisms Aut Q of any Z,-graded linear space Q.

In fact, we call an operator X e Aut Q even if it does not change the grading
of homogeneous elements, and odd if it changes the grading to the opposite.
Obviously, any automorphism can be represented as a sum of even and odd
ones. Define the supercommutator on homogeneous elements of Aut Q by

[X,Y],=XY—(=1pp@eyx @.1)

and expand it to the whole space of automorphisms by linearity. Then Aut Q
becomes a Lie superalgebra.

Now assume, in addition, that the Z,-graded space Q is endowed with the
structure of an associative algebra, so that the bilinear operation a, br—ab is
compatible with the grading. A homogeneous element DeAut Q is called a
superderivation if

D(ab) = (Da)b + (— 1)P“@*Plg(Db)

for any homogeneous a, be Q. Denote by Der, Q the direct sum of all even and
odd superderivations. It is easy to check that Der, Q = Aut Q is closed with
respect to the supercommutator defined by (2.1). Therefore Der,Q is a Lie
superalgebra with the structure inherited from the Lie superalgebra Aut Q.

The notion of a superderivation is a natural graded version of that of
derivation, that is an automorphism 4, such that d(ab) = (0a)b + adb.

It is well known that in any Lie algebra an element x produces a derivation
ad,, named the adjoint of x, defined by the formula ad_y =[x, y]. The same is
valid in Lie superalgebras. More precisely, define ad, as an operator acting by
the formula

ad,y =[x, y],
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for any homogeneous x. Then ad, is a homogeneous operator with p(ad,) =
p(x), and a superderivation, i.e.

ad,[y,z], =[ad,y,z], + (— 1’»P¥)[y,ad, z],.

This property is a direct consequence of the definition of a Lie superalgebra.
Now we consider Z-graded linear spaces, recalling the notion of a differen-
tial complex. Let Q be a Z-graded linear space,

a- Do

with a linear operator, d: Q —Q, acting on homogeneous elements in such a
way that

dQicQit!

and
d*=0.

Then (Q, d) is called a (differential) complex with the exterior differential d. It is
more convenient to imagine a complex as an infinite sequence of spaces and
morphisms

d- d, d
Lo CL0r 025,

Q!

where d, denotes the restriction of d to Q7. The conventional terminology for

the elements of Q?, Kerd, and Im d is g-cochains, cocycles and coboundaries,
respectively. For special complexes, such as those appearing in differential
geometry, the corresponding objects are named g-forms, closed forms and
exact forms. In the following, both versions of terminology are used, depend-
ing on the situation.

As d? =0, any coboundary is a cocycle, so there arise quotient spaces
H%Q,d)=Kerd,/Imd, _,

named cohomology groups of the complex (Q, d). If all the cohomologies are
trivial, i.e. Kerd, =Imd__,, the differential complex is called exact.

Below we consider only complexes with Q¢ being trivial for g <0, which
spaces we omit when presenting the complex. Also the index g in d_ is
conventionally omitted.

In the exposition below, Z,-grading in the complexes is fixed by assuming
elements of Q° D Q2 D OQ* @ --- even, and elements of Q' PQ3 D QD -+ odd.

For morphisms X, Y of linear spaces their commutator XY — YX is de-
noted by [X, Y J; for morphisms of graded spaces [ , ], means supercommu-

tator (2.1).
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2.2 Complexes over Lie algebras

In this section we introduce the notion of a complex over a Lie algebra and
present some examples, which are themselves of rather general nature.
Let there be given a complex (R, d):

N LN o Y RNLENT o  JELEN o * BN
and also some Lie algebra U with a Lie bracket [ , ].

Definition (Q, d)is called a complex over a Lie algebra U, or an U-complex, if
to any ae there corresponds a linear operator i,;: Q - Q,i, Q1= Q171 Q% =
{0}, depending linearly on a and satisfying the conditions

iiy + iy, =0, 22)
[id + dig, iy] = i s 2.3)

for arbitrary a,be.

Taking into account that both operators d and i, are obviously odd, we can
rewrite these equalities in the form

[ia 31, =0, (2.2)
[[ia! d]s’ ib]s = i[a,b]' (231)

Elements of A we call vector fields; elements of Q4 are called g-forms.
For arbitrary ae? and any 1-form ¢€Q! define the pairing of a and ¢ by the
formula

(&,a)=i,teQP. (2.4

The element (&, a) can also be denoted by (a, &) or &(a). Similar notation is used
for weQ:

@y, @) =g ig, o ig QO 2.5)

aq-1

We call the pairing between % and Q! given by (2.4) nondegenerate if from
(&,a) =0 for all £eQ! there follows a = 0, and also from (£, a) = 0 for all ae¥
there follows £ = 0. Nondegeneracy of the pairing in an U-complex is not
required in general, though it holds in most of the cases discussed below.

Now we present some examples of U-complexes.

Example 2.1 Standard U-complex with trivial action of U. Take some Lie
algebra 2. Take as Q° the basic field of real numbers R (or complex numbers
C). Consider as Q“ the linear space of all g-linear skew-symmetric mappings
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@: A x --- x A—R; in particular Q! = A*. Put
dw(a,,...,a,, )= Z(—1)‘+jcu([ai,aj],al,...,di,...,&j,...,aqﬂ)

i<j
where 4 here and below is the conventional notation for an omitted element.

Then d? =0.
Let us also put

(w)ay,....a,_ ) =wla,a,,...,a,_,)

Conditions (2.2) and (2.3) can be easily checked. The resulting complex (€, d),
that is of course completely determined by U, we call the standard U-complex
with trivial action of U. The cohomologies of this complex occur in the
mathematical literature under the name of cohomologies of a Lie algebra with
coefficients in its trivial representation.

Example 2.2 A-complex associated with a left A-module (a representation
of A). We recall that a left A-module (a representation of a Lie algebra A) is a
linear space M such that to any ae ¥, me M there corresponds ameM, linear
both in a and in m, with the following requirement satisfied:

a,a,m—a,am=[aa,]m.

Take as Q° the space M, and consider as Q7 the space of all g-linear
skew-symmetric mappings @: U x --- x A — M. Put

da(ay,...,a,, ) =Y (=) 'awla,,..,4;...,a,.,)
+ 3 (=) e[, a) @gre BBy y)  (26)
i<j

and also

(,@)ay,....a,_ ) =wla,ay,...,a,_,). 2.7)

It can be proved that both the requirement d2 = 0 and conditions (2.2) and
(2.3) are satisfied. The complex (€, d) defined by the pair (U, M), will be called
the A-complex associated with the left A-module M. The cohomologies of this
complex also occur very often in the mathematical literature, under the name
of cohomologies of A with coefficients in its representation M.

Example 2.3 De Rham complex of a ring. Let R be an associative com-
mutative ring. Denote by Der R the space of all its derivations d: R—> R, i.e.
such morphisms that d(ab) = (6a)b + a(0b). Then A = Der R is a Lie algebra
with respect to commutator [8,,0,]=8,0, — 9,0,. Take as Q° the ring R
itself and consider as Q? the space of all skew-symmetric mappings
@: A x --- x U— R that are R-linear with respect to all arguments, i.e.

(ads,...,d,) = aw(®d,,...,d,)
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and so on. We emphasize the distinction from Example 2.2 where no addi-
tional requirements exist. Evidently R is a left Der R-module under the natural
action that associates with each deDer R, meR the element dmeR. Therefore
the general scheme of the previous example can be applied, with operators d
and i, given by (2.6) and (2.7), respectively. The complex (,d) that arises is
completely determined by the ring R. We call this complex the de Rham
complex of the ring R.

Example 2.4 De Rham complex of a smooth finite-dimensional manifold.
Let X denote an n-dimensional smooth manifold, % denote the Lie algebra of
vector fields on X, and C*(X) be the ring of all smooth functions on X. If we
consider any vector field on X as a derivation of C*(X), the scheme of
Example 2.3 comes into action. The complex (€, d) obtained over the Lie
algebra of vector fields on X is the main object of differential geometry. It is
known as the complex of differential forms on X or the de Rham complex of
the manifold X (see Kobayashi & Nomizu, 1963; Dubrovin et al., 1979).

If coordinates x?,..., x" on X are fixed, at least locally, 1-forms dx!,..., dx"
constitute the basis of 1-forms over C*(X). This means that every 1-form takes
the shape

€= Z éi dx'
i=1
Similarly any g-form takes the shape
w= Y ., dx" A A dx

The exterior differential d can be shown to have the conventional coordinate
presentation
do= Y do,. , Adx" A Adx

i1 < <ig

where

) .
df=.=216_3§dx" feC®(X).

Importantly, the de Rham complex of differential forms on a smooth manifold
gives us an example of the situation where Q is endowed with an associative
multiplication law, namely the exterior product of forms. The exterior product of a
p-form w, and a g-form w, is a (p + g)-form w, A w,. Formulae

dw, A w,)=dw; A 0, +(—1)"*Y0, A dw,,
i, A w,y)=(,0,) A 0, +(—1)"®Y0, Aiw,
mean that both d and i, are odd superderivations of the Z,-graded space Q.

The existence of an additional multiplicative structure on Q is not in any
sense necessary for building up a consistent theory. Such an important object
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as the complex of formal variational calculus, introduced in Chapter 4, lacks
any multiplicative structure.

Example 2.5 Standard U-complex with the adjoint action of . Let A be a Lie
algebra. Consider the space U as a left A-module with the adjoint action of :

am=[a,m], a,meU.

The complex (Q,d) constructed by the model of Example 2.2 we call the
standard A-complex with the adjoint action of 2. In this complex the space Q!
consists of all linear mappings &: U — A; the coboundary of a 1-form is the
2-form d&: A x A — A given by the expression

dc(ay,a;) = [a,,8(az)] — [a,,¢(a,)] — &([ay, a,]). (28)

The coboundary of a 2-form w: A x A - A is a 3-form
dw(a,,ay,a3) = [a,,w(a,,a;3)] — w([a;,a,], a3) + (cycl) (2.9)

where (cycl.) means terms obtained by cyclic permutation of the arguments.
The cohomologies of the resulting A-complex are conventionally known as
the cohomologies of a Lie algebra with coefficients in its adjoint representa-
tion.

We conclude this section with two remarks. The first is that Example 2.2 is
in some sense generic. Namely, any complex (€, d) over an arbitrary Lie
algebra U can be considered within the framework of a complex associated
with some representation of 2. In fact, if we introduce the action of ae? on the
element feQC by the formula

af =i, df (2.10)

then by (2.3) we have a,a, f — a,a, f = [a,,a,]f; this formula means that Q°
is a left A-module. Moreover, with any weQ? there may be associated a
g-linear skew-symmetric mapping from A x --- x A to QO°, given by the
formula w(a,,..., a;)) =i, i, ». One can verify that the abstract operators d
and i, transform into standard operators (2.6) and (2.7), defined in
Example 2.2. The conclusion is that we can use equations (2.6) and (2.7) for
arbitrary complexes over Lie algebras. In the following exposition we rely on
this fact without any special comments.

The second remark refers to the notion of the conjugate operator, as we
consider below not only the spaces A and Qf, but also some linear operators
acting between these spaces.

Let there be given an operator S: % — 2. We call the operator S*: Q! - Q!
conjugate to S if

(8a,8)=(a,5*%)

for arbitrary ae¥, £eQ!. Conjugate operators to those acting from Q* to 2,
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from A to Q', or on Q! are defined in a similar way. In general, neither
existence, nor uniqueness of the conjugate operator is asserted. If, however, the
complex (Q,d) is a complex with a nondegenerate pairing between U and Q?,
evidently there exists a unique conjugate operator, if one exists at all.

In what follows we say that an operator is symmetric if it coincides with its
conjugate, and skew-symmetric if its conjugate differs from it only by its sign.

2.3 Lie derivative; symmetries and invariants; reduction procedure

Consider a complex (€, d) over some Lie algebra . The operator L, =i d +
di, = [i,, d], will be called the Lie derivative along the vector field ae.

As i, and d are odd operators, L,, being their supercommutator, is even.
If Q is endowed with an additional associative algebra structure, i, and d
being superderivations, then L, is an even superderivation, i.e.

L (0w, A w,)=(Lw,) A w,+w; A(L®,)
In what follows we do not assume, however, that any multiplicative structure

on Q is given.
An important property of the Lie derivative is the following one:

[La Lyl =Ly, (2.11)

This fact can be easily deduced from (2.3).

Now we consider as basic objects: vector fields (elements of U), g-forms
(elements of Q¢ and also the analogues of tensor fields, namely, linear
operators that act in the spaces U, Q7 and between all these spaces. For
instance, an operator H:Q!— is the analogue of a tensor field of a
contravariant type having two upper indices, an operator I: A - Q' corre-
sponds to covariant tensor field with two inferior indices, etc.

The Lie derivative acts in the spaces Q°,Q!,.... We expand it now to all
basic objects in the following way. For a vector field be put

L,b=1[a,b], ae¥,
which, by the property (2.3), guarantees the chain rule
L& b)= (L& b) + (& Lb), EeQl.
Moreover, we have
q
Ly((by,..., b)) = (Lw)by,...,b)+ Y w(by,...,Lb,...,b,).
i=1

Now extend the Lie derivative to all linear operators T acting in U, Q4 or
between these spaces. The only possible way to preserve the chain rule is to put

(L,T)o = L(To)— TL,0, 2.12)
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where o may be a form or a vector field. Now the Lie derivative is applicable to
all basic objects. It can be proved that the main property (2.11) remains valid.

If there is given a basic object ¢ such that Lo = 0 we say that g is conserved,
or invariant, along the vector field ae (for 6€QP° the term conservation law is
also used). The vector field ae¥ is called in this case a symmetry of the basic
object o. It follows from (2.11) that all symmetries of any basic object constitute
asubalgebra in the Lie algebra U. This subalgebra will be called the symmetry
algebra of the basic object a.

We proceed to describe a very important procedure of reduction in the
category of complexes over Lie algebras.

Consider a linear subspace Z — . Let Y, be the centralizer of Z, i.e.

A, = {aeWU:[a,z] =0VzeZ}.

Given an arbitrary U-complex (Q, d), we construct an A z-complex (Q, d) in the
following way. Put

@ =QY{3 L, o, zeZ, w,e).

Originally d was defined on the spaces Q4. However, by definition we have
[L.,d] =0 and therefore d is well-defined on the quotient space Q4, giving rise
to an operator d: Q7 — Q4.

From the condition [L,,i,] = i, , it follows that i, is also well-defined on Q*
under the assumption ae . In this way we get a new complex (2, d) over U,
that we call the reduction of (Q, d) with respect to the linear subspace Z = .
The procedure just described will be relied upon heavily in our further
constructions relating to formal variational calculus (Chapter 4).

It must be kept in mind that the quotient space does not inherit, in general,
any structure of an associative algebra, if one is given on Q

2.4 Dirac structures

Consider a complex (,d) over a Lie algebra . Fix on the space A ® Q! the
canonical symmetric bilinear form { , ) defined by the formula

Chy@E LRy @E,) =(hy, &)+ (hy, &), hel, £eQl.

For an arbitrary linear subspace ¥ = A® Q' denote by £+ the complemen-
tary subspace

P =(hDEcUADQ:ChDE R, ®E, Y =0forall h, D¢ eL).

Definition A Dirac structure on (2,Q) is a linear subspace ¥ c AP Q!,
isotropic, i.e.

Ft=2, (2.13)
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and such that for arbitrary h; @ £;,h, @ &,,h; @ £;€%7 there holds
(Lh,éz,hs)'*'(Lhzéa,hﬂ+(Lh3f1,hz)=0- (2.14)

Examples of Dirac structures will be given later. Now our goal is to describe
a sort of Hamiltonian formalism that can be associated with a Dirac structure.

We call he2 a Hamiltonian vector field with a Hamiltonian feQP, if
hedfe”.

Denote by $(.¥) the space of all Hamiltonian vector fields and by =, the
projection of AP Q! onto A. Consider also two linear subspaces in U: the
intersection of ¥ with U, that is

A, = {heW:hD0e ¥}
and also the projection of &,

U =n L.

Theorem 2.1 Let ¥ c AP Q! be a Dirac structure. Then

(a) [hy, by 1@ (G, 485 — iy, A&y +d(hy, E5))EL (2.15)
forallh, ®¢&,,h, D¢,

(b) Uy, (&) and A, are subalgebras of the Lie algebra
U A, = H(L) < Uy;

(c) thereis a well-defined Poisson bracket on the space of all Hamiltonians
given by the formula

{fi,f2}e=(hy,df,), h®dfieZ, (2.16)

that endows this space with a Lie algebra structure;
(d) [hy,h,1®A{f}, 1} ,€Z for arbitrary h, ®df,,h, Ddf,eZL.

Proof Fix hy®@&,,h,® &, and take arbitrary h@ €. By the isotropy
condition (2.13) we have (&;,h)+ (£, h;)=0. Using this equality and the
definition of the Lie derivative we get
(n, d&; — iy, d&; +d(hy, &5), B) + ([hy, 521, 8)
= (i, d&5, h) — (i, dE1, B) + (d(hy, &), )
—d&(hy, hy) + (d(hy, &), hy) + (d(h, &,), hy)
=Ly, &2, h) + Ly, 8, hy) + Ly, ).

As the final expression vanishes by (2.14), we conclude that
[hy, b ] ® Gy, A, — iy, dE; + d(hy, &)L

Now (2.15) is the consequence of the fact that £+ = %. The fact expressed by
(2.15) in its turn, implies that the spaces U,, H(¥) and A, are closed under the
A-commutator. So the statements (a) and (b) of the theorem are proved.
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We must now prove (c). The right-hand side of (2.16) can be written as
—(h,,df}),so it depends not on the choice of h,, such that h, @ df, e &, but only
on f, and f,. Therefore the Poisson bracket is well-defined. To check the Jacobi
identity apply formula (2.14) to arbitrary h, ®df,,h, ®df,, h,Ddf;e Z.
We get

0 =(diy, df,, hy) +(cycl)y=(d{f1, f2} ¢, h3) + (cycl)
= —{{f1.[2}e: f3}e +(cycl)

Finally, (d) follows directly from (2.15), and the proof of the theorem is finished.
In order to have some illustrations, let us refer to the case of Example 2.4,
namely the de Rham complex (Q,d) of differential forms on some n-dimen-
sional manifold, X.
A vector field h evaluated at some point xe X belongs to the tangent space
T, X, while a 1-form £ evaluated at xe X belongs to the cotangent space T*X.
The canonical symmetric form is given in coordinates by the formula

n

<h1@é1,h2®§2> = Z (hilfz,i +h;fl,i)-

i=1
Given a Dirac structure ¥, we obtain a bundle of linear subspaces
(L, cTXDT*X, xeX}.

From the isotropy condition ¥+ = % it follows in particular that each & is
n-dimensional. The bundle can therefore be described as a field of operator

pairs (P, Q).
P={P(x):R">TX, xeX},
0 ={Q(x):R">T*X, xeX},
with Ker P(x) ~ Ker Q(x) = {0}. It is easy to show that isotropy condition (2.13)

means that {Q*(x)P(x),xe X} is a field of skew-symmetric operators in R".
The property (2.14) can also be stated in the form

(Lp,,(Qz,), Pz;3) + (cycl) =0, z,z,,2;€R",
or, in a coordinate form, '

0
3 Pi 52 (P + (eycl) =0,
a.p

where (cycl.) denotes terms obtained by cyclic permutations of indices. So we
have obtained a coordinate description of a Dirac structure, one of many that
are possible.

A rich class of finite-dimensional Dirac structures can be described, how-
ever, without referring to any coordinates. Consider an n-dimensional, n = 2k,
symplectic manifold (X,w). Suppose that the level-sets of m functions
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Prsees (meCw(X),
' X“___‘_.m={XGXI(DI(X):Cl,...,(om(X)=Cm},

are (2k-m)-dimensional submanifolds of X for all {c,}€R™. The space of vector
fields he¥, tangent to the foliation of level-sets, is distinguished by m condi-
tions de,(h)=---=dg¢,(h)=0. There arises an equivalence relation in
QL& ~ &, if € — &, vanishes on this space, i.e. &; — &, =>A;do, for some
2,€C®(X). Now consider the symplectic structure w as a one-to-one map I,
acting from the space of all vector fields 2 to the space of all 1-forms Q. If we
put

= (h®&dg,(W)= - =de, () =0,Th~ &} cASQ!

then it can be easily checked that % is a Dirac structure in the de Rham
complex on X. This Dirac structure, associated with the constraints, gives rise
to a special Hamiltonian formalism that we leave to be traced by the reader. It
is notable that in the framework of the constrained Hamiltonian formalism
only those feC*®(X) can be Hamiltonians, for which {f, ¢} = >{0:, ¢;}u;,
where p;eC®(X),j=1,...,m, are smooth functions on X and { , } is the
original Poisson bracket on C*(X).

The example of a Dirac structure considered above is generic in the following
sense. Consider an arbitrary Dirac structure in the de Rham complex of a
finite-dimensional smooth manifold X. We have proved (see Theorem 2.1) that
A, ==, % is a Lie subalgebra of the Lie algebra U of vector fields on X. The
Frobenius theorem (see, for instance, Kobayashi and Nomizu, 1963) states that
to any subalgebra of U there corresponds, at least locally, a foliation on X with
leaves tangent to it. Consider the foliation corresponding to U, . On each leaf of
this foliation we can introduce a 2-form by putting for h,, h,eA

w(hy, hy)=(hy, &) (2.17)

where ¢ is an arbitrary 1-form such that h, @ £€.#. The result obviously does
not depend on the choice of ¢€Q?, so w is well-defined. Moreover, from (2.14) it
follows that dw = 0. Therefore w is a presymplectic structure (i.e. it is a closed
but maybe degenerate 2-form) on each leaf.

The Lie algebra 2, associated with the Dirac structure % also gets a natural
interpretation. Recall that with any presymplectic 2-form @ on a manifold Y
there is associated its characteristic distribution

x(x)={heT Y:w(h,h;)=0forall h,eT,Y}.

From the condition dw =0 it is easy to deduce that all the vector fields that,
being evaluated at any xeY, belong to x constitute a Lie algebra. By the
Frobenius theorem, the corresponding foliation can be constructed, at least
locally. It is named the characteristic foliation of w.

In the situation under discussion, taking as Y an arbitrary leaf of the
foliation corresponding to A, we deduce that the characteristic foliation of the
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2-form (2.17) is nothing other than the foliation associated with U,. Neglect-
ing the possibility of degeneracies preventing application of the Frobenius
theorem, the final result can be formulated as follows.

Theorem 2.2 Let % be a Dirac structure in the complex of differential forms
on a finite-dimensional manifold. Then the Lie algebra U, generates by the
Frobenius theorem a foliation with leaves endowed with presymplectic struc-
tures. The characteristic foliation of the presymplectic structure on each leafis
produced by the Lie subalgebra A, = U, .

2.5 Symplectic operators

Dirac structures, being graphs of linear operators, deserve special investiga-
tion. This section considers graphs of operators acting from U to Q!.

Definition A linear operator I: A — Q! is called symplectic if its graph
{(h®Ih,heU} cUDQ!

is a Dirac structure.

As follows from the isotropy condition (2.13),
(Ihy,hy)+ (A, Thy)=0, h,heqU.
Therefore I is a skew-symmetric operator. Condition (2.14) can be rewritten as
(Lh,(lhz), h3) +(cycl)=0

where (cycl.) means terms with arguments cyclically permuted. Suppose there
exists a w;€Q?, such that

Ih= —i,w;, he¥,
or, equivalently,
wy(hy, hy)=(hy,Ih,), hy,heU.
Then
dw/(h,, h,, hy) =-h(Ih,,hy) —(Ih,,[hy, h3]) + (cycl)
= — hyw(hy, h3) + w([h3, hy ], hy) + (cycl) =0,

i.e. w; is a closed 2-form.

If the pairing between U and Q! is nondegenerate (see Section 2.2), two
conditions, namely the skew-symmetry of I and the condition dw = 0, guaran-
tee that the graph of I is a Dirac structure. In fact, the only thing to be proved is
that

(h@® Ih heU}* < {h®Ih, he).
Take h, @&, eUADQY, such that <h, DE,h@®Ih) =0 for arbitrary he.
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Then
(&, —1Ih;,h)y=(hy,Ih)+ (¢,,h)=0

and from the nondegeneracy of the pairing it follows that ¢, =Ih,,i.e. h; ® ¢,
belongs to the graph.

In accordance with the general definition of Section 2.4, a vector field he W is
Hamiltonian, if Ih = df; in this presentation f is the Hamiltonian of h. The
space of all Hamiltonians consists of feQ° such that dfelml. By
Theorem 2.1, both U, =Ker[ and the space $ of the Hamiltonian vector
fields are subalgebras of the Lie algebra . The Lie algebra U, evidently
coincides with U in this particular case.

The correspondence between the space of Hamiltonian vector fields and
that of Hamiltonians is expressed as

Ih=df.

It must be noted that in the case under consideration a Hamiltonian field
cannot in general be recovered from its Hamiltonian, unless Ker I = {0}.
Nevertheless, Theorem 2.1 guarantees all the necessary properties of the
Poisson bracket, which takes the form

{fvfz}l =(h1,dfz)»

where h, is any element satisfying Ih, = df,. The statement of the theorem can
be reformulated in the following way.

Theorem 2.3 Let I: A - Q! be a symplectic operator. Then both Ker I and
the space of Hamiltonian vector fields § are subalgebras of the Lie algebra 2.
The space of all Hamiltonians is a Lie algebra with respect to the Poisson
bracket { , };. The correspondence between Hamiltonian vector fields and
Hamiltonians enjoys the property

IThy, hy1=d{f\, [} (2.18)
for arbitrary h;, f;, such that Ih; =df;.
We now describe an important property of Hamiltonian vector fields.

Proposition 2.4 A symplectic operator I is conserved along any Hamiltonian
vector field he$. '
Proof Note that L,w; =0. In fact, dw, =0, so

Lo, =i,do; + di,0; =di,0, = —d(Ih)= —d*f =0,

where f is any Hamiltonian associated with h. By the definition of the Lie
derivative for arbitrary h, e ¥ we get

(Lyl)hy = L,(Ih,) = I[h,h,] = — Lyij,0; + iy, 01 = — i, Ly, =0,
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and by the definition given in Section 2.3 we conclude that I is conserved
along h.

Remark 2.5 If (€, d)is a complex with a nondegenerate pairing and a trivial
cohomology group H'(Q), then, conversely, any symmetry of a symplectic
operator I is a Hamiltonian vector field. In fact, under our assumptions from
L,I=0it follows that L,w, = di,w; = —d(Ih)= 0, and so Ih = df for feQ°.

To illustrate the notion of a symplectic operator, as above we refer to the case
of an n-dimensional manifold X and the de Rham complex of differential forms
on X. Consider a symplectic operator I, that acts from the space of vector fields
on X into the space of 1-forms. The corresponding 2-form w, is closed, but in
general degenerate, so it is a presymplectic structure. As was done in Section 2.4,
we can use U, = Ker I to restore the characteristic foliation, at least in the
domains of constant range of the characteristic distribution

x(x)={heT X:w,(h,h,)=0 for all h,eT X}.

Hamiltonians are those functions feC®(X) that satisfy the condition
df eIm I. By skew-symmetry of I, (df, h) = 0 for any he¥,. The conclusion is
that Hamiltonians can be described as functions constant on the leaves of the
characteristic foliation.

Proposition 2.6 Let . be a Dirac structure, U, be the Lie algebra described
in Theorem 2.1. Suppose I: A — Q! is a linear operator with its graph belong-
ing to &. Then I is a symplectic operator in the complex Q considered as a
complex over U, .

The proposition just formulated, which will be needed later, refers to the
general theory. The proof is obvious: a complex Q over some Lie algebra U is
also a complex over any subalgebra of 2.

2.6 Hamiltonian operators
Definition A linear operator H: Q' — U is called Hamiltonian if its graph
{H{@¢ el cuQ!

is a Dirac structure.
From the isotropy condition (2.13) it follows in particular that

(HE,&5) +(84, HE) =0, 51,52691. (2.19)
So H is a skew-symmetric operator. Condition (2.14) becomes
(Lye, €20 HE3) + (L, &3, HE ) + (L 81, HE,) =0. (2.20

Under the assumption of nondegeneracy of the pairing between U and Q!,
conditions (2.19) and (2.20) guarantee conversely that the graph of H is a Dirac



Algebraic theory of Dirac structures 23
structure. The statement to be demonstrated is
{H{®¢ (el <« (HEDE, LeQ').

In fact, if h, @ &, e AP Q! satisfies Ch, D&, HED &) =0 for any £eQ?, then
(hy — HE,,£)=0. Relying on the nondegeneracy of the pairing we get
hy=H¢& ie hy @& e{HEDE Q).

In the case under consideration the space of all Hamiltonians coincides with
the whole of Q°. Clearly, the Hamiltonian vector field he$ associated with
some feQ is given by

h=Hdf.

The Poisson bracket of two Hamiltonians is

{fu.falg=(HAf},df3). (2.21)

It is easy to see that the Lie algebra U, is trivial in this case, and the Lie
algebra U, coincides with Im H. The reformulation of Theorem 2.1 gives us
the following.

Theorem 2.7 Let H: Q' - A be a Hamiltonian operator. Then both Im H
and the space of Hamiltonian vector fields § are subalgebras of the Lie algebra
A. The Poisson bracket { , }, endows Q° with a Lie algebra structure. The
correspondence between Hamiltonian fields and Hamiltonians enjoys the

property
Hd{fufz}H=[de1’de2] (2.22)
for arbitrary f,, f,€Q°.

The following result is the analogue of the Proposition 2.4.

Proposition 28 A Hamiltonian operator is conserved along any Hamil-
tonian vector field he$.

Proof By formula (2.15) we have
[vaHfz] = H(iu.:, dfz - iucz dél + diu:,éz)

and therefore
(Lyg, H)S, =[HE,, HE, 1 — HLy, & = — Hig,, d¢,.
In particular, for &£, =df we get
(LyspH)E, =0
for arbitrary ¢,eQ!. This ends the proof.
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Remark 2.9 As we have just demonstrated, the space of Hamiltonian vector
fields lies in the symmetry algebra of H. If we suppose that Im H is rich enough,
then the difference between the two spaces is not very large. In fact, if L,LH=0
for some h = H¢, then Hiy,, d¢; = O for arbitrary £,eQ'. This means, in turn,
that d¢, vanishes on the Lie subalgebra Im H. As we shall see later when
considering a specific case of the theory, on many occasions this implies
dé, = 0. For complexes with trivial cohomology group H'(Q) this means that
¢, =df, ie. his a Hamiltonian vector field.

As in the previous sections, we refer to the finite-dimensional case to
illustrate our definitions. Let (€2,d) be the de Rham complex of a finite-
dimensional manifold X. According to the general scheme applied in the proof
of Theorem 2.2, we must consider the Lie algebra Im H and the corresponding
foliation on X. The presymplectic 2-form (2.17) has the shape

@(hy, hy) = (hy, H'hy) (223)

for hy,h,eIm H. It is well-defined due to the skew-symmetry of H, because the
value of w does not depend on the choice of H ™ 'h,. Clearly, w is nondegener-
ate and so we obtain a foliation of X with leaves endowed with symplectic
structures.

The Kirillov—-Kostant symplectic structure defined on the orbits of the
coadjoint representation of a Lie algebra (see Chapter 1) is a particular case of
this construction.

The notion of nondegeneracy of a 2-form when restricted to a subspace
N U can also be given in the abstract framework of U-complexes with
nondegenerate pairing between U and Q, in the following way. Fix an
equivalence relation in Q! by putting &, ~ &, if (¢, — &,,h) =0 for arbitrary
heN. Now, if a skew-symmetric bilinear form w(h,, h,) is defined for h,, h, €N,
we name it nondegenerate if there exists an isomorphism J of N with the space
of equivalence classes, Q},

J:N-Q},

such that (h,,Jh,) = w(h,, h,).
The following theorem gives us a characterization of Hamiltonian oper-
ators as nondegenerate closed 2-forms on Lie subalgebra of .

Theorem 2.10 Any Hamiltonian operator H:Q! - produces a non-
degenerate closed 2-form @ on Im H by the formula (2.23). Conversely, if a
nondegenerate closed 2-form w on some subalgebra A, « A is fixed, then
there exists a Hamiltonian operator H: Q' — U, such that %, =ImH.

Proof As H is skew-symmetric, we have (h;,Ker H)=0 for arbitrary
h,eIm H and therefore w is well-defined by (2.23). From the fact that H is a
Hamiltonian operator it follows that w is closed. To prove that w is non-
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degenerate, note that to any he, there corresponds JheQ},, ,, defined as the
equivalence class of H™'h. If this class is trivial for some he¥,, then
(H™'h,H¢) =0 for arbitrary £€Q!. That means in its turn that (b, &) =0 for
arbitrary £eQ!, and from the nondegeneracy of the pairing it follows that
h=0.

Conversely, if w is nondegenerate on some subalgebra of 2, for any Q! we
can find the equivalence class of ¢ and then apply J ~*. The result will give us a
H&éeU, . It is easy to deduce that H is a Hamiltonian operator. This concludes
the proof. '

2.7 Lie algebra structures in the space of 1-forms

As has been already demonstrated, to any Hamiltonian operator H: Q! -
there corresponds a mapping

@, {, }u)— @[, )

that is a morphism of the Lie algebras. We show in this section that there also
exists a special Lie algebra structure [ , ], on Q', such that both d and H in
the operator sequence

@, , 1) > @41, Tu)— ([, 1)

are morphisms of Lie algebras. Below we assume that the pairing between U
and Q' is nondegenerate. The preliminary proposition is the following.

Proposition 2.11 For an operator H: Q! — 2 to be a Hamiltonian one it is
necessary and sufficient that H is a skew-symmetric and for arbitrary
¢,,&,eQ! the formula

[HEy, HE,] = Hlig, A8, — iy, 48, +d(HEy,EL)) (2.24)

is valid.

Proof Condition (2.20) can be transformed in the following way:

0= _(Lugléz’ H¢,) +(cycl) =(HLH¢1€2»€3) _(Lugzés» H§1) —(L353§1’H§2)
=(HLy; 82, 83) — (Lyg, 83, HEy) + (i, A€y, HE3) — (g, &4, HE)
=(HLy, &, — Hiy,,dZy,63) — (HE,)(E5, HE ) + (83, [HE,, HE, D)
- (Héz)(prés)
= (HLHg162 - Hiyg, df1 - [prHézl 63)

As £,eQ! is arbitrary and the pairing between U and Q! is nondegenerate, we
get (2.24). The converse is obvious.
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Theorem 2.12 Let H: Q' — U be a Hamiltonian operator. Then

(a) there is a Lie algebra structure on Q' defined by

[&1 €0 = ing, 42 — g, 48, + d(HE,, &) (225)
(b) operators d and H are Lie algebra morphisms, i.e.
d{fnfz}H =[df,df>1m (2.26)
and also
H[&, & lu=[HE,, HE, Y (2.27)
(c) Ker H is an ideal in the Lie algebra (Q',[ , 1),
ImH ~Q!/Ker H.

Proof The right-hand side of (2.25) is skew-symmetric with respect to &,,¢&,
due to the skew-symmetry of H. Now prove the Jacobi identity. By (2.24) we
have

[[517 éz]mfs]u = [Lugléz - iygz dép€3]u
= iH(Lngfz—ngzdél) dés— Lugs(Luglfz - iugz d¢,)
= Uiy, e 983 — LgyLag &2 + Ly, Lug, 61 — AL ing, 81
Now, relying on (2.3) and the property (2.11) of the Lie derivative, we get

[L¢1,¢2]u &3 ]n + (cycl) = iHe, HE) dé; + Lige, nen€i — ALy iye, &1 + (cycl)
= i[”él-”fz]d€3 + i[HC:s Héz]dél + di[”(s-”leél
= — dijye, me;61 — digg, Lye &y +(cycl)
= —d(ige, Ly, ¢, + (cycl)).

The result of the calculation is equal to zero due to the fact that H is a
Hamiltonian operator. Thus the Jacobi identity is proved.

Formula (2.27) follows directly from (2.24), and formula (2.26) is a conse-
quence of (2.21). This is the end of the proof.

Note that we have also obtained some explanation of the fact that the image
of H is closed under the initial bracket in . It is a consequence of the fact that
H is a morphism of Lie algebras.

We conclude this section by presenting coordinate expression of the bracket
[, ]y in the framework of the de Rham complex on a finite-dimensional
manifold X.

Being an operator from the space of 1-forms to the space of vector fields on
X, the Hamiltonian operator is a tensor field with two upper indices H(x).
Skew-symmetry (2.19) means that

HY= — H* (2.28)
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and formula (2.20) has the coordinate presentation

oHY . OH* . OHM
Z( s H*+ 5 H+ = H" | =0. (2.29)

For arbitrary 1-forms & = {&,},n = {n,} we have

0 0
(g A1 — iy € + d(HE, n)>k=2<a”t "")( o

Z(aék aé )(H )a+ (ZHaﬂéﬂqa

Therefore the coordinate form of the bracket [ , ] is

0 0 oH*
[f:,n]k=z(H“”c AT LTI e éﬂna) (230)

The invariant form (2.25) of this bracket is, however, much more convenient: it
does not seem possible, for instance, to check the Jacobi identity using (2.30).

2.8 The Schouten bracket

In this section we focus on the object given by the left-hand side of (2.20).
Consider two skew-symmetric operators H, K: Q! — 9.

Definition The Schouten bracket of H and K is the trilinear mapping [H, K]:
Q! x Q! x Q! - QO defined by the formula

[H,K](¢,,¢5,¢3) = (HLxg, $2,83)+ (KLugléza ;) + (cycl) (2.31)

This formula shows that the Schouten bracket associates with the two basic
objects H and K, both being by their nature analogues of tensor fields with two
upper indices, another basic object that is the analogue of a tensor field with
three upper indices.

Thus, Hamiltonian operators H are now characterized by the condition
[H,H]=0.

If we refer to the situation of Example 2.4, where (Q,d) is the de Rham
complex of differential forms on an n-dimensional manifold, the coordinate
form of (2.31) is

n 3] ij
[H K]%*= - <6H K* +-— oK H“") + (cycl.) (2.32)
acy \ Ox* 0x*
where (cycl.) denotes terms obtained by cyclic permutations of indices i, j, k.

Now some comments on the definition of the Schouten bracket will be given
for general complexes (€,d) over Lie algebras, and in particular, for the
standard complex with trivial action (Example 2.1). Recall that we consider
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the Lie algebra U as the space of vector fields. Also ‘polyvector fields’ can be
introduced as elements of A = (—B;" A*QL The Z,-grading in this space we fix
as follows: x; A --- A x; is even if k is odd, and vice versa.

Proposition 2.13 A Lie superalgebra structure on U arises if for homogene-
ous elements X =x; A --- A x, and Y =y, A --- A y; we introduce the super-
commutator by

X, Y =Y (=1 " P[x vl AXy A cs ARGA - AX AV A APg A= A Y
a,p

and expand this operation to 9 by linearity.
The proof consists in checking the properties of the supercommutator (see
Section 2.1).

Also the following formula is valid:
[XAx,Y],=(—1Y[X, Y, Ax+XA[x, Y], xe (2.33)

This follows directly from the definition.

Now for X =x, A - A X, e introduce i iy:Q—>Q by putting iy =i, i,
and expand this operatlon to arbltrary X e (for weQ?, g <k put zxa) 0)
Note that iy is a linear operator in Q that is even if X is odd, and vice versa. The
generalized Lie derivative along X € can be defined by the formula

Ly =[iy,d],. (2.34)
By the rules described in Section 2.1, Ly and X have the same grading.

Proposition 2.14 For arbitrary X, Ye% there holds

ixn, = — [Lysix]s- (2.35)

The proof of this statement consists in checking (2.35) for homogeneous
elements X =x; A --- Ax; and Y=y, A --- A y;. This can be done by induc-
tion with respect to k and j, using formula (2.3), as its base.

Note that (2.35) is the correct generalization to polyvector fields of the
formula (2.3), that is

i1 = — [Lyix]

We now proceed to the Schouten bracket. In the finite-dimensional frame-
work of the theory elements of 2 A U and linear operators H: Q! — U are of
the same nature, both being tensor fields with two upper indices. Their
correspondence is established by the formula

Hy& =8 x1)x; — (& x5)x,
for X = x; A x,, that is linearly expanded to U A U.
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In the framework of the general theory there is no natural correspondence of
this type. However, if we consider the standard U-complex with the trivial
action of U, we find that the Schouten bracket can be expressed in terms of the
supercommutator introduced in .

Proposition 2.15 For arbitrary X, Yedl and any ¢,,¢&,,¢,€Q! there holds

[Hy, Hy](1,¢2,83) = —([X, Y1, & A 8o A &),
where the pairing between A3 and A3Q! is determined by the formula

(%1 A Xy AX3,8 A&, A &) =det | (x;, &)l

The proof is obtained by a direct calculation on homogeneous elements.

The characterization of the Schouten bracket thus obtained must be kept in
mind throughout the next section, where A and (Q,d) will be a certain
infinite-dimensional Lie algebra and the standard U-complex with trivial
action, respectively.

2.9 The classical Yang—Baxter equation and its Belavin—Drinfeld
solutions

The classical Yang—Baxter equation will be presented first in the form
conventionally used in literature (see Belavin and Drinfeld, 1982). Let ® be
some finite-dimensional Lie algebra, U an associative algebra with a unity
element e, that contains ® in such a way that [a,b] =ab — ba,a,be® (the
existence of U for any ® can be easily proved).

Denote by ¢":6 @6 -U®U ® U, 1 <i,j< 3 the mappings that act on
the element a ® be ® @ ® by putting a on the ith place, b on the jth place and e
on the place left unoccupied (for instance, ¢**(@a®b) =a®e®b). Let r be a
function of two complex variables with its values in ® ® &. Put r¥/ = ¢Yer.

The equation on r of the form

["12(“1’ u,), "13(“1’ u3)]+ ["12(“1a“2)a "23(“2’“3)]

+ '3 (uy, u3),r*3(uy,u3) ] =0 (2.36)
is called the classical Yang—Baxter equation. Mostly the additional condition
r3(uy, uy) = —r? (uy, uy) (2.37)

is imposed.
In this section we give an interpretation of (2.36) and (2.37) as conditions
defining a Hamiltonian operator in a special complex over some Lie algebra.
Let A be the infinite-dimensional Lie algebra of continuous functions on C
with values in an n-dimensional Lie algebra % and pointwise commutator

[9:,9,1(w) =[9,(w),g,(w)], ueC.
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Consider the standard -complex (2,d) with trivial action of A (see
Example 2.1), in which Q! = A*. We consider linear operators H: U* —A
described by kernels r(u,, u,)e® ® ®. In coordinates

(HE) (uy) = jz ri(u,, )¢ (uy) du,. (2.38)
J

Warning: the upper tensor indices of r in (2.38) must not be confused with
the notations r'2, '3, r?3 in (2.36) that are conventionally used in the theory of
the Yang—Baxter equation.

It can be easily seen that H is skew-symmetric if and only if (2.37) holds. Now
write the expression of the Schouten bracket (2.31) of the operator H with

itself:
3[H,H](,,¢5,83) = (HL g, &5, ¢5) +(cycl)
= —(HE)(&2, HE3) + (85, [HE,, HE3]) + (cycl.).

Taking into account the fact that the action of & on Q° is trivial, we see that the
fact of H being a Hamiltonian operator is expressed by the formula

(81,[HE;, HE3]) + (cyel) =0. (2.39)

Ifabasise,,..., e, is fixed in ®, then we can rewrite (2.39) in terms of r(u,, u,) =
{r(u,,u,)} as

Z (rja(u27 ul)'*ﬁ(u3a ul)[eaa eﬂ]i + rka(u:” uz)riﬂ(uly u2)[e¢’ eﬂ]j
ap
+ 1%y, u3)r (uy, us) e, 6514) = 0 (2.40)

for arbitrary indices i, j,k =1,...,n.
It is not difficult to deduce that (2.40) is another form of (2.36). Therefore the
following result has been obtained.

Theorem 2.16 The classical Yang—Baxter equation (2.36) with the additional
condition (2.37) is equivalent to the fact that the kernel r(u,,u,) produces by
(2.38) a Hamiltonian operator H: Q! — 9 in the standard A-complex with
trivial action of U.

The approach to the classical Yang—Baxter equation just presented is
somehow more natural than the conventional one described at the beginning
of this section because no embedding of ® into U is needed.

From considerations presented in Section 2.6 a method of constructing a
class of solutions of the classical Yang—Baxter equation can be deduced. We
make use of the characterization of the Hamiltonian operators given in
Section 2.6, as nondegenerate closed 2-forms on subalgebras of U.



Algebraic theory of Dirac structures 31

We recall that a Lie algebra of Frobenius type is a Lie algebra D such that
there exists an element £,eD* such that the 2-form w given by the formula

w(x’y)=(€0’[x’);])’ X,yEb (241)

is nondegenerate. Let 9 denote the Lie algebra of continuous functions on C
with values in ®, as above.

Theorem 2.17 Ifa Lie algebra D of Frobenius type can be embedded into ¥,
then there exists a solution of the classical Yang—Baxter equation associated
with &,.

Proof As the complex under consideration is the standard U-complex with
the trivial action of U, then (2.41) means that w = — d¢,. The explicit formula
of the solution of (2.39) can be obtained with the help of (2.23) in the form

(&o,[hy,hy])=(hy, H  'hy), hy,h,eDc U
In other words,

H™'h= —ad¥¢,

for arbitrary he®, where ad} is the conjugate to the operator of the adjoint
action ad, g =[h,g].

Therefore, to obtain a solution H:U*—»A we must take the operator
H,:D* - 7D that is the inverse of the isomorphism h— — ad}¢, and consider
its composition with the natural embeddings i: D — A and i*: A* - D*. The
result H = iH ,i* proves to be a solution of the equation (2.39).

As Belavin and Drinfeld were the first to associate solutions of the classical
Yang-Baxter equations with Lie algebras of Frobenius type, we call those
described by Theorem 2.17 the Belavin—Drinfeld solutions of the classical
Yang-Baxter equation (see Belavin and Drinfeld, 1982).

2.10 Notes

We have started by introducing two basic notions of the theory: the notion of a
complex over a Lie algebra and that of a Dirac structure. This way seems to be
most appropriate in our exposition, though it does not follow the actual path
of the development of the theory.

The starting point, as mentioned in Chapter 1, was the discovery of complete
integrability of the KdV equation (Zakharov and Faddeev, 1971; Gardner,
1971). Then came investigations on the equations for squared eigenfunctions
and the resolvent of the Schrédinger operator (Ablowitz et al., 1974; Lax,
1975a, b; Gelfand and Dikii, 1975). There appeared also the idea of a so-called
recursion operator producing symmetries (Lax, 1976; Olver, 1977; Kulish and
Reyman, 1978). This train of thought led to the notion of a Hamiltonian
operator, first in its version based on computation with Fréchet derivatives
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(Magri, 1978; Gelfand and Dorfman, 1979), and then in its abstract version,
when the concept of a complex over a Lie algebra was introduced and rigorous
Hamiltonian formalism developed (Gelfand and Dorfman, 1980).

The notion of a Dirac structure was introduced by Dorfman (1987) in order
to embrace Hamiltonian and symplectic operators in a unified approach.

The axioms (Section 2.2) and the notions of the Lie derivative, symmetry
and invariant (Section 2.3) are introduced in such a way that the abstract
scheme embraces classical differential geometry and also leaves place for
further important generalizations.

Symplectic and Hamiltonian operators, introduced in Sections 2.5 and 2.6,
are abstract counterparts of presymplectic and Poisson structures, as already
mentioned in Chapter 1.

The Lie algebra structure in the space of 1-forms that is presented in
Section 2.7 was found by Dorfman (1984) and independently by Daletsky
(1984). The finite-dimensional version of it seems to be known but has not been
much exploited.

The Schouten bracket was introduced in its infinite-dimensional version by
Gelfand and Dorfman (1979, 1980) as a generalization of the corresponding
differential-geometric object originated by Schouten (1951); see also Kirillov
(1977).

The theory of the classical Yang—Baxter equation presented in Section 2.8
follows (Gelfand and Dorfman, 1982a). More information on the r-matrix
and its role in integrability theory can be obtained from various papers (Kulish
and Sklyanin, 1980; Krichever, 1981; Drinfeld, 1983; Semenov-Tjan-Shansky,
1983; Gelfand and Cherednik, 1983). An exposition of Hamiltonian formalism
based on the r-matrix approach is contained in Takhtajan and Faddeev (1986).



3 Nijenhuis operators and pairs
of Dirac structures

In this chapter we consider objects closely related to integrability: Nijenhuis
operators and Nijenhuis relations. Our goal is to explain the essence of the
so-called Lenard scheme of integrability.

3.1 Nijenhuis operators and deformations of Lie algebras

Let A be a Lie algebra with bracket denoted by [ , J. Let : A x A—->Abea
bilinear operation in U. Consider a A-parametrized family of bilinear oper-
ations

[a,b], = [a,b] + Aw(a, b). G.1)

If all the brackets [ , ], endow U with Lie algebra structures we say that w
generates a deformation of the Lie algebra . Evidently, this requirement is
equivalent to the skew-symmetry of w and the conditions

[w(a,,a,),a3] + w([ay,a,], a3) + (cycl) =0, (3.2)
w(w(a,,a,),a;)+ (cycl.) =0.

Thus, w must itself be a Lie algebra structure, satisfying condition (3.2).
Recalling the definition of the coboundary operator in the standard -
complex with the adjoint action of Example 2.5, we can present (3.2) in an
abbreviated form,

do=0. (3.2)

A deformation is said to be trivial if there exists a linear operator A: U — A
such that for T, =id + AA4 there holds

T.[a,b],=L[T;a, T,b]. 3.3)
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As we have
T,[a,b]; = [a,b] + A(A[a,b] + w(a, b)) + A2Aw(a, b)
and
[T,a, T;b] =[a,b] + A([Aa,b] + [a, Ab]) + A*[Aa, Ab]
the triviality of deformation is equivalent to the conditions
w(a,b) =[Aa,b] + [a, Ab] — A[a,b], 34)
Aw(a,b) =[Aa, Ab]. (3.5)

Similarly to the above, (3.4) can be represented in terms of the coboundary
operator in the standard U-complex with the adjoint action of 2 (Example 2.5) as

w =dA. (3.4)

It follows from (3.4) and (3.5) that 4 must satisfy the following condition:
[Aa, Ab] — A[Aa,b] — A[a, Ab] + A*[a,b] =0. (3.6)
As this condition plays a role of great importance in the exposition below, we

introduce a special definition.

Definition A linear operator A acting in a Lie algebra % is called a Nijenhuis
operator if (3.6) holds.

We have deduced that any trivial deformation produces a Nijenhuis
operator. Notably, the converse is also valid, as the following theorem shows.

Theorem 3.1 Let A: U — A be a Nijenhuis operator. Then a deformation of ¥
can be obtained by putting

w(a,b)=[Aa,b] + [a, Ab] — A[a,b].
This deformation is a trivial one.

Proof Obviously w is skew-symmetric. As w =dA4, dw=0 and therefore
condition (3.2) is valid. We have to check the Jacobi identity for w. Put

J(a,,a,,a;)=w(w(a,,a,),a;)+ (cycl).

Substituting the explicit expression of w into this formula and using the
Nijenhuis property (3.6), we obtain

J(abaZ’aS) = [[Aab Aa2]7a3] + [[Aa17a2]7 Aa3] + [[aI’Aa2]7 Aa3]
—A[[Aa,y,a,],a3] — Alla,, 4a,],a3]1 — [Ala,,a,], Aa,]
+ A[A[a,,a,],a3] + (cycl.).
Due to the validity of the Jacobi identity in 2, the first three terms can be
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omitted, so

J(ay,a,,a5) = — A[[Aa,,a,]),a5] — A[[a,, 4a,],a;]1 — [A[a,,a,], Aa;]
+ A[A[a,,a,],a5] + (cycl).

Again using the Nijenhuis property of 4, we obtain

J(ay,a;,a5) = — A[[Aa,,a,],a;] — A[[a,, Aa,],a5] + A*[[ay,a,],a,]
- A[[al’ a2]9 AaS] + (CyCI)

The third term can be omitted due to the Jacobi identity in %, and what is left
can easily be shown to vanish because of the same Jacobi identity.

Evidently, (3.4) is satisfied and therefore w generates a trivial deformation of
A. This ends the proof.

Remark Sometimes the notion of an infinitesimal deformation of a Lie
algebra U is used, that is the family (3.1) for which the Jacobi identity is valid
neglecting terms with A2,

In this case it is not required that w itself be a Lie algebra structure. The
consequence of Theorem 3.1 is that any trivial infinitesimal deformation (i.e.
satisfying (3.2), (3.4) and (3.5)) is automatically a trivial deformation. In fact,
from (3.3) it follows that A is a Nijenhuis operator, but Theorem 3.1 states that
any Nijenhuis operator generates w satisfying the Jacobi identity.

In terms of the standard U-complex with the adjoint action of A we can
describe the above-mentioned structures in a convenient way as follows:
2-cocycles correspond to infinitesimal deformations of U, those 2-cocycles
that are themselves Lie brackets correspond to deformations; and cobounda-
ries of Nijenhuis operators correspond to trivial deformations.

We conclude this section by presenting an explicit coordinate expression of
the Nijenhuis property (3.6) for the case of U being the Lie algebra of vector
fields on a finite-dimensional manifold X. If coordinates x,,..., x, on X are
fixed, then the Lie bracket of two vector fields a = {a'}, b = {b'} has the form

[ab) =% (@ L b“)

-\ 0x* ox*

(see Example 2.4). For those linear operators A: % — A that correspond to
(1,1)-tensor fields {4} on X we obtain condition (3.6) from this formula, as

0 0
¢ — A+ 45— 4% | — (i) =0. 3.7
;(Al ox* J + % 5x) 1) (lHJ) ( )
Here (i —j) denotes the expression with indices i, j interchanged.
The left-hand side of (3.7) is a 3-tensor N'¥(4) on the manifold X. This tensor
is conventionally called in differential geometry the Nijenhuis torsion of the
tensor field 4% (see Kobayashi and Nomizu, 1963).
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3.2 Properties of Nijenhuis operators; symmetry generation

This section contains an exposition of some special properties of Nijenhuis
operators that are of importance in intergrability theory.

Proposition3.2 Let A: U — A be a Nijenhuis operator acting in a Lie algebra
. For arbitrary elements a,be and arbitrary positive j, keZ there holds

[A‘a, A*b] — A*[A’a,b] — A'[a, A*b] + A’ **[a,b] = 0. (3.8)

If 4 is invertible, this formula is valid for arbitrary j, keZ.

Proof Fixj=1 and prove (3.8) for arbitrary k > 0. For k =1 the formula is
evidently valid. With the help of (3.6) we get

[Aa, A**1b] — A**1[Aa,b] — A[a, A**1b] + A**?[a,b]
= A[Aa, A*b] — A*[a, A*b] — A**[Aa,b] + A***[a,b]
= A([Aa, A*b] — A*[Aa,b] — A[a, A*b] + A**'[a,b]).

By induction it follows that
[Aa, A*b] — A*[Aa,b] — A[a, A*b] + A**'[a,b] = 0. (3.9

Now applying this formula to the element A’a instead of the element a and
again relying on the Nijenhuis property (3.6), we obtain

[A7*1a, A*b] — A [A7*a,b] — A7+ [a, A*b] + AT+**[a,b]
= A[A’a, A*b] — A**[Ala,b] — A7*[a, A*b] + A7 ¥+ [a,b]
= A([A’a, A*b] — A*[A'a,b] — A'[a, A*b] + A**[a,b]).

The conclusion is that the induction can be made with respect to j, starting
from the formula (3.9) already proved. Thus we have proved the validity of (3.9)
for arbitrary j, k > 0.

Suppose 4 is invertible. Apply 4 ~* to formula (3.8), substituting b, = 4*b.
We get

A~*[A4a,b,]1—[A4%, A™*b,]1— A" *[a,b,] + A[a,A”*b,]=0.

As b, can be taken arbitrarily, (3.8) also holds for k <0, j > 0. Similarly, (3.8)
holds for k > 0, j < 0. To prove (3.8) for both &, j negative, apply 4~/ "* to (3.8)
putting a, = A’a, b, = A*b. This ends the proof.

Proposition 3.3 Let A: A — A be a Nijenhuis operator. Then for any poly-
nomial P(z) =Y Nc;z' the operator P(A) is also a Nijenhuis one. If A4 is
invertible, Q(z) = 3N ,,c;z', then Q(A) is also a Nijenhuis operator.
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Proof For arbitrary a, be we have
[P(A)a, P(4)b] — P(4)[P(A)a, b] — P(A)[a, P(A)b] + (P(4))*[a, b]
= i cje([A’a, A¥b] — A*[Aa, b] — A'[a, A*b] + A7 *[a,b]),
k,j=0

But the right-hand side of this equality vanishes due to (3.8). The secol
statement is valid for similar reasons.

Now we note that the equality (3.8) gets a natural interpretation in terms
the Lie derivative introduced in Section 2.3. Namely, if we look at the left-hai
side of (3.8) as the result of the action of some operator on the element be'
then we get for a Nijenhuis operator 4

L ,,,(A%) = A'L (4% (3.1

for arbitrary ae?. The next statement is the consequence of this formula; as*
demonstrate below, it turns out to be the basis for the construction
evolution equations with infinite sets of commuting symmetries.

Theorem 3.4 Let ae U be the symmetry of a Nijenhuis operator 4. Then
the elements of A/ae are symmetries of 4 (and also of 4*) for all j,k > 0.1
is invertible, the same is true for all j, keZ. These symmetries commute.

Proof As ais a symmetry, we have L,4 =0 and by chain rule L,4*=0.
(3.10), all the elements A’a are symmetries of A*.
In particular, this means that

[A4’a,a] = [a, A*a] =0
and from (3.8) we get by puttinga=>
[A4’a, A*a] =0,

so the symmetries commute.

3.3 Conjugate to a Nijenhuis operator; Nijenhuis torsion

We did not assume above that any additional structures except the Lie alge
A were given. Now let us assume that there is given a complex (€, d) over
Lie algebra U (see Section 2.2). Suppose that 4: A — Wis a linear operator v
conjugate A*: Q! - Q!.

Proposition 3.5 For arbitrary 4: A - 2, and any elements a,be, £eQ?
following is valid:

d¢(Aa, Ab) — d(4*¢)(Aa, b) — d(A*&)(a, Ab) + d(A*?*¢)(a, b)-
= — (¢ [Aa, Ab] — A[Aa,b] — A[a, Ab] + A?%[a, b]). (€]
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Proof As has been mentioned above (see comments following Example 2.5),
in order to calculate d¢,d(4*¢) and d(4*%¢) conventional formulae can be
applied, so
d¢(Aa, Ab) = (Aa)(&, Ab) — (Ab)(¢, Aa) — (¢, [Aa, Ab]),
d(4*{)(Aa, b) = (Aa)(A*E, b) — b(4*¢, Aa) — (4*E, [Aa, b]),
and so on. Substituting the expressions obtained into the left-hand side of

(3.11) and using the definition of A*, we get the right-hand side of (3.11). This
ends the proof.

Suppose that 4 is a Nijenhuis operator. In this case the right-hand side of
(3.11) vanishes and we get

d(A*28)(a, b) = d(A*E)(Aa, b) + d(4*E)(a, Ab) — d&(Aa, Ab).

It can easily be deduced by induction that if for arbitrary £,eQ! we construct
the sequence of 1-forms £,eQ!, &, = A**&,, then

dé,, ,(a,b)=d¢&,, (Aa,b)+ dE,, (a, Ab) — dE(Aa, 4b).  (3.12)

If A is invertible, the formula obtained is valid for arbitrary keZ.

The following theorem is a direct consequence of the formula (3.12). As we
demonstrate below, this theorem explains how the infinite series of conserva-
tion laws of an evolution equation arises.

Theorem 3.6 Let A: A — A be a Nijenhuis operator, £,eQ! be a 1-form such
that dé, = d(4*¢,)=0. Then all &, = A*¢, satisfy the condition d¢, =0,
k = 2. If A is invertible, the same is valid for arbitrary keZ.

Now we present another application of formula (3.11) that gives both more
understanding of the notion of the Nijenhuis torsion on finite-dimensional
manifolds and the possibility of generalizing this notion to arbitrary U-
complexes.

For any linear A: U — A introduce 4*:Q—Q as a generalization of the
conjugate operator A*: Q' - Q! by the formula

(A*w)(a,,...,a,) = w(4a,y,a,,...,a,)
+w(a;, Aa,,...,a,) + -+ + w(a,, a,,..., Aa,).
Put
d,=[4*d]= A*d —dA4*
and introduce an operator N ,:Q — Q acting according to the formula
N,= %(dAz —[4*,d,])

where [4*,d,] = A*d, —d A* is the supercommutator of A* and d ,.
According to the standard grading of Q (see Section 2.1), with 4A* and d
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being operators of grading O and 1 respectively, N , turns out to be an operator
of grading 1. If Q carries the additional structure of an associative algebra, as in
the case of the de Rham complex on a manifold, then A* and d are superderiva-
tions. It follows that N, is also a superderivation of Q in this case.

Proposition 3.7 For arbitrary ¢eQ' the 2-form N ¢ is described by the
formula

(N 4&)(a,b)=(¢,[Aa, Ab] — A[Aa,b] — A[a, Ab] + A*[a,b]).

Proof Writing down N ,&(a, b) explicitly we get
(N 4&)(a,b) = — d(4*)*¢(a, b) — d&(Aa, Ab) + d(A*E)(Aa, b) + d(4*E)(a, Ab).

Taken with the opposite sign, the expression obtained is nothing other than
the left-hand side of (3.11). The right-hand side gives us the expression desired.

Being a superderivation, N, is completely determined by its values on
1-forms. The coordinate presentation of this tensor object is evidently given by
formula (3.7). Therefore for arbitrary complexes over Lie algebras the formula
for N, can be taken as the definition of the Nijenhuis torsion.

3.4 Hierarchies of 2-forms generated by a Nijenhuis operator;
regular structures

We have shown in the previous section that a Nijenhuis operator gives rise toa
hierarchy of symmetries, and also to a hierarchy of 1-forms that belong to the
kernal of the operator d. In this section we construct a hierarchy of 2-forms
with the same property.

Let A:A—>A be an arbitrary linear operator. Let there be given an
A-complex (Q,d) and suppose that there is a 2-form w,eQ? such that

wy(A4a, b) = wy(a, Ab). (3.13)
Let w,eQ? be a sequence of 2-forms such that

wy(a,b) = wy(a, A*b)
for k > 0. If A is invertible, consider w, for all keZ. First we shall prove some
necessary formulae.
Proposition 3.8 For w,eQ? k= 1,2,... the following equality is valid:

dw, ,,(ay,a,,a;) =dw,(Aa,,a,,a;) + dw,(a, Aa,,a;) — do, _(Aa,, Aa,,a;)
- wO([Aab Aa2] - A[Aal ’ az]
— Ala,, Aa,] + A*[a,,a,], A* ta,). (3.14)
If A is invertible, this formula holds for all KeZ.
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Proof Ashasbeen mentioned above (see Section 2.2), conventional formulae
for d: Q* —» Q3 can be applied, i.e.
dwy(4a,,a,,a3) = (Aa,)wo(az, 4 a3) + a,04(a5, A** 1 a,) + azwo(Aay, A*a,)
— wo([4a,,a,]), A*a;) — wy([a,,a,], 4** 1ay)
— wo([as, 4a, ], A*a,)

and dw,(a, Aa,, a;) is calculated similarly. Also
dw,_,(A4a,, Aa,,a;) = (Aa,)wy(a,, A~ *a;) + (Aa,)wy(as, A a,)
+ aswo(Aay, A¥a;y) — wo([Aay, Aa,], A aj)
- wO([AaZ, a3]’ Akal) - ([03, Aal]a Akaz)-

Substituting the expressions obtained into the right-hand side of (3.14) and
taking into account (3.13), we get the equality desired.

The main result of this section is given by the following statement which is a
direct consequence of formula (3.14).

Theorem 3.9 Let 4: U - A be a Nijenhuis operator, and let w,eQ? satisfy
(3.13). Consider the sequence of 2-forms w, (see above) and suppose that
dwy = dw, = 0. Then all w, satisfy dw, =0, k > 1. If 4 is invertible, the same is
valid for all keZ.

Definition The structure that consists of two objects, of which the first is a
2-form w,eN?, dw, =0, and the second is a Nijenhuis operator 4: A -,
such that

wo(Aa, b) = wy(a, Ad)
and
dw, =0
where
,(a, b) = wy(a, Ab),

will be called a regular structure in an U-complex (€2, 4).

Theorem 3.9 states that with any regular structure (w,, A) there can be
associated a sequence of regular structures (w,, 4), if w, with the property
w,(a, b) = we(a, A*b) exist in Q2. The following theorem is useful in checking
that a pair (w,, A) is a regular structure for nondegenerate w,,.

Theorem 3.10 Suppose A:UA—UA is a linear operator and w,eQ? is non-
degenerate, i.e. the kernel of the embedding of % into Q' given by h —i,w, is
trivial. If dwy = 0 and wy(A4a, b) = w,(a, Ab), then the following conditions are
equivalent:
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(a) (wg,A)is a regular structure;
(b) dw, =dw, =0, where w, are defined as above.

Proof That from condition (a) there follows (b) is stated by the previous
theorem. Now suppose (b) is valid. By (3.14) we have

0= —dw,(a,,a,,a;) + dw,(4a,,a,,a;) + dw,(a,, Aa,, a;)
—dwy(A4a,, Aa,,a,)
= wo([4a,, Aa,] — A[Aa,,a,] — A[a,, Aa,] + A*[a,,a,],a5)
for arbitrary a,,a,, a,. As w, is nondegenerate,
[Aa,,Aa,] — A[Aay,a,]— Ala,, Aa,] + A*[a,,a,1=0,
i.e. the operator 4: W — A is a Nijenhuis one.

This theorem immediately gives us the possibility of constructing a wide
range of examples in finite-dimensional theory, as follows.

Example 3.1 Regular structures associated with completely integrable sys-
tems. Let X be an n-dimensional (n=2k) symplectic manifold, i.e. a non-
degenerate 2-form w,, dw, =0 is fixed on X. A dynamical system

dx
rrin h(x), xeX

is called completely integrable, if it possesses k independent conservation laws
f1>...,f, being in involution with respect to the Poisson bracket:

{fufi}=0.

The Liouville theorem (see Arnold, 1974) states in particular that another set
of variables 6,,..., 6, can be chosen in such a way that

{.fi’oj}=6,'j, i,j=1,...,k.

In the coordinates (f,...., f;,0;,.-..,0;), named action-angle variables, ®,
takes the form

k
wo= Y. df; A do,.
i=1

Now introduce a linear operator A, acting in the Lie algebra U of vector
fields on X, by describing its conjugate operator 4*: Q! — Q. Namely, fix the
action-angle variables f,..., f,0;,..., 6, as coordinates and put

A*df; = f,df,
A*do, = f,do,.
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These formulae completely define A* and also A: U —A. Note that 4 is a
Nijenhuis operator. In fact, dw, =0 and it can be easily checked that

wo(Aa, b) = wy(a, Ab).

For the forms w, (a, b) = w,(a, Ab) and w,(a, b) = wy(a, A*b) we have

k
o, = ¥, fidf; ~dob,
i=1

k

i=1

and therefore dw, = dw, = 0. Applying the result of Theorem 3.10, we find
that (w,, 4) is a regular structure.

3.5 Hamiltonian pairs and associated Nijenhuis operators

Let H and K be two Hamiltonian operators (see Section 2.6). The property of
being a Hamiltonian operator is a quadratic restriction, so their linear
combinations are not Hamiltonian in general. The following definition is of
great importance in the theory of integrability.

Definition Two Hamiltonian operators H, K: Q! — A are said to constitute a
Hamiltonian pair, if H + AK is a Hamiltonian operator for arbitrary 1eR.

An equivalent formulation of this property is that
[H,H]=[H,K]=[K,K]=0 (3.15)

where [ , ] denotes the Schouten bracket introduced in Section 2.8. Another
criterion is given by the following proposition.

Proposition 3.11 Let H, K: Q! — U be two Hamiltonian operators. Then they
constitute a Hamiltonian pair if and only if for arbitrary 1-forms ¢, y, yeQ!
such that

Ky =Hop, Ky=Hy, (3.16)
and for arbitrary ¢, ,eQ?, there holds

dx(K¢y, K&,) — dy(K ¢y, HE,) — dy(HE,, KE,) + do(HE,, HE) =0. (3.17)

Proof Suppose that H and K constitute a Hamiltonian pair, i.e. (3.15) holds.
By [K, K] =0 and by the second equality of (3.16) we have
dx(K¢,KEy) = (ikg, dy,K&,) = (Lx;,Xa K&,) — (K& (v, KEy)
== (Lxxfz, K¢y — (LxgzéuKX) — (K&, K¢&y)
- (Luwfz, K‘fl) - (Lx;zfl, H'/’) - (Kfz)(‘/’» Hél)
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Now relying on the fact that [H, K] =0 we find

dx(K&y, K&y) = (Lye, &1, KY) + (L, ¥, KE5)
+ (Ll({xlll’ Hﬁz) + (Ll(w£29 H§1) - (Kéz)(‘lla Hél)

As (3.16) holds, and also there holds
(Lyg, ¥, K&3) — (KE,) (W, HE ) = dy(HE,, KE)),

the formula obtained can be presented as

dx(K¢&y, K&p) = (Lygg,81, HO) + (L, ¥, HE,) + (Ly 85, HE ) + dY(HE,, KE).
Finally, making use of the property [H,H] =0 combined with the first
equality of (3.16), we get
dx(K¢,,KE,) = — (Lﬂglq’, HE,)+ (LK,;, Y, HE,) + dy(HE, KE))
= —do(H¢,, HE,) + dy(KE, HE,) + dy(HE, KE).

Thus the required formula is proved. The converse is proved by similar
reasoning. This ends the proof.

It will be demonstrated in the next section that with any Hamiltonian pair
one can associate a structure which is a version of the Nijenhuis operator, that
is called the Nijenhuis relation. In order to make this notion clearer, we now
describe Nijenhuis operators associated with Hamiltonian pairs, assuming the
operators under consideration invertible. We suppose that the pairing
between A and Q! is nondegenerate (see Section 2.2) in the complex (Q, d).

Theorem 3.12 Let H,K:Q!—> U be invertible operators that constitute a
Hamiltonian pair. Put
A=HK™!

Then A: A — A is a Nijenhuis operator. If w,eQ? is defined by

wo(a, b =(a, H™'b),
then (wy, A) is a regular structure.
Proof From Theorem 2.10 it follows that w, is a nondegenerate closed
2-form: dw, = 0. As both H and K are skew-symmetric, we have

wo(Aa,b) = wy(a, Ab).

As H and K constitute a Hamiltonian pair, formula (3.17) holds. In terms of
the operator A = HK ™!, acting in ¥, and its conjugate A* = K~ 'H, acting in
Q?, formula (3.17) can be presented as follows:

de(Aa, Ab) — d(A*p)(Aa, b) — d(A*)(a, Ab) + d(A**p)(a,b) =0. (3.18)
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Here we have substituted a = K&,,b = K¢,, A*p =y, A*y = x, the elements
a,b being arbitrary in U. Referring to formula (3.11), we find out that

(¢,[Aa, Ab] — A[Aa,b] — A[a, Ab] + A%[a,b]) =0

for arbitrary peQ’, a, beU. As we suppose that the pairing between U and Q*
is nondegenerate, this means that A is a Nijenhuis operator.

The final remark is that the 2-form w,(a, b) given by w,(a,b) = wy(a, Ab) =
(a, K~'b) is a closed 2-form, due to the fact that K is a Hamiltonian operator.
Therefore (wg, 4) is a regular structure, and the proof is completed.

We already know that a regular structure (w,, A) given in a complex (,d)
produces an infinite sequence of regular structures (w,, A"). This means that
any Hamiltonian pair of invertible operators H, K: Q! — U produce a whole
family of Hamiltonian operators

H,=(HK~'yH.

The question arises: do these H, constitute Hamiltonian pairs with K and also
with each other? The answer is in the affirmative, as follows from the next
theorem, converse to the previous one.

Theorem 3.13 Let (w,, A) be a regular structure with invertible Nijenhuis
operator A: A — A and nondegenerate w,. Then there exists a Hamiltonian
pair of operators H, K: Q' — U producing (w,, 4) as described above.

Proof As w, is nondegenerate, the correspondence between U and Q! given
by the operator I,

la= —i,w,,

is an isomorphism. Putting H=1"',K = A~ I~ we get two operators, both
being Hamiltonian. In fact, by Theorem 2.10 the 2-forms wq(a, b) = (a, H ™ 'b)
and w,(a, b) = wy(a, Ab) = (a, K~ b) are closed. As A is a Nijenhuis operator,
(3.18) holds for arbitrary ¢eQ!, a, be . This formula is equivalent to (3.17) for
arbitrary ¢, Y, x satisfying (3.16) and arbitrary ¢,, &,€Q!. By Proposition 3.11
(converse statement), H and K constitute a Hamiltonian pair, the fact we
needed to prove.

Note that if A = HK ™! is the Nijenhuis operator associated with a Hamil-
tonian pair H, K: Q' — 2, then its conjugate A* = K~ 'H: Q! - Q! also consti-
tutes a Nijenhuis operator under some appropriate structures of a Lie algebra
in Q. The precise statement is the following.

Theorem 3.14 Let H,K:Q! —»UA be a Hamiltonian pair of operators. Fix
on Q! the Lie algebra structure [ , ]x generated by K (see Section 2.7).
Then A* =K 'H:Q! - Q! is a Nijenhuis operator. The trivial deformation
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associated with A* is

[61’62]).:[61’62]1(—*')“[61’62]1{’ (3.19)

where [ , ] is the Lie algebra structure on Q' generated by H.

Proof As K+ AH is a Hamiltonian operator for arbitrary A, (3.19) is a
deformation in the sense of Section 3.1. Therefore [£,, ¢,] is a 2-cocycle on
Q!, endowed with the Lie bracket [ , ]x. Now consider K + AH, which is a
Hamiltonian operator, and apply formula (2.27). We get

(K+AH)[E1, &2k am = [(K + AH)E,, (K + AH)E, ],

which means

H[éliéz]ﬂ = [Hél’HCZJ’
K[¢,,6,]x=[K¢&1, K&, ],
H[¢,, 8,1k + K¢, éz]ﬂ =[H¢,,K¢,] + [KépHézl

Now, applying K ~!, obtain from the first two equalities

A*[£,, 8]y =K [HE HE, ] = K [KA*E, KA*, ] = [A*¢), A%, ]k
(3.20)

The second and the third equality produce

[él,éz]ﬂ'*' A*[élaéz:]K:K_l[HépHCz] + K—I[Kéla Héz]
= [K_lHéla 62]1( + [61, K_lHéz]x
= [A*él; éz]x + [cls A*éz]x (3-21)

By comparing formulae (3.20) and (3.21) with formulae (3.5) and (3.4), we
find that the deformation we are considering is trivial. The 2-cocyle [ , Jgy
constitutes the coboundary of A*, so A* is a Nijenhuis operator with respect to
the Lie bracket [ , .

Due to the symmetry of the problem and the Nijenhuis property of an
inverse to a Nijenhuis operator, the final conclusion is that for any Hamil-
tonian pair of invertible operators H, K: Q' — 2 both K~ 'H and H™ 'K are
Nijenhuis operators with respect to each of the brackets [ , Jxand [ , g

We stress that the Nijenhuis property of the conjugate operator is character-
istic only for those operators that are generated by Hamiltonian pairs. It does
not seem that for a general Nijenhuis operator A: A — A a Lie bracket can be
introduced in Q! in a canonical way, so that A*:Q'—-Q! is a Nijenhuis
operator with respect to this bracket.

3.6 Nijenhuis relations; pairs of Dirac structures

The guiding idea of the interrelation between Hamiltonian pairs and Nijenhuis
operators described in the previous section needs some further development.
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The point is that those Hamiltonian operators that are encountered in the
theory of evolution equations are, as a rule, noninvertible. Besides, we need a
generalization of the notion of a Hamiltonian pair of operators to Dirac
structures also. This is the subject of the considerations that follow.

We start with the notion of a relation in a linear space L: a relationin Lisa
linear subspace of the direct sum L@ L. An example of a relation is the graph
of a linear operator P: L— L, that is

{x®Px,xeL}c L@®L.

There can, of course, be relations in L other than graphs.
Let U be a Lie algebra and suppose a relation in U (considered as a linear
space) is fixed:

L cUADU.

Suppose also that an A-complex (Q,d) is given (we shall consider below
complexes where the pairing between 2 and Q! is nondegenerate). The
conjugate relation

d* CQI @Ql

we define in a natural way, as the set of all n, ®#,eQ! @ Q! such that
(n,,a;) =(n,,a,) for arbitrary a, @ a,e.
The next definition is inspired by formula (3.11).

Definition A Nijenhuis relation is a relation &/ c U@ U such that for
arbitrary a,,4a,,b,,b,eW and n,,n,,n,eQ! satisfying

a, ®@aed,b, ®bed,n, Oned* n,Ened*
there holds

(11, [a2,b51) = (13, [a5,b,] + [a1,b,]) + (13, [a1, 5,1 =0.  (3.22)

We will now check that the given definition is a generalization of the
definition of a Nijenhuis operator.

Proposition 3.15 The graph of a Nijenhuis operator A: W — W is & Nijenhuis
relation. Conversely, if a graph of some operator 4: A —A is a Nijenhuis
relation, then A is a Nijenhuis operator.
Proof For arbitrary linear operator A: W — A consider its graph as a relation
o ={a@Aa,aeW} cADU.
It is easy to check that the conjugate relation is
A* = {E@A*E EeQ) c Q' D QY
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where 4* denotes the conjugate operator. Now (3.22) can be presented as the
validity of

("’ [Aa, Ab]) - (A*rh [Aa: b] + [a’ Ab]) + (A*zrb [a9 b]) =0
for arbitrary a,be, neQ!. In its turn, this formula can be rewritten as
dn(Aa, Ab) — d(A*n)(Aa, b) — d(A*n)(a, Ab) + d(A**n)(a,b) = 0.

Referring to formula (3.11), we conclude that under the assumption of non-
degeneracy of the pairing between A and Q', the Nijenhuis property of 4 is
equivalent to the equality obtained. This ends the proof.

We are now ready to generalize the notion of a Hamiltonian pair of
operators to Dirac structures. We have demonstrated in Section 3.5 that for
two Hamiltonian operators H, K: Q! — U, both invertible, the fact that H, K
constitute a Hamiltonian pair is equivalent to 4 = HK ~! being a Nijenhuis
operator. This observation is basic for the following definition.

Definition Two Dirac structures &, # < A@ Q! are said to constitute a pair
of Dirac structures, if the set

Ay ={a,@a,:3eQa, DéeM,a,DleL}cUDU
is a Nijenhuis relation.

We must check that the definition of a Hamiltonian pair of operators
conforms with this definition.

Theorem 3.16 Operators H, K: Q! — U constitute a Hamiltonian pair, if and
only if their graphs

£ ={H{DE Q')
and
M={KEDE EeQ'}
constitute a pair of Dirac structures.
Proof By the definition of a Hamiltonian operator (Section 2.6), H and K are

Hamiltonian, iff & and .# are Dirac structures, respectively. Evidently we
have

Ay ={KEDHE (eQ} cUDU.
It is easy to deduce that
A%, ={n,®ny:Hny=Kn,} <cQ' QL
Now (3.22) means that for arbitrary &, £,€Q* and any n,,1,,1,€Q" satisfying
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Hn, =Kn,, Hn,=Kn,, (3.23)
there holds
(ny,[HE,, HE]) — (5, [HE, KE, ]+ [KE,HE,]) + (13, [KE,,KE,])=0.

Taking into account (3.23), we can present the formula obtained as
dn,(H¢,, HE,) — dny(HE, KE,) — dny(KEy, HE ) + dns (K&, KE,) =0.

This formula coincides with (3.17), if we put n, = @,n, = ¥, n, = x. To finish
the proof, it remains to apply Proposition 3.11.

The definition given of a pair of Dirac structures can be applied, of course, to
symplectic operators (Section 2.5).

Definition Two symplectic operators I,J: AW —Q! are said to constitute a
symplectic pair if their graphs

¥ ={a®la,ac¥U}
and
M= {a®Ja,acW}

constitute a pair of Dirac structures.

Obviously we have
Ayy={a,DaJa, =la,} cUDU.

Therefore, if J is invertible, I and J constitute a symplectic pair, iff A = J "1 is
a Nijenhuis operator (see Proposition 3.15). If, however, I and J are noninvert-
ible, the notion of a symplectic pair becomes much less transparent.

As we have demonstrated above, to check that two Hamiltonian operators
constitute a pair, one must only prove that their sum is also a Hamiltonian
operator. No simple criterion like this exists for symplectic operators. More-
over, as we see later, checking that two symplectic operators constitute a pair
presents a difficult task in practice. For this reason, we specially devote
Section 3.9 to sufficient conditions for the symplecticity of a pair.

3.7 Lenard scheme of integrability for Dirac structures

We have demonstrated in Section 3.2 that, given a symmetry ae of a
Nijenhuis operator 4, we get a hierarchy of commuting symmetries a,e by
taking a, = A"a. If an Y-complex (L, d) is also given, then hierarchies of closed
1-forms and closed 2-forms also arise, as shown in Sections 3.3 and 3.4. The
present section contains the Hamiltonian framework of these considerations
which we shall call the Lenard scheme of integrability. The result will first be
presented in its general form.
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Theorem 3.17 Let ., # be a pair of Dirac structures. Let there be given a
sequence of vector fields h, h,, ... and a sequence of 1-forms ¢ _,, &,,...€Q’,
such that

h®¢_e¥, hdéed. (3.29)
Assume
d¢é_, =d¢,=0. (3.25)

Suppose the following condition is valid: if for some £€Q! there holds
dé(a, b) = 0 for a, b in the projection of &/, , on U, then d¢ = 0. Then,

(a) all &; are closed: d&,=0;

(b) any element f;eQ°, such that df; = ¢ (its existence is guaranteed if the
cohomology group H'(Q)is trivial) is a conservationlaw of h;, j =0, 1,...;

(c) all f; are in involution with respect to the Poisson brackets associated
with % and #:

{fi’fj}.‘t’={fi’fj}./(=0' (3:26)

Proof To prove (a) induction is used. The idea becomes clear when we
describe the first step.
First notice that

C-1D&edY 4

In fact, for arbitrary a,®a,es/,, there exists some £eQ' such that
a,®éeM,a,® e . By (3.24) we also have hy@¢_ €L, hy D, eM. Re-
lying on the isotropy of % and . in AP Q?, we find that

(a3,8_1) —(a,,80) = —(ho, &) + (ho, &) =0.
Similarly we prove that
So@E 1Y 4

Now use the fact that ¥ and .# constitute a pair of Dirac structures. By
definition, for arbitrary a, @ a,,b, ®b,e , , there holds

(é—p[az,bz])—(ém [aZ’bl] + [alab2])+ (éls[alsbl]) =09

or, equivalently,
dé_(ay,b,)—déy(a,, by) —dEy(a,, by) + dé (a,,b,)=0.

As (3.25) holds, we conclude that d¢,(a,,b,) =0 for arbitrary a,,b, from
projection of &7, , and, by the condition assumed, d¢, = 0. Arguing similarly,
we can proceed with the induction.

Now we prove (b) and (c). For arbitrary i, j(i < j) we have

h,,,®dfie?, hddfeH,
h;@df,_,e¥, h;®ddfieA.



By the definition of the Poisson bracket (Section 2.4, equation (2.16)) and by
the isotropy of .# and ¥ we have

{fi’fj}./( =(hiadfj)= _(dfi’hj)z(hﬂ- l’dfj—l) = {fu+ l’fj—-l}.ll'

Repeating this trick several times, we arrive at last either at {f;, f;} , =0, if
i—jiseven,orat {f, f,,} if i —jis odd. But

{fs’fs+l}.lt = _(hs+1’dfs) = _{fs’fs}ﬁt’:O‘

Therefore { f,, f;} 4 = 0 for arbitrary i, j. Similarly by the isotropy of # and .#
we have

{fi’fj}.?=(hi+1’dfj)= _(dfi+1’hj) =(hi+2’df"—l)= {fi+1’fj-—l}2”

and arguing as above we get {f,, f;}, =0 for arbitrary i,j. Thus (3.26) is
proved. We have also proved that (h;,df) = 0 for arbitrary i, j, which means all
f: are conserved along any vector field h;.

Remark 3.18 The theorem does not state that all h, commute in 2. As f; are
in involution with respect to the Poisson brackets associated with % and .#,
we can apply Theorem 2.1 to prove that [h;,h;1® 0€ %, [h;,h;] @ 0e.#. This
means that

[hi, h;1€Uo(L) N Uo(A),

where U ,(¥) and A, (#) are Lie algebras constructed as in Section 2.4 for &
and #, respectively. If at least one of the structures is generated by a
Hamiltonian operator, then the corresponding U, is trivial (see Section 2.6), so
in this particular case we have [h;,h;]=0.

Remark 3.19 The main theorem, as formulated above, supposes that h; and
&, are given. In fact, however, it is also a recipe for constructing the whole

hierarchy h;, ¢, starting from the seed scheme (Scheme 3.1) where hoﬁél and
hoﬁéo mean hy®¢_, €% and hy ® £, e, respectively.

Scheme 3.1

K4 ¢y =df
by
\ 60 = dfo
This recipe works as follows: find some h,, such that h; ® {,€.¥ and some

&, such that h; @ &, e#. Then (see the proof of the theorem) we have d¢, =0,
and if ¢, =df), then f, is a conservation law of h, h,. Proceeding with this



argument, if we are successful in finding the necessary elements at each step, we
arrive at Scheme 3.2 with all f; being the conservation laws of all h;, and all the

Scheme 3.2
v €—1=df—1
hq v ‘
“—to=df,
h, ,41
\‘51 =df;
: én—l=dfn“1
¢
e
¢, =df,

Poisson brackets { f, f;} ¢, { fi» fj} .« vanishing.
It will be demonstrated in Chapters 5 and 6 how the recipe just described
works in practice.

3.8 Applications; Lenard scheme for Hamiltonian and symplectic pairs

This section presents simplified versions of Theorem 3.17. Consider first the
case of one of the Dirac structures being the graph of a Hamiltonian operator
H:

F={HEDE EeQ!} cUDQL.
and the other being the graph of a symplectic operator J:
M={a®Ja,acW} cAD Q.
In this case we have

A yy=1{0,Da,:38eQ,a,DleM,a,Dlc Y}
={a@®HJa),aeW} c ADA.

By Proposition 3.15 the fact that </, , is a Nijenhuis relation is equivalent to
A = HJ being a Nijenhuis operator, so the main theorem can be reformulated
as follows:

Theorem 3.20 Let H:Q! - A be a Hamiltonian operator, J: A —-Q! be a
symplectic one, and suppose HJ: A — W is a Nijenhuis operator. Then, starting
from arbitrary £_, =df_,, such that JH{_, =df,, one can produce the
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Lenard Scheme 3.3 with all ¢, = (JH)'*'¢_, being closed 1-forms. If ¢; = df,,

Scheme 3.3

¢ 1= df— 1
J

\’éo = dfo

then f;is a conservation law of any h;. All the f; are in involution with respect
to both H- and J-produced Poisson brackets:

{fi:fj}u = {fi,fj},,=0.

All h; commute in U:

[hi,h,]=0.

Remark This theorem is in accord with Theorem 3.4. In fact, by Proposi-
tions 2.4 and 2.8, h,, being Hamiltonian with respect to J and H, is a symmetry
of both J and H, and consequently also of the Nijenhuis operator HJ.
However, Theorem 3.20 does give some new information: namely, under the
assumption that the cohomology group H'(Q) is trivial, all the h; are also
Hamiltonian vector fields and their Hamiltonians are in involution.

The next case is that of both Dirac structures being graphs of Hamiltonian
operators:

L ={HEDEEEQ! cADQY,
M= {KEDE EeQ) cUDQL.

The theorem corresponding to Theorem 3.17 is the following.

Theorem 3.21 Let H, K = Q! — U be a Hamiltonian pair of operators. Let h,
be a bi-Hamiltonian vector field, i.e. it is Hamiltonian with respect to H and K
with Hamiltonians f_, and f,, correspondingly. Then, if the Lenard
Scheme 3.4 gives us 1-forms &,, &,,. .. and vector fields iy, h,, ... then all £; are
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Scheme 3.4
H 6—1 =df—1
hoe%
‘H\éo =df,
hye¢

closed (under the assumption that any 1-form closed on Im K is closed). If
¢, =df,, then f;is a conservation law of any h;. All the f; are in involution with
respect to H- and K-produced Poisson brackets:

{fi’fj}H={fi’fj}K=0‘ (3:27)
All h; commute in U:
[h;,h;1=0. (3.28)

Finally, we present the version of Theorem 3.17 for the case when both
Dirac structures are graphs of symplectic operators:

F={a®Ila,aecU} cADQ’,
M={a@®Ja,aeW} c AP Q.

Theorem 3.22 Let I,J: A — Q! be a symplectic pair of operators. Let h, be a
bi-Hamiltonian vector field, i.e. such that Ih, =df_,,Jh, = df,. Then, if the
Lenard Scheme 3.5 gives us 1-forms &,,&,,... and vector fields h,, h,, ..., then

Scheme 3.5
_y=df_
1 1
hOX
\"éo = dfo
h—
T

all ¢; are closed (under the assumption that any 1-form closed on the subspace
{a:JaeIm I} is closed). If ¢, = df;, then f;is a conservation law of any h;. All the
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f; are in involution with respect to I- and J-produced Poisson brackets:

{foihi={1f1i}s=0.

3.9 Conditions guaranteeing symplecticity of a pair

As we have demonstrated above, the notions of a Hamiltonian pair and of a
symplectic pair may be introduced in a unified way: both mean that the
corresponding graphs constitute a pair of Dirac structures. The crucial
distinction, however, is that Hamiltonian operators H: Q! — U are distin-
guished among all linear operators by a quadratic restriction [H,H] =0,
while symplectic operators I: 2 — Q" are distinguished by a linear restriction
dw; = 0. On the other hand, the fact that two Hamiltonian operators H, K
constitute a pair, is expressed by a linear condition (H + K is a Hamiltonian
operator), while the fact that two symplectic operators I, J constitute a pair is
expressed by a nonlinear condition (I ~* J is a Nijenhuis operator). As already
mentioned, this may cause complications in checking that two symplectic
operators constitute a pair. The following theorem gives some sufficient
conditions that will be used in the following chapters.

Theorem 3.23 Let I,J: A - Q! be symplectic operators, such that the ex-
pression for the external derivative of the 2-form

w,a,,a,)=(a,,JI"Ja,)
vanishes on the subspace

D;;={aeW:JaelmI}.
Suppose also that the conjugate &/* to the relation
A ={a®b:Ja=Ib}cUDUA
is described by the formula
A*={la® Ja,aeW} c Q' Q.

Then I and J constitute a symplectic pair.
Proof Consider 2-forms wy(a, b) = (a, Ib), w,(a, b) = (a, Jb) and also w,(a,b) =

(a,JI~'Jb) which is defined on D,,;. Put for brevity A =I~'J; the operator 4
is also defined on D;. As dw, =dw, =0, we have

dwy(Aa,, Aay,a;) —dw,(Aa,,a,,a;) — dw,(Aa,, a3, a,) + dw,(a,, a5,a3) =0
for arbitrary a,,a,,a,eD,,. This formula can be presented as

([Aal’ Aaz]’ 103) - ([Aala a2] + [ala Aaz]’ Ja3) + ([al’ az]’ JAa3) = 0 (329)
Take arbitrary n,,7,,1;€Q" such that n, = Ia,n, = Ja= Ib,n; = Jb for some
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a,beW. Then aeD,,; and we can put a; = a in (3.29) to get
([Aa,, Aa,1,n,) — ([Aay, a,] + [ay, Aa,],n,) +([ay,a,],m3) =0 (3.30)
for arbitrary a,,a,€D,;. As we have
o ={a@®b:Ja=1b} ={a® Aa,aeD,},

(3.30) is valid for any two elements a, @ Aa,, a, ® Aa, that belong to &/ and
arbitrary #n,,7,,75 such that n, ®@n,e*, n,®n;ex/*. By the definition
(Section 3.6), o/ is a Nijenhuis relation, i.e. I and J constitute a symplectic pair
of operators.

Remark If we suppose I and J invertible, the statement follows directly from
Theorem 3.10. Thus, we have obtained a generalization of Theorem 3.10 to
noninvertible operators.

Remark The additional requirement on the structure of &/* seems unnecess-
ary. In fact, however, the conjugate to & = {a@®b:Ja=Ib} is a subspace
containing the subspace {Ia ® Ja, ac U}, but does not coincide with it. In some
examples considered below the requirement is satisfied, and so we can rely on
Theorem 3.23. On other occasions the following version of the Lenard scheme
is helpful.

Theorem 3.24 Let I,J: A - Q! be symplectic operators, and h, a bi-Hamil-
tonian vector field. Let &_,, &, &, ... be the sequence of 1-forms given by the
Lenard scheme, with d¢_; =d¢&, =0. Suppose that the expression for the
external derivative of the 2-form w,,(a,,q,) = (a,,JI'Ja,) vanishes on the
subspace D;; = {aeW:Jaelm I}, and also that any 1-form ¢ closed on Dy, is
closed. Then all ¢; are closed. If &, =df,, then f; is a conservation law of
hj,j=0,1,.... All f; are in involution with respect to both Poisson brackets.

This version does not require that I and J constitute a symplectic pair.
Instead, the restriction on w,; mentioned above is required. The proof goes
along the lines of the proof of Theorem 3.17. Note that the Nijenhuis property
is not exploited in its full generality there, but only in application to forms that
belong to the subspace {Ia® Ja, acU}. This observation allows us to prove
Theorem 3.24.

3.10 Notes

The Lenard scheme action was first demonstrated for the KdV equation by
Lax (1976); then came other examples (Olver, 1977; Kulish and Reyman, 1978).
The concept of the Hamiltonian pair appeared in Magri (1978) and Gelfand
and Dorfman (1979). Interrelations between Hamiltonian pairs and Nijenhuis
operators were discovered by Gelfand and Dorfman (1979, 1980). Fokas and
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Fuchssteiner (1980) and Fuchssteiner (1979-82). It must be noted that our
terminology is not universally adopted: Nijenhuis operators are also named
hereditary or A-operators, see detailed comments in Fuchssteiner (1979)
Takhtajan and Faddeev (1986).

Our choice of terminology is due to the fact that the definition of torsion in
the space of (1, 1)-tensors on a finite-dimensional manifold refers to Nijenhuis
(1958). The torsion itself and the tensors for which the torsion vanishes were
investigated in detail by Osborn (1959, 1964), Stone (1973) and, in connection
with the problem of complete integrability on finite-dimensional manifolds, by
Marmo (1986). Relations with the theory of Lie bialgebras (Drinfeld, 1983) are
traced in Kosmann-Schwarzbach and Magri (1988).

As for deformations, Lichnerowicz (1980) may be useful for the reader. The
exposition of interrelations between deformations and Nijenhuis operators
presented in Section 3.1 follows Dorfman (1984).

Regular structures were introduced by Gelfand and Dorfman (1979) and
independently by Magri (1980) who named them symplectic Kdhler struc-
tures.

Nijenhuis relations as generalizations of Nijenhuis operators were first
considered in Gelfand and Dorfman (1980).

The notion of a pair of Dirac structures was introduced by Dorfman (1987).
The exposition of the Lenard scheme for Dirac structures follows this same
paper, modelling the initial version of the Lenard scheme for Hamiltonian
operators (Gelfand and Dorfman, 1979, 1980). As for the Lenard scheme for
symplectic operators, it first appeared in Dorfman (1987, 1988).



4 The complex of formal variational
calculus

Our further investigations refer to a special complex (or rather a class of
complexes) called the complex of formal variational calculus that is most
important in building up the Hamiltonian theory of nonlinear evolution
equations. The construction is universal, and the complexes considered differ
only by the choice of the basic ring.

4.1 Construction of the complex

Consider a ring R of functions f, each depending on a finite number of the
formal variables 4{. The index « taken from some set of indices ¢, finite or
infinite, enumerates dependent variables or unknown functions of the informal
theory, and the index i=0,1,2,... indicates the number of x-derivations.
Three basic rings are considered below for R: the ring of polynomials of u®, the
ring of rational functions of 4{’, and the ring of smooth functions of u{. Other
examples can also be considered. We shall see that the main requirements are
that R must be closed under the action of partial derivations and that
Schwartz’s lemma is valid.

First we consider the de Rham complex {(R) of the given ring R (see
Example 2.3). According to the general rule of construction, it is a complex
over the Lie algebra Der R that is constituted by all derivations
0: R — R. Recall that the operators d: Q7 — Q?* ! and id: Q?— Q7! are defined
as

q+1

daxd,,...,0,41) = ‘z (= 1" 10,008y, ..., 01044 1)
=1

+ Y (= 1 ax([0,0,1, 015,05+ -3055- -, 84 1)

i<j
and
(i50)(045...,0,—1) = @(8,04,...,0,_ 1)
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We use a special notation d/dx for the derivation of R given by the formula

f Z (i+1)_~J af

u(x)

The abbreviated notation f© for (d/dx)'f is often used below, and we
sometimes also use f,, f... f..x When only lower derivatives are under
consideration.

Consider the one-dimensional space Z < Der R spanned by d/dx, and perform
the reduction procedure of Q(R) with respect to Z (the general definition of
reduction is given in Section 2.3). In this way there arises a complex (Q, d) that
is a complex over the Lie algebra U constituted by derivations commuting
with d/dx. The result of the reduction is called the complex of formal
variational calculus based on the ring R. Elements of 2 are called vector fields,
as in Chapter 2.

We now need a more detailed description of the objects involved. It can be
proved (Schwartz’s lemma) that any derivation d: R — R acts according to the
formula

4.1)

of
6f= ;hdia—uga’

where h,;eR. Therefore d can be uniquely recovered from its action on the
basic vanables, h,; = 0u). Tt is evident that any  commuting with d/dx can be
recovered from its action on the variables u,, du, = h,, and in this particular

case we have
. dY d\ .
hai = 6u§," = 6(5) U, = (a) 6ua = h(;).

The derivation corresponding to the collection h = {h,eR, a€ #} we denote by
0, The natural commutator of derivations [d,,0,]=0,0, — 0,0, can be
transferred onto the space R” of all h = {h,eR,a€ #} by putting

a[h'g] = [ah, aa]'

In other words, R” is a Lie algebra with respect to the commutator of vector
fields

B g o Ohg
[h g]ﬂ Z( ()a (f) g;)au(l)> (4-2)

So we get a description of the Lie algebra of vector fields 2 as the space R®
endowed with the Lie bracket (4.2).

The derivation d/dx corresponds to the element {u{"), ae # }; for brevity we
keep the initial notation d/dx of this element.

Now consider the spaces Q% An element we? is by definition an equival-
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ence class of R-linear skew-symmetric mappings
o:R’ x - xR >R

in the quotient space Q"/Ld,dxﬁ“. By the definition of the Lie derivative
(Section 2.3) we have

a d
(Laax®)(hyy . h) = Lyg(@(hy, ... .h)) — Y w(hl,...,[a, hi],...,hq).

i=1

As d/dx commutes with h,, we get

d
(Lypas) b h) = (@b .. h))

and therefore when dealing with g-forms we can freely throw over the d/dx
operator in the same way as is done when integrating by parts. This fact is often
relied on in the future presentation.
According to the general definition, Q° is constituted by elements f of the
quotient space:
= R/(d/dx)R.

Such an element will be called a functional and denoted by [ fdx and f is called
the density of the functional. The reason for this name lies in the informal
theory, which deals with objects of the shape

j fuu,,...,u™)dx,

u = u(x) being a periodic function of x, or a function that quickly vanishes at
infinity. Evidently, if the density f is a full derivative with respect to x, then the
functional produced is trivial. This means that in the formal theory the
reduction with respect to full derivatives is natural.

Using the rules described in Section 2.3, we can calculate the differential of a
functional as follows:

(dffdx,h>= > mhf;’dx Zjha(i( )a"f;) x.

Now introduce the elements J f/du,eR by formulae

of
9 Z.( >6u(') 4.3)

13

According to the general theory, these elements do not depend on the choice of
arepresentative f in the equivalence class | fdx. We call the elements given by
(4.3) partial variational derivatives of the functional | fdx. The formula

6 d
ou, dx

(4.4)
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can, of course, also be checked by a direct calculation. This makes it possible to
speak of the elements given by (4.3) as partial variational derivatives of the
density feR. We often do so below without special explanation.

Now consider the space Q' =Q'/L,, 4. Q1. It is easy to understand that any
1-form £eQ! is completely defined by a collection {£,eR}, where &, #0 for
only a finite number of a€ #. The pairing between a 1-form ¢ and a vector field
h={h,eR, ae #} is given by the formula

(& h)= fzc h, dx. 4.5)

Proposition 4.1 The pairing between Q' and U given by (4.5) is nondegen-
erate.

Proof 1t is sufficient to demonstrate that if there is given an feR such that
fgelm(d/dx) for arbitrary geR, then f=0. By putting g=1 we get
felm(d/dx). By (4.1) it follows that f depends linearly on the highest-order
derivatives 4™ of the variables u, involved in f. Now take g = u{"; then fg
depends on 42 in a quadratic way and thus cannot belong to the image of
d/dx. The contradiction shows that f must be equal to zero and this is the end
of the proof.

We also need an explicit expression for d&, where £eQ' is a 1-form. The
direct calculation of d¢ leads to the following formula:

d
dc(hl,h2>=f(zafg, Wy, zaﬁzh‘;},hl,)
» %
- [2(ar = () (o) s

dé(hy, hy) = (€ — &™) hy, hy), (4.6)

where & is the matrix operator with entries

0,
On=Tas( )

which is called the Fréchet derivative of &.

As a matter of fact, Fréchet derivatives are very useful in calculations
dealing with objects associated with the complex of formal variational calcu-
lus. They allow us to express invariant operators, such as d, L,, etc. in an
explicit form, as is done in differential geometry when introducing coordinates.
The next section is specially devoted to some useful formulae that will be
exploited afterwards.

In other words,
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4.2 Invariant operations expressed in terms of Fréchet derivatives

Let ¢ be some basic object (see Section 2.3) of the complex of formal varia-
tional calculus, i.e. o belongs to the space Q, where Q is the Lie algebra U, or the
space Q? of g-forms, or the space of linear operators acting in U and Q7 and
between them.

The Fréchet derivative of an object s Q is the linear operator ¢’: 2 — Q that
acts according to the formula

, do (d
h= ;@(a> h,. 4.7)

This definition is a very natural one: the right-hand side of (4.7) is the princi-
pal linear term of the increment of ¢ with respect to the shift along the vector
field A.

The commutator (4.2) can be expressed with the help of Fréchet derivatives,
as we evidently have

[h,gl=9gh—hg, h,gel (4.8)

Now we give the expressions for the operator d. For 0-forms, or functionals
f=[fdxeQ? the Fréchet derivative coincides with hf, so we have

o (g2 s

Now for g-forms we? we have by 4.8)

q+1

dahy,....hg4 )= Y, (—1)"“hico(hl,...,ﬁi,...,hqﬂ)

i=1

+ 3 (= Vo h — Khphy, b By b )
l<]

q+1

Z( D * @by, Ry gy ).

We therefore have a handy formula for calculating dw that will be often used
below:

qg+1

dahy, .. .hgr)= Y (= D @ B)(hy, .. By k). (4.9)
i=1
Also Lie derivatives can be easily expressed via Fréchet derivatives. In the
following theorem we summarize the results of calculating Lie derivatives of
those objects most often encountered.

Theorem 4.2 The Lie derivatives of the basic objects are given by the
following formulae:



acU, Lja=ah—Ha,

feQ?, L,0=0h+ h*0,
H:Q'>9, L,H=Hh—KH—Hh*
L A-QL LI=Th+ 1IN +h*],
S:UA-YU, LS=Sh—hS+SH,
T:Q'-Q!, L, T=Th+h*T—Th'*,
weld, L,w=wh+ h*o,

where star means conjugation, and by definition

q
W*) by, )= Y @by, .. Wiy ).

i=1

The proof of this theorem is obtained by direct calculation.

4.3 Exactness problem; dependence on the choice of the basic ring

We have constructed in Section 4.1 the complex of formal variational calculus
€(R) based on the ring R. The question arises: for which R is the triviality of
cohomologies of the complex

d d d d
0-0° 50t 5 ... 00 5, ..

guaranteed? We mean of course the triviality of the groups H4Q,d) with q
positive, because the group

H°Q,d)=Kerd = ( () Ker 5/(5u,)/lm (d/dx)

at least contains constants.

The following simple example shows that for the ring of rational functions
the complex is not an exact one in the next term either. In fact, taking a 1-form
¢ that is given by (&,h) = fu™ 'hdx, it is clear by (4.9) that

d&(hy, hy) = —fu'zhlhzdx+Ju“2hlh2 dx =0,

though obviously it is impossible to find a functional [ = [fdx such that
df = ¢, where f is a rational function.

However, it will be demonstrated that if R is the ring of polynomials or
smooth functions of u{’, then the cohomology groups are trivial for positive
q's. The group H(Q,d) will be considered separately in Section 4.4.

For the moment it is convenient to change our point of view as follows. We
considered the variables u{? as formal symbols above; now we mean that they
are coordinates of a point # that lies in the infinite-dimensional product space



R~ *Z that is constituted by all sequences of real numbers {q,;} enumerated by
o€ #?, ieZ. Accordingly, a derivation deDer R becomes a vector field on this
space that takes at the point i the value z(#5) = {0u{’ (%) }. For instance, d/dx is
nothing other than the vector field with coordinates {u{*"}. Similarly, an
element we¥ is now interpreted as a g-form on the space R’ *%, ie. w is a
skew-symmetric operation that for each fixed u# puts any collectlon of
zy,.. .,zqeR’ *Z into correspondence with a real number, according to the rule

(245 . ..,2) = (@(0y,. . .,0,)) ().

Theorem 4.3 Let R be the ring of polynomials or smooth functions of the
variables 4. Then the complex of formal variational calculus based on R is
exact in all positive dimensions, i.e.

HYQ,d)={0}, ¢>0.

Proof We shall construct a so-called algebraic homotopy of the complex
(Q,d), that is by definition an operator k:Q?—Q?*! such that kd + dk =id.
Evidently, if such a k is constructed, then for arbitrary w, dw =0 we have
o = d(kw) which means that H{(Q,d) =0. .

First we construct the algebraic homotopy of the complex (£2,d), taking
as a model the finite-dimensional Poincaré lemma (see, for instance, Arnold,
1974).

That is, for arbitrary weQ? put

1

(k)a(vy,...,05—1) = j t w0y, 0, )dt, (4.10)

0

and we must prove first that kd + dk =0 in Q2.
By the formula (4.9), for kdw and dkw we have

1
(kdw);(vy,...,0,) = J‘ tY( @tz ot)(vys . . .,0,) dt
0

q 1
- Y (- 1)”1J~ t @iao ) (8,04, .. ., D, ..., 0,) dt

i=1 0

dka)a(vy,...,v,) = Xq:(— 1)i+1J 4" Nl otv)(@,0y,. . ., Dy, ..,0,) dt

i=1 0

q 1
+ Y (- 1)‘“-[ 97 (0015 sy - 0,) dE
i=1

0

q 1
=Y (- 1)‘+1f t(0%ao0;) (0, .. .,0,) dt
i=1

0

1
+ qJ t  w(v,y,.. ., v,)dt.
0
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It follows that

1
(kdw + dkw);(vy,...,0) = j ac-lz(t"a)m(vl, b)) dt = wy(vy, .. .,0y),
0
and thus the algebraic homotopy in  is constructed.

The next step is to check that the algebraic homotopy k commutes with the
Lie derivative L,,, and for this reason can be considered as an algebraic
homotopy of (€2, 4).

Consider a vector field z = z(iz) on the space R”*Z and calculate L (kw) and
k(L ,w) for some wel. By Theorem 4.2,

(L,); (55 -50,) = (@}o2(8)) (vy,. . .,0,)

q
+ Z OO15- 50— 1525035054 150+45U)s
i=1

1

(ksz)ﬁ(vl’ .. "Uq— l) = J 1" l(sz)lﬁ(ﬁ’vl’ . 'avq— l)dt
0

1
=f 4 ()0 z(th)) (@04, . .,v,— ) dt
(1]

1
+J‘ 147 @ (20t 0y, .0,y )dE
0

q-1 1
+ 3y J £ g 0y, D 1320 0Dp Ui gy e sV g ) AL
i=1.Jo
Similarly
(sza))a(vl,...,l)q_l)=((kCO)l;oZ(ﬁ))(Ul,...,Uq_l)

q-1
+ Y (k)a(vy,. s 15250 Dsy s Vg g )
i=1

1
=J tU(w}z0z(@)) (8,0, ...,0,_,)dt
0

1
+J tq_lwni(z(a),"p-"’Uq-l)dt

0
q-1 1
_1 -
+ Y | T o@Dy 20U 0, )AL
i=14J0

We see that in general kL, # L _kw. However, these expressions coincide in
the case of linear dependence of the field z on the variable 4. In fact, if z(#) = T,
where T is a linear operator, then z;ov = Tv and therefore

2(ta) = tz(u),
Zov=zov="To.
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It follows that z/ 0% = T = z() and kL, = L_kw in this particular case.
This very situation arises when we take z(i1) = {u{* '}, that is the vector field
corresponding to d/dx. The conclusion is that [k, L,/4,] = 0, which means that
the operator k given by (4.10) can be considered as acting on the quotient
spaces Q"/Ld,dxﬂ“ Naturally, k is an algebraic homotopy of the complex (€2,d)
and thus the cohomologies H4, d) are trivial for g > 0. This ends the proof.

Two comments seem important in connection with the formula

1
MaV1s.e sy y) = J 1 (@04, . .,0,—,) dt 4.11)
0

obtained above which restores the potential #, i.e. such a form 5 that dn = o for
arbitrary w, dw = 0. The first comment is that the formula (4.11) is applicable
not only in the rings of polynomials or smooth functions on 4%, but also in
other cases where the right-hand side of (4.11) makes sense. For example, in the
ring of rational functions, formula (4.11) can be applied, except for those cases
for which, as in the case mentioned at the beginning of the section, the
right-hand side of (4.11) makes no sense.

The other comment concerns the possibility of shifting the argument in (4.11).
As we have demonstrated above, (4.11) can be interpreted both as a recipe for
restoring the potential in the complex ), and also as the formula indicating the
equivalence class of the potential in the quotient space Q = Q/L, 4, €. There is,
however, a crucial distinction between these two interpretations. If we mean
the space Q, then it is possible to make an arbitrary shift of the argument in
(4.11), i.e. & can be substituted by # — ¢ and ti by ¢ + t(z — ¢), where ¢ = {c,} is
an arbitrary sequence of real constants. The result of this substitution will be
another potential #(c), such that dn(¢) = w in Q. It is easy to check, however,
that the shift of the argument does not commute with the Lie derivative L, ,.
This means that (¢) depends in general on the choice of a representative in the
equivalence class of w and that (4.11) is not well-defined on the quotient space
Qr

The conclusion is that in contrast to the finite-dimensional Poincaré lemma,
no shift of the argument can be made in (4.11).

44 Cohomology group H(R2,d)

In this section we focus on the group
HQ,d)= <ﬂ Ker 6/5u¢)/lm (d/dx).
As above, the description of H°(Q, ) depends on the choice of the basic ring R.

For the case of R being the ring of rational functions of u? there are nontrivial
and nonconstant elements in this group. For instance, the element



fu~'u,dxeQ° belongs to Ker J/du, but it is easy to demonstrate that it does
not belong to Im(d/dx). For the rings mentioned in Theorem 4.3 no such
possibility exists, as the following theorem shows.

Theorem 4.4 Let (Q,d) be the complex of formal variational calculus based
onthe ring R of polynomials or smooth functions of u{?. Then H%(Q, d) consists
of constants.

Proof Let feR be arbitrary. As f depends on a finite number of variables
uld, the set

n(f)= {aef,

of
o ()‘;‘Oforsome;

is finite. For any aen(f) put
of
k. f = max{ P m;éO}

tk, SV =k, f + 1,

of

ou (n)’

It is obvious that

and also

. 0 (W)= n,=rk,. (4.12)

From the definition of variational derivatives

of
f iz < >l ould

0
rka<57¢f) < 2n,,

and, more precisely, we have

we have

ot f
a(uglﬂ) )2 u2na’
Suppose ge() Ker §/du,,rk,g =n,. The problem is to find f such that

rkk,<n,—1.

0 n
6—uaf=k¢+(_ 1)

g=f" +const. From the previous equality it follows that d2g/d(u®)? =0

and therefore
rk (-—a—g—) <n,— L
oul)

(n.— 1)
: g -
g= L E» (n)( a,u“’ ves ui"' 2 t.0, u,)dt,

Now put

P,




where we denote by 4, all variables excluding the variables 4. It is evident
that
rka(Pag) =n,— 1

and also that

0
=1
ouln

2
(Pag) = 510 g D, 2,0 7D,0, ),
Uy -

Applying (4.12) for f = P,g, we get

o (d __9% ) (na—1)
ou™ (dx P“g) "~ ou (e th™s - g™ 5, 0 ).

For the element g,, defined as

d
=g——P
91=9—3; Pag

we have

09, _ og _
du, _6u¢_0’

because partial variational derivatives vanish on Im(d/dx). At the same time
we have

dg dg R g - R
au(:') = -a;"—.)(ua, u(al), ceey u(a"-)’ ua) _ au("') (ua, u:l)’ ooy u(a o 1), 0, ua) = 0
a a a
and therefore
tk,g,=n,—1.

We have reduced the initial problem of finding f for prescribed g to the
similar problem of finding f,, such that g, = f"+ const, but now
rk,g, <rk,g — 1. Evidently, we can repeat this procedure until we arrive at
some g, not depending on the variables 4. Next we must proceed with the
procedure for all aen(g). Note that if at a certain stage we eliminate all the
variables u, then the variables u{? will not appear again at the next stages of
our procedure, so 7(g) can only diminish. After eliminating all the variables, we
arrive at a constant, and this proves the required result.

The result just obtained allows us to solve the equation
d
o/ =9 (4.13)
X
which is possible if the right-hand side satisfies the necessary condition

6g/ou, = 0 for all e #. The solution is obtained by the procedure described in
the proof of Theorem 4.4. The general solution in the rings of polynomials or
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smooth functions is obtained by adding an arbitrary constant to the particular
solution.

As for finding solutions of (4.13) in other rings, such as the ring of rational
functions, the same remark can be made as in Section 4.3: namely, the recipe
for finding the solution is also valid in other rings, but only for those g for
which it makes sense.

4.5 The equation 8f/éu = g in the rings of polynomials
and smooth functions

The result of Section 4.3 was that in the complex of formal variational calculus
based on the ring R of polynomials (or smooth functions) on u{” the equation

de=ow 4.14)

can be solved for an arbitrary g-form w such that dw = 0. In this section we
focus on the particular result that follows for the case of one variable u and
g = 1. The equation (4.14) takes the form

()

where the 1-form £ is given such that d¢ = 0. By (4.6) this means that & = £'*.In
the one-variable case the space of 1-forms, as has been demonstrated in
Section 4.1, is isomorphic to R and as we have

djfdx=Jgdx, 4.15)
ou
then instead of (4.11) we get the equation
g =g 4.16)
ou

with f unknown. The necessary condition of solvability is that the Fréchet
derivative of g(u, u"),...) is a symmetric operator, g’ = g'*, i.e.

dg (d\ _ d\ dg
2%(&) —E(‘a) W @1)

For the general theory of Section 4.3, this condition is also sufficient for
solvability of (4.16) in the rings under consideration. From (4.11) it follows that
a particular solution of (4.16) is given by the formula

1
f@)= uf g(ta)dt, (4.18)
0
where @ = (u,uV, u'?,...).

The general solution of (4.16) is obtained by adding an arbitrary element
from Ker §/du, that is, by the result of Section 4.4, a sum of an arbitrary
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constant and any element of Im (d/dx). This means that the functional { fdx is
uniquely determined by g (if we neglect additive constant functionals {c dx).

Formula (4.18) becomes very useful when performing calculations. It makes
it possible in some cases to present the solution at once. For instance, if

— 0,,a (n)a
g= Zaao--~anu uxl S U aaowunER’

and the necessary condition (4.17) is satisfied, then

n -1
f=2< Y o+ 1) Ag..q U T Uy
i=0

Moreover, this formula can also be applied for rational functions if it makes
sense, i.e. if 3.7_ 0 # — 1.

On the other hand, when we refer to rings of a more general nature, the
shortcomings of formula (4.18) become apparent. We can demonstrate this by
the following simple example. Consider

g= ux_l - uux_3uxx‘
The necessary condition (4.17) is satisfied. Formula (4.18) cannot be applied.
However, the equation (4.16) is solvable, and the solution

f=ustu

lies in the same ring of rational functions of u‘?, as the right-hand side g does.
The situation cannot be saved by a shift in the argument u in order to avoid
singularities, as we have mentioned in Section 4.3 that this procedure is not

well-defined in (€, d). In the next section we present a general algorithm of
constructing the solution of (4.15) that can embrace examples of such a kind.

4.6 General procedure of solving the equation éf/du=g

We proceed in this section with the investigation of the equation (4.16), no

longer restricting ourselves by any assumptions on the basic ring R. If some

solution of (4.16) exists, then, of course, the Fréchet derivative of g is symmetric,

so we must assume that the necessary condition of solvability (4.17) is satisfied.
For arbitrary p = p(u,u‘®,...,u®,..) put

rk p = max {i: dp/ou® # 0}.

Lemma 4.5 Let g=g(u,u™,...,u",.. ) satisfy the condition g’ = g"*. Then
(a) rk g is an even number; (b) rk dg/0u®™ < n, where 2n=rkg.

Proof Putfor brevity g, = dg/ou®,k =0,1,..., rk g. The symmetry condition
in the explicit form (4.17) can be rewritten as

Zo) - 2( 5 () (&)
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The coefficients of the corresponding orders (d/dx)* on both sides must be
equal, so

g= 2 (- 1)’<Z)g;¢-"’, k=0,1,...,tkg, 4.19)

azk

and in particular for r = rk g we have

g.=(—1)g,.

Therefore, rk g must be even. Let it be equal to 2n.
Put

m= max {rkg,+k},

0<k<2n
thenrk g, < m — k for all k. Evidently m < 4n. We will show that in fact m < 3n,
the consequence of which is that rk g,, <n, which is the statement of the
lemma.
Introduce for brevity the notation
ogs g

Ok = Gum 5 = g,

There is at least one nonzero element among the g,. Take the partial derivative
of the kth equation of the system (4.19) with respect tou™®. Asrk g, <m — o,
we have rk g% < (m — «) + (« — k) = m — k. By an application of (4.12), it
follows that

0 0g,

(a—k) —

ERCEEL outm=a

and therefore the system of equations

2n o
ge= 2 (—1)“(k)a,, k=0,...,2n (4.20)

is the consequence of (4.19).
Suppose that m = 3n+ 1. As rk g = 2n, it follows from the definition of g,
that

g9,=0 forall 0<k<n. 4.21)

By choosing from the system (4.20) only equations corresponding to odd
values of k, we get a homogeneous linear system of n equations in the unknown
variables §,, ,,...,d,,- The matrix of this system can be presented in an
explicit form for two possibilities of n (even or odd). Correspondingly the
determinant is
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(
(

for n even, and

>
Il
H

for n odd.

n+1

<n+1
(

n+1
("

n+1
("3

n+1
("3

) () (7))
) () ()

n+2 n+3
5 5

n+2 n+3

n+1 n+1

0 2
0 0 0 2
0 0 0 0O

n+3
n+2

0 0 2
0 0 0 0 2
0 0 0 00O

(

/\/‘D/\
b
“
—
N—

2n—1
2n—3

2

) (

2n
2n-3

2n

)

71

It can be shown that in both cases A # 0. This, however, contradicts the
assumption that the system (4.20) has a nontrivial solution g, . ..., d,, The



72 Dirac structures and integrability of nonlinear evolution equations

source of this contradiction is that m > 3n + 1. The conclusion is that m < 3n,
and this proves the lemma.

Now we pass to the main result of this section.

Theorem 4.6 Let g=g(u,u'?,...,u"?,...) be some element of R. Then, if the
necessary condition of solvability g’ = g'* is satisfied, the equation df /du=g
has a solution that lies in possibly an extension of the initial ring R. The
solution is given by the formula

f=fo +fit- +fn
where n=(rk g)/2, and the functions f; are constructed by the recurrent
procedure (Scheme 4.1) where S, is the operator of taking the primitive with
respect to the variable u(-
Scheme 4.1

fo=(=1)S,S,0/0u*"g —— k,=g—6f,/0u, tkk,<2n-2,

fi=(=1y"18,_,S,_,8/0u® Dk, — k,=k, — 8f,/6u, tkk,<2n—4,

f,=(=1y"3S,_.S,_0/ou*"~ 2k ——k ., =k, — 6f, /ou,
tkk ., <2n—-2q-2,

fn = SOSOa/aukn

Proof 1t will be sufficient to comment on the first step of the procedure.
According to the lemma, n = (rkg)/2 is an integer, and also dg/0u®*™ depends
only on the variables u,u',...,u™. Therefore f,=(—1)"S,S,d/0u'*"g also
depends on these variables only, and by construction,

02 JO(u™)? = (— 1)"dg/out®™.

At the same time, by the definition of the variational derivative

%=i _d Y ofo
Su =\ dx ) ou®

() -5

M\ bu o(u™)*’

it is easy to see that
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The result is that

o . 0 5fo
W"FW("_E):O’

so k, depends on the variables u,u‘?,...,u?"~ 1 only. As

YRV
<eo-(4)

is a symmetric operator along with g’, we can apply the lemma to k, to

conclude that rk k, is odd, i.e. k, depends on u,u'*),...,u?"~? only.

The initial equation with the right-hand side g, rk g = 2n is reduced in this
way to the equation with the right-hand side k,, where rk k; = 2n — 2 and we
can pass to the second step of the recurrent procedure. Obviously the solution
can be obtained as f = f, + -+ + f,. This ends the proof.

The result obtained deserves some comment. It is evident that for rings R
that are closed under the action of the operators S, of the primitive with respect
to each variable, the solution f lies in R. If, however, at some step of the
procedure we are induced to enlarge the class of functions under consider-
ation, then the solution is in some extension of R. For instance, if we consider
the equation

g:u_l

6“ X uxx
then the recurrent procedure gives
f=Inu,

which does not lie in the ring of rational functions.

The procedure described can be applied to a larger class of right-hand sides
of (4.16) than formula (4.18). Naturally, if both methods are applicable, the
results differ by an element that lies in Ker /6u. If, however, the formula of
Section 4.5 does not work, as in the case previously considered, namely

3

=y -
g=u;' —uu;’u

xx

then we must refer to the procedure described in this section to get immediately

f=3utu

4.7 Notes

The framework of formal variational calculus was developed by Gelfand and
Dikii (1975); the Lie algebra structure given by formula (4.8) was considered in
Gelfand and Dikii (1976a). The description of the canonical way to intro-
duce the complex of formal variational calculus with the help of a reduction
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procedure follows Gelfand and Dorfman (1982a). Other means of constructing
this complex can be found in Manin (1978), Vinogradov et al. (1986) and Olver
(1986).

The exposition of Sections 4.4 and 4.5 follows Dorfman (1978), where also
formula (4.18) for the solution of the equation df/du = g was first exploited in
application to integrability. The main results of Section 4.3 and formula (4.18)
in particular can be treated as versions of general results owing to Volterra
and Poincaré (see Olver, 1986). The procedure described in Section 4.6 was
proposed in Dorfman (1988).



5 Local Hamiltonian operators and
evolution equations related to them

We pass on now to concrete realizations of the algebraic theory of Chapters 2
and 3 within the framework of formal variational calculus.

This chapter deals with Hamiltonian operators (see Section 2.6) that are
represented by matrices with entries that are differential operators. Some
important classes of Hamiltonian operators, Hamiltonian pairs and asso-
ciated structures are considered in this chapter.

5.1 Matrix differential operators

We proceed to deal with the complex of formal variational calculus over the
basic ring R, that is the ring of polynomials, rational or smooth functions of
variables 4! The set of indices # = {«} below can be finite or infinite; in the
latter case we assume that ¢ is the set of positive integers. Recall that the Lie
algebra U comprises vector fields {h,,ae #}, where h,€R; the space of 1-forms
Q! is constituted by sequences {¢,,x€ #}, where ,€R, &, # 0 for a finite set of
indices (see Section 4.1).

Consider linear operators P:Q! —. Obviously there is a one-to-one
correspondence between such operators and matrices (P,4), where P4 R— R
are linear operators. We restrict ourselves to operators of the special form,

p —-N(iﬂ) —d—i (5.1)
af — s paﬂi dx ’ .

where p,4; lie in R, and d/dx is given by (4.1). We do not require that the orders
of the operators N(a, ) should be bounded. Operators having the matrix form
(5.1), are called matrix differential operators below.

It can easily be demonstrated that the coefficients p,g; = p,,(#) are uniquely
determined by the operator P.
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As the pairing between U and Q! is nondegenerate (see Section 4.1), the
conjugate operator is defined uniquely.

Evidently, the conjugate to the operator (5.1) is the operator P*: Q' -9,
with matrix entries

N(B,a) d i
(P*)aﬂ =(Pﬂa)* = Z (_d—> opﬁal

i=0

In other words, P* is a matrix differential operator

. N(B,a) . d\¢
P )aﬂ_ i;) paﬂi(a;)’

N(B,a)
paﬂl Z (—1)"() (k—1i)

are the coefficients of its entries.
In particular, if the set of indices _# consists of one element (the one-variable
case), we consider differential operators P: R — R of the form

N d i
F= igo P (a;) ’ 2

where

where p,eR are arbitrary.
The conjugate P*, according to the above, is

=5 (2 () ()

From this formula it is easy to find the conditions on P being symmetric
(P* = P) or skew-symmetric (P* = — P). Evidently, an operator P given by
(5.2) can be symmetric only for N even and skew-symmetric only for N odd. It
is of use to have at hand Table 5.1 which lists symmetry and skew-symmetry
conditions on the operators (5.2) of low orders.

Looking at these formulae we notice that a symmetric operator is uniquely
defined by its coefficients with even numbers and a skew-symmetric operator is
uniquely defined by its coefficients with odd numbers. A recurrent procedure
can be described that gives us the coefficients {c,;} of the formula

N

- k—i

= Z Ckil’;( 9
k=i

for the symmetric case, where i is even and k odd, and also the coefficients {d,;}
of the formula

N
= % duplt™?
k=i
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Table 5.1
Symmetric Skew-symmetric
N=1 Po= %P(xl)
N=2 pi=r%
N=3 po=13p%"—1p%’
P2= %P(al)
N=4 pi=py —p¢
pP3= 21’:1)
o e
P2= Zp(an —2Ps
P4s=12Ps
N=6 py=p3 — PO +3pg’
p3=2ps’ — 5p%"
Ps= 3P(61)
N=1 Po= 100~ 10+ 10— 340

3 (1) _5 (3) 21 (5)
P2=32P3 —32Ps +73Pp7

for the skew-symmetric case where i is odd and k even. We do not go into
further details as this procedure is not needed in the presentation below.

5.2 Hamiltonian conditions in an explicit form

This section describes the condition for an operator P of the form (5.1) to be
Hamiltonian, in terms of its coefficients. First we introduce an operation in
some sense dual to the Fréchet derivative (see Section 4.2). Namely, for a linear
operator P:Q! - A introduce for arbitrary £e! another linear operator
(Dpé): U — A by the formula

(Dp&)h = (P'h)C,

where P’ is the Fréchet derivative. For the matrix (5.1), it takes the form

1) PP d\
o3 )(2)

y
»J au;j)

So the operator D¢ is also a matrix differential operator with entries

(Dpé)ep=Y. %5“’ <i>1 (5.3)

i k4
i\joy Oup dx
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Note that for arbitrary P from the formula (P¢,, £,) = (¢,, P*&,) after taking
the Fréchet derivative in the direction of any heQ it follows that
((P'h)&;,85) = (E1,(P*Yh)S,), and so we have

(Dpf1)*£z = (Dp'éz)*él- (5~4)
In particular for a skew-symmetric linear operator H: Q' — 2 we have the
equality

(DH£1)* fz = - (Dﬂéz)*a (5.5

for arbitrary ¢,,¢,eQ.

Now we pass to formulating conditions for an operator to be Hamiltonian.
Depending on the situation, it becomes convenient to use one of the equivalent
conditions enumerated in the following theorem.

Theorem 5.1 Let H:Q! - U be skew-symmetric. Then the following condi-
tions are equivalent:

(a) H is a Hamiltonian operator;
(b) for arbitrary ¢,,&,, £,€Q! there holds

(H'(H&,)¢5,¢3) + (cyel)=0;
(c) for arbitrary ¢,,&,eQ! there holds
Dy &)HE, —(Dy&)HE, = H(Dy §5)*¢y;
(d) the expression
Dy &)HE, +3H (Dy &1)*E,

is symmetric with respect to ¢,,&,eQ!;
(¢) H can be presented in the form H = K — K*, where

((Dg&1)KE, — K(Dg&,)*E4,¢5) + (perm.) = 0

where (perm.) means terms with indices permuted, taken with corre-
sponding signs;
(f) in the case of a matrix operator with entries

o N(a,B) d\
= 1= €R,
ap Zo paﬂl(dx>’ paﬂle

i=

the system of equations
tlayij = tj,yaji’ (56)
must be satisfied for arbitrary 4, «,y€ #,i,j=0,1,2,..., where t,,,;€R1is

the coefficient of the term g%’q%’ in the bilinear form

Ty (d1,92) = Y. (D%, 9:1)H 95 + 5H 5(DY q,)* 92)s
B
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where

20pif dY
B = (i) ayi
Da.q ,z;‘q ou (dx) )

Proof First we must check the equivalence of conditions (a) and (b). By
definition, H is a Hamiltonian operator iff the Schouten bracket [H, H]
vanishes. Expressing the Lie derivatives in [H, H] in terms of the Fréchet
derivatives (see Theorem 4.2) we get

0= (Lyg, 62, HS3) + (cycl) = (§5(HGy) + (HE )™ &5, HS3) + (cycl)
= (83 (HE,), HS,) + (&5, (HESy) HEy) +(cycl)
= (62 (HE,), HE3) + (G2, H' (HE3)S,) + (82, HE (HE3)) + (cycl)
=(H'(H¢,), &5, ¢3) + (cycl),

which is the equality of (b).
Now, condition (b) can be rewritten as

((DH§1)H£2, 53) + (Hél’(Dﬂéa)* 52) - (H (Dﬂéz)*éh 53) =0.

Using the skew-symmetry of H and equality (5.5), convert this equality into

((Dufl)Héz’ 53) - ((Dﬂfz)pr 53) - (H(Duéz)*év 53) =0,

which must be valid for arbitrary £,eQ!. As the pairing between U and Q' is
nondegenerate, (c) follows. The converse is also evident, so (b) and (c) are
equivalent.

That (c) and (d) are equivalent follows immediately from (5.5).

If H is presented in the form K — K*, then the direct calculation of the
equality of (b) relying on (5.4) leads to condition (e). Conversely, if H is
Hamiltonian, then for K = H/2 there holds (e). Thus, (a) and (¢) are equivalent.

The last statement is the equivalence of (f) to (d). If we write down (c) in an
explicit form, it is reduced to

Z ((Dfl‘y éy)Hﬂa 'h + %Hﬁ.ﬂ (Dﬁ', éy)* na)

a,B.y

= z ((Dzﬂ{l. na)Hﬂy éy + %H).ﬂ (D%y. na)* éy)y

ap,y

which must be valid for arbitrary sequences {£,} and {#,} of elements of R. This
condition must be valid in particular for pairs of sequences where g, is at the
place numbered y of the first sequence and g, at the place numbered a of the
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second one, all other places being occupied by 0. It follows that

T}lay (qu qZ) = T}lya (qZ! ql)

for arbitrary triples of indices 4, a, y and arbitrary q,, g,€ R. The consequence is
that (f) holds. The converse is also evident. So the theorem is proved.

Note that after the elements ¢,,,; are expressed in terms of coefficients p,;; of
the matrix differential operator H, equality (5.6) turns out to be a system of
partial differential equations on p,,,. This is a quadratic system that is the
infinite-dimensional counterpart of the system mentioned in Section 2.6 on the
coordinates of a bivector field on a finite-dimensional manifold

¥ (6H o OH* . OHM )

ak ai aj
. 6x“H +6x“H +6x‘H

=0.

Similarly, the skew-symmetry condition, that is a system of linear partial
differential equations on p,;,

N(B. @) . k »
Papi __ Z (—1t ( i)l’(pka;‘)’
k=i
is the infinite-dimensional counterpart of

Hij - _ Hﬁ,

Remark To avoid possible misunderstanding, it must be pointed out that we
do not follow the laws of tensor calculus in the present text. Namely, H being a
counterpart of a bivector field should have two upper indices, vector fields
he¥U should have been endowed with upper indices, and 1-forms should have
inferior indices. However, we neglect putting the indices into their proper
places for the reason that the presence of the symbols of higher derivatives
along with upper indices can lead to still more confusion. The tensor nature of
the objects involved can be easily traced when one keeps in mind that U is
constituted by counterparts of contravariant objects, and Q' by counterparts
of covariant ones.

5.3 First-order Hamiltonian operators in the one-variable case

In this section we restrict ourselves to one dependent variable u and describe
all Hamiltonian first-order differential operators. Any skew-symmetric first-
order operator is

H=p" 4+ 2pa(ix

(see section 5.1). Now, using criterion (d) of Theorem 5.1 we find the conditions
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reflecting the fact that H is a Hamiltonian operator. We have

d
(Dyé)HE, +3H(DyE )*E, = (25(11) +& a;) P’ (& p'" +2p&Y)

+ (p“’ +2p %)P’* (£2,¢") + 0(81, o),

where p’ = 3" (0p/8u'?)(d/dx) is the Fréchet derivative of p, and ¢ is symmetric
with respect to £,,&,. The expression on the right-hand side of this formula
must be symmetric with respect to &,,&,.

Suppose rk p = n, where rk p = max; {i: dp/ou' # 0}. Comparing the coeffi-
cient of the term &, £#*2), which is 2p dp/ou™ with that of £¢'*2 ¢,, which is
2(— 1)™ 9p/ou™, we conclude that n is even.

Now, if n#0, the coefficient of the term & ¢+ 1 which is 6p dp/du™, must
be equal to that of & * D EWD), which is 2(n + 1)p dp/du™. The result is that either
n =20, or n =2, which means that p = p(u, u™, u‘?).

We can write down the formula of the criterion (d) explicitly, which, by
equating coefficients of £ &§) and £ &9, leads us to a system of 6 equations. It
turns out that all of these equations are equivalent to a single one, namely

2bp +3cpV —2pcV =0 (5.7

where b = dp/du'?), ¢ = dp/du'®. Substituting explicit expressions for b, c, p?),
¢V, we can represent (5.7) as

op dp (op op dp
25wt 3 (5;““’ T gt

azp azp 62p
—2p <6u6u‘2’ ut + D ou® u® + o) u® =0

Taking the partial derivative with respect to u®, we obtain
op \? 0%p
3(614(2’) = gy
and it follows that
P = (Cloe ™)+ (o, u)u?) 2

where { and # are arbitrary functions of u,u‘!). Substituting p into (5.7), we
deduce that

N 40n

u —
ouV ou’

which means

=, (), i =)

2
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for some function v = v(y, z) depending on two variables. Finally, p must be of

the shape
(12 (1))2 -2
(D))

It can easily be demonstrated that while v runs through the set of all
functions depending on two variables, the denominator of (5.8) runs through
the set of all variational derivatives 6®/6u = 0®/0u — (0®/0uV)), where
® = ®(u,u'?)) is arbitrary. Thus the result obtained in this section can be
formulated as follows.

Theorem 5.2 The general form of a first-order Hamiltonian operator is
pM + 2p(d/dx), where p = (6®/6u) "2, and @ is an arbitrary function of u, u‘®.

The obvious remark is that if we restrict ourselves to coefficients lying in the
ring of polynomials, then only p = p(u) are appropriate; for the ring of rational
functions, any rational v(y, z) can be used in (5.8).

5.4 Third-order Hamiltonian operators

We proceed with calculations similar to the above, this time for the case of
third-order operators. According to Section 5.1, the general shape of the skew-
symmetric operator under consideration is

2 3
H=(p(1’—q(3’)+2p:—x+6q(”<:—x) +4q<(%> ,

where p and q are arbitrary elements of R, g #0. We are looking for the
restrictions on p and q that guarantee that H is a Hamiltonian operator.
Again we refer to criterion (d) of Theorem 5.1. We have

(Dyé)HE, + %H(Dn‘fl)*‘fz = 51(17(” - qm)’Héz + Zf“’p’H?jz
+ 652 (qV) HE, + 4P q'HE, + Hp™* (8V¢,)
+3H(q'V)*(EPE,) + 2Hq'*(EPE,) + 0(¢4, &),

where p’ = X (dp/0u®)(d/dx)’, q’ = 3 (8q/0u)(d/dx)' are the Fréchet deriva-
tives of p and g respectively, and ¢ is symmetric with respect to &,,&,.
Suppose that rkp=n, rkq=m, which means p=p(y,...,u™),q=
q(u,...,u™). First we find out which n and m are appropriate. Put p,=
op/ou™, q,, = 8q/0u™. If n > m + 2, then the coefficient of the term &V EP*3) is
12p,q, and the coefficient of &y'*3¢EW is 4(n + 3)p,q, which implies n=0,
contradicting n > m + 2. If n < m + 2 then the coefficient of & &5"*5) is 0 and
that of &m* S ¢ED is (— 4m — 24)q,,q, which contradicts g,, # 0. It follows that

n=m+2.
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By equating coefficients corresponding to the terms &, €54 and £+ &,
we obtain

4p,— a4)a=4—1)"p,q+ 12(— 1)"*1q,.g + 8(— 1)"q,q,

the consequence of which is that there are two possibilities; either (a) n and m
are both even, or (b) n and m are both odd, p, = gq,,
We proceed by equating corresponding coefficients. The terms &NER+
and &0 3¢ Dgive
8P, + 4 — 1)"pug = 4~ 1)" (n + 3)p,q + 12(= 1)"* 1 (m +4)g,,9
+8(= 1)"(m + 3)qmq
and for the case of n and m being even we conclude that

_n+4

p'l n qm'

The terms EPEP*+2 and £+ 2 &P produce the equation

249,49+ 4(— 1)"(n +3)p,q + 12(— )" ' q,q

2 2
=4(—1)"(”+3)pnq+12(—1)"'“("; Jaua+8-17(" 3 Jaut

and for the case of n and m being odd the only possibility is
(b) n=3 m=1, py=gq,

Finally, the terms EPEF* D and E+ DED give

3
16q,,9 + 4(— 1)"<n; )pnq + 12(= )" (n + 2)q,,9 + 8(— 1)"q,,q

3
L (e e e ) TR T S (S T

which means that for n and m both being even there are three possibilities:

(ae) n=6 m=4, pc=3q,;
(a,) n=4, m=2, p,=2q,;
(a,) n=2, m=0, p,=3q,.

Our considerations lead us to the conclusion that for any third-order
Hamiltonian operator rk g and rk p cannot exceed 4 and 6 respectively. At this
stage we can calculate all the terms of the bilinear expression under consider-
ation explicitly, thus producing the general system of equations on n, m. As the
calculations are tiresome for higher n and m, we restrict ourselves here to the
case (a,), p=p(u, u™,u®) q=q(u), in order to describe the corresponding
family of Hamiltonian operators.
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Put for brevity

op op o _. %

=4 T 7=0 Tx=6C =

ou outV ou? ou

The system that is obtained by the procedure of equating coefficients of

EPEY and EPEY consists of 12 equations. However, as in the situation of the
preceding section, these equations are not independent.

Omitting intermediate calculations, we present the basic system of 3 equa-
tions equivalent to these 12 equations:

c—3d=0

bg — 6qd(1) + 3dq(1) =0

bVgh — 2gb@ — 3gMd@ 4 644> — pp — 2dpV)
+4pd™) — g + 242 =0,

=d.

From the first two of these it follows that
p=a+BuV) +3qu?,

where o = a(u), f = f(u). Substituting this expression into the second equation,
we get

Now the third equation of the system takes the shape
2q%a" — 3q'qe’ +(39"* —29"q)x =0,

and it follows that

u

a=Cqg+ Cij g *(y)dy,

0

where C, and C, are constants. The final result can be presented in a more
convenient form if we put

d d)3
H=ga°g+h(a> oh.

In this presentation the restrictions obtained above can be expressed by the

formula
lldy
=h |C;+C —,
=N ZJoh(w

where h = h(u) is an arbitrary function. Thus we have a complete description of
the class of Hamiltonian operators corresponding to the case (a,), and the
following result is valid.
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Theorem 5.3 There exists a family of Hamiltonian operators of the form

_ u dy do u dy i 3 .
H—h(JC1+CZIOWa \/CI+C2_[OE(_y—)+<dx>)h (5.9

where h = h(u) is an arbitrary function, and C, and C, are arbitrary constants.

In spite of the fact that (5.9) represents only the simplest case (a,), it is rich
enough to produce a nontrivial result in the integrability theory of nonlinear
evolution equations. We consider this result in the next section.

5.5 The family of equations of Korteweg—de Vries
and Harry Dym type

Put h = 1in the formula (5.9) to obtain a two-parameter family of Hamiltonian
operators

d)? d ,
HCx.C1= a +(C1+C2u)a+5czux.

By the criterion of Section 3.5, any two operators of this family constitute a
Hamiltonian pair. Moreover, by the same criterion any operator H¢, c,
constitutes a Hamiltonian pair with any operator K, ., where

d
Kp, p,=(D, + Dzu)a +1D,u,.

The question arises: is it possible to use these pairs in applying the Lenard
scheme of integrability described in Section 3.8. The answer is in the affirm-
ative and leads to the construction of a four-parameter family of integrable
equations that contains two widely known examples, namely the Korteweg—
de Vries (KdV) equation

u,=6uu, —u,, .

and the Harry Dym (HD) equation

“=(Z.

which is sometimes encountered in the literature transformed to u, = uu_,,.
We pass to the construction of this family. Put for brevity

ul = Cl + Czu,
U, =D1 +D2u,

where C,,C,,D,, D, are constants, C3 + D2 #0,D? + D2 #0. Consider the
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differential equation of the form

d 2 d 2
225 ) e () — e+ auer =1 (5.10)

with the spectral parameter A. This equation has a solution in the shape of a
formal series

E= i Ckl_(Hﬂ,
k=0

and this solution is unique. In fact, by substituting the formal series into (5.10)
we obtain a recurrence formula

Cme1 =343 Z (&6LP - &EIEY +du, & 8) —ud Z &l

k+l=m k+l=m+1
kiz0 k>0

Taking the x-derivative of (5.10), we get
d\? d
b §+4(u1+lu2)a§+2(ul+lu2)§=0,

which can be, in turn, presented in the form
K6k+1=H§k’ k=0a1a"- (5.11)

d\? d
H —<a) —4“13—21‘1;

K=4u2dd +2u2x

where

The operators H and K, according to the above, constitute a Hamiltonian
pair, and (5.11) is nothing other than the Lenard scheme generated by H and K
(Scheme 5.1)

Scheme 5.1

h_,=0
x O

-1
H 5- 1—2“2

—“1(16“2 Upx — 4“2 uZxx uy “1)/

_1l,-45 -3 1,-2 -1
$o =3aly “(Tgly "Ugy — gz “Ugpe — Uy Uy)
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Note that £_, and &, are easily checked to be variational derivatives, so we
arein the starting position for applying the Lenard scheme. The basic ring R in

this particular case is the ring of rational functions of \/u—z The results of
Section 3.8 guarantee that &; in the scheme must be a closed form: d¢;=0.
However, as the cohomologies H'(Q) are nontrivial, this does not necessarily
mean that the ¢, lie in the image of d. We check this fact directly by showing
that each ¢, is a variational derivative of some f;, as follows.

Proposition 54 For arbitrary i > 0 there holds

o

ci =$fb

where
Z Ci(—1 Dy Yi—a—duyé,_, if D,#0,C,#0,
fi= —D i—9)'u,¢, if D,#0,C,=0, (5.12)
—D,C;Y i+, if D,=0,C,#0.
Proof Put v=u, + Au,. By applying d to the equation (5.10) we get after
multiplying by & ~2(0¢/8A) and simple transformations

_ -2 a_é_ - acxx -2 aé aé aé
( 2¢ é*"az ¢t 7 +2¢ é"al+8é ) >d§+4aldv—0

Taking the derivative of (5.10) with respect to 4, we find that the expression in
brackets in this formula is equal to —4(dv/dA). Thus (0v/0A) d€ = (0&/0A) dv, i.e.

0
d(u,8) = a((cz + AD,)¢) du.

In terms of variational derivatives the equality obtained converts into

0 0

55 128) =77((Co+AD,)%).
Finally, for &, we deduce from this formula that

o
Cylio +Dy6=—(—%) E(“zfi)-

This proves our proposition for C, =0, D, #0, or for C, #0, D, =0; in the
general case C, #0, D, # 0 the induction with respect to i finishes the proof.

Now all the conditions of Theorem 3.21 are satisfied and moreover we can
present the explicit formulae of conservation laws, as follows.
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Theorem 5.5 For arbitrary constants C,,C,,D,,D,,C3+D%+#0,D? +
D2 #0 the evolution equation

ut=ug(l_s(’uZ_au%x_%uZ_ZMZxx—uZ_lul)x (513)

where u, =C, + C,u,u, = D, + D,u possesses an infinite hierarchy of higher
equations of the form

u = 4udWic), k=2,34,...,

with mutually commuting flows. It also has an infinite sequence of conserva-
tion laws [ f;dx, where f; are given by (5.12). These are conservation laws in
involution of the equation (5.13), as well as of all its higher analogues.

We must show that the KdV equation and the HD equation belong to the
family of equations under consideration, which would justify the name of this
section. It is demonstrated by the following examples.

Example 5.1 Lenard scheme of the KdV equation. It is obtained when we
put C, =D, =0,C, =D, =1, so that u; = u,u, = 1. The coefficients ¢; cal-
culated recurrently are

éo = %’

61 = - %u,

52 = '1'13(31‘2 - uxx)s

&y = — &(10u® — 10uu,, — 5uZ + u®)

The corresponding Lenard scheme for the KdV equation is Scheme 5.2, where

Scheme 5.2

H =(d/dx)? — 4u(d/dx) — 2u,, K = 4(d/dx) is the Hamiltonian pair associated
with the KdV hierarchy.
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Example 5.2 Lenard scheme of the HD equation. In thiscaseput C, =C, =
D, =0, D, =1, s0 that 4, = 0,u, = u. The coefficients ¢; are

—21.-%.2 | 1155 -2 4 462 -4 2 I | I IR )
62_25 u uxx+40§6u uy 1024 Y% uxuxx+64u Uplyyx — a4 U

The corresponding Lenard scheme is Scheme 5.3 where H = (d/dx)3,
Scheme 5.3
h_ =0

o=t =2

H ou Su
hO = %(u - i)xxx/

N 5 -3.2 1 -3 d s -3 é
Co=au Uy — 16l 7uxx=_(_ﬁu uy +gu zuxx)=_f0
H ou ou
5 -12 1, -3
hl=(§u qu_ﬁu qux)xxx'\x
21 -3 2 1155 13 4 _ 0
$1=7336U Uy, + 2006Y Tux+"‘=af1

K =4u(d/dx) + 2u, is the Hamiltonian pair that generates the HD hierarchy.

5.6 Infinite-dimensional Kirillov—Kostant structures,
KdV equation and coupled nonlinear wave equation

In this section we return to the many-variable case; the dependent variables
are enumerated by a finite set {0,1,...,n} or an infinite set {0,1,2,...} of
indices. A full description will be given of all Hamiltonian matrix differential
operators H = (H;;) such that their coefficients depend linearly on u{’,

Hy= % a5 (5.14)

k,l,m

where af;,, are constants.

Instead of the collection of af,, it is convenient to introduce another
collection of constants c¥

ijap as follows. Consider the bilinear form

(HS,n) = JZ Hij{j'li dx, f,ﬂEQl.
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By throwing over d/dx according to the general rule (see Section 4.1), we get

(Hé, 7’) - fz uk( uaﬂé(a)ﬂ(m> d
ij,a,p

where

uuﬂ Z( 1)ﬂ+q<ﬁ+q>aﬂﬂ+qa q

constitute the new collection of constants. We pass to the basic result of this
section.

Theorem 5.6 Endow Q' with a binary operation by putting
[&nli= Z c?jaﬂ fﬁ”nﬂ-’”- (5.15)

iJj.a,p

Then H of the form (5.14) is Hamiltonian iff (Q',[ , ])is a Lie algebra.

Proof From the skew-symmetry of the operation (5.15) obviously follows the
skew-symmetry of H. Conversely, if H is skew-symmetric, we have

J‘Z 9.,¢p“k§(”'7§m dx =0,

where 0%,; = ck,5 + %5, That means in particular that for arbitrary i,j, s, I the
element ZO,,,,,u,,u‘“’u‘f must lie in the image of d/dx. Take the variational
derivative of this element with respect to arbitrary u,,k #s,l, which must
vanish by (4.4). It follows that 6% {jap = O for arbitrary i, j, a, B, k, which implies
skew-symmetry of the operation (5.15).

Now refer to the Schouten bracket [H, H ]. Our goal is to demonstrate that
[H,H] =0 is equivalent to the Jacobi identity of the operation (5.15).

For brevity denote the vector field with coordinates {u,} by u. The Lie
algebra U acts on the space of all basic objects g, such as forms, operators, etc.
by

ho =d'h,

where ¢’ is the Fréchet derivative introduced in Section 4.2. In the same way A
acts on the basic ring R by the formula

=3 po.

aa) by

As follows from the identity

0 df__39
oud dx | quf-1
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the action of A on R commutes with d/dx, i.e.

d d
(s )= 200,
The proof of our statement is based on two simple observations. The first is
that
hu = h,

which is obvious, and the second is that

h(&n]=[h&n]+[& hn]

for the bilinear operation of the form (5.15). The latter is the consequence of the
fact that [£, ] is bilinear with respect to the coordinates of ¢ and #, and d/dx
commutes with the action of .

From these two observations it follows that

((hH)E,,&5) = h(HE,,&,) — (H(RE,),&,) — (HE,, hEy)
=h(,[£,,&,1)— W, [hE,,&,.1) — @, [€,,hE,1) = (B, [£,, &,D).
By Theorem 4.2, the Lie derivative L, is given by the formula
(Lhéa a) = (hc7 a) + (67 ah)y hr aE‘lI, éte,
and therefore for the Schouten bracket we have
—3[H,H1(£,,¢5,&3) = (Lyg, &5, HES) + (cycl)
=((H&,)E,5, HE3) + (&5, (HE3)H)E,
+ (82, H((HE3)E,)) + (cyel)
=(((H¢3)H)E, &,) + (cycl.).

The right-hand side, according to the above, is equal to

(HE3,[81,€,1) + (eyel) = (u, [£5, [£4,¢,1]) + (cyel).
The final result is that for the operators of the shape (5.14)

[H,H](¢,,¢5,&3) = 4, L[4, €21, &3] + (cyel)),

so if the Jacobi identity is satisfied for the operation (5.15) then [H, H] =0, i.e.
H is a Hamiltonian operator. The converse is also true, and can be easily
demonstrated by an argument similar to that applied at the beginning of the
proof. Thus the theorem is proved.

The result obtained means that Hamiltonian operators of the shape (5.14)
are in one-to-one correspondence with infinite-dimensional Lie algebra struc-
tures of the shape (5.15) on Q!. The symbolic notation

(HE,n) = u,[S,n]) (5.16)
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shows that the Hamiltonian structure associated with H must be considered
as an infinite-dimensional analogue of the Kirillov—Kostant structure (see
Kirillov, 1972). It must be noted, however, that the Lie algebra structure (5.15)
is given on the space constituted by 1-forms, so that U takes the part of the
coalgebra (Q!)*. The Lie algebra structure of  itself becomes insignificant in
this particular situation. The element ue ¥ involved in (5.16) participates as the
generic point of the coalgebra (Q)*.

Now consider operators of a more general shape, with matrix representa-
tion H + K = (H;; + K;;), where H;; are given by the formula (5.14) and K;; are
constant differential operators:

d m
Ky=byn, (d—x) (5.17)

The question arises: what are the restrictions on the coefficients of H and K
which guarantee that H 4+ K is a Hamiltonian operator?
Recall that for constant K we have [K, K] =0, and thus the condition

[H,H]+2[H,K]=0

for the Schouten brackets is equivalent to the fact that H + K is a Hamiltonian
operator. One can observe, however, that for the operators under consider-
ation this formula means that [H,H] =0 and [H,K]=0.

In fact, the expression of [H, H ] (£, 7, {) contains linear combinations of the
terms u,£PnP (", and the expression of [H, K] (&, 1, {) can contain only terms
of the form £y P (M. As &, n,{ are arbitrary, it can be deduced that none of the
terms of the first type can cancel with any term of the second type, and so we
must have

[H,H]=0,[H,K]=0.

This formula means that H+ K is a Hamiltonian operator iff H is a
Hamiltonian one, and also H and K constitute a Hamiltonian pair. The
answer to the question posed is given by the following theorem.

Theorem 5.7 An operator of the form H + K, where H and K are defined by
(5.14) and (5.17), respectively, is a Hamiltonian one, iff the operator H
generates a Lie algebra structure on Q!, according to the formula (5.16), and K
generates a skew-symmetric bilinear form <{¢,n) = (K¢, 5) that is a 2-cocycle,
ie.

&N+ <81, 8> +<[LEmy =0 (5-18)
for arbitrary &,5,{eQ.

Proof Taking into account the result of Theorem 5.6, we have to find only
the condition equivalent to the fact that H and K constitute a Hamiltonian
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pair. By criterion (b) of Theorem 5.1 this condition can be presented as
(H'(K{)&,n) + (cycl) = 0.

By the property of H that has been already exploited in the proof of
Theorem 5.6,

(H'(KO)E,m) = (KE [&,n]) =<[&n1.0)
and (5.18) follows immediately. The converse is also evident.

We illustrate the results obtained in this section by two examples of the
theory of nonlinear integrable evolution equations.

Example 5.3 Infinite-dimensional Lie algebra associated with the KdV equa-

tion. In this example we consider the one-variable case, so that Q! is isomorphic
with the basic ring R. Introduce the Lie algebra structure on R by putting

(&, n]=&Wn —En'D.

The Jacobi identity can be easily checked. There is a one-parametric family of
2-cocycles on this Lie algebra given by

&mi= f(i“’ +A{M)ndx

where AeR is the parameter. By Theorem 5.7 the corresponding operator, that is

L PN
dx udx dx 4w

is a Hamiltonian one for arbitrary A. Thus arises the Hamiltonian pair

d\3 d
H—(a) +2ua+ux,

d
K=, (5.19)

which produce, as we have already demonstrated in Example 5.1, the KdV
hierarchy (the insignificant distinction in coefficients can be eliminated by a
scaling transformation). The Lenard scheme corresponding to the pair (5.19) is
Scheme 5.4, where h; are higher analogues of KdV, and [ f;dx are conservation
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Scheme 5.4

hy=u® + 2uu + 10uu,, + Suu,,
\ 5
/62 =u(4)+%“3 +%“;2c+ Su“xanfz
laws in involution with respect to both H- and K-structures that suit any
equation of the KdV hierarchy.
The next example is a generalization of the construction presented above to

the two-variable case that produces the so-called coupled nonlinear wave
(CNW) system (Ito, 1982).

Example 5.4 Infinite-dimensional Lie algebra associated with the CNW
system. In the case of two dependent variables u and v, both U and Q! are
isomorphic to R@ R, where R is the basic ring. Consider a bilinear operation
on the space Q!:

- ¢y (’71>:|= (C " —Crl“’)
&onl [('52)’ N2 2 5(21)'71"5171(”

It can be checked that this operation endows Q! with a Lie algebra structure.
Also by a direct calculation it can be proved that the bilinear form

CEmd = (&, + M, + EPny))dx

is a 2-cocycle on this Lie algebra for any value of the parameter A. By
Theorem 5.7, a one-parametric family of Hamiltonian operators arises,



"" Local Hamiltonian operators ' ' 95

namely
((d/dx)3 + 4u(d/dx) + 2u, + A(d/dx) 2v(d/dx)>
2v(d/dx) + 2v, Ad/dx) J°
It follows that the two operators
He ((d/dx)’ + 4u(d/dx) + 2u, 20(d/dx)>
- 2v(d/dx) + 2v, 0

and

K= d/dx 0
0 d/dx
constitute a Hamiltonian pair. By choosing the seed elements in an appropri-

ate way, we produce the Lenard Scheme 5.5 where @ = (4, v), h, corresponds to
the CNW system

U, = Uy, + 6uu, + 2vv,,
Ut = 2(uv)x3
Scheme 5.5

K
2 2
\£l=<un+3u +v>=£<&+u3+uvz)5%fl

2uv

h; are the right-hand sides of its higher analogues, and | f;dx are conservation
laws in involution with respect to both H- and K-structures, suitable for the
CNW system and for all its higher analogues as well.
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It is worthwhile to note that the possibility of proceeding with the Lenard
scheme, within the basic ring R, can be easily demonstrated. In fact, for
arbitrary i we have 0 = (h,, £ _,) = (h;, £ _,) by the general theory (Section 3.8).
It follows that the coordinates of h; lie in Im (d/dx), and so K ! is applicable
inside R@R.

5.7 Structure functions; shift of the argument and deformations
of Kirillov—Kostant structures

The operators considered above are completely defined by the collections of
coefficients a¥;,, (or cf;,,) and b;;, in (5.14) and (5.17). It is natural therefore to
express the statements of Theorems 5.6 and 5.7 in an explicit way in terms of
these coefficients. The goal of this section is to describe a method that provides
a useful tool for calculations.

Consider a set of elements e;; enumerated by a pair of indices, of which i
runs through the set ,# which is a finite or an infinite subset of all integers, and
Ais a parameter that can be either real or integer. Let W denote the linear space
spanned by e;;. Let there be given some polynomials ¢¥;(4, ) of two variables,
enumerated by triples of indices i, j, k € #. Introduce a bilinear operation on W
by defining it on basic elements

leinejl =2 084 We 14, (5.20)
k

Obviously, for this operation to generate a Lie algebra structure in W it is
necessary and sufficient that there be satisfied two conditions that correspond
to skew-symmetry and the Jacobi identity:

&AW = — ok, 2),
(5.21)

Y 050 WL (A + 1, v) + (cycl.i7¥) =0,

where the cyclic permutations act on (i, 4),(j, #) and (k, v) as on inseparable
pairs.

By analogy with structure constants of finite-dimensional Lie algebras, we
call the polynomials ¢f;(4, u) the structure functions of the Lie algebra W
corresponding to the bracket (5.20).

Now let us refer to the operator H of the form (5.14). The following result
allows us to express the condition of being a Hamiltonian operator directly in
terms of the coefficients cj;,; which can be obtained from the associated
bilinear form

(HE,n) = J‘Z“k( ZC?japCE“’ﬂﬁ-”)dx-
k
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Theorem 5.8 The operator H of the form (5.14) is Hamiltonian iff the
polynomials

‘Pfj()w w= Zcfjaﬂ A uf

are structure functions of a Lie algebra.

Proof Let (p{‘j(,l, ) be structure functions, i.e. they satisfy (5.21). So we have
Y ckapAiuP + 3 cpigutAf =0,
Y CliapChiaA P (A + W)V + (cycl. 5 %) = 0.

Then for arbitrary & = {¢,}eQ?, n = {n;}€Q*, { = {{;} Q" the following equal-
ities are satisfied:

Y cliaplinP + Lchiupn P &P =0,
Zcfjaﬂc;kh(ﬁ f’a)n‘(]ﬂ))(‘”Cg) + (CyCl- ﬁr n, C) = 0'
In their turn, these equalities mean that the operation
(& nl= Zc{"jaﬂ & 'l&m

endows Q! with a Lie algebra structure. By Theorem 5.6, the corresponding
operator H is Hamiltonian. The argument can also be taken in the reverse
order and this finishes the proof.

We see that the description of Hamiltonian operators with coefficients
linearly depending on u{’ (which have been interpreted as infinite-dimensional
Kirillov-Kostant structures) is reduced to the description of various Lie
brackets of the form (5.20) on the standard space W. Also the Hamiltonian
operators considered in the previous section, which are obtained by adding a

constant operator K with
d m
Kij=zbijm<a> ’

can be described in terms of W. Namely, consider a collection of polynomials
bi(A) =Y by, A™

Theorem 5.9 The operator H + K, where H and K are given by (5.14) and
(5.17) respectively, is Hamiltonian iff the ¢f(4, ) corresponding to H are
structure functions of a Lie algebra, and the bilinear form defined on the basic
elements by the formula

{eipep)= bij(u)52+y (522)

is a 2-cocycle on this Lie algebra.
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Proof Takinginto account the statement of Theorem 5.7 we must prove that
for the bilinear form {&,n) = [Xb,, £ n,dx the conditions

&my=—<n),

are equivalent to the fact that on W there exists a 2-cocycle given by the stated
formula.
The explicit expressions are

JZ bijmfy")’hdx = J_ Z bijm"y") &dx,

IZ bis (Y. €TiapE PP dx + (cycl) = 0.

Formally put ¢; = expAx,n; = exp ux, {, = exp vx. Then it follows that

Zb,.jm/l’”= _Zbﬁml»‘ma A+ u=0,
Y birsCliapA WP (A + ) + (cycl. j5) =0, A+ pu+v=0.

Auv

The formal trick we used is purely illustrative though the equivalence stated is
true and can be checked directly. Now it is easy to see that the first equality
means that

eir €y = — <€ €2)
for the bilinear form defined by (5.22). As for the second one, due to the validity of
birsCliap A M (A + 1 = 01504, Wby, (A + 1) = — @74, Wby (v)
= —oLhule i peny = —lem el e
for arbitrary 1+ u + v =0, it can be written as
CLei€jul e + (eycl. ;15 =0,

which is the 2-cocycle property. The converse statement can be proved by
similar arguments.

This result explains the property of being a 2-cocycle on W. There is a
subclass of 2-cocycles constituted by coboundaries, i.e. of those bilinear forms
{,> that {a,b) = — 0([a,b]), where 0 is a 1-cochain (see Example 2.1). The
problem of explaining this requirement arises. The answer is given by the
following theorem.
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Theorem 5.10 The transition from the 2-cocycle ¢,»> of the shape (5.22) to
another 2-cocycle {,) + ¢,), that is cohomologous to the initial one, corre-
sponds to the change of variables in the coefficients of the Hamiltonian
operator (5.14),

u,—u, +0,

where 0, are constants. The cocycle {, ), is then the coboundary of a 1-cochain
0 given by
0, 1=0,
(e = {0’ 1 £0. (5.23)

Proof From (5.15) and (5.16) if follows that

d\* d\#
Hij=zc‘,;iﬂa(_a) °“k<a)-

The shift u, — u, + 6, obviously means adding a constant operator K with

. d a+p
K,J.:Zcﬁﬂaek(— 1) (a) .
The corresponding 2-cocycle, by (5.22), is defined by

<ei-'u’e]n>l = Z c_‘i‘iﬂa ek(_ 1)“#““’-

The right-hand side is — Y (pf.‘j( — u, w)0,, and therefore for the 1-chain 6 given
by (5.23) we get
<ei,-,pej,,>1 = —0( [e..’_”, ej,‘])-

Also we can state that for arbitrary A, u
<eu.,ej,,>1 = —0( [e.'p eju])’

because for A + u # 0 both sides of this equality vanish due to (5.22) and (5.23).
The 2-cocycle {,), is a coboundary of 6.

Conversely, if there is given a 2-cocycle <, ), which is the coboundary of
some 1-chain 6, then we have by the definition that

<eir‘l"ej#>l == 9( [ei,—u’eju])= —Z‘P:‘,(—H,#)ok,

where 0, = 6(e,,). For the corresponding constant operator K it follows by

(5.22) that
d m
Kij = Z bijm (d_x> ’

where b, 4™ = — ¥ ¢%(— p, )0, Thus, K is the addition to H that appears
when we change the variables u, to u, + 6,; and this is the end of the proof.
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Another question arises: what are the conditions under which two operators
of type (5.14) constitute a Hamiltonian pair? The last theorem of this section
gives an answer.

Theorem 5.11 Let there be given two Hamiltonian operators H, and H,,
both of the type (5.14) and let [, ], and [, ], be the corresponding Lie algebra
structures on W. Then H, and H, constitute a Hamiltonian pair iff each of
these brackets is a 2-cocycle with respect to the other in the complex with the
adjoint action, i.e.

La,[b,c]1, 1, — [[a,b],,c], + (cycl)=0 (5.24)
for arbitrary a,b,ce W.

Proof Apply Theorem 5.8 to the operator H, + AH,. The Jacobi identity for
the corresponding bracket produces formula (5.24). Recalling the definition of
the complex with the adjoint action (Example 2.5), we find that (5.24) means
that [,], is a 2-cocycle on the Lie algebra (W,[,],) in the complex under
discussion, and vice versa.

Itis worthy of note that the statement of this theorem can be reformulated as
follows: two Hamiltonian operators H, and H,, both of Kirillov—Kostant
type (5.14) constitute a Hamiltonian pair iff each of the Lie algebra structures
on Wis a deformation of the other. This is the consequence of the theory
presented in Section 3.1.

5.8 The Virasoro algebra and two Hamiltonian structures of the
KdV equation; generalizations to multi-variable case

In the following Hamiltonian operators which are a sum H + K, where H and
K are of the form (5.14) and (5.17) respectively, are called operators of
Kirillov—Kostant type. In this section we proceed with the investigations of
these operators starting with the one-variable case. In this case W is the linear
span of e,, where A is a real (or integer) parameter. At the moment we choose
the interpretation with A being integer. On the space spanned by e,,e,,
e_,,e,,... there must be considered Lie algebra structures of the form

lene =2 o(l,me,,,, |meZ,

where ¢(l, m) is a polynomial with respect to [, m.
The simplest example is the Lie algebra with the commutator

leven]=(—m)e,,, (5:25)

that is isomorphic to the algebra of vector fields on the unit circle. All the
possible ways of introducing a 2-cocycle on this algebra reduce to

Cepey ) =(m>+am)dy, (5.26)
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and all the 2-cocycles are cohomologous to the 2-cocycle corresponding to
o = 0. The one-dimensional central extension of the Lie algebra produced with
the help of the 2-cocycle (5.26) is known as the Virasoro algebra.

From the statement of Theorem 5.9 it follows that there exists a family of
Hamiltonian operators corresponding to the 2-cocycles (5.26). Clearly, it is the
family of operators

d)3 d d
H+K=<d—x) +ad—x+2ua+ux

that we have already mentioned in connection with the KdV equation. The
operator corresponding to a =0 is

d )3 5 d
( I + 2u ax +u,
which is the second member of the Hamiltonian pair of the KdV equation, and
all the others, according to the statement of Theorem 5.10, can be obtained by
the shift of the dependent variable u —u + «/2 from this one.
The considerations presented above can also be generalized to the many-
variable case, where the set of indices # is either a finite subset of Z or Z itself.

The structure functions (p{.‘j(l, m), by analogy with (5.25), we choose in the
simplest form,

k
ijo

ot m) = (1 — m)c

where cﬁ‘j are constants that satisfy certain restrictions following from (5.21).

The 2-cocycle we choose by analogy with (5.26), in the form
iy Cjm) = (msbij + mdij)6?+m

where b;; and d;; are constants, also satisfying certain conditions reflecting the
2-cocycle property. The conditions under discussion are summarized in the
following theorem.

Theorem 5.12 A matrix differential operator with matrix entries of the
form

d\3 d d
b,-j (a) + dija + ; cfj<2uka + u}‘”)

isa Hamiltonian one, iff the following restrictions on c;;, b;;and d;; are satisfied:

(a) c{-‘j are structure constants of an associative commutative ring, i.e. the
operation defined by ¢;°e; = ¥ c;e, on the space Q spanned by e;, i€ 7,
enjoys associativity and commutativity;

(b) two bilinear forms (,), and (,), defined on Q by (e;, ¢)), = b;j, (e, €)), = d;;
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are symmetric and for both of them the property
(a°b,c)=(a,boc)

is valid.

The proof of this theorem is a direct calculation. It must be noted that
on any Q that is a commutative and associative ring there exist symmetric
bilinear forms with the required property. In fact, we fix arbitrary constants
a,i€f and put b;; = Zcf.‘jak. The collection of constants obtained fulfil condi-
tion (b).

5.9 Kirillov—Kostant-type hydrodynamlc structures;
Benney’s moment equations

This section deals with Hamiltonian operators H whose matrix entries are of
the form

d
H; Z(d,]ukd + cuu‘”), (5.27)
where d}; and c}; are constants. The skew-symmetry produces the condition
dk = C‘l‘ + C-‘;i’

so cf; constitute the basic collection of constants to be considered. According
to the general rules, the structure functions are

o (A @) = cijA —chin

The case cf;= c%; has already been considered in the previous section. In the
general case the Jacobi identity is reduced to

Y (chiA — ) (A + p) — civ) + (cycl.i2%) =0

for A + u +v =0. By substituting v= — 1 — u and equating the corresponding
coefficients to 0, we get

Z(C?jcik - C?kcij) =0,
a

Y (C5iCas — C5iCos — CiiCip + €5 Ch) = 0.
a

As in the previous section, we interpret the collection of c{.‘j as structure
constants of some operation in the linear space Q spanned by ¢, i€ #, i.e.

—_ k
ece;= Y clie

The result is the following.
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Theorem 5.13 The operator H defined by (5.27) is a Hamiltonian one iff the
operation under discussion satisfies two conditions:

(acb)oc =(acc)eb,
(aeb)oc + c(aeb) =(cob)oa + ao(cob). (5.28)

We have already presented a wide class of operations satisfying (5.28), namely,
associative and commutative ones. As for more general types of operations,
the following recipe produces them. Take an associative commutative algebra
with a fixed derivation d and put

acb=adb,
then the operation constructed enjoys both properties (5.28).

Example 5.5 Benney type Hamiltonian operators. Denote by Q(z) the alge-
bra of polynomials on a variable z, and by d the derivation of Q(z) defined by

dz=Y a,z’,
s=0
where a,,...,a, are fixed constants. According to the recipe presented, the
operation turns out to act as

n
PV RS LD Y [ Y
k=itj—1

This formula, in its turn, produces the collection of constants
Cik =J%—ij+1
ifi+j—1<k<n, and 0 in all other cases. Thus we get a family of Hamil-

tonian operators with matrix entries

. L d
ij= z (]ak—i—j+1ug-)j—l+(l+])ak—i—j+luka)‘ (5.29)

k=i+j-1

H
The particular case of (5.29) when oy =1, ;=0 for i >0, is

Hy=ju®,_, +(+ju i,j=0,1,2.., (5.30)

d

i+j-1 a’
the operator that defines the Hamiltonian structure of the system of so-called
Benney’s moment equations

u.
6—tl =u +iu,_ ufd
which arise in hydrodynamics (Benney, 1973). The Hamiltonian of Benney’s
system is 4 [(u2 + u,)dx.
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It is worthwhile mentioning that the method we used to construct Hamil-
tonian operators of the form (5.27) is not the only possible one. To illustrate
this point we present another construction that produces the same result.

Let R(z,w) denote the ring of polynomials of two variables and let
a(z) =Y ha,z* be a fixed polynomial of one variable. This R(z,w) is a Lie
algebra with respect to the bracket

0fdg og of

Lf ), g(z, )] = 2w (aw -t )
This fact can either be checked directly, or the following simple remark can be
used: for an arbitrary associative and commutative ring R with two commut-
ing derivatives d,, 0, the operation [a,b] = 8,a0,b — 0,a0, bendows R witha
Lie algebra structure (in our case R =R(z,w),d, = wd/ow,d, = a(z)0/0z).
R(z, w) is spanned by polynomials e, = z'w’, where i, | > 0. The law of commu-
tation is

[eibejm] =(jl— ima(z)z i twitm = (jl - im)zakei+j+k—l,l+m
5 .

This means, in its turn, that the structure functions defined by
(P?j(j-, wW=(ji— iﬂ)ak—i—j+ 1

fori+j— 1<k <n,and equal to 0 otherwise, satisfy conditions (5.21). By the
statement of Theorem 5.8, the operators H corresponding to go{.‘j (4, w), which
are nothing other than (5.29), are Hamiltonian ones. As for the Hamiltonian
operator defining the Hamiltonian structure (5.30) of Benney’s system, this one
corresponds to the structure functions of the shape

o5 W =(jA—iWdt, ;_,.

5.10 Dubrovin—Novikov-type Hamiltonian structures

In Sections 5.6-5.9 we considered Hamiltonian operators with coefficients
depending on 4% in a linear way. Now we pass to the nonlinear case. This
section considers an important class of Hamiltonian operators introduced by
Dubrovin and Novikov (1983, 1984). These are Hamiltonian operators
H = (H"Y) with matrix entries of the form

Hi= a”(u)ad; + Y bi(uuk. (5.31)
k

For reasons that will soon be evident, in this case it becomes convenient to
follow the tensor nature of the objects involved by putting the indices in their
proper places (see remark at the end of Section 5.2). We do not impose any
conditions of nondegeneracy or finiteness of the number of variables u,, as was
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first done in the above-mentioned papers, in order to present the conditions
imposed on the coefficients in their full generality.

To obtain conditions equivalent to the fact that formula (5.31) defines a
Hamiltonian operator, use Theorem 5.1 in version (f). We have in this case

B bt

da
A,y(ql,qz)—Z<q‘1” F T U by 4 )(a““q“’+b{’“uiqz)

da*™ aby
blﬂ Wy, 27 k yk_(px ),
ﬂ;k( ’ u )(41 q: ENE +4.14; 6upux (b59:4,)
By formula (5.6), we must equate the coefficients of ¢’ ¢¥to the corresponding
ones of ¢{"q4). Taking into account also the restrictions imposed by skew-
symmetry of H, we summarize the results of the calculations in the following
theorem.

Theorem 5.14 An operator H with matrix entries of the form (5.31) is a
Hamiltonian one iff the following collection of conditions is valid:

ali = g,
aaij ij ji Ba Ay AB Lay
'67=bk +bi, ;(d bﬂ —a bﬂ)=0a

ob; b""
Ay hBa __ hAa By AB =
;(z, bfe — bixbfr +.a (au,, a)) 0,

by P . ~
%(W P )b + (cycl. Aya) + (k1) =0,

where (k< [) means the expression on the left-hand side of the formula with
indices k and [ transposed.

Dubrovin and Novikov (1983) gave a very natural interpretation of these
conditions in the case of a finite number of u* and with a(u) being non-
degenerate. In this case the last equation becomes the consequence of the first
four, which, in their turn, mean that a(u) is obtained from a nondegenerate
Riemannian or pseudo-Riemannian metric g;; by lifting indices, and that the
differential-geometric connection defined by I'/ = — b is compatible with the
metric, is symmetric and has vanishing curvature (see, e.g., Dubrovin et al., 1979).

Moreover, all the objects involved behave as tensors under the action of
transformations u* = u*(v), and it follows that the type of the operator (5.31)is
completely defined by an integer invariant, namely, the signature of the
bilinear form a",

It must be noted that the case of an infinite number of ’s is important. The
Benney-system Hamiltonian structure (5.30) considered above is a meaningful
example with an infinite number of dependent variables u*. The theory of such
kinds of system cannot be called well-developed, though the particular
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example of the Benney system has been investigated in detail (Kupershmidt
and Manin, 1977, 1978).

5.11 The Adler—Gelfand—-Dikii method of constructing
Hamiltonian pairs

In this section we describe a method that allows us to construct simultaneous-
ly two Hamiltonian operators constituting a Hamiltonian pair. One of its
members will be an operator depending quadratically on the basic variables
and their derivatives; the other depends on these variables in a linear way, thus
being another example of a Kirillov—Kostant-type operator.

At the moment we suppose that the set of indices ¢ enumerating dependent
variables consists of all triplets o, 8,k where 1 <, <[,0< k <n— 1. The Lie
algebra U is constituted by arbitrary collections h = {h,,}, where h, ,; belong
to the basic ring R. Similarly Q' consists of all collections & = {£,,5}, &,5€R;
the pairing between 2 and Q! is

&hn= JZ CrapMiap Ax.

In order to describe the Adler—Gelfand—Dikii method, we first introduce the
ring R of formal integro-differential operators, defining them as formal
(infinite) series of the form

N k
a=3 ak(%> (532)

where g, are | x | matrices whose entries lie in R. To introduce a multiplication
law in R, we start with the identity

d\-! © A\
(&) o= f o ver(3)

Evidently there exists a unique way of expanding this operation onto R, such
that R becomes an associative (but noncommutative) ring. Denote by R, and
R _ respectively the subspaces of R constituted by operators of the form (5.32)
with all k non-negative (differential operators) and all k negative (integral
operators).

In the following for an operator A of the form (5.32) wedenote by A , (A4 _)its
projection onto R, (R_).

Introduce the notion of a trace Sp of a formal integro-differential operator

by the formula
N d k
Sp _;f"(&) = Jtra_ldx,

where tr is the sum of diagonal elements of the matrix. The trace introduced
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here has a very important property that can be checked directly:
Sp(4 B) = Sp(BA) (5.33)

for arbitrary 4, BeR.
Now we introduce a one-to-one correspondence between Q' and a subspace
of R by putting each & = {ékaﬂ}eﬂl into correspondence with an integral

operator X,eR_,
n-1 d -k—-1
Xe= Y (E) °Cho

k=0

where £} = (¢, ,) is the matrix transposed of the matrix (&, ,,). Similarly, we put
eachh= {hw? €W into correspondence with the differential operator F,eR , ,

n—1 ( d )k
F,= hl{—]|.
’ k;o \dx
Thus we have included A and Q! in R, so that A sits inside R, , and Q! inside
R _. A significant remark is that

(&, h) =Sp(XF)).
We recall that U acts on R by the formula
of
(see Section 4.1), in such a way that
h(fg)=(hf)g+ f(hg), f,geR.
This action extends to R in a most natural way:
N d k
hA = -Z;(hak)<a) ,
where h acts on each entry of the matrix a,. It is easy to check that

h(AB)=(hA)B+ A(hB), A,Be®R.

hf=f'h=Y h, f€R, he¥

Now we are ready for the creation of a Hamiltonian pair. Fix a differential
operator LeR, of order n and for an arbitrary £eQ' construct another
differential operator

F=L(X,L), —(LX;),LeR,.
Note that this formula can be rewritten as
F=(LX,)_.L—-L(X.L)_;

this means that the order of F cannot exceed n — 1. Therefore we can find an
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heU such that
F=F,

With any éeQ! we have put into correspondence an he2 in a linear way; so
we have constructed a linear operator H: Q! — U, The formula for H is

Fyy=L(X,L), —(LX,), L. (5.34)

Note that H is a skew-symmetric operator. In fact, relying on (5.33) and other
formulae of this section, we have

(HE,n)=Sp(F, X,) =Sp(L(X,L), X,—(LX,). LX,)
=Sp((X,L), X,L—(LX,), LX,)
=Sp(X,L(XnL)_ — LX(LX,)_)
= —Sp(X((LXn)-L — L(X,L).)
= — (& Hy).
Our goal is to prove that for a certain choice of L the Schouten bracket

[H, H] also vanishes, and so H is a Hamiltonian operator.

Theorem 5.15 Choose L in the form

L= Z uk< )k+c

where u, are matrices whose entries are dependent variables (u,,4) and C is a
differential operator with constant coefficients of order not exceeding n. Then
the corresponding H is a Hamiltonian operator.

Proof Take arbitrary &,,¢,,&,€Q! and use criterion (b) of Theorem 5.1. For
brevity we put X, = X, F, = F;. Note that H is quadratic with respect to L,
and also that the evident equallty

(H‘fi)L'—'FugiEFi

is valid for arbitrary he . Formula (5.33) is repeatedly used in the calculation
that follows:

(H'(HE,)Ey, &5) + (cyel)
=Sp((F(X,L), — L(X,F;), — (F;X )+ L —(LX,),F;)X;)+(cycl)
=Sp(F,((X,L), X3+ (X5L)_X,— X,(LX;)_ — X5(LX,).))+(cycl)
= Y5800 Sp (F5) (X 51) (L X g3))+ — (X g1y L) - X3)))s

where o runs through the permutation group S;. Evidently, the expression
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obtained is equal to
35800 SP ((LX y02))- LX 11 (LX i3+ — (X g1y L) = X o3y L(X y3) L) +-
It can be easily checked that for arbitrary P,, P,, P, €R there holds the formula
Sp(P,_P,Py +P,_ P3P, +P; PP, )=Sp(P,P,Py)

the consequence of which, combined with (5.33), is that the expression we have
obtained vanishes. So we have

(H'(HE3)&1,€3) + (cyel)=0
and therefore H is a Hamiltonian operator. The proof is thus finished.

Note that if we substitute (L + > i_, 4;4;) for L, where A, are constant
parameters and A, are constant matrices, the statement of the theorem remains
valid. We therefore have the following corollary.

Corollary 516 Let L be defined as in Theorem 5.15 and H denote the
corresponding Hamiltonian operator; 4,,..., A, are constant [ x [ matrices.
Denote by K ,,..., K the operators given by

Fx,g = At(XgL)+ —(LXg)+ A;.
Then each pair of the operators H,K,,..., K, constitute a Hamiltonian pair.

This result follows immediately from (5.34). Note that K; are linear with
respect to the dependent variables and their derivatives, so they are of the
Kirillov—Kostant type introduced in Section 5.6 above.

Example 5,6 The pair of Hamiltonian structures for the Lax equation.
Consider a particular case s =1, 4 =id, C = (d/dx)". Then by (5.34) we get a
Hamiltonian pair H, K defined by

Fye=L(X,L), —(LX,), L, (5.35)
FK{ = [ng L]+s (5.36)

with L= (d/dx)" + X3 Zgu,(d/dx)*, where u, denote matrices (,,,). The oper-
ators K and H are called the first and second Hamiltonian structures of the
Lax equation. We do not go into explanation of this terminology here. The
reader can find in Gelfand and Dikii (1978b) a detailed construction that
presents an appropriate Hamiltonian such that the corresponding Hamil-
tonian equation derived with the help of the operator K turns out to be of Lax
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type L, = [4, L]. The systematic theory of Lax-type equations can be found in
the widely known book by Zakharov et al. (1980).

It is of interest to find the Lie algebra structure that underlies, by Theorem
5.6 the Kirillov—Kostant-type operator K. We have

(K&,m) =Sp(FgX,)=Sp([X,, L], X,)=Sp(LX,, L]X,)
= Sp(L(X,X;— XX,)) = — Sp(L[ X, X,]).

By comparing this formula with (5.16) which defines the Lie bracket in the
infinite-dimensional Lie algebra corresponding to K, we deduce that it is
induced by the structure of the Lie algebra of formal integro-differential
operators endowed with the standard commutator [4, B] = AB — BA. A more
detailed description is given in the next section (Example 5.9).

Example 5.7 Degenerate structures in the case n=1. In this case
L=(d/dx) + u, where u = (u,,) is the [ x | matrix of dependent variables. For
& =(¢,5)eQ! we have X, = (d/dx) ™! o&', where &'is the transposed matrix. The
corresponding pair of Hamiltonian operators turns out to be

d d d¢
Fue=L(X,L), —(LX¢)+L=(—d—x+ u)°§‘—é‘<d—x+u> =d—¢x+ [u<'],

d\! . [/d
Fye= AX L), — (LX), A =A((a) °€'<d—x+u))+

dx d\~*' .
() ) e

So we have
_d¢ ¢
H¢ =& [u,¢']
K¢=[4,%],

and we see that both H and K are in some sense degenerate: H is not quadratic
but linear with respect to u and K is not linear but constant in this particular
case.

The Lenard scheme for H and K takes the form

d
[, &)= 8+ [ 4]

For a diagonal 4 with distinct diagonal entries it allows us to find &,
recurrently, if the seed element &, is appropriately chosen (an arbitrary
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constant diagonal matrix is suitable for £,. The equations themselves take the
Lax form

d
L,=[a+u, é;]s [L,&]

This is a particular case of the so-called AKNS construction (see Newell,
1985).

5.12  Some other local Hamiltonian operators

In this section we present other examples of Hamiltonian operators in order to
demonstrate how the general theory works in producing new Hamiltonian
structures.

Example 5.8 Kirillov—Kostant-type operators with constant structure func-

tions. Let ¢¥(4, u) = a%, where af; are structure constants of a Lie algebra.

Consider a 2-cocycle given by b;;(4) = b;;A. The restriction on b;; is that the
scalar product defined by (e;,e;) = — b;; is symmetric and satisfies the invari-
ance property

([e1sez],€3) + (e2,[ey,€3]1) =0.

The corresponding Hamiltonian operator is given by
H,;=%a* b d
y= Ll + by

Example 5.9 Infinite-dimensional Lie algebra corresponding to the first
Hamiltonian structure of the Lax equation. Consider in more detail the
Hamiltonian operator of Kirillov—Kostant type (5.36) for the case /=1. In
coordinates we have

n k—]—l) <d>k—i-j—1
K;= _ u | —
! k=i;j+1<< ! “\dx
_ k—i—1 _ d "_i'j'lou
j dx kp

where u,,...,u,_, are basic dependent variables and u, = 1. The structure
functions qo{.‘j(,l, w), correspondingly, are of the shape

k—i—1\, iy (k=i=1\ \oie;e
¢Z-(/Lu)=< j )/1" ’1—< i )u" J-1



112 Dirac structures and integrability of nonlinear evolution equations

fori+j—1<k<n—1and @} u)=0for k<i+j—1or k>n—1. The
2-cocycle b;;(4) is given by

P ((" —]1:_ 1) —(= 1)""'"'"<n—;_ 1)),1'--1-1'—1.

The corresponding infinite-dimensional Lie algebra can be described as
follows. Consider basic operators

—i-1
XU,:(%) oexpix, i=0,...,n—1.

Then their commutator [X;;, X, ] is

e D S (P e P LT
" kZi+j+1 J l T
(5.37)

and we observe that the Lie algebra corresponding to structure functions
@},(4, u) is obtained by omitting in formula (5.37) all the terms with k > n. That
the procedure of omitting higher terms leads to a new Lie bracket follows from
the general theory. This fact can, of course, also be checked directly.

Note that the 2-cocycle is easily obtained from the term of (5.37) corre-
sponding to k =n.

Example 5.10 Other structures similar to the ones considered in the previous

example.
The previous example induces us to consider

d i
F,,= AN —1, i=0,1,2,...
2= (exp x)(dx> i=0,
as basic elements. The Lie bracket is

[F, F.]=iij R P R P | O
e ju et k—] k—l k,A+pu

The structure functions (4, u) take the form

‘p:"i(}"”)'__(k l_j)qu—k_(k]_i)lHj—k (5.38)

for 0<k<i+j; ¢f(4u)=0 for k>i+j. By the general theory presented
above, structure functions (5.38) produce a Hamiltonian operator

o ik it/ s i+j—k
SFCIN Y o S V(L
Hy= kgi(k — l)( dX> uk kgj(k _j)uk(dx> ‘



Local Hamiltonian operators 113

It must be noted that in contrast to Example 5.8, the number of dependent
functions is infinite, and so (H ;) is another example of an infinite matrix that is
a Hamiltonian operator.

5.13 Notes

The exposition of Sections 5.1-5.3 follows Gelfand and Dorfman (1979). Some
developments in the problem of description and classification of lower-order
Hamiltonian operators can be found in Fokas and Fuchssteiner (1981b),
Astashov (1983), Mokhov (1985, 1987), Olver (1988) and Cooke (1989).

The KdV-Harry Dym family of integrable evolution equations and asso-
ciated Hamiltonian structures were subjects of investigation in Gelfand and
Dorfman (1982b).

The theory of infinite-dimensional Kirillov-Kostant-type Hamiltonian
structures presented in Sections 5.6 and 5.7 was developed by Gelfand and
Dorfman (1981). The special Hamiltonian structures of Section 5.9 were first
introduced in Gelfand and Dorfman (1981) and afterwards independently
rediscovered by Balinsky and Novikov (1985) in connection with hydro-
dynamic systems of evolution equations. The particular type structure of the
shape (5.30) first appeared in Kupershmidt and Manin (1977, 1978).

The theory of hydrodynamic-type Hamiltonian structures was originated
by Dubrovin and Novikov (1983, 1984). Some further developments of this
theory can be found in Novikov (1985) and Dubrovin and Novikov (1989).

Section 5.11 describes the Adler-Gelfand-Dikii scheme that allows us to
construct simultaneously two Hamiltonian structures of the Lax equation
that constitute a pair. The basic formula (5.34) belongs to Adler (see Adler,
1979) together with the hypothesis that this formula describes a
Hamiltonian operator. This hypothesis got its proof in Gelfand and Dikii
(1978b), one of a series of papers devoted to the formal theory of resolvents
(Gelfand and Dikii, 1976-78). An algebraic version of the Adler—Gelfand—
Dikii scheme for matrix coefficients is presented in Gelfand and Dorfman
(1980). Also, Wilson (1979-81) and Kupershmidt and Wilson (1981) are closely
connected with this topic. The interpretation of the first Hamiltonian structure
as an example of one of Kirillov—Kostant type was obtained by Adler (1979)
and Lebedev and Manin (1979). It is worth mentioning that there exists a
version of the Adler-Gelfand-Dikii scheme over non-commutative rings
leading to bi-Hamiltonian structures in 2+ 1 dimensions (Dorfman and
Fokas, 1992).

Some further investigations on Hamiltonian structures of a more compli-
cated form can be found in Sklyanin (1982), Daletsky and Tsygan (1985) and
Daletsky (1986).

A series of papers by Antonowicz and Fordy (1987,1989) is devoted to
systems with multi-Hamiltonian structures, i.e. possessing a number of local
Hamiltonian structures, mutually constituting pairs. It is explained in these
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papers, in particular, why the KdV equation has only two Hamiltonian
structures expressed by local operators.

Some group-theoretic aspects of the theory of Hamiltonian structures are
considered in Reyman and Semenov—Tjan—Shansky (1979) and Trofimov and
Fomenko (1984). An interpretation of the second Adler—Gelfand-Dikii struc-
ture in terms of the theory of Lie algebras is contained in Drinfeld and Sokolov
(1984). A modern presentation of the R-matrix approach to Hamiltonian
structures can be found in Li and Parmentier (1989) and Oevel and Ragnisco
(1989).

A detailed exposition of recent achievements of integrability theory for
systems with finite-dimensional phase space including those inspired by
soliton theory is given in Perelomov (1990).

Much useful information on Poisson brackets and aspects of quantization
can be found in Karasev and Maslov (1991).



6 Local symplectic operators and
evolution equations related to them

We continue to apply the algebraic theory of Chapters 2 and 3 to the complex
of formal variational calculus. In this chapter we focus on symplectic operators
that are represented by matrices with entries that are differential operators. As
in the case of Hamiltonian operators, we describe several important classes of
symplectic operators and consider some cases of integrability.

6.1 Symplecticity conditions in an explicit form

In this section we follow the pattern of Section 5.2 in presenting conditions
equivalent to symplecticity of a matrix differential operator. We recall that
(Q, d) is the complex of formal variational calculus over the Lie algebra %, R is
the basic ring of functions depending on formal variables 4, the index «
enumerating dependent variables belongs to some set of indices ¢, finite or
infinite.

We consider symplectic operators I: W - Q'. According to the definition
given in Section 2.5, they are skew-symmetric operators, such that the 2-form
wy(hy, hy) = (hy,Ih,) is closed:

d(OI = 0'

As above, we restrict ourselves to matrix differential operators I = (I,;) with

N(a.8) d\
Iap= Z Paai<a), 6.1

i=0

where p, 4, lie in R. As we assume that  is constituted by arbitrary collections
h = {h,}, and Q' by collections ¢ = {&,, £, # O for a finite number of a}, it must
be required that I,,#0 only for a finite number of pairs a,fe#. Skew-
symmetry means

lp=—13,
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or in terms of coefficients (see Section 5.1)
N(B,a) [k B
Dopi = — Z (-1 (i)Pfskak D, (6.2)
k=i
Introduce the operator (D, h): A — Q! by the formula
(Drhy)hy =(I'hy)h,,

where I’ denotes the Fréchet derivative (see Section 4.2).
The following statement is the symplectic counterpart of Theorem 5.1 and
presents conditions of symplecticity in various explicit versions.

Theorem 6.1 Let the operator I: A - Q! be skew-symmetric. Then the fol-
lowing conditions are equivalent:

(a) I1is a symplectic operator;

(b) for arbitrary hy, h,, h,€ there holds

((I'hy)hy, hy) + (cycl) = 0;
(c) for arbitrary h,, h,eU there holds
(Drhy)hy — (Dyhy)hy = (Dyhy)*hy;
(d) the expression ,
(Dyhy)hy — (D hy)*h,

is symmetric with respect to h,, h,e;
(e) for arbitrary he®¥ there holds

I'h=(D;h)— (D h)*
(f) for matrix differential operators of the form (6.1) there must be satisfied
for arbitrary a,f8,y€ £,i,j=0,1,2,... the set of equations
Saypij = Sapyji» (6.3)

where s, is the coefficient of the term ¢{’ ¢4 in the bilinear form

aypij

S.6(d1,92) = (D, 4:)4: = 5((Df 4,)* s,
COpif d
D8 = W Layif — )
1,9 ,zj:q 6uf,r“(dx)

Proof The equivalence of (a) and (b) follows from the formula expressing d in
terms of Fréchet derivatives (Section 4.2). In its turn, condition (b) can be
presented as

((Dlhz)hxa hs) + ((D!h3)h2a h1) + ((D,hl)h3, hz) = 0,
and we can use the formula

(Dz hl)*hz = - (DI hz)*hl
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which is proved in just the same way as (5.5), to get
((Dz hz)hp ha) - ((DI h1)hz, hs) + ((D1h1)*hz, ha) =0.

By the nondegeneracy of the pairing between U and Q, the equivalence of (b) and
(c) follows immediately. That condition (c) is equivalent to (d) and (€) is evident.

To prove the equivalence of (d) and (f) we must consider the coordinate
presentation of the former condition, that is the symmetry of

Z(Dfay hi)hyg— %Z(D‘;ﬁ,hn)* hap
with respect to h,, h, €. As arbitrary sequences h, = {h,,}, h, = {h,;} can be
taken, it must be that

Seyp(d1,92) = Saﬂ-,(‘lz, q:)

for arbitrary q,, g, €R, and (6.3) follows. The converse is also clear, so all the
conditions (a)—(f) are equivalent and the theorem is proved.

The crucial distinction between the Hamiltonian case considered in Sec-
tion 4.2 and the symplectic case is that the final system of partial differential
equations on p,g; is linear. In fact, both the skew-symmetry condition (6.2) and
the symplecticity condition, which is the system obtained by substituting the
coefficients p,; into (6.3), are linear.

A wide class of solutions of (6.3) can be presented immediately. In fact,
taking & = {£,} eQ! arbitrarily and constructing I in such a way that

w;=—d¢,

then I is symplectic by definition. The coordinate form of I = (I ) is

9, (dY\ i 4 9
’«ﬂ=§(a7;p(a) =D ‘(a) a—)

Under the assumption of the triviality of the cohomology group H%(Q) this is
evidently the general shape of a symplectic operator. However, in the presenta-
tion below rings R with nontrivial H%(Q) are also involved, such as the ring of
rational functions on u{’. For this reason and others we need an explicit form
of the conditions imposed on the coefficients of the operator, expressing its
symplecticity. For the one-variable case and low orders this problem is solved
in the next section.

6.2 One-variable case: first- and third-order symplectic operators

We consider in this section Nth order operators

N d )x‘
1= Y pl+—
igop (dx

and demonstrate the implementation of Theorem 6.1. The skew-symmetry
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condition (6.2) is reduced to
d k(K w-i
pi=— 2 (= )70
k=i

where N is, of course, odd. Theorem 6.1 in version (d) gives us the symplecticity
condition, as the symmetry of the expression

S(hlahz) = (Dlhl)hz - %(Dlhﬂ*hz

with respect to hy, h,.
Any skew-symmetric first-order operator I has the form

d
I=p"W+ 2pa (6.4)

where peR is arbitrary. For such an operator we have

d
S(hy, hy) = <2h(11) +hy E)P'hz - P’*(hzh(ll)) +a(hy, hy)

where p’ is the Fréchet derivative of p, and ¢ is symmetric with respect to h, h,.
Suppose that rkp = n, i.e. p=p(u,u,,...,u™). Put for brevity p, = dp/ou®®.

Then the coefficient of the term h h§* 1 is p,, which must be equal to that of
h* Dhy, that is (— 1)"* ' p,. It follows that n is odd. Similarly, comparing the
coefficients of " h{” and h{” h{" which are equal to 3p, and np, respectively, we
conclude that rk p = 3. Now substitute p’ = 3" p(d/dx)' and equate coefficients
of KPhY and hYhY. This gives

p,=pY.
This equation can be solved as follows: evidently

P2 =Posu'™” + py3u® + py3u™ + pyu®,

where p,; = 0*p/0u®0u’?, and we immediately get

P33 =0.
So we have

p = a(u,u'D,u®) + c(u,u'V,u® >
where a and c satisfy the equality
a,= cou(l) + clu‘Z)

which gives in its turn

u(2)

a=b(u,uV)+ j (cott™ + c,u®)du®.
(V]

The final result is the following.
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Theorem 6.2 A first-order operator of the form (6.4) is symplectic iff
p = plu, u?, uB, u), with

py=pY’

where p; = dp/ou®. In other words,

w2
p=b+ j (cou™® + ¢, u®) du® + cu®,
(o]

where b = b(u, u'") and ¢ = c(u, u', u'®) are arbitrary functions.

Now we pass to order N = 3. The general shape of a third-order skew-
symmetric operator (see Section 5.1) is

I=(p(1)_q(3))+2pi+6q(l) i 2+4q i 3’ (6.5)
dx dx dx

where p and q are arbitrary elements of R. Proceeding similarly to the above,
we have in this case

Sthyshy)=hy f'hy + 2Hp'hy + 2hP g'hy + 4K gk,
— p*(h k) + ¥ (B hy + 3KPRD) + o(hy, hy)

where we have put for brevity f = p'") —¢'® and g=q'"¥; f’,4,q' and p’ are
Fréchet derivatives; and ¢ is symmetric with respect to h,,h,.

Suppose that tkp = n, tkq =m, i.e. p= pu, u'?,...,u™), g = q(u, u'®,...,u™).
Put for brevity p; = dp/ou'®, q, = 6q/0u'®. If n > m + 2, then the coefficient of the
term h{V kY is 3p, and the coefficient of KAV is np,. It follows that condition
n>m + 2 cannot be satisfied for n > 3. Similarly, n < m + 2 is also impossible,
and the only possibility for n and mis that n =m + 2.

Now equate coefficients of b, AT+ 1 and h{"* Vh,. This gives

pn_qm=(— 1)"+1pn+(_ l)nqm

and it follows that either (a) n is odd, or (b) p, = g,,- The next pair, of A" h$” and
A, produces the equation

2p, + (= 1" p, = (= 1)"" 'np, + (= 1)"(n — 2)4,, + 3(— 1)"q-
In the case (a) it follows that

_n—3

q"'_n+1

Pn;

and in the case (b) no new information can be derived.
The pair of K2y~ and A~V b produces the condition

64 +(— 17" np, + 3(— /g, = (~ 1)”“(2)17, +(- 1)"'((’;) + 3m)q;.
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and this means for the case (b) that n = 6. Finally, comparison of the coeffi-
cients of KAy ~2 and A~ 2 hY produces for the case (a) the equality

e U W W

and taking into account the expression for g,,, we get
nn? —1)(n—5)=(n—3*(n—"7)(n—4).
The final result is that for odd n there are possible only the values
n=9, ny=7 ny=S5 n,=3

Now, as we have rkp <9 and rkg < 7 in any case, an explicit expression for
S(hy, h;) can be obtained, and we can present the required system of partial
differential equations on p and q. The result of the calculations is the following.

Theorem 6.3 A third-order operator of the form (6.5) is symplectic iff
p=pu,u,....u®), g=qu,u,...,u”) and the following system of equa-
tions is satisfied:

Ps =347,

D= 7‘1(71),

p7=2qs+ 8‘1(72),

Ps=ds + 545", (6.6)

ps =345 + 64 — 745",
Pa=4, + 645" —3¢% + 5¢8 — 745,
3p, =990 + 3p" + 3¢ — 3¢ — 945 + 645" — 647 + 8457,
45 = 3o
As for the higher orders, N, similar arguments can be used in deriving the

corresponding system of equations. We shall see in Section 6.7 that the
maximal values of the rk of the coefficients can be predicted in advance for
arbitrary N, so procedures for constructing the system of equations under
discussion can be carried out without any difficulty for any prescribed order.

6.3 A pair of local symplectic operators for the Krichever—Novikov
equation

In this section we consider an example of a symplectic pair of operators, one
of them of the first order and the other of the third order. We shall use
this symplectic pair as the base of the Lenard scheme for the so-called
Krichever—-Novikov (KN) equation,

=u, . —3u;tul. (6.7)
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As we see, the ring of rational functions of u, u'"),...,u®™, ... must be taken as
basic in the following presentation.

Theorem 6.4 The KN equation (6.7) is Hamiltonian with respect to two
distinct symplectic structures defined by symplectic operators

I=u;?——u3%u (6.8)
and
d\? d\? d
_ -2 a-3 4,2 _ -3 6.9
J ux (dx> 3ux uxx (dx> + (3ux uxx ux uxxx) dx ( )

which constitute a symplectic pair.

Proof First we must check that each of the operators is symplectic. This fact
is an immediate consequence of the results of the previous section. Also it can
be checked by a direct calculation that

o
3,,—-1,,2 \ _ 1,-2,,2
I(uxxx_i x xx)_;s_lz(i x  Uxx
and
0
3,,-1,,2y__ 1,,-2,,2 3,,—-4,4
J(uxxx_fux uxx)_E(_fux Uxx + gl uxx)’

and therefore the KN equation is Hamiltonian with respect to both I and J.

We pass on to check that I and J constitute a symplectic pair. It is
convenient to refer not to the definition itself, but to the criterion of
Theorem 3.23. According to the statement of this theorem, two points must be
checked: (a) that the conjugate to the relation o = {a® b: Ja=Ib} c U@ Wis
the relation &/* = {Ia@® Ja,ae W}, and (b) that the 2-form

wyyhy, hy) = (hy, JI~ 1 Jhy)

is formally closed on the space D;, = {ae¥: JaecIml}.
Start by checking (a). By the definition, ¢, @¢,e/* means that
(¢,,b,) = (&,,b,) for arbitrary b, b,, such that Jb, = Ib,. We have, formally,

d\? d d\!
My —) —2uly. — -1 242 4y .
I~ ( dx) 2u;lu,, x+(u‘ U, — U, uxx)+u,( dx) g,

where

— —-4,.3 -3 -2,,(4
g_3ux uxx_4ux uxxuxxx+ux ul )’

and therefore for arbitrary b,, such that gb, elm d/dx there holds
Cnl™ 1-”71) =(£2by).
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In other words, for arbitrary ze R we have

d d
“17,,-1 9 ) _ -1 @
(51,1 Jeog de) (éz,g dx2>,
d -1 — d_ _,
(a g JI 51,2>—(a g fz,Z)-

By the nondegeneracy of the pairing, we deduce that £, must lie in Im I, and
that g~ 'JI~'¢, =g~ '¢, + ¢, where c is a constant that can be nothing other
than zero. Thus &, = Ia, £, = Jafor some ae R and it means that the conjugate
relation &/* has the shape presented.

Now we pass to checking (b). We have

d\’ d\? d\3
I_l =y~ —]oy~1l_—- — Joy~1 “1{ _}o
JI" J=u, ( dx) u, (a( dx) u, " +u, ( dx) a)
+ i 2ou_l_u_l i 20 -+ io — i _lo
Nax) % ~%\ax) )T T \gx) P

where g is the same as above, and

or

a=3u;3uZ, —2u?u_..
From the given expression for JI~'J we deduce that we must check that the
exterior derivative of w;; vanishes on the space of h such that gheIm(d/dx).

Writing down the expression
(DJI"J hl)hZ - %(Dn'u hl)*hz

in an explicit form, we find out that nonlocal terms appear in pairs symmetric
with respect to h,,h,, and the expression as a whole is symmetric too. The
calculation, being tiresome, is facilitated a great deal by using the equalities

ag ’ % __

IR —
_au(l) a, g =g,

which can be checked directly. The symmetry of the expression under dis-
cussion is the reflection of the fact that w,, is a formally closed form. This is the
end of the proof.

We are in a position to apply the Lenard scheme to the KN equation in
order to find its higher analogues and the series of conservation laws in
involution. It must be kept in mind, however, that the scheme guarantees only
that the 1-forms &, that appear at each step must be closed. As the ring R of
rational functions of the variables 4" has nontrivial cohomology group H!(Q)
(see Section 4.3), the existence of conservation laws such that &, = dj f.dx
must not be taken for granted. However, the conservation laws do exist, and
the Lenard scheme in its fullness can be implemented. This is the subject of the
next section.
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6.4 Lenard scheme for the Krichever-Novikov equation

We start with the following simple proposition.

Proposition 6.5 Let Q =Y 7¥g,(d/dx)* be a differential operator such that
(Qh,y, h,) =0 for arbitrary h,,h,eIm(d/dx). Then Q =0.

Proof From (Qd/dxz,,d/dxz,)=0 for arbitrary z,,z, it follows that
(d/dx-Qd/dxz,,z,)=0. By the nondegeneracy of the pairing,
d/dxoQd/dx =0. But from >¥**(g\" +gq,_,)(d/dx)**! =0 it follows cor-
secutively that gy =0, gq,_, =0,...,40 =0.

Now we present the Lenard scheme for the KN equation.

Theorem 6.6 The KN equation

3,,-1,.2
xxx — 2Wx " Uxx

=u
can be included in an infinite hierarchy of evolution equations in accordance
with the Lenard scheme generated by the symplectic pair of operators (6.8),

(6.9). The scheme is Scheme 6.1.

Scheme 6.1
-1 -1 9 1
1 6—2=ux —uu, uxx=g(7uux )
h_1=u/
\;«f_l=0
/
ho=ux\
So=ug2u® —du3u u,  +3u;ud
Ly-2y2
/ (s ,)
hl = uxxx %ux_ lu:ztx

J
\ Cl _ 30u_
- 60“ xx Upex T
—_— 6ux uxxu(S) + ux—zu(ﬁ)

o

/ B
I

__ 44(5) 4) __55,—1,,2 25 2,,2 __ 45
hZ_u 5“ u Y U uxxx+ 2 ux Uy xUxxx g Ux Uy

(4) | 45,,-6,,5
u ul, —10u; u M+ B ul,

45u_4u2xu(4’

1,,—2,,2 3,,—4,4
(_fux Usxx T 58Uy uxx)
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The problem of finding f, from the equation ¢ f,/6u = &, is solvable at each
step, and all the f; which are densities of conservation laws for all the equations
of the KN hierarchy, lie in the ring of rational functions of u, u(V’, ...

All the conservation laws are in involution with respect to both I- and
J-Poisson structures. All the h, commute with each other in the Lie algebra .

Proof The most important part of the work has already been done (The-
orem 3.22), but there are still some points to be clarified.

The first is the requirement of Theorem 3.22 that from the closedness of a
1-form ¢ on the space {ae ¥, JaeIm I} c Wit follows that d¢ = 0. Suppose that
d&(a,,a,) =0 for arbitrary a,,a,, such that Ja,eIm I. As we have seen while
proving Theorem 6.4, Ja,eIm I means ga,,ga,eIm(d/dx), where g is as in-
dicated in that proof. The 1-form & therefore satisfies

_, d . d
((é’—é’*)g ‘azl,g 1522)=0-

The operator Q = g~ }(&' — £'*)og ~ ! satisfies the condition of proposition 6.5,
and it follows by the statement of that proposition that & = &'*,i.e d¢ =0.

The second point is that we have to check that each &, is a variational
derivative of some f,eR. In fact, by the general statement of Theorem 3.22,
each &, is closed, which fact can be expressed as the symmetry of the Fréchet
derivative: & = &*. From the statement of Theorem 4.6 it follows that f,
exists, but may lie in an extension of the initial ring R.

Looking at the shape of ¢, I and J, we can deduce that each h, takes the form

— ,(2n+1 2 n
hy=u®"* D4y e, o uB UL ()

where Y'2"a; = 1, and ¢, is of the form

2n+4 n
C"=Zdﬂl--~ﬂ1n+4u£lu£§c"'(u( " ))ﬁz e

where 33" *4B, =1 (c,, ,,, and d, _, being constants).

It will also be noticed that only B, can be negative and all the other §; must
be positive. The algorithm described in Section 4.6 involves several steps, at
each of which we take the derivative with respect to the highest u'*®, then
integrate twice with respect to u* and then take the variational derivative of
the result. All these operations leave B, i >1 positive, and therefore our
algorithm cannot lead outside the initial ring. Moreover, we get some addi-
tional information on the nature of f,: it must be of the shape

n+2
fo= zavlmh_zu}’c' uly ... (Ut DY

where 3}*?y,=0and a,, , ., are constants.
It is worth mentioning that here we are faced with the situation described in
Section 4.5: none of the f; can be recovered using the formula (4.18) as it makes

no sense. Nevertheless the algorithm of Section 4.5 works all right.
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The third point is that the possibility of applying ™! to &, must be
guaranteed. In fact, we have

j Edx = f 6f"d j(if,,)dx=0,
dx

sou, £, eImd/dx. As we have

—y—1 -1
I=u, e u; ",
theelement I ~1¢, = u (d/dx) ™! (u£,) liesin R and we can find the nexth,, , b
putting h,, , =171¢,.

The process of deriving &; and h; consecutively can therefore be carried out
without any obstruction.

The final remark: while the fact that the conservation laws f; are in
involution with respect to both structures, follows directly from the statement
of Theorem 3.22, the fact that [h;, h;] = 0 must be proved. We can guarantee in
general only that [h;,h;] lie in the intersection of Kerl and KerJ (see
Section 3.7). Still, as

KerI = {lu,, 1eR}

and Ker J does not contain any elements Au,, except with 4 = 0, we deduce that

[h,h;]1=0.
This finishes the proof.

6.5 Two distinct Lenard schemes for the potential KdV equation

In this section the equation

u=3ul+u (6.10)

is considered. It is called the potential Korteweg—de Vries (PKdV) equation
for the reason that the potential [*  u(y)dy of the solution of the KdV
equation v, = 6vv, + v, satisfies (6.10). We present below a symplectic pair of
local operators that generate higher symmetries and conservation laws ac-
cording to the Lenard scheme.

XXX

Theorem 6.7 The operators

d
I—a,

d\? d
J—(a) +4uxd—+2u

are symplectic and they constitute a symplectic pair. The hierarchy of the
PKdV equation can be obtained by the Lenard scheme associated with this
pair (Scheme 6.2).
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Scheme 6.2
' 0
/
>¢ == () = 2

hy =

Uy \‘ @ S (uu® S
/ éO =u+ 6uxuxx = E( 2 + 2uuxuxx> = Efo
h,=3u?+u \J‘

XXX

& =u'® + 10uu™® + 20u, u® + 30u2u,

o
=% $uu® + L0uy u® + L0yy u® + LSyuly

+u®

hy =10u3 + 5u?_+10u,u

XXX

The conservation laws j' fidx arein involution with respect to both I and J. All
the h; commute in 2.

Proof That both operators are symplectic follows from the results presented
in Section 6.2. To prove that I and J constitute a symplectic pair, we exploit the
criterion of Theorem 3.23.

Two points have to be checked. The first is that the conjugate to the relation
o ={a@b:Ja=Ib} cUPU is the relation * = {la@® Ja,acVU}. In fact,
¢(,®E,e/* means that (£,,b,)=(¢,,b,) for arbitrary b,,b,, such that
Jb, =1b,. As we have

d 2 d -1
_1 —_ - — —_ o
I J_(dx) + 2<dx>

it follows that for arbitrary b, such that u,.b,eIlm(d/dx) we have
(€, I71Iby) = (&,,by), ie.

d . d
(cl’ l‘Iouxx d > (éZ’ Usx d >

for arbitrary ze R. By the nondegeneracy of the pairing the consequence is that
¢, mustlieinIm I, and that u lJI7 Y =u_ €, + ¢, where cisa constant. Put
I7'¢=a,then ¢, = . For a, =a—c¢/2 we obtain ¢, =1Ia,, ¢, = Ja,
and we deduce that the conjugate relation «/* has the required shape.
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The second point is that the exterior derivative of w;,(a;,a,) = (a;,JI~'Ja,)
vanishes on the space where it makes sense, namely for a,,a, such that
u..a;€Im(d/dx). The formal shape of JI~'J is

d 5 d 3 d 2 d
Y — — 2y
JI J—<dx> +[8ux<dx) + 12“""(dx> + (8u,,, + 16u")dx

d\~ 1
+2u® + 16u, uxxx] —4u,, <—) OUsy
dx

Note that (d/dx)* is symplectic, as it is a constant operator. The operator in
square brackets is a symplectic one by the criterion of Theorem 6.3 (here
p=4u,. + 8u2, qg=2u, and all equations are satisfied). Therefore we must
check only that the 2-form associated with the operator u, (d/dx)™'ou,, is
closed on the space

d
D, = {aeR:u“aeIm d_x}

This can be proved directly, or we may rely on the fact that the inverse operator
ug! d/dxou_! must be Hamiltonian by the statement of Theorem 5.2. Now it is
proved that I and J constitute a symplectic pair.

Another requirement of Theorem 3.22 is that from the closedness of a
1-form ¢ on the space D, there must follow d¢ = 0. To prove this, we proceed
as in the proof of Theorem 6.6. Namely, from the condition

d
((c'—c'* u-‘ibl,u;;abz>=0

XX dx

for arbitrary b,, b,eR it can be easily deduced with the help of Proposition 6.5
that ¢ = €'*, which means d¢é = 0.

Finally, we have to prove that no obstacles arise when we iterate the process.
In fact, let £, be constructed by the Lenard scheme. Then by the general result
(see proof of Theorem 3.17) we have ({,,h_,)=0.Buth_, =1/2,s0 jé,, dx =0.
This means in its turn that &, lies in Im(d/dx), and I ~'¢, makes sense. So &, ,
and £, , can be derived consecutively.

That the conservation laws | f;dx are in involution follows from the general
result of Theorem 3.22. That [h;,h;]=0 follows from the fact that
KerInKerJ = {0}, and this is the end of the proof.

Now we start to construct another Lenard scheme for the same PKdV
equation in order to show that the symplectic pair constructed above is in no
sense unique. More precisely, we construct two Dirac structures that consti-
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tute a pair in the sense of Chapter 3 and that produce a Lenard scheme as well
as the pair I, J.
Theorem 6.8 There are two Dirac structures
L = {((Usy' 2,) s + dueu'z, — 22) D (uy,' 2,),, 2R}
and
={z®z,,zeR}

that constitute a pair. The hierarchy of PKdV equation can be obtained with
the help of the Lenard scheme associated with this pair (Scheme 6.3).

Scheme 6.3

\ ) 0
61 u'® + 6u_u 511( uuw™ + 2uuxuxx) 6uf1

Proof First it must be checked that . is a Dirac structure. The condition
P+ = PLisnotatallevident. Let a® £€.#*. By the definition (see Section 2.4),
for arbitrary yeR we have

(U V)xs §) + Auu 'y, &) — 200, €) + (@' ye)e) = 0.
By the skew-symmetry of d/dx and nondegeneracy of the pairing, we get
(U Exx)x + Aluug' ), + 28 — (ugla,) =0
It follows that £ = (u_,'z), for some z€R, so that
e+ du l+2z—a,=cu,,

where ¢ is a constant. This constant can be assumed to be zero (if not, we
replace z by z, =z — 2cu,,, keeping the same £). So

(uxx )xxx+4( xUxx ) _2z=ax
and it follows that z = b, for some beR. Now

(uglz),, +4uulz—2b=a+c,
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where ¢, is a constant that can also be assumed equal to zero (otherwise
replace b by b, = b + ¢/2, keeping the same z). Finally

(Ut by) ey + du b, —2b,
6 - (u_ ! bx):n

and this means that a ® £€.%. Thus we have demonstrated that #* < &, and
as ¥ c #* is evident, we have ¥+ = #.

Now it must be proved that & is indeed a Dirac structure. Note that % can
be described as

d d\™! d\7!
e-{(Gele) o) pert

where b runs through the space
V={(uz'z,),,zeR}.

The operator H =d/dx + 2(d/dx)~'ou, + 2u,(d/dx)~" is well-defined on V.
So the problem is reduced to checking that [H, H] vanishes on the space V.
This can be done by a direct calculation similar to the one we undertook when
investigating Kirillov—Kostant-type structures in Section 5.6.

That # is a Dirac structure follows from the fact that it is the graph of a
symplectic operator d/dx (see Section 2.5).

Finally, we have to demonstrate that . and .# constitute a pair. By the
definition of Section 3.6,

Aon={a,Da,:3¢eQ,a, DleM,a,Dtc L}
must be proved to be a Nijenhuis relation. By the definition of % and .#,

(a 1 )x = 6
C - (u z )xs
a;= (uxx x)x.x + 4uxuxx Zx 22

We can therefore represent & o 4 in the form
Aon={ulz)®(u_lz,),, +duu_lz, —2z),2eR}

which means & ¢4 = {a, @ a,:la, = Ja,}, where

d

dx’

J= (%)3 +4u,— dd 2u,,

The conclusion is that &/, , is the same Nijenhuis relation that has been already
investigated (see Theorem 6.7), and so .# and .# constitute a pair of Dirac structures.

I=
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It is worth comparing the two Lenard schemes of PKdV constructed in this
section. As it is difficult to follow the second scheme in the shape presented in
the statement of Theorem 6.8, an informal version involving nonlocal oper-
ators is now presented. Namely, the scheme generated by ¥ and ./ is
Scheme 6.4,

Scheme 6.4

hoy=3_1
It
hozux(
\¢o=u,x=%(%uun =;—ufo
h,=3u+u,, ,j/

’ 5
\ 61 - u(4) + 6uxuxx —_ —5—;(%"“(4) + 2uuxuxx) = 55—uf1

where J, =d/dx, H =d/dx + 2(d/dx)™ 'ou, + 2u(d/dx) . The possibility of
applying H at each step is guaranteed by the fact that both £, =6 f,/du and
u,0 f,/oulie in Im(d/dx). We have demonstrated above how the Lenard scheme
for an evolution equation can be obtained in two different ways. It has been
noticed that for both schemes the basic Nijenhuis relation is the same, having

the shape
d )2 d -1
A= (a + 4ux —_ 2(&) oUL,

/

in its operator version. The two Lenard schemes presented above correspond
to two different decompositions of 4: the first one to

d\™! dy? d
A*(a) ((a) +4“xa+2“xx>
and the second one to

a=(L a9 e () ).
“\ax TA\ax) T T M\ G dx’

The meaning of these two presentations in rigorous terms of Dirac structures
and Nijenhuis relations is explained by the statements of Theorems 6.7 and 6.8.
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6.6 Dirac structures related to Liouville, sine-Gordon,
modified KdV and nonlinear Schrodinger equations

The existence of two local Hamiltonian operators or two local symplectic ones
that we observed for KdV and PKdV respectively, is an exception rather than
a rule. For most important equations we are faced with the necessity of
considering Dirac structures which are not graphs of any local operators. In
this section we describe Dirac structures and the corresponding Lenard
schemes; for convenience, the nonlocal operator form of any Dirac structure
involved is presented in each case.

In the preceding section we constructed two Dirac structures, ecach of them
constituting a pair with the simplest Dirac structure

M={zDz,zeR}. (6.11)
Now we introduce two other Dirac structures ¥, and % _ with the same
property.
Proposition 6.9 Each of the two objects
& ={(u;'z,), tuz)®u; 'z, zeR} (6.12)
is a Dirac structure, and each constitutes a pair with the Dirac structure .#
given by (6.11).
Proof The first thing to be checked is that £ = % ;. Let a® (e ¥ i. Then
for arbitrary ze R we have
(@ ugz)+ (& (u;z,), +u.z)=0.
By the nondegeneracy of the pairing it follows that
—(uta)+ (') T u,l=0
and for y, such that u & =y, we have
—utatu(uly) ky=c

where c is a constant. The constant ¢ can be assumed equal to zero, otherwise
replace y by y F ¢, keeping ¢ the same. The conclusion is that

a=u;'y), tuy,
E=uly,

and this means ¥ { ¢ &. That ¥ < %} is evident.
We proceed to check that ., are Dirac structures. Note that ¥, can be

presented as
d d\!
{Geuls) oot
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where b runs through the space
V={u;'z,zeR}.

For the operator H = d/dx + u(d/dx)~ ! ou, the property [H, H] = 0 can easily
be checked on the space V, and this is what is required in the definition of
Dirac structure (see Section 2.4).

The next thing to be proved is that each of £, constitutes a pair with ..
According to the definition given in Section 3.6, the relation:

o ={a,Da,:IeQ',a, ®leM,a,®lel}
= {al ®a2:alx= c’é = ux_lyx’az =(ux_1yx)xi uxy’yeR}

must be proved to be a Nijenhuis one. Another presentation of the same
relation is

o ={a,@aya, =u_tz, a,=@ulz),, +tulu_lz, Fuz,zeR}.
We must describe the adjoint relation /*. By the definition, &, @ &,e/* iff
(él’(ux_xl z )xx i ux uxx Zx ; uxz) = (62’ u;xl Zx)

for arbitrary ze R. By the nondegeneracy of the pairing it can be deduced that

ut,€Ilm(d/dx), and
d -1
clxxi(ux(a;) (ux61)>x=62'

The result is that £,eIm d/dx, and we obtain the following description of the
conjugate relation:

d
d*—{fl @&, HE, =KE&,,u, élelm d 6zelmdx}

where

ek

Evidently o can also be expressed in terms of H and K:
d d

KE®HEu lelm—,Eelm— p.

dx’ dx

Now we can use the statement of Theorem 3.16 in order to prove that o is a
Nijenhuis relation. The only thing to prove is that [H, K] =0 on the space
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where H and K are well-defined. But we have

-1 d -1
(H'(K&1)§2:¢5) + (cycl) = (6162’(%) (uy fa)) + <fu(a) (uy fz)és)

+ (cycl.) =0,
and thus the proof is finished.
The pairs of Dirac structures described above can be used as instruments for
generating hierarchies for the sine-Gordon equation
u,=sinu

and the Liouville equation for (see Pogrebkov and Polivanov, 1987)

u, =e"
Example 6.1 The hierarchy of the sine-Gordon equation. This can be
obtained with the help of the Lenard Scheme 6.5 associated with the Dirac pair
&, M given by (6.11) and (6.12). The conservation laws [f;dx are in

involution with respect to both £, and .. All the vector fields h;, commute.

Scheme 6.5

5 5
CO = Yxx _E(fuuxx) - _5—u—f0

0 0
— 4,(4 3,2 — 1 4 3 2 —_
>¢1 =+ =g i+ ) =,
S 2 3,,5
x

Some comments are needed on the Lenard scheme presented above. Taking
into account the statement of Proposition 6.9 and the general Theorem 3.17
we have to prove two points: (a) that from dé(a,b) =0 for a,b lying in the
projection of &/ onto U, there follows d¢ = 0; (b) that the process can be
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continued without any obstruction for arbitrary n, inside the ring R of
polynomials. Note that the terms in square brackets do not lie in R, but they
can be formally included into the Lenard scheme as is done above.

Let d¢ =0 on the projection mentioned, which is nothing other than

{zeR:uxxzeImi}.
dx

(€= &™uglbypug'by)=

for arbitrary b, b,eR. The operator Q =u_! (&' — ¢ )u;xl satisfies the condi-
tion of Proposition 6.5, which means ¢ = &'*,i.e. d¢ =0, and (a) is proved.

It can also be seen that ¢ =(d/dx)h,, and h,, ,=H¢, where
H =ud/dx)™'ou, + d/dx. By the general theory, &, is a variational derivative,
¢, = 0 f,/0u, and this means that u, £, eIm(d/dx). So H is well-defined on &, and
h,., = H¢, lies in R. Thus (b) is also proved.

Finally, it must be checked that [h;,h;]=0. It is sufficient to prove that
{aeW:a@0e ¥, } has trivial intersection with Ker d/dx. But the first space is
{cu,}, where c is a constant, and the second one consists of constants, so their
intersection is trivial.

So for £ we have

Example 6.2 The hierarchy of the Liouville equation can be obtained with
the help of the Lenard Scheme 6.6 associated with the pair & _, # of Dirac
structures given by (6.11) and (6.12). The conservation laws [f,dx are in
involution with respect to both % _ and .. All the vector fields h; commute.

Scheme 6.6

(@) ]

0
\A él = —u® + uxx —-5—(2"“(4) + Buux xx) f

— (5) L 5 A/iv 2 3,5
hy=—u® + Julul + x
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Now we present Dirac structures associated with the modified KdV equa-
tion

= — 62
Uy =1u, —6uu,.

Example 6.3 The hierarchy of the modified KdV (MKdV) equation. This is
associated with the pair of Dirac structures

&L ={((4)z),,, — 4uPu;'z,), + Huz))Du; 'z, zeR}, (6.13)
M={z,Dz,zeR}. (6.14)

It has the shape given in Scheme 6.7. The conservation laws [ f;dx are in
involution with respect to both % and .#, the vector fields h; and h; commute.

Scheme 6.7

It is worth presenting the operator form of (6.13) and (6.14). Evidently .# is
the graph of the Hamiltonian operator d/dx. As for £ given by (6.13), it
corresponds to the nonlocal operator

d\? d d\™' d
H=<d—x> —4(T;°u<a> °ua,
which formally constitutes a Hamiltonian pair with d/dx.

The final example corresponds to the case of two dependent variables u, v. It
is the nonlinear Schrodinger (NLS) system,

=v, + 2v(u* + v?),

ul
v, = —u,, — 2u(u® +v?),

which is more often encountered in the form of the NLS equation

V=i + 2070)
for Y = u + iv (for its properties see Zakharov et al. 1980).
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Example 6.4 The hierarchy of the nonlinear Schrodinger (NLS) system. It is
associated with the pair of Dirac structures

P {<h1>®<€1>. hy ="'z, +4v(z, — z,,¢, =v" 'z, ,2,€R }’

h, ¢, .h2=(u_122x)x+4u(22_21),€2=u-122x,ZZER

h
o[ ——

The corresponding Lenard scheme is of the shape given in Scheme 6.8.

Scheme 6.8

p (Pt 2P+ 2T
U\ -y, — 2u(u? +0Y)
N‘ . —u_ — 2u(u® +v?) )
51 = = _fl

— v, — 20(u* + v?)

The 1-forms &_,, &, &,,... are variational derivatives of conservation laws
| f:dx with densities

foy=3u?+0v?), fo=Yuv, —ou,), fi =Hu?+ 02— W+ 0v?)?),...

that are in involution with respect to & and 4.
The operator form of .# is evidently a constant Hamiltonian operator

0—1
K= ;
'y

as for %, it can be represented by a nonlocal Hamiltonian operator
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6.7 Many-variable case with linear dependence on uo

In this section we return to the general matrix form of I,

d k
Ij= zpijk (a) . 6.15)

Our goalis to give a full description of the symplectic operators whose coefficients
P in (6.15) depend linearly on the variables u, and their formal derivatives ™.
The problem is similar to that of describing infinite-dimensional Kirillov—Ko-
stant structures considered in Section 5.6. The considerations referring to Hamil-
tonian operators presented in Chapter 5 led us to a description in terms of a
special class of infinite-dimensional Lie algebras. It will be shown that the
symplectic operators under discussion can be described in terms of some other
algebraic structures, namely, the representations of the 3-dihedral group D,.
First we introduce higher partial variational derivatives of any f €R by the

formula
0 (m—n)
5 m g (- )"‘( )( u{,,,,) , (6.16)

which is a natural generalization of (4.3). In terms of higher partial variational
derivatives the symplecticity of I can be presented in a somewhat more explicit
form. In fact, if we take the symplecticity condition as in version (c) of
Theorem 6.1, we easily deduce that it is expressed by the formula

p‘ m P,! m apx m
Za (m’;h(lkj)h(Zl) Za (mk) h(ll)h(k) ZF"J% (k)h )( ) (617)

The sum in (6.17) is taken with respect to the repeated indices. Now we can
present (6.17) in an abbreviated form as a system of polynomial equations

1 _
tjks(z) kjs<z> = Kji;(l +2) (6.18)
which must be valid for all i, j, k, s, where
Vi@ = ¥ %% o (6.19)
m<s
and
U 6pl s—m m
Vas(2) = Y _;u("" : (6.20)
ms<s

Naturally, the skew-symmetry of I, that is,

Pip= 2 (= 1)"'“<k>p§7,‘,. K (6.21)

m2k

must be combined with (6.17) or (6.18).
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A very simple but important remark is that for coefficients p;;, depending on
u{™ linearly we have by (6.16) that

6pl Zlijs—m 6pij.s—m

ou (,.) =(—-Dn" e (6.22)
and therefore
‘_{jks(z) uks( )
The conclusion is that equations (6.18) are converted into
1
Vijks(z) -z Vikjs(}) kjls( 1— Z)' (623)

Another notable fact is that the skew-symmetry condition (6.21) follows
from (6.23) for the particular form of the coefficients under discussion. In fact,
(6.21) is equivalent to the system

—1—z
ijis(_ 1 _Z)= -z V]kls (T)

which is a direct consequence of (6.23).
Thus, to find all the symplectic operators of the prescribed form we must
investigate for all non-negative integers the system of polynomial equations

1
uk (Z) (Z) Vkﬂ( - Z) (624)

where i,j, k is a fixed triplet of indices and the polynomials involved are of
degree not exceeding s.

A most natural interpretation of (6.24) can be given in terms of representa-
tions of groups, as follows.

Denote by D, the group generated by two elements g,7 with relations
6?=id,1* =id, 010 =17, that is the 3-dihedral group.

For an arbitrary triplet of indices i, j, k define a degree-s polynomial vector V
with six coordinates {V;;,(2), V;(2),. ..}, where the dots denote the remaining
four permutations of indices. Evidently, for i =j # k only three coordinates
must be given, and for i =j =k V is completely described by indicating only
one coordinate.

Introduce linear operators p, and p, acting in the space of polynomial
vectors by formulae

1
(PeV)in(2)=2° Vikj(‘z‘>,
—1-z
( V)uk(z)_z jkl( 7 )
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It can be checked that these formulae define in a unique way a morphism of the
group D, into the group of all linear operators acting in the space of
polynomial vectors, that is a representation p of D, in this space.

Now (6.24) can be rewritten in the form

V— Pq V= Per V. (625)

This means that there exists a one-to-one correspondence between the sym-
plectic operators under discussion and two-dimensional representation of D,
in the space of degree-s polynomial vectors.

For each triplet of indices i, j, k there are three cases which we shall consider
one at a time.

(a) i#j#k. In this case V;(z) and V,,;(z) can be taken arbitrarily. The
remaining four coordinates are restored with the help of (6.24), namely

1
V@) = Vip(=1-2) = (=1 _Z)SV"‘"<- 1 —z>’

o

1 _1— (6.26)
Vjik(z) = ZS[",‘H(E) - Vikj( Z Z)],

1
Viij(@) = Vig(—1=2) = (-1 _Z)stki< )

1
iji(z)= Vikj(_ l—2z)— (-1 _Z)sVijk< >’

—1-z

The space of solutions of (6.26) is 2(s + 1)-dimensional. Its basis can be obtained
by taking Vj;(z) = 2", ¥} (z) = z™, where ,m =0,..., s and then calculating the
remaining members of the vector by (6.26). The corresponding basic symplec-
tic operators can be restored if we recall that ¥,  are given by (6.19).

As an illustration, take the 3-variable case and choose V,,;=12V,,,=1.
This gives V,;, =0,V,,,=1,V;,, =0,V,,; = — z. The corresponding matrix
symplectic operator is then given by

0 ug” uza
I= — ugl) 0 0
u d +uP 0 0
de 2

(b) i=j,k #i. In this case we are free to choose V,; (z). The other two
significant coordinates are restored by (6.24), i.e.

1 ~1-z
Vik(2) =ZS[VU¢1’<;> - Viki( 2 )], (6.27)

1
Vii(2) = Vig(—1—2)— (=1 —Z)sVz‘ki(_ 1 —z)'
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The solution space is (s + 1)-dimensional, as we can take V;(z) equal to
z,,1=0,...,s. The corresponding basic symplectic operators come from (6.19).

As an illustration, take the 2-variable case and choose s =1, V,,, = z. This
gives V,,, =2+ z,V,,, = — z and thus the symplectic operator is

d
1) (1)
Ul +2u,— u
| = 2 de 1
—ufM 0

(c) i =j =k. In this case V is completely determined by its only significant
coordinate Q, that is a polynomial with real coefficients, satisfying the equa-
tion

1
Q(2) —Z’Q<;>= 2(—=1-2) (6.28)

Now we have to investigate this equation. The result of our investigation will
be that the space of all solutions is [(s + 2)/3]-dimensional, where square
brackets denote the integer part of a number. Also the canonical basis of the
solutions of (6.28) will be presented. We formulate the theorem in a form
serving the purposes both of this section and the next.

Theorem 6.10 The equation (6.28) on a polynomial Q(z) of degree s, with the
restrictions

00)=Q'(0)=--=Q¢"¥Y0)=0, N<s (6.29)

has nontrivial solutions only for s < 3N + 1,s # 3N. The dimension d*¥ of the
solution space of (6.28) and (6.29) is given by the formula

d*N =[(s +2)/3] —[(s — N)/2], s even, (6.30)
N =[(s+2)/3]—[(s—N—-1)/2], sodd.

Proof First let N be odd. From (6.28) it follows that
k!
®)(0) — ——— 06~ 000)=(— 1) (—1

M0 — @ MO = (= 1™~ D

fork=0,1,...s. Using (6.29) we deduce that
(@~ D)P(0) = (— 1P QN+ D)P(—1), p=0,1,2,...
which means
((s—N—-1)/2]
QN V= Y  AZlz+1), AeR
I1=0

AsQW*D(Q) = ... = Q¢~N~1(0) = 0, this sum can be nontrivial only under the
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assumption
s—2N—-1<[(s—N—-1)/2].

It follows that s<3N + 1. By considering consecutively the possibilities
s=3N+1,s=3N,...,s=3N — 4 one finds a one-dimensional solution space
for each case, except the case s=3N which admits no solutions. Explicit
formulae can be given for all cases; the simplest one corresponds to s =3N + 1
where Q(z) is equal to the (N + 1)th primitive of Az¥(z + 1). The conclusion
therefore is that for N odd

d3N+ LN _ d3N—l,N = d3N—2.N — d3N—3.N = d3N—4.N = 1’ d3N.N =0. (631)

From (6.28) we find that z°Q(1/z) must be an odd-degree polynomial, so for
N even the condition Q™ (0) = 0 is automatically satisfied and we have

dsN =gsN+1, (6.32)

Now refer to the case N =s. According to the above, (6.28) can be inter-
preted in terms of representations of D, in the space of degree-s polynomials as

Q —paQ =patQ'

Here Q is a polynomial with real coefficients, that may also be considered as a
polynomial with complex coefficients. It is easy to deduce that the dimension
d** can be computed by general rules, as the multiplicity of the 2-dimensional
irreducible subrepresentation in the representation p (see Serre, 1967). Name-
ly, if ¢ and y denote the corresponding characters, then

d* =g, x> =g[2s +1) +20(0)].
As ¢(t) can be easily calculated: ¢(t)=1,— 1,0 for s =3k, 3k + 1 and 3k + 2,

respectively, we obtain
o = [%] (6.33)

The final remark is that the only possibility for d*¥ to satisfy requirements
(6.31),(6.32) and (6.33) is formula (6.30). This concludes the proof of the
theorem, together with the following corollary.

Corollary 6.11 Forarbitrary sand odd N, such thats < 3N + 1,s 5 3N there
exists a unique solution Q%N(z) of (6.28) and (6.29), with additional 'd""
constraints

Q™M) =(s— N),Q“~"*2(0) = 0,0~ **9(0) =0,...

The solution space of (6.28) is the linear span of Q*¥, N taking all admissible
values.
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We have shown that the polynomials Q*", with N taking all admissible
values, constitute the basis of solutions of (6.28). The beginning of the list of
basic polynomials is presented in the next section. Now, to finish the descrip-
tion of the case (c) above, corresponding to i = j = k, we only have to replace u
by u; and put the basic operator Q* on the diagonal position (i, i) of the matrix
(6.15). We summarize our conclusions in the following theorem.

Theorem 6.12 The canonical basis of the space of all symplectic operators I
of the form (6.15) with coefficients that depend on u{™ in a linear way, is
constituted by the operators I3}, where s runs through all non-negative
integers, n enumerates the basic elements for fixed s, and i, j, k run through all
triplets of indices, including repeated ones. Let

Vo= ¥ ihne"

ijkm
denote the canonical basis of polynomial vectors being solutions of (6.24),
constructed as above. Then the basic symplectic operators I}, are given by
matrices that have nonzero entries in places (i, j), (j, k), (k, i), (j, i), (i, k) and (k, j),
so that the (i,j)th entry is X Af,u™(d/dx)*"™ the (jkth entry is
> Aim®™(d/dx)* "™, and so on.

6.8 Upper bounds for the level of symplectic and Hamiltonian operators

The results obtained in the previous section are also helpful in investigating the
properties of symplectic and Hamiltonian operators, but now with arbitrary
dependence on the basic variables. We restrict ourselves to the one-variable
case, so the differential operators under consideration are of the form

< (1) ,(2) d \
P= dut ud g — . 6.34
X puluuu )(dx> (634)
It will be shown that the requirement that P be a symplectic operator (and also
the restriction that P be a Hamiltonian operator) imposes a restriction on the
number of derivatives of u involved in p,.

The rank of any element f of the basic ring R is defined by the formula

0
rk f= min{n:a-l{i—, =0,i>n}.
It is convenient to assume the coefficients p, to be defined for all integer
k, p, =0for k <0,k > N. Introduce the level of a differential operator p given
by (6.34) by the formula

levP = max {rkp, +k}. (6.35)

0<k<N

First consider the symplectic case. We have demonstrated above that the
symplecticity condition is expressed by formulae (6.17) and (6.21). In the one-
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variable case. the first one reduces to

. 5 .
Z:”{J‘) hhg) — Z%h({’h‘z‘" - Za%(h‘l"’hz)‘”. (6.36)

As before, (6.36) can be rewritten in terms of polynomials

V=T Pt

— pS_
V(2= Zé—ml z!

in an abbreviated form

mn—fne)=20+n, (637)

where s=0,1,...,levP.
Now note that if s is equal to lev P, then rkp,_; <j and therefore

5ps—j __(

i aps -Jj
F

-1y ouv -

Hence, (6.37) implies in particular that
1
Vi(2) —z’Vs<;> =V(—-1—-2), s=levP.

The equation obtained is nothing other than (6.28); by (6.35) the coefficients of
V, vanish up to the (s — N — 1)th, i.e.

V,0)=V/'(0)= - =V,~N-D(0)=0
Theorem 6.10 can now be applied to give the following conclusion.

Theorem 6.13 There are two possibilities for the level of an Nth-order
symplectic operator P: either levP=3N +1orlevP <3N —1.

The estimate of the level is sharp. In fact, for the basic operators constructed in
Corollary 6.11,

s
Qs,N = Z /li'NZk,
k=s—N

the corresponding symplectic operators are

PsN = zs: ANy k) i S—“.
k dx

k=s—N
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Evidently, the upper bound of the level, equal to 3N + 1, is achieved on
operators P3N+t 1N,
We conclude the investigation of the one-variable symplectic case by

presenting the beginning of the list of basic symplectic operators PV,
The first-order operators are

d
PHl=1@ 4
2 dx’
d
P2l =1,2 +u—
2 dx’
d
PLl=1l,0 4=
2 dx

The third-order ones are

d d\? a\
P10v3=1u(10) iu(9)_+§u(8) - +u(7) —],
st U T gy

d d)\? d)?
8,3 _ 1,8 4 (N _— 3.6 _— o —
P U +u dx+2u (dx) +u (dx)’

d d\? d\?
P‘“=%““"+%“"’5;+%“‘”<3;> *“‘”(a) ’
d d\? d\?
53 1,4 — 43,6 o L
P su dx+2u (dx) +u (dx)’
d\? d\?
43_ _1,_ 3,0 < w2
P U +3u <dx) +u <dx>’

d d? d)?
33_1,3 43,0 3 mf —-
P U +3u dx+2u (dx) +u(dx)

Higher-order basic operators can be easily computed too.

We have demonstrated that the theory developed in the previous section in
order to describe symplectic operators with a special type of dependence on
u{™, was helpful in obtaining some estimates of the level of an operator with
arbitrary dependence on these variables. Now we refer to the Hamiltonian
case, where the theory of the previous section also helps.
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Consider now Hamiltonian operators in the one-variable case. Let a
Hamiltonian operator P in the form (6.34) be taken. According to version (c) of
Theorem 5.1, in addition to the skew-symmetry, there must be satisfied

(Dphy)Ph, — (Dphy)Ph, + P(Dph,)*h, =0 (6.38)

for arbitrary h,, h, € R, where according to (5.3),

ap d\"
DPh Za (r’r‘l) (k)(dx) :

Similarly to the symplectic case, (6.38) can be presented in an abbreviated
form:

W,(2) — z‘W,(%) + W,(1+2)=0, (6.39)

where

W)=}, pgu(;) .( )PU Dzite

(i—a)
W,(2) = ZP:( )( p’;m'> PAL

and s takes values from O to lev P + N.
For the same reasons as in the symplectic case, in particular we have

W, (2)= —W,(—2), s=levP+N.
Therefore (6.39) gives us

Wi(2) - Z’W,G) =W(-1-2),

which is none other than (6.28). By (6.35), the coefficients of W, vanish up to the
(s— N — 1)th, ie.

W(0) = W/(0) = = WEN=(0)=0

Application of Theorem 6.10 leads us to the following statement.

Theorem 6.14 There are two possibilities for the level of an Nth-order
Hamiltonian operator P: either lev P=2N + 1,orlevP <2N — 1.

The question arises: is the estimate sharp? For N = 1 the predicted maximal
value of the level is 3 and in fact there exist first-order Hamiltonian operators
of level 3 (see Section 5.3). For N = 3 the consequence of Theorem 6.14 is that
lev P < 7. However, only third-order Hamiltonian operators of level 5 exist
(see, e.g. Mokhov, 1987). The problem of finding a sharp upper estimate for the
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level of a Hamiltonian operators is still open and deserves further investiga-
tion.

6.9 Symplectic operators of differential-geometric type

In this section we refer to a class of symplectic operators I = (/;; with matrix
entries of the form

d
L= aij(u)a + Ek:bijk(u)“,;, = (u"). (6.40)

It has been demonstrated in Section 5.10 that the prescribed form (5.31) of
Hamiltonian operators leads to natural differential-geometric objects. It
happens that (6.40) also has a similar interpretation. For this reason we follow
the tensor nature of the objects involved by putting the indices in their proper
places.

To obtain the conditions of symplecticity, use Theorem 6.1 in version (f). We
have

Oa 0b,
Says(d1,42) = qy" auapy q,+ 4, Z#“i‘h + qlbaypq(zl’

da b
_%4(11) auﬂ: qz — %‘11 Z#u‘;‘h - %(‘hbayﬁ‘h)m-

Equating coefficients of g % to the corresponding ones of g%’ g% and taking
into account the skew-symmetry of I, we get the following theorem.

Theorem 6.15 An operator I with matrix entries of the form (6.40) is a
symplectic one iff the following collection of conditions holds:

a;;=aj,
da;;
EFJ = bijk + bjik:
Oa;;
(37"1 = bikj + bjkis
ob,, b, 0Ob, b,
Jmk __ 1k+ jk __ k_ 0

ou' ou ou™  ou

Mokhov (1990) revealed a natural interpretation of the conditions obtained
for the case of a finite number of u* and nondegenerate a;;(u). Namely, let a;;(u)
be interpreted as a Riemannian or pseudo-Riemannian metric g;; on a
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manifold, and let coefficients I'}, be introduced by the formula
b jk = Z gia F;’k'
a

then it can be proved that l"j.k (u) behave as coefficients of a differential-
geometric connection (see, e.g. Kobayashi and Nomizu, 1963).

It turns out that conditions of symplecticity are equivalent to the following
requirements: the connection I'}, (u) is compatible with the metric g;;(u), i.e.

0g;;
6_ul: = ;(giar?k + gjar;'.k)’

the torsion T, = 3,9, (I'G —T) is skew-symmetric with respect to all

indices, and its gradient vanishes:
dT),

In particular, for every Riemannian or pseudo-Riemannian manifold the
Levi-Civita connection produces a symplectic operator of the form (6.40).

i _)km

6.10 Notes

The exposition of Hamiltonian theory corresponding to local symplectic
operators originates from Dorfman (1987, 1988). The basic example was the
Krichever—-Novikov equation, the first local symplectic structure of which was
found in Sokolov (1984) and the second in Dorfman (1987). The pair of local
symplectic structures corresponding to the PKdV equation was also found in
the latter paper.

The theory of symplectic operators w1th coeflicients depending linearly on
the basic variables for the one-variable case is developed in Dorfman (1989);
the final many-variable version of it is contained in Dorfman and Mokhov
(1991).

Section 6.9 presents some of the results of Mokhov (1990) referring to
differential-geometric aspects of the theory; links with the symplectic theory of
loop spaces are also traced there. Close interrelations between symplectic
operators of the shape (6.40), and differential-geometric structures are in some
sense parallel to those of Hamiltonian theory as described in Section 5.10.

It must be said that known examples of pairs of local symplectic operators
are not numerous. New examples in the matrix case were obtained by
Antonowicz and Fordy (1990) who considered matrix versions of the
Krichever—Novikov equation.

Considerations concerning the Krichever—Novikov equation also inspired
investigations on the so-called cancellation phenomenon (Wilson, 1988, 1991)
that indicate the group-theoretical origins of the equation’s beautiful proper-
ties. Some information on the (2 + 1)-versions of the Krichever—Novikov
equation, Miura transformation and cancellation phenomenon can be found
in Dorfman and Nijhoff (1991).



7 1-Scheme of integrability

From the algebraic point of view adopted in this book, an integrable evolution
equation is an element of a Lie algebra possessing a sufficiently rich com-
mutative symmetry algebra. One of the possible ways of constructing such
elements is the Lenard scheme described above. Its essence is that a symmetry
a, of a Nijenhuis operator A generates an infinite sequence of mutually
commuting symmetries by the formula a, = A"a,. This chapter is devoted to
an alternative scheme that we shall call the 7-scheme. The main distinction
from the Lenard scheme is that no Nijenhuis operator is needed. Nevertheless
there are certain interrelations between the schemes as revealed in Sections 7.5
and 7.6.

It must be noted that the approach of this chapter is less formal than that
taken above: nonlocal operators, such as (d/dx)™ !,

d\™' 1/[* ®
(a) =§< J 0@~ f ] rp(c)dc),

or the Hilbert transform J#,

1 -
H=_vp. .[rp(f)(f —x)~1d¢,
are encountered, also two independent variables x, y appear. However, we do
not jettison consistent examples because of the demands of rigour. The
algebraic background explains the essence of the situations under consider-
ation.

7.1 An alternative scheme to generate commuting symmetries

Let there be given a Lie algebra U and let an element a,e U be fixed. Suppose
that for a certain element 7€ the elements a, obtained by the recurrence
procedure

a1 =[7,a,] (7.1)
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mutually commute, i.e.
[a;,a1=0, i,j=0,1,... (7.2)

In this case we will say that the T-scheme with the seed element a,, is in action.
We start with an algebraic theorem that describes requirements on a, and 7
that guarantee the validity of (7.2).

Theorem 7.1 Suppose that for some integers N > 1, M >2 there exist el-
€mMeNnts T_py, T_y41s---» Tos T1 €W such that

(@) 7,,,=[1,7,], s=—N,...,0,
1, =41, AeR;
(b) [r_naol=[t_y+1,80] = =[1r_y,80,] =0,
[t0,a0] = pao, peR; pi<0;
© [a;-1,a]1=0, i<M;

N-1

d) from [p,a,_,]1=[p,ty] =0it follows that p= ) v,a,,v,eR.
0

Then the t-scheme with the seed element g, is in action, i.e. (7.2) holds for
arbitrary i, j.
Proof 1. First, prove that
[‘C,, an] = ﬂsnas-wl (73)

for some constants pu,,eR, s and n being arbitrary indices, u,, =0fors + n <O0.
For n =0 formula (7.3) is valid due to condition (b); from (a) and (b) there
follows

Hoo = H, #1o=/1, #30=0’ S<0,~ s>1.
Now use the Jacobi identity to get
[Ts, an+ 1] = [Tp [17 au]] = [[‘E’, T]yan] + [Ts [rn an]]
== [T’+ 19 an] + [‘C, [Tn an]]'

We conclude that if (7.3) is proved for some n, then it must be valid for n + 1
also, with

us.n+ 1= —Hgy i,n + Hsne

With the help of this equation all u,, can be calculated; however, we need only
that

Hon = MU — k. (7.4)
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2. Prove that from the assumption that [a,_,, a,] = O for all n < K it follows
that [a,, a,] = O for all m,n such that m + n < 2K. For K = 0 our statement is
valid and we can start with the induction. Suppose that the statement is
already proved for some K and assume

[a,+,0,]=0, n<K+1.

Choose an arbitrary pair of m and n such that m + n < 2(K + 1). Then there
are three cases:m+n<2K, m+n=2K+1, m+n=2K + 2. For the first
case there is nothing to prove. For the other two cases use the Jacobi identity:

[am’ an] = [am’ [T: a,_ 1]] = [[ams r],a,,_ 1] + [Tr [am, a,— 1]]
=—[a,+.a,- 1+ [t[ama,_ 1] (7.5)

The second case corresponds tom +n — 1 < 2K, so [a,,,a,_,] =0 and we get
from the formula that

[am’an] = - [am+ 198 - 1]'
By repeating this argument several times we arrive at
[am an] = — [ag, ax 4+ 1],

which vanishes by the assumption of the induction. For the third case
m+n—1=2K + 1, which, as has already been proved, implies

[a,.a,-,]1=0.
By (7.5), we have
(ama,]= —[ap+ 1,0,-4]
and we can repeat this argument several times to get
(ama,] =L[ak+1,05+,1=0.

3. Itisleft to be proved that [a,_,,a,] = 0 for all n. This will also be done by
induction. By condition (c) the equality holds forn=1,2,..., M. Suppose it is
valid for n < K (where K > M). By the Jacobi identity

[Laksak+11sap—1]1=[[ag  ap 11,0k 411+ [ag, [ag 15 ap-11]
and, as K + M < 2K, the proof above states that
[[aksax+11.ap-11=0. (7.6)
By the Jacobi identity we have

[[ak,ak+1),t-n]1=[lak,T-n)ax+ 11+ [ak, [ag+ 1, 7-x1]

= —#—N,x[ax—m ag+1]—H-nx+1lakax—1 -]
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As 2K + 1 — N < 2K, it follows that

[[ax,ak+111-5y1=0. (1.7)
From condition (d) of our theorem,
[ak,ak+ 1] = 2 Ve, 0y (7.8)

where a, are independent and v,, # 0,0 < «; < N — 1. By commuting (7.8) with
7, we obtain with the help of (7.3) and (7.4) that

Y(u—QK+1-a)i)v,a,=0.
The conclusion is that u = 1 = 0 if there is more than one term in this sum, and

p#=(2K + 1) otherwise. Both conclusions contradict (b). So [ak,ax,,;]1=0,
and the theorem is proved.

Remark 7.2 Note that the statement of this theorem remains valid if we
know for some reason that all g; belong to a certain Lie subalgebra U, c A
and if (d) is valid for pe,. In fact, we used (d) only once in the proof, when
stating that (7.8) holds. But if a, e, then [ay,a ., ,] belongs to A, automati-
cally.

7.2 t-Scheme for the KdV, Benjamin—Ono
and Kadomtsev—Petviashvili equations

In this section the algebraic statement proved above is illustrated by three
examples.

Example 7.1 The KdV equation. Put

ao = ux,
d -1
= x(6uu, + u,,.) + 4u,, +8u’ + 2ux<a> u, (7.9)
;=1

It can be checked that the requirements of Theorem 7.1 are satisfied. In fact,

1o =[1,7_,] = — 8(xu, + 2u),
7, = [1,70] = 167,
and also
[t_1,80]1=0,
[t0,a0]1 = — 8a,.
The hierarchy obtained by the rule (7.1) is
ag = U,.
a, =[r,a,] =6uu, +u,,,,
a, =[1,a,1 =3u® + 10uu,,, + 20u u . + 30uu,).
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Condition [a,,a,] = 0is obviously valid; one can easily check that [a,,a,] =0.
So conditions (a), (b) and (c) are satisfied for N = 1, A = 16, u = — 8. Condition
(d) can be checked for M = 2 along the lines of Remark 7.2: if p is a polynomial
in the variables w,u,,... such that [p,uu,] =0 and [p,1]=0, then p=vu,.
Details can be found in Fokas and Fuchssteiner (1981a).

Comparing the first members of the hierarchies obtained by the t-scheme
and the Lenard scheme for the KdV equation (Example 5.1 with the substitu-
tion u — — u) we see that they differ only by multiplicative constants. Does the
same hold for all members of the hierarchies? The answer is in the affirmative
but this conclusion is not self-evident. The point is that the Lenard scheme is,
roughly speaking, generated by the action of the Nijenhuis operator

d 2 d -1
=(— — . 1
A (dx) +4u+2u"<dx> (7.10)

As for the 7-scheme, the generating operator is the operator adr, defined by
(adt)h=[1,h],
ie.

d 0 ® ot {d\
— k
adr = kgof( )a—um _kgom(a) . (711)
We see that adt has nothing in common with A given by (7.10), and it is not

even a differential or integro-differential operator. The coincidence of the
hierarchies given by both schemes will be explained later.

Now we proceed with the examples, The next one shows that condition (c) in
Theorem 7.1 is important.

Counter-example 7.2 Put
Ay = Uy,
T = x(uu, + u.,)+u* +2u,,
T, =1L
Then it can be checked that
to=[r,7_,]= — (xu, +2u),
7, =[1,70] =21,
and also
[z_ pao] =0,
[t0,a0] = —a,.
The 7-scheme
ag=u,
ay =[1,a0] = uti, + t,,,
a, =[1,a,]=3u® +4uu ., + 1luu,, +2uu,,
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fails to act; the reason is that condition [a,, a,] = O is not satisfied in this case.

Example 7.3 The Benjamin—Ono (BO) equation. This equation has the form
u, = 2uu, + Hu,,
where J# is the operator of the Hilbert transform.

Put
Ao = Uy,
7= xQuu, + Hu,)+ 3 Hu, + u?
T, =1 (7.12)
Now we get

1o =[1,7_,]1= — 2(xu, + u),
7, =[1,70] =21,
and it can be checked that
[r_1,a01=0,
[t0,a0] = — 2a,.
So the 7-scheme is in action, producing the BO hierarchy
ag=1u,,
a, =[1,a0] =2uu, + Hu_,
a, =[1,a,]1=6uu, + 3u, Hu + 3uu, + 3 (u2)
+ 35 (uu,,) — 2u,,,. (7.13)
Conditions (a) and (b) of Theorem 7.1 are satisfiedfor N=1,A=2, u= — 2.
Condition (c) for M = 2 is checked directly. Condition (d) can also be checked,
see Fokas and Fuchssteiner (1981a).
The main distinction from Example 7.1 is that hierarchy (7.13) could not be

obtained along the lines of the Lenard scheme approach. The reason for this
will be explained later.

Example 7.4 The Kadomtsev—Petviashvili (KP) equation.
This is the equation

d -1
u=— 2a2<6uux —u,., — 302 (&) uyy)

with two space variables x, y. Put

Ao = Uy,

d\™! d\!
T= y<6uux — Uy, — 3a2(a> uyy> — 2a?xu, — 4a” <a) u, (7.14)

T_,=1
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We have

oy =[1,7_,1= —6yu,
1o =[1,7_,]= — 120 (xu, + 2yu, + 2u),
7, =[1,10] = 12¢°1,

and also it can be checked that

[1—29‘10] = 07
[t-1,a01=0,
[t0,a0] = — 12a2a,,.

Now we see that in the conditions of Theorem 7.1 it must hold that N =2,

A=120*, u = — 12a?. The action of the t-scheme gives us the hierarchy
Ay = Uy,
a, =[1,a0] = — 2¢%u,,
d -1
a,=[r,a,]= —2a? (6uux —u,. —3a? (&) uyy), (7.15)

d\! d\™!
as =[1,a,] = — 24a* (uny —4uu, —2u, <a> u, +a? (&) uyy).

It is easy to check that conditions [a,,a,] =[a,,a,] = [a,,a;] =0 are satis-
fied. To apply Theorem 7.1 with M = 3 it must be checked that if p is an
element of the Lie algebra generated by a,, such that [p,a,] = [p,1] =0, then
p=aa,+ fa,. The proof of this statement can be found in Oevel and
Fuchssteiner (1982).

Thus, we deduce that hierarchy (7.15) satisfies (7.2). We shall demonstrate
later that the t-scheme for the KP equation is similar to the t-scheme for the
BO equation, rather than to the KdV case.

7.3 t-Scheme in Hamiltonian framework; symmetries of Dirac structures

Up to this moment we have carried out our considerations only within the Lie
algebra 2. Now suppose that a complex (€2, d) over U is given. Let there be
fixed a Dirac structure ¥ < U@ Q!. In this case the question arises: under
what conditions are the elements a,, produced by the 7-scheme, Hamiltonian
fields with respect to #? First we prove the following proposition.

Proposition 7.3 Let he?W be a Hamiltonian vector field with Hamiltonian
feQl ie.

h@dfeZ.
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Then
(a) if ae is a symmetry of h, but (a,df) #0, then f/ = (a, df) is a conserva-
tion law of A,
(b) if aeU is a symmetry of f; i.e. (a,df) =0, being a Hamiltonian field with
the Hamiltonian g then g is a conservation law of A.

Proof By general properties of the Lie derivative

L,f = ([h,al, df) +(a,d{f,f}) = 0.

So the statement (a) is proved. Now, in case (b) we have a @ dge.# and by the
isotropy of &

(h,dg) + (a, df ) = 0.

So g is a conservation law of A.

Remark 7.4 The case (b) of the existence of a symmetry of the Hamiltonian
corresponds to the Noether theorem in classical mechanics (see Arnold, 1974).
The element ae? is in this case the vector field generated by the action of a
one-parameter group of diffetomorphisms that conserve the Lagrangian of the
system.

We introduce the following definition.
Definition An element 7€ is called a symmetry of a Dirac structure
L cUADQ! (& is said to be conserved along 1), if
La®Lile?
for arbitrary a® (e Z.

This definition looks very natural, taking into account the definitions given
in Section 2.3. In particular, a Hamiltonian (or a symplectic) operator is
conserved along  in the sense of Section 2.3 iff its graph is conserved along 7 in
the sense of the definition just given.

Theorem 7.5 Let a e be a Hamiltonian vector field with respect to some
Dirac structure %, with Hamiltonian f,eQ°. Let 1€ be a symmetry of .
Then the elements a; obtained by the rule

an +1 = [T! au]

are also Hamiltonian vector fields. Their Hamiltonians are given by the
formula

Jos1=(wdfy). (7.16)
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Proof The statement is proved by induction. The first step: from
a,®df,e &, it follows that

L.a,® L. df,eZ,
ie.
L.a,®d(z,dfy)e .

This, in its turn, means that a, = [, a,] is a Hamiltonian vector field whose
Hamiltonian s f; =(t,df,). We can repeat the argument and proceed with the
induction.

Remark 7.6 Suppose that in addition to the conditions of Theorem 7.5 the
7-scheme is in action, i.e. all the a; mutually commute. This does not guarantee,
in general, that their Hamiltonians f; are conserved along all the fields, or that
they commute with respect to the Poisson bracket. However, from Proposi-
tion 7.3, it follows that any a,e? possesses an infinite number of conservation
laws (not necessarily commuting). In fact, for arbitrary j consider the Hamil-
tonian f;of a;. If {f;,f;} =0 then f; are conservation laws of a;, otherwise
f;=1{f..f;} are conservation laws of a;.

The next statement describes the symmetry algebra of a given Dirac
structure ., in the spirit of Propositions 2.4 and 2.5, and 2.8 and 2.9.

Theorem 7.7 Any te that is a Hamiltonian vector field with respect to & is
a symmetry of #. The converse is valid under the following additional
restriction on the complex (Q,d): from ¢eQ!,dé(a,b)=0 for a,ben, &, it
follows that ¢ =d f.

Proof Let t@®dfe. Then for arbitrary 1@ (e L, hPne ¥ we have by
formula (2.15)

[, A1 ®(Ln —iydo)e L. (7.17)

In particular, if 7 is a Hamiltonian vector field then t @ d fe# and by (7.17) we
have

Lh®LneZ (7.18)

for arbitrary h®ne#. So t is a symmetry of £.
Conversely, if (7.18) is valid for arbitrary h @ ne %, then it follows from (7.17)
that
0®@i,dée”’

for £€Q! (recall that . is a linear space). Then for h; @ &, € #, by the isotropy
of & we have (i,d&, h;) = 0. So d¢ restricted to the projection n, & is trivial.
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According to the condition of the theorem, ¢ = df and therefore
t@df 30, ¢ £
which means 1 is a Hamiltonian vector field. This ends the proof.
The conclusion is that for a wide class of complexes and Dirac structures in
these complexes it can be stated that Hamiltonian vector fields exhaust all
symmetries. Namely, if the first cohomology group H*(Q) is trivial and if 7, &

coincides with the whole of ?, then this property holds. For symplectic
operators we have mentioned it already (see Remark 2.5).

7.4 Examples of t-schemes with conserved Dirac structures
In this section we consider the Hamiltonian framework of the examples
presented in Section 7.2.
Example 7.5 The Benjamin—Ono (BO) equation. We have demonstrated
that the BO equation
u, =2uu, + Hu,,
can be included in a t-scheme with
Qo = Uy,
©=xQuu, + Hu.)+3Hu, +u’

Note that a, is a Hamiltonian vector field with the Hamiltonian f, =
J(?/2)dx with respect to Hamiltonian operator K = d/dx. Also t is a Hamil-
tonian vector field with respect to K, because of the formula

d ¢ <u3 .#u,)
x| —=+u dx.

TS xou | *\3 2

By Theorem 7.7, K is conserved along 7, and we can apply to this example the
statement of Theorem 7.5. The conclusion is that all the members of the BO
hierarchy (7.13) are Hamiltonian vector fields with respect to K and that their
Hamiltonians can be obtained by the recursive formula

d
ﬁ+1=J15—ﬁ'dx.

In particular, the BO equation itself is a Hamiltonian vector field with

3
f=(6,dfy)= J (“;+“"i “’)dx

being its Hamiltonian.
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Example 7.6 The Kadomtsev—Petviashvili equation. It has been shown
above that for the KP equation

d\"~ 1
u, = —2a2<6uux —u,, —3a° <a) uyy>

the t-scheme is in action, with

ao = ux,

d -1 d -1
=y (6uux —u,,, — 302 (a) uyy> — 20 xu, — 4a? <d_x> u,.

Evidently a, is a Hamiltonian vector field with respect to K = d/dx with the
Hamiltonian f, = [ {(u?/2)dxdy. It can be checked that 7 is also a Hamiltonian
vector field, as

=949 W Mhx 30 d (9!
" dx 6u d 7 2%\ 4x/) HMax/) W
d -1 d -1 d -1
2 4 2 & =
o xu<dx> u,+a <dx> u(dx) uyy>dxdy.

By Theorem 7.7, K is conserved along 7, and Theorem 7.5 can be applied. We
deduce that all the members of the KP hierarchy (7.15) are Hamiltonian vector
fields with respect to K, whose Hamiltonians can be calculated by the rule

o
fos1= fjtéi;dxdy.

In particular KP has the element

-2
£, = (r,d(z,dfy)) = — 20 J J(zﬁ _ % —3a2y (%) uyy)dxdy

as its Hamiltonian.

It must not be thought that the conservation property is valid for an
arbitrary t-scheme. The following example presents a t-scheme with noncon-
served Hamiltonian structures.

Counter-example 7.7 The KdV equation. We have demonstrated in Sec-
tion 7.2 that the z-scheme of the KdV equation

ul = 6uux + uxxx
is generated by the elements

Qo = Uy,

d -1
1= x(6uu, +u,_.)+ du, . + 8u? +2u, <a) u.
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As above, g, is a Hamiltonian vector field with respect to K = d/dx, having
fo = [(u*/2)dx as its Hamiltonian. To calculate L K, note that
uu,,

d o 3 5 d\!
= u x(u + 2 )dx+5u +2u""+2u"(dx> u,

soL. K=L_K,where
d -1
=5u*+2 2u, | — :
T, =5u" + 2u,, + u"<dx> u

By the general rules for calculating the Lie derivative (Section 4.2) we have

d d d d d\? d
L —=L —=—|17 —+—o7.*%|=—4 —_— du—+2 N
fdx tdx (tldx-’-dx 1 ) ((dx) TRt u")

It turns out therefore, that K is not conserved along 7, and that the Lie
derivative of K along 7 is proportional to the operator that we recognize as the
second Hamiltonian structure of the KdV equation (see Example 5.1). There
arises the conjecture that the simultaneous action of the t-scheme and the
Lenard scheme in the KdV case can be explained by this phenomenon. This
consideration is the subject of the next section.

7.5 Lie derivatives in constructing Hamiltonian pairs

We need the following simple but important proposition.

Proposition 7.8 Let K be a Hamiltonian operator and let ¢ be an element of
the Lie algebra U, such that H = L K is also a Hamiltonian operator. Then H
and K constitute a Hamiltonian pair.

Proof The fact that K is a Hamiltonian operator means that the Schouten
bracket [K, K] vanishes (see Section 2.8), i.e. for arbitrary &,,&,,&,

$[K,K]1(,¢;,83) = —(Lgg, &5, K&3) + (cycl) = 0.

Apply the operator L, to this formula. According to the general rules of
Section 2.3, we get

%[K,K] (L:ép élaé&)) + % [K! K] (éla L!él’é3)
+ % [KaK] (éla éZaLt 63) + [Ha K] (61’ éZa 63) = 0
As[K,K]=0,itfollows that [H, K] = 0. Taking into account the assumption
[H,H] =0, we conclude that H and K constitute a Hamiltonian pair.

The next theorem is in some sense converse to this proposition.

Theorem 7.9 Let there be given a Hamiltonian pair of operators H,
K:Q! -, with invertible K. If the cohomology group H?() is trivial then
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there exists an element te, such that L_K = H. The recipe for constructing t
is the following: take

w(hy,hy)=(hy, K~ HK ™ hy), (7.19)
find £eQ! such that d¢ = w, and put
t1=KE. (7.20)

Proof First we must prove that the procedure for constructing t can be
carried out. In fact, H and K constitute a Hamiltonian pair, and by the results
of Section 3.5, the 2-form w given by (7.19) is a closed one. As we suppose that
the corresponding cohomology group is trivial, it follows that there exists a
£eQ?, such that d¢é = w, and we can define 7 = K¢.

Now check that L K = H. As K is a Hamiltonian operator, its graph is a
Dirac structure and we can rely on formula (2.24). It follows that

[Kn,,Kn,]= K(Lxm N2 — gy, dn,)
for arbitrary n,,n,eQ!. The consequence is that
(Lgy, K, = — K ik, dn,. (7.21)

In particular, put n, = &, where £ is as constructed earlier in the proof, and
substitute an arbitrary &,e€Q! in place of 7, to get from (7.21)

(LgK)¢; = — Kigg o.

This equality means, in its turn, that

(L. K)¢,8,) =w(KE,,KE)) (7.22)
for arbitrary &,,&,eQ!. At the same time we have by (7.19)
w(K¢&,KE)=(HELE,). (7.23)

Comparing (7.22) and (7.23), we deduce that
LK=H.

This ends the proof.

It must be kept in mind that Hamiltonian operators in the framework of
formal variational calculus are, as a rule, noninvertible. For this reason, some
difficulties in the direct construction of r may arise when we refer to evolution
equations. On some occasions, however, t can be identified through a search
along the lines of the recipe of Theorem 7.9. This theorem also provides us with
an understanding of the interrelations between the two schemes of integrabil-
ity, as described in the next section.
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7.6 Simultaneous action of the Lenard scheme and the t-scheme

We have already mentioned the phenomenon of the coincidence of the two
hierarchies of the KdV equation, one obtained by the Lenard scheme and the
other by the z-scheme. The next proposition gives us an explanation of this
phenomenon.

Theorem 7.10 Let there be given a Hamiltonian pair of operators
H,K: Q! -, with K invertible. Consider the Lenard Scheme 7.1. Suppose
that 7€ is an element such that

Scheme 7.1

H=JAL K, L H=uHK 'H (7.24)
and also
(tadf—1)=vf0

where A, y, v are constants.

Then (a) the 7-scheme with the seed element g, produces a hierarchy that
differs from a; only by multiplicative constants; (b) The conservation laws f,
can be calculated by the recursive formula

1
m+D)(u—-2)+v

Jar1= (v, df,) (7.25)

Proof Note that (7.25) is valid for n = — 1. Assume that (7.25) is valid for
some n, which implies

d(t,df,) =Vadfps1s Vo= +1D)u—-4+v.
Apply the Lie derivative L to the equality
Kdf, ., =Hdf,
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We get
AHdf, .+ Kd(t,df,,,)=pHK *Hdf, + Hd(z,df).
Substituting d(z, df,) into this formula, we obtain
AKdf, ., + Kd(t,df, ;)= pKdf,, 2+ v,Kdf,, s
and it follows that
Kd(t,df, ) =(v,+ p—A)Kdf, .,

le.

d(t,dfys 1) =Ves14fns2

Thus (7.25) is proved by induction.
Now for the elements a, we have

(t,a,]1=[r,Hdf,,,]=pHK 'Hdf,_, + Hd(z,df,_,)
=puKdfy oy + Vv, Hdf, =(p+V,_1)85 1
We illustrate this theorem with three examples of simultaneous action of

both schemes: the KdV equation, the sine-Gordon equation and the Liouville
equation.

Example 7.8 The KdV equation. As has been demonstrated above, the
Scheme 7.2.

df_,, f_1=j§dx

u?
dfo, fo= j—z“dx

N dfy, f1=j(u3+%)dx

2

Lenard scheme for the KdV equation is Scheme 7.2, where K =d/dx,
H =(d/dx)?® + 4u(d/dx) + 2u, constitute a Hamiltonian pair. We have also
considered the t-scheme with the same seed element a, and with

d -1
T = x(6uu, + ) + du,, + 8u® + 2u, (&) u (7.26)

and checked (see Counter-example 7.7) that
L. K=—4H.
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If we calculate L H, then we find that
d)? d d\! d)3 d
L. H= —2<(a> +4ua + 2ux><a> °<(a;> +4ua; + 2ux)
= —-2HK 'H.
Also we have
(r,df-)=(x, D) =%Ju2dx=3f0.

Now the phenomenon of the coincidence of the action of the two schemes in
the KdV case finds an explanation along the lines of Theorem 7.10, with
A=—4,u=—2,v=3. We also get a simple formula that allows us to
calculate consecutively all the conservation laws f, of the KdV equation

1
Jorr =7, —<(@dfh),
where 7 is given by (7.26).

Example 7.9 The sine-Gordon equation. We have shown (see Example 6.1)
that the Lenard scheme for the sine-Gordon equation is Scheme 7.3, where

Scheme 7.3.

d -1
a_, =<a) sinu

— 1,3
Ay = Uy + 22U

K =(d/dx)"!,H =d/dx + u,(d/dx)~*ou, is a Hamiltonian pair (rigorous for-
mulations avoiding nonlocality are given in Section 6.6).
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Now take

d -1
=l 42)+ 2 () 62 (2

Direct calculations show that

d d\™!
e o 2) )2

and that
L .H=0.
Also we can check that
(v dfo) =31,
and therefore in the formulation of Theorem 7.10 we must take A= —2,

u=0,v=1.To get the sine-Gordon hierarchy each of the two schemes can be
applied with results that differ only by multiplicative constants, and the
recursion formula for conservation laws is

1
fosr1= —2n—+3(t’ daf,)s

where 7 is given by (7.27).

Example 7.10 The Liouville equation. We have demonstrated (see Example

Scheme 7 4.

d\ !,
a_,= a; [

=

df_y fo2= _Jeudx

Q
)
-
Il
o

AVARAVEAVAY

df_y, f1=0

_
o
Il
|
=
¥
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6.2) that the Lenard scheme in this case is Scheme 7.4, where K = (d/dx)™!,
H =d/dx —u,(d/dx)'°u, is the Hamiltonian pair (see Section 6.6 for rigor-
ous formulations).

Put

-1
= Xy — $ )+ 2 — 14 (%) (2). (128

Direct calculations give

d d\!
L‘K=—-2<'&;—ux(a) oux>——2H,

and that
L. H=0
It is easy to check that
(v.dfo) =3fy,
so in this case we must take A= — 2,y =0, v = 1. As in the previous example,

both schemes can be applied to get the hierarchy of the Liouville equation,)
with results that differ only by multiplicative constants. The recursion formula
for the conservation laws is

1
f;1+ 1= m(rs df;:)a

where 7 is given by (7.28).

7.7 Notes

The exposition of this chapter follows Dorfman (1986). The general algebraic
scheme presented was inspired by considerations concerning the Benjamin-—
Ono equation (Fokas and Fuchssteiner, 1981a) and the Kadomtsev—
Petviashvili equation (Oevel and Fuchssteiner, 1982) and also by Chen et al.
(1982, 1983).

The mastersymmetry approach and investigations on higher order time-
dependent symmetries (Fuchssteiner, 1983) are closely related to this topic (see
also Oevel and Fokas, 1984). A lattice version of the mastersymmetry ap-
proach is presented in Oevel et al. (1989).

The Lenard scheme and the t-scheme described above do not exhaust, of
course, all the possibilities in the search for integrable evolution equations.
Other approaches of constructing dynamical systems with infinite number of
higher symmetries and classifying them can be found in Mikhailov et al. (1987)
and Sokolov (1988).

The reader may also refer to the proceeding of the NEEDS conferences
(Degasperis et al, 1990; Carillo and Ragnisco, 1990; Makhankov and
Pashaev, 1991) to get some idea of the present state and trends of development
of the theory of integrable evolution equations and, in particular, of the role of
the Hamiltonian approach to this theory.
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