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Preface

Matrices Over Commutative Rings is a textbook designed for a one-semester,
graduate-level course in matrix theory. Any student who has studied linear
algebra knows that there are many important situations in which the entries of a
matrix are not field elements. The entries might be confined to the integers, or
some principal ideal domain in general. The entries might be polynomials in
finitely many variables or continuous functions on some finite interval. The
general theory of matrices with entries from an arbitrary commutative ring is a
vast subject and a very active research area in mathematics.

This text is not meant to be an encyclopedic description of the theory. In the
17 chapters of this book, I have discussed the topics that I feel are most important
to every user of matrices. In particular, this text is not just for mathematicians.
There are many topics here that engineers, business majors, scientists, and others
will find interesting.

I have designed the book for a first-year, graduate level course in the subject.
A general knowledge of abstract algebra is required to read this text. If the reader
has had a good undergraduate course in abstract algebra, then he or she should
be able to read this book with only an occasional detour to the appendices or
references. I do not assume the reader has had a formal course in commutative
ring theory. Most of the proofs are done from a matrix point of view; that is,
certain matrix computations are performed and a result is obtained. In this way,
the text can be read by a large audience, having no special background in
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commutative ring theory. The necessary theorems in commutative ring theory
are developed in the main body of the text as needed.

There is a good selection of problems at the end of each chapter. These
problems range in difficulty from simple computations to proofs of hard theo-
rems. Some of the exercises ask the reader to fill in missing details in arguments
from the text. Although these types of problems may be boring to some, they
often help further the reader’s understanding of the subject matter. Some exer-
cises involve the construction of complicated examples. I urge the reader to
consult the general references at the end of this book when hunting for such
examples. A glossary of notation has been provided for the reader’s convenience
at the end of this text.

There are four appendices at the end of this book. The first two deal with
foundational material that is used sporadically throughout the rest of the text.
Every student should know something about partially ordered sets and Zorn's
lemma. Consequently, Appendix A should be read after Chapter 1 by every
student using this book. Appendix B describes the Jacobson radical of a ring.
This appendix will be of particular interest to students who wish to do advanced
level work in algebra. Appendix B can also be read after Chapter 1, but, in
general, the material found in Appendix B is a bit more difficult than the general
level of the main text. Appendix C deals with applications of the theory of
resultants. This appendix is also slightly more difficult than the main text. The
reader should read Appendix C after Chapter 8. Appendix D presents an appli-
cation of the ideas in Chapters 5 and 13. The interested reader should study
Appendix D after Chapter 13.

Finally, I would like to say a few words about one of the general references
at the end of this text. Neal McCoy’s research in linear algebra over commutative
rings was both important and influential. Many years ago, 1 first learned at least
two of the topics in this text by reading McCoy’s classic book Rings and Ideals.
In particular, my treatment of the material in Chapters 6 and 9 is in the same
spirit as McCoy’s original treatment of these ideas. I would like to take this
opportunity to acknowledge my indebtedness to McCoy’s fine explanations of
these topics.

William C. Brown
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1

Modules Over Commutative Rings

All rihgs in this book will be associative and contain an identity (for
multiplication ), which we will usually denote by 1. If T is a ring, we will always
assume 1 # 0. Thus, T contains at least two distinct elements. We will let T* -
denote the nonzero elements of 7. Thus, T* = T — {0}. Anelementx € T is
called a left zero divisor of T if xy = O for some y € T*, The element x is called
a right zero divisor if yx = 0 for some y € T*. We will let Z(T') denote the set
of elements in T which are either left or right zero divisors. Thus, if x € Z(T),
then x is a left zero divisor of T or x is a right zero divisor of 7. An element x
in T is called a regular element if x is neither a left nor right zero divisor of T.
Thus, T — Z(T) is the set of regular elements in 7. Notice that 0 € Z(T'), and
1 is a regular element of T.

In this book, we will always let R denote a commutative ring. For a com-
mutative ring, the left zero divisors and right zero divisors are the same thing.
Hence, Z(R) will be called the set of zero divisors of R. If x € R — Z(R), then
x is a regular element of R.

An element x in any ring T is called a unit if xy = yx = 1 for somey € T.
We will let U(T) denote the units in 7. Clearly, U(T) is a group (the group
operation being ring multiplication) contained in T*. Two elements x and y in a
commutative ring R are said to be associates if x = uy for some unit u € U(R).
If x and y are associates, we will write x ~ y. Notice that ~ is an equivalence
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relation on R. Thus, x ~ x, x ~ yifandonly ify ~ xand if x ~yand y ~ z,
then x ~ z. :

Suppose R is a commutative ring and x, y € R. The element x divides y if xz
= y for some z € R. If x divides y, then we will write x | y. Notice that x | y if
and only if Ry C Rx. In particular, any element in R divides 0, and if 0 | y, then
y = 0. Let us consider a familiar example of some of these ideas.

Example 1.1 Let T = M, ,(F) denote the ring of all n X n matrices with
entries from a field F. We assume n = 2. Then 7T is a noncommutative ring. The
units in 7 are the nonsingular matrices. Thus, U(T) = {A € T| det(A) + O}
Here det(A) is the determinant of A. Suppose E; denotes the n X n matrix in T
having a 1 in its 7, jth entry and zeros elsewhere. Then each E;; is both a right and
left zero divisor in 7. In fact, it is easy to check that Z(T) = {A € T | det(A)
= 0}. ’

Let R denote the set of diagonal matrices in 7. Then R is a commutative subring
of T. A matrix in R is a unit in R if and only if no diagonal entry of R is zero.
Z(R) is the set of diagonal matrices for which at least one diagonal entry is zero.

A commutative ring R is called an integral domain if Z(R) = (0). Let us take
this opportunity to introduce the notation we will use throughout the rest of this
book for various familiar integral domains.

1.2 The following rings are all integral domains:
(a) Z = the ring of integers.
(b) F = an arbitrary field.
(c) @ = the field of rational numbers.
d) FIX,, ..., X,] = the ring of polynomials in variables X|, . . . , X, with
coefficients from the field F.

All of the rings listed in 1.2 are integral domains with the usual definitions of
addition and multiplication.

Let T be an arbitrary ring. The reader will recall that a nonempty subset % C
T is called a left ideal of T if ¥ is closed under addition and left multiplication.
Thus, U is a left ideal of Tif x + y € A whenever x, y € U, and tx € A
whenever x € U, and t € T. Similarly, a nonempty subset ¥8 C T is a right ideal
of Tif x + y € B whenever x, y € B, and xt € B whenever x € B, and t €
T. Notice that a left (or right) ideal of T is automatically a subgroup of the
additive group (T, +) of T.

A nonempty subset 2 of T is a two-sided ideal of T if U is both a left and right
ideal of 7. In this book, a two-sided ideal of T will be called an ideal of 7. Thus,
U C T is an ideal of T if U satisfies the following properties:
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1.3 QA+ D
b)x+y€Aforallx,y €A
©ux€NAforalx € Aandallt €T

In 1.3a, the symbol &J denotes the empty set. Since 0 # 1, T always contains at
least two ideals, namely (0) and 7.

If X and Y are subsets of some larger set I', we will use the notation X < Y-
to mean X is a subset of Y and X is not equal to Y. Thus, X < Y if and only if
X CYand X + Y. A right, left, or two-sided ideal ¥ in a ring 7 is said to be
proper if ¥ < T. Thus, (0) is a proper ideal of T, while T is not a proper ideal
of T. Consider the following simple example of left and right ideals.

Example 1.4 LetT = M,,,(Z) denote the set of 2 X 2 matrices with entries
from Z. The usual matrix operations in M, ,.,(Q) when restricted to 7 endow T
with the structure of a noncommutative ring. The reader can easily verify the
following statements:

0 o
(@ A = {[x 3 xy€Z } is a proper right ideal in T.

(b) B = {B ol | *Y € V4 } is a proper left ideal in T.

© €= {[fv ); X,y,Z,Ww even integers} is a proper ideal in 7. 5

Certainly, the most important example of an ideal in an arbitrary ring T is the
Jacobson radical J(T) of T. Suppose X (T') denotes the set of proper left ideals
of T. Notice that X(T) # O since (0) € 2(T). The elements of L(T) can be
partially ordered by inclusion C. A left ideal % € R(T) is maximal if U is a
maximal element in R (7") with respect to the partial order C. Thus, A € (T
is a maximal left ideal if, whenever & C B and B € {(T), then A = B. The
fact that (T) contains a maximal left ideal is a simple consequence of Zorn’s
lemma (see Example A.5 in Appendix A at the end of this text). The maximal
left ideals in R(7) are called maximal left ideals of 7. The Jacobson radical of
T is the intersection of all maximal left ideals of 7. Thus, we have

LS J(T) = N {¥A € (7| Y is maximal}.

There are a couple of places in the text where we will need various facts about
J(T). These facts are all summarized in Theorem 1.6. A proof of this theorem
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and a complete discussion of the terminology appearing in Theorem 1.6 can be
found at the end of this book in Appendix B.

Theorem 1.6 Let J(T) denote the Jacobson radical of T.

(a) J(T) is the intersection of all maximal left ideals of T.

(b) J(T) is the intersection of all maximal right ideals of 7.

(c) J(T) is the intersection of all primitive ideals of 7.

(d) J(T) is a quasi-regular left ideal of T and contains every quasi-regular left
ideal of T.

(e) J(T) is a quasi-regular right ideal of T and contains every quasi-regular
right ideal of T.

(f) J(T) = {z € T| 1z is left quasi-regular for all t € T}.

(@) J(T) = {z € T| zt is right quasi-regular for all 7, € T}. |

Notice that Theorem 1.6b implies J(T') is a proper ideal in 7. If R is a
commutative ring, then ¥ is a left ideal of R if and only if % is a right ideal of
R. Thus, the set of all left ideals of R, the set of all right ideals of R, and the set
of all ideals of R are the same set. In this case, the Jacobson radical of R is just
the intersection of all maximal ideals of R.

An ideal ¥ in a commutative ring R is said to be finitely generated if ¥ = Rx,
+ --- + Rx,forsomex,,...,x,E U Ifevery ideal in R is finitely generated,
then R is called a Noetherian ring. We will have much more to say about
Noetherian rings in later sections of this book. For now, we merely observe that
the rings listed in 1.2 are all Noetherian rings. This is easy to see for Z or F. The
fact that F[X,, . . ., X, ] is Noetherian is a famous theorem in commutative ring
theory called the Hilbert Basis Theorem.

A commutative ring R is called a principal ideal ring if every ideal ¥ of R is
principal, that is, = Rx for some x € Y. In this book we will abbreviate the
words principal ideal ring by writing PIR. Thus, R is a PIR if every ideal in R
is generated by a single element. A PIR which is also an integral domain is called
a principal ideal domain. We will abbreviate principal ideal domain by writting
PID. Here is a list of some of the more well-known PIDs that students study in
a first course in algebra.

1.7 The following rings are all PIDs:
(a) Z
(b) Z[i] with i2 = —1 (the Gaussian integers)
© Z[V2)
(d) Z, (the p-adic integers)
(e) F[X] (the polynomial ring in one variable over F)
(f) FI[X]] (the power series ring in one variable over F)
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Examples 1.7d and 1.7f may not be very familiar to the reader. See Exercises 10
and 11 at the end of this section for more details on these two examples.

Since the rings listed in Example 1.7 are all PIDs, any homomorphic image
of any one of these rings is a PIR. In particular, Z/nZ is a PIR for any integer
n = 2. We will have more to say concerning the structure of PIRs in Chapter 14
of this book.

Now suppose R is a commutative ring. The reader will recall that an R-module
M is an abelian group (M, + ) together with a functionf: R X M — M (whose
images we denote by f(r, m) = rm) which satisfies the following conditions:

18 (x+ym=xm+ym and Im=m
x(m + n) = xm + xn
(xy)m = x(ym)

These equations hold for all x, y € R and all m, n € M. As we will see,
R-modules are intimately related to the arithmetic of M, ,(R), the set of m X
n matrices with entries from R. We will need the usual definitions concerning
R-module bases.

Definition 1.9 Let M be an R-module, and let ' = {m_ | « € A} be a subset
of M.
(a) T is an R-module basis of M if every m € M can be written as a finite,
linear combination of the elements of I'".

(b) A finite subset {m,,,, . . ., my(,} of distinct elements of I is said to
be linearly independent over R if whenever x;m, )y + - - - + xmy ) =
Oforsomex,,...,x, €ER, thenx, = ---=x,=0

(c) I is linearly independent over R if every finite subset of distinct elements
from T’ is linearly independent over R.

(d) T is a free R-module basis of M if I is an R-module basis of M and I is
linearly independent over R.

(e) M is a free R-module if M has a free R-module basis.

It might be wise to explain carefully some of the statements in Definition 1.9.
The set I is an R-module basis of M if for every m € M, there exist finitely many

indices a(1), . . . , a(n) € A and ring elements x,, . . . , x, € R such that m
= xjmyyy + © + © + XMgny. The expression xymy 1y + < - - + XMy, is
called a linear combination of m,(;,, . . . , m,(,,. We caution the reader that

there is in general no uniqueness of representation here. It could be that m can
be written in many different ways as linear combinations of elements from I'. An
R-module basis of M is often called a basis of M. In other words, the expression
‘‘R-module”’ is dropped. In particular, if I' is a basis of M, this does not imply
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every element of M can be written uniquely as a linear combination of elements
from I'. The use of the word basis is then different from what one encounters in
vector space theory.

IfI = {m, | a € A} is a free R-module basis of M, then every nonzero m
in M can be written uniquely as a linear combination of elements from I'. In other
words, there exist unique indices a(1), . . . , a(n) € A and unique nonzero
elements x;, . . ., x, € Rsuchthatm = x;m, ;) + - - - + x,m,,). Of course,
if m = 0, then m = Om, for any a € A. Notice our definitions imply the zero
module (0) is a free R-module with free R-module basis the empty set &,

Definition 1.10 An R-module M is said to be finitely generated if M has a finite
basisT" ={m,, ..., m,}.

The elements in a basis I" are called generators of M. Thus, M is finitely gen-
erated if M has a finite set of generators. Consider the following examples.

Example 1.11
(a) Suppose V is a vector space over a field F. Any set of vectors which span
V is a set of generators of the F-module V. Any vector space basis of V
is a free F-module basis of V. Since every vector space has a vector space
basis, every vector space is a free F-module. V is a finitely generated
F-module precisely when dimg(V) < o,

(b) Let M = R[X,, . .., X,], the polynomial ring over R in variables
X, - . ., X,. Let I be the set of all monic monomials in X, . . . , X,.
Thus
I = {X¢Oxg@ . . . xa® | (1), . . ., a(n) = 0}
Clearly, T is a free R-module basis of R[X,, . . . , X,,]. Notice that M is not a
finitely generated R-module.
(c) Let
R"={(xl,...,x,,)"xl,...,anR}
Here (xy, . . . , x,)" denotes the transpose of the row vector (x,, . . . , X,). Thus,

R" is the set of all column vectors of size n. With the usual definitions of addition
and scalar multiplication, R" is an R-module. Let e, = (1,0, ...,0), &, =
0,1,0,...,0...,¢,=(0,...,0,1).Thene = {g,,...,¢€,}is
just the usual canonical basis of R". Clearly, € is a free R-module basis of R".
Therefore, R" is a free, finitely generated R-module.
(d) The ring R itself is an R-module with {1} being a free R-module basis of
R.
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(e) LetR = Z, and suppose n = 2. Set M = Z/nZ. Then M is a Z-module
via the natural ring homomorphism from Z onto Z/nZ. If 1 = 1 + nZ is
the coset containing 1 in M, then {1} is a set of generators of M. Thus,
Z/nZ is a finitely generated Z-module. Notice that Z/nZ is not a free
Z-module since n(Z/nZ) = (0). 1

Definition 1.12 Let M be an R-module.
(a) For m € M, Anng(m) = {x ER | xm = 0}.
(b) Anng(M) = {x ER | xm = 0 for all m € M}.

The set Anng(m) is called the annihilator of m. Similarly, the set Anng(M) is
called the annihilator of M. Both Anng(m) and Anng(M) are ideals in R.
Clearly, Anng(M) = N {Anng(m) | m € M}. If M is a nonzero, free R-module,
then Anng (M) = (0). Thus, the first four examples in Example 1.11 (when V
# (0)) have zero annihilators. On the other hand, Annz(Z/nZ) = nZ + (0).

We can extend the notion of zero divisors to modules in an obvious way. An
element x € R is a zero divisor of an R-module M if there exists a nonzero
element m € M such that xm = 0. We will denote the set of zero divisors of M
by Z(M). In terms of annihilators, we have the following formula:

1.13 Z(M) = U {Anng(m) |m € M — (0)}
We finish this section with some notation for R-module homomorphisms.

Definition 1.14 Suppose M and N are R-modules.

(a) A function f : M — N is called an R-module homomorphism if
f(xm + ym') = xf(m) + yf(m') for all mm’ € M and x,y € R.

(b) Homg (M, N) will denote the set of all R-module homomorphisms from
MtoN.

(c) An R-module homomorphism f will be called an isomorphism if f is both
one-to-one and onto.

(d) Iff: M — N is an isomorphism, then we will say M and N are isomorphic
and write M = N.

(e) If f € Homg(M, N), then Ker(f) = {m € M | f(m) = 0} is called the
kernel of f.

() If f € Homg(M, N), then Im(f) = {n €E N| n = f(m) for some m €
M} is called the image of f.

For any f € Homg(M, N), Ker(f) is an R-submodule of M. Clearly, f is
one-to-one if and only if Ker(f) = (0). Similarly, Im(f) is an R-submodule of
N. The map f is onto if and only if Im(f) = N.
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EXERCISES

1.

2.
3.

oo

10.

Let T = M, ,(F) as in Example 1.1. Show T has proper left and right
nonzero ideals. Show T has no proper nonzero ideals.

In Exercise 1, show Z(T) = {A € M, ,(F) | det(A) = 0}.

Let R = Z/nZ. We assume n = 2. Compute the following sets:

(@ U(R)

(b) Z(R)

(c) The ideals in R

(d J(R)

. LetFbeafieldandsetR = F X F X - - - X F. (There are n factors here

with n = 2.) We define addition and multiplication componentwise. Show
this is the commutative ring in Example 1.1. :

. For the ring R in Exercise 4, compute the following sets:

(@) U(R)
() Z(R)
(c) The ideals in R
@ J(R)

. Compute the units in the rings Z['V'10] and Z[V —5] by using suitable

multiplicative norms.

Let F be a field. Compute all ideals in F, and then show F is Noetherian.
Show that Z is a Noetherian ring.

For a commutative ring R, show J(R) = {x ER |1 + rx € U(R) for all
r € R}.

Let F be afield, and set R = F[[X]] = {Zi=0aX'|a; € F}. Ris the ring
of formal power series over the field F. Addition and multiplication in R are
defined as follows:

(i a,.xf) + (20 b.-X") = g,(a‘ + b)X!

i=0

(2 aiXi) (2 biXi> = 2 X
i=0 i=0 i=0
Herec, = D, ab, foralli=0.
ptg=i
(a) Show that R is a commutative ring.
(b) Determine U(R).
(c) Show every element in R can be written uniquely in the form 38X’ for
some 8 € U(R) and some i = 0.
(d) Show F[[X]] is a PID.
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11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

LetR = 2,, = {3foap'|a;,EZ, and 0 < a; < p for all i = 0}. Here
p is a positive prime in Z. Addition and multiplication of these series are
computed as in the last exercise. When a coefficient is larger than p, the
result is carried over to the next power of p. For example, whenp = §

A+25"+152+--9)+Q+35'"+252+--9)
=3+4+05+452+ -
and

A+25+152+--9Q+358+252+ )

=2+25"+15%+---

(a) Show R is a commutative ring.

(b) Determine U(R).

(c) Show every element in R can be written uniquely in the form 8p’ for
some d € U(R) and i = 0.

(d) Show Z, is a PID.

Show the integral domains in Exercise 6 are not PIDs.

Suppose R is an integral domain and ¥ is a proper ideal in R. Under what

circumstances is ¥ a free R-module?

Let U denote a proper nonzero ideal of R. Show the R-module R/¥Y is not a

free R-module.

Is Q a free Z-module?

Suppose M is a free R-module and N is a submodule of M. Then N need not

be a free R-module. Construct a concrete example.

Suppose M is a direct sum of R-submodules M, . . . , M,. Thus, M = M,

@ - - @M, If each M, is a free R-module, show M is also free.

The converse of Exercise 17 is not true. If M is a free R-module, then none

of the M, need be free. Use Exercise 4 to construct a concrete example.

Let M be an R-module. Set A = Anng(M). Show M is an R/A-module in

a natural way such that Anng,u (M) = (0).

Let M and N be R-modules and suppose M = N. Thus, there exists an

R-module homomorphism f : M — N such that f is one-to-one and onto.

Show there exists an R-module homomorphism g : N — M which is one-

to-one and onto. Thus, M =N N = M.



2

Matrices with Entries from a
Commutative Ring

In this chapter, we will review those aspects of matrix theory which are true over
any commutative ring R.

Definition 2.1 The set of all m X n matrices with entries from R will be
denoted by M,,, . ,(R).

IfA € M,,,(R), we will let [A]; denote the i, jth entry of A. The set
M, «,(R) is an R-module with addition and scalar multiplication defined in the
usual ways. Thus, if A,.B € M,,,,(R), then A + B is the m X n matrix whose
i,jtheentry is givenby [A + B]; = [A], + [B];. Ifr ER,thenrAisthem X n
matrix whose i,jth entry is given by [rA]; = r[A];. It is a straightforward
exercise to show M,, . ,(R) is an R-module with these definitions of addition and
scalar multiplication. The zero element in M, ,,(R) is the m X n matrix all of
whose entries are zero. We will denote the zero matrix in M, ,(R) by O. The
size of the zero matrix will always be clear from the context in which it is being
used.

Foreachi = 1,...,mandj =1, ..., n,let E; denote the m X n matrix
whose entries are defined as follows:

_ 1 if(p.g = GJ)
2.2 [Eylp, = {o if (p,q) # (i)

10
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In equation 2.2, the index p ranges from 1 to m and g ranges from 1 to n.
Thus, E;isthem X n matrix in M, .,,(R) which has a one in its /,jth entry and
zeros elsewhere. The set of matrices ' = {E;;| 1 =i =<m, 1 < < n} are called
the matrix units of M, ,(R) when m = n. At any rate, I is clearly a free
R-module basis of M,,,,(R). Any matrix A € M,,.,(R) can be written
uniquely in terms of the E; as follows:

23 A =31, 201 [Al By

Thus, M,, «,(R) is a finitely generated, free R-module of rank mn. The rank of
a free R-module is the number of generators in a free basis of the module. As we
will see in Chapter S, any two free bases of a finitely generated, free R-module
M must have the same cardinality.

We will use the terms classical linear algebra and classical matrix theory to
mean linear algebra and matrix theory over a field F. Any theorem in classical
matrix theory whose proof requires only that F be a commutative ring is valid in
M,, . .(R) for any commutative ring R. For example, the transpose A’ of a matrix
A is defined by the usual formula: [A’],-j = [A]);;. As in the classical case, the
map A — A’ is an R-module isomorphism from M, ,(R) to M, ,.(R).

We do not intend to review all of classical matrix theory and make the
corresponding translations toM,, . ,(R). We will use any result in classical matrix
theory which has an immediate translation to M,,, . ,(R) with little or no comment.
However, there are a few results which we would like to emphasize in this chapter.

The usual theorems about block multiplication of partitioned matrices remain
valid over any commutative ring. To understand these theorems, we need column
and row vectors.

Definition 2.4 Let A € M,,, ,(R). The ith row of A will be denoted by
Row;(A). The jth column of A will be denoted by Col;(A). Thus, if

aigs, - - - 5 Qp
A=1]. - | €E Mpxn(R)

Amls - - + s Gmp

we have the following formulas:

2.5 Row;(A) = (a4,a5,.--.,4a,) fori=1,...,m
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alj
@y

COlj(A) = ) = (alj, azj, e . ey a,,,j)' forj = ], .« ..Nn

a,,,j

Notice that Row,;(A) € M, . ,(R) and Col,(A) € M,, ., (R). In keeping with the
notation in most modern linear algebra texts, we set R™ = M,, ., (R). Thus, R™
is the R-module consisting of all column vectors of size m. As we saw in Example
1.11c, R™ is a free R-module of rank m. We will adopt no special notation other
than M, ,(R) for row vectors of size n. If A € M, ,(R), then Col;,(A) € R™
forj=1,...,nand Row,(A) EM,, ,(R)fori=1,...,m.

We can partition any m X n matrix A into m row vectors as follows:

Row,(A) |
Row,(A)

26 A=

Ron(A)

The partition given in equation 2.6 is called the row partition of A. Henceforth,
we will save space when writing this partition by using semicolons as follows:

2.7 A = (Row,;(A); Row,(A); . . . ; Row,(A)).

We can further save space by designating each row of A by a Greek letter. If A,
= Row;(A)fori=1,...,m,thenA = (A5 Ay ... N,)
We can also partition an m X n matrix A into n column vectors as follows:

2.8 A = (Col,(A)]|Coly(A)] ...]|Col,(A)).

The partition in equation 2.8 is called the column partition of A. If we set §; =
Col(A)forj=1,...,n,thenA = (3, |8, |- -]3,).

IfAEM,,,(R)and BE M, , ,(R), then the product AB of A and B is defined
in the usual way: [AB), = Z’ézl [Alyx[B])y for all i = 1, . . . m and
Jj = 1,...,p. The familiar theorem in classical matrix theory concerning the
products of partitioned matrices is valid over any commutative ring.

Theorem 2.9 LetA € M,,, ,(R) and B € M, ,(R). Suppose
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AplAp| . - Ak Byy|Byy|. . . |By

A=1] .. . and B =

An|Ap|. . | Ax BBz |- - - |Bu

are partitions of A and B into submatrices such that each A;; is an m; X n; matrix

and each B, is an n; X p, matrix. Thenm; + my + - - - + m, = m, n; +
n,+---+n=nadp, +p,+ - --p,=p.Foreachi=1,...,rand
j=....tletC;= Xkt A, B, Then
Ci|Cra| - - | Cit
AB =
CalCr2|. . .|Cy
e

Proof. The proof of this result is the same as in the classical case. See
[3, Chapter 1, Thm.3.10]. [ |

There are several specfal cases of Theorem 2.9 which are worth emphasizing
here.

210 IfAEM, ,(R),and § = (x,,...,x,) ER", then
At = x, Col,(A) + x, Col,(A) + - - - + x, Col,(A)

Equation 2.10 is proved by partitioning A into columns and £ into rows and
applying Theorem 2.9. For any A € M, ,.,.(R), we will let CS(A) denote the
R-submodule of R™ generated by the columns of A. Equation 2.10 implies
CS(A) = {A£| & € R"}. The R-module CS(A) is called the column space of A.

Another application of Theorem 2.9 is the following result.

2.11 IfAEM,,,(R)and B E M,,,(R), then

AB = (A Col,(B) | A Col,(B) |- - - | A Col,(B))

Equation 2.11 is proved by leaving A alone, partitioning B into columns, and
applying Theorem 2.9. Notice that equations 2.10 and 2.11 imply the jth column
of AB is a linear combination of the columns of A with scalars from the jth
column of B. In particular, we have the following familiar result:
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212 IfAEM,,,(R)and B € M, ,(R), then CS(AB) C CS(A).
We also have the corresponding results for rows.

213 Ifd = (x;,...,x,)EM,,(R)andA E M, .(R), then
3A = x, Row,;(A) + x, Row,(A) + - - + x,, Row,,(A)

For any A € M,,.,(R), we will let RS(A) denote the R-submodule of
M, ,(R) generated by the rows of A. The R-module RS(A) is called the row
space of A. Equation 2.13 implies RS(A) = {84 | € M, ,,(R)}. We also have
the analog of equation 2.11.

2.14 IfAEM,,,(R)and B € M,, ,(R), then
AB = (Row,(A)B; Row,(A)B; . . . ; Row,(A)B)

Equations 2.13 and 2.14 imply the ith row of AB is a linear combination of
the rows of B with scalars from the ith row of A. Thus, we have the following
analog of equation 2.12.

2.15 IfA € M,,,,(R) and B € M, ,(R), then RS(AB) C RS(B).

The classical theory of determinants is another portion of linear algebra which
is valid over any commutative ring R.

Definition 2.16 Let A = (a;) € M, ,(R). The determinant of A, written
det(A), is the following element of R:

det(A) = 2 $gn(0)a15(1)320(2) * * * Fno(n)-
oES,

In Definition 2.16, S, denotes the set of all permutations on n letters. If o €
S, then sgn(o) denotes the sign of o. Thus, sgn(o) = 1 if o is even and
sgn(o) = —1if o is odd. The sum in 2.16 is over ail n! permutations in S,,. This
is just the classical definition of the determinant.

In the classical theory, the determinant is a multilinear function of its rows (or
its columns). If A,B € M, ,(F), then det(AB) = det(A)det(B) and det(A")
= det(A). The proofs of these results use only the fact that F is a commutative
ring. Hence, they are valid for any commutative ring R.

LetA €EM,,, ,(R), and suppose 1 < t < min{m,n}. By at X ¢ minor of A,
we mean the determinant of a ¢ X ¢ submatrix of A. Suppose A is a ¢ X ¢ minor
of A. Then A is the determinant of a t X  submatrix of A. Now a ¢ X ¢ submatrix
of A is chosen by selecting ¢ rows and ¢ columns of A. Suppose i, . . . , i, are
indices of the rows used to form A and j, . . . , j, are indices of the columns used
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to form A. We will usually assume 1 =i, <i, <---<i=mand 1l =j <
j» <+ <j, =< n. When we wish to specify which rows and columns are being
used to compute A, we will write A(i;, . . ., i, ;j, . . . ,j,) in place of A. This

notation is a bit cumbersome, but it has the redeeming feature of telling the
reader exactly how A was formed. Consider the following example.

Example 2.17 Let

1 2 3 3
_[1 0 —1 _1]€M2x4(z)

Then A(1;1) = 1, A(2;3) = —1

1 2
A(1,2;1,2) = det [l O] = -2

and
1 3
A(1,2;1,3) = A(1,2;1,4) = det 1 ~1l= -4 8
Occasionally, we might want to abuse the definition and referto A(o (i, ), . . .,
o(i); 7(Gy), - - - » 7(j,)) where o and T are permutations of i;, . . . , i, and
Ji» - - - » Jp» TESpectively, as a minor of A. Since

A(o (i), - .., 0(); 17Uy - - - 7U)) = AU, .. L igds e - 5 dr)

this will cause no real confusion in the sequel. Notice that a given m X n matrix
A has minors defined from submatrices of A of sizes 1 X 1,2 X 2,...,r X r
where r = min{m,n}.

Definition 2.18 LetA € M, , . (R).
(a) Forany ijj = 1, ..., n, My(A) will denote the (n—1) X (n—1)
minor of A formed by deleting the ith row and jth column of A.
(b) The element (— 1) */M,;(A) will be called the ijth cofactor of A. We
will let cof;;(A) denote the ijth cofactor of A.

In terms of our previous notation, we have the following expression for the
i,jth cofactor of A:

cof (A) = (—1)HYA(, ..., i, ml L, )

Here the notation i and f means i and j are missing from the lists. Certainly the
most important tool we will use from classical linear algebra is the Laplace
expansion of the determinant. Laplace’s theorem is valid over any commutative
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ring R. Before stating this theorem, let us introduce one piece of useful notation.
Throughout the rest of this book, we will let &; denote the Kronecker delta
function. Thus, §;; = 1ifi = jandd; = 0if i # j. Laplace’s theorem is as follows:

Theorem 2.19 (Laplace) LetA = (a;) € M, ,(R).
(@) XJ-1 a; cofy(A) = d, det(A) forall ik = 1,...,n
(b) 21 g cofy(A) = B det(A) forall jk =1,...,n.

Proof. See [3, Chapter 3, Thm.3.13]. [ |

If we define the adjoint, adj(A), of an n X n matrix A by the usual formula:
[adj(A)]; = cof;(A) forallij=1,...,n

then the formulas in Theorem 2.19 can be written succinctly as follows:
2.20 Aadj(A) = adj(A) A = det(A) I,.

In equation 2.20, /, denotes the n X n identity matrix. We can use equation
2.20 to determine the units in M,,,(R), that is, the invertible matrices in
M, . .(R).

Corollary 2.21 LetA € M, ,(R). Then A is invertible if and only if det(A)
€ U(R).

Proof. Ais invertible if and only if A € U(M,, . ,(R)). Suppose A is invertible.
Then there exists a B € M,,,,(R) such that AB = BA = I,. Then

= det(/,) = det(AB) = det(A)det(B)

In particular, det(A) € U(R).
Conversely, if det(A) € U(R), then equation 2.20 implies

Al (det(A))™" adj(A)] = [(det(A))™" adj(A)1A = I,
Thus, A is invertible. ]

The reader will notice that one classical result about determinants is no longer
true for arbitrary commutative rings. If det(A) # 0, we cannot conclude A is
invertible.

Example 2.22 Let

1 0
A= [0 2] € MZXZ(Z)

Then det(A) = 2. Since 2 is not a unit in Z, Corollary 2.21 implies A is not a
unit in M, ,,(Z). |
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For any commutative ring R, we will let G1(n,R) denote the set of invertible
matrices in M, ,,(R). Since Gl(n,R) = U(M,«,(R)), the set Gl(n,R) is a
group with group operation matrix multiplication. The identity of this group is I,,.
Corollary 2.21 implies

Gl(n,R) = {A € M, ,(R) | det(A) € U(R)}

Gl(n,R) is called the general linear group of n X n matrices over R.

We need one more definition before leaving this section. Diagonal matrices will
play a central role in many of the theorems in this text.

Definition 2.23 Let A € M, ,(R). A is called a diagonal matrix if [A]; =
0 whenever i # j.

Notice that a diagonal matrix need not be square. Let r = min{m,n}. We will

use the notation D = Diag(d,, . . . , d,) to denote an m X n diagonal matrix
D whose i,ith entry is [D]; = d;fori = 1, ..., r. Thus, Diag(d,, . .., d,)
has one of two forms depending on the order relationship between m and n.
2.24 If m < n, then Diag(d,, . . . , d,) has the following form:

d 0 0 0 0

0 "d, 0 0 0

Diagd;, . . .,d) =]
0 0 d 0 ... 0

If m = n, then Diag(d,, . . . , d,) has the form

d 0 ... 0
0 d, 0
Diag(dlv---rdr)z gg gr
00 0
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The notation for a diagonal matrix does not include the size of the matrix. This
will cause no confusion in what follows. The size of a diagonal matrix will
always be clear from the context in which it appears.

EXERCISES

1. Show the ring M, ,(Z) has infinitely many two-sided, proper ideals. Con-
trast this with the situation in Exercise 1 of Chapter 1.
2. LetT = M, ,(R). Set

S={E;|1=ij=n}U{0}

Show § is closed under multiplication in T.
3. Suppose R = R, @ - - - @ R, is a direct sum of (cominutative) rings
R, ..., R, Show

Mnxn(R) = Man(Rl) @ e @ Mnxn(Rs)
4. Let T be aring. The center, C(T), of T is defined as follows:
C(T)={xET|xy =yxforally €T}

Compute C(M,, . ,(R)).

S. Let T be a ring. Let M, ,(T) denote the set of all n X n matrices with
entries from 7. Define addition and multiplication in the usual ways: If A,B
€ M, ,(T), then [A + B]; = [A]; + [B]; and [AB]; =
2£=1[A],-k[B]kj foralli,j = 1,...n. Show that M, . (T) is an associative
ring with identity. Is M, ,(T) a T-algebra ?

6. Show M, .. (M,, .. .(R)) =M, .m(R) by using block addition and mul-
tiplication.

7. Let X be an indeterminate over the commutative ring R. Let (M, ,(R))(X]
denote the set of all polynomials in X with coefficients from M, .. (R).
Show that (M,, . ,(R))[X] is a ring with the usual definitions of addition and
multiplication of polynomials. 1s (M, ,,(R))[X] commutative?

8. Using the notation in Exercise 7, show (M, ,(R))[X]1 =M, , . (R[X]).

9. Let Tr: M,,»,(R) — R denote the trace mapping. Thus, if A E M, ,.(R),
then Tr(A) = >.7-1[A];. Verify the following statements:

(a) Tr € Homgx(M,, . ,(R),R).

(b) Tr(AB) = Tr(BA) forall A, BE M, . .(R).

(c) Tr(A") = Tr(A) forall A € M, . (R).

(d) The R-submodule Ker(Tr) is generated as an R-module by the following
set of matrices:

10. Prove the assertions in 2.13 and 2.14.
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11. Determine which of the following matrices are invertible in M5, ;(Z) and
compute their inverses.

—215 —460 —548 88 200 206
@) 39 85 98 ® |-18 —40 —43
51 108 131 —18 —42 —41
13 -42 98
© -3 8 -21
-3 9 -2
12. IfAB = I, in M, (R), show BA =
13. Let
(4,1 0)...]0]
0(A]...]0
A:
ol0l... |4

be a block diagonal matrix in M, ,(R). We assume A; € M, «,(R) for each

i=1,...,r.Thus,ny + - -~ + n, = n. Showdet(A) = H, 1 det(A;).

Therefore, A is invertible if and only if each A; is invertible. Compute the inverse

of A in terms of the inverses of the A,.

14. Return to Exercise 3. Show Gl(a,R) = Gl(n,R,) X - - - X Gl(n,R,).

15. Let R = Z/pZ where p is a positive prime. Compute the order of the group
Gl(n,Z/pZ).

16. Let Sl(n,R) = Ker(det : Gl(n,R) — U(R)). Thus, SI(n,R) = {A
€ M,,,.(R) | det(A) = 1}. Show Sl(n,R) is a normal subgroup of
Gl(n,R). Compute the order of Sl(n,R) in Exercise 15. The group Sl(n,R)
is called the special linear group over R.

17. LetA €M, (R),a ER", and B € M, ,(R). Show for any z € R,

det [Hfg] = 7 det(A) — B adj(A) a



3

The Ildeals in M, ,.,(R)

If U is an ideal of R, then clearly
M, (M) ={AEM,, ,(R)| [A]l, € Aforallij = 1, ... n}

is an ideal (i.e., a two-sided ideal) of M, , . (R). In fact, every ideal of
M, , .(R) is of this form.

Theorem 3.1 Let B be an ideal of M,,,(R). Then B = M,,,(A) for a
unique ideal YU in R.

Before proving Theorem 3.1, we need to review some useful facts about
matrix units. Let I' = {E; | 1 < i;j < n}. be the matrix units introduced in
equation 2.2. We have seen in Chapter 2 that I’ is a free R-module basis of
M, ,(R). We will need the following multiplication formulas:

E, if j=k
3.2 (a) EjEy = {o" ‘if ’j L forallijkl=1,...,n

(b)IfA = (a;) EM,,(R), thenforallp,g = 1,... ,n,
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r0,...,0, a,0,...,0
0,...,0, a3,0,...,0
AE,, = .
0,...,0, a,0,...,0
h— q -
(c)IfA = (a;) €EM,,(R), then forall p,g = 1, .. .n,
0 0 0
E A= 0 0 0
qu N aql ’ aq2 ’ ’ aqn p
0 0 0
0 0 0
| _
(d)IfA = (a;) € M, ,(R), then for all k,s,p,g = 1, ... ,n,
ELAE,, = gk,
The formula in 3.2a follows directly from the definitions of the E;; and matrix
multiplication.

The g at the bottom of the matrix AE,,, in 3.2b means (a,,, . . . , a,,)" is the
gth column of AE,,. Thus, a column partition of AE,, is as follows:

AE,, = (O] |{0O]|Col,(A)|O] | 0O)
with Col,(A) in the gth column of this matrix. To prove 3.2b, we have

n n
i (3,5 e

i=1 j=1

i(g aijEijEm> = g a,E;,

i=1

=(@O]-- -|O|Colp(A)|O|- JRREK0)]
with Col,(A) in the gth column of this matrix.
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The p at the right in 3.2c means the row (a,, . . . ,a,,) isinrow p of E, A.

We have
(Zl 2 G q)
i=1 j=

n n n
;(; a,-,-Ep,,E,.,-) = ,2’. ayEp

=(0;. . .;0;Row (A); O;. . .;0)

E

pgA

with Rowq(A) in row p of this matrix.
The proof of 3.2d follows from 3.2b. We have

n n
ELAE,, = E,“(Zl a,-pE,-q> = 2| apEsEig = ag,Ex,
i= i=

Thus, E, AE,, is the nX n matrix having a,, in its k,qth entry and zeros else-
where.

Proof of Theorem 3.1. Let B be an ideal in M, ,(R). Consider the set A
defined as follows:

= {r € R| ris an entry in some matrix of B}

We will show the following statements are true:

(1) YU is an ideal of R.

2)B = M, ().

3)IfB = M, ,(€) for some ideal € in R, then A = €.

We begin with (1). Clearly, 0 € U. Suppose a,b € A. Then there exist two
matrices A, B € B such that a is an entry in A and b is an entry in B, respectively.
Suppose a = [A],, and b = [B],,. Here k, p, s, and q are indices between 1
and n. From 3.2b, we have [AE, ],, = a. From 3.2¢c, we have [E,;B],, = b.
Since B is an ideal of M, ,(R), AE,, + E;;B € B. Thus,a = b = [AE,, *
E,B),, € U Since a, b are arbitrary elements of 2, we conclude U is an additive
subgroup of R.

Nowletr € Randa € U. Thena = [A],, for some A € B and some indices
p, q between 1 and n. Since B is an ideal in M, ,(R), Diag(r, . . . ,r)A € B.
In particular, ra = [Diag(r, . . . ,r)A], € . Thus, A is an ideal in R and the
proof of (1) is complete.

Clearly, 8 C M, ., (%). Suppose A = (a;) E M, ,(A). Then a; € A for
allij=1,...,n,and A = 27, 2= a,E;. We claim each ayE; is a matrix
in 8. To see this, fix i,j € {1, . . . ,n}. Since a; € A, there exists a matrix B
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€ B such that a; = [B],,. Here p and q are fixed integers with 1 < p,g < n.
Using 3.2d, we have a,E; = [B],,E; = E,,BE,; € B. Since A is the sum of
the a;E;;, we conclude A € B. Thus, M, ,(%) C B, and the proof of (2) is
complete.

As for (3),if B = M, ,(€), then clearly € C U. Leta € A. Then a =
[B],, for some B € B and some p,q €{1, . . ., n}. Then aE,, = E,,BE,, €
B = M, ,(&). Therefore, a € €. This completes the proof of (3).

The statements in (1), (2), and (3) obviously give a proof of Theorem 3.1.

|

Theorem 3.1 implies the map % — M, ,(U) is a bijection from I (R), the
ideals of R, onto J (M, ,(R), the ideals of M, , ,(R). The reader can easily
check that this map satisfies the following properties.

33 Let¥,, U, € J(R).
@ If %, C Ay in S(R), then M, (A;) C M, ().
(b) Mnxn(?‘[l n %(2) = Mn)(n(?‘[l) N Man(?IZ)°
(C) Man(QIl + 9‘2) = Mn)(n(gll) + Mnxn(%(Q)'
(d) Mnxn(%[lng) = Mnxn(%‘l)Man(?IZ)'

In other words, the map A — M, ,(U) preserves order, intersections, sums,
and products as a function from the lattice of ideals of R to the lattice of ideals
of M, .(R).

Suppose R = F, a field. Then J(F) = {(0),F}. Theorem 3.1 implies
(M, ,(F)) = {(0), M, ,(F)}. A ring T which has only two ideals, (0)
and 7, is called a simple ring. Hence, we have the following corollary to Theorem
3.1.

Corollary 3.4 If F is a field, then M, ,(F) is a simple ring. [ |

Theorem 3.1 imples there is a one-to-one correspondence between the ideals
of R and the ideals of M, ,,(R). The left and right ideals of M, . ,,(R) do not
come from R in any natural way. If R is a field, for example, then the only left
(or right) ideals in R are (0) and R. However, M,,,.,,(R) has many proper left
(orright) ideals. If A EM,,, ,(R)* and det(A) = 0, then M, ,(R)A is a proper
left ideal of M,, ., (R) and AM,, . ,(R) is a proper right ideal of M,, . ,(R).

We can use Theorem 3.1 to determine the Jacobson radical of M, ,(R).
Before stating the result, we need the two-sided Peirce decomposition of an
element. Suppose T is a ring. Recall an element e € T is idempotent if e = e.
Suppose e is an idempotent element in 7. Then for any a € T, we have

35 a=cae + ea(l —e) + (1 —e)ae + (1 — e)a(l — e).
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The reader can easily check that the equality in 3.5 is true by multiplying out the
right-hand side of the equation. The expression in equation 3.5 is called the
two-sided Peirce decomposition of a ( with respect to e). This expression will be
used in the following lemma.

Lemma 3.6 Let T be aring and e an idempotent element in 7. Then J(eTe) =
eJ(T)e

Proof. Before beginning the proof of this lemma, let us say a few words about
what it means. If T is a ring, then e7e is also a ring with identity e. Hence, eTe
has a Jacobson radical J(eTe). On the other hand, eJ(T)e is clearly an ideal in
the ring eTe. The lemma asserts that these two ideals are the same in eTe.

The containment from right to left in J(eTe) = eJ(T)e is easy. Suppose x €
J(T). Then ex € J(T). Consequently, ex is left quasi-regular in 7. Hence, y(1
—ex) = 1 forsomey € T. Then ey(l1 — ex)e = e, or (eye)(e — exe) = e.
Since e is the identity in e7e, the last equation implies exe is left quasi-regular in
eTe. A similar proof shows exe is right quasi-regular in eTe. By Theorem 1.6, the
Jacobson radical of eTe contains all quasi-regular left (or right) ideals of e7e.
Therefore, eJ(T)e C J(eTe).

For the other inclusion, let z € J(eTe). Let a € T. From the Peirce decom-
position of a, we have

3.7 za = zeae + zea(l — e) + z(1 — e)ae + z(1 — e)a(l — e).
But z € eTe. Therefore, z(1 — ¢) = 0. Hence, equation 3.7 becomes
3.8 za = zeae + zea(l — e).

Since z € J(eTe), zeae € J(eTe). Therefore, zeae has a quasi-inverse z' € e7e.
Thus, zeae 0z’ = z' o zeae = OineTe. [Here x oy = x + y — xy is the circle
composition (Appendix B).] Notice zeae 0 z’ = 2z’ 0 zeae = 0 in T since eTe
C T. Thus, zeae is a quasi-regular element of T as well as eTe. From equation
3.8, we have

zaoz' = [zeae + zea(l — e)]oZ’
= zeae + zea(l — e) + z' — (zeae + zea(l — e))z’
= zege o z' + zea(l — e) — zea(l — e)z' = zea(l — e)
In this last equation, zeae o z’ = O since 2z’ is the quasi-inverse of zeae, and

zea(l — e)z' = 0 since z' € eTe. Therefore, we have

39 zaoz = zea(l — e).



The Ideals in M, ., (R) 25

Since z € eTe, the element zea(1 — e) is nilpotent of index =< 2. In particular,
equation 3.9 implies za o z’ is quasi-regular. Now the o product of two right
quasi-regular elements is another right quasi-regular element. Therefore,

za = 2800 = zao (Z' ozeae) = (zao z') o (zeae)

is right quasi-regular in 7. We have now shown that if z € J(eTe), then za is
right quasi-regular in T for any a € T. Theorem 1.6 implies J(eTe) C J(T).

Now eTe N A = ee for any ideal A in T. Therefore, J(eTe) C eTe N J(T)

= eJ(T)e. Hence J(eTe) = eJ(T)e, and the proof of Lemma 3.6 is complete.

|

We can apply the lemma to the ring M, ,(R) and get the following theorem.

Theorem 3.10 For any commutative ring R, J(M,,,(R)) = M, .(J(R)).

Proof. J(M,,,(R)isanideal in M, ,(R). By Theorem 3.1, J(M, . ,(R)) =
M, ,(N) for some (unique) ideal A in R. We claim A = J(R).

The matrix unit E,; is an idempotent element of M, . .(R). Hence, Lemma
3.6 implies

EyM, ., (?I)Eu = E\[J(M,»,(R)E,, = J(E\;M,,(R)E,;)

By 3.2d, Elanxn(R)Ell = {I'Ell | re R}. ThUS, the l’ing EllMllxn(R)Ell iS
isomorphic to R via the ring homomorphism sending rE;; to r. This map sends
E M, (N)E,, to A and J(E\ M, . (R)E,,) to J(R). Therefore, A = J(R).

1

There are many simple examples of Theorem 3.10. Suppose for instance R =
F[[X]], the ring of formal power series in X with coefficients in a ficld F. The
Jacobson radical of R is the principal ideal generated by X. Thus, J(R) = (X).
Theorem 3.10 imples the Jacobson radical of M,,,.,,(F[[X]]) is the set

J(M,,(FLIX1D) = {A = (ay) EM, (FI[XID | X|ay
forallij=1,...,n}

EXERCISES

1. A set of matrices {F,-j |ij =1,...,n}in M, ,(R) is called a generalized
set of matrix units if the following properties are satisfied:
(@ F; = F,, if and only if (ij) = (p,q).
(®) FyF,, = 8, F,,
© 2:"':1 Fy = In'.
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These conditions are to hold for all i,j,p,g € {1, . . . , n}. Exhibit a set of
generalized matrix units other than the matrix units given in equation 2.2.

2. Let{E;|ij = 1, ..., n} be the matrix units of M, ,(R). For each i #
jandr €R, let V;(r) = I, + rE;. Let A € M, ,(R). Describe V;(r)A
and AV;(r) in terms of the rows and columns of A, respectively. Show the
followmg identities are true:

@) V,J(r)V,‘(s) = V;(r + s).
() Vy()™ = Vy(=n).
The matnces V,;(r) are called elementary transvections.

3. Using the same notation as in Exercise 2, let

Again describe what multiplication by P,; on the left and right does to an arbitrary
matrix A. Show P,j = [, and compute P ; Diag(ry, . . ., r,) P; for a diagonal
matrix Diag(r, . . . , r,). The matrix P is called an elementary permutation
matrix.

4. Using the same notation as in Exercise 2, let S;(r) = I, + (r — 1)E, where
r € U(R). Describe S;(r)A and AS;(r) in terms of the rows and columns of
A, respectively. Show the following formulas are true:

@) S, (r)S;(s) = S,(rs).

®) S, = 5.
The matrices S;(r) are called elementary dilations. Clearly, the three types of
matrices V,;(r), P;, and S;(r) are the analogs of the classical elementary ma-
trices used in Gaussian elimination,

5. If A is a nil ideal in R, is M, ,(N) a nil ideal in M, ,(R)?

6. Examine the proof of Theorem 3.1 carefully. Is this result true if R is
replaced by an arbitrary ring 7? What about Theorem 3.10?

7. Prove the assertions in 3.3.

8. Recall that an ideal ¥ in a ring T is prime if, whenever B and € are ideals
inTand BE C A, then B C A or € C A. Show:

(@) Ais prime ifandonly if xTyCA > x € Yory € U,
(b) A is a prime ideal of R if and only if M, ,(¥) is a prime ideal in
Mo n(R).

9. Recall that an ideal % in a ring T is primitive if the ring 7/ has a faithful,
irreducible representation. Show that U is a primitive ideal of T if and only
if M, ,(A) is a primitive ideal of M, ,(T).

10. Suppose R satisfies the ascending chain condition. Does M, ,,,(R) satisfy
the ascending chain condition? Does M, ,(R) satisfy the ascending chain
condition for left ideals?
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11. Let

zZ w
H = —-w z EMsz(C)IZ,WEC

Here C denotes the field of complex numbers and Z denotes the complex con-
jugate of z. Show H is a simple ring of dimension 4 as a vector space over R (the
field of real numbers). The set H is called the quaterions.

12. Suppose M is an irreducible R-module. Show €(M) = Homg(M,M) is a
simple ring.

13. Let T be an arbitrary ring. Recall an element z € T is said to be left
quasi-regular if z' o z = 0 for some z' € T. The element z is said to be right
quasi-regular if zow = 0 for some w € T. z is said to be quasi-regular if
z is both left quasi-regular and right quasi-regular. Show:

(a) (T, o, 0) is an associative monoid with identity 0.

(b) z is quasi-regular if and only if zow = woz = 0 for some w € T.

(c) The quasi-regular elements in T are precisely the units in the monoid (T,
o, 0).

(d) Any nilpotent element in T is quasi-regular.

14. Exhibit a ring T which has at least two quasi-regular elements but has no
nonzero quasi-regular ideals.

15. Let T = M,,.,(Q[[X]]). Let

X X
Az[x+x2 x2]ET

Explain why Y = I, — A is invertible using Theorem 3.10. Compute an inverse
for Y.

16. LetT = M, ,(ZImZ). Compute J(T). Be as specific as you can.
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The Rank of a Matrix

LetA € M, (R).

Definition 4.1 Foreach: = 1,...,r = min{m,n}, I,(A) will denote the ideal
in R generated by all ¢ X ¢ minors of A.

Thus, to compute /,(A), calculate the determinant of each ¢ X ¢ submatrix of
A and then find the ideal of R these determinants generate. Laplace’s theorem
(Theorem 2.19) implies every (¢ + 1) X (¢ + 1) minor of A lies in /,(A). Thus,
we have the following ascending chain of ideals in R:

4.2 I(A)CI_,(A)C - CL(A)CIL(A)CR

It will be notationally convenient to extend the definition of 7,(A) to all values
of t € Z as follows:

£
43 IA) = {g’) lnftt S1(1)1m{m,n}

Then we have

44 (0) =1,,(A)CLA)C - ChL(A)CI(A) =R

28
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Lemma 4.5 LetB € M,,, ,(R) and C € M, ,(R). Then
I(BC)CL(B) NI(C) forallzt€Z
Proof. We leave the trivial cases to the reader and assume 1 < ¢ < min{m,n}.

We divide the proof of the lemma into three claims, which are of some interest
in their own right.

Claim I. 1,(BC) C I,(C).

To see this, partition C into columns C = (§,|8,] - - - | 3,). From equation
2.11,BC = (B%,|- - - | BS,). Let A be a ¢ X ¢ minor of BC, that is, a generator
of the ideal 7,(BC). Suppose A is defined by columns numbered j, < j, <
< j, of BC. Since

L3, |- --18)) CL(C)
and

A€EL((BY; |---|BY)) =L(B(® | --]3))
it suffices to show

LB |- | 8) CL(;, |- - §)).

In other words, in proving A € 1,(C), we can assume with no loss of generality
thatz = n < m. Thus, A = A(i;, ..., i,l, ..., n) for some choice of row
indices 1 =i, <i, < -+ <i, =m.

Suppose B = (b;) € ,,,XP(R). Then equation 2.14 implies

4.6 Row,(BC) = 2P, b;Row;(C) foralli = 1,...,m.

Using the fact that the determinant is a multilinear function of its rows, we
have

4.7 AGy, . - ., igl,. . ., n)
= det((Row; (BC); . . . ; Row; (BC))
P P
= det((z bilj Row/(C); . . .; 2 b,-"j Row;(C)))
=1 j=1

= i Ca,...a, det((Row, (€); . . . ; Row, (()))

In equation 4.7, the ¢, .. o, are various constants in R coming from the expansion
of the determinant. The symbols Z" o,=1 mean the sum is taken over all
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indices o}, . . . , a,. Foreachi = 1, .. ., n, the index «; ranges from 1 to p.
For all choices of a;, . . . ,a,, det((Row, (C); . . . ; Row, (C))) € ,(C).
These determinants are all zero if n > p. At any rate, A(i}, ..., i;l,...,n)
€ I,(C). Since A is an arbitrary generator of I,(BC), we conclude that I,(BC)
C 1(O).

Claim2. I, (A") = I,(A)foralla € Z.
This is clear from the definitions.

Claim3. I(BC)C I,(B)forallt € Z.
Let o € Z. Using claims 1 and 2, we have

1,(BC) = I,((BCY) = I,(C'B') C I,(B") = I,(B)

This proves claim 3. Obviously, the lemma follows from claims 1 and 3. I
The most important application of Lemma 4.5 is the following corollary.

Corollary 4.8 LetA € M,,.,(R), P € Gl(m,R), and Q € Gl(n,R). Then
1(PAQ) = I(A) forallt€ Z

Proof. By Lemma 4.5
I(PA) C I(A) = I(P™'(PA)) C I,(PA)

Therefore, I,(PA) = I,(A) for all 1 € Z. A similar proof shows I,(PA) =
L (PAQ). ]

We can now define the rank of a matrix A € M, ,(R). Consider the as-
cending sequence of ideals given in equation 4.4. Computing the annihilator of
each ideal in 4.4, we get the following ascending chain of ideals.

4.9 (0) = Anng(R) C Anng(/,(A)) C Amng(I,(A)) C - - - C Anng(I,(A))
C Anng((0)) = R

Notice if Anng(/,(A)) # (0), then Anng (I, (A)) # (0) for all k = ¢. Thus,
the following definition makes perfectly good sense.

Definition 4.10 Let A € M,,, ,(R). The rank of A, denoted by rk(A), is the
following integer: tk(A) = max{t | Anng(/,(A)) = (0)}.

The are several rather obvious remarks about tk(A) which follow directly
from the definition. We list these remarks next.
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4.11 LetA €M, (R).
(@) 0 < 1k(A) < min{m,n}.
(b) tk(A) = tk(A").
(©) 1k(A) = rk(PAQ) for any P € Gl(m,R) and Q € Gl(n,R).
(d) rk(A) = 0 if and only if Anng(Z;(A)) # (0).
(e) If m = n, then 1k(A) < n if and only if det(A) € Z(R).

I(A) = R, and Anng(R) = 0. Thus, tk(A) = 0. On the other hand, if r >
min{m,n}, then I,(A) = (0) and Anng((0)) = R. Therefore, rtk(A) =
min{m,n}. This proves 4.11a. Since I,(A) = I (A") forall @ € Z, 4.11b is
clear. The assertion in 4.11c follows directly from Corollary 4.8. The assertions
in 4.11d and 4.11e follow directly from the definition.

LetA = (ay) € M, ,(R). It follows from 4.11d that tk(A) = 0 if and only
if there exists a nonzero x € R such that xa; = Oforalli = 1,..., mand
j =1, ..., n In particular, unlike the classical case, a matrix can have rank
zero without being the zero matrix. Consider the following concrete example.

Example 4.12 Let R = Z/6Z = {0,1,2,3,4,5}.
(a) Suppose

2 2
A= [0 2] € M,x(R)

Clearly A is a nonzero matrix. Every entry in A is a zero divisor in R. I,(A) =
4R,1,(A) = 2R, and Anng(4R) = 3R # (0), Anng(2R) = 3R # (0). Thus,
tk(A) = 0.

(b) Let

2 0
B = [0 3] € M, x(R)

Again every entry in B is a zero divisor in R. Since det(B) = (0), 4.11e implies
rk(B) < 2. Since I,(B) = 2R + 3R = R, Anng(l,(B)) = (0). Therefore,
rk(B) = 1.

(c) Suppose

1
c- [3 §] € Myal®)

Then det(C) = 5§ € U(R).
Therefore, tk(C) = 2 by 4.11e. [ ]
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We next discuss the relationship between the classical rank of a matrix when
R is a field and Definition 4.10. Suppose F is a field and A € M, ,,(F). For the
time being, let us denote the classical rank of A by rank.(A). In most elementary
textbooks in linear algebra, rankz(A) is defined to be the maximum number of
linearly independent rows (or columns) of A. It is well known that rank.(A) is
the largest integer ¢ such that A contains a ¢ X ¢ submatrix whose determinant is
nonzero. (See [3, Chapter 3, Thm.3.22].) Since F is a field, Anng(1,(A)) =
(0) if and only if 7,(A) # (0). Thus, rk(A) is the largest integer ¢ such that A
contains a 7 X ¢t submatrix whose determinant is nonzero. In other words, rk(A)
= rankg(A). Thus, when R is a field the definition of rank given in 4.10 agrees
with the classical definition of rank.

We can carry this discussion one step further. Suppose R is an integral domain
with quotient field F. LetA € M, ,(R). Since RC F, M,,,.,(R) C M, ,(F),
and we can view A as a matrix in M,,,,,(F). Since R is an integral domain,
Anng(/,(A)) = (0) if and only if I,(A) #+ (0). Thus, rk(A) = max{t | A has
a nonzero ¢ X t minor}. Now this number max{z | A has a nonzero ¢ X t minor} is
the same whether we view A as a matrix in M, ,(R) or M, ,(F). Thus, tk(A)
is just the classical rank of A when A is viewed as a matrix in M,,,,(F). In
symbols, we can state this result as follows:

4.13 Let R be an integral domain with quotient field F. Let A € M, ,(R).
Then rk(A) = rankg(A).

We finish this section with one more familiar result about ranks.

Lemma 4.14 LetBE M

mxp

(R) and C € M, ,(R). Then
tk(BC) < min{rk(B), tk(C)}

Proof. We will argue tk(BC) < 1k(C). The other inequality is argued in a
similar fashion. From Lemma 4.5, we have the following inclusions:

415 RD1(C)DL(C)D -
R21,(BC) D L(BC)D - - -

Taking the annihilators of the sequences in 4.15 produces the following ascend-
ing chains of ideals in R:

4.16 (0) C Anng(1,(C)) C Anng(I,(C)) € - - -
(0) € Anng(/,(BC)) C Anng(l,(BC)) C - - -
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Now suppose tk(C) = g. Then Anng(,(C)) = (0), but Anng(Z,,,(C))
# (0) for all k > 0. Since Anng (I, (C)) C Amng(/,, (BC), we conclude
Anng (1, (BC)) # (0) for all k£ > 0. Therefore, rk(BC) = gq. [ |

EXERCISES

1. Construct examples where the chain in 4.2 is strictly ascending.

2. Verify Lemma 4.5 in the special cases ¢ < 0 and ¢t > min{m,n}.

3. LetA € M,,»,(R). Let O be the zero matrix of size m X p. Show I,(A | O)
=I(A)forallt € Z.

4. Prove the assertions in 4.11d and 4.11e.

5. LetA €M, ,(R). Show det(A) € U(R) = 1k(A) = n. Is the converse
of this statement true?

6. Let R = Z/12Z. Compute the rank of the following matrices with entries
from R:

) o 2 35 1 4 27
(a)[4 6] ® |2 0 2 @21 8 2
2 4 6 303 4

7. Compute the determinant of each of the elementary matrices V;(r), P;;, and
S;(r) given in Exercises 2, 3, and 4 in Chapter 3. Show each of these
matrices has rank n.

8. Complete the proof of Lemma 4.14 by showing rk(BC) = 1k(B).

9. Let F be a field. Let A, A, € M, ,(F) and B € M, ,(F). Prove the
following classical results about rank:

(a) rankg(A, + A,) < rankg(A,) + rank;(4A,).
(b) rankg(A,) + rankp(B) — n < rank.(A,B).
10. Are the classical results given in Exercise 9 true for an arbitrary commuta-
tive ring R and the function rk? Give proofs or counterexamples.
11. Let A € M,,,.,(R). Suppose we define rk,(4) = max{t | 1,(A) # (0)}.
Show
(@) 0 = rk,(A) < min{m,n}.
(b) 1k, (A) = 1k, (A").
(c) 1k,(A) = rk,(PAQ) for any P € Gl(m,R) and Q € Gl(n,R).
(d) tk(A) = 1k, (A).
(e) tk(A) = rk,(A) = rank.(A) for any integral domain A with quotient
field F.
12. Give an example where rk(A) < rk;(A) in Exercise 11.
13. LetA €EM,,,(R) and B € R™. If R is a field, then the equation AX = B
has a solution if and only if rank;(A | B) = rankr(A). Give a proof of this



14.

15.

16.

17.
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fact. Give an example which shows that for commutative rings in general,
k(A | B) = rk(A) need not imply AX = B has a solution in R".

Let A € M, ,(R), and B € R". Suppose the equation AX = B has a
solution £ € R". Show £ is unique if and only if tk(A) = n.

Formulate and prove a suitable generalization of the result in Exercise 14
when A is not square.

In Exercise 14, if tk(A) = n, can we conclude AX = B has a solution for
all B € R™?

In the classical case, rankz(A) is the maximum number of linearly inde-
pendent columns {or rows) of A. Is rk(A) the maximum number of linearly
independent columns (or rows) of A for an arbitrary commutative ring R?
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Linear Equations

In this chapter, we present the basic theorems on linear systems of equations over
a commutative ring R. Consider the following system of equations:

5.1 a1 Xy + alzxz + -+ a],,x,, = b]

ayx; + apXy + -+ ayx, = by

Am1Xy + AmX2 + - Gmrkn = bm
The linear system in 5.1 represents m equations in the variables (i.e.,
unknowns) x;, . . . ,X,. The coefficients a;; of these equations are elements from
R, and the constants b,, . . . ,b,, are also elements from R. The equations in 5.1

can be written succinctly in matrix form as follows:

52 AX = B.

HereA = (a;) EM,,«,(R),B = (by,...,b,) ER™,andX = (x,,...,x,)"
€ (R[xy, ..., x,])". Remember x,, . . ., x, are indeterminates over R in this
notation.

The equations in 5.1 (or 5.2) have a solution (in R") if there exists a vector
£ € R" such that A£ = B. If B = O, then the system AX = O is called a

35



36 Chapter 5

homogeneous system of equations. A homogeneous system of equations AX =
O always has at least one solution, namely £ = O = (0, . .. ,0)' € R*. We will
call £ = O the trivial solution to AX = O. A vector £ € R" will be called a
nontrivial solution of AX = O, if £ # O, and A§ = O.

Our first result in this section is a famous theorem by N. McCoy. It tells us
precisely when a homogeneous system of equations AX = O has a nontrivial
solution.

Theorem 5.3 (N. McCoy) LetA € M,,,,,(R). The homogeneous system of
equations AX = O has a nontrivial solution if and only if tk(A) < n.

Proof. Suppose AX = O has a nontrivial solution § € R". Since £ # O, some
coordinate of &, say [£],, is not zero. If m < n, then 4.11a implies rk(A) =
min{m,n} = m < n. Hence, there is nothing to prove in this case. Thus, we may
assume m = n.

LetA(iy, ..., i, 1,...,n)beann X nminorof A. There exists a permutation
matrix P € Gl(m,R) such that PA hasrows i, . . . , i, of A as its first n rows.
Thus, Row,(PA) = Row,.'(A), Row,(PA) = Row,-z(A), ...,and Row,(PA)
= Row; (A). We have the following picture of PA.

a,-ll a,-|2 P ail,,
a1 G2 . .. Giy
54 PA=
a1 Gi2 i n
%*
Set
ail, R/ B
D = a':l‘ a’.z’l
a;1 Aipn
Then A = det(D) = A(iy, .. .,i,1,...,n). Since AE = O, DE = O.
Equation 2.20 then implies A§ = (Al,)§ = (adj(D))DE = O. In particular,
A[€), = 0. Since A = A(iy, ..., i, 1,...,n)isan arbitrary n X n minor

of A, we conclude [£], € Anng(/,(A)). Thus, Anng(/,(A)) # (0), andrk(A)
<n.
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Conversely, suppose tk(A) = r < n. If r = m, we can add more equations
to 5.1 with zero coefficients. We get a new system of equations whose matrix
form looks like the following:

E,l ay ... aﬂ r'xl_T ’_g_

a a»p ... a, X2
§.5 Qni Gm2 - - - Qmn = 0
0 0 0 0

(0 0 ... 0| 0
Obviously, any nonzero solution £ € R" of equation 5.5 is a nonzero solution to
AX = O and vice versa. It follows from Exercise 3 of the last chapter, that

IA = I(A
10 —r()

for any p X n zero matrix O and any ¢ € Z. Therefore,

_ A
rk(A) = rk 6

Thus, by replacing the equations in 5.1 with those in 5.5 if need be, we can
assume 7 < min{m,n}.

Since tk(A) = r, the ideal Anng(/,,,(A)) is not zero. Let a be a nonzero
element in Anng(/,, ,(A)). If r = 0, then a € Anng (], (A)). In particular, § =
(a, . .., a) €R"is a nontrivial solution to AX = O. Hence, we can assume
1 = r < min{m,n}.

Since rk(A) = r, the ideal Anng(/,(A)) is zero. In particular, there exists an
r X rminor A(iy, ..., isj;, .- -, j,)of AsuchthataA(iy, ..., 054, ..., J0)
# 0. We can move rows iy, . . . , i, and columns jj, . . . , j, of A to the first r
rows and first r columns of a new matrix by multiplying A on the left and right
with suitable permutation matrices. Thus, there exist permutation matrices P €
Gl(m,R) and Q € Gl(n,R) such that

5.6 PAQ = [CTH] with C € M, (R) and det(C)

= A(ih oo ’ir;jl, e . ’jr)
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Suppose the equation (PAQ)X = O has a nontrivial solution B € R". Since P
and Q are invertible, § = QB # O, and A§ = O. Hence AX = O has a nontrivial
solution. Notice I,(PAQ) = I,(A) for all 1 € Z by Corollary 4.8. Thus, it
suffices to show (PAQ)X = O has a nontrivial solution. In other words, replac-
ing A with PAQ if need be, we can assume with no loss of generality that

Ay, -« by - ) =A0, ..., ...,7r)
LetA = A(Q1,...,r1,...,r). Then we have
an - .- G
_fel ] .. _
5.7 A—[* *] with C =
La,] [ 7

and det(C) = A. Also, aA + 0.

an - Gy A1r+1
Set C'=| "~ € M1 nyxr+1(R)
arn <o Qp Grr+1
Gl - - - Grilr Gritr+d
L o

Setd; = cof,,, (C')forj=1,...,r+ 1.Thus, d,, ..., d,,, are the
cofactors of the last row of C’'. By Laplace’s expansion, we have

r+1

58 D a,.yd; = det(C’) € I,,,(A)
j=1

Leté = (ad,,...,ad, ;,,0,...,0) €R" Notice that § # O since ad, .,
= aA # 0. We claim £ is a solution to AX = O.

At = Oif and only if >/*{ a;(ad;) = Oforalli = 1, ..., m. There are
two cases to consider here. Suppose 1 < i < r. Then

r+i r+1
> aj(ad) = a<2 a,,-dj) =0

j=1 j=1

by2.19a. Ifi=r + 1,
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ag - .. G+
r+1
D, ajlad) = adet| - | edi@) = @
j=1
! a4 - - - Gy
ay - - . Gy
= -
Therefore, AE = O, and the proof of Theorem 5.3 is complete. ]

There are many interesting theorems whose proofs are direct consequences of
McCoy’s theorem. We list some of these results next. We begin with a gener-
alization of a familiar result from classical linear algebra.

Corollary 5.9 Any homogeneous system of linear equations has a nontrivial
solution if the number of equations is less than the number of unknowns.

Proof. Let AX = O be the matrix representation of a system of linear equations
in which the number of equations is less than the number of unknowns. If A €
M, . .(R), then m < n. By 4.11a, rk(A) < min{m,n} = m < n. Thus, AX =
O has a nontrivial solution by Theorem 5.3. [ |

McCoy’s theorem can be used to analyze free R-module bases of finitely
generated, free R-modules. Our first theorem in this direction leads to the def-
inition of the rank of a free R-module.

Theorem 5.10 Let M be a finitely generated R-module. Suppose m,, . . . , m,
andp,, . .., p,are elements in M such that {m,, . . . , m,} is linearly independent
over R, and {p,, . . ., p,} is a set of generators of M. Then k =< n. Furthermore,
ifk = n, then {p,, . . ., p,} is a free R-module basis of M.

Proof. Since {p,, . . ., p,} is a basis of M, there exist elements a;; € R such
thatm; = 37 ap,forj = 1,...,k SetA = (a;) € M, ,(R). If k > n,
then Corollary 5.9 implies AX = O has a nontrivial solution £ = (r, ..., r,)
€ R*. But then

k k n n k n
11 S om = 3 o3 am) = 5 S an o= 3 om=
j=1 j=1 \i=1 i=1\j=1 i=1
Since {m,, . . . , m,} is linearly independent, equation 5.11 implies r, = - - -
= r, = 0. This is clearly impossible, since at least one entry of £ must be
nonzero. Thus, k =< n, and the first part of Theorem 5.10 is proved.
Now suppose k = n. Thus, suppose M contains n elements m,, . . . , m, which
are linearly independent over R and M contains n elements p,, . . . , p, which
generate M as an R-module. We will argue p,, . . . , p, are linearly independent
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over R and, consequent]y, form a free R-module basis of M. Again let m; =
21 agp; forj = ,n.SetA = (a;) € M,»,(R). The computanon in
equation 5.11 shows the homogeneous system of equations AX = O has no
nontrivial solution. Therefore, Theorem 5.3 implies tk(A) =

We now pass to the total quotient ring Q(R) of R (see Example 13.36 with
M = Rand S = the regular elements of R). Recall Q(R) = {x/y | x,y ER, and
y regular}. The ring R is identified with the subring {x/1 | x € R} C Q(R). Then
AEM, , .(R)C M, ,(Q(R)). Since tk(A) = n, 4.11e implies det(A) is a
regular element in R. In particular, det(A) € U(Q(R)). It follows from Cor-
ollary 2.21 that A is invertible in M, ,(Q(R)). Let B = (b;) € M, ,(Q(R))
be the inverse of A.

Suppose y,p;, + - -+ + y,p, = O for some (y;, ...,y,) = £ € R". Set

= Diaiybyforj=1,...,n Then (¢, ...,c,) = BEE (QR))"
Since AB = I, in M,,,.,(Q(R)), we have

5.121_2::l om; = Z c,~<i a.~,-p.~) = ;(; a.-,-c,-)p.-

j=1 i=1

- ;(; a,<k§=jl ykb,-k) )p.-
AT

=2}’,P,—0

i=1

3

3

Any finite number of elements in Q(R) have a common denominator, so there
is a regular element x € R such that xc, . . . , xc, € R. From equation 5.12,
we have Z,’; 1(xc;)m; = 0. Since m,, . . . , m, are linearly independent over R,
we conclude xc, = - - - = xc, = 0. Since x is a regular element of R, x is a unit
in Q(R). Therefore, ¢, = - - - = ¢, = 0. Since B is invertible, £ = O. Thus,
y, = +-- =y, = 0. Weconciude p;, . . ., p, are linearly independent over
R. This completes the proof of Theorem 5.10. |

Another result closely related to Theorem 5.10 is the following statement.

Corollary 5.13 If R" = R™ as R-modules, then n = m.

Proof. Suppose 7 is an R-module isomorphism from R” onto R™. Let € =
{e), . . ., €,} denote the canonical basis of R”. Thus, ¢, = (1,0, ...,0), ¢,
= (0,1,0,...,0),...,¢,= (0,...,0,1)inR". Since 7 is an isomorphism,
n(g,), . . - , N(g,) are linearly independent in R™. The canonical basis of R™
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contains m vectors. Thus, Theorem 5.10 implies n = m. Reversing the roles of
R”™ and R™ in this proof gives us m < n. Therefore, m = n. |

Notice that Theorem 5.10 (or Corollary 5.13) implies any two free R-module
bases of a finitely generated, free R-module M have the same cardinality. This is
the analog of the classical result which says any two bases of a finite-dimensional
vector space over a field must have the same cardinality, namely the dimension
of V. The common cardinality of any free R-module basis of a finitely generated,
free R-module M will be called the rank of M and written rank (M ). For example,
rank(R") = n and rank(M,,,,(R)) = mn. If R is a field and V is a finite-
dimensional vector space over R, then rank(V) is just the usual vector space
dimension of V over R.

There is one more corollary to Theorem 5.10 which we want to mention here.

Corollary 5.14 LetP,QE€M,,, ,(R)such that CS(P) = CS(Q) in R™. If the
columns of P are linearly independent in R™, then there exists an § € Gl(n,R)
such that P = QS.

Proof. LetP = (8] - -[3,)and @ = (A,] - -|\,) be column partitions of P and
O, respectively. Then RS, + - - - + Rd, = CS(P) = CS(Q) = R\, +

+ RA,. Since 8, . . ., 3, are linearly independent over R, {3,, . . ., 8,} is a
free R-module basis of CS(P). It follows from Theorem 5.10 that {\,, . . ., \,;}
is also a free R-module basis of CS(P). Let 8, = >y v\ fori = 1,
nand \, = X7 1,8, fori = 1, , n. Here the v,; and ¢;; are scalars from R
SetV = (v;)and T = (). Then VT EM, . . (R)

Since

. 2 = 2 ij(Z kak) - 2(2 v,-,-x,.k)ak

k=1\j=1

we conclude X7y v;t; = 8. Thus, VT = I,. In particular, V € Gl(n,R) and
TV = I,. Set S = V*. Then S € Gl(n,R). Using equations 2.10 and 2.11, we
have

os

(Q Coly(S) | @ ColxS) | - + - | @ Col(S))
(Z[S],-l?\jl cee 2[51,-,)\,)
j=1 j=1
(Evlﬂ\ﬂ' : '|2an)‘i) =@ |---|8)="P
i=1 i=1

Corollary 5.14 says something interesting even for 1 X 1 matrices, i.e., scalars
in R. Suppose a,b € R and a is regular. Let P = (a) and Q = (b). Then the
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columns of P are linearly independent in R. Suppose CS(P) = CS(Q). This just
says Ra = Rb. Corollary 5.14 implies there exists a unit « € U(R) such that a
= bu. Thus, if Ra = Rb and a is regular, then a and b are associates. We note
that this result is not necessarily true if a is not regular. In other words, the
hypothesis ‘‘the columns of P are linearly independent in R™’ cannot be omitted
from Corollary 5.14 even in the 1 X1 case. Consider the following clever ex-
ample, which is due to I. Kaplansky.

Example 5.15 Let F = Z/5Z = {0,1,2,3,4}. Let n — 7 denote the natural
mapping of Z onto F. SetR = {(n,f(X)) EZ X F[X]1|f(0) = nin F}. Itis
easy to check that R is a commutative ring with addition and multiplication
defined componentwise.

Leta = (0,X), b = (0,2X),z = (2,2), and w = (3,3). Then a, b, z, and
w are elements in R with az = b and bw = a. Therefore, Ra = Rb. Suppose
a ~ b. Then (0,X) = (n,f(X))(0,2X) for some unit (n,f(X)) in R. Now
2Xf(X) = X implies f(X) = 3. Therefore, (n,f(X)) = (n,3). But (n,3) ER
implies n = 3 mod 5. In particular, n # 1 or —1. But then (n,§) cannot be a
unit in R; that is, there is no (p,g(X)) € R such that (n,§)(p,q(X)) =
(np,iq(X ) = (1,1). We conclude that a and b are not associates in R.

SetP = (a)and Q = (b). Then P,Q € M, ,,(R) with CS(P) = Ra = Rb’
= CS(Q). Since az = band wb = a, (wz — 1)a = 0. Also, wz — 1 =
(3,3)(2,2) - (1,1) = (5,0) # (0,0). In particular, the columns of P are not
linearly independent in R '. If P = QS for some invertible matrix § € M, ., (R)
= R, then a ~ b, which is not the case. Therefore, P # QS for any invertible
matrix S. |

We can use Corollary 5.14 to give the following nice characterization of
invertible matrices in M, ,,(R).

Corollary 5.16 Let P = (8,| - -|5,) € M,,.,(R). P is invertible if and only
if {8,, . . ., d,} is a free R-module basis of R".

Proof. Suppose {,, . . ., d,} is a free R-module basis of R". The columns of
the identity matrix /, are the canonical basis of R". Therefore, Corollary 5.14
implies P = 1§ for some S € Gl(n,R). In particular, P € Gl(n,R).
Conversely, suppose P = (8,]- - |3,) € Gl(n,R). For any A\ € R", the
equation PX = \ has the unique solution P~'\ = (y,, . . ., y,)". Thus, y,5,
+ -+ 4+ y,8, = \. In particular, {3,, . . ., 8,} is an R-module basis of R".
Suppose 2,8, + - - - + 2,8, = OinR". Let& = (z;,...,2,) €R" Then
Pt =0Oand¢ = P! (PE) =P 'O =0.Hence,z, =2, =---=2,=0
and d,, . . . , d, are linearly independent over R. Therefore, {3,, .. ., d,}is a
free R-module basis of R". [ ]
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In the rest of this section, we will discuss the nonhomogeneous equation AX
= B where B is not necessarily zero. We still have Cramer’s rule, which is valid
over any commutative ring R.

Theorem 5.17 (Cramer’s rule) Let A € M, ,(R) with det(A) € U(R).
Then for any B = (by, - . . , b,)' € R", the equation AX = B has the unique
solution £ = (y,, . . . , y,) where

a, ... alj_l b] alj“ e e e A,
y; = (det(A)) ™! det
Gy - .. Gy by ay ... ay,
L 4
forallj=1,...,n.
Proof. Let& = (y, . . ., y,)" with the y; defined as above. Using Laplace’s
expansion, we have _
ay . .. alj_l bl ale e Ay,
5.18 det(A)y; = det
ap) Gpj-y by ayiy ... a,

n
= > b cof;(A)
i=1

Therefore,
. — —
n
» > cofu(A)b;
i=1
5.19 det(A) = = adj(A)B
n
Yn COf,',,(A)bi
i=1

Since det(A),, = adj(A)A, equation 5.19 implies

5.20 adj(A)[AE] = adj(A)B.
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Since adj(A) is an invertible matrix (with inverse (det(A4))™'A), equation 5.20
implies A§ = B.

Suppose &’ is another solution to AX = B. Then Af’ = At = B implies
A(E—t') = O. Since A is invertible, £ — £’ =0. Thus, § is the unique solution
to AX = B. |

Thus, if A is invertible, AX = B has a unique solution for any B € R". Our
next theorem describes necessary conditions for AX = B to have a solution for
any A € M,,,.(R) and any B € R™.

Theorem 5.21 LetA € M,,,,.(R). Suppose the system of equations AX = B
has a solution. Then I,(A|B) = I,(A) for all 1 € Z.

Proof. The proof of this theorem is a simple consequence of the fact that the
determinant is an (alternating) multilinear function of the columns of a matrix.
Before presenting the details of this argument, we take this opportunity to
discuss certain standard reductions which are often employed when studying the
equation AX = B.

If m > n, then we can add new variables, say x, ., . . . , x,, with zero
coefficients to the equations in 5.1. The new system A’X’ = B has the following
form.

B Tr F ﬂ
ay ap ... a, 0 01lx b,
5.22 . . . . =
Q) Qua - - - Guy 0 ... O] )Xn by
o -4 L d L.
A X’ B

E=(¥1»-..,y,) ER isasolutionto AX = Bifandonlyif & = (y,,..., ¥
0,...,0) €R"isasolutionto A’X’ = B. Also, Exercise 3 of the last chapter
implies I,(A) = I,(A’) and I,(A | B) = I,(A’ | B) for all t € Z. Thus, if
I(A' | B) = I(A") for all t € Z then I(A | B) = I(A) for all t € Z. The point
of all this is that by passing to A’X’ = B if need be, we can assume with no loss
of generality that m < n.

Since both A and (A | B) have m rows, I,(A) = I,(A|B) = (0) if t >
min{m,n} = m. Hence, we can assume, 1 <t =<m = min{m,n}. Notice that/,(A)
C I,(A | B) for any t. This follows directly from the definitions. Hence, we need
only show I,(A | B) C I,(A) for 1 <t < m = min{m,n}. Obviously, any
t X t minor of (A | B) which does not involve B is contained in /,(A).
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Thus, to show /,(A | B) C I,(A) we need only consider those ¢ X ¢ minors of
(A | B) which involve the last column B of (A | B). Such a minor has the form
AGy, o - -5 igjis e« osdi—ppn+ 1).Herel =iy <---<i=mand 1 =j
< -+« <j,_; = n. We want to show

Ay, - o v igdis - s dieion + 1) € I(A)

Fix indices 1 = ;< - -<i,=mand 1 =j, <.--:-<j,_, = n, and con-
sider the minor A(iy, . . - 5 ip Jjis « - - 5 jy_on + 1) EL(A | B). Let &
= (xy, - . ., X,) € R" be a solution to AX = B. From equation 2.10 we have

x, Col;(A) + - -+ + x, Col,(A) = B in R™. Thus,

823 AGy, - - -5 igjis e - - sdi—pn + 1)

a,-ljl, [ a,-|j'_| xla,-ll + -+ x,,a,-l,,
Gijo - -+ -2 Qigj 1 XG0 X4,
= det
Qij,----50aj  |Xdi + -+ Xnlin
- -
a,-ljl, e ey a,'lj’_l , a,'lk
n a,-ijl, e ey a,-zj'_l ) a,‘zk
= 2 Xg det ) )
k=1
a,-'jl, T a,-'j’_l s a,-,k
€ I,(A) ]

A couple of comments concerning Theorem 5.21 are in order here. If
I,(A|B)) = I,(A)forall t € Z, thentk (A | B) = 1k(A). If R is a field, we
could then conclude B € CS(A), and consequently AX = B has a solution.
Thus, the converse of Theorem 5.21 is true if R is a field. In general, /,((A | B))
= [I,(A) for all t+ € Z is not sufficient to guarantee AX = B has a solution.
Consider the following example from [4].

Example 5.24 Let F be a field, and set R = F[X,Y)/(X? — Y?). Here X and
Y are indeterminates over F. Let x and y denote the images of X and Y, respec-
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tively, in R. Since X2 — Y3 is irreducible in F[X,Y], R = F[x,y) is an integral
domain in which x? = y3.
Let

0

x 0
A= [o {) y] € MyxsR) and B = [x] € R?
Then1,(A) = (x,y) = I, ((A | B))and I,(A) = (xy,y2). On the other hand,
L((A|B)) = (xyx*y?) = (x,y%) = L(A) since x*> = y* € (xy,y?).
Therefore, I,(A) = I,((A|B)) forall t € Z.
If

has a solution £ = (y,,y,,y3)" in R>, then x € Ry. Pulling this relation back to
F[X,Y], we have X — KY = L(X? — Y?3) for some K,L € F[X,Y]. This is
clearly impossible. Hence, AX = B has no solution in R>. |

In our next theorem, which is due to Camion, Levy, and Mann, we give
sufficient conditions for AX = B to have a solution. In particular, we can assume
B # 0. As pointed out in the proof of Theorem 5.21, we can always assume m
= n when considering solutions to AX = B. In this case, we will let /,,(A | B)*
denote the ideal in R generated by all m X m minors of (A | B) which involve
column B of (A | B). In symbols, I,,(A | B)* is the ideal in R generated by the
set

{A(l,...,m;jl,...,jm_l,n‘l'l|l$j1<"'<jm_15n}

We then have the following result.

Theorem 5.25 LetA € M,,,,(R) withm = nand rk(A) = m. Let B € R™.
Suppose there exist an ideal U in R and a regular element z € R such that
Al (A | BY* C Rz C Ui, (A). Then the equation AX = B has a solution.

Proof. Since tk(A) = m, Anng(l,,(A)) = (0). In particular, /,,(A) # (0).
Hence, there exists at least one m X m minor of A which is nonzero. Sup-
pose A = A(1,...,m;j,,...,Jm) is anonzerom X m minor of A. As usual,
we assume 1 =< j, < - - - j =< n. Consider the following m X m submatrix
of A.
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ayj, ayj,
526 A =
Lamjl a’"j,,J
Then det(A) = A # 0, and
b, b,
527 A = det(A) = A adjd)
b b,
" "
We also have
b, 2 b; cofy(A)
=
5.28 adj(A) =
bm > b; cofj(A)
| R —
Set
_ - — ___
e > b; cof(A)
j=1
= € R"™
m
Cm > b; cofju(A)
[ | - —

47
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Then - -
ay, * - boeay
m . . .
¢; = D, bjcofyA) = det | . . . | €| B>
j=1
Grj, * bt an,
L , .
i
foralli = 1, ..., m. From equations 5.27 and 5.28,
by Gy, " “vﬂ “
A =
bm amj| e amj- Lc”l
- - h = J
Therefore,

529 Ab, = Xi-ia4c, foralli=1,...,m.
Now define y;, . . . , y, by the following formulas:

_fo iftve{l,....n = L. .o
5.30 yv—{ci ifv=jifori=1,...,m

Notice that y, € ,,(A | B)* forallv =1, ..., n. Also,

n
2 awyy = ay;, + 0 toa;y = a0+ 0+ a;Cn
=1 .
Y Ab; foralli=1,...,m

We have now shown

n

531 Ab; = 2 a,y, withy, ...,y €EL(A|B)*
v=1

Equation 5.31 holds foreachi = 1, ..., m.

The computation in equation 5.31 can be done for each nonzero m X m
minor of A. Suppose we list the nonzero m X m minors of Aas Ay, . . ., 4.
Then foreveryk = 1, . . ., p, there exist scalars {y,, ER |v=1,...,n} C
1,,(A | B)* such that

n
532 Ab; = D awye foralli=1,...,m
v=1
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By hypothesis, %1,,(A | B)* C Rz C UlL,(A). Since A, . . ., A, generate the
ideal I,,(A), we have z = D k- q;A, forsome g, . . ., g, € U. Equation 5.32

implies
9k (Z aivykv>
1 v=1

qlh; = zb; foralli=1,...,m

N

p n
5.33 2 Z kY =
k=1 v=1

>
]

M'u

»
[
—_

Therefore,

n P
534 Z ai,<2 qkykv> =zb; foralli=1,...,m
k=1

v=1

Foreachv =1,...,n, 2%=1 qVi € UI,,(A | B)* C Rz. Hence, X b= qiViv
= r,z for some r, € R. Equation 5.34 then implies z(D.n-{ a,r,) = zb; for all
i=1,...,m. Since z is a regular element of R, >.5_, a;,r, = b, forall i =
1,...,m Thus, € = (ry,...,r,) €R"is asolution to AX = B. This
completes the proof of Theorem 5.25. |

One immediate application of Theorem 5.25 is the following special case.
Suppose 1,,(A) = R. Thenrk(A) = m. Forany B € R, RI,(A | B)* CR1 C
RI,(A). Since 1 is a regular element of R, Theorem 5.25 implies AX = B has
a solution. Thus, we have proved the following corollary.

Corollary 5.35 LetAEM,,, ,(R)with], (A) = R. Then for any B € R™, the
system of equations AX = B has a solution. |

The theorems in this section can easily be translated into assertions about
linear maps between free R-modules. Suppose A € M, .(R). Then A induces
an R-module homomorphism p, : R" — R™ given by p,(&) = A£. Theorem
5.3 and Corollary 5.35 imply the following result.

Theorem 5.36 LetA € M,,, ,(R). Let p, : R” — R™ be the R-module ho-
momorphism given by p,(§) = AE.
(a) Suppose n = m. Then p, is surjective if and only if I,,(A) = R.
(b) Suppose n = m. Then p, is injective if and only if Anng(/,(A))
= (0).

Before proving Theorem 5.36, let us say a few words about the hypotheses on
m and n in that theorem. If » < m, then the map p, cannot be surjective by
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Theorem S.10. If n > m, then p,, cannot be injective for the same reasons. Thus,
the hypotheses on m and n in Theorem 5.36 are natural for deciding when p, is
surjective or when ., is injective.

Proof of Theorem 5.36

(a) Suppose n=m. If I,,(A) = R, then Corollary 5.35 implies AX = B has
a solution for any B € R™. This is precisely the statement p, is surjective.
Conversely, suppose p, is surjective. Let € = {e,, . . . , €,} denote the
canonical basis of R™. Then AX = &, has a solution since p, is surjective. In
particular, Theorem 5.21 implies /,,(A) = I,,((A | €,)). The equation AX = ¢,
has a solution £ € R" since ., is surjective. Then (A | €,)Y = €, where

-3

In particular, the equation (A | €,)X = ¢, has a solution. Again by Theorem
5.21,1,,((A | €)) = I1,((A | €, | €5)). Continuing in this fashion, we see /,,(4)
= L,((Ale, |-+ | e,)) = R.

(b) The map p,, fails to be injective if and only if AX = O has a nontrivial
solution £ € R". By Theorem 5.3, AX = O has a nontrivial solution if and only
if tk(A) < n. This is in turn equivalent to Anng(/,(A)) # (0). This proves
(b). |

EXERCISES
1. Show that Exercise 3 of Chapter 4 implies

IA = I(A
t(o —r()

for any zero matrix O of the appropriate size and any ¢t € Z.

2. Show that any free R-module basis of a finitely generated, free R-module M
is finite. Show that any two free R-module bases of M have the same
cardinality.

3. Let M be a free R-module (not necessarily finitely generated). Show that any
two free R-module bases of M have the same cardinality.

4. Let M and N be free R-modules of rank n and m respectively. Show
HomR(MyN) = Man(R)'

5. Suppose N and M are finitely generated, free R-modules. If N C M, show
rank (N) =< rank(M). Give an example where N < M and rank(N) =
rank (M).

6. Check that the ring defined in Example 5.15 is a commutative ring with
addition and multiplication defined componentwise. Is R a Noetherian ring?
Compute J(R).
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7. Suppose R is a commutative ring in which Z(R) C J(R). Give a couple of
different examples of such a ring. For any such ring, prove the following
assertion: x ~ y if and only if Rx = Ry.

8. Use Exercise 7 to find a ring R which is not an integral domain and has the

~ property that x ~ y if and only if Rx = Ry.

9. Let R = Z/4Z and set

€ MSxJ(R)

O =
NN -

1
A=|2
1

Find all solutions to AX = B where B = (1,2,3)' € R>.
10. Let

xy 0
A= [0 0 y]
as in Example 5.24.
Consider the homomorphism ., : R> — R2,
(a) Compute Ker(p,).
(b) Compute Im(p,).
(c) Find all solutions to AX = B when B = (2x*x?) € R2.

11. Let A € M, ,(R). An element d € R is called an eigenvalue of A if
Ker(dl, — A) ¥ (0). Let R = Z/6Z. Compute all eigenvalues of

1 0
A=[4 2]EM3x3<R)

Do the same for

€ M3x3(R)

>

Il
W N ==
[ S B ]
— ()

12. LetA € M,,,,(R). Explain carefully why p, : R® — R™ is not surjective
if n < m. Why is p, not injective if n > m?

13. In Exercise 12, show p, is injective if and only if the columns of A are
linearly independent in R™.

14. In Exercise 12, show p, is surjective if and only if for each maximal ideal
B C R, the induced map &, : (R/B)" — (R/B)™ is surjective.

15. Is Exercise 14 still true if the word surjective is replaced by injective?



6

Minimal Primes and the Radical
of an ldeal

In this chapter, we will discuss various properties of prime ideals in commutative
rings. This material will be used in the next chapter when discussing the rela-
tionships between the characteristic polynomial of a matrix and its order ideal.
We begin with the definition of a prime ideal.

Let R be a commutative ring.

Definition 6.1 An ideal ® of R is called a prime ideal if ¥} + R and whenever
xy €E B, thenx € Bory € P.

Notice that the improper ideal R is not a prime ideal. Clearly, a proper ideal 8
is a prime ideal if and only if the quotient ring R/*B is an integral domain. In
particular, (0) is a prime ideal if and only if R is an integral domain. If P is a
prime ideal of R and % and B are ideals of R for which AB C B, then either
A C P or B C B. This assertion follows directly from the definition.

There is an intimate relationship between prime ideals of R and multiplica-
tively closed subsets of R.

Definition 6.2 A subset S C R is said to be multiplicatively closed if 1 € § and
xy € S whenever x,y € S.

52
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In this textbook, a multiplicately closed subset of R must contain 1. For example,
(0) is closed under multiplication, but (0) is not a multiplicatively closed subset
of R. If T is any subset of R, we will let I* = {x € R | x €T} denote the
complement of I'.

Let B be a proper ideal of R. It follows from Definition 6.1 that B is a prime
ideal of R if and only if B¢ is a multiplicatively closed subset of R. Thus,
complements of prime ideals are multiplicatively closed subsets of R. There
are other important examples as well. The regular elements of R, that is,
Z(R)", clearly form a multiplicatively closed subset of R. If x € R*, then § =
{¥| i = 0} is a multiplicatively closed subset of R. If % is an ideal of R, then §
=1+ % = {1 + x| x € A} is another example of a multiplicatively closed
subset of R.

Suppose § is a multiplicatively closed subset of R. Suppose B is an ideal of
R contained in $¢. The ideal B is said to be maximal with respect to § if every
ideal of R which properly contains B has a nontrivial intersection with S. Thus,
B is maximal with respect to S if 8 C $°, and 8 < A (U an ideal of R) implies
A N S # . Another way to say the same thing is B is maximal with respect
to S if B is maximal (with respect to C) among the ideals of R contained in $°.
If B is maximal with respect to S, then B is a prime ideal of R. In fact, we have
the following more general result.

Theorem 6.3 Let S be a multiplicatively closed subset of R. Suppose U is an
ideal of R contained in S°. Then there exists an ideal ¥ C $° such that A C P
and B is maximal with respect to S. Any such % is a prime ideal of R.

Proof. Let% = {B|A C B C S, and B an ideal of R}. The set F is nonempty
since A € F. Partially order ¥ by inclusion C (see Appendix A). If I' = {¥
| @ € A} is a chain in (%, C), then clearly U, %, is an upper bound of T in
%. Thus, we can apply Zorn’s lemma and find a maximal element B of #. The
ideal *B contains ¥ and is maximal with respect to S.

Suppose B is any ideal of R which contains % and is maximal with respect
to S. We claim ¥ is a prime ideal of R. To see this, suppose *f is not prime. Then
there exist elements x,y € B such that xy € B. Since x €B, Rx + P > P.
Since B is maximal with respectto S, (Rx + B)N S + . Lets € (Rx + V)
N S. By the same reasoning, there exists an element s’ € (Ry + ) N S. Then
ss’ € § since § is multiplicatively closed. Also,

ss' € (Rx + B)(Ry + BY)CRxy + PCP.

Therefore, ss' € S N B. This is impossible since P C $°. We conclude P is a
prime ideal of R. This completes the proof of Theorem 6.3. |
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One important application of Theorem 6.3 is the following corollary concern-
ing maximal ideals in R.

Corollary 6.4 Let U be a proper ideal of R. Then U is contained in a maximal
ideal of R. Furthermore, any maximal ideal of R is prime.

Proof LetS = {1}. Clearly, § is a multiplicatively closed subset of R, and %A
C §° since A # R. Theorem 6.3 implies A C P for some ideal P which is
maximal with respect to S. But * is maximal with respect to § = {1} if and only
if P is a maximal ideal of R. Hence, U is contained in a maximal ideal of R.
Suppose B is any maximal ideal of R. Then (0) C %, and B is maximal with
respect to {1}. Thus, Theorem 6.3 implies % is a prime ideal of R. 1

We next introduce the radical of an ideal.

Definition 6.5 Let U be an ideal of R. The radical of %, denoted by VU , is
the set VA = {x €R| x" € A for some n = 1}.

It is easy to see that V'Y is an ideal of R with A C VU . If x — X denotes the

natural map of R onto R/%, then VA = {x € R | X is nilpotent in R/A}. In
particular, \/ (0) is the nil radical of R.

Theorem 6.6 Let U be a proper ideal of R. Then' V¥ is the intersection of all
prime ideals of R which contain .

Proof. We will let V() denote the set of all prime ideals of R which contain
9. By Corollary 6.4, V(%) + &. Let € V(¥), and suppose x €V . Then
'€ A C P for some n = 1. Since P is a prime ideal, x € P. Therefore, Vo
CN{R|P eV}

For the converse inclusion, suppose x € V. Then § = {¥' | i = 0} is a
multiplicatively closed subset of R which is disjoint from . By Theorem 6.3,
there exists a prime ideal 8, € V() such that x €%,. Thus, x €N {P | P €
V()}. We conclude N {B | P € V(A)} C VI |

One special case of Theorem 6.6 is worth mentioning here. If 2 = (0), then
V (0) is called the nil radical (or prime radical) of R. As mentioned
above,\/ (0) is just the set of all nilpotent elements of R. Theorem 6.6 implies
V/ (0) is the intersection of all prime ideals of R. By Theorem 1.6, J(R) is the
intersection of all maximal ideals of R. Hence, Corollary 6.4 imples\/ (0) C
J(R). In general these two ideals are different. Consider the following simple
example.
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Example 6.7 LetpbeaprimeinZ withp =2.SetR = {xly€E Q| p X y}.
Thus, R consists of those rational numbers x/y (with g.c.d. (x,y) = 1) for which
y is not divisible by p. The reader can easily check that R is a subring of Q (see
Exercise 2 at the end of this chapter). It is also easy to see that R contains
precisely one maximal ideal ¥ = {x/y € R | plx}. Thus, J(R) = . On the other
hand, R is an integral domain, and consequently, \/(0) = (0). Thus, \/ (0)
+ J(R). |

Let % be a proper ideal of R. We can partially order V(2), the set of all
primes in R containing U, by inclusion C.

Definition 6.8 Let U be a proper ideal of R. A prime ideal of R which contains
U and is minimal with respect to inclusion in V() is called a minimal prime of

A

Thus, an ideal *B is a minimal prime of & (2 # R), if P is a prime ideal, A
C B, and there is no prime ideal B’ of R with A C P’ < P. We will show that
every ideal different from R has at least one minimal prime. For now, let us
-observe that if 9 is a prime ideal of R, then U is the only minimal prime of .
Let us consider some other examples of minimal primes.

Example 6.9

(a) Suppose R is a unique factorization domain (e.g., any PID as in 1.7,
or a polynomial ring F[X|, . . . , X, ] in r variables over a field F). Let
f € R* and set A = RY, the principal ideal generated by f. We assume
fEUR). Let f = p§fVp3D . .. p2(™ pe a factorization of f into
irreducible factors. Thus, p;, . . . , p, are distinct, nonassociate primes
inR, and a(1), . . . , a(n) = 1. Since R is a unique factorization
domain, each principal ideal Rp; is a prime ideal of R. It is easy to
check that {Rp,, . . . , Rp,} is the complete set of minimal primes of .

(b) Let R = F[x,y] as in Example 5.24. Then I = (x,y) is the only
minimal prime of 20 = Rx. Notice that I is also a maximal ideal of R.
Thus, a minimal prime of % could also be a maximal ideal of R.

(c) Let R = F[X,Y]. Here F is a field, and X, Y are indeterminates over
F.Set A = (XY?, X?Y). The minimal primes of % are {B, = RX, B,
= RY}. Notice that I8 = (X,Y) is a prime ideal of R which contains
A, but P is not a minimal prime of U. 1

There is a nice connection between minimal primes of ¥ and maximal,
multiplicatively closed subsets of R which are disjoint from 2. Suppose S is a
multiplicatively closed subset of R which is disjoint from % ( # R). Thus, % C
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§°. The set S is called a maximal, multiplicatively closed subset of R disjoint
from 9 if S has the following property: If T is a multiplicatively closed subset of
RwithS <T,then TN A + J. We can always imbed a multiplicatively closed
subset of R which is disjoint from ¥ into a maximal, multiplicatively closed
subset of R disjoint from 2.

6.10 Let A be a proper ideal of R. Suppose S is a multiplicatively closed subset
of R disjoint from . Then S is contained in 2 maximal, multiplicatively closed
subset of R disjoint from 2.

The statement in 6.10 is a simple consequence of Zorn’s lemma. Let
# = {T C R| T is multiplicatively closed, S C 7, and T N ¥ = @}

F # O since § € F. Partially order ¥ by inclusion. If {T,Ja € A} = T'isa
chain in (%,C), then U_ea T, is an upper bound of I" in %. Thus, by Zorn’s
lemma, ¥ has a maximal element 7. Obviously, T is a maximal, multiplicatively
closed subset of R disjoint from 2. Since S C T, the assertion in 6.10 is proved.

The connection between minimal primes of U and maximal, multiplicatively
closed subsets of R disjoint from U is given in our next theorem.

Theorem 6.11 Let U be a proper ideal of R. An ideal B is a minimal prime of
A if and only if B¢ is a maximal, multiplicatively closed subset of R disjoint
from 9.

Proof. Suppose ¢ is a maximal, multiplicatively closed subset of R disjoint
from . Since P° is a multiplicatively closed subset, B is a prime ideal of R.
Since LN A = I, A C *B. Suppose L is a prime ideal of R such that A C
£ C B. Then P° C £L°, and £° is a multiplicatively closed subset of R which
is disjoint from . By the maximality of B°, we conclude ¢ = £°. Therefore,
£ = B, and B is a minimal prime of A.

Conversely, suppose 8 is a minimal prime of %. Then ¢ is a multiplicatively
closed subset of R which is disjoint from %. By 6.10, 8¢ C T where T is a
maximal, multiplicatively closed subset of R disjoint from . By Theorem 6.3
there exists a prime ideal &) such that A C £, and Q N T = . In particular,
A C 0 C P. Since P is a minimal prime of A, £ = L. But then P° = T, and
B¢ is a maximal, multiplicatively closed subset of R disjoint from %. |

We can repeat a portion of the proof of Theorem 6.11 for the following
important corollary.

Corollary 6.12 Let U be a proper ideal of R. Any prime ideal of R which
contains ¥ contains a minimal prime of .
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Proof. Let £ be a prime ideal of R such that A C . Then £° is a multipli-
catively closed subset of R which is disjoint from . By 6.10, £° is contained
in a maximal, multiplicatively closed subset T of R which is disjoint from .
Theorem 6.3 implies there exists a prime ideal B such that A C P, and PN T
= . But then T C 3¢, and the maximality of T implies B¢ = T. Theorem 6.11
then implies B is a minimal prime of A. Since L°C T = P, PCc Q. 1

Among other things, Corollary 6.12 and Corollary 6.4 imply that every ideal
A (# R) has at least one minimal prime . Theorem 6.6 and Corollary 6.12
imply that V'Y is precisely the intersection of the minimal primes of . Thus,
we have

Corollary 6.13 Let % be a proper ideal of R. Then V¥ is the intersection of
the minimal primes of 9. |

Again, let % be an ideal of R which is distinct from R. Besides the minimal
primes of %, we will also be interested in the maximal primes belonging to .
Since A # R, R/ is a nonzero R-module. Consider Z(R/), the set of zero
divisors of the R-module R/U. From 1.13, we have x € Z(R/¥) if and only if
there exists 2 y € U such that xy € . Notice that ¥ C Z(R/Y).

Defimition 6.14 Let A and B be ideals of R with A # R. The ideal B is said
to belong to A if B C Z(R/N).

Sometimes authors use the expressions ‘‘B is related to A’ or *“B is associated
to A’ in place of B belongs to UA.

Definition 6.15 Let U be a proper ideal of R. A prime ideal P of R is called
a maximal prime belonging to 2 if  belongs to A and B is maximal among the
ideals belonging to .

Thus, B is a maximal prime belonging to U if f C Z(R/N) and whenever B C
B C Z(R/A) (B an ideal of R), then P = B. We first show maximal prime
ideals belonging to U exist and always contain 9.

Theorem 6.16 Let U be a proper ideal of R. There exists a maximal prime
ideal belonging to 9. Furthermore, any maximal prime ideal belonging to
contains .

Proof. Consider the complement Z(R/)° of Z(R/N). An element x lies in
Z(R/A)* if and only if x satisfies the following property: Whenever xy € 9, then
y € . This characterization of Z(R/ ) implies Z(R/)° is a multiplicatively
closed subset of R. For suppose x, and x, are elements of Z(R/U)°. If (x.x,)y
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€ A for some y € R, then x,y € U since x, € Z(R/A)° Since x, € Z(R/A)°,
y € U. Therefore, x;x, € Z(R/A)°. Clearly 1 € Z(R/A)°. Consequently,
Z(R/A) is a multiplicatively closed subset of R which is necessarily disjoint
from A since A C Z(R/N).

Theorem 6.3 implies there exists a prime ideal B with A C B and such that
B is maximal with respect to Z(R/A)°. Then P is a maximal prime ideal
belonging to 2.

Finally, suppose %8 is any maximal prime ideal belonging to . Then § C
B + A C Z(R/A). By the maximality of ‘B in Z(R/A), we conclude P =
B + A. In particular, A C P. |

If B is a maximal prime ideal belonging to ™, then B is a prime ideal of R,
but ‘B need not be a maximal ideal of R. Consider the following example.

Example 6.17 Let R be a unique factorization domain as in Example 6.9a.
Suppose py, . . . , p, are distinct (nonassociate) primes in R. Let f =
piV ps@. .. px(™ Here a(i) = 1 foreachi = 1, ..., n. We have seen in
Example 6.9a that {Rp,, . . . , Rp,} is the complete set of minimal primes of Rf.

On the other hand, x € Z(R/Rf) if and only if p; | x for some i = 1, ..., n.
Therefore, Z(R/Rf) = Rp; URp, U - - - U Rp,. It easily follows from this (see

Exercises 11 and 12 at the end of this chapter) that {Rp,, . . . , Rp,} is precisely
the set of maximal primes belonging to Rf. If R = F[X,, ... ,X,] withr =2,
then Rp,, . . . , Rp, are not maximal ideals of R. 1

In Example 6.17, the minimal primes of % are the same as the maximal
primes belonging to 2. In general, these two sets of primes are different.

Example 6.18 Let A = (XY2,X2Y) in Example 6.9c. We have seen that the
minimal primes of U are {RX, RY}. It is easy to see that Z(R/) = M = (X,Y).
Since IR is a maximal ideal of R, {I} is the complete set of maximal prime ideals
belonging to UA. |

Although the set of minimal primes of U and the set of maximal primes
belonging to 2 are in general different, we do have every minimal prime of U
is contained in some maximal prime ideal belonging to 2. In order to prove this
assertion, we need the following observation. Suppose B is an ideal which
belongs to A. Thus, B C Z(R/A). Then B and the multiplicatively closed subset
Z(R/N)° are disjoint. Theorem 6.3 implies B C P where B is a prime ideal
maximal with respect to Z(R/21)°. Thus, B is a maximal prime ideal belonging
to %. In particular, any ideal belonging to 2 is contained in 2 maximal prime
ideal belonging to .
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Theorem 6.19 Let U be a proper ideal of R. Then every minimal prime of 9
is contained in a maximal prime ideal belonging to .

Proof. Let B be a minimal prime of . Since every ideal belonging to 2 is
contained in a maximal prime ideal belonging to U, it suffices to show P C
Z(R/A). Since P C Z(R/A) if and only if Z(R/A) C B¢, we will show
Z(RIA) C P

Let x € Z(R/A)°. Let S be the following subset of R:

620 S =1{ z zx|z€ P, andi = 0}.

Thus, S consists of three types of elements; powers of x, elements from P¢, and
all products of powers of x with elements from B¢. Since B¢ and {x' | i = 0} are
multiplicatively closed subsets of R, it is easy to see S is also a multiplicatively
closed subset of R. Clearly, ¢ C S.

We claim § N A = . To see this, we look at each type of element in S.
Since U C P, no element from P€ lies in A. To see that no power of x lies in
A, we need the following observation:

6.21 VU C Z(R/Y).

Suppose b €V . Then b" € U for some positive integer n. We have observed
earlier that A C Z(R/N). Thus, if n = 1, b € Z(R/A). Hence, we can assume
b &U. Then n = 2. We can assume n is the smallest positive integer such that
b" € U. Thus, b"~! € A. But then b” = b(b""') € U implies b € Z(R/N).
This proves 6.21.

Now suppose some power of x lies in A. Say x' € . Here i = 1, since 1 &
9. Then x EVYA C Z(R/) by 6.21. This is impossible since x (and all its
powers) lie in the multiplicatively closed subset Z(R/2)°. Thus, no power of x
lies in 2.

Finally, suppose zx' € 9 for some i = 1 and some z € R°. Among all such
elements from S, we can choose one, say zx”, with r as small as possible. Since
zx’ € U, r must be at least 2. (If zx € U, then z &9 implies x € Z(R/A ), which
is impossible. ) The element zx’~! & by the minimality of 7. But then x(zx’ ')
=z € U, and zx ! & A implies x € Z(R/A), which is impossible. We
conclude that no element of S of the form zx’, z € B and i = 0, can lie in 2.
Thus, S N A = J as claimed.

Since B is a minimal prime of A, P is a maximal, multiplicatively closed
subset of R disjoint from U by Theorem 6.11. Therefore, B¢ = S. In particular,
x € BC. Since x is an arbitrary element in Z(R/ )¢, we conclude Z(R/A)° C Pe.
This completes the proof of Theorem 6.19. |
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EXERCISES
1. Let R be an integral domain. Suppose § is a multiplicatively closed subset

10.

11.

12.

13.

of R. We assume 0 €S. Let Q(R) denote the quotient field of R. Set S™'R

={x/sEQR)|sES, x ER}L

(a) Show S”IR is a subring of Q(R).

(b) If P is a prime ideal of R such that R NS = &, show S™'P = {wis €
S7'R | x € B} is a prime ideal of S”'R.

(c) Show that every prime ideal of S™!R is of the form $™ ' with B a prime
ideal of R disjoint from §.

. Show that the ring constructed in Example 6.7 is a special case of Exercise

1 above. Use the information from Exercise 1 to prove all the statements
about R in Example 6.7.

. Let F be a field, and set R = F[[X]], the ring of formal power series in X

over F. Determine all prime ideals of R.

. Let R = Z[i], the ring of Gaussian integers. Thus, i2 = —1, Determine all

prime ideals of R.

. Let R = Z[X,Y]. Here X and Y are indeterminates. Find a chain of prime

ideals in R of length three; i.e., find primes B,, B,, P, of R such that L,
< B, < B,. Are there any longer chains of prime ideals in R?

. Let R be an arbitrary commutative ring. Show the following sets are mu1~

tiplicatively closed subsets of R:

(a) S = any one of the four examples given after Definition 6.2 in the text.

(b) $ = N{T, | « € A} where each T, is a multiplicatively closed subset
of R.

(c) S = T\T, = {xy| x €T, y € T,} where T, and T, are multiplicatively
closed subsets of R.

(d) S = U{T, |« € A} where {T, | a« € A} is a collection of multiplicatively
closed subsets of R with the following property: For all a, B, € A, there
exists y € Asuchthat T, UT, C T,.

. Determine the ideals of Z which are maximal with respectto S = {2|i =
0}. Do the same problem for § = 1 + 2Z.
. Verify that {Rp,, . . . , Rp,} in Example 6.9a is the complete set of minimal

primes of 9 = Rf.

. Let R = Z[X,Y] as in Exercise 5. Let A = (X2¥,XY?). Compute the

minimal primes of .

In the proof of Theorem 6.16, we claimed B + A C Z(R/A). Give a proof
of this statement.

Suppose B, . . ., B,, are distinct prime ideals of R. Let A be an ideal of R.
Show A C U B, if and only if A is contained in some ;.

Use Exercise 11 to show {Rp,, . . . , Rp,} are the maximal primes belonging
to A = Rf in Example 6.9a.

Find the maximal primes belonging to 2 in Exercise 9.
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14. Give an example of a commutative ring R and two ideals U and B of R such
that B belongs to 2 but A does not belong to B.

15. In Exercise 14, is such an example possible if R = Z?

16. Find a ring R and ideals % and B of R such that P is prime, A C B, but
B is neither a minimal prime of Y nor a maximal prime belonging to 2.

17. Suppose R is a commutative ring without an identity element 1. Construct an
example which shows Corollary 6.4 need not be true for such a ring.
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The Cayley-Hamilton Theorem

Let F be a field, and suppose A € M, ,(F). Let C, (X) denote the characteristic
polynomial of A. Thus, C,(X) = det(XI, — A). The classical Cayley-Hamilton
theorem says C,(A) = O. In this chapter, we will show this theorem is valid for
any commutative ring R. In proving this result, we will exploit the natural
isomorphism M, ,(R[X]) = (M, ,,(R))[X]. In particular, we need to say a
few words about polynomial rings T[X ] where T is not necessarily commutative.

Let T be a ring. We do not assume T is commutative. Let X be an indeter-
minate over T and consider the polynomial ring

TIX]1={gX"+aX" '+ - - +a,_X+a,|a;,ET,and n =0}

Polynomials in T[X] are added or multiplied together in the usual ways
(see {5, Chapter 2]). Thus, T[X] is an associative ring with identity 1( = the
identity of T). The elements in T are identified with the constants of T[X].
Remember when dealing with 7T]X], that X is in the center of 771X]. Thus, Xf(X)
= f(X)X for all f(X) € T[X]. The ring T[X], in general, is not commutative
since (aX)(bX) = (ab)X?2for any a, b € T and (bX)(aX) = (ba)X 2. These
products are equal if and only if ab = ba in T. Obviously, T[X] is a commu-
tative ring if and only if 7 is a commutative ring.

Suppose f(X) € T[X]*. Then there exist a unique integer n = 0 and unique
elements a,, . . . , a, € T such that f(X) = aoX” + X" ' + - - - + a,and

62
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ay, #+ 0. The element gy is called the leading coefficient of f(X) and the integer
n is called the degree of f(X). In this text, we will let d(f) denote the degree of
f(X). Thus, if f(X) = apX" + a X" '+ --- +a,_ X + a,ET[X]and ao
# 0, then a(f) = n. Notice the degree defines a function 9 : T[X]* — N,
where N, = {0, 1, 2, . . .}. The zero polynomial in this chapter is not given a
degree. (See Exercise 2 at the end of the chapter.) We have the usual rules
concerning the degree function.

7.1 (a) a(f) = 0if and only if f € T*.
(b) Iff, g, and f + g are nonzero polynomials in T[X], then o (f + g) =
max{3(f), a(g)}-
(c) Iff, g, and fg are nonzero polynomials in 7[X], then 9 (fg) =< a(f) +
a(8).

The most important fact about T[X ] used in this text is the following division
theorem.

Theorem 7.2 Letf(X) =g, X" + --- + a,and g(X) = boX" + - - - + b,
be polynomials in T[X]. Assume by, € U(T). Then there exist unique polyno-
mials #(X), v(X), r(X), and s(X) in T[X] such that

(@) f(X) = u(X)g(X) + r(X), with r(X) = 0, or a(r) < a(g) and

(b) f(X) = g(XW(X) + s(X) with s(X) = 0, or d(s) < 3(g)

Proof. The proofs of the assertions in (a) and (b) are very similar. We will
prove (a) and leave (b) to the reader. We first construct polynomials «(X) and
r(X) such that (a) is satisfied. We will then argue «(X) and r (X) are necessarily
unique.

Since by is a unit in T, b, # 0. In particular, g(X) # 0, and 3(g) = m =
0. Iff(X) = 0, then u(X) = r(X) = O satisfy (a). Hence, we can assume a,
#+ 0. Thus, () = n=0.If n < m, then u(X) = 0 and r(X) = f(X) satisfy
(a). Hence, we can assume n = m and proceed by induction on n.

The polynomial f; (X) = f(X) — aghy” 'X" ™g(X) is either zero or a non-
zero polynomial of degree less than n. Hence, our induction hypotheses imply
there exist polynomials u, (X) and r(X) in T[X] such that f; (X) = u; (X)g(X)
+ r(X), and r(X) is either zero or d(r) < d(g). We then have

F(X) = (u(X) + aghy™'X""™)g(X) + r(X)

Set u(X) = u,(X) + agbp”"X" ™. Then f(X) = u(X)g(X) + r(X).
In order to finish the proof of (a), we must argue the polynomials #(X) and
r(X) constructed in the last paragraph are unique. Suppose there is another pair
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of polynomials u,(X) and r,(X) such that f(X) = u,(X)g(X) + r,(X) with
ri(X) = 0 or a(r,) < 3(g). Then

u(X)g(X) + r(X) = fX) = u,(X)g(X) + ri(X)

Thus, (u — u;)g = ry — rin T[X]. Suppose u — u; # 0. Since b, is a unit
inT, (u— u;)g ¥ 0 and

((u —wu)g)=0(u—uy) +o(g) =9(u—u)+m=m

On the other hand, either r, — r is zero or d(r;, — r) < d(g) = m. Thus,
(u — uy)g = r, — ris impossible. We conclude u,(X) = u(X). Then r,(X)
= r(X), and the proof of the theorem is complete. 1

If (X) = u(X)g(X) + r(X) with r(X) = 0ora(r) < a(g), we will say
g divides f on the right with remainder r. On the other hand, if f(X) = g(X)v(X)
+ s(X) with s = O or d(s) < d(g), then we say g divides f on the left with
remainder s. Theorem 7.2 implies the following statement about division: If the
leading coefficient by of g(X) = boX™ + - - - + b, € T[X]is aunit in T, then
g(X) divides any f(X) € T[X] on the right or left with suitable remainders. In
particular, if g(X) is a monic polynomial, i.e., the leading coefficient of g(X)
is 1, then g(X) divides any f(X) € T[X] on the nght or left with suitable
remainders. Notice also that if the leading coefficient of g(X) is a unit in T, then
g(X) is a regular element in T[X], and 3(fg) = 3(f) + 9(g) for any nonzero
f(X) €ETIX]

If T is a commutative ring, then the uniqueness argument in the proof of
Theorem 7.2 implies u(X) = v(X), and r(X) = s(X) in (a) and (b). If T is
not commutative, then u(X) and v(X) (or r(X) and s(X)) need not be equal.

Definition 7.3 Let f(X),g(X) € T[X), and assume g(X) + 0.
(a) ff(X) = u(X)g(X) + r(X)withr = 0, or a(r) < 3(g), then r(X) is
called a right remainder of division of f(X) by g(X).
®) Iff(X) = g(X)v(X) + s(X) withs = 0,0rd(s) < a(g), then s(X) is
called a left remainder of division of f(X) by g(X).
If the leading coefficient of g(X) is a unit in T, then Theorem 7.2 implies a right
(left) remainder of division of f(X) by g(X) is unique. However, a right re-
mainder need not be equal to a left remainder of division of f(X) by g(X).
Consider the following example.

Example 7.4 LetT = M,, ,(Q). Set

1-1 1 3
fX) = [1 -1]X+ [1 l]erm
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Let

1 2
8(X)=X+[0 l]er[xl
Notice that g(X) is a monic polynomial in T[X] of degree 1. Then
1 1 1 2 1 1 1 3
s [ leelo )= Bl [l

uX) gx) = £

Thus,
00
nX) = [0 0]

is the right remainder of division of f(X) by g(X). On the other hand, we have

AN RN

g w0+ s = A%
Therefore,
-2 4
s(X) = [ 0 2]
is the left remainder of division of f(X) by g(X). 1

Of course, if T is a commutative ring and the leading coefficient of g(X) is
a unit in T, then the right (left) remainder of division of f(X) by g(X) is unique
and the right remainder is the same as the left remainder.

Suppose R is a commutative ring and

fX)=aX" +a, X" '+ ---+a, X +a,

is a polynomial in R[X]. If z € R, then f(z) has an unambiguous meaning,
namely

f@)=a + a2 '+ ---+a,_z+a,

The map sending f(X) —> f(z) is an R-algebra homomorphism from R[X] to R.
If T is a noncommutative ring, then f(z) can have two possible meanings
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Definition 7.7 Let
fX)=aX"+aXx" '+ -+ +a,_ X+ a, €ET[X]

Let z € T. Then fz(z) and f; (z) will denote the following two elements of T:
@fr(z) =a + a" '+ - +a,_z + a,
o) fi(z2) =7ag + 2 'ay + - +za,_, +a,
fr(2) is called the right evaluation of f(X) at z, and f; (z) is called the left
evaluation of f(X) at z. If T is not commutative, then obviously f;(z) need not
be equal to f; (z). Notice, however, thatifay, . . . ,a,_, € C(T), orifz € C(T),
then fz(z) = f,(z). In particular, if T is a commutative ring, then fz(z) = f(z)
= f(2).

We can now state the noncommutative version of the remainder theorem.

Theorem 7.8 Let f(X) € T[X], and let z € T. Then there exist polynomials
u(X) and v(X) in T[X] such that

@) f(X) = u(X)(X — z) + fr(2).

®) fX) = (X = z)v(X) + f(2).

Thus, fz(z) is the right remainder of division of f(X) by X — z and f; (z) is the
left remainder of division of f(X) by X — z.

Proof. We will prove (a) and leave the proof of (b) to the reader. By Theorem
7.2, there exist unique polynomials 4(X) and r(X) in T[X] such that

79 f(X) = u(X)(X — 2) + r(X).
Furthermore, either r(X) is zeroor a(r) < d9(X — z) = 1. Thus, r(X) = r, some
constant in T. If f(X) is zero, or if 3(f) = O, then u(X) = Oand f(X) = r =
fr(2). Hence, we can assume d(f) = n = 1. Then equation 7.9 implies 9 (u) =
n — 1. Suppose

UX) = coX" '+ X2+ -+ X + cpy

Substituting this expression in equation 7.9, we have

710 f(X) = coX" + (c; — co2)X" "V 4+ - -+ (cpey — Cp_g2)X
+ (r — ¢,—42)

Therefore, substituting z on the right in equation 7.10 for X, we have

fr(2) = ¢coZ" + (¢, — coz)z""l + -+ (Cpmy — Cponz)z
+ (r—c,_2)=r |
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If f(X) = u(X)v(X) in T[X], then u(X) is called a left divisor or left factor
of f(X). Similarly, v(X) is called a right divisor or right factor of f(X). Using
this terminology, we have the following corollary to Theorem 7.8.

Corollary 7.11 X — zis a right divisor of f(X) in T[X] if and only if fe(z) =
0. Similarly, X — z is a left divisor of f(X) in T[X] if and only if f, (z) = O.
|

Now suppose R is a commutative ring. Then R[X] is a commutative ring, and
we can consider the noncommutative ring M, ,(R[X]). LetA €M, . (R[X]).
Then for each i, j = 1, ..., n, [A];is a polynomial in R[X]. If A # O, let
p be the maximum of the degrees of the nonzero entries of A. Thus,

p = max{3([A]y) | [A]; # 0,1 <ij <n}.

IfA = O, set p = 0. Since p is a fixed, nonnegative integer, each entry [A];
can be written uniquely as an R-linear combination of X”,X*~!, . . .| X,1. Hence,

foreachi,j = 1, ..., n, there exist unique elements a§™’,- - -,a$’¥) € R such
that
7.12 [A]; = a§VXP + afVXP7! 4+ - - 4+ al¥iX + oY

Substituting these expressions for the [A]; in A, we have the following poly-
nomial description of A.

_aé,"”xp +o o+ alh ,af"oxXP + - - -+ a,(,"")-
713 A = ‘ ‘
af-lxP + +arh, a§" xP + + a”
-051 ), ag,n)- -aﬁ‘ D af! "]
= XP + xP 4 ..
é&n,])’ , a‘gn,n) ‘;in,l), , aSn n)
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Thus, every matrix A € M,,,.,(R[X]) can be written in the following form:
714 A =AXP +AXP' + - - +A_X+A,

withAg,Ay, . . ., A, € M, ,(R). Since XB = BX for every B € M, ,(R[X]),
we could also write equation 7.14 as

715 A =XPAq + XPT'A, + -+ - + XA,_, + A,

We have noted that the coefficients appearing in equation 7.12 are unique.
Hence, it follows that the matrices A, . . . , A, appearing in equation 7.14 or
7.15 are also unique. In fact, it is clear that 2,_0 AX = ko BX*, with
Ag, ..., A and By, ... ,B, EM,,.(R) andk>0 implies Ag =By, Al =
B,,...,A,, = B,.

We have now established the following representation principle.

7.16 Every nXn matrix A with entries from R[X] can be written uniquely in
the form
=AXP +AXT 4+ +A_X+A
with Ay, . . . , A, E M, ,(R) and
p = max{a([A])) | [A]; # 0,1 <ij=<n}

If A = O, p is taken to be 0.
Consider the following example.

Example 7.17 Suppose

2X2 + 3x +1 6X -5
[ X2 — l] € MyxAZ[X])

Then
_ 12 0f , 3 6 1 -5
a=fo tpe o 27 '

Now letT = M, , ,(R). We can consider the (noncommutative) polynomial
ring T[X} = (M, ,,(R))[X]. The representation given in 7.16 suggests a
natural mapping ¥ : M, (R[X]) — (M,,,(R))[X] given by Y(A) =
2?-0 A;XP™). The reader can easily check that  is an isomorphism of rings.
Hence, we have the following lemma:

Lemma 7.18 The rings M, ,(R[X]) and (M, ,(R))[X] are isomorphic via
the map Y(A) = 7= A;X?™/ (notation as in 7.16). |
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We will make use of the isomorphism ¥ : M,,, ,(R[X]) = (M, ,(R))[X]
when proving the Cayley-Hamilton theorem.

Definition 7.19 Let A € M, . ,(R). The characteristic polynomial of A, writ-
ten C,(X), is defined as follows: C,(X) = det(XI, — A).

Expanding the determinant of X/, — A using Laplace’s equation, we see C, (X)
is a polynomial in R[X] of the following form:

720 C,(X)=X"+aX" '+ --- +a,_X + a,

In equation 7.20, a, = — 271 [A]; = —Tr(A)anda, = (—1)" det(A). The
other coefficients in the characteristic polynomial have various interpretations,
but they are not relevant for this discussion. The important thing to notice here
is that the characteristic polynomial of any matrix A € M,,,.,(R) is always a
monic polynomial of degree n in R[X]. In particular, C,(X) is a regular element
of R[X] for any matrix A.

Every monic polynomial of degree n in R[X] is the characteristic polynomial
of some nXn in M, ,(R). To see this, suppose

fX)=X"+cX""'+ -+ X + c,

is a monic polynomial in R[X ]. Using Laplace’s expansion, the reader can easily
verify

— —_—
X 000 --- 0 ¢,
-1 X 00 0 ¢,
o -1 x 0 --- 0 ¢,—»
7.21 det . CoL . . = f(X)
0 000 -+ -1 X+ ¢

The n X n matrix whose determinant appears in equation 7.21 can be written as
X1, — Com(f), where Com(f) is the following n X n matrix from M, ,(R):

— ——
00 0 -,
1 0 0 —Cp—1
01 0 —c ,

7.22 Com(f) =
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The nXn matrix Com(f) appearing in equation 7.22 is called the companion
matrix of f(X). Equation 7.21 implies the characteristic polynomial of the com-
panion matrix of f(X) is f(X). In particular, every monic polynomial of degree
n in R[X] is the characteristic polynomial of some matrix from M, ,.,(R).

The Cayley-Hamilton theorem says A is a zero of its characteristic polyno-
mial.

Theorem 7.23 (Cayley-Hamilton) LetA € M,,,(R). Then C,(A) = O.
Proof. Since C,(X) = det(Xl, — A), equation 2.20 implies

7.24 adj(XI, — A)(XI, — A) = C,(X)I,.

Equation 7.24 is a statement about matrices in M, ,(R[X]). Using Lemma
7.18, we can reinterpret equation 7.24 in the polynomial ring (M, ,,(R))[X].
Suppose C,(X) = X" + a X" ' + - - + a,. Let

fX)=X"+ (@I, )X ' + - - - + (ad,) € (M,,.,(R)[X]

Let ¢ denote the ring isomorphism from M, , ,(R[X]) onto (M, ,(R))[X]
given in Lemma 7.18. Then ¢ (C,(X)],)) = f(X), and ¥(XI,, — A) = XI,, —
A (= X — A), the corresponding linear polynomial in (M, ,(R))[X]). Ap-
plying ¥ to equation 7.24, we see X — A is a right divisor of f(X) in
(M, ,,(R))[X]. In particular, fzr(A) = O by Corollary 7.11. Therefore

O = fu(A) = A" + (@A™ + - - 4+ (a,1,) = Co(A),.
We conclude C,(A) = O. |

There are many applications of Theorem 7.23. For instance, if A € Gl(n,R),
then the Cayley-Hamilton theorem implies the inverse of A must be a polynomial
inA.

Corollary 7.25 LetA € Gl(n,R). ThenA™! = g(A) for some g(X) € R[X].

Proof. Ifn = 1,thenA = (a) witha € U(R). Wecantake g(X) =a” ' €R
CRI[X]. Theng(A) = a_‘I1 = (a~ ') = A7!. Hence, we can assume n > 1.

Let C,(X) = X" + a,X"~' + - - - + a, We have noted that a, =
(—1)" det(A). Since A is invertible, a, is a unit in R by Corollary 2.21. By
Theorem 7.23, C,(A) = O. Therefore,

7.26 Al(-a, YA '+ aA" 2+ - +a, )] =1,

Setg(X) = —a,”'X" ' - a,"a X" >+ -+ + (—a, 'a,_,) € R(X].
Then equation 7.26 implies g(A) = A™' |



The Cayley-Hamilton Theorem 71

Let A € M, ,(R). The matrix A determines an R-algebra homomorphism
9, : R[X] — M, ,(R) given by the following formula.

727 V(X" +r X" '+ -+, X +r1,)
=r A" + A"V + - A+,

It is easy to see that 3, is an R-algebra homomorphism from R[X] to M, . ,(R).
Notice that 3, sends the identity 1 in R[X] to the identity /,, of M, ,(R). The
image of 9, is the subring of M, . ,(R) generated by R and A. We will denote
this subring by R[A]. Clearly, R[A] is set of all polynomials in A with coeffi-
cients from R. Thus,

Im(9,) = R[A] = {f(A) | f(X) € RIX]}

Notice that R[A] is a commutative subring of M, ,(R). The kernel of 3, gets
a formal name in this discussion.

Definition 7.28 LetA € M, ,,(R). The kernel of the R-algebra homomorphism
U, RIX] — M, ,(R) is called the null ideal (or characteristic ideal) of A.

We will denote the null ideal of A by N,. Do not confuse the null ideal of A with
the null space of A. The null space of A is the R-submodule of R" given by
NS(A) = {{ER" | A§ = O}. The null ideal of A is the ideal in R[X] given by
N, = Ker(9,) = {f(X) € R[X1| f(A) = O}

A sequence

g f
O P—->M—Q—0

of R-modules P, M, and Q and R-module homomorphisms g and f is said to be
exact if g is injective, f is surjective, and Im(g) = Ker(f). f we let v : N, —>
R[X] denote the inclusion map of N, into R[X], then the definitions imply

L b A
729 0 —> N, — R[X] —» R[A] — 0

is an exact sequence of R-modules.

The Cayley-Hamilton theorem says C,(X) € N,. In particular, the null ideal
of a matrix is never zero. In fact, N, always contains a regular element (namely
C,(X)) of R[X]. In the classical case, i.e., when R = F a field, the ring F[X]
is a PID. Consequently, N, is a principal ideal in F{X]. The unique monic
polynomial in F[X] which generates N, is called the minimal polynomial of A.
For an arbitrary commutative ring R, the ring R[X] need not be a PID and N,
need not be principal. Consider the following example.
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Example 7.30 Let R = Z/4Z = {0,1,2,3}. Let

1 2
A= [0 1]€M2x2(R)
Then
CAX)=(X—-1)2=X2-2X+1=X2+2X+1=(X+1)?

Thus, (X + 1)?2 € N,. Since 2(A + 1,) = O, we also have 2(X + 1) EN,.
A simple calculation shows 2(X + 1) is the only linear polynomial in N,,.

Suppose f(X) € N,. By Theorem 7.2, there exist unique polynomials u(X)
and r(X) in R{X) such that f(X) = u(X)(X + 1)*> + r(X). Furthermore,
either r(X) is zero or d(r) < 2. Evaluating this expression at A implies r(A) =
0. Thus, r = 0 or r = 2(X + 1). We have now shown N, =
(X + D% 2(X + 1)).

We claim the ideal N, = ((X + 1)%, 2(X + 1))isnota principal ideal in
R[X]. To see this, we assume N, is principal and derive a contradiction. In order
to make computations easier, consider the following change of variables. Let
o : R[X] = R[X] be the isomorphism given by 0(X) = X + 3ando(y) = y
forally ER.o(N,) = (X 2 2X). Thus, if N, is a principal ideal in R[X], then
(X2,2X) is a principal ideal in R[X].

Suppose (X2,2X) = (p) for some p(X) € R[X]. Since p = aX? + b(2X)
for some a,b € R[X], X|[p. Write p(X) = Xp,(X). Then X(X,2) = X(p,).
Since X is a regular element in R[X ], we conclude (X,2) = (p,). We will show
that (X,2) is not a principal ideal in R[X], and thus we have a contradiction.

In R[XV2R([X] = Z/2Z[X], the image p, of p, generates the principal ideal
(X). Thus, p, ~ X in Z/2Z[X}. The only unit in the ring Z/2Z[X] is 1. Thus,
p1 = X. Therefore, p;(X) = X + 2g(X) for some g(X) € R[X]. Hence, we
can write p, (X) in the following form:

pi(X) =235+ (1 + 2a)X + 2a,X* + -+ - + 2a,X"
Here ay, . . . , a, € R = Z/4Z. Since 2 is nilpotent in R, 1 + 2a, is a unit in
R. Replacing p,(X) with (1 + 2a,)"'p,(X) if need be, we can assume p,(X)
=2ay + X + 2a,X* + - - - + 2a,X".
Now 2a, = 0 or 2 for any a; € R. Suppose 2a, = 0. Since (X,2) = (p,),
2 = fXp1(X) = fIX)X + 2aX% + - - + 2a,X")
for some f(X) € R[X]. This is clearly impossible. Hence, 2a, = 2. But then
2=0Q2+X+2aX>+ - +2a,X")(by+ bX+ - + b,X™)

for some by, . . . , b,, € R. In particular, 2b, = 2 and 2b; + by = 0. The reader
can easily check these two equations have no common solution b, and b, in R.
Hence, in either case, 2a, = 0 or 2a, = 2, we get a contradiction. We conclude
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that (X,2) is not principal in R[X], and, consequently, N, is not principal in
RIX]. ]

Example 7.30 shows that when R is not a field, N, can contain some unex-
pected polynomials. If we replace Z/4Z with Q in Example 7.30, then N, is
principal, generated by C,(X) = X? —2X + 1. In particular, N, contains no
linear polynomial. If R is not a field, it may be difficult to compute N, for a given
matrix A. In our next theorem, we give necessary and sufficient conditions for a
polynomial to lie in the null ideal of a matrix.

Theorem 7.31 LetA €M, ,(R). Let g(X) € R[X]. Then g(X) € N, if and
only if g(X) adj(XI,, — A) = KC,(X) for some K € M, ,(R[X]).

Proof. Suppose there exists an n X n matrix K € M, ,(R[X]) such that
7.32 g(X) adj(XI,, — A) = KC,(X).

Since R[X ], lies in the center of the ring M, ,(R[X]), C,(X) can appear on
either side of K in equation 7.32. Multiplying equation 7.32 on the right with X1,
— A and using 2.20, we have

733 C,(X)g(X)I, = C,(X)K(XI, — A).

Via the canonical isomorphism ¢ : M, ,(R[X]) = (M, ,(R))[X], we can
view equation 7.33 as a statement about polynomials in (M, ,(R))[X]. Since
C,(X) is a monic polynomial, ¥ (C, (X)I,) is a regular element in (M,, . ,(R))[X].
Thus, $(C,(X)I,) can be canceled after applying s to equation 7.33. We then have

7.34 $(g(X),) = $(K)(X — A) in (M,.,(R))[X]

Suppose
g(X) =bX" + bX"" '+ - +b, X+b,
Here by, . . . , b, are elements in R. Then

WX, = (bl )X™ + (B )X™ ' + - - -
+ (b d)X + b1, in (M,y,(R))[X]

Set y(g(X)I,) = P(X). The coefficients of P(X), namely byl,,, . . ., b,I,, lie
in the center of the ring M, ,(R). Consequently, P, (A) = Pr(A). Equation
7.34 implies X — A is a right divisor of P(X). Hence, Pg(A) = P, (A) = Oby

Corollary 7.11. Therefore

7.35 O = Pr(A) = (bol )A™ + (BI)A™ ' + -+ + (b_I)A + (b,1,)
= bA™ + LA™ ' + - - b,_A + b,l, = g(A)
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Equation 7.35 implies g(X) € N,.

Conversely, suppose g(X) € N,. Then g(A) = O. Using the same notation
as in equation 7.35, we have Pg(A) = O. Thus, by Corollary 7.11, X —Aisa
right divisor of P(X) in (M,,,(R))[X]. Therefore, y(g(X)I,) = P(X) =
k(X)(X — A) for some k(X) in (M, ,(R))[X]. Applying qr‘ to this rela-
tionship, we get g(X),, = K(XI,, — A) in M, ,(R[X]) for some matrix K. If
we now multiply on the right with adj(XI, — A), we get equation 7.32. This
completes the proof of Theorem 7.31. 1

Theorem 7.31 implies a polynomial g (X) lies in the null ideal of a matrix A
if and only if C,(X) divides g(X) times each entry of the adjoint of XI,, ~ A. In
symbols, g(X) € N, if and only if C,(X) | g(X)Aforall A € I,_,(XI, — A).
Let us return to Example 7.30 for an illustration of this result.

Example 7.36 LetR = Z/4Z, and set

1 2
A = [0 1] e MZXZ(R)

Then

X -1 ~2 X+3 2
X’Z”A'[o X—1]‘[0 x+3]
The nonzero, 1 X 1 minors of XI, — A are X + 3 and 2. Theorem 7.31 implies
g(X) € N, if and only if C,(X) | (X + 3)g(X) and C,(X) | 2g(X). Here
Ca(X) =X +2X + 1.
For example, we saw in Example 7.30 that 2(X + 1) € N,. Since

(X + 3)2(X + 1) = 2X% + 2 = 2C,(X),
C,(X) | (X + 3)2(X + 1). Also, 2(2(X + 1)) = 0, and therefore C,(X) |
2(2(X + 1)). 1

There are two important corollaries to Theorem 7.31.

Corollary 7.37 LetA € M, .(R). Then VN, = V (C,(X)).

Proof. C,(X) € N, by the Cayley-Hamilton theorem. Therefore,
V' (C,(X)) C VN,. For the other inclusion, let g(X) € N,. Theorem 7.31
implies g(X) adj(XI,, — A) = C,(X)K for some K € M, ,(R[X]). We have
seen in the proof of Theorem 7.31 that this last equation implies Y (g(X)I,) =
Y(K)(X — A) in (M,,.,(R))[X]. Applying ¥, we conclude gXxr, =
K(XI, — A) in M, ., (R[X]). Taking determinants, we get

(g(X))" = det(K(XI,, — A)) = det(K) det(XI,, — A) = det(K)C,(X)
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Therefore, g(X) € V(C,(X)). It easily follows from this that VN, C
V(C4(X)). [
Corollary 7.38 Let A € M,, ,(R). Then the minimal primes of N, are pre-
cisely the same as the minimal primes of (C,(X)).

Proof. Let B be a minimal prime of N,. Then VN, C R. Corollary 7.37
implies (C4(X)) C B. By Corollary 6.12, B contains a minimal prime £ of
(C4(X)). Since V(C,(X)) C £, N, C £ again by Corollary 7.37. Thus,
Corollary 6.12 implies O contains some minimal prime 8, of N,. We now have
N, C B, C £ C PB. Since P is a minimal prime of N,, we conclude B = ;.
In particular, 8 = £. Thus, B is a minimal prime of (C,(X)). If we reverse
the roles of N, and (C,(X)) in this proof, we get every minimal prime of
(C4(X)) is a minimal prime of N, [ |

Corollary 7.38 is a familiar result when R is a field. If R = F, a field, then
F[X] is a PID. Thus, N, is a principal ideal generated by the minimal polyno-
mial m, (X) of A. We have seen in Example 6.9a, the minimal primes of N, are
(1), . - . (p,) where p;(X), . . ., p,(X) are the distinct (nonassociate)
irreducible factors of m,(X). Similarly, the minimal primes of (C,(X)) are
(q), ..., (q) where q,(X), . . ., q,(X) are the distinct (nonassociate)
irreducible factors of C,(X). Corollary 7.38 implies r = ¢, and p; ~ ¢, (after
possibly reordering p,, . . ., p,) foralli = 1, ..., r. Thus, we recover the
following classical result.

Corollary 7.39 Let A € M, ,(F) with F a field. Then the irreducible factors
of the minimal polynomial of A are exactly the same as the irreducible factors of
the characteristic polynomial of A. [ |

The multiplicity of a given irreducible factor in m, (X) could well be different
from the multiplicity of the corresponding factor in C, (X). For example, if A =
I,EM,  (F),thenm,(X) =X — land C,(X) = (X — 1)".

In Chapter 9 of this book, we will show the maximal prime ideals belonging
to N, are exactly the same as the maximal prime ideals belonging to (C,(X)).
Example 7.30 shows that, in general, N, # (C,(X)). Nevertheless, these two
ideals are closely related. They have the same radical, the same minimal primes,
and the same maximal primes belonging to each other.

EXERCISES

1. Give examples where the inequalities in 7.1 can be strict.
2. In some textbooks, the zero polynomial is given a degree in the following
way. Set 4(0) = —o, where —= is a symbol satisfying the usual condi-
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Chapter 7

tions: —o < n for all integers n, (—®) + (—®) = —©, and —© + n =
—o for all integers n. With this definition for 4(0), prove the following
analog of 7.1:

(@) a(f) <Oifandonly if fE T.

(b) 8(f) = 0if and only if f € T*.

(©) (f + g) = max{3(/),d(g)} for any f,¢ € T(X].

(d) 3(fg) = () + 3(g) for any f,g € T[X].

. Suppose R is an integral domain. Show U(R[X]) = U(R).
. Give an example which shows Exercise 3 is not true for arbitrary commu-

tative rings.

. Show f(X) € Z(R[X]) if and only if ¢cf(X) = O for some nonzero ¢ € R.
. Suppose R is an integral domain and f(X) € R[X]*. If 3(f) = n, showf(X)

can have at most n roots in R.

. Exercise 6 is not true in general. Show X — X has six roots in Z/6Z

Let H be the quaternions (Exercise 11, Chapter 3). Show X2 + 1 has
infinitely many roots in H.
Give proofs of Theorems 7.2b and 7.8b.

. Prove the following variation of Theorem 7.2: Let f(X),g(X) € T[X].

Assume g(X) # 0, 3(g) = m, and b, is the leading coefficient of g. Then
there exist an integer k = 0 and polynomials ¢(X) and (X) in T{X] such
that bEf(X) = q(X)g(X) + r(X). Furthermore, r(X) = 0, or 3(r) < m.
Suppose R is a commutative ring. In Definition 7.3, is the remainder unique
if the leading coefficient of g(X) is not a unit in R?

LetA € M, ,,(R). Suppose

CA(X) = X" + a,X"_l + .-+ a,,_,X + a,,

Show a; is (—1)° times the sum of the i-rowed principal (= diagonal)
minors of A.

Suppose M is an R-module, and let T € Homg(M,M). Show M is an
R[X]-module via f(X)m = f(T)(m).

Let f(X) be a monic polynomial in F[X]. Here F is a field. Show the
minimal polynomial of Com(f) is f(X).

Let A € M, ,(R). Let X and Y be indeterminates over R. Show X — Y|
C,(X) — C,(Y)inRI[X,Y].

Give a careful proof of Lemma 7.18.

Suppose f(X) is a monic polynomial in R[X]. Show f(X)l, is a regular
element in M,,, ,(R[X]) by using the map .

Let R[{X]] denote the ring of formal power series in X over R. Show
My n(RUIXTD) = (M, o (R IX]].

Compute the null ideals of the following matrices:

3
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b)A = [g g] € M, (Z/127)

20. Prove the following theorems of N. McCoy:
LetA €M,,,(R). Let h(X) € R[X]. Show h(A) € GI(n,R) if and only
if (h) + N, = R[X].

21. LetA € M, ,(R). Let C,(X) denote the formal derivative of the charac-
teristic polynomial C,(X) of A. Show (C,(X)) + N, = R[X] implies
R(A] are the only matrices in M,,,,,(R) which commute with A.
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Resultants

In this chapter, we will define resultants and discuss some of their elementary
properties. As we will see in the next chapter, resuitants can be used to describe
a very nice result about zero divisors in M, ,(R).

Before proceeding with the main topic in this chapter, we will review some
well-known definitions about polynomial rings. Let R be a commutative ring,
and suppose X, . . . , X,, are indeterminates over R. Consider the polynomial
ringR{X,, ...,X,] (see [5, Chapter2]). Let N, = {0,1,2,3, ... }. A monic
monomial in the variables X;, . . . , X,, is any polynomial in R{X,, . . . , X, ] of
the form X3(VX3® . . . X2 Here a(1), . . ., a(n) € N,. We have mentioned
in Example 1.11b that the set of all monic monomials in R[X;, . . . , X,]isa
free R-module basis of R[X,, . . . , X,]. Thus,

= {x3x3@...x2"| (a(l), ..., a(n)) € N5}

is a free R-module basis of R[X;, . . ., X,]. Notice 1 = X¢x9---x% x, =
xIx3---x% ...,x, =X0- - X3_,X} are all elements in I'. We will refer
to I as the canonical basis of R[X, . . . , X,.].

Since I' is a free R-module basis of R[X, . . . , X,,], we have the following
property: If f(X,, . . . , X,) is any nonzero polynomial in R[X,, . . ., X,},
there exist distinct monomials M,, . . . , M, € I and nonzero elements r, . . .,
r, € R such that f = riM, + - - - + r,M,. Furthermore, such a representation

78
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is unique. If f = y,P; + - - - + y P with P, . . ., P (distinct) € I" and
Yi» - - - »¥s ER’, then t = s and (after a suitable permutation of the P,) M, =
Py,....M=Padr,=y,...,r,=1y.

There is another representation of the elements in R[X,, . . . , X,,] in terms
of the free basis I', which is often used when studying polynomials. Suppose
f(Xy, ..., X,) ER{X,, ..., X,]. Wecan think of f(X,, . . ., X,) as a formal
power series in Xy, . . . , X, with at most finitely many coefficients nonzero.
Thus, we can write f in the following form:

8.1 f(X;,...,X,)=2 Catlya(2). - - a(,.,X‘l’“)X‘z‘a)' N

In equation 8.1, the sum is taken over all possible n-tuples (a(1), ..., a(n))
€ NQg. The coefficients c,(;yq(2). . .a(ny ar€ all elements of R, and we assume
Co(l)a(2). - -a(n) = 0 except possibly for finitely many indices (a(1), ..., a(n))
€ Nj. Thus, equation 8.1 is just different notation for the idea that f is a finite
linear combination of monomials from I'. The representation given in equation
8.1 is also unique. If

(Dya(2) | |  ya(n)

> da(Dya(2). . a(nyi1 X2 ) ¢
— (Dya(2), ., .ya(n)
=2 Ca(l)a(2). - .q(,.)xtlx X3 D

thend, 1y,2). . .atn) = Ca(la(2). . .a(m fOr all (a(1),a(2),...,a(n)) ENG.
We will use either notation, f = rM; + - - - + rM,(M,,... , M,€I)or
that in equation 8.1, whenever it is convenient to do so.

We can now introduce the usual definitions for degree and homogeneous
polynomials.

Definition 8.2 Letf(X,,...,X,) €R[X,,...,X,]". Write f as in equation
8.1.
(a) The degree of f, written 3(f), is the following integer:

a(f) = max{a(l) + -+ - + a(n)| Ca(lac2) - amy * O}
(b) fis a homogeneous polynomial of degree d if

a(l) + - -+ + a(n) = d whenever ¢, ;)3 y # 0.

- a(n
Notice that any monomial X§(VX3?)- . .X2(" & I has degree a(1) + a(2) +

- + a(n). In particular, each monic monomial X3(1x3?). . .x2(" j5 a
homogeneous polynomial of degree (1) + - - - + a(n). We can extend the
definition of degree to the zero polynomial by setting d(0) = —o with the usual
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provisos given in Exercise 2 of Chapter 7. We then have the analog of 7.1 in
RIX,, ..., X1

8.3 Foralf, g €R[X,,...,X,)
(@) () = 0if and only if f €E R.
(b) 3(f) = 0 if and only if f € R".
©) a(f + g) < max{a()), 9(g)}.
d) a(fg) = a(f) + a(g).

Consider the following examples.

Example 8.4 InR[X,, ..., X,], assume n = 2.
(a) Any element in R" is a homogeneous polynomial of degree 0,
() X,, . . ., X, are homogeneous polynomials of degree 1.
(c) X33 + X3 + XiX, is a homogeneous polynomial of degree 4.
(d) 1 + X; + X,X, + X3 is a polynomial of degree 3 but is not homogeneous.
|

A polynomial f(X,, . . ., X,) €E R[X,, . . ., X, ] is homogeneous of degree
diff=rM, + r;M, + - - + r,M,withr,,...,r,ER andM,, ..., M,
monic monomials from I all of degree d. We will soon encounter polynomials
for which the representation f = r,M, + - - - + rM, is not readily apparent.
Hence, we present a simple criterion for testing whether a given polynomial is
homogeneous or not.

Lemma8.5 LetX,,...,X,andY beindeterminates overR. Letf(X,,...,X,)
be a nonzero polynomial in R[X], . . . , X,,]. Then f is homogeneous of degree
dif and only if f(YX,, . .., YX,) = Y¥(X,,...,X,)inR[X,, ..., X,, Y]

Proof. Suppose f is homogeneous of degree d. Then f = rM, + - - - + M,
forsomer,, ..., r, € R" and some M,, . . . , M, all of degree dinT". If M =
xp(Ox3®. . .x2™ with a(1) + - - -+ + a(n) = d, then

M(YX,, . .., YX,) = (YX)*(rx;)* . . (rx,)*™
= yig. . .xetn = Y"M(X,, LX)

It easily follows from this that f(YX,, . . . , YX,) = Y¥(X,, ..., X,).
Conversely, suppose f(YX,, . .., YX,) = Yf(X,,...,X,)inR[X,, ...,

X,, Y). Suppose we write f as in equation 8.1. By grouping together the mono-

mials which have the same degree, we can write f = f; + f; + - - - + f,, where
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each f; here is either zero or a homogeneous polynomial of degree i. We can
assume f,, + 0 and m = 4(f). Then

YHXy, . . X)) = fOXXy, . . . YX) = D fi(YX,, . . ., YX,)
j=0

= 2 ij;(le- .. ’Xn)

j=0

Since Y is algebraically independent over R[X|, . . . , X,,], we conclude m = d,
andf; = Oforallj =0, ...,d— 1. Thus, f = f,, a homogeneous polynomial
of degree d. |

Suppose § is acommutative R-algebra. Letf(X,, ..., X,) ER[X,,...,X,].
Ifs,...,s, €S, then we can form f(s;, . . ., 5,) € S. If fis given as in
equation 8.1, then (s, . . . , $,) = 2 Co(1jac2y. - a(nyT S50 - -s3 . The
element f(sy, . . . , s,) is called a specialization of f(X,, . . ., X,) in §. Thus,
a specialization of f(X;, . . . , X,,) in § is just the ring element (in §) obtained
by replacing X,, . . . , X, with s, . .., 5,. If we keep s, . . . , s, fixed, then
the map f(X,, . . ., X,,) = f(s;, . . ., §,) is easily seen to be an R-algebra
bomomorphism from R[X,, . . . , X, ] to S. Let us denote this specialization map
by U(sys - - -, 8,). Thus, ¥(s,, . . ., s,) :R[X,, ..., X,] = Sisthe R-algebra
homomorphism given by

WSy - - -5 )Xy, - o X)) = f(S -« -4 8,).

The image of P(s;, . . . , 5,) is clearly the R-subalgebra of S generated by
{s1, . . ., s,}. We will denote this R-subaigebra by R(s,, . . . , s,]. Thus,
Im(¥(sy, .. .,5)) =R[s),...,s5]CS.

Any commutative ring R is automatically a (commutative) Z-algebra. Hence,
the above remarks about specializations apply in this case. Ifr,, . . . ,r, €ER,
then $(ry, . . ., 1,) : Z[X,, . . ., X,] — R is a well-defined Z-algebra
homomorphism whose image is the subring of R generated by ry, . . . , r,. We
will need the following result, which is called the Specialization Lemma.

Lemma 8.6 (Specialization Lemma) Letf(X,, ..., X,), g(X;, ...,X,)
€ Z[X,, . . . , X,). Suppose f(j;, . . . , J,) = 8Uys - - - » J,) for all positive

integers j,, . . . , j,. Then for any commutative ring Rand any r,, . . . , r, €
R, f(ry,...,r,) =g8(r,...,r,).
Proof. Set

FXy, ..., X)) =fXy, ... X)) — g(Xp, ..., X,).
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Then F(j,, . - - , j,) = O for all positive integers j,, . . . , j,. We will show
F(X;, ..., X,) = 0. Then for any commutative ring R and any choice of
elements ry, . . ., r, ER,

(ry, ... 1 )(F) = W(ry, . .., r,)(0) = 0.

In particular, f(ry, . . ., r,) = g(ry, ..., 1,

We proceed by induction on n. Suppose n = 1. Then F(X,) € Z[X,] has
infinitely many roots in Z. By Exercise 6 of Chapter 7, F(X,;) = 0.

Suppose n > 1. If 9(F) = 0, then F = O since F has infinitely many roots
in Z. Suppose d(F) = 1. Then the expansion of F in 8.1 contains at least one
nonzero monomial of degree at least one. We can suppose with no loss of
generality that X, appears in this monomial with a positive power. We can then
write F as a polynomial in X,, with coefficients in Z[X;, . . . , X,_,].

87 F(X;,...,X,) = ic;,.(xl,. Xl X
i=0

In equation 8.7, G,(X,, ..., X,_,) EZ[X,, ..., X,_,1foralli =0,...,p
and Gp(X,, .. .,X,_1) # 0. Thus, p is the degree of F when viewed as a
polynomial in X, with coefficients in Z[X,, . . . , X,_,]. Since F(j, . . . , j,)
= O for all positive integers j,, . . . , j,, every G;(j;, . . . , ju—y1) = 0 for all
positive integers j,, . . . , j,_,- For if there is some i € {0, . . ., p} and some
choice of positive integers ji, . . . , j,—; for which G;(j;, . . . ,j,—;) # 0, then

FUp - o s sdp=1X,) = i GiGys - - - ’jn—l)Xit

i=0
is a nonzero polynomial in Z[X,] with infinitely many roots in Z. We have seen
that this is impossible. Thus, foreachi = 0, ... ,p, G, ... ,J,-1) =0

for all positive integers j,, . . . , j,—;. Our induction hypothesis then implies
Gi(Xy,...,X,_y) =0foralli =0,...,p. Inparticular, G,(X,,...,X,_)
= 0. This is impossible. We conclude 8(F) = 0. Therefore, F = 0. |

The Specialization Lemma has many applications in commutative ring theory.
An often used refinement of Lemma 8.6 is the following statement: Let
F(X,,...,X,) € Z(X,, ..., X,). Then F(ry, ..., r,) = 0 for all
commutative rings R and all r;, . . . ,r, ER ifand only if F(ji, . . ., j,) =
0 for all (jy, - - . ,J,) € A". Here A is any infinite subset of Nj. We leave the
proof of this remark to the exercises at the end of this chapter.

We can now introduce Sylvester’s matrix and the theory of resultants.

Definition 8.8 Letu,, ...,u,and vy, ..., v, bem + n + 2 indeterminates
over Z. We will always assume m + n = 1. The following (m + n) X (m + n)
matrix in M, oy x (m+n)(ZLUgs - - - > Uy, Vo, - . ., V,]) is called Sylvester’s
matrix
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12 -+~ n+1 - n+m_
uo Uy v c - u, 0 0 1
0 Uo -t U,y U, 0 2
0 0 N . 1 Y 5 U u, m
Vo Vit ot - Vg 0 - - -0 m+ 1
0 Vo Vi -« « Vot Vp - ° 0 m+ 2
£ Vo Vi e Vm_ m+n
Wewilllet F(ug, . . ., 4,, Vg, - - . , v,,) denote Sylvester’s matrix pictured above.
The numbers above P (ug, . . . , u,, vy, . . . , v,,) indicate column numbers and the

numbers on the right indicate row numbers. The picture given in Definition 8.8

is meant to symbolize the following construction of P (ug, . . . , Uy, Vgs - -+ » V)
= & In the first row of ¥ is the sequence of variables uy, . . . , u,,. In the second
row of &, is the same sequence ug, . . . , ,, only shifted one to the right. This

pattern is repeated with m — 1 shifts (all blank spaces filled with zeros) to form
the first m rows of &:

Uy U u, 0 --- 0 1
0 wuwy wy - up_y u, 0 --- 0 2
. (m X (m + n) matrix)
0 0 PO uo “l N u" m
The m + 1 row of ¥ begins with v, . . . , v,, and then zeros. In each successive

row this sequence is shifted one to the right as in the first pattern. This shift is
done n — 1 times. The last n rows of & look like

Vo i * - Vm 0--'0W m + 1
0 vg Vi* " “Vpyey Vy 0 m+ 2

(n X (m + n) matrix)

0 ---0 Vo Vi ot Vve| m+n




84 Chapter 8
An exact formula for the i,jth entry of ¥ is given as follows:

U;_; fori=1,...,m
8.9 (Y, . . .. upve - - "Vm)]li={v:,,:j_, fori=m+1,...,m+n

In equation 8.9, u, = 0if k < 0 or k > n. Similarly, v, = 0ifk <Oork >
m.
Notice that the diagonal entries of the (square) matrix (ug, . . . , u,,
Vo - - - sV are [Pl = ugfori=1,... ,mand [L]; = v, fori = m +
IL,...,m+n

The special casesn = 0, m = 1, and n = 1, m = 0 are also of some interest
here. If n = Oand m = 1, then F(uy, vg, . . . , v,,) is the m X m diagonal matrix
Diag(ug, . . . , Uy). f n=1and m = 0, then P(uy, . . . , u,, vy) is the n X
n diagonal matrix Diag(vg, . . . , vg). ;

Let us consider some examples.

Example 8.10
@ F(ug, vo, v1)

(“0), and EP(MOt u, vO) = (v0)~

Vo V1

(b) Flug,uy,ve,v1) = [uo ul]

u u u 0
Ug Uy Uy

Vo Vi V2 0

0 Vo i V2

(C) 9(“0,1‘1,“2,"0»"1,"2) =

- -
g u u; 0 0
0 w u u O

(d) 9(“0“1,“2,"0,"1,"2"’3) = 0 0 U U u

Vo Vi v v3 O
0 vg vi vy 3

L J |
Definition 8.11 The determinant det(F(ug, . . . , u,, Vg, - . . » V) Of
Sylvester’s matrix is called Sylvester’s determinant.
We will let S(ug, . . ., u,, v, . - - , Vy) denote Sylvester’s determinant. Thus,
S(Ugy - < - s Upy Vs - -+ 5 V) = det(FP(ug, - . ., Uy, Vgs - - . » V). Clearly,
S(Ugy, - « « s Ups Vgy « -+ s V) € Zlug, . . ., Uy, Vg, - - . » V). In fact,
S(ugs - - - 5 Up, Vgs « « ., V) is always a nonzero polynomial in uy, . . . , u,,

Vos « - + » V. To see this, expand det (&) using Definition 2.16. The diagonal
of & contributes the term uf'Vv;, to the sum for S(ug, . . . , Uy, Vg, - - - 5 V) It
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is easy to see this is the only monomial in the expansion of det(¥) in which uf
and V2 both occur. In particular, no other terms in the expansion of det(¥)
cancel with ud'vy,. Therefore, S(ug, . . . , Uy, Vg, -+ ., V) * 0.

Specializations of Sylvester’s determinant are called resultants. Let R be an
arbitrary commutative ring.

Definition 8.12 Let
fX)=aX"+aX""'+--- +a,_ X+ a,
and
g(X) = bX" + bX"" '+ ---+b,_ X +b,

be two polynomials in R[X]. We assumed a,, b, # 0, and m + n = 1. The
resultant of fand g, written R (f, g), is the following specialization of Sylvester’s
determinant: R(f, g) = S(ay, . . ., a,, by, . . ., b,).

Thus, if (ay, . . ., a,, by, - . . , b,) denotes the (m + n) X (m + n) matrix
inM 4 n)x (m+n)(R) obtained from f(ug, . . ., U,y vo, - . . , v,,) by replacing
Ugy .- . Uy, Withay, ... ,a,and vy, ..., v, with by, . . ., b, respectively,
then R(f, g) = det(F(ay, . . . , a,, by, - . ., by)). Clearly, R(f, g) € R.
Notice that in this text the resultant of f and g is not defined if either f or g is zero
or if f and g are both constants in R. Consider the following example.

Example 8.13 Let R = Z. Suppose f(X) = 2X* — 5X2 + X + 2 and g(X)
=X2—-3X+2.Thenn=3andm = 2.

2 -5 1 20
0 2 -5 12
R(f.g) = §2,-5,1,2,1,-32) =det|1 -3 2 0 0|=0
0 1 -3 20
0 0 1 -3 2 1
| .

The most important application of resultants is the following theorem.

Theorem 8.14 Suppose f(X) is a monic polynomial of positive degree in R[X].
Let g(X) € R[X]". Then g € Z(R[XV (f)) if and only if R(f, g) € Z(R).

The reader will recall from Chapter 6 that g is a zero divisor in R[X)/(f) if and
only if the principal ideal (g) belongs to (f). Thus, Theorem 8.14 implies (g)
belongs to (f) if and only if R(f, g) is a zero divisor in R.

Proof of 8.14. Suppose g(X) is a zero divisor of R[X1/(f). Then there exists
a polynomial A(X) € R[X] — (f) such that h(X)g(X) € (f(X)).Letn = 3(f)
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andm = 3(g). Thenn = 1 and m = 0. By Theorem 7.2, h(X) = ¢q(X)f(X)
+ r(X) with g(X), r(X) ER[X]and r = Oord(r) < n. Since h € (f), r +
0. Since h(X)g(X) € (f), there exists a polynomial k(X) € R[X] such that

8.15 g(X)r(X) = k(X)(X).

Suppose k(X) is not zero. Since f(X) is monic, equation 8.15 implies
n+dk)=3kN) =3(rg) <o)+ <n+m

Thus, d(k) = m — 1. Therefore, k(X) is either zero or a polynomial of degree
at most m — 1. In particular, we can write the four polynomials £, g, r, and k in
the following form:

816 fX) =X"+aX" '+ - - +a,_ X +a,
gX)=b X"+ bX" "'+ - +b,_ X +b,
rX) =coX" '+ X"+ -+ X + Cpoy
EX) = —(doX™ ' +d X"+ -+ +d, X +d,_)

In equation 8.16, the coefficients a;, b, c;, and d; are elements of R. The element
b, is not zero since d(g) = m. The polynomial r(X) is not zero, and (r) < n
— 1. Thus, some c; is not zero (¢, = 0 if and only if d(r) < n — 1). The
polynomial k(X) may or may not be zero. Thus, we allow the possibility that
every d; is zero in 8.16. Notice the negative sign in the expression for k(X).
Substituting these expressions in equation 8.15, we get the following equation.

817 (boX™ + -+ - + b ) (coX" '+ -+ +c,_))
+ @X" '+ -+ d,_)X"+---4+a)=0

We can collect coefficients of like powers of X in equation 8.17. Thus, equation
8.17 implies the following equations must all be zero.

8.18 b0C0+d0=0 (m+'l—l)
bec, + bycg + aydy + dy =0 (m+n—2)

boCz + blcl + bZCO + azdo + aldl + dz = O (m +n— 3)

bm—lcn—l + bmcn—z + andm—z + an-ldm—l =0 (1)
bmcn—l + andm—l = 0 (0)

The terms on the right in parentheses in equation 8.18 are the powers of X
corresponding to the equation of coefficients, which must be zero. We can view
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the equations listed in 8.18 as m + n linear equations in the unknowns cy, . . . ,
Cn_15 dos - - - » dp—. In matrix form, these questions can be written as the
following homogeneous system of equations.

819 (dy, - . .,d,_1, €0 - - - s Cry)
$1,ay,...,a,by,...,b,) =0

In equation 8.19, & (1,ay, . . . , a,, by, . . . , b,,) is Sylvester’s matrix with
ug, - - -, u, replaced with 1, a;, . . . , @, and v, . . . , v, replaced by
by, - - - 5 b, Note that F(ug, . . . , u,, vy, - . . , v,,) is well defined since n +
m = d(f) + 3(g) = 1. Taking transposes, we have
820 ¥(1,ay,...,a,by,...,b)E=0
In equation 8.20,

E=(dy,...,dp_15€¢05---,C_) ER™H"

Since some c; here is not zero, § is a nontrivial solution to the homogeneous
system of equations in 8.20. It follows from Theorem 5.3 and Corollary 4.11d

that det(¥(1, a, . . . , @y, by, - - - » by)*) € Z(R). But
det(¥$(1,ay,...,a, by, ...,b,))
=det(P(l,ay,...,a, by -..,b,)) =R\, 8)

Therefore, R(f, g) € Z(R).
The steps in this argument are easily reversed. If R(f, g) € Z(R), then
equation 8.20 has a nontrivial solution £ € R™*". In particular, the equations in

8.18 have a nontrivial solution (dy, . . . , d,,_ys Cg» - - - » C,—1). Thus,
g(X)r(X) = k(X)f(X) with r(X) and k(X) defined as in equation 8.16. If ¢, =
¢, =" =c,-y = 0,then r(X) = 0. Then k(X)f(X) = 0. Since f(X) is a
monic polynomial, we conclude k(X) = 0. But then (d,, . . . ,d,_;, ¢o, - - -,
¢,—1) = (0, ...,0), which is not the case. Hence, some c; must be nonzero.
Thus, r(X) # 0. Since d(r) = n — 1, r(X) € (f). Therefore, g(X) €
Z(RIXV (M) |

Theorem 8.14 has a particularly nice statement when R is a field.

Corollary 8.21 Suppose F is a field. Let f, g be two polynomials in F[X] of
positive degree. Then f and g have a common irreducible factor in F[X] if and
only if R(f, g) = 0.

Proof Since F is a field, both f and g are associates of monic polynomials.
Hence, with no loss of generality, we can assume both f and g are monic
polynomials. Also, Z(F) = (0), since F is a domain.
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Suppose f(X) and g(X) have a common irreducible factor A(X) in F[X].
Then a(f), d(g) = d(h) = 1. Suppose f(X) = h(X)f,(X) and g(X) =
h(X)g,(X). Since a(h) = 1, 3(f;) < 3(f). Therefore, f,(X) & (f). We have

H(X)g(X) = fi(Xr(X)g(X) = g, (X)(X) € (f)

Therefore, g(X) € Z(F[XV(f)). Theorem 8.14 then implies R(f, g) = 0.
Conversely, suppose R(f,g) = 0. Theorem 8.14 implies g(X) €
Z(FIXY(f)). Thus, g(X)r(X) = k(X)(X) for some polynomials r(X), k(X)
€ F[X], and r(X) € (f). Now F[X] is a unique factorization domain. If f and
g have no common irreducible factor, then gr = kf implies f | r. Thus, r(X) €
(f). This is impossible. We conclude that f and g must have a common irre-
ducible factor. |

There is a slight variant of Corollary 8.21 which we will need in the last part
of this chapter.

Corollary 8.22 Suppose R is a unique factorization domain. Let f(X) and
g(X) be two polynomials in R[X] of positive degree. Then f and g have a
common irreducible factor of positive degree if and only if R(f, g) = 0.

We leave the proof of this corollary as an exercise at the end of this chapter.
There is another version of Corollary 8.21 which is used often in algebra.

Corollary 8.23 Let F be a field, and suppose F is an algebraic closure of F. Let
f(X) and g(X) be two polynomials in F[X) of positive degree. Then f and g have
a common root in F if and only if R(f, g) = 0.

Proof. The two polynomials f(X) and g(X) have a common root a € F if and
only if X — a is a common factor of f(X) and g(X) in F[X]. Since F is
algebraically closed, the only irreducible polynomials in F[X] are linear poly-
nomials. Hence, f and g have a common root in F if and only if f(X) and g(X)
have a common irreducible factor in F[X]. By Corollary 8.21, f(X) and g(X)
have a common irreducible factor in F[X] if and only if R(f, g) = 0. |

Let us return to Example 8.13.

Example 8.24 Letf(X) = 2X% — 5X2 + X + 2and g(X) = X2 - 3X +
2 in Q[X]. We saw in Example 8.13 that R(f, g) = 0. Therefore f(X) and
g(X) have a common root in @. It is easy to see that 1 and 2 are both roots of
fand g. |

In the rest of this chapter, we will explore various properties of Sylvester’s
determinant. We have already noted that S(uy, - . - , 4y, Vg, - - - , V) is @ nonZero
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polynomial in Z{ug, . . . , Uy, Vo, - - -, V] NOtice S(ug, . . . , Uy, Vg, - - - 5 V)
is a polynomial in two sets of variables uy, . . . , u,and vy, . . ., v,,. IfM =
cud® . - . 2RO . . . Bm is a nonzero monomial in

Zlug, - . - s Uy Vo o+« 5 Vil
(c €EZ, and (a(0), ..., a(n), B(0),...,B(m))E N0m+n+2)
then clearly (M) = X l=o a(i) + Z,'-":o B (j). Each nonzero monomial M also
has a weight which is defined as follows:

Definition 8.25 LetM = cug@- - -42(MB©®. . .1B(m be a nonzero monomial
inZ[ug, . ..,u, Vg - - - » V] The weight of M is the integer >,/ iat(i) +
270 JBU).
We will let w(M) denote the weight of M. For example,

w@g) = 0(2) + 1(3) = 3
and

o(iBvivii) = 0(2) + 1(3) + 2(2) + 0(5) + 1(2) + 3(2) = 15

Any nonzero f € Z[uy, . . . , u,, vy, . . . , v,,] can be written uniquely in the
formrM, + -+ + r,M,wherer,,...,r,€Z and M, . . . , M, are distinct
monic monomials in ugy, . . ., Uy, Vo, - . . Ve
Definition 8.26 Let f = rM, + - - - + rM, be a nonzero polynomial as

above. f is isobaric of weight p if o(M,) = pforalli = 1,...,¢

Thus, if each monomial appearing in f has the same weight p, then f is called an
isobaric polynomial of weight p. Consider the following examples.

Example 8.27 Let f(uy, u,, vo, v;) = ugvi + 2uguvev, — 3vi. Then fis a
homogeneous polynomial of degree 4. The weight of each monomial in f is as
follows: w(u3?) = 2, w(2ugu,vov,) = 2, and w( —3v}) = 4. In particular, f
is not isobaric.

Consider

up 4y u; 0
0 w w uw
Vo Vi V2 0
0 v vi »

S(ug,uy,p,vp,vy,v2) = det

2
Ul — ugyvivy + uglpvi — ugavov,
ufvgvy — ugliavovy — Wigvyy + UV

+
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Obviously S (ug,uy,4,,v9,vy,V,) is a homogeneous polynomial of degree 4 and
isobaric of weight 4. |

The second example of Example 8.27 is an illustration of the following
general result.

Theorem 8.28 S(uy, . . ., u,, vy, . . . , v,,) is homogeneous of degree m +
n and isobaric of weight mn.
Proof. Let Y be an indeterminate over Z[u, . . . , U,, Vg, - - - , V,,]. Then
S(Yug, ..., Y, Yvg, ..., Yv,)) = det(YP(ug, . . ., Uy Vg« -5 Vp))
=YY" det(P(Ug, - - - > Ups Vs + « + 5 Vi)

= Y S (lgy o oy Upy Vg e e ey Vi)

Thus, Lemma 8.5 implies S(ug, . . . , #,, Vo, . . . , V,,) is a homogeneous
polynomial of degree m + n.

Let = P(ug, - - sty Vs - - - s V) and S = S(ug, . . ., Uy, Vgs - - - 5 V).
To show S is isobaric of weight mn, we need to examine each monomial ap-
pearing in S. From Definition 2.16, we see a typical monomial in § = det(¥)
has the following form:

m+n

8.29 = H [Sf’],‘a(,') for some 0 € §,,, ,
i=1

Using equation 8.9, the product appearing in 8.29 can be written as follows:
m+n m m+n

8.30 + l-[l [9’],0(0 = i(r[l u,,(,)_,-) ( H . v,,,.,,a(i)_i)
i= i= i=m+

If the monomial in equation 8.30 is nonzero, then its weight is

m m+n

D) =D+ X (m+ ol =)
i=1 i=m+1
m+n m+n m+n m+n
=20(i)— 2i+ E m = Z m = mn
i=1 i=1 i=m+1 i=m+1
Thus, S(ug, . . ., u,, vy, . . . , V,,) is isobaric of weight mn. |

We now focus our attention on resultants. Our first observation is R(f, g) €
(f, 8); that is, the resultant of two polynomials f and g always lies in the ideal
generated by f and g.
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Theorem 8.31 Let
fX)=aX" +aX"" '+ ---a,_X+a,
and
gX)=bX" +bX"" '+ -+ b, X+b,

be two polynomials in R[X]. We assume ay, by # 0and m + n = 1. Then there
exist a(X) and b(X) in R[X] such that

i) da@)=m-—-landd(b)=n — 1and

(i) RS, &) = a(X)(X) + b(X)g(X).

Proof. Let¥(ay, ..., a, by, ...,b,) denote the (m + n) X (m + n)

matrix formed by replacing u,, . . . , u, withag, . . . , a,and v, . . . , v,, with
by, - - - » b, respectively. Then R(f, g) = det(F(ay, . . ., a,, by, - - - , by)).
A simple computation shows
[ [ ]
Xn+m—1 X" l_ﬂX)
xntm—2 X" 2X)
X" _ AX)
832 Hag, . - ., anby, - . . by | xn = X" lg(x)
X Xg(X)
1 8(X)
- — L —

Letc; = cof; 1 n(F(ag, . . .8, b, ..., b)) fori=1,...,m+ n. Thus,
Cis - - - » Cpy 4 are the cofactors of the last column of ¥ (ay, . . . , a,, by, . . - , b,,).
From Laplace’s expansion, we have

m+n

833 O alPo, - - -y awbo, - « -\ b limen = RUE)

i=1

and

m+n

> clSao, - - - awbo, - - ., by =0

i=1

whenj # m + n.
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Set ¥ = F(ay, . - .,ay, by, - - ., b,). Multiplying row i of equation 8.32
with ¢; and adding the results produce the following equations:

834 cX"TIAX) + X"THO) + ¢ ¢ - + cuf(X) + e X" 180

+ Cra X" X)) + ¢ ¢ -+ Cpen8X)
m+n m+n
= > ¥, X"+ + S alLlxmtr o4
j=1 i=1
m+n ) m+n m+n .
+ D sl PVmeng X" = D il FLXmn
Jj=1 i=1 j=1
m+n /fm+n ) .
= E(E c.-w].-,)x'"”‘l = R(f.g) (by 8.33)
j=1 \i=1
Thus,
a(X)f(X) + b(X)g(X) = A, g)
where
aX) =c X" '+ X"+ - + ¢,
and

BX) = Cps X"  + CpeX" 24 -+ e
Clearly, 0(a) =m — 1and d(b) = n — 1. This completes the proof of Theorem

8.31. |
Some of the most important applications of resultants occur in polynomial
rings R[X, . . ., X, ] in more than one variable. Let f(X;, . . . , X,,) be a nonzero
polynomial in R[X,, . . ., X,]. We can view f(X,, . . . , X,) as a polynomial
in X, with coefficients in the ring R[X,, . . . , X,_,]. Thus,
fXy oo X)) = apXy, .. X )XE 4 o (X, .., X XE!
+ -+ ad__l(X,, P 'XP—'I)XP
+ ad(Xl, N ’Xp—l)
Here
ao(Xl, . e 9Xp—l)’ “ e ey ad(Xl, . e ’Xp-—l)

ERIX;, ..., X, 11,  @Xy, ..., X, 1) #0

and d is the degree of f as a polynomial in X,,. The integer d is called the degree
of f with respect to X,,. We will use the notation dx ( /) to denote the degree of
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f with respect to the variable X,,. Obviously dy (f) = O if and only if f €
RI[X,, . .., X,_,]. There is of course nothing special about the variable X, in
this discussion. We can make similar remarks relative to any variable X, . . ., X,,.
In particular, dy (f) makes sense foranyi = 1,...,p.

Now suppose f(X|, . . . , X,) and g(X,, . . . , X,) are two nonzero poly-
nomials in R[X, . . ., X,]. Select a variable, say X;. If 3y (f) = n and 3y (g)
= m, then

fXy, .. X)) =aXP +a X'+ - +a,_,X;, + a,
and

gXy, ..., X)) =bX"+ bXI '+ -+ b, X, + b,
Here

Gy, . - -8y bgy .. b, ERIXy, L Xim Xis -, X))

and ay # 0 # b,. If we assume m + n = 1, then we can form the determinant
S(ag, . . .,4a,, by, . ..,b,). We will call this determinant the resultant of f and
g with respect to X;. In this book, we will let Ry (f, g) denote the resultant of
f and g with respect to X;. Thus,

Ry (f, 8) = S(ags - - -+ Gp, by -« -, by)
ERIXy, - - -, Xi_1s Xinrs - -+ 5 X,]

Consider the following simple example of two variables.

Example 8.35 Let
fX,Y) =X+ Y2 +XY+X+1 R
gX,Y)=XY + X + Y + 1 in Z[X, Y]

To compute R, (f, g), write f and g as polynomials in X with coefficients in
Z1Y].

836 f(X,Y) =X+ (1+Y)X+(1+Y>) [n=2]
gX, )= +1NX+ (1+Y) [m = 1]
Therefore,
1 1+Y 1+7Y?
8.37 glx(f,g)=det 1+Y 1 +Y 0 =(1+Y)2(1_Y+Y2)
0 1+Y 1+7Y

To compute Ry (f, g), write f and g as polynomials in Y with coefficients in
Z[X].
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838 f(X,Y) =Y’ +XY + (X>+X+1) ([n=2)
gX, V=0 +X)Y+1+X) [m=1]
Therefore,
1 X X24+Xx+1
839 Ry(fg) =det|1+X 1+X 0 =(1+X2Q+X)
0 1+X 1+X

Again suppose f and g are nonzero polynomials in R[X,, . . ., X, ]. Suppose
3x,(f) = nand 3y (g) = m withm + n = 1. Then we have

840 f =a, Xl +aXi '+ + a, X, + a,

g =bXy +bXy '+ +b, X, + b,
In equation 8.40, @y, . . . , @,, by, . . . , b,, ER[X;, ..., X, ], and a; #
0 # b,. Suppose we also assume f(X,, - . . , X,) is homogeneous of degree n
and g(X;, . . ., X,) is homogeneous of degree m. Then each polynomial
a,(X,, . . ., X,_,) appearing in equation 8.40 is either zero or a homogeneous

polynomial (inR[X;, . ..,X,_,])of degreei. Similarly, eachb;(X,, ..., X,_,)
is either zero or a homogeneous polynomial of degree j. We claim QRxp( f,8)is
either zero or a homogeneous polynomial of degree mn in R[X,, . . ., X,_,].
(See Exercise 20 for a proof using Theorem 8.28.)

To see this, set

h(Xy, . X)) = Ry (£, 8) = S(ags - - - > 8o by - - - 4 b)

Let Y be an indeterminate over R[X,, . . . , X,_,]. Since each a; (or b;) is a
homogeneous polynomial of degree i (or j), we have

8.41 AYX,,...,YX,-)
ay Ya, Y%, - Ya, 0 0 ---0
0 a Ya - Yla_, Ya, 0 ... 0
=deto o ... a Ya,. .. Ya,
by Yby . . . Y, O ... 0
0 b ... Y 'o,_, Y, . .. 0
0 o by Yb, . Y™,
- —
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Let us denote the (m + n) X (m + n) matrix whose determinant appears in
equation 8.41 by the letter C. Let L denote the (m + n) X (m + n) matrix
obtained from C by multiplying the first m rows of C with Y, Y2, . . ., Y™,
respectively, and the last n rows of C by Y, . . . , Y”, respectively. Thus, L has
the following form:

aY aY ay"t! 0 0
0 a)? a,_ ! a,y"t? 0 0
842 L= |O 0 agY™ a,yt! ay "
byY b)Y’ b, ym+! 0 0
0 bY? By Y™ b,y *? 0 0
0 0 bV b, Y™+

Using equation 8.9, we have

8.43 [L],-J-=Y’aj_‘, for i I,...,myj=1,...,m+n

[(Llpsij=Yb_;jfori=1,...,n;j=1,...,m+n

In equation 8.43, we use the same conventions as in equation 8.9: a, = 0 if k
<Oork>nandb, = 0if k <0 or k> m. Notice that ¥ is the power of Y which
appears in each [L];; as i varies from 1 tom + n.

Since multiplying a row of a determinant by a constant multiplies the deter-
minant by that constant, we have

8.44 det(L) = Y*h(YX,, ..., ¥X, )

In equation 8.44,

a=(1+2+---+mM+UA+2+---m
_m(m+1)+n(n+l)
2 2

On the other hand, we can pull ¥ out of each column of det(L) as j varies from
1 to m + n. Therefore,

8.45 det(L) = YPh(X,,...,X,_)
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HereB =142+ ---+ (m+ n) = (m+ n)(m + n + 1)/2. Equations
8.44 and 8.45 imply

846 h(YX,,...,YX, ) = VPP h(X,,...,X,_,)

Since B — a = mn, we conclude h(X,, . . ., X,_;) = Ry (f, g) is homoge-
neous of degree mn (or zero).

The argument just given works for any variable as long as equations like those
in equation 8.40 are available. Hence, we have proved the following lemma.

Lemma 8.47 Let f(X;, . . . , X,) and g(X,, . . ., X,) be homogeneous
polynomials of degrees n and m, respectively, in R[X,, . . . , X,]. Suppose for
some variable X;, we have

f=aXl +aXi™ '+ - +a,_ X, + a,

and
g=bXI'+bXI" '+ - +b,_X;+ b,
Here
G- lpbg .. by ERIXy o K Xigy - 5 X))

and gy # 0 # by. We assume m + n = 1. Then Ry (f, g) is either zero or a
homogeneous polynomial of degree mn in R(X,, . . ., X;_ 1, X;y 1, - - ., Xp].

Consider the following examples.
Example of 8.48 Letf, g € Z[X,, X,, X5, X,].

(a) If

f=2X3+XX, [n=2a=2,a =X,a =0]
and

g§=X — X [m=1,by =1,b = —X;]

then f and g are homogeneous polynomials of degrees 2 and 1, respectively,
which satisfy the hypotheses of Lemma 8.47 with respect to X,. Then

2 X, 0
Ry(fig) =det {1 —X3 0] =2X]+ XX,
0 1 —Xs

a homogeneous polynomial of degree 2 in Z[X,, X5, X,].
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®) If
f=2x% + XX, [n

2,ay = 2,a, = X,,a, = 0]
and
g=XI+ XX, [m=2,by=1,b, =0, b, = X,X,]

then f and g are homogeneous polynomials of degree 2 which satisfy the hy-
potheses of Lemma 8.47 with respect to X,. Then

2 X, O 0
_ 02 X, O  v2v2 2
P (f) = det| | o yx, o |= XX+ XXX,
0t 0 XX,
a homogeneous polynomial of degree 4 in Z[X,,X;,X,]. |

We should point out that the hypotheses in Lemma 8.47 are not always
satisfied. In general, Ry (f, g) may not have degree mn. Consider the following
simple example.

Example 8.49 Letf = X,X; and g = X,5X, in Z[X,, X,, X3, X,]. Again both
fand g are homogeneous polynomials of degree 2. However, dy (f) = 1, dx,(f)
=1, 3y,(f) = 0, and 3, (f) = 0. In particular, f cannot be written as in Lemma
8.47 for an choice of variable X, X,, X, or X,. Similarly, g cannot be written
as in Lemma 8.47 either.

Suppose we view f and g as polynomials in X,. Then Ry (f, 8) = X,3X,, a
homogeneous polynomial of degree 2 (not 4) in Z[X,, X5, X,]. The point here
is that if the hypotheses of Lemma 8.47 are not satisfied, then the degree of
Ry (f, g) need not be mn. |

We can now derive the following useful formula for resultants.

Theorem 8.50 Let R be an integral domain. Let
fX)=aX" +aX"'+ - +a,_X+a,
and
gX)=bX" +bX" '+ - +b,_X+b,

be two polynomials in R[X] such that gy # 0 # by and m,n = 1. Let
{&,...,&}and {6, ..., 8,} be the roots of f and g, respectively, in some
splitting field E of f(X)g(X) over Q(R). Then R(f, g) = af [I7~, g(&) and
R, ) = (—1)™bg 11]L1 £(8)).
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Proof. Let K = Q(R), the quotient field of R. If the theorem is true for X, it
is certainly true for R. Hence, we can assume R = K a field. Since gy # 0 +
by, f(X) = aof;(X) and g(X) = byg,(X) for monic polynomials f;, g, €
K[X]. Furthermore, the roots of f; (X) (and g, (X)) in E are exactly the same as
those of f(X) (g(X)). Suppose the theorem is true for monic polynomials in
K[X]). Then

R(f, 8 = R(@ofiX), bog1(X)) = GHGR(f1, 81) = agbs 1:11 gi(&)
= ag 1_[l bogi(§) = ag Hl 8(&)

= =

Similarly, R(f, g) = (—1)™b3 H}'L,f(oj). Hence, we can assume that f and
g are both monic polynomials (ay = 1 = by) in K[X].

Since f and g are both monic polynomials, f(X) = J]'-1(X — §;) and g(X)
= [~ (X - 6) in E[X]. :

Let xy, . . ., X5 Yi» - - - » ¥m and X be indeterminates over Q. Define the
following polynomials in Z[X, x|, . . . , X Y3 - - - » ¥ml-
n
851 F(X,xy, ..., X0 Y15 evr¥m) = | 1 X —x;)
m
GX, Xps o e s Xy Vis e v e s Ym) = HI (X - y)
j=
n m
H(xyy oo XYoo on ¥ = 11T (= yp

-
]
—
S~
]
o

Clearly, F, G, and H are homogeneous polynomials of degress n, m, and mn,
respectively, in Z{X, x), . .. s X Yis o o - s Y- StP (X3 o0 s Xy Vis o« s ¥)
= Rx(F, G).

It is easy to see that F and G satisfy the hypotheses of Lemma 8.47 with

respect to X. Hence, P(x;, . . . , X, Yy» - - - 5 ¥,m) iS either zero or a homoge-
neous polynomial of degree mn in Z[x,, . . . , X, ¥1» - - - 5 ¥m). Clearly,
P(xy, .- X Y15 - - -5 ¥m) # 0. For we can always choose a specialization

ofx;,...,x,andy,, ...,y,in Q so that the corresponding F and G have no
common roots. Then R(F, G) # 0 by Corollary 8.23. Since R(F, G) is
obviously a specialization of Ry(F, G), we conclude Ry (F, G) # 0. Thus,
P(x;, ... %Y1, - .., Y,)is a nonzero, homogeneous polynomial of degree
mnin Z[x, ..., Xp Y1« - - s Ym}:

H(xy, ... X5 Y1, - .- Ym) is also a nonzero, homogeneous polynomial of
degree mnin Z[x,, . . ., X,, ¥1, - - - » ¥m]. We claim H | P. To see this, fix i
€{1,...,n}andj€ {1, ..., m}and consider the monomial x; — y;. If we
replace x; with y; in F in equation 8.51, then F and G have a common factor
X — ;. Therefore, Corollary 8.22 implies

P(xy, oo o s X 15 Yp Xiety o o s XY - - - 5 Ym) = 0.
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We can think of P(x;, . - - » X35 Y15 « - - » ¥m) as a polynomial in
(Z[xla « . ey xl—l’ -xi+]7 LY xni )’1, LRI ) ym])[xi]‘

Then P(Xy, - - - s Xi—1s Yjp Xi 15 - = - s Xs¥1s - - - » V) = O means x; — y; divides
P(Xy, - - 5%y, Y15 v+« » Yp) in

VA T NPT AV S T A | B A
=Z[x, ... XY15 - - - >¥m] (Corollary 7.11)
Since i and j are arbitrary, we conclude x; — y; | P(Xy, . - . X0, Y15 -+ 3 V)
foralli=1,...,nandj =1, ..., m. Since these monomials x; — y; (1

=i =n, 1 = j=m) are all nonassociate, irreducible polynomials, it follows that
H|PinZ[x,,...,X, Y ..., Yn,] asclaimed.

We have already noted that H and P are nonzero, homogeneous polynomials
of degree mn in Z[x,, . . . , X5, ¥1, - - - » Y] Since H | P, we must have
P(Xyy e e s Xy Vs oo+ s ¥m) = cH(xyy - - ., X5 Y15« - - » Y) fOT some non-
zero integer ¢. The reader will notice that ¢ is derived from the definitions
in equation 8.51. In particular, the value of ¢ does not depend on f(X) or
g(X). In fact, the nonzero integer c is defined by the following equation in
Zx), ... s Xy Y15+ o - s Y]

8.52 Q?.X(F(X,xl, e e s Xps ¥Vl oo s ,ym), G(X,Xl, ST Y ym))

n

=c Il [T =y
i=1j=1

We now specialize equation 8.52 by replacing x;, . . ., x, with §;, . . . , §,
andy,,...,y, with0,,...,0,, respectively. The polynomial F(X, x,, . . . , x,,,
Vi, - - - » ¥,) specializes to [I7-), (X — &) = f(X). G(X, x1, . . ., X,
¥1is - - - » ¥m) Specializes to H}'L; (X — 8;) = g(X). Hence, the equation in 8.52
becomes

IMI&-9)

1j=1

8.53 R(fg) = ¢

In particular,

R(f,8) = cgky) + - - g&) = ¢ il;ll g(&)
We also get

j=1i=

Rfg) = cll H1 -8 =c ﬁ1 (~1)'f©)
!

= (1 ﬁf(ej)
I
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Thus, the proof of the theorem will be complete when we show ¢ = 1.

We evaluate ¢ by a little trickery. Suppose X, z,, . . . , z,, are indeterminates
overZ. Letf(X) = (X - 1)'andg(X) = X"+ zX" '+ - - + 2z, X+
z,,- Then f(X) and g(X) are polynomials in (Z(z,, . . ., z,,])[X]. Since R =
Z{z,, . .., z,]isan integral domain, we can apply the above proof to f(X) and
g(X). Keep in mind that c is defined by equation 8.52 and consequently does not
depend on f and g.

Write

fX)=X"+aX"" '+ +a,_ X+ a, € Z[X].

Our comments about the diagonal of Sylvester’s matrix (after equation 8.9)
readily imply the coefficient of 2z, in R(f, g) = S(1,a,,...,4a, 1,2, ..
z,,) is 1. The above proof applied to f and g gives us

oy

gt(f,8)=c‘f[lg(l)=c_—n‘(1+zl+. . '+zm)

The coefficient of zp, in this last product is c. Therefore, ¢ = 1, and the proof of
Theorem 8.50 is complete. [ |

There is one important application of Theorem 8.50 which we will use in the
next chapter.

Theorem 8.54 Let A € M, ,(R), and let g(X) € R[X]". Then R(C,(X),
g(X)) = det(g(A)).

Proof. Suppose 4(g) = 0. Then g(X) is a nonzero constant b € R. Then
R(C4(X), b) = b". On the other hand, g(A) = bl, and det(g(A)) = det(bl,)

= b". Thus, the theorem is proved if (g) = 0. Hence, we can assume 3(g) =
1.

We first prove the theorem when R = Z. Suppose
85 C,X)=JlX—-¢ ad gX)=0b IIl X -9)
i=1 j=

in some splitting field E of C,(X)g(X) over Q. In equation 8.55, b (€ Z°) is
the leading coefficient of g(X) in E[X]. By Theorem 8.50,

8.56 R(Co(X).8(X)) = ,-131 g

On the other hand, in M, ,(E), we have

gA) = b Hl A - o) = b(—l)"'l_[‘ 81, — A)
j= j=
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Therefore,

@@m»=w—m“ﬁ®@m-m=bwﬂwq1q&>
j= j=

- I 11 0 — & = 1 ( _ﬁl(ﬁi - 9,-))
i

j=1i=1 i=1

=ﬂmm=wqmmm

Thus, Theorem 8.54 is proved when R = Z.

To prove the theorem in general, we will use the Specialization Lemma 8.6.
Suppose R is an arbitrary commutative ring. Let A € M, ,(R) and g(X) €
R[X]". We have already observed we can assume 8(g) = m = 1. Suppose A =
(ay) and g(X) = bX™ + bX" "' + --- + b, X + b, Here b, + 0.

Let {xul 1=<i,j=<n},{yp - - - Ym}> and X all be independent indeterminates
overZ. SetR = Z[xy), . . ., Xps Yor - - - » Y], A = (x;) € M, ,(R), and
2X) =y X"+ y X" '+ - +y,_X + y, €R[X]. Define two poly-
nomials F and G in R as follows:

8057 F(X“, c v v s Apps y05 IR 9ym) = %X(Cx_(_x)’ g(x))
G(Xq1s -+ - s Xpps Yoo - - » 5 ¥m) = det(g(A))

The first part of this proof (when R = Z) implies

F(jllv e ’jnmjo’ L vjm) = G(jllv e ’jnn’jO’ LR 9jm)
for all positive integers j;;, . . . , jun Jos - - - » Ju- Hence, the Specialization
Lemma implies

Fay,, ..., au,,bp - .., by) =G(ay, ..., a8, by ...,b,)
In particular, R(C,(X), g(X)) = det(g(A)). |

We finish this chapter with an example of Theorem 8.54.
Example 8.58 (a) LetR = Z and g(X) = 3X + 2 € Z[X]. Set

1 2
A= [2 3] € M, 2(2)
Then C,(X) = X2 — 4X — 1. Therefore,
1 -4 -1

RC,X).gX) =det |3 2 0] =19
0 3 2



On the other hand,

6 11

gA) = 3A + 20, = [5 6]

Therefore, det(g(A)) = 19 = R(C,(X), g(X)).

(®)

and

SupposeR = Z/6Z = {0, 1,2, 3,4, 5}. Againletg(X) = 3X + 2 ER[X]

1 2
A= [2 3} EMZXZ(R)

Then C,(X) = X2 + 2X + 5, and

1 25
R(Cs(X).gx)) = det |3 2 0] =1
0 3 2
On the other hand
50
gA) = 3A + 2, = [0 5]
Therefore, det(g(A)) = 1 = R(C,(X), g(X)). |

There are several applications of resultants such as classical elimination the-
ory, Hilbert’s Nullstellensatz, and Bezout’s theorem which are standard fare for
a course on resultants. We have included this material in Appendix C at the end

of this text.
EXERCISES
L. Letf(X,, ..., X,)and g(X;, . . ., X,) be two homogeneous polynomials
of degrees n and m, respectively, in R[X,, . . ., X, ]. Show fg is either zero
or homogeneous of degree mn.
2. Let R be an integral domain. Suppose f(X,, . . . , X,) = g(X;, . . .,
X, )h(Xy, . .., X,) inR{X,, . . ., X,]. If fis homogeneous, show ¢ and

h are also homogeneous polynomials.
Use the results of Exercise 2 to show XX, — X,X; is irreducible in

ZX, X, X5.X,].

. Is Exercise 2 true if R is not a domain?
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5.

10.

11.
12.

13.

Let

Fl X, xp - X3!
X, X% Xg—l

V= EM, Z[Xy, - . ., X))

1 X, Xz X:'l
L J

The matrix V is called the Vandermonde matrix. Show det(V*V) is a ho-
mogeneous polynomial of degree n(n — 1) in Z[X,, . . ., X,].

Let Xo, . . . , X, be indeterminates over R. Let f(X,, . . ., X,) €
RIX,, ..., X,]). Set’f = X3Vf(X,/Xq, . . . , X,/X,). Prove the following
assertions about the map *(*) : R[X,, . . . , X,] = R[X,, . . ., X,
(a) "fis a homogeneous polynomial of degree a(f) in R[X,, . . . , X, 1.
®) *(fp) = "f"s.

© XEPT® A + g) = XESTOXGO f + XED "),

. Let S be a commutative R-algebra. Let s, . . . , s, € S. Verify that the map

Y(sy, - - -, 8, R[Xy, ..., X,] — §is an R-algebra homomorphism
whose image is the R-subalgebra of S generated by sy, . . ., s,

. LetF(X,,...,X,) €EZI[X,,...,X,]. Let A be an infinite subset of Z.

Show F(X;, . .., X,) = 0 if and only if F(j,, . . . , j,) = O for all
Gis - - - »Jn) €E A

Verify the following remark made in the proof of Corollary 8.21: We can
assume with no loss of generality that f and ¢ are monic polynomials in
F[X].

Suppose R is a unique factorization domain. Let f(X) and g(X) be two
polynomials of positive degree in R[X]. Show fand g have a common factor
of positive degree if and only if g(X)f(X) = p(X)g(X) for two nonzero
polynomials g and p in R[X] with d(p) < a(f) and d(q) < d(g).

Use the results in Exercise 10 to give a proof of Corollary 8.22.

The special cases n = 1, m = O and n = 0, m = 1 are of some interest in
Theorem 8.31. Write out what the theorem says in these cases and verify the
results directly.

Let R be a unique factorization domain of characteristic zero (i.e., Z C R).
Let f(X) € R[X] be a polynomial of positive degree. The resultant R(f, f')
of fand f' (the derivative of f) is called the discriminant of f. Compute the
discriminant of the following polynomials:

@) f(X) = aX? + bX + c.

®) f(X) = aX® + bX* + X + d.
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14. In Exercise 13, suppose d(f) = 2. Show there exists an irreducible g(X) €
R[X] such that 3(g) = 1 and g2 | fif and only if R(f, f') = 0.

15. Compute Ry (f, g) and Ry, (f, g) for the following two polynomials: f(X;,
X)) =XX, + XX, - X, + 1, g(X,,X,) = X,X, + 2X, + 3.

16. Find the points of intersection of the circle x> + y®> + 4x —2y + 3 = 0
and the hyperbola x2 + 4xy — y? + 10y — 9 = 0. Use Corollary 8.21 for
this problem.

17. Find all a and b such that

X}’ -6X*+ax-3=0
X}-X*+bpx+2=0

have two common solutions.
18. Find all solutions (z,, z,) € C? to the equations

X} + 22X, + 2X,(X, ~2)X, + X3 —4=0
X2 +2XX,+ 25 -5X,+2=0
Hint: Compute the resultant with respect to X, and use Corollary 8.21.
19. Let f(X), g(X), h(X) be polynomials of positive degree in Z[X]. Show
R(f, gh) = R, g)R(f, h). Hint: Use Theorem 8.50.

20. Give another proof of Lemma 8.47 using Theorem 8.28 and a judicious
interpretation of weight.
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Zero Divisors in M, ,(R)

Let R be a commutative ring, and set 7 = M, , ,(R). A matrix A € T is called
a left zero divisor in T if AB = O for some nonzero matrix B € T. Similarly, A
is called a right zero divisor in T if CA = O for some nonzero C € T. In
M, .(R), a matrix is a left zero divisor if and only if it is a right zero divisor.
This follows from our first theorem in this section.

Theorem 9.1 LetA € M, ,(R).
(a) A is a left zero divisor in M,,,,(R) if and only if det(A) € Z(R).
(b) A is a right zero divisor in M,, . ,(R) if and only if det(A) € Z(R).

Proof. Suppose det(A) € Z(R). Then 4.11e implies tk(A) < n. Therefore,
Theorem 5.3 implies A = O for some nonzero vector ¢ € R". Set B =
(£|&| - 1€ EM,x,(R). ThenB + O, and AB = (AE|- - - | A¢) =
(O] -+ -|0) = 0. Thus, A is a left zero divisor in M, ,(R).

Since det(A’) = det(A), the same proof shows det(A) € Z(R) implies A’
is a left zero divisor in M,,,(R). Hence, A'B = O for some nonzero B €
M, .(R). Then B’ + O, and (B'A)’ = A’B = O. Therefore, BA = O, and A
is a right zero divisor in M, ,(R).

Hence, if det(A) € Z(R), then A is both a right and left zero divisor in
M, n(R).

105
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Conversely, suppose A is a left zero divisor in M, ,(R). Then AB = O for
some nonzero B € M,,,.,,(R). Suppose B = (&, |- - - | £,) is a column partition
of B. Since B is not zero, some §; is a nonzero vector in R”. O = AB =
(AE, |- - - | AE,) implies A§; = Oforalli = 1, ..., n. In particular, the equation
AX = O has a nontrivial solution. Theorem 5.3 implies tk(A) < n, and then
det(A) € Z(R) by 4.11e.

If A is a right zero divisor, then A’ is a left zero divisor. Thus, det(A) =
det(A') € Z(R). |

Theorem 9.1 implies the set of left zero divisors of M,,, ,(R) is precisely the
same as the set of right zero divisors in M, ., (R). Either of these sets is just
Z(M,».(R)). If R is a field, or for that matter any integral domain, then Z(R)
= (0). Hence, we have the following corollary to Theorem 9.1.

Corollary 9.2 Let R be an integral domain and A € M,,,(R). Then A €
Z(M,, ,(R)) if and only if det(A) = 0. ]

It follows from Corollary 7.25 that the inverse of an invertible matrix A is a
polynomial in A. There is a similar result for zero divisors. If A is a zero divisor
in M, ,(R), then there exists a polynomial g(X) € R[X] such that g(A) + O,
and Ag(A) = g(A)A = O. Thus, A is a zero divisor in M,,,. ,(R) if and only if
A is a zero divisor in the commutative subalgebra R[A]. In order to prove these
statements, we need the following preliminary result.

Lemma 93 LetC.DEM, , (R), and letx € R. If xC = xD, then x det(C)
= x det(D).

Proof. Partition both C and D into rows: C = (A;; . . . ; A\))and D =
(Bg; - - - 3 n)- Then xC = xD implies x\; = xp, foralli = 1, .. ., n. Using
the fact that the determinant is a multilinear function of its rows, we have
xdet(C) = xdet(A; .. .5 N\,) = det(xA3hy; . . -3 N,)

= det(xpg; Ny; - . .3 A,) = xdet(pry; Ay . . .5 A,)

= det(py; Xhg; - - . 5 Ay) = det(py; xpy; - - . 5 N,)

= xdet(p;; Mg Az . - . 3A) = -

= xdet(p; - . . ; B,) = x det(D). |

We can now state the following theorem.

Theorem 9.4 A € Z(M,,.,(R)) if and only if A € Z(R[A]).
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Proof. Since R[A] C M, ,(R), the implication from right to left in Theorem
9.4 is obvious. The theorem is also clearif n = 1. Hence, we assume n = 2, and
AEZM,.,(R)).

We first give the proof in the special case n = 2. Let C,(X) = X2 + a,X
+ a,. Then a, = det(A) € Z(R) by Theorem 9.1. Hence, there exists an
element b € R* such that ba, = 0. By the Cayley-Hamilton theorem, O =
bC,(A) = bA® + ba,A = A(bA + ba)l,). If bA + ba)l, + O, then A €
Z(R[A]).

Suppose bA + ba,l, = O. Then bA = b(—a,l,). Lemma 9.3 implies
bdet(A) = b det(—a,l,) = ba}. But b det(A) = 0. Therefore, ba} = 0. Set
i = min{j|ba{ = 0}. Theni = 1 or2. Set b’ = bai"!. Thus, b’ = bifi =
1, and b’ = ba, if i = 2. In either case, b’ + 0 and

O = a '(bA? + ba,A) = b'A? + bailA = b'A? = (b'A)A.

If b’A = O, then A € Z(R[A]). If b’A # O, then (b'A)A = O implies A €
Z(R[A)). Thus, in either case, A is a zero divisor in R[A].

We can now assume n = 3. The proof proceeds in the same manner as before.
LetC,(X)=X"+aX" '+ -- +a, X +a, Thendet(A) = +a, EZ(R)
by Theorem 9.1. Therefore, there exists an element b € R* such that ba, =
0. Again by the Cayley-Hamilton theorem, we have O = bC,(A) =
PA(A" '+ agA" 2+ -t a, ). Ifb(A" + g A"+ - ta,_ ) #
O, then A € Z(R[A]). Hence, we can assume b(A" ' + a,A"_2 +---+a,,)
= 0. We then have the following equation in M, , ,(R):

9.5 bA(A" 2+ aqA" 3+ - +a,,) = —ba,_|,

Lemma 9.3 implies
bdet(A) det(A""2 + g A" + - - 4+ a, ,) =b(—1)a"_,

Since b det(A) = 0, ba;,'-, = 0. .
Seti = min{j| ba%_, = O}. Then 1 < i =<n. Setb’ = ba,_'. Then b’ =

# 0, and b'a, = b'a,_, = 0. Multiplying equation 9.5 with .|, we have

9.6 A(br(An—Z + alA"_3 + - 4+ an—2)) =0

Ifb' (A" 2 + a,A" % + - -+ + a,_,) # O, then equation 9.6 implies A €
Z(R[A]). Ifb'(A""%2 + @, A" + - -+ + a,_,) = O, then we have

9.7 VAA" 3 +aA" *+ - -+ a,_5) = —ba,_,l,
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This is an equation like 9.5 only one degree lower. We can now repeat this
argument. After a finite number of repetitions, we get A(f(A)) = O for some
J(A) € R[A)*, or cA = O for some ¢ € R*. In either case, A € Z(R[A]). 1

We can extend the result in Theorem 9.4 slightly as follows:

Corollary 9.8 Let A € M,, ,(R) and g(X) € R[X]. Then g(A) €
Z(M,,.,(R)) if and only if g(A) € Z(R[A)).

Proof. SetB = g(A).If B € ZM, . (R)), then B € Z(R[B]) by Theorem
9.4, Since R[B] C R[A], B = g(A) € Z(R[A]). The implication in the other
direction is trivial. 1

We now return to the null ideal N, of A. The reader will recall that N,, is the
kernel of the R-algebra homomorphism 93, : R[X] — R[A] given by 3, (f(X))
= f(A). We have seen in Corollary 7.38 that the minimal primes of N, are
precisely the same as the minimal primes of the principal ideal (C, (X)) in R[X].
We can now argue the maximal primes belonging to N, are precisely the same
as the maximal primes belonging to (C,(X)). We need the following result.

Theorem 9.9 Let A € M,,,(R), and let g(X) € R[X]. Then g €
Z(R{XVN,) if and only if g € Z(R[XV/(C,(X))).

Proof. The result is obvious if g(X) = 0. Hence, we may assume g(X) is a
nonzero polynomial in R{X]. It follows from 7.29 that ¥, induces an isomor-
phism 3, : R[X)/N,, = R[A). Under this isomorphism, g € Z(R[X]/N,,) if and
only if g(A) € Z(R[A]). The matrix g(A) is a zero divisor (possibly zero) in
R[A] if and only if det(g(A)) € Z(R). This follows from Theorem 9.1 and
Corollary 9.8. By Theorem 8.54, R(C,(X),g(X)) = det(g(A)). Thus, g(A)
€ Z(R[A)) if and only if R(C,(X),g(X)) € Z(R). But Theorem 8.14 implies
R(C,(X),g(X)) E Z(R) if and only if g(X) € Z(R[XV(C,(X))). Putting all
this together, we have g(X) is a zero divisor in R[X]/N, if and only if g(X) is
a zero divisor in R[XV/ (C,(X)). |

Theorem 9.9 says Z(R[X)/N,) = Z(R[X]/(C,)). In particular, suppose B is
a maximal prime belonging to N,. Then 8 C Z(R[XVN,), and B is maximal
among the ideals in Z(R[X}N,). Since Z(R[XVN,) = Z(RIXV(C,)), B C
Z(R[XV/(C,)) and B is maximal among the ideals in Z(R{X})/(C,)). Thus, B
is a maximal prime belonging to (C,). The converse statement is also clear.
Hence we have the following corollary to Theorem 9.9.

Corollary 9.10 Let A € M,,,.,(R). The maximal primes belonging to N, are
precisely the same as the maximal primes belonging to (C,). |
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Combining the results from Corollary 7.38 and Corollary 9.10, we see N, and

(C4(X)) are fairly close as ideals in R[X] in the sense that the minimal primes
and the maximal primes belonging to each ideal are the same.

EXERCISES

1.

2.

10.

Let F be a field. Show every matrix in M, . ,(F) is either a zero divisor or
invertible. Is this true for an arbitrary commutative ring R?

Let p be a positive prime in Z, and set T = M, ,(Z/pZ). Compute the
cardinality of Z(T'). (See Exericse 15 in Chapter 2.)

. Find an example of a noncommutative ring T and an element x € T such that

x is a left zero divisor but not a right zero divisor in T.

. Let R = Z/6Z. For each matrix A listed below, show A is a zero divisor and

find a polynomial g(X) € R[X] such that g(A) # O and Ag(A) = O:

1 2 2
2 0 1 3

(a) A=[ ] (b)A=[ ] © A=[|2 3 4

0 3 2 2 | 2 s

. Compute the minimal primes of N, and the maximal primes belonging to N,

for each matrix A given in Exercise 4.

. Let R be a commutative ring. If % and B are ideals in R, then the quotient

of A and B is the set A : B = {x € R | xB C A}. Prove the following facts
about quotients:

(a) A : Bis an ideal in R.

(b) A :B = R if and only if B C N.

© (N ) : B = N (%, V).

d) UA: (=1 B,) = NF_1 (A :B)).

(e) A:BE = (A:8B):C.

. LetA € M, ,(R). Prove the following theorem of N.McCoy:

N, = (Co(X)) : L_(XI, — A)

.LetA €M, ,(R)and g(X) € R[X]. Prove the following theorem of N.

McCoy: g(A) is nilpotent if and only if g(X) € V/N,.

. Let R = Z/12Z. Use Theorem 8.14 to show g(X) = 2X + 5 is not a zero

divisor in R[X1/(f) where f(X) = X% + 3.
Use Exercise 9 to show g(X) = 2X + 5 is contained in no ideal belonging
to N, where
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Finitely Generated Modules
and Local Rings

Here and in the next two chapters, we will discuss the basic theorems in com-
mutative ring theory which will be used throughout the rest of the text. In this
chapter, we concentrate on modules which satisfy the ascending chain condition
and their connections with finitely generated modules. At the end of this chapter,
we will say a few words about local rings. As usual, R denotes a commutative
ring. Let M be an R-module.

Definition 10.1 M is said to satisfy the ascending chain condition if every
strictly ascending chain of submodules of M, Ny < N, < N; < - - -, is finite.

Clearly, M satisfies the ascending chain condition if for every infinite ascending
chain of submodules N, C N, C N; C - - - of M there exists a positive integer
r such that N; = N, for all i = r. The ascending chain condition is equivalent to
two other important conditions on the submodules of M.

Lemma 10.2 Let M be an R-module. Then the following statements are equiv-
alent:
(a) M satisfies the ascending chain condition.
(b) Every nonempty set of submodules of M has a maximal element with
respect to inclusion.
(c) Every submodule of M is a finitely generated R-module.

110
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Proof. Suppose M satisfies the ascending chain condition. Let & be a non-
empty set of submodules of M. Suppose ¥ has no maximal element with respect
to inclusion. Then if N; < N, < - - - < N, is any strictly ascending chain of
submodules from %, there exists an N, , ; € F suchthat N, <N, < - - - <N,
< N, ;- To see this, we merely note that N, is not a maximal element of %, and
therefore there exists an N, | , € ¥ such that N, < N, , ;. By ordering chains of
submodules of & in the obvious way and using Zorn’s lemma, we can construct
an infinite, strictly ascending chain N; <N, < - - - of submodules from %. (See
Exercise 1 for more details.) This is impossible since M satisfies the ascending
chain condition. We conclude that every nonempty set of submodules of M
contains a maximal element. Thus, (a) > (b).

Suppose M satisfies (b). Let N, CN, C N, C - - - be an ascending chain of
submodules of M. Set % = {N;|i = 1,2,3, ... }. By (b), ¥ contains a maximal
element. Suppose N, is a maximal element of &. Then clearly N; = N, for all i
= r. Thus, M satisfies the ascending chain condition. Therefore, (b) = (a).

Suppose every submodule of M is finitely generated. Let N, C N, C
N; C - - - be an ascending chain of submodules of M. Then Uj.| N, is a
submodule of M. By hypothesis, U;=, N, is a finitely generated R-module.
Suppose {m,, . . ., m,} is a set of generators of U{=; N,. Since the N, ascend,
there exists an r > 0 such that m,, . . . , m, € N,. But then U{_, N, = N,, and,
in particular, N; = N, for all i = r. Thus, (c) > (a).

Finally, suppose M satisfies (b). Let N be a submodule of M. Let F be the
set of all submodules of N which are finitely generated. # #+ J, since (0) € %.
By (b), ¥ contains a maximal element N'. Let m € N. Then N' + Rm C N, and
N' + Rm is finitely generated since N’ is. Therefore, N' + Rm € &. The
maximality of N’ in & implies N' = N’ + Rm. In particular, m € N'. Thus, N
= N’, and N is a finitely generated submodule of M. We have now shown (b)
= (c). This completes the proof of the lemma. |

One important application of Lemma 10.2 occurs when M = R, the ring
itself. If M = R, then the R-submodules of R are just the ideals of R. Thus, the
R-module R satisfies the ascending chain condition if and only if every ideal in
R is finitely generated. In other words, the R-module R satisfies the ascending
chain condition if and only if R is a Noetherian ring. We have already noted
many examples of Noetherian rings. Any PIR is Noetherian. Thus, all the rings
listed in 1.7 together with their homomorphic images are Noetherian rings. In
particular, these rings satisfy the ascending chain condition on ideals.

Another important class of Noetherian rings is provided by the following
famous theorem of D. Hilbert.

Theorem 10.3 (Hilbert Basis Theorem) Let R be a Noetherian ring. For any
indeterminate X, the polynomial ring R[X] is also Noetherian.
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Proof. Let ¥ be an ideal in R[X). We must show U is a finitely generated
ideal. We can assume 2 # (0). Suppose U is not finitely generated. We can
then construct an infinite sequence of nonzero polynomials f; (X),£(X), . . . in
A in the following way: & # (0). Hence there exists a nonzero f, (X) € U such
that the degree of f;, d(f;), is as small as possible. So, 4(f;) = min{a(g) | g
€ U —(0)}. Suppose we have constructed f,, . . . , f;. Since U is not finitely
generated, A > (f), - . ., fi), the ideal generated by f;, . . . , fi. Let fi, 1 (X)

be a polynomial in & — (f;, . . ., f;) of minimal degree. In this way, we

construct a sequence of nonzero polynomials f;, f,, . . . in ¥ such that
a(f;'+l) = min{a(g)lg S (flv CE 9f:)}

foralli =1

Let n(i) = a(f;), and let r; denote the leading coefficient of f;(X) for each
i=1. Thenf(X) = r,X") + lower-degree terms. Sincef,., €U ~ (f;, .. .,
f}),f;'.’_le%[_ (f],. .. ,f;_l).[l‘lpal'ticulal‘

n(i) = min{a(g) | g €A~ (fi, ..., fi-)} =n@ + 1)
Thus, n(i) < n(i + 1) forall i = 1. We claim

104 (1) < (r), r) <(r,rn,rn)<---:

is a strictly ascending chain of ideals in R.
To see this, suppose (ry, . . ., ) = (ry, ...,y ,) for some k = 1. Then
Teo1 = 2f=yar for some ay, . . ., a; € R. Consider the polynomial

k

8X) = frra(X) — D, a X"+ fix),

i=1

Sincef,,, €EA -y, ... fi), 8EA = (fi». .., [ ). Since 2=y ar; =
Tei1s 9(8) < 0(fiy1)- The definition of f, ., implies this last inequality is
impossible. Thus, (r|, ..., ) < (r, ..., ryy), and the chain of ideals in
10.4 is strictly increasing.

Since R is a Noetherian ring, a chain like that in 10.4 is impossible. We
conclude that ¥ is finitely generated. Thus, R[X] is a Noetherian ring. |

Let R be a Noetherian ring and X, . . . , X,, indeterminates over R. Theorem
10.3 together with a simple induction argument imply R[X,, . . . , X,] is a
Noetherian ring. Since the ideals in any homomorphic image R/% of R are in a
one-to-one, order-preserving correspondence with the ideals of R which contain
U, any homomorphic image of a Noetherian ring is Noetherian. In particular,
any ring of the form R[X,, . . . , X, )/ is Noetherian when R is Noetherian.
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Rings of the form R[X|, . . . , X,/ are called finitely generated (commutative)
R-algebras. Hence, we have the following corollary to Theorem 10.3.

Corollary 10.5 Let R be a Noetherian ring. Then any (commutative ) finitely
generated R-algebra is also a Noetherian ring. ]

For example, Z[X,, . .., X,/ and F[X, . . . , X,/ are Noetherian rings.

An R-module M is certainly a submodule of itself. Thus, Lemma 10.2 implies
that if M satisfies the ascending chain condition, then M is a finitely generated
R-module. The converse of this statement is not true in general. A finitely
generated R-module need not satisfy the ascending chain condition. Any non-
Noetherian ring will furnish an example.

Example 10.6 Let X,, X,, . . . be a countable number of indeterminates over
the field F. SetR = F[X,, X,, . . . ], the polynomial ring over F in the variables
X, X,, ... .LetM = R. Then {1} is an R-module basis of M. Thus, M is a
finitely generated R-module. Set A = (X;, X,, . . . ). Clearly, ¥ is not finitely
generated. Thus, by Lemma 10.2, M fails to satisfy the ascending chain
condition. ]

Submodules and homomorphic images of a module satisfying the ascending
chain condition also satisfy the ascending chain condition. The converse of this
statement is also true.

Theorem 10.7 Let M be an R-module and N an R-submodule of M. M satisfies
the ascending chain condition if and only if both N and M/N satisfy the ascending
chain condition.

Proof. We need only show if N and M/N satisfy the ascending chain condition,
then so does M. Let P be a submodule of M. Then P N N and (P + N)/N are
submodules of N and M/N, respectively. By Lemma 10.2, both of these sub-
modules are finitely generated. Let {m,, . . . , m,} be a basis of P N N, and let

{1, ..., ¥} be abasis of (P + N)/N. Since P maps onto (P + N)/N via the
natural homomorphism, there exist elements y,, . . . , y, € P such thaty;, = y;
+ Nforalli=1,...,k Weclaimthat A = {m,, ... ,m,, y, ..., W%}

is a basis of P.
LetpEP. Thenp =p + N = D% ry;in (P + N)IN.Herer,, ... ,r,
are elements in R. Back in P, we have

k
p— D ry€EPNN=Rm + -+ Rm,
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Therefore, there exist ring elements s;, . . . , s, € Rsuchthatp — 2%, ry, =
py sym;. In particular, p = >k ry + 2J=1 sm;. Since p is arbitrary, we
conclude A is a basis of P. Consequently, P is finitely generated.

Since P is an arbitrary submodule of M, every submodule of M is finitely
generated. It follows from Lemma 10.2 that M satisfies the ascending chain
condition. |

There are several important corollaries to Theorem 10.7.

Corollary 10.8 Suppose R is a Noetherian ring. Then for any positive integer
n, the R-module R” satisfies the ascending chain condition.

Proof. Lete = {g,, ..., ¢,} denote the canonical basis of R”. Then Re, =
R, and R"/Re, = R*! as R-modules. Since R is Noetherian, Re, satisfies the
ascending chain condition. By induction on n, we can assume R" ! satisfies the
ascending chain condition. In particular, R"/Re, satisfies the ascending chain
condition. Theorem 10.7 now implies R" satisfies the ascending chain condition.

Before stating our next corollary, we need the following definitions from
homological algebra.

Definition 10.9 (a)

(%) : (0) =N ¥> P > M = (0)

is a five-term complex of R-modules if N, P, and M are R-modules, g and f are
R-module homomorphisms (i.e., g € Homgz (N, P) and f € Homg (P, M)), and
fg = 0.
(b) The complex (*) in (a) is said to be right exact if f is surjective and
Im(g) = Ker(f).
(c) The complex (*) in (a) is called a short exact sequence (of R-modules)
if (*) is right exact and g is injective.

In Definition 10.9, (0) denotes the zero module. Thus, (*) is a sequence of
five R-modules, (0), N, P, M, and (0). The maps (0) — Nand M — (0) in
(*) are the obvious R-module homomorphisms sending O — O (in (0) — N)
and m — O forallm € M (in M — (0)). This explains why (*) is called a
five-term complex. The word complex means successive composites of maps are
zero. Since the end terms in (*) are (0), this simply means fg = 0. The
definitions imply a five-term complex of R-modules of the form

(#): 0) =N &> P> M (0)
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is a short exact sequence if and only if the following three conditions are satis-
fied:

(a) g is injective (i.e., Ker(g) = (0)).

(®) Im(g) = Ker(f).

(c) fis surjective (i.e., Im(f) = M).

One way to manufacture short exact sequences is as follows: Suppose M is an
R-module and N is a submodule of M. Let v : M — MI/N denote the natural map
givenby v(m) = m + N € MIN. Let: N > M be the inclusion map of N into
M. Then clearly,

©) —N > M — MIN > (0)

is a short exact sequence.

Now suppose M is a finitely generated R-module. LetT" = {m,, . .., m,}
be an R-module basis of M. (If M = (0), wetaken = 1 and m, = 0.) Let A
= {A;, . . ., \,} be any free R-module basis of R”. The two bases I' and A
determine a unique R-module homomorphism f : R” — M which sends \; to m;
foralli = 1, ..., n. This map is defined as follows: f(37=) r\;) = 2= rim;.
Since \ is a free R-module basis of R", the reader can easily check that f is well
defined and f(\;) = m, foralli = 1, ..., n. Since I is a basis of M, the
R-module homomorphism f: R" > M is surjective.

Let K = Ker(f). Then K is an R-submodule of R”, and

L f
1010 O) > K—» R"—> M+ (0)

is a short exact sequence of R-modules. The map v : K — R" in 10.10 is the
inclusion map of K into R". Henceforth, we will drop v from the notation.

If R is a Noetherian ring, then we can say a bit more about K. By Corollary
10.8, R” satisfies the ascending chain condition. Thus, Lemma 10.2 implies X is
a finitely generated R-module. Suppose A = {3, . . ., d,} is an R-module basis
of K.Letp = {p, . .., I} be a free R-module basis of R” (If K = (0), we
take m = 1 and 3; = 0.) The two R-module bases A and p define a unique
R-module homomorphism g : R™ — K sending p; to 3, for all i = 1,
Obviously, g is defined by the following equation: g(z, L Ti) Z, 1 r5
The homomorphism g is clearly surjective, and thus Im(g) = K = Ker(f). In
particular,

8 f
10.11 R"— R"+—> M — (0)

is a right exact sequence of R-modules. Notice that we have dropped the symbols
*“(0) — "’ from the left side of the sequence in 10.11.
Any right exact sequence of the form

Fy = Fy—> M~ (0)
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in which both F, and F, are free R-modules is called a presentation of M. Thus,
the sequence in 10.11 is a presentation of the R-module M. The module M is said
to be finitely presented if M admits a presentation F, — F, — M +— (0) in
which both F; and F, are finitely generated, free R-modules. If F; and F, are
both finitely generated, free R-modules, then the right exact sequence F, > F,
> M —> (0) is called a finite presentation of M. Thus, the sequence in 10.11
is a finite presentation of M. We have now proved our second corollary to
Theorem 10.7.

Corollary 10.12 Any finitely generated module over a Noetherian ring is fi-
nitely presented. ]

We note in passing that a finitely presented R-module M may admit no right
exact sequence like that in 10.11 in which g is also injective. In other words,
there may be no short exact sequences of the form

(0) > R" > R'—» M (0)

The question as to whether such short exact sequences exist or not depends on the
projective dimension of the module M. We will discuss this topic briefly in
Chapter 13.

Let us return to the finite presentation of M given in 10.11. There is certainly
nothing unique about this sequence. As we vary our choices of I', A, A, and p, we
get various finite presentations of M. Of course, if R is not Noetherian, a finitely
generated R-module M may admit no finite presentation. To see this, return to
Example 10.6. Suppose we set M = R/ in Example 10.6. Then M is a finitely
generated R-module with basis ' = {1 + A}. Since A = (X,, X,, . . .) is not
finitely generated, the reader can easily argue that M is not finitely presented.

Suppose M has a finite presentation as in 10.11. We use the same notation I,
A A, 1, f, and g as used before. There is a natural m X nmatrixC € M,,  ,(R)
which can be associated with the data I', N, A, and p. Each vector g( ;) = 9;
in K is a unique linear combination of the vectors in A. Suppose we write

10.13 g(p) = 8, = D, ¢\, fori=1,..,m

j=1
The c;; in equation 10.13 are elements from R. Set C = (c;) € M,, « ,(R). The
m X n matrix C is called a relations matrix of M.

The reason for this name is that the rows of C generate all relations among the
generators my, . . . , m, of M. By a relation among the generators m,, . . . , m,,
we mean an n-tuple (ry, ..., r,) €EM; , ,(R)suchthatrym, + - -+ + rym,
= 0. Since I’ is not necessarily a free R-module basis of M (M may not even be
free), there could be nontrivial relations (r,, . . . , r,) € M,  ,(R)" among
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the generators m,, . . . , m,. We claim RS(C) is the complete set of relations
among the generators m,, . . . , m,.
Consider the ith row (c;;, . . . , ¢;,;) of C. By equation 10.13,

g = 8 = X, cy\ € K = Ker(f)

j=1
Since f is an R-module homomorphism
n n
0 =f(3) = D, cuf \) = D, eymy.
j=1 j=1
Thus, (¢4, - - . » Cj) is a relation among m,, . . . , m,. If some entry in the row
(¢is - - + » Cip) is nonzero, then the ith row of C is a nontrivial relation among
the generators m;, . . . , m,. At any rate, each row of C determines a relation
among the generators my,, . . . , m,,.
Conversely, suppose (r;, . . ., r,) is a relation among m,, . . . , m,. Thus,
rymy + - - - + rym, = 0. Since 27_y rm; = 0,

> 7\ € Ker(f) = Im(g) = Rg(py) + * -+ + Rg(i,).
j=1 _
Therefore, 2}'=1 r\; = > sig(w,) forsomes,, ..., s, € R. Using equation

10.13, we have

2 r\j = Z sig(wy) = Z s,-(Zl c,j;\j)
j=

j=1 i=1 i=1

_ 2(2 s,c,-j> Y

j=1

Since {\,, . . ., A\, } is a free R-module basis of R", we have rj= > sc;; for
eachj = 1, ..., n. This last equation implies (r,, . . . , r,) = s; Row,(C)
+ -+ + s, Row,,(C). Thus, any relation (r,,...,r,) amongm,,...,m,

is a vector in RS(C).

Notice that the relations matrix C constructed from 10.11 depends on our
choices of I', N, A, and p.. Thus, there are many relations matrices for the same
finitely presented R-module M. If we choose A = € and p = €, the canonical
bases in R” and R™, respectively, then there is a simple relationship between the
homomorphism g and the matrix C. We have

10.14 g(¢) = C't forall £ € R™.
Equation 10.14 follows easily from 10.13. We leave this as an exercise at the
end of this chapter.
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We will put these ideas to work in Chapter 13 and beyond. For now, we
summarize this discussion with the following remark: Any finitely generated
module M over a Noetherian ring R has a relations matrix C € M,, . ,(R) (for
some choice of m and n). The rows of C determine the complete set of relations
among a set of generators of M.

We finish this Chapter with Nakayama’s lemma and some applications to
local rings.

Lemma 10.15 (Nakayama’s Lemma) Let R be a commutative ring, and let
M be a finitely generated R-module. Suppose M = UM for some ideal A C
J(R). Then M = (0).

Proof. The reader will recall that J(R) is the Jacobson radical of of R. Since
A C J(R), every element of A is quasi-regular. Suppose M # (0). Since M is
a finitely generated R-module, there exists a positive integer n such that M has
a basis consisting of n elements but M has no basis with fewer than n elements.

Suppose {m,, . . . , m,} is one basis of M containing n elements. Since M =
UM, m, = aym, + a;m, + - - - + a,m, for some choice ofa,, . . . ,a, € U.
Thus, (1 — a,)m, = am; + -+ - + a,_m,_,.

Since ¥ is a quasi-regular ideal in R, 1 — a, € U(R). Therefore,

m, = [(1—a) 'a)my + -+ + [(1 —a) 'a,_\Im,_,.
But then {m,, . . ., m,_,} is a basis of M. This is impossible since n is the
smallest number of elements which can generate M. We conclude that M = (0).

|
There are a couple of corollaries of Nakayama’s lemma which are very useful.

Corollary 10.16 Suppose M is a finitely generated R-module. Let ¥ be an
ideal of R with A C J(R). Let N be a submodule of M. If M = N + %M, then
M= N.

Proof. Since M is a finitely generated R-module, so is M/N. A(M/N) = (N +
UAM)/N = MIN by hypothesis. Nakayama’s lemma then implies M/N = (0),
that is, M = N. |

Corollary 10.16 is particularly useful when R is a local ring. The reader will
recall that a commutative ring R is called a local ring if R has precisely one
maximal ideal. This is equivalent to saying the nonunits in R form an ideal.
Thus, if R is a local ring with unique maximal ideal m, then m = U(R)". In this
case, J(R) = m. We will adopt the notation (R, m, k) to denote a local ring R
with maximal ideal m and residue class field k = R/m.

Local rings are very important in commutative ring theory as well as algebraic
geometry. Let us consider some examples. Clearly, any field F is a local ring
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with maximal ideal (0) and residue class field F (i.e., (F, (0), F) is a local
ring). If Xy, . . . , X,, are indeterminates over F, then F[ [X,, . . . , X,]], the ring
of formal power series, is a local ring with maximal ideal (X, . . ., X,) and
residue class field F. §ee Exercise 4 at the end of this chapter for more details.
The p-adic integers Z,(see Exercise 11 of Chapter 1) are a local ring with
"maximal ideal (p) and residue class field Z/pZ.

If R is any commutative ring and *f8 is a prime ideal of R, then we can construct
alocal ring (Rg, PRy, Q(R/P)) along the same general lines as Example 6.7.
This construction is important enough to warrant a careful explanation.

Example 10.17 Let R be a commutative ring and B a prime ideal of R.
Consider the set R X B = {(x,y) | x € R, y € R N B°}. Define a relation
~ on R % B as follows:

10.18 (x, y) ~ (%', y") if t(xy’ — x'y) = 0 for some t € L.

It is easy to check that ~ is an equivalence relation on R X PB°. We will let
xly denote the equivalence class of (x, y)in R X °. Set Rz = {xly | (x,y) €
R x $°}. Notice then that x/y = x'/y’ in Ry if and only if 1(xy’ — x'y) = 0
for some ¢ € . Addition and multiplication on Ry; are defined by the following
equations:

10.19 xiy + x'ty' = (xy' + x'y)yy’
(xly) (x'ly") = xx'lyy’

The reader can easily check that both of these operations are well defined and
endow Ry with the structure of a commutative ring. The ring Ry; is a local ring
with (unique) maximal ideal Ry = {x/y & Ry | x &€ B} and residue class field
Q(R/R) (the quotient field of the integral domain R/B). See Exercise 5 at the
end of this chapter for more details.

The local ring Ry is called the localization of R at *3. |

Returning to Nakayama’s lemma, we have the following corollary for local
rings.

Corollary 10.20 Suppose M is a finitely generated module over a local ring
(R, m, k). A setof elements m,, . . ., m, in M is a basis of M if and only if the
images of these elements in the k-vector space M/mM span M/mM.

Proof. Letm,, ..., m,denote the images of m,, . . . , m,, respectively, in
M/mM. Suppose m;, . . . , m, span the k-vector space M/mM. Thus,
>r_, km;, = M/mM. Back in M, this implies M = (X7~ Rm;,) + mM. In
particular, Corollary 10.16 implies M = >.7_; Rm;. Thus, {m,, . . . ,m,}isa
basis of M.
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If {m,, ..., m,}is abasis of M, then clearly {m,, . . . , m,} span the k-vector
space M/mM. [}

Notice that Corollary 10.20 implies the minimum number of generators of a
finitely generated module M over a local ring (R, m, k) is precisely the vector
space dimension (dim,(M/mM)) of M/mM over the field k. Another application
of Corollary 10.20 is the following result.

Corollary 10.21 Let U be a finitely generated ideal in a local ring (R, m, k).
Suppose r is the smallest number of generators of . Then any set of generators
of U contains a set of r generators of 2.

Proof. Since r is the minimum number of generators of the R-module , our
remarks before this corollary imply dim, (%A/m%) = r. Suppose {x,, - . .., x,}
is a set of generators of . Thus, A = X7 Rx,. LetX;, . . . , X, denote the
images of x, . . . , x, respectively in 2A/m¥. Since x,, . . . , x, generate the
R-module %, X,, . . . , X, span the k-vector space A/m¥U. In particular, {X,, .. .,
X,} contains a k-vector space basis of A/mU. After suitably relabeling if need be,
we can assume {X,, . . . , X, } is a k-vector space basis of A/m3.. Corollary 10.20
then implies A = X—; Rx;. Thus, {x,, . . ., x,} is a set of generators of Y.

|

We will need one last application of Nakayama’s lemma in Chapter 13. An
R-module M is called a direct summand of a free R-module if there exist a free
R-module F containing M and a submodule N of F suchthat M N = F. If M
is a direct summand of the free R-module F and F is a finitely generated R-
module, then M is also finitely generated. For if M @ N = F,then M = F/N a
finitely generated R-module. Our last corollary in this chapter says direct sum-
mands of R" are free R-modules when R is local.

Corollary 10.22 Let (R, m, k) be a local ring. If M is a direct summand of a
finitely generated, free R-module F, then M is a free R-module.

Proof. M is adirect summand of a finitely generated, free R-module. Replacing
M with an isomorphic copy if need be, we can assume there exists a positive
integer n such that M C R" and M @ N = R" for some submodule N C R". Then
mR” = mM @ mN, and

R''mR" = (M + mR"/mR") ® (N + mR"/mR")

Asusual, lete = {g,, . . ., €,} denote the canonical basis of R”. It follows from
Theorem 5.10 that any set of generators of R” must contain at least n elements.
In particular, Corollary 10.20 implies dim,(R"/mR") = n.

Since R"/mR" = (M + mR"/mR") @ (N + mR")/mR"™), we can select a
k-vector space basis {y;, . . . , ¥,} of RY/mR" such that y;, . . . ,y, €EM
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and ¥,,1» . - - » Yo € N. Here r = dim((M + mR*YmR"*) and n — r =
dim, ((N + mR")/mR"). Again Corollary 10.20 implies {y,, . . . , y,} is an
R-module basis of R”. It then follows from Theorem 5.10 that {y,, .. ., y,}is
a free R-module basis of R". Since {y,, ...,y } CMand {y,,,,...,y,} C
N, it is easy to check that {y,, . . . , y,} is a free R-module basis of M. |
EXERCISES

1. Let & be a nonempty set of submodules of the R-module M. Let ¥ denote
the set of all strictly ascending chains Ny < N, <N, < - - - (finite or infinite)
of submodules from %. Partially order (<) the chains in & as follows: If A
= {N,<N,<---<N}andB = {M, <M, <. <M.} are finite
chains in &, thenset A < Bif r<=sand N, = M;foralli =1,...,r. If

A is finite and C = {P, <P, < - - -}is infinite, set A < C if N; = P, for

alli =1,...,r Finally, if D = {Q, < @, < - - -} is also infinite, set

C<DifP,=Q;foralli=1.

(a) Show < is a partial ordering on ¥.

(b) Show every totally ordered subset of (&, <) has an upper bound in ¥.

(c) Suppose ¥ contains no maximal element with respect to inclusion. Use
Zorn’s lemma on (¥, <) to argue there exists an infinite, strictly as-
cending chain N, <N, < N; - - -in¥.

Show the ideal ¥ = (X,, X, . . .) in Example 10.6 is not finitely generated.

Prove the assertion in equation 10.14.

4. Let F be a field and X, . . . , X,, indeterminates over F. The power series
ring F[[X,, . . ., X, ]] is defined inductively as F[[X,, . . . , X,]] =
(FI[Xy, ..., X,—1IDIIX,]1]. Show F[[X,, . . ., X, ]} is alocal ring with
maximal ideal (X, . . . , X,;) and residue class field F. F{[X,, ..., X,]]
is a Noetherian ring also. See [1].)

5. Complete all the details of Example 10.17:

(a) Show ~ is an equivalence relation on R X ¢

(b) Show that the binary operations defined in equation 10.19 are well
defined.

(c) Show Ry is a commutative ring with these operations.

(d) Show Rg is a local ring with maximal ideal Ry and residue class field
Q(RIB).

6. Suppose M is a finitely generated module over the local ring (R, m, k).
Show dim, (M/mM) is the smallest number of generators of M.

7. Give an example which shows that the statement in Corollary 10.21 is not
true if R is not local.

8. Give an example of an R-module which is not a direct summand of a free
module.

9. Show that a direct summand of a finitely generated, free R-module need not
be free if R is not local.

wn
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10. Complete the argument in the proof of Corollary 10.22 by showing
{y1» - - . » ¥} is a free R-module basis of M.

11. Suppose R and S are commutative rings such that S is a finitely generated
R-module. Show any finitely generated S-module is a finitely generated
R-module.

12. Suppose M and N are R-modules with N finitely generated. Let f €
Homg(M, N). Let A C J(R). If the induced mapping f : M/AM — N/AN
is surjective, show f is surjective.

13. Is Exercise 12 true with the word surjective replaced by the word injective?

14. Suppose M is a finitely generated R-module. Let f € Hom, (M,R"). If f is
surjective, show Ker(f) is a finitely generated R-module.

15. Suppose M is a finitely presented R-module. If

0> N> Pl Mo

is a short exact sequence of R-modules and P is finitely generated, show N
is finitely generated.

16. Use the results in Exercise 15 to show R/ in Example 10.6 is not finitely
presented.

17. Let R = F{X, Y]. Set A = (X, Y). Compute a relations matrix for the
R-module . Can you generalize your result to n variables?

18. Compute relations matrices for the following Z-modules:
(a) M = ZInZ
®byM = ZinZ ® ZimZ
©YM=2ZnZ®ZLImZ® LpZ
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Primary Decompositions In
Noetherian Rings

In this chapter, we describe primary decompositions of ideals in Noetherian
rings. There are many good references for this material. Our treatment of this
subject will basically be the same as that in [1] and [ 10]. The reader can consult
these references for more details.

As usual, R will denote a commutative ring. We begin with the definition of
a primary ideal of R. As we will see, primary ideals are the fundamental building
blocks of all ideals in a Noetherian ring.

Definition 11.1 Let £ be an ideal of R such that & # R. The ideal £ is called
a primary ideal if, whenever xy € Q, and x € L, then y* € £ for some positive
integer n.

We already have seen many examples of primary ideals in this text. For
example, any prime ideal of R is a primary ideal. On the other hand, there are
many primary ideals which are not prime. For example, if I is a maximal ideal
of R, then " is a primary ideal for all n > 0. This follows from Theorem 11.3
below. Notice that the improper ideal R is not called a primary ideal in this text.
Thus, if £ is a primary ideal of R, then £ < R. On the other hand, the zero ideal
(0) may very well be a primary ideal of R. For example, if X and Y are
indeterminates over the field Q, then (0) is a primary ideal of the ring
Q[X)/(X?), but (0) is not a primary ideal of the ring Q[X,Y]/(XY).

123
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We can restate the definition of £ being a primary ideal of R in terms of the
quotient ring R/L) as follows:

11.2 A proper ideal £ is a primary ideal of R if and only if every zero divisor
in R/S) is nilpotent.

For example, let X and Y denote indeterminates over Q, and let Q = (X,Y?) C
Q([X,Y]. £ is a primary ideal of Q[X,Y] since every zero divisor in Q[X,Y}/Q
= Q[Y)(Y?) is obviously nilpotent. Notice that £ is not any power of any
maximal ideal in Q[X,Y].

Theorem 11.3 Let £ be a proper ideal of R. Set f = VO .
(a) If £ is primary, then B is a prime ideal of R.
(b) If B is a maximal ideal of R, then L is a primary ideal.

Proof. (a) Suppose xy € . Then (xy)* € L for some positive integer n.
If x* € L, then x € PB. Suppose x* & L. Since L is primary, (y*)™ € £ for
some positive integer m. Thus, y™* € L. In particular, y € VQ = B. Thus,
B is a prime ideal of R.

(b) Suppose xy € £ and y & . We must argue x € L. Since % is a
maximal ideal of R, 8 + Ry = R. Therefore, 1 = ¢ + dy for some ¢ € ¥ and
dER. Since P = \/6,0"6 & forsome n > 0. Thus, 1 = 1" = (¢ + dy)"
= " + d'y for some d' € R. In particular, x = x1 = x" + (xy)d' € Q.1

If Q is a primary ideal of R, and § = VO, then Q is called a B-primary
ideal. For example, inR =Q[X,Y], V(X,Y?) = (X,Y) = % is a maximal ideal
of R. Thus, (X,Y?) is a B-primary ideal. Similarly, (0) is an (x)-primary ideal
in R = Q[XV/(X?). Here x denotes the image of X in R.

If B is a maximal ideal of R, then Theorem 11.3b implies 3" is a P-primary
ideal for all positive integers n. However, a 8-primary ideal {2 need be no power
of B, as the first example in the last paragraph indicates.

If *B is a maximal ideal of R, then we have observed that B" is a 3-primary
ideal. If *B is an arbitrary prime of R (not necessarily maximal), then " need
not be a primary ideal. Consider the following well-known example:

Example 11.4 Let X, Y, and Z be indeterminates over the field F. Set
R = F[X,Y,ZV(XY — Z?). Let x, y, and z denote the images of X, Y,
and Z, respectively, in R. Then R = F[x,y,z]). Let 8 = (x,z). Since R/'B
= F[Y), B is a prime ideal of R. In R, xy = z2 € B 2. The reader can
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easily check that x €82 and y € B = VB2 Thus, B2 is not a primary ideal
of R. [ |

We need a definition used in Exercise 6 of Chapter 9.

Definition 11.5 Let A and B be two ideals of R. Then
A:B={xeER|xBCU.

It is easy to check that % : B is an ideal of R containing . The ideal U : B is
usually called the quotient of A by B. We will use this construction in our proof
of the Lasker-Noether decomposition theorem.

Theorem 11.6 (Lasker-Noether) Let R be a Noetherian ring. Let ¥ be a
proper ideal of R. Then ¥ is a finite intersection of primary ideals.

Proof. Anideal 2 < R is said to be irreducible if % is not the intersection of two
ideals strictly containing it. We first claim every proper ideal of R is a finite
intersection of irreducible ideals. To see this, suppose the claim is false. Let %
denote the set of all proper ideals of R which are not finite intersections of
irreducible ideals. We are assuming the claim is false. Consequently, ¥ is a
nonempty set. Since R is Noetherian, & contains a maximal element by Lemma
10.2b. Let B be a maximal element of %. Since B € %, B is not irreducible.
Thus, B = €, N €, for two ideals &, and €, properly containing 8. The ideals
€, and €, are not in & since B is a maximal element of % with respect to inclusion.
Thus, each ideal €, is a finite intersection of irreducible ideals. But then B is a
finite intersection of irreducible ideals. This is impossible. We conclude that ¥
= {J, and every proper ideal of R is a finite intersection of irreducible ideals.
We next claim that every irreducible ideal of R is primary. To see this,
suppose R contains an irreducible ideal £ which is not primary. Then there exist
x,yE L suchthatxy € Qandy € B = V. Consider the chain of ideals
QCORYCO:Ry2C O :Ry>C - - inR. Since R is Noetherian, there
exists a positive integer n such that Q : Ry* = £ : Ry**!. We then have

1.7 O = (2 +Ry) N (Q + Rx)

Clearly, £ is contained in the intersection on the right in equation 11.7. Suppose
ZE(Q +RY)N (L + Rx). Thenz = u + by" = v + cx for elements u,
v € £ and b, ¢ € R. Since xy € £, yz € L. Therefore, by’*'! € Q. In
particular, b € Q : Ry**! = Q : Ry". Thus, by" € Q. But then z € L. This
establishes the equality in equation 11.7.
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Now x and y” are not elements in £. Therefore, the ideals £ + Ry” and Q
+ Rx properly contain £. Equation 11.7 implies £ is not irreducible. This is
impossible. We conclude that every irreducible ideal of R is primary.

We can now prove the theorem. Suppose U is an ideal of R with & # R. By
our first claim, ¥ = , N L, N - - - N Q, with each L, an irreducible ideal
of R. By our second claim, each £, is a primary ideal of R. Thus, % is a finite
intersection of primary ideals. |

We have shown in the proof of Theorem 11.6 that irreducible ideals are
primary in a Noetherian ring. The converse of this statement is not true. A
primary ideal need not be irreducible. For example, suppose R = F[X,Y]is a
polynom1a1 ring in two indeterminates X and Y over a field F. Then Q =
(X%.XY,Y?) = (X,Y)?is a primary ideal by Theorem 11.3b. However, le not
irreducible since £ = (X,Y2) N (X2,Y).

There is a sharper version of Theorem 11.6 which we list as the following
corollary.

Corollary 11.8 Let U be a proper ideal in a Noetherian ring R. Then there exist

primary ideals ), . . . , Q,, of R such that the following conditions are satisfied:
(a)m=@ln£)2n"'n@n.
(b) Foreachi = 1,...,n

NN NY,,N---NY,
is not contained in aD
© VL,,..., are distinct (primes) of R.

Proof. Theorem 11.6 implies A = O, N, N - - - N 0, for some primary
ideals £, . . . , £, of R. If some L, contains the intersection of the remaining
£, then we can drop L, from L, . . . , £, and write

%I=Q,n"'ng,-_lngi+ln"'ngn

Hence, we can always find primary ideals £, . . . , £, such that (a) and (b)
are satisfied.

We have seen in Theorem 11.3 that VLQ, = B, is a prime ideal of R.
Suppose VL, = B, = VL, . Then Q, N Q, is a B,-primary ideal. To see
this, first observe that

Vangz = VQI N VQZ ﬁ'-iBlnﬁB,=5Bl

Thus, B, is the radical of O, N £,. Supposexy € L, N O, and y & B,. Since
), is B,-primary, we conclude x € £,. Similarly, x € Q,. Thus, Q, N O, is
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$B,-primary. By induction, any finite intersection of %,-primary ideals is a
B, -primary ideal.

Now suppose £y, . . . , L, satisfy conditions (a) and (b) in Corollary 11.8.
Suppose we have labeled that £; such that B, . . . , B, are the distinct primes
inthelist VL, ,...,VQ, . Herel =sr=nFixi€{l,...,r} Let Q]
denote the intersection of those £; which have radical ;. From the last

paragraph Q] is a P;-primary 1deal Clearly, A = Qi N - - - N L/, and
1. .., Q) satisfy conditions (a), (b), and (c). |
Any primary decomposition 2 = Q, N --- N Q, inwhich Q,,...,Q,

are primary ideals satisfying conditions (a), (b), and (¢) in Corollary 11.8 is
called an irredundant, primary decomposition of 2. Corollary 11.8 guarantees
every proper ideal 2 in a Noetherian ring has an irredundant, primary decom-
position. The prime ideals B, = VQ,,..., B, = VO, in an irredundant,
primary decomposition of 2 are called the associated primes of . As we will
soon see, the associated primes of 2 are unique. By this we mean that any two
irredundant, primary decompositions of  have the same set of associated
primes.

Before proving the uniqueness theorem, we point out that irredundant, pri-
mary decompositions themselves are not unique. In fact, a given ideal could have
infinitely many different irredundant, primary decompositions. Consider the fol-
lowing well-known example.

Example 11.9 Let X and Y be indeterminates over the field F, and set R =
F[X,Y].Let A = (X%,XY). Thenforanyc EF, A = (X) N (¥ — cX, X?)
is an irredundant, primary decomposition of . For different ¢’s, the primary
ideals (Y — ¢X, X?) are different. Thus, if F is infinite, % has infinitely many
different irreudundant, primary decompositions. |

In Example 11.9, V(X) = (X) = B,and V (¥-cX,X?) = (X,Y) = R,.
Thus, P, and B, are associated primes of . It turns out that any irredundant,
primary decomposition of 2 has only %, and B, as associated primes. This will
follow from our next theorem.

Our next theorem will require two lemmas which are of some interest in their
own right.

Lemma 11.10
(a) Suppose A,, . . ., A, and P are ideals of R. If P is prime and
ANA,N---NA CB, then A; C B for some i.
(b) Suppose B,, . . . , B, are prime ideals of R. If A is an ideal of R such
that A C B, U - UPB,, then A C B, for some i.
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Proof. (a) Suppose no %, is contained in B. Then foreachi = 1, .. ., n, there
exists an element x; € A, — P. Since P is prime, x;x, - - - x, € P. But,
XXy X, € WUy - - - A, € N7y A, C B. This is impossible. We conclude
that some ideal %, is contained in .

(b) Suppose A C Ul=; B,. We can assume with no loss of generality that B,
is not contained in f8; whenever i # j. Let us suppose % is not contained in any
8; and derive a contradiction.

Since there are no containment relations among the PB; and ¥ is not contained
in any B, A N (N;4,; B;) is not contained in B, foreachi = 1, . . ., n. This
statement follows from (a). Leta, € A N (N;.,B;) N P{. Thena, + - - - +

a,isinYAbutnotinany B, (i = 1,...,n). Forsupposea, + - - - + a, €
B,. Since ay, . . ., G _1,0k41> - - - » 8, € By,

a=(+ - +a)—(a+ - +a_.,+a,,+ - +a,)EB,
This is impossible. Since ¢, + - - - + a, € A C U, B,, we have a
contradiction. |

Lemma 11.11 Let £ be a B-primary ideal of R. Let x € R.
(a) If x € Q, then O : Rx = R.
(b) If x & £, then O : Rx is a P-primary ideal.
() ifx& B, then O : Rx = Q.

Proof. (a) and (c) follow easily from the definitions. We prove (b). If y €
4 : Rx, then xy € £. Since x € 0, y € B. Therefore, Q C L :Rx C P
= VO . We conclude from this that VQ : Rx = L.

Now suppose yz € ) : Rxand y & P. Then xyz € . Since y & B, xz €
€. Thus, z € Q : Rx. Thus, £ : Rx is a P-primary ideal. |

We can now argue that the associated primes of an ideal are unique. This
result does not require that R be Noetherian. All we need is an irredundant,
primary decomposition of the ideal.

Theorem 11.12 Suppose A = £, N - - - N Q,, is an irredundant, primary
decompositionof A inR. Let B, = VO, , ..., B, = VO, be the (distinct)
associated primes of this decomposition. Then B,, . . . , B, are precisely the
prime ideals in the set {VY : Rx | x ER}.

Before proving Theorem 11.12, let us make a few remarks about this result. For
every x € R, VU : Rx is an ideal of R. Hence I' = {VA :Rx |x ER}isa
(nonempty ) set of ideals of R. Theorem 11.12 says those ideals in I" which are
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prime ideals are precisely $,, . . . , %,. Notice that this characterization of
B,, . . . , B, does not depend on any particular irredundant, primary decom-
position of . Hence, if % has another irredundant, primary decomposition % =
Q) N - -+ N LQ, with associated primes B; = VO, ..., B, = VO, ,

thenm = nand {8, .. ., B} = {Bi, . . ., B.}. This is what is meant by the
expression “‘the associated primes of 2 are unique.’’

Proof of Theorem 11.12. Let x € R. Then A : Rx = (N}, LQ,) : Rx
= N1(Q; : Rx). If x € U, then Lemma 11.11 implies A : Rx =

Now suppose V¥ : Rx is a prime ideal of R. By Lemma 11.10a, VY : Rx
2 %B; for some j such that x € £;. But VA : Rx C %B;, and consequently,
VU : Rx = B, Therefore, any prime ideal in the set I' = {VA : Rx | x € R}
is contained in the set {§,, . . . , B,}.

Conversely, fixi €{1, ...,n}. SinceA = O, N - - - N 0, is an irredundant,
primary decomposition, £, does not contain N;.; L;. Letz € (N;,; ;) N Lf.
Our remarks in the first paragraph of this proof then imply VU : Rz =

B,. Thus, B,, . . . , B, are prime ideals in I'. Therefore, the prime ideals in
{V¥ : Rx | x € R} are precisely {8,, ..., B,}. |

It might be a good idea to summarize what has been said about irredundant
primary decompositions in Noetherian rings. Suppose R is a Noetherian ring, and
let A be a proper ideal of R. Corollary 11.8 implies 2 has an irredundant primary
decomposition. Thus, there exist primary ideals £, . . . , Q, of R such that %
=,N - --NL,, and the ideals L,, . . . , Q,, satisfy conditions (b) and (c)
of Corollary 11.8. The prime ideals 8, = V&, ,..., B, = VL, are called
the associated primes of . These primes are unique in the sense that any other
irredundant, primary decomposition of % has the same set {3, . . . , B,} of
associated primes.

The next order of business is to identify the minimal primes of 2 and the
maximal primes belonging to 2 when 2 has an irredundant, primary decompo-
sition. We begin with the following theorem.

Theorem 11.13 Suppose A = Q, N - - - N Q, is an irredundant, primary

decomposition of A. Let B, = VO, , ..., B, = VO, be the associated
primes of . Then Z(R/A) = UL, B,

Proof. We view R/ as an R-module. Then x € Z(R/N) if and only if there
exists an element b € R such that b &€ A, and xb € A. Thus, x € Z(R/N) if and
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only if (U :Rx) N A° # . Since A C A : Rx, this last inequality is equiva-
lent to A : Rx # A. Thus, we have reduced the theorem to the following
assertion:

11.14 {xER|A:Rx + A} = UL,

In proving 11.14, we can assume A = (0). To see this, consider the natural
homomorphism R > R/ given by z > z + U. Set R/A = R, and let z =
z + SlllnR KD ={f€R|z€ Q}, then it is easy to check that (0) =
Ql ‘N sD is an irredundant, primary decomposition of (0) in R. The
assocxated primes of this decomposition are B, = Z|z€ B}, i=1,...,n
Suppose 11.14 holds for (0) in R. Then {x € R | (0) : Rx # (6)} =
Uf= %B;. Pulling this relation back to R, we easily get 11.14 for % in R.

We have now reduced the proof of Theorem 11.13 to the following statement:

11.15 {x€R| (0):Rx # (0)} = U™, B..

In equation 11.15, we are assuming (0) has an irredundant, primary decompo-
sition (0) = £, N - - - N L, with associated primes B, = VO, , ..., B,
= V4, . Notice that {x ER| (0) : Rx # (0)} = Z(R). Thus, we have reduced
the theorem to the assertion that the zero divisors of R are precisely the union of
the associated primes of (0) [when (0) has an irredundant primary decompo-
sition].

We next observe that Z(R) = U,.o V(0):Rx. We have Z(R) =
U,z Anng(x) = U,.q(0) : Rx by equation 1.13. In particular, Z(R) C
U, .0 V(0) : Rx. Conversely, suppose y € \/(0) : Rx for some x # 0. Then
¥"x = 0 for some positive integer n. We can suppose » is as small as possible
here. If n = 1, theny € (0): Rx C Z(R). If n > 1, then Yy x#0 andy €
(0) : R(y" " 'x) C Z(R). In either case, y € Z(R). Thus, U, .o V(0) : Rx C
Z(R).

Let x € R*. From the proof of Theorem 11.12, we have \/(0) : Rx C
N{B, | x & O} C PB; for some j. Therefore, Z(R) C U}, B;. On the other
hand, we have seen in the proof of Theorem 11.12 that each B, has the form %;
= V\/(0) : Rx for some x € R*. Therefore, U™, B, C Z(R). |

In Chapter 13, we will need a slightly different version of Theorem 11.13,
which we present here.

Theorem 11.16 Let R be a Noetherian ring. Let % and 9B be ideals of R with
A # R. Then A : B = A if and only if B is contained in no associated prime
of A.
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Proof. LetA = £, N - - - N £, be an irredundant, primary decomposition
of A with associated primes B, = VL, , ..., B, = VO, . Suppose B is
contained in no ;. Since (U : B)B C A C L, and B is not contained in PR;,
A: B C Q, Therefore, A : B C N7=; L, = A. Since A C A : B, we have
A:B =AU

On the other hand, suppose A : B = A. Then A : B2 = (A:B): B=A:B
= 9. By induction, we have % : 87 = ¥ for all p = 1. Suppose B is contained
in some %B,. Relabeling if need be, we can assume B C B, . Since R is a Noetherian

ring, B is a finitely generated ideal. Since 8, = V4, , there exists an integer
s > 0 such that B° C £,. In particular, £, : B° = R. But then

A=A:PB = (N=,9,): B =N, (Q,:B)
=2 (2,:B) 2 N-, 9, 2 A
Therefore, A = NJ=, £;. This is impossible since A = Q, N --- N Q,isan

irredundant, primary decomposition of 2. We conclude that B is not contained
in any associated prime ,, . . . , B, of A. i

We can recover Theorem 11.13 from Theorem 11.16 by setting 8 = Rx.
Theorem 11.16 implies x is contained in some associated prime of 2 if and only
if xy € U for some y & U. This is precisely the statement that U7_, B, =
Z(R/N).

Now suppose R is a Noetherian ring. Let 2 be a proper ideal of R. Then A
has an irredundant, primary decomposition A = £, N - - - N 0, with asso-
ciated primes B, = VL, , ..., P, = VL, . We partially order the set of
primes {8,, . . . , B,} by inclusion C.

Suppose B is a minimal prime of ¥. Then P D A = NI, Q,. By Lemma
11.10a, B D O, for somej E {1, . . . , n}. Since P is a prime ideal, B 2 VL,
= %, 2 U. Since %P is a minimal prime of A, B = P,;. Thus, any minimal prime
of A is a prime in {§B,, . . . , BV,} which is minimal with respect to inclusion.

Conversely, suppose %; is minimal in {3,, . . . , B,}. By Corollary 6.12, %;
contains a minimal prime R of A. Our discussion in the preceding paragraph
shows B = B, forsome k €{1, . . . , n}. Since P, is minimal in {P,, . . . , B},
B, = B, = B. Thus, every minimal prime in {, . . . , B} is a minimal prime
of %. We have now proved the following assertion:

11.17 In a Noetherian ring R, the minimal primes of a proper ideal ? are finite
in number and are precisely the primes in {8, . . . , B,} (the associated primes
of A) which are minimal with respect to inclusion.

Now suppose P is a maximal prime belonging to . Since T belongs to A,
B € Z(R/A). By Theorem 11.13, Z(R/A) = U=, B,. Lemma 11.10b then
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implies B C B, for some i € {1, . . . , n}. But B, also belongs to A. Conse-
quently, the maximality of ¥ implies ¥ = ;. Since P is maximal among all
ideals belonging to 2, P = B, is certainly maximal with respect to inclusion in
{By, . - ., B} Thus, if P is a maximal prime belonging to A, then P is an
associated prime of ¥ which is maximal with respect to inclusion in the set
By, ..., B}

Conversely, suppose %, is maximal with respect to inclusionin {$3,, . .., B,}.
Then %B; belongs to A by Theorem 11.13. A slight variation of the proof of
Theorem 6. 16 shows B, is contained in a maximal prime ‘8 belonging to . From
the preceding paragraph, 8 = B, forsome j € {1, . . ., n}. Since P, is maximal
with respect to inclusion in {;, . . . , B,}, we conclude P, = B, = B. In
particular, B, is a maximal prime belonging to 2. We have now proved the
following assertion:

11.18 In a Noetherian ring R, the maximal primes belonging to a proper ideal
A are finite in number and are precisely the primes in {{B,, . . . , B} (the
associated primes of ) which are maximal with respect to inclusion.

The primes in {B,, . . . , ¥8,} which are minimal with respect to inclusion are
often called isolated primes of 9. Thus, in a Noetherian ring, the isolated primes
of A are precisely the minimal primes of 2. A prime in {$3;, . . . , B,} which
is not isolated is called an imbedded prime of .

One obvious application of this material is to null ideals of matrices over
Noetherian rings. Suppose R is a Noetherian ring. Let A € M, ,(R). The
Hilbert Basis Theorem implies R[X] is a Noetherian ring. Therefore, the null
ideal N, of A is a finitely generated ideal. The minimal primes of N, as well as
the maximal primes belonging to N, are finite in number. By 11.17 and 11.18,
these prime ideals can be computed from any irredundant, primary decomposi-
tion of N,. We have seen in Corollary 7.38 that the minimal primes of N, are
precisely the same as the minimal primes of the principal ideal (C,(X)). Sim-
ilarly, by Corollary 9.10, the maximal primes belonging to N, are precisely the
same as the maximal primes belonging to (C,(X)). Thus, the ideals N, and
(C4(X)) may not have the same irredundant, primary decompositions, but they
do have the same set of isolated primes and the same set of maximal primes
belonging to the given ideal.

EXERCISES
1. Show that the zero ideal (0) is a primary ideal in the ring Q[X)/(X 2) but
is not a primary ideal in Q[X,YV/(XY).

2. Show that the converse of Theorem 11.3a is not true in general: If VL is
a prime ideal, £ need not be a primary ideal.
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3.

10.

11.

12.

13.

14.
15.
16.

17.

Let R = Q[X,Y]. Show & = (X,Y?) is not any power of any maximal
ideal of R. Thus, primary ideals need not be powers of maximal ideals.

. In Example 11.4, show that x € B2 and y & B.
. Show (X2,XY,Y?) = (X,Y?) N (X2,Y) in F[X,Y]. Thus, a primary ideal

need not be irreducible.

. In Example 11.9, show (X2,XY) = (X) N (Y — ¢X, X?)forany c EF.

Thus, show irredundant, primary decompositions are not unique.

. In the proof of Theorem 11.13, show (0) = £, N - - - N L, is an

irredundant, primary decomposition of (0) in R/ with associated primes
%l’ AR | EB’I.

Suppose A and B are ideals of R and ‘B belongs to 2. Show B is contained
in a maximal prime belonging to .

. Exhibit a Noetherian ring R and an ideal % ( # R) in R such that % has an

imbedded prime.

Let R be a Noetherian ring. Suppose U is a proper ideal of R such that ¥ =

VU . Show % has no imbedded primes.

LetR = F[X,Y,Z]. Here X, Y, and Z are indeterminates over the field F. Let

B, = (X,Y)and B, = (X,Z). Find an irredundant, primary decomposition

of A = P,B,.

Let R be a commutative ring and X an indeterminate over R. If U is an

ideal of R, let A[X] denote the set of polynomials in R[X] whose co-

efficients liec in . Prove the following facts about the map A —

A(X]:

(a) If A is an ideal of R, then A[X] is an ideal of R[X].

(b) If P is a prime ideal of R, then P[X] is a prime ideal of R{X].

(c) If £ is P-primary in R, then Q[X] is B[X]-primary in R[X].

(d) If A = NI L is an irredundant, primary decomposition of % in R,
then A[X] = NF-; £;[X] is an irredundant, primary decomposition of
A[X] in R[X].

(e) If B is a minimal prime of U in R, then P[X] is a minimal prime of
A[X] in R[X].

Let F be a field and X;, . . . , X, be indeterminates over F. Set R =
FlX,, - . ., X,]. Use the results from Exercise 12 above to show the
following: The ideals B, = (X,,...,X,)),i = 1,.. ., n, are all prime

ideals of R and their powers are all primary ideals of R.

Suppose R is a PID. Determine the set of all primary ideals of R.
Determine all primary ideals of the ring Z/nZ.

Let R = Z[X,Y] with X and Y indeterminates over Z. Let A = (2, XY).
Find an irredundant, primary decomposition of .

Find an irredundant, primary decomposition of N, for each matrix A in
Exercise 4 of Chapter 9.
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18. Let R = C(X,Y,Z]. Here X, Y, and Z are indeterminates over the field of
complex numbers C. Set i =V —1. Show

A= (X2-2%72ZX - Y?
=(X-Z,Y-2)NX~-2Y+ 2)
NX+Z,Y—-iZ)YNX+ 2 Y + i2)

is an irredundant, primary decomposition of 2.

19. In Exercise 18, show % = (Z%,XZ,Y%,Zy%) = (Z,Y®) N (X,Y3,ZY)is an
irredundant, primary decomposition of .

20. What are the isolated and imbedded primes of U in both Exercises 18 and
19?7

21. Generalize Lemma 11.10b as follows: Suppose %, . . . , 9, are ideals of
a commutative ring R. Let S be an additive subgroup of R which is closed
under multiplication (e.g., S a subring of R with or without identity, or S
an ideal of R). Suppose at least n ~ 2 of the %, are prime ideals. If § C
Ul U, then S C U, for some j.
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Tensor Products

In this chapter, we discuss bilinear mappings and their connections with tensor
products. We also give a brief description of some of the more important func-
torial properties of the tensor product.

Tensor products are used to solve a mapping problem in the theory of bilinear
functions. Hence, we begin this section with the definition of a bilinear map. As
usual, R is a commutative ring.

Definition 12.1 Let M, N, and P be R-modules. A function  : M X N — P
is called an R-bilinear mapping if the following two conditions are satisfied:
(a) For each m € M, the map n — y(m, n) is an R-module homomorphism
from N to P.
(b) For each n € N, the map m — {(m, n) is an R-module homomorphism
from M to P.

Thus, if ¢ : M X N +— P is an R-bilinear mapping, then for every m € M,
Y(m, *) € Homg (N, P), and for every n € N, Y(*, n) € Hom,(M, P). In
particular, the following equations hold for all m, m;, m, € M, n,n;, n, €N,
andr, r, ER:

122 §(m, rin; + rny) = rip(m, ny) + rpb(m, ny)
Y(rimy + romy, n) = rib(my, n) + rplb(my, n)

135
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Clearly, any function § : M X N +— P which satisfies the equations in 12.2 is
an R-bilinear mapping from M X N to P.

We will let Bil,(M X N, P) denote the set of all R-bilinear mappings of
M X N to P. Since the zero map from M X N to P obviously satisfies the
equations in 12.2, Bily(M X N, P) + (J. When the ring R is clear from the
context, we will usually drop any reference to R. Thus, an R-bilinear mapping
from M X N to P will just be called a bilinear mapping.

The reader has already encountered several important examples of bilinear
mappings in elementary courses. Here are some of these examples:

Example 12.3 (a) Let V be a vector space over the field of real numbers R.
Then any inner product, ( , ) : V X V = R, on V is clearly an R-bilinear
mapping from V X V to R. For a concrete example, we have the standard inner
product, (a, B) = B, on R".

We note in passing that a complex inner product on a complex vector space
V is not a C-bilinear mapping from V X V to C. (See [2] for definitions.)

(b) If R is a commutative ring, then multiplication (x, y) > xy is an R-
bilinear mapping from R X R to R. Notice that addition (x, y) — x + y is not
an R-bilinear mapping from R X R to R.

(c) The function ¢ : RZ X R? > R given by

X u X U
U)LY - 2]
is an R-bilinear mapping. |

Suppose  : M X N — P is a bilinear mapping. We take this opportunity to
caution the reader about the difference between bilinear mappings and R-module
homomorphisms. The product M X N is an R-module with addition and scalar
multiplication given componentwise:

(m,n) + (m',n') = (m+ m,n+n'), r(m, n) = (rm, rn)

An R-bilinear mapping s is rarely an R-module homomorphism from M X N to
P. In fact, suppose the bilinear mapping s is also an R-module homomorphism.
Forany m € M and n € N, we have y(m, n + n) = y(m, n) + $(m, n) from
equation 12.2. Since ¢ is also an R-module homomorphism, we have

Y(m, n + n) = $((0, n) + (m, n)) = $(0, n) + $(m, n)

Comparing these results, we have y(m, n) = §(0, n). Again, since s is
bilinear, ¢(0, n) = (00, n) = OY(0, n) = 0. Therefore §(m, n) = 0. Thus,
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the only R-bilinear mapping from M X N to P which is also an R-module
homomorphism is the zero map. In symbols, we have

12.4 Bilg(M X N, P) N Homg(M X N, P) = (0)

In the theory of bilinear functions, the following universal mapping problem
naturally arises.

12.5 (Universal Mapping Problem) Suppose M and N are R-modules. Do
there exist an R-module S and an R-bilinear mapping a : M X N — § with the
following property? Given any R-module P and any R-bilinear mapping { : M X
N +— P, there exists a unique R-module homomorphism f: § +— P such that fa
= ¢.

In other words, can we construct an R-module § and an R-bilinear mapping o :
M X N — §such that any R-bilinear mapping {s : M X N +—> P factors uniquely
through S forming the following commutative diagram?

a
M XN =i S

12.6 AN

¥ P f

We will see in a moment that the tensor product of M and N is a solution to
the universal mapping problem. Before constructing tensor products, we point
out that any solution to the universal mapping problem is unique up to isomor-
phism. To be more precise, we have the following lemma.

Lemma 12.7 Suppose (S, ) and (S’, a') are two solutions to the universal
mapping problem. Then there exist R-module isomorphisms f: S = S’ andf’ : §'
= § such that

@ ff = Isand ff’ = Is.

(b) The following diagram commutes:

Here I and I denote the identity maps on S and S’, respectively. The diagram
in (b) commutes if fa = a’ and f'a’ = «.
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Proof. Since (S, a) is a solution to the universal mapping problem and o' is
an R-bilinear mapping from M X N to §', there exists a unique R-module
homomorphism f: § > §’ such that fa = a'. Similarly, there exists a unique
R-module homomorphism f* : §' —> § such that f'a’ = «. The composite map
f'f: § — § is an R-module homomorphism for which f'fa = a.

On the other hand, since (S, a) is a solution to the universal mapping
problem, there exists a unique R-module homomorphism g : § — § such that

x

12.8 MXN =t S

x|

is commutative. Clearly, the R-module homomorphism /; makes 12.8 commute,
Therefore, g = I;. Since f'f also makes 12.8 commute, f'f = I;. A similar proof
shows ff’ = Ig. Thus, the maps f and f' satisfy (a) and (b). |

If we construct any solution (S, a) of the universal mapping problem, then
Lemma 12.7 implies (S, a) is the only solution to the universal mapping prob-
lem (up to isomorphism).

Before constructing a solution to the universal mapping problem, it might be
wise to review a few facts about direct sums of R-modules.

Suppose A is any nonempty set (finite or infinite). Consider the R-module U
= @,ea R. Thus, U is the direct sum of A copies of R. The module U is just the
set of all functions from A to R which vanish except possibly at finitely many
elements of A. In symbols,

U=1{h:A R|h(i) = 0 except possibly for finitely many i € A}
Addition and scalar multiplication on U are defined by the following formulas:

129 (h + hy)(i) = h(i) + hy(i) foralli€ A
(rh)(i) = r(h(i)) forallie A

In equation 12.9, h,, h,, and h are functions in U and r € R.
For each index i € A, let §;: A — R be the function defined by the following
formula:

0 ifj#i

12.10 §,(j) = {1 it = i forallj € A
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Clearly, each 3, is a function in U. If k is any function in U, then k can be written
uniquely in the following form:

1211 h = D, kY,

i€A

The sum in equation 12.11 makes sense and is, in fact, just some finite linear
combination of the vectors in {3, | i € A} since h(i) = 0 for all but possibly
finitely many i in A. It follows immediately from equation 12.11 that {3, | i € A}
is a free R-module basis of U. Thus, U = @®,e4 R is a free R-module with free
R-module basis ' = {3, | i € A}. The vectors in I are in a one-to-one corre-
spondence with the elements of A.

For example, suppose A is finite. Say A = {1, . . . , n}. We can identify a
function & : A — R with the column vector & = (h(1), h(2), ..., h(n))' €
R*. ThenU = @,cp R = R",and " = {3,|i € A} = &, the canonical basis of
R".

We can use these ideas to construct a solution to the universal mapping
problem. Suppose M and N are R-modules. Set A = M X N = {m, n) |m €
M, n € N}. Notice that A is (usually) a very large set. The elements in A are
ordered pairs (m,n), mE M,andn EN. Set U = @, nyea R- Thus, U is the
direct sum of M X N copies of R. As we have seen above, U is a free R-module
with free R-module basis ' = {3,, ., | (m, n) € A = M X N}. Let U, denote
the R-submodule of U generated by all vectors in U of the following four types:

12.12: 8(m+m"") - 8(m,n) - 8("!', n)
(ma+n’) ~ Oma) T 9m.n)
(rmm) = TO(mm

O mrmy = TO(mm

Thus, as m and m’, n and n’, and r range over M, N, and R, respectively, the
elements listed in equation 12.12 form an R-module basis of U,.

Set S = U/U,. Then § is an R-module. There is a natural mapa : M X N —
S given by a(m, n) = 3, + Uo. Thus, a(m, n) is just the coset in U/U,
containing the basis vector 8,, ,,- Since the R-submodule U, is generated by the
vectors listed in equation 12.12, it is easy to check that a is an R-bilinear
mapping from M X N to S. For example, using the first type of generator in
12.12, we have

a(m + m,v n) = 8(m+m’. n) + UO = (8(m,n) + 8(m',n)) + Uo
(8(”‘_") + Uo) + (8(”"_") + Uo)
a(m, n) + a(m', n)
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The other three types of generators in equation 12.12 ensure that a satisfies the
remaining three necessary conditions in order that the equations in 12.2 be
satisfied. Thus, @ € Bilz(M X N, §).

We claim (U/Ug, ) is a solution to the universal mapping problem. This
claim follows from our next lemma.

Lemma 12.13 Let ¢ : M X N +—> P be an R-bilinear mapping. Then there
exists a unique R-module homomorphism f : U/U, —> P such that fa = .

Proof. T = {8, | (m, n) €M x N}is a free R-module basis of U =
@<.....>e K- Hence, there exists a unique R-module homomorphism f* : U — P
such that f' (8, .)) = ¥(m, n) for all (m, n) € M X N. Since U, is generated
by the vectors given in 12.12, and { is a bilinear mapping, f’ vanishes on
U,. Hence, f’' induces an R-module homomorphism f : U/U, — P given by
f(s(m,n) + UO) = f’(a(m,n)) = ""(m) n)- In pa.rticular,fa = "’

The fact that f is unique is obvious. |

Let us introduce a couple of definitions before summarizing what we have
now proved.

Definition 12.14 The R-module U/U, constructed above is called the tensor
product of M and N (over R) and is written M &)  N.

Definition 12.15 The coset 3, ,, + Uy in M @y N is called the tensor product
of m and n. We will let m ® n denote the tensor product of m and n.

When the ring R is clear from the discussion, we will drop the letter R from our
notation. Thus, M & N is the tensor product of M and N over R and m ) n is
the coset 8,, ., + U o in M @ N. With these changes in notation, the generators
of U, being zero in U/U, imply the following relations in M & N:

12.16: (m + m')®n
m® (n +n')
m®@n

These relations hold for all m, m’ €E M, n,n’ €N, and r €ER.

The bilinear mapping o : M X N — M @ N is given by a(m, n) = m @
nforall (m,n) €M x N. Lemmas 12.13 and 12.7 can now be put put together
in the following theorem.

(m®n) + (m' ®n)
(m@n)+ (m@n')
m@rm =r(m® n)

mnon

Theorem 12.17 Let M and N be R-modules. There exist an R-module M &),
N and an R-bilinear mapping a : M X N +—> M @ N given by a(m, n) =
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m ® n with the following property: If y : M X N — P is any R-bilinear
mapping, then there exists a unique R-module homomorphism f: M @z N +—
P such that fa = .

Furthermore, if S’ is an R-module and o' : M X N — §' an R-bilinear
mapping such that (S’', a’) is a solution to the universal mapping problem, then
there exists a unique R-module isomorphism of j : M ®z N = §' such that jo =
a'. ]

Thus, up to isomorphism, (M ®; N, a : (m, n) — m @ n) is the unique
solution to the universal mapping problem. Notice that Theorem 12.17 implies
there exists a one-to-one correspondence between Bilg(M X N, P) and
Homgz(M @5 N, P) given by & — f.

Having constructed the tensor product M @ N of two modules M and N to
solve the universal mapping problem given in 12.5, we can now consider the
general problem for n modules M;, . . . , M. A function§ : M, X - - - X M,
— P is called an R-multilinear mapping if for eachi = 1, . . . , n and for all
vectorsmy, . .. ,m_, My, ... ,m,inM;, ... M, M, ...,M
respectively, the map

n’

Y(my, . ..,m_y, ¥, my, . ..,m,) € Homg(M,;, P)

In other words, the function Y(x;, . . . , x,) : M; X - - - X M, — Pis
a multilinear mapping if ¢ is a linear function of each variable when the
other variables are held fixed. If n = 2, a multilinear map is just a bilinear
map. We have the analog of the universal mapping problem for multilinear
maps:

12.18 LetM,, ..., M, be R-modules. Do there exist an R-module § and an
R-multilinear mapping o : M; X - - - X M, —> S with the following property?
For any R-multilinear mapping ¢ : M; X - - - X M, —> P, there exists a unique
R-module homomorphism f : § + P such that fa = .

There is a solution to 12.18 (unique up to isomorphism) which is entirely
analogous to the n = 2 case. Let U be the following free R-module:

U=@(m, ..... myem x---xmR

Let U, be the R-submodule of U spanned by the analogs of the expressions in
equation 12.12, e.g.,
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Scts= U/U0=M1®R'"®RM,,.Themapa:M1 D G XM"HMI
®r - - - ®r M, is given by

e myt Up=m @g- - Qpm,
We then have the analog of Theorem 12.17.

a(ml, e ey m,,) = 8(,,,

Theorem 12.19 Let M,, . . . , M, be R-modules. There exist an R-module
M, ®py - - - ®r M, and an R-multilinear mapping a : M; X - - - X M, —> M,
®r - - @r M, givenby a(m,, ..., m,) = m, ®g - - - g m, such that the

following property is satisfied: If s : M; X - - - X M, > P is any R-multilinear
mapping, then there exists a unique R-module homomorphismf: M, ®5 - - - ®j
M, — P such that fa = ¢.

Furthermore, if (S’, a') is a second solution to the universal mapping prob-
lem, then there exists a unique R-module isomorphismj: M; @y - - - @ M, —
S’ such that jo = o'.

The proof of Theorem 12.19 is the same as the proof of Theorem 12.17. We
leave all details to the exercises at the end of this chapter. The R-module
M, ®py : - - ®g M, is called the tensor product of M,, . . . , M,,. Once again, if
R is understood from the context, we will drop R from the notation and write M,
® - - - ® M, Notice that fa = ¢ in Theorem 12.19 means f(m; @ - - - @ m,,)
=4¢(m, ... ,m)forall (my,... m)EM X - XM,

Having introduced the tensor product, let us now discuss some of this con-
struction’s more interesting properties.

Theorem 12.20 Let M, N, and P be R-modules. Then the following R-modules
are isomorphic:
@M@pN=N@M [m®@n+—n®m]
(b) (M @ N) R P =M@ (N®rP)=M®@pNRgP
[(mM@®n)@pr>m® (n@p)—> m@n p]
() (MO N)®rP=(M®zrP)D (N®xP)
[(m,n)@pr—> (m@p,n®p)]
dR@pxM=M [r®@m— rm)]

Proof. The maps giving the isomorphisms in (a) through (d) are listed in
square brackets at the right of or below each isomorphism. In each case, the
isomorphism in question is constructed from the uniqueness of the solution to the
universal mapping problem. We illustrate the method by proving (a) We leave
the proofs of (b) through (d) to the exercises.

Defineamapd: M X N+—> N @rMby ¢(m,n) = n® m. Sincen @ m
= 8(npmy T Up, U is a well-defined function. The relations listed in equation
12.16 (for the R-module N ®; M) imply ¢ is an R-bilinear mapping. By
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Theorem 12.17, there exists a unique R-module homomorphism f: M @ N —
N ®z M such that f(m @ n) = n@ mforall (m,n) EM x N. Similarly, there
exists a unique R-module homomorphism g : N ®r M — M ®j N such that
gn@m) =m@n.

Leta : M X N +— M @y N be the canonical bilinear mapping given by
a(m,n) = m@ n. Then gfa = a and la = a. Here I denotes the identity map
on M @y N. Since (M @i N, ) is a solution to the universal mapping problem,
there is only one R-module homomorphism p : M ®z N —> M @y N such that
pa = a, namely p = I. Therefore, gf = I. Similarly, fg is the identity map on
N ®z M. In particular, f(m @ n) = n @ m is an R-module isomorphism of
M @z Nonto N ®g M. |

Let M, M', N, and N’ be R-modules. Suppose f € Homg(M, M’') and g €
Homg(N, N'). The reader can easily check that y : M X N —> M’ @z N’
given by ¥(m, n) = f(m) ® g(n) is an R-bilinear mapping. Hence, by
Theorem 12.17 there exists a (unique) R-module homomorphism h :
M ®g N +—> M’ @g N’ such that s(m @ n) = f(m) @ g(n) for all (m, n) €
M X N. The R-module homomorphism # is called the tensor product of fand g.
The standard notation for the tensor product of fand g is f ® g. Thus, f® g €
Homg(M @z N, M' @g N'), and (f ® g)(m @ n) = f(m) ® g(n) for all
m€E Mand n €EN.

Composites of homomorphisms work nicely with respect to the tensor prod-
uct. Suppose

f f g g
M— M +—»M and N— N — N’

are R-modules and R-module homomorphisms. Then the following identity is
true.

1221 FHN® (') = FReHI®2g)

The R-module homomorphisms on each side of equation 12.21 are maps from M
®rNtoM'’ ®gN''. We have seen in the construction of the tensor product that
M @px N is generated as an R-module by all elements of the form m ) n with
(m, n) E M X N. In particular, the two R-module homomorphisms given in
equation 12.21 are equal if they have the same value on m & n for all (m, n)
€M x N. Since

(FH® ENm@n) = (FHm) @ (g'g)(n)
=f(flm)) ® g’ (g(n)) = (f ® &')(f(m) @ g(n))
= [ @HUPDNm@n)

the equality in 12.21 is established.
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One of the most important properties of the tensor product is the fact that M
®x (*) and (*) ®x M are right exact functors. This means if

8 f
N —»Nm— N' — (0)

is a right exact sequence of R-modules, then
1®g 1&Qf
1222 M@ N' —> M @zxN+— M @z N' — (0)
@1 @1
N QM > N@xM — N' @z M — (0)

are right exact sequences. In the sequences in 12.22, 1 denotes the identity map
from M to M. By Theorem 12.20a, it suffices to prove one of these sequences is
right exact. Consequently, we prove the following result.

Theorem 12.23 Suppose

g f
N —=> N~ N (0)
is a right exact sequence of R-modules. Let M be any R-module. Then

1®g 1®f
M@gN > M@ N—> M@ N — (0)

is a right exact sequence of R-modules.

Proof. We haveseenthat G = {m @ n'' | m € M, n’' € N''} is a set of
R-module generators of M Xz N'’. Fix an element m & n'' € G. Since fis a
surjective, R-module homomorphism, there exists an n € N such that f(n) =
n'’. Therefore, (1 ® H(m @ n) = m @ n'’. Thus, G C Im(1 & f). This
immediately implies (1 ®f)(M @z N) = M @z N''; that is, 1 Q) fis surjective.

By equation 12.21, (1@ NH(1 ®g) = 1 ® fg = 1 ® 0 = 0. Therefore,
Im(1® g) C Ker(1 ® f). Thus, to complete the proof of the theorem, we must
argue Ker(1 ®@ f) C Im(1 ® g). Since Im(1 &® g) C Ker(1 ® f), there is a
natural R-module surjection M @ N/Im(1 @ g) — M & N/Ker(1 & f). Since
1 ® fis surjective, the first isomorphism theorem implies M @ N/Ker(1 & f)
= M (@ N''. Putting these two maps together, we have an R-module homomor-
phism b : M @ NIm(1 &® g) — M @ N''. The map h is given by h(m @ n
+ Im(1 ®g)) = m @ f(n) forall m € M and n € N. Since the two maps
making up h are surjective, h is surjective. It is clear from the definition of 4 that
h is an isomorphism if and only if Im(1 ® g) = Ker(1 &® f). Thus, it suffices
to argue h is an isomorphism.

Suppose m € M and n’’ € N'’. Since f is surjective, there exists ann E N
such that f(n) = n"’. Then A(m @ n + Im(1 ® g)) =m@f(n) =m&n’".
Suppose n; € N is another element of N such that {n,) = n". Then f(n — n,)



Tensor Products 145

= f(n) — f(n,) = n'’ — n'’ = 0. Therefore, n — n, € Ker(f) = Im(g). In
particular, m @ (n — n,;) € Im(1 ® g). Thus, the cosets m @ n + Im(1 ® g)
and m ® n; + Im(1 ® g) are equal in M @, N/Im(1 ® g). Hence, there is a
well-defined function §s : M X N'' —> M @ N/Im(1 Q) g) given by Y(m, n'’) =
m®n + Im(1 ® g). Here n is any element in N such that f(n) = n'’. Itis easy
to check that s is an R-bilinear mapping from M X N'' to M @ NIm(1 &) g).
Theorem 12.17 implies there exists a unique R-module homomorphism
pM@rN' — M@rNIm(1 @ g) such that p(m @ n'’) = Y(m, n'') =
m®n + Im(1® g).

Now

hp(m @ n'')

hy(m, n'") = h(m @ n + Im(1 ® g))
=m®f(n) =m@n"
for any n € N such that f(n) = n'’'. Also,
ph(m @ n + Im(1 ® g)) = p(m @ f(n))
=¢(m,f(n)) =m@n + Im(1 ® g)
Thus, the R-module homomorphisms h and p are inverses of each other. In

particular, 4 is an isomorphism and Im(1 ® g) = Ker(1 ® f). |

We note that the functor M @y (*) does not in general preserve injective
maps. Thus, M ® (*) does not in general preserve short exact sequences.
Consider the following example.

Example 12.24 Consider the following short exact sequence of Z-modules:

f
©) > Z+> Z V> Z12Z v (©0)

Here g is the Z-module homomorphism given by g(x) = 2x and f is the natural
map given by f(x) = x + 2Z. Suppose we tensor this sequence with the
Z-module Z/27. By Theorem 12.23, we get the following right exact sequence:

1®g 1®f
12.25 ZRZ @z Z v ZRZ Q7 Z v Z12Z Q7 2/2Z — (0)

The sequence in 12.25 is not a short exact sequence of Z-modules because the
Z-module homomorphism 1 & g is not injective. ”I;o see this, first note that
Theorem 12.20d implies Z/2Z ®; Z + (0).lfx =0or1inZR2Z andn € Z,
then

(1®Nx®n) =x@®gn) =x@2n =R n=0Qn=0
Thus, the map 1 ) g is identically zero. ]
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The tensor product is often used to extend scalars from one ring to another.
Suppose M is an R-module and f: R — T a ring homomorphism (of commu-
tative rings). Then T is an R-module with scalar multiplication given by rt =
f(r)tfor all r € R and ¢t € T. In particular, we can form the tensor product M
®x T of the R-modules M and T. It is easy to see that the R-module M @)y T is
a T-module with scalar multiplication defined by t(m ® ¢') = m @ #'.

If T = {m,...,m} is an R-module basis of M, then clearly
{m,®1,...,m,® 1}is aT-module basis of M @ T. Thus, if M is a finitely
generated R-module, M &), T is a finitely generated T-module.

The T-module M @), T is said to be obtained from M by extending scalars
(from R to T'). Thus, the property of being finitely generated is preserved under
extension of scalars. On the other hand, extending scalars usually does not
preserve short exact sequences. If

g f
O —» N> N—N— (0)

is a short exact sequence of R-modules, then

&®1 @1
N @QTH— NRrT — N @ T — (0)

is a right exact sequence of 7-modules by Theorem 12.23. The map g & 1 need
not be injective, as Example 12.24 shows.

EXERCISES

1. Let V be a vector space over the complex numbers C. Why is a complex
inner product on V not a C-bilinear mapping?

2. In the construction of the tensor product, complete the argument that
a(m, n) = 8, . + Upis an R-bilinear mapping of M X N into U/U,,.

3. In the proof of Lemma 12.13, show that f(3,, ,, + Uy) = $(m, n) is the

only R-module homomorphism from U/Uj, to P for which fa = .

Prove Theorem 12.19.

5. LetMul (M, X - -+ X M,, P) denote the set of all R-multilinear mappings
of M, X - - - X M, into P. Prove the following assertions:
(@) Mulp(M; X - -+ x M,, P) N Homg(M; X - - - X M, P) = (0).
{b) There is a 1-1 correspondence between the two sets

Mulg(M, X - - - X M,, P) and Homg(M, X - - - X M,, P).

6. InExercise 5, if f € Mulz(M; X - - - X M,, P), is Im(¥) an R-submodule
of P?

7. Prove (b), (¢), and (d) in Theorem 12.20.

8. Generalize Theorem 12.20c as follows: Suppose {M, | i € A} is a collection
of R-modules. Show (D;ca M;) Qg P = Diea(M; ®i P).

~
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9.

10.

11.

12.
13.

14.

15.

16.

17.

18.

Suppose f: R — T is a homomorphism of commutative rings. Let M be an

R-module. Show that the scalar multiplication t(m @ ¢') = m ® 1’ is well

defined and makes M @, T a T-module.

With the same notation as in Exercise 9, suppose M,, . . . , M, are R-

modules. Show the T-module (M; @z T) Q@7 - + - @p (M, R T) is

isomorphic to the T-module (M; @y - - - @ M,,) Rr T.

If M and N are free R-modules of ranks m and n, respectively, show M X,

N is a free R-module of rank mn.

If A is an ideal in R and M is an R-module, show M @z R/A = M/UM.

Let A and B be ideals in R. Prove the following assertions:

(a) The R-module (R/A) ®x (R/B) is a commutative ring with multipli-
cation defined as follows: (x @ y)(x' @ y') = xx’ @ yy'.

(b) (R/A) ®g (R/B) = RI(A + B) (as rings).

(c) ZInZ ®z ZimZ = Z/dZ where d is a greatest common divisor of m and
n.

Suppose R is a local ring R = (R, m, k). Let M and N be finitely generated

R-modules. Show M @ N = (0) if and only if M = (0) or N = (0).

Let M and N be R-modules. Suppose D= x; ® y; = 0in M ®, N. Show

there exist finitely generated submodules M, C M and N, C N such that

D=1 % @y = 0in My ®g No.

Suppose M is a direct summand of a free R-module F. Show M @, (*)

preserves short exact sequences. Thus, if

4 f
0 —» N —»N— N — (0)
is a short exact sequence of R-modules, then
1®g 1®f
© > M@ N' — M@z N—> M@ N' — (0)

is also a short exact sequence of R-modules.
Suppose

g f
0 — N —»N— N — (0
h K
0 M- M- M — (0
are short exact sequences of R-modules. Show the complex of R-modules
e®h &k
0)—> N @M — NQ®gM— N ® M" — (0)

is not necessarily exact even when R is a field.
Let F be a field. Let V and W be finite-dimensional vector spaces over F, and
le¢ T € Homg(V, V) and S € Homg (W, W). If A and B are matrix
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representations of T and S, respectively, find a matrix representation of T (%)
S € Homp(V @ W, V @ W) in terms of A and B. (Hint: Consider the
Kronecker product of A and B. See [2; p. 67].)

(d) Let M, N, and P be R-modules. Show

Homgy(M ®g N, P) = Hom, (M, Hom, (N, P))

19. Suppose P is a direct summand of a finitely generated, free R-module F.
Show

Homg(P, M) ®r N = Homg (P, M @ N).

20. Suppose F is a field. Let X,, . . . , X, and Y,, . . . , Y, be indeterminates
over F. Let U be an ideal in F[X,, . . . , X,], and B an ideal in
FiY,, . . ., Y,). Show that the two rings F[X;, . . . , X, /¥ ®f
FlYy,..., Y, VB andF[X,,...,X,,Y,,...,Y, VU + B are isomorphic

as F-algebras. (Before proving this theorem, give some thought to what the
symbols A + B mean as an ideal in F[X,, ..., X, Y,...,Y,])
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Fitting Ideals

In this chapter, we will assume R is a Noetherian ring and M a finitely generated
R-module. Suppose I’ = {m,, ..., m,}is an R-module basis of M. If M = (0),
then we take n = 1 and m; = 0. Every element m € M can be written as an
R-linear combination of the elements of I' : m = rym; + - - - + r,m,. Here
ry, ..., I, €R. Since I is not necessarily a free R-module basis of M (M may
not even be a free R-module), there may be many different R-linear combina-
tions of m,, . . . , m, which give m. We construct a relations matrix for M as in
Chapter 10.

Let A = {\,, ..., \,} be a free R-module basis of R". Let f denote the
R-module homomorphism in Homg(R",M) determined by A and I'. Thus,
i r\) = 20y rim;. Let K = Ker(f). Then

L s
131 0O)—» K— R'—> M (0)

is a short exact sequence of R-modules. The map v in 13.1 is the inclusion map
of K into R". Since R is a Noetherian ring, K is a finitely generated R-module.
This follows from Corollary 10.8 and Lemma 10.2. Suppose A = {3,,...,3,}
is an R-module basis of K. Notice that K = (0) if and only if I" is a free
R-module basis of M. In this case, we take m = 1 and 8, = 0. If we now let

149
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= {B}, - . . » Wy} be any free R-module basis of R™ and define g : R™ — K by
g1 rjpy) = 2Ly rd;, then Im(g) = K, and

g f
131" R">R'» M- (0)
is a finite presentation of M.
Obviously, the sequences in 13.1 and 13.1’ are closely related. We can use
either sequence to define a relations matrix for M. The three bases I', N, and A
determine a relations matrix C(I',A,A) € M, ,(R) which is defined as follows:

132 CTAA) = () where §; = D, ch;forallj=1,. . .,m.

j=1
Notice that we are regarding I', X, and A as ordered sets here. Any reordering of
the elements in any one of these sets results in a new relations matrix. If the
elements in I' (A or A) are reordered, we will treat the new set as a different
(ordered) basis of M (R" or K) and write T (A’ or A’) for this set.

Having chosen (ordered) bases I', A, and A for M, R", and K, respectively,
we then have the relations matrix C(I',\,A) € M,, . ,(R). We can then consider
the sequence of ideals {I,(C(I',\,A)) |t € Z} in R. The reader will recall from
Chapter 4 that for 1 < ¢ < min{m,n}, 1,(C(I',A,A)) is the ideal in R generated
by all £ X ¢ minors of C(I',\,A). If t = 0, then ,(C(I',\,A)) = R, and if ¢t >
min{m,n}, then [,(C(T',A,A)) = (0). Thus, we have the following descending
sequence of ideals in R:

133 R = I,(C(I',AA)) D I, (C(T,AA)) D L(C(T,NA)D - - -

As our notation indicates, the sequence of ideals constructed in 13.3 a priori
depends on the choice of ordered bases I', A, and A. In our first lemma in this
section, we show the ideals in 13.3 in fact do not depend on any specific choice
of A.

Lemma 13.4 Suppose A and A’ are two sets of generators of K. Then for every
teZ,1(C(I',\A)) = L(C(T,\A')).

Proof. Suppose A = {8;, ..., 8,tand A" = {§],...,8,}. SetC =
C(I'\\A) = (cj) EM, ,(R). Then §; = Sleienforalli=1,...,m.
SetD = C(I',AA") = (dy;) €E M, ,(R). Then §; = D71 dy\; forall k =
I,...,p. Since A and A’ are both R-module bases of K, we have

P
135 8 =D xd fori=1,...,m
k=1

and

m
8 = D yd fork=1,...,p
i=1
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The coefficients x;, and y,; in equation 13.5 are elements from R. Set X =
(xx) EM,,, ,(R)and Y = (yy) € M, x»(R). Then foreachi=1,...,m,
we have

P n P
C,] = Z Xik 8’( = xlk(z dlq ) = Z}(](E Xikdkj) )\j
k=1 = j= =1

j=1

Since A is a free R-module basis of R”, we conclude that c; = 3% x;d,; for
ali=1,...,mandj =1, ..., n A similar computation can be done
beginning with §,’. Hence, we have

136 C=XDand D = YC.

It now follows from Lemma 4.5 that [(C) = [(XD) C I(D) and
I(D) = I(YC) C I,(C). Therefore, I,(C(I',\,A)) = L(C(T',A,A")) for all
teZ. ]

Since the ideals in 13.3 do not depend on any specific choice of basis A of X,
we will drop the symbol A from our notation. Thus, the ideals in 13.3 will be
written as follows:

13.7 R = I,(C(T',A)) 2 L(C(IA)) D L(C(TA) 2 - -

We next argue that the ideals in 13.7 do not depend on our choice of the free
R-module basis A. By this we mean the following: Suppose A’ = {\{,...,\,’}
is another free R-module basis of R”. The bases I' and A’ define an R-module
homomorphism f’ : R* — M given by f' (D7-1r\) = Xy rm,. K =
Ker(f'), then we get another short exact sequence.

v f
138 (0)— K' > R"—> M — (0)

By choosing a basis A’ of X', we get another relations matrix C(I',A",A"). We
then have two sets of ideals {/,(C(I',A))} and {Z,(C(I',A"))}. Since these ideals
do not depend on our choice of A and A’, we drop this part of the notation. We
claim these two sets of ideals are exactly the same. This follows from the next
lemma.

Lemma 13.9 [,(C(I',A)) = L(C(I',A")) forall t € Z.

Proof. By Lemma 13.4, we can compute /,(C(I',A")) by choosing any basis A’
of K'. We do this in a special way. Since A and A’ are both free R-module bases
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of R", there exists an R-isomorphism 8 : R” — R” given by 0(X7=) rA,) =
7-1 r:\;. We than have the following diagram.

v f
13.10 O) — K — R*"'—> M — (0)

ol I

v r
O~ K —» R —> M (0)

The square in the right portion of 13.10 commutes; that is, f'0 = f.

We claim that @ induces an R-module isomorphism of X onto K'. To see this,
let 8 € K. Then f'8(8) = f(8) = 0. Therefore, 8(8) € Ker(f') = K'.
Consequently, 8(K) C K'. Conversely, suppose 8' € K'. Then f'(3') = 0.
Since 0 is surjective, 8’ = 0(8) for some 8 € R”. Thenf(8) = f'8(8) = f'(3")
= 0. Therefore, 8 € Ker(f) = K. In particular, 8(K) = K’, and our claim is
proved. ‘

NowletA = {3;,...,3d,} be an R-module basis of K. Let 8, = X7-; c;\;
foralli = 1,...,m ThenI(C(I',A)) = I,((c;)). Since 8(K) = K', A" =
{0(3,), . . ., 0(3,)} is an R-module basis of K'. Also, 8(3,) = X7 ¢; 0()))
= XM yc;Mforalli =1, ..., m. Therefore, [(C(I',\')) = I,((c;)). In
particular, /,(C(I',A)) = L(C(T,A')). This completes the proof of Lemma
13.9. ]

Since the ideals in 13.3 do not depend on any specific choice of A or A, we
will drop both symbols from our notation. Hence, we can write the descending
chain of ideals in 13.3 as follows:

1311 R = L(C@) 2L(CMT) 2L(CT)N2---

The absence of notation here means the following: To construct the ideals in
13.11, choose an (ordered) basis I" of M. Then choose any free R-module basis
A of R” and set up the short exact sequence in 13.1. Choose any basis A of
K = Ker(f) and form C(I',A,A). The ideals {/,(C(I',A,A)) | ¢t € Z} depend
only on our first choice I'.

We have to be careful about the role I' plays in determining the ideals
{1,(C(T)) | t € Z}. As we will see in Example 13.15, the ideal 7,(C(T")) is
dependent on the specific choice of I". However, there is one important change
in I' which leaves the ideals in 13.11 the same.

Suppose I' = {m,, . . . , m,} is a fixed set of generators of M. Let X =
(x;) € Gl(n,R). Set XI' = {mj, . . ., m,} where m{ = X, x;m; for
i =1,..., m. Since X is invertible, XI is another set of generators of M.

Lemma 13.12 1,(C(T')) = I(C(XT)) for all t € Z.
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Proof. Suppose € = {g,, ..., €,}is the canonical basis of R". Then we have
the following short exact sequence.

. f
13.13 O)—» K—> R*"— M- (0)

In 13.13, f is the R-module homomorphism given by f(>.7-| rig;) = Dr=1 rim;

and K = Ker(f), As usual, « is the inclusion map. Let A = {3,,...,35,} be
an R-module basis of K, and set 8, = X7 cy¢; fori = 1, ..., m. The last

two lemmas imply [,(C(T")) = 1,((c;)) forallt € Z.

In order to compute /,(C(XT')), we can choose any free R-module basis of
R" and the corresponding map f' : R* — M. Let g, = X, x.¢; for k =
1,..., n. Since X is an invertible matrix, €’ = {e], ..., €,} is a free R-module
basis of R”. This follows from Corollary 5.16. Define f' : R* — M by
F(Zr rgl) = XP=1 rm|. Set K' = Ker(f'). Then

L f
13.14 O)—» K'—> R*"—> M — (0

is a short exact sequence of R-modules. Notice that

n

fler) = f(Z xkjej> = E x;f(g) = 2 xgm; = my = f'(gp)
j=1 j=1

j=1

foreachk = 1, ..., n. Since €' is a basis of R", it follows that f = f'. In
particular, K = K’ and A is a basis of K'.

Suppose 3, = 2.7 d;e;foreachi = 1,. .., m. Then C(XT) = (dj;). For
eachi =1, ..., m, we have

n n n n n n
2 Ci€ = 81‘ = 2 d,'ksll( = 2 dik(Z ij8j> = 2( d,'jxkj>81.
j=1 k=1 k=1 j=1 1 \k=1

Jj=

Therefore, c;; = Df=1 daxy; foralli = 1,...,mandj =1, ..., n. These
equations imply C(I') = C(XT')X. It now follows from Corollary 4.8 that
I(C()) = I(C(XT')) forall t € Z. |

One important application of Lemma 13.12 occurs when X is a permutation
matrix. In this case, XI' is just some reordering of the elements of I'. Lemma
13.12 implies the ideals in 13.11 do not depend on the ordering of the elements
inI.

We have mentioned that the ideals {/,(C(T')) | t € Z} do in general depend
on our choice of I'. Consider the following example.
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Example 13.15 LetR = Z,and M = Z/2Z @ Z/2Z. Clearly, M is a finitely
generated R-module. One basis for M which is readily apparentis I' = {m, =
(1,0), my = (0,1)}. Then

L f
13.16 0)— K—> R2 > M — (0)

is a.short exact sequence. Here f is defined by f(r\e;, + &) = rymy, + r,m,
= (r),F,) where 7 denotes the image of r in Z/2Z. K = Ker(f). It is easy to
check that A = {2g,,2¢,} is an R-module basis of K. Therefore,

) = CTe.d) = [f) 2] & Mys@)

In particular, I, (C(')) = 2Z.
Suppose I' = {m, = (1,0), m, = (0,1), m; = (1,1)}. Clearly, I'"" is also
an R-module basis of M. The corresponding short exact sequence for I'' is
v ]
1317 0O~ K —» R —> M- (0
The map g : R® > M is given by
g(r,s, + r282 + r383) = r]m] + rzmz + r3M3

and K’ = Ker(g). A simple calculation shows A’ = {2¢,, 2¢,, &, + €, + &3}
is an R-module basis of K'. Thus,

-8 O

200
CI) =CIed) =10 2 0f€ M;x3R)
1 1

Therefore, 1, (C(I")) = R. In particular, I, (C(T")) # I,(C(I")). |

We can ‘fix”’ the situation in Example 13.15 by introducing the following
definition.

Definition 13.18 LetI" = {m,, ..., m,} be a set of R-module generators of
M. For each integer k, set

©) fk<O0
FOM =L L_Cl) ifk=0,1,...,n-1
R ifk=n
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Then

13.19 F(MM) CF M) CF(DHM)C - - - CF,_(T)(M)
cF (M) =R

is an increasing sequence of ideals in R. Lemmas 13.4 and 13.9 imply these
ideals depend only on our choice of I" and not on any choice of A and A. We also
have (') (M) = & (XT')(M) for all k € Z and all X € Gl(n,R) by Lemma
13.12.

Let us compute these ideals for I and I'” in Example 13.15. We have

1320 FDM) = 4Z  Fo(T M) = 4Z
FOOM =22  FIAHM = 2Z
&M =7 THM) = Z
for allk = 2 FT M) =Z foralk =3

Thus, the sequences { () (M) |k € Z} and {F(I")(M) | k € Z} are exactly
the same. This is always the case. The ideals in 13.19 in fact do not depend on
any specific choice of I'.

Theorem 13.21 LetI' and I’ be two R-module bases of M. Then for all k €
Z, F(T)(M) = F(T')(M).

Proof. In order to prove this result, it suffices to prove the following claim.
Claim. LetT’ = {m,, ..., m,} be an R-module basis of M. Let m € M,

and set I' = {m,, . .., m,m}. Then F(T)(M) = F(I")(M) for all k
ez

The theorem follows from repeated applications of the claim. For suppose I' =
{m;, ..., m}andI" = {mi, ..., mp} By the claim,

S M) = F(T'U {mHM) = F(T' U {m;,m})(M)
e . = %k(r U F')(M)

Similarly, F(I")(M) = F(' U TI')(M). In particular, F, (M) =
(T )(M).

To prove the claim, consider the following diagram of exact sequences:
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1322 () —» K &R? JSp M O

o | o)

(0) —>» K’ l-l-bﬂn’q 0—'-» M ’_p(o)

The first row of 13.22 is the short exact sequence determined by I and €. Thus,
fC i rig) = 2i-1rim;and K = Ker(f). As usual, € denotes the canonical
basis of R". The second row of 13.22 is the short exact sequence determined
by IV = T U {m}. Thus, F(C1F re)) = Drayrim; + r, . ym. Here &’ =
{€l, - - ., €541} is the canonical basis of R**', and K’ = Ker(f). The map
0 : R — R**! is the canonical embedding given by 8(e;) = ¢] for all
i =1,...,n The reader can easily check that f0 = fand 8(K) C X'.

Since I is an R-module basis of M, there exist elements r,, . . . , r, € R such
thatm = X0 ram;. SetB = (DF-ir€)) — €., Then f(B) = 0, and K’ is
easily determined. We have

13.23 K' = 6(K) @ RB.

We have already observed that 8(K) + RB C K'. Since the n + 1 entry of 8
is =1, 8(K) N RB = (0). Suppose 8 = >/ s/ € K'. Then

n
0=7@® = zsimi + Spp = Symy + 0 0+ symy,
i=1
+ Spr(rimy + - - - + rymy)
Therefore, 0 = (s, + ris 4 )my + - - - + (s, + r,5,4,)m,. This says
(s + niSpe)ey + -+ (8, + r8,40)e, €EK.
Then
n+1l n
8= 2 i€ = z(si + ISpe )] = Spa(nEl + 0 1 — €44y)
i=1 i=1
€ 6(K) + R

Thus, K’ C 6(K) + RB, and the equality in 13.23 is proved.

Now suppose A = {8,, . . ., 3,,} is any R-module basis of K. Write 3, =
Diaicgiforalli =1,. .., m Then C(I',e,A) = (c;), and F([(M) =
1, {(c;)). The equality in equation 13.23 implies A’ = {8(3,), .. ., 8(3,,),B}
is an R-module basis of K’'. Therefore, '
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cn cn 0

13.24 CI'¢e'A") = € Mimiyx(n+1H(R)
Cml cmn O
r Tn —1

Also, F(I'")Y(M) =1, _(C(I",e',A")). Thus, the proof of the claim will be
complete once we have the following equality:

13.25 I'(C(F,G,A)) = 1‘+1(C(F',€,’A’))

The assertion in equation 13.25 follows easily from the description of
c(I",e',A’) given in equation 13.24. We leave this point to the exercises at the
end of this chapter. ]

Theorem 13.21 implies the ideals {F,(I')(M) | k € Z} do not depend on any
specific choice of I'. Hence, we can drop I" from our notation and write the ideals
in 13.19 succinctly as follows:

1326 (OCFMCFMCFTMC---CR
Definition 13.27 The ideal §,(M) is called the kth Fitting ideal of M.
We can summarize our discussion to this point with the following algorithm.

ALG To compute the kth Fitting ideal of M, proceed as follows:
(a) Construct a short exact sequence of the form

(0)—» K—R'— M~ (0)

(b) Compute a relations matrix C from the short exact sequence in (a).

©) F(M) = 1,_,(C).

Step (a) in ALG is done by choosing a basis I' of M and a free R-module basis
A of R” (n = the number of generators in I') and determining the kernel of the
homomorphism f : R” — M determined by I' and A. Step (b) is done by
choosing a basis A of K = Ker(f) and writing these vectors as linear combi-
nations of the free basis N. As we have seen, the kth Fitting ideal (M) will
always be the same no matter how we make these choices.

A few observations about this procedure might be helpful. Suppose (0) —
K — R" — M — (0) is a short exact sequence. Then M has an R-module basis
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containing n generators. A relations matrix C obtained from this short exact
sequence will be an m X n matrix in M, ,(R) for some m = 1. In particular, the
definition of I,(C) in 4.3 implies the Fitting ideals of M form the following
increasing sequence.

1328 (O CFoMCEFEMC---CF,(M)CR

Also from 4.3, we have §,(M) = (0) whenever k < n — min{m,n}.
Suppose M is a free R-module of rank n. Then M has a free R-module basis
I'={m,, ..., m,} containing n elements. M has a presentation of the form

(0)1—>R"l»—f->M»—>(0)

The map fsends g, tom; foralli = 1, ..., n. Since I is a free R-module basis of
M, fis an isomorphism. Therefore, K = Ker(f) = (0). Thus,C = (0,...,0)
€M, ,,(R) is a relation matrix for M. Since [,(C) = Rforany ¢t < 0and /,(C)
= (0) for all £ = 1, we have proved the following observation.

13.29 If M is a free R-module of rank n, then

R ifk=n
B = {(0) ifk<n

The module in Example 13.15 has the following Fitting ideals: &,(M) = O for
alk=< -1, (M) = 4Z, F, (M) = 2Z, and (M) = Z for all k = 2.

Before proving theorems about Fitting ideals, it will be convenient to intro-
duce some notation. If M is an R-module and n a positive integer, then we will
letM* = {(my, ...,m,)" | m; € M}. Thus, M" is the set of all column vectors
of size n with entries from M. M” is an R-module with addition and scalar
multiplication performed componentwise. Clearly, M” is isomorphic to the direct
sum of n copies of M.

If p is another positive integer, the matrices in M, ,(R) induce R-module
homomorphisms from M" to M? in the obvious way: If A = ( a;) EM,,,(R)
and £ = (my, ..., m,) € M", then we define A£ by the following equation:

n n n t
13.30 A¢ = (Z ay;m, 2 AQjMjs « - . 2 api”'j)
j=1 j=1 j=1

Thus, A£ is just the usual product of a matrix with a column vector, only the
column vector has entries from M instead of R. It is easy to check that B(A§) =
(BA)gforall ¢ EM™, AEM,,,(R),and B E M, (R). Also, I,§ = § for all
teE M.
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Our first theorem about Fitting ideals says Fo(M) and Anng(M) have the
same radical.

Theorem 13.31 Let M be a finitely generated module over a Noetherian ring
R. Suppose I' = {m,, ..., m,}is abasis of M. Then (Anng(M))" C Fo(M)
C Anng(M).

Proof. Letf:R" — M be the R-module homomorphism given by f(3.}-1 rj€;)
= 2, r;m,. Set K = Ker(f). Then

©) > K > B > M = (0)

is a short exact sequence of R-modules. Let A = {3, . . ., §,,} be an R-module
basis of K. Since J,(M) does not depend on any specific choice of A, we can
add more vectors to A if need be and assume m > n.

Letd, = XJ-icyg;foralli = 1, ..., m. Then Fo(M) = I,(C) where C
= (cy). Letiy, ..., i,be positive integers such that 1 = {; < - - - < i, =m.
Setd = A(iy,...,i;1,...,n), then X nminorof C defined byrowsi,, .. ., i,.
Leté¢ = (m,,...,m,) € M". Since the rows of C generate all relations among
my, . .., m,, we have C§ = O. In particular, (Row; (C) ;. .. ; Row; (C)) &

= O. Since d = det(Row, (C); . . . ; Row; (C)),
dg = (dl,)t = adj(Row, (C); . . . ; Row,(C)) (Row; (C); . . . ; Row; (C)) §
= 0.

Thus, dm; = Oforalli = 1, ..., n. Since I is a basis of M, we conclude d
€ Anng(M). Since Fo(M) is generated by all nXn minors of C, we have
Fo(M) C Anng(M).

Conversely, suppose x;, . ..,x, € Anng(M). Then the row vectors
(x,0,...,0), (0,x3,0,...,0),...,(0,...,0,x,) [EM,,,(R)]areall
relations among the generators m,, . . . , m, of M. We can add these rows to the

relation matrix C, forming a new relations matrix C'. Thus,

‘qn - Cm

13.32 C' = x 0---0 € M(m+n)Xn(R)
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We still have §o(M) = I,(C’). In particular, x;x, - - - x, € L,(C') = Fo(M).
Since the x; are arbitrary elements in Anng(M), we conclude (Anng,(M))" C
Bo(M). ]

Our next result describes how Fitting ideals behave under scalar extension.

Theorem 13.33 Let g : R — T be a homomorphism of (commutative)
Noetherian rings. Let M be a finitely generated R-module. Then &, (M @ T) =
F(M)T for all k € Z.

We have seen in Chapter 12 that M )i T is a finitely generated T-module. Since
T is Noetherian, &, (M ®p T) is a well-defined ideal in T for each integer k. The
symbols &,(M)T are shorthand for g(F,.(M))T. Theorem 13.33 says the kth
Fitting ideal of the extended module M X)g T is the ideal in T generated by the
kth Fitting ideal of M.

Proofof13.33. LetU' = {m,, ..., m,} be an R-module basis of M. Form the
short exact sequence

L f
O K—-»R'—» M- (0)

with f(g;) = m;forallj = 1, ,nand K = Ker(f). LetA = {81, R
beanR-module basis of X, and set S, = 2, 1cy€;foralli =1, , m. Then
&(M) = I, _,(C) where C = ("u)

Theorem 12.23 implies (*) g T is a right exact functor. Therefore,

@ o
133 K@rT— R"@T > M@z T —(0)

is a right exact sequence of T-modules. It follows from Theorem 12.20 that R”
®pg T = T" as T-modules. The isomorphism here sends €; ® 1 to €] where ”
= {e] ..., €]} is the canonical basis of the T-module T".

Since the sequence in 13.34 is right exact, Im(v @ 1) = Ker(f® 1). The
T-module Im(v® 1)is generatedby { @ 1)(3; ® 1), ..., L@ 1)(5,,® 1}
The element (v ® 1)(3; ® 1) goes to X7, g(c,-j)sjr under the isomorphism
R" ®z T = T". Thus, we have the following presentation of the T-module
M®gT

13.35 2 T(Z g(c,,)e,) ST > M®gT > (0)
i=1 j=1

In particular, (g(c;)) is a relations matrix for M ®y T. Therefore,
ZM @ T) = 1, ((8(c;))) = g, (CHT = F(M)T. |
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One important special case of Theorem 13.33 is the following example.

Example 13.36 Suppose S is a multiplicatively closed subset of R. If M is any
R-module, we can define an equivalence relation ~ on M X § by setting (m,s) ~
(m',s') if "(s’'m — sm') = 0 for some s" € S. We will let m/s denote the
equivalence class in M X S which contains (m,s). Set S™'M = {m/s| (m,s) €
M xS}. The set S™'M becomes an R-module when addition and scalar multi-
plication are defined as follows:

13.37 (m/s) + (m'/s’) = (s'm + sm') / ss’
r(mis) = rmls

If M = R, then S™'R becomes a commutative ring with multiplication
(rls)(r'ls') = rr'iss’. ST'M is an §™'R-module with scalar multiplication
defined by (r/s)(mis') = rmiss’.

The ring S 'R is called the localization of R at the multiplicative set S. If S
is the set of all regular elements of R, thatis, S = R — Z(R), then S~ 'R is just
the total quotient ring Q(R) of R. If S is the complement of some prime ideal 8,
thatis, S = R — B, then S™'R is Ry, the localization of R at 8 (see Example
10.17).

The S~ 'R-module S ~'M is called the localization of M at S. It is easy to see
that M ®z S”'R = S™'M is S 'R-modules. The isomorphism is given by
m & (r/s) — rmls. Hence, Theorem 13.33 implies

13.38 F.(S"'M) = F . (M)S"'R foralk € Z. |

Having introduced the necessary notation in equation 13.30, we take this
opportunity to present a slight generalization of McCoy’s theorem. We will need
some of this discussion in our main results on Fitting ideals.

Theorem 13.39 Let C = (c;) € M,,,,(R). The homogeneous system of
equations CX = O has a nontrivial solution § € M" if and only if /,(C) C
Anng(m) for some nonzero m € M.

Proof. We can always add zero rows to C with no loss of generality. Hence,
we can assume m = n. Suppose CX = O has a nontrivial solution § =

(my, ...,m,) € M" Leti, ..., i,be positive integers such that 1 <
B<---<i,=m.Setd = A(iy, ...,i,;1,...,n), then X n minor of
C defined by rows iy, ..., i, Let C(ij, ..., i,) denote the nXn sub-
matrix of C determined by rows i,, ..., i,. Equation 2.20 implies d§ =
adj(C(iy, . - . ,iy))C(iy, - . ., i,)E = O. Since  is nonzero, some m; is nonzero.

Then d§ = O implies dm; = 0. Since d is an arbitrary n X n minor of C, we have
I,(C) C Anng(my).
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Conversely, suppose I,(C) C Anng(m) for some nonzero m € M. We
proceed by induction on n. If n = 1, then £ = m € M is a nontrivial solution
to CX = O. Hence we can assume n > 1 and pass to the inductive step of the
argument. There are two cases to consider here.
First suppose 1,,_,(C) C Anng(m). Let C' denote the submatrix of C con-
sisting of the first n — 1 columns of C. Thus,

— —
1 Cin-1
C =
[ml Cmn—1

Then I,_,(C') CI,_,(C) C Anng(m). Hence, our induction hypothesis im-
plies there exists a nonzero £ = (m,, ..., m,_,;) € M" 'such that C't' =
O. Then ¢ = (m,, ..., m,_,,0) € M"is a nontrivial solution to CX = O.
Thus, the proof is complete in this case.

Now suppose I,_,(C) is not contained in Anng(m). Then there exists
an (n — 1)xX(n — 1) minor A of C such that Am # 0. Suppose A =
A, .. ,P—Lp+1,...,n).8Sincem=n>n — 1, there
is at least one more row, say Row, (C), of C other than rows i, . . . , i,_,. Let
C’ be the following submatrix of C:

R D PR

e —

C,-ll,...,C,‘lp,. "Ci|n
'

13.40 C = Ci.l 9 s e ,C,‘up 9 s o oy Ci",, EM,,X"(R)
Cr1 ,...,Ckp s« o9 Ckn
ci“”l’ e ey C,'“lp, o . ,Ci-”n
Lfi""l’ ey C,'"_Ip, e e ey Cin_|,,

In 13.40

il<”'<iu<k<iu+l<'H<in-—l

and 1 = p =< n. Notice that det(C') € [,(C) and the (k,p)th cofactor of C’ is’
+ A, Expand the determinant of C’' along the row (cgy, - . - , Cy,) USing
Laplace’s expansion. We get det(C') = cuA; + - - - + A, with Aym
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= (£A)m # 0. Here A, is the cofactor if c,; in the expansion of det(C’). Since

Ay, ..., A, €I, ,(C), Theorem 2.19 implies > ¢4, is either zero or a
nonzero element in /,(C) forallv = 1, . . . , m. Since [,(C)m = 0, £ =
(Aym,Aym, . .., A,m)' € M" is a solution to CX = O. Since Aym # 0, & is

a nontrivial solution to CX = O.

When M = R in Theorem 13.39, we recover McCoy’s theorem. We have the
following equivalences. CX = O has a nontrivial solution in R® & I,(C) C
Anng(x) for some x # 0in R & Anng(1,(C)) # (0) & rk(C) < n.

Notice that m < n in Theorem 13.39 implies /,(C) = (0). Thus, CX = O
has a nontrivial solution in M” for any nonzero R-module M.

It is easy to manufacture an R-module whose relation matrix is a given m X n
matrix in M,, . ,(R). We need the following definition.

Definition 13.41 LetC = (c;) € M, ,(R). The R-module M(C) associated
to C is defined as follows: M(C) = R"/K where K = R§, + - - - + RS, and
8 = X1 foralli=1,...,m.

As usual, €= {g,, ..., €,} is the canonical bases of R”. If we set f(¢;) = ¢;
+ K in M(C), then

L f
13.42 (0) — K > R" —> M(C) — (0)

is a short exact sequence of R-modules. In particular, C is a relations matrix for
M(C), and F(M(C)) = I,_,(C) forallk € Z.

Definition 13.43 Let M be an R-module. An element m € M is said to be a
torsion element if rm = 0, for some regular element » € R. The set of all torsion
elements in M will be denoted by J (M).

The reader will recall that an element r € R is regular if r is not a zero divisor.
Thus, m € J (M) if there exists an r € R — Z(R) such that rm = 0. It is easy
to check that (M) is an R-submodule of M. J (M) is called the torsion sub-
module of M. If (M) = (0), then M is said to be torsion free. Obviously,
M/T (M) is always a torsion-free R-module. If (M) = M, then M is called a
torsion module.

Example 13.44 Let 2 be an ideal containing a regular element x of R. Then the
R-module M = R/Y is a torsion module since x(1 + ) = 0. Thus, F(R/A)
= R/¥. For example, suppose p is a positive prime in Z. Then the Z-module
Z/pZ is a torsion module. On the other hand, Z/jpZ is a field. Thus, the
Z/pZ-module Z/pZ is a torsion-free module. ]
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We can use McCoy’s theorem to decide when the rows (or columns) of a
matrix C are linearly independent and when the module M (C) associated to C is
torsion free.

Theorem 13.45 Let C = (c;) EM,,,(R). Set M = M(C). Then
(a) The rows of C are linearly independent in M,,,(R) if and only if
Anng(1,,(C)) = (0).
(b) Suppose Anng(/,(C)) = (0). Then M is torsion free if and only if
Ra : 1,,(C) = Ra for all regular elements a € R.

Proof. (a) Partition C into rows: C = (8f; . . . ;d,). Here §;, =
(Ci1»Cizs -+ + - » Cp) ERforalli = 1, ..., m. The vectors 8}, . . . , 3,
are linearly independent in M, ,(R) if and only if the homogeneous
equation (x;, . . . , X,)C = O has only the trivial solutionx, = 0, . . .,

X, =0.SetX = (x;, ..., X,). Then XC = O if and only if C'’X' = O.
Thus, Theorem 13.39 implies the rows of C are linearly independent if and
only if Anng(1,,(C")) = (0). Since I,(C) = I,,(C’), we have that the rows of
C are linearly independent if and only if Ann,(Z,,(C)) = (0). This proves (a).
(b) Suppose Anng(/,,(C)) = (0). Then the rows &, . . . , &, are linearly
independent by (a). It easily follows from this that the vectors §,, . . . , 3, are
linearly independent in R". In particular, 13.42 is a short exact se-
quence for M(C) with K = RS, + - - - + R}, a free R-module of rank m.

Any R-module M is torsion free if wheneveram = O form € M and a E R
— Z(R), then m = 0. When M = M(C), this statement is equivalent to the
following assertion:

13.46 I (M(C)) = (0) if and only if for every regular element a € R and for
all (b, ...,b)YER", ab,...,b) ERS + - + R}, implies
(bl’ “ e ey b")‘ E Rsl + -+ Rsm.

If D = (dy) € M,,,(R) and a € R, then we will let D = (d;;) denote the
image of D in M, ,,(R/aR). Thus, D = (d;) is the mXn matrix in
M,,, ,(R/aR) whose i, jth entry is the coset d; + Ra in R/aR.

The statement “‘a(b,, ..., b, EK =R8, + --- + R},,> (b, ..., b,)
€ K forany a € R — Z(R)”’ in 13.46 is equivalent to the following assertion:

13.47 For every regular element a € R, the homogeneous system of equations
(x5 . -+ 4 x,)C = O has no nontrivial solution in M, ,.,,(R/aR).

To see that these two statements are equivalent, first observe thata(b,, . . ., b,)'
€ Rd, + - - - + R}, if and only if the equation XC = (ab,, . . . , ab,) has
a solution (ry, . .., r,) € M, ,,(R). Now suppose
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a(by,...,b,YEK> (b,...,b)EK

for every regular element a € R. Fixa € R — Z(R). Let (r, . . . ,r,,) €
M, ».(R/aR) be a solution to XC = O. Then (ry, . ..,7,)C = (ab,, . .. ,ab,)
for some (b,, ..., b,) € M,,,(R). Thus,a(b,,...,b,) ) ER}, + --- +
RS,, = K. We conclude that (b, . . . , b,)" € K. Therefore,

rnd+ - +rd =alb,...,b,)Ea(Rd + - + R

Since 8, . . . , 3}, are linearly independent over R, we have r, € Rafor all i =
1,...,m. Thus,7, = -+ =7, = 0inR/aR, and XC = O has only the trivial
solution.

The fact that 13.47 implies the statement ‘‘a(b,, . . . , b,) € K >
(by,...,b,) €K for all regular a € R is easy. We leave this to the reader.

It now follows that M (C) being torsion free is equivalent to the statement in
13.47. By (a), 13.47 is equivalent to Anng,&(I,,(C)) = (0) for all regular a
€ R. Anng,(1,,(C)) = (0) if and only if Ra : 1,,(C) = Ra. This completes
the proof of (b). ]

Suppose C € M,,, ,(R) has more rows than columns, that is, m > n. Then
1,,(C) = (0), and Anng(/,,(C)) = R. Theorem 13.45a then implies the rows
of C are linearly dependent. This is certainly a familiar result if R is a field.

Let us now return to Fitting ideals. One important use of these ideals is to
decide when a right exact sequence is actually exact. Suppose we have the
following presentation of M:

g f
13.48 RF—> R"—> M — (0)
ThenIm(g) = Ker(f), and Im(f) = M. We say the sequence in 13.48 is exact
if g is injective. Thus, the right exact sequence given in 13.48 is exact if
g f
©O—>R —-R+—>Mm— (0

is a short exact sequence. It follows from Theorem 5.10 that if p > n, then g is
never injective. Hence, we assume p < n. Writep = n — r. Then0 = r <n.
We then have the following theorem.

Theorem 13.49 Suppose

!
() : R > R M > (0)

is a right exact sequence of modules over the Noetherian ring R. (*) is a short
exact sequence if and only if §,(M) contains a regular element of R.
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Proof. Lete' = {e], ..., €,_,}denote the canonical basis of R” "and € =
{&y, - . ., €,} the canonical basis of R”. Setd; = g(e)fori=1,...,n -
r.LetK = R3, + - - - + R}, _,. Since (*) is right exact,

L f
1350 O)— K—R"— M (0)

is a short exact sequence.

Let , = X1 cgsfori =1, ... ,n — r,and set C = (c;) €
M, _,yx,(R). We have seen in equation 10.14 that the map g in (*) is given by
g(\) = C'\ forall A\ € R*™". It follows from Theorem 5.36b that g is injective
if and only if Anng(/,_,(C")) = (0). Since C is a relations matrix of M, we
have I,_(C') = I,_(C) = &,(M). Thus, g is injective if and only if
Anng(F,(M)) = (0). In other words, (*) is a short exact sequence if and only
if Anng($%,(M)) = (0). The theorem is then a consequence of the following
general fact about Noetherian rings.

13.51 Let U be an ideal in a Noetherian ring R. Then Anng(U) = (0) if and
only if U contains a regular element of R.

If A contains a regular element of R, then clearly Anng (%) = (0). Suppose
Anng(2) = (0). Notice Anng (A) = (0): A. Thus, (0): A = (0). It follows
from Theorem 11.16 that U is contained in no associated prime of (0). Suppose
these primes are B, . . . , B,. Then Lemma 11.10b implies Y is not contained
in U%, ;. By Theorem 11.13, Z(R) = U%L, R,. Therefore, % contains a
regular element of R. This completes the proof of 13.51 and, consequently, the
proof of the theorem. [ |

Using the same notation as in Theorem 13.49, notice that &, (M) is the smallest
Fitting ideal of M which can possibly be nonzero. Since (*) is a presentation of
M, Mhas an (n — r) X nrelations matrix C. If j € {0, . . ., r — 1}, then ¥ ,(M)
=1, ,(C) = (0)sincen — j>n — r = min{n — r, n}.

The results we have presented in this chapter can be found in many places in
the literature. One good source for all this material is [7]. We will finish this
chapter with one more important theorem from this paper. We need a couple of
definitions from homological algebra.

An R-module M is said to be projective if M is a direct summand of a free
R-module F. Thus, M is projective if M @ N = F for some R-module N and
some free R-module F. Notice that any free R-module is projective. Almost all
modern, graduate level texts in abstract algebra cover the basic facts about
projective modules. A good reference is {6].

Definition 13.52 A R-module M is said to have projective dimension =< 1, if
whenever (0) — P, — Py, — M — (0) is a short exact sequence of R-
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modules with P, projective, then P, is also projective. If M has projective
dimension = 1, we will write pdg (M) = 1.

Suppose M is a finitely generated module over a Noetherian ring R. Then M
admits a short exact sequence like that in 13.1. Suppose we also assume pdg (M)
= 1. Then K is a projective R-module. Since R is Noetherian, X is also finitely
generated. It follows from this that X is a direct summand of a finitely generated
free R-module. (See the exercises at the end of this chapter. ) If we also assume
R is a local ring, then X is a free R-module by Corollary 10.22. Since K C R",
the rank of K is n — r for some r = 0. Thus, if R is a local ring and pdg(M) <
1, then M admits a short exact sequence of the form

(*): (0) > R"" > R"—> M~ (0)

The converse of this statement is also true. If there is a short exact sequence
like (*), then pdy (M) = 1. A proof of this fact can be found in [6, Thm. 6.19].
Hence, for a (Noetherian) local ring R, pdg(M) < 1 is equivalent to M has a
short exact sequence of the form (*).

Theorem 13.49 gives us a way to manufacture modules M for which pdg (M)
=1.1f

(*) :R"""—> R"'— M— (0)

is a right exact sequence for which $, (M) contains a regular element, then
pdg(M) = 1. For Theorem 13.49 implies

(0)—» R 7" +— R"— M+— (0) isexact

Thus, pdr(M) = 1 by the discussion above.
We can now prove the following theorem.

Theorem 13.53 (J. Lipman) Suppose (R,m,k) is a Noetherian local ring. Let
M be a finitely generated R-module. Let r = 0. Then the following statements are
equivalent:
(a) The smallest nonzero Fitting ideal of M is &,(M), and §,(M) = Rx for
some regular element x € R.
(b) pdr(M) = 1, and M/J (M) is a free R-module of rank .

Proof. (b)=> (a): If M/ (M) is a free R-module of rank r, then M/T (M) =
R",and T (M) @ R" = M. We can assume with no lost of generality that M =
J (M) @ R’. We first show

13.54 §,(M) = §,_,(T(M)) forall p = 0.
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Since I (M) is a submodule of the finitely generated R-module M and R is
Noetherian, (M) is a finitely generated R-module. Hence, J (M) admits a
short exact sequence of the following form:

L f
1355 O)—» K~ R"— JM) — (0)
Suppose K = RS, + - - - + R}, withd, = X7 c;¢;foralli =1,...,m.

y-J
Then C = (c¢;) € M, ,(R) is a relations matrix for J (M). We can imbed the
presentation of J (M) given in 13.55 into a short exact sequence for M in the

following way:

13.56 (0) = K > R* > IO — (0)

ol o v

L f
© - K —» R > M~ (0

In the diagram in 13.56, « denotes the inlusion map. 0 is given by 6(¢;) = ¢, for
i=1,...,nwheree’ = {gf,...,¢,,,}is the canonical basis of R”*" and
€ = {g,,...,¢,}Iis the canonical basis of R”. The map f' is given by f'(&/)
=f(e))ifi=1,...,nand

f'(e£)=(0,...,1,...,0)'eR'

J

ifi=n+jwithj=1,...,r

The j below the vector (0, . . ., 1, ..., 0) indicates that 1 lies in the jth
entry of f'(e{). The map f' makes sense because M = F(M) D R". K’ =
Ker(f'). It is easy to check that 13.56 is a commutative diagram of short exact
sequences in which 8(K) = K'. In particular,

13.57 C' = € Mumx(n+n(R)

is a relations matrix for M. Thus, for all p = 0,
%p(M) = l(n+r)-p(C’) = l(n+r)—p(c) = %p—r(g(M))

This proves 13.54.

Now every element in I (M) is torsion, and T (M) is a finitely generated
R-module. Hence, aJ (M) = (0) for some regular element @ € R. In other
words, Anngz(J (M)) contains a regular element a of R. It follows from Theo-
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rem 13.31 that F,(J (M)) contains a regular element of R. Equation 13.54
implies &, (M) contains a regular element of R. If p < r, again by 13.54, §,(M)
= &p-(T(M)) = (0) since p — r < 0. Therefore, F,(M) is the smallest,
nonzero Fitting ideal of M.

Since M = J(M) @ R’, pdg (T (M)) < pdr(M). This follows from [6, p.
377]. Thus, pdy(J (M)) < 1. Since (R,m,k) is a local ring, I (M) admits a
short exact sequence of the following form:

13.58 (0) » R° > R" » T (M) ~ (0)

In 13.58, notice that s < n. This follows from Theorem 5.10. Suppose s < n.
Then Fo(T (M)) = I,(C) = (0). Here C is any s X n relations matrix coming
from 13.58. But (T (M)) = F,(M) # (0). Therefore, s = n. In particular,
F M) = F(T(M)) = I,(C) = Rx where x = det(C). Since the ideal
&, (M) contains a regular element of R, x must be regular. This completes the
proof of (a).

(a) > (b): LetT' = {m,, ..., m,} be an R-module basis of M. Let

¢ f
1359 O)—> K— R"— M~ (0)

be the corresponding short exact sequence of M. Thus, f(g;) = m; for all
j=1,...,nand K = Ker(f). Suppose K = R§, + - - - + R9,, with §;, =
2j-1c e foreachi = 1,...,m. ThenC = (c;) € M, ,(R) is a relations
matrix of M, and §,(M) = I,_,(C). We are assuming that /,_,(C) = §,(M)
= Rx for some regular element x € R.

The ideal I, _,(C) is generated by all (n — r) X (n — r) minors of C. Since
R is a local ring, Corollary 10.21 implies §,(M) is generated by one of these
minors. By permuting the €; and §; if need be, we can assume the minor A =
A(l,...,n—r;1,...,n — r) generates §,.(M). Since RA = §,.(M)
contains the regular element x, A itself must be regular. We can replace x with
A and assume $,(M) = Rx with

<5 Clp—r
x ==

- s Ca—rpn-r

a regular element of R.
Let C’' be the following (n — r) X n submatrix of C:
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m’ Cn—r Clp-r+1 """ Cn
13.60 C' =
Cn—r1 " " "Ca-rn-r Cn—rp-r+1° " " Cn—rn
Set
h " Crp-r
D =
Cn-r1 " " " Ca-ra-r

Lethe€{1,...,n—r}.Foreachi = 1,...,n — r, let Hy, denote the (i,h)th
cofactor of D. From Laplace’s expansion (Theorem 2.19b), we have

n-r
13.61 2 cinHy = x

and

n—r
D caHy =0 forl<k+h=n-—r

i=1

Each row of C' determines a relation among the generators m,, . . . , m,. Thus,
2hic;mp=0fori =1,...,n — r. In particular,
n n
Hy 3, cym =+ “Hy_rp 3, Coopymy = 0
=1 =1

Adding these equations together and using the relations in 13.61, we have

n—r n n n—r
> ”-'h(Z Cijmj) = Z(E Cif”ih)"'j
i=1 1 i=1

j= .’=

o
I

n n—r
xm, + 2 (z CUH”') m;

j=n—r+1\i=1
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Setd; = J-{cyHpforj=n—r+1, ,n. Thenxm, + X, 11 d;m;
=0 and

dyvirs e dy €1,_(C') CI,_(C) = F(M) = Rx

Thus, each d; is divisible by x. Therefore, d;/x € R foreachj=n—r + 1,.
We now have x(m;, + 2,-,. r+1 (d; /x)m ) = 0. Since x is a regular element

of R, we have the following assertion: For each h=1,...,n—r,there exist
d,_,4+1, - - - »d, € Rx such that
n d
13.62 m, + . (—’>mj € I(M)
j=n—r+1
Now let m;, . . . , m, denote the images of m,, . . . , m,, respective-

ly, in M/?T(M) Then the assertion in 13.62 implies M/J(M) = Rm,_, ,,
-Rm,. Thus, T, = {m,_,,,,...,m,}is an R-module basis of M/F(M).
We will show I'; is a free R-module basis of M/J(M).

Let Q denote the total qoutient ring of R. Thus, @ = S~ 'R where S is the set
of all regular elements in R (see Example 13.36). Since J(M) is a torsion
module, (M) ®g Q = (0). Since (0) — T M) —» M — M/ITM) — (0)
is an exact sequence of R-modules, Theorem 12.23 implies M ®; Q =
(M/F(M)) Qg Q. Since M/JT(M) is a torsion-free R-module, it is easy to see the
map M/T(M)— (M/FT(M)) ®g O given by z — z ) 1 is an injective R-module
homomorphism. Hence, M/J(M) can be identified with an R-submodule of
M ®pg Q. In particular, I, is a Q-module basis of M @ Q.

By Theorem 13.33, F,(M Qg Q) = F,(M)Q for all p € Z. Thus,
& (M Qr Q) = 0x = Q. Thls last equality comes from the fact that x regular
in R implies x is a unit in Q. Since we are assuming §%,(M) is the smallest
nonzero Fitting ideal of M, we also have ‘8‘ M®rQ) = (0)forallp <r.

Now suppose X7-p—,+1 5m; = 0 in M/IFM) C M @i Q. Here
Sners1r---sSa ER. SmceM®R Q is generated as a Q-module by I';, we have
the following short exact sequence:

13.63 (0) — Ker(p) = @' ¥ M @z Q — (0)

In 13.63, . is the Q-module homorphism given by p.(g;) = m,_,,; ® 1 for all
i=1,...,r. Ther-tuple (s,_, 1, - - - §,) lies in Ker(j.) and hence appears
as a row in some suitably chosen relations matrix E of M &g Q. Therefore, for
alj=n—r+1,...,n5€F_,(MRPgQ) = (0). We have now shown
that m,_,,,, . . . , m, are linearly independent over R. Thus, I'; is a free
R-module basis of M/J(M).

We have now shown that M/J(M) is a free R-module of rank r. It remains to
show pdg(M) < 1. We again consider the submatrix C' of C given by equation
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13.60. We first note that the rows of C’ are linearly independent. For suppose
(X5 -+« s %, )C' = O.Then (x,, ..., x,-,.)D = O. Since det(D) = x, a

regular elementof R, x; = - - - = x,_, = 0 by Theorem 13.45a. Thus, the rows
of C' are linearly independent.

Suppose Z};; a;m; = 0 for some elements a,, . . . , a, € R. Thus,
(ay, . . ., a,) is a relation among the generators m;, . . . ,m, of M. Leth €
{1, ..., n}. Consider the following (n — r + 1)X(n — r + 1) matrix:

Cin
1364 C,=| D
Cn—-rh
a a1, . . 38—,
L -
Since (ay, . . ., a,)is arclationamong m,, . . . , m,, we can add (a,, . . ., a,)

as a row to the original relations matrix C. Thendet(C,) = Oforh=1,...,n
—randdet(C,)EI,_, (C)=§,_ (M) = (O)forh=n—-r+1,...,n.
Thus, det(C,) = Oforall h = 1, . . . , n. Expand det(C,) using Laplace’s
theorem along the first column (from the bottom up). We get 0 = xa, +

"{cud;withd,, . ..,d, €I, (C)= &, (M) = Rx. Since x is a regular
element of R, we have g, + > ]={ c;(d;/x) = Oforh = 1, . .., n. Notice also
that the elements d;/x € R are the same for every h. Set x; = d;/x for i =
1,...,n—r. Thena, + 27={ x;c;, = Oforallh = 1, ..., n. Thus,
(ay, ...,a,) €ERS(C).

Now (ay, . . ., a,) is an arbitrary relation among the generators in I'. Since
(ay, . .., a,) € RS(C'), we conclude C' is a relations matrix for M. In
particular, M admits a short exact sequence of the form

13.65 (0) — > R3;—> R"+—> M > (0)

i=1

Here §; = Row;(C')' fori = 1, ..., n — r. We have noted that the rows of
C' are linearly independent over R. Thus, 2,7={ RJ; is a free R-module with free
R-module basis {8,, . . ., §,_,}. It follows from [6, Thm.6.19] that pdg(M)
=< 1. This completes the proof of (b). 1

We conclude this chapter with one obvious refinement of Theorem 13.53.
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Corollary 13.66 Let (R,m,k) be a Noetherian, local ring. Let M be a finitely
generated R-module. Suppose &, (M) is the smallest nonzero Fitting ideal of M.
Then M is a free R-module if and only if &, (M) = R.

Proof. This result follows immediately from equation 13.29 if M is a free
R-module. So, suppose the smallest, nonzero Fitting ideal of M is §,(M) and
&,(M) = R. Theorem 13.53 implies M/J(M) is a free R-module of rank r. It
follows from 13.54 that §,(F(M)) = &, (M) = R. We have also observed in
the proof of Theorem 13.53 that Anng(J(M)) # (0). Theorem 13.31 implies
R = Fo(I(M)) C Anng(F(M)). Therefore, F(M) = (0), and M is a free
R-module of rank r. |

There is a slight generalization of Corollary 13.66 for projective modules of
rank r. See Exercise 18 at the end of this chapter. The ideas in this chapter can
also be used to prove the Hilbert-Burch theorem, an important result in both
commutative ring theory and algebraic geometry. The reader is referred to Ap-
pendix D at the end of this book for a proof of this theorem.

EXERCISES

1. LetT = {m,, ..., m,} be an R-module basis of M. Let X = (xy) €
Gl(n,R). Show

XU ={mg,...,m} (m; = 2 x;m;)
j=1

is an R-module basis of M. Show T’ is a free R-module basis of M if and only
if XT' is a free R-module basis of M.
2. Show A’ = {2e,, 2¢,, €, + &, + &} is an R-module basis of X’ in
Example 13.15.
3. Prove 13.25.
4. Compute the Fitting ideals of each Z-module listed in Exercise 18 of Chap-
ter 10.
5. Compute the Fitting ideals for 2 = (X,Y) in Exercise 17 of Chapter 10.
6. LetA EM,,,(F)and M = F". Here F is a field. Show M is a finitely
generated F[X]-module via f(X)m = f(A)(m). Compute the Fitting ideals
of M.
7. Show S7!M = M ®jg S~ 'R for any R-module M and any multiplicatively
closed subset § of R.
8. Let M be an R-module. Show J(M) is a submodule of M and M/F(M) is
torsion free.
9. Exhibit a torsion-free R-module which is not a free R-module.
10. Show 13.47 implies 13.46.
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11. Suppose K is a projective R-module. Let (0) —> M — N+ K +— (0) be
a short exact sequence of R-modules. Show N = M @ K.

12. Use Exercise 11 to show the following: If KX is a finitely generated R-module
which is projective, then K is a direct summand of R" for some integer n.

13. Suppose M is a finitely generated R-module. If M = J(M), show Anng (M)
contains a regular element of R.

14. Show 8(K) = K’ in 13.56.

15. Suppose M = M; ® M, with M, and M, finitely generated R-modules. We
assume R is Noetherian. Show

Fe(M) = 2y ik Bi(M)) §;(My) forallk € Z

16. Prove the following theorem of R. E. MacRae: Suppose (0) — M — N —
P > (0) is a short exact sequence of finitely generated modules over a
Noetherian ring R. Then &, (M)F,(P) C &, (N). (Hint: See [8].)

17. Let M be a finitely generated module over a Noetherian, local ring (R,m,k).
Set p. = dim, (M/mM). Show the following statements are equivglent:

@ p=r
(b) F,(M) = Rand §,_,(M) C m.

18. Let M be a finitely generated, projective R-module. M is said to have rank
rif dimy, (,(Mp/BMg) = r for all prime ideals 8 of R. The notation here
is as follows: Mg = S™'M where S = R — B. k(*B) is the field QR/B)
Show the following statements are equivalent:

(a) M is projective of rank r.
®) Fo(M) = - - = F,_,(M) = (0), and §,(M) = R.
19. Let S be a multiplicatively closed subset of R. Suppose

f
(0)|—>M'—>N|£>Pl-—>(0)

is a short exact sequence of R-modules. Show

Jiz) £®1
0> MUQRSR> NS 'R PSR — (0)

is an exact sequence of S~ 'R-modules. (Hint: Use Exercise 7.)
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Principal Ideal Rings

In this chapter, we will develop a structure theorem for principal ideal rings. We
will use this theorem in the next chapter when discussing the Smith normal form
of a matrix. The reader will recall that a commutative ring R is called a principal
ideal ring if every ideal of R is principal. If R is a principal ideal ring, we will
abbreviate this statement by saying R is a PIR. Thus, a commutative ring R is a
PIR if every ideal ¥ of R is principal, that is, ¥ = Rx for some x € U. If R is
a PIR and an integral domain, then R is called a principal ideal domain
(abbreviated PID). Certainly, any homomorphic image of a PID is a PIR. Thus,
the rings given in 1.7 together with all their homomorphic images are PIRs. If

Ry, . . ., R, are PIRs, then a simple argument shows R, @ - - - @ R,, is also
a PIR. Thus, for example, Z/in,Z @ - - - @ Z/n,Z is a PIR for any choice of
integers n,, . . . , n,.

We first need a version of the Chinese Remainder Theorem.

14.1 Suppose A, . . ., A, are ideals of a commutative ring R such that ¥; +
U, = R whenever i # j. Then RIN.; A; = @y R/Y,.

Proof. Themapr— (r +%,,...,r + U,) is clearly a ring homomorphism
fromRto R/UA, @ - - @ R/, The kernel of this map is N}_; A,. Hence, we
have a monomorphism 8 : R/N-; A, — RA, @ - - - @ R/, given by
o(r+ N A) = (r+AU,,...,r+ %U,). We claim the map 0 is surjective.
This is an immediate consequence of the following assertion:

175
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14.2 Ifb,, ..., b, €R, then there exists an a € R such thata — b, € U,
thatis,a = b,mod A, foralli = 1, ..., n.

We prove 14.2 by induction on n. Suppose n = 2. Since A, + A, =
1=a, +a,witha, €, and a, € UA,. Seta = ba, + bya,. Thena = b,
mod ¥, fori = 1,2.

For the inductive step, first notice that

a1
H(Q[ +2[)C?I +%[?[2 "?I,,_‘QR
i=1
Therefore, A, + A, A, - - - A,_, = R. Since AN, - - - A, C NPT A, A,
+ (N A =
Now suppose by, . . . , b, € R. Our inductive hypothesis implies there exists
abERsuchthatbh=b,mod U;fori =1,...,n — 1. From the case n =
2, thcreex1stsanaERsuchthata—b mod?[ and @ = b mod N7Z "2[ But
thena = b, mod N, foralli = 1,...,n. 1

Suppose R = Zand z,, . . ., z, are pairwise, relatively prime integers. Then
(z;) + (z;) = Zforany i + j. For any integers by, . . . , b, € Z, Theorem 14.1
implies there is a z € Z such that z = b, mod (z;) foreveryi = 1, ..., n. This
is the familiar version of the Chinese Remainder Theorem from elementary
number theory.

If two ideals 2 and B of R have the property that A + B = R, then U and
B are said to be comaximal. A set of ideals {2, . . . , U,} of R is said to be
pairwise comaximal if A; + UA; = R whenever i #+ j. The Chinese Remainder
Theorem says if %,, . . . , U, are pairwise comaximal, then R/N}-; A, = R/,
@D - DR,

Special PIRs will play an important role in the basic structure theorem.

Definition 14.3 A principal ideal ring R is said to be special if R contains
precisely one prime ideal %3.

Recall an ideal 2 of R is said to be nilpotent if %" = (0) for some positive
integer r. The unique prime % in a special PIR is necessarily nilpotent by
Theorem 6.6. There is a simple way to manufacture examples of special PIRs.

Example 14.4 Suppose D is any PID (e.g., one of the examples listed in 1.7).
The reader will recall from elementary algebra that D is a unique factorization
domain. Let p be a prime (i.e., irreducible) element of D. Set Q = (p") = Dp".
§) is a primary ideal of D belonging to 8 = Dp. The only prime ideal in R =
D/L is PrQ, and (P/LQ)" = (0). Thus, R = D/ is a special PIR.
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For a concrete example, Z/2"Z is a special PIR. |

Theorem 14.5 Let R be a principal ideal ring.

(a) If B and B’ are prime ideals of R such that B’ < %, then P contains only
two prime ideals B and ’.

(b) If B and *B’ are prime ideals of R such that B’ < R, then any primary
ideal of R which is contained in B contains ‘B’.

(c) If B’ is a prime ideal of R which is not maximal, then the only primary
ideal of R contained in ‘B’ is P’ itself.

(d) Any two prime ideals of R are either comaximal or one contains the
other.

Proof. We prove (b) first. Since Ris aPIR, B = Rp, and B’ = Rp' for some
elements p and p’ in R. Since B’ C B, p’ = pr for some r € R. The element
p is not in B’ since P’ # PB. Since B’ is a prime ideal of R, r € B’ = Rp'.
Therefore, r = sp’ for some s € R. In particular, p' = rp = spp’.

Now let £ be any primary ideal of R such that & C *8. Then (1 — sp)p’ =
0€ L. Since 1 —spis & B, 1 — sp & V. Since L is primary, p’' € Q.
Therefore, B’ C Q.

(a) Since %’ is a primary ideal contained in %8, (b) implies B’ is the inter-
section of all primary ideals contained in 8. In particular, 8’ is uniquely de-
termined by 8. This proves (a).

(c) Suppose ' is a prime ideal of R which is not maximal. Then there exists
a prime ideal % such that B’ < B < R. Suppose £ is a primary ideal of R
contained in B’'. The argument in the second paragraph of this proof implies
R’ C L. Therefore, O = V'.

(d) Suppose B, and %, are two distinct prime ideals of R. If B, + B, # R,
then B,, B, C B, + B, C B for some prime ideal *B of R. By (a), B contains
at most two prime ideals one of which must be 8. Hence, one of the %, is B,
and the other is contained in 'B.

We can now prove the following structure theorem.

Theorem 14.6 Any principal ideal ring is a finite direct sum of principal ideal
domains and special principal ideal rings.

Proof. Let R be a PIR. Then R is Noetherian. In particular, (0) has an irre-
dundant primary decomposition: (0) = Q, N - - - N L,. Set P, = VL, for
i=1,...,n Wefirst observe that ,, . . . , I8, are pairwise comaximal
(prime) ideals of R. To see this, suppose %, + B, # R for some i + j. By
Theorem 14.5d, B; C B;, or B,; C B,. Let us suppose B; C B;. Since the
associated primes of an irredundant decomposition are all distinct, we have B; <
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$B; < R. But then Theorem 14.5b implies £, C B, C L. This is impossible
since (0) = £, N - - - N £, is an irredundant decomposition of (0). Thus, for
eachi + j, B, + B, = R.

Suppose 1 < i < j =< n. Since ; + B; = R, we have

VBT = VVB VB - VE T = VE =&

In particular, £; + £; = R. Thus, the primary ideals £,, . . . , Q,, are pairwise
comaximal. The Chinese Remainder Theorem implies

147 R=RI(0O)=RO, ® - - DR,

Each ring R/£); is a homomorphic image of R. In particular, each R/, is a PIR.
If %B; is a maximal ideal of R, then VL), = B, implies £, is contained in only
one prime ideal, namely ;. In particular, R/, has precisely one prime ideal
R/L,. Since B, is principal, R; C £, for some r > 0. Therefore, RV/L; is

nilpotent. We conclude that R/L; is a special PIR.
Suppose P, is not a maximal ideal of R. Theorem 14.5¢ implies Q, = ;. In
particular, R/L; = R/%; is a PID. This completes the proof of Theorem 14.16.
|

EXERCISES

1. Suppose Ry, . .., R, are PIRs. Show R, @ - - - @ R, is a PIR.

2. In Exercise 1, is R, ®z - + - ®z R, a PID?

3. In the proof of Theorem 14.6, we used the following result: Let 2 and B be
ideals of a commutative ring R. Then

VA +VB = VI+9.

Give a proof of this assertion.

4. Suppose R is a special PIR with unique prime ¥ = Rp. Suppose r > 1 is
the index of nilpotency of 8. Show {Rp* |k = 0, . . ., r} is the complete
set of ideals of R.

5. Suppose p is a nilpotent element of R. If every x € R can be written in the
form x = ep* for some unit € and nonnegative integer k, show R is a special
PIR.

6. Let R be a PIR. Suppose M is a finitely generated R-module with basis I' =
{m,, . . ., m,} Show that every submodule of M is generated as an R-module
by n or fewer elements.

7. Suppose R is a PID. Show every submodule of R" is a free R-module of rank
= n. (We will prove this in the next chapter.)

8. Is Exercise 7 true if R is only a PIR?
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9. Suppose Ris a PID. Letx,, . . ., x, € R, and suppose Rx, + - - - + Rx,
= Rd. Show there exists a matrix A € M, ,(R) such that det(A) = d and
Row,(A) = (xy, . . ., X,).

10. Use the results in Exercise 9 to prove the following result of H. J. S. Smith:
Suppose R is a PID. Let A € M,, . ,(R). Then there exist invertible matrices
P, Q € Gl(n, R) such that PAQ is diagonal. (We will prove a more general
result in the next chapter. )
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The Smith Normal Form of a Matrix

In this chapter R will denote a commutative ring.

Definition 15.1 A 1 X 2 matrix (a,b) € M, «>(R) admits a diagonal reduc-
tion if there exists an invertible matrix Q € G! (2,R) such that (a,b)Q = (4,0)
for some d € R.

Notice if (a,b) admits a diagonal reduction, then the two generated ideal Ra +
Rb in R is principal. For suppose

(a,b)[; fv] = (d,0) withQ = [’; fv]e GI2,R)
If
- x
e-f )
then

yl wl

(a,b)=<d,0)["' z ]

implies a = dx', b = dz', and ax + by = d. Therefore, Ra + Rb = Rd.

180
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A ring R for which every 1 X 2 matrix in M;.,(R) admits a diagonal
reduction is called a Hermite ring. Our comments above imply every two gen-
erated ideal in a Hermite ring is in fact principal. It follows easily from this that
every finitely generated ideal in a Hermite ring is principal. In particular, if R is
a Noetherian, Hermite ring, then R is a PIR.

Our first theorem in this section is due to I. Kaplansky. It provides us with a
partial converse to the statement above.

Theorem 15.2 Let R be a PIR. Suppose Z(R) C J(R). Then every 1 X 2
matrix in M, »,(R) admits a diagonal reduction.

Proof. Let (a,b) € M,,,(R). Since R is a PIR, Ra + Rb = Rd for some d
€R.Ifd = 0, then a = b = 0, and there is nothing to prove. Hence, we can
assume d # 0. We introduce the following notation:

153 d=ap + bq Ra; N Rb; = Rc Rr + Rs = Rt
a = da, c=ayr r = xt
b = db, c= —bs s =y

Since R is a PIR, elements p, ¢, a,, b, ¢, r, s, t, x, and y can be found in R such
that the relations in equation 15.3 are satisfied. Since d # 0, and 0 = ap + bq
—d=d(ayp+bgqg—1),ap+bqg—-1€ZR). Thus,ap + bg— 1€
J(R) by hypothesis. In particular, u = a\p + bjg =1 + [ap + big —1]is
a unit in R. Set p’ = u"'p and ¢ = u"'q. Then we have the following
equations.

154 u'ld = ap’ + bq' and a,p' + byq' = 1.

Setz = a,p’'b, = b,(1 — b,q'). Thenz € Ra; N Rb;, = Rc. Letz = cw
= —b;sw. If b, EJ(R), thena,p’ = 1 — b,q’ € U(R). Thus, a, € U(R).
The equations in 15.3 then imply @ ~ d, and b = aa for some a € R. Then

1 - 1 -
(a,b)[0 (;] = (a,acu)[0 T] = (a,0),

a diagonal matrix. Thus, the proof is complete if b, € J(R). Hence, we assume
b, & J(R).
Now

b, (1 — big" + sw) = b;(1 — b,q') + bsw =z + bsw
—bisw + bysw =0
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Since Z(R) C J(R) and b; & J(R), b, is a regular element of R. Therefore,
1 —byg' +sw=0.1f s €EJR), then1 + sw € U(R), and hence b, €
U(R).But then the equations in 15.3 imply b ~ d, and a = ba for some a €
R. Then

0 1 1
(a,b)[, _a] (ba b)[l _a] = ,0)

So again the theorem is proved. Hence, we can assume s €J(R).

Since s = yt, t €J(R). We also have ¢ = axt = —b,yt. Since Z(R) C
J(R), t is a regular element of R. Therefore, a,x = —b,y. In particular, a;x €
Ra; N Rb, = Rc. Thus, a,;x = —b,y = ch for some h € R. But ¢ = axt.
Therefore, ch = axth. Thus, aix = —byy = ch = apxth. If a;x = 0, then ¢
=ar = axt =0.Then0 = ew = z = b (1 — b\q'). Since b, &€ J(R),
b, is a regular element of R. The last equation implies b, € U(R). We
have seen above that (a,b) admits a diagonal reduction when b, is a unit.
Hence, the theorem is proved if a;x = 0. Consequently, we may assume
ax # 0.

We have seen that a,x = a,xth. Therefore, 0 = a,x(1 — th). Since a;x #
0,1 — th€ Z(R) CJ(R). We conclude ¢ € U(R). The equations in 15.3 then
imply Rr + Rs = R. In particular,

155 er + fs = 1 for some e, f €E R.

Set g = ep’ + fg'. It then follows from equations 15.4 and 15.5 that

[3'—ga.f gbn” ] [ ]

Thus,

[’;, :] € GI2,R)
Also,

(a,b)[z: :] = (u~'4,0)

Hence, (a,b) admits a diagonal reduction. This completes the proof of Theorem
15.2. 1
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The argument given in the proof of Theorem 15.2 works even for noncom-
mutative rings. If T is a (not necessarily commutative ) ring for which (1) Z(T)
C J(T), (2) the sum and intersection of any two principal right ideals is a
principal right ideal of T, (3) the sum of any two principal left ideals is a
principal left ideal of T, and (4) any matrix in M, ., (T) with a one-sided inverse
is invertible, then T is a right Hermite ring; that is, for all (a,b) € M, ,(T),
there exists a @ € GI(2,T) such that (a,b)Q = (d,0) for some d € T. Only
minor adjustments in the proof of Theorem 15.2 are needed to prove this result
for noncommutative rings.

If every 1 X 2 matrix in M, ,,(R) admits a diagonal reduction, then every
2 X 1 matrix in M, »;(R) also admits a diagonal reduction. By this, we mean
for every

[‘;] € My (®)

there exists a P € Gl(2,R) such that

P[Z] = [g] for some d € R

This assertion follows easily from taking transposes. Thus, if R is a PIR such that
Z(R)CJ(R),thenevery 1 X 1,1 X 2, and 2 X 1 matrix with entries from
R admits a diagonal reduction.

If R is a PID, then Z(R) = (0). In particular, Z(R) C J(R). Therefore,
Theorem 15.2 implies any PID is a Hermite ring. If R is a special PIR, then R
has only one prime ideal 8 which is necessarily nilpotent. Therefore, Z(R) C B
= J(R). Thus, any special, PIR is a Hermite ring by Theorem 15.2. Theorem
14.6 implies any PIR is a finite direct sum of Hermite rings.

Before stating the main results of this section, we review some familiar
definitions. Recall (Definition 2.23) that an m X n matrix D is a diagonal
matrix if [D]; = 0 whenever i # j. If D is a diagonal matrix in M,, . ,(R), then

we will write D in the following way: D = Diag(d,, . . . , d,). Here r =
min{m,n}, andd; = [D],fori = 1, ..., r. Notice that a diagonal matrix need
not be square. If m = n, then
dl 0 .« e . 0 o . 0
0 d2 - -0 [P 0
Diag(dy, . . .,d) = | ’
L0 0 d, 0
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If m = n, then

d 0 0
0 4, ]
Diagd,, . . .,d)=|0 O d,
0 0 0
00 ...0
| —

Definition 15.6 Let A, B € M, ,(R). The matrices A and B are said to be
equivalent if PAQ = B for some P € Gl(m,R) and Q € GI(n,R).

If A and B are equivalent, we will write A = B. It is easy to check that =~ is an
equivalence relation on M, ,(R). Thus, forall A, B,and C € M, ,(R), A =
A,A=Bifandonlyif B= A, and if A = B and B = C then A = C. Notice that
only matrices of the same size can be equivalent.

Definition 15.7 A commutative ring R is called an elementary divisor ring if
for all m,n = 1 and for every A € M, ,(R), there exists a diagonal matrix
Diag(d,, . . . , d,) € M, ,(R) such that

(a) A = Diag(d,, . . ., d,), and\

(b) d;|d;,,foralli =1,...,r — 1. [Here r = min{m,n}.]

The reader will recall that the notation d; | d; ., , in 15.7b means d; divides d; , ,.
Thus, dz; = d;, , for some z; € R.

A matrix A € M, ,(R) is said to have a diagonal reduction if there exist
invertible matrices P € Gl(m,R) and Q € GI(n,R) such that PAQ =
Diag(d,, . . . , d,) [r = min{m,n}], with d; | d;,, foralli = 1,...,r — 1.
Thus, R is an elementary divisor ring if for all m,n = 1, every m X n matrix in
M,, . ,(R) has a diagonal reduction. If D = Diag(d,, ... ,d,) EM,,«,(R), and
d;|d;,,foralli =1,...,r — 1, then D is called a diagonal reduction of A
ifA = D.

We will abbreviate the expression d; | d;,, foralli = 1,...,r — 1 by
writing d, | d, | - - - | d,. Thus, R is an elementary divisor ring if every
m X n matrix A with entries in R is equivalent to some diagonal matrix
Diag(d,, . . . ,d,) in whichd, | d,| - - - | d,.
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Suppose A € M,,x ,(R) has a diagonal reduction D = Diag(d,, . . ., d,).
ThenA ~DinM,,«,(R), and d, |d,|- - - | d,in R. Notice thatd, | 4, | - - - | d,
in R if and only if Rd, D Rd, D - - - D Rd,. In particular, if d; is a unit in R,
thend,, . . ., d;are all units in R. Similarly, ifd; = 0, thend; = d, ., = --- =
d. = 0. Thus, if D = Diag(d,, . . ., d,) is a diagonal reduction of A, then the
diagonal entries d;, . . . , d, of D are arranged as follows: Those d, (if any) which
are units in R appear in the upper left-hand corner of the diagonal of D. Those
d; (if any) which are nonzero, nonunits of R appear next on the diagonal of D.
Those d; (if any) which are zero appear in the lower right-hand portion of the
diagonal of D.

We certainty know one familiar example of an elementary divisor ring. Any
field F is an elementary divisor ring. To see this, suppose A € M,,.,,(F). Then
A can be reduced by a finite number of elementary row and column operations
to an m X n matrix of the form

I 0
0 [0}
Here k is the rank of A. Since elementary row and column operations are per-

formed on A by multiplying A on the left and right by suitable invertible matri-
ces, there exist P € Gl(m,F) and Q € Gl(n,F) such that

I 0
PAQ=[0 O}

Thus, any field is an elementary divisor ring.
We will show that any PIR is an elementary divisor ring. This follows from
our second theorem, which is also due to I. Kaplansky.

Theorem 15.8 Any Noetherian, Hermite ring is an elementary divisor ring.

Proof. SupposeR is a Noetherian, Hermite ring. Since R is Hermite, all 1 X 1,
1 X 2, and 2 X | matrices with entries from R admit diagonal reductions.
Hence, we first argue any 2 X 2 matrix with entries from R admits a diagonal
reduction.

Let
_ |91 @12
A= [021 azz] € M, ,(R)
Set E(A) = {PAQ | P,Q € GI(2,R)}. The set E(A) is just the equivalence class

of Ain (M, ,,(R),=~). Foreach B € E(A), consider the principal ideal ([B];,)
= R[B],;inR. Let¥ = {R[B],, | B € E(A)}. ¥ is a nonempty set of ideals
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of R. Since R is a Noetherian, ¥ has a maximal element with respect to inclusion
(Lemma 10.2). Hence, there exists a

_ dl X
W—[y Z]EE(A)

such that Rd, is not strictly contained in R[B],, for any B € E(A). We claim
dy|xand d, | y.

Since R is Hermite, there exists a Q € GI(2,R) such that (d,x)Q = (a,0)
for some « € R. We have noted previously that Re = Rd, + Rx. Since

wsz=[a 0]

* X

Ra € ¥. Since Rd; C Ra, the maximality of Rd, in ¥ implies Rd; = Ra.
Therefore, d; | a | x. Similarly, there exists a P € GI(2,R) such that

)=

for some B € R. Then RB = Rd, + Ry, and

~pw=|B *
w~PW=|5 .

The same argument as before shows d, | B | y.

Since d, | xand d, | y, W =~ Diag(d, d,) for some d, € R. The P and Q used
to reduce W to Diag(d,,d,) here are suitably chosen elementary matrices. Thus,
Diag(d,,d;) € E(A). Since

BRI

we have
d d,
[0 dz] € EA)

The same argument as above then shows d, | d,. Thus, A =~ W =~ Diag(d,,d;)
with d, | d,.

We have now shown that a Noetherian, Hermite ring R has the property that
alll x 1,1 X 2,2 X 1,and 2 X 2 matrices with entries from R have diag-
onal reductions. This will be enough to prove the theorem. In fact we have the
following more general result:
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Claim. For any commutative ring R, ifall1 X 1,1 X 2,2 X 1,and2 X 2
matrices with entries from R have diagonal reductions, then all matrices with
entries from R have diagonal reductions.

To see that this claim is true, let A € M, , . (R). By replacing A with A’ if
need be, we can assume with no lost of generality that m = n. Proceeding by
induction, we can assume the claim is true for smaller m, and for the given m,
smaller n. We can also assume m = 3. Partition A as follows:

A=

=4,
Here A, € M, .,(R), and A, € M(,,,_,,«,(R). By our induction hypothesis,
there exist P, € Gl(m — 1, R) and Q, € GI(n,R) such that B = P,A,Q, =

Diag(x;, . . . , x,) withx; | x, | - - - | x,. Here r = min{m — 1, n}. Then
1 0 Ay _ [AQ] _
o] [R]er- [5%] -
Since

Camd

is invertible, A = C. Partition

D
c- [¢]
with D € M,,.,(R) and E € M ,,_3,x(R).

Again by our induction hypotheses there exist P, € GI(2,R) and Q, €
Gl(n,R) such that

0 PP 0
F=PzDQz=[f,' N 0]

with y, | y,. Set

. 0 P 0
_ | P 0 D _[F V1
H = [o 1,,,_2”1?] 0, = [6] =0y --- 0
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Then A = H. Since y, divides all the entries in F, y, divides all the entries in D
= P;'FQ5!. In particular, y, | x,. Since G = EQ, and x, divides all the entries
in B, x, divides all the entries in E. Therefore, x, divides all the entries in G.
Since y, | x,, y, divides all the entries in G. Thus, y, divides all the entries in H.
Elementary row operations applied to H give us

[t

with K € M(,,_1yx n—1)(R) and y, dividing all the entries of X. By our

induction hypothesis, K = Diag(z;, . . ., z,) withz; | z,| - - - | z, and s = min{m
—1,n— 1}. K P’KQ' = Diag(zy, - . ., z,), then

L | oln]olnlol_.

(0] l P’ 8 | K ) r Q’ - lag(yhzls LRI ,Z_,)
Thus, A = H =~ Diag(y,,z;, . . . ,z,)and y; | z,| z, | - - - | z,. This completes
the proof of the claim and, consequently, the proof of the theorem. 1

We can now combine Theorems 15.2 and 15.8 for our m;in result.

Theorem 15.9 Any principal ideal ring is an elementary divisor ring.

Proof. LetRbe aPIR. Theorem 14.6 impliesR = R, @ - - - @ R, where each
R; is either a PID or a special PIR. In either case, Z(R;) C J(R;) and, conse-
quently, Theorem 15.2 implies R, is a Hermite ring. Since each R; is a PIR, each
R; is Noetherian. Thus, Theorem 15.8 inglies each R; is an elementary divisor
ring. In particular, we need only argue that a finite direct sum of elementary
divisor rings is again an elementary divisor ring. Since R.R; = (0) whenever i
# j, this is easy.

Fixmmn=1,and letA € M,,,,(R). SinceR =R, ® - - - (—DRP,A = A,

+ -+ + A, witheachA, €E M, . ,(R,)fori = 1,.. ., p. Since each R, is an
elementary divisor ring, there exist P; € Gl(m,R;) and Q; € Gl(n,R;) such that
PlAiQi = Diag(d“, “ ey d"') With d” l dz' | ctt | d"l iﬂ R.‘ fOl'i = 1, “ e ey p-

Here r = min{m,n}. SetP = P, + --- + P,andQ = Q, + - - - + Q,. Since
R;R; = (0) whenever i # j, it is easy to check that P and Q are invertible with
inverses P! =Py + - - - + P;land Q7' = Q7' + - - - + Q! Thus, P
€ GI(m,R) and Q € Gl(n,R). Finally, PAQ = Diag(D>0-1dy;, . . ., 2b=1d,:),
and >0, dy; | D=1 dy| - - - | 2¥-1d,;. Thus, A has a diagonal reduction. We
conclude that R = R, @ - - - @ R, is an elementary divisor ring. 1

Theorem 15.9 says that any matrix A € M, ,(R) has a diagonal reduction when
R is a PIR. Such reductions are called Smith normal forms. To be more precise,
we have the following definition.
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Definition 15.10 LetA €M, ,(R). A diagonal matrix D = Diag(d,, ... ,d,)
€ M,,»,(R) is called a Smith normal form of A if A ~ D and d, | d, | - - - | 4,
inR.

Thus, any diagonal reduction of A is called a Smith normal form of A. Theorem
15.9 guarantees that every m X n matrix with entries from a PIR has a Smith
normal form.

The next order of business is to consider the question of uniqueness of the
Smith normal form. Consider the following example.

Example 15.11 Let R = Z/6Z. Then R is a PIR. In particular, every m X n
matrix with entries from R has a Smith normal form. Let us write the elements

of R as {0,1,2,3,4,5}.
Let

1 0
A= [4 2] € MR

Then
1 0
-1
Pt= o]
and P"'AP = Diag(1,2). Thus,

o 3]

is a Smith normal form of A.
On the other hand, if

2 3
o- 1 3]
then

o' =[5 3]
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and Q"'AQ = Diag(4,5). Then

[ offo 5|3 o] <[5 4

Since 5 € U(R),

5 0]

0 4
is another Smith normal form of A. Thus, there are at least two Smith normal
forms of A in szz(R). .

We have seen in Example 15.11 that a given matrix may have more than one
Smith normal form. Thus, in general, a Smith normal form of a matrix (if it
exists) may not be unique. However, notice in Example 15.11 that 1 ~ 5 and 2
~ 4 (5 X 2 =4 mod 6). When R is a PIR, this is always the case. We will
show thatif D = Diag(d,,...,d,)and D' = Diag(d,, . .., d,) are two Smith
normal forms in M, ,(R) and R is a PIR, then D = D’ implies d, ~ d, . . . , d,
~ d/. Thus, a Smith normal form of a matrix is unique up to associates along its
diagonal when R is a PIR.

In order to prove the statements in the last paragraph, we need to discuss some
well-known facts about cyclic modules. For this discussion, R can be any com-
mutative ring. If M is a finitely generated R-module, we will let pg (M) denote
the smallest number of elements in M which generate M as an R-module. For
example, if R is a field, then gz (M) is just the vector space dimension of M over
R. If R is a local ring, (R,m,k), then Nakayaina’s lemma (Corollary 10.20)
implies pg(M) = dim (M/mM). If M = (0), then we set p,(0) = 0.

Lemma 15.12 Suppose U,, . . . , U, are ideals in R such that A, + - - - +
A, # R. Then pe(RIA, @ - - - D RY,) = n.

Proof. SetM =R/, @ -+ - ® R/YU,. Since A, + - - - + A, # R, there
exists a maximal ideal m in R such that A, + - - - + U, C m. Clearly, mM =
mA, D - @m/U, and M/mM = Rim @ - - -+ @ R/m (n summands). In

particular, pg(M) = dimg,,,(M/mM) = n.
On the other hand, let 8, = (0, ...,1 + U, ...,0)EMforeachi =
1,...,n Clearly, {3,, ..., 3.} is an R-module basis of M. Therefore, pg(M)
1

=n.

Lemma 15.13 Suppose A, DA, D - -2 A,and B, 2B, D -2 B, are
two sequences of ideals in R. We assume %, # R # B,. If the R-modules R/,
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@ -  @RN,and R/B, @ - - - @ R/B,, are isomorphic as R-modules, then
n=mand U, = B, foralli =1,...,n

Proof. Since @f- R/U; = @fft, R/B;, Lemma 15.12 implies

n = Mk(é)lmi) = P-R(é]ij) =m
i= j=

Suppose some U; # B, for some j € {1, . . ., n}. Let i be the smallest such j.
ThenA, = B, ..., A, = B;_;,and A, + B,. Here | < i < n. We may
assume that U, is not contained in ‘B,

Letx€ A, — B, andsetM = R/U, D --- DR/Y,. Foranyj=1,...,n,
x(R/%;) = R/(¥U;: Rx). The isomorphism here is given by the map 1 + (%, : Rx)
—>x+ U Sincex€ A, CA_, C---CU, U :Rx=Rforj=1,...,i
Therefore,

1514 xM = @ RAY;:Rx)

j=i+1

Thus, xM is isomorphic to the direct sum of at most n — i nonzero, cyclic
R-modules. Since %;,,, 2 %,,,2--- 2%,

ey :RxDU 2 RxD - DU, : Rx

Thus, Lemma 15.12 implies pg(xM) =n — i.
We also have

15.15 xM = @ RADB;: Rx)
j=1

For any ideal % in R, % : Rx = R if and only if x € . Since x & B, and B,

2%B,,, 2 23, the submodules R/(B; : Rx), . . . , R/('B, : Rx) are all
nonzero. Thus, equation 15.15 implies pg(xM) = n — i + 1. This is clearly
impossible. We conclude that %, = B; forallj = 1, ..., n. 1

We can now use these two lemmas to address the uniqueness question for the
Smith normal form.

Lemma 15.16 Let D, = Diag(d,, ..., d,) € M, ,(R) withd, | d, | - - -
| d,. (As usual, r = min{m,n}.) Let D, = Diag(sy, . . . , §,) € M, ,(R) with
si| 82|+ |s. 1D, =D, thenRd;, = Rs; foralli = 1,...,r.

Proof LetM, = RIRd,®--- ®RIRd, ®R" " HereR" " =R® - @
R (n—rtimes).Ifr = n(i.e.,n=m),then M, = R/IRd, ® - - - D R/Rd,.
Some of the summands R/Rd; could very well be zero here. Clearly, R/Rd; = (0)
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if and only if d; € U(R). Even if R/Rd; = (0), we will keep this summand
present in our notation in what follows.
We have the following short exact sequence for M,.
v Si
1517 0) —» K+ R"— M, — (0)
The map f; is the R-module homomorphism given by

1
—
M
.
~

©@...,0,1 +Rd,0,...,0 for i
i
€ =90,...,00...,01,0,...,0 fori
r i

r+1,...,n

In this formula, the r or i below an entry of the n-tuple indicates what summand
contains the entry. As usual, € = {g,, . . . , &,} is the canonical basis of R". K
= Ker(f;) and v is the inclusion map. Clearly, K = R(d,e,) @ - - - D R(d,¢,).

The matrix D, = Diag(d,, . . . , d,) induces an R-module homomorphism
81 : M. (R) — Kgivenby g,(xy, . .., x,) = ((xy, ...,x,)D;). To
see this, first observe that the map g,(§) = (&€D,) = Dif' is certainly an
R-module homomorphism from M, ,,,(R) toR". Forj =1, ..., m,let§; =
0,...,1,...,0)be the row vector in M, ,,,,(R) having a 1 in its jth entry.
Then we have ’

dJBJ for j

15.18 g,(&,-) = (Sle)' = { O forj=r + .l,.. .o, m

Therefore, Im(g,) = K. Since M, ,,,(R) is a free R-module of rank m,

2 h
15.19 M, (R) — R* — M, — (0) \
is a presentation of the R-module M,.
Set M, = R/Rs; @ - - @ R/Rs, @ R"™". Then we can find a similar
presentation for M,.
F23 fa
15.20 MIXm(R) — R+ Mz —> (0)
The R-module homomorphisms in 15.20 are as follows:
82(8) = (&D,) forall £ € M, ,,,(R)
and

I
—
-
~

©,...,0,1 +Rs,0,...,0 for i
i
e =30,...,00,...,0,1,0,...,0) fori
r i

Il
~
+
—
]
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Since D, = D,, there exist invertible matrices P € Gl(m,R) and Q €
Gl(n,R) such that PD,Q = D,. We claim the following diagram is commutative:

91

n
Mixm® = A
1521 p’! l at
92
Myxm R — R"

The vertical map Q' in 15.21 means left multiplication by Q’. The vertical map
P! means right multiplication by P™!. Since these matrices are invertible, both
of the vertical arrows in diagram 15.21 are R-module isomorphisms.

Let £ € M, x,,(R). Then 0'g,(£) = Q'D{E'. On the other hand, g,(£EP ")
= [(§P™")D,) = D4(P™ ). Since PD,Q = Dy, D,Q = P~'D, and O'D!
= D5(P~'Y. Thus, Q’g,(§) = g,(§P~"). In particular, the diagram in 15.21
is commutative.

Since the diagram in 15.21 is commutative, we have

Q‘(Im(gl)) = Ql(gl(Mlxrn(R))) = thl(Mlxm(R))
= 8P (M) xm(R)) = 8,(M; 5, (R)P™")
8 (M .(R)) = Im(g,)

Thus, the isomorphism Q° : R > R" maps Im(g,) onto Im(g,). The isomor-
phism theorems imply R"/Im(g,) = R"/Im(g,). We now have the following
sequence of R-module isomorphisms:

M, = RKer(f,) = R¥Im(g,) = R*Im(g,) = R"Ker(f,) = M,

Thus, the R-modules M, and M, are isomorphic.

We can now apply Lemma 15.13. Since d, | d, | - - - | d,, we have Rd; D Rd,
D+ + D Rd,. Thus, the units (if any) in the sequence {d,, . . . , d,} are listed
first. A similar statement is true for the sequence {s,, . . . , s5,}. Let /; and [,
denote the numbers of units in {d,, . . . ,d,} and {s,, . . . , s,}, respectively. Then
0=l =<rforeachi = 1,2.

Suppose I, = r, thatis, d;,...,d, € U(R). ThenM, = R/IRd, ® - - - @
RIRd, ® R*™" = R"™" (or (0) if r = n). Since M, = M,, we have R/Rs,
@ QRRs, ® R "=R""7 (or (0) if r = n). It follows easily from
Lemma 15.12 thatR/Rs; = (0)foralli=1,...,r. Thus, s,,...,s € U(R),
and, in particular, Rd; = R = Rs;foralli = 1, ..., r. Hence, if I, = r, the
proof of the lemma is complete.



194 Chapter 15

Suppose /; < r. By reversing the roles of D, and D,, we also have [, < r.
Then

15.22 Ml = R/Rdl|+l @ o @R/Rdr("BRn_r
M2 R/Rsl2+l @ R @R/Rs,@Rn-r

These two direct sum decompositions correspond to the following descending
chains of ideals in R.

1523 R>Rdy,; 2 - 2Rd, 2 (0)D -2 (0)
R>Rs,, 2 2R, 2(0)2 2 (0)

The zeros in 15.23 appear n — r times if r < n. If r = n, then these sequences
end with Rd, and Rs,, respectively. (Of course, some of the Rd, or Rs; could be
zero as well.) At any rate, since M, = M,, Lemma 15.13 implies

(r - 11) +(n—r)= ILR(Ml) = I-LR(Mz)
r—L)+ (n—r)

]

Therefore, I, = l,. We also get Rd; = Rs;foralli = I, +1,...,r. In
particular, Rd; = Rs;for alli = 1, . . ., r. This completes the proof of the
lemma. ]

We can now apply Lemma 15.16 to the case when R is a PIR.

Theorem 15.24 Let R be a PIR. Then any A € M,,, ,,(R) has a Smith normal
form. Furthermore, if D, = Diag(d,, . . . , d,) and D, = Diag(s,, . . ., s,)
are two Smith normal forms of A, thend; ~ s;foralli = 1,...,r.

Proof. Since R is a PIR, A has a Smith normal form by Theorem 15.9. If D,
= Diag(d,, . . ., d,)and D, = Diag(s,, . . ., s,) are two Smith normal forms
of A, then D, = A = D,. In particular, D, = D,. We then have Rd;, = Rs, for
i=1,...,rbyLlemma 15.16. We must show Rd;, = Rs, implies d; and s; are
associates in R.

Fixi € {1, ..., r}. By Theorem 146, R = R, @ - - - @ R, with each
R; either a PID or a special PIR. We have seen that Z(R;) C J(R;) for all
j=1,...,p. Letd; = (x;,...,x,)ands; = (y,,...,Yy,) Here x,y, €

Riforallj = 1,...,p. Since Rd; = Rs;, R;x; = Ry, for each j. We claim x;
and y, are associates in R;.

Fixje{l,...,pLIf x; = 0 = y;, then certainly x; and y; are associates in
R;. Hence, we can assume x; # 0 # y;. Since Rix; = Ry, ax; = y; and by, =
x; for some a,b € R;. Then aby; = y;. Therefore, (ab — 1)y; = 0. Since y; #
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0, ab — 1 € Z(R;) C J(R)). In particular, ab = (ab — 1) + 1 € U(R)).
Hence, a € U(R)), and x; ~ y;.

Since x; is an associate of y; for eachj = 1, . . ., p, we conclude that d; =
X oo o5 %) ~ (s - oo, yp) =s;foralli=1,...,r |

We next introduce the invariant factors of a matrix. Let R be a PIR, and let
AEM,,(R). If A = O, then any matrix equivalent to A is zero and there is
nothing interesting to say. Hence, we will assume A # O. Since Ris a PIR, A
has a Smith normal form D = Diag(d,, . . . ,d,) withd, | d; | - - - | d,. Since
A # 0,d; #+ 0. We have noted that Rd, D Rd,D - - - D Rd,. Hence, there exists
an integer a with 1 = a < r = min{m,n} such that d,, . . . , d, are nonzero
elements of Rand d, ,,, . . ., d, are zero. The sequence D(A) = {d,, ..., d.}
is called a sequence of invariant factors of A. We have seen in Theorem
15.24 that the sequence D is unique up to associates in R. Thus, if D, =
Diag(sy, . . . , §,) is a second Smith normal form of A and @' = {s;, .. ., 5.}
the corresponding sequence of invariant factors of A, then d; ~ s; for all
i =1,...,a. This slight ambiguity is often ignored in the literature, and 9 =
{d,, . . ., d,}is called the sequence of invariant factors of A. Let us present what
we have said here as a formal definition.

Definition 15.25 LetR be aPIR, and let A € M, ,(R)*. A sequence @ =
{d,, . . ., d,} of elements from R is called a sequence of invariant factors of A
if there exists a Smith normal form D = Diag(e,, . . . , e,) of A such that the
following properties are satisfied:

(@) 1 < a =< r = min{m,n}

b d, =e,...,d, = e,

(c) e, . . ., e, are nonzero elements in R.

d e, ="--=¢€ =0.

In other words the nonzero entities on the diagonal of a Smith normal form of A
will be called a sequence of invariant factors of A. Theorem 15.24 implies any
two nonzero matrices in M,, . ,,(R) are equivalent if and only if they have the
same sequence of invariant factors up to associates. It is sometimes convenient
to extend the definition of invariant factors to the zero matrix O. We will let the
empty set J denote the sequence of invariant factors of O.

Now suppose Ris aPID. LetA € M, ,(R)*. Suppose D(A) = {d,,...,d,}
is a sequence of invariant factors of A. Therefore, 1 = a = r = min{m,n},
dy,...,d, ER* andd, |d,|---|d,.A~D = Diag(d,, . ..,d,0,...,0)
with r — a zeros appearing on the diagonal of D. Notice then that a = rk(A).
Since R is a PID, R is a unique factorization domain. Hence, there exist units
Ky, - - - » Kq € U(R) and primes (i.e., irreducible elements) p,, . . . p, € R such
that the following equations are true.
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a1 812 , | a1

P P2 * Ps
sz?u pgzz e sz'

Y
N
o

do = kopi* p3* - - - P

The a;; appearing in equation 15.26 are all nonnegative integers. We also assume
the primes p,, . . ., p, are nonassociates. Thus, p; is not an associate of p; whenever
i # j. Some of the integers a; appearing in 15.26 may indeed be zero to allow
for the fact that p; does not occur in the factorization of d;. We have already noted

thatd, |d, | - - - | d, implies the units in the sequence @ = {d,, . . . , d,} come
first. If some d; is a unit, thena;; = - - - = a,, = 0 for that i. Also notice that
di|dy| - |d,impliesa;=<ay=<---=<a,foreachj=1,...,s.

The factors in equation 15.26 of the form pj}* with a; > 0 (if any) are called
the elementary divisors of A. To be more specific, suppose at least one invariant
factord,, . . ., d, of A is a nonunit in R. Then at least one integer a;; is positive
in the factorizations in equation 15.26. We can then form the following sequence

1527 B(A) ={pl",....p%, ..., ¢, ..., p%|a;>0)

The notation here means pj’ is listed as a term in € (A) if and .only if a; > 0.
Thus, the sequence €(A) is just a listing of the prime power factors pfi corre-
sponding to those entries of the matrix (a;) [€ M, (Z)] which are nonzero.
The sequence €(A) is called a sequence of elementary divisors of A. Notice that
€ (A) may have many repeated terms.

Suppose every invariant factor d,, . . . , d, of A is a unit in R. Then we will
set €(A) = I (the empty sequence). Thus, €(A) = J if and only if every
invariant factor of A is a unit in R. Since the sequence D (A) = {d,, . . . d,} of
invariant factors of A is unique up to associates in R, it easily follows that the
sequence € (A) is unique up to associates in R. If A,B € M,,,.,,(R)* such that
A = B, then Theorem 15.24 implies A and B have the same sequence of invariant
factors and the same sequence of elementary divisors up to associates in R.
Consider the following examples.

Example 15.28 LetR = Z.
(a) Suppose

1o o0 o o
0120 0 0

A=~|0 0 36 0 0|€Msys@
0 0 0 5400 0
00 0 0 O
L i
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Then @(A) = {1,12,36,5400} is a sequence of invariant factors of A. Factoring
the invariant factors of A as in equation 15.26, we have

1=2%3"x%x35°
12=22x 3! x5°
36 =22x 3 x5
5400 = 23 x 3 x 52
Thus, €(A) = {2%,3,2%,32,23,33,5%} is a sequence of elementary divisors of
A.
(b) Let

1 0 1 0] .
A= [0 1] and B = [0 O:I mn Mz)(z(Z)

Then B(A) = {1,1} and D(B) = {1}. Since D(A) is not equal to D(B) (up to
associates), we conclude A is not equivalent to B. We could also have observed
that equivalent matrices have the same rank. Therefore, A and B are not equiv-
alent. However, A and B do have the same sequence of elementary divisors since
€(A) = €(B) = . Thus, if two matrices have the same sequence of elemen-
tary divisors, we cannot conclude these matrices are equivalent.

(c) Let

in M3, 3(Z)

w oo
wn oo

1 0 1 0
A=1]0 2 and B=1]0 2
00 00

Then @ (A) = {1,2,3} and D(B) = {1,2,5}, €(A) = {2,3}, and €(B) = {2,5}.
Since D (A) is not equal to P (B) up to associates in Z, we conclude A and B are
not equivalent. These two matrices have the same number of invariant factors
(as well as the same number of units among their invariant factors ) but different
sequences of elementary divisors. 1

Example 15.28b shows that if two matrices have the same sequence of ele-
mentary divisors, we cannot conclude that these matrices are equivalent. How-
ever, that example worked for rather trivial reasons. Neither matrix had any
elementary divisors and the number of invariant factors was different for each
matrix. We can prove the following results.

Lemma 15.29 LetRbe aPID. LetA,B € M,,, ,(R)*. Suppose A and B have
the same number of terms in their sequences of invariant factors. If €(A) =
€ (B) up to associates in R, then A =~ B.

Proof. Suppose D(A) ={d,,...,d }and D(B) = {d], ..., d,}. If €(A)
= (J, then every d, is a unit in R. Since €(B) = €(A) = J, every d; is also
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a unit in R. In particular, @(A) = @(B) up to associates in R. Consequently,
A =B.

Hence, we can assume some d; is a nonunit in R. The lemma follows from the
observation that € (A) determines the nonunits in the sequence @ (A). Suppose
the equations in 15.26 represent the factorizations of the invariant factors d,, . .
., d,. We have noted that a,; < ay; < - - - = a,;forallj = 1, ..., s. This
implies d,, is the least common multiple of the elements in € (A), d,_, is the
least common multiple of the elements in € (A ) with the factors for d, removed,
etc. Thus, the nonunits of @(A) are completely determined by the elements in the
sequence €(A). If €(A) = €(B) up to associates in R, then the nonunits in
D(A) and D (B) are the same up to associates. Since D (A) has the same number
of terms as 9 (B), we can now conclude that every term in 9 (A) is an associate
of the corresponding term in 9 (B). Thus, 9(A) = D(B) up to associates in R
and, consequently, A = B. i

We will have more to say concerning invariant factors and elementary divisors
in the next chapter. We finish this chapter with some applications of Theorem
15.9.

Suppose R is a PIR. Let M be a finitely generated R-module. Let I' =
{m,, . . ., m,} be an R-module basis of M. As in Chapter 13, if M = (0), we
will take n = 1 and I' = {0}. In any case, I determines a short exact sequence
for M.

L f
1530 Q) > K— R —> M~ (0)

Asusual, € = {g,, . . ., £,} denotes the canonical basis of R", fis given by f(¢;)
=mforalli =1,...,n, and K = Ker(f). Suppose {3,, . . . , §,}is
an R-module basis of K. Foreachi = 1,...,m,letd, = Y-y c;¢;. Then
C = (c;) € M, ,(R) is a relations matrix for M. The matrix C determines an
R-module homomorphism g : M,,,(R) — K given by g(§) = (¢C).
Hence,

g f
1531 M., (R) — R —» M — (0)

is a presentation of M.

By Theorem 15.9, R is an elementary divisor ring. Thus, C has a Smith
normal form. Hence, there exists invertible matrices P € Gl(m,R) and Q €
Gl(n,R) such that PCQ = D = Diag(d,, . . ., d,), a Smith normal form of C.
In particular, d, | d, | - - - | d, and r = min{m,n}. We can modify the right exact
sequence in 15.31 by defining two new R-module homomorphisms g’ :
M,y (R) = R"and f' : R" > M as follows: g'(£) = (§D) and f'(A) =
FC(Q@™")\). We then have the following complex of R-modules.
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g f
15.32 M, R)— R"—> M —(0)

We claim the sequence in 15.32 is right exact. Since Q is imvertible, the map
A — (Q7 1) \ is an isomorphism of R" to R". In particular, f’ is a surjective
R-module homomorphism. For any row vector £ € M, ,,,(R), we have

f'g'(§) = f'[(EDY] = fIQCPE] = fI(Q™'YQCTPE] = fl(£PC)']
= f(g(&P)) = 0

since 15.31 is right exact. Thus, Im(g') C Ker(f'). Finally, suppose vy €
Ker(f'). Then0 = f'(y) = f( (Q1)'y). Since the sequence in 15.31 is right
exact, there exists a row vector a € M, ,,,(R) such that («C) = g(a) =
(Q™'Yy. Since P is an invertible matrix, there exists a B € M, »,,(R) such that
o = BP. Then (@) "'y = (@™ ")y = C'a’ = C'P'B". Therefore, y = Q°'C'P'B’
= g'(B). We have now shown Im(g’) = Ker(f'). In particular, the sequence
in 15.32 is right exact.
Since D = Diag(d,, . .., d,),

Im(g') = R(d\&;) D R(dye,) @ - - - D R(dpe,)
Since 15.32 is a right exact sequence, we have

M= R"Ker(f') = R"Im(g’) = RY(R(d;e,) ® - - - @ R(d.g,))
= R/IRd, ® RIRd, ® - - - ® RIRd, D R*~"

Thus, M is a finite direct sum of cyclic R-modules with descending annihilators:
RdiDRd,D---2Rd D (0)D-- -2 (0). We have now proved the following
theorem.

Theorem 15.33 Let R be a PIR and M a finitely generated R-module. Then M
is a finite direct sum of cyclic modules: M = R/Rx; @ R/IRx, @ - - - @ R/Rx,
with descending annihilators Rx; D Rx, D - - - 2 Rx,. Furthermore, if no
summand R/Rx; is zero here, then this decomposition is unique. |

The uniqueness statement in Theorem 15.33 means the following: If M = R/Ry,
@ - - - DR/Ry, withRy, D - - - D Ry, and no R/Ry; zero, then p = n, and R/Rx;
= R/Ry;foralli = 1, ..., n. This follows from Lemma 15.13.

Theorem 15.33 is most often used when R is a PID. In this case, several
observations are worth making here. Suppose M is a finitely generated module
over a principal ideal domain R. Let C € M, ., (R) be a relations matrix for M.

Let D = Diag(d,, . . . , d,) be a Smith normal form of C. We have seen in the
proof of Theorem 15.33 that M = R/Rd, @ - - - @ RIRd, ® R""". Here r =
min{m,n}. If C = O, thend, = - - - = d, = 0, and M is a free R-module of

rank n. Suppose C # O. Let @(C) = {d,, . . . , d,} be the sequence of invariant
factors of C derived from D. Thenl =a =<r,andd,,,,...,d, = 0,
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Therefore, we can write M as follows: M = R/Rd, @ - - - @ R/IRd, @
R"™®. In particular, the torsion submodule of M is J(M) = R/IRd, @ - - - @
R/Rd,. A M) = (0) precisely when Rd; = - - - = Rd, = R. Thus, J(M)

= (0) if and only if ¥C) = J. Notice that J(M) is always a direct sum-
mand of M since (M) @ R"* = M. We have now proved the following
theorem.

Theorem 15.34 Let R be a PID. Let M be a finitely generated R-module. Then
(a) M is torsion free if and only if 4 C) = O for some relations matrix C of
M.
(b) M is the direct sum of its torsion submodule J(M) and a free submodule
whose rank is unique.
(c) M is a free R-module if and only if M is torsion free. 1

In 15.34a, if C = O, then we set ¢(C) = J. We can now give an easy proof
of Exercise 7 in Chapter 14. We list this result as a corollary to Theorem
15.34.

Corollary 15.35 Let R be a PID. Any submodule of a finitely generated free
R-module is itself a free R-module.

Proof. Suppose M C R". Since R" is torsion free, M is torsion free. Therefore,
M is free by Theorem 15.34c. |

There are two classical applications of Theorem 15.33. The first application
occurs in the theory of abelian groups. Suppose G is a finitely generated abelian
group. If we write the group action on G additively, that is, g,8, = g, + &,, then
G is a finitely generated Z-module. The scalar multiplication between Z and G
is defined as follows: Letn € Zandg € G. Ifn>0,thenng =g + - - - +
g(ntimes). i n = 0,thenng = 0. If n <0, thenng = — (|n|g). Theorem 15.33
implies G is a finite direct sum of cyclic groups,

G=22d,® - - ®ULd DI

where d, | d, | - - - | d,. In particular, if G is finite, then G = Z/Zd, ® - - - @
Z2/Zd, withd, | d,|- - -|d, and d,, . . ., d, € Z*. Thus, a finite, abelian group
G is a finite direct sum, G = G, @ - - - @ G, of cyclic subgroups G, of G with
order(G,) | order(G,) | - - - | order(G,).

The second application of Theorem 15.33 occurs in the theory of canonical
forms of matrices. The construction of a Frobenius normal form of ann X n
matrix (entries from a field) will depend on Theorem 15.33. We will discuss this
application in detail in the next chapter.
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EXERCISES

1. In the proof of Theorem 15.8, we claimed d, | x and d, | y implies

e

Give a proof of this assertion.

2. Let R be a commutative ring. Let 2 be an ideal in R. For any x € R, show
R : Rx = x(R/AN) as R-modules.

3. If Rx = Ry in an arbitrary commutative ring R, can we conclude x ~ y?

4. Give a careful proof of the assertion: A =~ B if and only if A and B have the
same sequence of invariant factors up to associates in R.

S. LetRbe aPID.LetAE€EM,, ., (R). Suppose tk(A) = r > 0. Foreach i =
1,...,r, letA; denote the greatest common divisor of all i X i minors of
A. Show D(A) = {A,AATY, ..., A AL

. Prove the uniqueness statement in Theorem 15.34b.

. What is the situation in Theorem 15.34 if we assume R is a PIR instead of
a PID?

8. LetR = Z/6Z = {0,1,2,3,4,5}. Find a Smith normal form of the following

matrices:

NN

1 2 4
2 4

(a)[] ® |4 1 2
2 4 4 4 3

N~

. Compute D (A) and €(A) for

€ M3x3(2)

SO
O = N

10. Compute D(A) and € (A) for

1 2 X 1
X 4ax x? 2X
A= 23 2+ xt X3 € M,y QXD

X+1 X+DX*+2) X+X* X+DX+ 1D
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11. Let R = Z[i] where i> = —1. Set M = R*K where K is generated by

2 1+ 7+ 5i
8, = 3], & =(1-i|, &= 9 |,
L6 i 12 + 9i
[—11 — 9i
84= —-14 -
| —18 — 17i

Write M as a direct sum of cyclic R-modules, and compute J(M).
12. Find all solutions in Z of the following system of Diophantine equations:

Tx — 13y + 12z = 6
x+5 +32 =8

Hint: Use the Smith normal form of

7 -13 12
1 5 3

13. Show R = Z[X] is not a PID. Show the ideal A = (3, X + 1) C Ris not
a direct sum of cyclic R-modules.

14. Suppose (R,d) is a Euclidean domain (see [S, p. 148]). Let A €
M, . .(R). Show that a Smith normal form for A can be obtained from A
using only elementary row and column operations on A.

15. Suppose (R,3) is a Euclidean domain. Let A € M, ,(R), and assume
det(A) # 0. Show there exists a P € GI(n,R) such that

B T

apy ap - ap,

0 ayp - " Ay,
PA =

0 0 - - ay

L i

and 3(a;) > 8(a;) forallj =1, ... ,nandi=1,...,j— L

16. Let Rbe a PID. Let A,B € M, . ,(R). Assume det(AB) # 0. Let D, =
Diag(d,, - . . ,d,), D, = Diag(e,, . .. ,¢,), and D; = Diag(f;, . .., f,)
be Smith normal forms for A, B, and AB, respectively. Show d; | f;and ¢; | f;
foralli=1,...,r.
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17. Let R be aPID. Let A be aleftideal in T = M, ,(R). Show U = TA for
some matrix A € T.

18. List all nonisomorphic abelian groups of order 36. Explain your answer
carefully.

19. This exercise is a sharper version of Corollary 15.35: Let R be a PID. Let
M be an R-submodule of R". Show R" has a free R-module basis A =

{\, . . ., A} such that the following properties are satisfied:
(a) There exist an integer r = n and elements a,, . . . , a, € R such that
{a)\y, . . ., a)} is a free R-module basis of M.

®) a;|ay|--|a,
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The Frobenius Normal Form of a Matrix

In this chapter F will denote a field and X an indeterminate over F. Suppose A
€ M, ,(F). We will abbreviate the matrix X/, — A by writing X — A. Thus,
X - A EM,,,(F[X]). Since F[X] is a PID, the matrix X — A has a Smith
normal form by Theorem 15.9. We will use the Smith normal form of X — A to
construct a Frobenius normal form of A. We begin with the following theorem,
which is true for any commutative ring R.

Theorem 16.1 LetA,, A,, B,, and B, be n X n matrices in M, ,(R). Set M,
= A X + B, and M, = A, X + B,. Suppose A, is invertible. Then M, = M, in
M, . ,(R[X]) if and only if PM,Q = M, for some P,Q € Gl(n,R).

Proof. Since M, ,,(R) C M, ,(R[X]) and Gl(n,R) C Gl(n,R[X]), the
implication from right to left is obvious. Suppose A;X + B, = A, X + B, in
M, ., (R[X]). Then there exist U,V € Gl(n,R[X]) such that U(A,X + B,)V
= A,X + B,. We have seen in Lemma 7.18 that M, (R[X]) =
(M, ,(R))[X]. Since A, is a unit in M, ,(R), we can divide M, into both U
and V by Theorem 7.2. Thus, there exist matrices R;, R, € M,,,(R[X]) and
P, Q €EM,, ,(R) such that

162 U =M_R, + PandV = R\M, + Q.

204
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Then

M, = UM\V = (M,R, + P)M,V = PM\V + M,R,M\V
= PM,\V + M,R,U™'M, = PM;(RM, + Q) + M,R,U™'M,
= PM,Q + PMRM, + MR,U™'M,
= PM,Q + (U — M,R,)M,R\M, + M,R,U™'M,
= PM,Q + UMRM, + My (—R,M\R, + R,U "M,
= PM,Q + My(V"'R, — R;M\R, + R,U™')M,

Set H = V'R, — R,M\R, + R,U™". Then
16.3 M, = PM,Q + M,HM,.

We view equation 16.3 as a polynomial identity in X with coefficients in
M, «,(R). Now

M,HM, = (A,HA,)X? + (B,HA, + A,HB,)X + B,HB,

Substituting this expression in equation 16.3 and counting degrees in X implies
H = O. Therefore, M, = PM,Q. In other words, A,X + B, = (PA,;0)X +
PB,Q. Comparing coefficients of X, we get PA;Q = A, and B, = PB,(Q. Since
A, € Gl(n,R), P,Q € Gl(n,R). This completes the proof of Theorem
16.1. |

Theorem 16.1 has an important application to similar matrices. Recall two
matrices B, and B, in M, ,(R) are said to be similar if P~ 'B,P = B, for some
P € Gl (n,R). If B, and B, are similar, we will write B, s B,. The reader can
easily check that s is an equivalence relation on M, ,(R).

Corollary 16.4 Let B,, B, € M, (R). Then X — B, = X — B, in
M, ., (R[X]) if and only if B, s B, in M, . ,(R).

Proof. Suppose X — B, =X — B,. Set A, = A, = I, and follow the proof
of Theorem 16.1 to equation 16.3. Again, we get H = O and

16.5 X + B, = P(X + B,)Q = (PQ)X + PB,Q

for some P,Q € M, ,.(R). As before, we view equation 16.5 as an identity in
X with coefficients in M, . ,,(R). Comparing coefficients of X, we have PQ = [,
and PB,Q = B,. Thus, B, s B, in M, ,(R).

IfB, s B,, thenclearly X — B, =~ X — B,. 1
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We will use Corollary 16.4 at the end of this chapter when computing Frobe-
nius normal forms. We now return to the setting of the first paragraph of this
chapter. Suppose F is a field, and let A € M, (F). Then X — A €
M, . .(F[X]), and Theorem 15.9 implies X — A has a Smith normal form D in
M, x(FIX1). Thus,

16.6 X — A ~ D = Diag(d,(X),dy(X), . . . , dy(X))

In equation 16.6, 4, (X), . . . , d,,(X) are polynomials in F [ X] with the property
that d,(X) | d,(X) | - - - | d,(X).

A couple of important observations about equation 16.6 should be mentioned
here. Since X — A = D, there exist invertible matrices P,Q € Gl(n,F[X]) for
which (X — A) = PDQ. Since P and Q are invertible, det(P), det(Q) €
U(F[X]) = F*. Therefore, C,(X) = det(X — A) = det(P) det(D) det(Q)
~ d(X)dy,(X) - - - d,(X). Since C,(X) is a monic polynomial of degree n,
d(X) # 0fori = 1, ..., n Furthermore, 2,]-, 3(d;) = n. Thus, @ =
{d\(X), ..., d,(X)}is a sequence of invariant factors of X — A, and at least
one d;(X) in this sequence is a polynomial of positive degree in F[X]. Of course,
some of the d; could very well be units. Consider the following simple example.

Example 16.7 Let F = Q, and

1 0
A= [—l 2] € M,»(Q)

Then

X - 1 0 10
X‘A=[ i x—z]”[o (X—l)(X—2)]

\
Therefore, D(X — A) = {I, (X - 1)(X - 2)},and (X — A) = {X — 1,
X -2} i

Let 3 (X — A) = {d(X), ..., d,(X)} be a sequence of invariant factors
of X — A. Since some d; must be a nonunit in F[X], there exists a positive inte-
ger B such that | = B = n, d,(X), . . ., dg_,(X) are constants in F* and
dg(X), . . ., d,(X) are polynomials of positive degree in F[X]. Let (X — A)
= {q,(X), . . ., q,(X)} be a sequence of elementary divisors of X — A. Since
at least one d;(X) has positive degree, €(X — A) # . Thus, I = 1. If the
nonunits dg (X), . . . , d,(X) are factored into primes as in equation 15.26, then

X — A) = {gX), . . ., qX)}
={pp,....p% .. .,¢pf .. .,p" a;>0}
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We observed in Chapter 15 that a sequence of invariant factors of a matrix
is unique only up to associates in the ring. In particular, if (X — A) =
{di(X),...,d,(X)},and c,, . . ., c, € F*, then {c,d,(X), . . ., c,d,(X)}
is also a sequence of invariant factors of X — A. Hence, we can always assume
that dg(X), . . . , d,(X) are monic polynomials. We can then factor each d;(X)
into irreducible polynomials in F[X] which are monic. In particular, we can
assume the elementary divisors q,(X), . . . , ¢,(X) of X — A are all monic
polynomials in F [ X]. Thus, in what follows, we will assume dg (X), . . . , d,(X)
and q,(X), . . . , q;(X) are all monic polynomials in F[X].

Foreachi =1,...,l letn(i) = d(q;(X)). Thenn(i) = 1 foreach i. Since

Ca(X) ~ d(X)dy(X) - - - d (X) ~ dg(X)dp 4 (X) - - - d,(X)
= 1(X)g(X) - - - 9(X)

we have n(1) + - - - + n(l) = n.
Fixi€ {1, ..., l}. Suppose
g:(X) = X" + a, X"+ - + g X + a

Recall the companion matrix, Com(g;), of ¢;(X) is the following n(i) X n(i)
matrix.

0 0-:-0 —a
1 0"'0—a1
0 1- '0—a2
16.8 Com(q) =
0 01 —ayy_
- —

We mentioned in Chapter 7 that the characteristic polynomial of Com(gq;(X)) is
precisely g;(X). Therefore, Ccomqx) (X) = gi(X). Set B(X) = (X) —
Com(gq;). Then

X 0 0 a
-1 X 0 a
0 -1... 0 a
16.9 B(X) = - . € M, xni(FIX])
0 0----1 X+ a,,(,-)_l
L —

and det(B;(X)) = ¢;(X).
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We next observe that the matrix B;(X) has precisely one elementary divisor
¢;(X). To see this, apply the following sequence of elementary row and column
operators to B;(X):

1 =X o ... O_G] _T
0 I—X e . 0—02
BXF| - - - . . (here a = n(i) — 1)
0O 0 0 ... 1-X-aqa,
X 0 O 0 ag
L -—
r1-0 0 -0 0 T rlo 0O ---0 0 T
01-X...0-aq 01-Xx...0-a,
¢ F
00 O l.—);’—a.,l 00 0...1.—).(—a.,~
X * x* * * 0 » =x . *x %
Fé----Diag(l,...,1,8(X))

Here 7 and ¢ denote row and column operations and # is an entry whose precise
value is not important. Since row and column operations are performed on B;(X)
by multiplying B;(X) on the left and right, respectively, with invertible matrices,
we see B;(X) = Diag(1,...,1,g(X))in M,,(,-)x,,(,-)(F[X]). Again we use the
fact that invertible matrices in M,,(;)x ,(;)(F[X]) have determinants which are
nonzero constants in F. Therefore,

q;(X) = det(B;(X)) ~ det(Diag(1, ..., 1, g(X))) 5 g(X)

In particular, B (B,(X)) = {1,...,1,4,(X)}and €(B;(X)) = {g,(X)}. Thus,
B;(X) has precisely one elementary divisor g;(X). One final remark here. Since
q:(X) ~ g(X), B,(X) = Diag(1, . .., 1, g;(X)). Notice that there are n(i) —

1 ones on the diagonal of Diag(1, . . ., 1, ¢;(X)).
Set B(X) = Diag(B,(X), . . ., B/(X)). Thus, B(X) is a block diagonal
matrix having B;(X) as its n(i) Xn(i)th block. Since n(1) + n(2) + - -+ +

n(l) = n, B(X) €M, ,(F(X]). The determinant of B(X) is

1 ]
det(B(X)) = _1:[l det(B4(X)) = l;[1 q4X) ~ C4X)
Let
Di = Dlag(lr e ey 1: q:(x)) € Mn(i)xn(i)(F[X])
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Since B;(X) = D;, B = Diag(D,, . . . , D;). We can always permute the diagonal
entries of a square matrix Z by a similarity P~ 'ZP. In particular, we have

16.10 B(X) =~ Diag(l,...,1,¢,(X),q,(X), ..., q(X)) inM,,,(F[X])
In the equivalence relation in 16.10, there are S (n(i) — 1) = n — lones
appearing on the diagonal ofD_= Diag(l,...,1,4,(X), ..., q(X)). It might
be wise to point out here that D is not necessarily a Smith normal form since g;
need not divide ¢; ;.

We can now argue the central point of this discussion.
16.11 X — A = B(X).

In order to prove this equivalence, we need Exercise 5 of Chapter 15.

Lemma 16.12 Let R be a PID, and suppose A € M,,,,(R) has rank r. For

eachi = 1, ...,r,let A, denote the greatest common divisor of all i X i minors
of A. Then
A = Diag(A;,A,A7L,AA7Y, ..., AANL0, ..., 0)

Before proving this lemma, let us say a few words about the notation here. We
have observed in 4.13 that the rank of A is just the classical rank (rankgz,(A))
of A when A is viewed as an m X n matrix with entires from Q(R), the quotient
field of R. Thus, r = rk(A) = max{i | A; # 0}. In particular, 0 < r <
min{m,n}, and there are precisely min{m,n} — r zeros appearing on the diag-
onal of Diag(A,, . .., A,A;11,0,...,0). Wealsohave A, | A, |- - - | A, from
Laplace’s expansion.

Proof of Lemma 16.12. If r = 0, then A = O, and there is nothing to prove.
Hence, we may assume r > Q. Suppose P € Gl(m,R) and Q € Gl(n,R). Then
for any t = 1, I,(PAQ) = I,(A) by Corollary 4.8. In particular, the greatest
common divisor of the £ X ¢ minors of PAQ divides the greatest common divisor
of the ¢X t minors of A and vice versa. Thus, if A = A’ in M, ,(R), then the
greatest common divisor of the £ X ¢ minors of A is the same (up to associates)
as the greatest common divisor of the ¢X ¢ minors of A’

Since R is a PID, A has a Smith normal form by Theorem 15.9. Suppose A
~D = Diag(d,, . . . ,d,) withp = min{m,n} and d, | d, |- - - | d,. Since tk(A)
=r,d,, =+ =d,=0andd, # 0. Our comments in the first paragraph
of this proof imply A; ~d,, A, ~did,, . . . , A, ~dd,, . . ., d,. Thus,

A =~ Diag(d;, . . . ,d,,0,...,0)
~ Diag(A,,AA7 Y, ..., A A7,0,...,0) [
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We can now give a proof of the equivalence relation in 16.11. By Lemma
16.12, it suffices to show I,(X — A) = [,(B(X)) forallt = 1, ..., n. Since
B(X) = D = Diag(1, ..., 1, ¢;(X), . .., q(X)), it suffices to show
I(X —A) =I(D)forallt=1,...,n.

LetM = F[XV(dag(X)) @ - -+ @ F[X)/(d,(X)). Recall dg, . . . , d, are
the nonunits in the sequence (X — A) = {d,, . . ., d,}. We have the following
short exact sequence of F[X]-modules.

v I
16.13 (0) — K — (F[X])" — M — (0)
The F[X]-module homomorphism f is given by
0 ifi
fe) = {(o, C 0,1 + (d0)0, . . ., 0) ifi
i-B+1

As usual, {e;, . . ., €,} is the canonical basis of (F[X])", K = Ker(f), and
v is the inclusion map. Clearly, f is surjective. Hence the complex in 16.13 is
exact. Since dy, . . . , dg_ are units in F*, the reader can easily check that
K = @ FIX](d;g,). Therefore, D = Diag(d,, . . ., d,) is a relations matrix
for M.

We have listed a sequence of elementary divisors of X — A as €(X — A) =

{¢:(X), . .., q;(X)}. The g, here are powers of monic, irreducible polynomials
in F[X], and there exist positive integers (1), . . . , a(n — B + 1) such that

dg(X) = q,(X)q2(X) -+ * Go(1)(X)
dB+1(X) = doy+1(X) * GaiyrayX)s - - -,
4,(X) = oy + - - - + an-pr+1X) " o) + - - . + a@m-p+DX)

Notice that each set of factors

{9, ..., qm(l)}' {qa(1)+1(X)» e o v Qo+ u(z)(X)},

etc. consists of pairwise relatively prime polynomials. In particular, Theorem
14.1 implies \

FIXV(dg(X)) = @XY FIXV/(g:(X))

FIXV(dg 11 (X)) = @EDGHT FIXV (X))
etc. In particular,

M = @)= FIXV(d,(X)) = @}y FIXV(q:(X))

Suppose g : @!-; F[X)/(g,(X)) — M is the isomorphism given in the last
paragraph. Setm; = g(0,...,0,1 + F[Xlq;,0,...,0)fori=1,...,L
ThenM = F[XIm; @ F[X]m, ® - - - @ F[X]m,, and Anng x;(m,) = F[X]q;
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foreachi = 1, ..., /. In particular, we have a second short exact sequence for
M.

v f
16.14 (0) =K' — (FIX])"—> M — (0)
In 16.14, f' is given by the following formula:

R () ifi=1...,n-1
f(e.-)—{,,,,._(n_,) ifi=n—-1+1,...,n

As usual, K’ = Ker(f'). Clearly, K' is generated by {e,,...,€,_,
@1(X)en_141» - - - » q(X)e,}. In particular, D is a relations matrix for M.

We have seen in AlG in Chapter 13 that the Fitting ideals of M can be
computed from any relations matrix of M. Since X — A = Diag(d,(X), . . .,
d, (X)) =D, (X — A) = I,(D) for any k € Z. Hence,

L_ X —A)=1I,_D) =M =1, (D) foralkE Z

In particular, I,(X — A) = I,(D)forallt = 1, . . ., n. This completes the proof
of the equivalence in 16.11.
We can now put all this material together to prove the following theorem.

Theorem 16.15 Let F be a field, and let A € M, ,(F). Suppose D(X — A)
= {dl(X)v ey dn(x)} and%(x - A) = {q](X)’ e ey ql(X)}- Then

A 5 Diag(Com(q, (X)),Com(g,(X)), . . . , Com(gq,(X)))

Proof. We have seen in 16.11 that X — A =~ B(X) in M,,, ,(F[X]).

B(X) = Diag(X — Com(g,(X)), . .., X — Com(g,(X)))
= X — Diag(Com(gq,(X)), . . . , Com(g,(X)))

Therefore, X — A zX_— Diag(Com(q,), . . . , Com(q,)). It now follows from
Corollary 16.4 that A s Diag(Com(gq,), . . . , Com(q,)) in M, ,(F). |

The block diagonal matrix Diag (Com(q,(X), . . . , Com(g,(X)) is called the
Frobenius normal form of A. It is also called the rational normal form of A, or
sometimes the first natural form of A.

EXERCISES

1. In the proof of Theorem 16.15, we claimed (since we can assume with no
loss of generality that dg(X), . . . , d,(X) are monic polynomials) we can
assume g, (X), . . . , q;(X) are monic polynomials. Give a proof of this fact.

2. Letf,(X), . .., f,(X) be irreducible polynomials in F{X]. Set p,(X) =
U pau(X) = F2 Here a(l), . . . , a(n) > 0. Show there exists
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a matrix A € M, (F) for some s such that (X ~ A) = {p,(X), ..
pa(X)}.

3. In the short exact sequence given in 16.14, show that {e,, . . .
@ (X)ep_ji1s - - - » qi(X)e,} is an F[X]-module basis of K'.

4. Find a Frobenius normal form of the following matrices:

L

0 -1
(@ A= [1 0] € M, »(Q)
in () —cos(0 .
® A= [f:lonsg 6; sciﬁzé))] € M,,»(R) (R is the field of real numbers)
-1 7 0
c) A= 0 2 0] €MD
0 3 -1
— —_
1 1 2 0
-1 4 5 —4
d A= 0 -1 —1 i € M4x4(©)
0 2 -4
— —_
0-1 0O
1 0 0 O
(e) A= 1 2 0 1 € M4)<4(R)
-1 3-1 0

5. Suppose F is an algebraically closed field (e.g., F = C). Let A €
M, ., (F). What does the Frobenius normal form of A look like in this case?
How does the Frobenius normal form of A compare to the Jordan canonical
form of A?

6. LetA,B € M, ,(F). Show that A is similar to B if and only if they have
the same Frobenius normal form.

7. Let A € M, ,(F). Use the material in this section to show A s A".

8. LetA €M, ,(F). Suppose D(X — A) = {d,(X), ..., d,(X)}. Show
d,(X) is the minimal poynomial of A (up to associates).

9. Suppose F C K are fields. Let A,B € M, ,,(F). Use the material in this
chapter to show A s B is in M, ,(F) if and only if A s B is in M, ,(K).

10. Use the material in this chapter to derive the real Jordan canonical form of
a matrix. Thus, if A € M, ,(R)* show A is similar to a block diagonal
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matrix Diag(D,, . .

forms:
A D
1 A I D
1 I.
or
D
1 A I
Here

., D,) in which each block D; can have one of two

1.

12.

13.

1 b

A ER, 1=[é 0], D=["_Z] some a,b, € R

A matrix A € M,,,,(F) is said to be reducible if A s Diag(A,,A,) where

size(A,), size(A,) < size(A). If A is not reducible, A is called an irreduc-

ible matrix.

(a) Show A is irreducible if and only if X — A has precisely one elementary
divisor.

(b) Show any A € M, ,(F) is similar to a direct sum of irreducible ma-
trices: A s Diag(A,, . . . , A,) with each 4, irreducible.

LetA € M, ,,(F). Show A is similar to a diagonal matrix if and only if each

elementary divisor of X — A is linear.

Suppose A,B € M, ,(F) have the same irreducible characteristic polyno-

mial f(X) € F[X]. Show A s B.
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Eigenvalues and Diagonalizing a Matrix

In this chapter we will discuss eigenvalues, eigenvectors, and their connection
with diagonalizing a given matrix. As usual, R will denote an arbitrary commu-
tative ring. The definitions of eigenvalues, eigenvectors, eigenspaces, and the
spectrum of a matrix are the same as in the classical case when R is a field.

Definition 17.1 Let A € M, ,(R).

(a) An element d € R is called an eigenvalue of A if A = d£ for some
nonzero £ € R".

(b) $(A) = {d € R| d is an eigenvalue of A} is called the spectrum of A.

(c) A nonzero vector § € R" is called an eigenvector of A if A§ = dE for some
d ER.

(d) Let d € F(A). E(d) = {€ € R" | At = dt} is called the eigenspace
associated to d.

Eigenvalues (eigenvectors) are sometimes called characteristic values
(characteristic vectors) in other texts. In this book, we will only use the names
eigenvalue and eigenvector. The reader is already aware of the fact that a given
matrix A may have no eigenvalues even if R is a field. For example,

0 -1
A= [1 o] € My»(R)
has no eigenvalues in R, and no eigenvectors in R2.

214



Eigenvalues and Diagonalizing a Matrix 215

Suppose A € M,,,,(R) has an eigenvalue d. Then there exists a nonzero
vector £ € R” such that AE = df. The vector £ will be called an eigenvector of
A associated with d. Obviously, £ € E(d). Clearly, E(d) = NS(dI, — A).
Thus, E(d) is a nonzero R-submodule of R". The nonzero vectors in E(d) are
precisely the eigenvectors of A associated to d.

Our first lemma in this section generalizes the classical description of the
spectrum of A.

Lemma 17.2 Let A € M, ,,(R). Then the following sets are all the same.
(@ ¥(A)
(b) {d € R|NS(dl, — A) # (O)}
© {d € R| Cu(d) € Z(R)}

Proof. The fact that $(A) = {d € R | NS(dl, — A) # (O)} is clear from
Definition 17.1. Suppose d € F(A). Then there exists a nonzero vector £ =
(x4, . . ., x,) € R"such that (dl, — A)§ = O. Then C,(d)E = C,(d) £ =
adj(dl, — A)(dl, — A)E = O. Since § # O, some x; # 0. Therefore, C,(d)x,
= 0 implies C,(d) € Z(R). In particular, ¥(A) C {d € R | C,(d) € Z(R)}.

Conversely, suppose C,(d) € Z(R) for some d € R. Since C,(d) =
det(dl, — A), we have rk(dl, — A) < n by 4.1le. It now follows from
McCoy’s theorem (Theorem 5.3) that (dI,, — A)X = O has a nontrivial solution
£ € R". Thus, At = dt. In particular, d € ¥(A). Hence, {d ER | C,(d) €
Z(R)} € F(A).

We can view the characteristic polynomial C,(X) of A as a polynomial
function from R to R. The value of C,(X) on an element z € R is given by
C4(2). Then Lemma 17.2 implies F(A) = Ci ' (Z(R)). Thus, if d is an eigen-
value of A, then C,(d) is a zero divisor in R. There is one important case in
which d is actually a root of C,(X).

17.3 Suppose d € F(A), and AE = dE for some nonzero £ € R". If {£} is
linearly independent over R, then C,(d) = 0.

The set {&} is linearly independent over R if whenever r§ = O, then r = 0.
Suppose {£} is linearly independent over R. Since C,(d)¢ = C,(d) £ =
adj(dl, — A)(dl, — A)§ = O, we have C,(d) = 0. This proves the assertion
in 17.3.

If R is an integral domain, e.g., a field, then any nonzero vector in R” is
automatically linearly independent over R. In particular, 17.3 implies $(A) =
{d € R| C,(d) = 0}. Thus, we have the classical description of the eigenvalues
of a matrix when R is a domain: The eigenvalues of A are precisely the roots of
C4(X) = 0 which lie in R.
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We mention in passing that the converse of the assertion in 17.3 is not true in
general. If d € ¥(A) and C,(d) = 0, it does not follow that an eigenvector of
A associated to d is linearly independent over R. Consider the following exam-
ple.

Example 17.4 LetR = Z/4Z = {0,1,2,3}. Set
30
A= [0 3] € M,x»(R)

C,(X) = X?>+ 2X + 1, and 1 is a root of C,(X). By Lemma 17.2¢c, 1 €
F(A). It is easy to check that

b = wsue - 0= {(9)- (39 )

None of the eigenvectors in £( 1) are linearly independent over R since 2E(1) =
(0). |

Let us introduce the following notation for the roots of C,(X).
Definition 17.5 Let A € M,,,,(R). Then R(A) = {d € R| C,(d) = O}.

Thus, R(A) is just the set of roots of C,(X) in R. If R is an integral domain, then
R (A) contains at most n distinct roots. Of course, C,(X) may have no roots in
R. For example, if

0 -1
A= [1 0] € M;,,(R)

then C,(X) = X? + 1 has no roots in R. Therefore, $(A) = . For an
arbitrary commutative ring, C,(X) may have more than n distinct roots. Con-
sider the following simple example.

Example 17.6 LetX,, X,, . . . be a countable collection of indeterminates over
the field Q. SetR = Q[X,, X,, .. .J/A where A = (X2,X3, . . .). Letx; denote
the image of X; in R.

Let A = O € M,,,(R). Then C,(X) = X2, and R(A) D {x,, X3, o . .}
Thus, C,(X) has infinitely many zeros in R. [ |

At any rate, Lemma 17.2 implies that R(A) C F(A). As it turns out, R(A)
is the only important set of eigenvalues to consider when trying to decide if A is
similar to a diagonal matrix. This follows from our next theorem.
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Theorem 17.7 LetA €M, ,,(R). A is similar to a diagonal matrix if and only
if Uzega) E(d) contains a free R-module basis of R".

Proof. Suppose AsD = Diag(d,,...,d,) in M,,,(R). Then there
exists an invertible matrix P € Gl(n, R) such that P"'AP = D. Let P =
(8,]8,]- - -|9,) be a column partition of P. Since AP = (Ad, | - - - | A3,),
PD = (d\d,|- - -|dpJ,), and AP = PD, we conclude that A3, = d3; for all
i=1,...,n. Since P is invertible, {3,, . . . , 3,} is a free R-module basis of
R" by Corollary 5.16. In particular, each set {3} is linearly independent over R.
Thus, d;, . . . ,d, € R(A) by 17.3, and {3,, . . . , 8,} C Useqa) E(d).
Therefore, U eq 4y E(d) contains a free R-module basis of R".

Conversely, suppose U eq 4y E(d) 2 {3, . . ., 8,}, a free R-module basis
of R". Then each §; is an eigenvector of A associated to some eigenvalue d; €
R(A).SetP = (8,|- - -|8d,). Pis an invertible matrix by Corollary 5.16. Then

AP (A3, | - - - | A8,) = (d;d, |- - - | d,3,)
(3, |- - -8,) Diag(d,, . . ., d,) = P Diag(d,, . . . , d,)

Therefore, P~'AP = Diag(d,, . . . , d,), and A is similar to a diagonal matrix.
|

We will say a matrix A € M,,,,(R) can be diagonalized if A is similar to a
diagonal matrix in M, ,(R). Theorem 17.7 says that, to decide whether A can
be diagonalized, we need only consider the eigenspaces of A corresponding to
the roots of C,(X). If these eigenspaces contain sufficiently many linearly in-
dependent vectors to span R", then A can be diagonalized. This is precisely the
same situation as in the classical case when R is a field. Consider the following
example.

Example 17.8 LetR = 7/6Z = {0,1,2,3,4,5}. Let

2 3
A= [4 3] € M, »,(R)

A simple computation shows C,(X) = X? + X. Then

C,(0) = 0€E Z(R) C,(3) = 0€ Z(R)
Ca(1) = 2 € Z(R) C,(4) = 2€E Z(R)
C,(2) = 0E Z(R) C,(5) = 0€ Z(R)

Therefore, $(A) = C4'(Z(R)) = R, and R(A) = {0,2,3,5}. Notice that
C,(X) € R[X] is a monic polynomial of degree 2 having four distinct roots in
R. Every element of R is an eigenvalue of A, but we need only examine four
eigenspaces E(0), E(2), E(3), and E(5) to decide whether A can be diagonal-
ized.
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A simple calculation shows

E@©) = NS[; g] = RB] EQ) = NS[(Z) g] = R[;]

EQ3) = NS[; 3] = Rﬁ], E®S) = NSB g] = R[;]

Thus

I3 1 3 1
R HELERL IR

Notice that

- ()

is a free R-module basis of R%. Thus, Theorem 17.7 implies A is similar to a
diagonal matrix. Set

1 3
P-s 3
Then
1 31 |5 o _ |5 O
= af3] [af2]] = [} 5] -2 9
Therefore, P~ 'AP = Diag(5,0). R is a PIR, and Diag(5,0) is a Smith normal

form of A.
Now

o= [z} [

is also a free R-module basis of R2. Set

o=} ]
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Then

o W) 3

Therefore, Q ~'AQ = Diag(2,3).

Thus, A is similar to at least two different diagonal matrices in M, ,(R).
Notice that Diag(2,3) is not a Smith normal form of A since 2 and 3 do not
divide each other in R. |

Example 17.8 illustrates an important difference between fields and arbitrary
commutative rings. If A s B in M, ,(R), then XI, — A s XI, — B in
M, (R[X]). In particular, C,(X) = Cx(X). Similar matrices have the same char-
acteristic polynomial. Now suppose R = F, a field. If A s Diag(d,, . . . , d,)
in M, ,(F), then C,(X) = [[’-\(X — d,). If A s Diag(e,, . . . , ¢,) in
M, . (F), the same reasoning shows C,(X) = [[}/<1(X — ¢,). Since F[X] is
a unique factorization domain, we conclude that the sequence {e,, . . . , ¢,} is
some permutation of {d,, . . . , d,}. Thus, over a field, any diagonal matrix
similar to A is unique up to a permutation of its diagonal entries.

This is certainly not the case over an arbitrary commutative ring. In Example
17.8, we saw A s Diag(5,0), and A s Diag(2,3) in M, ,(R). The sequence
{2,3} is not a permutation of the sequence {5,0}.

In Example 17.8, there are four eigenspaces of A which are of interest. The
spaces E(0), E(2), E(3), and E(5) are free R-submodules of R 2 having bases

H1 | S

respectively. Notice that the two vectors

2] = |3

are not linearly independent over R since

4[5 o

Thus, unlike the classical case in which R is a field, eigenvectors associated with
distinct eigenvalues need not be linearly independent. If R is an integral domain,
then we still have eigenvectors associated with distinct eigenvalues are linearly
independent. In fact, we have the slightly more general statement.
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Lemma17.9 LetA€EM,, , (R). Let A C R(A). Suppose A has the following
property: If dd' € Aandd # d', thend — d' &€ Z(R). Then X 4, E(d) =
Daea E(d).

Proof. We proceed by contradiction. Suppose the subspaces {E(d) | d € A} are
not independent in R”. Then there exist distinct eigenvalues dy, . . ., d, € A and
corresponding eigenvectors £(d;) € E(d;) forj = 1, . . ., r such that

17.10 &(dy) + &(dy) + - - - + &(d,) = O.

Among all such dependence relations, we can select one in which the fewest
number of £(d;) appear. Suppose this relation is that given in equation 17.10.
Then §(d;) # Oforeachj =1, ..., r, and r = 2. Multiply equation 17.10 by
d,, and also apply A to the equation. We get the following two equations.

17.11 di(d,) + di§(d,) + - - - + di§(d,) = O
di§(d)) + dp(d)) + - - - + diE(d,) =0

Subtracting the two equations, we have
17.12 (d, — dy)k(dy) + - - - + (d, — d,)E(d,) = O.

Each (d, — d,)§(d;) € E(d;) fori = 2, . . ., r. The minimality of the relation
in equation 17.10 implies

(d) — dy))i(dy) = - - - = (d, — d,)E(d,) = O

Now £(d,) # O, and d; — d, & Z(R) by hypothesis. Therefore, (d, —
d,)é(d,) = O is impossible. We conclude that no dependence relations are
possible among the submodules {E(d) | d € A}. Therefore, X 4ea E(d) =
®aea E(d). 1

We note that the hypotheses of Lemma 17.9 are always satisfied if R is an
integral domain. The principal application of Lemma 17.9 is the following
corollary.

Corollary 17.13 Let A € M, ,(R). Suppose A is a subset of R(A) with the
following property: If dd' € A and d # d’, thend — d' & Z(R). For each
d € A, let S(d) denote a maximal set of linearly independent vectors in E (d).
Then Ugea S(d) is a set of linearly independent eigenvectors in R". |

The proof of Corollary 17.13 is an immediate consequence of the fact that
szA E(d) = @gea E(d).
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For the rest of this chapter, we will assume that R is an integral domain. Then
Lemma 17.9 implies

17.18 S eqa) E(d) = @esay E(d) for any A € M, ,(R).

Theorem 17.7 and equation 17.14 suggest that a procedure for deciding when a
given A € M, ,(R) (R an integral domain) can be diagonalized is as follows:

17.15
(a) Find a free R-module basis S(d) of each eigenspace E(d), d € R(A).
(b) Show U,cq(4) S(d) is a free R-module basis of R”.

Of course, for an arbitrary matrix A € M, ,(R), there is no reason to expect that
either step (a) or (b) is possible. Consider the following two examples from [9].

Example 17.16 Let R = Z[a] where @ = V—35. Then R is an integral
domain contained in C. Set

2
A= [8 1} € My 2(R)

Since A is upper triangular, $(A) = {a,1}. Consider the eigenspace

E(l) = NS[I 0 @ _(2)]

It is easy to check that

e,=[1§°‘] and §2=[,3a]

are nonzero vectors in E(1). We claim E(1) is not a free R-module.
To see this, suppose E(1) is a free R-module. By passing to the quotient field
Q(a) of R, we see E(1) must have rank one. Suppose

Sl

is a free R-module basis of £(1). The integral domain R is quite familiar. U(R)
= {1,—1} and 2 and 3 are imreducible elements in R (see [5, pp. 141-142]).
Since A\ generates E(1), §& = ch and § = d\ for some (unique) ¢, d € R.
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£, = chimpliesy = *1or £3. § = d\ implies x = %1 or +2. In particular,
x, y € Q*. But then

l-a —2
)\GNS[ 0 0]

implies « € Q. This is impossible. We conclude that the eigenspace E(1) is not
a free R-module. |

Example 17.16 shows that the first step (a) in 17.15 is not always possible.
An eigenspace E(d) of a given matrix A need not be a free R-module. Thus, no
free basis S(d) of E(d) exists.

Example 17.17 LetR = Z. Set

Then $(A) = {+1}.

EQ) = Ns[_{ _i] = z[ll]

E(-1) = Ns[:} :}] = Z[_}]
Thus, both eigenspaces E(1) and E(— 1) are free Z-modules of rank one. Since
1 1
det[l —1] = -2 &U)

it is easy to see that S(1) U S(—1) cannot generate the Z-module Z> no matter
how S(1)or S(—1)ischosen. Thus, S(1) U S(—1) is not a free Z-module basis
of Z2 for any choice of S(1) or S(—1). |

Example 17.17 shows that step (b) in 17.15 is not always possible. Even
though U cq4) S(d) consists of linearly independent vectors (Corollary
17.13), these vectors may not span R".

It turns out that (a) and (b) in 17.15 are the only impediments to diagonal-
izing a matrix. To be more specific, we have the following theorem of R. Richter
and W. P. Wardlaw.
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Theorem 17.18 Let R be an integral domain, and let A € M,,,(R). A is
similar to a diagonal matrix in M, . ,(R) if and only if the following two con-
ditions are satisfied:
(a) E(d) is a free R-submodule of R" for each d € R(A).
(b) If S(d) is a free R-module basis of E(d) for each d € R(A), then
Ugeaa) S(d) is a free R-module basis of R".

Proof. If A satisfies conditions (a) and (b), then A is similar to a diagonal
matrix in M, ,(R) by Theorem 17.7. Suppose A is similar to a diagonal matrix
EEM,, .(R). We can always permute the diagonal entries of E by passing to
Q~ 'EQ for some suitable permutation matrix Q. Hence, there is a P € Gl(n, R)
such that

17.19 P 'AP =D
=Diag(dl""’dl!dl"'"dZ""’dk""'dk)
n(1) n(2) n(k)
In equation 17.19, d,, ..., d, are the distinct eigenvalues of A, and

n(l), . .., n(k) are the multiplicites of d,, . . . , d,, respectively, in C, (X).
In particular, l =k =n,l <n(j)=<nforeachj=1,...,k and n(1) +
n2) + -+ -+ n(k) = n.

Since P7'AP = D, C,(X) = [Fi-1(X — d))"? inR[X]. Ifd € R(A), then
0 = C4(d) = Hf-l(d - dj)"(j). Since R is an integral domain, we conclude
d = d; for some j € {1, . . ., k}. Therefore, R(A) = {d,, . . . , di}.

Suppose P = (8, | 8, | - - - | ,) is a column partition of P. Set
P =] - | O,1)): P2 = (Sn(lr+l |- | Op(1y4n()s + - - >
Pk = (Sn(l)+ oo +n(k—1)+1 8rl(l)+ L n(k))
Then
P, EM,\ny(1)(R), P EM,, y2)(R), - . ., P € M, 1y (R)
and P = (P, | Py| - | Py
Since P"'AP = D,
(AP, | AP, |- - -|AP,) = AP = PD = (d\P,| - - - | dP))
Therefore, CS(P;) C E(d;) for each j = 1, . . ., k. Since P is invertible,

{3,, - - ., d,} is a free R-module basis of R” by Corollary 5.16. In particular, R”
= E(d,) + E(d,) + - - - + E(d,). Since R is an integral domain, Lemma 17.9
implies this sum is direct. Thus, we have the following equation.

1720 R" = E(d|)) D E(d)) D - - - @D E(4y).
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We can now prove (a). Fix i € {1, . . . , k}. For notational convenience,
relabel the columns of P; as follows: P; = (A, | Ay | - - - | N,(y). Let &
€ E(d,). Since {8,, . . . , 8.} is a free R-module basis of R", we have £ =
xd + - +x,8, forsomex,, ...,x, €R. Since CS(P;) C E(d;) for each
j=1,...,k, we have

17.21 § - Xn(1)+ « « « +n(i-1)+1 AN+t Xn()+ -+ - +n(i)7\n(i)
€ 2+ E(d)
The vector
€~ Xp)t - - - 4n—n+etMt T F Xy oo hn) M)

lies in E(d;), and E(d;) N (Zj,.,- E(d;)) = (0) by equation 17.20. Thus

€= X(1)+ - - - +ni—n+IM T T Xahye o M

Iﬂ Othel‘ WOrds, E(d,) = R)\l + -+ RA"(“). Since {)\1, “ e ey A“(,)} (;
{81, . .., 8,5 A, .. ., Ny are linearly independent over R. Therefore,

S(d,) = {Bn(l)+ e v +n(i=1)+1r ¢ v 8ll(l)+ . e +n(i)}

is a free R-module basis of E(d;). This proves (a).

Sd)U---USW) =1, ...,38,} afree R-module basis of R". If
L,, ..., L, are any free R-module bases of E(d,), . . . , E(d}) respectively,
thenL, U - - - U L, is a free R-module basis of R". This follows immediately
from equation 17.20. This proves (b). |

Theorem 17.18 implies that the procedure laid out in 17.15 is a good one to
follow when trying to decide if a given matrix A can be diagonalized. If some
eigenspace E (d) of A is not a free R-module, then Theorem 17.18 implies A is
not similar to a diagonal matrix. If the eigenspaces {E(d) | d € R (A )} are all free
R-modules, then A may be similar to a diagonal matrix. We then proceed with
step (b) in 17.15. Foreach d € R (A), find a free R-module basis S(d) of E(d).
Since R is an integral domain, U eq 4) S(d) is a linearly independent set of
vectors in R" (Corollary 17.13). If U eq4) S(d) fails to span R", then again
Theorem 17.18 implies A is not similar to a diagonal matrix. If U eg 4y S(d)
is a free R-module basis of R", then Theorem 17.18 implies A is similar to a
diagonal matrix. In fact, if Ueq 4, S(d) = {3;, . . . , 8,} and AY; = 4.3, for
alli =1, ..., n, then we have seen in the proof of Theorem 17.7 that
A s Diag(d,, . . ., d,).

Now suppose R is a PID. We have observed in Corollary 15.35 that all
submodules of R” are free. This remark certainly applies to the eigenspaces {E (d)
|d € R(A)}of ann X nmatrix A € M,,,,(R). Thus, condition (a) in Theorem
17.18 is always satisfied when R is a PID. Notice this remark implies the ri\ng Zia]
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in Example 17.16 is not a PID. This is easy to check directly since Z[a] is not
a unique factorization domain. Example 17.17 shows that condition (b) in
Theorem 17.18 is not always satisfied even if R is a PID. Thus, the appropriate
corollary to Theorem 17.18 when R is a PID is the following statement.

Corollary 17.22 SupposeRisaPID. LetA € M, ,(R). Foreachd € R(A),
let S(d) be a free R-module basis of E(d). Then A is similar to a diagonal matrix
in M, »,(R) if and only if U eq4) S(d) is a basis of the R-module R". |

We finish this section with an algorithm from [9] which allows us to compute
a basis S(d) of each eigenspace E(d). We continue to assume R is a PID. Let
AeEM,,  (R), and let d € R(A). Consider the matrix C = dl, — A €
M, .(R). By Lemma 17.2, there exists a nonzero vector £ € NS(C). If C =
O, then A = dI,,, and we can take S(d) = {e,, . . ., €,}, the canonical basis of
R". Thus, in what follows, we will assume C # O.

Since R is a PID, there exists an invertible matrix Q € Gl(n, R) such that CQ
has the following properties:

1723 CQ = (3,|8,]| - --18,|/O| - -|0O)isa column partition in which
(a) CQ is a lower triangular matrix
(®) 3,, ..., d, are linearly independent in R"
©p<n

The proof of the assertions in 17.23 is similar to Gaussian elimination. We can
multiply C on the right with the usual elementary matrices which interchange
columns of C, multiply a column of C by a unit from R, and add a multiple of
one column of C to another column of C. In order to produce ( greatest) common
divisors of entries in a given row of C, we may also have to multiply C on the
right with block diagonal matrices of the following form:

17.24 Diag(yc1y - - - > Gy - - - s Iygry)-

Here if d = g.c.d.(a, b), then d = ax + by for some x, y € R. Set s = b/d,
t = —ald, and

o=} ]

Then (a, b)G = (d, 0) and

RN
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Thus, the matrix listed in equation 17.24 is invertible. We use these types of
matrices to find greatest common divisors of adjacent entries in a given row. We
then use elementary column operations to produce zeros. A judicious choice of
right multipliers of C produces a matrix CQ having properties (a) and (b) in
17.23. We must have p < n, since NS(C) # (O).

Instead of proving the above assertions, we give an example which illustrates
the procedure. The interested reader can consult [S5, Section 3.7] for more
details.

Example 17.25 Let R = Z. Suppose

10 60
c=1[1 3 12| €MD)
13 72
Then
10 60 -3 50 2 0 6
c=11 3 I2 2 -3 01=1(3 -4 12
7 13 72 0 01 5 -4 72
0,
2 0 60 1 0 -30 2 0 0
3 -4 12110 1 ol{=1|3 -4 —-78
5 -4 72110 O 1 5 —4 -78
E,
2 0 0 1 0 O 2 0 O
3 -4 -781]0-1 O0|=13 4 78
5 -4 -78110 0 -1 5 4 78
E,
20 O 1 0 0 200
3 4 78110 —-19 39| =43 2 0
5 4 78110 1 -2 520
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Thus, if Q = Q,E,E,Q,, then Q € GI(3,Z), and

2 00
co=13 2 0|=05]0
520
Here d, = (2,3,5)"and §, = (0, 2, 2)' € Z>. Notice that 3, and 3, are linearly
independent in Z3. In this example, p = 2. [ |
Now suppose Q has been chosen such that CQ = (3, ---15,|0]---]0)
satisfies the conditions in 17.23. Here C = dI, — A withd € R(A). LetQ =
(A I Az ] - - - | A,) be a column partition of Q. Remember p < n. Then we have
17.26 S(d) = {\,,1, . . ., A} is a free R-module basis of E(d).
Since Q@ € Gl(n, R), {\,,, . . . , A} is a linearly independent set of vectors
by Corollary 5.16. Since
By - -18,]0|---]0)=0CQ = (CA\{|CN, |-~ - | CN))
we have

O=C\ = (dl,— A\ fori=p+1,...,n Therefore,{\,,y,...,\;}
C E(d). Let £ € E(d). Since {\,, . . ., A} is a free R-module basis of R”, we
have £ = x;\; + - - - + x,\, for some x;, . . ., x, € R. Then

O=C§=x|C)\l+"‘+x"C)\n=x|8|+"-+xp8p

Since {3,, . . . , 8,} is a linearly independent set of vectors inR", x; = + - - =
x, = 0. Therefore, £ = x,, A, + * - - + x,\,. This completes the proof of
the assertion in 17.26.

In summary, we have the following algorithm for computing a free R-module
basis S(d) of E(d) when R is a PID.

17.27 LetRbeaPID,A € M, . (R), and d € R(A). To compute a free
R-module basis S(d) of E(d) carry out the following steps:
(a) SetC =dI, — A. IfC = O, take S(d) = €. If C # O go to (b).

(b) Find an invertible matrix Q@ € Gl(n, R) suchthat CQ = (3, |- - - |3,
|O] - - -|0)is lower triangular, with §,, . . . , 8, linearly independent
over R (p < n).

(¢) Partition Q into columns Q = (A; |- - - | N,).

(d) Then S(d) = Nppys - - - 5 Ak

Let us return to Example 17.25 for an illustration of this procedure.
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Example 17.28 Let R = Z. Suppose

-5 —10 —60
A = "l —2 —12 €M3X3(Z)
-7 —-13 —-71

Then C,(X) = X* + 78X* — 79X, and R(A) = {0,1,~79}. To find a free
Z-module basis of E(1), for example, we follow the algorithm given in 17.27.

6 10 60
@ Cc=1L,-A=]|1 3 12
7 13 2
(b) Let
-3 5 -15
Q= QE\EQ, = 2 3 -3
0 -1 2
(notation as in Example 17.25)
Then
2 00
co=13 20
520

Consequently, p = 2.
(©) @ = (3,8, d;) where

-3 5 -15
8= 2|, &= 3|, &= -3
0 -1 2
~15
@ S =48 =| -3
2 ]
EXERCISES

1. If you have not done so already, verify all computations made in Example
17.8.

2. Find all diagonal matrices similar to A in Example 17.8.
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3. Using the same techniques as in Example 17.8, decide if

A= [i g] € M2x2(Z/6Z)

can be diagonalized.

4, Prove Corollary 17.13.

5. Is the matrix A given in Example 17.28 similar to a diagonal matrix? If so,
find such a diagonal matrix.

6. Let R = Z. Use the algorithms in 17.15 and 17.27 to find diagonal matrices
similar to the following matrices:

5 6 =79 —120 —765

@ A=)_ b) A=|-24 —-35 -231
1 0

12 18 116

7. Prove the claim in 17.23. The matrix CQ constructed there is called the

Hermite normal form of C.

What does the Hermite normal form of C look like if R is a field?

9. Derive a comresponding Hermite form for nonsquare matrices C €
M,, . .(R) when R is a PID.

10. Let R be a PID. We have seen in Exercise 17 of Chapter 15 that left (and
right) ideals in M, ., (R) are principal. Use these ideas to develop a defi-
nition of greatest common left (and right) divisor of two elements A,, A, €
Mon(R).

11. Use the Hermite normal form of a matrix to compute the greatest common
left divisor of

1 0 2 -1
Al = [2 1] and Az = [2 2]
inM,,., (2).
12. LetR = Z[a] where a = V —5. Show

o

31 + 1la 45 + 15a 285 + 105a
A=| 6+18a 10+ 28a 57 + 177a | € Myys(R)
—4-4a -6-6a —37—

can be diagonalized.



Appendix A
Partially Ordered Sets and Zorn's Lemma

Let A denote a set. Any subset of the crossed product A X A = {(x, y) | x,y €
A} is called a relation on A. Suppose R C A X AisarelationonA.Ifx,y €A
and (x, y) € R, then we say x relates to y. We will abbreviate the expression (x, y)
€ R by writing x - y. Thus, x - y (x relates to y) if and only if (x, y) € R.
Although R does not appear in the symbols x - y, the definition of R will always
be clear from the context in which these symbols are used. Often the symbol -
itself is called a relation on A.
Suppose R is a relation on some set A. As above, set x - y if (x, y) € R.

Definition A.1 The relation - is called a partial order on A if - satisfies the
following conditions:

(@) x-xforallx € A.

(M) Forallx,y € A,ifx-yandy-x, thenx = y.

(¢c) Forallx,y,z€ A,ifx-yandy - z, then x - z.

Any relation on A which satisfies condition (a) of Definition A.1 is said to be
reflexive. A relation satisfying (b) is called an antisymmetric relation on A. Any
relation satisfying (c) is called a transitive relation on A. Thus, a partial order on
A is a reflexive, antisymmetric relation on A which is transitive.

There is certainly nothing unique about a partial order on A. A given set may
admit many different partial orders. We will use the notation (A, -) to indicate
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a nonempty set A together with some partial order - on A. The ordered pair (A, -)
will then be called a partially ordered set. Thus, if (A, -) is a partially ordered
set, then A is a nonempty set and - is a partial order on A. Consider some simple
examples. '

Example A.2

(a) Let A = Z, the integers. Let < and = denote the usual ‘‘less than or equal
to’’ and ‘‘greater than or equal to’’ relations on Z. Then < and = are two
different partial orders on Z. (Z,<) and (Z,=) are two examples of
familiar partially ordered sets.

(b) Let A = N, the natural numbers. Define a relation - on N by setting x - y
if and only if x | y. It is easy to check that (N,-) is a partially ordered set.

(c) Let I" denote a nonempty set. Let A be a nonempty subset of P (I"), the
set of all subsets of I'. Thus, the elements of A are subsets of I". (For
instance, I' could be a commutative ring R and A the set of all ideals of
R.) Then ordinary inclusion C [X C Y if every element of X is an element
of Y] defines a partial ordering on the set A. Clearly, C satisfies conditions
(a) through (c¢) in Definition A.1. Thus (A,C) is a partially ordered set.
The partially ordered set (A,C) is often referred to as A partially ordered
by inclusion. |

Suppose (A,-) is a partially ordered set. If B is a nonempty subset of A, then
the partial order - can be ‘‘restricted to B.”” By this we mean the following:
Suppose R C A X A is the set which defines -. Consider the (nonempty) set R
N (B X B). Define a relation = on B by setting x = y if and only if (x,y) € R
N (B X B). Since - is a partial order on A, it is easy to see that = is a partial
order on B. The relation = is called the restriction of - to B. Henceforth, we will
use the same symbol - to denote the restriction. Thus, if (A,~) is a partially ordered
set and B is a nonempty subset of A, then (B, -) is a partially ordered set. In
Example A.2c, the partially ordered set (A, C) is obtained from (% (I"), C) by
restricting the partial order C to A.

Let (A,-) be a partially ordered set. Two elements x,y € A are said to be
comparable (relative to -) if x - y or y - x. A subset B of A is called a chain (or
a linearly ordered subset of A) if any two elements in B are comparable. For
instance, in Example A.2b, B = {2,4,8,16, . . .} is a chain in (N, -).

Let B be a subset of a partially ordered set (A,-). An element z € A is called
an upper bound of B if x - z for all x € B. An element z € A is called a maximal
element of (A,-) if there is no element x € {y € A | y # z} such that z - x.
Another way to say this is as follows: z € A is a maximal element of (A,-) if
whenever z - x (with x € A), then z = x.

We can now state Zorn’s lemma.
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Lemma A.3 (Zorn’s Lemma) Let (A,-) be a partially ordered set. If every
chain in A has an upper bound (in A), then A contains a maximal element.

For a complete discussion of Zorn’s lemma and how it relates to the other
basic results in set theory, we refer the reader to reference [K] at the end of this
appendix. In this book, our use of Zorn’s lemma will be confined almost entirely
to sets partially ordered by inclusion. For this situation, we have the following
special case of Lemma A.3.

Corollary A.4 Suppose I' is a nonempty set. Let A be a nonempty subset of
% (T), the set of all subsets of I'. Partially order A by inclusion C. If A contains
the set theoretic union of the sets in any chain in (A,C), then A contains a
maximal element. |

As an application of Corollary A.4, let us argue that any ring T contains a
maximal left ideal.

Example A.5 LetT be aring. Thus, T is an associative ring with identity. We
do not assume T is commutative. Let £(T) denote the set of all proper left ideals
of T. The set £(T) is nonempty since (0) € £(T). We can partially order the
ideals in (T) by inclusion. Thus, (2(T),C) is a partially ordered set. In terms
of the notation used in Corollary A.4, T = P(T) and A = (7).

Suppose B is a chain in (2(T),C). Let YU denote the union of all the left
ideals in B. Thus, A = U {€ | € € B}. We claim U is a proper left ideal in 7.
To see this, let x,y € U. Then there exist left ideals €, and €, in B such that
x€ €, and y € €,. Since B is a chain, €, C €, or €, C €,. Suppose €, C
€,. Thenx,y € €, and x + y € €, C A. A similar proof shows tx € ¥ for all
x € N and r € T. Thus, A is a left ideal of T. If A is not proper, then A = T.
In particular, 1 € Y. But then 1 € € for some € € B. Since € is proper, this
is impossible. We conclude that & € 2(T).

We have now argued that the set theoretic union of the ideals in any chain of
(R(T),C) is another ideal in {(7T). By Corollary A.4, (2(T),C) contains a
maximal element IR. Since, L(T) is the set of all proper left ideals in T, I is
clearly a maximal left ideal of T. |

Reference
(K] John L. Kelly, General Topology, Van Nostrand, New York, 1955.
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The Jacobson Radical

In this appendix, we will discuss the terminology appearing in Theorem 1.6 in
the text. We will then give a proof of this theorem. Qur treatment of the Jacobson
radical is much the same as that found in [J]. The reader is urged to consult this
reference for further reading on this subject.

As in Chapter 1 of this text, T will denote an associative ring with identity.
We do not assume T is commutative. A left T-module M is an abelian group
(M, + ) together with a function f: T X M +—> M (whose images we denote by
f(t,m) = tm) which satisfies the following conditions:

B.1 (@) t(m;, + my) = tm; + tm,
®) (¢, + L)m = tym + m
©) (15)m = t,(t;m)
d Im=m

These conditions are to hold for all ¢,¢,,t, € T and all m,m;, m, € M. We will
refer to the elements of T as scalars and the elements of M as vectors. The
function f(¢,m) = tm will be called scalar multiplication. A right T-module is
an abelian group (N, +) together with a function g : N X T +— N (whose
images we denote by g(n,t) = nt) which satisfies the same four conditions in
B.1 but with the scalars ¢t € T appearing on the right of the vectors n € N. Thus,
(ny + )t = nt + nytforaln,n, ENandallt €T, etc.

233
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For the time being, we will consider only left T-modules. However, let us take
this opportunity to point out that if T is a commutative ring, then every left
T-module is a right T-module and vice versa. For suppose M is a left T-module.
Then M becomes a right T-module when scalar multiplication is defined as
follows: mt = tm. The only thing that needs checking here is whether this
definition satisfies condition B. 1¢ for right modulcs. Suppose ¢,,t, € Tand m €
M. Since T is commutative, we have

m(tt,) = (Hty)m = (t))m = L (em) = t,(mt)) = (mt),

Thus, the left T-module M becomes a right 7-module with scalar muitiplication
defined by mt¢ = #m. Similar reasoning shows any right T-module is a left
T-module via tm = mt.

Suppose M is a left T-module. The annihilator, Ann;(M), of M is defined as
follows: Anny(M) = {t €T |tM = (0)}. Notice that Ann,(M) is always a
two-sided ideal of T. In particular, the quotient ring S = 7T/Anny(M) is well
defined. It is easy to check that M is a left S-module when scalar multiplication
is defined as follows: (¢ + Annp(M))m = tmforallt € T and m € M. Clearly,
Anng(M) = (0). A left T-module M is said to be faithful if Ann; (M) = (0).
Thus, any left T-module M is a faithful 7/Ann,(M)-module. There is of course
a similar discussion for right T-modules.

Now suppose (M, + ) is an arbitrary abelian group. Let Z denote the ring of
integers. There is a natural function g : Z X M +— M which endows (M, +)
with the structure of a left (or right) Z-module. The function g is defined as
follows:

m+m+ -+ m (xsummands) ifx=1
B.2 glkx,m) = 0 ifx=20
—(m+m+ -+ -+ m (x| summands) ifx <0

Setting xm = g(x,m) for all x € Z and m € M, the reader can easily verify that
M is a left Z-module with this scalar multiplication. We can now consider the set
of all Z-module homomorphisms from M to M, that is, Homz(M,M). This set
is an associative ring with identity. The sum and product of two Z-module
homomorphisms 4,,h, € Homz(M,M) is defined as follows:

B.3 (h, + hy))(m) = hy(m) + hy(m) forallm €M
(hhy)(m) = h(hy(m)) forallm €M

The identity element of the ring Homy (M,M) is the identity function 1,,: M —
M given by 1,,(m) = m for all m € M. Notice that Homz(M,M) is usually a
noncommutative ring since multiplication is performed by composing functions.
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Definition B.4 Let T be a ring and (M, + ) an abelian group. Any ring ho-
momorphism p : T — Homz(M,M) is called a representation of T.

Thus, to construct a representation of T, we must specify an abelian group
(M, + ) and a ring homomorphism p : T — Homz(M,M ). We remind the reader
that p : T — Homyz(M,M) is a ring homomorphism if p(t, + ;) = p(t;) +
p(1;) and p(1,2,) = p(t;)p(2,) for all ¢,,¢, € T. We also have p(1) = 1,,; that
is, p sends the identity of T to the identity of Hom,(M,M).

If p: T — Homz(M,M) is a representation of T, then M becomes a left
T-module when scalar multiplication is defined as follows: tm = p(¢)(m) [the
value of p(¢) at m]. It is easy to check that the conditions in B.1 are all satisfied.
The left T-module M constructed from p is called the left T-module correspond-
ing to p. Thus, every representation p : T — Homgz(M,M) determines a left
T-module M corresponding to p.

The converse of this statement is also true. Suppose M is a left T-module.
Then (M, + ) is an abelian group and hence a Z-module. There is a natural
representation p : T — Hom,(M,M) given by p(t) = pt. Here pt : M —> M
is the Z-module homomorphism given by left multiplication by ; that is, ui(m)
= tmfor all m € M. It is easy to check that p(¢) = ps is a ring homomorphism
from T to Homz(M,M). This representation will be called the regular represen-
tation of T corresponding to M.

We have seen that any representation of T determines a left T-module, and
conversely any left T-module determines a representation of T. Notice if p : T —
Homz(M,M) is a representation of T, and we view M as the corresponding left
T-module, then Ann,(M) = Ker(p).

At this point, the reader might be wondering how right T-modules fit into this
scheme. Right T-modules correspond to antirepresentations of T. If § and T are
two rings, an antihomomorphism f: S + T is an abelian group homomorphism
from the underlying abelian group (S, + ) to the underlying group (T, + ) such
that f(15) = 1;and f(s,5,) = f(s,)(s,) for all s5,,5, € S. The transpose map
A — A’ is a good example of an antihomomorphism fromM,,, ,(F) toM,, . ,(F).
By an antirepresentation of 7, we mean an antihomomorphism A : T —
Homgz (M ,M) for some abelian group (M, + ). Given such an antirepresentation
A, the reader can easily check that M becomes a right 7-module when scalar
multiplication is defined as follows: m¢ = A(2)(m) [the value of A(z) at m].
Conversely, if M is a right T-module, then A : T —> Homz(M,M) given by A (?)
= uR is an antirepresentation of T. Here uX : M > M denotes the Z-module
homomorphism given by right multiplication by ¢ : pX(m) = mt for allm € M.

We have seen that left (right) T-modules correspond to representations
(antirepresentations ) of T, and representations (antirepresentations) of T corre-
spond to left (right) T-modules. For any statement about representations of T
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and left T-modules there is a corresponding statement about antirepresentations
of T and right T-modules. We will leave statements about antirepresentations of
T and right T-modules to the reader until the end of this appendix.

Definition B.S Let p: T — Hom,(M,M) be a representation of 7.
(a) p is irreducible if the corresponding T-mudule M is irreducible.
(b) p is faithful if Ker(p) = (0).

A left T-module M is ireducible if M # (0) and (0) and M are the only left
T-submodules of M. For example, if ¥ is a maximal left ideal in T, then the left
T-module T/¥ is clearly an irreducible left T-module. Notice that a representa-
tion p is faithful if and only if the annihilator of the corresponding left T-module
M is zero. Thus, p is faithful if and only if the corresponding left T-module M
is a faithful T-module.

Definition B.6 Let T be a ring and U an ideal of T.
(a) T is primitive if T has a faithful, irreducible representation.
(b) U is primitive if the ring 7/ is primitive.

As in Chapter 1, an ideal always means a two-sided ideal. Thus, if % is an ideal
of T, then T/% is a well-defined ring. If T is a primitive ring, then T has a faithful,
left T-module M which is irreducible. We already know some examples of
primitive rings and primitive ideals. A field F is certainly a primitive ring since
(up to isomorphism) F is the only irreducible F-module and Ann(F) = (0).
It follows from this observation that any maximal ideal in a commutative ring R
is a primitive ideal of R.

Definition B.7 Let A be a left ideal of 7. Then A : T = {t E T | T C A}.

If U is a left ideal of T, then U is a left T-submodule of the left T-module 7. In
particular, we can consider the quotient module 7/%. Cleary, % : T =
Anng(7/). In particular, % : T is an ideal of T which is contained in . It is
easy to check that % : T contains any ideal B contained in .

We will use the same notation employed in Chapter 1 and Appendix A. Thus,
R(T) will denote the set of all proper left ideals of T. A left ideal YA € L(T) will
be called a maximal left ideal if % is a maximal element of the partially ordered
set ({(T),C). Thus, a left ideal A of T is a maximal left ideal if A # T and A
is not properly contained in any larger proper left ideal of T'[i.e., A C B with
B € {(T) > A = B]. We have already noted that if % is a maximal left ideal
of T, then the left T-module T/Y is irreducible. This follows directly from the
definitions involved. Conversely, suppose M is an irreducible left T-module.
Then M = T/ for some maximal left ideal % of T. To see this, let m € M —
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(0). Then Tm = M since M is irreducible. The map ¢ > tm is a surjective
homomorphism of left T-modules. Thus, the kernel ¥ of this map is a left ideat
of T, and the isomorphism theorems imply 7/ = M as left T-modules. Since M
is irreducible, U is a maximal left ideal of T.

We can now give a more internal characterization of primitive rings.

Theorem B.8 A ring T is primitive if and only if T contains a maximal left
ideal which contains no nonzero ideal of T.

Proof. Suppose T is a primitive ring. Then T has a faithful, irreducible left
T-module M. We have seen in the discussion preceding this theorem that M =
T/ for some maximal left ideal U of 7. Since M is faithful, (0) = Anny (M)
= Ann,(T/%) = A : T. Since A : T contains any ideal of T contained in A, we
conclude U contains no nonzero ideal of T.

Conversely, suppose ¥ is a maximal left ideal of T which contains no nonzero
ideal of T. Since ¥ is maximal, M = T/ is an irreducible left T-module.
Anny(M) = % :T C U. Since A : T is an ideal of T, we conclude % : T = (0).
Therefore, M is a faithful, irreducible, left T-module. In particular, T is a prim-
itive ring. |

There are a couple of important corollaries to Theorem B.8.

Corollary B.9
(a) Any simple ring is primitive.
(b) A commutative ring R is primitive if and only R is a field.

Proof. (a) Recall that a ring T is simple if (0) and T are the only ideals of T.
By Zorn’s lemma (Example A.5 in Appendix A), T has at least one maximal left
ideal . Since T is simple, 2 contains no nonzero ideal of T. Theorem B.8
implies T is primitive. (b) If R is a field, then R is a primitive ring. Suppose R
is primitive. By Theorem B.8, R contains a maximal ideat % which contains no
nonzero ideal of R. Thus, ¥ = (0), and R = R/(0) is a field. [ |

We have shown in Chapter 3 of this text that M,,, ,,(F) is a simple ring. Thus,
T = M, ,(F) is a non commutative, primitive ring when n = 2.
We can now introduce the Jacobson radical of T.

Definition B.10 The Jacobson radical J(T) of T is the intersection of the
kernels of all irreducible representations of T.

Since any irreducible representation p : T —> Homgz(M,M) of T is given by an
irreducible left 7-module M, and Ker(p) = Anny (M), the definition in B.10 can
be rephrased as follows:
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B.11 J(T) = N {Anny(M) | M an irreducible, left T-module}.

The notation in equation B.11 means take the intersection of the annihilators of
all irreducible, left T-modules. Since each Ann,(M) is a two-sided ideal of T, we
observe that J(T) is an ideal of T.

We are almost ready to start the proof of Theorem 1.6 We need one more
lemma.

Lemma B.12 An ideal B of T is primitive if and only if 8 = % : T for some
maximal left ideal % of T.

Proof: Suppose B is a primitive ideal of 7. Then the ring 7/8 is a primitive
ring. Thus, 7/B has a faithful, irreducible left 7/8-module M. The natural ring
homomorphism T > T/8 endows M with the structure of a left T-module.
Scalar multiplication is given by the formula rm = (¢ + B)m for all t € T and
m € M. It is easy to check that M is an irreducible left T-module with Ann (M)
= 8. Thus, M = T/ for some maximal left ideal % of T. In particular, B =
Annp(M) = Ann(T/%) = A : T.

Suppose 2 is a maximal left ideal of T. Set B = % : T. We have observed
that B is an ideal of T. Also, B = U : T = Ann,(T/). Since U is a maximal
left ideal of 7, T/¥ is an ireducible left 7-module. Our remarks at the beginning
of this appendix imply 7/ is a faithful, irreducible left 7/Ann,(T/% )-module.
Thus, T/ is a faithful, irreducible left 7/%8-module. In other words, B is a
primitive ideal of T. |

We can now prove (c) and (a) of Theorem 1.6.

Theorem B.13 Let T be a ring.
@ J(T) = N {B | B a primitive ideal of T}.
(b) J(T) = N {A | A a maximal left ideal of T}.

Proof. The proof of (a) follows directly from Lemma B.12. We have

J(T) = N {Anny(M) | M an irreducible, left T-module}

N {Anny(7T/) | A a maximal left ideal of T}

N {2 : T| A a maximal left ideal of T}

N {B | B a primitive ideal of T} (Lemma B.12)

(b) If M is any left T-module, then Anny(M) = N,ep Anny(m). Here
Anng(m) is the left ideal of T defined by Anan;(m) = {t € T|tm = 0}. Now
suppose M is an irreducible left T-module. Then for any m € M*, M = Tm =
T/Ann;(m) as left T-modules. We conclude from this that Anny(m) is a max-
imal left ideal of T for every m € M". Therefore,

non
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J(T) = N {Anny(M) | M an irreducible, left T-module}
N {Annz(m) | m € M", M an irreducible, left T-module }

2 N {A | A a maximal left ideal of T}

On the other hand, using (a), we have

N {A | A a maximal left ideal of T}
2N {A:T| A a maximal left ideal of T}
=N {B | B a primitive ideal of T} = J(T)

Therefore,

J(T) = N {A| A a maximal left ideal of T} ]

For the characterizations of J(T) described in (d) and (f) of Theorem 1.6,
we need the definition of the circle composition in T.

Definition B.14 For any x,y € T,setxoy = x + y — xy.

The element x o y is called the circle composition of x and y. The circle com-
position defines a function o : T X T > T given by o(x,y) = xoy. It is easy
to check that xo (yoz) = (xoy)oz,andOox = xo0 = xforall x,y,z €
T. Thus, (T,0,0) is an associative monoid with unit.

Definition B.15 Let T be a ring
(a) An element x € T is called left quasi-regular if y o x = 0 for some y €
T. An element x € T is called right quasi-regular if x o z = 0 for some
2z € T. An element x € T is called quasi-regular if x is both left quasi-
regular and right quasi-regular.
(b) A left ideal A of T is called quasi-regular if every element in % is left
quasi-regular.
(c) A right ideal B of T is called quasi-regular if every element in B is right
quasi-regular.
Several observations concerning these definitions are important here. We sum-
marize these in our next lemma.

Lemma B.16 Let T be a ring.
(a) An element x € T is left (right) quasi-regular if and only if 1 — x has a
left (right) inverse in T.
(b) An element x € T is quasi-regular if and only if 1 — x € U(T).
(c) If A is a left or right ideal of T which is quasi-regular, then every element
in A is quasi-regular.
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Proof. (a) Let x be a left quasi-regular element of 7. Then0 = yox =y +
x — yx for some y € T. This implies (1 — y)(1 — x) = 1. Thus, 1 — x has
a left inverse in T. Conversely, suppose z(1 — x) = 1 for some z € T. Write
zasz =1 — yforsomey € T. Then (1 — y)(1 — x) = 1. This implies
y ox = 0. Thus, x is left quasi-regular. A similar proof works for right quasi-
regular elements of T.

(b) Suppose x is a quasi-regular element of 7. Thenyox = 0 = x o z for
some y,z € T. Since the circle composition is associative, we havey = yo 0 =
yo(xo0z) = (yox)oz = 0oz = z, Therefore, yox = 0 = xoy. The same
reasoning as in the proof of (a) then implies (1 — y)(1 — x) =
(1 — x)(1 — y) = 1. Therefore, 1 — x € U(T). Conversely, if | —x € U(T),
thenz(1 — x) = (1 — x)z = 1 forsome z € T. Writing z = 1 — y, we have
yox = 0 = xoy. Therefore, x is quasi-regular.

(c) Suppose U is a left ideal of T which is quasi-regular. Let x € . Then x
is left quasi-regular by definition. Hence, y + x — yx = y o x = 0 for some
y € T. Since U is a left ideal of T, this last equation implies y € . In particular,
y is left quasi-regular. Suppose zoy = 0. As in the proof of (b), we then have
z=200=z0(yox) = (zoy)ox = 0ox = x. Therefore, xoy = yox
= (. Hence x is quasi-regular. A similar proof works for right quasi-regular
ideals of T. |

We can now give a proof of (d) and (f) in Theorem 1.6.

Theorem B.17 Let T be a ring.
(a) J(T) is a quasi-regular left ideal of T and contains every quasi-regular left
ideal of T.
(b) J(T) = {z € T| 1z is left quasi-regular for all t € T}.

Proof. (a) Let z € J(T). Suppose z is not left quasi-regular. Then Lemma
B.16a implies 1 — z has no left inverse in T. This is equivalent to saying
T(1 — z)is a proper left ideat of T. Using Zorn’s lemma, we can find a maximal
left ideal A of T such that T(1 — z) C U. By Theorem B.13, z € . Therefore,
1 € Y. This is clearly impossible. We conclude that z is left quasi-regular. Since
z is an arbitrary element of J(T'), J(T) is a left quasi-regular ideal of 7.

Let B be a left quasi-regular ideal of T. Suppose B is not contained in J(T).
Theorem B. 13 implies there exists a maximal left ideal ¥ of T such that B is not
contained in . Since U is maximal, and A < A + B, A + B = T. In
particular, 1 = z + b forsome z € A and b € B. Since B is a left quasi-regular
ideal, b is left quasi-regular. Therefore, z = 1 — b has a left inverse in T by
Lemma B.16a. If yz = 1, then 1 € ¥ since U is a left ideal of T. This is clearly
impossible. We conclude that 88 C J(T). This completes the proof of (a).
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(b) The inclusion from left to right in (b) follows directly from (a). Suppose
z € T, and #z is left quasi-regular for all ¢t € T. Then Tz is a quasi-regular left
ideal of T. By (a), Tz C J(T). In particular, z € J(T). |

To derive the right characterizations of J(T') given in (b), (e), and (g) of
Theorem 1.6, we switch to right T-modules. Suppose we define a right Jacobson
radical, J”(T), of T as follows:

J(T) = N {Ann,(M) | M an irreducible, right T-module}

Using right T-modules and antirepresentations of T, we can show J'(T') satisfies
(b), (e), and (g) of Theorem 1.6. The arguments for these assertions are
completely analogous to the proofs of (a), (d), and (f) for left ideals. Thus,
J'(T) is a two-sided ideal of T, and every element in J"(T) is right quasi-regular.
By Lemma B.16c, every element in J'(7T) is left quasi-regular. Thus, J'(T) C
J(T) by (d) of Theorem 1.6. If we reverse the roles of J(T) and J'(T) in this
reasoning, we get J(T) C J'(T). Thus, J'(T) = J(T), and, in particular, J(T)
satisfies (b), (e), and (g) of Theorem 1.6.

We have now proved all parts of Theorem 1.6. We finish this appendix with
a few words about the commutative case. Suppose R is a commutative ring. Then
there is no difference between a right ideal and a left ideal. Thus, J(R) is the
intersection of all maximal ideals of R. In a commutative ring R, an element x €
R is a nonunit if and only if x is contained in some maximal ideal of R. This
follows easily from Zorn’s lemma. Thus, z € J(R) if and only if 1 + yz € U(R)
for all y € R. This follows from Theorem 1.6f. Hence, we have the following
descriptions of J(R) when R is commutative.

Corollary B.18 Let R be a commutative ring.
@@ J(R) = N {I | M a maximal ideal of R}.
b) J(R) ={zE€ER|1 + yz EU(R) forall y € R}. |

REFERENCE
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1989.



Appendix C
Elimination Theory
and Bezout’s Theorem

In this appendix, we discuss two of the principal applications of resultants,
namely elimination theory and Bezout’s theorem. Both of these topics come
from judicious applications of Corollary 8.21 in the text.

Throughout this appendix, R will denote a commutative ring. There is one
generalization of Corollary 8.21 which will be very convenient for what is to
follow. Many authors allow ay or by or both to be zero in Definition 8.12.
Suppose f(X) and g(X) are polynomials in R[X]. Then f and g can be written
as follows:

Cld f(X) =aX"+aX"" '+ - -a,_ X+ a,
gX) =bX" + bX" '+ .- - +b, X +b,

In the equations in C.1, aq, . . . , a,,by, . . . , b, € R. We make no further
assumptions about a, and by, but we will always assume m,n > 0. If a; = O,
then the degree of f(X) is less than n. When f(X) is written as in equation C.1,
the positive integer n is called the formal degree of f(X). The constant q, is
called the formal leading coefficient of f(X). Thus, if 8(f) denotes the degree of
f(X), then 9(f) is less than or equal to the formal degree of f. Similar remarks
can of course be made for g(X).

Now suppose f(X) and g (X)) are written as in equation C. 1 with formal degrees
n and m, respectively. In this case, we define the resultant R(f,g), of f and

242
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g by the following formula: R(f,g) = S(ay, . . ., a,by, . .., b,). Here

S(ag, - - - 5 apbg, - . ., by)isthe [ (n + m) X (n + m)] determinant obtained
from Sylvester’s determinant S(uy, . . . , #,,Vg, - - - , V,,) (Definition 8.11) by
. replacing ug, . . . , u, withag, . . . ,a,and vy, . .., v, withby, ..., b, If

ag and b, are not zero in C. 1, then this new definition agrees with Definition 8.12.
If a, = by = 0, then obviously R(f,g) = 0. Notice that our new definition of
R(f,g) depends on the particular representation of f and g given in C.1.

In this appendix, we will adopt the new definition of R (f,g) given in the last
paragraph. Slight modifications of some of the results in Chapter 8 are needed to
accommodate this new definition. For example, Corollary 8.21 can now be stated
as follows:

C.2 Suppose F is a field. Let f(X),g(X) € F[X] be written as in equation C.1
with m,n > 0. Then R (f,g) = 0 if and only if either g, = b, = 0, or f(X) and
g(X) have a common factor of positive degree in F[X].

The proof of the assertion in C.2 readily follows from the proof of Corollary
8.21. See [J, Theorem 5.7].

Now suppose R = Z or Z/Za. Here Z denotes the ring of integers and « is
aprime in Z. Let t,, . . . , t, and X denote indeterminates over R. Consider the
following r polynomials f, (X), . . . , f(X) in (R[t,, . . ., ,D[X]:

— 1 1 1 1H—1 1 1
C3 fi(X) = X" + a{Vx" M7 4+ ...+ &) X + aly)
LX) = a(()r)X"(') + a{r)X"(r)—l 4+ -+ a’(lﬁ)_lx + a’(l;)r)

In the equations in C.3, we assume the formal degree n(i) of each f;(X) is a
positive integer foreach i = 1, . . ., r. The coefficients {af) | 0 < j < n(i); 1

= i = r} appearing in C.3 are all polynomials in R[¢}, . . . , 1,].
Suppose F is any field containing R. Let zy, . . . , z, € F. Then there exists
an R-algebra homomorphism o : R[t, . . ., tp] — F such that o(r) = r for

allrERando(t;) = z;fori=1,...,p. Thus,ifg(s,... SBL)ER[, ..., 1],
theno(g) = g(z,, . ..,2,) €EF. The map o induces an R-algebra homomorphism
(which we continue to call o) from R[¢, . . . , £,]1)[X] to F[X] given by the
following formula:

0(2 aft, . . . ,t,,)xf) = afz, . . ., ¥

j=0 Jj=0
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If
hX) = D afty, . . .. )X € Rl . . ., ,DIX]
i=0

then o(h) = X}-0a;(zy, - . . , 2,)X € F[X] will be denoted by h° (X). The
polynomial h7(X) is called a specialization of h(X) (obtained by replacing
t,...,t,withz,, ...z, respectively). The R-algebramapo : R[z,, . . ., 1]
— F is also called a specialization of f,, ..., 1, For the polynomials
[1(X), ..., f(X) given in equation C.3, we have

Ca f1(X) =af"(zy, ..., z,)X" VD + - +al)(z),...,2)

LX) =al(zy, .o, )X + -+ a2, s 2,)

Notice that the format degrees of the specializations f7(X), . . . , f7(X) are still
n(l), ..., n(r), respectively.

A natural question arises here. Givenf, . . . , f,, is there some criterion based
on the coefficients {a{") | 0 =< j =< n(i); 1 <i = r} of the polynomials which will
allow us to predict when the specialized polynomials f](X), . . . , fY(X) €
F[X] have a common root in some extension field F' D F? This is equivalent to
asking when the equations f§(X) = - - - f7(X) = 0 have a common solution in
some extension field F' D F. There is an answer to this question which uses
resultants. The theorem is usually called Kronecker’s method of elimination.

Theorem C.5 LetR = Z or Z/Za, o a prime in Z. Suppose t;, . . . , 1, and

X are indeterminates over R. Let f,(X), . . . , f,(X) be the polynomials in
(R[1, . . ., t,])[X] listed in equation C.3. Then there exist polynomials
D,,...,D,ER[t, ...,t,] with the following property: Let F be any field
containing R and let o : R[¢y, . . . , 1,] — F be any R-algebra homomorphism
with o(t;) = z;fori = 1, . .., p. The equations f{(X) = - - - = f7(X) =
0 have a common solution in some extension field F’' D F, or the formal leading
coefficients a§'(zy, . . ., 2,), . . . ,a$"(z;, - . . , 2,) are all zero if and only
ifDy(zy,...,2,) =" =Dylz,...,2) =0

Proof. Givenf,, ... ,f, asinequation C.3, set n = max{n(1), ..., n(r)}.
Define 2r polynomials /,(X), . . . , L, (X) € (R[t;, . . . , £,])IX] by the
following equations:

C.6 L,(X)=X""Df(X),...,LX)=X"""f(X)
LX) = (X = 1" ORX), ..o, LX) = (X — 1) "% (X)
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Thus, each f,(X) is multiplied by X" ~"” and (X — 1)"~ " producing two new
polynomials /; and {, . ; foreachi =1, ..., r.
The polynomials [, (X), . . . , {,,(X) all have the same formal degree n. The
. formal leading coefficients of [, . . . , L, are a{’, . . . , af", the formal leading
coefficientsof fy, . . . , f,. Ifo : R[¢, . . ., L1 —> F is any specialization of
ti, . . ., 1,, then the formal leading coefficients of I{, . . , I3, are the same as
the formal leading coefficients of f{, . . . , f7. Since X and X — 1 are relatively
prime, it is easy to see that any common solution of the equations !§(X)
= .. = [9.(X) = 0 (in some extension field F' D F) is a common solution
of the equations fJ(X) = : - - = f7(X) = 0 and vice versa.
Suppose

L(X) = b{PX™ + b{"X*"1 + .- + b X + b

foreachi = 1, ..., 2r. Then {b§"), . . ., b} = {a{V, . .., a{"}in
R[t, ..., 8]

Now let u;, . . . , u, and v, . . . , v,, be 4r indeterminates over
R[t, ..., t,,X].SetL, = wyl, + - - - + up landL, = v, + - - - + v, 1.
L, and L, are polynomials in R,[X] where R, = R[¢t;, . . ., tpuy, . .., Uy,

Vis - . « , V5, ]. Since each polynomial /;(X) has the same formal degree n, the
formal leading coefficient (with respect to X) of L, is >,7~ b{"u;. Similarly, the
formal leading coefficient of L, is 2,7~ b{v,. The resultant, R, (L,,L,), of L,
and L, with respect to X is a polynomial in R,.

We can now construct the polynomials D;, . . . , D, in the theorem. If
Ry(L,L,) = 0, set h = 1 and D; = 0. Suppose Ry(L,,L,) # 0. The
polynomial ring R, is a free R[¢;, . . . , t,]-module with free basis the set of all
monic monomials in the variables u,, . . . , 4,,,vy, . . . , V5. Since Ry(L,,L,)
# .0, there exist a finite number of nonzero polynomials D,, . . . , D, €
R[t, ..., t,]* and a finite number of (distinct) monic monomials

Mi(up, ..., U4,V . o V) oo S My (g, LUy, y)
such that

h
C7 RuLyL) = DDty - « s MUy o - o gy e o -, V)
i=1

The notation in equation C.7 includes the trivial case Ry(L,,L,) = 0. In this
case, take h = 1, M; = 1,and D, = 0.

Suppose o : R[t;, . .., 1, ] > Fisa specialization of ¢, . . . , £, with o(#;)
= z;fori = 1, ..., p. In order to complete the proof of the theorem, we need
the following claim:
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Claim. The equations /T(X) = - - - = §,(X) = 0 have a common solution in
some extention field F’ D F,orb{"(zy, . .., 2,) = - - - = p{) (zy, . . ., z,)
= Oifandonly if Dy(zy, . .. ,2)) = - =Dy(z,...,2) = 0.

Since the common solutions to [{(X) = - - - = I,(X) = 0in F' D F are the
same as the common solutions to f7(X) = - - - = f7(X) = 0, and the formal
leading coefficients of IT(X), . . ., I5(X) = 0, are the same as the formal

leading coefficients of ff(X), . . . , f7(X), the claim proves the theorem.

Before proving the claim, we observe that the equation given in C.7 is an
identity in the variables 1, . . . , t,,4;, . . . , Uy, and v, . . ., v,,. In particular,
the equation remains valid under any specialization of the form

ez, L u U, U Uy,
vV, o, oV,

Here Uy, . . ., U,.,V,, . . ., V,, are indeterminates over the ring F[X].

To prove the claim, let us first suppose D(z;, . . . , 2,) = -+ - =
Dy(z;, . . ., 2z,) = 0. We can assume b§’(z,, . . . , z,) # O for some
ief{l,...,2r}. LetU,,...,U,and V,, ..., V,, denote 4r indeterminates
over F[X]. SetL, = Ulf + - -+ + U5, and Ly, = V\If + - - - + V, .15,
Since [{(X) € F[X] fori = 1,...,2r, L, and L, are polynomials in
(FIU,, ..., Uy, Vi, . .., Vo, DIX]. Since b{"(z, - . ., z,) # 0 for some
i, the leading coefficients of L;, and L, are not zero. Therefore, dx(L,) =
dx(Ly) = n > 0. Our comments in the preceding paragraph imply

]
RylLyLy) = >, Dfzis - - -, MUy, . . ., Up Vi . ., V3) =0
i=1

Since U,, . . ., Uy,V,, . . ., V,, are indeterminates over F, the ring R, =
FlU,, ..., U,,V,, ..., V,]isaunique factorization domain. Corollary 8.22
implies there exist a g(X) € R,[X] with d,(g) > 0 and polynomials
k (X),k,(X) € R,[X] such that the following equations are valid:

C8 UUT(X) + - -+ + Uplf(X) = g(X)k (X)
VilT(X) + -+ - + Vo 15.(X) = g(X)k(X)

Since R, [ X] is an integral domain, U,, . . . , U,,,V,, . . ., V,, are indeterminates
over F, and IT(X), . . ., 1(X) € F[X], the equations in C.8 imply g(X) €
F[X]and g(X) | 1(X)in F[X] for all i. In particular, I{(X), . . ., I,(X) have
a common factor g(X) of positive degree in F[X]. It easily follows from this
remark that the equations /{(X) = - - - = I9.(X) = 0 have a common solution
in some extension field F' D F (e.g., F’ any splitting field of g(X) over F).
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Conversely, suppose b§(z;, . . . ,2z,) = - - = b{"(z,...,2,) = 0.
Then the formal leading coefficients of L, and L,, are zero. Therefore,

h
RLy,Ly) = DO, = Dfzi, . - 2 MUy, . . ., UpVyo . o, V)
i=1

=0
Since the M;(U,, . . ., Uy,Vi, . .., V,), i =1, ..., h, are distinct, monic
monomials in the vaniables U,, . . . , U,.,V,, . . ., V,,, we conclude that
D(zq, ..., )=---=Dh(zl,...,z,,)=0.
Suppose b((,"f(z,, ...,2,) # 0forsomei € {1, ..., 2r} and the equations
7(X) = - -+ = B,(X) = 0 have a common solution a in some extension field

F' D F. Then the formal leading coefficients of L, and L, are not zero. Thus,
Ly and L, are nonzero polynomials of degree n in X. Since X — a | £(X) in
F'[X] forali =1 ...,2rnX — a|Lyand X — a | L, in
(F'[U, ...,U,, V...,V D[X]. Corollary 8.22 implies

h
0= RulyLy) = X, Dzt - - -, MUy, . . ., UpVi, o . ., Vy)
i=1

As before, we conclude D, (zy, . . ., zp) = =Dy(zy, ... »2,) = 0. This
completes the proof of the claim and, consequently, the proof of Theorem C.5.

The polynomials Dy, . . . , D, ER[¢,, . . . , t,] constructed in equation C.7
are called a resultant system of f;, . . . ,f,. LetR, = R[¢t;, . . ., Ly o oy Uy,
Vis - - - > V). If A, . . ., A; are polynomials in R,[X], then we will let
(A, . . ., Ap) denote the ideal in R,[X] generated by A, . . . , A,. Theorem
8.31 implies

%x(Lu,Lv) € (LuiLv) g (lly LR | 12r) g (.fl, e ,fr)
Notice R, [X] is a free (R[t,, . . . , £,])[X]-module with free basis given by all

monic monomials in u,, . . . , Uy,,V, . . . , V5,. Therefore,
h
Ry(LoLy) = D, Dilty, -« -, MUy, - o UpVyy + o -y V)
i=1
€ (fl, LRI ,fr)
implies (Dy, . .., D) C (f;, .. .. f,)in (R[ty, . . ., £,1)[X]. Thus, a resultant
system of f;, . . ., f, is always contained in the ideal in (R[t,, . . ., £,])[X]
generated by f;, . . . , f,.
Now suppose X is a fixed field, and let X,, . . . , X,, denote indeterminates

over K. Consider r polynomials f, (X, . . . , X)), . . ., f,(X;, . . ., X,;) in
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K[X;, . ..., X,]. We can use Kronecker’s method of elimination to devise an
algorithm for finding a common solution (if any) to the following system of

equations:

CY fiX,...,X)=0

£y ..., X) =0

If L is a field containing K, then (z,, . . ., z,)’ € L" is called a common solution

to the equations in C.9if f,(z, . . . ,2,) =--- =f(z,...,2,) = 0.0f
course, the equations in C.9 may not have a common solution in L" for any
extension L of K. For example, if Ajf; + - - - + A,f, = 1 for some
A, ...,A EK[X,,...,X,], thenclearlyf, = - - - = f, = 0have no common
solution.

In order to study the common solutions of f; = - - - = f, = 0, we need a

slightly different version of Theorem C.5. Suppose we write the polynomials
appearing in equation C.9 as polynomials in X, with coefficients in
KiXy, .. .. X1

— A Dya(l)—1 1 1
C.10 f, = dPX3V + afPX3®O7 + -+ al) X, + al))
fo=aX30 +a"6; 07 4 4 a6l X, + agy
As usual, we assume the formal degrees a(1), . . . , a(r) are all positive. The

coefficients {af? | 0 = j < a(i); 1 = i =< r} are all polynomials in
K[X,, ..., X,_,]. If we replace R with K in Theorem C.5, we obtain the
following result:

Theorem C.11 With the notation as in equation C.10, there exist polynomials
D,,...,D,€EK[X,,...,X,_;]with the following property: Let L be a field
containing K, and let o : K[X,, . . ., X,_;]1 > L be a K-algebra homomor-
phism such that ¢(X;) = z;fori = 1,...,n — 1. Then f{(X,) = - - - =
f7(X,) = 0 have a common solution in some extension of L, or

a(()l)(zl, e v ey z,,_l) =00 = a((,')(zl, “ . ey z,,_l) = 0
if and only if
Dl(zl, e sy n—l) == Dh(zls DN 1 zn—l) =0 I
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We can use Theorem C.11 to devise an algorithm which will allow us to
decide if the equations in C.9 have a common solution. We need to make one
adjustment to the base field K. Suppose K’ is a field containing K. Then we can
view C.9 as a system of polynomial equations with coefficients in X’. Obviously,
fi =+ -+ = f, = 0 have a common solution in L" for some field L D K if
and only if f; = - - -+ = f, = 0 have a common solution in (L')" for some field
L' 2 K’'. In particular, by enlarging K if need be, we can always assume K
is an infinite field when discussing the existence of a common solution of the
equations in C.9. We will make this assumption throughout the rest of this
discussion.

Theorem C. 11 suggests that common solutions D (X,, ... ,X,_ ) =-- =
D,(X{, . . ., X,—1) = 0 produce common solutions to f;(X;, . . . , X,,)
=...=f(X,,...,X,)provided we can do away with the degenerate situation
a$(zy, ..., 2, ) =" =al"™z,,...,2,_1) = 0. If the system of equations
in C.9 is nontrivial, we will show there is a second system of equations f,’
= ... = f' = 0 with the following two properties:

(@ f = -+ = f, = 0 have a common solution in L" for some field L D K
ifand only if f;" = - - - = f,' = 0 have a common solution in L".
(b) The polynomials f,’, . . ., f,' have a representation as in equation C.10

with the formal coefficient of f,’ a nonzero constant in X.

The system of equations appearing in C.9 is said to be trivial if
fi(X,,...,X,)EKforalli = 1, ..., r. Thus, if every polynomial appearing
in C.9 is a constant in K, then the system is called trivial. Suppose the system of
equations f; = - - - = f, = 0 is trivial. If every f; is the zero polynomial, then
any vector in L”, L a field containing KX, is a common solutionof f; = - - - =
[, = 0. If some f; is a nonzero constant, thenf, = - - - = f. = 0 have no common
solution in any L”. This is the complete story for trivial systems of equations.
Hence, in what follows, we will assume the system of equations appearing
in C.9 is nontrivial. This means at least one polynomial f;(X,, . . . , X,,) appear-
ing in C.9 has positive degree with respect to at least one of the variables
Xy oo X,

Suppose the system of equations in C.9 is nontrivial. After permuting the f; if
need be, we can assume f,(X;, . . . , X,,) has positive degree with respect to at
least one of the variables X, . . . , X,,. Since f,(X,, . . . , X,,) is not a constant
in K, f; can be written as a sum of homogeneous polynomials in the following
way:

fl(Xl’ [N ,X") = hO(Xl’ “ e ’Xn) + -+ hu(Xl’ .. ,Xn)
Here each h(X;, . . . , X,) is a homogeneous polynomial of degree j in
K[X,, ..., X,], ais a positive integer, and k, (X, . . . , X)) # 0. Since K is

infinite, there exists a linear change of variables of the form:
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C.12 X] = Yl + CIY"

X1 =Y,.1+ c,-Y, (herec,E K*foral i=1,...,n)
- CnYn

>3
|

such that

=AY+ Y, ..., Y + o Vc,Y,) = boYn
+bYe '+ ... +b,_Y, + b,

with by € K*. The rest of the coefficients b,, . . . , b, here are polynomials in
K[Y,, ..., Y,_,]. To see this, merely substitute the equations in C.12 into
h,(X,,...,X,)andchoose ¢, . . ., c, accordingly. Since X is infinite, there
is always a choice of constants ¢, . . . , ¢, € K* (see the proof of Lemma 8.6
in the text) such that

A+ Y Yy + oY) = boYs + bYs ™' + - - + b

a

has a nonzero constant b, € K as its leading coefficient of Yj.
Set

Yy, ..., Y)y=fXy+cY, ..., Y, +c,_Y,.cY,)

foreachi = 1,...,r Itiseasytoseethatf, = - - - = f = O have a common
solution in L" for some extension field L D Kifandonly if f{ = - - - = f] =
0 have a common solution in L". Since b, € K*, the polynomials f{, . . . , f, have
a representation (with respect to the variables Y, . . . , ¥,)) as in equation C.10
with the formal leading coefficient of f] being by,

NowletD, (Y, ..., Y, 1) ..., Dy(Y,,...,Y,_,)bearesultant system
of f1, . . . , f; with respect to Y, (Theorem C.11). Since b, € K*,
by(zy, . ..,2,1) = by # Oforany z,, ..., z,_; €L D K. It follows from
Theorem C.11 that any common solution to D, = - - - = D, = 0 produces a
common solutiontof; = + - - = f; = 0.1f D, = - - - = D, = 0 have no
common solution, then f; = - - - = f] = 0 have no common solution. Thus, the
systemf, = - - - = f, = Oin n variables X, . . . , X,, has been replaced by the
systemD; = -+ =D, =0inn — 1variables Y, . . . ,¥,_,.

We can now repeat this entire procedure on the equations D (Y,, ...,Y,_;)
= ... =Dy(Y,,...,Y,_,) = 0.If this system of equations is trivial, then
Theorem C.11 implies f; = - - - = f, = 0 have a common solution if and only
if Dy, . . . , Dy are all the zero polynomial. If the system D, = - - - = D, =
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0 is nontrivial, eliminate another variable. Since the number of variables is finite,
this procedure will decide in a finite number of steps if f; = - - - = f, = 0 have
a common solution.

The algorithm described above is commonly called elimination theory. The-
oretically, at least, we can always tell in a finite number of steps whether a given
set of polynomial equations has a common solution in some extension field. The
algorithm is difficult to apply in practice since the resultants needed are often
very large. However, there is one corollary of this algorithm which has important
consequences in algebraic geometry.

Theorem C.13 Letf,,...,f, € K[X,, ..., X,]. The equations f; = - - -
= f, = 0 have no common solution in L" for any algebraic extension L of K if
andonlyif A,f, + - -+ + A,f, = lforsome A,, ... ,A, €EK[X,,...,X,].

Proof. Suppose >/ Af; = 1 forsome A,, ... ,A, €EK[X,,...,X,].If

(zys - - -,2,) €L"is a common solutiontof; = -+ = f, = 0, thenin L,
r
0= Alz1, -« - 2021, - -, 2) =1
i=1

This is clearly impossible. Hence, f; = - - - = f, = 0 have no common solution
in L" for any field L D K.

Suppose f; = - - - = f, = 0 have no common solution in L” for any algebraic
extension L of K. We proceed by induction on n. If n = 1, then the polynomials
LH(X), ..., f(X) have no common root in K, an algebraic closure of K. This

implies the polynomials f; (X), . . . , f.(X) are relatively prime in K[X]. But
then, the polynomials f,(X), . . . , f,(X) are relatively prime in K[X]. Thus,
there exist A,, . . . , A, € K[X] such that D7} A(X)f;(X) = 1.

Suppose we have established the result for any field K and any polynomials
in n — 1 variables (n = 2) overX. Letf,, .. . ,f, €EK[X,, . . ., X, ]. Suppose
fi = - -+ = f, = 0 have no common solution in L" for any algebraic extension
L of K. We can assume that the system of equations f; = - - - = f, = O is
nontrivial and that f,(X,, . . . , X,,) is not a constant in K.

Let K be an algebraic closure of K. We can view f;, . . . , f, as polynomials
inK[X,, ..., X,]. The field X is infinite. In particular, we can change variables
as in equation C.12. Define

Y. YD) =fi(Yy + ¥ Yy + Cos YuiX,) EKLY,, ..., Y,]
fori =1,...,r. Theconstants ¢y, . . . , ¢, € (K)* are chosen such that

fitY, ..., ) = b{VraD 4 plya®=t 4 .o g p
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with b§!> € (K)*. The system f, = - - - = f, = 0 has a common solution in
(K)" if and only if the system f} = - - - = f. = 0 has a common solution in
(K)". Sincef, = - - - = f, = 0 have no common solution in L" for any algebraic
extension L of K, f; = - - - = f. = 0 have no common solution in (X)". Let
D,,...,D,€K[Yy,...,Y,_,]be aresultant system of f}, . . . , f. with
respect to ¥,. Theorem C.11 implies D, = - - -+ = D, = 0 have no common
solution in (K)*~!. Our induction hypothesis (applied to X, and D,, . . . , D)
implies C,D, + - - - + C,D, = 1forsomeCy,...,C,EK[Yy,...,Y,_,].

We have noted before that the ideal generated by D,, . . . , D, is contained
in the ideal generated by f}, . . ., fLin K[Y,, ..., Y,]. Thus, B,f; + - - - +
B.f. = 1 for some B,, . . . , B, € K[Y,, . . ., Y,]. Since ¢, € (K)*,

= _ -1 — - -1 = -1
Yl = xl C1Cp Xm A ] Yn—l - Xn-—l Cn—1Cp men =Gy Xn

Therefore,
r
1= D B(Y, . ... Y)(N,....,Y)
i=1
r
= D> Bty . . . YN+ Y. o . Yey + YY)
=1

=D BX; ~ 167 Xy .« . Xnst = CumiCy K KUKy, - - -, X,)
i=1

Therefore, Ajf; + -+ + Alf, = 1 forsome A}, ...,A. €K[X,,...,X,).
Since K is a field, K is a free K-module. It easily follows from this that
K[X,, ..., X,]is a free K[X,, . . . , X,]-module. We can always find a free
K[X,, . . ., X,]-module basis {z; | j € '} of K[X,, . . . , X,] such that some
z;is 1 (use Zorn’s lemma). Writing each A;’ as a linear combination of the z;
with coefficients in K[X,, . . . , X,] and substituting inAjf; + - -+ + A,f, =
l,wehave A,f; + --- + A, f, = LforsomeA,, ..., A €EK[X,,...,X,]
|

The following corollary to Theorem C.13 is usually called Hilbert’s Null-
stellensatz.

Corollary C.14 Let f,, . . . , f. and f € K[X,, . . . , X,]. Suppose
f&, . .., &) = 0forall common zeros (§,,...,§)offy = =f =
0. Then there exist a positive integer p and polynomials A;, . . . , A, €

K[Xl, o e ,X,,] Sl.lch thatf? = Alfl + -+ Arﬂ.

Thus, if f vanishes at the common zeros of f;, . . . , f,, thenf€E V/(fi, . . ., f).
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Proof. The result is certainly true if f = 0. Hence, we may assume f # 0. LetZ

denote an indeterminate over K[X,, . . . , X,,], and consider the polynomials
fiseo s Sofrer =1 — ZfinK[X,, ..., X,,Z]. Since f vanishes at every common
zeroof fi, . . . , f,, theequationsf; = - - - = f, = f,,, = 0 have no common

solution in L™ *! for any algebraic extension L of K. Theorem C.13 implies C,f;
+---+Cf, +Cf,,, =1forsome C,C,,...,C, EK[X,,...,X,2Zl
Since Z is an indeterminate over K[X,, . . . , X, ], we can substitute 1/f for Z in
this equation. Thus, 1 = X[ Ci(Xy, . . ., X, /f¥fi(X,, . . . , X,,). Clearing
denominators by multiplying by a suitable power of f? gives the result.

|

The reader is urged to consult various texts on algebraic geometry to see how
these results are used. For example, [S] is a good introduction to algebraic
geometry. Our second application of resultants is taken from this text. One of
the most famous results concerning plane curves is the following theorem of
Bezout:

Theorem C.15 (Bezout’s Theorem) Let I and A be two plane curves in P%
of orders n and m, respectively. If I" and A have no common components, then
I" and A intersect in mn points counting their multiplicities.

In order that the reader may understand what is being said here as well as making
clear what connections this theorem has with the theory of resultants, we will
give a brief description of all the terms appearing in Theorem C.15. For more
details, the reader can consult [S].

Throughout this discussion, K will denote an algebraically closed field of
arbitrary characteristic. The set P% is called projective n-space over K. It is
constructed from K"*! — {(0, . . . , 0)} in the following way: Define an
equivalence relation = on the set P = K"*! — {(0, . . . , 0)'} by setting
(Xps o oo s X)) = (x5 . . ., x,4,") if there exists an element ¢ € K* such
thatcx; = x;/ foralli = 1, ..., n + 1. Itis easy to check that the relation =
is reflexive, symmetric, and transitive. Thus, = is an equivalence relation on P.
The set of equivalence classes of (P,=) will be denoted by P%. (See [B,
Section 5, Chapter I] for more information on equivalence relations and classes. )

If (x;,...,X,,,) € P, then the equivalence class containing (x,, . . . , x,, )
will be denoted by (x; : - - - : x,,,). Thus,

(p: - ixe) ={(z1s .. 2, ) EKTT = {(0, ..., 0)}] there
exists an element ¢ € K* such that ¢z, = x; foralli = 1,...,n + 1}
The set (x, : - - - : x,,,) is called a point in P’%, and

P"K=.{(_xl: e :x,,+1)|(xl,..., "+1)IEK"+]_{(0a~"’0)r}}
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If(x:---: X,+1) is a point in P%, then the elements x,, . . ., x,,, ; are called
coordinates of (xp:-- e 1Xp41)-In partlcular,y,, ce s Yaprand Xy, L X0
are coordinates of the same point in P% if and only if there exists an element c € K*
such that cy; = x;foralli = 1,...,n + 1. Notice that any point of P} has
at least one coordinate which is nonzero. We will be interested in the sets Pk and
P%. The set Pk is called the projective line. P} is called the projective plane.
Let R = K[X,,X,,X3]. Suppose f(X,,X,,X3) is a nonconstant, homogeneous
polynomial in R of degree d. Then f can be written in the following way:

C.16 fX..X,,X3) = 2 Ca(a@a@XT Ox3@x3
a()+a(2)+a3)=d

In equation C. 16, the sum is taken over all nonnegative integers (1), a(2), and
a(3) whose sum is d, the degree of f. Since f is not a constant, d = 1. The
coefficients C (1)q(2)a(3) are elements of K. At least one ¢, (1yq(2)a(3) is NONZErO
since f # 0. Let a,b,c € K. Since f is homogeneous, f(a,b,c) = O if and only
if f(ta,th,tc) = 0 for all + € K*. In particular, the set

C.17 V(f) ={(a:b:c) € Pk|f(a,b,c) = 0}

is a well-defined subset of P%. Since K is an algebraically closed field, V(f)
contains infinitely many distinct points of P%. Also, it is easy to see V(f) is a
proper subset of P%. The set V(f) is called an algebraic (plane) curve defined
by the equation f(X;,.X,,X3) = 0.

Suppose I' = V(f) is an algebraic curve in P%. The curve T is said to be
reducible if I' is the proper union of two other curves I'; and I',. Thus, I is
reducible if there exist algebraic curves I'y, [, C Py such thatT" = T', U T, and
I', <T, T, <T.IfI is not reducible, then I is called an irreducible curve. Since
R is a unique factorization domain, f can be factored in R as a product of
irreducible polynomials: f = fi(")f3® . . . f1(P) Here, r(1), . . ., r(p) are
positive integers, and f;, . . . , f, are homogeneous, irreducible polynomials
which are pairwise nonassociates. It is easy to check that V(f) = V(f))
U---uUv(f), and each V(f;) is an irreducible curve in P%. The decomposition
V(f) = V(i) U - - - U V() into irreducible curves is unique. The curves
V(i) ..., V( j;,) are called thc (irreducible ) components of V(f). Two curves
I,AC [PK have no common components if no irreducible component of I is an
irreducible component of A and vice versa. For example, I' = V(X,)and A =
V(X,) are two irreducible curves in P% and, consequently, have no common
components. If " and A are two curves in P%, then I' and A intersect in at most
finitely many points of P% if and only if " and A have no common components.
A proof of this fact can be found in [S, Theorem 3.14].
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The order of a curve I is the degree of the (homogeneous) polynomial f of
smallest degree for which V(f) = I'. We will let order(I') denote the order of
T. Thus, order(I') = min{d(f) | f is homogeneous, and V(f) = I'}. T =
. V(fi) U - - - U V(f,) is a decomposition of I into irreducible components with
each f; irreducible, then clearly order(I’) = 2.7~ 8(f)).

We have now defined all of the terms, P%(, curves, order, and components,
appearing in Bezout’s theorem. The last term, multiplicities, is defined using
resultants. As in elimination theory, it is convenient to make certain changes of
variables. These changes are called homogeneous, linear transformations of P%.

Suppose A = (a;;) € GI(3,K). The nonsingular matrix A induces amap L, :
P% — [P% defined by the following equation:

3 3
ayx;: D ayxj: Y, ayx
j=1 j=1

Thus, L,((x;:x;:x3)) is the equivalence class of the ordered triple
A(x;,%,,x3). It is easy to see that L, is a well-defined function which maps P%
bijectively onto itself. The function L, is called a homogeneous, linear trans-
formation of P%.

Suppose L, : P¥ — P% is a homogeneous, linear transformation. Let
denote the set of all homogeneous polynomials in R. For this discussion, it is
convenient to regard 0 as a homogeneous polynomial of any degree. Associated
with L, is the K-automorphism 74 : R — R given by

3
Ly((xy: xp: x3)) = (
j=

1

3 3 3
TA(F(X}, X3, X3)) = F(Z byX;, D, byX;, >, by&)
i j=1 j=1

Jj=1

where (b;) = A7'. Clearly, 7,(9) = 9.
There are several rules concerning the relationships between L, and 7,. We
list these in C.18.

C.18 (a) If fis homogeneous of degree d, so is 7,(f).

(b) f = 0 if and only if 7,(f) = O.

© La(V(f)) = V(74(f)) for any f € 9.

(d) fis irreducible if and only if 7,(f) is irreducible.

(e) f and g are associates in R if and only if 1,(f) and 1,(g) are
associates in R.

(f) An equation of minimal degree for a curve I is mapped by 7, into an
equation of minimal degree for L,(I'). Thus, order(I') =
order(L4(T)) for any algebraic curve I’ C P%.
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(g) Let P,,P,,P,,P, be four points in P4 no three of which are collinear.
Let Q,,0,,05,Q, be another four points of P% no three of which are
collinear. Then there exists a unique L, : P — P% such that L, (P;)
=Q,fori=1,...,4

(h) If T and A are algebraic curves in P% which intersect in at most
finitely many points, there exists a homogeneous, linear transforma-
tionL, : PZ — P%suchthatI" = L,(T")and A’ = L,(A) have the
following properties:

@ ©0:0:1)&TIM, o0or(0:0:1)& A’
(i) No pair of intersection points of I'’ and A’ are collinear with
0:0:1).

In C.18, points are said to be collinear if their coordinates satisfy the equation of
aline: aX, + bX, + cX; = 0in P%. The assertions in C.18 are all easy to prove.
(See [S] for more details. ) Two curves which satisfy conditions (i) and (ii) in
C.18h are said to be in permissible position. The assertion in C.18h is that two
curves without common components can always be transformed by some homo-
geneous, linear transformation L, into curves in permissible position.

We can now use the theory of resultants to count the number of intersections
of two curves without common components.

Theorem C.19 Let I and A be two algebraic curves in P of orders n and m,
respectively. Suppose I' and A have no common components. Then I" and A
intersect in at least one point and at most mn points.

Proof. Since the order of I' is n, I' = V() for some homogeneous polynomial
f € R* with a(f) = n. Similarly, A = V(g) for some homogeneous polynomial
g € R* with a(g) = m. Since I" and A have no common components, we have
already noted that I’ N A consists of at most a finite number of points in P%. By
C.18h, there exists a homogeneous, linear transformation L, : P¥ — P% such
thatI'" = L,(I') and A’ = L,(A) are in permissible position. I'" = V(7,(f)),
and A’ = V(1,(g)) with d(7,(f)) = d(f) = nand 3(7,(g)) = a(g) = m.
P,,...,P;arepointsin ' N A if and only if L,(P,), . . . , L,(P,) are points
inI" N A’. Hence, it suffices to prove the theorem for I'" and A’. In other words,
we c;m assume without loss of generality that I" and A are in permissible position
in IPK.
Write f and g as polynomials in X, with coefficients in K[X,X,].

C.20 f(Xl,X2,X3) = aoxg + al(xl,X2)Xg—l + .- 4 an(Xl,Xz)
g(Xl,Xz,X3) = boX'a" + bl(Xl,Xz)XS"_l R bm(Xsz)

Each q,(X,,X;) [or b;(X,,X;)] is a homogeneous polynomial in K[X,,X,] of
degree i, fori = 0, . . . , n[m]. Since I" and A are in permissible position,
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0:0:1)&Tlor(0:0:1)& A. We may assume (0:0:1) & I'. Then a,
is a nonzero constant in K. On the other hand, the constant b, could be zero.
Set

H(X,,X;) = Ry (f.g) = S(aq, . . ., Gpbg, . . ., by)

Theorem 8.28 implies H(X,,X,) is either zero or a nonzero, homogeneous
polynomial of degree mn in K[X,,X,]. Suppose H(X,,X,) is the zero polyno-
mial. Then for every z,,2, € X,

0 = H(zy,2,) = Ry, (f(21,2,X3),8(2,25,X3)

The theorem in C.2 then implies f(z,,2,,X3) = g(z;,2,,X3) = 0 have a common
solution z; € K. But then I' and A have infinitely many points in common. This
is contrary to our assumption that I' and A have no common components. We
conclude that H(X,,X,) is a nonzero, homogeneous polynomial of degree mn in
K[X;.X,].

We will prove the theorem by showing that the points in I' N A are in a
one-to-one correspondence with the solutions of H(X,,X,) = O on the projective
line P%. Suppose (a:b:c) € I' N A. Then either a # 0 or b + 0. For
otherwise, (0: 0: 1) € I'. In particular, (a : b) is a well-defined point in P}.
Since (a: b:c)ET N A, f(a,b,c) = g(a,b,c) = 0. Therefore, f(a,b,X3) and

g(a,b,X3) have a common factor X; — ¢ in K[X;]. Theorem C.2 implies
H(a,b) = ?ij(f(a b,X,), g(a,b,X3)) = 0. Thus, the point (a : b) is a solu-
tion of the equation H(X,,X,) = 0in Pk. Defineamap®d : T N A — {(x, : x;)
€ Pk | H(x,,x,) = O} by setting 9((a : b : c)) = (a: b). The above discus-
sion shows 3 is a well defined function.

Since X is an algebraically closed field and H is a homogeneous polynomial
of degree mn, H(X,,X,) can be factored in K[X,,X,] as follows:

C.21 H(X.,X,) = 1‘[(y(°X2 - y9X)).

In equation C.21, y{V, ..., y{™ and y{", . . ., y{™ are constants in K. Since
H(X,,X,) # 0, each pair (y(’),yz')) cannot be identically zero. Therefore, A =
{OGP: ¥y i =1, ..., mn}is a finite set of points in Pk. The pairs

(y{",y5") are not necessarily distinct. Hence, A contains at most mn distinct
points of P. It follows readily from equation C.21 that A is the complete set of
solutions to H(X,,X,) = 0in P%. Thus, A = {(a: b) € Pk | H(a,b) = 0}. In
particular, Im 9 C A.

Any point (a : b) € A determines a point (a : b : ¢) €' N Aby C.2. Thus,
themap 9 : I' N A — A is surjective. If (a:b:c)and (a: b: ') are both
pointsof T N A, then (a:b:c¢), (a:b:c'),and (0:0: 1) all lie on the line
aX, — bX, = 0. Since I' and A are in permissible position, we conclude ¢ =
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¢'. Thus, 9~ {(a : b)} is a single point in I' N A. In particular, ¥ is injective,
and the points of I' N A are in a one-to-one correspondence with the points in A.
Therefore, I' N A contains at most mn points. Since A # &, I' N A contains at
least one point. This completes the proof of Theorem C.19. 1

The proof of Theorem C.19 contains an algorithm for determining the inter-
section points of two curves I and A which have no common components. First,
find homogeneous polynomials f and g of minimal degrees such that I' = V(f)
and A = V(g). Second, apply a suitable homogeneous, linear transformation L,
to P such that I'" = L,(I') and A’ = L, (A) are in permissible position. The
equations for I'' and A’ are 7,(f) = f' = Oand 7,(g) = g’ = O, respectively.
Third, compute R, (f’,g'), and factor this polynomial as in equation C.21.
Fourth, for each (y(",y{") occurring in the factorization of Ry, (f’,g’), compute
the common solution c; tof'(y}”,yé”,)@) = g’(y{i),yéi),Xg) = 0. Finally, pull
the points (y{” : y§? : ¢;) back to I' N A via L;!. This procedure is obviously
a special case of Kronecker’s method of elimination.

Suppose I' and A are two algebraic curves in P% having no common compo-
nents. Suppose order(I') = n and order(A) = m. Then I’ = V(f) for some
homogeneous polynomial f € R of degree n and A = V(g) for some homoge-
neous polynomial g € R of degree m. SetI' N A = {P,, . . ., P,}. Then Theorem
C.19 implies 1 < s < mn. It is possible to define an integer i(I',A,P;), called
the intersection multiplicity of I' and A at P;, such that >}, i(T,A,P;))
= mn.

If T and A are in permissible position in [P%, then the proof of Theorem C.19
provides a ready definition of i(I',A,P). If P, = (y{ : y¥ : ¢;) for
j=1,...,s,then

§

C.22 HX\Xp) = Py (f,9) = T1OPXs — yPX)0
i

In equation C.22, s(j) is the multiplicity of the linear factor y{X, — y¥)X, in
H(X,,X,). Define i(F,A,Pj) =gs(j)forallj =1,...,s. Since His a
homogeneous polynomial of degree mn, we have 2}=1 i (I‘,A,Pj) = 2,’-=1 s(J)
= mn. The statement ‘‘I" and A intersect in mn points counting their multiplic-
ities’’ in Theorem C.15 means precisely Zf'=l i (I‘,A,Pj) = mn. Thus, we have
proved Bezout’s theorem when I' and A are in permissible position in P%.

When I' and A are not in permissible position, the intersection multiplicity
i(T',A,P;) is defined as follows:

i(T,A,P)) = i(Ly(T'), Ly(A), Ly(P)))
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where L, : P — P% is a homogeneous, linear transformation taking I and A
to curves L, (I") and L, (A) in permissible position in P%. For this definition to
make sense, we must argue that

i(L4(T), Ly(B), Ly(Py)) = i(Lg(T), Lg(A), Lg(P;))

for any two homogeneous, linear transformations L, and Ly which take I" and A
to curves in permissible position. A proof of this fact can be found in [S, Chapter
71]. Thus, we have the following more precise version of Theorem C.15:

Theorem C.23 (Bezout’s Theorem) LetI and A be two algebraic curves of
orders n and m respectively in P%. Suppose I' and A have no common compo-
nents. Then I" and A intersect in a finite number of points Py, . . . , P, and

i i(T,AP) = mn. 1

There are many generalizations of Bezout’s theorem to higher dimensions.
For instance, we have the following theorem:

Theorem C.24 Suppose f;(Xy, ..., X,), .. - foo1 (X}, ... X)) aren — 1
homogeneous polynomials in K[X|, . . ., X, ] such that the equations f; = - - - =
fo—1 = 0 have only finitely many common solutions in P~ '. Then the number
of solutions to these equations counted with appropriate multiplicities is equal to
the product of the degrees of f;, . . . , f,—1-

The important part of this theorem is to define carefully what is meant by the
multiplicity of acommon solution of the equationsf, = - - - =f,_, = 0in Py .
As above, the multiplicity of a common solution is computed from a certain
resultant system derived from f,, . . . , f,_,. An explanation of how this is done,
as well as a proof of Theorem C.24, can be found in [W].
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Appendix D
The Hilbert-Burch Theorem

In this appendix, we will use some of the ideas from Chapters 5 and 13 to prove
the Hilbert-Burch theorem. Our proof of this result is derived from Geramita and
Kani’s treatment of this subject in [G]. Throughout this appendix, R will denote
a Noetherian (commutative) ring.

Definition D.1 Letx,, ..., x, €R. The r-tuple (x;, . . ., x,)’ € R is called
a regular sequence of R if the following two conditions are satisfied:

@) (x,...,x) #*R.

(b) Foreachi =1,...,r,x; & Z(R/(x, . . . , x;_1)).

In the above definition, (x;, . . . , x,) denotes the ideal of R generated by
Xy -« -, % Thus, (xy,...,x) = 2= Rx. If (x;, ..., x) is a regular
sequence of R, then the ideal generated by the entries in the vector (x;, . .., x,)’
is a proper ideal of R. When i = 1, condition (b) means x, is a regular element
in the ring R. If (x,, . . ., x,)" is a regular sequence, then x, is a regular element
of R, the image of x, is a regular element in the ring R/(x,), the image of x; is
a regular element in R/(x;,x,), etc. Notice that the order in which the elements

appear in the vector (x;, . . . , x,)' is important here. It is possible for
(x4, . . -, x.) to be a regular sequence of R while some permutation
(Xo(1ys « + s Xg(rny) Of (X1, . . ., x,.)" is not a regular sequence of R.

The simplest example of a regular sequence is provided by indeterminates.

260
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Suppose X, . . . , X, are indeterminates over a field F. Then (X, ..., X,) €
(F[X;, . ..,X,]) is a regular sequence of R = F[X,, ..., X,] foreachr =
1,...,n.

If¢ = (x,...,x.) € R is a regular sequence of R, then the integer r is
called the length of €. Let % be a proper ideal of R, and suppose £ = (x,,...,x,)'
€ R’ is a regular sequence of R. £ is called a regular sequence of U if x; € A for

alli = 1,...,r. §iscalled amaximal, regular sequence of % if there is no element
y € ¥ such that (x;, . . ., x,, y)' is a regular sequence of UA. Thus, £ =
(x4, . - . ,Xx,)' € R"is a maximal, regular sequence of U if £ is a regular sequence

of R, x;€Uforalli=1,...,r,and % C Z(R/(x,, . . . , x,)). For example,
the reader can easily check that § = (X, ..., X,) is amaximal, regular sequence
of the ideal M = (X, ..., X,)CR = F[X,,...,X,].

Again let U be a proper ideal of R. Since R is Noetherian, maximal, regular
sequences of U exist. Furthermore, any two maximal, regular sequences of %
have the same length. Proofs of these two assertions can be found in [ K, Chapter
IIT]. In particular, the following definition makes sense.

Definition D.2 Let U be a proper ideal of a Noetherian ring R. The grade of
A is the length of any maximal, regular sequence of .

We will let gr(¥) denote the grade of . Clearly, gr(%) = 0 if and only if A
C Z(R). In particular, if R is an integral domain and A # (0), then gr(A) =
1. For example, if R = Z, the integers, and A = (x), x = 1, then gr(A) = 1.
M= (X;,...,X,) CF[X,,...,X,], then gr(M) = n. We will be
interested primarily in ideals of grade at least two. If gr (%) = 2, then there exists
a regular sequence £ of U whose length is at least two.

We have seen in the text that any R-module homomorphism f: R*~! +— R"
can be represented by an n X (n — 1) matrix A [in M, (,—,(R)] in the
following way: Let {e,, . . . , €,_,} and {e], . . . , €,} be the canonical bases
of R*~! and R", respectively. If f(¢,) = X}-1 a;€jfori = 1,...,n— 1, then
set A = (a;) € M, (,—1)(R). The homomorphism f is then given by matrix
multiplication: f(A\) = A\ for all A\ € R*~!. We have seen in Theorem 5.36b
that f is injective if and only if Anng(/,_,;(A)) = (0). We will need the
following application of this result.

Lemma D.3 Letf: R"™! — R" be an injective, R-module homomorphism.
Suppose ¢ is a regular element of R, and set @ = RY/f(R""'). Letn,: Q — Q
denote the R-module homomorphism given by multiplication by ¢. Then the
following statements are equivalent:

(@) p,: Q — @ is injective.

() f: R R"™! > R™tR" is injective.

() Rt =Rt : I, _,(A).
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Proof. Before giving a proof of this lemma, let us discuss the notation being
used here. Since f: R”~! — R" is an R-module homomorphism, f induces an
R-module homomorphism f : R*~'/tR*~! — R"tR" givenby f(\ + tR"™!) =
fO\) + tR" for all \ € R""'. In (b), f denotes this induced map. In (c), A is
the n X (n — 1) matrix representation of f discussed in the previous paragraph.

Since Q is the cokernel of the map f, we have the following commutative
diagram:

(0) (0)

O=A" e R > Q =

s 4 el

{ |

O ©) ©)

r 5 h l
Y ‘B |
Or=Af" —» AT —> Q —»
D4
\ 2 | l
!

The maps ! w?, and p, in diagram D.4 are all R-module homomorphisms given
by multiplication by ¢. The unmarked arrows in D.4 are all natural homomor-
phisms onto the appropriate quotients. In particular, the five-term sequences
making up the first two rows and first two columns of D.4 are short exact
sequences. By the Snake Lemma [B ; Proposition 2, p. 6],

D.5  Ker(p;) = Ker(p)) — Ker(p,) —> Coker(p,) 4 Coker(p?) > Coker(p.)

is an exact sequence of R-modules. Since ¢ is a regular element of R, p} and p?
are injective R-module homomorphisms. Thus, the exact sequence in D.5 im-
plies Ker(p,) = Ker(f). This last isomorphism shows (a) and (b) in the lemma
are equivalent.

Forany r = 1, R/tR" = (R/tR)". Let K__= (a;) € M, (n—1)(R/R) denote
the image of A. Thus, if A = (a;), then A = (@;) wherea; = a; + IR €
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R/R for all j and i. Then for every X € R"™'/tR"~*!, f(X) = AX. Theorem
5.36b implies f is injective if and only if Anng,z(I,_,(A)) = (0). This last
equation is in turn equivalent to Rt : I,_;(A) = Rr. Thus, (b) and (c) are
equivalent.

Let %A denote a proper ideal in R. Suppose U admits a short exact sequence
of R-modules of the following form:

f g
D6 @O~ R 'R - A (0

We have seen in the discussion above that there exists an n X (n — 1) matrix
A= (ay) EMyxn- 1H(R) such that f(A\) = AN forall A € R The entries
in A are defined by the following equations: f(e,) = >]-; a;e; for all
i=1,..., n—lIfg(e)—ajforj—l . nthentheIXnmatnx
B = (ay,...,a,) €M,,(R)is a matrix representatlon of g. Thus g(§) =
B¢ for all £ € R". When dealing with a short exact sequence like the one in D.6,
we will replace f and g with A and B, respectively. Thus, D.6 will be written in
the following way:

A B
D7 O~ R 'S R~UA- (0

The R-module homomorphisms in D.7 are given by A — A\ and § — BE. Since
the sequence in D.7 is exact, we have Ker(A) = NS(A) = (0), BA = O, and
A = Ra, + - - - + Ra,. In particular, ¥ is generated by the entries of B, and
A + (0).

Using this notation, the Hilbert-Burch theorem can be stated as follows:

Theorem D.8 (Hilbert-Burch) Let R be a Noetherian, integral domain, and
let A be a proper ideal of R. Suppose U has the following two properties:
(a) There exists a short exact sequence of R-modules

A B
O~ R 'R +— A (0

for some A € M, (,_)(R) and B € M, ,(R).
(b) gr(A) = 2.
Then QI = n—l(A)'

» Ain—1

Proof. A = and B = (a,. . .,a,)

o s Qup—1
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We have noted above that A = Ra; + - - - + Ra, and % # (0). In partic-

ular, some g; is a nonzero element of R. Since BA = O, the vector B'is a

non-trivial solution to the homogeneous system of equations A’X = O.
Let A, ... ,i,...,m1l, ...,n— 1) denote the (n — 1) X
(n — 1) minor of A obtained by deleting the ith row of A. Set 4, =
(-vait,...,i,...,n1,...,n—Dfori=1,...,n Thenl,_,(A) =
i=1Rd,.
Foreachk € {1, . .., n — 1}, let B, denote the following n X n matrix:
aiyy, - - -5 Qo A1p QL 1s « - - 5 Bln—1
D.9 Bk =
Quls « « - s Quis Qs Qg 13 « - « » Aup—1
k k+1

The integers k and k + 1 below B, indicate what column has been repeated.
Using Laplace’s expansion down the kth column of B,, we have 0 = det B, =
> ag(~=1)d;foralk = 1,...,n — 1. Therefore,

d
D.10 A'| . =0
d,
L.

Since multiplication by A is injective, Anng(Z,_,(A)) = (0). Therefore,
tk(A) = n — 1. In particular, tk(A*) = n — 1. Let K denote the quotient field

of R. Then dimy(NS(A’)) = 1. Consequently, the vectors (a,, . . ., a,) and
(dy, . . ., d,) are linearly dependent over K. Put another way, we have

dy, .. .,d,| _
Doll rankx[al,. X "a"]— l

In particular, every 2 X 2 minor of the matrix in D.11 is zero. Thus,

D.12 a;d; = a4, foralli,j=1,...,n.
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Since tk(A) = n — 1, some d; is not zero. Suppose d; # 0. Then equation D.12
implies a; = (ajd,-“)di foralli = 1,..., n Since A + (0), the quotient
(a,d;") is not zero. To simplify notation, let us write (a;dj"!) = r/s where
.r,sER* Thenrd, ERsforalli = 1, ..., n Therefore,r ERs:1,_,(A).
Now R is an integral domain, and s # 0. In particular, multiplication by s
induces an injective R-module homomorphism p, : ¥ ~ «A. Since A =
R"AR"™!, Lemma D.3 implies Rs = Rs :I,_,(A). Hence, r = us for some u
€ R*. In particular, a; = ud; foralli = 1,...,n.
Suppose we can show u is a unit in R. Then

oA = iRa,- = iRudi = > Rd, = I,_,(4)

i=1 i=1 i=1

Hence, the theorem is proved. We finish the proof by showing gr() = 2
implies u € U(R).

Since a; = ud; fori = 1, . . ., n, multiplication by u induces a surjective
R-module homomorphism p, : I,_;(A) — UA. Thus, multiplication by
u~'(€ K) induces an R-module homomorphism from U to I,_,(A). Since
gr(A) = 2, A contains elements x and y such that (x, y)* is a regular sequence
of length two. Therefore, x/u and y/u are elements in/,,_;(A) C R. Write x/u =
a and y/u = b for some a, b € R. Then x = ua and y = wb. In particular,
ay = uab = xb. Since (x, y)' is a regular sequence of R, y is not a zero-divisor
modulo x. Hence, a = vx for some v € R. Then bx = ay = vxy. Since x + 0,
b = vy. Therefore, y = ub = uvy. Sincey + 0, uv = 1. Thus u € U(R), and
the proof of Theorem D.8 is complete. 1

The Hilbert-Burch theorem gives sufficient conditions for an ideal U gener-
ated by n elements to be generated by the maximal size minors of some n X
(n — 1) matrix A with entries from R. Ideals of the form /,(C) with C €
M, . .(R) and 1 = 1 < min{m,n} are called determinantal ideals. The study of
determinantal ideals is a very active area of research in commutative ring theory.
The Hilbert-Burch theorem provides an important class of determinantal ideals,
i.e., those ideals generated by the maximal size minors of some n X (n — 1)
matrix.

There is a special version of Theorem D.8 which is used in algebraic geom-
etry. In this version, the integral domain R is a polynomial ring F[X,, . . . , X,,]
in n + 1 indeterminates X, . . . , X,, over a field F. LetR = F[X,, . . ., X,],
and let U denote a proper ideal of R. We will let ht(2) denote the height of 2,
pdg () the projective dimension of A, and v(U) the minimal number of gen-
erators of 9. The Hilbert-Burch theorem in this context says the following:
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Corollary D.13 LetR = F[X,, . . ., X, ]. Suppose U is a homogeneous ideal
of R which satisfies the following three properties:

(a) ht(AN) =

(b) pde(A) =

@Wvi)=n+1
Then ¥ is generated by the maximal size minors of some (n + 1) X n matrix
whose entries are homogeneous polynomials in R.

The proof of Corollary D.13 is beyond the level of this text. However, for
readers who have had a course in commutative ring theory, Corollary D.13
follows readily from Theorem D.8. We invite the reader to consult [G] for
applications of the Hilbert-Burch theorem in algebraic geometry.
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Notation

T
T*

Z(T)

R

U(T)
x-y
x|y
M, . .(F)

det(A)
E;
yA
F
Q

an arbitrary associative ring with unit

the nonzero elements of T
the zero divisors of T

a commutative ring

the units of T

x and y are associates

x divides y

n X n matrices with entries
from F

the determinant of the matrix A
the i,jth matrix unit

the integers

an arbitrary field

the rational numbers

(]

NN NN NN
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FIX,,...,X,]

c

1]
X<Y
J(T)
L)
PIR
PID
Z[i}

z
FLIX1

ZinZ
M, ,(R)

dimg(V)
R(X,, ..., X,]

R"

(X5 000y X)
(CNE ®
€={e;,...,¢€
Anng(m)

Anng (M)

Z(M)
Homg(M,N)

M=N

polynomials in X, . . . , X,
with coefficients in F

inclusion

the empty set

X is strictly contained in Y

The Jacobson radical of T

the set of proper left ideals of T
principal ideal ring

principal ideal domain

Gaussian integers

p-adic integers

formal power series in X with
coefficients from F

the integers modulo n

m X n matrices with entries
from R

the dimension of V

polynomials in X,, . . . , X,,
with coefficients from R

column vectors of size n with
entries from R

a row vector of size n

a column vector of size n
the canonical basis of R
the annihilator of m

the annihilator of M

the zero divisors of M

the set of all R-module
homomorphisms from M to N

M is isomorphic to N

Notation

L& L S HE W W W WNN

F-S

NN NN

~
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Ker(f)
Im(f)
[A];

(o)

A

Row;(A)

Col;(A)

A= (N;5...5Np)
A= (8] --[8)
CS(A)

RS(A)

Sa

sgn(o)
AGy, oL dghs oo o0 dp)

M,(A)
cof;;(A)
d;
adj(A)
1

n

Gl(n,R)

Diag(d,, . .., d,)
Cc(T)
(M, xa(R))[X]

Tr(A)

the kernel of f
the image of f

the i,jth entry of the matrix
A

the zero matrix

the transpose of A

the ith row of A

the ith column of A

the row partition of A
the column partition of A
the column space of A
the row space of A

the set of all permutations on »n
letters

the sign of the permutation o

the ¢+ X t minor of a matrix

formed from rows i, . . . , i,

and columns j,, . . . , j,
the i,jth minor of A
the i,jth cofactor of A
the Kronecker delta function
the adjoint of A
the n X n identity matrix

the set of n X n invertible
matrices in M, ,(R)

a diagonal matrix
the center of the ring T

polynomials in X, coefficients
from M, »,(R)

the trace of the matrix A
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10
10
11
11
i1
12
12
13
13

14
14

14
15
15
15
16
16

16
17
18

18
18
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SI(n,R)

J(R)

xoy

)

z
R
I(A)

tk(A)
rank(A)

2(R)
rank (M)
1,(A|B)*

Ka

I‘C
<3
V()

S™'R
T(X]

a(f)

fR(Z)
f(2)

n X n matrices in M, ,(R)
having determinant one

the set of ideals of R

X +y—xy

the real quaterions

the complex numbers
the conjugate of z

the field of real numbers

the ideal generated by all ¢ X ¢
minors of A

the rank of the matrix A

the classical rank of A over a
field F

the total quotient ring of R
the rank of M

m X m minors of A using
column B

left multiplication by the matrix
A

the complement of the set I’

the radical of A

the set of prime ideals
containing

the localization of R at S

polynomials in X with
coefficients in T’

the degree of f

{0,1,2,3, ...}

the right evaluation of f(X) at z
the left evaluation of f(X) at z

Notation

19
23
24
27
27,

27
27

28
30

32
40
41

46

49
53
54

54
60

62
63
63
66
66
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Ca(X)

Com(f)
U,

RIA]
Ny
NS(A)
m4(X)

> Ca(ya(2) + - + a(n)
Xil!(l)xg(Z) e X‘,’,‘(")

Pug, -+ - s UpVos + « « 5 V)
SCug, -« . s UpVos o+ 5 Vi)
R(f8)

(M)

3x,(f)

gtx,.(f»g)

hy

A:B

Ry

Bilg(M x N, P)

()

M@z N

m@n

M1®R" - R M,

271
the characteristic polynomial of

A 69
the companion matrix of f 69
the R-algebra homomorphism

from R[X] to M,,,(R)

given by f(X) —

f(A) 71
the image of 9, 71
the null ideal of A 71
the null space of A 7
the minimal polynomial of A 75
a polynomial in X, . . . , X, 79
Sylvester’s matrix 83
Sylvester’s determinant 84
the resultant of f and g 85
the weight of M 89
the degree of f with respect to

X, 93
the resultant of f and g with

respect to X; 93
the homogenization of f 103
the quotient of two ideals 109
the localization of R at ‘B 119
the set of all R-bilinear

mappings from M XN to P 136
the inner product 136
the tensor product of M and N 140
the tensor product of m and n 140

the tensor product of
M,...,M, 142
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me - @m,

f®g

Mulg(M, X - - -

Be(M)
Y

s~ 'M

M(C)

T (M)
Pde(M) = 1

a=bmod A
A=B
dlldzl""dr

g (M)
D(A)
E(A)

AsB
P(A)
E(d)
R(A)
S(d)
(A,

]
N

X M,, P)

the tensor product of
my,...,m,

the tensor product of the
R-module homomorphisms

fand g

the set of all R-multilinear
mappings from
My X - - XM, t0P

the kth Fitting ideal of M
the direct sum of M (n times)
the localization of M at S

the module associated with the
matrix C

the torsion submodule of M

the projective dimension of M is
less than or equal to one

a-be
A is equivalent to B

d; divides d; , , for all
i=1...,r—1

the minimal number of
generators of M

a sequence of invariant factors
of A

a sequence of elementary
divisors of A

A is similar to B

the spectrum of A

the eigenspace associated with d
the roots of C,(X) in R

a free basis of E(d)

a partially ordered set

Notation

142

143

146
157
158
161

163
163

167
176
184

184

190

195

196
205
214
214
216
221
230
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P(I)

p: T — Homz(M,M)
B

Ty

f°

Pk

(x50 S X))
V()

order(I')

L,

coker(f)
ht(A)

pde ()
v(A)

set of all subsets of I’

a representation of T

left multiplication by ¢
right multiplication by ¢
a specialization of f
projective n-space over K
a point in P%

the zeros of f

the order of I'

the homogeneous, linear
transformation of P%

the intersection multiplicity of T’
and A at P;

the cokernel of f
the height of A
the projective dimension of A

the minimum number of
generators of U
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231
235
235
235
244
253
253
254
255

255

258
262
265
265

265
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Addition of matrices, 10
Adjoint, 16
Algebra, 81
homomorphism, 65, 71, 81
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curve, 254
Annihilator, 7, 234, 235
Antihomomorphism, 235
Antirepresentation, 235
Ascending chain condition,
110
Associated primes, 127
Associates, 1

Basis, 5
Bezout’s theorem, 253, 259
Bilinear mapping, 135

Canonical basis, 6, 78

Canonical forms

Frobenius normal form, 200, 211

Hermite normal form, 229

Jordan, 212

rational, 211

real Jordan, 213

Smith normal form, 189
Cayley-Hamilton theorem, 70
Center of a ring, 18
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value, 214

vector, 214
Chinese remainder theorem, 175
Circle composition, 24, 239
Classical

linear algebra, 11

matrix theory, 11
Cofactor, 15
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Column

partition, 12

space, 13
Comaximal ideals, 176
Companion matrix, 69
Complement, 53
Complex

field, 27

of R-modules, 114

right exact, 114

short exact, 114
Conjugate, complex, 27
Cramer’s rule, 43
Curve, 254

components, 254

order, 255

permissable position, 256

reducible, 254

Degree, of a poynomial, 63, 79
Determinant, 14
Diagonal

matrix, 17

reduction, 180
Diagonalized, 217
Dilation, 26
Dimension, 6, 41
Diophantine equation, 202
Direct sum, 138, 183
Discriminant, 103
Division theorem, 63
Divisor, 66

elementary, 196
Domain

integral, 2

PID, 4

unique factorization, 55

Eigenvalue, 51, 214
Eigenvector, 214
Elementary

divisor ring, 184

Index

[Elementary]

divisors, 196

transvections, 26
Elimination theory, 251
Empty set, 3
Endomorphism ring, 27
Equivalent matrices, 184
Euclidean domain, 202
Exact complex, 114
Extension of scalars, 146

Factor, 55
invariant, 195
Faithful module, 234
Field
algebraically closed, 88
complex, 27
of fractions, 40
real, 27
Finitely
generated module, 6
presented module, 116
Fitting ideals, 157
Formal
degree, 242
leading coefficient, 242
power series, 2, 121
Free module, 5
Frobenius normal form, 200, 211

Gaussian
elimination, 225
integers, 4
General linear group, 16
Generalized matrix units, 25
Generators of a module, 6
Grade of an ideal, 261
Group of units, 1

Hamilton-Cayley theorem, 70
Hermite
normal form, 229
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[Hermite]
ring, 181
Hilbert
basis theorem, 4, 111
Nullstellensatz, 252
Hilbert—Burch theorem, 260, 263
Homogeneous
polynomial, 79
system of equations, 36
transformation, 255
Homomorphism, 7
image, 7
isomorphism, 7
kernel, 7
set of, 7

Ideal

comaximal, 176

irreducible, 125

left, right, 2

maximal, 54

primary, 123

prime, 52

primitive, 236

principal, 4

quotient of, 125
Idempotent, 23
Identity matrix, 16
Image, 7
Imbedded prime, 132
Indeterminates, 78
Integral domain, 2
Intersection multiplicity, 258
Invariant factors, 195
Irreducible polynomial, 55
Irredundant primary decomposition,

127

Isobaric polynomial, 89
Isolated prime, 132
Isomorphism, 7

Jacobson radical, 3
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Jordan canonical form, 212

Kernel of a homomorphism, 7
Kronecker’s method, 244

Laplace expansion, 15
Lattice of ideals, 23
Leading coefficient, 63

Left
division, 64
divisor, 66

evaluation, 65
quasi-regular, 239
remainder, 64
zero divisor, 1
Linear
combination, 5
group, 16
Linearly independent, 5
Local ring, 118
Localization, 119, 161

Matrix
addition of, 10
adjoint, 16
characteristic polynomial, of, 62
companion, 69
diagonal, 17
equivalent, 184
matrix units, 11
multiplication of, 12
relations, 116
set of, 5
similar, 205
trace of, 18
transpose, 11
zero, 10

Maximal
left ideal, 3
prime belonging to, 57
right ideal, 3
with respect to S, 53
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Minimal
polynomial, 71
prime, 55
Minor, 14
Module, §, 233
direct summand, 120, 138
faithful, 234
free, 5
homomorphism of, 7
irreducible, 236
projective, 166
torsion, 163
torsion-free, 163
Monic polynomial, 6
Monomial, 6, 78
Multilinear function, 14
Multiplicative subset, 52

Nakayama’s lemma, 118
Nil radical, 54
Noetherian ring, 4, 123
Nontrivial solution, 36
Null

ideal, 71

space, 71

Pairwise comaximal ideals,
176

Partially ordered set, 3, 230
Partitions of matrices, 12
Peirce decomposition, 23
Permissable position, 256
Permutation

even, 14

matrix, 26

odd, 14

sgn, 14
Polynomial

degree of, 63, 79

homogeneous, 80

irreducible, 55

isobaric, 89

{Polynomial]

roots of, 76

weight of, 89
Presentation, 116
Primary ideal, 123
Prime, 52

embedded, 132

isolated, 132
Primitive ideal, 4, 26
Principal ideal domain, 4
Principal ideal ring, 4, 175
Product of matrices, 12
Projective

dimension, 167, 265

module, 166

space, 253
Proper ideal, 3

Quasi-regular, 4, 239
Quaternions, 27
Quotient ring, 40

Radical
of an ideal, 54
Jacobson, 3
nil, 54
Rational normal form, 211
Rationals, 2
Real Jordan form, 213
Regular
element, 1
sequence, 260
Relation, 230
anti-symmetric, 230
reflexive, 230
transitive, 230
Relations matrix, 116
Representation, 235
faithful, 236
irreducible, 236
Resultant, 85
Resultant system, 247
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Right
division, 64
divisor, 66
evaluation, 65
exact sequence, 114
quasi-regular, 239
zero divisor, 1

Ring
commutative, 1
elementary divisor, 184
Hermite, 181
integral domain, 2
Noetherian, 4
principal ideal domain, 4
principal ideal ring, 4
primitive, 236
simple, 23

Roots of characteristic polynomial,

216

Row
partition, 12
space, 13

Scalar multiplication, 10
Sequence
elementary divisors, 196
invariant factors, 195
regular, 260
Short exact sequence, 114
Similar matrices, 205
Simple ring, 23
Smith normal form, 189

Snake lemma, 262
Solution to linear system, 35
Special

linear group, 19

PIR, 176
Specialization, 81
Spectrum, 214
Sum of matrices, 10
Sylvester’s determinant, 84
Sylvester’s matrix, 82

Tensor product, 140
Torsion

element, 163

module, 163
Trace of a matrix, 18
Transpose

of a column, 6

of a matrix, 11
Transvection, 26

Universal mapping problem, 137

Vandermonde matrix, 103
Variables, 6

Weight of a polynomial, 89

Zero
divisor, 1, 7
matrix, 10
vector, 35
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