Svetlana Katok

Fuchsian
Groups

The University of Chicago Press
Chicago and London



SVETLANA KATOK is associate professor of mathematics at
Pennsylvania State University.

The University of Chicago Press, Chicago 60637
The University of Chicago Press, Ltd., London

© 1992 by The University of Chicago
All rights reserved. Published 1992
Printed in the United States of America

01 00 99 98 97 96 95 94 93 92 54321

ISBN (cloth): 0-226-42582-7
ISBN (paper): 0-226-42583-5

Library of Congress Cataloging-in-Publication Data

Katok, Svetlana.
Fuchsian groups / Svetlana Katok.
p. cm. — (Chicago lectures in mathematics series)
Includes bibliographical references and index.
1. Fuchsian groups. |. Title. Il. Series.
QA335.K38 1992
515'.93—dc20 92-6535
CIP

The paper used in this publication meets the

minimum requirements of the American National Standard
for Information Sciences—Permanence of Paper for
Printed Library Materials, ANS| Z39.48-1984.



MOHUM POANTEJAM
To my parents Lucy and Boris



CONTENTS

Preface ....cveiiiiiii i e e e ix
1. Hyperbolic geometry ......ccoovmiiiiiiiiiiiiiiii e e 1
1.1. The hyperbolic Metric ....ccceoiviiririiriiiiee e e, 1
1.2, GEOdESICS wueviieiiiiiiiiiiiie et ettt e e e 4
1.3, TSOMELIIEs.ccuieiiiiiiiiiiiic e e e 8
1.4. Hyperbolic area and the Gauss-Bonnet formula.............. 11
1.5. Hyperbolic trigonometry .....c.ccooeveiieervviiiriiiieeineeeeca e 15
1.6. Comparison between hyperbolic, spherical and Euclidean
PrIGONOMIELTY .ooveviiiiieniiiii 18
Exercises for Chapter 1. .....c.ooiiviiiiiiiiiiiieecceeie e e 21
2. Fuchsian groups ....cocoeiioiienriiiiieiciecencee et e 23
2.1. The group PSL(2,R) vcccooniiniiiiiinienieienienisrcevceveennea s 23
2.2. Discrete and properly discontinuous groups.......c..ccceeenne 26
2.3. Algebraic properties of Fuchsian groups .......cccoceevuenennnnn 34
2.4, Elementary groups ......cccoccevoimeieniiionnierinnreeniieesinnceeeeas 37
Exercises for Chapter 2 .......cccoevvieiieiiieiiinccicenine e e 47
3. Fundamental reglons.........ccooceeiiiiniirnniiciiie i e 49
3.1. Definition of a fundamental region ...........ocevrvcieeennennnnee 49
3.2. The Dirichlet reglon ......eovveeiciiiiiiiiniiierie e 52
3.3. Isometric circles and the Ford fundamental region .......... 56
3.4. The limit set of T...cooooiiiiieeiiiiiiiicc e 63
3.5. Structure of a Dirichlet region........coccoeiiniiiiiiniininiennins 67
3.6. Connection with Riemann surfaces and homogeneous
SPACES ceeteeetereeeraranstnirrererersaaitetereaeseinnrtaeraaeeseee st e s 75
Exercises for Chapter 3 ......ccoiviiiiiviie e e e 78
4. Geometry of Fuchsian groups.......cccocoeoviiiiiiiiniiniiiiiin, 80
4.1. Geometrically finite Fuchsian groups ......cc.ccocevriinnnnen. 80

vii



Contents

4.2. Cocompact Fuchsian groups....c.ccccceieevmiiiiiniiiniinnnnnn, 84
4.3. The signature of a Fuchsian group .......ccooevveeivcnninnnnen. 90
4.4. TFuchsian groups generated by reflections..........c..c.oo..ee.. 99
4.5. Fuchsian groups of the first kind........c.c..cccoiiiviiiis 102
4.6. Finitely generated Fuchsian groups......c..cccoeviieiveeeennnns 104
Exercises for Chapter 4 ....ccooveiiiiiiniiiiiiiiciirecee e 110
5. Arithmetic Fuchsian groups ......cccccvveeiieiiniiiniceniieineenn, 112
5.1.  Definitions of arithmetic Fuchsian groups ........cccceou.e. 112
5.2. Fuchsian groups derived from quaternion algebras ........ 113
5.3. Criteria for arithmeticity.....cccoovenriiinviieiiiinnniee e, 120

5.4. Compactness of I'\*% for Fuchsian groups derived
from division quaternion algebras............ccccovvivieienrnenn, 129
5.5. The modular group and its subgroups ..........cccccerreeennn. 133
5.6. Examples ..ccccooiiiiiiiiiiiiiiee e 143
Exercises for Chapter 5 ......cccceeruiiiniiieioiiioiciiniiei s eens 153
Hints for Selected EXCErcises .....ocoivveiiiiiiniiiiiiiiiciii e ceeie e, 155
Bibliographiy.....ocociiiiiii e, 167
IEX et et 169



PREFACE

This book originated from a one-quarter graduate course [
taught at the California Institute of Technology and again at the
University of California at Santa Cruz in 1989. The aim of this
course was to present a self-contained theory of Fuchsian groups
assuming no previous knowledge of the subject. Although the
material in the first four chapters appears in many books, it either
remains on an elementary level as a part of an introductory complex
analysis course [JS], or is scattered in a presentation of a more
sophisticated theory: discrete groups of Mébius transformations [B],
discrete groups of isometries of spaces of constant curvature [VS],
harmonic analysis on symmetric spaces [Te], quaternion algebras [Vi],
or automorphic functions [GP, F, L, Sh]. My only contribution here
was to present the material in as painless a way as possible, assuming
only a basic knowledge of real and complex analysis and abstract
algebra. In Chapter 5 I develop the theory of arithmetic Fuchsian
groups: the modular group and its subgroups of finite index as well as
Fuchsian groups derived from quaternion algebras. While that
chapter is more specialized than the others, it is not written for
specialists. Some knowledge of algebraic number theory would be
helpful; however, I have tried to keep Chapter 5 as self-contained as
possible, giving all the necessary definitions and presenting the theory
of quaternion algebras on the level necessary for my purposes.
Several examples appear throughout the book to illustrate important
concepts and theorems. Each chapter contains a number of exercises;

the hints for most of them are included at the end of the book.

ix



Preface

Fuchsian groups—discrete groups of isometries of the
hyperbolic plane—are a basic example of lattices in semisimple Lie
groups. Their very concrete nature allows us to illustrate their many
features that have far-reaching generalizations in geometry and
number theory. The book therefore can be useful for graduate
students specializing in a broad variety of areas of mathematics,
including differential geometry, number theory, Lie theory, and
representation theory, and can serve as an introduction to the more
advanced works on those subjects. Capable graduate students should

be able to read the book quite easily on their own.

I wish to express my appreciation to Peter Sarnak and Leonid
Vaserstein for discussions on arithmetic groups. [ would like to
thank Ozlem Umamoglu and Yves Martin, graduate students from
my class at the University of California at Santa Cruz, who read the
manuscript and checked most of the excercises. I would also like to
thank Jonathan Poritz, a graduate student at the University of
Chicago, who read the first version of the manuscript with great care
and made a number of useful comments that resulted in
improvements in the exposition. The figures were created by my son
Boris Katok, a recent graduate of the University of Chicago in

political science. [ greatly appreciate his help.



1. HYPERBOLIC GEOMETRY

1.1. The hyperbolic metric

Let C be the complex plane. We shall use the usual notations
for the real and imaginary parts of z=x+iyeC, Re(z)=x, Im(z)=
Our main object of study is the upper half-plane K*={zeC |
Im(z)>0}. Equipped with the metric

2 2
ds=_dx__+d_y (1.1.1)

y

it becomes a model of the hyperbolic or Lobachevski plane. We shall
see that the role of geodesics (i.e. the shortest curves with respect to
this metric) is played by straight lines and semicircles orthogonal to
the real axis R={zeC | Im(z)=0}. Any two points in % can be
joined by a unique geodesic, and the distance between those points is
measured along this geodesic. However, there is more than one
geodesic passing through a given point z not in the geodesic L which
does not intersect L (see Fig. 1); in fact, all geodesics through z
outside of the shaded region do not intersect L. This means that this
geometry in % is non-Fuclidean: the fifth postulate of Euclid’s
Elements, the axiom of parallels, does not hold here. The metric
(1.1.1) in % is called the hyperbolic metric. Let I=[0, 1] and y: I-%
be a piecewise differentiable path y={z(t)=x(t)+iy(t)e% | tel}.
Then its hyperbolic length h(y) is given by

(GG
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2 Chapter One

Fig. 1

DEFINITION. The hyperbolic distance p(z, w) between two points
z, we¥ is defined by the formula

p(z, w)=inf h(y),

where the infimum is taken over all v joining z and w in %.

It is easy to see that p is non-negative, is symmetric, and

satisfies the triangle inequality

p(2,w) < p(2,€) +p(&,w),
i.e. is indeed a distance function on .

b

a
Let us consider a group of real matrices g= d with
c

det(g)=ad—bc=1. As usual, tr(g)=a+d is the trace of a matrix g.
This group is called the unimodular group and is denoted by SL(2,R).
The set of fractional linear (or Mobius) transformations of C onto

itself of the form

az+b —
{z-»c—z—_{_—d | a,b,c,deR, ad—bc—l} (1.1.2)
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forms a group such that the product of two transformations
corresponds to the product of corresponding matrices and the inverse
corresponds to the inverse matrix. FEach transformation T of the
form (1.1.2) is represented by a pair of matrices +geSL(2,R). Thus,
the group of all transformations (1.1.2), called PSL(2,R), is
isomorphic to SL(2,R)/{x1,}, where 1, is the 2x2 identity matrix; we
write PSL(2,R)=~SL(2,R)/{£1,}. The identity transformation in
PSL(2,R) will be denoted by Id. We have tr(—g)=—tr(g), so that

tr2(T)=tr*(g) and Tr(T)=|tr(g)|

are well-defined functions of T. An important geometrical meaning
of the trace function Tr(T) will be discussed in §2.1. Notice that
PSL(2,R) contains all fractional linear transformations of the form
ZH% with ab,c,deR and A=ad—bc>0 since by dividing the
numerator and denominator by YA we obtain a new matrix for it of
determinant 1. In particular, PSL(2,R) contains all transformations

of the form z—az+b (a,beR, a>0), and the transformation z—-»—-%.

THEOREM 1.1.1. PSL(2,R) acts on 3% by homeomorphisms.

PROOF: First we show that any transformation (1.1.2) maps 3 onto

itself. Let TePSL(2,R), and w=T(z)=%;_’_Lg. Then

(az+b)(cz+d) _ac|z|*+adz+bcz+bd
ez +d}? lcz+d}?

b

so that _ ~
Im(W):w—wz - VAna 5= IIn(Z)z‘
21 ijez+d|? fez+d|

Therefore Im(z)>0 implies Im(w)>0. The theorem now follows ffom

(1.1.3)

the continuity of T(z) and its inverse. a

DEFINITION. A transformation of % onto itself is called an isometry

if 1t preserves the hyperbolic distance on %.
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It is clear that the set of all isometries of % forms a group; we
shall denote it by Isom(%).

THEOREM 1.1.2. PSL(2,R)cCIsom(%).

PROOF: By Theorem 1.1.1 all transformations in PSL(2,R) map 1
onto itself. We show that, if y: I — 1 is a piecewise differentiable
path in % then for any TePSL(2,R) we have h(T(y))=h(y). Suppose
v: I-% is given by z(t)=(x(t),y(t)), and w(t)=T(z(t))=u(t)+iv(t).
We have

g1&,_a(cz+d)—c(az+b)_ 1
dz=  (cz+d)? " (cz+d)? (1.14)

| yd|2, and hence l%‘g‘:%’ Thus
cz+

The invariance of the hyperbolic distance follows at once from the

above invariance. 8]
1.2. Geodesics

THEOREM 1.2.1. The geodesics in % are semicircles and straight

lines orthogonal to the real azis R.

PROOF: Let z, and z, be two point in %. Suppose first that z;=ia,
z,=ib (b>a). If y: I-% is any piecewise differentiable path joining
ia and ib, with v(t)=(x(t),y(t)), then

-
1 i(dx\2, (dyy24, 1/d 1dy s b
B+ (G yer 1a b,
h(y):(J; 0 Zi S 2(J;y(t)=17y=1n§, (1.2.1)
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but In g is the hyperbolic length of the segment of the y-axis joining
ia and ib, hence the geodesic joining ia and ib is the segment of the
imaginary axis joining them. For arbitrary z; and z, in 3, let L be
the unique Euclidean circle or straight line orthogonal to the real axis
R passing through those points. By Exercise 1.1 there exists a
transformation in PSL(2,R) which maps L into the imaginary axis.

Using the above argument and Theorem 1.1.2 we conclude that the

geodesic joining z; and z, is the segment of L joining them. ]

COROLLARY 1.2.2. Any two points z, we¥ can be joined by a
unique geodesic, and the hyperbolic distance between z, wel is equal
to the hyperbolic length of the unique geodesic segment connecting

these two points which we denote [z, w).

COROLLARY 1.2.3. Ifz and w are two distinct points in %, then

p(z, w)=p(z, £)+p(&, w)

if and only if ¢€(z,w].

THEOREM 1.2.4. Any transformation in PSL(2,R) maps geodesics

onto geodesics in %.

PROOF: Let TePSL(2,R), z and w be two distinct points in 3%, and
¢€(z,w]. By Theorem 1.1.2 and Corollary 1.2.3, T¢€[Tz, Tw], i.e. T
maps the segment [z,w] onto the segment [Tz, Tw], and hence
geodesics to geodesics. We shall also give an independent proof based
only on the geometrical description of geodesics in %. We know from
complex analysis that fractional linear transformations map
Euclidean lines and circles to lines and circles. T transforms the real
axis onto itself, and hence the lines and circles orthogonal to the real

axis onto lines and circles orthogonal to the real axis. o
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It is useful for many purposes to extend the complex plane C
by introduction of a symbol oo to represent infinity; €=Cu{oo} is
also called the Riemann sphere. The cross-ratio of distinct points z,,
%3, Z3, 24€C is given by the formula

(21, 22 ; 23, 24)=(_z_£z2)(i§4_)'
(22-23)(24~2,)
THEOREM 1.2.5. Let z,we¥k (z#w) and let the geodesic joining z
and w have endpoints z* ,w* in RU{cc}, chosen in such a way that z
lies between z* and w. Then

p(z, w)=ln (w, z*; z, w*).

PROOF: According to Exercise 1.1 there exists an element
TePSL(2,R) which maps the geodesic joining z and w to the
imaginary axis. By applying transformations z—kz({ k>0) and z—»—-%
as necessary, we may assume that T(z*)=0, T(w*)=cc and T(z)=i.
Then T(w)=ri (r>1), and by (1.2.1) p(z,w)=In r. But r=(ri,0; i,00),
and the Theorem follows from the invariance of the cross-ratio under

fractional linear transformations (see e.g. [A]). o

We shall now derive explicit formulae for the hyperbolic

distance.

THEOREM 1.2.6. For z,welk,

i) plos w)=tn F=ErHE= T
2
(ii) cosh p(z, W)=1+2_El|—z(;)“}l_m(W);
inh [1 = 2l !
(i43) sk et W= ) T 72
(iv) cosh[}p(z, w)]= o

2 (1m(z) Tm(w)) /2
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(v) tanh [p(z, w)]:lg—:%l

PROOF: It is a routine exercise to check that the five equations are
equivalent to each other; we shall prove that (iii) holds. By Theorem
1.1.2, the left-hand side of (iii) is invariant under every TePSL(2, R).
Exercise 1.4 shows that the right-hand side is also invariant under T.
Let L be the unique geodesic passing through z and w, and Ty be a
transformation mapping L to the imaginary axis as in Exercise 1.1.
It is now only necessary to check (iii) when z and w lie on the
imaginary axis: z=ia, w=ib {a<b). We have seen in the proof of
Theorem 1.1.2 that p(ia, ib)=In 2, and it is easy to see that (iii)
holds in this case. 0

We shall now describe a model of the hyperbolic geometry in

the unit disc:
U={zeC, |z]<1}.

The map .
f(z) =21 (1.2.2)

is a 1-1 map of % onto AU, thus p* given by
p*(z,w)=p(f 'z, W) (z,wex)

is a metric on A. Using Exercise 1.5 we see that p* can be identified

with the metric derived from the differential

ds=-2192L (1.2.3)
1-|z]

We prefer to use p for p* and with this convention f is an isometry of

(3%,p) onto (U,p). We shall refer to these two models of hyperbolic
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geometry as the Poincaré models, and we shall change from one

model to the other as each has its own particular advantage.

The circle £={zeC | |z|=1} is called the principal circle; it is
the Euclidean boundary of Al. Similarly, the Euclidean boundary of
the upper half-plane %, considered as a subset of the Riemann sphere
€, is RU{oo}. In the model U geodesics are segments of Euclidean
circles orthogonal to the principal circle © and its diameters (see
Exercise 1.7). For the formulae for the hyperbolic distance in U

analogous to those of Theorem 1.2.6 see Exercise 1.8.

Formula (1.2.1) shows that the set of points in the Euclidean
boundary of the hyperbolic plane is characterized by the property
that the hyperbolic distance from these points to any point in the
hyperbolic plane is infinite; we shall sometimes refer to this set as
points at infinity.

Let ¥=%URU{x} be the Euclidean closure of %, and
d=us be the Euclidean closure of U. We see that the Euclidean
closure of % (resp. ) is the closure of % (resp. U) in €.

1.3. Isometries

We have seen (Theorem 1.1.2) that the transformations in
PSL(2,R) are isometries of %. Let PS*L(2,R)=S*L(2,R)/{£1,}

where S*L(2,R) is a group of real matrices g= with

c d
det{g)=+1. PS*L(2,R) contains the group PSL(2,R) as a subgroup of

index 2.

The following Theorem identifies all isometries of the

hyperbolic plane %.

THEOREM 1.3.1. The group Isom(%) is generated by the fractional
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linear transformations (1.1.2) in PSL(2,R) together with z— —Z, and is
isomorphic to PS*L(2,R). The group PSL(2,R) is a subgroup of
Isom(%) of indez 2.

PROOF: Let ¢ be any isometry of %. Repeating the argument of the
first proof of Theorem 1.2.4 we conclude that ¢ maps geodesics to
geodesics. Let 1 denote the positive imaginary axis. ¢(I) is a
geodesic, and according to Exercise 1.1 there exists an isometry
gePSL(2,R) which maps 4(I) to . By applying transformations z —kz
(k>0) and z—»—% as we did in the proof of Theorem 1.2.5, we may
assume that g¢ fixes i and maps the rays (i, o) and (0, 1) onto

themselves, and hence g¢ fixes each point of L.
Now let z=x+iyeM, and g¢(z)=u+iv. For all positive t,
p(Z,it):p(gd)(Z),gd)(it)):p(u-{-iv,it)

and by Theorem 1.2.6(iii),
[ +(y =)y =[u®+(v—t)*]y.

As this holds for all positive t, dividing the both sides of the above
equation by t2 and taking the limit as t—oo, we have v=y, and

x*=u?. Thus
gé(z)=z or —Z. (1.3.1)

Since isometries are continuous (see Exercise 1.9) only one of the
equations (1.3.1) holds for all z in %. If g¢(z)=z, then ¢(z) is a
fractional linear transformation of the form (1.1.2). If g¢(z)=-2, we

have

qS(z):(%—I—ld) with ad~bc=-1. (1.3.2)

Thus we have identified all isometries of 3. It is easy to check that
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all transformations of the form (1.1.2) and (1.3.2) form a group which
is isomorphic to the group PS*L(2,R). The sign of the determinant

a
of the corresponding matrix determines  the
c

d
orientation of an isometry; thus transformations in PSL(2,R) are
orientation-preserving while transformations of the form (1.3.2), in

particular, z— —Z, are orientation-reversing isometries. 1]

Let us consider now the tangent space to ¥ at a point z,
T;%~C. The Riemannian metric (1.1.1) on % is induced by the
following inner product on T;%: for (;=¢;+in; and (,=¢&,+in, in
T%

<y Cz>=w—%?(f1fz+ﬂ1ﬂ2)- (1.3.3)
We shall denote the norm in T,% corresponding to this inner product
by |l - |l. Since isometries of % (being transformations of the form
(1.1.2) or (1.3.2)) are differentiable mappings, they act on the
tangent bundle T% by differentials preserving the norm in the
tangent bundle (Exercise 1.2). By the polarization identity, for any
& neT%

<&n>=3(1E2+ il = 11E=nl1?);

thus the inner product and hence the absolute value of an angle
between tangent vectors are also preserved. We define an angle
between two geodesics in 3 at their intersection point z as the angle
between their tangent vectors in T;%. By Exercise 1.3 this notion of

an angle coincides with the Euclidean angle measure.

DEFINITION. A transformation of 3 is called conformal if it
preserves angles, and anti-conformal if it preserves the absolute

values of angles but changes the signs.
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THEOREM 1.3.2. Any transformation of PSL(2,R) is conformal;, any

transformation of the form (1.3.2) is anti-conformal.

PROOF: This follows immediately from the above discussion and

Theorem 1.3.1. Alternatively, any T(z)= aZ+BGPSL(2 R) is

conformal on the complex plane since for any zeC,

T'(z)—(c“d)

anti-conformal. o

5#0, and the transformation z—-Z is bbviously

It follows from Exercise 1.11 that the family of all Euclidean
discs coincides with the family of all hyperbolic discs, and we have

the following result.

THEOREM 1.3.3. The topology on % induced by the hyperbolic metric

is the same as the topology induced by the Euclidean metric.

1.4. Hyperbolic area and the Gauss - Bonnet formula

For a subset ACHK we define p(A), the hyperbolic area of A,
by

dxdy

- (1.4.1)

u(A)=J
A

if this integral exists.

THEOREM 1.4.1.  The hyperbolic area is invariant under all
transformations in PSL(2,R): if ACK, u(A) ezists, and TePSL(2,R)
then u(T(A)):p(A)

PROOQF: Let z=x+1iy,
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T(2)=2£y (a,bc,deR, ad~be=1),

and w=T(z)=u+iv. Then using the Cauchy-Riemann equations we

calculate the Jacobian

A(WY) _pugv_9udv_(ou\2, (ov\2_|dTl_ 1
St M = + ) = =
d(x,y)” 0xdy 0yox ™ \ox

Thus

4
T(A))=| dudv_ 6(u,v)dxdy___ 1 [cz+d] dxdv=u(A
”( ( )) J 2 J@(X,y) 2 «[]cz+d|4 Y2 Xay P( )
T(A) A A

using (1.1.3). o

A hyperbolic n-sided polygon is a closed set of & bounded by n
hyperbolic geodesic segments. If two line segments intersect, then
the point of their intersection is called a vertez of the polygon. We
allow vertices on Ru{oo} although no segment of the real axis can

belong to a hyperbolic polygon.

In Figure 2 we illustrate four types of hyperbolic triangles
depending on whether 0, 1, 2, or 3 vertices of the triangle belong to
RU{oo}.

Q

Fig. 2
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The Gauss-Bonnet formula shows that the hyperbolic area of

a hyperbolic triangle depends only on its angles.

THEOREM 1.4.2. (Gauss-Bonnet) Let A be a hyperbolic triangle
with angles o,8,y. Then

p(A)=r—a—p-—7.

PROOF: Case 1. We suppose first that one of the vertices of A
belongs to RU{oo}, and hence the angle at this vertex is equal to
zero. If it belongs to the real axis, by applying a transformation in
PSL(2,R) we can map this vertex to oo without altering the
hyperbolic area or the angles. It is sufficient therefore to consider the
case where two sides of A are vertical geodesics. The base of A is
then a segment of a Euclidean semicircle orthogonal to the real axis.
By applying transformations of the form z—z+k (keR), z—iz (A>0)
we can assume that the semicircle has center 0 and radius 1 (see
Fig. 3). These transformations will not change the area of A, by
Theorem 1.4.1. The zero angle will be preserved since these
transformations map vertical geodesics to vertical geodesics; the other

angles will be preserved by conformality (Theorem 1.3.2).
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The angles AOC and BOD are equal to o and B, respectively, as
angles with mutually perpendicular sides. Assume that the vertical
geodesics through A and B are the lines x=a and x=b, respectively.

We now calculate

dxdy 1T dy
(A)—J X2Y=de _32'=J dx2
A y a 2}’ avl-x
1-x

Case 2. A has no vertices in RU{oo}. Suppose that A has
vertices A;B,C and that the geodesic connecting A and B intersects
the real axis at D. (We can apply a transformation in PSL(2,R) to
make sure that no sides of A are vertical geodesics.) Then we have
the situation of Figure 4. Here A=A,;—-A, where A; has vertices
A,C,D and A, has vertices B,C,D.

Fig. 4

Then
u(A)=p(A)—p(Ay)=r—a—(y+8)—[r—0—(r—B)]|=r—a—B—7.
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1.5. Hyperbolic trigonometry

The angle of parallelism is a classical term for the angle o
determined by the trigonometric relation which holds for a triangle
with angles o, 0, 3 T (a#0). Let us denote the length of the only finite
side of the triangle by a (see Fig. 5). The angle of parallelism « is a
function of a: a=1I(a).

THEOREM 1.5.1. Let A be a triangle with angles 0 and 7 and the
finite side a. Then for the third angle Tl (a) we have

(i) tanli(a)=

sinh a’
1

(1) sinll(a)= P s
1

(tii) secli(a)= P

PROOF: We shall prove (ii). By Theorem 1.2.6(ii), we have

I(a)

4sin2(I_I—I(2—a))_sinH(a.)+2sm (%——5—)

h a=1 2 = _ =1
cosha=i+ 2sinli(a) sinli(a) “sinli(a)
The remaining formulae are equivalent to (ii). n]

Fig. 5
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We now comnsider the general hyperbolic triangle with sides of
hyperbolic length a, b, ¢ and opposite angles o, 8, y. We assume
that a, 8, and v are positive (so a, b, and c are finite) and prove the

following results.

THEOREM 1.5.2.

(i) The Sine Rule; sinh a_sinh b_sioh ¢

sina ~ sing = siny

(it) The Cosine Rule I: cosh c=cosh a cosh b—sinh a sinh b cosy.

(tit) The Cosine Rule II: cosh =508 COSp+cosy
sina sin 8

REMARK: Note the existence of Cosine Rule II. This has no
analogue in Euclidean geometry: in hyperbolic geometry it implies
that if two triangles have the same angles, then there is an isometry

mapping one triangle onto the other.

PROOF of (ii): Let us denote the vertices opposite the sides a, b, ¢

by va, v, V¢ respectively.

Fig. 6
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We shall use the model L and may assume that v¢=0 and Im v,=0,
Re v,>0 (see Fig. 6). By Exercise 1.8 (iv) we have
va=tanh}p(0,va)=tanh(ib), (1.5.1)
and similarly, _
vy=e Ttanh(la), (1.5.2)
We have c=p(va,vy), and from Exercise 1.8 (ii1)

2|Va“"b|2
(1=lval®)(1=Ivy|?)

cosh c=2sinh?[}p(va, vp)]+1= +1. (1.5.3)

The right-hand side of expression (1.5.3) is equal to cosh a cosh
b—sinh a sinh b cosy by Exercise 1.12, and hence (i1) follows. ]

PROOF of (i): Using (ii) we obtain

. : 12
(s‘slill}ll_yc)2= sinh”c . (1.5.4)
1—| cosh a cosh b—cosh ¢ |2
sinh a sinh b

The Sine Rule will be valid if we prove that the expression on the
right-hand side of (1.5.4) is symmetric in a, b, and ¢. This follows

from the symmetry of
(sinh a sinh b)?—(cosh a cosh b—cosh ¢)?

which is obtained by a direct calculation. a

PROOF of (iii): Let us write A for cosh a, B for cosh b, and C for
cosh c. The Cosine Rule I yields

(AB-C)
(A%-1)}(B?- 1)

COSy=

and so
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AT ET-Y

where D=1+2ABC—(A%+B?+C?) is symmetric in A, B, and C.
The expression for sin’y shows that D>0. Using analogous
expressions for cose, sine, cosg, and sinf we observe that if we

multiply both the numerator and denominator of

COSa COSf+COosy
sine sin g

by the positive value of .
2

(A2-1)}(B2-1)}(C?-1),

we obtain

cose cosf+cosy_[(BC—A)(CA-B)+(AB-C)(C?-1)]_,
= o .

sine sin §
u}
THEOREM 1.5.3. (Pythagorian Theorem) If +=§ we have
cosh c=cosh a cosh b.
PROOF: Immediate from the Cosine Rule 1. o

1.6. Comparison between hyperbolic, spherical and

Euclidean trigonometry

Let Sr be a sphere of radius r in R®, and %, be the upper
half-plane equipped with the metric

2 2
ds=r—_...‘|dx+dy. (1.6.1)

y

¥, is a model of a sphere of imaginary radius ir.
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Sr is a manifold of positive curvature 1 > and ¥, is a manifold

of negative curvature ~l2. The geodesics in S, are the great circles.
)y

We shall denote the angles of a triangle by e, 8, v, and the
lengths of the opposite sides by a, b, and c.

We have the following trigonometric formulae for a spherical
triangle in S;.
in® «inP  «nC
sinf _sinp _sing

(1) The Sine Rulet —L=-1%

sine sinf  siny’

(i) The Cosine Rule I: cos%=cos%cos%+sin%sin%cos-y. (1.6.2)

(iii) The Cosine Rule II: cos $=952C08A 05y
sinasing

Plugging into these formulae ir instead of r and using the

identities
sin ix=isinh x, cos ix=cosh x,

we obtain trigonometric formulae for a hyperbolic triangle in %,

(compare with Theorem 1.5.2 for ¥%=1;).

inh® sinhP sinh€
sinh$ ~_smhf_smhr

sina  sing  siny

(1) The Sine Rule:
(i) The Cosine Rule I: cosh%:cosh%cosh?—sinh%sinhb—cos-y (1.6.3)

(i) The Cosine Rule II: cosh$= Qs_gc_os___ﬂﬂ_o_s_—y
sinesinf

In order to obtain the formulae of Euclidean trigonometry we

replace for large r and x=a, b, ¢, sin ¥ and sinh ¥ with ¥, cos ¥ with

1—;523, and cosh ¥ with 1+2X—2 in formulae (1.6.2) and (1.6.3), and let
r T



20 Chapter One
r—oo. Thus we obtain

(i) The Sine Rule: 2 b _ c

sina sing  siny
(ii) The Cosine Rule: c?=a%+b?—-2abcosy.

(ii1) COS7y = —COSCOSaCOos 3 +sinasinf = —co:

which is equivalent to a+f+y=m.
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EXERCISES FOR CHAPTER 1

Let L be a Euclidean circle or a straight line orthogonal to the
real axis which meets the real axis at some finite point a.
Prove that the transformation T(z)=—(z—a) '+ 2 belongs to
PSL(2,R), and for a suitable # maps L to the imaginary axis.
Prove that a differentiable mapping of ¥ onto itself is an
isometry if and only if its differential preserves the norm on
the tangent bundle of %.
Show that the notion of an angle introduced in §1.2 is the
same as the Euclidean angle measure.
Prove that for z,we¥ and TePSL(2,R),
sz—Tw]:lz—wllT'(z)T'(w)ll/z.

i+l 20 (z)
Prove that for ze¥ and f(z)= zii’ l—lfgzglthnl(z)'

Prove that in model 4, if 0<r<1 then p(O,ir):JiziifizlnLﬂ.

0
Prove that geodesics in U are segments of Euclidean circles
orthogonal to the principal circle £ and its diameters.
Rewrite Theorem 1.2.6 by means of the map f (1.2.2). Prove

the following formulae for z, w e:

[l —z®|+|z—-w|

(i) p(z, w)=In T—2W|—[z—w[

N 211 o l—awp?

(ii) cosh[3p(z, W)]—(—m’
inh?[L p(z. w ='——|Z;W|2——'
(iit) sinh*(3p(z, w)] (1-1z*)(1=|w}?)
(IV) ta,nh[%p(za W)] =l]_z:_7-v\;v '

Prove that isometries are continuous.

Show that the group of orientation-preserving isometries of U
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is the group of fractional linear transformations of the form

_az+e
cz+3a

z (a,ceC, aa—ct=1).

1.11. Show that every hyperbolic circle in ¥ is a Euclidean circle
(with a different center, of course), and vice versa.

1.12  Show that the right-hand side of expression (1.5.3) is equal to
cosh a cosh b—sinh a sinh b cosy.

1.13. (J.Bolyai) Prove that the Sine Rule can be written in the
form

sing _sing_siny
Ga ~gb  ©C’

with @r being the circumference of the circle of radius r,

which is valid in both hyperbolic and Euclidean geometries.
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2.1. The group PSL(2,R)

There are three types of elements in
I P _az+b Cbhe—
PSL(2, R)_{z T(Z)_cz+d | ad bc_l}

distiguished by the value of its trace: Te(T)=ja+d|. If Tr(T)<2, T is
called elliptic; if Tr(T)=2, T is called parabolic; and if Tr(T)>2, T is
called hyperbolic.

The terminology can be explained by looking at the linear
action of the corresponding matrices on R, A matrix in SL(2, R) is

hyperbolic if and only if it is diagonalizable over R, or

conjugate in SL(2, R) to a unique matrix

0
0 1//\:| , A#1, and it is

elliptic if and only if it is conjugate in SL(2, R) to a unique matrix
cosf sing ) ) .
. It follows that the invariant curves for hyperbolic
-s1nf cosf
(resp. elliptic) linear transformations of R? are hyperbolas (resp.
ellipses), hence the terminology for hyperbolic (resp. elliptic)
transformations. The parabolic transformations are so called by

analogy, as intermediate between hyperbolic and elliptic.

The fixed points are found by solving
z=22+b (a, b, c, deR, ad—bc=1),

and we see that a hyperbolic transformation has two fixed points in
RU{}, one repulsive and one attractive, a parabolic transformation
has one fixed point in Ru{oo}, and an elliptic transformation has a

pair of complex conjugate fixed points, and therefore, one fixed point

23
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in %. A transformation (1.1.2) fixes oo if and only if c=0 and hence
it is of the form z—az+b (a,beR, a>0). If a=l, it is parabolic; if
b

a#1, it is hyperbolic and its second fixed point is e

DEFINITION: A geodesic in ¥ joining the two fixed points of a

hyperbolic transformation T is called the azis of T, and is denoted by
C(T).

By Theorem 1.2.5, T maps C(T) onto itself.

Let S¥ be the unit tangent bundle of the upper half-plane .
It is homeomorphic to ¥%xSl. Let us parametrize it by local
coordinates (z,(), where ze¥, (eC with |¢(|=Im(z). (Notice that with
this parametrization, ||([|=1 (see (1.3.3)), so that ¢ is a unit tangent
vector.) It is easy to check that the group PSL(2,R) acts on S¥ by

the differentials: for T : z — z‘;:_'g, T(z,¢)=(T(z), DT(¢)), where

DT(¢)= (2.1.1)

1 .
(cz+d)?

As any group, PSL(2,R) acts on itself by left multiplication. The
next result connects these two actions, and is an elaboration of
Exercise 2.3 which implies that PSL(2,R) and S¥ are homeomorphic

as topological spaces.

THEOREM 2.1.1. There is a homeomorphism between PSL(2,R) and
the unit tangent bundle S¥ of the upper half-plane ¥ such that the
action of PSL(2,R) on itself by left multiplication corresponds to the
action of PSL(2,R) on S¥% induced by its action on ¥ by fractional

linear transformations.

PROOF: Let (i,(g) be a fixed element of $¥%, where (o is the unit
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vector at the point i tangent to the imaginary axis, and let (z,{) be
an arbitrary element of S3. There exists a unique TePSL(2,R)
sending the imaginary axis to the geodesic passing through z and
tangent to ¢ (Exercise 1.1) so that T(i)=z. By (2.1.1) we have
DT(¢g)=¢, and hence _

T(i,¢0)=(2,()- (2.1.2)

It is easy to see that the map (z,() — T is a homeomorphism
between S and PSL(2,R).

For SePSL(2,R), suppose that S(z,()=(z',¢'). By (2.1.2)
S(2,¢)=ST(i,(o), and hence S(z,() — ST, and the last assertion
follows. o

Let dé=1ds®+d6? be a Riemannian metric on S%, where ds is
the hyperbolic metric on % (1.1.1), and §=ztarg(¢); and let dv=dpde
be a volume on S¥%, where dy is the hyperbolic area on % (1.4.1). By
Exercise 2.4, the metric d¢ and the volume dv on S} are
PSL(2, R)-invariant.

Besides being a group, PSL(2, R) is also a topological space in

which a transformation 72232
cz+d
(a,,b,c,d)e!R". More precisely, as a topological space, SL(2, R) can be

identified with the subset of R*,

can be identified with the point

X={(a,b,c,d)eR* | ad—bc=1}.

If we define 4(ab,c,d)=(—-a,~b,—c,~d), then & XX is a
homeomorphism and é together with the idemtity forms a cyclic
group of order 2 acting on X. We topologize PSL(2,R) as the quotient
space. [Exercise 2.1 shows that PSL(2,R) is in fact a topological
group. A norm on PSL(2,R) is induced from R*: for T(z):i‘—zi—g with

ad—bc=1, we define
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1
1T =(a%+b%+c?+d?)%

Notice that ||T|| (as well as Tr(T), introduced in §l1.1) is a
well-defined function of T. PSL(2,R) is a topological group with
respect to the metric ||T—S|. The group of all isometries of 36,
Isom(3) is topologized similarly. Recall also that Isom(3) acts on %
by homeomorphisms (Theorems 1.1.1 and 1.3.1.)

DEFINITION: A subgroup I' of Isom(%) is called discrete if the
induced topology on T is a discrete topology, i.e. if T is a discrete set

in the topological space Isom(3).

As follows from Exercise 2.5, T is discrete if and only if

Th—1d, Toel implies T,,=Id for sufficiently large n.
2.2. Discrete and properly discontinuous groups

DEFINITION: A discrete subgroup of Isom(%) is called a Fuchsian
group if it comsists of orientation-preserving transformations, in other

words, a Fuchsian group is a discrete subgroup of PSL(2,R).

For any discrete group T of Isom(3), its subgroup 't of index
<2 consisting of orientation-preserving transformations is a Fuchsian
group. Thus the main ingredient in the study of discrete subgroups
of isometries of 3% is the study of Fuchsian groups. The action of
PSL(2,R) on % lifts to the action on its umnit tangent bundle S¥ by
isometries (Exercise 2.4), thus sometimes it is useful to consider
Fuchsian groups as discrete groups of isometries of S¥k (see §3.6).
Discrete subgroups of Lie groups are sometimes called lattices by

analogy with lattices in R" which are discrete groups of isometries of
gy g
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R". The latter have the following important property: their action on
R" is discontinuous in the semse that every point of R" has a
neighborhood which is carried outside itself by all elements of the
lattice except for the identity. In general, discrete groups of
isometries do not have such discontinuous behavior, for if some
elements have fixed points these points cannot have such a
neighborhood.  However, they satisfy a slightly weaker discontinuity

condition. First we need several definitions.

Let X be a metric space, and let G be a group of

homeomorphisms of X.

DEFINITION: A family {Mg | c€A} of subsets of X indexed by
elements of a set A is called locally finite if for any compact subset
KcX, MaNK##® for only finitely many a€A.

REMARK: Some of the subsets My may coincide but they are still

considered different elements of the family.

DEFINITION: For xeX, a family Gx={g(x) | geG} is called the
G-orbit of the point x. Each point of Gx is contained with a
multiplicity equal to the order of Gy, the stabilizer of x in G.

DEFINITION: We say that a group G acts properly discontinuously
on X if the G-orbit of any point xeX is locally finite.

It is clear from the definition that a group G acts properly
discontinuously on X if and only if each orbit is discrete and the
order of the stabilizer of each point is finite. In fact, the discreteness
of all orbits already implies the discreteness of the group (see

Corollary 2.2.7 for subgroups of PSL(2,R)). At least three more
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definitions of a properly discontinuous action equivalent to ours can
be found in the literature [B,JS,VS]. (See Theorem 2.2.1 and
Exercise 2.6.)

THEOREM 2.2.1. G acts properly discontinuously on X if and only if
each point xeX has a neighborhood V such that

T(V)NV#0 for only finitely many TeG. (2.2.1)

PROOF: Suppose G acts properly discontinuously on X, then each
orbit Gx is discrete, and for each point x, Gx is finite. This implies
that for any point x there exists a ball Be(x) centered at x of radius ¢
containing no points of Gx other than x. Let VCB,/,(x) be a
neighborhood of x, then T(V)\V#0 implies that TeGy, hence it is
possible for only finitely many TeG. Conversely, if (2.2.1) holds, we
have to show that each G-orbit is discrete and that the stabilizer of
each point z, Gz, has finite order. If Gz is not discrete, it has a limit
point, say zy, and any neighborhood of zy will meet infinitely many
of its images under G, a contradiction with (2.2.1). Similarly, if
T(z)=z for infinitely many TeG, then any neighborhood V of z

meets infinitely many of its images under G. o

Before we give some examples of Fuchsian groups, let us
identify discrete subgroups of one-dimensional Lie groups: R, the
additive group of real numbers, and S!, the multiplicative group of

complex numbers of modulus 1.
LEMMA 2.2.2.
(1) Any non-trivial discrete subgroup of R is infinite cyclic.

(i1) Any discrete subgroup of S is finite cyclic.

PROOF of (i): Let T be a discrete subgroup of R. Of course, 0el,
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and there exists a smallest positive xel', otherwise T would not be
discrete. Then {nx | neZ} is a subgroup of I'. Suppose there is yeT,
y#nx. We may assume y>0, otherwise we take —y which also
belongs to T. There exists an integer k>0 such that kx<y<(k+1)x,
and y—kx<x, and (y—kx)el which contradicts the choice of x.

PROOF of (ii); Let T now be a discrete subgroup of
S'={zecC | z:el¢}. By discreteness there exists z=el¢°eI‘, with the
smallest argument ¢q, and for some meZ, m¢g=2r, otherwise we get

a contradiction with the choice of ¢g. a

According to the classification of elements of PSL(2,R), one
can form three types of cyclic subgroups of PSL(2,R): hyperbolic,

parabolic, and elliptic.

THEOREM 2.2.3.
(i) All hyperbolic and parabolic cyclic subgroups of PSL(2,R) are
Fuchsian groups.
(it) An elliptic cyclic subgroup of PSL(2,R) is a Fuchsian group if and
only if it is finite.

We leave the proof of this theorem to the reader (Exercise
2.7).

EXAMPLE A. Let us comsider a group which consists of all

transformations

b
z—»z;zi;d (a, b, ¢, deZ, ad—bc=1).

It is called the modular group and denoted by PSL(2,Z). It is clearly
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a discrete subgroup of PSL(2,R) and hence a Fuchsian group. It will
be studied in more detail in §§3.2, 3.5, and 5.5.

An extension of PSL(2,Z), PS*L(2,Z) is an example of a

discrete group of isometries of % which is not a Fuchsian group.

Our next task is to show that an 'CPSL(2, R) is a Fuchsian

group if and only if it acts properly discontinuously on .

LEMMA 2.2.4. Let woe¥ be given and let K be o compact subset of
¥%. Then the set
E={TePSL(2,R) | T(z4)eK}

s compact.

PROOF: PSL(2,R) is topologized as a quotient space of SL(2,R). Thus
we have a continuous map ¢: SL(2,R)—PSL(2,R) defined by
a b
= —az+b

¥ . 4q }_T, where T(z)._cz+d.

If we show that
a b azg+b
E,= SL(2,R) | —2—¢€K
1 { c d € ( ) I cz0+d€

is compact then it follows that E=y(E,) is compact. We prove that

E, is compact by showing it is closed and bounded when regarded as
a b

a subset of R* (identifying g with (a,b,c,d)). We have a
c

continuous map B SL(2,R)—% defined by A(A)=y(A)(zq).
E,=p"Y(K), thus it follows that E; is closed as the inverse image of
the closed set K.

We now show that E; is bounded. As K is bounded there
exists M;>0 such that

azg+b
0 <My,
czg+d
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a b
for all [ jleEl.
¢ d

Also, as K is compact in %, there exists M,>0 such that

azg+b
m (CZo+d)ZM2.

(1.1.3) implies that the left-hand side of this inequality is
Im(zq)/|czg+d|? so that

lezo+dl< (I’—"#—))

2
and thus I
lazo+b|<M; (_YUW(ZO_))’
and we deduce that a, b, ¢, d are bounded. o

LEMMA 2.2.5. Let T be o subgroup of PSL(2,R) acting properly
discontinuvously on ¥, and pe¥ be fizred by some element of T. Then
there is o neighborhood W of p such that no other point of W is fized
by an element of T other than the identity.

PROOF: Suppose T(p)=p for some Id#Tel, and in any
neighborhood of p there are fixed points of transformations in T', 1.e.
there is a sequence of points in 3, pn—p, such that for TneTl,
Ta(pn)=pn. Let m be a closed hyperbolic disc, centered at p, of
radius 3e>0. As the topology induced by the hyperbolic metric
coincides with the Euclidean topology (Theorem 1.3.3), B.(p) is
compact. Since T acts properly discontinuously, the set
{TGI‘ | T(p)em} is finite. Hence, for N sufficiently large, n>N
implies that p(Tn(p), p)>3¢ while p(pn, p)<e. By the triangle

inequality and the invariance of the hyperbolic metric (Theorem
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1.1.2) we have

p(Tn(p), P)<p(Tn(p); Tn(pn))+2(Tn(pn), P)=p(p;, Pn)+r(Pn, P)<2e,

a contradiction. (n}

THEOREM 2.2.6. Let T be a subgroup of PSL(2,R). Then T s a

Fuchsian group if and only if T acts properly discontinuously on %.

PROOF: We first show that a Fuchsian group acts properly
discontinuously on 3. Let ze¥ and K be a compact subset of 2.
Then {Ter | T(z)eK}={TePSL(2,R) | T(z)eK}T is a finite set (it
is the intersection of a compact and a discrete set), and hence T acts
properly discontinuously.  Conversely, suppose T acts properly
discontinuously, but it is not a discrete subgroup of PSL(2,R).
Choose a point se¥ not fixed by any non-identity element of T: such
points exist by Lemma 2.2.5. As we are assuming that T is not
discrete, there exists a sequence {T,} of distinct elements of T' such
that Ty—Id as k—oo. Hence Ty(s)—s as k—oo and as s is not fixed
by any non-identity element of I, {T,(s)} is a sequence of points
distinct from s. Hence every closed hyperbolic disc centered at s
contains infinitely many points of the T'~orbit of s, and hence T' does

not act properly discontinuously. a

COROLLARY 2.2.7. Let T be a subgroup of PSL(2,R). Then T acts
properly discontinuously on % if and only if for all ze%, Tz, the

T-orbit of z, is a discrete subset of %.

PROOF: Suppose T' acts properly discontinuously on %, hence each
I-orbit is a locally finite family of points, hence a discrete set of 2.
Conversely, suppose I' does not act properly discontinuously on

and hence by Theorem 2.2.6 is not discrete. Repeating the argument
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in the proof of Theorem 2.2.6, we construct a sequence {T\(s)} of
points distinct from s such that Ty (s)—s, hence the I'-orbit of the

point s is not discrete. ]

COROLLARY 2.2.8. IfT is a Fuchsian group, then the fized points of

elliptic elements do not accumulate in %.

PROOF: Let ze¥, and K be a compact set containing z. Suppose
z=Tz for some Tel, then KNT(K)#0. But Exercise 2.6 and
Theorem 2.2.6 imply that this is only possible for a finite number of
Tel, hence there are only finitely many elliptic fixed points in K,
and the Corollary follows. O

Exercise 2.9 shows that a properly discontinuous action of a
subgroup of PSL(2,R) lifts to the unit tangent bundle S3%. However,
discreteness of a group does not always imply its discontinuous
action. For example, the modular group does not act properly
discontinuously on RU{co}: the orbit of 0 is the set QU{co} (Q is the

set of rational numbers) which is dense in RU{oo}.

Corollary 2.2.7 implies the following: if ze% and {Tn} is a
sequence of distinct elements in T, then if {Tn(z)} has a limit point

aGCU{oo} then aEIRU{oo}.

DEFINITION. The set of all possible limit points of '-orbits I'z, z€%
is called the limit set of I' and denoted by A(T).

Thus for all Fuchsian groups T', A(T)CRU{oo}.

EXAMPLE B. If T is the cyclic group generated by z—2z, then
A(I‘):{O,oo}.
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EXAMPLE A. If T is the modular group (see §2.2, Example A), then
A(T)=Ru{oco} (this will follow from Theorem 4.5.2).

2.3. Algebraic properties of Fuchsian groups

If G is any group and geG, then the centralizer of g in G is
defined by
Co(g)={heG | hg=gh}.

LEMMA 2.3.1. If ST=TS then S maps the fized-point set of T to
itself.

PROOF: Suppose that T fixes p. Then

S(p)=ST(p)=TS(p),

so that S(p) is also fixed by T. O

Let us look at centralizers of parabolic, elliptic, and hyperbolic
elements in PSL(2,R). Suppose that T(z)=z+1. If S€Cpg (o r)(T)
then S(co)=co. Therefore, S(z)=az+b. ST=TS gives us a=1.
Hence

CesLar)(T)={z—z+k | keR}.

The centralizer of an elliptic transformation of the unit disc U fixing

az+cC

0 (i.e. z—-»eid’z) consists of all transformations of the form e

fixing 0, i.e of the form z—e'z (0<8<2r). Let T(z)=xz (A>0, A1)
and SeCpg (5 ry(T). Then a direct calculation shows that S is given
by a diagonal matrix and hence S(z)=pz (p>0). From these

calculations we deduce the following results.
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THEOREM 2.3.2. Two non-identity elements of PSL(2,R) commute if
and only if they have the same fized-point set.

THEOREM 2.3.3. The centralizer in PSL(2,R) of a hyperbolic (resp.
parabolic, elliptic) element of PSL(2,R) consists of all hyperbolic (resp.
parabolic, elliptic) elements with the same fized-point set, together

with the identity element.

COROLLARY 2.3.4. Two hyperbolic elements in PSL(2,R) commute if

and only if they have the same azes.

In what follows, we are going to use the following important
property of the trace function: Tr(S7!TS)=Tr(T) for any T,
SePSL(2,R). This implies that the type of an element in PSL(2,R) is

invariant under conjugation.

THEOREM 2.3.5. Let T be a Fuchsian group all of whose

non-identity elements have the same fized-point set. Then T is cyclic.

PPOOF: We recall first that the fixed~point set of an element of
PSL(2,R) (two points in RU{co}, one point in RU{co}, or one point in
1) defines its type, hence all elements of I' must be of the same type.
Suppose all elements of I' are hyperbolic. Then by choosing a
conjugate group we may assume that each SerT fixes 0 and co. Thus
T is a discrete subgroup of H={z—z |A>0} which is isomorphic as a
topological group to R*, the multiplicative group of positive real
numbers. R* is isomorphic as a topological group to R via the
isomorphism x~Inx. Hence by Lemma 2.2.2(i), I is infinite cyclic.
Similarly, if T' contains a parabolic element, then T is an infinite
cyclic group containing only parabolic elements. Suppose I' contains

an elliptic element. In U, the unit disc model, T is a discrete
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subgroup of orientation-preserving isometries of U. By choosing a
conjugate group we may assume that all elements of T have 0 as a
fixed point, and therefore all elements of T' are of the form z-—»eid’z.
Thus T is isomorphic to a subgroup of S, and it is discrete if and
only if the corresponding subgroup of S' is discrete. Now the

assertion follows from Lemma 2.2.2(ii). O
THEOREM 2.3.6. Every abelian Fuchsian group is cyclic.

PROOF: By Theorem 2.3.2, all non-identity elements in an abelian
Fuchsian group have the same fixed-point set. The theorem follows

now immediately from Theorem 2.3.5. ]

COROLLARY 2.3.7. No Fuchsian group is isomorphic to ZxZ.

If G is a group and H is a subgroup of G, then the normalizer
Ng(H) of Hin G is

Ng(H)={geG | gHg '=H}.

THEOREM 2.3.8. Let T be a non-abelian Fuchsian group. Then the

normalizer of T in PSL(2,R) is a Fuchsian group.

PROOF: Suppose that the normalizer of I' in PSL(2,R) is not
Fuchsian. Then it contains an infinite sequence {T;} of distinct
elements such that T,—Id as i—oco. Thus if Sel' (S#Id), then
T,ST,*-S as i—co. Since T;ST, *€T and T is discrete, there exists
an integer m such that T;ST; '=S for i>m. Thus for these values of
i, Theorem 2.3.2 implies that T, has the same fixed-point set as S.
Now as T is not abelian, Theorem 2.3.2 implies that there exists S'el’
with a different fixed-point set from that of S. However, by the

same argument T; has the same fixed-point set as S’ for sufficiently
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large i and hence §' has the same fixed-point set as S, a

contradiction. O

2.4. Elementary groups

It is easily follows from (1.1.3) that the action of the group
PSL(2,R) extends from % to its Euclidean boundary R{J{co}, hence
PSL(2,R) acts on the Euclidean closure of %, denoted by ¥ (see §1.2).

DEFINITION. A subgroup T of PSL(2,R) is called elementary if there

exists a finite T-orbit in %.

Since % and RU{co} are PSL(2,R)-invariant, any T'-orbit of a
point in % is either all in % or all in RU{oo}.

Let ghePSL(2R) and [gh]=gohog 'oh™*el' be the
commutator of g and h. It is useful to notice that tr[g,h] does not
depend on the choice of the matrices, representing g and h, hence is a

well-defined function of g and h.

THEOREM 2.4.1. Let T be a subgroup of PSL(2,R) containing besides
the identity only elliptic elements. Then all elements of T have the
same fized point, and hence T is a cyclic group, abelian and

elementary.
PROOF: We shall prove that all elliptic elements in ' must have the
same fixed point. In the unit disc model, let us conjugate T in such a

0
way that an element Id#ger fixes 0: g:{ 1(; 5 } and let

of

h=| * ~ |eT, h#g. We have tr[g,h]=2+4|c/*(Im(u))®. Since T
c a

does not contain hyperbolic elements, |tr[g,h]|<2, and either Im(u)=0
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or ¢=0. If Im(u)=0 then u=ideR and hence g=Id, a contradiction.

Hence ¢=0, and so h= > _ | also fixes 0. Thus we conclude
)

that all elements of ' have the same fixed point. So by Theorem

2.3.5, T is a finite cyclic group, and hence abelian. Since 0 is a

I-orbit, T is elementary. O

COROLLARY 24.2. Any Fuchsian group containing besides the

identity only elliptic elements is a finite cyclic group.

The next theorem describes all elementary Fuchsian groups.

THEOREM 2.4.3. Any elementary Fuchsian group is either cyclic or
is conjugate in PSL(2,R) to a group generated by g(z)=kz (k>1) and
h(z)=-1/z.

PROOF: Case I. Suppose T fixes a single point ae®¥. If a€k, then
all elements of I' are elliptic; and by Corollary 2.4.2, T is a finite
cyclic group. Suppose a€RU{cc}. Then T cannot have elliptic
elements. We shall show that hyperbolic and parabolic elements
cannot have a common fixed point. Assume the opposite, and
suppose this point is co, and g(z)=xz (A>1) and h(z)=z+k (since g
and h have only one common fixed point, k#0). Then
g "ohog"(z)=2z+2""k. Since A>1, we find that the sequence

flg "ohog"|| (n=12,..)

is bounded; hence {g "ohog"} contains a convergent subsequence of
distinct terms which contradicts the discreteness of I. We conclude
that T can only contain elements of one type. If I' contains only
parabolic elements, by Theorem 2.3.5 it is an infinite cyclic group.

Suppose T' contains only hyperbolic elements. We shall prove that in
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this case their second fixed points must also coincide, and so T' will

fix two points in RU{co}. Suppose f(z)=*?z (A>1) (it fixes 0 and oo)

and g(z):%ﬁ—g which fixes 0 but not oo. Then b=0, c#0,

a#0, and d=1/a. Then fogof *og ! is given by the matrix
1
t

element in T, a contradiction.

with t=5(1_1). Since c#0 we obtain a parabolic
a\}2

Case 2. Now suppose T has an orbit in RU{co} consisting of
two points. An element of TI' either fixes each of them or
interchanges them. A parabolic element cannot fix two points. Since
each orbit (except for a single fixed point of a parabolic
transformation) is infinite, a parabolic element cannot interchange
these points; hence I' does not contain any parabolic elements. All
hyperbolic elements must have the same fixed point set. If I
contains only hyperbolic elements, then it is cyclic by Theorem 2.3.6.
If it contains only elliptic elements, it is finite cyclic by Corollary
2.4.2. If T contains both hyperbolic and elliptic elements, it must
contain an elliptic element of order 2 interchanging the common fixed
points of the hyperbolic elements; and then T is conjugate to a group
generated by g(z)=kz (k>1) and h(z)=-1/z.

Case 3. Suppose now I has an orbit in % consisting of k=2
points or an orbit in % consisting of k>3 points. Since the parabolic
and hyperbolic elements can have only either fixed points at infinity
or infinite orbits, I' must contain only elliptic elements and therefore

is a finite cyclic group; and it is conjugate to a group generated by
27
z—e £ 3, 0

THEOREM 2.4.4. A non-elementary subgroup T of PSL(2,R) must

contain a hyperbolic element.
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PROOF: Suppose TI' does not contain hyperbolic elements. If T
contains only elliptic elements (and Id), then by Theorem 2.4.1 it is

elementary. Hence T' contains a parabolic element fixing, say, oo:

f(z)=2+1. Let g(z)zg:—i%) be any element in T. Then

fnog(z)=(‘a+nc();:£ib+nd). We have, thus,

tr2(f“og)=(a+d+nc)2.

Since all elements in the group are either elliptic or parabolic, we
have 0<(a+d+nc)?<4 for all n; which implies c=0. But then g also
fixes oo, so that oo is fixed by all elements in T; hence T is

elementary, a contradiction. n]

In fact, any non-elementary subgroup of PSL(2,R) must
contain infinitely many hyperbolic elements, no two of which have a

common fixed point (see Exercise 2.13).

THEOREM 2.4.5. If T, a subgroup PSL(2, R), contains no elliptic

elements it is either elementary or discrete.

PROOF: Assume I is non-elementary. Then by Theorem 2.4.4 it

contains a hyperbolic element h. We may assume that h is given by

u
the matrix 0 1/u | u>0. In order to prove that I' is discrete we
u
must show that for any sequence gn—Id (gnel), gn=Id for
sufficiently large n.
an bn
Let gn= o b andn—bncn=1, be such a sequence. An
Cn n

easy calculation shows that, since gn—Id, tr(hognoh_logn_l)

=(2-bncn(u-3)?)=2 as n-—oo. Since T contains no elliptic
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elements, |tr[h,gn]|>2, so we conclude that for sufficiently large n
annSO.
Let fy=[h,gn]=hognoh™logy™* be given by a matrix
An By,

Cﬂ Dﬂ
Therefore by the same argument as above, we obtain for sufficiently

, ApDp—BnCn=1. As n—oo, we have f—Id, since gn—Id.

large n

BnCn<0.

On  the  other  hand,  trfhfa]=2—BnCa(u—2)2
=2+bncn(1+bncn)(u—lll)4—->2 as n—oo, and from this we obtain for
sufficiently large n

bncn>0.
Finally, we conclude that there exists N>0 such that for n>N
bncn=0. Hence for n>N, h and g, have a common fixed point: 0 if

bn=0, alld o0 lf Cn—_—O.

To complete the proof, we apply Exercise 2.13 and construct
three hyperbolic elements hy, h,, and h; in T no two of which have a
common fixed point. Then for n>N, g has a common fixed point
with each of hy, h, and hj, no two of which coincide. Therefore gn

has three fixed points, and thus gn=Id. 0]

The following theorem shows that two transformations
generating a discrete non-elementary group cannot approach too

closely to the identity.

Let <T, S> denote a group generated by transformations T
and S.

THEOREM 2.4.6. (Jgrgensen inequality) Suppose that T,SePSL(2,R)
and <T, S> is a discrete non-elementary group. Then
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[6r2(T) —4{+[tr(TST 1S 1)~2|>1. (2.5.1)

The lower bound is best possible.

First we prove the following lemma:

LEMMA 2.4.7. Suppose T, SePSL(2,R) and T#Id. Define S5=S,
S1=500T0Se ™, ... , Siy1=SroTeS, Y, ... . If, for some n, Sp=T,
then <T,5> is elementary and S,=T.

PROOF: Suppose first that T has one fixed point « (i.e. T is
parabolic or elliptic). Notice that the S, (r>1) are conjugate to T
and hence also have one fixed point. We  have
S,+105r(a)=SroToS: t0Si(a)=Si(a), i.. Seyq fixes Se(a). If S,
fixes a, so does S;. As Sn(=T) fixes a, we conclude that each §;
(including Sy=S) fixes a. So all elements in <T,S> fix . If T is
parabolic, we conclude that <T,S> is elementary. If T is elliptic, it
follows that all elements in <T,S> are elliptic; hence <T,S> is finite
cyclic and therefore elementary. Also S; fixes a and therefore

commutes with T, so S,=T.

Suppose now that T has exactly two fixed points; we may
assume then that T(z)=kz. Clearly S;, ..., Sn have exactly two fixed

points. The same argument as above shows that for 0<r<n

{0,00}={5:(0),5:(0)}.

But for r>1, S; is conjugate to T, and therefore it cannot interchange
two points (all orbits of a hyperbolic transformation are infinite with
the exception of two fixed points). Hence S, ... ,Sn fix 0 and oo, and
both S=S, and T leave the set {0,00} invariant. Therefore <T,S> is

elementary. o



Fuchsian Groups 43

PROOF of THEOREM: If T is of order 2 then tr(T)=0, and (2.5.1)
holds. Suppose now T is not of order 2. Define Sy, S5, ... as in
Lemma 2.4.7. We are going to show that if (2.5.1) fails, then for
some n we have
Sn=T, (2.5.2)
which, by Lemma 2.4.7 will imply that <T,S> is elementary, a
contradiction. Since the expression in (2.5.1) is well-defined for
T,S€ePSL(2,R), we shall work with matrices representing these
transformations.
Case 1. T is parabolic. Since the trace is invariant under
conjugation, we may assume that
1 1 a b
aURE]
where c#0 (else <T,5> is elementary). We are assuming that

b
(2.5.1) fails, i.e. that [c|<1 (Exercise 2.12.) Writing Sn:I: o dn :l
Cn n

we obtain from

Sn+1=Sn0TOSn_1 (2.5-3)

an+1bn+1 _ an bn 1 1 dn "bn _
Cnp19dns1 cn dn 0 1 | -cn an
1-ancn an2
—Cn2 14+ancn ’
By induction we deduce that cn=—(—c)?" which is equal to —c" for
n>0, and as |c|<1
Cn""O.
Since |cn|<1, we have by induction that |anj<n+|a}; so ancn—0, and

hence

an+1——>1.
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Thus S,4;—T, which by discreteness yields (2.5.2) for large n.

Case 2. T is hyperbolic. We may assume that
u 0 a b

T: 1 N S= y
0 1/u (u>1) c d
and bc#0 (else <T,S> is elementary). If (2.5.1) fails, then
p=1tr?(T)—4|+]tr(TST 1S =2|=(1+Ibe))lu— L2 <1.
Rewriting (2.5.3) we obtain
ng1bnya| aﬂdﬂu_% aﬂb"(%“u)
Cnt1dnts codn(u—§) 280 by |

so bn+lcn+1=—bncn(1+ann)(u—1l1)2- By induction

[bncnl < u"|be|<[be].

Therefore bncn—0, anda=1+bncn—1, any;—u, dyy;—1/u

b i
T = fan(§—w) | = (g~ ) <47l
b 2 b . b
So :ii <p® |28l for sufficiently large n. Hence =00,
N u u

and similarly,

Cnun'—*o.
Theref
erefore B ) a3, o /u2"
T7"S,,T"= on =T,
Capl dan

Since <T,S> is discrete, for large n we have
T7"S,,T"=T,

and hence S,,=T which is (2.5.2).
Case 3. T is elliptic. Using the unit disc model we may

assume that
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u 0
0 1/u

where ueC, |uj=1, and the same proof as in Case 2 works.

Now we show that the lower bound (2.5.1) is the best possible.
Consider the group generated by T(z)=z+1 and S(z)=-1/z. As we
will see in §3.1, <T,S>=PSL(2,Z) which is discrete and
non-elementary. We have ToSoT_loS'l(z)=2ZZ—_:'11 with trace 3, and
hence the equality holds in (2.5.1). ]

The following theorem gives a general criterion for

discreteness.

THEOREM 24.8. A non-elementary subgroup T of PSL(2,R) ¢is
discrete if and only if, for each T and S in T, the group <T,5> is

discrete.

PROOF: If T is discrete, then every subgroup of it is also discrete.
Suppose now that every subgroup <T, S> is discrete, but T itself is
not. Then we can find a sequence of distinct transformations in T,
T,, Ty, ... , Ty, ... such that Tp1d, and&iLnooTnzld. Since T?=Id
implies Tr(T)=0 (an easy calculation), and Tr(T) is a continuous
function on PSL(2, R), we may choose a subsequence that contains no

elements of order 2. For any Sel' we have
[tr2(Tn)—4|+|tr(TnSTn 871 -2|=0;

and so by Theorem 2.4.6, for n>n(S) say, the group <Tn, S> is
elementary. By Exercise 2.13, T contains two hyperbolic elements S;
and S, with no common fixed points. For n>max(n(S;),n(S,)), both
groups

<Th, §;> and <Tp, S,>
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are elementary and discrete and according to Theorem 2.4.3, Ty must
leave the fixed point pair of S; and that of S, invariant. As T, is not
elliptic of order 2, it cannot interchange a pair of points; so Ty must
fix each individual fixed point of S; and of S,. Since their fixed
points do not coincide, T must fix four distinct points which implies

Tn=Id, a contradiction. O
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EXERCISES FOR CHAPTER 2

2.1. Prove that group multiplication and taking of inverses are
continuous with respect to the topology on PSL(2,R).

2.2. Prove that |T|)?=2cosh p(i,T(i)).

2.3. Show that every transformation in PSL(2,R) can be written
uniquely in the form TR, where R is an elliptic element fixing i
and T(z)=az+b (a,beR, a>0). Deduce that as a topological
space PSL(2,R) is homeomorphic to R2xS!, where S! is a circle.

2.4. Prove that the metric d¢ and the volume dv on S¥% are
PSL(2,R)-invariant.

2.5. Prove that Iclsom(%) is discrete if and only if T,,—Id (Tyel)
implies T,,=Id for sufficiently large n.

2.6. Let X and G be as in § 2.2. Prove that the following statements
are equivalent:

(1) G acts properly discontinuously on X;

(if) For any compact set K in X, T(K)NK#9 for only finitely
many TeG;

(iii) Any point xeX has a neighborhood V such that T(V)V#8
implies T(x)=x.

2.7. Prove Theorem 2.2.3. ,

2.8. Prove that any Fuchsian group is countable.

2.9. Prove that if T is a Fuchsian group then it acts properly
discontinuously on Si.

2.10.Prove that the group

(a;4b342)z+(ax+by42) |

T s+ 03 2)o 1 (04 54 12)

a;, b€z, (a1+blﬁ)(a4+baﬁ)—(a2+b2ﬁ)(a3+b3\l§)=1}

is a subgroup of PSL(2,R) but is not a Fuchsian group.

2.11.Prove that a Fuchsian group T is elementary if and only if for ‘
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any T, Sel, the subgroup <T, S> is elementary.

1 1 a b .
2.12.Let T= , 5= be two matrices in
0 1 c d

SL(2,R). Prove that the Jgrgensen inequality (2.5.1) for T and
S holds if and only if |c]>1.

2.13.Prove that any non-elementary subgroup of PSL(2,R) must
contain infinitely many hyperbolic elements, no two of which
have a common fixed point.

2.14.Let T be a non-elementary subgroup of PSL(2,R). Then the
following are equivalent:
(i) T is discrete;
(ii) The fixed points of elliptic elements do not

accumulate in 6;

(iii) The elliptic elements do not accumulate to Id;

(iv) Each elliptic element has finite order.



3. FUNDAMENTAL REGIONS

3.1. Definition of a fundamental region

We are going to be concerned with fundamental regions of
mainly Fuchsian groups, however it is convenient to give a definition
in a slightly more general situation. As in §2.2, let X be a metric
space, and G be a group of homeomorphisms acting properly

discontinuously on X.

DEFINITIONS. A closed region FcX (i.e. a closure of a non-empty
open set IQ", called the interior of F) is defined to be a fundamental

region for G if

TEG .
(1) FOT(F)=0 for all TeG~-{Id}.
The set 9F =F—F is called the boundary of F.
The family {T(F) | TeG } is called the tessellation of X.

We shall prove in §3.2 that any Fuchsian group possesses a
nice (connected and convex) fundamental region. Now we give an

example in the simplest situation.

EXAMPLE B. Let T be the cyclic group generated by the
transformation z—2z. Then the semi-annulus shown in Figure 7a is
easily seen to be a fundamental region for I. It is already clear from
this example that a fundamental region is not uniquely determined
by the group: an arbitrary small perturbation of the lower semicircle
determines a perturbation of the upper semicircle, and gives yet

another fundamental region shown in Figure 7b.

49
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Fig. Ta Fig. Tb

THEOREM 3.1.1. Let F; and F, be two fundamental regions for a
Fuchsian group T, and u(F;)<oco. Suppose that the boundaries of F;
and Fy have zero hyperbolic area. Then u(Fy)=u(F,).

PROOF: We have ,u(ﬁ‘i)z,u(Fi), i=12. Now

F,2F, uFT<ﬁ2))=u (F1NT(F2))-
€

Ter
Since ﬁ‘Q is the interior of a fundamental region, the sets FlﬂT(ﬁ‘Q)

are disjoint, and hence

o) [o)

>Z (FiNT( Fz Z #(T_I(Fl)ﬂF2)=Z #(T(F)NF,).
Tel Ter

Since F, is a fundamental region

U T(Fy)=2%,
Ter

and therefore

Q o]
TU (T(F)NF2)=F,.
Hence €r
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Interchanging F; and F,, we obtain u(Fy)>u(F,). Hence
W(F2)=u(Fy). o

Thus we have proved a very important fact: the area of a
fundamental region, if it is finite, is a numerical invariant of the
group. An example of a Fuchsian group with a fundamental region
of infinite area is the group generated by z—z+1 (see also Example B
above). Obviously, a compact fundamental region has finite area.
Non-compact regions also may have finite area For example, for
['=PSL(2,Z), the fundamental region, which will be described in §3.2
(Example A), is a hyperbolic triangle with angles LI T By the
Gauss-Bonnet formula (Theorem 1.4.2) its area is finite and is equal

2r 7w

tO W—?—g.
THEOREM 3.1.2. Let T be a discrete group of isometries of the upper
half-plane %, and A be a subgroup of T of indez n. If

r=AT,UAT,U...UATh

is a decomposition of T into A-cosets and if F is a fundamental region
for T then

(i) Fi=T(F)UTH(F)U...UTn(F) is a fundamental region for A,

(i) if u(F) s finite and the hyperbolic area of the boundary of F is
zero then u(F;)=npu(F).

PROOF of (i): Let ze%. Since F is a fundamental region for T, there
exists weF and Tel such that z=T(w). We have T=ST; for some

/SE/A and some i, 1<i<n. Therefore
2=ST(w) =S(T,(w)).

Since T,(w)€eF;, z is in the A-orbit of some point of F;. Hence the

union of the A-images of F; is J.
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Now suppose that zef‘l and that S(z)e%l, for SeA. We need
to prove that S=Id. Let ¢>0 be so small that Be(z) (the open
hyperbolic disc of radius ¢ centered at z) is contained in ﬁ‘l. Then
B¢(z) has a non-empty intersection with exactly k of the images of B
under T, ..., Tn, where 1l<k<n. Suppose these images are

T. (ﬁ‘), ,Tik(ﬁ‘). oLet B¢(S(z))=S(Be(z)) have a non-empty

L
intersection with T;(F) say, 1<j<n. It follows that Be(z) has a

non-empty intersection with S_lTj(%) so that S'ITJ-=Ti where
!
1<l<k. Hence

-1
o
so that Ti:Ti, and S=Id. Hence F; contains precisely one point of

each A-orbit.

PROOF of (ii): This follows immediately, as u(T(F))=u(F) for all
TePSL(2,R), and u(T;(F)NT;(F))=0 for i#]. o

3.2. The Dirichlet region

Let T be an arbitrary Fuchsian group-and let pe3 be not fixed
e
by any element of I'~{Id}. Such points’exist by Lemma 2.2.5. We
define the Dirichlet region for r cent/efed at p to be the set

Dp(r)={ze%¥ | p(z,p)<p(z,T(p)) for all Ter}. (3.2.1)

By the invariance of the hyperbolic metric under PSL(2,R) this region
can also be defined as
Dp(r)={z€¥% | p(2,p)<p(T(z),p) for all Ter}. (3.2.2)

For each fixed T,€PSL(2,R),

{ze% | p(z,p)<p(2,Ts(p))} (3.2.3)
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is the set of points z which are closer in the hyperbolic metric to p
than to T,(p). Clearly, peDy(I) and as the r-orbit of p is discrete
(Corollary 2.2.7), Dp(T') contains a neighborhood of p. In order to
describe the set (3.2.3) we join the points p and T;(p) by a geodesic

segment and construct a line given by the equation

p(2,p)=p(2,T(P))-

DEFINITION. A perpendicular bisector of the geodesic segment
[z1,25] is the unique geodesic through w, the mid-point of [z,,2,]

orthogonal to [z,,2,] (Fig. 8).

T.(p)

Fig. 8

LEMMA 3.2.1. A line given by the equation

p(2,2,)=p(z,2,) (3.2.4)
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ts the perpendicular bisector of the geodesic segment (z,, z,].

PROOF: We may assume that z,=i, z,=ir? with r>0: thus w=ir and
the perpendicular bisector is given by the equation |z|=r. On the
other hand, by Theorem 1.2.6(i1) (3.2.4) is equivalent to

2 2
[z—241|" _[2—-2,]
’y

which simplifies to |z|=r. a

We shall denote the perpendicular bisector of the geodesic
segment [p,Ty(p)] by Lp(T;), and the hyperbolic half-plane
containing p described in (3.2.3) by Hy(T,) (see Fig. 8). Thus Dy(T)
is the intersection of hyperbolic half-planes:

Dp(N)=(]  Hy(T),
Tel, T#Id

and thus is a hyperbolically convez region.

THEOREM 3.2.2. If p is not fized by any element of T —{Id}, then

Dp(T) is a connected fundamental region for T.

PROOF: Let ze¥, and I'z be its T~orbit. Since I'z is a discrete set,
there exists zgelz with the smallest p(zq,p). Then
p(20,p)<p(T(2o),p) for all Terl, and by (3.2.2) z,eDy(T). Thus

Dp(T) contains at least one point from every I'-orbit.

Next we show that if z, z, are in the interior of Dy(T), they
cannot lie in the same I-orbit. If p(z,p)=p(T(z),p) for some
Ter—{Id}, then p(z,p)=p(z,T Y(p)) and hence zeLp(T™'). Then
either z¢Dp(T) or z lies on the boundary of Dp(T); hence if z is in the
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interior of Dp(T), p(z,p)<p(T(z),p) for all Tel'—{Id}. If two points
Zy, Z, lie in the same T-orbit, this implies p(z;,p)<p(z,,p) and
p(22,p) < p(21,p), a contradiction. Thus the interior of Dp(I') contains
at most one point in each I'-orbit. Being an intersection of closed
half-planes, Dp(r) is closed and convex. Thus Dy(T) is

path-connected, hence connected. a

EXAMPLE A. T=PSL(2,Z). It is easily verified that ki (k>1) is not
fixed by any non-identity element of the modular group, so choose
p=ki, where k>1. We shall show that the region

F={ze¥% | |z1>1, |Re(z)|<}},

illustrated in Figure 9 is the Dirichlet region for T' centered at p.

Fig. 9

First, the isometries T(z)=z+1, S(z)=—1/z are in T; and, as
can be easily verified, the three geodesic sides of F are Ly(T),
Lp(T™Y) and Lp(S). This shows that Dp(T)cF. If Dyp(T)#£F, there
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exists zeF and hel such that h(z)el‘q‘. We shall now show that this
cannot happen. Suppose that

h(z)=2:1-37 (a, by c, dEZ, ad—bC:—’l)

Then
lcz+d?=c?|z|? +2Re(z)cd +d2>c?+d2— |cd|=(|c|—[d|)? +]|cd],

since |z|>1 and Re(z)>-1. This lower bound is an integer: it is
non-negative and is not zero (this would be possible only if c=d=0,
which contradicts ad—bc=1). Therefore it is at least 1 and

cz+d|>1. Hence

Im h(z) :lclz_flf% <Im(2).

Exactly the same argument holds with z, h replaced by h(z), h™%,
and a contradiction is reached: thus Dp(T)=F. a

3.3. Isometric circles and the Ford fundamental region

Let
_az+b
T(z)_cz+d€PSL(2,R). (3.3.1)

Since T'(z)=(cz+d) 2, the Euclidean lengths are multiplied by
IT'(z)]=|cz+d|™2. An infinitesimal region is carried into a similar
region with lengths multiplied by [cz+d|™2. The Euclidean area
therefore is multiplied by jcz+d|™. The Euclidean lengths and areas
are unaltered in magnitude if and only if |cz+d|=1. If c#£0, the locus

of such z is a circle

1

1

= ic]
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1

with center at ——% and radius =,

el

DEFINITION. Let T be as in (3.3.1) with c#0. The circle
[(T)={zeC | |cz+d|=1},

which is the complete locus of points where the transformation T acts
as a FEuclidean isometry, is called the isometric circle of the

transformation T.

REMARKS: 1. Note that if ¢=0, there is no unique circle with the
isometric property. In this case, oo is a fixed point. If a
transformation T is parabolic, e.g. z—z+1, all Euclidean lengths are
unaltered. If a transformation is hyperbolic, e.g. z—xz (A#1), all
Euclidean lengths are altered.

2. The definition is valid for the unit disc model. In this case,
instead of PSL(2,R), we have (see Exercise 1.10) the group of
orientation-preserving isometries of the unit disc U given by the

matrices

T(z)=22%E (a,ceC, az—ce=1). (3.3.2)

If ¢=0, then T(z):ei¢z, an elliptic transformation fixing the origin.

All Euclidean lengths in this case are unaltered.

We shall denote the set of points inside of the isometric circle

v A
I(T) by I(T), and the set of points outside of I{T) by I(T).

THEOREM 3.3.1. The transformation T increases Euclidean lengths

and areas inside of the isometric circle I(T), and decreases them



58 Chapter Three
outside of the isometric circle I(T).

Vv
PROOF: Let zeI(T). Hence |z+%|<lcli, i.e. Jcz+d] <1, which implies
A
|T'(z)|>1. Similarly, zeI(T) implies |T/(z)|<1. O

THEOREM 3.3.2. The isometric circles I(T) and I(T') have the
same radius; and I(T) is carried into I(T™1) by the transformation T.

PROOF: We have T 1(z =_d?_+b. The isometric circle I(T™1) is
tz=a

given by the equation |cz—a|=1, and has center at & and radius —(1:-,

equal to the radius of I(T). T carries I{T) into a circle I, outside of
alteration of Euclidean lengths. Hence T~! carries I; back to I(T)
without alteration of Euclidean lengths. But I(T™!) is the complete
locus of points in the neighborhood of which T effects no change of
Euclidean lengths. Therefore I°=I(T™1). 0

THEOREM 3.3.3. Isometric circles are geodesics in %.

PROOF: Let T be of the form (3.3.1). Then the center of I(T) is
—‘EielR. Therefore I(T) is orthogonal to the real axis. a

REMARK: This property is preserved as we switch to the unit disc
model, although the centers of the isometric circles no longer belong

to the principal circle T (see Exercise 3.3).

There is an intimate relationship between fractional linear
transformations and the geometrical transformation called inversion

in a circle.

DEFINITION. Let Q be a circle in R? with center K and radius r.
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Given any point P£K in R?, a point P, is called inverse to P if
p 1

(i) P, lies on the ray from K to P,
(3.3.3)
(ii) KP,;-KP=r2.
The relationship is a reciprocal one: if P, is inverse to P, P is inverse

to P,. We say that P and P, are inverse with respect to Q.

Let P, P, and K be the points z, z; and k in C. (3.3.3) can be
rewritten as
I(z,-k)(z~k)|=r?, arg(z,~k)=arg(z—k).
Since arg(z—k)=-arg(z—k), the two equations are satisfied if and
only if
(z,—k)(z—k)=r2. (3.34)

So we get the formula for inversion in a circle:

= 2 2
lelﬂ%r_}(_lkt_ (3.3.5)

If a circle is centered at k=0 and has radius 1, the formula looks
especially simple:

z,=1. (3.3.6)
Let us now look at the unit disc model, 4.

THEOREM 3.3.4. Any orientation-preserving isometry T of the unit
disc U is an inverston in I(T) followed by a reflection in the straight
line L, the Euclidean bisector between the centers of the isometric
circles I(T) and I(T71).

PROOF: We have T(z)zgg—j_'; a,ceC, aa—cc=1. Since the isometric
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circles I(T) and I(T!) have the same radius (Theorem 3.3.2) and
they both are orthogonal to the principal circle £ (Theorem 3.3.3),
they are symmetric with respect to a straight line L passing through
the center of %. Suppose c=rei¢, then let T¢z=ei¢z, and
S=T¢oToT¢"1. Then the center of I(S) is the point 2, and the
center of I(S7!) is the point —% which are symmetric with respect to
the imaginary axis. Suppose we proved that S=soj where § is
inversion in I(S) and s is the reflection in the imaginary axis. Then

— -1 -1
T_T¢ °S°T¢°T¢ 030T¢,

where T¢_1°S°T¢ is the symmetry in L, and T¢_l°§°T¢ is the
inversion in I{T). It is sufficient therefore to prove the theorem
assuming that the centers of I(T) and I(T7!) (-2 and &,
respectively) are symmetric with respect to the imaginary axis. In
this case, —%:—%, which implies c¢=t. Using (3.3.5) for the
inversion in I(T), we obtain

a

2z+1 =

! - C azZ4cC

Z=—7;= == —=T(Z). m}
Z+% czZ+4+a

In the rest of this section, T will be a discrete group of
orientation-preserving isometries of the unit disc U (sometimes also
referred to as a Fuchsian group). We assume that 0 is not an elliptic

fixed point, i.e. that c#0 for all T(z):icl;::_'g in the group . We

define

Ro=) /I\(T)ﬂ‘ll.,
Tel

the closure of the set of points in U which are exterior to the

isometric circles of all transformations in the group I'. We shall
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prove that R, is a fundamental region for I, called the Ford

fundamental region.
THEOREM 3.3.5. R, is a fundamental region for .

PROOF: We shall prove that Ry is a Dirichlet region Dy(T), and the

theorem will follow from Theorem 3.2.2.

LEMMA 3.3.6. Let T be the principal circle centered at q, £=01,
Terl, h=d(z,q), and h'=d(T(z),q) (where d denotes the Fuclidean
distance in U). Then:

i) h'=h ifzeI\;T) or Z€X.

i) h'<h ifze/I\(T)ﬂ‘U.,

i) h'>h if zel(T)N.

PROOF of Lemma: According to Theorem 3.3.4, T is an inversion in
I(T) followed by a reflection in a certain line L passing through q.
Obviously, the reflection does not alter distances from q. The lemma

hinges, then, on what happens when z is inverted in I(T).

The relative magnitudes of the distances of a point and its
inverse are independent of the scale used and the rigid motions of the
plane. If we change the scale via a transformation z—1z (r>0), both
£ and I(T) will be transformed into circles orthogonal to each other,
and we can choose r in such a way that the radius of I{T) becomes
equal to 1 (the radius of £ becomes equal tor). Via a rigid motion of
the plane we achieve the situation in which I(T) is the unit circle
zz=1 and q lies on the real axis. The equation of T is
(z—q)(z—q)=r?, where for orthogonality, r?+1=q?%; whence,

2Z—q(z+2)+1=0.
The expression on the left-hand side of this equation is negative for

points inside . Now
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h?=(z—q)(z—q)=22—q(z+2) +1+1°,

and since z,;=1/zZ (see (3.3.5)),

_ _ 1—q(Z+2)+2Z
h’2=Z1Z1—-q(Z1 +Z1)+1+f2:'——q£—z‘i—)‘——+f2;
whence,

W2 B2 (2z2—1)(zz2— q(z+z)+1) (3.3.7)

z2Z

The lemma follows immediately from equation (3.3.7). If z is inside
I(T), the factors in the numerator of the right-hand side of (3.3.7)
are both negative, hence h'<h. If z is outside I(T), the factors differ
in sign, hence h'>h. If zeX or zeI(T), h'=h. o

To finish the proof of Theorem 3.3.5, we apply Lemma 3.3.6
with q=0 and zeR,. We have
d(T(z),0)>d(z,0)
1+d(z,0)
1-d(z,0)’

monotone increasing function of d(z,0). Therefore, for zeR, we have

for all Ter. By Exercise 1.6, p(0,z)=In hence it is a

p(2,0)<p(T(2),0)
for all TeT; then by (3.2.2), Ry=Dy(I). O

THEOREM 3.3.7. Given any infinite sequence of distinct isometric

circles 1;, I, .. of transformations of the group T with radii
ry, Iy, ... , We have &iLnoor":O'

PROOF: The transformations are of the form

T(2)=2EL (aceC, lal?-|c)2=1). (3.3.8)
Recall that the radius of I{T I—i—l

) is equal to Let ¢>0 be given. There
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are only finitely many Ter with |c|<l/e. This follows from the
discreteness of T and the relation |a|?2—|c|?=1. Hence there are only
finitely many Tel with I(T) of radius exceeding ¢, and the theorem
follows. o

3.4. The limit set of T

We saw at the end of §2.2 that for any Fuchsian group T, the
limit set A(T)CRU{oo}; or, in the unit disc model, A(T) is a subset of
the principal circle ©. A point which is not a limit point is called an

ordinary point.

Consider the set of the centers of the isometric circles of all
elements in T, and denote the set of its limit points by Aq(T). If the
group T contains an infinite number of elements, Aq(I')#0. In the
upper half-plane model, the centers of all isometric circles belong to

the real axis, hence Aq(I')CRU{o}.

THEOREM 3.4.1. In the unit disc model, Ao(T) is a subset of the

principal circle T.

PROOF: Since the isometric circles are orthogonal to I, their centers
lie outside of £. Suppose there is a point §€A¢(T) not belonging to £,
then there exists a circle centered at é which lies outside of £. Take
a sequence of isometric circles I with radii rn and centers qn such
that qn-6. Using Theorem 3.3.7, we conclude that In will not

intersect T for large enough n, which leads to a contradiction. o
THEOREM 3.4.2. A(T)=Aq(l).

PROOF: We first prove that Ao(T)CA(T). Let acAy(r). Then there

exists a sequence of distinct transformations {Sp}e€l such that the
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centers of I(Sn™!), pn—a. Let €>0 be given. Using Theorem 3.3.7, we
conclude that there exists N>0 such that for n>N and zel(Sn™%),
d(a,z)<e. Let B be a closed disc of radius 1—¢ concentric with the
principle circle. Let {qn} be the sequence of centers of I(Sy).
According to Theorem 3.3.7, it is bounded in C, and hence contains a
converging subsequence, so we may assume qn—f, taking a
subsequence if necessary. Since feL (Theorem 3.4.1) and using
Theorem 3.3.7 again, we conclude that there exists M>0 such that
for n>M and z€l(Sn), d(8,2) <, i.e.
IJ I(Sn)NB=9.
n>M
Let zeB. Then z lies outside of I(S,) for all n>M, hence

N4
Sn(z)€l(Sn!). So we obtain for n>max(N,M), d(Sn(z),a)<e¢, and
conclude that for any zeB, Sn(z)—e.

Now we prove that A(T)CAg(F). Let acA(T), then there
exists zeU and a sequence {Tn} of distinct transformations in I' such
that Tpz—a. The sequence of centers of I(Tn), {qn}, has a
subsequence converging to a point BeAo(I')CE. Thus we may
assume, taking a su\!/asequence if necessary, that z lies outside of all
I(T,), hence Tn(z)eI(Tn™). Let the radii of the isometric circles of
the transformations T, ! be equal to r,. By Theorem 3.3.7, r,—0.
Let the centers of I(Tn_l) be pn, and e>0 be given. There exists
N>0 such that for n>N, rp<e/2 and d(Tn(z),e)<e/2. Then for n>N,

d(Pma) Sd(Pn,Tn(Z)) +d(Tn(Z) ,a) <e.

Hence pn—a, and agAqy(T). o

LEMMA 3.4.3. Let o, 8, 6T be three distinct points with a€A(T).
Then « is a limit point either for T8 or for I'é.
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PROOF: We may assume, taking subsequences if necessary, that for a
sequence of distinct transformations in T, {T,}, the centers of the
isometric circles I(T,™"), pn—a€A(T). Suppose the centers of the
isometric circles I(Th), qn—v€A(T). Notice that 4 may coincide with
B or 6 but not with both. Suppose §#+. Since the radii of isometric
circles tend to 0 (Theorem 3.3.7), 6 lies outside of infinitely many
isometric circles I(Tn), hence Tn(6)el(Tn™!). Therefore Tn(é)—a,

i.e. o is a limit point for T'é. a

REMARK: Lemma 3.4.3 is valid also for the upper half-plane model
since {}(A(I))=A(f toTof), and « is a limit point for I if and only
if £ (a) is a limit point for f 'oTof(f"' ), where { is as in (1.2.2).

THEOREM 3.4.4. If A(T) contains more than one point, it is the
closure of the set of fized points of the hyperbolic transformations

of T.

PROOF: This theorem is true for both models. First we show that I
must contain at least one hyperbolic element. We may use the upper
half-plane model since the trace is invariant under conjugations,
hence the type of an element does not depend on the choice of the
model. Assume T contains only elliptic and parabolic elements. T
does not consist of only elliptic elements, for then it would be a finite
cyclic group (Corollary 2.4.2) and A(T)=0. Let T be a parabolic
element whose fixed point may be assumed to be co. Then T is a

translation z—z+k. The group T must contain an element

S=22+b which does not fix oo; otherwise T would be an infinite

cz+d
cyclic parabolic group with A(T)={co}. Hence c¢#0 and
itrT"S|=|a+d +nkc|>2 if n is sufficiently large. It follows that T"S is

hyperbolic, a contradiction.
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In order to see that A(T) is closed, we use the unit disc model.
According to the preceding remark, it will follow that A(f 'olof) is
also closed as the image of a closed set under a continuous map.
Since each point of A(T) has an infinite number of centers of
isometric circles in its neighborhood, a limit point of A(T) has also an
infinite number of centers of isometric circles in its neighborhood.
Thus it belongs to A(T), so A(T) is closed. A(T) contains hyperbolic
fixed points for all hyperbolic elements in T, and therefore it contains
the closure of the set of hyperbolic fixed points. Suppose now that
a€A(T) and a is not a hyperbolic fixed point; we must show that « is
a limit point of hyperbolic fixed points. We have seen that I' has at
least one hyperbolic element. Let u; and u, be two hyperbolic fixed
points. By Lemma 3.4.3, o is a limit point for either I'y; or for Ty,.
Since the image of a fixed point is itself a fixed point, the theorem is
established. u]

THEOREM 3.4.5. The limit set A(T) is [-inveriant.

PROOF: Let acA(l). Then there is zeU and a sequence of distinct
transformations in I, {Tn}, such that Thz—a. Let Ser. Then
(STxS™1)(S(2z)) —S(«), and hence S(a)eA(T). O

THEOREM 3.4.6. If the set A(T) contains more than two points, then
either

(1) A(r)=%, or

(it) A(T) is a perfect nowhere dense subset of T.

PROOF: We have seen already in the proof of Theorem 3.4.4 that
A(T) is closed. In order to see that it is a perfect set, we have to
show that each point of A(T) is a limit point of points of the set A(T).
Let a, 8, 6 A(T) be three distinct limit points. By Lemma 3.4.3, a is
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a limit point for either '8 or T'é. Such points belong to A(T) by
Theorem 3.4.5, hence A(T) is perfect.

We must show now that unless every point of T belongs to
A(T), A(T) is nowhere demse. Let zqeX, zggA(T). Since A(T) is
closed, its complement is open, and there exists a neighborhood of zq
consisting only of ordinary points. Therefore, there is an arc in I, h,
containing z, and consisting of ordinary points. Let aeA(T). By
Lemma 3.4.3, there exists z,¢h and a sequence {T,} such that
Tnz,—a. Since an image of an ordinary point is an ordinary point
(Theorem 3.4.5), we conclude that there are ordinary points in each

neighborhood of £, hence A(T) is nowhere dense in I. a

According to Theorem 3.4.6, we shall classify Fuchsian groups

as follows:

(a) Fuchsian groups of the first kind, or groups for which

every point of the principal circle is a limit point.

(b) Fuchsian groups of the second kind, or groups whose limit

points are nowhere dense on the principal circle.

REMARK: According to Theorem 3.4.6, the limit set of a Fuchsian
group of the second kind can be one of the following: an empty set, a
set containing one or two points, or a perfect (and therefore infinite)

nowhere dense set.

3.5. Structure of a Dirichlet region

Dirichlet regions for Fuchsian groups can be quite
complicated. They are bounded by geodesics in % and possibly by
segments of the real axis. If two such geodesics intersect in 3, their

point of intersection is called a verter of the Dirichlet region. It can
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be shown that the vertices are isolated (see Exercise 3.10 below) so
that a Dirichlet region is bounded by a union of (possibly infinitely
many) geodesics and possibly segments of the real axis (see Fig. 10

for the unit disc model).

We shall be interested in the tessellation of 3% formed by a
Dirichlet region F and all its images under T (called faces):
{T(F) | Ter}. This tesselation will be referred to as a Dirichlet
tessellation. (See Fig. 11 for a Dirichlet tessellation for the modular
group.) The next theorem shows that the Dirichlet tessellation has
nice local properties. Recall the definition of locally finite family of

subsets from § 2.2.

QOO

(1) (ii) (i) (iv)

Fig. 10

DEFINITION. A fundamental region F for a Fuchsian group T is
called locally finite if the tessellation {T(F) | Ter} is locally finite.

THEOREM 3.5.1. A Dirichlet region is locally finite.
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PROOF: Let F=Dy(r) where p is not fixed by any element of
I—{Id}. Let acF, and let Kc% be a compact neighborhood of a.

Xiz—-1/z

Y:z—-1/(z+1)
Z: z—z+1

2 (F) F Z(F)

p ptl

Y(F) ZY(F)

X(F

1 23 13 0 13 213 1
Fig. 11

Suppose that KNT;(F)#0 for some infinite sequence T, T,, ... of

distinct elements of I. Let o=sup p(p,z). Since s<p(p,a)+p(a,z),
zeK
for all zeK, and K is bounded, o is finite. Let w;eKNT;(F). Then

w;=T}(z;) for z;cF, and by the triangle inequality,

Thus the infinite set of points T;(p), T5(p), ... belongs to the
compact hyperbolic ball with center p and radius 2e, but this

contradicts the properly discontinuous action of T. u]
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We call two points u,ve¥ congruent if they belong to the
same I'-orbit. First, notice that two points in a fundamental region
F may be congruent only if they belong to the boundary of F.
Suppose now that F is a Dirichlet region for I', and let us consider
congruent vertices of F. The congruence is an equivalence relation on
the vertices of F and the equivalence classes are called cycles. If u is
fixed by an elliptic element S, then v=Tu is fixed by the elliptic
element TST ™!, Thus if one vertex of the cycle is fixed by an elliptic
element, then all the vertices of that cycle are fixed by conjugate
elliptic elements. Such a cycle is called an elliptic cycle and the
vertices are called elliptic vertices. The number of elliptic cycles is

equal to the number of non-congruent elliptic points in F.

Since the Dirichlet region F is a fundamental region, it is clear
that every point we fixed by an elliptic element S’ of T lies on the
boundary of T(F) for some Tel. Hence u=T '(w) lies on the
boundary of F and is fixed by the elliptic element S=T7!S'T. By
Theorem 2.3.7, S has finite order k. Suppose first that k>3: then as
S is an isometry fixing u which maps geodesics to geodesics, u must
be a vertex whose angle ¢ is at most 2r/k. (See Fig. 11 where the
angle at the elliptic fixed point p of order 3 is 2x/6.) The
hyperbolically convex region F is bounded by a union of geodesics.
The intersection of F with these geodesics is either a single point or a
segment of a geodesic, These segments are called sides of F. If S has
order 2, its fixed point might lie on the interior of a side of F. In this
case, S interchanges the two segments of this side separated by the
fixed point. We will include such elliptic fixed points as vertices of
F, the angle at such vertex being ». Thus a wvertez of F is a point of
intersection in ¥ of two bounding geodesics of F or a fixed point of
an elliptic element of order 2. (All the previous definitions such as

conjugate, elliptic cycles, etc. apply to this extended set of vertices.)
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If a point in % has a nontrivial stabilizer in T, this stabilizer is
a finite cyclic subgroup of T by Theorem 2.2.6; it is a mazimal finite
cyclic subgroup of T by Lemma 2.3.1. Conversely, every maximal
finite cyclic subgroup of I' is a stabilizer of a single point in %. We

can summarize the above as:

THEOREM 3.5.2. There is a one-to-one correspondence between the
elliptic cycles of F and the conjugacy classes of non-trivial mazimal

finite cyclic subgroups of T. u]

EXAMPLE A. Let I be the modular group. The Dirichlet region F

in Figure 9 has vertices in ¥ at p=—_—li-ﬁ, p+1=£B and 1.

These are stabilized by the cyclic subgroups generated by z—=%—2 1

z—»Z—T—l, and z—»—%, respectively. The verteces p and p41 belong to
the same cycle since they are congruent via z—z+1. Each of them is
fixed by an elliptic element of order 3. By Exercise 3.12, these two
verteces form an elliptic cycle. The point i is fixed by an elliptic
element of order 2. It follows from Exercise 3.12 that i is the only
such point. Thus {i} is an elliptic cycle consisting of just one vertex.
By Theorem 3.5.2, the modular group has two conjugacy classes of
maximal finite cyclic subgroups, one consisting of groups of order 2,

the other consisting of groups of order 3.

DEFINITION. The orders of non-conjugate maximal finite cyclic
subgroups of T are called the periods of T.

Each period is repeated as many times as there are conjugacy
classes of maximal finite cyclic subgroups of that order. Thus the

modular group has periods 2, 3.

A parabolic element can be considered as an elliptic element
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of infinite order; it has a unique fixed point in R{J{co}. Hence if a
point in R{{co} has a non-trivial stabilizer in T, it is a mazimal
(cyclic) parabolic subgroup of T, and every maximal parabolic
subgroup of T is a stabilizer of a single point in RU{co}. Let F be a
Dirichlet region for T with parabolic elements. It will be shown in §
4.2 that in this case F is not compact (Theorem 4.2.1), and if
additionally u(F)<oo, then F has at least one vertez at infinity, i.e.
two bounding geodesics of F meet there (Theorem 4.2.2). Moreover,
each vertex at infinity is a parabolic fixed point for a maximal
parabolic subgroup of T (Theorem 4.2.5), and non-congruent verteces
at infinity of F are in a one-to-one correspondence with conjugasy
classes of maximal parabolic subgroups of I' (Corollary 4.2.6). If we
allow infinite periods, the period oo will occur the same number of
times as there are conjugacy classes of maximal parabolic subgroups.
This number is called the parabolic class number of . It is easily
calculated that in the modular group every parabolic element is
conjugate to z—z+n for some neZ, so that the modular group has
periods 2, 3, co. The angle at a vertex at infinity is 0. With this
convention, the Dirichlet region for the modular group described in

§3.2 has a vertex at co whose angle is Z=0.

The following result relates the sum of angles at all elliptic

verticies belonging to an elliptic cycle with the order of that cycle.

THEOREM 3.5.3. Let F be a Dirichlet region for T'. Let 8y, 85, ... ,0;
be the internal angles at all congruent wvertices of F. Let m be the
order of the stabilizer in T of one of these wvertices.  Then

01+...+0,=2x/m.

REMARKS: 1. As F is locally finite, there are only finitely many
vertices in a congruent cycle.

2. As the stabilizers of two points in a congruent set are conjugate
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subgroups of I, they have the same order.

3. If a vertex is not a fixed point, we have m=1 and 8, +... +8,=2~.

PROOF: Let v, ... , v, be the vertices of the congruent set, the
internal angles being 4,, ..., 6,. Let
H:{Id, 5,82, ..., s‘“*l}

be the stabilizer of v, in I. Then each S'(F) (0<r<m-1) has a
vertex at v, whose angle is 4,. Suppose T\ (v,)=v, for some T,€T.
Then the set of all elements which map v, to v, is HTy, a coset
which has m elements, so the S'T, (F) have v, as a vertex with an
angle of . On the other hand, if a region A(F) (A€T) has v, as a
vertex, then A™!(v,)eF, hence A™*(v,)=v, for some i, 1<i<t. Thus
Ae HT, and A(F) has been included in the above description. So we
have mt regions surrounding v,. These regions are distinct, for if
S'T (F)=S"T|(F), then S'T,=S°T,, and hence r=q and k=1. We
conclude then that

m(f,+...+0;)=2r. 0

We now consider the congruence of sides. Let s be a side of F,
a Dirichlet region for a Fuchsian group I'. If Ter—{Id} and T(s) is a
side of F, then s and T(s) are called congruent sides. But T(s) is also
a side of T(F) so that T(s)CFNT(F). If a side of F has a fixed point
of an elliptic element S of order 2 on it then S interchanges the two
segments of this side. It is convenient to regard these two segments
as distinct sides separated by a vertex. With this convention, it
follows from Exercises 3.11 and 3.13 that for each side of F there
exists another side of F congruent to it. There cannot be more than
two sides in a congruent set. For, suppose that for some T,eTl, Ty(s)
is also a side of F; then T(s)=FNT,(F). Thus
s=T, HF)NF=T Y(F)NF, so that T, }(F)NT '(F)#0 which implies
T,=T. Thus the sides of F fall into congruent pairs. Hence if the
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number of sides of a Dirichlet region is finite, it is always even.

EXAMPLE A. The two vertical sides of the fundamental region for
the modular group found in §3.2 are congruent via the transformation
z—z+1. The arc of the unit circle between p and p+1 (see Fig. 9) is
the union of two sides: [p, i] and [i, p+1], congruent via the elliptic

transformation of order 2, z——1/z.

THEOREM 3.5.4. Let {T,} be the subset of T' consisting of those
elements which pair the sides of some fized Dirichlet region F. Then

{T;} is a set of generators for T.

PROOF: Let A be the subgroup generated by the set {T,}. We have
to show that A=T. Suppose that S; €A, and that S,(F) is adjacent to
S1(F), i.e. they share a side. Then S;7'S,(F) is adjacent to F.
Hence S,7'S,=T, for some T,e{T;}; and since S,=S,T, we
conclude that S,€A. Suppose now S3(F) intersects S;(F) in a vertex
v. Then S;7'S5(F) intersects F in a vertex u=S; 'v. By Theorem
3.5.1, there can only be finitely many faces with vertex u, and F can
be “connected” with S, 'S;(F) by a finite chain of faces in such a
way that each two comsecutive ones share a side. Hence we can

apply the above argument repeatedly to show that S;eA. Let
X={J S(F), Y={J S(F). Then XNY=0. Clearly XUY=3, so if we

SeA Ser-A
show that X and Y are closed subsets of 3, then as 3 is connected
and X#£0, we must have X=3% and Y=0. This would show that A=T

and the result will follow.

We now show that any union [JV;(F) of faces of the
tessellation is closed. Suppose {z;} is an infinite sequence of points
of | JV,(F) which tends to some limit zy€3%. Then z,e€T(F) for some
Ter, and by Theorem 3.5.1, there exists a neighborhood N of z,
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intersecting only finitely many of the V;(F). Therefore, one face of
this finite family, say Vm(F), must contain a subsequence of {z;}
tending to z,. Since Vm(F) is closed, zoeVm(F)c| JV|(F). Thus
{JV;(F) is closed, and in particular X and Y are closed. o

EXAMPLE A. Theorem 3.5.4 implies that the modular group is
generated by z—z+1 and z——1/z.

3.6. Connection with Riemann surfaces and

homogeneous spaces

Let T be a Fuchsian group acting on the upper half-plane 3
with p(T\¥)<oo, and F be a fundamental region for this action.
The group T induces a natural projection (continuous and open)
7 %—T\3¥%, and the points of '\J% are the I'-orbits. The restriction
of r to F identifies the congruent points of F that necessarily belong
to its boundary 8F, and makes T'\F into an oriented surface with
possibly some marked points (which correspond to the elliptic cycles
of F) and cusps (which correspond to non-congruent vertices at
infinity of F), also known as an orbifold. Its topological type is
determined by the number of cusps and by its genus—the number of
handles if we view the surface as a sphere with handles. If F 1s
locally finite, the quotient space T\¥ is homeomorphic to T'\F [B,
Thm. 9.2.4], hence by choosing F to be a Dirichlet region which is
locally finite by Theorem 3.5.1, we can find the topological type of
r'\%. We have seen in §3.1 (Theorem 3.1.1) that the area of a
fundamental region (with nice boundary) is, if finite, a numerical
invariant of the group I'. Since the area on the quotient space I'\¥ is
induced by the hyperbolic area on 3, the hyperbolic area of T |3,
denoted by p(Tr\%), is well defined and equal to u(F) for any
fundamental region F. If T has a compact Dirichlet region F, then by
Exercise 3.10, F has finitely many sides, and the quotient space TI'\%
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is compact. We shall see in §4.2 (Cor. 4.2.3) that if one Dirichlet
region for T is compact then all Dirichlet regions are compact. If, in
addition, I acts on 3 without fixed points, T'\¥ is a compact
Riemann surface—a 1-dimensional complex manifold—and its

fundamental group is isomorphic to T [Sp].

In many respects Fuchsian groups are similar to the lattices in
R" which are discrete groups of orientation-preserving Euclidean
isometries. However, while the quotients of the latter are always
compact surfaces homeomorphic to the torus, the quotient of a
Fuchsian group T acting on % without fized points cannot be a torus.
For, since the fundamental group of a torus is isomorphic to ZxZ,
such a T must be isomorphic to ZxZ which contradicts Corollary
2.3.7. Equivalently, no compact Riemann surface of genus 1 has its
universal covering space conformally equivalent to 3. We shall see,
however, that all orientable surfaces (compact or not) other than the
sphere, torus, plane, or punctured plane are quotients of Fuchsian
groups acting on 3% without fized points (see Corollary 4.3.3 and the
remark at the end of §4.3).

Since T acts on PSL(2,R) by left multiplication one can form
the homogeneous space T'\PSL(2,R). We have seen (Theorem 2.1.1)
that PSL(2,R) can be interpreted as the unit tangent bundle of the
upper half-plane. It is easy to see (Exercise 3.14) that if F is a
fundamental region for T in 3, SF is a fundamental region for T in
PSL(2,R). It also can be shown (see Exercise 3.15) that if T contains
no elliptic elements, the homeomorphism described in Theorem 2.1.1
induces an homeomorphism of the corresponding quotient spaces. If
T contains elliptic elements, an analogous result holds; however, the
structure of the fibered bundle is violated in a finite number of

marked points.

Since the fiber in S(I'\J) over each point of I'\3 is compact,
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I'\% is compact if and only if S(I'\}) is compact.

Now we give a sufficient condition for a fundamental region

F=SF for T in S3 to be compact.

THEOREM 3.6.1. Suppose there ezists a compact subset KCS¥ such
that S%=r-K, i.e. any (z,0)€S¥, can be written as

(2,¢)=T(k,x), Ter, (k,x)eK.

Then any ¥=SF, where F=Dgy(T) is a Dirichlet region for T in ¥, is

compact.

PROOF: Let [ be the distance function on S¥ corresponding to the
Riemannian metric dé:stz+d¢92 (see §2.1). Suppose ¥ is not
compact. Then F is not compact, and hence is not bounded, i.e.
there exists a sequence {zn}€F such that p(zg,zn)—oc0. Then for any
(29,¢o) and {(zn,¢n)} in S we have

1((20+¢0)(Zn,n)) —o0.
Since F is a Dirichlet region,

p(20,2n) < p(T(20),2n) (3.6.1)

fOI' all TGF We haVe (Zn,(n)zTn(kn,Kn)Z(Tn(kn),DTn(Kn)).
Plugging T=Th, into (3.6.1), we get
p(20,2n) <p(Tn(20),2n)=p(Tn(20), Tn(kn))=p(20,kn).

But since K is compact, {I((z9,(o),(kn,kn))} is bounded, hence
{p(20,kn)} is bounded, and {p(2g,zn)} is bounded, a contradiction. O

COROLLARY 3.6.2. Suppose T'' is a subgroup of SL(2,R) containing
(—=1,), and T=r'/{+1,,—1,}. If there ezists a compact subset
K'cSL(2,R) such that SL(2,R)=T1.K', then I'\J is compact. a
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EXERCISES FOR CHAPTER 3

Let z,=x, +iy; and z,=x,+1y, be two points in 3 and let L be
the perpendicular bisector of the geodesic segment [z,,2,]. Prove
that for any z; and any compact subset K of R?, LNK=0 when

|z5| is sufficiently large.

Show that the Dirichlet region can be described using the

FEuclidean metric as follows:

T(z)-p > L1 _forall TGI‘}.

Dp(T)={2z€% | 72D Rz 4d]
Prove Theorem 3.3.3 for the unit disc model.

Suppose T,S,RePSL(2, R) and S=R 'oToR. What happens to
the isometric circles under this conjugation? Consider the same
question for the group of orientation-preserving isometries

(3.3.2) of the unit disc .

Prove that
(i) T is hyperbolic if and only if I(T) and I(T"?) do not
intersect,

(i) T is elliptic if and only if I(T) and I(T™!) intersect,

(iii) T is parabolic if and only if I(T) and I(T™!) are tangential.
Prove Theorem 3.3.4 for the upper half-plane model.

Give an alternative proof of Theorem 3.3.5 by showing that for
any orientation-preserving isometry T of the unit disc the
perpendicular bisector of [0, T(0)] is the isometric circle I(T™1).
Prove that a Fuchsian group is elementary if and only if its limit
set consists of not more than two points.

Prove that if a fundamental region for a Fuchsian group F 1s
locally finite, then for each point z€3 there is a compact
neighborhood V and a finite set of elements

T, ... , Tn€T such that

(i) zeTy(F)N ... NTa(F),

() VCT,(F)U - UTa(P),
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(1) TFNV=0if T£T;,i=1, ... ,n

3.10. Show that the vertices of a Dirichlet region are isolated, that is
every vertex of F has a neighborhood containing no other
vertices of F. Deduce that a compact Dirichlet region has a
finite number of vertices.

3.11.Prove that if F is a locally finite fundamental region, then for
each zedF there exists Id£Tel such that T(z)edF.

3.12.Show that p and p+1 are the only 2 elliptic points of order 3 and
i is the only elliptic point of order 2 in the fundamental region
F for PSL(2,2Z) in Figure 11.

3.13.Let F be a Dirichlet region for a Fuchsian group T and let s be a
side of F. If TeT and T(s) is a side of F, prove that
FNT(F)=T(s).

3.14.Prove that if F is a fundamental region for a Fuchstan group T
on J, then SF is a fundamental region for T on SJ.

3.15.Prove that if I' is a Fuchsian group without elliptic elements,
then S(T'\3) is homeomorphic to T\PSL(2,R).



4. GEOMETRY OF FUCHSIAN GROUPS

4.1. Geometrically finite Fuchsian groups

We saw in §3.5 that a Dirichlet region in 3 of a Fuchsian
group T is bounded by a number of geodesic segments and possibly
segments of the real axis. Here we shall be a little more precise. The
bounding geodesic segments in ¥ are called sides of F and form the
boundary of F, 6F; if an elliptic fixed point of order 2 belongs to a
geodesic segment we include this point in the set of vertices of F and
regard the two subsegments as two sides. Recall also that F is a
closed subset of 3, but it may not be a closed subset of %. We call
the closure of F in % the Buclidean closure of F and denote it by F.
We also define the Euclidean boundary of F, 8,F: 60F:I~7—F which
obviously belongs to the set of points at infinity. 8,F may have
uncountably many components, but there can only be countably
many components of positive (Euclidean) length: we call these free

sides of F; vertices at infinity of F (see §3.5) also belong to d4F.

DEFINITION. A Fuchsian group T is called geometrically finite if
there exists a convex fundamental region for I with finitely many

sides.

THEOREM 4.1.1. (Siegel’s Theorem) If T is such that u(T\¥%)<oo then

T is geometrically finite.
PROOF [GP]: We shall prove that any Dirichlet region F=Dy(TI') has

finitely many sides. Since the vertices of Dp(T) are isolated (Exercise

3.10), any compact subset K contains only finitely many vertices.

80
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This takes care of the case in which F is compact. Now suppose that

F is not compact.

The main ingredient of the proof is an estimation of the angles
w at vertices of the region F. More precisely, we are going to prove

that

Z(w—w)ﬁy(F)+27r, (4.1.1)
[
where the sum is taken over all vertices of F lying in 3. We first
notice that F is a star-like generalized polygon, and that the

boundary of F, 8F, is not necessarily connected.

Let us connect all vertices of F with the point p by geodesics
and consider the triangles thus obtained. Let ... Am, Ay g, - 5 An,
... be a connected set of geodesic segments in OF with vertices ... am,
3m41y - s Ang1y - (Fig. 12). We assume that this set is unbounded
in both directions. We denote the triangle with the side A, by A,
its angles by ay, By, 7k, and the angle between A, and Ay, by wy;
thus we have

Wk =Pk+Tk41

By the Gauss-Bonnet formula (Theorem 1.4.2) we have

u(Ag)=m—agx—Bx—k-
Thus
n n n—1
Z ak+z #(Ak)=7f—7m—ﬁn+z (r—wy). (4.1.2)

k=m k=m k=m

The left-hand side of this equality is bounded since ) oy <27 and
Zp(Ak)Sp(F), hence the right-hand side is also bounded. It follows

that ) (r—wy) converges, and the following limits exist:
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Fig. 12

rx}gn_m7m=7—w, &i_r_l}ooﬁn=ﬂoo-
Let us show that

Since only finitely many segments {A,} may be a bounded distance
from the point p, we have ay—oo as k—oo. Thus p(p,axs1)>p(p,2x)
for infinitely many values of k, and for these values, as follows, for
instance, from the Sine Rule (Theorem 1.5.2(i)), we have 7, >8,. On
the other hand, g +7c<7 and thus g <7/2. Therefore goo<n/2.
Similarly, y-co<7/2, and (4.1.3) follows.

Let m—-o0, n—oo. Taking into account (4.1.3) we obtain

from (4.1.2) a limit inequality
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o0

Z ak:-_ij ,u(Ak)Zi (r—wy). (4.1.4)

k=-00 k=-00

The inequality is obtained under the assumption that the connected
set of segments {A,} is unbounded in both directions. Similar
arguments apply in other cases when the connected set of segments is
bounded at least in one direction. Adding up all these inequalities,

we obtain a desired estimate

27r+p(F)~>_§w:(7r—w), (4.1.5)

where the sum is taken over all vertices of F which lie a finite

hyperbolic distance from the point p, i.e. in 3.

Now we are going to prove, using this estimate, that the

number of vertices which lie a finite distance from the point p is

finite. Let a be a vertex and a(1)=a, a(z), oy 2™ all vertices
congruent to a. If we denote the angle at vertex a® by w{” we have
by Theorem 3.5.3 :
w(1)+w(2)+ +w(n)=27r, (4.1.6)
if a is not a fixed point for any TeT—{Id}; and
S +w(n)=27r/m, (4.1.7)

(

if a is a fixed point of order m. Since w’ <7 for each cycle of the

type (4.1.6), we have n>3, and hence

(w—w(i))z(n—z)w>7r. (4.1.8)

-

i=1

Comparing (4.1.8) with (4.1.5) we conclude that the number of cycles
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where a is not a fixed point for any Tel'—{Id} is finite. For each
cycle of the type (4.1.7) we have

'Z:l(w—w(i))=(n—%)7r>§. (4.1.9)

Comparing (4.1.9) with (4.1.5) we conclude that the number of
elliptic cycles of order>3 is finite. Finally, any elliptic fixed point of
order 2 belongs to a segment of dF between two vertices which are
not elliptic points of order 2, hence we see that the number of elliptic
cycles of order 2 is also finite. Thus we have proved that there are

only finitely many vertices a finite distance from the point p.

It remains to show that the number of vertices at infinity is
also finite. Let us take any N vertices at infinity: By, ... , By. It is
obvious that there exists a hyperbolic polygon F; bounded by a finite
number of geodesics and contained inside F such that its vertices at
infinity are By, ... , By. An argument similar to that in the proof of
(4.1.4) shows that the hyperbolic area of F, satisfies the following
equation:

Z(W—w)=27r+p(F1),

W
where w are the angles at the vertices of Fy, and the sum is taken

over all vertices of F;. Since w=0 for all vertices at infinity, we have
"N <24 u(Fy) <2+ u(F).

Thus N is bounded from above, and the theorem follows. a
4.2. Cocompact Fuchsian groups

DEFINITION. A Fuchsian group is called cocompact if the

quotient-space '\ is compact.
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The following results reveal the relationship between

cocompactness of T' and the absence of parabolic elements in T.

THEOREM 4.2.1. If a Fuchsian group T has a compact Dirichlet

region, then T contains no parabolic elements.
PROOF: Let F be a compact Dirichlet region for I, and
n(z)=inf{p(z,T(z)) | Ter—{Id}, T not elliptic}.

Since the T-orbit of each z€3 is a discrete set (Cor. 2.2.7) and T(z)
is continuous, n(z) is a continuous function of z and p(z)>0.
Therefore, as F is compact, n=inf{n(z) | zeF} is attained and n>0.
If ze %%, there exists SeT such that w=S(z)eF. Hence, if Toel—{Id}

is not elliptic,
o(2,To(2))=p(5(2),5(To(2)) =p(w,SToS (W) 2,

and therefore

inf{p(2,To(2)) | z€3, Ty not elliptic}=5>0.

Now suppose that T' contains a parabolic element T,. If for
some RePSL(2,R), T;=RrR™! then R(F) will be a compact
fundamental region for I';. Thus by conjugating I' in PSL(2,R) we
may assume that T;(z) or T, (z) is the transformation z—z+1.
However, by Theorem 1.2.6(iii), p(z,2+1)—0 as Im(z)—oo, a

contradiction.

THEOREM 4.2.2.
1) If T has a non-compact Dirichlet region then the quotient space
P g q P

F\3% is not compact.
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(ii) If a Dirichlet region F=Dy(T) for a Fuchsian group T has finite
hyperbolic area but is not compact, then it has at least one vertex at

infinity.

PROOF: Let F=D,(T') be a non-compact Dirichlet region for T. We
consider all oriented geodesic rays from the point p; each geodesic ray
is uniquely determined by its direction ¢ at the point p. Since F i1s a
hyperbolically convex region, a geodesic ray in the direction [ either
intersects 6F in a unique point or the whole geodesic ray lies inside
F. Hence we can define a function 7(l) to be the length of a geodesic
segment in the direction ! inside F, r(l) being equal to  in the latter
case. Obviously, (I} is a continuous function of [ at the points where
r(l)<oo. Therefore if r(f)<oo for all I the function r(I) is bounded;
hence the region F is compact. Thus if F is not compact, there are
some directions ! for which r({)=00. After the identification of the
congruent points of 8F, we obtain a non-compact orbifold I'\3 and
(i) follows. To prove (ii), let us consider one such direction §y. The
intersection of the geodesic ray from p in the direction I with the set
of points at infinity belongs to dgF, the Euclidean boundary of F. By
Theorem 4.1.1, F is geometrically finite, hence 8,F consists of finitely
many free sides and vertices at infinity. Since u(F)<oo, it is easy to
see that 9pF cannot contain any free sides.  Therefore this

intersection is a vertex at infinity, and (ii) follows. o

COROLLARY 4.2.3. The quotient space of a Fuchsian group T, T'|%

s compact if and only if any Dirichlet region for T is compact. n]

Let pe¥ and z(t), 0<t<oo, be a geodesic ray from the point p.
Let Bi(p) be a hyperbolic circle centered at z(t) and passing through
the point p. Exercise 4.2 asserts that the limit of By(p), as t— oo,
exists. It is a Euclidean circle passing through p and through the end
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of the geodesic z(t) corresponding to t=oo, and orthogonal to the
geodesic z(t). Since the geodesic ray through p is determined by its
direction I, the limiting circle depends on p and I It is called a
horocycle (see Fig. 13) and is denoted by w(p,!). Notice that
horocycles are not hyperbolic circles, however they may be considered
as circles of infinite radius. Let seR. A Euclidean circle through s
tangent to the real line is a horocycle for any geodesic in
represented by a Euclidean semicircle passing through s (and
orthogonal to the real axis, of course). (see Fig. 14.) If s=co, the
geodesics passing through oo are represented by vertical straight lines,
and horocycles are Euclidean straight lines parallel to the real axis
(see Fig. 15). We shall denote a horocycle through a point s at
infinity by w(s). We have a whole family of horocycles w(s) through

a given point s.

m(pYI) S =o0

Fig. 13 Fig. 14 Fig. 15

THEOREM 4.2.4. Let S be a transformation in PSL(2,R) fizing a
point scR. Then S is parabolic if and only if for each horocycle
through s, w(s), we have S(w(s))=w(s).

PROOF: Suppose first that S is parabolic, and RePSL(2,R) is such
that R(s)=oo. Then Sy=RoSoR™' is a parabolic transformation
fixing oo, and therefore S(z)=z+h, heR. Since S is a Euclidean
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translation, it maps each horizontal line to itself. Since a linear
fractional transformation maps circles and straight lines into circles
and straight lines and preserves angles, we conclude that horocycles

are mapped into horocycles. Thus S(w(s))=uw(s).

Conversely, suppose S maps each horocycle w(s) onto itself.
Making the same conjugation as above, we move the fixed point s to
oo. Then S(z)=az+b. The condition that each horizontal line is

mapped into itself implies that a=1. Hence S is a parabolic elementO

THEOREM 4.2.5. Suppose T has a non-compact Dirichlet region
F=Dp(T) with uy(F)<co. Then

(i) each vertezx of F at infinity is a parabolic fized point for some
Terl. l

(it) If ¢ is a fized point of some parabolic element in T, then there
ezists TeTl s.t. T(€)€dy(F).

PROOF of (1): Let b be a vertex of F at infinity. Let us consider all
images S(F), Ser, which have the point b as a vertex. Obviously,
there are infinitely many of them. Let b?=b, b® .. b™ pe all

vertices of F congruent to b:
b®=T,(b) (k=1, ..., n).

We know from Theorem 4.1.1 that the number of such vertices is

finite. Any image of F which has the point b as a vertex has a form

where T is any element of T which fixes the point b. Since there are
infinitely many such images, and since T, is only taken from a finite

set of elements, we conclude that there are infinitely many elements
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TeT fixing b.

We shall show now that any such element T is a parabolic
element. Suppose T is not parabolic. Let us consider a geodesic z(t),
0O<t<oo, parametrized by its length, connecting the points p and b
(z(0)=p, 2z(oc)=Db). (See Fig. 16.) Since F is a Dirichlet region the

whole geodesic lies inside F and

o(p2(£) <p(T(p)2(t)), 0st<co. (4.2.1)

w(t)

b
Fig. 16

Consider a horocycle w(b) containing the point p. Since by
our assumption T is not a parabolic transformation, T(p) does not
belong to w(b). Then by Exercise 4.3 either T(p) or T !(p) lies
inside w(b). We may assume then that T(p) lies inside w(b). Let
w(t) be a geodesic passing through T(p) and b. Let q be a second
point of intersection of w(b) and w(t); we choose the parametrization
of w(t) by its length such that w(0)=q. We notice first that
p(z(t),w(t))—0 as t—oco. In order to see this, we conjugate I' so that
its action on ¥ gives: b=oo, z(t)=a+it, w(t)=c+it (t>t;>0). Then

using Theorem 1.2.8(1ii), we obtain
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sinh [ 3o(z(t),w(t))] =254 0 as t-0,

and the claim follows. We have
t=p(p,2(t))=p(q,w(t))=r(q,T(p))+p(T(p),%(t))
2p(a,T(p))+p(T(p)s2(t))—(2(t),w(t)),
and hence for sufficiently large t, we have

p(p.z(t))>p(T(p).2(t)),
a contradiction with (4.2.1).

PROOF of (ii): See Exercise 4.4. o

We leave the proof of the following Corollary (Exercise 4.5).

COROLLARY 4.2.6. There is a one-to-one correspondence between
non-congruent vertices at infinity of a Dirichlet fundamental region
for @ mnon-cocompact Fuchsian group T with p(T\¥)<co and

conjugacy classes of mazimal parabolic subgroups of T.

The following result is a direct consequence of Theorems 4.1.1,
4.2.2, and 4.2.5.

COROLLARY 4.2.7. A Fuchsian group T is cocompact if and only if

u(T\¥)<oo and T contains no parabolic elements.

4.3. The signature of a Fuchsian group

We now assume that T has a compact fundamental region F.
By Exercise 3.10, F has finitely many sides, and hence finitely many
vertices, finitely many elliptic cycles, and by Theorem 3.5.2, a finite

number of periods, say m;, ... , m;. As we have seen in §3.6 the
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quotient space T'\J is an orbifold, i.e a compact, oriented surface of
genus g with exactly r marked points. In this case we say that T has

signature (g; my, m,, ... , my).

THEOREM 4.3.1. LetT have signature (g; my, ... , m;). Then

p(T\3%)=2r[(2g~2 +Z(1——>

PROOF: The area of the quotient space was defined in the beginning
of §3.6: p(r\36)=p(F) where F is a Dirichlet region. By Theorem
3.5.2 F has r elliptic cycles of vertices. (As described in §3.6 we
include the interior point of a side fixed by an elliptic element of
order 2 as a vertex whose angle is =, and then regard this side as
being composed of two sides separated by this vertex.) By Theorem
3.5.3, the sum of angles at all elliptic vertices is Zz”. Suppose
i=1
there exist s other cycles of vertices. Since the order of the stabilizers
of these vertices is equal to 1, the sum of angles at all these vertices

is equal to 27s. Thus the sum of all angles of F is equal to
~ 1

The sides of F are matched up by elements of T. If we
identify those matched sides, we obtain an orbifold of genus g. If F
has n such sets of identified sides, we obtain a decomposition of I'\3
into (r+s) vertices, n edges, and 1 simply connected face. By the
Euler formula,

2-2g=(r+s)-n+1.

Exercise 4.6 gives a formula for the hyperbolic area of a hyperbolic

polygon. Using it, we obtain
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,u(F)=(2n—2)7r——27r[(i§r:1n—11i>+s]=27r[(2g—2)+'zr:(1—n—11i>]. 0

i=1

It is quite surprising that the converse to Theorem 4.3.1 is also
true, i.e. that there exists a Fuchsian group with a given signature.
This first appeared in Poincaré’s paper on Fuchsian groups [P], but
the rigorous proof was given much later by Maskit [Ma]. Below we
give a construction of a fundamental polygon for a Fuchsian group of

the given signature that can be found in [JS].

THEOREM 4.3.2. (Poincaré’s Theorem) If g>0, r>0, m;>2 (1<i<r)

are integers and if

(zg_z)+zrj(1_nlli>>o,

i=1

then there ezists a Fuchsian group with signature (g; m,, ... , my).

SKETCH OF PROOF: We shall use the unit disc model U of
hyperbolic geometry. From the center of U draw (4g+r) radii at
equal angles. Let O0<t<l and choose points at Euclidean distance t
from the center on each radius. We join successive points by
geodesics to get a regular hyperbolic polygon M(t). On the first r
sides of M(t), we construct r external isosceles hyperbolic triangles
such that the angles between the equal sides of the triangles are
27/mj, ..., 27/m, (it is possible to do by Exercise 4.8; if m,=2, the
corresponding triangle will degenerate). In Figure 17 we have g=2,
r=4, m;>2 for i=1, 2, 3, and m,;=2. The union of M(t) with these
triangles is a star-like hyperbolic polygon N(t) with 4g+2r sides.
Label these sides ay,8,',¢,',81, - , @g,8q ,2¢',8q, 1,61y - , &n&,
and orient them as indicated in Figure 17. If t—0, u(N(t))-0.

I
Using Exercise 4.6 we obtain that u(N(t))—(4g+2r—2)r—) " 2r/m;=

i=1
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27r[(2g—1)+zr:(1—nlli>] as t—1. Hence, by continuity of u(N(t)), for
i=1

some tq between 0 and 1, the hyperbolic area of N(tg) is exactly

2w[(2g-2)+i:il(1—nlli>].

By construction, o; and o] have the same hyperbolic length as do g,
and g, and ¢, and ¢,/. By Exercise 1.1, for each pair of geodesics
there exists an orientation-preserving isometry of U which maps one

to the other. Hence there exist orientation-preserving hyperbolic

Fig. 17
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isometries A;, B;, X, (i,j=1, ..., g k=1, ..., r) such that
Ao)=a;, Bi(8)=8;, Xultk')=¢«

Now we compute the congruence classes of vertices. Start by
calling the vertex at beginning of gg, v;. It is congruent (via Bg™?)
to the beginning of g4’ which we will call v, and which is also the
end of ag. This is congruent, in its turn (via Ag™!), to the end of ag’
which we will call v;. The vertex v; is also the end of g4’ which is
congruent (via Bg) to the end of g4 which we will call v,. The vertex

" which is congruent (via Ag) to the

v, is also the beginning of ag
beginning of ag which is, in its turn, a beginning of g4_; (see Fig.
17). Proceeding with this process, we see that all the vertices of the
original polygon M(t,) form a congruent set. Moreover, we conclude

that

X1X2-.-XrAlBlAl—lBl—l...AngAg—lBg-l(Vl)=V1. (431)
The other r vertices wy, ... , w, form r congruent sets each with just
one element.

Let the sum of angles at the congruent set of vertices vy, ...,

Vag+r be equal to T.  As the hyperbolic area of N(tg) is

r

27r[(2g~2)+z<1—1%i>], by the Gauss-Bonnet formula (Exercise
i=1

4.6), we have

L=2nr. (4.3.2)
Now let T be the group generated by

{Ai, B, Xy li,j=1, ..., g k=1, ..., r}. (4.3.3)

The necessary conditions of Theorem 3.5.3 are satisfied: the sum of

the angles at vy, v,, ..., Vagy, is equal to 2x and the angle at wy is
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27/m, for each k=1, ... , r. It can be shown that the I'-images of
N(tg) cover U without overlap, so that N(tg) is a fundamental region
for I'. Thus the I'-orbit of each point of U is a discrete set, and so by
Corollary 2.2.7, T is a properly discontinuous group of hyperbolic
isometries of AU, and if we transfer back to ¥ we get a Fuchsian
group.

The quotient space I'\U is decomposed into (r+1) vertices
(corresponding to the (r+1) congruent sets of vertices of N(ty)),
(2g+1) edges, and 1 simply connected face. By the Euler formula, its

genus h satisfies
2—2h=(r+1)-(2g+r)+1=2-2g,

and therefore h=g. There are r elliptic cycles, namely {w;}, ... ,
{w}, and their stabilizers have orders my, ... , m,;. Hence I' has

signature (g; m,, ... ,mr). O

If r=0, we obtain the following important result.

COROLLARY 4.3.3. For any integer g>1 there ezists a Fuchsian
group acting on 36 without fized points such that T\3 has genus g.

EXAMPLE C. Construction of a Fuchsian group with signature
(2;-). Since r=0, a fundamental region is a regular hyperbolic
octagon Fg (see Fig. 18) of hyperbolic area 47. We call this group Tg.
Following the proof of Theorem 4.3.2, we suppose that tq is chosen
such that u(N(tg))=4r. Then the area of each of the 8 equalateral
hyperbolic triangles is equal to % and since the angle at the origin is
equal :1—’, by the Gauss-Bonnet formula (Theorem 1.4.2) the two other
angles are equal to Z. By Theorem 4.3.2, the group I's is generated

8
by 4 hyperbolic elements, A,, A,, By, and B,, that identify the sides
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of Fgq as shown in Figure 18. Since all eight sides of Fg are arcs of
circles of the same Euclidean radius of equal Euclidean length, the
sides identified by a generator must be isometric circles of this

generator and its inverse. This allows us to use elementary geometry

to  explicitely  write down  those  generators. Let
a
A2 ={ _ _ }, (4.3.4)
c 2
vy
v
6
oy B, Va
B1 (12
V7 V3
' B!
(11 2
B o
1 2 V2
Vs
Vs
Fig. 18

then the isometric circle I(A,) is given by the equation |cz+a{=1.

By Theorem 3.3.4, A, maps I(A,) onto I(A,7!) in such a way that
the center of I(A,), —%, is mapped onto the center of I(A,™?), 2

But from Figure, 18 we see that ié—i_—.—-%, which implies

a:i]al(‘%ﬂ%ﬁ). Let the radius of I(A,)=R, and the distance of the
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center of I(A;) from the origin be d. By elementary geometric
arguments, we have d=R(1+4{2). On the other hand, |c|=ﬁ, and
d:%‘:RlaL hence |a|=1442; and since |a|?—|c|?=1, we have

|c{=,’2+2~]—2_. Now let us choose the + sign in the expression for a,

ie. Arg(a):i’. Since Arg(—%)—’g’, we obtain Arg ):—584’. Using
the formulas cos ‘i—z j - and sin %—: 5 , we obtain the

expressions for the numbers a and c in (4.3.4):
4
a=2—+-—2ﬁ(l+i), c=——2@(ﬁ+i(2+sj§)).

Other generators of the group I'y can also be expressed in terms of

a -C a -¢
parameters a and ¢ as follows: A;= _ :|, B1:|: :|,
€ a a

-C
a c
Bzz[ }.
C a

Let R: % —U be a map given by R(z):x1 e (1.2.2).

Then =R 7!I'gR be a subgroup of PSL(2,R) whose generators are:

e i Re(a)+Im(c)  Im(a)+Re(c) )
> ~(Im(a)—Re(c)) Re(a)~Im(c) ’
A Re(a)~Im(c)  Im(a)—Re(c) ]
. ~(Im(a)+Re(c)) Re(a)+Im(c) ,
5 Re(a)+Im(c) —Im(a)—Re(c) ]
' m(a)—Re(c) —Re(a)—Im(c) ’
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Re(a)-Im(c) —Im(a)+Re(c)

B,=
Im(a)+Re(c)  Re(a)+Im(c)

This group will be considered in more detail in Chapter 5.

From the construction in the proof of Poincaré’s Theorem, we
can also extract information about relations between the generators
of the group I. Since X, fixes the point w, of order m,, for
k=1, ..., r, we have
my my
X, =L =X =1d
From (4.3.1) and the fact that the stabilizer of v, is only the identity
element (compare with (4.3.2)), we obtain one more relation (notice

that multiplication here is from right to left):
XX, XrAB1A, 7B, L AgBgAg T B =1d.
Thus the presentation of a group I with signature (g; m,, ... , m,) is
<A;,B1,ALB,, o AgBg, Xy, o, Xe | X, o =X
=X,X,..X;A;B;A; !B, 7L AgBgAg 1By I =1d>.

I
r
2w[(2g_2)+2(1—mli)]go,
i=1
there does not exist a Fuchsian group with signature (g; m4, ... , my).

By a simple arithmetic calculation, there are only finitely many such
signatures. For example, there is no Fuchsian group with signature
(1;—). This gives an alternative proof that no Fuchsian group
without elliptic elements represents a compact Riemann surface of

genus 1 (see the beginning of §3.6).

Suppose now that T has r conjugacy classes of maximal elliptic

cyclic subgroups of orders m,, ..., mr, s conjugacy classes of maximal
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parabolic cyclic subgroups, and I'\J has genus g. Then we say that T

has signature
(g; my, ... , my; 8). (4.3.4)

The hyperbolic area of the quotient space can be computed in terms
of signature (see Exercise 4.11), It also can be shown (Exrcise 4.10)
that if s>0, u(I'\3%)>r/3, the minimum being attained for the
modular group which has signature (0; 2, 3; 1).

If the expression for the area in Exercise 4.11 is positive, then
one can show, by a method similar to that of proof of Theorem 4.3.2,
that a group T with signature (4.3.4) exists. (One needs s of the
isosceles triangles to have vertices on T, the angle at these vertices
being 0). The algebraic structure of the group I' is determined by its
signature, and a group with signature (4.3.4) has the presentation
m m
<A1,B1,A2,B2, “er ,Ag,Bg, Xl’ ey Xr, P17 es gy PS I Xl l==X r
_ =P,P,..PsX;X,5..X;A B1A, 1B, 71 AGBgAg 1By T =1d>,
where A;, B;, X, are as in (4.3.3), and Py (t=1, ... ,5) are the
orientation-preserving isometries fixing vertices on I.
A Fuchsian group with signature (0; m,, ... , m,; s) such that

r+s=3 is called a triangle group; we shall also write (0; m,,m,,m;)

for its signature slightly abusing our notations and allowing m;=oo.

By Exercise 4.11 a triangle group may exist only if I—nli+1%2+mL3<l.

4.4. Fuchsian groups generated by reflections

In this section we give a method for constructing triangle

Fuchsian groups with given signature.

DEFINITION. Let Q be a geodesic in 3. A hyperbolic reflection in Q
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is a hyperbolic isometry other than the identity which fixes each

point of Q.

Let Qg be the imaginary axis. By Theorem 1.2.8(iii), we have
2
sinhz[%p(z,w)]=4hrllz(+‘ﬁln(w).

This shows that the map Rgy: z— —Z, a Euclidean reflection in Qg, is
a hyperbolic isometry; and since it fixes each point of Qg, it is a
hyperbolic reflection. I ( is another geodesic, there exists
TePSL(2,R) such that T(Q)=Qq (by Exercise 1.1). As T is a
hyperbolic isometry, T"!oRgoT is the hyperbolic reflection fixing Q.
As Ry has order 2, every hyperbolic reflection has order 2.

Let m; be a positive integer or oo (i=1, 2, 3) such that
m1]+ﬁl§+fnl—3<l’ and 7 be a hyperbolic triangle with vertices
V1,Y5,v3, angles x/m,, =/m,, =/m; at these vertices, and sides M;,
M,, M3 opposite these vertices, as illustrated in Figure 19. Such a

triangle exists by Exercise 4.7. —

Fig. 19

Let R; be the hyperbolic reflection in the geodesic containing
M; (1=1,2,3), and let I™ be the group generated by the reflections
Ry,R;,R3. Since R;gPSL(2,R), I'* is not a Fuchsian group. However,
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consider T=T*PSL(2,R). I'*=rJrR,, for if Ser'* T, then SR, is the
composition of two orientation-reversing isometries, so it is
orientation-preserving and thus SR,ePSL(2, R). Also, SR eI so
that SR;er, and S=(SR;) R,;erR;. It follows from Exercise 4.13
that {T(‘r) | Te I‘*} form a tessellation of 36, that is every point of ¥
belongs to some I'*-image of r, and any two images of = may only
overlap by their boundary. It will follow that r is a fundamental
region for I*. Now let p be any point in . The r*-images of p are
corresponding points of the other triangles of the tesselation, hence
they form a discrete set. Thus the I'-orbit of each point of 3 is a
discrete set, and by Corollary 2.2.7, T is a Fuchsian group. It follows
from Theorem 3.1.2 that rUR,(r) is a fundamental region for I' (see
Fig. 20). The sides v,v and v,v,’ are paired by R,;R; and the sides
vgviand vavy! are paired by RjR,. Recalling that the angles of the
original triangle 7 are =/m;, r/m,, and =/m; and using Theorem
3.5.3, we see that {v,,v,'} is an elliptic cycle both vertices of which
are stabilized by cyclic groups of order my; {v,} is an elliptic cycle,
v, being stabilized by a cyclic group of order m,; and {vs} is an

elliptic cycle, v; being stabilized by a cyclic group of order mj.

Vi
= &
m3 '\\
» Va
V3 vy

Fig. 20
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Therefore r=3, s=0, and I'\} decomposes into 3 vertices, 2 edges (we
have 2 pairs of sides in the fundamental region), and 1 simply
connected face. By the Euler formula we have

2-2g=3-2+1=2,
giving g=0. (Alternatively, by “glueing” v,v, to v,v,' and vyv, to
vav,' we see that we obtain a surface homeomorphic to the sphere).

Thus the signature of 1 is (0; my, m,, ms).

4.5. Fuchsian groups of the first kind

Recall that a Fuchsian group T is of the first kind if its limit
set A(T) coincides with the set of points at infinity (see §3.4).
THEOREM 4.5.1. IfT is a geometrically finite Fuchsian group of the

first kind, then T has a fundamental region of finite hyperbolic area.

PROOF: Let F be a fundamental region for I' with finitely many
sides. If F has a free side, then any point of this side is not a limit
point for I'; hence I' is not of the first kind. Thus F has no free sides.

Then either F is cocompact, or it has a finite number of vertices at

Fig. 21
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infinity. Let as draw non-intersecting geodesics which separate the
vertexes at infinity (see Fig. 21). Thus we divide F into a union of a
compact polygon, and a finite number of hyperbolic triangles with
one angle at infinity equal to 0 (shaded in Fig. 21). Since the

hyperbolic area of each triangle is finite, the theorem follows. o

A converse statement is also true.

THEOREM 4.5.2. If a Fuchsian group T has a fundamental region of
finite hyperbolic area then T is of the first kind.

PROOF: We shall use the unit disc model U to prove that each point
of the principal circle T is a limit point for I'. Let F be a Dirichlet
fundamental region for I'. Then u(F)<oo, and by Theorem 3.5.1 F is
locally finite.

LEMMA 4.53. Let r={Id, gy, g5, ...} be a Fuchsian group acting on
AU, and F be a locally finite fundamental region for T. Then Euclidean
diameter of (gn(F))—0 as n—co.

PROOF: If this were not so, we could find a subsequence {n,} and
points zy, Wy €gn, (F) such that 2, —z, wy—w, z#w. Neither z nor w
lie inside U since this would contradict the local finiteness of F,
therefore |z|=|w|=1. Then gn, (F) accumulate on the geodesic [z,w],

and this also contradicts the local finiteness. u|

Let zoeT and Ue(zy) be the intersection of the Euclidean disc
of radius ¢ centered at zg with . Using Lemma 4.5.3, we can choose
A el such that A (F)cUc(z), since the hyperbolic area of Ue(z) is

infinite and F is a fundamental region. Letting ¢—0, we can choose a
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sequence of distinct transformations {Tn} such that Tn(z)—zq for any
zeF. 0

REMARK: Another converse statement is Siegel’'s Theorem
(Theorem 4.1.1).

4.6. Finitely generated Fuchsian groups

The goal of this section is to prove that finitely generated
Fuchsian groups are geometrically finite. The converse to this
statement is Theorem 3.5.4: it states that transformations which pair
sides of a fundamental region F for a Fuchsian group I' generate T.
Hence if the number of sides of F is finite, then TI' is finitely

generated.
THEOREM 4.6.1. IfT is finitely generated, it is geometrically finite.

PROOF [B]: We shall use the unit disc model U. Suppose that 0 is
not a fixed point for any element in I', and let F=Dy(T) be the
Dirichlet region with center at the origin 0. We know (Theorem
3.5.4) that the transformations pairing the sides of F generate T.
Each of finitely many generators of I' is therefore a finite word in the
side-pairing transformations of F. It follows that a finite number of

side-pairing elements generate I': let these be gy, ... , g.

Choose some r in (0,1) such that the disc {|z|<r} contains arcs
of positive length of each of the sides paired by g;, ... , g. We
always can choose r so that the circle {|z{=r} does not meet any

vertex of F and so that it is not tangent to any side of F. Let

K=Fn{lz|<r}. (4.6.1)

The two main steps in the proof are to show that:
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(1) F can be expressed in the form
F=KuF,UF,u...uFy, (4.6.2)

where K is the set defined in (4.6.1), which has compact closure, and
each 8,4F,; is connected.

(2) Only finitely many sides of F meet each F,.

Since vertices of F are isolated in U (Exercise 3.10), we know
that only finitely many sides of F meet K, and this will conclude the

proof.

To derive the expression (4.6.2) we notice that
FN{lz}=r}=0,U...Uos,

where o; are pairwise disjoint closed arcs of {|z|=r} lying in F, and

their end points lie on 8F. Let

ger
Observe that by construction of the region K, for each j, the set

KUg;(K) is connected (K is convex) and hence so is each

KUg;, (K)Ugj,8,(K)U - Ugj, -8 (K) (1<ji<t).

Since g; generate T, this implies that I'(K) is connected.

Now recall that F=Dy(I') coincides with the region Rq for T
(Theorem 3.3.5). If two sides of F are paired by an element ger
(1<i<t) then they belong to isometric circles I(g;) and I(g;"!), and by
Theorem 3.2.4, if zel(g;) and w=gj(z) then |w|=|z|. It follows that
the collection of endpoints of all the o; are also paired by the

side-pairing transformations. This implies that each endpoint of
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each o; is the endpoint of some h(s;) for a unique h and unique o;,
and we deduce that each o; lies in a simple arc G; composed of
images of the o;. Because there only finitely many o;, the arcs G;
contain images of the same o¢;; and the uniqueness of the construction
of the G; implies that G; is invariant under some non-trivial element
h; of I. Note that G; consists of the images of a compact arc under

iterates of hj.

Observe that a point of K cannot be congruent to any point of
any o; since they belong to the same fundamental region, so I'(K)

does not meet any G;.

<0

Fig. 22

Now let F; be the union of o; and the component of F—o; that
does not contain the origin (see Fig. 22). Notice that G; separates F;
and I'(K) in Q.

It is easy to see that 9oF; is connected. Suppose u and v are
two distinct point in this set. We have ru, rveo;. Since F is convex

we can construct a curve 7; by connecting u to ru radially, then ru to
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v in ¢j, and finally v to rv radially. This curve lies in F; and hence
does not meet T'(K). If h (#Id) is in T, then h(F) does not meet r;
(since r; lies inside F;CF) and so lies on the same side of r; as does
I(K). Therefore the region T; illustrated in Figure 23 does not meet
any h(F), h#1Id, and so lies in F. This shows that 8oF; is connected,
and (1) is established.

We now return to the classification of h; stabilizing G; and
complete the proof. If b, is elliptic, then G; is a Jordan curve in U as
illustrated in Figure 24, so one component of U-G; has compact
closure in 4. If this component contains F}, then only finitely many
sides of F meet F;. If this component does not contain F}, it contains
r(K) and so r is finite: then the Dirichlet polygon for I' has only a

finite number of sides.

Fig. 23

If b; is hyperbolic, then G; is a cross-cut of U with the fixed
points of h; as its fixed points (see Fig. 25). One component of U-G;
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contains I'(K) (and hence the orbit of the origin) and so every limit
point of I'(0) and hence (by Lemma 4.5.3), every limit point of I' lies
in the Euclidean closure of this component. The other component of
U—G; contains F; and there are no limit points on the open arc of £
that bounds this component. However, F; lies in F and hence lies
between the perpendicular bisector of the segment [0, h;(0)] and that
of the segment [0, hj'l(O)]. By Exercise 3.7, those perpendicular
bisectors are the isometric circles I(h;™!) and I(h;) respectively. We
observe that the fixed points of h; lie inside the isometric circles I(h;)
and I(hj—l) (since the points outside of I(h;) are mapped inside
I(h™!), and by Exercise 3.5(i) these circles do not intersect). We
deduce that these isometric circles separate F; from the fixed points
of h;, and that §oF; lies in the set of ordinary points of . As the
Euclidean diameters of images of F tend to zero (see Lemma 4.5.3
again) we see that F; can meet only a finite number of images of F

and hence only a finite number of sides of F.

Fig. 24 Fig. 25 Fig. 26

Finally, suppose that h; is parabolic. Then G; is a closed
Jordan curve in U (apart from its initial=final point « which is the

fixed point of h; and which lies on T as shown in Fig. 26). In this
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case one component of U—G; has the Euclidean closure consisting of
the single point «. If this component contains I'(K), then repeating
the argument for hyperbolic h;, we conclude that A(T) consists of a
single point «. This implies that ' is elementary, hence a cyclic
parabolic subgroup whose fundamental region has two sides. If this
component contains Fj, then either §oF;=0, in which case only
finitely many sides of F meet F}, or 8oF; consists of a single point «
which is the fixed point of the parabolic element h;. Recall that
F=R,, and that the isometric circles I(h;) and I(h;™!) are tangent to
each other at the point o (Exercise 3.5(iii)). Therefore, in this case,
the two sides of F meet at o, and again only finitely many sides of F

meet, FJ-. 0
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Chapter Four
EXERCISES FOR CHAPTER 4

Give another proof of Theorem 4.2.2(ii) using Theorem 4.1.1.
Show that the limit of B,(p) as t—oo is a Euclidean circle
passing through p and the end of the geodesic z(t) corresponding
to t =00, and orthogonal to the geodesic z(t).

Let T be a non-parabolic transformation fixing a point b at
infinity, w(b) be a horocycle, pew(b). Prove that either T(p) or
T (p) lies inside w(b).

Let T be a non-elementary Fuchsian group, F a locally finite
fundamental region for T, and ¢ a fixed point of some parabolic
element in T, then there exists Tel s.t. T(¢)€do(F).

Give a careful proof of Corollary 4.2.6.

Prove the Gauss-Bonnet formula for an n-sided star-like

hyperbolic polygon 1 with angles ay, ... , an:

/1( = n 2 Za'
Prove that for any non-negative real numbers @, f, v such that
a+pB+v<m, there exists a hyperbolic triangle with angles o, 8, v
Prove that for any 0<e <7 there exists an isoseles triangle with a
given base and the angle between the equal sides equal to a.
If F is a compact Dirichlet region for a Fuchsian group then
u(F)>n/21, the minimum being attained for the group with
signature (0; 2, 3, 7).

4.10.Kf F is a noncompact Dirichlet region for a Fuchsian group with

#(F)<oo then u(F)>n/3, the minimum being attained for the
modular group which has signature (0; 2, 3; 1).

4.11.Show that for a Fuchsian group I' with signature

(gv my, ... , My, S),

u(T\36)=27[(2g-2) +Z<1——)+S]

1=1
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4.12.Prove that a hyperbolic reflection in Q is a restriction of a
Euclidean inversion in Q) to the upper half-plane if Q is a
semicircle, or a Euclidean reflection if Q is a vertical
line.

4.13.Show that {T(‘r) | Tel“*} forms a tessellation of J.



5 ARITHMETIC FUCHSIAN GROUPS

5.1. Definitions of arithmetic Fuchsian groups

In this chapter we give some examples of Fuchsian groups.
The most interesting and important ones are the so-called arithmetic
Fuchsian groups, i.e. discrete subgroups of PSL(2,R) obtained by some
“arithmetic” constructions. One such construction we have already
seen: if we choose all matrices of SL(2,R) with integer coefficients,
then the corresponding elements of PSL(2,R) form the modular group
PSL(2,Z). It is considered in detail in §§3.1, 3.2, 3.6, and 5.5 (see
Example A). In §5.5 we study some important classes of its
subgroups of finite index. The same construction, restriction of
scalars to integers, allows us to obtain arithmetic subgroups of larger
matrix groups, e.g. SL(n,Z) in SL(n,R), Sp(2n,Z) in Sp(2n,R), etc.
The following natural definition of an arithmetic Fuchsian group that
uses the above construction is given in [GP]. Let g—T(g) be a finite
dimensional representation of the group PSL(2,R). The elements of
PSL(2,R) which correspond to matrices T(g) with integer coefficients
form a discrete subgroup of PSL(2,R). All subgroups of PSL(2,R) thus
obtained and also their subgroups of finite index are called arithmetic
Fuchsian groups.  This definition is slightly different from a
commonly used one of an arithmetic subgroup of a semisimple Lie
group. The latter definition is given in the context of linear algebraic
groups [BH], and is beyond the scope of this book. It is rather hard
to check, except for trivial cases, whether or not a given Fuchsian
group is arithmetic according to the above definition. However, it
follows from results of A. Weil on classification of classical groups
[W] (see also [Ti]) that the list of all arithmetic subgroups of SL(2,R)

is exhausted up to commensurability by Fuchsian groups derived

112
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from gquaternion algebras over totally real number fields (for all
definitions see § 5.2). If this field is Q@ and the quaternion algebra is
isomorphic to M(2,Q), the full matrix algebra over Q, then the
quotient space '\ is not compact but has finite volume, and I is
commensurable with the modular group (Theorem 5.5.12); in all

other cases I\ is compact (Theorems 5.2.6 and 5.4.1).

5.2. Fuchsian groups derived from quaternion algebras

Let F be a field of characteristic #2. A quaternion algebra
over F is an algebra A over F satisfying the following conditions:
(i) its radical R (i.e. an ideal RCA such that R*={0} for some
integer e) is trivial,
(1) its center Z={x€A | xy=yx for all yeA}=F,
(iii) dimp(A)=4.
An algebra satisfying (1)-(i1) is called simple central algebra.

Each quaternion algebra is isomorphic to an algebra A:(%’)
. with a, beF*=F—{0} and the basis {1, i, j, k} where

i2=a, j2=b, k=ij=—ji. (5.2.1)

~1,-1 1,1

to ) and the matrix algebra M(2,F) is isomorphic to + )
Any elemeft of the algebra A has the form

In particul3r, a usual Hamiltonian quaternion algebra H is isomprhic

X =Xg+X;1+X5] +X3k, (5.2.2)
where xq, Xq, X,, X3€F.

We see that quaternion algebras are non-commutative. If
each element of A has an inverse, then a quaternion algebra is called
a division algebra. We know that the matrix algebra M(2,F) is not a

division algebra since it has zero divisors. Theorem 5.2.4 below
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shows that the converse statement is also true. Division algebras are

sometimes called skew-fields.

Let us define a linear map »: A — M(2,F({a)) by sending the

elements of the basis of A to the following matrices:

o] [eoo
“lo o1 P T 0 —yE)

(5.2.3)
, o 1], 0
YZE b oo P T b0 |
Thus we have
Xg+x1Va Xp+X3V2
p(x)=gx= . (5.2.4)

b(x2—x3J:) Xo—X142

It is easy to check that the matrices in (5.2.3) are linearly
independent, and that ¢(i%)=a, ¢(j%)=b, p(i)p(})=—e(i)e(i). We
use Exercise 5.1 to conclude that ¢ is an isomorphism of the algebra
A to an F-subalgebra of the algebra M(2, F(ya)). If a=t? for some
teF*, the isomorphism ¢ is defined by the formula

Xg+Xt Xo+Xst

p(x)=gx= , (5.2.5)
b(x,—x3t) Xo—X;t

and it is onto M(2, F). Also notice that F(ﬁ)zF(JAza) for any

AeF*. Thus we have the following result:

THEOREM 5.2.1,

(i) Ifac(F*)? then A=(22)~

F T
(i) For any XeF*, (—’— z(

t\.’)
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DEFINITION. A field F is called algebraically closed if any

polynomial in F[x] has all its roots in F.

COROLLARY 5.22. IfF is an algebraically closed field, then for any
2 and b, A_< b)~M(2 F). 0

Let «« A — A be the standard involution of A given by the
formula .(x)=%, where X=xy—x;1—Xp)—Xzk is called the conjugate of
x. Then Trd(x)=x+%X=2x;, is called the reduced trace of x, and
Nrd(x)=x-X=%¢?—%,%a—x,°b+x5ab is called the reduced norm of x.
Notice that Trd(x)=Tr(gx) and Nrd(x)=det(gx), where gx=yp(x) is
given by the formula (5.2.4). Obviously,

Nrd(xy)=Nrd(x)Nrd(y), Nrd(1)=

THEOREM 5.2.3. A is a division algebra if and only if Nrd(x)=
only for x=0.

PROOF: Let x#£0. Then Nrd(x)#0. Since Nrd(x)=x-X we have

x=1 (ie is the element inverse to x), and A is a

_ X
Nrd( ) " Nrd(x)
division algebra. Conversely, If A is a division algebra and x#0, then
x 1#£0, and Nrd(x)Nrd(x!)=1, i.e. Nrd(x)#0. 0
a,b

THEOREM 5.2.4. If A=<%) is not isomorphic to M(2,F) then A is

a division algebra.

PROOF: First we notice that ag(F*)?, otherwise we would have
A~M(2,F) by Theorem 5.2.1. Then L=F(i) is a quadratic extension
of F, and A=L+Lj. Suppose A is not a division algebra. Then by
Theorem 5.2.3, there exists heA, h#0 with Nrd(h)=0. Let
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h=xg+x,i+ %] +x3k. We have
0=Nrd(h)=x5%—x;%a—x,2b+x32ab=n(xq +ix;) ~bn(x, +ix3), (5.2.6)
where n(zq+iz,)=2¢>—az,2 is the norm in the field L. We show first
that x,+ix3#0: for if x,+ix3=0 we have n(x,+ix;)=0, and since
there are no zero divisors in the field L, xy+ix;=0; and then h=0, a
contradiction. Thus we deduce from (5.2.6) that

where qq, q;€F, i.e.

b=Qo2—aQ12~

Now we construct a map from A onto M(2,F) sending the

elements of the basis of A to the following matrices:

1 0 . 0 1
1 — 31— )
0 1 a 0
(5.2.7)
. 9 - q12 —-qp
_] — 3 k —_— .
[ 918 —qg } [ aqp —aQJ

It is easy to check that i2—a, j2—b, ij=—ji, and that the matrices in
(5.2.7) are linearly independent. Hence AxM(2,F), a contradiction.O
EXAMPLE D. Let A:(‘%ﬂ). Since for h=143i+j+k#0, Nrd(h)
=12-5.32-11.124+55.12=20,
Theorem 5.2.4, A=M(2,Q).

is not a division algebra. Hence, by

The following theorem gives a series of examples of division

algebras over Q.

THEOREM 5.2.5. Let b be a prime number, and a be any quadratic
non-residue (mod b), i.e, x°=a (mod b) has no solutions in integers.

Then the algebra A:(%—) 15 a divistion algebra.
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PROOF: Suppose not. Then by Theorem 5.2.3 there exists x€A, x#0

with norm
%02 —x;%a—x,%b+x5%ab=0. (5.2.8)

We may assume that xg, x;, x,, x3 have no common factors. It

follows from (5.2.8) that
Xo2=ax,%(mod b). (5.2.9)

If b does not divide x,, then x,? is a quadratic residue mod b, and a
product of a quadratic residue and a quadratic non-residue is a
quadratic non-residue, a contradiction with (5.2.9). Thus b|x,, and
hence b|xg, and we see from (5.2.8) that x,”°=ax3%(mod b). By the
same argument we conclude that b|x, and b|x; in contradiction with

our assumption. a

If A= a%b is a quaternion algebra over F, and o: F — K is

any homomorphism of F into another field K, we define

A° =<‘%@>, and A6®K=<"(_a)f{£’@>.

In what follows, F will be a totally real algebraic number field
of degree n. This means that F is a field extension of Q of degree n,
so that all n distinct embeddings of F into C are embeddings ¢,
(1<i<n) into R where ¢, is the identity. Let A be a quaternion

algebra over F such that for 1<i<n there exist R-isomorphisms p,,
pr: A¥1® R-M(2, R), p: A¥I@R — H (2<i<n).  (5.2.10)

In this case one says that A is unramified at the place ¢, and
ramified at all other infinite places ¢; (2<i<n). Denote by Nrdy and
Trdyy the reduced norm and reduced trace in H. Then for any xeA

we have
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Nrd(x)=det(p;(x)), Trd(x)=tr(p1(x)), (5.2.11)
¢i(Nrd(x))=Nrdy(pi(x)), ¢i(Trd(x))=Trdy(pi(x)). ( 5.2.12)

EXAMPLE E. Let H= _11;{1 and H'={xeH | Nrdy(x)=1} be the

set of quaternions of reduced norm 1. Let us compute

Trdy(H')={Trdy(x) | xeH'}.
We have H H

X=Xg+X,1+X,] +x5k,

where i°=j?=k?=-1, and Nrd(x)H=x02+x12+x22+x32=1. Then
Ixo/<1, and hence Trdy(x)=2x¢€[-2, 2]. The converse statement is
obviously also true, hence Trdy(H')=[-2, 2].

THEOREM 5.2.6. Let A be a quaternion algebra over a totally real
number field F satisfying (5.2.10). If F#£Q then A is a division

algebra.

PROOF: Suppose A is not a division algebra, then by Theorem 5.2.4

A=M(2, F)z(%) Since [F:Q]=n>2, for any i>1 we have

A‘piz<_1’—1—)zM(2,<pi(F)), and hence A¥igR~ %)zM(Z,R) not
vi(F)

to H, a contradiction with (5.2.10). a

Let Of be the ring of integers in F. We give three equivalent

definitions of an order in A.

DEFINITIONS. (I) An order O in A over F is a subring of A
containing 1 which is a finitely generated Op-module generating the

algebra A over F.
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(II) An order 0 in A over F with [F:Q]=n is a subring of A
which contains 1 and is a free Z-module of rank 4n.

(III) An order O in A over F is a subring of integer elements in
A (i.e. elements x€A such that Nrd(x)eOg and Trd(x)eOg) such
that F.0=A.

For example, it is obvious from Definition I that if A=<%E>,
and a, beOg*, then

O={x=Xo+X;1+%X5] +X3k | X1, X3, X3, X4€ Of}
is an order in A.

We shall be interested in the group of units in O of reduced
norm 1: 0'= {x€0 | Nrd(x)=1}. For any order O in A, p,(0%) is a
subgroup of SL(2,R), and
[(A0)=n(0Y/{+1,-1)  (5:2.13)
is a subgroup of PSL(2,R).

THEOREM 5.2.7. I'(A,0) is a Fuchsian group.

PROOF: We shall give a proof in the case when A is a division
algebra over Q: A= a,ﬁb , a>0, O0={x€A | xq, X, X, X3€Z}.
Slightly abusing notations, ‘we shall write O instead of p;(0'), and
show that 0, is a discrete subgroup of SL(2,R). The embedding of A
into SL(2,R) is defined in (5.2.4). It is sufficient to find a
neighborhood of Id in SL(2,R) which contains no elements of 0!
different from Id. Let

€11 8§ )
U:{g: s €SL(2,R) | lg11—11<3, Ig12l<3,
g21 822

lg211<3, Igzz—ll<%}- (5.2.14)
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Suppose g«€O'NU. We have g;;=%X+%;V3, €10=X,+X343,
g21=b(xp—%3Va), g20=Xg—X;¥a With xq, X;, Xp, x3€Z. It follows from
(5.2.14) that |gy1+822-2]<1, ie. |2xg—2|<]1, which implies x,=1.
Also since b>1, we have |x,—x3Va|<z <}, and thus |2x,|<1, which
implies x,=0. We also have |x;¥a|<}, [x3Va|<j, which implies
x1=x%x3=0, and thus g«=Id. Thus I'(A, 0) is a discrete subgroup of
PSL(2,R), or a Fuchsian group. a

DEFINITION. If T is a subgroup of finite index of some I'(A,0), then

we call T a Fuchsian group derived from a quaternion algebra A.

DEFINITION. Two groups are called commensurable if their

intersection has finite index in each of them.

DEFINITION. If T is commensurable with some I'(A,0), then I is

called an arithmetic Fuchsian group.

5.3. Criteria for arithmeticity

Here we give a characterization of arithmetic Fuchsian groups
I in terms of the set tr(T)={£Tr(T) | Ter}. This is due to
K.Takeuchi [T1, T2]. For a field K, let

b
SL(2,F)={{ * ; :'la, b, ¢, deK, ad—bc:l}
(o}
d

an

PSL(2K)=SL(2,K)/{21,}.

LEMMA 5.3.1//Lét T be a Fuchsian group such that u(T\¥%)<oo and
the set tr(T) is contained in an algebraic number field k, [k : Q] <oo.
Then th/ere exists geSL(2,R) and an algebraic number field K,
K : Q)<oo such that g_ll‘ggPSL(2,K).
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PROOF: By Theorem 4.5.2, T is a Fuchsian group of the first kind,
hence non-elementary (see Exercise 3.8); hence it contains a
hyperbolic transformation T. Let us denote by e,, e, eigenvectors of
a matrix representing T, and by A, A™! their respective eigenvalues.

Since Tr(T)>2, A is a real number (see §2.1). We can choose e, and

e, such that det(e;,e;)>0. Let g1=—-———1—(e1,e2), and K=k(1).
det(e17e2)

(Notice that although A is only defined up to a sign, K=k(}) is

A

well-defined.) Then gl_nglz{ 0

0
1 } Take an element T,el
A

b
such that g, 'T g, = N with ¢#0, b>0 (this can be done
& c d

{0
0 1/4b

because T is not elementary), and let g,=

}. Then we know

that (g,8,) 'T(g,8,) contains two elements:
A0 a; 1
Toz 0 /\_1 (/\;61) and T1= o dl (Cl;\éO)

b
Take any element T:{ N q :| of (g18,) 'I(g18,). Then
c

A0 a b Aa Ab
0 At c d | |aterld (5:3.1)

is in (g,8,) 'T(g18,), and hence Aa+A7'd as well as a+d are in K.
Hence a and d are in K. In particular, a; and d, are in K. Since
det(T;)=1, ¢, is also in K. We also have the following relation
a b a; 1 _ aa;+bc;  a+bd, , (5.3.2)
c d ¢ dy ca;+dc;, c+dd,
which implies aa;4+bc; €K and c+dd, €K, and since a, a,, d, d;, ¢;€K

we have b, ceK. a
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THEOREM 5.3.2. Let the assumption be as in Lemma 5.3.1. Let

d
ko=Q(tr(T) |Ter) and A=ko[T]={>_a;T; | ajcko, T;eT}. Then A is
i=1
a gquaternion algebra over k.

PROOF: By Lemma 5.3.1, we may assume that T' contains two
elements

A0 a,

0 o |O#) mdTi=l T (e0),

and TCPSL(2,K;), where Kg=kg()) is either ky or a quadratic
extension of ky. Hence ACM(2, K), and 1<dimk (A)<8. In order
0

to prove that A is a quaternion algebra we have to show that

T0=

(1) 1its radical R is trivial,
(i) its center Z=k,,
(i) dimko(A):4.
b
Let T= q eR, Te°=0. Then det(T)=0 and

c
‘cr('I‘j)z‘cr(T)j for 1<j<e, which implies tr{(T)=0. Since R is an ideal,
by (5.3.1) a+d=0 and Aa+A"'d=0, hence a=d=0, and by (5.3.2)
b
b=c=0 as well. This shows that R={0}. Now let T= N q €Z.
c
Since T commutes with Ty, c=b=0 (by Theorem 2.3.3). Since T
commutes with T;, we have a=d, hence T=a.Id. But for any T'¢A,
tr(T') ek, hence a=1tr(T)eky. Hence A is a central simple algebra.

Its dimension is a square of an integer, hence it must be equal to 4. O

LEMMA 5.3.3. Let T be a Fuchsian group with p(T\¥)<oo,
ko=Q(tr(T) |Terl), [ko:Q]<oo, and tr(T) is contained in the ring of
integers of ko denoted by Oy . Put
d
A:ko[I‘]={ZaiTi ’ aieko, T|€r} (533)
=

1
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d
and O=OKO[F]={ZaiTi l aieOko, T,eF} (534)
i=1

Then O is an order of the quaternion algebra A.

PROOF: It is trivial that O is a subring containing the identity, and
that it generates the algebra A over k,. We only need to show that
O is a finitely generated O, -module. By Lemma 5.3.1 we may
assume that T' contains two elements:

2
To= 0 )t (A#1) and Ty = ¢ dy (c1#0),
and that 'CPSL(2,Ky) where Ky=ky(2). Take an arbitrary element

b
= * 4 [€0- Then by (5:3.1), a+d and Xa+37d are in Oy,
C

Notice that A\ and A™! are units in K, and Oy, is a subring of the

ring of integers of K,. Hence a and d are in the fractional ideal

:\51_—10,(0 of Ko. By (5.3.2) aa; +bc; and c4dd; are also in :\-21—_—10,(0.
Thus, for any TeT, all its coefficients are contained in a fractional
: 1

ldeal A—z_lok

o Hence O is a submodule of a free Oko«module of

rank 4, and therefore is a finitely generated Oy -module. a

Now we can state necessary and sufficient conditions for

arithmeticity of Fuchsian groups.

THEOREM 5.3.4. Let T be a Fuchsian group with u(T\¥%)<oco. Then
T is derived from a quaternion algebra A over a totally real number
field F if and only if T satisfies the following conditions:

(I) Let k, be the field Q(tr(T) |TeT) generated by the the set tr(T)
over Q. Then k, is an algebraic number field of finite degree, and
tr(T) s contained in the ring of integers ofky, Oy, .

(II) Let ¢ be any embedding of k, into C such that p#the identity.
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Then (tr(T)) is bounded in C.

PROOF: Necessity of the conditions (I} and (II). Let T be a
subgroup of finite index in I'(A, O) where O is an order in A. For
any Tel, tr(T)eF. Therefore k, is contained in F and k, is also
totally real. Since Trd(0) is contained in Of, we see that tr(T) is
contained in Oy, and condition (I) is satisfied. Now suppose that
n>2. By (5.2.12) we see that for 2<i<n, ¢;(tr(T)) is contained in
TrdH(pi(Ol)). On the other hand, for any xe0!, we have
Nrdy(pi(x))=pi(Nrd(x)). Hence p;(0') is contained in the set
H'={xeH | Nrdy(x)=1}. But by Example E of §5.2 we know that
Trdy(H') coincides with the interval [-2, 2], so p;(tr(T)) is bounded
in R for 2<i<n. It remains to show that k;=F. Suppose F is a
proper extension of k;. Then for some i (2<i<n), pilkl=the identity.
Using this ¢; and the definition of k; we see that tr(T)=g;(tr(T)) is
contained in the interval [~2, 2]. This means that I' containes no
hyperbolic elements, a contradiction with the fact that T 1is

non-elementary (see Theorem 4.5.2 and Exercise 3.8).

Sufficiency of the conditions (I) and (II). First, using Lemma
5.3.3 we construct a quaternion algebra A(T) over k;=Q(tr(T) |Terl),
and an order O(T) by formulae (5.3.3) and (5.3.4).

LEMMA 5.3.5. Suppose T is a Fuchsian group with u(F'\¥)<oco and
satisfying (I) and (II) of Theorem 5.3.4. Then k;=Q(tr(T) | Tel) is
a totally real number field. Moreover, if ¢ is any embedding of k, into
R such that p#£the identity, then o(tr(T)) is contained in the interval
[-2, 2].

PROOF: Take any Terl, and let u and 1/u be the eigenvalues of a
matrix representing T. Let ¢ be any embedding of k, into C, ¢ #the
identity. Extend ¢ to an isomorphism ¢ of k;(u) into C. We shall
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show that |¢(u)]=1. Suppose |4(u)|#1. Then by the inequality
le(tr(T™)I=1(w(w))™ +1/(w (@)™ 21lp ()" =1/ 1w(u)i™,

the set {p(tr(T™)) | meZ} is not bounded, which contradicts (II).
Hence |¢(u)|=1. Then

e(tr(T)) =w(u)+1/p(u)=p(u)+¥(u).

Hence ¢(tr(T)) is a real number contained in the interval [-2,2]. O

PROPOSITION 5.3.6. Let T be a Fuchsian group with u(T'\3})<oo,
satistying (I) and (II) of Theorem 5.3.4. Then A(T) satisfies (5.2.10).

PROOF: In view of Lemma 5.3.1 we may assume that T contains the

following two elements:

To={ * 9 }('\7&1) and T1={ “ dl }(517&0)-

1
0 A ¢, d;

We shall show that K=k,()) is a proper quadratic extension of k;.
If k, is a proper extension of Q, then there exists an embedding
y: K—C such that wlk #the identity. ¥()) and 1/¢(}) are the roots
of the equation x ~¢(t0)x+1 0, where to=tr(Ty). By Lemma 5.3.5
we have |¥(tg)|<2. Therefore ¢(K)=4(k,(})) is an imaginary field.
On the other hand, since k, is totally real, y(k;) is a real field; hence
K does not coincide with k;. If k,=Q, then t, is a rational integer
such that |tg]>2. Therefore the polynomial x?—tgx+1 is irreducible
over Q, and hence K is a proper extension of k,. For acK, let a’ be
its k;-conjugate. Then 1/A=)". We know that

tr(T1)=a1+d16k1, (5.3-5)

and
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tr(T0T1)=a1A+d1/\’Ek1. (536)

Since A and ) are linearly independent over k, we can write uniquely

a;=agr+ay X, dy=69A+6;)". From (5.3.6) we have
(agr+ a1 A )A+(80A+ 80NN =g + a1 )X +(60A +814) A,

and hence (ag—8,)A?+(6;—ag)(A)?=0 which implies ag=6;. From

(5.3.5) we have agr+aiM +8pA+6, M =agA +ay 4600 +6,), hence

ag+bg—a;—6;=0, and finally a;=6,. This implies d;=a,’, and since

det(T,)=1, we also obtain ¢,€k;. Consequently we can rewrite
A0 ay

1
0 ' (A#l) a'nd T1= ' (C1¢0, CIEkl).
A c;

To=

We also notice that 1,, Ty, T,, ToT,; are linearly independent, and

hence form a basis for A(T) over k,, and we see that

a b
A(I‘):{ [b’cl o } |a, b e K, clekl}.

LEMMA 5.3.7. Let ¢ be any embedding of K=k,(1) into C such that
vk, #the identity. Then

blc, a

b
(i) for any element T= { N } of T we have |y(a)|<1.

1
(i1) for Ty= |: “ , } we have ¥(c;)<0.
€1

PROOF of (i): By Lemma 5.3.5, for any T= { : ,

b
b } el we have
Cl a

the inequality |4(tr(TT,™))|<2. Notice that for any a=agr+a; M €K,

9(a) =9(a0)¥(N) +(a1)¥(2)=v(a0)p(N) +¥(a)w(X)=¥(a), ~ since
|$(A)|=1 by the proof of Lemma 5.3.5 and k, is totally real. We have
$(tr(TTo™))=w(2d™) +9(a' (X)) =9(2d™) +¥(2A™) =2Re(u(2) - y(A™)).
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Since ¢(A) is not a root of unity, the set {y(A\)™ [meZ} is a dense
subgroup of the unit circle S' (see Lemma 2.2.2(ii)). Therefore we
have |Re(y(a)-z)|<1 for any ze€S* which implies jy(a)|<1.

PROOF of (ii): Applying (i) to T, we see that |y(a;)]<1. By the
equation  det(T,)=a,a;'~c;=1 we have y(c,)=vy(a2,')-1
=|¥(a;)|°~1<0. By the fact that c,#0, we see that (c;)<0. a

Now we can finish the proof of Proposition 5.3.6. Let {y;}
(1<ign) be all distinct embeddings of k; into R, and assume that
py=the identity. Extend ¢, to an isomorphism ¢, of K=k,(}) into C,
and define an embedding ¥, of A(T) into M(2, R) in the following

way:
a b vi(a) w(b)
‘I,i La= ' f - ‘Ili(a)= ' ! ' .
ble; a wi(b'eq) wi(a')
Then A‘pizAd)i:\Ili(A(I‘)) is a quaternion algebra over yi(k,)=yp;(k,).

We have A¥lg R~M(2, R). As we have seen in the proof of Lemma

5.3.7 ¥;(a')=v;(a) for 2<i<n we conclude that

anif] o b e 3i(K), c ek
B I

Using Lemma 5.3.7, one can prove (see Exercise 5.5) that A¥igR~H.O

To finish the proof of Theorem 5.3.4, we notice that (by
Lemma 5.3.3, Lemma 5.3.5, and Proposition 5.3.6) k,, A(T), and
O(T) satisfy the assumptions of §5.2. Clearly, T is a subgroup of
T(A(T), o(T)). Since both T'\% and T'(A(T), O(T))\¥ are of finite
volume, T is a subgroup of finite index in T(A(T), O(T)). This shows

that T is a Fuchsian group derived from a quaternion algebra. a
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The following result follows immediately from Theorem 5.3.4:
it characterizes Fuchsian groups derived from a quaternion algebras

over Q.

THEOREM 5.3.8. Let ' be a Fuchsian group with u(T\¥%)<oco. Then
T is derived from a quaternion algebra over Q if and only if for every
Ter, tr(T)eZ

The following theorem is a very general fact about matrices

with integral traces.

THEOREM 5.3.9. Let TePSL(2,R) be an elliptic element, and let
tr(T)eZ, then T may be only of order 2 or 3.

PROOF: We have T(z):ii—lg (ad—bc=1). Since T is elliptic,

tr{T)=|a+d|<2. Therefore we have only three possibilities: a+d=0,

a b
1, —=1. The matrix A=!: q } satisfies its characteristic
c

equation: x*~(a+d)x+1=0. If a+d=0 we have
A?41,=0,ie A%=-1,.
If a+d=1, we have
A2-A+1,=0,ie. A’=A-1,, and A’=A%_A=_1,.
If a+d=-1, we have
A2+A~|~12:07 1.e. A2=—A—12, and A3=—A2—A=12.
The theorem follows now from the fact that the identity in PSL(2,R)
is {1,,-1,}. a

COROLLARY 5.3.10. A Fuchsian group derived from a gquaternion

algebra may have elliptic elements only of orders 2 and 3.
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Let T be a Fuchsian group with u(I'\))<co. Then by Siegel’s
Theorem (Theorem 4.1.1), it is geometrically finite; hence (Theorem
3.5.4) is finitely generated. Denote by r? the subgroup of T
generated by the set {T? | Ter}. By Exercise 5.6, I‘/I‘(z) 1s a finite
abelian group of type (2, 2, --- , 2). Therefore r?is a subgroup of T
of finite index. If T® is derived from a quaternion algebra, then
being commensurable with I‘(z), [ is an arithmetic Fuchsian group.

The converse statement is also true [T1]:

THEOREM 5.3.11. T is an arithmetic Fuchsian group if and only if

r? is derived from a quaternion algebra.

5.4. Compactness of I'\¥% for Fuchsian groups derived

from division quaternion algebras

We know that for the modular group the quotient space has
finite volume but is not compact (see §3.1). We shall see in §5.5
(Theorem 5.5.12) that the same is true for its subgroups of finite
index, i.e. for Fuchsian groups derived from the matrix quaternion
algebra M(2,Q). The following theorem shows that for all other
arithmetic Fuchsian groups T' the factor space I'\% is compact [BH].

THEOREM 5.4.1. Suppose a Fuchsian group T is derived from a

division quaternion algebra. Then the quotient space T\ is compact.

PROOF: We shall give a proof [GP] in the simplest case when A is a
division algebra over Q: A= 2,b , a>0, 0={xeA|xq, Xy, Xp, X3€Z}.

Q

We shall use the following general lemma about lattices in R".

LEMMA 5.4.2. (Minkowski’s lemma) Let L be a lattice in R", i.e.

n .
L:{(xl, vy Xn) | Xa=_leunp x;; are fized real numbers, n; range
J:
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over Z}. Suppose that the determinant |z;|=A#0. Then any convez

symmetric with respect to 0 domain in R" of volume >2"A contains at

least two (symmetric with respect to 0) points of L besides 0.

PROOF of LEMMA: Suppose U is such a domain which contains no
other point of L besides 0. Let R: R” — R" be given by R(x)=ix.
Let Uy=R(U). We define for S,A€R", pga :R" — R" to be a
translation of R" along the vector SA, and for all AeL let
Ua=poa(Up). We shall show that U,NUg=0 for A#B. Suppose we
have CeUpNUg(see Fig 27). Let D be a point symmetric to C with
respect to A. Since U, is symmetric and CeU,, DeU,. Let
C'=pap(B). We have Ug=pag(U,), therefore C'eUg; and since Ug
is convex, the middle point of CC', say E, also belongs to Ug.
Similarly, E€U,. Notice that C' belongs to the plane through the
points A, B, C. Hence ACBC' is a parallelogram, and thus E is also
the mid-point of AB. Thus BeR™*(U,) which is congruent to U, so

U contains a point of L different from 0, a contradiction.

Fig. 27

Since UsNUg=8 for all A,BeL, we have vol(Uy)<A. Hence

vol(U)<2"A, a contradiction. So we conclude that U contains at
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least one (and hence two) points besides 0. a

Recall that we have an embedding A — M(2,R):
Xo+x14a Xp+X34a

b(x, —x:,,JZ) Xg—X14a

and that the quaternions xeO are characterized by the conditions xg,

X—-kgx:

X1, Xp, X3€Z.

First we show that for any geSL(2,R), there exists gx (x€0)
such that gxg belongs to a fixed compact set of M(2,R). Since A is a
division algebra, x#0 implies Nrd(x)=det(gx)#0; hence gxgeGL(2,R).
The norm on GL(2,R) can be given as follows: any he GL(2,R) can be

written in the form h=2Xhg, where A=|det h|1/2>0 1s a scalar matrix,

b
and det(hy)==x1. Suppose h0=[ * d } We define
c

Ihf|=(a?+b%+c?+d?)? +|In A|.

I;; 1
Let g= « Ff , a6—pBy=1. Then gyg= 112 , where
6 L Lo

L1 =axg+aex; + 1%y +{ayXs,
l;2=0%g+afx; + 6% +Vabxs, (5.4.1)
I1=7%0~Va7%, +bax, ~biaa,
lo, =éxg—aéx; +bAx,—biafxs.
The entries of gxg are linear forms in xg, x;, X,, X3, and thus

(111,112,121,155) can be considered as a lattice in R* with determinant

of the system (5.4.1) equal to 4ab.

Now we fix positive constants c;q, €15, €51, €95 such that their
product is equal to 4ab, and consider a domain 9cR* given by

|Ljl<c;- D is a convex domain symmetric with respect to 0 of volume
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2*4ab. By Lemma 5.4.2 we have xg, X, X, Xz€Z such that gyge®.
We notice that 9 corresponds to a set of real matrices with |g;|<c;
which is not compact. We are going to prove that, in fact, gxg

actually belongs to a compact subset of 9. For m#0, we let
DIm={geD | det(g)=m}.

Each 9y, is compact; and since for ge9, |det(g)|=1811820—812821|<K
for some K, for large |m], Dm=0. Since x€0, we have
det(gxg) =det(gx)=Nrd(x)eZ—{0}. Thus ggeK=|J Tm, a compact

m#0
subset of 9. To complete the proof, we need the following lemma.

LEMMA 5.4.3. Let x,ye0O. They are called equivalent if x 'yeol.
Then the set of all quaternions from O with norm m consists of a

finite number of classes of equivalent quaternions.

PROOF of LEMMA: To each x€0, we associate ay, the 4x4 matrix of
the transformation y — yx written in the basis {1, i, j, k}. A direct
calculation (compute 1-x, i-x, j-x, k-x and put them into columns of
ax) shows that ay has integral entries, and that if Nrd(x)=m then
det(ax)=m?. Let

GLA(n, Z)={2€GL(n, Z) | det(a)=A}.

There exists a finite set of matrices a;, ... , ap€GL(n, Z) such that

any matrix a€GL, (n, Z) can be written in the form
a=aga (e€SL(n, Z)).

This follows from Exercise 5.9. Thus among matrices ax
(Nrd(x)=m), there exist a finite number of matrices ax, (Nrd(x;)=m)
such that any matrix ax (Nrd(x)=m) can be written as ax=axze,

where a€SL(n, Z). By Exercise 5.8, a:axi_lax:a _1 - Since
Xi X
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a € SL(n,Z), x; ‘xe0®. a

We have gegeK, a fixed compact subset of GL(2, R). Choose
as in Lemma 5.4.3. Then g _i;gx=g _; €0’ and
X X; X

] [} i
g _; g8€g _1(K)cU g -1(K), a compact subset of SL(2,R). The
i X Xi k

Xj =1 Xk

X;

theorem follows from Corollary 3.6.2. a

5.5. The modular group and its subgroups
In this section we are going to study some important classes of
subgroups of finite index in T =PSL(2,Z).

Let n be a natural number, n>1, and let Zn=2Z/nZ be the ring
of integers mod n. We are going to denote a congruence class which

contains a given integer a by [a].

Let SL(2,Zn) be the group of all unimodular matrices

IR
m-{ % [d}}

with entries from Z,. There is a natural homomorphism

a b [a] [b]
: — 5.5.1
’p"{c d}{[c] [d] (5:5.1)
of the group SL(2,Z) to SL(2,Zn). This in turn induces a
homomorphism @n from P=PSL(2,2)=SL(2,2)/{x1,} to
PSL(2,Zn)=SL(2,Zn)/{£1,}. The kernel of the homomorphism ¢,

I(n), is called the principal congruence subgroup of level n.

Obviously, the group I'(n) consists of those transformations z—»z_':_'g

for which a=d=+1 (mod n), b=c=0 (mod n).
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THEOREM 5.5.1. The map ¢n is a surjective homomorphism of
SL(2,Z) onto SL(2,Z,).

[a] [b]
[c] [d]

a, b, ¢, d be arbitrary elelnents chosen from the corresponding

PROOF: Let [T]= be any matrix from SL(2,Zs), and let

congruence classes [a], [b], [c], [d]. Then ad—bc=1(mod n), i.e.
ad—bc=14+mn (mez). It follows that (c,d)=g.c.d.(c,d) and n are
relatively prime. Using Exercise 5.10, we may assume then that
(c,d}=1. Let us consider a matrix
a+rn b+sn
c d

Its determinant is equal to ad—bc+n(rd—sc)=1+n(m—rd-sc). Since

d and ¢ are relatively prime, we can choose integers r and s so that
m—rd—sc=0, i.e. so that the matrix T is unimodular. Therefore we
have proved that each matrix [T]€SL(2,Z,) has a preimage in
SL(2,Z). o

Let K(n) be the subgroup of SL(2,Z) conmsisting of all
a b 10

unimodular matrices for which = (mod n).

c d 0 1
Then K(n)=Keryn.

COROLLARY 5.5.2.
(i) SL(2, Z)/K(n)~SL(2, Zn), T/T(n)~PSL(2,Zn);
(it) SL(2, Z,)=PSL(2, Z,), |PSL(2, Zn)|=}|SL(2, Z4)| for n>2.

PROOF: Part (i) follows from Theorem 5.5.1 immediately. Since for
AesL(2,Z,) (—1,J)A=A we have SL(2,Z,)=PSL(2,Z,). In this case,

the matrices in K(2) are precisely those corresponding to the
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-1
transformations in I'(2). If n>2, 0 ¢K(n), and the matrices

-1
in {K(n)u(-I)K(n)} correspond to the transformations in I'(n). Part
(ii) follows. . 8]

Now we are going to calculate the index |I:T'(n)}, or
equivalently, the order |PSL(2,Zq)| =}|SL(2,Zy)|, for n>2. We shall
show that

|SL(2,zn)|=n3pIIIn(1-;1§), (5.5.2)

where the product is taken over all distinct primes dividing n.

Let p be a prime dividing n. Then there exists a natural

homomorphism Z,—2Z, of the ring of integers mod n to the ring of
. P . . .

integers mod %. This homomorphism induces a homomorphism of

the corresponding groups
SL(2, Zn) — SL(2, Z,,;,,)-

Let In p be the kernel of this homomorphism. Then we have
ISL(2, Zn)l=|Inp| ISL(2, Zp, /).

We shall find |In,p| using induction on the number of primes dividing

n, in order to calculate |SL(2,Zp))|.

To calculate the order of the group In, we notice that it
consists of all matrices [T]eSL(2, Zn) of the form

In other words, In p consists of matrices

n n
kX
ﬁC 1+§d



136 Chapter Five

where a, b, ¢, d €Z,. By definition, the determinant of such a matrix

is equal to 1 (mod n), i.e.
2
1+%(a+d)+g—2(ad—bc)51 (mod n).
Subtracting 1 and dividing by % we get
a+d+J(ad~bc)=0 (mod p). (5.5.3)

The order of I p is equal to the number of solutions of this

equation.

Case 1. B is divisible by p. In this case (5.5.3) is equivalent

=l

to the equation
a+d=0 (mod p). (5.5.4)

Thus a, b, and ¢ can be any integers mod p, and d is uniquely
determined by (5.5.4). Thus, in this case |Inp|=p°.

Case 2. Numbers p and % are relatively prime. We can

rewrite (5.5.3) as follows:
a(1+%d)+d—%bc50 (mod p). (5.5.5)

Since (%, p)=1, %d takes p different values mod p as deZz,.
Therefore there are (p—1) values that d can take to satisfy

1+%d¢0 (mod p), (5.5.6)
b and c can be any integers mod p, and a is uniquely determined by
b, ¢, and d. Thus the number of elements of I, satisfying (5.5.6) is

equal to pz(p—l). There is a unique value of d to satisfy

1+5d=0 (mod p); (5.5.7)
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bc takes a fixed value #0 (mod p) determined by (5.5.5), and a is
arbitrary. The number of elements satisfying (5.5.7) is equal then to
(p—1)p. Thus, in this case

|Iﬂ.pl=(p_1)P2+(p—1)p=p3(1_£’13).

Finally, we obtain the following formula:

p3, if p divides
p
In,p={

pa(l—%), if p does not divide %.
p

In order to apply induction on the number of distinct prime

divisors of n, we need to derive a formula for |SL(2,Z)| for prime p.
LEMMA 5.5.3. |SL(2,Zp)|= p3(1-1)).

PROOF: First we determine the order of GL(2,Zp). The elements of
[a] [b]
[c] [d]

that the row vectors ([a],[b]) and ([c],[d]) are linearly independent.

this group are the matrices { :l, with [a], [b], [c], [d]€Zp, such

There are p?—1 choices for ([a],[b]), excluding ([0],[0]); and for each
([a],[b]) there are p?—p choices for ([c],[d]), excluding the p multiples
of ([a],[b]): so we have |GL(2,Zy)|=(p?~1)(p®—p)- Now SL(2, Z;) is
the kernel of a surjective homomorphism det : GL(2, Zp)—Zp—{0},

50 [SL(2, Zp)|= IGL(2, Zp)|/(p—1)=p(p*-1)=p*(1~L). 0

The formula (5.5.2) now follows by induction.  Since
|PSL(2,Zq)|=}|SL(2, Zn)| for n#2, and |PSL(2, Z,)|=|SL(2, Z,)|=6, we

have proved the following theorem.
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THEOREM 5.5.4.

T : F(n)|:{6’ i{nzz
n—H (1_—)7 an>2
2pin

where p ranges over the distinct primes dividing n. o

This result can be used to compute the hyperbolic area of the

fundamental region for the group r(n).

COROLLARY 5.5.5. Let F be o fundamental region for T'(n). Then
3

#(F)z%llln(l—plz), if n>2, and p(F)=2n, if n=2.
p

PROOF: Follows immediately from Theorem 5.5.4. o

Let us consider one more class of congruence subgroups of

SL(2,Z). Let K, be a set of matrices in SL(2, Z) of the form

a nb

nc d |
where a, b, ¢, d €Z. Obviously, KnoK(n). Let I'n be a subgroup of
I, where I‘nz{z—»i—zi—g | b=c=0 (mod n)} We have I'hDT'(n). Since
(-1,)eKn, we have SL(2, Z)/Kn~T/Tn. Hence |I:Tn|=|SL(2, Z):Kq|.
By Exercise 5.11, |K; : K(n)|=¢(n)= nH(l——), where ¢(n) is the
Euler function equal to. the number of natural numbers x<n,
relatively prime to n. Hence we have

31~ L

SLE, ) : K(n)]_" nt-2)

Ko K@)l ai=d)
(F

IFFn|=|SL(2, Z) : Kn|=

n2[|] (1+%).

If F is a fundamental region for I'y then we have u ):%H (1+ )
pin



Arithmetic Fuchsian Groups 139

Our next task is to prove that any subgroup A of finite index
in I'=PSL(2,Z) has finitely many (>1) conjugacy classes of maximal
parabolic subgroups, and hence that A\% is not compact and has the
same number of cusps (see §4.2). This will imply that the parabolic
class number of A is finite and >1. This result will certainly be valid

for the congruence subgroups considered above.
LEMMA 5.5.6. T'=PSL(2,Z) acts transitively on Q=Qu{}.

PROOF: For any 2€Q such that (a,c)=1, there exist d,b€Z such that
ad—bc=1, and therefore a transformation T(z):% which maps oo
to 2. Thus any two points in Q are congruent under T. o
LEMMA 5.5.7. For any reQ there ezists a mazimal parabolic
subgroup T'r<T stabilizing r.

PROOF: Using Lemma 5.5.6, we construct Tel mapping r to co. Let
I be a cyclic subgroup generated by Z: z—z+1. It is a maximal
parabolic subgroup of T. Then I''=T T is a maximal parabolic

subgroup of T fixing r. o

Now we need the following general result.

LEMMA 5.5.8. If A and B are subgroups of a group G, and C=ANB,
then |B : Ci<|G: Al

PROOF: To each coset bC of C in B, we associate the coset bA of A
in G. This does not depend on the choice of coset representative,
since if b;C=b,C, then b;b, 'eC<A implies b;A=b,A. Distinct
cosets bC correspond to distinct cosets bA: for if bjA=b,A (with by,
b,€B), then b;b, 'eANB=C giving b;C=b,C. Thus there are at
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least as many cosets of A in G as there are of C in B. o

COROLLARY 5.5.9. Ar=ANT[r s a mazimal parabolic subgroup for

each r€Q, and any parabolic subgroup in A can be obtained this way.

PROOF: Apply Lemma 5.5.8 with G=T, A=A, B=Iy, C=ANIr=A,.
We have |Ty:A¢|<|I: A|, which is finite. Thus A, is infinite, and
therefore non-trivial for each reQ. A, fixes r, since I't does (Lemma
5.5.7). Suppose A is contained in a larger cyclic subgroup. By
Theorem 2.3.2, however, this larger subgroup also fixes r, and
therefore is contained in I'y, which is maximal and in A;; so A, is a
maximal parabolic subgroup for each reQ. Now suppose C is a
maximal parabolic subgroup in A. C has a unique fixed point
reRUco.  Solving cr’+(d—a)r—b=0 (a, b, ¢, d €z, ad—bc=1,
la+d|=2), we see that r=a;d€Q. Hence C<Ar; and since C is

2c
maximal, C=A,. 8]

LEMMA 5.5.10. The conjugacy classes of mazimal parabolic

subgroups in A are in one-to-one correspondence with A—orbits on Q.

PROOF: Let rl,rQGQ, and Ary,Ar, be their stabilizers in A. If rp=Tr,
then A,I:T“IAQT. Conversely, suppose A; and A, are two maximal
parabolic subgroups conjugate in A. We have seen in Corollary 5.5.9
that each parabolic subgroup has a unique fixed point reQ. Hence

Aj=Ary, Ay=Ar, and we have
Ary=T7*A,,T. (5.5.8)

Applying both parts of (5.5.8) to r;, we obtain T(r;)=Ar,T(r;) which
implies T(ry)=r,. o
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COROLLARY 5.5.11. The parabolic class number s of A satisfies
1<s<N, where N is the indez |T : A|; in particular, s is finite.

PROOF: Since s is the number of orbits of A on @, we have s>1. Let
ATy, ... , ATy be the cosets of A in T. For any reQ, we have
r=T(co) for some Tel (by Lemma 5.5.6). But T=ST;, for some SeA
and i=1, ... , N. Thus r=ST,(c0) lies in the A-orbit of T(), for
some 1<i<N. So A has at most N orbits, which implies s<N. o

Thus we have proved (with the help of Theorem 4.2.1) the

following theorem.

THEOREM 5.5.12. Let A<T be a subgroup in T of finite indez N.
Then A has a finite number 1<s<N of conjugacy classes of parabolic
subgroups, and therefore A\X¥ is not compact, but is of finite

hyperbolic area, having s cusps. o

EXAMPLE F. Consider A=T(2), the principal congruence subgroup
of level 2 and index 6 in T. A has three orbits on §, namely
[0]y={p/a | p, 4€Z, p is even, q is odd},

[Lx={p/a | p, q€Z, p and q are odd},

[0}y ={p/q Ip, q€Z, p is odd and q is even}u{oo},

represented by verteces at infinity ry=0, r,=1, r3=c0. As coset

representatives for A in T we can take the elements
{I, X, Z, ZY, ZX, ZYX}={T,, T,, ... , Te}

corresponding to the matrices
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2]
1
1 3
p+1
(Y p+2
6| 4
v
0 1
Fig. 28

in SL(2,z). (X, Y, Z are defined in §3.6 (see Fig. 11)). The

fundamental region G= U T|(F) for A is illustrated in Figure 28
ji=1
where the index j denotes the region Tj(F) (j=1, .. ,6). G is

bounded by six geodesics; a pair of sides meeting at each of three
vertices at infinity are paired by elements of A (e.g. the two vertical
sides are congruent under Z?), and after the identification we obtain
a sphere with three cusps. Notice that the three vertices p, p+2 and

v=(p+1)/(p+2)=1+i/2{3 are congruent under A, so they are
mapped to a single point in A\¥%. The sum of the angles at these

three points is equal to 2, so it is not a marked point.



Arithmetic Fuchsian Groups 143

5.6. Examples

Here we give various examples of arithmetic and

non-arithmetic groups.

EXAMPLE G. [K] Let A= %i) Since 3 is a quadratic non-residue
(mod 5), A is a division algebra over Q (Theorem 5.2.5). Let us
consider a Z-module O generated by {1, i, 1_2*'], H'k} By Exercise
5.13, 0 is an order. In fact, O is a maximal order i.e. it is not
contained in any other order. The group of units of norm 1 in O, T,
is embedded into PSL(2,R) as follows (a slightly different embedding

than in (5.2.4):

l+g1\f3 E(W—zuﬁf
ﬁ(w+2uﬁ) 1—151{3

F—»{:i:

| (L,m,u,w)ez*, 1=w(mod 2), m=u(mod 2), 12—3m2—5w2+15u2=4}.

) } acts on the unit disc U.
i

The group To=RIR™}, where R:{ ;

[l]

]

Let us denote RTR"1:|: : } Then a:l-ig‘ﬁg, c=w‘|3_2im‘|§,
c

lal? fl+1 and [c]*=L, so |al?, and |c|’€lZ.

We explain now how to construct the Ford fundamental
region Ry, which is compact by Theorem 5.4.1. We saw in the proof
of Theorem 3.3.7 that given any A>0 there are only finitely many
elements of T, with JaJ<A. This follows from the relation

laj?~|c{?=1 and the discreteness of TI'y, We can thus list all



144 Chapter Five

elements of Ty in order of increasing la|. This list will eventually
include all elements of T'y. Taking isometric circles for the elements
according to their order, we shall obtain the fundamental region Rq

after a finite number of steps. Indeed, the distance from the

(¢}l

C

a
isometric circle I(T), T=|: B } to the center of U is equal to
a

la] -1
fcl

sufficiently large |a] cannot contribute to the boundary of the

which tends to 1 as |aj—ooo. Thus isometric circles with

compact fundamental region.

In Table 1, we give the beginning of the list of elements of T.
(For r=0 we get the identity element, which we do not include in the
table). Columns 1 — 5 give values of r, ], m, u, w. Columns 6 — 8
give the coordinates (x,y) of the center of the corresponding isometric
circle and its radius R. The isometric circles of the first 8 elements
form a boundary of the fundamental region R, (see Fig. 29), and
therefore can be chosen as generators of the group I'y. The finite part

of the tessellation of U by the images of Rg is given in Figure 29.

Here we list the generators of the group T'y:

3 RE 2-{3 0

T1= =
{5 3
= 0 2443
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443{3 {15
T, = 2 2
{15 4-343
2 2

r 1 m u w x y R

5 3 0 0 -1 1.342 0.000 0.894

5 3 0 0 1 ~1.342 0.000 0.894
12 4 -2 0 0 0.000 1.155 0.577
12 4 2 0 0 0.000 -1.555  0.577
27 4 -3 -1 0 0.745 0.770 0.385
27 4 3 -1 0 ~0.745 -0.770 0.385
27 4 -3 1 0 ~-0.745 0.770 0.385
27 4 3 1 0 0.745 -0.770 0.385
32 6 -2 0 -2 0.839 0.650 0.354
32 6 -2 0 2 -0.839 0.650 0.354
32 6 2 0 -2 0.839 -0.650 0.354
32 6 2 0 2 ~0.839 -0.650 0.354
45 7 0 0 -3 1.043 0.000 0.298
45 7 0 0 3 ~1.043 0.000 0.298
47 6 -3 -1 -2 0.999 0.295 0.292
47 6 -3 -1 2 -0.143 1.032 0.292
47 6 3 -1 -2 0.143 -1.032 0.292
47 6 3 -1 2 -0.999 -0.295 0.292
47 6 -3 1 -2 0.143 1.032 0.292
47 6 -3 1 2 -0.999 0.295 0.292
47 6 3 1 -2 0.999 -0.295 0.292
47 6 3 1 2 -0.143 -1.032 0.292
57 1 -2 -2 -3 0.588 -0.851 0.265
57 1 -2 -2 3 0.353 0.972 0.265
57 1 2 -2 -3 -0.353 -0.972 0.265
57 1 2 -2 3 -0.588 0.851 0.265
57 1 -2 2 -3 -0.353 0.972 0.265
57 1 -2 2 3 -0.588 -0.851 0.265
57 1 2 2 -3 0.588 0.851 0.265
57 1 2 2 3 0.353 -0.972 0.265
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Fig. 29
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The identifications of the sides of the fundamental region R, are
shown in Figure 30. The genus of To\% is 1, and the number of
non-congruent elliptic points of order 3 is equal to 2. By Theorem
4.3.1, }I(RQ)Z%E.

Fig. 30
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EXAMPLE C. Let us go back to the example of the Fuchsian group

Ig of signature (2; —) constructed in § 4.3. Its generators are:

(2+42)(1-*\2) (2+42)—*2{2
2 2
Ay= ,
_(2+42)+*242 2+42)1+*42)
2 2
(2+42)(1+*42) (2+42)+*{2{2
2 2
Al— )
_(2+42)-*2{2 (2+4{2)(1-*{2)
2 2
(2+42)(1-*{2) —(2+42)+*2{2
2 2
Bl— )
_—(2+42)-*2{2 (2442)(1+%2)
2 2
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2+42)(1+*{2) -(2+4{2)-*{2{2
2 2

_—(2+42)+*242 2+{2)(1-*{2)
2 2

Using Exercise 5.15, we conclude that tr(I's) in contained in the ring
of integers of Q({2). Q(ﬁ) is a totally real quadratic extension of Q,
so condition (I) of Theorem 5.3.4 is satisfied.

Now let ¢,: Q({2) — R be a non-identity embedding sending
{2 ——{2. Notice that all generators of I'y, and hence all elements of
Ig, are embedded into M(2,K) where K=Q(s|§)(“_§) Then ¢,
extends to an isomorphism ¢,: K — C, such that

‘B {-{2=i*{2.

Under this embedding the generators are mapped into the following
matrices in M(2,C):

-R)1-iF)  (-)+itBh
-2 -z

(2-42)-i-*{242 2-{2)(1+i-*{2)
2 2
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(2-{2)(1+i-*{2) (2—1{2)-i-*{2{2
— 2
All— b
_(2=42) 44242 (2-1{2)(1-i*2)
2 2
2-{2)1-i*2)  —(2-42)-i-*{2{2
2 2
. :
C—2=2)+i2{2  (2-{2)(1+i*42)
2 2
2-{2)(1+i*2)  —(2—42)+i-*2{2
2 2
B,=
C=(2-42)-i2{2  (2-{2)(1-i-*{2)
2 2
Thus_ i

sz:{{ _ag Z |a,b€¢2(K)}.

It follows from Exercise 5.5 that A¥Z@R~H. Hence by Example E
(85.2), 9o(tr(T)) are bounded in €. So (II) is also satisfied, and by
Theorem 5.3.4, T4, is derived from a quaternion algebra over Q({2).

EXAMPLE H. Let I be a triangle group with signature (0; %, & 1.

According to the construction in §4.4, we first generate a group I'* by
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hyperbolic reflections in the sides of the triangle with vertices vy,
vo=i, vz=oo and the angles at these vertices i, 72', and 0,
respectively: Ry(z)=-2, Ry(z)=-2z+2cosf;, R3=% (see Fig. 31).
The triangle group T is generated by R1R3=—% and RoRy=2+2cos;
which identify two pairs of sides of the fundamental quadrangle v,
vy, vi', v3: RiR; identifies v,'v, with v;v,, and R,R, identifies v,'v4
with vyv3. The corresponding group of matrices is called the Hecke
group and is denoted TI'(2cosd;). Since 2cos % is always an algebraic
integer, T'(2cos;) is a group of matrices over the integers in
Q(2cosd;), but it is easy to see that not every matrix over the
integers in Q(2cosf;) belongs to this group. We are going to prove

that I'(2coss;) is arithmetic if and only if m=3, 4 , or 6.

For m=3 we obtain I‘(2cos;—}')=l‘(1)=SL(2,Z), an arithmetic
Fuchsian group derived from the matrix quaternion algebra. For
m>3, let A=2cosf;, and I'(}) be the subgroup of SL(2,R) generated by
the following two elements:

S

Fig. 31
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According to Exercise 5.16, ky,=Q(tr(T) |Ter(1))=Q(}) is a totally
real number field of degree lp(2m), where ¢ is the Euler function.
Since Ae0) I'()) is a subgroup of SL(2,0k,\). Therefore we have
tr(r‘(,\))cok,\. The element ST ™ belongs to T'(}) for any meZ, and

since tr(STy™)=-mX for any embedding ¢; : ky — C, the set

pi(tr(T)) is not bounded. Hence for m>3, (}) is not derived from a
quaternion algebra.,

By Exercise 5.17, for m=4 or 6, k,\(2)=Q, and hence F(,\)(z)is
derived from a quaternion algebra (since I'()) has parabolic elements
this quaternion algebra must be the matrix algebra, see Theorems
4.2.1 and 54.1. Hence I'(V2) and I'({3) are arithmetic Fuchsian
groups. For m=5 or m>7, k,\(z) is a proper extension of Q. Since
1"(,\)(2) contains  (ST,)?T,®" for all mezZ, and since
tr((ST)2T,2™)=(2m+1)*2-2, for any embedding ¢, : k,*~ ¢, the
set ¢;(tr(Ir)) is not bounded, hence I'(}) is not arithmetic.
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EXERCISES FOR CHAPTER 5

5.1. Prove that the map (5.2.4) satisfies gx+gy=gy .y, and
Ex -8y =Exy.

5.2. Let p=—1 (mod 4) be a prime number. Prove that A:(Za—p)
is a division algebra.

&0 )aH if a<0, b<0, and i—’l))zM(‘.Z,R)

isomorphism: R &

5.3. Show that therZ are>only two quaternion alEebra.s over R up to
otherwise.

5.4. Prove that the three definitions of an order given in §5.2 are
equivalent.

5.5. Use Lemma. 5.3.7 to show that A,®RxH.

5.6. Prove that F/F(z) is a finite abelian group of type (2, 2, .-- , 2),
where T and T‘? are as at the end of §5.3.

5.7. Let T and I be as above. Prove that k,=Q(tr(T)? | Ter)
coincides with k,'=Q(tr(T) | Ter'?).

5.8. Prove that the correspondence x — ax associates to the product
of quaternions the product of corresponding 4x4 matrices.

5.9. Each integral non-degenerate nxn matrix e can be multiplied by
an appropriate integral unimodular matrix o in such a way that
ac is a lower-triangular matrix with |a;|<|a;| for i>]

i, j=1, ..., n).

5.10.If (c,d) and n are relatively prime, then there exists q such that
¢ and d+qn are relatively prime.

5.11.Prove that | Kn : K(n) |=¢(n).

5.12.Let K4(n) be a subgroup of SL(2,Z) consisting of all matrices of
the form

a nb
¢ d ¥
where a, b, ¢, deZ. Prove that |SL(2,Z) : K4(n)|=n]] (1+I1’)'
5.13.Prove that 0 in Example G 1s an order of A. pln
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5.14.[M] Let T be a finitely generated subgroup of SL(2,R). Let
{Sy, -, Sr} be a set of generators of I. For any subset
{iy, .-, ig}c{l, ..., r} put til... is=tr(Ti1"'Tis)' Then tr(T) is
contained in the ring Z[til... i | {iyy--oistc{l, ..., }].

5.15.Let T, T,, T3, T4 be generators of the group Iy as given in §5.6
(Example C). Prove that for any subset {i;,...,is}c{1, 2, 3, 4}

tl'(T -Tis)EO

il..

2y
5.16.Prove that k, =Q(tr(T) |Tel(1))=Q(1) is a totally real number
field of degree 1p(2m).

5.17.Prove that k/\(z)zQ(tr(T) ITEI‘(,\)(z))zq(,\z).



HINTS FOR SELECTED EXERCISES

1.1. z)_— L 5+08= ﬁz_z(g_[;+_1) is given by the matrix
ﬁ —af-1 .
of determinant 1, hence TePSL(2,R). Let

o' be the second point where the geodesic meets RU{co}. If a'=0o0,

then #=0. If o/ #0c0, then pg=(a'-a)7L.

1.2. It is obvious that the map z— —Z preserves the norm on T3,

az+b

hence it is sufficient to consider the case when g(z):cz+ 1

PSL(2,R). Let ¢eT,%. Then (Dg)(¢)=g'(z)-¢, and hence by (1.1.3)
and (1.1.4)

_1(Dg)(Q)I_lIg'(z)li¢| ﬂ .
D) ON="T a2y = Trn(ez) = Ima— ¢! (*)

Conversely, let () hold, and y: I-3 be a piecewise differentiable
path in % given by 2(t)=(x(t),y(t)). Then by (%)

1 1
_[ 18'(=(t) IIZ (DIdt_ [ [2'(t))dt _

0

1.3. Let z=x+iy. The inner product in T,% (which can be
identified with R?) given by the formula (1.3.3) is clearly a scalar
multiple of the Euclidean inner product in R2. Use the formula

<<1)C2>
IISURIA

cosf= to obtain the result.

155
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1.7.  Use Exercise 1.6 and a calculation similar to one in the proof
of Theorem 1.2.1 to show that the geodesic joining 0 and ir is the
segment of the diameter joining these points. Use the transformation
(1.2.2) and Exercise 1.1 to show that any circle orthogonal to £ and
any diameter can be transformed to a vertical diameter via a

transformation in PSL(2,R).

1.9.  Orientation-preserving isometries of U are transformations of
the form: foTof™!, where TeSL(2,R) and f is of form (1.2.2).

1.11. Use Theorem 1.2.6(v).

1.13. Using the U model and considereng a circle centered at 0 of
hyperbolic radius r, prove that in the hyperbolic case, @r=2rsinh r

(you shall need formulae from Exercise 1.8).

2.2.  Use Theorem 1.2.6(ii) to obtain

cosh p(i, T(i))=}(a2 +b2+c2 +d?).

2.3.  Let gz{ ¢ i :lEPSL(2,R), z=x+iy=g(i),
7

. y1/2 xy_1/2 cosf -sind
g=arg(yi+6), and h= 12 . Prove that h=g
0 vy sind cosd

by showing that h(i)=g(i) and Dh(¢,)=Dg(¢y), where (, is the unit

tangent vector to the imaginary axis at the point i.

2.4. Let f(z):‘:;i}l’ePSL(zR). Choose local coordinates in S¥ to

be (z,¢)=(x,y,¢,7), and (f(z), (Df)(¢))=(u,v,¢',n'). Then the Jacobian

matrix for the change of variables is
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I gu o 0 0 |
s & 0 0
0 0 m 0

i 0 0 0 (czid)zJ

I gu o 0 0 |
-%1 qu 0 0
0 0 (czid)z 0

i 0 0 0 m_}

by the Cauchy-Riemann equations. The metric on S¥% given at the

end of §2.1 is a norm in the tangent space to S¥:
dx)2+(dy)?
||(dxadYad£ad77)“2=LX)—y+2(—X)_+(d0)2'

The invariance of this norm follows from the fact that the
determinant of the upper-left block of the Jacobian matrix is equal

to |f'(z)|?=|cz+d|™* and from the linearity in the last two variables.
2.8.  Use Theorem 2.2.6 and Corollary 2.2.7.
2.10. Use the fact that the ring of integers in Q({2) is a Euclidean

ring to construct a sequence of elements in I' which converges to the

identity.
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2.11. If r is elementary, for any T,Sel, <T,S> is elementary.
Conversely, suppose TI' is not elementary. By Theorem 2.4.4 it
contains a hyperbolic element T with fixed points o and 8. Since T is
not elementary, there exists SeI' which does not leave the set {e, g}

invariant. Hence <T,S> is not elementary.

2.13. First construct two elements in I': a hyperbolic element T
with fixed points {a, 8}, and an element S which does not leave the
set {a, B} fixed as in 2.10 above. Suppose first that the sets {a, g}
and {S(e), S(8)} do not intersect. In this case, the elements T and
T,=STS™! both are hyperbolic and have no common fixed point.
The sequence {T"T,T™" | neZ} consists of hyperbolic elements with
fixed points T"S(a) and T"S(B) which are pairwise different. If the
sets {a, A} and {S{a), S(B)} have one point of intersection, say a,
then P={T,T,] is parabolic (show!) and it fixes a. Since {a} cannot
be I-invariant there exists Uel not fixing o; then Q=UPU™?! is
parabolic and does not fix a. Therefore Q and T have no common
fixed points. Then for large n, elements T and Q"TQ™" are
hyperbolic and have no common fixed point, and the problem is

reduced to the first case.

2.14. (1) = (ii) by Corollary 2.2.8. (1) = (iii) by the definition.

(i) = (iv). Suppose (iv) does not hold. Then I contains an element
T of infinite order.  If x is its fixed point then the sequence {T"(z) |
nez}, is dense on the hyperbolic circle of radius p(x,z) centered at x.
Since T is not elementary, there exists Sel such that S(x)#x; then
the sequence T"S(x), which consists of elliptic fixed points of the
following sequence (T"S)T(T"S)"!, has limit points in 3, a
contradiction.

(iii) = (iv). Suppose (iv) does not hold. Then after corresponding

conjugation our group must contain an element of the form
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T(z)=exp(27i6)z, where ¢ is irrational. Since the numbers exp(2ri)
are dense on the unit circle, for an appropriate subsequence, T" — Id.
(iv) = (i). Let us consider T as a group of matrices, and suppose I,
is a finitely generated subgroup of I. By a result of Selberg [Se], Ty
contains a subgroup I, of finite index which contains no elliptic
elements of finite order. Hence by our hypothesis, it contains no
elliptic elements. Thus by Theorem 2.4.5, Ty is discrete. Since Ty is
of finite index in Ty, Ty is also discrete; and by Theorem 2.4.8, T is

discrete.

3.1. Use Theorem 1.2.8(ii) for the hyperbolic distance.

It is orthogonal to the principal circle since {a|?—|c|?=1.

3.4. In general, isometric circles do not map to isometric circles

under conjugation, for some exceptions see Exercise 3.6, below.

3.6. Notice that conjugation by a translation z—z+f maps an
isometric circle to an isometric circle of the same radius translated by
—pB. Hence, without loss of generality, we may assume that the
isometric circles for T and T™! are symmetric with respect to the

imaginary axis. Use formula (3.3.5) to complete the proof.
3.7. Use formula (3.3.5) again.

3.8. This follows from Theorem 2.4.3 which gives a complete

description of all elementary Fuchsian groups.

3.9. Suppose F is locally finite. Then each point ze€¥ has a compact
neighborhood V such that (ii) and (i1i) hold. Decreasing V, if
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necessary, we may assume that for all 1<i<n, zeT,(F), i.e. (i) holds.
Conversely, if K is a compact subset of ¥, for each z€K choose a V,

satisfying (i) - (iii), and choose a finite subcover UvziDK-
i

3.10.If x lies on the side of the Dirichlet region F=Dpy(I), then there
exists Tx€T such that p(p, x)=p(Txp, x), hence p(p, x)=p(p, Tx *x).
Now assume that a vertex veJ is not isolated, i.e. there is a sequence
of vertices v;eF such that v,—»v. According to the above remark,
choose T, such that p(p, v;)=p(p, Tivi). We have

p(vy Tv)<p(v, vi)+p(viy Tv)<p(v, vi)+p(v;, P)+p(P, Tiv)=

p(v, v) +2p(vi, P)<p(v, v))+2p(v;, v)+2p(v, p). Hence for any >0
p(v, Tv)<2p(v, p)+e, for large i, which means that T,v,eK for all
i>N where K is a compact region in ¥%. So there is a subsequence
Thvn—belk, but this contradicts the local finiteness of F.

3.11.Since F is locally finite, apply Exercise 3.9. Notice that if z€dF,
then zeT,(F)N...NTn(F) for n>2.
a b
3.12.Let T= d €SL(2,Z) be of order 2. Then a+d=0, and
c

[
integer, we obtain c=x1. But then since |Re(z)|<}, we obtain d=0,

the only fixed point in % is z=—d+—(;1—|. Since Im(z)z% and c is an
and z=i.

3.13.Suppose FNT(F) contains 3 points not belonging to the same
geodesic. Since F is convex, it follows that FOT(F) contains a
hyperbolic triangle of non-zero area; hence property (ii) of the
definition is violated. @ Hence FNT(F) is a geodesic segment
containing T(s), and hence FNT(F)=T(s).

4.2. Use Exercise 1.1 to map z(t) into the imaginary axis.
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4.3. This becomes obvious if we map the axis of T into the imaginary
axis using Exercise 1.1: w(b) will be mapped to a Euclidean circle

tangent to the real axis, and T will become z— Az,

4.4. Assume that =00, and its stabilizer is generated by Ty: z—z+1.
Let Ko={x+y | y22}, K={x+iy | y>1}, and K;={x+iy | 1<y<2}.

Since T is non-elementary, by Excersice 2.11 and Theorem

2.4.8, for any fer, f(z):?Zig, <Tg, f> is non-elementary and

discrete. Then the Jgrgensen inequality (Theorem 2.4.6) holds for T,
and any fer, and by Exercise 2.12, [c|>1. Then Im(f(i))<1, hence Ii

N Kg=0, and therefore U f(Kq)# %. It follows that if
f(ﬁ)ﬂK#@, then f(ﬁ)ﬂK1¢0. fESruppose F intersects h(K), then
h~Y(F) intersects K, and hence K,. Let E={x+iy | 0<x<1, 1<y<2},
then %}TO"(E)=K1, and for some n T,"h™Y(F) intersects E. Since E

is compact and F is locally finite, only finitely many images of F

~ ~

intersect E, say g,(F), ... , gn(F). This means that To"h =g for

some j, and h(K)=g;"}(K). Now suppose z,, 2, ... is a sequence of
points in K such that Im(z,) — oo. Then there are elements h;, h,,
. € I such that hn(zn)eﬁ, i.e. F intersects each h,(K). By the
previous argument, hm(K)=gjm_1(K), i.e. hm(K) may take only
finitely many values, hence (by going to a subsequence and
renumbering) we have h;(K)=h,(K)= ... . It follows that there are
integers t,, t3, ... such that hmzthotm. Thus hl(wm)eﬁ, where
wm=T0t'"(zm), and since Im(wpy)=Im(zm) - o we conclude that

Wm — co. Hence hl(oo)e’ﬁ.

4.6. Recall that I is a star-like polygon: there exists pell such that

geodesic rays from p to the vertices lie inside . Use these rays to



162 Hints for Selected Exercises
divide 1 into n triangles and apply Theorem 1.4.2.

4.7. Use the unit disc model, and let g, and g, be two geodesic rays
passing through 0 making the angle a. For any point Peg, there
exists a unique geodesic g4(P) through P such that the angle at P is
equal to g. If P is sufficiently close to 0, g5(P) intersects g, (why?)
at an angle y(P). Use continuity arguments to show that for a

unique Peg,, v(P)=7.

4.9. If g>2, then p(F)>4r. If g=1, then as u(F)>0, F must have
periods and hence p(F)>#, the minimum is attained for a group with

signature (1; 2). If g=0, then

I
=27r(_2+zl(1—%-i)).

1=
Since 1-——1—>%, p(F)Z27r(—2+§)=7r(r—4) so that if r>5, then
u(F)>, the minimum attained for a group with signature (0; 2, 2, 2,
2, 2). If r=4 and m;=my=m3=m,=2, then u(F)=0 which is
nonadmissible.  The minimum positive value of u(F) for r=4
corresponds to the signature (0; 2, 2, 2, 3) giving u(F)>#/3. Let us
consider the remaining case g=0, r<3. If r<2, then u(F)<0. Hence
the only case to consider is g=0, r=3. In this case T is a triangle

group with signature (0; m,, m,, my), and

We may assume that m;<m,<mj;. If m;>4, then p(F)>x/2. I
m;=3J then a group with signature (0; 3, 3, 3) gives u(F)=0; and the
positive minimum is attained for (0; 3, 3, 4) giving p(F)>r/6. If
m;=2, then m,>2 and if m,>4, then u(F)>#/10, the minimum
corresponding to (0; 2, 4, 5). If m,=3, then (0; 2, 3, 6) gives u(F)=0;

and the positive minimum is attained for (0; 2, 3, 7), giving
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p(F)>=/21.

4.12.A hyperbolic reflection is an orientation-reversing isometry of %,
and hence it is given by
T(2)=2L,

with ad—bc=1 (see Theorem 1.3.1). We know that the fixed-point
set for T is the given geodesic Q. Solving T(z)=z, we obtain
c|z|?+dz=b+az, and equating the imaginary parts we get d=—a.
Show that the fixed-point set is given by the equation |z—%|=’—(1:—] if
c¢#0, and x:-zha if ¢=0, a geodesic in either case. Express a,b,c, and
d in terms of the center and the radius of Q to obtain the formula for

inversion (3.3.5).

5.2. It is useful to introduce the Legendre symbol (see e.g. [S]):

P/ if b 1s a quadratic non-residue mod p.

(p-1)/2

(b)_{ 1, if b is a quadratic resedue mod p
-1,

By the Quadratic Reciprocity Law, (:_1)___(__1) . Then in our

g

case (:pl)z—l, hence —1 is a non-residue mod p, and this follows

from Theorem 5.2.5.

5.3. If a>0 then ae(R*)?, and then by Theorem 5.2.1
(B2)~M2 ®). I a<0,  b<0  then  Nrd(x)
=X¢2—ax,?—~bx,%+abx;4?>0 unless x=0, hence (by Theorem 5.2.3) in
this case (ii%)) is a division algebra.

5.5. Use also Exercise 5.3.

5.6. First prove that r‘? is a normal subgroup of T; then notice that
for any Ter/r(z), T2=1d which implies that I‘/I‘(z) 1s abelian. Since
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T is finitely generated, so is I/T‘®. Hence r/r'? is finite. Now

apply the Classification Theorem for finite abelian groups.

5.7. A basis of A(T') constructed in Proposition 5.3.6 can be chosen in
the form {1,, a2, §2, a?42} where a and g are hyperbolic elements in
r. See [T1].

5.10.Let (¢, d)=s, c=ks. Check that qz(—kks_) works.

5.11.Show that K,/K(n) is isomorphic to the group of all diagonal

[a] 0
0o [d |

where [a] and [d] are invertible elements in the ring of integers mod

unimodular matrices

n.

5.12.Use the natural homomorphism +,: SL(2,Z2)—SL(2,Z,) as in
(5.5.1) to find [Ko(n) : K(n)]. Since  yn(Ko(n))
0
={ 2 ESL(2,Z,,)} conclude that [Ky(n) : K(n)]=ne(n). Now
[c] [d]
use Exercise 5.11 and (5.5.2).

5.13.Use definition (II) of an order. O is a free Z-module of rank 4.
In order to check that O is a subring, it is sufficient to check that the

products of its generators belong to O©. For example,

b
5.14.[T3] For any T= 2 d €r we have T2—tT+1,=0, where
c

t=tr(T)=a+d. Hence for any integer n, T"=f;(t)T +gn(t)1,, where
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fa(x) and gn(x) are monic polynomials in Z[x]. Moreover, for any A,

B, Ter we have

tr(A)tr(B)=tr(AB) +tr(AB™),
{ tr(ABAT)=tr(AB)tr(AT)—tr(BT ). For any Ter, express
T=s ™. 5™

s
; and let m(T) be the minimum of )" |n;| for all such
1y s K

1=
expressions. Now use induction on m(T) and the above formulae.
5.15.Use Exercise 5.14.

5.17.Use Exercises 5.16 and 5.7.
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