Albrecht Dold

Lectures on Algebraic
Topology

With 10 Figures

Second Edition

Springer-Verlag,
Berlin Heidelberg New York 1980



Foreword

This is essentially a book on singular homology and cohomology with
special emphasis on products and manifolds. It does not treat homotopy
theory except for some basic notions, some examples, and some applica-
tions of (co-)homology to homotopy. Nor does it deal with general(-ised)
homology, but many formulations and arguments on singular homology
are so chosen that they also apply to general homology. Because of these
absences I have also omitted spectral sequences, their main applications
in topology being to homotopy and general (co-)homology theory. Cech-
cohomology is treated in a simple ad hoc fashion for locally compact
subsets of manifolds; a short systematic treatment for arbitrary spaces,
emphasizing the universal property of the Cech-procedure, is contained
in an appendix.

The book grew out of a one-year’s course on algebraic topology, and it
can serve as a text for such a course. For a shorter basic course, say of
half a year, one might use chapters II, III, IV (§§ 1-4), V (§§ 1-5, 7, 8),
VI (§§3, 7, 9, 11, 12). As prerequisites the student should know the
elementary parts of general topology, abelian group theory, and the
language of categories —although our chapter I provides a little help
with the latter two. For pedagogical reasons, I have treated integral
homology only up to chapter VI; if a reader or teacher prefers to
have general coefficients from the beginning he needs to make only minor
adaptions.

As to the outlay of the book, there are eight chapters, I-VIII, and an
appendix, A; each of these is subdivided into several sections, § 1, 2, .....
Definitions, propositions, remarks, formulas etc. are consecutively num-
bered in each §, each number preceded by the §-number. A reference like
II1, 7.6 points to chap. III, § 7, no. 6 (written 7.6) — which may be a
definition, a proposition, a formula, or something else. If the chapter
number is omitted the reference is to the chapter at hand. References to
the bibliography are given by the author’s name, e.g. Seifert-Threl-
fall; or Steenrod 1951, if the bibliography lists more than one publica-
tion by the same author.



The exercises are meant to provide practice of the concepts in the main
text as well as to point out further results and developments. An exercise
or its solution may be needed for later exercises but not for the main text.
Unusually demanding exercises are marked by a star, *.

I have given several courses on the subject of this book and have profited
from many comments by colleagues and students. I am particularly
indebted to W. Bos and D.B.A. Epstein for reading most of the manu-
script and for their helpful suggestions.

Heidelberg, Spring 1972 ALBRECHT DoLD

About the Second Edition:

Few changes were made for the 2°¢ edition, the main one being a con-
siderable simplification of the proof of the Lefschetz-Hopf fixed point
theorem (cf. pp 210-212). Some mistakes were corrected: V, 2.14 exerc. 2,
V, 7.8 exerc. 2 and exerc. 6, proof of VIIL, 9.7 (p. 307, line 2 sqq.), and
lesser ones. Numerous misprints and the like were eliminated. Some
references were added to the bibliography.

I am very grateful to all who commented on the 1* edition.

Heidelberg, Spring 1980 ALBRECHT DoLD
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Chapter I

Preliminaries on Categories,
Abelian Groups and Homotopy

The purpose of this chapter is to provide the reader of the book with
quick references to the subjects of the title. The content is motivated
by the needs of later chapters, and not by intrinsic considerations. The
reader should have some elementary knowledge of categories and
abelian groups; otherwise he might find the treatment too concise.
But even with very little knowledge he should probably start the reading
with Chapter II, and refer to Chapter [ only when necessary. He may
then find the reference in I too short, insufficient (some proofs are
omitted), or too ad-hoc; in that case he should consult the relevant
literature, samples of which are listed at the end of §1 and §2.

The customary language and notation of set theory (such as U, N, <,
€ ¥ XxY, f: X—Y, x>y, {xeX|x has property P}, etc.) are used
without comment. Similarly, the reader is assumed to know the ele-
mentary parts of general topology.

Some basic sets and spaces are denoted by special symbols which are
fixed throughout the book. For instance,
IN =set of natural numbers,
Z =ring of integers, Z, =ring of integers mod n,
Q, R, C=field of rational numbers, real numbers, complex numbers,
with the usual topology,
R'=RxRx--xR, C'=CxCx ---xC, (n factors),
B"={xeR"|||x|| <1}, where ||x[*=37"_, x7,
$"1={xeR"|| x| =1} =(n—1)-sphere,
[0,1]={teR|0<t<1}=unit interval.

1. Categories and Functors

1.1 Definition. A category € consists of

(i) a class of objects, denoted by Ob(%¥). When there is no danger of
confusion we also write € instead of Ob(%).
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(i) For every pair X. Y of objects, a set of morphisms from X to Y, denoted
by €(X,Y) or _X.Y_. If ae¥4(X, Y) then X is called the domain of «
and Y the range of «; one also writes a: X — Y, or X —2- Y, or simply

X — Y to denote morphisms from X to Y.

(iii) For every ordered triple of objects X, ¥, Z a map from ¢ (X, Y)x
€(Y, Z) to 4(X, Z), called composition; the image of («, f§) is denoted by
Boaor Ba, and is called the composite of « and f.

These data have to satisfy the following two axioms
(iv) yo(Boa)=(yoP)ow (associativity) whenever X —*> YL 7 T, W

(v) There exists an identity morphism id=idy: X — X, for every
object X, such that

aoidy=0a, idyoa=u«

whenever a: X — Y. These identities are easily seen to be unique
(idy=1idy o idZ =1d%).

1.2 Examples. (i) The category of sets, ¥=%e¢s. The objects of this
category are arbitrary sets (Ob(Feds)=class of all sets), morphisms are
maps ([ X, Y]=set of all maps from X to Y), and composition has the
usual meaning.

(il) The category of abelian groups, ¥ =./%. Here, Ob(«/¥) is the
class of all abelian groups, [X, Y]=Hom(X, Y) is the set of all
homomorphisms from X to Y, and composition has the usual meaning.

(iif) The category of topological spaces, € =Jo4. Here, Ob(J04) is the
class of all topological spaces, [ X, Y] is the set of all continuous maps
from X to Y, and composition has the usual meaning.

(iv) The homotopy category, € = #¢%, as defined in 1.3, has the same
objects as Joz, but the morphisms are not mappings in the usual sense.

(v) Every quasi ordered set C can be viewed as a category 4 as follows:
Ob(%)=C.% (X, Y)=0 for elements X, YeC such that X £V, and
% (X, Y) consists of a single element (X, Y) if X <Y. Conversely, if ¢
is a category such that no (X, Y) has more than one element and
il Ob(%) is a set then Ob(%) is quasi-ordered by putting X < Y
E(X, Y)+0.

(vi) Every group G gives rise to a category ¥ with a single object e,
Ob(%)={e}, with €%(e,e)=G, and composition defined by multi-
plication.

(vil) If % is a category then the dual or opposite category €°P is defined
as follows: Ob(%°?)=0b (%), €°°(X,Y)=%(Y, X), f*a=0ao i where *
denotes composition in 6°F.
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(viil) If 4, and %, are categories, then the product category 4 =%, x %,
is defined as follows. Ob (%)= Ob(%;) x Ob(%,)=class of all pairs (X, X,)
whereXeOb(‘g) (g((Xan)»(Yu Yz)) 61Xy, X6 (X3, Y,); (B, B2)e
(oy, 0z)=(By ooy, By 0 t3).

1.3 Definition. If ¢", ¢ are categories then % is called a subcategory of
% provided

(i) Ob(€)=O0b(%),

(i) €(X,Y)=%(X',Y') forall X', Y'eOb®),

(iii) the composites of ae¥’ (X', Y'), fe¥' (Y, Z') in €' and ¥ coincide,
(iv) the identity morphisms of X eOb(¥’) in ¥’ and ¥ coincide.

If, furthermore, €' (X', Y)=%(X", Y') for all X', Y’eOb(%¥’) then €’ is
called a f:.! subcategory. A full subcategory 4’ of ¥ is therefore
completely determined by the class Ob(%”). For instance, the category
of finite sets and (all maps) is a full subcategory of S%¢s. Non-full sub-
categories of 1.2 (i), (ii) or (iii) are obtained by taking for 4'(X, Y) the set
of all injective (or all surjective) morphisms, and Ob(%¢')=0b(%).

1.4 Definition. If x: X > Y, f: Y— X are morphisms (in a category %)
such that fa=id then f is called a left inverse of o, and « a right inverse
of f. If » admits a left inverse ff, and also a right inverse £, then
pi=B,(ap,)=(B,2) f,=P,; in this case, a is called an equivalence, or
isomorphism, and the inverse (or inverse isomorphism) f,=f, is denoted
by a~!. Two objects X, Y are said to be equivalent or isomorphic, in
symbols X ~ Y, if an iSomorphism a€%(X, Y) exists. For instance, an
equivalence in ¥ =%¢s is a bijective map, an equivalence in €=/
is a homeomorphism, an equivalence in 4 =/% is an isomorphism in
the usual sense.

1.5 Definition. Let ¥ and 2 be categories. A (covariant) functor T from
% to 2, in symbols T: ¥ — 2, consists of

(i) a map T: Ob(¢)— Ob(2), and

(1)) maps T=Tyy: 6(X,Y)—> D(TX, TY), for every X, YeOb(%), which
preserve composition and identities, i.e. such that

(iii) T(fox)=(T B)o(Ta), for all morphisms X —2>Y—» Z in ¢,

(ivy T4 \—ld”, for all X eOb(%).

A cojuncior (or contravariant functor) from 4 to 2 is, by definition,
a functor from ¥ to the dual category 2°P. Its explicit definition is as
above with (ii) replaced by T: (X, Y)— 2(TY, TX), and (ii1) replaced
by T(foa)=(Ta)o(T ). Equivalently, a cofunctor from & to 2 is a
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functor from ¢°® to 2. A functor %, x €, — 2, where %, x €, is a product
category (1.2 (viii)) is called a functor of two variables (with values
in 92).

1.6 Examples of Functors. (i) The identity functor ID: € — % which is
given by ID(X)=X, ID(x)=q, for all objects X and morphisms «.

(i) If T: > 2 and U: 9 — & are functors then so is the composite
UT: € — &, defined by (UT) X =U(TX), (UT)(e)=U(T o).

(ii)) For any fixed DeOb(2) we have the constant functor T: € - 9D
such that TX =D, Ta=id, for all X and a.

(iv) For any fixed 4€ Ob (%) we have the morphism functors €,: € — Sels,
G4 € — Fets°P, defined as follows. €,(X)=%(4, X), € (X)=%(X, A)
for all X eOb(%), €,(&)=¢& o=composition with ¢ on the left, 64 ({)=o ¢
composition with ¢ on the right, for all £e4(X, Y). Thus,

o) G(4, X)>6(A,Y), ar>ou

(1.7) h
€7(): 6(Y,A)>€(X,A), Ppr—fol.

(v) If we view the groups G, H as categories, as in 1.2 (vi), then functors
correspond to homomorphisms G — H, and cofunctors to antihomo-
morphisms.

1.8 Proposition. Ler T: € —> 2 be a {(co-)functor. If ae¥(X,Y) is an
isomorphism then so is To, and (Ta)~'=T(x™1).

Indeed, co~'=id = T(0) T(a = T(ea"Y)=T(d)=id. &
1.9 Definition. Let S, T: ¥ — 2 be functors. A natural transformation

& from S to T, in symbols @: S— T, consists of a system of morphisms
b, e2(SX, TX), one for each X e Ob(%), such that all diagrams

SX 328y

},y

TX T, TY

(1.10) ox

(for all ae® (X, Y)) are commutative; in formulas, @y o (So)=(T o) o Py.

If every @y is an equivalence then @ is called a natural equivalence. In
this case, ¥y =@y "' is also a natural equivalence (just reverse the vertical
arrows in (1.10)), and it is called the inverse natural equivalence.



1. Categories and Functors 5

1.11 Examples of Natural Transformations. (i) For every functor
T: € — 9 the identity morphisms &, =id;y: TX — TX constitute a
natural equivalence.

(ii) If S, T, U: € —> 2 are functors, and &: S— T, ¥: T— U are natural
transformations then so is the composite transformation ¥ o ®: S— U,
where (¥ o @)y =¥ o @y.

(ili) Let S=%,: € > Fels a morphism functor as in (1.6 (iv)) where A
is a fixed object of 4. Let T: € — Feés an arbitrary functor and let
ae TA denote a fixed element in the set TA. Define @°: S — T as follows.

L SX=%(A, X)—>TX, &(O)=(Ta.

We verify that 1.10 commutes:

(@5 o (S ) (&)=Py((Sa)(£)) = Py (e &)
=T a=(Tu) (T &) a=((Ta)o ¢%)().

Similarly for cofunctors T: € —» Sedy; i.e. if AcOb(¥) and ae TA then
% G X)=6(X,A) > TX, P%(E)=(T¢)a, defines a natural trans-
formation ®°: ¥4 — T. These transformations @“ are in fact the only
transformations of morphism functors. More formally,

1.12 Proposition (Yoneda-Lemma). If T: € —%%eés is a functor and
@ €,— T is a natural transformation (AcOb(%)) then there is a unique
element ac TA such that &= ®°, namely a=®,(id,).

Thus, natural transformations 4,— T are completely determined by
their value on id, €%, (A4), and this value @, (id,) can be arbitrarily chosen
in TA. Similarly for cofunctors € — Fess.

Proof. If @: €, — T is a natural transformation then the diagram

%,(A4) 295 4, (X)

TA—LTX

must commute fqr every (e%,(X)=%(A,X). In particular,
(px((gfa (é)(idA))z(Té)(¢A (idA))- But 4,(£)(id,)=¢ o id,=¢, hence @y ({)=
(T &) a= % (&), where a=@,(id,). 1

1.13 Definition. If T: € - %4 is a (co-}functor, and 4eOb(%) then
ue TA is said to be universal (for T) if #*; ¢, — Tis a natural equivalence.
Not every (co-)functor T: € — Y%e¢s admits a universal element. If it
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does then T is said to be representable, and the object A4 resp. the pair
(A, u) are said to represent the (co-)functor T. Up to equivalence the
pair (A, u) is uniquely determined, as follows.

1.14 Proposition. Let T: € — Fefs be a representable functor, with
universal element ue TA. If C is an object in € and ce TC then there is
a unique morphism y: A — C such that (Ty)u=c (by universality of u).
If ¢ is also universal then 7 is an equivalence. Similarly, for cofunctors.

Proof. If ¢ also universal then there is f: C— A with (T ) c=u, hence
T(Py)u=(T)(Ty)u=u, hence fy=id by universality of u; similarly
yB=id. 1

1.15 One can therefore use (co-)functors T: 4 — Fe¢s to define objects
in 4 (up to equivalence). This method of “definition by universal
properties” is very common and very important in many branches of
mathematics. As an example we consider the product of two morphism

functors, say T=%yxGe: € > Fols,
TX=%(B,X)x¥4(C,X), Toa=(%pa)x(Bco)=(000)x(a0).

If Tis representable then the representing object is called the coproduct
of Band C, and is denoted by BLi C. The universal element ue T(BLC) =
%(B,BLC)x%(C,BuC) is a pair of morphisms uz: B—BuC,
uc: C— BLC, called the injections (of the cofactors). By definition,
for every pair of morphisms ag: B— X, ac: C— X there is a unique
morphism %: By C— X such that aug=o0g, auc=uc. It is customary
to write a=(ag, c). — Similarly, one can define the coproduct of any
family of objects {B;},. 4; it is denoted by | ],. 4, B,, and it is characterised
by the natural equivalence ¢(Ll;B;, X)~[],4(B,, X), for X€Ob(%).

Dually, the product BriC of two objects B, CeOb(%) is defined (if
it exists) by the natural equivalence ¢ (X,B1C)x~% (X, B)yx¥4(X, C),
i.e. Bm1C is that object of  which represents the cofunctor T=%2 x ¢°.
The universal element ue T(BM C)=4(Br1C,B)x¥(Br1C, C) is a pair
of morphisms ug: B C— B, uc: B C — C, called the projections onto
the factors. If ag: X — B, ac: X — C is any pair of morphisms then there
is a unique morphism o: X — BriC such that ag=uga, ac=uca. It is
customary to write a=(ag, %c). — Similarly, the product [1,B, of an
arbitrary family of objects is defined by (if it exists) the natural equivalence
%(X,M,B)~[[,4(X,B)).

In concrete categories such as Yeds, Jop, 49 etc., other (ad hoc) nota-
tions are in use for products [] and coproducts | |. For instance, the

"

coproduct || is called “disjoint union”, “topological sum”, “direct
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sum” in Yedo, Jot, 4%, and is denoted by U, @, @. Products BMC
resp. [, B, are denoted by B x C resp. | [, B, in these categories; further-
more, Bx C=Ba& C in &/%.

MacLanNE, S.: Categories for the Working Mathematician. Berlin-Heidelberg-New York:
Springer 1971.

MitcHELL, B.: Theory of categories. New York: Academic Press 1965.

SCHUBERT, H.: Kategorien, 2 vols. Berlin-Heidelberg-New York: Springer 1970.

2. Abelian Groups
( Exactness, Direct Sums, Free Abelian Groups)

Abelian groups and their homomorphisms form a category which we
denote by o/%. If a: A— B is a homomorphism between abelian groups,
ae/% (A, B), then one defines

(2.1) kernel of a=ker(a)={ae A|ax(a)=0},

(2.2) image of a=im(x)=o A ={beB|3ae A with a(a)=b}.
These are subgroups of 4 resp. B. The corresponding quotients are
(2.3) coimage of o= coim («)= A/ker (a),

24) cokernel of a=coker (x)= B/im(x).

We say a is monomorphic if ker (o) = {0}, epimorphic if coker(a)={0}.

A monomorphism is then the same as an injective homomorphism, an
epimorphism is the same as a surjective homomorphism. And « is iso-
morphic, in symbols a: A= B, if and only if it is both monomorphic and
epimorphic. The homomorphism theorem asserts that

2.5) im (o) = A/ker ()= coim (c).

Because of this, the coimage will play a minor role only.

2.6 Definition. A sequence A —>->B—£- C of homomorphisms is said
to be exact if ker(f)=1im(x). A longer sequence like ---—A4_,—A_,—
Ay—A;— A, —- is exact if any two consecutive arrows form an exact
sequence. An exact sequence of the form

(2.7) 04 —25A4-254">0
is called a short exact sequence. For instance, if B is a subgroup of 4 then

0>B—>A—">A4/B—0
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is a short exact sequence where 1 =inclusion, == projection. Conversely,
if 2.7 is exact then B=im(a')=ker(a") is a subgroup of 4, and B=4,
A/B=A" by 2.5. ' *

2.8 Proposition. If ---—*—~»A4—2>B-—*">... is an exact sequence then u
is monomorphic if and only if «~ =0, « is epimorphic if and only if o™ =0.
Therefore, o is isomorphic if and only if both o= =0and a*=0. |

This (rather obvious) fact will be used many times. Another useful
result is the following (iess obvious)

29 Five Lemma. If

ay L2 as a4
Al—2 A, 4, A, As

LR R T

B, >B,

%B3—>3 B“‘_—>4 B5

b B2 B B.

is a commutative diagram with exact rows, and if ¢, @5, @4, Qs are iso-
morphic then so is @5 .

Proof. Passing to quotients and subgroups the diagram induces the
following commutative diagram with exact rows.

0— coker (#) —2—A4; —= > ker(a,) — 0

(2.10) Elw'z j(ps :Jq;:,

0— coker(fy) —5—=Bs —5— ker(f4)—0
This reduces the problem to a special (easier) case. Now
ker (p3)=ker (B3 p3)=ker (¢} a3)=ker(o3)=im(a3),
hence ker(p;)=ker(p;as)=Kker(f, ¢3)={0}, i.e. ¢3 is monomorphic.
Dually, f5@;=¢} a3 is epimorphic, hence B;=im(p3)+ ker(f5); but
ker (f3)=im (B3)=im(f; ¢3)=im (@3 o) =im(¢s); hence B;=im(p,), i.e.
@5 is epimorphic. I

As an exercise, the reader might prove the 5-lemma directly, without
using the reduction 2.10.

2.11 Proposition and Definition. A short exact sequence 2.7 is said to
split if one of the following equivalent conditions holds

(i) o hasaleftinverse f': A—A', fa'=id,.,

(i) o has a right inverse f": A" > A, o B’ =id ...
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In fact, the equation
(2.12) o f'+ B o =id,

establishes a one-one correspondence between left inverses ' of o' and
right inverses " of o". Moreover, ' " =0.

Proof. If " is a right inverse of «” then o’ (id , — " &)= 0a" — (&" ") &' =0,
hence im(id, — 8" «")cker(«')=im(«'), and we can define ' by o' f'=
id,—p"a", i.e. by 2.12; since o' is monomorphic this defines ' uniquely.
Moreover, if we compose this equation (or 2.12) with « on the right,
and use o’ o' =0, we get o (/' «’)=0o, hence ' o’ =id because o is mono-
morphic. This proves that every right inverse " of o determines a
unique left inverse 8’ of o’ such that 2.12 holds.

If §' is any left inverse of o’ then (id, —a' ) o' =o' —a'(f' a')=0, hence
(id,—o' ') vanishes on im(a')=Xker(a"); since o’ is epimorphic there is
a unique f': A”—A such that ff"o"=(d,—o ), i.e. such that 2.12
holds. Moreover, if we compose this equation with o” on the left we
find («" ") o’ =", hence o f”=id because o” is epimorphic.—Finally,
we compose 2.12 with ' on the left, and get ' +(f ") o =p’, hence

(p'B")o"=0,hence ' "=0. 1

2.13 Definition. Let {A4,}, , be a family of abelian groups. Consider the
set of all functions a on A such that a(4)e 4, for all 1€ A. Under addition
of values these functions form an abelian group, called the direct product
of {A,},c4, and denoted by | |;., A4;. The elements a;=a(4) are called
the components of a= {al}el‘{!A 1. The homomorphism =,: [ [, 4,4,
which assigns to each ae[]; 4, its v-th component, n,a=a,, is called
the projection onto the factor A,.

The direct sum of {A;},c4 is the subgroup @,.4 A; of [],c4 4, which
consists of all functions a of finite support, i.e.

@, A;,={ae[], A;la;=0 for almost all ie A}.

Clearly, @, A1:”1 A, if A is finite. The homomorphism 1,: A, > @®; 4,
such that n,1,=id, m,1,=0 for A#v, is called the inclusion of the sum-
mand A,; by definition, if xeA, then all components of 1, x vanish
except the v-th, and (1, x),=x.

2.14 Proposition and Definition. (i) If XeOb(«¥), and {p,;: X —>A4,},
A€A, is a family of homomorphisms then there exists a unique homo-
morphism ¢: X —[[, A, such that ¢ x={p,x},.4, for all xeX. We
write ¢ ={¢,}, and call these ¢,=mn, ¢ the components of ¢.

(i) If XeOb(LfY), and {Y;: A,— X}, A€ A, is a family of homomorphisms
then there exists a unique homomorphism Y. @;A,— X such that
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Ya=>,.4¥,a; (n.b. this sum is finite!). We write ¥ ={,}, and call
these ;= 1, the components of .

In other words, []; 4, is the categorical product [, 4, in the sense of
1.15, and @, A4, is the categorical coproduct ||, A,; the family of pro-
jections {n,} resp. inclusions {1,} is the universal element for the corre-
sponding functors [ [, #% (X, A,) resp. [ [, /% (A4,, X).—Both parts of
the proposition follow easily from the definitions 2.13. [

2.15 Definition. Let {A4,},., and A denote abelian groups. A family of
homomorphisms {p,: A—A,},c41E8P. {i: A; > A}, 4 15 called a direct
product representation resp. direct sum representation if {p,}: A—[]; 4,
resp. {i,}: @, A, — A is an isomorphism.

2.16 Propeosition. If Ais finite and if {p,: A—A,} resp. {i;: A,— A}, Ae A,
are families of homomorphisms such that

17 piip=idy,,  pii,=0 for p+A, Y ,i;p,=id,,

then {p,} is a direct product representation and {i,} is a direct sum
representation.

Conversely, if p={p,: A—A;},.4 is a direct product representation then

there is a unique family {i;: A,— A} which satisfies 2.17; similarly, for
direct sum representations.

In particular (cf. 2.11), a short exact sequence 0 —»A'—%+4 254" 0
splits if and only if o' (resp. &) is one component of a direct sum (resp.
product) representation A'@ 4" > A4.

Proof. We first have to show that i={i;}: ®,A4,—~A4 and p={p,}:
A—]. A, are isomorphic. But @ ,=] [, because A is finite,

(ippa=i{p,a} :(Za izPa) a=a,
and

(i) azp(Zu Iy a#) = {pl(Zu iy au)}/leA = {Zu(pl i#) au}lezl ={a}rea=2a,

hence p, i are reciprocal isomorphisms. For the converse, we can assume
A=][].4,=®,4,, and p,=m, (because p: A=[],A,, n,p=p,). The
first two equations 2.17 then show that i; =1, (as defined in 2.13) so that
only Y ,1,m,=id remains to be checked; this is easy, and left to the
reader.—Similarly for direct sum representations. N

2.18 If A is an abelian group, and A4,, A, A4 are subgroups then we
say A is the direct sum of A, and A, if the inclusion homomorphisms



2. Abelian Groups (Exactness, Direct Sums, Free Abelian Groups) 11

form a direct sum representation (iy, i,): A;® A, = A. One easily proves
that this is the case if and only if

(i) 4, W A4, generates A, and (i) 4, "4, ={0}.
A subgroup A, = A4 is called a direct summand (of A) if A is the direct
sum of 4; and some 4,< A. For instance, if 0 »4'—<2>4—>4"—>0isa

short exact sequence then im(«) is a direct summand of 4 if and only if
the sequence splits (cf. remark after 2.16). Applying this to

054, —>A—-A4/4,—0

we see that the subgroup 4, = A is a direct summand if and only if the
inclusion map i has a left inverse r: 4 —A4,, ri=id.

If {A;},c4 1s any family of subgroups of A such that the inclusion homo-
morphisms constitute a direct sum representation, {i,}: @,.,A,=4,
then we also say that A4 is the direct sum of {4,}.

2.19 Definition. If A is an abelian group and ae A we define i,: Z — A4,
i,n=n-aq, for all integers neZ; thus i, is the unique homomorphism
Z — A such that 1+>a. 4 subset B of A4 is said to be a base of A if the
family {i,},.p is a direct sum representation, {i,}: ®,.pZ=A. Every
element xe A then has a unique representation as a finite linear combina-
tion of base elements with integral coefficients x=Y,.px,-b, X,€Z,
almost all x,=0. Not every abelian group has a base; if it does it is said
to be free. Thus, an abelian group is free if and only if it is isomorphic
to a direct sum of groups Z. From 2.14ii we get

2.20 Proposition (Universal property of a base). If B is a base of A, if X
is an arbitrary abelian group and {x,€X},.g an arbitrary family of
elements then there is a unique homomorphism &: A— X such that Eb=x,,
Jor all be B. 1.e., the homomorphisms of a free group are determined by
their values on a base, and these values can be chosen arbitrarily. [

2.21 Definition. For every set A4 we can form the direct sum @, 4, Z.
This group is called the free abelian group generated by A; it is often
denoted by Z A. Its elements are functions a: A —Z which vanish almost
everywhere. If we identify leA with the function A—Z such that
i1, vi>0 for v+ 4, then A becomes a subset of Z A, and this subset A
is a base of ZA. Thus, every ac Z A has a unique expressiona=y ,.,4;- 4,
u;€Z,almost all a,;=0; the group Z A consists of all finite linear combina-
tions of elements A€ A with integral coefficients.

2.22 Every abelian group A is isomorphic to a quotient of a free abelian
group. Indeed, if A is any subset of 4 which generates A then (by 2.20)
there is a (unique) homomorphism ¢: ZA— A such that &(1)=A.
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This ¢ is epimorphic because A generates A, hence Ax~ZA/ker(¢).
Moreover, ker(€) is also free because

2.23 Proposition. Every subgroup of a free abelian group is free [K urosh,
§19]. 1

If a quotient group is free then it is a direct summand, i.e.

2.24 Proposition. If F is a free ubelian group then every short exact
sequence 0 > A'—A—2> F — 0 splits (hence A= A'e F).

Proof. Take a base B of F, and choose elements {a,e A},.p such that
afa,)=b, for all beB. Define f: F—A by B(b)=a,, as in 2.20; then
o f(b)=b, hence x f=id by the uniqueness part of 2.20. [

For finitely generated groups 2.23 refines as follows.

2.25 Proposition. If F is a finitely generated free abelian group, and
G F is a subgroup then one can find bases {b,, ..., b,} of F and {c,, ..., c,}
of G such that n<m, c;=u;b; with w,eZ for j<n, and y; divides p;
for j<n.—For a proof cf. [Kurosh, §20]. 1

The quotient group F/G is easily seen to be the direct sum of the cyclic
subgroups C;, where C; is generated by the coset of b;; the order of this
subgroup is y; if j<n, and is oo if j>n. Since every finitely generated
abelian group A is of the form F/G, by 2.22, we have the

2.26 Corollary. Every finitely generated abelian group A is a finite
direct sum of cyclic subgroups {C,c A},

(2.27) A=@’f_ C, C=Z)v;Z, vieZ, v;20. 1

I

The partial sum T=@,,,,C;=®,,,, C; is called the torsion subgroup
of A; it is a finite group "and conszsts of all elements of A of finite order.
The quotient 4/T=®,,_,Z is called the free part of A. The number
of summands Z in A/T is called the rank of A. It does not depend on the
particular direct sum decomposition 2.27; in fact, rank (A} is the maximal
number of linearly independent elements in A.

The numbers v;>1 which occur in 2.27 are not unique. However, they
can be chosen as powers of prime numbers, v;=p%’, p; prime, p;>0, and
then they are unique (independent of the decomposition 2.27) up to
permutation [Kurosh, § 20]. These {v;} are called the rorsion coefficients
of A. Two finitely generated abelian groups are isomorphic if and only if
they have the same rank and the same system of torsion coefficients.
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2.28 Proposition. If A is a finitely generated abelian group, and A’ A
is a subgroup then A" and A/A’ are also finitely generated, and rank (4)=
rank (A')+rank (4/4’). Using 2.25, this is easy to prove; cf. [Kurosh,
§19]. 1

2.29 For arbitrary abelian groups G one can define a rank as follows:
If G is free, rank (G) is the cardinality of a base; otherwise, rank (G) is
the supremum of {rank (F)} where F ranges over all free subgroups of G.
With this definition, rank (G)=rank (G’)+rank (G/G’), for all G'=G.

FucHs, L.: Abelian groups. Hung. Acad. Sci. Budapest 1954. New York: Pergamon
Press 1960.

KuRrosH, A.G.: The theory of groups, vol. I. New York: Chelsea Publ. Co. 1955.

v.D. WAERDEN, B.L.: Algebra, Bd. Il. Berlin-Heidelberg-New York: Springer 1967.

3. Homotopy

Let X, Y denote topological spaces, and f: X —»Y a continuous map.
If we modify (disturb) f by a small amount then we might expect that
its properties also change by small amounts only. Whether this is the
case or not depends of course, on the property which we consider and,
perhaps, on f. Many important properties, however, do behave in this
way. If, in particular, such a property can only change in jumps (e.g. if
it is expressed by an integer) then it will not change at all under slight
modifications of f. It will then also be unchanged under large modifica-
tions provided the large modification can be decomposed into small
steps, 1.e. if the modification is the result of a continuous process. This,
intuitively speaking, is the principle of homotopy invariance; the homo-
topy notion which we now discuss makes precise what is meant by a,
“continuous process”.

3.1 Definition. If X, Y are topological spaces and [0, 1] denotes the
unit interval then a homotopy or deformation (of X into Y)is a continuous
map ©@: X x[0,1] — Y. For every te[0, 1] we have

3.2) 6, XY, 6,(x)=0(xt),

a continuous map. Clearly, © is determined by the “one-parameter
family” {©,}o<,<1, and vice versa. Therefore {6,},.,., is also called a
homotopy or deformation—The one-parameter-family notation {O,} is
more intuitive and sometimes more convenient, however, in order to
properly express the continuity property of a homotopy it is preferable
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to write &: X x[0,1]—>Y. With xeX fixed and te[0, 1] variable we
can also think of @(x, ) as the trajectory which x describes in Y during
the time unit [0, 1]; the deformation @ is then a family of such trajectories
in Y, indexed by the parameter x€ X.

3.3 Definition. Two continuous maps f,, f;: X —Y are said to be
homotopic if a deformation {©;: X -»Y ]}, .., exists such that fy=06,,
f1=0,. We write ©: fy~ f;, or simply fo~ f;, and we say O is a deforma-
tion of fy into f;.—1f Ac X then ©: X x [0, 1] —Y is said to be a homo-
topy rel. A provided ©,|4=06,|A4 for all t; we write ©: f,~f, rel. A—
A homotopy © such that @, is a constant man is sometimes called a
nullhomotopy, and f= @, is said to be n1:llhomoton ¢

3.4 Proposition and Definition. The homotopy relation ~ is an equivalence
relation. The equivalence class (under ~) of f is denoted by [ f], and
is called the homotopy class of f.

Proof. The constant homotopy {®,=f},.,.; Is a deformation f~f
(reflexivity). I {©,}: fo~ f, then {©,_,}: fi~ fo (symmetry). If ©': fo=fi,
and @": fi~f,, then O: fy~f,, where ©,=03, for 2t<1, ©,=65,_,
for 21> 1 (transitivity). |}

3.5 Proposition and Definition. The homotopy relation is compatible with
composition, i.e. if fo, fi: X =Y, go,81: Y— Z are maps such that fy~f;,
8o>gy, then gy fo~g, fi. Indeed, if ®": fy~f;, and O": g,~g,, then
O: gy fo~g /1, where ©,=6,"6;. 1

We can therefore define composition of homotopy classes by [glo[f]=
[gof]. This defines a new category J#%:: Its objects are topological
spaces as in Jof, Ob(HZ4)=O0b(Jo); the morphisms, however, are
homotopy classes of continuous maps, #72(X, Y)={[f]1|fedor(X, Y)}.
If we assign to every continuous map f: X —Y its homotopy class (]
we obtain a functor

(3.6) 7w Jop—> Htp, nX=X for XeOb(Ior), nf=[f]

3.7 Some of the main tools in algebraic topology are functors t: Jo —
where o/ is some algebraic category (groups, rings, ...). In most cases
these functors are homotopy-invariant, i.e., fo~f, = tfy=tf,. Equi-
valently, t factors through n, i.e. t=ton where Jop —"> Htp —> .
Thus, t looses all informations on Jz4 which is lost by n. Due to this
fact, algebraic topologists are often more interested in the category ##4
than in Jo4. In particular, they often do not distinguish between spaces
X, Y if they are equivalent in #%z. This means that mappings f: X — Y,
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g: Y— X exist such that fg~idy, g/~idy. Such mappings are called
(reciprocal) homotopy equivalences, and X, Y are called homotopy
equivalent, in symbols X ~ Y. Functors ¢ as above take the same value
on homotopy equivalent spaces, in fact, they transform homotopy
equivalences f: X ~ Y into equivalences t f: t X ~t Y.

3.8 The preceding notions and results generalize to pairs of spaces. By
definition, a pair (X, 4) of topological spaces consists of a space X and
a subspace A. If (X, A), (Y, B) are pairs of spaces then a map of pairs
f: (X, A)— (Y, B) is, by definition, a (continuous) map f of X into Y
such that f'A < B. Pairs and their maps constitute a new category (under
ordinary composition) which we denote by Jo4'?. If we assign to each
space X the pair (X, #) and to each map X — Y the corresponding map
of pairs (X, ) —(Y,@) we obtain a functor Jos — Jop'®. We use this
functor to identify o with a (full) subcategory of Jz4'?, ie. we shall
write X =(X, ).

If X is the disjoint union of a family {X,}, A€ A, of open subsets, i.e. if
X =@, X, is the topological sum of the X,, and if A,=An X, then we
write (X, A)=@,(X,, 4,)=topological sum of {(X,, A,)}. It is easily seen
that this agrees with the categorical coproduct in Jo4'?, as defined in 1.15,
i.e. @,=_1,. The categorical product is (X, A)r (Y, B)=(X x Y, A x B)
but this is not much iz uce. Instead weshall often caccurter the following
product of pairs, (X, .4 (Y, D —{X: Y, X D .4: Y, this notation is
misleading but generally accepted.

Occasionally, we shall alsn consider triples (X, A, B) consisting of spaces

X > X, (no inclusion between X,, X, required). Both notions give rise
to categories which contain Jo4%, and also to obvious homotopy
notions and -categories (as below).

3.9 A homotopy between maps f,, f;: (X, A)—(Y, B) is, by definition,
a one-parameter family @,: (X, A)— (Y, B), 0<t<1, as in 3.1-3.3, with
Oy=fy, O,=/1. We write fy~f; then ~ is an equivalence relation
(as in 3.4) which is compatible with composition (as in 3.5). Identifying
homotopic maps defines the homotopy category #%4'*, and a functor
n: Jop'? — Htp'? with n(X, A)=(X, A), nf =[ f]=homotopy class of f.
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Homology of Complexes

1. Complexes

1.1 Definition. A complex K is a sequence

n On+1
o Ky Ky K e

of abelian groups K, and homomorphisms d,, called boundary operators,
such that 6, é,, ;=0 for all integers n.

We call n- chains the elements of K,, n-cycles the elements of Z K=
ker(d,)=2, '(0), and n-boundaries the elements of B,K=im(d,,,) =
Cn+1(K, 1) The condition ¢,d,,,=0 means B,K<=Z, K. We can there-
fore form the quotient H, K=Z,K/B,K, called n-th homology group
of K; its elements are called n-dimensional homology classes. By definition,
homology classes are equivalence classes of cycles; two cycles z,,
zi.e Z, K being equivalent, or “ homologous”, if and only if their difference
is a boundary, z,—z,e B, K. The homology class of a cycle z is denoted
by [z].
Given complexes K, K', we define a chain map f: K'—K to be a
sequence of homomorphlsrnsf K, — K, such that ¢ f =f_ 16' for
allneZ. The composite ff': K" — K oftwo cham maps K" K' -, K
is defined by (ff"),=f, f.: 1t is again a chain map. Chain complexes
and chain maps then form a category, which we denote by /' ¥%. It
follows immediately that a chain map f is an isomorphism (in 0%)
if and only if every f, is an isomorphism (in </ %).

The relation 6, f,=f,_, &, implies f,(Z,K')=2,K and f,(B,K')=B,K.
Passing to quotients, f, therefore induces a homomorphism

H,f- H,K'—>HK, (H,f)[Z]=[fZ],

and one easily checks that

(1.2) H,(ff)=H,f)(H, [, H,(idg)=1dy,,
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i.e., homology is a functor,
H, 049> AY.

We shall often omit indices when there is no danger of confusion;
e.g. we shall write 0x, f x instead of &, x, f, x. We also abbreviate H, f=f,,;
the functor relation 1.2 thus becomes (ff"), =f, f,, id,=id.

on

1.3 Examples. 1. A complex - — K, _; < K, < LER K, 18
exact if and only if ker(é,)=im(d, ;) for all n, i.e. if and only if H, K=0
for all n. Homology then can be viewed as a measure for the lack of
exactness. An exact complex is often called acyclic (it has no cycles
besides boundaries).

2. A sequence G ={G,},.z of (abelian) groups is called a graded (abelian)
group. For instance, the cycles ZK = {Z, K}, the boundaries BK = {B,K},
or the homology HK ={H, K} of a complex are graded abelian groups.
In fact, Z, B, H are covariant functors of the category 6.9/ % into the
category 9/ % of graded abelian groups; the morphisms ¢: G— G’
of this category are sequences ¢,: G, — G, of ordinary homomorphisms.

A complex K is a graded abelian group together with some extra
structure given by the boundary operator ¢.

Every graded abelian group G can be made a complex by taking ¢=0.
This defines an embedding ¥/ % —é/ %; in particular, we can always
view ZK, BK, HK as complexes (with vanishing boundary operator).
If Ge¥9 4% then ZG=G, BG=0, HG=G(.

If A is an abelian group and keZ we denote by (4, k) the following
graded group: (4,k), is A if n=k, and is zero for n+k; i.e. (4,k) is
concentrated in dimension k, and equals A there. This defines embeddings
AYGGAY.

3. If {K*},., is a family of complexes we define their direct sum
@,K*€dA4% by

(1.4) [@,K"],=@,(K), olc*}={oc},

1.e. we take the direct sum in each dimension and let the boundary
@, K} — ®,K}_; act componentwise. It follows easily that

(15) Z(®,K")=®,ZK*, B(®,K)=®,BK*, H(®,K)=®,HK"
Similarly for the direct product [].

In general, we shall translate notions from abelian groups &% to
complexes 0.4 % by applying them dimension-wise. Other examples are
kernel, cokernel, quotient, monomorphism, exact sequence, etc. Usually
the translation will be quite obvious.
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4. The manning cone. This is a useful technical notion. If f: K— L is
a chain map we define a new complex C f, the mapping cone, as follows:

(1.6) (Ch=L,eK, i, 7yx)=0@0"y+fx, —"x).
We verify that ¢¢/ 8%/ =0:
30(y, x)=(2y+fx, —3x)=(2dy+8fx—fdx, 86x)=(0,0).

If L=0, hence f=0, then K*=C/f is called the <usnen<irn of K. It is
given by (K*),=K,_,, 0*"=~0X Clearly H,K*=H,_,K, in fact
H(K+)=(HK)*.

We have a short exact sequence
(L.7) 0-L—*>Cf—*5>K*—>0

of chain maps given by 1 y=(y, 0), k(y, x)=x. It splits in every dimension
(obviously) but in general there will be no splitting chain map (e.g.,
take K=L=(Z,0), and f=id).

The mapping cone of id: K — K is called cone of K, and is denoted
by CK. The sequence 1.7 becomes

(1.8) 0—-K——>CK—*>K*—-0.

1.9 Exercise. If K, L are complexes define a new complex Hom (K, L) as

follows
[Hom(K, L)],=]],ez Hom(K,, L, ),

i.e. an element of Hom (K, L), is a sequence

f:{fv Kv_>Ln+v}vel

of homomorphisms. Define
HN)={0f,—(=1)'f,_yo O}z

and verify that d(¢(f))=0. Show that Z,Hom(K, L) consists precisely
of all chain maps K — L. More generally, Z_, Hom(K, L) consists of
all chain maps of K into the k-fold suspension of L; these are often
called chain maps of degree —k. Show that if g: L— L is a chain map
then so is

Hom(K, g): Hom(K, L)— Hom(K, L), {f,}—{gf},

and its mapping cone C Hom (K, g)~Hom(K, Cg). Similarly for chain
maps K'— K.
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2. Connecting Homomorphism, Exact Homology Sequence

2.1 Definition. If K is a complex, and K,cK,, neZ, a sequence of
subgroups such that ¢(K)c K;,_, for all n then

~~-<i—K;,<—"'—K;,+,<—L~~, ¢ =38|K’

is itself a complex, and the inclusion map i: K'— K is a chain map
(by definition of &'). Such a K’ is called subcomplex of K. Passing to
quotients, ¢, induces a homomorphism

én: K,,/K:, _’Kn—l/K:l—la

and 0,0,,;=0. The resulting complex K/K'={K,/K,,?,} is called
quotient complex (of K by K'). The natural projection p: K — K/K’
(which assigns to each xeK its coset in K/K') is a chain map (by
definition of d).

2.2 Examples. The kernel, ker(f), and the image, im(f), of a chain
map f: K — L are subcomplexes (of K resp. L), defined by (ker(f)),=
ker(f,), (im(f)),=im(f,). By the homomorphism Theorem], 2.5 we
have K/ker(f)=im(f).

2.3 The sequence
0->K—»K-25K/K'—0

of chain maps of Section 2.1 is exact, meaning that

(2.4) 0—-K,—K,—(K/K'),—0

is exact for every n. Conversely, if

(2.5) 0-K—K-—23K"-0

is a short exact (in every dimension) sequence of chain maps then

K'=i(K’) and K" = K/i(K’) by 2.2, i.e. up to isomorphism every short
exact sequence 2.5 is of the form 2.4.

2.6 Proposition. If 0—-K' —>K-—2+K"—0 is an exact sequence
of chain maps then the sequence

HK - HK -**> HK"

is also exact (H is a half-exact functor; cf. VI, 2.10).
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However, i, is in general not monomorphic and p, is not epimorphic.

Proof. We have to show im(i,)=ker(p,). Since pi=0 we have p_i, =
(pi),=0,=0, hence im(i,)=ker(p,). Conversely, let [z]eker(p,), ie.
pz=0"x" for some x"eK". Pick xep~!(x”). Then p(z—0dx)=0"x"—
¢"px=0, hence z—0x=iz for some z’eK'. Further, id'z=7iz'=
d(z—0x)=0, hence & z'=0 because i is monomorphic. Thus z' is a
cycle, and i, [z']=[iz]=[z—¢x]=[z]; in particular, [z]eim(i,). N

In general, i, is not monomorphic and p,, is not epimorphic (H is neither
right- nor left-exact). An example is provided by the sequence

0—(Z,00—=> C(Z,0) 2" (Z,1)>0

of 1.8. One finds HC(Z,0)=0, ker(i,)=(Z,0), H(Z, 1)=(Z, 1)+im(p,).

We now propose to “measure” how much p_ (resp. i ) differs from
being epimorphic (resp. monomorphic). More precisely, we shall asso-
ciate, in a natural way, with every y"e H, K" an element 0, y"eH,_, K’
which is “the obstruction™ for lifting y” to H,K; ie., y"eim(p,) <
0, ¥ =0. One can prove that these properties essentially characterize ¢,
(cf. exerc. 2).

2.7 Definition of ¢,: H,K”"— H,_;K'. As before let

(2.8) 0K —+>K-—-2+K"—0

be an exact sequence of chain maps. Consider the homomorphisms
H, K% p~"(Z,K")—2>H,K"

where p x =[p x] (note that pxeZ,K") and dx=[i"'dx]; the definition
of 0 makes sense because pdx=¢'px=0, hence dxeim(i), and
&(i"'éx)=i"'00x=0. Clearly p=[ ]op is epimorphic. We shall see
that ¢|ker(p)=0; therefore passage to the quotient yields a unique
homomorphism

0,=0p "t HK"~H, \K', 0,[px]=[i"ox],

called connecting homomorphism of the sequence (2.8).

We now show px=0=>dx=0. The assumption px=0 means px=
&'py=pdy for some yeK. Because ker(p)=im(i) this implies x—27y
=iy for some yeK’, hence i~ 'dx=i"'0iy=08i"'iy =0y, hence
[i~'éx]=0. 1
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The main properties of ¢, are as follows.

2.9 Proposition.
a) Naturality: If
0-K——>K—"—->K'->0

I’ s I

0->L——>L—]—>L -0
is @ commutative diagram of chain maps with exact rows then

" Oy '
H,K"——H, K

N

14 o ’
H,L'——H, ,L

is also commutative, i.€. 0, f,'= [, 0.

b) Exactness: The sequence

B H K-> HK-2>HK %H, K- H, K->

>

called homology sequence of 2.8, is exact.

Proof. (a) follows because all steps involved in the definition of d, are
natural. In detail:

b pxl=f U ex]=0f i7" oxI=[j"" féx]=[j" dfx]
=0, lq /x1=0,[/"px]=0, f{[px].

(b) By Proposition 2.6, it remains to show exactness at HK' and at HK".
This is the assertion of the following 4 inclusions.

im(2,)cker(i,): Let[pxJeHK" Theni,d,[px]=i,[i 'dx]=[ii"'ox]
=[0x]=0.

ker(i,)cim(d,): Let [z]eHK' and i, [z]=0. Then iz'=0x for some
xeK,and ¢"px=péx=piz'=0. Hence [z']=[i""dx]=20,[px].
im(p,)<ker(d,): If [z]eHK then &, p,[z]=0,[pz]=[i"'0z]=0 be-
cause ¢z=0.

ker(é,)cim(p,): Let[px]Je HK"and0=20,[px]=[i"'dx]. Theni~'dx
=¢ x’ for some x'eK’, hence d(x —ix')=0x—id x'=0, and p, [x—ix']

=[px]. 1
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2.10 Corollary. If

0K —>K—K'"—>0

]

0> L ——L—I' -0

is a commutative diagram of chain maps with exact rows and if two of the
vertical arrows induce homology isomorphisms then so does the third.

Proof. The vertical arrows induce a map of exact homology sequences.
Two out of three terms are mapped isomorphically: therefore the third
maps isomorphically by the five Lemmal, 2.9. 1

2.11 Definition. An exact sequence 0 » K'—— K —?5 K” -0 of chain
maps is said to be direct if it splits in every dimension. This means (I, 2.11)
that mappings K, <™ K, «**~ K}/, neZ, exist such that ji=id, pq=id,
ij+qp=id. The connecting homomorphism HK"”— HK’ then has a
convenient description as follows.

2.12 Proposition. The sequence of mappings d,=j,_,24q,: K, »> K,_,=
(K"),; is a chain map d: K" —(K')*, and the induced homomorphism
d,: H K'"— H,(K')* =H,_, K’ coincides with the connecting homomor-
phism.

Proof. We have
i(C'd)=(i¢)jéq=2lij)dg=2c(id—qp) dg= —0q(pC)g=—0392" (pq)
=—0q0"=—(ij+qp)eq¢'=—i(jdq)¢"—q3"(pq) 0"
=i(—dd"),

hence ¢'d= —d @ because i is monomorphic, hence d: K" — (K')* is a
chain map. If z’eZK"” then 0, [z"]=[i""'dqz"]=[jéqz"]=[dz"]=
d.[z2"] 1

2.13 Corollary. If f: K— L is a chain map then the connecting homo-
morphism of the exact sequence 1.7, 0— L— Cf— K+ —0, coincides
with Hf: HK — HL.

Indeed, the sequence is split in every dimension by g x=(0, x), j(y, x)=y,
and we have jéq=1. 1

2.14 Corollary. If f: K— L is a chain map then Hf: HK — HL is iso-
morphic if and only if the mapping cone C f is acyclic, H(C [)=0.



3. Chain-Homotopy 23

This follows from the exact homology sequence 2.9b because of 2.13. |

2.15 Example. If K is a complex then 0 - ZK —» K -2 (BK)* -0
can be viewed as exact sequence of chain maps (i=inclusion). The
connecting homomorphism is given by i 'o@o@~", that is by the inclu-
sion map j: BK<ZK. The exact homology sequence therefore has the

form
K—»B,,K Z,,K HK——»B K,

n+1
i.e. essentially it coincides with the exact sequence
0—BK — ZK — HK —0.

2.16 Exercises. 1. The cone CK of every complex K is acyclic, HCK =0.

2. Prove: The connecting homomorphism ¢,.: H, K" — H, K’ is deter-
mined up to sign+1 by the Properties 2.9a), b).

Hint: Consider the exact sequence
(E) 0—-(Z,n)—>C(Z,n)—>(Z,n+1)—0

first. Then prove: For every z”eZ, ; K" there exists a map of the se-
quence (E) into 0 » K'— K — K”— 0 such that 1+ z". Apply 2.9a).

3. Chain-Homotopy

According to exercise 1.9, chain maps f: K — L can be viewed as zero-
cycles of Hom (K, L). What does it mean then for two chain maps f, g:
K — L to be homologous in Z, Hom(K, L)? It means that ses Hom(K, L),
exists such that 8(s)=f—g. This notion, usually called chain homotopy,
is of great importance.

3.1 Definition. Let f, g: K — K’ be chain maps. A homotopy s between f
and g,in symbols s: f~ g, isa sequence of homomorphisms, s,: K,— K,
such that

n+1»
Cro1 Syt Sy_10,=f,—g, forall neZ.

We write f~g and say f and g are homotopic if such an s exists.

3.2 Proposition. The homotopy relation ~ is an equivalence relation. The
equivalence class of f: K — K' is denoted by [ /], and is called homotopy
class of f.

Proof. Reflexivity 0: f~f.
Symmetry s: f~g= —s: g~ f.
Transitivity s: f~g, t: g~h=s+t: f~h. |
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3.3 Proposition and Definition. The homotopy relation is compatible with
composition, i.e. if f~g: K—>K'" and f'~g': K'— K" then f'f~g'g.

We can therefore define a composition law for homotopy classes by
[/ e[ fI1=[f">f] This defines a new category # 0%. Its objects are
complexes as in 0.2/9, the morphisms, however, are homotopy classes of
chain maps. If we assign to each chain map f: K — K' its homotopy
class [ /] we get a covariant functor 7: 04Y — H 0%.

A chain map f: K — K’ whose class [ /] is an equivalence in 5 0% is
called homotopy equivalence, and K, K’ are called homotopy equivalent
if such an f exists; we write K~ K'. Explicitly this means that chain
maps K —L» K’ L= K exist such that [~ f~idy, ff~ ~idg.. The map
S~ 1s called a homotopy inverse of f.

Proof of 3.3. If s: f~g then f's: f'f~ f'g because 0"(f's)+(f's)d=
J (@ s+sO)=/"(f—g)=/"f—["g Similarly, 5. f'~g' =s'g: ['g~gg,
hence by transitivity, f'f~g'g. 1

3.4 Proposition. If f~g: K— K' then f,=g,: HK — HK', i.e. homotopic
chain maps induce the same homology-homomorphism.

Proof. f, [z]—g,[z]1=[fz—gz]=[0sz+s(¢z)]=[0(s2)]=0. 1

3.5 Corollary. If f: K — K’ is a homotopy equivalence then f,: HK — HK'
is an isomorphism.

Proof. ff~~id, f~ f~id imply f, f, =(ff"),=id,=id, and [ f,
=id.

Clearly, Proposition 3.4 can also be formulated as follows: The homology
functor H factors through # 0% i.e. there is a commutative diagram
of functors

oAY —H YAYG

A

H 0Y

The corollary then simply states that the functor H' takes equivalences
into equivalences.

Complexes K such that idg~0, or equivalently K~0, are called con-
tractible. Clearly K~0 implies HK =0 (by 3.5). As to the converse one
has
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3.6 Proposition. Let K be an acyclic complex, i.e, HK=0. Then K~0 if
and only if for all n, Z, K is a direct summand of K,,.

Proof. Assume s: idg~0, i.e. ds+sé=idg. Since 0|BK =0 this implies
0s|BK =idgg, hence the exact sequence 0 - ZK-—<»>K 25 BK -0
splits, i.e. ZK is a direct summand. Conversely, assume thereis t: BK — K
with dt=id, i.e. K=ZKetBK=BKetBK. Define s by s|BK=t,
sltBK=0. Then 0s+s08|BK=¢7t=id, ds+sé|tBK=s5d|tBK=10|tBK
=id.

An example K for which HK=0 but K40 is as follows: K,=%Z,,
é,=multiplication by 2 for all n.

Proposition 3.6 is particularly useful in connection with the following

3.7 Proposition. If the mapping cone of {: K — L is contractible, Cf~0,
then f is a homotopy equivalence. (The converse is also true; cf. Exerc. 5)

Proof. We show

L. If the inclusion 1: L— Cf, 1y=(y, 0), is nullhomotopic, then f has a
right homotopy inverse g: L— K, fg~id.

I1. If the projection x: C f— K™*, k (3, x})=x is nullhomotopic then f has
a left homotopy inverse h: L— K, hf~id. This suffices since Cf~0
implies 1~0, xk~0, and h~h(fg)=(hf)g~g.

I. Let S:1~0. Define g: L— K, y: L— L by Sy=(y(y), g(»)); recall that

Cf=Le K™ as a group (not as a complex! And 7 is not a chain map!).
Then éSy+Séy=1y reads

(@yy+Sgy+y0y, —dgy+gdy)=(y,0),
i.e, dg=gd and ¢y+yd=id— fg, as asserted.

II. Let T: k~0. Define h: LK, n: K— K by T(y,x)=h(y)+n(x).
Then 0T+ Téd=x reads —¢hy+hdy—onx—ndx+hfx=x (recall that
¥ =—~0%) ie, 0h=hé and dn+no=hf—id. §

3.8 Exercises. 1. The cone CK of every complex K is contractible,
CK ~0.

2* If(E):0 —» K'—— K -2 K" — 0 is an exact sequence of chain maps,
define p: Ci— K" by p(x,x')=p(x). Prove that p is a chain map, p,:
H(Ci)=~ HK", and the composite HK" LISN H(C i) (HK')* coincides
with —¢,. Formulate and prove dual results about ¢: (K')*— Cp,
og(x)=(0,ix'). If the sequence (E) is direct then p and ¢ are homotopy
equivalences.
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3. Let0— K ——» K25 K" 0 be an exact sequence of chain maps.

(a) If i~0, say s: i~0, then ps is a chain map K'* — K", and ¢, (ps),
=idyg. .

(b) If t: p~0 then ti is a chain map K'* — K", and (ti), ¢, =idyg.-.
4* If0> K — K -2, K">0isa direct sequence of chain maps then
(a) K'~0 or K"~0 = K=K'®@ K", i.e. the sequence splits.

(b) K~0 < i~0and p~0.

5. Prove the converse of 3.7. There are at least two possibilities:

(i) Read the proof of 3.7 backwards and use exerc. 4b. (ii) Remark that
Hom(X, f) is a homotopy equivalence hence (using 1.9) Hom(X, Cf)
is acyclic hence idc € Z, Hom(C f, Cf) is homologous to zero.

6. If (E): 0— K'—> K — K" —0 is exact and direct then
0— Hom(L, K')—> Hom(L, K)—» Hom(L, K")—0
is exact and direct for every complex L. If L=K" then
idg.€eZ, Hom(K"”, K"},

and 0, [idg.] is a homotopy class of chain maps K" — (K')*. Show that
the induced homomorphism HK"”— H(K’)* coincides with the connect-
ing homomorphism of (E).

4. Free Complexes

These complexes have useful special properties, and they frequently
come up in applications.

4.1 Definition. A complex K is called free if K, is free for every neZ.

4.2 Proposition. In a free complex K the group of cycles Z, K is a direct
summand of K, .

Proof. Subgroups of free groups are free (I, 2.23). Therefore BK <K is
free, therefore the exact sequence 0— ZK — K — BK*—0 splits
(1,2.24). 1

4.3 Proposition, If f: K— L is a chain map between free complexes such
that f,: HK~HL then { is a homotopy equivalence.

L.e., for free complexes the converse of 3.5 holds.
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Proof. By Proposition 3.7 is suffices to prove that Cf ~0. According
to 3.6 we have to show that HC f=0 and that the cycles ZC f are direct
summands. The former holds by 2.14, the latter by 4.2. 1

4.4 Definition

A complex K is called short il an integer n exists such that K;=0 for i$n, n+1, and
oy @ K,y — K, is monomorphic. (l.e. a complex is short if it is essentially concentrated
in one dimension namely n.) If, moreover, K,=Z then K is called elementary.

4.5 Proposition. Fvery free complex K is a direct sum of short (free)
complexes. If moreover every K, is finitely generated, then K is a direct
sum of elementary complexes.

Proof. By 42 we can write K,, as a direct sum K,,=Z,,Ke Z,.. Put
K{™=0 for i+m, m+1, K"=Z, K, K\')\=Z,, . Clearly, K""’ is a
subcomplex, is short, and K=®,, K™,

If K,, is finitely generated then so are Z,, K and Z:. Moreover, there are
bases {a}, ...,a"} of Z,,K and {b7*',...,b"*'} of Z,,, ,, s<r, such that
Oyt b"‘+l o al wnh r"’eZ i<s (v1ew Zg ., as subgroup of Z,, via
&m.1 and apply 1,2.25). Let K™ ?<c K the subcomplex generated by the
pair (a", b"*") if i<s, and by the element a!" if i>s. Then K™ is el-
ementary and K=&, ,, K"". 1

Remark. By I,2.25, the base {af',bj} can even be so chosen that 1}’
always divides ", (and all t">0). It is then called a canonical babe
of K. The numbers 17> 1 (or their primary parts) are called the torsion
coefficients of K (or of HK); they are uniquely determined by HK, i.e.,
independent of the choice of the base {a}",b?}. For proofs and more
details cf. Eilenberg-Steenrod V.8, or Kurosh §20.

4.6 Proposition. If K is a free complex, L an arbitrary complex, and
¢, H K > H, L, neZ, a sequence of homomorphisms then there exists a
chain map f: K—L such that f,=¢. l.e, every homomorphism
¢: HK — HL of the homology of a free complex K can be realized by
a chain map.

The proof is based on the following

4.7 Lemma. Every commutative diagram

F 71 s GO Y0 G_l

8 jgo ‘lg—l
v

G Go

7 Y0
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of abelian group homomorphism (without g as yet) whose second row is
exact, whose first row is a complex (i.e., o y;=0), and where F is free,
can be completed by a homomorphism g.

Proof of 4.7. If aeF then y,goy,a=8_,707,a=0, i.e. gy, acker(y,)
=im(y}). Therefore, if {a,} is a base of F we can find elements b,e G}
with 7} b,=go7, a,, and define g by ga,=b,. §

Proof of 4.6. Let K=ZKe Z* as in the Proof 4.5. By Lemma 4.7 we can
find first /%, then f%, which make

zt,, Z,K—"%H K—0

e
JM lfnz l

——Z,L—_—>H,L->0

n+1 pl’o]

L

commutative. Then f: K — L, f|ZK=f%, f|Z*=f" is a chain map as
required. 1

4.8 Corollary. Let K, L be free complexes. Then K~L <« HK~HL,

Proof. If ¢: HK — HL is an isomorphism, it can be realized by a chain
map f: K— L and f is then a homotopy equivalence by Proposition 4.3.
The converse is contained in 3.5. 1

4.9 Corollary. If K is a free complex and HK is also free then K~HK. ]

4.10 Exercises. 1. a) For every abelian group A4 and integer n construct
a free short complex K such that H, K= A.

b) For every graded abelian group G={G,},.z construct a free complex
K such that HK~G.

2. Construct a free complex K which is not a direct sum of elementary
complexes. Hint: If K is a direct sum of elementary complexes then H, K
is a direct sum of cyclic groups (is the converse true?).

3. If K is a free complex such that H; K=0 for i <n then there exists a
subcomplex K'< K with K;=0 for i<n and K'~K.

4. If t: 649 — 04% is a functor from complexes to complexes which
preserves homotopy (i.e. f~g=1tf~tg)and if K, L are free complexes
such that HK~HL then H(tK)=~H(tL). Construct examples of such
functors.

5. If K is a free complex and K~ HK then HK is free.
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Singular Homology

1. Standard Simplices and Their Linear Maps

1.1 Definition. The standard q-simplex A, consists of all points xelR+!
such that

(@ 0<x;<1,i=0,1,...,q,
(b) Z?:() xi=1)

where R4*! denotes euclidean space and {x,! are the coordinates of
xeR**! Clearly 4, is closed and bounded, hence compact. Because
of (b) we can replace (a) by

(@) 0<x;,i=0,1,...,q.

Therefore 4, is the intersection of the hyperplane )?_,x,=1 with the
positive “quadrant” {x;>0}. In particular, 4, is convex (i.c. any segment
whose endpoints lie in 4, lies in 4,).

For instance, 4, is a single point, 4, is a segment, 4, an equilateral
triangle, 4, a regular tetrahedron.

Xy X,
X2

4, 4,

Xo Xo

0 o

e €

Fig. 1 Fig. 2

The unit points e/=(0, ...,0, 1,0, ...,0) of R?*" lie in 4,; they are called
the vertices of A,.

1.2 Definition. A mapping f of 4, into R" (or into a subset of R") is
called linear if a linear (in the usual sense) map F: R9*!— R" exists
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such that F|4,=f. If P°, P!, ..., P"eR" are arbitrary points then there
exists a unique linear map f A — R" such that f(e')=P’ namely
f(x)=)7_,x;P". The image (4, con51sts of .all points P=)7" ,x, P
of R" with 0<x;<1, ) x;=1. Thus linear maps of A, are completely
determined by thetr values on the vertices and these values can be
prescribed. In particular, we consider the linear maps

(1.3) e=¢l:

0 dg1— 4,

q

de)=e for i<j, e&()=e*! for i>],

where j=0,1,...,¢. The image of ¢) consists of all points xe Aq with
x;=0; it is called the j-th face of 4,,. The union of all faces of 4, is called
the boundary of 4, and is denoted by A It consists of all pomts xed,
with at least one vamshmg coordinate.

For later use we note the

14 Lemma. ¢/ ck=ck )" if k<]

Indeed, on both sides we have

e'et for i<k, eret! for k<i<j—I,

ere't? for i>j—1. 1

1.5 Exercise. If F: R?*! - R" is a linear map and K<IR" is a convex
set such that F(e)eK, i=0,1,...,q, then F(4,)=K. In particular,
A, is the smallest convex set containing e for all i (=convex hull of {e'}).

2. The Singular Complex

We construct a functor, called singular complex, from topological
spaces to complexes.

2.1 Definition. Let X be a topological space. A singular g-simplex of X
is a continuous map g=0,: 4,— X, ¢=>0. We consider the free abelian
group S, X which is generated by the set of all singular g-simplices.
The elements ¢, €S, X are called singular q-chains of X. By definition,
every ceS X has a unique representation as finite linear combination
of singular g-simplices o, c=) ¢, - o, wWith integral coefficients ¢,. We
shall not distinguish between a singular simplex ¢ and the chain ¢
whose only non-zero coefficient is ¢,=1. For g<0 we put §,X=0.
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We define a homomorphism ¢,: S, X—S, | X, é,(0)=1_o(—1)(c¢)),
where e;: 4,_y— 4, denotes the j-th face as in 1.3. Then

2.2 Proposition. The sequence ---—S, ;X « % §,X « fa+1 Sp1 X -
is a complex, i.e. ¢,¢,,,=0. It is called the singular complex of X, and
is denoted by SX.

q+1

Proof. For singular simplices ¢ we have

¢lo

ALA=Weod)=) (1Y o e
Yic(=WW*ad e+ (=Y e,

the latter by 1.4. In the second sum we replace k by j and j by k+1;
then corresponding terms of the two sums cancel. Thus ¢é¢J vanishes
on a base {g}, hence ¢¢=0. 1

If f: X — Yis a continuous map and o: 4, — X a singular simplex of X
then the composite fo: 4, — Y is a singular simplex in Y, and we get
a homomorphism

S, /1 S,X—>S,Y, (S,No)=fo.

2.3 Proposition. The sequence S, f: S, X —S,Y, qeZ, is a chain map,
Sf: SX — SY. Instead of S f we usually write /: SX — SY.

Proof. Multiplying (fo)e'=f(o¢’) with (—1Y and summing over j
gives ¢(fo)=f(0o). 1

2.4 Proposition. S(g f)=(Sg)(Sf), S(idy)=idgy (where g: Y — Z), i.e. S
is a functor from spaces to complexes, S: Jopp - 0A4Y. |

2.5 We now generalize the preceding to pairs of spaces (X, 4). Ifi: A > X
is the inclusion map then i: SA— SX is monomorphic, hence SA can
be thought of as a subcomplex of SX. The quotient S(X, 4)=SX/SA
is called the (relative) singular complex of (X, A). If j denotes passage
to quotients then

(2.6) 0—>S4A—5SX —55(X,4)—0

is an exact sequence of chain maps. It splits in every dimension,
S, X=S§,AeS§,(X, A). Indeed the base {o: 4,— X} of §,X divides into
two parts: the simplices in 4, and those which are not in A. The former
provide a base for S, A, the latter for S, (X, A). Note that S(X,#)=SX.
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A map f: (X, A)— (Y, B) of pairs (cf. 1, 3.8) induces a commutative diagram
0S4 »SX »S(X,A) -0

(2.7) Sl sy s

0->SB——SY - S(Y,B) >0

of chain maps with exact rows; the map Sf is obtained from S f by
passing to quotients. |

The functor properties 2.4 carry over to pairs. In fact we can view S
as a functor from pairs of spaces to short exact sequences of complexes.
We leave it to the reader to make this statement precise.

2.8 Exercise. Does the sequence 0 > S, 4 —S X — S (X, A)—0 split
naturally?

3. Singular Homology

3.1 Definition. The (singular) homology groups of a space X resp. a
pair of spaces (X, A) are, by definition, the homology groups of the
singular complex SX resp. S(X, A). We write HX=HSX, H(X, 4)=
HS(X, A). The groups H(X, A) are also called relative homology groups
of X mod A, in contrast to the absolute groups HX. We say zeSX is a
cycle mod A if ¢zeSA, and z is a boundary mod A if z=0x+ y for some
xeSX, veSA. The relative homology group H, (X, A) is then isomorphic
with the group of ¢g-cycles mod A4 divided by the group of g-boundaries
_Z(X, A)

mod A, H(X, A)= BX. A) "

Iff: (X, A)—(Y, B) is a map of pairs then S f: S(X, A) — S(Y, B) induces
homomorphisms H f=f,: H(X,A)— H(Y,B). This turns singular
homology into a functor from pairs of spaces to graded groups. By
definition, it is composed of Zop'? -2 2 G —Ho G/ Y.

The connecting homomorphism ¢,: H, (X, A)— H A of the sequence
0-54—"55X —15S(X,4)—0

is called the connecting homomorphism of (X, A), and the exact sequence
(cf. 11, 2.9)
(32 S H  AMSH, XS H (X, A) % H A H X 5.

q+1 q+1

is called the homology sequence of (X, A).
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If f: (X, A)— (Y, B) is a map of pairs then
H ,A—H_ ,X H,, (X, A) »H A »H X

q+1 q+1

o e CF T

H,,,B——H,,Y—— H, (,B)—— HB ——HY

q+1 q+1 q+1

is a commutative diagram (II, 2.9 (a)) with exact rows.

Consider now a triple Bc A< X of spaces; one also writes (X, A, B).
Inclusion i and projection j define an exact sequence
0—S(A,B)——S(X, B)—>S(X, 4) >0
of chain maps. The resulting exact sequence
(3.4) Hq+l(A’ B)L’HHl(X’ B)
H,,,(X, A)—2> H (A, B)—> H (X, B) 2~

is called the homology sequence of the triple (X, A, B). For B=§ it
reduces to 3.2.

3.5 Exercise. 1. If (X, A, B) is a triple then the connecting homo-
morphism ¢,: H,,,(X,A)— H,(A, B) coincides with the composite

H,, (X, A)—%>H A% H, (4,B)

where ¢, is the connecting homomorphism of the pair (X, A).

2. If BcAcX is a triple such that 1 : HB~HA then j : H(X, B)=
H(X, A).

4. Special Cases

4.1 If P is a single point then there is just one singular simplex
7,: 4, P for every ¢>0. We have Iqejth_l for all g>0 and 0<j<gq,
hence ét,,=1,,_, for >0 and 6r2q_,=0. Thus SP is the complex

Qe Z AT O T T
and

4.2) H,P=Z, H,P=0 for i=+0.

4.3 Definition. For every space X the constant map y: X — P (P =point)
induces a homomorphism y *=yi‘: HX — HP, called the augmentation.
If f: X—Y is a map then ﬂ,vl =YX (naturality of y,); in particular,
f, maps ker(y¥) into ker(y}). These groups are therefore functors of
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XeZop; they are called the reduced homology and are denoted by
H X =ker(y,: H X —H_P). 1f %0 then H, X =H X by 4.2.

If X is not empty then any map i: P— X is right inverse to y, hence
75 le=1d. It follows that H,X=im(1,),® ker(y,)o=Ze I:IO X, ie.,
in dimension zero, reduced and unreduced homology differ
by a direct summand Z. Moreover, the exact sequence
Hy P> Hy X —* H,(X, P) > O of the pair (X, P)showsthat x,: H, X =

Hy(X, P).

If (X,A) is a pair of spaces with 4+# then we have mappings
(X, A)—>(P,P)—— (X, A), and yi=id. It follows that i maps the
homology sequence of (P, P)—which is rather trivial—onto a direct
summand of the homology sequence of (X, A4); the other direct summand
is ker(y,). Since ker(y,) is reduced homology this shows

4.4 Proposition. If (X, A) is a pair of spaces with A+ then we have an
exact sequence.

& 0 i T
"'—"Hq+lA 4>Hq+l

X-tsH

q+1(X,A)i>I:Iin>I:IqX N,

it is called the reduced homology sequence of (X, A).

4.5 The name augmentation is often used for the chain map n=n*:
SX —(Z,0), which takes every zero simplex o, into 1€Z. This map
is closely related to 7y; in fact, n¥=nfoy*. Moreover, the map
n?: SP —(Z,0) is a homotopy equivalence: (Z,0) is a direct summand
of SP, and the other direct summand is clearly nulhomotopic (cf. also
4.6). In particular, ker(y,)=ker )v*)zﬁX. Therefore, the danger of
confusing the two augmentations y,# is not grave.—In the literature,
the name “index” is also used for #.

After the one-point space we consider convex sets in IR”. Their homology
turns out be equally trivial.

4.6 Proposition. If X is a non-empty convex subspace of euclidean space
R" then the augmentation n. SX —(Z,0) is a homotopy equivalence;
in particular, HX =0.

Proof. The method of proof is known as “cone construction”. Pick

PeX. For every o,: 4,—~ X, q=0, define (P-0,): 4,,,— X by
(P'aq)(xo,xl, XL y)

4.7) P if xo=1,

- X, Xg41 ) i i
l—xo’”" l—xo it xo+1.

x0P+(1—x0)oq(
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This defines homomorphisms

(4

P=E: S, X—>S,,,X, PE(o)=P-o. /

Intuitively speaking, P - ¢ is obtained by projecting P 4
o from the new vertex P, or by erecting the cone T\

with vertex P over o. Fig. 3
We compute the faces of P- g,
(P-0) & (x0, X0 .on X)=(P-0)(Xg, oo, X;_ 1,0, X, 00, X,).

If i=0, this is 0,(xg, .5 Xp); if g=0 and i=1 it is P, and if ¢g>0 and
i>01t1s

X X; X; X
XoP+(1- L | . )
“oP XO)“Q( [—xg " Texg " T—xg’ " 1—xg
R X X
:xOP+(L—xwmh#’U(l_; O )
0 0

=[P (0,6 ] (x0s---» %)

If we define a chain map P: (Z,0)— SX by P(m)=mP, then we can
express the result of the computation as follows

(P-o)e®=0,, (P-o)e*'=P-(g,8) for ¢>0,
(P-a,) &' =(Pn)o,).

Taking alternating sums in 4.8 we get

(4.8)

49) ¢

‘q+1

P=id—P_,é, for g>0, and & R=id—(Pn),,

-1ly

ie. {B} is a homotopy id~Pn. Clearly nP=id. 1

4.10 Corollary. If Y = IR" is any non-empty subspace then d: H (R”, Y)=
q,_y.

qg—17"
This follows from the reduced homology sequence 4.4 of (R", Y) because
HR"=0by 4.6. 1

We now show that H, X =Z for all pathwise connected spaces X. The
reader might begin to suspect that H is a rather trivial functor altogether.
He will have to wait until Chapter IV to see that this is not so.

4.11 Proposition. If X is a non-empty pathwise connected space then the
augmentation n: SX —(Z,0) induces an isomorphism 1n,. HyX=
Hy(Z,0)=Z.
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Proof. Pick PeX, and define P: (Z,0)—SX by P(m)=mP; clearly
nP=id. For every O-simplex o,: 4,— X we can find a 1-simplex
na,: 4, — X (=a path) with (no,)e=0,, (n0,) &' =P, hence d(no,)=
(id—P#n)o,. This defines a homomorphism n: S, X —S,X with
én=id—P#n. For homology classes it gives 0=[0nz]=[z]—[Pnz]=
[z]1-B,n,[z],z€ Z, X,i.e., H, P and H, n are reciprocal isomorphisms. [

What about H, of non-connected spaces? This reduces to 4.11 via

4.12 Proposition. Let X be an arbitrary space with path-components X,
reA; let Ac X be a subspace and A, =An X,. Then the inclusion maps
i;:(X,;,A,)—(X, A) induce a direct sum representation {i,}: ®,; ,S(X;,A4,)
~S(X, A), hence {11, 1.5) {Hi,}: ®, . H(X;, A)=H(X, A).

In particular, Hy X is a free abelian group whose rank (cf. 1, 2.29) equals
the number of path-components of X.

Proof. Let s resp. s; denote the set of singular simplices of X resp. X,.
Since every simplex ges has a pathwise connected image, this image
must lie in some X,, hence s=|J;s,. Every singular chain ¢ has a
unique representation

C:Zaesca'J:ZAZGESACU'O.:ZXCZ’ CAES(XA)a

hence SX=@,S(X,). Similarly, SA=@®,S(4,), hence SX/SAx
@, S(X,)/5(45). 1

413 Corollary. If X is a discrete space then H;X=0 for i%0,
HOX:®xeXZ' I

We conclude the discussion of special cases with some remarks on
retracts.

4.14 Definition. If i: Ac X is a pair of spaces then A is called a retract
of X if there is a map r: X — A such that ri=id; any such r is called a
retraction. For instance, every PeX is a retract of X; if B is any space
and QeB, then AxAxQcAxB and r: AxB—AxQ, r{a,b)y=(a, Q)
is a retraction (“the factors of a product are retracts”).

If (X, A) is as above then A is called a neighborhood retract (in X) if A
has a neighborhood in X of which it is a retract. Every retract is a
neighborhood retract but not conversely: If X=[0,1] is the unit
interval and A={0}u {1} consists of the two end points then A is a
neighborhood retract but not a retract (proof ?).
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For the moment we only discuss retracts; neighborhood retracts will
become important later on (IV, VIII). If r: X — A is a retraction then
r: SX — SA splits the exact sequence 0 —SA4 —— SX —> S(X, 4) -0,
hence (r, j): SX =S4 S(X, A), hence

(4.15) (ry.j,): HX=HA®o H(X, A).

In other terms:

4.16 Proposition. If' A is a retract of X then the homology sequence
of (X, A) decomposes into short exact sequences

0 "*=°AHqA "*»HqXLHq(XvA)_’O

which are split by r,. 1

4.17 Exercises. 1. The homology sequence of the triple PeA<X is
isomorphic with the reduced homology sequence of (X, A).

2. If X is a contractible space, X ~ P, then 5: SX —(Z, 0) is a homotopy
equivalence. Hint: Use a cone-construction as for 4.6.

3. Determine H(R, @) where Q=R is the subspace of the real line
consisting of all rational numbers.

4. If BcAcX is a triple such that 4 is a retract of X then
H(X,B)=~H(X, A)e H(A, B).

5. Invariance under Homotopy

We recall (I, 3.1) that two continuous maps f,g: X — Y are homotopic
if there is a deformation @: [0, 1] x X — Y with ©,=/, @,=g. Similarly
for maps of pairs.

5.1 Proposition. If f,g: (X, A)—(Y,B) are homotopic maps then
Sf, Sg: S(X,A)— S(Y, B) are (chain-) homotopic.

5.2 Corollary. If f, g: (X, A)— (Y, B) are homotopic then f,=g,: H(X, A)
— H(Y, B}—because homotopic chain maps induce the same homo-
morphism of homology (I, 3.4). 1

5.3 Corollary. If (X, A)~(Y, B) then H(X, A)~H(Y, B).

Proof. If (X, A)—L>(Y,B)-L5(X, A) are reciprocal homotopy equi-
valences then H(X, A)—£->H(Y, B)-“» H(X, A) are reciprocal iso-
morphisms by 5.2. 1
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5.4 Corollary. If X is contractible, X ~P, then HX=0. In fact, the
augmentation n. SX —(Z,0) is a homotopy equivalence (cf. 11,4.3). 1

The situation is best illustrated by the following commutative functor

diagram %/z—s—w?ﬂ%\

H
(5.5) l } >, GodY
H

%J/& _____ 5)#6%

where n denotes passage to homotopy classes. Proposition 5.1 asserts
that the dotted arrow S exists. In 11, 3.4 the arrow H was shown to exist.
Corollary 5.2 only says that (HS) exists and 5.3 remarks that HS takes
equivalences into equivalences (as any functor does).

5.6 Remark. If f: (X, A)—(Y, B) is a homotopy equivalence then so
are f: X — Yand f|4: A — B. The converse is not true; a counterexample
is given by X=Y=[0,1], A={0}u {1}, B=[0,1]—{3}}, f=inclusion
(proof?). On the chain level, however, the converse is true (II, 4.3).

The proof of 5.1 will be an easy consequence of the following

5.7 Proposition If F°, F': SX — S([0, 1] x X) are natural chain maps such
that the two composites Sdy,— =15 S([0, 1] x 4y) —">(Z, 0) (4, =zero
simplex, n=augmentation 4.5) coincide then there exists a natural
homotopy s: F®~F' Naturality of ¢ =F° F! or s means, of course,
that ¢ is defined for all spaces X and that

SX' —S([0, 1T x X)

(5.8) Jh Jvid x h

SX —2 5 S([0,1]x X)

commutes for all continuous maps h: X' — X.

Proof. We assume inductively that s: S, X —S, ,([0,1]x X) has
already been found for k<gq and
(5.9) ésts,_0=F—FL.
Let 1,€S,(4,) denote the identity map of 4,. We compute
{FC 1, —Fl1,—s, 01,0 =F°01,—F'01,—(ds,_,)(01,)

=F%01,—F'01,—(F°— F'—s,_, 0)(01,)=0.
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Thus F®1,—F'1,—s,_, 01, is a g-cycle; if g=0 then its augmentation
vanishes because n F® =y F'. Therefore it is a boundary because [0, 1] x 4,
is convex (4.6), i.e. we can find beS, ([0,1]x 4)) with ob=F° 1y—
F'1,—s,_,¢1,. Now define

(5.10) 5,08, X8, ([0, 1]x X), s,(0)=(dx )b,

where : 4,— X ranges over all singular g-simplexes of X. We have

to verify naturality 5.8, and formula 59 with k=gq. Let ¢’: 4, — X". Then
(id x h) s,0'=(id x h)(id x ¢') b=(id x ha") b=s,(h0')=(s, h) o',
which proves naturality. Further
(¢s,)o=C(id x 0) b=(id x ¢) db
=(dx o) {F°1,—F'1,—s,_,01,)
=F’c1,—F'o1,—s, ,001,

=F°c—F'o—s,_001,=(F°—F'—s,_,0)0,

q-1

which proves 5.9; naturality of F°, F!, s,_y was used for the fourth
equality. 1

The preceding proof is typical for the method of “acyclic models™
which is due to Eilenberg-MacLane (1953). We shall explain the
general principle in VI, 11.

Proof of 5.1. For every space X the inclusions
F': X-[0,1]xX, F'(x)=(x), 0<t<l,

define natural chain maps F':2SX —S([0,1] x X), and by 5.7 there is
a natural homotopy s: FO~F! If Ac X is a subspace then F'(SA)c
S([0,1]x A), and s(SA)<=S([0, 1] x A), the latter by naturality of s.
Passing to quotients we get

F': S(X,A)— S([0,1]x X, [0,1] x A), and 5: F°~F!,
Consider now a homotopy @: f ~g, as assumed in 5.1. Clearly ©,= OF',

hence ©,= _@__F 2 S(X, A)— S(Y, B) by passage to quotients. Therefore
Sf=0,=0F°~OF'=0,=Sg. 1

5.11 Examples. Ifi: A< X isa pair of spaces then A is called a deformation
retract (of X) if a homotopy 6,: X — X exists with O, =id. @,(X)= A
and O,|A=i. Thus @, defines a retraction r: X —» A4 with ir=60,; we
haveri=id,, and @:idy ~ir. In particular, i, r are reciprocal homotopy
equivalences, hence i,: HA=HX. If @ can be so chosen that @,|4=i
for all ¢ then A is called a strong deformation retract.
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For instance, if Ae X is a single point then A4 is a deformation retract
if and only if X is contractible; we get HX =0 as in 54. If $"'=
{xeR"| || x| =1} denotes the unit sphere then $"~! is a strong defor-
mation retract of the deleted euclidean space R"—{0}: take O,(x)=
(1—t+t/| x|) x. The same deformation @ shows that $"~' is a strong
deformation retract of the deleted unit ball IB"—{0! where IB"=
{xeR"| |x||<1}. In particular,

(5.12) HS" '~ H(B"—{0})~H(R"—{0}).
5.13 Exercises. 1. If f: (X, A)— (Y, B) is a map such that f: X~Y and
(f14): A~B then f: S(X, A)~S(Y, B); compare 5.6.

2. If A 1s a (strong) deformation retract of X then 4x Y is a (strong)
deformation retract of X x Y. Draw pictures with X =IB? A4={0:,
Y=8.

3. The cone CX over X is obtained from [0, 1]x X by identifying the
subspace {0} x X to one point v, the vertex of CX. Show: (i) CX is
contractible, (i) H,(CX, CX —{v})=H,_ X.

4. Consider the solid torus, solid double-torus, solid triple-torus etc.,
as illustrated by

Fig. 4a-c

Show that they contain deformation retracts of the form

O 0 OO

Fig. 5a-c

6. Barycentric Subdivision
This is a tool which will be used in § 7.

6.1 Definition. For every space X we define homomorphisms
B S,X —S,X, =0, called the barycentric subdivision, as follows:

62) Bo=id, By1,=B, Bo_i@1), Byo)=0,(B,1), a>0,
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where 1,€S,4, denotes the identity map of 4,,

( 1 1 1 ) e'
B,= Yo =% —-
T\ q+1" g+1 g+1 =% gq+1

is the barycenter of A,, B,-is the cone construction as in 4.7 (recall that
4,1s convex), and 6,: 4, > X is an arbitrary singular simplex.

Loosely speaking, the barycentric subdivision of o, is obtained by
projecting the barycentric subdivision of do, from the center of o,.
The reader is advised to draw some pictures. The crucial property of
is that it cuts simplices into smaller pieces, more precisely

6.3 Proposition. The sequence f,: S, X — S, X, ¢=0, is a natural chain
map and has the following property: For every ¢ >0 and every real number
¢>0 there exists a number N=N(e,q) such that the chain c=f"(1))=
BB...B() for n=N contains only simplices © of diameter |t|<e
(ie, ltl=¢=>c,=0). The diameter of 7: 4,—R* is defined as
Itll=Max{lltx—y||x,yea,}.

Proof. If f: X — Y is a map then (f B o, =f(Bo)=(fa )B1)=B(f0,),
which proves naturality. Next we verify 0 8,=p,_, 0 by induction on g.

0(B,0)=(00)(B,1)=(0,0)(B, - B, 91)=0,3(B, B,_, 01,
zaq(ﬁq_l alq)zﬁq~1 anlq:ﬁq—lao-qs

where the fourth equality uses the boundary formula 4.9 and
0B,_1=B,_ 0.

It remains to find N (g, g). This is contained in the following more general

6.4 Lemma. If5: 4,— R* is a linear simplex (cf. 1.2) then B(c) contains

only linear simplices of diameter < a lo|. In particular, B"(1,) contains
q

+1

only simplices of diameter < (L) e .
g+1/ "

The proof of 6.4 uses

6.5 Lemma. Ifo: 4, — R*isa linear simplex with vertices B, F,, ..., F, then
@) |P—P<Maxi o |P—FE]|, for all P,P'ea(4);
(b) [lo]l <Max, ;| P—P|.
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Proof of 6.5. We have P'=Y"?_, x/P. with x;>0, > x/=1, hence

IP—P|l= Y (x;P~x;P)| <Y x;l|P~ B
<(¥. x)(Max | P—B[)=Max |P— .
This proves (a); part (b) follows by applying (a) twice. |
Proof of 6.4. The following properties of the cone-construction are

immediate from the Definition 4.7.
(i) Given 1: A,—»R'| PeR', and a linear map f: R' > R* then
f(P-0=(fP)-(f7).
(i) If ©: A, >R is linear with vertices Q,,...,Q, then P-1: 4, > R!
is linear with vertices P, Q,, ..., Q,.
Now

Bao=a(B,-fC1)=(aB,)-(cfc1), by,

=(0B,)-(fod1), by naturality of B,
=>4 o(—1Y(aB)-Blo ).

Thus o contains only 51mp11ces of the form ¢'=(cB,)-t where 7 is
contained in some fB(s¢’). The diameter of ¢’ equals ||P—Q| where

P, Q are vertices of ¢’ (by 6 5 (b)). These vertices are either vertices of t
or one of them equals ¢ B, (by (ii)). In the first case

. q—
la'l=1P-Ql<ll<

1 . g—1 q
g < o||l< al,
lol <= =lol<—lel

the 3rd inequality by induction on ¢. In the second case, say P=a B,

o'l =1P-Q<|P-Fl

|

for some i, by 6.5 (a), hence

1
o'l <o B,~Bl=| T2 o i B R

ol Rl lol

<
g+1
This proves 6.4 and 6.3. 1

We also need that S~id. This is contained in
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6.6 Proposition. If°,v': SX — SX are natural chain maps which agree in

dimension zero, y3=175, then there exists a natural homotopy s: 7°~7!.

There is a direct proof by the method of acyclic models as for 5.7: the
reader will find this an easy exercise. We reduce the problem to 5.7 by
considering the composites F': SX —»SX —L §([0, 1] x X), where
J(x)=(0, x). Then a natural homotopy u: F®~ F! exists by 5.7. Compos-
ing with the projection m: [0,1] x X — X gives a natural homotopy
s=nu:nF°~nF! and nFi=(nJ)y'=y". 1

6.7 Exercises. 1. Let V, be the set of vertices of 4,, and let ¥, be the set
of non-empty subsets of V,. If Ve¥,, define its barycentre BVed4, by

1
BVsz,.EV v, where |V|=cardinality of V. Show that every xe 4, has

a unique representation x=Y x, - BV such that (i) 0<x, <1, (i) } x, =1,
and (i) x,+0, xp #0= VW or Wc V. The numbers {x,}, Ve¥,,
are called the derived (barycentric) coordinates of x. We can think of
{x,! as ordinary coordinates on 4, where N=|¥,;|—1=2"*'—-2; then
x> {x,} maps 4, homeomorphically onto a union of certain lower-
dimensional faces of 4.

If p: V, >V, is a map define the derived map ¢': 4,— 4,, by (¢’ x)y=
Y ov_uvXy, Ue?,. Show that this is well-defined, that ¢’ takes vertices
into vertices, and that ¢’ is linear if and only if ¢ is injective.

2. Show that a sequence 7,: S, X — S, X of natural homomorphisms
(Xe€Jep) is a chain map if and only if &y, 1,=7,_, 1, for all g, where
1,=1d(4,).

7. Small Simplices. Excision

We show that in order to compute singular homology it suffices to
consider small simplices (7.3). This implies that H(X, A) is unchanged
if one excises any part B of A which doesn’t touch the boundary of 4 (7.4).

7.1 Definition. If X is a space and % is a set of subsets of X then S%
denotes the smallest subcomplex of SX which contains all SU, Ue%,
1.e. S% is the subcomplex generated by {SU},_,- The chains of S% are
linear combinations of simplices g: 4,— X each of which maps 4, into
some Ue %, i.e. of simplices which are “small of order %”.

If Ac X is a subspace we put " A={U n A}, and define S(% n A),
S(U, U ~Ay=SU/S(% ~ A) accordingly. We have a commutative dia-
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gram of chain maps

0> SN A) S > S(U, U~ A)— 0
- | | |
0> S4 SX S(X,4) —0

with exact rows whose vertical arrows 1 are inclusions.

7.3 Proposition. If every point of X is contained in the interior A of A
or in the interior U of some Ue¥ then 12 S(UUNA)—>S(X, A) is a
homotopy equivalence, hence 1,: HS(U, U n A)=H(X, A).

If % consists of only one set Y this is known as the excision-theorem.
The assumption then means YU 4= X, the conclusion is S(Y, Yn4)~
S(X, A). In terms of complements B=X — Y, B=X — Y, the assumption
is B A, the conclusion S(X — B, A— B)~S(X, A). Thus

7.4 Corollary (Excision). If (X, A) is a pair of spaces and Y = X is such
that YOA=X then j: S(Y, Yn A)~S(X, A) where j=inclusion. If BC A is
such that Bc A then j: S(X—B, A—B)~S(X, A). In particular Tt
H(Y, YA A)=H(X, A) resp. j,: H(X —B, A—B)=H(X, A).

Proof of 7.3. Since S(%, % n A), S(X, A) are free complexes it suffices to
show (by II,4.3) that 1, : HS(%,% ~A)=H(X, A). This, in turn, will
follow from the homology sequence II, 2.9 provided we show

H {S(X,A)/S(U, % A)}=0 forall q.

The elements [z] of this group are represented by cycles z of X mod S¥~
(wWhere ¥"=% U {A}), i.e. by chains zeS§_ X such that 0zeS¥” We have
to show that z is a boundary mod S¥; i.e. z=0x+y with xeSX, yeS¥.
We shall see below that:

(7.5) If neZ is sufficiently large then B"(z)eSY¥.

Also, from 6.6, 6.2, we have a natural homotopy s: id~f", hence z=
0(sz)+s(dz)+ B"(z). This proves the assertion [z]=0 provided we can
show s(0z)eS¥. But 0zeS¥, and s(S¥")=S¥ by naturality of s; in
fact, if V is any element of ¥~ then s(SV)< SV by naturality applied to
V—=X.

It remains to prove 7.5. Since z is a finite linear combination of simplices
c: 4,— X it suffices to show that for these ¢ we have f"(c)eS¥~ for
large n. Now, the sets {¢~'V},_, form an open covering % of 4,.
Choose ¢>0 such that every subset of 4, whose diameter is less than ¢
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lies in some ¢~ V; this is possible because 4, is compact (“Lebesgue-
number” of #°; cf Schubert, I,7.4). By Proposition 6.3, the chain
p"1,eS,(4,) consists of simplices of diameter <e only, provided n is
large enough But then "1, consists of simplices each of which lies in
some 6" V, hence f"o=0 [)‘" 1,) consists of simplices each of which lies
in some Vc V, hence f"aeSv. 1

7.6 Example. A pair of spaces (X, P) where P consists of a single point
is called a pointed space, or space with base point. If (X, P) and (Y, Q)
are pointed spaces then we define their wedge (or one-point-union) as
(7.7) XvY=XeY/P~Q,

i.e. the topological sum with base points identified (this is then the
natural base point for X v Y). We can think of X,Y as subspaces of
XvYviaX,YcXeYo>XvY;thenXUuY=XVvY, XnY=P=Q. Let
i: X —» X v Y« Y:jdenote the inclusion maps.

7.8 Proposition. If the closure of P in X has a neighborhood U in X
whose inclusion map U — X is homotopic rel. P to the constant map U — P
(i.e. there is a deformation d,: U — X with d,=inclusion, d,(U)=P,
d,(P)=P for all te[0, 1]) then

(7.9) (i Jy): H(X, PYo H(Y, Q)= H(X v Y, P=0).

By 4.3 we can also write HXe HY ~H(X v Y).

Proof. We can extend the deformation d to a deformation

D:UvY—->XvY by D|Y=j

(continuity of D is obvious if P and Q are closed points; the general case
follows from V, 2.13). This deforms U v Y into Y showing that

HUVY.Y)-HXVYY)
is the zero-map. Consider then the commutative diagram
— % JHXVvY,Y)— —>HXvYUvY)— > HUVY,Y)

(7.10) ].-; i L‘U

H(X,P)—— H(X,U) ——H(U,P)
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whose rows are parts of the exact homology sequences of the triples
(XvY,UvYY)resp. (X, U, P) and whose vertical arrows are induced
by inclusions. All vertical arrows are monomorphic; in fact, they have
left inverses because i: X — X v Y has a left inverse r, namely r|X =id,
r(Y)=P. The middle arrow iy, is even isomorphic because H(X v Y, U v Y)
= H(X, U), by Excision7.4. But then i, must also be isomorphic as
can be seen from the five lemma or (simpler) by direct diagram chasing
in 7.10.

Now, just as i has a left inverse so does j: Y— X v Y, hence (4.16) we
have a split exact sequence

(7.11) 0>HY "SHXVY)SH(X VY Y)50.

This sequence is split by H(X v Y, Y)éI:IX —*, H(X v Y), which proves
the assertion. |

7.12 Exercises. 1. If X is a metric space then the diameter ||a| of a sin-
gular simplex 6: 4, — X is defined by |o|| =Max {dist(s x,ay)|x,ye4,}.
Show that, for any ¢ >0, the subgroups S; X of S, X, ¢=0,1, 2, ..., which
are generated by all simplices of diameter less than ¢ form a subcomplex
$°X, and $* X ~SX.

2. The wedge X = V, X, of an arbitrary family of pointed spaces (X, P),
Je A, is defined by taking the topological sum @, X, and identifying the
set of base points @, P, to a single point, say P. Show: If the closure of P
in X has a neighborhood U in X such that HU — HX is the zero-map
then {i,.}: ®, HX,=~H(V, X,). Hint: Use the diagram

0-> HX,P)—— HX,U) ——H(U,P)

]

HeX;,,oP)— H@®X,,0U) — H®U,,®P)

where U,=Un X, and prove, as in 7.10, that the left vertical arrow is
isomorphic.

3. For any pair of pointed spaces (X, P), (Y, Q) there is a natural injection
J: Xv Y- XxY, defined by Jx=(x,Q), Jy=(P,y) for xeX, yeY.
Show that if (7.9) holds then J,: H(X v Y)— H(X x Y) has a left inverse
(hint: take the sum of the projections), hence the homology sequence of
(XxY,XvY)splits into HX xY)H(XvY)e HX x Y, X v Y)—just
as if X vY were a retract of X x Y.
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8. Mayer-Vietoris Sequences

A reader who at this point would rather study some interesting geometric
applications instead of pursuing further the theory of singular homology
can continue with Chapter [V, 1-5 now; the present section will not be
needed before 1V, 6.

Let X be a space and X;, X, two subspaces. We denote this situation by
(X; X,, X,) and call it a triad (not to be confused with the more special
triple of §3); let i,: X, — X be the inclusions. We want to relate the
groups H(X,), H(X,), H(X,n X,), HX;u X,).

8.1 Proposition and Definition. A triad (X; X,, X,) is called excisive if
one of the following equivalent conditions holds:

@) iy, HX,, X nX,)=H(X,u X,,X,),

(b) iy, HIX,, X;nX,)=H(X,u X,, X)),

(€) (f4.05,) HX, X, nX,))e HX,, X, nX,)=H(X,u X,, X, nX,),

(d) i,: HS{X,, X,} =HS(X,u X,)=H(X,u X,),

() i,: HIS{X,, X;}/S(X, " X,)]=H [S(X,U X,)/S(X,n X,)]
=H(X,vX,,X,nX,),

(0 pe: HISX/S{X;, X,} 1= HISX/S(X, 0 X,)]=H(X, X, v X))

where S{X,, X,} is the subcomplex of S(X,u X,) which is generated by

SX, and SX, (see 7.1), and i=inclusion, p=projection.

For instance, if X;, X, are open in X, U X, then (d) holds by 7.3; these
triads are excisive. Other important examples are CW-spaces and -sub-
spaces (V,4.6). A non-excisive triad is given by X=R, X,=(—00,0],
X,=(0, +00).

Proof. We have the following exact sequences of chain maps

SX . S(X,UX,) S(X,UX,)
8.2 04’ 1 [N 1 2 R 1 2 0,
(8.2 S(X,nX,) SX, S{X, X,
S(X,UX,)

B3) 0= S X1 o SXUXy) — gt 0,

g4 oL SKXl i SKUXy)  SKuXy)

: S(X,nX,) S(X,n X,) S(X, X,1
X UX X

85 0- XiVX) o SX p S 0.

S{X,X,! S{X,. X, S(X,0X,)
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The homology sequence (I1, 2.9) of 8.2 resp. 8.3 resp. 8.4 resp. R.5 shows
that i, resp. i, resp. i resp. p, is isomorphic if and only if

H[S(X,u X,)/S{X,, X,1]1=0.

Thus (a), (d), (e), (f) are equivalent; by symmetry, (b), (d), (e). (f) are also
equivalent. Equivalence of (¢) and (e) follows from the commutative
diagram

iy, i X, X,!
SX /S(X{nX,)eSX,/S(X;nX,) ‘122) S{Xy, X,

S(X,nX,)
(n&‘ /

S(X, 0 X,)/S(X, N X,)

by passing to homology. 1
8.6 Proposition and Definition. For every triad (X ; X,, X,) the sequence

87) 0>S(X,nX,)— =1, sx o SX, —2 ,5(X, X, -0
1 2 1 2 1 2

is exact where i, j, are inclusions. If the triad is excisive then the homology
sequence of 8.7 has the form

o H, (X, 0X,) " H (X, nX,) 222 g X e H X,

(8.8) T P
1w 124 H"(Xlqu) * .

This exact sequence is called the (absolute) Mayer-Vietoris-sequence of
(X X, X5).

We also have, for every triad (X ; X,, X,), an exact sequence

0-SX/S(X,nX,)—=2, 5X/SX, 0 SX/SX,

89) i

—=—-S5X/S{X,, X, -0
where i, j, are projections. If the triad is excisive then the homology
sequence of 8.9 has the form

(8 10) “'_)Hn+1(X’ XIUXZ)L’Hn(Xv XlnXZ)
C 0 Uil go(x X ))e Ho(X, X,) - g (X X, U X,) -2

This exact sequence is called the relative Mayer-Vietoris sequence of
(X5 Xy, X))
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Proof. Clearly (i;,,): SX,®SX, — S{X,, X,! is epimorphic (by defini-
tion of S{X,, X,}), (i, jz) is monomorphlc and (i;,i,)(j;, —j,)=0. If
(c,, c;)eker(i,, i,) then, in SX, we have i, c; +i, c,=0 which means that
¢, and —c, are the same chains of SX. But c;,eSX, and c,eSX, hence
c=c,=—c,eS(X,nX;)and (c,, ¢;)=(j;, —Jj,)(c). This proves exactness
of 8.7. As to 8.8, one has only to use HS{X, X,! =2 H(X,u X,) which is
8.1(d).

In the second part, (i;,i,): SX/SX,® SX/SX, >SX/S{X,,X,} is ob-
viously epimorphic, (j,, 12) is monomorphic, and (i, i,)(j;, —j,)=0.
Let (V,,¥,)eker(i,,i,) where y,,y,eSX are representatives. Then
n+v,eS{X,, X,i, i.e, y,+y,=x,+x, with x,eSX,, hence (y, —x,)=
—(y,—x,) and (¥,,¥,)={j,. —j,)(y; — x,). This proves exactness of 8.9.
Finally, 8.10 follows from 8.1(f). 1

It is sometimes useful to know more about the boundary operator d_
of 8.8, 8.10:

8.11 Proposition. The boundary operator d, of the Mayer-Vietoris
sequence 8.8 resp. 8.10 coincides with the following composition

Hn+1(X1 UXZ)“’Hn+1(X1UXZs X;)

(8.12) )
= n+1(X1’ leXZ)—" Hn(leXZ)

resp.

6.13) H, (X, X,0X,) -2 H (X, UX,, X;)

an(XZ’leXZ)_’Hn(Xa leXZ)
where all maps other than ¢, are induced by inclusion.

Proof. Let ueH(X,uX,)~HS{X,,X,} be represented by x,+x,€
S{X,,X,} with x eSX, and 0=0(x,+x,)=0x,+07x,. Then d u is
represented by (j,, —j,)~' (0x,,8x,)=(j;, —j,) "' (0x,, —0x,)=0x,. But
0x, 1s also representative for the image of # under 8.12.

For the second part we can choose a representative zeSX of
ue H(X, X,u X,)=H[SX/S{X,, X,}] with 0zeS{X,, X,}, hence dz=
x;+x, with x,eSX,. Then d_u is represented by (j;, —j,)~'(0z,0)=
(j1» —j2)~1(x;,0)=x,. But this is also a representative for the image of u
under 8.13. |

Mayer-Vietoris sequences are functorial, i.e.,

8.14 Proposition. 4 map f: (X; X,, X,) - (Y; Y, Y,) of excisive triads,
ie, a map [ X - Y with f(X))<Y,, induces a homomorphism of the
corresponding (absolute or relative) Mayer-Vietories sequences.
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This is a useful special case of the generalized Jordan-curve-theorem
(v, 7.2).

3. If AX,=0=HX, then 8.15 shows
dy: H, (X, 0X,)=H,(X,nX,).

An interesting example arises from the suspension ZY of any space
Y +@. The suspension is obtained from [0, 1] x Y by identifying each
of the subsets {0} x Y and {1} x Y to a point. More intuitively, it is
the double cone over Y. The projection [0,1]x Y —[0,1] defines a
function h: £Y —[0,1] such that h=*AxY for A+0,1 and h='(0),
h~!(1) are single points. Let C,Y=h"'(0,1], C,Y=h"'[0,1); these
“open cones” are contractible (move vertically towards h~'(1) resp.
h=1(0)), hence AC,Y=0=HC,Y. Applying our isomorphism to the
excisive triad (2Y; C, Y, C,Y) shows

®.18) H

n+1

SY=H(C,YNnC,Y)=H,[(0,1)x Y]=H,Y,

the latter because (0,1)x Y~Y.

As an exercise, show that X$'~S$*! and use this to compute HS'
inductively.

8.19 A Generalization. Consider a pair of triads (4; 4, 4,)=(X; X, X,).
The inclusion maps yield a commutative diagram of chain maps
CS{XL X

0-S5{4,,4,) — S{X, X,} S, A,)

-

0 - S(4,UA,) ——S(X,UX,)

-0

. S(X,uX,) 0
S(4,VA4,)

with exact rows. If the triads are excisive then the first two vertical
arrows induce isomorphisms on homology, and therefore also the third,
by LI, 2.10. Since the complexes are free we even get a homotopy equialence

S{X,, X,1/S{A,,A,} ~S(X,U X,)/S(A, L 4,).
Consider then the following sequence of chain maps

S(leXZ) (1, —2) SXI ® SXZ (i, 82) S{XI’X2=

0.
S(A,nA,) SA, 54, S{4,, A4,

(8.21) 0—
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It is exact, just as 8.7. Its homology sequence has the form
o Hy (X UX,, A UA) S H (X, N Xy, AN Ay) —em2d
(822) —H/(X,,A)e H,(X,,A,) =iz
SH(X,UX,,A,UA,) 2 H _(X,nX,,A,nA)>--.

This exact sequence is called the Mayer-Vietoris sequence of the pair
of excisive triads (X; X, X,)=(A: A4, A,). It reduces to 8.8 if 4=,
to 8.10if X, =X,=X, to 815 if 4,= A4, is a single point, to 34 if X, =X
and 4,cA4,=X,.

8.23 Exercises. [*. Let (X; X,, X,) be a triad, 4 a closed subset of X
containing X, X, and such that X, — A, X, — A4 are open in X, UX,.
Let W be a neighborhood of A4, and put W,=Wn X,, W,=Wn X, (for
simplicity, assume first X, X, are closed and A=X, n X,).

a) Show that if (W; W,,W,) is excisive then so is (X; X,,X,), and
conversely. Loosely speaking, this means that the property of being
excisive depends only on the situation around the area of contact of X,
and X,. Hint: Compare the homology sequences of the triples (X, U X,,
W v X,, X,)and (X,, W, X;nX,).

b) Suppose there exists a retraction r: W, - X;nX,=W,nW,, and a
deformation D,: W,uX, > X,uX, such that D,=inclusion,
D,(W,uX,)cX,,D(W)cX,,D(X,)cX,forO<t<1.Then(X; X,, X,)
is excisive. Hint: The deformation D shows that H(W,u X,, X,)—
H(X,vX,,X,;) and HW,,X,nX,)— H(X, X,nX,) are zero-maps.
There results a commutative diagram

0-HX,vX,, X,))—HX,vX,, WuX,)— HW,uX,, X,)»0

(8.24) e ’ v
0— H(X, X,nX,)—  H(X,, W)  —>HW,X,nX,)—0

with exact rows. Clearly « is monomorphic. Excise X, resp. X; X, to
show that g is isomorphic. Excise X, —W, and use r to show that y is
monomorphic. Diagram-chasing then shows that « is isomorphic.

Part (b) generalizes 7.8. Formulate and prove a corresponding general-
ization of 7.12 Exercise 2.

2. The absolute and the relative Mayer-Vietoris sequence of an excisive
triad are closely related. Show that every term of the relative sequence
8.10 maps into the corresponding term of the absolute sequence 8.8 by
a connecting homomorphism and that the resulting diagram commutes
up to sign.



8. Mayer-Vietoris Sequences 53

More generally, if

0 0 0
! | i
0 K’ K y K'———0
! !
(8.25) 0 y L > L y L 0
v J v
0——M » M yM”———0
0 0 0

is a commutative diagram of chain maps with exact rows and columns
then the homology sequences of these rows and columns constitute a
2-dimensional lattice of group homomorphisms. It is commutative
except for the (0, —0,)-squares which anticommute. Apply this to

0 0 0

-

0—— S(A4,nA,) — SA, 054, — S{A,, Ay} —— 0

d A
0—— S(X;nX,) —— SX, 85X, —— S{X,,X,} — 0

| |

0 S(X,nX,) SX, _ SX, S{X,, X,! 0
S(A,nA,) SA, 5S4, S{4,, 4} )
l l 3
0 0 0

where (X; X, X,)>(4; A, A,) is a pair of excisive triads. The above
relations are then obtained by specialising X, =X,=X.



Chapter IV

Applications to Euclidean Space

1. Standard Maps between Cells and Spheres
We recall the definition of the

standard n-sphere  $"={xe R"*!|| x| =1}
and
standard n-ball B"={ye lR"IlI_V|| <1,

where || x| =}/ ZLO x;. The open ball, B"={ye lR",||y|| < 1} is also called
standard n-cell. Let Q=(0,...,0, )eS", the point with last coordinate

Q": 1'

1.1 Definition and Proposition. The standard map n: (IB", $"~') - (S". Q)
is defined by

(M= Y 1=y » 20yl -DeR"x R=R"*".

It induces a homeomorphism 7: B"/S" ' ~S", in particular n: B"~$"— Q.
[.e., the sphere is obtained from a ball by shrinking the boundary to a
point. Intuitively speaking, n consists of wrapping without folds an
elastic circular cloth IB" around a globe $” such that the edge of the
cloth meets at the northpole.

We leave it to the reader to verify that |n(y)|?=1, that 77! Q=8""1,
and that p: 8"—Q —1B", p(z,t)=z/)/2(1 — 1), is inverse to n[IB". |

1.2 Proposition. The standard map =': B">R" n'y=vi(1—|y|) is a
homeomorphism, with inverse p’(z)=z/(1 + | z||), ze R". 1

Combining 1.1 and 1.2 shows $"—Q~R", i.e. removing a point from
$” gives R". Conversely, adding a point to IR" gives $"; more precisely,
the one-point compactification of R" is 8", in symbols, "~ R" U {cc}.

T

This is illustrated by the composite map $"—Q—2-IB"-Z-R”"; it
“takes Q into 7.
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We want to show that simplices, cubes and their products are homeo-
morphic with balls. This is contained in

1.3 Proposition. If KcIR" is a compact convex set which contains an
n-ball B then there is a standard homeomorphism (B, B)~(K, K)where B
denotes the boundary.

Proof. After parallel translation and multiplication with some 3>0 we
can assume that B is the standard ball B". Now, if xeK and 0<i<l
then A x lies in the interior K of K: in fact, Ax lies
in the open cone which is obtained by projecting
IB" from x, and this cone lies in K because K is
convex (Fig. 6). In partxcular every ray from 0
contains exactly one point in the boundary K
of K. Therefore the map

vi K=8§" ()=

Fig. 6

Ilyll

is bijective and hence homeomorphic (because K is compact). By radial
extension we get the required homeomorphism

v: K~IB", v(}ty)=i”yL“, yeK, 0<i<l. 1

1.4 In particular, 1.3 provides us with a standard homeomorphism
between cube and ball [—1,1]"=[—-11]x---x[-1,1]=IB" As to
A, we first define a linear embedding 1: 4, —R", 1(e))=¢' for i<n,
1(e")= —Y"7-5 €. Then 1(4,)~ 4, is a convex set containing a ball around

1 .
0=1 ( 3 ZLOe‘), hence a standard homeomorphism &: 4,~IB".

Under this homeomorphism @ the boundary 4,={xe 4,1x,=0 for some
i>0! of 4, maps homeomorphically onto the boundary B"=8""1.

2. Homology of Cells and Spheres
Using the tools of Chapter III these groups are easily computed now.
They lead to some of the best known theorems of topology such as

2.3-2.6.

2.1 Lemma. Let A, be the standard simplex, A, = {xe 4,1x;=0 for some
j=0} its boundary, and N ,={xe4,|x;=0 for some j>O0}=union of all
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faces but one. Then we have the following isomorphisms
H(4,,4,)-2>H,_\(4,, \,)e=—H,_ (4,—° N,—e°)
EH_ (4,14, 0)

where €° is the vertex x,=1, i=inclusion, and n>0.

Proof. The homotopy x> (1—t) x+te® shows that (4,, A,)=~(e° e°).
Hence H(4,, A,)=0, and the homology sequence IIl, 3.4 of the triple
(4,, 4,, \,) shows that ¢, is isomorphic. The map i, is isomorphic by
excision 7.4. Finally, £°: (4,_,,4,_,)— (4,—e° A ,—¢e°) is a homotopy
equivalence; in fact, we get a deformation retraction of zf,,—eO onto
the zero-face ¢°(4,_,), which takes A,—e° into £°(d,_,), if we define

1—(1—¢
x—x(t) by x(t)y=(1—1)xg, x(t)j:-—%ng for j>0. 1
A0
2.2 Proposition.
0 if k+n
Z if k=n,
0 ifk=+n
Z if k=n,
0 if k+n
Z if k=n, forany PeR"

(a) f{kS":{
(b) Hk(IB"»S"_I)={
(c) H(R", lR"—P)={

Proof. By 1.4 and 2.1 we have
H.(B",S"Y~H,(4,,4,)=H,_,(4,_,4,_ )=

n—12“n-1)=

~H,_ ,(44,40)=H,_,4,.
Since 4, is a point this proves part (b). Since IB"*' is contractible we
have 2,: Hk+1(IB"+‘,S")=ﬁk§"; this reduces (a) to (b). As to (c) we
can assume (after translation) that P=0. Then the inclusion (IB", $"~!)—
(R", R"— P) induces homology isomorphisms for IB” and $"~7 (III, 5.12;
both are deformation retracts); hence H(IB", $" )~ H(R",IR"—P) by
the five lemma. ||

2.3 Corollary. Spheres of different dimension are not homeomorphic.
Euclidean spaces of different dimension are not homeomorphic.

For spheres this is clear from 2.2(a). If h: R™~ R" then h: (R™, R"—-0)~
(R", R"—h(0)), hence m=n by 2.2(c). 1

2.4 Corollary. $" ! is not a retract of IB".
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If r: B"—S8"~! were a retraction, r i =id, then the composite

AS™' = AB " AS"!
would be the identity map. This is impossible because HS"~!=+0,
HB"=0. 1

2.5 Corollary. If f: IB"—IR" is continuous then either fy=0 for some
yelB", or fz= Az for some zeS"~ !, A>0.

Proof. Define p: IB"—IR" as follows. p x= (2 ||x]| = 1) x —(2 =2 ||x|)) £ (x/lIx]|)
for 2|x||=1, px= —f(4 x| x) for 2| x||<1; in particular, pz=z for
ze$S""!. Then p|BB” must assume the value 0 because otherwise

would be a retraction of IB" onto $"~'. If px=0and 2 ||x|| <1

o P
lloxl
then fy=0 where y=4||x|| x. If px=0and 1 <2 |/x|| <2 then

f( X )_2||x||—1x
T\ x| 2—2||><|| '

2
hence fz=/z where z= X [l x|l —

(B 2xIl

Ifin 2.5 we replace fx by g x —x we get the

II I u

2.6 Corollary (Brouwer fixed point theorem). If g: IB" — R" is continuous
then either g y=y for some yeIB" or gz=uz for some zeS"~ ', u>1. 1

The reader might want to see a concrete (relative) cycle whose homology
class generates H,(IB", $"~!) resp. H,$"; such cycles are usually called
fundamental cycles. There is a very simple one, namely

2.7 Proposition. The identity map 1,: A4,— 4, is a cycle mod 4, whose
homology class [1,] generates H,(4,, 4,)=Z. Its boundary 01, is a cycle
on A, whose homology class generates H, _, A,=Z.

Proof. Since 0,: H,(4,, A)=H,_, 4, the two assertions are equivalent.
Clearly [1,] generates Hy4,=H, (AO, 4 o), SO we can proceed by induc-
tion on n. In the notation of 2.1, it is clear that ¢°: 4, _, —» 4, is a repre-
sentative for both @, [1,]eH, l(A A,) and i €d[1,_,]€H, (4 A
hence [1,_,]=(¢ °)‘l i ' 0, [1,], which proves the assertion. 1

Lemma 2.1 and its consequence 2.2 can be generalized by multiplying
all pairs and maps with an cxtra space Y; the proofs remain the same,
with Y playing a dummy role:
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2.8 Proposition. Let PeS", There are natural isomorphisms
(@) H(S"xY,PxY)~H,_ Y,
(b) H(B"x Y,$""' xY)=H,_,Y.

Proof. In the notation of 2.1 and with the same reasoning as in 2.1
(multiplied by Y) we get isomorphisms

. Oy .
Hk[(An? An) X Y];Hk—l[(dn’ /\n) X Y]

U2 H MO A ) x YR 14,4, )x Y],
hence, by iteration H,[(4,,4,)x Y]=H,_,[(4,,4,)x Y]~ H,_, Y. This
proves part (b) of 2.8 because (4,, 4,)~(IB", $" '),

Consider now the triple (B"*' x ¥,$"x ¥, P x Y).Since B"*' x Y~P x Y
we get H(B"*! x Y, Px Y)=0, and the homology sequence of triples
shows @,: H,,,(IB"*' x ¥, $"x Y)= H,(S"x Y, Px Y). This reduces (a)
to(b). 1

2.9)

2.10 Corollary. There are natural isomorphisms
(0,9,): HS"xY)=H,_,YeH, Y
where q: 8" x Y— Y is the projection, g(x, y)=1y.

Indeed, g: $"x Y—>Y=Px Y is a retraction, and therefore we have an
exact sequence

0->HPXY)>HS"XY)>HS"xY,PxY)—>0
which is split by g, (see I11,4.16). The assertion now follows from 2.8(a). 11

We can now compute the homology of any finite products $™ x --- x §"
of spheres (using 2.10 and 2.2). In particular, we find H, (S"xS")=Ze Z
for n>0. In order to describe generators we consider the maps

2.11) H,S"e H,S" iwbd, g (§7x§") -2, g §'g H S,

where i,,i,: 8"—>8"x 8" are injections, i,(x)=(x, P), i,(x)=(P, x), and
D1, Py S"xS$S" 8" are the two projections. The composite 2.11 is the
identity map, hence (i, i,,) maps H,S"e H,S"=Zo Z isomorphically
onto a direct summand of H,($" xS$")=Z® Z. The ouly such summand
is the whole group, hence

2.12 Proposition. Both maps 2.11 are isomorphisms.

2.13 Exercises. /. Compute H(IR"—F) where F is a finite set. Hint:
Compute H(R", R"— F) first, using a suitable excision.
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2. If ¢ B">R", n>1, is a map without fixed point (g y3y) then the
angle (0, z, g z) assumes all values from O to n as z varies in $" .

3. Prove: The k-th homology group of the n-dimensional torus

St x --- x 8! (n factors) is free of rank (Z)

4. Let D=D, be the space which is obtained

from IB* by removing the interiors of g disjoint 0

(closed) disks inside IB?; thus D, is a disk with O o p
g holes. Take two copies D;,D; of D, and o ’
identify their boundaries. The resulting space S, O

is called orientable surface of genus g; we have
S,=DfuD;, and DSnD; is the disjoint

. . . 2
union of g+1 circles. For instance, S;xS7*,
S, ~S!' xS

Fig. 7

Prove: H,S,~Z=H,S,, H S,xZeoZe---®Z (2g summands) and
H;S,=0if i>2. Describe generators of H, S,. Hint: D; is a retract of S,
hence HS,=H(D/)o H(S,, D). Compute H(D;) as in Exercise 1. Use
excision and a homotopy to prove H(S,, D/ )=H(D., D, ). The homology
of D, =D, and its boundary D, is known; determine the inclusion map
HD,—»HD,, and get H(D,,D,) from the homology sequence.—The
Mayer-Vietoris sequence of (S,; D}, D;’) can also be used to compute
HS,.

5. Generalize 4. to higher dimensions replacing B2 by IB”, n>2. You
will find H,S,~Z=H,S,, H,S,=g-Z=H,_,§,, H;5,=0 otherwise.

n%g?

3. Local Homology

Homology groups are global invariants; spaces with different homology
can still be locally homeomorphic, e.g. $" and R". However, some
relative homology groups turn out to be local invariants, as we shall
see now.

3.1 Definition. Let X be a space and PeX. The groups H(X, X —P)
are called local homology groups of X at P.

The adjective “local ” is justified by

3.2 Proposition. If P is closed in X, P=P, (e.g. if X is a T,-space) and
if V is any neighborhood of P then H(V,V—P)~H(X,X —P) under
inclusion. l.e., local homology H(X, X —P) can be computed in any
neighborhood V of P.
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Proof. The pair (V,V—P) is obtained from (X, X —P) by excising
B=X —V. Because V is a neighborhood of P we have PeV (=interior
of V), hence B=X — V< X — P=X —P=(X — P)°. Therefore the excision
theorem II1, 7.4 applies. 1

3.3 For a better understanding of local homology one has to study its behavior under
mappings, i.e. its functorial properties. Because of 3.2, the maps need only be defined
locally, but there they are not quite arbitrary, More precisely, let X, Y be spaces, PeV < X,
and f: V—Y a map. We assume that a neighborhood U of P exists such that U<V and
f(U~P)cY—f(P),i.e. P is an isolated counterimage of Q= f(P). Such an f is called a
P-map of X into Y. It induces u homomorphism of local homology groups

(3.4) £ H(X, X —P)~H(U, U —P) L, (v, y—0),

at least if P is closed, which we always assume. This homomorphism does not depend on
the choice of U; more generally

3.5 Proposition. Any two P-maps [: V—Y, f': V' =Y which agree in a neighborhood of P
induce the same homomorphism of the local homology groups.

Proof. If U, U’ are the neighborhoods of P which were used to define f/, f,7 then we
can find a neighborhood W of P such fIW=f'|W and WcUnU’; in particular,
f(W—P)c(Y—Q). Consider the commutative diagram

__HW.Uu-p o
H(X,X-P) HY,Y-Q)
\ AV).
H(W, W-P)

The upper row is £, the lower row depends only on f|W. B

3.6 Proposition 3.5 suggests the following definitions: Two P-maps of X into Y are
P-equivalent if they agree in a neighborhood of P. The equivalence class of f is denoted
by f7?; it is called the germ of f at P.If f: V— ¥ isa P-map of X into ¥,and g: W—Z isa
Q=/f(P)-map of Y into Z then gf: f ~* W—Z is a P-map whose germ at P depends only
on the germs of f and g. Therefore g%o f7=(gf)" defines a composition law for germs;
we get a category whose objects are pairs (X, P) (pointed spaces; P=PeX), and the mor-
phisms (X, P) — (Y, Q) are germs of P-maps. Local homology groups then are functors of
this category (by 3.5). In particular, equivalent objects have isomorphic local homology, i.e.,

3.7 Corollary to 3.2. If Pe X, Q€Y are closed points such that (V, Py~ (W, Q)
for suitable neighborhoods V,W then H(X, X — P)~H(Y,Y—-Q).

Indeed, HX, X —P)~H(V,V-P)xHW,W-Q)=H(Y,Y-0Q). 1
This is illustrated by the following Theorems 3.8, 3.9 of Brouwer.

3.8 Proposition (Invariance of Dimension). If Pe R™ Qe IR" have neigh-
borhoods V, W such that (V, P)~(W, Q)" then m=n.

! In fact, already V'~ W implies m=n (see 7.4).
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2. Construct a space X, a point Pe X, and a neighborhood ¥ of P such
that H(X, X — P2 H(V,V—P).

3. If QeYis a closed point then
(3.14) H,[R"x Y,R"x Y—(P,Q)]=H,_,(Y,Y—0Q), PeR".

Hint: Write [R” x Y, R" x Y —(P, 0)]=(R", R"— P) x (Y, Y — Q) and pro-
ceed in analogy with the proof of 2.8(b).

In particular, let Y={zeC|z"*!>0}; ie, a
star with (r+ 1) rays. Let Q =0. The product
IR"~! x Y is sometimes called branched euclid-
ean space.

It is the union of r+1 half-spaces R’, which
intersect at the branch point locus R"~' x Q.
The number r is called the branch point order.
The n-th local homology group at a branch
point turns out (by 3.14) to be free of rank r.
It follows that any local homeomorphism preserves the branch point order
(invariance of branch point order).

Y, for r=5

4. Compute the local homology of a suspension space ZY at a vertex
{0} x Y (cf. I, 8.16, example 3).

4. The Degree of a Map

Every endomorphism ¢ of a free cyclic group is given by an integer,
i.e., ¢ (x)=dx for some uniquely determined deZ. Applying this remark
to homology groups defines the notion of degree in algebraic topology,
which has many applications (e.g. 4.4, 4.8).

4.1 Definition. If f: $" >S" resp. f: (IB"*!,$") - (B"*!,$") is a map
then the induced endomorphism f, of H,S"~Z resp. H, , ,(B"*',S")=~Z
is given by f, (x)=deg(f)- x, where deg(f)eZ is a uniquely determined
integer. This integer is called the degree of f.

Some elementary properties of the degree are as follows.

4.2 Proposition.
(1) deg(id)=+1.
(ii) deg(fof")=deg(f) deg(S").
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(ii) f~[ = deg(f)=deg(f").?
(iv) The degree of a homotopy equivalence is +1.2
(v) If f: (B"*!, 8" —(B"*!, $") then deg(f)=deg(f|S").

Indeed, (i), (ii) just express the functor properties of f,, and (iii), (iv) the
homotopy invariance. Property (v) follows from the commutative
diagram

Hn+1(IB”+Iv§n) L n+1(,IB"+17§")

A,S Vs i st g

4.3 Example. The degree of a linear map B: (A,,4,)—(4,, 4,) which
permutes the vertices equals the signature of the permutation, dcg(f)=
sign(B|{e° e', ..., e"}). The degree of an orthogonal map a: S"—>S"
equals the determinant, deg(a)=det(x). The antipodal map x+— —x, for
instance, has degree (—1)"+1.

Proof. Let v=(vy,v,, ..., v,) denote the linear map 4,— 4, which takes
e'into " (0<v,<n). We want to show that[v,, ..., v,]=sign(v)[0, 1,...,n]
if visa permutation(r=n)and [ ] denotes homology classes in H,(4,, A,,);
recall (2.7) that [0, 1, ..., n] generates this group. Suppose first v is a
transposition of consecutive vertices i,i+1. Let u: 4, ,—4, be the
map (0,1, ...,i—1,i+1,i,i+1,...,n); it is obtained from id by inserting
i+ 1in front of i. Then

Su=(=1)0,1, ..., n)+(—=1)*2(0, ..., i—1,i+1,i,i+2,...,n)+R

where the remainder R consists of terms which omit one vertex; thus
ReS(4,). Passing to homology mod 4, therefore gives

0=[0,...,n]+[0,...,i—1i+ 1,0 i+2,...,n],
as asserted. Since every permutation v is a product of such transpositions,

say v=1, ... 7,,and sign(v)=(—1)?, the first part of 4.3 follows from 4.2 (ii).

Every orthogonal map «: $"—$" with determinant + 1 is homotopic
to the identity, hence deg(x)= + 1. If det(a)= —1 then « is homotopic
to the reflection p at any hyperplane containing 0. As in 1.4, consider
the linear (n+1) simplex s in R"*! with vertices (€%, ...,¢e", =Y 7, €.

2 The converse is also true; cf. Spanier 7.5.7.
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Its homology class [s] generates H,, (R"**',R"*'—0), and [ds] gen-
erates H (R"*' —0)=H,S"; cf. 2.7. There is a reflection p which inter-
changes ¢°, ¢! and leaves ¢ fixed for i> 1. The simplex ps has vertices
(e',e% e €3, ...,e" =Y €'), hence [ps]=—[s] by part one, hence
py[0s]=[p0s]= —[cs], hence deg(p)=—1. 1

As an application we prove

4.4 Proposition. If f: S"—S" has no fixed point then deg(f)=(—1)"*1.
If 18" —>S8" has no antipodal point (fx=+ —x) then deg(f)= +1. In
particular, every map f: S**—S?* has a fixed point or an antipodal point.

Proof. If { has no fixed point then d,x=(1—1)(fx)—tx+0 for 0<t<1,
hence D, x=(d, x)/||d, x| is a deformation of f into the antipodal map
x> —x, hence deg(f)=(—1)"*" by 4.3.If fx+ —x then gx= — fx has
no fixed point, hence (— 1y"+! deg(f)=deg(g)=(—1)"*!. 1

The following is a slight variation of the notion of degree.

4.5 Definition. If u: $"xS$"—>S", n>0, is a map then the induced
homomorphism

2.12
H,S"o H S"~ H (S"xS$") > H,§"
has the form yu, (x,, x,)=d, x, +d, x, where d,,d, are uniquely deter-

mined integers. The pair (d,, d,) is called the bidegree of . Its properties
are analogous to 4.2. In particular (analogue of 4.2(ii))

4.6 Proposition. If f,, f,: S"—S" are maps then the degree of the com-
position S" LS, §n  §7 . §" is given by

deglu(fy, f)1=d, - deg(f,)+d, - deg(f,).

Proof. Let p,,p,: $"x$"—>$S" denote the two projections. Then
p,(fi, f2)=1,, and the direct sum representation 2.11 shows

(pl*’ pZ*)(_fl,fZ)*(x):(.fl*x,fZ*x)z(deg(.fl)X7 deg(fZ) x) fOr XEHnS"'
Hence u, (f,, /), (x)=[d, - deg(f})+d, - deg(f5)](x). 1
Intuitively, we think of u as a multiplicative structure on $" such as

the multiplication of complex numbers (n=1) or quaternions (n=3);
in these cases u(z,, z,)=z, - z, has bidegree (1, 1), and we find
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4.7 Corollary. The mapping p,: zv z* ke Z, of the group S resp. S* of
unit complex numbers resp. quaternions has degree k.

Indeed, deg(p,)=deg(p,_,)+deg(id)=deg(p,_,)+1 by 4.6, and
deg(p,)=deg(id)=1. &

As an application we prove

4.8 Proposition (Fundamental Theorem of Algebra). Every complex
polynomial p(z)=2"+¢,z*"' +--- 4+ ¢, k>0, has a zero.
Proof. For every p which has no zero on $! we define

p(z)
lp(2)l

p: $' -8, p2)=

and we prove 4.8 in two steps:
(i) If p has no zero z with | z|| <1 then deg(p)=0.
(i) If p has no zero z with ||z|| > 1 then deg(p)=k.

For case (i) we consider the deformation

. . p(tz)
ST S, (2)= )
P P e
Clearly p, =p, p,=constant, hence deg(p)=0. For case (ii) we consider
.. ,t
the deformation p,(z)=q(z—) where
llg(z, 1)l

49 qzt=tp (%) =24t 2 e, ).

The right side of 4.9 shows that ¢(z, t) is continuous (even where t=0).
Clearly p, =p and p,(z)=z*, hence deg(p)=deg(p,)=k by 4.7. 1

This result 48 and its proof generalize to other multiplications
u: $"x8$"—>S" on spheres with bidegree («, f) such that «>0, >0
(exercise!). We shall see in VII, 10.1 that « f+0 implies that n is odd.

4.10 Exercises. 1. Every map $°—S° resp. (B',$° — (B!, S has
degree 0, or +1.

2. If f: X —>Yisamap thenid x f: [0, 1] x X — [0, 1] x Y takes {t] x X
into {t} x Y and therefore induces a map 2 f: 2X — XY of suspensions
(IT1, 8.16, example 3). In particular, if f: $"—$" then Zf: §"+! ->§"+1,
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Prove that deg(2 f)=deg( /) (hint: use naturality of 111, 8.18). Corollary:
For n>0 there exist maps S" —S" of arbitrary degree.

3. If m, n>0 then every point z of $"*+"*! cR"*+"+*2=R"+!x R"*! can
be represented in the form z=cos(t)- x+sin(t)-y with xeS", yeS”,
0<t<m/2, and this representation is unique except that x resp. y is
undetermined when t=n/2 resp. 0. Given f: $" —>8" g: $" > S" define
their join f* g: S™+"+! > 8§™*+"+1 by (f* g)(z)=cos(t) - f(x)+sin(t) - g(v),
and prove deg(f*g)=deg(f)- deg(g). Hint: Use fxg=(f*id)(id *g),
and prove deg(f=*1id)=deg(f) by induction on n; start the induction
with exercise 2.

4. A tangent vector field on 8" is a continuous function v which assigns
to every xe$" a vector v(x)e R"*! which is tangent to $" at x. For
example, if n=2k+1 then v(x)=(x;, —Xg, X3, =X, ..., Xap 1, —Xa4) I8
a tangent vector field on $2¥*! which is nowhere zero. Prove: If n is
even then every vector field on $”" vanishes somewhere. Hint: Move x
slightly in direction v(x). This gives a map of degree +1 which must
have a fixed point.

5. If a complex polynomial p has no zero on $! ={ze(E|||z||:1: and
has m zeros (counted with multiplicity) inside $! then the map p: $! —»$§!,

s P2
PO= @

, has degree m.

5. Local Degrees

This notion will show that the degree of §4 can be determined locally
(with respect to the range) namely as “number of counterimages of a
point”, each counterimage counted with its multiplicity.

5.1 Definition. Let V=8 n>0, be an open set, f: V—8" a map and
QeS" a point such that £ ~'(Q) is compact. Consider the composite

H,S" > H(S"S"—f ' Q=H,(V, V-0

(5.2)
L H (S, S"—Q)~H,S"

where exc is an excision isomorphism (I11, 7.4) and the last isomorphism
is given by

(53) H,(S"S"—Q)~H/(S", P)~H,S"=H,S", PeS"-Q,

because $"—Q~P.
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The composition 5.2 has the form xi— (deg,, f) x where (deg, f)eZ is a
uniquely determined integer. This integer is called the (local) degree
of f over Q. Note that the degree over Q is only defined if f ~' Q is compact.

5.4 Examples. If Q¢im(f) then degy(f)=0. If f: V—S" is the inclusion
map then deg,(f)=1 for all Qe V_If [ is a homeomorphism onto an open
set fV=S" then degy(f)= x1 for all QefV.

Proof. The first and second assertions are clear from the definition. In
the third case, 5.2 becomes a sequence of isomorphisms

HS"xH,(S"S"-f'Q=H,(V,V- ' Q=H,(fV.[V-0Q)
~H,(S"S"-Q)=H,S" 1

5.5 Proposition. If f 'QcKcUcV where K is compact and U is a
neighborhood of K then the degree of f over Q is also given by the composite

H,S" >H (S"S"— K)=H, (U, U—-K)—2>H/(S" S"—Q)~H,S".

I.e., we can replace f~'Q by any larger compact set inside V and/or we
can cut down V to any neighborhood of f~! Q. For instance, we can
cut down to £~V where V is any neighborhood of Q; this justifies the
adjective “local”.

The proof follows immediately from the commutative diagram
H,(S"S"-f'Q=H,(V,V-f~1Q) .
H,S" H,($",S"-0Q)

HH(S"’S"'—K) = Hn(UsU_K) 1

5.6 Corollary. If f: $"—>S" then deg(f)= degQ(f) for any QeS". If
f: (B S" 1)ﬂ(lB" $"1) then deg(f)=degy( f|B" for any QeIB" such
that { ~1 Q <IB".

In particular, deg(f) is of a local nature with respect to the range.
Proof. The first part follows from 5.5 with K=8"=U. For the second
part we think of $” as R" U {o0}, and we extend f (B",$"-1)—(B",$" 1)
radially to a map F: ($",$"—IB") —(8",$"—1B"). Then

deg (F)=degy(F)=degy(F|IB") = degy (| 1B")



68 IV. Applications to Euclidean Space

by part one and 5.5. On the other hand we have deg(F)=deg(f) from
the following diagram

(B", $"~) —— (R, R"—B") —2» ($", "~ B") « —— (S", 0)

|f F F Jr
4 v

(]B" S" 1)—>(]R" IR" an) —P(S" Sn ")*——(S", OO) .

As to functorial properties of the local degree we only mention

5.7 Proposition. If f: V—S" and QeS" are as in 5.1, and g: $"—>S" is
any map then the local degree of fg: g~ ' V—S8" over Q is defined and
degy(fg)=degy(f) - deg(g).

Proof. Consider the commutative diagram
H,S" > H/(S",S"-K) =H,/(V,V—-K)

1& }x* IR H (S",$"-Q)=H,S"
/

(f8)a

H,S">H,(S".S"-¢g 'K)=H, (g7 V,g ' V-g~'K)

where K= f~'Q. The upper row defines deg, (), the lower row defines
deg,(fg), and the two rows differ by the factor g,: H,S"—>H,S8". 1

For instance, if f is the inclusion map we get deg,(g)=deg(g) as in 5.6.

5.8 Proposition (Additivity). Let f: V—8" and QeS" be as in 5.1 and
assume V is a finite union of open sets, V=\),_, V; such that the sets
£710, fi=S1V,, are mutually disjoint, (f,"'Q)n(f, ' Q=9 if i%pu
Then degQ(f):z;,=1 degy (f)-

Thls often allows us to compute degQ( f). Suppose, for instance, that
f~'Qisafiniteset, f ' Q={R, ..., ). Then we can choose open sets V,
such that Pe Vb B¢V, for u+ 4, and we are left with computing degQ(fl)
This number is sometimes called the multiplicity of the counterimage
point P; thus, deg,(f) equals the number of points in f~'Q, counted
with their multiplicities. The multiplicity of P, can be determined in any
neighborhood of P, (5.5); if f is locally homeomorphlc then all multi-
plicities are +1, by 54.
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Proof of 5.8. Choose open neighborhoods U, of f;7'Q in V, such that
U,nU,=@if A%y, and put U={]J}_, U,. Consider the diagram

H,S"—% o HS"S"—['0) % HWU,U-f10) —F
I“d, tia =1

OH,S" 21, OH,(S",S"~ £ Q= ®H, (U, Uy~ ;7 Q)2+
(5.9)
— H/(S",S"—-Q) ~H,S"
{id} tid}

- @HH(S", S$"— Q)_—"_’@H"S"

where all sums @ extend over 1=1,2, ..., r, where {id} is a map all of
whose components are identity maps, and i,, i; denote inclusions. The
map {i),! is isomorphic because U is the disjoint union of {U,}; cf.
II1, 4.12. Commutativity of 5.9 is clear except perhaps for the second
square; there it asserts that the composite

H,(U,, U~ [ Q)25 H, (U, U~ (7' Q)
—H,(S$"S"~[71Q) > H,(S",S"~ 1,71 Q)
agrees with the inclusion for A=y (this is obvious), and is zero if 14 pu

(this follows because U, =S"— £, Q).

By 5.5, the upper row of 5.9 defines deg,(f), the lower row defines
{degy(f;)}. Therefore composition of the lower row with the two outside
vertical arrows gives deg,(f)=) degy(f;). 1

5.10 Example. For every keZ and every n>0 we construct a map
f: 8" 8" with deg(f)=k. Think of $” as R"uU {c0}.

Define g: $"—S" by

x if x| <1
gx)={xQ2—xlP~" if 1<x|<2
% if x| >2.

Clearly deg(g)=deg,(g)= +1. For every PeR" consider also the par-
allel translation 7,: $"— 8" where t,(x)=x—P if xe R" and 7,(0)= 0.
Since 7p~id we have deg, (g tp)=deg,(g) deg(rp)=deg,(g)=+1 by 5.7.
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Suppose now that k>0, and choose k points F,, ..., B.eIR" whose mutual
distance is >4; if B, denotes the ball with center P, and radius 2 then
B, nB,=# for 4+ u. Define

f:8">8"  fIB;=(1p,)|B;, f(x)=o0 if x¢(J5_,B;.
Clearly f~'(0)={R, P, ..., B}, and by 5.8 we have

deg(f)=) degy(f|B,)=) deg,(gtp,)=k.

If k<0 we construct f” of degree —k first and put f=rf" where r is the
reflection at a hyperplane; then

deg(f)=deg(r)deg(f)=(=1(-k)=k. 1

Note, incidentally, that for k>0 the map f is such that every point
QeR" has exactly k counterimages, whereas co has infinitely many.
Still, deg,, ( f)=k because deg (f)=deg(f).

How does deg,(f) depend on Q? We give the answer in a simple case;
some deeper results are contained in the next §6.

5.11 Definition. If V'=$" is an open set, and f: V—S$" a map we say
that f is proper over W<=S" if f~'(L) is compact for every compact
set Lc W. If W is a single point this is just the condition that degy (f)
be defined. For instance, if f: V& f(V) then f is proper over f(V).
Every f: $"—S8" is proper over $". The inclusion (0,1)— R is not
proper over (0, 2).

5.12 Proposition and Definition. If W is a connected open subset of S,
n>0, and if f: V—S" is proper over W then deg,(f) is defined and is
the same for all Qe W. If f: VW= f(V) then this number deg,(f),
Qe W, equals +1 or —1;in the first case f is called orientation preserving,
in the other case orientation reversing.

Proof. Consider first any great (=geodesic) arc 4 in W; then f =14 is
compact. Since $" — A is contractible (deform radially from a point in A4)
we have H,($",$"—A)~H,S". Let Qe A and consider the commutative

diagram H(S"S"—0)
f*

H,S">H,(S"S"—f ' A)=H,(V,V—f~'4) H,S"

i /

H,(S" S"— A)

By 5.5 the upper row defines degy (/). Therefore the lower row also
defines deg, (/). Since the lower row does not depend on Q the number
degy(f) is the same for all QeA. Because W is connected, any two
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points P, Qe W can be connected by a polygon consisting of great arcs,
hence degp(f)=degy (/). 1

5.13 Exercises. [. Define p,: € -C by p,(z)=z* and prove that
deg, (p,)=k. Note that p;*(0) consists of just one point.

2.If f: V->R", g: V"> R" are maps such that deg,(f), deg,(g) are
defined then the local degree of fxg: Vx V' - R"x R*"=R"+" over 0
is defined and equals deg, (/) - deg, (g). Hint: Use 4.10 Exercise 3.

3. If fi: V> 8" is a deformation and QeS" is a point such that
Jo<ic1 fi71(Q) is compact then degy(f;)=degy(f;). Hint: Use 5.5 with
K= 1@

4. Let V=<IR* be an open set, f: V—R* a map which is continuously
differentiable (“of class C!'™), and QeIR* a point such that the jacobian
of f is non-zero at all points of £~1(Q) (Q is a “regular value”). Prove:
If f ~1(Q) is finite then deg,(f)=p—n where p (resp. n) is the number of
points in f~!(Q) at which the jacobian is positive (resp. negative). Hint:
By additivity 5.8 one can assume that f ~!Q is a single point, say 0 =0,
f~10=0. Apply Exercise 3 to the deformation f,=(1—t)f+tf(0)
where f7(0): R*— IR is the derivative of f at 0.

5. If V,W are open subsets of 8", and f: VW, g: W—8§" are maps
such that deg,( f), deg,(g), degy (g /) are defined for some Pe W, 0 =g(P),
is it always true that deg, (g f)=degp(f)- degy(g)?

6. Homology Properties of Neighborhood Retracts in R"

In Section 5 the local degree degy(f) of f: V— 8" over Q was defined
as the image under f: H,(V,V—-K)— H,(S",8"-0)=Z of a certain
element ye H,(V, V — K). In this section we consider inclusion maps f only
but we replace y by an arbitrary element of H,(V, V—K) and we study
the resulting function of QeK. It turns out that H,(V,V—K) can be
expressed in terms of such functions, and H,(V, V — K)=0 if i >n. Similar
results for more general spaces (manifolds) will be proved in VIIIL, 3.

We begin with arbitrary subsets Bc A< S”". For every Pe A the inclusions
induce maps

H,(S"-B,S"—A4) = H,(S",S"—P)«£-H,S",

where ip is isomorphic because $”— P is contractible.

6.1 Lemma. For every yeH (S"— B, S"— A) the mapping
Jy: A H,S",  (JN(P)=iz'jpy

is continuous, i.e. locally constant. Further, (J y)|B=0.
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Proof. Let (Jy)(P)=x, i.e., jpy=ipx. We have to construct a neigh-
borhood U of P such that Qe U n 4 implies jo y =i, x for all Qe U n A.
If (eS(S"—B)<=S(S") resp. zeS(S") are representative (relative) cycles,
then the assumption jp[{]=1ip[z] means that there are chains ceS($"),
¢'eS(S"—P) such that {—z=7dc+c¢. Now ¢’ is a linear combination
of finitely many singular simplices ¢ each of which avoids P, and hence
avoids a neighborhood U, of P (because im(o) is closed). Therefore
ceS(S"—U)c=S(S"—Q) where U=, U, and Qe U 4, hence j,[(]=
iolz].

The second assertion, Jy|B=0, follows because for PeB the map jp
factors through a zero-group:

H(S"—B,S"-A)—>H(S"—-B,S"-B)—H(S",S"—P). 1
This leads to the following

6.2 Definition. Let Bc A<=S". Let I'(A, B) denote ~the (additive) group
of continuous (=locally constant) functions 4 — H,S$" which are zero
on B, and put I'(4,#)=TIA. Lemma 6.1 defines a homomorphism

J=J(A, B): H,(S"—-B,8"—A4)—I'(4, B).
Clearly

6.3 Proposition. The homomorphism J is natural with respect to inclusions,
i.e, if (A;, B;)=(A,, B,) then the diagram

H,(S"—B,,8"—A,)—*— H,(S"—B,,$"— 4))
J J
I'(4,,B,) —~—T(A,,B))
is commutative, where i, i are induced by inclusion. 1
The importance of J stems from the following

6.4 Proposition. If X <Y are subsets of S" which are neighborhood
retracts (e.g. if X, Y are open) then

(a) H,(Y,X)=0 for i>n

(b) J: H(Y, X)=I'(S"-X,$S"-Y).

(Recall that X is a neighborhood retract if there exists an open set in
S$” of which X is a retract; cf. [I1,4.14.)
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6.5 Corollary. If X CS"~ is a neighborhood retract, X+S", n>0, then
H;X=0 for izn, and H,_; X =I(S"—X) where I'=I'/C is I' modulo
the subgroup C of constant functions, and H =reduced homology.

Proof. Because X +S" the inclusion map X —$" is nulhomotopic,
hence HX — HS" is the zero-map and the homology sequence of
(8", X) decomposes into short exact sequences

O_’ﬁi+1§"‘_’Hi+l(§"a X)_’HIX_’O
If i>n the first two terms vanish (6.4(a)), hence HX=HX=0. If
i=n—1 we apply J and get a diagram
0 H,S"——H,(S" X)——H,_, X -0

(6.6) ,[; ,l; J =

0> I'S" — 5 I(S"—X)——coker(r)=1(S"-X) >0

whose first two vertical arrows are isomorphic by 6.4 (b) (r =restriction).
Because the first square commutes 6.3) we can fill in the dotted
arrow J. 1

The following lemma is a crucial tool in proving 6.4.

6.7 Lemma. Let (Y, X,, X,) be an excisive triad in S". If 6.4 (a), (b) hold
Jor (Y, X)), (Y, X,) and (Y, X, U X,) then also for (Y, X, X,).

Proof. Consider the following portion of the relative M —V sequence
(I11, 8.10)
H; (Y, X;0 X;)— Hi(Y, X;n X;) - Hy(Y, X))o H(Y, X3).

If i>n then the outside terms vanish by assumption, therefore also the
middle term. This proves (a). A similar argument works for (b). One
considers the diagram

0=H,, (Y, X, 0X,)—— H,(Y, X; n X,) L2,

|

0——T(X]uX,, Y)

Ul —J2)

— H,(Y, X))o H,(Y, X,) =225 H (Y, X, U X,)

;}J(—BJ =\J

—I(X, Y)e I'(X3,Y) —g7m— T(Xin X3, Y)

(i, i2)

(6.8)
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in which the first row is part of the relative Mayer-Vietoris sequence;
J,i in the second row denote restriction maps, and X'=S"—X. The
diagram is commutative, by 6.3.

Clearly, (j;, —j5) maps I'(X; U X3, Y') monomorphically into the kernel
of (i{, i3). Therefore we have a sequence of monomorphisms

(6.9) ker(iyy, iz, = H,(Y, X, 0 X;) = T(X{ U X3, Y) =2 ker (17, 1)

whose composite is isomorphic (because the two vertical arrows of 6.8
on the right are isomorphic). Hence, 6.9 consists of isomorphisms. [
(In particular, the second row of 6.8 is exact.)

Proof of 6.4. We proceed in several steps. As before we abbreviate
X'=8"—X, and we think of $" as R" U {c0}. We assume n>0.

Stepl. Y=8", X=8" or X=8"—P or X=@ (P=a point). If X =S"
then H(Y, X)=0=T(g,¥). The cases X=S"—P and X = have been
settled before (IV, 2); we have H,(S",$"—P)~H,S">I'($")=TI'(P) for
n>0.

Step2. Y=8", X=S"— [ where [ is a closed rectilinear cube in R",
0<dim OJ<n.

If B is an open ball containing [] and with center Pe[J then
$"—P~8"—-B~S"— [ (by radial deformation) hence H(S",$" — ()=~
H(S",$"—P). Also I' d=T'P, so that step 2 reduces to step 1.

Step 3. Y=8", X =8"—F where F is a finite union of cubes of a fixed
lattice. A lattice in R" is given by n positive numbers (u,, ..., 4,); its
cubes have the form

O={xeR"|m; p; <x;<n; y; forall i}

with fixed m;eZ, and n,;=m; or n,=m; + 1.
We proceed by induction on the number of cubes in F. Let F{cF be
a cube of maximal dimension and let F, denote the closure of F —F.
Then we can apply Step 2 or the inductive hypothesis to F;, F,, and
FnF,, ie, 6.4(a), (b) hold for ($",$"—F), ($",$"—F,) and

S, S"—FnF)=(S"(S"-K)u(S"—-F)).
Therefore, by Lemma 6.7 they hold for

(S",(S"—F)A(S"~ F,))=(S",S"—F, U F,)=(S", $"—F).
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Step4. Y=8", X open. We can assume that X %@ (by Step 1), and then
weX, i.e., X' =8"— X cR". We first show that J: H (8", X)—->TI'X' is
surjective. If seI'X’ then the compact set X' decomposes into a finite
number of disjoint compact pieces X such that s|X; is constant (n.b.
s is locally constant). Let ¢>0 be smaller than the minimal distance
between any two pieces and choose a lattice L (see Step 3) whose cubes
have diameter less than ¢/2. Let F be the union of all cubes of L which
meet X'. Then X'<F, and we can extend s to a function tel'F such
that ¢| [, for (J<F, is the constant s(CIn X’). By Step 3, there exists
ye H (8", $"— F) such that Jy=t, therefore, by naturality 6.3 of J, we
have J(i, y)=t|X'=s where i,: HS",$"—F)— H(S", X). This proves
surjectivity.

Let now [z]e H($", X), i=n; also assume J[z]=0 if i=n. We have
to show [z]=0. The simplices of ¢z lie in X =8"— X', and by compact-
ness they avoid a whole neighborhood ¥V of X’; thus we can consider
the homology class [z], of z in H;(8",8"—V). Also, if i=n we have
J([z],)1 X =0 hence J([z]) is zero in a whole neighborhood W<V
of X' (because it is locally constant); if i>n, put W=1V. Choose a lattice
(see Step 3) whose cubes have diameter less than distance(X', $"— W),
and let F be the union of all cubes which meet X'. Then X'cFcW,
and j, ([z]z)=[z], where j,: HS",S"—F)— H($", X); also J([z]F)=0
if i=n. By Step 3 we know [z]=0, hence [z]=0 as asserted.

Step5. Y=8", n>0, X£S8" an arbitrary neighborhood retract. Let
U+$" be an open set of which X is aretract,i: X - U, r: U— X, ri=id,
hence r, i, =id. For p>n we have a commutative diagram

H, (8", X)—— H,(S", U)=zero, by Step4

o, = 2. =

H,_ X—&—>H,_ U,

in which the ¢, are isomorphic as follows from the homology sequence
(see proof of 6.5). The diagram proves H, (8", X)=0 as asserted in 6.4(a).

For part (b) we consider the diagram (6.6),
0—-H,S"—H,(S", X)——H,_;X—0

Lt

0-TIsy — X

T

I'x -o,

where I" is I’ modulo the group of constant functions. The five lemma
shows that J is isomorphic if and only if J is isomorphic; we shall prove
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the latter. First we see from

ﬁn—lX_L;_) ﬁn—l U

(6.10) ij jl;

rx ——ru

that J is monomorphic. Surjectivity is more delicate: Since U +$" we
can assume UcR” so that we can speak of “segments” in U. For
every Qe X', let V}, consist of all points Pe U such that the whole segment

,r(P)liesin U —Q. Clearly X =V, <= U —Q, ¥, is open, and the inclusion
kQ Vo — U —Q is homotopic to the composite ¥, e ,x ‘e, y—_g,;
a homotopy is given by P+ (1—t)P+tr(P). It follows that koy=
ig4(r|Vp),. For easier reference we record the whole situation in the
following commutative diagram, in which all horizontal maps are
induced by inclusions.

HH—IX;&)Hn—lVQ—kg*_)Hn~1(U_Q) iQ*=kQ*jQ*
fl Ji: iJ;
Ix —Lo— [yvy 2T U-0) —LRTU, iy=kpjy, i =lyip.

Let po=(r|Vp),J'jo: [X'—>H,_X. Then
(6.11) i po=ip,
because
inJpo=ip J(rIVo)y J ™ jio=Jig, (r| Vo) T Lig
=Tko J " ig=JT " kgjg=ig.

Composing (6.11) with I gives (i'J) pg=1'. The right side of this does
not depend on Q, and i'J is _monomorphic (see 6.10), hence p=p, is
independent of Q. We claim J p=id, in particular J is epimorphic.

We can identify I'X’, U’ ... with I'(X’, ©), I(U’, ®0) ... (every coset
has a unique representative which is zero at o). Given fel'(X’, o),
then lQJp(f)—1Q ) by 6.11, i.e., the two functions f and Jp(f) agree
in (U—Q), in particular on Q. Since Qe X’ is arbitrary, f and Jp(f)
agree on X', as asserted.

Step 6. X < Y £S" arbitrary neighborhood retracts in S".

The homology sequence of (S Y, X) contains the following bit:
H, (8", Y)>H,(Y, X)— H,S", X). If p>n the outside terms vanish
by Step 5, hence H, (Y, X)=0 as asserted in 6.4(a). For part (b) we
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consider the commutative diagram

0:Hn+l(S"7 Y)—_) Hn()/’X) ———)HH(S"’ X)‘} Hn(S"’ Y)

0O—IXx,Y)y——0 TIX ——TIY

where the first row is part of the homology sequence and the second
row is induced by inclusions. The two vertical arrows on the right are
isomorphic by Step 5, hence J: H,(Y, X)=I'(X',Y'). 1

6.12 Exercises. 1. If X is a neighborhood retract in R" then H, ;X =~
L(R"—X)=group of locally constant functions R"—X —Z which
vanish outside some bounded set. Hint: By 6.5, H, X~I($"—X)x
rs"—X, o).

2.If a: $"'>R" is a mapping let W,el,(R"—aS""!) denote the
image of the generator of H,_,$"~' under the composition

H,_,S" ' H, @S YL IS —aS" Y2 L(R"—aS" Y.

The value W,(P) at a point Pe R"—aS" ! is called winding number of «
at P. Discuss the formal properties of W and study some examples.

3* Prove: If A is an arbitrary subset of $” whose complement $"— 4
is not connected then every neighborhood of A contains a neighborhood
U such that H,_,U=+0. Construct an example such that H,_;A=0
but $"—A4 is not connected, and another example where A is open,
H,_{A=0 but $"—A4 is not arcwise connected (hint: use the graph
of sin(1/x)).

4. Let A,cR*<$? be the circle with radius 1/n and center (0, 1/n),
and let A=), A,. According to H.B.Griffith there are non-zero
elements ae H; A such that, for every neighborhood V of (0,0) in A4,
a lies in the image of H;V — H; A (they can be thought of as being
infinite products of commutators in the fundamental group =, 4). Show
that aeker(J: H, A — I'($?— A)), hence J: H,(S?, A)— I'($? — A) is not
monomorphic.

5. Construct a triad (Y; X, X,) in S" for which the second row of 6.8
is not exact.

6*. Show that H,_, X is a free abelian group, for every neighborhood
retract X in $" Indication: If U<$" is open show that I['($"—U) is a
Specker group over Z and therefore free (cf. Fuchs, Corollary 97.4).
Now, X is a retract of an open set U= S", and H,_ 1 X isa direct summand
of H,_,Ux=T($"—VU).
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7. Jordan Theorem, Invariance of Domain

A locally constant function 4— H,S$" is constant on every component
of A. The size of I'A (see 6.2) therefore gives information about the
number of components of A. More precisely

7.1 Lemma. Let AcS". The rank (1,2.29) of T'A equals c{A)=number
of components of A (an integer or o0; if we were to distinguish between
different infinite cardinals the lemma would have to be formulated
differently).

Proof. Let A=A, U---UA4, a decomposition of 4 into pairwise disjoint
non-empty relatively open sets. The subgroup I=TI'A of functions
which are constant on each A; is isomorphic to ZeZ---e Z=r-Z
hence rank(I')>rank(I})=r. If ¢(A)=oc0 we can make r arbitrarily
large, hence rank (I')= co. If ¢(A4) < 00 then we can find a decomposition
with r=c(A4) and each A, connected, hence I; =TI, hence rank(IN=r. 1

7.2 Proposition (Jordan Theorem). (a) If X <S" is homeomorphic to
IB" then 8" — X is connected, i.e., c($"— X)=1.

(b) If X =S" is homeomorphic to 8"~* then S"— X has two components,
c(S"—X)=2.

Proof. We shall see in a moment {remark after 7.3) that X is a neigh-
borhood retract. Therefore, by 7.1 and 6.5,

c(S"— X)=rank I'(S" — X)=1+rank [($"— X)=1+rank H, , X,

as asserted. 1

7.3 Lemma (compare 8.5). Let A= N be a closed subset of the normal
space N, and let - A— X be a continuous map.

(a) If X ~IB" then f admits an extension h: N — X.

(b) If X~S""! then { admits an extension g: V — X to some open neigh-
borhood V of A in N.

Assuming the lemma, we can take N=8", A=X (as in 7.2), and f=id.
The extension which the lemma guarantees is then a retraction, and
so X is a neighborhood retract.

To prove the lemma remark that IB"x[0, 1]x..-x[0,1]=[O0, 17"
A map into IB" is then an n-tuple of functions with values in [0, 1].
Such functions can always be extended from A to N by Tietze’s extension
lemma; this proves (a). To prove (b) view f as a map inté IB" (sinde
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$"~'<=IB"), choose an extension h: N —IB", put V=h"'(IB"—{0}), and
g(2)=h)/Ilh(2)]. 1

7.4 Proposition (Invariance of Domain). If X cR" is open and f: X — R"
is an injective continuous map then f(X)<IR" is also open. In other words,
every injective continuous map f: X — R" is open.

7.5 Corollary. If X <IR" is open, X £@, and g: X — R™ is an injective
continuous map then m>n.— Because otherwise the map f: X — R™ x
R"~"~IR", f(x)=(g(x),0), although being injective, would have a non-
open image f(X)<R™x R"~™~IR". This refines our earlier result that
euclidean spaces of different dimension cannot be homeomorphic.

Proof of 7.4. We think of R" as an open subset of $"=R"uU {0}, and
f: X—S§" Let PeX, choose >0 such that B"={xeR"||P— x| <z}
is contained in X, and put $"~'={xeB"|||P— x| =¢}. Since f is injective
and B" is compact, fB"~B"~IB" and fS"~'~S$"~'. By 7.2, §8"—fB"
is connected, and $"—fS"'=f(B"—S""")u(S$"—fB") has two com-
ponents. Since f(B"—S""") is connected it must be a component of
S$"—fS"~! and since this set is open, f(B"—S""!) must also be an
open subset of R". Now fPef(B"—S""')< fX shows that every point
in fX has a neighborhood in f X, i.e. fX is open. 1

7.6 Exercises. 1. There is no injective continuous map $" — R".

2. Let C,<=IR? denote the circle with radius 1/k and center (0, 1/k),
and let 4,=JiZ1 G\, r=2,3,.... Prove: If 4c$? is homeomorphic
with A,, r<oo, then $2—A4 has r components.

3. If «: S"~!' > R" is an injective continuous map then the component
of §"—«(S" ") which contains oo is called the exterior of «S$" ", the
other component is called the interior. Show that the winding number
(6.12, Exerc.2) of  is £ 1 at every interior point and 0 at every exterior
point.

8. Euclidean Neighborhood Retracts (ENRs)

The results of §6 suggest a more careful study of subsets of euclidean
space which are neighborhood retracts. We deduce a few simple results
about these sets here. We show that the property of being a neighborhood
retract (of some R") is topologically invariant, and we provide some
criteria for a space to be (homeomorphic with) a euclidean neighborhood
retract.

Clearly open sets are neighborhood retracts, and neighborhood retracts
of neighborhood retracts are neighborhood retracts. Not every subset
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of R” is a neighborhood retract: it has to be locally closed (8.1) and
locally contractible (8.7), and these properties are also sufficient (8.12).

8.1 Proposition. If X —IR" is a neighborhood retract then X is of the form
X =CnO where C is closed and O is open.

Proof. Let O be an open set of which X is a retract. The retraction can
be viewed as a map r: O — 0, and X ={PeO|rP=P} is clearly closed
in O, hence X=XnO. 1

Sets of the form CnO are called locally closed. They can always be
realized as closed subsets of euclidean space; more precisely,

8.2 Lemma. Every locally closed subset X of R" is homeomorphic with a
closed subset of R"*!,

Proof. If OcIR" is an open set then

j: 0->R"xR, j(P)=(P,1/d(P,R"—0)), d=distance,
is an embedding of O into R"*' (the projection (P,t)— P is an inverse
of j) whose image is closed; indeed jO={(Q, )eR"x R |t -d(Q, R"—0)

=1}. If X<O is closed in O then jX~X is closed in jO, and hence
in R"*1. 11

8.3 Lemma. The following properties of X cIR" are equivalent.

(i) X is locally closed, i.e. X=CnO where C is closed and O is
open.

(i) Every point P€ X has an open neighborhood U in R" such that X n'U
is closed in U.

(i) Every point Pe X has a compact neighborhood in X, i.e., X is locally
compact.

Since (iii) is an intrinsic property of X this implies

8.4 Corollary. If X cR™ is locally closed and Y =" is homeomorphic
with X then Y is locally closed. 11

Proof of 8.3. (iii) = (i1): Given Pe X, let K< X be a compact neighbor-
hood in X, hence K =X nV for some neighborhood Vin R". Let U=V,
then XnU=KnU is closed in U.

(i1) = (i): For _every PeX and neighborhood U=U, as in (ii) we
have XnU=XnNU, hence X =X (| Jp Up)=Jp(X nUp)=X (U Up),
which proves (i).
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(1) = (iii): Given Pe X=CnO, let K< O be a compact neighborhood
of Pin R" then KN X =K n C is a compact neighborhood of Pin X. |

Remark. In 8.3, R" can replaced by any locally compact space (cf.
Bourbaki 1,9.7).

8.5 Proposition and Definition. If X =« R™ is a neighborhood retract and
Y cIR" is homeomorphic with X then Y is a neighborhood retract. l.e., the
property of being a neighborhood retract of a euclidean space is intrinsic,
it does not depend on the embedding. We define therefore: A topological
space Yis called a euclidean neighborhood retract (ENR) if a neighborhood
retract X — IR" exists which is homeomorphic with Y. Any other X’ R¥
which is homeomorphic with Y will then also be a neighborhood retract.
For instance, $"~! is a retract of IR"—{0}, and BB" is a retract of R".
Therefore any subset of R¥ which is homeomorphic with $"~! or IB" is
a neighborhood retract (cf. 7.3).

Proof. By assumption on X we have X —» U—"> X, ri=id, where
j: U—=>IR™ is open; in particular, X is locally closed (8.1). Further
h: Y~ X, hence (8.4) Y is locally closed, 1.e., Y =Cn O is a closed subset
of some open set O. By Tietze’s extension lemma there exists a map
g: O — R™ such that g|Y=jih. Then the set g~'U is open (in O hence
in R and h~'rg: g7'U—Y is a retraction. |

8.6 Proposition. Let X be an ENR. If f,, f;: Y — X are mappings and
BcY is a subset such that fy|B=f|B then there exists an open neighbor-
hood W of B in Y and a homotopy O fo|W ~ f,|W with ©,|B= f,|B for all t.

Proof. We have X —»0 —"» X where O is open in R" and ri=id.
Let W< Y consist of all points ye Y such that the whole segment from
ifo(y) to ifi(y) lies in O. Clearly, W is open and Bc W. Define
0: Wx[0,1]->X by @@y, )=r[(1-ifo+tifi(»)] 1

For instance, the two projections fj, f;: X x X — X agree on the diagonal
B={(x;, x,)e X x X|x,;=Xx,}; the conclusion of 8.6 in this special case
is called uniform local contractibility. It easily implies the general result
8.6 (exercise!).

8.7 Corollary. If Bc X are ENRs then B is a neighborhood retract in X
(obviously). If r: V — B is such a retraction then B has an open neighborhood
W in V such that i(r|W)~j where i: B—V, j: W—V are inclusions.

For instance, if B is a point this asserts that X is locally contractible. In
general, it asserts that B is “almost a neighborhood-deformation-
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retract”. For the proof one can assume that V is open, hence an ENR,
and one can apply 8.6 to fo=ir, fi=id,. 1

If we want to know whether a given space X is an ENR we can first
ask whether X can be embedded into some R*, and then whether a
given subspace Y of R* is a neighborhood retract. We give useful,
although crude, answers to these questions (8.8, 8.10), and we point
out some finer results (8.9, 8.11, 8.12).

8.8 Proposition. If a Hausdorff space X can be covered by finitely many
locally compact open sets X;, i=1,2,...,r, such that each X; is homeo-
morphic with a subset of a euclidean space then X itself is homeomorphic
with a closed subset of some euclidean space.

Proof. Choose embeddings h;: X; — R™ with closed image h;X;; this
is possible by 8.3 and 8.2. Define

H: X >S"=R™U{w0), H]|X;=h, H(X~-X)=o00.

This is continuous: If 4<=S$™ is a closed set and if co¢A then
H7'(A)~ A~ h; X;is compact, hence closed. If coe A then H; ' (§™ — A)=
h;'(S™ — A)is open in X;, hence open in X, and therefore its complement,
namely H; !(A) is closed. It follows that

H={H}: X >[]_,S"cR¥  HP=(H,P,H,P,...,H,P),

is continuous (N =r+ X m,); moreover, since H; is an embedding of X,
H is an embedding of | J;X;=X. Because HX ~ X is locally compact
it is locally closed in IR¥ (8.3), hence closed in RV+' (8.2). 1

8.9 Remark. If a Hausdorff space X is covered by a sequence X;,
i=1,2,..., of locally compact open sets such that each X; is homeo-
morphic with a subset of a fixed euclidean space then the conclusion
of 8.8 still holds. Indeed, X is then a countable union of compact sets
and has finite covering dimension (cf. Hurewicz-Wallman, Chap-
ter V), hence the proof of 8.8 can be adapted as is done, for instance,
by Bos. Finer embedding theorems can be found in Hurewicz-
Wallman, Chapter V.

8.10 Proposition (Compare Hanner, Theorem 3.3). If a Hausdorff space
X is a finite union of ENR’s, X =\ Ji_, X, and if each X; is open in X
then X itself is an ENR.

Proof. By 8.8 we can assume that X is a closed subset of R", and by
induction we can assume r=1, i.e, X=X,u X,. Let then r;: O;,— X,
i=0,1, be neighborhood retractions (O; open in R"). Put
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0o =15 (Xon X)) H (X, n X)), then 1y, 1,: Oy — X0 X, are neigh-
borhood retractions. Since X, X, is an ENR (it is open in X;) O,,
contains an open neighborhood U,, of X,n X, in which r,,r are
homotopic retractions (by 8.6), say r: Uy, = Xon X, n|Xon X, =id,
0<t<l.

Let Uy,<cO,, U, <0, be open neighborhoods of X —X,;, X —X,, such
that U,nU,=@ (this is possible because X —X; is closed), and let
t: R"—[0,1] be a continuous function such that 7|U,=0, t|U;=1
(e.g, tP=d(P,Uy)/(d(P,Uy)+d(P,U;), where d=distance). Put
U=U,u Uju Uj,,. This is an open neighborhood of X and the following
p: U— X is a retraction:

plUs=r|Uy, plU=n|U, p(P)=rp(P) if PeU. 1

8.11 Remark. Just as 8.8 extends to countable unions X =| ), X;, so
does 8.10. One assumes that each X; is homeomorphic with a neigh-
borhood retract of some fixed R”, hence X = R*, by 8.9. One can arrange
the {X;} to be locally finite and then prove the result by infinite but
locally finite iteration of the argument for 8.10. A finer result, essentially
due to Borsuk (cf. also Hanner, Theorems 5.1 and 4.2; or Kura-
towski, Chapter VII, §48, IV) is as follows.

8.12 Proposition.

If X<R" is locally compact and locally contractible then X is a neighborhood retract,
hence an ENR.

We shall only sketch the proof. Since X is locally compact we can assume it is closed in
R" (8.3, 8.2). Decompose R"— X into convex cells; for more precision, take a cubical
lattice L in R” (cf. V, 3.4), and successive relinements L, L’ ... of it, say by halving the
generating vectors of L, L' .... Among the open n-cubes of L, L, ... consider those whose
closure lies in IR"— X and which are maximal in this respect; call them admissible. Their
closures cover R"— X and intersect only on lower dimensional faces. An (open) k-cube
of L, L. ... with 0<k <n is called admissible if it is the face of an admissible n-cube of the
same lattice and is maximal in this respect. Every point of R"— X then lies in an admissible
cube, and has a neighborhood which meets only finitely many admissible cubes.

For every k from 0 to n we shall now define a subset 4, of R"—X and a map p,: A4, — X
such that A, is the union of A4, _, with certain admissible k-cubes, and p,|A,_,=p._,.
For A, we take the set of all admissible O-cubes (vertices), and let p,(a) be any point in X
whose distance from ae A4, is minimal. Let 4, be the union of A, _; with all admissible
k-cubes ¢ whose boundary e — ¢ lies in A, _; and such that p, _, can be extended to a map
A,_yve— X. Choose an extension p,: A,_;ue— X such that the diameter of p,(€)
is essentially minimal (<twice the inf of all diameters of extensions), and define p, by
oAy _ywe=p,. Finally, put V=4,0 X, and define p: V— X, by p|4,=p,, p|X=id.
Claim: p is a neighborhood retraction. It is clear that p|4,=p, is continuous (because
the set of admissible cubes is locally finite). If Pe X, and W is a spherical neighborhood
of P, choose spherical neighborhoods W=W,, oW,, >---oW,oW, of P in X such
that W, is contractible in W,,, and has radius at most one tenth as big as W, ;. Let U be
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a spherical neighborhood of P in R” whose radius is at most one tenth that of W,. Define
U,=A4,n U and, inductively, let U, be the union of U,_, with all admissible k-cubes in
U whose boundary lies in U, _,. By minimality, p,(Uy)< W,. Assume by induction that
0, is defined on Uy, and p(U,)c W,,. If e is a (k + 1)-cube of U, then p, extends to a map
Uive— W, ,cX because W,, is contractible in W,,,,, hence p,,, is defined on e;
further, p, . ,(€)c W,,,, by minimality. With k=n we see that p is defined on U,, and
p(U)c W. Now U,u X is a neighborhood of P in IR" (admissible cubes which come close
to P lie in U,), hence p is defined in a neighborhood of P, and is continuous at P. |

8.13 Exercises. I. Let X be an ENR. Show that for every normal
space Y, closed subset A4 of Y, and every map f: A — X there exists an
extension of f to a neighborhood of 4 (in Y). Any space X with this
property is called absolute neighborhood retract (= ANR), so ENR =
ANR. Conversely, locally compact separable metric ANR’s of finite
dimension are ENR’s (compare Hurewicz-Wallman, Chapter V).

2. Let X be an ENR (ANR). Show that for every binormal space Y
(i.e, Y %[0, 1] is normal), closed subspace 4 of Y, and every pair of
maps Fy, F;: Y — X such that Fy|A~F|A there exists a neighborhood
V of A such that F,|V~F]|V; in fact, any homotopy F,|A~F,|A can
be extended to a neighborhood of A.

3* A pair of spaces Y= X is said to have the homotopy extension
property (HEP) if the following holds: Given any map F: X — Z and
any homotopy d,: Y— Z 0<t<1, such that dy=F|Y there exists a
homotopy D,: X — Z such that Dy=F and D,|Y=d,. If X is an ENR
show that Y < X has the HEP if and only if Y is a closed neighborhood
retract in X.

4. A space X is called locally n-connected if every neighborhood V of
every point PeX contains a neighborhood W such that any map
©: $/— W, j<n, admits an extension @: IB’*! -V, ©|8$’/=¢. Clearly,
locally contractible spaces are locally n-connected for all n. Check that
the proof of 8.12 only assumes X to be locally (n —1)-connected (and
locally compact); these properties of X <IR" therefore imply local
contractibility.

5% If AcX are ENRs and A is compact then X/A (obtained from X
by identifying all of A to one point) is also an ENR. Hint: Choose a
closed embedding h: X — A4 — R" and extend it to a map H: X -» 8"
where HA= 0. If X is compact this induces an embedding X/A<S",
and 8.12 implies that X /A is a neighborhood retract. If X is not compact,
one first embeds V/A4 where V is a compact neighborhood of 4.

6* If AcX are ENRs and A is a closed subset of X then the projection
map induces an isomorphism H(X, A)~H(X/A). This can be shown
using 8.7 and excision arguments. A more adequate proof uses limits
and excision (compare VIII, 6.12 and 6.20).



Chapter V

Cellular Decomposition and Cellular Homology

1. Cellular Spaces

It is often possible to decompose a space X whose homology one wants
to compute into simple pieces whose homology properties are known,
and thereby deduce information about HX. An instructive example is
the decomposition of a suspension into two cones (111, 8.16, example 3).
In this section we discuss a general class of decompositions, “cellular”
ones, and show how they can be used to simplify the computation of
HX. The most important examples of cellular decompositions are CW-
decompositions which will be studied in the succeeding sections.

1.1 Definition. A filtration of a topological space X is a sequence of
subspaces X"c X, neZ, such that X"< X"*! for all n. A filtration is
called cellular if

() H(X" X"~ ')=0 for i%n:
(i) SX=|J,z SX",

i.e. every singular simplex of X lies in some X". In particular X ={ ) X"
(because Sy X =|J S, X"). A space together with a cellular filtration is
called a cellular space.

If X, Y are cellular spaces a cellular map f: X — Y is a continuous map
such that f(X")cY" for all n. Cellular spaces and maps then form a
category.

For instance, if X is a space and n: X - R a continuous function then
X"={xe X|n(x)<n} defines a filtration. Condition (ii) is satisfied, but (i)
requires additional assumptions on n. This type of example is important
in differential topology, in particular in Morse theory (cf. Milnor 1963).
Other examples will be given in §3.

1.2 Definition. For every cellular (or even filtered) space X put W, X =
H, (X", X" '),and let ¢,: W, X — W,_, X denote the composite

Hﬂ(xn,Xn—l) 2 Hn_lxn—l_} n_l(Xn—l’Xn—Z)-
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Then 0,_, 0,=0 because already the composite

H _1X"_l—>H"_1(X"_l,X"_Z)L)Hn_z Xn—2

n

vanishes. Therefore WX ={W, X, d,},.z is a complex, called the cellular
complex of X. A cellular map f: X — Y clearly induces a chain map
Wf. WX — WY, and W thus becomes a covariant functor from cellular
spaces and-maps to the category d.4/% of complexes.

1.3 Proposition. For cellular spaces X there is a natural isomorphism
O: HWX~H(X,X™").

1.4 Remarks. It looks as if X' played a very special role in 1.3. But
H(X, X Y~H(X,X ?%)=~H(X, X 3®=-.-,as follows from the homology
sequence of the appropriate triples because H(X", X" 1)=0 for n<0. In
many examples X! will be empty—

The definition of WX applies to arbitrary filtered spaces (not only
cellular ones) but, in general, HWX ®H(X, X "). Certain relations
between the groups {H, (X% X97')} and HX, however, always exist and
are usually expressed by the spectral sequence associated with the exact
couple {H,(X% X9~'), H, X%}, or the filtered complex {SX?}; cf. Hu 1959.
The assumption of cellularity implies that the spectral sequence both
converges and degenerates, and the following proof of 1.3 is an extract
of a standard spectral sequence argument (compare, for instance,
Godement, [.4.4).

1.5 Lemma. H,(X?, X%9)=0for p>g>norn>p>gq.

Proof by induction on p—g. For p—q=0 the assertion is trivial. For
p—q>0 the homology sequence of the triple (X?, X9*!, X9) contains the
following portion

H, (X1, X9 — H,(X?, X% — H,(X?, X1*1).

The left term is zero by 1.1 (i), the right term by induction, hence also the
middle term, as asserted. |

1.6 Lemma. H,(X, X%)=0 for g>n.
1.7 Corollary. H, (X% X")~H,(X, X") provided g>n and g>r.

The corollary follows from 1.6 and the homology sequence of the triple
X, X9 X").
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Proof of 1.6. Let [z]e H, (X, X9 where ze S, X is a representative (relative)
cycle. Because SX = J, SX? there exists p>q such that zeS, X?, hence
[z]leim[H,(X?, X9)— H,(X, X9], and this group is zero by 1.5. 1

Proof of 1.3. Let k<n—2, and consider the diagram

H, (X", X7) 0

"l &“\ j

(18) 0——— H, (X", X*)—— H,(X", X"~ ) —"— H,_,(X""!, X*)

|

Hn(X"+l,Xk) HnAl(Xn—l,Xn—Z)

on Jn

R

0

where the two columns and the middle row are portions of the exact
homology sequence of the appropriate triples; the zeros which appear
are justified by Lemma 1.5. The two triangles are commutative by
naturality of d,.. Now

H, (X, X H,(X"*+1, X¥) by 1.7
~H,(X", X*)/im(3,)  because the left column is exact
~im(i,)/im(i, d,) because i, is monomorphic
=ker(d,,)/im(0,,,) because the row is exact

=ker(j, 0,)/im(0,,,) because j, is monomorphic
=ker(4,)/im(0,,)=H, WX.

Thus H, WX ~H,(X, X~") if n>0, Hy WX ~H,(X, X~ ?)=H,(X,X "),
and H, WX =0=H, (X, X ) for n<0 because then W, X=0. |

It is sometimes useful to have a description of the isomorphism ©:
HWX=>~H(X,X ") in terms of representative chains. This is easily
extracted from the proof of 1.3; reading the sequence of isomorphisms
there from bottom to top one finds

1.9 Proposition. If ye H, WX, n>0, is represented by
zeZ,WX<H, (X", X" 1)
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then ze H,(X", X" ') has a representative (€S, X" with 0{eS,(X ") (this
uses exactness of the row 1.8) hence { is an n-cycle of X mod X 1. Its
homology class [{]eH,(X, X ~1) agrees with O(y). 1

1.10 Exercises. 1. For every cellular space X and integer m one defines
a new cellular space (X, m), the m-skeleton of X, by (X, m)"=X"for n<m,
and (X, m)"=X"™ for n>m. As a space (X, m) coincides with X™. There-
fore one often writes X™ instead of (X, m).—Dually, one can define the
m-coskeleton (m, X) by (m, X)"=X" for n<m, (m, X)"=X" for n>m.

2. Let X =S¥ PeX, k>0; show that the following filtrations are cellular.

P if n<k / if n<0

(a) X"={Sk i nak (c) X"={S*—P if 0<n<k
= S* if n>k,
g if n<0 /] if n<0

() X"={P if 0<n<k d X"={s" if 0<n<k
Sk if n>k, S* if k>n,

where §"= {xe$*|x;=0 for n<i<k}.

3. If X is a cellular space, define V, X ={¢eS, X"|0£eSX""'}. Show
that VX ={V, X} is a subcomplex of SX containing SX ' and that

iys HVX/SX )xH(SX/SX HY=H(X,X .

Define p: V, X/S, X' - W, X=H(X", X"~') by passage to homology
classes. Show that p is a chain map and p,.: HVX/SX-!)~HWX. Prove
that the isomorphism @ of 1.3 coincides with i, p, ! (compare Schubert;
1V,34).

Corollary. If WX isa free complex then there exists a homotopy equivalence
9 WX ~S(X, X~") which is natural up to homotopy.

2. CW-Spaces

In homology theory the most useful cellular decompositions are CW-
decompositions, as introduced by J.H. C. Whitehead 1949. Their role
here is essentially that of a tool for computation; they are much more
basic for other parts of topology, in particular for homotopy theory. In
this § we discuss CW-spaces from the point of view of general topology;
their homological properties will be studied in § 3.
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2.1 Definition. Let X be a Hausdorff space. A CW-decomposition of X
is a set & of subspaces of X with the following properties (i)-(v).

i X= Uwg e, exe =>ene =0,
i.e, & is a covering of X by pairwise disjoint sets.
(i) Every ee& is homeomorphic to some euclidean space R1®l.

The number |e| is well determined (by invariance of dimension IV, 2.3);
it is called the dimension of e. The sets ee& which are homeomorphic
with R" are the n-cells, and the union X"=|J, .. e is the n-skeleton of
the CW-decomposition.

(iii) For every n-cell e€& there exists a continuous map @, (IB", $"~!) -
(X"~'ue, X""!) such that ®,: B"—S" ! xe. As usual B"= {xeR"||| x| <1}
=n-ball and $"'={xeIB"||x| =1} =(n—1)-sphere.

This condition refines (ii): not only is ¢ homeomorphic with R"=z
IB"—S$"~! but a homeomorphism can be chosen which extends to the
boundary $"~!. On $"~!, &, need not be homeomorphic but

¢e(sn—l)cxn— 1.

@, is called a characteristic map for e, and @,=®,|$""*: §" ! —» X" !
an attaching map for e (this name is explained by 2.9).

In many important examples the set & is finite (finite CW-decomposition)
and then (i)-(iii) is all we require. In general, there are two more condi-
tions.

(iv) The closure e of every cell is contained in a finite union of cells
(Closure finiteness).

(v) A subset AcX is closed (in X) if and only if Aneis closed in e for
every cell ee& (Weak topology). Equivalently: A map f: X > Y is
continuous if every f|e is continuous.

It is conditions (iv)-(v) to which the notation CW refers.—A Hausdorff
space X together with a CW-decomposition & is called a CW-space
{originally “ CW-complex™). The dimension of a CW-space, dim X, is
the least integer n such that X" =X if no such n exists then dim X =c0”

Given a subset &' <&, put X' =| ), e. If & is a CW-decomposition of
X' then (X', ") is called a CW-subspace of (X, &); often, we shall simply
say “ X’ is a CW-subspace of X ”.

We now deduce a few basic properties of CW-spaces.

22 Let @=¢,: B"— X be a characteristic map for eeé. Then ¢é=
¢(IB"). (Note: the proof will not use (iv) or (v).)
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Proof. By continuity @(IBB)=®(IB—S)c &(IB—S)==¢. Conversely, B is
compact, hence @(IB) is compact and therefore closed (X being haus-
dorff), hence e ®(IB). 1

2.3 Let &' <& be a finite set of cells. Then X' =|).s € is a CW-subspace
if and only if X' is closed. Consequence: Finite unions and arbitrary
intersections of finite CW-subspaces (i.e. having finitely many cells) are
again CW-subspaces. (We shall see in 2.7 that this generalizes to arbitrary
CW-subspaces.)

Proof. If X’ is a CW-subspace then every cell e of X’ has a characteristic
map ¢: B— X' and e=®(B)= X', hence X'={ ) .4 € is closed. Con-
versely, if X' is closed and @: IB— X is a characteristic map for ec X’
then @(IB)=e<=X’, so ¢: IB— X'. This proves condition (iii), whereas
(1) and (1) are obvious. |

2.4 The closure € of every cell is contained in a finite CW-subspace.

Proof by induction on n=|e|. From (iii) and 2.2 we see that é—ec X" !,
i.e. 2—e meets only cells of dimension <n, say e, ..., ¢,; their number
is finite by (iv). By induction, every ¢ lies in a finite CW-subspace X;;
hence eceu X, U X, ... UX, which is a CW-subspace by 2.3. 1

2.5 A subset A<= X is closed if and only if A intersects every finite CW-
subspace in a closed set, i.e., X has the weak topology with respect to
finite CW-subspaces.

This follows from (v) because every e lies in a finite CW-subspace. |

2.6 Every compact set K< X is contained in a finite CW-subspace. In
particular, X is compact if and only if it consists of finitely many cells.

Proof. In every cell e which meets K pick a point k,een K. The set k,
consisting of all k,, is closed because its intersection with every finite
CW-subspace is finite (hence closed). Similarly, every subset of k is closed,
hence k is discrete. But it is also compact, being a closed subset of a
compact set K. Therefore k is finite, i.e., K meets only finitely many cells,
hence the result by 2.4 and 2.3. |

2.7 Proposition. Let &' & be a set of cells and put X'=| ..o e. The
Sollowing are equivalent.

(a) X' is a CW-subspace,
(b) X' is closed,
c) ecX' =>ecX'
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Consequence: Arbitrary unions or intersections of CW-subspaces are
again CW-subspaces.

(For unions one uses (a) <> (c), for intersections (a) <> (b).)

Proof of 2.7. The implication (b) = (c) is obvious, and (a) = (c) follows
from 2.2. Assuming (c), we now prove

(d) If A= X' is such that e A is closed in e, for every cell e of X', then A
is closed in X .

Letting 4= X" this shows (c) = (b). Letting A< X’ be arbitrary again it
shows that (X', &) satisfies condition (2.1(v)). Because (2.1(i), (ii), (iv))
are obvious and (iii) follows from 2.2 we get (c) = (a).

In order to prove (d) let X, be any finite CW-subspace of X. Then X, n X’
consists of finitely many cells, say ey, ..., e,, and ;< X, N X’ because X,
1s closed and (c) holds. Hence

X,nA=X,nX)nA=(i_,&)nA=Ji_,(&,n A)
is closed, and therefore A is closed in X by 2.5. }

2.8 Let &< & be a set of n-cells. Then X'=X""'0U| ),cs e is closed, i.e.
is a CW-subspace. In particular, the skeletons X"~ are CW-subspaces
(put &' =0) and the n-cells e are open in X" (put &' =set of n-cells *e).
This follows from 2.7 because X' satisfies condition (c) (use 2.2 and
2.1(ii). 1

2.9 Proposition. Let & <& be the set of i-cells, and consider @, &' x B!
where ® denotes the topological sum and &' has the discrete topology
(this space is then the topological sum of as many standard balls as there
are cells in X). For every cell ee& choose a characteristic map @,: B¢ - X
and define

(@) &: @20 & xIB' > X, @(e,y)=2. () for (e, y)e{e} x Bl

(b) " @]_o &' xB' > X", ¢"=D|®7_, & x IB;

() #": X" 'e("xB"— X", &™) X" '=inclusion, ¢"|E" xB"=
P& x B".

Claim: These maps are identification maps. Thus, X can be obtained by
suitably pasting standard balls, and X" can be obtained from X"~! by

attaching standard n-balls {e} x B"~IB" via the attaching maps ¢,=
@IS 1.

Proof. By condition (2.1(v)), a map f: X — Y is continuous if f|¢ is
continuous for all cells e. Since &,: B'*l - Z is an identification map (2.2),
f is continuous if f &, is continuous for all e, i.e., if f® is continuous.
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This just says that @ is an identification map. Similarly for @", replacing
X by X". Furthermore, we can factor ¢" as follows,

" @ &' x B —T 0, "~ (6" x B") —2" X7,

hence @' is an identification map (being the second factor of an identi-
fication map). §

Conversely,

2.10 Proposition. Let (X',&) a CW-space with dim X' <n, let {¢;:
S" ' X'};c4 a family of continuous maps, form & =X e(AxIB"),
where A has the discrete topology, and identify each (A, y)e AxS$" ' cZ
with @,(v)e X' cZ. Let X denote the resulting space and &: & — X the
identification map. The sets ®(e) with ec&’, and e; = ({1} x B") with
A€ A, then form a CW-decomposition of X, dim X <n, X" '=&(X")x X,
and the map B"~{A} x B" — X is characteristic for the n-cell e,.

This, of course, provides a convenient recursive method for constructing
CW-spaces, starting with a discrete space X°.

Proof. If A< X’ is closed then
' P(A)=(X' "D ' D(A) U(Ax B "N P~ P(A))
=AU(PIAXS" ) dA=AU(J; {1} x 07" A)

is also closed, hence @A is closed (by definition of the identification
topology), hence ®|X’': X' > @X' is a closed map. Since it is also
continuous and bijective we have &: X'~ &(X’). Similarly, if 0 c A x B
is open then ®~'®(0)=0, hence ®(0) is open, hence &: AxB"~
(A xIB"). This proves condition (2.1(i1)). Moreover, it shows that
characteristic maps of X' followed by ¢ give characteristic maps for
cells of dimension less than n, and IB"~{/} x IB"— X is characteristic
for the n-cell e,, hence condition (2.1 (iii)) holds.

Next we show that X is hausdorff. For every pair P, QeZ such that
@(P) + P(Q) we have to find disjoint open neighborhoods U, V <% such
that @~ 'oU=U, ¢~ 'dV=V; then ®U, &V will be disjoint neighbor-
hoods of @(P), #(Q). If P, Qe X’ then they have disjoint open neigh-
borhoods U’, V' in X', and we put

U:U’u{(/l, x)eAxB||x] >0, o, (”i—”) eU’},

V= V’u{(/l, x)eA x B x]| >0, (p,,(“xi")e V’}.
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If PeX', Q=(y, xo)e A x IB" we put
U=X"U{(4x)eAx B[] x| >3(1+]x0 )},
V={(4x)eAxB"|| x| <3(1+I]x0l)}.

If both P, Qe A xIB" let U, V be arbitrary disjoint open neighborhoods
contained in A x IB".

Now to condition (iv). It is clear for cells of dimension <n. For n-cells
e, we have (2.2).

&= P({2} x B)=d({2} x B )L 9,(S" ) =€, L0, (S"7).

Since @,;(S" )= X' is compact it meets only finitely many cells (2.6),
and e, meets only one more. In order to prove (v), assume A< X inter-
sects the closure of every cell in a closed set. Then @~ (A)~ X'~ AN P(X')
is closed because @(X’) is a CW-space. Further,

(@' A) N ({1} x B") =~ [A N d({A} x BY] A ({4} x IB")

is closed, for every leA, because AN P({A} xB")=Ane, is closed by
assumption, and @ is continuous. Since & is the topological sum of X’
and the {1} x IB" it follows that ®~'4 is closed, hence A is closed in the
identification topology.

2.11 Proposition. CW-spaces are normal spaces. (In fact, they are even
paracompact; cf. Miyazaki, or Mather.)

Proof. Let A, B be disjoint closed sets in a CW-space X; we must find
a function p: X —[0, 1] such that p|A=0, p|B=1. By induction,
we shall construct functions p,: X"—[0,1], n=0,1,..., such that
plANX"=0, p,|BNX"=1, p,|X"'=p, ,; and we define p by
plX"=p,.

Suppose then we already have p,_;, n>0; the start, p,, being obvious.
For every n-cell e take a characteristic map &,: (IB", $"~!)— (X", X"~1)
and choose a function p,: IB"— [0, 1] with

P|S" I =py 1 @IS"!,  p.|®71A=0, p & 'B=1;
such a function p, exists by Tietze’s extension lemma. Now define
Pn by pn|X"_1=P,._1, p,,<Pe=pe. l

We conclude this § with a technical result which is needed in V, 4.

2.12 Proposition. Let X be a CW-space, Y= X a CW-subspace, and
McX"—(X""'OY) a set which meets every n-cell of X —Y in exactly
one point. Then X"~ ' U Y is a strong deformation retract of X"UY —M.
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Proof. For each n-cell e X — Y choose a characteristic map ¢,: IB"— X"
such that @,(0)=M ne. A deformation D: I x (X"UY-M)—>X"UY—-M
as required is then given by

x if xeX""'uy

D(t,x)= ¢
|

¢e[(1—r)<:+tn7] it x=a,(0), (eB"—{0}, e¢Y,

i.e. X"~'U Y remains fixed and the deleted n-cells e—M are deformed
radially onto the boundary. The only question is whether D is continuous.
Since Y remains fixed (and Y x I is closed) it suffices to prove continuity
of D|I x(X"—M). Consider then the identification map &™: X" 'e
(6" xIB"y— X" of Proposition 2.9 (8" =set of n-cells).

The map idx®™: Ix[X"" e ("xB"]—>IxX" is also an identi-
fication map because I is compact (cf. 2.13), hence its restriction
Ix(P")~1(X"—M)—Ix(X"—M) is an identification map (from the
definition of the identification topology because M is closed). Now
clearly 2: I x(®™)~1(X"— M) — (&™)~} (X"— M),
13 if Ee(@™)-'(X""'uY)

§

n) _ S5 e, on n_ ,
@ [e,(l 00+t IICII] i 2= (e,)e 6" x (B"—{0)), et Y,

2(t,8)=

is continuous, and D|I x (X"~ M) is obtained from 9 by passing to
quotients. i

2.13 Lemma. If &: A— B is an identification map and C is a locally
compact (Hausdorff-)space then id x @: C x A — C x B is an identification
map.

Proof (D. Epstein). If Uc Cx B is such that V=(idx®)~ 1 U is open
then we must show that U is open. Let (¢, b)e U, and pick (c,a)e V such
that @a=». Every neighborhood of ¢ contains a compact neighborhood
(cf. Schubert; I, 7.5); in particular, ¢ has a compact neighborhood K
such that K x {a}< V. Let W={xe A|K x {x} =V} ={x|K x {®#x} cU}.
Then W is an open set, and &~ (®W)= W, hence ®W is open (P being
an identification). It follows that U contains a neighborhood of (c, b),
namely K x @W; hence U is open. 1

2.14 Exercises. [. If X>Y is a pair of Hausdorff-spaces then a CW-
decomposition of X mod Y is a set & of disjoint cells in X whose union
is X —Y and such that: (iii) Every n-cell ee& admits a characteristic
map (IB",$"" ') > (X" 'ue, X""") where X"~ '=YUl ), ne (iv) The
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closure e of every cell lies in a finite union of cells with Y. (v) A subset
AcX is closed if and only if each of {4 ne},., and ANY is closed.
The triple (X,Y; &) is called a relative CW-space. Generalize the
preceding results to relative CW-spaces.

2. Let (X, &) be a CW-space, and consider the identification map
& O, xB - X

of 2.9(a). Show that the following are equivalent. (i) @ is a proper map
(i.e. @ is closed, and @~'(x) is compact for all xe X), (ii) X is locally com-
pact, (iii) every point of X has a neighborhood which is a finite C W-space.

3. Show that every CW-subspace Y of a CW-space X has an open
neighborhood in X of which it is a strong deformation retract. This follows
by iterating 2.12: We know that X"~'UY is a strong deformation
retract of X" U Y—M" where M=M" as in 2.12, is the set of centers
of n-cellsin X — Y. Let r,: X"U Y—M"— X"~ 'U Y denote the retraction.
Define Vo=Y, and V,=r"2(V,_,) for n>0. Then V= )2 .V, is open
in X,and r: V> X, r|V,=nr,...1,, is a strong deformation retraction
(in order to prove the last assertion it is convenient to use [0, co] as
parameter-interval for the deformation, and to place the given de-
formation V,~V,_, in [n—1, n]; continuity has only to be checked on
finite skeletons, i.e., on ¥V, x [0, 00]).

In fact, this construction proves more: If W Ythenr|r = 'W:r'W o W
is a strong deformation retract (and if W is relatively open in Y then
r~'W is open in X). Also: If W is relatively open in Y then every neigh-
borhood U of W in X contains an open neighborhood Vi, of W, of which
W is a strong deformation retract. Indeed, one can take V,={ver='W|
the deformation path of v lies in U}.

Corollary 1. In a CW-space X every cell has an open neighborhood in X
of which it is a strong deformation retract—because every cell is relatively
open in some CW-subspace Y. Since every point lies in a cell this implies

Corollary 2. In a CW-space every point has an open neighborhood of which
it is a strong deformation retract.

3. Examples

3.1 A zerodimensional CW-space is the same as a discrete space. A one-
dimensional CW-space X is often called a graph.
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3.2 The n-sphere S"= decomposition
into one zero-cell e®=(0,0,...,0,1) and one n-cell e"=8"—e°. The
standard map =: (IB", $" ') — (8", €°) of 1V, 1.1 is characteristic for e".

Another CW-decomposition of $" has two i-cells ¢, ,¢* for every i
with 0 <i<n, namely

e, ={xeS"|x,=x,_1==x;,,=0, x;,>0},
e ={xeS"|x,=x,_;==x;,,=0, x;<0}.

This decomposition has the advantage of being invariant under the
antipodal map A: x+— —x. In fact, A(e,)=e", A(e_)=¢',. A character-
istic map @, : IB'—S$" for ¢, is given by

‘pi,(yo,yl» ---»yi—1)=(y0’ e Yiet, TV 1_Zyj2’ 0,0, "'»0)
for e by @ =A@, .

3.3 A CW-decomposition of the n-ball IB" is obtained by decomposing
first the boundary sphere $"~! and then adding one n-cell ¢"=IB"=
IB"—S$"~!. The identity map of IB" is characteristic for ¢". In particular,
we can decompose IB" into three cells €°, e" !, e".

The n-simplex 4,,, which is homeomorphic with IB", decomposes into
cells o 0 <ig<iy<---iy<n, as follows:

e k= {xed, | x; x;, ... X, >0, X+ X+ +x, =1},

io u

If we identify 4, ~IB* then the linear map @' -: A, — A, which takes
the v-th vertex e,e4, into e; €4, is characteristic for e*. This CW-
decomposition of A, is invariant under linear maps A, — A, which permute
the vertices—The closed sets e =im(d"-*) are called the k-faces

of A4,; there are (n+ 1) of them.
k+1

3.4 Every base b,, b,, ..., b, of the vector space R" defines a CW-sub-
division (lattice) of R" as follows: The k-cells are the sets

e ={Y o ubut Y1t b |0<t, < 1}

where j,€Z are arbitrary integers, and i, are integers such that
1<i;<iy--- <i<n. The map [0,11* > IR", (t,...t)— Y j, b, + D t, b, is
characteristic for et (using [0, 1]*~IB*). If the basic vectors b, are
mutually orthogonal and of equal length then all cells are cubes
(cubical lattice).
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35 If F is a (not necessarily commutative) field then the projective
n-space B, F, n>0, is the set of all 1-dimensional linear subspaces of the
(left) vector space F"*!. Any non-zero vector (&, ..., £,)e F"+! generates
a 1-dimensional subspace which we denote by [&,, ..., £,]. The scalars
¢; are called the homogeneous coordinates of [&,, ..., ¢,]€ B F; they are
only determined up to a common (left) factor Ae F*=F — {0} = multi-
plicative group of F. We can therefore think of B F as being obtained
from F"*'—{0} by identifying vectors which are proportional:
BF=(F"+t'—{0})/F*=set of orbits of F* in F"*'—{0}.

If F is the field of real numbers IR, complex numbers €, or quaternions
H then F"+'—{0} is a topological space and we can equip BF=
(F"+1—{0})/F* with the identification topology; let n: F"*'—{0} » B F
be the identification map. We show that B F is a Hausdorff space: If
E=[¢&, ..., ¢ n=[n0,..-,n,] are two different points then there are
indices i, j such that (&, &;) and (;,n;) are not proportional. We can
assume that &;,n; are real numbers; then &;n;—¢&;n;+0 (this is a
determinant if F=IR or C; if F=IH it still has the same properties
because &;, n; are in the center of IH). Let V (resp. W) consist of all points
(=1, -+, {s)eRF such that ||{;&;—{; &l is smaller (resp. greater) than
I&;n:—Cim;ll; then ==V, ='W are disjoint open sets, hence V, W are
disjoint neighborhood of &, .

Every 1-dimensional subspace of F"*! meets the sphere $"+D4-1—

{xe F"*!|||x| = 1} whered =dim(F) =1, 2, or 4. Therefore p, = n|$" * V4~!
is a surjective map $"*V4~! 5 PF, and because spheres are compact
pn is even an identification map (called Hopf-map). Thus P F can be
obtained from $"+Y4-! by identifying points which differ only by a
(left) factor AeF*; this factor must have absolute value |1] =1, ie,
1eS$?! hence BF~S"*"4-!§%!=space of orbits of $~! in
§+D4-1"1In particular, BF is compact.—In the real case, F=RR, the
sphere $4-1=8° consists of the numbers +1, —1 only; thus BR is
obtained from $” by identifying antipodal points.

A CW-decomposition of E F is as follows: Put
& ={[%o, ..., ¢ eBF|#0, £;=0 for j>k}, k=0,1,...,n;

i.e., € is obtained from B F={&|¢;=0 for j>k} by removing the hyper-
plane at infinity (¢,=0). Thus, ¢ is homeomorphic with affine space
F*~R%; a homeomorphism is given by

[Cos - r &l (€t S0y oos &1 Eicy)-

Clearly PF=e"Uelu---ue" is a decomposition of BF into disjoint
cells of dimension 0,d, 2d...nd; it remains to find a characteristic map
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@*: B — BF for ¢ Let B¥*={ze F*|||z| <1}, and define
(36) ¢k: ]Bdk_'BxFa ¢k(20,"'azk—l):[ZOazl)---:Zk—171_”2”707”'70]'

The composition (IB*—§*-1) ¥, Kk~ F* takes (zo,...,2,_,) into
(zo/A=1IZW), ..., zZx_1 /(1 = 2]})), and is clearly a homeomorphism (IV,
1.2); therefore @* is a characteristic map.

It is interesting to note that the characteristic map @": B - BF is
surjective and hence an identification map. The attaching map @"|$*"~!
agrees with the Hopf-map p,_,: (z¢s ---» 2a_1)— 120, ---» Z,—1]- Thus BF
can be obtained from IB’" by identifying points on the boundary $"*
which differ only by a factor 1e8$%~! < F*. In particular, BR is ob-
tained from IB" by identifying antipodal points on the boundary $" !

37 If X is a CW-space and X' X a CW-subspace then the quotient
X"=X/X’ (which is obtained by identifying all of X’ to a single point)
inherits a CW-structure from X, and the identification map p. X —> X"
maps cells onto cells. In fact, if & <& denotes the set of all cells in X'
then &" ={X'}u{p(e)leeE— 48"} is a CW-decomposition of X"

Proof. X" is hausdorff: If Pe X" —{X'} then, by normality 2.11, there
is a function t: X — [0, 1] such that t(p~'P)=0, 7|X'=1; passing to
quotients it induces a function t”’: X" — [0, 1] which separates P and
{X'}. If P,Q are different points in X”"—{X'} then p~'P, p~'Q have
disjoint neighborhoods ¥, Win X — X", hence p V, p W are disjoint neigh-
borhoods of P, Q.—If ¢: IB"— X is a characteristic map for ec§ —&”
then p@® is characteristic for p(e), proving 2.1(iii). Clearly, closure-
finiteness passes from X to X”. Finally, if AcX” meets every
p(@)=pd,(IB"), ee&—¢&', in a closed set then p~'A meets every
X' v ®,(B") in a closed set, hence p~'A4 is closed, hence A is closed,
proving 2.1(v). 1

For instance, RF={[¢&,, ..., {,]e B F|{;=0 for j>k}, k<n, is a CW-
subspace of BF (see 3.5); the quotient PRF/RF is known as stunted
projective space; it decomposes into cells €%, &+, ..., e" of dimension 0,
dk+1),...,dn where d=1,24 as F=IR,C,IH. If k=n—1 then
BF/P_,F~S$% (compare 3.2).

38 1If {X;};c4 is a family of CW-spaces then the topological sum
X=®,.4X, is also a CW-space; this is quite obvious from the defi-
nitions. If €} is a zero-cell of X, then X'=|J, €} is a (discrete) CW-
subspace of X. The quotient X/X' is the wedge (compare III,7;
Exerc. 2) of the spaces X, (with base points e3), X/X'=V,X;. In
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particular, any wedge of CW-spaces (with zero-cells as base points) is
again a CW-space.

391If X, Y are spaces with CW-decomposition o/ ={a}, #={b} then
o x B={axb} is a decomposition of X x Y into disjoint cells. Is it a
CW-decomposition? Axioms 2.1(i)—(iv) are easily verified; one finds that
(X x Yy'=J;,;_nX"x Y/, and that products of characteristic maps are
characteristic (using IB'xIB/~IB‘*/). In particular, the answer is
affirmative if X, Y are compact. Axiom 2.1(v), however, fails to hold,
in general (Exerc.4). It is satisfied if one of X, Y is locally compact, i.e.,
A x B is a CW-decomposition if one of X, Y is locally compact.

Proof. Let ¢,: Bl“ » X, &,: B!*! - Y be characteristic maps for aes,
bed. We have to show that

{D,x &} @, ,B"xB" > XxY

is an identification map (by 2.2 this is equivalent with 2.1(v); cf. also
proof of 2.9 (a)). This map factors as follows:

@B x B =(@ ]Blal)x((_DlBibl)M‘j'_,Xx(@]Blbl)MlL, XxY.

The first arrow is an identification map because ®IB!*! is locally compact
(and {@,} is an identification map), the second arrow is an identification
map if X is locally compact (cf. 2.13). Hence the result, because identifi-
cation maps compose. 1

3.10 The unit interval [0, 1] is compact and has the CW-decomposition
[0,1]={0}u {1} U(0,1). If X is any CW-space then, by 3.9, [0, 1] x X
is a CW-space with cells {0} xe, {1} xe, (0, 1) x e where e ranges over
all cells of X. The suspension XX of X is obtained from [0, 1] x X by
shrinking each of the CW-subspaces {0} x X, {1} x X to a point. By 3.7
is has a CW-decomposition into cells (0, 1) x e, plus the two zero-cells
{0} x X, {1} x X.

3.11 Exercises. 1. As in 1V,2, Exerc. 4, let D, be the space which is
obtained from the 2-sphere by removing the interiors of h+1 disjoint
discs, i.e,, by puncturing h+1 holes. Take two copies of D, and identify
corresponding points on the boundary circles. The resuiting space S,
is called orientable surface of genus h. Show (say by induction on h)
that S, admits a CW-decomposition consisting of one O-cell, 2h 1-cells
aj,...,a, by, ..., b,, and one 2-cell €2 whose attaching map ¢: $' — S}
is as follows: Subdivide §' into 4h equal consecutive segments
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oy, By ag, Bry oovy O, By %, B, map a;, & linearly (but with opposite
orientation) onto q;; similarly for f8;, §;, b;.

Clearly ¢ is surjective, hence S, is obtained from IB? by identifying
points on the boundary $' which have the same ¢-image (see Fig. 8).
Show that So~$2, S;~S!xS!. Compare this and the next exercise
with Seifert-Threlfall §§37-38.

dy--~-
A
G/A \\
b R ‘
1 B )
1 )

a

1
1
1

1

‘

-Fig. 8

2. Asin 1. let D,_, be the 2-sphere with k holes, k>0. On the boundary
circle of each hole identify antipodal points. The resulting space B, is
called non-orientable surface of genus k. Show that B admits a CW-
decomposition consisting of one O-cell, k 1-cells a,...,a, and one
2-cell e? whose attaching map is described by the symbol a; oy &t 5 . ... oty 4,
(analogous to Exerc. 1), hence F, is obtained from IB? by identifying
points on the boundary as indicated in Fig. 9. Show that R~ P, R.

3. Let =, be the group of complex numbers {eC such that {?=1 (it is
cyclic of order g with generator t=e*"¥9). This group =, operates
on $?"~'={zeC"|| z|| =1} by ordinary scalar multiplication. The orbit
space L2"~'=$?""'/n, (obtained by identifying z with tz) is called
lens space. Show that the following cells form a CW-decomposition
of $2"~! which is compatible with the operation of =, and which (by
projection) induces a CW-decomposition of 2",

2
e,z"———{(zo, 24y oees Zy_)€S?" 1 2,=0 for j>k, arg(zk)-——rTn},

27 2
e,““:{(zo,...,z,,_l)eSz"‘1|zj=0 forj>k,r—r<arg(zk)<(r+l)—7£},
q q

r=0,1,...,g—1, k=0,1,...,n—1.

More generally, let (/y, ..., I,_,) be integers prime to g and let 7, operate
on $*"! by t(zg,...,2,_1)=(t 29, 1" 2, ..., t" 12, ;). The orbit space
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L2, ..., 1,_,) is still called lens space. Construct CW-decompositions
as above,.

4*. The product ./ x # of two countable CW-decompositions is again
a CW-decomposition (Milnor 1956, Lemma2.1). If X=V [0,1] is a
wedge of uncountably many unit segments (base point 0) then X x X
is not a CW-space (Dowker §5).

4. Homology Properties of CW-Spaces

We show that the filtration of a CW-space X by skeletons X" is cellular,
determine the cellular chain groups W, X, and deduce consequences
for HX.

4.1 Proposition. Let X be a CW-space, Y =X a CW-subspace (e.g., Y=0),
and put X3=X"U Y (in particular, X3 =Y for n<O0). Let Mj<(Xy— X3~ ")
be a set which meets every n-cell of X —Y in exactly one point. Then

H(Xy, Xy~ )= H(Xy, X7 - M) = H,(Xy— X771, X7 - X3~ — M)

4.2) 0 if i+n

~@, H(e,e—M})=

®, H,(e,e— My) {Zé’"(X—Y),
where the sum @ ranges over all n-cells e in &"(X —Y)=set of n-cells in
XY, and ZE(X —Y) is the free abelian group generated by &"(X —Y).

In particular, {X}} is a cellular filtration of X (cf. 2.6 for condition 1.1 (1)),
and the homology H(X,Y)=H (X, X; ') is naturally isomorphic (1.3) to
the homology of the cellular complex W(X,Y), where W,(X,Y)=
H (X2, Xt~ Y)Y=Z&" (X —Y).

Proof. The first isomorphism follows because Xj~! is a deformation
retract of X§ — M7 (see 2.12), the second by excision (III, 7.4), the third
because Xj— X5~ is the disjoint union of the open n-cells ee"(X —Y),
and the fourth because H(e,e— M)~ H(R", R"—0)=(Z,n). 1§

4.3 Corollary. If X is a compact CW-space then H; X is finitely generated
for all i, and H, X =0 for i>dim X. More generally, if Yc X isa CW-
subspace such that X —Y contains only finitely many n-cells (resp. no
n-cells) then H,(X,Y) is finitely generated (resp. H,(X,Y)=0).

Indeed, already W, (X, Y) is finitely generated (resp. zero), and H,(X, Y)=
H W(X,Y). 1
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4.4 Corollary. If (X,Y) is a pair of CW-spaces then the identification
map p: (X,Y)—(X/Y, {Y}) induces isomorphisms

p,: HX,Y)~H(X/Y,{Y})=H(X/Y).

Indeed, by 3.7, X/Y is a CW-space and p is a cellular map which maps
the cells of X —Y homeomorphically onto the corresponding cells of
X/Y—{Y}; since W(X,Y) depends only on the cells in X — Y (cf. 3rd
terms in 4.2) we get Wp: W(X, V)= W(X/Y,{Y}). 1§

4.5 Corollary. If (X, Y), (X', Y’) are pairs of CW-spaces and f.(X,Y)—
(X", Y') is a continuous (not necessarily cellular) map which, by passing to
quotients, induces a homeomorphism f: X|/Y=X'[Y' then f : H(X,Y)x
HX', Y.

This is a strong excision theorem. It follows immediately from 4.4.

4.6 Corollary. If X is a CW-space and X,, X,c X are CW-subspaces
then (X; X, X,) is an excisive triad (see 111, 8.1).

Indeed, the inclusion (X;, X; N X,) — (X, U X,, X,) fulfils the hypothesis
of 4.5 and is therefore a homology isomorphism. [

4.7 Proposition. If ZcY<X are CW-spaces and subspaces then the
inclusions (Y, Z)— (X, Z)—(X, Y) induce an exact sequence

0 W(Y,Z)— W(X,Z)— W(X,Y)—0

of chain maps. Under the isomorphisms ©@: HW(X,Y)=H(X,Y) of 1.3
the connecting homomorphism d, of this sequence transforms into the
ordinary connecting homomorphism 0, of the triple (X, Y, Z) (cf. 111, 3.4).

Proof. Exactness follows from third terms in 4.2 because (X7~ X3 )=
(Y7 — Y7 De (X} — X3~ 1), a disjoint union. In order to prove 6, @=04d,
we use 1.9. This implies that every ye H, W(X, Y) has a representative
(eS, Xy with 8{eS,_, Y and that ® y=[{] for any such (. It follows that
d,y is represented by d(, hence @(d, y)=[0{]leH,_,(Y, Z). But also,
[0{]=0,[(] by the very definition of d,; hence 0, @=6O4d,. 1

4.8 Example (cf. 3.5). The projective spaces B F, n>0, over the fields
F=R,C,H admit CW-decompositions B F=e’uUe' U---ue" into cells
of dimension 0, 4d, 24, ..., nd where d=dim(F)=1,2,4. In case F=C,H
there are no cells of odd dimensions, hence W, (P, F)=0, hence the
boundary & of W(P, F) vanishes, hence HPR F=WP F,1e,if F=C or H
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then '
4.9) HJ(R.F)E{Z if j=0,d,2d,...,nd

0 otherwise.

In order to compute the homology of real projective spaces PR we
have to determine the boundary operator d: W,— W,_; this will be
done in 6.13. But even without knowing 0 we can assert that every H; P, IR
is cyclic—because it is a quotient of a subgroup of a cyclic group.

The inclusion mappings i: B F— B, F, n<m, are cellular. In fact, B F is
the [d(n+ 1)— 1]-skeleton of B, F. The induced map of cellular complexes
is therefore isomorphic up to dimension (n+ 1)d— 1 (included), hence

4.10) i, RF=H,E F for j<(n+1)d—1, n<m.

Analogous results hold for stunted projective spaces (3.7); we leave it
to the reader to formulate and prove them, as exercises.

Spaces which are retracts of CW-spaces inherit some of their homology
properties. As an example we show

4.11 Proposition. If' Y is a compact ENR (euclidean neighborhood retract,
of. 1V, 8) then H, Y is finitely generated for alli,and H; Y =0 for sufficiently
large i.

Proof. We can assume Yc<RR”™ Let Y—'»> 0 —"-> Y be a neighborhood
retraction, ri=1id. Choose a lattice decomposition (3.4) of IR” which is
so fine that every closed cell which meets Y lies in O. Let X <O be the
union of all closed cells which meet Y. Then X is a compact CW-space,
YcX, and r|X: X — Y is a retraction. Hence HY is a direct summand
of HX (cf. 111, 4.15), and the assertion follows from 4.3. §

4.12 Exercises. 1. If {X,},_, is a family of CW-spaces with base points
eSeX? then the wedge X =V, ., X, is also a CW-space by 3.8. Show
that W(X, )~ @, W(X,, 5) where ¢’ e X° is the base point of the wedge.
This implies HX =~ ®, AX,.

2. A connected graph Y+@ is called a tree if Y—e is disconnected for
every 1-cell ec'Y. Show that every tree is contractible. Show that every
graph X contains a tree Y with Y°=X?° (construct Y starting at one
zero-cell and letting Y branch out). Using HY =0, prove HX = H(X/Y).
Because X/Y is a wedge of circles this gives HX by Exerc. 1.

3. Let C=R? be the union of all circles C,, n=1,2, ..., with radius 1/n
and center (0, 1/n). Then C is compact but HC is not finitely generated
(hint: C retracts onto arbitrarily large finite wedges of circles), hence C
admits no CW-decomposition (and is not an ENR).
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5. The Euler-Poincaré Characteristic

Euler’s polyhedron formula is perhaps easier to explain to a non-
mathematician than any other non-trivial result of algebraic topology.
Roughly speaking it asserts that oy —o, +a, =2 for every decomposition
of $? into disjoint cells where «, is the number of i-cells. More generally,
we shall see that for any finite CW-space the number ) (— 1) «; is in-
dependent of the decomposition.

5.1 Definition. If G ={G,};_z is a graded abelian group such that rank (G,
is finite for all i and equals zero for almost all i then

x(G)= Ziel(_ 1y rank (G,

is defined and is called the Euler-Poincaré-characteristic of G (recall that
rank (A4)=maximal number of linearly independent elements in A; see
1,2.29). If K is a complex then we define x(K) to be the Euler-Poincaré-
characteristic of the underlying graded group (i.e. we ignore 9%).

5.2 Propesition. If K is a complex such that y(K) is defined then y(HK)
is also defined, and y(HK)= y(K).

Proof. For every abelian group G and subgroup G’ = G we have rank(G)=
rank (G') +rank(G/G') (see I, 2.28-2.29); in particular, rank(H;K)<
rank(Z; K)<rank(K,), hence y(HK) is defined. Moreover, rank(K,)=
rank (Z, K)+rank(B;_, K), rank(Z; K)=rank(B; K)+rank(H; K). Mul-
tiply both equations with (—1),, sum over i, and get y(K)=y(ZK)—
x(BK), x(ZK)=x(BK)+ y(HK). Substitute and get x(K)=x(HK). 1

5.3 Corollary. If ---«G;_;+G;«G; <+ is an exact sequence then
1 {G;} =0—provided it is defined.

Proof. View the sequence as a complex G. Then HG =0, hence y(G)=
2(HG)=0. 1

5.4 Corollary. Let G', G, G” be graded abelian groups which admit an
exact sequence

(5.5) =G G Gl =G — GG e

i
If any two of x(G"), x(G), x(G") are defined then so is the third, and
2(G)=x(G)+x(G").

{In most examples, 5.5 is the homology sequence of an exact sequence
0— K'— K — K" — 0 of complexes.)
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Proof. Suppose, for instance, x(G'), x(G) are defined. Because 5.5 is
exact, we get rank(G;)<rank(G;)+rank(G;_,), hence y(G") is defined.
We can then apply 5.3 to the exact sequence 5.5 and get

Y (—1)* rank(G)+ Y (—1)* "' rank(G})+Y.(—1)*>"*' rank (G})=0.
But this is just the assertion, yG—xG” —xG'=0. 1
5.6 Definition. The Euler-Poincaré characteristic of a space Y or a pair
of spaces (Y, A) is, by definition, the Euler-Poincaré characteristic of its

homology, x(Y, A)=yH(Y, A)—provided the latter is defined, i.e. if
rank (®; H;(Y, 4)) < o0.

Applying 5.4 to the homology sequence of (Y, 4) shows

5.7 Proposition. If (Y, A) is a pair of spaces such that two of the numbers
x(A), x(Y), x(Y, A) are defined then so is the third, and

x(Y)=x(A)+x(Y, A). 1
Similarly, 5.4 applies to Mayer-Vietoris sequences:

5.8 Proposition. If (Y. Y,, Y,) is an excisive triad and if two of the numbers
x(Y,uY,), x(Y,nY,), x(Y))+x(Y,) are defined then so is the third, and

() +x(Y)=x(uY)+x(inY,). 1

For instance, Y could be a CW-space and Y, Y, two CW-subspaces;
such a triad is always excisive by 4.6. If Y, U Y, has only a finite number
of cells then 5.8 is also clear from the following generalization of Euler’s
polyhedron formula.

5.9 Proposition. If (Y, A) is a pair of CW-subspaces such that Y—A
contains only finitely many cells then x(Y, A) is defined and

WY, A=Y o (=)o

where o; is the number of i-cells in Y—A. In particular, this number
Y (—1)'o; depends only on H(Y, A), not on the CW-decomposition.

Proof. The cellular chain group W(Y, A) is free on «; generators (4.2)
hence rank(W;(Y, A))=«;, hence Y (—1) a;=yW(Y, A)=yx HW(Y, A)=
x(Y, A), by 5.2 and 4.1. 1
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5.10 Exercises. 1. Verify the formulas
iBY)=1,  x(SH=1+(=1, x(BR)=3(1+(-1)),
(B, C)=n+1=yx(RH), x(S)=2-2h,
x(B)=2—k, x(L")=0

where S,, B, are the surfaces of 3.11, Exerc. 1, 2, and qu"‘l the lens space
of 3.11 Exerc. 3.

2.1 Y is a finite CW-space and n: Y— Y is a g-sheeted covering then ¥
is also a CW-space (cf. Schubert, III 6.9), and 3(Y)=gq - x(Y), provided
g<cc.

3. Let #" be the set of homeomorphism classes of compact CW-spaces.
Define ¢: #" > Z, Y=y Y—1, and verify that ®Y=0 A+ $(Y/A) for
every pair (Y, A) in #. Conversely, if G is an abelian group and ¥: % — G
is a map such that YY=%¥ A4+ ¥Y(Y/A) for every pair (Y, 4) in #" show
that Y Y=(®Y)-(¥S°) for all Ye#. Hint: Take Y=IB" and A=8"""
or A= {xeIB"|||x|| >4}; comparing gives ¥$"~! = ¥($"~* x [0, 1]). Next,
take Y=8"""x[0, 1], A=8""" x {0}, and get ¥YIB"=0 for n>Q; prove
YIB® =0 separately. Now proceed by induction on the number of cells
in Ye#. Cf. Watts 1962.

6. Description of Cellular Chain Maps
and of the Cellular Boundary Homomorphism

We give simple geometric interpretations for the matrices of Wf:
WX — WYandd: W, X - W,_,; X;this can be used for actual computa-
tion.

6.1 If X is a CW-space then X" and X"/X"~! are also CW-spaces (3.7),
and the natural maps X > X" — X"/X"~! induce isomorphisms W, X =
W, X"=W,(X"/X"~")=H"(X"/X""!) because all n-cells are mapped
homeomorphically (cf. fourth term in 4.2). If Y is also a CW-space then
every continuous map f: (X", X"~ 1) —(Y", Y"!) (such a map will be
called n-cellular) induces a cellular map f: X"/X"'— Y"/Y""! and
homomorphisms W, f, W, f such that the diagram

W,,X‘MW"Y

L

WAX"/ X" 1) — W (YY)
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commutes, ie., the isomorphism W, X =W,(X"/X"~!) is natural with
respect to n-cellular maps. In particular, it commutes with cellular maps
f: X — Y because they are n-cellular for all n.

We want to give a description of W, f~W, f which is practical for
actual computation. Let us remark first that

(6.2) W(X"/X" ) =H,(X"/X" )= @, H,(X"/X"~e),

where e ranges over the set " of all n-cells. This isomorphism is
induced by the projections p¢: X"/X"~!— X"/X"—e, or the inclusions
i€ X"/X"—e— X"/X"" ' (i=id on e, constant outside). Indeed, it is
clear that i maps H,(X"/X"—e) isomorphically onto the summand
H,(e,e—M) of 42, and that p°® i*=id, p° i¥ =constant if '+ e. Thus

H,(X"/X"—e) - H (X" X" )25 f (X"/X"—e¢)

are the inclusion and projection mappings of the direct sum decompo-
sition 6.2. The map W, f: H,(X"/X"")— H,(Y"/Y""') is therefore
given by the matrix whose entries are the maps

fe=0f 1, B, (X7X"—a) =5 B (XX 2L

(6.3) - .
—H (YY" )25 H,(Y"/Y"=b),

where a resp. b range over the n-cells of X resp. Y.

These f; are homomorphisms between free cyclic groups, hence are
integers, defined up to sign. In order to remove the ambiguity of signs
one has to specify isomorphisms H (X"/X"—a)=~H,(Y"/Y"—b). This
is usually done with the aid of characteristic maps &% (B”, $" !)—
(X", X"—a), etc. In fact, @* is n-cellular and induces a bijective hence
homeomorphic map &°: B"/S"~' — X"/X"—a; therefore

o n n—l'ﬁ n n
X"/X"—axB"/S""'2Y"/Y"—b.
Thus we get
6.4 Proposition. Under the isomorphisms
b ~
W,X =@, ,(X/X"—a) = ©,H,B"/S"Y, ac&(X)
- (] 24 o
W.Y=@,H,(Y"/Y"-b) = ®,H,(B"/S""), be&"(Y)

the map W, f: W, X — W, Y transforms into the homomorphism

®,H,(B"/S"") - ®,H,[B"/S"™)
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whose matrix-component f,7€ 7 is the degree of the composite map
IBn/Sn—l &a X"/X"—a ia Xn/Xn—l i

(6.5) . _—
N Yn/Yn—l 4 Yn/Yn_b (@) ]Bn/§n—1' 1
We can compute this degree over any point Q of IB"/S"~! (IV, 5.6).
In particular, we can choose QeIB” (=interior of IB"). But over IB"
the maps 6.5 have the following form (up to homeomorphism)

(@)1 -1 B)Xan f-1(b)—=of -1 (b)—L> bR b X",

hence

6.6 Corollary. The matrix component f of the homomorphism W, f agrees
with the degree (in the sense of 1V, 5) of the composite map

(@) B)%anS ' (b) L bR
(over any point Qelﬁ”). 1

In particular, if QeIB is such that anf~!(Q) is finite, then f is the
number of points in a f7!(Q), each one counted with its multiplicity
(see comment after IV, 5.8). For instance, f;=0 if b¢ f(a), and fi=+1
if f maps an f~!(b) homeomorphically onto b.

6.7 We now discuss the cellular boundary homomorphism d: W, X —
W,_,X. Since W, X =H,(X', X!")>®,.,: H(X'/X'—e) is a direct sum
of free cyclic groups the cellular boundary homomorphism ¢ can be
described by integral matrix components 0; similar to W, f (cf. 6.3).
Their geometric meaning can be seen from the diagram

H (X" X"—a)—%— H (X"/X""Y=H (X" X"~ 1)2=2%,
= | P2 [ 14 [
oy TBIST) = HBUSTYEH, B8 2
S H,_ (X" X)L (X"TYX )
¢ =~ |2
=~ H,_,5 H, (B"'/S"?),

where a, b are n- resp. (n— 1)-cells of X with characteristic maps ¢°, @°,
and attaching map ¢°=®*|$"~'. The maps i}, p‘; are defined as after
6.2; they are inclusions resp. projections of direct sum representations.
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The composite top row of 6.8 is the component d; of §. The diagram
shows

6.9 Proposition. Under the isomorphisms
(] Do, ~
I/Vn)( = ®a Hn(X"’ X”_a) = @n H”(]B", S l) = ('Ba H"_lsn—l, ae(g)n,

i L 14 ~
W, X=®,H,_(X""'/X""'-b) = @,H,_,(B"""/S"?)
~®,H,_,S"!, bes !,

the cellular boundary 0: W,X > W, X transforms into the homo-
morphism @®,H, S$""' > @®,H,_S""! whose (matrix-) component
[a:b]eZ is the degree of the composite map

(610) Sn—lL“)Xn—l__)Xn—l/Xn—-l__bJO_")'_"IBn—l/Sn—Zzsn—l. 1

The integer [a:b] is often called incidence number of a and b; up to
sign it is determined by a and b alone; the sign depends on the choice
of characteristic maps @“ &, or rather on the choice of an iso-
morphism H,(X"/X"—a)=~H,_ (X" '/X"~'-b).

Computing the degree of 6.10 over a point in IB"~! shows (compare
proof of 6.6)

6.11 Corollary. The incidence number [a:b] agrees with the degree (in
the sense of 1V, 5) of the map

((Db)"lo(paj ((pa)—‘lb_’]Bn—l
(over any point QelB"""). 1

In particular, if Qe]B" Uis such that (¢“)~'Q is finite then [a:b] is
the number of points in (¢“)~'Q, each one counted with its multiplicity.
For instance, [a:b]=0 if bd ¢*($"~ "), and [a:b]= +1 if *: (¢p*)~'b~b.
If % (%)~ 'b—b is locally homeomorphic then every counterimage
point has multiplicity +1.

6.12 Orientation of Cells. If X is a CW-space and ec X is an n-cell
then H (X"/X"— e)=Z. Any such isomorphism (equivalently: a generator
of H (X"/X"—e)) is called an orientation of e. For oriented cells the
components f;* (see 6.3) of W, for d; (see 6.7) of the cellular boundary 0
can be viewed as integers (without having characteristic maps intervene).
In practice, cells are always oriented by choosing a homeomorphlsm
X"/X"—exS" (usually some ¢°) and plckmg a generator in H S$" The
standard choice for generators s" in H,$" is as follows: s eH 089 is
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the homology class of {+1}—{—1}. For n>0 let b"eH,(IB", $"~!) be
the generator such that 9, ,b"=s""! (inductively) and let s"eH,S"
correspond to b" under the standard map =n: (IB*,$" ') — (S$", point)
of IV, L.1.

6.13 Example (cf. 3.5). We compute the cellular boundary in real
projective n-space B IR, n>0. There is one cell €' in every dimension i
such that 0<i<n. The attaching map ¢*: $"! > P_,R for ¢, i>0,
agrees with the Hopf map (x,, ..., %;_)— [xg, ---, X;_ l] ie. 1t is the
twofold covering of P_,R by $'~'. The counterimage (¢’)~*[x] of
every point [x]ee'~! (in fact of every [x]e€ P._, R) consists of two points,
namely x and —x, and ¢’ is locally homeomorphic. The multiplicities
u(+x) of these counterimage points are therefore +1 and the incidence
number [¢':e"'] is 0 or +2 depending on whether p(x)= —u( X)
or pu(x)=p(—x). If A is the antipodal map on $'~! then ¢'=¢'4;
therefore, by IV, 5.7, we have p(x)=deg(A)- u(—x)=(— 1)’ u(—x), hence

(6.14) 0(é)=+[1+(=17e"", for i>0.
Thus WER is the complex

Wo=Z > Z 3T T 2. LAY T 0=W

n+1

and
0 if i is even or i>n.
(6.15) H((PR)=)Z, ifiisoddandO<i<n.
Z if i=n1s odd.

6.16 Exercises. 1. Let X, =8S"vS8"v---vS8" be a wedge of k n-spheres,
decomposed into one O-cell and k n-cells, n>0. If /2 X, — X, is a cellular
map then W, fis given by an integral k x ! matrix { fJ} Show that every
integral k x I matrix {a‘} belongs to some map f.

Hint: Reduce to k=1. Let Y denote the union of / disjoint open balls
on 8" and n: $" > 8"/$"— Y= X, the projection. Given a,a,...,eZ
choose g;: $"—S" of degree o; and put f=(g, v vglon: $">X,.

2. Let R, F be free abelian groups with bases A4, B, and let §: R—>F
be a homomorphism, f(a)=) .5 B: - b,ae A. Use Exercise 1 to construct
a cellular map ¢° $"— V,5S", n>0, whose matrix is {f;},.5. For
every a€ A, use @° to attach an (n+1)-cell ¢! to V,_5S" The resulting
CW-space X, has only 0-, n- and (n+1)- cells and o: W, X—>W, X is
isomorphic with f: R — F; in particular H, ,(X,)=ker(f), H,(X,)=
coker ().
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If G is an arbitrary abelian group, choose an exact sequence
0—R -2 F—G—0; then H,(X;)=G and H,(X,)=0 for k+n. Using
wedges of such spaces construct a space X whose homology groups
H, X, k>0, agree with prescribed abelian groups G, .

3. a) All incidence numbers are zero in the CW-decomposition 3.11,
Exerc. 1, of the orientable surface S,. Therefore H,(S,) is free on 2h
generators, H,(S,)=Z, H,(S,)=0 for i>2.

b) In the CW-decomposition 3.11 Exerc. 2 of the non-orientable surface
E the 2-cell ¢ has incidence number 2 with every 1-cell. Therefore
H,(R)=Z, & free group on (k— 1) generators, H;(R)=0 for i> 1.

4. Consider the second CW-decomposition of $" which is described
in 3.2. Show that (with suitable orientations of cells) the following

formulas hold: . . . .
e dleX) =" oM~ = 3(eY),
eV =et—eti=—g(eH ).

Remark that the covering map $” — B R is cellular and use the above
formulas to give another prove of 6.14.

5. Prove the following formulas for the CW-decomposition 3.11 Exerc. 3
of §2"-1,

2ky __ -1 ,2k-1 2k+1y__ ,2 2k
a(er )_Z?=Oei ’ a(er * )_erk_er+1

if the cells are suitably oriented, and e}* =e}*. The projection p: $2"~! —
"~ onto the lens space is cellular; applying p to the above formula
yields the following boundaries in L~ ': d(e**)=gq - e**~!, d(e**+1)=0.
Compute H(L™).

7. Simplicial Spaces

A simplicial structure is a CW-structure with additional features: The
characteristic maps form part of the structure, they are injective and they
are inter-related by linear changes of coordinates. Historically, homology
theory started with simplicial spaces and simplicial homology (see § 8).

7.1 Definition. Let X be a Hausdorff space. For every n=0,1, ... let
& be a set of continuous maps s: 4, — X. Then {£} or =\, is
called a simplicial atlas if the following conditions (i)-(iv) hold.

(i) X=Uses im(s).
(i) Every se& is injective. Since X is hausdorff and 4, compact, s(4,)
is closed and homeomorphic with 4,, s: 4,xs(4,)=1m(s).



112 V. Cellular Decomposition and Cellular Homology

(1) Any two s, te & are linearly related. By this we mean the following:
Ifs:4,—X,t: 4,— X then A3 =s5"11(4,) resp. A¥=t""s(4,) is a face
(33)of 4, resp. A, and t~'s: A5 —» A, resp. s™'tisa linear map; since
s, t are injective we have in fact a linear isomorphism ¢~ !s: A5 > A%

If t='s, s~ 't also preserve the order of the vertices then s, t are said to be
order-linearly related, and if this holds for all s, ¢ of an atlas & then &
is called an ordered simplicial atlas.

If s,te% and im(sycim(¢) (equivalently: A3=4 ) then s is called a
Jace of t.

(iv) A set AcX is closed if. and only if Anim(s) is closed for all se€ ¥,
ie, X has the weak topology with respect to {im(s)},.,. Equivalently,
f: X > Z is continuous if and only if fs is continuous for all se & (Note:
There is also a strong topology which is used in some connections; see
7.14)

An example is provided in 3.3; there we described a CW-decomposition
of 4, and characteristic maps which form an ordered simplicial atlas.
But the identity map id: 4, — 4, alone is also an ordered simplicial atlas
on 4,.

7.2 Proposition. Every (ordered) simplicial atlas & is contained in a unique
maximal (ordered) simplicial atlas J. In fact,7,,n=0,1, ..., is the set of
all injective maps t: A, — X which are (order-) linearly related (as in (iii))
to all se ¥,

Proof. Take 7, as described. By (iii) we have & <7, and every atlas
containing & is contained in Z. It suffices, therefore, to show that 7 is
an atlas. Conditions (i), (i1) and (iv) are obvious; for (iii), let ¢t: 4,—> X
be in F, pick Ped,=A,—A4,={xed,|x;>0 for all i}, and choose s:
4, — X in & such that tPelm( ). Then Pet~!s(4,), hence t~!s(4,)=4,
(because it is a face of 4,), hence t4,=s4,. Ifalso t': 4,— X is in I
then t='¢(4,)=(t"'s)(s7'¢) 4, is a face of 4, because (s, t), (s,t) are
linearly related, and t~!' ¢ =(t~! s)(s~' t') is a linear map. This proves (iii)
for 7. 1

7.3 Definition. An {(ordered) simplicial structure on X (also: a triangulation
of X)is a maximal (ordered) simplicial atlas 7. By 7.2, every (ordered)
simplicial atlas & defines a unique (ordered) simplicial structure 7, and
two atlasses &, &’ define the same structure if and only if U is
again an atlas. A Hausdorff space X together with an (ordered) simplicial
structure J on X is called an (ordered) simplicial space. If X' =X and
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J'cJ is a triangulation of X' then (X', 7 ) is called a simplicial sub-
space of (X, 7).

The elements ve ,, and also their images v(4,)e X, are called vertices
(of 7, or of X); in general, teJ,, or im(t)c X, is called a simplex of
dimension n, of 7 or of X. lf te J,, ve %, and v(4,)et(4,) then v is called
avertex of t. Every te 7, has exactly (n+1)-vertices, namely ¢ (¢),i=0,...,n,
where €' is the i-th vertex of 4,. If 7 is ordered, and t, €7, have the
same vertices then t=t(because t~'t'(4,) contains all vertices, hence
t~'1'(4,)=4,, and t~'¢": 4,— 4, is order preserving, hence t~'t'=id).
If 7 is not ordered and te .7, then there are exactly (n+ 1)! simplices t€ 7,
with the same set of vertices as t, namely all t=ton, where n denotes a
permutation of (0, 1,...,n) and also the linear isomorphism 4,— 4,
which permutes the vertices of 4, accordingly.

For example, the set J of maps @ *: 4, — 4, of 3.3 is an ordered
triangulation of A4, called standard triangulation of 4,. If we remove
@01-"=id, from J then the rest, 7, is an ordered triangulation of
4,, hence (4,,7) is a simplicial subspace of (4,,7). Since 4,~S""!
this provides triangulations of spheres.

7.4 Proposition. Every maximal simplicial atlas I contains an ordered
maximal atlas &,

Proof. Choose a complete order on Z,, put
S={te T j1(e%) <t(e") <. <t(e")},

and verify that {%} is a maximal ordered atlas. | Conversely,

T, ={son|se,, and n: 4,~ 4, a linear isomorphism}.
7.5 Proposition. Let & be an ordered simplicial atlas on X. Then the
following are equivalent
(a) & is maximal.
(b) se&, = scieS,_, for i=0,1,...,n, where ei: A,_,— A, is defined
as in 111, 1.3.

(c) Given PeX there is a unique s€ ¥, say s€ ¥, such that Pe s(Aon). This s
is called the carrier of P.

Proof. (a) = (b): Given se %, let ¥'=% U {s¢'}=union of & with s&.
For every te & we know that t ! s is order preserving, hence also t‘f S&,,
hence &’ is an ordered atlas. But & is maximal, hence &' =4, 1.e., s¢,e .
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(b) = (c): Given PeX, choose t: 4,,— X in & such that Peim(¢), say

P=t(x) where x=Y" ;x; €', x;>0, Y x;=1. Let 0<i; <iy<-ip_,<m
be all indices such that X; -0 e, i%iy,...,0i,_,=x;>0. Then x=
gm-n . gh(y) for some yeA hence Pe(tgm—r ... g1)(4,), and s=
teim n ... ge ¥ by assumption (b) If also r: 4,— X is in & and Per(4))
then yes‘l r(A ) hence s™!r(4,)= 4, (because 1t is a face of 4,); similarly
A,=r"'s(4,), hence I=n. Because "r1s is order preserving, r~'s=id,
hence r=s.

(Remark: We did not use (b) to show uniqueness, i.e. the uniqueness part
of ¢ holds for arbitrary ordered atlasses.)

(c)=(a): Let J an ordered atlas containing % ple t:4,—X in 7,
x€4,, and choose s: 4, — X in & such that t(x x)es(d); thls is possible
by assumption (c). By the remark above (in parenthesis) this implies
t=s,hence 7 & 1

7.6 Proposition. Let  be a triangulation of X, and let " be the set of
all subsets of X of the form t(4,) where te J,. Then & = ). 6" isa CW-
decomposition of X, and te J, is a characteristic map for t(d,)e&" (using

A,~B". If =T is an ordered triangulation then the correspondence
¥ —> &", s—s(4,) is bijective.

Proof. By 7.5(c), the sets t(A ) cover X, and the correspondence s+ s( 4 )
is bijective. If 1(4, )N t'(4,,) =@ then n=n" and ¢ differs from ¢ only by a
permutation of the vertices (compare proof of 7.5(b) = (c), 2"® part)
hence t(Ao,,)zt’(Ao,,). This proves condition 2.1(i). The remaining condi-
tions 2.1 (ii)-(v) are obvious. J

We now discuss maps between simplicial spaces.

7.7 Definition. If (X, #),(Y,7) are simplicial spaces, and se ¥, then a
map f:im(s)— Y is called linear if some te 7 exists (say t€ J,) such that
im(f)cim(¢t) and t~'fs: A, — 4, is linear. This definition does not
depend on the choice of s and ¢: If im(s')=im(s), and im(f)<=im(¢)
then t' = fs'=(t' "' 1)t~ fs)(s~ ' ') is also linear because (s, s') and (t, ')
are linearly related. By the same argument, if f: im(s) - Y is linear and
im(s)cim(s) then f|im(s): im(s') — Y is also linear.

7.8 Propeosition. If (X, %), (Y, ) are simplicial spaces, se %, teJ,, and
yo, ¥', ..., y™ are arbitrary points in im(t) then there is a unique linear
map f-im(s) — Y such that fs(e')=)" Le., a linear map of im(s) is deter-
mined by its values on the vertices of s, and these values can be prescribed
with the sole restriction that they must lie in some simplex im(¢).
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Proof. There is a unique linear map g: 4,, — 4, such that g(e')=t"'(y"),
and f=tgs™'. 1

7.9 Proposition and Definition. Let (X, %), (Y, T) be simplicial spaces.
The following properties of a map f: X — Y are equivalent.

(a) f maps every simplex im(s)c X, linearly onto some simplex im(t)c Y.
(b) f maps vertices into vertices and is linear on each simplex im(s) of X.

Such a map is called simplicial. If &, J are ordered and all t=! f's preserve
the order of the vertices then f is an ordered simplicial map. Composites
of simplicial maps are again simplicial, and identy maps are simplicial.
Simplicial spaces and maps then form a category which we denote by /.

Proof. (a) = (b) is clear: f maps every vertex veX onto a simplex,
f(v)=t(4,), hence n=0 and f(v) is a vertex.

Conversely, if (b) holds and se%, then f maps im(s) linearly into some
simplex t(4,), TeZ,, and maps vertices of s into vertices of 7. Therefore
11 fs(4,)isafaceof 4,,and fs(4,)=1[t"" fs(4,)]isasimplexof Y. §

7.10 Proposition. Simplicial maps f> X — Y are cellular maps with respect
1o the CW-decomposition "= {t(4,)|te T} of 7.6.

Proof. Surjective linear maps never raise dimensions. Therefore f maps
X"zUM <»1m(s) (where s denotes simplices of X, and ||=dimension)
into Y". §

7.11 Proposition. Given simplicial spaces (X, %),(Y,7) and a map
©: S — T, such that {@1°, @0, ..., U™} are vertices of a simplex in Y
whenever {v°, ... v™} are vertices of a simplex in X. Then there exists a
unique simplicial map f: X —Y such that f(v)=¢ (@) for ve¥,. lLe,
simplicial maps are determined by their values on vertices and these
values can be prescribed with the only restriction that vertices of a simplex
go into vertices of a simplex.

Proof. For every se % there is, by 7.8, a unique linear map f*: im(s)— Y
such that f5(v)=¢(v) for all vertices v of s. Uniqueness insures that
15, f agree on im(s)nim(s’) (note that im(s)nim(s')=im(s”) for some
s"e&), hence (by 7.1(iv)) there is a unique map f: X — Y such that
flim(s)=/", and this f is simplicial by 7.9(b). §

7.12 Example and Definition. Let Y=[0, 1] be the unit interval with the
obvious simplicial structure (the linear map 4, — [0, 1], P10, el 1
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is an atlas). For every simplicial space (X, %) and every vertex ve¥,
there is, by 7.11, a unique simplicial map 9: X — [0, 1] such that H(v)=1,
and 6(w)=0if w0, we & . This map is called the barycentric v-coordinate.
For every xe X the numbers {x,=0(x)}, ve %, are called the barycentric
coordinates of x. They have the following properties:

(7.13)  x,>0; for fixed xe X almost all x, are zero; Y, x,=1.

To see the second and third property choose se ¥, such that xeim(s).
Then x,=0 if v is not a vertex of s, and s~'(x)=)7_ x,, - €', where
v'=s(e') are the vertices of s. This also justifies the notation “barycentric
coordinate” and shows that x is determined by its barycentric coordinates.

7.14 Remark. In some situations it is advantageous to introduce the
strong topology in a simplicial space X. By this is meant the coarsest
topology under which all barycentric coordinates ¢: X — [0, 1] are
continuous. Then amap g: Z — X (Z any topological space) is continuous
if and only if all composites fog are continuous. If X is locally finite,
i.e. if every vertex occurs in a finite number of simplices only, then the
weak and strong topology coincide. Otherwise they don’t, but in any
case the two topologies define homotopy equivalent spaces (cf. A.2.9).

Proposition 7.11 suggests the following

7.15 Definition. A vertex schema is a set V together with a set 9 of finite
subsets of V, called the distinguished subsets, such that

(a) for every veV, {v}e€2, i.e., all singletons are distinguished,

(b) De2, D'cD= D€, ie., subsets of distinguished sets are distin-
guished.

For example, if & is a triangulation of X, let V=% and call Dc %
distinguished, if the points in D form the vertices of a simplex s€ ¥ We
denote this vertex schema by S(X, %).

A map (V,D)—(V',D') of vertex schemata is a set theoretic map ¢:
V— V' which takes distinguished sets into distinguished sets, i.e.,
De% = ¢(D)eZ'.

Under ordinary composition these maps form a category, denoted by ¥"%.

For example, if f: (X, #)— (Y, 7) is a simplicial map then the induced
map %, —J, is a map of vertex schemata which we denote by Sf:
S(X,#)-S(Y,T).
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If we associate with every simplicial space (X,%) its vertex schema
S(X, &), and with every simplicial map f: (X, ¥)— (Y, 7)) the induced
map Sf of vertex schemata then S: %%/ — ¥"% is a covariant functor,
and in fact,

7.16 Proposition. S: ./ — ¥ is an equivalence of categories, i.e., there
exists a functor R: ¥ — Y/ such that RS~1d,,,, SR~Id,,.

Proof. The proof is suggested by 7.12-7.13. Given a vertex schema (V, 2),
let X denote the set of all functions x: ¥V — IR such that

(@) {veV|x()£0}e 2, 1.e., the set of points where x does not vanish is
distinguished, in particular finite;

(b) x(©)=0, ¥,y x(0)=1.

If De® has n+1 elements, and a: D—(0, 1, ..., n) is a bijection define
s, 4,— X by

(s, y)(v)= Yoy =0 (v)-th barycentric coordinate of ye 4, if veD,
S} 0ifveV-D.

Obviously, s, is injective. Further, every xe X is of the form s, y for some
« and y (take D= {v|x(v)#0}). Introduce in X the weak topology with
respect to the maps s,, 1.¢., the finest topology for which all s, are con-
tinuous. Then f: X — Z is continuous (Z any topological space) if and
only if all f's, are continuous. In particular, the maps o: X - R, #(x)=
x(v), veV, are continuous.

If x4 x' then x(v)=%x'(v) for some veV, hence 0(x)+0(x’), hence X is
hausdorff. We claim, & = {s,} is a triangulation of X. Conditions 7.1 (i), (ii)
hold as remarked dbOVC and (iv) holds by definition of the topology
in X. If s, s,€% then s,, s, 1s that linear map (defined on a face of 4,)
which sends the vertex ¢/ into e#*7'¥) hence condition (iii). If s: 4, > X
is linearly related w1th all s,e¥, then s(d)<s,(4,) for some a: D=
(©,1,....n) (pick Ped, and choose s, with s Peim(s,)). Let

D'={veDls,(e*“)es(4)},

and define f: D'—(0,1,...,1) by s(ef")=s,(e*"). Then s=s5,e%,
hence & is maximal, i.e. a triangulation of X. We put R(V, 2)=(X, %).
The vertices of R(V, 2) correspond to bijections D=~ {0}, i.c. to singletons
D={v}e2; and {v°}, ..., {v"} are vertices of a simplex if and only if
{v°, ..., v"} is distinguished.

If o: (V,2)—(V',2') is a map of vertex schemata we can therefore
(cf. 7.11) define a simplicial map R¢: R(V, 2)—>R(V', 2') by (Re){v}=
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{ov}, and thus get a functor R: ¥"¥ — /. Further
(V,2) > SR(, D), v{v}, veV,

is a natural equivalence of vertex schemata; and on the other side, in
S, there is a simplicial equivalence (using 7.11)

(X.%) >RS(X,9), ved, vesh. I

7.17 Remark. In order to establish the preceding homeomorphism
(X, )=~ RS(X, ) wenever really used that X is hausdorff. But RS(X, &)
was shown to be hausdorff, hence X is, i.e., if 'a space X admits a simplicial
atlas with Properties (1)-(iv) of 7.1 then X is hausdorff.

7.18 Exercises. I*. Let by, b,, ..., b, be a base of the vector space R".
For every permutation n of (1,2,...,n) consider the linear simplex
s A, —»R" with vertices 0, b, ), b,y +br2), brtytbray+brz)s---s
Y .ib. . Show that these simplices form a simplicial atlas of the basic
parallelepiped P={}"  ,b,|0<t,<1}. By parallel translation with
veIR" one gets a simplicial atlas for v+ P, and if v varies over all integral
linear combinations of (b,,...,b,) one gets a simplicial atlas on R”"

which is invariant under translation with b,.

2. For each m=0,1.2,... let #™ be a simplicial atlas on 4,,. Let ¢"
denote the standard simplicial atlas on 4, (which consists of all injective
linear maps A,,-- A, taking vertices into vertices). We say # ={#™} is
J-compatible if (pow)e " for all (u: A, — A, )e¥", (p: 4,,-»>4,)e 4",
and all k, m, n. Show: If % is #-compatible and ./ is any simplicial atlas
on X then the union of the sets

(S W), ={soulse, ue¥"}, n=01,...

"

is also a simplicial atlas on X. If [ (X, ¥)— (X', %) is an injective
simplicial map then f: (X, ¥ %) ~(X', ") 1s also simplicial.

For instance, the barycentric subdivision f,1, of the identity map 1,
of 4,, as defined in I11,6.2, is a linear combination of linear simplices
A, > 4, which form a simplicial atlas on 4, ; let " denote the correspond-
ing triangulation (= maximal simplicial atlas) of 4,. Then the sequence
AB={A"} is ¢-compatible, and ¥ is called the burycentric subdivion
of &

3. Let (X, %) be a simplicial space such that the set %, of vertices is
finite, say S5 ={v,,v,, ..., vy}

(i) Define a simplicial map I: X -4y by I(v)=¢" and show that I
maps X isomorphically onto a simplicial subspace of 4,.
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(i) If &=¢ for j>n, ie, if dim(X)<n, choose points wy,w,, ..., wy in
4,,,, such that any r of them are linearly independent (in R*"*?),
for r<2n+2. There is a unique map J: X — 4,,,, which is linear on
each simplex of X and takes v, into w;. Show that J is injective. In

particular, any X of dim<n embeds “rectilinearly” into 4,, .

4. Let (X, ¥),(Y,7) be simplicial spaces. A map f: X — Y is called
direct if for every vertex veX there exists a vertex v'eY such that
B(x)>0=0"(f(x))>0. (Note: The set {xeX|5(x)>0} is called the open
star of v; thus, fis direct if it maps open stars into open stars.) If f is
direct and vy, v,,...,v, are vertices of a simplex of X then, for some
xe X, all ;(x) are positive, hence all & f(x))>0, hence {r;} are vertices
of a simplex of Y (e.g. the carrier of f(x)). One can then define a simplicial
mapf': X — Y by [ (v)=v". This is called a direct simplicial approximation
of f There is a unique deformation 3: f~ f" such that w3(x, )=
(1—0) Ww(f(x))+tw(f"(x)) for all vertices we Y.

If /: X — Yis any map and ¥ is finite (equivalently: X compact) then f'is
direct with respect to a triangulation Y% where % =2%%...# is an
iterated barycentric subdivision in the sense of Exerc. 2 (hint: use III, 6.4
which implies that open stars become arbitrarily small under iterated
barycentric subdivision). The resulting simplicial map f": (X, S%)—
(Y, 7)) is called a simplicial approximation of . Compare Spanier, 3.4-3.5.
5. I Y is any set and {Y.},., any family of non-empty subsets of Y,
define a vertex schema (V, &) as follows: A finite subset DcV is in &
if and only if ()., Y,#@ The corresponding (7.16) simplicial space
R(V,2) is called the nerve of {Y,}. Nerves of open coverings {Y,} of
topological spaces Y are used in Cech (co-)homology theory (cf. 8.8
Exerc.3 and A. 3.5).

6. An ordered vertex schema is a vertex schema (V, &) together with a
(partial) order on Vsuch that v, we V are comparable whenever {v, w}e @.
Show (as in 7.16) that ordered simplicial maps and maps of ordered
vertex schemata which preserve the order on distinguished subsets form
equivalent categories.

8. Simplicial Homology

Simplicial homology is closer to intuition than others: simplicial chains
can be thought of as chunks of spaces (counted with multiplicities),
and cycles are chunks without boundaries. However, for actual com-
putation, CW-decompositions (or other means) are more adequate:
a triangulation is too rich a structure (for this purpose), and it is often
hard to find one. Computing homology with simplicial chains is like
computing integrals {*f(x)dx with approximating Riemann-sums.
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8.1 Definition. Let (X, %) be a simplicial space. If ¢: 4,— X is a
simplicial map (with respect to the standard triangulation of 4,) then
every composite 4, , —> A4, —% X is also simplicial. Simplicial maps
o: 4,— X, n=0,1, ..., therefore generate a subcomplex Sp(X) of the
singular complex S(X). Clearly Sp is functorial with respect to simplicial
maps X — Y, and the inclusion Sp X < SX is natural.

If 6: 4,— X is simplicial then o(4,)= X"=n-skeleton of X (cf. 7.6),
hence 6eS(X"), and (0a)e S(X"~'). We can therefore form the homology
class [o]eH, (X", X"~")=W, X, and we can define a chain map

(8.2) 7. SpX—=>WX by ylo)=[d].

From the Definition 1.2 of the boundary operator in WX it is clear,
indeed, that y 6= Cy.

8.3 Proposition. The chain map y: SpX — WX is epimorphic, and the
kernel of v,: Sp,X — W, X is generated by all elements of the following
two types:

(a) non-injective maps t. 4,— X,
(b) [o n-sign(m) o],

where a: A, X is simplicial, and n is a permutation of (0,1, ...,n); as
before, we use the sume letter m to denote the linear isomorphism A, — A,
which takes e' into ¢™”. In other words degenerate simplices are
annihilated, and simplices which differ only by a permutation n (of
coordinates) are identified up to sign(n).

In particular, the elements (a), (b) generate a subcomplex of Sp X (namely
{(a), ()} =ker(7), and Sp X/{(a), b)} = WX.

8.4 Definition. The complex SP(X)=SpX/{(a),(b)}=SpX/ker(y) is
called the simplicial complex of (X, ). If X' <= X is a simplicial subspace
then the inclusion Sp X’'<cSpX induces an inclusion SP(X')=SP(X),
and the quotient SP(X, X')=SP(X)/SP(X’) is the simplicial complex
of the pair (X, X'). A simplicial map f: X — Y induces Sp(f): Sp(X)—
Sp(Y), and by passage to quotients, SP(f): SP(X)— SP(Y); similarly
for maps of pairs. Thus SP: #/ — 04% is a functor from simplicial
spaces to complexes. By 8.3, it depends only on the underlying CW-
structure: 7 induces a natural isomorphism SP(X)~ W(X).

Since non-injective simplicial maps 4,— X can be neglected, SP(X)
can also be described as follows: SE(X) is generated by %, (these are
precisely the injective simplicial maps 4,— X) with defining relations
{smt=sign(n)s}, s€%, n a permutation of (0,1, ...,n). The boundary
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0: SEX —»SPE_,X is induced by the usual boundary of singular sim-
plices. If /- (X, &) — (Y, ) is simplicial and se <, then

fs if fsis injective, i.e., (fs)eZ,,
SP = "
(S51)6) {0 otherwise.
8.5 Corollary to 8.3 (Invariance of simplicial homology). In the category
of simplicial pairs (X, X') and maps there is a natural isomorphism
HSP(X, X'Y=H(X, X'). In particular, HSP(X., X") is independent of the
triangulation.

Proof. By 8.3 we have SPX= WX, SPX'=WX’, hence (4.7) SP(X, X') =
W(X, X'), hence HSP(X, X')=HW(X, X)=~H(X, X') by 4.1. |

Proof of 8.3. We know that the homology class [1,] of 1,=id: 4,— 4,
generates H,(4,,4,)=Z (cf. 1V,2.7), and that [r]=sign(n)[1,] (cf.
IV, 4.3). Further, if we choose one characteristic map ®°: (4,,4,)—
(X", X" ") for every n-cell e of X then {®:[1,]} is a base for
W,X =H, (X", X"~") (cf. fourth terms in 4.2). But s€¥, is characteristic
for e=s(A°,,), and s, [1,]=[s]=7(s). Therefore y maps every se%, onto
an element of this base (up to sign), and

y(sm)=s, m,[1,]=s,(sign(m)[1,])=sign () y(s).

All non-injective t: 4, — X map into zero under y because t(4,)c X"~ .
The result now follows because Sp,X has a base consisting of (i) all
non-injective simplicial maps 4, — X, and (ii) all se%,. 1

In the case of an ordered simplicial space (X, &) the connection between
simplicial and singular homology is even more direct: Let SP/X be
the free abelian group generated by %; clearly, SP/ X <S,X. Since
se¥, implies s¢'e¥,_,, by 7.5, these groups form a subcomplex of the
singular complex SX. Consider then the chain maps

(8.6) SX <SP X1 S$PX L wx

where j=inclusion, 3 is induced by y, and v is the composite
SP'X =SpX — SpX/{(a), (b)} =SPX. Clearly v is isomorphic (just recall
the definition of {(a), (b)}). The chain map u=jv-'y~!: WX — SX takes
every e W, X = H_(X", X"~ ') into a representative {€S(X"). The induced
homology homomorphism p, therefore takes [zZ]le HWX into [{]JeHX,
hence u, coincides with the isomorphism @: HWX =~HX (cf. 1.9). In
particular, j, is isomorphic. We record these facts as
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8.7 Proposition. (i) SP'X=SPX=WX. In particular, SP'X depends
only on the CW-decomposition of X; not on the triangulation, or even
on the ordering of the triangulation.

() j,: HSPPX=~HSX=HX.

Similar results hold for pairs (X, X'); they follow from the absolute case
by the five lemma. §

It should be noted that this can be used to realize the isomorphism
HSPX ~HX of 8.5 (for non-ordered triangulations 4 of X) by a chain
map j': SPX — SX—just choose an ordered triangulation % in J

(see 7.4), and put j=jv~".

8.8 Exercises. I. Triangulate the projective plane X =P R and com-
pute HSPX.

2. Prove H(SpX)=H(SPX). (Hint: Generalize to pairs. Treat (4,,4,)
first, then (X", X"~"), then proceed by induction on dimension and use
the five lemma.)

3* If Y is a topological space and %, ¥ are open coverings of Y then %
is said to refine ¥, in symbols % < ¥, if every U €% is contained in some
Ve Choose a function : % — ¥~ such that Ucy(U) for all Ue%,
and define a simplicial map ¥: nerv% —nervy” (cf. 7.18, Exerc.5)
which on vertices agrees with s (cf. 7.11). Show that, up to homotopy,
¥ is independent of the choice of . Let Q be the set of all open coverings
of Y. A Cech homology class y of Y is a family {y, € H(nerv%)},., such
that % <¥ = y, = ¥,(y,). Under the addition (y+y')y =4+ Yu» Cech
classes form a graded group, called the Cech homology of Y. Turn
Cech homology into a functor and study its properties [¢f. Eilenberg-
Steenrod, Chap. IX].
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Functors of Complexes

U T: /909 is a functor from complexes to complexes then
X+ TSX provides a generalization of the singular complex SX which
may yield new useful topological invariants. We study this question
(§§2-7), at least if T is the (dimension-wise) prolongation of an additive
functor t: % — /%9. We find that for every abelian group G there is,
essentially, one covariant and one contravariant ¢ such that tZ=G. The
resulting groups HTSX are the homology respectively cohomology
groups of X with coefficients in G. The functors ¢ are also useful in
studying product spaces; these questions are discussed in §§8-12.

In many applications the group G has some module structure which
is inherited by TSX. We can then compose ¢ resp. T with functors
defined on modules. In order to avoid repetition we study functors
from modules to groups, .#d — A%, rightaway (we do not treat
the—obvious—generalization #d — .Hsd’ because we want to keep
the notation simple).

The reader who is familiar with basic facts about modules, additive
functors, ®, Tor, Hom, Ext may skip §§ 1-6 and 8, although he might
find the treatment of ®, Hom in §§ 5-6, 8 interesting.

1. Modules

The notion of module generalizes both “abelian groups™ and “vector
spaces”; abelian groups are Z-modules, vector spaces over the field k
are k-modules. In general, we consider an arbitrary ring R (which we
always assume to have a unit element 1). An R-module is then an abelian
group on which R operates in an additive fashion. More formally,

1.1 Let M be an abelian group and End(M) the ring of endomorphisms
of M. A left R-structure in M is a ring homomorphism (preserving units)
@: R - End(M). An abelian group together with a left R-structure is
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called a left R-module. The endomorphisms @(r)eEnd(M) are some-
times called homotheties.

If we put rx=[O(r)] x, reR, xeM, then (r,x)~>rx is a mapping
R x M — M with the following properties.

12) FX +Xx,)=rx;+rx,, H+r)x=rnx+nx,
(1.
(r ry) x=r,(r, x), Ix=x;

the first equation asserts that @(r)e End(M), the others say that @ is
a ring homomorphism. Conversely, any map R x M — M which satisfies
1.2 (a “structure map”) defines a left R-structure O, by [@(r}] x=rx.

A homomorphism f: L— M between R-modules is called R-homo-
morphism (or module homomorphism) if fo @(r)=O(r)o f for all reR,
ie. if f(rx)=rf(x)for reR, xeL.

Clearly left R-modules and R-homomorphisms form a category; we
denote it by R-Mbd.

If Lis an abelian group again and @': R— End(L) is an antihomo-
morphism, i.e. satisfies @'(r;r,)=0'(r,) O'(r,), then O’ is called a right
R-structure and (L, @’) a right R-module. If we put xr=[0'(r)] x, reR,
x€ L, then we get formulas analoguous to 1.2 which express the structure
properties. There is really no essential difference between left- and
right-modules: If we define the opposite ring R°P to coincide with R
as an additive group but having the multiplication reversed, r ;, s=s-r,
then left R°*-modules are right R-modules, and vice versa. The category
of right R-modules is denoted by #o-R =R #od.

Every abelian group M has a unique Z-module structure @: Z — End (M),
On)=n-(dy,). Thus Z-Mod =4%. Also, every abelian group M can
be viewed as a left End(M)-Module; indeed, the identity map
O =id: End(M)—End(M) is a left End(M)-structure.

1.3 If f,,f,: LM are two R-homomorphisms then f,+f,: L— M,
(fi+fi)x=f(x)+f,(x), is also an R-homomorphism. Under this
addition the set of R-homomorphisms L— M is an abelian group
which we denote by Homg(L, M). It is a subgroup of Homg(L, M),
the group of all group-homomorphisms from L to M. If g: L'— L, h:
M — M’ are R-homomorphisims then

Homyg(g, h): Homg(L, M) — Homg(L, M’), [Homg(g, H)1(f)=hofog,

is a homomorphism of groups. In this way Homg is a functor from
modules to abelian groups, contravariant in the first variable and
covariant in the second.
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1.4 If M is an R-module and M'c= M is a subgroup such that rM'c M’
for all reR then M’ with the induced R-structure is called a submodule
of M. In this case the quotient group M/M’ inherits a module structure,
namely »X=¥X, where xe M, X its class in M/M’'; we say M/M' is the
quotient module of M by M'.

1.5 Many notions and results now carry over from abelian groups to
modules. For instance, if f: L— M is a module homomorphism then
ker(f), im(f), coker(f)=M/im([), coim(f)=L/ker(f) are defined as
groups but are sub- resp. quotient-modules. Similarly the notions
direct sum or product, exact sequence, complex, homology of a complex
generalize, and the exact homology sequence (of a short exact sequence
of R-complexes) consists of R-homomorphisms. The category of (left)
R-complexes and R-chain-maps is denoted by dR-.#d.

1.6 If LcL is a submodule and f: L—»M s an R-homomorphism
such that /| L =0 then there exists a unique R-homomorphismf: L/L — M
such that f(x)=f(x),where xe L, X its class in L/L (passage to quotients).
This is clear for abelian groups, and one has only to check that fis
an R-map. But f(rX)=f(FX)=f(rx)=rf(x)=rf(X).

We can state this result as follows: If 0 - L — L— L'—0 is an exact
sequence of R-modules then

(1.7) 0— Homg(L', M) » Hom (L, M) — Homg(L, M)

is also exact, for every R-module M.

1.8 The ring R is itself an R-module with respect to the structure map
RxR—R, (r,s)—>r-s. In fact, this defines a left R-structure and a
right one, simultaneously. The homotheties are the left respectively
right translations of R. The right translations are left R-homomorphisms,
and vice versa. An R-homomorphism f: R — M is entirely determined
by the image of 1. Indeed, f(¥)= f(r 1)=r f(1); similarly for right modules.
Conversely, for every xe M the map x: R— M, X(r)=rx is an R-map.
Thus

(1.9) Homy(R, M)=M, fi>f(1).

1.10 A (left) R-module L is called free if it is isomorphic with a direct
sum of the form @, . R. If {i,: R — L},  is a direct sum representation
then the set of elements {x,=1i (1)}, is called a base of L. For instance,
if R is a field then every module (= vector space) is free (=has a base).

If B Lis a base of L, and if y={y,e M}, 5 is any family of elements
in any R-module M then there is a unique R-homomorphism y: L— M
such that y(b)=y, for beB. Indeed, by 1.9 there are unique R-homo-
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morphisms §,: R-— M such that y,(1)=y,; hence {J,},c5: ®pesR— M,
by the direct sum definition, and 7 is the composite L=®,.;R— M. 1
We shall often use this principle to define R-homomorphisms of free
modules.

1.11 Some of our results on free complexes (1I,4) used the fact that
every subgroup of a free abelian group is free. In order to generalize
these we have to assume that every submodule of a free R-module is free.
A ring R for which this is true will be called hereditary?. Usually, we’ll
require this property for left modules only (left hereditariness), or for
right modules only (right hereditariness). The one notable exception
is the splitting of the Kiinneth sequence 9.14, where the proof uses both.

All fields are, of course, hereditary. A commutative ring is hereditary
if and only if it is a principal ideal domain. An example of a non-hereditary
ring is r=7Z/4Z: the submodule of R which is generated by the class (2)
is not free.

For hereditary rings the results and proofs of II, 4 on free complexes
carry over almost verbatim. In particular, every free complex C is a
direct sum of short complexes (=everywhere zero except in two con-
secutive dimensions n, n—1; 0, monomorphic), every homology homo-
morphism HC — HD is realized by a chain map (C free, D arbitrary),
and C~C' < HC=HC' if both C and C' are free.

1.12 Exercises. I. An action of a (not necessarily abelian) group 7 on
a (left) R-module M is a function 3 which to every wen assigns an
R-automorphism 3(w) of M such that 3(w,w,)=(3w,) (Jw,). Let
Q=Rnr be the group ring of = over R: as an additive group 2 agrees
with the free R-module generated by the elements of #, the multiplication
in Qis Or,-0)dr, o)=Y(,r,) (W) Show that the notions
n-action and Q-structure are equivalent. If n=Z is free cyclic then
giving a m-action is equivalent to giving an R-automorohism o (=93(1))
of M.

2. Let =R[u] denote the ring of polynomials in one indeterminate u,
and coefficients in R. Show that an Q-structure ¢ on M is the same
as an R-module structure @ together with an R-endomorphism S
(=P () of M.

3* If R=Z/nZ, n>0, then an R-module is the same as an abelian
group M such that nx=0 for all xe M. Show that every R-module

3 These rings are more special than hereditary rings in Cartan-Eilenberg (compare
also Cohn). However, there is no serious danger of confusion because the results which
we prove for hereditary rings are also valid with the more general definition; the reader
who is familiar with the technique of projective modules will be able to generalize the
proofs.
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is a direct sum of modules of the form Z/mZ where m divides n (cf.
Kaplansky, Thm. 6).

4. In 11, 3.6 an example of a free complex K over R=7Z/47 was given
such that HK=0 but K40. It shows that not all results of II, 4
generalize to arbitrary rings R. However, if R is any ring, C a free
R-complex such that HC=0 and C,=0 for i<0 then C~0. Prove
this {(construct the nullhomotopy s,: C,— C,,; by induction) and
deduce from it (cf. proof of 11, 4.3) that any chain map f: C — C’ between
free R-complexes such that Hft HC=HC' and C,=0=C; for i<,
is a homotopy equivalence (R arbitrary). Corollary: If C and HC is
free, and C;=0 for i <0, then C~HC.

2. Additive Functors

We consider functors ¢ from the category R-.#od of left R-modules
to the category /¥ of abelian groups. Both, covariant and contra-
variant functors play a réle, but there is no cssential difference between
them (they are dual). In fact, if we were to replace &/% by an arbi-
trary abelian category .o/ then covariant and contravariant functors
R-sd — .o/ would be equivalent notions (cf. I, 1.5). We can not use this
formal equivalence here but still we shall often treat covariant functors
only and shall rely on the reader’s ability to dualize the treatment. As
a help we mark these numbers by ¥: in order to dualize, the reader has
to replace covariant by contravariant, to reverse every arrow of the
form t¢ (where ¢ is an R-homomorphism) and every composition of
the form (t¢)(ty), and to interchange the following pairs in o/%:
sum-product, left-right, epi-mono, ker-coker, im-coim.

2.17 Definition. A functor t: R-Mod — 4% is called additive if (a4 f)=
ta+tf holds for all R-modules M,N and all a, feHomg(M, N). In
other words, t: Homg(M, N)— Homg(t M,tN) is a homomorphism;
in particular t0=0.

2.2 Remark. If R is a commutative ring then for every aeR and every
R-module M multiplication with a,

O M->M, O()=ax,

is a module homomorphism. Indeed, O,(rx)=a(rx)=r(ax)=r6,(x)
for all reR. Applying an additive functor ¢t gives a homomorphism
t0,:t M —t M. We can then define an R-structure on tM by a y=(t0,) y,
acR, yetM. The identities 1.2 follow from the (obvious) equations
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0,=ud, 0,,=0,0,, 0, ,=0,+06,. If f: M— M’ is a module homo-
morphism then f @,=6, f, hence (t/)(tO,)=(tO)¢f), i.e, tf: tM—>tM'
is a module homomorphism. Altogether this shows that any additive
functor t: R-AMod — 4% can, automatically, be viewed as a functor
from R-modules to R-modules, t: R-Mod — R-Hod .

If R is not commutative then the multiplications ©, are still R-homo-
morphisms provided « lies in the center ¢R of R. For every additive ¢
we get t: R-Mod — ¢ R-Mod .

2.37 Proposition. If t: R-Mod — 4% is additive and {i,: M, —> M},
p=1,2, ..., risadirect sumrepresentation in R-dlod then {ti,:t M, —tM}
is a direct sum representation in %Y. l.e., t takes finite direct sums into
direct sums.

Proof. If p MM, v=1,2,...,r, are the projections, defined by
p,i,=0 for v&p and p,i,=id, then ) i, p,=id. Applying ¢ gives the
direct sum relations (tp,)(ti,)=0 for vu, (tp)(ti)=id, D ,(ti)(tp,)
=id. 1

2.47 Definition. An additive functor t: R-Med — 4% will, in general,
not commute with infinite sums (Exerc. 3). If it does it is called strongly
additive. More precisely, ¢ is strongly additive if the mapping

{t iy}: ®yEFtM'y - t(@yefMy)

is isomorphic for every family {M,},_r of R-modules (i,: M,— ® M,
the inclusion).

In the covariant case, strong additivity follows from surjectivity of
{ti }, ie,

2.5 Proposition. For every covariant additive t: R-Mod — 494 and
every family {M,} - of R-modules the map

{ti,}: ®,tM, - t(D,M,)

is monomorphic (i,: M, — @, M, the inclusion).

Proof. For every finite subset K of I' consider the commutative diagram
®kEK th — ®yerlMy

frig}| = {tiy)

t(®keKMk) T I t(®yeFM7)’
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where iy: @,k M, — ®,.rM, denotes the inclusion of the partial sum.
The left vertical map is isomorphic by 2.3. The map iy has a left inverse T,
hence tiy has the left inverse t7; in particular, ti, is monomorphic.
The diagram shows then that {ti } restricted to the partial sum @, tM,
is monomorphic. Since every element of @,tM, lies in some finite
partial sum the whole map {ti,} is monomorphic. 1§

2.67 Definition and Proposition. If t: R-.Hed — 4% is additive and
C: e Ce— C.-“‘—a“ Ciope
is a complex of R-homomorphisms then
tC: ot Ci et Cy 1 Cy -

is a complex (because (t0)(t0)=t(00)=0). If f={f;: C;—> Ci}icz is a
chain map then tf={tf;: t C,— t C}} is a chain map. If s: f ~g is a chain
homotopy,0s+sé=f—g,then(td)(ts)+(ts)(td)=tf—tghencets:tf~tg.
In this fashion, every additive t: R-.Mlod — /% extends to a homotopy
preserving functor t: 0R-Med — 0.9/%9, which we denote by the same
letter. Since ¢ preserves homotopies it takes homotopy equivalent
complexes into homotopy equivalent complexes. 1

2.7 Convention. If ¢ is contravariant we assign to t(C;) the dimension —i,
so (tC),=t(C_). We also write (tC)'=(tC)_,=t(C,), similarly for
cycles, boundaries, etc.; e.g., HtC=H_;tC.

In general, a homology isomorphism HC=~HC' does not imply
HtCxHtC' In fact, HC=0 does not imply HtC=0, i.e,, t does not
transform exact sequences into exact sequences (Exerc. 4). However,

2.87 Proposition. If t: R-Med — 4% transforms short exact sequences
0—- M —>M-—M'-0 into short exact sequences then Ht C=tHC for
all complexes C in R-AMod. In particular, t transforms arbitrary exact
sequences (=acyclic complexes) into exact sequences.

Proof of 2.8. In the diagram

—O

0—ZC— C—BC—0

0

O —
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row and column are exact. Applying ¢ we get

0

|

0—1tZC tC—tBC—0
BNy
ic

with exact row and column. It follows that ZtC=ker(td)=tZC
and BtC=im(r¢)=tBC. Now apply ¢ to the exact sequence

0-BC—->ZC—-HC-0
and get an exact sequence

0-BtC »ZtC>tHC—O,

hence tHC=HtC. 1

Another special case where HC determines HtC is the following.

2.97 Proposition. If R is hereditary and C, C' are free R-complexes such
that HC=HC' then Ht C=Ht C for all additive functors t.

Indeed, HC=~HC' = C~ (" by 11,48, hence tC~t(C’ by 2.6, hence
HtC=HtC'. 1

Note, however, that this proof does not express Ht C in terms of HC.
In fact, much of the following section will be devoted to this problem,
a problem, by the way, which, historically, was one of the main motives
for homological algebra.

Because additive functors do not, in general, preserve exactness it makes
sense to classify them according to their behaviour on (short) exact
sequences. For the convenience of the reader we list the usual notations
although we shall only use some of them. If for all short exact sequences
0->M—->M>M"->0in R-Mod the portion of 0 >tM' >tM —-tM" -0
which is listed in the second column below is exact then the functor ¢
gets the name which is listed in the first column.

exact 0->tM —>tM—>tM"'—0
left exact 0->tM >tM—->tM"

(2.10)7 right exact tMi—»tM—» tMZ—»O
half exact tM'>tM —>tM

mono-functor  0—tM' —tM
epi-functor tM—>tM” 0.
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In some of these cases one can get the exact sequence on the right under
weaker assumptions, e.g.,

2.117 Proposition. If t: R-Mod — /% is covariant right exact and
M s MM’ 50 is exact then tM'—25tM—>tM"—0 is exact,
i.e. it is not necessary to assume j monomorphic. This implies, for
instance, that compositions of covariant right exact functors are right

exact.

Proof. We have the following exact sequences:
0—-ker(j) - M —->im(j) >0, O0—-im(j)>M->M'->0,
hence
t(ker(j)) » tM' - t(im(j)) -0, (im(j)) >tM —»tM"—0,
hence, by splicing the last two sequences, tM'—tM —tM"->0. 1

2.12 Exercises. 1. If (X, A) is a pair of spaces and t: /% — /% an
additive functor we can apply ¢ to the singular complex S(X, 4) and
then take homology. The resulting sequence of groups HtS(X, A) is
called the t-homology of (X, A) and is denoted by H(X, A; t). Study the
formal properties of H(X, A4; t) in analogy to the treatment of H(X, A)=
H(X, A; Id) in Chapter III. Prove H,(S";t)~tZ for i=0,n, and =0
otherwise (n>0).—We shall come back to these functors H(X, A4;1)
in §7.

2. Prove: If t: R-#Mod — 4% is a functor which takes direct sum re-
presentations {M; — M},_, , into direct sum representations then r is
additive (this is the converse of Prop. 2.3).

3. Construct an abelian group A4 such that the functor t X = Homg(4, X)
is not strongly additive.

4. The complex
Cie2 B> Lyl Ty
is acyclic, HC=0, but ¢ C is not acyclic if t X =Homg(Z,, X).

5. If t: R-Mod — A% is additive, and C is a free R-complex such that
HC is free and C;=0 for i<0 then Ht C=tHC (hint: use 1.12, Exerc. 4).

6. Verify: For every abelian group A the functor t X =Hom(X, A4),
Xeo/Y, is contravariant, strongly additive, left exact; and tX=X® 4
(=tensor product; cf. §5) is covariant, strongly additive, right exact.
If A is finitely generated then t X =Hom(A4, X) is covariant, strongly
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additive, left exact, and Hom(Hom(4, X); @) is contravariant, strongly
additive, right exact. The functor t which assigns to every abelian group
its torsion-free part, t X = X /torsion (X), is not half-exact.

3. Derived Functors

3.1 Let R-.#od” denote the category of free (left) R-modules, and
t: R-Mod! —o/% an additive functor. If possible, we want to express
HtC in terms of HC, where C is a free R-complex. The simplest non-
trivial complexes C are perhaps those with one non-vanishing homology
module, say HC=(A4,0). This leads to the definition of a resolution:
A (free) resolution is a free R-complex P such that F=0 for j<0, and
H;P=0 for j+0; a resolution of M eR-Mod is a resolution P together
with an isomorphism Hy P~ M. If P, P’ are resolutions we denote by
n(P, P') the abelian group of homotopy classes of chain maps P— P".
Resolutions and homotopy classes of chain maps form a category,
denoted by R-Zes, and O-homology is a functor, Hy: R-Res — R-Mod .

3.2 Proposition. H, is an equivalence of categories, i.e., there exists a
functor F: R-Mod — R-Res such that HyF and FH, are equivalent with
the respective identity functors.

3.37* Corollary and Definition. There exist functors t;: R-Mod — 4%,
j=0,1,..., unique up to equivalence, such that

(3.4) H;tP=t;H,P, j=0,1,...,

naturally in Pe R-Res. These functors are called the derived functors
of t. If @: t— 1 is a natural transformation, then there are unique natural
transformations @;: t;—t;, called the derived transformations such that
the following diagram commutes

HyjtP-2295 H ¢ P

|

t;HyP-%—t/H,P, PeR-Res.

Proof of 3.3. Put ¢;= H;, tF where F is as in 3.2. Then t;H, P = ~H tFH,P
H t(1d)P H;tP, as requlred Ift also satlsfles34thent M;t (Hy F)M
Hy(FM)= H LHFM)=t M. Slmllarly for ¢;. 1

* We retain the Y-convention of §2 with the additional rule that for cofunctors ¢ one
replaces t; by ¢t/ and H_;1Cby H't C. This applies, for instance to 3.3 which, as it stands,
is formulated for covariant r.

I ne
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35 Lemma. If Q is an R-complex such that H;Q=0 for j+0, and P is
a free R-complex such that F;=0 for j<O then

H0: TC(P, Q); HomR(HO P’ HO Q)a
where T denotes homotopy classes of chain maps. In particular, this applies

if P and Q are resolutions.

Proof. We can assume that Q;=0 for j<O0; if this is not already the case
we replace Q, by Z,Q and Q; by 0 for j <0 without changing either side
of the asserted isomorphism.

In order to show that H, is epimorphic we have to fill the diagram
U ,H P-0

a

TSmO

“‘—a—>Q2—a—>Q1—a—>QOL>HOQ—*0

for any given a. According to II, 4.7, this can be done step by step.

Suppose now f: P— @ is a chain map such that H, f=0. We have to
show that f~0, i.e. we have to construct s=(s,: B, —Q,_,) such that
0s,+8;_,C=f,. Proceed by induction on k starting with s_,=0. The
inductive step from k—1 to k>0 consists in filling the diagram

PR 4, p >0

|
]
1
:sk Sk—sk-10
v

3 3
Qk+1 > Oy — Q1>

where for k=0 one replaces 0 _, by H,Q. By 1I,4.7 again, the filling s,
exists. 1 '

3.6 Corollary. If P, P’ are resolutions and f: P— P is a chig1 map such
that Hy f: HyP=~H P then f is a homotopy equivalence (this is a special
case of 1.12 Exerc. 4).

Proof. By 3.5, there is a chain map g: P'— P such that Hyg=(H, f)~,
hence H,(fg)=id, H,(g f)=id, hence f g~id, g f~id by 3.5. 1

Proof of 3.2. By induction on k we define module-homomorphisms
6 FM—F,_ M as follows: F ,M=0, F. M=M, F,M for k>0 is
the free R-module generated by the elements x of ker(J, _,), and 9, (x)=x.
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If o: M— M’ is an R-homomorphism then we define R-homomorphisms
Fa: FEM —FEM such that F a=a and Fo for k>0 takes a free
generator x of F M into the generator (F,_,a)(x) of FM’. Then F, is
a functor R-#od — R-Mod/,and 6,: F, — F, _, is anatural transformation.
Moreover, the sequence

3.7) O M« FM«3 _ FM .-

isobviously exact. Hence FM =(F, M, 0,), o is aresolution which depends
functorially on M, and &, induces H, FM = M. In other words, we have
afunctor F: R-Mod — R-ARes,and an equivalence Hy F ~ Id. In particular,
we have a natural isomorphism p P: H (FH, P)=(H, F)(H, P)~ H, P for
PeR-Res. By 3.5, we can define Hy (p P)en(FH, P, P); this is a natural
transformation Hy'p: FHy—Id. But Hy'(p P) is also a homotopy
equivalence, by 3.6, hence Hy'p: FH,~Id. 1

3.8 Proposition. (i) For free modules M we have t; M =0 if j>0, and a
natural isomorphism 1: to|R-Mod ' =t.

(ii) For any additive functor T: R-Mod — A% and any natural trans-
formation ¢: t— T|R-Mod’ there is a unique natural transformation
®: 1y T such that ®|R-Med? = 1.

For instance, if R is a (skew) field then every module M is free, hence
to=t and t;=0 for j>0. For general R again, part (ii) of 3.8 is a charac-
terization of ¢, by a universal property (cf. Mitchell, VLS). The functors
t; for j>0 can be characterized as being the satellites of ¢, (cf. Cartan-
Eilenberg, V.6).

Proof. (i) If M is free then (M,0) is a resolution of M, hence t;M =
H;t(M,0)=H;(t M, 0).

(i) Consider the diagram

0 toMe—— toF,Me— tyFL M

0O-TM «—TFM—TFEM

(3.9)

whose rows are obtained from 3.7 by applying ¢, resp. T. The first row
is exact because tyM=H tFM>~H_t,FM, the last isomorphism by
part (i). Therefore, 3.9 admits a unique filler : 1M — TM. If M is free
then @1i: to M — TM is a filler, hence d=¢1. 1
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3.10 Proposition. [f 0—-M —>M—25M"—0 is an exact sequence in
R-Mod then there is an exact sequence

M S UM S M S M St M ody 1 M 4ty M 0.
In particular, t, is right exact.

Proof. Take a resolution P’ of M’ and consider the complex
QOHM#;FéLHJL

where ¢ is the composite Pj—— H, P'=~M —> M. Tts homology is
concentrated in dimension —1 and agrees with coker(j)=M" there. If
P” is a resolution of M” then, by 3.5, there is a chain map f: P" > Q
such that H_, f: HyP"=~H _,Q (in other words, / is a chain map P"— Q
of degree — 1). The mapping-cone C f has the following form (cf. II, 1.6)

(3.11) 0 M« PoP'«PoP —PeP«

and it is exact because H f is isomorphic (cf. 11, 2.14). The terms to the
right of M therefore constitute a resolution P of M (with F,=P'e P").
It contains P’, and HyP'— H,P is clearly isomorphic with j: M'— M.
Further, P/P'~ P". Altogether, we have an exact sequence

(3.12) 0->P—>P—->P'—0

of resolutions whose homology sequence 0 —H,P'— H,P - H,P"—0
is isomorphic with 0 > M'——> M —> M"—0. If we apply ¢t we get an
exact (because =P e B") sequence

(3.13) 0—-tP —->tP—>tP'—0;

its homology sequence has the form which 3.10 asserts. i

3.14 Corollary. Every additive functor t: R-Mod ! — o4 % admits a unique
(up to equivalence) right-exact extension R-Mod — of 4, namely t,. If
to is exact then t;=0 for j>0.

Indeed, if T is another extension then there is a natural homomorphism
@: tyM — TM, defined by diagram 3.9 with ¢ =id. In this diagram the
rows are exact (T being right-exact), and the two vertical arrows on the
right are isomorphic, hence ¢ is isomorphic. If ¢, is exact then
H;ty C=t,H;C for every complex C (cf. 2.8). In particular, if P is a
resolution of M then t; M~H;t, P=t,H;P=0forj>0. 1

3.15 Proposition. If t: R-#od ! — o/ % is strongly additive then the derived
Junctors t;: R-dlod — 4%, j=0, are also strongly additive.
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Proof. If (M,), - is a family of R-modules, choose resolutions P, yeT.
Then P=@®,P" is a resolution of @, M., hence

t{®,M)=H;t(®,P)=Hy(®,t P) =D H;t P’=~dD,t;M,. 1

3.16 Proposition. If R is a hereditary ring, and t: R-Mod”’ — 4% is any
additive functor then ;=0 for j>1, and t, is left exact.

Proof. Given MeR-#sd choose an epimorphism &: F-—-M whose
domain R, is free {e.g €=0, in the proof of 3.2). Then R =ker(e) is free,
hence P= (R« K« 0« ) is a resolution of M such that F;=0 for j> 1,
hence ;M = H;(t Py=0 for j>1. Proposition 3.10 then shows that ¢, is
left exact. 1

3.17 Exercises. 1. If H: A" — "' is a functor between arbitrary categories
such that (i) H: [X, Y]—[HX, HY] is bijective for all X, Ye &, and
(ii) every X'e A" is equivalent with an object of the form HX, Xe.%|
then H is an equivalence of categories, i.e. there exists a functor F:
A" — A such that FH ~1d, HF ~ 1d. Compare this with the proof of 3.2.

2. If t: R-Mod? — o/ % is an additive functor show that t; is left exact
if and only if ¢; , =0.

3. If R is hereditary and t: R-#ed? — o/ % is a monofunctor then ¢, =0
and ¢, is exact.

4. Prove that the connecting homomorphism t; , M”" —t; M’ which
occurs in 3.10 is natural with respect to mappings of short exact se-
quences,

5.1 R=Z/p*Z where p is a prime then t;,  M=t;M for all j>0,
MEeR-Mod , t: R-Mod! — AE.

4. Universal Coefficient Formula

As before we consider additive functors t: R-#ed! — /% which we

extend, as in 2.6, to complexes C of free modules. Assuming R to be

hereditary we prove the universal coefficient formula,
HtC=t,H,Cot, H,_,C;

the name is motivated by some important special cases (see §7).

We retain the 7-convention of the preceding sections which permits us
to concentrate on covariant functors.
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4.17 Let C bea free R-complex. Consider the inclusions BC - ZC -5 C
and the boundary map ¢: C— BC. They can be viewed as chain maps
provided, in the second case, we shift dimension indices by one, i.e.
replace BC by its suspension BC* (recall that C} =C,_,, 6" = —0¢;
see II, 1.3, Example 4). In particular, we can and shall apply Hot to
these maps. If R is hereditary then B,C is free hence B,C —"»Z,C
is a resolution of H, C so that coker(¢1,)~t,H, C, ker(t1,)~t, H,C.

4.27 Universal Coefficient Theorem. If R is hereditary and C is a free
R-complex then there are unique maps a, 8 which make the following
diagram commutative.

coker(t1) = t,HC

43) tBC—" —ZC M), HyC HE),tBC+ " 1ZCH

-
ttHCY =~ ker(ty).
The maps a, f are natural in C (i.e. commute with chain maps). The
sequence
@.4) 0t H,C 2=, H tC =Py H C—0

is exact, and splits. (Universal Coefficient Sequence.)

4.5 Remark. Because the sequence splits H,tCxt H,Cot,;H,_,C;
however, the splitting is not natural, for general ¢ and R (see Exerc. 1).

4.6 Remark. In terms of elements and representatives the maps «, f§
are as follows: Let xetZC and Xet, HC its coset. Then (ti)(x)eZtC
and «(X) is its homology class, a(X)=[(ti)x]. As to B, let yeZitC=
ker(t¢: tC—1tC). Then d=(té: tC—tBC*) maps y into ker(ti)=
1, HC*, and BLy]=d(y).

Proof of 4.2. We first show that the middle row of 4.3 is exact; this
implies existence and uniqueness of «, 8, and exactness of 4.4. Consider
the exact sequence

@.7) 0->ZC—isC—2BC* 0.
Because BC is free 4.7 splits in every dimension; therefore

4.8) 0-tZC—'HtCtBCt—0
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is also exact. The following is a portion of its homology sequence

(4.9) tBC* —%,17C-HU , gyc-Htd, s gc+ % ,17C.

We want to show d,=t1, i.e, 4.9 is the middle row of 4.3 which is there-
fore exact. As remarked, 4.7 splits in every dimension: we find g: BC* — C,
Jj:C— ZC with dq=id, ji=id, jq=0, ij+qd=id. Then tq and tj split
the sequence 4.8, hence (II, 2.12) d, =(tj)(t 3°)(t g)=1(j 6 q). But dq=id,
ji=id, clearly imply jo€g=1, hence d,=1(1), as required.

It remains to split 4.4. As before let j: C —» ZC be a retraction onto the
cycles (ji=id). Then the composition y: C—» ZC " HC, where 5
is passage to cosets, is a chain map such that yi=nji=n, hence
(tomy=(to 1)y (to 1),,=(to ¥), alto m),., the latter by definition of a. Since
(ton), is surjective we have (t,7), x=id, a splitting. 1

Depending on the functor ¢, one can extend the conclusion of 4.2 to
some non-free complexes C, as follows.

4.107 Proposition. For complexes C in R-#od (R hereditary) such that
Ht C=0 there is a natural exact sequence

4.11) 0—toH,C - H,1,C 't H,_, C—0,

and this sequence splits. (Note that t, C=t C, 1, C=0if C is free (see 3.8).)

Proof. Consider the commutative diagram

0 0 0
— Ky —— K, —— K, ——
In+1 in n-1
dn+ d"
@12) ---——Cl ,0Cl /5 Cl,  0Cl—=>CloCl_—>-
T+t Tn Tn -1
‘ 0 0,
o Cn+l e Cn . Cn—l :
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where C/ is the free R-module generated by the elements of C,,
7,=(Cpy1Puy1-Ps) and p,: CL— C, is the homomorphism which as-
sociates with every generator of C/ the corresponding element of C,
(this was ¢,: Fy C,— C, in the proof of 3.2), K,=ker(zn,) and 1,=inclu-
sion, and the components of d, are zero or inclusion (d,|C}, =0,
d,|Cl'=(id, 0)). We view the rows as complexes so that (4.12) is a short
exact sequence of chain maps

(4.13) 0->K—»C—">C—0.

Further, C is free, hence also K, so that K,— C, is a resolution of C,.
Applying H ot therefore gives t, C, t, C, i.e., we get an exact sequence of
chain maps

0-1,CtK—5tC 1ot C—0,
or

4.14) 0—tK/t; C—5tC%t,C—0.

Now C is nulhomotopic; in fact, C is the cone of the complex {C{, ,,0=0}
(it is clearly acyclic, and the cycles, Z, C=C/ +1» are direct summands;
use II,3.6), hence t C~0, hence HtC=0, hence H,C~H,_,K and
H,t,C~H, ,(tK/t;C) from the homology sequences of 4.13, 4.14.
Further, Ht, C=0 by assumption, hence H, _,(tK/t, C)~H,_,tK from
the homology sequence. By 4.2 we have a natural exact sequence (which
splits)

0-tyH,_K—>H,_tK—t H,_,K—0.
Inserting H;K=H;,, C, H,_, tK=H,t, C gives the result. [
4.15 Exercises. I. Consider the functor t: /Y9 —> 4G, tA=A/J2A, i.e.
divide 4 by {a+ a|ae A}. Show that no non-zero natural homomorphism
¢: H,t C—ty, H, C exists (for free complexes C). In particular, there is
no natural isomorphism H,t C=t, H, Cet, H,_, C. Hint: Show first that
@=0if C is the following complex: C;=0for i+n,n-1, C,=C,_,=Z,
0,=2. For any other complex C’, and ye H,t C’' there exists a chain map
f: C— C such that yeim(t f),; then apply naturality.

2. If t: R-Mod! — 4% is an additive functor (R hereditary) and
0-»C —5C-—2C"—->0 is an exact sequence of free R-complexes
there results a diagram involving the maps i, p,, d, of the homology
sequence and the maps «, § of the universal coefficient sequence. Check
for commutativity.

3. Show that the universal coefficient sequence (4.11) commutes with
natural transformations t — t' of additive functors.
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5. Tensor and Torsion Products

We discuss strongly additive covariant functors t: R-Mod! — 4% of
free modules and show that they are completely characterized by ¢R, the
value of t on the coefficient ring. The derived functors are called torsion
products; in symbols, t; M = Torf-‘ (t R, M). The functor ¢, is better known
as the tensor product; its value on M is denoted by (¢ R) ®x M, or simply
(¢t R)® M when there is no danger of confusion. If R is hereditary then one
also writes (tR)*g M or (tR)*M for t; M (while t;=0 for j>1 in this
case).—Dual results are discussed in the next § and relations between
the two cases will be established thereafter.

5.1 Definition. Let t: R-#Mod’ — o/ % be covariant, additive. The ring
R is itself a (left) R-module, (via the ordinary product r x), and the right
translations 0. R>R, p(x)=xr, reR,
are module homomorphisms. We can therefore apply ¢ and get
t(pr): [R - [R Since t(prr')=t(pr'°pr):t(pr')ot(pr)’ and t(pl)zt(id)=id
we can define a right R-structure on tR by yr=(tp,)(y), reR, yetR. We
always have this structure in mind when we refer to ¢ R as a (right) R-mo-
dule.

If @: t -1t is a natural transformation then the naturality condition
applied to p,: R — R says precisely that ¢,: tR — 'R is an R-module
homomorphism. Let [, t'] denote the class of all natural transformations
and let e: [t, "] > Homg(t R, ¢’ R) denote the map which to each ®:t— 1’
assigns its value @ on R.

5.2 Proposition. If t is strongly additive then e: [t,t]=Homg(tR,t R),
e(®)=®y. I.e, a natural transformation ®: t — t' is completely determined
by its value ®g: tR —t'R on the coefficient ring, and this value can be
prescribed.

5.3 Corollary. If both t,t': R-Mod’ — A% are strongly additive and
tR=t'R (as R-modules) then t ~t'.

Proof. Let tR—?>t'R—*>tR be reciprocal isomorphisms. By 5.2
natural transformations t —— ¢’ —2 t exist with @, = ¢, &, =¢’, hence
(@' )= ¢ @=1id, hence ¢’ @ =id by the uniqueness part of 5.2. Similarly
dP' =id.

5.4 Corollary. Let T, T': R-Mod — A% be covariant additive functors
and assume T is strongly additive and right exact. Then

e: [T, T']>Homg(TR,T'R), e(®)=ap,
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is bijective. If also T' is strongly additive and right exact, and if
®p: TR - T'R is an isomorphism then ®: T— T' is an equivalence.

Proof. Put t=T|R-Mod’, t'=T'|R-Mod’. Then T=t, by 3.14, and
[T, T )=[t,, T'1=[t,t'] by 3.8(i). Our first assertion, [7,T']=x
Hom(tR, ¢’ R), now follows from 5.2; and the second follows from the
first as 5.3 does from 5.2.

Proof of 5.2. Assume ¢;=0. Let M be a free R-module and 1: R—> M
an R-homomorphism. The commutative diagram

tR—2 M

ZIR—T’IIM

shows im(t 1) cker(®,,). Because ¢ is strongly additive (and M is free) the
modules im(¢1) generate ¢t M, as 1 varies. Hence @,,=0. Since e is clearly
additive, this proves that e is injective.

To prove surjectivity, let ¢: tR — ¢'R be an R-module homomorphism.
Let M be a free R-module and i={i,: R —» M}, a direct sum represen-
tation (equivalently: a base). By assumption {ti,: tR —>tM}, is also
a direct sum representation. We can therefore define

(5.5 @ tM M by Po(ti)=(t'i)oe.

We claim: @ = &' depends only on M (not on the base i), and is a natural
transformation with e(P)=¢.

Let g: R — M be any R-homomorphism. Then g(1) is a finite linear com-
bination of base-elements, g(1)=), r, i, (1)=> i, (), hence g =), i, o p,,
where r,eR and p,: R — R denotes right translation by r,. Therefore
(5.6) Plo(tg)=d oy thotp)=)  Potiotp=),t'iopotp,
=2aliot poo=t'Yiop)ep=(t'g)o0,

the 3rd equality by 5.5, the 4th because ¢ is an R-homomorphism.

Let now M, N be two free R-modules with basis i, j, and let f/: M —> N
an R-homomorphism. We shall show

(.7 Plo(tf)=(tf)o®"

Taking M =N, f=id, this gives &' = &', i.e., #,,=¢' depends only on M;
taking f arbitrary again, it shows that {®,,} is natural. Clearly ®p=¢,
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so it remains to prove 5.7. Because {ti: t R—tM} is a direct sum re-
presentation it suffices to show that 5.7 holds after composition with
ti,. But

Y

Do(tf)olti)=dot(fi)=t(fi)op=(t'f)o(t'i)o@=(tf)o P oti,
(the 2nd equality uses 5.6, the last 5.5). 1

We have seen that a strongly additive functor t: R-Mod’ — /% (respec-
tively a strongly additive right exact functor t: R--#od — o/ %) is entirely
determined by the R-module ¢t R. We now show that this module can be
prescribed.

5.8 Proposition and Definition (comparc Eilenberg, and Watts 1960).
For every right R-module L there exists a unique (up to equivalence) covariant
strongly additive functor t: R-Mod’ — 4% [resp. strongly additive right-
exact t: R-Mod — /%] such that tR=L. 1t is called the tensorproduct
with L, in symbols t M =Leg M. The derived functors t;: R-Mlod — AYG
are called torsion products; in symbols, t; M =Tor]‘.R (L, M). In particular,
Tor§ (L, M)=Leg M. If R is hereditary, we also write Lxz M instead
of Tor}(L, M).

Proof. Only the existence of t: R-Mod! — s/ % has to be shown (see 3.14
for the extension to R-#od, and 5.3, 54 for uniqueness). In every free
R-module X we pick a basis BX « X ; for X =R we choose BX ={1}. Let
t X be the set of all functions w: BX — L which vanish almost everywhere.
In analogy to singular chains (I1I1,2) we think of w as a finite linear combi-
nation of elements be BX with coefficients w,=w(b) taken in L, i.e. we
write =Y, gy @, - b. These linear combinations can be added by adding
coefficients, and thereby form an abelian group. If a: X — X’isan R-homo-
morphism then for every be BX we have a(b)=Y . gy b - b’, 2 finite
linear combination with coefficients o} €R (this is the matrix of ). We
define

(59) to tX >tX',  (t90) (Lpenx Do D)= Y wenx (Lpenx Wp %) .
Then t(id)=1id is clear, and t(x o o')=(ta) o (t &) is the usual multiplication
rule for the matrix of a composite map. Thus, t: R-Med! — A% is a
covariant functor.

Ifa, B: X — X' are two R-homomorphisms then clearly (a + f). = b, + B2,
hence t(a+pf)=ta+tf, ie, t is additive. Obviously tR=L (as R-
modules); it remains to establish strong additivity.

By 2.5, it suffices to show that {ti }: @, t X, > (D, . X,) is epimorphic

for every family { X} of free modules (i, =inclusion of the y-th summand),
i.e. we have to show that every yet(®,.r X,) is contained in some partial
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sum t(@y.x Xi)= Pyex t X, with finite K<=T'. Now y is a finite linear
combination y=) w,-b, and every beB(®,.; X,) is contained in a
finite partial sum of @, X,, hence a finite set K< I exists such that
w,+0 = be P, X,. Let

®yer Xy*p’ ®kEK Xk—]’ ®yef Xy
denote projection and inclusion. Then w,+0 = (jp) b=>b, hence
NP y=t(jp) Y @y b= @, (jp)b=) @y b=y,
hence yeim(tj)=t(@yx Xi)- N
5.10 Definition. If L, L are right R-modules and f: L—L is an R-
homomorphism then, by 5.4, there is a unique natural transformation
forM: LegM > LegM such that fegR: L»L agrees with f If

g: M — M’ is an R-homomorphism then (L®gzg)o(f@g M)=(f®xgM')o
(L®gg), by naturality of f®;. We denote this homomorphism by

ferg: LogM —» LegM’;

in particular, fe, M=f®id,,, Legg=id, ®zg. It follows immediately
from the definitions that

(forglo(f ®pg)=(fof)@r(gog), 1d ®pidy=id gy,

whenever the compositions are defined. These formulas assert that ®,
is a functor of two variables (L, M)e (Moo -R) X (R-Mod ). Moreover,

(Li+f)erg=fi®rg+ f, @58,
for(gi+82)=f®r8 + f®rE,,

the first equation because (f;+ f,)®g and (f;®g)+(f, ®g) agree on R,
the second equation because L®y is additive.

(5.11)

5.12 Example. We want to compute Le M, LM if R=Z and M
is a cyclic group. If M is free cyclic, M ~Z, then L ® M =~ L by definition,
and L+Z =0 as for any derived functor ¢,. If M is finite cyclic, say of
order n, M=1Z,, then we apply L® to the exact sequence

0-Z- 9,7 7,0
and get (by 3.10) an exact sequence
(5.13) 0-L*Z,—»L-—"45] »1LeZ, 0,
hence
(5.14) LeZ,~LinL, L+Z,={yeL|n-y=0}.
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5.15 Corollary. If L is a finitely generated abelian group and p a prime
number then dim(L®Z )=rank(L)+dim(L*Z)), where dim denotes
the vector space dimension over the field Z,.

This formula is useful in connection with the Euler characteristic (cf. 7.21).
I¢ L is cyclic then the formula is immediate from 5.14. In the general
case, L is a direct sum of cyclic groups, and the formula follows because
both sides are additive in L. 1

As aninteresting exercise the reader might prove the same result for non-
finitely-generated L provided every element in [}, p" L has finite order
prime to p.

5.16 Example. An R-module L is called flat if L® is an exact functor.
We want to determine all flat abelian groups (= Z-modules). We claim:
The functor L®: A9 — 4% is exact if and only if L is torsion-free, i.e.,
L has no (non-zero) elements of finite order, i.e., the map n: L— L is
injective for all integers n 0.

Proof. If ye L is not zero but of finite order, say n- y=0, then 5.12 shows
that
0—>LeZ-4®" [ 0Z -~Lo®Z,—0

is not exact, hence L® is not exact.

If L=Z then L®=id is obviously exact. If L is (finitely generated and)
free then L® is a (finite) direct sum of identity functors and therefore
exact. Now take any torsionfree abelian group L, let F <L be a finitely
generated subgroup, and let 0—X,—>X,—>M—0 be an exact
sequence with free X,, X,. We have a commutative diagram

Lox, 2%, 10X,

FeX,——F®X,

in which the vertical arrows are monomorphic by the very construction
of the tensor-product (as a group of functions with values in F respec-
tively L). The lower horizontal map is monomorphic because F is free
(see above), hence the restriction of id®j to F® X, is monomorphic.
But every weL e X, has the form Y w,- b, hence weF® X, where F is
generated by {w,}, hence the whole map id®;j is monomorphic. Since
X,— X, is a resolution of M this proves L * M =ker (id ® j))=0, and the
exact sequence 3.10 shows that L ® is exact. i



145

5. Tensor and Torsion Products

Concluding this section we make a few comments on L®y M as a functor
of L. The notation L® M already suggests some symmetry between L
and M ; this will be fully justified in § 8 (see also Exerc. 1¢). Here we only
show that L ®; and ®x M have analogous exactness properties.

5.17 Proposition. For every exact sequence 0—L-->L—L' —0 in
Mod-R and every M € R-Mod there is an exact sequence

(L', M)— Tor}(L, M) - Tor} (L, M) — Tor} (L', M)

—Tor J+1

(5.18)
—»Torj_l(L, M)— > LegM oL ey M —0.

In particular, ® M is right exact (and #z M is left exact if R is hereditary).

Proof. If F is a resolution of M then F, is a direct sum of terms R, hence
LeF, is a direct sum of terms L, hence 0 »'eF,->LeF, >L'® F—0
is a direct sum of sequences 0 — L' — L — L’ — 0; in particular, it is exact.
Therefore 0 > L egF—LeygF—L'®F—0 is an exact sequence of
complexes whose homology sequence has the required form 5.18. |

5.19 Proposition. If ---—E;,, »E,—~E;  —---—Eg is a resolution of
Le Med-R then H;(EegM)=Tor}(L,M); i.e. in order to compute
Tor(L, M) one can resolve either variable.

Proof. Note first that E;®, is an exact functor (E;= @ R implies that
E;®g is a direct sum of identity functors), hence TorR(E M)=0 for
n>O by 3.14. Now consider the modules L;=coker(E;_, —»E ); we have
Lo=L, L;=B; | E for j>0, and for every j an exact sequence 0—L;,
—E, -L;—0. The correSpondmg long exact sequence 5.18 shows
Tor,,H(L M)=Tor®(L J+1,M)forn>()(becauseT0r (E;, M)=0), hence
by iteration, TorR(L M)=Torf(L;_,, M) for j>0. The last term occurs
in the following commutative dlagram
0

E;j,,oM Tory(L;_,, M)

(5.20) \\ [

N

0 E,_ oM

L
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whose rows and columns are bits of exact sequences 5.18. We get
Tor, (L; ,, M)=ker (i)xker (i n)/ker (m)=ker (3))/im (i') =ker (3))/im(i' =)
=ker(¢;)/im(0;,,)=H;(E® M). This proves 5.19 for j>0. As to j=0,
we have an exact sequence E, »E,— L—0, hence (2.11) an exact
sequence E; oM - E,e M —LeM —0, hence Hy(EeM)~LeM. 1

5.21 Remark. There is an obvious analogy between the preceding proof
and the proof of V,1.3. Both are *“degenerating-spectral-sequence
arguments” (cf. Godement, 1.44).

5.22 Exercises. [. (a) Any direct sum t=@¢t, of (strongly additive)
right-exact functors .#ed-R — /% is (strongly additive) right-exact.

(b) If 1, >1,—>t—0 is an exact sequence of natural transformations
and if 7,, 1, are (strongly additive and) right exact then so is .

{c) The tensor-product LegM, as a functor of L (M fixed), is strongly
additive and right exact. Consequently, LexM =M e, L if R is com-
mutative.

2. The reader is urged to study also the usual existence proof for 5.8;
cf. for instance, MacLane V.1. Still another possibility to construct
tM=LegM (for free M)is as follows: Put t M = Homg(Homg (M, R), L)
for finitely generated-, and t M =lim (t M,) for arbitrary free M, where the
direct limit (see VIII, 4) is taken over all finitely generated submodules
M, of M.

3. If A is a finite abelian group then Lx;A=~Homg(4, L), naturally
inLeodY.

4.(a)If j: Z — @ is the inclusion then the kernel of L=LeoZ 4%, 1.0 Q
coincides with torsion(L), the subgroup of elements of finite order.

(b) L*(Q/Z)=torsion(L).

5.1f t: R-Mod’ — o/ % is an additive functor and E is a complex in R-#od
such that E;=0 for j<0, H;E=0 for j>0, and ¢, E=0 for n>0 then
H;ty Ext;H, E. This can be proved similarly to 5.19. As a special case,
it asserts that Torf(L, M) can be computed with flat resolutions (instead
of free ones).

6. Hom and Ext

The functors Hom and Ext are dual to @ and Tor. In fact, one can simply
apply the ?-convention of §§2-4 to all of §5. Then Ley becomes
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Homg(—, L), and Torf(L, —) becomes Ext;(—, L). However, because
of the importance of Hom and Ext and because too many %-s might
confuse the reader we give a separate—if somewhat repetitious—treat-
ment. Proofs will be abbreviated or omitted, and notations are taken
over from §5. The section numbers are chosen to correspond with §5;
thus 6.1 is dual to 5.1 etc.

6.1 Definition. Let t: R-Mod’ — /% be an additive cofunctor. Define
a left R-structure on tR by ry=t(p,}) y, reR, yetR, where p,: R—R is
the right translation by r. If ¢: ' — ¢ is a natural transformation then
@p: ' R—tR is an R-module homomorphism. Let [, ¢] denote the
class of all natural transformations t' —t.

6.2 Proposition. If t is strongly additive (contravariant) then

e: [t',t]>Homg(f'R,tR), e(P)=o4,

is bijective.
6.3 Corollary. If both t,t': R-Mod' -9 are strongly additive, and
tR=t'R (as R-modules) then t ~t'. §
6.4 Proposition. Let T, T': R-Mod —o4% be additive cofunctors and
assume T is strongly additive and left exact. Then

e: [T, T]>Homg(T'R, TR), e(®)=p,
is bijective. If also T’ is strongly additive and left exact, and if @p: T'R— TR

is an isomorphism then @: T'—T is an equivalence.

Proof of 6.2. Assume @,=0. Let M be a free R-module and i: R—M an
R-homomorphism. The commutative diagram

tR—"—tM

I’R",—! t'M
shows im(®,,)cker(t1). Because ¢ is strongly additive we have
(" ker(t1)={0},

hence @,,=0. This proves that e is injective.

To prove surjectivity let ¢: t' R—t R be an R-homomorphism. Let M
be a free R-module and i={i,: R— M}, . a direct sum representation.
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By assumption {ti,: tM —tR},.r is a direct product representation. We
can therefore define

(6.5) @M —>tM by (ti)od'=po(t'i,).

The reader will have no difficulty in dualizing the rest of the proof of 5.2,
i.e. to show that @,,=&" is independent of the basc i, and is a natural
transformation @ with e(@)=¢. §

6.8 Proposition and Definition. For every left R-module L there exists a
unique (up to equivalence) strongly additive cofunctor t: R-Mod’ — A%
[resp. strongly additive left-exact t: R-Mod — 4 %] such that tR=L. An
example of such a cofunctor is t M =Hompg(M, L). Its derived functors ¢
are denoted by t/ M = Ext4(M, L); in particular, Ext%(M, L)~ Homg(M, L).

If R is hereditary then we also write Extgx(M, L) or Ext(M, L) instead
of Exty(M, L) (while Exty =0 for j>1 in this case).

In order to prove 6.8 one has only to verify that Homg(—, L) is indeed
strongly additive (for left-exactness and Homg(R, L)=L see 1.6 and 1.9).
But Homg(®,M,, L)=] [, Homg(M,, L) holds by the very definition of
the direct sum (I, 2.13, 2.14). &

6.12 Example. We want to compute Homg(M, L), Extg(M, L) if R=Z
and M is a cyclic group. Clearly Homg(Z, L)=L, Extz(Z, L)=0.If M is
finite cyclic, say M =Z,, we apply Hom(—, L) to the exact sequence
0-»Z—">Z->Z,—0 and get (3.10) an exact sequence

6.13) 0—-Hom(Z,, L)»L—»L—Ext(Z,, L)—-0,
hence

Hom(Z,, L)={yeLiny=0}~L=+Z,,
6.14) (Z,, L)={yeL|ny=0}

Ext(Z,,L)~L/nL=LeZ,.

6.16 Example. An R-module L is called injective if Homg(—, L) is an
exact functor. Which abelian groups (Z-modules) are injective? We
claim: The cofunctor Hom(—, L): o/ 49—/ % is exact if and only if L is
divisible, i.e. the map n: L— L is surjective for all integers n+0.

While this result is dual to 5.16 its proof is more difficult; we shall only
give some indications and refer to Mitchell, I1.15.4 for more detail.
Firstly, if n: L— L is not surjective, n+0, then the sequence 6.13 shows
that Hom(—, L) is not exact. Conversely, assume L is divisible. One has
to prove that Hom(M, L)—~>Hom(M’, L) is surjective for every group M
and subgroup M’ i.e. one has to show that every homomorphism
a: M’— L extends to M. Let yeM —M’; if mye M’ for some integer
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m=+0 let neZ generate the ideal of all such m, choose zeL such that
nz=a(ny), and define an extension B of a to {M’,y}, the subgroup
generated by M’ and y, by BIM'=a, B(y)=z. If m*£0=>my¢M’  one
extends by B(y)=0. By iteration (transfinite if M/M’ is not finitely
generated) this procedure leads to an extension M—L. 1

6.21 An R-module M is called projective if Homg(M, —) is an exact
functor. We claim, a module M is projective if and only if M is a direct
summand of a free module.

Proof. Let {M_}, - be any family of modules. Clearly Homg(®,M,, —)=
[[,Homg(M,, —) is exact if and only if each functor Homg(M,, —) is
exact. Since Homg(R, —)=id, this proves first that every free module
F=@,R is projective, and then that every direct summand of a free
module is projective.

Assume now Homg (M, —) is exact. Choose an exact sequence
0—-G—oF—2M—0

such that F is free, apply Homg(M, —) and get an exact sequence
Homg(M, F)—2>Homg(M, M)—0. In particular, there exists

peHomy(M, F)

such that id,,=p(B)=popf, hence f maps M isomorphically onto a
direct summand of F. |

6.22 Exercises. 1. For every MeR-#os and every exact sequence
0— L—L—I'>0 in R-#od there is an exact sequence

0—Hom (M, L)—»Homg(M, L)—---—Exty *(M, L") —
Exth(M, L)—Exth(M, L)—Exti(M, L) —Ext* (M, L)—--.
This is 5.17 dualized. Show that M is projective if and only if
Extp(M, —)=0.

2. If R is hereditary and LeR-.#0 admits a resolution F,—F, by
[finitely generated free modules (“L is finitely resolvable”) then

Extgp(M, L)~ Exty,(M, R)eg L.

Further, L is projective if and only if Extg(L, R)={0}.

3. If A is a finite abelian group then Extz(4,L)=Le®zA, naturally in
Led%.
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4. If P is a projective R-module then there exists a free module F such
that Pe F is free (Eilenberg). Hint: By 6.21 there exists some module P’
such that Pe P’ is free. Consider the relation (Pe P')e (Pe P)e ---=
Po(P'9o P)o(P'e P)o---.

5. If C is a complex of free abelian groups such that H,C contains
elements of infinite order then H_,Hom(C,@Q)#{0} (because
HHom(C,Q)=Hom(HC, Q)). If p is a prime such that (H,_, C)*Z =
{xeH, ,C|px=0}+{0} then H_,Hom(C,Z)+{0} (because
HHom(C,Z)=~Hom(H(CeZ,),Z,)>Hom(H, ,C+Z,,Z,). Conse-
quently, if HHom(C, k)={0} for every prime field k then HC={0},
hence C~0.

7. Singular Homology and Cohomology
with General Coefficient Groups

We apply additive functors ¢ of abelian groups to singular complexes
SX of spaces X and discuss the formal properties and the significance
of the resulting homology groups HtS(X).

7.1 Definition. The singular complex S(X, 4) of a pair of spaces consists
of free abelian groups. Therefore, any additive functor t: #/%’/ - &%,
defined on free abelian groups, can be applied to S(X, A) and yields a
new complex ¢S (X, A). Its homology groups are denoted by H(X, 4; t)=
HtS(X, A), and are called the (singular) t-homology groups of (X, A).

Usually one considers strongly additive functors only, i.e. tensor products
and Hom-functors, and one uses a special notation as follows. The com-
plex S(X, A)® G ° respectively Hom(S (X, A), G) is called singular (chain-
resp. cochain-) complex of (X, A) with coefficients in G (G an abelian
group), and is denoted by S(X,A; G) respectively S*(X, A;G). The
elements of S,(X, A; G)=S,(X, A)® G respectively

S"(X, A; G)=(S*(X, A; G)\'=Hom(S,(X, A), G)

are called singular n-chains respectively n-cochains of (X, A) with coeffi-
cients in G.

By definition (cf. proof of 5.8) an n-chain ceS,(X;G) is a finite linear
combination c=)Y , ¢, o of singular n-simplices ¢: 4,— X with coeffi-
cients ¢,€G; addition is given by (c+c'),=c,+c,. The n-chains in
S(X,A4;G)=5,(X;G)/S,(4;G) can be thought of as finite linear com-
binations Y, ¢, - o where o(4,)¢ A. Dually, n-cochains ¢eS"(X, 4;G)

5 Or rather GeS(X, A). However, Mo N=NwoM, by 8.13.
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are functions ¢ (o) such that ¢(6)=0 if o(4,)< 4; these functions are
added by adding values. As for ordinary (integral) chains, the boundary
operator is given by an alternating sum, dc=Y , > 7_o(—1)c,-(6 &),
respectively [0(p)] (1)=Y120(—1) (r¢,,,) where ©: 4, ,— X. The
boundary operator for cochains is usually denoted by d; thus é (p)=¢@ o 0.
Often it will be appropriate to replace & by (—1)"+1§ (cf. 10.28).

If in the preceding notation we replace S by Z, B, H we get singular
{(co-)cycles, (co-Yboundaries, (co-Yhomology with coefficients in G. For
example, H"(X, A; G)=H_,Hom(S (X, A); G)=H" $*(X, A; G) is called
n-th cohomology group of (X, A) with coefficients in G,and H* (X, A; G)=
{H"(X, 4; G)} oo

If G is an R-module (R some ring) then S(X, 4; G)=S(X, A)®,G and
S*(X, A; G)=Homyg(S(X, A),G) are complexes of modules. In particular,
the homology of these complexes consists of R-modules, i.¢e. the (co-)
homology of (X, A) with coefficients in an R-module consists of R-modules.

The formal properties of ordinary integral homology H(X,A)=H(X,A;Z)
carry over to arbitrary coefficients; in fact, they carry over without further
complications to t-homology where t: /%' — o/% is any additive functor.
We list the most important properties. As in §§ 2-4 we use the 7-conven-
tion, i.e. we formulate the results for covariant functors ¢t only and we
mark by 7.all sections which are also valid after replacing covariant by
contravariant, reversing arrows in the range category of t, exchanging
lower and upper indices and stars, etc.

7.2% If f: (X, A) — (Y, B) is a map of pairs then tSf: tS(X, A) —tS(Y, B)
is a chain map. The induced homomorphism of homology is denoted by

fe=H(f;1): H(X, A;1)— H(Y, B;1).

It clearly satisfies (fg),=f, g,, id,=id, i.e. t-homology H(X, A;1) is a
covariant functor from pairs of spaces to graded abelian groups.

7.3% For any pair (X, 4) the sequence 0 — SA —— SX —4» S(X, A)—0
is exact and splits in every dimension. Since ¢ is applied dimension-wise
the sequence 0 — tSA — tSX — tS(X, A)— 0 is also exact (and splits
in every dimension). In particular, there results (cf. 11, 2.9 and 111,3.2) a
connecting homomorphism 0,: H, (X, A;t)— H,(A;1) and a (natural)
exact sequence

%, H (A;)—>H

q+1

aal (X:0)—2 Hy (X, 4;0)—2 H (4;1)
#»HQ(X;t)L e

called (t-) homology sequence of (X, A).
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747 If f,g: (X, A)y— (Y, B) are homotopic maps then Sf, Sg: S(X, A)—
S(Y, B) are homotopic by 111, 5.1, hence tSf~tSg: tS(X, A)—tS(Y, B)
by 2.6, and therefore f, =g, : H(X, A;t)— H(Y, B; t). Le,, t-homology is
homotopy invariant; it can be viewed as a functor on the category whose
morphisms are homotopy classes of continuous maps (of pairs).

7.5 If (X, A) is a pair and % = {U} is a family of subsets U = X such that
every point of X is contained in the interior of A or in the interior of some
U then S(%, % n A)— S (X, A) was shown to be a homotopy equivalence
(IT1,7.3), where S% =SX is the subcomplex generated by all SU, and
SUUNAY=SU/S(UN A). 1t follows (by 2.6) that tS(U U A)~
tS(X, A).

As a corollary(111,7.4) we obtained that the inclusion j: (X — B, A—B)—
(X, A) induces a homotopy equivalence S(X — B, A~ B)~S(X, A4) for
every subset Bc A whose closure B is contained in the interior A of A.
It follows (2.6) that t S(X —B, A—B)~tS(X, A), hence H(X —B, A— B;1)
~H(X, A;1) for all B such that B 4. Le, t-homology satisfies the same
excision property 111,7.4 as ordinary homology.

7.67 The Mayer-Vietoris sequences (II1, 8) were deduced from exact
sequences of the type

0 S(X,nX,)—>SX,05X, > S{X,, X,} >0

together with the fact that S{X,, X,}=S(X, uX,) if (X; X;, X,) is an
excisive triad. Because the exact sequence splits in every dimension it
remains exact after applying ¢, and by 2.6 we have tS{X, X,}~
tS(X,uX,) for excisive triads. Thus, the Mayer-Vietoris sequences
generalize to t-homology, i.e., for every excisive triad (X; X,, X,) we
have exact (M ayer-Vietoris)-sequences

oo Hy (X0 X5 8) =2 H(X, 0 X5 0) 9202 (X s 1)e H (X3 t)
el g (X 0 X, ),

and

e Hy (X, Xy 0 X3 1) =2 Hy(X, X 0 X, 1) =20 (X, X 51)
o H (X, X,; -2 g (X X, UX,;t)— .

The proposition III,8.11 which describes the boundary operator d,

generalizes similarly. In fact, the present section 7.6 can be deduced

purely formally from the preceding sections 7.2-7.5; this is carried out in
Eilenberg-Steenrod I, 14-15.
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7.7% If X isa contractible space (e. g.a point) then : SX ~(Z,0) ~ S (point),
where s denotes augmentation (I11,4.5), hencer S X ~(t Z, 0); in particular,
H/(X:;t)=tZ if i=0, and =0 otherwise. For any non-empty X the aug-
mentation #: SX — (Z, 0) has a right inverse, hence SX =(Z, 0)® ker(n),
hence H(X;t)=HtSX =H(tZ,0)e Ht(ker(y))=(:Z,0)® H(X ; t), where
H(X;t)=H t(ker(n))=ker(H(X ; {) > H(point; t)). These groups, H(X 1),
constitute the reduced t-homology of X. They differ from H(X;t) only
in dimension 0, and they fit into a reduced t-homology sequence

o H

q+1

(A’ t)_> Hq+1(X; t)_> Hq+1(X,A9 t)_> ﬁq(A, t)'_‘) Hq(X5 t)_’ ERREY
just as ordinary reduced homology (111, 4.4).

7.87 The t-homology of a sphere $” can be computed as in IV, 2. More
simply, one observes that H(S") is free, hence S($")~ H(S") by II,4.9,
hence tS(S")~tH(S" by 2.6, hence H(S";t)~t(H(S")=(tZ,0)e (tZ, n).
Similarly, H(R", R"—0; t)=(¢tZ,n). In general, the t-homology groups
can always be expressed in terms of integral homology groups; just
apply the universal coefficient theorem 4.2 to the complex C=S(X, A4).
In case t=® G, or =Hom(—, G), the result asserts: There are natural
exact sequences

(79)  0— H,(X,A)®G— H,(X,A;G)— H,_,(X,4)* G0,
(7.10) 0— Ext(H,_,(X, A), G)— H*(X, A; G) - Hom(H, (X, A), G) > 0

which split (but not naturally). In particular, H, (X, A; G) is determined by
H(X, A). However, the same is not true for induced homomorphisms:
H(f; G) is not determined by H(f; Z); cf. Exerc. 2.

7.117 For cellular spaces X we have established (V, 1.3) an isomorphism
H(X, X "Y=HWX where WX is the cellular complex of X (reminder:
W, X =H,X",X""")). In trying to generalize that result to t-homology
one encounters difficulties. Let us assume, however, that WX is a free
complex (e.g. if X is a CW-space). Then HWX =~H(X, X ~') implies
WX ~S(X,X '), hence t WX ~tS(X,X '), hence HtWX~H(X,X™ ;1.
L.e., if the cellular complex W X is free (as is always the case for CW-spaces)
then H(X, X ';t)=HtWX. Moreover, in that case, t WX can be identi-
fied with the complex W(X ; t) which is defined as follows

(7.12) W(X;t=H,(X" X""';0), @,=i,0,,
where
H (X" X" "0 H, (X" )—>H, (X""',X""%1).

n—1
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Proof. The maps a=a,: t H (X", X"~ ')— H, (X", X"~'; t) of the universal
coefficient theorem 4.2 (applied to C=S(X", X"~')) define a homomor-
phism a: t WX — W(X;t) of graded groups, which is isomorphic be-
cause H(X", X"~} is free. The only question is whether o is a chain map,
i.e., whether the composite diagram

tH"(XII, Xn—l) 10(8) tOH"_an—l [anl(X"_l, Xn—Z)

H (X" X"~ 0-——H,_(X"';n——H,_ (X", X""%;1)
is commutative. The square on the right commutes because a is compat-
ible with chain maps (is natural). But the boundary operator 0, is also

induced by a chain map (II, 2.12; note that SX"~! is a direct summand of
SX"), hence the left square also commutes. |}

7.13 The results of IV, 6 on (ordinary) homology of open subsets of $"
generalize almost verbatim to homology with arbitrary coefficients G
(whereas difficulties arise for t-homology). In some detail, let B A=S",
n>0, be arbitrary sets, let Pe A, and

H,(S"—B,S"—A4;G)—2> H(S",$"— P; G) <2— H,(S"; G)

the homomorphisms induced by inclusions. Then (cf. IV, 6.1) for every
yeH, (S$"—B,S"— A; G) the map

Jy: A5 H,(8"G),  (Jy)(P)=i,"],(),
is locally constant, (J y)]| B=0, and (cf. 1V, 6.2)
J=J(A,B): H(S"~B,8"—A4;G)—TI'(4,B;G)

is a homomorphism into the group I'(4, B; G), whose elements are locally
constant functions 4 — H_(S"; G) which vanish on B. If XcY<cS" are
neighborhood retracts then (cf. 1V, 6.4) '

(7.14a) H,(Y,X;G)=0 for i>n,
(7.14b) J: H(Y,X;G)=I'S"-X,8"-Y;G).

The proofs are the same as in IV, 6.—The reader may find it interesting
to look at the corollaries and applications of IV, 6.4 again (IV, 6 and IV, 7)
and to generalize them to arbitrary coefficients; the case G=Z, is espe-
cially instructive.
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7.15 So far, we have viewed (co-)homology with coefficients in G as a
functor of (X, A)alone; the group G was fixed. However,a homomorphism
@: G— G of (coefficient) groups induces chain maps ide ¢: S(X, 4)eG
—S5(X, A)eG', resp. Hom(id, ¢): Hom(S (X, 4), G)— Hom(S (X, A4), G'),
and by passage to homology, ¢, =H(X,A; ¢): H(X,4; G)->H(X,A; G
resp. *=H*(X, A;p): H*(X, A;G)— H*(X, A;G"). This turns (co-)
homology into a functor of the coefficients G. For fixed ¢: G— G’ the
maps ¢, =H(X, A; ¢), o*=H*(X, A; ¢) are natural with respect to the
variable (X, 4); they are the simplest examples of (co-)homology opera-
tions. (=natural transformations between (co-)homology groups).

If0 - G'—> G —2> G”" —0 is an exact sequence of abelian groups then
the sequences

0 S(X, A)oG —9%, S(X, A)o G 2% S(X, A)eG" -0,
0— Hom(S(X, A4), G’) -*> Hom(S (X, A), G) > Hom(S(X, A), G")— 0,

are also exact (because S(X, A) is free; see 6.21). The connecting homo-
morphisms
‘6 n+1 X,A;G,,)—)H"(X,A;GI),

7.16
(7-16) B: H"(X,A;G")—» H"" (X, A; G

which are associated with these sequences (II,2.7) are usually called
Bockstein-homomorphisms (of the coefficient sequence i, 7). They are
natural with respect to the variable (X, 4), thus providing another
example of (co-)homology operations (this one between groups of
different dimensions). The sequences

LML H, (X, A4:G) L Hy(X, A; G)—> H (X, A: G)

7.17)
( / Tx H"(X,A,G”)‘_IJ)"',
(7.18) "HH" (X.A;G")—> H"(X, 4; G) "> H"(X,A; G)

H"(X,A,G")—»---

are exact and natural; they are called the (co-Yhomology sequences of the
coefficient sequence (i, 1t).

7.19 In V, 5 the runk of abelian groups was used to define the Euler
characteristic of graded groups resp. of spaces. For many rings R, a
rank-function py can be defined on finitely generated R-modules (com-
pare Swan II, 4.6, and also Cohn 2.4), and can be used to define an
Euler-characteristic y; on finitely generated graded R-modules, or
spaces. For simplicity, we consider the case of a field R only (besides Z)
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with pgr=dimg=vector space dimension. If the characteristic of R 1is
zero, char(R)=0, and X is a space, then

dimg H,(X; R)=dim(H,(X ; Q) R) = dimg(H,(X ; Q))=rank (H, X)

which brings us back to V, 5. If char(R)=p>0 then dimg(H;(X; R))=
dimg(H;(X; Z,)e R)=dim, (H;(X;Z,)) which reduces the problem to
prime fields Z ,.

Assume then G={G};z is a finitely generated (}; dim(G;)< ) graded
vector space over Z,, and define y, G=).4(—1) dim(G)); if (X, 4) is
a pair of spaces put y,(X, A)=yx,[H(X, A;Z,)] if the latter is defined.
Call this the Z -characteristic of G resp. (X, A). Justasin 'V, 5.2 one proves:

If K is a complex of Z,vector-spaces such that y,K is defined then
1, (HK) is defined and equals y, K. 1t follows (cf. V, 5.7) that

(7.20) 1p(X)=x,(A)+x,(X, A)

for pairs (X, 4) of spaces such that two of the numbers in 7.20 are defined.
In general, the Z,-characteristic differs from the Euler-characteristic
(choose X such that HX =(Q, 1); then x(X)=0 and y,(X)=1). However,

7.21 Proposition. If (X, A) is a pair of spaces with finitely generated
homology H(X, A) then x,(X, A)=x(X, A).

Proof. By 79 we have H;(X,A;Z,)~H;(X,A)eZ,0H; (X,A)+xZ,,
hence yx,(X,A)=x,[H(X, A)®Z,]—y,[H(X,A)«Z,]. On thc other
hand, 5.15 implies

(X, A)=x[HX, A=y, [H(X, AZ,]— 1, [HX, A+ Z,]. 1

For instance, 7.21 applies to compact CW-pairs (X, A)—but then the
result also follows directly (cf. V, 5.9 or V, 5.10 Exerc. 3).

7.22 Exercises. 1. Show that H'(X ; G)=Hom(H, X, G) for all spaces X
and abclian groups G. In particular, HY(X;Z) is always torsionfrce
(whereas H (X ; Z) can be any abelian group; see V, 6 Exerc. 2).

2. The space P, R/P, R which is obtained from real projective plane by
shrinking a projective line to a point is homeomorphic with the 2-sphere.
Show that the identification map P, IR — P, IR/B IR induces trivial
homomorphisms in (reduced) integral homology but not so with coeffi-
cients Z,. Compare this with 4.15 Exerc. 1.

3. Let o: (4,, 4,)— (R", IR"—0) be a singular simplex whose homology
class generates H,(R",R"—0)=~Z Show that G - H,(R",IR"—0; G),
g+ [g- o] is an isomorphism (G = abelian group).
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4. If F is a free abelian group then H(X; F)~H(X;Z)®F. If G is any
abelian group then there exists an exact sequence 0 — F,—— F,— "> G—0
in which F,, F, are free abelian groups {cf. proof of 3.16). Its homology
sequence contains the portion

Hy(X; F) - H,(X; Fy) ™ H(X;G) % H,_|(X; F)-" H,_(X; F),

hence an exact sequence 0 — coker(i,) — H,(X ; G) —»ker(1,) — 0. Show
that this sequence is isomorphic with the universal coefficient sequence
0—-(H,X)eG—->H,(X;G)—>(H,_ | X)xG—0.

5. If (X, A) is a pair of spaces such that H*(X, 4; k)=0 for every prime
field k (equivalently: H*(X; k)= H*(A;k)) then H(X,A;G)=0 (equiv-
alently: H(A; G)= H(X; G)) for all abelian groups G. This follows from
6.22 Exerc. 5.

6*. If X is a space such that x(X) and y,(X) are defined, and if every
element in ();,,p' HX has finite order prime to p then x (X)=x,(X).
Compare remark after 5.15.

8. Tensorproduct and Bilinearity

We define bilinear maps and show (8.11, 8.19) how the tensorproduct
can be used to reduce them to homomorphisms of abelian groups.
Conversely, bilinear maps can be used to deduce properties of the tensor-
product-functor (8.13, 8.17).

8.1. Definition. For every MeR-.4od and yeM we have an R-homo-
morphism y: R — M, j(r)=r y; similarly, for right R-Modules Le .#«-R
and xeL we have x: R— L, x(r)=xr. We then define xegyeLeyM
to be the image of le R=R &z R under x®,j: RegR— LegM (cf. 5.10);
in formulas,

(8.2) xepy=(Xegy)(l), xeL, yeM.

In particular, if L =R resp. M =R then £ is the left resp. right translation
with reR. 1t follows that

(8.3) regy=ry, x®gr=xr, xelL, yeM, reR.
We have the following equations:
(X1 +X2)@gy=X1 ®g Y+ X, ®g Y,

(8.4)
X®p(y;+Y)=X®gy;+X®gYy;,

(8.5) (xryegy=xe@g(ry), reR.
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The former, 8.4, are quite obvious; they are special cases of 5.11. As to 8.5,
xney=(efFel)(h=EFeHr=(EFejleN()=xo(ry).
8.6 Definition. Given modules Le.#ood-R, M eR-Mod, and an abelian
group N e /%, then a mapping {: L x M — N is called R-biadditive if
Clxp+xp, p)=0x;, Y+ (x5, y)s
Cx, yy+y2)=L(x, y)+L(x, ),
(8.8) {(xr,y)=C(x,ry) forall xeL, yeM, reR.

(8.7)

For instance, the structure maps Rx M—M, (r, y)—>ry, tesp. LxR— L,
(x, r) xr, are R-biadditive. Formulas 8.4, 8.5 assert that

(8.9) T=n.: LxM—>LegM, =n(x,y)=xegy,
is R-biadditive.

If {, n: Lx M — N are R-biadditive then {+#: L xM — N, ({£n)(x, y)=
{(x,y)+n(x,y) is also R-biadditive. The set Biadg(L x M, N) of all
R-biadditive maps is thereby an abelian group. If f: L > L, g: M'—> M,
h: N — N’ are (R-) homomorphisms and {: L x M — N is R-biadditive
then L'xM — N, (xX,y)~h{(fx',gy) is also R-biadditive. This
defines a homomorphism Biadg(L x M, N)— Biadi(L' x M, N') and
turns Biady into a group-valued functor of L, M (contravariant), and N
(covariant). For the moment being, only the functorial dependence on M
will play a role.

A function of two variables can always be viewed as a function of one
(the second) variable whose values are functions of the first variable.
In the case of Biady this becomes

8.10 Proposition. The homomorphisms
@: Biadg(L x M, Ny2Homg (M, Homg(L, N)): ¥,

(P ylx=L(x,y), (¥n)x,y)=[n(y)]x, xeL, yeM, are reciprocal
natural isomorphisms, where the group Homg(L, N) on the right is viewed
as a left R-module via (r 2) x=u(xr), xe Hom(L, N), reR, xeL.

Proof. If we neglect the R-structure (i.e, take R=7Z) then it is quite
obvious from the definitions that @, ¥ are reciprocal isomorphisms.
As to the R-structure, the formulas [®(0)(r y)] x=C{(x, r ), (r[P() y]) x=
[@() y}(xr)={(xr,y) show that &({) is an R-homomorphism if and
only if { satisfies 8.8.

It remains to prove naturality of @ resp. ¥; this is left to the reader. 1
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The following proposition reduces R-biadditive maps to additive maps.
It can also serve as an axiomatic description of the tensorproduct by
R-biadditive maps (cf. Bourbaki, 1948).

8.11 Proposition. If {: LxM — N is an R-biadditive map then there
exists a unique homomorphism &: Leg M — N such that E(x®gy)={(x, y),
xeL, ye M. In other words, composition by ;. (see 8.9) is an isomorphism,
ofty . Homg(L®g M, N)=Biadg(L x M, N).

Proof. Clearly om;, is a natural transformation between func-
tors of MeR-#oad. Both functors are contravariant, strongly ad-
ditive, left exact: the first, by 2.11, because it is the composition of
Ler and Homgz(—, N), the second because Biadg(L xM, N)=
Homg (M, Homg(L, N)), by 8.10. Therefore, by 6.4, it suffices to show
that om; - Homg(L ®g R, N)=Biadg (L x R, N). But this agrees with the
composition
Homg(L® R, N)=Homy(L, N)=~Homg(R, Homg(L, N))

(8.10

).
=~ Biadgz(L xR, N);
one has only to insert the definitions. 1

8.12 Corollary. The elements x®gy, xeL, ye M, generate the abelian
group Leg M.

Proof. Let K be the subgroup generated by all x ®,y, put N=(Lsz M)/K,
and let £&: LegM — N be the projection. Then {(x, y)=¢((x@gy)=0
hence £=0 by the uniqueness part of 8.11, hence K=LeoyM. 1

8.13 Proposition. For Le.#od-R, MeR-Mod we have a natural iso-
morphism L@®gM =M ®gop L, X®gyr> y®popx, Where R°P denotes the
opposite ring (recall that R-Mod = Mod-R°P, Moad/-R = R°°-Mod ; see 1.1).

Proof. Clearly Lx M —>M®pop L, (X, y)+> y® gop X, is R-biadditive, hence
a homomorphism L&y M —M®gop L With x®g y+> y®ges x. Similarly in
the other direction, and the two composites are identity maps. 1

The symmetry Le M ~M oL shows that the tensorproduct is right
exact in each variable. This implies

8.14 Proposition. If [ ——L-—2-1" >0, M'—>M 2 M"—0, are
exact sequences in Mod/-R resp. R-Mod then
(8.15) (LegM)o(LeyM') 221080, | o, M L4, [0, M"— 0

is also exact.
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Proof. Clearly 8.15 is a complex, and p® g=(id® g)o(p®id) is surjective.

[t remains to prove (p®g)z=0=zeim(i®id,id® j). Consider then the
commutative diagram

LoM 225 "o M' —0
id®j id®j
LoM—®d,] oM 289, 1" M

id®gq

L
L'eM"

Because the right column is exact we can find te e M’ such that
(idej)t=(peid)z. Pick ye(peid)~'t, then (peid)(idej)y=(peid)z,
hence (because the second row is exact) we can find xe L® M such that
(ieid)x=z—(id®j) y, hence zeim(i®id,id®j). 1

8.16 Definition. If R, S are two rings and if M is both an R- and an
S-module such that the two operations commute then M is called a
bimodule (say R-left, S-right). That the operations commute means
that multiplication with reR (i.e., the map 6,: M —>M of 2.2) is an
S-homomorphism, or multiplication with se S isan R-homomorphism O,.
We can therefore apply functors Lo, —, Le Mod-R, to @, and we can
turn Loy M into a right S-module by xs=(id® ©,) x, xe Leg M, seS.
Similarly M egN is a left R-module for every NeS-.#od. For instance,
if R is commutative we can always take S =R and let the two structures
coincide.

8.17 Proposition. If L, M, N are modules as in 8.16 then we have a natural
isomorphism

(LegM)egN=Log(MegN), (x®ry)85zi— x@g(yesz).

Proof. For every ze N define an R-biadditive map L x M — L&z (M &g N),
(x, y)—x®r(y®gz). By 8.11, it induces a homomorphism LeyxM—
Leg(M®sN). and hence an S-biadditive map (L ®g M) x N— L®g(M &g N)
such that (x®py, z)>x®x(y®¢z). Once more 8.11 applies and gives a
homomorphism (x ®gy)®gzi—> x®g(y®sz). Similarly in the other direc-
tion, and the two composites are identity maps. 1

8.18 R Commutative. In this case L®g M, as any other additive functor
of M (cf. 2.2), has a natural R-structure; in formulas, r(x ®gy)=Xx @zt .
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As a functor of L its R-structure is given by r(x®gy)=(xregy); by 8.5
both structures agree. The isomorphisms Ley;M =M ez L (8.13) and
(LegM)eog N=Leg(MeyN) are clearly R-maps. Thus eg: R-Mod x
R-Mod — R-Mod is a (strongly) additive (covariant, right exact) func-
tor which is associative, commutative and has a unit object (Reg=1id).

If L, M, N are R-modules then Homg(L®gzM, N) is a subgroup of
Homg(L®g M, N). Whatis the corresponding subgroup of Biadg (L x M, N)?
The formula £(x @z y)={(x, y) of 8.11 shows that {eHompg(L ®x M, N) if
and only if { satisfies {(xr, y)=r{(x, y)=C{(x,ry). Such an R-biadditive
map is called R-bilinear (or simply bilinear).

8.19 Proposition. If R is commutative then the equation & (xegy)={(x, ),
xeL,yeM,defines a one-to-one correspondence between R-homomorphisms
&: L®gxM — N and R-bilinear maps {: LxM —N. 1

8.20 Exercises. I. If R is commutative then x®py: R— LeyM is an
R-homomorphism (xe L, ye M), hence (X ®gy) r=r(xX@gy) (1)=r(xogy);
in particular, £®gy is determined by xezy. Conversely, if R is not
commutative then X®gj is not determined by x®py (kint: take L=R,
M=R).

2. Show that the universal property 8.11 resp. 8.19 characterizes the
tensorproduct Loy Me.o/% resp. LogMeR-Mod.

3. If R is commutative then Homg(L®x M, N)=~Homg (M, Homg(L, N))
for all R-modules L, M, N (compare 8.10, 8.11). This natural isomorphism
expresses the fact that Lep— and Homg(L, —) are adjoint functors
(compare Kan).

9. Tensorproduct of Complexes. Kiinneth Formula

We extend the definition of tensor products CegD to the case where
both variables are complexes. Generalizing the universal coefficient
formula (cf. §4) we express H(C®gD) in terms of HC, HD, at least if C
or D is free (9.13); as before the ground ring R is assumed to be hereditary.
Later on (cf. § 12) we shall see that for topological spaces X, Y one has
S(X xY)~(SX)®(SY); thus we can express H(X x Y)intermsof HX, HY.

9.1 Definition. Let C, D be complexes of right resp. left R-modules. Define
a new complex Ce,D as follows

9.2) (CerD),=®;, ;_., Ci® D,
d=0“®?: (CegD),— (CexD),_,,

9.3 i
9.3) 8°®P|C,@ D,=®id +(— 1) ided®.
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Since 8¢|C,oD;=(—1)"'@d”+(—1) 8°®0®=0, this defines indeed
a complex.

If f: C— C', g: D— D' are chain maps then
9.4 forg: CogD— C'ogD', (forg),=®;, ;_, i®%E;
satisfies

d(feg)|C;eD;=(8f)og;+(~1) f;8(dg)
=(fi_, 9eg+(— l)iﬁ®(gj_1 0)=(feg)d|C;eD;,
i.e., f®gpg is a chain map. Thus, the tensorproduct is a covariant functor

0 Moa/-R x OR-Mod — 0 A4Y, resp. OR-Mod x OR-Mod — OR-Mod if R
1S commutative.

Similarly one can define torsion products CxD of complexes by
(CxD),=@®,;, j_, C;* D;etc.; in fact, ® could be replaced by any additive

13

functor Mod-R x R-Mod — 4%. We omit the details because we shall
not really use these complexes.

9.5 Proposition. If Cg, zDg, sE are complexes of modules on which the
ground rings R, S act as indicated by the indices then

(9.6) 1: CogD2Doger C, t(x®y)=(—1)*P yex,
(where | | denotes dimensions; if xe C, then |x|=n), and
(9.7) a: (CegD)esE=Cegr(DegE), al[(xey)ez]=xe(y®:z).

Proof. It is clear (8.13, 8.17) that ¢ and a are well-defined isomorphism of
graded groups; the only question is whether they commute with 0. Now
1o(x@y)=(— 1)1l y®OX +(— DI+l gy x
=(— DM (@yex+(— 1) yodx)=0t(xey),
ad[(xey)ez]=a[(@xey)ez+(—1)*(x@dy)ez+(—1)**P(xe y)edz]
=dxe(yez)+(— 1) xe(@yez)+(—1)*+P xe(yedz)
=0d[xe(y®z)]=0u[(xey)ez]. 1
9.8 Remark. A useful rule for memorizing signs is that whenever two
objects u, v are permuted to which degrees |u|,|v| are attached then a

sign (— 1)1 should be introduced. Examples are 9.6 and 9.3; the latter
because |0|= — 1.
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9.9 Proposition. If f°~f': C— C', g°~g': D— D' then
fleg’~fleg': CeD— CoD),

i.e., the functor ® is compatible with homotopies.

9.10 Corollary. If f: C~C" and g: D~ D' are homotopy equivalences then
also feg: CeD~C'®D'.

Proof of 9.9. Let s: O~ (' ie,ds+sé=f"'—f° Thenin C;®D; we have

d(s®@g®) +(s@g?) 0=(0s@g’ +(—1)*! s©dg°) +(sd0 g’ +(— 1) seg®d)
=(f'—f")eg",
hence s®g?: f®g°~ f'®g° By symmetry (9.6), fleg’~f'og'. 1

Other properties of ® like right exactness or strong additivity follow
immediately from the module case and will not be formulated. An
abstract characterization of the tensorproduct of complexes is sketched
in § 10 Exerc. 3.

We want to express H(CegD) in terms of HC, HD, and we begin by
generalizing the map « of 4.2.

9.11 Proposition. Given complexes Cg, gD (not necessarily free) there
exists a unique homomorphism x: HCegHD — H(C @ D) such that
a([x]e[yl)=[xey] for xeZC, yeZD ([ ] denotes homology classes).
The map « is natural in (C, D).

Proof. Uniqueness is obvious. To prove existence define a: ZC x ZD —
H(CeD) by a(x,y)=[xey] If [x]=[x1 [y]=0[y] then x=x"+0c,
y=y'+0d, hence

alx,y)=[x'ey+xedd+ocey]l=[x'ey +d(x’ed)+0(cey)]

=[x'eyl=a(x,y),

hence ainduces a: HC x HD — H(Ce® D), and this, in turn,a: HCe HD —
H(C e D) because a, and hence 4, is clearly R-biadditive (cf. 8.11).
If f: C—»C, g: D—D' are chain maps then (feg),a([x]o[y])=
[fxegyl=a(f, ®g,)([x]®[y]), which proves naturality. 1

9.12 Lemma. If C is a free complex and 0“=0 (hence C=HC) then « is
an isomorphism.
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Proof. If C=(R,n), i.e,, C,=0 for k+n, C,=R, then 9.12 is obvious. In
general, C is a direct sum of such complexes (by assumption), and both
HCeo HD, H(C® D) commute with direct sums. |

9.13 Kiinneth Theorem. If R is a hereditary ring, and C, D are R-complexes
such that H(C % D)=0° then there is a natural exact sequence

(9.14y 0—(HCeoHD),—*» H,(CeD)—L>(HC*HD),_, —0

which splits (but the splitting is not natural; cf. 4.15 Exerc. 1).

Proof. With minor modifications this proof is the same as for 4.2, 4.10:
one replaces t C by CeD. Assume C is free, first. Then

(9.15) 0-ZC—>C—2%BC* -0

is an exact sequence of free complexes (C;f = C,_,), hence

(9.16) 0->ZCoD—®4, CeD 224, BC+eD >0

is also exact. The following is a portion of its homology sequence,

H(BC*®D)—%> H(ZC® D)2+, [I(CeD)
e, H(BC*+eD)—%> H(ZC® D).

917)

Let g: BC* — C, j: C— ZC be maps which split 9.15 (as after 4.9), then
g®id, jeid split 9.16, hence (I1,2.12) d, =[(joid)> 3®Po(q®id)],. But
(j®id) 0°®P(geid) (xe y)=(j®id) (I gx®y+gx®dy)
=jogxeyt(jg)xedy=x®y
(using jog=1, jq=0), hence d, =(1®id),, where 1: BC—»ZC is the in-
clusion.

Applying naturality of « to (1,id) now gives a commutative diagram

H(BC+eD)-%=4®%, i(7Ce D)

BC+®HDTZC®HD

¢ In most applications C or D will be flat or even free so that C*D=0. However, the
assumption H(C x D)=0 is more appropriate because it is homotopy invariant.
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in which o is isomorphic by 9.12. Hence
coker(d,)=coker(1®id)y=HCe® HD, ker(d,)=ker(t®id)xHC + HD,

the second equation because BC* — ZC is a resolution of HC. Inserting
this in 9.17 we obtain a natural exact sequence

(9.18) 0—-HCeHD - H(CeD)-£- HC++«HD—0.

Consider now the general case H(C = D)=0. We reduce it to the free case
exactly as in § 4 (proof of 4.10): There is a natural exact sequence (4.13)

0-K—->C-»C—0
such that C, K are free, and C~0, hence exact sequences

0>C+xD—>KeD—>CeD— CoD—0,

KoD

0— D —Ceo®D— CoD—0.

*

Now, C~0= HK+=HC,

H(C+D)=0= H(KeD)~H (Ié )

KeD

C:O:C@D:O:H( ) ~H(CeD),

hence H(Ke®D)* =H(C®D). Inserting this in the sequence 9.18 for
(K, D) gives a natural exact sequence

(9.19) 0—HCeHD*>H(CeD)—£->HC++«HD—0.

It remains to show «”=a, and to split the sequence. Consider first the

case C=(R, n). Then Ce = HC@ is essentially the identity functor (except

for a shift of indices), and it is immediate from the definitions that
=id=a.

In the general case, pick xe Z, C and define a chain map f: (R,n)— C
by f(1)=x. Apply naturality of " to (f,id) and get

o’ (Ix]ely])=a"(f,@id,) (1o [y])=(f®id), «" (18[y])
=(feid),[1ey]=[xey]=a([x]e[y]),

hence o =a.

If C, D are free then chain maps y: C — HC, ¢: D — HD exist (cf. 11, 4.6)
such that yx=[x], ey=[y] for xe ZC, ye ZD, hence

[(yee), o] ([x]Je[yD=(ee), [xoy]=[x]8[y],
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or (yee), a=id; hence (y®e), splits the Kiinneth sequence 9.14. In the
general case, pick free complexes C’, D' and chain maps f: C'— C,
g: D' — D such that f,, g, are isomorphisms (cf. II, 4.6). By naturality we
get a commutative diagram

0—-HCeHD —*>H(CeD) >HC « HD'*—0

>

(9.20) Hf®Hgl 2 H(f@g)‘ Hf+Hg

0> HCoHD —%> H(CeD) %> HC+HD*—0.

By the five lemma, H(f®g) is isomorphic, hence the second row is iso-
morphic to the first row which was already shown to split. 1

9.21 Exercises. 1. Use the Kiinneth theorem to prove: If P, Q are flat
complexes in .#od-R tesp. R-Hod (R hereditary) such that H; P=0,
H,;Q=0for i+0 then H,(H, Pog Q)= H,;(Pe Q)= H,(Pog H, Q) for all j;
and this group agrees with H,PeogpH, Q if j=0, with H, Pxg H, Q if
j=1, with zero for every other j. Compare this with Exerc.5 in § 5.

2. Generalize the definition of the tensorproduct of complexes to arbitrary
functors t(L, M) of two variables (=modules). Use the ¥-convention
(§ 2) if ¢ is (partly) contravariant. Try to generalize the Kiinneth theorem.

3. If0»>C —— C—25C"—0is an exact sequence of free (flat) com-
plexes and D an arbitrary complex one can apply the Kiinneth theorem
to the terms of 0 » C'®D— C®D — C"®D — 0. There results a diagram
involving the mapsi,, p,,, 0, of the homology sequences and the Kiinneth
maps «, . Check for commutativity.

4. The product of two finite CW-spaces X, Y is itself a CW-space whose
cells are products ¢ x d of cells of X resp. of Y. Show that there is a chain-
isomorphism (W X)ez(WY)— W(X x Y), ced ¢ xd (W=cellular chain
complex; cf. V,4.1). Use this and the Kiinneth theorem to compute the
homology of B, R x B, R.

5* If C, D are free Z-complexes then
(CeZ,)o(DeZ,)=C®DSZ, 4, n»

hence a: H(Ce®Z,)oH(D®Z,)— H(C®D®Z, 4y, ) Show that every
element in H(CeD®Z,) can be obtained from elements of the form
xeH(Ce®Z,), ve H(D®Z,) by applying combinations of a, coefficient
homomorphisms, Bockstein homomorphisms, and addition. Are all of
these operations needed?
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10. Hom of Complexes. Homotopy Classification
of Chain Maps

Dualizing §9, we define a functor (C, D) Hom(C, D) from pairs of
complexes to complexes. As to be expected, there are Kiinneth relations
expressing H Hom(C, D) in terms of HC, HD if the ground ring R is
hereditary (10.11). Because H, Hom(C, D) turns out to be the group of
homotopy classes of chain maps C — D, we get as a corollary a simple
expression for this group (10.13).

10.1 Definition. Let C, D be (left) R-complexes. Define a new complex
Homg(C, D) as follows,

(102) HomR(C7 D)n :l_[iel HomR(Ci ’ Di+n)s
(10.3) 8: Homg(C, D), »> Homg(C, D),_,, 8{fi}={d"f} —{(—1) £, 8},
for {f;}e]]; Homg(C;, D;,,)=Homg(C, D),. This defines a complex
because
00{ fiy={a" " fiy —{(—=1)""1 0° f; 0} = {(— 1) °f; O}
+{(=1)*""1 £ 8 0} =0.

If g: C'— C, h: D— D' are chain maps then

Hom(g, h): Hom(C, D)— Hom(C’, D"),
(10.4)
Hom(g’ h)n :Hi Hom(gi ’ hi+n)’

satisfies

oHom(g, h), { fi}=0{h; . fi 8} =1{0" hi,u figi} —{(—1)" hi\0 [ 8: O}
={hi+n-1(abﬁ)gi}—{(— 1Y b, o ) i1}
=Hom(g, h),_, 0/},

i.e. Hom(g, h) is a chain map. Thus Homy is an additive functor
OR-Mod X OR-Mod — 054G (resp. — OR-Mod if R is commutative),
contravariant in the first, covariant in the second variable. Similarly, we
can define Extg(C, D) by Extg(C, D),=][;_:_. Extg(C;, D)), etc.

10.5 Remarks. The elements of Hom(C, D), are sequences f;: C;— D ,,
ieZ, of homomorphisms. Such a sequence is called a map of degree n.
It is called a chain map of degree n if 6°f=(—1)"f8. The boundary
operator of Hom(C, D) therefore measures the deviation of f from being
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a chain map. In particular, Z, Hom(C, D) is the group of (ordinary)
chain maps C — D.

A chain map feZ, Hom(C, D) of degree n is a boundary in Hom(C, D)
if there exists a map s={s;: C;—D,,,,} of degree n+1 such that
0” s;+(—1)"s;_, 0°=;. Such an s is usually called a homotopy of degree
(n+1), and f is called nulhomotopic, f~0, if s exists. In particular, the
boundary group B, Hom(C, D) consists precisely of all nulhomotopic
chain maps, hence

H, Hom(C, D)=n(C, D)

10.6
(10.6) =group of homotopy classes of chain maps C— D.

A chain map f={f;: C;— D,_,} of degree —n can also be viewed as an
ordinary chain map f: C —» D™ of C into the n-fold suspension of D;
similarly for homotopies, hence

(10.7) H_,Hom(C, D)=n(C, D™)=n(C'=", D).

With every chain map f: C— D™ we can associate the induced map
f: HC— (HD"™)=(HD)™. If f~0 then f, =0, hence a map

«: H, Hom(C, D) Hom(HC, HD),,
(Z[f]=f*, f*[z]:[fz]a

for feZ,Hom(C,D), zeZC. If g: C'"—>C, h: D— D’ are chain maps
then the definitions show

(10.8)

(109)  Hom(g h),(f)=h,f,8,, f.cHHom(C,D);
in particular,

(10.10)  g°~g!, h®~h' = Hom(g® h°,=Hom(g", h'),,
i.e. the functor Hom is compatible with homotopies.

10.11 Kiinneth Theorem. Let C, gD be complexes over a hereditary
ring R such that H{Extg(C, D)]=0 (e.g., C free). Then there are natural
exdct sequences

(10.12)
0 — Extg(HC, HD), ; —- H, Homg(C, D) — Homg (HC, HD), 0,

and these sequences split (unnaturally).
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If 82=0 this reduces to the universal coefficient theorem 4.2 with =
Hom(—, D). For n=0 we get the following

10.13 Corollary (Homotopy Classification). Let zC, gD be complexes over
a hereditary ring R such that H[Extg(C, D)]=0. Then there is a natural
exact sequence

(10.14)
0— []: Ext(H,_, C, H; D) 2> n(C, D)~ [|: Hom(H, C, H; D) >0,

and this sequence splits (unnaturally).

If C is free we know already from II, 4.6 that « is epimorphic. 10.13
tells us, in addition, how many chain maps C— D induce the same
homomorphism of homology.

The construction of the exact Kiinneth sequence 10.12 is dual to the
construction of 9.14; the reader has only to apply the ¥-convention (§2);
in particular, Hom=eY, Ext=+Y. However, this procedure fails when
it comes to split 10.12 (we have no “freey”). But exactness alone suffices
to prove

10.15 Proposition. If f: C*—C', g: D' >D* are chain maps which
induce homology isomorphisms, f,: HC*~HC', g,: HD'>~HD?, and
if HExtg(C!, D')=0, H Extg(C?, D*)=0 then (f, g) induces isomorphisms
between the Kiinneth sequences of (C',D') and (C? D?). In particular,
Hom(f,g),: HHom(C',D')~H Hom(C? D?)—This follows imme-
diately from the five lemma and naturality of &, § (compare with 9.20). §

Now, in order to split 10.12 we take free complexes C’, D’ and chain maps
Cd—c L5HC, Dt D -ESHD

which induce homology isomorphisms, and such that f;=id (cf. 10.16
below, and II, 4.6). Then by 10.15 the maps

(C, D)L (¢, D) L2, D) L8 (¢, HD)

induce an isomorphism between the Kiinneth sequences 10.12 of (C, D)
and (C', HD'), so that it suffices to split the latter. But in that case

Hom(f",id),: Hom(HC', HD')—» H Hom(C', HD")

is a right inverse of a.
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It remains to show that f and g exist. This is contained in

10.16 Lemma. Given any complex E over a hereditary ring R there is
a chain map h: E—E such that E is free,and h,: HE~HE. If H, | E=
H, E=0 for some n then we may take E,=0. If H,_, E, H, E are finitely
generated, and R is noetherian (e.g. a principal ideal domain) then we may
take E, finitely generated. If E is free then h is a homotopy equivalence,
by 11,4.3.

Proof. Take a two-term resolution of H, E (zero resp. finitely generated
if H, E is so), and place it in dimensions », n+1. The resulting free complex
E(n) satisfies H, E(n)=H, E, H,E(n)=0 for j#n. Put E=@®,E(n). Then
HE=~HE, and this isomorphism can be realized by a chain map (cf.
I1,4.6). 1

The relations between Hom and ® of modules generalize to complexes.
We discuss one instance (which will be needed later on) and indicate
others in the exercises.

Assume R is a principal ideal domain; all modules, Hom, @ are over R.
If f: L—L, g: M — M are R-homomorphisms thenso is feg: Le M —
L e M'. The assignment (f, g)— f® g is a natural bilinear map; by 8.19
it induces a natural R-homomorphism

(10.17)  y: Hom(L,L)e Hom(M,M')— Hom(Le M, Le M’)

which is characterized by the confusing equation y(f®g)=f®g. The
confusion arises, of course, because fe g denotes two different things,
and y takes one into the other. In most cases the context will make it
clear what is meant by f® g; for the moment we think of it as an element
of Hom(L, L)® Hom(M, M’). Then 10.17 is characterized by

(r(feg)(xey)=(fx)e(gy).

10.18 Proposition. If L, M are free modules, and if L, M or L, L are finitely
generated then 7y is an isomorphism.

Proof. If L=M =R then both sides agree with Le M’, and y=id. If
L=®R, M=@®R, are finite sums, then y is isomorphic because both
sides are additive. Similarly, if L=L=R both sides agree, with
Hom(M, M’), and y=id. If L=@® R, L=@® R are finite sums, 7 is iso-
morphic because both sides are additive. If L=@® R is a finite sum, and
L is finitely generated then L'~ R/E, where P,, F, are finitely generated
free modules. Now y is isomorphic if L is replaced by R, or B, and hence
for L itself because both sides, as functors of L, are right exact (L, M
being free). |
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10.19 Corollary. If L, M, L, M’ are as in 10.18 then
Hom(L,L)*Hom(M, MY=Hom(Le M, L+« M’).

Proof. As above, we choose an exact sequence 0 >R >R —»L—0
where R, B, are free (and finitely generated if L is so). Then

(10.20) 0—-L«M—>PeM —>ReM
is exact by definition of . Further
(10.21) 0— Hom(L, B)—» Hom(L, R)— Hom(L,L)—0

is exact and Hom(L, P) is free because L is free and finitely generated.
Consider the commutative diagram

0—-Hom(L,L)*Hom(M,M')—Hom(L,R)® Hom(M,M')—»Hom(L, R))® Hom(M, M’)

(10.22) d y
0—-Hom(LeM,L«M)— Hom(LeM,FeM) —Hom(LeM,ReM).

The first row is exact by definition of * and 10.21. The second row is
exact because Lo M is free, and 10.20 is exact. The two vertical arrows
are isomorphic by 10.18. Therefore, the left terms are isomorphic. |

Let now C, C', D, D’ be R-complexes and define
(10.23)  y: Hom(C, C"Ye Hom(D,D') - Hom(Ce D, C'® D')

by (y(feg)(xey)=(—1)&*(fx)e(gy). This is a chain map. Indeed,
if we apply definitions 9.3, 10.3 we find

[yo(fegllxey)=(=DEH(afx—(~1V fox)egy
F(= )/ fxe (0g y— (= 1) g2 y),
[oy(fegll(xey)=(~1)8"(0fxegy+(~ 1)/ fxedgy)
— (=111l ((_1)|gII6XIfax®gy
+(_1)IzIIXI+|fox®g5y)‘

The right sides agree, hence y0=20y.

10.24 Proposition. If one of the following assumptions I-111 holds
then y is a homotopy equivalence (R being a principal ideal domain).
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I. Cand D are free, H C and H D are bounded and of finite type’.

II. C and D are free, HC and HD are bounded from below, C' and D’
are bounded from above, HC is of finite type, HD or C' is of finite type.

HI. C and D are free, HC is bounded and of finite type, C' and D’ are
bounded, HD or C' is of finite type.

If one of I-111 holds, and also H(C' * D')=0, then the Kiinneth theorem9.13
applies to Hom(C, C')e Hom(D, D’), hence a natural split-exact sequence

0> @;, 4., H;Hom(C, C')® H, Hom(D, D)
(10.25) — H,Hom(Ce D, C'® D)
I j+k=,,_1HjH0m(C, C’)*HkHOm(D,D,)—io.

If we take C=D'=(R,0), and C'=(M,0) where M is an R-module then
case III has the following

10.26 Corollary. There is a natural split-exact sequence
(1027) 0—->MeH"(D; R)—>H"(D; M)—>M+H"*'(D; R)—0

Jor free R-complexes D, and R-modules M such that HD is of finite type
or M is finitely generated. |

Here and later we use the notation H"(D; M)=H_, Hom (D, M).

Proof of 10.24. If HC is bounded and/or of finite type then C is homotopy
equivalent to a free complex C which is bounded and/or of finite type
(cf. 10.16). Similarly for D. Since y is compatible with homotopies we can
replace C, D by C, D, i.e. we can assume that C, D themselves satisfy
the conditions which we required for HC, HD. Each one of the con-
ditions I-III then implies that Hom(C, C');=[[,Hom(C,, C, ) is
actually a finite product (=sum); similarly, for Hom (D, D'). Therefore,
the left side of 10.23 is, in dimension n, a direct sum of terms Hom(C,,, C))®
Hom(D,, DY) with p+g=r+s+n. Similarly, each of I-III implies that
the right side is the corresponding sum of terms Hom(C,® D,, C, @ D;).
By 10.18, y maps each term isomorphically, and is therefore itself
1somorphic.

It remains to justify the application of the Kiinneth theorem9.13, ie.,
we have toshow that Hom (C, C')* Hom(D, D')is acyclic. But Hom (C, C') *

7 A graded module G is said to be bounded (from above, from below) if G;=0=G_;(G;=0,
G_;=0) for large j. It is said to be of finite type if every G; is finitely generated.
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Hom(D,D')~Hom(Ce® D, C'xD’) by an easy extension of 10.19; one
can also copy the proof of 10.19, replacing R, R, by free complexes.
Finally, Hom(C® D, C'* D’} is acyclic because the Kiinneth theorem 10.11
for Hom applies, and H(C'«*D")=0. 1

10.28 Remark. If Le R- 4o/ and C is a complex of left R-modules we
can form Hompg(C, L) in the sense of 2.6, i.e. we can apply the functor
Homg(—, L) to the complex C; or we can view L as a complex, L=(L,0),
and form Homg(C,(L,0)) in the sense of 10.1. These two complexes
agree as graded groups but the boundary operators differ by a sign.
In the first case d(¢)=¢od, in the second d(p)= —(—1)!"/ po4d. In most
applications this difference does not matter—the complexes are iso-
morphic, after all. When it does matter we shall always take d(p)=
—(—1)"l 09, this being preferable from a systematic point of view.

The homology of Hom(C,L) is often called cohomology of C with
coefficients in L, and is denoted by H*(C; L); with indices, HY(C;L)=
H_,Hom(C, L).

10.29 Exercises. 1. The composition map
Homg(C, D)@, Homy(C’, C)— Homg(C', D),
{.ﬁ}®{gj}’_'{j:i+|g|°gj}a

is a chain map. In particular, the evaluation map Homg(C, D)oz C — D,
{fi} ®x+> f4(x), is a chain map. Study the maps which are obtained by
passing to homology and composing with a (cf. 9.11).

2. Show that ¢: Homg(Ceg D, E) > Homg(C, Homg(D, E)), [®{f;} x]y
= fix1+1y1 (x®r Y), is a chain isomorphism.—Exercises 1 and 2 illustrate
how useful the sign rule 9.8 is.

3* Ift: OR-Mod — 04% is a (covariant) functor between complexes then
we define a 0-structure on t to be a natural chain-map t: Homg(D, D') —
Homg(tD,tD’) such that Z,1: Z,Homg(D,D')— Z, Homg(tD,tD’)
agrees with ¢: [D, D'} —[tD,tD'] where [ ] denotes the set of chain
maps. Show that t=Cez—(C fixed) admits a J-structure. Prove that a
strongly additive right exact functor ¢ with J-structure is completely
determined by its value on R=(R, 0); in fact, t D =t(R, 0)eg D (compare
54, 5.8). Formulate and prove the dual result for cofunctors (see 6.4, 6.8).
Show that the functor “n-skeleton”, defined by (tX),=X; for i<n,
(tX);=0 for i>n, &*=0X or 0, does not admit any d-structure (hint: it
does not preserve homotopies).

4* If C, C, D, D’ are complexes over a principal ideal domain take chain
maps C - C,C'— C), ..., as in lemma 10.16. They induce a commutative
diagram
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Hom(C, C')e Hom(D,D')— Hom(C, C')eHom(D,D’) «— Hom(C, C')e Hom(D, D")
(10.30) y y y

Hom(CeD,C'®D')—> Hom(CeD,C'®D’) «—Hom(CeD,C eD).

Use this and the Kiinneth theorems 9.13, 10.11 to establish an exact
sequence 10.25 under weaker assumptions than above. For instance,
the complexes C, D need not be free if one assumes instead that

(i) The complexes Ext(C, C'), Ext(D, D'), Ext(Ce D, C'®D’) are acyclic.
(i) The complexes C* D, C'x D', Hom(C, C')* Hom(D, D') are acyclic.

I don't know whether the assumptions on C’, D' can be replaced by the
corresponding assumptions on HC', HD'.

-
>

11. Acyclic Models -

- =

L

We have already used the method of acyclic models implicitly in proving
homotopy invariance of singular homology (III, 5). Now we give it a
general explicit formulation. We shall use it again in § 12 to prove the
Eilenberg-Zilber theorem.

11.1 Definition. Let # be an arbitrary category, and F: 4 — &% a
covariant functor to abelian groups. A base of F is a family of elements
{m;};cs, such that me FM;, M;e A, and such that for every Xe " the
abelian group FX isfreely generated by {(F a) m;}, where jeJ, et (M, X).
We say, F is free if it has a base.

If # cOb(X) is a class of objects containing all M;, then one also says
F has a base in #, or F is free with models in .4 . We shall often think of
4 asa subcategory of )¢, having the same morphisms (between M, M'e.#)
as A, i.e. as a full subcategory. ‘

For instance, if 4 =J04 then FX =S, X is freely generated by {5(i,)},
where 1,=id€ S, (4,) and ¢: 4, — X, hence the element 1, is a base for S,,.
If A" =04 xJop then F(X,Y)=5,(X xY) is free with base (i,,1,)e
S.(4,x4,), and F(X, Y)=(5Xe®S8Y),=®,,,_.5,X®5, Y has a base in
'/ﬁn= {(Ap’ Aq)}p+q=n’ namely {lp® lq}p+q=n'

11.2 Proposition. Let F: ¥ — o/ % be a free functor with base {m;e FM};_,,
and let W: A" — o/ % be any functor. If {w;e WM};_, is any family then

there is a unique natural transformation ®: F — W such that ®(m;))=w;,
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for all jeJ. In other words, natural transformations F — W are completely
determined by their values on a base, and these values can be prescribed.
This universal property justifies the adjective free (compare with I, 2.20).

Proof. If ¢: F— W is a natural transformation then ®((Fo)m;)=
(Wao)(®m;), for every o: M;— X. Since {(Fg)m,} is a base of FX this
shows that @ is indeed determined by its values on {m;}. This also indicates
how to construct  when {w;} is given, namely &: FX — WX takes a free
generator (Fo)m; of FX (where g: M; — X) into (Wa)w;. One has to
check naturality: If g: X — X’ is a morphism then

(@ F(g)) ((F o) m)=®(F (ga) m;)=W(g o) w;=W(g) W(a)w;
=(W(g)> D) ((Fo) m)),
hence @0 F(g)=W(g)-P. 1

11.3 Corollary. Let 4 < A be a full subcategory, and assume F: A" — A9
. has a base {m;je FM};.; such that M;e ./ for all j (F has a base in ).
Then every natural transformation F|.# — W|.# has a unique extension
F — W (where W: 4 — /% is any functor).—Indeed, both F|.# — W|.#
and F — W are characterized by their values on {m;}. 1

This corollary admits a useful generalization to quotients of free functors,
as follows.

11.4 Proposition. Let F;, "> F,—*>G —0 be an exact sequence of
natural transformations between functors A — /% (exact means: exact
onevery X e A"). Assume Fy has a base in My A, and F, a base in M, < A.
Let W: A — /G be a functor such that for every non-zero we WM,
M'e,, there is a morphism g: M'— M with Me #, and (Wg)w +0
(this isralways fulfilled if .#, =.#y). Then every natural transformation
Yi Glodly— W| My admits a unique extension ¥: G— W to the whole
category A.

Proof. If ¥, ¥,: G — W agree on .#,, then ¥, &, ¥, n agree on .#,, hence
Y,n=%n by 11.3, hence ¥, =", because 7 is surjective. Assume now
V. G\ My — W\ M, is given; then o=y (n|.4,): F,| M, — W|.MH, admits
an extension @: F, — W, by 11.3. If we show that @ p=0 then we can
define ¥ by Y n=9 (because G=cokernel (p)). Let me F M', M'e M,
and g: M’ - M a morphism, Me.#,. Then

(W) (@ p) m' =(P p) (F, g) m' =((P|Mo) (p| Mo)) (F g) m'
=y (n|Mo) (p| M) (Fy g) m' =0,
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the latter because = p=0. Thus w' =(P p) m' isannihilated by allg: M'— M,
hence it is zero by assumption, hence (@ p)|.#,; =0, hence @ p=0 because
F; has a base in ., (cf. 11.3). 1

11.5 Lemma (compare with 1I,4.7). Let

F2sW, =W ,

(11.6) ¢ Im J«M

Wy Wy~ W2,

be a commutative diagram (without ¢ as yet) of natural transformations
between functors A — 4'%. Suppose F has a base in M <A, 151, =0, and
the second row is exact on M (ie. WM — WgM — W' | M is exact for
every Me ). Then 11.6 can be completed by a natural transformation ¢.

Proof. For every me FM we have t4(@o 1y(m)=¢_, 1o1(m=0. If
Me# then ¢, t,(m)=rt)(w) for some we W) M, because the second row
is exact. In particular, there are elements {w;e Wy M;};_; such that
73(w;)= @, T4(m;), for every basic generator mye FM; of F. By 11.2, there
is a natural transformation ¢: F— W, such that ¢(mj)=w;. Then
7y ¢ and @, Ty agree on {m;}, hence they agreg,by 11.2. 1

11.7 Proposition (Acyclic Model Theorem). Let F,V: 4 — 0% be
covariant functors from A" to colgplexes such that F;=0=V, for i<Q.
Assume there are M= A" for k=0, 1, ..., such that F, has a base in M,
and H, , VM =0 for Me M, , or Me M, ,. Then every natural trans-
Jormation @¢: Hy F — H, V is induced by a unique (up to natural homotopy)
natural chain map f: F — V. In symbols,

Hy: n[F,V]=[H,F,H, V],

where n[ ] denotes the group of (natural) homotopy classes of natural
chain maps, and [ ] the group of natural transformations.

Proof. Given ¢, we have to find f, i.e. we have to fill the diagram
f

o F, 25 F, % Fy,——H,F -0

(11.8) VR Y 0
N Vv i

oV, —25 ¥, 25 Vyg—— Hy V —0.
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According to 11.5 this can be done step by step (using H, ,, VM =0 for
Me'//lk+ 2)-

Suppose now f: F— V is a natural chain map with H, f=0. We have to
construct s={s,: F, — ¥, ,;} such that Js,+s,_, 0=f,. Proceed by
induction on k starting with s_, =0. The inductive step from k—1 to
k>0 consists in filling the diagram

F, id . F, »0

(11L.9) lfk_sm J

V;c+1 Fl Vi 7 > Vi1,

where for k=0 one replaces V_; by H, V. By 11.5 again, this can be done
(using H,, , VM =0 for Me %, ). 1

In 11.7 we make no assumption about H, VM; if we do then we can
improve the theorem as follows.

11.10 Corollary. In the situation 11.7, assume that for every non-zero
veH,VM', M'e,, there is a morphism g: M'— M such that M e,
and (Hy,Vg) v=£0. Then every natural transformation Hy F|.#,— H,V|.#,
is induced by a unique (up to natural homotopy) natural chain map F — V;
in symbols, n[F, V]=[H, F|.#y, Hy V| #,]. Thus, natural chain maps
F — V are characterized (up to ~) by what they do to Hy FM, Me #y.—
This follows because 11.4 (with G=H, F, W=H, V) asserts [H, F|.#,,
H,V|4#,]=[H,F, H, V], and the latter equals =[F, V] by 11.7. i

11.11 Exercises. 1. Call a functor P: A" — /9 pro-free if it is a direct
summand of a free functor F: 4 — /%, i.e. if natural transformations
P——> F—2 P exist such that p: is equivalent to ID. Generalize the
preceding results from free to pro-free functors. If 0 > V' >V > V" -0
is an exact sequence of natural transformations between functors
A — 4% and P is pro-free then 0 — [P, V'] [P, V] -[P, V"] -0 1is
also exact, i.e. pro-free functors are projective in the sense of 6.21.

2. If A" is a small category (objects form a set) and V: " — /¥ is any
functor then there exists a free functor F: 2 — /% and a natural
epimorphism ¢: F—V. (Hint: For every KeJ, veVK, XeX, let
Fx ,(X) denote the free abelian group generated by J (K, X), and
&k o Fx ,(X)— VX the natural homomorphism given by ar (Va)v,
aeA (K, X). Put F=@®k, , Fx.,» ®={Px.,}.) Use this and Exercise 1
to show that every projective functor ¥ — /¥ is pro-free. Compare
with Dold-MacLane-Oberst.
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3. Using 11.10, show that the group of (natural) homotopy classes of
natural chain maps SX — SX, X €74, is freely generated by the identity
map; in symbols, 7 [SX,SX]=~Z. More generally, if I is a (non-empty)
acyclic space, HI =0, then [ SX, S(X x I)]isa free cyclic group, generated
by S(i,) where Pel, and i,: X — X x I, i,(x)=(x, P). Compare this with
II1, 5.7 and 6.6.

4. As in Exercise 3, show n[SX,SXeSX]~Z, where XeJop If
¥: SX —SX®SX is a natural chain map, then there is an integer n such
that Y (o)=n(c®g) for all zero-simplexes a: 4, — X (this follows from
naturality, applied to ¢); the assignment iy — n induces the above iso-
morphism. In particular, there is a unique (up to natural ~) natural
chain map D: $X — SX®SX such that D(o)=0c®0 for 6: 45— X. This
D is called the natural diagonal of SX.

5% Let F,V: 4 — 04% be functors from ¢ to complexes such that
F=0=V, for i<0. Assume .# < exists such that every F, has a base
in 4, and H VM=0 for Me.# and k>0. Let Hom(F, V) denote the
following complex: Hom(F, V),=0 for n<0, Hom(F, V), =group of
natural chain maps F — V, Hom(F, V), =[], [Fy, Vi, ] for n>0 ([ ] as
in 11.7), and boundary operator 8{ f,}={0" o fi} — {(—1)" f 0 8}, as in
10.3. Use 11.7 to prove H, Hom(F, V)=0 for n+0, H, Hom(F, V)~
[H, F, H, V1.

If Ceost¥ is a free complex with C,=0 for n<0, and ¢: H, C—
[H, F, Hy, V] is a homomorphism then there is a unique (up to ~) chain
map ¢: C— Hom(F, V) which induces ¢ (cf. 3.5). Passing to adjoint
homomorphisms (8.20, Exerc. 3) shows: If {,,: HyCeHy FM — H, VM,
Me M, is a family of homomorphisms which is natural on M < A" then there
is a unique (up to ~) natural chain map ¥: Ce FX - VX, Xe X, such
that Hy ¥y, =V, for Me.#. This is the acyclic model theorem with para-
meters C. It is contained in 11.7 if C=(Z, 0). It extends to complexes C
such that H Ext(C, Hom(F, V))=0, Ext(H_, C,[Hy F, Hy, V])=0 (use
10.13).

12. The Eilenberg-Zilber Theorem.
Kiinneth Formulas for Spaces

Using acyclic models we prove S(X x Y)~SX®SY for every couple of
spaces X, YeJop. Combining this with the Kiinneth theorem 9.13 we
can express H(X x Y)in terms of HX, HY. If every H; X is finitely gener-
ated then there is a similar formula (12.18) expressing the cohomology
H*(X x Y) in terms of H* X, H* Y.
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12.1 Eilenberg-Zilber Theorem. The functors (SX)®(SY) and S(X x Y)
Sfrom Jop x Tope (couples of spaces) to 0.4% (complexes) are homotopy
equivalent. More precisely, there are unique (up to homotopy) natural chain
maps

®: (SX)o(SY) 2 S(XxY): ¥
such that

Dy(a®t)=(0,17), ¥(0,T)=0®7, for O-simplices o: 45— X, 1:4,—Y.

Any such chain map is a homotopy equivalence; in fact, there are natural
homotopies ¥ ~id, YP~id. Any such chain map will be called an
Eilenberg-Zilber map, and will be denoted by EZ.

Analogous results hold for three or more spaces (or for a single space!)
and functors like SX®SY®SZ, S(X x Y)oS$Z, S(X x Yx Z).

Proof. Write F(X, Y)=5X®3Y, F'(X, Y)=S(X x Y). Both F and F' are
free (cf. 11.1); in fact, F, has a base in {(4,, 4,)},, 4—k, and F; in (4, 4,),
namely {(1,®1,)},, -« resp. (i, 1), where 1,=id(4,). Because 4, and
4,x A, are convex we have (111, 4.6)

S(4,x 4)~(Z,0), (S4,)8(54,)~(Z,0)e(Z,0)=(Z, 0),

hence Hy F, H, F' vanish on all models (4,, 4,) for k>0, and (4, 4,) —
(44, 4,) induces isomorphisms of H,, F, H, F’. We can therefore apply 11.10
(with V=F or F'); since .#,=(4,, 4,) 1s a single object,and H, F(4,, 4,)
resp. Hy F'(d4,4,) is freely generated by 1,@1, resp. (i9,1,) we see
that unique (up to natural ~) natural chain maps ¢: F—>F, ¥Y: F' > F
exist such that @(i1,®15)=(1g, lo), P(1g,10)=10®1y. Then PP (1,®15)=
19®1y, P¥(1g,10)=(1g, o), hence (by 11.10 again) Y@P~id, ®¥ ~id.
Finally, @(1o®14)=(1, 1p) implies @,(c®7)=(0,7) by naturality of &
applied to g: 49— X, 1: 45— Y; and ¥(iq, 15)=1¢®1, implies ¥ (o, 1)=
o®1. The obvious generalization to three or more spaces is left to the
reader. |

12.2 Corollary. For arbitrary Eilenberg-Zilber maps the following
diagrams are homotopy commutative.

SXeSY —EZ,5(XxY) SXeSY<EZ _S(XxY)

(123) tl 13(!) tl ‘S(I)

SYeSX —E25S§(YxX), SYoSX «EZ S(Y xX),
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where t(x,y)=(y,x), tuev)=(—1)""veu (“commutativity of EZ-
maps”).

SXeSYeSZ L2819, 5(X x Y)oSZ SXeSYeSZ L2194 §(X x Y)eSZ

(12.4) id®EZJ lsz id@Ez] }EZ

SXeS(YxZ)—5—S(XxYxZ), SXeS(YxZ)5—S(X xYx2Z)
(“associativity of EZ-maps”).

SXe®SP—EZ ,§(X x P) SX®SP«EZ _§(X x P)

(12.5) id®nl Jproj id®nl ]pw.i

SX ®(Z,0)—id— SX, SX®(Z,0) 94— SX,

where P is a point, n=augmentation (* EZ preserves units”).

Indeed, in each case the two ways of going from one corner to the
opposite one induce the identity in dimension 0 (or on H,), hence are
(naturally) homotopic. 1

12.6 Corollary. For arbitrary EZ-maps @, ¥ and arbitrary pairs of spaces
(X, A), (Y, B) we have commutative diagrams with exact rows

0->SAeSY+SXeSB—=— SXoSY—— SX/SAeSY/SB —0

12) ” N | H

S(X x Y)

0.

The vertical maps are induced by @, ¥, and
S{Ax Y, X x By=im[S(4 x Y)& S(X x B)-&55 §(X x )]
as in I11, 7.1. Moreover, there are natural homotopies & V' ~id, V' &' ~id,
P'Y’'~id, V' @ ~id.
Proof. Naturality of @ applied to j*: A—=- X and id, shows
P(SAeSY)c=S(AxY);

similarly ¢ (SX ® SB)c S(X x B), and analoguously for ¥. This gives
the maps &', ¥, @”, ¥". Since the homotopy @¥ ~id is natural it maps
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S{Ax Y, X x B} into itself, hence induces ¢' ¥’ ~id, & ¥’ ~id. Simi-
larly for ¥' &' ~id, ¥ ¢" ~id. 1

12.8 Corollary. For pairs of spaces (X, A), (Y, B) we have natural maps

SX SY S(X x Y)
12. Ez ,
129) S ®SE = S{AxY.XxB}

>S(XxY,AxYuX x B).

The second map is a homotopy equivalence if and only if (X x Y,Ax Y, X x B)
is an excisive triad (e.g. if A and B are open, or one of them is empty,
cf. I11,8.1). 1

Combining 12.8 with the Kiinneth theorem 9.13 we get

12.10 Corollary. For pairs of spaces (X, A),(Y, B) such that (X xY;
A XY, X x B) is an excisive triad there exist natural exact sequences

0— @i, _a[Hi(X, Ao H;(Y,B)] *2% H (X x Y, Ax YUX x B)
LE @, jan 1 [Hi(X, A)x H (Y, B)] -0,

and these sequences split (but not naturally). |

We can, of course, apply any additive functor &/% — /% to 129 and
still get a homotopy equivalence (if (X x Y; Ax Y, X x B) is excisive).
For instance, if L, M are R-modules we get
(12.11) (SX/SAeL)eg(SY/SBeM)=(SX/SAeSY/SB)e(Leg M)

' ~S(XxY, AxYUX xB)®(LegxM),
hence (by 9.13)

12.12 Corollary. For pairs (X, A),(Y, B) as in 12.10, and modules Le.#od-R,
MeR-Mod over a hereditary ring R such that Lxg M =0 there exist
natural exact sequences

0—-H(X,4;L)eg H(Y,B;M)>H(Xx Y, AxYUXXB;LegM)
—H(X, A; Lyxg H(Y, B; M)* -0,
and these split (not naturally). In particular, if R is a field then

(1213) H(XxY,AxYUX xB; R)~H(X, A; R)eg H(Y, B;R). 1

We now compare the cohomology of X, Y and X x Y. Remark first that
(12.14) Homgz(SX, M)~ Homg(SX ®z R, M)
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for every ring R and R-module M; both sides, indeed, can be identified
(in dimension n) with the set of all functions f, defined on the set of all
singular n-simplices a: 4,— X, and with values f(6) in M. Under this
identification the chain map y of 10.23 (with C'=(L,0), D'=(M,0);
L, M modules) becomes

(12.15) 7. Homg(SX, L)@z Hom,(SY, M) > Homz(SX ® SY, Loy M),

' (v(ferg)(oez1)=(— 1 (fo)erlg 1),
and Proposition 10.24, case II, asserts that 12.15 is a homotopy equi-
valence if the graded R-modules H(X; R), H(Y; R) are of finite type, or

if H(X;R) is of finite type and L is finitely generated (R a principal-
ideal domain).

In this argument one can replace X, Y by pairs (X, A), (Y, B). Moreover,
one may replace SX/SA®SY/SB by the homotopy equivalent complex
SXxY,AxYuXxB) if (XxY;4AxY,XxB) is excisive (cf. 12.8).
Proposition 10.24, case I1, then implies

12.16 Proposition. Let L, M be modules over a principal ideal domain R,
and let (X, A), (Y, B) be pairs of spaces such that (X xY; Ax Y, X x B) is
excisive. If the graded modules H(X, A; R), H(Y, B; R) are of finite type,
or if H(X, A; R) is of finite type and L is finitely generated then
Homg(S(X, A), L)@ g Homg(S(Y, B), M)

(12.17)
— Homg(S(X x ¥, Ax YUX x B), Leg M)

is a homotopy equivalence. If, moreover, Lxg M =0 then the Kiinneth
theorem 9.13 applies and yields natural split-exact sequences

OH@i-}-j:nHl‘(x‘l A; Lyeg H'(Y, B; M)

(12.18) >H'(XxY,AxYUuXxB;LegM)
= @iy jonsr HOX, A3 L H(Y, B; M) 0.

In particular, if R is a field, and (X, A), (Y, B) are pairs of spaces such that
(X xY; Ax Y, X x B) is excisive and H(X, A; R) of finite type then
(12.19) H¥*(Xx Y, AxYuX x B; M)~H*(X, A; R)eg H*(Y, B; M)
Jor all vector spaces M over R. |}
We conclude this chapter by some remarks on diagonal chain maps

SX—-SX®SX. Forevery space X we have the diagonal map 4: X —» X x X,
Ax=(x,x); it induces a natural chain map 4: SX—-S(X xX). If



12. The Eilenberg-Zilber Theorem. Kiinneth Formulas for Spaces 183

EZ: S(XxY)—>SX®SY is an Eilenberg-Zilber map then we can take
Y=X and compose EZ with 4; the composite natural chain map

(12.20) D: SX—2 58S XxX)—F»SXeSX

is called a natural diagonal of SX. It depends on the choice of EZ but
its homotopy class doesn’t.

If A,, A, are subspaces of X then D maps S{A4,, A,}—the subcomplex
of SX which is generated by SA4;, SA,—into S4,®8SX +SX ®SA,; this
follows from 12.6 or directly from naturality of D. Passing to quotients
it induces therefore a (relative) diagonal

(12.21) D: SX/S{A,, Ay} >SX/SA,®SX/SA,

which is still unique up to (natural) homotopy. Even more generally, we
have D: SX/S{«,, o} —>SX /S, ©SX/Se#, where o, o/, are arbi-
trary families of subsets of X, and {.#, o,} is their union,

The properties of Eilenberg-Zilber maps carry over to diagonals. In
particular, 12.3, 124, 12.5 become

(12.22) tD~D  (commutativity),

where 7: SX @ SX > SX ®SX permutes factors, t(uev)=(—1)""veu. 1

(12.23) (ide D)o D~(D®id)o D  (associativity),
both sides being maps SX >SXeSXeSX. |

(12.24) (iden)e D~id=(neid)o D  (units),
where : SX —(Z, 0) is the augmentation, and
SXe®(Z,0)=SX=(Z,0)eSX. 1§

These relations still make sense, and are true, in the relative case dis-
cussed above.

The map EZ: S(X x Y)—>SX ®SY which enters into the definition of
the diagonal D can be recaptured from D; more precisely

(12.25) EZ=(p®q)o D,

where D=Dy,y: S(XxY)>S(XxY)®S(XxY), and p: XxY—X,
q: X x Y'Y are projections. Indeed, if we apply naturality of EZ to
(p,q) we get EZo(pxq)=(p®q)oEZ, and if we compose this (on the
right) with A=4x,y: S(X xY)>S{(X xY)x(X xY)) we get 1225
because (px q)e A=id, EZo A=D.
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Natural diagonals can be defined, and their properties derived, without
referring to Eilenberg-Zilber maps (but using acyclic models; cf. 11.11
Exerc. 4). In fact, natural diagonals SX —SX ® SX and Eilenberg-Zilber
maps S(X x Y)—»SX @ SY are formally equivalent notions (cf. Exerc. 5).

12.26 Exercises. 1*. For every 0<j<n define linear maps &}, &}: 4;— 4,
g(e)=e;, &i(e)=ei, ._j, i=0,1,...,j, where {e} are the vertices of 4.
Show that the following sequence AW of homomorphisms

(1227) AW:S,(X x Y)—>(SX®SY),, (AW)(0,71)=) o jcn(0ED@(TE)_))

(where (0,7): 4,—X x Y) is an Eilenberg-Zilber map; in particular,
0(AW)=(AW) 0. Show that AW is strictly associative (not only up to
homotopy) in the sense of 12.4 but not strictly commutative (12.3).—The
notation AW stands for Alexander-Whitney who, implicitly, used this
map in their definition of cup-products.

2* If p, g are non-negative integers then a (p, q)-shuffle (u, v) is a pair of
disjoint sets of integers

I<py<py<-<p,<p+q, [<vi<vy;<--<v<p+q

between 1 and p+gq. Let sign(u, v) be the sign of the permutation
(11, 82, o5 pp, vy, ..., v ) (Of the integers 1, ..., p+q). Define a linear map

n: A, ,—4,, by n')=e if w<i<p;,,,

where ¢' are the vertices of 4, and p,=0, y,,; =p+4q+ 1. Define homo-
morphisms

Vpe! S,X08,Y—S, (X xY),

(12.28) '
qu(a ® ‘C) = Z Slgn (#’ V)(O' ° 7"‘, To ’7")3

where g: 4,— X, 1: 4,—Y, and the sum ranges over all (p, q) shuffles
(&, v). Show that the following sequence ¥ of maps

(1229) V,={V,.}praun: (SX®SY),=®,,,_.(S,X©S,Y)>S(X x Y),

is an Eilenberg-Zilber map; in particular, 0V =¥ 0. Show that the “shuffle
map” ¥ is strictly associative and commutative in the sense of 12.3, 12 4.

3. By 1.12 Exerc. 4, if C is a free R-complex such that C;=0 for i<0
and HC is also free then C~HC. Use this and the Eilenberg-Zilber
theorem to show that H(X x Y; M)~H(X;R)egH(Y; M) if X is a
space such that H(X;R) is free (as a right R-module; MeR-#od).
If H(X;R) is a free right R-module of finite type then one also finds
H*(X x Y; My~ H*(X; R)eg H*(Y; M). Similarly for pairs (X, A4), (Y, B)
of spaces. Compare with 12.13 and 12.19.
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4 f X=Y=8"vS"vS"v ..., is an infinite wedge of spheres then the
map Homgz(SX, R)®g Homg(SY, R) > Homg(S(X x Y),R) of 12.17 is
not a homotopy equivalence (does not induce homology isomorphisms).
A more general result (and a hint) can be found in VII, 7 Exerc. 1.

5. Let A" be a category with products m: A x A —A (cf. I, 1.15), and
let @: A >4 xA denote the diagonal functor, @X =(X, X). Show
that for arbitrary functors S: X" —>.%, T: A x A — ¥ there is a 1-1
correspondence between natural transformations D: S—To@® and
natural transformations E: Ser1— T, given by Dy=Egyo S4, or Exy=
T(p,q)e Dx.y, where 4=(id, id): X - X X is the diagonal morphism,
and p,q: XM Y— X, Y are the projections.

If A" =4 is the category of topological spaces, & =029 the category
of complexes, S the singular complex, T(X, Y)=SX®SY, then 12.20
(or 12.25) shows that natural diagonals D: SX - SX ®SX correspond
to Eilenberg-Zilber maps E: S(X x Y)— SX @SY. Verify that a natural
chain map D: SX —>SX ®SX corresponds to an Eilenberg-Zilber map
(is a natural diagonal) if and only if Do=06®0c for every O-simplex o.



Chapter VII

Products

There are many products in (co-)homology theory of spaces; we shall
treat about eight here. All of them are combinations of the following
ingredients: (i) Relations between ® and Hom which are familiar from
(multi-)linear algebra; (i) the mappings a«: HC® HD — H(C® D) and
o: HHom(C,D)— Hom(HC, HD) of V1,9.11, 10.8; (iii) the Eilenberg-
Zilber mappings VI, 12.1—plus, of course, the standard functorial
properties of (co-)homology. The significance of products lies in the
extra structure which they introduce in (co-)homology. The —-product,
for instance, turns H*(X; R) into a graded ring (cohomology ring) and
makes H*(—, R) a functor from Joz to the category ¥%¢ of graded
rings (R a ring with unit). This functor provides a much more accurate
picture of Jz4 than the mere cohomology group which is obtained by
composing H*(—, R) with the forget-functor F: ¥%¢ — 949 (F assigns
to every ring its additive group).

In the whole Chapter VII the following rule applies: If a is a (co-)chain
resp. (co-)homology class with coefficients in Le #od-R and b is with
coefficients in M e R-#od/ then any one of the products a L b which we
consider has coefficients in Ley M. Sometimes this will be explicitly
stated but in other cases we shall not write the coefficients (in order to
simplify the notations), and then it is implicitly understood. If C is an
R-complex and M an R-module we use the following abbreviations:
H Hom (C, M)=H*(C, M), ZHom(C, M)=Z*(C, M), BHom(C, M)=
B*(C, M); with indices, H_, Hom(C, M)= H%(C, M) etc. The elements of
these groups are called cohomology classes (cocycles, coboundaries) of C
with coefficients in M. If f: C— D is a chain map then we write f*=
H Hom( f, M): H*(D, M)— H*(C, M) for the induced homomorphism.
The analogous notations VI, 7.1 for singular cohomology will also be used.

With minor exceptions there are only the following logical dependencies
between the various §§ of this chapter:

325556, 7-8J5, 1112
}
4
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Thus, the reader can study cap-products (§12) without reading §§1-10
first—although he will find the going easier if he knows §§ 7-8.

For simplicity, we assume from §2 on that the ground ring R is com-

mutative—although at the cost of some nofational inconvenience this
g

restriction could easily be avoided.

1. The Scalar Product

1.1 Definition. For every (right) R-complex C and R-module M we
define a map

Homg(C,M)x C—>M, (¢,c)— ¢(c).

This is clearly biadditive, and R-linear in the second variable ceC;
if R is commutative then it is R-bilinear. It induces therefore (cf. VI, 8.11
and 8.19) an R-homomorphism

e: Homgz(C,M)e,C—M, e(pac)=p(c);

1.2
-2 resp. e: Homg(C,M)exC—»M if Riscommutative.

This is a chain map:
ed(poc)=e(d(@)ec+(—1)"? podc)=(3(p)c+(-1)*¢p(dc)
=(@o@—(—1)"'god)c+(=1)'p(dc)=de(poc).
We can therefore pass to homology and compose with « (cf. VI, 9.11),
(1.3) H*(C,M)& HC —*>H(Hom(C, M) ® C) "> M.

The composite map 1.3, or the corresponding biadditive {resp. bilinear)
map H*(C,M)x HC— M. is called the scalar product, and the image
of x®¢ is called the scalar product of x and £. We write

(1.4) (x,E)=e,a(xef), xeH*(C,M), ((eHC.
With representative (co-)chains 1.4 becomes
(1.5) el [z =0(2), for peZ*(C,M), zeZC.

This shows that {, ) can also be expressed in terms of the map
a: H Homg(C, M)— Homg(HC, M) of VI, 10.8, namely

(1.6) {x, & =(a(x))(&).

Therefore the universal coefficient sequence VI, 4.4 gives
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1.7 Proposition. If R is hereditary and H Extg(C,M)=0 (e.g. if C is
free) then

H"(C,M)— Homg(H,C, M), xi>{x, —>
is epimorphic, and its kernel is isomorphic with Extg(H, | C,M). 1§

For instance, if R is a field (hence Extz=0) and H, C has finite vector-
space dimension then {, >: H"(C,R)x H,C —R is a dual pairing in the
sense of linear algebra.

If f: C—»D is a chain map and yeHom(D, M} then (¥ f)c=y(fc),
hence from 1.5,

(1.8) S*nO=Wf, &, yeH*(D,M), EeHC;

ie. f* and f, are transposed maps (in the sense of linear algebra) with

respect to the scalar product {, .

Similarly, 8* and 0, are transposed maps. More precisely, if 0 > C'—— C

—25C"—>0 is an exact sequence of chain maps (over R) such that

0 —Hom(C', M)«—Hom(C, M)«—Hom(C", M)«-0 is also exact then
(&*x, &= —(—1"1{x, 0,87,

(1.9)
for xeH*(C',M), ¢"eHC".

Indeed, " =[pc] for some ce C, and 8, £" =[z"] where i z'=0c; similarly,
x'=[goi] for some peHom(C, M), and 6*x'=[¢"] where ¢"op=
5o =—(—1)"'god. Hence (5*x', "> =" (p)=(9" op)c=— (-1 pdc
=—(=DNpoiyz'=—(=D(x,,E".

Note that 1.9 would take the simpler form {(6* x’, &> =(x’, 0, &") if we
defined d @ = ¢ o4 (compare VI, 10.28); in later § of this chapter, however,
8¢ = —(—1)1! @ od is far more convenient.

More generally than above, we can tensor the map 1.2 with a left module
M’ and get

e®gid: Homy(C,M)e(Cex M) >MeyM';
(e@gid), a: H*(C,M)® H(CexM')—Me,M';
(x,&>=(e@gid), a(xel)eMe M’
for xeH*(C,M), ¢EeH(CexM').

(1.10)

If, moreover, a homomorphism n: M ® M’ — N is given one can compose
with 7. Sometimes 7z {x, &) is still denoted by {x,&> and called the
scalar product of x, & with respect to the pairing =.
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1.11 Example. For topological spaces X one easily proves (cf. VI, 12.14)
Homg(SX ®; R, M)~ Hom,(SX, M).

Therefore, with C=SX @R, the scalar product 1.4 becomes

(1.12) (> HMX;M)xH (X;R)—M,

and this is a dual pairing provided M=R is a field and H,(X; R) has
finite vector-space dimension. Similarly, if X is replaced by a pair (X, A)
of spaces, or/and a second module M’ is used as in 1.10, one gets

(1.13) Ly HYX, Ay M) H (X, A; M') > Meg M.

1.14 Exercises. 1. If R is any ring (not necessarily hereditary), and X
is a space such that H(X; R) is R-free then

H*(X;M)— Homg(H(X;R, M), x—<{x,—)

is isomorphic (hint: use VI, 2.12 Exerc. 5).

2. Use 18 to show: If f: §"—S" n>0, has degree k then [*(x)=kx
for every xe H*(S"; M).

3. If X is a space such that H,(X; @) has finite vector-space dimension,
and f: X —X is a continuous map then the endomorphisms f, of
H, (X;®) and f* of H"(X; Q) have the same trace (in fact, the same
characteristic polynomial). This (rather trivial) remark can be useful
in computing fixed-point indices (cf. 9.12 Exerc. 3).

2. The Exterior Homology Product

¢ —————

From now on the ground ring R is assumed to be commutative.

2.1 Definition. The exterior homology product HX x HY > H(X x Y)
is obtained from the Eilenberg-Zilber map SXeSY—S(XxY) by
passing to homology and composing with a. More generally, let (X, 4),
(Y, B) be arbitrary pairs of spaces, L and M R-modules, and consider
the composite chain map

SX SY s S(XxY)
22 oL)e, (>rem) F2, SEXT)
(SA ® )®R(SB® ) Sidx Y xxB) 2Le=M
2.2)
 S(XxY)
N
Stax Yux xB) °LerM):
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where S{Ax Y, X xB}<=S(XxY), as in III, 7.1, is generated by sim-
plices in AxY or X x B, and j is induced by inclusion. Passage to
homology and composition with

SX SY
a: H (g‘z@L) ®RH(S—B

SX SY
®M) %H(KZ@L®R‘S—B‘®M)
gives

J(EZ), a: H(X, A; LYyeg H(Y, B; M)
23) S H(X xY,AXYUX x B; LagM),
or with indices,
(2.3) H{(X,A;L)egH(Y,B;M)—>H, (X xY,AxYUX xB;LegM).

This map or the corresponding bilinear map is called the exterior homo-
logy product. We write

(24) Exn=j(EZ), a(leneH(Xx Y, Ax YU X xB;LegM),

where Ee H(X, A; L), neH(Y, B; M).

In terms of representative relative cycles this reads

2.5) [a]x [b]=[EZ(a®gb)],

where ae(SX)@L, dac(SA)e L, be(SY)e M, 0be(SB)e M.

The Eilenberg-Zilber map EZ is a homotopy equivalence (VI, 12.1), and
the map j is a homotopy equivalence if (X xY;AxY,X xB) is an
excisive triad (III, 8.1). Therefore, the Kiinneth theorem VI, 9.13 implies
(cf. VI, 12.12)

2.6 Proposition. If (X, A), (Y, B) are pairs of spaces such that (X xY;
A x Y, X x B)is an excisive triad (e.g., A, B open, or B=0), and if Lxx M =0
(R being hereditary) then

@i vn Hi( X, A; LYo H (Y, B: M) H (X xY; AxYUX xB; LegM),
fen—Eixn
is a split-monomorphism whose cokernel is naturally isomorphic with

@i..},k:n-lHi(XsA;L)*RHk(XB; M)' .

We now list some properties of x. If f: (X, 4) » (X", 4),g: (Y, B)— (Y', B')
are maps then naturality of EZ says (fxg)EZ(aeb)=FZ(fa®gb),
hence by 2.5 (with &= [a], n=[b])

(2.7) (S %8, (Exm=(f, &)x(g,n) (naturality).
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Commutativity (VI, 12.3) and associativity (VI, 12.4) of EZ imply

(2.8) tExm=(—1)"yx¢&  (commutativity),
and
(2.9) Exmx{=Ex(nxD) (associativity),

where e H(X, A), ne H(Y, B), (e H(Z, C) (with appropriate coefficients)
and t: X x Y- Yx X is given by t(x, y)=(y, x).

If Y=P is a point, B=0, and 1P =1eR=H,(Y;R) then (X x ¥, Ax Yu
X xB)=(X, A) and
(2.10) 1PxE=Ex1P=¢  (unit element).

This follows from VI, 12.5.

Compatibility of x and ¢, is expressed by the following commutative
diagram (coefficients omitted)

H(X,A)® H(Y,B)—* >H(X x Y, Ax YU X x B)

.

(2.11)  (®id(-1)4imid®2d,) H(Ax YUX x B, AxB)

Liu, i24)

[HAeH(Y,B)]o[H(X; A)® HB)]—*®*> H(A x Y,A x B)o H(X x B,A x B),
where i, i, are inclusions; i.e. we claim

212) 3, Exn)=i, [0, &) xnl+iy [(—1)Exa, n]  (stability).

In the important special case B=§ wc have i; =id, i, , =0, and stability
reduces to

(2.13) 0,&xm=(0, &) xn, <&eH(X,A4), neHY.
Proof of 2.12. Let aeSX, beSY be representatives of &, n; in particular,
daeSA, 6beSB. Then
EZ(Ga®b)eS(Ax Y)=S(Ax Yu X x B) represents i, [(0,¢)xn],
EZ(a®0b)eS(X x B)cS(Ax YU X x B) represents i, [¢x3,n],

and
MNEZ)(a®b)=(EZ)d(aeb)=EZ(8a®b)+(—1)*' EZ(a®db)

represents 0,(Exn). 1
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2.14 Example. If we identify R" xIR"=R™*" then
(R™—{0}) x R U(R™ x (R"— {0}))=R"*"— {0},

and we get

H,R",R"—{0})e H,([R",R"~{0}) 2> H,, ,R"*", R"*"—{0}).
If all coefficients are taken in Z then each of these groups is isomorphic
with Z and the map is an isomorphism, by 2.6. In other words, if o' is a
generator of H,(R', R'—{0}) then o™ x 0"= +0™*™".
More generally, we consider pairs (V, K) where V is open in R"cS$" =
R™u {0} and K<V is compact. By IV, 6.4b, there is a unique element
ox€H, (V, V—K) such that for every Pe K the image of o, under

H,(V,V-K)—H,(V,V-P)=H,(S",S"-P)~H, S"
is a fixed generator of H, S"=Z. Each of the two classes og which cor-
respond to the two generators of H,, S™ is called a fundamental class
around K. If V<=V’ then the inclusion clearly takes fundamental classes
of H, (V, V—K) into fundamental classes of H,,(V’, V' — K); this justifies

the expression “around K” and the notation o, in which V does not
appear. Generalizing the formula 0™ x 0"= +0™*" we have

2.15 Proposition. If oxcH,(V, V—K) and og.€H,(V',V'—K') are funda-
mental classes (K'< V' <IR™) then

oxxog€H,  (VxV VxV'—KxK') isalso fundamental.

The proof follows by moving 04®0,. around the diagram

H,(V.V-K)eH(V',V'—K)>H(V,V—P)eH(V,V'—P)~H,S" o H,S"

x = | x

H, (VxV,VxV'=KxK)>H, (VxV ,VxV'—PxP)=H

m+n

m+n
S,

m+n

where PeK, P'eK’. The diagram commutes by 2.7, and the second
vertical arrow is isomorphic by 2.6. 1

2.16 Exercises. 1. Show that for every topological space Y and every
ye Y one has a commutative diagram of isomorphisms

H,(Y,y) "> H

n+1

IxYIxYulIx{y})

to | 28

H, (CY,{1}x{yh—=2—H, (ZY,Ix{p}),



3. The Interior Homology Product (Pontrjagin Product) 193

where 2 denotes suspension (I11, 8.16 example 3), I =[0,1], I = {0} U {1},
o is the isomorphism III, 8.18, i=inclusion, p=identification map, and
[:]Je H (I, I) is the homology class of the linear map 1: 4, — I, 1(e/)=.

2. Use 2.15 to prove deg(f xg)=deg(f)deg(g) for proper maps
[ V->R" g: V' >IR" of open subsets V resp. V' of R™ resp. R”".

3* I c,2"+¢,_, 2" '+ 4¢, z+c¢, is a non-zero complex polynomial
of degree <n, (c;eT), then [cy, ¢y, ...,c,] is a point in P,C. Every point
in projective space B, € is of this form and two polynomials define the
same point in P, € if and only if they are proportional. Thus P, C can be
identified with the set of all non-zero complex polynomials of degree <n
provided one identifies polynomials if they differ only by a scalar Ae(E
A#0 (equivalently: if the polynomials have the same roots).

(i) Multiplication of polynomials defines a mapping y; ,: BCx R C—
B, €. Check for continuity and prove

(i+k)!
(i) (0, X 0)= iw Ui ko

where v; is a generator of H,(PC;Z)=Z (hint: Pick a polynomial
!

€ with i +k distinct roots. Then i (w) consists of (l,J'rk ')' poin
1:K!

w,. Use H, (FC)=H, (B C, FC—w), we F,C, and compute x and yu, in
terms of these local groups).

(ii) Let SP"(P, C) denote the n-th symmetric power of P, Cx$?, i.e. the
space which is obtained from the ordinary n-th power x" F, C, by identi-
fying points which differ only by a permutation of coordinates. Show that

WER

X"PICHI':C, (alz+bl’a22+b2’ ""anz_‘_bn)Hl—[::l(avz_'—bv)

induces a homeomorphism SP*(F, €)= P, C.

(i) Define and investigate the analogous notions for real projective
spaces (coeflicients Z or Z,).

3. The Interior Homology Product ( Pontrjagin Product)
If X x X —*- X is a multiplication (see below) then the composite map
HXxHX —*>H(XxX)—®">HX is called the interior homology

product with respect to u. In more detail:

3.1 Definition. A continuous map u: X x X — X is called a multiplication
(on X); we write u(x,, x,)=x, x, if there is no danger of confusion. An
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element e€ X is called a homotopy unit of u if the maps
X—>X, x—>ex, xrxe,

are homotopic to the identity map. Further, u is homotopy-associative
resp. homotopy-commutative if the two maps

XxXxX—=X, (x,X;,X3)x(x;x3), (X;X;)X3,
resp. the two maps
XxX—-=X, (x;,X)b>X Xy, XpXy,

are homotopic.

If (X,u)(X',u) are spaces with multiplications then h: X X' is a
homotopy-homomorphism if the two maps

XxX—oX',  (xg, X)) h(x, X;), h(x)) h(x,),

are homotopic. A space X with a multiplication with homotopy-unit e
is called an h-space; we use the notation H-space if the multiplication is
also homotopy associative. A homotopy homomorphism h: X — X’
between h-spaces (H-spaces) is called an h-map (H-map), provided h(e)
lies in the path component of ¢’. Not every X admits an h-space structure;
for instance, $2* does not as we shall see in 10.1.

3.2 Definition. If (X, u) is a space with multiplication then the composite
(3.3) H(X;L)egH(X; M)—> H(X x X; Loy M)—2> H(X; Lo, M)

or the corresponding bilinear map is called the Pontrjagin product with
respect to u. We write

(34 &y x8)=¢,- &, &eH(X L), &eH(X;M).
The properties 2.7-2.10 of the exterior product imply
(3.5) If h: X > X' is a homotopy homomorphism then
h (& &) =h, (&) h (&),
Le. h, is a homomorphism with respect to -.

(3.6) If ee X is a homotopy unit, and [e]e Hy(X; R) is the homology
class of eeZ,SX then

[e]-&E=¢-[e]=¢ forall EeH(X; M).
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(3.7) If u is homotopy associative then

&1 (&2 &5)=(¢;- &2) - &s.
(3.8) If u is homotopy commutative then

& E =(=)allgale g

The proofs are immediate. As an 1llustrat|0n we give it for 3.8. By as-
sumption the diagram

XxX——>XxX

NS

is homotopy commutative, i.e., u~put, hence pu, =pu, t,. Apply this to
& x&,, use 2.8, and get

t(xy, X5)=(x4, x),

61 ‘62:(—1)%“52'62'51‘ |

The formal properties of the Pontrjagin product suggest the following

3.9 Definition. Let A={A4,};.;bea gradWoup. A multiplication
in A4 is a homomorphism v: 4A® A — A of graded greups; with indices this
reads, v;,: A,;® A, — A, ,,; i,keZ. We write v(a®b)=a - b. A unit for v is
an element 1€ 4, such that 1-a=a - 1=a for all ae A. The multiplication
is called associative resp. commutative if a-(b-c)=(a-b)-c,resp. a-b=
(=1)etl p . g for all a, b, ceA. The pair (4, v)—or simply 4—is called a
graded ring if v is associative and has a unit; if it is also commutative
then (4, v) is a commutative graded ring.

Note that A=@®,.z A4; is an ordinary ring with respect to the induced
multiplication (defined by [{a;} - {b;}],=2;, ;_. @ b;, where [ ], denotes
the component in A4,). However, A4 will, in general, not be commutative
(in the ordinary sense) if A is commutative (in the graded sense).—If
A;=0fori<0then A =[licz Aiisalsoaring via[{a;} - {b;}1,= a;-b;.

i+j=n"i
If A is a graded ring and G a graded abelian group then a left A-structure
on G is a homomorphism 3: 4G — G of graded groups such that
9(leg)=g and Y(ae J(beg)=39%((a-b)eg), for all geG; a,be A. If we
write §(a® g)=a - gthistakes the familiar form1-g=g,a-(b-g)=(a-b)- g
The pair (G, 3)—or simply G—is called a left A-module.
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3.10 Definition. If (X, u) is an H-space then 3.6 and 3.7 assert that
H(X; R) under Pontrjagin multiplication is a graded ring. It is called the
Pontrjagin ring of (X, p). If h: X — X" is an H-map then h_: H(X; R)—
H(X'; R) is a homomorphism of graded rings (cf. 3.5); thus, the Pontrja-
gin ring is a functor from H-maps to homomorphisms of graded rings.

If X is an H-space and Y is any space then a left-operation of X on Y is
a map n: X x Y- Y (we write n(x,y)=x - y) such that yre-y is homo-
topic to idy, and the two maps (x, X,, y)r> X, - (x5 ), (X{ - x,) -y are
homotopic. In this situation the composite map

H(X; Ry H(Y: M) 2> H(X x Y; M)—" H(Y; M)

is a left H(X; R)-structure on H(Y; M), i.e. H(Y; M) is a left H(X ; R)-
module (M an R-module).—The necessary verifications are easy (use 2.9,
2.10), and are left to the reader.

3.11 Examples. If u: X x X — X is a multiplication such that X is a
group with respect to p and if moreover x+»x~! is continuous then
(X, ) is called a topological group. Fer instance, the space of all invertible
nxn matrices (over R, C,IH) is/a topological group under ordinary
multiplication of matrices; it is’called the general linear group Gl(n;F)
where F=R, €C,IH. Matrices/of determinant + 1, orthogonal matrices,
unitary matrices a.o. form subgroups and are also topological groups.
The Pontrjagin rings of these and other groups have been computed by
A.Borel 1954.

Other examples of H-spaces are provided by the loop spaces QY they
play an important role in homotopy theory. If Y is a space and y,eY
then QY=Q(Y, y,), as a set, consists of all paths w: [0,1] — Y such that
w(0)=w(l)=y, (so-called loops).

Any two loops v, w can be composed:

v(2Y) for 0<2t<1
w(2t—1) for 1<2t<2.

-w) () ={
This defines a mapping u: QY x QY— QY, u(v, w)=v - w. If QY is equipped
with the compact-open topology then u is continuous, in fact, (QY, u) is
an H-space (cf. tomDieck-Kamps-Puppe, § 11). In many cases the
Pontrjagin ring of QY can be computed in terms of homological properties
of Y (see Adams 1956).

3.12 Exercises. 1. Generalize the Pontrjagin product to the relative case,
H(X,A)eH(X,B)—> H(X,A X U X -B), and study its properties.
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2. Let P,C=|J ., BC denote the infinite dimensional complex
projective space, with the weak topology (A4 is closed <> every AnR C
is closed). We can think of P C as the set of all non-zero complex poly-
nomials where two of them are identified if they are proportional (cf.
2.16, Exerc. 3). Show that ordinary multiplication of polynomials turns
P_C into a strictly (not just up to homotopy) associative H-space. Use
2.16, Exerc. 3(i) to determine the Pontrjagin ring H(P, C;Z). Show that
AP, C; Q)=Q[[v]]=ring of formal power series over @ in one in-
determinate v.

3. If G is a graded abelian group then Hom (G, G), as defined in VI, 10.2,
is also graded abelian. Under composition of endomorphisms it is even
a graded ring, and Hom(G, G)# G— G, {p;}®g+> ¢, (g), turns G into
a left Hom (G, G)-module. There is a natural 1-1-correspondence between
left A-structures $ on G and homomorphisms @: A — Hom(G, G) of
graded rings (compare 3.9 and VI, 1.1).

4. Intersection Numbers in R”

Intuitively and vaguely one might expect that compact subsets X, Y of
R" whose dimensions add up to » intersect in a finite number of points,
at least if they are in “general position”. Moreover, if no intersection
points lie on the boundary of X or Y then the total number of intersection
points shg\.l«ld/be/i::r:riant under small deformations of X and Y. The
following can be viewed as an approximation of this program, with
compact sets being replaced by singular chains.

For simplicity, all homology groups will have coefficients in a fixed
commutative ring R (which will usually not appear in the notation). In
practice, R=Z or Z,.

4.1 Definition. Let AcXcR", BcYcR" be such that An Y=,
X nB=9, and consider the map d: (X x ¥, A x Yu X x B)— (R", R"—0),
d(x,y)=x—y. The composition
w2 H,_.(X,A)x H(Y,B)—>H, (X x Y, Ax YUX x B)

: (—1)id, H"(]R", ]Rn_o)
is called the intersection pairing. We write

(4.3) Eon=(—=1)yd,(&xn), for (eH, (X,A), neH(Y,B),

and call this element of H (R” R"—0)~R the intersection number
of ¢ and 5. We shall see that 4.2 does indeed provide an algebraic measure
of the geometric situation near X nY (cf 4.6, 4.8, 4.11).
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4.4 Remark. Classically (see Seifert-Threlfall, §73) one defines
intersection numbers of singular chains ceS§,_;R", ¢’eS;R" whenever
Carr(c)n Carr(dc')=0=Carr(dc)n Carr(c’), where the carrier, Carr(c),
is the smallest subset X of IR” such that ceSX. But this condition just
means that (X, 4), (Y,B) exist such that XnB=p=A4ANnY and ceSX,
0ceSA, c'eSY, 0c'eSB; therefore we can take homology classes
[c)eH, (X, A), [¢']e H,(Y, B) and form the intersection number [c] o[d].
The following proposition shows that this number does not depend on
the choice of (X, A), (Y, B).

4.5 Proposition. If f: (X,A)—> (X", 4), g: (Y,B)——(Y',B) are
inclusion maps in R" and A' "Y' =@ = X' B’ then

§°’7=(f*é)°(g*n), fOr éeHn—i(X>A)> WEHI(XB)'
This is obvious from naturality 2.7 of x-products. 1

For instance, we can always take X'=X, A/'=X-Y, Y=Y, B=Y-X,
and thus factor the intersection pairing 4.2 through H(X,X —Y)x
H(Y,Y—X). This in turn is isomorphic (by excision III,7.4) with
HXAV.(X=Y)nV)xH(YnV,(Y—X)n V) where V is an arbitrary
neighborhood of X n Y. Roughly speaking then, the intersection number
& on depends only on the parts of &, n in V, where V is an arbitrary neigh-
borhood of X nY. In particular, if X n Y=¢ we can take V= and get

4.6 Proposition. If X Y =0 then all intersection pairings H, (X, A)x
H,(Y,B)— H,(R",R"—0) are zero.

In fact, this is obvious because X n'Y =0 implies d(X x Y)<(R"—0). 1
If X n'Y decomposes into several parts which do not touch each other,

more precisely, if {V}},_, , .. are mutually disjoint open sets such that
XnYcv={) ¥ then

@7 HX,X-Y)=HXnV.X-Y)nV)2® HXnV,(X-Y)n}),
and

(4.8) Eon=3,&om,

where &={&,} is the decomposition of (e H(X,X —Y) corresponding
0 (4.7). The number &,on=¢&0n, is called the intersection of & and n
in V. It may be thought of as a “local” intersection number; formula 4.8
says: the global intersection of & and n is the sum of their local intersections
(the proof is easy, and left to the reader). | To 4.5 we have the
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4.9 Corollary. All ifitersection pairings

H, (X,0)x H(Y.) - H,(R",R"—0)

n—1

are zero—because if A=0=B we can factor through H, ,(R" 0)x
H;(R"0). 1

The following is an important example of a non-zero intersection
number.

4.10 Example. Let X, Y be sub-vectorspaces of IR” of complementary
dimensions n—i, i. Assume they are in general position, i.e., X N Y={0}.
IféeH, (X, X—-0;Z)=Z and neH,(Y,Y—-0,Z)=Z are generators then
EoneH,(R", R"—0, Z)is also a generator. In fact,if . R" ‘= X,y: Rix Y
are linear isomorphisms and o€ H,(R* R*—0; Z) is a generator then
(41]) (P*(On_i)‘”//*(oi)=((,0, Qp)*(on—ixoi)’
where
(@, ¥): R"'xR'->R", (p,¥)(a,b)=¢(@)+y ().

Proof. The diagram

H, (R R""-0)e H(R,R'-0)—>*>H (R"'x R,R"" x R'-0)

0B (@ x ), (@, ~ )y

H,_(X,X—-0)® H(Y,Y—0)—>H,(X x ¥, X x Y—0)—2 H (R",R" —0)

is commutative. Following o,_; x 0, along the lower way |_,_, gives
(—1) @, (0,_;)°¥, (0)), whereas the upper way — -, leads to

((p’ _‘/’)* (On—i x 0.‘)=(_1)i(§0a !p)* (On—i X 0i)7
the latter because (—id), (0;)=(—1)0; by IV,4.3. &

Formula 4.11 is one of the reasons why a sign (—1)' was introduced in
defining intersection numbers. Another reason is the following (recall
V1, 9.8).

4.12 Proposition. In the notation of 4.3, we have fon=(—1)""pol.

Proof.
Con=(—1)'d (Exm=(-1y+*"""Dd_t (nx&)
=(=1y+i g (g x &)=(—1)"""no¢,
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where ;. YXxX—>XxY, t(y,x)=(x,y). The second equality stems
from 2.8, the third from di(y,x)=x—y=—d(y,x). 1

Our definition of intersection numbers used the group structure of R".
We now give a characterisation in purely topological terms.

4.13 Lemma. Let D={(x,y)eR"x R"|x=y}, the diagonal. Then for
every PelR" the maps

#: (R R"—0)— (R"x R", R"xR"—D),  if(x)=(x+PP),

d (R*XR"R"XR"— D) (R", R"—0), d(x,y)=x—y,
are reciprocal homotopy equivalences.

Proof. Clearly dif =id; a homotopy @: id~i"d is given by O,(x,y)=
[x+t(P—y),y+t(P—y)]]. 1

4.14 Corollary. Up to the sign (— 1Y the intersection pairing 4.2 coincides
with the composite

H

X, A)x H(Y,B)—>> H,(X x Y,Ax YU X x B)

i, g (R"x R", R" x R"— D) ", H (R", R"—0)
{(where j=inclusion).
Indeed, (if)~'=d, by 4.13, hence

(BY 1 Exm=(@d) Exn=d (Exn=(=1)&en. 1

Essentially then, the intersection number of (, ) agrees with j, (& x n)—
and no group structure in IR" is needed to define this element.

4.15 Proposition (topological invariance). Under an injective map
h: R"— R" all intersection numbers are multiplied with the degree of h,

i.e. (h, &)o(h, n)=deg(h)(Eon).
By definition (IV, 5.1), deg(h)=deg,(h) is the composite map

HS"~H(R" R"—h~! Q)" H (R, R"—Q)=~H,S",

where QehR". Since h(R") is open and h: R"~h(R") (cf. 1V, 7.4) the
number deg, (k) does not depend on QehR", and equals +1 (IV,5.4
and 5.12); according to these two cases h is called orientation preserving
or orientation reversing. Thus, intersection numbers remain invariant or
change sign depending on whether h preserves or reverses orientation.
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Proof. Consider the diagram

H(X,A)xH(Y,B)—>*—H(X xY,Ax YU X xB)

by x h{ (hx h)*l

HMhX,hA)x HhY,hB)—> >HMhX xhY,hAx hYUhX x h B)

L HR" xR, R x R"— D) H(R",R"—0)=H,§"

(hx h)*l J(’H ).

. iQ
*

— % LHR"xR", R"x R"—D)«*  H(R",R"—0)=H,S",

where Q=h(0) and (h—Q)(x)=h(x)—Q. The first square is commutative
by naturality of x -products, the 2nd and 3rd square are commutative
even before applying H. By 4.14 the rows of the diagram coincide (up to
sign) with the intersection pairings; further (h—Q), =degy(h)=deg(h).
Therefore, starting with (&,n)eH, ,(X,A4)x H,(Y,B) in the upper left
corner, and chasing it to the lower right along the edges of the diagram
gives (— 1) deg(h)(Eon)=(—1)(h, E)olh,n). W

4.16 Remark. One can generalize 4.15 to injective maps h which are
only defined in a neighborhood of X nY (compare remark after 4.5).
If this neighborhood is itself homeomorphic with R" (as is often the
case) statement and proof remain virtually unchanged. The general
case is more complicated; it will be dealt with in VIII, 13 where we treat
intersections in general manifolds.

4.17 Exercises. I.Let AcX<cR” BcYcR" A'cX'cR”, B <Y <R",
teH(X,A), neH(Y,B), {'eH(X', A'), ”eH(Y', B') be such that {on and
&'on’ are defined. Then (& x &')o(n x n')e H,, . (R**", R"*" —0) is defined
and equals (—1)¢1"(Eon) x (Eon).

2*. Let PeS?, Q€89 and let W<8?x$? be a subset which contains
$PxQuUPx8=87vS$? and also contains a neighborhood V of
(P,Q)eS? xS Prove: No injective map J: W—IRP+? exists. (Hint:
J(SF x Q) and J(P xS9 intersect in just one point J(P,(Q). The inter-
section number of the generators of H,, H, can be determined within
J(V),and by 4.10 and 4.15 it turns out to be +1. This is impossible by 4.9).

For g=1 this result is closely related to the Jordan theorem (IV,7.2);
how? Draw pictures for p=g=1.
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3* If A4, B=IR" are disjoint sets we define the linking product to be the
composite
idx o, !

H,_,AxH_,B =~ H, ;AxH(R",B)- > H,(R",R"-0)=~R.

For {cH,_; A, CEFI,-_IB we write L(&, {)=¢&o 6;‘({) and call this the
linking number of ¢ and (.

(a) Study the properties of L which correspond to those of the inter-
section product o. In particular, compare L(¢, ) and L((, £).

(b) Let f:S"! -»R" be a map, and se H, ,$"~! a generator. For every
Pe(R"—f(S" 1)) define w(B f)=L([P),f, s). This is called the winding
number of f around P. Prove: If f is injective then w(P, f) assumes exactly
two values, namely 0 and +1 (Hint: compare with the proof of IV, 7.2).

5. The Fixed Point Index

If ¥V is an open set of R" and g: V— R" is a mapping then the degree of g
over QeR" was interpreted (IV,5) as being the “number” of points in
¢~ 1(Q), assuming this set is finite or at least compact. The fixed point
set F, of g agrees with (1—g)~1(0) where 1=inclusion; therefore the
“number” of fixed points should be measured by the degree of (1—g)
over 0, provided F, is compact. This degree is called. the fixed point
index I, of g. We establish some elementary properties of I, in particular
(using x -products) an invariance property (5.9) which allows to extend
the definition of I, to maps g of ENRs (=euclidean neighbourhood
retracts; cf. 5.10).—All homology groups will be taken with integral
coefficients Z.

5.1 Recall first (2.14) that for every generator o of H,$"=~Z (where
S$"=R"U{w}, n>0) and every pair KcV (where V<=IR" is open,
K compact) there is a fundamental class oxe H,(V, V—K) around K. This
class o, is the image of o under H,$"— H,($",$"—K)=H,(V, V-K),
and it is characterized by the property (IV,6.4) that its image under
H(V,V—K)—> H,(V,V—P)~Z agrees with o, for every PeK. Clearly
(—0)x=—(0g)

5.2 Definition. Let V < IR” be an open set, and g: V— IR” a map. Assume
F=F={xeV|g(x)=x}, the fixed point set of g, is compact (n.b. F is
always closed in V). Consider the map

(t—g,: H,(V,V-F)-»H(R"R"-0)=Z
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(where (1—g) x=x—g(x)), and define the fixed point index I,eZ of g by
(5.3) (1—g), (0p)=1, 04

(recall that o, generates H,(R", R"—0)). This definition does not depend
on the choice of the generator oeH,S" because (—o).=—(0g) and

(—0)o= —(0y).

5.4 Proposition. Given g: V—IR" as in 5.2, let W be an open set, K a
compact set such that Fc KcWc V. Then (1—g) maps (W, W—K) into
(R",R"—0), and (1—g), (0g)=1,0,.

Thus, I, depends only on g|W where W is any neighborhood of the
fixed point set F, and in order to compute I, we may replace F by any
larger compact set K< W—The proof is obvious because the inclusion
(W, W—K)—(V, V—F) takes o into 0. 1

5.5 Units. A constant map g: V— R” has index 1 if g(V)eV, and index O
if g(V)¢V.

Proof. If g V¢ V then F=¢ hence 0,=0. If gV=PeV then
—g: (V.V—P)—»(R",R"-0)
takes op into 0,. 1

5.6 Additivity. Given g: V—IR" as in 5.2, assume V is represented as a
Jfinite union of open sets V,,i=1, ..., r, such that every Fi={xeV|g(x)=x}
is compact and F'~ Fi=( for i%j. Then F,=}, F,and I.= (L,;).

This expresses the local nature of I; it asserts that the “global” index I,
is the sum of the “local” indices I,

Proof. We can surround each F' by an open neighborhood W, such that
W,cV, and W,nW,=f for i*j; put W= U W,. Then I,=I,,, and
Ly, = Lyw, by 54 But HW,W—-F)~®, HW,, W,—F) (because the W,
are disjoint), and o, = {0}, hence

Lyw 0o=01—8), (op)=Z (1—8),(0p)= Z. elw) @
5.7 Multiplicativity. Let g: V—IR", g': V'—IR" be maps as in 5.2. Then

the fixed point set of gxg': VX V' ->R"xR"=R"*" is F,, .=FxF,.,
and I, =11
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Proof. Put F=F,, F'=F,. By 2.15, op x 0. resp. 0, x 0, is fundamental
around Fx F'=F,, . resp. 0 x0'eR"*"; hence

L, (0o %00)=(1x1"—gxg), (0px 0p)=[(1—g) x (' —g")], (0f X 0F.)
=[(—g), 0p] x [(1' =8, 0x 1= I, ) 05 X 05.);
the third equality by 2.7. 1

5.8 Homotopy Invariance. If g,: V—R", 0<t<1, is a deformation such
that K={xeV|g(x)=x for some t}=|),F, is compact then I =1I,
(n.b. | J, E, is always closed in V).

This means: If during a deformation the fixed points stay away from
the boundary of V (including co) then their “total number” remains
unchanged. An example where a fixed point disappears at oo is the
following: g,: R —» R, g,(x)=1+1x; clearly [, =1, 1, =0.

Proof of 5.8. By 5.4, we have I, 05=(1—g,),(0g). But 1—g): (V, V—K)—
(R", R"—0) is a deformation, hence (1 —g,),=(1—g,), by II[,52. 1

5.9 Commutativity. If UcR" U cR" are open sets and f: U—R",
g: U — R" are maps then the two composites

gf V=f"'U—>R" fg: V=g'UsR"

have homeomorphic fixed point sets, F,;~F,. If these sets are compact
then I, =1,

Proof. The first assertion is clear: the restrictions of f, g define reciprocal
homeomorphisms F,,x F;,. Assume then these sets are compact and

define ,
v VxV' =R"R", y(x,y)=(gy, fx).

Using homotopy invariance we shall show I,=1,,,I,=1I,,, and thus
prove the proposition. We first use the deformation

Y, N=[tgf(x)+(1-0)gy, fx], xeV, yeV’, 0<t<lI.

A fixed point of y, satisfies y=fx and x=t g f(x)+(1—1t) g f(x)=g f(x),
i.e, the fixed point set of y, is F, ={(x, y)|xeF,;, y=fx}. This is clearly
compact and independent of ¢, hence (5.8) I,=1I, =1,. The map y, is
a restriction of §: VxR" - R"x R, d(x,y)=(g fx, fx), hence I, =I,
by 5.4. Now we deform & by 6,(x,y)=[gfx,(1—1) fx]. A fixed point
(x,y) of &, satisfies x=gfx, y=(1—1) fx, hence | J, F;, coincides with
the image of

Fx[0,1]-VXxR", (x,0)—(x,(1—1) fx).
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This image being compact, we can apply 5.8 once more and get
Is=1; =15 where d,(x, y)=(gfx,0). But é, is a product map, therefore
Iy =1, I ngan =1, By 5.7 and 5.5. Altogether I, =1, .. By symmetry
of y we also find I, = I,,; explicitly this uses the deformations

[gy,tfgM+(1—0)fx] and [(1—-t)gy, fgy]. 1

Property 5.9 suggests the following generalization of the fixed point
index. Suppose Y is any topological space, UcY is an open set, and
h: U—Y a map which factors through some open set VV of R", i.e. h=f«
where U—">V—2>Y Then the index of h (if it ¢an be defined at all)
should coincide with the index of « : B~! U— V < R". The question is,
of course, whether this index is independent of the decomposition
h=pa. I don’t know the answer in general, however, it is affirmative
if U is an ENR (=euclidean neighborhood retract; cf. IV, 8).

5.10 Proposition and Definition. If Y is any topological space, and Uc<Y
is an open set which is also an ENR then every mapping h: U — Y admits
a decomposition h=po where U—">V—LY and V is open in some
euclidian space R". If F,={yeU|hy=y} is compact then the fixed point
index Iy of af: p~'U—V<R" is defined and is independent of the
decomposition h=fa (i.e. depends only on h). This number is then, by
definition, the fixed point index of h;in symbols I, =1 ;.

If Y=IR" we can take V=U, a=id, f=h, and we see that the definition
agrees with 5.2 in this case. Also note that every open set Uc Y is an
ENR if Y is an ENR; in IV,8 we showed that the class of ENRs is
fairly large.

Proof. By assumption there is a euclidean neighborhood retraction
U5V U, ri=id, where V' is open in some R". Then U —5 V' -5 Y
is a euclidian decomposition, as required. If U—2-V—£-Y is any
euclidian decomposition then F,;~ Fy,=F,; assuming this to be compact
we have to show that I,; depends only on h. Consider the maps

ar: VV->VcR", iB: p7'U—-V'cR".
The two composites (xr)(if)=af and (if)(ar)=ihr have the same

index by 5.9, in symbols I,;=1I,,; clearly the right side I, is inde-
pendent of the decomposition o, §. 1

The properties 5.4-5.9 of I carry over to the more general situation 5.10.
We formulate the generalizations but omit some of the proofs; they
consist of rather obvious reductions to 5.4-59. The notation is as in
5.10, with compact fixed point set F,.
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(5.11) If Wis an open set such that F,c W c U then I, =1,,,. I
(5.12) If h is constant then I,=1 if h(U)eU, and 1,=0 if h(U)¢U. 1

(5.13) If U is represented as a finite union of open sets U, i=1,...,r,
such that UnU,nF,=@ for i%j then I,=%7_,(I,y,). This is reduced
to 5.6 by putting V,=8"1U.. 1

(5.14) If h: U-Y, b': U —>Y are as in 5.10 with compact fixed point
sets then I, =1, I, where hx h: UxU -»Yx Y. 1

(5.15) If h;: U—Y is a deformation, 0<t<1, and | ), F, is compact then
L,=1,.
Proof. Choose a euclidean neighborhood retraction U —»V—-U.
Then I, =1, , by Definition 5.10, and the right side does not depend
ontbyS58 |1

(5.16) If UcY, U <Y’ are open subsets (and ENRs), and k: U—>Y’,
k': U'—Y are maps then k'k: k™' U' =Y, kk': k' ='U —Y' have homeo-
morphic fixed point sets, Fy, = Fyy. . If these sets are compact, then L., = I ..

Proof. Choose euclidean neighborhood retractions U——»V—-U,
U—5V' "5 U" Then k'k|(k'k)"*U=r(ik'k) and kk'=(kk'r)i are
euclidean factorizations, hence I.,=Il;4,> Liy=1ILp» by (5.11 and)
Definition 5.10. But ik'kr=(k'r¥)(i' kr) and i'kk' ¥ =("kr)(i k') have
the same index by 5.9. 1

5.17 Exercises. 1. If g: R— R has a compact fixed point set then
I[,=0or +1.

2. Construct maps g: IR? » R? with prescribed fixed point index whose
only fixed point is the origin 0. Draw pictures.

3. If p: R*>IR" is a linear map then F, is compact if and only if +1
is not an cigenvalue of ¢. In that case, (id —¢) is an isomorphism, 0 is
the only fixed point of ¢, and I,=(~—1)" where 5 is the number of real
eigenvalues A such that 1> 1.

4. If V<IR"is open, OeV, and g: V—IR" is a continuous map such that
gx=+Ax for all non-zero xeV and all real numbers A> 1 then g(0)=0.

If, moreover, F, is compact then I,=1. (Hint: consider the deformation

g.(x)=t(gx))
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5% Let ¢ denote the class of all continuous maps g: U — Y such that Y
isan ENR, U is an open subset of Y, and F,= {xe U|g x=x} is compact.
Theorem. If 1: 9 — Z is a function with the properties 5.11-5.16 (actually,
5.14 follows from the others) then I is the fixed point index, 1(g)=
Program for a proof (compare R.F. Brown Pac. J. 35 (1970) 549-558,
or A.Dold, Archiv d. Math. XXV (1974) 297-302): Use the proof
of 5.10 to reduce to the case Y=R". Use differentiable (or simplicial)
approximation and make the graph of g transverse to the diagonal; this
reduces to the case where F, is finite, or (with 5.13) even F,={0}, and
Dg(0) has no eigenvalue +1. Approximate g by Dg(0), reducing the
problem to linear maps. Use eigenvalues to reduce to the case n=1.

6* Let Y, Y' be spaces, UcY, U'cY' open subscts and ¢: U—>Y,
¢': U'—Y maps such that the fixed point sets F,, » are compact.
If @, ¢ admit euclidean decompositions

@: U—"-V-—25Y, ¢ ULy -25Y,

where V< R", V'cR" are open, then the two composites of the map-
pings 7’0 and y &’ have equal indices (5.9), and these indices 1.5 =1,
do not depend on the decompositions of ¢, ¢'. Call this number the
fixed point index of the patr @, @', in symbols [, = w JIf U, U are
ENRs then I, ,=1,,=1,,. I Y=Y, U=U"and ¢ —1nclu510n then
y,d is a euclidian nenghborhood retraction and I, ,=1,, by Pro-
position 5.10.

6. The Lefschetz-Hopf Fixed Point Theorem

This famous theorem expresses the fixed point index of g: Y—>Y, Ya
compact ENR, in terms of the induced endomorphism g : H(Y; Q) —
H(Y;@Q). We start with some algebraic preliminaries on endomorphisms
of graded modules. R denotes a fixed commutative ring with unit; all
modules, ®-products, and Hom are over R. The application will be
to R=Q.

6.1 Definition. Let M={M,},; be a graded R-module, and let M*
denote the dual (graded) module, M*,=Hom(M,, R). For every graded
R-module N define

(6.2) O=0yy: M*@N—»Hom(M N), [O(pen)](m)=(-1)"!" ¢ (m)n,

(cf. VI, 10.1 for Hom). Clearly © is a homomorphism of graded modules,
and is natural in M and N. (It is a special case of the map y in VI, 10.23;
take C=M,C'=R=D,D'=N)
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6.3 Proposition. The image of © consists of those homomorphisms
B: M — N which factor through a finitely generated free (graded) module,
i.e. of composites f: M —F — N, where F=Re Re---®R for all i, and
F,=0 for almost all i. These homomorphisms are called of finite rank.

If N is free then © is monomorphic. Hence in this case @ maps M*® N
isomorphically onto im(@)={f: M — N|B of finite rank}.

Proof. If e M*, ne N=Hom(R, N) then, up to sign, O(p ®n) agrees
with the composite homomorphism M —2»R—"> N. This proves the
first part because elements of M*® N are finite sums of terms g@n,
and homomorphisms M — N of finite rank are finite sums of composi-
tions M >R —N.

If N is free let {i,: R—> N}, be a direct sum representation. (N.:b. the
i, may have various degrees.) Every acM*eN is then of the form

a=) .ro,®i(l).1f p,: N—R is the y-th projection (p,i,=id, p,i,=0
for y+ p) then (ide p,)a=) , ¢,ep,i,(1)=¢,®1, hence

Oyr(idep,)a=+to,.

But Oyg(idep,) a=p, Oyy(a) by naturality of @ (applied to p,). There-
fore, Opy(a)=0 implies ¢, = +p, Opn(a)=0 for all pel’, hence a=0. 1

6.4 Definition. Let N be a graded R-module and let e: N*e N—R
denote the evaluation map, e(p@n)=@(n). If N is free and §: N—N is
an endomorphism of finite rank then @~ '(f)eN*®N by 6.3, and
A(P)=eO® ' (B)eR is called the trace or Lefschetz number of p.

Since e annihilates all elements of dimension +0 the Lefschetz number
of B is zero unless |3]=0, i.e. unless f is a sequence of endomorphisms
B:: N;—>N,, ieZ. In order to compute A(f) in this case we pick a base I}
for each N;; then B(y)=) .., B} u, for yel;, with matrix coefficients
BLeR. For every jeZ and pel; define ¢*eN*;=Hom(N,R)_; by
©"(y)=p, yel;. If B is of finite rank then almost all ¢* are zero, hence

a=Zuerj,jel(_1)j(Pu®H€N*®N

is defined, and [O@](1)=Y, ,(— V1" o*()- u=Y, B, u=B0), ie,
©(a)=p. Therefore

(6.5) AB)=e@=), (—1Yo* W= ;a(=1Y Y r, Bt

In particular, we see that the last expression (which is often used to
define A(p)) is independent of the choice of the bases I;.

The Lefschetz-Hopf fixed point theorem now reads as follows.
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6.6 Proposition. Let Ybean ENR, K a compact subset of Y,and f: Y->K<c Y
amapping. Then f has compact fixed point set, (f|K),: H(K;Q)—H(K;Q)
has finite rank, and 1,= A(f|K), .

Proof. The fixed point set of f is closed in K and therefore compact. Let
Y— V—5Y be a euclidean neighborhood retraction (rj=id; V open
in R"); then jK= K, the index of f equals the index of g=jfr: V> K=
jK<IR" by 5.10, and f|Kx~g|K. We have to show therefore, that
I,=A(g|K),. We use rational homology throughout (and omit the
coefficients Q) so that H(X x X')=(HX)®(HX’). The image of the
fundamental class oy under H(V,V—K;Z)>H(V,V—-K;Q@Q) is still
denoted by oy.

Consider first the diagram

HV,V—K)e HV—8, H(V, V- K)o (HK) &4, (HK)* e (HK)

(67) [Ax j{h le

HV,V-K)-=%5 HR" R"-0) «2—Q :

where 4: (V,V—K)—(V, V—K)x V, A(x)=(x, x), is the diagonal map,
d: (V,V-K)x K —(R",IR"—0), d(x, y)= x y, is the difference as in 4.1,
e is the evaluation of 6.4, and d: H(V, V— K)—(HK)*=Hom(HK, Q) is so
defined as to make the right square commutative, ([d ()] k) 0, = d (vek).
The left square is commutative because d(id x g) A(x)=x—gx=(1—g) x.
By Definition 5.3, the lower row of 6.7 takes oy into I,. Going along
the upper row must give the same, i.e.,

(6.8) I,=e(a,), where a,=(d®g,)A4,(0x).

g g

By Definition 6.4 we can also write
(6.9) I,=4(0(ay), a,=(deg,) 4, (o).

We shall see that ©(a,)=(g|K),,, and thus prove the theorem.

Consider the diagram
H(V,V—K)e HVe HK & H(V, V- K)e HKe H V22 H(R" R"—0)e HV=~HV

Bx

(6.10) J@m@idl d®id®g,

(HK)y*¢HKeHK ;5» (HK)*¢HKeHK —eu Q®HK=HK ,
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where t(x, y)={(y, x). The right square is obtained from the right square
of 6.7 by tensoring with g_ and is therefore commutative; commutativity
of the left square is obvious. If we follow 4, (ox)ekeH(V, V- K)o HVe HK
along the lower way |_,_, we get [@(a )] k by Definition 6.2 (recall
that ¢t (E@n)=(— 1) ye¢&). Using the upper way ——| instead must
give the same, i.€.

(6.11) O(a,)=g,° P,

where @ ={®,}, ; is the following composition.

@,: H K" H,, [(V,V-K)xK]
(6.12) s H, [(V,V—K)x Vx K] Y5 H, [(V,V-K)x K x V]
iy B, IR R —0)x V12X 5 H Y.

A4n

The last arrow is justified because o, x : HV— H[(R", R"—0) x V] is
isomorphic, by 2.6. We shall see that

6.13 Lemma. ®=i,, where i: K— V is the inclusion map.

Together with 6.11 this gives ©(a,)=g, i, =(g|K), which proves the
theorem. The proof of 6.13 uses the following lemma.

6.14 Lemma. If K< VcIR" are as above then the following two maps
6.15) 01,902 (VV=—K)xK—>(R",R"=0)x },

@, k)=(v—=k,v), @, k=(—kk), veV, kek,
induce the same homomorphism in homology, ¢, , =@, .
Proof. Consider the following diagrams (for v=1, 2)

(R", R"—0)x V
(6.16) v 2% Ny

(V. V—K)xK<(VxK,VxK—D)5(N,N—D),

where D ={(v,k)e Vx K|v=k} is the diagonal, N={(v,k)e Vx K |v,k= V},
v, k=segment from v to k, ¥, (v,k)=(w—k,v), ¥,(v,k)=(v—k, k), and
o,, 1, are the restrictions of . Clearly, n,, #, are homotopic, n,~n,,
by linear deformation; hence 1, ,=#,,. The set N is an open neighbor-
hood of D in Vx K, hence j, is isomorphic by excision. Therefore
V1=V, hence g, =g, 1

Proof of 6.13. By definition (6.12), ¢ is the composition of
HK 2<% H[(V, V= K) x K] -2 H[(R", R"—0) x V'] X025 HY,
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where @ (v, k)=(v—k, v). By the preceding lemma 6.14, we can equally
well take @ (v, k)y=(v —k, k).

Let BcIR" denote a closed ball containing 0 and K, and consider the
following diagram

H[(R" R"-B)x K]

Ogx 4

6.17) HK °<% H[(R" R"—K)x K]-%> H[(R" R"—0) x V]S Hy
( ( )x K] [( ]

0}\ /

H[(V, V—K)x K]

whose vertical maps are induced by inclusion, and ¢, ¢’, ¢’ are given
by (x,k)—(x—k, k). The diagram is clearly commutative. The lower
path defines @, as we just observed; therefore the upper does, too. But
¢ (R, R"—B)x K—[(R",R"—0) x V] is homotopic to the inclusion
map, j x i, as the deformation (x, k)—(x—tk, k), 0<t <1, shows. There-
fore the upper path of (6.17) gives

(6.18) 0y, x @(z)=@ (0gx 2)=(j, X i ) 0gx 2)=(j,05) X i, (2)=0, X i (2),
hence @ (z)=i,(z), for ze HK. 11

6.19 Remark. The map @ as defined in (6.12) makes sense with arbitrary
coefficients I' for homology, i.e.

®: HK;I)—H(V;T).

For this, one can either take oy with integral coefficients so that o, x5
has the same coefficients as #, or, in the case of ring-coefficients I", one
can replace og by its image under H(V,V—K;Z)->H(V,V—K; I).
In either case 6.13 holds, and the proof is the same as before.

6.20 Remark. Formula 6.13 which was used to prove the Lefschetz-
Hopftheorem is of more general interest. As its proofshows, it is obtained
from a geometric homotopy-excision relation by applying homology.
This relation has its proper place in stable homotopy theory (cf. Dold-
Puppe: Duality, Trace and Transfer. Proceedings Conf. Geometric To-
pology, Warsaw 1978). There ¢ is induced by a stable map ¥: K* -V *
which is shown (proof of theorem 3.1, 1.c.) to be stably homotopic to the
inclusion map i: K*— V* and which therefore induces the same homo-
morphism ¥, =i, in (any kind of) homology. (The +-signin K*, V'*
indicates that, for technical reasons, an extra point has been added to
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these spaces.) In fact the stable homotopy between ¥ and i establishes
an S-duality in the sense of Spanier (chap. 8, Exerc. F), or Switzer
(Chap. 14). It leads to Alexander duality, an instance of which is formu-
lated in 6.24, and which will be treated in VIII, 8.15 in more generality.

6.21 Example. If N is a free graded R-module then the identity map
id: N — N is of finite rank (6.3) if and only if all N; have finite bases and
almost all N, vanish. In this case, A(id)=)";(— 1Y B, (cf. 6.5) where §; is
the number of base clements in N;. Thus the Lefschetz number A gener-
alizes the Euler-Poincaré characteristic (¥, 5.1): x(N)=A(idy) for free
graded abelian groups N (if N is not free, y(N)=x(Ne®), and Ne Q
is always free over R=@Q). This implies (cf. 6.6):

6.22 Proposition. If Y is a compact ENR, and f: Y—Y is a mapping
such that f,=id: H(Y;Q)—H(Y;Q) (for instance, if f~id) then
I, =y(Y)=Euler-Poincaré characteristic of Y. 1

In particular, if Y is such that H(Y;@Q)=0, i.e. if Y has the rational
homology of a point, then f, =id for all £, and I, =1 for all f. This applies
to contractible spaces, or real projective spaces of even dimension,
and others.

6.23 Corollary. If Yis a compact ENR then I .= y(Y) for every mapping
[ Y= Ywhich is sufficiently close (w.r.t. somermetric) to the identity map.
—For manifolds (cf. VIIL.1) this is a classical theorem of H. Hopf.

Proof. It suffices to show that f~id for all /: Y— Ywhich are sufficiently
close toid. This is similar to IV, 8.6: Wechoose a euclidean neighborhood
retraction for Y, i.e. maps Y —— O —— Y, where O is open in R" and
ri=id. We consider the sect W< Y x Y which consists of all points
(x, y)e Y x Y such that the whole segment from i(x) to i(y) lies in O; this
is an open neighborhood of the diagonal of Y x Y. If the graphof f: Y Y
lies in W (this is what it means for f to be sufficiently close to id), then
(L—1)i(x)+tif(x)is in O for-all xeY and te[0, 1], and a deformation
id~ f is obtained by (x, t)y—r[(1—1t) i{x)+tif (x)]. 1

As another illustration of the significance of 6.13 we now prove an
instance of Alexander-duality.

6.24 Proposition. Let I' denote a field, K<IR" a compact set, and
neH(K;T) a homology class such that i (n)+0 for some open neigh-
borhood V of K (i=inclusion: K—V). Then there exists a class
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EeH(R",R"—K; I') such that the intersection number £on is not zero
(n.b. if K is a retract of a neighborhood V then 40 =i, 5 +0).

Proof. We take oy with coefficients in I'; then

A, (0 )eH(V,V=K)x V;T[)~H(V,V—K; e, HV;T)

is of the form

A*(OK)ZZI( &o

LeH(V;T), &eH(V,V—K;IN~HR" R"-K;T).

with

Therefore, by 6.13,

0+0,0i,(n)=0,0(P(K, V)n)=(d,eid)(idet,)(4, (0 en)
=(d,eid) T+ enel)=Y +d, (Eenel,=) +(Eenel,

hence &, 010 for at least one k. 1

6.25 Exercises. I. If M, N are complexes of R-modules then the map &
of 6.1 is a chain map.

2. If
0->N->N->N"-0

17

0-N->N->N'>50

is a commutative diagram of finitely generated free graded R-modules
with exact rows then A(B)=A(f')+A(B”). In analogy with V,5.7 this
implies

A(fH=ALH+ A,

for maps f: (X, A) > (X, A) of compact ENRs (f resp. ! is the induced
endomorphism of HX resp. HA; coefficients Q). If f: X/A— X/A is
the induced map then 1+, =1I741, , (hint: use IV, 8 Exercises 5 and 6).

3. If Yis an ENR and f: Y—Y is a map such that fY is compact and
such that every (e H(Y;@) is annihilated by some power of f (i.e
Uk ker(f)=H(Y; Q), where f* is the k-fold iterate of f) then I,=1.
Hint: The trace of a nilpotent endomorphism is zero.
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4. If Y is a compact ENR and f: Y—Y is a map whose index I,=0,
can we then deform f into a fixed point free map? The answer is yes
if Y is a simply connected manifold (Fadell), but no in general. For
instance, if 4 is a compact ENR whose Euler-characteristic y(A4) is —1
(e.g. the non-orientable surface of genus 3; V, 3.11, Exerc. 2) then the
wedge Y=87v 4 has y(Y)=x(S$?*)+%(4)—1=0 but every map f: Y Y
which induces the identity on H(Y; Q) has a fixed point (hint: consider
the compositions 4, 8> 34vS§* —~E->A4vS?3 4, $?).

5. If fis a map as in 6.6 then A(f|K), = A(f|K)*, i.e. Lefschetz numbers
(or fixed point indices) can just as well be computed from cohomology
(compare 1.14, Exerc. 3).

7. The Exterior Cohomology Product

This product, H*X x H*Y— H*(X x Y), is quite analogous to the
exterior homology product of § 2.

7.1 Definition. Let (X, A), (Y, B) be pairs of spaces such that (X x Y;
AxY, Xx B) is an excisive triad, let L, M be R-modules and consider
the composite chain map

SX SY

Hom (W,L)®RH0m (TB—,M)

SX SY

—®*

S4  SB

 "oEz S(XxY)

Y S H _—
- Om(S{AxY,XxB}’
S(XxY)

S(AxYuX xB)’

%Hom(

,L@RM)

L®RM)

I Hom ( L@RM),

where the chain map y, as in VI, 10.23, is defined by

e y)lcod)=(— D p(c)ey (),
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EZ is an Eilenberg-Zilber map, and j is induced by the inclusion
S{AxY, X xB}cS(Ax YuX xB)as in 2.2; the second and third arrow
are homotopy equivalences. Passage to homology and composition with

a: H¥(X, A; LYyeg H*(Y, B; M)— H[S*(X, 4; L)eg S*(Y, B; M)]
gives

*)-YEZ)*y, o: H*(X,A; L) H*(Y,B: M
(1.3) (*)"HEZ)*y, 0.8 Yo g H*( )

- H*(XxY,AxYUXxB;LegM),
or with indices

(7.3) H(X,A;L)oH*(Y,B;M) > H**(X x Y,Ax YUX x B; L&y M).

This map or the corresponding bilinear map is called the exterior co-
homology product. We write

(7.4) xxy=(*)"YEZ)*y,a(x®y)e H**(X x Y, Ax YU X x B; Loz M),

for xe H(X, A; L), ye H*(Y, B; M).

In terms of representative cocycles ¢, ¢ this reads

(7.5) lelxWl=[y(eey)-EZ],

where peS*(X; L), p|SA=0, pod=0, yeS*(Y; M), y|SB=0, i 0 =0.

N.B. One has to be careful in applying 7.5: y(@p®y)o EZ vanishes on
S{A x Y, X x B} but not, in general, on S(4 x YU X x B). However,

S(XxY)

HHom(S{Ax Y, X x B}

,L®RM) *H*(XxY,Ax YUX x B; LegM)

so that [y(@®y)o EZ] can be viewed as lying in the latter group. Of
course, this little difficulty does not appear if one of 4, B is empty.

In analogy to 2.6 we get from VI, 12.16

7.6 Proposition. Let L, M be modules over a principal ideal domain R
such that LxxM=0. Let (X, A),(Y, B) be pairs of spaces such that
(X xY; Ax Y, X x B) is excisive and H(X, A; R) of finite type. If, more-
over, L is finitely generated or H(Y, B; R) of finite type then

@, Hi(X, A; L)@ H/(Y, B; M) > H"(X x Y, Ax YUX x B; Leg M),
X® Yy XXy,
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is a split-monomorphism whose cokernel is naturally isomorphic with

@isjons H(X, 4; L)« H/(Y, B; M). 1
The analogues (duals) of 2.7-2.13 are as follows.

7.7 Naturality. If f: (X, A)— (X', A"), g: (Y, B)—(Y', B') are maps of
pairs as in 7.1 then
(f xg* (x'xy)=(f*x)x(g*y).

7.8 Commutativity. t*(yx x)=(—D)*" xxy, where t: Xx Y->Yx X
commutes factors.

7.9 Associativity. (x X y) X z=x X (y X 2).

7.10 Units. If Y="P is a point, B=@, and 1,€ H°(P; R) is the cohomology
class of the augmentation n: S P—R, P—1, then lpxx=x=xx1,
(where P x (X, A)=(X, A)=(X, A) x P). If Y is an arbitrary space again,
and n: Y— P then 1, =n*(1,)e H°(Y; R) is the class of the augmentation
So Y— R, and naturality 7.7 gives

x % ly =(1d x m)* (x x 1p)=p*(x),
where p: (X, A)x Y— (X, A)=(X, A) x P is the projection.
7.11 Stability (cf. also Exerc.3). The following diagram (coefficients
omitted) is commutative

H* A@ H*(Y, B)—>*—>H*(Ax Y, Ax By~ H*(Ax YUX x B, X x B)

*®id &*

H*(X, A)e H*(Y, B) = H¥(X xY, Ax YuX x B),
where i =inclusion. In formulas,

(7.12)  6*(*) "(ax y)=(0*a)x y, for acH*A, ye H*(Y, B).

In the important special case B=§ we have i=id, and stability reduces to
(7.13) 0*(axy)y=(0*a)xy, for aeH*A, yeH*Y.

7.14 Duality. This relates homology and cohomology cross-products:
If éeH(X,A;R), neH(Y,B;R), xeH*(X, A; L), ye H*(Y,B; M) then
xexy, Exny=(= 1P Cx, £ oy, ).
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Proofs of 7.7-7.14. Using representatives ¢, ¢, , ... for x,x', y, ... we
find, by 7.5, the following representatives for the terms of 7.7-7.10.

7.7 left:  y(p'@y')e EZo(f xg);

1.7 right: y(¢'fey' g)c EZ=y(¢'@y’)o(f@g)° EZ,

and these agree by naturality of EZ.

78 left: y(po®y)oEZot;
7.8 right: (= 1)MPly@pe @)o EZ=y(pey)otoEZ;

these agree by commutativity (VI, 12.3) of EZ.

79 left: y(peyop)o(EZ®id)oEZ;
7.9 right: y(pey®p)o(id®EZ)o EZ;
these agree by associativity (VI, 12.4) of EZ.

7.10 left: y(ne@)oEZ; 7.10 middle: ¢;
these agree by VI, 12.5.

For 7.11 we choose a representative cocycle of ae H* A4 first, and extend
it to a cochain ¢ on X; in particular, é ¢|SA=0. As before,  denotes a
representative cocycle of ye H*(Y, B). The left side of 7.12 is repre-
sented by

d(y(pey)o EZ)=(—1)l+Wl+1y(pay)o EZod
=(— 1)|w|+|¢|+1 Y(p®Y)o 0o EZ
=(=1)“l*y(pod@y)o EZ+(— 1)+ W+ y(peyod)o EZ
=y(6@®y)oEZ,

and the last expression also represents the right side of 7.12 (n.b. these
cochains may not vanish on S(Ax YU X x B), but only on S{A x ¥, X x B};
by excision, that is enough).

For 7.14 we use representatives, too, and get
Lolx[¥] [alx[b]>=y(p@y)e ¥ P(a®b),

where ¥, @ are EZ-maps going in opposite directions. Since ¥ o ¢ ~id
the last term equals

yeey)aeb)=(— )" g@eyb)=(- " (x, e dy,n. 1
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7.15 Exercises. 1*. If R is a field then x: H*(X;R)e,H*(Y;R)—
H*(X x Y; R) is always injective. It is surjective if and only if H(X;R)
or H(Y; R) is of finite type. Because H'(X; R)=~H,(X; R)*, this reduces
to the following algebraic assertion: If V, W are vector-spaces over R
then y: V¥e W* — (Ve W)*, [y(¢ey¥)](ve w)=@(v) (w) is always injec-
tive; it is surjective if and only if at least one of V, Wis finite-dimensional.
We indicate a proof. Let B, C be bases for V, W; then V* W* (Ve W)*
may be identified with the function-sets F(B, R), F(C,R), F(Bx C, R).
If pe F(Bx C,R) and ceC let p.eF(B, R) denote the partial function
p(b)=p(b,c). I p=y(pey) then p,(B)=¢ (b)Y (c) hence all p, are
multiples of ¢. Every peim(y) is a finite linear combination of elements
y(p®y), hence the set {p.|ce C} contains no more than finitely many
linearly independent elements (if peim(y)!). Let F,(Bx C, R) consist of
all p such that {p_|ce C} has finite rank. It is easy to see that F,(Bx C, R)=
F(Bx C,R) if and only if at least one of B, C is finite. It remains to show
that y: F(B, R)® F(C, R)— F,(B x C, R) is isomorphic. If pe E(Bx C, R),
choose a maximal linearly independent set among the p,, say ¢, ..., @,.
Then, for every ce C we have p,=)"_, ¢;(c) p;; the coefficients ;(c) are
uniquely determined functions of ¢, and the assignment p— Y7 _, ¢;®, ;
defines a map which is inverse to y.—Generalize to free modules over
principal ideals domains.

2. If R is a principal ideal domain and X is a space such that H(X; R)
is of finite type then there are two ways of expressing H*(X x Y; R) in
terms of H(X; R), H(Y; R). 1st way: Express H(X x Y; R) by the Kiinneth
formula then apply the universal coéfficient formula. 2nd way: Express
H*(X;R), H*(Y; R) by the universal coefficient formula then apply 7.6.
Compare the two results. Formulate and prove the underlying algebraic
relations.

3. After 2.11, the reader might have expected the following diagram
under the heading “stability .

H*AeH*B X > H*(A x B)
J-
(7.16) & ®id, (— 1)4™ id @ H*(XxBuAxY,AxB)

I

[H*(X,A)oH* Blo[ H* Ao H* (Y, B)] —@> H*(X x B, Ax B)o H*(A x Y,A x B).

Because the group on the lower right is a direct product, 7.16 decomposes
into two diagrams both of which can be seen to be special cases 7.12 of
stability (up to naturality 7.7 and commutativity 7.8). In particular,
7.16 is commutative.
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8. The Interior Cohomology Product (—-Product)

In VI, 12, Exerc.5, it was indicated that Eilenberg-Zilber maps
EZ: S(XxY)— SX®SY and natural diagonals D: SX —»SX®SX are
formally equivalent notions. When applied to the map EZ which occurs
in the definition of exterior cohomology products x: H*Xe H* Y —
H*(X x Y) this equivalence gives the interior cohomology product
—: H*Xe®H*X — H* X. Although then x and - are equivalent, it is
convenient to have both of them. X -products, for instance, may be easier
to compute (compare proof of 9.4), —-products on the other hand provide
a more familiar algebraic structure: they turn H*(X ; R) into a (functorial)
graded ring.

8.1 Definition. Let (X; 4,, A,) be an excisive triad, and let M,, M, be
R-modules. Consider the composite chain map

Hom (SX/SA,, M,)ex Hom(SX/SA,, M,)
—2, Hom (SX/SA,® SX/SA,, M &z M)
SX
S{A,,A,}’
SX
S(A,uA,)’

(8.2) —2, Hom ( M, @, Mz)

«LHom( M1®RM2),

where, as before, (y(¢,©¢,))(a,@a,)=(— 1)1} (¢, a))e(p, a;), and j is
induced by inclusion. By asSumption, j is a homotopy equivalence.
Passage to homology and composition with a, as in VII, 7, gives

(G*)"'D*y, a: H¥(X, A ; M)eg H*(X,4,; M,)
(8.3) S H*(X, A, U A,; M@, M,),
or with dimension indices

(8.3) HY{(X,A;; M))eg H* (X, Ay; M,)— H+¥(X, 4,0 A,; Mex M,).

This map or the corresponding bilinear map is called the interior co-
homology product or cup-product (—-product). We write

(84)  x;~x,=(*""'D*y,a(x;®x,), for x,eH¥*(X,A,; M,).
In terms of representative cocycles ¢,, ¢, this reads

(8.5) (o] [e.]1=[y(@,®¢,) D],
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where ¢, eS*(X; M), ¢,|SA,=0, 9,0 0=0. As in7.5, one has to remem-
ber that y(p,® ¢@,)o D vanishes on S{A4,,A4,} but not necessarily on
S(A, U A,).

The following properties 8.6-8.10 of —-products follow from properties
of the natural diagonal just as 7.7-7.11 followed from properties of EZ.

8.6 Naturality. If f: (X; A, 4,) > (Y; B, B,) is a map of excisive triads
then
SrO=y)=(/*y)~([*y), for yeH*(Y,B,;M,). 1

8.7 Commutativity. x,—x,=(—1)*I*lx, < x,. |

8.8 Associativity. x,—(x,—x;)=(x;~Xx,)—x,. This triple product lies
in H¥*(X, 4,0 A,V 4,) if x,e H*(X,4). 1

89 Units. 1,~x=x=x~1,, where 1,e H’(X;R) is the class of the
augmentation S, X - R. 1

8.10 Stability. The following diagram is commutative,

H*A,@ H¥(X, A,) 4%, H* 4,0 H*(A,,A,nA,)—=> H¥A,,A, " A4,)

=|j*

(8.11) »®id H*(A,uA4,,4,)
| I+
H*(X,A)eH*(X,A,) = > H¥(X,A, U A,),

where i, j are inclusions. In formulas,

(8.12)  *(j*) Ya—i*x)=(0*a)~x, aeH*A,, xeH*(X,A,).
In the important special case 4, =1, this becomes

(8.13) 0*(a—i* x)=(6* a)~x,

where i: A — X is an inclusion map, ac H* 4, xe H* X. |

The following two properties reflect the relation between Eilenberg-
Zilber maps and natural diagonals.

(8.14) X=X, =A*(x; xx,),  x,€H*(X,A,),
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where 4: (X, 4,0 4,) > (X x X, 4, x X U X X A,) is the diagonal map,
AP =(P, P); we have to assume that both (X; 4,, 4,)and (X x X; 4, x X,
X x A,) are excisive.

Proof. With representative cocycles ¢, ¢, the left side is [y(¢,® ¢,)o D],
the right is [y(@,® ¢,)o EZoA],and D=EZo>A4 by VI,1220. 1§

(8.15)  xxy=(p*x)—(q*y), if xeH*(X,A4), yeH*(Y,B),

and p: (X x Y, AxY)—>(X,A4), q: (X x Y, X x B)— (Y, B) are the projec-
tions; we have to assume that (X x Y; 4x Y, X x B) is excisive.

Proof. With representative cocycles ¢, the left side is [(p®y)e EZ],

the right 1s [(¢ o p)@(y o g) o D]1=[(pey) - (peg)o D], and EZ=(p®q)o D
by VI, 12.25. &

As a consequence of 8.15 we note

8.16 Multiplicativity. (x, x y,)—(x, X y,)=(— )12l (x, < x,) x (y, = ¥,),
if x,e H*(X,A,), y,eH*(Y,B,), and (X; A,, 4,), (Y;B,, B,) are triads
such that the products above are defined.

Proof.
(x1 X y;)"’(xz X y,)=p* X ~—q* Y1"’p* szq* Va2

=(— DIl px, < p* x, < q* y—q* v,
=(—1! llep*(xf"xz)vq*(h"’}’z)
= (=Dl (= x) x (v1=y2). B

8.17 Remarks. If the coefficients are M, = R= M, then also M, ®; M, =R.
Properties 8.3, 8.6-8.9 then assert that H* (X ; R) is a commutative graded
ring (in fact, an R-algebra), which depends functorially on X. It is called
the cohomology ring (algebra) of X (with coefficients in R). Further,
H*(X, A; M) is an H*(X; R)}-module with respect to H* X@ H*(X, A)
—=» H*(X, A). By restriction, H*(A4; M) is also an H*(X; R)}-module,
H*XeH*A—- H*Ao H*A—=> H* A and 8.13 asserts that 6*: H*(A4; M)
—>H*(X, A; M) is a homomorphism of H* (X ; R)-modules.

If K, L are graded R-algebras then K®gyL is also a graded algebra with
respect to the multiplication

(ky®l)-(ky@l)=(— 1)l Ikz'(kl ky)e(l 1,).
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This algebra is called the tensor product of the algebras K, L. Multi-
plicativity 8.16 then asserts that

H*(X; R)eg H*(Y; R)—> H*(X x Y; R)
is an algebra homomorphism. Moreover, by 7.6,

8.18 Proposition. If R is a principal ideal domain, and X,Y are spaces
such that H(X; R) is of finite type and all torsion products H(X ; R)*
H(Y;R) vanish then x: H*(X;R)e H*(Y;R)— H*(X xY;R) is an
isomorphism of algebras. |

8.19 Exercises. /. We can define cup-products of cochains by composing
(8.20) S*Xe@S*X —'5 (SXeSX)* —2, 5% X

where D is a natural diagonal. This is a chain map. It depends on the
choice of D but its homotopy class does not. Show that for D=AWo 4,
where AW is the Alexander-Whitney map VI, 12.27, this cup-product of
cochains ¢, €S? X, ¢,€ 87 X has the form

(8.21) (@1~¢r)o=(—10 (0 &)@ P, (0 )",

whereo: 4, ,— X,and §f*4: 4, > A,  rtesp.é/7%: 4, — 4, coverthe
first (p+1) resp. last (g+1) vertices of 4, , (cf. VI, 12.26 Exerc. 1). The
formula 8.21 (up to sign) is often used to define cup~products directly,
without referring to EZ-maps or natural diagonals. In particular, this
was the procedure of Alexander and Whitney—Show that the cup-
product 8.21 is associative but not commutative.

2. Formulate the stability property of —-products which corresponds
to 7.16.

9. —-Products in Projective Spaces.
Hopf Maps and Hopf Invariant

9.1 We begin with some —-products in euclidian space. Coefficients are
taken in a fixed commutative ring R; they will not appear in the notation.
For k <n we consider R* as subspace of R", namely

Rf={x=(x,, ..., x,)eR"|x;=0 for i>k},
and we put
R*-*={xeR"|x,=0 for i<k}~ R""*;
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clearly
(R"—R¥ U (R"—R"~¥) = (R"—0).
We claim

92) —: HYR" R"—R" %o, H"-*(R", R" — R¥)~ H"(R", R"—0).
Proof. Consider the diagram

H*(RY)®p H™ *(R5 %)= HX (RS x R" ¥ o H" *(R* x R %)

\ :

N\
Hn(]Rk % IRn—k’ IRI( X IR':—J(_())7

where we use the abbreviation IR{ =(RR/, R/—0) to facilitate the print-
ing. The diagram commutes by 8.15. The left arrow X is isomorphic by
7.6 (or by duality 7.14, using 2.14), hence the right arrow is isomorphic.
But the right arrow agrees with (9.2) by naturality of —-products, applied
to RxR"“=R". 1

9.3 —-Products in Projective Spaces. We treat simultaneously the projec-
tive spaces P, over the reals R, the complex numbers €, and the quatern-
ions H (cf. V, 3.5). We recall that H'(P; R)~R if i=0,4d,2d, ..., nd, and
HY(P; R)=0 otherwise, where d=1,2,4, and R=2Z,,Z,Z according to
the cases R, C, IH. We shall prove

9.4 Proposition. —: H(P,; R)® H/*(P,; R)—— H"+9 (P R),
for i, j=0, i+j<n.

In other words, if xe HY(B; RY=R is a generator then {1,x,x?,...,x"} is
a base of H*(B; R), and x"*'=0. Or again, H*(P; Ry~ R [x]/(x"+!)=
polynomial ring in x divided by the ideal (x"*).

Proof. Fix k <n, and consider E, as subspace of P, namely

B={(eRl{; 1 =0={s, ==},
where {, are homogeneous coordinates. As we know (V,4.10 and 6.13),
H'P~H'R, for i<dk. Define P_,={(ePB|{,=0={;=--={(_;}. Then
(©-3) (B—B_)~E_,,

via the deformation retraction {— [{y, ..., {1, t Gy, -0 80,], 0<2< 1.
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Further, we identify R*"* with {{eP|{,#0}, R*=R" B, RI""=
R~ P _,. Consider the following diagram

H* 1:4— Hdk(e,,B,—E,_k)—)Hdk(IRd", IRdn_I'Rd(n_k,)

(9.6) Pl ® p

Hdch P Hdk(P, B‘__}’io) —P_)Hdk(]de, ]de_o)

in which all maps are induced by inclusions (B, = B~ P._,). We know that
all maps marked p are isomorphisms. Further, ¢ is isomorphic because
H'P=H'P for i<dk, and P—B_,~PB_,~R—P,. Therefore, all maps
in 9.6 are isomorphisms.—We can also interchange the role of B, B_,

and get a similar diagram 9.6 of isomorphisms for H4"—%,

Consider then the diagram

Hdle®Hd(n—k}El+—Hdk(B”Rl_E_k)@Hd(n*k}(PmRI_B()

Hd"B.*—p—Hd"(B.»B:_ﬁo)

(9.7)
Hdk(]Rd", Rdn__Rd(n—k))®Hd(n—k)(Rdn, Rdn_de)

]

LN Hd"(]Rd", IRd"—O).

The top row is obtained by tensoring the top rows of 9.6 and 9.6, hence
consists of isomorphisms. The lower row consists of isomorphisms as in
9.6. The right vertical is isomorphic by 9.2. Hence all maps are isomorphic,
in particular the left vertical. This proves the theorem if i+ j=n. The
general case i +j <n follows because H* P —“> H* P, ;1s an isomorphism
of rings up to dimension d(i+j). 1

9.8 Corollary. If0<k<n then R, is not a retract of P..
Proof. If r: P, — R is a retraction, and x,e HY(P,,R), x,c HE, R) are

generators as in 9.4 then r* x,=x,, hence O=r*(xf*")=r*(x)t*' =
xk+1+£0, a contradiction. |
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9.9 Corollary. The Hopfmap h:S%" ' > P, _ h(zg, ..., 2,_1)=[20, -++» Zu_1],
n>1,is not nullhomotopic (we use coordinates z,e R resp. € resp. H with
YuZe lz,I> =1 to describe the sphere $"~*). In particular, for n=2, we
get essential maps $° - P €C~S$? §" -PHxS$*

Proof. If h~0 then there is a map @: B —»P_, with @|S" '=h
(where B*"={(z,...z,_,)|Y,lz,]><1}). But then we could define a
retraction r: B — P,_, as follows o

[Losslnoil if Y52 I = 1,02

oy Cl= Co _Cﬂ -1 2 2
@(c., . ) it =3I, 12 < 150

This contradicts 9.8. }

The Hopf-Invariant. Analyzing the relation between P, and the Hopf
map h: $"~! — P_, leads to the following

9.10 Definition. Let f: X — Y be a continuous map. Define the mapping
cone Cf to be the space which is obtained from the topological sum
(X x[0,1])@Y by shrinking X x {0} to a point, and identifying each
(x, 1)e X x [0, 1] with f(x)e Y. Alternatively, Cf is obtained from CXeY
by identifying each point x in the base X of
the cone CX with f(x)eY (see Fig. 10); one
often writes Cf=Yu,CX. We can view Y
as a subspace of Cf (no identifications were
made in Y), and we have

9.11 Lemma. The map f: X—Y is null- S
homotopic if and only if Y is a retract of Cf. Fig. 10

Proof. Let ((x,t))e Cf denote the equivalence class of (x,t)e X x [0, 1].
The equation r((x, t))=©(x, t) establishes a 1-1 correspondence between
retractions r: Cf— Y and nullhomotopies @: f~0. J

Every (co-)homological condition for the existence of a retraction
r: Cf—-Y therefore is also a condition for the existence of a nullhomotopy
©: f~0. For instance, if f: $>""'>§" n>1, then Cf=8"u, B*"
This is a CW-space having one cell in dimensions 0, #, 2 n, and no other
cells. Hence H*(C f; Z)=Z=H*"(Cf;Z). If ye H'(Cf;Z), yeH*"(Cf; Z)
are generators then y—y=v(f)y, where y(f) is an integer. This number
is easily seen to be an invariant of the homotopy class of f (in fact,
f~f"=Cf~C[f"); it is called the Hopf-invariant of f. If f~0 and r
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is the corresponding retraction (ri=idg,) then O=r*(i*y—i*y)=
y~y=7(f)y, hence y(f)=0. The Hopf-invariant allows to exhibit
essential maps $**~* — $2* for all k>0 (see Steenrod-Epstein I,5
for a simple proof, and for further properties of y).

9.12 Exercises. [ *. We indicate another way of computing —-products in
P.C (coefficients Z). Clearly H*(E, C) has a base consisting of le H®,
se H?. Therefore x"(BC)=FCxEBCx --- has as cohomology base

{5;,~s;,~ =5, eH*x"RC)}, 1<ij<ij<--<i<n,

where s;=1x1x .- xsx--x1, the s in i-th position (cf. 8.18). Let
x;€ H*(P,€)=Z be a generator, 0<j<n. Consider the map u:x"F, C—
PC of 2.16 Exerc. 3(ii), and prove +p*(x,)=)"_ s, Tp*(x,)=
nl(s;~s,---~s,) (hint: look at homology first, and use scalar products).
This implies + pu*(x,~x;~---~—x)=(2s)' =n!s;~s,~---—s,=p*(x,)
hence (x,)"= +x,, and hence the multiplicative structure of H*(P,C).

2.1If f: R€C—-E C,n>0, is a map then the induced endomorphism f_
of H,,(BC;Z)~Z is given by multiplication with an integer deg(f)ecZ,
the degree of f. Show that deg(f)=A4" for some AeZ. In particular,
n even = deg(f)>0. Hint: Study the ring endomorphism f* of
H*(P.C; Z). ’

3. Using —-products show that the Lefschetz number of any map
f: BC—EC is of the form A(f,)=1+A+A*+ - +A" with leZ
(compare 1.14 Exerc. 3). If n is even, this is never zero, hence every f

has a fixed point. If n=2 k —1 is odd then the following map is fixed point
free (A=—1)

[CO?CI’---7C2k]H[_El»C_0s —63»52, cees ‘EZk,ZZk_l]-

4. Show that P, F, F=IR, C, or IH, is homeomorphic with the mapping

cone of the Hopf map
SN L PF, (Zgs e 20 (205 Zy» 05 20) -
Deduce that the Hopf maps $° - B C~$S? S’ — B H~S* have Hopf
invariant +1.
5. Using the commutative law for cup-products show that every map

S#k+1_, §2k+1 has Hopf invariant zero.

Remark. If n, y are even then there is an $?"~! —§" with Hopf invariant y;
cf. Steenrod-Epstein [,52. Maps $*"~! »$" with odd Hopf in-
variants only occur for n=2, 4, 8; cf. Adams, 1960, and for a simpler
proof Adams-Atiyah.
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10. Hopf Algebras

In 3.1 we remarked without proof that even-dimensional spheres do
not admit multiplications u: $2"x$2"—$?" with two-sided unit.
Such a map would have bidegree (1, 1) (because of the unit), but

10.1 Proposition. If p: $2"xS$*"—S?" has bidegree (x, ) then o f=0.

Proof. Let se H*"($2"; Z) be a generator. Then u*(s)=a(s x 1)+ (1 x s)
by definition of (a, ), hence

0=p*(s—s)=p*(s)* =[a(s x 1)+ B(1 x 5)]?
=2 (s2x 1)+ B2 (I x )+ 2a f(sxs)=2aB(sxs). I

Note that even-dimensionality of s was used in order to get (1 x s)—(sx 1)
=§ XS,

The proof of 10.1 is purely algebraic: The ring H* $?" admits no multi-
plicative homomorphism

H*S$>" > H*$?"e H*$>" 2 H*(S*" x $%")

such that s> s®1+1@s. The question arises therefore which algebraic
conditions on H*X are imposed by the existence of a multiplication u:
X x X — X with unit. Assume X is pathwise connected and H*(X x X))~
H*X e H* X (cf 8.18). Then u*: H*X - H* X ® H* X is a homomor-
phism of algebras such that p*(x)=x®1+1® x +r, where

re®, ;. oH' XeH'X, for |x|>0.

Which graded algebras 4 admit such maps 4—A® A? For connected
commutative graded algebras over a field R (perfect, if char(R)>0) this
question has been completely solved by Hopf-Leray-Borel (cf. Milnor-
Moore, and 10.17 Exerc. 5). We now discuss the problem but give full
details only if R is of characteristic zero (see 10.16).

10.2 Definition. We consider connected graded R-algebras A (R a
commutative ring with unit 1). A graded algebra A is called connected if
A,=0 for i<0, A,~R. For instance, the cohomology algebra H*(X; R)
of a pathwise connected space X is connected.

Let u: A® A— A denote the multiplication, u(a®a’)=ad’. Define
graded submodules D" A= A,n=0, 1, ...,asfollows: D° A= A;(D"' A);= 4;
if j>0, (D' 4);=0if j<0; D"*! A=im(D" A® D' A—*> A), n>0. Clearly
D"A>D"+' A, and (D" A),=0 if k<n. The elements of D? 4 are often
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called decomposable. The elements of D" A might then be called (n—1)-
times decomposable; they are linear combinations of elements q, a,. ... a,
with |aq;|>0.

We shall also consider the modules " A=D"A/D"+! A. Most of the
time we shall assume that D"+! 4 is a direct summand of D" 4 for all n;
in that case we say A is a split-algebra. (If R is a field then all connected
R-algebras are split-algebras.) For split-algebras

(10.3) D"A=@"Ae D" Ax®, 0" A.

v>n

D" and @" may be viewed as functors of connected algebras, i.e.

10.4 Proposition. If h: A— A’ is a homomorphism of connected algebras
then h(D" Ay D" A'. Therefore we have induced homomorphisms

D"h: D"A—D"A" and O"h: O"A—-6O"4". |

The module @' A= D' 4/D* A will play a special role in the following.
We first show that it can be thought of as “generating the algebra A”.

10.5 Lemma. If M<D'A is a submodule which maps epimorphically
onto @' A=D'A4/D* A then M generates the algebra A.

Proof. Fix an integer k. By decreasing induction on n we show that
(D" 4), is contained in the subalgebra {M} which M generates. Since
(D" A), =0 for n>k we have a start. Consider a generator a, a, ... a, of
(D" A),, where a;e D' A. By assumption, a,=m,+ b, with me M, b,e D* 4,
hence a,a, ... a,=m,; m,...m,+b, where beD"+' 4. But m;ym,...m,
liés in the subalgebra which M generates, and so does b, by inductive
hypothesis. 1

10.6 Corollary. If h: A'— A is a homomorphism of connected algebras
such that ©* h. @' A'— ©' A is epimorphic then h is epimorphic.

Just apply 105 to M=hD'A’. 1

10.7 Proposition. If A, B are connected split-algebras then A® B=
A®gB is also a connected split-algebra. Further

(10.8) D"(A®B)=ZOS,.S,,D"A®D""'B,
and

(10.9) O"(A®B)=®y<;<,O' A2 O" ' B.
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Proof. Connectedness is clear. If [a®b|>0 then |a|>0 or |b| >0, hence
D'(A® B)=D'A®B+ A® D' B. Now proceed by induction on n. Suppose
n>1. Then

D"+!(4@ B)=im[D"(4 B)® D' (4@ B)— A B]
=im[(},,D'4®D""'B)®(D' A B+ A D' B)— A B]
=) D*'4eD""'B+) ;D'AeD"""*'B

which proves 10.8.
If A, B are split-algebras then (by 10.8 and 10.3)

D'(AeB)=},[(®,,:0" 4)e(®,;,_: 0 B)]
®,, ,2n(6" A0 6° B)
—®,,,.,(0"406° B\®D"*' (4@ B),

which proves the rest of the proposition. |

10.10 Definition. Let 4 be a connected algebra. A diagonal is an algebra
homomorphism ¥: A —A4® A such that

V(@=ael+lea+r with reD'AeD'A, forall acD'A

Our problem is (see text after 10.1): Which algebras admit a diagonal?
For instance, if a topological space X admits a multiplication with unit
(an h-space structure) then H* X admits a diagonal (provided H*(X x X)
~H* X H* X).

A connected algebra A together with a diagonal is called a hopf-algebra;
it is a Hopf-algebra if the diagonal is associative, i.e. if the two com-
positions

A 404 90V8Y, 4o 404

agree. As remarked above, the cohomology algebra of a pathwise
connected h- resp. H-space X is a hopf- resp. Hopf-algebra (provided
H*(X x X)~H* X® H* X). Also, the Pontrjagin-algebra H, X of an
H-space is a Hopf-algebra: the geometric diagonal X — X x X induces
analgebraicdiagonal H, X — H, X ® H, X (if the latterequals H, (X x X)).
These two Hopf-algebras are related by duality (cf. Exerc. 3).

10.11 Lemma. Let h: A'— A be a homomorphism of connected split-
algebras. Assume A' is commutative and let y: A— A® A be a diagonal
(note the symmetry of this assumption: A’'@ 4'—~> A and A —¥4>Ae A
have to be algebra homomorphisms). If @' h: @' A'~O' A, O*h: O* 4'=
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©O% A for some i, k, then the composition (n=1i+k)
04— 0"4-— 2, 0" (40 A) S50 40O 4

(O h®O%h)-1 @iAI® @k A inj @n(Al®Ar) on(u’) " A

(10.12)

multiplies every element of ©" A’ with the binomial coefficient (n) ,i.e.10.12
1

agrees with ( ) id.

The special case h=id yields the following

10.13 Corollary. If A is a connected commutative split-algebra and
V: A— A® A is a diagonal then the composition

0"4—2Y 0" (4 A)—2 0 400" 4

O"(AeA)—>0"A4
equals (’:) id.

Proof of 10.11. It suffices to consider generators aa,...d,c@"A’,
where a,e@' A'cD' A'. Let a,=ha,. We have ya,=a,®l+lea +r,
with r,e D*(A® A), hence

Yhiaydy...a)=y(a a,...a)=[],(@,1+18a,)+r

with re D"*'(4 ® A). The component of [[,(a,® 1+ 1@a,)in @' A O* A is
a=) ta,...a,®4a,.. a,; the sum extends over all i-tuples {v} such
that 1<v,<v,<---<v;<n, and {p;,...,p,} is the complement of
{v,...v;} in {1,...,n}; the signs + are caused by the commutation
law (18 a,)(a,e1)=(—1)*!I"lg,eq,.

Consider then the corresponding expression

d=) ta,..d,ed, .4, in 46"

Pt i
Clearly (@'he ©"h)a'=a=projeyyoh(a;...d,). But if we apply the
multiplication ¢’ to o', each summand goes into a; ...a, (the signs
disappear when we reverse the permutation), and the number of sum-

mands is (r:) R |

10.14 Proposition. Let h: A'— A be a homomorphism of connected split-
algebras, such that @' h: @' A'=~O' A. If A is torsionfree (as abelian
group) and commutative (as graded algebra), and if A admits a diagonal
then h is an isomorphism.
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Proof. By 10.6, i is epimorphic. It follows that ®"h: @"A' > ©" 4 is
also epimorphic, for all »n (just look at generators a, ...a,e " A with
a;€ ©' A). We show that it is also monomorphic. By induction we can
assume @""1h: @""'A'=2O"'4. Then 10.11, with i=n—1, k=1,
asserts that the composition 10.12 is monomorphic (" A’ is torsion-
free!). In particular, the first factor of this composition, @"h, is mono-
morphic.

By decreasing induction on n we now show that (D"h);: (D"A');—
(D" A); is isomorphic (j fixed); for n=0 this is then the theorem. We have
a start because (D" 4");=0=(D" A)f for n>j. The inductive step follows
from the exact sequence 0—»D"*'A'—>D"A’' > ©"A’' 0 and the five
lemma. |

10.15 Example (compare Chevalley Chap. V). For every graded set
M=(M,,M,,...) there is a free commutative graded R-algebra FM
generated by M. It contains M, and it is characterized by the following
universal property: If A is any graded commutative R-algebra, and
f: M—A is a map of graded sets then there exists a unique homo-
morphism h; FM — A of graded algebras such that h| M = . In particular,
FM always admits a diagonal y: FM—FM e FM, defined by y(m)=
mel+lem, for me M.

If M;=M,=---=0 then FM is the polynomial algebra generated by M;
if My=M,=--- =0 (and ;€ R) then FM is the exterior algebra generated
by M. A general construction is as follows (we shall use FM only if R
is a field of characteristic zero).

Let @M denote the graded R-module which in dimension »n is freely
generated by the set of all finite sequences (x,, x,, ..., x,) of elements
in M such that Y |x;|=n; in particular, (#M), is free on one generator,
namely the empty sequence, which we denote by 1. If (x,...,x,),
(y1,-.-,¥,) are two sequences which differ only by a permutation ¢
then their odd-dimensional terms also differ by a permutation & only,
and we put (x,, ..., x,)=sign(@)(y,, ..., y,); in particular, 2(x,, ..., x,)=0
if some odd-dimensional element x; occurs twice in the sequence. The
quotient-module of @M by these relations is denoted by FM; if 2 is
invertible in R then FM is also a free R-module (we just annihilated
some base elements of @ M, and identified some others, up to sign).

We define the product of two sequences by writing one after the other:
gy coes X)Wy oo or ¥ =(Xysoes Xpu ¥y5 ..o, ¥ This turns @M into a
connected graded R-algebra with unit 1 (“free graded R-algebra generated
by M™). One easily verifies that the products pass to the quotient FM,
and turn FM into a commutative connected graded R-algebra. It con-
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tains M, the set of one-term sequences, and the coset [x,, ..., x,]JeFM

of the sequence (x,,...,x,)e®M agrees with the product x, x,...x,.
In particular, @' FM =D'FM/D*FM is freely generated by M. If f
maps M into a graded commutative R-algebra A then h[x,,...,x,]=

f(x)) f(x,)...f(x,) is the unique homomorphic extension of f, hence
FM does indeed have the required universal property.

10.16 Proposition (Hopf-Leray). Let A be a connected graded commutative
algebra over a field R of characteristic zero. If A admits a diagonal then A
is free; in fact, if M is a base of @'A then A~FM.

In other words, over a field of characteristic zero the only commutative
connected algebras which admit diagonals are the free ones. In particular,
this determines the multiplicative structure of H*(X;Q) if X is a
connected h-space (and all H'(X;Q) are finitely generated so that
H*(X x X)=H*X®H* X). It shows again that even-dimensional sphe-
res are not h-spaces but it also excludes many other spaces, like B, C. In
the (important) finite dimensional case, i.e. if H'(X; Q)=0 for large i,
H*(X;@Q) can have no generators of even dimension (their powers
would have to be non-zero), hence H*(X ; Q) is an exterior algebra on
odd-dimensional generators. This is the classical result of Hopf.

Proof of 10.16. Lift Mc®@'A=D'A/D* A back to D' AcA and let
h: FM — A be the algebra homomorphism which extends the inclusion
M — A. Clearly, ®' h: ©' FM~©' 4, hence h: FM~A by 10.14. 1

10.17 Exercises. I. The multiplication map u: 4@ 4 —»A of any graded
algebra induces homomorphisms u**: ®'4® @* 4 O'+*4 which turn
((©"A))), jez into a bigraded algebra, the bigraded algebra associated
with A. Ignoring the n-gradation one defines a (simply) graded algebra © 4
by 6, A=@®,(0" A),. Show that © 4 is a split-algebra, and O(OA)=O A.
Further: If 4 is commutative and @4 is free-commutative then 4~ O 4.

2. If A is a split-algebra and y: A -A4®A4 is a diagonal then
OY: OA->O(A8A)=OA204
is also a diagonal, which does not depend on .

3. If A is a graded R-module such that every A4, is free and finitely
generated, then A* =Homg(4; R) has the same property, and (4®z A)* =~
A*@p A*, A** >~ 4; this is well-known linear algebra. Suppose now 4 is
also a Hopf-algebra, with multiplication u: 48 A—A4 and diagonal
V: A—>A®A. Then pu*: A* >A*eA* and Y*: A¥*eA* > A* are the
diagonal and the multiplication of a Hopf-algebra structure on A*,
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and A**= A as Hopf-algebras. One says, A, A* are dual Hopf-algebras.
Show that the Pontrjagin algebra and the cohomology algebra of a
connected H-space are dual Hopf-algebras (provided they are free and
finitely generated in each dimension).

4. If n>0 is a natural number then

eea()

Use this and 10.11 to show that the conclusion of 10.14 holds if torsion-
freeness is weakened to: @7 A has no p-torsion.

pifn=p', p prime, r>0.

1if n is not a power of a prime,
0<i<n}={ P pr

5. Over a field R of characteristic p >0 there are connected commutative
algebras A which admit diagonals but are not free. For instance, if 4 is
generated by one element x then A=R[x]/(x") for some N with
0<N <o (x*=0), and there is one candidate for a diagonal v, namely
Y(x)=x®1+ le x. Show that this does define a diagonal if (and only if)
one of the following conditions hold: (i) |x| is odd, N<2; (i) p=2,
N=2" 0<r<oo;(iii) | x| is even, N=p", 0<r < 0.

A theorem by A. Borel (cf. Milnor-Moore, 7.11) then asserts that
over a perfect field R of characteristic p>0 the only connected commu-
tative algebras A4 which admit diagonals (and satisfy dimg(4;)< o) are
multiple tensor-products of algebras on one generator as above.

6. Let R be a field of characteristic p >0 which is not perfect; pick peR
which is not of the form 1?7 with 1eR. Let x,y be two-dimensional
indeterminates and put A=R[x, y]/(x?+p y*). Show that 4 admits a
diagonal but is not a tensor-product of algebras on one generator.

11. The Cohomology Slant Product

This product contains somewhat more information than the exterior
cohomology product (VII, 7) but is often less convenient to deal with.
Algebraically it is based (in the simplest case where all coefficients are
in R) on the natural map id®: D*=Hom(D, R) - Hom(Ce&D, C), or
rather on its adjoint D*®(Ce® D) — C, whereas the exterior cohomology
product was based on C*®D*—'-(C®D)* which is the adjoint of the
composite D* —4€ Hom(C®D, C)—%» Hom(C*, (C® D)*).

11.1 Definition. Let C,D be R-complexes, and L, M modules over R.
Consider the composite chain map

E: Hom(D, M)e(Ce®DeL)=(CeL)e(Hom (D, M)® D) 48, Co Lo M,
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where o permutes factors and e is the evaluation map 1.2. Explicitly,
(11.2) EWecodol)=(—1)V coley(d).

Passage to homology and composition with a (cf. VI, 9.11) gives

(11.3) H*(D, M)e H(C®D®L)—E=* > H(Ce Le M);

with dimension indices,

-

(11.3) H'(D,M)eH (CeD®L)—H, (CeLeM).

This map or the corresponding bilinear map is called the cohomology
slant product (for complexes). We write

(11.4) y~{=E, a(ye()eH,_/(CeLeM), for yeHY(D,M), {eH (C®D®&L).

The cohomology slant product for spaces (X, A), (Y, B) is obtained by
taking
S(X;R)

C=8(X,4; R)Zm,

D=S(Y, B; R),
and replacing S(X, 4; R)®S(Y,B; R) by the homotopy equivalent

complex
S(X x Y; R)

S{4xY,X xB; R}
ZS(X, 4; R)eS(Y,B; R).

S(XxY,AxYUXxB;R)~

We have, of course, to assume that (X x Y; Ax Y, X x B) is an excisive
triad. Under this assumption the cohomology slant product is then a
homomorphism

(11.5) H{(Y,B;M)eH (X xY,AxYUXxB;L)—>H, (X,A;LeM).

As in the case of complexes, we write (y~{)eH,_,(X, 4) for the slant
product of yeH'(Y,B) with {eH,(X xY,AxYUXxB). In terms of
representative relative (Co-)cycles yeS'(Y; M), ze S(X x Y; L) we have

(11.6) WIN [ =(= D)WY a0y (b,)],
where (EZ)(z)=) ,a,®b,, a,eS(X; L), b,eS(Y; R). When applying this

formula one has to be careful to choose the representative z in such
a fashion that

0zeS{AXxY,X xB;L} — and not only 0zeS(AxYuX xB;L).
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Ifin 11.3, C=(R, 0), or if in 11.5, X is a point and A=W then the cohomology
slant product reduces to the scalar product of VII, 1.

The main formal properties of ~ are as follows (coefficients omitted).

11.7 Natuorality. If f: (X, 4) > (X', 4"), g: (Y, B)—(Y’, B') are maps of
pairs as in 11.5 then

f@* Y~ D=y ~(fxg),¢,

y'eH¥(Y,B), (eHXxY,AxYuXxB).

for

11.8 Associativity. (x X y)~y=x~(y~7), for xe H*(X, A), ye H*(Y, B),
ye H[(W, U)x (X, A) x (Y, B)]. In particular, if W is a point, and U =9,
this becomes

119 Duality. <{xxy, {>=<x,y~{), for xeH*(X,A), yeH*(Y,B),
(eH(X XY, Ax YU X x B).

11.10 Units. 1,~{=p_{, where 1,eH®(Y;R), (e H(X x Y¥,Ax Y), and
p: (X xY,AxY)—(X, A) is the projection.

11.11 Stability. The following diagrams are commutative,

H*(Y,B)e H(X x Y, Ax YU X x B) > »H(X, A)

(11.12) y_nmmid@a. J,a‘
id

H*(Y,B)e H(Ax YU X x B, X x B)*T"H*(Y, B)e H(A X Y, A x B)— HA.

H*BeH(X x Y,Ax YU X x B)-2®4, H*(Y,B)o H(X x Y, Ax YU X x B)

(11.13) J—(—u‘“m id®o, J\

H*Bo H(Ax YU X x B, Ax Y)""H* Be H(X x B, A x B)—— H(X, A).
where j denotes inclusion maps. In formulas,
0, O=(=D"y~jta, L,
if yeH*(Y,B), (eH(X xY,Ax YU X X B);
(@*DNC+H(= )b~ jt 8, (=0,
if be H* B, {eHX xY,AxYuUX X B).
Note that j,=id if B=@ in 11.14, or A=0 in 11.15.

(11.14)

(11.15)
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11.16 Multiplicativity. y~wx{=(— D"t ux(y~N0), if yeH*(Y,B),
weHW,U), (eHXxY,AxYuX xB), and (W, U), (X, A), (Y,B) are
pairs of spaces such that the products above are defined. In particular,
if X is a point, and A= this becomes

(1L.17) ywxp=(=D"wey,n),
for we H(W, U), ye H*(Y, B), ne H(Y, B).
Proof of 11.7. It is enough to consider complexes (instead of spaces)

because EZ-maps are natural. Let then f: C— C’, g: D — D’ be chain
maps. In the notation of 11.2 (L omitted) we have

FEW gecod)y=(— 1)Vl f(c)e U gd)=E@W'» fcegd),
1.e.

foEo(g*eid)=E-[id®(f®g)]: Hom(D',M)e(CeD)— C' oM,

where g*=Hom(g, id. g p). Passage to homology and composition with
o: H*(D', M)e H(C® D) - H[Hom(D’, M) ® C ® D] gives

fo(E oa)o(g*@id)=(E, ca)o(id@ (f®g),) (by naturality of a);
and applying this to y'®{ gives 11.7.
Proof of 11.8. As in the proof of 11.7 it is enough to consider complexes

B, C, D (instead of spaces) because EZ-maps are (homotopy-) associative.
Consider the diagram

Hom(C, M)e Hom(D, N)e(Be Ce D)-22E, Hom(C,M)e Be Ce N
y®id E

Hom(CeD,MeN)e(Be(CeD))—L— BeMeN,

where y is as in 7.2. A generator ¢ @y ®be®ced in the upper left maps
into (—1)WHbl+Wlld+lelbl b g ¢ (c) @y (d) on either way; the diagram is
therefore commutative. Now pass to homology and apply the resulting
equality to a(x® y® ).

Proof of 11.10. Let f=id: (X, 4)—(X, A), and g: Y— P where P is a
point. Then

L~{=f*Up)N ) =1 (f x8), {=1p~(p {x 1P)=p, (s

the 2nd equality by 11.7, the third by 2.10, the last by the very definition
of slant-products (cf. 11.6).
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Proof of 11.11. Consider 11.14 first. Choose representatives ¥ of y and z
of { asin 11.6. Then Y|SB=0, éyy =0, and dz=a+ § where aeS(4 x Y),
peS(X x B). We have

PE(Y®EZ(2))=(— ) EW ®EZ(3z))=(— W E(Y ® EZ(x)),

the first equation because oy =0, the second because {|SB=0. But the
outer terms of this represent the two sides of 11.14, or the two ways of
moving y®z from the upper left corner of 11.12 to the lower right.

For 11.15 we choose a representative of b first and extend it to a cochain
¥ in Y; then /|SB represents b and 5y represents 5*b. We have

OE(W® EZ(2))=E(8Y ® EZ(2))+(— YW E(y ® EZ(0z)),
or
E(0Yy ®EZ(z))+(— ) E(y @ EZ(f))

=J0E(® EZ(2))—(— 1) E(y ® EZ(0)).

The left side represents the sum in 11.15, the right side represents zero in
H(X, A) because E(y ® EZ(x))eSA.

Proof of 11.16. As before it is enough to consider complexes B(=SW/SU),
C(=SX/SA), D(=SY/SB). Let y,u,z=) a,®b, be representatives of
y,w,{. Then wx{, y~(wx{), wx(y~{) have the following represent-
atives:

Ywea)eb,, (—~HVHY (—n¥i™luwea)ey(b,),
uey (—)¥>la,eyd,). I

11.18 Exercises. I. Show that ~: H*(R",R"—0)® H(R™*", R™*"—0) —»
H(R™, IR™—0) is isomorphic—if one identifies

(R™+", R"+"—0)=(R", R" —0) x (R", R"—0).

2. Define o: H(X x Y)>Hom(H* Y, HX) by (6{)y=y~{ (or better:
(— DPIRI Y (). Show that under suitable finiteness conditions on HX
and HY (compare 7.6; assume R is a principal ideal domain) there is a
split exact sequence

0—-Ext(H*Y, HX)" > H(X x Y)—2> Hom(H* Y, HX)—0.

As in 7.16 Exerc. 2, this provides two possibilities of expressing H(X x Y)
in terms of HX, HY, and yields algebraic relations between ®, *, Hom,
and Ext.
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3. What is the analogue of 7.16 for ~-products?

4*. Let Ko V<IR", where V is open, K compact; let i: K — V denote
the inclusion-, and 4: (V,V—K)—(V,V—K)x V the diagonal map.
Show that

(I~ 4y 0g)el==2Ly, i, ) o,

if oxeH,(V, V—-K), 0,€H,(IR", R"—0) are fundamental classes (cf. 2.14),
ye H* V,{e HK, and o is the intersection number of VII, 4. Hint: Use 6.13
as in the proof of 6.24.

12. The Cap-Product ( ~-Product )

This product, ~, is related to the ~-product as — is to x (or to -,
as . isto x ). Roughly speaking then, § 12 is obtained from the preceding
§ 11 by putting Y = X, and replacing EZ by D (hence X x Y by X), \ by ~.
We shall perform this transcription for the definitions and propositions
but we shall omit most of the proofs. An important property of —~-
products is that they make HX into a graded H* X-module; this extra
structure in HX will be crucial in the study of manifolds (Chap.VIII).—
As before, the ground ring is assumed to be commutative.

12.1 Definition. Let (X'; 4,, A,) be an excisive triad, and let M;, M, be
R-modules. Consider the composite chain map

SX SX :
H M, ey |[————e M, | &2,
om (SAZ’ 2) R (S{AI,AZ} 1)
Hom(SX M)@ (SX®SX®M)

SA,” 2] R\sA, " s4, !

where D is a natural diagonal (VI, 12.21), and E is essentially an evaluation

(12.2)

SX
—E, 54, ® M &g M,,

SX
(cf. 11.1). We pass to homology (using HT—;H(X,AIUAZ)),
compose with &, and obtain {4, 45}

E (ideD), a: H*(X, A,; My)egH (X, A, UA,; M)
—>H, (X,A;M ez M,).

(12.3)
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This map or the corresponding bilinear map is called the cap-product

(—~-product). We write
(12.4) x~¢=E, (ideD), a(xel),
if xeH*(X, A,; M,), éeH(X, A, UA,; M,).

In terms of representatives this reads

(12.5) [o]~[c]=(—1)elld=1eb[T clep(c?)],

where Dc=Y, c!®cZ; the formula assumes peS* X, ¢|SA4,=0, dp=0,
ceSX, oceS{A;, A,}.

The following properties 12.6-12.14 correspond to 11.7-11.15.

12.6 Naturality. f,((/* x)~&)=x'~(f, &), if f: (X; 4;, A;) > (X"; A}, AY)
is a map of excisive triads, x'e H*(X", 4%), (e H(X, A,V A,). |

12.7 Associativity. (x;+x,)~é=x~(x,~¢), if x;eH*(X,A;,,),
(eH(X,A,0A,UA;y). |
12.8 Duality. {x,—x,,E)>={x;,x,~&),if x,e H¥*(X, A;), e H(X, A, LA,).
In particular,

1, x~&>=(x,&, for xeH/(X, A), (e Hi(X, A).

If X is path-connected, x ~¢ must be a multiple of [P]e H,(X ; R) where
Pe X; the formula then implies x ~&={x, £ [P]. More generally, this
holds if only X — A4 is contained in a path -component X of X, and Pe X;
it reduces to the connected case by excision H(X, A)~H(X, X n A).

12.9 Units. 1 ~¢=¢, if e H(X, A), and 1€ H°(X ; R) is the augmentation
class. J

12.10 Stability. The following diagrams are commutative,
H*(X, A;)e H(X, A0 A3) = H(X, 4,)

(12.11) j(—ndimi*@)a, la*
H*(A,A;nA;)®H(A;VvA,,A 2) H*(Al,AlﬁAz)‘@H(Al,AlmA )—>HA,,
H*A,® H(X,A,UA,)-=%% H¥(X,A,)e H(X,A,u A,)—> H(X,A,)

(12.12)  |-(-vemidea, f

id ® j,
H*A,0H(A,UA,,4) =~ H*A,0H(A,,A,nA,) —=— H(A,,4,nA,),
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where i, j denote inclusion maps. In formulas,

(12.13) 0, (x~O)=(=DH(* x)~(j; 1 8, ©),
if xe H¥(X, A,), ¢eH(X,4A;UA,).

(12.14) *a)~E+(— Deli(a~j; 10, £)=0,
il acH*A,, (eH(X,A,VA,y). 1

Note that j, =id if 4, =0 in 12.13, or A, =fin 12.14,

The following two properties reflect the relation between Eilenberg-
Zilber maps and natural diagonals.

(1215)  x~E=x~A4 &, if xeH*(X, A,), EeH(X, A, U A,),

and 4: (X,A,UA,))>(XxX, 4, xXUXxA,) is the diagonal map,
AP=(P, P); we have to assume that both (X; A4,,4,) and (X xX;
A, x X, X x A,) are excisive. The proof is immediate from 12.5 and 11.6;
if ¢, ¢ are representatives of x, ¢, and Dc=) cl®c2, then both sides of
12.15 are represented by (—1)lelld=1eDy" "clg pr(c2), the right side be-

cause D=EZ-4. 1
(12.16) y~(=p,(@*y~{), if yeH*(Y,B), (eH(X xY,Ax YU X x B),

and p: (X xY,AxY)—>(X,A), q: (X xY,X x B)—(Y,B) are the projec-
tions; we have to assume that (X x Y; 4 x Y, X x B) is excisive. Proof: If
Y, z are representatives of y,{, and Dz=Y, z;® zZ, then the right side of
12.16 is +pY zi®@y qzZ. By VI, 12.25, we have EZ(z)=) (pzi)e(qz2);
therefore the left side of 12.16 is +Y (pzl)@w(qz?). Clearly, the two
expressions agree. |

As a consequence of 12.15 we find

12.17 Multiplicativity. (x x y)~(&xn)=(—D)PIEI(x ~&)x(y~y), if
xe H*(X,A,), yeH*(Y,B,), ¢ecH(X,A,VA,), neH(Y,B,uB,), and
(X; A,,A4,), (Y;B,,B,) are triads such that the products above are
defined. Actually, our proof also assumes that products Ilike
xxy~d4,(Exn) are defined which (perhaps) requires further excision
assumptions. We don’t formulate these; they are satisfied if A4,, 4,, B,, B,
are open subsets, or if at most one of them is non-empty, or if (X; 4, 4,),
(Y; B,, B,)are CW-triads. Also, we indicate a general (and quite different)
proof in Exerc. 4.



12. The Cap-Product (—~-Product) 241
Proof of 12.17. Consider the diagram

HXxXxYxY) LTS HXx X xY) =5 H(Yx X x X)—="5 H(Y x X)

(12.18) l(id x 1% id), (i(\ /’xid)‘, 11;

HXxYxXxY)—2— S HXxYxX)——— S5 H(X xY)

>

where ¢, t', 7 are maps which permute factors

(t(P,Q)=(P, Q), t(Q, P)=(P, Q), 1(P, P', 0)=(Q, P, P"));

for simplicity’s sake we omitted all subspaces modulo which the homology
groups have to be taken. The middle triangle of 12.18 is obviously
commutative, the outside squares are commutative by naturality 11.7
of slant-products. Consider then the element (4% x4Y), (Exn)=
(4¥ &)x (4% n) in the upper left group H(X x X x Y x Y). Going down
takes it into A:”(é x 7), going right then gives

XNYNAE X E ex )N A, € xn) E (x x y)~(E x ).

If we go first right and then down we get successively:

y\(A:é)x(Ain)“i”’i(glié)x(y\Ain)lzilsi(A:f)X(y"'I)

o £ (Y1) X (X s £ x N (y~n) x (45 8)

LIS | () (e 22)
PS4 (pmp) x (x~E) s £ (x~E) x (v ~1).

The sign.which comes in is (—1) to the exponent

WIEL+1EN A= yD+ x| (] =y + (] = [yDAET=1x]),

and this exponent is =|y| |£|mod 2. 1

12.19 Remark. If the coefficients for cohomology are M,=R then
MegM,=M, and 12.3, 12.7, 12.9 assert that homology H(X,A; M)
isagraded H*(X; R)-module. If f: X — X" isamap then f*: H*(X'; R)—
H*(X;R) is a ring-homomorphism so that every H*(X; R)-module
becomes a H*(X'; R)-module; then 12.6 shows that f, is a homo-
morphism of H*(X'; R)-modules. Similarly, 12.13 shows that
0,: H(X,4; M)—> H(A; M) is an H*(X; R)-homomorphism (of degree
—1),and 12.17 asserts that the homology x -product is a homomorphism
of H*(X; R)ex H*(Y; R)r-modules.
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We conclude this section by a further {more difficult) stability formula.
For simplicity’s sake we make stronger assumptions than needed: we
assume open subspaces whereas suitable excision conditions would
suffice.

12.20 Proposition. Let X,, X,, Y,, Y, be open subsets of a space X such
that X, 0Y,=X,0Y,=X,0X,=X. Let

XEH*(XIOXZL éeH(X’ YIHYZ),

and let &' denote the image of £ under the composite

H(X, Y,nY,)— HX, Y, 0Y,) = H(X,n X, (X,n X,)n (Y, 1))
—coefficients omitted. Then
d*_]* (x/\é’) = (d* X)/'\ é s
where
d,: HX,Y,uY,) = H(X, ¥, Y,)

and
d*: H*(X,n X,) - H*(X,U X,)= H* X

are Mayer-Vietoris boundaries (cf. I11, 8).

Proof. Consider the diagram

H¥(X,nX,) — H(X,n X5, (X;nX)n(¥,uY,)—=— H(X, Y,UuY,)

|+ [

H*(X,, X,nX,) H(Y,uY,,Y,)
(12.21) ]s E

H*(XyUX,,X,)———— H*(Y,, X,n Y,) - H(Y,,Y,nY,)

H*(X,0X,) = — H(X, Y, Y,),

where all unmarked arrows are induced by inclusions. The composite
columns are d* resp. d_ (cf. III, 8.11); we have therefore to show that
the outer diagram (without middle horizontal) is commutative. The
element ¢, in the middle is the image of ¢ under the composite

exc

H(X,Y,nY,) > H(X,(Y,0 Y,)UX,)= H(Y,, (Y, " Y,) U(X, N 1))
Recall that ~-products are induced by the chain map

S*Xe®SX 480, 5% ¥ SX @SX —£E5SX,
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Let us denote this chain map by ~, too, so that [¢p~z]=[¢]~[z]
whenever ¢, z are suitable relative (co-)cycles, and [ ] is passage to
homology. Note further that ze SB, where B X, implies ¢ ~zeSB for
every peS* X; if, moreover, ¢|SB=0 then ¢ ~z=0. This will be used
now.

We choose a representative cocycle ¢ of x and extend it to a cochain ¢’
on X'; then d¢’|SX, represents §* x. By excision, there exists a cocycle
YeZ*(X,X,)such that y|SX, =0¢'|SX,+ oy, where y'eS*(X,, X;nX,);
extend ¥’ (by zero outside SX,) to a cochain ¥"e S* (X, X,), and replace
by ¥ —dy"; the new cocycle ¥ then satisfies ¥ |SX,=0¢’'|SX,. Note
that ¥ represents the image of x in H*(X, U X,, X,) and H*(X,u X,).

Because X;nY,, X,nY,, X;n X, are open sets which cover X we can
(cf. II1,7.3) find a representative u of ¢ such that p=pyu, +u,+y with
wmesS(X,nY,), ueS(X,nY), weS(X,nX,) and, of course, due
S(Y,nY,). Then p' represents &, and u, represents &,. It follows that
the image of x in H(Y,uY,, Y;) along the two ways of the upper part
of 1221 has the representatives y~p, resp. d(p~u)=(—1) el gp~op.
We show that these are in the same homology class, i.e. that the upper
part of 12.21 commutes. Indeed, we have

(@' ~u) =00~y + (= 1) '~ ap,
=5(pz/_\“l+(_1)l<p| ~Opu— (_1)I<p| Aauz—(—l)l‘”q)”\(?,u’,
and

() 0@’ ~p, =y ~u, because p,eSX, and ¥|SX,=9¢'|SX,,

(il) ¢'~0p =@ —~0u because du'eS(X,;nX,) and ¢'|S(X,n X;)=0,
(iii) @' ~0u— @ ~0p,eSY, because du and u, are in SY;.
Hence, Q' ~p) =Y ~p; —(— 1) o~y mod SY,, as required.

It remains to prove commutativity in the lower part of 12.21. Let
YeZ*(X,uX,,X,) Then ¥ ~(u,+u)=0 because p,+p'eSX, and
V|SX,=0; hence, Yy ~u=y~u,. Passing to homology this gives
W1~¢=0¥1~¢,, as required. |

12.22 Corollary. Let V', W, W’ be open subsets of a space X such that
V'eW' and Wou W' =X. Then the following diagram

H*W —2 5 H¥(X, W)—— H*(W', W A W)
(12.23) e ~&

HW,WAW)—— HX, W) —2 S HW", V)
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commutes for every (e H(X, V'), where &' resp. &, are the images of ¢ in
H(X, W)=HW, W W)resp. HX, V'UW)xH(W', V'U(W~W)).

Indeed, this is just the upper part of 12.21 for X, =X, X, =W, YV|=V",
Y,=W'. 1

But actually, an analysis of the proof shows that we can take Ee H(X, A)
where A is any subset of V'O (W n W'), For a better appreciation of this
result, or of 12.22, the reader might consider the special case V’'=¢
(cf. also Exerc. 5).

12.24 Exercises. 1. Show that (x, &) =n,(x~¢&) for all xe H*(X, A; M,),
EeH(X,A; M,), where 5 is the augmentation map (tensored with
id(M,e M,).

2. Show that H(E,C; R) is a free H*(P.C; R)-module with one generator.

3* If KcVceR" and ogxeH, (V,V—K) are as in 11.17 Exerc.4 then
(y—~og)o = £y, i, &) 0o, for yeH*V, (e HK.

4% Let (Y;B,,B,) be any triad, let beSY be a chain such that
0beS{B,,B,}, and YyeZ*Y a cocycle such that y|SB,=0. With
these data fixed, consider the following natural transformations
F,G: SX 5>S(X xY),

F(o)=E(y q® D(EZ)(c® b)), G(c)=EZ(c®E(}®Db)),

where q: S(X x X)— SY is the projection, and D, E, EZ are as above;
cf. 12.1; VI, 12.20; VI, 12.25. (These two expressions are representatives
for ¢*[Y1~([c] x[b]) resp. [c]x([¥]1~[b]); we want to show that
they are homologous, up to sign) Show that F and (—DF'MIG
coincide if X is a point. Conclude by naturality that g F =(— 1)l 4G,
hence (F—(—1)<IWIG): SX —ker(g: S(X x Y)—SY). Show that F,G
induce chain maps F,G: SX — S(X x Y)/S(X x B;). Combining, get a
natural chain map

(F—(=1)I¥IG): SX —ker(g: S(X x Y, X x B,)— S(Y, B))).

The acyclic model theorem (cf. VI, 11) shows that it is nulhomotopic (S is
a free functor, ker 7 is acyclic on models X =4), hence F~(—1)FIMG.
By naturality of F and G (applied to inclusion maps 4 — X), find induced
chain maps F, G: S(X, A)— S(X x Y)/S{Ax Y, X x B,}, and an induced
homotopy F~(—1)!MG. Passage to homology then shows

(q*y)~E xn)=(=DEIPIEx (y~7),



13. The Homology Slant Product, and the Pontrjagin Slant Product 245

where y=[y]eH*(Y, B,), n=[b]leH(Y,B,uB,), (e H(X, A), provided
(Y;B,,B;) and (X xY; Ax YUX x B,, X x B,) are excisive. Similarly
(or by applying t: XxY~YxX to the above result) one finds
@*x)~(Exn)=(x~&xn,, where p: (XxY,4,xY)—>(X,A,) is the
projection. Combining we find
(x X Y)~(EXxm)=p*x—g* y~(E x ) =(— PP p* x~(E x (y~1)
=(= DM x~&)x (y~n),
proving 12.17.

5% Let VW, VW’ be open pairs in a space X and assume
Wou W'=X. Generalizing 1222, show that the following diagram

HY(W, V) —2— H¥*(X, W)—— H*(W', W A W')
(12.25) ~& ~&

HW,WnW) HX, W) —25HW, V)

commutes for every e H(X,(V'uW)n(Vu W), where &, resp. &,
are the images of ¢ in H(X,V'UW)xH(W,V'U(WnW)) resp.
H(X,VOW)xH(W,VUu(Wn W’)).—Instead of open pairs one can
consider pairs of CW-subspaces of a CW-space X, or make the appro-
priate excision assumptions.

13. The Homology Slant Product,
and the Pontrjagin Slant Product

The homology slant product has been used in connection with cohomology operations
(Steenrod 1953), and S-duality (Spanier 1959). It will not be applied in this book
and will therefore be treated very briefly. It is dual to the homology x -product in the
same sense as the cohomology- x is dual to the cohomology slant. The Pontrjagin-slant
is obtained from the homology-slant by composition with a multiplication u: X x X — X;
it turns the cohomology H* X of an H-space into a module over the Pontrjagin ring HX.

13.1 Definition. Let C, D be complexes and L, M modules over R. Define

9: Hom(CeD,L)e(CeM)—>Hom(D,LeM) by [J(pecem)](d)=p(ced)em.
Verify that this is a chain map.
Let now (X, A), (Y, B) be pairs of spaces. Consider the composite chain map
Hom(S(X x Y, Ax YU X x B), L)e(S(X, A)® M)

S(XxY)
S{AxY, X xB}’
—E28id, Hom(S(X, A)e S(Y, B), L) (S (X, A)® M) —2> Hom(S(Y, B), L® M).

—*Hom( L)@(S(X, A)e M)
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Passage to homology and composition with a (VI,9.11) gives a homomorphism
(13.2) H*XxY,AXxYUXxB; L)@ HX, A; M)— H*(Y,B; Le M).

This homomorphism or the corresponding bilinear map is called the homology slant
product and denoted by /; more explicitly, we write (z/£)e H"~ (Y, B; L ® M) for the image
of ze &, where ze HY(X x Y, Ax YU X xB; L), (e H(X, A; M). We leave it to the reader
to establish the formal properties of this product. Duality with the homology cross-
product is expres « 1 by the formula

(13.3) 2l m>=Lz,Exn),

where ze H¥*(X xY,Ax YUX X B, L), Ee H(X, A; M), neH(Y,B; N); both sides of 13.3
are elements of Lo M@ N.

13.4 Definition. Suppose now (X, u) is a space with a multiplication g: X X X — X. Then

the composite

HY(X; L)e H,(X; M) %9, H"(X x X; L)@ H/(X ; M) ~/— H"" (X ; Le M)

or the corresponding bilinear map is called the Pontrjagin slant product. We write
(13.5) (u*x)/E=xT¢E, for xeH (X; L), (eH(X; M).

Again, we leave it to the reader to study the properties of T, in particular, to establish
the formulas for T which are implied by homotopy-associativity, -commutativity, -units
of . For instance, if (X, y) is an H-space then T makes H*(X; L) into a graded module
over the Pontrjagin ring H(X; R).



Chapter VIII

Manifolds

A manifold is a space which is locally like euclidean space. Some of the
most important topological spaces are manifolds: Lie groups and their
homogeneous spaces are manifolds. If a (compact) Lie group operates
on a manifold then the orbit of every point is a manifold; if the operation
is sufficiently regular then the orbit space is also a manifold. The set of
solutions x=(x,, ..., x,)€ R" of a sufficiently regular system of equations
o, (xy,...,x,)=0, u=1,...,m, is a manifold. These and other examples
justify studying the special homology properties of manifolds.

1. Elementary Properties of Manifolds

1.1 Definition. A Hausdorff-space M = M" is said to be an n-dimensional
manifold, or n-manifold, if every point of M has a neighborhood which is
homeomorphic with an open set of IR". I.e., an n-manifold is a Hausdorff-
space which is locally homeomorphic with IR”. Because of invariance of
dimension (IV, 3.8), if a manifold M is m-dimensional and n-dimensional
then m=n or M =0.

For instance, every open subset of R" is an n-manifold. More generally,
every open subset of an n-manifold is again an n-manifold. Spheres $”
and projective spaces P, IR resp. P, € are manifolds of dimension n resp.
2n. The solutions of systems of equations often form manifolds (cf. 1.7).
The surfaces which we discussed in V, 3.11, Exerc. 1 and 2 are 2-manifolds.

1.2 Lemma. Every point P of an n-manifold has an open neighborhood V
which is homeomorphic with R". Any such V is called a coordinate neigh-
borhood of P, and any homeomorphism V—=5R" is called a chart
(around P).

Proof. Let h: U — W be a homeomorphism of a neighborhood U of P
onto an open subset W of R”. The image of the interior, h U, is open in W,
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hence open in R". Let W’ be an open ball such that hPe W' <h U. Then
V=h"'W'is open in U, hence open in M, and Pe VxW'x~R". 1

Obviously every coordinate neighborhood of a manifold is an ENR
{=-euclidean neighborhood retract). Therefore IV, 8.10 implies

1.3 Proposition. If a manifold M is the union of finitely many coordinate
neighborhoods then M is an ENR. 1

This applies to compact manifolds, and to connected manifolds with
countable bases. (A recent study of the question how many coordinate
neighborhoods cover M is by W. Singhof, in manuscr. math. 29 (1979)
385-415.) For manifolds with countable bases the ENR-property can
also be shown as indicated in IV, 8.11.

By V, 4.11 this implies

1.4 Corollary. If M is a compact manifold then H,(M; Z) is finitely gener-
ated for all i, and H,(M; Z)=0 for sufficiently large i (in fact, it vanishes
for i>dim(M), as we shall see in 3.3). 11

We now show that the solutions of a system of independent equations
form a manifold.

1.5 Definition. Let W™ be an m-manifold, and let g,,g,,.... 8., k<m,
be real valued continuous functions which are defined in a neighborhood
of a point Pe W. We say, g,, ..., g, are topologically independent at P if
thereare continuous functions g, , 4, ..., g,,also defined in aneighborhood
of P, such that x — (g, x, ..., g,, x) maps some neighborhood of P homeo-
morphically onto an open subset of R™ (injectively would be enough by
invariance of domain; cf. IV, 7.4).

Clearly, if g,, ..., g, are topologically independent at P then also at all
points of a neighborhood of P. An important example is the following.

1.6 Proposition. Iff UcIR™ is an open set, and g,,...,g,: U—>R are
continuously differentiable functions whose differentials dg,(P), ..., dg,(P):
R™— R are linearly independent at Pe U then g,, ..., g, are topologically
independent at P.

Proof. Let g, ,...,g,: R™"— R be linear maps such that dg,(P),...,
dg,(P), g1 ---, 8y are linearly independent. Then the differential of
g U->R" gx=(g,x,...,8,X%) at P is isomorphic, dg(P): R"~R";
therefore g is homeomorphic near P by the inverse function theorem
(Dieudonne 10.2.5). 1

In fact, g is even diffeomorphic near P, i.e. it has a differentiable inverse
near P.
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1.7 Proposition. Let N be a subset of the manifold W"*+* which, locally, is
the set of solutions of k independent equations. This means, for every Pe N
there exists a neighborhood V* in W and functions g5, ...,gf: VP >R
which are topologically independent at P and such that

NnVP={xeVP|gfx=0=g0x=".-=gf x}.

Then N is an n-manifold.

Proof. By assumption (of independence) there exists a homeomorphism
g’ VP=U such that U is open in R"**=R*xR" and NnV*=
(g")~'[U A ({0} x R")] (in fact, it may be necessary to replace V¥ by a
smaller neighborhood first). Thus N n V* is a neighborhood of P in N
which is homeomorphic to an open set in {0} x R"~R". I

1.8 Remark. A subset N of a manifold W as in 1.7 is called a locally flat
submanifold. Not every subset N of W which is a manifold is locally flat:
there are counterexamples even with W=R?* and N=S' or $? (cf.
Artin-Fox). On the other hand it is not hard to see that every compact
manifold (more generally: union of finitely many coordinate neighbor-
hoods) is homeomorphic with a locally flat submanifold of some
euclidean space (cf. Exerc. 5).

If we think of manifolds as solutions of systems of equations g=0 then
we might also consider the solutions of combined equalities g=0 and
inequalities £ >0. This leads to the following

1.9 Definition. Let R", ={xeR"|x, >0}, the “upper half” of R". A Haus-
dorff-space L=1" is called an n-dimensional d-manifold (or n-manifold
with boundary) if every point Pe L has a neighborhood U which is homeo-
morphic with an open set W of R”, . Let h: U— W be such a homeo-
morphism. We say P is a boundary point of L if h(P)eR""'=
{xeIR"|x,=0}; otherwise P is an interior point of L. The property of
being a boundary (interior) point does not depend on the choice of
h: UxW (invariance of the boundary; cf. IV, 3.9). The set L of all
boundary points is an (n— 1)-manifold (possibly empty), calied the
boundary of L; the set i L of all interior points is an n-manifold, called the
interior of L. The interior is an open subset of L, the boundary is closed,
and iLuUdL=L, iLAndL=4.

Asin 1.2 one shows that every point of i L resp. 0L has an open neighbor-
hood (called coordinate neighborhood) which is homeomorphic with R”
resp. IR”, ; these homeomorphisms are still called charts.

1.10 Examples. Every manifold is a d-manifold (with empty boundary).
R”. is a ¢-manifold, and every open subset of a d-manifold is also a
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J-manifold. The n-ball IB" is a ¢-manifold, with boundary dBB"=$""".
The product of a manifold M with a d-manifold L is a ¢-manifold, and
6(M x Ly=M x 0L (proof clear). More generally, the product of two
¢-manifolds L, L is a ¢-manifold, and é(L x L)=0L x L' u L x 0L (proof
left to the reader). Solutions of combined equalities and inequalities often
form ¢-manifolds (Exerc. 4).

If two ¢-manifolds have homeomorphic boundaries then one can paste
them together along the (common) boundary and get an ordinary mani-
fold—just as IR" can be obtained by pasting two copies of R",. More
precisely,

1.11 Proposition. Let L, L' be n-dimensional 6-manifolds and n: ¢L— ¢L
a homeomorphism. Then M =(Le L)/(v~n(y) for yedL), the space which
is obtained from the topological sum Le L by identifying corresponding
boundary points, is an n-manifold. It contains L,L as subspaces via
L LcLeL 25 M, and LOL=M, LnL~3L~dL. We shall some-
times write M=Lv, L.

The proofis quite obvious: In order to show that Pe L~ L hasa coordinate
neighborhood in M one uses coordinate neighborhoods of P in L and
nL. J

For example, if L'=L and n=id(0L) we say that M =Ly, L is obtained
by doubling L. If L'=0Lx[0,1) then 0L=0Lx{0} «Z—0dL with
j(»)=(,0); in this case we say M =L u;(0L x [0, 1)) is obtained from L
by attaching a collar.

1.12 Exercises. /. A space which is locally homeomorphic with R" is
always a T;-space (points are closed) but not necessarily hausdorff. For
instance, if X" is obtained from two copies of IR" by identifying corre-
sponding points outside the origin then X" is the union of two coordinate
neighborhoods ~R” but X" is not hausdorff.

2* Let W be a well-ordered set which represents the first non-countable
ordinal. Order W x [0, 1) lexicographically,

[w,)<(W,t)] < [w<w, or(w=wand t<t)],

introduce the order topology in Wx [0, 1), and call the resulting space
LH (“long half-line”). Show that LH is a connected 1-dimensional
¢-manifold whose boundary d(LH) consists of a single point and whose
interior i(LH) cannot be covered with countably many coordinate
neighborhoods. By doubling LH one obtains the “long line” LL=
LHuLH. Show that LL#i(LH) (LLis “long at both ends”, i(LH)
only at one). Compare Kneser-Kneser.
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3.Ifh: V> R" h': V'— R" are charts of a manifold M" then
Wh=': h(VAV)>H(VA V)R

is called change of charts. A set of charts .o = {h: V"~IR"} is called atlas
if  Jyew V"=M. An atlas all of whose changes of charts are C" (r-times
continuously differentiable) is called C"™-atlas. Two C'-atlasses o7, o/
are C'-equivalent if o/ U o/’ is also a C'-atlas. An equivalence class of
C'-atlasses is called a C"-structure on M, and M together with a C’-struc-
ture is a C"-manifold (or smooth manifold if r=0o0). Not every manifold
admits a C'-structure (¢f. Kervaire) but for r>0 every C'-atlas is
C’'-equivalent with a C®-atlas (cf. Koch-Puppe).

(a) Define C*-maps between C"-manifolds, s<r, using the charts of the
given C'-structures.

(b) Show as in 1.7 that a subspace N of a C"-manifold W"+* which,
locally, is the set of solutions of k C*-functions with independent differen-
tials (1<s<y), inherits a C*-structure. It is then called a C*-submanifold
of W.

(c) Adapt the proof of TV, 8.8 to show that every compact C"-manifold
is C'-homeomorphic with a C"-submanifold of some euclidean space.

4. Let N be a subset of a manifold W"+* such that for every Pe N there
exists a neighborhood V'” in W and functionsg?, ..., gf h¥, ... hF: VPR
(k fixed, ! may depend on P) which are topologically independent at P
and for which

NAVP={xeV?|gr(x)=0, hf(x)=0 for all p, v}.

Then N is a ¢-manifold of dimension n.

5. Show that every compact n-manifold M is homeomorphic with a
locally flat submanifold of some R*. (Hint: The proof of 1V, 8.8 yields
the required embedding M — IR*; remark that the graph of every map
M — R' is locally flat in M x RY). Extend the result to manifolds with
countable base, using arguments as in Bos.

2. The Orientation Bundle of a Manifold

If M" is a manifold we topologize the union | )., H,(M,M —P) of its
local homology groups; the resulting space M is called the orientation
bundle of M. It makes sense then to speak of continuous functions ¢
with ¢ (P)e H,(M, M — P), Pe M (sections of M; cf. 2.4), and this in turn
allows to define the notion of an orientation of M (cf. 2.9). In VIII, 3 we
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shall use the group of all sections to provide a convenient description of
the n-th homology of open sets in M.

2.1 Proposition and Definition. The local homology groups H(M"\M"—P; G)
of an n-manifold M" are zero for j¥n, and H,(M,M—P;G)=G=
HM,M—-P;Z)oG. A generator op of H,(M,M—P;Z) is called
orientation (of M) at P. There are exactly two orientations at every point P,
say 0p and —op.

For G=7Z the proposition follows from IV, 2.2(c) and IV, 3.7 because
M" is locally homeomorphic with R". For the general case one can apply
the universal coefficient theorem or (simpler) use S(M, M — P)~(Z,n). 1

We now relate local homology classes in different (close-by) points.

22 Lemma. Let z,2’€S(M ; G)be cyclesmod M — P,i.e.0z,0z’'eS(M —P; G).
Then there is a neighborhood V of P such that z, z’ are cycles mod M —Q
Jor every Q€V, ie. 0z,82'eS(M -V, G). If the homology classes of z, z’
agree at P, [zZ]p=[z]p,e HMM, M —P; G), then they agree at all points Q
of a neighborhood V'V, i.e., [z]y=[z"], for every Qe V'. (Remark. Using
5.18 this means H(M, M — P)=lim H(M, M — V))

Proof. The chains ¢z, ¢z’ are finite linear combinations (coefficients in G)
of simplices ¢ with im(c)=M — P. Since im(¢g) is compact there is a
neighborhood ¥V, of P such that im(e)cM—V,, and V={),V, is a
neighborhood of P such that dz,0z’eS(M—V; G). If [z],=[z"], then
a chain ceS(M; G) exists such that z—z'—dceS(M —P; G), hence (as
above) z—z'—dceS(M —V'; G) for some neighborhood V' of P (which
we may take within V). |

2.3 Definition and Proposition. We shall associate with every n-manifold
M and every abelian group G a new manifold M®G and a covering map
Y6: M ®G — M such that v (P)=H,(M, M —P; G), for Pe M in parti-
cular, M®G={Jp.p H,(M, M —P; G), as a set. As to the topology in
M®G, we consider pairs (V,z) where V is an open subset of M and
ze Z, (M, M —V;G)is a cycle mod M — V; we define

Vz:{[z]PEHn(M’M—P;GNPe V}')

and we assert that the set of all such V, is the base of a topology in M®G.
With respect to this topology the map vy is locally homeomorphic, and it is
even a covering map (cf. Massey, chap. V). Furthermore, the maps
(u, v)r>u+v of D={(u,V)e(M®G)x (M®G)|y, u=y,v} into MeG are
continuous, i.e. addition and subtraction in M®G are continuous where
defined.
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For G=7Z we abbreviate y;=7, M®Z =M. The map y: M — M is called
the orientation-bundle (or -sheaf) of M. The map

B: M —>Z, f(u)=|ul=absolute value of ue H,(M, M —P)=Z,

is continuous, i.e. locally constant. In particular, M decomposes into a
topological sum,

M=M©O)oM(l)e M(2)®---, where M(r)=B"}(r).

The restricted maps y|M(r): M(r)— M are also covering maps.

Proof. Every ue M®G lies in some V,; indeed, if ze Z,(M, M —P; G)
represents u then, by 2.2, there is an open neighborhood V of P such that
ze Z,(M,M —V;G), hence ueV,. If ue(V, .~ V') then, again by 2.2, we
can choose z and V<=(V'n V") such that [z],=[z]p=[z"], for all
QeV, hence ue V,=(V,.n V). This proves that the set of all V, is the base
of a topology.

Next we show that y; is locally homeomorphic. Clearly y; maps V,
bijectively onto V, hence y; is open and locally bijective, and we have
only to show continuity. Let then W be an open neighborhood of P =y(u).
As we know already, u lies in some V,, hence (V n W), is a neighborhood
of u which maps into W,

The map (u,u’}—>u+tu’ takes Dn(V,x V,) homeomorphically onto
V., . (we just saw that both sets are homeomorphic with ¥ under y;),
and is therefore continuous.

It remains to show that f§ is locally constant, and 7 is a covering. Given
PeM, choose a closed ball around P (in some coordinate neighborhood)
and let V denote its interior. Then M —V is a deformation retract of
M—Q, for every QeV, hence ¢: HM,M—V)=HM,M-Q). If
z€ Z,(M, M—V; Z) then [2]g=12[z], hence f(Tz]g)=[I[zoll =[]l is
independent of Q, hence f§ is constant in V,, as asserted. Moreover, if we
choose a generator [z] of H,(M, M —V; Z)=Z then 15" (V)=J,cc V¢
is a decomposition into disjoint open sets V,g,, €ach of which maps
homeomorphically onto V. Therefore y,; (and each y|M(i)) is a covering
map. |

2.4 Definition. Let M" be a manifold, y,: M® G — M asin 2.3,and Ac M.
A map s: A— MG is called a section (of y; over A)if y¢ s(P)=P for all
PeA. By 2.3, the sum or difference of two sections is again a section.
The sections therefore form an abelian group which we denote by I'(A4; G).
Because y; is locally homeomorphic we have the following two properties.

(2.5) Given ue M ® G, there exists a neighborhood V of y¢(u) and a section
sel'(V; G) such that sygu)=u.
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(2.6) If s,tel'(A; G) agree at Pe A, then they agree in a whole neighbor-
hood of P; in other words, {QeA|sQ=tQ} is an open set in A. 1

If [z]eH,(M,M —A; G) then Qi [z],, Q€ A, is a section over A which
we denote by J , [z] (continuity of J , [ z] becomes obvious when restricting
to sets V). In this way we get a homomorphism.

2.7) Joo H(M,M—-4;G6)-1(4;G6), (,[z)(Q)=[z],

which will play a fundamental role in VIII, 3. It is clearly natural with
respect to inclusions, i.e.,

28 If AcA'cM then

H,(M,M—A"; G)—4- (4’; G)

li* lp
H(M,M—A;G)—4T(4;0)

is a commutative diagram, where i=inclusion and p=restriction, p(s)
=slA. 1

2.9 Definition. A section O: A — M = M ®Z is called an orientation of M
along Aif fO(P)=1for all PeA,i.e,if O(P)eH,(M, M — P)is a generator
(=orientation at P) for every Pe A. Or we can say, an orientation along
A consists in selecting continuously an orientation at each Pe A. We say,
M is orientable along A if such an O exists. In case A=M we speak of
orientation respectively orientability without further specification. If O
is an orientation of M, and V < M is an open set then O|V is an orientation
of V.

If se’'A=TI(A;Z) is a section which is nowhere zero, sP+0, then
P+ sP/||sP| is an orientation. In particular, M is orientable along A if
a nowhere-zero section se I' A exists.

If Oel" A is an orientation along A then we get a homeomorphism
(2.10) AxG—=5y;'4, by (Bg—0(P)eg.

In particular, M® G M x G if M is orientable. A section seI(4; G)
then takes the form of a locally constant function s: A — G; the group
I'(A; G) becomes isomorphic with the group of locally constant functions
A—G. If A is connected then locally constant functions are constant,
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hence I'(A; G)=G. In particular, I'(M)=~Z if M is orientable and con-
nected; M has exactly two (opposite) orientations in this case. For instance,
if M=S8"and (e H,(S$"; Z) is a generator then J({)e I'S" is an orientation.
This shows that our definition 2.4 of TA=T(A; Z) for A<=S"is equivalent
with the one we gave in IV,6.2.

2.11 The Orientation-Covering. The manifold M(1) is often called
orientation manifold of M; its points are just the orientations at the
various points of M. The orientation manifold M(1) is always orientable:
Its canonical orientation O selects that orientation at ueM (1) which is
mapped into u under 7, : H,(M(1), M(1)—{u})= H,(M,M — P) (this is
well defined because y=7y; is locally homeomorphic; cf. IV, 3.7). Of
course, M (1) is not distinguished from any other M (i) with i>0. Indeed,
u i - uisa homeomorphism M (1)~ M (i) which commutes with y.

The map y,=7y|M(1): M(1)>M is a two-sheeted covering, and an
orientation is a section of y,, hence M is orientable if and only if the
covering 7, is trivial. Since two-sheeted coverings are in one-one cor-
respondence with subgroups of the fundamental group n, M of index
<2 (cf. Schubert III, 6.8) we get

2.12 Proposition. If M is a connected manifold whose fundamental
group n, M has no subgroup of index 2 then M is orientable. Because
H,=m, abelianized (cf. Schubert IV, 3.8) we can also replace n; M by
H, M in this statement. |

If w: [0,1] — M is a path, and u an orientation at w(0) then by Satz1 in
Schubert 111,63 a unique path w: [0,1]— M(1) exists such that
yw=w and w(0)=u. We say w(t) is the continuation of u=w(0) along w,
and w(l) is obtained from u by continuation along w. This orientation
w(1) at w(1) depends only on the homotopy class of w. The manifold M
is orientable if and only if w(1) is independent of w. In that case an
orientation of M is obtained by choosing an orientation u at one point
Pe M and continuing u along all possible paths (assuming M connected).
All of these assertions are proved in the theory of covering spaces
(Godbillon VII-X, MasseyV, SchubertIIl,6). The proofs are
simple, and even the reader who is not familiar with covering spaces,
is invited to try for himself.

2.13 Orienting Products. Given manifolds M™ N", we consider the
following map between orientation bundles

o ——

w: MxN->MxN, pu(uv)=uxuv;



256 VIII. Manifolds
note that

uxreH

m+n

(M,M—P)x(N,N—-Q)=H

m+n

(MxN,M x N —(RQ)).
Clearly yM*¥ y=+M xy¥ If V=M, W< N are open sets and
yeZ, M,M—V), zeZ(N,N—W)

then EZ(y®z)eZ, ,MxNMxN~—VxW), and u maps V,xW,
homeomorphically onto (V x W)g;,e, (recallthat[EZ(y e z)]=[y] x [2],
where EZ is an Eilenberg-Zilber map). In particular, u is continuous.

If AcM, BN, and seT'A, teI'B then the composite A x B—* M x N

—~—

—£5>M x N is also a section.” There results a (bilinear) mapping
(2.14) (FrAYyx(I'B)y—>T(AxB), (s,t) po(sxt).

If ueH, (M,M—P), ve H (N,N —Q) are generators then uXxv is also
a generator (cf. VII, 2.14). Therefore, if sel'A, tel'B are orientations
along A respectively B then puo(s xt) is an orientation along A x B; it
is called the product orientation. In particular, the product of oriented
manifolds is oriented (by the product orientation). |

The square M x M of an orientable connected manifold M has a canonical
orientation, namely O x O where O is any one of the two orientations

of M. In particular, C=R xR is canonically oriented, and therefore
C" is canonically oriented (by Og x Og X -+ X Og).

We now consider é-manifolds I”. We want to relate the orientation

bundles iL and L. Every open set V<L is itself a d-manifold, and
iV=Vn(iL),0V=Vn(3dL). Inanalogy with 2.7 we define homomorphisms

215y H(L,L=iV;G) = T(V;G), (JyDDP)=1yp,
where yeZ, (L, L—iV; G), and [y], is its class in

H,(L,L—P;G)~H,(iL,iL—P:G), PeiV.
(2.16) Jp: H, ((L—iV,L=V;G)—>T@V;G), (Jplz2D)(Q)=[z],,
where zeZ, _|(L—iV, L—V; G), and [z], is its class in

H(L—iV,L—iV—0Q;G)=H(@L,0L—0;G), QedV.
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In diagram form, J;, JJ are so defined that

H(L L—iV;G) > I(iv;G)

|

.1 H,(L,L—P;G)«—=H,(iLiL—P;G),
17)
H,_(L—iV,L—V:G)— > I@V;G)

| [

H,_ ,(L—iV,L—iV—-Q;Gy«—=—H,_,(0L,0L-Q;G)
are commutative for all Pe iV resp. Q€ 0V, where e assigns to each section s
its value at P resp. Q.

We omit the easy continuity proofs (cf. parenthesis before 2.7), and also
the verification of the following naturality properties.

2.18 Lemma. If V< V'c L are open sets then the following diagrams are
commutative,

H(LL—iV;G)—251(v;G) H,_(L—iV,L—V';G)~25r@v;6)

H(LL—-iV;G)—%5Tv;G)  H,_(L—iV,L—V:G)—**>T@V;G),
where p(s')=s']iV resp. p(s)=s'|dV. 1

2.19 Proposition. If L is a 0-manifold then there exists a unique family of
homomorphisms {0y: I'(iV; G) = I'(GV; G)}yopen in » Which is natural with
respect to inclusions V<V’ (i.e., p 0y =3y p) and makes

H.(L,L—iV;G)—* > [iV:G)

(2.20) {a‘ Jav

H, (L—iV,L—V;G)—% I(V; G)

commutative. Moreover,if O I'(iV)is an orientation of iV then d,, O I'(OV)
is an orientation of 0V, called induced orientation. In particular, if iL is
otientable then so is 0L. An orientation of iL is often called orientation
of L, and L is called orientable if iL is so.
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Proof. If QedL then there is an injection {xeR" ||x||<1}— L which
takes {xeR" |fix|| <1} homeomorphically onto an open neighborhood
W of Q; in fact, these “half-balls” W form a neighborhood base at Q
(just look at a coordinate neighborhood). If W is a half-ball then deforma-
tionretractions L —iW~L —P(forPeiW),L—-W~L—iW—-Q,L—-W~L
exist (deform radially from P resp. Q resp. (0,0,..., —)eR"—R",),
hence H(L,L—iW; G)xH(L,L—P;G),

H(L—iW,L—W; G)~H(L—iW,L—iW—Q;G),

and 0,: H,(L,L—iW;G)=H, (L—iW,L—-W;G), from the exact
homology sequences of the appropriate triples. Also

e: I'iW; G)~H,(iL,iL—P;G)=G,
e: I(@W:G)=H, ,(6L,0L—Q;G)~G

because iWe G (iW) x G,éWe G=(0W)x G (recall that iW~R", W=~
IR”~! are orientable and use 2.10). It follows then from 2.17 that J;,,, J;, are
isomorphic (all the other arrows are), and therefore 2.20 shows that
Sw=Jy 0,(Jy)"" is unique and, being a composition of natural iso-
morphisms, is natural (with respect to inclusions of half-balls). Moreover,
it is isomorphic and hence (for G=Z) takes orientations (= generators)
into orientations.

Let #'={W} denote the set of all half-balls. If V'L is an arbitrary
open set, and sel(iV; G) then, by naturality, d,(s) must satisfy

(2.21) 0y(5)|OW=0y(s|W), for every half-ball Wc V.

Since 0V=|Jy, OW, We¥, this determines d,(s). We now want to
show that, (i) the partial sections dy(s|W) match on the intersections
(OW)Yn(0W’) (so that 2.21 defines 8); further, (i) 0, (s+5)=(0, s)+
(0y 5), (ii1) naturality p d,.(s)=0, p(s') for V = V', and (iv) commutativity
of 2.20, ie, J28,(6)=0y J;(£). Each of these formulas expresses an
equality of sections in some U where U c L is open. In order to prove
this equality at QedU one chooses a half-ball W such that Qe W< U
and restricts to W where one already knows the assertion to be true.
Similarly for the second part of 2.19: If OeI'(iV) is an orientation then
also O|W for every half-ball W<V, hence 0, (0)|0W=20,(0|W) is an
orientation, and hence also 9, (0) because 3V ={J, ., 0W. 1

2.22 Exercises. 1. If X is any Hausdorff space then the union
X:UPEX Hn(va_P)

of its local homology groups can be topologized and a projection
7: X — X can be defined as in 2.3. This map will still be locally homeo-
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morphic but not necessarily a covering map. If, for all Pe X,
H/(X,X-P)=0 for j¥n, H,(X,X-P)=Z,

and if y is a covering map (equivalently: f is locally constant) then X
is called a generalized n-manifold. How would you define a generalized
J-manifold?

2. Let M", N" be manifolds of the same dimension and f: M — N a map
which is locally homeomorphic {(e.g. a covering, or the inclusion of an
open set). Show that f induces natural homomorphisms f*: I'(B)—
I(f~'B) for all B&cN (defined by fJ[(f*t)P]=t(fP); cf.1V,34)
If t€I'B is an orientation of N along B then f* ¢ is an orientation of M
along f~! B. In particular, if N is orientable then so is M. If M, N are
oriented by orientations O, O’ then f is called orientation preserving
(resp. reversing) if f* O’ =0 (resp. f* O'= — 0). In particular, this applies
if M=N, 0=0".

3. Let p: M— N be a covering map. If N is orientable then so is M. If p
is a regular covering (cf. Schubert IIL, 6.6) and M is orientable then
N is orientable if and only if every covering transformation M — M is
orientation-preserving.

4.Consider the map u: M x N — M x N of 2.13 and verify y™ ¥ (u(P, 0)=
(M (P), (@), B**M(u(P Q)= B (P) B¥(Q), for PeM, QeN. Show that
the restriction of u defines a two-sheeted covering

M(1)x N (1)— (M x N)(1),
which is trivial if and only if one of M, N is orientable. Generalizing ,

define (M & G) x (N@G’)a(ﬁ)@(G@ G') where G, G' are arbitrary
abelian groups.

5. Show by an example (Mobius-strip) that the boundary JL of a
J-manifold L can be orientable without L being orientable. Can it
happen that 9, (s)e I'(8L) is an orientation but seI'L is not? Show that
the answer is no if every component of L has a non-empty boundary.

3. Homology of Dimension >n in h-Manifolds

This § generalizes to arbitrary n-manifolds M" what was proved for
spheres $" in IV, 6. Roughly speaking, we show that the homology of
(pairs of) open sets in M" vanishes above n and coincides with a suitable
group of sections (VIII, 2) in dimension n. More generally, this holds
for retracts of open sets.
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3.1 Definition. Let Bc A<M where M is an n-manifold, n>0. Let
I'(A, B; G) denote the group of sections of y; (2.4) over A which vanish
on B, I'(4,B;G)={sel(A;G)|s|B=0}. There exists then a unique
homomorphism J,; which fills the following diagram,

H,(M —B,M — A; G)—— H (M,M — 4; G)—— H,(M,M — B; G)

(3.2) Jan Ju \JB

0—-TI(4,B; ) ————=——TI'(4; G)—"—T(B; G),

where p(s)=s|B, and J,, Jp are defined in 2.7. This assertion is clear
because the rows of 3.2 are exact and the right square is commutative. |

3.3 Proposition. If X <Y are subsets of M" which are neighborhood
retracts (e.g., if X, Y are open) then

(a) H,(Y,X;G)=0 for i>n,
(b) J=Iy_x.m_y: H(Y, X; G)>T'(M-X,M-Y; G)

is a monomorphism whose image consists of all sections with bounded
support, i.e. of all sections se[(M—X,M—Y;G) for which the set
{Pe(M — X)|s(P)+0} is contained in a compact part of M. If I, denotes
the group of these sections then we can also write

J=dy_xm_y: H(Y, X; G =L(M—X,M—Y; G).
Note that I; =TI if Y— X is compact.

3.4. Corollary. If M is an n-manifold and C<M a closed connected
subset then
G if Ciscompact and M orientable along C,
) O*Z,={geG|2g=0}
H (M, M= C: G)= if Cis compact and M not orientable along C,
0 if Cis not compact.

In particular, this applies to C=M if M is connected.

Proof. We have H,(M,M — C; G)=I,(C; G). If C is not compact then
I,(C;G)=0. If C is compact then the sections of y;: M ® G— M over C
can be identified with those components of y;! C which are homeo-
morphic (via y;) with C; this follows because y; is a covering map.
If M is orientable along C then 75' C~CxG, hence I(C;G)=
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I'(C; G)=G. If M is not orientable along C then the orientation covering
7,0 M(1) > M is non-trivial over C, i.e. y;! C is connected. The com-
ponents of y5! C are then of the form g(y; ' C), where

g M1)>MeG, ju)—ueg, and geG

(use neighborhoods ¥, as in 2.3 to prove continuity of g). The only points
of g(y7' C) which under y; map into QeC are ueg and (—u)®g=
u®(—g), where ue H,(M,M —Q;Z) is a generator. Thus y¢|g2(y;! C) is
homeomorphic if and only if g= —g, i.e, if and only if 2g=0. |

3.5 Corollary. If M is an n-manifold and C<M a closed connected subset
then the torsion subgroup of H, (M,M — C;Z) is of order two if C is
compact and M non-orientable along C, and is zero otherwise.

Proof. Let ¢ be a non-zero integer. If C is compact and M orientable

along C then

Z,HM,M—-C;Z)=H,M,M~-C;Z)®Z,0H,_,(M,M—C;Z)xZ,
=Z,oH, (MM ~C;Z)*Z,

(using 3.4 and the universal coefficient theorem), hence
H,_ (M,M—-C;Z)*Z,=0.

Similarly, 0=H,M, M -C;Z)=H, \(M,M—-C;Z)+Z, if C is not
compact, or if M is not orientable along C and g is odd. Since

H,_ (MM—-C;Z)*Z,={acH,_(M,M—C;Z)|qa=0}

this shows that H, (M,M —C;Z) has no g-torsion in these cases.
Finally, if C is compact and M non-orientable along C then (again
by 3.4)

Z,=HMM—-C;Z)=H, (M\M—-C;Z)+Z,

={aeH,_ (M,M—C;Z)|4a=0};

this easily implies that H, ,(M,M — C;Z) contains just one non-zero
clement of finite order. 1

3.6 Corollary. For any AcM let c,(A) denote the number of bounded
components of A (i.e. components whose closure in M is compact).
If M is a connected n-manifold and X =M is a neighborhood retract,
X+ M, then

(3.7) ¢ (M =X)=c,(M)+dim(ker[H,_(X;Z,)—H,_,(M;Z,))).



262 VIIIL. Manifolds

In particular, if H, (M;Z,)=0 then
(M —X)=c,(M)+dimH,_,(X;Z,).
If M is orientable then we also have

(3.8) c,(M—X)=c,(M)+rank(ker[H,_(X;Z)—H,_,(M;Z)]).

These results generalize the Jordan theorem IV, 7.2. Intuitively, they assert
that every non-trivial cycle of X which bounds in M separates M. Note
that ¢,(M)=1 or 0 depending on whether M is compact or not.

Proof. As in 1V, 7.1, one easily sees that ¢,(A)=dimI,(4;Z,); hence
(M —X)=dim H,(M, X; Z,), and ¢,(M)=dim H,(M; Z,), by 3.3. For-
mula 3.7 now follows from the exact sequence

H,(X;Z,)->H,(M;Z,)—>H,M,X;Z,)>H, (X:Z,)>H, ,(M.Z,)

because the first term vanishes: H (X ;Z,)~I,(M,M - X;Z,)=0, the
latter because M 1s connected and M — X 0.

If M is orientable then we also have c¢,(4)=rank I;(4), and we can
replace Z, by Z in the preceding argument. |

3.9 Corollary. Let X"~ be a compact connected (n—1)-manifold, M" an
orientable connected n-manifold, and i: X c M an embedding such that X
is nulhomologous mod 2 in M (thismeans i_: H, (X;Z,)—H,_,(M;Z,)
is zero). Then X is orientable and is nulhomologous in M with integral
coefficients.

For instance, there is no embedding P, R — IR**+!, and every embedding
P,R— P, ., R is isomorphic on H,,(—; Z,).

Proof. Comparing 3.7 and 3.8 shows
rank ker[H, _,(X;Z)—*>H,_,(M;Z)]
=dimker[H, (X;Z,)—*>H, (M;Z,)]=1,

the latter by assumption i, =0. It follows that H,_,(X;Z)=Z (cf.3.4)
and im(i,) is finite; since H, ,(M;Z) is torsionfree (3.5) this implies
im(i,)=0. 1

Proof of 3.3. Note first that the image of J is indeed contained in I}
because every homology class y has a representative chain in a compact
part K of M (hence (Jy)P=+0= PeK)—We now proceed in several
steps.
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Case 1. X is open, Y =M is an open subset of S".

For integral coefficients, G=2Z, this is contained in IV, 6.4; one has to
remark that I,(M—X)=I'($"—X,S"—Y). For arbitrary coefficients G
the proof carries over word by word; in fact, the hardest step 5 of that
proof can be omitted here because X, Y are assumed to be open.
Case2. X is open, Y=M=\Ji_, V; is a finite union of euclidean open
subsets V; (i.e. V; is homeomorphic with an open subset of R").

This case is reduced to casel by the Mayer-Vietoris principle 1V, 6.7
which asserts

(3.10) If (Y; X,, X,) is an excisive triad in M and if (3.3a,b) hold for
(Y, X,), (Y, X,) and (Y, X, U X,) then also for (Y, X, nX,).

In IV,6.7 we assumed G=Z and M =S8" but the proof is exactly the
same in the general case 3.10.

Getting back to our assumption, if r=1 we apply case 1. In general, we
proceed by induction on r; if r>1 we have M=V U V;, where I is a
union of less than r euclidean open sets. We can then find open sets W,
such that W, V¥, and M=W,uW,. For instance, with some metric
on M we can take

W, ={xe M|2 -distance (x, M — V{)>distance (x, M — I})},
and similarly for W,. Let X, =X U(M —W,). Then
HM,X)=H(V,,V,nX,)

by excision. Therefore the inductive hypothesis (applied to the manifold 1})
gives H(M,X,)=H,(V,, V, n X,)=0 for j>n, and

H,M,X)=H,(V,,V.nX)=L(V,-X)=1L(M-X,),

the latter because V,—X,=M—X,. Thus 33a,b hold for (M, X)),
(M, X,), and by the same argument also for (M, X, U X,). Therefore
they hold for (M, X, n X,) by 3.10. But X, nX, =X because

(M = W,) (M —Wy) =M — (W, UW,) =9.

Case 3. Y=M as in case 2 (a finite union of euclidean open sets), X an
arbitrary neighborhood retract.

As in IV, 6.4, this is the most difficult case. The proof is very similar to
step 5 of IV, 6.4 but still the situation seems different enough to justify a
repetition of the argument. Note that M and every neighborhood
retract of M is an ENR (IV, 8.10).
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We can assume M is connected (otherwise we argue for each component),
and X +M. Then I'(M,M — X)=0, hence H X —H,M is the zero map

because it factors: H,X > L(M,M — X) -, M 2 H, M. The homology
sequence of (M, X) then shows H;(M,X)x~H,_, X for i>n. Now, if
U=+M is an open set which retracts onto X then H,_, X<cH; Uz
H,(M, U)=0, the latter by case 2. This proves part (a) of 3.3.

For (b) we consider the diagram

0->H,M——"“>HMX)—— H_,X -0

(3.11) }5 11 ji

0> ILM L(M—-X)——T(M—-X)—0,

where A, _, X =ker(H,_, X— H,_, M)=coker(x,), ['(M — X)=coker (x'),
and J is mduced by J. It follows that J=Jyis lsomorphlc if and only if
J =Jy is isomorphic. In particular, J, is isomorphic for all open subsets U
of M, by case 2.

Letr: U>X be a retraction of an open subset. If we choose U small
enough then i* r~iV: U— M, where i*, i are inclusions (cf. 1V, 8.6),
hence z Iy —z” hence r, maps AU= kCI‘(l ) into AX = ker(lx), and is
a left mvcrse of Iy 0.4 —»H U. In particular, i, is monomorphlc The
diagram

(3.12) li l=

fM—-X)——I(M-U)
then shows that J is monomorphic.

To prove surjectivity we choose, for every Q (M — X), an open set V, such
that XcVocU—Q and ig(r|Vp)~ky: Vo— U—Q where iy, k, are
inclusions (this is possible by 1V, 8.6); then ig.(r|V;), =ky.. We record
the whole situation in the diagram

ﬁn—lX_jL} ﬁn—lVQ _kg*—} gn—l(U_Q) i>fyn—lU

o ) J J

P(M—X)—TQ—J"(M - VQ)——k,Q—vf((M ~U)u Q) TF(M- U),

igr=Kgujge, ig=koig, i'=lgiy.
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Let po=(r|Vp),J ' jp: (M —X)—H,_, X. Then

(3.14) ipJ po=iy

because
igJ po=ig J(rl Vo) T ™ jo=T igu(r Vo), T~ Jg
=Jkge I jo=ko I~ jo=kKpj,=ip.

Composing (3.14) with I’Q gives (i J) po=1i. The right side of this does
notdependon Q,and i’ J=J i i,1s monomorphlc hence p = p, is independ-
ent of Q. We claim J p=id; m particular, J is epimorphic.

Let sel,(M—X), and §el(M—X) its coset. Let oel[(M—X) be a
representative of Jp(§). We have to show that s and ¢ differ only by a
global section te I M. Now iy J p$=i,$§ by (3.14), hence s|(M ~U)uQ
and ¢|(M — U)u Q differ only by a global section tyel; M. All of these ¢,
agree on M — U (they equal s—o there) and therefore they all coincide
(M is connected), say t,=t. It follows that sQ —ocQ =tQforall Qe M — X,
as required.

Case4. M as in case 2 and 3, X and Y arbitrary neighborhood retracts.

We can apply case 3 to both (M, X) and (M, Y). The exact homology
sequence of the triple X © Y =M then yields the result for (Y, X), as in
step 6 of 1V, 6.4.

Case 5. The general case.

Let ye H, (Y, X), and let ze SY be a representative. Since z has a compact
carrier there exists a finite union W of coordinate neighborhoods such
that ze SW. If k>n then [z]e H (Y W, X n W) is zero by case 4 (applied
to the manifold W), hence y =i, [z]=0 (i =inclusion). If k=n we consider
the diagram

H(YnW,X nW)—= 5 H (Y,X)
(3.15) = ll JJ
0->I,(W-X,W-Y)—> I (M-X M-Y),
where e is the map which extends every section (which vanishes outside
of some compact set of W) by zero; clearly e is monomorphic. The left J

is isomorphic by case 4 (applied to the manifold W) hence

Jy=0=eJ[z]=0= [z]=0= y=0.
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It remains to prove surjectivity of J: H (Y, X)->L(M—-X,M—-Y).
If se[(M—X,M—Y) then s vanishes outside of some compact set K
of M, and K is contained in a finite union W of coordinate neighborhoods.
Therefore s is in the image of e, hence also in the image of J, by 3.15. 1}

3.16 Exercises. 1. If X cY are open subsets of a manifold M then
ri LM—X,M~-Y)=I(Y—X), where I.(Y— X) denotes the group of
sections with compact support, i.e. of sections seI'(Y— X) such that
Y— X —s~'(0) is compact. The isomorphism r is obtained by restricting,
its inverse r~! by trivially-extending sections.

The group I (Y—X) is of interest because it depends only on Y—X
and the part of the orientation covering over Y— X, not on the ambient
manifold M. For orientable Y, or with Z,-coefficients, it depends only
on the space Y— X it follows that, H,(Y, X) depends only on Y—X,
in this case. We shall see in 7.14 that a similar result holds for all homology
groups H(Y, X).

2. If M 1s an n-manifold and G an abelian group then there is a unique
family of homomorphisms o'; I'(4; Z)® G —1'(A4; G), AcM, which is
natural with respect to inclusions, and for one-point sets 4= P agrees
with the isomorphism H,(M,M —P;Z)e G=H,(M,M —P; G) of 2.1.

3.If X c Y are neighborhood retracts in an orientable n-manifold M then

o: LIM=X,M—-Y,Z)eG=L,(M—X,M—Y;G),
a: H(Y,X)e GxH,(Y,X;G), forall G.
The latter implies (by the argument of 3.5) that H, (Y, X; Z) is torsion-
free.

4* If L is an n-dimensional ¢-manifold and V =L, define
Jy: H(L,L—iV;G)—>TL(iV; G)

as in 2.15 (where iV =VniL), and show that J} is isomorphic if L—iV
is a neighborhood retract (hint: reduce to the absolute case 3.3 by
attaching a collar to L). Find analogous conditions for V which imply
isomorphisms H, (L—iV,L—V; G)=I,(dV; G), where 0V=Vn¢{L.

4. Fundamental Class and Degree
For open subsets of $” these notions have already played a réle (IV, 5;

VII, 2.14). We now briefly treat some generalizations to arbitrary
manifolds.



4. Fundamental Class and Degree 267

4.1 Definition. Let M” be an oriented n-manifold, OeI'(M; Z) its orienta-
tion, and K<M a compact set. There exists then a unique element
oxeH, (M, M — K; Z) which under the isomorphism J of 3.3 corresponds
to (O|K)el(K; Z); thus oy is characterized by the property that the
inclusion homomorphism i£: H,(M,M—K)— H,(M,M — P) takes oy
into O(P), for every PeK. The element oy is called the fundamental
class around K. In particular, if M is itself compact there is a fundamental
classo, €H, (M; Z). If K is connected, non-empty, then H,(M,M —K; Z)
~['K>7Z, and o, is a generator of this group.

If M is not oriented (or not even orientable) we can take Z,-coefficients
and still use the same definition. This remark applies to the whole §4:
We speak of oriented manifolds, but the theory applies equally well to
the non-oriented case after replacing Z by Z,.

4.2 Definition. Let f: M'"— M" be a continuous map between oriented
n-manifolds, and let K =M be a compact connected set () such that
f~'K is compact. Then f,: H,(M',M'— f~' K)—H,(M,M — K) takes
the fundamental class 0,1, into an integral multiple of oy; this integer
is called the degree of f over K, and is denoted by deg, f. In symbols,
Jo(o,-ix)=(degg f)og. If K=0 then deg, f is not defined; we could
agree that deg, f =Z =set of all integers.

For instance, if K is a point and M, M’ are open subsets of $” then the
definition of deg, f reducesto IV, 5.1f f ' K= (e.g. if K isa point¢ im(f))
then degy f=0. If f is the inclusion map of an open subset M’ of M (with
0'=0|M’) then deg, f =1 for every KcM'. More generally, if f is a
homeomorphism of M’ onto an open set of M then degy f= +1 for
every K cim(f).—All of this is quite obvious (compare IV, 5.4).

It is sometimes convenient to replace f~! K by a larger compact set,
as follows.

4.3 Proposition. If f: M'—>M and KcM are as in 4.2,and if K'c M’
isany compact set containing f ' Kthen f,: H(M',M' — K')—> H(M,M — K)
takes the fundamental class oy into (degg f)og.

Proof. The inclusion homomorphism H(M',M’'— K')>H(M',M' —f ~* K)
takes og. into o,-,, (by definition of o). Therefore the composition
HM M —K)>HM' M —~f~'K)~-L> HM, M—K) takes o4 into
Jelos-ix)=(degg fog. 1

4.4 Proposition. If f: M' > M and K<=M are as in 4.2, and I =K is also
compact then f,: HM M —f~'I)>H(M,M—1I) takes o,-,, into
(degg f)o,. In particular, deg, f =degy f for every connected compact
part I (£9Q) of K.
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For instance, this implies deg, f=deg, f for every point PeK. In
particular, if Kd¢im(f) then P¢im(f) for some P, hence degy f=
deg, f=0.

Proof. Consider the commutative diagram
HM' M —f~*K)— > HM,M—K)

S

HM M —f')—LSHMM-I),

where i,i" are inclusions. Chasing o,-.x through the diagram gives
0,-1x > (degg ) ox— (degy f) o;, Tespectively

0p-1g 0 -1 fo(0p-0y). 1

If f~'K is compact for every compact set KcM then f: M' > M is
called a proper map. E.g., every homeomorphism M'sM is proper.
If M’ is itself compact then every continuous f: M'— M is proper.

4.5 Proposition and Definition. If /- M’ — M is a proper map of oriented
manifolds and if M is connected then the number deg, f is the same for
all connected compact parts K(+0) of M. It is called the degree of f,
in symbols deg f. The equality f, (0,-1x)=(deg /) og holds for all compact
sets K< M, whether they are connected or not.

For instance, if M and M’ are compact then degf is characterized by the
fermula f, (0,,.)=(deg f) 0. If M is compact but M is not then deg f =0
because im(f)=+ M. If M, M" are arbitrary again and f: M'~ M is homeo-
morphic then deg f= +1 (M being connected); according to these two
cases f is called orientation-preserving or -reversing.

Proof. If K!, K*<M are arbitrary compact sets then we can find a
connected compact set K in M which contains both K' and K? (cover
K'U K? by a finite number of closed balls and connect these by paths).
By 4.4, f,(0,-1x)=(deg [) ox..forv=1,2; this implies the assertion. 1

4.6 Corollary. If M"—>M' —L>M are maps of oriented n-manifolds,
if g is proper, M’ connected, and K = M is a compact connected set (=) such
that f ~* K is compact then degy (fg)=(deg g)(deg, f). In particular, if f
is proper, too, and M connected then deg(fg)=(deg g)(degf).

Proof.deg (fg) ox=(/2), 0(s)-1x =S, [(deg g) 0, -1x]=(deg g)(degk /) ok,
the second equality by the last part of 4.5. 1§
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Generalizing IV, 5.8 we have the following

4.7 Proposition (Additivity). If f: M’ > M and KM are asin 4.2, and M’
is a finite union of open sets M, A=1,2, ..., r, such that the sets K',=
(f~'K)n M., are mutually disjoint then deg, f=Y"_, degy f*, where

*=fIM; (n.b., every K’ is compact because f~'K is the topological
sum of the K').

Proof. Consider the maps
(_D;:lH(M K) {lt) (MI,M’——f_lK)i’H(M',M'—Q),

where the i* are inclusions and Qef~! K. If we apply the composite to
{ok,} then all components o, go into zero except the component oy,
for which QeK this one goes into o,. Therefore 2{it} og, M= oQ':
for every Qef ' K, hence {i}}{0g,} =0,-ix (cf. 4.1). Now

(degg f)ox= f Of- 1K)= f {i; }{01(,1} {f}{okl}
=Z;¢=1f* Okk):(2i=ldegk )OK' 1

Proposition 4.7 can serve to interpret deg, f as “number of points in
[~ P, counted with multiplicities”. For this we refer the reader to the
remarks after IV, 5.8; they carry over literally.

4.8 Example. If X cR" is a compact connected (n—1)-manifold then

— X has two components, one bounded V, and one unbounded W
(cf. 3.7). Let B=VuX =V 8 This is a neighborhood retract; indeed, if
p: U— X is a neighborhood retraction for X then r: Uy V— B, r|B=id,
rlU—V=p|U -V, is a neighborhood retraction for B.—If X is locally
flat (1.8) in IR” then B is easily seen to be a d-manifold with boundary
cB=X.

A theorem of H. Hopf asserts that if v(x) is a non-zero vector which
depends continuously on x€ X and points out of B then the degree of the

— ”Vg;” , equals the Euler-characteristic of B. In
v

order to make this precise, remark first that H, (B, X)= I, (R"— X, W)~

I'V=Z. Let oe H (B, X) denote the generator which maps into

map X ->8" 1,

opeH,(B,B—P)=H,(R",R"—P), for PeV.
8 Proof. Clearly Ve(VuX). Assume X ¢ V; then X contains a small open (n— 1)-ball D
such that D~ V=¢. It follows that Wu D is open in R”, and R"—(X —D)=Vu(WuD);
in particular, ¥ is a bounded component of R"—(X—D). But H, (X—-D;Z,)=
I'(X, D; Z,)=0, by 3.3; hence R"—(X — D) has no bounded component, by 3.7.
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Then ¢, o0 is a generator of H,_, X (because H, B=I;(R", W)=0,H,_, B=
H,(R" B)=I,(R"—B)=0, hence 0,: H,(B,X)~H, ,X). It is this
generator of H,_, X and the analogous generator of $"~! which we use
to define the degree of X —S$"~'. The theorem of Hopf can now be
formulated as follows.

4.9 Proposition. If ¢: X — B is a map which is homotopic to the inclusion
map 1: X — B and which has no fixed point (¢~ 1, ¢ (x)# x) then the degree

of g: X-8"' g(x)= X—ox , equals the Euler-characteristic of B,
deg(g)=x(B). Ix=ox]|

Proof. We can extend ¢ to a map ¢: B— B such that @~id. This is so
because X = B has the homotopy extension property (IV, 8.13, Exerc. 3);
an ad hoc proof is as follows. Extend ¢ first to a neighborhood U of X
in B, say y: U— B, and take a deformation d: U x [0, 1] — B with
d(u,0)=y u, d(u,1)=u; this is possible by 6.2. Choose a continuous
function t: B—[0,2] such that 7| X =0, 1|B— U =2, and define

D: Bx[0,1]—B
by
b d(b,Min(1,t+1h)), for th<l
( ’t)_{b for tb>1.

)

Then @ (b)=D(b,0) is the required map, and D is a homotopy ¢ ~id.

Let F denote the fixed point set of @. The fixed point index I, of @ agrees
with the fixed point index of @|V: V— B<c R" because F < V (cf. VII, 5.11);
the latter equals (cf. VII, 5.2) the local degree over 0 of G: V— IR", where
Gv=v—®v. The fundamental class op€H,(V,V—F)~H,(B,B—F) is
the image of oe H, (B, X), as remarked above, therefore

G: (B,X)— (R" R"—{0}), Gb=b—b,

takes o into I,-times the generator o, e H,(R", R"—{0}).

It follows that G| X: X — IR"—{0} takes 0, o into I,-times the generator
ofH, ,(R"—{0})~H,_,S$" '.But G|X isessentially g (up to homotopy),
hence deg(g)=I,. On the other hand, I,=A(P)=A(Idg)=yx(B), b
VIL6.6. 1

4.10 Exercises. 1. Let M be an orientable n-manifold and X a compact
(but not necessarily connected) submanifold of dimension n—1 which
bounds mod 2, i.e. whose mod 2 fundamental class o lies in the kernel of
i.: H,_,X;Z,)>H, (M;Z,), i=inclusion. Then X 1is orientable,

*
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and it can be so oriented that its integral fundamental class
oeker(i,: H, (X;Z)—H,_ (M;Z)).
This generalizes 3.9. It can be proved by considering the diagram

L(M—X;Z)~ H(M,X;Z)—— H, (X;Z)——H,_ (M;Z)

T

L(M-X;Z)~H,M,X;Z,) —H,_ (X;Z,)——H, ,(M;Z,),
first for p=2 and then also for other primes.

2.If M™, N" are oriented manifolds and I = M, K = N are compact subsets
then o;, x=0;% 0, (compare VII, 2.15). If f: M™—M", g: N"— N*
are maps of oriented manifolds then deg; (f xg)=(deg, f)(degyg),
whenever these terms are defined.

3. If@:[0,1]x M'"— M" is a deformation (M, M’ oriented), and Kc M
is a compact connected set (+@) such that @~ ' K is compact then
deg,(@,)=degy(@,) (compare 1V,5.13, Exerc.3).—Show that every
complex-linear isomorphism ¢: C"~C" has degree +1 (hint: ¢ ~id).

4. Every proper map IR — IR has degree 0 or +1. Determine the degree
of x> x¥ k=0,1,2,... (for xeR, and also for xeC).

5* Show: If 7: 8" —>$" is an involution, 1 t=id, T+id, then TP=—P
for some Pe$" Hints: For every xe$" let f(x) be the center of the
geodesic arc from x to 7 x; if T x & — x this defines a map f: $" > $" such
that f{x)=f(z x)and f ~id (just deform along great arcs), hence deg(f)=1.
Let M={xeS"|tx+x}, and M'=f~'M; then deg(f|M": M'—>M)=
deg(f)=1. But f|M’ factors, M'—2>M" L5 M, where M" is obtained
from M’ by identifying x with 7 x; the covering map = has degree 0 mod 2,
hence deg(f|M')=deg(f") deg(n)=0 mod 2.

More generally: If t: $"— $" is such that t*=id, t+id, then P+tP+
2P+ -+ 71 P=0 for some PecS"

6*. For every manifold M let y,: M, — M denote its orientation covering
(2.11), and ©: M, > M,, t(u)= —u, the canonical involution. A map
f: M'" > M"is called orientable if f,: M; — M, exists such that y, f, =7}
and t f; =f, v'; any such f, is called an orientation of f. (For instance, if
fisa homeomorphism of M’ onto an open subset of M then fis orientable.
If M, M’ are oriented—by O, O'—then every f has a unique orientation
f; such that f, 0 0'=00¢f) Show that the preceding theory of the degree
(with integral coefficients) generalizes to orientable maps, replacing f
by f; (n.b. M, is canonically oriented).
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7.1f £ M'— M is a map of oriented manifolds, and K =M is compact
connected, then it is sometimes possible to define degy f even though
f ! K is not compact: Suppose f ! K is a disjoint union of sets K, 1e A,
which are both compact and open in f ~* K. Choose an open set M; <=M’
such that K,=(f"'K)nM,, and put degy f=),_,deg, f* (where
f*=fIM’), whenever this makes sense (degy / may be an integer or
+o0). For instance, if f is a covering map of oriented (connected) mani-
folds then deg, f=number of sheets (possibly o), for every Pe M.

5. Limits

Arguments about limits of spaces or groups have already been used in
several instances (e.g., 3.3; 2.2; 1V, 6.4) without explicitly saying so. This
omission seemed justified because simple ad hoc proofs could be supplied,
thus keeping the exposition short. Some of the deeper results on mani-
folds (VIII, 7), however, involve limits more essentially, and we now
provide the necessary background.—More general limits (Kan-limits)
are discussed in the appendix (cf. A.1).

5.1 Definition. A relation A<y in a set A is called a quasi-ordering if

(i) A<A for every Ae A (reflexivity), and
(ii)) A<u<v= A<v (transitivity).

A quasi-ordered set is directed if for every pair 4, A'e A there exists pe A
such that A<p and A'<p.

5.2 Definition. If A4 is a quasi-ordered set and " a category then a
direct A-system (in ') is a function D which assigns to every i€/ an
object D, e, and to every pair A<y in A a morphism D4: D, — D, such
that A<u<v= D} D*=D}, and D=id. In other words, if we view A
as a category, with objects {i} and with one morphism A — u for each
A<y then adirect system is the same as a functor D: A — A"

A cofunctor I: A — X is called an inverse A-system (in #). It maps
A3 e, (A<p)— (14 I*—> 1%), and satisfies 14 T, =1} for A<u<v,
Ii=id.

A natural transformation D - D! respectively I — I, of functors is also
called transformation of direct (inverse) systems. Direct (inverse) systems
and their transformations form a category {4, 4"}, resp. {A, #°P}.
Replacing " by the dual category # °° (or A by A°°) takes one into the
other; in general, we can therefore restrict attention to direct systems.



5. Limits 273

5.3 Examples. If A is trivially ordered (A < u <> A= yp) then A-systems are
just A-families {D,},_, of objects. If 4 =IN =set of natural numbers with
the usual order then A-systems are sequences D, —D, - Dy — -, resp.
I'—~I*« P« - in X, If A is the set of open subsets of a topological
space Y, and < denotes inclusion then inverse A-systems are usually
called presheaves (over Y, with values in J¢"). The last two examples A
are directed, the first is not (if 4 has more than one element). Another
example of a directed A is the set of (quasi-} compact subsets of Y (ordered
by inclusion). '

5.4 Definition. Let A be a quasi-ordered set, and " a category. Given an
object Ke#, consider the constant functor A — A which takes every
e A into K, and every relation 4 <y into id,; we use the same letter K
to denote this functor. A transformation ¢: D — K of direct systems then
assigns to every AeA a morphism ¢;: D, —K such that ¢, Di=0¢,
whenever A <pu.

Let us fix a direct system D now. A transformation u: D — L, where
Le %) is called universal if

H(L,K)>Transf(D,K), y>you, (Wou)=you,

is bijective for all Ke.#; i.e,, if for every transformation ¢: D — K there
exists a unique morphism ¢y: L— K such that ¢,=y u; for all AeA. For
instance, if D itself is a constant functor, D,=L, D¥=id, then u,=id,
is universal.

If a universal transformation exists it is essentially unique; more precisely,

5.5 Proposition and Definition. If u: D —» L, v': D — L are two universal
transformations then there is a unique morphism k. L— L such that
ku=u', and this K is an equivalence, L=~L.

If a universal transformation u: D — L exists then L is called the (direct)
limit of D; in symbols, L=1lim D. We also write L=1_i_m>{Di|ieA}, or
L=Ilim{D,} if the morphisms D} (and the index set A) are clear from the
context. If ¢: D — K isa transformation we also write {¢,}: 111_1)1 {D,}—=K
for the corresponding morphism .

Dually, for inverse systems I we have u: L—1I, L=1i_131=li£ {I1*}, and
{9*): K - lim {I*}.

Proof of 5.5. By universality of u there is a unique x: L— L with ku=u’;
similarly for k': L - L, ¥’ v’ =u. It follows that 'k u=u, hence ¥’k =id,,
because u is universal; similarly, kx'=id,.. |
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5.6 (compare I, 1.15). If the ordering of A is trivial (A<pu<>A=y) then
li_n}D (if it exists) coincides with the coproduct of the family {D,},. 4, in
symbols | |;.4 D,, and the morphisms 1,: D, — ;. 4 D, are the injections
of the cofactors. In some concrete categories (&9, or Je4, ...) LUD, is
also denoted by @ D,, and is called the (direct, or topological) sum, with
1, the “inclusion of the summand D,”.—Dually, !iEI coincides with the

product [, I*

For every quasi-ordered set, lim D can be thought of as a “quotient of
LID,”and l(i_n_]] asa “subobject of [11*”. We do not discuss these general
notions (cf. Mitchell 11, 2) but mention the following

5.7 Proposition. Let D: A — A% be a direct system of abelian groups
(or modules, or complexes). Then im D is the quotient of @ ;. ,D; by the
subgroup (-module, -complex) which is generated by all elements of the form
(1,—1,D%) (x;) where x;eD;, A<y, and 1,=inclusion. A universal trans-
Jormation v={v,} is given by composing

D/’.A®VGADvLQi'@veADv/{l&xi_lu DI:. x}x}'
Dually,
im 7 ={x={x}e[],c4 I’|x;=14x, for all A<p}.

In particular, these limits always exist.

Proof. Put L=®,.,D /{1, x;—1,D4x;}. If {¢;: D;— K} is a trans-
formation, Ke /%, we have to construct : L— K such that yv,=¢,
for e A; since the images, im(v;), clearly generate L there is at most one
such . By the universal property I,2.14 of direct sums we can find
' @,.4aD,—K such that y'1,=¢;. Further y'(1,x;—1, D} x;)=
@0, x—0,Dix; =0, x;—¢; x;=0, hence ' vanishes on ker(proj:
@D, — L), hence y: L— K exists with y proj=y’, and y v, =y proj 1, =
' 1,=¢;—Dually for lim I.

5.8 Corollary. If t is a covariant functor between abelian groups (or
modules, or complexes) which is strongly additive and right exact (cf.
VI, 2.10) then t(li_n} D)=li_>m(t D), for every direct system D.

Indeed, ¢ commutes with sums and quotients (by assumption), hence
with m by 57. 1

We now discuss some functorial properties of lim.
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5.9 Definition. Let D: A — %, D': A’ — A" be direct systems. If y: A — A’
is a map (not necessarily order-preserving) and d;: D, — D;,, le/, a
family of morphisms then we say d ={d,}, ., passes to the limit if the com-
position of d with any transformation ¢': D' — K, Ke ¥, is a transforma-
tion @'d={¢,,d;: D,—K}. Explicitly, for every transformation
¢": D'~ K we must have ¢, d, Di=¢),d;, whenever A<yu; 4, peA.

If D" admits a universal transformation u’: D’ —»li_)m D' then d passes to
the limit provided u'd is a transformation (this is an easy exercise which
will not be used later). If also D has a limit, u: D — lim D, and d passes to
the limit then there is a unique morphism

(5.10) limd: limD— lim D" such that (limd) u;=u,; d

yATA
for all Ae A.
As a criterion we note

5.11 Lemma. Let d={d;: D,— D, ;},_, be a family as in 5.9, and assume
that for every relation A<pu in A there is an element peA' such that
yAZp, yu<p and D} d Di=D? d;. Then d passes to the limit.

Indeed, if ¢': D' — K is a transformation then

(p;udu Di=¢;, D d Dﬁz(p; Dfd,=¢,;d;. 1

yuu yA L4

5.12 Proposition. Let D: A - A, D" A" —> A, D": A" — K, and
d={d;: Di_)D;A}Ae/h d'={d:,3 D;,—’D' }peA'

Y
as above. If both d and d’ pass to the limit then so does d'd={d,;d;: D, —
D)., .} ica-1f,moreover, D, D', D" have limits then ll_n)l (d d)= (li4m) d’) (1_12)1 d).
Proof. If ¢"": D” — K is a transformation then so are ¢”d' and (¢"” d')d=
¢@"'(d' d), because d’ and d pass to the limit, hence d' d passes to the limit.
If the limits exist then

(lim &’ d) u=u"(d' d)= (" d') d=(lim &) d =(limy ') (lim d) u,

hence lim (d'd)=(lim d') (lim d) by universality of u. 1

Proposition 5.12 allows to view lim as a functor on the category of all d
which pass to the limit. We leave the precise formulation to the reader,
and consider two frequent special cases (5.13, 5.15).

5.13 Example 1 (y=id). If d: D — D’ is a transformation of direct systems
over the same A=A" (cf. 5.2) then d always passes to the limit because
compositions of transformations are transformations.
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Suppose, for instance, D: A — d/% is a direct system of complexes.
Then for every integer n the n-chains form a direct system of abelian
groups D": A - o/%, and the n-th boundary {0;: D7 —>D7*'}, , is a
transformation of direct systems (we use upper dimension indices # in
order to distinguish them from the 1). We claim

(5.14) If u={u,: D, > L}, , is a universal transformation then u"=
{u: D> L'}, s also universal, hence (lim D)"=1im(D"). Under this
identification the boundary homomorphism ¢" of lim D agrees with
lim {27}. The first assertion is quite obvious from 5.7;70r a direct proof
see Exerc.4. Further, (6") u} =u;~" &} =(lim {9})u} because u;: D;— lim D
is a chain map and because of 5.10; equality of the outside terms then
shows ¢"=lim {0%} because " is universal.

5.15 Example 2 (d,=1d). Let A, A’ be quasiordered sets and y": A’ — A
an order-preserving map (A’ <u’' =y A’ <y’ u’). For every direct system
D: A— X the composite D'=Dy": A'—># is also a direct system
(D, =D, ., D'*,=DI%). Further, d'={d;, =id: D}, =D,.,} passes to the
limit because . -
qoy'u’ d;l’ D,‘;.’ z(py’u’ Dz")l.’ =(py’ A =(py/ A d’i”

for every transformation ¢: D — K. In this situation we write y/_ instead
of limd'; thus y : lim D' —limD.

— — —
It is often important to know whether such‘a “change of parameters”
9t A" — A leaves the limits unchanged, i.e. whether y/ is isomorphic.
The following (5.16, 5.17) provides a useful criterion.

5.16 Definition. An order-preserving map y': A" — A between directed
sets is called cofinal if for every A€/ there is a A'eA’ such that A<y’ A'.
(For a generalization of this notion to non-directed sets or categories
cf. A, 1.7 and A, 1.12, Exerc. 2).

If an inclusion map A’ < A is cofinal then we say A’ is cofinal in A. For
instance, every infinite subset of N is cofinal in N. If A has an upper
bound m (A <m for all 4) then A"={m} is cofinal; in that case lim D=D,,
forevery D: A — A.

5.17 Proposition. If y': A'— A is cofinal, and D: A — XA is any direct
system then composition with y' defines a 1-1-correspondence §' between
transformations ¢: D — K and transformations ¢’: D' — K. In formulas,

§': Transf(D, K)—=- Transf{(D', K), ((@)); =@, 2 =04
Moreover, u: D — L is universal if and only if w' =9'(u): D' — L is universal,

hence y,: lim D'=lim D, provided one (and therefore both) of these limits
exists.
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Proof. We construct an inverse to §, say ¢: Transf(D’, K) — Transf(D, K).
If ¢’e Transf(D’, K) we define (¢ ¢'),: D, — K, for Ae A, by (e '), = ¢, D} *,
where 2'e A’ is so chosen that A<y’ A". This (g ¢'); does not depend on the
choice of 4, for if y'eA’ is a second choice we can assume that y'> 1’

(because A’ is directed), and then
¢, Dy ¥ =@, DI4 Dy ¥ =g, DY DY * =g’ D} *.

We now claim that € ¢'={(e ¢'),} ., is a transformation D — K. Indeed,
if A <u choose p'e A’ such that u<y' i then (¢¢'), =9, D%, (e¢),=
¢, D} *, hence (¢ ¢'), D} =(e ¢'),, as required. Furthermore,

(8 v ((P))x =" 9); D?al V= Dy i Dyft' M= Dis

and (§'¢(¢)), =(¢),, =@, D5 =¢’, hence §, & are reciprocal bi-
jections.

In order to show that u, ' are simultaneously universal we consider the
commutative diagram
Transf(D, K)

ou

e
X (L, K)

3

Transf(D’, K).

Universality of u resp. v’ means that the upper resp. lower arrow is bi-
jective for all K. 1}

So far, the category . in which the limits were taken was essentially
arbitrary (although some parts, like 5.7, were formulated for abelian
groups). The following results, on the contrary, use special properties
(of groups ---); they do not generalize to arbitrary /. For instance, they
do not dualize: the dual assertions for inverse limits of abelian groups
are false (cf. Exerc. 5).

5.18 Proposition. If A is a directed set,and D: A — % is a direct family
of abelian groups (or modules, or complexes) then a transformation
v={v;: D;— L}, 4, is universal (hence L=1im D) if and only if the follow-
ing two conditions hold.

(iy L= Uie/l im(v,);
(i) ker(v)=|J,_, ker(D%), for every AeA.

In words, every ye L comes from some D, and if x€ D, is such that v,(x)=0
then already D%(x)=0 for some pu>A.
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Proof. Assume (i), (i) hold. Given a transformation ¢: D — K, Ke %,
we have to construct y: L— K such that y v, = ¢;, A€ A; since the images,
im(v,), cover all of L there is at most one such . Note that ¢, D4=¢,
implies ¢,|ker(D*)=0; by condition (ii) there is therefore a unique homo-
morphism y*; im(v,) — K such that y* v, = ¢,. We claim that the family
{y*},., matches to give y: L— K. Suppose 4 < p; then

im(v,)>im(v, Df)=1m(v,),
and _
lppv'.t:‘pﬂvp Di=¢, Di=g,=y"v;,

hence ¢*|im(v,)=y* If A, X’ are any two elements of A then we can find
peA with p>J, p> A, hence y* is a common extension of y*, *. There-
fore we can indeed define y: L— K by y¢|im(v,)=y* and get Yv,=
Y* v, =@,, as required.

Assume now v: D — L is universal; we have to prove (i), (ii). Remark
first that | ), ,im(v;) is a subgroup (or -module, or -complex) of L
because for any 4, 4'e A we have [im(v;)wim(v;)]=im(v,), where p>4,
p>J. Consider then the projection n: L—L/| J,.,im(v;); clearly
nv,=0 for every AeA, hence n=0 by universality of v, hence
Uieaim(v;)=L.

In order to prove (i) we can assume that v is as in Proposition 5.7 (be-
cause any two universal transformations are equivalent) Now, if
v;(x;)=0 then 1, x,€®,., D, is of the form 1, x,=Y (1,x,—1, D% x,).
This sum being finite we can choose me A such that m> 4, u, p (m>all
indices which occur), so that the equality takes place in @, _, D,. Apply
the homomorphism {D7}: @, .., D, — D,, to the equality and get

Dy x, =3 (D} x,—D Dhx)=3 (Drx,— D7 x,)=0. 1
5.19 Corollary. If A is an abelian group (module, complex) and {D,},_,
is a direct system of subgroups of A (A directed, D% =inclusion) then
{1, D;—=>Uvea Dy} sea is universal, hence im{D;}=];c,D;. 1
Another consequence of 5.18 is the following
5.20 Proposition. Let A be a directed set, C: A — 64% a direct system of
complexes,and u={u;: C,— L},_, auniversal transformation (L = lim Q).

Then Hu={Hu,: H(C,)— HL},_, is also universal, hence

lim {H C,} = H (lim {C}).
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5.21 Corollary. If A is a directed set, D,D',D": A— A9 are direct
systems of abelian groups,and D' —2~ D —2, D" are transformations such
that D}, —**> D, % D7 is exact for every Ae A then

lim D’ ™%, lim D "™, lim D"
. — — —
is also exact.

Indeed, just view D, —D,— D} as a complex C,, with C?=D;; then
lim D' — lim D— lim D" agrees with lim {C,} by 5.14. By assumption,
—— —> —_— A —

H° C,=0; hence by 5.20, HC(lim C)=0, as asserted.

Proof of 5.20. Let [z]eHL, and ze ZL a representing cycle. By 5.18(i)
we can find Ae A and xe C, such that u; x=z. Now 0=0z=du, x=u,(0x),
hence by 5.18(ii) we can find v>1 such D%(0x)=0. Then 0(D}x)=
D} éx=0, and u, (D} x)=u,x=z, hence z,=D}x is a cycle whose homo-
logy class [z,] maps into [z] under H(u,). Thus {H(u,)},., satisfies
condition 5.18(i).

Assume now [z,]JeHC, is such that (H(u,))[z;]1=0. Then u,z,=0y
for some yeL. By 5.18(i) we can find veA and xe C, such that u, x=y.
ChoosepeAsuchthatp>4,p>v.Thenu (D5z;,— D) x)=u,z;, —ou,x=0.
By 5.18(ii) we can find 6>p such that Dj(D%z,—éD?x)=0, hence
D?z,=é(DIx), hence H(D?)[z,]1=0. Thus {H(u,)},., satisfies con-
dition 5.18(ii). W

5.22 Examples. Let Y be a topological space and let 4 be the set of all
quasi-compact subspaces of Y. Inclusion defines an order relation, which
turns A into a directed set (in fact, if A, A'eA then (Aul)eA, and
2, A" <A U Z'). The function S which to every 1 assigns its singular complex
S(A) and to every pair A<y the inclusion map $%: S(4) — S(u) is a direct
system, and the inclusions j,: S(1)— SY form a transformation. Clearly
conditions 5.18 (i), (ii) are satisfied (the image of every singular simplex
is quasi-compact), hence SY=1im {§(4)}, hence HY=lm {H(4)} by 5.20.
Similarly, H(Y, B)=lim {H (A)} if 4 ranges over all pairs of quasi-compact
sets in (Y, B).

For the same space Y let A’ be a set of open subsets of Y which is directed
under the inclusion ordering and whose union is the whole space,
|J &' =Y. Every singular simplex lies in some 1', hence SY={) S(4)=
lim {$(2')}, hence HY=lim {H(4)}, as above for A. In fact, every com-
pact set AeA lies in some open set A'e A". Choose a function y: 4 — A’
such that Acy4 for every ieA, and let d,: S{2)—S(y 1) denote the
inclusion map. One easily shows that d={d,} passes to the limit, and
m d=idgy; similarly for homology.
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5.23 Exercises. /. Let Y be a topological space, and 2 ={X} a family
of subspaces which is directed under inclusion and whose union is the
whole space, | ] X =Y. Then the inclusions {jy: X — Y}y form a
universal transformation (Y=Ilim {X}) if and only if Y has the finest
topology for which all j, are continuous. (Important example: ¥ =set
of all compact subspaces; if Yﬂhm?[ it is said to be a k-space. Cf.
Kelley.) Show that Y=Ilim{X} 1mp11es Y ><L_11rn {X x L} for every
locally compact L.

2*. Let Y be a T,-space (points are closed) and ¥ = {V'} a decomposition
of Y into disjoint subsets (| J V=Y, VAV’ +§= V=V"). Let & be the
set of all subspaces of Y which are finite unions of sets in ¥. Then & is
directed under inclusion. Show: if Y=lim & then every quasi-compact
subset K of Y is contained in some X € Z. For instance, ¥~ could be the
set of all cells of a CW-decomposition; then this is V,2.6. Or ¥ could
be the sequence of sets Y,—Y, , where {Y,},_, , . 1s an ascending
sequence in Y whose union is Y; one finds that K must lie in some ¥, —
On the other hand, ]R_llm Z, where Z is the set of all countable subsets
of R, but K=[0, 1] does - not lie in any Xe%.

3. Consider the following sequence of homomorphisms

124’2442’23'*2”"'4’12"—2*“‘
This can be viewed as a direct system (A=N) in the category FA4/¥
of finite abelian groups, or in the category &/% of all abelian groups.
Show that in F«/% the direct limit is zero whereas in /% it is not.

Construct another sequence in #/% which does not possess a lim (in
FAY).

4. If A is an abelian group let A be the following complex: A"=0 for
n+0, —1, A°=A4 '=4, 0=id: 4~ —A°. Show that for any complex
C={- S CT O .-} the chain maps C—A are in natural
1-1 correspondence with the homomorphlsms C°— A. Use this remark
to give a direct proof of 5.14, i.e. of (lim {C;})° =lim {C9}.

5 (cf. Eilenberg-Steenrod, VIIL, 5.5). Show that the inverse limit of
the following inverse system [ (over A =IN) is zero:

T3 T3 T3 3 ..

Let I” denote the constant inverse system, I"*=7Z,, I;l”‘zid. Then we
have an exact sequence of transformations 0 — I —2->1—1"— 0 but the
corresponding sequence of inverse limits 0 -0—>0—Z,—0 is not
exact,
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6. Cech Cohomology of Locally Compact Subsets of R”

The Cech cohomology HX of a space X is usually defined (cf. Eilenberg-
Steenrod IX) as being the direct limit of the system {H*(N,)}, where A
ranges over the set of all open coverings of X (directed by refinement),
and N, is the nerve of 4. If X is a locally compact subset of an ENR
(=euclidean neighborhood retract) E then one can show by cofinality
arguments (5.17) that I:IXgli_m’{H* V} where V ranges over the set of
all (open) neighborhoods of X in E (directed by inverse inclusion). It is
in this form that Cech groups naturally arise in the (co-)homology
theory of manifolds. We shall therefore define HX as hm {H*V}, and
we shall study the formal properties of this H now.

6.1 Definition. Let Y < X cE, where E is an ENR (cf. IV,8.5)and X, Y
are locally compact. Let A=A(X, Y) be the set of all pairs (V, W) of
neighborhoods of X, Y such that W < V. Under reversed inclusion A is
directed ((V, W)<(V, W) <> V<V and W < W), and {H*(V, W)} together
with the restriction homomorphisms {H*(V, W)—H*(V, W)} is a
direct system of (graded) abelian groups; the coefficients for H* are
taken in some fixed abelian group G which, most of the time, we do not
indicate. We define H(X, Y)_hm {H*(V, W)|(V, W)e A} = Cech coho-
mology of X mod Y, and we denote by u=uy,,: H*(V, W)->H(X,Y)
the universal transformation. With coefficients and dimension indices
HYX,Y;G) —11m {HY(V,W;G)} =q-th Cech- -cohomology group of X mod Y
with coeﬂlaents in G. As usual, we write H(X,®)=HX. We shall soon
see (6.8) that H(X, Y) only depends on (X, Y), not on E. Note that the
set A’ of open pairs (V, W)eA is cofinal in A so that we can replace A
by A’ whenever it is convenient (cf. 5.17).

The following lemma will serve us to turn H into a functor.

6.2 Lemma. Let E, E' be ENR’s, and X'<E’ a locally compact subset.

(a) Every continuous map f. X'— E has an extension F: U — E to some
open neighborhood of X'; thus F|X'=f.

(b) If F,G: E'—E are two continuous maps,and 9,: X' > E,0<t<1,isa
homotopy between F|X' and G\X' then there is a homotopy 6,: U"—E,
defined on some open neighborhood U"” of X', such that @,=F|U",
0, =G|U" and ©,|X'=39,.

Remark. It is not hard to see that this means (X, E);l_ig} {n(U', E)}
where n(—, —) denotes homotopy classes of maps (compare 5.18).
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Proof. We have maps E—>0-—"->E, where O is an open subset of
some IR" and ri=1d. We can also assume that E’ is contained in some
euclidean space, and then we know from IV,8.3 that X’ has an open
neighborhood E” in E’ such that X' is closed in E".

(@) If f: X' —>E is given then, by Tietze's extension lemma, i f: X'— R"
has an extension @: E"— R". Put U'=®~!(0), and define F: U' —E
by F=ro.

(b) If F,G: E'—E and 9: F|X'~G|X' are given we can use them to
define a map d on the closed subspace A=X'x[0,1JUE" x {0} UE" x {1}
of E"x[0,1]; in formulas, d: A—>R" d(x,t)=i3,(x), d(e’,0)=iF(e"),
d(e”,1)=iG(¢"). By Tietze’s lemma again, d admits an extension
D: E"x[0,1]—>R" Let U’'={ye E"|D(y x[0, 1])=O0}. This is an open
neighborhood of X', and @,: U"—E, O,(y)=rD(y,t) is a deformation
as required. J§

6.3 Definition (of Induced Maps f). Let Yc X cFE and Y'cX'cE' be
as in 6.1 (locally compact subsets of ENR’s), and let f: (X', Y')— (X, Y)
be a map. By 6.2(a) there is an open neighborhood U’ of X’ and a map
F: U'—E such that FIX'=f If Wc Vis a pair of (open) neighborhoods
of Y = X consider the composition

(64)  Fy: H*(V, W)L H*(F-' Y, F' W) =S H(X', YY),

where ' is the universal transformation of the direct system which
defines H(X', Y'). Since F* commutes with inclusions (V, W)= (V, W),
(F7'V,F-'W)c(F~1V,F~1W), we see that {F,} is a transformation
of the direct system {H*(V, W)} and therefore defines a homomorphism
F:H(X,Y)—> H(X', Y') of limits such that Fu={F,,}.

Suppose G: T'— E is also an extension of f; we want to show G=F.
In fact, let us consider the more general case where G: T'— E is a map
of an open neighborhood T’ of X’ such that G(X')c X, G(Y')cY and
GIX'~f (X,Y)—~(X,Y) (i.e, G|I(X’,Y’) need not be equal to f, just
homotopic). By 6.2(b) we can find an open neighborhood U c(U'NnT’)
of X" and a deformation @,: U” — E between G|U” and F|U” such that
OX": (X', Y)—>(X,Y). Now let W <V be a pair of open neighborhoods
of Y= X, as above, and define

V'={yeU"|O,yeVforallt}, W'={yeU"|0,yeW forallt}.

Then W'c V' is a pair of open neighborhoods of Y'= X', and O,|V' is
a homotopy F|V'~G|V': (V', W) (V,W), hence (F|V')*=(G|V')*.
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There results a commutative diagram

H*(V, W) F* sH*(F-'V,F~' W)
Gl -
(6.5) I AL R
T \
H*(G'V,G~'W) w sH(X', Y))

(i=inclusion). Equating the outer compositions gives F,, = G, hence
F=G. Thus f=F: H(X, Y)—>H(X", Y’') depends only on f (not on the
extension F).

We have now defined a graded group H(X, Y) for every pair (X, Y) as
in 6.1, and a homomorphism Hf=f: H(X,Y)—H(X', Y") for every
map f: (X', Y')— (X, Y), and we shall see in a moment, that H is in
fact a cofunctor. Moreover, the equation F=G above used only
FI(X', Y)~G|(X’, Y’), hence

6.6 Proposition. If fg: (X', Y)—>(X,Y) are homotopic maps as in 6.3
then f=g: HX,Y)>H(X, Y. 1

6.7 Proposition. If (X, Y )L (x, Y)——»(X Y) are maps as in 6.3
then H(ff")= Hf) HYf); ); if f=1dx y, then Hf is the identity map of
H(X, Y). Le., H is a cofunctor on the category whose objects are all pairs
(X,Y)asin 6 1 and whose morphisms are (homotopy classes of ) continuous
maps (of pairs).

This is rather obvious: If F is an extension of f, and F’ an extension
of f' then FF' is an extension of ff’, and (in the notation of 6.3)

(FF'Y u=(FF')y,, =u'(FFy*=u'F'*F*=F,, . F*=F W F*=F Fu,
hence (FF')” =F'F. Further, 1d extends id y y,, hence H(id)=Id=id. 1
6.8 Corollary. If Yc X cE,Y'cX'cFE areasin6.3,andf:(X',Y')>=(X,Y)

is a homotopy equivalence then f: H(X,Y)~H(X’, Y'); simply because
a functor takes equivalences into equivalences. 1

6.9 Definition (of the Connecting Homomorphism §). Let Yc X be a
locally compact pair in some ENR E (as above). Put HY=H(Y, ). We
want to define §: H1Y— H?+!(X, Y). If we assign to each pair W c V of
(open) neighborhoods of Y = X the homomorphism

¥ =%yt HIW > HI (W),
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we get a transformation of direct systems over A(X,Y). Clearly,
(V, W) (W, @) is a cofinal _map of A(X, Y) into A(Y, §), hence lim {5}, }
is a homomorphism §: H9Y— H+'(X, Y) such that 5uw_uvwovw,
called the connecting homomorphism. If f: (X', Y')—(X,Y) is a map,
then f&=8(f|Y") (cf. 5.12(a)), i.e, § is a natural transformation of
functors of pairs (X, Y). Further,

6.10 Proposition. For every pair (X,Y) as in 69 the Cech-cohomology
sequence

g gy S e, y) s et x ety
is exact.

Proof. Let A =A(X,Y) be the directed set of all pairs W = V of neigh-
borhoods of Y = X. The maps

AY, B —AX,Y)>AX, 0, (W,H(V, W) (V,9)
are cofinal, hence
im {H*W|(V, W)eA}=HX and lim{H*V|(V,W)edA}=HY,

by 5.17. Now,
> HIWV—HIW— H* YV, W) — H* V> HI L s .

is exact for every (V, W)eA(X,Y), hence the corresponding A-lim-
sequence is also exact, by 5.21. 1

We now compare Cech-cohomology H(X, Y) with ordinary cohomology
H*(X,Y).

6.11 Definition. Let Y = X be a locally compact pair in some ENR E.
For every pair WcV of neighborhoods of Y<=X the inclusion
(X, Y)> (¥, W) induces a homomorphism py,: H*(V, W)— H*(X, Y).
The family {p,,} is a transformation of the direct system {H*(V, W)},
hence defines a homomorphism p: H(X, Y)——hm {H*(V, W)} > H*(X,Y)
such that p uy = py .y, where uy,,: H*(V, W)—H(X, Y) is the universal
transformation.

If (X', Y)—(X,Y)isamapand F: U — E an extension as in 6.3 then

S*puyy=1* pVW=pF"V.F"WF*zpulF“V,F"WF*=pFVW:pFuVW
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(notation of 6.4), hence f* p=p F=pf, i.c, p commutes with maps f, or
more precisely: p is a natural transformation of functors (of pairs (X, Y)).
Moreover, p commutes with the connecting homomorphism, pd=05*p.
Indeed, pduy =puyy 6w =pPyw Okw=0%y Pw=0% puy, for every pair
W<V of neighborhoods of Y < X.

In general, p: H(X, Y)— H*(X,Y) is neither surjective nor injective
(cf. Exerc. 3), however,

6.12 Proposition, If Y = X is a pair of ENR’s then p: H(X,Y)=H*(X,Y),
i.e., for ENR’s Cech-cohomology coincides with ordinary cohomology.

Proof. Since X is an ENR the Cech-cohomology HX is the direct limit
of {H*V}, where Vranges over all neighborhoods of X in E= X; there is
only one such V, namely V=X, hence p: HX=~H*X. Similarly,
p: HY=H*Y. Moreover, because p is natural and commutes with con-
necting homomorphisms, it maps the Cech-cohomology sequence 6.10
into the ordinary cohomology sequence. It is isomorphic on the absolute
groups, hence also on the relative groups, by the five lemma. |

6.13 Mayer-Vietoris Sequence. Let X,, X, = X be topological spaces. We
say X,;n X, separates X,, X, provided X, — X, and X,— X, are both
open (or both closed) in X; U X, — X, N X,; in other words, if X;u X, —
X,n X, decomposes as a topological sum (X, —X;)e (X,—X,). Still
another way of putting this condition is, X,—X,n(X,—X,)=0@=
(X,—X,)nX,—X,.—For instance, if X,, X, are both open or both
closed in X, U X, then X, X, separates. If X, is a closed hemisphere of
$" and X, the complementary open hemisphere then X, n X, =§ does
not separate X, X,.

We shall establish a Mayer-Vietoris sequence in Cech-cohomology for
triads (E; X;, X,) such that E is an ENR and X,, X, are Jocally compact
subspaces which are separated by X, X,. Note first that X, n X, and
X, U X, are also locally compact (4,, A, compact=A4,nA,, A;UA,
compact). Let AX denote the directed system of all open neighborhoods
of X in E. Consider the maps

AX; xAX, 5> AX [, AX,, A(X;uX,), A(X,nX,)
(N, V)=,V o, o .

All of them are cofinal and even surjective. For the first three this follows
from (V;, E)—V,, (E,V,)—>V,, (V,V)—V for VeA(X,uX,). For the
last, (V;, V,))» V,nV,, we choose open sets O;, 0, of E such that
(X,-X;)<=0,, (X,—X,)c0,, and O, 0,=0; this is possible because
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X,n X, separates X,, X,; for instance, one can take for O, resp. O, the
set of all points whose distance (in some metric) from X, — X, is smaller
resp. larger than the distance from X, — X,. Then forevery We A (X, N X,)
we have (WL O, WU 0,)1» (WU O)n(Wu0,)=W.

For every pair (V, V,)e AX, x AX, of open neighborhoods we have the
exact M — V sequence (cf. 111, 8, resp. VI, 7.6)

S HAWY, 0 V) L Hay e ey, P, Hay A )
d* HQ+1(I/1UV2)4>""

If V, < V,, V, = V, then the M — V sequence of (V,, V,) maps into the M — V
sequence of (V,, V,), and we get a direct system of sequences, indexed by
AX, xAX,. We can pass to the direct limit, and by cofinality (5.17) get
the sequence

L HUX, U X)) e e Hex, 9T, HaX A X)
(6.14) 3
LAY, U X))

This is the absolute M — V sequence in Cech-cohomology; by 5.21 it is exact.

It holds whenever X, n X, separates X,, X, (and X,, X, are locally com-
pact subspaces of some ENR). 1

6.15 Excision. With the same assumptions and notations as in 6.13 we
have H*(V,u V,, V)= H*(V,, V,nV,) for every pair of open neighbor-
hoods of X, X,. Passing to direct limits this becomes

(6.16) HX,uX,, X)=H(X,, X,nX,);

in other words, triads (E; X,, X ,) as in 6.13 are Cech-excisive.

In order to compare this with the familiar excision theorem IIL, 7.4, let
Bc Ac X be subspaces of some ENR, and put X, =4, X, =X — B; then
X, vX,=X,X,nX,=A—B, and 6.16 becomes

6.17 Proposition. If Bc A< X are subspaces of some ENR E, if Bc A,
Bc A (interior and closure with respect to X, not E), and A, X —B are
locally compact, then X, A— B are also locally compact and i: H(X, A)=
H(X — B, A— B), where i = inclusion.

Indeed, the conditions Bc A, B A just mean that X,nX,=A—B
separates X,, X,. 1

6.18 Continuity. One might think of constructing some kind of “super-
Cech groups” by iterating the limit process 6.1. However, this leads to
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Cech groups again, as we shall see now. Let F be a locally compact sub-
space of an ENR E, and Y c X locally compact subspaces of F. Suppose
A is a set of locally compact pairs in F such that

(1) A is directed under inverse inclusion,
(i) (M, N)ed=XcM and Yc N,

(1) if (V, W) is a pair of open neighborhoods of (X, Y) then there is an
(M,N)edwith McV,NcW.

Then {H (M, N)} . ne together with the inclusion homomorphisms is a
direct system (over A),and we can form ll_n} {H (M, N)}. Furthermore, the
inclusions (ii) induce homomorphisms o,,y: H(M, N)— H(X, Y) which
in the limit give o: lim {H (M, N)} > H(X, Y). We claim

(6.19) o: lim {H(M,N)}}=H(X,Y).

This is an important special case of what is called continuity of Cech-
cohomology. As an example for A one can take any cofinal system of
pairs of locally compact neighborhoods of (X, Y). If A is a directed system
of compact pairs then one can show (exercise!) that (ii) and (iii) are
equivalent to (),(M, N)=(X, Y).

Proof of 6.19. We show that {5,,,} satisfies 5.18 (i), (ii). Let yeH(X,Y).
There are open neighborhoods WV of YcX in E and xe H*(V, W)
such that uX¥ (x)=y, where uf},: H*(V, W)— H(X, Y) is the universal
transformation. Choose (M, N)c(V, W). Then uM}(x)eH (M, N), and
oy n [ (x)] = uly, (x)=y, hence o satisfies 5.18 (i).

Assume now xe H(M, N) is such that 0 ,,n(x)=0. Choose open neigh-
borhoods (¥, W) of (M, N) in E and ve H*(V, W) such that x=uM} (v).
Then u}) (v)=0,nul) (v)=0, hence there are smaller neighborhoods
(V', W) of (X, Y) such that j*(v)=0, where j: (V', W')<(V, W). By (i)
and (i) we can find (M’, N)eA such that (M, N)c(V’, W) and
(M, Ny (M, N). The second of these inclusions, k, takes x into k(x)=
kuMN(v)=uM N j*(v)=0, hence o satisfies 5.18(ii).

As an application of 6.19 we prove

6.20 Proposition. If' Y = X are locally compact subsets of some ENR E,
and Y is compact then the space XY (which is obtained from X by identi-
fying Y to a single point {Y}) is also locally compact in some ENR, and
the projection map n: (X, Y)— (X/Y,{Y}) induces isomorphisms

rd
S

% HX/)Y,{Y})=HX,Y).
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Proof. We first show that X/Y lies in some R¥. By IV, 8.2 there is a homeo-
morphism ¢ of X — Y onto a closed subset of some R". Then @: X »8§"=
R"U {0}, P|X —Y=¢, ®(Y)=c0, is continuous, and if X is compact,
it is an identification map, hence X/Y~im(®)cS"<R"+'. If X is not
compact we choose an open neighborhood O of Y in X such that O is
compact (closure in X), hence 0/Y =R as above; in particular, 0/Y c R’
Since X/Y—{Y}x~X —7Y is also contained in some IR", we know by
IV, 8.8 that X/Y=(X/Y—{Y})U(O/Y) lies in some IR

Consider now the directed set A of all compact neighborhoods N of Y
in X. It is cofinal in the set of all neighborhoods hence H(X,Y)=
hm{H (X, N)}yea by 6.19. Similarly, H(X/Y{Y})a-hm{H(X/Y N),
where N ranges over the set A of all compact nelghborhoods of {Y}
in X/Y. But N> n(N), N —n~!(N) are reciprocal bijections between A
and A, and

H(X,N)~H(X - Y,N— Y) H(X/Y—{Y},N—{Y})~H(X/Y,N),
where N=nN (the outside isomorphisms by excision 6.17), hence

lim {H(X, N)} =lim {H(X/Y, N)}. B

6.21 — Products can be introduced in Cech-cohomology simply by passing to limits with
—-products in ordinary cohomology. Assume, for instance, Y, Y'< X are locally compact
subspaces of some ENR E. If W, W' <V are corresponding open neighborhoods in E then

H*(V, W)x H*(V, W) = H*(V, WO W') > H(X, YU Y')
is defined (for suitable coefficients) and passes to the limit as
AX,Y)xH(X,Y)—= H(X,YUY).

We leave all details to the reader, but point out that here, in contrast to V11, 8, no excisiveness-
conditions have to be imposed on (X; Y, Y').

~-products can be defined between Cech-cohomology classes x and either singular
homology classes { or Cech-homology classes {' (which we did not discuss). The result
x~{ respectively x~{' is a singular resp. Cech-homology class, For details see 7.1, and
also Exerc. 5.

6.22 Cech-Cohomology with Bounded (Compact) Supports. A subset B of
a topological space E is called bounded (in E) if its closure B is compact.
If Y =X are locally compact (or locally closed; cf. IV, 8.3) subspaces of
an ENR E we consider the set Q=0Q(X, Y) of all locally compact w such
that Y cw =X, and X —w is bounded. Then Q is directed under reversed
inclusion (w<® < w>®). For every we® we have a graded group
H(X, w), and for every relation w <@ in Q we have H(X, w)— H(X, ®).
This constitutes a direct system whose direct limit is called the Cech-
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cohomology of (X,Y) with bounded supports, in symbols H,(X,Y)=
11m {H(X, w)|weQ}. For instance, if X —Y is 1tself bounded, i.e. if
YeQ then {Y} is cofinal in ©, hence H,(X, Y)=H (X, Y) in this case.

If X is closed in E then Bc X for every Bc X, hence Q consists of all
locally compact subspaces w of X such that Ycw, and X —w is bounded
in X. Thus ﬁb(X ,Y), in this case, is independent of the embedding
X cE; it is called the Cech-cohomology of (X, Y) with compact supports,
and is denoted by A, (X, Y). As usual, we write H,(X, %)= H, X, A (X, )=
HX.

If we consider sets weQ only which are open in X we obtain a directed
subset Q,=0,(X, Y)={weQ(X, Y)|w openin X}. It need not be cofinal
in Q, but still

(6.23) H,(X, V)=lim {A(X, 0)l0eQ,}.

Proof. We show that the transformation {H(X,w,)— H,(X, Y M woc2o
satisfies the criterion 5.18. If yeH (X,Y) then y comes from some
xeH(X,w) with we®; and x, by 6.19, comes from some x,eH (X, w,)
with w,eQ,, w, > w. Hence y comes from x,, and we have verified 5.18(i).
Suppose now x,e H (X, w,), Wy €Q,, has zero-image in fI,, (X, Y); then it
has zero-image in H (X, w) for some weQ with w,>w. By 6.19 again, it
has zero-image in H(X,w}) for some w,eQ, with w,>w)>w; this
checks 5.18(ii). § (Note: The reader may analyse this proof and extract a
general result about double limits.)

As a consequence of 6.23 we obtain
(6.24) H(X,Y)=H(X—Y), if YisclosedinX.

Indeed, H.(X, Y) is the direct limit of {H (X, w,)}, where @, is an open
neighborhood of Y with compact complement X —w,, and H(X, w,)=
H(X —Y,w,—Y) by excision 6.17. But lim {(HX-Y, w,—Y)}=
H(X-Y,0),by 623 1

6.25 Example. If Y is closed in X, and X —Y is a connected n-manifold
then H'(X,Y; Z)=Z if X —Y is orientable, and H"(X, Y, Z)=Z, other-
wise. In both cases, H.(X,Y;Z,)=1Z,.

Proof. By 6.24 we can assume Y =§. Every compact set of X is contained
in a connected compact set K (join by arcs), and if X is not-orientable we
can even assume that it is not orientable along K (add orientation-
reversing arcs). I.e.,, the family {K} of these K is cofinal in the system of
all compact sets, hence {X —K} is cofinal in Q,(X,¥), hence H X =
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lim {H (X, X — K)}. Now
H'(X,X —K,Z)~H"(X,X —K,Z)
~Hom(H,(X, X —K;Z),Z)eExt(H, ,(X,X—K;Z),Z).

If X is orientable then the 2nd term on the right is zero by 3.5, and the
Ist term is Z by 3.4, hence H"(X, X —~K; Z)~Z; this isomorphism is
compatible with inclusions, hence I-VI;'lei_n} {A"(X, X —K)}=Z. If X
is not orientable, hence not orientable along K, then the first term is
zero, by 3.4, and the second term is Z,, by 3.5, hence HN X, X —K; Z)~Z,,
hence H? X =lim {H"(X, X — K)}=Z, . Similarly for H"(X, Y, Z,). 1

6.26 Induced Homomorphisms f,: H,(X, Y)— H,(X’, Y') can be defined
for continuous maps f: (X', Y')— (X, Y) as in 6.3 provided weQ,(X, Y)
implies (f ~'w)eQ, (X', Y'). Indeed,

{fc(u: FI(X5 w)ﬁﬁ(Xl’ f_lw)}weQO(X, Y)

is then a family of maps which passes to the limit (5.9), and gives
(6.27) S=lm{f,}: Hy(X, Y)—> Hy(X', Y.

This makes H, a cofunctor on maps f as above.

The condition weQ,(X, Y)=(f"'w)eQ,(X’, Y’) means that subsets of
X —Y which are closed in X and bounded in E have counterimages
/!B which are bounded in E’. It is always fulfilled, if the composite
X LXSEis proper over E—Y (counterimages of compact subsets
of £E—Y are compact). In particular, it is fulfilled if X is closed in E and
[ X' — X is proper over X —Y.

6.28 Exercises. I. The definition of the functor H(X, Y) and most of its
properties do not really require Y to be locally compact (just X). Verify
this assertion.

2. If Zc Y <X are locally compact subspaces of an ENR, establish an
exact sequence

> HYX, Z2) > HI(Y, Z)—> HU(X, Y) > B4 (X, Z) >

in analogy to 6.10 and III, 3.4,

3. (a) Let X, <IR? be the circle with radius 1/n and center (0, 1/n) and let
X=X, Show that p: H'(X; Z,) — H'(X; Z,) is not surjective (hint:
if xeim(p) then x|X,=0 for almost all n).
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(b) Let I'={(x, y)eR?|y=sin(1/x), x+0}=graph of sin(l/x), and let
X =T its closure in $2=R?uU {co}. Show that H' X =0 but H' X +0
(hint: X has a cofinal sequence of neighborhoods each of which is
homeomorphic with an annulus, hence H' (X ; Z)=Z).

4. Prove. If (X;X,,X,) is a triad such that X, X,,X,nX,, X, uX,
are ENR’s and X, n X, separates X;, X, (cf 6.13) then the triad is
excisive (I11, 8.1). Hint: 6.16 and 6.12 show that

H*(X,UX,, X)=H*(X,, X,nX,)
with arbitrary coefficients. This implies
H(X,, X,nX,)xH(X,v X,, X))

by VI, 6.22, Exerc. 5 (see also VI, 7.22, Exerc. 5).

5% Let (X; X,,X,) be a triad such that X, X, are locally compact in
some ENR E, and X, —X,n(X,—X,)=0. If W<V are open neigh-
borhoods of X, =X in E, then X;=(X,uX,)nWand X, =(X,v X,)—
X,—X,areopenin X,uX, and X,uX,=X UX,. We get

H*(V, W)x H(X, X,U X,) > H*(X, X)) x H(X, X UX})

—H(X, X)) - H(X, X,),
and in the limit,

H(X, X,)x H(X, X,uX,) > H(X,X;) > H(X, X,).

Carry out the details.

6. If Y < X are locally compact subsets of an orientable manifold show
that I; (X, Y), as defined in 3.3, is isomorphic with HY(X, Y).

7*. Establish a natural exact sequence
> HUX, Y)> HiX 5> HIY S HIPY(X, Y) >,

for (X, Y)asin 6.22.

7. Poincaré-Lefschetz Duality

If M" is a manifold, and L = K are compact subsets of M we define (7.4)
a natural bilinear pairing

(7.1) ~: H(K,L)x H (M,M —K)—>H, _(M—L,M—K),
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simply by passing to limits with ordinary ~-products; more generally,
L =K need only be closed in M provided K has a neighborhood in M
which is an ENR. As coefficients we use an arbitrary (commutative)
ring R with unit for H(M, M — K), and an arbitrary R-module G for
H(K,L), HM —L, M —K). If M is oriented along K, and K is compact
we denote by oxe H,(M, M — K) the fundamental class (with coefficients
in R), i.e., the element which under J: H,(M,M —K,R)=TI(K; R) cor-
responds to the orientation (in the notation of 4.1 this is ox®1). We also
use the notation ok for non-oriented manifolds if the coefficient ring R
has characteristic two (i.e., if 1=—1 in R); as before, ox corresponds
to the canonical section P—1 of M® R=M xR.

If we fix the second variable of the pairing 7.1 at o=o0x we get a homo-
morphism ~o: H(K,L)—> H(M — L, M — K), and our main result asserts

7.2 Proposition (Duality theorem). If L< K are compact subsets of an
n-manifold M then

~o0: H(K,Ly~H, ;,(M—L,M—K).

The coefficients are arbitrary if M is oriented along K otherwise, they are
assumed to be of characteristic two. (N.B. H(K,L)=H*(K, L) if K, L are
neighborhood retracts; cf. 6.12). The elements

xeH(K,L) and ¢é=x—~oeH, (M—L M—K)
are called (Poincaré) dual to each other.

This theorem has many interesting consequences and applications; some
of them will be treated in § 8. Also, several generalizations exist; some
of them are indicated in 7.12, 7.16.

We now construct the —~-product 7.1. Recall that L= K are closed
subsets of M, contained in some open ENR Ec M. Consider the set
A=A(K, L) of all pairs W< V of open neighborhoods of Lc K. Then 4
is directed by reversed inclusion, and A'={(V, W)e A|V cE} is cofinal
in A. The latter implies

lim {H*(V, W)} 4=lim {H*(V, W)} , =H(K, L).
For (e H(M, M —K), consider the composite map
Syw: H¥(V,W)>H*(V=L,W—L)— H(V—L, V—K)

(73) ex:
~H(M—-L,M—K)
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where
H(M, M —K)— H(M,(M —K)u W)= H(V — L,(V— K) U(W—L)).

As (V, W) ranges over A the maps ¢y, with fixed &, constitute a trans-
formation of the direct system {H*(V, W)}, e into HM —L, M — K),
hence a limit homomorphism

(714 ~& HKL->HM—-LM-K), (~&oupy=Ep,

where uyy: H*(V, W)— H(K,L) is the universal transformation. The
image of xeH(K,L) under ~& is denoted by x—~&, and is called the
(Cech) cap-product of x and & 1f xe H (K, L) and &€ H, (M, M — K) then
(x~&eH, _;(M—L,M—-K).

One has (x+x)~¢=x~E+x'~¢ by construction, and x~({+¢)=
x~E+x~E&because (& + &)y =Eyw + Eyw;ie., the Cech cap-product ~is
bilinear.

If i: (K,L)c(K, L) is an inclusion of closed pairs as above, then the
diagram

H*(V—L,W—L) -2 HV—L,V—K)~H(M L, M —K)

/
H*( V, W) i* il i},

(15 ™ ] . A : _
H*(V=L,W-L)—w;7 HV-LV-K)=HM—-LM—-K)

(I’ =inclusion) is commutative, the middle square by naturality VII, 12.6
of ~products. The top row of 7.5 is &, =(—~¢&)ouyy, the bottom row
(I yw =~y O)ollyw=(~1 {)ozou,,w, the latter by definition of
i: H(K L)——»H(K L) It follows that i, (~&) upp =(—~1 &)iuyy, hence
i (~E=(~1, 5)1 by universality of u, or

(1.6) i (x~E=(x)~(i, &), for éecH(M,M—K), xeH(K, L)
(naturality of ~ with respect to inclusions i).

Proposition 7.2 asserts that ~¢ is isomorphic if &=o0=fundamental
class along K. We establish the absolute case L= first; its proof, just
as with 3.3, is based on a MV-principle, namely

7.7 Lemma. If K, K, =M are compact sets, and if 7.2 holds for (K, @),
(K3, 9), (K; nK,,9) then also for (K; U K,,®).
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Proof. Let V], V, be open neighborhoods of K,, K, and consider the
diagram

H*Vie H*V, H*(V, " V) —F— H*(V, U 13)

J("OKI )@("‘OKZ) J’\OKanz JAoKl UK

H(M,M — K)o HM,M —K,)—> HM,M — K, nK,) - HM,M — K, UK,)
(1.8)

H*Vie H*V, — > H*V,AV,)

J("”K,)®(""K2) JN’K,AKZ
—> HM,M —K,)e HM,M —K,) — HM,M — K;nK,).

The rows are partial MV-sequences and therefore exact. The 1st, 3rd,
and 4th square are commutative by naturality, V1], 12.6, of ~-products
(note that HM,M — K, nK,))~H(V;, ,— K, nKy))XH(V,nV,, VNV, —
K,NK,)). The second square is commutative by VII, 12.20 (one can
assume M =V, uV,,and oneapplies VII, 1220 with X ,=V,, Y, =M - K,
E=og, k,; the 2nd square of 7.8 is then just the outer part of the diagram
VII, 12.21).

The set of all couples (V}, V) is directed (by inverse inclusion), and the
maps (¥}, Vo) W, V,, Vi Vs, ViUV, of this set into A(K, §), A(K,, ),
AK,;nK,,8), A(K,UK,, @) are cofinal. If we pass to the limit over
{(V;, V3)} then (by 5.17) the terms in the first row of 7.8 become Cech-
groups, and the whole diagram becomes

HK,o HK, H(K,nK,)—%— HK,UuK,)
lww@wm rmnxz {on.uxz
HM,M —-K,)e HM,M — K,)— HM,M —K,nK,)— HM,M - K, UK,)

(7.9)

HK,eHK, —— > H(K,nK},)
l(wm)@(wh) j"”Klr\Kz
— HM M —K))e HM,M —K,)— HM,M —K,nK,).
The rows are still exact, by 5.21, (in fact, the first row is just 6.14), and the

outer vertical arrows are isomorphic by assumption. Therefore the middle
ar.ow —~og, x, 1s also isomorphic, by the five lemma. |
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Proof of 7.2. We proceed in several steps, in analogy with 1V, 64 and
VIIIL, 3.3.

Case 1. K=@, or K=P=a point.
If K= then all groups are zero. If K =P then —~op takes the generator

1,e H*K=H°K into the generator ope H,(M, M — P) by VII, 12.9, and
all other groups are zero.

Case 2. M=IR", K= []=a cube, L=0.
Let Pe[d Then C~P, R"—[O~R"—P, hence HK>~H*K=~H*P,

H(R", R*"— O0)=H(R", R"—P), and the result follows from Case 1
(using naturality 7.6 of ~).

Case 3. M=IR", K =union of finitely many (say r) cubes of a lattice
(V,3.4), L=4¢.

If r=1 then Case 2 applies. If r>1 then K is of the form K=K, UK,,
where K, K,, K; n K, a ¢ unions of less than r cubes. We can apply an
inductive hypothesis to Ky, K,, K; n K, and get theresult for K=K, UK,
by the M V-principle 7.7.

Case4. M=R", K arbitrary compact, L=§.

Let {V} be the directed set of all compact neighborhoods of K which
are finite unions of cubes of a lattice. This set is cofinal in the set of all
neighborhoods of K, hence HK = lim {HV}, by 6.19. Also H(R", R"— K)
=lim {H(R",R"—V)} because R" K= Uy (R"=¥); cf. 2nd example
522 By Case 3 we have ~o,: HV—2> H(R" R"—V), for every V;
since ~is natural we can pass to the limit and get ~ox: HK = H(R" R"—K).

Case 5. M arbitrary, K arbitrary compact, L =0.

K is contained in a union of finitely many (say r) coordinate neighbor-
hoods ~R" If r=1 then Case4 applies because H(M,M —K)=
H(R" R"—K). If r>1 then K is of the form K=K, uK,, where K, K,
are compact sets which are covered by less than r coordinate neighbor-
hoods. We can therefore apply an inductive hypothesis to K, K,,
K, K,, and get the result for K=K, u K, by the M V-principle 7.7.

Cuse 6. The general case.

Consider the diagram

HK— HL 8 H(K,L) —— HK —HL

o | | o |

H(M,M —K)— HM,M — L)% H(M — L,M — K)— H(MM,M — K)—> H(M,M — L)
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whose rows are the usual exact sequences (6.10 resp. 111, 3.4). The Ist,
3rd and 4th square are commutative by naturality 7.6 of ~-products.
The 2nd square commutes because it is the direct limit of corresponding
squares for open neighborhoods W<V of LK, and each of these
commutes by VII, 12.22 (one can assume V' =M, and one applies VII, 12.22
with X=V, W=M—-L, V'=M—K, £=o0k). The outer vertical arrows
are isomorphic (by Case 5) hence also the middle arrow (by the five
lemma).

By a simple excision argument we can generalize 7.2 to closed subsets
L< K of M" provided K — L is compact. Indeed, if C is any compact set
such that K — L= C< M then

- ~ ~OKAC
(1.10) HKK,L)xHKNC LNC) ¥ HM-LNC,M-KnC)
' ~HM—L,M—K),

the outside isomorphism by excision, the middle one by 7.2. (This seems
to require that K lies in some ENR; however, if that is not the case we
just define H(K, L) by the first isomorphism 7.10.) We still denote the
composite map 7.10 by ~o(although there is no oxe H(M, M — K) if K
is not compact). Then, as before, ~o is natural with respect to inclusions
i: (K, L)—=-(K, L) of pairs as above, i.e.,

(7.11) i\ (x~0)=(ix)~o,
for xeA(K,L), and i': (M—L M—K)—<>M—-L,M—-K).

7.12 If K is any closed set in M" let Q denote the set of all closed subsets
A of K such that K — A is compact. Then {K — A} ,_g is a cofinal system
of bounded subsets of K, i.e., 2 is a cofinal subsystem of Q(K, 9 in the
notation of 6.22, hence lim {H(K A)AeQ)=H,K=Cech cohomology
of K with compact supports Also, lim{H(M —A, M —K) N AeQ} =
H(M, M ~K) by 522, because { J,(M— "A)=M. If M is oriented along
K then ~o: H(K, A)~ H(M — A, M — K) by 7.10, hence in the limit

(7.13) ~o0: H.K=H(M, M —K).

In terms of representatives this isomorphism can be described as follows:
Given xeﬁc K: it comes from some x'e H(K, A) where A is closed in K
and K — A compact; the class x’ in turn comes from some ye H*(V, W),
where W <V are suitable open neighborhoods of AcK in M. Then

(x—~0)=(y—~ox_w)eH(V,V—-K)~xH(M, M —K),
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where og _peH(V,(V—K)uU W) is the fundamental class along K —W.
Slightly more general than 7.13, and more symmetrical, we have

7.14 Proposition. If L = K = X are topological spaces such that L is closed
in K, K—Lisclosed in X — L, and X — L is an n-manifold which is oriented
along K —L then

HiK, L)~H(K-L)~H,_ (X—L X—K),
the first isomorphism by 6.24, the second by 7.13 (with M=X—L). 1

As an application, let V"7 be a closed submanifold of M", let Lc K be
closed subsets of V, and assume both M and V are oriented along K—L.
(Take coefficients mod 2 in the non-oriented case). Applying 7.14 first
in V then in M gives

(715 H{(V-L,V-K)=H!""-?(K,L)~H,,,(M—L,M—K).

The composite isomorphism is known as the Thom isomorphism (in
homology). An important special case is K=V, L=§; then H,Vx
H;, (M, M —V). The reader can find more about the Thom isomorphism
in§11.

7.16 Exercises. I. The isomorphism H(K, L)y~H(M —L, M —K) of 7.10
does not really require K, L to be closed and K — L compact. Show that
it holds if only L is closed in K, and K n K — L is compact (for H(K,L)to
make sense, K — L should be locally compact in some ENR). Also it
suffices that M is oriented along K — L.

2. If K is locally compact in some manifold M”" (but not necessarily
closed) and M is oriented along K then H!K=~H, ,(M—K,M-K),
where K=K —K. Hint: write K=AnNO, where 4 is closed and O is
open in M. Then

A K~H(KUM-0),M—-0)=H,_0,0-K)=H,_(M—K,M-K).

3* If X is an ENR in some manifold M" then one can find an open neigh-
borhood U of X in M and a map p: (M, U)— (M, X) such that p|X =
inclusion, and the composition (M, X) —— (M, U) —2-(M, X) is homo-
topic to the identity map (use the technique of IV, 8.6, 8.7, and VIII, 6.2).
Assume M — X is locally compact and bounded (i.e. M — X compact),
M oriented, and consider the composition

R: H(M—-X)— H(M - U)=H(M, U)—2> H(M, X).
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I expect R to be isomorphic but I did not work out a complete proof (it
seems to be rather delicate, probably along the lines of case 3 in the proof
of 3.3). If M —X is not bounded a similar result should be proved for
cohomology with bounded supports H,(M — X); moreover, the result
should extend to pairs (Y, X) of ENR’s in M.

8. Examples, Applications

8.1 Poincaré Duality. If M" is a compact manifold we can apply 7.2 with
K=M, L=0. Then HM = H* M because M is the only neighborhood of
K in M, and oe H, M, hence

(8.2) ~o: H(M;G)=H,_,(M; G);

the coefficients G are arbitrary if M is oriented, otherwise of characteristic
two.

This special case of 7.2 is often referred to as Poincaré duality. By the
universal coefficient theorem VI, 7.10, cohomology can be expressed in
terms of homology; then 8.2 becomes

H,_;(M; G)~Homg(H;(M; R), G)® Extg(II,_,(M; R), G),

where R is a hereditary ring and G an R-module. For instance, if R is a
field then we obtain

(8.3) H,_;(M; Ry~Homg(H,(M; R), R)=H,(M; R)*=dual of H(M; R);

this holds if either M is orientable or the coefficient field R has charac-
teristic two.

8.4 Euler Characteristic of Manifolds. Let M" be an arbitrary n-manifold
again (not necessarily compact or oriented), and let KM be a compact
ENR. Then the mod 2(co)-homology of K is finite (cf. V,4.11), and
H"'K~H""'K~H;(M, M —K); in particular

8.5) dim H, _;(K;Z,)=dim H;(M,M —K, Z,).
This will imply

8.6 Proposition. If K< M" is a compact ENR then H(M; Z,) is finite if
and only if H(M —K; Z,) is finite, and in that case

XM=, (M—-K)+(—1)"y, K,

where y, is the Z,-characteristic (V1, 7.19).
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Recall (VI,7.21) that on spaces with finitely generated homology y,
agrees with the Euler characteristic . In particular (cf. V,4.11), y, K=y K.

Proof. The first assertion is clear from the mod 2 homology sequence
of (M, M -K) and 8.5. The second follows from y, M =y,(M —K)+
X2 (M, M — K)—cf. VI, 7.20—because

X2 (M,M—K)=Y (1) dim H;(M,M -K;Z,)

=(=1 (=" dimH,_(K; Z))=(~1)"x, K. 1

8.7. Corollary. If M is a compact manifold of odd dimension then x M =0.
If KcM is a compact ENR then y K= y(M—K).
Indeed, apply 8.6 with K =M first, then with general K, and note that
¥, =y here (V1,7.21). 1
8.8 Corollary. If L"*" is a compact &-manifold then y(OL)=(1+(—1)") x L.
In particular, x(0L) is always even.
For instance, no even-dimensional projective space B, can be the

boundary of a compact J-manifold (because y P, is odd).

Proof. Attach a collar to L (cf. 1.11) and get a manifold M"+'=
LU(6L x[0,1)). Then L is a compact deformation retract of M, and
M—L=0Lx(0,1)~0L, hence

xL=yM=y(M-L)+(=1)""' yL=yx(@L)~(-1)"xL. 1

8.9 Poincaré Duality in Cohomelogy. Dually to 7.1 one can define a
bilinear pairing

(8.10) —: H(K,LYx H/(M —~L,M - K)—>H*/(M,M —K)

by passing to limits with ordinary —-products (assumptions as in 7.1).
Indeed, fix ye H(M —L, M —K) and consider, for every pair W<V of
neighborhoods of L =K, the composition

Yyw: H*(V,W)> H*(V—L,W—L)==> H*(V— L,(W—L)u(V—K))
~ H*(M, WU (M — K))— H*(M, M — K).

As (V, W) varies, this is a transformation of the direct system {H*(V, W)}
into H*(M, M — K), hence a limit homomorphism

(8.11) ~y: H(K,L)HH-*(M,M—K).



300 VIII. Manifolds

As in § 7 we denote by x—ye H'*/(M, M — K) the image of xe (K, L)
under —y. The reader can easily prove (we shall not use it) that — is
bilinear and is natural with respect to inclusions (K, L)< (K, L). Further,

(8.12) ey, O ==y, x~&)

for xe H(K, L), ye H¥(M —L,M —K), ée H(M,M —K), { —, — > =scalar
product.

Proof. There are neighborhoods WcV of Le K, and we H*(V, W) such
that x=uw where u: H*(V, W)— H(K, L) is the universal map (cf. 5.18(i)).
Then x—y=yyp(w)=w—y, the last term omitting some inclusion
maps. Similarly, x~&=w~¢, hence

ey, =Wy, ==y w~ == Py, x~E>. 1

8.13 Proposition. [f M is an n-manifold, L c K are compact ENR’s in M,
and homology is taken with coefficients in a field R then the composition

Hi(K, L) x H"~(M — L, M — K)—= H"(M, M — K) <=2, R

is a dual pairing provided M is oriented along K, or R is of characteristic
two; the second arrow is the scalar product with og (n.b. H(K,L)=
H'(K,L) because K, L are ENR’s).

In particular, if M is compact, 8.13 applies with K=M, L=0; we get
a dual pairing —: H'M x H"~' M — H" M — R. This is, of course, just
another formulation of 8.2 (with field coefficients G=R); however,
because it involves cohomology only it is sometimes more convenient
to apply. As usual with dual pairings one has the notion of dual bases:
If B={b} is a base of H*(M — L, M — K) then the dual base B={b} of
H*(K, L) is defined by <(b—a, 0>=4,,, a,be B; and vice versa. Clearly,
B={+b}.

Proof of 8.13. Our pairing is as follows

(X, Y)><x—y, 0x> = £y, x~0k),

the latter by 8.12. But we know that the scalar product {—, —> is a
dual pairing (VII, 1.7), and x> x ~oy is isomorphic by 7.2. |

8.14 Corollary. If M is a compact orientable manifold of dimension
n=2mod 4 then the Euler characteristic yM is even.
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Proof. Consider the pairing H"? M x H"> M — @ with rational coef-
ficients, R=@Q. This is a non-degenerate skew-symmetric (n/2 is odd!)
bilinear form on the vector space H”? M. Such a form can only exist
if dim (H™? M) is even. But

AM=Y"_o(—1y dim H,M =Y"_o (1) dim H' M
= —dimH"> M +2Y,,..(~1)dim H' M,

the latter because dim(H'M)=dim(H"~'M). 1

8.15 Alexander Duality. If K is a compact subset of the sphere $”, and
PeK, QeS"—K then

S~ . a*
(8.16) H"~'(K,P)=H;(S"-ES"-K)=H, ,(S"-K,Q),

the latter because H(S"— R Q)=0. If K is a neighborhood retract this
becomes

(8.17) A {(K)zH, ,(S"-K),

where H, as usual, denotes reduced homology. Formulas 8.16, 8.17 are
known as Alexander-duality. They show, in particular, that H(S" — K)
depends only on K (in fact, on HK), and not on the way K is embedded
in $". For instance, if K is a compact connected (n—1)-manifold then
Z,=H""YK;Z,)~HyS"—K; Z,), hence $"—K has two components
(compare 3.6).

If X is a closed (proper) subset of R", then K=X U {c0} is compact in
$"=R"uU {0}, hence (reading 8.16 backwards)

(8.18) H,_,(R"—X)=H, (S"-K)=H""'(K,{c})=HI ' X,

the latter by 6.24. Again it follows that H(IR"— X) depends only on X
(in fact, on A, X), and not on the way X is embedded as a closed subset
of R". For instance, if X is a connected (n — 1)-manifold then H"~*(X; Z,)
=Z, by 6.25, hence Hy(R"—X; Z,)~Z,, hence R"— X has two com-
ponents. Now use integral coefficients and find Z=H,(R"—X; Z)=~
H"-' X, hence X is orientable by 6.25. i

8.19 Kiinneth Relations for Cech Cohomology. If X, X' are locally compact
subsets of ENR’s then we can find oriented manifolds M, M’ such that
X, X’ are closed subsets of M, M’; in fact, by IV, 8.2, we can find closed
embeddings of X, X’ in R" R". Then H X>~HM M -X), H X'~
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HM',M'—X'), and

H(X xX)~HMxM ,MxM —X x X')
=H[M,M-X)x(M',M'—X")].

To the last term we can apply the Kiinneth sequence VI, 12.12, and get
a split-exact sequence

0—(H, X)e(H X)——>H.(X x X') > (H. X)*(H. X")* 0.
With indices it reads

0— @ ir (HI X0 (A X)— HI(X x X)

(8.20) - .
@, pre1 (HI X)x(H X)) 0.

This is the exact Kiinneth sequence for Cech cohomology with compact
supports. It is natural (up to sign) with respect to proper maps, a proof of
naturality is indicated in Exercise 5. Just as the ordinary Kiinneth sequence,
V1,12.12, it splits (un-naturally). The coefficients G, G' for H. X, H. X’
can be arbitrary (modules over a hereditary ring) provided GG =0;
the coefficients for H.(X x X') are GoG'. In particular, H.(X x X')=
(H.X)®(H.X') if field coefficients are used throughout. |

One can also prove Kiinneth relations for relative groups H.(X,Y),
where X is as above and Y is closed in X. However, this reduces to the
absolute case because H.(X,Y)~H.(X —Y) by 6.24.

8.21 Exercises. I. Construct a compact connected orientable 4-manifold
with prescribed Euler-characteristic.

Hint: If M, N are 4-manifolds remove a small open ball in each and
paste the remaining J-manifolds along their boundaries; the result is
a 4-manifold M+ N with y(M+N)=yxM+yN—2. Now start with
BC, $'xS3, and form iterated sums.

Orientable manifolds of dimension 4k (respectively 4k +2), k>1, with
prescribed (even) characteristic can be constructed as multiple products
of 4-manifolds (with $2).

2. If M is a compact oriented n-manifold, d: M — M x M the diagonal
map then d_(o)e H,(M x M R) is called the diagonal class, and its dual
ue H'(M x M; R) the dual diagonal class, n~(ox0)=d,(0). Assume R
is a field, B={b} a base of H*(M; R), and {b} the dual base, defined by
(b—a,0y=6,,, a,beB. Show that u=2X, (—1)"'bxb. Hint: Put
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p=Y Aqup(@ x b) and compute the coefficients 4,,€ R from
{axb)—p,0x0y=<axb, u~(0xo0)p=<axb,d,o)
={d*(axb),0d={a~b,0>= +<{b—a,0>= +6,,.

3.If f: M— M’ is a map between compact oriented manifolds of dimen-
sions n, ', let y; (=class of the graph) denote the image of oe H, M under
HM % H(M x M)-L29, (M’ x M), and denote by y/e H" (M’ x M)
the dual class, y/~(0'x 0)=7; coefficients in a field R. Let B={b},
B'={b'} be bases of H* M, H* M’ and {b}, {b’} the dual bases. Show:
If f*(b')=Y,ep s b, Ay €R, then

7 =Y ben,pren(— 1P 25 (B x b).

Tn other words, the components of y/ with respect to the base {5’ x b}
agree (up to sign) with the matrix coefficients of /*; in particular, f* is
determined by /. Compare y/e(H* M')o (H* M) with ©~!(f*)e(H* M")
®(H* M) as defined in VII, 6.1 (where (H'M')*=H"~'M’ by 8.13).

4*. Construct a chain map ¥ (of degree n—1) which induces Alexander
duality 8.17, and show : §* K~S($"—K), K being a compact neigh-
borhood retract.

5. Naturality of the Kiinneth Sequence 8.20. Show first that 8.20 does not
depend on the ambient manifold M, M’; this reduces to considering
X M, <=M,. Next prove naturality for inclusions X —— Y. The general
proper map X — Y can be factored X —>$*x Y—"-Y, where i is a
proper inclusion, p=projection, and k is so large that p is isomorphic
in the dimensions which matter; then p=(j)~", where j: Y>$*x Y is an
inclusion.

9. Duality in 0-Manifolds

For simplicity we treat compact 0-manifolds L' only (a generalization
is indicated in Exerc. 3). We denote by M" the manifold which is obtained
from L by attaching a collar along L (cf. 1.11),i.e. M =L u,;(0L x [0, 1)).
We remark that (M, M —iL)~(L, dL), simply by shrinking each segment
{0,1) to 0. We also remark that M —iL is a neighborhood retract in M
(proof: OL is covered by finitely many coordinate neighborhoods U.
Therefore M —iL is covered by {U, x[0,1)}. Each of these being a
euclidean half-space, it follows from IV, 8.10 that M —iL is an ENR).

Let R be a ring (of characteristic 2 if L is not orientable), and pick an
orientation 33
Oel(iL;R)~ H,(M,M—iL;R)~H,(L,0L; R).
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Then 0,: H,(L,0L; R)—H,_,(0L;R) maps O into a fundamental
cycle 0=0,0 of OL (cf. 2.19).

9.1 Propesition. The following diagram is commutative, and all vertical
arrows are isomorphic.

o> HIEM L —— HMISYOL) S HTH(L,0L)— H'T'L —— H"TY(OL) > -+

l(_l)n_i_le ],\o l(_l)n—iAO J‘_l)n.‘,_\o l»\o

o Hyy(L,0L)—*— H,(0L) —H;L »H(L,0L)—H; (L) -

The rows are, of course, exact. All coefficients are taken in an arbitrary
R-module G.

Proof. The 1st, 2nd, and 4th square commute by dJ-compatibility
VII, 12.13-14, the 3rd square by naturality VII, 12.6 of —~-products.
The maps —~o are isomorphic by 8.2. It suffices therefore, by the five
lemma, to prove ~0: H* L= H(L,0L). This follows from the diagram

H* L= H*M ~H*L

H(L,0Ly~H(M,M —i L)~H(M, M —L).

The horizontal maps are induced by inclusions, all of them homotopy
equivalences. The class O'e H,(M,M —L) is, by definition, the image
of O under the lower right isomorphism. The corresponding section
J(O')eI'L takes the value 1 at every point of i L (it agrees with JO there),
and therefore, by continuity, takes the value 1 at every point of iL=L.
Therefore, JO' is an orientation along L, and O’ the fundamental class
along L, hence ~0O’ is isomorphic by 7.2. 1

9.2 As an application of 9.1 we prove Thom’s index theorem. We have
to recall first some elementary facts about real quadratic forms. If V is
an r-dimensional vector-space over R, and Q: V— R is a quadratic form
then there is a base in ¥ such that Q(x)=x{+x3+ - +x2—x2, —
X2, ,—-—x2, ., where {x} are the coordinates of x. The number
a(Q)=p—q is called the signature of Q; it does not depend on the choice
of the base. If a is the maximal dimension of a linear subspace on which Q

vanishes then

9.3) le(@=2r-2a—(p+q).
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(If p>q then one such subspace is given by the equations x;=x;, , for

I<i<q, x;=0 for g<i<p; it is not hard to see that it is of maximal
dimension.) In particular, if Q is non-degenerate; i.e. if p+qg=r, then

(9.4) lo(Q)|=r—2a.

9.5 Definition. Let M" be a compact oriented manifold, o€ H,(M; Z)
its fundamental class. If n=4k then the quadratic form

Qu: HM(M; R)—==22 H¥(M; R) =25 R, Qy(x)=(x—x,0),

is non-degenerate (8.13 with K =M, L= i=2k). Its signature is called
signature of M, in symbols 6 M =a(Q,,). If n£0 mod 4 then ¢ M=0, by
convention.

The signature is an important tool in the theory of manifolds. One of its
basic properties is the following.

9.6 Proposition. If [***! is a compact oriented d-manifold then ¢ (0L)=0.

Proof. Let A=im(i*: H*(L;R) > H*(0L; R)), and consider the following
portion of the diagram 9.1.

H*L —"—H*(@L)—*— H*(L,dL)

H(@L)—*— HL.
We have
X€EA <« 0*x=0<«i,(x—~0)=0
YT CHAL i (x~0)) = {0} (4, x~0) = {0}
VI, 12.8

< {A—x,0)={0},

i.e., with respect to the dual pairing (x, y)— {x—y, 0> the vector space
A is its own annihilator; in particular, dim A**~=dim H'—dim 4',
hence 2-dimA**=dimH?** The quadratic form Q(x)=<{x-—x,0}
vanishes on A2* hence |0 M|=|c Q| <dim H**~2.dim A% =0, the in-
equality by 9.4. I

Suppose, for instance, M** is a compact oriented manifold such that
r=dim H**(M; R) is odd (e.g. M =B, C, B, H). Then ¢ M is odd by 9.4,
hence M cannot be the boundary of any oriented J-manifold L**+3,
Of course, this follows more simply from 8.8 because yM is odd, but
we can refine the result here: If /- M denotes the I-fold topological
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sum MeMeo @M, each summand with the same orientation, then
a(l-M)=Il(c M) is also not zero (/>0), hence [-M does not bound
either. In general, o(M**® N**)=ocM +0o N, because H>**(Me® N)=
H**M e H** N is a direct sum decomposition which splits the quadratic
form, Quen=0u® Qn. If we reverse the orientation of M (notation:
—M) then Q_,,=—Qy, hence a(—M)=—ac(M). The formula
a(l- M)=1I(c M) makes sense then and is true for every integer /.

In cobordism theory (cf. Milnor 1962) one introduces an equivalence
relation (“cobordism™) between (compact oriented) n-manifolds by

M~N<Me(—N)~dL for some compact oriented L.

The set of equivalence classes is denoted by Q". Taking topological
sums turns €" into an abelian group, and 9.6 together with the preceding
remarks shows that ¢ defines a non-trivial homomorphism Q** —Z.

9.7 Proposition. If M, N are compact oriented manifolds, and M x N is
taken with the product orientation then (M x N)=(c M)(c N). (For a
generalization to fibered manifolds c¢f. Chern-Hirzebruch-Serre.)

Proof. Let m=dimM, n=dimN. If m+n$E0mod4 then ¢(M x N)=
0=(0 M) (o N). Assume then m+n=4p. We can decompose the quadratic
form Q=Q,, .~ according to

H2P(M x N)=(H™? M)e (H"* N)
@21 cm [(H M)@ (H?"~' N)o (H" " M)® (H" P+ N)],

where the first summand is zero if m or n is odd; coefficients are taken
in IR. The decomposition follows from VII, 8.18; products of factors
in different summands never contribute to the top dimension 4 p=m+n.
Therefore,

©8) o(M x N)=a(Q|H™"*M e H"* N)
’ +Y im0 (QI[H'MeH** ' No H" M e H"-2"+N7).

Fix i <m/2, choose bases A of H'M, B of H*?~"N, and let 4, B the dual
bases of H™ ‘M, H" 2P*!N. Consider then the base {a®b+a®b}u
{a®b—deb} of HM @ H*P~" Ne H™ "M @ H"~2P*! N, where ac 4, be B,
and {a}, {b} are the dual bases.

From VII, 8.16 it follows that the product of any two different base-
elements is zero, and (a®b+deb)? =2(ae®b)—(deb)= —(a®b—adeb)*.
Thus, the number of positive squares equals the number of negative
squares, hence o(Q|[H'M e H*?P~'No H" M ® H"~2P*IN])=0, hence
(M x N)y=c(Q|H"*M e H"?*N), by 9.8. If m or n is odd this is zero.
If m/2 (hence n/2) is odd then —-products in H™* M are skew-symmetric
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(VIL, 8.7), hence H™? M has a symplectic basis. In particular, H™* M
has a linear subspace 4 in which all —-products vanish and such that
2dimA=dim H™? M. 1t easily follows that Q|A®H"? N=0 and
2dim(Ae H"? N)=dim(H™*M&H"? N), hence o(Q|H™*MeH"2N)=0.
Thus we are left with the case m=4r, n=4s, and the familiar assertion
that the signature is multiplicative with respect to the tensor product
of quadratic forms. Its proof is simple: If A is a base for H2" M such
that Q,, has normal form (sum of positive minus sum of negative
squares), and B is an analogous base for H?* N then A x B={a®b},. 4 ycp
does the same for H?" M ® H?* N. But then

oM=Y, 4{a—a,0,),
aN=)45{b—b,on>,
oM xN)=a(Q|H* Me H*N)=), ,{a®b—a®b, 0y xoy)
=Y. p{la—a)e (b—b),0p x 0y

=Za'b<ava, oy {b~b,oyx)
=(O'M)(O'N)~ I

Proposition 9.7 shows, for instance, that every product
P2n1q: X Pan(]: X X PZm‘(]:

has signature o= 1. One can easily show that the product operation x
is compatible with cobordism and turns Q=@ ,Q; into a ring; then
9.7 asserts that g: Q—>Z is a ring homomorphism. If one considers
differentiable manifolds only then Thom showed that the products of
complex projective spaces as above generate a free abelian subgroup
of finite index in Q% where n=(n, +n,+---+n), and that QI ig
finite if i%£0 (4). The complete structure of Q%" is also known (cf.
Milnor 1962).

9.9 Exercises. 1. If I is an oriented compact ¢-manifold with funda-
mental class Oe H,(L,0L; R), R a field, then

H'(L,L; R)x H"~'(L; R)— H"(L,0L; R) —=2>R
is a dual pairing (compare 9.1 and 8.13).

2. Let L=L" be a compact oriented J-manifold whose boundary JL
is the disjoint union of two (n— 1)-manifold, L=0, Le ¢, L. Consider
the diagram

H'~"'L—— B0, L)—— H" (L, 8, L) —— H""'L ——H""'(9,L)

(9.10) J(—n""lf\o lel J(-1)n-on l(—l)"“/\o JAol

Hi+1(L,aL)——’ H(¢,L) —— H{(L,0,L) —— H{(L,0L)—— H; (0, L)
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whose first row is the cohomology sequence of (L, 3, L), whose second
row is the homology sequence of (L,dL, d, L), and where Oe H,(L, 0L),
0,eH,_,(0, L) are fundamental classes. Show that 9.10 commutes. (It
agrees with 9.1 if , L= @) The outside vertical arrows are isomorphic
(9.1), hence H""(L, 0, L)~ H,(L, 9, L).

3* Generalize 9.1 as follows: If K is a compact subset of an oriented
C-manifold L then there is a commutative diagram

o> A" Y@K) — H" (K, 0K)— A" 1K H" (¢ K) e
2 12 112 I
> H(L—iK,L—K)—H{L,L—K) > H{(L,L—iK)—H,;_|(L—iK,L—K)—--

whose rows are the usual (co-)homology exact sequences, CK=K 0L,
iK=KniL. The vertical (duality-)isomorphisms are derived from
~-products with the fundamental classes o around K and ¢ K. (Compare
theorem 2.4.3. in A.L. Brown: Chebyshev sets.... Proc. London
Math. Soc. 41 (1980).)

4. Show that for every compact oriented manifold M the signature ¢ M
and the Euler-characteristic y M are congruent mod 2.

5. If I?"+! is an orientable ¢-manifold then
dim H,(0L; R)=2dimker[i,: H,(L; R)— H,(L; R)]

for every field R, i.e., every second generator of H,OL is killed by i,
(proof as for 9.6). If M?2"*! is obtained by doubling L then
dimH,(0L; R)<2dimH, . ,(M; R).

6* If M is a compact oriented n-manifold which admits an injective
map i: M — V into some (n+1)-manifold V such that i, (0))=0 then
oM =0.

10. Transfer

Iff: M'— M is a map between oriented manifolds then we can transform
the induced (co-)homology homomorphisms f, resp. f by Poincaré-
duality. The resulting maps f'=D~'f, D’ resp. fy=D'f D~" are called
transfer homomorphisms (also Umkehr-homomorphisms). If f is a
covering map then f*, f, agree with what is called transfer in the homology
theory of groups; this may justify the name.

In this §10 we use transfers to deduce geometric properties of maps f
which satisfy f,7'(og)+# (where K is compact in M, and o its funda-
mental class). In §11 they will be studied for inclusion maps. Their
multiplicative properties are formulated in Exercise 4.
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We begin with a naturality property of ~-products. Let f: M'— M be
a map of manifolds, let K<M be a closed set such that both K and
f~ K lie in some ENR (e.g. if they are compact, or if the manifolds
are ENR). For every closed set LK we have homomorphisms

f: H(K,L)—>H(f 'K, f~'L),

fo: HM —f 'L, M'— f'K) > H(M —L,M - K),
and we assert
(10.1) fil{(fx)~n)=x~(f,n), for xeH(K,L), ne HM',M'—f~'K).

This follows from naturality VII, 12.6 of ordinary ~-products by passing
to limits. Indeed, xe H(K, L) is represented (in the sense of 5.18(i)) by
some ve H*(V, W)~ H*(V— L, W—L), where W<V are neighborhoods
of LcK, and fx is represented by (f*v)e H*(f 'V, f ~'W). Further,
x~(f,my=v~U, fin)=0~(fjxn): and (fx)~n=(f*v)~(j, ), by Defi-
nition 7.3, 7.4. Therefore 10.1 coincides with f, ((f*v)~(,n)=
v—~(f,Jxm), which holds by VI, 12.6. 1

10.2 Proposition. Iff: M'— M is a map of oriented manifolds of dimension
m resp. m, if KM is a compact set (whose counterimage f ~'K lies in
some ENR) such that r-times the fundamental cycle oge H,,(M, M — K) is
the f,-image of some neH,(M',M'—f~'K) (i.e. £, (rox)+9) then for
every compact set Lc K there is a sequence of homomorphisms

(10.3) A{(K, L5 Ai(f 'K, f ' Ly— A =m(f 'K, f L)L H(K, L)

whose composite equals r-times the identity map (H,= Cech-cohomology
with compact supports, the coefficients of n, ox should be taken in a ring R,
the coefficients of 10.3 in any R-module). The result holds for non-oriented
M, Mifl+1=0inR.

Proof. The composition
H(K, L)L Bi(f K, f L)
L H, (M'—f'LM —f'K)-L5 H, (M—L,M—K)

takes xeH'(K,L) into (/) ~n)=x~(f,, ))=x~(r 0x) =r(x~0x).
Composing further with (~ox)~': H,,_, (M —L, M —K)~ H'(K, L) takes
x into rx. If we now replace H,, _;(M'—f~'L,M'—f~'K) by the iso-
morphic group H™ ~"*i(f 'K, f~'L), cf. 7.14, we get the required
sequence 10.3. §

10.4 Remarks. Proposition 10.2 has interesting geometric consequences.
One can define the dimension of K to be the largest i such that
H(K,L; G)+0 for some LcK (cf. Nagami, §§35-39, for more pre-
cision). Then 10.2 implies that the dimension of f ~' K exceeds that of K
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by at least (m' —m), provided oxeim(f,). Also, it should be noted that
roxeim(f,) implies ro,eim(f,) for every compact subset I<K (e.g.,
I=a point). If M is itself compact and r oy eim(f,) then these remarks
apply to every compact part K of M. In particular, r H'M +0 implies
H'M'+0 and H'*™~"M'#0. For instance, if M'=S™ is a sphere
(m'=m)and f: M'— M is a map of degree r then r H*M =0 for 0<i<m.

One can use 10.2 to study the problem of local sections: A local section
of f: M'—> M at PeM is a map a: U— M’ of a neighborhood U of P
such that fo =id. If o exists then f, o, (0p)=0p, hence opeim(f,), hence
H™-"™(f~!'P; Z) contains a direct summand ~H°(P; Z)=Z; in par-
ticular, dim(f ~! P)>m’' —m. Thus one can sometimes tell, just by looking
at f ~'P, that { admits no local section at P (e.g. if m'>m and f~'P is
finite). For the sake of non-topologists we formulate the following
special case (where M', M are open subsets of euclidean spaces): Let
JSilx1, %z, ..., x,)=b;, j=1,...,m, be m continuous equations in n>m
unknowns. Suppose they can be solved continuously in a neighborhood U
of PeR™, i.e. there are continuous functions o, (yy, ..., V) k=1,....n,
defined for yeU, with values gy in an open set V of R" such that
fi(e1y,062y,...,0,¥)=y;. Then for every b=(b,, ..., b,)e U the solutions
{xeV} of fi(x, ..., x,)=Db; form a set of dimension at least n—m;

dim{xeV|fi(xi, ..., x,)=b; for all j} >n—m.

10.5 Definition. The homomorphism
B TR S  L) — B mK, I

which appears in 10.3 depends only on f, not on 5. It is called the
(cohomology) transfer. As the proof of 10.2 shows it is obtained by
composing
(106) Flg(f_lKa.f—lL)i)Hm’~j(M/_f_1L, M(_f_lK)

' S H, (M= LM —K)- 2275 from (K L),

i.e., it is the transform of f, under Poincaré duality. It is defined for every
map f: M’ — M of oriented manifolds and every closed pair (K, L) in M
(n.b, in 103 we assumed K to be compact; then H(K, L)=H,(K, L)).

Dually, we can define the homology transfer
ﬁ: H](V; U) _')Hj+(m’7m)(f_1 V;f_l U)
by composing
H,(V, U225 Bp=i(M = U, M~ V) L5 Br=i =10, M —f 1Y)

(10.7) ,
L’ m’——m+j(fﬁlV’f“1 U)
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This is defined for open pairs (V,U) in M such that f is proper over
(M—-U)—(M—V)=V-U (cf. 6.26). Heuristically, f, should be thought
of as “taking the counterimage” (cf. 10.10, 10.12).

Both transfers compose functorially and commute with inclusion maps;
more precisely,
10.8 Proposition. Let M —L M'—L > M be maps of oriented manifolds.
(a) If (K, L) is a closed pair in M then the composite

HI(f 'K S L) LS B (K L)

L (K, L)
agrees with (ff'), i.e. (ff")'=S'f".
(b) If (V, U) is an open pair in M such that f is proper over V—U and f’
is proper over f =V —f ' U then ff" is proper over V—U and
=1 fi: H(, U)> Hy (V77T

If f: M — M is the identity map, then f'=id, f,=id.

This follows immediately from the definitions 10.6, 10.7 because f, and
f. compose functorially. §

10.9 Proposition. Let f: M'— M be a map of oriented manifolds.

(@) If i: (K,L)—=-(K, L) is an inclusion of closed pairs in M then the
diagram _
H(f 'K, f~ L) —"— H(K, L)

AR DS HK D
commutes (i’ = inclusion).

(b) If i: (V, U)—=~(V, U) is an inclusion of open pairs in M, and if f is
proper over V—U and V—U then the diagram

HW,0)—L—H( 7,10

HW,U)—L—H( 'V, 71 V)

commutes (i’ = inclusion).
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Since f,, f. are tunctorial the proof reduces to showing that ~o resp.
~o' commute with inclusions. This is essentially 7.6 plus a passage to
limits (H, being a limit of groups H). We leave the details to the reader. II

As an interesting application of f, and 10.9 (b) we mention the following.

10.10 Proposition. If f: M'— M is a map between oriented manifolds of
the same dimension, and if (V, U) is an open pair in M such that f is proper
over V—U and of degree r over V—U (i.e. of the same degree r over every
PeV—-U; cf. 42) then the composition

(10.11) Hy(V; UL Hy(f ='W, =1 U) L5 Hy (v, U)
is r-times the identity map.

For instance, if f: M'— M is a covering map of (connected) oriented
manifolds and if the number of sheets is ¥ < oo then f is proper (over M)
of degree +r. If p’ resp. p is the fundamental group of M’ resp. M then
HM' resp. HM can be interpreted as homology of p’ resp. p (with chain-
complex coefficients). Further, f imbeds p’ in p with index r, and f, can
be identified with the usual transfer H(p) > H(p'); cf. Cartan-Eilen-
berg, XII, 8(2); proposition 10.10 becomes XII, 8(6) l.c.

If, for another example, f: R"— M" is a proper map of degree r then,
by 10.10, r(HM)< f,(HR"), hence r(HM)=0. In particular, only
acyclic manifolds M can receive proper maps of degree +1 from R"
(in fact, M must be contractible; cf. Exerc. 3).

Proof of 10.10. If M —U is compact then the proof is as for 10.2: Any
he H(V, U) can be written as h=y—~o with ye HM —U, M —V), and
Si)=(f9)~0', hence f, fi(h)=£, (/) ~0)=y~(f, 0)=r(y~o0)=rh,
the 3rd equation by 4.5. Assume next that V—U is compact. Let B=
M —V—U,; then [M —(U v B)]=(M — B) is compact, hence 10.10 holds
for (VU B, Uu B), hence i, (fy )" °=™ (fy f) i, =ri,. Buti,: H(V, U)=
H(VUB, Uu B) by excision, hence f, fi=rid holds for (V, U).

Consider then the general case. Given he H(V, U) there is an open set
W<V with compact closure W such that h is in the image of i:
HWoU, U)— H(V, U), say h=i,(k). Then

(fx D h=(f, NG R =i, (f, fik)=i,(rk)=r(i k)=rh,

the 2nd equation by 10.9(b), the 3rd because (Wou U)— U is compact. §
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10.12 Corollary. Let M be an oriented manifold, and let i: W— M denote
the inclusion of an open subset. If (V, U) is an open pair in M such that
(V=U)c W then i is proper over V—U and of degree 1, hence

HWV,U)-“5>HVAW,U~W)— H(V, U)

is the identity map by 10.10. But i,: HVAW,UnW)=H(V,U) by

excision, hence i,=i_" in this case. I

10.13 Corollary. Let f: M'—~M be a map of oriented manifolds and
it W— M the inclusion of an open subset. Put W'=f"'W,i": W <> M,
and f¥=f|W': W —W. If (V,U) is an open pair in W such that f is
proper over V—U then we have two transfers, fM and f*. We claim, they
are equal, fM=f¥: HWV, U)— H(f 'V, f ~' U). In particular, in order to
compute f,: H(V, U)—> H(f 'V, f ~' U) we can always replace f: M' > M
by f¥: f'VV.

Proof. We have fMi'=if", hence i) fM=(f"i)=>if")=f"i by
10.8(b). But i,: H(V, U)— H(VA W, U~ W)=H(V, U) and

i Hf 'V, Uy H( 7'V, 71 U)
are identity maps by 10.12. Hence fM=f", as asserted. 1

10.14 Exercises. 1. Let I'={(x, y)eRR?*|y=sin(1/x), x40} =graph of
sin(1/x), and let X =T its closure in $2=IR? U {c0}. Construct a map
f:8$?—8? of degree 1 such that X = f ~($!)= counterimage of a circle.
This shows that the singular cohomology of f ~! S* can be zero (whereas
H'(f~'$")+0 whenever degree(f)+0). In the same spirit, construct
a map g: 8% —S$' such that X=g !(P) for some PeS!, and g admits
a local section at P.

2. Dualize proposition 10.2.

3. Let f: M’'— M be a mapping of connected manifolds, and let p: M — M
be the covering which corresponds to the subgroup f,(n, M’) of the
fundamental group n; M, so that the index 1=[n M: f, (7, M’)] equals
the number of sheets of p. The map f lifts to f: M'—> M, pf=f (cf.
Schubert IIL6 for the theory of coverings). If dim M’'=dim M, and f
is proper of degree r then f is proper and r=1-deg(f); in particular,
1 divides r. For instance, if M'=IR" then n; M'=1, hence 1=[n, M:1]=
order of n; M, hence [n; M:1] divides r. In particular, if f: R"— M"
has degree +1, then m, M ={1}. Since also HM =0 by 10.10, it follows
(cf. Hu 1965, VII, 8.5) that M must be contractible.
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4*. The multiplicative properties of transfers are expressed by the follow-
ing formulas

(10.15) i~ =(fx)~(/9),
(10.16) S x=n=x=S"y,
(10.17) Sey~f O =(=1)mmlEhtm=mi( gt y) ~&.

Formula 10.15 holds for xe H,(K, L), e HM,M — K), if L< K are closed
in M™ and f: M'" — M™ is proper over K — L. This requires defining
~-products for Cech-cohomology classes with compact support which
can be done by composing H, — H —=%» H. Slightly more general, the
formula applies to xe H,(K, L,), EeHM —L, , M—K),if L,, L, <K are
closed in M, and (x~¢)eH(M—L,uL,,M—K) is defined as before,
replacing M by M —L,. Similarly for 10.17. Formula 10.16 holds for
xeH(K, L), yeH(f 'K, f ~'L,), where L,, L,cK are as above (but f
need not be proper). It requires defining —-products for Cech classes as
indicated in 6.21.

According to our sign rule VI, 9.8 for commuting graded objects we
should expect a sign (— 1)V =(— 1) =mIxl—(_1)/"lIxl jn 10.15, 10.16,
and (— )P~ in 10.17 (since f,, /' are maps of degree +(m—m).
In fact, in a more systematic treatment we should redefine transfers f*
resp. f, by multiplying the composition 10.6 resp. 10.7 with (— 1y -
resp. (—1)™~™-m (for inclusions we shall do just that in §11); this
would produce the expected signs in formulas as above.

A way of remembering 10.15 is to say that f, is a homomorphism of
HK-modules, where HK operates on H(M,M—K) via ~, and on
HM' M —f-1K) via f and ~. Similarly for 10.16, whereas 10.17
expresses a duality.

5. Show that the middle arrow Hi(f 'K, f "' L)— H*"'=m(f 1K {-1L)
of 10.3 is the —-product (6.21) with a fixed element z of A™ ~"(f ' K),
namely the Poincaré-dual of n (z~0'=y).

11. Thom Class, Thom Isomorphism
Let M"+* be an oriented manifold, N" an oriented submanifold with
inclusion map e: N — M, and assume N=N (N is closed in M). Then

for every closed pair (X, A) in N the transfer e, is the composite

(11.1) Hy(M—A,M—X) 20075, fjrek—a(x, 4)-2N, H _ (N—A4,N—X).
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For reasons which will appear later in this § we modify the definition
of e, by a sign (—1)*"+¥=9 ie. from now on e;: H,(M —A,M - X)—
H,_(N—A,N—X) will denote (—1)*"**~9-times the composition 11.1.
It is isomorphic, by 7.14 (arbitrary coefficients, mod 2 if M or N are not
oriented; we don’t have to assume N =N provided we take subsets A< X
of N which are closed in M).

For small dimensions 11.1 implies
(11.2) HM—-A,M—-X)=0 for g<k=dimM—dim N,

(11.3) HM—-AM—-X;Z)~H,(N—A, N —X; Z)= free abelian group
generated by the components of N — A which lie in X .

In particular, H,(M, M —N; Z)~H,(N; Z) is freely generated by ele-
ments v, which correspond to the components N; of N. We call v, the
transverse class of N, (in M). In the decomposition

HMM-N;Z)x®, H(M,M—N,; Z)

it is a generator of H, (M, M —N,; Z)=~Z. If N is connected, we also
write vy or vi for its transverse class.

The isomorphisms e, commute with inclusions. In more detail, if (X, A)<
(X, A) are closed pairs in N then

HM—-AM-X)~H, ,(N—A,N—X)
(11.4) ix i

H,M—A4,M—-X)=H,_(N—A4,N-X)
(j=inclusion) commutes, by 10.9(b).

If V is an open set in M\rhen

(e| N).
H(V-AV—X) = H, (VAN)=A4,(VAN)-X)

RS

(11.5) jj* j*
HM-AM-X) = H,_(N—A4,N—X)

commutes for every closed pair (X, A) in N; in fact, this is just 10.9(b),
using (e|V A N),=e, (10.13). § In particular, for g=k, A=@, X =N, we
see that j,: H (V,V—N)— H,(M, M —N) takes transverse classes into
transverse classes,

(11.6) Jx(vA)=vz,
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where i</ are components of (V' N) respectively N. From 11.6 it
follows that the transverse classes v,e H, (M, M — N) have arbitrarily
small representatives. In fact, if Pe N;, and V is any open neighborhood
of P in M then v, is the image of v;eH,(V, V—Vn N), where 1 is the
component of P in ¥V N.

11.7 As an illustration, consider the case N=R"x {0}c R"x R*=M.
Then (M,M—N)=R"x(R*¥, R*—{0}), and H,(M,M—N;Z)=Z,
HM,M—N)=0 for i+k. If 6: 4, - R"**=R"xIR* is any non-
degenerate affine simplex which meets N in exactly one interior point
(i.e,ois“transverse " toR" x {0})then g isarelativecycle of M mod M — N
whose homology class [¢] generates H (M, M — N; Z), hence [a]= +Vy.

If, in the general case again, the embedding ¢: N> M is flat at PeN
(cf. 1.8) then, by definition, P has an open neighborhood V in M such
that (V, VA N)~(R" x R%, R" x {0}). The transverse class vy (assuming
N connected) is then the image of vy, y which, in turn, is given as above.
This provides an intuitive idea of vy for a fairly general class of embed-
dings.

If we apply the universal coefficient formula (VI, 7.10) to 11.2, 11.3 we
find

(11.8) H'M-AM—-X)=0, for g<k=dim M —dim N;
(11.9)  H*M —A,M—X;G)~Hom(Hy(N—A4,N—X;Z),G)

~direct product of as many factors G as there are components of
N—-Ain X.

11.10 Proposition and Definition. Using 11.3 the elements of
H*(M,M —N;G)=Hom(H,(N;Z), G)

can be described as follows: For every component N, of N choose an
element g, €G; then there is a unique class ye H*(M, M — N ; G) such that
{y,v,>=g,; for every i (v,=transverse class). 1

In particular, there is a unique class =1} e H*(M, M — N; Z) such that
{t,v,>=1for every 4; it is called the Thom class of N (in M). The image
of t under e*: H*(M, M —N;Z)— H*(N;Z) is called Euler class of e, or
normal Euler class of N in M; it is denoted by y=y~. We also write t
respectively y for the image (under @) of the Thom- resp. Euler class in
H*(M, M — N, R) resp. H*(M; R), where R is any ring. The name origi-
nates from a special case: If e: N — N x N is the diagonal embedding and
N is compact then one can show that {yy*", oy> equals the Euler
characteristic of N (cf. Exerc. 3).
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Both, Thom and Euler class, are natural with respect to inclusions j: V— M
of open subsets, i.e.

(11.11) FaM=tw.n  GVON* M=~

The first formula follows from 11.6 and the definition of , the second
from the first. §

11.12 Proposition. If e: N — M can be deformed into a mapping f: N— M
whose image lies in M — N then ¥ =0. In other words, yM can be viewed
as an obstruction for deforming N into M —N (cf. also 11.25). Also, if
H¥(M;Z)=0 then y¥ =0. For instance, this applies if M =R"**,

Proof. In both cases e*: H*(M, M — N ;Z)— H*(N; Z) vanishes: in the
first case because e*=f* factors through H*(M — N, M — N)=0, in the
second case because e* factors through H*(M; Z)=0. 1

The following proposition relates intersections to —-products; such
relations will be studied in more detail in §13.

11.13 Proposition. Let N;, N, be oriented submanifolds (NP:NP) of an
oriented manifold M such that N=N NN, is a connected manifold.
Suppose N, N, intersect transversally at some point Pe N, meaning that P
has an open neighborhood V in M such that

(V: VAN, VAN~ (R¥2 x R" x R*:; {0} x R" x R¥!, R*> x IR" x {0});

in particular, the dimensions of N, N, Ny, M,aren,n+k,n+k, n+k,+k,.
Then N is orientable, and 1§ = & (T~ TN ). Also £ N =(ef x¥) (€% xN»
where e,: N — N, denotes inclusion. (As to the signs, the 1st part of the
proof will show how to compute them in terms of given orientations of
M,N,,N,.)

Proof. Assume first =M, hence
(M; N, N,)=(R* x R"xR*; {0} x R"x R*, R*2 x R"” x {0}),

and N=N,nN,={0}xR"x {0}. Let o,eH,(R,R'-0;Z)~Z, and
weH' (R',R'~0;Z) be generators, hence {y,,0>==+1 Let 1 also
denote the generators of the various groups H,(—, Z) and H°(—,Z).
Then o,,x1x1, Ixlxo,, o,x1xo0, are generators of
H, (M,M—N;Z),H, (M,M~N,;Z),H, ,,,(M,M—N;Z)(cf.VIL,2.14),
so they agree, up to sign, with the transverse classes of N,, N,, N. It
follows that +1y =pm, xIx1, i =1x1xp,, t¥=pm. x1xp,,
hence 1} = +(x})—(t}}) by VIL, 8.15.
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In the general case let vy, 5 the transverse class of VN N, and
jr V;V—=N,V—=N,,V-N)->(M;M—-N;,M—N,,M—N)
the inclusion. Then
(TN = TNy O )> =< * TR = (* T3, Viaw?
={War = T Wer) = £ TRy A = £ 1
In particular, j,_( vk .v) must be of infinite order, hence

H'N=H, _,.(M,M—N)

ky + k>

is an infinite group, hence N is orientable by 6.25 or 11.29. But then
Je(Vkay)=vM by 11.6, hence (T — ¥, vN> =+ 1, hence 1 — ¥ = + ¥
by definition of the latter.

As to the Euler class,
v =e*(y)= +e*(TN VINZ)_ + (e} ty, N~ (e} rNZ) t XN, X%- |

We now show that the transfer e, can be approximated by t~, the cap-
product with the Thom class. More precisely,

11.14 Proposition. Let e: N"— M"+* as above (closed inclusion of
oriented manifolds), let X <N be closed and W <M open such that
(N—X)cWc(M—X). Then the composition

H,M,M-X)-">H, (N,N—X)-">H,_ (M, W)
agrees with 1~ i.e. for every he HMM,M — X) we have i, e,(h)y=t~h,
wherei=inclusion(note that M — X =(M — N)u W,so that t ~he H(M, W)).

The proof requires some preliminaries. We show first

11.15 Lemma. If X is compact (in the situation of 11.14) then
e,(w—~o¥M)=(—1)}"(i*w)~o)  for weH*(M, W),

where o™ respectively o denotes the fundamental class of X in M
respectively N. (Compare this with 10.15.)

Proof. If z is the image of w under the composition

H*(M, W) H*(N,N—X)=H(N,N-X)— HN

then w—~o¥ =z—~0o" and (i* w)~o}=z~0", by definition of the right
sides (cf. 7.13 and the explanation thereafter), hence

e,(w—~oy=e,(z~oM)=(— 1" z~o"=(—1)™(i*w)~0}. 1
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11.16 Corollary. If X = Pisa point (in the situation 11.14) and we H" (M, W)
then w—~ o =(—1)*"{i* w, 0§ ) vp, where v, denotes the transverse class of
the component of P.

Indeed, (~1)*"e,(w—~o0p)=(i* w)~o} is (i* w, oY )-times the homology
class of the point P, by VII, 12.8; hence the assertion by definition
of vp. I

11.17 Lemma. If X is compact (in 11.14) and r: (M, W)— (N,N—X) isa
retraction then r,(ty~o%)=o0Y.

Proof. Assume first X =P is a point. Let pe H'(N,N—P;Z) be the
generator with (g, o} > = 1. Then (r* pr) ~ oM =(—1)"{u, o8> vp=(—1)"v,
by 11.16, hence
(1~ 0f)) = (r* 1~ 0py ={(r* )~ 1, 0>
=(= 1" (1, (FF w~op>=(1,vpy=1.

Since r, (1~ o0}') is a multiple of o} this proves r, (t~0})=o0}.

In the general case consider the commutative diagram

H(M,r'(N—P)<*— HM, W)

H(N,N—P) <% H(N,N-X),

where Pe X, and /¥, j are inclusions. Comparing the images of t—~oY
gives j&(r, (1 ~o0¥))=r,(t ~o¥)=0}, using naturality of ~ and the first
partofthe proof. This equation holds for all Pe X, thereforer, (1~ oY) =0}
by Definition 4.1 of the latter. 1

We now prove a special case of 11,14, namely

11.18 Proposition. If X is compact (in 11.14) then i (0o})=1N~0Y.

In particular, if W=M — X then (by Definition 7.4) the right side agrees
with y¥ ~o¥, where ¥ is the image of ¥ under H*(M,M —N)—
H*M — H* X ; the proposition then asserts that y¥ (=xM|X) is the
Poincaré-dual of i, (o})e H,(M, M — X). If M is itself compact and X =N,
W=@ then tN~oN=14~(j, oM)=(*tN)~o}, where j=inclusion,
hence (j* 1f)e H* M is the Poincaré-dual of (i, oy)e H,M.

Proof. Assume first M and N are ENR’s, and let r: M’ — N be a neigh-
borhood retraction. Let W’ be a neighborhood of N—X inr }{(N—X) W.
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We have r: (M, W')—(N, N — X), and if we choose (M’, W’) small enough
then the composite (M’, W')~">(N, N — X) -*>(M, W) is homotopic to
the inclusion mapping j (cf. IV, 8.7), hence j, =i, r,. Apply i, to 11.17
(with M replaced by M’) and get

L (0F) =i, 1y (N ~0X) =), (F N~ 0¥ ) =1} ~j, off =1y ~o}.

In the general case we can find an open subset M’ < M, such that M’ and
N'=NnM' are ENR’s, and X< N’ (because M, N are locally ENR and
X is compact; cf. IV, 8.10); put W'=Wn M'. Then

(N, N —X)—E—(M", W')

(11.19) i i
(N,N=X) —— (M, W)

is a commutative diagram of inclusion maps, hence

L (00)=i,7,0%)=j,i,0Y)=j, N ~0o¥)=j (j* N ~0¥)

=ty ~j, o =tN~o¥ ,
the third equation by the first part of the proof. 1

Proof of 11.14. If he H(M, M — X) then h is dual in M to some class
xeH X, and (—1)*l¢,h is the dual of x in N. For some closed Ac X
such that X — A is compact the class x has a representative x’ in H(X, 4),
because H_X =lim A(X, A). This class x', in turn, has a representative y
in H*(M', M"), where (M’, M"”) are suitable open neighborhoods of
(X, A)in M (because H(X, A)=lim H*(M', M")). By the remarks following
7.13, the Poincaré-dual h of x has the form hzj*(y»-\ol,‘{'_M,,), where
j:(M', M’ — X)— (M, M — X) denotes inclusion. Similarly, with notations
as in 11.19, we have that i"* y represents x in N, and the dual (— 1)**l¢,
of x in N is given by

Hence e h=(—1)Pj (i *y~of_y.).

iy erh=(= 1M (i *y~o)_y.)=(= M), i, (i y~oY_y.)
11.18
=(= M (y~i, o} n) = (=) (y~i ~oX )
=jy (TN Y~ 0% pp ) = TN~ (V0 ) = TN~

(note that ty. =j*ty, by 11.11). 1
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11.20 Corollary of 11.14. Let e: N"—<» M"** be as in 11.14, and assume N
is a neighborhood retract in M, say r: M'— N, r'e=id, M’ open in M.
Then for every closed X = N the composition

H (M, M—X)=H,(M, M~ X)X~ i, (M',M'—r~'X)
11.21
( ) —H,_(N,N-X)

agrees with e,; in particular, it is isomorphic. Dually, the composition

¢ HI*(N,N—X) - H 5 (M, M’ —r~' X)
(11.22) s
N L HUM, M — X)= HY(M, M — X)

is isomorphic. Both isomorphisms are named after Thom.
If, moreover, the composite M'—> N > M is homotopic to the inclusion
map j: M' — M then the Thom maps are isomorphisms of H* M-modules, i.e.,

(1123) e (y~h)=(=1}"(e*y)~(e,h), €(x—e*y)=(e'x)—y

for yeH*M , he H M, M — X), xe H*(N, N — X).

Note that the assumptions of 11.20 are always satisfied if M, N are
ENR’s (IV, 8). If the retraction r, or the homotopy er~j, exist in a
neighborhood of X only, then one can still (by excision) prove the con-
clusions of 11.20 for this particular X. Also, the assumption er~ is not
really essential for the first equation 11.23 (one can use a lim-argument
for homology) but I don’t know about the second.

Proof. If we compose 1y ~=1, ¢, (cf. 11.14) with r, we get r, (1§ ~)=e¢,
which proves the first part (by naturality 11.5 of ¢,). Now choose a re-
presentative cocycle t of T ; then the following are chain maps
S(M',M'—X)~SM/S{M'—N, M’ —r~'X} = S(M', M' —r~' X)
5 S(N,N - X)
(strictly speaking, we must shift dimension indices and introduce signs
to make this correct). Their composite induces isomorphisms on ho-

mology—namely r, (t ~)=e—and is therefore a homotopy equivalence
(11, 4.3). Hence the dual composite

S*(N,N—X) "> S*(M', M' —r~1 X)
=y (SMY/S{M'— N, M’ — =1 X })*~ S*(M’, M’ — X)

is also a homotopy equivalence. Since it induces (z —) r* on (co-)homology
this must be isomorphic, as asserted in the second part of the proposition.



322 VII. Manifolds

Finally,
e (y~h)=r (N ~jz y~h)=r, @} ~j*y~jz ' h)
:r*(‘t,"{,"/\r* e*yf\j;‘ hy=(— 1)kP! r(r*e*y~ti'~j 'h)

= (=P e*y~r, @ ~jp ) =(= 1P e*y~e b,
and dually for ¢'. 1

11.24 Corollary. Put X = N in 11.20. Then &'(1)=1¥, and &'(y¥)=1M 1M
In particular, 2y} =0 if k is odd (since 1—1=(—1)*1—1).

Indeed, e'(1)=1~—r*(1)=1—1=1, hence
e (yM)=e(l—e*1)=e'()—1=1—1. I

I don’t know, whether the last conclusion (23 =0) of 11.24 holds without
assuming r, or er~j.

There are many other interesting consequences of 11.14. We discuss a
few of them now, others in § 12.

11.25 Proposition. If, as before, e: N"— M"+* is a closed inclusion of
oriented manifolds and X =N is closed then the composite map

H,(N,N—X)-*5 H (M,M—X)-%>H,_,(N,N—X)

agrees with yy —~, i.e. we have e e, E=y~¢ for £eH (N,N—X). In
particular, e, {=0<y~¢=0.

For instance, if X is a compact ENR in N then e, (0})=0< y~0f=0<«
21X =0, the latter by Poincaré-duality. In other words, the fundamental
cycle in N around X is homologous in M to something in M—X
(“can be pushed into M — X ) if and only if y|X =0. In particular, this
applies to X =N if N is compact.

Proof. As in 11.14, we consider open sets W < M such that
N—-XcWcM-X;

let it (N, N—X)— (M, W) the inclusion map. Then i e,e, é=1~e, =
i (e*t~&) =i (y~&), the first equation by 11.14, the second by natu-
rality of —~. This proves the assertion if i, is monomorphic. For any
¢eH(N, N —X) we can find an open pair (M, W'} in (M, M — X) such
that (N, N —X)=(NnM',NAM'—X) is a retract of (M, W’) and
Eeim(l,: H(N',N'—X)— H(N,N — X)), say =1¢ (because & is
represented by a chain with compact carrier, and M, N are locally ENR ;
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cf. also proof of 11.18). Then i,,: H(N',N'—X)— H(M', W') is mono-
morphic, hence eje, &'= N ~& by the first part of the proof. Now
apply I, to this equation and get the required result by naturality of e,
and x. 1

11.26 Proposition. Let N —¢> M -4 L be closed inclusion maps of oriented
manifolds. Assume the Thom class 1€ H*(M, M — N) has an extension

eH*(L W) to some open nelghborhood (L W) of (M M—N) in
(L L—N). Then th=tM—1L d*@FL)=1N—xk, and y5=1xx—€*({x)
The extension T always exists if M is a neighborhood retract in L: just
take M =r*tM where r: L—M is a neighborhood retraction, and
W=r"'(M—N). I don’t know whether T always exists, nor whether the
last equation between Euler classes always holds.

Proof. Let N, be any component of N and v, its transverse class; put
k=dim M —dim N, h=dim L—dim N. We have

(N~ v = G T~ VD 2 G 4, (d D)y = YL 4 v
=(d* Ty Vi =, vih =1,
the 3rd equation because ¢,(v¥) and e,(d, v7;)=(d e)!(vi“) coincide (they
both equal the class of a point in N;). This shows ¥ —13 =15, by

definition of the latter. Apply d* to this equation and get d*(zk)=
d* () —d* () =M < 3k =N — 4k . Now apply e* and get

dh=rk=de* () =e*a* (L) =e* (M) —e* () =xM —e* (x).

11.27 So far in this § we have only considered oriented manifolds. As
usual, analogous results hold (with the same proofs) in the non-oriented
case if coefficients mod 2 are used. In order to get a finer theory one has
to use local coefficients (cf. Steenrod 1951, § 31). We shall not go into
this; we shall, however, deduce some of the easier integral results
directly, essentially by reduction to the oriented case. Assume then
N"< M"+¥ are manifolds (not necessarily orientable), N=N. For every
component N, of N, choose an open set M'cM such that M’ and
N’'=Nn M’ are orientable, and N,=N,nM'=+@; let v.e H,(M', M'—N’)
be a transverse class of N; in M, and let v,e H,(M, M — N) denote its
image. We know (11.6) that 4 v, is in fact the transverse class of N, in M
if these are orientable; so we continue to call it so, even if they are not
orientable.

11.28 Proposition. Let N"< M"+* as above, and let X be a closed subset
of N. Then H(M,M — X;Z)=0 for j<k, and H (M, M — X ; Z) is gener-
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ated by the transverse classes v, of components N, which lie in X. In
contrast to 11.3, however, these classes are no longer free generators;
some of them may be of order 2 (cf. 11.29).

Proof. The proposition is true if both M and N are orientable. Suppose
M,, M, are open subsets in M such that the proposition holds for
(M,, N), (M, N;), (M, nM,, N, N,), where N,=M_ N~ N. We then con-
sider the Mayer-Vietoris sequence (111, 8.22)

H (M ,M,—X)o H;(M,,M,— X,) > H(M;, oM, , M,0M,—X,U X,)
— H,_ (M, M,, M{n M,— X, X,),

where X, =M, X. We can apply the proposition to the outside terms
and thus, by exactness, prove it for the middle term, i.e., we can conclude
that the proposition holds for (M, uM,, N,UN,). By induction, the
proposition then holds for every finite union (M’, N')=|_},_,(M,, N,) of
orientable pairs. Since HM, M — X )zli_IQ H(M', M'— X), this proves the
proposition by passage to the limit.

11.29 Proposition. Let M"** be an orientable manifold and N"< M"+* a
non-orientable connected submanifold, N=N. We know (11.28) that the
transverse class vy generates H, (M, M — N ; Z). We assert, that vy is of
order two, hence H{(M,M — N ; Z)=Z,.

Proof. Pick PeN and an orientation ope H,(N, N—P) at this point.
Consider all oriented connected open subsets of N which contain P, with
the given orientation at P. Their union is N, and since N is not orientable
there must be two of them, say N’ and N”, whose orientations disagree
at some other point Qe N'n N”. Orient M and pick open subsets
M, M"=M such that N'=NnM’', N"=NnM". Their transverse
classes vveHM',M'—N’), v'e HM", M”" — N") are defined then (not
only up to sign) and they are both images of the transverse class

veeHM' A M"' M'nM"'—N'nN"),

hence they map to the same generator vy e H, (M, M — N). The transverse
class voe HM'n M",M'anM" —N'n N"), on the other hand, maps with
opposite signs into +v', Fv” because the orientations of N’, N disagree
at Q. The images of v/, v in H,(M, M — N) must therefore be of opposite

sign, hence vy= —vy, or 2vy=0.
It remains to show that v, +0, or H,(M, M —N;Z)=+0. But
HM M—-N;ZL)eZ,~H,M,M—-N;Z,)~Z,,
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the first isomorphism by 11.28 and the universal coefficient theorem, the
second because mod 2 the isomorphisms 11.1, 11.3 hold for non-oriented
manifolds. |1

11.30 Exercises. I*. Let N;, N, M be oriented manifolds, N,=N,, and
assume N, NN, is a connected manifold with dim(N, " N,)=dim N, +
dim N, —dim M. Prove: If ty, —1y,+0 then N, NN, is orientable,
Ty, ~ Ty, =H Ty, nn, fOr some integer p, and ¥ (t})=pnN2, y,, €5,(x8)=
XN~ n,» Where e,, e, are inclusions. The integer 4 is called the inter-
section multiplicity (=0 if 1y ~1y,=0). Show that u can be determined
locally, i.e. in any open set W of M which meets N, " N,. If Ny, N, inter-
sect transversally at some Pe N; N\ N, then y was showntobe +1in11.13;
compute the sign in terms of the orientations of NN N,, N;, N,, M.

2. Let NeM, N'c M’ be oriented manifolds (N =N, N'=N’) of dimen-
sion n, m, n', m'. Consider N x N’ M x M’ with the product orientations

and prove tM M = (— [ynm'=n) (M M

3. Let N be a compact oriented manifold, orient N x N with the product
orientation, and consider the diagonal embedding e: N — N x N. Prove
that (xN*¥, oy> =x(N)=Euler-characteristic of N. Hint: Use 11.18
and 8.21, Exerc. 2.

4. Let f: N— M be a map of compact oriented manifolds, and define
TeH*M by T~o0y=f, (oy). Prove that f, f,(h})=7%~h for every he HM.
Compare this with 11.14.

5% Recall (4.10, Exerc. 6) that a map f: N — M of manifolds is called
orientable if it lifts to a map f/* N — M of orientation-covers which com-
mutes with the canonical involutions of N, M. Show that a closed in-
clusion map e: N"— M"+* is orientable if and only if every transverse
class v, of N in M has infinite order. This, in turn, holds if and only if a
class te H*(M, M — N ; Z) exists such that {(z,v,>=1 for every A.

12. The Gysin Sequence. Examples

The Gysin sequence is a consequence of 11.14. It relates the (co-)homology
of N and M —N provided e_: HN=HM. This assumption may appear
very restrictive, however, even if it is not satisfied one can usually find an
open neighborhood M’ of N in M such that HN =~ HM’, and replace M
by M’; in fact, I know of no instance where M’ doesn’t exist. We discuss
some examples to show how the Gysin sequence can be used to deter-
mine H(M —N) from HN (Stiefel manifolds), or HN from H(M —N)
(Grassmann manifolds).



326 VIII. Manifolds

12.1 Proposition. Let e: N"< M"+* be oriented manifolds as in§ 11 (N = N),
let M'c M be anopen setand N'=NnM'Ifi : HIN,N')=H(M, M’) then

(12.2) M~ H (M, M'U(M—N)=H,_ (M, M),
(12.3) ™Mo H KM, M) H'(M, M’ U(M —N))

(arbitrary coefficients; mod 2 if M or N is not oriented). Moreover, there
are (dual) exact sequences

s H (N,N)—25 H (M—=N,M' —N') 2=, g (N, N)
(12.4) S ’
AN, (N,N)—25>H,_ (M—N,M'—N)—--,
(12.5) e H YN N) @ H(M=N,M' — N') &= Hy(N, N)

R KN NS H Y (M= N, M’ —N') -

The maps p are induced by inclusions, as indicated; o will be defined
during the proof. Both sequences are named after Gysin. The case
M'=@=N’" is of particular importance; the Gysin sequences then
relate the (co-)homology of N and M —N.

Proof. We know from 11.14 that, up to sign, the map t ~ agrees with the
composition H(M, M'U(M —N))—*>H(N, N')—*> H(M, M’), and by
assumption this is isomorphic. As in the proof of 11.20 we now choose
a representative cocycle ¢ of t and we conclude that

t~: S(M, M’ U(M—N))— S(M, M)

is a chain homotopy equivalence. The dual chain homotopy equivalence
t— induces 7— on cohomology, which is therefore isomorphic. This
proves 12.2,12.3.

For the Gysin sequence we consider the diagram

H(M'U(M = N), M")2 H(M, M') 2 H(M,M' O(M — N)) % H(M'U(M = N), M')—

(12.6) %jk =\ z‘(rf«)-l i EL&

HM —N,M'—N') 25 HIN,N) %5 H(N,N') 2 HM—N,M'—N’) -,

where the first row is the homology sequence of the triple
(M,M'"U(M—N),M).

The vertical arrows are isomorphic (j, by excision), and p, resp. g, are
so defined as to make the first resp. third square commutative. The
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second row is the required Gysin-sequence 12.4. In order to prove that
it is exact it suffices to verify that the middle square is commutative
(the first row being exact). This follows from

i (r~h)=i, ((*D)~h)=1~(i, =1~ i, h).
The cohomology Gysin sequence 12.5 is obtained dually: just replace H
by H* and ~ by — in 12.6, and reverse all arrows. |

The graded (co-)homology groups which appear in the Gysin sequences
12.4, 12.5 can be viewed as modules over H* M (via inclusion, and —~-
or —-products); then we have the following

12.7 Complement to 12.1. All the maps which appear in the Gysin sequence
are (graded) homomorphisms of graded H* M-modules (n.b. for graded
maps ¢ this involves a sign: ¢ (y - h)=(— 1)y o (h)).

This can be refined: The operation of H* M factors through H* M — H(M —M’) (by
excision and passage to the limit), and the maps of the Gysin sequence are in fact homo-
morphisms of H(M —M')-modules. We leave these details as an exercise to the reader.

Proof of 12.7. The first row of 12.6 consists of H* M-homomorphisms
(cf. VIL, 12.19). It suffices therefore to show that the vertical arrows are
H* M-homomorphisms. This is clear for ;. and i,, we must only prove
it for T~. But

t~(y~h)=(t—y)~h=(= )Pl (y—t)~h=(- 1)} y~(x~h),
as asserted. |

We now formulate some consequences and special cases of the Gysin
sequence which will be used in our examples. For simplicity, we consider
the absolute case M'=@ =N’ and cohomology only. All coefficients are
taken in a fixed commutative ring R (of characteristic two if M or N
1s not oriented); we write y both for the (integral) Euler class and its
image in H*(N; R).

12.8 Proposition. Let e: N"c M"** be oriented manifolds, N=N, such
that e, HN =~ HM. Then

(i) p*: H"N > H"(M — N) is monomorphic for r<k, and epimorphic for
r<k—1. The kernel of p*: H*(N;Z)— H*(M —N,Z) is a cyclic group
with generator y; if N is connected, then

coker[p*: H*"Y(N;Z)— H*"'(M — N, Z)]

is zero resp. ~7Z depending on whether the order of y is infinite or finite.
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(i) If A is a subset of H* N such that {p* a},., generates H*(M — N) as
a ring then AU {y} generates H* N as a ring.

(iii) If yN =0 (hence a* epimorphic) and ue H*=*(M — N) is any element
such that o*(u)=1eH°N then H*(M —N)=(H*N)-1e(H*N)-u, as
H* N-modules (cf. 12.7). With dimension indices,

H"(M—N)=(H" N)o(H"**'N).

Note that xM =0 whenever k is odd and H*(N;Z) has no 2-torsion
(cf. 11.24).

(iv) Suppose there are homomorphisms y": H'(M —N)—H"N such that
p*y'=id for r<s, and y(y~—z)=(yy)—(y z) for |y|+|z|<s. This means,
y={y"} is a multiplicative right inverse of p*, up to dimension s; put y"=0
Jor r>s. Let H*(M — N)[x] denote the (graded) polynomial ring over
H*(M — N) in one indeterminate x such that |x|=k. Then

I': H*(M—N)[x]—>H*N, I’(Zajxj):z;)(aj)xj,

is a ring-isomorphism up to dimension s. In dimension s+1 the kernel
of T consists of all constant polynomials, ker(I'*1)= H*+1(M — N).

Proof. Part (i) follows immediately from the Gysin sequence 12.5 since
H/N =0 for j<0, and H°(N;Z)=Z if N is connected. Part (ii) follows
by induction on dimension: If ye H* N, we can find a polynomial p(a)
in elements ae A, such that p*(p)=p*(y), hence (y— p)eker(p*), hence
y—p=yx~—gq by 12.5, where |q|=|p|—k<|p|. By induction, g is a poly-
nomial in x and elements a, hence y=p(a)+ x~—q(a, x), as asserted.

If y=0 then 12.5 reduces to a short exact sequence of H* N-modules
0> H*N—-5H¥*(M—N)—"5H*N—0, and the map yi(p*y)—u,
ye H* N, is a right inverse of ¢* (using 12.7); this proves part (1ii). Part (iv)
is similar to (ii); in fact, the argument for (ii) shows that I'" is epimorphic
(up to dimension s). Suppose now Y ;. ,a; X’ is an element of ker(I") of
dimension r<s. Then ijoy(a.) ¥'=0; apply p*, use p*(x)=0, and get
ap=p*y(ay)=0. Therefore F(Zj>0 a; x’ N—y=Y. o7(@)x’=0, and
dim(} ;. ya;x'~')=r—k. The partial Gysin sequence

H N5 H-Y(M—N)—">H*N-25H'N

shows that y— is monomorphic (because p* is epimorphic), hence
I}, oa;x7')=0, hence »; oa;x"'=0 by inductive hypothesis,
hence Y, ,a;x'=(3;,0a;x’~')x=0. The same argument applies if

dim(} a;x)=s+1 provided a,=0; hence ker(I**')=H**'(M —N), as
asserted. |
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129 Example. Stiefel Manifolds. If F is one of the (skew) fields R, €, H
let V, F denote the set of all linearly independent p-tuples of vectors
in FrP+a,

Vog F={(v,, 05, ...,0,)e FP+Ix FP+ax ... x FP+9|

Py
{v;} linearly independent over F}.

Clearly, V,, F is an open subset of (FP*9)P~ FP?*%) hence is a manifold
of dimension dp(p+¢q), where d=1,2,4 as F=IR, C,IH. It is known as
(real, complex, quaternionic) Stiefel manifold; its elements are also called
p-frames in F?*4 Note that V,, F is the set of all bases of F?; it can be
identified with the linear group GI(F, p).—As an application of 12.8(iii)
we prove

12.10 Proposition. The complex Stiefel manifold V, € and the product
of spheres $21+! x§29+3 x ... x §29+2P~1 hape isomorphic integral co-
homology rings, i.e. H*(V,,C; Z)=E(c**', ..., 6*9* 2P~ ") is an exterior
algebra (cf. VII, 10.15) over Z with generators {a’} of dimension j=2q+ 1,
2g+3,...,2q+2p—1.

For ¥, H there is a similar result and proof (just replace 2 by 4), whereas

for V,, R the situation is more complicated (cf. 12.11).

Proof, by induction on p, starting at V,
§2p+24-1) Let

pig=apoimt(orV, .. Cx

M, =V, CxC*={(v,,...,v )|v;eC?*, (v, ...,v,) independent},

2UpsUpyt
and
N,,={(vy,-..,v,,0,,,)€M,|v,  , dependent on (v, ...v,)}.

Clearly N,, isaclosed subsetof M,,,,and M, — N,, =V, ,_, C. Further,

P’ q

Vg€ XCP - N,oy (04,00, 44, 0, A ) (0, 0,0, =00 A,0),

A p’ p+l1—

is a homeomorphism, hence N,, is a manifold of dimension

n=2p(p+4q)+2p,

and is homotopy equivalent with V, C. Also, M, is a manifold of dimen-
sion 2p(p+q)+ 2(p+q) n+ 24, and is homotopy equivalent with V, C,
hence H M, =H V, C=H,_N,,. We can therefore apply the Gysin
sequence to the inclusion N, CM . The Euler class xx lies in

H?IN, ~H(V, C)=0,
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the latter by the inductive hypothesis H*(V,, €)=E(s29+!,..). It
follows from 12.8(iii) that

H*(V C)=H*(M,,—N,,)

p+1,4-1
=~E(c**! ..., 0?9t2P ). l@ E(6?1*!, ..., g%0+2P 1) . g2a-!

as E-modules. To finish the proof we must only show that ¢4~ ! g24~! =0,
But 2(¢?4"'~¢?97")=0 because 2g—1 is odd, and H*(V, Q) is
torsionfree by the formula above. [

+1,q9~1

12.11 For real Stiefel manifolds V,, IR one might expect an analogous
result (replacing 2 by 1). However, this is false in general; the above
proof breaks down because the Euler class Zﬁ‘{eH“(VM R) is not
always zero. Taking coefficients Z, avoids this difficulty (i.e. xn =0
then; cf. Exerc. 6) but then one can no longer prove ¢—ag=0 as above.
Still, 12.8(iii) will show that elements o’eH’(V,,R; Z,) exist for
j=q, q+1.....q+p—1 such that the monomiuals {c/'—ac'>—...—c'},
q<j1<jy<--<j,<q+p—1, form a Z,-base of H*(V,, R;Z,). As to
the values of g/—qg”/, we refer the reader to Epstein-Steenrod IV, 4.

Avoiding all questions about y¥ and ¢—a one can apply 12.8(i) to the
embeddings N,, R=M, R and get inductively

12.12 Proposition. H'(V,, R;Z,)=0 for 0<r<gq. More generally, using
the homology Gysin sequence, H,(V,,R; Z)=0 for 0<r<gq. 1

12.13 Example. Grassmann Manifolds. If F is one of the (skew-)fields
R,C,H let G,,=G,, F denote the set of all p-dimensional linear sub-
spaces of F?*% For instance, G,, F consists of just one element, and
G,,F=set of 1-dimensional subspaces of Fi*'=PF (cf. V,3.5). We
shall see that there is a natural topology which turns G, F into a compact
manifold of dimension dp g, generalizing F, F.

Let a: FP*9— FP be any linear epimorphism, and let

Ghe= {g€G, |a(g)=F}= {gGqulgn ker(w)= {0}}

If geG;, then there i1s a unique linear map (: F?— FP*? such that
{(FP)=g and a{=id, i.e. the correspondence (+- {(FF) is a bijection
@, {LeL(FP, FP*9)|al=id} ~ G;,. We use this to topologize G},, so
that ¢, becomes a homeomorphism (where & (F?, FF+9), the space of
linear maps F?— F?*+4, has the usual topology ~F"®+%). If we fix one
{o: F?— FP*1 with o {,=1id, then adding {, defines a homeomorphism

Lo+ : L(FPker(@)={{eL(F?, FF*D|al=id}, &> {(o+E,
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hence G%, ~ Z(F”, ker(a)) ~ FPi~R%9 where d=1,2,4 as F=R, C,H.
Clearly every geG,, lies in some G},; in fact, any two g,g'€G,, lie in a
common G, (an easy exercise in linear algebra). If «, f: F”*”—» FP are
two linear epimorphisms then

07 (G )= (I =id} ~ {{Iker (B0)={0});
clearly {{|ker(B{)={0}} is an open set, hence G}, G5  is open in G},
(or G5 ). We now choose the finest topology nG, for which all inclusions
G, —>G are continuous, i.e. we say UcG, 1s open if and only if
every Ur\ G}, is open in G} . As every G;, G” is open it follows that
the 1nc]usrons G),—G,, are open maps, 1 e G’ 1s open in G, , and its
topology (from ¢ ) agrees with the subspace topology. Anytwo g, g'eG,,
lie in a common Gy, ~ F?%; they have disjoint neighborhoods there and
hence in G,,. Therefore, G,, F is a manifold of dimension dp g, known

as (real, complex, quaternionic) Grassmann manifold.

Another description of G, F is as follows. Let Gl(p+g, F) denote the
group of all linear isomorphisms FP*?— FF*9; this is an open subset
of L(FP+9 FP+9) and it is a topological group under composition. If
geG,, and z,beGl (p+q) then Y (g)eG,,, hence a map (an operation)
Glip+q)x G, — G, (¥, 8)— Y (g) Wthh is easily seen to be continuous.
The operation is transitive, i.e. if we fix g,€G,, then every geG,, is of
the form y/(g,). Therefore, the mapping n: Gl(p+¢) — G ., 7(¥) =Y (g),
induces a continuous bijection n: Gl(p+q)/Gl(p,p+49)—G,,, Where
Gl(p, p+q) is the subgroup of all  such that (g,)=g, (the isotropy
group of g,), and the coset space on the left is taken with the quotient
topology. If F=C or IH then GI(p + g) is connected, hence G, is connected.
If F=IR we get the same result using the group GI*(p+ g) of orientation
preserving linear isomorphisms instead of Gl(p+g). If U(p+g, F)c
Gl(p +q, F) denotes the subgroup of all isometries of FP*+4 (with respect
to the metric Y x; X;) then already U(p-+g) operates transitively, i.e. the
composite n': U(p+q)=Gl(p+q)—">G,, is surjective. But U(p+gq) is
compact, hence G, =im(n’) is compact, and 7’ is an identification map.
The latter implies that 7 is also an identification map, hence T is a homeo-
morphism Gl(p+q)/Gl(p, p+q)= G,

If F=C or H then G, F is orzentable Indeed, fix an orientation o of
G,, at g, and deflne a mapping #: Gl(p+q)—>G (=orientation
covering of G, ; cf. 2.11) by # ()=, (0), where ¢ is viewed as a homeo-
morphism G,,— G,,. The definition of G 4 (2.3, 2.11) easily shows that
L is continuous The restriction 7|Gl(p, p+q) to the isotropy group can
only assume the two values 0, —o; since it is continuous and GI(p, p+q)
is connected (an easy exercise, compare Pontrjagin, § 65, Beispiel 108;
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here F+1R is essential) this restriction must be constant. Similarly, % is
constant on every coset of Gl(p, p+ ¢q), hence % induces a map

G,e~Gl(p+9)/Gl(p,p+9)— G ,,

i.e, an orientation of qu. 1

12.14 We now study the cohomology of Grassmann manifolds. For
simplicity, we assume F = C; the case F =IH is similar (but less important),
whereas F=IR presents more difficulties (even with coefficients Z,; cf.
Exerc. 5). The following auxiliary spaces will be used.

() L,,=G,,xCr*. This i1s an oriented manifold of dimension
2(pq+p+q); we pick the canonical orientation on €' (cf. 2.13), and the
resulting canonical orientation on G,, (using G}, ~ C?9).

(i) M,,={(g,v)eG,, x CP*i=L, |veg}. Clearly, this is a closed subset
of L . Ifwelet M; ={(g,v)eM |geG; } then

{{eL(C°, C**9)al=id} x CP> M2, ({,2)— (L(TP), ((2)),
is a homeomorphism, hence M; ~ G} x C°~C"*x C’, hence M, is a
manifold of dimension 2(p g+ p). It can be oriented just as G,, above,

or one can verify that the local product orientations in M, ~G;,x C”
match.

(i) N,,={(g,v)eG,,xCP*Iv=0}. Clearly N,,~G,, is a closed sub-
manifold of M ,, and it is a deformation retract of L, as well as of M va
(by the deformation (g, tv),0<t<1),hence H* L~H* M ~ H* N. Further,

(12.15) (Lpg=Mp) =M, o 1 =N,y 0o1)

Proof. If (g, v)e(L,,— M), let [g, v] the (p+ 1)-dimensional subspace of
C?+4 spanned by g and v, and define

ri (Lyg=M,) (M, N

pqa +1,4~17 p+1.q~1)

by r(g,v)=([g, v], v). Define j in the other direction by j(g, v)=(v L g, v),
where v 1 g denotes the p-subspace of g which is orthogonal to v. Then
rj(g,v)=(vLg,v],v)=(g,v), hence rj=id; and jr(g,v)=(l[g,v],v).
Now, v 1 [g,v] and g are both transversal (=independent) to v. We can
deform one into the other by moving every point along the segment
parallel to v, hence jr~id. NI

12.16 Definition. By induction on p we define elements

c=cleH*(G,,C;Z) for 0<i<p,
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called Chern classes, as follows. Put ¢3=1. If p>0, and ¢?~! is already
defined, consider the Gysin sequence of N,, =M, ; by 12.8(i) we have
p*:H"N,,=H"(M,,—N,,) for r<2(p—1). Now define c;e H*?(N,; Z)=

H?*?(G,,; Z) as being the Euler class of N,,c M, , and ¢/ for 0<i<p

ra’ :
as being the image of ¢? ! under the composite

pq’

HYG X H¥L, | .- HY(L

p—1,9+1=
12.15

; O rin _ gy2i
=’ HY(M,,— N, )2 H2 N,,=H*G,,.

M

p—1,9+1 p—l,q+1)

Clearly c§=1 for all p. One often puts ¢?=0 for i>p, and one writes
c=cP=3"P (cF=37 cP=3) " yc; this element of @, H*' G, is called
the total Chern class.

If one associates with every p-space geG,, the orthogonal g-space
g*€G,, one gets the duality homeomorphism D: G,,~G,,. The elements
c?=D*¢? are called dual Chern classes. One can show that c—C=1,
ie. Y,c;~¢, ;=0 for n>0. One can also show that the classes {c?}
generate the ring H* G, ; if one uses both {cf} and {cf} to generate
H*G,, then c—~c=1 is a system of defining relations. For these facts
we refer the reader to Borel 1953, 31.1 (see also Exerc. 3); here we shall
only prove the following

12.17 Proposition. Let Z[x,,x,,...,x,] denote the graded polynomial
ring in generators x; of dimension 2i. The ring homomorphism

C: Zlx;, %3, -, x,1 > H*(G,,C;Z), C(x)=ch, 1<i<p,

is isomorphic up to (including) dimension 24, i.e. up to 2q the c? are
algebraically independent generators.

Proof by induction on p. The case p=0 is clear, Assume then p>0, and
{cP~1}, for 1<i<p—1, are algebraically independent generators of
H*(G,_, ,,,) The map H'L —H/(L M, 1) is iso-

- ) P—la+1 p—1lq+1~ p
morphic for j<2gq because

HY(L L =0

11.22
Jj—-(29+2)
M, _,,. )= H M,

p-1,g+1>=p-1,q+1~ Mp —1,q+1

for j<2g+1 (cf. also 12.8(i), applied to M, _, , ;=L hence the

composite

p—l,q+1)’

¢: H*G ~H*L

p—1l,q+1= p-1,q9+1

— H*(L M

p—1,g+1

);H*(Mpq_ Npq)

p—1,q9+1
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is isomorphic up to 2g. We can therefore define a ring homomorphism
y:H*(M,,— N, )— H* G, in dimensions <2¢gbyy(c?~")=cl,0<i<p,
and by definition of ¢f we have (p*7)(p ¢?~')=¢ ¢?~?, hence p*y=id
in dimensions <2¢q. Now we have only to apply 12.8(iv), and get
H*G,,=H*(M,,~ N, )[x J=Z[x,,....x, 1[x,]=Z[x,, ..., x,]

25

in dimensions <2g, as asserted. |

12.18 Exercises. I. Put H** X =@ , H/(X; Z). In the situation of 12.8,
deduce from the Gysin-sequence that

rank (H** N) < oo <> rank (H**(M — N)) < oo

(similarly for dimensions if coefficients are taken in a field). In this case,
kernel and cokernel of y~—: H** N — H** N have equal rank, and the
Gysin-sequence shows ker(y—)=coker(p*), coker(x—)=im(p*), hence
rank im(p*)=rank coker (p*)=1rank H**(M — N).—Under the same
assumption, the Euler-characteristic y(M — N) equals (1+(—1)*) x(N).

2. In the situation 12.8, if ker(y~: H(N;Z)— H’**(N; Z)) is torsion-
free for j>r then H/(N; Z) is torsionfree for j>r (proof: If z is a torsion
element of maximal dimension then y—z=0, hence |z|<r). If also
coker(y~: HI(N;Z)— H**(N;Z)) is torsionfree, for j>r, then
H'(M —N;Z) is torsionfree for i>r+k (this uses the Gysin sequence).

3*. Show: The cohomology ring H*(G,, C; Z) is generated by the Chern
classes {c?}, and H*(G ,; Z) is a free (abelian) group. Proof by induction
on p: Consider the Gysin sequence of M, , ,., <L, ; ., and in it the
ring homomorphism p*: H** M — H**(L — M); since {cf~'}, _, gener-
ate H**G,_, ,,, their images {p* cf~'} generate im(p*); since coker (p*)
~ker(xh~) 1s free, H**(L—M)=~im(p*)e coker(p*). In the Gysin

sequence of N,,c M, , the map

p*: H**N > H**(M, —~N )=H**(L,_| ..\ —M, | ,.\)

takes c? into p*(cP~!), by definition of ¢?, hence im(p*)>im(p*). But
rank im(p*)=rank im(p*) by Exerc. 1, hence im(p*)=im(p*) because
coker(p*) is free, hence {p*(c?~ ‘)}iq are ring generators of im(p*) and
ker (zM —)=coker (p*)=coker(p*) is free, hence {c?}i., are ring gener-
ators of H*N, = H*G,_(12.8(ii)), and H* N, is free (Exerc. 2).

4. Let g,€G,, F, and {: FPg, a linear isomorphism. Use 11.6 to show
that the map (,: (F/,FF—0)—>(M,,, M ,—N,), {,()=(g,v) (cL
12.14 for M, N) takes a generator of H, ,(F?, FF—0) into + the transversc
class v¥ (coefficients Z for F=C or H, and Z, for F=R).
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5* Letp:M,,—N,,—G,_, .., bethe map which to every (g, v)eM — N
assigns v L g, the orthogonal complement of v in g (cf. proof of 12.15).
For F=C the recursive definition of Chern classes can be summarized
by p *(ef)=p*(cf™ '), i<p. For F=IR one can define analogous classes
wPeH'(G,, ]R Z,), the Stiefel-Whitney classes, by p*(wF)=p*(wP-1),
i<p, and wh=Euler class of N,,=M,,. However, for i=p—1 there is a
difficulty: p* might not be surjective in dimension p—1 (it is injective!);
one has to prove therefore that p* wh- leim(p*). The Gysin sequence of
N,y M, shows that this is equ1valent with the vanishing of 6* p *wh-le
H (M,,q, M N,,)- This group is generated by the Thom class t4 hence
O* p* wh | _) t,andiz O*prwhZ i, vN > ={wh21,p, 0, Vi ByExerc4
O, V18 represented by the unit sphere SP~' of g, G, ; on this sphere p
satisfies p(x)=p(—x), hence p|SP~! factors through the identification

map SP~' - P,_ | R, hence p, 0, v=0, hence A=0.

After this extra argument the theory of Stiefel-Whitney classes is parallel
to that for Chern classes. In particular, the same proof as for 12.17 and
Exerc. 3 shows that the ring H*(G,, R; Z,) is generated by {w?};_,, and
that these classes are algebraically independent (over Z,) in dimensions <gq.

6*. Let V,, R be obtained from the Stiefel manifold ¥,, R by identifying
p-frames 1f thelr vectors dlffer only by sign, (v, ..., v, )~(L vy, ..., £0,).
Let M Vo X RPHE, N M,, be obtained 51mllarly from the mani-
folds M _V g X RPHY, N cM which occur in the proof of 12.10
(with € replaced by R). Show as in Exerc 4 that the identification map
T takes the transverse class v¥f into v¥ (coefficients Z,), and therefore
takes ¥ into y¥. On the other, show that n*: HY(N; Z,) » HY(N; Z,) is
zero (similar to (5* p*v=0in Exerc. 5), hence ¥ =0. This allows to prove
the remarks in 12.11.

7. Show that G, R is orientable if and only if p+q is even. Hint: The
special orthogonal group SO(p+g) (=isometries of determinant + 1)
acts transitively on G,, R; the isotropy group of any point geG,, has
two components. Study the isotropy group in a neighborhood Gj, of g
and argue as for G, € (at the end of 12.13).

13. Intersection of Homology Classes

If X, Y are subsets of an (oriented) manifold M” we might hope to express
properties of the geometric situation near X nY by an intersection
pairing H; X x H, Y—H,_;_,(X nY) which generalizes the intersection
numbers of VII, 4. Examples (Exerc. 3) show that this does not quite
work. We can, however, assign to every {e€H; X, neH;Y a coherent

system of intersection classes ({ e n)y€H, ;_, U, where U ranges over all
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neighborhoods of XY, i.e. we can define an intersection pairing
H X xH;Y->lim{H,, ; ,U}L If XnY is an ENR we can retract the
(Een)y to H(XNY) and hence get an intersection class Lex in
H,, ;,_ (X nY), as desired.

We begin with open sets, and we shall later proceed to the general case
by taking suitable limits. All homology groups will have coefficients in a
fixed commutative ring R (of characteristic two if M" is not oriented).

13.1 Definition. Let M =M" denote an oriented manifold, and d: M —
M x M the diagonal embedding. For arbitrary open pairs (V, S), (W, T)
in M we consider the maps

H,(V,S)e H;(W, T) > H, (VxW,Sx WuVxT)
(132) —H; (Vx WUMxM—dM),Sx WuVxTuM x M —dM))

it+j
S H (VAW (SAW)u(VAT)),

i+j-n

where the transfer d, is defined as in 10.5. The composite map 13.2 (or the
corresponding bilinear map), multiplied by (—1)""-7, is called the
intersection pairing, and is denoted by a heavy dot .

With elements
(13.3) Een=(=1yC-d(Exn), EeHWV,S), neHW,T).

On the right side the unmarked arrow of 13.2 (which is induced by in-
clusion) does not appear; similar abbreviations (omission of inclusion
maps) will also be used in other places of this §.

Naturality of x -products (VII, 2.7) and transfer (VIIL, 10.9(b)) imply
13.4 Proposition (naturality of « with respect to inclusions).
@ If i;: (15,8) = (V,8), i: (W, T)—» W, T),
it (VaW,(SoW)u(VnT)=» VAW, EnW)u(VnT)),
are inclusion maps of open pairs in M then

(i O ol M=iy(Con).
(b) If (V,S), (W, T), & n are as above, and L= M is an open set containing
VU W then the two intersection-products an and &g n agree. 11

For instance, in (b) we can always take L=V u W. In 13.4(a) we can take
W, 8)=(V,Su(V=VaW)), (W,T)=(W, Tu(W-WnV)), and we see
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that the intersection pairing factors

H(V, 8)x H(W, T)— H(V,(V— VA W)U S)x H(W,(W=VA W)U T)
S>HVAW(SAW)u(VAT)).

If U is any neighborhood of ¥~ W then the middle term is isomorphic,
by excision, with

HUNV,UN[(V=VAaW)uS))x HU W, UN[(W=VA W)U T]);

thus, we may say that the intersection-product & «n depends only on the
“parts” of &, in U, where U is any neighborhood of VAW (compare
remark after VII, 4.5).

If we substitute the Definition 10.5 of d, in 13.3 we find that ey=
(— 1yre=lu (g% 2y~ o, where o is a suitable fundamental class, and z, the
dual of & x #, is defined by z~(0 x0)=¢ xn. If x, y are the duals of &, 5
then x ~o=¢, y~o0=pn, hence (x x y)~(0 x 0)=(— 1" (x ~0) x (y~0)=
(="M Exy, by VIL12.17; hence z=(—1)"Plxxy, and d*:z=
(—1"Plx—y by VII, 8.14. Altogether, if x,y are Poincaré-duals of
EeH(V,S), ne H(W, T) then

(13.5) Eon=(x—y)~o=x~(y—~0)=x~7.

These formulas justify the choice of signs in 13.3.—Unfortunately, our
argument for 13.5 contains imprecisions: We have omitted several
inclusion maps, we never really defined cup-products x—y of Cech-
classes, and some of the formulas which we applied to products of
‘Cech-classes were only proved for singular cohomology classes. However,
by definition of Cech-cohomology, every element in H is represented by
singular cohomology classes, and the elements x, y, z above should be
understood as representatives in this sense. The formulas then make
sense (some inclusions are still missing, though), and are correct (cf.
also Exerc. 1 for a complete formulation of the equation £ ey =x~p).

The formulas 13.5 and the properties of —- or ~-products imply the
following

13.6 Naturality. If f: M’ > M is a map between oriented manifolds, and
(V, S), (W, T) are open pairs in M over which f is proper then the transfer
maps f, of V111, 10.5 satisfy

fi€em=(f,0)e(fin), for EeH(V,S), ne HW, T).

13.7 Corollary. If M’', M are oriented manifolds of the same dimension and
f: M — M isamap ofdegreer(cf45 Ythenrf (& en)=(f &) (f 1), for
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elements

Eeim(f;: HV,S)—»H(f~'V,f715)),

neim(f,: HW,T)-»H(f~'W,f~'T)).
In particular, if f: M'~M is an orientation preserving (resp. reversing)
homeomorphism then f, (&' +n")=(f,&) ([, 1) resp. =—(f, &) (fn),
Jor arbitrary elements Ee H(V', S'), n'e H(W', T') and arbitrary open pairs
v,S8), (W, T)in M.
Indeed, if &'=f,&, #'=fn then

P& o) =r f((L D (im)=r [ fillom) =r? Eom)=(r&)s (rn)
:(f*ﬁ ‘5)’(f*ﬁ ’7)=(f* fj'(f* ),

the 3rd and 5th equation by 10.10. If f: M'~M, then r= 11, hence
fi=+ f7 ! is isomorphic (10.10), hence the assertion.

13.8 Commutativity. & eyp=(—1)"~1De=lb o g,
13.9 ASSOCiativity- (6 L] }7) . C = é . (;7 . C)

13.10 Units. 0eé=¢(=C¢ o0, if £€H(V,S), and 0e H(M, M —K) is the
fundamental class around some compact set K such that (V—S)c Kc M.

13.11 Stability. The following diagram is commutative

H(V, e HW, T)—— H(V 0 W,(Sn W)U (VA T))
Oy

(0,®id, £id®2,) H(SAW)u(VAT),SNT)

J I(iu. i24)

HSeH(W, T)e H(V,S)e HT—® 5 HSAW,SAT)e HVAT,SAT),
where i, i, are inclusions. More precisely,
(13.12)  0,(Cem=i,, [0, &) e n)+ (= 1)1V, [E+(@,m]-

13.13 Multiplicativity. If M", M'™ are oriented manifolds, and ¢, n resp.
&', ' are homology classes of open pairs in M resp. M’ then

(ExEYa(pxn)=(—1)"=EDO=ID(&ap)x (& o).
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In particular, if M, M" are compact with fundamental classes o, o', and
p, P MxM — M, M are the projection maps then p, =& x 0, pin'=
(= 1y =I"D o x i, hence

Exa =(= 17" =1D(p, &) (b} ).

This expresses the homology x -products in terms of transfers (VIII, 10)

and intersections.

As remarked before, 13.6-13.13 follow from 13.5 and the properties of
—- and ~-products (cf. VII, 8 and 12). We leave the details to the reader
but we point out that for the proofs one can assume that the open sets
V, W, ... in question are bounded, all of them contained in one compact
set K say (because every homology class ¢, n,... is represented by a
chain with compact carrier), and then o =oy,e HM, M —K). 1

We now extend the intersection-pairing from open to arbitrary subsets
X, Y, ... of M. In general, £ en will no longer be a homology class in
X MY but rather a coherent family of homology classes {(¢ » ), }, where
U ranges over all (open) neighborhoods of X Y, i.e, £ey will be an
element of an inverse limit of homology groups. For neighborhood re-
tracts (in particular, for open sets) this limit will turn out to be isomorphic

with ordinary homology.

13.14 Definition. If M is a manifold as above, and (X, A4) is an arbitrary

pair of subsets we define
H(X, A)= !i_nl{H(U, R)|(U, R) neighborhoods of (X, A) in M},

with coefficients in an arbitrary abelian group. An element ke H, (X, A)
is then, by definition, a family {xyz€H, (U, R)} such that i  kyz=kpz
whenever (U, R)c(U, R); i=inclusion. In particular, if fe H(X, 4), and
1YR: (X, A) > (U, R) denotes inclusion then {1J® £} is such a family, hence

a homomorphism

(13.15) 1D HX, A)> H(X, 4), (&)ye=1%¢.

Clearly, every inclusion map j: (X, 4) — (X, A) induces a homomorphism
J=H(j): H(X, A)—> H(X, A), and H thereby becomes a functor on the
category of inclusion maps j. Moreover, 1: H— H is a natural trans-

formation.

13.16 Remarks. For locally compact sets (X, A) one can, as in 6.3, turn
H into a functor on arbitrary continuous maps (not just inclusions), at
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least if X lies in some ENR. In particular, H(X, 4) does not depend then
on the ambient manifold M, but only on (X, A); it agrees with Cech-
homology (proof as for A, 3.11; or by A, 3.16, Exerc. 3). We shall not go
into this, mainly because of the following result which reduces H to H
in many interesting cases.

13.17 Proposition (compare 6.12). If X and some neighborhood of X in
M are ENR’s,and if A is a (relatively) open subset of X then

1 H(X, )= H(X, A).
More generally, the same conclusion holds if both X and A4 are ENR’s

but the proof is more complicated (cf. Exerc. 4).

Proof. We can assume that M itself is an ENR and that X is a retract
of M, say r: M — X, ri=id (otherwise we replace M by an open subset).
Put N=r"! 4; then r: (M, N)— (X, A), i: (X,A)— (M, N), ri=id. For
every (eH(X,A)= 11m {H(U,R)}, define p({)=r, (CMN), then pi1(§)=
pt“”(é)—r (&)= £ hence p: H(X, A)—> H(X,A) is a left inverse of 1.
In order to show that 1 p =id we recall (I1V, 8.7) that every open neighbor-
hood U of X contains an open neighborhood V such that 1Y(r|V)~
il V— U; the homotopy can be chosen to be constant on X (cf. IV, 8.6).
If S< V denotes the set of points whose deformation path lies within R
then S is open rScAcScR, and we have the same homotopy of pairs
R(r|V)~ilE: (V,S)— (U, R), hence 15%(r| V), =i}S, . Therefore,

(IP(C))UR=1 r*CMN_l* T lVS*CVS—‘l* V) Lys

=ips lys=Cug, or 1p=id. 1

13.18 Definition. Let M be an oriented manifold and (X, A),(Y,B)
arbitrary pairs of subsets of M. Consider compact pairs (X', 4') = (X, A4),
(Y',B’)=(Y,B) and a pair (U, R) of open neighborhoods of

(XNY, (AnY)u(X nB)).
Choose open pairs (V,S), (W, T) such that
(X, A)=(V,S); (Y,B)=(W,T);
(VAW (SaW)u(VnT)=(U, R);
and consider the composition
(1319 H(X',A)x H(Y', B)— H(V,S)x H(W, T)
“SH(VAW,(SAW)u(VAT))—H(U,R).
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By naturality 13.4, this composite does not depend on the choice of
S, T, V, W; we write (£' o), g for the image of (¢',n')e H(X', A) x H(Y', B).
Also by 13.4, the composite is compatible with inclusion maps of the
outer terms, ie. if (U,R)=(U,R) then i (& en)yg=(& *n')yz. and if
(X', A)= (X", A")(Y',B)=(Y", B")then (& o)y =(E" o7 )y, Where &, 1"
are the images of &, 5. The former means that the family {(&'en’)yz} is
an element of lim{H(U R)}=H(X nY,(AnY)u(X nB)); the latter
means that (', ) {("*#')yx} is @ map of the direct system {H (X', 4') x
H(Y’, B')}, which is indexed by all compact pairs (X', 4), (Y, B) in (X, A),
(Y, B). We can therefore pass to the direct limit; since lim {H(X", 4)} =
H(X,A),@{H(Y', B)}=H(Y, B) by 5.22, we obtain a map

(13.20)  H(X,A)xH(Y,B)——H(X nY,(AnY)U(X N B))

which we still call the intersection pairing, and denote by e, i.e. the image
of (E.meH (X, A)xHy(Y,B) is CeneH, ;. AX Y, (AnY)U(X AB)).

Note that this is compatlble with 13.1 since H=H on open sets (even
neighborhood retracts).

We repeat the definition of ey for arbitrary.pairs: Given e H(X, A),
neH(Y,B), choose compact pairs (X', A)=(X, A), (Y',B)<(Y,B) and
elements{'e H(X', A'),n'e H(Y', B)such that &' — &, n' > n; then (Een)yp=
(E'en')yr is the image of (E',n') under the composition 13.19.

The general (13.20) and the special (13.2) intersection pairing thus differ
only by some homomorphisms which are induced by inclusions. The
properties 13.4-13.13 of special intersections therefore generalize,
although some of them become more complicated to formulate. Associ-
ativity (Een)el=Ce(ne{), for instance, does not even make sense unless
H =~ H on some of the intersections (but one can modify the formulation;
cf Exerc. 6). For stability one has to define connecting homomorphisms
0: H(X, A)— HA. We omit this and mention only the following naturality
properties.

13.21 Proposition. (a) If i,: (X, A)— (X, A), i,: (Y, B)— (Y, B), are inclusions
then
(il* 5)’(i2* 71)21(5"7)-

(b) If LcM is an open set containing X UY then
Coun=Cern.

(c) If M', M are oriented manifolds of the same dimension,and f: M'~M
is an orientation-preserving resp.-reversing homeomorphism then

Je&en)=(f Ve (S 1), tesp. =—(£, &) (S, 1)
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These follow from 134 and 13.7. I As explained after 13.4, parts (a)
and (b) imply that £ ey can be computed in any neighborhood of X n Y.

13.22 Example. Let N, N, be oriented submanifolds of dimensions
n,,n, of an oriented m-manifold M™, and assume N=N,nN, is a
compact connected orientable manifold of dimension n=n+n,—m.
The intersection oy'eoN* of the fundamental classes

O%VGH,,V(N‘,,NV—N;Z), v=1,2,

is an element of H,(N; Z)—because N is an ENR—hence o}'s0N>=p 0}

with peZ. Using 11.18 the integer u can easily be identified with the
intersection multiplicity of 11.30 Exerc. 1. Independently of §11 but in
the same spirit as 11.13 we prove

13.23 Proposition. I N,, N, intersect transversally at some point PeN =
N,AN, then oY'eoN*= t+o0N. More generally, ok*eo¥*= + 0% for every
compact set K< N. The sign + is the same for all K; the proof will show

how to express it in terms of given orientations.

Proof. Assume first K =P. The intersection op'«05? can be computed in
any neighborhood U of P (by naturality 13.21 of «, using excisions
H(X,X-P)xH{UnNX,UnX—P)). By assumption, there is some
neighborhood U of P in which N,, N, look like coordinate subspaces
of R™; more precisely,

(U; UnN,, UnN,; P)
z(]R"2 x R" x IR¥; {0} x R" x IR* R¥2 x R" x {0} ; {(0,0,0)}),

with n,=n+k,. Therefore, if 0,eH,(R", R'—{0}) and [0]eH,{0} are
generators we have to show that
(13.24) ([0] xo0, x 0,)*(0,, x 0, % [0])=%[0] x 0, x [0].
By naturality 13.21(a), it suffices to prove this equality for the intersection
pairing
H, (B x (R", R"—{0}) x (IR", R* — IB*))
x H, , . ((IR¥, R* —IB*2) x (R", R"— {0}) x IB")
—— H,(IB* x (R", R"— {0}) x IB*2).

But here we are dealing with open sets in R™ and we can apply 13.5. The
Poincaré-dual of [0]xo,xo0, tesp. o,,x0,x[0] is represented by a
generator y,eH*((R¥, R*2—{0})x R" x R*) resp.

pr€ Ho(R*2 x R" x (R, R* — {0})),
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and p,—p, is a generator of
Hutk ((]sz’ R — {0}) « IR" x (]Rkl’ RM — {0}))

by VI, 9.2, By 13.5, this proves 13.24.

For the general case consider the diagram

H, (N, N,—P)xH, (N,, N, P)——— H (N,N—P)

(13.25) H, (N,, N,—N)x H, (N,, N, —N)—— H,(N)

H, (N, N,— K)x H, (N;, N, — K) —— H,(N,N - K),

where all vertical arrows are induced by inclusion; they take fundamen-
tal classes into fundamental classes. The diagram commutes by naturality
of intersections. The upper right vertical arrow is isomorphic because N
is connected. The upper square now shows oj'eon>= top, the lower
square thereafter o}’ e 0}>= +o%. 1

13.26 Applications. Since intersection-products are (essentially) Poincaré-
dual to —- or ~-products (13.5) they will not produce more results
than the latter (less, in fact, because they are only defined in manifolds).
However, they are closer to geometric intuition and therefore possess
considerable heuristic value; they often indicate how to turn an intuitive
geometric result on intersections into a rigorous one. For instance, if we
slightly deform two non-parallel planes in IR* then the deformed figures
will still intersect in a continuum—why?

Intersection-products can also serve to compute —-products in mani-
folds M. Suppose, for instance, x, ye H* M are dual to ¢, ne HM, hence
x~y dual to ¢en. If &, 5 have simple representative cycles, or represen-
tative cycles in simple subsets X, Y then it may be easy to compute £en
(using the properties of », or comparing with other manifolds), or at
least we can say that en has a representative in (close-by) X nY. In
particular, £, n, might be represented by submanifolds N, N, which
intersect transversally; then +&ey is represented by N, n N, (cf. 13.23).
For instance, in projective space P, one easily shows (by CW-decom-
position V, 3.5) that H(B) is freely generated (mod 2 in the real case)
by the homology classes of projective subspaces F,k<n. Any two
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projective subspaces P, P’ of the same dimension represent the same
homology class, [P]=[P’], because one can transform P into P’ by a
projective transformation ¢ with ¢=~id. In computing [R]«[F] one
can therefore assume that B, F, are in general position (and therefore
intersect transversally), hence [R]+[P]= +[R 1. This determines o in
HP, and therefore — in H*P,.

For another application consider an oriented manifold M and a compact
orientable submanifold N. We want to know whether N is nullhomo-
logous in M (i, 0oy =07), and we have the following criterion: If another
oriented submanifold N'=N' of M exists such that N’ and N intersect
transversally and N nN' is not nullhomologous in N' then N is not null-
homologous in M.

+Jj—n

Proof. Suppose i, QN=O. Then we can find a bounded open set M <M
such that i: NcM and 7,0y=0. Take a compact set KN’ which
contains N'n M and consider the diagram

(HN)x H(N',N' = K) X%, (HM) x H(N', N’ — K)

H(N AN)—3 S H(M ANY).

It commutes by 13.21(a), hence J, (0« 0 )=(T, 0y)+ 0} =0. But oy s 0§’ =
On*ON. A= tOx x> Dy 13.23; hence NN N’ bounds in M~ N’ and
therefore in N’, a contradiction. |

13.27 Remark. In VII,4 we defined intersection numbers on for
homology classed e H(X, A),ne(Y,B), such that || +|n|=nand An Y=§
=X nB. In the present context we can define intersection numbers
I(¢,n)€e A for such classes by

(13.28) HEm) =y (Eeny =<1, (Eonus

where y=augmentation. We shall see in a moment (13.29) that this is
compatible with VII, 4. We can also define local intersection numbers
if X nY decomposes; more precisely, if {V;},[=1,2,..., are mutually
disjoint open sets in M" such that (X nY)<| ), ¥ then ((en),eHV
=~ @, HV, has components (¢ +7),,€ HV; whose augmentation values are
called the local intersection numbers, I,(¢,n)=y(Een),. Clearly, the
global intersection number I(&,#) is the sum of the local intersection
numbers I,(¢,n).
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13.29 Proposition. Let (X, A), (Y, B) be pairs of sets in R" such that
AnY=@=XnNB, and let £cH, ,(X,A), neH,(Y,B). Recall (VII, 4)
that EoneH,(R",R"—{0}), whereas (Een),eHyU for every neighbor-
hood U of X nY. We claim:

u~(Eonm)=*Sgn,

where p=yu,e H"(R",R"—{0}) is the generator such that {p,0,>=1.
In other words, Eon=4io,, where AeR is the value of the augmentation
onnel.

Proof. By definition, (£en)g.=(—1)""'d,j (£ xn)°, where d: R"—
R"x R" is the diagonal and

Ji (X xY,AxYuXxB)—(R"x R", R"x R"—dR")
is inclusion; therefore
L(Eompa=(—1""d_d j (& xn)=(—1y"1~j, (£xn),

where t 1s the Thom-class of d (cf. 11.14). On the other hand, £op=
(=1 i;lj*(é x ) by VII, 4.14, where

(R", R"—{0})—> (R"x R" R"x R"—dR"), ix=(x+0);
hence i, (£on)=(—1)"j, (£ x 7). Now,
dy (70 Ogn= (=1 d_(E e n)gn=(—1)" 1~j (£ x )
=t~i (Eon) =i (*1~(en).
Since obviously i, =d,: HyR">H,(R"x R"), this proves (ne{)g.=
i*1~(Eon). Now let £ =0, denote the generator of H,(R", R"—IB")=
H, (R", R"—{0}), and n=[0] the generator of H,IB"~H,RR". Then

(ne&)g-="[0] by 13.10, and en=o0, by VII,4.11. It follows that [0]=
i*t1~o0,, hence i*t=pu. 11

13.30 Exercises. 1*. Show that the intersection pairing 13.2 for open
pairs in M agrees with the following composition

HV,S)x HW,T) =24, [I (M= S,M —V)x HW, T)
s HW—WAS)UT,W—(WnV)UT)x HW,(WnS)u T)

2N, H(WA VYU T,(WAS)U T) EEXCH(Wﬁ V,(WnS)u(TaV)).

® We use d, from §11 here, not 10.5, because we’ll apply 11.14.
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This is a rigorous formulation of the equation £ex=x~pn of 13.5. We
could have used this composite to define intersection-products but we
found it to be more cumbersome than 13.2; in particular, it is not sym-
metric. On the other hand, it is the unsymmetry which indicates a
refinement: we did not really use that W, T are open: W can be arbitrary,
T relatively open in W (verify this assertion). It follows that in the limit
construction 13.18 we can always take W=Y" (and T relatively open
in W), and for (U, R) we can take neighborhoods of

(XnY,(AnY)u(XNB)) inY

(instead of M), i.e. we arrive at an intersection pairing H(X, A) x H(Y, B)—
lim{H(U, R)}, where (U, R) ranges over all neighborhoods of

(XnY(AnY)U(XNB) in Y.

2. If M" is an oriented manifold and A4 is an open subset such that M — 4
is compact then H(M, A), suitably indexed, is a commutative graded ring
(with e as multiplication), having o0,,_ , as unit. If Y is any subset of M, if
BcY is relatively open, and (YN A)= B, then H(Y,B) is an H(M, A)-
module, with respect to « (as refined in Exerc.1). Compare this with
VII, 8.17.

3. Write S'=Ru {c0}. Let I'={(x, y)eS' x R|y=sin(1/x), x+0} =graph
of sin(1/x), and let Z=T its closure in S!x IR. Construct a function
f: S'xR-—>R such that f~'(t)=S"x {t} for |t{|=2 and f~1(0)=2Z
(compare 10.14 Exerc. 1). In the manifold M*=S'x R x R, consider the
subspaces X =S!'xRx {0}, Y=graph(f); then XN Y~Z, hence
H(XnY)=0. On the other hand, if A= {(x, Vs z)eXHyIZZ}, B=
{(x,y,2)€Y||y|=2} then H,(X, A)=Z=H,(Y,B), and the intersection
class (¢ e 1), of any two generators is a generator of H, M ~Z. It follows
that (£ «#),, is not in the image of H,(X n Y)— H, M .—In order to get an
analogous example with A=@=B one can replace R by R/{¢||t|>2} in
the above, i.e., identify the subset |t|>2 of R to a point.

4. Show that the map 1: H(X, A)— H(X, A) of 13.15 is isomorphic if X
and 4 are ENR’s. Hint: As in 7.16 Exerc. 3 show that there are open
neighborhoods (¥, S) of (X, 4) and a map o: (V, S) — (X, 4) such that the
composite (X, 4)——(V,8)—2>(X,A) is homotopic to the identity
map. In other words, up to homotopy (X, A4) is a retract of an open pair.
Now use 13.16, 13.17.

5. Let X, Y be subsets of an oriented manifold M which are separated by
X Y (cf. 6.13),1.e. such that X — Y, Y— X are both open (or both closed)
in (XuY)—(XnY) For every open neighborhood U of XY we can
find open neighborhoods V, W of X, Y such that (V¥ W)c U, hence an
intersection pairing (HV)x (HW)— HU, and by passage to limits
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Ot (HX)x (HY)— H(X nY). Show that the pairing « of 13.20 factors as
follows:

(HX)x (HY) % (HX)x (HY) =25 H(X N Y).
Generalize to relative homology.

6. Show that the intersection pairing  of Exerc. 5 is associative. For the
pairing « of 13.20 associativity does not make sense; instead we have the
following (more cumbersome) relation

((é )y ()W = (é e(ne C)V)W s

which holds for £e HX, neHY, {e HZ, and open neighborhoods U, V, W
of XnY, YNnZ, XnYnZ such that (X nV)c W, (UnZ)cW. Verify
this assertion and its generalization to relative homology.

Show that x~(en)=(x—~¢&)en for xeH*(X,A,), (eH(X,A,UA,),
neH(Y. B), and open sets X, A,, Y, B. Generalize to arbitrary sets.
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A.1 Limits of Functors

In VIII, 5 we treated limits of directed systems D. We found it convenient
then to think of D as a functor. Here we take up that point of view,
and discuss the general thcory (due to D. Kan, Chap. IT) of limits of
functors. In more comprehensive treatments, our limits are called
colimits (left limits, direct limits) but since we don’t use any others
we simply speak of “limits™.

1.1 Definition. Let A, %" be categories, and D: A — X4 a functor. Any
object Ke.#" defines a constant functor A4 — ¢ which we denote by the
same letter K. A (natural) transformation ¢: D — K is then a family
{¢,: DA—K},;., of morphism in ) such that ¢,=¢,(Da), for all
morphisms a: 4 — u in A. Such a transformation u: D — L, where Le ¥,
is called universal if for every transformation ¢: D — K there is a unique
morphism : L — K such that ¢ =y u. In formulas,

(1.2) A (L, K)~Transf(D, K), Wi>yu.

If u: DL, u': D—IL are two universal transformations then there
is a unique equivalence k: L L such that u'=xu, i.e. universal trans-
formations are essentially unique (proof as for VIIL 5.5). They may
not exist; if they do then L is called the limit of D; in symbols,
L=Iim(D). If ¢: D — K is a transformation we also write ¢: lim(D) —» K
for the corresponding morphism.

We can consider all functors D with range ¢ whose limit exists. Then
“lim” should be a #-valued functor on a category with objects {D}
and as many morphisms as possible. We define these morphisms now;
there are too many of them, however, to form a category in the usual
sense.

1.3 Definition. Let D: A —¢, D': A'— % be functors. Consider pairs
(3, d), where y i1s a function which assigns to every object Ae A an object
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7(A)eA’, and d={d;: D(A)— D'(y A)};., is a family of morphisms. We
say (y,d) passes to the limit if the composition of d with any trans-
formation ¢': D'— K, KeX, is a transformation ¢'d: D — K, i.e. if the
compositions {Di—%5 D'(y ) —22 K},_, form a transformation, for
every ¢’ € Transf(D’, K), Kes#. If D has a limit, say u: D — lim(D), then
¢’ d defines a unique morphism : lim(D)— K such that yu=¢'d
(by Definition 1.1); in particular, if also D’ has a limit, u": D' — lim(D’),
then a unique morphism lim{d): lim(D)—lim(D’) exists such that
lim(d)u=u'd.

1.4 Lemma. Let (y, d) be a pair as in 1.3. Assume that for every morphism
a: A—u in A there exist morphisms yA—2>p<«2—yu in A" such that

d; e
D(A) —% > D/ )

AN

D'a
(1.5) D@ ~
D(u)—2— D'(y p) %

commutes. Then (y,d) passes to the limit.

D'(p)

Indeed, if ¢': D' — K is a transformation then ¢ =¢’d satisfies

(p/:(p;AdA:(p/p(D/a)dA:(p;(le)du(Da) (py;& u(Da (p[l(Da))
i.e. ¢ is a transformation. |}

1.6 Proposition. Let D: A—3, D': A'—> A, D": A"—>H" be functors,
and (y,d), (v',d') pairs as in 1.3 (y: A> A", y: A" A", d;: DA—>D'(yA),

2 D'(X)—> D"(y' A)). If both (y,d) and (y,d) pass to the limit then so
does (', d)(y, d)=(7"y,d d), where (d'd),=d,;d;. If, moreover, D, D', D"
have limits then lim(d’ d)=(lim d')(lim d).

The proof is as for VIIL, 5.12. 1

For instance, every natural transformation 4 between functors
D, D": A — A passes to the limit (y =id; compare VIII, 5.13). 1f @: Q2 — A
is a functor then @ composes with every D: A—>X4 to give
E=D@O: Q- A, and the identity morphisms d,: Ew— D(O w), we?,
pass to the limit (=0, d,=id; compare VIII, 5.15). As in VIII, 5.15,
we write @_: lim E — lim D instead of lim(d) in this situation. General-
izing VIII, 5.16 we define

1.7 Definition. A functor @: Q— A is called weakly cofinal if every
/€A admits a morphism 2 — @ (w), for some we Q. It is called strongly
cofinal if, moreover, every pair of morphisms & w, « 1 — @ w, (where
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w;€§2) can be completed to a commutative diagram

Qw, \

(1.8) w,
\@ / egz

where g;: w;,— w are morphisms in . A subcategory Q of A is called
(weakly, strongly) cofinal if the inclusion functor is so.

For finer forms of cofinality cf. Exerc. 2. We have chosen the crudest
versions here which suffice for our applications.

1.9 Proposition. Let ©@: Q — A be a functor. For every functor D: A — A
and every object Ke A let E= D@, and define

(1.10)  ©: Transf(D,K)— Transf(E,K), by (0 ¢),=0¢ea,

i.e. the map Q assigns to every transformation ¢@: D— K the trans-
formation =0 (p): E— K such that \,=@g,,.

(i) If @ is weakly cofinal then @ is injective.

(i) If © is strongly cofinal then @ is bijective. Moreover, u: D — L is
universal if and only if v=0(u): E — L is universal, hence O : lim(E)~
lim(D), if one of these limits exists.

Proof. Assume @ is weakly cofinal, and let ¢eTransf(D, K) a trans-
formation. Every leA admits a morphism f: 1— @w, hence
0,=0e,(Df)=(0¢),(Df). This expresses ¢ in terms of & ¢. It shows
that @ is injective, and it also indicates how to construct an inverse
I of @, namely as follows. For every transformation e Transf(E, K)
we should define Iy eTransf(D, K) by (1), =y ,(Df). In general, this
will depend on the choice of (w, f), but it doesn't if @ is strongly cofinal.
Because then, if f;: A — Owy, f5: 41— O w, are two choices we can find
g1 wy— W w,: g, such that (@g,)o fi=(Og,) f,, hence

VY, o (DI) =Yoo (Eg) o (Df) =4, 0 (DOg) o (Df)=y, 0 D((Og)ef),

and this does not depend on i. We have to show that I'yy={(Iy),};c.
is a transformation, and that [ is inverse to ©.

Let e: y— A a morphism in /1, and f: 2 — @ w as above. Then

()=, D{foe)=y, o (Df)o(De)=(I)); > (De),
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showing that I is a transformation. Furthermore,
(16 9);=(©9), > (Df)=0o,° (Df)=0;,

(O1Y), =)o =V, D(id)=Vy,,

and

hence 1@ =id, &I =id. The last assertion of 1.9(ii) (universality) follows
as in VIIL, 5.17. 1

When do limits of functors A — 4 exist? If the category A is small
(i.e. the class of objects is a set) then one has similar criterions as in the
case of quasi-ordered sets (compare VIII, 5.7). If it is not small one
might still be able to use the following generalization of VIII, 5.7.

1.11 Proposition. If A is an arbitrary category, Q a small category, and
O: Q— A a weakly cofinal functor then every functor D: A— A
(=category of ubelian groups, or modules, or complexes ...) admits a limit,
namely the quotient of @,.o D(Ov) by the subgroup (-module, -complex ...)
which is generated by all elements of the form (1,,(Df;)—1,,(D f,))(x,),
where 1, = inclusion, x,€ D(A), A€ A, w,, w,€Q, and Ow, L~} L 0w,
are morphisms in A.

Proof. Let L=@®,., D(Ov)/{1,,(Df) x; —1,,(Df>) x,}. Every i€ A admits
a morphism f: A— @, for some we Q. Let u;: DA — Lbe the composition

DA-25 DO w) -2 @0 DO V) - L,

where p=projection. This does not depend on (w,f); for if
Ow, <L i L5 O w, are two choices then 1, (Df;)—1,,(Df,) maps DA
into the kernel of p. Furthermore, u={u;} i1s a transformation, for if
g: u— Aisa morphismin A then u;(Dg)=p1,(Df)(Dg)=p1,D(fg)=u,.
We assert that u is universal. Indeed, if ¢;: D2 — K is a transformation,
then clearly y'={@g,},co: ®Dveo P(@v)— K is a morphism such that
V' 1,(Df)=0e,(Df)=0,, and y'|ker(p)=0; hence Y’ passes to the
quotient L and induces : L— K such that Yy u, =y 1,(Df)=¢,. This
Y is unique because the images of u; generate L (the images of ug,
generate already). 1

1.12 Exercises. 1. Let 7 be a group, and think of = as a category with
a single object ¢ whose endomorphisms are the elements of 7. Show
that a functor D: 7 — /% is the same as a left operation of n on an
abelian group G=De, and that limD=G,=quotient of G by the sub-
group generated by {g—(Dx)g}, ge@G, xen.
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2. Our notion 1.7 of strong cofinality is rather crude: even the identity
functor ®=id: A — A may not be strongly cofinal, although @, is
(trivially) isomorphic. Clearly, @: Q- A should be called cofinal if
O, lim(DO)=1lim(D) for every functor D: A — 4, and arbitrary #.
Show that @ is cofinal if (i) every 4 admits 1 — @ w, and (i1) every pair
of morphisms @w «2— 1 -2 @' can be connected by a commutative
diagram

Ow

...... ——’@K

in A whose row is in im(®).—The converse is also true (cf. MacLane
1972, 1X.3).

3. A category A is said to be directed if (i) every pair of objects A, 4,
admits morphisms A, —>u<—A,, and (ii) every pair of morphisms
oy, %yt A—>p is equalized by some fi: p—v, i.e. fa,=fa, (compare
Verdier, 2.7).

This generalizes the notion of a directed set in such a way that the
exactness properties VIII, 5.18-5.20 extend to limits of functors A —» &/ %.

A.2 Polyhedrons under a Space, and Partitions of Unity

We shall be concerned with extending functors from polyhedrons to
more general spaces. Following D. Kan, we can obtain extensions by
taking limits of functors from the category of polyhedrons under a
space; we deduce the relevant properties of such categories. Following
E.Cech, we can obtain extensions by taking limits of direct systems
which are indexed by sets of coverings (cf. Eilenberg-Steenrod, IX);
the connection between the two methods is provided by partitions of
unity (numerations).

2.1 Definitions. For every topological space A we define the category
21 of polyhedrons under A4 as follows. An object of 24 (a polyhedron
under A) is a homotopy class of maps &: A— R, whose range R; is a
polyhedron (=triangulable space). A morphism from ¢ to 7 is a homotopy
class of maps a: R.—R, such that a{~#n. Composition is given by
composing maps o.

This construction P* is functorial in A, i.e. every map f: B— A4 induces
a functor

(22) P2t =25, [A-1Ef], [delad,
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where brackets as usual denote homotopy classes. Clearly /¢ =(2%)(#/),
and 2'9=1d, so Ar> P4 is a cofunctor from spaces to categories.

Rather than 24 we shall use the dual category which we denote by
A=Ay, 50 AP =P,

2.3 Proposition. If A is a polyhedron then A, has a strongly cofinal sub-
category 2 consisting of a single object, namely id: A— A, and a single
morphism, id,, .

If A is dominated by a polyhedron, say A—— P —"— A, with ri~id,
then A, has a strongly cofinal subcategory £ consisting of a single object,
namely A—— P, and two morphisms, id, and ir.

Proof. In the first case, every object {: A — R, of A admits a unique
morphism into id: A — A, namely ¢ (remember to reverse arrows since
P*=APY. In the second case, &1 A— R, admits the morphism ¢r
into i: A— P, and any two morphisms of {: A >R, into i: A—P
become equal after composition with ir. 1

2.4 Proposition. Let A be u locally closed subset of a polyhedron P,
and let Q denote the set of all open neighborhoods of A in P, directed
by reversed inclusion. As a category, Q is dual to the category of inclusion
maps of open neighborhoods of A in P. We have a functor

(2.5) 0: Q—Ay, OV=[4—V]  Oi1=[1],

where V denotes open neighborhoods of A, and 1 inclusion maps between
such neighborhoods. This functor @ is strongly cofinal.

Proof. Recall first that open subsets of polyhedrons are polyhedrons!®
so that @V is indeed a polyhedron under 4, and @ is a functor from
Q to A. Since A4 is locally closed there is an open neighborhood Q
such that A is closed in Q. Now if [£] is an object in A we can, by
Tietze's extension lemma, extend the map ¢: 4 — R, to an open neigh-
borhood V of 4 in Q, i.e. we can factor ¢ as A —— V — R,; this proves
weak cofinality. Suppose then we have two such factorizations, i.e. two
maps 1,: V; = R « V;: 1, of open neighborhoods V, which on 4 agree
(up to ~) with & Again from Tietze’s extension lemma we get (cf. proof
of V111, 6.2(b)) an open neighborhood V <(¥,nV,) on which ,, 17, are
homotopic; this proves strong cofmality. §

% For polyhedrons in R” sece Alexandroff-Hopf III,3.2. A general proof follows
Spanier, p. 149, Exerc. 3, using Whitehead’s (1939) subdivision theorem 35.
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We are going to compare A, to the usual Cech category of open
coverings of 4 but we need some preliminaries first. Recall that a family
of continuous functions, n={n;: A — [0, 17},.,, is called locally finite
if every point aeA has a neighborhood V such that m;|VV=0 for all
but finitely many j. It is point-finite if for every ae A4 the set {j|n;(a)+0}
is finite. It is a partition of unity if ) ;n;(a)=1, for every ae 4; in parti-
cular, the set {j|n;(a)#0} must then be countable, for every ae A.

2.6 Lemma. If n={n;},., is a partition of unity (not necessarily point-
Jinite) and £>0 then every point ac A has a neighborhood in which only
Jinitely many =; have values >c¢.

Proof. Given ue A, we can choose 4 finite subset F<J such that
Yiermila)>1—¢ Let V={x€A|) ;.pm;(x)>1—e}. This is a neighbor-
hood of a in which n; can assume values >¢ only if je F (because

Yiam=1). 1

2.7 Corollary. If n={n,},., is a partition of unity then
p(x)=Sup;, {m; x} =Max;; {m; x}

is a continuous function, and p(x)>0.

Proof. Since ) ;m;(x)=1, we must have u(x)>0. By 2.6, Sup;;{mn;}
agrees, locally, with the maximum of finitely many among the r;, and
1s therefore continuous. 1§

2.8 Proposition (Mather). If n={n};.; is a partition of unity (not
necessarily point-finite) then there exists a locally finite partition of
unity p={p;};e; such that p;'(0,1]c=;'(0, 1], for all jeJ. (Any such
p will be called an improvement of z.)

Proof. Let g;(x)=Max (0, 27;(x)— u(x)), where u(x)=Max;, {m;(x)}, as
in 2.7. Then g; is continuous, and ¢;7'(0,1]=n;'(0,1]. Let ac4 and
e=1u(a). By 2.7 and 2.6 we can find a neighborhood V of a and a
finite set F<J such that u(x)>2¢ and m;(x)<e for xeV, j¢F; hence
o;(x)=0for xeV, j¢ F; hence {a;};; is locally finite. On the other hand,
m(a)=pu(@) for some keJ, hence o (a)=m(a)=ul(a)>0, hence
Y ics0;(a)>0 for all ae A. Therefore p;(x)=0,(x)/) i, 0;(x) is a partition,
as required. 1§

2.9 Corollary [Dowker, §16, Thm. 1]. If 4 is a simplicial space and
if A" is obtained from A by taking the strong topology (V, 7.14) then the
identity map 1. A— A’ is a homotopy equivalence. In fact, a homotopy
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inverse k: A'— A and deformations, k1~id, 1k~id’ can be so chosen
that no point leaves the closure of its carrier simplex.

Proof. The barycentric coordinates n;: A'— [0, 1], jeJ=set of vertices,
constitute a (point finite) partition of unity = (cf. V, 7.13). By 2.8, 7 admits
a locally finite improvement p. Consider the map k: A"— A which is
defined by 7;1x=p;. It is continuous, because 1k is continuous (due to
the strong topology), and every point has a neighborhood whose image
lies in a finite (i.e. compact) simplicial subspace (on these the topologies
of A, A’ agree). The deformation x> x,, defined by

T (x)=t p;(x)+(1—1) m;(x),

is continuous as a map D': A" x[0,1] — A’ because the n;D" are con-
tinuous, and it is continuous as a map D: Ax[0,1]—A because
D|X x[0,1] is continuous for every finite simplicial subspace X < A.
Hence D: ki~id, D’: 1xk~id. 1

2.10 Definitions. Let 4 be a topological space. A covering % of A is
called numerable if a partition of unity n={ny}y., exists such that
n;1(0,17< U for every Ue%. We say, n is a numeration of %, provided
it is also point-finite. By 2.8, if % is numerable then it even admits a locally
finite numeration.

The set Q, of all numerable coverings of A is directed by refinement
(recall that % >  if every Ue% is contained in some Ve?"). As usual,
we think of , as a category.—For instance, if A is paracompact then
every open covering is numerable, if A is normal then every locally
finite open covering is numerable.

The nerve v of a numerable covering % is a simplicial space (cf. V, 7)
whose n-simplices correspond to (n+ 1)-tuples (U,, U, ..., U,) such that
Uea and (); Ui+§; in particular, the vertices of v# are just the non-
empty sets Ue% (actually, this is the description of v# by its vertex
schema; cf. V, 7.15). If we take v#% with the strong topology then a
numeration w of U is the same as a map n: A—v such that = (StU)c U
for every Ue%, where StU denotes the open star of the vertex U (cf.
V, 7, Exerc. 4); namely, = maps a€A into the point whose barycentric
coordinates are {n;(a)}. If we take v# with the weak topology, as
we normally do, then n: A — v need not be continuous. It is con-
tinuous, however, if {n;} is locally finite because then every aeAd
has a neighborhood whose image under n lies in a finite simplicial
subspace of v#%. The homotopy class of this map does not depend
on the choice of =; if n’' is a second choice then (1 —t) n+tn, 0<r<1,
is a deformation of n into n’ (compare 2.22). Suppose now %>V
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are numerable coverings. We can choose a map u: #—7*" such
that Uc(uU) for every Ue. There is a unique simpiicial map
V% v —vy¥" which on vertices agrees with u (cf. V, 7.11); its homo-
topy class does not depend on the choice of u, as follows by “linear
deformation™ as above (cf. also 2.22). In barycentric coordinates we
have (v} x)y=),uy_y Xy, for xev%. This implies (v¥)n=p, where
n: A— v is any numeration of %, and p: A —v¥ is the numeration
such that py=Y ;_y 7. Since the homotopy class of p is unique we
always have (v%) n=~p, for any choice of y, 7, p. We can therefore define
a functor

Q1) 0: Q,—A,, OU=[rn:A—->vU], O@&=¥)=[v¥],
which we call the numeration-functor (A% =24, [ ]=homotopy class).

2.12 Proposition. The numeration functor is weakly cofinal.—In fact, it is
also strongly cofinal but that is more difficult to prove (cf. Exerc.5),
and we don’t really need it.

Proof. Let [¢: A — R,] an object of A,. We have to construct a numerable
covering % such that, up to homotopy, ¢ factors through n: 4 - v%.
Take a triangulation of R,, let J denote the set of vertices, §;: R, — [0, 1],
jeJ, the corresponding barycentric coordinates, and let % denote the
set of all sets (8; £)~"(0, 1]. By definition, we can assign to every Ue#
an index j(U)eJ such that U =(f;y, €)~'(0, 1]. Then 7= {ny =P, Svea
is a numeration of %, and U — j(U) defines a simplicial map f: v# — R;
such that fr~¢&. |1

2.13 Corollary. For every topological space A the category A,=(P*)°P
admits a weakly cofinal functor Q, — A, whose domain Q, is small. 1§

2.14 Definition. Let o: B— 4 a continuous map. If % is a numerable
covering of A then a~!% ={0"! U}y.q is a numerable covering of B;
indeed, if 7 is a numeration of % then n« is a numeration of « ' #. If
U > then clearly a~'% >a~'¥. We can therefore define a functor

(2.15) Q: Q-Q QU=0"'%.

Clearly Q,,=9,Q,, and Q;y=id, thus Q is a cofunctor from spaces to
categories (in fact, to directed sets).

If % is as above then to every (non-empty) Wea '%=Q,% we can

assign a set y We# such that a~(u W)= W, and u defines a simplicial

map of nerves v¥: vQ,%— v which on vertices agrees with y. Its
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homotopy class does not depend on the choice of u, and the diagram

B—%* 4

(2.16) J 1
/4

VU vU
homotopy-commutes, both assertions by contiguity (cf. 2.22). Similarly,

VEVESV VY if >, and Vv if C-25B2o4.
2.17 Numerable Coverings of Products (compare Eilenberg-Steenrod
IX, 5). Let 4, B topological spaces and % a numerable covering of A.
A function & which assigns to every Ue% a numerable covering U
of B is called a stacking function (on %). The set of all sets U xV, where
Ue% and Ve % U is then a covering of 4 x B, which we denote by % x %.
It is numerable, in fact, if % = {n¥} is a numeration of %, and n*? = {nj’V}
is a numeration of U then

ngxv: AxB—[0,1], a3y (a,b)=ng() n7Y(b),
is a numeration n%*¥ of % x &, —Coverings of the form % x & will be
called stacked coverings (of A x B, over %).
Given %, a stacking function %, and for every Ue% a numeration "
of LU, we define a continuous map

218) 77 (v xB—-v(@x ), n7({xu}hb)={yuxv=2v 77" (b)},

where v%, v(U x &) are the nerves of %, U x %, and points xev¥,
yev(¥ x &) are described by their barycentric coordinates, x={xy},
y={yuxv}- Any such map n¥ will be called a stack-numeration.

One can easily show that the homotopy class of 77 depends only on &
(not on the #”Y), and that the composition

n%xid e
AxB (V%) x B——v(Ux %)

U xS U xS

is homotopic to n , where %« are numerations of %, x %
We shall not use this, and we therefore leave the proof to the reader,
as an exercise. One can also show (cf. Exerc. 6) that, for compact B, every
numerable covering of A x B admits a stacked refinement. Of this we only
need the special case B=[0, 1], and there we have the following more
explicit result.
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2.19 Proposition. If' A is a space, and W is a numerable covering of
A x [0, 1] then there exists a numerable covering U of A, and a function
r: WU — Z with values r U > 1, such that every set

i—1 i+l
Ux[l—.—,lj—], where Uel,ie T, 0<i<rU,
rU 7 rU

is contained in some We W In particular, there is a stacked covering which
i—1 i+1

refines W, namely < U x [;, —i—] ,withUe# andi=1,2,...,rU—1.
’ rU " rU

Proof. For every (r—1)-tupel (W, ..., W,_,) in #" we define

22 i—1 i
(2.20) ={GEACIXI:' 1,’+1]cmfori=1,2»~'»’_1}~
| r’or

Clearly, U(W,, ..., W,_,) x [’—l A
p

to show that % ={U(W,, ..., W,_,)} is a numerable covering of A. Take
a locally finite numeration 7= {n,} of #, and define

[i—l i+1]}
tef—, ,

r r

for U=UW,, ..., W,_,). If py(a)>0 then n,, (a, )>0, hence (a, t)e W, for

i—1 i+1
allte[—l p ,—l+ ] and all i, hence acU(W,,...,W,_,); this proves
r

]cW,. for all i, hence it suffices

Pyt A—[0,1],
(2.21)

py@=Min,_, Min{nwi(a, t)

p;'(0,1]1cU. Every (a,t)eAx[0,1] has a neighborhood which is
contained in some 7;'(0, 1] and which meets only a finite number of these
sets. Since [0, 1] is compact, we can find, for every ae A,

(i) sets W,,..., W._,e#  such that ax

i=1,...,r—1;

i—1 i1 )
=2 -1(0, 1],
[ roor ]an‘( ]

(ii) a neighborhood V of a such that V' x [0, 1] meets only a finite number
of sets 7' (0, 1].

Property (i) shows that, for every ae 4, we have at least one

U=UW,, ..., W,_,) with py(a)>0.
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Property (ii) implies that, for fixed r, the family {pyy, . w,} is locally
finite. Let p,(a)=Max {pyw, . w,(@)ls<r}, and define

T, ... wa@)=Max {0, pyw, . w,la)— rp.(a)}.

Clearly, n; (0,11 = p; (0, 11<= U. Given a€ 4, let k be minimal such that
py(a)>0 for some U=U(W,, ..., W,); then n,(a)=p,(a)>0. Moreover,
if we choose N >k such that N p,(a)>1 then Npy(x)>1 for all x in a
neighborhood V' of a; in this neighborhood we have rp,> 1 for all r> N,
hence all ny,y, ., with r>N vanish in V’. This shows that the family
of all 7y, is locally finite. To make it a numeration of %, simply divide
each n;; by the sum of all of these functions. 1

2.22 Remark. If A is a simplical space, and X an arbitrary topological
space then two maps f;, f;: X — A are said to be contiguous if, for all
xe X, the pair f,(x), fi(x) is contained in a single simplex of A. Conti-
guous maps are homotopic. This is familiar for simplicial maps (Eilen-
berg-Steenrod VI.3), but we also used it in another case (after 2.16).
Define

fii X—>A, 0<t<l, by nf,(x)=(1-0nfo(x)+tnf;(x),

where n: 4 — [0, 1] is any barycentric coordinate. This “linear deforma-
tion” {f,} may not be continuous in the weak topology of A, however,
it obviously is continuous in the strong topology, hence f,~f, by
Dowker’s theorem 2.9.

2.23 Exercises. 1. If {n;: A—[0,1]},_; is a partition of unity (not ne-
cessarily point-finite), and I is any subset of J then

. . n: A-[0,1],  m(a=Y,, 7;(a),
is continuous.
2. 1f ¥ is a covering of 4 which admits a numerable refinement then ¥~
is numerable. If 4 is a polyhedron, and ¥ is any open covering of A then
A can be so triangulated (cf. J.H.C. Whitehead 1939, Thm. 35) that
every open star is contained in some Vev The set of open stars is then
numerable (by barycentric coordinates) and refines ¥, hence ¥  is
numerable. This (together with 2.8) shows that 4 is paracompact.

3 (compare Eilenberg-Steenrod IL.8). If %,¥  are numerable
coverings of A,B then # x ¥ ={U xV}, Ue#, Ve¥, is a numerable
covering of A x B. The projections % x ¥"— %, " define simplicial maps
of nerves v(% x ¥")—~ v, v¥, hence a map r: v(« x ¥ ) > (VU)x(v¥').
We also have a map i: (V&)X (v¥")— v(% x¥"), namely (i(x, )y v =
Xy Yy, Where {x;} denotes the family of barycentric coordinates of
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xev4, etc. Show that ri=id, ir~id, and that the diagram

V(WU x¥)
2
XxY B i“r
nx?\)
V)< (v¥")

homotopy-commutes. Corollary: The product of two polyhedrons has the
homotopy type of a polyhedron.

4. Let n={n;}, , a partition of unity on 4. A subset ScJ is called a
simplex of m if a point ae A exists such that n;a=0 for all jeS. Every
simplex of n is countable; further, n is point-finite iff every simplex is
finite. The partition is said to be barycentric if

(1) for every simplex S<J and every family {a}, ¢ such that 0<a. <1,
Y, a,= 1,there is a unique point ae A with a,=n(a), for all s€S.

(11) A has the topology induced by =, i.e. the coarsest topology for which
every 7, is continuous.

If, moreover, every simplex is finite then we say = is finitely-barycentric.
A finitely-barycentric partition = is just about the same as a triangulation
of 4; in fact, it is a homeomorphism n: Axv%, where % ={n; (0,11},
and v/ is taken with the strong topology. A general barycentric partition
7 might be thought of as a “ triangulation ” in which simplices of countably-
infinite dimension are admitted. Let A,—A be the subspace which con-
sists of all points a such that {jeJ|n;a 40} is finite. Then n|A [ is finitely-
barycentric; use 2.8 to show that the inclusion map 4 ;, — A4 isa homotopy-
equivalence.

5*. For every topological space A the numeration functor Q,— A, is
strongly cofinal. We know already (2.12) that it is weakly cofinal. What
remains to be shown is that the following diagram can always be com-
pleted (dotted arrows),

VU
A-—-THyW P,
\ V‘/
vy©

where P is a polyhedron. By 2.12, it is enough to fill in a polyhedron Q
instead of a nerve v ¥ The obvious candidate for Q is as follows,

0={(x, y, e ) x(v¥")x P*MNw(0)=f(x), o(D=g()};
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it is clear how to define the dotted arrows. The only trouble is to show that
Q is (homotopy equivalent to) a polyhedron. For this one may consult
Milnor 1959.—The same reference is needed to show that A, is a
directed category (1.12, Exerc. 3).

6* If Aisan arbitrary space, B a compact space,and W a numerable covering
of A X B then there exists a stacked covering of A x B which refines #.
This easily implies 2.19. The proof is along the same lines as that for 2.19,
although more complicated. We give some indications. Consider the set
J of all functions j: o, —#, where X is a finite numerable covering of B
by compact sets. For every je J, let U;={ae A|a x K < j(K) for all Ke #}}.
One can show that #={U},_,; is a numerable covering of A4; clearly,
U;x Kcj(K)e#, hence {U;x K} is a stacked covering (with stacking
function U;—> ) which refines #.

In order to prove that % is numerable one can (as for 2.19) use the functions

p;: A—>[0,1],  pj@)=Ming ,, Min{m(a, tteK},

where n={my}y .4 is a locally finite numeration of #; one well-orders J,
defines nj(a)=Max {0, p;(a)—Sup, _; p.(a)}, and divides each =} by the
sum of all of these functions. Another way to prove numerability of % is
to assume first that A is paracompact. If #” is open then % is easily seen
to be an open covering, hence numerable. For instance, this applies if
A= P58 where P is a polyhedron in the strong topology, because then P?
is metric. The general case then follows because % is refined by the
counterimage of a numerable covering on (v#")® x B under a continuous
map Exid: AxB—(v# )’ xB.

A.3 Extending Functors
from Polyhedrons to More General Spaces

As before, we denote by Zo the category of topological spaces and
continuous maps, and we let Zof < Jo4 be the full subcategory of poly-
hedrons (=triangulable spaces). We consider homotopy-invariant
cofunctors F: ¢ — A, and we shall be concerned with the problem of
extending F to Jo4. The range-category .4 is assumed to possess limits
of arbitrary direct systems (in the sense of VIII, 5), and is otherwise
arbitrary. For instance, #  may stand for the category of abelian groups,
or the category of sets.

3.1 Definition. If F: Pof - A, G: Jop— A, are cofunctors then G is
called an extension of F if G|2s¢ is equivalent with F.

'1 This means: a~f = Fa=F g, for continuous maps «, 8.
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32 Lemma. If G: Jop— A is an extension of F: Pof — A then G is
equivalent to some cofunctor G': Jofe— A~ such that G'|Pof =F. In view
of this we shall usually assume G|%»¢ =F when speaking of extensions.

Proof. Let @: G|Z»/=F be an equivalence. Define G’ on objects A resp.
morphisms a of Joy as follows.
, . _JFA il AeZol,
G A—{GA if A¢Pot,
Fa, if range (1)e 2o and domain (a)e 2o/,
[(Ga) @1 ifrange(x)eZo¢ and domain (2)¢ Pof,
D (Ga), if range («)¢ Zo¢ and domain (o)e Zo/,
Gu, if range (1)¢ Zof and domain ()¢ Pof .
Obviously, G’ is a cofunctor such that G'=G, and G'|Zo¢ =F. |

G/O(=l

3.3 Definition. Let F: Zof — A be a homotopy-invariant cofunctor. For
every topological space 4 we consider the category 2% of polyhedrons
under A4, its dual A, and the functor FoR: A, — 4, where R=range.
Thus F o R assigns to the object [{: 4 — R,] of 4, the object F(R,) of 4.
We shall see below (3.8) that the limit of F o R (in the sense of 1.1) always
exists; we denote it by FXA=1lim(F o R).

Every continuous map a: B— A induces a functor A,: A, — A, (cf. 2.2),
hence a limit morphism (cf. remark after 1.6) which we denote by FXa =
(A).: F¥4 —F¥B. Since A,;=A44,, and A,,=id, we see that FX is a
cofunctor, FX: Zo4 — A. In fact, we shall see (3.8, 3.7) that FX is an
extension of F; it is called the Kan-extension.

3.4 Definition (compare 2.10). Let F: 2o — A be a homotopy invariant
cofunctor. For every topological space A let Q, the directed set of
numerable coverings of 4. If we assign to every numerable covering
% e, the value of F on the nerve v#%, and to every refinement # =¥~
the induced morphism F(v¥): F(v¥")— F(v%),we obtain a direct system
whose limit we denote by FA=lim(Fov)=lim{Fv%}4.,,-

If x: B—A is a continuous map then (cf. 2.15, 2.16) Q,: Q, > Qg is
order-preserving, and the family of morphisms F(v¥): F(v&)— F(vQ,%),
U € Q,, passes to the limit (e.g. by VIII, 5.11). The induced limit-morphism
Fa is given by

(3.5) Fa: FA—>FB, (Fa)u=ul=%FvY),

where u, resp. uy is the universal transformation for FA resp. FB. One
easily verifies that F(x )= (F B)(F a), and F(id)=id, i.e. that F is a cofunc-
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tor, F: Jofe — A In fact, we shall see (cf. 3.7) that F is an extension of F;
it is called the Cech-extension. Moreover, we shall prove (3.8) that F ~ FX, K

3.6 Proposition. If F: f —. A is homotopy-invariant then so is
F: %ﬁ —A.

Proof. It is enough to show that F]O F]l,where Ji A—>Ax[0,1],

. ) 1 i+l
ji(a)=(a, t). Consider stacked coverings % x & = {U X [ ! T l . ]} of

Ax[0,1] as in 2.19, Ue%, i=1,2,...,r(U)—1. Then j '« x #)=U,
for every t. Moreover, we assert that the: maps v <7,y f" L NU > WU XS)
of2.16 are hOmOtOplC in fact, that the stack numeratlon ng” (v#)x10,1]
> V(W x &) of 2.18 is a deformation of v2* into v**¥. For this, one

observes that for fixed Ue% the endpoints O resp. 1 of [0, 1] lie in only
2 -2
one set of the covering U, namely in [O, —] resp. [r—, 1]; hence the

only function 7Y which is not zero on 0 resp. 1 is n]Y, 17V (0)=1, resp.

7Y, 741 )—1 The definition 2.18 therefore shows that the maps

7 \(v) x {0}, n*')v¥ x {1}, coincide with the simplicial maps

2 -2
UHUX[O,—], UHUx[r ,1]
r r
of v into v(% x &), and these maps agree with v > v >, by definition
of the latter.

Since F is homotopy-mvarlant we get F (\'q’xy =F(v7*¥), hence (cf. 3.5)
(Fjo)u™ =u® Fp2*7)=u* F(v? )= (Fj) u?* whereudenotes uni-
versal lransformauons Every numerable covering W of Ax[0,1]
admits a refinement of the form % x &, by 2.19. It follows that

(Fjo)u” =(Fjo) w7 (FVy* ") =(Fj) u* 7 (Fv*)=(Fj) u?,
hence Fj,=Fj,. 11

Recall (2.10) that every # €€, admits a unique (up to ~) numeration
7% A— v Let F: % — A be a homotopy-invariant cofunctor.

3.7 Proposition. If P is a polyhedron then {Fn Fvl — FPlycq, is a
universal trunsformanon (for Fov), hence FP=FP. This isomorphism is
natural, i.e. F is an extension of F. For every topological space A the trans-
formation {Fn™: FyW — FA}y.q, is universal.

Proof. If 7 is a tnangulanon of P then for every vertex v of . we have
the barycentric coordinate #: P — [0, 1], and the sets 6~ (0, 1] constitute
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a numerable covering ¥"7 of P. In fact, the barycentric coordinates {{}
form a numeration 7”7 : P — v¥"7 which is also a simplicial homeomor-
phism; in particular, F(z””): Fv¥"7)=FP.

If %7 are two triangulation of P such that ¥"% >7%"J then we say
& is a refinement of 7, and we write & > 7. For instance, every sub-
division (Spanier 3. 3) of 7 is a refinement of 7. If ¥ >7 then n77 ~
vy5 n” hence F(n”7)=F(rn”%) F(v}%), hence F(v}5)=F(r”*)" ' F(n"7)
is an isomorphism. A polyhedron admits arbitrarily fine triangulations
(cf. J.H.C.Whitehead 1939, Thm. 35), i.e. the set of coverings ¥,
as 7 ranges overall trrangulatlons is cofinal in the set 2, of all numerable
coverings; hence (VIII, 5.17), FP—llm{Fv%}:hm{Fv‘//,/} Since all
morphisms F(v}5) of the latter direct system are isomorphisms we
obtain u¥7: F(v¥" 7 )=FP for all 7, where u denotes universal trans-
formations; combined with F(n”7): F(v¥"9)=FP we get p” =
u’7(Fn*7)~': FP~FP. If % is any numerable covering of P,and ¥ is a
triangulation such that ¥".% > % then u® = u”? F(v}*), and n~vyfn’?,
hence F(v}”)=F(@**) 1 F(z%), and u* =u”*F (n”’y )~ LF (%)= p” F(z*%).
If % is 1tself of the form % =¥ this shows p” =p7, hence p=p’ does
not depend on 7. For general % again, we conclude that {F(n%)}=
~1o {u"} is indeed universal.

Now let a: Q — P be a continuous map between polyhedrons. For any
numerable covering % of P we have

(Fo)(F %)= F(n¥% a) " 2° F(v¥ n* 7' %)= F(n* ™' ¥) F(v¥) 2 (F o)(F %),
hence Fa=F o. Thus F|2s/ =F.

Finally, let A be an arbitrary space, and % a numerable covering of A4,
with numeration n=n%: 4 - v%, and universal map u%: F(v#)— F A.
By 3.5, we have (F'n?%)u?,=u%, H/F(v’/) for any numerable covering ¥~
of v#. In particular, we take ¥"=%"7, where  is the given triangulation
of v (having % as the set of vertices). The corresponding numeration
1”7 v — v¥ T isthena (simplicial) homeomorphism,and u’,, = F(z””)
by the first part of 3.7. Hence

Fr¥=uz " (Fv))F(n"7)y '=uy "V F((n*7)~'vY).

But the map (z”7)~'v): va~'¥ — v agrees with v, 'Y, by the very
definitions. Hence Fn?=u"""" F(vi '")=u?, the latter because u, is a
transformation. §

38 Proposmon The transformation {F &: FREHFA} [&]e Ay, is univer-
sal, hence FA=1lim(FoR: A, — X )=FXA. This isomorphism is natural,
ie F=Fk
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Proof. Given any transformation {¢,: FR, — Y} into an Ob_]CCl Y of &
we have to show that there is a unique ¢: FA — Y such thatgo o(F &)= o
Such a ¢ must satisfy @o(Fn)= ¢, for any numeration n: A —>v%;
since {Fn}%n is universal (by 3.7), this shows that ¢ is unique, and in
fact, we can define ¢: FA— Y by these equations. We must then prove
@o(F¢)= ¢ But ¢ factors through some numeration,

& A"V —>R,,
by 2.12 (the numeration functor is weakly cofinal); hence
Pe=¢ o (Fo)=@o(Fr)e(Fa)=¢o Flan)=¢o(F ).

It remains to prove naturality; let 5: B— A a continuous map. Then
(FX Byu§ =uf, by definition of FXp, where u denotes universal trans-
formations. But uf=F¢ hence (FXB)(F&)=F(¢B)=(FP)(F&), hence
FX B=F f by universality of {F¢&}. 1

The Kan- resp. Cech-extension of F: Zo/ — A admits the following
abstract characterization.

3.9 Proposition (Universal Property). If G: Yo — A is any homotopy-
invariant cofunctor, and \y: F — G|Pof is any natural transformation then
there is a unique natural transformation ¥: FX — G (resp. F — G) such
that V|Pol =1.

Proof. Let ¥: FX — G be such that V|2 =1. We can apply naturality
of ¥ to the map {: A — R, where [£]e A, and we find that ¥, o(FEE)=
(G&)oyg,. Since {FX¢= F &} is universal (3.8) this shows that Y, is
uniquely determmed and in fact, we can define ¥,: F¥4 —GA by these
equations. We must then prove naturality; let B: B— A a continuous
map. We get

(Pgo FEB)o FXE=Wyo FX(EF)=G(E ) o g, =(G o (G &)oY,
=(G)o ¥ o (F* ),
hence W0 (FX f)=(G ) ¥, by universality of {FX¢}. 11
3.10 Corollary. The numeration functor @: Q, — A, (cf. 2.11) induces an
isomorphism ©_: FA=FXA.

Ihis is really a restatement of 3.8; it also follows from 3.9 because @ :
FA~FXis a natural transformation such that @_|Zo¢=id. 1

In VIIL, 6 the name of Cech and the notation H was used for a construc-
tion which differs from the present one. This is justified by the following
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3.11 Proposition. If' A is a locally closed subset of a polyhedron P then
FA=FXAx1im{FV},where the limit is taken over the directed set of open
(or polyhedral) neighborhoods of A in P.—This follows immediately from
24 and 1.9(i). §

3.12 Example (compare Lee-Raymond, Thm. 2). Let P denote a fixed
polyhedron, and let Hp: Jop — Feso the cofunctor which assigns to
every space 4 the set of homotopy classes of continuous map f: A — P,
and which assigns to §: B— A the map Hp f: HpA— H, B, (Hp B)[f]=
[fB]. Let hp=Hp|Pof. We assert,

(3.13) hp=H,,

i.e. Hp is the Cech-(or Kan-)extension of its restriction to /. This will
be clear if we verify the

3.14 Universal Property. If G: Jopp— Sets is any homotopy-invariant
cofunctor, and = hp — G| P/ is any natural transformation then there is a
unique natural transformation ¥: Hp— G such that ¥Y|Pot =\).

The proof follows by applying the Yoneda-Lemmal, 1.12 both to hp
and H,; we write out the necessary details: Given any ¥: H, — G such
that ¥|%Pof =, we apply naturality of ¥ to maps f: A— P and we get
Y. [f1=¥o(Hp f)[idp] =(G f)oyp[idp]. This shows that ¥, is uniquely
determined by Y (even by wp[idp]), and in fact, we can define ¥,:
H,A— GA, by ¥,[ f1=(Gf)oyp[idp]. We must prove naturality. Let
f: B— A a continuous map; then

(GB)e lPA [f]=(Gﬁ)°(Gf)° '»[/P[idP]:G(fﬁ)ol»[/P[idP]
=%[fBl=¥-(H: H)[/] 1

For instance, if P=K(G,n) is an Eilenberg-MacLane space then h,
agrees with (singular) cohomology, hp=H"(—, G); cf. Spanier 8.1.8.
It follows that H, agrees with Cech-conomology H(—,G); compare
Huber.

3.15 Remarks. It is clear that the Kan-procedure 3.3, but also the Cech-
procedure, for extending functors applies to many other situations. For
instance, we can replace Zof by a category of special polyhedrons (say
finite, finite-dimensional ...) and/or 954 by a category of special spaces
(say compact, finite-dimensional ...). Or we can consider the category
Jop'® of pairs of topological spaces and in it the category Zof‘? of pairs
of polyhedrons. The reader is encouraged to think about these generali-
zations and modifications; he may consult Lee-Raymond for details.
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3.16 Exercises. 1. Let F,F,: A — % be functors, and let i: X -7,
r: Y— X be morphisms in %" such that ri=id (X is a retract of Y). Show
that if F, Y=F, Y, and F(ir)=F,(ir), then F, X = F, X; in fact, there is a
unique morphism ¢: F; X — F, X such that (F, )p=F, i,or o(F, r)=F,r,
and ¢ is isomorphic. Roughly, this says that functors which agree on Y
also agree on retracts of Y. If a functor is only defined on some sub-
category containing Y and (ir), how would you (try to) extend it to X?

2. For any topological space 4 define the category %, of polyhedrons
over A dually to 2.1 (objects are homotopy classes ¢: D, — A whose
domain D, is a polyhedron, etc.). Show that 2, is directed (cf. 1.12
Exerc. 3).

For any covariant homotopy-invariant functor F: %o/ — A define
FA=lim(FD: #,— '), and turn Fy into a (homotopy-invariant)
functor Fg: Jo— A" This is the Kan-extension of a covariant functor.
Show, by cofinality, that Fy A =F|sA4|, where s4 is the singular semi-
simplicial set of 4, and [sA| is its geometric realization (compare Milnor
1957, Thm. 4). Use this, or (simpler!) show directly that singular homology
is (equivalent to) the Kan-extension of simplicial homology. In this case
(but not for arbitrary F) one can also replace 2, by the subcategory of
compact polyhedrons over A.

3. Let X be a normal space for which X x [0, 1] is also normal, and let
A< X be a closed subspace. Let 4 be a directed (by inverse inclusion)
set of closed subsets of X such that (i) AcB for every Be#, and (ii)
every neighborhood of A contains at least one Be#. For instance,
% might be the set of all closed neighborhoods of A. Every continuous
map ¢: A — R, into a polyhedron admits an extension to some B, say
e;: B.—R,, B,c%.

Now let F: Pof — A" a homotopy-invariant cofunctor and F¥: Zop — A
its Kan-extension. Consider the direct system {F¥B}p_,, with arrows
induced by inclusion. For every [{: 4 — R.], pick e,: B, — R, as above,
and put y[{]=B,, d;g=F*(e): FR,— F*B,. Show that (y, d) passes to
the limit (in the sense of A.1.3), hence a limit morphism lim(d): FX4 —
lim {FX B} ,.5. The inclusion maps iz: A — B, on the other hand, induce
FXi,. FKB— FXA, hence {F¥ig}: lim{FX B} —» FX¥A. Show that these
are reciprocal isomorphisms, FXA4xlim{F¥ B}p_, (weak continuity of
Kan-extensions).
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