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Preface

In the forties P. Ya. Polubarinova-Kochina and P. P. Kufarev studied
the problem of evolution of a round oil spot surrounded by water when oil
is extracted from a well inside the spot (Figure 1). It turned out that the
boundary of the spot remains an algebraic curve of degree four in the course
of evolution. This curve is the image of an ellipse under a reflection with
respect to a circle. In 1950 Kufarev managed to generalize this property: if
initially the oil spot is the image of the unit disk under a conformal map
given by a rational function of the complex coordinate in the disk, then it
retains this property in the course of evolution.

In 1972 S. Richardson found an infinite series of first integrals of motion
of the spot. He proved that the integral of any harmonic function over the
oil domain changes linearly in time. This allowed Richardson to give a new
proof of the invariance of rationality and an effective method to construct
explicit solutions.

FiGure 1

vii



viii PREFACE

It was realized recently that this approach can be extended to multiply
connected domains. In this case, the unit circle is replaced by a half of
a complex algebraic curve with a specified M-structure, and the conformal
map is given by a path integral of a meromorphic differential on the curve
that has no zeros or poles on the chosen half.

Below we discuss these and other interesting mathematical subjects that
arose recently in the theory of fluid flows with a moving boundary.

This text is an extended version of the first author’s talk at a Moscow
Mathematical Society meeting about the results of the second author. The
authors gratefully acknowledge the crucial influence of Prof. V. M. Entov
who introduced them to the circle of physical problems under consideration.
The authors would also like to thank Prof. V. I. Arnold, D. Ya. Kleinbock,
Prof, 1. M. Krichever, and Dr. A. 1. Shnirelman for very useful discussions,
and Dr. Y. Peres for reading the English translation of the manuscript and
making important remarks.



1. Mathematical Model

1.1. Filtration flow of an incompressible fluid. Consider a planar flow of a
homogeneous fluid through a homogeneous porous medium. Such a flow is
modeled by a time-dependent vector field in the plane, v = (v,, v,), which
is called the fluid velocity.

Suppose that the fluid is incompressible. This property is expressed by the
differential equation
ov, 0Ov,
8x By

The main law of filtration is Darcy’s law.! It states that the fluid velocity
is proportional to the pressure gradient:

(1.1) divv = =0.

(1.2) v=—xkgradp.

Here p is the pressure, k > 0 is a proportionality coefficient. It is known

that x is inverse proportional to the dynamical fluid viscosity u: x =k/u.

The coefficient £ depends solely on the properties of the porous medium.
Thus, the fluid velocity is a potential vector field:

(1.3) v=grad®, ®=-—xp,
and its potential @ is a harmonic function:
2 2
(1.4) AD = 59;(2) g—?zi =0.
dx oy

Introduce the complex coordinate z = x + iy.
Let the region of flow contain sources and sinks. Let their coordinates and

rates be z,, .., z, and ¢, ..., g, respectively. This means that near the
point z i
g, :
(1.5) v(z) = =————— + smooth vector-function,
2n(z-%))
or, equivalently,
q; .
(1.6) D(z) = ﬁ log|z — z,| + smooth function.

!"This law was discovered experimentally in 1856 by A. Darcy, a French engineer, when
designing a system of public fountains.



2 MATHEMATICAL MODEL

FIGURE 2

. counterclockwise,

For any simple contour y that goes around :z f

(17) /(V, n)dlija

y
(see Figure 2). Geometrically, this means that the area occupied by the
amount of fluid that passes through the contour in a unit time interval equals

q;.

1.2. The moving boundary problem. We want to study the motion of the
boundary between two fluids saturating a porous medium. Here is the math-
ematical model we will refer to.

Consider a region of one fluid that is surrounded by another fluid of zero
viscosity. It is assumed that the pressure is constant in the nonviscous fluid
and continuous across the boundary between the fluids. Therefore, the po-
tential is constant throughout each connected component of the boundary.

For now suppose the viscous fluid region to be simply connected (without
holes) and bounded. Then we can assume that the potential vanishes on
the boundary, since adding a constant to the potential does not change the
velocity field:

(1.8) ®|,,=0.

This assumption together with conditions (1.4) and (1.6) defines uniquely
the velocity potential @, for any domain D that contains the points z,, ...,
z, . It is simply a linear combination of Green’s functions of D with poles
at these points. Its existence is guaranteed by the standard theorems about
the Dirichlet problem; see [1].

The law of motion of the boundary is dictated by Darcy’s law:

Every point z € 0D moves with velocity grad®,(z).

MAIN PROBLEM. Describe the evolution of the viscous fluid region, given its
initial shape and the positions and rates of sources and sinks.

REMARK. Similar problems arise when describing the evolution of the
boundary between fluid and gas, polymer material and air, crystallic and
molten substance, and so on.
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In practice the viscosities of oil, gas, and water are in the following approx-
imate proportion: oil:water = 1 to 10, water:gas = 10 to 100. Therefore,
the assumption about zero viscosity is most realistic for gas.

The problem we have stated can be solved approximately by a version of
Euler’s method for ordinary differential equations as follows. Calculate the
velocity potential ®,,(0) of the initial domain D(0) and translate each point
y € D(0) by the vector At-grad ®(y), At being a small time interval. We will
obtain the domain D(At). Repeating this process, we will define domains
D(2Atr), D(3At), ..., D(nAt), and this sequence will be an approximation to
the desired family of domains D(t).



2. First Integrals of Boundary Motion

2.1. Richardson’s integrability theorem. The problem of the boundary evo-
lution has a remarkable infinite series of first integrals. This property was
discovered by Richardson in 1972.

THEOREM [2]. Let D(t) be the viscous fluid region at a time t, and let u
be an arbitrary harmonic function in the plane. Then

d n
(2.1) E/D(t) udxdy = quju(zj).

ExaMPLE. The area of D(¢) changes in time at the rate ) g; (u=1).

Let us call the integral [ udxdy the moment of the domain D with
respect to the harmonic function #. This theorem describes the dynamics
of the moments of D(¢) in time. In particular, if the rates g; are constant,
all the moments change linearly in time.

PROOF OF THE THEOREM. It is seen from Figure 3 that

/ udxdy =/ udxdy+/ v Atdl + o(At), At— 0,
D(t+AD) D) aD(1)

where v, = (grad®, n) = *|grad®| is the scalar value of the boundary
velocity. Therefore

4 udxdy = / u(grad®, n)d/.
dt D(1) aD(t)
l v, AL + (A1) dD(t + AD)

FIGURE 3
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6 FIRST INTEGRALS OF BOUNDARY MOTION

Adding to the right-hand side the term — fj DY) ®(grad u, n)d/, which
equals zero because the potential vanishes at the boundary, we obtain, us-
ing Green’s formula,

i/ udxdy = / u(grad®, n)d/ — ®(gradu, n)d!
dt Jpg aD() ap()

= / div(ugrad ® — ®gradu)dxdy
E

h
+ Z/r (ugrad ® — gradu, n)d/,
j=1 ]

where E is the domain D(z) with n disks of a radius ¢ with centers at z;
cut out. Integral over E equals zero because the functions u and ® are
harmonic. Taking into account the asymptotics of the potential at z i we
get
/ (dgradu, n)d/ — 0, / (ugrad®, myd! — u(z;)q;

r, r

J 7
as ¢ — 0, which implies the statement of the theorem.

ReEMARK. In the theorem it is sufficient to require that the function u be

harmonic in some domain that contains D(¢) together with its boundary.

Examples of harmonic functions: 1, x, y, xy, x? = y2 .

Since harmonic functions on the plane are real (imaginary) parts of holo-
morphic functions, for every holomorphic function f(z) we have

d n
il oD =320,1(2)

In particular, for any integer k >0

d k - k

at I, z dxdy ]Z:;quf'

So, the moments of a domain with respect to all harmonic functions can be
expressed in terms of Richardson’s moments M, (D) = [, zkdxdy , since
any holomorphic function expands into a Taylor series.

2.2. Reconstruction of a domain from the values of its moments, and the
inverse problem of two-dimensional potential theory. Richardson’s theorem
suggests the following method of solving the evolution problem. Since the
initial domain is known, we can evaluate its moments. The moments of the
domain D(t) at any time ¢ can then be found from (2.1):

n t
2.2 / udxdyz/ udxdy + uz./q.rdr.
(2.2) » | udxar+ 3 uz) [ a0

Jj=1
So, it is sufficient to be able to reconstruct the domain from its moments. It
gives rise to the following general problem.
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RICHARDSON’S MOMENT PROBLEM. Reconstruct a simply connected bound-
ed domain from the sequence of its moments.

This problem has a nice physical interpretation.

INVERSE PROBLEM OF TWO-DIMENSIONAL POTENTIAL THEORY. Reconstruct
the shape of an infinite homogeneous cylinder from the gravity field that it
creates outside itself.

Let D be the orthogonal cross-section of the cylinder, and let w be the
complex coordinate in the section plane.

It is easy to calculate that the gravity force equals the gradient of the
logarithmic gravity potential

(2.3) y(w) = —1—/ log|z — widxdy,
2n D

up to a factor that depends solely on the density of the material. To know this
function outside the domain (or just in a neighborhood of infinity) means
the same as to know the moments of the domain, since

M, = 1 M,
(2.4) I, (w) = -2 log|w| + g s Re (J) ,

M, being the moment of D with respect to the function z~.

2.3. Results on the uniqueness of a domain with given moments (potential).
The inverse problem of two-dimensional potential theory has been studied in-
tensively because of its applications to geophysics. Here is one of the earliest
mathematical results about it.

DEFINITION. A domain D is called starlike with respect to a point P if
it contains the chord PQ together with every point Q € D.

THEOREM (P. S. Novikov, 1938, [3]). If two bounded domains are starlike
with respect to a common point, and their outer gravity potentials are the same,
then these domains coincide.

Still, there exist distinct simply connected bounded domains with equal
moments. Let us give a construction of such domains. Consider two ar-
bitrary simply connected bounded domains D, and D, whose boundaries
intersect transversally at some point P (Figure 4, p. 8). Choose a point ¢
in the intersection of the domains. Denote by D, (¢) and D,(¢) the domains
that are produced from D, and D, by injection of fluid from a source at
Q@ at some rate (the same for both domains). Consider annular domains
E\(t) = D,(t)\D,, E,(t) = D,(t)\D, . Their moments are equal, according to
formula (2.2). Excluding from both E|(f) and E, () the curvilinear tetragon
A, we obtain simply connected domains G, and G, with equal moments.
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A

FIGURE 4

REMARKS. 1. An example of two domains with equal moments was first
published by Sakai in 1978 [4]. The authors have been told that a similar ex-
ample was earlier constructed by P. S. Novikov. A. M. Gabrielov constructed
an example of two simply connected polygons with equal moments [28].

2. One can show that for any N there exists a set of N domains with
equal moments. Moreover, one can construct an infinite set of domains with
this property (see Problem 3 and [22]).

3. The constructed domains with equal moments have singularities on the
boundary. This defect can be corrected. Let us inject equal amounts of fluid
into both domains from sources at the vertices of A. The two domains ob-
tained in this way will still have equal potentials (by Richardson’s theorem),
and their boundaries will be analytic curves.

THEOREM [5] (on local uniqueness of a domain with prescribed moments).
Let D(s) be a smooth family of simply connected domains with equal mo-
ments. Then D(s) = const.

PROOF. %fD(s)udx dy = faD(S) uvd! (Figure 3), v being the speed of
deformation of the boundary (a function on the boundary). Suppose that v
is not identically zero. Choose a harmonic function u so that |u —v| < ¢
on dD(s). For this purpose, let us take the domain D" of points whose
distance to D(s) is less than ¢ (a small number that depends on ¢) and
then solve the Dirichlet problem in D™: Au = 0in D, u|,,. = v", where
v™ is a function that is close to v . The solution will be a harmonic function
in a neighborhood of D(s) that is close to v on the boundary of D(s) in
the supremum metric. When ¢ is small enough, fa D) vud!{ > 0. But
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this integral must equal zero by the invariance of the moments. This is a
contradiction. Hence, v is identically zero, i.e. the family is constant.

This theorem has a corollary that guarantees that any nice family of do-
mains with the right moment properties has to be the right one, i.e. the
solution of the injection problem.

CoroLLARY. Let D(t), t € [0, T), be a smooth family of simply connected
domains whose moments change according to (2.1) as t increases. Then D(t)
is a solution of the injection problem with the initial domain D(0).

ProoF. Assume this is false, and D(¢) is not a solution. We can con-
struct the solution of the injection problem with the initial domain D(0)
and sources at points z i of rates q;. This will give us another family of

domains D'(¢) with moments changing according to (2.1). For 0 < s < ¢,
denote by D(s, ¢) the result of injection into the domain D(s) during the
time ¢ —s from the system of sources described above. By (2.1), the mo-
ments of D(s, t) do not depend on s. Since D(s, ) is a smooth family
of domains, by the local uniqueness theorem it must be constant. Then
D(0,t)=D(t, t). But D(0, t)=D'(t), D(t, t) = D(t). So, we have proved
that D(z) = D'(¢), i.e. D(¢) is a solution.

EXAMPLE [6]. Let D be a bounded simply connected domain, 4 be a
positive number, and P be a point on the plane. Assume that for any har-
monic function u, [judxdy = Au(P). Then D is the circle of area A
with center at P. To prove this it is enough to observe that the domains D
obtained by rotation of D by an angle ¢, as well as D, satisfy the above
condition. Therefore, according to the latter theorem, D¢ =D forall ¢.

2.4. The result of injection does not depend on the order of work of the
sources and sinks. Define a strategy of extraction as a vector-function of
rates of sources:

q(1) = (4,(1) > 4,(1) 5 .5 4,(0))
and the rotal of this strategy for a time 7 as the vector

T T T
Q- (/0 ql(t)dt,/o qz(t)dt,...,/o qn(t)dt).

Suppose we have a smooth family of strategies on a time interval [0, T]:
q,(¢) . Assume that their total is independent of s. Consider the evolution
of any initial domain produced by the strategies q (¢). At the time T we
will obtain some final fluid domains D (7).

CoRrOLLARY (of the local uniqueness theorem). The final domain does not
depend on the strategy (on s).

In particular, the schedule of work of the sources and sinks does not matter:
the transformations of an initial domain produced by different sources are
commutative.
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Problems. 1. Find the center of mass of the domain obtained from a disk
by extraction through an eccentrically situated sink during a prescribed time
interval.

2. Prove: if two bounded convex domains have equal outer gravity poten-
tial, they are identical.

3. Give an example of any finite number of distinct simply connected
bounded domains with equal moments.



3. Algebraic Solutions

3.1. Algebraic and abelian domains. Evolution of domains has a remark-
able property: algebraic domains transform to algebraic ones.

According to the theorem of B.Riemann, any simply connected domain
on the plane whose boundary contains more than one point is conformally
equivalent to the disk. More precisely, let K = {{ € C:|{| < 1} be the unit
disk. There exists a complex analytic function f defined on K that realizes
a one-to-one correspondence between K and D. Such a function is not
unique, since the disk has nontrivial conformal automorphisms. The group
of conformal maps of the disk onto itself consists of the three-parameter
family of functions z = f_‘—;ce’g, where a € C,la] < 1,6 € [0, 2xn). In
order to specify a conformal map from K to D, it is sufficient to fix the
image of the origin in D and the angle arg 1 (0).

Let us call any conformal map of the disk onto a domain a uniformization
map of this domain.

The class of domains whose uniformization map is a rational function,
f(&) = %% , where P, Q are polynomials, is of a special interest. Let us call
such a domain algebraic, and let us define the degree of an algebraic domain
as the number deg f = max(deg P, deg ), provided P and Q are relatively
prime. An algebraic domain D is bounded by an algebraic curve of degree
2deg D, but not every domain with an algebraic boundary is algebraic itself.
Algebraic domains of a bounded degree are determined by a finite number
of parameters — the coefficients of the polynomials.

It also makes sense to consider abelian domains, i.e those whose uni-
formization map has rational derivative f'({). Let us call deg f' the multi-
plicity of an abelian domain.

3.2. Algebraic solutions. Let D(¢) be the evolving domain.

THEOREM (S. Richardson, P. P. Kufarev, [2], [12]). 1. If D(0) is an
algebraic domain of degree d then D(t) is an algebraic domain of degree no
higher than d 4 n.

2. If D(0) is an abelian domain of multiplicity k then D(t) is an abelian
domain of multiplicity no higher than k + 2n.
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So, there exist solutions of the evolution problem such that D(¢) is al-
gebraic (abelian) for all ¢. Finding such solutions is a finite-dimensional
problem. Solutions having this property are dense in the space of all solu-
tions in any reasonable topology (for example, C k , C%, analytic), because
any bounded simply connected domain can be approximated by algebraic
domains as closely as desired.

3.3. The Cauchy transform and its properties. The main role in the proof
and applications of the above theorem belongs to the Cauchy transform of a
domain D:

1 dxdy
(3.1) hy(w) = = woz’ w ¢ D.
hp(w) is the moment of D with respect to the harmonic function
1/n(w — z), therefore, by Richardson’s theorem we have

(3.2) 4 h, (W) = i _ 4
' dt PO — n(w—z,)
The Cauchy transform has the following properties.
L. hy is an analytic function outside D with zero limit at infinity.
2. h = Zoo ]Z}k(g)'

3. Let F ( ) be the gravity field of the cylinder with section D (see §2).
Then F, ( ) hD( ). This follows from formulas (2.3) and (2.4).

4. hp( = 5 fsp 2 Zdz . This formula is derived from (3.1) and Green’s
formula i
5. ﬁ 3D Z;Jf—iz—) = 0. This equality follows from property 4 and the

Cauchy theorem.
6. hpy(w) = hpeg(w) + E, 1;:_w‘LT for constant rates ¢;. If g; de-

pend on ¢ then q;t must be replaced by fo (7)dt. This property can be
obtained by 1ntegrat1ng (3.2).

. . ) . . dhp, . . )
7. hD(t) is rational if and only if so is hD(O) . —=22 is rational if and only

if so is %91 . These are obvious consequences of property 6.

As a corollary of property 1, let us note that the closures of any set of
domains with equal moments have a nontrivial intersection. Indeed, these
domains must have the same Cauchy transform. This function has to be
analytic outside the closure of each of them. If the intersection were empty,
this function would be analytic everywhere, i.e. would have to be identically
zero, which is impossible.

REMARK. Open domains with equal moments can have empty intersection
(see the solution of problem 3 of §2).

3.4. Singularity correspondence theorem.

TueoreM (Richardson, Gustafsson [6], [7]). Let f be a uniformization
map of a domain D that maps the unit disk onto D. Then
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1. The function w({) = f(1/C) — hy(f(L)) continues to a holomorphic
function in the unit disk.

2. The function f({) is rational if and only if the function hp(w) is
rational.

3. The function df({)/d{ is rational if and only if the function dhp(w)/
dw is rational.

4. If D is an algebraic domain then the functions f and h;, have the same
degree. If D is an abelian domain then the functions df/d{ and dh,/dw
have the same degree.

ProoF. 1. The main tool of the proof is the Sokhotskii-Plemelj formula
(see [8]).

Sokhotskii-Plemelj formula. Let D be a bounded domain on the plane,
let ¢ be a continuous function on 8D, and

tooN #(&) .
F(z)= an-Zdé’ z € D;
N $(&)
F (z)= BDé_Zdé, z ¢ D.

Then for any point z, on the boundary

. + . — _ .
ZILII;OF (z) — ZILII;OF (z) = 2mi(z,).
In particular, if F~ (z) is identically zero, the function ¢({) extends to a
holomorphic function in D (namely, to the function F*(z)/2ni).
According to the Sokhotskii-Plemelj formula and property 5 of the Cauchy
transform, the function z—/4,(z) extends holomorphically inside D . Hence,

the function f({)—h,(f({)), defined on the unit circle, analytically continues

inside the unit disk. The analytic continuation of f({) inside the disk is

the analytic function with singularities f(1/{), because on the unit circle
¢ =1/{. This completes the proof of 1.

2. If the function f is rational then the function f(1/{) is meromorphic
inside the unit disk. This implies that 4, (f({)) extends to a meromorphic
function in the disk (according to statement 1 of the theorem). So, 4, ex-
tends inside D with a finite number of poles. Since 4, is regular outside of
D, it has to be a rational function.

Conversely, if 4, is a rational function, the function A, (f({)) is mero-

morphic inside the unit disk, hence so is f(1/{). This implies that the
function f({) is meromorphic outside the unit disk. Since by definition this
function is holomorphic inside the disk, it has to be rational.

3. The proof is analogous to that of 2.

4. According to statement 1 of the theorem, there is the following one-
to-one correspondence between singular points of the continuation of the
function f to the exterior of the unit circle and the continuation of the
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FIGURE 5

function #;, inside the domain D (Figure 5). Let ¢ be a singularity of f,
and let 5 = &' beits image under reflection in the unit circle. Then f(n)
is a singularity of 4, of the same kind (this explains the title of this section
and the name of the theorem). So, the functions f and k,, df/d{ and
dh;/dz have equal number of poles of every order. This implies that their
degrees are also equal, because the degree of a rational function equals the
sum of orders of its poles.

3.5. Proof of the theorem on algebraic solutions. According to properties 6
and 7 of the Cauchy transform, the functions %, and dh,/dw are rational

for all ¢ if and only if they are rational at ¢ == 0, and deg hD(t) —deg hD(O) <

n, deg %ﬂ —deg %@1 < 2n, where degh stands for the degrec of a rational
function 2. By the singularity corrrespondence theorem, this implies that
the uniformization map f, of the domain D(f) and its derivative df,/d{
are rational if and only if they are rational at ¢t = 0, and deg f, — deg f; <

n, deg ‘;i{ut — deg % < 2n. This completes the proof of the theorem.

3.6. Construction of algebraic solutions. The singularity correspondence
theorem reduces the problem of constructing solutions in case of an algebraic
(abelian) initial domain to solving a finite system of nonlinear equations that
express the coefficients of the uniformization map in terms of the known
coefficients of the Cauchy transform. These equations are deduced from the
condition that the principal parts of the functions f(1/{) and hp(f({)) at
their singular points inside the unit disk coincide. Consider first the simplest
case when there is a unique singular point.
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THEOREM (L. A. Galin, [9], 1945). Let the only source be situated at the
origin, and let f(0) =0 for all t. Then, if f,({) is a polynomial of degree
d,sois f({) forall t.

Proof. The only singularity of f,({) is at infinity, and it is a pole of
order d. By the singularity correspondence theorem, 4 D(O)(w) has a unique
singularity at the origin, which is also a pole of order d . Therefore, the same
is true for hD(t)(w) for all 7. Hence, f, also has the only singularity, a pole
at infinity of order d . This implies that f, is a polynomial of degree d .

Richardson showed that f({) is a polynomial of degree d if and only if
M, (D)=0 for k>d,and M, | #0.

For a domain with uniformization map f({) = a,{ + a2C2 + 4 adCd ,
the moments are

(32)  M(D)= ) MGy Gy By B

m, ,...,mk+,_>_1,2mi§d

This is a system of equations for finding a i when the moments A, are
given. It is known that if df/d{ # 0 for |{| < 1 then this system is nonde-
generate [10).

Let us write down the equations for the case when all singularities of the
Cauchy transform are simple poles. Then

m A.
(3.3) hp(z) = Z - _fB_.
Jj=1 J
Let us look for f in the form
m C-C
_ J
(3.4) 10=217%

This form is chosen to ensure that f(0) =
allow the possibility of a pole at infinity, i.e.

m
f(1/8) = .
J;C‘EJ

Equations. 1. The poles of f(1/{) coincide with the poles of 4, (f({)):
(3.5) flE)=B;, j=1,2,...,m.

e
0 (we assume 0 € D) and to
E

;= 0 for some j. We have

2. The residues of the functions f(1/{) and h,(f({)) coincide:
(3.6) A4;=f(E)C,, j=1,2,..,m.

The system of equations (3.5), (3.6) contains 2m equations with 2m
unknowns C B E IE However, these equations are not independent. Indeed,

if C i E ;isa solution then C je’e , E jel is also a solution, since these sets
of parameters correspond to the same domain.
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REMARK. Let f° be a smooth family of solutions of the above system, and
let f% map the unit disk conformally onto a domain D. Then so does f°
for any s. Indeed, the domains D, = f,(K) have the same Cauchy transform
by definition, hence D, = D by the local uniqueness theorem.

3.7. Examples. 1. (P. Ya. Polubarinova-Kochina, P. P. Kufarev, [11],
[12]). Let D(0) be the circle of a radius R centered at the point (a, 0), and
let the only source be situated at the origin and work at a rate q. Then

R gt R

hD(O)(w)= w—a’ hD(t)('U))ZE'Fw_a.

The function hD(I) has two simple poles at 0 and a, hence f, has two
simple poles at co and some point «,, sO

(3.7) 0= 2+

Thus, 8D(¢) is an algebraic curve of degree no larger than four.
Due to the symmetry with respect to the horizontal axis, we can assume

that a,, B,, 7, are real numbers, and therefore f(z) = f(z). Let o, > 0.
Then equations (3.5), (3.6) have the form
B,
1- af
B 2
—t + =R",
(1 _ at2)2 ytﬁt
_ 4
(Bt + yt)yt - T "

From these equations after some calculations we obtain

_lfa o (2 qt
y’_Z(at a(R n>>’

l—at2 a a, (. 2 qt
pe g (G2 (R-%))

and q, can be obtained from the bicubic equation

2
(3.8) ( 2_ q—t> of - (2a2R2 424298 a4> o +24* = 0.
n n

e, =a,

Considering the case ¢t = 0, we find that «, is the middle root of this
equation.

Let g < 0. Then at some time the evolving boundary develops a semicubic
cusp singularity which is interpreted as a rush of water into the oil-extracting
well. It is interesting to calculate how much oil will be extracted by that time.
Equating the discriminant of (3.8) to zero, we can find both the time of the

rush and the quantity of extracted oil. For instance, if the distance from the

t
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well to the center of the oil spot is one half of its radius, then the amount of
extracted oil is approximately equal to 10% of the total volume of the spot.
In order to secure extraction of one half of all oil before the rush, one needs
to drill the well as close to the center of the circle as 0.23 of its radius.

The boundary of the fluid domain is a curve of order four. Its equation is
(x2 +y2)2 + Zozta(x2 +y2)x + Kt(x2 +y2) +L,x+M,=0, where K,, L,, and
M, are some coefficients, which can be calculated by explicit formulas. It is
easy to check that this curve can be obtained from an ellipse by an inversion.

2. Suppose that the initial domain D(0) is the image of the unit disk
under the mapping

1
o6) = L tog 208

1 -y’

This domain has an oval-like shape (Figure 6), and it is more prolate the
larger the number «,. When o, = 1, the function f0 maps the unit disk
onto the strip —4 < y < 4. Consider the evolution D(z) of this domain in
time produced by injecting the fluid from a source of rate ¢ at z = 0. Let
us determine the conformal map f, of the unit disk onto D(¢).

By the correspondence of singularities, hD(O)(z) has two logarithmic
branch points. Because the domain is symmetric, these points are real and
symmetric with respect to the origin. Let their coordinates be F, and —-F,
and let F, > 0. The function hD(O)(z) has no other singular points, therefore

O0<ay<1, a>0.

z+F0
z-F’

a
hpy(2) = - log

FIGURE 6
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where
1+ ao

Fy = folag) = _1 0g

_ ao

(the logarithms in f, and 4 p(oy Tust occur with the same coefficient because
of the singularity correspondence). Consequently, by Richardson’s theorem,

a z+Fy, qt
hD(z)(Z) = g_Z—F_O pp
This implies that the analytic continuation of f;({) outside the unit circle has
two logarithmic branch points, say, 1/ a, and —1/a,, and a simple pole at
infinity (a,>0,0,= a, when ¢ =0). Hence, the uniformization mapping

has the form .y
S0 = log 2

and y, are found from the equations

+ 7.

The parameters o y

a 1+ af
Fo=fila) = 2 log -5 + 7y
t
—correspondence of the logarithmic branch points;

y, = qt q!

Yonfl(0) (v, +2aa,/7)
—coincidence of the residues of f, and hD(t) at the simple poles. From
these equations we obtain an equation for determining Q,

and y, is expressed in terms of «, as follows:

t

Problems. 1. Show that the boundary of an algebraic domain D whose
uniformization map is a polynomial is an algebraic curve of degree 2degD .

2. Are the following domains algebraic: a) x4 y4 <1,b) X2 2y2 <1?

3. Consider a domain with uniformization map a,{+ b, Cz [11]. Find the
evolution of this domain produced by extraction of oil from the origin at a
rate g. Determine the time of cusp development on the boundary and the
amount of oil extracted by this time. For what ratio |a,/b,| will this amount
equal one half of all the o0il?

4. Consider the asymptotics of the solution of Example | when R —
oo, a= R-—b. This corresponds to extraction from a half-plane saturated
with oil (Figure 7). Show that the quantity of oil extracted before water
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®

FIGURE 7

rushes into the well (formation of a cusp) equals nb? /3, i.e. three times less
than in case of extraction from a circular oil spot of radius b (Figure 7).
Thus, in this case we have a surprising effect: extension of the initial domain
speeds up the water rush.

5. Consider the asymptotics of Example 2 as «, — 0. It corresponds
to the problem of extraction from a strip (Figure 8). Find the time of cusp
development.

6. (P. Ya. Polubarinova-Kochina, P. P. Kufarev). Describe the dynamics

/\

FIGURE 8
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of a round oil spot under extraction through N sinks situated at vertices of
a regular N-gon and working at the same rate.

7. A round initial domain evolves under injection of fluid from a source
of a constant rate that moves uniformly around some circle. Find the shape
of the fluid domain at the time the source has made a full round.



4. Contraction of a Gas Bubble

4.1. Formulation of the problem. Consider a bounded simply connected gas
domain whose exterior is filled with a fluid (Figure 9). As gas is extracted,
the gas-fluid boundary contracts. It is interesting to study the dynamics of
this contraction. This was done first in paper [14], and most of the results of
this section are contained there.

Let S be the initial area of the gas domain, and let ¢ be the rate of extrac-
tion. Then all the gas will be exhausted at the time ¢* = S/q . In many cases
the gas-fluid interface contracts to a point as ¢ — ¢* and is approximately
elliptic when ¢ is close to ¢*. It is surprising that the position of this point
as well as the principal directions and eccentricity of the asymptotic ellipse
can be easily found if the initial gas domain is given.

In the first approximation, evolution of the boundary does not depend on
the positions of the gas-extracting wells. This is why, from the practical point
of view, it makes sense to drill a well at the contraction point: otherwise the

FIGURE 9

21
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water that displaces gas will rush into the well before all the gas has been
extracted (see [5]).

Mathematical model. The extracted gas is replaced by water. It is assumed
that water is injected from a source situated at infinity. In all other respects,
the model is similar to the one presented in Chapter 1. Namely, let D(¢) be
the gas domain at a time ¢, and let D(f) be its complement. Then at any
time ¢ one defines a potential fluid velocity field v, = grad ®,, the velocity

potential @, being the solution of Laplace’s equation

AD, =0 in D(z)
that vanishes on the boundary:
o, |6D(z)= 0
and has the logarithmic asymptotics at infinity:
q
D,(z) ~ —ﬂlog|z|, zZ — 00.

For the sake of convenience let us assume that @, = 0 inside D(¢) as well
as on the boundary.

The law of motion is: boundary points, like all other points of D(¢), move
with a velocity of grad ®, .

REMARK. One can assume that the domain D(¢) consists of several simply
connected components. This describes simultaneous contraction of a number
of gas bubbles.

For any initial domain D(0) with a smooth boundary, the evolution of the
boundary is well defined on some time interval [0, 7], and the boundaries
0D(t) for 0 <t <t are regular analytic curves (see [13]).

4.2. The inclusion property.

LEMMA. When contracting, the domain monotonically decreases: for t, <
t, one has D(¢,) D D(t,).

Indeed, by the maximum principle, ®, < 0 in D(¢), so the gradient of @,
is directed inwards throughout the boundary. This implies that the boundary
moves inwards everywhere.

CoROLLARY. The intersection [, <toD(t) coincides with the closure of
D(ty).

Now suppose that a solution of problem 4.1 is defined on the open time
interval (0, 7), and the intersecticn (,_, D(¢) is the closure of a simply con-
nected domain. Then this solution can be extended to a larger time interval
by considering further contraction of the boundary of this domain.

Thus, one can distinguish two kinds of initial domains:

1. Domains that remain connected in the course of contraction and vanish
as soon as all the gas has been extracted.

2. Domains that cease to be connected in the process of contraction.

In this chapter we will examine domains of the first kind. Domains of the
second kind are considered in Chapter 6.
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4.3. Contraction of a convex domain.
THEOREM. A convex domain remains convex when contracting.

COROLLARY. A convex domain remains connected and contracts completely
when all the gas has been extracted.

LEMMA. Let D be a convex domain, ® be the velocity potential outside
2

D defined in § 4.1, and let Z—E—’(P) be the second derivative along the tangent
A

line to the level curve of ® at P € D. Then %‘5—’ <0 in D, and it can vanish
only on the boundary. At points of the boundary where it vanishes, the normal

o [ o’®

derivative 2. Ez—) is positive.

ProoF. Introduce an auxiliary function Q(P) = —1L . 2¢ (P) that is
|grad ®(P)|* s

defined in D. It is harmonic in D and regular at infinity. The simplest

way to show it, is to establish that Q = 2Re ( £ (ﬁ)) , where w(z) is
0@

the complex velocity of the flow 52 — i2® ay The sign of the function Q(P)
coincides with that of Z—Z?(P) and is opposite to that of the curvature of
the level curve of the potential at P. Since 8D is a convex level curve
of the potential, ‘Z—Z‘i—’ and Q are nonpositive along 8D . By the maximum

principle, from this it follows that Q (and hence, ‘2—23—’) is negative inside
s

D. Moreover, the strong maximum principle of Hopf [15] claims that the
maximal value of a non-constant harmonic function cannot be attained at
a point of the boundary where its normal derivative vanishes. This implies

24P > 0 for P € dD such that Q(P) = 0. Consequently, 2 (Z—Z‘E—’(H) =

|grad ©(P)|* %2 > 0 for P € 8D such that %(P) = 0.

COROLLARY. For a convex domain D, all level curves of the potential ®
outside D are strictly convex.

PROOF OF THE THEOREM. Let 7 be the time when the gas domain ceases
to be convex. Suppose that 7 # ¢*, and the violation of convexity at ¢ > 1
takes place in a neighborhood of a point Q € 6D(7). It is clear that the
curvature of the boundary at this point equals zero (Figure 10, p. 24). It is
seen from this picture that the velocity v of the boundary in a neighborhood
of Q is a concave function of the natural parameter s on 9D(7):

8%v 9* (00 . o [8’®
@ =25 (5) <0, e an( )(Q)

which contradicts the above lemma.
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FIGURE 10

REMARK. We have also proved that the domains D(z) for ¢ > 0 are
strictly convex.

4.4. Contraction points.

DEFINITION. A point is called a contraction point of the domain D(0) (or
contour 8D(0)) if it belongs to the gas domain D(¢) at all times ¢ € [0, t7),
t* being the time when all the gas is extracted.

THE MAIN THEOREM. Let the domain D(t) remain connected in the course
of contraction, and contract completely when all the gas has been extracted.
Consider its gravity potential,

n 1

=37 Lo

ooy log|z —w|dxdy.

1. The gravity potential I1 D) changes by a constant in the course of con-
traction: HD(O) - HD(t) = const(¢) in D(f).

2. Any smooth family of domains whose area depends linearly on time and
whose potential changes by a constant in time, is a solution of the contraction
problem.

3. A contraction point is unique.

4, The minimal value of the gravity potential of a domain is attained at
its contraction point, and only there.

The proof of this theorem is contained in §§4.5-4.8.

It is convenient to look for the contraction point of a domain among its
“geometric centers”.

DEFINITION. Let us say that a point P is a geometric center of a domain
D if this point satisfies the property

(4.1) /2" r,(6)d6 =0,
0

where r,(6) is the radius-vector of a boundary point of D whose slope angle
is # (Figure 11).
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rp(e)

FIGURE 11
One can easily show the following.

LEMMA. The vector-valued function a(P) = fo 1,(0)d0 is proportional to
the gradient of the gravity potential I1 D(0) -

CoROLLARIES. 1. Geometric centers are critical points of the gravity po-
tential.
2. The contraction point of a domain is a geometric center of this domain.

As time approaches the moment of full extraction, the contracting domain
acquires an approximately elliptic shape. The principal axes of the limiting
ellipse are directed along the eigenvectors of the matrix of second derivatives
of the gravity potential at the contraction point. The lengths of the principal
axes are proportional to the eigenvalues of this matrix.

The technical tool that enables us to obtain these results is a suitable gen-
eralization of Richardson’s theorem.

4.5. An analogue of Richardson’s theorem.

DEFINITION. Let us say that a function u(z) defined on the complex plane
is regular at infinity if the function u(1/z) is defined and continuously dif-
ferentiable in a neighborhood of z=0.

Consider the contracting domain D(z) and an arbitrary domain G that
contains D(?), for instance, a sufficiently large disk.

THEOREM. For any function u(z) that is regular at infinity,

(4.2) 4 udxdy = qu(co) — | ®,Audxdy.
dt Jo\p() I0)

ReMARK. The integral in the right-hand side of (4.2) converges because
Au(z) = O(1/|z|*) and ®@,(z) ~ —Llog|z| as z — co.

CoROLLARY. For a harmonic, regular at infinity function u(z),
d

4.3
(4.3) i Jowo

udxdy = qu(oo).
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EXAMPLE.
4
dt Je\ng

q, k=0,
0, k>0

For k = 0, this means that the rate of decrease of the area of the gas
domain equals the rate of injection of water. For £ > 3, one can take for
G the entire plane, and integrate over the complement of D(¢), i.e. over the
fluid domain. In this case, the analogy with Richardson’s theorem is most
apparent.

Properties of integrals (4.4) are similar to those of Richardson’s integrals.

(4.4) 2 *dxdy = {

THEOREM (on local uniqueness). For a nontrivial continuous family of
domains D(s) at least one of the integrals fG\ D) z *dx dy is a nonconstant
function of s.

THEOREM (on algebraic solutions).

1. If the complement of the initial domain D(0) is the image of the unit
disk under a rational conformal mapping, then so is the complement of D(t)
forall te[0,).

2. If the derivative of a conformal mapping of the unit disk into the com-
plement of D(0) is a rational function, then so is the corresponding derivative
for D(t) when t > 0.

Thus, the property of the complement of D(#) being algebraic or abelian is
preserved in the course of contraction. The coefficients of the uniformization
mapping can be found from a system of nonlinear equations similar to (3.5),
(3.6).

PROOF OF FORMULA (4.2).

D ()
4 udxdyz/ uLdlz/ (uL—d)ta—u) dl
dt Je\pg) ap@py On apiey \ 0N on

o0, ou
_/BKR (u - 41’:5) di

+/ (uAD — PAu)dx dy,
Kp\D(1)

where K, is a circle of radius R, centered at the origin, that contains the
domain D(¢). The value of this expression is independent of R. Taking
into account the asymptotics

ulBKR: u(o0) + O(1/R), ou

2
Sl =OW/RY,

0K

8(I)t q 2
7 =44 oa R — 0o
on |,k 27tR+ (1/R), ’

R

qa
D, oK, = 2—nlogR+ o(1),

and also the harmonicity of ® in D(z), we obtain (4.2) in the limit as
R — .
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4.6. Dynamics of the gravity potential. Recall that the gravity potential of
a domain D is defined by formula (2.3):

e 1) = 45 [ ToB(tx =& + (v = ) dxdy.

THEOREM. The gravity potential of a contracting domain changes in time
as follows:

(4.5) I M€ m = CO+ 0, ),

where @, is the velocity potential of the fluid flow.

ProoF. In order to apply Theorem 4.5, let us rewrite the left-hand side of
(4.5) so that the integration be over the domain G\D(?), and the integrand
be regular at infinity:

d _d 1 2 2
iMoo M =~ [ 1oal(x 6 + (v = m))dxdy

d 1 (x=&*+-m)

4.6 T Tdidn
( ) dt 4z ./G\D(t) o8 ((X - 60)2 + (y - n0)2)

d 1 2 2
Ty B G+ =g dxdy,

dxdy

(§y» M) being an arbitrary point in D(¢). The function

1 (=& +@-n?) 4
ux,y) =g /G\D(,) Bl rr-n Y

satisfies Poisson’s equation Au = d(x — &,y —n) in D(z), d(x,y) being
Dirac’s function. Besides, this function is regular and vanishes at infinity.
Therefore, by Theorem 4.5, the first term in (4.6) equals ®,(S, 7). The
second term does not depend on &, n. Denoting it by C(¢), we come to
(4.5).

4.7. The gravity potential as the solution of a boundary value problem. It
follows from the definition of the gravity potential that it is continuously
differentiable on the whole plane, and satisfies the Poisson’s equation

@) ATL(x, ) = 1,(x, ¥) {1’ (x,7)€D,
. xa .V = X x > y =
b b 0, (x,y)#D,
with the boundary condition at infinity
S
(4.8) M, (x, y) ~ —log(x’ + %), (x,y) - oo,

47

S being the area of D. It determines the gravity potential uniquely, up to
an additive constant.
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4.8. Proof of the main theorem. Let us integrate both sides of identity (4.5)
from 0 to 7. We get

@9) Mg ) -Tp& m == [ code- [ o nax

Set K(t) = — fot C(t)dt. Since ®@,(¢, n) <0, and it equals zero if and only if
(£, ) belongs to the closure of the gas domain, [D(¢)], identity (4.9) yields
1) (statement 1 of the main theorem):

(410)  Hp& m) -Tyy & n =K@, & 1) elD];
2)
(4.11) My, m) =Ty (&, m) > K@), (€. n) ¢ DO)];

3) The difference HD(O) &, n —HD(I) (¢, n)—K(t) monotonically increases
as a function of ¢ for fixed ¢ and 7.

Set now t* = S/q. As t — ¢, the area of the contracting domain tends
to zero, so Il , (&, n) goes to zero as well.

If (¢, n) is a contraction point then it must belong to [D(¢)] for all ¢;
therefore, as ¢ — t*, (4.10) turns into My &, m) = K(t). If (&, n) is not
a contraction point then there is a 7 such that (&, ) ¢ [D(¢)] for ¢ > 1,
and taking the limit 7 — ¢ in (4.11), one gets I1, (&, n) > K(t*). This
proves statement 4 of the theorem.

Let us give a proof of statement 2 of the main theorem. Let D(f) be
the solution of the contraction problem, and let D'(¢) be another family of
domains of area S — g¢ whose potential is independent of time up to an
additive constant, and such that D(0) = D'(0) = D. Consider, for some
time 7, the family of domains D(t, s) that are obtained from D'(z —s) in
the course of contraction during time s, s € [0, 7]. The domains D(z, s)
have area S—q7, and their potentials may differ only by an additive constant
inside their intersection. This implies that moments (4.4) of D(t, s) do not
depend on s. By the local uniqueness theorem, D(t,s) does not depend
on s either. Hence D(z, 7) = D(t,0). But D(t, 1) =D(tr), D(1,0)=
D'(t). Thus, D(t) = D'(¢t) forall ¢,

Let us now prove statement 3, the uniqueness of the contraction point.
Consider the set of all contraction points. This set is

1) simply connected, since it is the intersection of the simply connected
gas domains;

2) bounded;

3) analytic, since it is the set of solutions of the equation Il,, = K ("),
and IT}, is a real analytic function in D (because it satisfies Poisson’s equa-
tion All, =1).

Therefore, the set of contraction points must either consist of a single
point or be an analytic curve. A bounded analytic curve has the topology
of a finite graph. This graph has to be a tree because it is automatically
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simply connected. A tree always has a vertex that has a unique outgoing
edge. But there are no analytic curves with such local topology [16]. Thus,
the contraction set is a point.

REMARK. Taking the limit 1 — ¢* in (4.9), we obtain the following ex-
pression of the gravity potential of a domain in terms of the function ®,:

(4.12) €. m =K - [ @ ndr,

where K is some constant.
This formula implies statement 4 of the main theorem.

4.9. Self-similar solutions.

THEOREM.

1. A decreasing family of similar ellipses with a common center is a solution
of the contraction problem.

2. Any decreasing family of similar domains that is a solution of the
contraction problem is a family of ellipses with a common center.

Proor. 1. Newton discovered that the gravity potential inside an ellipse
changes by a constant as the ellipse expands so that its shape and center
stay unchanged. Therefore, by statement 2 of the main theorem, a family of
similar concentric ellipses is a solution of the contraction problem.

2. The proof is based on an application of a theorem due to M. Sakai,
[17): if D is a simply connected domain and D is its complement, and if
B z_kdxdy =0 for kK >3 then D is an ellipse.

Let D(t) be a family of domains homothetic with respect to the origin
that is a solution of the contraction problem. The domain D(¢) is obtained
from D(0) by a homothetic contraction. The coefficient of contraction has

to be A(t) =/S/(S — qt), therefore

/_z_kdxdy =it /_ z *dxdy, k>3,
D(1) D(0)

where D(¢) is the complement of D(¢). On the other hand, fm—) z ¥ dxdy =
const because of (4.4). Hence,

(4.13) / z *dxdy =0, k>3.

D(0)
Therefore, D(0) is an ellipse. But we know that in the course of evolution,
an ellipse contracts homothetically with respect to its center. This completes
the proof.

2
REMARK. The gravity potential of the ellipse )i; + # =1 inside itself can

be easily calculated:

(4.14) H=%<aibx2+aiby2>+C(a,b).
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In particular, the inner gravity potential of the disk of a radius R centered
at the origin equals

(4.15) M= -(x*+y°) + C(R).

-

4.10. Asymptotics of contraction. Let D(0) be a convex domain that con-
tracts to the origin. All intermediate domains D(¢) are also convex. Consider
the domain E(¢) that is obtained from D(t) by expanding A(f) times, where
A is chosen so that the length of the boundary of E(¢) should equal a fixed
number /.

THEOREM. The boundaries of {E(t)} uniformly converge to an ellipse. The
principal axes of this ellipse are directed along the eigenvectors of the matrix
of second derivatives of the gravity potential I1 by @ the origin. The lengths
of the principal axes are proportional to the eigenvalues of this matrix.

SKETCH OF A PROOF. It suffices to show that in any sequence of times {¢,}
that tends to * as n — oo there exists a subsequence {tnk} such that the
curves OF (tnk) uniformly converge to the ellipse defined in the statement of
the theorem.

Any sequence of vector-valued functions on an interval, uniformly bound-
ed together with the first derivative, contains a uniformly convergent subse-
quence. Let z = z,(s),s € [0, /], be a parametric equation of the curve
OE(t), s being the natural parameter on this curve. Since |z,(s)| < %,
|d—2‘?| =1, and for all ¢ there exists s such that |z,(s)| > 5 , we conclude

that any sequence of times ¢, contains a subsequence {tnk} such that z, (s)
3

converges uniformly on [0, /] to some nonzero function Z(s) as k — in-

finity. The equation z = Z(s) defines a closed curve. One can check that

this curve bounds a convex domain. Let us denote this domain by E.
Since for k£ > 3

/__z_kdxdy = l(t)z—k /_z_kdxdy =) " /_z_kdxdy,

E(r) D(r) D(0)

we find that [ro z ¥dxdy tends to zero as t — 1*, s0

/_z_kdxdy =0, k>3.

E

A domain that has this property must be an ellipse (see §4.9). The inner
gravity potential of the ellipse E equals
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: 2
HE(é’ n) = tlig} HE([)(G H r]) = H(D()O)(é: r]) + conSt’

where Hg()m (€, n) are the second order terms in Taylor’s expansion of the
potential of the initial domain at the origin. Formula (4.14) implies that
in an ellipse centered at the origin, the principal axes are directed along the
eigenvectors, and their lengths are proportional to eigenvalues of the matrix
of coefficients of its gravity potential (which is a sum of a quadratic function
and a constant). For the ellipse F, this matrix coincides with the matrix of
second derivatives of the gravity potential of D(0).

4.11. Several sources. Consider the problem of contraction of the bound-
ary between fluid and gas in case when gas is injected through several sources.
Let g be the rate of the source that is situated at infinity, and let ¢, ..., g,
be the rates of the sources situated at points P, ..., P, with coordinates
(Xy5¥1)s s (X, ¥,) . The velocity potential in this case is defined as the
solution of the following boundary value problem:

AD, =0 inDO\{P,,..,P}, @ =0 ondD(),
@, ~ L log((x—x )+ v —y)D) as(x,y) = (x,,7)

q 2 2
<I)t~4—nlog(x +y7) as(x,y)— oo.

In this contraction problem, like in the one considered above, a domain
that remains connected in the course of contraction, has a unique contraction
point. This point is the minimal value point of a certain function which we
choose to call the effective potential. This function changes by an additive
constant in the course of evolution. It is formally defined by (4.12), and can
be obtained from the gravity potential as follows:

(4.16)
n q]

~ S 2 2
Hu(x,y)=HD(x,y)—Zq+ql+m+q 1 108((x = x)" + (= »,)).
j=1 n

Thus, the effective potential is nothing else but the electric potential of the
uniformly charged domain D in the presence of charges of the opposite sign
proportional to q;, situated at points Pj. The proofs of these statements
are not principally different from the ones given above.
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y

Za \i// x

FIGURE 12

ExAMPLE. Suppose that the initial gas domain is the disk of a radius R
centered at the origin. Let the only source be situated at a point (—a, 0)
(Figure 12). Then the effective potential equals

2 2 2

R
X Iy —Tlog((x+a)2+y2)+C,

. .. . . . _ 2 2 ..
and its minimal value is attained at the point (—“—*@, 0). This is
exactly the contraction point.

Problems. 1. Consider the process of expansion of a gas domain as a result
of extraction of fluid from infinity (Problem 4.1 with ¢ < 0). Let D(t),
t > 0, be the expanding gas domain, and let |J,.,D(¢) = R’. Show that
then D(0) has to be an ellipse. Thus, solutions with other initial domains
either cease to exist at some finite time ¢ or exist for all ¢ but gas does not
eventually fill the whole plane (Howison’s theorem, [18]).

2. Let the contracting domain D be symmetric with respect to the hor-
izontal axis and remain connected in the course of contraction. Then the
function I1,(x, 0), as a function of x, has a unique local minimum that
corresponds to the contraction point.

3. Find the contraction point of a round domain in a) a half-plane (Figure
13), b) a strip (Figure 14). In both cases the fluid is injected from infinity.

o®

The boundaries are impervious, i.e. 5 =0 along them.
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4. Find the ratio of the lengths of the principal axes of the asymptotic

ellipse for the contracting domain in the example of §4.11.
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5. Evolution of a Multiply Connected Domain

5.1. Statement of the problem. First Let the fluid domain be a bounded
domain with g holes (Figure 15). We assume that its complement is filled
with gas. Consider the evolution of the domain produced by injection from
point sources inside it. Let D(¢) be the fluid domain at a time ¢. Let
z,, .., Z, be the complex coordinates of the sources, and denote their rates
by ¢;,..,q,. Let I';, ..., Fg +1 be the connected components of the bound-
ary 0D(t). The pressure is constant along each connected component of the
boundary. However, values of the pressure on distinct components may be
different. The potential of the velocity field of fluid particles is defined by

q

A® =0 inD(t)\{z,, .., z,}, ¢~5#%u—%h z—z

j 2
O =), j=1,..,g+1

The boundary velocity equals v = % s D) » i.e. the absolute value of the
gradient of the velocity potential.

FIGURE 15

5.2. Integrals of motion.

THEOREM (Richardson-Gustafsson). For every harmonic function u in a
neighborhood of D(t)

35
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d n g+l
(5.1) E/D(t)udxdy:jzz:lqju(zj)+jz::l(bjRj,

where R; = f. (g—zdy - ‘g—;dx) is the flux of the gradient of the function u
J
through the contour ;.

REMARK. If the function # is holomorphic in a neighborhood of T’ ; then
R =0.
J

Analogously to the simply connected case, let us call the integrals of har-
monic functions over a multiply connected domain the moments of this do-
main,

THEOREM (on the local uniqueness of a domain with given moments). Let
D(s), s € (s, 5,), be a smooth family of multiply connected domains, and
assume that for every s, € (s,, s,) and every function u(z) harmonic in a
neighborhood of D(s,), fD(s) udxdy = fD(SO) udxdy for s close enough to

Sy Then D(s) = D(t) forany s, t.

CoROLLARY. The result of injection depends only on the initial domain and
the total amounts of fluid injected by the sources. It is independent of the order
of their work.

These statements are proved similarly to their analogues in the simply
connected case (see Chapter 2).

5.3. Algebraic solutions. An algebraic domain in the multiply connected
case is defined with the help of a Riemann surface with an antiholomorphic
involution and a meromorphic differential.

A Riemann surface (a complex curve) is a smooth surface on which, in a
neighborhood of every point, a local complex coordinate is defined so that
the transition function from one local coordinate to another is a holomorphic
function wherever two neighborhoods overlap (see [19]).

An antiholomorphic involution of a Riemann surface is a diffeomorphism
of the surface onto itself whose square is the identity, and which can be
written in local complex coordinates in the form w = ¢(z), ¢ being a
holomorphic function.

It is said that a Riemann surface ¥ of genus g is equipped with a real
Mb-structure if an antiholomorphic involution is so defined on this surface
that the set of its fixed points consists of g + 1 closed contours (ovals). In
this case, this set divides the surface into two halves: =¥ and X~ , which are
permuted by the involution.

ExaMPLE. The surface is the Riemann sphere, the involution is a reflection
with respect to a circle (inversion).
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A meromorphic differential on a surface is a differential I-form w that
has the form ¢(z)dz in local coordinates, ¢ being a meromorphic function.
Let ¥ be a Riemann surface with a real M-structure, and let @ be a mero-
morphic differential on this surface. Denote by 7,, ..., ¥ 241 the connected
components of the set of fixed points of the antiholomorphic involution (the
ovals). Assume that fyj w = 0 and that w has neither zeros nor poles in

the hemishell £+ . Consider the function f(z) = fzzo w, where z, is a point

in T*¥. This function is holomorphic and single-valued on X*. Assume
that this function takes different values at different points. Then it defines a
conformal mapping of the hemishell Z* onto a plane domain with g holes.
Let us call such a domain an agbelian domain of genus g. Let us define the
multiplicity of an abelian domain as the sum of orders of all poles of w.

If w is an exact form then the function f extends to a meromorphic
function on X. In this case let us say that the domain is algebraic of genus
g . Define the degree of an algebraic domain as the sum of orders of all poles
of the function f. The difference between the multiplicity and the degree
of an algebraic domain equals the number of poles of the function f. The
boundary of an algebraic domain is always a real algebraic curve that consists
of g+ 1 components. Every domain with a finite number of holes can be
approximated by an algebraic one as precisely as desired.

THEOREM. Let D(t) be the evolving fluid domain. Then:

1. If D(0) is an algebraic domain of genus g and degree d then D(¢)
is an algebraic domain of genus g and degree no higher than d +n.

2. If D(0) is an abelian domain of genus g and multiplicity k then D(¢)
is an abelian domain of genus g and multiplicity no higher than k + 2n.

5.4. Riemann’s theorem.

THEOREM. Let D be a domain whose boundary consists of g+ 1 piecewise
smooth closed curves. Then there exists a Riemann surface ¥ of genus g
with a real M-structure, and a conformal mapping f : X' — D that realizes
a homeomorphism between the closures of * and D.

Let us call the map f a uniformization map for D.

ProoF. The domain D is a conformal image of a domain E bounded
by circles. Let us represent the latter as a hemishell of a Riemann surface.
Denoteby 7, ..., 241 the inversions of the plane with respect to the bound-
ary circles. Let Q be the set of all the points on the plane that hit E after
undergoing a finite sequence of inversions t ;- The group 7 generated by
;s 1<j<g+1, actson Q. Let T, C T be the subgroup of all sense-
preserving elements in 7'. It is easy to check that 7| acts freely on Q, and
that for any i € {1, ..., g+ 1}, EUE is a fundamental domain for Tj.
Let ¥ = Q/T,. Then ¥ is a compact regular Riemann surface of genus g
obtained from E U t,E by identifying the components of its boundary that
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are mapped into each other by the inversion 7,. The map 7, induces an an-
tiholomorphic involution on X whose set of fixed points divides the surface
into two hemishells £* and I~ that are permuted by this involution.

5.5. Singularity correspondence. Let us introduce the Cauchy transform of
a multiply connected domain;
1 dxdy

(5.2) hD(w):EDw—z’ z=x+1iy, w¢D.

The Cauchy transform has properties 1 and 3-7 from Chapter 3, anal-
ogously to the case of a simply connected domain, and consists of g + 1
holomorphic functions defined in the connected components of the comple-
ment of D . In general, there is no relation between these functions.

Analogously to the simply connected case, a domain is algebraic if and
only if its Cauchy transform is rational. Also, a domain is abelian if and
only if the derivative of the Cauchy transform is rational. More precisely,
the following theorem is true.

SINGULARITY CORRESPONDENCE THEOREM(Gustaffson [6]). Let f be the
uniformization mapping for a domain D that maps a hemishell L% of a
Riemann surface ¥ with a real M-structure onto D. Then

1. The function y({) = f(1({)) — hp(f({)) continues to a holomorphic
function in £* (here 1 is an antiholomorphic involution on X).

2. The function f extends to a meromorphic function on the entire surface
if and only if the Cauchy transform h,, extends to a rational function on the
Riemann sphere.

3. The form df extends to a meromorphic differential on the entire surface
if and only if the derivative of the Cauchy transform h,, extends to a rational
function on the Riemann sphere.

4. If D is an algebraic domain then the functions f and h, have the
same degree. If D is an abelian domain then the differential forms df and
dh;, have the same degree.

Proor. 1. Plemelj formula implies that the function w({) = f({) —
hp(f({)) defined on the boundary of the hemishell " extends analytically,
without singularities, inside this hemishell. The extension of f({) inside the
hemishell can be written as f(t({)), since the boundary of the hemishell is
fixed by z.

2. If f is meromorphic on the entire surface then f(7({)) is meromor-
phic in X", hence, A »(f({)) extends to a meromorphic function in =t by
statement 1 of the theorem. Therefore, %, extends to a meromorphic func-
tionin D. Since 4, is analytic outside D, 4, has to be a rational function.
Conversely, if 4, is rational then /,(f({)) is meromorphic in ", which
implies that f(7({)) is a meromorphic function in % as well, and f({) is
meromorphic outside . Since we know that the latter function is analytic
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inside T, we can conclude that it extends to a meromorphic function on
the entire surface.

3. The proof is analogous to that of statement 2.

4. Every singular point of f on the surface ¥ matches a singular point of
the same type of the Cauchy transform #4, , and vice versa. Consequently,
the functions f and /, and the forms df and dh;, have the same degree.

5.6. Proof of the theorem on algebraic solutions. Theorem 5.2 implies that
the Cauchy transform of the fluid domain changes in time as follows:

n 1 ¢
hD(t)('w) = hD(O)(w) + ]gl n(w—_zjj/o qj(r)dr.

Hence, the functions 4 D) and dh D(t)/d w are rational if and only if they
are rational at ¢t = 0, and deghD(t) < deg hD(O) +n, degth(t)/dw <
degdh D) /dw +2n . By the singularity correspondense theorem, this implies
that the uniformization map f, and its differential df, are meromorphic on
the surface for all ¢ if and only if they have this property at ¢t = 0, and that

deg f, < deg f, +n, degdf, <degdf,+ 2n.
Q.E.D.

5.7. Construction of solutions. The above theorems on algebraic solutions
and the correspondence of singularities reduce the problem of describing
the dynamics of an abelian domain to the problem of solving a system of
equations on the parameters of an abelian domain of a fixed multiplicity.

THEOREM(on local uniqueness). Let D(s), s € (s,, s,), be asmooth family
of domains, sy € (s,, s,), and let {, ..., Cg be fixed points in the g distinct
bounded connected components of the complement to D(s). If the Cauchy
transform of D(s) and integrals fD(s) log|z—z,|dxdy, m=1,..,¢,are
independent of s then D(s) = const.

IDEA OF THE PROOF. Any harmonic function # in a neighborhood of

D(s) can be uniformly approximated by linear combinations of functions
Re -1, Im ! w ¢ D(s), and log|{ — ¢, |, therefore fD(S)udx dy is

w-—-z? w—z’
independent of s. Therefore, by the local uniqueness theorem for a domain
with prescribed moments, D(s) has to be the same domain for all s.

According to this theorem, the parameters of the uniformization map for
D(t) can be found from a system of nonlinear equations that includes:

1. The conditions of cancellation of principal parts of functions f(7({))
and A, (f({)) at singular points.

2. Evolution of the moments of D(f) with respect to the functions
log|{ - ¢, |, where {  belongs to the m-th connected component of the
complement to D(¢):

53 | JoBlc=C, = /| o OBl 0, 0812, 20,0,
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5.8. Reconstruction of an annular domain from its moments. Consider an
algebraic domain with one hole. It is the image of a rectangle under a con-
formal mapping expressed by an elliptic function. Let us consider only the
case when all the singularities of the Cauchy transform are simple poles.

Let us denote by (,(w) the Weierstrass elliptic {-function with periods 1
and iA, A > 0, which is a meromorphic function on the entire complex plane
that has simple poles with residue 1 at points m + nid (m, n are integers)
and satisfies the periodicity conditions {;(w+1) = {;(w)+d, {,(w+id)=
i (w) +6', where 6 and ¢’ depend on A ([19]).

THEOREM. Let D be an algebraic domain that is homeomorphic to an
annulus and has the Cauchy transform

d A,
(5.4) hp(z)=> . _fB'.
j J

Jj=1

Then this domain is the image of the rectangle
{(x.0)10sx<3,0<y<i}, 4>0,

under the conformal map
d

(5.5) Sw)=Y"¢;{(w-a,)+C.
Jj=1

The unknown parameters ¢, , a Ir C, A can be found from the following equa-
tions:

(5.6) f(-a))=B;, j=1,..,4d;
(5.7) —¢; = ,Af_, j=1,..,d;
f(_aj)
d
(5.8) Y ¢ =0.
j=1

ProoF. The Riemann surface with M-structure corresponding to the do-
main D is a torus. One can represent this torus as a quotient space C/T’
of the complex plane by a rectangular lattice with periods 1 and i1, and the
hemishell * corresponds to the rectangle {x,»]0<x< L,o<y<ia).
By the singularity correspondence theorem, the uniformization map for the
domain D is expressed by a meromorphic function on ¥ with 4 simple
poles, i.e. by an elliptic function of the form (5.5), and the poles of the func-
tions f(7({)) and A,(f({)) inside X" and their residues must coincide.
The coincidence of the poles is expressed by equations (5.6), the coincidence
of the residues, by equations (5.7). Equation (5.8) is the condition that the
sum of all residues of an elliptic function equals zero.



EVOLUTION OF A MULTIPLY CONNECTED DOMAIN 41

In order to define uniquely the dynamics of an annular domain under
injection of fluid, to equations (5.6)—(5.8) linking the uniformization map
and the Cauchy transform one should add equation (5.3). In case of an
annular domain it has the form

//|f Iloglfw)ldxdy~//lf ) log | (w)| dx dy

+Zq log|z;| - 27(®, - ®,).
j=1
By Theorem 5.7, equations (5.6)—(5.9) define the domain D(t) in a locally
unique way.

ExAMPLE. Consider an annular domain D with the Cauchy transform

A N-1

1

and such that [, log| % | dxdy = 0 (Figure 16). Such a domain exists on
some interval of values of the ratio 4 /R2 , and it is invariant with respect to
the rotation through the angle 2z /N about the origin. Consider the evolution
of this domain as the fluid is injected from N sources situated at points
Re>™ikIN , l.e. at vertices of a regular N-gon, at the same rate g, assuming

the velocity potential on both components of the boundary to be zero. The
Cauchy transform of D(¢) is

A+ qt gy 1
h, (W)= E .
D(2) ) P P ReZntk/N

By formula (5.5), the uniformization map has to be

& omi ikA
ﬁ(w):ZBeZMk/NCl(w+a+T), B,o,l€R.

k=0

FIGURE 16
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The unknown parameters B, a, A have to be determined from equations
(5.6)-(5.9):
_at+4.

nB ’

b
[ [ vraoriol ) ridxdy <o
0 Jo

f@=R, fla)=

Problems. 1. If a domain is bounded by circles and is not simply con-
nected, it is not abelian. For example, a circular annulus is not an abelian
domain.

2. The boundary of an algebraic domain is an algebraic curve (possibly
disconnected).

3. (Gustafsson). Any algebraic domain of degree 2 is simply connected.

4. A domain is algebraic if and only if the integral over this domain of
any holomorphic function is a linear combination of its derivatives at a finite
number of points with coefficients independent of the choice of the function.

5. For a sufficiently large n, there exists an algebraic domain of genus g
whose Cauchy transform is a polynomial of degree n in 1/z.

6. Any finitely connected domain with a smooth boundary can be (uni-
formly) approximated by algebraic ones as precisely as needed.

7. (P. P. Kufarev). Let the fluid initially saturate the strip |Imz| < b,
and let the injection points be z = na, where n runs through all integers.
The rate of injection is ¢ . Find the fluid domain at a time ¢.

8. Consider the evolution of an annular domain bounded by two circles
produced by extraction of gas from the hole. Find the contraction point of
the inner component of the boundary (Figure 17).

9. Let D be a doubly connected domain that does not contain the origin,
and assume that f z"dxdy = 0 for all nonzero integers n. Then D is a
circular annulus centered at the origin.

FIGURE 17



6. Evolution with Topological Transformations

6.1. Weak solutions of the evolution problem. In the problem of injection
into a multiply connected domain it is natural to assume that gas is extracted
from all holes under the same pressure. For instance, in the problem of
filling a mould (see §7.1) the pressure on all components of the boundary is
athmospheric.

Thus, consider a special case of evolution of a multiply connected domain,
namely, when the rates of the sources are positive and the velocity potential
equals zero on all components of the boundary. In this case, the solution
D(t) of the problem possesses the“inclusion property” (compare to §4.2):

THEOREM. D(t)) C D(t,) if t; < t,.

In the process of injection the fluid domain may transform topologically.
For example, parts of the boundary may collide (Figure 18). In order to
describe mathematically the evolution after the time of collision, let us in-
troduce the notion of a weak solution. Solutions that we have considered so
far will be called classical.

FIGURE 18

43



44 EVOLUTION WITH TOPOLOGICAL TRANSFORMATIONS

DEeFINITION. Let us call a family of bounded domains D(¢), 0 <t < o0,
a weak solution of the injection problem if it has the following properties:

1) inclusion: D(t,) C D(t,) if ¢, <t,;

2) linearly growing area: the area of D(f) equals S, + (Z;’zl q;)t, S
being the area of D(0);

3) finite number of topological transformations: there exist times 7,
..., T, such that on each of the k + 1 time intervals between them: (0, 7,),
(T Ty) s s (Te_y> Tp) s (T, 00), the domain D(¢) is bounded by a finite
collection of disjoint smooth nonsingular curves;

4) piecewise classical solution: on each of the k£ + 1 time intervals, the
family of domains D(¢) is a classical solution of the injection problem.

REMARK. If ¢, and £, belong to different intervals, the domains D(¢,)
and D(t,) may, in general, have different number of components and holes.

The theorem on first integrals is true for weak solutions.

THEOREM. Let u(x, y) be a harmonic function in a domain that contains
D(t) together with its boundary. Then

d n
(6.1) z;/l)(t)udxdy=j§qju(zj).

Indeed, between the singular times 7 ; this equality holds by Theorem 5.2;
hence it is true for all ¢ because the moments depend on time continuously.

COROLLARY.

n t
6.2 / udxd =/ udxdy+ ) u(z, / g.(1)dr.
(6.2) [ uaxdv= ,Zl z) [ 4

In order to describe the evolution of a fluid domain, we need to be able
to construct the weak solution corresponding to a given initial domain and
prescribed positions and rates of sources. It has been proved in [13] that this
solution exists and is unique assuming that the initial domain is algebraic. It
seems very natural that this should be true for any finitely connected domain
with a smooth boundary, though we are not aware of any rigorous proof of
this statement.

For t > 7, , the domain D(f) is simply connected, and for large ¢ it has
an approximately round shape.

Formula (6.2) implies that the result of injection depends only on the
total amounts of fluid injected from each of the sources, not on the order or
schedule of their work, just as in the classical case.

REMARK. In case when the pressure takes different values on different com-
ponents of the boundary, it does not seem possible to define a weak solution
with satisfactory properties.

At times T ; the fluid domain undergoes some topological transformations.
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@

FIGURE 19

- - —

FiGURE 20

There are two kinds of such transformations:

1. Collision of two parts of the boundary (Figure 19).

2. Contraction of a hole (Figure 20).

A hole always contracts to a single point (cf. §4.4).

Transformations of the first and second kind may be interlaced which will
result in changing the number of connected components of the domain and
its boundary in the course of evolution.

The topological structure of a simplest weak solution is pictured in Figure
21.

FIGURE 21
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6.2. The simplest algebraic solutions. Let D(¢) be a weak solution of the
injection problem. By Theorem 6.1, the Cauchy transform of the domain
D(t) changes as follows:

n 1 t
hD(t)(w) = hp(o)(w) + ; m/o qj(T)dT, w € D(1).

Therefore, the functions hD(t) and dj%ﬂ are rational if and only if they
are rational at 1 = 0. Hence, by the singularity correspondence theorem,
the properties of a domain to be algebraic and abelian are preserved in the
course of evolution:

THEOREM. Let D(t) be a weak solution of the evolution problem. Then:

1. If D(0) is an algebraic domain of degree 4 then D(t) is an algebraic
domain of a degree no higher than d +n.

2. If D(0) is an abelian domain of multiplicity k then D(¢) is an abelian
domain of a multiplicity no higher than k + 2n.

Consider examples of weak solutions.

ExAMPLE 1 (S. Richardson). Consider the problem of injection from two
symmetric sources situated at points @ and —a at the same rate g. Suppose
that the initial domain is an empty set. Hence, for ¢ < na /q , the fluid
domain will be the union of two disks of equal radius centered at a and —a.
At the time ¢, = na’ /q , the disks will unite and transform into a connected
fluid domain (Figure 22). Consider further evolution of this domain, D(¢).
The Cauchy transform of D(¢) equals

h

_qt 1 1
D(’)(w)~—7?(w—a+w+a)'

Hence, the uniformization mapping has two simple poles, so it can be sought
in the form (due to the symmetry):

A A 24
0= 2 4 e = 20
t

= R A >0, a >0.
I+ea/l l—afcz ! !

The coefficients 4, and «, can be found from equations (3.5), (3.6):

4
2A[at - 2A2 1 +a =q_t

1-af ‘“(1-a)? 7
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which yield

a : 2 U272 _qt
=3t =T =)' e

REMARKS. 1. The problem considered is equivalent to the problem of
injection from one source into a half-plane with an impervious boundary.

2. The time when the fluid domain becomes convex is 3na’ /q ; at this time
the width of the domain is twice the distance between the sources (Figure 22).

4a

FIGURE 22

ExaMPLE 2 (Richardson). Consider the problem of injection of fluid at
the same rate ¢ from four sources situated at the four vertices of a rectangle.
Let the coordinates of the sources equal (+a, +b), a > b (Figures 23, p. 48,
and 24). According to Remark 2 from the previous example, if a > 2b, then
first there will be four round fluid blobs; then they will unite into two pairs
at the time 7, = nb? /4, forming two identical domains whose evolution is
described in Example 1 and finally, at a time ¢, > 3na’ /q (which can be
easily found from the formulas of Example 1) these two domains will unite
into a simply connected domain. Let us study its dynamics. The Cauchy
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FIGURE 23

transform equals

b ) =L (e L ]

DV T g \w—-a—-ib w+a—-ib w-a+ib w+H+a+ib/’
Hence, the uniformization map f, has four simple poles, so because of the
symmetry

AL AL AL Al

0= A S S SRS Ers

Si(6) L—(a,+iB) V14+(a,+iB)l 1-(a,—iB)L 1+ (a,—iB)
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where 4,, a,, B, can be found from the equations

fla+ipy=a+ib, L =ar+ip).

If a < 2b then the second confluence happens before the critical time
3na’ /a4 when each of the two uniting blobs would have become convex if
they were not to collide. Therefore, the two boundaries collide at two points
simultaneously, which results in formation of a doubly connected domain
(Figure 24). Obviously, its Cauchy transform is the same as in case of con-
fluence into a simply connected domain. Consider, for instance, the case
a = b. Then the Cauchy transform equals (5.10) for N = 4, and the so-
lution coincides with the dynamics of the domain in the example of §5.7,
up to the time #, of contraction of the inner component of the boundary.
After this time, the fluid domain is connected and simply connected, and
the above formulas define a conformal map of the disk onto this domain.
The time ¢, can be found from equations (5.6)—(5.9), in which 1 tends to
infinity (because A = co corresponds to the time of contraction).

REMARK. The problem we just considered is equivalent to the problem of
injection from one source into a right angle with impervious boundaries.

FIGURE 24
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6.3. Weak solutions of the contraction problem. In the problem of contrac-
tion considered in Chapter 4, let us study the dynamics of gas domains that
do not remain connected in the course of evolution (see §4.2). That means,
at some point, two parts of the boundary collide (Figure 25). Define the
dynamics of the domain after the time of collision, up to the time t* when
gas will be extracted entirely. We will do this by introducing the concept of
a weak solution analogously to §6.1.

DEFINITION. Let us say that a family of bounded domains D(¢), 0 <t <
t*, consisting of a finite number of connected components is a weak solution
of the contraction problem if it has the following properties:

1) inclusion: D(z,) C D(¢)) if 1, <t,;

2) linearly decreasing area: the area of D(¢) equals S, —gt, where S is
the area of D(0), and ¢ is the rate of extraction;

3) finite number of topological transformations: there exist times 7, ...,
7, such that on each of the k+1 time intervals between them: (0,7,),(7,,7,),
s (Te_y15 T) s (7,5 00), the domain D(z) is bounded by a finite collection
of disjoint smooth nonsingular curves;

4) piecewise classical solution: on each of the k£ + 1 time intervals, the
family of domains D(¢) is a classical solution of the contraction problem
(taking into account the remark in §4.1).

A weak solution D(t) corresponding to a given initial domain D(0) exists
and is unique if D(0) is algebraic. It is natural to believe that the same is
true for an arbitrary smooth initial domain, but a rigorous proof has not been
worked out.

Let us say that a given point is a point of full contraction if it belongs to
D(t) for all ¢ from O to t*, ¢* being the time of contraction. There can be
several such points since the gas domain can break up into several parts.

MAIN THEOREM. Let D(t) be a weak solution of the contraction problem.
Then:

1. The gravity potential HD(t) of the domain inside itself that is given by
Jormula (2.3) changes by a constant in the course of contraction:

I'ID(O) - l'ID(t) = const(¢) in D(1).

= ED

FIGURE 25
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2. The set of points of full contraction is finite.

3. The minimal value of the gravity potential of a domain is attained at
the points of full contraction, and only there.

This theorem is proved analogously to Theorem 4.4.

REeMARK. Existence of several points of full contraction is a sufficient con-
dition for the domain to break up in the course of contraction. This condition
can be effectively verified since the points of full contraction are the global
minima of the potential. It is especially useful for domains that have some
kind of geometric symmetry, because in the class of such domains, several
global minima may appear in general position.

A weak solution of the contraction problem with sources is defined anal-
ogously. In this case, the set of points of full contraction coincides with the
set of global minima of the “effective potential” whose relationship with the
gravity potential of the initial domain is given by formula (4.16).

6.4. A sufficient condition of a breakup of a symmetric domain. Let the
boundary of the initial gas domain have the equation y2 = f(x), where
f(x) is an even function (Figure 26).

THEOREM. If

b xf(x)+2f(x) n
/0 s roy 7 2

where b is the smallest positive root of [, then the domain will break up into
two pieces in the course of evolution.

ProoF. Because of the symmetry, if the domain does not break up, it has
to contract completely at the origin. The main theorem tells us that the origin
then has to be a global minimum point of the gravity potential. Hence, the

FIGURE 26
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-b

X —c

FIGURE 27

2
second derivative %Igz(o, 0) has to be nonnegative. A calculation shows
that

X,

5711, 2 [P xf0) +2f(x)

0 =1-= d
R n/o S 20 + f(x)
which proves the theorem.

EXAMPLE. Let the initial gas domain be an ellipse with half-axes a and
b, and let two sources be situated at symmetric points of the line containing
the shorter axis, at a distance ¢ from the center (Figure 27). The effective
potential in this case, in a suitable coordinate system, equals

A_l a 2 b 2 ab 5 ) 5 s
rI_§(a+bx +a+by)_?(1°g(x + (¥ —0)) +log(x" + (¥ +¢)7)).

In order to find out if the domain will break up, we should consider the value
o
of %1;22(0’ 0), and compare it to zero. The sufficient condition of a breakup

then comes in the form b(a + b) > 2¢*. For example, if b = a/2 then a

breakup necessarily occurs for ¢ < \/gb ~ 1.22b. One can also show that
otherwise a breakup does not occur.

Problems. 1. Suppose that fluid is injected into an annular domain
R, €| z [< R, from a single source working at a rate ¢q. Show that if ¢
is large enough, the fluid domain at the time ¢ coincides, up to a translation,
with the domain D(z — an /a) of Example 1 in §3.7. (Note that an analytic
representation of the complete solution to this problem is unknown.)
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2. Write down the equation of the boundary for the domain of Example
! in §6.2.

3. Give an example of an algebraic domain with g holes of degree not
higher than [(g + 5)/2] ([a] stands for the integer part of a).

4. Find the points of full contraction for the domain of the example in
§6.4.

5. Will the domain shown in Figure 28 break up in the course of contrac-
tion? (If worried about smoothness, make it smooth by a small perturbation.)

P

FIGURE 28



7. Contraction Problem on Surfaces

7.1. Physical motivation. The problem of evolution of a fluid domain on
a surface arises in the study of the process of filling a mould shaped as a
very narrow slot between two almost parallel surfaces, with molten metal
or polymer [7]. Let the mould be shaped after a surface X in R®. Let us
suppose, for the sake of simplicity, that this surface is closed (Figure 29).
Assume that the mould is being filled by means of injection of fluid from
sources situated at points 4, ..., 4, , atrates ¢, ..., g, , respectively. Since
initially the mould is filled with air, this air has to be taken away through an
opening in the surface. It is obvious that the optimal position of this opening
is at the point of contraction of the boundary between air and fluid at the
time when the fluid has filled the entire mould.

z

FIGURE 29

7.2. Potential and contraction points. The mathematical formulation of
the problem is similar to its formulation for the “flat” case. At a time ¢ fluid
occupies a domain D(¢), and air occupies the domain X\D(?). Inside D(t)
the fluid velocity potential ®(P, ¢) is defined satisfying the condition

. q,
AP=0 inDO\{4,,...4,}, OP,0)~5Llogp(P, 4),P—4,,

q; and A4 ; being the rates and the points of location of the sources, and
p(P, Q) being the length of the shortest geodesic connecting P and Q. Here
A is Laplace’s operator on the surface that acts according to the formula

A$(P) = lim (/r %gdl/a(r)),

o(T)—0

55
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where I' is a small contour surrounding the point P, g(I') is the area that
it bounds, and ¢ is a smooth function on the surface.

The boundary velocity equals grad®.

It is easy to see that any solution of this problem has the inclusion property:
D(t)) C D(t,) if t; < t,. It allows to define a weak solution by analogy with
§6.1. Tt is defined on the time interval [0, "), where ¢* = S, /(3 g;), and
S, is the area of the air domain.

THEOREM. Let u(P) be a smooth function on the surface defined in a neigh-
borhood of D(t) and such that Au(P) = 0. Then

d

(7.1) @ Jo u(P)do = ;qj u(4;),

where do is an element of area on the surface.
This theorem is proved analogously to Richardson’s theorem.

REMARK. For surfaces of revolution, it turns out to be possible to con-
struct explicit solutions of the injection problem that are counterparts to the
algebraic solutions of Chapter 3.

Consider the physically most interesting case of injection into an “empty”
mould: the initial fluid domain D(0) will be an empty set. Define the gener-
alized gravity potential for the injection problem as a solution of the following
boundary value problem for Poisson’s equation:

All=1 in2X\{4,,..,4,},
(7.2) H(P)~——qj——§— logp(P,A), P— A,
q1+...+qn2n Y R J?
where S is the total area of the surface.
Let us say that a point on the surface is a point of full contraction if it
belongs to the air region for all times ¢ between 0 and " = S/(3_¢ )

THEOREM. 1. The generalized gravity potential inside the air region
changes by an additive constant in the course of contraction.

2. The set of points of full contraction is finite.

3. Any point of full contraction is a global minimum point of the general-
ized gravity potential, and vice versa.

Thus, we have reduced the problem of finding the points of full contraction
to the problem of calculation of the generalized gravity potential correspond-
ing to a system of sources.

7.3. Calculation of the generalized gravity potential on the surface. Let a
surface X have the topology of a sphere; then by Riemann’s theorem, it is
conformally equivalent to the sphere, i.e. there exists a smooth, one-to-one
map z:X — C that preserves angles between curves [20], [21]. The complex
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number z(P) will be called the complex coordinate of a point P. The
map z can be chosen so that z(4) = co. Let x = Rez, y = Imz be
the real coordinates on the surface. If the area element on the surface is
g(x,y)dxdy then Laplace’s operator in coordinates x, y has the form

L (°0(x,3)  0°¢(x, )
gx,y) ax? ay* ’

Ad(x,y)=

If the only source is situated at infinity then the generalized gravity poten-
tial is defined by the conditions

(1.3) ATl =g(x,y), x,yeR; H~%log|z|, z = 0.

If the sources are situated at points oo, z,, ..., z, and have rates ¢, , ...,
. . . . 1 n “, . 1
g, then the generalized gravity potential is defined by the conditions:

ATl = g(x, y) outside the injection points,
(1.4) -~ q; S
I~ - J — loglz—2z.,|, z—- z.
g+q,+--+4q,2n d i T

n

It is obvious that

n

~ 4; S
7.5 N=I1- / log|z —
(7.5) R AL

Now suppose that X is a surface of revolution and that 4 is one of its poles
(Figure 30). Then the complex coordinate z can be written as z = pe ,
p and @ being the longitude and the latitude coordinates. The generalized
gravity potential Il is invariant with respect to rotations, therefore it can be
expressed in terms of p only. According to (7.3)

1 d dIl
b3 (0 2) =20

Taking into account the asymptotics at infinity, we obtain

(7.6) I1(p) = / / n)dndé + C.

So, if the function p(P) is given then the generalized gravity potential of
a system of sources can be effectively calculated by (7.5) and (7.6).

FIGURE 30
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A

FiGURE 31

ExaMPLE. Let ¥ be the sphere of a radius R. Then we can take z to be
the usual stereographic coordinate (Figure 31). In this case we have

2
2

g(p) = 4R%/(1 + %) .

After a simple algebra we obtain an expression for the generalized gravity
potential:

2
2
(1.7) Ii(p) = R’ log (1 + 1%) +C.
For the case of several sources we have
22
f(x, ») =R210g (1 + a ;2}) )

2 2
q: X—X.) + i
_RZ j lOg( J) 2(y y])
Zq+q1+---+qn R

(1.8)
+C.

J
If there are two sources, 4 and A4,, with rates g and ¢, and if the
coordinate of A, is a real positive number a then

2, .2 2, .2
X +2y )_Rz q, 10g(x—a) +y

— >+ C.
q+q R

fi(x, y) = R*log (1+

Solving the equation %(x , 0) =0, we derive an expression for the coordi-
nate of the contraction point:

. alg +q,)(a’ (@ +q,)’ + 4qq,R*)'?
= 5 .

7.4. Breakup of the boundary on a symmetric surface of revolution. Let X
be a surface of revolution, symmetric with respect to a plane orthogonal to
the axis of revolution. Such a surface can be thought of as a result of rotating
a graph of an even function ¢(x) about the abscissa axis (Figure 32). The
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section of our surface by the symmetry plane will be called the equator.
Suppose that the fluid is injected from a point A lying on the equator. If the
surface is a sphere or close to a sphere, a breakup of the boundary will not
occur, and it will contract to the point B antipodal to A (Figure 33). But if
the surface is shaped as a very prolate ellipsoid, the picture will be different
because of a breakup of the boundary in the process of contraction (Figure
34). An astonishing thing is that we can distinguish very easily between these

two situations.

FIGURE 32

-

B

FIGURE 33

FIGURE 34
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THEOREM. If the area of the surface exceeds eight times the area of the
equatorial section then the contour will break up in the course of contraction.

Proor. If the contour did not break up, it would contract to the point B.
With the help of the formulas of §7.3 it is easy to find that this point is a
local minimum point of the generalized gravity potential (i.e. dsz(B) >0)
if and only if the ratio of areas of the surface and equatorial section is less
than or equal to eight (check it!).

ExaMPLE. On an ellipsoid of revolution with half-axes a and b, the
boundary breaks up in the course of contraction if (and, in fact, only if)
a/b>A=3418.

Problems. 1. A mould consists of two hemispheres and a cylinder whose
height is greater than radius (Figure 35). Will the air region break up when
filling such a mould from an equatorial point?

2. It can be shown that at times close to the time of full contraction, the
boundary of the air region has an approximately elliptic shape (cf. §4.10).
Find the ratio of the axes of the asymptotic ellipse for the problem of filling
a spherical mould from two sources working at equal rates (Example 7.3,

qqu)-

FiGURE 35



Answers and Clues to the Problems

Chapter 2. 1. Answer: z(t) = 32=%9" where a is the coordinate of the

sink, g is its rate, ¢ is time, S is tieq;rea of the disk, z, is the coordinate
of its center.

2. The coordinates of the mass center of the domain can be expressed in
terms of its moments. The mass center of a convex domain lies inside it.
Hence, the two domains considered must have a common point (the mass
center), with respect to which they are starlike, therefore by the theorem of
Novikov, they have to coincide.

3. Take three domains D, , D,, D, situated as shown in Figure 36, and
containing a common point Q. Let us inject in them a certain (the same
for all three domains) amount of fluid at this point. We will obtain new

A

FIGURE 36
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domains D/ ,D;,Dj. Consider the annular domains D|\D, , D;)\D,,D;\D;, ..
" They have the same moments The intersection of these domams is a hexagon
A . Eliminating this hexagon from the three annular domains, we will obtain
three simply connected domains with the same moments. Analogously one
can construct any number of simply connected domains with equal moments
and even an infinite collection of such domains. L. Zalcman, using another
method, recently managed to construct an uncountable collection of this type
[22]. For more details on this subject see [23].

Chapter 3. 1. 9D is the image of a curve of order two (circle) under a
rational map of degree deg D, therefore the degree of 8D must be 2degD.

2. a) The boundary of an algebraic domain is a rational algebraic curve
since it is the image of the circle under a rational map. But it is known that
the curve x* + y4 =1 is not rational.

b) The Cauchy transform of an ellipse equals C((z
rational, so an ellipse is not an algebraic domain.

3. Answer: The uniformization map of D(¢) is f({) =a,{ +th2 (Figure
37), where a, and b, can be expressed in terms of g, and b, as follows:

2_ M2 - z);itis not

qt 2 2
a, +2b —a0+2b 0T atbt=a0b0.

The time of cusp formation is
* 3 23 _ 2 2
t :q (2(2 ayb,) —2b0>.

The quotient of oil that has been extracted by the time ¢* equals # =
qt* /n(a; + 2b7). The value n = 1/2 is attained at by/a, ~0.1.
4. Answer: The uniformization map of the domain D(t) is

f,(C)=1—E—Z( b+—\/b2—3qt/7z> (%b—%\/b2—3q1/n>.

At the time of cusp development the velocity %(— 1) must be infinite, which
happens when the expression under the square root vanishes, i.e. at ¢ =
nb* /3q.

5. Answer: The uniformization map of D(¢) has the following form:

A0 =a(Floe i) +at [ - 2.

4 n°  7a

The breakdown time ¢* equals a’ /mq . The amount of fluid that will have
been extracted by this time is approximately 2.5 times smaller than in case
of extraction from a circle of diameter a/2 (Figure 8).
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FIGURE 37

6. Assume that the sinks are situated at points ae*™ ! N, k=0,1, ..,
N —1, and let them have an equal rate ¢ . Suppose that the circle is centered
at the origin, and let R > a be its radius. Then the uniformization map at

a time ¢ equals

N
f =
-«
where )
2 (R-g)+s
ﬂt ( ) 12N(1 - atZN):

T N+ 1+(N- Dol
(1+ (N = DogV)& + N% (RZ— ﬂ)
N+1+(N-DaV ’

and «, can be found from the equation

V=

R(N+1+ (N -1

[\

(N +1—-aM)(1 + (N - 1a’™)

Q|Q
~

oMt 2 qt 2 2 qt 4N
+N—t5— (R ——) +N<R ——) (N-=1)a,” + N+1).
a 4 T
The above formulas make perfect sense if one sets N to be any real number
greater than 1. Then one obtains a solution to the problem of extraction of
fluid from a sector with angle 2z/N (Figure 38, p. 64).
7. Answer: The domain from Example 1, §3.7.
The moments of the resulting domain do not depend on the radius of the
circle along which the source is moving. They depend only on the position
of the center, the period of rotation, and the rate of the source. Hence, the
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FIGURE 38

result of injection does not depend on the radius of the circle either. But in
case of zero radius (i.e. when the source, in fact, is not moving) the domain
is the same as in Example 1 in §3.7.

Chapter 4. 1. Since |J,., D(?) is the entire plane, the intersection (., D(¢)
is empty. Hence, for k > 3

/ z_kdxdy —0 ast— oo.

210)
By (4.4), this integral is independent of ¢, which implies

/ Z*dxdy =0, k>3

D(0)
According to a theorem of M. Sakai (see §4.9), the initial domain has to
be an ellipse.
2. Let x, be the abscissa of the contraction point. Then for any ¢

®,(x,,0)>®,(x,,0) ifxy;>x >x,0rx,<x <x,

(Figure 39, p. 65), since the flow along the horizontal axis is directed towards
the contraction point. Hence, if x, > x, > x, or x, < x, < x, then

t I
/ ®,(x,,0)dt > / ®,(x,,0)dt,
0 0

or, considering (4.12), Iy (X 5 0) < ) (%25 0). Therefore, the contrac-
tion point is the only local minimum point of the gravity potential on the
abscissa axis.

3. Hint. Consider the process of simultaneous contraction of the domain
and its images with respect to the rigid boundaries.

Answer: a) The abscissa of the contraction point is x = \/b2 - p2 , b
being the abscissa of the center of the circle, and p being its radius (Figure
13).

b) The abscissa of the contraction point is the root of the equation

x—b pzn( x—b x+b—d> p2 1

———2 +7ﬁ cotn——zd +cotrm 2d _Tx—b
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FIGURE 39

that lies between 0 and b. Here p is the radius of the circle, d is the width
of the channel, and b is the distance from the center of the bubble to the
closer wall of the channel (Figure 14).

4. Answer: The ratio of half-axes equals 2

az+4p2 )

Chapter 5. 1. The Cauchy transform of a domain bounded by circles is
expressed by different rational functions inside different components of the
complement. Therefore, the derivative of the Cauchy transform does not
extend to a univalent rational function, and the domain is not abelian.

2. The boundary 0D of an algebraic domain is the image of a real alge-
braic curve X", under a rational mapping, therefore it has to be an algebraic
curve. This curve is irreducible.

3. Assume the contrary. Let D be a domain of degree 2, £ be the
corresponding Riemann surface, and let f be the uniformization map of
>* onto D. This map defines a two-fold branched covering of the Riemann
sphere by the surface X.

Case 1. The surface has genus g > 1. Defined on X is a hyperelliptic
automorphism o¢:X — X that assigns to an inverse image of a point z € cp!
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the other inverse image of this point. This automorphism does not depend
on f. Let a € CP' a ¢ D. Then both inverse images A, u of a lie
in X_; for them, we have (1) = 1, a(u) =4, f(A) = f(u). Since
o commutes with the antiholomorphic involution 7, we have o(7(4)) =
t(w), o(t(w) = 1), f(z(A) = f(z(w)). But (), 7(n) € *. This
contradicts the bijectivity of the map f on T uUaxz*.

Case 2. The surface X has genus 1. In this case, the automorphism
o:X — X is defined as well, but now it depends upon the mapping f. Let us
identify ¥ with a torus C/T", where I is a lattice. Then the automorphism
will act as follows: g ({) = —{+a(f) . This automorphism is area-preserving,
s0 g(X" UOZ") intersects " UAE" . This contradicts the bijectivity of f
on Ztuaz’.

4. Let D be an algebraic domain, and let

dxdy
ZZ pwWw—2

jlkln

be its Cauchy transform. Since the functions w‘_Z considered as functions

of z for w ¢ D generate linearly the space of all holomorphic functions in
D, for an arbitrary holomorphic function ¢ in D we have

/¢ Ydx dy = ZZ«:&“‘() )

j=1 k=0

5, 6. Any domain can be approximated by domains with analytic boundary
curves. An approximation of a domain with analytic boundaries by algebraic
domains can be obtained as follows. First one constructs the Riemann surface
X that corresponds to the domain (§5.4). Next, one introduces meromorphic
functions ¢, on X, analogues of the functions z" on the Riemann sphere.
They have a pole at a point P € £~ and a zero of multiplicity n at ©(P) €
X, and are regular and nonzero elsewhere. Any holomorphic function in >*
expands in a series with respect to this system of functions, which is analogous
to the Taylor expansion of a holomorphic function in the circle. This series
is uniformly convergent in the closure of I if the function is analytic in
some neigborhood of the boundary, which holds for a uniformization map of
a domain with analytic boundary. A partial sum of this series is a univalent
function on I* provided the number of terms is large enough. It realizes a
conformal map of X+ onto a domain close to the initial domain (see [24]).
The Cauchy transform of this domain is a polynomial of 1/z.

7. A conformal map of the strip |Im z| < ¢ onto the fluid domain D()
is given by

fw) = AL, (% +2¢i) — AL,(2¢i) + Bu,

where {, is the Weierstrass function (§5.8), 4 = 4c/a, and the parameters
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A, B,and ¢ can be found from the equations
I U S
mm (B - 40, (5))

here § and ¢’ are the monodromies of ¢, along the periods.

A0 =(1-B)a; A6 =4i(b—Bc); Aa=

REMARK. This problem is equivalent to the problem of evolution of an
annular domain on a cylinder produced by injection from a single source.
The machinery developed in Chapter 5 applies in this case as well.

8. During the evolution the potential of the hole changes as follows:
l'ID(t) = HD(O) + C(t), so its gradient is invariant. At the contraction time

*

t* the domain D(¢) is simply connected, and its Cauchy transform equals
2
the Cauchy transform of D(0), i.e. BE_ 2 Therefore, D(t") is the do-

main from Example 1 in §3.7. The conztractzio; point can now be found from
the identity grad HD(t.)(P) = grad HD(O)(P) .

9. Consider the family of domains D(gp) obtained from D by rotating it
through the angle ¢ about the origin. The have the same moments. There-

fore, they coincide with D.

Chapter 6. 1. If ¢ is large enough, the fluid domain is simply connected,
because the inner component of the boundary vanishes at some point. The
Cauchy transform of the fluid domain equals

2 2
R, - R qt

1
w + m(w -~ z,)

hpy(w) =

It is the same as the Cauchy transform of the domain D(t — 7rR2) from Ex-
ample 1 in §3.7. It is seen from that example that there exists at most one
domain corresponding to a given Cauchy transform with two poles. There-
fore, the two domains coincide.

2. Answer: (x> + y2)2 = P*x? + sz2 , where

P= 2(q—’+a2), 0= 2(q—’—a2).
/A ¥4

FiGURE 40



68 ANSWERS AND CLUES TO THE PROBLEMS

3. Choose a connected collection of tangent closed disks with disjoint
interiors so that the complement of their union contain g + 1 connected
components (Figure 40, p. 67). The number of disks in such a collection can
be made equal to [(g + 1)/2] + 2 since every new disk can be chosen so that
it will touch the previous three disks (the circle of Apollonius), which will
increase the number of components by two.

Let us now inject small amounts of fluid at the centers z ; of the disks. We
will obtain a connected domain with g holes. Its Cauchy transform equals

Eg(ff b/21+2 z—flz—] . Therefore, the domain is algebraic of degree [(g+1)/2]+2.

4. Answer: (i biazibl -, 0> )

5. Answer: Yes.

Hint: The sufficient condition of a breakup from section 6.4. is valid for
domains with piecewise smooth boundaries. The domain shown in Figure 28
breaks up when the ratio of the radii of the outer and inner circles is greater
than e¢™? which approximately equals 4.81.

Chapter 7. 1. Answer: Yes.
Hint: The ratio of the surface area to the area of the equatorial section is
greater than eight.

2. Answer: %&& at the contraction point P = (a — V a+r,0).

Hint: Contraé{ion on a surface as well as contraction on the plane has the
property that the axes of the asymptotic ellipse are directed along the eigen-
vectors of the matrix of second derivatives of the generalized gravity potential
at the contraction point, and the lengths of the half-axes are proportional to
the corresponding eigenvalues.



A Few Open Questions

Below we give a short list of unsolved questions and conjectures related
with the problems we have discussed.

1. ConsecturE (P. S. Novikov). Let D, and D, be simply connected
bounded domains in the plane such that both their intersection and the com-
plement to their union are connected. Then if the outer logarithmic potentials
of D, and D, are the same, the domains are the same as well.

This conjecture has been proved under various additional restrictions im-
posed on the domains D, and D,. In 1979 V. Isakov showed that it holds

for domains which are convex along a fixed line [25].1

2. QUESTION. Do there exist two distinct simply connected abelian domains
with equal outer logarithmic potentials (= equal moments)?

This question was raised by Aharonov and Shapiro in 1976 [26]. C. Ulle-
mar [27] showed that such two domains do not exist within the class of do-
mains obtained from the unit disk by a polynomial conformal map of degree
3. There is a hope that the same is true for polynomials of any degree.

REMARK. The topological nature of the example of two domains with
equal moments might create an impression that such examples must be possi-
ble in any dense subclass of simply connected bounded domains. M. Brodsky
and V. Strakhov [28] showed that it is not so. They proved that the inverse
problem of potential theory has a unique solution in the class of domains
bounded by level curves of the absolute value of a polynomial of the com-
plex coordinate. Such domains are dense in the set of domains with piecewise
smooth boundary.

3. One can formulate an analogue of the evolution problem in the Fu-
clidean space of any dimension. Namely, fix a system of sources z, ..., z
and rates ¢,, ..., g, , and for any domain D define the velocity potential

n

n
®(z,D)=) q;G(z,z;, D),
j=1

'A domain D is called convex along a line / if the intersection of D with any line parallel
to / is either empty or a single interval.
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where G(z, z T D) is Green’s function of D with pole at z ;- Now define
the evolution by the condition that the speed of the boundary of D is equal to
the normal derivative of ®(z, D). Both classical and generalized solutions
for this problem can be defined quite similarly to the two-dimensional case.
Richardson’s theorem has an obvious analogue.

A natural question is:

Can one construct any nontrivial explicit solutions of the evolution prob-
lem in the N-dimensional Euclidean space, where N > 2? In other words, do
there exist any natural multidimensional counterparts of algebraic solutions
in the plane?

It is remarkable that the answer is positive if N = 4. A family of explicit
4-dimensional solutions was recently discovered by L. Karp [29] and indepen-
dently by the second author of this text. However, for all other dimensions,
including the case N = 3 which appears in applications, the question still
remains open.

4. Theorems 6.4 and 7.4 give sufficient conditions for a symmetric gas re-
gion to break up. It is natural to ask under what reasonable assumptions these
conditions are also necessary. For instance, will the condition of Theorem
7.4 be necessary if the surface is convex?

5. In contraction theory for nonsymmetric domains, we have found no
effectively verifiable sufficient condition for the domain to break up during
contraction. The following statement, if it holds, would furnish such a con-
dition.

CONJECTURE. If the gravity potential of a simply connected domain has
more than one local minimum in the plane, then the domain breaks up in the
course of evolution.

Problem 2 in Chapter 4 proves this statement for domains symmetric in
the horizontal axis.

It can be shown that it is sufficient to prove the conjecture for domains with
exactly two local minima of the potential. To do that, it would be enough
just to show that the space of such domains is connected.
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